Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for February 2017

(version 1.0)

Approved By

(Dr. Priscilla Choy,

Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	
7.	MONITORING ON CULTURAL HERITAGE	
	Post-Translocation Coral Monitoring	
6.	ECOLOGY	25
	QA/QC Requirements Decontamination Procedures Sampling Management and Supervision Results and Observations	23 23
	Monitoring Locations	19 21 21
J.	Monitoring Requirements	18
5.	Results and Observations	
	Monitoring Locations Monitoring Equipments Monitoring Methodology and QA/QC Procedure Payults and Observations	15
4.	Monitoring Requirements	15
4.	Results and Observations NOISE	14
	Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology	10
	Monitoring Requirements	10
3.	Summary of EM&A Requirements	
	Background	6 7
2.	PROJECT INFORMATION	6
	Purpose of the ReportStructure of the Report	
1.	Future Key Issues INTRODUCTION	
	EXECUTIVE SUMMARY Introduction Environmental Monitoring Works Key Information in the Reporting Month	1 1 3

9.	LANDF	ILL GAS MONITORING	.28			
	Monitorii	ng Requirement	.28			
		ng Parameters, Locations and Frequency				
	Monitorii	ng Locations	.28			
		ng Equipment				
	Results a	nd Observations	.28			
10.	ENVIRO	ONMENTAL AUDIT	.29			
	Site Audi	ts	.29			
	Implemen	ntation Status of Environmental Mitigation Measures	.29			
11.	. WASTE MANAGEMENT					
12.	ENVIRO	ONMENTAL NON-CONFORMANCE	.33			
	Summary	of Exceedances	33			
	-	of Environmental Non-Compliance				
		of Environmental Complaint				
		of Environmental Summon and Successful Prosecution				
13	•	E KEY ISSUES				
13.						
		es for the Coming Month				
		ng Schedule for the Next Month				
14.		USIONS AND RECOMMENDATIONS				
		onsendations				
	Recomm	chations	. 57			
LIS	T OF TA	BLES				
Tab	le I	Non-compliance Recorded for the Project in the Reporting Month				
Tab	le II	Summary Table for Key Information in the Reporting Month				
Tab	le 2.1	Key Project Contacts				
	le 2.2	Summary Table for Major Site Activities in the Reporting Month				
Tab	le 2.3	Construction Programme Showing the Inter-Relationship with Environmental				
 1		Protection/Mitigation Measures				
	le 2.4	Summary of the Status of Environmental Licences, Notification and Permits				
	le 3.1	Locations for Air Quality Monitoring				
	le 3.2 le 3.3	Air Quality Monitoring Equipment Impact Dust Monitoring Parameters, Frequency and Duration				
	le 3.3	Major Dust Source during Air Quality Monitoring				
	le 4.1	Noise Monitoring Stations				
	le 4.2	Noise Monitoring Equipment				
	le 4.3	Noise Monitoring Parameters, Frequency and Duration				
	le 4.4	Major Noise Source during Noise Monitoring				
	le 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations				
	le 5.1	Groundwater Quality Monitoring Stations				
Tab	le 5.2	Marine Water Quality Monitoring Stations				
Tab	le 5.3	Water Quality Monitoring Equipment				
Tab	le 5.4	Water Quality Monitoring Parameters and Frequency				
Tab	le 5.5	Methods for Laboratory Analysis for Water Samples				
	le 5.6	Summary of Groundwater Quality Monitoring Results				
Tab	le 9.1	Landfill Gas Monitoring Equipment				

Table 10.1 Observations and Recommendations of Site Audit

Table 13.1 Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Groundwater Quality Monitoring Stations
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring

Successful Prosecution

Waste Generation in the Reporting Month

Record of Landfill Gas Monitoring by Contractor

Tentative Construction Programme

LIST OF APPENDICES

Appendix P

Appendix Q

Appendix R

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory
	Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of

EXECUTIVE SUMMARY

Introduction

- 1. This is the 4th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in February 2017.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works; and
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance Record for the Project in the Reporting Month

Environmental Monitoring	No. of Exceedance		No. of Exceedance due to Construction Activities of this Project		Action Taken
<u> </u>	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	2	0	2	0	Refer to the Appendix O
Groundwater Quality	1	6	0	0	N/A (Refer to Part 8, Executive Summary)
Marine Water Quality	0	0	0	0	N/A
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A
Ecological	N/A	N/A	N/A	N/A	N/A
Cultural Heritage	N/A	N/A	N/A	N/A	N/A
Landfill Gas	0	0	0	0	N/A

Air Quality Monitoring

- 5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that

Monthly EM&A Report for February 2017

Design and Construction

monitoring at Station AM4(A) – Cha Kwo Ling Public Cargo Working Area Administrative Office on 27 January and 1 February 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 2 and 3 February 2017. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month. Two Action Level exceedance for each of January and February 2017 was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 8. Groundwater monitoring was conducted as scheduled in the reporting month. One Action Level Exceedance and Six Limit Level exceedance were recorded. The exceedances are considered to be non-Project related.
- 9. All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

- 11. Post-translocation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The survey is scheduled in February 2017 tentatively.
- 12. The 1st post-translocation coral monitoring survey is postponed to early March 2017 due to adverse weather and windy conditions in February 2017. The tentative schedule is shown in **Appendix D**.

Monitoring on Cultural Heritage

13. Monitoring of vibration impacts at Cha Kwo Ling Tin Hau Temple has not commenced in the reporting period as there is no construction works less than 100m from the temple.

Landscape and Visual Monitoring and Audit

14. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

15. Monitoring of landfill gases commenced in the reporting month and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

16. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection on 22 and 23 February 2017. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

17. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

18. Summary of key information in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details Action Taken		Action Taken	Status	Remark	
Event	Number	Nature	Action Taken	Status	Aciliai K	
	2	Construction noise nuisance due to works near Lam Tin Interchange	Investigation completed and presented in Appendix O	Closed		
Complaint received / Complaint referred by EPD	1	Excavated materials fell from the dump trucks on the BMCPC footpath which affected the safety of pedestrian and hikers	Under Investigation	On-going		
	2	Construction noise nuisance in January 2017 due to works near the Eastern Harbour Crossing	Under Investigation	On-going		
Reporting Changes	0		N/A	N/A		
Notifications of any summons & prosecutions received	0		N/A	N/A		

Future Key Issues

- 19. The future key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 4th Monthly EM&A report summarizing the EM&A works for the Project in February 2017.

Purpose of the Report

1.2 This is the 4th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in February 2017. The commencement date of construction of this Project is 7 November 2016.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: Water Quality Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Monitoring on Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring

- Section 9: Landfill Gas Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan
- Section 10: **Environmental Site Inspection** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
- Section 11: **Waste Management** summarises the waste management data in the reporting month.
- Section 12: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
- Section 13: **Future Key Issues** summarises the impact forecast and monitoring schedule for the next three months.
- Section 14: Conclusions and Recommendation

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.

Project Organizations

- 2.4 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)
- 2.5 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role	Contact Person	Phone No.	Fax No.
CEDD	DD Project Proponent Mr. Chiang Nin Tat, Eric		2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Environmental	Environmental	Dr. Priscilla Choy	2151 2089	3107 1388
Cinotech	Cinotech Team	Ms. Ivy Tam	2151 2090	310/ 1388
AnewR Independent Environmental Checker		Mr. Adi Lee	2618 2836	3007 8648

Construction Activities undertaken during the Reporting Month

2.6 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title		(February 2017)
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Excavation for Tunnel Adit Slope Feature no. 11NE-D/C119 (along Lei Yue Mun Road) EHC2 U-Trough Site Formation – Area 1G1 Site Formation – Area 2 Site Formation – Area 4 Temp Steel Bridge across Cha
		Kwo Ling Road & Barging Facility 8) Pipe Pile wall – Area 2A 9) Ground Investigation TKO Interchange TKO Formation	
		C	2) Temporary Barging Facilities3) BMCPC Bridge Temporary Diversion
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	2) Fabrication 3) Installation 4) Construction 5) Construction 6) Utilities det 7) Assembly of 8) Removal of 9) Piling and Side 10) Pre-boring value of 11) Temporary Tong Yin Side 12) Removal of 13) Construction 14) Site Establish	road for diversion of existing traffic at treet Existing concrete blocks at Portion IV n of Temporary Transformer Room

2.7 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.8 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

Contract No	Daywit / Licanga No	Valid	Ctatus			
Contract No.	Permit / License No.	From	To	Status		
Environmental Permit (EP)						
N/A	EP-458/2013/C	20/1/2017	N/A	Valid		
Notification pu	rsuant to Air Pollution Contro	(Construction I	Dust) Regulation			
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid		
NE/2015/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid		
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid		
Billing Accoun	t for Construction Waste Dispo	sal				
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid		
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid		
Registration of	Chemical Waste Producer					
NE (2015 (01	Waste Producer No. 5218-290-L2881-02	22/08/2016	N/A	Valid		
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid		
NE/2015/02	Waste Producer No. 5213-838-C4094-01	19/08/2016	N/A	Valid		
Effluent Disch	arge License under Water Pollu	ition Control Or	dinance			
NE/2015/01	WT00025806-2016	22/11/2016	30/11/2021	Valid		
NE/2015/01	WT00026212-2016	25/11/2016	30/11/2021	Valid		
NE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid		
Construction Noise Permit (CNP)						

Contract No.	Permit / License No.	Valid	Period	Status
Contract No.	Permit / License No.	From	To	Status
	GW-RE0976-16	08/10/2016	20/03/2017	Valid
	GW-RE1183-16	16/12/2016	15/06/2017	Superseded by CNP No. GW-RE0082-17 on 8 Feb 2017
NE/2015/01	GW-RE1211-16	24/12/2016	22/06/2017	Valid
	GW-RE0010-17	13/01/2017	11/02/2017	Expired on 11 Feb 2017
	GW-RE0047-17	27/01/2017	26/03/2017	Valid
	GW-RE0082-17	08/02/2017	07/03/2017	Valid
	GW-RE1141-16	06/12/2016	17/05/2017	Valid
NE/2015/02	GW-RE1208-16	23/12/2016	22/06/2017	Valid
NE/2013/02	GW-RE0049-17	01/02/2017	31/07/2017	Valid
	GW-RE0097-17	15/02/2017	14/08/2017	Valid
Marine Dumpi	ng Permit			
NE/2015/02	EP/MD/17-118	1/12/2016	31/05/2017	Valid

Summary of EM&A Requirements

- 2.9 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans:
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.10 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.11 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project in February 2017.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	AM2 Sai Tso Wan Recreation Ground	
AM3	AM3 Yau Lai Estate Bik Lai House	
AM4 ⁽¹⁾	AM4 ⁽¹⁾ Sitting-out Area at Cha Kwo Ling Village	
$AM4(A)^{(2)}(*)$	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
$AM5(A)^{(*)}$	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3 / LD-3B	4
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-531	1
	Handheld Particle Counter Hal-HPC300	4
HVS Sampler	TISCH Model: TE-5170	1
	GMW Model: GS2310	5
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

• The 1-hour dust meter is placed at least 1.3 meters above ground.

- Remove the red rubber cap from the AEROCET-531 inlet nozzle.
- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5μm and 5μm channels will show the cumulative counts of particles larger than 0.5μm and 5μm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

<u>Instrumentation</u>

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;

- a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 27 January and 1 February 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 2 and 3 February 2017. No Action/Limit Level exceedance was recorded.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Station	Major Dust Source	
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road	
AM2 – Sai Tso Wan Recreation Ground	N/A	
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza	
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road	
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road	
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound	
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road	

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVAN 955 / 957	6
Calibrator	SV30A	3
Calibrator	Brüel & Kjær 4231	2

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
M1				Façade
M2	$L_{10}(30 \text{ min})$			Façade
M3	dB(A)			Façade
M4	$L_{90}(30 \text{ min})$	0700-1900 hrs on	Once per	Façade
M5	dB(A)	normal weekdays	week	Façade
M6(A)	L _{eq} (30 min)			Free Field
M7(A)	dB(A)			Free Field
M8(A)				Façade

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

- frequency weighting : A- time weighting : Fast

- measurement time : 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. Two Action Level exceedance was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The summary of exceedance record in the reporting month is shown in **Appendix K**.
- 4.12 The major noise source identified at the designated noise monitoring stations are shown in **Table 4.4**.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	75
CM4	62.0]
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	

(*) Noise Limit Level is 65 dB(A) during school examination periods.

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to Figure 4, Stream 1 to 3). Groundwater quality monitoring was not conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.

Marine Water Quality

- Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- 5.3 Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.

Groundwater Level Monitoring (Piezometer Monitoring)

5.4 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.5 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are also summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.6 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. The locations are also summarized in **Table 5.2** and shown on **Figure 5**.

Table 5.2 Marine Water Quality Monitoring Stations

Monitoring	D	Coor	Coordinates	
Stations	Descriptions	Easting	Northing	
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565	
M2	Junk Bay Coral Site – Junk Bay	844076	817087	
M3	Junk Bay Coral Site – Junk Island	844491	817890	
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416	
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769	
M6	Tseung Kwan O Salt Water Intake	845512	817442	
C1	Control Station – Southeast	844696	814773	
C2	Control Station – Northwest	842873	816014	
G1	Gradient Station	844418	817560	
G2	Gradient Station	844290	817384	
G3	Gradient Station	844488	817735	
G4	Gradient Station	844967	817551	

Monitoring Equipments

5.7 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

Design and Construction Monthly EM&A Report for February 2017

pН

5.13 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.15 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.16 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In Situ Instruments

- 5.17 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.18 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.19 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.21 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality	YSI 6820-C-M	1
System	Aquaread AP-2000-D	2
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Design and Construction

Monitoring Parameters and Frequency

5.22 Table 5.4 summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Water Quality Monitoring Parameters and Frequency Table 5.4

	Table 5.4 water Quanty Monitoring Larameters and Frequency			
Monitoring Stations	Parameters, unit	Depth	Frequency	
Groundwater	Quality			
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)	
Marine Water	r Quality			
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	 M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)	

Monitoring Methodology

Groundwater Quality

- At each monitoring location, two consecutive in-situ measurements for DO concentration, 5.23 DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- For SS, BOD5, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and 5.24 grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples

was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.25 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.26 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.27 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L ⁽¹⁾	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	-1
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	-1
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

- 1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.
- 2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.28 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.29 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.30 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

5.31 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results and Action/Limit Level exceedance are shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.

Table 5.6 Summary of Groundwater Quality Monitoring Results

	Table 3.0	Summary of Groundwater Quanty Monitoring Results								
		Parameters (unit)								
Date 1	Location	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH3-N (mg NH3-N/L)	Total Phosphorus (mg-P/L)
	Stream 1	7.2	7.9	1.6	5	<2	3	< 0.6	< 0.05	< 0.05
3 Feb 2017	Stream 2	7.1	8.1	1.8	3	<2	4	1.0	<u>0.08</u>	< 0.05
	Stream 3	7.1	8.0	1.6	<u>11</u>	<2	3	1.2	0.06	< 0.05
15 Feb 2017	Stream 1	7.2	8.3	1.1	1.5	<2	<u>5</u>	0.7	0.05	< 0.05
	Stream 2	7.0	8.9	1.5	3.0	<2	4	1.1	< 0.05	< 0.05
	Stream 3	7.2	8.6	0.8	1.0	<2	4	1.0	< 0.05	<u>0.08</u>
	Stream 1	7.3	7.8	1.2	<u>7.1</u>	<2	3	0.6	< 0.05	< 0.05
27 Feb 2017	Stream 2	7.3	7.8	1.2	4.9	<2	4	1.1	< 0.05	<u>0.07</u>
	Stream 3	7.2	7.7	1.0	2.4	<2	2	1.2	< 0.05	< 0.05
No. 01	Action Level	0	0	0	0	0	0	0	1	0
	Limit Level	0	0	0	2	0	1	0	1	2

Note:

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

5.32 According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in both Lam Tin side and Tseung Kwan O side in February 2017. Therefore, it is considered that the exceedance is not project-related. The

summary of exceedance record in the reporting month is shown in Appendix K.

5.33 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.

Marine Water Quality Monitoring

- All marine water quality monitoring was conducted as scheduled in the reporting month. Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.35 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix I**. No exceedance of Action and Limit Levels of marine water quality was recorded during the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.36 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.37 Construction Phase Piezometer Monitoring has not commenced in this reporting period.

Design and Construction Monthly EM&A Report for February 2017

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months.
- 6.3 The first post-translocation coral monitoring is scheduled to be carried out in February 2017 tentatively.
- 6.4 The 1st post-translocation coral monitoring survey is postponed to early March 2017 due to adverse weather and windy conditions in February 2017. The tentative schedule is shown in **Appendix D**.

7. MONITORING ON CULTURAL HERITAGE

- 7.1 According to the EM&A Manual, monitoring of vibration impacts should be conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple.
- 7.2 Based on the information provided by the Contractor, no construction works are within 100m of the Cha Kwo Ling Tin Hau temple in the reporting period. Therefore, monitoring of vibration impacts has not commenced in the reporting period.

Monthly EM&A Report for February 2017

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures. The summaries of site audits are attached in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters, Locations and Frequency

- 9.3 The proposed parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 The monitoring was carried out at least daily before starting the work of the day.

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and Figure 6 shows the landfill gas monitoring locations.

Excavation Locations: Portion III Manholes and Chambers: N/A Relocation of monitoring wells: N/A Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	Crowcon Tetra	
Intrinsically safe, portable gas detector	Portable Gas Detector	1
	(Serial No. 100378267/01-007)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 25 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in Appendix R. Copies of calibration certificates are attached in **Appendix B.**

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 1, 8, 15 and 22 February 2017
 - Contract No. NE/2015/02: 2, 9, 14 and 23 February 2017

Monthly joint site inspection with the representative of IEC was conducted on 22 February 2017 (Contract No. NE/2015/01) and 23 February 2017 (Contract No. NE/2015/02).

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 10.1**.

 Table 10.1
 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up				
Contract No. N	Contract No. NE/2015/01						
	21 Dec 2016	Reminder: To remove general refuse in u- channel near the discharge point of CKL.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 11 January 2017.				
	04, 11, 18 and 25 Jan 2017	Reminder: To remove the sand accumulated in catchpit in TKO.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 1 February 2017.				
Water Quality	8 Feb 2017	Reminder: To properly cover the exposed slope by impervious material at slope at TKO.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 15 February 2017.				
, mer gama,	22 Feb 2017	Observation: Gaps observed between silt curtain and site boundary in TKO. The Contractor is reminded to provide and repair the silt curtain to fully enclose the site.	Follow up action will be reported in next reporting month.				
	22 Feb 2017	Observation: Silty water observed in the catchpits in TKO. The Contractor is reminded to remove the silt and sediment in catchpits regularly.	Follow up action will be reported in next reporting month.				
	22 Feb 2017	Reminder: To remove the sand material deposited near the seafront at Portion WAI.	Follow up action will be reported in next reporting month.				

Monthly EM&A Report for February 2017

Parameters	Date	Observations and Recommendations	Follow-up
Noise	18, 25 Jan, 1, 8, 15, 22 Feb 2017	Reminder: The contractor is reminded to provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved NMP in Cha Kwo Ling.	Follow up action will be reported in next reporting month.
Landscape and Visual			
25 Jan 2017		Observation: Part of open slope at TKO observed dry. The contractor is reminded to provide water spray to prevent dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 1 February 2017.
din O. Pr	8 Feb 2017	Reminder: To properly cover the exposed slope by impervious material at slope at TKO.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 15 February 2017.
Air Quality	15 Feb 2017	Reminder: To remove the dusty cement bags after use in TKO.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 22 February 2017.
15 Feb 201		Reminder: To provide enough water spray to slope of excavation area in CKL	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 22 February 2017.
Waste /	1 Feb 2017	Reminder: To provide drip tray to chemical containers in Portion WAII.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 8 February 2017.
Chemical Management 8 Feb 2017		Reminder: To removed oil stain on paved ground at site Portion WAII.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 15 February 2017.
Permits/ Licenses			
Contract No. N	NE/2015/02	<u> </u>	<u> </u>
	26 Jan 2017	Reminder: To provide sand bag bunds near access gate of Area A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 2 February 2017.
Water Quality	2 Feb 2017	Reminder: To prevent silty water flow out of site during wheel washing at Area A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 9 February 2017.
	9 Feb 2017	Reminder: To repair the site curtain for cofferdam works and prevent any gap between the silt curtain and crane barge.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 February 2017.
	14 Feb 2017	Reminder: To provide sand bag bunds to gullies at site access near the site office in Area A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 23 February 2017.
	23 Feb 2017	Reminder: Accumulated sand in U-channel should be removed more frequently.	Follow up action will be reported in next reporting month.
	23 Feb 2017	Reminder: Concrete bund should be provided to the footing of hoarding to prevent silt runoff out of the site at Portion 8.	Follow up action will be reported in next reporting month.
	23 Feb 2017	Reminder: Muddy water on the ground	Follow up action will be reported

Monthly EM&A Report for February 2017

Parameters	Date	Observations and Recommendations	Follow-up
		surface should be directed to the wastewater treatment facilities before discharge.	in next reporting month.
Noise			
Landscape and Visual			
	26 Jan 2017	Reminder: To cover stockpile of dusty material by impervious sheets before CNY holidays at Portion 5.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 2 February 2017.
14 Feb 2017 Air Quality		Reminder: Provide water spray to dry unpaved area in Area A to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 23 February 2017.
2	14 Feb 2017	Reminder: To provide NRMM label to crane in Area A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 23 February 2017.
	23 Feb 2017	Reminder: Stockpile of dusty material should be covered by impervious sheet to prevent dust generation at Portion 8.	Follow up action will be reported in next reporting month.
Waste / 9 Feb 2017 Chemical		Reminder: To remove the construction material from drip tray and provide a plug for drip tray on derrick lighter for marine GI works.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 February 2017.
Management	23 Feb 2017	Reminder: Accumulated waste should be removed at Portion 8.	Follow up action will be reported in next reporting month.
Permits/ Licenses	9 Feb 2017	Reminder: To update the Environmental Permit display on crane barge.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 14 February 2017.

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 No exceedance of Action and Limit Levels of air quality monitoring in the reporting period.
- 12.2 Two Action Level exceedance for each of January and February 2017 was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded.
- 12.3 One Action Level exceedance and Six Limit Level exceedances in ground water quality monitoring was recorded during the reporting period. The exceedance is considered to be non-Project related. The summary of exceedance is provided in **Appendix K**.
- 12.4 Should the monitoring results of the environmental monitoring parameters at any designated monitoring stations indicate that the Action / Limit Levels are exceeded, the actions in accordance with the Event and Action Plans in **Appendix M** be carried out.

Summary of Environmental Non-Compliance

12.5 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

12.6 Three environmental complaints were received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.7 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table** 13.1:

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Contract No.	Project Title	Site Activities	(March 2017)
NE/2015/01	Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works	Lam Tin Interchange	 Excavation for Tunnel Adit Haul Road Construction Slope Feature no. 11NE-D/C119 (along Lei Yue Mun Road) EHC2 U-Trough Site Formation – Area 1G1 Site Formation – Area 2 – 4 Temp Steel Bridge across CKL Road Pipe Pile Wall – Area 2A
		TKO Interchange	 Ground Investigation Haul Road Construction and Site Formation Temporary Barging Facilities BMCPC Bridge Temporary Diversion
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	2) Backfilling 3) Installation 4) Bedding Pro Temporary 5) Extension o 6) Installation 7) Temporary 8) Transforme 9) Ground involution 10) Construction 11) Site establis 12) Installation IV 13) Pre-bored a 14) Constructio 15) Preboring w 16) Pre-stage te Tong Yin S 17) Tree Transp	n of Retaining wall Retaining wall of silt curtain eparation and Installation of Cofferdam of Sheet Piles of Double Water Gate road for Tong Yin Street r room construction works estigation n of Temporary Transformer Room shment - Site Haul Road; of 2100mm dia. Drainage at Portion and ELS works for pipes n of U-trough work for Road P2 & SR2 U-trough emporary road construction works at treet clantation works of General Site Office;

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

Monthly EM&A Report for February 2017

Design and Construction

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 4th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in February 2017 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 27 January and 1 February 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 2 and 3 February 2017. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. Two Action Level exceedance for each of January and February 2017 was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 14.5 All groundwater Quality monitoring was conducted as scheduled in the reporting month. One Action Level Exceedance and Six Limit Level exceedance were recorded. The exceedance is considered to be non-Project related.
- 14.6 All marine water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 The 1st post-translocation coral monitoring survey is postponed to early March 2017 due to adverse weather and windy conditions in February 2017.

Monitoring on Cultural Heritage

14.8 Monitoring of vibration impacts at Cha Kwo Ling Tin Hau Temple has not commenced in the reporting period as there is no construction works less than 100m from the temple.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases commenced in the reporting month and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-conformance was identified

Complaint, Prosecution and Notification of Summons

14.12 3 environmental complaints, no successful prosecution or notification of summons were received during the reporting period. 2 environmental complaints in January 2017 were received during the reporting period.

Recommendations

14.13 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month. According to environmental audits performed, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces, excavation, rock breaking works and open slopes.
- To cover stockpile of dusty material by impervious material.
- To remove the dusty cement bags after use.
- To properly display NRMM Label to Powered Mechanical Equipment on site

Construction Noise

• To provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved Noise Mitigation Plan.

Water Quality Impact

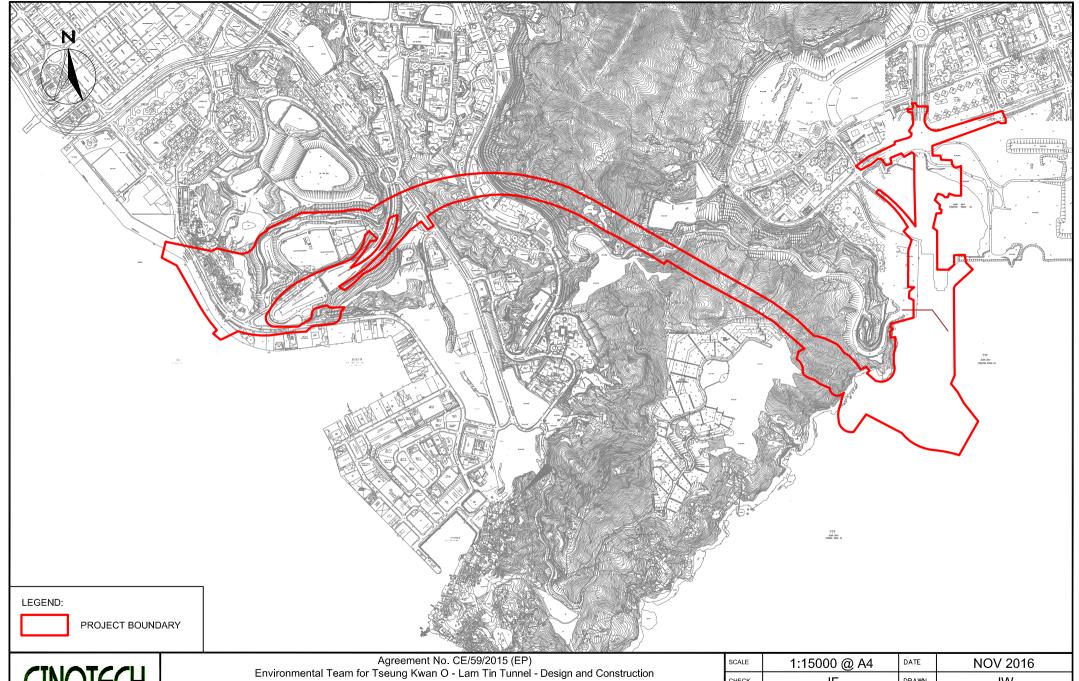
- To properly cover the exposed slope by impervious material at slope
- To prevent any surface runoff discharge into any stream course or the waters in vicinity.
- To provide and repair the silt curtain to fully enclose the site and prevent any gap between the silt curtains.
- To review and implement temporary drainage system.
- To clear the silt and sediment in the sedimentation tanks or those accumulated in drainage or catchpits.
- To remove the sand material deposited near the seafront.
- To provide bund to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To prevent silty water flow out of site during wheel washing.

Waste/Chemical Management

- To provide drip tray to chemical containers and provide plus to drip tray.
- To check for any accumulation of waste materials or rubbish on site.
- To removed oil stain on paved ground

Landscape and Visual

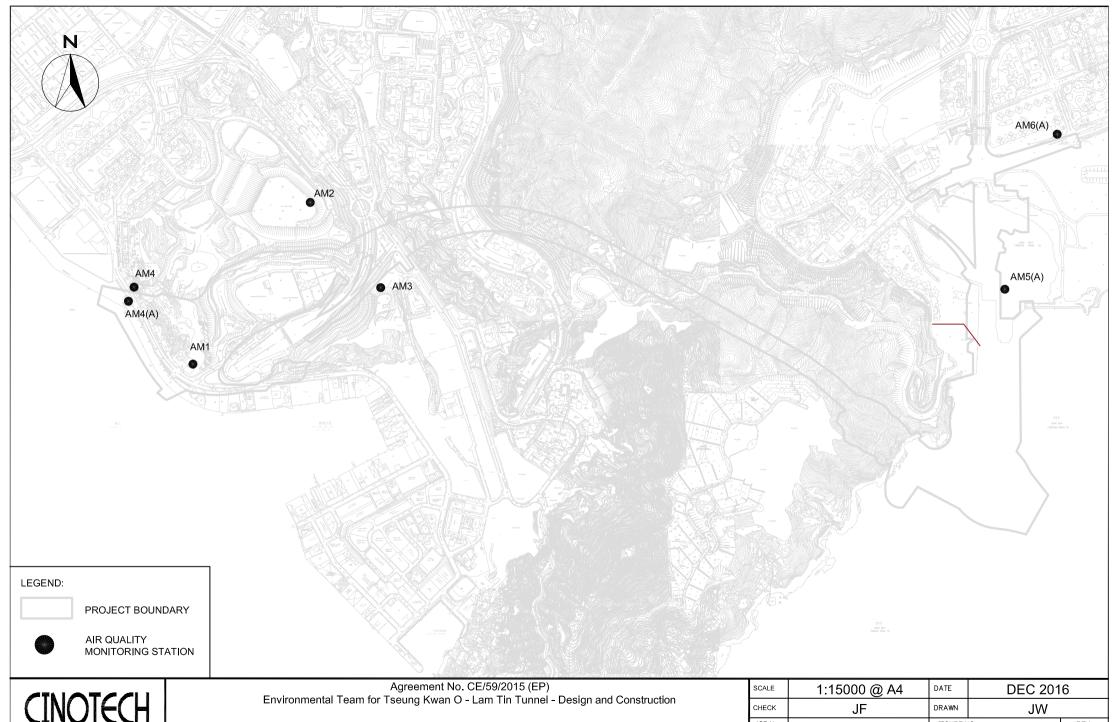
Monthly EM&A Report for February 2017


N/A

Permits/Licenses

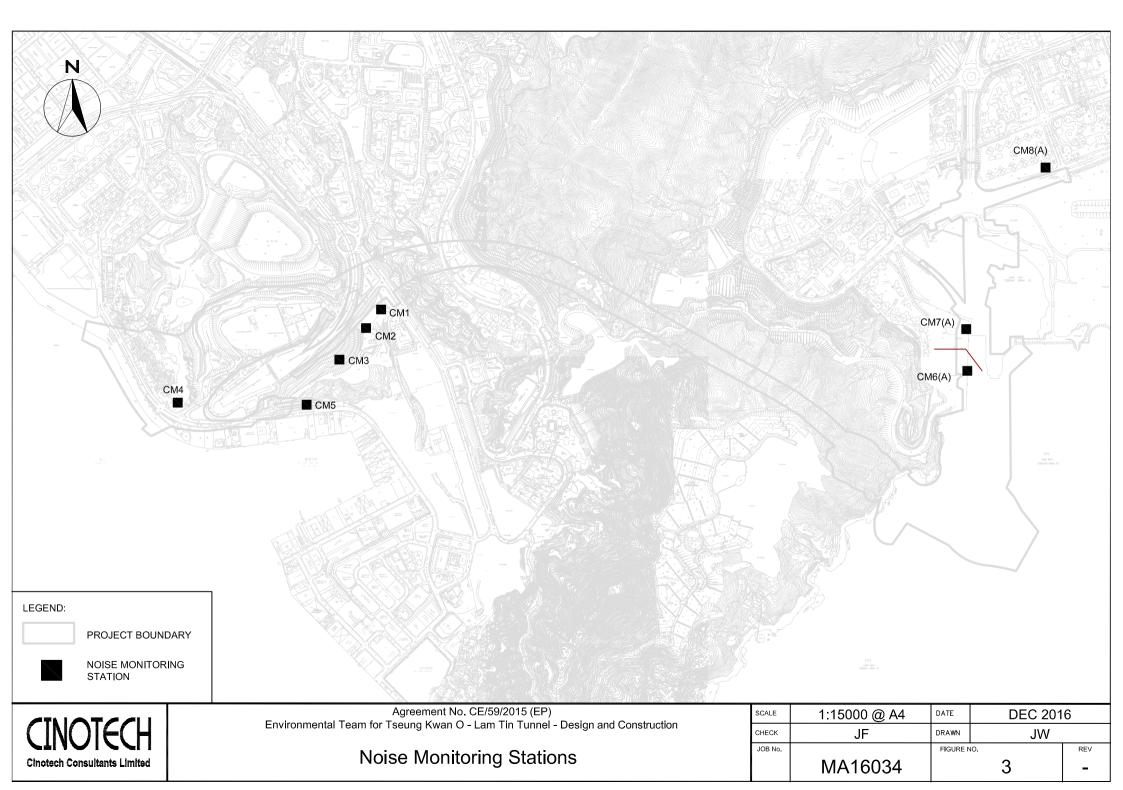
• To update the Environmental Permit display on marine works area.

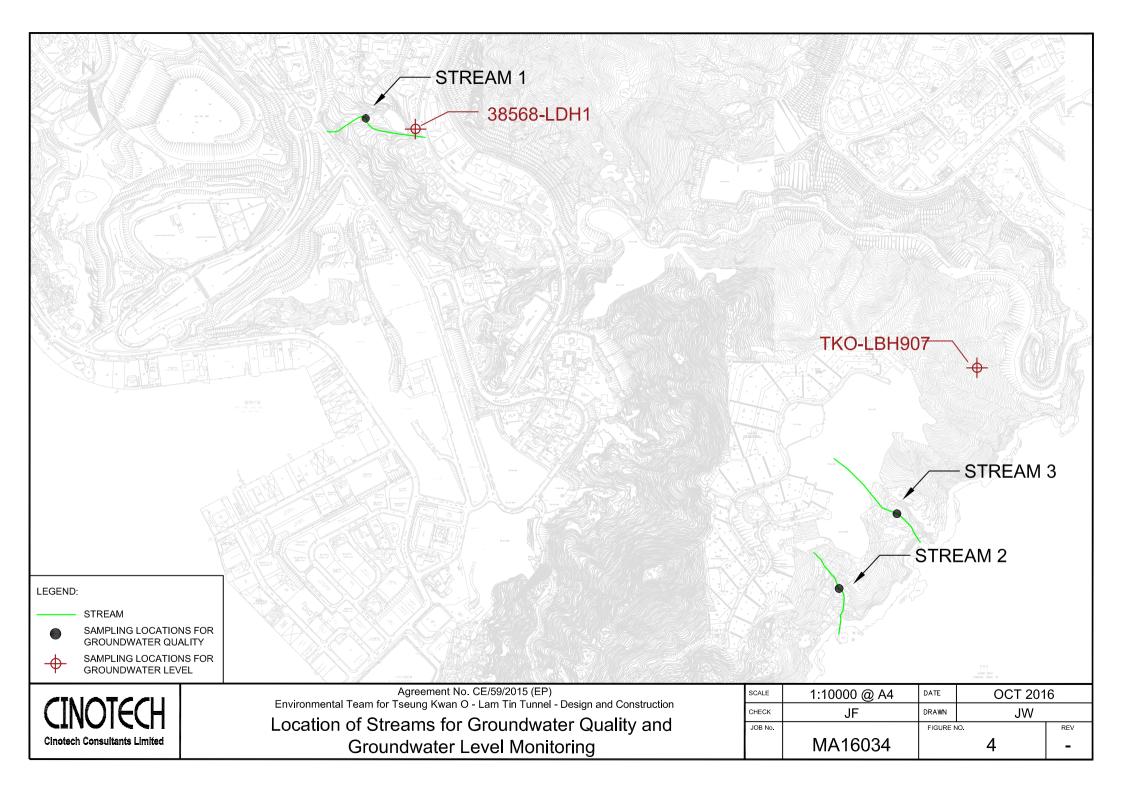
38

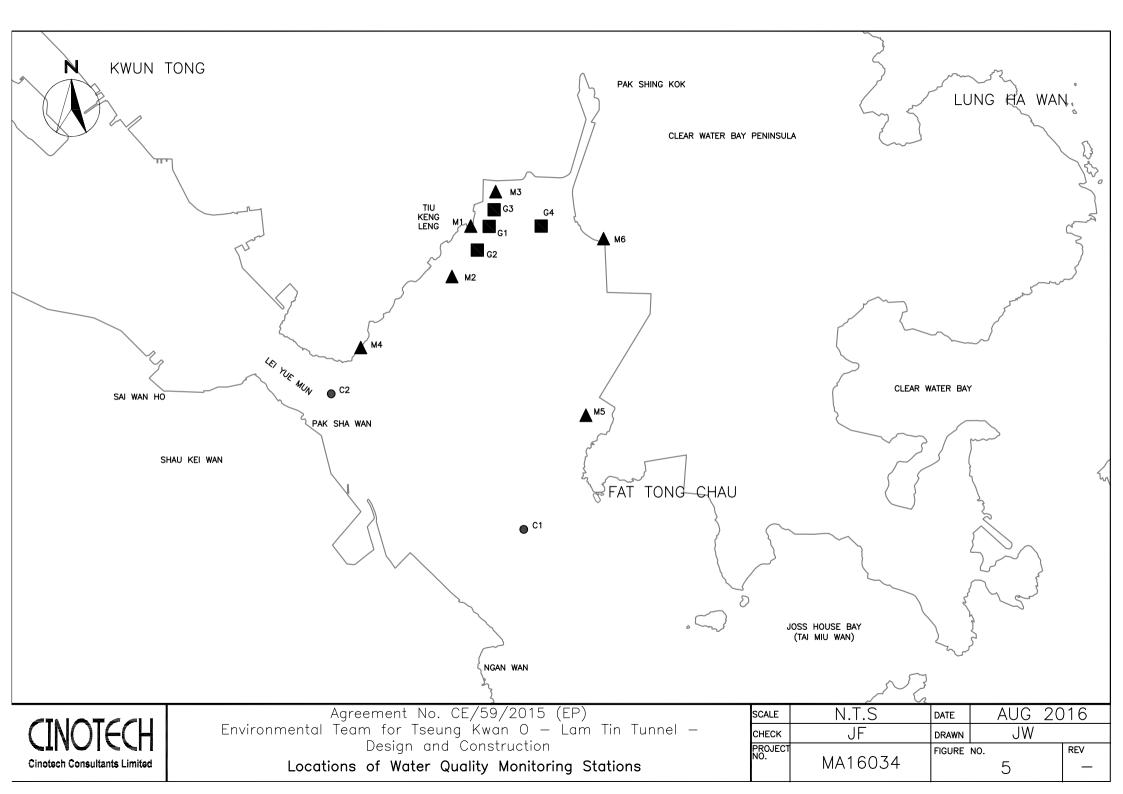

FIGURES

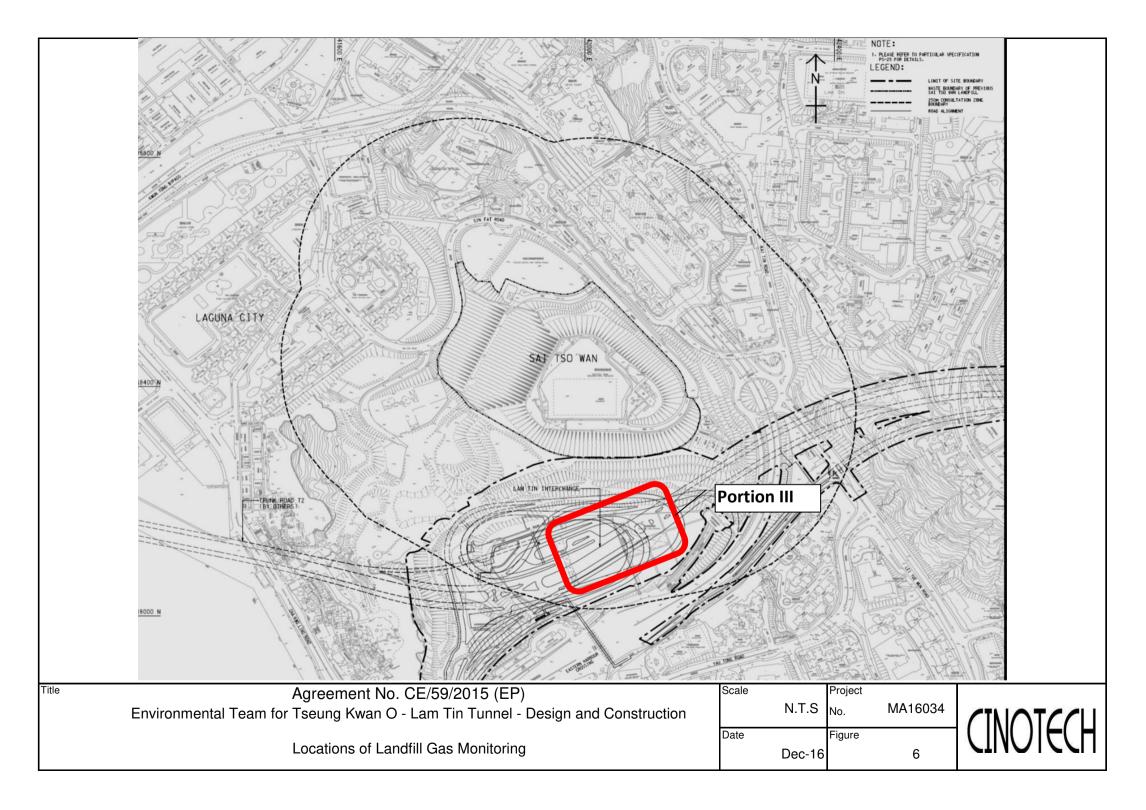
CINOTECH Cinotech Consultants Limited

Site Layout Plan


SCALE	1:15000 @ A4	DATE	NOV 2016	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	0.	REV
	MA16034		1	-




Cinotech Consultants Limited


Air Quality Monitoring Stations

SCALE	1:15000 @ A4	DATE	DEC 2016	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE NO.		REV
	MA16034	2		-

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾	
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾	
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾	

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C

³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit
DO in mg L ⁻¹	7.6	7.5
рН	6.0 - 8.9	6.0 – 9.0
BOD ₅ in mg L ⁻¹	2.0	2.0
TOC in mg L ⁻¹	4.3	4.9
Total Nitrogen in mg L ⁻¹	1.7	1.7
Ammonia-N in mg L-1	0.05	0.06
Total Phosphate in mg L ⁻¹	0.05	0.05
SS in mg L ⁻¹	5.5	6.2
Turbidity in NTU	2.2	2.4

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907		
Action Level (mPD)	+74.65	+17.59		

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level		
	Stations G1-G4, M1-M5				
DO in mad	Depth Average	4.9 mg/L	4.6 mg/L		
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L		
	Station M6				
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>		
	Stations G1-G4	I, M1-M5			
Turbidity in NTU (See Note 2 and 4)	Bottom	<u>19.3 NTU</u> or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day		
	Station M6				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>		
	Stations G1-G4				
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day		
	Stations M1-M5				
SS in mg/L (See Note 2 and 4)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day		
	Stations G1-G4	I, M1-M5			
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day		
	Station M6				
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>		

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

ent Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition	
Mortality	If during Impact Monitoring a 15% increase	If during the Impact Monitoring a 25%	
	in the percentage of partial mortality on hard	increase in the percentage of partial	
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the	
	coral at any one Impact Monitoring Site that tagged coral at any one Impact Mo		
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,	
	Action Level is exceeded.	then the Limit Level is exceeded.	

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

CINOTECH

File No. MA16034/08/0003

Station:	AM1 - Tin Hau	Temple		_ Operator:	WK		_
Date:	19-Jan-17		Next Due Date;		18-Mar-17		
Equipment No.: A-01-05		Serial No.		10599			
					en ny transferiora di La Carallella de Carallella de Carallella de Carallella de Carallella de Carallella de C		
	-		Ambient (
Temperatu	ıre, Ta (K)	292.6	Pressure, Pa	ı (mmHg)	, , , , , , , , , , , , , , , , , , , ,	769.3	
				Wasin Programme and the contract of the contra			
			rifice Transfer Sta		ition		
	l No.:	2896	Slope, mc (CFM)		Intercep		-0.05079
Last Calibr		4-Mar-16	-		$= [\Delta \mathbf{H} \times (\mathbf{Pa}/76$		
Next Calibi	ration Date:	3-Mar-17		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Ta)] 1/2 -bc}	/ mc
			Calibration of	TSP Sampler			
Calibration		0	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	13.4		3.72	63.01	7.3		2.74
2	10.1		3.23	54.82	5.5		2.38
3	8,8		3.01	51,23	4.9		2,25
4	5,4		2.36	40.31	3.2		1.82
5	3.3		1.84	31.70	2.0		1.44
Slope, mw = Correlation of		0.	9997	Intercept, bw :	0.136	53	-
*If Correlation (Coefficient < 0.99	0, check and re	calibrate.				
			Set Point C	alculation			
From the TSP F	ield Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, the	e "Y" value acc	ording to				
					t <i>n</i>		
		mw x ($Qstd + bw = [\Delta W x]$	(Pa/760) x (29	8/Ta)]""		
Therefore, Se	et Point; W = (mv	v x Qstd + bw)	² x (760 / Pa) x (7	Га / 298)=	3.54		
Remarks:							
Conducted by:	wk. Jana.	Signature:	k)		Date:	19/1/17
Checked by:		Signature:	- / Wi			Date:	19 January 201
		0		<u> </u>		Late.	() Gardinary ()

File No. MA16034/08/0003

Station:	AM2 - Sai Tso V	Van Recreation	Ground	Operator:	WK			
Date:	13-Jan-17		1	Next Due Date:		12-Mar-17		
Equipment No.:	A-01-08		_	Serial No.	1287		_	
			Ambient (ondition				
Temperatur	e, Ta (K)	285.6	Pressure, Pa			765.3		
-	, , , ,							
		Oı	ifice Transfer Sta	ndard Informa	tion			
Serial 1	No.:	2896	Slope, mc (CFM)		Intercep		-0.05079	
Last Calibra	tion Date:	4-Mar-16	7		$= [\Delta H \times (Pa/760)]$			
Next Calibra	tion Date:	3-Mar-17		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Ta)] ^{1/2} -bc}	/ me	
		•		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
			Calibration of	TSP Sampler				
Calibration		0	rfice			HVS	1/0	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis	
1	13.2		3.72	63.14	7.4		2.79	
2	10.8		3.37	57.19	5.8		2.47	
3	8.7		3.02	51.42	4.9		2.27	
4	5.2		2.34	39.94	3.0		1.78	
5	3.2		1.83	31.52	1.8		1.38	
By Linear Regree Slope, mw = _ Correlation co *If Correlation C	0.0437 refficient* =	0.	9989	Intercept, bw :	0.009	7	-	
From the TSP Fic			= 43 CFM	alculation				
			$Qstd + bw = [\Delta W x]$		8/Ta)] ^{1/2}			
Therefore, Set	Point; W = (my	v x Qstd + bw)	² x (760 / Pa) x ('	Га / 298)=	3.40		_	
Remarks:								
Conducted by: _ Checked by: _	wh. lang	Signature: Signature:	K wa	<u>, </u>		Date: Date:	13/1/17 13 January 2017	

File No. MA16034/03/0003

Station:	AM3 - Yau Lai I	Estate, Bik Lai	House	Operator:	WK		4.14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Date:	9-Jan-17		1	Next Due Date:	8-Mar-	17	
Equipment No.:	A-01-03		_	Serial No.	10379		
			A. Linux				
Temperatur	ro To (IZ)	292.6	Ambient C			766.5	
Temperatur	ie, ia (K)	292.0	Pressure, Pa	(шшлд)		766.5	
		Or	ifice Transfer Sta	ndard Informa	ıtion		
Serial	No.:	2896	Slope, mc (CFM)	1	Intercep	t, bc	-0.05079
Last Calibra	tion Date:	4-Mar-16	1	me x Qstd + be	$= [\Delta H \times (Pa/760)]$) x (298/Ta)] ^{1/2}	
Next Calibra	ation Date:	3-Mar-17		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} / mc	
			Calibration of	TSP Sampler			
Calibration		Oı	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760 Y -a	
1	12.6		3.60	61.02	6.9	2.0	66
2	10.7		3.32	56.30	5.7	2.4	42
3	7.9		2.85	48.49	4.2	2.0	80
4	5.2	2.31		39.50	2.7	1.0	67
5	3.3		1.84	31.64	1.8	1.:	36
_	ession of Y on X						
	0.0444			Intercept, bw :	-0.065	2	
Correlation co	-		9993	<u>-</u>			
*If Correlation C	coefficient < 0.99	0, check and re	calibrate.				
			Set Point C	alculation			
From the TSP Fig	eld Calibration C	urve, take Qstd				•	
From the Regress							
-	• •	_			1/2		
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = \mathbf{\Delta W} \mathbf{x}$	(Pa//60) x (29	8/1a)]		
Therefore, Se	t Point; W = (my	v x Qstd + bw)	² x (760 / Pa) x (Γa / 298) = -	3.30		
Remarks:	10000						
			1,				1 1 -
Conducted by:	WK Tang	Signature:	Kwa			Date: $\frac{q}{Q}$	1117
Checked by:	lor	Signature:		/ _		Date: $\frac{Q}{Q}$	January 2017
				/			-

CINOTECH

File No. MA16034/54/0003 Station: Operator: WK AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office 23-Jan-17 Date: Next Due Date: 22-Mar-17 Equipment No.: A-01-54 Serial No. 1536 **Ambient Condition** Temperature, Ta (K) 290.6 Pressure, Pa (mmHg) 772.2 Orifice Transfer Standard Information Serial No.: 2896 Slope, mc (CFM) 0.0598 Intercept, bc -0.05079 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 4-Mar-16 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 3-Mar-17 Calibration of TSP Sampler Orfice HVS Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Qstd (CFM) ΔW (HVS), Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis in. of water Y-axis 17.7 1 4.29 72.68 3.26 10.2 13.2 3.71 62.88 7.8 2.85 3 10.6 3,32 56.43 6.4 2.58 4 6.7 2.64 45.04 3.9 2.02 5 4.3 36.25 2.7 2.12 1.68 By Linear Regression of Y on X Slope, mw = 0.0442Intercept, bw : 0.0624 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: WK Tang Signature: Date: Checked by: (2~ Date:

File No. MA16034/37/0003

Station:	: AM5(A) - DSD Desilting Compound			Operator:	WK		
Date:	13-Jan-17		_ 1	Next Due Date:	12-Mai	12-Mar-17	
Equipment No.:	A-01-37		_	Serial No. 1704		ļ	
	Sas till kommiska av skalar						
			Ambient (
Temperatur	e, Ta (K)	285.4	Pressure, Pa	(mmHg)	•	765	
		Or	ifice Transfer Sta	ndard Informa	ition		
Serial	No.:	2896	Slope, mc (CFM)		Intercep	ot, bc	-0.05079
Last Calibra	tion Date:	4-Mar-16		me x Qstd + bc	= [ΔH x (Pa/76		Γa)] ^{1/2}
Next Calibra	tion Date:	3-Mar-17			(Pa/760) x (298/		
			Calibration of	TSP Sampler			
Calibration		O	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/70	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	17.2		4.25	71.96	8.9		3.06
2	13.8		3.81	64,55	7.6		2.83
3	10.5		3.32	56.41	5.8		2.47
4	6.3		2.57	43.89	3.5		1.92
5	4.2		2.10	35.99	2.4		1.59
By Linear Regro Slope, mw = _ Correlation co *If Correlation C	0.0417 pefficient* =	0.9	9988	Intercept, bw :	0.096	67	
From the TSP Fig From the Regress				alculation			
Therefore, Set	t Point; W = (my		$\mathbf{Pstd} + \mathbf{bw} = \mathbf{I}\Delta\mathbf{W} \mathbf{x}$ $\mathbf{Pa} \mathbf{x} (760 / \mathbf{Pa}) \mathbf{x} (760 / \mathbf{Pa}) \mathbf{x}$,	8/Ta)] ^{1/2} 3.40)	_
Remarks:							
Conducted by: _ Checked by: _	Wh. Tang	Signature: Signature:	Kwai	<u></u>		Date: Date:	13/11/7 13 January del?

CINOTECH

File No. MA16034/07/0002

Station	AM6 - Park Cer	ntral		Operator:	WK	
Date:	5-Dec-16	N		- Vext Due Date:	4-Feb-	17
Equipment No.:	A-01-07	A-01-07		Serial No.		
The second section is the second	. O residente de la compansión de la compa			********************		
			Ambient C	Condition		
Temperatu	ıre, Ta (K)	294.6	Pressure, Pa	(mmHg)		766.2
			rifice Transfer Sta	jakan yang papanggaran sa sa		
4584V8.2000A-6711						
Serial		2896	Slope, mc (CFM)	·	Intercept	
Last Calibra		4-Mar-16	-		$c = [\Delta H \times (Pa/760)]$	
Next Calibr	ation Date:	3-Mar-17		$Qsta = \{ [\Delta H x] \}$	(Pa/760) x (298/	[a)] bc} / mc
			Calibration of	TCD Compley		
The state of the s			rfice	ior sampler	to Andrews	TOYO
Calibration Point	ΔH (orifice),			Qstd (CFM)	ΔW (HVS), in.	HVS [ΔW x (Pa/760) x (298/Ta)] ^{1/2}
FOIII	in, of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	X - axis	of water	Y-axis
1	11.8		3.47	58.87	7.5	2.77
2	9.7		3.15	53.45	5.7	2.41
3	7.2		2.71	46.17	4.5	2.14
4	5.0	2.26		38.62	3.1	1.78
5	3.4		1.86	31.99	2.0	1.43
By Linear Regr	ession of Y on X					
Slope, mw =	0.0481		1	ntercept, bw :	-0.098	3
Correlation c	oefficient* =	0.:	9974	•		
*If Correlation (Coefficient < 0.99	0, check and re	calibrate.	•		
			Set Point Ca	lculation		
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM	•		
From the Regres	sion Equation, th	e "Y" value acc	ording to			
			$Qstd + bw = [\Delta W x]$	(D-17(0) - (20	oo/T5. \11/2	
		mw x ($\sum_{x \in A} (\Delta x) = \sum_{x \in A} (\Delta x) \times \sum_{x \in A} $	(Fa//60) X (29	/8/1a)	,
Therefore, Se	et Point; W = (my	v x Qstd + bw)	² x (760 / Pa) x (7	Ta / 298)=	3.80	
				•		
Remarks:						, manual and a state of the sta
						, , , , , , , , , , , , , , , , , , ,
Conduct: 11	10k 70-2	G'	L	.]		
Conducted by: Checked by:	1 2 7/	Signature:	Nwa			Date: <u>5/12/16</u>
спескей ву:	G V	Signature:	$\overline{}$	/_		Date: <u>6 December 0640</u>

CINOTECH

File No. MA16034/07/0003

Station	AM6 - Park Cen	Central Operato		Operator:	WK		
Date:	2-Feb-17		Next Due Date:		1-Apr-17		-
Equipment No.:	A-01-07		_	Serial No.	10592		-
[18]	**************************************	- (a) - (b) - (c)					
			Ambient C	ondition			
Temperatu	ıre, Ta (K)	289.5	Pressure, Pa	(mmHg)		770.1	
		Designation with the second statement		EV-class reservations			
			rifice Transfer Sta		ation		
Serial		2896	Slope, mc (CFM)		Intercep		-0.05079
Last Calibra		4-Mar-16			$c = [\Delta H \times (Pa/760)]$		· -
Next Calibr	ation Date:	3-Mar-17		$Qstd = \{ [\Delta H x] $	(Pa/760) x (298/	[a)] ^{1/2} -bc} /	mc
			Calibration of	TSP Sampler			
Calibration	ATT (aut G)	<u> </u>	rfice	0.44677.5		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	11.9		3.52	59.77	7.4		2.78
2	9.5		3.15	53.50	5.8		2.46
3	7.3		2.76	47.00	4,5		2.17
4	5.1		2.31	39.43	3,2		1.83
5	3.3		1.86	31.88	2.0		1.44
Slope , mw = Correlation c	oefficient < 0.99	0.	9997	ntercept, bw	-0.052	8	
TI Correlation C	Soemerent ~ 0.99	o, check and re	canorate.				
			Set Point Ca	lculation			
	ield Calibration C	-					
From the Regres	sion Equation, the	e "Y" value acc	ording to				
		mw x ($2std + bw = [\Delta W x]$	(Pa/760) x (29	28/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (mv	v x Qstd + bw)	² x (760 / Pa) x (7	(a/298) =	3.75		
		the same of					
Remarks:							
Conducted by: Checked by:		Signature: Signature:	Kwo	m /		Date:	2/2/17 2 February 2017

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		Orifice I.I		438320 2896	Ta (K) - Pa (mm) ·	295 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4340 1.0250 0.9150 0.8770 0.7210	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0001 0.9959 0.9938 0.9928 0.9875	0.6974 0.9716 1.0861 1.1320 1.3696	1.4173 2.0044 2.2410 2.3503 2.8346		0.9957 0.9915 0.9894 0.9885 0.9831	0.6944 0.9674 1.0814 1.1271 1.3636	0.8836 1.2496 1.3971 1.4653 1.7672
Qstd slop	: (b) = :	2.11176 -0.05079 0.99982		Qa slope intercept coefficie	(b) =	1.32235 -0.03166 0.99982
y axis =	SQRT[H2O(F	a/760) (298/7	a)]	y axis =	SQRT [H20 (T	'a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/160820

Date of Issue: 2016-08-20

Date Received: 2016-08-20 Date Tested: 2016-08-20

Date Completed: 2016-08-20

Next Due Date: 2017-02-19

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC01010A44

Test conditions:

Room Temperature

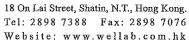
: 24 degree Celsius

Relative Humidity

: 56 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor


Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.:	C/160820
Date of Issue:	2016-08-20
Date Received:	2016-08-20
Date Tested:	2016-08-20
Date Completed:	2016-08-20
Next Due Date:	2017-02-19

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.2	45	0.2
90.1	90	0.1
134.8	135	-0.2
180.3	180	0.3
225.1	225	0.1
270.2	270	0.2
315.1	315	0.1
360	360	0

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/160408
Date of Issue: 2016-04-09
Date Received: 2016-04-08

Date Tested: 2016-04-08 Date Completed: 2016-04-09

Next Due Date: 2016-10-08

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC20813A11

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 55 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Lizak /ce

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/160408
Date of Issue:	2016-04-09
Date Received:	2016-04-08
Date Tested:	2016-04-08
Date Completed:	2016-04-09
Next Due Date:	2016-10-08

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	D = V1 - V2	
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Direction (°)		Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	. 0	0
45.2	45	0.2
90.1	90	0.1
135.2	135	0.2
180.3	180	0.3
225	225	0
270.1	270	0.1
315.2	315	0.2
360	360	0

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/A/170106B
Date of Issue:	2017-01-09
Date Received:	2017-01-06
Date Tested:	2017-01-06
Date Completed:	2017-01-09
Next Due Date:	2017-03-08

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 853944

Sensitivity (K) 1 CPM

: 0.001 mg/m³ : 685 CPM

Sen. Adjustment Scale Setting

: 003 CPM

Equipment No.

: A-02-04

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 63 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0038

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/170106C
Date of Issue: 2017-01-09
Date Received: 2017-01-06
Date Tested: 2017-01-06
Date Completed: 2017-01-09
Next Due Date: 2017-03-08

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 014750

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 790 CPM Equipment No. : A-02-06

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 63 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

	· · · · · · · · · · · · · · · · · · ·
Correlation Factor (CF)	0.0035

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/170106 Date of Issue: 2017-01-09 Date Received: 2017-01-06 Date Tested: 2017-01-06 Date Completed: 2017-01-09 Next Due Date: 2017-03-08

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata : LD-3B Model No. Serial No. : 541146 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM Sen. Adjustment Scale Setting : 625 CPM Equipment No. : A-02-07

Test Conditions:

: 22 degree Celsius Room Temperature

: 63 % Relative Humidity

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0033

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

BATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161230
Date of Issue:	2017-01-03
Date Received:	2016-12-30
Date Tested:	2016-12-30
Date Completed:	2017-01-03
Next Due Date:	2017-03-02

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM

Equipment No. : A-02-10

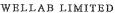
Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 66 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

2.1-0.12.2	
Correlation Factor (CF)	0.0038

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161230D
Date of Issue:	2017-01-03
Date Received:	2016-12-30
Date Tested:	2016-12-30
Date Completed:	2017-01-03
Next Due Date:	2017-03-02

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Dust Monitor

Manufacturer : Met One Instruments
Model No. : AEROCET-531

Serial No. : N6734 Flow rate :0.1 cfm

Zero Count Test :0 mg (The result of the 2-minute sample)

Equipment No. : A-02-13

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 66 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.183

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170217
Date of Issue: 2017-02-20

Date Received: 2017-02-17 Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-04-19

ATTN: Mr. W. K. Tang Page: 1 of 1

Certificate of Calibration

Item for Calibration:

Description : Handheld Particle Counter

Manufacturer : Hal Technology
Model No. : Hal-HPC300
Serial No. : 3020408
Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-26-01

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

	Correlation Factor (CF)	1.081

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

The state of the s	
Test Report No.:	C/161216B
Date of Issue:	2016-12-19
Date Received:	2016-12-16
Date Tested:	2016-12-16
Date Completed:	2016-12-19
Next Due Date:	2017-02-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer Model No.

: Hal Technology : Hal-HPC300

Model No.
Serial No.

: 3020409 : 0.1 cfm

Flow rate
Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-02

Test Conditions:

Room Temperature

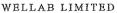
: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

2.10	
Correlation Factor (CF)	1.103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170217A

Date of Issue: 2017-02-20 Date Received: 2017-02-17

Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-04-19

ATTN: Mr. W. K. Tang Page: 1 of 1

Certificate of Calibration

Item for Calibration:

Description : Handheld Particle Counter

Manufacturer : Hal Technology

Model No. : Hal-HPC300

Serial No. : 3020409 Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-26-02

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

Correlation Factor (CF)	1.098
ata	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161216C
Date of Issue:	2016-12-19
Date Received:	2016-12-16
Date Tested:	2016-12-16
Date Completed:	2016-12-19
Next Due Date:	2017-02-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No. Serial No.

: Hal-HPC300 : 3020410

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-03

Test Conditions:

Room Temperature

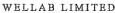
: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

Correlation Factor (CF)	1.122

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170217B Date of Issue: 2017-02-20 Date Received: 2017-02-17

Date Tested: 2017-02-17

Date Completed: 2017-02-20

1 of 1

Next Due Date: 2017-04-19

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Page:

Item for Calibration:

Description : Handheld Particle Counter

Manufacturer : Hal Technology Model No. : Hal-HPC300 Serial No. : 3020410 Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-26-03

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity :61%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.156

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/161209
Date of Issue: 2016-12-12
Date Received: 2016-12-09
Date Tested: 2016-12-09
Date Completed: 2016-12-12
Next Due Date: 2017-02-11

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No. Serial No.

: Hal-HPC300

Serial No.

: 3020411

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-04

Test Conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 69 %

Test Specifications & Methodology:

1. Înstruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.117

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170210 Date of Issue: 2017-02-13

Date Received: 2017-02-10

Date Tested: 2017-02-10

Date Completed: 2017-02-13

Next Due Date: 2017-04-12

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020411

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-04

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 65 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.159

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160917B
Date of Issue: 2016-09-19

Date Received: 2016-09-17

Date Tested: 2016-09-17 Date Completed: 2016-09-19

Next Due Date: 2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

1

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12553

Microphone No.

: 35222

Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161230 Date of Issue: 2017-01-03 Date Received: 2016-12-30 Date Tested: 2016-12-30 Date Completed: 2017-01-03 Next Due Date:

Page:

2018-01-02

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK Model No. : SVAN 955 Serial No. : 14303 Microphone No. : 35222 Equipment No. : N-08-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

1) This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160826A

Date of Issue: 2016-08-29

Date Received: 2016-08-26

Date Tested: 2016-08-26

Date Completed: 2016-08-29

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2017-08-28

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No. Serial No. : SVAN 957 : 21455

Microphone No.

: 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/160819B

 Date of Issue:
 2016-08-22

 Date Received:
 2016-08-19

 Date Tested:
 2016-08-19

 Date Completed:
 2016-08-22

 Next Due Date:
 2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21459
Microphone No. : 43676
Equipment No. : N-08-08

Test conditions:

Room Temperatre : 24 degree Celsius

Relative Humidity : 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128
Date of Issue: 2016-11-30
Date Received: 2016-11-28
Date Tested: 2016-11-28
Date Completed: 2016-11-30
Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 23853
Microphone No. : 48530
Equipment No. : N-08-10

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160919
Date of Issue:	2016-09-21
Date Received:	2016-09-19
Date Tested:	2016-09-19
Date Completed:	2016-09-21
Next Due Date:	2017-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer · : SVANTEK Model No. : SVAN 977 : 45482 Serial No. Microphone No. : 63626 Equipment No. : N-08-14

Test conditions:

Room Temperatre : 22 degree Celsius

Relative Humidity : 56%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930A
Date of Issue;	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

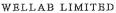
: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

C/N/160930B
2016-10-03
2016-09-30
2016-09-30
2016-10-03
2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

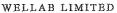
: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930C
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161104/1
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

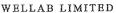
Relative Humidity

: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:


Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

This report may not be reproduced except with prior written approval from WBLLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160819D

Date of Issue: 2016-08-22

Date Received: 2016-08-19

Date Tested: 2016-08-19

Date Completed: 2016-08-22

Date Completed: 2016-08-22 Next Due Date: 2017-08-21

Page:

1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/161116
Date of Issue: 2016-11-16

Date Received: 2016-11-16 Date Tested: 2016-11-16

Date Completed: 2016-11-16 Next Due Date: 2017-02-15

ATTN: Miss Mei Ling Tang Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122252120

Equipment No.

: W.18.02

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PAITRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/161116

 Date of Issue:
 2016-11-16

 Date Received:
 2016-11-16

 Date Tested:
 2016-11-16

 Date Completed:
 2016-11-16

 Next Due Date:
 2017-02-15

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.02	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.17	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	227.4	229 ± 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.43	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.6	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2590	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
24.1	24.0	+0.1	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170214
Date of Issue: 2017-02-14
Date Received: 2017-02-14
Date Tested: 2017-02-14

Date Completed: Next Due Date:

2017-02-14 2017-05-13

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

: AP-2000-D

Serial No.

:122252120

Equipment No.

: W.18.02

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 55%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature


Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.:	C/W/170214
Date of Issue:	2017-02-14
Date Received:	2017-02-14
Date Tested:	2017-02-14
Date Completed:	2017-02-14
Next Due Date:	2017-05-13

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 + 0.10	Pass
pH QC buffer 9.18	9.18	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	228.8	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.40	8.45	Difference between Titration	Pass
		value and instrument reading	
		<0,2mg/L	

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

L	Salinity, ppt		Acceptable range	Comment
L	Instrument Reading	Theoretical Value	30.0 ± 3	Pass
L	30.1	30,0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2586	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.0	+0.1	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170111C

Date of Issue: 2017-01-11

Date Received: 2017-01-11

Date Tested: 2017-01-11

Date Completed: Next Due Date:

2017-01-11 2017-04-10

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

:AP-2000-D

Serial No.

:122251720

Equipment No.

: W.18.13

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/170111C

 Date of Issue:
 2017-01-11

 Date Received:
 2017-01-11

 Date Tested:
 2017-01-11

 Date Completed:
 2017-01-11

 Next Due Date:
 2017-04-10

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.01	4.06	4.01 ± 0.10	Pass
pH QC buffer 6.86	6.82	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.22	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	229.4	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.40	8.42	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.2	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2688	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
24.1	24,2	-0.1	N/A

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/170105A
Date of Issue: 2017-01-05
Date Received: 2017-01-05
Date Tested: 2017-01-05
Date Completed: 2017-01-05
Next Due Date: 2017-04-04

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 12B100804

Equipment No.

: W.03.13

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, L/N: 12B100055

- 1. Conductivity performance check with Potassium Chloride standard solution
- 2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, L/N: 12A100930

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 12B100645

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, L/N: 11H

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B) Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (APHA 19th 4500-H+ B)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

 Test Report No.:
 C/W/170105A

 Date of Issue:
 2017-01-05

 Date Received:
 2017-01-05

 Date Tested:
 2017-01-05

 Date Completed:
 2017-01-05

 Next Due Date:
 2017-04-04

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, µS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction, ppt	Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0	30.0 ± 3

3. Dissolved Oxygen check

<u> </u>				
Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O_2/L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _j , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH_n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 February 2017	16.6 – 22.0	80	Trace
2 February 2017	16.2 – 17.7	83	Trace
3 February 2017	15.4 – 19.6	76	0.0
4 February 2017	16.3 – 20.9	79	1.6
5 February 2017	16.7 – 22.0	83	3.3
6 February 2017	16.9 – 19.7	80	Trace
7 February 2017	15.9 – 18.7	74	0.0
8 February 2017	15.5 – 20.6	78	Trace
9 February 2017	11.1 – 16.8	56	Trace
10 February 2017	10.8 – 15.6	56	0.0
11 February 2017	11.5 – 17.9	57	0.0
12 February 2017	12.5 – 19.1	66	0.0
13 February 2017	13.1 – 20.1	65	0.0
14 February 2017	15.6 – 21.1	62	0.0
15 February 2017	15.3 – 20.9	62	0.0
16 February 2017	15.4 – 24.0	69	0.0
17 February 2017	17.1 – 25.4	74	0.0
18 February 2017	18.0 – 24.1	76	0.0
19 February 2017	16.4 – 19.1	82	0.3

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 February 2017	18.3 – 25.5	84	Trace
21 February 2017	16.6 – 21.1	90	4.6
22 February 2017	16.4 – 21.3	91	8.0
23 February 2017	15.0 – 20.2	88	Trace
24 February 2017	12.0 – 15.1	81	Trace
25 February 2017	10.7 – 13.8	85	0.7
26 February 2017	10.6 – 17.0	79	1.4
27 February 2017	15.4 – 19.8	66	0.0
28 February 2017	15.1 – 20.8	64	0.0

^{*} The above information was extracted from the daily weather su75mmary by Hong Kong Observatory.

