Agreement No. CE 59/2015 (EP) **Environmental Team for** Tseung Kwan O - Lam Tin Tunnel **Design and Construction**

Monthly Environmental Monitoring and **Audit Report for May 2017**

(version 1.0)

Approved By

(Dr. Priscilla Choy,

Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	4
	Purpose of the Report	
2.	PROJECT INFORMATION	6
	Background	6 7 8
3.	AIR QUALITY	11
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Results and Observations	11 11 12
4.	NOISE	16
	Monitoring Requirements Monitoring Locations Monitoring Equipments Monitoring Methodology and QA/QC Procedure Results and Observations Updated Construction Noise Assessment	
5.	WATER QUALITY	19
	Monitoring Requirements Monitoring Locations Monitoring Equipments Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision	
	Results and Observations	
6.	ECOLOGY	26
	Post-Translocation Coral Monitoring	26 26

7.	CULTURAL HERITAGE	33
	Monitoring Requirement	33
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology	
	Alert, Alarm and Action Levels	
	Results	
	Mitigation Measures for Cultural Heritage	35
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	36
9.	LANDFILL GAS MONITORING	37
	Monitoring Requirement	37
	Monitoring Parameters and Frequency	
	Monitoring Locations	37
	Monitoring Equipment	
	Results and Observations	38
10.	ENVIRONMENTAL AUDIT	39
	Site Audits	39
	Implementation Status of Environmental Mitigation Measures	39
11.	WASTE MANAGEMENT	42
12.	ENVIRONMENTAL NON-CONFORMANCE	43
	Summary of Exceedances	43
	Summary of Environmental Non-Compliance	
9.10.11.12.13.	Summary of Environmental Complaint	
	Summary of Environmental Summon and Successful Prosecution	43
13.	FUTURE KEY ISSUES	44
	Key Issues for the Coming Month	45
	Monitoring Schedule for the Next Month	
14.	CONCLUSIONS AND RECOMMENDATIONS	46
	Conclusions	46
	Recommendations	

LIST OF TABLES

Table I	Non-compliance Recorded for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 2.1	Key Project Contacts
Table 2.2	Summary Table for Major Site Activities in the Reporting Month
Table 2.3	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.4	Summary of the Status of Environmental Licences, Notification and Permits
Table 3.1	Locations for Air Quality Monitoring
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Major Dust Source during Air Quality Monitoring
Table 4.1	Noise Monitoring Stations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Major Noise Source during Noise Monitoring
Table 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 5.1	Groundwater Quality Monitoring Stations
Table 5.2	Marine Water Quality Monitoring Stations
Table 5.3	Water Quality Monitoring Equipment
Table 5.4	Water Quality Monitoring Parameters and Frequency
Table 5.5	Methods for Laboratory Analysis for Water Samples
Table 5.6	Summary of Groundwater Quality Monitoring Results
Table 6.1	Location and Physical attributes of the Coral Recipient Site
Table 6.2a	Original Corals under Contract No. NE/2015/01
Table 6.2b	Translocated Corals under Contract No. NE/2015/01
Table 6.3a	Original Corals under Contract No. NE/2015/02
Table 6.3b	Translocated Corals under Contract No. NE/2015/02
Table 7.1	Vibration Monitoring Equipment
Table 7.2	AAA Levels for Monitoring for Cultural Heritage
Table 7.3	Vibration Monitoring Results
Table 9.1	Landfill Gas Monitoring Equipment
Table 10.1	Observations and Recommendations of Site Audit
Table 13.1	Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 1a	Site Portions under Works Contract No. NE/2015/02
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Groundwater Quality Monitoring Stations
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring
Figure 7	Location of Post-translocation Coral Monitoring
Figure 8	Location of Monitoring for Cultural Heritage

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory
	Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Appendix S	Updated Construction Noise Assessment
Appendix T	Photo record of Post-Translocation Coral Monitoring Survey

EXECUTIVE SUMMARY

Introduction

- 1. This is the 7th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in May 2017.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance Record for the Project in the Reporting Month

Environmental Monitoring	No. of Ex	ceedance	No. of Ex due to Con Activities of	nstruction	Action Taken
	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	9	0	8	0	Refer to the Appendix O
Groundwater Quality	N/A	N/A	N/A	N/A	N/A (Refer to Part 8, Executive Summary)
Marine Water Quality	0	0	0	0	N/A
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A
Ecological	0	0	0	0	N/A
Cultural Heritage	0	0	0	0	N/A
Landfill Gas	0	0	0	0	N/A

Air Quality Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Monthly EM&A Report for May 2017

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring at Station AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office on 8, 12 and 29 May 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 10, 22 May and 1 June 2017 respectively. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month. Nine Action Level exceedance was recorded due to the documented complaints received in the reporting month. According to the Event and Action Plan for Construction Noise, monitoring frequency at the concerned monitoring stations was increased to check mitigation effectiveness. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 8. Groundwater monitoring was conducted as scheduled in the reporting month. According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in both Lam Tin side and Tseung Kwan O side in May 2017. Therefore, monitoring results obtained in the reporting month will be considered as reference for baseline condition.
- 9. All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

11. 2nd post-translocation coral monitoring survey was carried out on 12 May 2017. No action/limit level of mortality was exceeded in the monitoring survey conducted in May 2017.

Monitoring on Cultural Heritage

12. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in April 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

13. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

14. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

15. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection on 25 and 31 May 2017. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

16. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

17. Summary of key information in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Event		Event Details		Status	Remark	
Event	Number	Nature	Action Taken	Status	Kemark	
Complaint received / Complaint referred by EPD (May 2017)	10	Construction dust and noise nuisance	Investigation completed	Closed	Details refer to App O	
Reporting Changes	0		N/A	N/A		
Notifications of any summons & prosecutions received	0		N/A	N/A		

Future Key Issues

- 18. The future key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 7th Monthly EM&A report summarizing the EM&A works for the Project in May 2017.

Purpose of the Report

1.2 This is the 7th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in May 2017.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring

Section 9: Landfill Gas Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations,

monitoring results and Limit Levels and Action Plan

Section 10: Environmental Site Inspection – summarises the audit findings of the weekly

site inspections undertaken within the reporting month.

Section 11: Waste Management – summarises the waste management data in the reporting

month.

Section 12: Environmental Non-conformance – summarises any monitoring exceedance,

environmental complaints, environmental summons and successful prosecutions within the

reporting month.

Section 13: Future Key Issues – summarises the impact forecast and monitoring schedule

for the next three months.

Section 14: Conclusions and Recommendation

Monthly EM&A Report for May 2017

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O - Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project is:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)

2.6 The key contacts of the Project are shown in **Table 2.1**.

> Table 2.1 **Key Project Contacts**

Party	Party Role Contac		Phone No.	Fax No.
CEDD	Project Proponent	Mr. Chiang Nin Tat, Eric	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinatash	Cinotech Environmental Team	Dr. Priscilla Choy	2151 2089	3107 1388
Cinotech		Ms. Ivy Tam	2151 2090	310/ 1300
AnewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities	(May 2017)
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Excavation for Tunnel Adit Haul Road Construction EHC2 U-Trough Site Formation – Area 1G1, Area 2, Area 3, Area 4 Temp Steel Bridge across Cha Kwo Ling Road & Barging Facility Pipe Pile wall – Area 2A Ground Investigation
		Main Tunnel TKO Interchange	1) Tunnel Team Mobilisation Works 1) Haul Road Construction, Site Formation and Slope Works 2) Temporary Barging Facilities & Temporary Works 3) Temporary Cut Slope For BMCPC
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works		
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	Exert works of DSD transformation room Excavating channel for piling works UU Diversion Soldier Pier East Pier Trial Pit	

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

Contract No.	Permit / License No.	Valid	Ctatus			
Contract No.	Permit / License No.	From	To	Status		
Environmental Permit (EP)						
N/A	EP-458/2013/C	20/1/2017	N/A	Valid		
Notification pu	rsuant to Air Pollution Contro	(Construction l	Dust) Regulation			
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid		
NE/2013/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid		
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid		
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid		
Billing Accoun	t for Construction Waste Dispo	sal				
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid		
NE/2015/01	Account No. 7027764	10/05/2017	N/A	Valid		
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid		
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid		
Registration of	Chemical Waste Producer					
NE/2015/01	Waste Producer No. 5218-290-L2881-02	22/08/2016	N/A	Valid		
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid		
NE/2015/02	Waste Producer No. 5213-838-C4094-01	19/08/2016	N/A	Valid		
Effluent Disch	arge License under Water Pollu	ition Control Or	dinance			
NE/2015/01	WT00025806-2016	22/11/2016	30/11/2021	Valid		

Contract No.	Permit / License No.	Valid	Valid Period		
Contract No.		From	То	Status	
	WT00026212-2016	25/11/2016	30/11/2021	Valid	
	WT00027354-2017	22/03/2017	31/03/2022	Valid	
	WT00027405-2017	22/03/2017	31/03/2022	Valid	
NE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid	
NE/2013/02	WT00027226-2017	23/02/2017	28/02/2022	Valid	
NE/2015/03	WT00027295-2017	20/03/2017	18/04/2019	Valid	
NE/2013/03	WT00027266-2017	08/03/2017	18/04/2019	Valid	
Construction N	Noise Permit (CNP)				
	GW-RE1211-16	24/12/2016	22/06/2017	Valid	
	GW-RE0154-17	08/03/2017	05/09/2017	Valid	
NE/2015/01	GW-RE0191-17	20/03/2017	19/09/2017	Valid	
NE/2013/01	GW-RE0224-17	26/03/2017	25/06/2017	Valid	
	GW-RE0267-17	08/04/2017	07/05/2017	Expired on 7 May 2017	
	GW-RE0365-17	08/05/2017	07/06/2017	Valid	
	GW-RE1141-16	06/12/2016	17/05/2017	Expired on 17 May 2017	
	GW-RE1208-16	23/12/2016	22/06/2017	Valid	
NE/2015/02	GW-RE0049-17	01/02/2017	31/07/2017	Valid	
NE/2013/02	GW-RE0097-17	15/02/2017	14/08/2017	Valid	
	GW-RE0281-17	13/04/2017	02/10/2017	Valid	
	GW-RE0317-17	29/04/2017	28/06/2017	Valid	
Marine Dumpi	ing Permit		1		
NE/2015/02	EP/MD/17-118	01/12/2016	31/05/2017	Expired on 31 May 2017	
111/2013/02	EP/MD/17-174	31/05/2017	30/09/2017	Valid	

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in May 2017.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
$AM4(A)^{(2)}(*)$	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
$AM5(A)^{(*)}$	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3 / LD-3B	2
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-531	0
	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	6
UVC Complex	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Remove the red rubber cap from the AEROCET-531 inlet nozzle.
- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5μm and 5μm channels will show the cumulative counts of particles larger than 0.5μm and 5μm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

<u>Instrumentation</u>

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice

the height that the obstacle protrudes above the sampler;

- a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 8, 12 and 29 May 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 10, 22 May and 1 June 2017 respectively. No Action/Limit Level exceedance was recorded.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Tuble 511 Halfor Bust Source during the Quality Fronteering			
Station	Major Dust Source		
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road		
AM2 – Sai Tso Wan Recreation Ground	N/A		
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza		
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road		
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road		
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound		
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road		

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Loyal Mater	SVAN 955 / 957 / 977	7 1 2
Integrating Sound Level Meter	BSWA 801	1
Calibrator	SV30A	2
Calibrator	Brüel & Kjær 4231	1

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2	$L_{10}(30 \text{ min})$			Façade
CM3	dB(A)			Façade
CM4	$L_{90}(30 \text{ min})$	0700-1900 hrs on	Once per	Façade
CM5	dB(A)	normal weekdays	week	Façade
CM6(A)	$L_{eq}(30 \text{ min})$			Free Field
CM7(A)	dB(A)			Free Field
CM8(A)				Façade

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

- frequency weighting : A- time weighting : Fast

- measurement time : 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. Nine Action Level exceedance was recorded due to the documented complaints received in the reporting month. No Action/Limit Level exceedance was recorded.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The summary of exceedance record in the reporting month is shown in **Appendix K**.
- 4.12 The major noise source identified at the noise monitoring stations are shown in **Table 4.4**. **Table 4.4 Major Noise Source during Noise Monitoring**

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Table 4.5 Baseline Poise Level and Poise Limit Level for Monitoring Stations				
Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)		
CM1	65.5			
CM2	63.6	75		
CM3	65.6	- 75		
CM4	62.0			
CM5	68.2	70*		
CM6(A)	61.9			
CM7(A)	58.3	75		
CM8(A)	69.1			

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Updated Construction Noise Assessment

Contract No. NE/2015/01, Contract No. NE/2015/02 and Contract No. NE/2015/03

4.14 No update of Construction Noise Assessment in the reporting period. Any updated Construction Noise Assessment will be shown in **Appendix S.**

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

- 5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to Figure 4, Stream 1 to 3). According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.
- As stated in the Baseline Environmental Monitoring Plan submitted to EPD in September 2016, Groundwater quality monitoring could not be conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. EPD has no further comment on the Plan in October 2016.

Marine Water Quality

- 5.3 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.

Groundwater Level Monitoring (Piezometer Monitoring)

5.5 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.6 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are also summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.7 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. The locations are also summarized in **Table 5.2** and shown on **Figure 5**.

Table 5.2 Marine Water Quality Monitoring Stations

Monitoring	oring Descriptions		Coordinates	
Stations	Descriptions	Easting	Northing	
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565	
M2	Junk Bay Coral Site – Junk Bay	844076	817087	
M3	Junk Bay Coral Site – Junk Island	844491	817890	
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416	
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769	
M6	Tseung Kwan O Salt Water Intake	845512	817442	
C1	Control Station – Southeast	844696	814773	
C2	Control Station – Northwest	842873	816014	
G1	Gradient Station	844418	817560	
G2	Gradient Station	844290	817384	
G3	Gradient Station	844488	817735	
G4	Gradient Station	844967	817551	

Monitoring Equipments

5.8 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.9 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.10 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.11 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.

5.12 Salinity compensation was built-in in the DO equipment.

Turbidity

5.13 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

pН

5.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.15 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.16 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In Situ Instruments

- 5.18 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.19 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.20 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.21 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.22 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi manamatan Watan Quality	YSI 6820-C-M	0
Multi-parameter Water Quality System	Aquaread AP-2000-D	2
System	YSI EXO1 Multiparameter Sondes	0
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.23 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4 Water Quality Monitoring Parameters and Frequency

1 able 5.4	, , and , Quinting 1/1	omtoring rarameters and r	
Monitoring Stations	Parameters, unit	Depth	Frequency
Groundwater	Quality		
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)
Marine Water	r Quality		
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	 M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)

Monitoring Methodology

Groundwater Quality

5.24 At each monitoring location, two consecutive in-situ measurements for DO concentration,

DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

5.25 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.26 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.27 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration 5.28 No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L ⁽¹⁾	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	$2 \text{ mg O}_2/L$	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	-1
Total Nitrogen (mg/L)	Total Nitrogen (mg/L) In-house method SOP063 (FIA) 0.6 mg/L		
Ammonia-N (mg NH ₃ -N/L)	In-house method 0.05 mg NH ₂ -		-1
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

- 1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.
- 2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.29 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.30 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.31 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

5.32 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results is shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.

Table 5.6	Summary of Groundwater	Quality Monitoring	Results

						Parame	ters (unit)			
Date	Location	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
	Stream 1	7.1	8.0	0.7	0.5	<2	4	< 0.6	< 0.05	< 0.05
11 May 2017	Stream 2	7.3	7.9	0.6	0.8	<2	4	1.1	0.41	< 0.05
	Stream 3	7.3	8.0	1.3	< 0.5	<2	4	0.9	0.35	< 0.05
	Stream 1	7.8	8.0	0.7	1.8	<2	3	1.7	< 0.05	< 0.05
23 May 2017	Stream 2	7.9	7.9	0.7	2.0	<2	3	1.7	< 0.05	< 0.05
	Stream 3	8.0	8.0	1.1	2.4	<2	3	1.7	< 0.05	< 0.05

- 5.33 According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in both Lam Tin side and Tseung Kwan O side in May 2017. Therefore, monitoring results obtained in the reporting month will be considered as reference for baseline condition. Action and Limit Level for groundwater is subjected to be reviewed with consideration of monitoring results obtained in the reporting month.
- 5.34 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.

Marine Water Quality Monitoring

- 5.35 All marine water quality monitoring was conducted as scheduled in the reporting month. Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.36 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix I**. No exceedance of Action and Limit Levels of marine water quality was recorded during the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.37 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.38 Construction Phase Piezometer Monitoring has not commenced in this reporting period.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. The second post-translocation coral monitoring was carried out on 12 May 2017.

Monitoring Methodology and Parameters

- 6.4 On 12 May 2017, the post-translocation coral monitoring survey was conducted at the Recipient Site (**Figure 7**) to monitor the health parameters of the translocated coral colonies as well as the tagged, original coral colonies at the Recipient Site.
- During the survey, the health conditions of each tagged coral colony was recorded, including percentage cover (%) of (1) sedimentation; (2) bleaching and (3) mortality. The general environmental conditions including weather, sea and tidal conditions of the coral recipient site will also be monitored.
- 6.6 The condition of each tagged coral colony was recorded by taking a photograph from an angle and distance that best represents the entire colony.
- 6.7 The result of the post-translocation monitoring was reviewed with reference to findings of the pre-translocation survey and the data from the tagged, original colonies at the recipient site.
- 6.8 All monitoring exercises were led and conducted by an experienced marine ecologist who is approved by AFCD.

Event and Action Plan

- 6.9 The post-translocation monitoring result was evaluated against Action and Limit Levels presented in **Appendix A**. Evaluation was based on recorded changes in percentage of partial mortality of the corals.
- 6.10 If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in **Appendix M** will be implemented.
- 6.11 If observations of any die-off / abnormal conditions of the translocated corals are made during the post-translocation monitoring, the ET shall inform the Contractor, IEC and AFCD, and liaise with AFCD to investigate any mitigation measures needed.

Results and Observations

6.12 The location of the survey site is shown in **Figure 7**, and survey conditions in **Table 6.1**. The code, species name, area, percentage of sedimentation level, bleaching and mortality of the tagged coral colonies are summarized in **Tables 6.2** and **6.3**. Photographs of the coral colonies, taken on 12 May 2017, are shown in **Appendix T**. The survey team had tried to take photographs of the corals from an angle and distance that best represented the colonies but difficulties sometimes occurred as a result of low water visibility during the surveys.

Table 6.1 Location and Physical attributes of the Coral Recipient Site

Sites	GPS Coordinates	Depth (m)	Visibility (m)	Substrate type	Weather	Tidal Condition	Sedimentation on Hard Substrate? (thickness, mm)
Recipient Site	Start N 22°17.333' E 114°14.744' End N 22°17.344' E 114°14.763'	2.0 – 4.0	1.0 - 2.0	Sand with gravel, rubbles and boulders	Calm; Sunny	Ebbing	YES (<1 - 4)

Tagged Coral colonies under Contract No. NE/2015/01

Tagged, original coral colonies at the Recipient Site

6.13 Sedimentation cover on the coral colonies ranged from <1 to 5%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on three (3) colonies (C07, C09 and C10) by ~5%. No apparent coral bleaching or mortality was recorded.

Translocated coral colonies

- 6.14 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on two (2) colonies (01 and 06) by ~5 to 10%. Increased mortality was recorded on two (2) colonies (02 and 12) by ~5 to 50%, which was similar to the record in the 1st coral monitoring. No apparent coral bleaching was recorded.
- 6.15 It is considered that increased mortality of the two coral colonies (02 and 12) was due to their adaptability to changes in ambient physical conditions (e.g. water current) after coral translocation, and/or direct disturbance caused by coral translocation. High percentage change in mortality was not observed in other tagged or translocated corals, indicating such mortality was not commonly occurred in the tagged or translocated corals, and not due to any nearby construction works.

Tagged Coral colonies under Contract No. NE/2015/02

Tagged, original coral colonies at the Recipient Site

6.16 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded five (5) colonies (SWJB-2, SWJB-3, SWJB-5, SWJB-9 and SWJB-10) by ~5 to 10%. No apparent coral bleaching or mortality was recorded.

Translocated coral colonies

6.17 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on five (5) colonies (TKW-T3, TKW-T9, TKW-T10, TKW-T11 and TKW-T24) by ~5 to 10%.

- 6.18 Coral bleaching was recorded on 2 colonies (TKW-T5 and TKW-T26), and the level of bleaching (<1 to 5%) was more or less the same as the level recorded in baseline survey in November 2016.
- 6.19 Coral mortality was recorded on 6 colonies (TKW-T4, TKW-T12, TKW-T15, TKW-T22, TKW-T23 and TKW-T29), and the level of mortality (5 to 10%) was more or less the same as the level recorded in baseline survey in November 2016.

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel –

Design and Construction Monthly EM&A Report for May 2017

(12Mav17)

06Mar17)

Baseline (Nov16) $\triangledown \ \triangledown \ \nabla \ \nabla \ \nabla \ \nabla \ \nabla$

 \triangle

 \triangle

 \triangle

 $\overline{\vee}$

 $\overline{\vee}$

 \triangle

 \triangle

 $\overline{\lor}$ $\overline{\lor}$

 $\overline{\vee}$

 $\overline{\vee}$

Mortality, %

06Mar17) (12Mav17) Bleaching, % $\overline{\lor}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\lor}$ $\overline{\lor}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\lor}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\vee}$ $\overline{\lor}$ Baseline Nov16) $\overline{\lor}$ $\overline{\lor}$ $\overline{\lor}$ $\stackrel{\wedge}{\sim}$ $\overline{\lor}$ $\stackrel{\wedge}{\sim}$ $^{\wedge}$ $^{\wedge}$ $^{\vee}$ 12Mav17) **5** (1) **▲ 5** (1) **▲** 5 (1) Sedimentation, % <1 (1) (thickness, mm) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) Table 6.2a. Original Corals under Contract No. NE/2015/01 06Mar17) 4 (1) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) <1 (1) $\stackrel{\frown}{\lor}$ Baseline Nov16) $\overline{\vee}$ $\overline{\vee}$ $\overline{\vee}$ $^{\vee}$ $^{\wedge}$ $\overline{\vee}$ $^{\vee}$ $^{\vee}$ $\overline{\vee}$ Size (max. diameter, cm) 19 26 16 11 23 33 12 Psammocora superficialis Psammocora superficialis Jonipopra stutchburyi Gonipopra stutchburyi Cyphastrea serailia Cyphastrea serailia Cyphastrea serailia Cyphastrea serailia Cyphastrea serailia Turbinaria peltata Coral Species Code C01 C02 C05 90**0** C08 C09 C03. C04 C07

indicate increased and decreased in percentage, respectively, when compared with the baseline data. Note: "A" and

Table 6.2b Translocated Corals under Contract No. NE/2015/01.

,		Size (max.		Sedimentation (thickness, n	Sedimentation, % (thickness, mm)		Bleaching, %	ing, %		Mortality, %	ity, %	
Code	Coral Species	diameter or	Baseline	1st	2nd	Baseline	1^{st}	2nd	Baseline	1^{st}	2nd	
		iengtn, cm)	(Nov16)	(Nov16) (06Mar17)	(12May17)	(Nov16)	(06Mar17) (12May17)	(12May17)	(Nov16)	(06Mar17) (12May17)	(12May17)	
01	Turbinaria peltata	7	<1	<1 (<1)	5 (<1) ▲	<1	<	<1	7	<1	<1	
02	Cyphastrea serailia	13	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	~	35	40 ▲	4 0 ★	
03	Gonipopra stutchburyi	14	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\ }$	$\overline{\lor}$	
04	Gonipopra stutchburyi	12	$\overline{\lor}$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	$\overline{\ }$	<u>\</u>	$\overline{\lor}$	~	
05	Gonipopra stutchburyi	17	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\vee}$	$\overline{\lor}$	$\overline{\ }$	<u>^</u>	$\overline{\lor}$	~	
90	Gonipopra stutchburyi	15	$\overline{\ }$	<1 (<1)	10 (<1) ▲	7	$\overline{\lor}$	~	$\overline{\lor}$	~	$\overline{\lor}$	
07	Gonipopra stutchburyi	9	$\overline{\ }$	5 (<1) ▲	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\ }$	~	
80	Dendronephthya sp.	10	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	$\overline{\ }$	~	$\overline{\lor}$	$\overline{\lor}$	
60	Menella sp.	13	$\overline{\lor}$	<1 (<1)	< (<)	$\overline{\nabla}$	$\overline{\lor}$	$\overline{\ }$	~	$\overline{\lor}$	$\overline{\lor}$	
10	Echinogorgia sp.	19	$\overline{\lor}$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	$\overline{\ }$	<u>\</u>	$\overline{\lor}$	~	
11	Echinomuricea sp.	23	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\vee}$	$\overline{\lor}$	$\overline{\ }$	<u>^</u>	$\overline{\lor}$	~	
12	Menella sp.	14	$\overline{\ }$	<1 (<1)	<1 (<1)	$\overline{\nabla}$	$\overline{\lor}$	~	$\overline{\lor}$	50 ▲	≥0 ▶	
13	Menella sp.	20	~	<1 (<1)	<1 (<1)	7	$\overline{\vee}$	$\overline{\ }$	$\overline{\vee}$	<1	~	
14	Psammocora superficialis	16	<1	<1 (<1)	<1 (<1)	<1	<1	<1	<1	<1	<1	
	Note: "▲" and	and "▼" indicate	increased a	nd decreased in	indicate increased and decreased in percentage, respectively, when compared with the baseline data	ly, when compar	ed with the ba	seline data.				

MA16034\Monthly\Mrpt1705_jf170605_v1.0(updated)_3

29

Cinotech

ruction unnel – Agreement No. CE 59/2015 (EP)

|--|

50	7										
Bleaching	le (06Mar17)	<1	$\overline{\vee}$	$\overline{\lor}$	$\overline{\vee}$	∇	$\overline{\vee}$	∇	$\overline{\vee}$	$\overline{\lor}$	$\overline{\vee}$
	Baseline (Nov16)	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	7	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
tion, % s, mm)	2 nd (12May17)	<1 (<1)	5 (<1) ▲	5 (<1) ▲	<1 (<1)	5 (<1) ▲	<1 (<1)	<1 (<1)	<1 (<1)	10 (<1) ▲	5 (<1) ▲
Sedimentation, % (thickness, mm)	1 st (06Mar17)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	4 (<1) ▲	<1 (<1)	<1 (<1)
	Baseline (Nov16)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)
Size (max.	diameter, cm)	28	20	73	16	17	35	19	25	16	61
	Coral Species	Plesiastrea versipora	Plesiastrea versipora	Porites sp.	Dipsastraea speciosa *	Favites pentagona	Plesiastrea versipora	Plesiastrea versipora	Favites flexuosa	Porites sp.	Favites chinesis
Size (max.	Code	SWJB-1	SWJB-2	SWJB-3	SWJB-4	SWJB-5	SWJB-6	SWJB-7	SWJB-8	SWJB-9.	SWJB-10

(06Mar17) (12May 17)

Baseline (Nov16)

(12May 17)

 $\overline{\lor}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\lor}$ $\stackrel{\textstyle extstyle }{\scriptstyle extstyle }$ $\overline{\lor}$

> $\overline{\vee}$ $\overline{\lor}$ $\overline{\vee}$ $\stackrel{\wedge}{\sim}$ \leq $\overline{\lor}$

 $\overline{\vee}$ $\overline{\lor}$ $^{\wedge}$ $\stackrel{\textstyle \sim}{}$ $\stackrel{\wedge}{\sim}$ $\overline{\vee}$ $\overline{\vee}$

 $\overline{\vee}$ $\overline{\lor}$ $^{\wedge}$

 $\overline{\vee}$

 $\overline{\lor}$ $\overline{\lor}$

 $\overline{\vee}$

 $^{\wedge}$

 $\overline{\lor}$ $\overline{\lor}$

 $\overline{\lor}$ $\overline{\vee}$

 $\stackrel{\wedge}{\sim}$

 $\overline{\lor}$

 \triangle

Mortality, %

Bleaching, %

indicate increased and decreased in percentage, respectively, when compared with the baseline data. Note: "▲" and

^{*} Former name: Favia speciosa

Agreement No. CE 59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for May 2017

Table 6.3b. Translocated Corals under Contract No. NE/2015/02

T COLOR		Tam in Court										ļ
		Size (max.		Sedimentation, % (thickness, mm)	tion, % , mm)		Bleaching, %	g, %		Mortality, %	%,	
Code	Coral Species	diameter or length, cm)	Baseline (Nov16)	1 st (06Mar17)	2 nd (12May17)	Baseline (Nov16)	1 st (06Mar17)	2 nd (12May 17)	Baseline (Nov16)	1 st (06Mar17) (2 nd (12May 17)	
TKW-T1	Favites flexuosa	20	<[(<])	<[(<1)	<[(<1)	$\overline{\vee}$	~	<1	$\overline{\lor}$	\[\bar{\pi}		
TKW-T2	Gonipopra stutchburyi	15	<1 (<1)	<1 (<1)	<1(<1)	~	· ~	' ▽	√ ∨	~		
TKW-T3.	Porites sp.	12	<1 (<1)	<1 (<1)	5 (<1) ▲	$\overline{\ }$	$\overline{\ }$	$\overline{\ }$	$\overline{\lor}$		<u> </u>	
TKW-T4.	Porites sp.	55	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<	<	5	S	5	
TKW-T5.	Porites sp.	14	<1 (<1)	<1 (<1)	<1 (<1)	S	5	5	$\overline{\lor}$	$\overline{\lor}$	~	
TKW-T6	Gonipopra stutchburyi	10	<1 (<1)	4 (<1) ▲	<1 (<1)	$\overline{\vee}$	<	~	$\overline{\vee}$	~	~	
TKW-T7	Gonipopra stutchburyi	15	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\vee}$	<u>~</u>	~	$\overline{\lor}$	$\overline{\lor}$	~	
TKW-T8	Gonipopra stutchburyi	9	<1 (<1)	4 (<1) ▲	<1 (<1)	$\overline{\vee}$	$\overline{\lor}$	~	$\overline{\lor}$	~	~	
TKW-T9	Gonipopra stutchburyi	17	<1 (<1)	5 (<1) ▲	5 (<1) ▲	$\overline{\lor}$	$\overline{\ }$	$\overline{\lor}$	$\overline{\lor}$	~	~	
TKW-T10	Gonipopra stutchburyi	14	<1 (<1)	10 (<1) ▲	10 (<1)▲	$\overline{\vee}$	$\overline{\ }$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	
TKW-T11	Coscinarea sp.	20	<1 (<1)	<1 (<1)	10 (<1)▲	$\overline{\lor}$	$\overline{\ }$	$\overline{\lor}$	$\overline{\lor}$	~	~	
TKW-T12	Plesiastrea versipora	20	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>~</u>	~	5	5	5	
TKW-T13	Gonipopra stutchburyi	16	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<	~	$\overline{\vee}$	$\overline{\lor}$	~	
TKW-T14	Favites magnistellata *	11	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<u>~</u>	~	$\overline{\lor}$	7	~	
TKW-T15	Porites sp.	21	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<u>~</u>	~	5	S	5	
TKW-T16	Astrea curta #	10	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<1	~	$\overline{\vee}$	7	~	
TKW-T17	Porites sp.	35	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<u>~</u>	~	$\overline{\lor}$	~	~	
TKW-T18	Platygyra acuta	15	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<1	~	$\overline{\vee}$	7	~	
TKW-T19	Favites flexuosa	20	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	< <u></u>	~	$\overline{\lor}$	7	~	
TKW-T20	Gonipopra stutchburyi	10	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<u>~</u>	~	$\overline{\lor}$	7	~	
TKW-T21	Favites magnistellata *	12	<1 (<1)	$\overline{}$	<1 (<1)	<u>\</u>	<u>~</u>	~	$\overline{\lor}$	$\overline{\lor}$	~	
TKW-T22	Turbinaria peltata	27	<1 (<1)	<1 (<1)	<1 (<1)	▽	~	~	5	5	S	
TKW-T23	Porites sp.	14	<1 (<1)	<1 (<1)	<1 (<1)	<u>\</u>	<u>~</u>	~	10	10	10	
TKW-T24	Gonipopra stutchburyi	20	<1 (<1)	<1 (<1)	5 (<1) ▶	<u>\</u>	<1	~	$\overline{\lor}$	7	~	
TKW-T25	Plesiastrea versipora	14	<1 (<1)	<1 (<1)	<1 (<1)	7	<	~	$\overline{\lor}$	7	~	
TKW-T26.	Gonipopra stutchburyi	9	<1 (<1)	<1 (<1)	<1 (<1)	10	10	≥ €	$\overline{\lor}$	<u>~</u>	~	
TKW-T27	Plesiastrea versipora	18	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<	~	$\overline{\vee}$	~	~	
TKW-T28	Porites sp.	20	<1 (<1)	<1 (<1)	<1 (<1)	20		<1 <	$\overline{\lor}$	$\overline{\lor}$	~	
TKW-T29	Astrea curta #	13	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\vee}$	<u> </u>	~	10	10	10	
N	Note: "▲" and "▼" indicate ii	indicate increased and decreased in nercentage	nau di pasee.		bereamos nedw vlevitseaser	ed with the baseline data	oline data					

Note: "▲" and "♥" indicate increased and decreased in percentage, respectively, when compared with the baseline data.

^{*} Former name: Montastrea magnistellata

Former name: Montastrea curta

Cinotech

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts should be conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be aplied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 April 2017.
- 7.2 As stated in the approved "Built Heritage Mitigation Plan" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

- 7.3 One (1) vibration monitoring point, one (1) building settlement monitoring point and one (1) building tilting monitoring point are proposed for the vibration impacts monitoring of the construction works. The building settlement marker and the tiltmeter will be placed on the wall of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple.
- 7.4 Confirmation from the Cha Kwo Ling Tin Hau Temple on the installation of these monitoring equipment is yet to be obtained by the Contractor. Vibration monitoring was carried out at a temporary location outside the Cha Kwo Ling Tin Hau Temple in the reporting period. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.5 Building settlement should be measured by surveyors via settlement marker and tiltmeter attached to the wall of the Cha Kwo Ling Tin Hau Temple.
- 7.6 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "Guidance Note on Vibration Monitoring" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.7 **Table 7.1** summarizes the equipment employed by the Contractor for vibration monitoring. Copies of calibration certificates are attached in **Appendix B**.

Table 7.1 Vibration Monitoring Equipment

Equipment	Manufacturer and Model	Quantity
DNA03 Digital Level for building	Leica Geosystems	1
settlement and tilting	Article No.: 723289	1

Vibrographs for vibration monitoring Model No.: 716A0403
--

Monitoring Methodology

7.8 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement and tilting monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.9 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Markers	6mm	8mm	10mm
Building Tilting	1:2000	1:1500	1:1000

Results

7.10 In the reporting month, vibration monitoring was carried out by the Contractor at the aforesaid location on 24 occasions. No AAA Level exceedance for vibration monitoring was recorded in the reporting month. The monitoring results are provided in **Table 7.3**.

Table 7.3 Vibration Monitoring Results

		Building	Ground	Vibration (mm/s)		
Date	Time	Settlement	Settlement	Measurement Direction		t Direction
		(mm)	(mm)	Tran	Vertical	Longitudinal
2 May 2017	17:14	NA	NA	0.508	1.143	0.254
4 May 2017	17:20	NA	NA	0.889	0.889	0.889
5 May 2017	10:53	NA	NA	0.254	0.508	0.381
6 May 2017	14:22	NA	NA	0.254	0.381	0.254
8 May 2017	13:34	NA	NA	0.381	0.508	0.254
9 May 2017	15:40	NA	NA	0.254	0.381	0.381
10 May 2017	17:27	NA	NA	0.381	0.635	0.254
11 May 2017	15:31	NA	NA	0.381	0.508	0.254
12 May 2017	14:39	+0	+1	0.254	0.762	0.254
13 May 2017	13:34	+1	+0	0.381	0.381	0.254
15 May 2017	17:06	-2	-1	0.254	0.508	0.381
16 May 2017	10:51	Data missing due	to technical errors	0.254	0.381	0.254
17 May 2017	09:30	+0	+1	0.381	1.778	0.508
18 May 2017	10:45	+2	+0	0.254	0.381	0.254
19 May 2017	14:17	+0	-1	0.508	0.635	0.381
20 May 2017	16:31	+0	+0	0.175	0.302	0.222

Monthly EM&A Report for May 2017

		Building	Ground	Vibration (mm/s)		
Date	Date Time		Settlement Settlement	Measurement Direction		
		(mm)	(mm)	Tran	Vertical	Longitudinal
22 May 2017	16:30	+0	+0	0.381	0.508	0.381
23 May 2017	13:09	+0	+0	0.254	0.508	0.254
24 May 2017	16:11	Cancelled due to	adverse weather	0.127	0.508	0.254
25 May 2017	11:27	+0	+0	0.254	0.508	0.254
26 May 2017	13:41	+0	+1	0.381	0.508	0.254
27 May 2017	15:08	+0	+0	0.381	0.508	0.254
29 May 2017	16:26	-2	+0	0.254	0.381	0.254
31 May 2017	16:25	+2	+0	0.381	0.508	0.381

Note: Installation of equipment for settlement and tilting monitoring is obtained by the Contractor from the Cha Kwo Ling Tin Hau Temple on 12 May 2017.

Mitigation Measures for Cultural Heritage

- 7.11 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the fung shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.12 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures. The summaries of site audits are attached in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;-
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Excavation Locations: Portion III
 Manholes and Chambers: N/A
 Relocation of monitoring wells: N/A
 Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
Intrinsically safe, portable gas detector	Crowcon Tetra Portable Gas Detector (Serial No. 100486262/01-020)	1

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 48 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 2, 10, 17, 24 and 31 May 2017
 - Contract No. NE/2015/02: 4, 11, 16 and 25 May 2017
 - Contract No. NE/2015/03: 31 May 2017

Monthly joint site inspection with the representative of IEC was conducted on 25 May 2017 (Contract No. NE/2015/02) and 31 May 2017 (Contract No. NE/2015/01 and NE/2015/03).

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 10.1**.

