Vol. 1 of 5 EP-457/2013/D Central Kowloon Route Central Tunnel Contract No. HY/2018/08 December 2023

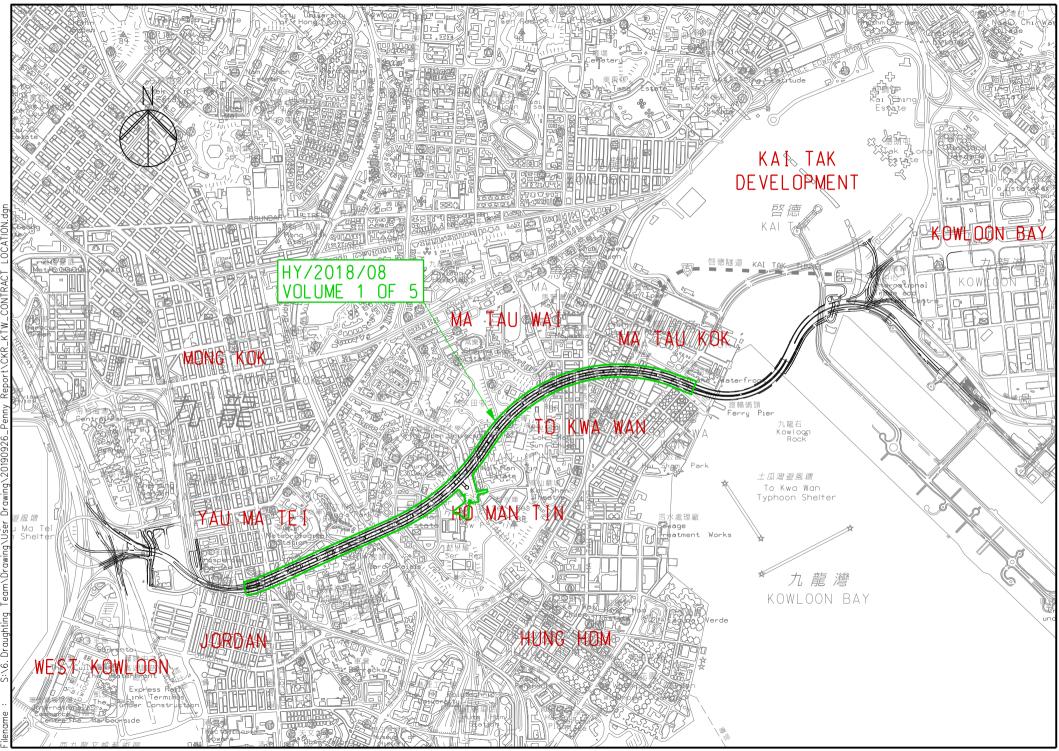


Figure 1 - Site Layout Plan of the Contract

Monthly EM&A Report No. 52 (December 2023)

0097/19/ED/0880 02 | 10 January 2024 Verified Bouygues Travaux Publics – Contract No. HY/2018/08

0097/19/ED/0880 02 | Monthly EM&A Report No. 52 (December 2023) Page i of ix

Environmental Permit No. EP-457/2013/D

Central Kowloon Route

Independent Environmental Checker Verification

Works Contract:	Central Tunnel (HY/2018/08)	
Reference Document/Plan		

Document/Plan to be Certified/ Verified:	Monthly EM&A Report No.52
Date of Report:	10 January 2024
Date received by IEC:	10 January 2024

Reference EP Condition

Environmental Permit Condition:

Submission of Monthly EM&A Report of the Project

3.4 Four hard copies and one electronic copy of monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month throughout the entire construction period. The EM&A Reports shall include a summary of all non-compliance. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the submission shall be provided to the Director upon request by the Director.

3.4

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-457/2013/D.

Mandy 20.

Ms Mandy To Independent Environmental Checker Date:

10 January 2024

Our ref: 0436942_IEC Verification Cert_CT_Monthly EM&A Rpt No.52_20240110.docx

Document Control

Document Information

Project Title	Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel
Document Title	Monthly EM&A Report No. 52 (December 2023)
Fugro Project No.	0097/19
Fugro Document No.	0097/19/ED/0880
Issue Number	02
Issue Status	Verified

Client Information

Client	Bouygues Travaux Publics – Contract No. HY/2018/08
Client Address	Bouygues Travaux Publics, 3/F, Island Place Tower, 510 King's Road, North Point, Hong Kong
Client Contact	Mr. KAM Hing Lam, Alan
Client Document No.	Consultancy Agreement No. CA0001

Revision History

Issue	Date	Status	Comments on Content	Prepared By	Review and certified By
02	10 January 2024	Verified	No adverse comment from IEC	EC	CL
01	8 January 2024	Amended	IEC's comment released	EC	CL

Environmental Team

Initials	Name	Role	Signature
EC	Eric T. Chan	Assistant Environmental Consultant	2-p
CL	Calvin M.P. Leung	Environmental Team Leader	Caloin Leing

EXECUTIVE SUMMARY

I. Introduction

This is the 52nd Monthly EM&A Report prepared by Fugro Technical Services Limited for the Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel. The Contract No. HY/2018/08 commenced on 19 September 2019. This report summarized the monitoring results and audits findings of the EM&A programme under the issued EP (EP No.: EP-457/2013/D) and in accordance with the EM&A Manual during the reporting period from 01/12/2023 to 31/12/2023.

II. Summary of Main Works Undertaken and Key Measures Implemented

The main construction works carried out in the reporting period were as follow:

<u>Ho Man Tin</u>

- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Struct installation and D-wall coring;
- ELS excavation
- Site and shaft installation.

<u>Yau Ma Tei</u>

- Drill and break excavation;
- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Mucking out from tunnel;
- Site and shaft installation.

<u>Ma Tau Kok</u>

- Drill and break excavation;
- TBM pilot tunnel enlargement;
- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Mucking out from tunnel and horizontal access;
- Site and shaft installation.

Kai Tak Barging Point

Material storage.

Sheung Lok Street

Concreting.

Ma Hang Chung Road

• Concreting.

III. Summary of Exceedances, Investigation and Follow-up

No Action and Limit Level exceedance was recorded for construction dust monitoring in the reporting month.

One (1) Action Level exceedance was recorded for construction noise due to the noise-related complaints received in the reporting month. No Limit Level exceedance was recorded for construction noise monitoring in the reporting month.

IV. <u>Complaint Handling, Prosecution and Public Engagement.</u>

All complaints received in the last reporting month were finalized.

One (1) water quality-related complaint (i.e. 4th December 2023) and one (1) noise-related complaint (i.e. 30th December 2023) was received in the reporting month.

The complaint cases in November and December 2023 are summarized in Table I.

Table I	Environmental Complaints Log	g

Complaint Log No.	Date of Complaint	Received From	Nature of Complaint	Status
EC180_CKRCT2 0231124_746	24 th November 2023	The Contractor Hotline	Construction dust	Investigation report was finalized on 27 th December 2023.
EC181_CKRCT2 0231204_755	4 th December 2023	1823	Blocked gullies	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.
EC182_CKRCT2 0231230_758	30 th December 2023	The Contractor Hotline	Construction noise at night	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.

No notification of summons and prosecutions were received in the reporting period.

No public engagement activities were conducted in the reporting period.

V. <u>Reporting Change</u>

There were no reporting changes during the reporting month.

VI. Future Key Issues

The main works will be anticipated in the next reporting period are as follow:

<u>Ho Man Tin</u>

- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Removal of D-wall;
- ELS excavation;
- CLP Room demolition and slope reinstatement;
- Tower crane and foundation dismantling work.

<u>Yau Ma Tei</u>

- Drill and break excavation;
- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Mucking out from tunnel;
- Site and shaft installation.

<u>Ma Tau Kok</u>

- Drill and break excavation;
- TBM pilot tunnel enlargement;
- Underbreak scaling and smoothing works;
- Invert, lining and OVHD construction;
- Mucking out from tunnel and horizontal access;
- Site and shaft installation.

Kai Tak Barging Point

• Material Storage.

Sheung Lok Street

• Concreting.

Ma Hang Chung Road

• Concreting.

The recommended mitigation measures corresponding to the main works in the next reporting period are listed as follow:

- Good relationship shall be maintained with the nearby sensitive receivers/ stakeholders which may be affected by the construction works such as providing better/ more detail information of the work nature and inform in advance of the works to the nearby residents;
- Any excavated, stockpile of dusty material or load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting;
- All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission;
- All C&D materials generated should be transported and stored at temporary storage area. Suitable materials should be sorted for reuse on-site;
- Every vehicle shall be cleaned thorough at the designated wheel washing area onsite;
- Wastewater generated from drilling shall be properly collected for reuse or treated by wastewater treatment facilities before discharge;
- Provision of drip trays for equipment likely cause spillage of chemical / fuel, and provide routine maintenance;
- Erecting temporary noise barrier for noisy Powered Mechanical Equipment (PME) and deployment of Quality Powered Mechanical Equipment (QPME) as many as practicable;

- Conditions in the Environmental Permit and License should be followed;
- All recommended mitigation measures specified in the approved EIA Report and EM&A Manual shall be implemented;
- All vehicles should be cleaned before leaving the construction site to ensure no muddy deposited by them on roads.

The following EP submissions were submitted during the reporting month:

EP Condition	Submission	Submission Date
3.4	Monthly EM&A Report (November 2023)	14 December 2023

Table II Status of Required Submission under Environmental Permit

Contents

EXEC	EXECUTIVE SUMMARY	
1.	INTRODUCTION	1
1.1	Background	1
1.2	Project Organization	2
1.3	Construction Programme and Activities	2
1.4	Works undertaken during the month	2
1.5	Status of Environmental Licences, Notification and Permits	2
2.	ENVIRONMENTAL MONITORING REQUIREMENTS	4
2.1	Construction Dust and Noise Monitoring Location	4
2.2	Construction Dust Monitoring	5
2.3	Construction Noise Monitoring	7
2.4	Construction Dust and Noise Monitoring Schedule	8
2.5	The Action and Limit Levels	8
2.6	Landscape and Visual	8
3.	ENVIRONMENTAL MONITORING RESULTS	9
3.1	Construction Dust Monitoring	9
3.2	Construction Noise Monitoring	9
3.3	Waste Management	10
3.4	Landscape and Visual	10
4.	ENVIRONMENTAL SITE INSPECTION AND AUDIT	11
5.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	12
5.1	Complaint Handling, Prosecution and Public Engagement	12
5.2	Summary of Environmental Non-Compliance	12
5.3	Summary of Monitoring Exceedance	12
6.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE	13
7.	FUTURE KEY ISSUES	14
8.	CONCLUSION AND RECOMMENDATIONS	16

Tables

Table I – Environmental Complaints Log	ii
Table II – Status of Required Submission under Environmental Permit	iii
Table 1.1 – Contact Information of Key Personnel	2
Table 1.2 – Environmental Licenses, Notification and Permits Summary	2
Table 2.1 – Construction Dust and Noise Monitoring Location	3
Table 2.2 – Construction Dust Monitoring Equipment	3
Table 2.3 – Construction Noise Monitoring Parameters, Frequency and Duration	6
Table 2.4 – Construction Noise Monitoring Equipment	6
Table 3.1 – Summary of 1-hour TSP Monitoring Results in the Reporting Period	8
Table 3.2 – Summary of 24-hour TSP Monitoring Results in the Reporting Period	8
Table 3.3 – Summary of Construction Noise Monitoring Results in the Reporting Period	8
Table 4.1 – Observations and Recommendation of Site Inspection in the Reporting Period	10
Table 5.1 – Environmental Complaints Log	12
Table 6.1 – Status of Required Submission under Environmental Permit	14

Figures

Figure 1	The Site Layout Plan of the Contract
Figure 2.1	The Location of the Construction Dust and Noise Monitoring Stations (Ho Man Tin)
Figure 2.2	The Location of the Construction Dust and Noise Monitoring Stations (Ma Tau Kok)
Figure 2.3	The Location of the Construction Dust and Noise Monitoring Stations (Yau Ma Tei)

Appendices

Appendix A	Construction Programme
Appendix B	Project Organization Chart
Appendix C	Calibration Certificate for Construction Dust Monitoring Equipment
Appendix D	Calibration Certificate for Construction Noise Monitoring Equipment
Appendix E	Environmental Monitoring Schedule
Appendix F	Action and Limit Levels for Construction Dust and Noise Monitoring
Appendix G	Construction Dust Monitoring Results and Meteorological Observations
Appendix H	Construction Noise Monitoring Results
Appendix I	Event and Action Plan
Appendix J	Implementation Status of Environment Mitigation Measures (Construction Phase)
Appendix K	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix L Waste Flow Table

1 INTRODUCTION

1.1 Background

- 1.1.1 In order to meet the traffic demand and relieve traffic congestion on the existing east-west roads across Central Kowloon, Central Kowloon Route (CKR) (hereinafter referred to as "the Project") is proposed which is a 4.7 km long dual 3-lane trunk road in Central Kowloon linking Yau Ma Tei Interchange in West Kowloon with the road network on Kai Tak Development and Kowloon Bay in East Kowloon.
- 1.1.2 The Central Kowloon Route Design and Construction Environmental Impact Assessment Report (Register No.: AEIAR-171/2013) was approved with conditions by the Environmental Protection Department (EPD) on 11 July 2013. An Environmental Permit (EP-457/2013) was issued on 9 August 2013. A variations of EP (VEP-594/2021) was applied on 26 May 2021 and the latest EP (EP-457/2013/D) was issued by EPD on 15 June 2021.
- 1.1.3 Contract No. HY/2018/08 Central Kowloon Route Central Tunnel (hereinafter referred to as "the Contract"), is one of the contracts of CKR which included the construction of the central tunnel, cut-and-cover tunnels at Yau Ma Tei and Ma Tau Kok and construction of piles and diaphragm walls for Ho Man Tin ventilation building.
- 1.1.4 Fugro Technical Services Limited (FTS) was appointed by Bouygues Travaux Publics (BTP) as the Environmental Team (ET) under the Contract no. HY/2018/08) to execute the environmental monitoring and audit (EM&A) programme under the issued EP (EP No.: EP-457/2013/D) and in accordance with the EM&A Manual.
- 1.1.5 This is the 52nd Monthly EM&A Report prepared by FTS for the Contract No. HY/2018/08 Central Kowloon Route Central Tunnel. The Contract No. HY/2018/08 commenced on 19 September 2019. This report summarized the monitoring results and audits findings of the EM&A programme under the issued EP (EP No.: EP-457/2013/D) and in accordance with the EM&A Manual during the reporting period from 1/12/2023 to 31/12/2023.