II. Mean Wind Speed and Wind Direction			
Date	Time	Wind Speed m/s	Direction
1-Feb-2017	0:00	1.9	SSE
1-Feb-2017	1:00	1.8	ESE
1-Feb-2017	2:00	2	ESE
1-Feb-2017	3:00	2	ESE
1-Feb-2017	4:00	1.8	ESE
1-Feb-2017	5:00	1.8	ESE
1-Feb-2017	6:00	1.7	ESE
1-Feb-2017	7:00	1.9	SSE
1-Feb-2017	8:00	2	SSE
1-Feb-2017	9:00	2.1	ESE
1-Feb-2017	10:00	2.3	ESE
1-Feb-2017	11:00	2.4	ESE
1-Feb-2017	12:00	2.8	SSE
1-Feb-2017	13:00	2.7	SSE
1-Feb-2017	14:00	2.6	ESE
1-Feb-2017	15:00	2.5	ESE
1-Feb-2017	16:00	2.5	NE
1-Feb-2017	17:00	2.4	ENE
1-Feb-2017	18:00	2	WSW
1-Feb-2017	19:00	1.6	N
1-Feb-2017	20:00	1.7	WNW
1-Feb-2017	21:00	1.9	WNW
1-Feb-2017	22:00	2.1	SSW
1-Feb-2017	23:00	1.9	ESE
2-Feb-2017	0:00	1.9	ENE
2-Feb-2017	1:00	1.8	ENE
2-Feb-2017	2:00	1.8	ESE
2-Feb-2017	3:00	1.6	NE
2-Feb-2017	4:00	1.6	ESE
2-Feb-2017	5:00	1.6	SSE
2-Feb-2017	6:00	1.6	E
2-Feb-2017	7:00	1.7	E
2-Feb-2017	8:00	1.8	SSE
2-Feb-2017	9:00	1.8	SSE
2-Feb-2017	10:00	2	S
2-Feb-2017	11:00	2.2	SSE
2-Feb-2017	12:00	2.5	ENE
•	•		

н.	Mean wind S	peea ana wina Dir	ection	
	2-Feb-2017	13:00	2.4	S
	2-Feb-2017	14:00	2.3	ENE
	2-Feb-2017	15:00	2.4	ENE
	2-Feb-2017	16:00	2.1	S
	2-Feb-2017	17:00	2.3	SE
	2-Feb-2017	18:00	2.4	Е
	2-Feb-2017	19:00	2.4	SE
	2-Feb-2017	20:00	2.5	ENE
	2-Feb-2017	21:00	2.7	ESE
	2-Feb-2017	22:00	2.4	SW
	2-Feb-2017	23:00	2	WNW
	3-Feb-2017	0:00	2.1	NE
	3-Feb-2017	1:00	2.3	N
	3-Feb-2017	2:00	2.2	ESE
	3-Feb-2017	3:00	2	N
	3-Feb-2017	4:00	1.8	ENE
	3-Feb-2017	5:00	1.8	SE
	3-Feb-2017	6:00	1.6	WSW
	3-Feb-2017	7:00	1.9	W
	3-Feb-2017	8:00	2.2	S
	3-Feb-2017	9:00	2.3	SW
	3-Feb-2017	10:00	2.3	W
	3-Feb-2017	11:00	2.5	W
	3-Feb-2017	12:00	2.6	ENE
	3-Feb-2017	13:00	2.8	SSW
	3-Feb-2017	14:00	2.5	SSW
	3-Feb-2017	15:00	2.5	SSW
	3-Feb-2017	16:00	2.5	WSW
	3-Feb-2017	17:00	2.5	WSW
	3-Feb-2017	18:00	2.3	SSW
	3-Feb-2017	19:00	2.3	WSW
	3-Feb-2017	20:00	2	W
	3-Feb-2017	21:00	2	W
	3-Feb-2017	22:00	2.2	W
	3-Feb-2017	23:00	2.3	W
	4-Feb-2017	0:00	2.1	ENE
	4-Feb-2017	1:00	2.1	SW
	4-Feb-2017	2:00	2.3	W

н.	Mean wind S	peea ana wina Dir	ection	
	4-Feb-2017	3:00	2.3	NE
	4-Feb-2017	4:00	2	WSW
	4-Feb-2017	5:00	2.3	SW
	4-Feb-2017	6:00	2.2	SW
	4-Feb-2017	7:00	2.2	SW
	4-Feb-2017	8:00	2.4	SW
	4-Feb-2017	9:00	2.5	SW
	4-Feb-2017	10:00	2.4	NE
	4-Feb-2017	11:00	2.5	N
	4-Feb-2017	12:00	2.7	NNW
	4-Feb-2017	13:00	2.4	SW
	4-Feb-2017	14:00	2.6	ENE
	4-Feb-2017	15:00	2.9	ENE
	4-Feb-2017	16:00	2.7	SW
	4-Feb-2017	17:00	2.4	N
	4-Feb-2017	18:00	2.2	N
	4-Feb-2017	19:00	2.2	SW
	4-Feb-2017	20:00	2.2	WSW
	4-Feb-2017	21:00	2.2	WSW
	4-Feb-2017	22:00	2.1	N
	4-Feb-2017	23:00	2.1	ENE
	5-Feb-2017	0:00	2	ENE
	5-Feb-2017	1:00	1.8	ENE
	5-Feb-2017	2:00	2.2	SW
	5-Feb-2017	3:00	2.2	N
	5-Feb-2017	4:00	2.3	N
	5-Feb-2017	5:00	2.3	NNW
	5-Feb-2017	6:00	2.5	ENE
	5-Feb-2017	7:00	2.3	NE
	5-Feb-2017	8:00	2.7	N
	5-Feb-2017	9:00	2.8	WNW
	5-Feb-2017	10:00	3	W
	5-Feb-2017	11:00	2.6	W
	5-Feb-2017	12:00	3.1	W
	5-Feb-2017	13:00	3	W
	5-Feb-2017	14:00	3	W
	5-Feb-2017	15:00	3.3	WNW
	5-Feb-2017	16:00	3	S

н.	Mean wind S	peea ana wina Dir	ection	
	5-Feb-2017	17:00	3	WNW
	5-Feb-2017	18:00	2.7	W
	5-Feb-2017	19:00	2.3	WNW
	5-Feb-2017	20:00	2.4	SW
	5-Feb-2017	21:00	2.6	W
	5-Feb-2017	22:00	2.6	W
	5-Feb-2017	23:00	2.4	W
	6-Feb-2017	0:00	2.3	W
	6-Feb-2017	1:00	2.3	SSW
	6-Feb-2017	2:00	1.9	W
	6-Feb-2017	3:00	2.3	W
	6-Feb-2017	4:00	2.3	W
	6-Feb-2017	5:00	2.1	SSW
	6-Feb-2017	6:00	1.9	SSW
	6-Feb-2017	7:00	1.9	SW
	6-Feb-2017	8:00	2.2	W
	6-Feb-2017	9:00	2.5	W
	6-Feb-2017	10:00	2.7	NNE
	6-Feb-2017	11:00	3.1	WSW
	6-Feb-2017	12:00	2.9	SW
	6-Feb-2017	13:00	3.3	W
	6-Feb-2017	14:00	3.2	W
	6-Feb-2017	15:00	3.1	W
	6-Feb-2017	16:00	3	WNW
	6-Feb-2017	17:00	2.8	W
	6-Feb-2017	18:00	2.7	W
	6-Feb-2017	19:00	2.4	W
	6-Feb-2017	20:00	2.4	SW
	6-Feb-2017	21:00	2	W
	6-Feb-2017	22:00	2	WNW
	6-Feb-2017	23:00	1.8	SSW
	7-Feb-2017	0:00	1.9	WSW
	7-Feb-2017	1:00	1.8	SSW
	7-Feb-2017	2:00	1.9	SSW
	7-Feb-2017	3:00	1.7	W
	7-Feb-2017	4:00	1.5	NE
	7-Feb-2017	5:00	1.8	ENE
	7-Feb-2017	6:00	1.8	ENE

П.	Mean wind S	peea ana wina Dir	ection	
	7-Feb-2017	7:00	1.7	SE
	7-Feb-2017	8:00	1.9	N
	7-Feb-2017	9:00	2.1	SW
	7-Feb-2017	10:00	2.3	SSE
	7-Feb-2017	11:00	2.6	SSW
	7-Feb-2017	12:00	3	WSW
	7-Feb-2017	13:00	2.9	W
	7-Feb-2017	14:00	2.9	WSW
	7-Feb-2017	15:00	2.8	W
	7-Feb-2017	16:00	2.7	WSW
	7-Feb-2017	17:00	2.5	SSW
	7-Feb-2017	18:00	2	W
	7-Feb-2017	19:00	1.5	W
	7-Feb-2017	20:00	1.3	W
	7-Feb-2017	21:00	1.5	SW
	7-Feb-2017	22:00	1.6	W
	7-Feb-2017	23:00	1.5	W
	8-Feb-2017	0:00	1.6	WNW
	8-Feb-2017	1:00	1.7	SSW
	8-Feb-2017	2:00	1.6	SSW
	8-Feb-2017	3:00	1.6	ENE
	8-Feb-2017	4:00	1.5	SSW
	8-Feb-2017	5:00	1.7	W
	8-Feb-2017	6:00	1.5	W
	8-Feb-2017	7:00	1.7	SSE
	8-Feb-2017	8:00	2.2	WSW
	8-Feb-2017	9:00	2.3	SW
	8-Feb-2017	10:00	2.6	Ш
	8-Feb-2017	11:00	2.7	WSW
	8-Feb-2017	12:00	2.8	SW
	8-Feb-2017	13:00	2.8	SW
	8-Feb-2017	14:00	2.9	SW
	8-Feb-2017	15:00	3	NE
	8-Feb-2017	16:00	2.6	SW
	8-Feb-2017	17:00	2.6	WSW
	8-Feb-2017	18:00	2.5	W
	8-Feb-2017	19:00	2.4	WSW
	8-Feb-2017	20:00	2	WSW

П.	Mean wind S	peea ana wina Dii	ection	
	8-Feb-2017	21:00	2	W
	8-Feb-2017	22:00	1.9	WSW
	8-Feb-2017	23:00	1.9	SW
	9-Feb-2017	0:00	2.1	SSW
	9-Feb-2017	1:00	1.8	WSW
	9-Feb-2017	2:00	1.7	WNW
	9-Feb-2017	3:00	1.7	WNW
	9-Feb-2017	4:00	1.8	WNW
	9-Feb-2017	5:00	1.7	SW
	9-Feb-2017	6:00	1.5	Е
	9-Feb-2017	7:00	1.6	Е
	9-Feb-2017	8:00	1.9	E
	9-Feb-2017	9:00	2.5	SSE
	9-Feb-2017	10:00	2.7	W
	9-Feb-2017	11:00	2.8	W
	9-Feb-2017	12:00	2.9	ENE
	9-Feb-2017	13:00	2.7	SE
	9-Feb-2017	14:00	2.4	ENE
	9-Feb-2017	15:00	2.6	Е
	9-Feb-2017	16:00	2.7	SSE
	9-Feb-2017	17:00	2.4	SSE
	9-Feb-2017	18:00	2.1	ESE
	9-Feb-2017	19:00	1.8	SE
	9-Feb-2017	20:00	1.6	SSE
	9-Feb-2017	21:00	1.7	ESE
	9-Feb-2017	22:00	1.6	ESE
	9-Feb-2017	23:00	1.7	S
	10-Feb-2017	0:00	1.6	SE
	10-Feb-2017	1:00	1.9	WNW
	10-Feb-2017	2:00	1.8	Е
	10-Feb-2017	3:00	1.8	NE
	10-Feb-2017	4:00	1.8	NNE
	10-Feb-2017	5:00	1.9	WNW
	10-Feb-2017	6:00	1.4	N
	10-Feb-2017	7:00	1.6	SSE
	10-Feb-2017	8:00	1.9	ESE
	10-Feb-2017	9:00	2.2	SSE
	10-Feb-2017	10:00	2.7	WNW

н.	Mean wind S	peea ana wina Dir	ection	
	10-Feb-2017	11:00	2.9	SSW
	10-Feb-2017	12:00	3.1	SW
	10-Feb-2017	13:00	3	SSW
	10-Feb-2017	14:00	2.9	SSW
	10-Feb-2017	15:00	2.7	SE
	10-Feb-2017	16:00	2.6	SSW
	10-Feb-2017	17:00	2.4	E
	10-Feb-2017	18:00	2.1	SE
	10-Feb-2017	19:00	1.8	SE
	10-Feb-2017	20:00	1.8	SSW
	10-Feb-2017	21:00	1.7	SE
	10-Feb-2017	22:00	1.6	SE
	10-Feb-2017	23:00	1.8	SW
	11-Feb-2017	0:00	1.9	SE
	11-Feb-2017	1:00	1.9	ESE
	11-Feb-2017	2:00	1.9	SE
	11-Feb-2017	3:00	1.7	SE
	11-Feb-2017	4:00	1.6	S
	11-Feb-2017	5:00	1.8	W
	11-Feb-2017	6:00	1.8	NNE
	11-Feb-2017	7:00	1.8	ENE
	11-Feb-2017	8:00	2.1	ENE
	11-Feb-2017	9:00	2.6	ENE
	11-Feb-2017	10:00	2.6	WSW
	11-Feb-2017	11:00	2.7	SSW
	11-Feb-2017	12:00	2.9	W
	11-Feb-2017	13:00	2.9	SE
	11-Feb-2017	14:00	2.8	NE
	11-Feb-2017	15:00	2.8	W
	11-Feb-2017	16:00	2.7	SSE
	11-Feb-2017	17:00	2.7	W
	11-Feb-2017	18:00	2.2	WSW
	11-Feb-2017	19:00	2.1	W
	11-Feb-2017	20:00	2	N
	11-Feb-2017	21:00	2.1	SE
	11-Feb-2017	22:00	1.9	WNW
	11-Feb-2017	23:00	2	WNW
	12-Feb-2017	0:00	2	NNE

II. Mean win	a Speea ana wina Dir	CCHOII		
12-Feb-2017	1:00	1.8	W	
12-Feb-2017	2:00	1.8	NNE	
12-Feb-2017	3:00	1.8	NE	
12-Feb-2017	4:00	1.7	NE	
12-Feb-2017	5:00	1.6	ENE	
12-Feb-2017	6:00	1.5	ESE	
12-Feb-2017	7:00	1.7	ESE	
12-Feb-2017	8:00	2	NNE	
12-Feb-2017	9:00	2.2	SW	
12-Feb-2017	10:00	2.5	ESE	
12-Feb-2017	11:00	2.6	WNW	
12-Feb-2017	12:00	2.8	Е	
12-Feb-2017	13:00	2.8	SW	
12-Feb-2017	14:00	2.7	SE	
12-Feb-2017	15:00	2.6	SE	
12-Feb-2017	16:00	2.5	ESE	
12-Feb-2017	17:00	2.5	SE	
12-Feb-2017	18:00	2.3	NE	
12-Feb-2017	19:00	2.2	N	
12-Feb-2017	20:00	2.1	NE	
12-Feb-2017	21:00	1.7	ESE	
12-Feb-2017	22:00	1.7	ENE	
12-Feb-2017	23:00	1.8	NE	
13-Feb-2017	0:00	1.6	NE	
13-Feb-2017	1:00	1.7	NW	
13-Feb-2017	2:00	1.6	W	
13-Feb-2017	3:00	1.6	ENE	
13-Feb-2017	4:00	1.5	NNE	
13-Feb-2017	5:00	1.6	NE	
13-Feb-2017	6:00	1.6	ENE	
13-Feb-2017	7:00	1.6	NE	
13-Feb-2017	8:00	1.8	ESE	
13-Feb-2017	9:00	2.3	W	
13-Feb-2017	10:00	2.6	NNE	
13-Feb-2017	11:00	2.4	NE	
13-Feb-2017	12:00	2.7	ESE	
13-Feb-2017	13:00	2.4	ESE	
13-Feb-2017	14:00	2.5	SSE	

II. Mea	ın wınıu s	peea ana wina Dir	ection	
13-Feb	-2017	15:00	2.4	N
13-Feb	-2017	16:00	2.3	ESE
13-Feb	-2017	17:00	2.1	ESE
13-Feb	-2017	18:00	1.8	NE
13-Feb	-2017	19:00	1.5	E
13-Feb	-2017	20:00	1.1	SSE
13-Feb	-2017	21:00	1.3	NNE
13-Feb	-2017	22:00	1.3	Е
13-Feb	-2017	23:00	1.2	NE
14-Feb	-2017	0:00	1.3	NE
14-Feb	-2017	1:00	1.2	ESE
14-Feb	-2017	2:00	1.3	ENE
14-Feb	-2017	3:00	1.3	NNE
14-Feb	-2017	4:00	1.1	ENE
14-Feb	-2017	5:00	1.2	Е
14-Feb	-2017	6:00	0.9	Е
14-Feb	-2017	7:00	1.1	Е
14-Feb	-2017	8:00	1.7	Е
14-Feb	-2017	9:00	2.3	E
14-Feb	-2017	10:00	2.4	ENE
14-Feb	-2017	11:00	3	ESE
14-Feb	-2017	12:00	2.9	ENE
14-Feb	-2017	13:00	2.8	N
14-Feb	-2017	14:00	2.6	ENE
14-Feb	-2017	15:00	2.6	ESE
14-Feb	-2017	16:00	2.6	SE
14-Feb	-2017	17:00	2.6	SSE
14-Feb	-2017	18:00	2	SSE
14-Feb	-2017	19:00	2	SSE
14-Feb	-2017	20:00	1.9	SE
14-Feb	-2017	21:00	1.9	ESE
14-Feb	-2017	22:00	1.8	ESE
14-Feb	-2017	23:00	1.7	NE
15-Feb	-2017	0:00	1.7	ENE
15-Feb	-2017	1:00	1.6	ENE
15-Feb	-2017	2:00	1.6	NE
15-Feb	-2017	3:00	1.7	NE
15-Feb	-2017	4:00	1.7	SE

н.	wiean wind S	peea ana wina Dir	ection	
	15-Feb-2017	5:00	1.8	ENE
	15-Feb-2017	6:00	1.8	NE
	15-Feb-2017	7:00	2	NE
	15-Feb-2017	8:00	2	Е
	15-Feb-2017	9:00	2	NE
	15-Feb-2017	10:00	2.4	ESE
	15-Feb-2017	11:00	2.4	ESE
	15-Feb-2017	12:00	2.4	ESE
	15-Feb-2017	13:00	2.4	E
	15-Feb-2017	14:00	2.3	Е
	15-Feb-2017	15:00	2.4	ENE
	15-Feb-2017	16:00	2.4	N
	15-Feb-2017	17:00	2.2	ENE
	15-Feb-2017	18:00	2	ENE
	15-Feb-2017	19:00	1.7	E
	15-Feb-2017	20:00	1.5	ENE
	15-Feb-2017	21:00	1.7	ENE
	15-Feb-2017	22:00	1.6	SSE
	15-Feb-2017	23:00	1.5	ESE
	16-Feb-2017	0:00	1.7	ESE
	16-Feb-2017	1:00	1.7	ESE
	16-Feb-2017	2:00	1.7	NE
	16-Feb-2017	3:00	1.8	NE
	16-Feb-2017	4:00	1.9	E
	16-Feb-2017	5:00	2	ESE
	16-Feb-2017	6:00	1.7	WNW
	16-Feb-2017	7:00	1.9	W
	16-Feb-2017	8:00	1.7	WNW
	16-Feb-2017	9:00	2.1	WNW
	16-Feb-2017	10:00	2.2	WSW
	16-Feb-2017	11:00	2.2	W
	16-Feb-2017	12:00	2.4	WNW
	16-Feb-2017	13:00	2.4	WNW
	16-Feb-2017	14:00	2.4	W
	16-Feb-2017	15:00	2.5	WNW
	16-Feb-2017	16:00	2.5	W
	16-Feb-2017	17:00	2.4	W
	16-Feb-2017	18:00	1.9	WNW

н.	Mean wind S	peea ana wina Dir	ection		
1	6-Feb-2017	19:00	1.8	WNW	
1	6-Feb-2017	20:00	1.8	W	
1	6-Feb-2017	21:00	1.9	WNW	
1	6-Feb-2017	22:00	1.6	WNW	
1	6-Feb-2017	23:00	1.7	W	
1	7-Feb-2017	0:00	1.6	WNW	
1	7-Feb-2017	1:00	1.6	WNW	
1	7-Feb-2017	2:00	1.5	WNW	
1	7-Feb-2017	3:00	1.4	SW	
1	7-Feb-2017	4:00	1.4	WSW	
1	7-Feb-2017	5:00	1.4	WSW	
1	7-Feb-2017	6:00	1.5	WNW	
1	7-Feb-2017	7:00	1.4	WNW	
1	7-Feb-2017	8:00	1.8	WNW	
1	7-Feb-2017	9:00	1.9	NW	
1	7-Feb-2017	10:00	2.3	W	
1	7-Feb-2017	11:00	2.5	WNW	
1	7-Feb-2017	12:00	1.9	WNW	
1	7-Feb-2017	13:00	1.9	NNE	
1	7-Feb-2017	14:00	1.9	W	
1	7-Feb-2017	15:00	2	WNW	
1	7-Feb-2017	16:00	2.6	WNW	
1	7-Feb-2017	17:00	1.4	SSW	
1	7-Feb-2017	18:00	1.1	SW	
1	7-Feb-2017	19:00	0.9	WSW	
1	7-Feb-2017	20:00	1.8	WSW	
1	7-Feb-2017	21:00	1.9	WSW	
1	7-Feb-2017	22:00	1.8	WSW	
1	7-Feb-2017	23:00	1.6	SW	
1	8-Feb-2017	0:00	1.4	WSW	
1	8-Feb-2017	1:00	1.4	WNW	
1	8-Feb-2017	2:00	1.3	WNW	
1	8-Feb-2017	3:00	1.4	WSW	
1	8-Feb-2017	4:00	1.5	SW	
1	8-Feb-2017	5:00	1.6	SW	
1	8-Feb-2017	6:00	1.4	SW	
1	8-Feb-2017	7:00	1.6	SW	
1	8-Feb-2017	8:00	2.1	WSW	

II. Mean wind	Speeu and wind Dir	CCHOII	
18-Feb-2017	9:00	2.6	WSW
18-Feb-2017	10:00	3.1	SW
18-Feb-2017	11:00	2.9	WSW
18-Feb-2017	12:00	3.1	WSW
18-Feb-2017	13:00	2.7	WSW
18-Feb-2017	14:00	2.7	SSW
18-Feb-2017	15:00	2.9	WNW
18-Feb-2017	16:00	3	WNW
18-Feb-2017	17:00	3.2	WNW
18-Feb-2017	18:00	3.1	WNW
18-Feb-2017	19:00	2.9	SSW
18-Feb-2017	20:00	2.7	W
18-Feb-2017	21:00	2.8	ESE
18-Feb-2017	22:00	2	SSE
18-Feb-2017	23:00	2.9	W
19-Feb-2017	0:00	3	W
19-Feb-2017	1:00	3	WNW
19-Feb-2017	2:00	2.1	WNW
19-Feb-2017	3:00	2.9	W
19-Feb-2017	4:00	2.9	ESE
19-Feb-2017	5:00	2.8	ESE
19-Feb-2017	6:00	2.1	WNW
19-Feb-2017	7:00	2.2	W
19-Feb-2017	8:00	2.5	W
19-Feb-2017	9:00	2.8	WNW
19-Feb-2017	10:00	3.1	WNW
19-Feb-2017	11:00	3	WNW
19-Feb-2017	12:00	2	NE
19-Feb-2017	13:00	1.8	E
19-Feb-2017	14:00	1.7	ESE
19-Feb-2017	15:00	1.8	NE
19-Feb-2017	16:00	1.7	NE
19-Feb-2017	17:00	1.7	Е
19-Feb-2017	18:00	1.4	ENE
19-Feb-2017	19:00	1.1	NE
19-Feb-2017	20:00	1	NE
19-Feb-2017	21:00	1.8	NE
19-Feb-2017	22:00	1.7	NNE

II. M	ean winus	peed and Wind Dir	ection	
19-Fe	eb-2017	23:00	1.8	NE
20-Fe	eb-2017	0:00	1.7	NE
20-Fe	eb-2017	1:00	1.9	NE
20-Fe	eb-2017	2:00	1.9	ENE
20-Fe	eb-2017	3:00	1.8	NE
20-Fe	eb-2017	4:00	1.7	NE
20-Fe	eb-2017	5:00	1.7	NNE
20-Fe	eb-2017	6:00	1.7	NNE
20-Fe	eb-2017	7:00	1.7	NE
20-Fe	eb-2017	8:00	1.7	NE
20-Fe	eb-2017	9:00	1.6	NE
20-Fe	eb-2017	10:00	1.9	E
20-Fe	eb-2017	11:00	3	Е
20-Fe	eb-2017	12:00	2.1	WNW
20-Fe	eb-2017	13:00	2.1	SSW
20-Fe	eb-2017	14:00	2.7	W
20-Fe	eb-2017	15:00	1.7	WNW
20-Fe	eb-2017	16:00	1.6	SSW
20-Fe	eb-2017	17:00	1.4	NNE
20-Fe	eb-2017	18:00	2.1	ENE
20-Fe	eb-2017	19:00	1.9	NE
20-Fe	eb-2017	20:00	1.7	W
20-Fe	eb-2017	21:00	1.6	W
20-Fe	eb-2017	22:00	1.5	WNW
20-Fe	eb-2017	23:00	1.7	WSW
21-Fe	eb-2017	0:00	1.7	W
21-Fe	eb-2017	1:00	1.7	WSW
21-Fe	eb-2017	2:00	1.7	WSW
21-Fe	eb-2017	3:00	1.7	WSW
21-Fe	eb-2017	4:00	1.7	WSW
21-Fe	eb-2017	5:00	1.6	WSW
21-Fe	eb-2017	6:00	1.8	WSW
21-Fe	eb-2017	7:00	1.9	WNW
21-Fe	eb-2017	8:00	2	WSW
21-Fe	eb-2017	9:00	2.5	WSW
21-Fe	eb-2017	10:00	2.8	W
21-Fe	eb-2017	11:00	1.8	WNW
21-Fe	eb-2017	12:00	2	WSW

11.	Mean wind S	peea ana wina Dir	ection	
	21-Feb-2017	13:00	3.3	WSW
	21-Feb-2017	14:00	2.1	WSW
	21-Feb-2017	15:00	2.2	WSW
	21-Feb-2017	16:00	2.1	WSW
	21-Feb-2017	17:00	2	WSW
	21-Feb-2017	18:00	2.8	W
	21-Feb-2017	19:00	2.5	WSW
	21-Feb-2017	20:00	2.3	WSW
	21-Feb-2017	21:00	2.5	W
	21-Feb-2017	22:00	2.3	ENE
	21-Feb-2017	23:00	2.2	W
	22-Feb-2017	0:00	2.1	W
	22-Feb-2017	1:00	1.9	WNW
	22-Feb-2017	2:00	2.2	WSW
	22-Feb-2017	3:00	2.1	W
	22-Feb-2017	4:00	2.1	WNW
	22-Feb-2017	5:00	2	SSW
	22-Feb-2017	6:00	1.8	W
	22-Feb-2017	7:00	2.1	W
	22-Feb-2017	8:00	2.4	W
	22-Feb-2017	9:00	2.6	N
	22-Feb-2017	10:00	2.9	N
	22-Feb-2017	11:00	3	N
	22-Feb-2017	12:00	2.6	NE
	22-Feb-2017	13:00	2.8	NE
	22-Feb-2017	14:00	2.7	N
	22-Feb-2017	15:00	2.6	WSW
	22-Feb-2017	16:00	2.7	WSW
	22-Feb-2017	17:00	2.6	WSW
	22-Feb-2017	18:00	1.2	W
	22-Feb-2017	19:00	1.7	SW
	22-Feb-2017	20:00	1.2	W
	22-Feb-2017	21:00	2.1	SW
	22-Feb-2017	22:00	2.2	SW
	22-Feb-2017	23:00	2.4	SW
	23-Feb-2017	0:00	2.4	W
	23-Feb-2017	1:00	2.4	WSW
	23-Feb-2017	2:00	2.3	W

II. Mean wi	na Speea ana wina Dir	ection	
23-Feb-2017	3:00	2.2	SW
23-Feb-2017	4:00	2.2	NNE
23-Feb-2017	5:00	2.2	NE
23-Feb-2017	6:00	2.2	ENE
23-Feb-2017	7:00	2	NE
23-Feb-2017	8:00	2.2	ENE
23-Feb-2017	9:00	2.5	ENE
23-Feb-2017	10:00	2.9	ENE
23-Feb-2017	11:00	3.3	WNW
23-Feb-2017	12:00	3.4	WNW
23-Feb-2017	13:00	3.4	WNW
23-Feb-2017	14:00	3.2	WNW
23-Feb-2017	15:00	2.8	WNW
23-Feb-2017	16:00	2.6	WNW
23-Feb-2017	17:00	2.6	WNW
23-Feb-2017	18:00	2.5	W
23-Feb-2017	19:00	2.2	W
23-Feb-2017	20:00	2.2	WSW
23-Feb-2017	21:00	2.1	WSW
23-Feb-2017	22:00	2.1	WNW
23-Feb-2017	23:00	2	WNW
24-Feb-2017	0:00	2.1	WNW
24-Feb-2017	1:00	2.1	WNW
24-Feb-2017	2:00	2	WNW
24-Feb-2017	3:00	1.9	WNW
24-Feb-2017	4:00	2	SW
24-Feb-2017	5:00	2.2	SSW
24-Feb-2017	6:00	1.9	SSW
24-Feb-2017	7:00	2.1	SSW
24-Feb-2017	8:00	2.5	SW
24-Feb-2017	9:00	2.7	WSW
24-Feb-2017	10:00	3.2	WSW
24-Feb-2017	11:00	3.4	WSW
24-Feb-2017	12:00	3.1	WNW
24-Feb-2017	13:00	3.2	SW
24-Feb-2017	14:00	2.9	SW
24-Feb-2017	15:00	3.1	SW
24-Feb-2017	16:00	2.7	ENE

II. Mean wi	na Speea ana wina Di	rection	
24-Feb-2017	17:00	2.6	WNW
24-Feb-2017	18:00	2.5	WNW
24-Feb-2017	19:00	2.4	N
24-Feb-2017	20:00	2.2	SE
24-Feb-2017	21:00	2	SE
24-Feb-2017	22:00	2.1	SE
24-Feb-2017	23:00	2.1	ESE
25-Feb-2017	0:00	2.2	ESE
25-Feb-2017	1:00	2	ESE
25-Feb-2017	2:00	2.2	ESE
25-Feb-2017	3:00	1.9	NE
25-Feb-2017	4:00	2	NNE
25-Feb-2017	5:00	1.9	NE
25-Feb-2017	6:00	1.6	ENE
25-Feb-2017	7:00	1.8	NE
25-Feb-2017	8:00	1.9	NE
25-Feb-2017	9:00	2.6	NE
25-Feb-2017	10:00	2.8	ENE
25-Feb-2017	11:00	2.9	ENE
25-Feb-2017	12:00	2.7	ENE
25-Feb-2017	13:00	2.8	ENE
25-Feb-2017	14:00	2.6	ENE
25-Feb-2017	15:00	2.9	ESE
25-Feb-2017	16:00	2.5	NE
25-Feb-2017	17:00	2.3	Е
25-Feb-2017	18:00	1.8	ENE
25-Feb-2017	19:00	1.7	ENE
25-Feb-2017	20:00	0.7	NNE
25-Feb-2017	21:00	1.6	ENE
25-Feb-2017	22:00	1.5	ENE
25-Feb-2017	23:00	1.8	ENE
26-Feb-2017	0:00	1.8	ENE
26-Feb-2017	1:00	1.6	ENE
26-Feb-2017	2:00	0.6	ENE
26-Feb-2017	3:00	0.6	NE
26-Feb-2017	4:00	1.5	NE
26-Feb-2017	5:00	0.4	NE
26-Feb-2017	6:00	0.4	NE

II. Mean wind	Speed and wind Dir	CCHOII		
26-Feb-2017	7:00	1.4	NE	
26-Feb-2017	8:00	2	N	
26-Feb-2017	9:00	2.3	NNE	
26-Feb-2017	10:00	2.6	NNE	
26-Feb-2017	11:00	2.8	NE	
26-Feb-2017	12:00	3.1	NE	
26-Feb-2017	13:00	3.3	NE	
26-Feb-2017	14:00	2.9	ENE	
26-Feb-2017	15:00	2.8	ENE	
26-Feb-2017	16:00	2.7	ENE	
26-Feb-2017	17:00	2.3	NNE	
26-Feb-2017	18:00	1.7	E	
26-Feb-2017	19:00	1.5	ENE	
26-Feb-2017	20:00	1.4	ENE	
26-Feb-2017	21:00	1.4	ENE	
26-Feb-2017	22:00	1.3	ENE	
26-Feb-2017	23:00	1.4	NW	
27-Feb-2017	0:00	1.3	N	
27-Feb-2017	1:00	1.3	NNE	
27-Feb-2017	2:00	1.3	NE	
27-Feb-2017	3:00	1.4	NE	
27-Feb-2017	4:00	1.4	N	
27-Feb-2017	5:00	1.3	NE	
27-Feb-2017	6:00	1.1	ENE	
27-Feb-2017	7:00	1.1	E	
27-Feb-2017	8:00	1.5	E	
27-Feb-2017	9:00	2.1	E	
27-Feb-2017	10:00	2.3	NE	
27-Feb-2017	11:00	2.7	ENE	
27-Feb-2017	12:00	2.8	ENE	
27-Feb-2017	13:00	2.9	ENE	
27-Feb-2017	14:00	2.9	NE	
27-Feb-2017	15:00	2.6	NE	
27-Feb-2017	16:00	2.6	NE	
27-Feb-2017	17:00	2.7	NNE	
27-Feb-2017	18:00	2.2	NNE	
27-Feb-2017	19:00	2.1	N	
27-Feb-2017	20:00	2	NE	

II. Ivicali vvillu S	pecu anu winu bii	cction	
27-Feb-2017	21:00	2.3	ENE
27-Feb-2017	22:00	1.4	N
27-Feb-2017	23:00	1.6	SE
28-Feb-2017	0:00	1.6	ESE
28-Feb-2017	1:00	1.5	SSE
28-Feb-2017	2:00	1.6	SSE
28-Feb-2017	3:00	2.3	SE
28-Feb-2017	4:00	2.2	SSE
28-Feb-2017	5:00	2.1	SSE
28-Feb-2017	6:00	2	ESE
28-Feb-2017	7:00	2.2	SSE
28-Feb-2017	8:00	2.4	SE
28-Feb-2017	9:00	2.8	SE
28-Feb-2017	10:00	3.4	SE
28-Feb-2017	11:00	3.5	ENE
28-Feb-2017	12:00	2.9	ENE
28-Feb-2017	13:00	2.8	ENE
28-Feb-2017	14:00	2.9	N
28-Feb-2017	15:00	3.2	NNE
28-Feb-2017	16:00	3.1	ENE
28-Feb-2017	17:00	3.2	NE
28-Feb-2017	18:00	2.9	ENE
28-Feb-2017	19:00	2.7	ENE
28-Feb-2017	20:00	2.7	ENE
28-Feb-2017	21:00	2.6	ENE
28-Feb-2017	22:00	2.6	ENE
28-Feb-2017	23:00	2.7	ENE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (February 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Feb	2-Feb	3-Feb	4-Feb
				1 hr TSP X3		
				[AM1, AM2, AM3, AM4,	XI .	
				AM5(A) & AM6(A)]	Noise	
				24 hr TSP [AM4(A)]	[CM1, CM3, CM5]	
				24 III 15F [AM4(A)]		
			24 hr TSP	Noise		
			[AM1, AM2, AM3, AM5(A) &	[CM2, CM4, CM6(A), CM7(A),	24 hr TSP [AM4(A)]	
			AM6(A)]	CM8(A)]	[(//]	
5-Feb	6-Feb		8-Feb	9-Feb	10-Feb	11-Feb
		1 hr TSP X3				
		[AM1, AM2, AM3, AM4,				
		AM5(A) & AM6(A)]		Noise		
				[CM1, CM3, CM5]		
	241 7707	Noise				
	24 hr TSP	[CM2, CM4, CM6(A), CM7(A),			24 L. TCD	
12-Feb	13-Feb	CM8(A)] 14-Feb	15-Feb	16-Feb	24 hr TSP 17-Feb	18-Feb
12-1-60	1 hr TSP X3	14-1 00	13-1-00	10-1 00	1 hr TSP X3	18-1 00
	[AM1, AM2, AM3, AM4, AM5(A)				[AM1, AM2, AM3, AM4,	
	& AM6(A)]		Noise		AM5(A) & AM6(A)]	
	()1		[CM1, CM3, CM5]		1 11.11 (1 1) 11 1 11.11 (1 1)]	
			[,,		Noise	
					[CM2, CM4, CM6(A), CM7(A),	
				24 hr TSP	CM8(A)]	
19-Feb	20-Feb	21-Feb	22-Feb	23-Feb	24-Feb	25-Feb
				1 hr TSP X3		
				[AM1, AM2, AM3, AM4,		
			Noise	AM5(A) & AM6(A)]		
			[CM1, CM3, CM5]			
				Noise		
			24 b TCD	[CM2, CM4, CM6(A), CM7(A),		
26-Feb	27-Feb	28-Feb	24 hr TSP	CM8(A)]		
26-FeB	27-Feb	28-Feb				
		24 hr TSP				
		24 nr 15P				

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (February 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	2-Jan	3-Jan	1-Feb	2-Feb	3-Feb	4-Feb
					Groundwater Quality Monitoring	
5-Feb	6-Feb	7-Feb	8-Feb	9-Feb	10-Feb	11-Feb
12-Feb	13-Feb	14-Feb	15-Feb	16-Feb	17-Feb	18-Feb
			Groundwater Quality Monitoring			
19-Feb	20-Feb	21-Feb	22-Feb	23-Feb	24-Feb	25-Feb
26-Feb	27-Feb	28-Feb				
	Groundwater Quality Monitoring					

Monitoring Location: Stream 1, Stream 2, Stream 3

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (February 2017)

Sunday	Monda	у	Tuesday	Wednes	day	Thursday	Frida	ıy	Saturday
					1-Feb	2-Feb		3-Feb	4-Feb
				Mid-Flood Mid-Ebb	9:42 15:37		Mid-Flood Mid-Ebb	11:11 17:29	
5-Feb		6-Feb	7-Feb		8-Feb	9-Feb		10-Feb	11-Feb
	Mid-Ebb Mid-Flood	7:49 13:46		Mid-Ebb Mid-Flood	10:31 15:53		Mid-Ebb Mid-Flood	12:11 17:38	
12-Feb		13-Feb	14-Feb		15-Feb	16-Feb		17-Feb	18-Feb
	Mid-Flood Mid-Ebb	8:20 14:03		Mid-Flood Mid-Ebb	9:17 15:11		Mid-Flood Mid-Ebb	10:23 16:36	
19-Feb		20-Feb	21-Feb		22-Feb	23-Feb		24-Feb	25-Feb
	Mid-Ebb Mid-Flood	7:25 12:26		Mid-Ebb Mid-Flood	10:43 15:34		Mid-Ebb Mid-Flood	12:00 17:17	
26-Feb		27-Feb	28-Feb						
	Mid-Ebb Mid-Flood	13:06 18:51							

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Air Quality and Noise Monitoring Schedule (March 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Mar	2-Mar	3-Mar	4-Mar
			1 hr TSP X3			
			[AM1, AM2, AM3, AM4,			
			AM5(A) & AM6(A)]	Noise		
				[CM1, CM3, CM5]		
			Noise			
			[CM2, CM3, CM4, CM6(A),			
7.M.	CM	7.14	CM7(A), CM8(A)]	0.14	10.14	11.14
5-Mar	6-Mar	7-Mar 1 hr TSP X3	8-Mar	9-Mar	10-Mar	11-Mar
		[AM1, AM2, AM3, AM4,				
		AM5(A) & AM6(A)]			Noise	
		AW3(A) & AW0(A)]			[CM1, CM3, CM5]	
		Noise			[CM1, CM3, CM3]	
		[CM2, CM3, CM4, CM6(A),				
	24 hr TSP	CM7(A), CM8(A)]			24 hr TSP	
12-Mar		14-Mar	15-Mar	16-Mar	17-Mar	18-Mar
	1 hr TSP X3			1 hr TSP X3	1 hr TSP X3	
	[AM1, AM2, AM3, AM4, AM5(A)			[AM1, AM2, AM3, AM4]	[AM5(A) & AM6(A)]	
	& AM6(A)]					
				Noise	Noise	
	Noise			[CM1, CM3, CM5]	[CM3]	
	[CM2, CM4, CM6(A), CM7(A),					
	CM8(A)]			24 hr TSP		
19-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar
			1 hr TSP X3	1 hr TSP X3		
			[AM1, AM2, AM3, AM4]	[AM5(A) & AM6(A)]		
		Noise				
		[CM1, CM3, CM5]	Noise	Noise		
			[CM2, CM3 & CM4]	[CM6, CM7 & CM8]		
			24 hr TSP			
26-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	
		1 hr TSP X3	1 hr TSP X3			
		[AM1, AM2, AM3, AM4]	[AM5(A) & AM6(A)]			
				Noise		
		Noise	Noise	[CM1, CM3, CM5]		
		[CM2, CM3 & CM4]	[CM6, CM7 & CM8]			
		24 hr TSP				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Ton CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Note (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Groundwater Quality Monitoring Schedule (March 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Mar	2-Mar	3-Mar	4-Mar
5-Mar	6-Mar	7-Mar	8-Mar	9-Mar	10-Mar	11-Mar
12-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	18-Mar
			Groundwater Quality Monitoring			
19-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar
26-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	
				Groundwater Quality Monitoring		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location:

Stream 1, Stream 2, Stream 3

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (March 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Ma		3-Mar	4-Ma
			Mid-Flood 8:22 Mid-Ebb 14:23		Mid-Flood 9:36 Mid-Ebb 15:55	
5-Mar	6-M	ar 7-Mar	8-Ma	r 9-Mar	10-Mar	11-Ma
	Mid-Flood 12:0 Mid-Ebb 19:0		Mid-Ebb 12:09 Mid-Flood 14:33		Mid-Ebb 11:15 Mid-Flood 16:45	
12-Mar	13-M	ar 14-Mar	15-Ma	r 16-Mar	17-Mar	18-Ma
	Mid-Flood 7:0 Mid-Ebb 12:8		Mid-Flood 8:00 Mid-Ebb 14:0		Mid-Flood 8:57 Mid-Ebb 15:11	
19-Mar	20-M	ar 21-Mar	22-Ma	r 23-Mar	24-Mar	25-Ma
	Mid-Flood 10:2 Mid-Ebb 17:2		Mid-Flood 8:15 Mid-Ebb 20:38		Mid-Ebb 10:21 Mid-Flood 15:12	
26-Mar	27-M	far 28-Mar	29-Ma	r 30-Mar	31-Mar	
	Mid-Ebb 12:0 Mid-Flood 17:0		Mid-Flood 7:1: Mid-Ebb 13:19		Mid-Flood 8:22 Mid-Ebb 14:44	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Post-Translocation Coral Monitoring Schedule (March 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
_	_		1-Mar	2-Mar	3-Mar	4-Mar
5-Mar	6-Mar	7-Mar	8-Mar	9-Mar	10-Mar	11-Mar
	Coral Monitoring					
12-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	18-Mar
19-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar
26-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

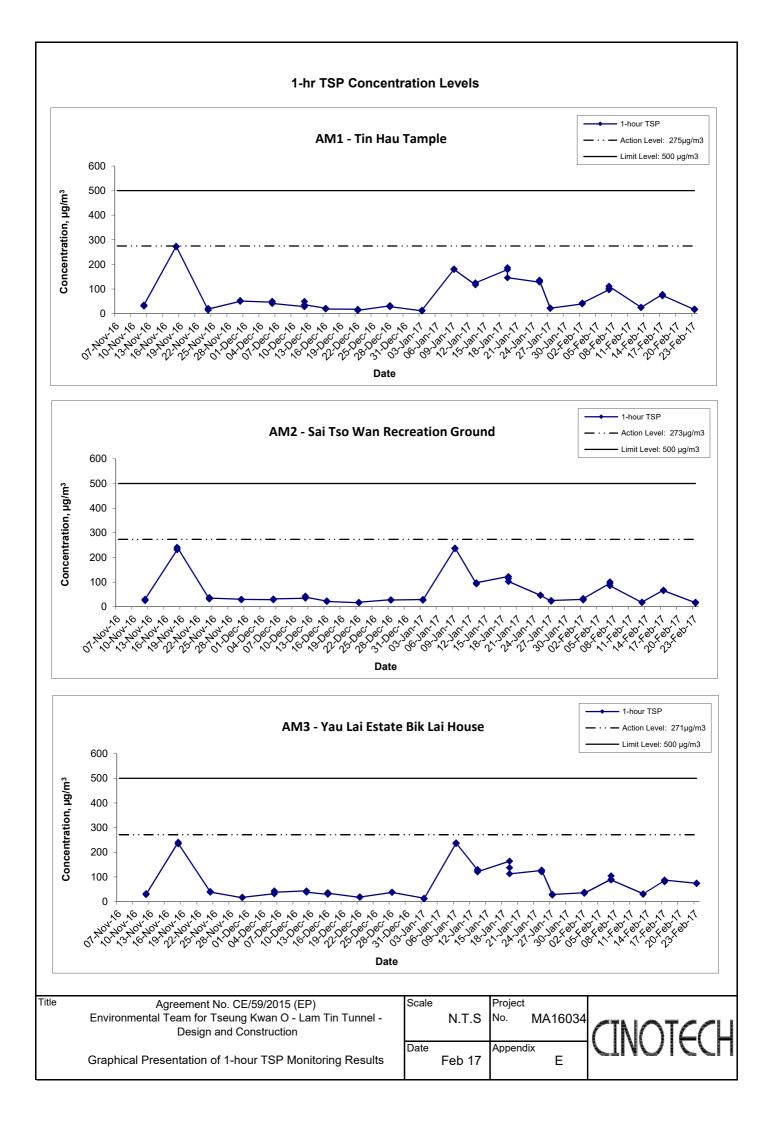
Appendix E - 1-hour TSP Monitoring Results

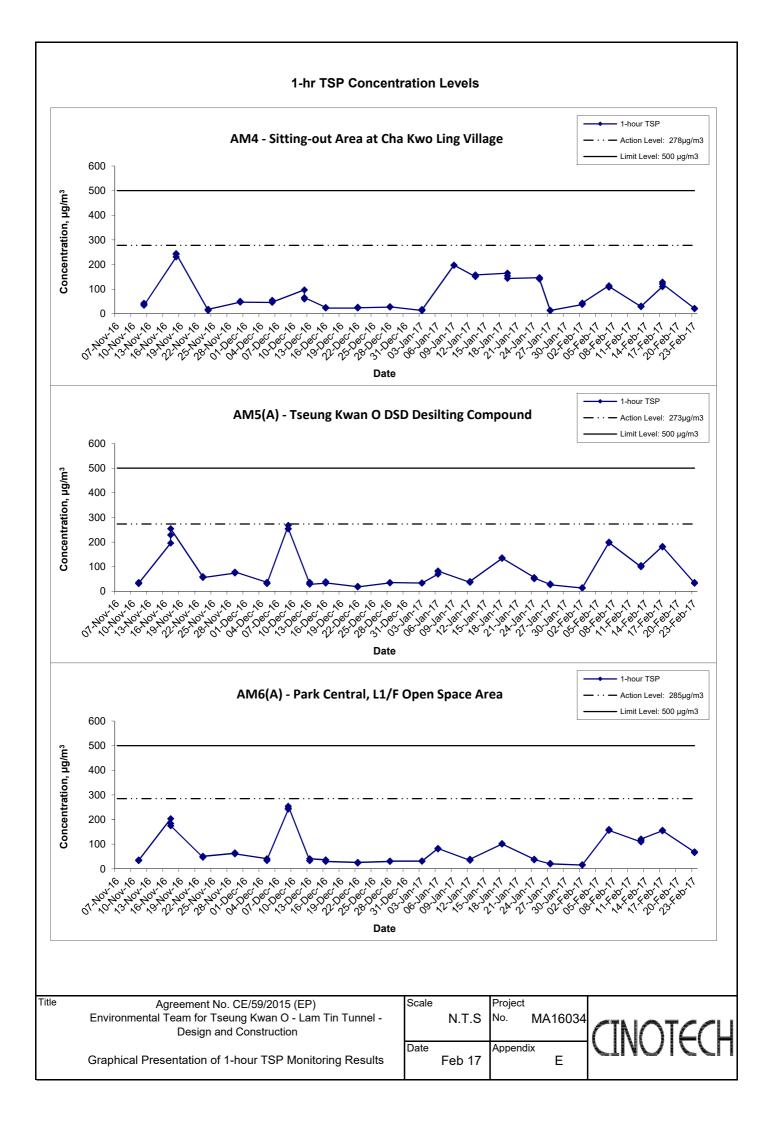
Location AM1 -	Location AM1 - Tin Hau Temple						
Date	Time	Weather	Particulate Concentration (μg/m³)				
2-Feb-17	13:00	Cloudy	40.2				
2-Feb-17	14:00	Cloudy	41.3				
2-Feb-17	15:00	Cloudy	43.6				
7-Feb-17	9:00	Windy	97.8				
7-Feb-17	10:00	Windy	103.8				
7-Feb-17	11:00	Windy	112.1				
13-Feb-17	9:00	Sunny	26.9				
13-Feb-17	10:00	Sunny	25.8				
13-Feb-17	11:00	Sunny	25.8				
17-Feb-17	9:00	Sunny	78.8				
17-Feb-17	9:00	Sunny	73.0				
17-Feb-17	9:00	Sunny	75.2				
23-Feb-17	8:30	Cloudy	17.3				
23-Feb-17	9:30	Cloudy	19.5				
23-Feb-17	10:30	Cloudy	17.3				
	-	Average	53.2				
		Maximum	112.1				
		Minimum	17.3				

Location AM2 -	Location AM2 - Sai Tso Wan Recreation Ground					
Date	Time	Weather	Particulate Concentration (μg/m³)			
2-Feb-17	13:00	Sunny	29.6			
2-Feb-17	14:00	Sunny	27.2			
2-Feb-17	15:00	Sunny	33.1			
7-Feb-17	9:00	Windy	95.3			
7-Feb-17	10:00	Windy	100.8			
7-Feb-17	11:00	Windy	85.5			
13-Feb-17	13:00	Sunny	17.4			
13-Feb-17	14:00	Sunny	18.5			
13-Feb-17	15:00	Sunny	18.5			
17-Feb-17	13:00	Sunny	67.2			
17-Feb-17	14:00	Sunny	66.7			
17-Feb-17	15:00	Sunny	65.2			
23-Feb-17	13:00	Cloudy	16.2			
23-Feb-17	14:00	Cloudy	18.4			
23-Feb-17	15:00	Cloudy	15.1			
	-	Average	45.0			
		Maximum	100.8			
		Minimum	15.1			

Location AM3 -	Location AM3 - Yau Lai Estate Bik Lai House					
Date	Time	Weather	Particulate Concentration (µg/m³)			
2-Feb-17	9:00	Cloudy	35.7			
2-Feb-17	10:00	Cloudy	38.0			
2-Feb-17	11:00	Cloudy	33.5			
7-Feb-17	13:00	Windy	89.9			
7-Feb-17	14:00	Windy	104.4			
7-Feb-17	15:00	Windy	87.5			
13-Feb-17	13:00	Sunny	31.4			
13-Feb-17	14:00	Sunny	29.2			
13-Feb-17	15:00	Sunny	30.3			
17-Feb-17	13:00	Sunny	84.7			
17-Feb-17	14:00	Sunny	79.9			
17-Feb-17	15:00	Sunny	87.1			
23-Feb-17	13:00	Cloudy	74.0			
23-Feb-17	14:00	Cloudy	74.0			
23-Feb-17	15:00	Cloudy	72.8			
	-	Average	63.5			
		Maximum	104.4			
		Minimum	29.2			

MA16034/App E - 1hr TSP


Appendix E - 1-hour TSP Monitoring Results


Location AM4 -	Location AM4 - Sitting-out Area at Cha Kwo Ling Village						
Date	Time	Weather	Particulate Concentration (μg/m³)				
2-Feb-17	9:00	Sunny	37.9				
2-Feb-17	10:00	Sunny	41.4				
2-Feb-17	11:00	Sunny	43.8				
7-Feb-17	13:00	Windy	114.0				
7-Feb-17	14:00	Windy	108.2				
7-Feb-17	15:00	Windy	110.9				
13-Feb-17	9:05	Sunny	29.0				
13-Feb-17	10:05	Sunny	31.3				
13-Feb-17	11:05	Sunny	30.1				
17-Feb-17	9:00	Sunny	110.1				
17-Feb-17	10:00	Sunny	129.0				
17-Feb-17	11:00	Sunny	121.2				
23-Feb-17	8:45	Cloudy	22.0				
23-Feb-17	9:45	Cloudy	20.8				
23-Feb-17	10:45	Cloudy	20.8				
		Average	64.7				
		Maximum	129.0				
		Minimum	20.8				

Location AM5(A	Location AM5(A) - Tseung Kwan O DSD Desilting Compound						
Date	Time	Weather	Particulate Concentration (μg/m³)				
2-Feb-17	13:00	Cloudy	13.5				
2-Feb-17	14:00	Cloudy	14.6				
2-Feb-17	15:00	Cloudy	14.6				
7-Feb-17	13:30	Sunny	198.7				
7-Feb-17	14:30	Sunny	199.4				
7-Feb-17	15:30	Sunny	197.2				
13-Feb-17	13:00	Sunny	99.5				
13-Feb-17	14:00	Sunny	105.1				
13-Feb-17	15:00	Sunny	102.0				
17-Feb-17	13:00	Sunny	182.3				
17-Feb-17	14:00	Sunny	180.2				
17-Feb-17	15:00	Sunny	181.3				
23-Feb-17	8:40	Cloudy	34.0				
23-Feb-17	9:40	Cloudy	32.9				
23-Feb-17	10:40	Cloudy	36.2				
<u> </u>		Average	106.1				
		Maximum	199.4				
		Minimum	13.5				

Location AM6(A) - Park Central, L1/F Open Space Area					
Date	Time	Weather	Particulate Concentration (μg/m³)		
2-Feb-17	8:45	Cloudy	15.7		
2-Feb-17	9:45	Cloudy	16.8		
2-Feb-17	10:45	Cloudy	15.7		
7-Feb-17	14:00	Sunny	157.0		
7-Feb-17	15:00	Sunny	159.7		
7-Feb-17	16:00	Sunny	155.8		
13-Feb-17	9:00	Sunny	109.1		
13-Feb-17	10:00	Sunny	116.0		
13-Feb-17	11:00	Sunny	120.7		
17-Feb-17	13:00	Sunny	154.5		
17-Feb-17	14:00	Sunny	156.9		
17-Feb-17	15:00	Sunny	154.7		
23-Feb-17	13:00	Cloudy	68.1		
23-Feb-17	14:00	Cloudy	69.2		
23-Feb-17	15:00	Cloudy	65.9		
<u> </u>		Average	102.4		
		Maximum	159.7		
		Minimum	15.7		

MA16034/App E - 1hr TSP

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
1-Feb-17	Cloudy	290.4	769.3	3.5886	3.6826	0.0940	1451.0	1475.0	24.0	1.22	1.22	1.22	1751.2	53.7
6-Feb-17	Windy	291.6	764.4	3.6127	3.8533	0.2406	1475.0	1499.0	24.0	1.21	1.21	1.21	1741.3	138.2
10-Feb-17	Sunny	283.5	771.4	3.6507	3.8640	0.2133	1499.0	1523.0	24.0	1.23	1.23	1.23	1776.6	120.1
16-Feb-17	Sunny	290.7	769.8	3.5943	3.7360	0.1417	1523.0	1547.0	24.0	1.22	1.22	1.22	1750.8	80.9
22-Feb-17	Cloudy	291.2	765.6	3.5387	3.7410	0.2023	1547.0	1571.0	24.0	1.21	1.21	1.21	1744.2	116.0
28-Feb-17	Cloudy	289.5	770.5	3.6629	3.9402	0.2773	1571.0	1595.0	24.0	1.22	1.22	1.22	1755.6	158.0
													Min	53.7
													Max	158.0
													Average	111.1

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
1-Feb-17	Cloudy	291.3	768.1	3.5657	3.6447	0.0790	22415.3	22439.3	24.0	1.21	1.21	1.21	1739.4	45.4
6-Feb-17	Windy	292.3	763.2	3.6095	3.7269	0.1174	22439.3	22463.3	24.0	1.20	1.20	1.20	1730.8	67.8
10-Feb-17	Sunny	283.2	771.6	3.6159	3.7069	0.0910	22463.3	22487.3	24.0	1.23	1.23	1.23	1768.2	51.5
16-Feb-17	Sunny	290.9	769.4	3.6006	3.6823	0.0817	22487.3	22511.3	24.0	1.21	1.21	1.21	1742.1	46.9
22-Feb-17	Ccloudy	291.7	765.5	3.5645	3.6176	0.0531	22511.3	22535.3	24.0	1.21	1.20	1.21	1735.2	30.6
28-Feb-17	Cloudy	289.5	770.2	3.5897	3.7716	0.1819	22535.3	22559.3	24.0	1.21	1.21	1.21	1747.2	104.1
													Min	30.6
													Max	104.1
													Average	57.7

Location AM3 - Yau Lai Estate, Bik Lai House

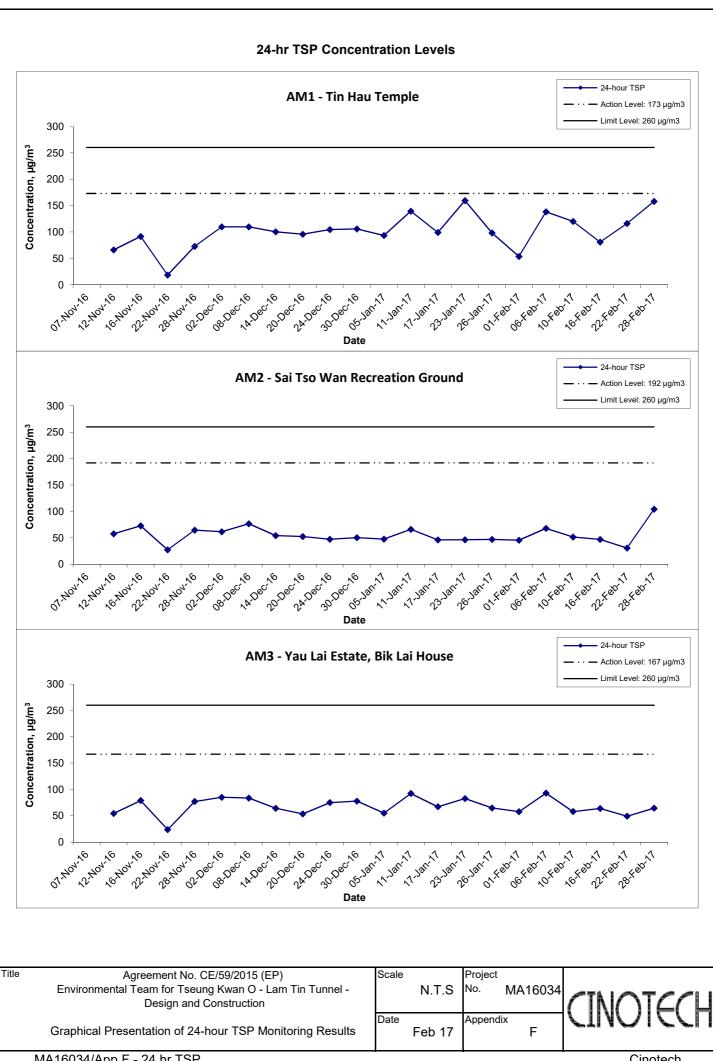
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
1-Feb-17	Cloudy	290.5	769.1	3.6196	3.7210	0.1014	10982.7	11006.7	24.0	1.22	1.22	1.22	1758.6	57.7
6-Feb-17	Windy	291.7	764.6	3.6357	3.7984	0.1627	11006.7	11030.7	24.0	1.22	1.22	1.22	1750.2	93.0
10-Feb-17	Sunny	283.0	770.7	3.6488	3.7518	0.1030	11030.7	11054.7	24.0	1.24	1.24	1.24	1782.8	57.8
16-Feb-17	Sunny	291.4	768.3	3.5732	3.6850	0.1118	11054.7	11078.7	24.0	1.22	1.22	1.22	1755.1	63.7
22-Feb-17	Ccloudy	292.3	765.0	3.6172	3.7028	0.0856	11078.7	11102.7	24.0	1.21	1.21	1.21	1748.9	48.9
28-Feb-17	Cloudy	289.7	770.2	3.6051	3.7186	0.1135	11102.7	11126.7	24.0	1.22	1.22	1.22	1762.2	64.4
													Min	48.9
													Max	93.0
													Average	64.2

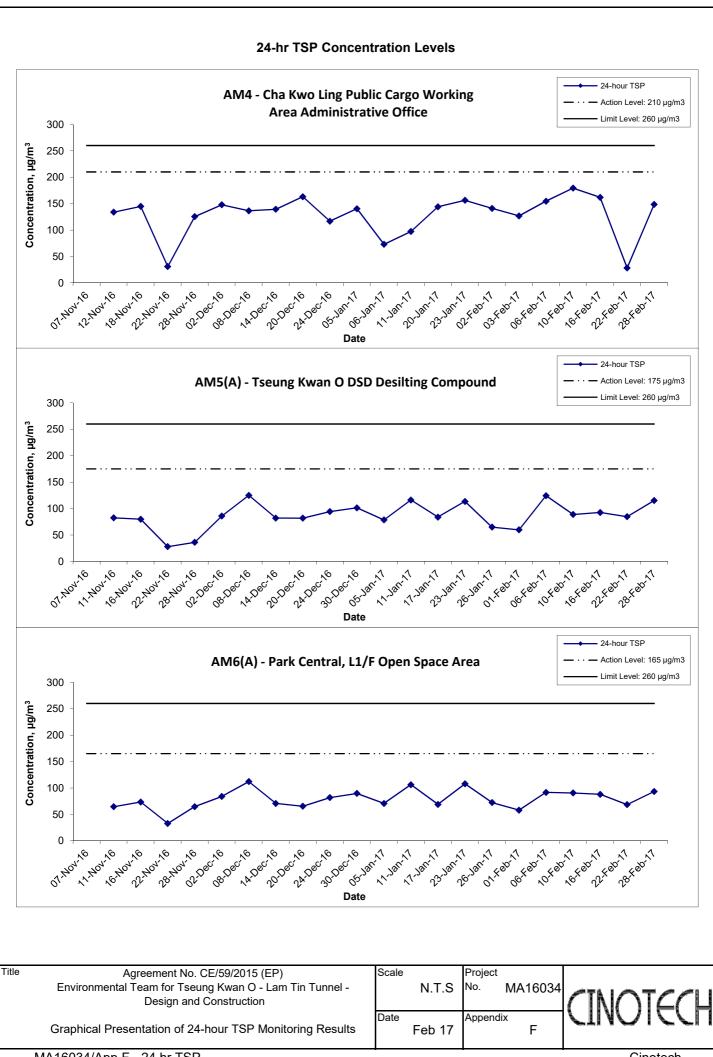
MA16034/App F - 24 hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
2-Feb-17	Cloudy	291.2	769.6	3.6386	3.8849	0.2463	7945.2	7969.2	24.0	1.21	1.21	1.21	1747.8	140.9
3-Feb-17	Cloduy	290.0	769.1	3.6129	3.8348	0.2219	7969.2	7993.2	24.0	1.22	1.22	1.22	1751.0	126.7
6-Feb-17	Windy	292.3	765.1	3.6365	3.9054	0.2689	7993.2	8017.2	24.0	1.21	1.21	1.21	1739.2	154.6
10-Feb-17	Sunny	283.8	770.4	3.5782	3.8960	0.3178	8017.2	8041.2	24.0	1.23	1.23	1.23	1772.2	179.3
16-Feb-17	Sunny	290.7	768.9	3.5738	3.8568	0.2830	8041.2	8065.2	24.0	1.21	1.21	1.21	1748.6	161.8
22-Feb-17	Ccloudy	291.4	766.2	3.5417	3.5909	0.0492	8065.2	8089.2	24.0	1.21	1.21	1.21	1743.2	28.2
28-Feb-17	Cloudy	288.8	770.3	3.5787	3.8397	0.2610	8089.2	8113.2	24.0	1.22	1.22	1.22	1756.1	148.6
													Min	28.2
													Max	179.3
													Average	134.3


Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m³)
1-Feb-17	Cloudy	290.4	768.7	3.6015	3.7053	0.1038	21711.5	21735.5	24.0	1.21	1.21	1.21	1741.3	59.6
6-Feb-17	Sunny	292.7	764.6	3.6361	3.8510	0.2149	21735.5	21759.5	24.0	1.20	1.20	1.20	1729.2	124.3
10-Feb-17	Sunny	283.5	771.1	3.6329	3.7896	0.1567	21759.5	21783.5	24.0	1.23	1.23	1.23	1766.4	88.7
16-Feb-17	Sunny	290.4	769.3	3.6506	3.8118	0.1612	21783.5	21807.5	24.0	1.21	1.21	1.21	1742.1	92.5
22-Feb-17	Ccloudy	291.8	765.7	3.5881	3.7344	0.1463	21807.5	21831.5	24.0	1.20	1.20	1.20	1733.3	84.4
28-Feb-17	Cloudy	288.5	770.4	3.5775	3.7789	0.2014	21831.5	21855.5	24.0	1.22	1.21	1.21	1749.4	115.1
													Min	59.6
													Max	124.3
													Average	94.1

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
1-Feb-17	Cloudy	291.8	768.3	3.6075	3.7096	0.1021	14771.8	14795.8	24.0	1.22	1.22	1.22	1761.4	58.0
6-Feb-17	Sunny	291.6	764.1	3.5589	3.7194	0.1605	14795.8	14819.8	24.0	1.22	1.22	1.22	1751.6	91.6
10-Feb-17	Sunny	282.9	770.4	3.5679	3.7294	0.1615	14819.8	14843.8	24.0	1.24	1.24	1.24	1784.8	90.5
16-Feb-17	Sunny	291.3	769.6	3.5622	3.7170	0.1548	14843.8	14867.8	24.0	1.22	1.22	1.22	1758.6	88.0
22-Feb-17	Ccloudy	292.7	765.2	3.5826	3.7025	0.1199	14867.8	14891.8	24.0	1.22	1.21	1.22	1749.6	68.5
28-Feb-17	Cloudy	289.5	770.6	3.5816	3.7461	0.1645	14891.8	14915.8	24.0	1.23	1.23	1.23	1765.0	93.2
													Min	58.0
													Max	93.2
													Average	81.6

MA16034/App F - 24 hr TSP Cinotech

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

Location CM1	- Nga Lai Ho	ouse, Yau Lai	Estate Phas	e 1, Yau To	ng		
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
3-Feb-17	13:45	Cloudy	72.4	74.0	69.6		71.4
9-Feb-17	9:15	Sunny	73.8	75.2	72.3	65.5	73.1
15-Feb-17	15:10	Sunny	68.2	69.6	66.5	05.5	64.9
22-Feb-17	15:00	Cloudy	71.2	73.5	68.0		69.8

Location CM2	- Bik Lai Ho	use, Yau Lai I	State Phase	1, Yau Ton	g		
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
2-Feb-17	9:15	Cloudy	72.4	75.6	67.3		71.8
7-Feb-17	13:15	Cloudy	70.5	73.7	66.2	63.6	69.5
17-Feb-17	13:05	Sunny	70.3	73.5	67.2	03.0	69.3
23-Feb-17	13:10	Cloudy	73.9	75.5	71.3		73.5

Location CM3	- Block S, Y	au Lai Estate	Phase 5, Ya	u Tong			
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
3-Feb-17	13:00	Cloudy	70.9	73.2	67.0		69.4
9-Feb-17	10:20	Sunny	74.3	76.0	73.5	65.6	73.7
15-Feb-17	13:00	Sunny	71.3	73.2	68.8	05.0	69.9
22-Feb-17	14:15	Cloudy	70.5	73.9	64.7		68.8

Location CM4	- Tin Hau Te	mple, Cha Kv	vo Ling				
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
2-Feb-17	13:10	Cloudy	55.8	59.3	47.3		55.8 Measured ≦ Baseline
7-Feb-17	9:10	Cloudy	56.3	59.5	47.7	62.0	56.3 Measured ≤ Baseline
17-Feb-17	11:00	Sunny	68.2	70.7	61.0	02.0	67.0
23-Feb-17	9:00	Cloudy	61.6	62.5	51.4		61.6 Measured ≦ Baseline

Location CM5	- CCC Kei F	aat Primary S	chool, Yau 1	Гопд			
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
3-Feb-17	14:30	Cloudy	67.8	70.7	62.4		67.8 Measured ≦ Baseline
9-Feb-17	11:10	Sunny	69.3	72.5	63.8	68.2	62.8
15-Feb-17	14:05	Sunny	68.8	71.8	62.5	00.2	59.9
22-Feb-17	13:30	Cloudy	68.0	69.8	64.6		64.4 Measured ≦ Baseline

MA16034/App G - Noise Cinotech

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

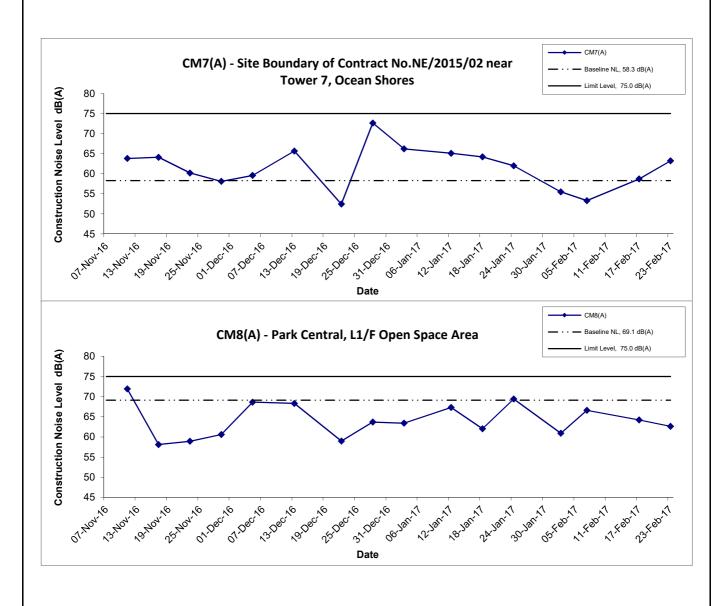
10100 1000 1110	cation CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores											
Location CM6(A) - Site Bo	undary of Cor	ntract No. NI	E/2015/02 ne	ar Tower 1,	Ocean Shores						
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L _{eq}								
2-Feb-17	15:30	Cloudy	58.6	59.9	54.2		58.6 Measured ≦ Baseline					
7-Feb-17	14:45	Sunny	68.5	72.1	64.8	61.9	67.4					
17-Feb-17	9:00	Sunny	y 58.9 60.8 54.6 01.9 58.9 Measured ≦ Baselir									
23-Feb-17	11:00	Cloudy	68.0 70.3 63.9 66.8									

Location CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores											
Date	Time	Weather	Unit: dB (A) (30-min)								
			Measured Noise Level			Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
2-Feb-17	13:15	Cloudy	55.5	56.1	52.6	58.3	55.5 Measured ≦ Baseline				
7-Feb-17	15:30	Sunny	59.5	62.1	55.5		53.3				
17-Feb-17	9:35	Sunny	61.5	64.6	57.3		58.7				
23-Feb-17	9:30	Cloudy	64.4	66.6	59.9		63.2				

Location CM8(A) - Park Central, L1/F Open Space Area											
Date	Time	Weather	Unit: dB (A) (30-min)								
			Measured Noise Level			Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
2-Feb-17	9:15	Cloudy	60.9	63.6	56.5	69.1	60.9 Measured ≤ Baseline				
7-Feb-17	14:00	Sunny	66.6	68.7	63.7		66.6 Measured ≦ Baseline				
17-Feb-17	13:00	Sunny	64.2	66.7	60.5		64.2 Measured ≤ Baseline				
23-Feb-17	13:10	Cloudy	62.6	65.0	59.1		62.6 Measured ≦ Baseline				

MA16034/App G - Noise Cinotech

Noise Levels CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong Construction Noise Level dB(A) 80 75 70 65 55 50 45 40 140⁴/₆ 01.Dec. 16 11. Dec. 16 07.Jan.77 25-Jan-1 Date CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong Baseline NL. 63.6 dB(A) Construction Noise Level dB(A) 80 75 70 65 55 50 45 40 oribection 01.Dec. 16 " Dec. 10 06-Jan-1 7.Jan. 1 18-381-17 CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 's Dec. / 07.381.77 ostepril 27,404,6 07:Dec. 16 VI Dec ve 27:Decr 16 21.78cr,6 10.F80r.1 25-221-17 Title Agreement No. CE/59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -MA16034 N.T.S **Design and Construction Graphical Presentation of** Date Appendix G Feb 17 Construction Noise Monitoring Results


Noise Levels CM4 CM4 - Tin HauTemple, Cha Kwo Ling Baseline NL, 62.0 dB(A) Limit Level, 75.0 dB(A) Construction Noise Level dB(A) 80 75 70 65 60 50 45 01,404,6 Baseline NL, 68.2 dB(A) CM5 - CCC Kei Faat Primary School, Yau Tong Limit Level, 70.0 dB(A) Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 01 Decr 16 'J'; Uoc. (o 05.10ect /6 Date CM6 (A) CM6(A) - Site Boundary of Contract No.NE/2015/02 near Baseline NL, 61.9 dB(A) **Tower 1, Ocean Shores** Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 13-1401-160 + Date Title Agreement No. CE/59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -No. MA16034 N.T.S **Design and Construction Graphical Presentation of** Date Appendix