Table 10.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Contract No. N	E/2015/01		
	15, 22 Mar, 12, 19 Apr 2017	Observation: To set up proper drainage system in CKL site Portion 3.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.
	2 May 2017	Observation: Stagnant water should be cleared at TKO site.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 10 May 2017.
Water Quality	10 May 2017	Reminder: To repair silt curtain for marine works in TKO to ensure that geotextile is extended to seabed.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.
17 May 2017 Remind	Reminder: To repair the silt curtain in TKO that geotextile should be extended to seabed.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.	
17 May 2017 Reminder: To repair the holes at bottom of compartment of sedimentation tank in TKO.		The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.	
	17 May 2017	Reminder: To remove the mud accumulated in U-channel near discharge point in TKO.	The deficiency was observed to be improved/rectified by the Contractor during the audit

Parameters	Date	Observations and Recommendations	Follow-up
			session on 24 May 2017.
	24 May 2017	Observation: Muddy water observed near marine works in Tseung Kwan O. The Contractor is reminded to regularly maintain silt curtain on-site and ensure that geotextile is extended to seabed.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.
	24 May 2017	Observation: Overflow of muddy water observed from sedimentation tank in Tseung Kwan O under Red Rainstorm Warning Signal. The Contractor is reminded to ensure that the tank is of adequate capacity for wastewater treatment.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 31 May 2017.
	2, 10 May 2017	Observation: Mitigation measure for noise emission of the drill rig at CKL site should be applied where necessary.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 17 May 2017.
Noise	10 May 2017	Reminder: To provide adequate noise barrier to drilling works and to repair the existing noise barrier to avoid gaps in Portion 4c.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 17 May 2017.
Noise	17 May 2017	Reminder: To repair the gaps of temporary noise barrier for drill rig in Portion 3.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 24 May 2017.
	17 May 2017	Reminder: To repair the temporary noise enclosure for breaker in Portion 3.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 24 May 2017.
Landscape and Visual	12, 19 Apr 2017	Reminder: To properly set-up tree protection area in Portion 3.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 10 May 2017.
	10 May 2017	Reminder: To provide adequate water spray to drilling works in Portion 4c to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 17 May 2017.
Air Quality	10 May 2017	Reminder: To cover stockpile of sand in TKO to avoid dust generation.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 17 May 2017.
	31 May 2017	Reminder: Dry unpaved area was observed. Contractor was advised to provide spraying regularly.	Follow up action will be reported in next reporting month.
Waste / Chemical Management	31 May 2017	Reminder: Oil containers should be provided with drip tray.	Follow up action will be reported in next reporting month.
Impact on Cultural Heritage			
Permits / Licenses			
Contract No. N	NE/2015/02		
Water Quality	26 Apr and 4, 11 May 2017	Reminder: To repair the holes near the discharge point in Area A to prevent surface runoff flow into the discharge point.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 16 May 2017.

Parameters	Date	Observations and Recommendations	Follow-up
	4, 11 May 2017	Reminder: To replace the broken sand bags near the gullies in Portion 1.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 16 May 2017.
	11, 16 May 2017	Reminder/Observation: To remove muddy water / sediment accumulated in catchpits / U-channels in Area A.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 25 May 2017.
	16 May 2017	Observation: Silt and sediments observed at footing of hoarding at Portion SR2B. The Contractor is reminded to remove the silt and sediment to avoid wastewater flow out of site.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 25 May 2017.
Noise			
Landscape and Visual			
Air Quality	11 May 2017	Reminder: To cover stockpiles of dusty material in Area A after works	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 16 May 2017.
Waste / Chemical Management	16 May 2017	Reminder: To remove construction waste accumulated near site office.	The deficiency was observed to be improved/rectified by the Contractor during the audit session on 25 May 2017.
Permits / Licenses	25 May 2017	Reminder: To display valid Environmental Permit and Construction Noise Permit for marine works area.	Follow up action will be reported in next reporting month.
Contract No. N	NE/2015/03		
Water Quality	31 May 2017	Reminder: Contractor was reminded to place geotextile materials on all the manholes before commencing any construction works.	Follow up action will be reported in next reporting month.
Noise	31 May 2017	Observation: Contractor was advised to place noise emission label on the air compressor.	Follow up action will be reported in next reporting month.
Landscape and Visual			
Air Quality			
Waste / Chemical	31 May 2017	Observation: Contractor was advised to clean oil stains on the paved road.	Follow up action will be reported in next reporting month.
Management	31 May 2017	Observation: Contractor was advised to clean all muddy silt in the drip tray.	Follow up action will be reported in next reporting month.
Permits / Licenses			

Monthly EM&A Report for May 2017

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 Nine Action Level exceedance of noise monitoring was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance of noise monitoring was recorded.
- 12.2 Should the monitoring results of the environmental monitoring parameters at any designated monitoring stations indicate that the Action / Limit Levels are exceeded, the actions in accordance with the Event and Action Plans in **Appendix M** be carried out.

Summary of Environmental Non-Compliance

12.3 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

12.4 Ten environmental complaints were received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.5 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Contract No.	Project Title	Site Activities	(June 2017)
NE/2015/01	Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works	Lam Tin Interchange	 Haul Road Construction EHC2 U-Trough Site Formation – Area 1G1, Area 2, Area 3, Area 4 Temp Steel Bridge across CKL Road Pipe Pile Wall – Area 2A Ground Investigation
		Main Tunnel	Tunnel Team Mobilisation Works Construction Adit MT Excavation
		TKO Interchange	 Haul Road Construction and Site Formation Temporary Barging Facilities BMCPC Bridge Temporary Diversion
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Installation Dredging W Construction Advance W Cofferdams Preparation Sediment E&M Work Construction drainpipe Installation IV 	n of sloping seawall orks and ELS for Installation of Steel
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge.	 Excavating UU Diversion Soldier Pier East Pier Tr 	•

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 7th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in May 2017 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring at Station AM4(A) Cha Kwo Ling Public Cargo Working Area Administrative Office on 8, 12 and 29 May 2017 were cancelled due to power supply failure. The monitoring were re-scheduled to 10, 22 May and 1 June 2017 respectively. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. Nine Action Level exceedance was recorded due to the documented complaints received in the reporting month. According to the Event and Action Plan for Construction Noise, monitoring frequency at the concerned monitoring stations was increased to check mitigation effectiveness. No Limit Level exceedance was recorded.

Water Quality Monitoring

- 14.5 Groundwater monitoring was conducted as scheduled in the reporting month. According to the information provided by the Contractor, no tunnel boring or tunnel construction works were carried out in both Lam Tin side and Tseung Kwan O side in May 2017. Therefore, monitoring results obtained in the reporting month will be considered as reference for baseline condition.
- 14.6 All marine water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 The 2nd post-translocation coral monitoring survey was carried out on 12 May 2017. No Action/Limit Level exceedance was recorded.

Monitoring on Cultural Heritage

14.8 No Alert Alarm and Action (AAA) Level exceedance of vibration monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting

month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-conformance was identified

Complaint, Prosecution and Notification of Summons

14.12 10 environmental complaints, no successful prosecution or notification of summons were received during the reporting period.

Recommendations

14.13 According to environmental audits performed in the reporting month, the following recommendations were made:

Air Quality Impact

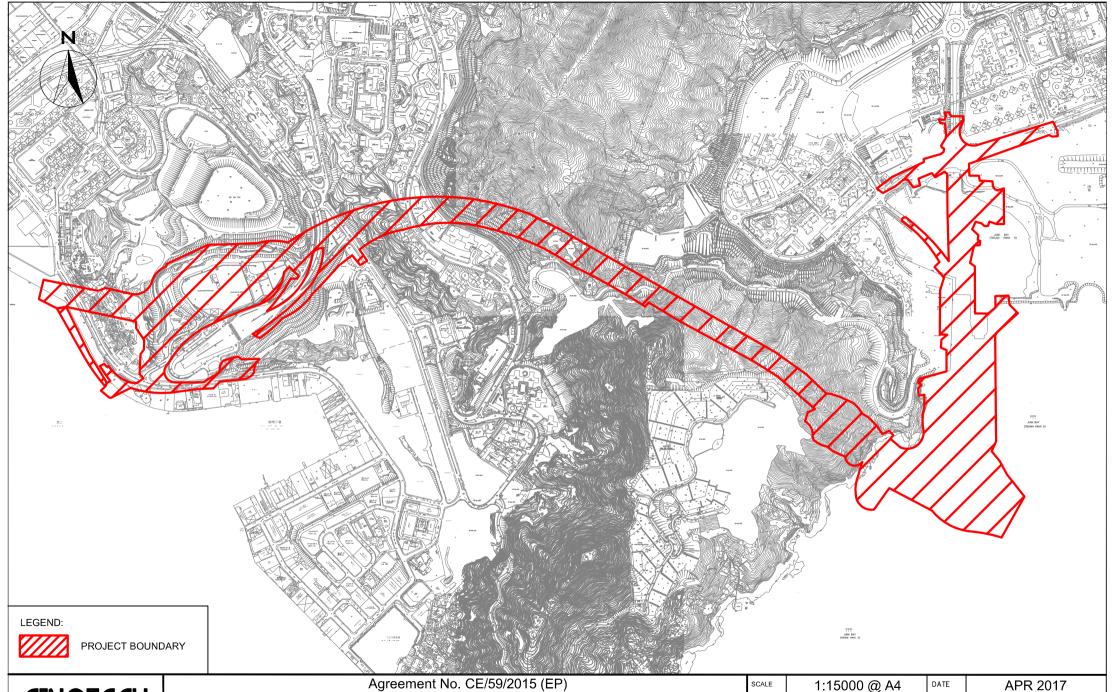
- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces and open slopes.
- To cover stockpile of dusty material by impervious material.

Construction Noise

- To provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved Noise Mitigation Plan.
- To repair the gaps between the noise barriers.

Water Quality Impact

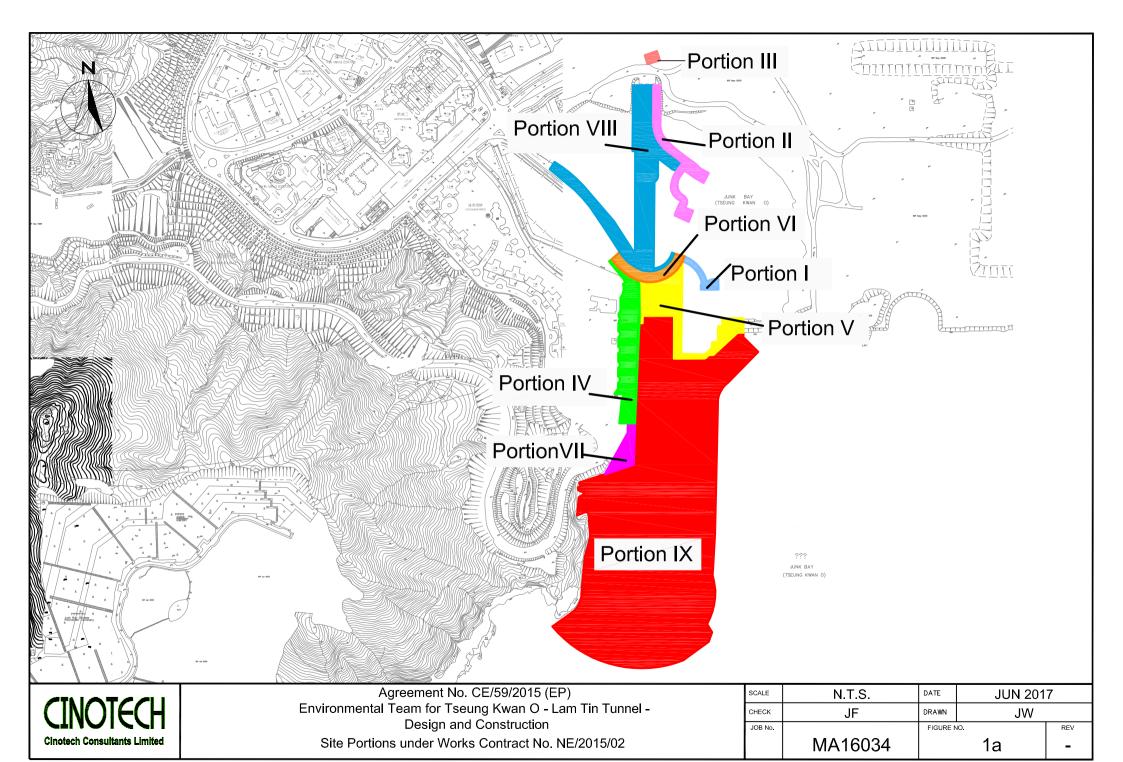
- To provide and repair the silt curtain to fully enclose the site and prevent any gap between the silt curtains.
- To review and implement temporary drainage system.
- To clear the litter, debris, silt and sediment in drainage or catchpits.
- To remove the sand or dusty material deposited near the seafront.
- To provide bund or covers to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

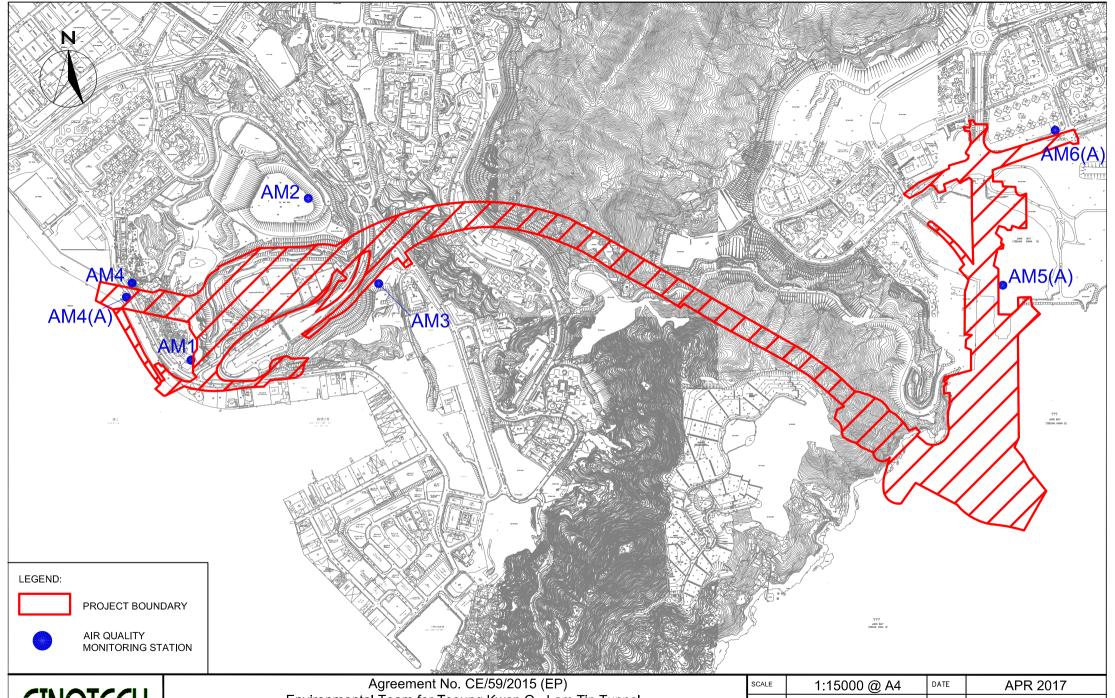

Waste/Chemical Management

• To remove construction waste regularly.

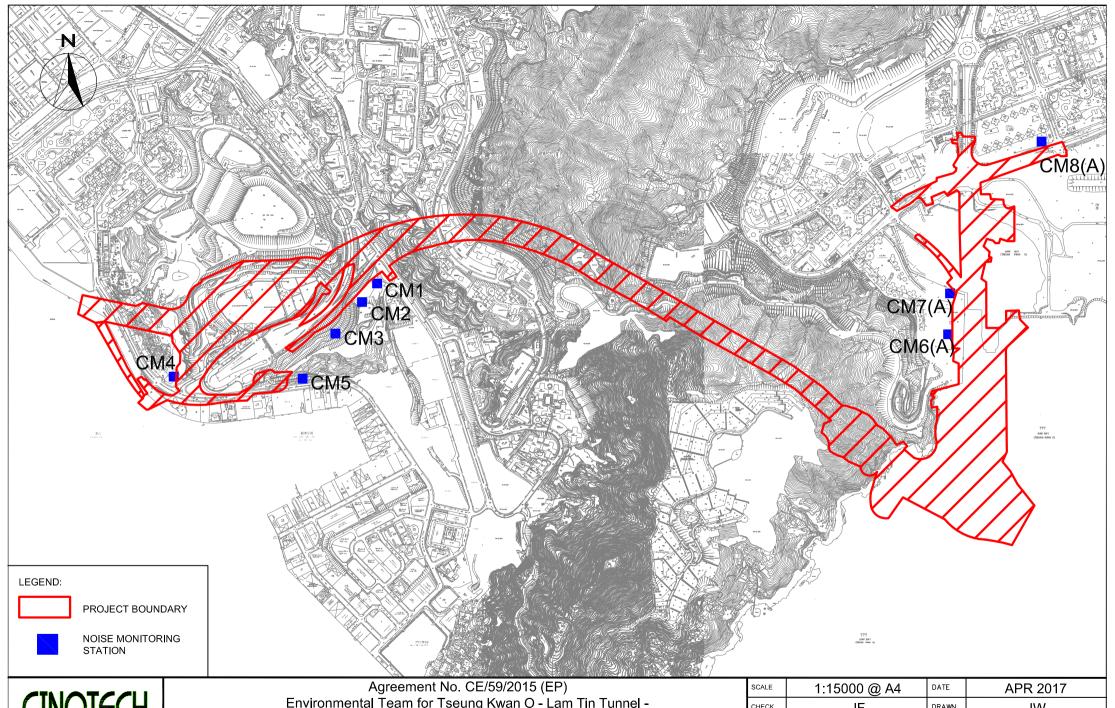
Landscape and Visual

• To set up proper tree protection area.

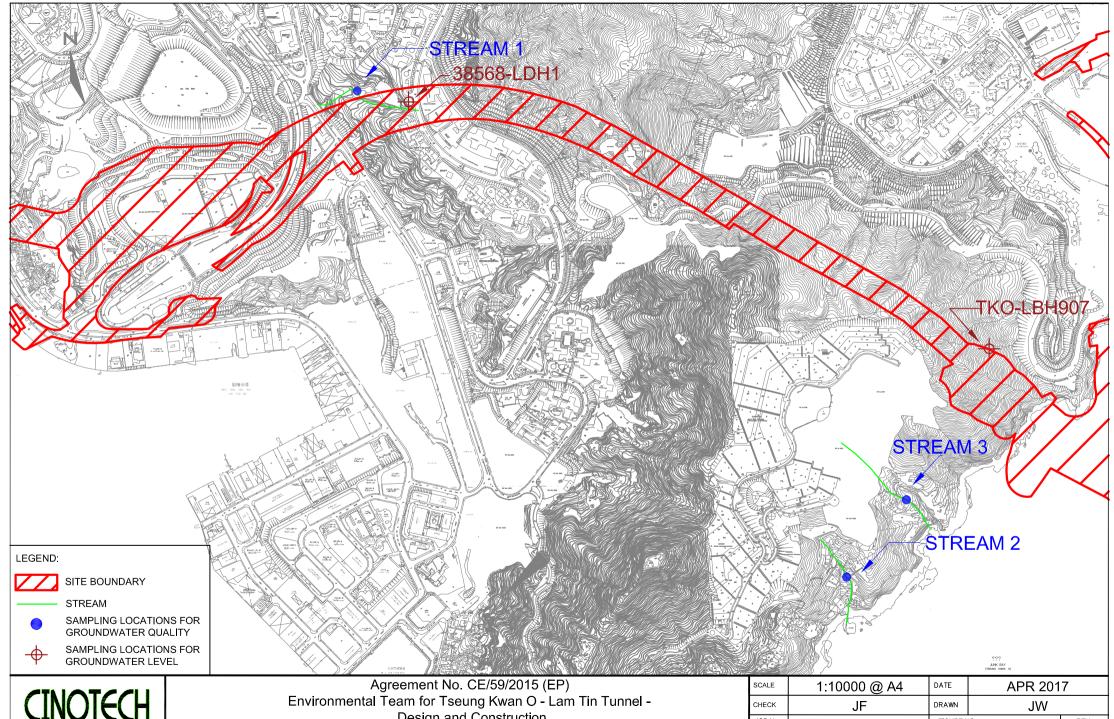

FIGURES



Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel
- Design and Construction
Site Layout Plan

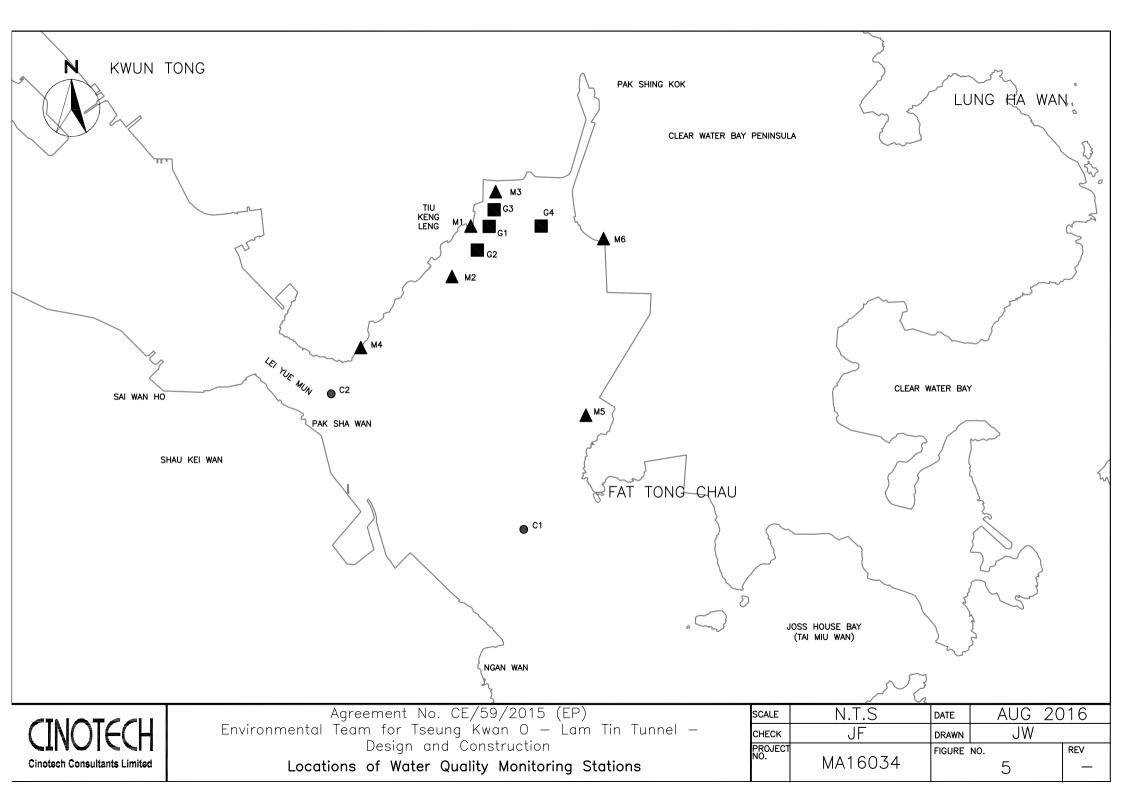

SCALE	1:15000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		1	-

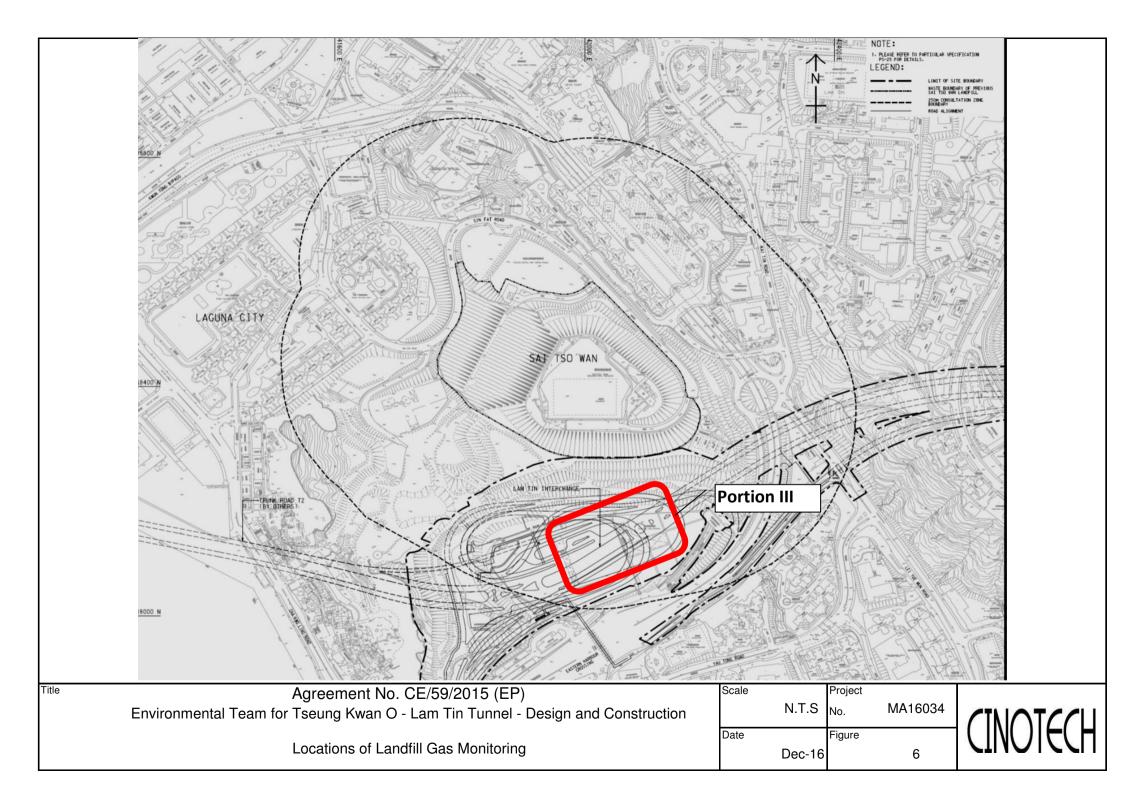
CINOTECH Cinotech Consultants Limited Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Air Quality Monitoring Stations

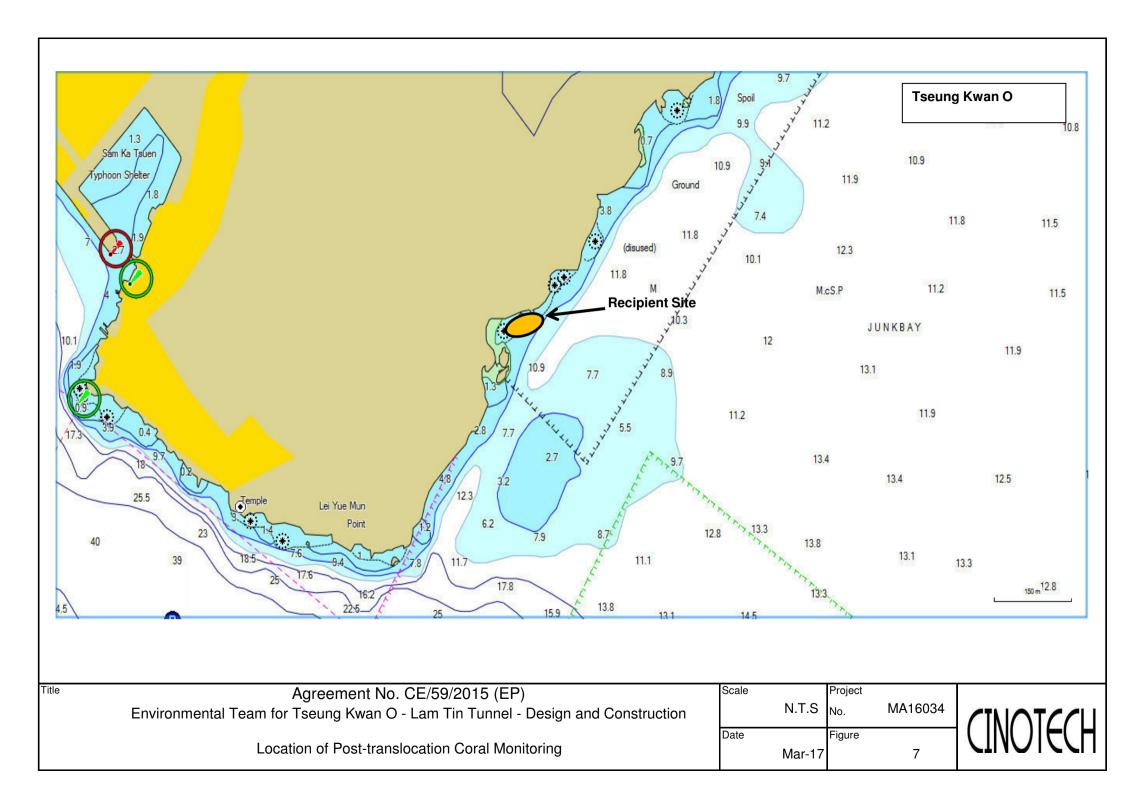

CALE	1:15000 @ A4	DATE	APR 2017	
HECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		2	-

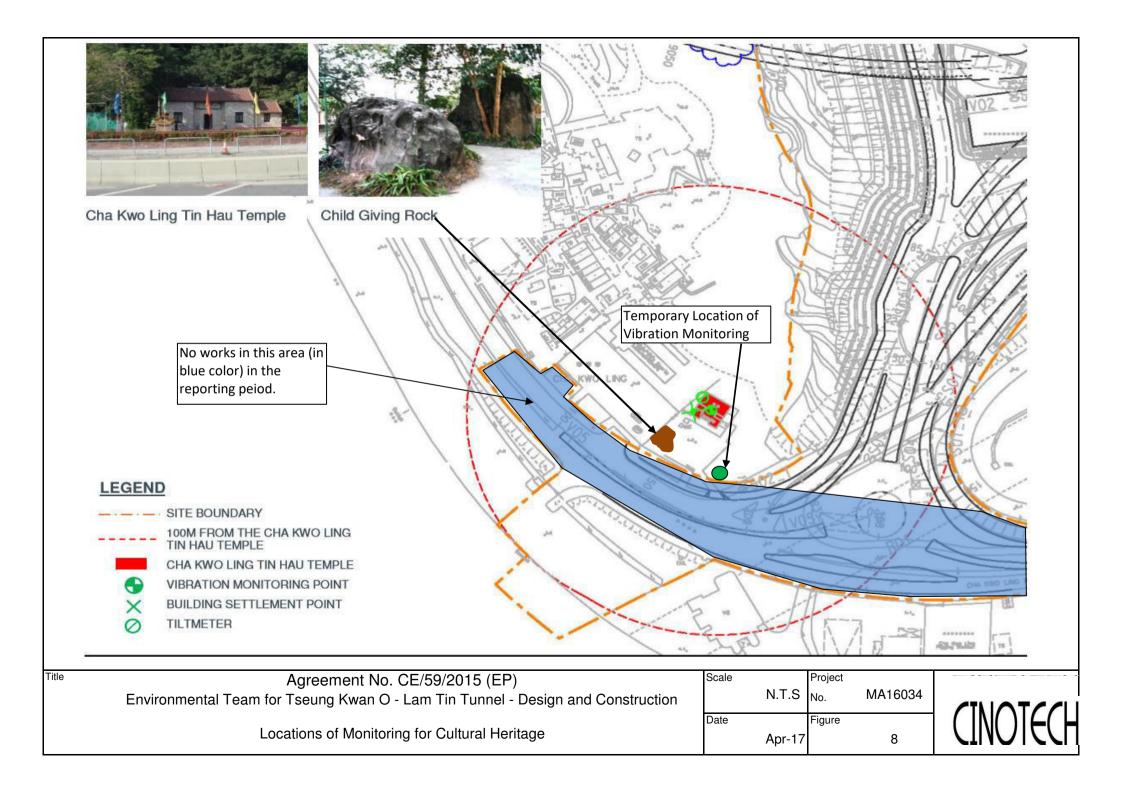
CINOTECH
Cinotech Consultants Limited

Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Noise Monitoring Stations


SCALE	1:15000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		3	-




Cinotech Consultants Limited


Design and Construction Location of Streams for Groundwater Quality and Groundwater Level Monitoring

SCALE	1:10000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		4	-

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C

³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit
DO in mg L ⁻¹	7.6	7.5
рН	6.0 - 8.9	6.0 – 9.0
BOD ₅ in mg L ⁻¹	2.0	2.0
TOC in mg L ⁻¹	4.3	4.9
Total Nitrogen in mg L-1	1.7	1.7
Ammonia-N in mg L ⁻¹	0.05	0.06
Total Phosphate in mg L ⁻¹	0.05	0.05
SS in mg L ⁻¹	5.5	6.2
Turbidity in NTU	2.2	2.4

Notes:

- 1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907
Action Level (mPD)	+74.65	+17.59

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	19.3 NTU or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	6.9mg/L or 130% of upstream control station's SS at the same tide of the same day
	Stations M1-M	<u>5</u>	
SS in mg/L (See Note 2, 4 ad 5)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
	Stations G1-G4	4, M1-M5	-
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.
- 5. Refer to Appendix I Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

ent Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition		
Mortality	If during Impact Monitoring a 15% increase			
ř	in the percentage of partial mortality on hard	increase in the percentage of partial		
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the		
	coral at any one Impact Monitoring Site that tagged coral at any one Impact Mo			
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,		
	Action Level is exceeded.	then the Limit Level is exceeded.		

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

Station:	AM1 - Tin Hau Temple Operator: HL						
Date:	17-Mar-17			Next Due Date:	ate: 16-May-17		
Equipment No.:	quipment No.: A-01-05			Serial No.		,	
	Tariha mada Walkasa Malika Ndi M			and the same of the same of the			
			Ambient (Condition			
Temperatu	re, Ta (K)	290,6	Pressure, Pa	a (mmHg)		766.4	
Serial	No.	0993	ifice Transfer Sta	T T			250000000000000000000000000000000000000
Last Calibra			Slope, mc (CFM)		Intercep = [ΔH x (Pa/76		0.04890
Next Calibr		28-Feb-17 27-Feb-18	₹			Ta)] ^{1/2} -be} / mc	
Next Callor	ation Date.	27-100-10		Qstu – ξ[ΔH X	(Fa//00) X (290/	1a)j -be}/me	
			Calibration of	TSP Sampler			
C 111		0	rfice	xor bumpier	The State of State of State of States	HVS	16.00 6.00 10
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x Y-axis	
1	13.4		3.72	65.28	7.4	2.77	
2	10.2		3.25	57.06	5.6	2.41	
3	8.6		2.98	52.46	4.8	2.23	
4	5.5		2.38	42.13	3.3	1.85	
5	3.2		1.82	32.33	2,1	1.47	
By Linear Regr Slope , mw =	ression of Y on X			Intercept, bw :	0.209	4	
Correlation c	oefficient* =	0.	9994	- · · -			
*If Correlation C	Coefficient < 0.99	0, check and re	calibrate.				
From the TSP Fi	eld Calibration C	urve, take Ostd	Set Point C = 43 CFM	alculation		and the second of the second of the	26 4 13 76 47 16 16 23
	sion Equation, th						
3 -	,,,,,						
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\mathbf{\Delta W} \ \mathbf{x}]$	(Pa/760) x (29	8/Ta)] ^{1/2}		
Thoustons Co	st Doints W — (mar	rr rr Oated I have	² x (760 / Pa) x ('	T- /200) —			
Therefore, Se	t Point; w – (inv	w x Qsia + ow ,	x (/00 / Pa) x (1a/298)= -	3.41		
Remarks:							
·							
			,			****	
Conducted by:	hen	Signature:	her-			Date: 17 /	3/2017
Checked by:	WK Tany	Signature:	_lava:			Date: 17 /2	117
	U		•				·

Station:	AM1 - Tin Hau	Temple Ope		Operator:	HL	-	
Date:	16-May-17		_	Next Due Date: 15-Jul-17		_	
Equipment No.: A-01-05			_	Serial No.	10599		_
			Ambient (Condition			
Temperatu	ıre, Ta (K)	296.5	Pressure, Pa	a (mmHg)		758.3	
The state of the state of the							
			ifice Transfer Sta	T			
				-0.04890			
Last Calibr		28-Feb-17	7		= [ΔH x (Pa/766		
Next Calibi	ration Date:	27-Feb-18		$Qstd = \{[\Delta H x]\}$	(Pa/760) x (298/	Ta)] ^{1/2} -bc} /	me
			Calibration of	TSP Sampler			
Calibration	ΔH (orifice),	l .	rfice	Qstd (CFM)	ΔW (HVS),	HVS	/760) x (298/Ta)] ^{1/2}
Point	in. of water	[ΔH x (Pa/7	50) x (298/Ta)] ^{1/2}	X - axis	in, of water	[ZW X (Pa	Y-axis
1	13.2		3.64	63.82	7.4		2.72
2	10.0		3.17	55.66	5.7		2.39
3	8.7		2.95	51.97	4.9		2.22
4	5.4		2.33	41.13	3.3		1.82
5	3.2		1.79	31.85	2.1	_	1.45
By Linear Reg	ression of Y on X 0.0396			Intercept, bw :	0.185	9	
Correlation o	coefficient* =	0.	9995	-			
*If Correlation (Coefficient < 0.99	0, check and re	calibrate.	-			
			Set Point C	alculation			
	ield Calibration C						
From the Regres	ssion Equation, th	e "Y" value acc	ording to				
	•	mw v ($2std + bw = \Delta W $	(Pa/760) v (20	8/Ta\l ^{1/2}		
		III W	<u> </u>	(1 a/ /00) X (23	o/ 1 a) _]		
Therefore, So	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (Ta/298)=	3.55		
D 1							
Remarks:							
Conducted by:	her	Signature:	ha -			Data	11 15 15
Checked by:		Signature:				Date:	16/5/17
Checked by:	NA-NY CHAN	oignature:	Mill			Date:	10/5/11

Station:	AM2 - Sai Tso Wan Recreation Ground			Operator:	HL				
Date:	13-Mar-17		Next Due Date:		12-May	-17			
Equipment No.:	A-01-08			Serial No.	1287				
Plantes except space authorize	an en	S. S. Augen, Nathania II Tang Tang.							
			1	Condition					
Temperature, Ta (K) 291.3		291.3	Pressure, Pa	(mmHg)	764.1				
N PAGE (ALITE PRADE)			fice Transfer Standard Information						
Serial No.:		0993 Slope, mc (CFM)		0.0578 Intercept, bc nc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]$		•			
Last Calibration Date:		28-Feb-17	Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} - bc\} / mc$						
Next Calibration Date: 27 -Feb-18 $Qstd = \{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$									
			Calibration of	TCP Complar					
Electric New York Control of Children	See E. Commission W. Commission	U	rfice	HVS					
Calibration Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis			
1	13.3	3.70		64.86	7.5	2.78			
2	10.8	3.33		58.54	6.2	2.53			
3	8.6	2.97		52.33	5.0	2,27			
4	5.3	2.33		41.26	3.3	1.84			
5	3.3	1.84		32.74	2.0	1.43			
Slope, mw =	ession of Y on X			Intercept, bw	0.104	3			
Correlation co	oefficient* = _	0.	9993						
*If Correlation C	Coefficient < 0.99	0, check and re	calibrate.						
			Set Point C	alculation					
From the TSP Fi	eld Calibration C	urve, take Qsto	= 43 CFM						
From the Regres	sion Equation, th	e "Y" value acc	ording to						
		mw x ($2std + bw = [\Delta W]$	(Pa/760) x (29	98/Ta)] ^{1/2}				
mi r a	1 D. '-1 W (Ost 1 (1	o ² x (760 / Pa) x (r- /200) -	2.44	,			
i nerefore, Se	et Point; w = (m	w x Qsta + ow .	x (/60 / Pa) x (1a/298)= .	3.44				
L									
Remarks:									
			/ -						
Conducted by: LEF MAN VIET Signature: her Date: 13-3-201									
Checked by:	W.K. Tany	Signature:	_ Kwon			Date: 13/3/17			