1.2 Project Organization

1.2.1 The Project Organization structure is shown in **Appendix B**. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel			
Party	Position	Name	Telephone
Highways Department (HyD)	E13/CKR	Mr. Joe Lam	2762 3380
Arup-Mott MacDonald Joint Venture (AMMJV)	Senior Resident Engineer	Mr. Ben Poon	3619 5967
ERM-Hong Kong, Limited (ERM)	Independent Environmental Checker (IEC)	Ms. Mandy To	2271 3000
Bouygues Travaux Publics (BTP)	Environmental Manager	Mr. Simon Wong	9281 4346
Fugro Technical Services Limited	ET Leader	Mr. Calvin Leung	3565 4441

1.3 Construction Programme and Activities

- 1.3.1 The construction phase of this Contract under the EP commenced in October 2019. The site layout plan of the Contract is shown in Figure 1.
- 1.3.2 The construction programme of this Contract is shown in **Appendix A**.

1.4 Works undertaken during the month

The main construction works carried out in the reporting period were as follow: 1.4.1

Ho Man Tin

- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction; •
- Struct installation and D-wall coring;
- ELS excavation;
- Site and shaft installation.

Yau Ma Tei

- Drill and break excavation;
- Underbreak scaling and smoothing works; •
- Invert, lining and OHVD construction; •
- Mucking out from tunnel;
- Site and shaft installation.

Ma Tau Kok

- Drill and break excavation;
- TBM pilot tunnel enlargement;
- Underbreak scaling and smoothing works; •
- Invert, lining and OHVD construction
- Mucking out from tunnel and horizontal access;
- Site and shaft installation.

Kai Tak Barging Point

• Material storage.

Sheung Lok Street

• Concreting.

Ma Hang Chung Road

• Concreting.

1.5 Status of Environmental Licences, Notification and Permits

1.5.1 A summary of the relevant permits, licenses and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Permit/ Notification/ License	Reference No	Valid From	Valid Till
Form NB	448930, 448970, 448971	Mid-Sep 2019	NA
Billing Account for Disposal of C&D waste	Account no. 7034790	06 Aug 2019	NA
Chemical Waste Producer Registration (Ho Man Tin Construction site)	5111-236-B2557-02	25 Sep 2019	NA
Chemical Waste Producer Registration (Yau Ma Tei Construction site)	5213-225-B2557-05	19 Apr 2021	NA
Chemical Waste Producer Registration (Ma Tau Kok Construction site)	5213-247-B2557-06	19 Apr 2021	NA
Construction Noise Permit			
Construction Noise Permit (Ho Man Tin Construction site)	GW-RE1416-23	14 Nov 2023	13 Jan 2024
Construction Noise Permit (Yau Ma Tei Construction site)	GW-RE1281-23	13 Oct 2023	12 Jan 2024
Construction Noise Permit (Yau Ma Tei Construction site)	GW-RE1183-23	23 Sep 2023	22 Dec 2023
Construction Noise Permit (Yau Ma Tei Construction site) ¹	GW-RE1606-23	23 Dec 2023	22 Mar 2024
Construction Noise Permit (Ma Tau Kok Construction site)	GW-RE1336-23	04 Nov 2023	03 Feb 2024
Construction Noise Permit (Ma Tau Kok Construction site)	GW-RE1271-23	18 Oct 2023	17 Dec 2023
Construction Noise Permit (Ma Tau Kok Construction site) ²	GW-RE1547-23	18 Dec 2023	17 Feb 2024
Construction Noise Permit (Kai Tak Barging Point)	GW-RE0547-23	01 Jun 2023	30 Nov 2023
Construction Noise Permit (Kai Tak Barging Point) ³	GW-RE1526-23	01 Dec 2023	29 Apr 2024
Construction Noise Permit (Sheung Lok Street)	GW-RE1422-23	14 Nov 2023	13 Mar 2024
Water Discharge License			
Water Discharge License	WT00034873-2019	22 Nov 2019	30 Nov 2024
	(Ho Man Tin Construction site)		
	WT00035436-2019	02 Apr 2020	30 Apr 2025
	(Portion 18)		
	WT00037723-2021	07 Apr 2021	30 Apr 2026
	(Yau Ma Tei Construction site)		
	WT00037883-2021	30 Apr 2021	30 Apr 2026
	(Ma Tau Kok Construction site)		
	WT00042304-2022	13 Oct 2022	31 Oct 2027
	(Sheung Lok Street)		
	WT10001427-20233	4 Dec 2023	31 Dec 2028
	(Ma Hang Chung Road)		

Table 1.2 Environmental Licenses, Notification and Permits Summary

Notes:

¹ GW-RE1183-23 was superseded by GW-RE1606-23 since 23 December 2023.

 $^{\rm 2}$ GW-RE1271-23 was superseded by GW-RE1547-23 since 18 December 2023.

 $^{\rm 3}$ GW-RE0547-23 was superseded by GW-RE1526-23 since 1 December 2023.

2 ENVIRONMENTAL MONITORING REQUIREMENTS

2.1 Construction Dust and Noise Monitoring Locations

Notes:

2.1.1 Three construction dust monitoring locations and five construction noise monitoring locations pertinent to the Project have been identified based on the approved EM&A Manual for the Project. The locations of the construction dust and noise monitoring stations are summarized in **Table 2.1** as displayed in **Figures 2.1 - 2.3**.

Table 2.1	Construction Du	st and Noise Monitoring Locations
Dust Monitoring Station ID	Noise Monitoring Station ID	Monitoring Location
M-A3	M-N3	SKH Tsoi Kung Po Secondary School
/	E-N12a	19 Hing Yan Street
E-A14a	E-N21a	Block B of Merit Industrial Centre
W-A6	/	Man Cheong building
/	W-N18	Hydan Place
/	W-N25A	Prosperous Garden Block 1

1. The dust and noise monitoring stations proposed in the EM&A Manual for M-A6/ M-N6 (i.e. Ko Fai House, Kwun Fai Court) was not available for impact dust and noise monitoring, therefore impact monitoring was conducted at M-A3/ M-N3 as an alternative which was agreed by the ER, IEC and EPD;

2. The noise monitoring station proposed in the EM&A Manual for E-N12 (i.e. Grand Waterfront Tower 3) was not available for impact dust and noise monitoring, therefore impact monitoring was conducted at E-N12a as an alternative which was agreed by the ER, IEC and EPD;

3. The dust and noise monitoring stations proposed in the EM&A Manual for E-A14 (i.e. Wyler Gardens) and E-N21 (i.e Hang Chien Court Block J) was not available for impact dust and noise monitoring, therefore impact monitoring was conducted at E-A14a/ E-N21a as an alternative which was agreed by the ER, IEC and EPD;

4. The dust monitoring stations proposed in the EM&A Manual for W-A5 (i.e. The Coronation) was not available for impact dust monitoring, therefore impact monitoring was conducted at W-A6 as an alternative which was agreed by the ER, IEC and EPD.

- 2.1.2 The construction dust and noise monitoring locations at M-A3 and M-N3 are covered by Contract No. HY/2018/08 Central Kowloon Route Central Tunnel whereas the construction dust and noise monitoring locations at E-A14a, E-N12a and E-N21a are now covered by Contract No. HY/2014/07 Central Kowloon Route Kai Tak West. The monitoring results at E-A14a, E-N12a and E-N21a in the reporting month are presented in the monthly EM&A Report prepared by Contract No. HY/2014/07.
- 2.1.3 The construction dust and noise monitoring locations at W-A6, W-N18 and W-N25A are now covered by Contract No. HY/2014/08 Central Kowloon Route –Yau Ma Tei East. The monitoring results at W-A6, W-N18 and W-N25A in the reporting month are presented in the monthly EM&A Report prepared by Contract No. HY/2014/08.

2.2 Construction Dust Monitoring

Monitoring Requirement

- 2.2.1 In accordance with the approved EM&A Manual, 1-hour and 24-hour Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations to indicate the impacts of construction dust on air quality. Regular Impact 24-hour TSP monitoring should be carried out for at least once every 6 days, and 1-hour TSP monitoring should be done at least 3 times every 6 days when the highest dust impact occurs. Monitoring Equipment
- 2.2.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) deployed at the designated monitoring station. The HVS shall meet all the requirements of the EM&A Manual.
- 2.2.3 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 2.2.4 The model of the dust monitoring equipment used is summarized in **Table 2.2**.

Table 2.2	Tab	le	2.2	
-----------	-----	----	-----	--

2.2	Construction	Dust Monitoring	Equipment

Equipment	Brand	Model	Serial No.
High Volume Sampler	Tisch	TE-5170	4388
(24-hour TSP)			
Calibrator	Tisch	TE-5025A	2456
Portable direct reading dust meter (1-hour TSP)	Sibata	LD-5R	882147

Monitoring Methodology for HVS

- 2.2.5 The following guidelines were adopted during the installation of HVS:
 - Sufficient support is provided to secure the samplers against gusty wind.
 - No two samplers are placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - No furnaces or incineration flues are nearby.
 - Airflow around the samplers is unrestricted.
 - The samplers are more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations.
 - A secured supply of electricity is needed to operate the samplers.

- 2.2.6 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler shall be properly set. The power supply should be checked to ensure the proper functioning of the sampler. The sampler is recommended to be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.2.7 The filter holding frame should be removed by loosening the four nuts and placing carefully a weighted and conditioned filter at the centre with the stamped number upwards on a supporting screen.
- 2.2.8 The filter should be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. The filter holding frame should be tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.2.9 A programmed timer should be used to control the duration of operation. Information should be recorded on the record sheet, which included the starting time, the weather condition and the filter number.
- 2.2.10 After sampling process is finished, the filter should be removed and sent to the laboratory for weighting. The elapsed time should also be recorded.
- 2.2.11 All filters should be equilibrated in a conditioning environment for 24 hours before weighting. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be <50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance and Calibration for HVS

- 2.2.12 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 2.2.13 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at fortnightly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The calibration certificate for the HVS is provided in **Appendix C**.

Monitoring Methodology for Direct Reading Dust Meter

- 2.2.14 Portable Laser Particle Photometer Monitors should be operated in accordance with the Manufacturer's instruction Manual as below:
 - a) Pulling up the air sampling inlet cover
 - b) Changing the Mode 0 to BG
 - c) Pressing Start/Stop switch
 - d) Turning the knob to SENSI.ADJ and press it
 - e) Pressing Start/Stop switch again
 - f) Returning the knob to the position MEASURE slowly
 - g) Pressing the timer set switch to set measuring time
 - h) Removing the cap and start the measurement

Maintenance and Calibration for Direct Reading Dust Meter

2.2.15 ET shall submit sufficient information to the IEC to prove that the instrument is capable of achieving comparable results to the HVS. The instrument should also be calibrated regularly, and the 1-hour sampling shall be determined periodically by the HVS to check the validity and accuracy of the results measured by direct reading method. The calibration certificate for the direct reading dust meter is provided in **Appendix C**.

2.3 Construction Noise Monitoring

Monitoring Requirement

2.3.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted at the designated noise monitoring stations for at least once a week during the construction phase of the Project. The parameters, frequency and duration of impact noise monitoring is summarized in **Table 2.3**.

Table 2.3	Construction Noise Monitoring Parameters, Frequency and Duration
10010 210	

Parameter	Duration	Frequency
A-weighted equivalent continuous sound pressure level (Leq). L10 and L90 were also recorded	30 minutes	At least once per week

Monitoring Equipment

- 2.3.2 Noise monitoring was performed using sound level meter at the designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level.
- 2.3.3 The model of the noise monitoring equipment used is summarized in **Table 2.4**.

Table 2.4	Construction Noise Monitoring Equipment
	construction Noise Monitoring Equipment

Equipment	Brand	Model	Serial No.
Acoustic Calibrator	Casella	CEL-120/1	2092809
Sound Level Meter	Casella	CEL-63X	4181568

Monitoring Methodology

2.3.4 Noise measurement should be conducted as the following procedures:

a) Free field measurements were made at monitoring location M-N3. A correction of +3 dB(A) shall be made to the free field measurements.

b) The battery condition should be checked to ensure good functioning of the meter.

c) Parameters such as frequency weighting, the time weighting and the measurement time should set as follow:

- (i) Frequency weighting: A
- (ii) Time weighting: Fast

(iii) Measurement time: 30 minutes

d) Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.

e) The wind speed at the monitoring station shall be checked with the portable wind meter. Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

f) Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.

g) At the end of the monitoring period, the Leq, L10 and L90 should be recorded. In addition, site conditions and noise sources should also be recorded on a standard record sheet.

Maintenance and Calibration

2.3.5 Maintenance and calibration procedures should also be carried out, including:

a) The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

b) The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory or the manufacturer.

The calibration certificates for noise monitoring equipment are provided in **Appendix D**.

2.4 Construction Dust and Noise Monitoring Schedule

2.4.1 The environmental monitoring schedule for the reporting period is provided in **Appendix E**.

2.5 The Action and Limit Levels

2.5.1 The Action and Limit Levels for construction dust and noise monitoring are provided in **Appendix F**.

2.6 Landscape and Visual

2.6.1 As per the EM&A Manual, the landscape and visual mitigation measures shall be implemented and site inspections should be undertaken once every two weeks during the construction period. A summary of the implementation status is presented in **Section 4**.