Feb 17

G

Construction Noise Monitoring Results

Noise Levels

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale Project

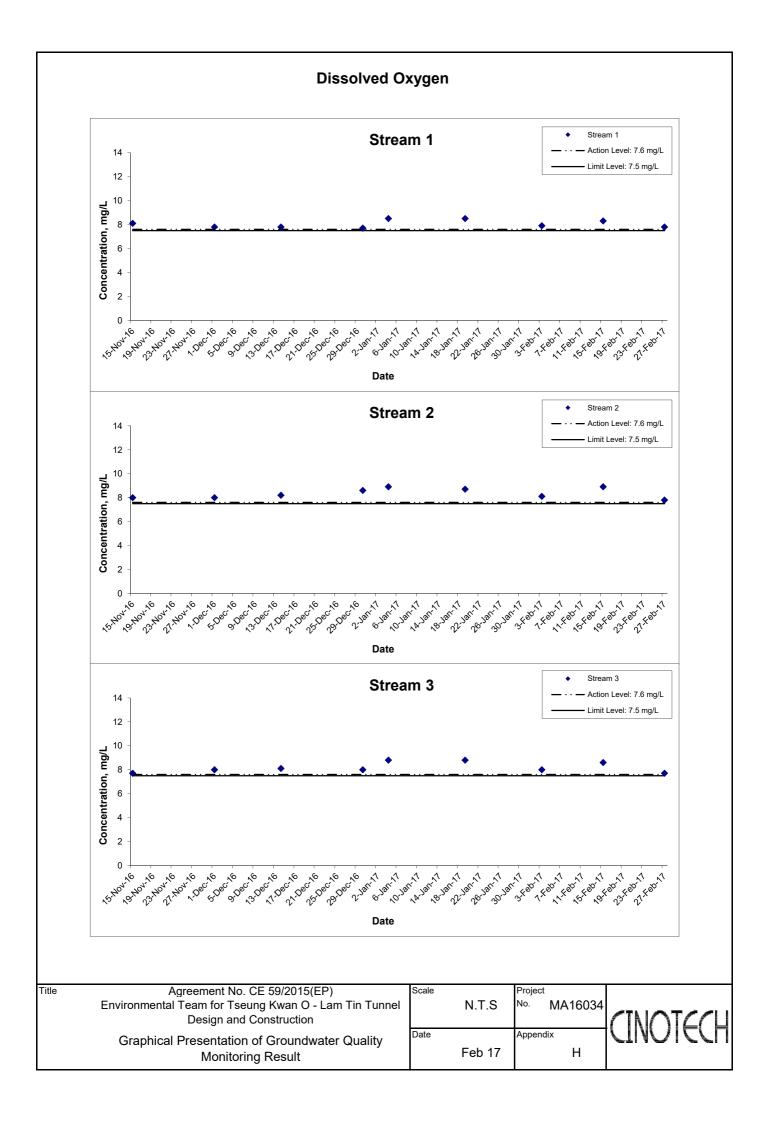
N.T.S No. MA16034

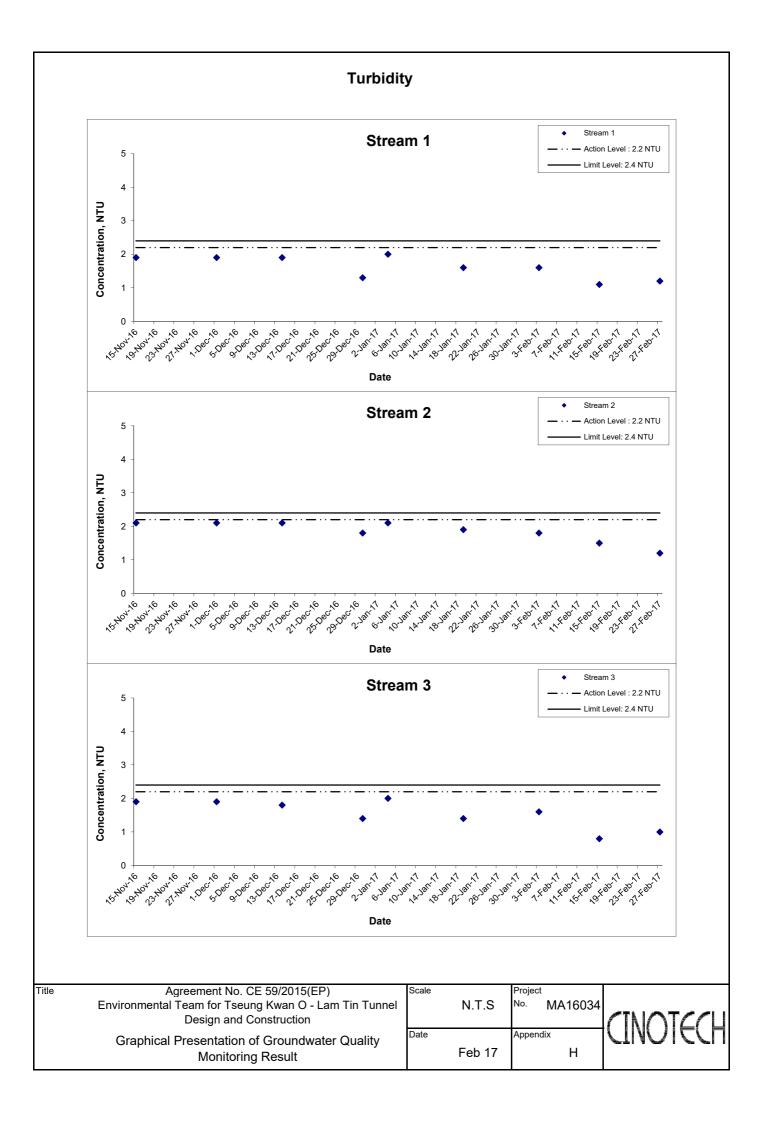
Date
Feb 17 Appendix
Feb 17 G

APPENDIX H
GROUNDWATER QUALITY
MONITORING RESULTS, GRAPHICAL
PRESENTATIONS AND LABORATORY
TESTING REPORTS

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Groundwater Quality Monitoring Results at Stream 1


Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salin	ity ppt	DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Feb-17	Cloudy	15:27	Middle	18.1	18.1	7.2	7.0	0.3	0.3	83.8	83.7	7.9	7.9	1.6	1.6
3-Feb-17	Cloudy	15.27	ivildale	18.0	10.1	7.2	1.2	0.3	0.3	83.6	63.7	7.9	7.9	1.6	1.0
15-Feb-17	Fine	16:02	Middle	18.8	18.8	7.2	7.0	2.3	2.3	90.6	90.5	8.3	8.3	1.1	1.1
13-Feb-17	Fille	10.02	ivildale	18.8	10.0	7.2	1.2	2.3	2.3	90.3	90.5	8.3	0.3	1.0	1.1
27-Feb-17	Sunnv	10:03	Middle	20.0	20.0	7.3	7.2	0.3	0.3	85.2	85.3	7.7	7.8	1.2	1.2
27-Feb-17	Suring	10.03	ivildale	19.9	20.0	7.3	7.3	0.3	0.3	85.3	65.5	7.8	7.0	1.2	1.2


Groundwater Quality Monitoring Results at Stream 2

Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Feb-17	Cloudy	14:56	Middle	18.4	18.4	7.0	7.1	0.1	0.1	85.8	85.8	8.1	8.1	1.8	1.0
3-Feb-17	Cloudy	14.50	Middle	18.4	10.4	7.1	7.1	0.1	0.1	85.7	65.6	8.0	0.1	1.8	1.0
15-Feb-17	Fine	13:45	Middle	17.6	17.6	7.0	7.0	0.1	0.1	93.4	93.1	8.9	8.9	1.5	1.5
13-Feb-17	Fille	13.43	Middle	17.6	17.0	6.9	7.0	0.1	0.1	92.8	93.1	8.9	0.9	1.5	1.5
27-Feb-17	Cuppy	09:22	Middle	19.4	19.4	7.3	7.2	0.1	0.1	84.3	84.3	7.8	7.8	1.1	1.2
21-Feb-17	Sunny	09:22	ivildale	19.4	19.4	7.3	7.3	0.1	0.1	84.3	04.3	7.8	1.0	1.2	1.2

Groundwater Quality Monitoring Results at Stream 3

Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salini	ty ppt	DO Satu	ration (%)	Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Feb-17	Cloudy	14:33	Middle	18.4	18.4	7.1	7.1	0.2	0.2	85.2	85.0	8.0	8.0	1.5	1.6
3-Feb-17	Cloudy	14.33	Middle	18.4	10.4	7.1	7.1	0.2	0.2	84.7	65.0	7.9	0.0	1.6	1.0
15-Feb-17	Fine	13:37	Middle	18.6	18.7	7.2	7.0	0.1	0.1	92.1	91.9	8.6	8.6	0.8	0.8
13-Feb-17	FILLE	13.37	Middle	18.7	10.7	7.2	1.2	0.1	0.1	91.6	91.9	8.6	0.0	0.8	0.6
27-Feb-17	Sunnv	09:12	Middle	19.6	19.6	7.2	7.0	0.1	0.1	84.1	84.1	7.7	7.7	1.0	1.0
21-Feb-17	Suffry	09:12	ivildale	19.6	19.0	7.2	1.2	0.1	0.1	84.0	04.1	7.7	1.7	1.0	1.0

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

 Report No.:
 26467

 Date of Issue:
 2017-02-14

 Date Received:
 2017-02-03

 Date Tested:
 2017-02-03

 Date Completed:
 2017-02-14

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No. :

: 26467

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O –

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/170203

Sampling Date

2017-02-03

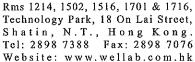
Tests Requested & Methodology:

I Coto .	icquesteu et memorology.		
Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

Results.			
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26467-1	26467-2	26467-3
Total Suspended Solids (mg/L)	5	3	11
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	3	4	3
Nitrogen (Total Kjeldahl + nitrate +	<0.6	1.0	1.2
nitrite) (mg N/L)			
Ammonia (mg NH ₃ -N/L)	< 0.05	0.08	0.06
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

Remarks:


- 1) < = less than
- 2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Date Completed:

Report No.:

Date of Issue:

Date Received:

Date Tested:

2017-02-15 2017-02-27

2017-02-27

2017-02-15

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

26528

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

: 26528

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O –

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/170215

Sampling Date

2017-02-15

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

reputes.			
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26528-1	26528-2	26528-3
Total Suspended Solids (mg/L)	1.5	3.0	1.0
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	5	4	4
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	0.7	1.1	1.0
Ammonia (mg NH ₃ -N/L)	0.05	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	0.08

Remarks:

- 1) < = less than
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

 Report No.:
 26593

 Date of Issue:
 2017-03-07

 Date Received:
 2017-02-27

 Date Tested:
 2017-02-27

Date Completed: 2

2017-02-27 2017-03-07

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

: 26593

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O –

Lam Tin Tunnel – Design and Construction

Custody No. :

MA16034(Groundwater)/170227

Sampling Date

2017-02-27

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	26593-1	26593-2	26593-3
Total Suspended Solids (mg/L)	7.1	4.9	2.4
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	3 .	4	2
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	0.6	1.1	1.2
Ammonia (mg NH ₃ -N/L)	< 0.05	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	0.07	< 0.05

Remarks:

- 1) < = less than
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix I - Action and Limit Levels for Marine Water Quality on 1 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4	4, M1-M5								
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G4	4, M1-M5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in		or 120% of upstream control	or 130% of upstream control							
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide							
(See Note 2 and 4)		tide of the same day	of the same day							
		<u>C2: 7.3 NTU</u>	<u>C2: 7.9 NTU</u>							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Surface	station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		<u>C2: 6.0 mg/L</u>	<u>C2: 6.5 mg/L</u>							
	Stations M1-M5									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the							
(See Note 2 and 4)		the same day	same day							
		C2: 6.0 mg/L	<u>C2: 6.5 mg/L</u>							
	Stations G1-G4	4, M1-M5								
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Bottom	station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>							
	Station M6									
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 01 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.4 23.2	23.3	8.1 8.1	8.1	31.5 31.6	31.6	104.3 101.9	103.1	7.4 7.3	7.4	6.9	3.3 3.4	3.4		3.1 3.2	3.2	l
C1	Cloudy	Moderate	16:03	Middle	10.5	23.4 23.1	23.3	8.1 8.1	8.1	32.6 32.6	32.6	89.5 90.6	90.1	6.3 6.4	6.4	0.5	4.9 5.5	5.2	5.2	2.7 2.8	2.8	3.3
				Bottom	20	23.2 23.1	23.2	8.1 8.1	8.1	33.3 33.2	33.3	87.0 88.9	88.0	6.1 6.3	6.2	6.2	6.8 6.9	6.9		3.9 3.9	3.9	<u> </u>
				Surface	1	23.0 23.0	23.0	8.1 8.1	8.1	31.7 31.7	31.7	98.0 102.7	100.4	7.0 7.3	7.2	6.9	2.8 3.3	3.1		5.1 4.9	5.0	l
C2	Cloudy	Moderate	14:25	Middle	18	23.0 23.0 23.0	23.0	8.1 8.1 8.1	8.1	33.0 33.0 33.1	33.0	89.3 93.4 83.8	91.4	6.3 6.6 5.9	6.5		4.5 4.5 6.0	4.5	4.6	2.8 2.8 5.8	2.8	4.6
				Bottom	35	23.0	23.0	8.1	8.1	33.2	33.2	84.6	84.2	6.0	6.0	6.0	6.2	6.1		5.9	5.9	
				Surface	1	23.0 22.9	23.0	8.1 8.1	8.1	33.1 33.1	33.1	95.1 92.2	93.7	6.8 6.6	6.7	6.6	4.5 3.9	4.2		3.1 3.1	3.1	1
G1	Cloudy	Moderate	15:07	Middle	4	22.9 22.6	22.8	8.1 8.1	8.1	33.4 33.4	33.4	87.9 95.6	91.8	6.2 6.8	6.5		3.8 3.7	3.8	3.8	3.5 3.5	3.5	3.3
				Bottom	7	22.9 22.6	22.8	8.1 8.1	8.1	33.6 33.6	33.6	88.0 88.9	88.5	6.2 6.3	6.3	6.3	3.4 3.1	3.3		3.3	3.3	
				Surface	1	23.0	23.0	8.1 8.1	8.1	33.1 33.1	33.1	98.8 103.5	101.2	7.0 7.3	7.2	6.9	3.7 3.8	3.8		4.0	4.0	1
G2	Cloudy	Moderate	14:49	Middle	5	23.0 22.9 22.9	23.0	8.1 8.1 8.2	8.1	33.4 33.4 33.2	33.4	89.4 93.3 83.8	91.4	6.3 6.6 5.9	6.5		3.5 3.7 2.8	3.6	3.4	3.1 3.1 4.1	3.1	3.7
				Bottom	9	22.9	22.9	8.2	8.2	34.0	33.6	84.8	84.3	6.0	6.0	6.0	2.9	2.9		4.1	4.1	<u></u>
				Surface	1	23.0 23.0 22.9	23.0	8.1 8.1	8.1	33.5 33.5 33.5	33.5	96.2 96.3	96.3	6.8 6.8	6.8	6.8	3.1 2.8	3.0		2.4	2.5	1
G3	Cloudy	Moderate	15:17	Middle	4	22.9 22.7 23.0	22.8	8.1 8.1 8.1	8.1	33.5 33.5	33.5	96.3 95.9 97.5	96.1	6.8 6.8 6.9	6.8		3.3 3.1 3.3	3.2	3.1	3.1 3.2 2.9	3.2	2.9
				Bottom	7	22.7 23.4	22.9	8.1 8.0	8.1	33.5 31.5	33.5	98.6 83.2	98.1	7.0 5.9	7.0	7.0	2.9 3.5	3.1		2.9 2.9 3.1	2.9	<u></u>
				Surface	1	23.2	23.3	8.0 8.1	8.0	31.5 32.5	31.5	78.9 80.1	81.1	5.6 5.7	5.8	5.8	3.0	3.3		3.1 7.0	3.1	l
G4	Cloudy	Moderate	15:36	Middle	4	23.2	23.3	8.1 8.1	8.1	32.5 33.2	32.5	80.9 81.2	80.5	5.7 5.7	5.7	<u> </u>	4.3 4.2	4.1	3.9	6.9 2.6	7.0	4.3
				Bottom	7	23.2	23.2	8.1 8.1	8.1	33.0 33.5	33.1	76.4 93.1	78.8	5.4 6.6	5.6	5.6	4.3	4.3		2.7	2.7	
				Surface	1	23.0 23.0	23.0	8.0 8.1	8.1	33.5 33.7	33.5	93.5 92.2	93.3	6.6 6.5	6.6	6.6	3.1 3.5	3.1		3.2 3.0	3.3	1
M1	Cloudy	Moderate	14:58	Middle	3	22.8 22.8	22.9	8.1 8.1	8.1	33.7 33.1	33.7	91.7 90.8	92.0	6.5 6.5	6.5		4.0 3.2	3.8	3.4	3.0 4.9	3.0	3.8
				Bottom	5	22.9	22.9	8.1 8.1	8.1	33.0	33.1	91.2 91.5	91.0	6.5	6.5	6.5	3.3	3.3		5.1 5.1	5.0	
				Surface	1	22.9 23.0	23.0	8.1 8.1	8.1	31.7 31.7 33.0	31.7	91.9 91.2	91.7	6.5 6.6 6.5	6.6	6.6	3.3 4.5	3.1		5.0	5.1	1
M2	Cloudy	Moderate	14:42	Middle	5.5	22.9 22.9	23.0	8.1 8.1	8.1	33.0 33.1	33.0	91.5 83.7	91.4	6.5 5.9	6.5		4.5 6.0	4.5	4.6	2.4	2.4	3.6
				Bottom	10	22.9	22.9	8.1	8.1	33.2	33.2	83.2	83.5	5.9	5.9	5.9	6.2	6.1		3.3	3.3	
				Surface	1	23.3 23.1 23.3	23.2	8.1 8.1 8.1	8.1	31.3 31.3 31.9	31.3	89.1 91.2 80.0	90.2	6.4 6.5 5.7	6.5	6.2	2.7 2.8 3.1	2.8		2.7 2.8 2.7	2.8	1
М3	Cloudy	Moderate	15:29	Middle	4.5	23.1	23.2	8.1 8.1	8.1	31.9 31.9 32.3	31.9	83.9 80.8	82.0	6.0 5.7	5.9		3.1 3.3 3.5	3.2	3.2	2.7 2.8 3.1	2.8	2.9
				Bottom	8	23.1 23.1 23.0	23.1	8.1	8.1	32.3 32.3 33.5	32.3	79.7 100.9	80.3	5.7	5.7	5.7	3.5 3.4 3.0	3.5		3.1	3.1	
				Surface	1	23.0 23.0 23.0	23.0	8.1 8.1 8.1	8.1	33.5 33.6	33.5	99.6 93.6	100.3	7.1 7.1 6.6	7.1	6.9	3.1 3.5	3.1		3.3 3.2 2.6	3.3	1
M4	Cloudy	Moderate	14:34	Middle	4	22.3 23.0	22.7	8.1 8.1	8.1	33.6 33.5	33.6	92.7 91.4	93.2	6.6	6.6		3.4 4.5	3.5	3.7	2.6 2.6 3.4	2.6	3.1
				Bottom	7	22.3 23.3	22.7	8.1 8.1	8.1	33.5 31.5	33.5	90.1 86.3	90.8	6.5 6.1	6.5	6.5	4.5 4.5 3.5	4.5		3.4 2.8	3.4	
				Surface	1	23.3 23.1 23.3	23.2	8.1 8.1	8.1	31.5 31.5 32.5	31.5	91.8 87.7	89.1	6.6 6.2	6.4	6.4	3.5 3.1 5.7	3.3		2.8 2.7 3.3	2.8	1
M5	Cloudy	Moderate	15:56	Middle	5.5	23.2 23.2	23.3	8.1 8.1	8.1	32.6 33.2	32.6	92.9 89.9	90.3	6.6 6.4	6.4		5.0	5.4	5.0	3.3	3.3	3.0
				Bottom	10	23.2	23.2	8.1	8.1	33.3	33.3	85.0	87.5	6.0	6.2	6.2	6.5	6.4		2.9	3.0	
				Surface	-	23.4	-	8.1	-	31.3	-	97.4	-	6.9	-	6.9	4.1	-		3.2	-	1
M6	Cloudy	Moderate	15:43	Middle	2	23.4	23.3	8.1	8.1	31.4	31.4	96.7	97.1	6.9	6.9		4.1	4.1	4.1	3.2	3.2	3.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	=		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 1 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G	4, M1-M5								
DO in mall	Depth Average	4.9 mg/L	4.6 mg/L							
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G	4, M1-M5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control							
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide							
(See Note 2 and 4)		tide of the same day	of the same day							
(<u>C1: 6.96 NTU</u>	<u>C1: 7.5 NTU</u>							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Surface	station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>							
	Stations M1-M5									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the							
(See Note 2 and 4)		the same day	same day							
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>							
	Stations G1-G4	<u>1, M1-M5</u>								
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Bottom	station's SS at the same tide of	station's SS at the same tide of the							
		the same day	same day							
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>							
	Station M6									
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 01 February 2017

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NT			nded Solids	
Location	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.5 23.1	23.3	8.2 8.2	8.2	32.1 32.1	32.1	101.2 103.2	102.2	7.2 7.3	7.3	6.9	3.5 3.7	3.6		4.4 4.4	4.4	
C1	Cloudy	Moderate	10:34	Middle	10	23.5 22.9	23.2	8.2 8.2	8.2	32.3 32.3	32.3	90.1 89.9	90.0	6.4 6.4	6.4		3.6 3.7	3.7	4.4	2.4 2.3	2.4	4.2
				Bottom	19	23.1 23.0	23.1	8.3 8.2	8.3	32.4 32.4	32.4	88.9 88.7	88.8	6.3 6.3	6.3	6.3	5.8 5.8	5.8		5.8 5.9	5.9	
				Surface	1	23.3 22.7	23.0	8.1 8.1	8.1	32.4 32.4	32.4	97.6 97.8	97.7	6.9 7.0	7.0	6.7	4.6 4.3	4.5		5.1 5.2	5.2	
C2	Cloudy	Moderate	08:34	Middle	18	23.2 22.5	22.9	8.1 8.1	8.1	32.5 32.5	32.5	90.8 89.6	90.2	6.4 6.4	6.4	0.7	4.8 4.6	4.7	4.7	4.0 4.0	4.0	4.1
				Bottom	35	22.7 22.5	22.6	8.2 8.2	8.2	32.5 32.5	32.5	89.6 89.3	89.5	6.4 6.4	6.4	6.4	4.9 5.0	5.0		3.1 3.2	3.2	
				Surface	1	23.1 22.9	23.0	8.2 8.2	8.2	32.2 32.2	32.2	97.1 97.6	97.4	6.9 7.0	7.0	6.7	3.6 3.4	3.5		2.8 2.8	2.8	l
G1	Cloudy	Moderate	09:17	Middle	4	23.1 22.9	23.0	8.2 8.2	8.2	32.3 32.3	32.3	88.1 89.2	88.7	6.3 6.4	6.4		4.1 4.6	4.4	4.8	2.5 2.6	2.6	2.7
				Bottom	7	22.9 22.9	22.9	8.2 8.2	8.2	32.5 32.4	32.5	88.3 89.5	88.9	6.3 6.4	6.4	6.4	6.3 6.4	6.4		2.8 2.8	2.8	
				Surface	1	23.0 22.9	23.0	8.2 8.2	8.2	32.7 32.7	32.7	95.8 96.4	96.1	6.8 6.9	6.9	6.7	3.3 2.9	3.1		2.9 2.9	2.9	
G2	Cloudy	Moderate	09:01	Middle	5	23.0 22.9	23.0	8.2 8.2	8.2	32.8 32.8	32.8	89.8 88.7	89.3	6.4 6.3	6.4	0.7	3.2 3.3	3.3	3.5	2.3 2.3	2.3	2.8
				Bottom	9	22.9 22.9	22.9	8.2 8.2	8.2	33.2 33.2	33.2	86.0 84.8	85.4	6.1 6.0	6.1	6.1	3.9 4.0	4.0		3.1 3.0	3.1	
				Surface	1	22.6 22.6	22.6	8.2 8.2	8.2	32.2 32.1	32.2	97.0 97.5	97.3	7.0 7.0	7.0	6.7	3.3 3.1	3.2		2.7 2.7	2.7	
G3	Cloudy	Moderate	09:31	Middle	4	22.6 22.6	22.6	8.2 8.2	8.2	32.5 32.5	32.5	88.6 88.5	88.6	6.3 6.3	6.3	0.7	3.5 3.8	3.7	4.0	2.5 2.5	2.5	2.7
				Bottom	7	22.6 22.6	22.6	8.2 8.2	8.2	32.8 32.8	32.8	87.0 86.5	86.8	6.2 6.2	6.2	6.2	4.9 5.0	5.0		3.0 3.0	3.0	
				Surface	1	23.6 23.0	23.3	8.2 8.2	8.2	32.2 32.2	32.2	97.6 96.9	97.3	6.9 6.9	6.9	6.6	3.6 3.8	3.7		3.1 3.1	3.1	
G4	Cloudy	Moderate	10:03	Middle	4	23.6 22.9	23.3	8.2 8.2	8.2	32.5 32.5	32.5	89.6 88.9	89.3	6.3 6.3	6.3	0.0	4.6 4.4	4.5	4.7	2.9 2.8	2.9	3.6
				Bottom	7	23.0 23.0	23.0	8.3 8.3	8.3	33.0 33.0	33.0	92.7 92.7	92.7	6.6 6.6	6.6	6.6	5.9 6.1	6.0		4.8 4.8	4.8	
				Surface	1	22.7 22.6	22.7	8.2 8.2	8.2	32.5 32.5	32.5	95.6 95.8	95.7	6.8 6.9	6.9	6.7	3.2 3.4	3.3		3.8 3.8	3.8	
M1	Cloudy	Moderate	09:09	Middle	3	22.6 22.5	22.6	8.2 8.2	8.2	32.5 32.5	32.5	88.8 88.4	88.6	6.4 6.3	6.4	0.7	3.4 3.6	3.5	3.8	3.0 3.0	3.0	3.3
				Bottom	5	22.6 22.1	22.4	8.2 8.2	8.2	32.4 32.4	32.4	88.0 87.6	87.8	6.3 6.3	6.3	6.3	4.4 4.8	4.6		3.2 3.2	3.2	
				Surface	1	23.3 22.7	23.0	8.2 8.2	8.2	32.7 32.6	32.7	92.2 91.6	91.9	6.5 6.6	6.6	6.4	3.5 3.4	3.5		3.3 3.4	3.4	
M2	Cloudy	Moderate	08:54	Middle	5.5	23.2 22.5	22.9	8.2 8.2	8.2	32.7 32.8	32.8	85.8 84.5	85.2	6.1 6.1	6.1	0.1	3.5 3.5	3.5	3.5	3.7 3.7	3.7	3.6
				Bottom	10	22.7 22.5	22.6	8.2 8.2	8.2	32.9 32.9	32.9	83.3 83.1	83.2	6.0 6.0	6.0	6.0	3.5 3.5	3.5		3.5 3.6	3.6	
				Surface	1	23.5 23.2	23.4	8.2 8.2	8.2	32.7 32.7	32.7	109.4 105.0	107.2	7.7 7.4	7.6	7.1	4.1 4.1	4.1		3.6 3.5	3.6	
М3	Cloudy	Moderate	09:51	Middle	4.5	23.6 23.0	23.3	8.2 8.2	8.2	32.9 33.0	33.0	91.5 91.0	91.3	6.4 6.5	6.5	7.1	4.3 4.2	4.3	4.3	6.7 6.6	6.7	4.6
				Bottom	8	23.2 23.0	23.1	8.2 8.2	8.2	33.3 33.3	33.3	84.0 83.3	83.7	5.9 5.9	5.9	5.9	4.5 4.7	4.6		3.5 3.5	3.5	<u></u>
				Surface	1	22.7 22.6	22.7	8.2 8.2	8.2	32.4 32.4	32.4	96.8 96.7	96.8	6.9 6.9	6.9	6.7	2.8 2.7	2.8		4.4 4.5	4.5	
M4	Cloudy	Moderate	08:47	Middle	4	22.7 22.0	22.4	8.2 8.2	8.2	32.4 32.4	32.4	89.5 88.1	88.8	6.4 6.4	6.4	J.,	3.0 3.3	3.2	3.8	2.7 2.8	2.8	3.5
				Bottom	7	22.6 22.0	22.3	8.2 8.2	8.2	32.6 32.6	32.6	86.2 84.0	85.1	6.2 6.1	6.2	6.2	5.5 5.3	5.4		3.1 3.1	3.1	
				Surface	1	23.4 23.2	23.3	8.2 8.2	8.2	32.4 32.4	32.4	97.1 96.7	96.9	6.9 6.9	6.9	6.6	4.4 4.4	4.4		3.9 3.8	3.9	
M5	Cloudy	Moderate	10:27	Middle	5.5	23.4 22.9	23.2	8.2 8.3	8.3	32.5 32.5	32.5	88.7 88.6	88.7	6.3 6.3	6.3	0.0	3.6 3.5	3.6	4.6	3.1 3.0	3.1	3.4
				Bottom	10	23.1 22.9	23.0	8.3 8.3	8.3	32.6 32.6	32.6	85.6 85.0	85.3	6.1 6.1	6.1	6.1	5.5 5.8	5.7		3.2 3.1	3.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
M6	Cloudy	Moderate	10:13	Middle	2.1	23.6 23.1	23.4	8.2 8.2	8.2	32.1 32.1	32.1	100.0 100.8	100.4	7.1 7.2	7.2		4.1 4.3	4.2	4.2	2.5 2.4	2.5	2.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 3 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 4.3 NTU</u>	<u>C2: 4.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 5.6 mg/L	<u>C2: 6.1 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.4 mg/L</u>	<u>C2: 4.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 February 2017

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
20041011	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.9 20.0	20.0	7.0 7.0	7.0	30.8 30.8	30.8	90.8 91.2	91.0	6.9 6.9	6.9	6.9	4.4 4.5	4.5		4.3 4.1	4.2	l
C1	Cloudy	Moderate	17:12	Middle	10	20.0 19.7	19.9	6.9 6.8	6.9	31.0 31.1	31.1	89.9 89.2	89.6	6.8 6.8	6.8	0.0	3.2 3.0	3.1	3.8	4.2 4.2	4.2	3.8
				Bottom	19	20.0 20.1	20.1	6.8 6.9	6.9	31.2 31.2	31.2	90.3 89.9	90.1	6.8 6.8	6.8	6.8	3.9 3.5	3.7		3.0 3.0	3.0	
				Surface	1	19.7 19.7	19.7	6.9 7.0	7.0	30.9 30.9	30.9	87.3 87.0	87.2	6.7 6.6	6.7	6.7	2.6 2.8	2.7		4.8 4.6	4.7	l
C2	Cloudy	Moderate	16:00	Middle	18	19.9 20.1	20.0	6.6 6.6	6.6	31.0 31.0	31.0	87.0 87.6	87.3	6.6 6.6	6.6		3.0 2.8	2.9	3.1	2.4 2.4	2.4	3.6
				Bottom	35	20.0 19.9	20.0	6.8 6.8	6.8	31.0 31.1	31.1	88.1 87.5	87.8	6.7 6.6	6.7	6.7	3.5 3.6	3.6		3.6 3.7	3.7	
				Surface	1	19.7 20.0	19.9	6.9 7.0	7.0	31.2 31.1	31.2	89.1 89.0	89.1	6.8 6.7	6.8	6.8	3.3 3.1	3.2		2.9 2.8	2.9	l
G1	Cloudy	Moderate	16:34	Middle	4	20.1 19.8	20.0	7.0 7.0	7.0	31.1 31.1	31.1	89.4 88.9	89.2	6.8 6.8	6.8		3.8 3.4	3.6	3.5	3.2 3.2	3.2	3.0
				Bottom	7	20.0 19.9	20.0	7.0 7.0	7.0	31.2 31.2	31.2	89.4 88.7	89.1	6.8 6.7	6.8	6.8	3.6 3.6	3.6		2.8	2.8	
				Surface	1	19.4 19.7	19.6	7.0 7.0	7.0	31.0 31.0	31.0	90.8 90.6	90.7	7.0 6.9	7.0	7.0	2.8	2.6		2.3	2.4	
G2	Cloudy	Moderate	16:22	Middle	5	20.0 19.8	19.9	6.8 6.8	6.8	30.9 30.9	30.9	90.1 90.2	90.2	6.8 6.9	6.9		3.4 3.8	3.6	3.4	2.7	2.8	2.6
				Bottom	9	19.8 19.8	19.8	6.7 6.8	6.8	31.0 31.1	31.1	89.6 89.2	89.4	6.8 6.8	6.8	6.8	4.1 4.1	4.1		2.6 2.5	2.6	
				Surface	1	20.0	20.0	7.0 7.0	7.0	30.9 30.9	30.9	89.5 89.5	89.5	6.8 6.8	6.8	6.8	2.4	2.7		2.7 2.6	2.7	l
G3	Cloudy	Moderate	16:40	Middle	4	19.9 19.9	19.9	7.0 7.0	7.0	31.0 31.1	31.1	90.1 89.9	90.0	6.8 6.8	6.8		3.5 3.2	3.4	3.3	4.1 4.0	4.1	3.2
				Bottom	7	19.7 19.9	19.8	7.0 7.0	7.0	31.2 31.2	31.2	89.5 89.1	89.3	6.8 6.8	6.8	6.8	3.8	3.8		2.7 2.7	2.7	
				Surface	1	19.8 19.9	19.9	7.1 7.1	7.1	30.6 30.8	30.7	89.6 89.8	89.7	6.8 6.8	6.8	6.8	3.4	3.2		3.6 3.7	3.7	l
G4	Cloudy	Moderate	16:52	Middle	4	19.9 19.8	19.9	7.1 7.0	7.1	31.2 31.2	31.2	88.0 88.2	88.1	6.7 6.7	6.7		3.2 3.3	3.3	3.2	5.9 5.8	5.9	4.5
				Bottom	7	20.1 19.9	20.0	7.0 7.1	7.1	31.2 31.3	31.3	88.1 88.4	88.3	6.7 6.7	6.7	6.7	3.1 3.2	3.2		4.0 4.0	4.0	
				Surface	1	19.8 19.6	19.7	6.9 6.9	6.9	31.3 31.1	31.2	90.6 90.3	90.5	6.9 6.9	6.9	6.9	2.9 3.2	3.1		2.9 2.8	2.9	l
M1	Cloudy	Moderate	16:28	Middle	3	19.7 19.7	19.7	6.9 6.9	6.9	31.1 31.0	31.1	89.8 89.6	89.7	6.8 6.8	6.8		3.0 3.5	3.3	3.5	2.4	2.4	2.5
				Bottom	5	19.8 20.0	19.9	6.9 6.9	6.9	31.1 31.2	31.2	89.8 88.9	89.4	6.8 6.7	6.8	6.8	4.0 4.1	4.1		2.1 2.1	2.1	
				Surface	1	20.0 19.6	19.8	7.0 6.9	7.0	30.7 30.7	30.7	88.8 88.0	88.4	6.7 6.7	6.7	6.7	3.0 2.9	3.0		2.5 2.5	2.5	
M2	Cloudy	Moderate	16:16	Middle	5	19.8 19.9	19.9	6.9 6.9	6.9	30.8 30.8	30.8	88.4 88.3	88.4	6.7 6.7	6.7		3.5 3.6	3.6	3.3	1.8 1.8	1.8	1.7
				Bottom	9	20.1 19.9	20.0	6.9 6.8	6.9	30.9 30.9	30.9	89.8 89.2	89.5	6.8 6.8	6.8	6.8	3.2	3.3		0.9	0.9	
				Surface	1	19.9 19.8	19.9	7.0 7.0	7.0	31.2 31.1	31.2	89.6 89.8	89.7	6.8 6.8	6.8	6.8	2.9 3.0	3.0		2.3	2.3	
M3	Cloudy	Moderate	16:46	Middle	4	19.7 20.0	19.9	7.0 7.0	7.0	31.4 31.4	31.4	88.2 89.0	88.6	6.7 6.7	6.7		3.1 2.8	3.0	2.9	3.0	3.0	3.0
				Bottom	7	19.8 20.1	20.0	6.9 7.0	7.0	31.6 31.6	31.6	86.3 85.0	85.7	6.5 6.4	6.5	6.5	2.5 2.7	2.6		3.7 3.7	3.7	
				Surface	1	19.7 19.7	19.7	6.7 6.8	6.8	31.0 30.9	31.0	88.9 88.2	88.6	6.8 6.7	6.8	6.8	2.8	2.6	1	3.4 3.4	3.4	
M4	Cloudy	Moderate	16:09	Middle	4	19.9 20.1	20.0	6.8	6.8	30.9 30.9	30.9	88.3 88.3	88.3	6.7 6.7	6.7		3.0 3.2	3.1	3.1	3.3	3.3	3.1
				Bottom	7	20.1 20.2	20.2	6.8 6.8	6.8	30.9 31.0	31.0	88.1 87.6	87.9	6.7 6.6	6.7	6.7	3.3	3.6		2.5 2.6	2.6	
				Surface	1	19.5 19.6	19.6	7.2 7.1 7.0	7.2	30.9 30.9 30.9	30.9	91.0 90.4 90.2	90.7	7.0 6.9	7.0	7.0	2.8 3.1 3.5	3.0	1	2.4	2.4	
M5	Cloudy	Moderate	17:04	Middle	5.5	19.8 19.7 19.7	19.8	7.0 7.1 7.0	7.1	30.9 30.9 31.0	30.9	90.2 90.0 88.6	90.1	6.9 6.9 6.8	6.9		3.5 3.4 4.1	3.5	3.5	3.1 3.1 2.6	3.1	2.7
				Bottom	10	19.7	19.8	7.0	7.0	31.0	31.0	89.5	89.1	6.8	6.8	6.8	4.1	4.1		2.6	2.6	
				Surface	-	19.8	-	7.0	-	31.1	-	86.1	-	6.5	-	6.5	3.5	-		6.8	-	
M6	Cloudy	Moderate	16:58	Middle	2.1	19.6	19.7	7.0	7.0	31.2	31.2	85.8	86.0	6.5	6.5		3.5	3.5	3.5	6.9	6.9	6.9
				Bottom	-	-	=	-	-	-	-	-	-	-	-	=	-	=		-	-	l

Appendix I - Action and Limit Levels for Marine Water Quality on 3 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Station M6		I
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
	Condition	Condition**	Time		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.7 19.4	19.6	6.9 6.9	6.9	30.9 30.9	30.9	95.5 95.3	95.4	7.3 7.3	7.3	7.3	4.2 4.4	4.3		4.7 4.5	4.6	
C1	Cloudy	Moderate	12:25	Middle	10	19.6 19.9	19.8	6.7 6.7	6.7	30.9 30.9	30.9	93.6 93.5	93.6	7.2 7.1	7.2		5.0 5.2	5.1	4.7	3.0 3.0	3.0	4.5
				Bottom	19	19.9 19.6	19.8	6.6 6.6	6.6	30.9 31.0	31.0	92.9 91.9	92.4	7.1 7.0	7.1	7.1	5.0 4.1	4.6		5.9 5.8	5.9	
				Surface	1	20.2 19.9	20.1	6.7 6.7	6.7	30.3 30.3	30.3	87.2 87.0	87.1	6.6 6.6	6.6	6.6	2.2 2.4	2.3		3.3 3.3	3.3	
C2	Cloudy	Moderate	11:08	Middle	18	19.7 20.1	19.9	6.5 6.6	6.6	30.6 30.5	30.6	87.0 87.1	87.1	6.6 6.6	6.6	0.0	2.5 2.5	2.5	2.6	2.8 2.9	2.9	3.3
				Bottom	35	20.0 19.6	19.8	6.5 6.6	6.6	30.7 30.6	30.7	87.1 86.3	86.7	6.6 6.6	6.6	6.6	2.8 3.1	3.0		3.7 3.5	3.6	
				Surface	1	20.4 20.1	20.3	7.1 7.0	7.1	30.6 30.7	30.7	91.3 91.2	91.3	6.9 6.9	6.9	7.0	2.4 2.5	2.5		2.6 2.6	2.6	
G1	Cloudy	Moderate	11:43	Middle	4	19.7 20.1	19.9	6.9 7.0	7.0	30.8 30.8	30.8	91.2 92.1	91.7	7.0 7.0	7.0	7.0	3.3 3.4	3.4	3.3	2.8 2.9	2.9	2.6
				Bottom	7	19.7 19.7	19.7	6.8 6.9	6.9	31.0 31.1	31.1	91.5 91.3	91.4	7.0 7.0	7.0	7.0	4.1 3.8	4.0		2.2 2.2	2.2	
				Surface	1	19.7 19.8	19.8	7.0 7.1	7.1	31.2 31.1	31.2	90.7 91.1	90.9	6.9 6.9	6.9	6.9	1.9 2.2	2.1		3.5 3.5	3.5	
G2	Cloudy	Moderate	11:29	Middle	5	19.7 19.9	19.8	7.0 6.9	7.0	31.1 31.1	31.1	90.4 90.5	90.5	6.9 6.9	6.9	0.5	2.6 2.8	2.7	2.8	2.1 2.1	2.1	2.9
				Bottom	9	19.7 19.7	19.7	6.8 6.9	6.9	31.4 31.4	31.4	89.5 90.5	90.0	6.8 6.9	6.9	6.9	3.3 3.9	3.6		3.0 2.9	3.0	
				Surface	1	19.4 19.8	19.6	7.1 7.1	7.1	30.9 30.8	30.9	90.8 90.9	90.9	7.0 6.9	7.0	7.0	3.0 3.6	3.3		4.3 4.1	4.2	
G3	Cloudy	Moderate	11:50	Middle	4	19.8 19.6	19.7	7.0 7.0	7.0	30.8 30.8	30.8	90.1 89.1	89.6	6.9 6.8	6.9	7.0	3.8 3.5	3.7	3.4	3.0 3.0	3.0	3.3
				Bottom	7	19.8 19.8	19.8	7.0 6.9	7.0	30.9 31.0	31.0	90.3 89.6	90.0	6.9 6.8	6.9	6.9	3.3 3.0	3.2		2.7 2.7	2.7	
				Surface	1	19.7 19.8	19.8	7.0 7.0	7.0	30.5 30.4	30.5	91.5 91.3	91.4	7.0 7.0	7.0	7.0	2.4 2.3	2.4		2.6 2.6	2.6	
G4	Cloudy	Moderate	12:04	Middle	4	19.9 20.0	20.0	6.8 6.8	6.8	30.5 30.5	30.5	92.1 91.5	91.8	7.0 7.0	7.0	7.0	3.0 3.2	3.1	3.5	5.8 5.7	5.8	4.8
				Bottom	7	19.9 19.7	19.8	6.8 6.7	6.8	30.9 30.9	30.9	90.0 89.4	89.7	6.8 6.8	6.8	6.8	5.2 4.7	5.0		6.1 6.1	6.1	
				Surface	1	20.3 19.8	20.1	7.0 7.0	7.0	31.0 30.8	30.9	90.7 90.0	90.4	6.8 6.9	6.9	0.0	2.3 2.3	2.3		3.3 3.3	3.3	
M1	Cloudy	Moderate	11:37	Middle	3	19.9 19.9	19.9	7.0 6.9	7.0	31.0 31.1	31.1	90.0 90.0	90.0	6.8 6.8	6.8	6.9	3.8 4.5	4.2	3.3	2.7 2.7	2.7	2.4
				Bottom	5	19.6 20.0	19.8	6.9 6.9	6.9	31.2 31.3	31.3	88.5 89.1	88.8	6.7 6.7	6.7	6.7	3.2 3.3	3.3		1.2 1.2	1.2	
				Surface	1	19.7 20.0	19.9	7.0 7.0	7.0	30.4 30.3	30.4	90.1 90.5	90.3	6.9 6.9	6.9	0.0	2.1 2.0	2.1		2.1 2.1	2.1	
M2	Cloudy	Moderate	11:22	Middle	5	19.7 19.7	19.7	7.0 6.9	7.0	30.5 30.5	30.5	89.6 90.0	89.8	6.8 6.9	6.9	6.9	2.1 2.0	2.1	2.2	2.8 2.8	2.8	3.8
				Bottom	9	19.5 19.7	19.6	6.9 6.9	6.9	30.7 30.7	30.7	87.6 88.2	87.9	6.7 6.7	6.7	6.7	2.4 2.6	2.5		6.4 6.3	6.4	
				Surface	1	20.0 20.0	20.0	6.8 6.8	6.8	30.6 30.6	30.6	91.4 91.8	91.6	6.9 7.0	7.0		2.5 2.6	2.6		4.5 4.4	4.5	
M3	Cloudy	Moderate	11:57	Middle	4	19.8 19.9	19.9	6.7 6.7	6.7	30.7 30.7	30.7	89.8 89.6	89.7	6.8 6.8	6.8	6.9	2.7	2.5	2.9	7.1 7.2	7.2	5.9
				Bottom	7	19.7 19.8	19.8	6.6 6.6	6.6	31.0 30.9	31.0	86.0 85.9	86.0	6.6 6.5	6.6	6.6	3.5 3.6	3.6	1	6.0	6.0	
				Surface	1	20.0	20.1	6.9 7.0	7.0	30.5 30.5	30.5	91.4 90.6	91.0	6.9 6.9	6.9		2.0	2.3		4.7 4.7	4.7	
M4	Cloudy	Moderate	11:16	Middle	4	19.6 19.5	19.6	6.8 6.8	6.8	30.6 30.7	30.7	89.6 89.5	89.6	6.9 6.9	6.9	6.9	2.6 2.7	2.7	2.8	3.6 3.6	3.6	3.6
				Bottom	7	19.8 19.8	19.8	6.8 6.8	6.8	30.9 30.9	30.9	87.7 87.3	87.5	6.7 6.6	6.7	6.7	3.3 3.5	3.4	1	2.3 2.4	2.4	
				Surface	1	19.5 19.5	19.5	6.8 6.8	6.8	31.6 31.0	31.3	93.1 92.4	92.8	7.1 7.1	7.1	7.4	3.4 3.4	3.4		2.0	2.0	
M5	Cloudy	Moderate	12:15	Middle	5.5	19.6 19.8	19.7	6.7 6.7	6.7	30.9 30.9	30.9	91.4 91.9	91.7	7.0 7.0	7.0	7.1	4.3 4.9	4.6	3.9	2.6 2.5	2.6	2.4
				Bottom	10	19.6 19.7	19.7	6.6	6.6	30.9 31.0	31.0	90.8 91.1	91.0	6.9	6.9	6.9	3.5 3.9	3.7	1	2.7 2.6	2.7	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Cloudy	Moderate	12:11	Middle	2.3	19.1 19.5	19.3	6.9 6.9	6.9	31.0 30.9	31.0	90.5 89.8	90.2	7.0 6.9	7.0	7.0	3.9 3.5	3.7	3.7	2.9 2.9	2.9	2.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	
	l					-		-	1	-	I	-	1	-	l	l		1	1			

Appendix I - Action and Limit Levels for Marine Water Quality on 6 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 7.7 NTU</u>	<u>C2: 8.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 2.4 mg/L</u>	<u>C2: 2.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 2.4 mg/L	<u>C2: 2.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 2.3 mg/L</u>	<u>C2: 2.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 February 2017

Location	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Furbidity(NTI			nded Solids	
Location	Condition	Condition**	Time		(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA⁺	Value	Average	DA*
				Surface	1	25.1 24.7	24.9	8.1 8.1	8.1	31.2 31.3	31.3	114.7 112.0	113.4	7.9 7.8	7.9	7.4	4.2 4.3	4.3		1.3 1.3	1.3	
C1	Sunny	Moderate	09:01	Middle	10.5	25.0 24.5	24.8	8.2 8.2	8.2	32.3 32.3	32.3	99.5 100.1	99.8	6.8 7.0	6.9		5.8 5.4	5.6	5.7	1.7 1.6	1.7	1.6
				Bottom	20	24.7 24.6	24.7	8.2 8.1	8.2	33.0 32.8	32.9	96.7 98.6	97.7	6.7 6.8	6.8	6.8	7.2 7.4	7.3		1.8 1.9	1.9	
				Surface	1	24.8 24.2	24.5	8.1 8.0	8.1	31.4 31.4	31.4	108.4 112.2	110.3	7.5 7.9	7.7	7.4	3.9 4.0	4.0		2.0 2.0	2.0	
C2	Sunny	Moderate	07:01	Middle	18	24.8 24.0	24.4	8.0 8.0	8.0	32.6 32.6	32.6	99.4 102.3	100.9	6.9 7.1	7.0	7.4	4.4 4.3	4.4	4.9	3.2 3.1	3.2	2.4
				Bottom	35	24.2 24.0	24.1	8.1 8.1	8.1	32.8 32.9	32.9	92.9 93.4	93.2	6.5 6.5	6.5	6.5	6.3 6.5	6.4		1.9 1.8	1.9	
				Surface	1	24.6 24.5	24.6	8.2 8.2	8.2	32.8 32.8	32.8	105.3 102.1	103.7	7.3 7.1	7.2	7.2	4.4 4.8	4.6		1.4 1.4	1.4	
G1	Sunny	Moderate	07:44	Middle	4	24.7 24.5	24.6	8.2 8.1	8.2	33.1 33.1	33.1	98.0 106.0	102.0	6.8 7.3	7.1	1.2	4.7 4.6	4.7	4.7	2.2 2.2	2.2	1.6
				Bottom	7	24.5 24.5	24.5	8.1 8.2	8.2	33.3 33.3	33.3	97.8 99.1	98.5	6.8 6.8	6.8	6.8	4.8 5.0	4.9		1.2 1.2	1.2	l
				Surface	1	24.5 24.5	24.5	8.1 8.1	8.1	32.8 32.8	32.8	108.8 113.6	111.2	7.5 7.9	7.7	7.4	3.7 4.2	4.0		1.8 1.7	1.8	
G2	Sunny	Moderate	07:28	Middle	5	24.5 24.5	24.5	8.1 8.1	8.1	33.1 33.0	33.1	99.2 103.3	101.3	6.9 7.1	7.0	7.4	5.4 5.4	5.4	5.5	1.1 1.1	1.1	1.6
				Bottom	9	24.5 24.5	24.5	8.1 8.1	8.1	33.9 33.6	33.8	93.9 94.5	94.2	6.5 6.5	6.5	6.5	6.9 7.1	7.0		1.9	2.0	
				Surface	1	24.2 24.2	24.2	8.2 8.2	8.2	33.2 33.2	33.2	105.6 105.6	105.6	7.3 7.3	7.3	7.4	4.0 3.7	3.9		1.4 1.4	1.4	
G3	Sunny	Moderate	07:57	Middle	4	24.2 24.1	24.2	8.1 8.2	8.2	33.2 33.2	33.2	105.9 105.5	105.7	7.4 7.3	7.4	7.4	4.2 4.0	4.1	4.3	1.8 1.9	1.9	1.3
				Bottom	7	24.2 24.1	24.2	8.2 8.2	8.2	33.2 33.2	33.2	106.9 108.3	107.6	7.4 7.5	7.5	7.5	5.2 4.8	5.0		0.6 0.6	0.6	
				Surface	1	25.1 24.5	24.8	8.1 8.1	8.1	31.2 31.2	31.2	93.1 88.1	90.6	6.4 6.2	6.3	6.3	4.4 4.0	4.2		1.2 1.2	1.2	
G4	Sunny	Moderate	08:30	Middle	4	25.1 24.4	24.8	8.2 8.2	8.2	32.2 32.2	32.2	90.0 90.0	90.0	6.2 6.3	6.3	6.3	5.6 5.9	5.8	5.6	1.2 1.1	1.2	1.3
				Bottom	7	24.5 24.5	24.5	8.2 8.2	8.2	32.9 32.7	32.8	90.5 85.5	88.0	6.3 5.9	6.1	6.1	6.6 6.8	6.7		1.4 1.4	1.4	
				Surface	1	24.2 24.2	24.2	8.1 8.1	8.1	33.1 33.1	33.1	102.5 102.8	102.7	7.1 7.1	7.1	7.4	4.9 5.0	5.0		1.0 1.0	1.0	
M1	Sunny	Moderate	07:36	Middle	3	24.2 24.1	24.2	8.1 8.1	8.1	33.4 33.4	33.4	101.5 101.1	101.3	7.0 7.0	7.0	7.1	4.4 4.9	4.7	5.0	1.4 1.3	1.4	1.2
				Bottom	5	25.1 24.7	24.9	8.2 8.1	8.2	31.8 31.7	31.8	107.2 106.3	106.8	7.4 7.4	7.4	7.4	5.1 5.2	5.2		1.1	1.2	
				Surface	1	24.8 24.2	24.5	8.1 8.1	8.1	31.4 31.4	31.4	101.8 101.2	101.5	7.1 7.1	7.1	7.4	4.6 4.7	4.7		1.4 1.4	1.4	
M2	Sunny	Moderate	07:21	Middle	5.5	24.8 24.0	24.4	8.1 8.1	8.1	32.6 32.6	32.6	101.4 100.6	101.0	7.0 7.0	7.0	7.1	4.4 4.6	4.5	4.8	2.4 2.3	2.4	1.7
				Bottom	10	24.2 24.0	24.1	8.1 8.1	8.1	32.8 32.9	32.9	92.9 92.1	92.5	6.5 6.4	6.5	6.5	5.1 5.0	5.1		1.4 1.4	1.4	
				Surface	1	25.1 24.7	24.9	8.2 8.2	8.2	31.0 30.9	31.0	99.3 101.1	100.2	6.9 7.0	7.0	0.7	3.6 3.7	3.7		1.5 1.5	1.5	
M3	Sunny	Moderate	08:18	Middle	4.5	25.1 24.5	24.8	8.1 8.1	8.1	31.6 31.6	31.6	89.9 93.2	91.6	6.2 6.5	6.4	6.7	5.0 5.2	5.1	4.8	1.3	1.3	1.6
				Bottom	8	24.7 24.5	24.6	8.1 8.2	8.2	32.0 32.0	32.0	90.4 88.9	89.7	6.3 6.2	6.3	6.3	5.4 5.8	5.6		2.1	2.1	<u> </u>
				Surface	1	24.2 24.1	24.2	8.1 8.1	8.1	33.2 33.2	33.2	110.4 109.0	109.7	7.7 7.6	7.7	7.5	3.7 4.2	4.0		1.4	1.4	
M4	Sunny	Moderate	07:14	Middle	4	24.2 23.6	23.9	8.1 8.1	8.1	33.3 33.3	33.3	102.9 102.1	102.5	7.1 7.2	7.2	7.5	5.4 5.4	5.4	5.5	1.6	1.6	1.6
				Bottom	7	24.1 23.6	23.9	8.2 8.2	8.2	34.2 34.2	34.2	101.2 99.9	100.6	7.0 7.0	7.0	7.0	6.9 7.1	7.0		1.6	1.7	
				Surface	1	25.0 24.7	24.9	8.2 8.2	8.2	31.2 31.2	31.2	96.1 101.6	98.9	6.7 7.1	6.9	6.0	4.4 3.9	4.2		1.8	1.8	
M5	Sunny	Moderate	08:54	Middle	5.5	25.0 24.5	24.8	8.2 8.2	8.2	32.2 32.3	32.3	97.6 102.3	100.0	6.7 7.1	6.9	6.9	4.8 5.2	5.0	5.4	2.6 2.5	2.6	2.1
				Bottom	10	24.7 24.5	24.6	8.2 8.2	8.2	32.9 32.9	32.9	99.7 94.3	97.0	6.9 6.5	6.7	6.7	7.0 7.2	7.1		1.8	1.8	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Sunny	Moderate	08:40	Middle	2	25.2 24.7	25.0	8.1 8.2	8.2	30.9 31.0	31.0	107.8 106.5	107.2	7.5 7.4	7.5	7.5	5.0 4.9	5.0	5.0	2.7 2.6	2.7	2.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
													1		1							

Appendix I - Action and Limit Levels for Marine Water Quality on 6 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.5 NTU</u>	<u>C1: 9.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.7 mg/L</u>	<u>C1: 5.1 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.7 mg/L</u>	<u>C1: 5.1 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 5.1 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5 25.3	25.4	8.2 8.2	8.2	31.4 31.4	31.4	110.2 112.5	111.4	7.6 7.7	7.7	7.0	5.5 5.1	5.3		3.9 3.8	3.9	ł
C1	Sunny	Moderate	14:20	Middle	10	25.5 25.2	25.4	8.1 8.2	8.2	31.6 31.6	31.6	98.7 99.0	98.9	6.8 6.8	6.8	7.3	6.4 5.6	6.0	6.1	1.9 2.0	2.0	3.1
				Bottom	19	25.3 25.2	25.3	8.1 8.2	8.2	31.7 31.7	31.7	97.7 97.6	97.7	6.7 6.7	6.7	6.7	7.5 6.6	7.1		3.4 3.5	3.5	
				Surface	1	25.2 25.1	25.2	8.2 8.1	8.2	31.7 31.7	31.7	106.2 107.5	106.9	7.3 7.4	7.4	7.1	3.7 3.6	3.7		1.5 1.5	1.5	
C2	Sunny	Moderate	12:42	Middle	18	25.2 25.2	25.2	8.1 8.1	8.1	31.7 31.7	31.7	99.3 99.3	99.3	6.8 6.8	6.8		3.9 4.2	4.1	4.7	1.1	1.1	1.2
				Bottom	35	25.1 25.2	25.2	8.1 8.2	8.2	31.7 31.8	31.8	98.9 99.0	99.0	6.8 6.8	6.8	6.8	6.4 6.2	6.3		1.1	1.1	
				Surface	1	25.1 25.0	25.1	8.2 8.2	8.2	31.4 31.5	31.5	105.9 106.6	106.3	7.3 7.4	7.4	7.1	4.2	4.1		1.8	1.8	
G1	Sunny	Moderate	13:23	Middle	4	25.1 24.8 25.0	25.0	8.2 8.2 8.2	8.2	31.6 31.6 31.7	31.6	96.6 97.5 97.0	97.1	6.7 6.8 6.7	6.8		4.4 4.7 5.8	4.6	4.9	2.4 2.3 3.6	2.4	2.6
				Bottom	7	24.8 25.1	24.9	8.2 8.1	8.2	31.7 32.0	31.7	97.9 104.9	97.5	6.8	6.8	6.8	5.9 4.4	5.9		3.7	3.7	<u> </u>
				Surface	1	25.1 25.1 25.1	25.1	8.1 8.1	8.1	32.0 32.1	32.0	105.5 98.7	105.2	7.3 6.8	7.3	7.1	4.3 4.9	4.4		2.3 2.0	2.3	
G2	Sunny	Moderate	13:06	Middle	5	25.0 25.1	25.1	8.2 8.2	8.2	32.1 32.5	32.1	97.5 94.7	98.1	6.7 6.5	6.8		4.8 5.4	4.9	4.9	2.0 2.1 2.5	2.1	2.3
				Bottom	9	25.0 25.1	25.1	8.2 8.1	8.2	32.4 31.4	32.5	93.4 106.7	94.1	6.4 7.4	6.5	6.5	5.4 5.4	5.4		2.5 4.2	2.5	<u> </u>
				Surface	1	25.1 25.1 25.0	25.1	8.1 8.1	8.1	31.4 31.7	31.4	107.3 97.7	107.0	7.4 7.4 6.7	7.4	7.1	4.3 5.0	4.4		4.2 4.1 3.7	4.2	
G3	Sunny	Moderate	13:34	Middle	4	24.9 25.1	25.0	8.1 8.1	8.1	31.7 32.0	31.7	97.5 96.3	97.6	6.7 6.6	6.7		5.5 6.2	5.3	5.3	3.8	3.8	3.1
				Bottom	7	24.9 25.5	25.0	8.1 8.1	8.1	32.0 31.5	32.0	95.5 106.3	95.9	6.6 7.3	6.6	6.6	6.2	6.2		1.3	1.3	<u> </u>
				Surface	1	25.3 25.5	25.4	8.1 8.1	8.1	31.5 31.8	31.5	106.3	106.3	7.3 7.3	7.3	7.0	3.9 4.5	4.2		1.3	1.4	
G4	Sunny	Moderate	13:53	Middle	4	25.3 25.3	25.4	8.1 8.1	8.1	31.8 32.2	31.8	98.2 102.0	98.2	6.7 7.0	6.7		4.7 7.4	4.6	5.5	1.9	1.9	1.5
				Bottom	7	25.3 25.1	25.3	8.1 8.1	8.1	32.2 31.7	32.2	102.0	102.0	7.0	7.0	7.0	7.7	7.6		1.2	1.3	<u> </u>
	_			Surface	1	25.1 25.1	25.1	8.1 8.1	8.1	31.7 31.7	31.7	105.4	105.3	7.3 6.8	7.3	7.1	4.5	4.3		2.0	2.0	
M1	Sunny	Moderate	13:15	Middle	3	25.0 25.5	25.1	8.1 8.1	8.1	31.7 31.7	31.7	97.6 99.1	97.9	6.7 6.8	6.8		4.3 5.3	4.3	4.6	1.4	1.4	1.8
				Bottom	5	25.3 25.1	25.4	8.1 8.2	8.1	31.7	31.7	99.5	99.3	6.8	6.8	6.8	5.0	5.2		1.9	1.9	
				Surface	1	25.1 25.1	25.1	8.2 8.1	8.2	31.9 32.0	31.9	101.0	100.8	7.0 6.5	7.0	6.8	4.4 5.1	4.3		1.1	1.2	
M2	Sunny	Moderate	12:59	Middle	5.5	25.1 25.1	25.1	8.1 8.1	8.1	32.1 32.2	32.1	93.8 92.4	94.0	6.5 6.4	6.5		4.8 5.2	5.0	4.8	1.2	1.2	1.1
				Bottom	10	25.1 25.4	25.1	8.1 8.1	8.1	32.2 32.0	32.2	92.4 118.4	92.4	6.4	6.4	6.4	5.2	5.2		1.0	1.0	
M3	0	Moderat	19:40	Surface	1	25.3 25.4	25.4	8.2 8.1	8.2	31.9 32.2	32.0	114.3	116.4	7.8 6.8	8.0	7.5	4.6 5.2	4.5	4.9	1.9	1.9	0.0
IVI3	Sunny	Moderate	13:46	Middle	4.5 8	25.3 25.3	25.4 25.3	8.1 8.1	8.1	32.3 32.6	32.3 32.6	100.2 92.6	100.1 92.4	6.9 6.3	6.9	6.3	5.0 5.0	5.1	4.9	0.9 3.9	0.9 3.7	2.2
	<u> </u>			Surface	1	25.3 25.1	25.3	8.1 8.1	8.1	32.6 31.7	32.6	92.2 106.4	106.4	6.3 7.3	7.3	0.3	5.1 5.5	5.1		3.5 2.0	2.0	<u> </u>
M4	Sunny	Moderate	12:50	Middle	4	25.1 25.1	24.8	8.1 8.1	8.1	31.7 31.7	31.7	106.4 98.9	98.1	7.3 6.8	6.8	7.1	5.2 5.7	5.6	5.6	2.0	2.0	2.3
IVIT	Outiny	odcrate	12.00	Bottom	7	24.4 25.1	24.8	8.1 8.1	8.2	31.7 31.9	31.9	97.3 95.5	94.3	6.8 6.6	6.6	6.6	5.5 5.8	5.9	5.0	2.1	2.8	2.0
				Surface	1	24.4 25.5	25.4	8.2 8.1	8.2	31.9 31.7	31.7	93.0 106.1	105.9	6.5 7.3	7.3	3.0	5.9 4.9	5.1		2.7 2.4	2.4	
M5	Sunny	Moderate	14:12	Middle	5.5	25.3 25.5	25.4	8.2 8.2	8.2	31.7 31.8	31.8	105.7 97.3	97.6	7.3 6.7	6.7	7.0	5.3 5.5	5.5	5.7	2.4	2.2	2.1
				Bottom	10	25.3 25.3	25.3	8.1 8.2	8.2	31.8 31.9	31.9	97.8 94.3	94.2	6.7 6.5	6.5	6.5	5.4 6.4	6.6		1.8	1.8	
				Surface	-	25.3		8.2	-	31.8	-	94.1	-	6.5	-		6.7	-		1.8	- 1	
M6	Sunny	Moderate	14:00	Middle	2.1	25.5	25.4	8.2	8.2	31.4	31.4	108.7	109.4	7.5	7.6	7.6	4.7	4.9	4.9	1.8	1.8	1.8
				Bottom		25.3		8.2	-	31.4	-	110.1	-	7.6	-	-	5.0	-		1.7	-	
				20110111		-		-		-		-		-			-			-		

Appendix I - Action and Limit Levels for Marine Water Quality on 8 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 8.0 NTU</u>	<u>C2: 8.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 3.4 mg/L</u>	<u>C2: 3.6 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 3.4 mg/L</u>	<u>C2: 3.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.0 mg/L</u>	<u>C2: 5.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			nded Solids	
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.7 21.5	21.6	8.1 8.1	8.1	31.3 31.0	31.2	99.4 98.2	98.8	7.3 7.2	7.3	7.1	3.2 3.6	3.4		2.7 2.8	2.8	
C1	Sunny	Moderate	10:35	Middle	10	21.4 21.3	21.4	8.1 8.1	8.1	31.6 31.6	31.6	93.5 92.8	93.2	6.9 6.8	6.9		5.1 5.2	5.2	4.7	2.7 2.8	2.8	2.7
				Bottom	19	21.2 21.2	21.2	8.1 8.1	8.1	31.3 31.2	31.3	91.1 92.2	91.7	6.7 6.8	6.8	6.8	5.4 5.6	5.5		2.4 2.3	2.4	
				Surface	1	21.4 21.4	21.4	8.0 8.0	8.0	30.6 30.5	30.6	96.1 97.3	96.7	7.1 7.2	7.2	7.1	3.5 3.4	3.5		2.8 2.8	2.8	
C2	Sunny	Moderate	09:19	Middle	18	21.4 21.1	21.3	8.0 8.1	8.1	30.8 30.8	30.8	92.9 94.5	93.7	6.9 7.0	7.0	7.1	4.9 4.9	4.9	5.0	1.3 1.4	1.4	2.8
				Bottom	35	21.3 21.0	21.2	8.1 8.1	8.1	31.0 31.0	31.0	90.2 90.0	90.1	6.7 6.7	6.7	6.7	6.6 6.5	6.6		4.2 4.2	4.2	
				Surface	1	21.4 21.4	21.4	8.1 8.1	8.1	31.4 32.0	31.7	94.9 93.5	94.2	7.0 6.9	7.0	7.0	4.0 3.9	4.0		1.6 1.6	1.6	
G1	Sunny	Moderate	09:54	Middle	4	21.3 21.3	21.3	8.1 8.1	8.1	31.9 31.9	31.9	92.7 95.8	94.3	6.8 7.0	6.9	7.0	4.1 4.1	4.1	4.3	1.0	1.1	1.4
				Bottom	7	21.3 21.3	21.3	8.1 8.1	8.1	32.0 32.1	32.1	89.8 89.2	89.5	6.6 6.6	6.6	6.6	4.9 4.8	4.9		1.6 1.5	1.6	
				Surface	1	21.5 21.5	21.5	8.1 8.1	8.1	31.5 31.7	31.6	98.0 98.5	98.3	7.2 7.2	7.2	7.0	3.3 3.4	3.4		1.8 1.7	1.8	
G2	Sunny	Moderate	09:41	Middle	5	21.3	21.3	8.1 8.1	8.1	31.8 31.8	31.8	91.5 92.5	92.0	6.7	6.8	7.0	3.6	3.7	3.8	2.2	2.2	2.4
				Bottom	9	21.3	21.4	8.1 8.1	8.1	32.1 32.1	32.1	90.4 90.6	90.5	6.6	6.7	6.7	4.5 4.3	4.4		3.2	3.2	
				Surface	1	21.4	21.4	8.1 8.1	8.1	32.2 31.8	32.0	96.4 97.2	96.8	7.1 7.1	7.1		3.6 3.7	3.7		1.9	2.0	
G3	Sunny	Moderate	10:01	Middle	4	21.2 21.2	21.2	8.1 8.1	8.1	31.8 31.9	31.9	95.7 95.5	95.6	7.1 7.0	7.1	7.1	4.7 4.7	4.7	4.4	2.5	2.5	2.0
				Bottom	7	21.2 21.3	21.3	8.1 8.1	8.1	31.9 31.9	31.9	95.6 96.3	96.0	7.1 7.1	7.1	7.1	4.7 4.8	4.8		1.5	1.5	
				Surface	1	21.5	21.4	8.1 8.0	8.1	30.8 30.8	30.8	92.4 90.8	91.6	6.8	6.8		3.7 3.2	3.5		2.2	2.2	
G4	Sunny	Moderate	10:14	Middle	4	21.6 21.3	21.5	8.0 8.1	8.1	31.4 31.3	31.4	90.7 90.7	90.7	6.7 6.7	6.7	6.8	4.7 5.0	4.9	4.5	3.2	3.2	3.0
				Bottom	7	21.3	21.4	8.1 8.1	8.1	31.6 31.6	31.6	90.7 85.7	88.2	6.7	6.5	6.5	5.1 5.3	5.2		3.6	3.7	
				Surface	1	21.4 21.4	21.4	8.1 8.0	8.1	32.0 31.9	32.0	94.2 95.0	94.6	6.9 7.0	7.0	7.0	3.6 3.8	3.7		2.2	2.2	
M1	Sunny	Moderate	09:47	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.8	-	-	2.8
				Bottom	3	21.3 21.2	21.3	8.1 8.1	8.1	32.0 32.0	32.0	93.4 92.6	93.0	6.9 6.8	6.9	6.9	3.7 4.0	3.9		3.2 3.3	3.3	
				Surface	1	21.5	21.4	8.1 8.1	8.1	31.4 31.2	31.3	95.3 94.4	94.9	7.0	7.0		3.2 3.3	3.3		2.2	2.2	
M2	Sunny	Moderate	09:36	Middle	5.5	21.4 21.2	21.3	8.1 8.1	8.1	31.6 31.6	31.6	91.8 91.8	91.8	6.8	6.8	6.9	4.7 4.8	4.8	4.6	2.5	2.5	2.1
				Bottom	10	21.1	21.2	8.1 8.1	8.1	31.8 31.9	31.9	89.5 89.2	89.4	6.6	6.6	6.6	5.7 5.8	5.8		1.7	1.7	
				Surface	1	21.4 21.3	21.4	8.1 8.1	8.1	31.0 30.9	31.0	93.7 94.4	94.1	6.9 7.0	7.0		2.6 2.7	2.7		2.1	2.1	
M3	Sunny	Moderate	10:07	Middle	4.5	21.6 21.2	21.4	8.0 8.1	8.1	31.3 31.3	31.3	90.1	90.5	6.6 6.7	6.7	6.9	4.2 4.1	4.2	4.0	4.7 4.8	4.8	2.6
				Bottom	8	21.4 21.4	21.4	8.1 8.1	8.1	31.5 31.5	31.5	88.4 88.2	88.3	6.5 6.5	6.5	6.5	5.1 5.2	5.2	1	0.7	0.8	
				Surface	1	21.2 21.3	21.3	8.1 8.0	8.1	31.0 31.2	31.1	97.4 98.5	98.0	7.2 7.3	7.3	7.0	3.6 3.6	3.6		1.8 1.7	1.8	
M4	Sunny	Moderate	09:28	Middle	4	21.2 20.8	21.0	8.0 8.1	8.1	31.5 31.5	31.5	94.7 94.1	94.4	7.0 7.0	7.0	7.2	4.0 4.0	4.0	4.2	2.4	2.4	2.9
				Bottom	7	21.0 20.9	21.0	8.1 8.1	8.1	32.0 32.0	32.0	92.5 92.9	92.7	6.8	6.9	6.9	5.2 5.0	5.1	1	4.6 4.5	4.6	
				Surface	1	21.4 21.5	21.5	8.1 8.1	8.1	31.1 31.1	31.1	91.8 93.2	92.5	6.8 6.9	6.9	7.0	3.9 3.9	3.9		1.6 4.7	3.2	
M5	Sunny	Moderate	10:27	Middle	5.5	21.3 21.2	21.3	8.1 8.1	8.1	31.4 31.5	31.5	92.9 94.8	93.9	6.9 7.0	7.0	7.0	5.9 5.5	5.7	5.1	1.9	1.9	2.6
				Bottom	10	21.3 21.2	21.3	8.1 8.1	8.1	31.8 31.8	31.8	94.1 91.7	92.9	6.9 6.8	6.9	6.9	5.8 5.6	5.7	1	2.8	2.8	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
M6	Sunny	Moderate	10:21	Middle	2.1	21.5 21.5	21.5	8.1 8.1	8.1	31.2 31.2	31.2	94.8 94.0	94.4	7.0 6.9	7.0	7.0	4.3 4.2	4.3	4.3	2.0 2.1	2.1	2.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1		-	
											L			·								

Appendix I - Action and Limit Levels for Marine Water Quality on 8 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 6.8 NTU</u>	<u>C1: 7.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.0 mg/L</u>	<u>C1: 5.5 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.0 mg/L</u>	<u>C1: 5.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 February 2017