Station:	AM2 - Sai Tso Wan Recreation Ground			Operator:	HL			
Date:	10-May-17			Next Due Date:		17		
Equipment No.: A-01-08			Serial No.		1287			
						* 1847 (1.18) N. Perer Perer (1.18) (1.18) (1848 (1848 (1848 (1848 (1848 (1848 (1848 (1848 (1848 (1848 (1848 (
			1	Condition				
Temperature, Ta (K)		301.4	Pressure, Pa (mmHg)		764.1			
		Oı	ifice Transfer Sta	ndard Informa	tion			
Serial No.:		0993	Slope, mc (CFM) 0.0578		Intercep	-0.04890		
Last Calibration Date:		28-Feb-17		· · · · · · · · · · · · · · · · · · ·	$c = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$			
Next Calibration Date:		27-Feb-18	Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$					
		•						
			Calibration of	TSP Sampler				
Calibration		O	rfice		HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} axis	
1	13.6	3.68		64.49	7.5	2.73		
2	10.7	3.26		57.30	6.1	2.46		
3	8.7	2.94		51.75	5.0	2.23		
4	5.4	2.32		40.95	3.2	1	.78	
5	3.4		1.84		2.1	1	.44	
	ession of Y on X				0.440	_		
Slope, mw = 0.0407 Correlation coefficient* = 0.9			Intercept, bw :	0.119	<u> </u>			
			0.9998 check and recalibrate.					
TI Conciation C	Joennolem ~ 0.99	o, check and re	canorate,					
			Set Point C	alculation				
From the TSP Fi	ield Calibration C	urve, take Qstd	= 43 CFM					
From the Regres	sion Equation, the	e "Y" value acc	ording to					
				(D. 1740) (70)	o m > 1/2			
		mw x Q	$0 \text{std} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29)	8/1a) ***			
Therefore, Se	et Point; W = (my	v x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.51			
Remarks:								
Comurko.								
•			,	•			/ /	
Conducted by:		Signature:	her			Date:	0/5/17	
Checked by:	W.K. Cony	Signature:	Knai			Date:	15/17	

File No. MA16034/03/0004

17
766.1
, bc -0.04890
$(298/Ta)]^{1/2}$
[a)] 1/2 -bc} / mc
HVS (D. /750) (000/F) 21/2
[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y -axis
2.69
2.47
2.13
1.85
1.44
)
/ /
Date: $\frac{7/3/2017}{}$
Date: <u>7/3/17</u>

File No. MA16034/03/0005

Station:	AM3 - Yau Lai I	Estate, Bik Lai	House	Operator:	HL	·
Date:	4-May-17	Next Due Date:		Next Due Date:	3-Jul-	17
Equipment No.:	A-01-03		-	Serial No.	10379)
Temperatur	ye Ta (K)	295,9	Ambient C	1		761.9
Tomperatur	C, 14 (IX)	473.7	1 ressure, ra	(mmang)		701,7
		Oı	ifice Transfer Sta	ndard Informa	ıtion	
Serial :	No.:	0993	Slope, mc (CFM)	0.0578	Intercep	ot, bc -0.04890
Last Calibra	tion Date:	28-Feb-17]	mc x Qstd + bc	$= [\Delta H \times (Pa/76)]$	0) x (298/Ta)] ^{1/2}
Next Calibra	tion Date:	27-Feb-18		$Qstd = \{ [\Delta H \mathbf{x}) \}$	(Pa/760) x (298/	Ta)] ^{1/2} -be} / me
	eller van de lande d	• Elde Breckerkere e Krister			The Color of the St. Sec. (1991)	
			Calibration of	TSP Sampler		
Calibration		0	rfice	1		HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.8		3.59	63.07	7.2	2.70
2	10.8		3.30	58.00	5.9	2,44
3	7.5		2.75	48.48	4.3	2.08
4	5.3		2.31	40.89	3.2	1.80
5	3.3		1.83	32.44	2.0	1.42
By Linear Regro				Intercept, bw :	0.113	
Correlation co			9991	entercopt, bit	0.113	<u></u>
*If Correlation C				-		
			Set Point C	alculation		
From the TSP Fig						
From the Regress	sion Equation, the	e "Y" value acc	ording to			
		mw x ($2std + bw = [\Delta W]$	(Pa/760) x (29.	8/Ta)] ^{1/2}	
					o, 14)j	
Therefore, Set	Point; W = (my	w x Qstd + bw	² x (760 / Pa) x (Ta/298)=	3,43	·
Remarks:						
-						
Caradanas 11	6.	Ci- a-t-	1.			4/-/-
Conducted by: _		Signature:	16	· 1		Date: 4/5/17
Checked by: W.K. TAM Signature: Musical Date: 4/5/17					Date: 4/5/11	

Date:

File No. MA16034/54/0004 Station: Operator: HL AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office Next Due Date: 16-May-17 17-Mar-17 Date: Equipment No.: A-01-54 Serial No. 1536 Ambient Condition 764.4 Temperature, Ta (K) 291.3 Pressure, Pa (mmHg) Orifice Transfer Standard Information 0.0578 Serial No.: 0993 Slope, mc (CFM) Intercept, bc -0.04890 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 28-Feb-17 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 27-Feb-18 Calibration of TSP Sampler HVS Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), ΔH (orifice), $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in, of water X - axis in, of water Y-axis 17.7 4.27 74.71 10.4 3.27 2 13.0 3.66 64.15 7.9 2.85 10.7 3.32 58.28 6.4 2.57 3 4 6.8 2.65 46.63 4.2 2.08 2.8 1.70 5 4.2 2.08 36.83 By Linear Regression of Y on X Slope, mw = 0.04190.1393 Intercept, bw: Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3,67 Remarks: Conducted by: LEC MAN ME LSignature:

File No. MA16034/54/0005 Station: Operator: HL AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office 16-May-17 Next Due Date: 15-Jul-17 Date: Equipment No.: A-01-54 Serial No. 1536 **Ambient Condition** Temperature, Ta (K) 296.4 Pressure, Pa (mmHg) 758.9 Orifice Transfer Standard Information Serial No.: 0993 Slope, mc (CFM) 0.0578 Intercept, bc -0.04890 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 28-Feb-17 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 27-Feb-18 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis in. of water Y-axis 1 17.6 4.20 73.61 10.3 3.22 2 13.2 3.64 63.86 8.0 2.83 3 10.7 3.28 57.58 6.5 2.55 4 6.5 2.55 45.06 4.3 2.08 5 4.1 2.03 35.96 2.7 1.65 By Linear Regression of Y on X Slope, mw = 0.0414 Intercept, bw: 0,1822 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks:

Conducted by: her Signature: her Date: 16/5/17
Checked by: W. Ung Signature: Mars Date: 16/5/17

File No. MA16034/37/0004

Station:	AM5(A) - DSD	D Desilting Compound Operator:			HL		
Date:	13-Mar-17	Next Due Date:			12-May	12-May-17	
Equipment No.:	quipment No.: A-01-37		_	Serial No.	Serial No. 1704		-
es subjects to enhance the contraction	Confirmation of the second of	a files a trauta a asas a serentin	and the second s				
			Ambient (Condition			
Temperatu	re, Ta (K)	292	Pressure, Pa	ı (mmHg)		764.5	
			ic T				
Serial	No:	0993	ifice Transfer Sta Slope, mc (CFM)		Intercep	ot ho	-0.04890
Last Calibra		28-Feb-17	, 		$= [\Delta H \times (Pa/76)]$		
Next Calibr		27-Feb-18	₹		(Pa/760) x (298/		
Next Callor	ation Date.	27-1-0-10		Quid ([ZII X	(1 al 700) x (2507	x 10,1 DC, 1	
			Calibration of	TSP Sampler			
G.19 d		O	fice			HVS	<u> </u>
Calibration Point	ΔH (orifice), in. of water	1	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		/760) x (298/Ta)] ^{1/2} Y-axis
I	17.1		4.19	73.37	9.0		3.04
2	13.6		3.74	65.52	7.1		2.70
3	10.7		3.31	58.21	5.9		2.46
4	6.4		2.56	45.21	3.5		1.90
5	4.3		2.10	37.21	2.3		1.54
By Linear Regr Slope , mw =	ression of Y on X 0.0412			Intercept, bw :	0.021	. 4	
Correlation c		0.	9991	_			•
	Coefficient < 0.99			-			
			9.3	alculation			
From the TCD Fi	ield Calibration C	himza taka Osta		ансимиол «в. «,		net to a new official war	
	sion Equation, th						
Trom the Region	sion Equation, in	c i value acc	ording to				
		mw x ($\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	(Pa/760) x (29	8/Ta)] ^{1/2}		
			2				
Therefore, Se	et Point; W = (my	wx Qstd + bw)	² x (760 / Pa) x (Ta/298) =	3.14		
Remarks:							
Romans.							
·							•
Conducted by 1	RE MAN HEL	-Signature	ho	•		Date:	13- 3-2017
	W.K. Tang		Marin's	`		Date:	13/3/m
Checked by.	V VIC WINX	Signaturo.				Date.	

File No. MA16034/37/0005

Station:	AM5(A) - DSD	Desilting Comp	oound	Operator:	HL	ē.	_
Date:	10-May-17		_ 1	Next Due Date:	9-Jul-17		
Equipment No.	: <u>A-01-37</u>		-	Serial No.	1704	3	-
			Ambient C	Condition			
Temperat	ure, Ta (K)	301.8	Pressure, Pa	(mmHg)		763.7	
	-						
		01	ifice Transfer Sta	ndard Informa	ition		
Seria	al No.:	0993	Slope, mc (CFM)		Intercep		-0.04890
Last Calib	ration Date:	28-Feb-17			$= [\Delta H \times (Pa/76)]$		
Next Calib	ration Date:	27-Feb-18		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Ta)] ^{1/2} -bc}	/ mc
			Calibration of	TSP Sampler			
Calibration		0	rfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (F	^P a/760) x (298/Ta)] ^{1/2} Y-axis
1	17.2		4.13	72.35	9.0		2.99
2	13.5		3.66	64.20	7.1		2.65
3	10.8		3.27	57.51	5.8		2.40
4	6.7		2.58	45.48	3.4		1.84
5	4.2		2.04	36.18	2.4		1.54
Slope, mw =	0.0408 0.0408 coefficient* = Coefficient < 0.99	- 0.	9985	Intercept, bw :	0.035	59	_
		Human and Poster	Set Point C	alculation			
From the TSP I	Field Calibration (Curve, take Qsto	l = 43 CFM				
	ession Equation, th						
					1/2		
		mw x ($Qstd + bw = [\Delta W]$	(Pa/760) x (29	²⁸ /Ta)] ^{1/2}		
Therefore 9	Set Point; W = (m	w x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =	3.23	ł	
Therefore, E							 8
Therefore, e				•			
	5			-			
Remarks:							

File No. MA16034/07/0004

Station	AM6 - Park Cen	tral		Operator:	WK	
Date:	31-Mar-17		Next Due Date:		30-May	<i>r</i> -17
Equipment No.:	A-01-07		_		10592	
F				•••		
			Ambient (Condition		
Temperatur	e, Ta (K)	294.4	Pressure, Pa	ı (mmHg)		763.2
			ifice Transfer Sta	ndord Inform		
Serial 1	No.:	0993	Slope, mc (CFM)		Intercep	t, bc -0.04890
Last Calibra		28-Feb-17			$c = [\Delta H \times (Pa/760]]$	
Next Calibra		27-Feb-18			(Pa/760) x (298/	
				C Q		
			Calibration of	TSP Sampler		
Calibration		0	rfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y-axis
1	11.8		3.46	60.79	7.5	2.76
2	9.7		3.14	55.20	5.9	2.45
3	7.4		2.74	48.32	4.7	2.19
4	5.2		2.30	40.64	3.3	1.83
5	3.3		1.83	32.55	2.1	1.46
By Linear Regre Slope , mw =				Intercept, bw :	-0.010	5
Correlation co		0.9	9990	1 /		
*If Correlation Co		0, check and re	calibrate.	<u>-</u>		
				- 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
From the TSP Fie	Ad Calibration C			alculation		
From the Regress		,				
rion die Regiess	ion Equation, the	e i vaiue acc	ording to			
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}	
			2			
Therefore, Set	Point; $W = (mv)$	v x Qstd + bw)	² x (760 / Pa) x (Ta / 298)=	3.68	
Remarks:						
Conducted by:	Wh Tang	Signature:	Kum	;		Date: 3(13/17
Checked by:	K 1 1	Signature:	/ 1,000	74		Date: 31 March Nolt
			···· (,	/		St Mount (Sp)

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Fe Operator	•	Rootsmeter Orifice I.I	•	438320 0993 	Ta (K) - Pa (mm) -	294 - 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3860 0.9910 0.8840 0.8430 0.6970	3.2 6.4 7.9 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9904 0.9894 0.9842	0.7191 1.0015 1.1204 1.1737 1.4120	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9894 0.9884 0.9832	0.7184 1.0005 1.1192 1.1725 1.4106	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop intercept coefficie	= (b) $=$	2.04055 -0.04890 0.99995		Qa slope intercept coefficie	= (b) $=$	1.27776 -0.03059 0.99995
y axis =	SQRT [H20 (I	Pa/760)(298/	ra)]	y axis =	SQRT [H2O([a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170217 Date of Issue: 2017-02-20

Date Received: 2017-02-17 Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-08-19

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II: Davis Instruments

Manufacturer Model No.

: 7440

Serial No.

: MC01010A44

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

Test Report No.: C/170217

Date of Issue: 2017-02-20

Date Received: 2017-02-17

Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-08-19

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90.3	90	0.3
135	135	0
180.1	180	0.1
224.8	225	-0.2
270.1	270	0.1
315	315	0
360	360	0

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/A/170303C
Date of Issue:	2017-03-06
Date Received:	2017-03-03
Date Tested:	2017-03-03
Date Completed:	2017-03-06
Next Due Date:	2017-05-05

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 541146

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 625 CPM

Equipment No.

: A-02-07

Test Conditions:

Room Temperature

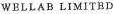
: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

T C C C C C C C C C C C C C C C C C C C	
Correlation Factor (CF)	0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170502
Date of Issue: 2017-05-04
Date Received: 2017-05-02
Date Tested: 2017-05-02
Date Completed: 2017-05-04
Next Due Date: 2017-07-03

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer: SibataModel No.: LD-3BSerial No.: 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³
Sen. Adjustment Scale Setting : 551 CPM
Equipment No. : A-02-10

Test Conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 63 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0037

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170419C
Date of Issue:	2017-04-22
Date Received:	2017-04-19
Date Tested:	2017-04-19
Date Completed:	2017-04-22
Next Due Date:	2017-06-21

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020410

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-03

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 62 %

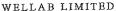
Test Specifications & Methodology:

1. Înstruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)


1.153

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170407K
Date of Issue: 2017-04-10
Date Received: 2017-04-07
Date Tested: 2017-04-07
Date Completed: 2017-04-10
Next Due Date: 2017-06-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020411

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-04

Test Conditions:

Room Temperature

: 22 degree Celsius

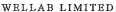
Relative Humidity

: 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF) 1.334

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170407 Date of Issue: 2017-04-10

Date Received: 2017-04-07

Date Tested: 2017-04-07

Date Completed: 2017-04-10

Next Due Date:

2017-06-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 61 %

Test Specifications & Methodology:


- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

1.187 Correlation Factor (CF)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170407A
Date of Issue:	2017-04-10
Date Received:	2017-04-07
Date Tested:	2017-04-07
Date Completed:	2017-04-10
Next Due Date:	2017-06-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer Model No. : Hal Technology : Hal-HPC301

Serial No.

: 3011701011

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-02

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

2100112001	
Correlation Factor (CF)	1.170

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170407F
Date of Issue: 2017-04-10
Date Received: 2017-04-07
Date Tested: 2017-04-07
Date Completed: 2017-04-10
Next Due Date: 2017-06-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701012

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-07

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.263

For and On Behalf of WELLAB Ltd.

PREPARED AND CHECKED BY:

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170407J Date of Issue: 2017-04-10

Date Received: 2017-04-07

Date Tested: 2017-04-07

Date Completed: 2017-04-10

Next Due Date: 2017-06-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Handheld Particle Counter

Manufacturer: Hal TechnologyModel No.: Hal-HPC301Serial No.: 3011701010

Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-27-10

Test Conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

11201	Correlation Factor (CF)	1.204
-------	-------------------------	-------

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160917B

Date of Issue: 2016-09-19 Date Received: 2016-09-17

Date Tested: 2016-09-17

Date Completed: 2016-09-19

Next Due Date: 2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12553

Microphone No.

: 35222

Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160917C
Date of Issue:	2016-09-19
Date Received:	2016-09-17
Date Tested:	2016-09-17
Date Completed:	2016-09-19
Next Due Date:	2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 955
Serial No. : 12563
Microphone No. : 34377
Equipment No. : N-08-03

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161230
Date of Issue: 2017-01-03
Date Received: 2016-12-30
Date Tested: 2016-12-30
Date Completed: 2017-01-03
Next Due Date: 2018-01-02

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 955

Serial No. Microphone No. Equipment No.

: 35222 : N-08-05

: 14303

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

Remark: 1)This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE
Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160826A Date of Issue: 2016-08-29 Date Received: 2016-08-26 Date Tested: 2016-08-26 Date Completed: 2016-08-29 Next Due Date: 2017-08-28

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No. Serial No.

: SVAN 957 : 21455

Microphone No. Equipment No.

: 43730 : N-08-07

Test conditions:

Room Temperatre

: 25 degree Celsius

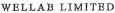
Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:


In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160819C
Date of Issue: 2016-08-22
Date Received: 2016-08-19
Date Tested: 2016-08-19
Date Completed: 2016-08-22
Next Due Date: 2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK

Model No. Serial No. : SVAN 957 : 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161128
Date of Issue:	2016-11-30
Date Received:	2016-11-28
Date Tested:	2016-11-28
Date Completed:	2016-11-30
Next Due Date:	2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 957

Serial No.

: 23853 : 48530

Microphone No. Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160919
Date of Issue:	2016-09-21
Date Received:	2016-09-19
Date Tested:	2016-09-19
Date Completed:	2016-09-21
Next Due Date:	2017-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 977
Serial No. : 45467
Microphone No. : 62838
Equipment No. : N-08-13

Test conditions:

Room Temperatre : 22 degree Celsius

Relative Humidity : 56%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161216A
Date of Issue: 2016-12-19
Date Received: 2016-12-16
Date Tested: 2016-12-16
Date Completed: 2016-12-19
Next Due Date: 2017-12-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

:BSWA

Model No.

:BSWA 801

Serial No. Equipment No.

: 35921 : N-13-02

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930A
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK

Serial No.

: SV30A : 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

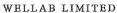
: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160930B

Date of Issue: 2016-10-03

Date Received: 2016-09-30

Date Tested: 2016-09-30

Date Completed: 2016-10-03

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2017-10-02

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

WELLAB LIMITED

Rriss 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong,
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161104/1
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170410
Date of Issue: 2017-04-10
Date Received: 2017-04-10
Date Tested: 2017-04-10
Date Completed: 2017-04-10
Next Due Date: 2017-07-09

ATTN: Miss Mei Ling Tang

Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description : Multiparameter Water Quality Probe

Manufacturer : Aquaread Ltd Model No. : AP-2000-D Serial No. : 122251620 Equipment No. : W.18.09

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 59 %

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

 Test Report No.:
 C/W/170410

 Date of Issue:
 2017-04-10

 Date Received:
 2017-04-10

 Date Tested:
 2017-04-10

 Date Completed:
 2017-04-10

 Next Due Date:
 2017-07-09

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.01	4.05	4.01 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.88	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 ± 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
Zobell Solution	228.7	229 <u>+</u> 10	Pass

D.O. performance checking

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.40	8.43	Difference between Titration	Pass
		value and instrument reading	
		<0.2mg/L	

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Salinity, ppt		Acceptable range	Comment
Instrument Reading	Theoretical Value	30.0 ± 3	Pass
30.3	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2668	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.2	-0.1	N/A

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170410A Date of Issue: 2017-04-10 Date Received: 2017-04-10 Date Tested: 2017-04-10 Date Completed: 2017-04-10 Next Due Date:

Page:

1 of 2

2017-07-09

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description : Multiparameter Water Quality Probe

Manufacturer : Aquaread Ltd Model No. : AP-2000-D Serial No. :122251520 Equipment No. : W.18.12

Test conditions:

: 21 degree Celsius Room Temperatre

: 59 % Relative Humidity

Test Specifications:

Performance checking for pH, Oxidation Reduction Potential (ORP), Dissolved

oxygen (D.O.), Turbidity, Salinity, Conductivity and Temperature

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

 Test Report No.:
 C/W/170410A

 Date of Issue:
 2017-04-10

 Date Received:
 2017-04-10

 Date Tested:
 2017-04-10

 Date Completed:
 2017-04-10

 Next Due Date:
 2017-07-09

Page:

2 of 2

Certificate of Calibration

Results:

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.01	4.03	4.01 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.89	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.15	9.18 <u>+</u> 0.10	Pass

ORP performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment	
Zobell Solution	228.3	229 <u>+</u> 10	Pass	

D.O. performance checking

	Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
L	(mg/L)			
	8.40	8.42	Difference between Titration	Pass
			value and instrument reading	
			<0.2mg/L	

Turbidity check

Turbidity solution (NTU)	Instrument Readings (NTU)	Accetance Criteria	Comment
0.00	0.00	0.00 ± 0.05	Pass
100	100	100 ± 5	Pass
1000	1000	1000 ± 100	Pass

Salinity Performance check

Sal	inity, ppt	Acceptable range	Comment
Instrument Reading Theoretical Value		30.0 ± 3	Pass
30.9	30.0		

Conductivity performance checking

	Instrument Readings (mV)	Accetance Criteria	Comment
KCl stock solution	2644	2442-2698	Pass
(2570 μs/cm)			

Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
24.1	24.2	-0.1	N/A

Calibration Certificate

Number: CCP/66453

Customer Name:

Far East Metal & Hardware Company

Contact Person:

Ms. Cherry Yiu

Detector Model:

Crowcon Tetra Portable Gas Detector

Serial Number:

100486262/01-020

Sensor	Measuring	Alarm Level Settings					
Type	Range	Alarm 1	Alarm 2	STEL	LTEL	Test Gas	Result
CH4	0 to 100%LEL	20	40	NA	NA	50%LEL	Passed
H2S	0 to 100ppm	5	10	10	5	25ppm	Passed
O2	0 to 25%v/v	19.0	23.5	NA	NA	18.0%v/v	Passed
CO	0 to 500ppm	30	100	200	30	100ppm	Passed

Next Calibration Date: 5th January 2018

Remarks:

- "Passed" refers to the detector has been successfully calibrated to meet with manufacturer tolerance of the instrument & sensor specification and repeatability ±5% FSD.
- 2. The above equipment has been tested and calibrated in accordance with procedures referred to in Crowcon's BSI validated ISO9001 quality manual. Test equipment used has been factory calibrated and is traceable to national standards. Canned calibration gas has been prepared in accordance with BS4559 and original gas mixture has been prepared using NPL (UK) certified Gravimetric Standard. Gas generator has been tested to meet with: Mil Std 45662A / ANSI/NCSL Z540-1

Mark Chan

Technical Service Manager

6th January 2017

Hong Hong Hong Hasa Hasa

Leica Geosystems Calibration Certificate Blue

Calibration Certificate Blue without measurement values issued by Authorised Service Centre

Product

DNA03 digital level

Certificate No.

347062-18012017

Article No.

723289

Inspection Date

18.01.2017

Serial No.

347062

Order No.

501047397

Equipment No.

5937807

PO No.

PO

Issued by

Authorised Service Centre Leica Geosystems Ltd.

Kowloon, Hong Kong

Ordered by

LEIGHTON - CHINA STATE J.V.

HONG KONG Hongkong

Hongkong

Customer

LEIGHTON - CHINA STATE J.V.

HONG KONG

Hongkong

Compliance

The Calibration Certificate Blue without measurement values issued by Authorised Service Centre corresponds to the Producer Inspection Certificate O in accordance with DIN 55 350 Part 18-4.2.1.

Certificate

We hereby certify that the product described has been tested and complies with the specifications of the product. The test equipment used is traceable to national standards or to recognized procedures. This is established by our Quality Management System, audited and certified to ISO 9001 by an independent national accredited certification body.

Leica Geosystems Ltd.

18.01.2017

Stella Kam Operations Manager

Jacky Ng Service Manager

CALIBRATION CERTIFICATE

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16957)

Model No.: 716A0403 Serial No.: BE17505

Calibration Date: 5 April 2017 Next Calibration Date: 5 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 5 April 2017

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17505)

Part Number: 714A9701
Serial No.: BG16957
Calibration Date: 5 April 2017
Next Calibration Date: 5 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 5 April 2017

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14847)

Model No.: 716A0403

Serial No.: BE17904

Calibration Date: 6 April 2017

Next Calibration Date: 6 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 6 April 2017

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17904)

Part Number: 714A9701
Serial No.: BG14847
Calibration Date: 6 April 2017
Next Calibration Date: 6 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 6 April 2017

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16512)

Model No.: 716A0403 Serial No.: BE13853

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13853)

Part Number: 714A9701 Serial No.: BG16512

Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16515)

Model No.: 716A0403 Serial No.: BE16354

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16354)

Part Number: 714A9701 Serial No.: BG16515

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16959)

Model No.: 716A0403 Serial No.: BE17506

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17506)

Part Number: 714A9701
Serial No.: BG16959

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14848)

Model No.: 716A0403 Serial No.: BE15897

Calibration Date: 10 April 2017 Next Calibration Date: 10 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15897)

Part Number: 714A9701
Serial No.: BG14848

Calibration Date: 10 April 2017 Next Calibration Date: 10 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14849)

 Model No.:
 716A0403

 Serial No.:
 BE15892

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15892)

Part Number: 714A9701 Serial No.: BG14849

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16514)

Model No.: 716A0403

Serial No.: BE17905

Calibration Date: 11 April 2017

Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17905)

Part Number: 714A9701
Serial No.: BG16514
Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14851)

Model No.: 716A0403 Serial No.: BE17907

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17907)

 Part Number:
 714A9701

 Serial No.:
 BG14851

Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 May 2017	22.6 – 29.5	81	0.0
2 May 2017	24.3 – 26.1	85	0.0
3 May 2017	25.6 – 31.3	82	Trace
4 May 2017	22.9 – 27.6	90	42.5
5 May 2017	23.4 – 29.8	81	0.0
6 May 2017	25.3 – 31.1	79	Trace
7 May 2017	24.8 – 27.7	86	1.8
8 May 2017	23.1 – 28.6	83	9.2
9 May 2017	22.6 – 29.3	81	10.8
10 May 2017	25.3 – 29.6	81	0.0
11 May 2017	25.7 – 31.6	81	0.0
12 May 2017	26.0 – 30.7	76	Trace
13 May 2017	24.5 – 26.6	80	4.7
14 May 2017	24.8 – 29.5	85	Trace
15 May 2017	24.6 – 27.0	94	38.5
16 May 2017	23.6 – 26.6	85	3.0
17 May 2017	23.8 – 29.9	77	0.0
18 May 2017	24.3 – 27.4	74	0.1
19 May 2017	23.7 – 26.0	80	0.7

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 May 2017	22.7 – 24.8	88	0.3
21 May 2017	23.0 – 24.9	90	4.4
22 May 2017	23.8 – 25.2	93	5.6
23 May 2017	24.6 – 28.5	93	4.1
24 May 2017	24.2 – 26.2	95	273.6
25 May 2017	23.9 – 28.5	79	0.0
26 May 2017	23.9 – 26.8	76	0.0
27 May 2017	24.0 – 30.4	65	Trace
28 May 2017	24.8 – 30.5	68	0.0
29 May 2017	21.4 – 30.3	74	0.0
30 May 2017	25.1 – 30.9	80	Trace
31 May 2017	25.6 – 31.3	79	0.0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

II. Mean Wind	Speed and Wind	Direction	
Date	Time	Wind Speed m/s	Direction
1-May-2017	0:00	3.6	SE
1-May-2017	1:00	3.5	NE
1-May-2017	2:00	3.6	NNE
1-May-2017	3:00	3.6	NE
1-May-2017	4:00	3.6	ENE
1-May-2017	5:00	4.5	Е
1-May-2017	6:00	3.6	ESE
1-May-2017	7:00	4.5	SSW
1-May-2017	8:00	4.1	WNW
1-May-2017	9:00	4.5	SW
1-May-2017	10:00	4.1	WSW
1-May-2017	11:00	4.5	SSW
1-May-2017	12:00	4.5	WNW
1-May-2017	13:00	4.5	SE
1-May-2017	14:00	3.6	NE
1-May-2017	15:00	3.9	ESE
1-May-2017	16:00	3.7	N
1-May-2017	17:00	3.5	NNE
1-May-2017	18:00	2.9	ENE
1-May-2017	19:00	3.6	ENE
1-May-2017	20:00	3.3	SE
1-May-2017	21:00	3.8	S
1-May-2017	22:00	3.7	SE
1-May-2017	23:00	3.6	SSE
2-May-2017	0:00	3.8	SSE
2-May-2017	1:00	3.8	S
2-May-2017	2:00	4.1	NE
2-May-2017	3:00	4.1	ESE
2-May-2017	4:00	3.5	SE
2-May-2017	5:00	3.9	Е
2-May-2017	6:00	3.8	N
2-May-2017	7:00	4.3	N
2-May-2017	8:00	4	NE
2-May-2017	9:00	3.1	NE
	•		

II. Mean Win	nd Speed and Wind D	Direction	
2-May-2017	10:00	3.6	SE
2-May-2017	11:00	3.9	NE
2-May-2017	12:00	3.2	SE
2-May-2017	13:00	4.1	ENE
2-May-2017	14:00	4.2	NE
2-May-2017	15:00	2.5	S
2-May-2017	16:00	3.2	W
2-May-2017	17:00	2.7	NE
2-May-2017	18:00	2.7	NE
2-May-2017	19:00	2.5	ESE
2-May-2017	20:00	2.6	E
2-May-2017	21:00	2.5	NE
2-May-2017	22:00	2.8	E
2-May-2017	23:00	2.8	E
3-May-2017	0:00	2.8	NE
3-May-2017	1:00	2.8	SE
3-May-2017	2:00	2.5	ENE
3-May-2017	3:00	2.6	NNE
3-May-2017	4:00	2.1	WSW
3-May-2017	5:00	2	SW
3-May-2017	6:00	2.5	E
3-May-2017	7:00	1.6	SSW
3-May-2017	8:00	2.6	ENE
3-May-2017	9:00	2.8	WNW
3-May-2017	10:00	2.7	WNW
3-May-2017	11:00	3	NE
3-May-2017	12:00	3.6	ENE
3-May-2017	13:00	3.8	ENE
3-May-2017	14:00	3.8	SE
3-May-2017	15:00	3.6	N
3-May-2017	16:00	3.9	ENE
3-May-2017	17:00	2.8	NNE
3-May-2017	18:00	2.5	N
3-May-2017	19:00	1.8	ENE
3-May-2017	20:00	1.6	ENE

3-May-2017 21:00 2.5 ENE 3-May-2017 22:00 1.6 SW 3-May-2017 23:00 2.5 W 4-May-2017 0:00 2 ESE 4-May-2017 1:00 3.3 WSW 4-May-2017 2:00 2.8 W 4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 15:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00	II. Mean Wind	l Speed and Wind D	Pirection	
3-May-2017 23:00 2.5 W 4-May-2017 0:00 2 ESE 4-May-2017 1:00 3.3 WSW 4-May-2017 2:00 2.8 W 4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 16:00 3.4 N 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00	3-May-2017	21:00	2.5	ENE
4-May-2017 0:00 2 ESE 4-May-2017 1:00 3.3 WSW 4-May-2017 2:00 2.8 W 4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00	3-May-2017	22:00	1.6	SW
4-May-2017 1:00 3.3 WSW 4-May-2017 2:00 2.8 W 4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 15:00 3.4 NNE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 20:00 2.2 NE	3-May-2017	23:00	2.5	W
4-May-2017 2:00 2.8 W 4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	0:00	2	ESE
4-May-2017 3:00 3.3 W 4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 19:00 2.7 NE 4-May-2017 19:00 2.7 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	1:00	3.3	WSW
4-May-2017 4:00 2 W 4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	2:00	2.8	W
4-May-2017 5:00 2 SW 4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	3:00	3.3	W
4-May-2017 6:00 2 W 4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	4:00	2	W
4-May-2017 7:00 2.5 W 4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	5:00	2	SW
4-May-2017 8:00 2.4 SSW 4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	6:00	2	W
4-May-2017 9:00 3.3 ENE 4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	7:00	2.5	W
4-May-2017 10:00 3.9 N 4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	8:00	2.4	SSW
4-May-2017 11:00 3.3 ENE 4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	9:00	3.3	ENE
4-May-2017 12:00 4.1 E 4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	10:00	3.9	N
4-May-2017 13:00 3.9 ESE 4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	11:00	3.3	ENE
4-May-2017 14:00 3.4 NNE 4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	12:00	4.1	E
4-May-2017 15:00 3.3 ENE 4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	13:00	3.9	ESE
4-May-2017 16:00 3.4 N 4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	14:00	3.4	NNE
4-May-2017 17:00 3 ENE 4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	15:00	3.3	ENE
4-May-2017 18:00 3.3 NNE 4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	16:00	3.4	N
4-May-2017 19:00 2.7 NE 4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	17:00	3	ENE
4-May-2017 20:00 2.2 NE 4-May-2017 21:00 3.2 ENE	4-May-2017	18:00	3.3	NNE
4-May-2017 21:00 3.2 ENE	4-May-2017	19:00	2.7	NE
	4-May-2017	20:00	2.2	NE
4-May-2017 22:00 3.2 W	4-May-2017	21:00	3.2	ENE
	4-May-2017	22:00	3.2	W
4-May-2017 23:00 2.2 WSW	4-May-2017	23:00	2.2	WSW
5-May-2017 0:00 3.1 WNW	5-May-2017	0:00	3.1	WNW
5-May-2017 1:00 3 NE	5-May-2017	1:00	3	NE
5-May-2017 2:00 2.2 WNW	5-May-2017	2:00	2.2	WNW
5-May-2017 3:00 2.6 ESE	5-May-2017	3:00	2.6	ESE
5-May-2017 4:00 2.5 ENE	5-May-2017	4:00	2.5	ENE
5-May-2017 5:00 3 ENE	5-May-2017	5:00	3	ENE
5-May-2017 6:00 2.7 ENE	5-May-2017	6:00	2.7	ENE
5-May-2017 7:00 3.4 NE	5-May-2017	7:00	3.4	NE

П.	Mean Wind	Speed and Wind D	rection	
	5-May-2017	8:00	3.2	ESE
	5-May-2017	9:00	3.2	ESE
	5-May-2017	10:00	3.6	ENE
	5-May-2017	11:00	4	ENE
	5-May-2017	12:00	4.1	NE
	5-May-2017	13:00	4.1	ENE
	5-May-2017	14:00	4	NNE
	5-May-2017	15:00	4.3	NE
	5-May-2017	16:00	4.2	SSW
	5-May-2017	17:00	4.1	N
	5-May-2017	18:00	3.5	SSE
	5-May-2017	19:00	2.9	ENE
	5-May-2017	20:00	3.3	ENE
	5-May-2017	21:00	3.2	NNE
	5-May-2017	22:00	3.5	NE
	5-May-2017	23:00	3.9	ENE
	6-May-2017	0:00	2.6	SW
	6-May-2017	1:00	3.2	SW
	6-May-2017	2:00	2.6	WNW
	6-May-2017	3:00	2.5	NW
	6-May-2017	4:00	3	ENE
	6-May-2017	5:00	2.9	NNE
	6-May-2017	6:00	2.9	ESE
	6-May-2017	7:00	2.7	ESE
	6-May-2017	8:00	3	SW
	6-May-2017	9:00	3	SSW
	6-May-2017	10:00	2.8	SW
	6-May-2017	11:00	2.8	WSW
	6-May-2017	12:00	3.6	WNW
	6-May-2017	13:00	3.2	WNW
	6-May-2017	14:00	3	SW
	6-May-2017	15:00	3.1	WSW
	6-May-2017	16:00	2.9	SSW
	6-May-2017	17:00	2.2	WNW
	6-May-2017	18:00	1.7	W

6-May-2017 19:00 1.5 SSW 6-May-2017 20:00 1.6 N 6-May-2017 21:00 2.1 NNE 6-May-2017 22:00 2.5 WNW 6-May-2017 23:00 2.6 NE 7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.7 NNE 7-May-2017 3:00 2.2 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 9:00 2.6 N 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 10:00 2.3 W 7-May-2017 11:00 2.3 W 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.6 WNW 7-May-2017 15:00 2.6 WNW 7-May-2017 15:00 2.5 WNW 7-May-2017 15:00 2.6 WNW 8-May-2017 25:00 3.3 WNW 7-May-2017 25:00 3.3 WNW 7-May-2017 25:00 2.6 WNW 8-May-2017 25:00 2.6 WNW 8-May-2017 25:00 2.6 WNW 8-May-2017 25:00 2.6 WNW 8-May-2017 15:00 2.6 WNW 8-May-2017 15:00 2.6 WNW 8-May-2017 25:00 2.6 NE 8-May-2017 3:00 2.6 NE	II. Mean Wind	Speed and Wind D	Irection	
6-May-2017 21:00 2.1 NNE 6-May-2017 22:00 2.5 WNW 6-May-2017 23:00 2.6 NE 7-May-2017 0:00 3 N 7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 9:00 2.6 N 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 10:00 2.3 WN 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 13:00 2.4 W 7-May-2017 13:00 2.6 W 7-May-2017 13:00 2.6 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 16:00 2.4 W 7-May-2017 16:00 2.5 WN 7-May-2017 16:00 2.6 WN 7-May-2017 16:00 2.6 WN 7-May-2017 16:00 2.6 WNW 7-May-2017 19:00 2.6 WNW 7-May-2017 19:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.6 NE	6-May-2017	19:00	1.5	SSW
6-May-2017 22:00 2.5 WNW 6-May-2017 23:00 2.6 NE 7-May-2017 0:00 3 N 7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 10:00 2.3 WW 7-May-2017 11:00 2.3 WW 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 WNW 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.5 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.5 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.5 WN 7-May-2017 15:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 8-May-2017 20:00 2.6 WNW 8-May-2017 20:00 2.6 NE 8-May-2017 2:00 2.6 NE	6-May-2017	20:00	1.6	N
6-May-2017 23:00 2.6 NE 7-May-2017 0:00 3 N 7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 WW 7-May-2017 12:00 2.6 W 7-May-2017 15:00 2.6 WW 7-May-2017 15:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.6 WW 7-May-2017 15:00 2.5 WNW 7-May-2017 15:00 2.6 WW 7-May-2017 15:00 2.5 WNW 7-May-2017 15:00 2.6 WNW 7-May-2017 15:00 2.6 WNW 7-May-2017 15:00 2.5 WNW 7-May-2017 15:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 2:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 2:00 2.6 NE	6-May-2017	21:00	2.1	NNE
7-May-2017 0:00 3 N 7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 10:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 18:00 2.5 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 2:00	6-May-2017	22:00	2.5	WNW
7-May-2017 1:00 2.7 NNE 7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 10:00 2.3 NNE 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 2:00 <td>6-May-2017</td> <td>23:00</td> <td>2.6</td> <td>NE</td>	6-May-2017	23:00	2.6	NE
7-May-2017 2:00 2.6 NE 7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 21:00 2 WSW 7-May-2017 21:00 <td>7-May-2017</td> <td>0:00</td> <td>3</td> <td>N</td>	7-May-2017	0:00	3	N
7-May-2017 3:00 2.2 NE 7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 20:00 2.6 WNW 7-May-2017 20:00<	7-May-2017	1:00	2.7	NNE
7-May-2017 4:00 1.7 NE 7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.5 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.6 WN 7-May-2017 15:00 2.5 WN 7-May-2017 15:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 22:00 3.3 WNW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 23:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 WNW 8-May-2017 3:00 2.6 NE	7-May-2017	2:00	2.6	NE
7-May-2017 5:00 1.6 NE 7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 1:00	7-May-2017	3:00	2.2	NE
7-May-2017 6:00 2.1 NE 7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:0	7-May-2017	4:00	1.7	NE
7-May-2017 7:00 2.4 NNE 7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 15:00 2.5 W 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 </td <td>7-May-2017</td> <td>5:00</td> <td>1.6</td> <td>NE</td>	7-May-2017	5:00	1.6	NE
7-May-2017 8:00 2.3 E 7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 1:00 2.6 NE 8-May-2017 2:00 2.6 NE	7-May-2017	6:00	2.1	NE
7-May-2017 9:00 2.6 N 7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 1:00 2.6 NE 8-May-2017 2:00 2.6 NE 8-May-2017 2:00 2.5 NE	7-May-2017	7:00	2.4	NNE
7-May-2017 10:00 2.3 NNE 7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	8:00	2.3	Е
7-May-2017 11:00 2.3 W 7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	9:00	2.6	N
7-May-2017 12:00 2.6 W 7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	10:00	2.3	NNE
7-May-2017 13:00 2.4 W 7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	11:00	2.3	W
7-May-2017 14:00 2.8 WNW 7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 WNW 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 22:00 3.3 WNW 8-May-2017 23:00 2.6 WNW 8-May-2017 23:00 2.6 WNW 8-May-2017 23:00 2.6 WNW 8-May-2017 2:00 2.6 WNW 8-May-2017 3:00 2.6 WNW 8-May-2017 3:00 2.6 NE	7-May-2017	12:00	2.6	W
7-May-2017 15:00 2.5 W 7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 23:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 WNW 8-May-2017 3:00 2.6 WNW 8-May-2017 3:00 2.6 WNW	7-May-2017	13:00	2.4	W
7-May-2017 16:00 2.4 W 7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 WSW 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE	7-May-2017	14:00	2.8	WNW
7-May-2017 17:00 2.3 WNW 7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 WNW 8-May-2017 3:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	15:00	2.5	W
7-May-2017 18:00 2.6 WNW 7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	16:00	2.4	W
7-May-2017 19:00 2.5 WNW 7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	17:00	2.3	WNW
7-May-2017 20:00 2.6 W 7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	18:00	2.6	WNW
7-May-2017 21:00 2 WSW 7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	19:00	2.5	WNW
7-May-2017 22:00 3.3 WNW 7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	20:00	2.6	W
7-May-2017 23:00 2.6 WNW 8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	21:00	2	WSW
8-May-2017 0:00 2.6 WNW 8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	22:00	3.3	WNW
8-May-2017 1:00 2.6 WNW 8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	7-May-2017	23:00	2.6	WNW
8-May-2017 2:00 2.6 NE 8-May-2017 3:00 2.5 NE	8-May-2017	0:00	2.6	WNW
8-May-2017 3:00 2.5 NE	8-May-2017	1:00	2.6	WNW
	8-May-2017	2:00	2.6	NE
8-May-2017 4:00 2.8 NE	8-May-2017	3:00	2.5	NE
	8-May-2017	4:00	2.8	NE
8-May-2017 5:00 2.7 NNE	8-May-2017	5:00	2.7	NNE