3 ENVIRONMENTAL MONITORING RESULTS

3.1 Construction Dust Monitoring

- 3.1.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 3.1 and Table
 3.2 respectively. Detailed construction dust monitoring results and daily extract of meteorological observations are presented in Appendix G.
- 3.1.2 The monitoring results at E-A14a and W-A6 are reported in the monthly EM&A Reports prepared by Contract No. HY/2014/07 and Contract No. HY/2014/08 respectively.

Table 3.1		le 3.1 Su	Summary of 1-hour TSP Monitoring Results in the Reporting Period		
	Station ID	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	M-A3	51	47 - 75	333	500
	Tab	le 3.2 Su	mmary of 24-hour TSP Monitorin	g Results in the Report	ing Period
	Station ID	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
	M-A3	51	52 - 116	153	260

- 3.1.3 No Action and Limit Level exceedance was recorded for 1-hour TSP monitoring and 24-hour TSP monitoring at the monitoring location in the reporting month.
- 3.1.4 Major dust sources during the monitoring included nearby traffic emission.
- 3.1.5 The Event and Action Plan for the construction dust monitoring is given in **Appendix I**.

3.2 Construction Noise Monitoring

- 3.2.1 The monitoring results for noise are summarized in **Table 3.3** and the monitoring data is given in **Appendix H**.
- 3.2.2 The monitoring results at E-N12a, E-N21a, W-N18 and W-N25A are reported in the monthly EM&A Reports prepared by Contract No. HY/2014/07 and Contract No. HY/2014/08 respectively.

Table 3.3			Summary of Construction Noise Monitoring Results in the Reporting Period			
	Station ID	Date	¹ Measured Noise Level, dB(A), Leq (30 mins)	² Corrected Noise Level, dB(A), Leq (30 mins)	Action Level	Limit Level dB(A), Leq (30 mins)
	M-N3	05 Dec 2023	68.9	N/A	When one	For Schools:
		11 Dec 2023	69.4	N/A	documented	70dB(A) during normal teaching
		21 Dec 2023	69.0	N/A	complaint is received	period and 65 dB(A) during examination periods
		27 Dec 2023	69.1	N/A	received	examination periods

Notes:

- 1. Free field noise levels were adjusted with a correlation of +3 dB(A);
- 2. Corrected Noise Level = 10* log (10^ (Measured Noise Level/10) 10^ (Baseline Noise Level/10)), where the Baseline Noise Level = 67.7 dB(A).

- 3.2.3 No Limit Level exceedance was recorded for construction noise monitoring at the monitoring location in the reporting month.
- 3.2.4 One (1) Action Level exceedance was recorded for construction noise due to the noise-related complaints received in the reporting month.
- 3.2.5 Major noise sources during the monitoring included nearby traffic noise.
- 3.2.6 The Event and Action Plan for the construction noise monitoring is given in **Appendix I.**

3.3 Waste Management

- 3.3.1 Auditing of waste management practices during regular site inspections confirmed that the waste generated during construction were properly, stored, handled and disposed of in general. The Contractor was responsible for the implementation of any mitigation measures to reduce waste or redress issues arising from the waste materials.
- 3.3.2 The implemented environmental mitigation measures for the waste management in the reporting period are summarized in **Appendix J**. The summary of observations and recommendations made for waste management during the site inspections are presented in **Table 4.1**.
- 3.3.3 Monthly summary of waste flow table is detailed in **Appendix L**.

3.4 Landscape and Visual

- 3.4.1 Bi-weekly inspections of the implementation of landscape and visual mitigation measures were conducted on 5 and 19 December 2023. The implementation the landscape and visual mitigation measures in the reporting period are summarized in **Appendix J**. The summary of observations and recommendations made for landscape and visual mitigation measures during the site inspections are presented in **Table 4.1**.
- 3.4.2 The Event and Action Plan for landscape and visual during construction phase is given in **Appendix I**.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 4.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation status is provided in **Appendix J**.
- 4.1.2 In the reporting month, five site inspections were carried out on 5 (with IEC), 12, 19 and 27 December 2023. Details of observations recorded during the site inspections are presented in **Table 4.1**.

Environmental Aspect	Date	Observations and Recommendations	Follow-up Actions
Air Quality	Nil	Nil	Nil
	Nil	Nil	Nil
Noise	Nil	Nil	Nil
Water Quality	Nil	Nil	Nil
Waste Management	Nil	Nil	Nil
Landscape and	Nil	Nil	Nil
Visual			
Permit/ Licenses	Nil	Nil	Nil

 Table 4.1
 Observations and Recommendation of Site Inspection in the Reporting Period

5 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

5.1 Complaint Handling, Prosecution and Public Engagement

- 5.1.1 All complaints received in the last reporting month were finalized.
- 5.1.2 One (1) water quality-related complaint (i.e. 4th December 2023) and one (1) noise-related complaint (i.e. 30th December 2023) was received in the reporting month.
- 5.1.3 The complaint cases in November and December 2023 are summarized in **Table 5.1**.

Complaint Log No.	Date of Complaint	Received From	Nature of Complaint	Status
EC180_CKRCT2 0231124_746	24 th November 2023	The Contractor Hotline	Construction dust	Investigation report was finalized on 27 th December 2023.
EC181_CKRCT2 0231204_755	4 th December 2023	1823	Blocked gullies	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.
EC182_CKRCT2 0231230_758	30 th December 2023	The Contractor Hotline	Construction noise at night	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.

 Table 5.1
 Environmental Complaints Log

- 5.1.4 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix K**.
- 5.1.5 No public engagement activities were conducted in the reporting period.

5.2 Summary of Environmental Non-Compliance

5.2.1 No environmental non-compliance was recorded in the reporting period

5.3 Summary of Monitoring Exceedance

- 5.3.1 One (1) Action Level exceedance was recorded for construction noise due to the noise-related complaints received in the reporting month. No Limit Level exceedance was recorded for construction noise monitoring in the reporting month.
- 5.3.2 No Action and Limit Level exceedance was recorded for construction dust monitoring in the reporting month.

6 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE

6.1.1 The Contractor had implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix J**. Status of required submissions under the EP during the reporting period is summarised in **Table 6.1**.

Table 6.1	Status of Required Submission under Environmental Permit		
EP Condition	Submission	Submission Date	
3.4	Monthly EM&A Report (November 2023)	14 December 2023	

7 FUTURE KEY ISSUES

7.1.1 The main works will be anticipated in the next reporting period are as follow:

<u>Ho Man Tin</u>

- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Removal of D-wall;
- ELS excavation;
- CLP Room demolition and slope reinstatement;
- Tower crane and foundation dismantling work.

<u>Yau Ma Tei</u>

- Drill and break excavation;
- Underbreak scaling and smoothing works;
- Invert, lining and OHVD construction;
- Mucking out from tunnel;
- Site and shaft installation.

<u>Ma Tau Kok</u>

- Drill and break excavation;
- TBM pilot tunnel enlargement;
- Underbreak scaling and smoothing works;
- Invert, lining and OVHD construction;
- Mucking out from tunnel and horizontal access;
- Site and shaft installation.

Kai Tak Barging Point

• Material Storage.

Sheung Lok Street

Concreting.

Ma Hang Chung Road

- Concreting.
- 7.1.2 The recommended mitigation measures corresponding to the main works in the next reporting period are listed as follows:
 - Good relationship shall be maintained with the nearby sensitive receivers/ stakeholders which may be affected by the construction works such as providing better/ more detail information of the work nature and inform in advance of the works to the nearby residents;

- Any excavated, stockpile of dusty material or load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting;
- All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission;
- All C&D materials generated should be transported and stored at temporary storage area. Suitable materials should be sorted for reuse on-site;
- Every vehicle shall be cleaned thorough at the designated wheel washing area onsite;
- Wastewater generated from drilling shall be properly collected for reuse or treated by wastewater treatment facilities before discharge;
- Provision of drip trays for equipment likely cause spillage of chemical / fuel, and provide routine maintenance;
- Erecting temporary noise barrier for noisy Powered Mechanical Equipment (PME) and deployment of Quality Powered Mechanical Equipment (QPME) as many as practicable;
- Conditions in the Environmental Permit and License should be followed;
- All recommended mitigation measures specified in the approved EIA Report and EM&A Manual shall be implemented.
- All vehicles should be cleaned before leaving the construction site to ensure no muddy deposited by them on roads.
- 7.1.3 As informed by AMMJV on 25 November 2023 by email, main works in Ho Man Tin construction site will be passed by HY/2018/08 to HY/2019/13. Monitoring works will be taken over by Environmental team of Contract No. HY/2019/13 since January 2024.

8 CONCLUSION AND RECOMMENDATIONS

- 8.1.1 The 52nd Monthly EM&A Report for the Contract No. HY/2018/08 Central Kowloon Route Central Tunnel summarized the monitoring results and audits findings of the EM&A programme under the issued EP (EP No.: EP-457/2013/D) and in accordance with the EM&A Manual during the reporting period from 01/12/2023 to 31/12/2023.
- 8.1.2 Construction dust (including 1-hour and 24-hour TSP) and noise monitoring were carried out in the reporting period.
- 8.1.3 One (1) Action Level exceedance was recorded for construction noise due to the noise-related complaints received in the reporting month. No Limit Level exceedance was recorded for construction noise monitoring in the reporting month. No Action and Limit Level exceedance was recorded for construction dust monitoring in the reporting month.
- 8.1.4 Weekly environmental site inspections were conducted during the reporting period. In general, the Contractor had implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual.
- 8.1.5 All complaints received in the last reporting month were finalized.
- 8.1.6 One (1) water quality-related complaint (i.e. 4th December 2023) and one (1) noise-related complaint (i.e. 30th December 2023) was received in the reporting month. Both complaints are under investigation and will be reported in the subsequent reporting month.
- 8.1.7 No environmental related prosecutions or notification of summons were received in the reporting period.
- 8.1.8 No environmental non-compliance was recorded in the reporting period.
- 8.1.9 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

• No specific observation was identified in the reporting month.

Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

• No specific observation was identified in the reporting month.

Waste Management

• No specific observation was identified in the reporting month.

Landscape and Visual Impact

• No specific observation was identified in the reporting month.

Permit/ Licenses

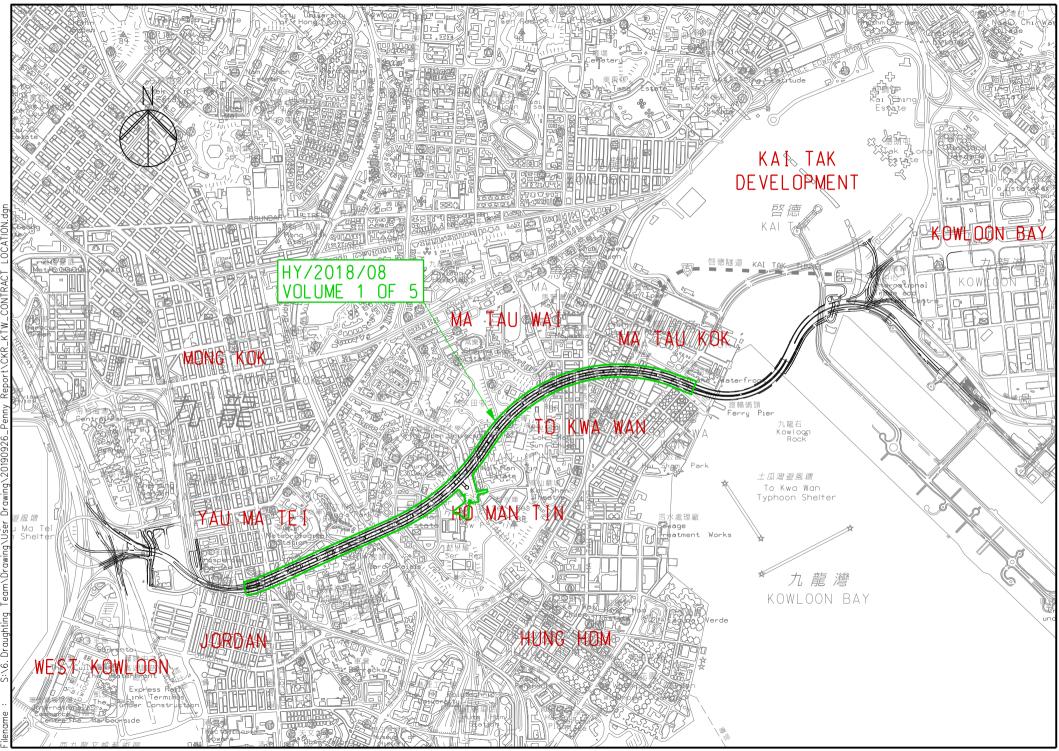
• No specific observation was identified in the reporting month.