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			nded Solids	
20041.011	Condition	Condition**	Time		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.3 21.2	21.3	8.1 8.1	8.1	31.7 31.4	31.6	97.3 98.0	97.7	7.2 7.2	7.2	7.1	3.3 3.5	3.4		4.2 4.2	4.2	l
C1	Sunny	Moderate	15:58	Middle	10	20.9 20.9	20.9	8.1 8.2	8.2	31.4 31.4	31.4	91.3 92.2	91.8	6.8 6.9	6.9		4.5 4.7	4.6	4.6	3.5 3.5	3.5	4.5
				Bottom	19	20.9 21.1	21.0	8.2 8.1	8.2	30.8 30.9	30.9	90.6 90.9	90.8	6.8 6.8	6.8	6.8	5.7 5.6	5.7		5.8 5.8	5.8	
				Surface	1	21.1 21.1	21.1	8.1 8.0	8.1	31.3 31.4	31.4	94.4 94.9	94.7	7.0 7.0	7.0	7.0	4.0 3.5	3.8		1.6 1.6	1.6	l
C2	Sunny	Moderate	14:37	Middle	18	20.9 21.0	21.0	8.0 8.0	8.0	31.2 31.3	31.3	91.8 92.3	92.1	6.8 6.9	6.9	7.0	5.1 4.8	5.0	5.0	2.0 1.9	2.0	2.1
				Bottom	35	20.7 20.9	20.8	8.1 8.1	8.1	31.2 31.2	31.2	91.8 92.3	92.1	6.9 6.9	6.9	6.9	6.2 6.2	6.2		2.8 2.7	2.8	
				Surface	1	21.3 21.2	21.3	8.1 8.1	8.1	30.9 30.9	30.9	96.0 95.7	95.9	7.1 7.1	7.1	7.0	3.6 3.6	3.6		1.4 1.4	1.4	l
G1	Sunny	Moderate	15:14	Middle	4	21.0 20.7	20.9	8.1 8.1	8.1	30.9 31.0	31.0	91.2 91.3	91.3	6.8 6.8	6.8		4.1 4.2	4.2	4.4	1.8 1.8	1.8	2.6
				Bottom	7	20.6 20.5	20.6	8.1 8.1	8.1	31.2 31.2	31.2	90.0 90.0	90.0	6.7 6.8	6.8	6.8	5.1 5.4	5.3		4.6 4.7	4.7	<u></u>
				Surface	1	21.1 21.1	21.1	8.2 8.1	8.2	31.3 31.2	31.3	94.8 94.8	94.8	7.0 7.0	7.0	6.9	2.9 2.8	2.9		4.8 4.9	4.9	l
G2	Sunny	Moderate	14:59	Middle	5	21.0 21.0	21.0	8.1 8.1	8.1	31.3 31.4	31.4	92.0 91.6	91.8	6.8 6.8	6.8		3.3 3.7	3.5	3.7	2.4 2.3	2.4	2.8
				Bottom	9	20.8 20.8	20.8	8.1 8.1	8.1	31.3 31.3	31.3	89.6 89.0	89.3	6.7 6.6	6.7	6.7	4.6 4.6	4.6		1.1 1.0	1.1	<u></u>
				Surface	1	21.2 21.1	21.2	8.1 8.1	8.1	30.8 30.8	30.8	95.4 95.7	95.6	7.1 7.1	7.1	7.0	3.6 3.7	3.7		3.3 3.2	3.3	l
G3	Sunny	Moderate	15:21	Middle	4	21.0 20.8	20.9	8.1 8.2	8.2	31.1 31.1	31.1	91.4 90.9	91.2	6.8 6.8	6.8		4.7 4.7	4.7	4.6	1.5 1.5	1.5	2.1
				Bottom	7	20.9 20.8	20.9	8.2 8.1	8.2	31.3 31.3	31.3	89.8 89.0	89.4	6.7 6.6	6.7	6.7	4.9 5.6	5.3		1.4 1.3	1.4	
				Surface	1	21.3 21.3	21.3	8.1 8.1	8.1	31.3 31.4	31.4	95.1 95.7	95.4	7.0 7.1	7.1	7.0	3.6 3.5	3.6		2.2 2.2	2.2	l
G4	Sunny	Moderate	15:36	Middle	4	21.1 21.0	21.1	8.2 8.1	8.2	31.4 31.4	31.4	92.0 92.1	92.1	6.8 6.8	6.8		4.6 5.0	4.8	4.6	1.4	1.4	1.6
				Bottom	7	20.9 21.1	21.0	8.2 8.2	8.2	31.5 31.5	31.5	91.4 91.6	91.5	6.8 6.8	6.8	6.8	5.1 5.4	5.3		1.0 1.1	1.1	
				Surface	1	21.4 21.2	21.3	8.1 8.1	8.1	30.9 30.9	30.9	95.9 95.5	95.7	7.1 7.1	7.1	7.1	3.6 3.9	3.8		2.8 2.7	2.8	l
M1	Sunny	Moderate	15:07	Middle	-	-	-	-	-		=		-		-		-	-	3.9	-	-	3.2
				Bottom	3	20.9 20.9	20.9	8.1 8.1	8.1	31.5 31.6	31.6	89.6 89.5	89.6	6.7 6.7	6.7	6.7	3.7 4.0	3.9		3.6 3.6	3.6	
				Surface	1	20.9 20.9	20.9	8.1 8.1	8.1	31.6 31.5	31.6	92.9 93.1	93.0	6.9 6.9	6.9	6.8	3.1 3.0	3.1		2.9 2.9	2.9	l
M2	Sunny	Moderate	14:51	Middle	5.5	21.0 21.0	21.0	8.1 8.1	8.1	31.2 31.2	31.2	89.7 89.6	89.7	6.7 6.7	6.7		4.4 4.2	4.3	4.1	1.4 1.3	1.4	1.8
				Bottom	10	20.9 20.9	20.9	8.1 8.1	8.1	31.4 31.4	31.4	88.5 88.5	88.5	6.6 6.6	6.6	6.6	4.7 5.0	4.9		1.1	1.1	
				Surface	1	21.4 21.2	21.3	8.2 8.1	8.2	31.8 31.8	31.8	100.2 98.9	99.6	7.4 7.3	7.4	7.2	3.1	3.1		1.4	1.5	
M3	Sunny	Moderate	15:29	Middle	4.5	21.0 21.0	21.0	8.1 8.1	8.1	31.9 31.9	31.9	92.5 92.9	92.7	6.8 6.9	6.9		4.3 4.3	4.3	4.4	2.5 2.5	2.5	1.8
				Bottom	8	21.1 21.1	21.1	8.1 8.1	8.1	31.9 32.1	32.0	88.1 90.4	89.3	6.5 6.7	6.6	6.6	5.5 5.8	5.7		1.4 1.5	1.5	
				Surface	1	20.9 21.1	21.0	8.1 8.1	8.1	31.0 31.0	31.0	96.4 96.8	96.6	7.2 7.2	7.2	7.1	3.5 3.4	3.5		2.2	2.3	
M4	Sunny	Moderate	14:45	Middle	4	20.8	20.7	8.1 8.1	8.1	31.1 31.0	31.1	92.6 91.8	92.2	6.9 6.9	6.9		3.8 4.1	4.0	4.3	2.7	2.7	2.6
				Bottom	7	20.6 20.5	20.6	8.1 8.2	8.2	31.0 31.0	31.0	90.2 88.7	89.5	6.8 6.7	6.8	6.8	5.4 5.2	5.3		2.8	2.8	
				Surface	1	21.2 21.2	21.2	8.1 8.1	8.1	31.7 31.9	31.8	95.9 95.7	95.8	7.1 7.1	7.1	7.0	4.2 4.3	4.3		1.3 1.4	1.4	
M5	Sunny	Moderate	15:48	Middle	5.5	21.0 21.1	21.1	8.2 8.2 8.2	8.2	31.3 31.6 31.2	31.5	91.4 92.0	91.7	6.8 6.8	6.8		4.9 5.1	5.0	4.8	1.4 1.3 1.5	1.4	1.4
				Bottom	10	21.1 21.1	21.1	8.2 8.2	8.2	31.2 31.2	31.2	89.6 89.6	89.6	6.7 6.6	6.7	6.7	5.3 5.1	5.2		1.5 1.5	1.5	
				Surface	-	21.1	-	8.1	-	31.3	-	95.4	-	7.1	-	7.1	4.2	-	1	1.3	-	
M6	Sunny	Moderate	15:43	Middle	2.1	21.1	21.1	8.1 8.1	8.1	31.3	31.3	95.4 95.1	95.3	7.1 7.1	7.1		4.2 4.2	4.2	4.2	1.3	1.4	1.4
				Bottom	-	-	-=	-	-	-	-	-	-	-	-	=	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 10 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 7.2 NTU</u>	<u>C2: 7.8 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 3.2 mg/L</u>	<u>C2: 3.5 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 3.2 mg/L</u>	<u>C2: 3.5 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.5 mg/L</u>	<u>C2: 6.0 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA⁺	Value	Average	DA*
				Surface	1	21.6 21.5	21.6	8.1 8.2	8.2	32.1 31.9	32.0	97.3 97.1	97.2	7.1 7.1	7.1	7.2	3.1 3.7	3.4		1.5 1.5	1.5	}
C1	Cloudy	Moderate	13:00	Middle	10	21.1 21.1	21.1	8.1 8.1	8.1	31.8 31.8	31.8	97.7 98.3	98.0	7.2 7.3	7.3	7.2	4.0 3.8	3.9	4.2	1.8 1.7	1.8	1.6
				Bottom	19	21.0 21.0	21.0	8.2 8.2	8.2	31.8 31.9	31.9	98.8 99.6	99.2	7.3 7.4	7.4	7.4	5.0 5.3	5.2		1.5 1.4	1.5	
				Surface	1	21.2 21.3	21.3	8.1 8.1	8.1	31.7 31.9	31.8	96.2 96.2	96.2	7.1 7.1	7.1	7.2	2.8 2.5	2.7		2.6 2.7	2.7	
C2	Cloudy	Moderate	10:51	Middle	18	21.1 21.1	21.1	8.1 8.1	8.1	31.8 31.7	31.8	96.9 97.0	97.0	7.2 7.2	7.2	7.2	3.8 3.4	3.6	4.1	1.1 1.2	1.2	2.8
				Bottom	35	21.1 21.0	21.1	8.2 8.2	8.2	31.8 31.7	31.8	96.4 96.1	96.3	7.1 7.1	7.1	7.1	6.1 5.8	6.0		4.5 4.6	4.6	
				Surface	1	21.7 21.7	21.7	8.1 8.1	8.1	32.1 32.2	32.2	96.0 95.9	96.0	7.0 7.0	7.0	7.0	3.7 4.0	3.9		2.6 2.5	2.6	
G1	Cloudy	Moderate	11:39	Middle	4	21.3 21.3	21.3	8.1 8.1	8.1	31.9 31.8	31.9	93.9 93.9	93.9	6.9 6.9	6.9	7.0	4.0 4.2	4.1	4.1	1.0 1.1	1.1	2.8
				Bottom	7	21.1 21.1	21.1	8.2 8.1	8.2	31.8 31.9	31.9	92.3 92.2	92.3	6.8 6.8	6.8	6.8	4.4 4.2	4.3		4.7 4.8	4.8	
				Surface	1	21.6 21.5	21.6	8.2 8.1	8.2	31.8 31.9	31.9	96.6 96.1	96.4	7.1 7.0	7.1	7.1	3.3 3.2	3.3		2.4 2.4	2.4	
G2	Cloudy	Moderate	11:23	Middle	5	21.2 21.2	21.2	8.1 8.1	8.1	31.7 31.9	31.8	95.8 96.2	96.0	7.1 7.1	7.1		2.1 2.4	2.3	3.3	1.1 1.0	1.1	2.1
				Bottom	9	21.2 21.2	21.2	8.1 8.1	8.1	31.8 31.9	31.9	96.3 96.0	96.2	7.1 7.1	7.1	7.1	4.3 4.5	4.4		2.9 2.9	2.9	<u> </u>
				Surface	1	21.4 21.4	21.4	8.2 8.1	8.2	32.0 32.0	32.0	96.8 97.3	97.1	7.1 7.1	7.1	7.2	3.3 3.2	3.3		0.8 0.8	0.8	
G3	Cloudy	Moderate	11:53	Middle	4	21.1 21.1	21.1	8.1 8.1	8.1	31.7 31.9	31.8	97.0 97.5	97.3	7.2 7.2	7.2		5.9 5.8	5.9	5.1	2.5 2.5	2.5	1.6
				Bottom	7	21.1 21.0	21.1	8.1 8.1	8.1	31.7 31.8	31.8	95.7 95.1	95.4	7.1 7.0	7.1	7.1	5.6 6.4	6.0		1.5 1.4	1.5	<u> </u>
				Surface	1	21.5 21.4	21.5	8.2 8.1	8.2	32.0 32.0	32.0	96.0 95.8	95.9	7.0 7.0	7.0	7.0	4.3 3.7	4.0		1.0 1.0	1.0	
G4	Cloudy	Moderate	12:26	Middle	4	21.2 21.2	21.2	8.1 8.1	8.1	31.7 31.7	31.7	94.8 95.0	94.9	7.0 7.0	7.0		5.3 5.2	5.3	5.0	1.0	1.0	1.5
				Bottom	7	21.2 21.1	21.2	8.2 8.1	8.2	31.8 31.8	31.8	95.3 94.9	95.1	7.0 7.0	7.0	7.0	5.4 5.7	5.6		2.4 2.3	2.4	<u> </u>
				Surface	1	21.4 21.4	21.4	8.2 8.1	8.2	32.0 31.9	32.0	97.1 97.0	97.1	7.1 7.1	7.1	7.1	2.9 2.8	2.9		1.3 1.4	1.4	
M1	Cloudy	Moderate	11:32	Middle	3	21.2 21.1	21.2	8.1 8.1	8.1	31.9 31.8	31.9	95.8 95.4	95.6	7.1 7.1	7.1		4.1 4.2	4.2	3.5	1.8	1.8	2.0
				Bottom	5	21.1 21.2	21.2	8.1 8.2	8.2	31.8 31.9	31.9	93.7 93.6	93.7	6.9 6.9	6.9	6.9	3.2 3.5	3.4		2.9 2.8	2.9	
				Surface	1	21.3 21.3	21.3	8.1 8.1	8.1	31.8 32.0	31.9	95.5 96.1	95.8	7.0 7.1	7.1	7.1	3.2 3.2	3.2		3.1 3.2	3.2	
M2	Cloudy	Moderate	11:14	Middle	5	21.2 21.2	21.2	8.1 8.2	8.2	31.8 31.7	31.8	95.3 95.7	95.5	7.0 7.1	7.1		5.0 5.5	5.3	4.4	1.9 1.9	1.9	1.9
				Bottom	9	21.1 21.1	21.1	8.1 8.2	8.2	31.8 31.8	31.8	94.4 93.7	94.1	7.0 6.9	7.0	7.0	4.9 4.6	4.8		<0.5 <0.5	<0.5	<u> </u>
				Surface	1	21.2 21.3	21.3	8.1 8.1	8.1	32.0 31.9	32.0	97.6 97.3	97.5	7.2 7.2	7.2	7.2	2.0 1.8	1.9		2.6 2.5	2.6	
M3	Cloudy	Moderate	12:13	Middle	4	21.2 21.2	21.2	8.1 8.1	8.1	31.9 31.8	31.9	97.3 96.7	97.0	7.2 7.1	7.2		3.4 3.5	3.5	3.6	2.0 1.9	2.0	1.9
				Bottom	7	21.2 21.2	21.2	8.2 8.2	8.2	31.8 31.9	31.9	97.0 97.4	97.2	7.2 7.2	7.2	7.2	5.2 5.4	5.3		1.2 1.2	1.2	
				Surface	1	21.4 21.4	21.4	8.2 8.1	8.2	31.9 31.8	31.9	96.8 96.9	96.9	7.1 7.1	7.1	7.2	3.6 3.4	3.5		2.1	2.1	
M4	Cloudy	Moderate	11:06	Middle	4	21.1	21.1	8.2 8.2	8.2	31.8 31.7	31.8	97.6 97.1	97.4	7.2 7.2	7.2		3.1 3.3	3.2	3.7	1.8	1.8	2.3
				Bottom	7	21.0 21.0	21.0	8.1 8.2	8.2	31.6 31.7	31.7	96.1 96.4	96.3	7.1 7.1	7.1	7.1	4.5 4.3	4.4		3.0 3.1	3.1	<u> </u>
				Surface	1	21.5 21.5	21.5	8.1 8.1	8.1	32.0 31.8	31.9	96.4 96.3	96.4	7.1 7.1	7.1	7.2	3.9 4.2	4.1		2.0	2.0	
M5	Cloudy	Moderate	12:52	Middle	5.5	21.1 21.1	21.1	8.1 8.1	8.1	31.8 31.9	31.9	97.9 98.6	98.3	7.2 7.3	7.3		6.1 5.5	5.8	5.6	5.8 5.9	5.9	3.2
				Bottom	10	21.0 21.0	21.0	8.1 8.2	8.2	31.9 31.9	31.9	99.2 98.4	98.8	7.3 7.3	7.3	7.3	7.0 6.8	6.9		1.7 1.7	1.7	<u> </u>
				Surface	-	-	-	-	-	-			-	-	-	7.1	-	-		-	-	
M6	Cloudy	Moderate	12:39	Middle	2.1	21.2 21.3	21.3	8.2 8.1	8.2	31.8 31.8	31.8	95.9 95.8	95.9	7.1 7.1	7.1		3.5 3.5	3.5	3.5	2.9 3.0	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 10 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
		<u>C1: 8.9 NTU</u>	<u>C1: 9.6 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	1					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		C1: 3.0 mg/L	<u>C1: 3.3 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		C1: 3.0 mg/L	<u>C1: 3.3 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		C1: 5.8 mg/L	<u>C1: 6.2 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 February 2017

Location	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.3 21.4	21.4	8.2 8.2	8.2	31.9 31.8	31.9	96.9 97.2	97.1	7.1 7.1	7.1		2.8 3.1	3.0		2.5 2.5	2.5	ı
C1	Cloudy	Moderate	18:02	Middle	10	21.1	21.1	8.1	8.2	31.8	31.8	96.0	96.4	7.1	7.1	7.1	6.1	6.2	5.5	1.7	1.7	3.0
	, , ,			_		21.1 21.0		8.2 8.2		31.8 31.8		96.7 96.2		7.1 7.1	ļ		6.3 7.5			1.7 4.8		
				Bottom	19	21.1	21.1	8.1	8.2	31.9	31.9	96.7	96.5	7.1	7.1	7.1	7.3	7.4		4.8	4.8	
				Surface	1	21.3 21.3	21.3	8.0 8.0	8.0	31.7 31.8	31.8	94.5 94.1	94.3	7.0 6.9	7.0		4.2 3.7	4.0		2.8	2.8	ı
C2	Cloudy	Moderate	16:14	Middle	18	21.1	21.1	8.0	8.1	31.7	31.8	95.1	95.2	7.0	7.0	7.0	6.5	6.5	6.0	0.9	0.9	1.7
	,					21.1 21.0		8.1 8.1		31.8 31.8		95.3 96.7		7.0 7.2	ļ		6.4 7.7			0.8 1.4		ı
				Bottom	35	21.1	21.1	8.1	8.1	31.8	31.8	97.0	96.9	7.2	7.2	7.2	7.5	7.6		1.3	1.4	
				Surface	1	22.1 22.1	22.1	8.1 8.1	8.1	32.2 32.3	32.3	99.9 100.5	100.2	7.2 7.3	7.3	7.0	3.3 3.5	3.4		2.3	2.3	
G1	Cloudy	Moderate	17:02	Middle	4	21.2	21.2	8.1	8.1	31.9	31.9	97.3	97.4	7.2	7.2	7.3	3.8	3.8	4.8	1.5	1.5	1.7
				Detter	7	21.2 21.2	04.0	8.1 8.2	0.0	31.9 31.7	04.0	97.4 95.4	05.4	7.2 7.0	7.0	7.0	3.8 6.8	7.0		1.5 1.4		ı
				Bottom	/	21.1	21.2	8.1	8.2	31.8	31.8	94.8	95.1	7.0	7.0	7.0	7.6	7.2		1.4	1.4	
				Surface	1	21.7 21.7	21.7	8.2 8.1	8.2	32.0 32.1	32.1	99.5 99.2	99.4	7.3 7.2	7.3	7.3	2.6 2.6	2.6		2.5 2.4	2.5	ı
G2	Cloudy	Moderate	16:43	Middle	5	21.4	21.4	8.1	8.1	31.9	32.0	98.7	98.8	7.3	7.3	7.3	4.4	4.7	4.3	1.8	1.8	1.9
				Dettere	9	21.4 21.1	01.1	8.1 8.1	8.2	32.0 31.8	04.0	98.9 96.5	00.4	7.3 7.1	7.1	7.4	5.0 5.7	F.0		1.8		ı
				Bottom	9	21.0	21.1	8.2	8.2	31.8	31.8	96.2	96.4	7.1	7.1	7.1	5.5	5.6		1.4	1.4	
				Surface	1	21.7 21.8	21.8	8.1 8.1	8.1	32.0 32.1	32.1	98.2 98.6	98.4	7.2 7.2	7.2	7.0	3.9 4.7	4.3		2.2 2.3	2.3	
G3	Cloudy	Moderate	17:13	Middle	4	21.3	21.3	8.1	8.1	31.9	31.9	96.5	96.4	7.1	7.1	7.2	4.8	4.8	4.6	3.4	3.5	2.6
				Dattom	7	21.2 21.1	21.1	8.1 8.2	8.2	31.9 31.8	31.8	96.3 94.1	93.7	7.1 7.0	7.0	7.0	4.8 4.4	4.7		3.5 2.0	2.0	ı
				Bottom	/	21.1	21.1	8.1	8.2	31.8	31.8	93.3	93.7	6.9	7.0	7.0	5.0	4.7		2.0	2.0	
				Surface	1	21.3 21.3	21.3	8.1 8.2	8.2	31.8 32.0	31.9	97.7 98.2	98.0	7.2 7.2	7.2	7.2	2.7 2.8	2.8		2.1 2.1	2.1	ı
G4	Cloudy	Moderate	17:32	Middle	4	21.1 21.2	21.2	8.2 8.1	8.2	31.8 31.9	31.9	97.7 98.1	97.9	7.2 7.2	7.2	1.2	4.2 5.0	4.6	4.4	0.6 0.7	0.7	1.2
				Bottom	7	21.0	21.1	8.1	8.2	31.9	31.8	96.5	96.1	7.2	7.1	7.1	5.7	5.9		0.7	0.9	ı
				DOLLOIN	,	21.1	21.1	8.2	0.2	31.7	31.0	95.7	30.1	7.1	7.1	7.1	6.1	5.5		0.9	0.5	
				Surface	1	22.0 22.0	22.0	8.1 8.1	8.1	32.2 32.2	32.2	101.1 101.2	101.2	7.3 7.3	7.3	7.3	4.3 4.9	4.6		2.2 2.3	2.3	
M1	Cloudy	Moderate	16:53	Middle	3	21.7 21.7	21.7	8.2 8.1	8.2	32.2 32.0	32.1	99.7 99.7	99.7	7.3 7.3	7.3	7.0	5.6 5.3	5.5	4.7	2.7 2.6	2.7	1.8
				Bottom	5	21.1	21.2	8.1	8.1	31.9	31.9	94.9	94.8	7.0	7.0	7.0	3.8	4.0		<0.5	<0.5	ı
					9	21.2 21.4		8.1 8.1		31.9 31.9		94.6 98.6		7.0 7.2		7.0	4.2 2.9			<0.5 2.4		
				Surface	1	21.4	21.4	8.2	8.2	32.1	32.0	98.4	98.5	7.2	7.2	7.2	3.0	3.0		2.4	2.4	ı
M2	Cloudy	Moderate	16:35	Middle	5	21.3 21.2	21.3	8.1 8.2	8.2	31.9 31.9	31.9	98.0 97.8	97.9	7.2 7.2	7.2		4.2 4.2	4.2	4.4	2.8 2.7	2.8	2.5
				Bottom	9	21.1	21.1	8.1	8.1	31.7	31.8	96.9	96.9	7.2	7.2	7.2	5.9	6.1		2.3	2.4	ı
						21.1		8.1 8.2		31.9 32.2		96.8 98.6		7.2	<u> </u>	<i> </i>	6.3 3.0			1.9		
				Surface	1	21.9	22.0	8.2	8.2	32.2	32.2	98.3	98.5	7.1	7.2	7.1	2.9	3.0		1.8	1.9	, J
М3	Cloudy	Moderate	17:24	Middle	4	21.3 21.2	21.3	8.1 8.1	8.1	31.9 31.9	31.9	95.4 95.5	95.5	7.0 7.0	7.0		5.5 5.1	5.3	5.1	3.2 3.3	3.3	2.8
				Bottom	7	21.2	21.2	8.1	8.1	31.8	31.8	91.7	91.4	6.8	6.8	6.8	6.9	7.1	1	3.0	3.1	, J
	l					21.2 21.6		8.1 8.1		31.8 32.1		91.0 101.5		6.7 7.4			7.2 3.9		l	3.1 2.0		
				Surface	1	21.6	21.6	8.1	8.1	32.1	32.1	101.3	101.4	7.4	7.4	7.4	4.0	4.0		1.9	2.0	, J
M4	Cloudy	Moderate	16:25	Middle	4	21.1 21.0	21.1	8.2 8.2	8.2	32.0 31.9	32.0	98.2 97.7	98.0	7.3 7.2	7.3		4.6 5.2	4.9	5.1	2.9 2.8	2.9	2.3
				Bottom	7	21.1	21.1	8.2	8.2	32.0	32.0	97.7	97.5	7.2	7.2	7.2	6.4	6.3	1	2.1	2.1	ı
	-					21.1 21.5		8.2 8.1		31.9 32.0		97.3 98.5		7.2 7.2		-	6.1 4.0		-	2.0 1.2		
				Surface	1	21.6	21.6	8.1	8.1	32.1	32.1	98.5	98.5	7.2	7.2	7.2	4.5	4.3		1.1	1.2	, J
M5	Cloudy	Moderate	17:53	Middle	5.5	21.0 21.1	21.1	8.2 8.1	8.2	31.8 31.9	31.9	96.9 97.8	97.4	7.2 7.2	7.2		5.6 6.2	5.9	5.6	2.2 2.3	2.3	1.7
				Bottom	10	21.1	21.1	8.2	8.2	31.9	31.9	96.9	97.0	7.2	7.2	7.2	6.8	6.5	1	1.6	1.7	, J
						21.1		8.1		31.9		97.1		7.2			6.1			1.7		
				Surface	-	-		-		-	-	-	-	-	-	7.3	-	-		-	-	ı l
M6	Cloudy	Moderate	17:41	Middle	2	21.3 21.3	21.3	8.2 8.2	8.2	31.9 31.8	31.9	98.9 98.5	98.7	7.3 7.3	7.3		4.8 4.8	4.8	4.8	0.6 0.5	0.6	0.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	, J
						-	l	-	l .	-		-		-	į.	l .	-		l .	_		

Appendix I - Action and Limit Levels for Marine Water Quality on 13 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
		<u>C2: 9.1 NTU</u>	<u>C2: 9.88 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	1					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 2.9 mg/L</u>	<u>C2: 3.1 mg/L</u>				
	Stations M1-M	<u>[5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 2.9 mg/L</u>	<u>C2: 3.1 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 2.9 mg/L</u>	<u>C2: 3.1 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 13 February 2017

Depth (m) Depth (m) Depth (m) Depth (m) Time Condition	5.5 6.1 4.8	Value 2.1 2.2 2.2 2.1 2.0 2.1 2.4 2.4 2.4 2.2 2.4 1.6 1.6 1.6 2.1	2.2 2.1 2.4 2.2 2.4 1.6	2.2 2.3
C1 Sunny Moderate 13.52 Middle	6.1	2.2 2.2 2.1 2.0 2.1 2.4 2.2 2.2 2.4 1.6 1.5 1.6 2.1	2.2 2.1 2.4 2.2 2.4 1.6	
C1 Sunny Moderate	6.1	2.1 2.0 2.1 2.4 2.2 2.2 2.4 2.4 1.6 1.6 1.5 1.6 2.1	2.1 2.4 2.2 2.4 1.6	
C2 Sunny Moderate Surface	4.8	2.1 2.4 2.4 2.2 2.2 2.4 2.4 1.6 1.5 1.6 2.1	2.4 2.2 2.4 1.6	2.3
C2 Sunny Moderate	4.8	2.4 2.2 2.2 2.4 2.4 1.6 1.5 1.6 2.1	2.2 2.4 1.6	2.3
C2 Sunny Moderate 12:47 Middle 18 21.4 7.9 7.9 28.1 28.2 92.3 90.9 6.7 6.8 6.8 6.5 6.4 6.5 6.5 6.4 8.1 8.1 28.5 28.6 89.0 6.6 6.7 6.7 7.7 7.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	4.8	2.2 2.2 2.4 2.4 1.6 1.5 1.6 2.1	2.4	2.3
G1 Sunny Moderate 13:17 Surface 1 21.3 21.3 8.1 8.1 29.4 30.3 92.0 91.5 6.9 6.8 6.7 6.7 7.5 7.5 7.8 8.0 8.0 81.0 90.9 91.5 6.7 6.8 6.8 6.9 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5		2.4 1.6 1.6 1.5 1.6 2.1	1.6	
G1 Sunny Moderate 13:17 Middle 4 21.2 21.3 8.0 8.1 31.1 30.0 90.9 91.3 6.7 0.0 6.9 3.4 3.9 4.0 3.0 4.0		1.6 1.5 1.6 2.1		
G1 Sunny Moderate 13:17 Middle 4 21:2 21.4 8.1 8.1 30.9 31.0 93.9 94.8 7.0 7.0 7.0 9.9 4.0 3.9 4.0 3.9 4.0 3.9 4.0 3.9 4.0 3.9 5.7 94.8 7.0 7.0 7.0 9.9 4.0 3.0 4.0 3.1 4.0 3.0 4.0 3.1 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.		1.5 1.6 2.1	4.0	
G2 Sunny Moderate 13:06 Surface 1 21.6 21.7 8.0 8.0 8.0 30.6 30.3 97.0 96.1 7.2 7.1 6.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	4.4		1.6	1.8
G2 Sunny Moderate 13:06 Middle 5 21.6 21.5 8.0 8.0 30.6 30.8 87.4 87.1 6.4 6.4 6.4 6.4 4.6 4.8 4.7	4.4	2.1	2.1	
G2 Sunny Moderate 13:06 Middle 5 21.6 21.5 8.0 8.0 30.7 30.8 87.4 87.1 6.4 6.4 6.4 4.8 4.7 8.0 8.0 30.8 30.8 88.7 6.5 6.5 6.5 6.5 6.5 5.8 8.0 8.0 31.0 31.0 30.9 89.0 88.7 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.4	2.1 2.1	2.1	
G3 Sunny Moderate 13:23 Middle 4 21.6 21.6 8.0 8.1 31.0 30.9 89.0 86.7 6.5 6.5 6.5 6.5 5.5 5.8 80.0 80.0 31.5 30.5 31.0 95.4 96.0 7.0 7.1 7.1 7.0 4.6 4.7 4.9 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80		4.6 4.7	4.7	3.1
G3 Sunny Moderate 13:23 Middle 4 21.8 21.8 8.0 8.0 30.5 31.0 96.6 96.0 7.1 7.1 7.1 7.0 4.6 4.3 4.3 4.5 4.5 4.5 4.9 4.9 4.7 4.9 8.1 8.1 8.1 30.9 30.9 30.9 92.9 93.2 6.8 6.9 6.9 4.7 4.9 8.1 4.7 4.9		2.6	2.6	
G3 Sunny Moderate 13:23 Middle 4 21.6 21.6 8.0 8.1 30.6 30.7 92.2 91.9 6.8 6.8 6.8 7.0 4.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		2.5	2.5	
Rottom 7 21.7 21.7 8.1 8.1 30.9 30.9 92.9 93.2 6.8 69 69 4.7 4.9	4.7	4.3 4.3	4.3	2.9
		1.7	1.8	
Surface 1 21.1 21.1 8.0 8.0 29.1 29.3 95.6 95.4 7.2 7.2 2.7 2.7		1.8	1.9	
G4 Sunny Moderate 13:34 Middle 4 21.5 21.4 8.0 8.1 30.3 30.3 93.8 94.3 7.1 7.1 7.1 2.7 4.5 4.8 5.0 8.1 30.3 30.3 94.8 94.3 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	4.5	1.8	1.8	2.0
Bottom 7 21.5 21.5 8.1 8.1 30.3 30.4 93.2 88.3 6.9 6.6 6.6 5.8 5.9		2.3	2.3	1
Surface 1 21.8 21.8 8.1 8.1 31.0 30.9 91.6 92.2 6.7 6.8 4.9 4.8		1.2	1.3	
M1 Sunny Moderate 13:11 Middle 3 21.7 21.7 8.1 8.1 30.8 30.8 91.8 92.0 6.8 6.8 5.5 5.5 5.5	4.8	1.8 1.8	1.8	1.6
Bottom 5 22.0 21.8 8.0 8.0 30.9 31.0 93.1 92.1 6.8 6.8 6.8 3.9 4.0		1.8	1.8	
Surface 1 21.5 21.6 8.1 8.1 31.1 30.7 96.7 95.7 7.1 7.1 3.1 3.0 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		2.0	2.1	
M2 Sunny Moderate 13:01 Middle 5.5 21.7 21.6 8.0 8.0 30.6 30.7 87.4 87.6 6.5 6.5 4.2 4.3 4.3	4.5	1.2	1.2	1.6
Bottom 10 21.4 21.6 8.0 8.1 31.0 31.0 89.0 89.4 6.6 6.6 6.6 6.6 6.4 6.3		1.4	1.5	
Surface 1 21.2 21.2 8.1 8.1 30.2 30.2 91.7 92.5 7.0 6.9 2.9 2.9		2.0	2.1	
M3 Sunny Moderate 13:28 Middle 4.5 21.6 21.5 8.0 8.1 30.7 30.7 90.4 90.3 6.7 6.7 5.5 5.5 5.5	5.0	3.3 1.9	2.6	2.5
Bottom 8 21.5 21.5 8.1 8.1 30.8 30.8 85.2 85.5 6.3 6.3 6.3 6.5 6.7		2.2 3.2	2.7	
Surface 1 21.1 21.4 7.9 7.9 28.1 28.5 93.4 95.6 7.1 7.2 3.7 3.8 28.5 97.7 95.6 7.3 7.2 3.8 3.8		2.5 2.4	2.5	
M4 Sunny Moderate 12:55 Middle 4 21.4 21.4 8.0 8.0 29.6 29.6 91.9 91.9 6.8 6.8 7.0 5.0 5.0	5.0	1.5	1.6	2.1
Bottom 7 21.3 21.4 8.0 8.0 30.2 30.2 89.1 90.0 6.6 6.7 6.7 6.3 6.3 6.3		2.0	2.1	
Surface 1 21.0 21.1 8.0 8.1 30.4 30.4 90.6 90.1 6.8 6.8 4.0 4.2 21.2 21.1 8.1 30.4 89.6 90.1 6.7 6.8 4.3		2.5 2.5	2.5	
M5 Sunny Moderate 13:45 Middle 5.5 21.2 21.2 8.1 30.4 89.0 6.7 6.8 6.8 5.6 5.7 5.7	5.5	2.2	2.2	2.2
Bottom 10 21.4 21.4 8.0 8.0 30.7 30.7 90.9 90.6 6.7 6.7 6.7 6.5 6.5 6.7		2.0	2.0	
Surface		-	-	
M6 Sunny Moderate 13:40 Middle 2.3 21.2 21.4 8.0 8.0 31.0 31.0 88.6 88.4 6.5 6.6 4.2 4.2 4.2	4.2	2.1 2.2	2.2	2.2
Bottom -		-	-	1

Appendix I - Action and Limit Levels for Marine Water Quality on 13 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Tumbidituin		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C1: 6.4 NTU</u>	<u>C1: 6.9 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		6.0 mg/L	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 3.8 mg/L</u>	<u>C1: 4.1 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 13 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.4 21.3	21.4	8.1 8.1	8.1	32.0 31.1	31.6	100.0 100.2	100.1	7.3 7.4	7.4	7.3	3.2 3.6	3.4		3.0 3.1	3.1	1
C1	Sunny	Moderate	09:45	Middle	10	20.7 21.1	20.9	8.0 8.1	8.1	31.1 30.9	31.0	94.1 95.4	94.8	7.0 7.1	7.1	7.3	3.9 3.8	3.9	4.2	4.3 4.2	4.3	3.5
				Bottom	19	21.1 21.4	21.3	8.1 8.1	8.1	29.2 29.4	29.3	92.1 92.6	92.4	6.9 6.9	6.9	6.9	5.2 5.3	5.3		3.2 3.1	3.2	
				Surface	1	21.1 21.2	21.2	8.0 8.0	8.0	30.9 30.9	30.9	97.1 98.1	97.6	7.2 7.3	7.3	7.3	2.9 2.5	2.7		1.7 1.7	1.7	
C2	Sunny	Moderate	08:32	Middle	18	21.0 21.0 20.7	21.0	7.9 7.9 8.0	7.9	30.4 30.5 30.4	30.5	95.7 96.0 94.2	95.9	7.1 7.2	7.2		4.0 3.4	3.7	4.2	1.7 1.7 1.2	1.7	1.6
				Bottom	35	21.0	20.9	8.0	8.0	30.5	30.5	95.3	94.8	7.1 7.1	7.1	7.1	6.3 6.1	6.2		1.3	1.3	
				Surface	1	21.2	21.0	8.1 8.0	8.1	29.2 29.2	29.2	97.5 95.0	96.3	7.3 7.2	7.3	7.2	3.8 4.0	3.9		3.2	3.3	
G1	Sunny	Moderate	09:05	Middle	4	21.1	20.7	8.0 8.0	8.0	29.5 29.6	29.6	93.5 92.6	93.1	7.0 7.0	7.0		3.9 4.1	4.0	4.0	1.9 1.9	1.9	2.3
				Bottom	7	20.1 20.2	20.2	8.1 8.0	8.1	30.3 30.2	30.3	91.3 91.3	91.3	6.9 6.9	6.9	6.9	4.2 4.2	4.2		1.8 1.8	1.8	
				Surface	1	20.7 20.9	20.8	8.1 8.0	8.1	29.9 29.9	29.9	94.9 94.7	94.8	7.1 7.1	7.1	7.1	3.2	3.3		2.1	2.1	
G2	Sunny	Moderate	08:52	Middle	5	21.0	20.9	8.0 8.0	8.0	30.2 30.3	30.3	93.0 92.1	92.6	7.0 6.9	7.0		2.1	2.3	3.3	1.0 0.9	1.0	1.3
				Bottom	9	20.9	21.0	8.0 8.0	8.0	29.8 30.0	29.9	91.2 90.9	91.1	6.8 6.8	6.8	6.8	4.3 4.5	4.4		0.7 0.8	0.8	
				Surface	1	21.2	21.0	8.1 8.1	8.1	29.0 29.2	29.1	96.4 96.2	96.3	7.2 7.3	7.3	7.2	3.3	3.3		1.2	1.3	
G3	Sunny	Moderate	09:12	Middle	4	21.0 20.8 20.7	20.9	7.9 8.1 8.0	8.0	29.9 29.9 30.3	29.9	94.1 92.9 93.0	93.5	7.0 7.0	7.0		5.6 5.5	5.6	5.0	1.2 1.1 1.3	1.2	1.3
				Bottom	7	20.7	20.7	8.0	8.0	30.4	30.4	92.0	92.5	7.0 6.9	7.0	7.0	5.6 6.6	6.1		1.4	1.4	
				Surface	1	21.7 21.5	21.6	8.0 8.0	8.0	30.8 31.1	31.0	96.3 96.8	96.6	7.1 7.1	7.1	7.1	4.5 3.8	4.2		1.6	1.6	
G4	Sunny	Moderate	09:25	Middle	4	21.1	21.1	8.1 8.1	8.1	30.8 30.8	30.8	94.2 95.0	94.6	7.0 7.1	7.1		5.0 5.5	5.3	5.0	2.4 2.5	2.5	1.8
				Bottom	7	21.0 21.3	21.2	8.1 8.1	8.1	30.7 30.8	30.8	90.6 91.0	90.8	6.8 6.7	6.8	6.8	5.3 5.6	5.5		1.2	1.3	<u> </u>
				Surface	1	21.2	21.2	8.0 8.1	8.1	29.0 29.0 29.5	29.0	95.4 94.6	95.0	7.2 7.1	7.2	7.1	3.1 3.2 4.9	3.2		2.4 2.5	2.5	
M1	Sunny	Moderate	08:59	Middle	3	20.6 20.8 20.9	20.7	8.1 8.0 8.0	8.1	29.4 31.1	29.5	92.7 91.5 90.1	92.1	7.0 6.9 6.7	7.0		4.9 4.1 2.9	4.5	3.7	1.9 2.0 2.2	2.0	2.2
				Bottom	5	20.9	20.9	8.0 8.0	8.0	31.2	31.2	90.4	90.3	6.7	6.7	6.7	3.6	3.3		2.1	2.2	<u> </u>
				Surface	1	20.8	20.9	8.0	8.0	30.9	31.0	93.8 94.3	94.1	7.0 7.0	7.0	6.9	2.8	2.8		2.0 2.9 3.0	2.9	
M2	Sunny	Moderate	08:45	Middle	5.5	20.8 20.8 21.1	20.8	8.0 8.1	8.1	30.0 29.7 30.6	29.9	90.4 89.9 89.8	90.2	6.8 6.8	6.8		5.2 5.1	5.2	4.3	3.0 3.0 2.1	3.0	2.7
				Bottom	10	21.0	21.1	8.1 8.0	8.1	30.3	30.5	90.1	90.0	6.7 6.7	6.7	6.7	4.7 4.9	4.8		2.2	2.2	<u> </u>
				Surface	1	20.9	21.0	8.1 8.0	8.1	31.4 31.6	31.5	98.5 100.1	99.3	7.3 7.4	7.4	7.3	1.8	2.0		1.3	1.3	
M3	Sunny	Moderate	09:18	Middle	4.5	20.9	21.1	8.1 8.0	8.1	31.8 31.8	31.8	96.5 97.8	97.2	7.2 7.2	7.2		3.2	3.3	3.6	2.6 2.6	2.6	2.1
				Bottom	8	21.2 21.3	21.3	8.0 8.0	8.0	31.7 32.1	31.9	94.2 102.4	98.3	7.0 7.5	7.3	7.3	5.1 5.6	5.4		2.5 2.5	2.5	<u></u>
				Surface	1	20.6 21.2 20.9	20.9	8.0 8.0 8.1	8.0	29.2 29.5 29.7	29.4	96.2 97.7 95.5	97.0	7.3 7.3 7.2	7.3	7.3	3.6 3.2 3.3	3.4		2.4 2.4 2.0	2.4	ĺ
M4	Sunny	Moderate	08:40	Middle	4	20.9 20.9 19.9	20.9	8.0 8.1	8.1	29.7 29.7 29.3	29.7	95.5 94.7 90.4	95.1	7.1 6.9	7.2		3.4 4.8	3.4	3.8	1.9 1.8	2.0	2.1
				Bottom	7	20.1	20.0	8.1	8.1	29.3 29.4 31.6	29.4	90.4 89.2 98.3	89.8	6.8	6.9	6.9	4.5	4.7		1.8	1.8	
				Surface	1	21.1 21.3 21.0	21.2	8.0 8.1 8.1	8.1	31.6 32.3 30.7	32.0	98.3 98.4 93.7	98.4	7.3 7.2 7.0	7.3	7.2	3.9 4.0 4.4	4.0		1.7 1.8 1.1	1.8	ĺ
M5	Sunny	Moderate	09:36	Middle	5.5	21.0 21.1 21.3	21.1	8.1 8.2	8.1	31.3 30.2	31.0	93.7 94.6 91.6	94.2	7.0 7.0 6.8	7.0		4.4 4.4 5.2	4.4	4.5	1.1	1.1	1.8
				Bottom	10	21.3	21.3	8.2	8.2	30.2	30.3	91.0	91.3	6.8	6.8	6.8	5.2	5.2		2.5	2.5	
				Surface	-	21.1	-	8.0	-	30.9	-	94.1	-	7.0	-	6.9	3.8	-		2.1	-	ĺ
M6	Sunny	Moderate	09:31	Middle	2.1	21.1	21.2	8.0	8.0	30.9	30.9	94.1	93.2	7.0 6.8	6.9		3.8	3.5	3.5	2.1	2.2	2.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 15 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Tumbidituin		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 8.9 NTU</u>	<u>C2: 9.6 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		6.0 mg/L	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.7 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	þ	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.1 17.9	18.0	8.0 8.0	8.0	30.8 30.5	30.7	96.6 96.5	96.6	7.6 7.6	7.6	7.2	4.5 4.5	4.5		3.0 3.0	3.0	1
C1	Sunny	Moderate	15:41	Middle	10.5	18.2 17.9	18.1	8.0 8.0	8.0	31.9 31.9	31.9	83.7 88.1	85.9	6.5 6.9	6.7	1.2	6.2 6.5	6.4	6.4	2.5 2.4	2.5	2.9
				Bottom	20	17.9 17.9	17.9	8.0 8.0	8.0	32.3 32.2	32.3	82.1 84.0	83.1	6.4 6.6	6.5	6.5	8.2 8.3	8.3		3.2 3.1	3.2	
				Surface	1	17.8 17.8	17.8	8.0 8.0	8.0	31.1 31.1	31.1	94.7 95.3	95.0	7.5 7.5	7.5	7.2	4.0 4.5	4.3		5.2 5.1	5.2	
C2	Sunny	Moderate	14:07	Middle	18	17.8 17.8	17.8	8.0 8.0	8.0	32.2 32.2	32.2	84.3 89.1	86.7	6.6 7.0	6.8	7.2	5.6 5.7	5.7	5.8	2.5 2.5	2.5	4.2
				Bottom	35	17.8 17.8	17.8	7.9 8.0	8.0	32.2 32.2	32.2	80.4 79.6	80.0	6.3 6.2	6.3	6.3	7.2 7.6	7.4		4.8 4.7	4.8	
				Surface	1	17.7 17.7	17.7	8.0 8.0	8.0	32.3 32.3	32.3	92.8 87.0	89.9	7.3 6.8	7.1	7.0	5.7 5.0	5.4		5.1 5.2	5.2	
G1	Sunny	Moderate	14:44	Middle	4	17.7 17.4	17.6	8.0 8.0	8.0	32.4 32.5	32.5	84.3 90.0	87.2	6.6 7.1	6.9		5.0 4.9	5.0	5.0	4.8 4.9	4.9	4.3
				Bottom	7	17.6 17.3	17.5	8.0 8.0	8.0	33.1 33.0	33.1	85.8 83.0	84.4	6.7 6.5	6.6	6.6	4.6 4.4	4.5		2.7 2.8	2.8	
				Surface	1	17.8 17.7	17.8	7.9 8.0	8.0	32.6 32.6	32.6	92.2 100.1	96.2	7.2 7.8	7.5	7.2	5.0 5.0	5.0		3.1 3.0	3.1	
G2	Sunny	Moderate	14:28	Middle	5	17.7 17.8	17.8	8.0 8.0	8.0	32.6 32.5	32.6	84.0 88.4	86.2	6.6 6.9	6.8		4.8 4.8	4.8	4.6	2.9	2.9	2.9
				Bottom	9	17.7 17.7	17.7	8.1 8.0	8.1	33.3 33.0	33.2	79.5 80.2	79.9	6.2 6.3	6.3	6.3	4.1 4.1	4.1		2.8 2.7	2.8	
				Surface	1	17.7 17.8	17.8	7.9 8.0	8.0	32.7 32.8	32.8	92.2 89.4	90.8	7.2 7.0	7.1	7.2	4.3 4.1	4.2		3.6 3.5	3.6	
G3	Sunny	Moderate	14:53	Middle	4	17.6 17.5	17.6	7.9 7.9	7.9	32.6 32.7	32.7	93.7 91.6	92.7	7.4 7.2	7.3		4.6 4.3	4.5	4.3	2.7	2.8	2.5
				Bottom	7	17.8 17.5	17.7	7.9 7.9	7.9	33.0 32.8	32.9	90.3 93.8	92.1	7.1 7.4	7.3	7.3	4.5 4.1	4.3		1.2	1.2	
				Surface	1	18.2 17.9	18.1	7.9 7.9	7.9	30.7 30.8	30.8	76.2 73.6	74.9	6.0 5.8	5.9	6.0	4.7 4.3	4.5		3.0 3.1	3.1	
G4	Sunny	Moderate	15:11	Middle	4	18.2 17.9 17.9	18.1	7.9 7.9 7.9	7.9	31.6 31.8 32.6	31.7	76.5 77.2 79.1	76.9	6.0 6.1	6.1		5.1 5.6 5.3	5.4	5.1	2.4 2.5 4.4	2.5	3.3
				Bottom	7	17.9	17.9	8.0	8.0	32.4	32.5	72.4	75.8	6.2 5.7	6.0	6.0	5.3	5.3		4.2	4.3	
				Surface	1	17.7 17.7 17.7	17.7	7.9 7.9 8.0	7.9	32.9 32.6 32.9	32.8	88.9 90.9 87.8	89.9	7.0 7.1	7.1	7.0	4.2 4.3 4.7	4.3		2.6 2.7 2.8	2.7	
M1	Sunny	Moderate	14:36	Middle	3	17.6 17.7	17.7	7.9 8.0	8.0	33.1 32.6	33.0	87.3 84.0	87.6	6.9 6.8 6.6	6.9		5.1 4.8	4.9	4.7	2.9	2.9	2.6
				Bottom	5	17.8 17.4	17.8	8.0 8.0	8.0	32.5 31.3	32.6	88.4 88.9	86.2	6.9 7.1	6.8	6.8	4.8	4.8		2.2	2.2	
				Surface	1	17.7 17.8	17.6	8.0 7.9	8.0	31.2 32.3	31.3	87.9 84.7	88.4	6.9	7.0	6.8	4.4 5.6	4.2		2.9	2.9	
M2	Sunny	Moderate	14:21	Middle	5.5	17.8 17.7	17.8	7.9 8.0	7.9	32.3 32.3	32.3	83.3 79.7	84.0	6.5 6.3	6.6		5.7 7.2	5.7	5.7	1.5	1.5	1.9
				Bottom	10	17.7 18.1	17.7	8.0 8.0	8.0	32.4 30.6	32.4	80.9 88.3	80.3	6.3 7.0	6.3	6.3	7.3	7.3		1.3	1.4	
				Surface	1	17.9	18.0	8.0 7.9	8.0	30.5	30.6	86.2 77.8	87.3	6.8	6.9	6.6	4.1	4.0		1.9	1.9	
M3	Sunny	Moderate	15:02	Middle	4.5	17.9 17.8	18.0	8.0 7.9	8.0	31.0 31.6	31.0	79.0 77.5	78.4	6.2	6.2		4.5	4.4	4.4	1.5	1.6	2.0
				Bottom	8	17.9 17.7	17.9	8.0 7.9	8.0	31.6 33.0	31.6	74.9 94.2	76.2	5.9 7.4	6.0	6.0	4.6	4.7		2.4	2.5	
M4	0,	Mod	14:44	Surface	1	17.7 17.7	17.7	8.0 7.9	8.0	32.9 33.0	33.0	95.1 84.8	94.7	7.4 6.6	7.4	7.1	4.2	4.3	40	3.1	3.1	0.4
M4	Sunny	Moderate	14:14	Middle Bottom	4.5 8	17.1 17.7	17.4	8.0	8.0	32.7 34.0	32.9	87.6 86.3	86.2 84.6	6.9 6.7	6.8	6.6	4.7 5.7	4.8 5.7	4.9	2.9 3.2	3.0	3.1
				Surface	1	17.1 18.1	18.0	8.0 8.0	8.0	33.6 30.7	30.8	82.8 81.2	83.6	6.5 6.4	6.6	0.0	5.7 4.8	4.6		3.2 3.8	3.2	
M5	Sunny	Moderate	15:28	Middle	6	17.9 18.1	18.1	8.0 8.0	8.0	30.8 31.9	32.0	86.0 82.8	85.3	6.8 6.5	6.7	6.7	4.4 6.9	6.6	6.7	3.7 5.4	5.3	3.5
IVIS	Juliny	wiouciale	13.20	Bottom	11	18.0 17.9	18.0	8.0 8.0	8.0	32.0 32.5	32.6	87.8 85.9	84.6	6.9 6.7	6.6	6.6	6.3 8.5	8.8	0.7	5.2 1.4	1.5	3.3
				Surface	-	18.0	-	8.0	-	32.6	-	83.2	-	6.5	-	0.0	9.1	-		1.5	-	
M6	Sunny	Moderate	15:19	Middle	2.2	18.3	18.3	8.0	8.0	30.6	31.0	90.8	92.8	7.1	7.3	7.3	5.3	4.9	4.9	5.8	5.8	5.8
WIO	Ourny	odcrate	10.10	Bottom		18.2	10.0	8.0	- 0.0	31.4	- 01.0	94.8	52.0	7.4	- 7.0	_	4.5	7.0	7.5	5.7	5.0	0.0
				DOLLOITI	-	-	-	-	_	-	_	-]	-	_	-	-	_		-		.

Appendix I - Action and Limit Levels for Marine Water Quality on 15 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C1: 7.0 NTU</u>	<u>C1: 7.5 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	7.9 mg/L				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			nded Solids	
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.3 17.9	18.1	7.9 7.9	7.9	31.1 31.1	31.1	97.9 95.9	96.9	7.7 7.6	7.7	7.2	4.7 4.9	4.8		5.7 5.6	5.7	l
C1	Sunny	Moderate	10:32	Middle	10	18.3 17.7	18.0	8.0 8.0	8.0	31.6 31.7	31.7	86.2 85.6	85.9	6.7 6.7	6.7		4.8 4.9	4.9	5.2	2.3 2.3	2.3	3.8
				Bottom	19	17.9 17.8	17.9	8.0 8.0	8.0	31.6 31.6	31.6	85.7 83.5	84.6	6.7 6.6	6.7	6.7	5.7 5.9	5.8		3.5 3.5	3.5	
C2		Moderate	08:32	Surface	1	18.0 17.5	17.8	7.9 7.8	7.9	31.9 31.8	31.9	91.4 92.1	91.8	7.1 7.3	7.2	7.0	5.8 5.6	5.7		3.1 3.0	3.1	l
	Sunny			Middle	18	18.0 17.3	17.7	7.8 7.8	7.8	31.6 31.6	31.6	85.6 83.0	84.3	6.7 6.6	6.7		5.9 5.7	5.8	5.9	2.4	2.4	3.2
				Bottom	35	17.4 17.3	17.4	7.9 7.9	7.9	31.6 31.5	31.6	87.5 82.4	85.0	6.9 6.6	6.8	6.8	6.0 6.1	6.1		4.1 4.1	4.1	L
G1 S		Moderate	09:28	Surface	1	17.9 17.7	17.8	8.0 8.0	8.0	31.4 31.5	31.5	93.6 90.8	92.2	7.4 7.2	7.3	7.0	4.8 4.6	4.7		2.8 2.8	2.8	
	Sunny			Middle	4	17.9 17.7	17.8	8.0 7.9	8.0	31.4 31.6	31.5	82.6 85.0	83.8	6.5 6.7	6.6		5.4 5.8	5.6	5.6	2.8 2.7	2.8	2.6
				Bottom	7	17.7 17.7	17.7	7.9 8.0	8.0	31.9 31.8	31.9	82.0 86.0	84.0	6.5 6.8	6.7		6.6 6.6	6.6		2.2 2.3	2.3	
G2 Su		Moderate	09:03	Surface	1	17.8 17.7	17.8	8.0 8.0	8.0	32.2 31.9	32.1	90.0 88.5	89.3	7.1 7.0	7.1	6.9	4.6 4.1	4.4		4.3 4.2 3.0 3.0 3.0	4.3	3.4
	Sunny			Middle	5	17.8 17.7	17.8	7.9 7.9	7.9	32.0 32.1	32.1	85.2 85.5	85.4	6.7 6.7	6.7		4.4 4.6	4.5	4.7		3.0	
				Bottom	9	17.7 17.7	17.7	8.0 7.9	8.0	32.3 32.3	32.3	82.5 79.5	81.0	6.5 6.2	6.4		5.1 5.1	5.1		2.8 2.9	2.9	
				Surface	1	17.4 17.4	17.4	8.0 8.0	8.0	31.5 31.5	31.5	90.2 95.4	92.8	7.2 7.6	7.4	7.0	4.5 4.4	4.5	5.1	2.3 2.2	2.3	3.0
G3	Sunny	Moderate	09:38	Middle	4	17.4 17.4	17.4	7.9 8.0	8.0	31.7 31.7	31.7	85.0 82.5	83.8	6.7 6.5	6.6		4.6 5.0	4.8		4.7 4.8	4.8	
				Bottom	7	17.4 17.4	17.4	8.0 8.0	8.0	32.0 32.1	32.1	82.4 83.0	82.7	6.5 6.6	6.6		6.1 6.1	6.1		1.8 1.8	1.8	
G4 St			10:00	Surface	1	18.4 17.7	18.1	7.9 7.9	7.9	31.5 31.5	31.5	88.1 91.3	89.7	6.9 7.2	7.1	- 6.9 7.0	4.8 5.0	4.9	5.7 2.6 3.8 3.8 3.7	2.5 2.6	2.6	
	Sunny	Moderate		Middle	4	18.4 17.7	18.1	8.0 8.0	8.0	31.6 31.7	31.7	84.3 84.0	84.2	6.6 6.6	6.6		5.8 5.8	5.8		3.8 3.8	3.8	3.4
				Bottom	7	17.8 17.7	17.8	8.0 8.0	8.0	32.0 32.0	32.0	88.6 87.7	88.2	7.0 6.9	7.0		6.3 6.4	6.4		3.7 3.6	3.7	
M1		Moderate	09:15	Surface	1	17.4 17.4	17.4	7.9 7.9	7.9	31.8 31.6	31.7	87.9 87.2	87.6	7.0 6.9	7.0	6.9	4.4 4.6	4.5		2.6	3.7	3.1
	Sunny			Middle	3	17.4 17.3	17.4	7.9 7.9	7.9	31.7 31.7	31.7	85.0 84.1	84.6	6.7 6.7	6.7		4.6 4.8	4.7	4.8	3.0 3.1	3.1	
				Bottom	5	18.4 17.3	17.9	8.0 7.9	8.0	31.6 31.9	31.8	84.3 82.9	83.6	6.6 6.6	6.6		5.8 4.7	5.3		2.5 2.6	2.6	
		Moderate	08:52	Surface	1	18.0 17.5	17.8	8.0 7.9	8.0	32.1 32.0	32.1	89.7 85.6	87.7	7.0 6.8	6.9	6.7	4.7 4.6	4.7		2.5 2.6	2.6	3.7
M2	Sunny			Middle	6	18.0 17.3	17.7	7.9 7.9	7.9	32.0 31.9	32.0	81.8 79.1	80.5	6.4 6.3	6.4		4.8 4.7	4.8	4.8	5.1 5.1	5.1	
				Bottom	11	17.4 17.3	17.4	8.0 7.9	8.0	32.0 32.0	32.0	80.2 79.3	79.8	6.3 6.3	6.3		4.8 4.8	4.8		3.5 3.4	3.5	
			9:50	Surface	1	18.3 18.0	18.2	8.0 8.0	8.0	32.0 31.9	32.0	101.2 95.8	98.5	7.9 7.5	7.7	7.2 6.3	5.3 5.4	5.4		2.3 2.2	2.3	1.5
M3 Su	Sunny	Moderate		Middle	4.5	18.3 17.8	18.1	7.9 8.0	8.0	32.3 32.0	32.2	86.0 85.1	85.6	6.7 6.7	6.7		5.7 5.5	5.6	5.6	0.0	0.9	
				Bottom	8	18.0 17.7	17.9	7.9 7.9	7.9	32.6 32.3	32.5	83.0 77.4	80.2	6.5 6.1	6.3		5.7 5.9	5.8		1.3	1.4	
				Surface	1	17.4 17.4	17.4	7.9 7.9	7.9	31.9 31.8	31.9	90.2 90.5	90.4	7.1 7.2	7.2	7.0	4.0 4.0	4.0		1.4	1.4	
M4	Sunny	Moderate	08:41	Middle	4	17.4 16.8	17.1	7.9 7.9	7.9	31.6 31.6	31.6	84.2 83.2	83.7	6.7 6.7	6.7	7.0	4.2 4.5	4.4	5.0	1.3		1.5
				Bottom	7	17.4 16.8	17.1	8.0 7.9	8.0	31.7 31.7	31.7	81.8 77.9	79.9	6.5 6.2	6.4	6.4	6.7 6.6	6.7	1	1.7	1.8	
M5	Sunny	Moderate	10:19	Surface	1	18.2 17.9	18.1	8.0 8.0	8.0	31.4 31.4	31.4	89.6 90.2	89.9	7.0 7.1	7.1	6.9	5.7 5.7	5.7		3.1 3.0	3.1	
				Middle	5.5	18.2 17.7	18.0	8.0 8.0	8.0	31.9 31.9	31.9	85.1 85.7	85.4	6.6 6.7	6.7		4.8 4.7	4.8	5.8	<0.5 <0.5	<0.5	2.2
				Bottom	10	17.9 17.7	17.8	8.0 8.0	8.0	31.8 31.8	31.8	80.1 78.3	79.2	6.3 6.2	6.3		6.7 7.0	6.9	1	2.8	2.9	
M6	Sunny	Moderate	10:09	Surface	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-		-	-	
				Middle	2.1	18.4 18.3	18.4	7.9 8.0	8.0	31.5 31.6	31.6	95.8 84.4	90.1	7.5 6.6	7.1		5.3 5.6	5.5	5.5	1.5 1.5	1.5	1.5
				Bottom	-	-	-	-	-		-	-	-	-	-		-	-	1		-	
	l					_		_	L	_	l		1		L			L	L			

Appendix I - Action and Limit Levels for Marine Water Quality on 17 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level								
	Stations G1-G4, M1-M5										
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>								
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>								
	Station M6										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>								
	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>								
Turbidity in		or 120% of upstream control	or 130% of upstream control								
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide								
(See Note 2 and 4)		tide of the same day	of the same day								
		<u>C2: 5.0 NTU</u>	<u>C2: 5.5 NTU</u>								
	Station M6										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>								
	Stations G1-G4	<u>I</u>									
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Surface	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 4.3 mg/L</u>	<u>C2: 4.7 mg/L</u>								
	Stations M1-M5										
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the								
(See Note 2 and 4)		the same day	same day								
		<u>C2: 4.3 mg/L</u>	<u>C2: 4.7 mg/L</u>								
	Stations G1-G4, M1-M5										
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Bottom	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 2.9 mg/L</u>	<u>C2: 3.1 mg/L</u>								
	Station M6										
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>								

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.0 21.5	21.8	7.9 7.9	7.9	30.8 30.7	30.8	99.0 98.4	98.7	7.2 7.3	7.3	7.2	3.5 3.4	3.5		1.9 1.9	1.9	1
C1	Sunny	Moderate	17:05	Middle	10	21.6 22.3	22.0	7.7 7.7	7.7	30.7 30.7	30.7	96.5 97.5	97.0	7.1 7.1	7.1	1.2	5.4 5.4	5.4	4.4	1.0 1.0	1.0	1.3
				Bottom	19	21.8 22.0	21.9	7.6 7.5	7.6	30.7 30.8	30.8	95.6 95.9	95.8	7.0 7.0	7.0	7.0	4.2 4.2	4.2		0.9 1.0	1.0	
				Surface	1	22.4 21.8	22.1	7.6 7.7	7.7	30.2 30.2	30.2	91.1 90.3	90.7	6.6 6.7	6.7	6.7	2.5 2.6	2.6		3.6 3.6	3.6	
C2	Sunny	Moderate	15:53	Middle	18	21.7 22.1	21.9	7.5 7.6	7.6	30.5 30.4	30.5	89.6 90.5	90.1	6.6 6.6	6.6		2.9 2.9	2.9	3.2	1.1	1.1	2.4
				Bottom	35	22.0 21.6	21.8	7.5 7.6	7.6	30.6 30.5	30.6	90.8 89.3	90.1	6.7 6.6	6.7	6.7	4.2 4.2	4.2		2.4 2.3	2.4	<u> </u>
				Surface	1	22.7 21.9	22.3	8.1 8.0	8.1	30.5 30.6	30.6	94.7 93.8	94.3	6.9 6.9	6.9	7.0	2.5 2.7	2.6		1.6 1.6	1.6	
G1	Sunny	Moderate	16:26	Middle	4	21.9 21.9	21.9	7.9 8.0	8.0	30.7 30.7	30.7	94.6 95.4	95.0	6.9 7.0	7.0		3.5 3.8	3.7	3.6	2.5 2.5	2.5	1.5
				Bottom	7	21.8 21.5	21.7	7.8 7.9	7.9	30.9 30.9	30.9	95.6 94.0	94.8	7.0 6.9	7.0	7.0	4.4 4.3	4.4		<0.5 <0.5	<0.5	
				Surface	1	21.8 22.3	22.1	8.1 8.0	8.1	31.0 31.0	31.0	93.9 95.5	94.7	6.9 6.9	6.9	6.9	2.3 2.4	2.4		<0.5 <0.5	<0.5	
G2	Sunny	Moderate	16:13	Middle	5	21.7	21.9	7.9 7.9	7.9	31.0 30.9	31.0	93.8 93.9	93.9	6.9 6.9	6.9		2.9 3.2	3.1	3.2	3.0 2.9	3.0	1.3
				Bottom	9	21.7	22.0	7.9 7.9	7.9	31.3 31.2	31.3	93.2 94.8	94.0	6.8 6.9	6.9	6.9	3.8 4.4	4.1		<0.5 <0.5	<0.5	<u> </u>
				Surface	1	21.3 22.1	21.7	8.1 8.1	8.1	30.8 30.6	30.7	94.4 94.2	94.3	7.0 6.9	7.0	6.9	3.4	3.6		2.0	2.0	
G3	Sunny	Moderate	16:32	Middle	4	22.3 21.7 22.0	22.0	8.0 8.0 8.0	8.0	30.6 30.7 30.8	30.7	94.0 93.0 94.4	93.5	6.8 6.8	6.8		4.3 3.7	4.0	3.7	3.9 3.9 1.2	3.9	2.4
				Bottom	7	21.8	21.9	7.9	8.0	30.9	30.9	92.7	93.6	6.9 6.8	6.9	6.9	3.6 3.2	3.4		1.1	1.2	<u> </u>
				Surface	1	21.9	22.0	8.0 8.0	8.0	30.3 30.3	30.3	95.6 94.9	95.3	7.0 7.0	7.0	7.0	2.6	2.7		3.1 3.2	3.2	
G4	Sunny	Moderate	16:45	Middle	4	21.7	22.0	7.9 7.9	7.9	30.4 30.4	30.4	95.4 95.0	95.2	7.0 6.9	7.0		3.1 3.5	3.3	3.2	4.1 4.1	4.1	2.8
				Bottom	7	22.2	22.0	7.8 7.7	7.8	30.8 30.7	30.8	93.6 92.6	93.1	6.8 6.8	6.8	6.8	3.6 3.7	3.7		1.2	1.2	<u> </u>
				Surface	1	22.7 22.1	22.4	8.0 8.0 8.0	8.0	30.8 30.7	30.8	94.1 93.1	93.6	6.8 6.8	6.8	6.9	2.6 2.8 4.1	2.7		1.2 1.3 2.2	1.3	
M1	Sunny	Moderate	16:20	Middle	3	22.1 22.0 21.7	22.1	7.9 7.8	8.0	30.8 31.0 31.1	30.9	92.9 93.9 91.3	93.4	6.8 6.9 6.7	6.9		4.1 4.7 3.6	4.4	3.6	2.2 2.3 1.9	2.3	1.8
				Bottom	5	22.2	22.0	7.9 8.0	7.9	31.2	31.2	93.0	92.2	6.8	6.8	6.8	3.7	3.7		1.8	1.9	<u> </u>
				Surface	1	22.7 21.5	22.3	8.0 7.9	8.0	30.2 30.2 30.4	30.2	93.0 95.4 92.9	94.2	6.9 6.9 6.9	6.9	6.9	2.3 2.4 2.4	2.4		2.0	2.0	
M2	Sunny	Moderate	16:06	Middle	5	21.5 22.2 21.9	21.9	7.9 7.9 7.9	7.9	30.4 30.4 30.5	30.4	92.9 94.1 90.9	93.5	6.9 6.7	6.9		2.4 2.3 2.5	2.4	2.5	3.7 3.6 1.3	3.7	2.3
				Bottom	9	22.0	22.0	7.9	7.9	30.5	30.5	91.9	91.4	6.7	6.7	6.7	2.7	2.6		1.3	1.3	<u> </u>
				Surface	1	21.9 22.2	22.1	7.8 7.7	7.8	30.4 30.5	30.5	95.0 95.1	95.1	7.0 6.9	7.0	6.9	2.6	2.6		1.7	1.7	
М3	Sunny	Moderate	16:39	Middle	4	22.2 22.1 21.5	22.2	7.7 7.7 7.6	7.7	30.6 30.6 30.9	30.6	93.5 93.5 88.8	93.5	6.8 6.8	6.8		2.8 2.4 3.9	2.6	3.1	0.7 0.7 1.1	0.7	1.2
				Bottom	7	22.1 22.0	21.8	7.6 7.6 7.9	7.6	30.9 30.8 30.4	30.9	88.8 89.7 95.1	89.3	6.6 6.6	6.6	6.6	4.1 2.7	4.0		1.0	1.1	
				Surface	1	22.0 22.6 21.8	22.3	7.9 7.9 7.8	7.9	30.4 30.4 30.5	30.4	94.5 92.8	94.8	7.0 6.9 6.8	7.0	7.0	2.7 2.7 2.6	2.7		3.8 3.7 1.2	3.8	ĺ
M4	Sunny	Moderate	16:00	Middle	4	21.7	21.8	7.8 7.8	7.8	30.6 30.8	30.6	93.2	93.0	6.9 6.7	6.9		3.2 3.4	2.9	3.1	1.2	1.2	2.2
				Bottom	7	22.0	21.9	7.8 7.8	7.8	30.8	30.8	90.5 96.7	90.7	6.6 7.1	6.7	6.7	4.0	3.7		1.5	1.6	—
				Surface	1	21.9 21.7	21.7	7.8 7.7	7.8	30.9 30.7	31.2	96.0 94.9	96.4	7.0 7.0	7.1	7.1	3.8 4.5	3.9		1.1	1.1	
M5	Sunny	Moderate	16:56	Middle	5.5	22.0	21.9	7.6 7.7	7.7	30.7	30.7	95.4 93.7	95.2	7.0 7.0 6.9	7.0		5.0	4.8	4.2	1.0	1.0	1.0
				Bottom	10	21.9	21.8	7.6	7.7	30.9	30.9	94.9	94.3	7.0	7.0	7.0	4.1	4.0		0.9	1.0	—
				Surface	-	21.3	-	7.9	-	30.9	-	94.2		7.0	-	6.9	4.3	-		1.5	-	
M6	Sunny	Moderate	16:52	Middle	2.3	21.8	21.6	7.8	7.9	30.8	30.9	93.2	93.7	6.8	6.9		3.8	4.1	4.1	1.6	1.6	1.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	l