II. Mean W	ind Speed and Wind D	Irection	
8-May-2017	6:00	2.6	NNE
8-May-2017	7:00	2.6	N
8-May-2017	8:00	2.7	ENE
8-May-2017	9:00	2.8	W
8-May-2017	10:00	2.7	W
8-May-2017	11:00	3.6	ENE
8-May-2017	12:00	3.5	SE
8-May-2017	13:00	3.6	ENE
8-May-2017	14:00	3.4	ENE
8-May-2017	15:00	3.6	NE
8-May-2017	16:00	3	WNW
8-May-2017	17:00	2.6	WNW
8-May-2017	18:00	2.8	NNE
8-May-2017	19:00	3.3	ENE
8-May-2017	20:00	2.8	S
8-May-2017	21:00	2	S
8-May-2017	22:00	2	NE
8-May-2017	23:00	1.6	ESE
9-May-2017	0:00	1.6	Е
9-May-2017	1:00	1.6	NNE
9-May-2017	2:00	2	ENE
9-May-2017	3:00	2.5	WNW
9-May-2017	4:00	2	WNW
9-May-2017	5:00	1.5	WNW
9-May-2017	6:00	1.6	W
9-May-2017	7:00	2	WNW
9-May-2017	8:00	2	WNW
9-May-2017	9:00	2	W
9-May-2017	10:00	2.8	WNW
9-May-2017	11:00	3.3	WNW
9-May-2017	12:00	3.3	NNW
9-May-2017	13:00	3.5	NW
9-May-2017	14:00	3.1	SSW
9-May-2017	15:00	2.8	WSW
9-May-2017	16:00	3.3	WSW

II. Mean Wir	id Speed and Wind D	direction	
9-May-2017	17:00	2.8	WSW
9-May-2017	18:00	2.2	WSW
9-May-2017	19:00	1.2	W
9-May-2017	20:00	2.8	SSW
9-May-2017	21:00	2.5	WSW
9-May-2017	22:00	2.8	W
9-May-2017	23:00	2.5	SW
10-May-2017	0:00	2	SSW
10-May-2017	1:00	2	SW
10-May-2017	2:00	2	SW
10-May-2017	3:00	2.8	NE
10-May-2017	4:00	2.8	ESE
10-May-2017	5:00	2	NNE
10-May-2017	6:00	2	NE
10-May-2017	7:00	2.5	SSE
10-May-2017	8:00	2.5	SSE
10-May-2017	9:00	3.6	SSE
10-May-2017	10:00	3.6	SE
10-May-2017	11:00	3.3	SSE
10-May-2017	12:00	4.1	SW
10-May-2017	13:00	4.1	NE
10-May-2017	14:00	4.1	N
10-May-2017	15:00	3.3	NE
10-May-2017	16:00	3.6	N
10-May-2017	17:00	2.5	NNE
10-May-2017	18:00	2.5	NE
10-May-2017	19:00	2	ENE
10-May-2017	20:00	1	ENE
10-May-2017	21:00	0.9	NE
10-May-2017	22:00	1.2	E
10-May-2017	23:00	1.4	NE
11-May-2017	0:00	1.2	NE
11-May-2017	1:00	1.2	NE
11-May-2017	2:00	1.5	ENE
11-May-2017	3:00	1.6	ENE

П.	Mean Wind	Speed and Wind D	irection	
	11-May-2017	4:00	1.4	ENE
	11-May-2017	5:00	1.1	NE
	11-May-2017	6:00	1.1	NE
	11-May-2017	7:00	1.2	WNW
	11-May-2017	8:00	2	SE
	11-May-2017	9:00	2.5	NE
	11-May-2017	10:00	2	ENE
	11-May-2017	11:00	1.7	NE
	11-May-2017	12:00	1.6	NNE
	11-May-2017	13:00	2.5	ENE
	11-May-2017	14:00	2.5	SSE
	11-May-2017	15:00	2.3	SE
	11-May-2017	16:00	2.1	ESE
	11-May-2017	17:00	2.2	W
	11-May-2017	18:00	1.3	ENE
	11-May-2017	19:00	0.5	ENE
	11-May-2017	20:00	0.9	ENE
	11-May-2017	21:00	1	NE
	11-May-2017	22:00	1	ENE
	11-May-2017	23:00	1.1	WNW
	12-May-2017	0:00	0.5	SW
	12-May-2017	1:00	0.5	WSW
	12-May-2017	2:00	0.5	ENE
	12-May-2017	3:00	0.5	ENE
	12-May-2017	4:00	0.5	ENE
	12-May-2017	5:00	0.5	NE
	12-May-2017	6:00	0.8	NNE
	12-May-2017	7:00	0.8	N
	12-May-2017	8:00	0.8	NE
	12-May-2017	9:00	1.6	NE
	12-May-2017	10:00	1.6	NE
	12-May-2017	11:00	2.1	ENE
	12-May-2017	12:00	2.3	ENE
	12-May-2017	13:00	2.3	NE
	12-May-2017	14:00	2.2	ENE

II. Mean V	Vind Speed and	Wind Direction	
12-May-201	7 15:0	0 2.6	N
12-May-201	7 16:0	0 2.1	SE
12-May-201	7 17:0	0 1.9	NE
12-May-201	7 18:0	0 1.3	ENE
12-May-201	7 19:0	0 1	NE
12-May-201	7 20:0	0 0.8	NE
12-May-201	7 21:0	0 0.6	ENE
12-May-201	7 22:0	0 0.7	SSE
12-May-201	7 23:0	0 0.7	NE
13-May-201	7 0:00	1.2	NE
13-May-201	7 1:00	0.8	NE
13-May-201	7 2:00	1.2	NE
13-May-201	7 3:00	0.5	N
13-May-201	7 4:00	1.6	NNE
13-May-201	7 5:00	1.6	ENE
13-May-201	7 6:00	1.2	NE
13-May-201	7 7:00	1.6	SE
13-May-201	7 8:00	1.6	ESE
13-May-201	7 9:00	2.5	SSE
13-May-201	7 10:0	0 2.8	NE
13-May-201	7 11:0	0 2.7	ESE
13-May-201	7 12:0	0 2.8	ENE
13-May-201	7 13:0	0 3.3	ENE
13-May-201	7 14:0	0 4.1	W
13-May-201	7 15:0	0 2.8	WNW
13-May-201	7 16:0	0 2.5	SSW
13-May-201	7 17:0	0 3.3	WNW
13-May-201	7 18:0	0 2.5	W
13-May-201	7 19:0	0 2.5	SSW
13-May-201	7 20:0	0 2	SSW
13-May-201	7 21:0	0 1.6	WNW
13-May-201	7 22:0	0 1.6	WNW
13-May-201	7 23:0	0 2	WNW
14-May-201	7 0:00	1.6	WSW
14-May-201	7 1:00	2	S

II. Mean W	ind Speed and Wind I	Direction	
14-May-2017	2:00	2	SSW
14-May-2017	3:00	2.8	SSW
14-May-2017	4:00	2.5	W
14-May-2017	5:00	2.5	W
14-May-2017	6:00	2.5	W
14-May-2017	7:00	2.8	W
14-May-2017	8:00	3.6	W
14-May-2017	9:00	3.3	SW
14-May-2017	10:00	3.3	W
14-May-2017	11:00	2.8	W
14-May-2017	12:00	3.3	WNW
14-May-2017	13:00	3.3	WNW
14-May-2017	14:00	2.8	WNW
14-May-2017	15:00	2.8	WNW
14-May-2017	16:00	3.6	WSW
14-May-2017	17:00	2.5	W
14-May-2017	18:00	1.6	W
14-May-2017	19:00	1.6	W
14-May-2017	20:00	2	WNW
14-May-2017	21:00	2	WNW
14-May-2017	22:00	2.6	W
14-May-2017	23:00	3.3	WNW
15-May-2017	0:00	3.3	WNW
15-May-2017	1:00	4.1	NW
15-May-2017	2:00	3.6	W
15-May-2017	3:00	2.8	SSW
15-May-2017	4:00	2.5	SSW
15-May-2017	5:00	2.8	WNW
15-May-2017	6:00	2.8	WNW
15-May-2017	7:00	2.8	W
15-May-2017	8:00	2.8	NNE
15-May-2017	9:00	2.5	WNW
15-May-2017	10:00	2.9	W
15-May-2017	11:00	2.8	W
15-May-2017	12:00	3.6	WSW
	•		

II. Mean Win	d Speed and Wind D	direction	
15-May-2017	13:00	3.3	ENE
15-May-2017	14:00	2.5	WNW
15-May-2017	15:00	2.5	WNW
15-May-2017	16:00	2.8	W
15-May-2017	17:00	2.6	W
15-May-2017	18:00	2.4	WNW
15-May-2017	19:00	2.1	WNW
15-May-2017	20:00	2.5	WNW
15-May-2017	21:00	2	W
15-May-2017	22:00	2	WNW
15-May-2017	23:00	2.5	WNW
16-May-2017	0:00	2.5	WNW
16-May-2017	1:00	2.8	SW
16-May-2017	2:00	1.7	WNW
16-May-2017	3:00	1.8	WNW
16-May-2017	4:00	1.6	WNW
16-May-2017	5:00	1.8	WNW
16-May-2017	6:00	1.6	W
16-May-2017	7:00	1.6	W
16-May-2017	8:00	2	SW
16-May-2017	9:00	2	WSW
16-May-2017	10:00	1.8	SW
16-May-2017	11:00	2	SW
16-May-2017	12:00	2.1	WNW
16-May-2017	13:00	2.5	WNW
16-May-2017	14:00	2.3	WNW
16-May-2017	15:00	2.3	WNW
16-May-2017	16:00	2.1	W
16-May-2017	17:00	2	WNW
16-May-2017	18:00	1.2	WNW
16-May-2017	19:00	1.1	WNW
16-May-2017	20:00	0.8	WNW
16-May-2017	21:00	1.4	WSW
16-May-2017	22:00	1.6	SW
16-May-2017	23:00	1.2	WNW

II. Mean Wil	nd Speed and Wind L	Direction	
17-May-2017	0:00	1.6	WNW
17-May-2017	1:00	1.2	WNW
17-May-2017	2:00	1.1	WNW
17-May-2017	3:00	1.1	W
17-May-2017	4:00	0.8	SSW
17-May-2017	5:00	0.9	SW
17-May-2017	6:00	1.2	NNE
17-May-2017	7:00	1.1	WNW
17-May-2017	8:00	1.2	WNW
17-May-2017	9:00	1.2	W
17-May-2017	10:00	1.3	W
17-May-2017	11:00	2	W
17-May-2017	12:00	2.5	SSW
17-May-2017	13:00	2.1	SW
17-May-2017	14:00	2.5	SSW
17-May-2017	15:00	2	SW
17-May-2017	16:00	2	WSW
17-May-2017	17:00	1.6	W
17-May-2017	18:00	1.7	WNW
17-May-2017	19:00	1.3	WNW
17-May-2017	20:00	1.1	SW
17-May-2017	21:00	1.2	W
17-May-2017	22:00	1.2	SW
17-May-2017	23:00	1.1	SSW
18-May-2017	0:00	1.4	SW
18-May-2017	1:00	1.3	WSW
18-May-2017	2:00	1.3	WNW
18-May-2017	3:00	1.2	SW
18-May-2017	4:00	1.2	WSW
18-May-2017	5:00	1.1	SW
18-May-2017	6:00	1.2	WNW
18-May-2017	7:00	1.1	WNW
18-May-2017	8:00	1.6	WNW
18-May-2017	9:00	1.6	W
18-May-2017	10:00	2.6	WNW
	•		

II. Mean Wind	d Speed and Wind D	rection	
18-May-2017	11:00	2.9	SW
18-May-2017	12:00	3.2	SSW
18-May-2017	13:00	3.6	SSW
18-May-2017	14:00	3.1	WSW
18-May-2017	15:00	3.3	SSW
18-May-2017	16:00	3.4	SSW
18-May-2017	17:00	3.6	SSW
18-May-2017	18:00	3.6	SW
18-May-2017	19:00	3.3	SW
18-May-2017	20:00	3.6	WNW
18-May-2017	21:00	3.3	WNW
18-May-2017	22:00	4.5	WNW
18-May-2017	23:00	3.6	WNW
19-May-2017	0:00	4.1	WNW
19-May-2017	1:00	3.6	SW
19-May-2017	2:00	4.1	WSW
19-May-2017	3:00	2.8	WSW
19-May-2017	4:00	3.6	W
19-May-2017	5:00	3.6	WNW
19-May-2017	6:00	4.1	W
19-May-2017	7:00	3.6	W
19-May-2017	8:00	3.3	W
19-May-2017	9:00	4.1	WSW
19-May-2017	10:00	3.6	WSW
19-May-2017	11:00	4.1	WSW
19-May-2017	12:00	3.6	SW
19-May-2017	13:00	3.6	W
19-May-2017	14:00	3.6	W
19-May-2017	15:00	2.5	W
19-May-2017	16:00	2.4	N
19-May-2017	17:00	2.2	N
19-May-2017	18:00	1.9	W
19-May-2017	19:00	1.6	W
19-May-2017	20:00	1.5	W
19-May-2017	21:00	1.3	W
	-		

II. Mean Wind	l Speed and Wind L	Direction	
19-May-2017	22:00	1.4	W
19-May-2017	23:00	1.2	W
20-May-2017	0:00	1.2	NNE
20-May-2017	1:00	1.5	SW
20-May-2017	2:00	1.7	S
20-May-2017	3:00	1	N
20-May-2017	4:00	1.1	N
20-May-2017	5:00	0.9	N
20-May-2017	6:00	0.8	W
20-May-2017	7:00	0.8	SW
20-May-2017	8:00	0.7	W
20-May-2017	9:00	1.6	SW
20-May-2017	10:00	1.6	W
20-May-2017	11:00	2.1	SW
20-May-2017	12:00	1.6	N
20-May-2017	13:00	2.5	W
20-May-2017	14:00	2.3	W
20-May-2017	15:00	2.8	W
20-May-2017	16:00	2.6	W
20-May-2017	17:00	2.4	W
20-May-2017	18:00	2.2	SSW
20-May-2017	19:00	1.9	WSW
20-May-2017	20:00	1.6	WSW
20-May-2017	21:00	1.3	WSW
20-May-2017	22:00	1.4	WNW
20-May-2017	23:00	1.7	W
21-May-2017	0:00	1.5	W
21-May-2017	1:00	1.7	W
21-May-2017	2:00	1.5	W
21-May-2017	3:00	1.5	W
21-May-2017	4:00	1.5	W
21-May-2017	5:00	1.8	WSW
21-May-2017	6:00	3.5	W
21-May-2017	7:00	2.9	WNW
21-May-2017	8:00	2.2	W
	•	•	•

II. Mean Wind	l Speed and Wind D	direction	
21-May-2017	9:00	3.6	W
21-May-2017	10:00	4.5	W
21-May-2017	11:00	2.8	W
21-May-2017	12:00	3.3	SW
21-May-2017	13:00	3.3	SW
21-May-2017	14:00	3	WSW
21-May-2017	15:00	2.7	SW
21-May-2017	16:00	2.6	SW
21-May-2017	17:00	2.8	W
21-May-2017	18:00	3.4	SW
21-May-2017	19:00	3.9	SW
21-May-2017	20:00	3.2	SW
21-May-2017	21:00	3.6	W
21-May-2017	22:00	3.1	SW
21-May-2017	23:00	2.8	WSW
22-May-2017	0:00	3.1	WSW
22-May-2017	1:00	4.1	SW
22-May-2017	2:00	2.9	SW
22-May-2017	3:00	2.8	SW
22-May-2017	4:00	3.1	SW
22-May-2017	5:00	2.8	WSW
22-May-2017	6:00	2.5	W
22-May-2017	7:00	3.3	W
22-May-2017	8:00	3.5	W
22-May-2017	9:00	3.6	SW
22-May-2017	10:00	3.5	W
22-May-2017	11:00	3.8	SW
22-May-2017	12:00	3.8	WSW
22-May-2017	13:00	3.6	SW
22-May-2017	14:00	3.4	SW
22-May-2017	15:00	3.8	WSW
22-May-2017	16:00	4	SW
22-May-2017	17:00	3.7	WSW
22-May-2017	18:00	3.4	SW
22-May-2017	19:00	3.4	SW

II. Mean Win	d Speed and Wind D	rection	
22-May-2017	20:00	2.7	WSW
22-May-2017	21:00	3.5	WSW
22-May-2017	22:00	3.6	SSW
22-May-2017	23:00	2.5	SW
23-May-2017	0:00	2.1	WNW
23-May-2017	1:00	2.5	WNW
23-May-2017	2:00	2.2	WNW
23-May-2017	3:00	2	W
23-May-2017	4:00	2	SSE
23-May-2017	5:00	1.7	SSW
23-May-2017	6:00	2	SSW
23-May-2017	7:00	1.5	SSW
23-May-2017	8:00	2.1	SSW
23-May-2017	9:00	2.5	SSW
23-May-2017	10:00	2.6	W
23-May-2017	11:00	2.9	W
23-May-2017	12:00	3.3	W
23-May-2017	13:00	2.8	WSW
23-May-2017	14:00	2.5	WSW
23-May-2017	15:00	3	SW
23-May-2017	16:00	2.6	W
23-May-2017	17:00	2.4	W
23-May-2017	18:00	2	W
23-May-2017	19:00	1.2	WSW
23-May-2017	20:00	1.6	WSW
23-May-2017	21:00	1.6	WSW
23-May-2017	22:00	3.3	WSW
23-May-2017	23:00	3.3	W
24-May-2017	0:00	4.1	SW
24-May-2017	1:00	2.8	WSW
24-May-2017	2:00	2.8	W
24-May-2017	3:00	3.3	WNW
24-May-2017	4:00	2.8	W
24-May-2017	5:00	3.3	W
24-May-2017	6:00	2.8	N

11.	Mean Wind	Speed and Wind D	irection	
2	24-May-2017	7:00	2.4	N
2	24-May-2017	8:00	2.9	N
2	24-May-2017	9:00	3.3	NE
2	24-May-2017	10:00	4.1	N
2	24-May-2017	11:00	4.1	W
2	24-May-2017	12:00	3.3	W
2	24-May-2017	13:00	3.3	W
2	24-May-2017	14:00	3.6	W
2	24-May-2017	15:00	3.6	WSW
2	24-May-2017	16:00	2.8	W
2	24-May-2017	17:00	2.3	SW
2	24-May-2017	18:00	2.4	W
2	24-May-2017	19:00	2.5	WSW
2	24-May-2017	20:00	2.5	WSW
2	24-May-2017	21:00	2.2	W
2	24-May-2017	22:00	2.3	WSW
2	24-May-2017	23:00	2.4	WNW
2	25-May-2017	0:00	2.2	WSW
2	25-May-2017	1:00	1.6	WSW
2	25-May-2017	2:00	1.3	SW
2	25-May-2017	3:00	1.3	W
2	25-May-2017	4:00	1.4	WNW
2	25-May-2017	5:00	1.5	WNW
2	25-May-2017	6:00	1.6	W
2	25-May-2017	7:00	1.4	W
2	25-May-2017	8:00	1.6	WSW
2	25-May-2017	9:00	2.8	W
2	25-May-2017	10:00	3.6	WSW
2	25-May-2017	11:00	3.3	SW
2	25-May-2017	12:00	3.2	SW
2	25-May-2017	13:00	2.7	W
	25-May-2017	14:00	2.3	WNW
	25-May-2017	15:00	2.5	W
	25-May-2017	16:00	2.3	W
2	25-May-2017	17:00	2	NNE

II. Mean Win	id Speed and Wind D	direction	
25-May-2017	18:00	1.7	NNE
25-May-2017	19:00	1.5	W
25-May-2017	20:00	1.6	W
25-May-2017	21:00	1.3	WNW
25-May-2017	22:00	1.2	W
25-May-2017	23:00	1	WNW
26-May-2017	0:00	1.5	WNW
26-May-2017	1:00	1.5	WNW
26-May-2017	2:00	1.5	WSW
26-May-2017	3:00	1.5	SW
26-May-2017	4:00	1.5	W
26-May-2017	5:00	1.4	WNW
26-May-2017	6:00	1.1	W
26-May-2017	7:00	1.6	W
26-May-2017	8:00	2.6	WSW
26-May-2017	9:00	3	SW
26-May-2017	10:00	3.9	WSW
26-May-2017	11:00	3.9	W
26-May-2017	12:00	4.1	WSW
26-May-2017	13:00	4.1	SSW
26-May-2017	14:00	3.7	S
26-May-2017	15:00	3.8	NE
26-May-2017	16:00	2.9	W
26-May-2017	17:00	2	NNE
26-May-2017	18:00	1.8	W
26-May-2017	19:00	1.5	W
26-May-2017	20:00	1.5	SSW
26-May-2017	21:00	1.3	W
26-May-2017	22:00	2	WSW
26-May-2017	23:00	2.2	SW
27-May-2017	0:00	2.7	SSW
27-May-2017	1:00	2.4	W
27-May-2017	2:00	2.3	S
27-May-2017	3:00	2.5	SSW
27-May-2017	4:00	2.4	W

II. Mean Wind	l Speed and Wind D	rection	
27-May-2017	5:00	2	W
27-May-2017	6:00	2	W
27-May-2017	7:00	1.5	W
27-May-2017	8:00	2	N
27-May-2017	9:00	2.4	W
27-May-2017	10:00	2.9	SSW
27-May-2017	11:00	3.4	W
27-May-2017	12:00	4.1	W
27-May-2017	13:00	4.1	N
27-May-2017	14:00	3.7	N
27-May-2017	15:00	3.4	N
27-May-2017	16:00	3.1	NNE
27-May-2017	17:00	2.8	N
27-May-2017	18:00	1.9	NNE
27-May-2017	19:00	1.5	NNE
27-May-2017	20:00	1.6	NNE
27-May-2017	21:00	1.7	NNE
27-May-2017	22:00	1.4	NNE
27-May-2017	23:00	1.7	NNE
28-May-2017	0:00	1.5	NNE
28-May-2017	1:00	2	NE
28-May-2017	2:00	1.4	ENE
28-May-2017	3:00	2	NE
28-May-2017	4:00	2.2	NNE
28-May-2017	5:00	2	NE
28-May-2017	6:00	2.2	NE
28-May-2017	7:00	2.5	NNE
28-May-2017	8:00	3.1	ENE
28-May-2017	9:00	2.7	ENE
28-May-2017	10:00	3.3	W
28-May-2017	11:00	3.3	SSW
28-May-2017	12:00	2.8	W
28-May-2017	13:00	3	W
28-May-2017	14:00	2.8	W
28-May-2017	15:00	2.5	W

II. Mean Wind	l Speed and Wind D	rection	
28-May-2017	16:00	2.4	W
28-May-2017	17:00	1.9	W
28-May-2017	18:00	1.9	W
28-May-2017	19:00	1.4	N
28-May-2017	20:00	1.2	N
28-May-2017	21:00	1.5	N
28-May-2017	22:00	1.6	N
28-May-2017	23:00	1.7	N
29-May-2017	0:00	1.5	NNE
29-May-2017	1:00	1.7	NNE
29-May-2017	2:00	1.5	NNE
29-May-2017	3:00	1.7	NNE
29-May-2017	4:00	1.6	NE
29-May-2017	5:00	2.2	NE
29-May-2017	6:00	1.5	NE
29-May-2017	7:00	1.2	NE
29-May-2017	8:00	1.6	NNE
29-May-2017	9:00	2.5	NE
29-May-2017	10:00	2.8	NNE
29-May-2017	11:00	2.6	ENE
29-May-2017	12:00	2.8	NE
29-May-2017	13:00	2.5	ENE
29-May-2017	14:00	2.2	W
29-May-2017	15:00	2.5	W
29-May-2017	16:00	2.1	W
29-May-2017	17:00	1.6	W
29-May-2017	18:00	1.5	W
29-May-2017	19:00	1.1	SSW
29-May-2017	20:00	1.1	WSW
29-May-2017	21:00	1.1	SW
29-May-2017	22:00	1.1	SW
29-May-2017	23:00	1.1	W
30-May-2017	0:00	1.6	W
30-May-2017	1:00	1.3	WSW
30-May-2017	2:00	1.3	SW

II. Mean Wir	id Speed and Wind D	rection	
30-May-2017	3:00	1.3	SW
30-May-2017	4:00	1.6	SW
30-May-2017	5:00	1.8	WSW
30-May-2017	6:00	1.7	WSW
30-May-2017	7:00	1.7	SW
30-May-2017	8:00	3.3	WSW
30-May-2017	9:00	2.8	W
30-May-2017	10:00	4.1	W
30-May-2017	11:00	3.6	WNW
30-May-2017	12:00	3.3	W
30-May-2017	13:00	3.3	SW
30-May-2017	14:00	2.8	SSW
30-May-2017	15:00	2.2	SW
30-May-2017	16:00	2.5	WSW
30-May-2017	17:00	2	SW
30-May-2017	18:00	2	SSW
30-May-2017	19:00	1.5	SW
30-May-2017	20:00	1.5	WSW
30-May-2017	21:00	1.3	W
30-May-2017	22:00	1.3	W
30-May-2017	23:00	2.4	SW
31-May-2017	0:00	2.1	SSW
31-May-2017	1:00	2	SW
31-May-2017	2:00	2	SW
31-May-2017	3:00	1.4	W
31-May-2017	4:00	1.8	SW
31-May-2017	5:00	1.7	SW
31-May-2017	6:00	1.8	WSW
31-May-2017	7:00	1.9	SW
31-May-2017	8:00	1.9	WSW
31-May-2017	9:00	2	WNW
31-May-2017	10:00	1.8	W
31-May-2017	11:00	2.2	SW
31-May-2017	12:00	2.3	SSW
31-May-2017	13:00	2	SW

31-May-2017	14:00	2.2	WSW
31-May-2017	15:00	2.3	SW
31-May-2017	16:00	2.4	SW
31-May-2017	17:00	2.2	SW
31-May-2017	18:00	2.3	SW
31-May-2017	19:00	2.1	WNW
31-May-2017	20:00	2.1	WSW
31-May-2017	21:00	2.2	SW
31-May-2017	22:00	1.9	SW
31-May-2017	23:00	1.9	WNW

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (May 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-May	2-May	3-May	4-May	5-May	6-May
		24 hr TSP		1 hr TSP X3 [AM1, AM2, AM3, AM4, AM5(A) & AM6(A)] Noise [CM2, CM4, CM6(A), CM7(A), CM8(A)]	Noise [CM1, CM3, CM5]	
7-May	8-May	9-May	10-May	11-May	12-May	13-May
	24 hr TSP [AM1, AM2, AM3, AM5(A) & AM6(A)]	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4] 24 hr TSP [AM4(A)]	Noise [CM1, CM3, CM5]	24 hr TSP [AM1, AM2, AM3, AM5(A) & AM6(A)]	
14-May	15-May	16-May	17-May	18-May	19-May	20-May
	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]		Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)]	
21-May	22-May	23-May	24-May	25-May	26-May	27-May
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4] 24 hr TSP [AM4(A)]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)]	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4]	
28-May	29-May	30-May	31-May			
	24 hr TSP [AM1, AM2, AM3, AM5(A) & AM6(A)]		1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]			

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (May 2017)

Sunday	Monda	ay	Tuesday		Wedne	sday	Thurso	day	Frida	ıy	Sature	day
		1-May	2-1	May		3-May		4-May		5-May	,	6-May
):06 7:27			Mid-Flood Mid-Ebb	12:43 19:55			Mid-Ebb Mid-Flood	9:52 15:35
7-May		8-May	9-1	May		10-May		11-May		12-May		13-May
	Mid-Ebb Mid-Flood	11:07 17:18			Mid-Ebb Mid-Flood	12:10 18:42			Mid-Ebb Mid-Flood	13:11 19:58		
14-May		15-May	16-1	May		17-May		18-May		19-May		20-May
	Mid-Flood Mid-Ebb	7:44 14:39			Mid-Flood Mid-Ebb	8:50 16:15			Mid-Flood Mid-Ebb	11:12 18:17		
21-May		22-May	23-1	May		24-May		25-May		26-May		27-May
	Mid-Ebb Mid-Flood	9:50 15:35			Mid-Ebb Mid-Flood	11:12 17:33			Mid-Ebb Mid-Flood	12:40 19:20		
28-May		29-May	30-N	May		31-May						
	Mid-Flood Mid-Ebb	8:11 15:09			Mid-Flood Mid-Ebb	9:53 17:05						

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (May 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-May	2-May	3-May	4-May	5-May	6-May
7-May	8-May	9-May	10-May	11-May	12-May	13-May
7-May	o-iviay	9-1v1ay	10-141ay	11-May	12-1414	13-111149
				Groundwater Quality		
				Monitoring		
14-May	15-May	16-May	17-May	18-May	19-May	20-May
	20 2.2.2.	2 0 2.2.2.	2, 2.2.3	2.5.2.2.		
21-May	22-May	23-May	24-May	25-May	26-May	27-May
		Groundwater Quality				
		Monitoring				
		Wiemiering				
28-May	29-May	30-May	31-May			

Monitoring Location: Stream 1, Stream 2, Stream 3

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Post-Translocation Coral Monitoring Schedule (May 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-May	2-May	3-May	4-May	5-May	6-May
7-May	8-May	9-May	10-May	11-May	12-May	13-Ma
					Post-Translocation	
					Coral Monitoring	
14-May	15-May	16-May	17-May	18-May	19-May	20-Ma
V	,					
21-May	22-May	23-May	24-May	25-May	26-May	27-Ma
28-May	29-May	30-May	31-May			
20-111ay	29-1v1ay	30-141ay	31-1v1ay			

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Air Quality and Noise Monitoring Schedule (June 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jun	2-Jun	3-Jun
			7-Jun	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4] 24 hr TSP [AM4(A)]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	
4-Jun	5-Jun	6-Jun	/-Jun	8-Jun	9-Jun	10-Jun
	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)]	
11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun
		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]		
18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]		1 hr TSP X3 [AM1, AM2, AM3, AM4]	
25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	
	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	Noise [CM1, CM3, CM5, CM6(A), CM7(A)] 24 hr TSP	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (June 2017)

Sunday	Monday		Tuesday	Wednes	day	Thursday	Frida		Saturday
						1-Jun		2-Jun	3-Jun
							Mid-Flood Mid-Ebb	12:24 19:16	
4-Jun		5-Jun	6-Jun		7-Jun	8-Jun		9-Jun	10-Jun
	Mid-Ebb Mid-Flood	10:09 16:19		Mid-Ebb Mid-Flood	11:19 17:55		Mid-Ebb Mid-Flood	12:20 19:16	
11-Jun		12-Jun	13-Jun		14-Jun	15-Jun		16-Jun	17-Jun
	Mid-Flood Mid-Ebb	7:01 13:56		Mid-Flood Mid-Ebb	8:11 15:10		Mid-Flood Mid-Ebb	9:50 16:41	
18-Jun		19-Jun	20-Jun		21-Jun	22-Jun		23-Jun	24-Jun
	Mid-Ebb Mid-Flood	8:24 14:05		Mid-Ebb Mid-Flood	10:05 16:27		Mid-Ebb Mid-Flood	11:39 18:25	
25-Jun		26-Jun	27-Jun		28-Jun	29-Jun		30-Jun	
	Mid-Flood Mid-Ebb	7:10 14:06		Mid-Flood Mid-Ebb	8:47 15:44		Mid-Flood Mid-Ebb	10:38 17:26	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction **Tentative Impact Groundwater Quality Monitoring Schedule (June 2017)**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jun	2-Jun	3-Jun
4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun
				Groundwater Quality		
				Monitoring		
11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun
11 0 111	12 0 001	10 0 441	11001	10 0 011	100	1, 0011
18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun
10-Juli	19-Juii	20-Jun	21-Juli	22-Juli	23-Juli	24-Juii
			Groundwater Quality			
			Monitoring			
25 I	26 I	27 I	20 I	20 I	20 1	
25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location: Stream 1, Stream 2, Stream 3

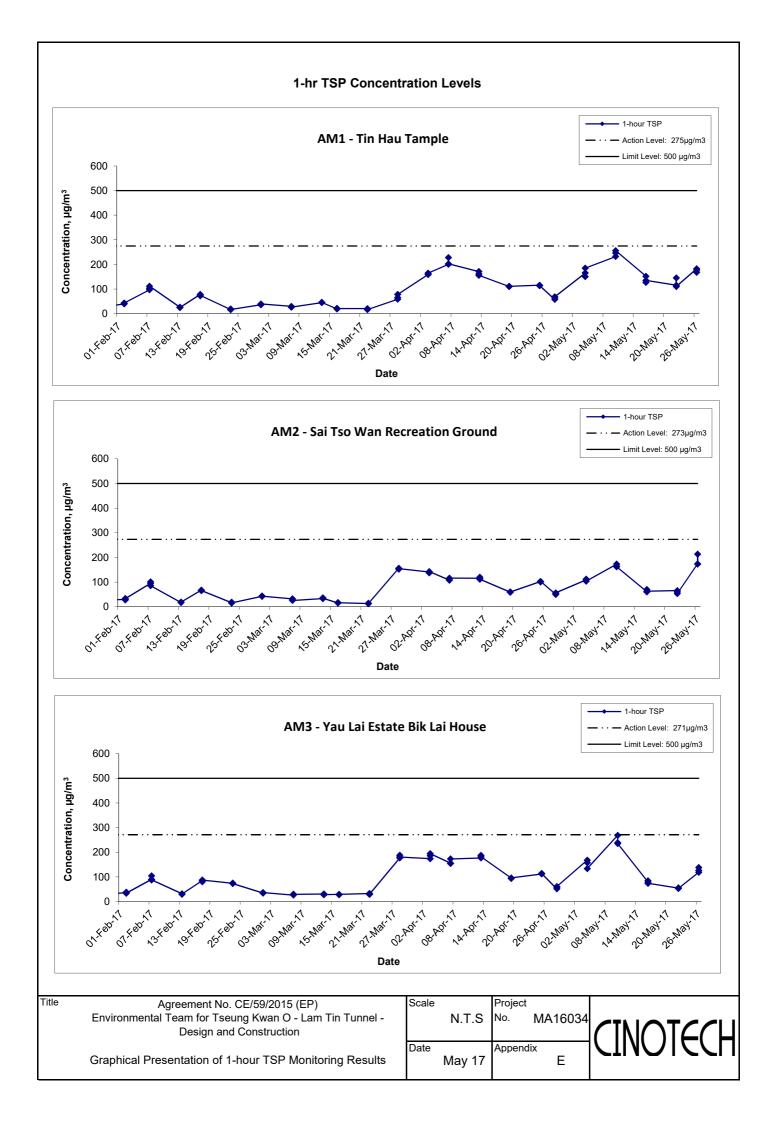
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

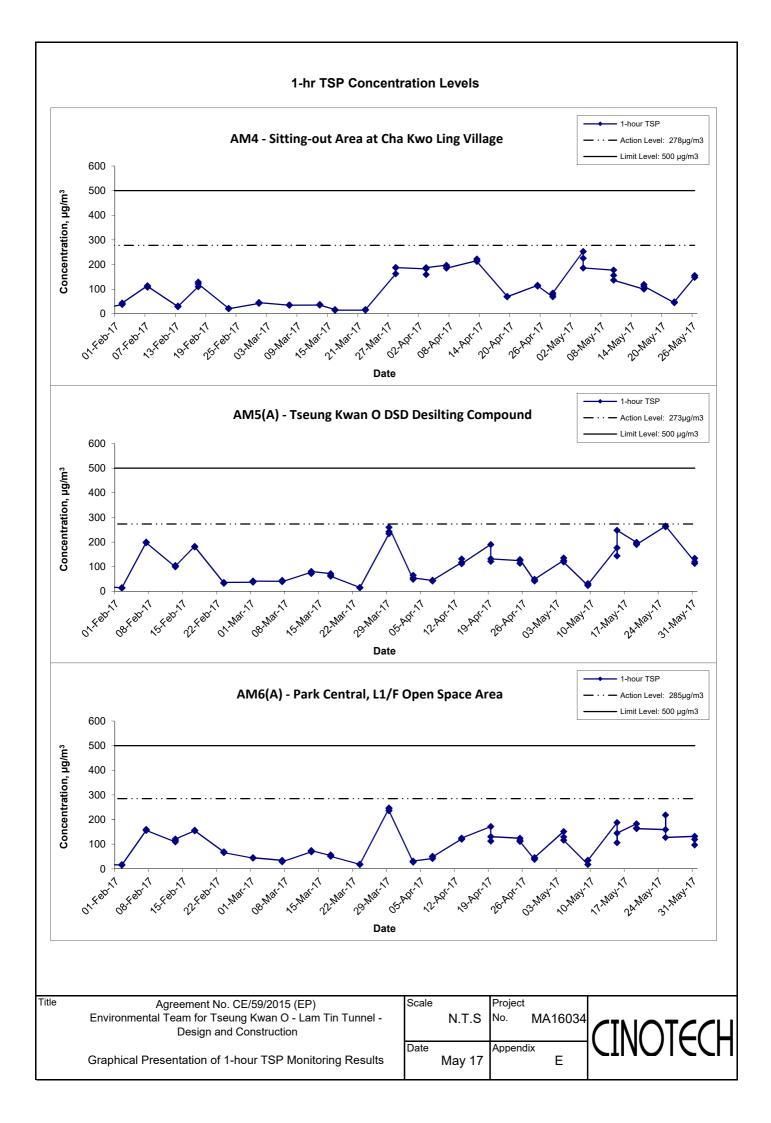
Appendix E - 1-hour TSP Monitoring Results