Figure 1

The Site Layout Plan of the

TUGRO

Contract



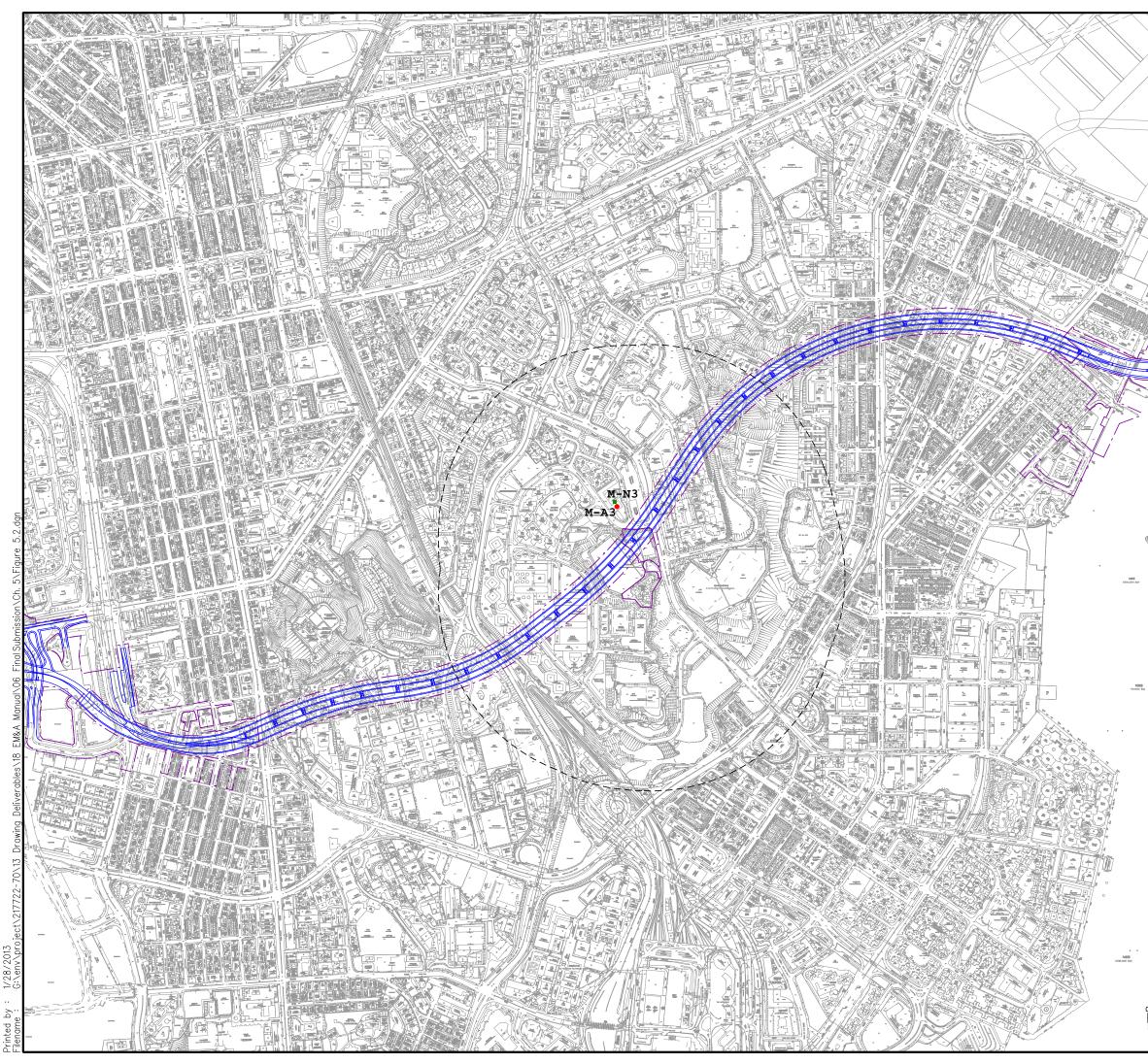
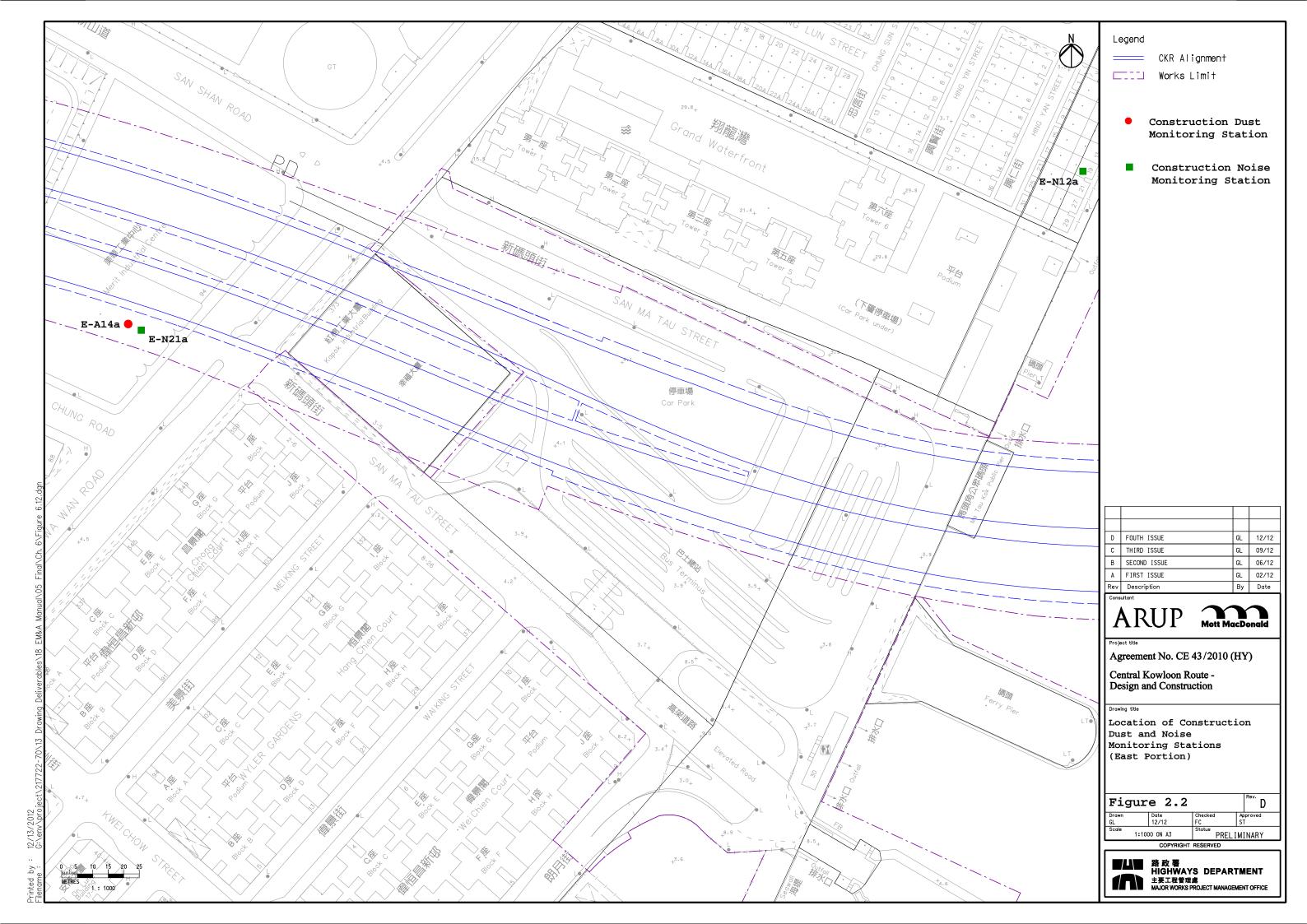

Figure 1 - Site Layout Plan of the Contract

Figure 2.1

The Location of the Construction Dust and Noise Monitoring

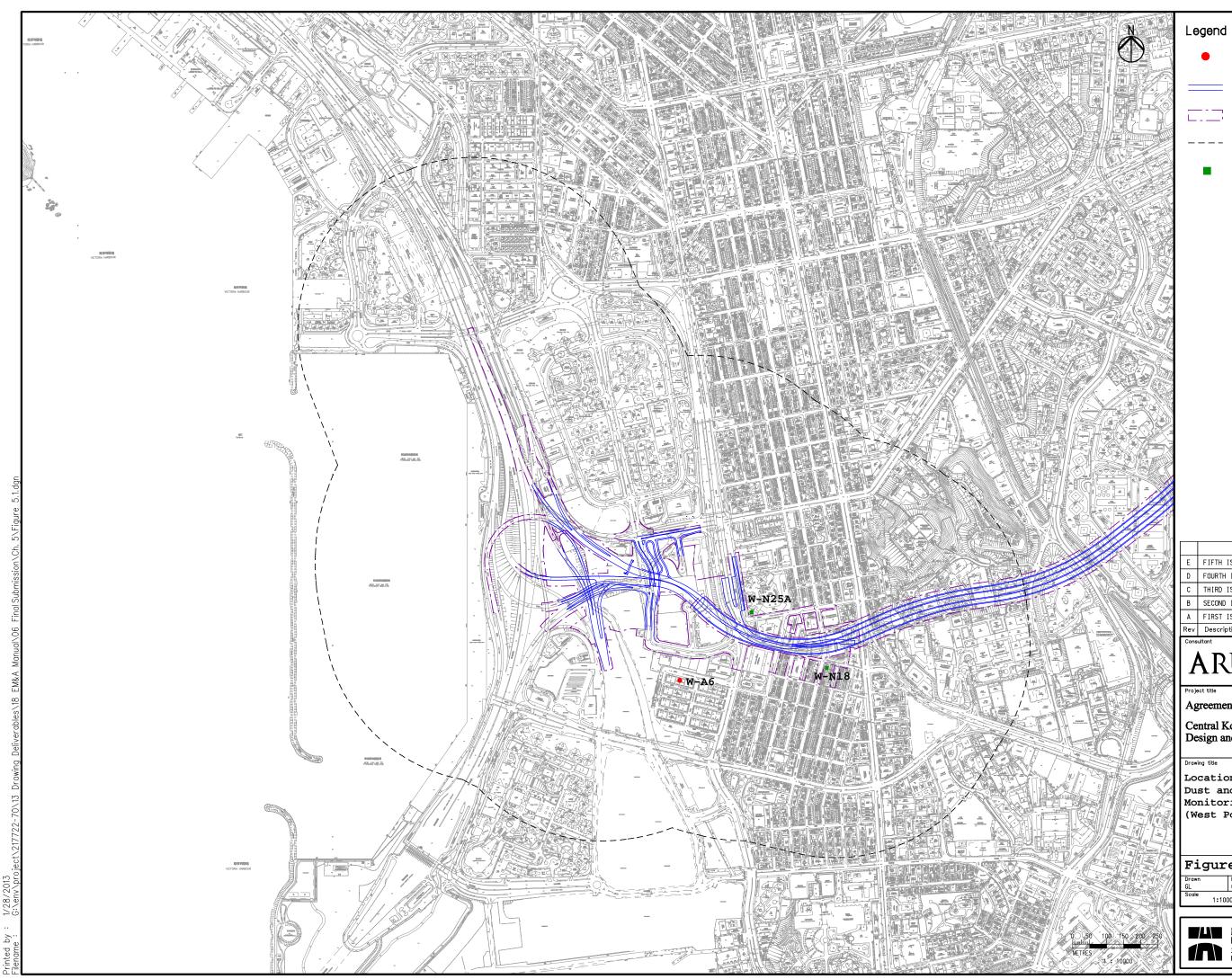
Stations (Ho Man Tin)



	Legend Construction Dust Monitoring Station CKR Alignment CKR Works Limit S00 m Study Boundary in the EIA Report Construction Noise Monitoring Station
	E FIFTH ISSUE GL 01/13 D FOURTH ISSUE GL 12/12 C THIRD ISSUE GL 09/12 B SECOND ISSUE GL 01/12 A FIRST ISSUE GL 12/11 Rev Description By Date Consultant Monte MacDonald Project title Agreement No. CE 43/2010 (HY) Central Kowloon Route - Design and Construction Drawing title Location of Construction Drawing title Location stand Noise Monitoring Stations (Central Portion)
0 50 100 150 200 250 I I I 10000	Figure 2.1 Rev. Drawn Date 01/13 FC Scale 01/13 1:10000 NA3 Status PRELIMINARY COPYRIGHT RESERVED MADE B 及 署 HIGHWAYS DEPARTMENT 主要工程管理處 MAJOR WORKS PROJECT MANAGEMENT OFFICE

Figure 2.2

The Location of the Construction Dust and Noise Monitoring Stations (Ma Tau Kok)


Figure 2.3

The Location of the Construction

Dust and Noise Monitoring

Stations (Yau Ma Tei)

	Constr Monito CKR A CKR W 500m S in the Constr Monito	oring lignm orks Study EIA ructio	Sta ent Limi Bou Rep on N	tion t ndary ort oise
E FIFTH IS D FOURTH I			GL GL	01/13
C THIRD IS	SUE		GL	09/12
B SECOND IS			GL GL	01/12 12/11
Rev Descriptio	n		Ву	Date
Project title Agreement Central Ko Design and	No. CE 4	43/2010 oute -	MacDa	
Drawing title Location Dust and Monitori (West Po	Noise		etior	L
	ate 1/13	Checked FC Status		ev. E
	ON A3	PR	ELIMIN	IARY

Appendix A

Construction Programme

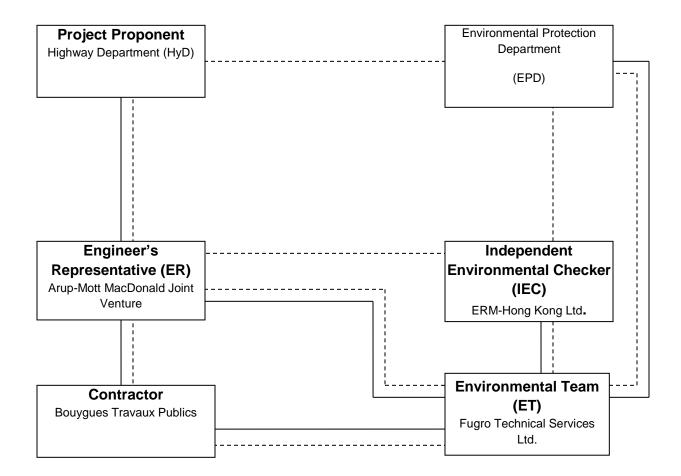
TUGRO

#	Activity Name	Orig	Start	Finish																			
		Dur			19		2020				202	21			20	22				202	3		2024
					JASOND	JFMAN	V J J	ASO	ND,	J F M	AMJ	JASO	ND	JFM	AMJ	JA	SON	DJF	MA	MJJ	AS	DNC	JFV
1	HY/2018/08 Central Kowloon Route	1379	03-Jul-19	26-Feb-24																			
2	Executive Summary	1379	03-Jul-19	26-Feb-24																			••••
3	General	9	03-Jul-19	12-Jul-19	▼ General																		
4	Contract Date	0	03-Jul-19		Contract Date																		
5	Starting Date	0	12-Jul-19		 Starting Date 																		
6	Yau Ma Tei Shaft - Access & Tunnelling	749	18-Apr-20	28-Oct-22		V											- 7 Y	au Ma	Tel Sl	naft - A	ccess	& Tunn	elling
7	Ho Man Tin Shaft - Access & Tunnelling	1046	28-Oct-19	12-May-23	V		1 1 1													▼ Họ I	Man Tir	ı Shaft	- Acce
8	Ma Tau Kok Access - Access & Tunnelling	693	31-Jan-21	08-Jun-23						Y										- M	a Tau I	(ok Ac	cess - /
9	Ho Man Tin Vent Shaft - Civil works	1044	30-Oct-19	12-May-23			1 1 1													▼ Họ I	Man Tir	I Vent	Shaft -
10	Yau Ma Tei Shaft - Civil works	258	16-Apr-23	26-Feb-24															V				<u> </u>
11	Ma Tau Kok Shaft - Civil works	236	13-May-23	26-Feb-24																V			