Appendix I - Action and Limit Levels for Marine Water Quality on 17 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 4.9 NTU</u>	<u>C1: 5.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		6.0 mg/L	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 2.8 mg/L</u>	<u>C1: 3.0 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 2.8 mg/L</u>	<u>C1: 3.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 3.6 mg/L</u>	<u>C1: 3.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.8 20.8	20.8	8.0 8.0	8.0	30.7 30.7	30.7	91.6 92.7	92.2	6.9 6.9	6.9	6.9	4.5 4.8	4.7		2.3 2.2	2.3	1
C1	Sunny	Moderate	10:04	Middle	10	20.7 20.6	20.7	7.9 7.8	7.9	30.9 31.0	31.0	91.0 90.4	90.7	6.8 6.8	6.8	6.9	3.3 3.2	3.3	4.0	7.0 6.9	7.0	4.1
				Bottom	19	21.1 21.1	21.1	7.8 7.8	7.8	31.1 31.1	31.1	91.8 91.1	91.5	6.8 6.8	6.8	6.8	4.3 3.9	4.1		2.9 3.0	3.0	<u> </u>
				Surface	1	20.6 20.4	20.5	7.9 8.0	8.0	30.8 30.8	30.8	88.9 87.5	88.2	6.7 6.6	6.7	6.7	2.8 2.9	2.9		1.2 1.2	1.2	
C2	Sunny	Moderate	09:00	Middle	18	21.0 21.2	21.1	7.6 7.6	7.6	30.8 30.9	30.9	88.4 89.1	88.8	6.6 6.6	6.6		3.0 3.0	3.0	3.0	0.8 0.7	0.8	1.3
				Bottom	35	21.1	21.1	7.8 7.7	7.8	30.9 30.9	30.9	89.7 89.1	89.4	6.7 6.6	6.7	6.7	3.1 3.1	3.1		1.9 1.9	1.9	<u> </u>
				Surface	1	20.4	20.6	7.9 8.0	8.0	31.1 31.0	31.1	89.7 90.0	89.9	6.7 6.7	6.7	6.8	3.3	3.4		0.8	0.8	1
G1	Sunny	Moderate	09:30	Middle	4	21.1 20.8 20.8	21.0	7.9 8.0 8.0	8.0	31.0 31.0 31.1	31.0	91.2 89.8 90.8	90.5	6.8 6.7 6.8	6.8		3.8 3.6 4.4	3.7	3.9	<0.5 <0.5 0.8	<0.5	0.7
				Bottom	7	20.6	20.7	8.1 7.9	8.1	31.1	31.1	89.8 91.4	90.3	6.7	6.8	6.8	4.8	4.6		0.8	0.8	—
				Surface	1	20.2	20.5	7.9 8.0 7.8	8.0	30.8 30.8	30.9	92.8 91.1	92.1	6.9 6.8	6.9	6.9	2.8	3.0		1.4	1.4	
G2	Sunny	Moderate	09:19	Middle	5	20.7	20.7	7.8 7.7	7.8	30.8 30.9	30.8	91.8	91.5	6.9 6.8	6.9		4.0 4.6	3.9	3.9	3.5	3.5	2.7
				Bottom	9	20.5	20.5	7.8 8.0	7.8	30.9 30.7	30.9	89.9 91.3	90.3	6.8	6.8	6.8	4.9	4.8		3.1	3.1	<u> </u>
				Surface	1	21.1	21.1	8.0	8.0	30.7	30.7	90.8	91.1	6.8	6.8	6.9	2.9	2.9		1.1	1.1	1
G3	Sunny	Moderate	09:35	Middle	4	20.7	20.7	8.0 8.1	8.0	30.9 31.1	30.9	91.4	91.4	6.8	6.9		3.6 3.9	3.8	3.6	1.6	1.6	1.1
				Bottom	7	20.7	20.6	8.0	8.1	31.1 30.5	31.1	89.8 91.1	90.0	6.7	6.8	6.8	4.1 3.7	4.0		<0.5 0.6	<0.5	
G4	0	Madasata	00:40	Surface	1	20.6 21.0	20.7	8.1 8.1	8.1	30.6 31.0	30.6	90.8 89.2	91.0	6.8	6.8	6.8	3.3	3.5	0.5	0.7	0.7	
G4	Sunny	Moderate	09:46	Middle Bottom	7	20.7 21.0	20.9	8.0 8.1	8.1	31.1 31.1	31.1	89.7 88.9	89.5 89.2	6.7 6.6	6.7	6.7	3.3 3.5	3.4	3.5	1.5 1.0	1.5	1.1
				Surface	1	20.9	20.5	8.1 7.9	8.0	31.2 31.2	31.1	89.5 92.0	91.6	6.7 6.9	6.9	0.7	3.5	3.4		1.1 1.9	1.9	
M1	Sunny	Moderate	09:24	Middle	3	20.3 20.4	20.4	8.0 7.9	7.9	31.0 30.9	30.9	91.2 90.7	90.7	6.9 6.8	6.8	6.9	3.5 3.2	3.6	3.7	1.8 0.7	0.7	1.4
WII	Ourny	Woderate	05.24	Bottom	5	20.4 20.8	20.9	7.9 7.9	7.9	30.9 31.0	31.1	90.7 91.0	90.7	6.8 6.8	6.8	6.8	3.9 4.0	4.1	0.7	0.7 1.6	1.6	
				Surface	1	21.0 21.0	20.8	7.9 7.9	7.9	31.1 30.6	30.6	90.4 90.7	90.0	6.7	6.8		4.2 3.3	3.2		1.5 0.8	0.8	
M2	Sunny	Moderate	09:14	Middle	5	20.6 20.6	20.8	7.9 7.9	7.9	30.5 30.7	30.7	89.2 89.3	89.6	6.7 6.7	6.7	6.8	3.0	3.9	4.0	0.8	0.8	0.8
	,			Bottom	9	21.0 21.0	21.0	7.9 7.8	7.8	30.7 30.8	30.8	89.8 90.7	91.0	6.7 6.8	6.8	6.8	3.9 4.7	4.8		0.8	0.7	
				Surface	1	21.0	20.8	7.8 8.0	8.0	30.7 31.1	31.1	91.3	90.9	6.8	6.8		3.2	3.3		0.6 <0.5	<0.5	
M3	Sunny	Moderate	09:41	Middle	4	20.9	20.6	7.9 7.9	7.9	31.0 31.3 31.3	31.3	90.9 89.0 90.0	89.5	6.8 6.7	6.7	6.8	3.4	3.4	3.2	<0.5 <0.5	0.5	0.6
				Bottom	7	20.8 20.7 21.1	20.9	7.9 7.9 8.0	8.0	31.3 31.4 31.5	31.5	90.0 87.2 86.3	86.8	6.7 6.5 6.4	6.5	6.5	3.2 2.8 2.9	2.9		0.5 0.7 0.7	0.7	İ
				Surface	1	20.8 20.4	20.6	7.8 7.8	7.8	30.8 30.8	30.8	90.2 89.1	89.7	6.7 6.7	6.7		2.9	2.8		1.3	1.4	
M4	Sunny	Moderate	09:07	Middle	4	20.8	20.9	7.8 7.8	7.8	30.8 30.8	30.8	89.9 89.3	89.6	6.7 6.7	6.7	6.7	3.5 3.2	3.4	3.3	<0.5 <0.5	<0.5	0.8
				Bottom	7	21.2 20.9	21.1	7.8 7.8	7.8	30.8 30.9	30.9	89.5 88.6	89.1	6.6 6.6	6.6	6.6	3.5 4.0	3.8		<0.5 <0.5	<0.5	İ
				Surface	1	20.5 20.6	20.6	8.2 8.1	8.2	30.8 30.8	30.8	92.6 92.1	92.4	7.0 6.9	7.0	6.0	2.9 3.5	3.2		<0.5 <0.5	<0.5	
M5	Sunny	Moderate	09:57	Middle	5.5	20.5 20.5	20.5	8.0 8.0	8.0	30.8 30.8	30.8	90.9 91.0	91.0	6.8 6.8	6.8	6.9	3.5 3.8	3.7	3.8	0.5 0.6	0.6	0.8
				Bottom	10	20.7 20.8	20.8	8.0 8.0	8.0	30.8 30.9	30.9	89.8 90.9	90.4	6.7 6.8	6.8	6.8	4.7 4.2	4.5		1.4 1.4	1.4	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-		-		
M6	Sunny	Moderate	09:52	Middle	2.3	20.7 20.4	20.6	8.0 8.0	8.0	31.0 31.0	31.0	87.2 86.5	86.9	6.5 6.5	6.5	0.5	5.2 5.3	5.3	5.3	<0.5 <0.5	<0.5	0.5
				Bottom	-	-	-	-	-	-	-	-	-	=	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 20 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 5.3 NTU</u>	<u>C2: 5.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 5.4 mg/L	<u>C2: 5.9 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 2.9 mg/L</u>	C2: 3.1 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA⁺	Value	Average	DA*
				Surface	1	19.5 19.2	19.4	6.8 6.8	6.8	25.9 25.9	25.9	96.7 97.3	97.0	6.8 6.9	6.9	6.8	4.2 3.5	3.9		2.0 2.0	2.0	l
C1	Cloudy	Moderate	08:43	Middle	10	19.4 19.7	19.6	6.6 6.5	6.6	25.9 25.8	25.9	93.4 93.1	93.3	6.7 6.7	6.7	6.0	5.5 5.8	5.7	4.9	1.0 1.0	1.0	1.5
				Bottom	19	19.7 19.4	19.6	6.5 6.5	6.5	25.9 26.0	26.0	93.2 92.6	92.9	6.6 6.6	6.6	6.6	5.4 4.8	5.1		1.6 1.5	1.6	
				Surface	1	20.0 19.7	19.9	6.6 6.6	6.6	25.3 25.2	25.3	86.0 86.2	86.1	6.2 6.2	6.2	6.2	2.5 3.0	2.8		4.5 4.5	4.5	l
C2	Cloudy	Moderate	07:31	Middle	18	19.5 19.9	19.7	6.5 6.5	6.5	25.5 25.5	25.5	86.5 86.3	86.4	6.2 6.1	6.2		2.7 2.8	2.8	3.3	2.6 2.5	2.6	3.2
				Bottom	35	19.8 19.4	19.6	6.4 6.5	6.5	25.6 25.6	25.6	87.5 87.4	87.5	6.2 6.2	6.2	6.2	4.4 4.4	4.4		2.4 2.3	2.4	
				Surface	1	20.2 19.9 19.5	20.1	7.0 6.9 6.8	7.0	25.6 25.7 25.8	25.7	90.5 90.9 92.4	90.7	6.4 6.4 6.5	6.4	6.5	3.0 3.1 4.0	3.1		3.4 3.3 2.1	3.4	l
G1	Cloudy	Moderate	08:04	Middle	4	19.5 19.9 19.6	19.7	6.8 6.8	6.9	25.8 25.8 26.0	25.8	92.4 92.4 92.2	92.4	6.5 6.5	6.5		4.0 4.0 4.5	4.0	3.8	2.1 2.2 1.6	2.2	2.4
				Bottom	7	19.5	19.6	6.8 7.0	6.8	26.0 26.1	26.0	91.7 91.5	92.0	6.5	6.5	6.5	4.3	4.4		1.5	1.6	
				Surface	1	19.5 19.6 19.5	19.6	6.9 6.8	7.0	26.1 26.1	26.1	92.0 90.9	91.8	6.5 6.4	6.5	6.5	2.4	2.3		1.5	1.5	l
G2	Cloudy	Moderate	07:51	Middle	5	19.5 19.7 19.5	19.6	6.9 6.7	6.9	26.1 26.3	26.1	89.7 90.0	90.3	6.4 6.4	6.4		3.3 3.8	3.1	3.1	2.0 2.1 2.4	2.1	2.0
				Bottom	9	19.5 19.2	19.5	6.8 7.0	6.8	26.4 25.9	26.4	91.2 91.6	90.6	6.4	6.4	6.4	4.2	4.0		2.4	2.4	<u> </u>
				Surface	1	19.6 19.6	19.4	7.0 6.9	7.0	25.8 25.8	25.9	91.5 90.5	91.6	6.5 6.4	6.5	6.5	4.0	3.7		1.4	1.4	l
G3	Cloudy	Moderate	08:10	Middle	4	19.4 19.5	19.5	6.9	6.9	25.8 25.9	25.8	90.0 90.4	90.3	6.4	6.4		3.9	4.0	3.8	1.4	1.4	1.5
				Bottom	7	19.6 19.5	19.6	6.8	6.9	26.0 25.4	26.0	85.9 91.7	88.2	6.3	6.4	6.4	3.6	3.8		1.6	1.7	
				Surface	1	19.6 19.7	19.6	6.9	6.9	25.4 25.5	25.4	88.4 91.4	90.1	6.5 6.5	6.5	6.5	2.9	2.9		1.4	1.4	1
G4	Cloudy	Moderate	08:24	Middle	4	19.8 19.7	19.8	6.8	6.8	25.5 25.9	25.5	89.1 89.1	90.3	6.5 6.3	6.5		3.9 4.2	3.8	3.7	1.2	1.2	1.4
				Bottom	7	19.6 20.1	19.7	6.6	6.7	25.8 26.0	25.9	88.4 89.9	88.8	6.3	6.3	6.3	4.3 2.7	4.3		1.5 1.6	1.5	
	01 1		07.50	Surface	1	19.6 19.7	19.9	6.9	6.9	25.8 26.0	25.9	90.4 88.7	90.2	6.4	6.4	6.4	2.7	2.7		1.6	1.6	
M1	Cloudy	Moderate	07:58	Middle Bottom	5	19.7 19.4	19.7	6.8	6.8	26.1 26.2	26.1	90.7 89.3	89.7 89.3	6.4	6.4	6.3	5.1 3.8	4.7 3.9	3.8	1.1 1.8	1.2	1.6
				Surface	1	19.8 19.5	19.6	6.8 7.0	7.0	26.2 25.3	25.3	89.3 91.2	91.5	6.3 6.4	6.5	6.3	3.9 2.4	2.5		1.9 2.0	1.9 2.0	
M2	Cloudy	Moderate	07:44	Middle	5	19.7 19.5	19.5	6.9 6.9	6.9	25.3 25.5	25.5	91.7 89.1	89.8	6.5 6.3	6.4	6.5	2.5 2.4	2.5	2.6	2.0 1.6	1.7	1.6
IVIZ	Cloudy	Woderate	07.44	Bottom	9	19.5 19.3	19.4	6.8 6.8	6.8	25.5 25.6	25.7	90.4 87.9	88.5	6.4 6.2	6.3	6.3	2.6 2.6	2.7	2.0	1.7	1.1	1.0
				Surface	1	19.5 19.8	19.8	6.7	6.7	25.7 25.5	25.6	89.0 89.1	89.1	6.3 6.5	6.5	0.0	2.8	2.7		1.1	1.5	
M3	Cloudy	Moderate	08:17	Middle	4	19.8 19.6	19.7	6.7 6.6	6.6	25.6 25.7	25.7	89.0 88.9	88.5	6.5 6.4	6.4	6.5	2.7 3.4	3.4	3.4	1.5 2.8	2.9	2.3
	2.300)			Bottom	7	19.7 19.5	19.5	6.6	6.5	25.7 26.0	26.0	88.0 82.5	83.8	6.3 6.1	6.1	6.1	3.3 4.1	4.1	J	2.9	2.6	
				Surface	1	19.5 19.8	19.9	6.5	6.9	25.9 25.5	25.5	85.0 90.1	90.2	6.1	6.5		2.6	2.7		2.6	2.6	
M4	Cloudy	Moderate	07:39	Middle	4	19.9 19.5	19.4	6.9 6.6	6.7	25.4 25.6	25.7	90.3	90.0	6.4	6.4	6.5	2.7	2.9	3.2	2.6	2.3	2.3
				Bottom	7	19.3 19.6 19.6	19.6	6.7	6.7	25.7 25.9	25.9	89.4 85.9 87.4	86.7	6.4 6.2 6.2	6.2	6.2	3.0 3.8 4.1	4.0		2.2 1.9 1.8	1.9	l
				Surface	1	19.3	19.3	6.7 6.6	6.7	25.9 26.5	26.3	92.6	93.1	6.6	6.6		3.8	3.8		3.6	3.6	i
M5	Cloudy	Moderate	08:34	Middle	5.5	19.3 19.4 19.6	19.5	6.7 6.6 6.6	6.6	26.0 25.8 25.9	25.9	93.6 87.3 87.9	87.6	6.6 6.5 6.5	6.5	6.6	3.8 5.1 5.3	5.2	4.5	3.5 2.0 2.0	2.0	2.4
				Bottom	10	19.4 19.5	19.5	6.5 6.6	6.6	25.8 26.0	25.9	88.2 88.5	88.4	6.4 6.4	6.4	6.4	4.1 4.6	4.4		1.7 1.7	1.7	l
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-			-	
M6	Cloudy	Moderate	08:30	Middle	2.3	18.9 19.3	19.1	6.7 6.8	6.8	26.0 25.9	26.0	88.4 87.9	88.2	6.5 6.4	6.5	6.5	4.2 4.0	4.1	4.1	1.9 1.9	1.9	1.9
				Bottom	-		-		-		-		-		-	-		-			-	l
	1	ı														·		1		_		

Appendix I - Action and Limit Levels for Marine Water Quality on 20 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.0 mg/L</u>	<u>C1: 5.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 February 2017

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NT			nded Solids	
Location	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.6 20.7	20.7	6.9 6.9	6.9	25.7 25.8	25.8	90.5 89.8	90.2	6.4 6.4	6.4	6.4	5.0 5.1	5.1		4.8 4.7	4.8	l
C1	Cloudy	Moderate	12:12	Middle	10	20.7 20.4	20.6	6.8 6.7	6.8	25.9 26.0	26.0	86.3 86.1	86.2	6.4 6.4	6.4	• • •	3.6 3.4	3.5	4.4	1.3 1.3	1.3	3.4
				Bottom	19	20.7 20.8	20.8	6.7 6.7	6.7	26.1 26.1	26.1	87.2 86.9	87.1	6.3 6.3	6.3	6.3	4.5 4.6	4.6		4.2 4.2	4.2	
				Surface	1	20.4 20.4	20.4	6.8 6.8	6.8	25.9 25.8	25.9	87.0 86.2	86.6	6.2 6.1	6.2	6.2	3.1 3.1	3.1		1.2 1.3	1.3	l
C2	Cloudy	Moderate	11:01	Middle	18	20.6 20.8	20.7	6.5 6.5	6.5	25.9 25.9	25.9	86.6 87.4	87.0	6.1 6.2	6.2		3.2 3.4	3.3	3.2	1.7 1.6	1.7	1.4
				Bottom	35	20.7 20.5	20.6	6.7 6.6	6.7	26.0 26.0	26.0	87.8 87.7	87.8	6.2 6.2	6.2	6.2	3.4 2.8	3.1		1.3 1.3	1.3	
				Surface	1	20.4 20.7	20.6	6.8 6.8	6.8	26.1 26.0	26.1	90.1 89.8	90.0	6.3 6.3	6.3	6.3	3.9 3.7	3.8		1.2 1.2	1.2	l
G1	Cloudy	Moderate	11:35	Middle	4	20.8 20.5	20.7	6.8 6.9	6.9	26.1 26.1	26.1	88.2 88.2	88.2	6.3 6.3	6.3		4.4 3.8	4.1	4.3	1.7	1.7	1.3
				Bottom	7	20.7 20.6	20.7	6.8 6.9	6.9	26.2 26.2	26.2	88.6 88.0	88.3	6.3 6.2	6.3	6.3	4.8 5.0	4.9		0.9 0.9	0.9	<u></u>
				Surface	1	20.1 20.4	20.3	6.8 6.8	6.8	25.9 26.0	26.0	89.8 90.2	90.0	6.4 6.4	6.4	6.4	3.0 2.6	2.8		1.5 1.5	1.5	
G2	Cloudy	Moderate	11:23	Middle	5	20.6 20.6	20.6	6.7 6.7	6.7	25.9 25.9	25.9	89.4 89.8	89.6	6.3 6.4	6.4	• • •	3.8 4.2	4.0	3.9	1.5 1.4	1.5	1.3
				Bottom	9	20.5 20.5	20.5	6.6 6.7	6.7	25.9 26.0	26.0	87.6 88.8	88.2	6.3 6.3	6.3	6.3	4.8 4.9	4.9	<u> </u>	1.0 1.0	1.0	
				Surface	1	20.7 20.7	20.7	6.9 6.9	6.9	25.8 25.9	25.9	89.4 88.9	89.2	6.3 6.3	6.3	6.4	2.8 3.2	3.0		1.5 1.4	1.5	
G3	Cloudy	Moderate	11:41	Middle	4	20.7 20.6	20.7	6.9 7.0	7.0	25.9 26.1	26.0	89.0 90.3	89.7	6.3 6.4	6.4	J.,	3.9 3.6	3.8	3.7	1.7 1.6	1.7	1.5
				Bottom	7	20.4 20.5	20.5	6.9 6.9	6.9	26.1 26.2	26.2	89.7 89.4	89.6	6.3 6.3	6.3	6.3	4.2 4.5	4.4		1.3 1.2	1.3	
				Surface	1	20.5 20.6	20.6	6.9 7.0	7.0	25.6 25.7	25.7	89.6 90.0	89.8	6.3 6.3	6.3	6.3	3.8 3.2	3.5		1.1 1.2	1.2	
G4	Cloudy	Moderate	11:52	Middle	4	20.6 20.5	20.6	6.9 6.9	6.9	26.1 26.1	26.1	87.3 87.8	87.6	6.2 6.2	6.2	0.0	3.4 3.5	3.5	3.5	0.7 0.7	0.7	1.2
				Bottom	7	20.7 20.6	20.7	7.0 7.0	7.0	26.2 26.2	26.2	87.0 84.1	85.6	6.1 6.2	6.2	6.2	3.5 3.6	3.6		1.8 1.8	1.8	
				Surface	1	20.5 20.3	20.4	6.8 6.8	6.8	26.2 26.1	26.2	90.9 91.5	91.2	6.4 6.4	6.4	6.4	3.4 3.7	3.6		0.9 0.8	0.9	
M1	Cloudy	Moderate	11:29	Middle	3	20.3 20.3	20.3	6.8 6.8	6.8	26.0 26.0	26.0	89.3 89.1	89.2	6.4 6.3	6.4	0.1	3.6 4.0	3.8	4.0	2.0 2.0	2.0	1.6
				Bottom	5	20.5 20.7	20.6	6.8 6.8	6.8	26.1 26.1	26.1	89.4 88.4	88.9	6.3 6.2	6.3	6.3	4.6 4.6	4.6		1.8 1.8	1.8	
				Surface	1	20.8 20.3	20.6	6.9 6.8	6.9	25.7 25.6	25.7	87.5 87.1	87.3	6.3 6.2	6.3	6.3	3.4 3.5	3.5		1.0 1.0	1.0	
M2	Cloudy	Moderate	11:16	Middle	5	20.5 20.6	20.6	6.8 6.8	6.8	25.7 25.8	25.8	88.3 87.2	87.8	6.3 6.2	6.3	0.0	4.0 4.0	4.0	4.2	2.1 2.0	2.1	1.7
				Bottom	9	20.8 20.5	20.7	6.7 6.7	6.7	25.8 25.8	25.8	89.4 89.4	89.4	6.3 6.3	6.3	6.3	4.8 5.1	5.0		2.1 2.0	2.1	
				Surface	1	20.6 20.5	20.6	6.9 7.0	7.0	26.2 26.1	26.2	89.7 90.3	90.0	6.3 6.4	6.4	6.3	3.3 3.4	3.4		1.5 1.6	1.6	
МЗ	Cloudy	Moderate	11:47	Middle	4	20.3 20.7	20.5	6.9 6.9	6.9	26.3 26.4	26.4	87.9 87.9	87.9	6.2 6.2	6.2	0.0	3.3 3.3	3.3	3.3	1.5 1.5	1.5	1.6
				Bottom	7	20.5 20.8	20.7	6.8 6.9	6.9	26.6 26.5	26.6	86.3 84.4	85.4	6.1 6.0	6.1	6.1	3.1 3.3	3.2		1.7 1.8	1.8	<u></u>
				Surface	1	20.4 20.5	20.5	6.6 6.7	6.7	25.9 25.9	25.9	88.9 87.8	88.4	6.3 6.3	6.3	6.3	3.2 2.8	3.0		1.4 1.4	1.4	
M4	Cloudy	Moderate	11:09	Middle	4	20.6 20.8	20.7	6.7 6.7	6.7	25.9 25.9	25.9	88.8 88.4	88.6	6.3 6.2	6.3	0.0	3.3 3.7	3.5	3.5	1.1 1.1	1.1	1.8
				Bottom	7	20.8 20.9	20.9	6.7 6.7	6.7	25.9 26.0	26.0	88.4 87.8	88.1	6.2 6.2	6.2	6.2	3.7 4.0	3.9		2.9 2.9	2.9	
				Surface	1	20.1 20.3	20.2	7.1 7.1	7.1	25.8 25.9	25.9	88.1 89.6	88.9	6.5 6.4	6.5	6.5	3.3 3.4	3.4		1.6 1.6	1.6	
M5	Cloudy	Moderate	12:04	Middle	5.5	20.4 20.4	20.4	6.9 6.9	6.9	25.9 25.9	25.9	87.3 89.5	88.4	6.4 6.4	6.4	3.5	3.8 4.0	3.9	4.1	1.9 1.9	1.9	1.4
				Bottom	10	20.4 20.6	20.5	6.9 7.0	7.0	26.0 26.0	26.0	86.9 88.9	87.9	6.3 6.4	6.4	6.4	5.2 4.6	4.9		0.8 0.8	0.8	
		,		Surface	-	-	-	-	=	-	=	-	-	-	-	6.1	-	-		-	-	
M6	Cloudy	Moderate	11:59	Middle	2.2	20.5 20.2	20.4	6.9 6.9	6.9	26.1 26.1	26.1	83.2 84.2	83.7	6.1 6.1	6.1	0.1	5.1 5.1	5.1	5.1	0.6 0.6	0.6	0.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 23 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>
	Stations G1-G4	<u>4, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 5.0 NTU</u>	<u>C2: 5.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.1 mg/L</u>	<u>C2: 4.4 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 4.1 mg/L</u>	<u>C2: 4.4 mg/L</u>
	Stations G1-G4	<u>4, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 3.8 mg/L</u>	<u>C2: 4.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 23 February 2017

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.5 19.7	20.1	7.8 7.8	7.8	29.9 29.9	29.9	95.6 94.0	94.8	7.2 7.2	7.2	7.2	4.0 4.1	4.1		1.6 1.6	1.6	l
C1	Cloudy	Rough	11:06	Middle	10	20.0 20.4	20.2	7.6 7.5	7.6	29.9 29.9	29.9	92.7 93.8	93.3	7.1 7.1	7.1	1.2	6.0 5.8	5.9	4.8	1.8 1.9	1.9	2.0
				Bottom	19	20.2 20.0	20.1	7.5 7.5	7.5	29.9 30.0	30.0	92.4 91.5	92.0	7.0 7.0	7.0	7.0	4.5 4.5	4.5		2.5 2.4	2.5	
				Surface	1	20.6 20.2	20.4	7.5 7.5	7.5	29.3 29.3	29.3	87.5 87.5	87.5	6.6 6.7	6.7	6.7	2.8 2.8	2.8		3.4 3.3	3.4	l
C2	Cloudy	Rough	10:02	Middle	18	19.7 20.4	20.1	7.4 7.5	7.5	29.6 29.6	29.6	85.6 87.6	86.6	6.6 6.6	6.6		3.4 3.4	3.4	3.5	2.1 2.1	2.1	2.9
				Bottom	35	20.4	20.3	7.4 7.5	7.5	29.7 29.7	29.7	87.9 86.0	87.0	6.7 6.6	6.7	6.7	4.2 4.2	4.2		3.2 3.2	3.2	
				Surface	1	20.7	20.4	7.9 7.9	7.9	29.6 29.7	29.7	90.8 90.2	90.5	6.8 6.9	6.9	7.0	2.8 3.1	3.0		1.6 1.5	1.6	l
G1	Cloudy	Rough	10:32	Middle	4	20.0	20.2	7.8 7.9	7.9	29.9 29.9	29.9	91.2 91.5	91.4	7.0 6.9	7.0		3.9 4.4	4.2	4.1	4.1 4.1	4.1	2.5
				Bottom	7	20.1 19.6	19.9	7.7 7.7	7.7	30.0 30.1	30.1	92.4 90.6	91.5	7.0 7.0	7.0	7.0	5.1 4.8	5.0		1.7 1.8	1.8	
				Surface	1	20.1	20.3	8.0 7.9	8.0	30.2 30.2	30.2	89.9 91.2	90.6	6.8 6.9	6.9	6.9	2.9 3.0	3.0		2.3 2.4	2.4	
G2	Cloudy	Rough	10:21	Middle	5	20.0	20.1	7.8 7.8 7.8	7.8	30.1 30.0 30.4	30.1	90.5 89.9	90.2	6.9 6.8	6.9		3.3 3.6 4.2	3.5	3.7	1.4 1.4 2.8	1.4	2.2
				Bottom	9	19.9 20.6 19.6	20.3	7.6 7.7 8.0	7.8	30.4 30.3 29.9	30.4	89.3 91.6 91.1	90.5	6.8 6.9 7.0	6.9	6.9	4.9 3.7	4.6		2.8 1.3	2.8	<u> </u>
				Surface	1	20.2	19.9	8.0 7.8	8.0	29.7 29.8	29.8	90.6	90.9	6.9 6.8	7.0	6.9	4.1 4.9	3.9		1.2	1.3	
G3	Cloudy	Rough	10:38	Middle	4	19.9	20.2	7.9 7.9	7.9	29.8 30.0	29.8	89.1 90.4	89.7	6.8	6.8		4.3 4.2	4.6	4.1	1.7	1.8	1.7
				Bottom	7	20.1	20.2	7.8 7.9	7.9	30.0 29.5	30.0	89.6 91.7	90.0	6.8	6.9	6.9	3.5	3.9		1.9	1.9	
				Surface	1	20.0	20.0	7.8 7.7	7.9	29.4 29.6	29.5	91.3 92.4	91.5	7.0 7.0	7.0	7.0	3.3	3.1		1.5	1.6	
G4	Cloudy	Rough	10:48	Middle	4	20.3	20.3	7.7 7.7	7.7	29.6 29.9	29.6	91.1 89.5	91.8	6.9 6.8	7.0		4.0 4.8	3.7	3.9	1.6	1.7	1.6
				Bottom	7	20.0	20.2	7.6 7.9	7.7	29.9	29.9	88.8 90.2	89.2	6.8	6.8	6.8	4.8	4.8		1.3	1.4	
				Surface	1	20.3	20.7	7.9 7.8	7.9	29.8	29.9	89.1 89.2	89.7	6.8	6.8	6.9	3.1	3.2		3.8 4.2	3.9	
M1	Cloudy	Rough	10:26	Middle	3	20.2	20.2	7.8 7.7	7.8	30.1 30.2	30.1	90.4	89.8	6.9 6.7	6.9		5.4 3.6	4.9	4.0	4.2	4.2	3.4
				Bottom	5	20.3	20.3	7.8 7.9	7.8	30.3 29.4	30.3	89.2 89.7	88.7	6.8	6.8	6.8	4.4 2.5	4.0		2.0	2.0	
140	Olavido	Develo	10:10	Surface	1	21.0 19.5	20.6	7.9 7.8	7.9	29.4 29.6	29.4	91.8 89.4	90.8	6.9 6.9	6.9	6.9	2.6	2.6	0.0	3.7 1.7	3.8	
M2	Cloudy	Rough	10:16	Middle	5	20.3	19.9	7.8 7.8	7.8	29.6 29.6	29.6	90.8 87.3	90.1	6.9 6.6	6.9	0.7	2.9	2.9	2.8	1.6 <0.5	1.7	2.0
				Bottom	9	20.0 19.9	20.2	7.8 7.7	7.8	29.7 29.6	29.7	88.6 91.4	88.0	6.8 7.0	6.7	6.7	2.9 2.7	2.9		<0.5 1.6	<0.5	
M3	Cloudy	Rough	10:43	Surface	4	20.5 20.7	20.2	7.6 7.5	7.7	29.6 29.8	29.6	91.1 90.0	91.3	6.9 6.8	7.0 6.8	6.9	2.7 3.4	3.1	3.5	1.7	1.7	1.9
Olvi	Gioudy	riougn	10.40	Bottom	7	20.3 19.9	20.5	7.6 7.5	7.5	29.7 30.0	30.0	90.1 85.2	85.7	6.8 6.5	6.5	6.5	2.8 4.5	4.6	5.5	1.7 2.0	2.1	1.9
				Surface	1	20.5 20.3	20.2	7.4 7.8	7.8	29.9 29.6	29.6	86.1 91.9	91.2	6.5 7.0	6.9	0.5	4.7 3.0	3.3		2.1 3.6	3.7	
M4	Cloudy	Rough	10:10	Middle	4	20.6 20.1	20.0	7.8 7.6	7.7	29.5 29.6	29.7	90.4 89.3	89.5	6.8 6.8	6.9	6.9	3.5 2.9	3.2	3.5	3.7 1.8	1.9	2.3
	2.300)			Bottom	7	19.9 20.0	20.2	7.7	7.7	29.7 29.9	30.0	89.6 88.0	87.6	6.9 6.7	6.7	6.7	3.5 3.8	4.1	5.0	1.9	1.3	
				Surface	1	20.4 19.6	19.9	7.6 7.6	7.7	30.0 30.6	30.3	87.1 92.3	92.5	6.6 7.1	7.1	***	4.3	4.4		1.3	1.2	
M5	Cloudy	Rough	10:59	Middle	5.5	20.2 19.7	20.0	7.7	7.5	30.0 29.8	29.9	92.6 91.3	91.4	7.0	7.0	7.1	5.1	5.4	4.7	2.2	2.2	1.9
		9		Bottom	10	19.7	20.0	7.5 7.5	7.5	29.9	30.0	91.5 89.5	90.3	7.0 6.9	6.9	6.9	5.7 4.2	4.4	-	2.1	2.2	
				Surface	-	20.3	-	7.5	-	30.0	-	91.1	-	6.9	-		4.6	-		2.1	-	
M6	Cloudy	Rough	10:54	Middle	2.1	19.8	19.8	7.8	7.8	30.1	30.0	91.3	90.5	7.0	7.0	7.0	4.9	4.7	4.7	2.4	2.4	2.4
	,			Bottom	-	19.8	-	7.7	-	29.9	-	89.7	-	6.9	-	-	4.4	-		2.3	-	
						-		-		-	<u> </u>	-		-			-	<u>i</u>		-		

Appendix I - Action and Limit Levels for Marine Water Quality on 23 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.4 NTU</u>	<u>C1: 5.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.6 mg/L</u>	<u>C1: 4.9 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.6 mg/L</u>	<u>C1: 4.9 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.6 mg/L</u>	<u>C1: 4.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 23 February 2017

Location	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	1	Turbidity(NTl	U)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.3 20.6	20.5	7.9 8.0	8.0	29.9 30.0	30.0	89.6 90.8	90.2	6.8 6.8	6.8		5.1 5.3	5.2		3.7 3.8	3.8	
C1	01	Daviela	16:48	Middle	10	20.5	20.5	7.9	7.9	30.2	30.3	88.8	88.8	6.7	6.7	6.8	3.6	3.5	4.4	1.9	2.0	3.2
Ci	Cloudy	Rough	10.40	ivildale	10	20.5	20.5	7.8	7.9	30.3	30.3	88.88	00.0	6.7	0.7		3.4	3.3	4.4	2.0	2.0	3.2
				Bottom	19	20.6	20.8	7.8 7.7	7.8	30.4 30.3	30.4	89.4 89.1	89.3	6.7 6.7	6.7	6.7	4.8	4.5		3.8	3.8	
				Confess		20.1	00.0	7.9	7.9	30.0	00.4	86.4	00.4	6.6	0.0		3.1	3.2		0.8	0.0	
				Surface	1	20.2	20.2	7.9	7.9	30.1	30.1	85.8	86.1	6.5	6.6	6.6	3.3	3.2		0.9	0.9	
C2	Cloudy	Rough	15:37	Middle	18	20.5 21.0	20.8	7.6 7.5	7.6	30.1 30.2	30.2	85.7 87.8	86.8	6.5 6.6	6.6		3.4 3.5	3.5	3.3	0.9	0.9	1.1
				Bottom	35	20.8	20.7	7.7	7.7	30.1	30.2	87.6	87.4	6.6	6.6	6.6	3.3	3.3		1.6	1.6	
				DOLLOTTI	აა	20.6	20.7	7.7	1.1	30.2	30.2	87.1	07.4	6.6	0.0	0.0	3.3	3.3		1.6	1.0	
				Surface	1	20.2 20.2	20.2	7.9 7.9	7.9	30.4 30.2	30.3	88.1 87.6	87.9	6.7 6.6	6.7		3.5 3.9	3.7		1.8 1.7	1.8	
G1	Cloudy	Rough	16:09	Middle	4	20.6	20.6	7.9	7.9	30.2	30.4	88.4	88.1	6.7	6.7	6.7	3.9	3.9	4.1	3.0	3.0	2.1
Gi	Cloudy	nougii	10.09	ivildale	4	20.6	20.0	7.9	7.9	30.4	30.4	87.8	00.1	6.6	0.7		3.8	3.9	4.1	2.9	3.0	2.1
				Bottom	7	20.3 20.4	20.4	7.9 8.0	8.0	30.4 30.4	30.4	87.8 88.3	88.1	6.6 6.7	6.7	6.7	4.6 5.0	4.8		1.3 1.4	1.4	
				0 (20.4	00.4	7.9	7.0	30.4	00.4	89.5	00.0	6.8			3.4			2.4	0.4	
				Surface	1	20.6	20.4	7.9	7.9	30.1	30.1	91.0	90.3	6.9	6.9	6.9	2.9	3.2		2.4	2.4	
G2	Cloudy	Rough	15:57	Middle	5	20.5 20.5	20.5	7.8 7.8	7.8	30.0 30.2	30.1	88.9 89.6	89.3	6.7 6.8	6.8		4.3 4.2	4.3	4.2	3.5 3.6	3.6	2.9
				D	_	20.5	00.0	7.8	7.0	30.2	20.0	88.7	00.4	6.7			4.2	5.0		2.7	0.7	
				Bottom	9	20.1	20.2	7.8	7.8	30.2	30.2	87.5	88.1	6.7	6.7	6.7	5.5	5.2		2.7	2.7	
				Surface	1	20.7 20.8	20.8	7.9 8.0	8.0	30.1 30.0	30.1	89.3 88.2	88.8	6.7 6.6	6.7		3.0 3.6	3.3		1.1 1.0	1.1	
0.0	0	ъ.	10.15			20.8	00.4	8.0		30.0	20.0	89.5	00.5	6.8		6.8	4.3			2.1	0.4	
G3	Cloudy	Rough	16:15	Middle	4	20.4	20.4	8.0	8.0	30.2	30.2	89.4	89.5	6.8	6.8		3.8	4.1	3.9	2.0	2.1	2.0
				Bottom	7	20.0 20.4	20.2	8.0 7.9	8.0	30.3 30.4	30.4	88.5 87.5	88.0	6.7 6.6	6.7	6.7	4.1 4.3	4.2		2.6	2.7	
-						20.4		8.0		29.8		89.6		6.8			4.3			3.8		
				Surface	1	20.3	20.4	8.0	8.0	29.9	29.9	89.0	89.3	6.8	6.8	6.7	3.8	4.0		3.7	3.8	
G4	Cloudy	Rough	16:29	Middle	4	20.8	20.5	8.0 7.9	8.0	30.3 30.4	30.4	87.5 87.1	87.3	6.6 6.6	6.6	0.7	3.7 3.7	3.7	3.8	4.1 4.2	4.2	3.8
				D		20.2	00.0	8.0		30.4	00.5	86.8	07.4	6.5			3.7			3.3	0.0	
				Bottom	7	20.7	20.8	8.0	8.0	30.5	30.5	87.9	87.4	6.6	6.6	6.6	3.6	3.8		3.2	3.3	
				Surface	1	20.5	20.4	7.8	7.9	30.5	30.4	89.9	89.4	6.8	6.8		3.5	3.7		1.0	1.1	
	O	ъ.	40.04		_	20.2	00.0	7.9 7.8	7.0	30.3 30.2	20.0	88.9 89.2	00.0	6.7 6.8		6.8	3.9			1.1		
M1	Cloudy	Rough	16:04	Middle	3	20.3	20.3	7.8	7.8	30.2	30.2	88.5	88.9	6.7	6.8		4.2	3.8	3.9	1.7	1.7	1.1
				Bottom	5	20.4	20.5	7.8 7.9	7.9	30.3 30.3	30.3	88.6 87.6	88.1	6.7 6.6	6.7	6.7	4.3	4.3		0.6	0.6	
-				0 /		20.5	00.4	7.9	7.0	29.9	20.0	88.3	07.0	6.6			3.6	0.5		2.5	0.5	
				Surface	1	20.1	20.4	7.9	7.9	29.8	29.9	87.2	87.8	6.6	6.6	6.6	3.4	3.5		2.5	2.5	
M2	Cloudy	Rough	15:50	Middle	5	20.4	20.7	7.8	7.8	30.0	30.0	87.3	87.9	6.6	6.6	0.0	4.0	4.0	4.3	2.1	2.2	2.4
	-	_			_	20.9		7.8 7.7		30.0 30.1		88.5 88.5		6.6 6.7			4.0 5.2		-	2.2		
				Bottom	9	20.8	20.7	7.8	7.8	30.1	30.1	89.3	88.9	6.7	6.7	6.7	5.3	5.3		2.3	2.4	
				Surface	1	20.1	20.4	7.9	8.0	30.3	30.3	88.4	88.6	6.7	6.7		3.7	3.7		1.3	1.4	
	Ol- '	D- 1	40.00	N 45 - 1 11	l .	20.6	00.0	8.0 7.9	7.0	30.2 30.5	00.0	88.8 87.4	07.7	6.7 6.6		6.7	3.7			1.4	4.5	4.0
M3	Cloudy	Rough	16:22	Middle	4	20.5	20.3	7.9	7.9	30.6	30.6	88.0	87.7	6.6	6.6		3.5	3.7	3.5	1.5	1.5	1.3
				Bottom	7	20.6 20.7	20.7	7.9 7.9	7.9	30.7 30.8	30.8	85.7 84.1	84.9	6.4 6.3	6.4	6.4	3.3	3.2		0.9	0.9	
				C.u.t	-	20.7	20.0	7.7	77	30.8	20.4	88.1	07.5	6.7	6.7		3.1	2.0		2.4	2.4	
				Surface	1	20.0	20.2	7.7	7.7	30.1	30.1	86.8	87.5	6.6	6.7	6.7	2.8	3.0	1	2.4	2.4	
M4	Cloudy	Rough	15:44	Middle	4	20.7 20.7	20.7	7.7 7.8	7.8	30.1 30.1	30.1	88.6 87.3	88.0	6.7 6.6	6.7		3.6 3.4	3.5	3.6	1.4 1.4	1.4	1.9
				Detter	-	21.0	00.0	7.8	7.7	30.1	00.0	88.2	07.5	6.6	0.0	0.0	3.4	4.0	1	1.4	4.0	
				Bottom	7	20.7	20.9	7.7	7.7	30.2	30.2	86.7	87.5	6.5	6.6	6.6	4.6	4.2		1.8	1.8	
				Surface	1	20.3	20.3	8.2 8.0	8.1	30.1 30.1	30.1	90.2 90.4	90.3	6.8 6.8	6.8		3.4 3.5	3.5		1.3	1.3	
145	01	Daviet	40.00	NAC-JUL		20.3	00.0	7.9	0.0	30.1	00.4	90.4 89.0	00.0	6.8	0.7	6.8	3.5	0.0	۱.,	3.4	0.4	
M5	Cloudy	Rough	16:39	Middle	5.5	20.3	20.3	8.0	8.0	30.1	30.1	88.9	89.0	6.7	6.7		4.0	3.9	4.1	3.3	3.4	3.0
1				Bottom	10	20.6	20.5	8.0	8.0	30.1	30.2	88.3	88.3	6.7	6.7	6.7	5.1	5.0		4.3	4.3	
				0 /	-	20.4		7.9	 	30.2		88.3	 	6.7			4.8	 	 	4.3		
1				Surface			-		-		-		-		-	6.5		-				
M6	Cloudy	Rough	16:35	Middle	2.3	20.2	20.3	8.0	8.0	30.3	30.3	84.7	85.0	6.4	6.5	0.5	5.5	5.6	5.6	2.2	2.2	2.2
1		_			 	20.3		8.0	1	30.3		85.3	1	6.5	1	1	5.6	1	1	2.1		
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
										_		_										

Appendix I - Action and Limit Levels for Marine Water Quality on 25 February 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mall	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
(<u>C2: 8.8 NTU</u>	<u>C2: 9.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations M1-M	<u>15</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, \ SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 25 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Furbidity(NTI			nded Solids	
20041011	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.0 19.1	19.1	7.8 7.9	7.9	30.4 29.6	30.0	89.9 89.1	89.5	7.0 6.9	7.0	6.8	2.9 3.3	3.1		2.8 2.7	2.8	l.
C1	Cloudy	Rough	12:00	Middle	10	18.7 19.1	18.9	7.8 7.8	7.8	30.5 30.4	30.5	86.2 83.3	84.8	6.7 6.4	6.6	0.0	6.1 6.1	6.1	5.5	3.0 2.9	3.0	2.7
				Bottom	19	18.5 18.6	18.6	7.8 7.8	7.8	28.9 28.9	28.9	81.0 81.8	81.4	6.4 6.4	6.4	6.4	7.2 7.4	7.3		2.2 2.2	2.2	
				Surface	1	18.9 19.2	19.1	7.7 7.6	7.7	28.5 27.9	28.2	87.3 87.4	87.4	6.9 6.8	6.9	6.9	4.5 3.9	4.2		5.5	5.4 5.5	i
C2	Cloudy	Rough	10:57	Middle	18	19.1 18.8	19.0	7.7 7.8	7.8	27.8 28.0	27.9	85.4 87.5	86.5	6.7 6.9	6.8		6.1 6.4	6.3	5.9	6.4 6.3	6.4	5.6
				Bottom	35	19.2 18.5	18.9	7.9 7.9	7.9	28.2 28.3	28.3	84.1 83.5	83.8	6.6 6.6	6.6	6.6	7.4 7.2	7.3		4.9 4.9	4.9	
				Surface	1	18.6 18.6	18.6	7.9 7.9	7.9	29.1 30.8	30.0	86.8 85.8	86.3	6.8 6.7	6.8	6.9	3.4 3.5	3.5		4.2 4.3	4.3	i
G1	Cloudy	Rough	11:27	Middle	4	18.6 18.9	18.8	7.9 7.9	7.9	30.6 30.7	30.7	88.9 90.8	89.9	6.9 7.0	7.0		4.0 4.0	4.0	4.7	4.7 4.7	4.7	3.9
				Bottom	7	19.0 19.0	19.0	7.9 7.8	7.9	30.8 30.8	30.8	82.4 79.7	81.1	6.4 6.2	6.3	6.3	6.5 6.8	6.7		2.7 2.8	2.8	
				Surface	1	19.0 19.2	19.1	7.8 7.8	7.8	29.6 30.3	30.0	92.0 89.9	91.0	7.2 6.9	7.1	6.8	2.6 2.9	2.8		5.6 5.5	5.6	ı
G2	Cloudy	Rough	11:16	Middle	5	18.9 18.7	18.8	7.9 7.8	7.9	30.5 30.4	30.5	82.4 81.9	82.2	6.4 6.4	6.4		4.8 4.8	4.8	4.4	6.8 6.8	6.8	6.0
				Bottom	9	19.0 19.1	19.1	7.9 7.8	7.9	30.5 30.7	30.6	83.9 84.0	84.0	6.5 6.5	6.5	6.5	6.0 5.3	5.7		5.6 5.5	5.6	
				Surface	1	19.2 19.4	19.3	7.9 7.8	7.9	31.2 30.2	30.7	90.0 92.2	91.1	6.9 7.1	7.0	6.9	4.0 4.6	4.3		4.4 4.5	4.5	<u> </u>
G3	Cloudy	Rough	11:32	Middle	4	19.1 19.0	19.1	7.8 7.9	7.9	30.4 30.5	30.5	87.4 87.1	87.3	6.8 6.7	6.8		4.5 5.0	4.8	4.7	2.9 3.0	3.0	3.5
				Bottom	7	19.0 19.3	19.2	7.8 7.9	7.9	30.6 30.5	30.6	87.9 89.0	88.5	6.8 6.9	6.9	6.9	4.9 4.8	4.9		3.1 3.1	3.1	
				Surface	1	18.5 18.7	18.6	7.8 7.8	7.8	28.9 29.2	29.1	90.6 90.8	90.7	7.2 7.1	7.2	7.1	3.0 2.5	2.8		2.7 2.7	2.7	į i
G4	Cloudy	Rough	11:42	Middle	4	19.0 18.8	18.9	7.8 7.8	7.8	30.0 30.0	30.0	89.3 89.5	89.4	6.9 7.0	7.0		4.6 5.1	4.9	4.5	3.6 3.5	3.6	3.3
				Bottom	7	18.9 19.1	19.0	7.9 7.8	7.9	30.0 30.1	30.1	88.3 79.3	83.8	6.9 6.1	6.5	6.5	5.5 5.8	5.7		3.7 3.7	3.7	
				Surface	1	19.3 19.4	19.4	7.9 7.8	7.9	30.7 30.5	30.6	86.3 88.3	87.3	6.6 6.8	6.7	6.7	4.5 5.0	4.8		2.2	2.2	į.
M1	Cloudy	Rough	11:21	Middle	3	18.9 18.9	18.9	7.9 7.9	7.9	30.5 30.5	30.5	86.6 86.9	86.8	6.7 6.7	6.7		5.5 5.4	5.5	4.7	3.0	3.0	2.5
				Bottom	5	19.2 19.0	19.1	7.8 7.8	7.8	30.6 30.7	30.7	88.1 86.4	87.3	6.8 6.7	6.8	6.8	3.7 4.0	3.9		2.1 2.2	2.2	
				Surface	1	19.0 18.9	19.0	7.9 7.8	7.9	30.9 30.0	30.5	91.6 89.1	90.4	7.1 6.9	7.0	6.7	3.1 3.1	3.1		2.4	2.4	<u> </u>
M2	Cloudy	Rough	11:11	Middle	5.5	19.0 18.9	19.0	7.8 7.8	7.8	30.3 30.4	30.4	82.2 82.6	82.4	6.4 6.4	6.4		4.3 4.2	4.3	4.5	2.6 2.6	2.6	1.8
				Bottom	10	18.6 19.1	18.9	7.8 7.8	7.8	30.7 30.7	30.7	84.0 84.5	84.3	6.5 6.5	6.5	6.5	5.9 6.3	6.1		<0.5 <0.5	<0.5	
				Surface	1	18.7 18.5	18.6	7.9 7.9	7.9	29.9 29.8	29.9	87.1 88.1	87.6	6.8 6.9	6.9	6.8	2.8 3.2	3.0		3.2 3.1	3.2	1
M3	Cloudy	Rough	11:37	Middle	4.5	19.2 18.6	18.9	7.8 7.9	7.9	30.4 30.4	30.4	85.3 85.5	85.4	6.6 6.7	6.7		5.6 5.2	5.4	4.9	4.4 4.4	4.4	3.3
				Bottom	8	18.8 19.2	19.0	7.9 7.9	7.9	30.5 30.5	30.5	80.3 80.9	80.6	6.2 6.2	6.2	6.2	6.2 6.5	6.4		2.4	2.4	
				Surface	1	18.8 19.1	19.0	7.8 7.7	7.8	27.9 28.5	28.2	88.8 92.7	90.8	7.0 7.3	7.2	7.0	3.8	3.9		1.2	1.2	ļ
M4	Cloudy	Rough	11:05	Middle	4	18.9 18.6	18.8	7.8 7.8	7.8	29.3 29.3	29.3	86.9 86.6	86.8	6.8 6.8	6.8		5.0 5.0	5.0	5.0	0.8	8.0	1.5
				Bottom	7	18.5 18.9	18.7	7.8 7.8	7.8	29.9 29.9	29.9	83.4 85.6	84.5	6.5 6.7	6.6	6.6	6.4 5.9	6.2		2.4	2.5	
				Surface	1	18.5 18.8	18.7	7.8 7.9 7.8	7.9	30.1 30.1 30.1	30.1	85.9 84.9	85.4	6.7 6.6	6.7	6.8	3.9 4.1 5.5	4.0		4.2 4.1	4.2	ļ
M5	Cloudy	Rough	11:53	Middle	5.5	18.5 18.7 18.9	18.6	7.8 7.8 7.8	7.8	30.1 30.1 30.4	30.1	85.9 86.5 86.5	86.2	6.7 6.8 6.7	6.8		5.5 5.7 6.8	5.6	5.4	3.3 3.4 1.9	3.4	3.2
				Bottom	10	18.7	18.8	7.8	7.9	30.4	30.4	85.4	86.0	6.7	6.7	6.7	6.2	6.5		1.9	1.9	
				Surface	-	18.9	-	7.8	-	30.7	-	84.2	-	6.5	-	6.5	4.9	-		1.4	-	Ī
M6	Cloudy	Rough	11:48	Middle	2.3	19.1	19.0	7.8	7.8	30.7	30.7	83.2	83.7	6.4	6.5		4.8	4.9	4.9	1.4	1.4	1.4
				Bottom	-	-	=	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 25 February 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level								
	Stations G1-G4	4, M1-M5									
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>								
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>								
	Station M6										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>								
	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>								
Turbidity in		or 120% of upstream control	or 130% of upstream control								
Turbidity in NTU (See Note 2 and 4)	Bottom	station's Turbidity at the same	station's Turbidity at the same tide								
		tide of the same day	of the same day								
		<u>C1: 6.2 NTU</u>	<u>C1: 6.8 NTU</u>								
	Station M6										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>								
	Stations G1-G4										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Surface	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C1: 4.3 mg/L</u>	<u>C1: 4.7 mg/L</u>								
	Stations M1-M	<u>[5</u>									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the								
(See Note 2 and 4)		the same day	same day								
		<u>C1: 4.3 mg/L</u>	<u>C1: 4.7 mg/L</u>								
	Stations G1-G4	4, M1-M5									
		<u>6.9 mg/L</u>	7.9 mg/L								
		or 120% of upstream control	or 130% of upstream control								
	Bottom	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C1: 3.2 mg/L</u>	<u>C1: 3.5 mg/L</u>								
	Station M6										
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>								

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 25 February 2017

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
Location	Condition	Condition**	Time		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.1 19.1	19.1	7.9 7.9	7.9	31.7 30.8	31.3	90.7 90.6	90.7	7.0 7.0	7.0	6.9	3.4 3.6	3.5		3.5 3.6	3.6	l
C1	Cloudy	Rough	17:02	Middle	10	18.3 18.5	18.4	7.9 8.0	8.0	30.8 30.6	30.7	84.8 86.3	85.6	6.6 6.7	6.7	0.0	3.9 4.0	4.0	4.2	2.8 2.7	2.8	3.0
				Bottom	19	18.5 19.1	18.8	7.9 7.9	7.9	28.9 29.1	29.0	83.6 83.7	83.7	6.6 6.5	6.6	6.6	5.1 5.3	5.2		2.7 2.6	2.7	
				Surface	1	18.9 18.9	18.9	7.9 7.8	7.9	30.3 30.7	30.5	88.6 89.1	88.9	6.9 6.9	6.9	6.9	3.1 2.5	2.8		3.0 3.0	3.0	l
C2	Cloudy	Rough	15:50	Middle	18	18.6 18.8	18.7	7.8 7.8	7.8	30.1 30.2	30.2	86.7 87.6	87.2	6.8 6.8	6.8		4.0 3.5	3.8	4.2	1.2 1.1	1.2	2.2
				Bottom	35	18.2 18.4	18.3	7.9 7.9	7.9	30.1 30.1	30.1	85.2 86.3	85.8	6.7 6.8	6.8	6.8	6.1 6.0	6.1		2.4 2.3	2.4	
				Surface	1	18.7 18.6	18.7	8.0 7.9	8.0	29.0 28.9	29.0	88.1 86.2	87.2	6.9 6.8	6.9	6.8	3.9 3.8	3.9		1.4	1.4	l
G1	Cloudy	Rough	16:22	Middle	4	18.9 18.2	18.6	7.9 7.9	7.9	29.2 29.3	29.3	85.1 84.4	84.8	6.7 6.7	6.7		4.2 4.0	4.1	4.1	1.3 1.2	1.3	1.7
				Bottom	7	17.8 17.7	17.8	8.0 7.9	8.0	30.0 30.0	30.0	82.9 82.8	82.9	6.6 6.6	6.6	6.6	4.4 4.4	4.4		2.2	2.3	
				Surface	1	18.5 18.5	18.5	8.0 7.9	8.0	29.7 29.6	29.7	86.1 85.7	85.9	6.8 6.7	6.8	6.7	2.6 2.8	2.7		3.6 3.6	3.6	
G2	Cloudy	Rough	16:10	Middle	5	18.5 18.6	18.6	7.8 7.8	7.8	30.0 30.1	30.1	84.3 84.0	84.2	6.6 6.6	6.6		2.3 2.6	2.5	3.2	1.4 1.4	1.4	2.4
				Bottom	9	18.4 18.5	18.5	7.9 7.9	7.9	29.5 29.7	29.6	82.8 82.7	82.8	6.5 6.5	6.5	6.5	4.3 4.3	4.3		2.1 2.1	2.1	
				Surface	1	18.9 18.5	18.7	7.9 8.0	8.0	28.7 28.9	28.8	87.5 87.2	87.4	6.9 6.9	6.9	6.8	3.4 3.1	3.3		3.1 3.1	3.1	
G3	Cloudy	Rough	16:29	Middle	4	18.7 18.4	18.6	7.8 8.0	7.9	29.6 29.6	29.6	85.7 84.5	85.1	6.7 6.7	6.7		5.7 5.4	5.6	5.0	5.6 5.7	5.7	3.8
				Bottom	7	18.6 18.5	18.6	7.9 7.8	7.9	30.0 30.1	30.1	84.5 83.6	84.1	6.6 6.6	6.6	6.6	5.4 6.7	6.1		2.4 2.5	2.5	
				Surface	1	19.2 19.3	19.3	7.8 7.9	7.9	30.5 30.8	30.7	87.3 88.4	87.9	6.7 6.8	6.8	6.8	4.5 3.8	4.2		2.1	2.1	l
G4	Cloudy	Rough	16:42	Middle	4	18.6 18.7	18.7	8.0 7.9	8.0	30.6 30.5	30.6	85.7 85.7	85.7	6.7 6.7	6.7		4.9 5.6	5.3	4.9	3.7 3.6	3.7	2.8
				Bottom	7	18.4 19.0	18.7	8.0 8.0	8.0	30.4 30.5	30.5	81.6 83.2	82.4	6.4 6.4	6.4	6.4	5.1 5.4	5.3		2.5 2.4	2.5	
				Surface	1	19.1 18.6	18.9	7.8 7.9	7.9	28.7 28.8	28.8	87.5 86.0	86.8	6.8 6.8	6.8	6.7	3.3 3.3	3.3		1.3	1.3	l
M1	Cloudy	Rough	16:17	Middle	3	18.4 18.3	18.4	7.9 7.9	7.9	29.2 29.1	29.2	84.8 82.7	83.8	6.7 6.5	6.6		4.7 4.3	4.5	3.8	2.6 2.5	2.6	1.6
				Bottom	5	18.5 18.5	18.5	7.8 7.9	7.9	30.8 30.8	30.8	81.3 81.7	81.5	6.3 6.4	6.4	6.4	3.4 3.5	3.5		0.8 0.8	0.8	
				Surface	1	18.3 18.4	18.4	7.9 7.8	7.9	30.7 30.6	30.7	85.2 85.6	85.4	6.7 6.7	6.7	6.6	2.9 2.4	2.7		2.7	2.7	l
M2	Cloudy	Rough	16:03	Middle	5.5	18.7 18.7	18.7	7.9 7.9	7.9	29.7 29.5	29.6	82.3 82.5	82.4	6.4 6.5	6.5		5.4 4.9	5.2	4.3	1.7 1.7	1.7	2.1
				Bottom	10	18.6 18.5	18.6	7.9 7.8	7.9	30.3 30.0	30.2	81.6 81.1	81.4	6.4 6.4	6.4	6.4	4.6 5.1	4.9		1.8 1.8	1.8	
				Surface	1	18.8 18.5	18.7	8.0 7.9	8.0	31.1 31.3	31.2	90.3 90.6	90.5	7.0 7.0	7.0	6.9	1.8	2.0		4.1 4.1	4.1	
M3	Cloudy	Rough	16:35	Middle	4.5	18.4 18.6	18.5	7.9 7.8	7.9	31.5 31.6	31.6	87.7 88.3	88.0	6.8 6.8	6.8		3.1 3.4	3.3	3.6	5.5 5.6	5.6	4.3
				Bottom	8	18.8 18.9	18.9	7.8 7.8	7.8	31.4 31.8	31.6	85.0 92.5	88.8	6.6 7.1	6.9	6.9	5.1 5.6	5.4		3.2 3.1	3.2	
				Surface	1	18.1 18.8	18.5	7.9 7.8	7.9	29.0 29.2	29.1	87.4 88.9	88.2	6.9 7.0	7.0	6.9	3.6	3.5	1	2.5	2.5	
M4	Cloudy	Rough	15:57	Middle	4	18.3 18.6	18.5	7.9 7.9	7.9	29.5 29.4	29.5	86.3 85.9	86.1	6.8 6.7	6.8		3.6 3.7	3.7	3.9	5.4 5.4	5.4	3.6
				Bottom	7	17.8 18.0	17.9	7.9 7.9	7.9	29.0 29.1	29.1	82.5 81.1	81.8	6.6 6.5	6.6	6.6	4.7 4.5	4.6		2.8 2.9	2.9	
				Surface	1	18.7 18.7	18.7	7.9 7.9 8.0	7.9	31.3 32.0 30.4	31.7	89.2 89.0	89.1	6.9 6.9	6.9	6.8	4.1 3.8	4.0	1	3.4 3.3 2.2	3.4	
M5	Cloudy	Rough	16:53	Middle	5.5	18.5 18.8 18.9	18.7	8.0 8.0	8.0	31.1 29.8	30.8	85.3 85.6 83.0	85.5	6.7 6.6 6.5	6.7		5.6 5.5 4.5	5.6	4.7	2.2 2.1 0.8	2.2	2.1
				Bottom	10	18.9	18.9	8.0	8.0	30.0	29.9	83.0 82.5	82.8	6.4	6.5	6.5	4.5 4.5	4.5		0.8	8.0	
				Surface	-	18.6	-	7.8	-	30.6	=	85.1	-	6.6	-	6.6	3.7	-		<0.5	-	
M6	Cloudy	Rough	16:48	Middle	2.2	18.7	18.7	7.9	7.9	30.5	30.6	83.0	84.1	6.5	6.6		3.4	3.6	3.6	<0.5	<0.5	0.5
				Bottom	-	-	=	-	-	-	-	-	-	-	-	=	-	=		-	-	l

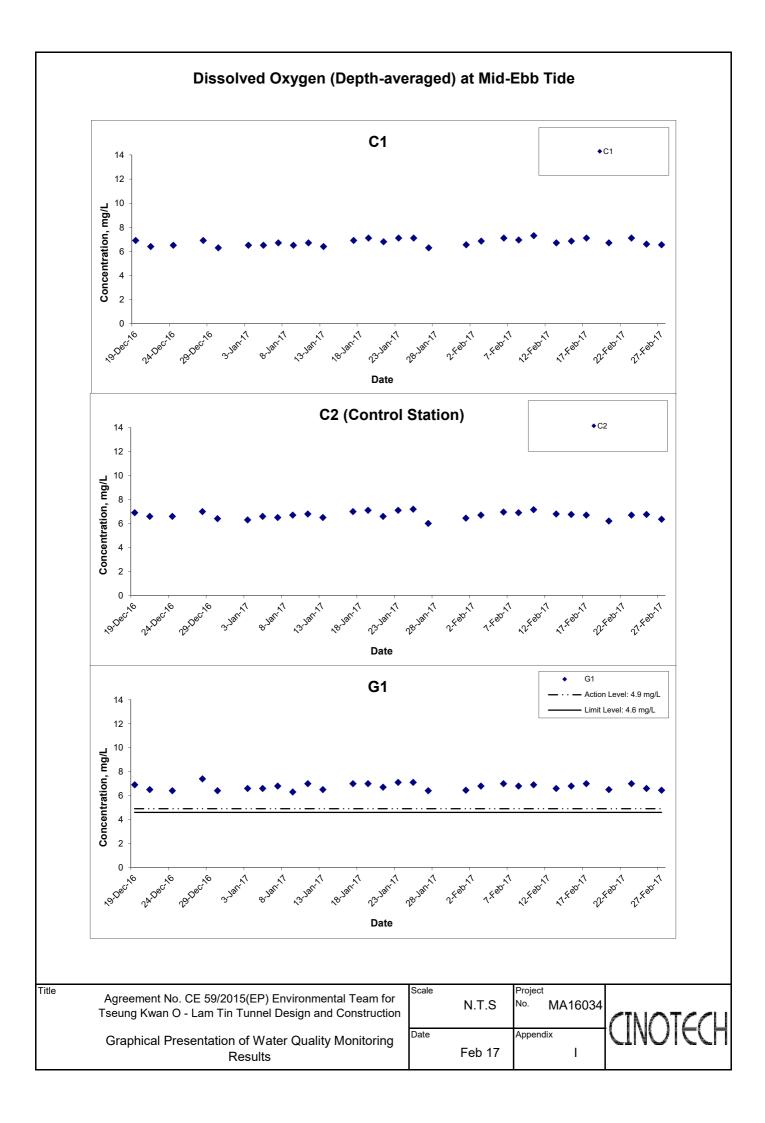
Appendix I - Action and Limit Levels for Marine Water Quality on 27 February 2017 (Mid-Ebb Tide)

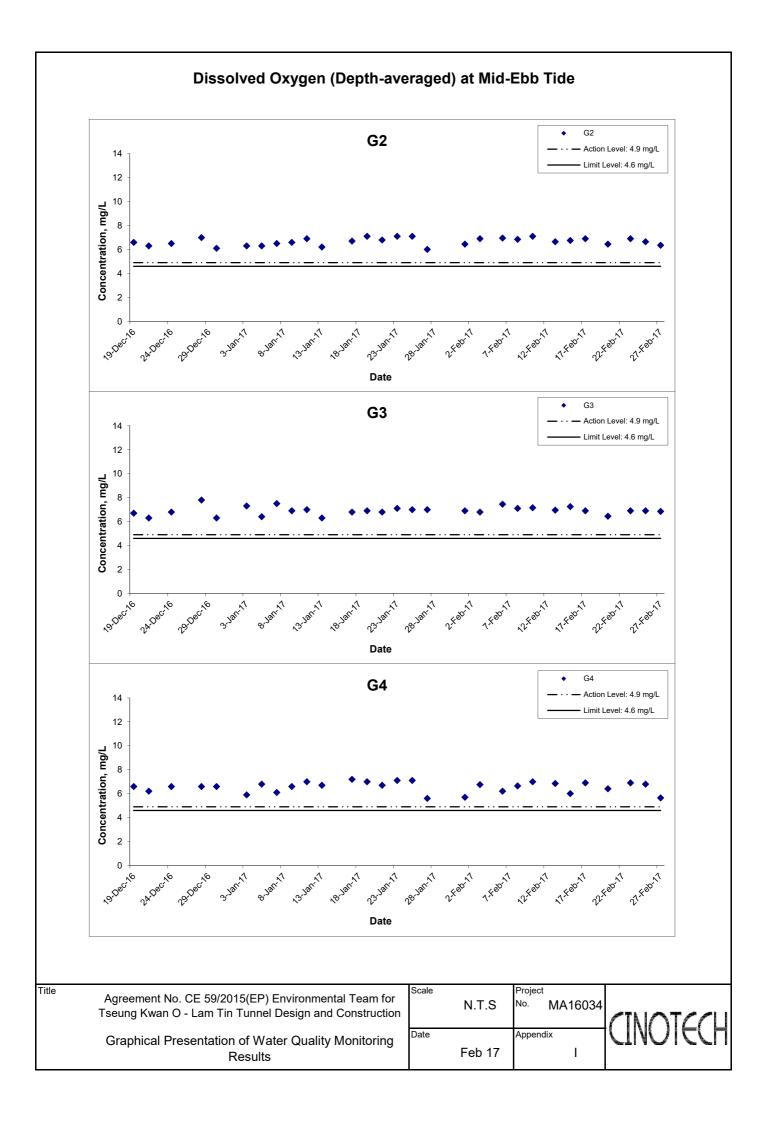
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level								
	Stations G1-G4	4, M1-M5									
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L								
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>								
	Station M6										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>								
	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>								
Tunhidituin		or 120% of upstream control	or 130% of upstream control								
Turbidity in NTU (See Note 2 and 4)	Bottom	station's Turbidity at the same	station's Turbidity at the same tide								
		tide of the same day	of the same day								
,		<u>C2: 7.9 NTU</u>	<u>C2: 8.6 NTU</u>								
	Station M6										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>								
	Stations G1-G4										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Surface	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 3.2 mg/L</u>	<u>C2: 3.5 mg/L</u>								
	Stations M1-M5										
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the								
(See Note 2 and 4)		the same day	same day								
		<u>C2: 3.2 mg/L</u>	<u>C2: 3.5 mg/L</u>								
	Stations G1-G4	4, M1-M5									
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Bottom	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>								
	Station M6										
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>								

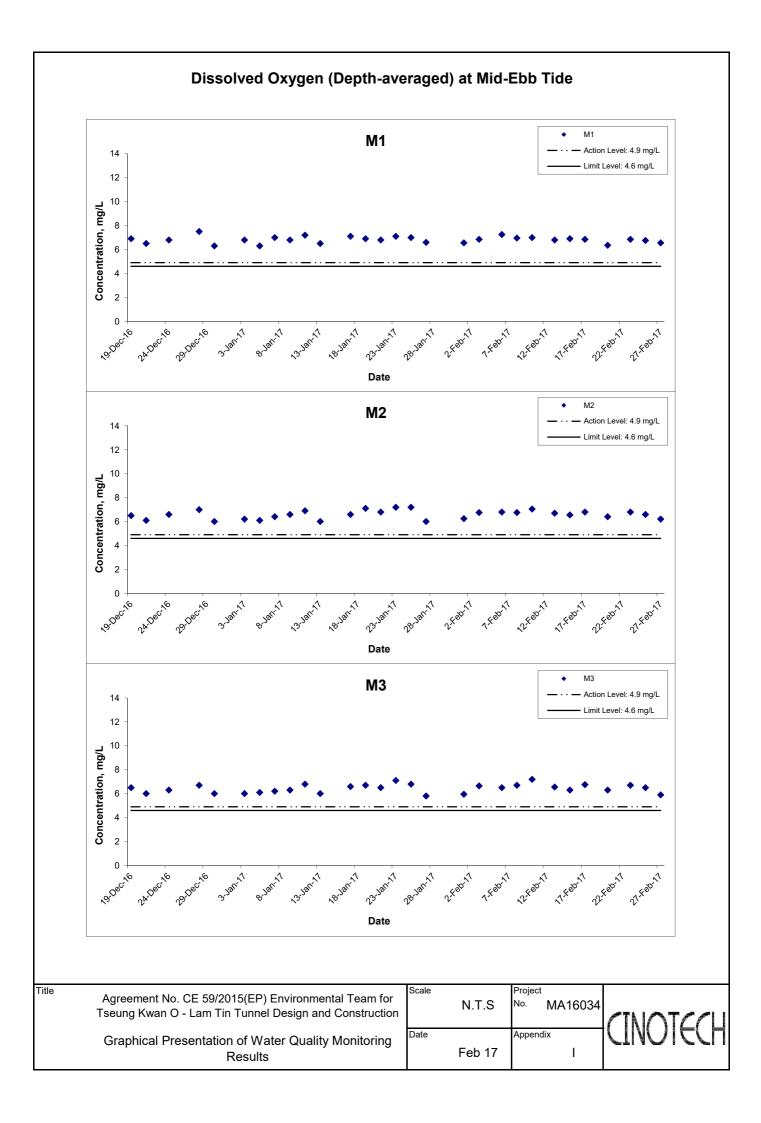
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 27 February 2017