Location AM1 -	Tin Hau Tem	nple	
Date	Time	Weather	Particulate Concentration (µg/m³)
4-May-17	13:00	Cloudy	165.5
4-May-17	14:00	Cloudy	150.7
4-May-17	15:00	Cloudy	185.4
10-May-17	9:00	Cloudy	232.4
10-May-17	10:00	Cloudy	247.0
10-May-17	11:00	Cloudy	256.1
16-May-17	13:00	Cloudy	152.4
16-May-17	14:00	Cloudy	127.2
16-May-17	15:00	Cloudy	135.6
22-May-17	9:00	Cloudy	116.1
22-May-17	10:00	Cloudy	145.4
22-May-17	11:00	Cloudy	110.7
26-May-17	9:00	Cloudy	182.4
26-May-17	10:00	Cloudy	177.3
26-May-17	11:00	Cloudy	168.6
		Average	170.2
		Maximum	256.1
		Minimum	110.7

Location AM2 -	Sai Tso War	Recreation Ground	
Date	Time	Weather	Particulate Concentration (μg/m³)
4-May-17	9:00	Cloudy	108.7
4-May-17	10:00	Cloudy	112.0
4-May-17	11:00	Cloudy	103.4
10-May-17	13:00	Cloudy	172.8
10-May-17	14:00	Cloudy	164.7
10-May-17	15:00	Cloudy	162.2
16-May-17	9:00	Cloudy	60.1
16-May-17	10:00	Cloudy	69.5
16-May-17	11:00	Cloudy	62.6
22-May-17	14:14	Cloudy	65.4
22-May-17	15:14	Cloudy	60.0
22-May-17	16:14	Cloudy	53.4
26-May-17	9:00	Cloudy	173.7
26-May-17	10:00	Cloudy	213.1
26-May-17	11:00	Cloudy	172.9
		Average	117.0
		Maximum	213.1
		Minimum	53.4

Appendix E - 1-hour TSP Monitoring Results


Location AM3 -	Yau Lai Esta	te Bik Lai House	
Date	Time	Weather	Particulate Concentration (μg/m³)
4-May-17	13:00	Cloudy	168.0
4-May-17	14:00	Cloudy	157.4
4-May-17	15:00	Cloudy	133.6
10-May-17	13:00	Cloudy	268.5
10-May-17	14:00	Cloudy	238.6
10-May-17	15:00	Cloudy	235.5
16-May-17	14:00	Cloudy	79.1
16-May-17	15:00	Cloudy	83.8
16-May-17	16:00	Cloudy	73.6
22-May-17	13:00	Cloudy	54.2
22-May-17	14:00	Cloudy	55.3
22-May-17	15:00	Cloudy	53.0
26-May-17	13:00	Cloudy	118.5
26-May-17	14:00	Cloudy	126.4
26-May-17	15:00	Cloudy	137.7
	-	Average	132.2
		Maximum	268.5
		Minimum	53.0


Location AM4 -	Sitting-out A	rea at Cha Kwo L	ing Village
Date	Time	Weather	Particulate Concentration (μg/m³)
4-May-17	9:00	Cloudy	253.1
4-May-17	10:00	Cloudy	225.4
4-May-17	11:00	Cloudy	186.2
10-May-17	9:00	Cloudy	177.2
10-May-17	10:00	Cloudy	156.1
10-May-17	11:00	Cloudy	136.3
16-May-17	9:00	Cloudy	100.1
16-May-17	10:00	Cloudy	119.1
16-May-17	11:00	Cloudy	111.6
22-May-17	9:00	Cloudy	45.0
22-May-17	10:00	Cloudy	46.1
22-May-17	11:00	Cloudy	48.4
26-May-17	13:00	Cloudy	148.4
26-May-17	14:00	Cloudy	155.2
26-May-17	15:00	Cloudy	148.5
		Average	137.1
		Maximum	253.1
		Minimum	45.0

Appendix E - 1-hour TSP Monitoring Results

Location AM5(A) - Tseung K	wan O DSD Desil	ting Compound
Date	Time	Weather	Particulate Concentration (μg/m³)
4-May-17	13:00	Cloudy	125.2
4-May-17	14:00	Cloudy	135.4
4-May-17	15:00	Cloudy	118.9
9-May-17	9:00	Sunny	23.5
9-May-17	10:00	Sunny	31.3
9-May-17	11:00	Sunny	27.9
15-May-17	9:00	Rainy	177.0
15-May-17	10:00	Rainy	143.7
15-May-17	11:00	Rainy	247.6
19-May-17	9:00	Cloudy	199.1
19-May-17	10:00	Cloudy	194.4
19-May-17	11:00	Cloudy	190.0
25-May-17	9:00	Sunny	264.7
25-May-17	10:00	Sunny	262.1
25-May-17	11:00	Sunny	264.8
31-May-17	14:00	Sunny	119.5
31-May-17	15:00	Sunny	112.9
31-May-17	16:00	Sunny	133.7
		Average	154.0
		Maximum	264.8
		Minimum	23.5

Location AM6(A) - Park Cen	tral, L1/F Open Sp	ace Area
Date	Time	Weather	Particulate Concentration (µg/m³)
4-May-17	9:00	Cloudy	151.3
4-May-17	10:00	Cloudy	129.3
4-May-17	11:00	Cloudy	116.5
9-May-17	13:00	Sunny	17.9
9-May-17	14:00	Sunny	34.6
9-May-17	15:00	Sunny	34.6
15-May-17	13:05	Rainy	188.2
15-May-17	14:05	Rainy	106.2
15-May-17	15:05	Rainy	145.3
19-May-17	9:00	Cloudy	182.4
19-May-17	10:00	Cloudy	165.8
19-May-17	11:00	Cloudy	163.3
25-May-17	13:00	Cloudy	159.1
25-May-17	14:00	Cloudy	218.4
25-May-17	15:00	Cloudy	127.6
31-May-17	9:00	Sunny	131.8
31-May-17	10:00	Sunny	119.4
31-May-17	11:00	Sunny	97.0
		Average	127.2
		Maximum	218.4
		Minimum	17.9

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling Flow Rat		e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-May-17	Cloudy	300.0	761.0	2.8686	3.0006	0.1320	1859.0	1883.0	24.0	1.19	1.19	1.19	1711.5	77.1
8-May-17	Cloludy	299.3	759.9	3.5452	3.6998	0.1546	1883.0	1907.0	24.0	1.19	1.19	1.19	1712.4	90.3
12-May-17	Cloudy	303.1	761.2	3.3418	3.5186	0.1768	1907.0	1931.0	24.0	1.18	1.18	1.18	1701.9	103.9
18-May-17	Cloudy	299.2	761.1	3.2836	3.5187	0.2351	1931.0	1955.0	24.0	1.22	1.22	1.22	1758.7	133.7
24-May-17	Cloudy	297.6	757.3	3.3005	3.3850	0.0845	1955.0	1979.0	24.0	1.22	1.22	1.22	1759.1	48.0
29-May-17	Sunny	299.0	760.8	3.2796	3.4325	0.1529	1979.0	2003.0	24.0	1.22	1.22	1.22	1759.0	86.9
													Min	48.0
													Max	133.7
													Average	90.0

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
2-May-17	Cloudy	300.5	760.6	2.8772	3.0316	0.1544	22823.3	22847.3	24.0	1.19	1.19	1.19	1709.7	90.3
8-May-17	Cloludy	299.8	761.4	3.6111	3.8007	0.1896	22847.3	22871.3	24.0	1.19	1.19	1.19	1712.7	110.7
12-May-17	Cloudy	302.6	760.7	3.2951	3.4917	0.1966	22871.3	22895.3	24.0	1.48	1.48	1.48	2125.1	92.5
18-May-17	Cloudy	299.7	760.8	3.2611	3.4352	0.1741	22895.3	22919.3	24.0	1.48	1.48	1.48	2136.1	81.5
24-May-17	Cloudy	297.5	756.9	3.2918	3.3578	0.0660	22919.3	22943.3	24.0	1.49	1.48	1.49	2138.6	30.9
29-May-17	Sunny	299.4	760.3	3.3269	3.4246	0.0977	22943.3	22967.3	24.0	1.48	1.48	1.48	2136.5	45.7
			-			-							Min	30.9
													Max	110.7
													Average	75.3

Location AM3 - Yau Lai Estate, Bik Lai House

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-May-17	Cloudy	301.0	761.3	2.8513	2.9209	0.0696	11390.7	11414.7	24.0	1.20	1.20	1.20	1723.0	40.4
8-May-17	Cloludy	300.3	761.2	3.5888	3.6798	0.0910	11414.7	11438.7	24.0	1.20	1.20	1.20	1731.3	52.6
12-May-17	Cloudy	301.7	760.1	3.2866	3.4052	0.1186	11438.7	11462.7	24.0	1.20	1.20	1.20	1725.7	68.7
18-May-17	Cloudy	300.3	761.5	3.3042	3.4117	0.1075	11462.7	11486.7	24.0	1.20	1.20	1.20	1731.7	62.1
24-May-17	Cloudy	297.4	757.8	3.2681	3.3201	0.0520	11486.7	11510.7	24.0	1.21	1.21	1.21	1736.2	30.0
29-May-17	Sunny	299.6	418.7	3.2926	3.3891	0.0965	11510.7	11534.7	24.0	1.20	0.33	0.77	1102.7	87.5
													Min	30.0
													Max	87.5
													Average	56.9

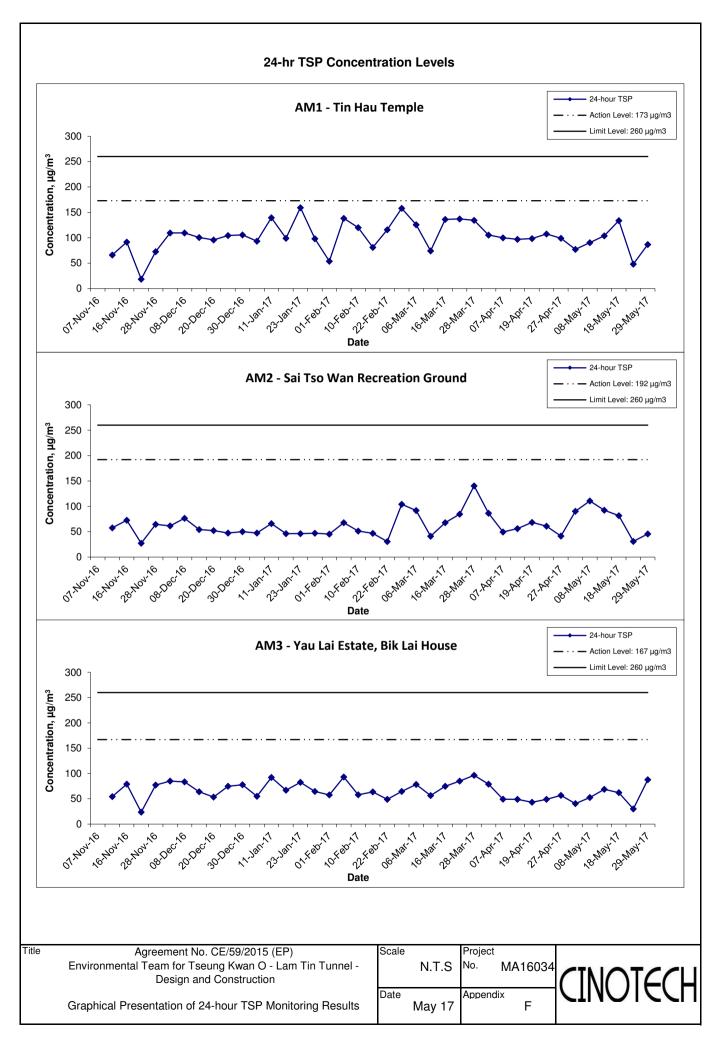
MA16034/App F - 24 hr TSP

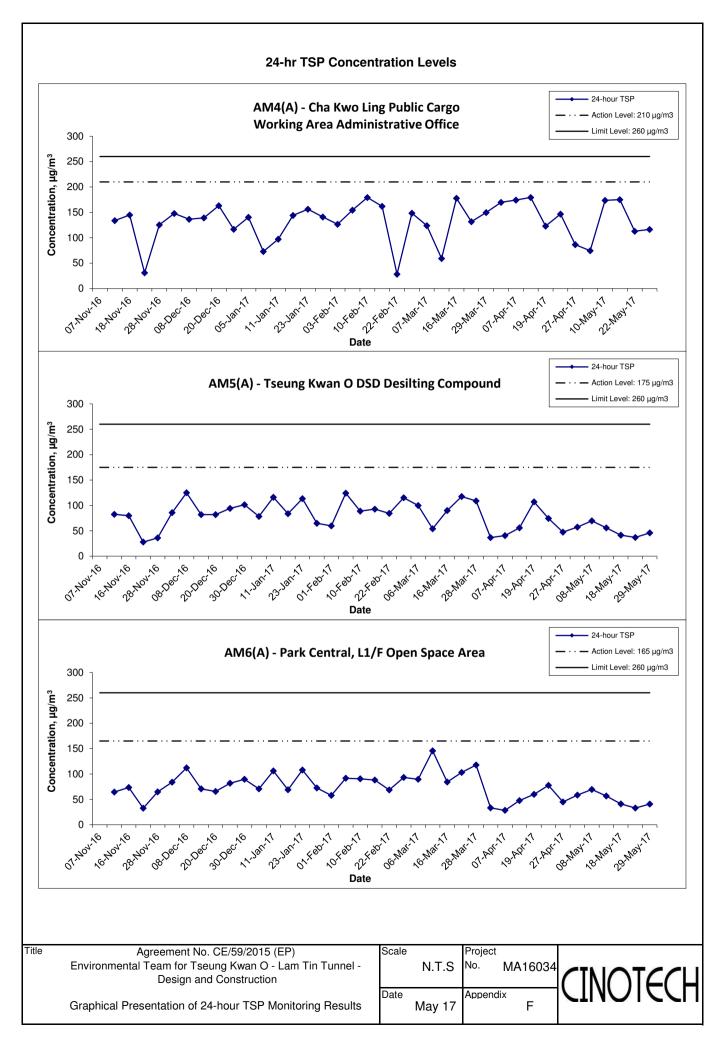
Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-May-17	Cloudy	301.7	760.1	2.8616	2.9898	0.1282	8377.2	8401.2	24.0	1.20	1.20	1.20	1724.0	74.4
10-May-17	Cloudy	301.5	762.2	3.5316	3.8318	0.3002	8401.2	8425.2	24.0	1.20	1.20	1.20	1727.2	173.8
18-May-17	Cloudy	300.5	761.7	3.5897	3.8933	0.3036	8425.2	8449.2	24.0	1.20	1.20	1.20	1733.6	175.1
22-May-17	Cloudy	297.9	758.0	3.6448	3.8406	0.1958	8449.2	8473.2	24.0	1.21	1.21	1.21	1737.3	112.7
24-May-17	Cloudy	298.4	757.7	3.2960	3.4980	0.2020	8473.2	8497.2	24.0	1.20	1.21	1.21	1735.3	116.4
													Min	74.4
													Max	175.1
													Average	130.5

Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-May-17	Cloudy	302.3	761.1	3.6149	3.7131	0.0982	22119.5	22143.5	24.0	1.19	1.19	1.19	1709.2	57.5
8-May-17	Cloludy	301.0	760.3	3.5760	3.6952	0.1192	22143.5	22167.5	24.0	1.19	1.19	1.19	1712.0	69.6
12-May-17	Cloudy	301.3	761.8	3.6189	3.7164	0.0975	22167.5	22191.5	24.0	1.21	1.21	1.21	1743.2	55.9
18-May-17	Cloudy	300.6	762.4	3.5884	3.6605	0.0721	22191.5	22215.5	24.0	1.21	1.21	1.21	1746.0	41.3
24-May-17	Cloudy	298.7	767.0	3.3316	3.3966	0.0650	22215.5	22239.5	24.0	1.22	1.22	1.22	1757.0	37.0
29-May-17	Sunny	298.8	760.3	3.5943	3.6745	0.0802	22239.5	22263.5	24.0	1.21	1.21	1.21	1748.9	45.9
			-			-							Min	37.0
													Max	69.6
													Average	51.2


Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-May-17	Cloudy	301.8	761.7	2.8076	2.9092	0.1016	15179.8	15203.8	24.0	1.20	1.20	1.20	1734.7	58.6
8-May-17	Cloludy	301.3	759.9	3.5800	3.7007	0.1207	15203.8	15227.8	24.0	1.20	1.20	1.20	1734.1	69.6
12-May-17	Cloudy	302.4	760.4	3.6368	3.7350	0.0982	15227.8	15251.8	24.0	1.20	1.20	1.20	1731.5	56.7
18-May-17	Cloudy	301.5	761.6	3.6174	3.6884	0.0710	15251.8	15275.8	24.0	1.21	1.20	1.21	1735.4	40.9
24-May-17	Cloudy	299.2	767.3	3.3505	3.4084	0.0579	15275.8	15299.8	24.0	1.21	1.21	1.21	1748.5	33.1
29-May-17	Sunny	298.6	761.2	3.5897	3.6610	0.0713	15299.8	15323.8	24.0	1.21	1.21	1.21	1743.3	40.9
												·	Min	33.1

69.6

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

Location CM1 -	- Nga Lai Ho	ouse, Yau Lai	Estate Phas	e 1, Yau To	ng						
					Unit:	dB (A) (30-min)					
Date	Time	Weather	Measured Noise Level Baseline Level Construction								
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
5-May-17	11:30	Cloudy	69.6	73.7	65.1		67.5				
11-May-17	11:30	Cloudy	67.4	69.5	66.3		62.9				
16-May-17	11:30	Cloudy	71.6	72.5	67.3	65.5	70.4				
18-May-17	14:45	Cloudy	71.7	73.3	70.5	05.5	70.5				
22-May-17	14:30	Cloudy	68.9	71.1	66.0		66.2				
23-May-17	14:15	Cloudy	70.0	72.2	67.5		68.1				

Location CM2	- Bik Lai Ho	use, Yau Lai I	Estate Phase	1, Yau Ton	g									
					Unit:	dB (A) (30-min)								
Date	Time	Weather	Meas	Measured Noise Level Baseline Level Construction Noise Level										
			L _{eq}	L ₁₀	L 90	L _{eq}	L_{eq}							
4-May-17	16:00	Cloudy	72.1	74.6	68.7		71.4							
10-May-17	13:05	Cloudy	66.4	67.8	64.3	62.6	63.2							
16-May-17	10:15	Cloudy	72.0 73.5 70.1 63.6 71.3											
22-May-17	13:30	Cloudy	72.1	72.1 74.0 70.2 71.4										

Location CM3	- Block S, Ya	au Lai Estate	Phase 5, Ya	u Tong										
					Unit:	dB (A) (30-min)								
Date	Time	Weather	ther Measured Noise Level Baseline Level Construction Noise Leve											
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}							
5-May-17	10:50	Cloudy	71.1	74.6	68.9		69.7							
11-May-17	10:15	Sunny	67.8	69.2	66.3	65.6	63.8							
18-May-17	15:30	Cloudy	69.9	70.3	68.3	05.0	67.9							
23-May-17	14:55	Cloudy	72.2	74.8	69.2		71.1							

Location CM4 -	Location CM4 - Tin Hau Temple, Cha Kwo Ling												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise Level										
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
4-May-17	13:00	Cloudy	66.4	68.8	61.3		64.4						
10-May-17	9:10	Cloudy	69.6	71.3	63.4	62.0	68.8						
16-May-17	13:10	Cloudy	62.0										
22-May-17	9:30	Cloudy	56.2 58.4 54.5 56.2 Measured ≦ Base										

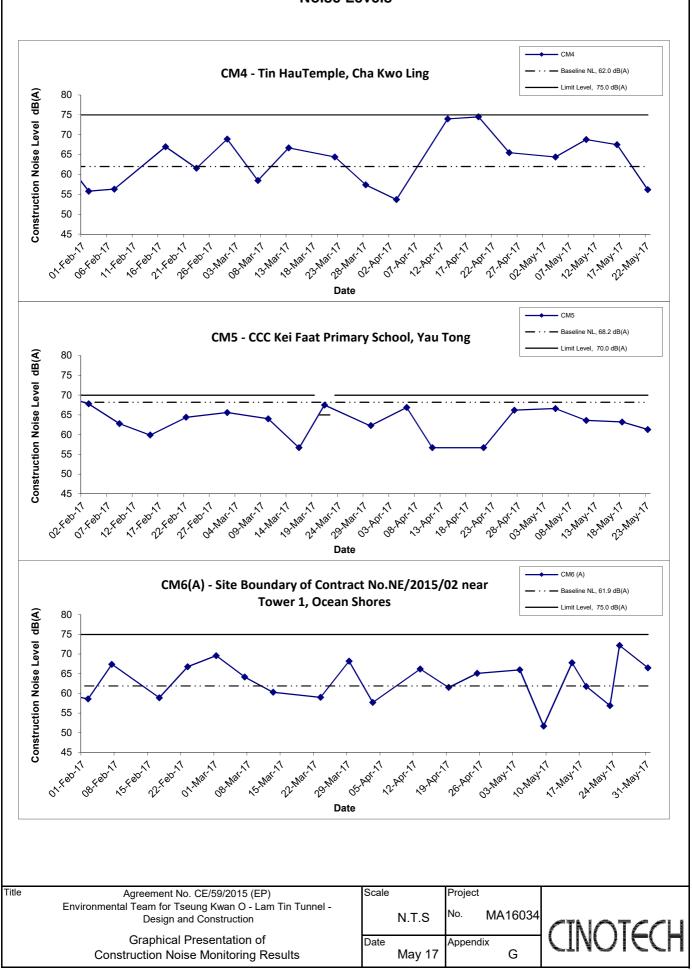
Location CM5	- CCC Kei F	aat Primary S	chool, Yau 1	Гong									
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise Le										
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
5-May-17	10:00	Cloudy	70.5	73.8	68.6		66.6						
11-May-17	9:30	Sunny	69.5	72.4	66.3	60.2	63.6						
18-May-17	16:15	Cloudy	68.2										
23-May-17	13:30	Cloudy	69.0	69.0 71.1 65.3 61.3									

MA16034/App G - Noise Cinotech

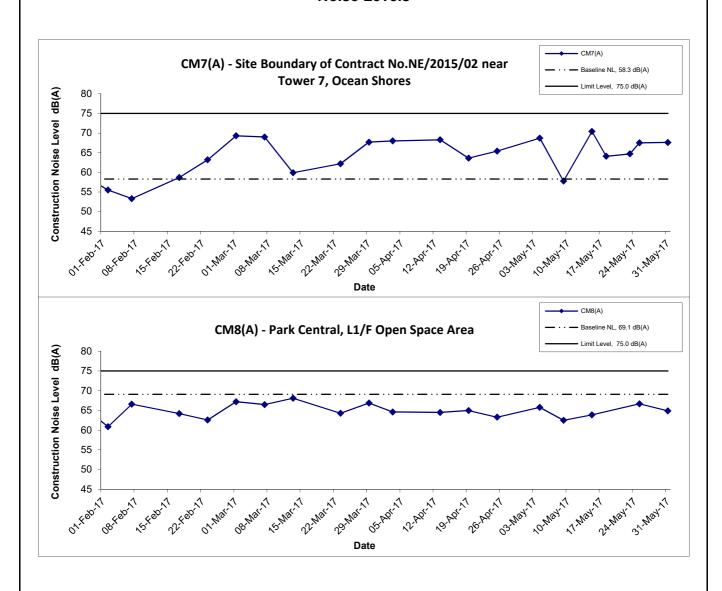
Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

(0100 1000 1110	•						
Location CM6(A) - Site Bo	undary of Cor	ntract No. Ni	E/2015/02 ne	ear Tower 1,	Ocean Shores	
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
4-May-17	13:00	Cloudy	67.4	69.2	63.6		66.0
9-May-17	10:00	Sunny	62.3	64.0	53.4		51.7
15-May-17	9:20	Cloudy	68.8	70.6	63.1		67.8
18-May-17	14:30	Cloudy	61.8	64.6	56.2	61.9	61.8 Measured ≦ Baseline
23-May-17	11:30	Cloudy	63.1	66.7	54.2		56.9
25-May-17	10:00	Sunny	72.6	75.7	65.5		72.2
31-May-17	14:00	Sunny	67.8	70.1	58.4		66.5


Location CM7(A) - Site Bo	undary of Cor	ntract No. NI	E/2015/02 ne	ear Tower 7,	Ocean Shores	
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Mea	sured Noise	Baseline Level	Construction Noise Level	
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
4-May-17	13:50	Cloudy	69.1	73.2	63.5		68.7
9-May-17	10:52	Sunny	57.8	59.3	54.0		57.8 Measured ≦ Baseline
15-May-17	10:10	Cloudy	70.7	74.8	58.6		70.4
18-May-17	15:15	Cloudy	65.1	68.5	59.9	58.3	64.1
23-May-17	10:15	Cloudy	65.6	68.8	59.4		64.7
25-May-17	9:00	Sunny	68.0	71.9	59.4		67.5
31-May-17	13:20	Sunny	68.1	70.5	62.5		67.6

Location CM8(A) - Park Ce	entral, L1/F Op	oen Space A	rea			
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
4-May-17	9:30	Cloudy	65.8	67.0	61.4		65.8 Measured ≦ Baseline
9-May-17	13:00	Sunny	62.5	64.7	57.7		62.5 Measured ≦ Baseline
15-May-17	13:04	Cloudy	63.9	66.4	59.7	69.1	63.9 Measured ≤ Baseline
25-May-17	13:00	Sunny	66.7	67.5	60.0		66.7 Measured ≤ Baseline
31-May-17	9:00	Sunny	64.9	66.8	60.5		64.9 Measured ≦ Baseline


MA16034/App G - Noise Cinotech

Noise Levels CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong Baseline NL,65.5 dB(A) dB(A) Limit Level, 75.0 dB(A) 80 75 **Construction Noise Level** 70 65 60 55 50 45 40 09.1121.17 27.Febr.17 OA,Nar.17 A.Mar.1 29,492,77 03 AQT-1 11. Febr. 1 24.Mar.77 · 28. ROT. 1 08-May 17 12.F801.7 22.5800.7 No Mary 1 ~ 23.RQT. \(\) w, 03-W81-1 Date CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 40 27, 1500-17 03.Mar.17 28,421,77 02.405.77 26 F8017 08 Mar.17 No.Mar.17 07.201.77 22.891.7 02.1124-17 12.May.77 17.May 17 ,7.AQ1,7 Date CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong Baseline NL, 65.6 dB(A) Limit Level, 75.0 dB(A) Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 OAMar. 1 22.580.7 A.Mar. 17 1. Trebut 71 F80-11 09,1121,17 No.Mar.17 05. K8p. 1 24.1121.7 29,481,17 03.AQT-1 " 13 Par 17 . 18.AQ1.7 · 23. ROT. 1 . 28 AQT. 1 nor OBMOY'T Title Agreement No. CE/59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -No. MA16034 N.T.S Design and Construction Graphical Presentation of Date Appendix Construction Noise Monitoring Results May 17 G

Noise Levels

Noise Levels

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale

N.T.S

No. MA16034

Date
May 17

Appendix

May 17

APPENDIX H GROUNDWATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Groundwater Quality Monitoring Results at Stream 1

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	р	Н	Salini	ty ppt	DO Satu	ration (%)	Dissolved O	kygen (mg/L)	Turbidit	ty(NTU)
Date	Condition	Time	Deptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
11-May-17	Sunnv	12:00	Middle	29.4	29.4	7.1	7 1	0.6	0.6	103.2	103.3	8.0	8.0	0.7	0.7
11-iviay-17	Suring	12.00	Middle	29.4	29.4	7.1	7.1	0.6	0.0	103.3	103.5	8.0	0.0	0.7	0.7
23-May-17	Cloudy	11:25	Middle	25.2	25.2	7.7	7.8	0.8	0.9	102.8	102.8	8.0	8.0	0.7	0.7
20-iviay-17	Cioudy	11.20	ivildule	25.1	23.2	7.8	7.0	0.9	0.9	102.8	102.0	8.0	0.0	0.7	0.7

Groundwater Quality Monitoring Results at Stream 2

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	ŗ	Н	Salini	ty ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
11-May-17	Sunny	12:45	Middle	28.5 28.4	28.5	7.3 7.2	7.3	0.1 0.1	0.1	101.2 101.5	101.4	7.9 7.9	7.9	0.6 0.6	0.6
23-May-17	Cloudy	12:16	Middle	26.1 26.1	26.1	7.8 7.9	7.9	0.8	0.8	103.0 103.0	103.0	7.9 7.9	7.9	0.7 0.7	0.7

Groundwater Quality Monitoring Results at Stream 3

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	ŗ	Н	Salini	ty ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
11-May-17	Sunny	13:12	Middle	28.2 28.2	28.2	7.3 7.3	7.3	0.1 0.1	0.1	101.8 101.7	101.8	8.0 8.0	8.0	1.2 1.3	1.3
23-May-17	Cloudy	12:26	Middle	26.2 26.2	26.2	8.0 8.0	8.0	0.8 0.8	0.8	103.1 103.0	103.1	8.0 8.0	8.0	1.1 1.1	1.1

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.: 26913 Date of Issue: 2017-05-22 Date Received: 2017-05-11 Date Tested: 2017-05-11 Date Completed: 2017-05-22

ATTN:

Ms. Mei Ling Tang

1 of 1

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

26913

Project No.

MA16034 (Groundwater)

Project Name :

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel - Design and Construction

Custody No.

MA16034(Groundwater)/20170511

Sampling Date

2017-05-11

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house-method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

Sample ID	Stream 1	Stream 2	Stream 3	
Sampling Depth	S	S	S	
Sample No.	26913-1	26913-2	26913-3	
Total Suspended Solids (mg/L)	0.5	0.8	<0.5	
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2	
Total Organic Carbon (mg-TOC/L)	4	4	4	
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	<0.6	1.1	0.9	
Ammonia (mg NH ₃ -N/L)	< 0.05	0.41	0.35	
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05	

Remarks:

- $1) \le less than$
- 2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TŠE Laboratory Manager

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.:

Date of Issue:

Date Tested:

Date Received:

Date Completed:

2017-05-23 2017-06-01

2017-06-01

2017-05-23

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

26955

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

26955

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/170523

Sampling Date

2017-05-23

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting		
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L		
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L		
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L		
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L		
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L		
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L		

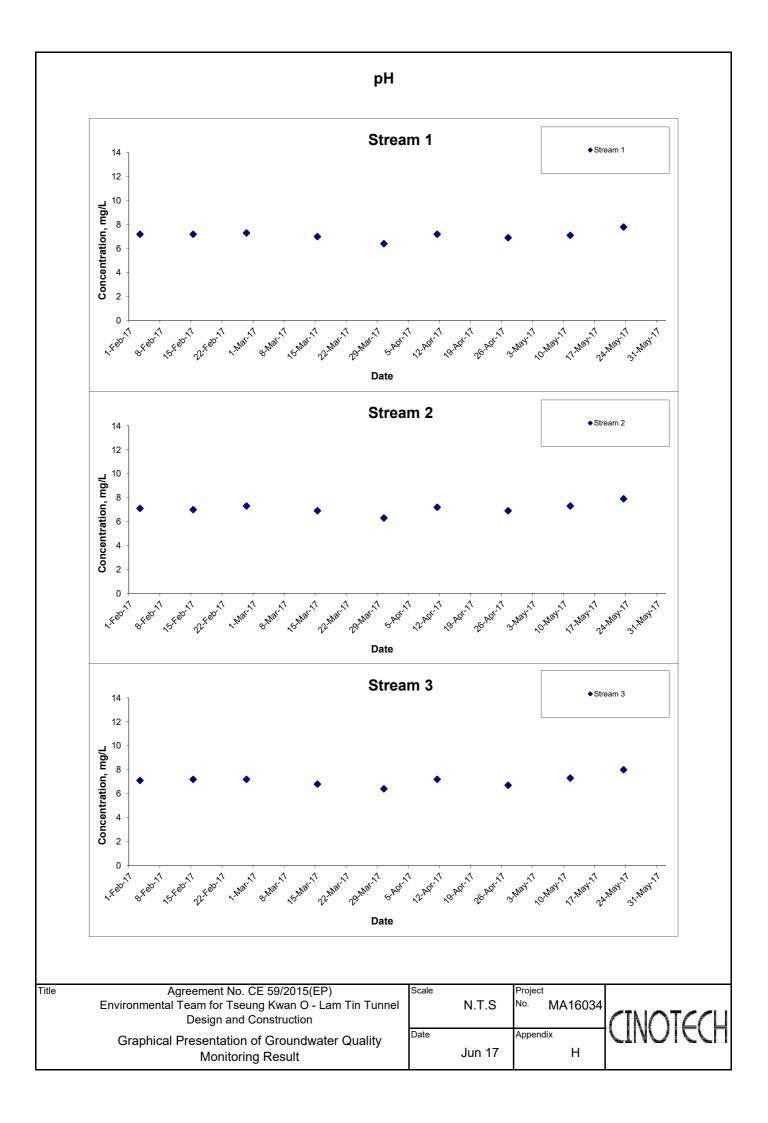
Requife.