Page 1 of 1	Summary			Date	Revision	Checked	Approved
C		HY/2018/08 Central Kowloon Route Central Tunnel		16-Jul-19	00V0	CLa	WYu
Data Date: 03-Jul-19	 Milestone 		DOUINOUITS	20-Aug-19	00V1	CLa	WYu
Project ID: CKRCT00V1-3		Executive Summary	BOUYGUES TRAVAUX PUBLICS				

ltem	Major Construction Activates	Location
1	Underbreak scaling and smoothing works	
2	Invert, lining and OHVD construction	
3	Struct installation and D-wall coring	HMT
4	ELS excavation	
5	Site and shaft installation	
6	Drill and break excavation	
7	Underbreak scaling and smoothing works	
8	Invert, lining and OHVD construction	YMT
9	Mucking out from tunnel	
10	Site and shaft installation	
11	Drill and break excavation	
12	TBM pilot tunnel enlargement	
13	Underbreak scaling and smoothing works	МТК
14	Invert, lining and OHVD construction	IVITIK
15	Mucking out from tunnel and horizontal access	
16	Site and shaft installation	
17	Material Storage	KTBF
18	Concreting	SLS
19	Concreting	MHC

Major Construction Activities (Dec 2023)


Major Construction Activities (Jan 2024)

Item	Major Construction Activates	Location
1	Underbreak scaling and smoothing works	
2	Invert, lining and OHVD construction	
3	Removal of D-wall	НМТ
4	ELS excavation	
5	CLP Room demolition and slope reinstatement	
6	Tower crane and foundation dismantling work	
7	Drill and break excavation	
8	Underbreak scaling and smoothing works	
9	Invert, lining and OHVD construction	YMT
10	Mucking out from tunnel	
11	Site and shaft installation	
12	Drill and break excavation	
13	TBM pilot tunnel enlargement	
14	Underbreak scaling and smoothing works	МТК
15	Invert, lining and OHVD construction	IVITIK
16	Mucking out from tunnel and horizontal access	
17	Site and shaft installation	
18	Material Storage	KTBF
19	Concreting	SLS
20	Concreting	MHC

Appendix B

Project Organization Chart

Legen	d:
	Line of Reporting
	Line of Communication

Appendix C

Calibration Certificate for Construction Dust Monitoring Equipment

FUGRO TECHNICAL SERVICES LIMITED

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Locatio	on : M-A3							Date of	of Calibration: 2	23-Sep-23	
	on : S.K.H T	Soi Kung Po	o Secondar	y Sch	ool			Next Cal	ibration Date: 2		
Make:		Tisch TE-5170	I	S/N:				T	Technician: E	Eve Ma	
Model:	I	1E-3170		5/IN.		4388		1			
					CO	NDITIO	NS				
	500	Louis Drog			1010	`			····-> (~~~> Цa);	750	
	Sea	Level Press Tempe	rature (°C):		1012 30		CO		ure (mm Hg): nperature (K):	759 303	
		F	· · · · · · · · · · · · · · · · · · ·								
				CAI	LIBR	ATION	ORIF	ICE			
		Make:	I	Tisch	<u>ו</u>	٦		Qstd Slope:	Г	2.08482	
		Model:	ļ	TE-5	025A	_	Q	std Intercept:		-0.02977	
		ration Date:	ļ	1-Jur		4		Expiry Date:	L	1-Jun-24	
		S/N:	ļ	2456							
					CAL	IBRATI	ONS				
Plate	H2O (L)	H2O (R)	H2O	Qst	t-d	1	1	IC		INEAR	
No.	(in)	(in)	(in)	(m ³ /			i art)	(corrected)		RESSION	
18	7.90	-4.20	12.100	ì	1.667	-	0.00	59.45	Slope =	28.9784	
13	6.80	-3.00	9.800		1.502		5.00	54.49	Intercept =	11.2062	
10	5.60	-1.80	7.400		1.307			49.54	Corr. coeff.=	0.9955	
7	3.40	-0.40	3.800		0.941		0.00	39.63	0011.00011-	0.0000	
, 5	3.16	-0.50	3.660		0.923		7.00	36.66			
	0			ļ	0.010	<u> </u>	1.00	00.00			
Calcul	lations:										
		12O(Pa/Pstd	, , , , , , , , , , , , , , , , , , , ,	-b]							
IC = I[\$	Sqrt(Pa/Psto	d)(Tstd/Ta)]							ATE CHART		
Qstd =	standard fl	ow rate				70.00					
		art response	÷			60.00					
	ual chart res	•				00.00					
	alibrator Qst alibrator Qst				<u>í</u>	50.00					
		a intercept erature durin	a calibratio	n (dec) se (
Pa = a	ictual pressu	ure during ca			spor	40.00	+				
	298 deg K				Re.	20.00					
Pstd =	760 mm Hg	3			Chart Response (IC)	30.00					
For su	ubsequent (calculation	of sample	r flow	al C	20.00					
	-	av)(Pav/760	-		Actual						
						10.00	+				
	sampler slop ampler inter					2.00					
	nart respons					0.00 0.	+ 000	0.500	1.000 1.50	0 2.000	
Tav = 0	daily averag	ge temperati				-	000		low Rate (m ³ /min		
Pav =	daily average	je pressure								,	

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Model: Date of Calibration: 23-Dec-23 Tisch TE-5170 Serial No.: 4388 Next Calibration Date: 22-Mar-24 Technician: Eve Ma CONDITIONS Sea Level Pressure (hPa): 1029.90 Corrected Pressure (mm Hg): 772 Temperature (°C): 11 Temperature (K): 284 **CALIBRATION ORIFICE** Qstd Slope: Model: Tisch TE-5025A 2.08482 Serial No.: 2456 Qstd Intercept: -0.02977 Expiry Date: Calibration Date: 1-Jun-23 1-Jun-24 CALIBRATIONS H2O (L) H2O (R) H2O Qstd IC LINEAR Plate Т (m^3/min) REGRESSION No (in) (in) (in) (chart) (corrected) 55.77 18 4.60 -4.70 9.300 1.525 54.00 Slope = 22.4052 13 3.80 -3.90 7.700 1.389 51.00 52.67 Intercept = 21.0926 10 3.30 -3.40 6.700 1.296 48.00 49.57 Corr. coeff.= 0.9931 7 2.50 -2.60 5.100 1.133 44.00 45.44 5 1.10 -1.30 2.400 0.782 38.00 39.24 **Calculations:** Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] FLOW RATE CHART IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 60.00 Ostd = standard flow rate IC = corrected chart response 50.00 I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Actual chart response (IC) 40.00 Ta = actual temperature during calibration (deg K)Pa = actual pressure during calibration (mm Hg) 30.00 Tstd = 298 deg K Pstd = 760 mm Hg 20.00 For subsequent calculation of sampler flow: 1/m((l)[Sqrt(298/Tav)(Pav/760)]-b) 10.00 m = sampler slope b = sampler intercept 0.00 = chart response 2.000 0.500 1.000 1.500 Tav = daily average temperature Standard Flow Rate (m³/min) Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

RECALIBRATION **DUE DATE:** June 1, 2024

n m e n t a l Bertificate of Calibration

			Calibration	Certificati	on Informat	ion			
Cal. Date:	June 1, 202	.3	Roots	meter S/N:	438320	Ta:	295	°К	
Operator:	Jim Tisch					Pa:	751.8	mm Hg	
Calibration	Model #:	TE-5025A	Calil	prator S/N:	2456				
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔP	ΔΗ		
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)		
	1	1	2	1	1.4360	3.2	2.00		
	2	3	4	1	1.0210	6.4	4.00		
	3	5	6	1	0.9080	8.0	5.00		
	4	7	8	1	0.8670	8.8	5.50		
	5	9	10	1	0.7170	12.8	8.00		
			E	Data Tabula	tion				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)		
	0.9951	0.6929	1.4137		0.9957	0.6934	0.8859		
	0.9908	0.9704	1.9993		0.9915	0.9711	1.2528		
	0.9887	1.0889	2.235		0.9894	1.0896	1.4007		
	0.9876	1.1391	2.344	which it is a second domain of the second data	0.9883	1.1399	1.4690		
	0.9823	1.3700	2.827	The second se	0.9830	1.3710	1.7717		
	OCTO		2.084		0.0	m= b=	1.30548		
	QSTD	r=	0.999	Contraction of the local division of the loc	QA	r=	-0.01866 0.99997		
				Calculatio	ns				
	Vstd=	∆Vol((Pa-∆P)	/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-Δl			
	Qstd=	/std/∆Time			Qa=	Va/∆Time			
		massive and an an and a	For subsequ	ent flow ra	te calculation	ns:			
	Qstd=	1/m ((√∆H(-	Pa <u>(Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆H	(Та/Ра))-b)		
	Standard	Conditions							
Tstd:		and the second se		[RECA	IBRATION		
Pstd:	Construction of the owner	nm Hg			LIS EPA reco	mmendsar	nual recalibratio	n nor 1000	
AH: calibrate	or manomete	ey er reading (ir	H2O)				legulations Part 5		
	ter manome						Reference Meth		
	solute temp						ended Particulate		
Pa: actual ba	arometric pro		lg)				re, 9.2.17, page 3		
o: intercept							,, page .		
n: slope									

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of 1

Report no. : 940891CA230848(6)

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT -

Description	: Laser Dust Monitor
Manufacturer	: SIBATA
Model No.	: LD-5R
Serial No.	: 882147
Next Calibration Date	: 8-Feb-2024

Laboratory Information

Details of Reference Equipment -

Description	: Reference balance							
Equipment ID.	: C-065-5							
Date of Calibration	: 9-Feb-2023	Ambient Temperature : 24 °C						
Calibration Location	: Calibration Lab. of FTS							
Method Used	: By direct comparison the w	eight of dust particle trapped in a filter paper using high						
	volume sampler (TSP meth	volume sampler (TSP method) for a certain period, with the reading of the UUT. They						
	should be placed at the san	should be placed at the same location and powered on and off at the same time.						

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.0545	1588	26.47
0.0587	1603	26.72
0.0775	1674	27.90

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration $(mg/m^3) = K \times UUT$ reading (CPM) where K = 0.002352

3. Correlation coefficient (r) : 1.0000

Checked by :	Date: 26-4-2023 Certified by: C.J. Jenny Date: 76-4-2013	
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)	

** End of Report **

Appendix D

Calibration Certificate for Construction Noise Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong Page 1 of 1

Report no.: 212769CA223056(1)

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd. Project : Calibration Services

Details of Unit Under Test, UUT -

Description	:	Sound Level Meter		
Manufacturer	:	Casella		
		Meter	Microphone	Preamplifier
Model No.	;	CEL-63X	CE-251	CEL-495
Serial No.	:	4181568	03133	003967
Equipment ID	:	N/A		000001
Next Calibration Date	:	03-Jan-2024		
Specification Limit Next Calibration Date	÷	EN 61672-1: 2003 Class 03-Jan-2024	1	
Laboratory Information				
Details of Reference Equ	ipme	nt -		
		Acoustic Multifunction Ca	ibrator 4226 (Trac	litional from field potting)
Equipment ID. : R	-108	-1	1514(6) 4220 (1140	intonal free field setting)
Date of Receipt UUT : 3				
Date of Calibration : 04	4-Jar	1-2023		
Calibration Location : C	alibra	ation Laboratory of FTS	Ambient Temp	erature : 20±2 °C
		ect comparison	Relative Humic	

<80% R.H.

Calibration Results :

Parame	eters	Mean Value (dB)	Specific	Specification Limit(dB)			
	4000Hz	1.5	2.6	to	0.6		
	2000Hz	1.4	2.8	to	-0.4		
A-weigthing	1000Hz	0.2	1.1	to	-1.1		
frequency	500Hz	-3.3	-1.8	to	-4.6		
response	250Hz	-8.6	-7.2	to	-10.0		
	125Hz	-16.0	-14.6	to	-17.6		
	63Hz	-26.1	-24.7	to	-27.7		
Differential level	94dB-104dB	0.0		± 0.6			
linearity	104dB-114dB	0.0		± 0.6			

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The UUT does comply with EN 61672-1: 2003 Class 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to unit under test and the values measured at the time of the test. Any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by : Date : //-/-Certified by : 1-2023 Date : CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN01/0819

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 212769CA233154(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Page 1 of 1

Client Supplied Information

Client : Materialab Consultants Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT -

Description		: Sound Calibrator
Manufacturer		: Casella (Model CEL-120/1)
Serial No.		: 2092809
Equipment ID		: N/A
Next Calibration Date	1	29-May-2024
Specification Limit	:	EN 60942: 2003 Class 1

Laboratory Information

Details of Calibration Equipment

	Description		Reference Sound level meter	
	Equipment ID.		R-119-2	
D	ate of Receipt UL	IT :	17-May-2023	
D	ate of Calibration	÷	30-May-2023	
С	alibration Location	า :	Calibration Laboratory of FTS	Amb
Μ	ethod Used	;	By direct comparison	Rela

Ambient Temperature : 20±2 °C Relative Humidity :<80% R.H.

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	-0.1 dB	
114dB	-0.2 dB	±0.4dB

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment under test does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the unit-under-test and the values measured at the time of the test. Any uncertainties quoted will not include allowances for the environmental changes, variation and shock during transportation, or the capability of any other laboratory to repeat the measurement.