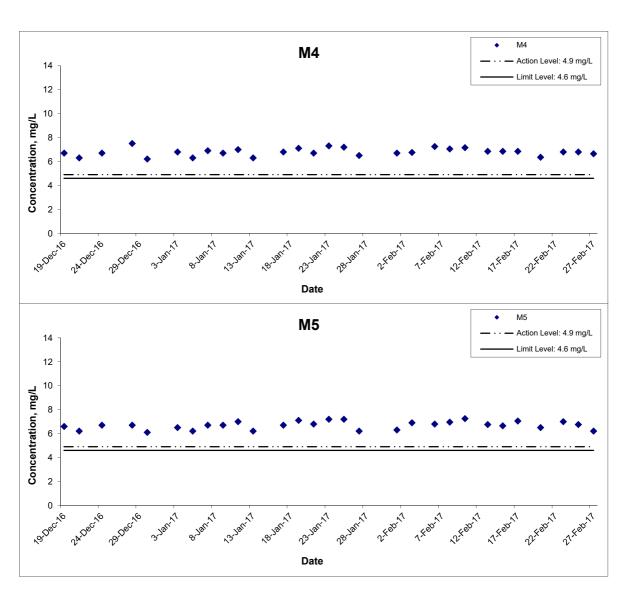
Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Furbidity(NTI			ended Solids	
Location	Condition	Condition**	Time	Бори	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.4 23.0	23.2	8.2 8.2	8.2	31.5 31.6	31.6	103.4 100.8	102.1	7.4 7.2	7.3	6.9	4.5 4.6	4.6		1.0 1.1	1.1	1
C1	Sunny	Moderate	14:25	Middle	10.5	23.3 22.8	23.1	8.2 8.2	8.2	32.6 32.6	32.6	88.6 89.2	88.9	6.3 6.4	6.4	•••	5.6 5.7	5.7	5.9	1.5		1.5
				Bottom	20	23.0 22.9	23.0	8.3 8.2	8.3	33.3 33.2	33.3	85.8 87.7	86.8	6.1 6.2	6.2	6.2	7.2 7.3	7.3		1.9 1.9	1.9	
				Surface	1	23.1 22.5	22.8	8.1 8.1	8.1	31.7 31.7	31.7	97.3 101.0	99.2	6.9 7.3	7.1	6.8	4.2 4.3	4.3		2.7 2.6	2.7	<u> </u>
C2	Sunny	Moderate	12:25	Middle	18	23.1 22.3	22.7	8.1 8.1	8.1	32.9 32.9	32.9	88.5 91.4	90.0	6.3 6.6	6.5	0.0	5.9 5.9	5.9	5.6	2.7 2.6	2.7	3.4
				Bottom	35	22.5 22.3	22.4	8.2 8.2	8.2	33.1 33.2	33.2	82.2 82.7	82.5	5.9 5.9	5.9	5.9	6.4 6.7	6.6		4.8 4.9	4.9	
				Surface	1	22.9 22.8	22.9	8.2 8.2	8.2	33.1 33.1	33.1	94.2 91.2	92.7	6.7 6.5	6.6	6.6	4.7 5.1	4.9		1.9 1.8	1.9	
G1	Sunny	Moderate	13:08	Middle	4	23.0 22.8	22.9	8.2 8.2	8.2	33.4 33.4	33.4	87.1 95.0	91.1	6.2 6.8	6.5		5.0 4.9	5.0	5.0	3.2 3.1	3.2	1.9
				Bottom	7	22.8 22.8	22.8	8.2 8.2	8.2	33.6 33.6	33.6	87.0 88.2	87.6	6.2 6.3	6.3	6.3	5.1 5.3	5.2		0.7 0.7	0.7	
				Surface	1	22.8 22.8	22.8	8.2 8.2	8.2	33.1 33.1	33.1	97.6 102.3	100.0	6.9 7.3	7.1	6.8	4.0 4.5	4.3		1.5	1.5	
G2	Sunny	Moderate	12:51	Middle	5	22.8 22.8	22.8	8.2 8.2	8.2	33.4 33.4	33.4	88.3 92.3	90.3	6.3 6.6	6.5		5.7 5.7	5.7	5.8	2.1	2.1	1.8
				Bottom	9	22.8 22.8	22.8	8.2 8.2	8.2	33.2 34.0	33.6	83.1 83.7	83.4	5.9 5.9	5.9	5.9	7.2 7.4	7.3		1.7 1.8	1.8	
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	33.5 33.5	33.5	94.6 94.5	94.6	6.8 6.8	6.8	6.8	4.3	4.2		1.3	1.3	
G3	Sunny	Moderate	13:21	Middle	4	22.5 22.4	22.5	8.2 8.2	8.2	33.5 33.5	33.5	94.9 94.5	94.7	6.8 6.8	6.8		4.5 4.3	4.4	4.6	2.8 2.7	2.8	2.5
				Bottom	7	22.5 22.4	22.5	8.2 8.2	8.2	33.5 33.5	33.5	95.8 97.2	96.5	6.8 6.9	6.9	6.9	5.5 5.1	5.3		3.5 3.4	3.5	
				Surface	1	23.4 22.8	23.1	8.2 8.2	8.2	31.5 31.5	31.5	82.4 77.6	80.0	5.9 5.6	5.8	5.8	4.7 4.3	4.5		1.2	1.3	
G4	Sunny	Moderate	13:53	Middle	4	23.4 22.7	23.1	8.2 8.2	8.2	32.5 32.5	32.5	79.3 79.4	79.4	5.6 5.7	5.7		5.9 6.2	6.1	6.0	1.4	1.4	1.6
				Bottom	7	22.8 22.8	22.8	8.3 8.3	8.3	33.2 33.0	33.1	79.9 75.0	77.5	5.7 5.3	5.5	5.5	7.2 7.3	7.3		2.0	2.1	
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	33.5 33.5	33.5	91.5 91.8	91.7	6.5 6.6	6.6	6.6	5.2 5.3	5.3		2.2	2.3	
M1	Sunny	Moderate	13:00	Middle	-	22.5	-	8.2	-	33.7	-	90.6	-	6.5	-		4.7	-	5.2	1.8	-	2.1
				Bottom	3	22.4	22.5	8.2 8.2	8.2	33.7 31.7	33.7	90.2	90.4	6.4	6.5	6.5	5.2 4.9	5.0		1.8	1.8	
				Surface	1	22.5	22.8	8.2 8.2	8.2	31.7 31.7 32.9	31.7	90.3 90.5	90.6	6.5 6.5 6.4	6.5	6.5	5.0 4.7	5.0		2.2	2.2	
M2	Sunny	Moderate	12:45	Middle	5.5	22.3 22.5	22.7	8.2 8.2	8.2	32.9 33.1	32.9	89.7 82.2	90.1	6.4 5.9	6.4		4.7 4.9 5.4	4.8	5.1	1.3	1.3	1.7
				Bottom	10	22.3	22.4	8.2 8.2	8.2	33.2 31.3	33.2	81.5 88.4	81.9	5.8	5.9	5.9	5.3	5.4		1.5	1.5	
				Surface	1	23.0	23.2	8.2 8.2	8.2	31.2 31.9	31.3	90.2	89.3	6.5 5.6	6.4	6.1	4.0	4.0		1.1	1.1	
M3	Sunny	Moderate	13:41	Middle	4.5	23.4 22.8 23.0	23.1	8.2 8.2 8.2	8.2	31.9 31.9 32.3	31.9	79.3 82.5 79.8	80.9	5.6 5.9 5.7	5.8		5.3 5.5 5.7	5.4	5.1	2.3	2.3	2.1
				Bottom	8	22.8 22.5	22.9	8.2 8.2	8.2	32.3 33.5	32.3	78.4 99.2	79.1	5.6 7.1	5.7	5.7	6.1	5.9		3.0	3.0	
				Surface	1	22.5 22.4 22.5	22.5	8.2 8.2 8.2	8.2	33.5 33.6	33.5	97.8 92.0	98.5	7.1 7.0 6.6	7.1	6.9	4.0 4.5 5.7	4.3		2.3 2.4 1.5	2.4	
M4	Sunny	Moderate	12:37	Middle	4	21.9 22.4	22.2	8.2 8.2	8.2	33.6 33.5	33.6	91.2 90.2	91.6	6.6 6.4	6.6		5.7 5.7 7.2	5.7	5.8	1.6	1.6	2.0
				Bottom	7	21.9	22.2	8.2 8.2	8.2	33.5 31.5	33.5	89.1 85.4	89.7	6.4	6.4	6.4	7.4	7.3		1.8	1.9	\vdash
		l		Surface	1	23.0 23.3	23.2	8.2 8.2	8.2	31.5 32.5	31.5	90.7 86.7	88.1	6.5 6.1	6.3	6.3	4.2 5.1	4.5		2.1	2.1	_
M5	Sunny	Moderate	14:17	Middle	5.5	22.8	23.1	8.3 8.3	8.3	32.6 33.2	32.6	91.3	89.0	6.5	6.3		5.5 7.3	5.3	5.7	3.9	3.9	3.0
				Bottom	10	22.8	22.9	8.3	8.3	33.3	33.3	83.6	86.2	5.9	6.1	6.1	7.5	7.4		3.1	3.1	
140	0.	Mari :	44.00	Surface	-	23.5	-	- 8.2	-	31.3	- 01.0	96.7		- 6.9	-	6.9	5.3	-		1.4	-	
M6	Sunny	Moderate	14:03	Middle	1.4	23.0	23.3	8.2	8.2	31.3	31.3	95.5	96.1	6.8	6.9		5.2	5.3	5.3	1.4	1.4	1.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	


Appendix I - Action and Limit Levels for Marine Water Quality on 27 February 2017 (Mid-Flood Tide)


Parameter (unit)	<u>Depth</u>	Action Level	Limit Level								
	Stations G1-G4	4, M1-M5									
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L								
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>								
	Station M6										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>								
	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>								
Turbidity in		or 120% of upstream control	or 130% of upstream control								
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide								
NTU (See Note 2 and 4)		tide of the same day	of the same day								
,		<u>C1: 9.6 NTU</u>	<u>C1: 10.4 NTU</u>								
	Station M6										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>								
	Stations G1-G4										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Surface	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C1: 3.2 mg/L</u>	<u>C1: 3.5 mg/L</u>								
	Stations M1-M	<u>5</u>									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the								
(See Note 2 and 4)		the same day	same day								
		C1: 3.2 mg/L	<u>C1: 3.5 mg/L</u>								
	Stations G1-G4	4, M1-M5									
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>								
		or 120% of upstream control	or 130% of upstream control								
	Bottom	station's SS at the same tide of	station's SS at the same tide of the								
		the same day	same day								
		<u>C1: 3.6 mg/L</u>	<u>C1: 3.9 mg/L</u>								
	Station M6										
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>								


- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 27 February 2017

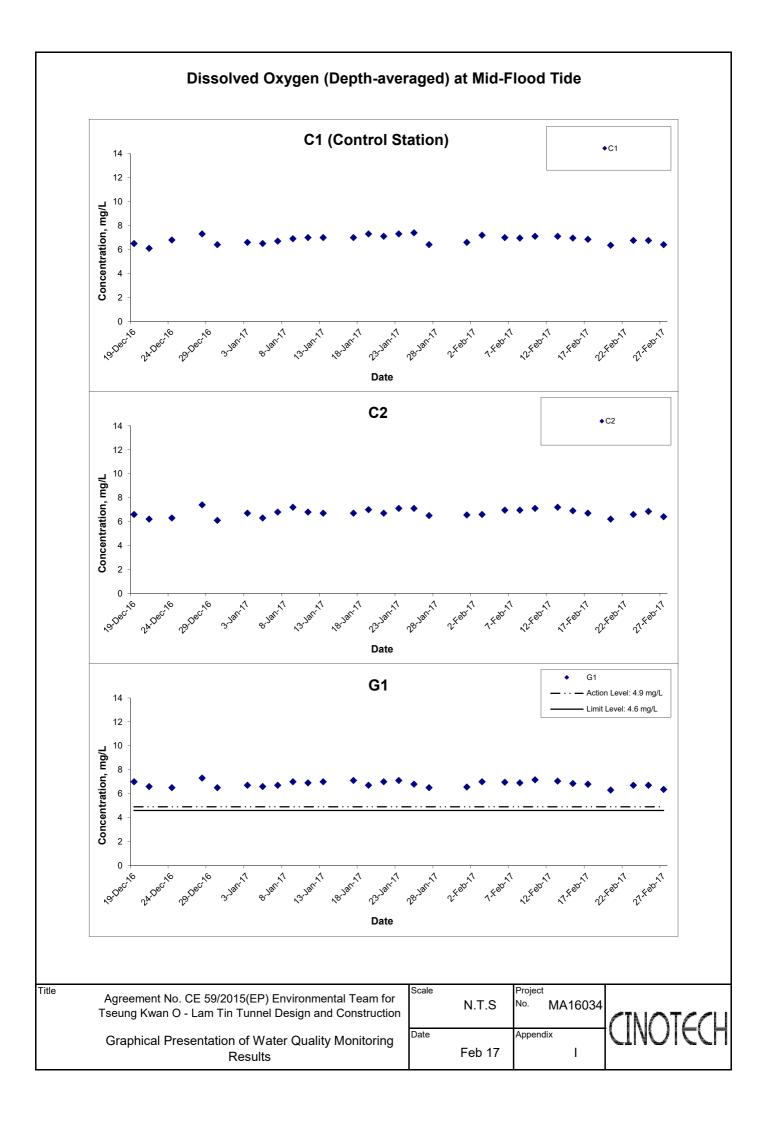

	Weather	Sea	Sampling			Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.6	23.7	8.2 8.1	8.2	31.7 31.7	31.7	98.9 101.3	100.1	7.0 7.2	7.1	6.7	6.4 6.0	6.2		2.6 2.7	2.7	
C1	Sunny	Moderate	19:05	Middle	10	23.8 23.5	23.7	8.1 8.2	8.2	31.9 31.9	31.9	87.8 88.1	88.0	6.2 6.2	6.2	6.7	7.3 6.5	6.9	7.0	2.9 3.0	3.0	2.9
				Bottom	19	23.6 23.5	23.6	8.1 8.1	8.1	32.0 32.0	32.0	86.8 86.8	86.8	6.1 6.1	6.1	6.1	8.4 7.5	8.0		2.9 3.0	3.0	
				Surface	1	23.5 23.4	23.5	8.2 8.1	8.2	32.0 32.0	32.0	95.1 96.3	95.7	6.7 6.8	6.8	6.6	4.6 4.5	4.6		1.6	1.6	
C2	Sunny	Moderate	17:27	Middle	18	23.5 23.5 23.4	23.5	8.1 8.1 8.1	8.1	32.0 32.0 32.1	32.0	88.4 88.4 88.0	88.4	6.3 6.3 6.2	6.3		4.8 5.1 7.3	5.0	5.6	1.6 1.5 1.6	1.6	1.6
				Bottom	35	23.5	23.5	8.1 8.1	8.1	32.1 31.8	32.1	88.1 94.9	88.1	6.2	6.2	6.2	7.1 5.1	7.2		1.6	1.6	<u> </u>
				Surface	1	23.3	23.4	8.2 8.2	8.2	31.8 31.9	31.8	95.5 85.7	95.2	6.8	6.8	6.5	4.9	5.0		<0.5	<0.5	
G1	Sunny	Moderate	18:09	Middle	4	23.1	23.3	8.2 8.2	8.2	31.9 32.0	31.9	86.7 86.1	86.2	6.2	6.2		5.6 6.7	5.5	5.8	1.1	1.1	1.2
				Bottom	7	23.1	23.2	8.2 8.1	8.2	32.0 32.3	32.0	87.1 93.8	86.6	6.2	6.2	6.2	6.8	6.8		2.1	2.1	
00			17.51	Surface	1	23.4	23.4	8.1 8.1	8.1	32.3 32.4	32.3	94.4 87.8	94.1	6.7	6.7	6.5	5.2	5.3		2.6	2.6	
G2	Sunny	Moderate	17:51	Middle Bottom	5 9	23.3 23.4	23.4	8.1 8.2	8.1	32.4 32.8	32.4 32.8	86.6 83.9	87.2 83.3	6.1 5.9	6.2 5.9	5.9	5.7 6.3	5.8 6.3	5.8	3.9 2.6	3.9 2.6	3.0
				Surface	1	23.3 23.4	23.4	8.2 8.1	8.2	32.7 31.7	31.7	82.7 95.6	95.9	5.8 6.8	6.8	5.9	6.3 5.4	5.3		2.6 1.6	1.6	
G3	Sunny	Moderate	18:19	Middle	4	23.4 23.3	23.3	8.1 8.1	8.1	31.7 32.1	32.1	96.2 86.8	86.7	6.8 6.2	6.2	6.5	5.2 5.9	6.2	6.2	1.5 1.2	1.0	1.8
do	Suriny	Wioderate	10.19	Bottom	7	23.2 23.4	23.3	8.1 8.1	8.1	32.1 32.4	32.4	86.6 85.5	85.1	6.2 6.0	6.0	6.0	6.4 7.1	7.1	0.2	1.2 2.4	2.5	1.0
				Surface	1	23.2 23.8	23.7	8.1 8.0	8.1	32.3 31.8	31.8	84.7 95.2	95.2	6.0	6.7	0.0	7.1 5.4	5.1		2.5 1.5	1.5	
G4	Sunny	Moderate	18:38	Middle	4	23.6 23.8	23.7	8.1 8.1	8.1	31.8 32.1	32.1	95.2 87.3	87.3	6.7 6.1	6.2	6.5	4.8 5.4	5.5	6.4	1.4 2.5	2.5	1.8
	,			Bottom	7	23.6 23.6	23.6	8.1 8.1	8.1	32.1 32.5	32.6	87.3 91.0	91.0	6.2	6.4	6.4	5.6 8.3	8.5	•	1.3	1.3	
				Surface	1	23.6	23.4	8.1 8.1	8.1	32.6 32.0	32.0	91.0 94.0	94.2	6.4	6.7		5.0	5.2		2.5	2.5	
M1	Sunny	Moderate	18:00	Middle	-	23.4	-	8.1	-	32.0	-	94.3	-	6.7	-	6.7	5.4	-	5.2	2.5	-	2.2
				Bottom	3	23.4	23.4	8.1 8.1	8.1	32.0 32.0	32.0	87.3 86.8	87.1	6.2	6.2	6.2	5.2	5.2		1.9	1.9	
				Surface	1	23.4 23.4	23.4	8.2 8.2	8.2	32.2 32.2	32.2	89.6 90.0	89.8	6.3 6.4	6.4	0.0	5.1 5.3	5.2		1.7	1.7	
M2	Sunny	Moderate	17:44	Middle	5.5	23.4	23.4	8.1 8.1	8.1	32.3 32.4	32.4	83.3 83.0	83.2	5.9 5.9	5.9	6.2	6.0 5.7	5.9	5.7	2.3	2.3	1.8
				Bottom	10	23.4 23.4	23.4	8.1 8.1	8.1	32.5 32.5	32.5	81.7 81.6	81.7	5.8 5.8	5.8	5.8	6.1 6.1	6.1		1.2 1.3	1.3	
				Surface	1	23.7 23.6	23.7	8.1 8.1	8.1	32.3 32.3	32.3	106.9 103.0	105.0	7.5 7.3	7.4	6.9	5.3 5.5	5.4		2.2 2.2	2.2	
МЗ	Sunny	Moderate	18:31	Middle	4.5	23.7 23.6	23.7	8.1 8.1	8.1	32.5 32.6	32.6	89.0 89.2	89.1	6.3 6.3	6.3	5.5	6.1 5.9	6.0	5.8	0.6 0.5	0.6	1.4
				Bottom	8	23.6 23.6	23.6	8.1 8.1	8.1	32.9 32.9	32.9	81.8 81.4	81.6	5.8 5.7	5.8	5.8	5.9 6.0	6.0		1.4 1.4	1.4	
				Surface	1	23.4 23.4	23.4	8.1 8.1	8.1	32.0 32.0	32.0	95.3 95.3	95.3	6.8 6.8	6.8	6.5	6.4 6.1	6.3		1.6 1.5	1.6	
M4	Sunny	Moderate	17:35	Middle	4	23.4	23.1	8.1 8.1	8.1	32.0 32.0	32.0	88.0 86.5	87.3	6.2 6.2	6.2		6.6 6.4	6.5	6.5	2.3	2.3	2.0
				Bottom	7	23.4 22.7	23.1	8.1 8.1	8.1	32.2 32.2	32.2	84.7 82.3	83.5	6.0 5.9	6.0	6.0	6.7 6.8	6.8		2.0 1.9	2.0	
				Surface	1	23.8	23.7	8.1 8.1	8.1	32.0 32.0	32.0	94.9 94.6	94.8	6.7 6.7	6.7	6.4	5.8 6.2	6.0		1.4	1.5	
M5	Sunny	Moderate	18:57	Middle	5.5	23.8 23.6 23.6	23.7	8.2 8.1 8.2	8.2	32.1 32.1 32.2	32.1	86.5 86.9 83.5	86.7	6.1 6.1 5.9	6.1		6.4 6.3 7.3	6.4	6.6	1.6 1.5 1.4	1.6	1.5
				Bottom	10	23.6	23.6	8.1	8.2	32.2	32.2	83.3	83.4	5.9	5.9	5.9	7.6	7.5		1.5	1.5	
				Surface	-	23.8	-	8.1	-	31.7		97.6	-	6.9	-	7.0	5.6	-		3.5	-	
M6	Sunny	Moderate	18:45	Middle	1.5	23.6	23.7	8.1	8.1	31.7	31.7	98.9	98.3	7.0	7.0		5.9	5.8	5.8	3.5	3.5	3.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	

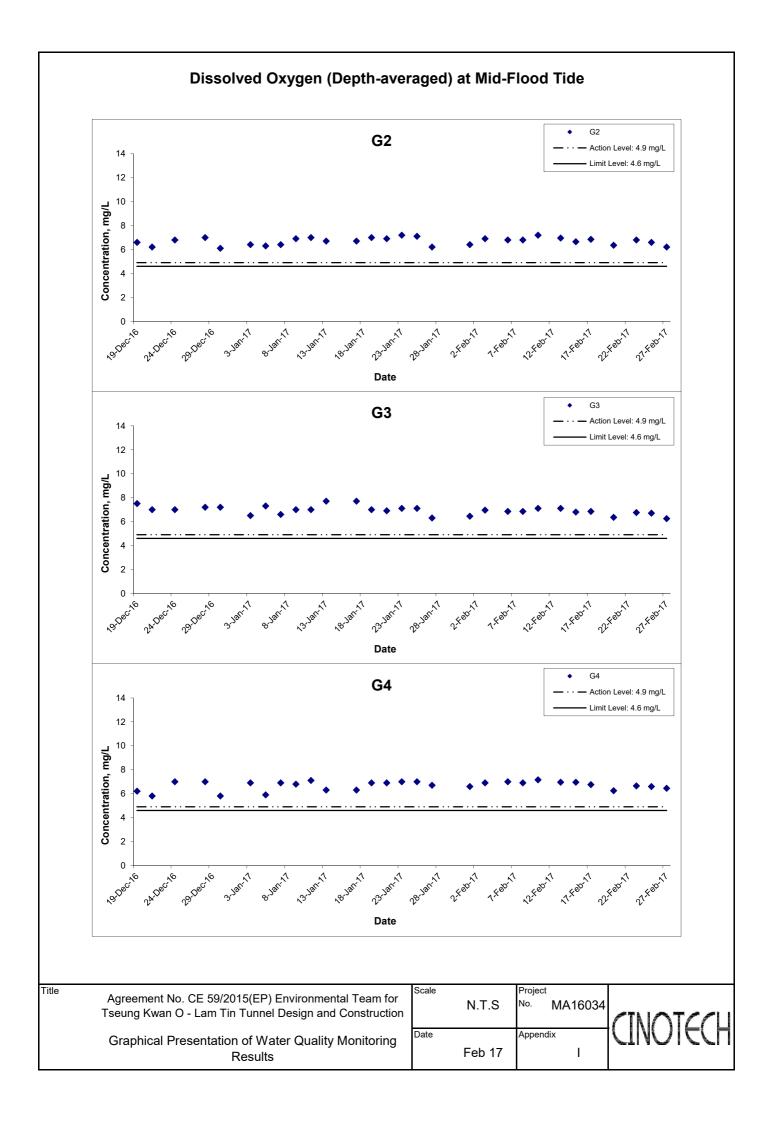
Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide

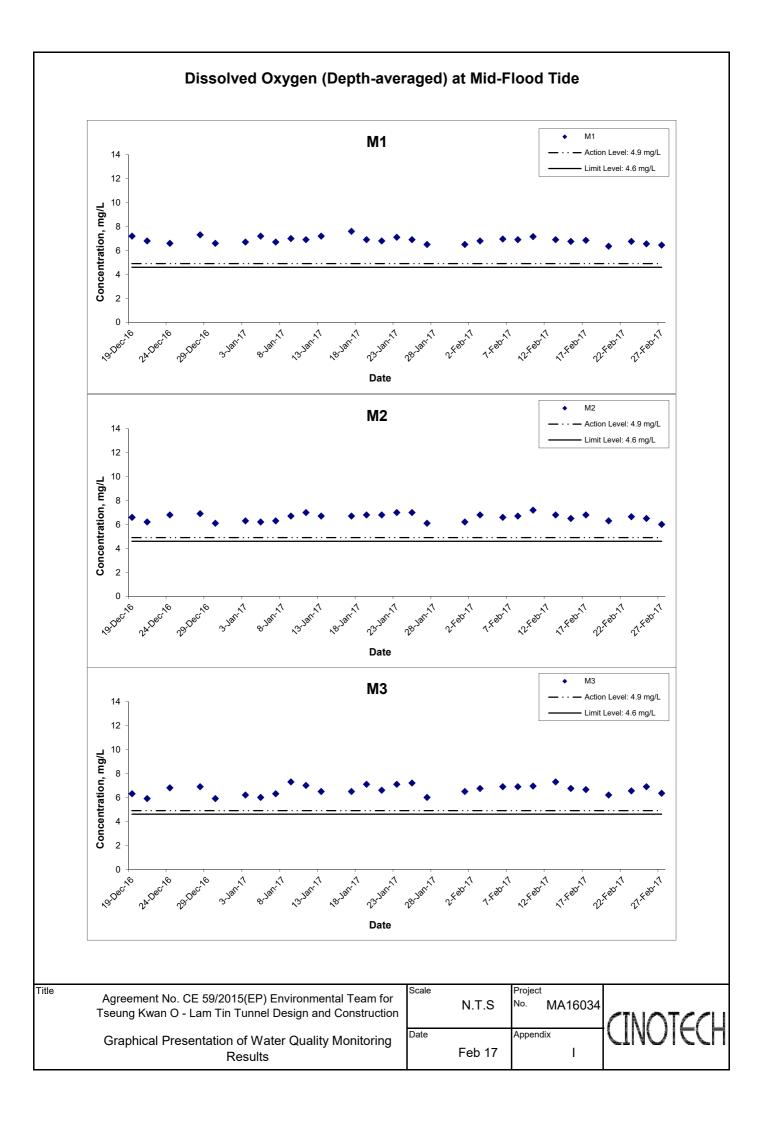
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

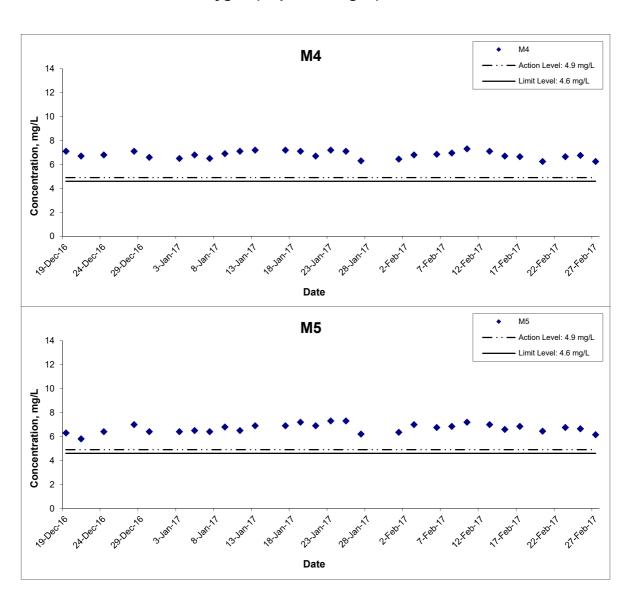
Scale

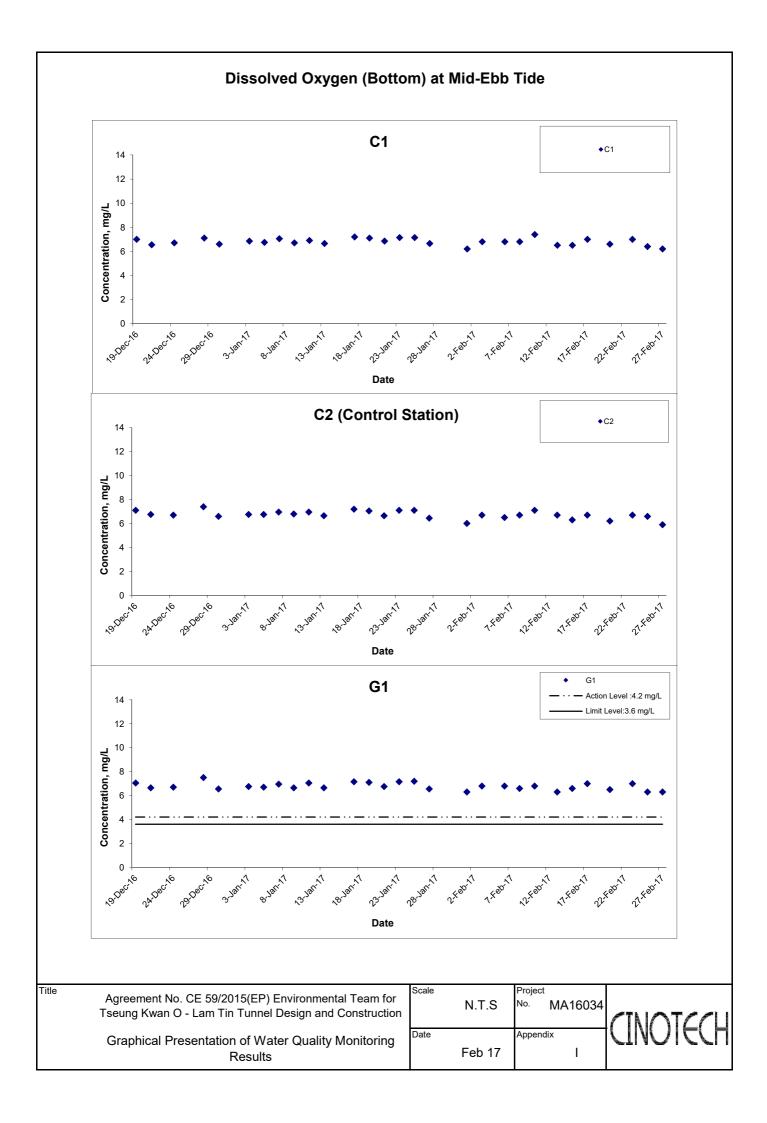

N.T.S

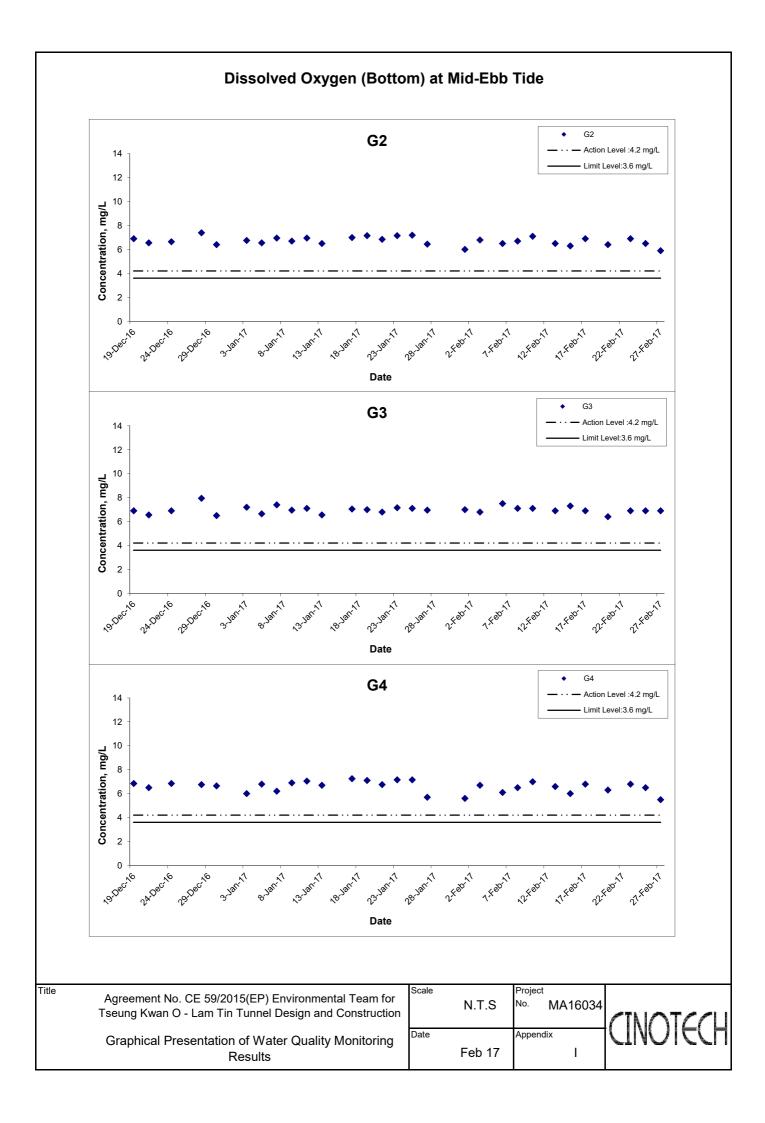

Project
No. MA16034

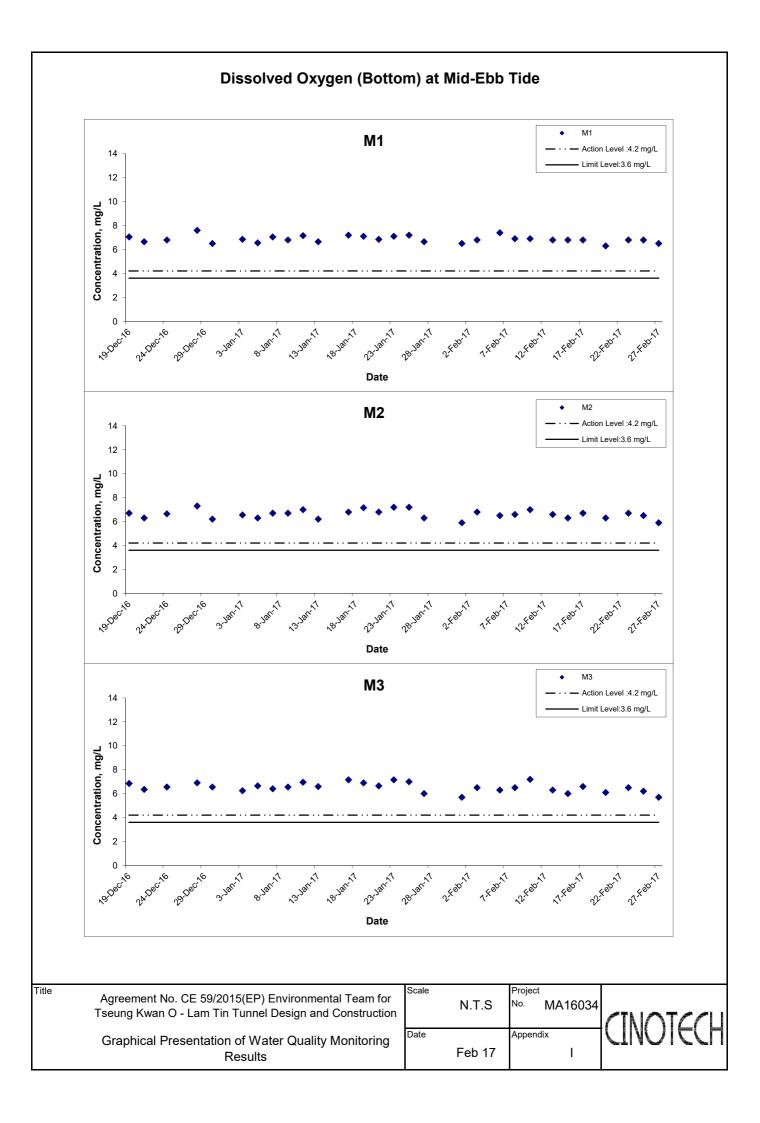

The Mater Project
No. MA16034

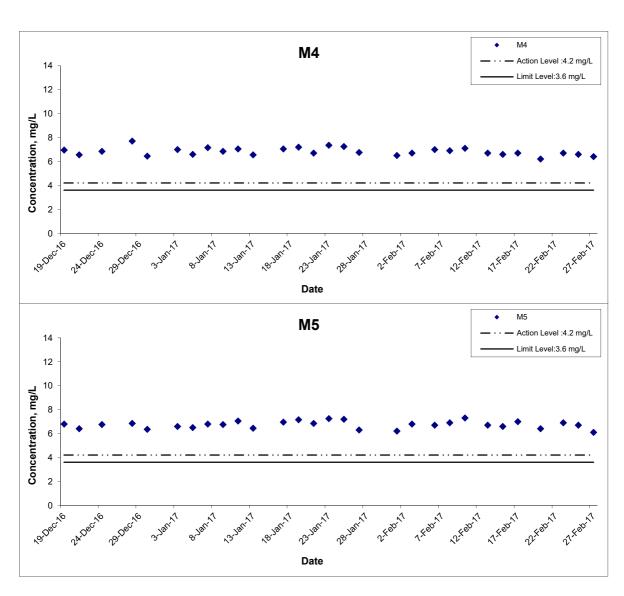
Feb 17


I






Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide

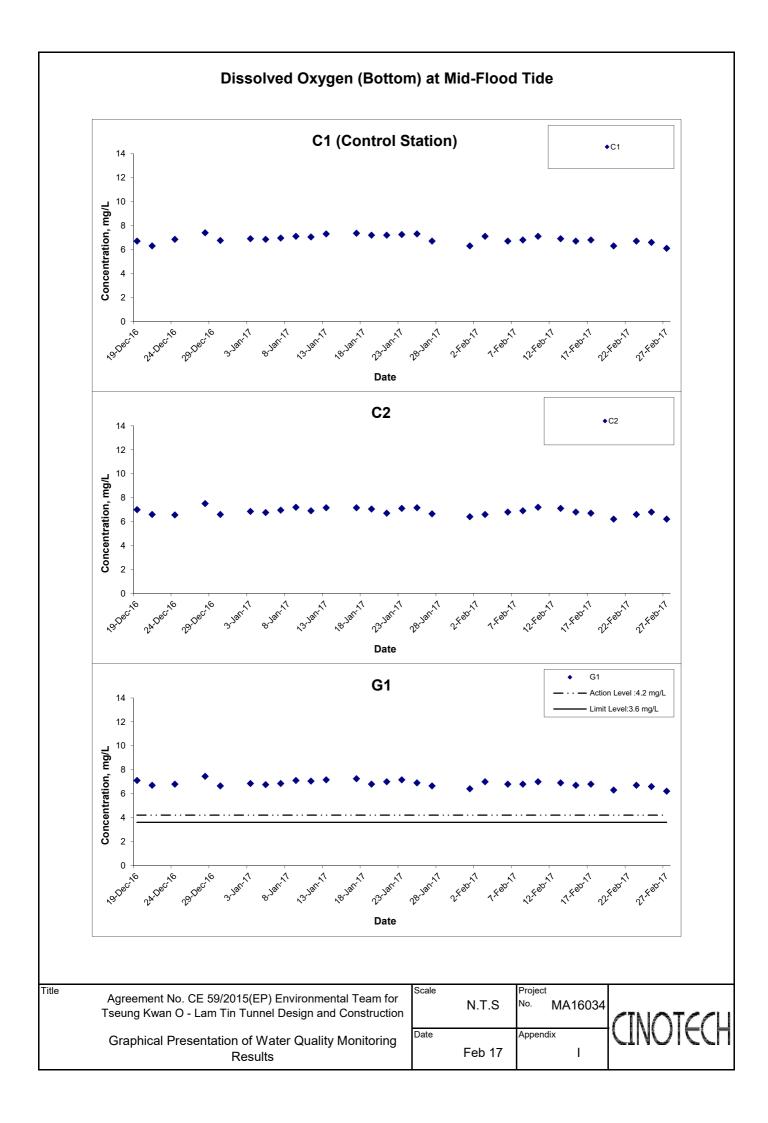

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINICTECLI
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CINOICCU

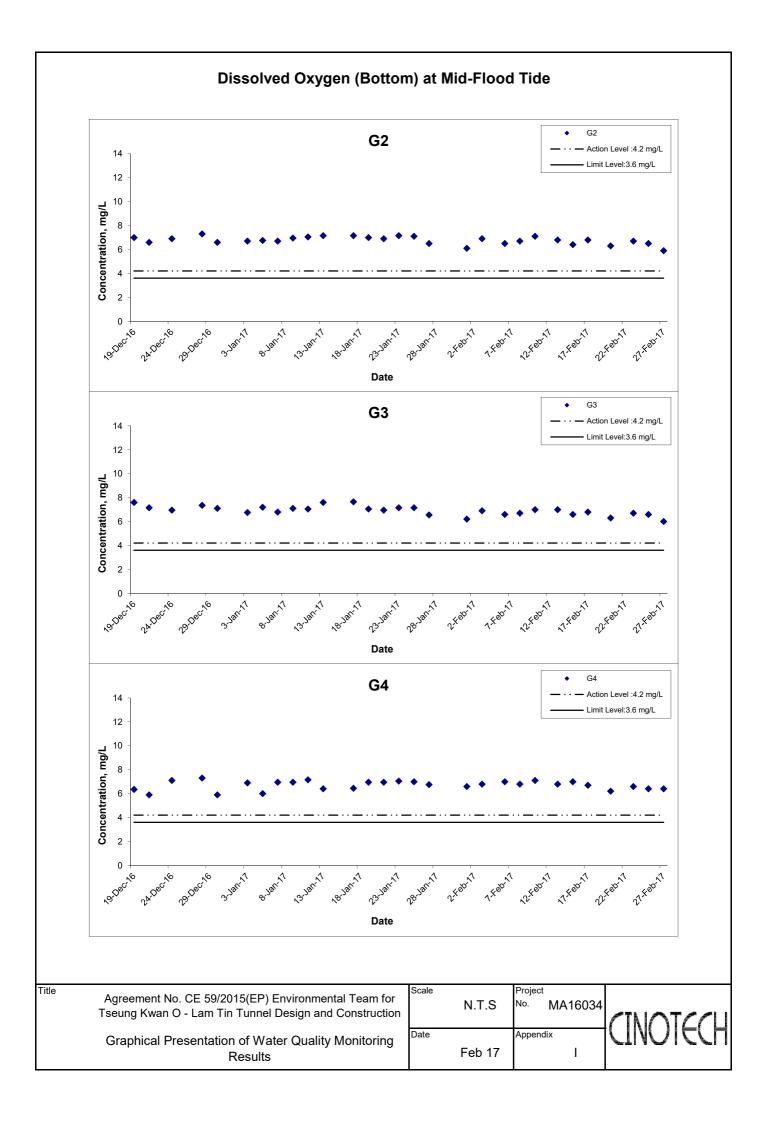
Dissolved Oxygen (Bottom) at Mid-Ebb Tide

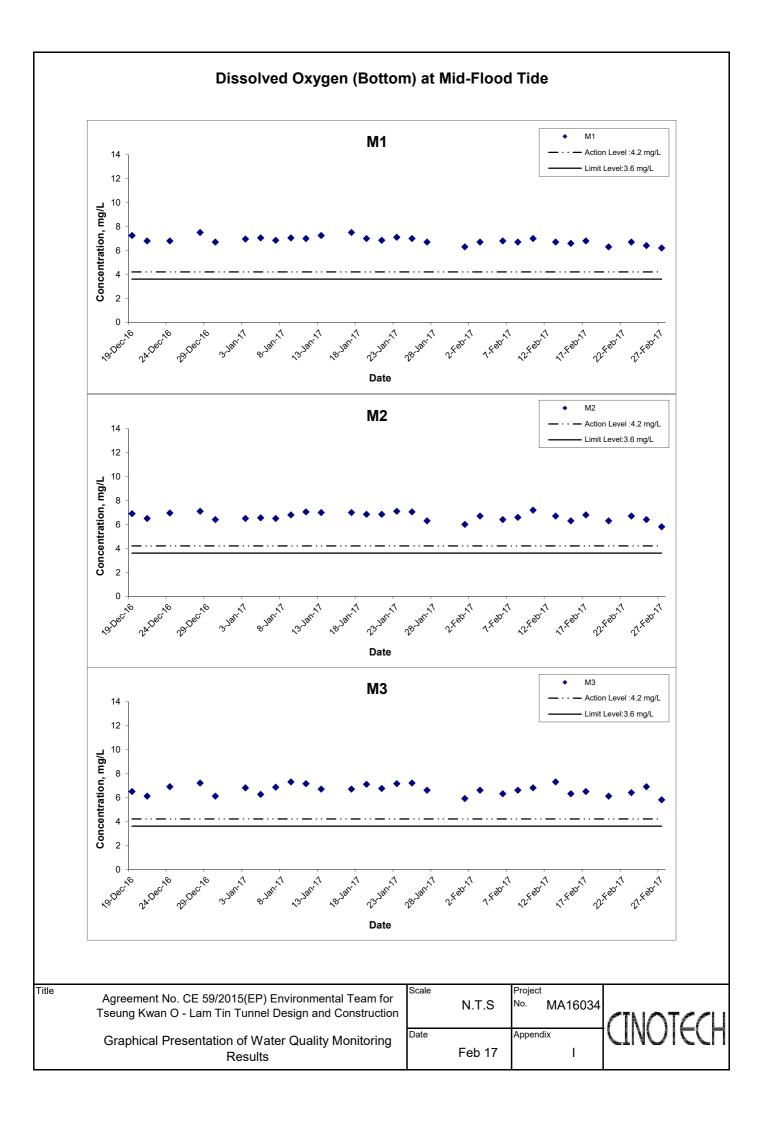
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

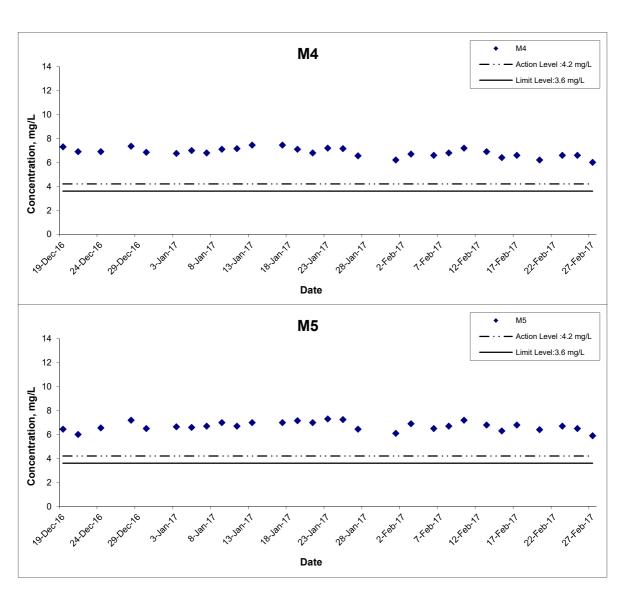
Scale

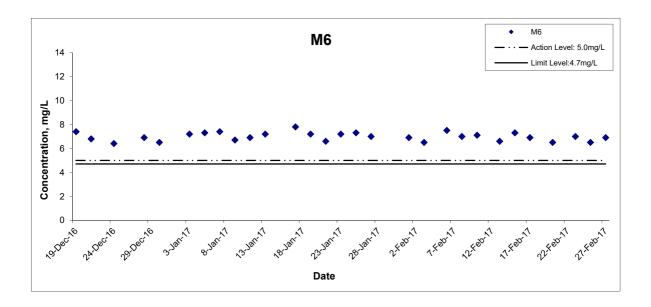

N.T.S


Project
No. MA16034


Date

Feb 17

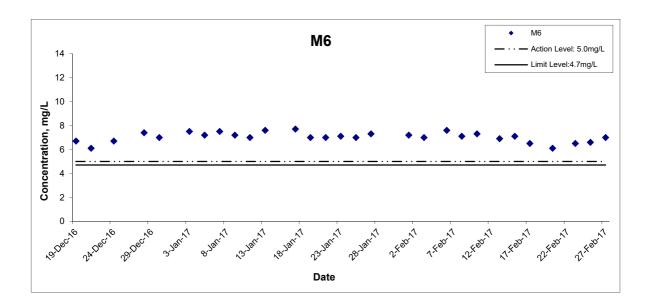

Feb 17



Dissolved Oxygen (Bottom) at Mid-Flood Tide

Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

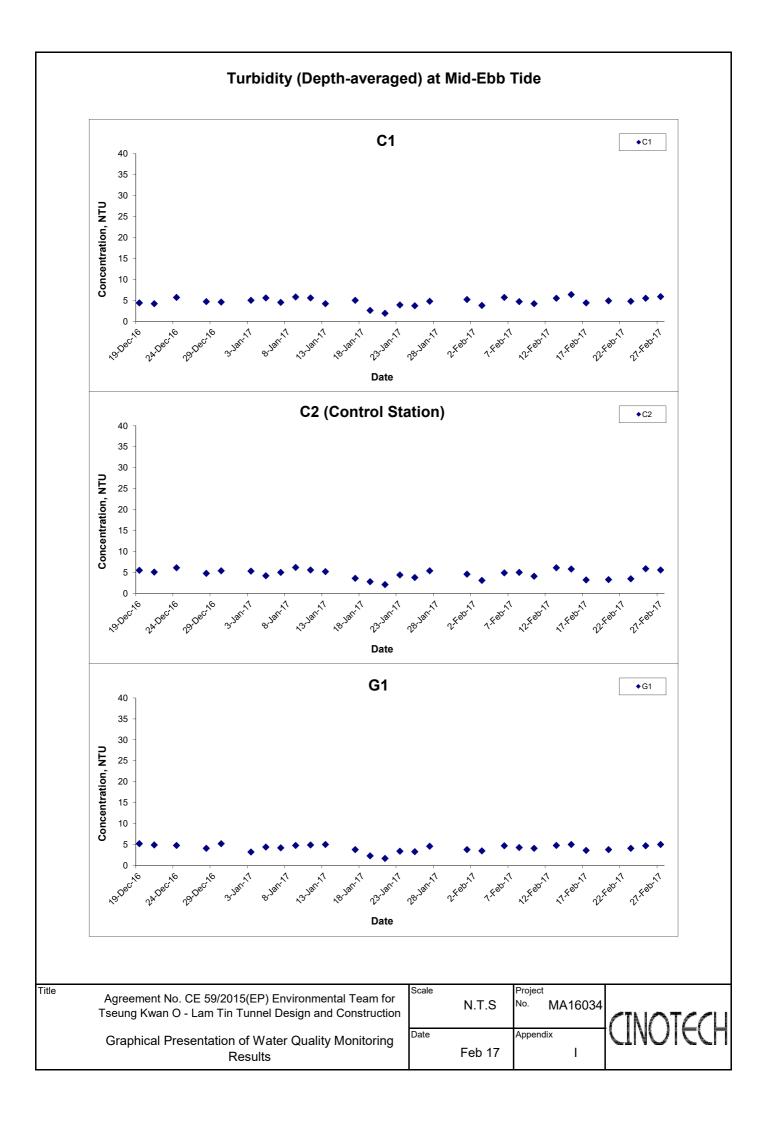
Title

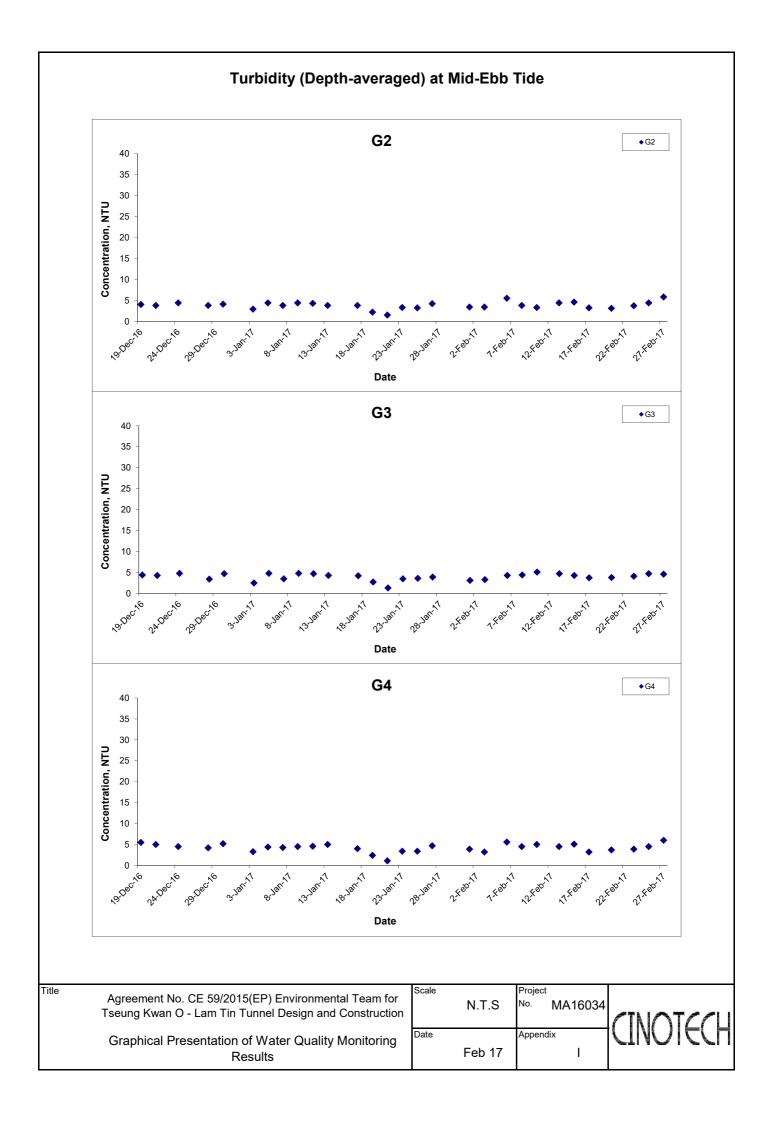

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

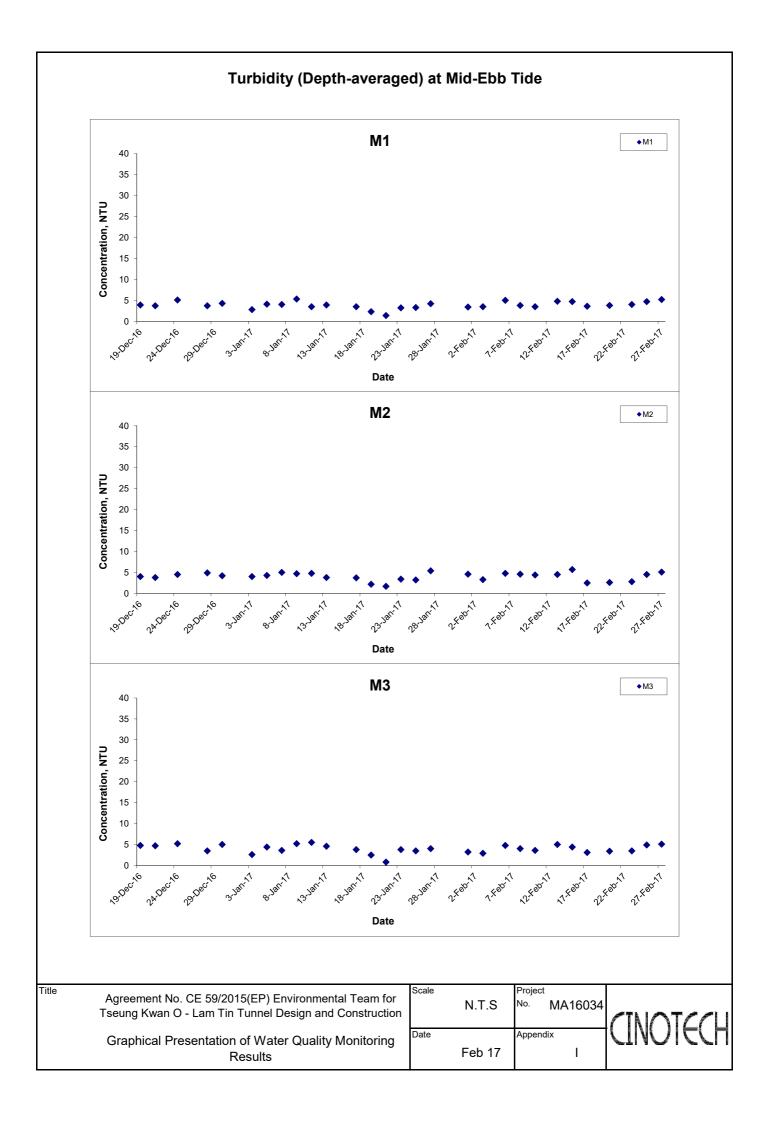
Graphical Presentation of Water Quality Monitoring Results

Scale		Proje	ct
	N.T.S	No.	MA16034
Date		Appe	ndix
	Feb 17		1

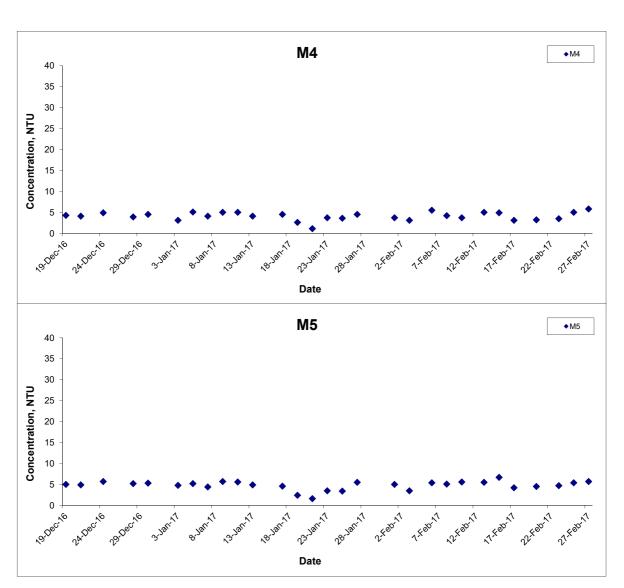
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

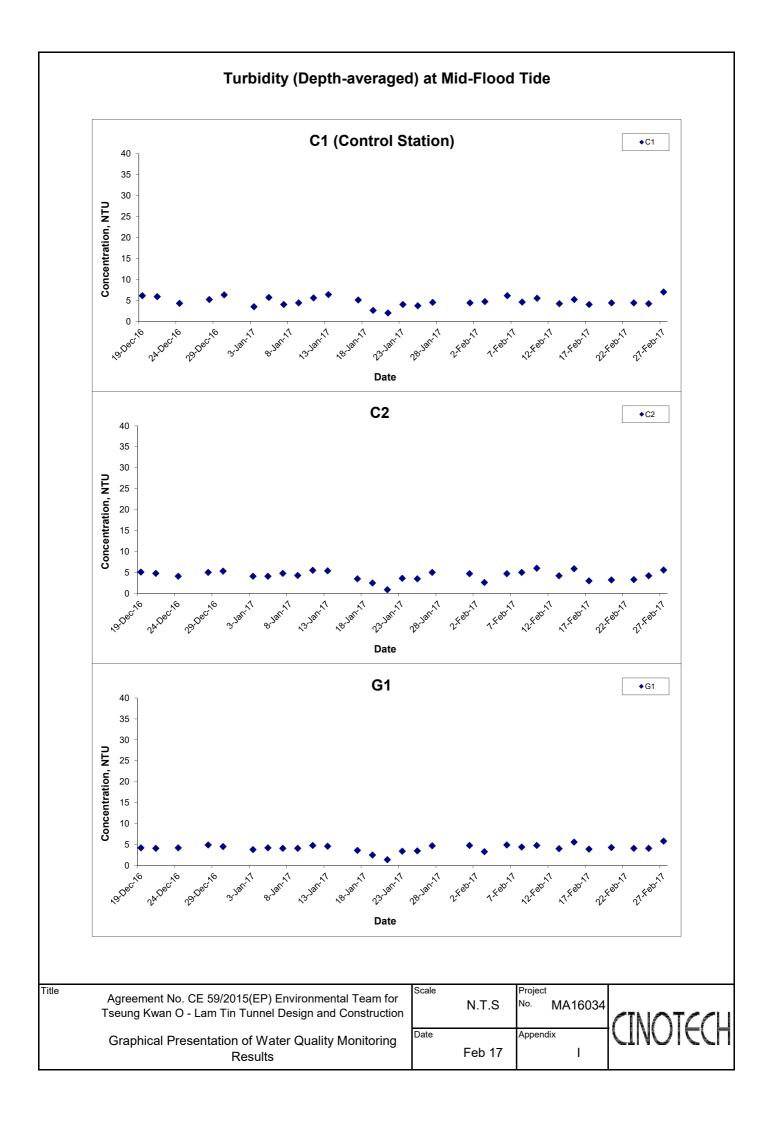

Title Agreement

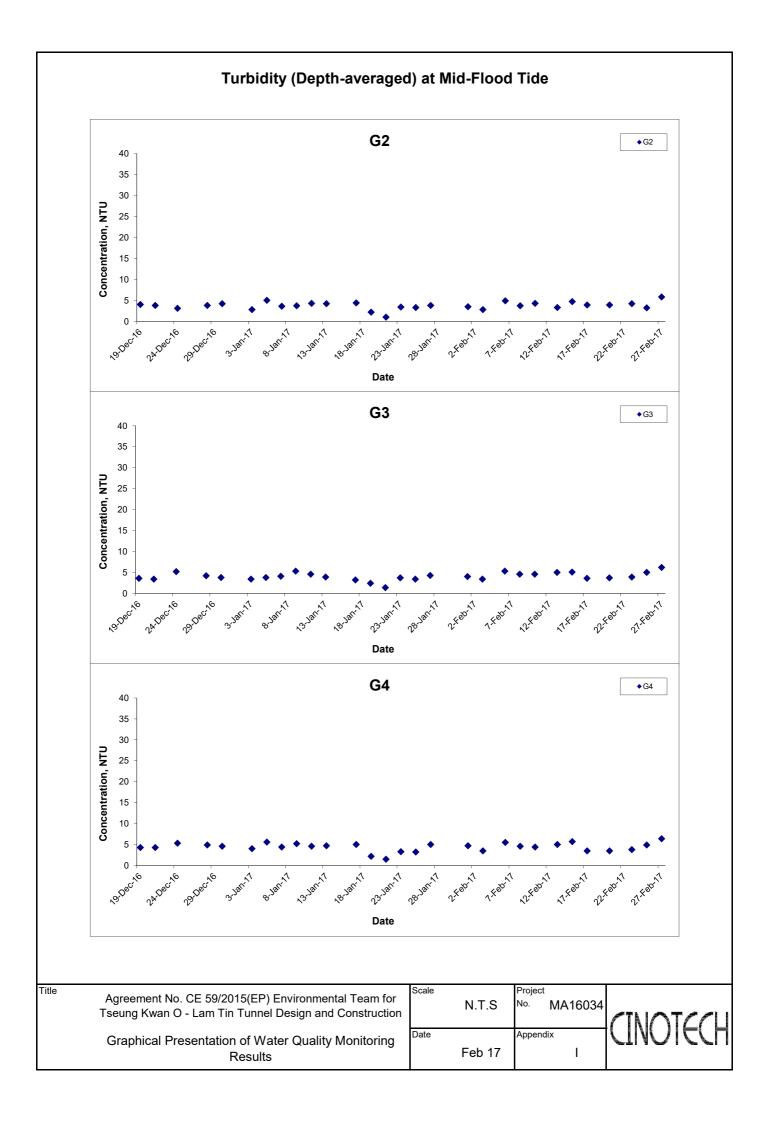

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

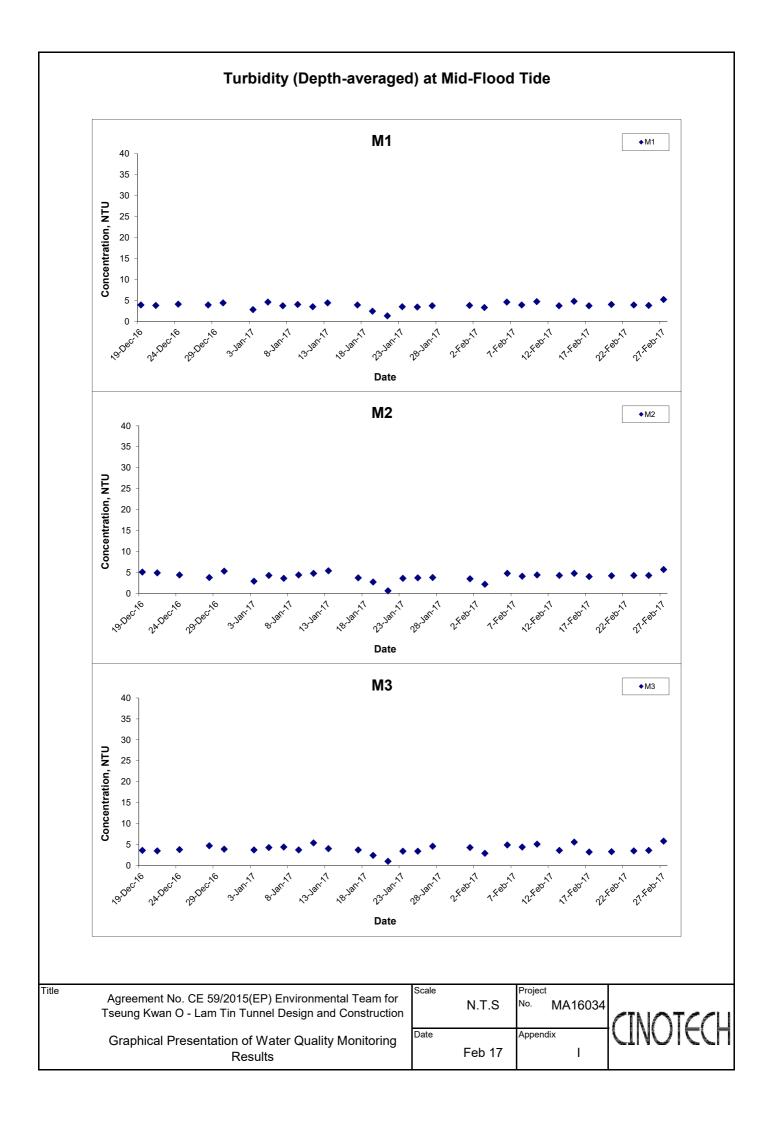

Graphical Presentation of Water Quality Monitoring Results

Scale	N.T.S	Projec No.	MA16034
Date		Apper	ndix
	Feb 17		1

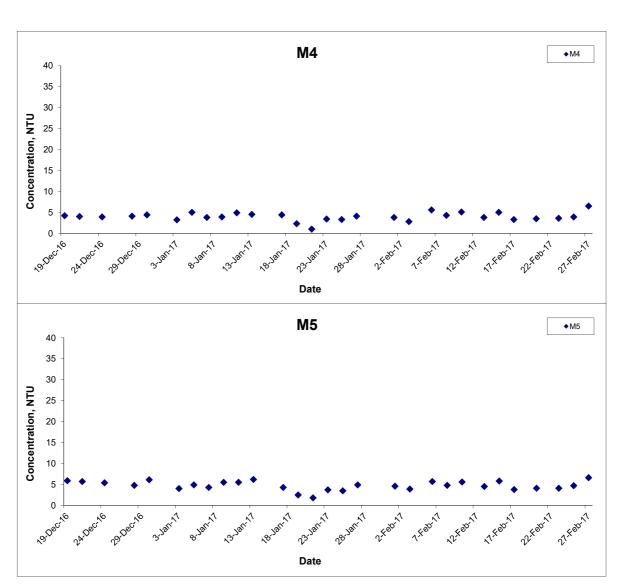



Turbidity (Depth-averaged) at Mid-Ebb Tide




Title Agreement No. CE 59/2015(EP) Environmental Team for N.T.S No. Tseung Kwan O - Lam Tin Tunnel Design and Construction **Graphical Presentation of Water Quality Monitoring** Results

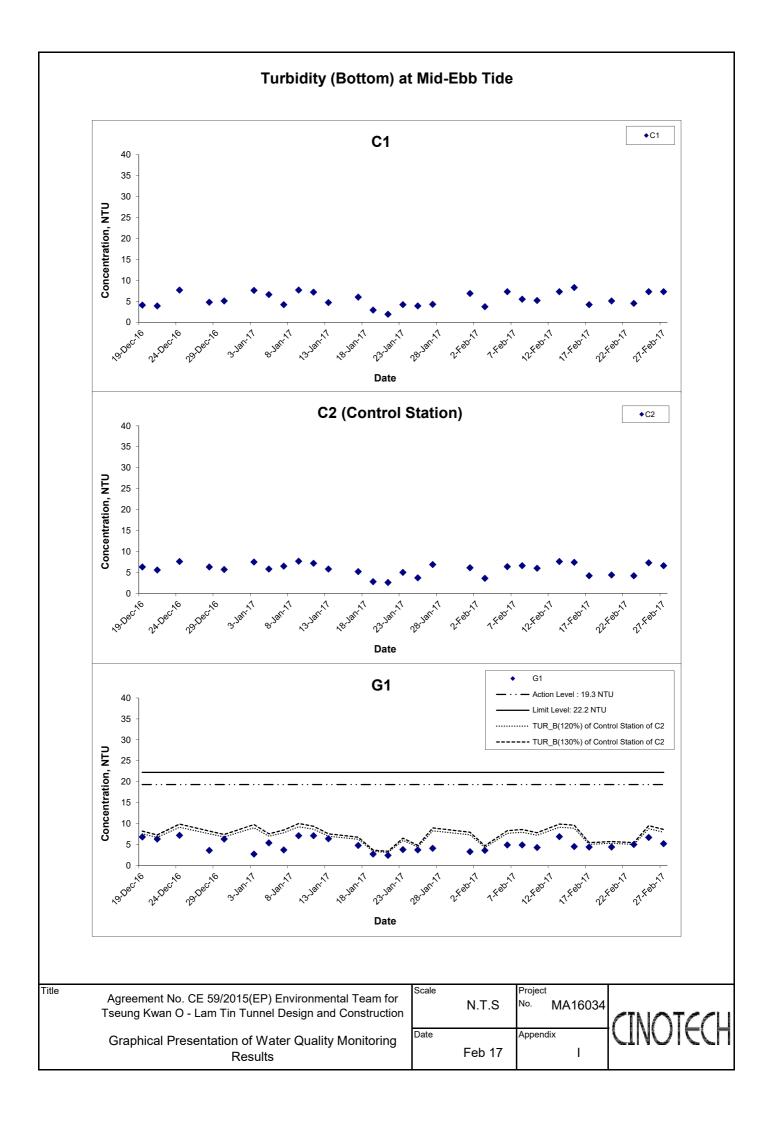
Scale Project MA16034 Appendix Feb 17 I



Turbidity (Depth-averaged) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results


Scale

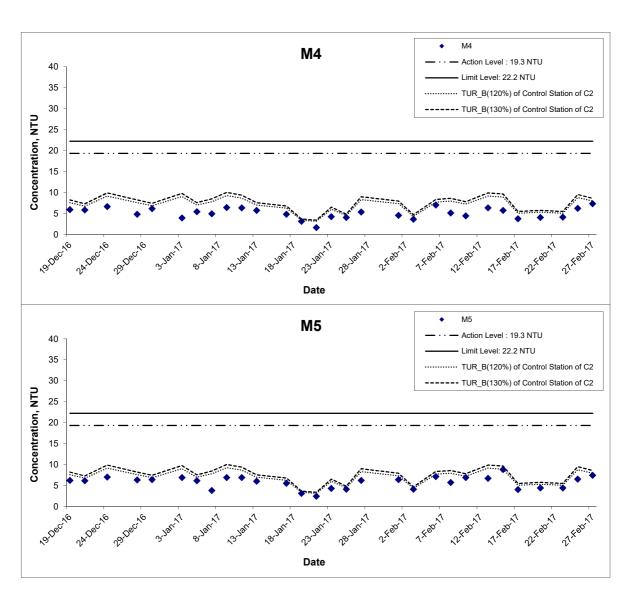
N.T.S

Date

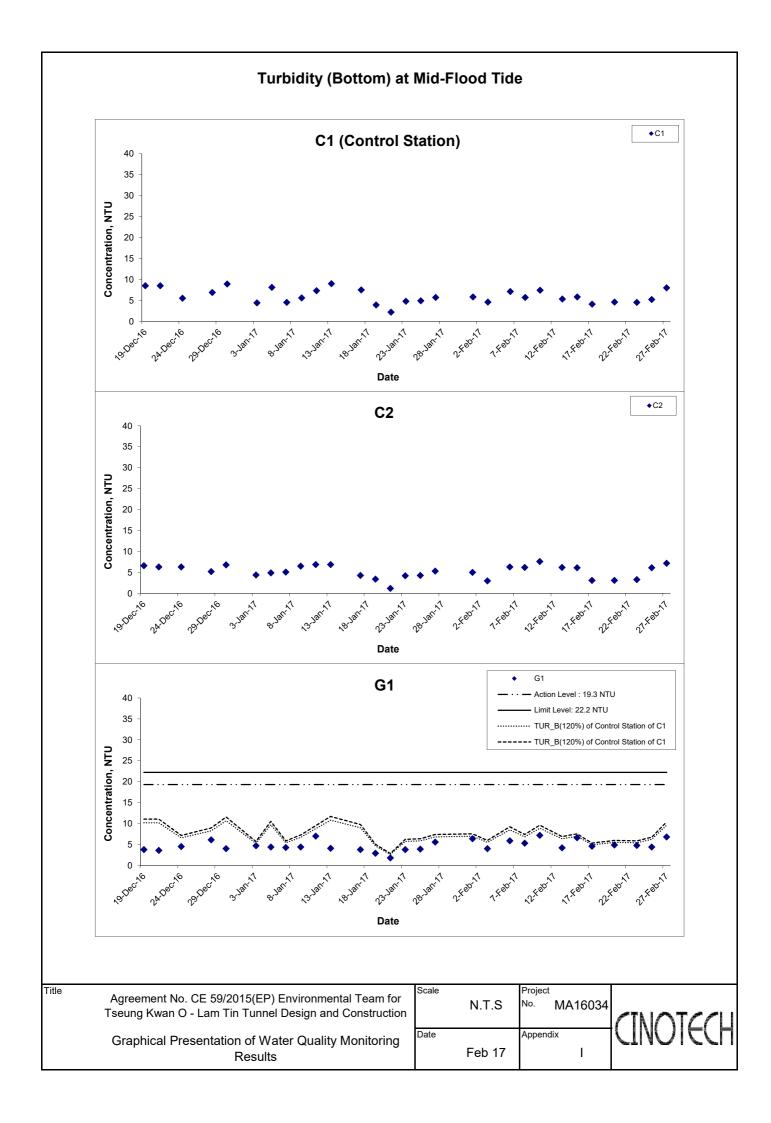
Feb 17

Turbidity (Bottom) at Mid-Ebb Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 - TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ···· TUR_B(120%) of Control Station of C2 30 TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date G4 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 ----- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring**

Feb 17


Results

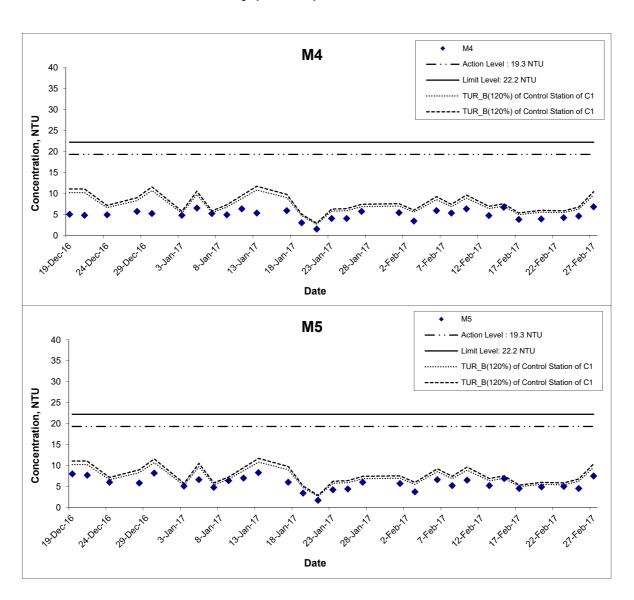
I


Turbidity (Bottom) at Mid-Ebb Tide **M1** - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 -- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date **M2** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date **M3** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix Date