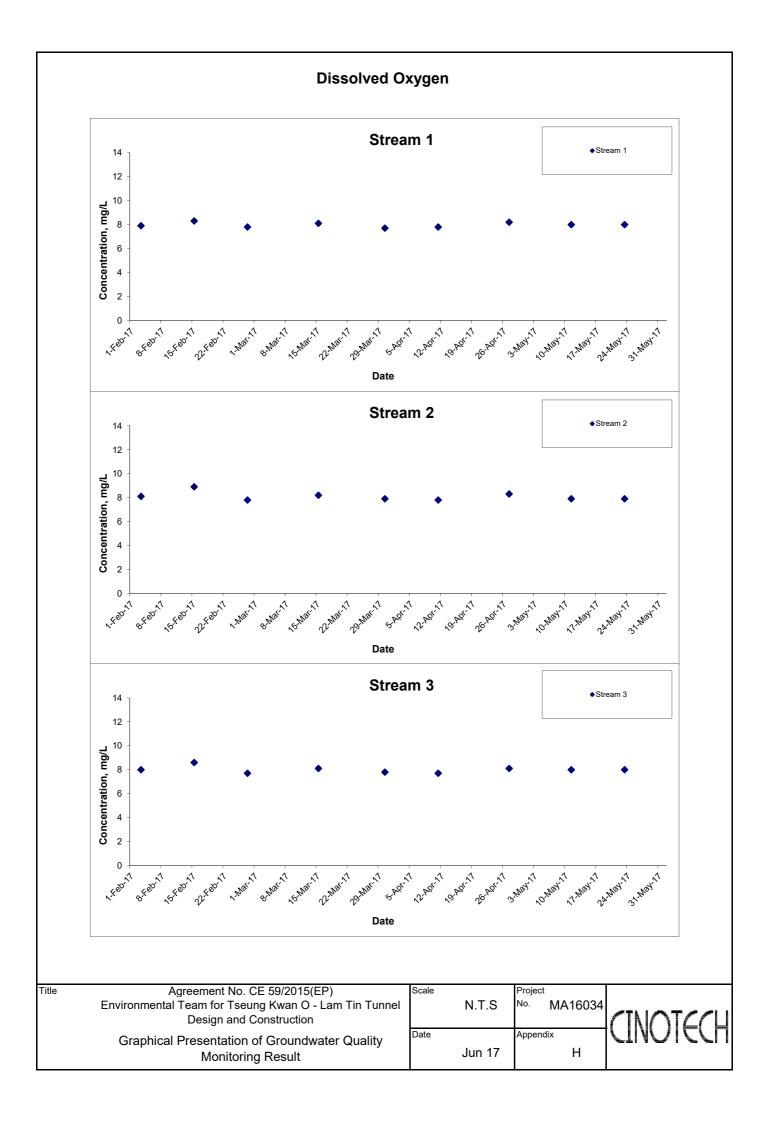
Results.				
Sample ID	Stream 1	Stream 2	Stream 3	
Sampling Depth	S	S	S	
Sample No.	26955-1	26955-2	26955-3	
Total Suspended Solids (mg/L)	1.8	2.0	2.4	
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2	
Total Organic Carbon (mg-TOC/L)	3	3	3	
Nitrogen (Total Kjeldahl + nitrate +	1.7	1.7	1.7	
nitrite) (mg N/L)				
Ammonia (mg NH ₃ -N/L)	< 0.05	< 0.05	< 0.05	
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05	

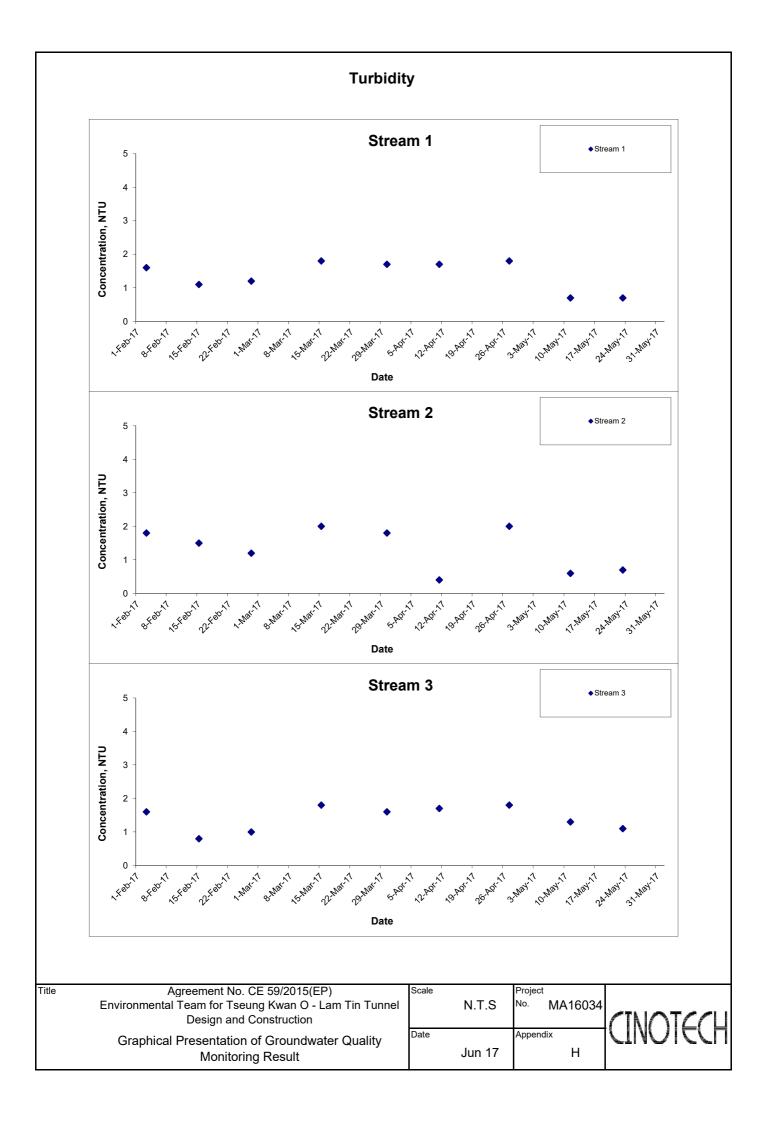
Remarks:

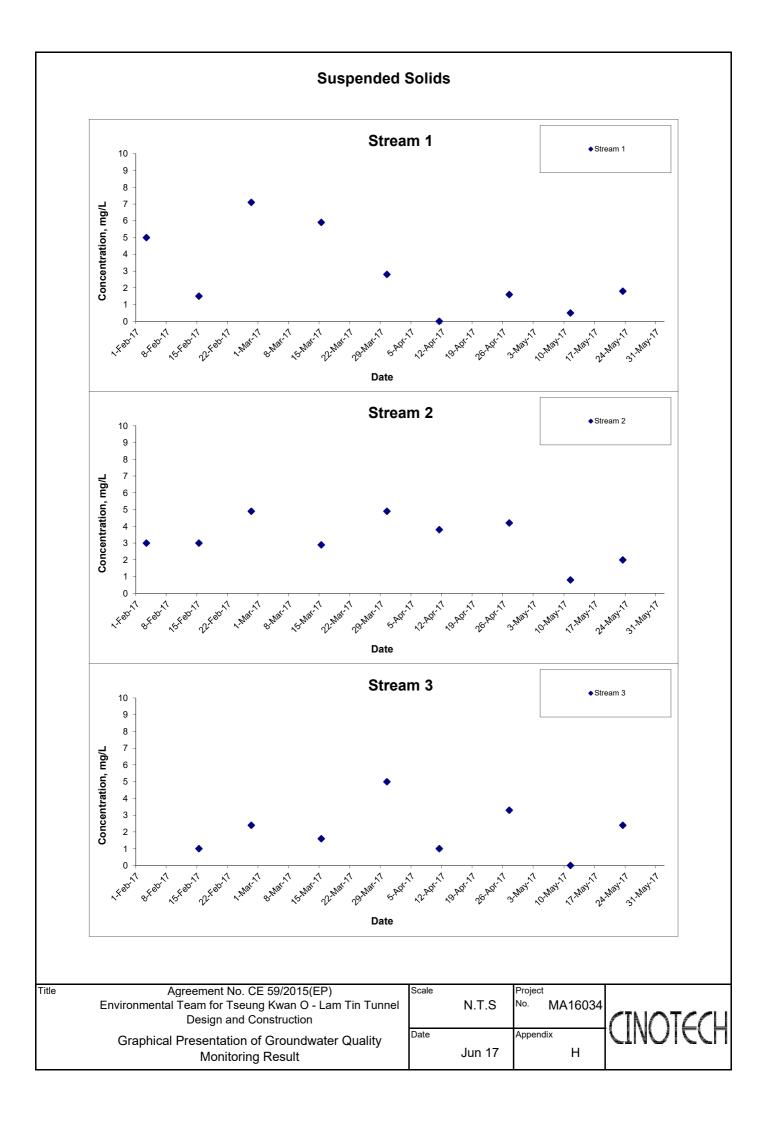
- $1) \le less than$
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit

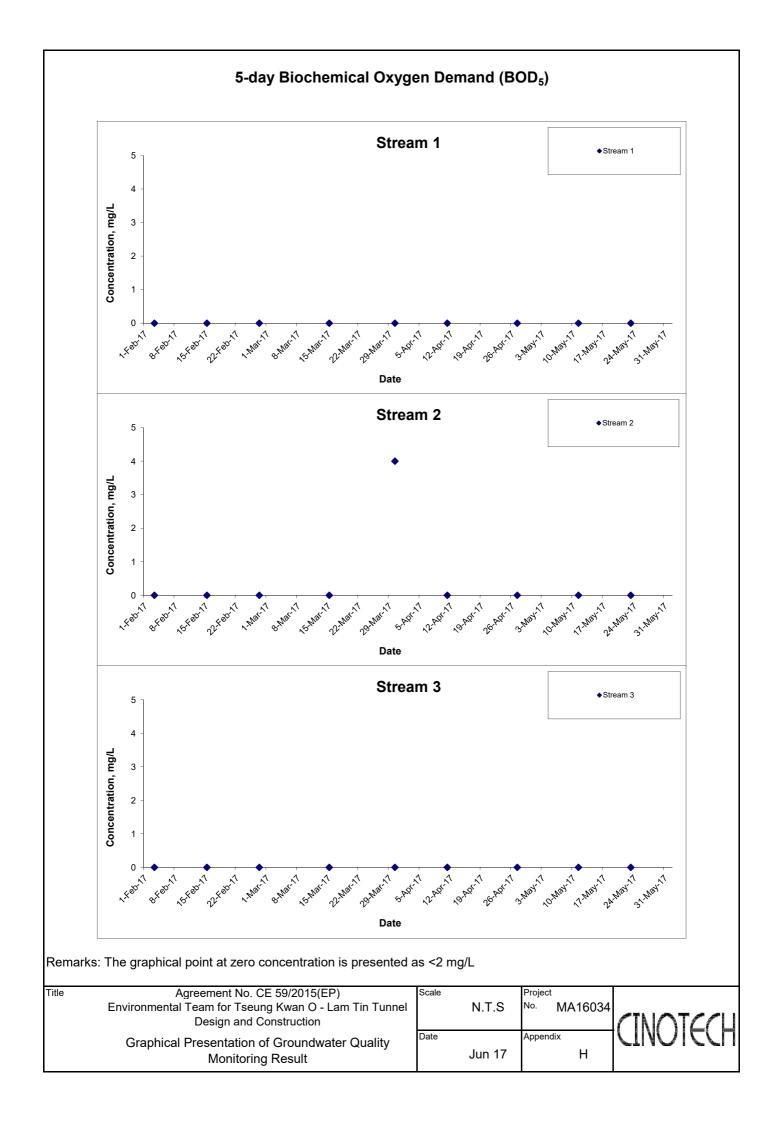
PREPARED AND CHECKED BY:

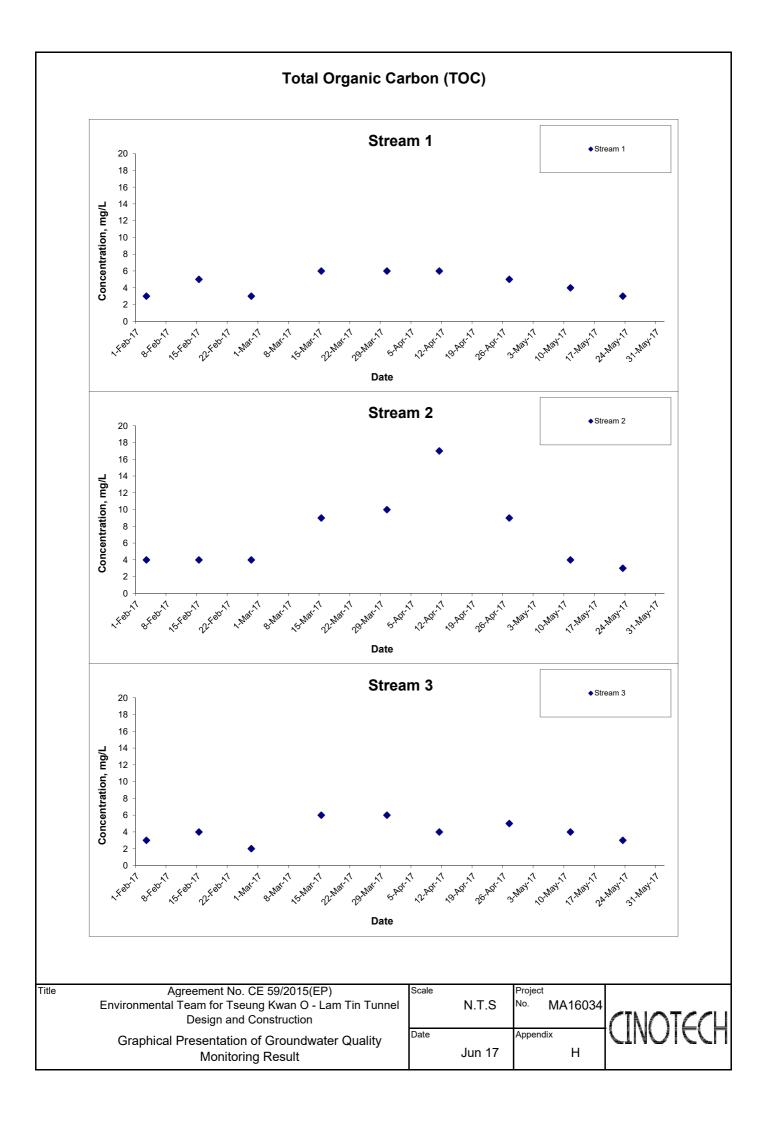

For and On Behalf of WELLAB Ltd.

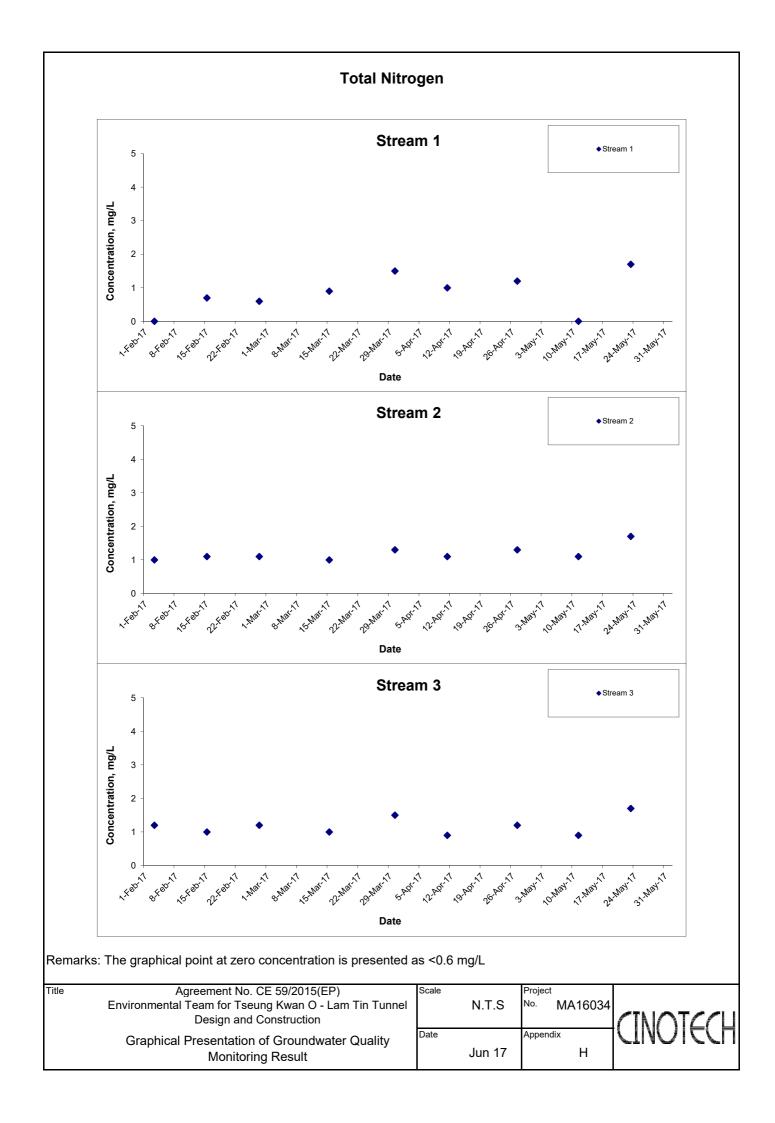

Laboratory Manager

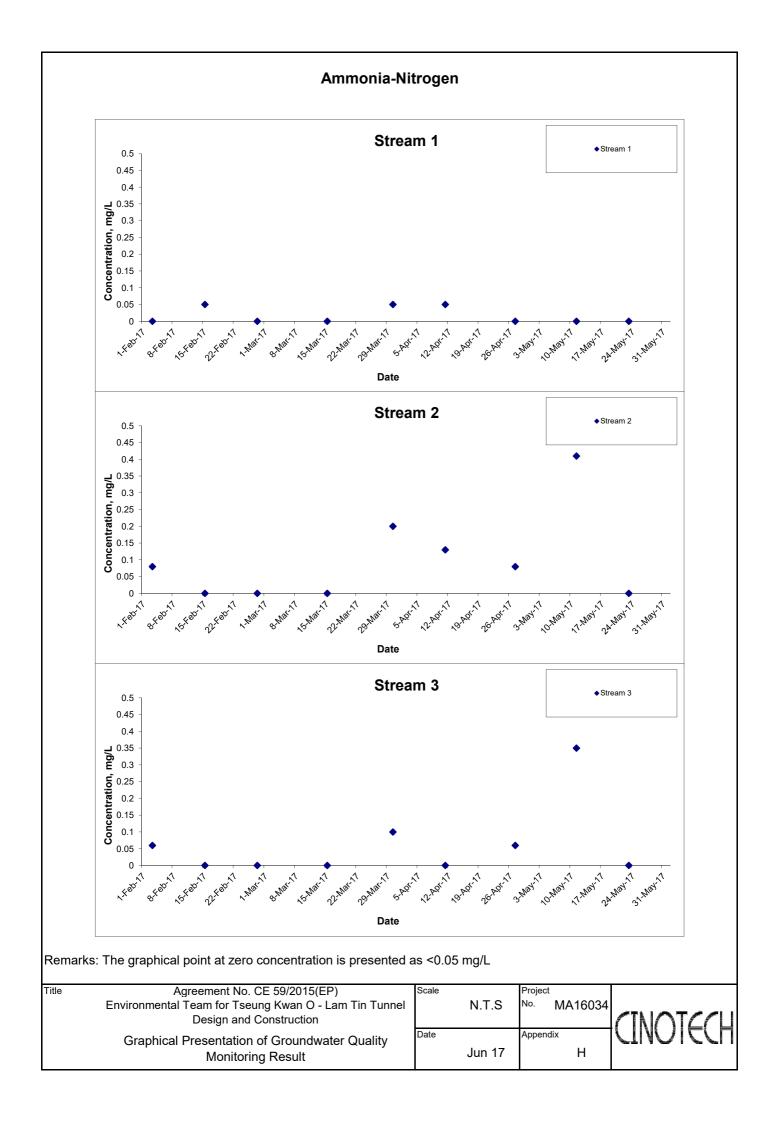

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

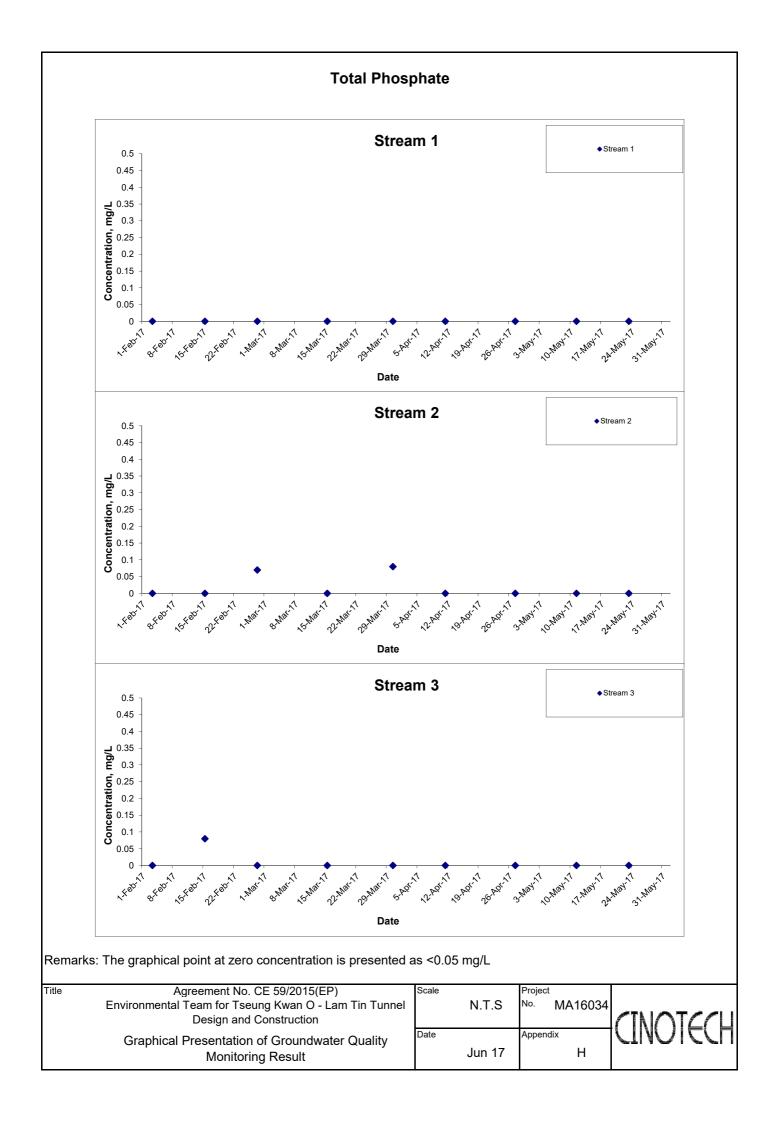

Summary of Groundwater Quality Monitoring Results


		Parameters (unit)								
Location	Date	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
Ctroom 1	11-May-17	7.1	8	0.7	0.5	<2	4	<0.6	<0.05	<0.05
Stream 1	23-May-17	7.8	8	0.7	1.8	<2	3	1.7	<0.05	<0.05
Stream 2	11-May-17	7.3	7.9	0.6	0.8	<2	4	1.1	0.41	<0.05
Stream 2	23-May-17	7.9	7.9	0.7	2	<2	3	1.7	<0.05	<0.05
Stream 3	11-May-17	7.3	8	1.3	<0.5	<2	4	0.9	0.35	<0.05
Sileanis	23-May-17	8	8	1.1	2.4	<2	3	1.7	<0.05	<0.05









APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix I - Action and Limit Levels for Marine Water Quality on 2 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
(======================================		<u>C2: 5.5 NTU</u>	<u>C2: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.2 mg/L</u>	<u>C2: 5.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.2 mg/L</u>	<u>C2: 5.6 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.2 mg/L</u>	<u>C2: 5.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 May 2017

(Mid-Ebb Tide)

	Weather	Sea	Sampling	_		Temper	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxyger	(mg/L)	-	Turbidity(NT	U)	Susne	nded Solids	(mg/L)
Location		Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average		Value	Average	DA*
				Surface	1	24.0	24.4	8.2	8.2	32.3	31.7	88.0	94.5	6.2	6.6		4.3	4.3		2.9	2.9	
				Surface	'	24.8	24.4	8.2	0.2	31.0	31.7	101.0	34.0	7.0	0.0	6.6	4.3	4.5		2.8	2.5	l
C1	Sunny	Moderate	17:47	Middle	10	23.9	24.4	8.2	8.2	32.4	31.7	87.7	94.4	6.1	6.6		4.6	4.5	4.5	3.1	3.1	3.0
	, í					24.8		8.2 8.3		31.0 32.4		101.0		7.0 6.1			4.4 4.9	ļ	_	3.0		ł
				Bottom	19	23.9	24.3	8.2	8.3	31.2	31.8	87.5 100.5	94.0	7.0	6.6	6.6	4.9	4.8		3.0	3.1	l
						24.7		8.0		31.1		102.3		7.1			4.7		+	4.2		
				Surface	1	24.3	24.6	8.0	8.0	30.4	30.8	94.7	98.5	6.7	6.9		3.6	4.0		4.3	4.3	l
C2	Sunny	Moderate	16:09	Middle	18	24.7	24.4	8.0	8.1	31.3	31.3	102.5	96.8	7.1	6.8	6.9	3.5	3.5	4.0	3.0	3.0	3.9
02	Sullily	Woderate	10.03	Wildule	10	24.1	24.4	8.2	0.1	31.2	31.3	91.0	30.0	6.4	0.0		3.5	3.5	4.0	3.0	3.0	5.5
				Bottom	35	24.2	24.1	8.2	8.3	30.4	31.1	94.6	92.2	6.7	6.5	6.5	4.5	4.6		4.4	4.3	l
						23.9		8.3		31.7		89.7		6.3			4.6		-	4.2		
				Surface	1	24.1 25.0	24.6	8.3 8.3	8.3	31.0 30.3	30.7	90.7 109.6	100.2	6.4 7.6	7.0		5.0 5.1	5.1		2.8	2.9	l
		l				24.0		8.3		31.3		90.7		6.4		6.8	4.0	·	1	4.0		1
G1	Sunny	Moderate	16:51	Middle	4	24.6	24.3	8.3	8.3	30.6	31.0	97.7	94.2	6.8	6.6		4.2	4.1	4.6	4.0	4.0	3.3
				Bottom	7	25.0	24.7	8.3	8.3	30.3	30.6	109.5	102.3	7.6	7.2	7.2	4.3	4.5	1	2.9	2.9	ſ
				Dottoili		24.4	24.1	8.3	0.0	30.8	30.0	95.0	102.3	6.7	1.2	1.2	4.6	4.5		2.8	2.5	<u></u>
				Surface	1	24.0	24.5	8.1	8.2	33.3	32.9	88.7	98.4	6.2	6.8		4.7	4.7		4.7	4.8	
						24.9		8.3		32.4		108.1		7.4		6.7	4.6			4.8		ŀ
G2	Sunny	Moderate	16:33	Middle	5	23.9 24.7	24.3	8.2 8.2	8.2	33.4 32.5	33.0	89.3 101.8	95.6	6.2 7.0	6.6		4.9 4.7	4.8	4.7	4.0 3.9	4.0	4.0
				_		25.1		8.5		31.8		106.6		7.3			4.7		-	3.4		ł
				Bottom	9	24.6	24.9	8.4	8.5	32.8	32.3	97.3	102.0	6.7	7.0	7.0	4.5	4.6		3.2	3.3	l
				0	4	24.1	04.0	8.2	0.0	31.6	24.4	91.0	00.0	6.4	7.0		4.1	40		2.7	0.7	
				Surface	1	25.0	24.6	8.2	8.2	30.5	31.1	108.1	99.6	7.5	7.0	6.9	4.2	4.2		2.7	2.7	l
G3	Sunny	Moderate	17:02	Middle	4.5	24.0	24.4	8.2	8.2	31.7	31.2	90.8	97.0	6.4	6.8	0.5	4.6	4.3	4.2	3.5	3.5	3.3
00	Cumy	modorato				24.8		8.2	0.2	30.7	01.2	103.1	01.0	7.2			4.0			3.5	0.0	1
				Bottom	8	25.0 24.7	24.9	7.3 8.3	7.8	30.4 30.8	30.6	107.5 103.0	105.3	7.5 7.2	7.4	7.4	4.1 4.3	4.2		3.5	3.6	l
		1				24.7		8.3		31.2		97.5		6.8			4.7	1		2.6		
				Surface	1	25.4	25.0	8.3	8.3	30.0	30.6	110.7	104.1	7.7	7.3		4.4	4.6		2.5	2.6	l
G4	Sunny	Moderate	17:20	Middle	4	25.4	25.4	8.3	8.3	29.9	30.0	110.0	110.5	7.6	7.7	7.5	4.8	4.4	4.4	3.0	3.0	3.1
G4	Sunny	Moderate	17:20	ivildale	4	25.4	25.4	8.2	8.3	30.1	30.0	110.9	110.5	7.7	1.1		3.9	4.4	4.4	3.0	3.0	3.1
				Bottom	7	25.4	25.3	8.2	8.2	30.0	30.2	110.4	107.3	7.6	7.4	7.4	4.1	4.2		3.7	3.8	ĺ
				Dottom		25.2	20.0	8.1	0.2	30.4	00.2	104.1	107.0	7.2			4.2			3.8	0.0	<u> </u>
				Surface	1	24.2	24.6	8.1	8.1	30.2	31.6	90.1	100.0	6.4	7.0		4.7	4.3		2.6	2.6	l
						25.0 24.1		8.1 8.1		33.0 30.3		109.9 89.4		7.5 6.3		6.8	3.9 4.6	 	-	2.6		ł
M1	Sunny	Moderate	16:42	Middle	5	24.5	24.3	8.2	8.2	30.1	30.2	95.2	92.3	6.7	6.5		3.7	4.2	4.2	2.7	2.7	2.6
				D-#	_	25.0	04.0	8.0	0.4	32.9	24.5	109.9	400.0	7.5	7.4	7.4	4.3	4.4		2.6	0.0	l
				Bottom	9	24.5	24.8	8.2	8.1	30.1	31.5	94.1	102.0	6.6	7.1	7.1	3.9	4.1		2.6	2.6	L
				Surface	1	23.9	24.2	8.0	8.2	32.9	32.6	90.0	92.2	6.3	6.5		3.6	3.8		3.1	3.1	
				Curiaco		24.4		8.3	0.2	32.2	02.0	94.3	OL.L	6.6	0.0	6.7	3.9	0.0		3.1	0.1	ł
M2	Sunny	Moderate	16:27	Middle	5	24.9	24.5	8.1 8.1	8.1	31.4 32.6	32.0	101.8 91.6	96.7	7.1 6.4	6.8		3.8	3.9	3.9	2.5	2.5	2.7
						24.1		8.2		31.7		103.0		7.1			3.6		-	2.6		ł
				Bottom	9	24.0	24.4	8.3	8.3	33.0	32.4	91.0	97.0	6.3	6.7	6.7	4.3	4.0		2.5	2.6	l
				0	1	24.5	24.7	8.3	8.3	31.2	31.0	95.8	100.5	6.7	7.0		3.9	4.3		2.3	0.0	
I		1		Surface		24.9	24.1	8.2	0.3	30.8	31.0	105.1	100.5	7.3	7.0	7.0	4.7	4.3	1	2.2	2.3	i
М3	Sunny	Moderate	17:13	Middle	4	24.4	24.6	8.3	8.3	31.3	31.1	94.3	98.0	6.6	6.9		4.3	4.5	4.5	2.6	2.6	2.6
1		1			 	24.8 25.1	· ·	8.3 8.2		30.9 30.3	1	101.6 103.2	<u> </u>	7.1 7.2			4.6 4.4	<u> </u>	4	2.6		ł
				Bottom	7	24.7	24.9	8.2	8.2	31.0	30.7	103.2	102.3	7.2	7.2	7.2	4.4	4.6		2.9	2.9	l
	1	1			<u> </u>	23.9		8.3	<u> </u>	31.8		89.2		6.3	 		3.6	<u> </u>	1	3.3		
				Surface	1	24.4	24.2	8.2	8.3	31.5	31.7	94.1	91.7	6.6	6.5	6.7	3.7	3.7		3.3	3.3	1
M4	Suppy	Moderate	16:18	Middle	4	24.8	24.5	8.6	8.5	30.7	31.3	102.0	96.8	7.1	6.8	6.7	3.3	3.3	3.6	3.3	3.3	3.4
1914	Sunny	Moderate	10.10	wiidule	4	24.2	24.0	8.3	0.0	31.9	01.0	91.6	50.0	6.4	0.0		3.2	3.3	3.0	3.2	0.0	5.4
I		1		Bottom	7	24.8	24.4	8.3	8.3	30.9	31.8	102.1	96.1	7.1	6.7	6.7	4.0	3.8	1	3.6	3.6	ł
	<u> </u>					24.0		8.2		32.7		90.0		6.3			3.6			3.6		——
				Surface	1	25.0 24.1	24.6	8.2	8.2	30.7	31.4	101.2	95.8	7.0	6.7		4.4 4.4	4.4		2.0 1.9	2.0	1
						24.1		8.2 8.2		32.0 31.9		90.3 90.8	-	6.3		6.6	4.4	1	+	3.4		ł .
M5	Sunny	Moderate	17:40	Middle	5.5	24.2	24.2	8.2	8.2	32.0	32.0	89.9	90.4	6.3	6.4		4.0	4.4	4.4	3.5	3.5	3.0
I		1		Potton:	10	24.2	24.1	8.3	0.2	31.9	22.1	90.6	90.2	6.3	6.2	6.2	4.6	4.5	1	3.4	2.4	ſ
	<u></u>	<u> </u>		Bottom	10	24.0	24.1	8.3	8.3	32.3	32.1	88.0	89.3	6.2	6.3	6.3	4.3	4.5	<u> </u>	3.4	3.4	<u></u>
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-		
				Juliado		-		-		-		-		-		7.1			1	-	_	l
M6	Sunny	Moderate	17:27	Middle	3	25.1	25.1	8.4	8.4	30.6	30.7	102.8	102.6	7.1	7.1		4.6	4.4	4.4	3.9	3.9	3.9
						25.0		8.4	1	30.7	1	102.3	1	7.1	1		4.1	1	-	3.9		ł
		1		Bottom	-		-	:	-		-	1 :	-		-	-		-			-	l
	<u> </u>	1							1		<u> </u>		<u> </u>		<u> </u>				1			

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 2 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M <u>5</u>	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.3 mg/L</u>	<u>C1: 7.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 May 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.0 24.9	25.0	8.1 8.1	8.1	32.4 32.6	32.5	106.5 107.6	107.1	7.3 7.4	7.4	7.4	3.4 3.4	3.4		5.2 5.4	5.3	l
C1	Sunny	Moderate	11:05	Middle	10	25.0 24.8	24.9	8.1 8.1	8.1	32.4 32.8	32.6	107.0 104.0	105.5	7.4 7.2	7.3	7.4	4.4 4.6	4.5	4.2	3.6 3.6	3.6	5.0
				Bottom	19	24.9 24.7	24.8	8.1 8.1	8.1	32.6 32.8	32.7	107.6 99.8	103.7	7.4 6.9	7.2	7.2	4.6 4.6	4.6		6.0 6.1	6.1	
				Surface	1	24.9 24.6	24.8	8.2 8.2	8.2	30.4 31.7	31.1	97.2 95.5	96.4	6.8 6.6	6.7	6.6	3.7 4.3	4.0		2.9 2.9	2.9	ĺ
C2	Sunny	Moderate	09:05	Middle	18	24.7 24.0	24.4	8.2 8.2	8.2	30.6 33.6	32.1	97.4 89.5	93.5	6.8 6.2	6.5	0.0	4.0 3.3	3.7	3.8	2.6 2.7	2.7	3.3
				Bottom	35	24.6 24.0	24.3	8.3 8.2	8.3	31.4 33.7	32.6	95.4 89.4	92.4	6.6 6.2	6.4	6.4	3.9 3.6	3.8		4.3 4.3	4.3	
				Surface	1	24.7 24.2	24.5	8.0 8.2	8.1	30.3 31.6	31.0	97.0 90.4	93.7	6.8	6.6	6.7	4.9 4.0	4.5		3.5 3.4	3.5	ļ
G1	Sunny	Moderate	09:48	Middle	4	24.7 25.0	24.9	8.2 8.2	8.2	30.5 29.4	30.0	96.2 99.3	97.8	6.7 6.9	6.8		4.9 4.3	4.6	4.4	6.4 6.5	6.5	4.8
				Bottom	7	24.3 25.0	24.7	8.0 8.2	8.1	31.4 29.6	30.5	90.6 99.5	95.1	6.3 7.0	6.7	6.7	3.6 4.3	4.0		4.2 4.3	4.3	
				Surface	1	24.6 24.0	24.3	8.1 8.1	8.1	31.1 32.5	31.8	94.2 88.6	91.4	6.6 6.2	6.4	6.6	4.3 4.6	4.5		4.5 4.4	4.5	ļ
G2	Sunny	Moderate	09:32	Middle	5	24.6 24.8	24.7	8.0 8.2	8.1	31.3 29.7	30.5	94.2 97.4	95.8	6.6 6.8	6.7		4.2 4.6	4.4	4.3	3.2 3.1	3.2	4.0
				Bottom	9	24.1 24.8	24.5	8.1 8.1	8.1	32.2 30.1	31.2	89.4 97.4	93.4	6.3 6.8	6.6	6.6	3.7 4.2	4.0		4.3 4.2	4.3	<u> </u>
				Surface	1	24.9 24.3	24.6	8.3 8.3	8.3	30.1 31.3	30.7	99.4 90.3	94.9	6.9 6.3	6.6	6.8	4.6 4.4	4.5		2.3	2.3	ļ
G3	Sunny	Moderate	10:01	Middle	4	24.9 25.1	25.0	8.3 8.2	8.3	30.2 29.9	30.1	99.1 100.4	99.8	6.9 7.0	7.0		4.3 4.4	4.4	4.2	2.6 2.6	2.6	2.6
				Bottom	7	24.4 25.1	24.8	8.2 8.1	8.2	31.2 30.1	30.7	90.8 100.4	95.6	6.4 7.0	6.7	6.7	3.7 3.6	3.7		2.8 2.9	2.9	
				Surface	1	25.5 25.1	25.3	8.2 8.3	8.3	27.6 31.8	29.7	108.0 105.0	106.5	7.6 7.2	7.4	7.3	3.9 3.7	3.8		2.9 3.0	3.0	ļ
G4	Sunny	Moderate	10:32	Middle	4	24.8 25.0	24.9	8.0 8.2	8.1	32.4 32.1	32.3	101.2 105.6	103.4	7.0 7.3	7.2		4.0 3.3	3.7	3.8	3.7 3.6	3.7	3.6
				Bottom	7	25.1 25.0	25.1	8.2 8.2	8.2	31.8 32.1	32.0	104.7 105.9	105.3	7.2 7.3	7.3	7.3	4.1 3.7	3.9		4.0 3.9	4.0	
				Surface	1	24.7 24.3	24.5	8.4 8.2	8.3	30.3 31.4	30.9	95.2 91.0	93.1	6.7 6.4	6.6	6.7	4.6 3.8	4.2		3.9 3.9	3.9	
M1	Sunny	Moderate	09:40	Middle	5	24.6 24.8 24.3	24.7	8.2 8.1 8.1	8.2	30.6 29.7 31.4	30.2	94.2 97.6 91.0	95.9	6.6 6.8	6.7		4.6 4.5 4.6	4.6	4.4	3.5	3.6	3.7
				Bottom	9	24.8	24.6	8.3	8.2	29.9	30.7	97.5	94.3	6.4 6.8	6.6	6.6	4.6	4.5		3.6 3.6	3.6	<u></u>
				Surface	1	24.8 24.2	24.5	8.1 8.2	8.2	32.5 33.9	33.2	98.1 89.7	93.9	6.8 6.2	6.5	6.6	4.4	4.5		3.4 3.5	3.5	l
M2	Sunny	Moderate	09:25	Middle	5.5	24.6 24.7	24.7	8.2 8.2 8.2	8.2	32.9 32.5 33.8	32.7	95.4 97.5	96.5	6.6	6.7		4.2 4.5 3.7	4.4	4.3	2.8 2.9 3.2	2.9	3.2
				Bottom	10	24.2 24.7	24.5	8.1	8.2	32.8	33.3	89.8 97.8	93.8	6.2 6.7	6.5	6.5	4.3 4.4	4.0		3.2	3.2	<u> </u>
				Surface	1	24.9 24.4	24.7	8.1 8.1	8.1	30.6 31.7	31.2	96.3 89.9	93.1	6.7	6.5	6.7	4.6	4.5		3.2	3.2	ļ
М3	Sunny	Moderate	10:21	Middle	4	24.7 25.1	24.9	8.2 8.2	8.2	30.9 30.1	30.5	94.0 101.3	97.7	6.6 7.0	6.8		4.4 3.8	4.1	4.3	3.0 2.9	3.0	3.4
				Bottom	7	24.4 25.2	24.8	8.1 8.2	8.2	31.6 30.5	31.1	90.7 102.1	96.4	6.3 7.1	6.7	6.7	4.2 4.1 3.2	4.2		3.9	3.9	<u> </u>
				Surface	1	24.8 24.3	24.6	8.2 8.3	8.3	31.6 33.4	32.5	97.8 92.4	95.1	6.8	6.6	6.6	3.7	3.5		2.8	2.8	ļ
M4	Sunny	Moderate	09:17	Middle	4	24.4 24.4 24.4	24.4	8.3 8.2 8.3	8.3	32.9 33.3 33.0	33.1	92.4 94.9	93.7	6.4 6.6 6.4	6.5		4.9 4.5 4.1	4.7	4.1	2.6 2.6 3.1	2.6	2.8
				Bottom	7	24.8	24.6	8.2	8.3	32.2 32.4	32.6	92.2 98.0	95.1	6.8	6.6	6.6	4.1	4.1		3.0	3.1	
				Surface	1	24.9 24.2 24.9	24.6	8.2 8.2 8.2	8.2	32.4 33.4 32.4	32.9	106.6 92.4 106.4	99.5	7.3 6.4	6.9	6.9	3.6 4.3 4.2	4.0		3.0 2.6	3.0	ļ
M5	Sunny	Moderate	10:57	Middle	6	24.9 24.2 24.2	24.6	8.2 8.1 8.2	8.2	32.4 33.4 33.4	32.9	91.9 92.7	99.2	7.3 6.4 6.4	6.9		4.2 4.1 4.6	4.2	4.2	2.6 2.5 6.0	2.6	3.9
				Bottom	11	24.2	24.2	8.2	8.2	33.4	33.4	91.5	92.1	6.3	6.4	6.4	4.0	4.4		6.0	6.0	
				Surface	-	24.9	-	8.3	-	32.3	-	106.6	-	7.3	-	7.3	4.4	-		3.5	-	ł
M6	Sunny	Moderate	10:43	Middle	3.6	24.9	24.9	8.3	8.3	32.4	32.4	106.6	106.6	7.3	7.3		3.6	4.0	4.0	3.4	3.5	3.5
				Bottom	-		-		-		-		-		-	-		-			-	<u> </u>

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 4 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
<u>tunt</u>	Stations G1-G4	4, M1-M5	
	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
(See Note 1 and 4)	Station M6		-
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1. 114 1.		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(300 1000 2 and 1)		<u>C2: 6.7 NTU</u>	<u>C2: 7.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u> </u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.5 mg/L</u>	<u>C2: 6.0 mg/L</u>
	Station M6		Г
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 May 2017

(Mid-Ebb Tide)