Date : 6-6-2022 Certified by : 67. Jourg Date : 8-6-2023 Leung Kwok Tai (Assistant/Manager) Checked by : CA-R-297 (22/07/2009)

** End of Report **

Appendix E

Environmental Monitoring

UGRO

Schedule

Project: Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

Sun Mon Tue Wed Thur Fri Sat 2 1 3 4 5 6 7 8 9 Dust Monitoring Noise Monitoring (08:30-12:30) 10 11 12 13 14 15 16 Dust Monitoring Dust Monitoring Noise Monitoring (12:30-17:30) (08:30-12:30) 21 19 20 22 23 17 18 Dust Monitoring Noise Monitoring (12:30-17:30) 25 26 27 29 24 28 30 Dust Monitoring Noise Monitoring (12:30-17:30) 31

Impact Monitoring Schedule for the Next Reporting Period (December 2023)

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition;

2. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days;

3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours;

4. Monitoring Location: M-A3 and M-N3: SKH Tsoi Kung Po Secondary School.

Appendix F

Action and Limit Levels for Construction Dust and Noise Monitoring

Table F-1 Action and Limit Levels for 1-hour TSP

Station ID	Location	Action Level	Limit Level
M-A3	SKH Tsoi Kung Po Secondary School	333 µg/m³	500 µg/m³

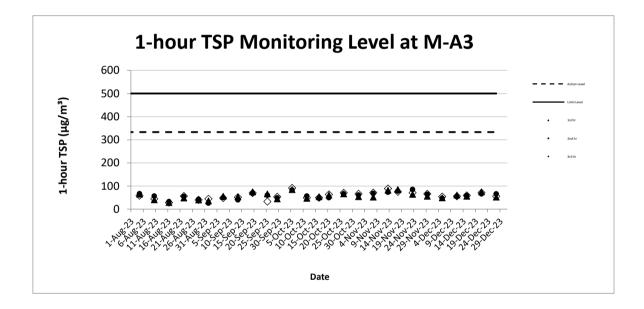
Table F-2 Action and Limit Levels for 24-hour TSP

Station ID	Location	Action Level	Limit Level
M-A3	SKH Tsoi Kung Po Secondary School	153 µg/m³	260 µg/m³

Table F-3 Action and Limit Levels for Construction Noise (0700 – 1900 hour of normal weekdays)

Station ID	Location	Action Level	Limit Level
M-N3	SKH Tsoi Kung Po Secondary School	When one documented compliant is received	For Schools: 70dB(A) during normal teaching period and 65 dB(A) during examination periods

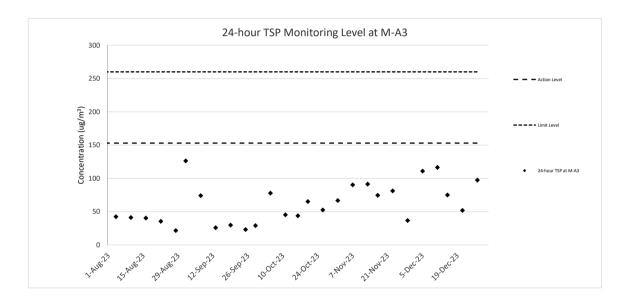
Appendix G


Construction Dust Monitoring Results and Meteorological Observations

1-hour TSP Monitoring Result for Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

	1-hour TSP (μg/m³)											
Date	Start Time	1st hr	2nd hr	3rd hr	Average	Action Level	Limit Level	Weather				
5-Dec-23	10:48	49	47	54	50			Fine				
11-Dec-23	9:05	61	54	56	57			Fine				
15-Dec-23	8:30	56	59	59	58	333	500	Fine				
21-Dec-23	8:43	75	66	71	71			Fine				
27-Dec-23	13:10	52	66	56	58			Fine				
	Average		59									
	Max		75									
	Min		47									

M-A3 - SKH Tsoi Kung Po Secondary School



24-hour TSP Monitoring Result for Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

Start Date Weather Condition Temperature (K) Temperature Pa (mmHg) Initial Final Particulate Sampling Time (hrs) (m/min.) flow volume (m ³ /min) Conc. (ug/m ³) Level 5-Dec-23 Fine 294.7 761.8 2.6829 2.8464 0.1635 24 1.02 1.03 1.02 1473.5 111 11-Dec-23 Fine 297.2 761.0 2.7008 2.8804 0.1796 24 1.05 1.10 1.07 1543.0 116 15-Dec-23 Fine 297.4 762.3 2.7371 2.8437 0.1066 24 0.98 0.99 0.99 1419.9 75 21-Dec-23 Fine 283.9 770.4 2.6816 2.7581 0.0765 24 1.02 1.03 1.02 1473.1 52 27-Dec-23 Fine 291.7 768.1 2.6936 2.8405 0.1469 24 1.03 1.06 1.05 1507.8 97 Min 52	M-A3 - 5101	raornung	i o occontuary	0011001											
Condition Condition Condition Condition Pressure, Pa (mmHg) Initial Final weight (g) Time (hrs) Initial Final (m³/min) (m³/min) (ug/m³) (ug/m³) <th< td=""><td>Start Date</td><td></td><td></td><td>c</td><td>Filter W</td><td>eight (g)</td><td></td><td></td><td>(m³/m</td><td></td><td>0</td><td></td><td></td><td></td><td>Limit Level</td></th<>	Start Date			c	Filter W	eight (g)			(m ³ /m		0				Limit Level
11-Dec-23 Fine 297.2 761.0 2.7008 2.8804 0.1796 24 1.05 1.10 1.07 1543.0 116 15-Dec-23 Fine 297.4 762.3 2.7371 2.8437 0.1066 24 0.98 0.99 0.99 1419.9 75 21-Dec-23 Fine 283.9 770.4 2.6816 2.7581 0.0765 24 1.02 1.03 1.02 1473.1 52 27-Dec-23 Fine 291.7 768.1 2.6936 2.8405 0.1469 24 1.03 1.06 1.05 1507.8 97 Min 52 Max 116	olari Dulo	Condition			Initial	Final	weight (g)	Time (hrs)	Initial	Final	-		(ug/m ³)	(ug/m ³)	(ug/m ³)
15-Dec-23 Fine 297.4 762.3 2.7371 2.8437 0.1066 24 0.98 0.99 1419.9 75 153 26 21-Dec-23 Fine 283.9 770.4 2.6816 2.7581 0.0765 24 1.02 1.03 1.02 1473.1 52 27-Dec-23 Fine 291.7 768.1 2.6936 2.8405 0.1469 24 1.03 1.05 1507.8 97 Min 52 Max 116 <t< td=""><td>5-Dec-23</td><td>Fine</td><td>294.7</td><td>761.8</td><td>2.6829</td><td>2.8464</td><td>0.1635</td><td>24</td><td>1.02</td><td>1.03</td><td>1.02</td><td>1473.5</td><td>111</td><td></td><td></td></t<>	5-Dec-23	Fine	294.7	761.8	2.6829	2.8464	0.1635	24	1.02	1.03	1.02	1473.5	111		
21-Dec-23 Fine 283.9 770.4 2.6816 2.7581 0.0765 24 1.02 1.03 1.02 1473.1 52 27-Dec-23 Fine 291.7 768.1 2.6936 2.8405 0.1469 24 1.03 1.06 1.05 1507.8 97 Min 52 Max 116	11-Dec-23	Fine	297.2	761.0	2.7008	2.8804	0.1796	24	1.05	1.10	1.07	1543.0	116		
27-Dec-23 Fine 291.7 768.1 2.6936 2.8405 0.1469 24 1.03 1.06 1.05 1507.8 97 Min 52 Max 116	15-Dec-23	Fine	297.4	762.3	2.7371	2.8437	0.1066	24	0.98	0.99	0.99	1419.9	75	153	260
Min 52 Max 116	21-Dec-23	Fine	283.9	770.4	2.6816	2.7581	0.0765	24	1.02	1.03	1.02	1473.1	52		
Max 116	27-Dec-23	Fine	291.7	768.1	2.6936	2.8405	0.1469	24	1.03	1.06	1.05	1507.8	97		
								-		•		Min	52		
Average 90												Max	116		
												Average	90		

M-A3 - SKH Tsoi Kung Po Secondary School

Note: Underline: Exceedance of Action Level Underline and Bold: Exceedance of Limit Level

Wind Speed recorded at King's Park Meteorological Station on 5 December 2023

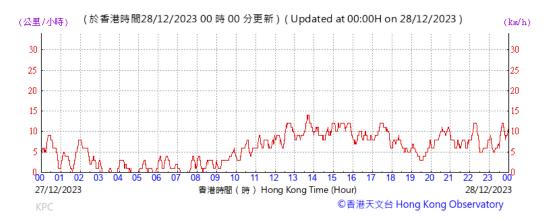


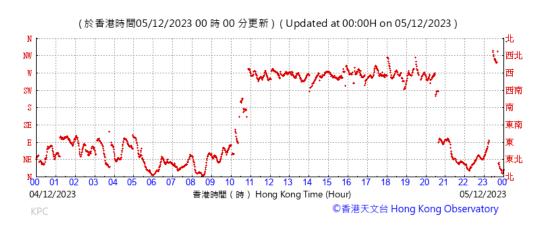
Wind Speed recorded at King's Park Meteorological Station on 11 December 2023

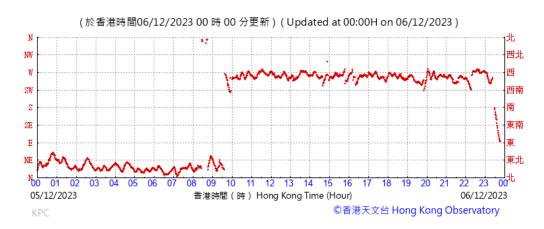
Wind Speed recorded at King's Park Meteorological Station on 15 December 2023

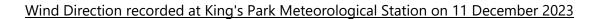
Wind Speed recorded at King's Park Meteorological Station on 16 December 2023

Wind Speed recorded at King's Park Meteorological Station on 21 December 2023


Wind Speed recorded at King's Park Meteorological Station on 22 December 2023

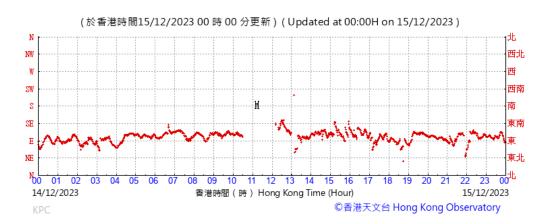

Wind Speed recorded at King's Park Meteorological Station on 27 December 2023

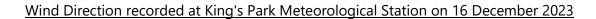




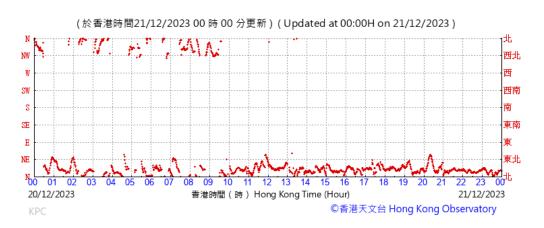
Wind Direction recorded at King's Park Meteorological Station on 5 December 2023

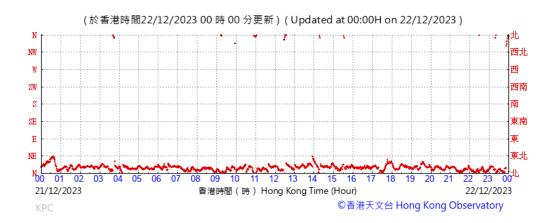
Wind Direction recorded at King's Park Meteorological Station on 6 December 2023



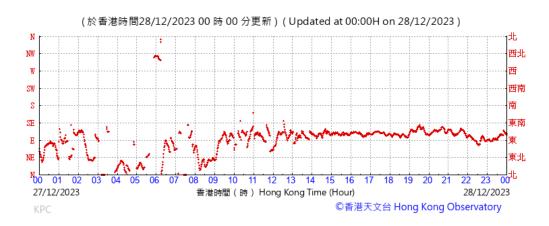


Wind Direction recorded at King's Park Meteorological Station on 12 December 2023


Wind Direction recorded at King's Park Meteorological Station on 15 December 2023



Wind Direction recorded at King's Park Meteorological Station on 21 December 2023


Wind Direction recorded at King's Park Meteorological Station on 22 December 2023

Wind Direction recorded at King's Park Meteorological Station on 27 December 2023

Wind Direction recorded at King's Park Meteorological Station on 28 December 2023

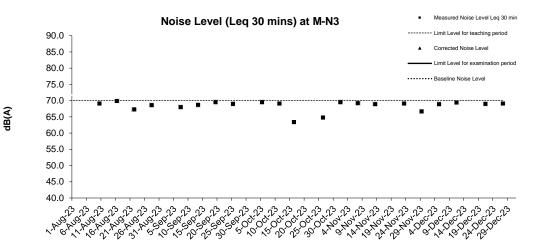
Appendix H

Construction Noise Monitoring

Results

Noise Impact Monitoring Result for Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

D		Measured Noise Level			L10	L90	Wind Speed	Marcal and
Date	Start Time	Leq 30min dB(A) #	dB(A)	Limit Level [^]	dB(A)	dB(A)	(m/s)	Weather
5-Dec-23	8:56	68.9	N/A	70	70.5	65.0	0.5	Fine
11-Dec-23	8:51	69.4	N/A	70	71.0	64.5	0.6	Fine
21-Dec-23	8:58	69.0	N/A	70	71.0	60.0	0.8	Fine
27-Dec-23	8:56	69.1	N/A	70	71.5	64.5	0.4	Fine
	Max	69.4	N/A					
	Min	68.9	N/A					


M-N3 - SKH Tsoi Kung Po Secondary School

Notes:

Free field noise levels were adjusted with a correlation of +3 dB(A).

* Corrected Noise Level = 10* log(10^(Measured Noise Level/10) - 10^(Baseline Noise Level/10)); NA refers to Not Applied as the Measured Noise Level < Limit Level.