Graphical Presentation of Water Quality Monitoring Feb 17 I Results

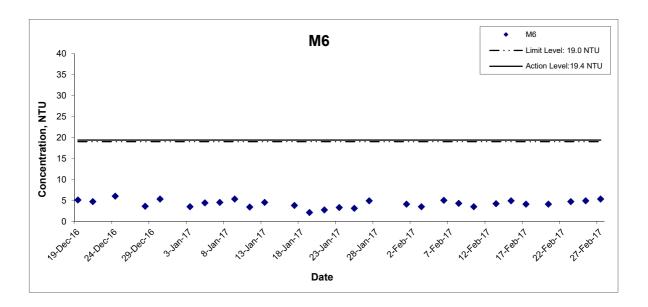
Turbidity (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINICTECL
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CINOICCU



Turbidity (Bottom) at Mid-Flood Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 -- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 5 0 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 - TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 0 Date G4 Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 --- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 5 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Feb 17 I Results

Turbidity (Bottom) at Mid-Flood Tide M1 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 5 0 Date **M2** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 ----- TUR_B(120%) of Control Station of C1 30 Concentration, NTU 25 20 15 10 5 0 Date **M3** Action Level : 19.3 NTU 40 35 TUR_B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 0 Date

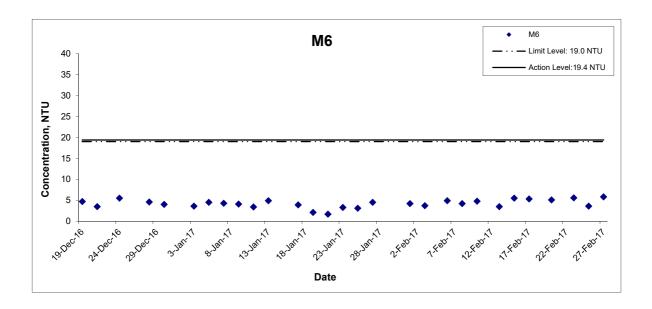

Title	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTCCLI
	Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CINOICU

Turbidity (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINICTECL
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CINOICCU

Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

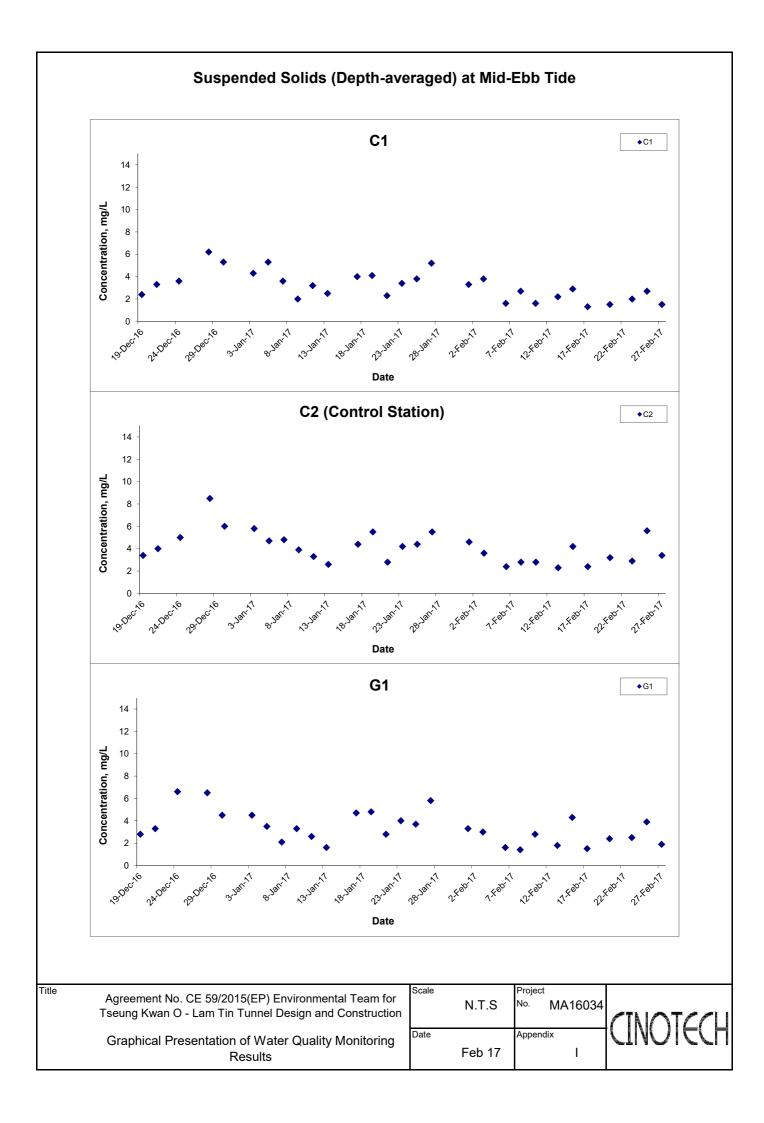
Title

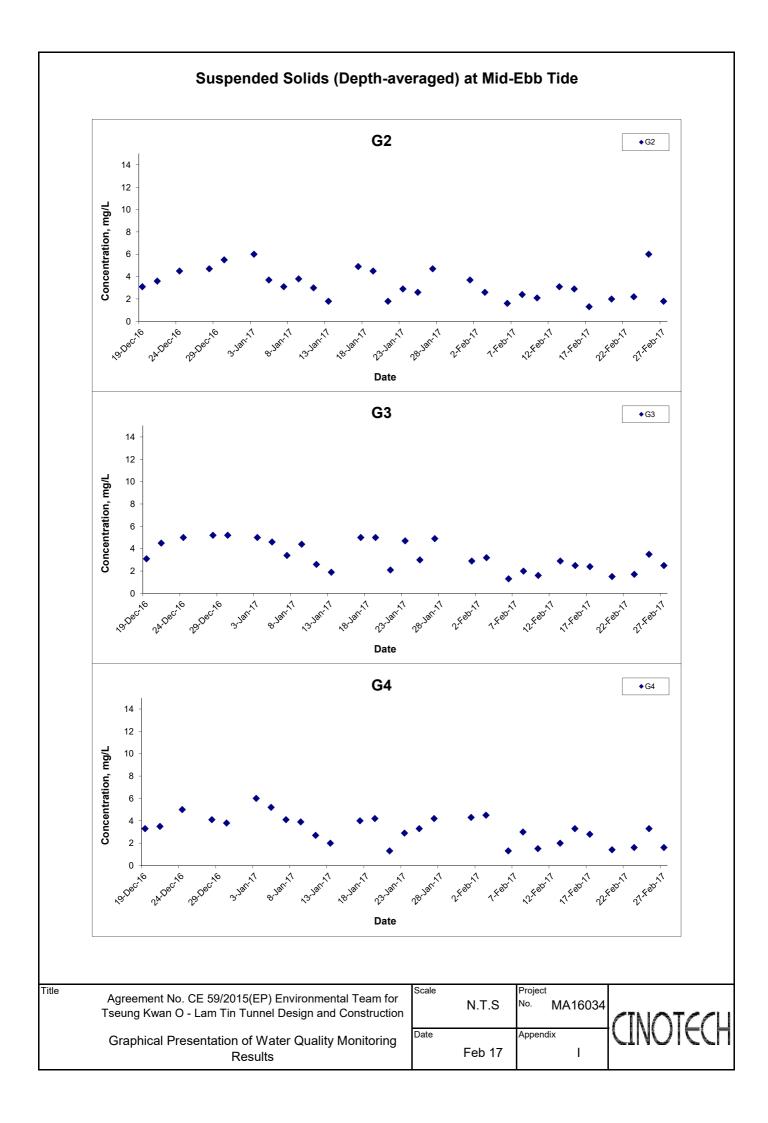

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

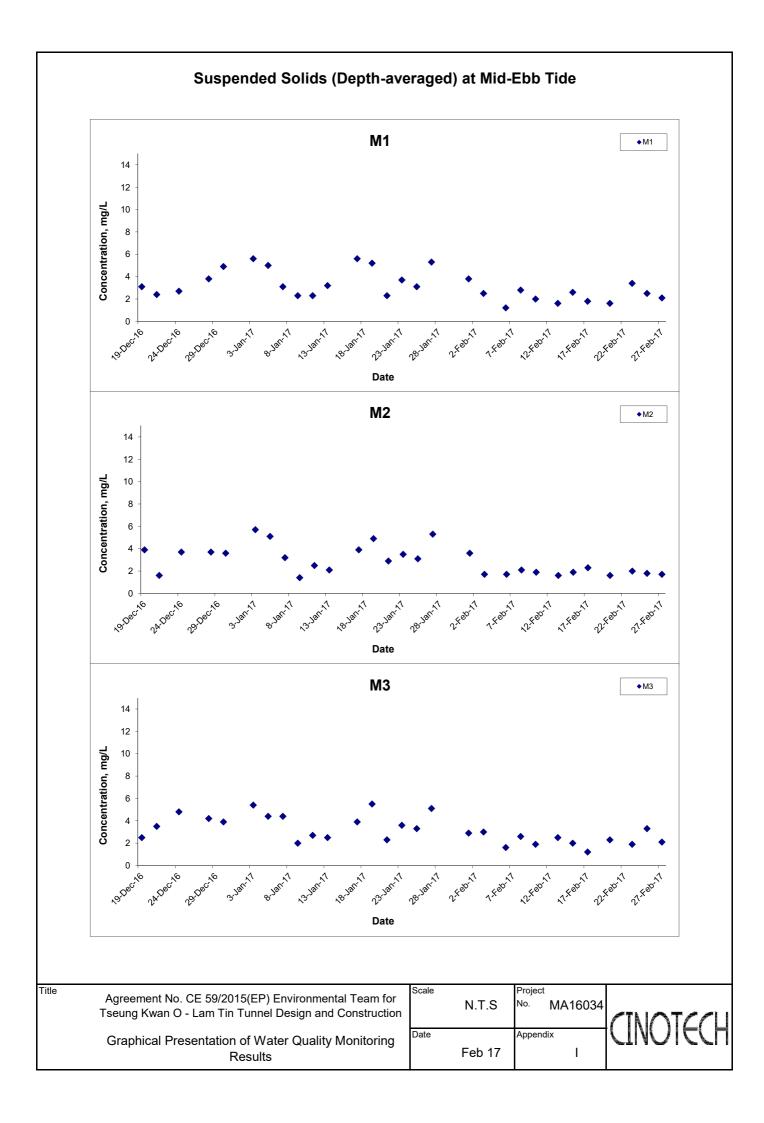
Graphical Presentation of Water Quality Monitoring Results

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Feb 17	

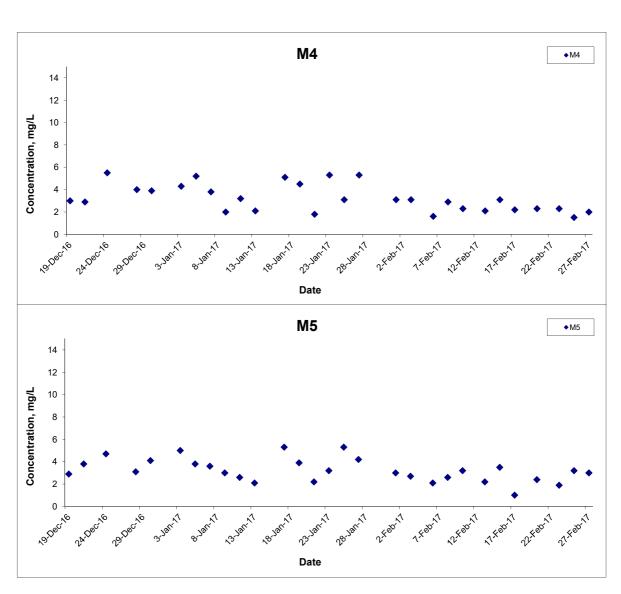
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide


Title


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

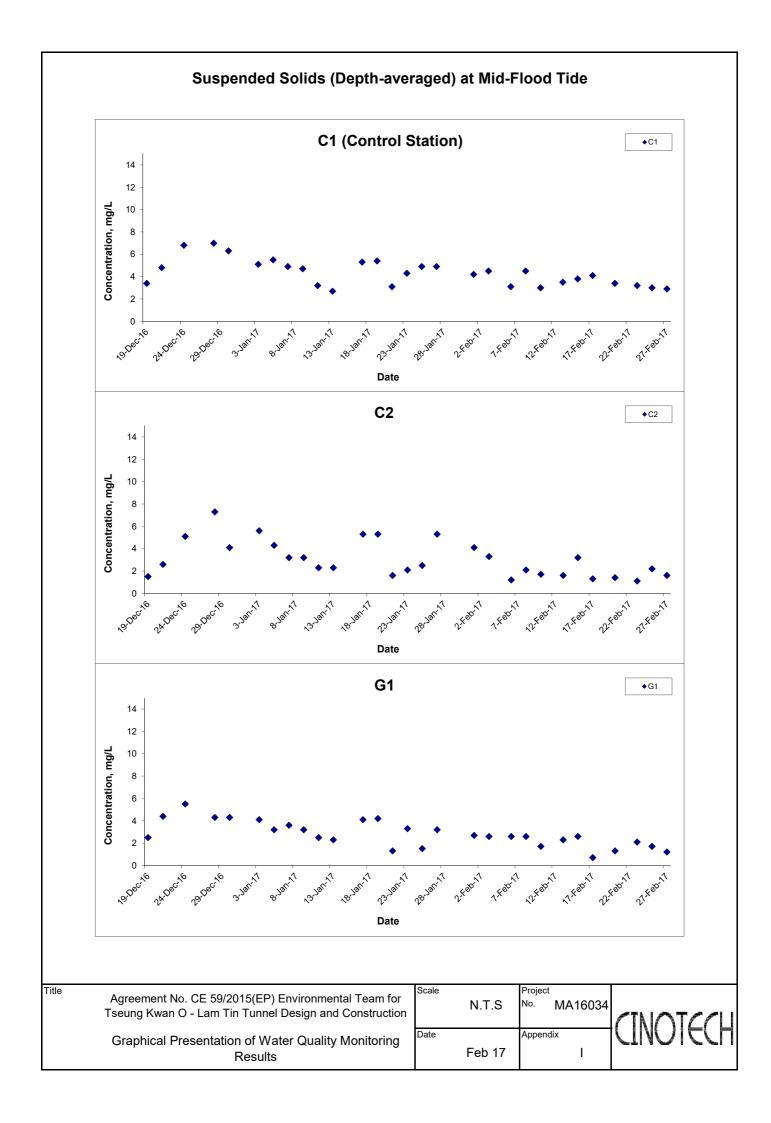
Scale		Project		
	N.T.S	No.	MA16034	
Date		Appe	ndix	
	Feb 17		I	

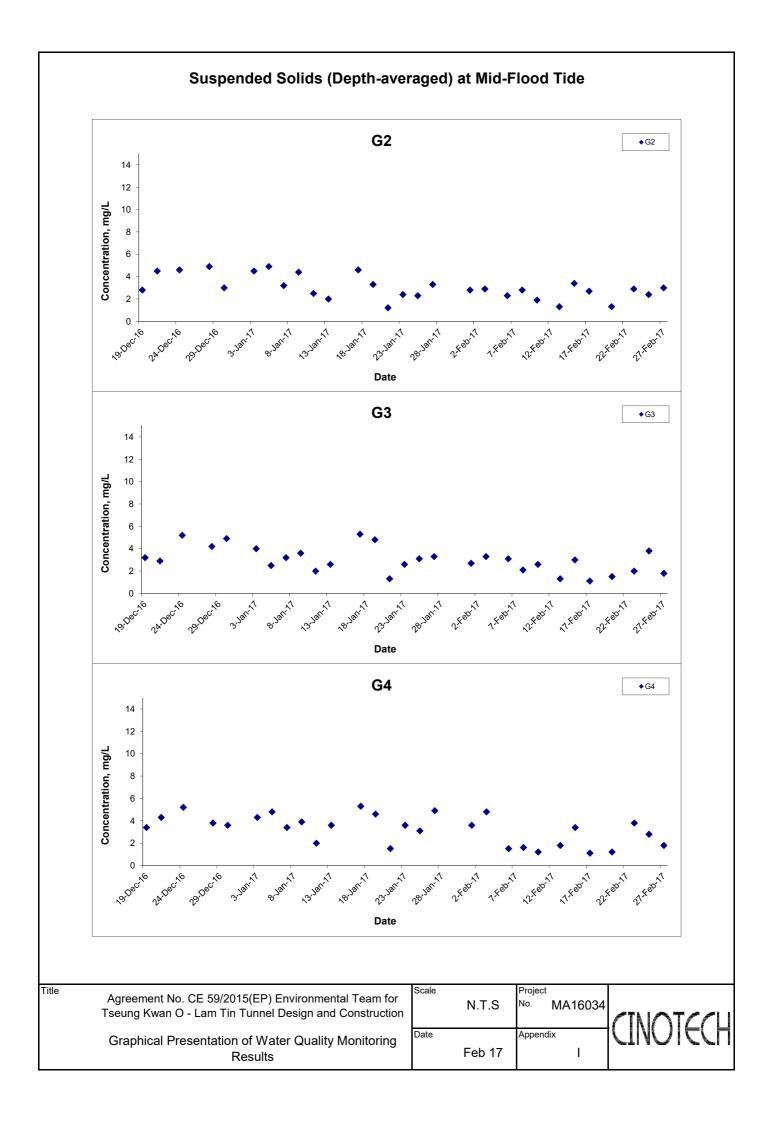


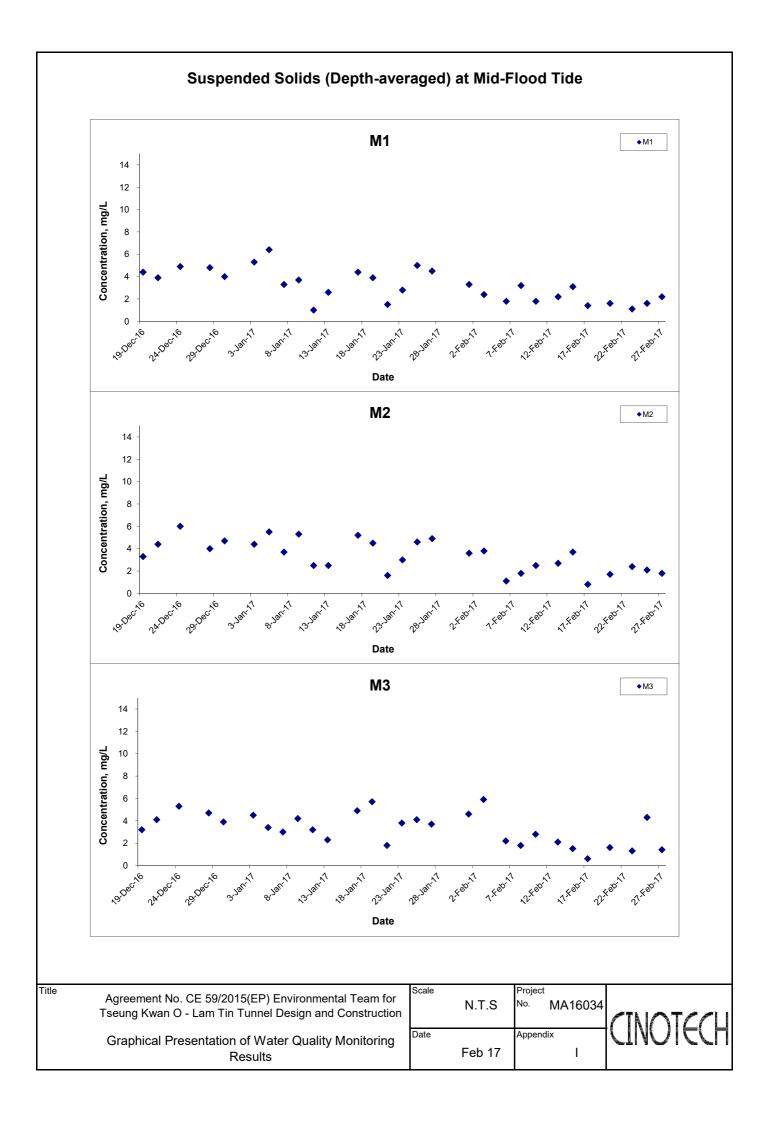
Suspended Solids (Depth-averaged) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

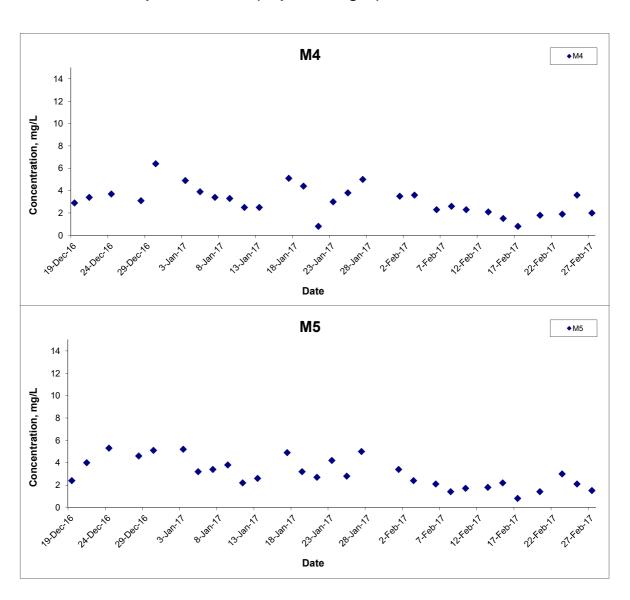
Graphical Presentation of Water Quality Monitoring Results


Scale

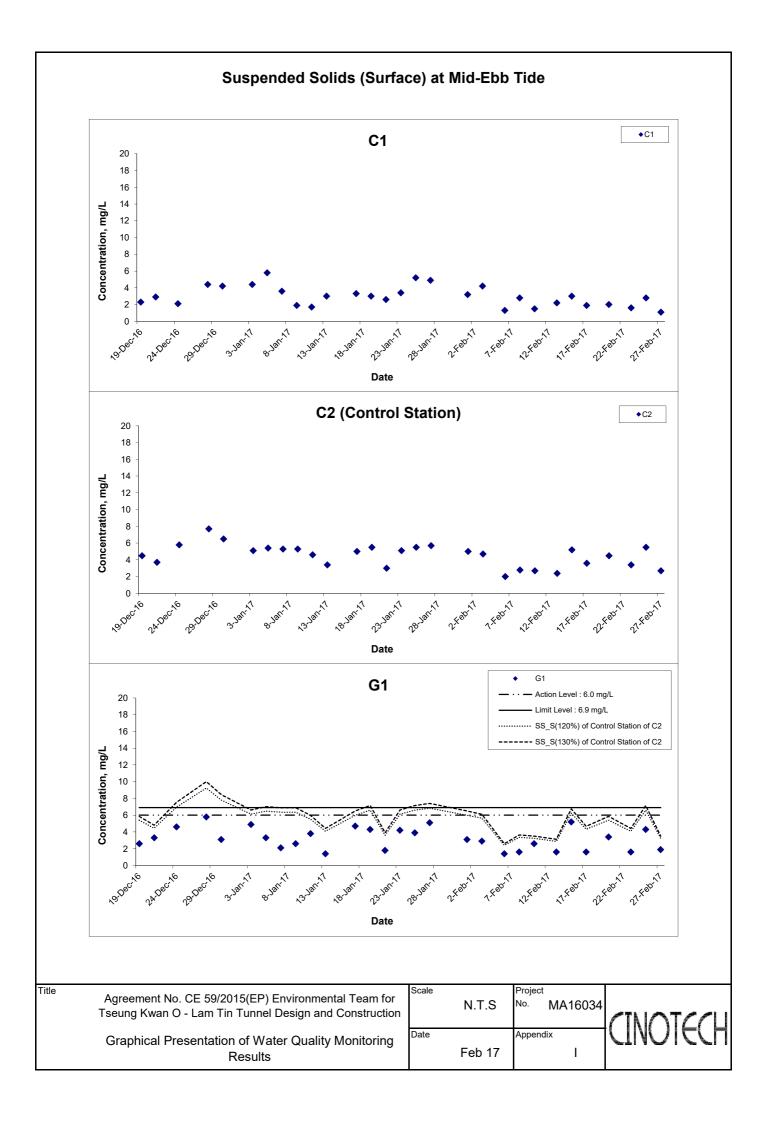

N.T.S


Project
No. MA16034

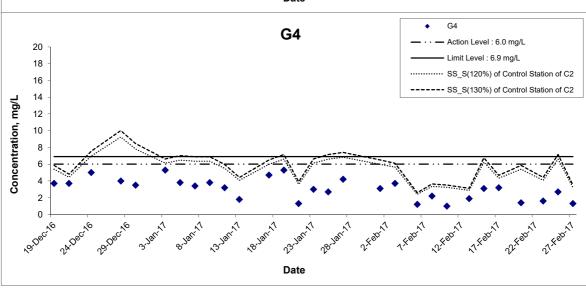
Date
Feb 17


Feb 17

Suspended Solids (Depth-averaged) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring

Results

Suspended Solids (Surface) at Mid-Ebb Tide G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 2 Date G3 G3 Action Level: 6.0 mg/L 20 Limit Level: 6.9 mg/L 18 ····· SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 0 Date G4 - Action Level : 6.0 mg/L 20

Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CINOICCU

Suspended Solids (Surface) at Mid-Ebb Tide **M**1 Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 6 2 Date М2 **M2** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 Date МЗ **M3** - Action Level : 6.2 mg/L 20 - Limit Level : 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C2 16 --- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 4 2 0 Date

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

Project
No. MA16034

The Material Project
No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

The Material Project No. MA16034

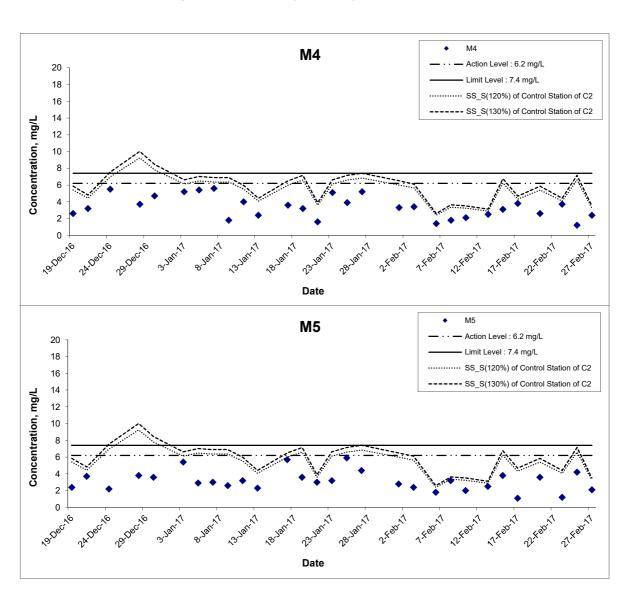
The Material Project No. MA16034

The Material Project No. MA16034

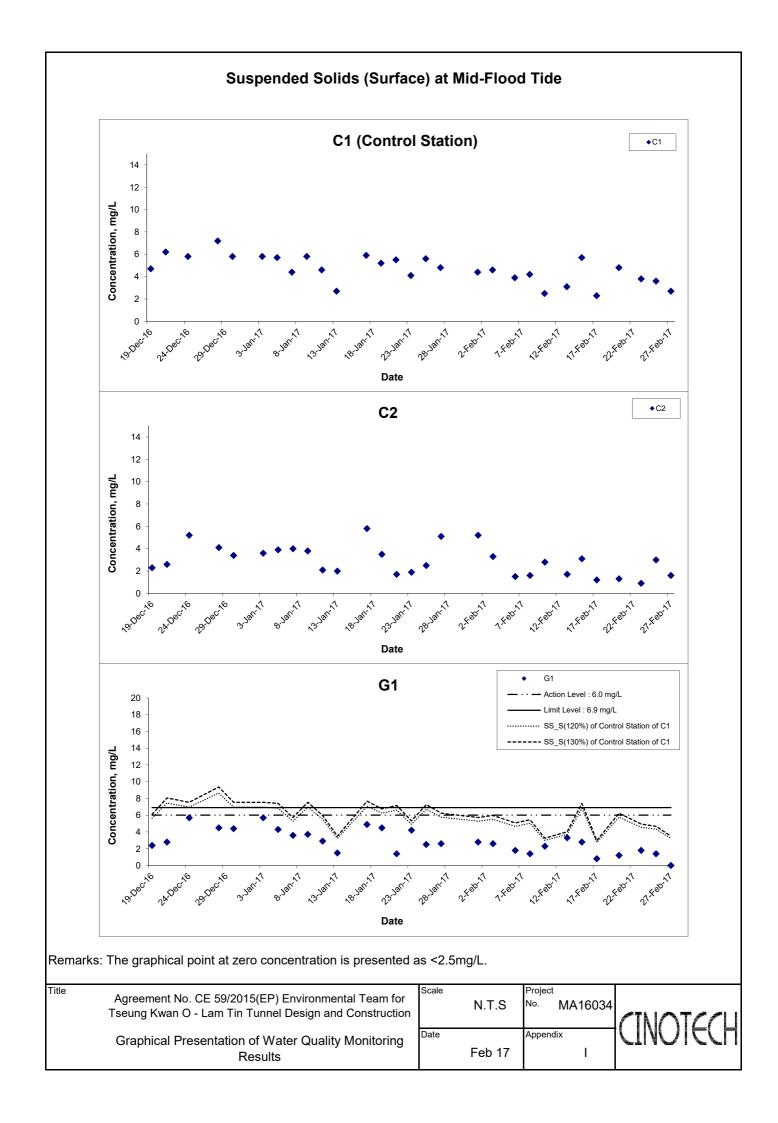
The Material Project No. MA16034

The Material Project No. MA16034

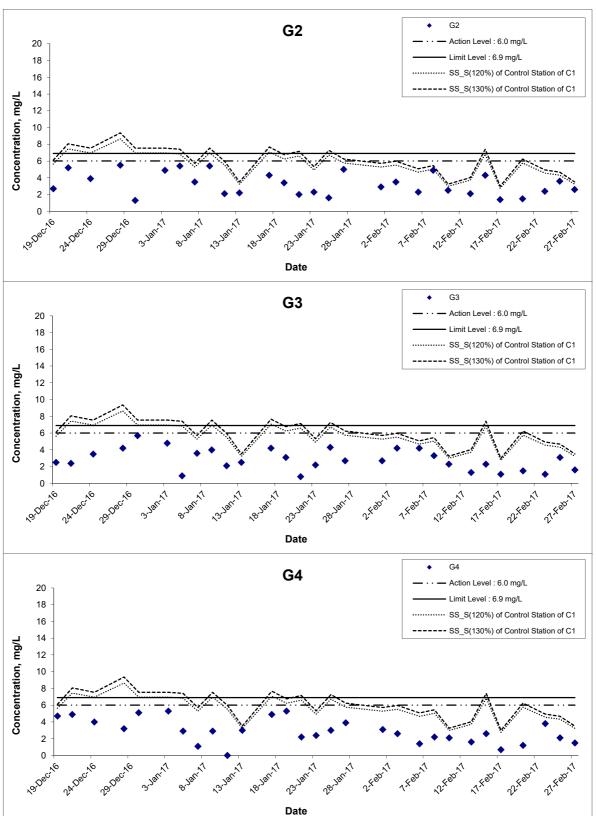
The Material Project No. MA16034


The Material Project No. MA16034

The Material Project No. MA16034


The Material Project No. MA16034

The Mat


Suspended Solids (Surface) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CTIACLE

Suspended Solids (Surface) at Mid-Flood Tide

Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

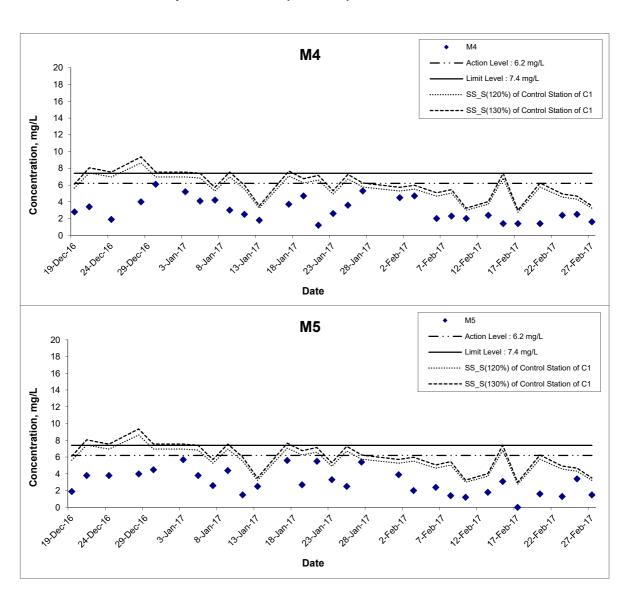
N.T.S

Project
No. MA16034

The Materian Appendix
Feb 17

I

Suspended Solids (Surface) at Mid-Flood Tide M1 **M1** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C1 16 -- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 Date М2 **M2** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 0 Date МЗ **M3** - Action Level : 6.2 mg/L 20 Limit Level: 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 --- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 0 Date Remarks: The graphical point at zero concentration is presented as <2.5mg/L. Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix


Feb 17

I

Graphical Presentation of Water Quality Monitoring

Results

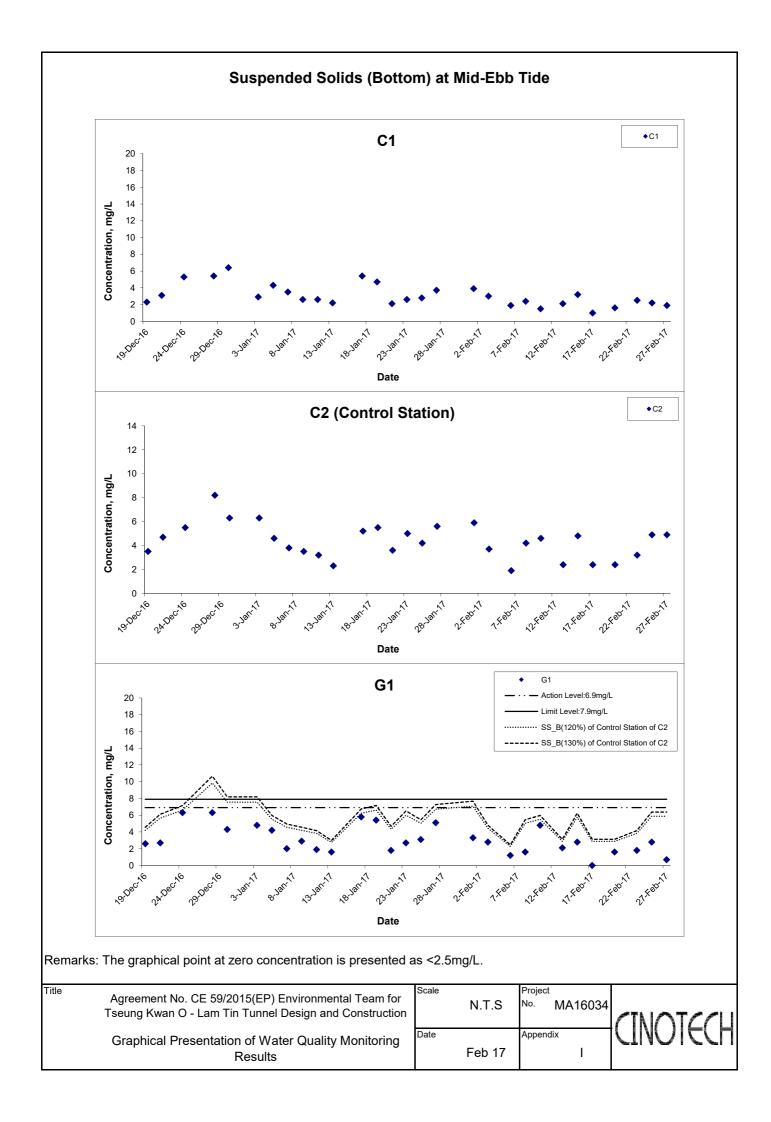
Suspended Solids (Surface) at Mid-Flood Tide

Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

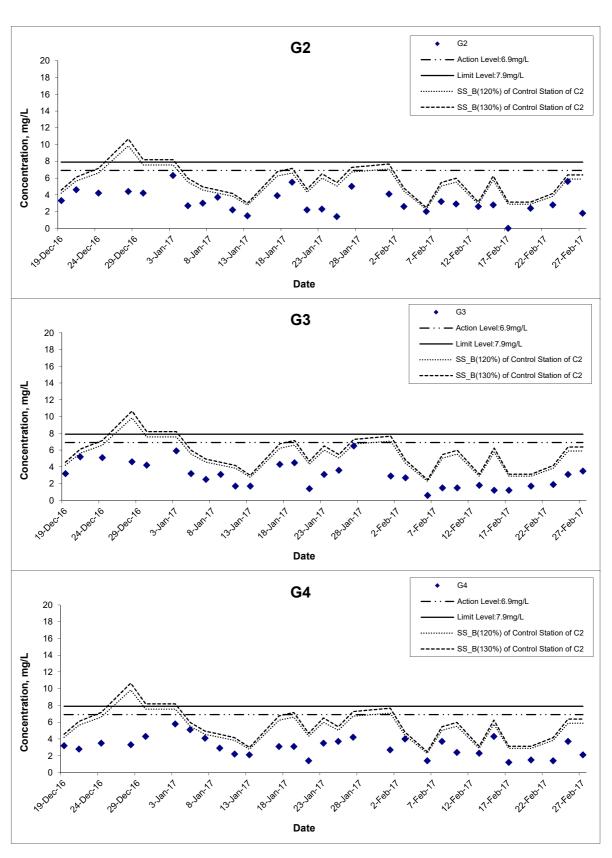
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale


N.T.S

Project
No. MA16034


Date

Feb 17

Feb 17

Suspended Solids (Bottom) at Mid-Ebb Tide

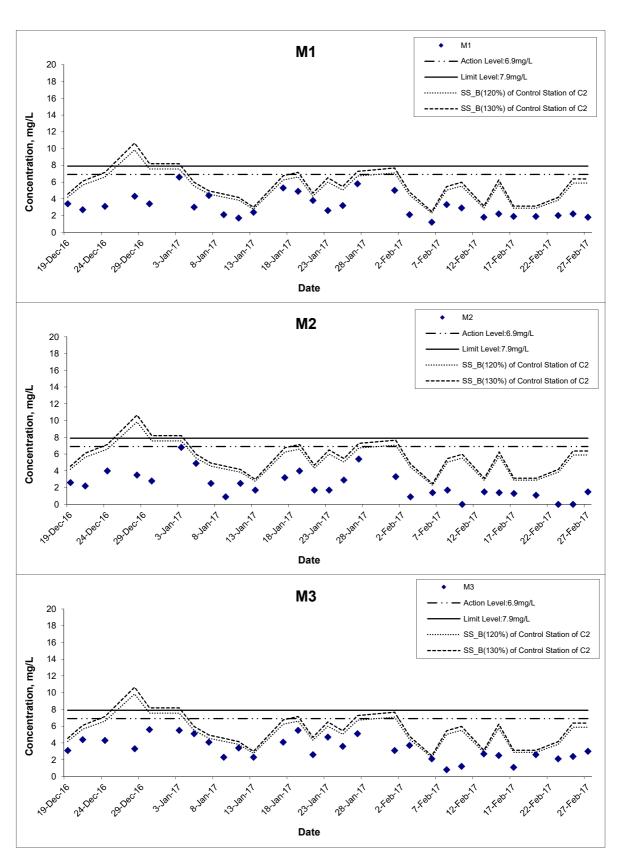
Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S


Project
No. MA16034

Date

Feb 17

I

Suspended Solids (Bottom) at Mid-Ebb Tide

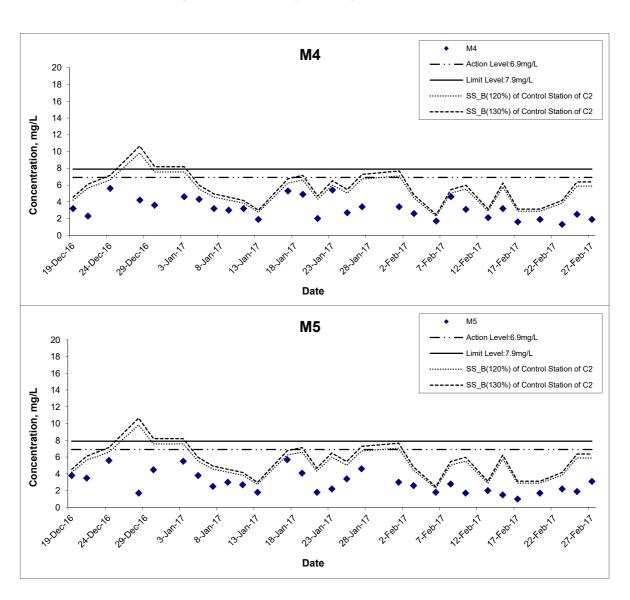
Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

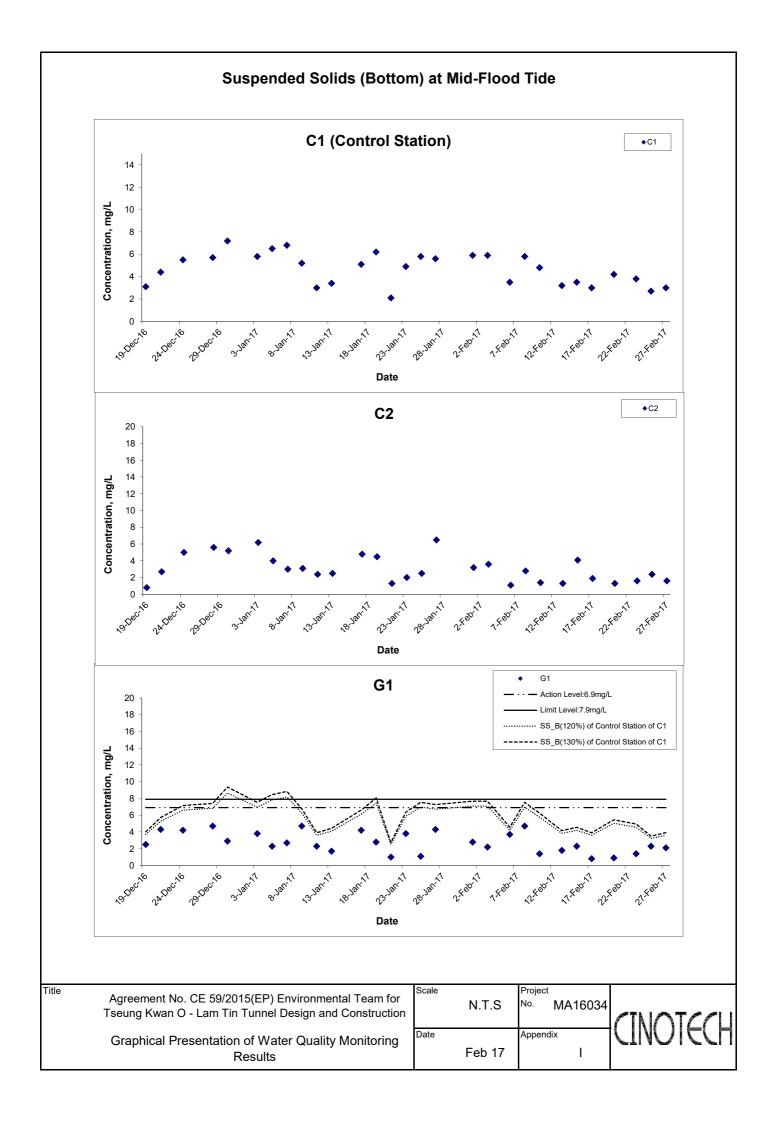
Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

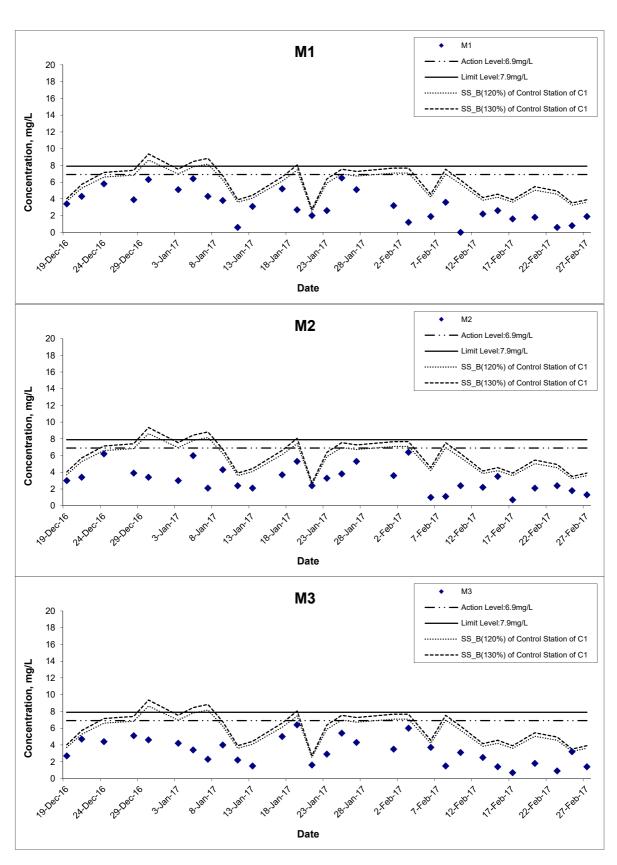

Project
No. MA16034

Date


Feb 17

I

Suspended Solids (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINATECH
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix	CTIACLE

Suspended Solids (Bottom) at Mid-Flood Tide G2 G2 · · - Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 Date G3 G3 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 0 Date G4 G4 Action Level:6.9mg/L 20 18 SS_B(120%) of Control Station of C1 16 ----- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 0 Date Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Feb 17	Appendix 	CINOICCU

Suspended Solids (Bottom) at Mid-Flood Tide

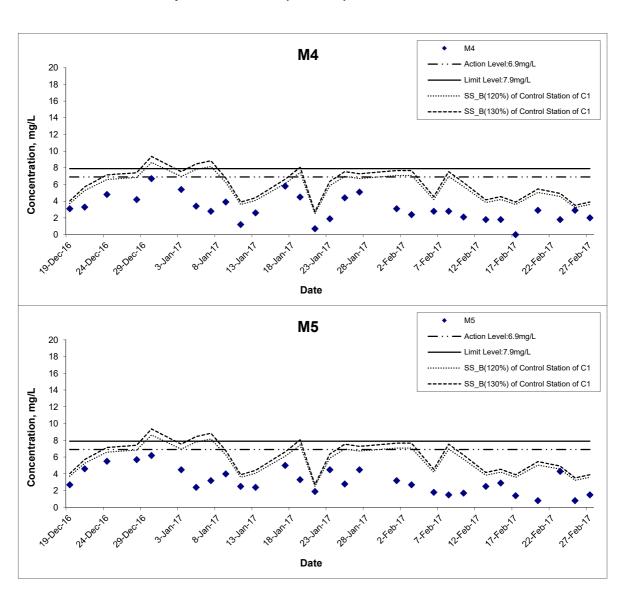
Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S


Project
No. MA16034

Date

Feb 17

I

Suspended Solids (Bottom) at Mid-Flood Tide

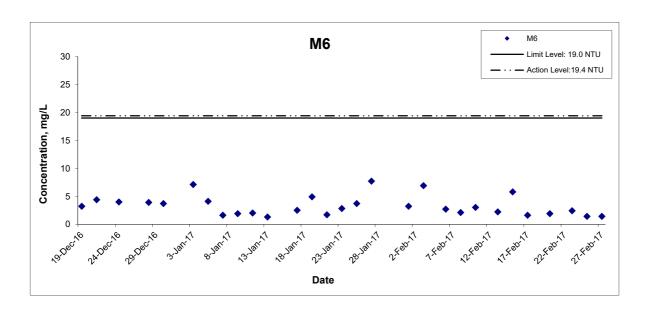
Remarks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S


Project
No. MA16034

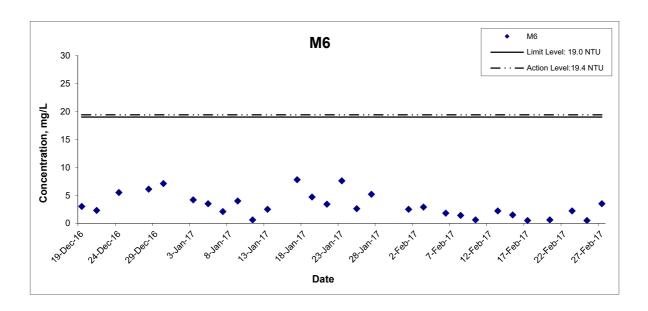
Date

Feb 17

Feb 17

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

Title


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Feb 17	1

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Feb 17		1

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.: Date of Issue: QC26467

Date Received:

2017-02-14

Date Received

Date Tested:

2017-02-03 2017-02-03

Date Completed:

2017-02-03

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

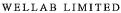
Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	<0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	< 0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	100	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	172	170-220
Total Organic Carbon (%)	92	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	100	80-120
Total Phosphorus (%)	99	80-120

Remarks: 1) \leq = less than


PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26467.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.weilab.com.hk

TEST REPORT

 Report No.:
 QC26467

 Date of Issue:
 2017-02-14

 Date Received:
 2017-02-03

 Date Tested:
 2017-02-03

 Date Completed:
 2017-02-14

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26467-3 chk	Acceptance
Suspended Solids (SS) (%)	1	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	2	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	0	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	26467-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	98	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	97	80-120
Total Phosphorus (%)	98	80-120

Remarks: 1) \leq less than

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26467.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.: QC26528 Date of Issue:

2017-02-27

Date Received: Date Tested:

2017-02-15 2017-02-15

Date Completed:

2017-02-27

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	<0.01

Method OC

MQC1	Acceptance
104	80-120
184	170-220
102	80-120
N/A	N/A
105	80-120
99	80-120
	104 184 102 N/A 105

Remarks: 1) \leq = less than

3) This report is the summary of quality control data for report number 26528.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

²⁾ N/A = Not applicable

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26528

 Date of Issue:
 2017-02-27

 Date Received:
 2017-02-15

 Date Tested:
 2017-02-15

 Date Completed:
 2017-02-27

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26528-3 chk	Acceptance
Suspended Solids (SS) (%)	5	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	1	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD≤20%
Total Phosphorus (%)	2	RPD≤20%

Sample Spike

Parameter	26528-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	94	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	104	80-120
Total Phosphorus (%)	96	80-120

Remarks: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 26528.

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.:

QC26593

Date of Issue:
Date Received:

2017-03-07

Date Tested:

2017-02-27

Date Tested:

2017-02-27

Date Completed:

2017-03-07

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	<0.01	< 0.01
Total Phosphorus (mg-P/L)	<0.01	<0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	100	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	209	170-220
Total Organic Carbon (%)	98	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	97	80-120
Total Phosphorus (%)	103	80-120

Remarks: 1) \leq = less than

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26593.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26593

 Date of Issue:
 2017-03-07

 Date Received:
 2017-02-27

 Date Tested:
 2017-02-27

 Date Completed:
 2017-03-07

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26593-3 chk	Acceptance
Suspended Solids (SS) (%)	1	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	3	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	26593-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	109	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	94	80-120
Total Phosphorus (%)	98	80-120

Remarks: 1) \leq = less than

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26593.

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26443

Date of Issue:

2017/02/02 2017/02/01

Date Received:

Date Tested:

2017/02/01

Date Completed: Page:

2017/02/02

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/01

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170201

Total Suspended Solids	Duplicate Analysis		QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3	3	1	93

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26457

Date of Issue: Date Received:

2017/02/06 2017/02/03

Date Tested:

2017/02/03

Date Completed: Page:

2017/02/06

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/03

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170203

Total Suspended Solids **Duplicate Analysis** QC Recovery, % Sampling Point Trial 1, Trial 2, Difference, mg/L mg/L % 4 98 M4se 3 4

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26461

Date of Issue: Date Received: 2017/02/07

Date Tested:

2017/02/06

2017/02/06

Date Completed: Page:

2017/02/07

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/06

Number of Sample: 136

Custody No.: ************* MA16034-CE/59/2015(EP)/170206

QC Recovery, % Total Suspended Solids **Duplicate Analysis** Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L % 1 101 M4se

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrablee

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26477

Date of Issue: 2017/02/09

Date Received:

2017/02/08

Date Tested:

2017/02/08

Date Completed:

Page:

2017/02/09

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/08

Number of Sample: 132

Custody No.:

MA16034-CE/59/2015(EP)/170208

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C2be	4	4	1	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26494

Date of Issue:

2017/02/13

Date Received:

2017/02/10

Date Tested: Date Completed:

Page:

2017/02/10 2017/02/13

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/10

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170210

Total Suspended Solids **Duplicate Analysis** QC Recovery, % Trial 1, Sampling Point Trial 2, Difference mg/L mg/L % C2se 3 3 3 97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26502

Date of Issue: 2017/02/14 Date Received:

2017/02/13

Date Tested: Date Completed:

Page:

2017/02/13 2017/02/14

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/13

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170213

Duplicate Analysis QC Recovery, % Total Suspended Solids Sampling Point Trial 1, Trial 2, Difference % mg/L mg/L 4 5 4 99 G3me

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrile

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26518

Date of Issue:

2017/02/16 2017/02/15

Date Received: Date Tested:

Page:

2017/02/15

Date Completed:

2017/02/16

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/15

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170215

QC Recovery, % Total Suspended Solids Duplicate Analysis Trial 2, Difference, Sampling Point Trial 1, mg/L mg/L % 2 M4se 3 3 103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

26533 Report No.:

2017/02/20

1 of I

Date of Issue: Date Received:

2017/02/17

Date Tested:

2017/02/17

Date Completed:

Page:

2017/02/20

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/17

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170217

QC Recovery, % **Duplicate Analysis** Total Suspended Solids Trial 1, Trial 2, Difference. Sampling Point % mg/L mg/L 4 88 M4se 4 4

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26543

Date of Issue:

2017/02/21

Date Received:

2017/02/20

Date Tested:

2017/02/20

Date Completed:

Page:

2017/02/21

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/20

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170220

QC Recovery, % **Duplicate Analysis** Total Suspended Solids Sampling Point Trial 1, Trial 2, Difference. mg/L % mg/L 0 100 M4se 3

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26565

Date of Issue: 2017/02/24 Date Received:

2017/02/23

Date Tested:

Page:

2017/02/23

Date Completed:

2017/02/24 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/23

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170223

Total Suspended Solids **Duplicate Analysis** QC Recovery, % Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L % 2 102 M4se 4 4

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26577 2017/02/27

Date of Issue: Date Received:

2017/02/25

91

Date Tested:

2017/02/25

1 of 1

Date Completed:

Page:

2017/02/27

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

1

Project No.:

MA16034

Sampling Date:

2017/02/25

3

Number of Sample: 136

Custody No .:

G3me

MA16034-CE/59/2015(EP)/170225

3

Total Suspended Solids **Duplicate Analysis** OC Recovery, % Trial 1, Trial 2, Difference. Sampling Point mg/L mg/L %

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26580

Date of Issue: 2017/02/28

Date Received: 2017/02/27 Date Tested: 2017/02/27

Date Completed: 2017/02/28

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Page:

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/02/27

Number of Sample: 132

Custody No.:

MA16034-CE/59/2015(EP)/170227

Total Suspended Solids Duplicate Analysis QC Recovery, % Sampling Point Trial 1, Trial 2, Difference, mg/L mg/L % G3me 3 102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX K SUMMARY OF EXCEEDANCE

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

Reporting Period: February 2017

(A) Exceedance Report for Air Quality (NIL in the reporting month)

(B) Exceedance Report for Construction Noise (Two Action Level exceedance was recorded due to the documented complaints received)

(C) Exceedance Report for Water Quality (One Action Level and Six Limit Level exceedance in groundwater quality monitoring as followed:

Date	Monitoring Location	Monitoring Parameter	Monitoring Results	Action Level	Limit Level
	Stream 2	Ammonia-N	0.08 mg NH ₃ -N/L	0.05	0.06
3 Feb 2017	Stream 3	Suspended Solids	11 mg/L	5.5	6.2
	Stream 3	Ammonia-N	0.06 mg NH ₃ -N/L	0.05	0.06
15 Est 2017	Stream 1	Total Organic Carbon	5 mg-TOC/L	4.3	4.9
15 Feb 2017	Stream 3	Total Phosphorus	0.08 mg-P/L	0.05	0.05
27 E-1-2017	Stream 1	Suspended Solids	7.1 mg/L	5.5	6.2
27 Feb 2017	Stream 2	Total Phosphorus	0.07 mg-P/L	0.05	0.05

According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in both Lam Tin side and Tseung Kwan O side in February 2017. Therefore, it is considered that the exceedance is not project-related.)

- (D) Exceedance Report for Ecology (NIL in the reporting month)
- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas (NIL in the reporting month)\

APPENDIX L SITE AUDIT SUMMARY

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170201
Date	01 February 2017 (Wednesday)
Time	9:00-10:45

Ref. No.	Non-Compliance	Related Item No.
1	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality No environmental deficiency was identified during site inspection.	
	 C. Ecology No environmental deficiency was identified during site inspection. 	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
	E. Air Quality No environmental deficiency was identified during site inspection.	
170201-R01	 F. Construction Noise Impact To provide mitigation measures to PME as proposed in the approved NMP in Cha Kwo Ling before work. 	F11
170201-R02	G. Waste / Chemical Management To provide drip tray to chemical containers in Portion WAII.	G10
	 H. Permits/Licences No environmental deficiency was identified during site inspection. 	
	 I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection. 	
	 J. Others Follow-up on previous audit section (Ref. No.: 170125), item 170125-R03 is remarked as 170201-R01 respectively. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung	10	01 February 2017
Checked by	Dr. Priscilla Choy	N/A	01 February 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170208
Date	08 February 2017 (Wednesday)
Time	9:00-10:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
170208-R01	To properly cover the exposed slope by impervious material at slope at TKO.	В9
	C. Faology	
1	C. Ecology No environmental deficiency was identified during site inspection.	
	- The christian deficiency was identified dailing site inspection.	
	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
170208-R01	 E. Air Quality To properly cover the exposed slope by impervious material at slope at TKO. 	E6
170200-101	• 10 property cover the exposed slope by impervious material at slope at 1KO.	Eo
	F. Construction Noise Impact	
170208-R03	To provide mitigation measures (e.g. Temporary noise barrier / Full enclosure) to PME	F11
	as proposed in the approved NMP in Cha Kwo Ling.	111
170208-R02	 G. Waste / Chemical Management To removed oil stain on paved ground at site Portion WAII. 	G9
170208-R02	• 10 Temoved on stain on paved ground at site Polition WAII.	G9
•	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	I. Impact on Cultural Heritage	
	No environmental deficiency was identified during site inspection.	
	J. Others	
	Follow-up on previous audit section (Ref. No.: 170201), item 170201-R01 is	
	remarked as 170208-R03 respectively. Follow up action is needed to reviewed during	
	the next site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	19-	08 February 2017
Checked by	Dr. Priscilla Choy	WI	08 February 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170215	
Date	15 February 2017 (Wednesday)	
Time	9:00-10:45	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality No environmental deficiency was identified during site inspection.	
	 C. Ecology No environmental deficiency was identified during site inspection. 	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
170215-R01 170215-R02	 E. Air Quality To remove the dusty cement bags after use in TKO. To provide enough water spray to slope of excavation area in CKL. 	E16 E5
170215-R03	 F. Construction Noise Impact To provide mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved NMP in CKL. 	F11
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	 I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection. 	
	 J. Others Follow-up on previous audit section (Ref. No.: 170208), item 170208-R03 is remarked as 170215-R03 respectively. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung	1/)	15 February 2017
Checked by	Dr. Priscilla Choy	NI	15 February 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170222
Date	22 February 2017 (Wednesday)
Time	9:00-10:30

	Ref. No.	Non-Compliance	Related Item No.
ĺ	-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170000 001	B. Water Quality	
170222-001	• Gaps observed between silt curtain and site boundary in TKO. The Contractor is reminded to provide and repair the silt curtain to fully enclose the site.	B20
170222-O02	• Silty water observed in the catchpits in TKO. The Contractor is reminded to remove the silt and sediment in catchpits regularly.	B 6iii
170222-R03	To rmove the sand material deposited near the seafront at Portion WAI.	B21
TOTAL TOTAL	 C. Ecology No environmental deficiency was identified during site inspection. D. Landscape & Visual No environmental deficiency was identified during site inspection. E. Air Quality No environmental deficiency was identified during site inspection. 	
170222-R04	 F. Construction Noise Impact To provide mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved NMP in CKL. 	F11
	 G. Waste / Chemical Management No environmental deficiency was identified during site inspection. 	
	H. Permits/LicencesNo environmental deficiency was identified during site inspection.	1114/4/4/4/
	 I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection. 	THE PROPERTY OF THE PROPERTY O
	 J. Others Follow-up on previous audit section (Ref. No.: 170215), item 170215-R03 is remarked as 170222-R04 respectively. Follow up action is needed to reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung		22 February 2017
Checked by	Dr. Priscilla Choy	WĀ	22 February 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170202
Date	2 February 2017 (Thursday)
Time	14:00-14:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
170202-R01	• To prevent silty water flow out of site during wheel washing at Area A.	B20
	C. Ecology	
	No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
	E. Air Quality	
	No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact	
	No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	I. Others	
	Follow-up on previous audit section (Ref. No.: 170126), all identified environmental	
	deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	12	2 Febuary 2017
Checked by	Dr. Priscilla Choy	WF	2 Febuary 2017

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	170209
Date	9 February 2017 (Thursday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170209-R01	B. Water Quality To repair the site curtain for cofferdam works and prevent any gap between the silt curtain and crane barge.	B42
1	C. Ecology No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
	E. Air Quality No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
170209-R03	 G. Waste / Chemical Management To remove the construction material from drip tray and provide a plug for drip tray on derrick lighter for marine GI works. 	G10
170209-R02	 H. Permits/Licences To update the Environmental Permit display on crane barge. 	H5
	I. Others Follow-up on previous audit section (Ref. No.: 170202), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	V)—	9 February 2017
Checked by	Dr. Priscilla Choy	NI	9 February 2017

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	170214
Date	14 February 2017 (Tuesday)
Time	9:00 – 10:00

Ref. No.	Non-Compliance	Related Item No.
	None identified	

Ref. No.	Remarks/Observations	Related Item No.
170214-R03	 B. Water Quality To provide sand bag bunds to gullies at site access near the site office in Area A. 	B11
	C. Ecology No environmental deficiency was identified during site inspection.	- THE STATE OF THE
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
170214-R01 170214-R02	 E. Air Quality Provide water spray to dry unpaved area in Area A to avoid dust generation. To provide NRMM label to crane in Area A. 	E5 E22
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	- The second sec
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	I. Others Follow-up on previous audit section (Ref. No.: 170209), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	V	14 February 2017
Checked by	Dr. Priscilla Choy	WI	14 February 2017

1

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	170223
Date	23 February 2017 (Thursday)
Time	14:00 – 15:00

1	Ref. No.	Non-Compliance	Related Item No.
ĺ		None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
170223-R03	• Accumulated sand in U-channel should be removed more frequently.	В7
170223-R04	• Concrete bund should be provided to the footing of hoarding to prevent silt runoff out of the site at Portion 8.	B20
170223-R05	• Muddy water on the ground surface should be directed to the wastewater treatment facilities before discharge.	B12
	C. Ecology	
	No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
	E. Air Quality	
170223-R01	• Stockpile of dusty material should be covered by impervious sheet to prevent dust generation at Portion 8.	E6
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management	
170223-R02	Accumulated waste should be removed at Portion 8.	G1 i
	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	I. Others	
	Follow-up on previous audit section (Ref. No.: 170214), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	10	23 February 2017
Checked by	Dr. Priscilla Choy	WIT	23 February 2017

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

EX/ENIO	ACTION					
EVENT	ET	ET IEC		CONTRACTOR		
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 		
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		

EN / EN / EN / EN / EN / EN / EN / EN /	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR		
	 7. If exceedance continues, arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring. 					
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		
Limit level being exceeded by two or more	 Notify IEC, ER, Contractor and EPD; Identify source; 	Discuss amongst ER, ET, and Contractor on the potential remedial actions;	 Confirm receipt of notification of exceedance in writing; Notify Contractor; 	Take immediate action to avoid further exceedance;		

		TION		
EVENT	ET	IEC ER CONTR		CONTRACTOR
consecutive sampling	 Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and 	Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly;	 ER 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the 	 CONTRACTOR Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.
	ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.		Contractor to stop that portion of work until the exceedance is abated.	

Event and Action Plan for Construction Noise

EVENT		ACT	TION	
	ET	IEC	ER	CONTRACTOR
Action	Notify IEC and Contractor;	1. Review the analysed results	1. Confirm receipt of notification of	1. Submit noise mitigation proposals to
Level	2. Carry out investigation;	submitted by the ET;	failure in writing;	IEC;
	3. Report the results of investigation to	2. Review the proposed remedial	2. Notify Contractor;	2. Implement noise mitigation proposals.
	the IEC, ER and Contractor;	measures by the Contractor and	3. Require Contractor to propose	
	4. Discuss with the Contractor and	advise the ER accordingly;	remedial measures for the analysed	
	formulate remedial measures;	3. Supervise the implementation of	noise problem;	
	5. Increase monitoring frequency to	remedial measures.	4. Ensure remedial measures are	
	check mitigation effectiveness.		properly implemented.	
Limit	1. Identify source;	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to avoid
Level	2. Inform IEC, ER, EPD and	Contractor on the potential remedial	failure in writing;	further exceedance;
	Contractor;	actions;	2. Notify Contractor;	2. Submit proposals for remedial
	3. Repeat measurements to confirm	2. Review Contractors remedial actions	3. Require Contractor to propose	actions to IEC within 3 working
	findings;	whenever necessary to assure their	remedial measures for the analysed	days of notification;
	4. Increase monitoring frequency;	effectiveness and advise the ER	noise problem;	3. Implement the agreed proposals;
	5. Carry out analysis of Contractor's	accordingly;	4. Ensure remedial measures properly	4. Resubmit proposals if problem still
	working procedures to determine	3. Supervise the implementation of	implemented;	not under control;
	possible mitigation to be	remedial measures.	5. If exceedance continues, consider	5. Stop the relevant portion of works as
	implemented;		what portion of the work is	determined by the ER until the
			responsible and instruct the	exceedance is abated.

6. Inform IEC, ER and EPD the causes	Contractor to stop that portion of	
and actions taken for the	work until the exceedance is abated.	
exceedances;		
7. Assess effectiveness of Contractor's		
remedial actions and keep IEC, EPD		
and ER informed of the results;		
8. If exceedance stops, cease additional		
monitoring.		

Event and Action Plan for Marine Water Quality

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Action level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the ER and confirm
exceeded by one	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in
sampling day at	collected at the control stations as	Review proposal on mitigation	Make agreement on the mitigation	writing;
water sensitive	appropriate;	measures submitted by Contractor	proposal.	Rectify unacceptable practice;
receiver(s)	If exceedance is found to be caused	and advise the ER accordingly;		Check all plant and equipment;
	by the reclamation activities,	Assess the effectiveness of the		Amend working methods if
	repeat in-situ measurement to	implemented mitigation measures.		appropriate;
	confirm findings;			Discuss with ET and IEC and
	Inform IEC and contractor;			propose mitigation measures to IEC
	Check monitoring data, all plant,			and ER;
	equipment and Contractor's working			Implement the agree mitigation
	methods;			measures.
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Discuss mitigation measures with			
	IEC and Contractor;			
	Repeat measurement on next day of			
	exceedance.			
Action level being	• Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the Engineer and confirm
exceeded by two	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in
or				writing;

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
more consecutive	collected at the control stations as	Review proposal on mitigation	Make agreement on the mitigation	Rectify unacceptable practice;
sampling days at	appropriate;	measures submitted by Contractor	proposal;	Check all plant and equipment and
water sensitive	If exceedance is found to be caused	and advise the ER accordingly;	Assess the effectiveness of the	consider changes of working
receiver(s)	by the reclamation activities, repeat	Assess the effectiveness of the	implemented mitigation measures.	methods;
	in-situ measurement to confirm	implemented mitigation measures.		Discuss with ET, IEC and ER and
	findings;			propose mitigation measures to IEC
	Inform IEC and contractor;			and ER within 3 working days;
	Check monitoring data, all plant,			Implement the agreed mitigation
	equipment and Contractor's working			measures.
	methods;			
	Discuss mitigation measures with			
	IEC and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Prepare to increase the monitoring			
	frequency to daily;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Repeat measurement on next day of			
	exceedance.			

	Action						
Event	ET	IEC	ER	CONTRACTOR			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm			
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in			
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;			
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;			
receiver(s)	• If exceedance is found to be caused	and advise the ER accordingly;	review the working methods;	Check all plant and equipment and			
	by the reclamation activities,	Assess the effectiveness of the	Make agreement on the mitigation	consider changes of working			
	repeat in-situ measurement to	implemented mitigation measures.	measures to be implemented;	methods;			
	confirm findings;		Assess the effectiveness of the	Discuss with ET, IEC and ER and			
	Inform IEC, contractor, AFCD and		implemented mitigation measures.	submit proposal of mitigation			
	EPD			measures to IEC and ER within 3			
	Check monitoring data, all plant,			working days of notification;			
	equipment and Contractor's working			Implement the agreed mitigation			
	methods;			measures.			
	Discuss mitigation measures with						
	IEC, ER and Contractor;						
	Ensure mitigation measures are						
	implemented;						
	Increase the monitoring frequency						
	to daily until no exceedance of Limit						
	level;						
	If exceedance occurs at WSD salt						
	water intake, inform WSD.						