	Weather	Sea	Sampling			Temper	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	1	Turbidity(NT	U)	Susne	nded Solids	(mg/L)
Location		Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average		Value	Average	DA*
	Condition	Condition	Time	0 (1	23.2		8.0	7 9	29.9		99.2		7.1		DA	5.6		DA	4.1		DA
				Surface	1	23.0	23.1	7.8	7.9	29.9	29.9	99.7	99.5	7.2	7.2	7.2	4.5	5.1		4.1	4.1	
C1	Rainy	Moderate	19:36	Middle	10	22.7	23.0	7.7	7.7	29.9	29.9	97.8	97.9	7.1	7.1	1 '	7.6	7.6	6.4	4.5	4.5	4.2
0.		modorato	10.00	middio		23.2	20.0	7.7		29.9	20.0	98.0	01.0	7.1			7.5	1.0	J	4.5	1.0	
				Bottom	19	23.1 23.0	23.1	7.6 7.5	7.6	29.9 30.0	30.0	96.6 96.5	96.6	7.0 7.0	7.0	7.0	6.5 6.7	6.6		4.1 4.1	4.1	
		-				23.6		7.6		29.4		91.8		6.6			3.4	-	_	4.1		
				Surface	1	23.0	23.3	7.7	7.7	29.4	29.4	91.4	91.6	6.6	6.6		3.9	3.7		6.0	5.2	
C2	Deien	M- d4-	18:25	Middle	18	22.5	22.9	7.5	7.6	29.6	29.6	90.5	90.7	6.6	6.6	6.6	4.1	4.2	4.5	3.5	4.2	4.7
02	Rainy	Moderate	10.20	Middle	10	23.3	22.9	7.6	7.0	29.6	29.0	90.9	90.7	6.5	0.0		4.2	4.2	4.5	4.8	4.2	4.7
				Bottom	35	23.3	23.1	7.5	7.6	29.7	29.7	92.0	91.1	6.6	6.6	6.6	5.6	5.6		3.7	4.6	
						22.9		7.6		29.6		90.1		6.5			5.6			5.4		
				Surface	1	23.9 22.9	23.4	8.0 8.0	8.0	29.6 29.7	29.7	95.9 94.0	95.0	6.8 6.8	6.8		3.5 3.8	3.7		3.5 3.6	3.6	
						23.1		7.9		29.7		95.7		6.9		6.9	4.9			3.7		
G1	Rainy	Moderate	18:57	Middle	4	22.8	23.0	7.9	7.9	30.0	30.0	96.4	96.1	7.0	7.0		5.8	5.4	5.0	3.8	3.8	3.9
				Bottom	7	23.3	23.0	7.8	7.9	30.0	30.1	97.4	96.7	7.0	7.0	7.0	6.0	6.0		4.1	4.2	
				DOLLOITI		22.6	23.0	7.9	7.9	30.1	30.1	96.0	90.7	7.0	7.0	7.0	6.0	0.0		4.2	4.2	
				Surface	1	22.8	23.2	8.0	8.0	30.2	30.2	95.3	96.0	6.9	6.9		3.3	3.3		3.8	3.8	
					<u> </u>	23.6		8.0		30.2		96.6		6.9		6.9	3.3		4	3.7		
G2	Rainy	Moderate	18:44	Middle	5	22.7 23.3	23.0	7.9 7.9	7.9	30.2 30.1	30.2	95.4 94.1	94.8	6.9 6.8	6.9		4.0 4.6	4.3	4.5	3.5 3.5	3.5	4.1
				_		22.5		7.8		30.4		94.1		6.8			5.3			4.9		
				Bottom	9	23.4	23.0	7.8	7.8	30.4	30.4	95.4	94.8	6.8	6.8	6.8	6.5	5.9		4.9	4.9	
				Confess	4	22.6	20.0	8.1	0.4	30.0	20.0	95.9	05.0	7.0	7.0		5.1			4.4	4.4	
				Surface	1	23.2	22.9	8.1	8.1	29.8	29.9	95.3	95.6	6.9	7.0	6.9	5.7	5.4		4.3	4.4	
G3	Rainy	Moderate	19:04	Middle	4	23.5	23.4	7.9	8.0	29.8	29.8	95.4	95.2	6.8	6.8	0.5	6.1	5.8	5.4	3.6	3.6	3.8
00		modorato	10.01			23.2	20.1	8.0	0.0	29.8	20.0	95.0	00.2	6.8			5.4		J	3.6	0.0	
				Bottom	7	23.0 23.0	23.0	7.9 7.8	7.9	30.0 30.0	30.0	95.0 93.0	94.0	6.9 6.7	6.8	6.8	5.2 4.8	5.0		3.2	3.3	
		1				23.0		8.0		29.4		96.7		7.0			3.8	1	 	2.8		
				Surface	1	23.2	23.1	8.0	8.0	29.4	29.4	96.2	96.5	6.9	7.0		3.7	3.8		2.9	2.9	
G4	Rainy	Moderate	19:17	Middle	4	22.7	23.2	7.9	7.9	29.6	29.6	95.6	96.0	7.0	7.0	7.0	4.6	4.7	4.6	3.6	3.7	3.4
G4	Rainy	Moderate	19:17	Middle	4	23.6	23.2	7.8	7.9	29.6	29.6	96.4	96.0	6.9	7.0		4.7	4.7	4.0	3.8	3.7	3.4
				Bottom	7	23.5	23.3	7.7	7.7	30.0	30.0	94.3	93.9	6.8	6.8	6.8	5.2	5.3		3.7	3.6	
				Dottom		23.1	20.0	7.7		29.9	00.0	93.5	00.0	6.7	0.0	0.0	5.3	0.0		3.5	0.0	
				Surface	1	23.9 23.5	23.7	8.0 8.0	8.0	30.0 29.9	30.0	95.2 94.4	94.8	6.8 6.8	6.8		4.1 3.9	4.0		4.4 4.5	4.5	
						23.3		7.9		29.9		93.9		6.7		6.8	6.0	1	-	3.5		
M1	Rainy	Moderate	18:51	Middle	3	23.3	23.3	7.9	7.9	30.1	30.0	94.5	94.2	6.8	6.8		6.2	6.1	5.1	3.5	3.5	3.9
				Dottom	-	22.7	23.0	7.8	7.9	30.2	30.3	92.5	02.5	6.7	6.0	6.0	4.5	E 1		3.7	2.7	
				Bottom	5	23.3	23.0	7.9	7.9	30.4	30.3	94.4	93.5	6.8	6.8	6.8	5.6	5.1		3.7	3.7	
				Surface	1	23.2	23.5	7.9	7.9	29.4	29.5	94.0	95.2	6.8	6.9		3.1	3.3		4.7	4.8	
					· .	23.7		7.9		29.5		96.4		6.9		6.9	3.4		-	4.8		
M2	Rainy	Moderate	18:38	Middle	5	22.4	23.0	7.9 7.9	7.9	29.6 29.6	29.6	93.6 96.1	94.9	6.8	6.9		3.8	3.7	3.6	4.0 4.0	4.0	4.6
						23.3		7.8		29.6		92.2		6.6			3.7			5.0		
				Bottom	9	23.1	23.2	7.9	7.9	29.7	29.7	93.3	92.8	6.7	6.7	6.7	4.0	3.9		5.0	5.0	
				Surface	1	23.3	23.4	7.8	7.8	29.5	29.6	96.6	96.8	7.0	7.0		3.4	3.7		3.8	3.9	
				Juliace	_ '	23.5	20.4	7.7	7.0	29.7	25.0	97.0	30.0	7.0	7.0	6.9	3.9	3.1	1	3.9	5.5	
M3	Rainy	Moderate	19:10	Middle	4	23.1	23.3	7.7	7.7	29.7	29.8	94.7	94.6	6.8	6.8		3.8	3.7	4.3	3.8	3.8	3.5
	1	1				23.4 22.9		7.7 7.5		29.8 30.0		94.5 90.5		6.8		 	3.6 5.4	1	-	3.8 2.9		
				Bottom	7	23.5	23.2	7.5	7.5	30.0	30.0	90.5	90.7	6.5	6.5	6.5	5.4	5.5		2.9	2.9	
		Ì		0 (<u> </u>	22.9	00.5	7.8	7.0	29.6	00.0	95.8	00.4	6.9		ĺ	3.7	10	t -	2.6	0.7	
		1		Surface	1	24.0	23.5	7.8	7.8	29.6	29.6	96.4	96.1	6.9	6.9	6.0	4.2	4.0		2.7	2.7	
M4	Rainy	Moderate	18:32	Middle	4	22.9	22.9	7.7	7.8	29.7	29.8	93.5	93.5	6.8	6.8	6.9	4.1	4.5	4.7	3.4	3.4	3.2
	· wanty	ouciaic	10.02	madic		22.9		7.8		29.8	20.0	93.5	55.5	6.8	5.0	ļ	4.8	7.0	4 *	3.3	5.7	5.2
		1		Bottom	7	23.0	23.0	7.8	7.8	29.9	29.9	91.6	91.3	6.6	6.6	6.6	4.9	5.5		3.4	3.4	
		<u> </u>				22.9	<u> </u>	7.8		29.9 30.5		90.9		6.6			6.0	<u> </u>		3.4		
		1		Surface	1	22.6 23.0	22.8	7.8 7.7	7.8	30.5	30.3	98.0 96.6	97.3	7.1 7.0	7.1		5.5 5.7	5.6		4.0	4.0	
		l	40			22.8	05.7	7.6		29.9	05.7	96.2	00.	7.0		7.1	6.2		1	7.0		
M5	Rainy	Moderate	19:27	Middle	5.5	22.9	22.9	7.6	7.6	29.8	29.9	95.9	96.1	6.9	7.0		6.8	6.5	5.9	7.3	7.2	5.0
				Bottom	10	22.7	23.0	7.6	7.6	30.0	30.0	95.0	95.7	6.9	6.9	6.9	5.5	5.7		3.8	3.8	
	<u> </u>	<u> </u>	<u> </u>	DOMOIII	10	23.3	20.0	7.5	7.0	30.0	55.0	96.4	33.1	6.9	0.5	0.5	5.8	3.1	<u> </u>	3.8	0.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
						- 00.0		- 7.0		- 20.4		- 05.7		-		6.8	-		4	- 4.0		
M6	Rainy	Moderate	19:23	Middle	3.6	22.8 23.2	23.0	7.9 7.8	7.9	30.1 29.9	30.0	95.7 93.7	94.7	6.9 6.7	6.8		5.9 5.9	5.9	5.9	4.3 4.4	4.4	4.4
						- 23.2		-		- 25.5		93.7	1	-			-	1	1	- 4.4		
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
									•	•	•	•			•			•				

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 4 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO :/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1: 1:4 :		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 6.7 NTU</u>	<u>C1: 7.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.9 mg/L</u>	<u>C1: 5.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 May 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6 23.3	23.5	7.9 8.0	8.0	30.0 29.6	29.8	95.6 95.3	95.5	6.8 6.9	6.9		6.2 6.2	6.2		3.5 3.4	3.5	
0.4		l.,	44.00		40	23.9	00.7	7.8	7.0	30.3	00.0	96.2	05.0	6.8	0.0	6.9	5.1	4.0		3.3		
C1	Rainy	Moderate	14:08	Middle	10	23.4	23.7	7.7	7.8	30.0	30.2	94.1	95.2	6.7	6.8		4.7	4.9	5.6	3.3	3.3	3.6
				Bottom	19	24.4	24.3	7.7 7.7	7.7	30.4 30.1	30.3	96.4 95.9	96.2	6.8 6.8	6.8	6.8	5.6 5.5	5.6		4.1 4.0	4.1	
-				0 (-	23.5	00.4	7.7	7.0	29.7	00.0	92.7	00.4	6.6	0.0		4.2			4.0		
				Surface	1	23.2	23.4	7.9	7.9	29.8	29.8	91.4	92.1	6.6	6.6	6.6	4.6	4.4		3.9	4.1	
C2	Rainy	Moderate	12:49	Middle	18	23.6 24.3	24.0	7.5 7.4	7.5	29.7 29.8	29.8	91.2 93.1	92.2	6.5 6.6	6.6		4.5 4.2	4.4	4.7	3.8	3.8	3.7
				Bottom	35	24.0	24.1	7.7	7.7	29.9	29.9	93.4	93.5	6.6	6.6	6.6	5.2	5.3		3.1	3.1	
				Bottom	30	24.2	24.1	7.7	1.1	29.8	29.9	93.6	93.5	6.6	0.0	0.0	5.3	5.3		3.0	3.1	
				Surface	1	23.1 24.0	23.6	7.8 7.9	7.9	29.6 29.7	29.7	92.7 93.9	93.3	6.7 6.7	6.7		5.0 4.8	4.9		3.1 3.1	3.1	
G1	Deim	Moderate	13:25	Middle	4	23.7	23.9	7.9	7.9	29.7	29.7	94.7	94.1	6.8	6.7	6.7	5.8	5.6		3.3	2.2	3.4
G1	Rainy	Moderate	13:25	Middle	4	24.0	23.9	7.9	7.9	29.7	29.7	93.4	94.1	6.6	6.7		5.4	5.6	5.5	3.2	3.3	3.4
				Bottom	7	24.0 23.2	23.6	7.9 8.0	8.0	29.5 29.9	29.7	94.7 92.8	93.8	6.7 6.7	6.7	6.7	6.0 6.2	6.1		3.8 3.8	3.8	
				0 (23.4	00.7	7.8	7.0	29.8	00.0	96.3	07.4	6.9	7.0		4.9	4.5		2.9	0.0	
				Surface	1	23.9	23.7	7.8	7.8	29.9	29.9	97.8	97.1	7.0	7.0	7.0	4.0	4.5		2.8	2.9	
G2	Rainy	Moderate	13:11	Middle	5	23.4 23.9	23.7	7.8 7.8	7.8	29.9 29.9	29.9	94.6 96.7	95.7	6.8 6.9	6.9		5.3 5.3	5.3	5.3	3.7 3.6	3.7	3.3
						23.5		7.6		29.8		94.5		6.8			6.2		1	3.4		
				Bottom	9	23.3	23.4	7.7	7.7	29.8	29.8	93.2	93.9	6.7	6.8	6.8	6.1	6.2		3.3	3.4	
				Surface	1	24.1	23.9	7.9	7.9	29.8	29.8	95.7	95.1	6.8	6.8		3.8	4.2		3.5	3.5	
						23.7 23.4		7.9 7.9		29.8 29.9		94.4 95.8		6.7 6.9		6.9	4.6 5.2		1	3.4 4.0		
G3	Rainy	Moderate	13:33	Middle	4	23.2	23.3	8.0	8.0	29.9	29.9	95.5	95.7	6.9	6.9		5.3	5.3	5.1	4.0	4.0	3.5
				Bottom	7	22.9 24.0	23.5	8.0 7.9	8.0	29.8 30.1	30.0	93.8 93.7	93.8	6.8 6.6	6.7	6.7	5.8 5.5	5.7		3.0	3.0	
-						23.9		7.9		30.1		96.2		6.8			5.3			3.6		
				Surface	1	23.3	23.6	7.9	7.9	30.0	30.0	93.7	95.0	6.7	6.8	6.7	4.8	5.1		3.6	3.6	
G4	Rainy	Moderate	13:47	Middle	4	23.6	23.6	8.0	8.0	30.1	30.1	92.3	92.2	6.6	6.6	0.7	5.1	4.8	5.0	3.7	3.8	3.8
	-					23.5 24.2		7.9 8.0		30.1 29.9		92.0 92.9		6.6 6.6			4.4 4.9		-	3.8		
				Bottom	7	23.5	23.9	8.0	8.0	29.7	29.8	91.7	92.3	6.6	6.6	6.6	5.1	5.0		3.9	3.9	
				Surface	1	23.7	23.6	7.8	7.8	29.8	29.8	95.7	95.7	6.8	6.9		5.0	5.0		4.1	4.0	
						23.5 23.2		7.8 7.8		29.8 29.8		95.6 94.9		6.9 6.8		6.9	4.9 5.0		1	3.9		
M1	Rainy	Moderate	13:19	Middle	3	23.1	23.2	7.7	7.8	29.9	29.9	93.2	94.1	6.7	6.8		5.4	5.2	5.4	3.4	3.4	3.8
				Bottom	5	23.7	23.7	7.7	7.8	29.8	29.7	94.3	93.9	6.7	6.7	6.7	5.7	5.9		3.8	3.9	
-						23.6		7.8 7.9		29.6 29.6		93.5 94.5		6.7			6.0 4.5		1	3.9 4.0		
				Surface	1	23.5	23.6	7.8	7.9	29.6	29.6	93.4	94.0	6.7	6.8	6.8	4.2	4.4		4.1	4.1	
M2	Rainy	Moderate	13:03	Middle	5	23.4	23.8	7.8	7.9	29.7	29.7	93.2	93.7	6.7	6.7	0.0	5.2	5.6	5.3	6.3	6.4	4.4
	,					24.1		7.9 7.7		29.7 29.7		94.1 95.3		6.7			5.9 5.9			6.5 2.6		
				Bottom	9	23.8	23.9	7.7	7.7	29.7	29.7	95.5	95.4	6.8	6.8	6.8	6.0	6.0		2.6	2.6	
				Surface	1	23.8	23.9	7.9	7.9	29.9	29.9	95.4	94.9	6.8	6.8		4.5	4.6		3.0	3.1	
					-	23.9		7.9 7.8		29.9 30.0		94.4 92.0		6.7 6.6		6.7	4.6 5.0	-	4	3.1		
М3	Rainy	Moderate	13:39	Middle	4	23.6	23.4	7.8	7.8	30.0	30.1	92.8	92.4	6.6	6.6		4.7	4.9	4.4	2.9	3.0	3.1
				Bottom	7	23.5	23.7	7.7	7.8	30.0	30.1	90.9	90.5	6.5	6.5	6.5	3.6	3.8		3.3	3.3	·
-						23.9 23.9		7.9 7.7		30.1 29.8		90.0 94.1		6.4			3.9 4.1			3.3		
				Surface	1	23.9	23.5	7.7	7.7	29.8	29.8	94.1	93.4	6.7	6.7	6.7	3.6	3.9		3.6	3.6	
M4	Rainy	Moderate	12:56	Middle	4	23.5	23.6	7.7	7.7	29.7	29.8	93.7	92.9	6.7	6.7	6.7	4.8	4.5	4.6	2.5	2.5	2.9
						23.6 23.9		7.7 7.7		29.8 29.8		92.0 93.5		6.6			4.2 5.0		4	2.5		
				Bottom	7	23.9	23.8	7.7	7.7	29.8	29.9	93.5	92.5	6.5	6.6	6.6	5.5	5.3		2.7	2.7	
				Surface	1	23.4	23.5	8.0	8.0	29.7	29.9	96.6	96.5	6.9	6.9		4.2	4.7		2.5	2.5	
				Junace		23.5	20.0	8.0	0.0	30.0	25.5	96.3	30.3	6.9	0.5	6.9	5.2	4.7	4	2.4	2.5	
M5	Rainy	Moderate	14:01	Middle	5.5	23.5 23.5	23.5	7.9 7.9	7.9	29.9 30.2	30.1	95.4 95.6	95.5	6.8 6.8	6.8		5.0 5.3	5.2	5.4	2.7 2.7	2.7	2.7
				Bottom	10	23.5	23.7	7.9	7.9	30.1	30.3	92.6	94.0	6.6	6.7	6.7	6.3	6.3	1	2.9	2.9	
				DOMOIT	10	23.9	23.1	7.9	1.5	30.4	30.3	95.3	34.0	6.8	0.7	0.7	6.3	0.5		2.8	2.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Poin:	Madarat-	13:56	Middle	3.8	23.4	23.4	8.0		29.9	20.0	90.9	90.8	6.5	6.5	6.5	6.5	6.6	6.6	3.3	3.3	3.3
IVIO	Rainy	Moderate	13.30	Middle	3.0	23.4	23.4	7.9	8.0	30.0	30.0	90.7	90.0	6.5	0.0		6.6	0.0	6.6	3.2	3.3	3.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
	1	l						-			1	-		_	1		_	l	<u> </u>	_		

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 6 May 2017 (Mid-Ebb Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 6.7 NTU</u>	<u>C2: 7.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.9 mg/L</u>	<u>C2: 5.3 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 4.9 mg/L</u>	<u>C2: 5.3 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 3.6 mg/L</u>	<u>C2: 3.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 May 2017

(Mid-Ebb Tide)

	10/	0	0			T -				0-1:-	·	DO 0-4-	+: (0/)	Disease		//l \		L: Jik /AIT	11)	0	0 - 1:	//l \
Location	Weather	Sea Condition*	Sampling	Dept	th (m)	Tempera Value	ature (°C)		Average	Value Value	ity ppt	Value	ration (%)		ved Oxygen			urbidity(NTI			nded Solids	
	Condition	Condition*	Time			26.0	Average	Value 8.0	Average	32.7	Average	99.2	Average	Value 6.7	Average	DA*	Value 3.8	Average	DA*	Value 1.5	Average	DA*
				Surface	1	25.8	25.9	8.0	8.0	32.7	32.7	98.2	98.7	6.7	6.7		3.9	3.9		1.5	1.5	
						25.6		7.8		32.8		97.0		6.6		6.7	5.1			0.9		†
C1	Cloudy	Moderate	10:13	Middle	10	25.8	25.7	7.9	7.9	32.7	32.8	97.5	97.3	6.6	6.6		5.3	5.2	4.8	0.9	0.9	2.0
				Bottom	19	25.4	25.5	7.8	7.8	32.9	32.9	94.3	94.5	6.4	6.4	6.4	5.3	5.2		3.6	3.5	Ĭ
				Dottom	15	25.6	20.0	7.8	7.0	32.9	32.5	94.6	34.3	6.4	0.4	0.4	5.1	5.2		3.4	3.3	
				Surface	1	25.4	25.4	7.9	7.9	32.5	32.5	97.9	97.9	6.7	6.7		3.3	3.3		4.1	4.1	
					·	25.4		7.9		32.5		97.8		6.7	•••	6.7	3.2			4.1		ļ
C2	Cloudy	Moderate	08:38	Middle	18	25.3	25.4	7.8 7.8	7.8	32.5 32.5	32.5	96.7 96.5	96.6	6.6	6.6		4.2 4.3	4.3	4.4	2.9 2.9	2.9	3.3
						25.5 25.1		7.8		32.7		93.3		6.6 6.4			5.6			2.9		ł
				Bottom	35	25.2	25.2	7.8	7.8	32.7	32.7	94.1	93.7	6.4	6.4	6.4	5.5	5.6		3.0	3.0	
						25.7		7.9		32.5		96.8		6.6			2.6			2.7		
				Surface	1	25.9	25.8	7.8	7.9	32.4	32.5	97.7	97.3	6.6	6.6		2.4	2.5		2.6	2.7	
G1	Claudy	Madarata	09:23	Middle	4	25.6	25.6	7.9	0.0	32.5	32.5	95.7	05.4	6.5	6.5	6.6	3.7	4.0	4.4	2.5	2.5	2.3
91	Cloudy	Moderate	05.25	Middle	4	25.5	25.0	8.0	8.0	32.4	32.3	95.0	95.4	6.5	0.5		4.2	4.0	4.1	2.5	2.5	2.5
				Bottom	7	25.2	25.3	7.9	7.9	32.4	32.4	91.7	92.6	6.3	6.4	6.4	6.2	5.9		1.6	1.6	
						25.3		7.9		32.3		93.4		6.4			5.6			1.5		
				Surface	1	25.9 25.9	25.9	7.8 7.7	7.8	32.5 32.5	32.5	98.9 99.2	99.1	6.7	6.7		2.1	2.1		1.9	1.9	
						25.9		7.7		32.5		99.2		6.7 6.5		6.6	2.1 4.4			2.5		ł
G2	Cloudy	Moderate	09:05	Middle	5	25.7	25.6	7.8	7.9	32.7	32.8	95.7	96.0	6.5	6.5		4.4	4.4	4.1	2.5	2.5	2.0
				_		25.7		7.9		32.7		94.7		6.4			5.7			1.6		ł
				Bottom	9	25.6	25.7	7.9	7.9	32.7	32.7	94.7	94.7	6.4	6.4	6.4	5.8	5.8		1.6	1.6	
				Confess	-	25.7	05.7	7.9	7.0	32.6	20.0	99.6	00.0	6.8	0.0		1.8	2.0		2.6	0.0	
				Surface	1	25.6	25.7	7.9	7.9	32.6	32.6	98.4	99.0	6.7	6.8	6.7	2.2	2.0		2.5	2.6	
G3	Cloudy	Moderate	09:32	Middle	4	25.5	25.5	8.0	8.0	32.7	32.7	95.1	95.4	6.5	6.5	0.7	2.9	3.0	2.8	4.5	4.5	3.3
00	Oloddy	moderate	00.02			25.5	20.0	8.0	0.0	32.6	02	95.6	00.1	6.5			3.0		2.0	4.5	1.0	
				Bottom	7	25.5 25.5	25.5	8.0 8.0	8.0	32.7 32.6	32.7	94.8 94.5	94.7	6.5	6.5	6.5	3.5 3.4	3.5		2.7	2.7	
		<u> </u>					<u> </u>							6.4				<u> </u>				
				Surface	1	25.7 25.5	25.6	7.9 7.9	7.9	32.6 32.8	32.7	96.3 96.0	96.2	6.5 6.5	6.5		3.0 2.9	3.0		2.0	2.0	
						25.8		8.0		32.6		94.4		6.4		6.5	4.2			2.8		ł .
G4	Cloudy	Moderate	09:51	Middle	4	25.6	25.7	8.0	8.0	32.6	32.6	93.7	94.1	6.4	6.4		4.4	4.3	4.1	2.8	2.8	2.5
				5 "	_	25.5	05.4	7.9	7.0	32.6	00.0	93.4	00.4	6.4	0.4	0.4	5.0			2.6	0.0	İ
				Bottom	7	25.3	25.4	7.9	7.9	32.6	32.6	93.4	93.4	6.4	6.4	6.4	4.9	5.0		2.5	2.6	
				Surface	1	25.6	25.6	7.8	7.8	32.6	32.6	98.3	98.4	6.7	6.7		2.6	2.9		2.8	2.8	
				Gundoo	· ·	25.5	20.0	7.8	7.0	32.5	02.0	98.5	00.1	6.7	0.7	6.7	3.2	2.0		2.8	2.0	Į.
M1	Cloudy	Moderate	09:15	Middle	3	25.5	25.5	7.9	7.9	32.6	32.7	96.8	96.5	6.6	6.6		4.0	4.1	3.8	2.9	3.0	3.1
	-					25.5 25.5		7.9 7.8		32.7 32.5		96.2 94.4		6.6 6.4			4.2 4.3			3.0		ł
				Bottom	5	25.5	25.5	7.0	7.9	32.5	32.6	94.4	94.7	6.5	6.5	6.5	4.3	4.4		3.5	3.5	
						25.3		7.9		32.4		97.2		6.7			2.2			2.4		
				Surface	1	25.5	25.4	7.9	7.9	32.4	32.4	97.1	97.2	6.6	6.7		2.1	2.2		2.4	2.4	
M2	01	Moderate	08:57	Middle	5	25.7	25.7	7.8	7.8	32.5	32.5	97.1	97.1	6.6	6.6	6.7	4.0	4.0	3.4	2.4	2.4	2.5
IVIZ	Cloudy	Woderate	00.37	ivildale	ວ	25.6	23.7	7.8	1.0	32.4	32.3	97.0	97.1	6.6	0.0		3.9	4.0	3.4	2.4	2.4	2.5
				Bottom	9	25.4	25.5	7.8	7.9	32.6	32.6	94.9	95.0	6.5	6.5	6.5	4.3	4.1		2.7	2.8	
				Dottom		25.5	20.0	7.9	7.0	32.5	02.0	95.1	00.0	6.5	0.0	0.0	3.8			2.8	2.0	
		l		Surface	1	25.6 25.8	25.7	7.9 7.9	7.9	32.5 32.6	32.6	97.4 97.7	97.6	6.6	6.6		2.6 2.6	2.6		3.6 3.7	3.7	
		l		-		25.8 25.6	-	7.9		32.6 32.6		97.7		6.6 6.5		6.6	3.4	-		2.6		ł
M3	Cloudy	Moderate	09:41	Middle	4	25.5	25.6	7.9	7.9	32.0	32.7	95.1	95.4	6.5	6.5		3.4	3.5	3.3	2.0	2.7	3.0
		l			_	25.4		7.8		32.8		93.8		6.4			3.7		1	2.5		t
				Bottom	7	25.7	25.6	7.8	7.8	32.7	32.8	93.7	93.8	6.4	6.4	6.4	3.8	3.8		2.5	2.5	
				Surface	1	25.5	25.6	7.8	7.8	32.6	32.6	98.0	98.3	6.7	6.7		2.1	2.2		4.3	4.4	
				Suriace		25.7	23.0	7.8	1.0	32.5	32.0	98.6	90.3	6.7	0.7	6.7	2.3	2.2		4.5	4.4	l
M4	Cloudy	Moderate	08:47	Middle	4	25.4	25.5	7.8	7.8	32.5	32.5	97.0	96.7	6.6	6.6	0.7	4.0	4.4	3.8	2.9	3.0	3.0
						25.5		7.8	<u> </u>	32.5		96.4		6.6			4.7	<u> </u>		3.0		ļ
				Bottom	7	25.2 25.4	25.3	7.7 7.8	7.8	32.6 32.6	32.6	95.1 95.2	95.2	6.5 6.5	6.5	6.5	4.8 5.0	4.9		1.7	1.7	
						25.4		8.0		32.5		95.2		6.5			3.6			2.7		
		l		Surface	1	25.0	25.7	8.0	8.0	32.5	32.5	95.0	95.2	6.5	6.5		3.0	3.4		2.7	2.7	
	Ol- 1		40.05	N. 45		25.5	05.5	7.9	7.0	32.8	20.0	93.8	011	6.4		6.5	4.6	4.0		5.3		
M5	Cloudy	Moderate	10:05	Middle	5.5	25.5	25.5	7.9	7.9	32.8	32.8	94.4	94.1	6.4	6.4	<u></u>	4.0	4.3	4.5	5.3	5.3	3.5
		1		Bottom	10	25.4	25.4	8.0	8.0	32.9	32.9	93.0	92.6	6.3	6.3	6.3	5.8	5.8	1	2.5	2.5	Ĭ
				DOLLOITI	10	25.3	20.4	8.0	0.0	32.9	32.3	92.2	32.0	6.3	0.5	0.5	5.7	3.0		2.5	2.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		0.0	0.0	
						-		-				-		-		6.6	<u> </u>			0.0		ļ
M6	Cloudy	Moderate	10:00	Middle	3.7	25.6	25.3	8.0 8.0	8.0	32.7 32.7	32.7	97.0 96.3	96.7	6.6	6.6		4.0 4.6	4.3	4.3	1.9 1.9	1.9	1.9
		l		-		25.0	l	8.0		32.1		90.3		6.6		-	4.0	l	1	0.0	-	ł
				Bottom	-	1 :	-		-	[-		-	[-	-	:	-		0.0	0.0	
									1			_					-			0.0		

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 6 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 8.6 NTU</u>	<u>C1: 9.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.8 mg/L</u>	<u>C1: 5.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 May 2017

(Mid-Flood Tide)

1	Weather	Sea	Sampling	ı		Tompor	ature (°C)		Н	l Solin	ity ppt	DO Satu	ration (%)	Diecol	ved Oxyger	(ma/L)	1 7	Turbidity(NTI	11)	Suene	ended Solids	(ma/L)
Location	Condition	Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	Condition	Condition	Tillie			25.7		8.0		32.7		97.3		6.6		DA	5.6		DA	4.4		DA
				Surface	1	25.9	25.8	7.9	8.0	32.7	32.7	97.0	97.2	6.6	6.6	0.0	5.4	5.5		4.4	4.4	
04	01		45.40	Maria are	40	25.6	05.0	7.8	7.0	32.7	20.7	95.0	05.4	6.5	0.5	6.6	6.9			3.1	2.4	
C1	Cloudy	Moderate	15:49	Middle	10	25.6	25.6	7.8	7.8	32.7	32.7	95.7	95.4	6.5	6.5		6.9	6.9	6.5	3.1	3.1	3.8
				Bottom	19	25.5	25.6	7.9	7.9	32.7	32.8	94.2	94.4	6.4	6.4	6.4	7.1	7.2	1	3.9	4.0	Î
				DOLLOTTI	19	25.6	23.0	7.9	1.9	32.8	32.0	94.6	94.4	6.4	0.4	0.4	7.2	1.2		4.0	4.0	
				Surface	1	25.7	25.7	7.9	7.9	32.2	32.3	97.8	98.1	6.7	6.7		3.5	3.5		3.6	3.6	
				Surface	'	25.6	25.1	7.8	7.5	32.3	32.3	98.3	30.1	6.7	0.7	6.6	3.4	5.5		3.5	3.0	Į.
C2	Cloudy	Moderate	14:07	Middle	18	25.3	25.2	7.7	7.7	32.4	32.4	95.0	94.7	6.5	6.5	0.0	4.4	4.7	4.6	1.7	1.8	2.7
02	Oloddy	moderate	11.01	middio	.0	25.1	20.2	7.7		32.4	02	94.4	0 1	6.5	0.0		4.9			1.8	1.0	ļ -:·
				Bottom	35	25.1	25.2	7.7	7.7	32.5	32.5	92.6	93.0	6.4	6.4	6.4	5.6	5.6		2.6	2.6	
						25.2		7.6		32.5		93.3		6.4			5.5			2.6		
				Surface	1	25.7	25.8	8.0	8.0	32.3	32.4	97.4	97.6	6.6	6.6		3.3	3.3		5.1	5.2	
						25.8		8.0		32.4		97.7		6.6		6.6	3.3			5.2		Į.
G1	Cloudy	Moderate	14:56	Middle	4	25.4	25.4	7.9	7.9	32.7	32.7	96.2	96.3	6.6	6.6		4.8	4.9	4.6	2.6	2.6	3.4
	-					25.3		7.9 8.0		32.7 32.8		96.4		6.6			5.0			2.6		ł
				Bottom	7	25.3 25.3	25.3	7.9	8.0	32.8	32.9	96.3 95.7	96.0	6.6 6.5	6.6	6.6	5.8 5.6	5.7		2.5	2.5	
	 					25.7				33.0			 			 		 	1	3.4		
				Surface	1	25.7	25.8	7.9 8.0	8.0	33.0	33.0	96.3 95.9	96.1	6.5 6.5	6.5		3.5 3.5	3.5		3.4	3.4	l
				-		25.8	1	7.9		33.0		96.9	1	6.6		6.6	3.8	1	-	2.5		ł
G2	Cloudy	Moderate	14:37	Middle	5	25.7	25.8	7.9	7.9	32.9	33.0	97.2	97.1	6.6	6.6	1	3.6	3.7	4.2	2.5	2.5	2.5
						25.5		7.8		33.3		97.2		6.6			5.3			1.6		ł
				Bottom	9	25.5	25.5	7.8	7.8	33.2	33.3	97.6	97.4	6.6	6.6	6.6	5.3	5.3		1.5	1.6	
	Ì					25.7	_	7.9		32.8		96.7	1	6.6			3.7			4.8		
				Surface	1	25.7	25.7	7.9	7.9	32.9	32.9	97.6	97.2	6.6	6.6		4.1	3.9		4.9	4.9	
						25.5		7.8		32.6		95.9		6.5		6.6	6.1		1	3.1		t
G3	Cloudy	Moderate	15:05	Middle	4	25.7	25.6	7.8	7.8	32.6	32.6	95.6	95.8	6.5	6.5		6.2	6.2	5.6	2.9	3.0	3.5
				Bottom	7	25.6	25.6	7.9	7.9	32.8	32.8	94.0	93.8	6.4	6.4	6.4	6.5	6.6	1	2.6	2.7	Î
				DOLLOTT	,	25.5	25.0	7.9	7.9	32.8	32.0	93.6	93.0	6.4	0.4	0.4	6.6	0.0		2.7	2.1	
				Surface	1	25.7	25.6	7.9	7.9	32.3	32.3	97.4	97.5	6.6	6.7		3.9	4.1		4.2	4.2	
				Suriace	'	25.5	25.6	7.9	7.9	32.2	32.3	97.5	97.5	6.7	0.7	6.7	4.3	4.1		4.2	4.2	
G4	Cloudy	Moderate	15:26	Middle	4	25.6	25.7	8.0	8.0	32.5	32.6	96.6	96.3	6.6	6.6	0.7	4.7	4.6	5.3	5.3	5.3	4.6
04	Oloudy	Woderate	10.20	Wildelic	7	25.8	20.1	7.9	0.0	32.6	02.0	95.9	30.0	6.5	0.0		4.4	4.0	0.0	5.3	0.0	4.0
				Bottom	7	25.6	25.6	7.9	7.9	32.8	32.8	94.6	94.3	6.4	6.4	6.4	6.9	7.1		4.2	4.4	
				Dottom		25.5	20.0	7.9	7.0	32.8	02.0	94.0	01.0	6.4	0.1	0.1	7.3			4.5		
				Surface	1	25.8	25.8	7.9	7.9	32.9	32.9	95.0	94.7	6.4	6.4		4.3	4.2		2.7	2.7	
						25.7		7.8		32.9		94.3		6.4		6.4	4.1			2.6		Į.
M1	Cloudy	Moderate	14:46	Middle	3	25.6	25.6	7.8	7.8	32.7	32.7	93.6	93.4	6.4	6.4		5.4	5.5	5.6	3.0	3.0	3.1
	_					25.5		7.7		32.7		93.2		6.3			5.5			3.0		Į.
				Bottom	5	25.5 25.5	25.5	7.8 7.8	7.8	33.0	33.0	94.7	94.5	6.4	6.4	6.4	7.1 6.9	7.0		3.5	3.6	
						20.0		7.0		02.0		JT.U		0.4					<u> </u>	0.7		
				Surface	1	25.7 25.8	25.8	7.9 7.9	7.9	32.1 32.2	32.2	97.3 96.6	97.0	6.6	6.6		3.1 2.9	3.0		3.4	3.4	
						25.5		7.8		32.5		95.1		6.6 6.5		6.6	3.6			1.9		ł
M2	Cloudy	Moderate	14:27	Middle	5	25.4	25.5	7.8	7.8	32.3	32.5	94.6	94.9	6.5	6.5		3.5	3.6	3.8	1.9	1.9	2.5
						25.3		7.8		32.4		92.3		6.3			4.6			2.2		ł
				Bottom	9	25.3	25.3	7.7	7.8	32.5	32.5	92.8	92.6	6.3	6.3	6.3	5.1	4.9		2.3	2.3	
	Ì					25.7		7.9		32.3		96.5	1	6.6			3.8			3.1		
				Surface	1	25.8	25.8	8.0	8.0	32.4	32.4	97.2	96.9	6.6	6.6		3.4	3.6	1	3.1	3.1	1
140	OI.		45.45	N. 45. 4 11		25.6	05.7	7.8	7.0	32.4	20.5	95.6	05.0	6.5		6.6	4.8	4-	1	2.8	0.0	·
М3	Cloudy	Moderate	15:15	Middle	4	25.7	25.7	7.7	7.8	32.5	32.5	96.1	95.9	6.5	6.5		4.6	4.7	5.1	2.8	2.8	3.4
				Bottom	7	25.3	25.4	7.7	7.7	32.7	32.7	92.6	92.5	6.3	6.3	6.3	7.0	6.9		4.2	4.2	Ī
				DOLLOTTI	- /	25.5	20.4	7.7	1.1	32.6	32.1	92.4	92.0	6.3	0.3	0.3	6.8	0.9	<u> </u>	4.2	4.2	<u> </u>
				Surface	1	25.5	25.6	7.9	7.9	32.5	32.5	96.6	96.8	6.6	6.6		3.9	4.0		4.1	4.2	
				Juilace		25.7	23.0	7.9	1.9	32.5	JZ.Ü	97.0	50.0	6.6	0.0	6.5	4.0	4.0	1	4.2	4.2	Į.
M4	Cloudy	Moderate	14:18	Middle	4	25.4	25.4	7.8	7.8	32.5	32.5	93.7	93.3	6.4	6.4	0.5	4.1	4.3	4.6	2.6	2.7	3.5
IVI-	Cioday	oucrate	14.10	WINGUIC	_	25.3	20.4	7.7	7.0	32.5	02.0	92.9	30.0	6.4	0.4		4.4	4.0	4.0	2.7	2.1	0.0
				Bottom	7	25.5	25.5	7.8	7.8	32.7	32.8	91.9	91.7	6.3	6.3	6.3	5.8	5.4	1	3.5	3.5	1
	<u> </u>			Bottom	<u> </u>	25.4	20.0	7.8		32.8	02.0	91.5	J	6.2	0.0	0.0	4.9	J	<u> </u>	3.5	0.0	
				Surface	1	25.6	25.6	7.7	7.8	32.3	32.3	97.8	98.0	6.7	6.7		5.5	5.7	1	3.5	3.6	l
1				1000		25.5		7.8		32.3		98.1		6.7	J.,	6.7	5.9		1	3.7		1
M5	Cloudy	Moderate	15:40	Middle	5.5	25.5	25.4	7.8	7.8	32.6	32.6	96.2	96.4	6.6	6.6		6.2	6.3	6.2	3.2	3.2	2.8
	' '			<u> </u>		25.3	<u> </u>	7.8		32.6		96.5		6.6			6.4		-	3.2		
1				Bottom	10	25.4	25.4	7.9	7.9	32.8	32.8	95.3	95.5	6.5	6.5	6.5	6.5	6.7	1	1.6	1.6	1
	1					25.3		7.9		32.8		95.7	1	6.5			6.9	<u> </u>	<u> </u>	1.6		
1				Surface	-	-	-	-	-	-	-	l -	-	-	-		-	-	1	-	-	1
				—		25.6	 	- 0.0		22.0		- 05.0				6.6			1	- 2.0		ł
M6	Cloudy	Moderate	15:36	Middle	3.9	25.6 25.9	25.8	8.0 8.0	8.0	32.9 32.9	32.9	95.9 97.0	96.5	6.5 6.6	6.6		5.9 6.2	6.1	6.1	3.0 3.0	3.0	3.0
				<u> </u>		25.9	 	- 0.0		- 32.9		97.0	 			 	- 0.2	†	1	- 3.0		ł
1				Bottom	-	1 [-	1 :	-	1 [-	1 :	-	1 :	-	-	1 [-	1	1 :	-	l
																		<u> </u>	1			