^ The Limit Level was 70 dB(A) for the teaching period and 65 dB(A) for the examination period.

Appendix I

Event and Action Plan

EVENT		Action	tion				
	ET	IEC	ER	Contractor			
Action Level							
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

Table I-1 Event and Action Plan for Construction Dust Monitoring

EVENT	Action					
	ET	IEC	ER	Contractor		
Limit Level						
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposal Amend proposal if appropriate. 		
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 		

Table I-1 Event and Action Plan for Construction Dust Monitoring (Continued)

EVENT	Action				
	ET	IEC	ER	Contractor	
Exceedance of Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 	
Exceedance of Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Table I-2 Event and Action Plan for Construction Noise Monitoring

EVENT	Action				
	ET	IEC	ER	Contractor	
Non- conformity on one occasion	 Identify source(s); Inform the Contractor, IEC and ER; Discuss remedial actions and preventive measures with IEC, ER and Contractor; Monitor remedial action(s) and preventive measures until rectification has been completed. 	 Check inspection report; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measure(s) and preventive measure(s); Advise ER on effectiveness of proposed remedial measure(s) and preventive measure(s); Check implementation of proposed remedial measure(s) and preventive measure(s). 	 Confirm receipt of notification of non-conformity in writing; Notify the Contractor; Review and agree on the remedial measure(s) and preventive measures proposed by the Contractor; Check implementation of remedial measure(s) and preventive measures. 	 Identify source and investigate the non-conformity; Implement remedial measure(s) and preventive measure(s); Amend working methods agreed with ER as appropriate; Rectify damage and undertake any necessary replacement. 	
Repeat Non- conformity	 Identify source(s); Inform Contractor, IEC and ER; Discuss inspection frequency; Discuss remedial action(s) and preventive measures with IEC, ER and Contractor; Monitor remedial action(s) and preventive measure(s) until rectification has been completed; If non-conformity stops, cease any additional monitoring. 	 Check inspection report; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measure(s) and preventive measure(s) Advise ER on effectiveness of proposed remedial measure(s) and preventive measures; Supervise implementation of proposed remedial measure(s) and preventive measure(s) and 	 Notify the Contractor; In consultation with the ET and IEC, agree with the Contractor on the remedial measure(s) and preventive; measure(s) to be implemented; Supervise implementation of remedial measure(s) and preventive measure(s). 	 Identify source and investigate the non-conformity; Implement remedial measure(s) and preventive measure(s); Amend working methods agreed with ER as appropriate; Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by ER until the non- conformity is abated. 	

Table I-3 Event and Action Plan for Landscape and Visual during construction phase

Appendix J

Implementation Status of

Environment Mitigation

Measures (Construction Phase)

EIA Ref	EM&A Log Ref	us of Environment Mitigation Measures (Construction Phase) Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		Air Quality	
S4.3.10	D1	 The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation 	Implemented
S4.3.10	D2	 Mitigation measures in form of regular watering under a good site practice should be adopted. Watering once per hour on exposed worksites and haul road should be conducted to achieve dust removal efficiencies of 91.7%. While the above watering frequencies are to be followed, the extent of watering may vary depending on actual site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.3 L/m² to achieve the dust removal efficiency. 	Implemented
		- Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading;	Implemented
		 Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; 	Implemented
		 A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones; 	Implemented
		 The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; 	Implemented
S4.3.10	D3	 Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 	Implemented
		 When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided and properly maintained as far as practicable along the site boundary with provision for public crossing; 	Implemented
		 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; 	Implemented
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet 	Implemented
		 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 	N.O.
		- Any skip hoist for material transport should be totally enclosed by impervious sheeting;	Implemented
		 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; 	Implemented
S4.3.10	D3	 Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed; 	N.O.
		 Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and 	N.O.
		 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 	N.O.
		Noise (Airborne)	
		 Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; 	Implemented
		 Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 	Implemented
S5.4.1	N1	 Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; 	Implemented
		 Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; 	N.O.
		- Mobile plant should be sited as far away from NSRs as possible and practicable;	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 Material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	N.O.
S5.4.1	N2	 Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period. 	Implemented
S5.4.1	N3	- Install movable noise barriers (typical design is wooden framed barrier with a small-cantilevered on a skid footing with 25mm thick internal sound absorptive lining), acoustic mat or full enclosure, screen the noisy plants including air compressors, generators and handheld breakers etc.	Implemented
S5.4.1	N4	- Use "Quiet plants".	Implemented
S5.4.1	N5	- Loading/unloading activities should be carried out inside the full enclosure of mucking out points.	N.O.
S5.4.1	N6	- Sequencing operation of construction plants where practicable.	Implemented
		Water Quality	
		 <u>Construction Runoff</u> At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities; 	Implemented
S6.9.1.1	W1	 The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates; 	Implemented
		 The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. Sizes may vary depending upon the flow rate, but for a flow rate of 0.1 m³/s a sedimentation basin of 30m³ would be required and for a flow rate of 0.5 m³/s the basin would be 150 m³; 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. Exposed slope surfaces should be covered by tarpaulin or other means; 	N.O.
		- The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows, and all traffic areas and access roads protected by coarse stone ballast;	N.O.
		 All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas; 	Implemented
		 Measures should be taken to minimize the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; 	Implemented
		 Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50m3 should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system; 	Implemented
		 Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers; 	Implemented
		 Precautions be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes. 	Implemented
S6.9.1.1	W1	 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain; 	N.O.
		 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts; 	Implemented
		 All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby; 	Implemented
		 All the earth works involving should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable. 	Implemented
		 <u>Tunnelling Works and Underground Works</u> Cut-&-cover tunnelling work should be conducted sequentially to limit the amount of construction runoff generated from exposed areas during the wet season (April to September) as far as practicable; 	N.O.
S6.9.1.2	W2	- Uncontaminated discharge should pass through sedimentation tanks prior to off-site discharge;	Implemented
		 The wastewater with a high concentration of SS should be treated (e.g. by sedimentation tanks with sufficient retention time) before discharge. Oil interceptors would also be required to remove the oil, lubricants and grease from the wastewater; 	Implemented
S6.9.1.2	W2	 Direct discharge of the bentonite slurry (as a result of D-wall and bored tunnelling construction) is not allowed. It should be reconditioned and reused wherever practicable. Temporary storage locations (typically a properly closed warehouse) should be provided on site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC PN 1/94 should be adhered to in the handling and disposal of bentonite slurries. 	Implemented
S6.9.1.3	W3	 <u>Sewage Effluent</u> Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. 	Implemented
S6.9.1.5	W4	<u>Groundwater from Potential Contaminated Area</u> - No direct discharge of groundwater from contaminated areas should be adopted;	N.O.

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 A discharge license under the WPCO through the Regional Office of EPD for groundwater discharge should be applied. Prior to the excavation works within these potentially contaminated areas, the groundwater quality should be reviewed during the process of discharge license application. The compliance to the Technical Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters (TM-DSS) and the existence of prohibited substance should be confirmed. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, the contaminated groundwater should be either properly treated in compliance with the requirements of the TM-DSS or properly recharged into the ground; 	N.O.
		 If wastewater treatment is deployed, the wastewater treatment unit shall deploy suitable treatment process (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (e.g. TPH) to undetectable range. All treated effluent from wastewater treatment plant shall meet the requirements as stated in TM-DSS and should be discharged into the foul sewers; 	N.O.
		 If groundwater recharging wells are deployed, recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in the Section 2.3 of TM-DSS. 	N.O.
		 <u>Accidental Spillage</u> All the tanks, containers, storage area should be bunded and the locations should be locked as far as possible from the sensitive watercourse and stormwater drains; 	Implemented
S6.9.1.6	W6	 The Contractor should register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities should be stored with suitable labels and warnings. Disposal of chemical wastes should be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation. 	Implemented
		Waste Management	
S7.4.1	WM1	 <u>On-site sorting of C&D materials</u> Geological assessment should be carried out by competent persons on site during excavation to identify materials which are not suitable to use as aggregate in structural concrete (e.g. volcanic rock, Aplite dyke rock, etc). Volcanic rock and Aplite dyke rock should be separated at the source sites as far as practicable and stored at designated stockpile areas preventing them from delivering to crushing facilities. The 	N.O.

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		crushing plant operator should also be reminded to set up measures to prevent unsuitable rock from ended up at concrete batching plants and be turned into concrete for structural use. Details regarding control measures at source site and crushing facilities should be submitted by the Contractors for the Engineer to review and agree. In addition, site records should also be kept for the types of rock materials excavated and the traceability of delivery will be ensured with the implementation of Trip Ticket System and enforced by site supervisory staff as stipulated under DEVB TC(W) No. 6/2010 for tracking of the correct delivery to the rock crushing facilities for processing into aggregates. Alternative disposal option for the reuse of volcanic rock and Aplite Dyke rock, etc should also be explored.	
		<u>Construction and Demolition Materials</u> - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement;	Implemented
		- Carry out on-site sorting;	Implemented
		 Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; 	Implemented
S7.5.1	WM2	 Adopt 'Selective Demolition' technique to demolish the existing structures and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; 	N.O.
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; and 	Implemented
		 Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction. 	Implemented
S7.5.1	WM3	 <u>C&D Waste</u> Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage; 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		 The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage. 	Implemented
		 <u>Land-based Sediment</u> All construction plant and equipment shall be designed and maintained to minimize the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location; 	Implemented
S7.5.1	WM5	- Requirement in the ETWB TCW No. 34/2002 shall be followed;	N.O.
57.5.1	VIVIS	 For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit would be a possible arrangement. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 	N.A.
S7.5.1	WM6	<u>Chemical Waste</u> - Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes;	Implemented
57.5.1		 Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation; 	Implemented
S7.5.1	WM6	 The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated; Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
		- chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.	
		<u>General Refuse</u> - General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes;	Implemented
S7.5.1	WM6	 A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law; 	Implemented
		- Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible;	Implemented
		- Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor.	N.O.
		Land Contamination	
S8.10, S8.12 & Appendix 8.4	LC1	 <u>Remaining SI Works</u> The potential for land contamination issues at EBH1 and EBH2 will be confirmed by site investigation after site possession and utility diversion by the construction contractor. Following the completion of the remaining SI works, the Project Proponent would prepare and submit a Second Supplementary CAR/RAP to EPD to present the findings of the SI works and to recommend specific remediation measures, if required. Upon completion of the remediation works, if any, a Remediation Report (RR) would be prepared and submitted to EPD for agreement prior to commencement of the construction works. 	N.O.
		Hazard to Life	
S9.18	H1	- Blasting activities regarding transport and use of explosives should be supervised and audited by competent site staff to ensure full compliance with the blasting permit conditions.	N.O.
S9.6, para 4	H2	- Detonators shall not be transported in the same vehicle with other Category 1 Dangerous Goods.	N.O.
S9.6, para 8	H3	 The explosives delivery trucks should be approved by Mines Division and should meet the regulatory requirements for transport of explosives. 	N.O.

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
S9.10, para 7 and S9.18	H4	 Blast doors should be provided for tunnels and blast cover should be provided for shaft at HMT, and kept closed during blasting. Provision of blast doors or heavy duty blast curtains should be implemented at the shafts, adits and other suitable locations to prevent flyrock and control the air overpressure. 	N.O.
S9.18	H5	- Only the required quantity of explosives for a particular blast should be transported to avoid the return.	N.O.
S9.18	H6	- Maximum instantaneous charge (MIC) should be within the MIC as specified for the given section.	N.O.
S9.18	H7	 The approved truck dedicated for transport of explosives should comply with the "Guidance Note on Requirements for Approval of an Explosives Delivery Vehicle" issued by CEDD Mines Division. The truck should be periodically inspected and properly maintained in good operation conditions. The fuel carried in the fuel tank should be minimized to reduce the duration of fire. Adequate fire-fighting equipment shall be provided, inspected and replaced periodically (e.g. fire extinguishers). 	N.O.
S9.18	H8	 The driver and his assistant should be physically healthy, experienced and have good safe driving records. The driver should hold a proper driving license for the approved transport truck. Dedicated training programme and regular road safety briefing sessions / workshops should be provided to enhance their safe driving attitude and practice. Smoking should be strictly prohibited. 	N.O.
S9.18	Н9	- Emergency response plans in case of road accident should be prepared and implemented. The driver and his assistant should be familiar with the emergency procedures including evacuation, and proper communication / fire-fighting equipment should be provided to the driver and his assistant.	Implemented
S9.18	H10	 Close liaison and communication among Mines Division, contractors for transport of explosives, and working staff of the tunnel blasting should be established. In case of any change of work schedule leading to cancellation or variation of explosives required, relevant parties should be informed in time to avoid unused explosives at the work sites. 	Implemented
S9.18	H11	 Close liaison and communication with Fire Services Department should be established to reduce the accidental detonation escalated from a fire. The contractors for transport of explosives should use the preferred transport routes as far as practicable. 	Implemented
S9.18	H12	 Contingency plan should be prepared for transport of explosives under severe weather conditions such as rainstorms and thunderstorms. 	Implemented
S9.18	H13	 For explosive transport, all packages of explosives on the truck should be properly stored in the truck compartment as required. Packaging of the explosives should remain intact (i.e. damage free) until they are transferred to the blasting site. 	N.O.