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
sampling days at	• If exceedance is found to be caused	and advise the ER accordingly;	review the working methods;	Check all plant and equipment and
water sensitive	by the reclamation activities, repeat	Assess the effectiveness of the	Make agreement on the mitigation	consider changes of working
receiver(s)	in-situ measurement to confirm	implemented mitigation measures.	measures to be implemented;	methods;
	findings;		Assess the effectiveness of the	Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		implemented mitigation measures;	submit proposal of mitigation
	and EPD;		Consider and instruct, if necessary,	measures to IC(E) and ER within 3
	• Check monitoring data, all plant,		the Contractor to slow down or to	working days of notification;
	equipment and Contractor's working		stop all or part of the marine work	Implement the agreed mitigation
	methods;		until no exceedance of Limit level.	measures;
	• Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		• Increase ventilation to restore carbon dioxide to <
		0.5%

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
Air Qual	ity Impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the dust	Contractor	All Active Work	Construction	APCO	*
	roads	impact		Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top	To minimize the dust	Contractor	Barging Points	Construction	APCO	N/A
	tipping hall, provision of water spraying and flexible dust curtains	impact			phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction	To minimize the dust	Contractor	All	Construction	APCO and Air	
	Dust) Regulation and good site practices:	impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces			Work Sites		(Construction Dust)	*
	and unpaved roads, particularly during dry weather.					Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas						*
	close to ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles						#
	to reduce emissions. Where this is not practicable owing to frequent usage,						
	watering shall be applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where possible, prevent						#
	placing dusty material storage piles near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between						۸
	site locations.						
	- Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
	points of the site.						
	- Provision of wind shield and dust extraction units or similar dust mitigation						N/A
	measures at the loading area of barging point, and use of water sprinklers at						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	the loading area where dust generation is likely during the loading process of						
	loose material, particularly in dry seasons/ periods.						
	- Provision of not less than 2.4m high hoarding from ground level along site						۸
	boundary where adjoins a road, streets or other accessible to the public						
	except for a site entrance or exit.						
	- Imposition of speed controls for vehicles on site haul roads.						^
	- Where possible, routing of vehicles and positioning of construction plant						^
	should be at the maximum possible distance from ASRs						
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						N/A
	should be covered entirely by impervious sheeting or placed in an area						
	sheltered on the top and the 3 sides.						
	- Instigation of an environmental monitoring and auditing program to monitor						^
	the construction process in order to enforce controls and modify method of						
	work if dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air pollution	Contractor	All	Construction	•APCO	
	All vehicles shall be shut down in intermittent use.	emission from		construction	stage		۸
	Only well-maintained plant should be operated on-site and plant should be	construction vehicles		sites			٨
	serviced regularly to avoid emission of black smoke.	and plants					
	All diesel fuelled construction plant within the works areas shall be powered						
	by ultra low sulphur diesel fuel (ULSD)						^
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air pollution	Contractor	All	Construction	•APCO	*
	machines	emission from		construction	stage		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
		construction vehicles		sites			
		and plants					
Noise Im	pact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	#
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry	construction noise			phase		
	Mixer, Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt	impact arising from the					
	Paver, Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling	Project at the affected					
	(Vibration Hammer). Use of full enclosure for Air Compressor, Compressor,	NSRs					
	Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter Bore Piling,						
	Grout Mixer & Pump and Concrete Pump.						
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction noise	Proponent		Period		٨
	serviced regularly during the construction program	impact arising from the					
	- Silencers or mufflers on construction equipment should be utilized and	Project at the affected					٨
	should be properly maintained during the construction program.	NSRs					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.						٨
	- Machines and plant (such as trucks) that may be in intermittent use should be						٨
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever						۸
	possible, be orientated so that the noise is directed away from the nearby						
	NSRs.						
	- Material stockpiles and other structures should be effectively utilized,						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	wherever practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site near	Construction	EIAO-TM, NCO	N/A
		construction noise		school	phase		
		impact arising from the					
		Project at the affected					
		NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m³, with fine content of 25% or less	impacts from filling	Contractors		Phase		
		activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from filling	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt	activities					
	curtain shall be employed around the active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from filling	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3						
	filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e.						
	1,000 m ³ per trip) for the filling operation at the reclamation area for Road P2. All						
	filling works shall be carried out behind the seawall with the use of single silt						
	curtain at the marine access.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction	impacts from filling	Contractors		Phase	Waste Disposal	N/A
	methods as far as practically possible including the use of cofferdams to	activities and				Ordinance (WDO)	
	cover the construction area to separate the construction works from the sea;	marine-based					
	- floating single silt curtain shall be employed for all marine works;	construction					*
	- all vessels should be sized so that adequate clearance is maintained						N/A
	between vessels and the seabed in all tide conditions, to ensure that undue						
	turbidity is not generated by turbulence from vessel movement or propeller						
	wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom						N/A
	openings to prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of						N/A
	barges before the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of						N/A
	decks being washed by wave action;						
	- loading of barges and hoppers should be controlled to prevent splashing of						N/A
	filling material into the surrounding water. Barges or hoppers should not be						
	filled to a level that will cause the overflow of materials or polluted water						
	during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated						N/A
	with leaking pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	objectionable matter to be present on the water within the site or dumping grounds; and - before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.						٨
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be submitted for EPD agreement before commencement of construction phase with due consideration of good site practices.	Control potential impacts from filling activities and marine based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO	N/A
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO	*
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Design Stage and Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO, TM-DSS	*
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good	Control potential impacts from construction site runoff	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO, TM-DSS	*

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	housekeeping and stormwater best management practices, as detailed in below,	and land-based					
	should be implemented to ensure that all construction runoff complies with WPCO	construction					
	standards and no unacceptable impact on the WSRs arises due to construction of						
	the TKO-LT Tunnel. All discharges from the construction site should be						
	controlled to comply with the standards for effluents discharged into the						
	corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	
	siltation, contamination of runoff, and erosion. Construction runoff related	impacts from	Contractors		Phase	EIAOTM, WPCO	
	impacts associated with the above ground construction activities can be readily	construction site runoff					
	controlled through the use of appropriate mitigation measures	and land-based					
	which include:	construction					
	- use of sediment traps; and						N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.						#
S5.8.9	Construction site should be provided with adequately designed perimeter channel	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*
	and pretreatment facilities and proper maintenance. The boundaries of critical	impacts from	Contractors		Phase	EIAOTM, WPCO	
	areas of earthworks should be marked and surrounded by dykes or embankments	construction site runoff					
	for flood protection. Temporary ditches should be provided to facilitate runoff	and land-based					
	discharge into the appropriate watercourses, via a silt retention pond. Permanent	construction					
	drainage channels should incorporate sediment basins or traps and baffles to						
	enhance deposition rates. The design of efficient silt removal facilities should be						
	based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement the	Location of the measures	When to Implement the	What requirements or standards for the	Status
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	works during the rainy season (April to September). All exposed earth areas	impacts from	Contractors		Phase	EIAOTM, WPCO	
	should be completed as soon as possible after earthworks have been completed,	construction site runoff					
	or alternatively, within 14 days of the cessation of earthworks where practicable.	and land-based					
	If excavation of soil cannot be avoided during the rainy season, or at any time of	construction					
	year when rainstorms are likely, exposed slope surfaces should be covered by						
	tarpaulin or other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	cells of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	EIAOTM, WPCO	
	measure which can be used for settling surface runoff prior to disposal. The	construction site runoff				S5	
	system capacity is flexible and able to handle multiple inputs from a variety of	and land-based					
	sources and particularly suited to applications where the influent is pumped.	construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	permanent work or surface protection should be carried out immediately after the	impacts from	Contractors		Phase	EIAOTM, WPCO	
	final surfaces are formed to prevent erosion caused by rainstorms. Appropriate	construction site runoff				S5	
	drainage like intercepting channels should be provided where necessary.	and land-based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	excavation of trenches in wet seasons is necessary, they should be dug and	impacts from	Contractors		Phase	EIAOTM, WPCO	
	backfilled in short sections. Rainwater pumped out from trenches or foundation	construction site runoff				S5	
	excavations should be discharged into storm drains via silt removal facilities.	and land-based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*

EIA Ref.	Recommended Mitigation Measures	Objecti	ives of the	Who to	Location of	When to	What requirements	Status
		recon	nmended	implement the	the measures	Implement the	or standards for the	
		Measu	res & Main	measures?		measures?	measures to	
		Concerns	s to address				achieve?	
	material) of more than 50m³ should be covered with tarpaulin or similar fabric	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	during rainstorms. Measures should be taken to prevent the washing away of	constructi	on site runoff					
	construction materials, soil, silt or debris into any drainage system.	and	land-based					
		constructi	on					
S5.8.15	Manholes (including newly constructed ones) should always be adequately	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*
	covered and temporarily sealed so as to prevent silt, construction materials or	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	debris being washed into the drainage system and storm runoff being directed into	constructi	on site runoff					
	foul sewers. Discharge of surface run-off into foul sewers must always be	and	land-based					
	prevented in order not to unduly overload the foul sewerage system.	constructi	on					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	be taken when a rainstorm is imminent or forecast, and actions to be taken during	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94.	constructi	on site runoff					
	Particular attention should be paid to the control of silty surface runoff during storm	and	land-based					
	events, especially for areas located near steep slopes.	constructi	on					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	to prevent the release of oils and grease into the storm water drainage system	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	after accidental spillages. The interceptor should have a bypass to prevent	constructi	on site runoff					
	flushing during periods of heavy rain.	and	land-based					
		constructi	on					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*
	ensure no earth, mud, debris and the like is deposited by them on roads. An	impacts	from	Contractors		Phase	EIAOTM, WPCO	

EIA Ref.	Recommended Mitigation Measures	recommend	Objectives of the recommended in Measures & Main		Location of the measures	When to Implement the measures?	What requirements or standards for the measures to	Status
		Concerns to ac	ddress				achieve?	
	adequately designed and located wheel washing bay should be provided at every	construction site	e runoff					
	site exit, and washwater should have sand and silt settled out and removed at	and land	d-based					
	least on a weekly basis to ensure the continued efficiency of the process. The	construction						
	section of access road leading to, and exiting from, the wheelwash bay to the							
	public road should be paved with sufficient backfall toward the wheel-wash bay to							
	prevent vehicle tracking of soil and silty water to public roads and drains.							
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control p	otential	CEDD's	Work site	Construction	ProPECC PN 1/94,	#
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site	e runoff					
		and land	d-based					
		construction						
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control p	otential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	commencement of other construction activities. Sediment traps should be installed	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	in order to minimise the sediment loading of the effluent prior to discharge into foul	construction site	e runoff					
	sewers. There shall be no direct discharge of effluent from the site into the sea.	and land	d-based					
		construction						
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate	Control p	otential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	runoff discharge should be adequately designed for the controlled release of storm	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	flows. All sediment control measures should be regularly inspected and	construction site	e runoff					
	maintained to ensure proper and efficient operation at all times and particularly	and land	d-based					
	following rain storms. The temporarily diverted drainage should be reinstated to its	construction						
	original condition when the construction work has finished or the temporary							

EIA Ref.	Recommended Mitigation Measures		es of the	Who to	Location of	When to	What requirements	Status
			mended	implement the	the measures	Implement the	or standards for the	
			es & Main	measures?		measures?	measures to	
		Concerns	to address				achieve?	
	diversion is no longer required.							
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	sealed areas, within bunds of a capacity equal to 110% of the storage capacity of	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	the largest tank, to prevent spilled fuel oils from reaching the coastal waters.	constructio	n site runoff					
		and	land-based					
		constructio	on					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control	potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	stormwater discharges and the existing or planned seawater intakes during	impacts	from	Contractors		Phase	TMDSS	
	construction and operational phases	constructio	n site runoff					
		and	land-based					
		constructio	n					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	lowering of ground water level in basement or foundation construction, and	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	groundwater seepage pumped out of tunnels or caverns under construction	constructio	n site runoff					
	should be discharged into storm drains after the removal of silt in silt removal	and	land-based					
	facilities.	constructio	n					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel	impacts	from	Contractors		Phase	EIAOTM, WPCO,	
& Table	will be measured during the excavation. The groundwater levels above the	constructio	n site runoff				Buildings Ordinance	
5.18	tunnel will also be monitored by piezometers. If the inflow rate exceeds the	and	land-based					
	pre-determined groundwater control criteria or the groundwater drawdown	constructio	n					
	exceeds the required limit, pre-excavation grouting will be required to reduce the							

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the						
	groundwater should be biodegradable and non-toxic throughout the tunnel						
	construction. Potential groundwater quality impact would be minimal as the used						
	material is non-toxic and biodegradable. No adverse groundwater quality would						
	therefore be expected. Prescriptive measures in the form of an Action Plan with						
	pre-emptive and re-active to preserve the groundwater levels at all times during						
	the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	anchoring should as far as practicable be recirculated after sedimentation. When	impacts from	Contractors		and	EIAOTM, WPCO	
	there is a need for final disposal, the wastewater should be discharged into storm	construction site runoff			Construction		
	drains via silt removal facilities.	and land-based			Phas		
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
S5.8.31	and similar equipment should whenever practicable be recycled. The discharge	impacts from	Contractors		Phase	EIAOTM, WPCO	
	of wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site runoff					
	overflow, the pump sump of any water recycling system should be provided with	and land-based					
	an online standby pump of adequate capacity and with automatic alternating	construction					
	devices. Under normal circumstances, surplus wastewater may be discharged into						
	foul sewers after treatment in silt removal and pH adjustment facilities (to within						
	the pH range of 6 to 10). Disposal of wastewater into storm drains will require						
	more elaborate treatment.						

EIA Ref.	Recommended Mitigation Measures	Objectives	of the	Who to	Location of	When to	What requirements	Status
		recommer	nded	implement the	the measures	Implement the	or standards for the	
		Measures &	k Main	measures?		measures?	measures to	
		Concerns to a	address				achieve?	
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	washing bay should be provided at every site exit if practicable and wash-water	construction si	ite runoff					
	should have sand and silt settled out or removed before discharging into storm	and lan	nd-based					
	drains. The section of construction road between the wheel washing bay and the	construction						
	public road should be paved with backfall to reduce vehicle tracking of soil and to							
	prevent site run-off from entering public road drains.							
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	residual quantity cannot be avoided, the used slurry may be disposed of at the	construction si	ite runoff					
	marine spoil grounds subject to obtaining a marine dumping licence from EPD on	and lan	nd-based					
	a case-by-case basis.	construction						
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	drainage system, it should be treated to the respective effluent standards	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	applicable to foul sewer, storm drains or the receiving waters as set out in the	construction si	ite runoff					
	WPCO Technical Memorandum on Effluent Standards.	and lan	nd-based					
		construction						
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	be discharged into storm drains.	construction si	ite runoff					
		and lan	nd-based					
		construction						

EIA Ref.	Recommended Mitigation Measures		ives of the	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
			res & Main	measures?	the measures	measures?	measures to	
			s to address				achieve?	
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from	Control	potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	EPD should be sought during the design stage of the works with regard to the	impacts	from	Contractors		and	EIAOTM, WPCO	
	disposal of the sterilizing water. The sterilizing water should be reused wherever	constructi	on site runoff			Construction		
	practicable.	and	land-based			Phase		
		constructi	ion					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	should be sealed to prevent building debris, soil, sand etc. from entering public	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	sewers/drains.	constructi	on site runoff					
		and	land-based					
		constructi	ion					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	plastering, internal decoration, cleaning of works and similar activities should not	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	be discharged into the stormwater drainage system. If the wastewater is to be	constructi	on site runoff					
	discharged into foul sewers, it should undergo the removal of settleable solids in a	and	land-based					
	silt removal facility, and pH adjustment as necessary	constructi	on					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	activities should be neutralized to within the pH range of 6 to 10 before	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	discharging into foul sewers. If there is no public foul sewer in the vicinity, the	constructi	on site runoff					
	neutralized wastewater should be tinkered off site for disposal into foul sewers or	and	land-based					
	treated to a standard acceptable to storm drains and the receiving waters	constructi	ion					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts	from	Contractors		Phase	EIAOTM, WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectiv	es of the	Who to	Location of	When to	What requirements	Status
		recommended		implement the	the measures	Implement the	or standards for the	
		Measure	es & Main	measures?		measures?	measures to	
		Concerns	to address				achieve?	
	providing at least 20 minutes retention during peak flow.	constructio	n site runoff					
		and	land-based					
		constructio	n					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	petrol interceptor with peak storm bypass.	impacts	from	Contractors		Phase	EIAOTM, WPCO	
		constructio	n site runoff					
		and	land-based					
		constructio	n					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	as far as possible be located within roofed areas. The drainage in these covered	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	areas should be connected to foul sewers via a petrol interceptor. Oil leakage or	constructio	n site runoff					
	spillage should be contained and cleaned up immediately. Waste oil should be	and	land-based					
	collected and stored for recycling or disposal in accordance with the Waste	constructio	n					
	Disposal Ordinance.							
S5.8.43	Construction work force sewage discharges on site are expected to be connected	Control	potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	to the existing trunk sewer or sewage treatment facilities. The construction sewage	impacts	from	Contractors		Phase	EIAOTM, WPCO	
	may need to be handled by portable chemical toilets prior to the commission of the	constructio	n site runoff					
	on-site sewer system. Appropriate numbers of portable toilets shall be provided by	and	land-based					
	a licensed contractor to serve the large number of construction workers over the	constructio	n					
	construction site. The Contractor shall also be responsible for waste disposal and							
	maintenance practices.							
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would	Control	potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	*

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	be produced from the construction activities. The Waste Disposal Ordinance (Cap	impacts from	Contractors		Phase	WDO	
	354) and its subsidiary regulations in particular the Waste Disposal (Chemical	accidental spillage of					
	Waste) (General) Regulation should be observed and complied with for control of	chemicals					
	chemical wastes.						
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	*
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for	accidental spillage of					
	leakage and spillage should only be undertaken within the areas appropriately	chemicals					
	equipped to control these discharges.						
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and	impacts from	Contractors		Phase	WDO	
	Storage of Chemical Wastes" published under the Waste Disposal Ordinance	accidental spillage of					
	details the requirements to deal with chemical wastes. General requirements are	chemicals					
	given as follows:						
	- suitable containers should be used to hold the chemical wastes to avoid						٨
	leakage or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						٨
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate						٨
	space should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	on a daily basis. The contractor should be responsible for keeping the water	impacts from floating	Contractors		Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	within the site boundary and the neighbouring water free from rubbish.	refuse and debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team /	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be	human and traffic	Contractor	works are	Phase		^
	adopted wherever possible.	disturbance to					
	- Hoarding or fencing should be erected around the works area boundaries	terrestrial habitat and					^
	during the construction phase. The hoarding would screen adjacent habitats	wildlife; and reduce					
	from construction phase activities, reduce noise disturbance to these habitats	dust generation					
	and also to restrict access to habitats adjacent to works areas by site						
	workers;						
	- Regular spraying of haul roads to minimize impacts of dust deposition on						^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce disturbance to	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	surrounding habitats		works are	Phase		^
	routes selected on existing disturbed land to minimise disturbance to natural						
	habitats.						
	- Construction activities should be restricted to works areas that should be						^
	clearly demarcated. The works areas should be reinstated after completion of						
	the works.						
	- Waste skips should be provided to collect general refuse and construction						۸
	wastes. The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to						۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	collect and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						۸
	- Measures should also be put into place so that litter, fuel and solvents do not						۸
	enter the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize groundwater	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control	inflow			Phase		N/A
	measures would generally be adopted.						
	- During the tunnel excavation, pre-excavation grouting could be adopted to						N/A
	reduce the groundwater inflow and ensure that the tunnel would meet the long						
	term water tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of coral	Design team,	Within	Prior	N/A	
	Coral translocation		contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		project operator	areas and pier			۸
	common Oulastrea crispata, within the reclamation area and bridge footprint to			footprint			
	the other suitable locations as far as practicable.						
	- The coral translocation should be conducted during the winter months						۸
	(November-March) in order to avoid disturbance during their spawning period						
	(i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for						^
	pretranslocation coral survey, translocation methodology,						
	identification/proposal of coral recipient site, monitoring methodology for						
	posttranslocation should be prepared during the detailed design stage.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- The coral translocation plan should be subject to approval by relevant						٨
	authorities (e.g. EPD and AFCD) before commencement of the coral						
	translocation. All the translocation exercises should be conducted by						
	experienced marine ecologist(s) who is/are approved by AFCD prior to						
	commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and						٨
	unacceptable impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should						٨
	include observations on the presence, survival, health condition and growth of						
	the translocated coral colonies. These parameters should then be compared						
	with the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water quality	Design Team,	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	impact, especially on	contractor	landbased	phase		N/A
	opening of newly installed seawall and marine works area.	suspended solid level;		works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm	minimize the					۸
	drain;	contamination of					
	- Proper waste and dumping management; and	wastewater discharge,					٨
	- Standard good-site practice for land-based construction.	accidental chemical					٨
		spillage and					
		construction site runoff					
		to the receiving water					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for the	Design Team,	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or	vegetation loss	contractor	works area	phase		٨
	heavy standard trees within or in vicinity of the affected area as far as						
	practicable. Such compensatory planting for trees should be provided with						
	at least a 1:1 ratio. In addition, vegetation at the temporarily affected area						
	should be reinstated with species similar to the existing condition.						
Fishery	Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water quality	Design Team /	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation	impact, especially on	Contractor	area	phase		N/A
	points, opening of newly installed seawall and marine works area.	suspended solid level					
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be	management impacts			Phase	Ordinance (Cap.	٨
	responsible for good site practices, arrangements for collection and effective					354)	
	disposal to an appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land (Miscellaneous	٨
	chemical handling procedures;					Provisions)	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended	Who to implement the	Location of the measures	When to	What requirements or standards for the	Status
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- Provision of sufficient waste disposal points and regular collection of waste;					Ordinance (Cap. 28)	#
	- Appropriate measures to minimize windblown litter and dust during						۸
	transportation of waste by either covering trucks or by transporting wastes in						
	enclosed containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps						*
	and oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers,	reduction			Phase	Ordinance (Cap.	^
	skips or stockpiles to enhance reuse or recycling of materials and their proper					354)	
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins					Land (Miscellaneous	^
	to enable this waste to be segregated from other general refuse generated by					Provisions)	
	the workforce;					Ordinance (Cap. 28)	
	- Proper storage and site practices to minimize the potential for damage or						^
	contamination of construction materials; and						
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	reduction			Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal						
	of different categories of waste to be generated from the construction activities.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	Such a management plan should incorporate site specific factors, such as the						
	designation of areas for segregation and temporary storage of reusable and						
	recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP						
	throughout the construction stage of the Project. The EMP should be reviewed						
	regularly and updated by the Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent	reduction			Phase	19/2005	۸
	projects as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize potential	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpilling of waste is required,	adverse environmental			Phase		
	recommendations to minimize the impacts include:	impacts arising from					
	- Waste, such as soil, should be handled and stored well to ensure secure	waste storage					٨
	containment, thus minimizing the potential of pollution;						
	- Maintain and clean storage areas routinely;						٨
	- Stockpiling area should be provided with covers and water spraying system						٨
	to prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to						٨
	enhance reuse.						
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize potential	Contractor	All work sites	Construction		
	- Remove waste in timely manner;	adverse environmental			Phase		#
	- Waste collectors should only collect wastes prescribed by their permits;	impacts arising from					٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- Impacts during transportation, such as dust and odour, should be mitigated	waste collection and					٨
	by the use of covered trucks or in enclosed containers;	disposal					
	- Obtain relevant waste disposal permits from the appropriate authorities, in						٨
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal						
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the						
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities; and						٨
	- Maintain records of quantities of waste generated, recycled and disposed.						٨
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize potential	Contractor	All work sites	Construction	DEVB TCW No.	
	- Implementation of trip ticket system with reference to DEVB TC(W) No.	adverse environmental			Phase	6/2010	٨
	6/2010, Trip Ticket System for Disposal of Construction & Demolition	impacts arising from					
	Materials, to monitor disposal of waste and to control fly-tipping at PFRFs or	waste collection and					
	landfills. A recording system for the amount of waste generated, recycled	disposal					
	and disposed (including disposal sites) should be proposed.						
S8.6.11 -	Sorting of C&D Materials	To minimize potential	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and	adverse environmental			Phase	6/2010	٨
	recyclable materials before disposal off-site.						
	- Specific areas shall be provided by the Contractors for sorting and to provide					ETWB TCW No.	٨
	temporary storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert						٨
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While					19/2005	

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?	Status
	opportunities for reusing the non-inert portion should be investigated before						
	disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG	
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement	sediment to be		areas with	Phase		N/A
	stabilization. Cement-stabilization process is undertaken by mixing sediment	disposed of in an		sediments			
	and cement and will convert sediment to earth filling material. The treated	authorized and least		concern			
	sediment has to comply with Risk-Based Remediation Goals (RBRGs) before	impacted way					
	being reused in order not to raise any land contamination issue. The						
	adoption of RBRGs to assess stabilized sediment has been proposed in the						
	current C&DMMP. MFC has no adverse comment on the current C&DMMP.						
	The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead						
	exceeding the RBRG. Except for the sediment sample (TKO-EBH501						
	3-3.95m), the chemical screening results do not indicate sediment as						
	contaminated soil. It is anticipated that reuse of sediment except sediment						
	sample (TKO-EBH501 3-3.95m) will not lead to land contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample						N/A
	(TKO-EBH501 33.95m) as filling material after cement stabilization is also a						
	suitable treatment. Sediment quality indicates the sediment sample						
	(TKO-EBH501 3-3.95m) exceed RBRG for lead. While cement stabilization						
	will immobilize metal contaminants, it is capable to treat the exceedance on						
	lead. The stabilized material should comply with UTS of Lead and UCS. If the						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	treated material do not comply with UTS or UCS, re-stabilization have to be						
	undertaken to meet compliance of UTS and UCS before reusing the treated						
	sediment as filling material. However, further agreement on final						
	disposal/treatment on sediment under sample (TKO-EBH501 3-3.95m) has						
	to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the best	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation,	handling and		areas with	Phase		N/A
	where relevant, shall be adhered to during boring, excavation, transportation	treatment of sediment		sediments			
	and disposal of sediments or cement stabilization of sediment.			concern			
	- A treatment area should be confined for carrying out the cement stabilization						N/A
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						N/A
	excavation and transportation of the sediment, the excavated sediments						
	should be kept wet during excavation/boring and should be properly covered						
	when placed on barges/trucks. Loading of the excavated sediment to the						
	barge should be controlled to avoid splashing and overflowing of the						
	sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE)						
	when handling contaminated sediments. Adequate washing and cleaning						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	facilities should also be provided on site.						
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.	
	- Alternatively, excavated sediment can be treated with marine disposal. The	sediment to be		areas with	Phase	34/2002 & Dumping	N/A
	basic requirements and procedures for excavated sediment disposal	disposed of in an		sediments		at Sea Ordinance	
	specified under ETWB TC(W) No. 34/2002 shall be followed. MFC is	authorized and least		concern			
	responsible for the provision and management of disposal capacity and	impacted way					
	facilities for the excavated sediment, while the permit of marine dumping is						
	required under the Dumping at Sea Ordinance and is the responsibility of the						
	DEP.						
S8.6.23	Sediments (con't)	To determine the best	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	handling and disposal		areas with	Phase	34/2002 & Dumping	N/A
	permit, separate SSTP has to be submitted to EPD for agreement under	option of sediment		sediments		at Sea Ordinance	
	DASO. Additional site investigation, based on the SSTP, maybe carried out			concern			
	in order to confirm the disposal arrangements for the proposed sediments						
	removal. A Sediment Quality Report (SQR) shall then be required for EPD						
	agreement under DASO prior to the tendering of the construction contract,						
	discussing in details the site investigation, testing results as well as the						
	delineation of each of the categories of excavated materials and the						
	corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure handling of	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28	- The excavated sediments is expected to be loaded onto the barge and	sediments are in		areas with	Phase	34/2002 & Dumping	N/A
	transported to the designated disposal sites allocated by the MFC. The	accordance to		sediments		at Sea Ordinance	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	excaveted sediment would be disposed of according to its determined	statutory requirements		concern			
	disposal options and ETWB TC(W) No. 34/2002.						
	- Stockpiling of contaminated sediments should be avoided as far as possible.						N/A
	If temporary stockpiling of contaminated sediments is necessary, the						
	excavated sediment should be covered by tarpaulin and the area should be						
	placed within earth bunds or sand bags to prevent leachate from entering the						
	ground, nearby drains and surrounding water bodies. The stockpiling areas						
	should be completely paved or covered by linings in order to avoid						
	contamination to underlying soil or groundwater. Separate and clearly						
	defined areas should be provided for stockpiling of contaminated and						
	uncontaminated materials. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring and						N/A
	transportation of the sediment, the excavated sediments should be kept wet						
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be						
	controlled to avoid splashing and overflowing of the sediment slurry to the						
	surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should						N/A
	be equipped with tight fitting seals to prevent leakage and should not be filled						
	to a level that would cause overflow of materials or laden water during						
	loading or transportation. In addition, monitoring of the barge loading shall be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	conducted to ensure that loss of material does not take place during						
	transportation. Transport barges or vessels shall be equipped with automatic						
	self-monitoring devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE)						
	when handling contaminated sediments. Adequate washing and cleaning						
	facilities should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						N/A
	containment. A geosynthetic containment method is a method whereby the						
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit						
	where they would be covered by further mud disposal and later by the mud						
	pit capping, thereby meeting the requirements for fully confined mud						
	disposal.						
S8.6.26	Chemical Wastes.	To ensure proper	Contractor	All works sites	Construction	Code of Practice on	
	- If chemical wastes are produced at the construction site, the Contractor	management of			Phase	the Packaging,	*
	would be required to register with the EPD as a Chemical Waste Producer	chemical waste				Labelling and	
	and to follow the guidelines stated in the Code of Practice on the Packaging,					Storage of Chemical	
	Labelling and Storage of Chemical Wastes. Good quality containers					Wastes	
	compatible with the chemical wastes should be used, and incompatible						
	chemicals should be stored separately. Appropriate labels should be					Waste Disposal	
	securely attached on each chemical waste container indicating the					(Chemical Waste)	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	corresponding chemical characteristics of the chemical waste, such as					(General) Regulation	
	explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc.						
	Contractor shall use a licensed collector to transport and dispose of the						
	chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi,						
	or other licensed facility, in accordance with the Waste Disposal (Chemical						
	Waste) (General) Regulation.						
S8.6.27	General Refuse	To ensure proper	Contractor	All works sites	Construction	Public Health and	
	- General refuse should be stored in enclosed bins or compaction units	management of			Phase	Municipal Services	٨
	separate from C&D material. A reputable waste collector should be	general refuse				Ordinance (Cap.	
	employed by the contractor to remove general refuse from the site,					132)	
	separately from C&D material. Preferably an enclosed and covered area						
	should be provided to reduce the occurrence of 'wind blown' light material.						
Impact of	n Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust and	Contractors	Work areas	Construction	EIAO; GCHIA; AMO	
	- Temporarily fenced off buffer zone with allowance for public access	visual impacts			Phase		N/A
	(minimum 1 m) should be provided;						
	- The open yard in front of the temple should be kept as usual for annual Tin						N/A
	Hau festival;						
	- Monitoring of vibration impacts should be conducted when the construction						N/A
	works are less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent indirect	Contractors	Work areas	Construction	Vibration Limits on	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	vibration impact			Phase	Heritage Buildings by	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	limit of 5mm/s measured inside the historical buildings;					CEDD; GCHIA;	
	- Monitoring of vibration should be carried out during construction phase.					AMO.	N/A
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling						N/A
	Tin Hau Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts						N/A
	on built heritage shall be submitted to AMO for comments before						
	commencement of work.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised	Avoid impact on	CEDD (via	General	Construction	N/A	۸
10.8.1	to avoid impacts on adjacent landscape.	adjacent landscape	Contractor)		planning and		
		areas			during		
					construction		
					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration of	CEDD (via	N/A	Construction	N/A	۸
10.8.1		impact	Contractor)		planning		
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where	To allow re-use of	CEDD (via	General	Site clearance	As per the Particular	۸
10.8.1	practical, to be stripped and stored for re-use in the construction of the soft	topsoil	Contractor)			Specification	
	landscape works. The Contract Specification shall include storage and reuse of						
	topsoil as appropriate.						
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to	To minimize tree loss	CEDD (via	As per	Site clearance	ETWB TC 3/2006	*
10.8.1	be carefully protected during construction. Detailed Tree Protection Specification		Contractor)	approved Tree	and throughout	and as per tree	
	shall be provided in the Contract Specification, under which the Contractor shall			Removal	construction	protection measures	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	be required to submit, for approval, a detailed working method statement for the			Application(s)	period	in Particular	
	protection of trees prior to undertaking any works adjacent to all retained trees,					Specification	
	including trees in contractor's works areas. (Tree protection measures will be						
	detailed at Tree Removal Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	۸
10.8.1	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved Tree		and as per tree	
	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Removal		protection measures	
	specification shall be provided in the Contract Specification and sufficient time for			Application(s)		in Particular	
	preparation shall be allowed in the construction programme.					Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize screening	CEDD (via	At Lam Tin	Beginning of	N/A	۸
10.8.1	barriers and hoardings. Trees shall be capable of reaching a height >10m within	of the works	Contractor)	Interchange	construction		
	10 years.			and edge of	period		
				Road P2			
				landscape			
				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1	material	intrusion	Contractor)		construction	Specification	
					period		
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation	To reduce visual	CEDD (via	General	Throughout	N/A	۸
10.8.1	of night working periods.	intrusion	Contractor)		construction		
					period		
Table	CM9 - Screening of works areas with hoardings with appropriate colours	Reduction of visual	CEDD (via	Project site	Excretion of site	N/A	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
10.8.1	compatible with the surrounding area	intrusion	Contractor)	Boundary	hoarding		
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of visual	CEDD (via	Built structures	Design and	N/A	٨
10.8.1		intrusion and	Contractor)		construction		
		integration with			stage		
		environment					
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	۸
10.8.1		contamination of water	Contractor)	reclamation,	construction		
		courses and water		TKO tunnel	period		
		bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in	Minimise loss of Junk	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	with adjacent coastline characte	Bay and integration	Contractor)	reclamation for	planning and		
		with existing coastlin		barging points	reclamation		
				at TKO and	stages		
				Lam Tin and			
				permanent			
				reclamation for			
				ТКО			
				Interchange			
				slip roads and			
				Road P2			

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
Landfill	Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	۸
	gas-related hazards, should be present on site throughout the groundworks	from landfill gas		within the Sai	phase	Hazard Assessment	
	phase. The Safety Officer should be provided with an intrinsically safe portable	hazards		Tso Wan		Guidance Note	
	instrument, which is appropriately calibrated and able to measure the following			Landfill			
	gases in the ranges indicated below:			Consultation			
	Methane 0-100% LEL and 0100% v/v			Zone			
	Carbon dioxide 0-100%						
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all	from landfill gas		within the Sai	phase	Hazard Assessment	N/A
	excavation workers, supervisors and engineers working within the	hazards		Tso Wan		Guidance Note	
	Consultation Zone, should receive appropriate training on working in areas			Landfill		Labour Department's	
	susceptible to landfill gas, fire and explosion hazards.			Consultation		Code of Practice for	
	- An excavation procedure or code of practice to minimize landfill gas related			Zone		Safety and Health at	N/A
	risk should be devised and carried out.					Work in Confined	
	- No worker should be allowed to work alone at any time in or near to any					Space	N/A
	excavation. At least one other worker should be available to assist with a						
	rescue if needed.						
	- Smoking, naked flames and all other sources of ignition should be prohibited						N/A
	within 15m of any excavation or ground-level confined space. "No						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	smoking" and "No naked flame" notices should be posted prominently						
	on the construction site and, if necessary, special areas should be designed						
	for smoking.						
	- Welding, flame-cutting or other hot works should be confined to open areas						N/A
	at least 15m from any trench or excavation.						
	- Welding, flame-cutting or other hot works may only be carried out in trenches						N/A
	or confined spaces when controlled by a "permit to work" procedure,						
	properly authorized by the Safety Officer (or, in the case of small						
	developments, other appropriately qualified person).						
	- The permit to work procedure should set down clearly the requirements for						N/A
	continuous monitoring for methane, carbon dioxide and oxygen throughout						
	the period during which the hot works are in progress. The procedure						
	should also require the presence of an appropriately qualified person, in						
	attendance outside the 'confined area', who should be responsible for						
	reviewing the gas measurements as they are made, and who should have						
	executive responsibility for suspending the work in the event of unacceptable						
	or hazardous conditions. Only those workers who are appropriately trained						
	and fully aware of the potentially hazardous conditions which may arise						
	should be permitted to carry out hot works in confined areas.						
	- Where there are any temporary site offices, or any other buildings located						N/A
	within the Sai Tso Wan Landfill Consultation Zone which have enclosed						
	spaces with the capacity to accumulate landfill gas, then they should either						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	be located in an area which has been proven to be free of landfill gas (by						
	survey using portable gas detectors); or be raised clear of the ground by a						
	minimum of 500mm. This aims to create a clear void under the structure						
	which is ventilated by natural air movement such that emission of gas from						
	the ground are mixed and diluted by air.						
	- Any electrical equipment, such as motors and extension cords, should be						N/A
	intrinsically safe. During piping assembly or conduiting construction, all						
	valves/seals should be closed immediately after installation. As						
	construction progresses, all valves/seals should be closed to prevent the						
	migration of gases through the pipeline/conduit. All piping /conduiting						
	should be capped at the end of each working day.						
	- During construction, adequate fire extinguishing equipment, fire-resistant						N/A
	clothing and breathing apparatus (BA) sets should be made available on site.						
	- Fire drills should be organized at not less than six monthly intervals.						N/A
	- The contractor should formulate a health and safety policy, standards and						N/A
	instructions for site personnel to follow.						
	- All personnel who work on the site and all visitors to the site should be made						N/A
	aware of the possibility of ignition of gas in the vicinity of excavations.						
	Safety notices (in Chinese and English) should be posted at prominent						
	position around the site warning danger of the potential hazards.						
	- Service runs within the Consultation Zone should be designated as "special						N/A
	routes"; utilities companies should be informed of this and precautionary						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	measures should be implemented. Precautionary measures should include						
	ensuring that staff members are aware of the potential hazards of working in						
	confined spaces such as manholes and service chambers, and that						
	appropriate monitoring procedures are in place to prevent hazards due to						
	asphyxiating atmospheres in confined spaces. Detailed guidance on entry						
	into confined spaces is given in Code of Practice on Safety and Health at						
	Work in Confined Spaces (Labour Department, Hong Kong).						
	- Periodically during ground-works construction within the 250m Consultation						N/A
	Zone, the works area should be monitored for methane, carbon dioxide and						
	oxygen using appropriately calibrated portable gas detection equipment.						
	The monitoring frequency and areas to be monitored should be set down						
	prior to commencement of ground-works either by the Safety Officer or an						
	approved and appropriately qualified person.						
S11.5.26	Monitoring	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill Gas	
-	Routine monitoring should be carried out in all excavations, manholes,	from landfill gas		within the Sai	phase	Hazard Assessment	N/A
S11.5.31	chambers, relocation of monitoring wells and any other confined spaces	hazards		Tso Wan		Guidance Note	
	that may have been created. All measurements in excavations should be			Landfill			
	made with the extended monitoring tube located not more than 10 mm from			Consultation			
	the exposed ground surface. Monitoring should be performed properly to			Zone			
	make sure that the area is free of landfill gas before any man enters into the						
	area.						
	• For excavations deeper than 1m , measurements should be carried out:						N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
	- at the ground surface before excavation commences;-						
	- immediately before any worker enters the excavation;						
	- at the beginning of each working day for the entire period the excavation						
	remains open; and						
	- periodically throughout the working day whilst workers are in the						
	excavation.						
	For excavations between 300mm and 1m deep, measurements should be						N/A
	carried out:						
	- directly after the excavation has been completed; and						
	- periodically whilst the excavation remains open.						
	For excavations less than 300mm deep, monitoring may be omitted, at the						N/A
	discretion of the Safety Officer or other appropriately qualified person.						
	Depending on the results of the measurements, actions required will vary						N/A
	and should be set down by the Safety Officer or other appropriately						
	qualified person.						
	The exact frequency of monitoring should be determined prior to the						N/A
	commencement of works, but should be at least once per day, and be						
	carried out by a suitably qualified or qualified person before starting the						
	work of the day. Measurements shall be recorded and kept as a record of						
	safe working conditions with copies of the site diary and submitted to the						
	Engineer for approval. The Contractor may elect to carry out monitoring via						
	an automated monitoring system.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
		recommended	implement the	the measures	Implement the	or standards for the	
		Measures & Main	measures?		measures?	measures to	
		Concerns to address				achieve?	
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan	construction stage	Contractor	Project sites	Construction	EPD's Landfill Gas	N/A
	Landfill Consultation Zone should be minimized by suitable precautionary	within the Sai Tso Wan		within the Sai	phase	Hazard Assessment	
	measures recommended in Chapter 8 of the Landfill Gas Hazard Assessment	Protect the workers		Tso Wan		Guidance Note	
	Guidance Note.	from landfill gas		Landfill			
		hazards		Consultation			
				Zone			

Remarks:

- Compliance of mitigation measure
- Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log in the Reporting Period

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
Follow up for con	plaints received i	in the previous Rep	orting Period (January 2017)		
7 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained about the construction noise and dust near Yau Lai Estate. (EPD Reference No.: K15/RE/00032001-16)	According to information provided by the Contractor, powered Mechanical Equipment being operated for construction of Lam Tin Interchange on 7 and 9 December 2016 include breaker, dump truck, backhoes, drilling rig and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance	
9 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	The complainant complained about the construction noise near Yau Lai Estate. (EPD Reference No.: K15/RE/00032317-16)	during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking. No construction works were being carried out on 23rd December 2016 at Portion WA1, which is the site portion near Cha Kwo Ling Tsuen. Despite, it was recorded that	Cloud
23 rd December 2016	Not Specified / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	The complainant complaint about the Soil/muddy water from construction site near Cha Kwo Ling Tsuen. (EPD Reference No.: K15/RE/00033951-16)	some muddy water was flowing from the Contractor's wheel washing facility to the gullies within the site boundary. The Contractors had implemented the above environmental mitigation measures on site to reduce construction dust and noise nuisance to the vicinity. For complaint of muddy water on 23rd December 2016, the Contractor has fixed the clear water hose for wheel washing on 24th December 2016 early morning. During the recent weekly site inspections to Site Portion WA1, no	Closed

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
				muddy water was observed leaked out of the Site Boundary.	
6 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Cheuk Lai House	The complainant complained the construction noise generated from this Project (EPD Reference No.: K15/RE/00000564-17)	After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers.	
10 th January 2017	Not Specified	Unknown	The complainant complained the construction noise generated from this Project (EPD Reference No.: K15/RE/00000967-17)	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual.	
27 th January 2017			The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning. (EPD Ref No.	The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings:	Closed
	Not Specified / Construction of	I I of Estata Pile I of	K15/RE/00002945-17)	 Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange; 	
	Lam Tin Interchange			 Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day. 	
				According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded from 16 December 2016 to 19 January 2017. With the implementation of environmental mitigation	

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
				measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	
Received in this Re	porting Period (Feb	oruary 2017)			
9 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	The complainant complained about the noise nuisance during the construction works of Lam Tin Interchange at 8:10am. (EPD Reference No.: K15/RE/00003855-17)	According to information provided by the Contractor, powered Mechanical Equipment being operated on site during the time of complaint include breaker, dump truck, backhoes, drilling rig, mobile crane and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission	
13 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	The complainant complained about the noise nuisance during the construction works of Lam tin Interchange.	during the use of breaker for rock breaking. In addition to the the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual, the Contractor has implemented the following additional noise mitigation measures since late including: • Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange;	Closed
				 Sound absorptive materials with 50mm thickness were hanged on rock mountain wall as well as temporary noise barrier containers; and 	
				 Adoption of alternative rock breaking method such as partial rock breaking by rock splitter. 	
				In addition, the Contractor has taken the initiative to explore measures to further reduce construction noise	

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
				nuisance such as:	
				Installation of cantilever barrier on top of the containers;	
				 Installation of tuned mass dampers on breaker head; and 	
				Use of acoustic mat cover and a retractable noise barrier where feasible.	
				According to the regular noise monitoring no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 2 – 15 February 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	
13-Jan-17	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	·	The complainant complained about the noise generated by the construction works near the toll plaza of the Eastern Harbour Crossing (EHC).	Under Investigation	On-going
24-Jan-17	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	Anonymous	The complainant mentioned the noise problem still affected the daily life of residents	Under Investigation	On-going

Received Date	Date/Location	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
26-Jan-17	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	黃國健議員及 何啟明議員	LC members referred complaints about the noise generated by the construction works near the EHC tunnel portal. They mentioned that the noise generated by the construction works had greatly affected the daily life of nearby residents, especially occupants of Block 5 of Yau Lai Estate and those who lived at the upper floors.	Under Investigation	On-going
23-Feb-17	Not Specified / BMCPC Footpath	陳繼偉議員	Mr. Chan complained that some of the excavated materials fell from the dump trucks on the BMCPC footpath affecting the safety of pedestrian and hikers.	Under Investigation	On-going

Cumulative Complaint Log since commencement of Project

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	3	0	0
Total	29	0	0

Agreement No. CE 59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report (February 2017)

Cumulative Log for Notifications of Summons

Contract No. NE/2015/01

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement

Contract No. NE/2015/02

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement	
						l

<u>Cumulative Log for Successful Prosecutions</u>

Contract No. NE/2015/01

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project

Contract No. NE/2015/02

Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since the commencement of the project
			1		

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Contract No.: <u>NE/2015/01</u> LEIGHTON All 中期時 Leighton - China State Joint Venture

Monthly Summary Waste Flow Table for 2017

	Actua	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete (see Note 9)	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	40.484	0.000	22.688	5.063	12.733	0.000	0.000	0.257	0.000	0.000	0.292
February	23.357	0.000	12.911	3.874	6.572	0.000	0.000	0.000	0.000	1.000	0.488
March											
April											
May											
June											
Sub-total	63.841	0.000	35.599	8.937	19.305	0.000	0.000	0.257	0.000	1.000	0.780
July			-		-					-	
August											
September											
October											
November											
December											
Total	63.841	0.000	35.599	8.937	19.305	0.000	0.000	0.257	0.000	1.000	0.780

Total C&D waste generated = a+b+f+g+h+i+j+k

Total C&D waste generated (excluded excavated material) = g+h+i+j+k

Total C&D waste recycled = c+d+g+h+i

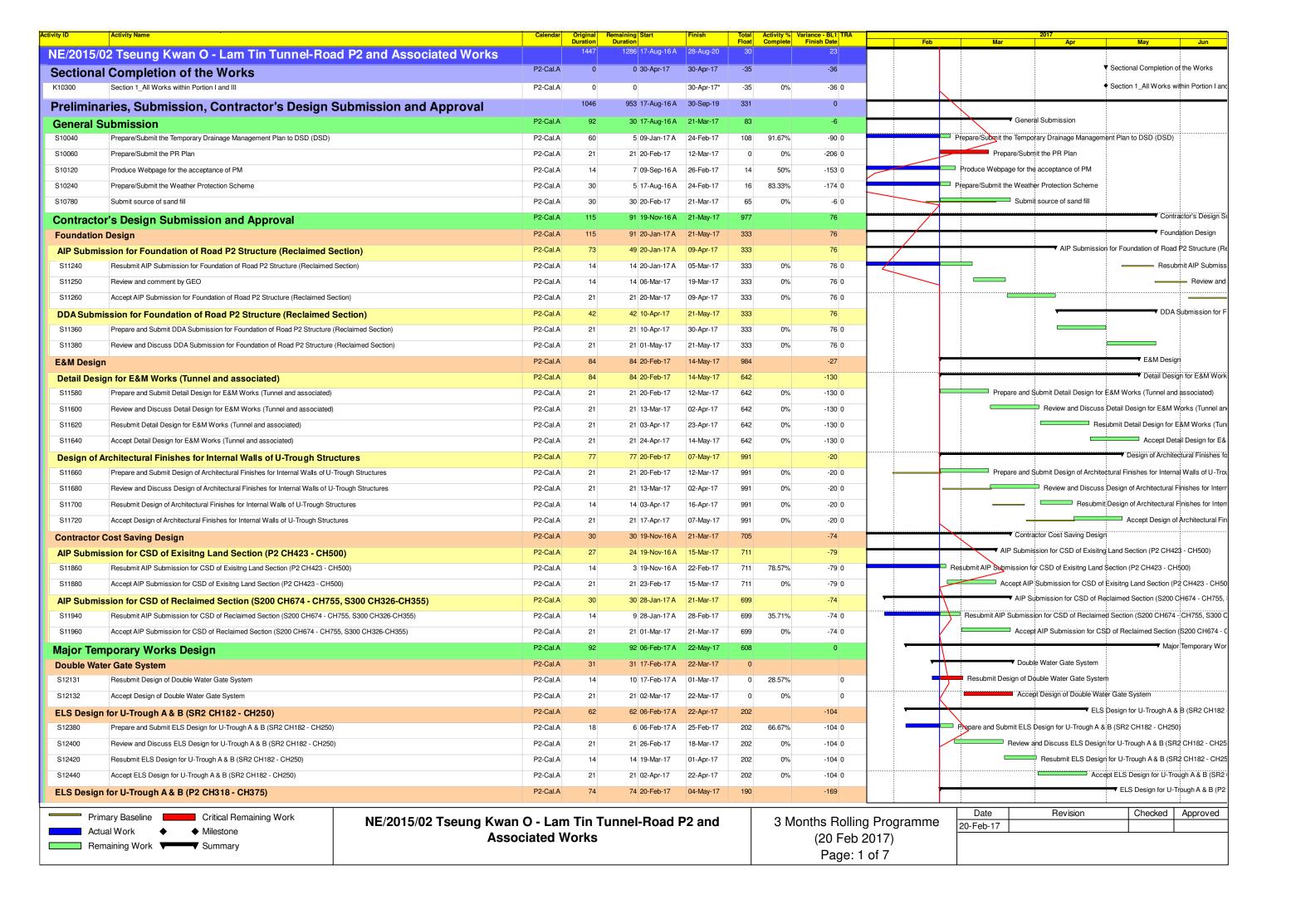
% of recycled C&D waste = (Total C&D waste generated - Total C&D waste recycled) / Total C&D waste generated

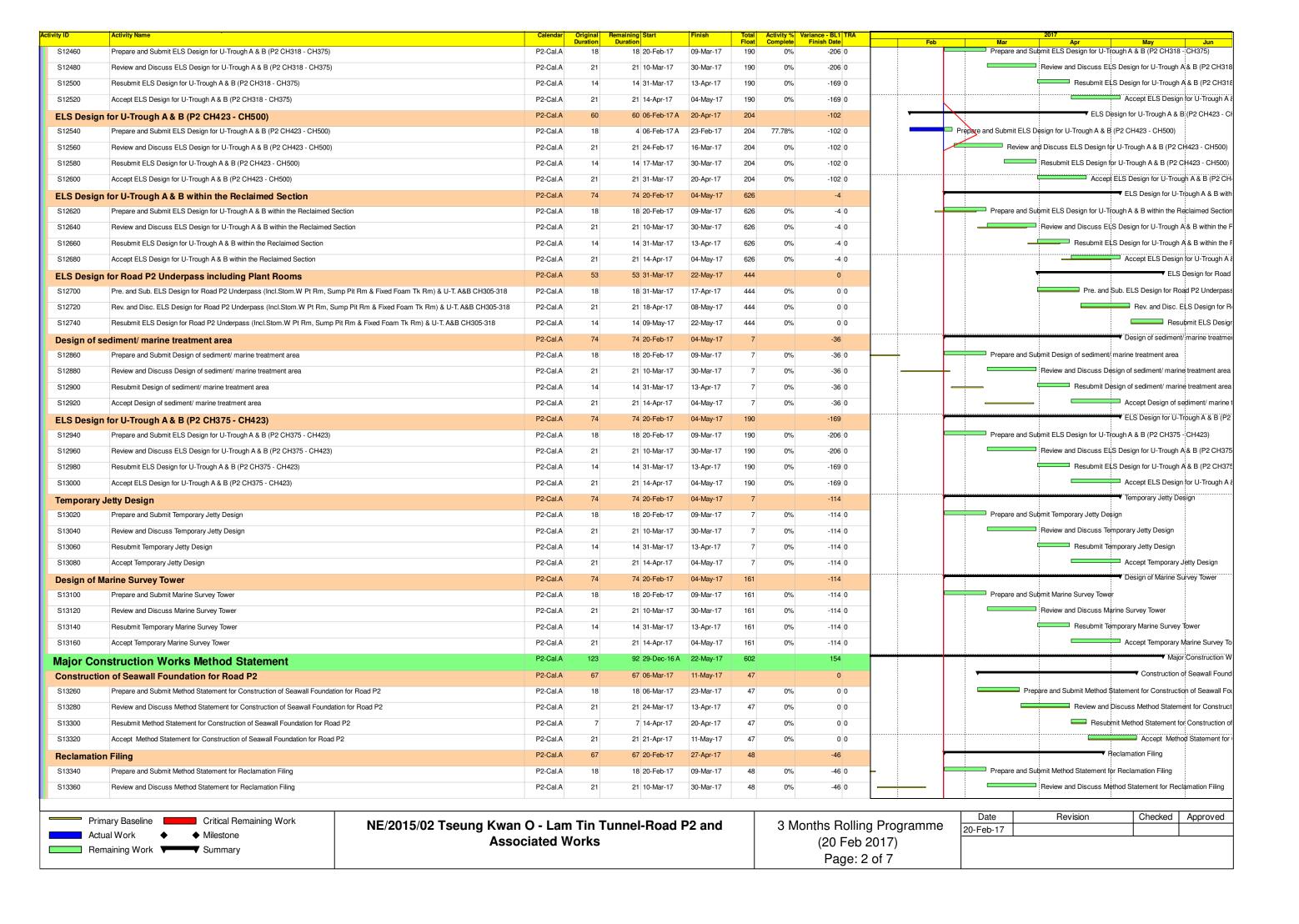
Monthly Summary Waste Flow Table for 2017 Year

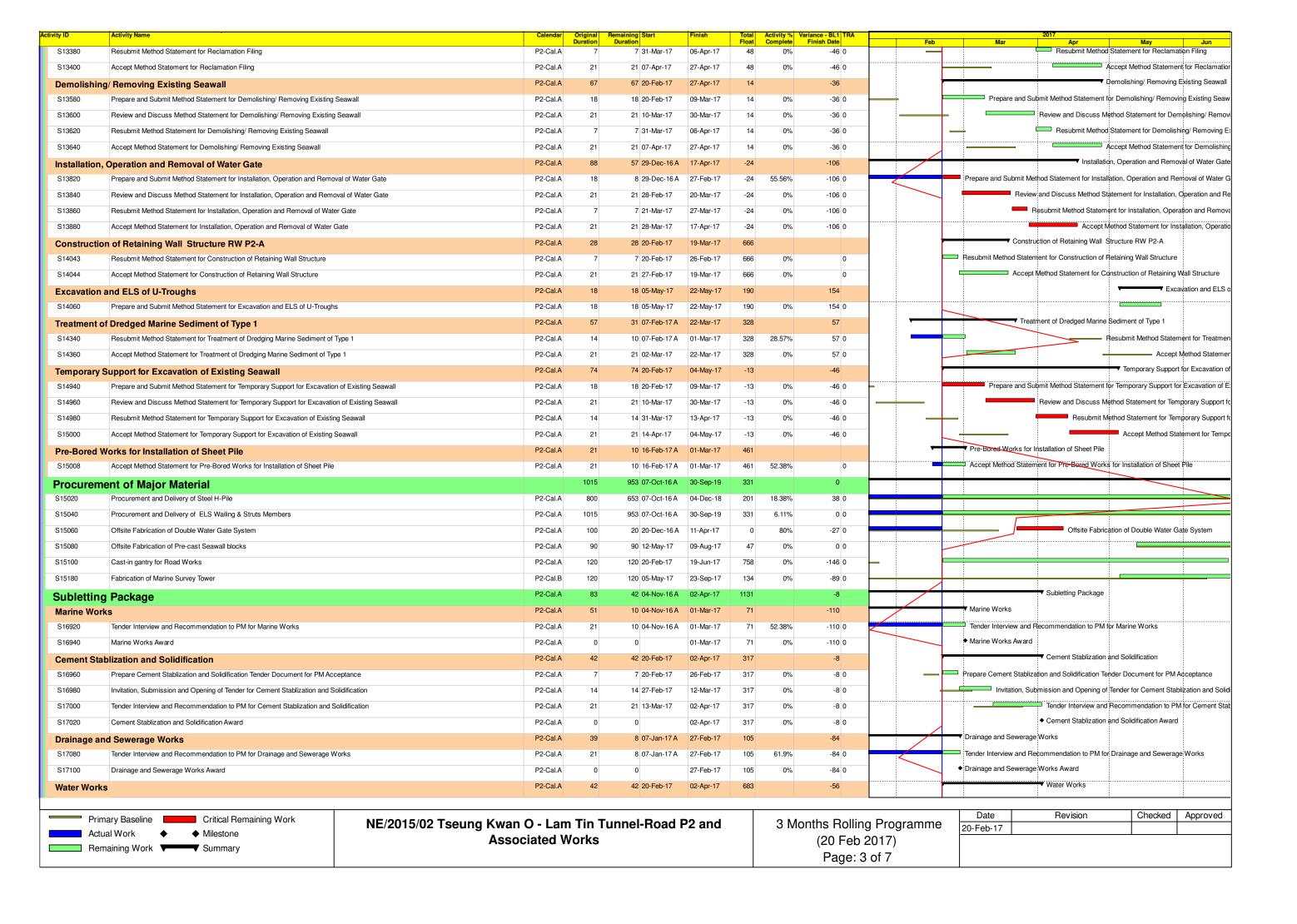
		Actual Quant	tities of Inert C&I	Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes C	Senerated Monthly	
Month	Total Quantity	Hard Rock and	Reused in the	Reused in other	Disposal as	Imported Fill	Metals	Paper /	Plastics C	Chemical Waste	Other, e.g.
Wionen	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Ion	1.02115	0.00000	0.00000	0.00000	1.02115	0.00000	0.00000	0.00000	0.00000	0.00000	0.02306
Jan											
Feb	1.04554	0.00000	0.00000	0.00000	1.04554	0.00000	0.00000	0.00000	0.00000	0.00000	0.01994
Mar											
Apr											
May											
June											
SUB-											
TOTAL											
Jul											
Aug											
Sep											
Oct											
Nov											
Dec			·								
TOTAL	2.06668	0.00000	0.00000	0.00000	2.06668	0.00000	0.00000	0.00000	0.00000	0.00000	0.04300

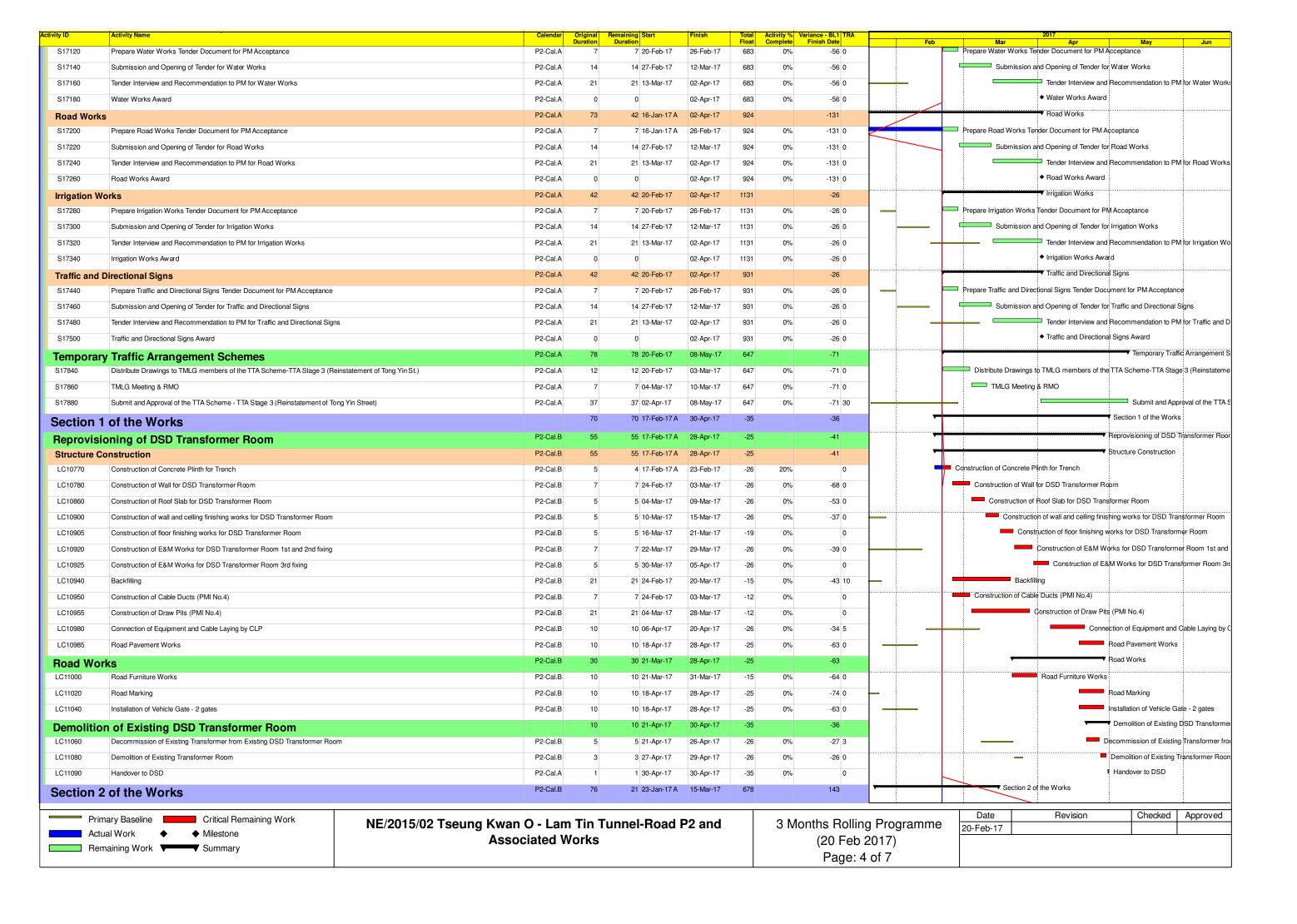
Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

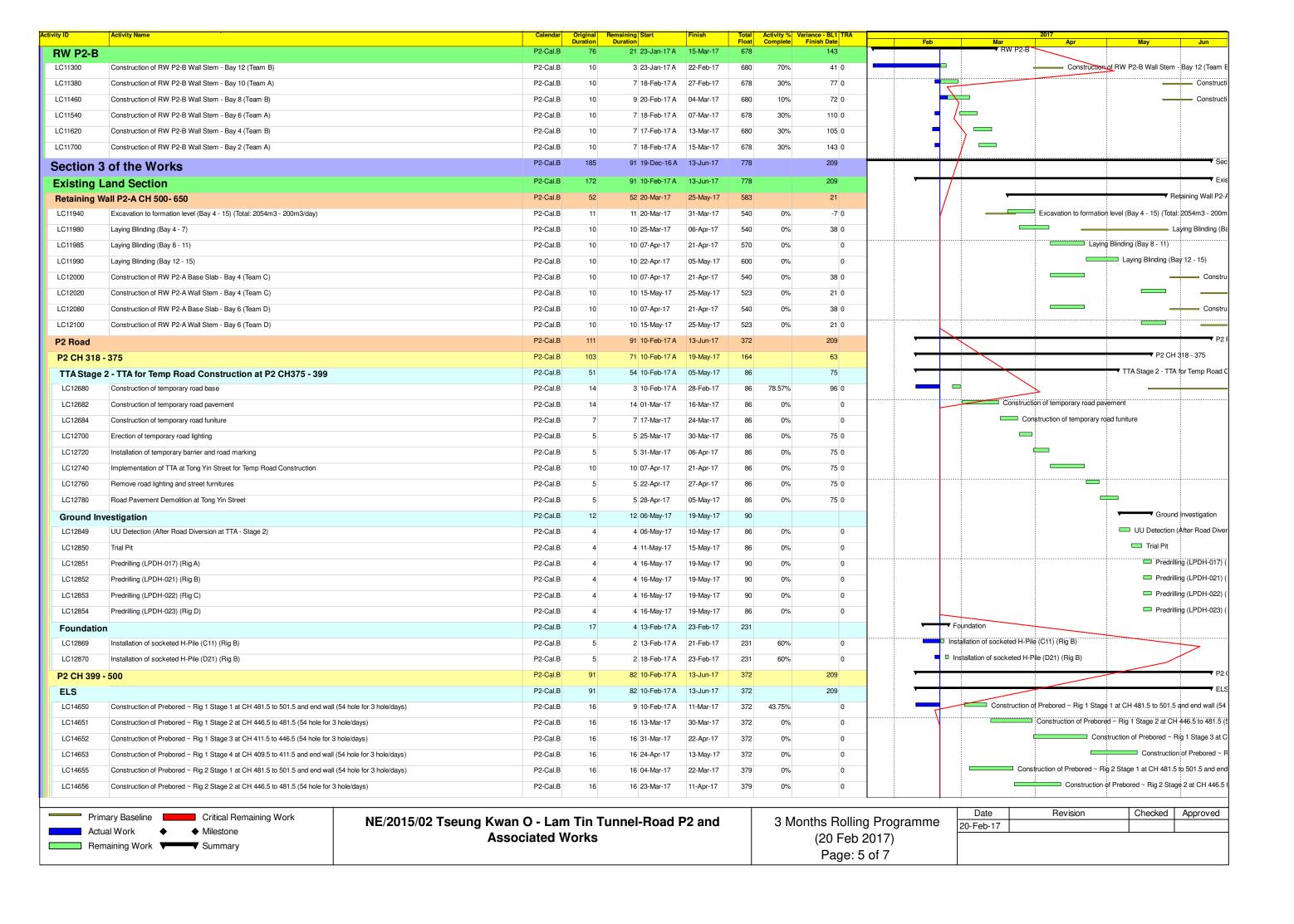
Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

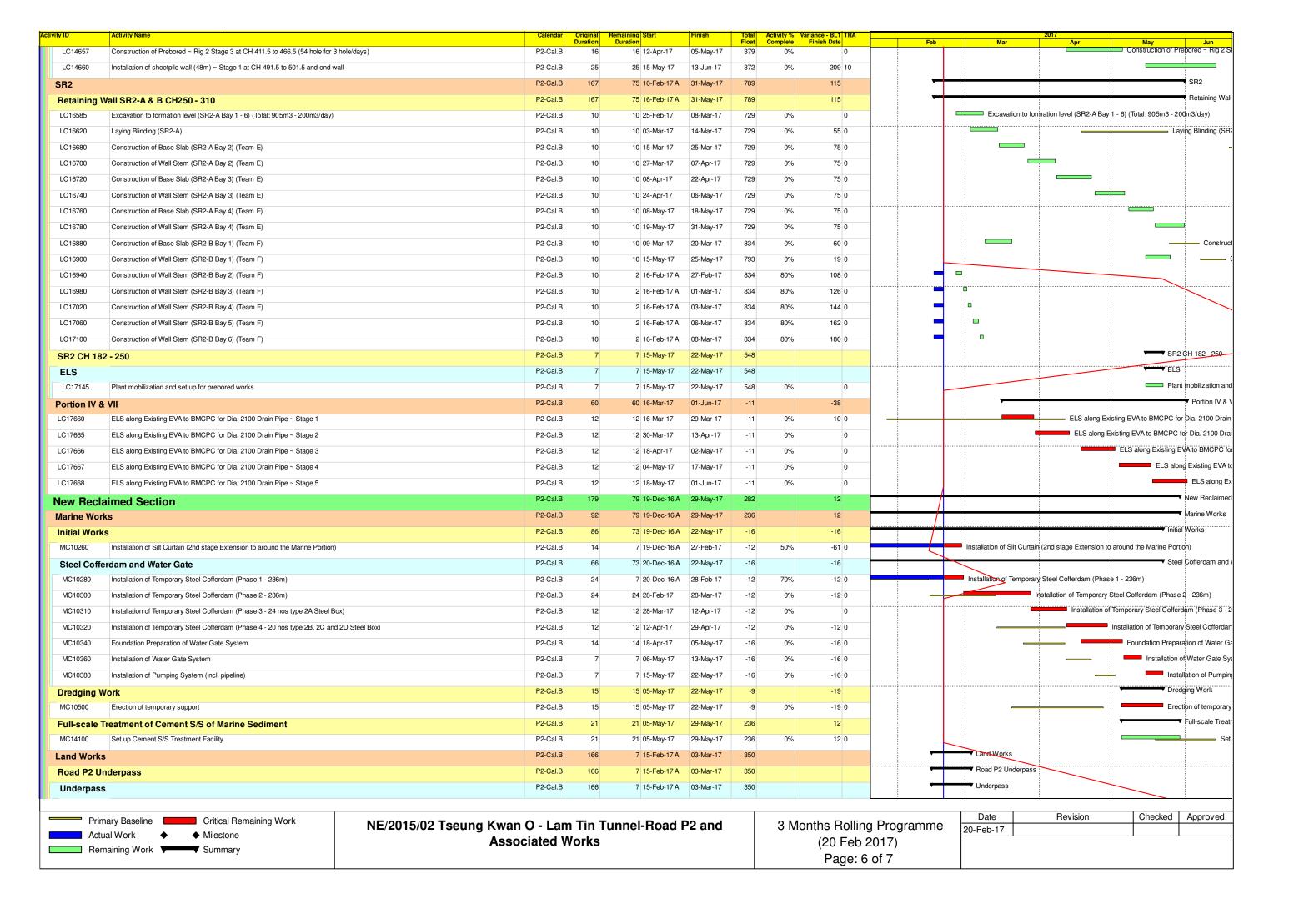

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material


APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME


High Level 3 Months Look Ahead Programme


Activities	Mar-17	Apr-17	May-17
Lam Tin Interchange			
Excavation for Tunnel Adit)		
Haul Road Construction			
Slope Feature no. 11NE-D/C119 (along LYM Road)			
EHC2 U-Trough		1	
Site Formation - Area 1G1		1	
Site Formation - Area 2		1	
Site Formation - Area 3			
Site Formation - Area 4			
Temp Steel Bridge across CKL Road & Barging Facility			
Pipe Pile Wall - Area 2A			
Ground Investigation			
Main Tunnel			
Tunnel Team Mobilisation Works			
Construction Adit			
TKO Interchange			
Haul Road Construction & Site Formation]	
BMCPC Bridge Tempoary Diversion			
Temporary Barging Facilities		, 1	


NE/2015/01 23/02/2017



vity ID	Activity Name	Calendar	Original	Remaining Start	Finish	Total	Activity %	Variance - BL1 TRA			2017		
•			Original Duration	Duration		Float	Complete	Variance - BL1 TRA Finish Date	Feb	Mar	Apr	May	Jun
Underpass	P2 Ch 216 - 292 & P2 Ch 292 - 318	P2-Cal.B	166	7 15-Feb-17 A	03-Mar-17	350			_	Underpass P2 Ch 2	216 - 292 & P2 Ch 292 - 318		
Foundation	n	P2-Cal.B	166	7 15-Feb-17 A	03-Mar-17	350			-	▼ Foundation			
LC17785	Installation of socketed H-Pile (C12) (Rig B)	P2-Cal.B	5	2 15-Feb-17 A	25-Feb-17	350	60%	0	_	Installation of socketed	H-Pile (C12) (Rig B)		
LC17786	Installation of socketed H-Pile (D22) (Rig B)	P2-Cal.B	5	2 17-Feb-17 A	25-Feb-17	350	60%	0	•	☐ Installation of socketed	I-Pile (D22) (Rig B)		
LC17787	Installation of socketed H-Pile (C13) (Rig B)	P2-Cal.B	5	5 27-Feb-17	03-Mar-17	350	0%	0		Installation of socke	eted H-Pile (C13) (Rig B)		
LC17788	Installation of socketed H-Pile (D23) (Rig B)	P2-Cal.B	5	5 27-Feb-17	03-Mar-17	350	0%	0		Installation of socke	eted H-Pile (D23) (Rig B)		
Section 4	4 of the Works - Preservation and Protection of Existing Trees	P2-Cal.A	1424	1286 08-Oct-16 A	28-Aug-20	30		23					
LC25260	Preservation and Protection of Existing Trees	P2-Cal.A	1424	1286 08-Oct-16 A	28-Aug-20	30	9.69%	23 0					>
Section 5	of the Works - Landscaping Works	P2-Cal.B	180	120 08-Dec-16 A	18-Jul-17	9		3					
LC25320	Tree Transplanting Preparation Works	P2-Cal.B	180	120 08-Dec-16 A	18-Jul-17	9	33.33%	3 0					$\overline{}$

Date	Revision	Checked	Approved
20-Feb-17			
		•	

APPENDIX R
RECORD OF LANDFILL GAS
MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	1-Feb-17	8:28 AM	Sunny	21	0	0	20.9
	2-Feb-17	8:27 AM	Cloudy	20	0	0	20.9
	3-Feb-17	8:31 AM	Sunny	24	0	0	20.9
	4-Feb-17	8:25 AM	Cloudy	23	0	0	20.9
	6-Feb-17	8:28 AM	Sunny	22	0	0	20.9
	7-Feb-17	8:30 AM	Cloudy	23	0	0	20.9
	8-Feb-17	8:29 AM	Cloudy	25	0	0	20.9
	9-Feb-17	8:31 AM	Sunny	22	0	0	20.9
	10-Feb-17	8:28 AM	Cloudy	20	0	0	20.9
	11-Feb-17	8:32 AM	Cloudy	21	0	0	20.9
Dontion III	13-Feb-17	8:30 AM	Sunny	19	0	0	20.9
Portion III	14-Feb-17	8:30 AM	Cloudy	20	0	0	20.9
	15-Feb-17	8:28 AM	Sunny	22	0	0	20.9
	16-Feb-17	7:30 AM	Sunny	22	0	0	20.9
	17-Feb-17	7:28 AM	Cloudy	21	0	0	20.9
	18-Feb-17	7:30 AM	Sunny	20	0	0	20.9
	20-Feb-17	7:29 AM	Cloudy	20	0	0	20.9
	21-Feb-17	7:29 AM	Cloudy	17	0	0	20.9
	22-Feb-17	7:30 AM	Sunny	20	0	0	20.9
	23-Feb-17	7:28 AM	Sunny	22	0	0	20.9
	24-Feb-17	7:30 AM	Cloudy	21	0	0	20.9
	25-Feb-17	7:28 AM	Cloudy	20	0	0	20.9
	26-Feb-17	7:30 AM	Sunny	21	0	0	20.9
	27-Feb-17	7:28 AM	Cloudy	19	0	0	20.9
	28-Feb-17	7:29 AM	Sunny	18	0	0	20.9

Methane **Portion III** - Methane (%) ----- Limit Level, 10% LEL 25 · Limit Level, 20% LEL 20 15 % LEL 10 5 ai. Ostrobril , N.Febrat on Februi 0 Serve and Serve Store Store Serve Serve 28:Dec 02:3817 06:35 12 181 75 181 1 **Carbon Dioxide Portion III** - Carbon Dioxide (%) ----- Limit Level, 0.5% 3.0 Limit Level, 1.5% 2.5 2.0 % 1.5 1.0 0.5 Sar J. Dec. Vo AUDER VO A Dec. 16 0.0 11Dec 16 02:Jan-17 Date Oxygen **Portion III** Oxygen (%) ----- Limit Level, 19% 25 Limit Level, 18% 24 23 22 21 20 % 19 18 17 16 Freezy 6 15 2, 12ec. 10 ol kepull 11 Dec. 16 18-Jan 1 "V'ESD'J Date Title Agreement No. CE 59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -N.T.S No. Design and Construction MA16034 Date Appendix Graphical Presentation of Landfill Gas Measurement R Feb 17