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
S9.18	H14	 Availability of a parking space should be ensured before commencement of transport of explosives. Location for loading and unloading of explosives should be as close as possible to the shaft or the adit. No hot work should be performed in the vicinity during the time of loading and unloading. 	N.O.
S9.18	H15	- Good communication and coordination should be performed for safe blasting of different chainage locations on the same day.	N.O.
S9.18	H16	- Evacuation and secure refugee areas should be implemented / provided to the working staff.	N.O.
S9.18	H17	- Healthy competent licensed shotfirers and blasting engineers should be employed to conduct the blasting work.	N.O.
S9.18	H18	 Proper control measures should be enforced during explosive transport within the tunnel and charging the blast holes, such as speed limit for the truck, no hot work in the vicinity, etc. 	N.O.
S9.18	H19	- Ground vibrations of the blasting operation should be monitored and MICs should be adjusted according to the actual geotechnical features to ensure blasting vibrations within the specified PPV limit.	N.O.
S9.18	H20	 For tunnel blasting near gas facilities, requirement of the "Gas Production and Supply Code of Practice - Avoiding Danger from Gas Pipes" should be respected. Close liaison and coordination with HKCG should be established to provide sufficient notice of the planned blasting activities in an appropriate format within a reasonable time period prior to blasting. Emergency response procedures should be prepared and implemented in case of gas leaks. 	N.O.
S9.18	H21	 For tunnel blasting near MTRC railway tunnels, close liaison and coordination with MTRC should be established to provide sufficient notice of the planned blasting activities in an appropriate format within a reasonable time period prior to blasting. Emergency response procedures should be prepared and implemented in case of any damage to the railway facilities. 	N.O.
S9.18	H22	 It is recommended to explore to minimize the use of the cartridged emulsion explosives and maximize the use of bulk emulsion explosive as far as practicable. 	N.O.
S9.18	H23	 The use of bulk emulsion where the maximum instant charge (MIC) envisaged for a particular blast is above 0.5kg. This prevents the occurrence of excessive vibrations due to potential bulk emulsion dosing inaccuracy in the case of low MIC. It is recommended to explore the bulk emulsion dosing technology so as to maximize the use of bulk emulsion explosive as far as practicable. 	N.O.
S9.18	H24	 It is recommended to explore to use smaller explosive charges such as 'cast boosters' or 'mini-cast booster' instead of cartridged emulsion as primers for bulk emulsion. This is option reduces the quantity of explosives required for transportation for the sections where bulk emulsion will be used. 	Implemented

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status
S9.18	H25	- Instrumentation and monitoring plan should be submitted to all relevant stakeholders for agreement prior to the commencement of the tunnel blasting works. Such plan should be implemented during construction of CKR tunnels.	Implemented
S9.18	H26	- Contingency plan should be submitted to all relevant stakeholders for agreement prior to the commencement of the tunnel blasting works.	Implemented
	1	Landscape and Visual	
S10.10.1, Table 10.11	LV3	 <u>Good Site Management</u> Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance. 	N.O.
S10.10.1, Table 10.11	LV4	 <u>Screen Hoarding</u> Decorative screen hoarding should be erected to screen the public from the construction area. It should be designed to be compatible with the existing urban context. 	N.O.
S10.10.1, Table 10.11	LV5	 <u>Lighting Control during Construction</u> All lighting in the construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residencies and GIC. The contractor shall consider other security measures, which shall minimize the visual impacts. 	Implemented
S10.10.1, Table 10.11	LV6	 <u>Erosion Control</u> The potential for soil erosion shall be reduced by minimizing the extent of vegetation disturbance on site and by providing a protective cover over newly exposed soil. 	N.O.
S10.10.1, Table 10.11	LV7	 <u>Tree Protection & Preservation</u> Carefully protected during construction. Tree protection measures will be detailed at the Tree Removal Application stage and plans submitted to the relevant Government Department for approval in due course in accordance with ETWB TC no. 3/2006. 	Implemented
S10.10.1, Table 10.11	LV8	 <u>Tree Transplantation</u> For trees unavoidably affected by the Project that have to be removed, where practical transplantation will be chosen as the top priority method of removal. If this is not possible or practical compensatory planting will be provided for trees unavoidably felled (See LV10). For trees unavoidably affected by the 	N.O.

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures			
		Project works that are transplanted, transplantation must be carried out in accordance with ETWBTC 2/2004 and 3/2006.			
S10.10.1, Table 10.11	LV9	 <u>Compensatory Planting</u> All felled trees shall be compensated for by planting trees to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006. Compensatory tree planting may be incorporated into public open spaces and along roadside amenity areas affected by the construction works and therefore be part of the bigger wider planting plans. Onsite compensation planting is preferred but if necessary, additional receptor sites outside the Works Area shall be agreed separately with Government during the Tree Felling Application process. 	N.O.		
S10.10.1, Table 10.11	LV10	 <u>Screen Planting</u> Tall screen/buffer trees, shrubs and climbers should be planted, in so far as is possible, to soften and screen proposed structures such as roads and central strip, vertical edges and buildings and to enhance streetscape greening effect where appropriate. Indiscriminate use of trees for screening must be avoided and the principle of 'right tree for the right place' must be followed. 	N.O.		
S10.10.1, Table 10.11	LV11	 <u>Green Roof</u> Roof greening is recommended be established on ventilation and administration buildings to reduce exposure to untreated concrete surfaces and particularly mitigate visual impact to VSRs at high levels. 	N.O.		
S10.10.1, Table 10.11	LV12	 <u>Reinstatement</u> All works areas, excavated areas and disturbed areas for tunnel construction and temporary road diversion or any other proposed works shall be reinstated to former conditions or better, with reasonable landscape treatment and to the satisfaction of the relevant Government departments. (Specific mitigation for disturbance to public open space is detailed separately under LV14). 	N.O.		
S10.10.1, Table 10.11	LV13	 <u>Reprovising of Public Open Space</u> All areas of public open space affected by the Project will be reprovisioned either at the same location following the completion of temporary works, or at a separate site, as agreed with relevant Government departments. Open space should be re-provisioned in an enhanced manner. 	N.O.		
S10.10.1, Table 10.11	LV14	 <u>Landscape enhancement</u> Implement a comprehensive landscape plan to maximize the greening opportunity and create a unique landscape for the project to blend in with the surrounding, including in reprovisioned areas. In particular: 	N.O.		

EIA Ref	EM&A Log Ref	Recommended Environmental Protection Measures/ Mitigation Measures				
		 landscape enhancement of re-provisioned Public Transport Interchange; landscape deck on tunnel portals; viaduct planters for trailer planting. 				
		Cultural Heritage				
S11.4.4	CH1	- The contractor should be alerted during the construction on the possibility of locating archaeological remains and as a precautionary measure, AMO shall be informed immediately in case of discovery of antiquities or supposed antiquities in the subject sites.	N.A.			
S12.6.1, Table 12.2	СН5	 <u>Tin Hau Temple (CKR-02)</u> The Alert, Alarm and Action (AAA) vibration limit is recommended to be set at 3/4/5 mm/s and a condition survey shall be carried out by the project proponent prior to the construction phase to confirm this assessment; Vibration monitoring of the structure shall be employed during the construction phase to ensure that the level is not exceeded. The monitoring proposal should be sent to AMO for comment. 	N.A.			
S12.6.1, Table 12.2	CH6	 <u>Kowloon Methodist Church (CKR-10)</u> The Alert, Alarm and Action (AAA) vibration limit is recommended to be set at 5/6/7.5 mm/s; Vibration monitoring of the structure shall be employed during the construction phase to ensure that the level is not exceeded, and as such appropriate vibration monitoring on the building should be complied with as appropriate. The monitoring proposal should be sent to AMO for comment. 	N.A.			
S12.6.1, Table 12.2	СН7	 <u>Ma Tau Kok Animal Quarantine Depot (CKR-12)</u> The Alert, Alarm and Action (AAA) vibration limit is recommended to be set at 5/6/7.5 mm/s; Vibration monitoring of the structure shall be employed during the construction phase to ensure that the level is not exceeded, and as such appropriate vibration monitoring on the building should be complied with as appropriate. The monitoring proposal should be sent to AMO for comment. 	N.A.			
S12.6.1, Table 12.2	CH11	 <u>Air raid precaution tunnels of the K1 Network (CKR-14)</u> A condition survey for the tunnel network should be undertaken by the project proponent to determine the present condition of the air raid tunnels and to recommend protective measures to ensure that the tunnels are not damaged by the construction works. and as such appropriate vibration monitoring on the building should be complied with as appropriate. The monitoring proposal should be sent to AMO for comment. 	N.A.			

Remarks:

- N.A. Not Applicable at this stage as no such site activities were conducted in the reporting period
- N.O. Not Observed during site inspection in the reporting period.

Appendix K

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Table K-T Environr	nental Comp	annis Log				
Complaint Log No.	Date of	Received	Received Nature of		Investigation/Mitigation Action	Status
	Complaint	From	Ву	Complaint		514145
EC180_CKRCT20231124_746	24	The	The	Construction	A complaint from Jade market was	Investigation
	November	Contractor	Contractor	dust	referred to the Contractor on 24	report was
	2023	Hotline	& Engineer		November 2023 about dust	finalized on 27
					generated from the construction	December
					site. He/she requested the	2023.
					Contractor to take follow-up action.	
					According to information provided	
					by the contractor, material would be	
					ensured to be covered properly and	
					frequency of spraying water would	
					be increased for dust control.	
					Supervision is taken by Resident Site	
					Staff (RSS) of the Project to monitor	
					the site work activities and	
					implementation of the dust	
					mitigation measures is audited on-	
					site by ET and RSS.	
					The Contractor was suggested to	
					maintain good relations with the	
					nearby sensitive receivers/	
					stakeholders which may be affected	
					by the construction work such as	
					providing better/ more detailed	
					information about the work nature	
					and informing in advance of the	

Table K-1Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From	Received By	Nature of Complaint	Investigation/Mitigation Action	Status
					works to the nearby residents.	
EC181_CKRCT20230914_755	28 November, 2 December, 4 December, 5 December 2023	1823	The Contractor & Engineer	Blocked gullies	The Contractor was referred complaints from 1823 on 28 November, 2, 4 and 5 December 2023. The complainant complaint about blocked gully near the taxi stand at San Ma Tau Street.	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.
EC182_CKRCT20230914_758	30 December 2023	Contractor Hotline	The Contractor & Engineer	Construction Noise	Ultima Property Management Office reported that they received a complaint by their resident about the construction vehicle noise in the vicinity of the construction site near Ho Man Tin East Service Reservoir Playground at around 4:00 a.m. on 30 December 2023.	Under investigation and the investigation results will be reported in the subsequent Monthly EM&A Report.

Table K-2Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions and PublicEngagement Activities

Reporting Period	Complaints	Notifications of Summons and Prosecutions	Public Engagement Activities
This Month	2	0	0
Cumulative Project-to-Date	183	0	0

	Table K-3	Cumulative Statistics on Monitoring Exceedance
--	-----------	--

Manitarian Davanatar		No. of Exceedance				
Monitoring Parameter	Month/Year	Action	Limit			
1-hour TSP	No. of Exceedance This Month	0	0			
T-HOUT TSP	Cumulative Project-to-Date	0	0			
24 hour TCD	No. of Exceedance This Month	0	0			
24-hour TSP	Cumulative Project-to-Date	0	0			
Noise	No. of Exceedance This Month	1	0			
(LAeq (30min))	Cumulative Project-to-Date	148	0			

Appendix L

Waste Flow Table

Tugro

Monthly Summary Waste Flow Table (2023)

Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wastes Generated Monthly									
		1			-			1	1
	Total	Reused in the		Disposed as	Metals	Paper/	Plastics	Chemical	Others, e.g.
	Quantity of Inert C&D	Contract ³ (B)	other Projects ³	Public Fill ³		cardboard		Waste	general
Month	Materials		(C)	(D)		packaging			refuse
	Generated ^{2 3} (A)								
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)				
Tetel (2010)	2.284	0.0000	0.0000	2 204	0.0000	0.0000	0.0000	0.0000	0.0358
Total (2019)				2.284					
Total (2020)	130.0518	0.0000		54.6985	49.1912	3.1500	0.0219	4.2240	0.2613
Total (2021)	571.1005	0.0000		61.5452	0.0842	3.3920	0.0860	25.5200	0.4916
Total (2022)	472.7173	7.9374	320.6842	137.2021	0.0726	3.5310	0.1382	44.9046	0.7432
Jan	53.2818	0.0000	50.2477	3.0341	0.0033	0.1650	0.0120	0.0000	0.0688
Feb	72.6005	0.0000	65.6327	6.9677	0.0058	0.1300	0.0088	2.8160	0.0900
Mar	61.8141	0.6882	52.2268	8.8991	0.0056	0.1400	0.0098	5.2448	0.1094
Apr	30.5641	0.5191	19.4473	10.5977	0.0045	0.5000	0.0101	1.9360	0.1094
Мау	49.9648	0.0676	36.2894	13.6078	0.0042	0.4700	0.0070	0.7040	0.1594
Jun	50.8995	0.5987	42.9123	7.3885	0.0048	0.1600	0.0092	0.0000	0.1563
Sub-Total (2023)	319.1248	1.8736	266.7562	50.4949	0.0282	1.5650	0.0569	10.7008	0.6933
Jul	33.1173	0.0000	23.8764	9.2409	0.0107	0.0000	0.0263	0.0000	0.1865
Aug	23.7191	0.1214	15.5295	8.0682	0.0062	0.2700	0.0120	2.8160	0.2912
Sep	19.0242	0.0446	17.0439	1.9357	0.0093	0.0000	0.0168	0.0000	0.1706
Oct	26.0330	2.2207	20.6945	3.1177	0.0025	0.2600	0.0022	5.6320	0.3106
Nov	40.8191	0.0882	36.2573	4.4736	0.0069	0.8600	0.0169	0.0000	0.4663
Dec	16.3710	0.0000	12.6630	3.7081	0.0100	0.2350	0.0063	0.0000	0.4017
Total (2023)	478.2085	4.3485	392.8208	81.0391	0.0738	3.1900	0.1374	19.1488	2.5202
Total accumulated waste quantity	1654.3621	12.2859	1298.4137	336.7689	49.4218	13.2630	0.3835	93.7974	4.0521

Notes:

1. Following assumption is made for calculation:

i) 1m³ of inert material weight 2.2 tonne;

ii) 1m³ of non-inert material weight 1.6 tonne;

iii) 1m³ of chemical waste weight 0.88 tonne;

2. Total Quantity of Inert C&D Materials (A) should reflect total quantities of C&D materials (including rock, broken concrete, soil, asphalt, slurry and bentonite) generated from site;

3. Disposed as Public Fill (D) = Total Quantity of Inert C&D Materials Generated (A) – Reused in the Contract (B) – Reused in other Projects (C).