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 8 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
(unit)	Stations G1-G2	1 M1_M5	
	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L	Bottom	4.2 mg/L	3.6 mg/L
(See Note 1 and 4)	Station M6	<u>4.2 mg/L</u>	<u> </u>
	Intake Level	<u>5.0 mg/L</u>	4.7 mg/L
	Stations G1-G4	-	
		19.3 NTU	22.2 NTU
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU		tide of the same day	of the same day
(See Note 2 and 4)		<u>C2: 7.4 NTU</u>	<u>C2: 8.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	n (m)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.3	24.4	8.1 8.1	8.1	31.7 31.7	31.7	110.6 111.2	110.9	7.7 7.8	7.8	7.4	3.7 4.0	3.9		3.7 4.0	3.9	
C1	Cloudy	Moderate	12:24	Middle	10	24.5 23.9	24.2	8.2 8.2	8.2	32.2 32.2	32.2	99.8 99.0	99.4	6.9 6.9	6.9	7.4	6.2 5.8	6.0	5.6	3.3 3.2	3.3	4.0
				Bottom	19	24.3 23.9	24.1	8.2 8.2	8.2	32.1 32.2	32.2	97.6 96.9	97.3	6.8 6.8	6.8	6.8	6.8 6.9	6.9		4.8 4.5	4.7	
				Surface	1	23.8 23.8	23.8	8.1 8.0	8.1	32.4 32.4	32.4	104.2 104.4	104.3	7.3 7.3	7.3	7.2	3.8 3.7	3.8		4.7 4.6	4.7	Į
C2	Cloudy	Moderate	10:07	Middle	18	23.8 23.7	23.8	8.0 8.0	8.0	32.2 32.1	32.2	98.8 98.7	98.8	6.9 7.0	7.0		4.4 4.5	4.5	4.8	4.3 4.3	4.3	4.5
				Bottom	35	23.8 23.7	23.8	8.1 8.1	8.1	32.1 32.1	32.1	94.2 93.1	93.7	6.6 6.6	6.6	6.6	6.1 6.3	6.2		4.3 4.6	4.5	
				Surface	1	24.5 24.3	24.4	8.2 8.2	8.2	31.9 32.1	32.0	100.4 100.4	100.4	7.0 7.0	7.0	6.9	3.5 3.6	3.6		2.5 2.6	2.6	ļ
G1	Cloudy	Moderate	11:04	Middle	4	24.5 24.3	24.4	8.2 8.1	8.2	32.0 32.1	32.1	98.4 98.0	98.2	6.8 6.8	6.8		4.3 4.9	4.6	4.2	6.1 6.3	6.2	4.4
				Bottom	7	24.4 24.3	24.4	8.1 8.2	8.2	32.4 32.3	32.4	98.9 98.3	98.6	6.9 6.8	6.9	6.9	4.3 4.4	4.4		4.4 4.5	4.5	
				Surface	1	24.4 24.4	24.4	8.2 8.2	8.2	32.7 32.5	32.6	105.3 104.0	104.7	7.3 7.2	7.3	7.1	3.2 2.7	3.0		4.2 4.1	4.2	ļ
G2	Cloudy	Moderate	10:40	Middle	5	24.4 24.3 24.4	24.4	8.1 8.1 8.2	8.1	32.6 32.6 32.9	32.6	99.7 99.4	99.6	6.9 6.9	6.9		5.9 6.9	6.4	5.5	2.7 2.8 3.1	2.8	3.4
				Bottom	9	24.2	24.3	8.1	8.2	32.8	32.9	95.9 95.2	95.6	6.6 6.6	6.6	6.6	7.6 6.7	7.2		3.3	3.2	
				Surface	1	24.5 24.4 24.5	24.5	8.2 8.2 8.2	8.2	32.0 32.0 32.2	32.0	109.7 108.9 106.3	109.3	7.6 7.6 7.4	7.6	7.5	3.4 3.8 4.5	3.6		3.4 3.4 3.4	3.4	}
G3	Cloudy	Moderate	11:16	Middle	4	24.5 24.4 24.4	24.5	8.2 8.2	8.2	32.2 32.3 32.5	32.3	107.0 102.5	106.7	7.4	7.4		4.5 4.9 5.2	4.7	4.4	3.6 3.9	3.5	3.6
				Bottom	7	24.4 24.4 24.4	24.4	8.2 8.2	8.2	32.5 32.6 32.0	32.6	102.5 102.4 92.9	102.5	7.1 7.1	7.1	7.1	4.4 3.3	4.8		3.9 4.1 3.5	4.0	
				Surface	1	24.5	24.5	8.1	8.1	32.1	32.1	93.9	93.4	6.5 6.5	6.5	6.4	3.4	3.4		3.6	3.6	ļ
G4	Cloudy	Moderate	11:40	Middle	4	24.4 24.5	24.5	8.2 8.2	8.2	32.1 32.2	32.2	89.6 89.3	89.5	6.2 6.2	6.2		5.4 6.7	6.1	5.5	2.7	2.8	3.4
				Bottom	7	24.4 24.4	24.4	8.2 8.2	8.2	32.5 32.5	32.5	89.2 88.6	88.9	6.2 6.2	6.2	6.2	7.1 7.0	7.1		3.9 3.8	3.9	
				Surface	1	24.3 24.4	24.4	8.1 8.1	8.1	32.4 32.1	32.3	98.4 98.6	98.5	6.9 6.9	6.9	7.0	4.6 4.1	4.4		2.6	2.6	ļ
M1	Cloudy	Moderate	10:53	Middle	3	24.3 24.4 24.4	24.4	8.2 8.1 8.2	8.2	32.3 32.3 32.1	32.3	102.1 102.7 108.1	102.4	7.1 7.1	7.1		5.3 4.6 5.5	5.0	5.1	3.2 3.4 2.6	3.3	2.9
				Bottom	5	24.4 24.4 24.1	24.4	8.2	8.2	32.5	32.3	107.7	107.9	7.5 7.5	7.5	7.5	6.1	5.8		2.8	2.7	
				Surface	1	24.2	24.2	8.2 8.1	8.2	32.6 32.5	32.6	98.1 97.1	97.6	6.8	6.8	7.0	4.2 4.4	4.3		3.7 3.7	3.7	ļ
M2	Cloudy	Moderate	10:28	Middle	5.5	24.2 24.0	24.1	8.1 8.2	8.2	32.5 32.5	32.5	101.4 100.9	101.2	7.1 7.1	7.1		5.3 4.4	4.9	4.7	3.2 4.5	3.9	3.6
				Bottom	10	24.2 23.9	24.1	8.2 8.1	8.2	32.5 32.5	32.5	94.8 94.3	94.6	6.6 6.6	6.6	6.6	4.9 5.0 3.0	5.0		3.0 3.2	3.1	
				Surface	1	24.6 24.6	24.6	8.2 8.2	8.2	32.6 32.5	32.6	96.6 96.3	96.5	6.7	6.7	6.5	2.8	2.9		4.3	4.3	}
М3	Cloudy	Moderate	11:30	Middle	4.5	24.6 24.5	24.6	8.1 8.2	8.2	32.8 32.5	32.7	91.5 91.4	91.5	6.3 6.3	6.3		5.5 5.5	5.5	4.8	3.1 3.1	3.1	3.8
				Bottom	8	24.6 24.4	24.5	8.1 8.2	8.2	33.2 32.8	33.0	94.5 93.5	94.0	6.5 6.5	6.5	6.5	5.5 6.3 3.5	5.9		3.9 4.1	4.0	
				Surface	1	24.0 24.0	24.0	8.1 8.1	8.1	32.4 32.3	32.4	106.8	106.4	7.5 7.4	7.5	7.4	3.6	3.6		4.1	4.2	}
M4	Cloudy	Moderate	10:16	Middle	4	24.0 23.9 24.0	24.0	8.1 8.1 8.2	8.1	32.2 32.1 32.2	32.2	102.8 103.6 103.0	103.2	7.2 7.3	7.3		5.6 5.7	5.7	5.4	4.3 4.5 4.1	4.4	4.3
				Bottom	7	23.9 24.4	24.0	8.2	8.2	32.2	32.2	103.0	103.0	7.2 7.2	7.2	7.2	6.9 6.8	6.9		4.1	4.2	
				Surface	1	24.2	24.3	8.2 8.2	8.2	32.0 32.0	32.0	101.6	101.4	7.1 7.1	7.1	7.0	3.8	3.8		4.1	3.6	}
M5	Cloudy	Moderate	12:10	Middle	5.5	24.3 24.0 24.2	24.2	8.2 8.2 8.2	8.2	32.4 32.4 32.3	32.4	97.8 97.0 92.6	97.4	6.8 6.8 6.5	6.8		5.3 4.7 5.5	5.0	4.8	4.3 3.2 3.2	3.8	3.6
				Bottom	10	24.2	24.1	8.2	8.2	32.3	32.3	92.3	92.5	6.5	6.5	6.5	5.5	5.5		3.6	3.4	
				Surface	-	24.2	-	- - 8.1	-	32.0	-	103.5	-	7.2	-	7.3	4.8	-		4.7	-	}
M6	Cloudy	Moderate	11:51	Middle	2.1	24.2	24.2	8.2	8.2	32.1	32.1	103.5	103.8	7.3	7.3		4.6	4.6	4.6	5.2	5.0	5.0
				Bottom	-		-		-	-	-		-		-	-		-			-	<u> </u>

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 8 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbi ditu in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.3 NTU</u>	<u>C1: 9.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.4 mg/L</u>	<u>C1: 4.8 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.4 mg/L</u>	<u>C1: 4.8 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.8 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 May 2017

(Mid-Flood Tide)

Loop#	Weather	Sea	Sampling	D	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2	26.2	8.2	8.2	31.4	31.3	112.0	110.2	7.5	7.5		4.5	4.7		3.6	3.7	
C1	Cloudy	Moderate	18:31	Middle	10	25.1 26.9	25.7	8.2 8.2	8.2	31.1 32.4	32.4	108.3 104.6	102.5	7.5	7.0	7.3	6.0	6.2	5.9	3.8	3.6	4.6
	,			Bottom	19	24.5 25.3	24.9	8.2 8.2	8.2	32.4 32.9	32.9	100.3 99.2	98.9	7.0 6.8	6.8	6.8	6.3	6.9		3.5 6.6	6.5	
				Surface	1	24.4 25.3	25.1	8.2 8.2	8.2	32.8 31.6	31.6	98.5 106.3	105.6	6.8 7.3	7.3		7.3 2.7	2.9		6.4 3.2	3.2	
C2	Cloudy	Moderate	16:21	Middle	18	24.8 25.2	24.9	8.2 8.2	8.2	31.6 32.7	32.7	104.8 102.4	101.7	7.3 7.0	7.0	7.2	3.0 2.7	2.7	3.7	3.2 2.0	2.0	2.6
02	Cloudy	Woderate	10.21	Bottom	35	24.6 24.9	24.8	8.2 8.2	8.2	32.7 32.7	32.8	101.0 100.2	100.3	7.0 6.9	6.9	6.9	2.6 5.3	5.4	5.7	2.0	2.5	2.0
						24.6 26.4		8.2 8.2		32.8 32.8		100.3 107.7		6.9 7.2		0.9	5.4 2.6			2.5 3.4		
	<u>.</u>			Surface	1	25.3 26.3	25.9	8.2 8.2	8.2	32.9 33.0	32.9	106.3 102.8	107.0	7.3 6.9	7.3	7.1	3.0	2.8		3.1 2.8	3.3	
G1	Cloudy	Moderate	17:14	Middle	4	25.0 25.4	25.7	8.2 8.2	8.2	33.1 32.6	33.1	99.6 99.6	101.2	6.8	6.9		2.6	2.9	3.8	2.9	2.9	2.7
				Bottom	7	24.9	25.2	8.2 8.2	8.2	32.6 32.2	32.6	98.8 106.5	99.2	6.8	6.8	6.8	5.5	5.8		2.0	2.0	
				Surface	1	25.3	26.0	8.2 8.2	8.2	32.1 32.2	32.2	103.4 102.7	105.0	7.1	7.1	7.0	3.8 4.7	3.9		3.8	3.7	
G2	Cloudy	Moderate	16:50	Middle	5	26.4 24.8	25.6	8.2	8.2	32.1	32.2	100.0	101.4	6.9 6.9	6.9		4.5	4.6	4.5	3.0	3.2	3.5
				Bottom	9	25.4 24.7	25.1	8.3 8.2	8.3	32.9 32.6	32.8	95.9 95.2	95.6	6.5 6.6	6.6	6.6	4.7 5.1	4.9		3.7 3.4	3.6	
				Surface	1	26.1 25.5	25.8	8.1 8.2	8.2	32.2 32.3	32.3	108.5 107.6	108.1	7.3 7.3	7.3	7.1	3.4 3.5	3.5		3.8 3.6	3.7	
G3	Cloudy	Moderate	17:24	Middle	4	26.0 25.0	25.5	8.1 8.2	8.2	32.2 32.2	32.2	102.3 100.9	101.6	6.9 6.9	6.9		4.5 3.7	4.1	4.4	4.6 5.0	4.8	3.6
				Bottom	7	25.6 24.9	25.3	8.1 8.2	8.2	32.6 32.4	32.5	98.1 96.9	97.5	6.7 6.7	6.7	6.7	5.9 5.5	5.7		2.2 2.1	2.2	
				Surface	1	25.1 24.7	24.9	8.1 8.1	8.1	31.3 31.4	31.4	104.4 103.0	103.7	7.2 7.2	7.2	7.0	3.3 3.9	3.6		3.1 3.4	3.3	
G4	Cloudy	Moderate	17:47	Middle	4	25.7 24.6	25.2	8.1 8.1	8.1	32.2 32.3	32.3	100.3 98.8	99.6	6.8 6.8	6.8	7.0	3.8 3.5	3.7	4.4	2.4 2.5	2.5	3.0
				Bottom	7	24.8 24.5	24.7	8.2 8.2	8.2	33.2 33.0	33.1	102.7 101.0	101.9	7.1 7.0	7.1	7.1	5.8 6.2	6.0		3.1 3.2	3.2	
				Surface	1	26.9 25.9	26.4	8.2 8.1	8.2	33.5 33.1	33.3	108.7 105.6	107.2	7.2 7.1	7.2		3.3 3.6	3.5		2.5 2.6	2.6	
M1	Cloudy	Moderate	17:03	Middle	3	26.6 25.5	26.1	8.2 8.1	8.2	33.4 33.6	33.5	103.9 102.2	103.1	6.9 6.9	6.9	7.1	2.9 3.4	3.2	4.0	2.8 2.7	2.8	2.7
				Bottom	5	26.0 25.4	25.7	8.2	8.2	33.2 33.1	33.2	101.7	100.7	6.8	6.8	6.8	5.8	5.3		2.6	2.6	
				Surface	1	27.7	26.6	8.2 8.2	8.2	31.8 31.8	31.8	105.3 102.1	103.7	6.9 7.0	7.0		3.9 3.7	3.8		3.0	3.1	
M2	Cloudy	Moderate	16:39	Middle	5.5	27.1 24.6	25.9	8.1 8.2	8.2	32.8 32.8	32.8	99.4 95.2	97.3	6.6 6.6	6.6	6.8	4.0 4.6	4.3	4.2	3.1	3.3	3.6
				Bottom	10	25.7 24.5	25.1	8.2 8.2	8.2	32.8 32.9	32.9	95.3 93.6	94.5	6.5 6.5	6.5	6.5	4.6 4.3	4.5		4.1	4.4	
				Surface	1	26.0 25.5	25.8	8.2	8.2	31.1 31.0	31.1	117.7	117.2	8.0 8.0	8.0		3.2	3.3		1.7	1.7	
М3	Cloudy	Moderate	17:38	Middle	4.5	25.9 24.9	25.4	8.2 8.2 8.2	8.2	31.6 31.6	31.6	116.6 102.0 100.8	101.4	6.9 7.0	7.0	7.5	3.4 4.3 3.5	3.9	4.2	2.1	2.1	2.2
				Bottom	8	25.6 24.9	25.3	8.1 8.2	8.2	32.2 32.1	32.2	92.9 92.5	92.7	6.3 6.4	6.4	6.4	5.1 5.4	5.3		2.9	2.9	
				Surface	1	26.7 25.7	26.2	8.1 8.2	8.2	32.5 32.4	32.5	109.8 107.1	108.5	7.3 7.3	7.3		3.7	4.0		3.0	3.1	
M4	Cloudy	Moderate	16:29	Middle	4	26.6	26.0	8.2 8.1 8.2	8.2	32.4 32.5 32.2	32.4	104.3	102.8	7.0	7.0	7.2	5.0	4.9	4.9	2.3	2.3	2.9
				Bottom	7	25.4 25.8	25.6	8.2	8.2	32.5	32.4	98.3	97.6	6.9	6.7	6.7	4.7 6.0	5.9	1	2.9	3.3	
				Surface	1	25.3 24.4	24.3	8.2 8.2	8.2	32.2 31.2	31.3	96.8 102.6	102.1	7.2	7.2		3.5	3.5		3.7	3.4	
M5	Cloudy	Moderate	18:19	Middle	5.5	24.1 24.4	24.2	8.2 8.2	8.2	31.3 32.4	32.5	101.6 98.8	98.3	7.1 6.9	6.9	7.1	3.4 4.6	4.6	4.8	3.5 4.0	4.2	3.6
	J.J.J.J.		10.10	Bottom	10	24.0 24.2	24.1	8.2 8.2	8.2	32.5 32.1	32.1	97.7 94.2	94.2	6.8	6.6	6.6	4.5 6.0	6.3		4.3 3.0	3.2	5.5
	l 	 		Surface	-	24.0	27.1	8.2	0.2	32.1	32.1	94.2	34.2	6.6	0.0	0.0	6.6	0.5	<u> </u>	3.4	-	
M6	Cla	Modt	17:50			26.6	26.4	8.2	8.2	31.1		109.5	109.8	7.4		7.4	4.1	4.0	4.0	5.6		
IVIO	Cloudy	Moderate	17:59	Middle	2	26.2	26.4	8.2		31.9	31.5	110.1		7.4	7.4		3.9	4.0	4.0	5.6	5.6	5.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 10 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO :/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tr. 1:1:4 :		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 1)		<u>C2: 7.2 NTU</u>	<u>C2: 7.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>[</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 May 2017

(Mid-Ebb Tide)

	Weather	Sea	Sampling	_		Temner	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(ma/L)	1	Turbidity(NT	ITU)	1	Susne	nded Solids	(mg/L)
Location		Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average		A* V	alue	Average	DA*
				Surface	1	24.5	24.4	8.1	8.2	29.1	29.0	109.2	109.5	7.7	7.8		3.4	3.6			2.5	2.6	
				Suriace	'	24.3	24.4	8.2	0.2	28.8	29.0	109.8	109.5	7.8	1.0	7.4	3.7	3.0			2.7	2.0	ı
C1	Sunny	Moderate	12:54	Middle	10	24.5	24.2	8.2	8.2	30.1	30.1	98.8	98.3	6.9	6.9		5.2	5.2	4.		3.3	3.4	2.9
	,					23.9 24.3		8.2 8.2		30.1 30.5		97.8 97.0		6.9 6.8			5.1 5.4	ļ	_		3.4 2.9		1
				Bottom	19	23.9	24.1	8.2	8.2	30.5	30.5	96.3	96.7	6.8	6.8	6.8	5.4	5.4			2.7	2.8	ı
						23.8		8.1		29.3		102.3		7.3			3.0		+		5.2		
				Surface	1	23.8	23.8	8.1	8.1	29.3	29.3	102.8	102.6	7.3	7.3	l	2.7	2.9			5.4	5.3	ı
00	C	M- d4-	40.50	Mariana	40	23.8	00.0	8.1	0.4	30.4	20.4	97.4	07.5	6.9		7.1	4.1	4.4	٠,	,	3.5	2.4	4 -
C2	Sunny	Moderate	10:53	Middle	18	23.7	23.8	8.1	8.1	30.4	30.4	97.5	97.5	6.9	6.9		4.0	4.1	4.	3	3.3	3.4	4.7
				Bottom	35	23.8	23.8	8.1	8.1	30.4	30.5	93.0	92.9	6.6	6.6	6.6	6.0	6.0			5.3	5.4	ı
				Dottom		23.7	20.0	8.1	0.1	30.5	00.0	92.7	02.0	6.6	0.0	0.0	5.9	0.0			5.4	0.1	
				Surface	1	24.5	24.4	8.2	8.2	30.5	30.6	100.2	99.8	7.0	7.0		3.3	3.3			2.9	2.8	ı
						24.3		8.2		30.6		99.4		7.0		7.0	3.3				2.7		r
G1	Sunny	Moderate	11:43	Middle	4	24.5 24.3	24.4	8.2 8.2	8.2	30.7 30.7	30.7	98.2 98.0	98.1	6.9 6.9	6.9		3.7 3.6	3.7	3.		3.3 3.2	3.3	3.3
						24.3		8.2		31.3		98.6		6.9			3.8	1	_		3.7		í
				Bottom	7	24.3	24.4	8.2	8.2	31.2	31.3	97.4	98.0	6.8	6.9	6.9	4.1	4.0			3.8	3.8	ı
						24.4		8.2		30.9		104.9		7.4			2.4		+		2.6		
			l	Surface	1	24.4	24.4	8.2	8.2	30.8	30.9	103.3	104.1	7.2	7.3	7.0	2.5	2.5			2.6	2.6	i
00	C.,	Madaaa	44.04	Mid-II-	-	24.4	24.4	8.1	0.4	30.9	20.0	99.5	00.4	7.0	7.0	7.2	4.7	4.0	┪.		3.7	2.0	0.7
G2	Sunny	Moderate	11:21	Middle	5	24.3	24.4	8.1	8.1	30.8	30.9	98.7	99.1	6.9	7.0		4.9	4.8	4.		3.9	3.8	3.7
				Bottom	9	24.4	24.3	8.2	8.2	31.6	31.5	95.3	95.2	6.7	6.7	6.7	6.5	6.1			9.1	4.8	ı
				Dottom		24.2	24.0	8.2	0.2	31.3	01.0	95.1	30.2	6.7	0.7	0.7	5.7	0.1			1.9	4.0	
				Surface	1	24.5	24.5	8.2	8.2	30.9	31.0	109.6	108.9	7.7	7.7		2.0	2.1			3.3	3.4	1
						24.5		8.2		31.0		108.2		7.6		7.6	2.1				3.5	***	ł
G3	Sunny	Moderate	11:53	Middle	4	24.5	24.5	8.2	8.2	30.9	30.9	105.9	106.5	7.4	7.5		3.7	3.6	3.		3.4	3.6	3.3
	,					24.5 24.5		8.2 8.2		30.9 31.3		107.0 102.2		7.5			3.5 3.0				3.8 2.7		ſ
				Bottom	7	24.5	24.5	8.2	8.2	31.3	31.2	102.2	102.2	7.1 7.1	7.1	7.1	3.3	3.2			2.8	2.8	ı
						24.4		8.1		29.0		91.2		6.5			2.4				3.3		
				Surface	1	24.5	24.5	8.2	8.2	29.1	29.1	92.5	91.9	6.5	6.5		2.0	2.2			3.5	3.4	ı
0.4			40.44			24.4	04.5	8.2		29.9	00.0	88.1	20.4	6.2		6.4	4.6	4.0		_	7.7	7.0	
G4	Sunny	Moderate	12:14	Middle	4	24.5	24.5	8.2	8.2	30.0	30.0	88.1	88.1	6.2	6.2		5.1	4.9	3.		7.8	7.8	5.0
				Bottom	7	24.4	24.4	8.3	8.3	30.8	30.8	88.0	87.7	6.2	6.2	6.2	4.4	4.3			3.6	3.8	ı
				DOLLOTTI	,	24.4	24.4	8.3	0.3	30.7	30.6	87.4	01.1	6.1	0.2	0.2	4.2	4.3			3.9	3.0	
				Surface	1	24.3	24.4	8.1	8.2	31.1	31.0	97.8	97.9	6.9	6.9		3.8	3.7			1.0	3.9	
				Curiaco	· ·	24.4		8.2	0.2	30.8	01.0	97.9	01.0	6.9	0.0	7.1	3.6	0.1			3.8	0.0	,
M1	Sunny	Moderate	11:32	Middle	3	24.3	24.4	8.2	8.2	31.1	31.2	102.0	102.3	7.2	7.2		4.2	4.2	4.		3.8	3.8	4.5
	,					24.4		8.1		31.3		102.6		7.2			4.1				3.7		r
				Bottom	5	24.4	24.4	8.2 8.2	8.2	30.8 30.8	30.8	107.5 106.8	107.2	7.5 7.5	7.5	7.5	4.3 4.7	4.5			6.0 6.8	5.9	ı
						24.1		8.2		29.5		96.6		6.9			2.5				2.5		
				Surface	1	24.2	24.2	8.1	8.2	29.5	29.5	95.1	95.9	6.7	6.8		2.7	2.6			2.4	2.5	ı
			44.40			24.2	04.4	8.1		30.5	00.5	100.5	400.4	7.1		7.0	4.5	4.0	١,		3.3	0.5	
M2	Sunny	Moderate	11:10	Middle	5.5	24.0	24.1	8.2	8.2	30.5	30.5	100.3	100.4	7.1	7.1		4.1	4.3	3.		3.6	3.5	3.2
				Bottom	10	24.2	24.1	8.2	8.2	30.5	30.6	93.7	93.6	6.6	6.6	6.6	4.0	4.1			3.4	3.6	ı
				Dottom	10	23.9	27.1	8.1	0.2	30.6	00.0	93.4	30.0	6.6	0.0	0.0	4.1	7.1			3.8	0.0	
			l	Surface	1	24.6	24.6	8.2	8.2	28.8	28.8	95.3	95.0	6.7	6.7		1.9	2.0			1.1	4.2	 I
		1	1			24.6 24.6	ļ	8.2 8.2	-	28.7 29.2	ļ	94.7	-	6.7	-	6.6	2.1 4.1	ļ	-		i.3		1
M3	Sunny	Moderate	12:05	Middle	4.5	24.5	24.6	8.2 8.2	8.2	29.2	29.3	90.0 90.1	90.1	6.4	6.4		4.1 4.3	4.2	3.	6	5.5	5.6	4.6
			l	_		24.5		8.2	 	29.9	 	92.8	 	6.5	l .		4.3	1	-		1.0		i
				Bottom	8	24.4	24.5	8.2	8.2	29.8	29.9	91.6	92.2	6.5	6.5	6.5	4.8	4.5			1.0	4.0	ı
				Cf	4	24.0	04.0	8.1	0.4	31.2	24.0	106.2	405.7	7.5	7.5		2.5	0.7			1.4	4.0	
		1		Surface	1	24.0	24.0	8.1	8.1	31.1	31.2	105.2	105.7	7.4	7.5	7.4	2.8	2.7			1.2	4.3	ı
M4	Sunny	Moderate	11:01	Middle	4	24.0	24.0	8.2	8.2	31.2	31.1	102.1	102.5	7.2	7.3	7.4	4.3	4.4	4.		2.8	3.0	4.2
1414	Curiny	wooderate	11.01	MINUTE	-	23.9	24.0	8.2	5.2	30.9	01.1	102.8	102.0	7.3	7.5		4.5	7.4	"		3.1	0.0	7.2
		1	l	Bottom	7	24.0	24.0	8.2	8.2	32.2	32.1	103.3	103.0	7.2	7.2	7.2	5.7	5.7			5.2	5.3	i
		<u> </u>	<u> </u>			23.9		8.2		31.9		102.6	1	7.2			5.7				5.3		
		1	1	Surface	1	24.4	24.3	8.2	8.2	28.9	29.0	100.5	100.1	7.1	7.1	ĺ	3.3	3.1			9.9	3.8	i
			l			24.2	<u> </u>	8.2		29.0 30.1		99.7		7.1		7.0	2.9 3.9	 	_		3.7		ſ
M5	Sunny	Moderate	12:41	Middle	5.5	24.3 24.0	24.2	8.2 8.2	8.2	30.1	30.2	96.3 95.7	96.0	6.8 6.8	6.8		3.9	3.8	4.		3.6 3.5	3.6	3.6
		1	1			24.0	<u> </u>	8.3	 	30.2	 	91.7	 	6.5	 	.	6.7	 	\dashv		3.3		i
		1	1	Bottom	10	24.2	24.1	8.3	8.3	30.8	30.8	91.7	91.6	6.5	6.5	6.5	5.4	6.1			3.7	3.5	i
		 		0.1		-		-		-		-		-			-	 	+		-		$\overline{}$
		1		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-			-	-	ı
Me	Cunn	Madarata	10,00	Middle	2.2	24.2	24.2	8.2	0.2	28.8	20.2	101.4	102.2	7.2	7.0	7.3	4.5	4.5	_ ،	_	7.2	7.4	7.1
M6	Sunny	Moderate	12:23	Middle	2.3	24.2	24.2	8.2	8.2	29.6	29.2	103.2	102.3	7.3	7.3		4.5	4.5	4.		7.5	7.4	7.4
		1	l	Bottom	_	-		-	_	-	_	-	_	-	_		-		1		-		i
	<u> </u>	<u></u>	<u></u> _	Dottoili	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			-		

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 10 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
(======================================		<u>C1: 6.6 NTU</u>	<u>C1: 7.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 May 2017

(Mid-Flood Tide)

Loop!	Weather	Sea	Sampling	D	th (m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2	26.2	8.2	8.2	29.3	29.4	110.7	109.0	7.5	7.5		4.5	4.2		4.5	4.4	
C1	Sunny	Moderate	19:23	Middle	10	25.1 26.9	25.7	8.2 8.2	8.2	29.4	29.9	107.3	101.1	7.5	7.0	7.3	3.9 5.2	5.1	4.9	4.2	4.5	4.8
				Bottom	19	24.5 25.3 24.0	24.7	8.2 8.2	8.2	29.9 29.8 29.9	29.9	98.8 97.6 96.3	97.0	7.0 6.8	6.8	6.8	4.9 5.0 5.9	5.5		4.2 5.3 5.6	5.5	
				Surface	1	25.3	25.1	8.2 8.2	8.2	30.1	30.1	105.4	104.6	7.3	7.3		2.3	2.3		4.6	4.7	
C2	Sunny	Moderate	17:21	Middle	18	24.8 25.2 24.6	24.9	8.2 8.2 8.2	8.2	30.1 29.9 29.8	29.9	103.7 100.7 100.1	100.4	7.3 7.0 7.0	7.0	7.2	2.2 1.3 1.2	1.3	2.4	4.8 3.4 3.4	3.4	3.9
				Bottom	35	24.9 24.6	24.8	8.2 8.2	8.2	29.8 29.8	29.8	99.2 99.1	99.2	6.9	7.0	7.0	3.7	3.7		3.3	3.5	
				Surface	1	26.4 25.3	25.9	8.2 8.2	8.2	29.6 29.8	29.7	105.7 104.7	105.2	7.2 7.3	7.3		1.9 1.9	1.9		2.6 2.7	2.7	
G1	Sunny	Moderate	18:09	Middle	4	26.3 25.0	25.7	8.2 8.2	8.2	29.7 29.8	29.8	100.9 97.5	99.2	6.9 6.8	6.9	7.1	3.2 3.1	3.2	3.8	4.2 4.1	4.2	3.4
				Bottom	7	25.4 24.9	25.2	8.2 8.2	8.2	30.1 30.0	30.1	98.4 97.4	97.9	6.8	6.8	6.8	6.1	6.3		3.2	3.4	
				Surface	1	26.7 25.3	26.0	8.2 8.2	8.2	30.4 30.2	30.3	106.0 101.9	104.0	7.2 7.1	7.2		3.9 3.8	3.9		2.6 2.9	2.8	
G2	Sunny	Moderate	17:47	Middle	5	26.4 24.8	25.6	8.2 8.2	8.2	30.3 30.3	30.3	101.7 98.7	100.2	6.9	6.9	7.1	3.6 3.7	3.7	3.6	2.7 2.8	2.8	2.7
				Bottom	9	25.4 24.7	25.1	8.3 8.3	8.3	30.6 30.5	30.6	95.5 94.5	95.0	6.6 6.6	6.6	6.6	3.1	3.1		2.6	2.6	
				Surface	1	26.1 25.5	25.8	8.2 8.2	8.2	29.7 29.7	29.7	107.2 106.8	107.0	7.3 7.4	7.4	-, -	3.5 3.5	3.5		3.9 3.7	3.8	
G3	Sunny	Moderate	18:19	Middle	4	26.0 25.0	25.5	8.2 8.2	8.2	29.9 29.9	29.9	100.5 99.7	100.1	6.9 7.0	7.0	7.2	4.4 4.2	4.3	4.4	3.7 3.8	3.8	3.5
				Bottom	7	25.6 24.9	25.3	8.1 8.2	8.2	30.2 30.3	30.3	96.8 95.9	96.4	6.7 6.7	6.7	6.7	5.2 5.4	5.3		2.8 3.1	3.0	
				Surface	1	24.9 24.7	24.8	8.1 8.1	8.1	29.7 29.7	29.7	103.8 102.2	103.0	7.3 7.2	7.3	7.4	2.0 2.3	2.2		3.2 3.1	3.2	
G4	Sunny	Moderate	18:41	Middle	4	25.7 24.6	25.2	8.1 8.2	8.2	29.8 29.9	29.9	98.7 97.6	98.2	6.8 6.9	6.9	7.1	2.5 2.6	2.6	3.1	5.1 5.3	5.2	3.8
				Bottom	7	24.8 24.5	24.7	8.2 8.2	8.2	30.2 30.2	30.2	101.4 99.9	100.7	7.1 7.0	7.1	7.1	4.6 4.6	4.6		3.0 2.8	2.9	
				Surface	1	26.9 25.9	26.4	8.2 8.1	8.2	30.0 29.8	29.9	106.6 103.5	105.1	7.2 7.1	7.2	7.1	2.0 1.8	1.9		3.0 3.2	3.1	
M1	Sunny	Moderate	18:00	Middle	3	26.6 25.5	26.1	8.2 8.2	8.2	30.0 30.0	30.0	102.6 100.6	101.6	7.0 7.0	7.0	***	2.4 2.1	2.3	2.7	2.8 2.9	2.9	3.8
				Bottom	5	26.0 25.4	25.7	8.2 8.2	8.2	29.8 30.2	30.0	99.9 98.5	99.2	6.9 6.8	6.9	6.9	4.0 4.0	4.0		5.3 5.7	5.5	
				Surface	1	27.7 25.5	26.6	8.2 8.2	8.2	30.3 30.2	30.3	105.0 101.0	103.0	7.0 7.0	7.0	6.8	3.3 3.3	3.3		3.8 3.9	3.9	
M2	Sunny	Moderate	17:37	Middle	5.5	27.1 24.6	25.9	8.2 8.2	8.2	30.2 30.2	30.2	98.1 94.2	96.2	6.6 6.6	6.6		3.4 4.0	3.7	3.3	3.1 3.5	3.3	3.4
				Bottom	10	25.7 24.5	25.1	8.2 8.2	8.2	30.2 30.2	30.2	93.9 92.0	93.0	6.5 6.5	6.5	6.5	2.8 2.7	2.8		3.0 3.2	3.1	
				Surface	1	26.0 25.5	25.8	8.2 8.2	8.2	30.3 30.2	30.3	117.7 116.5	117.1	8.1 8.0	8.1	7.6	2.9 2.9	2.9		2.9 3.2	3.1	
М3	Sunny	Moderate	18:32	Middle	4.5	25.9 24.9 25.6	25.4	8.2 8.2 8.2	8.2	30.5 30.2 30.9	30.4	101.0 100.3 92.5	100.7	6.9 7.0 6.4	7.0		3.1 2.5 5.0	2.8	3.6	2.7 3.2 4.2	3.0	3.5
				Bottom	8	24.9 26.7	25.3	8.2 8.2	8.2	30.9 30.5 30.1	30.7	92.5 92.2 108.5	92.4	6.4 6.4 7.3	6.4	6.4	5.0 5.4 2.9	5.2		4.2 4.5 3.2	4.4	
				Surface	1	25.7 25.7 26.6	26.2	8.2 8.2	8.2	30.1 30.0 29.9	30.1	105.7 102.6	107.1	7.3 7.0	7.3	7.2	2.9 2.4 4.0	2.7		3.2 3.3 3.2	3.3	
M4	Sunny	Moderate	17:29	Middle	4	25.4 25.8	26.0	8.2 8.2	8.2	29.9 29.8 29.9	29.9	102.6 100.0 97.7	101.3	6.9 6.7	7.0		3.7 5.6	3.9	3.9	3.1 4.3	3.2	3.6
				Bottom	7	25.3 24.4	25.6	8.2 8.2	8.2	29.9	29.9	96.0 101.9	96.9	6.7	6.7	6.7	4.7	5.2		4.0	4.2	
				Surface	1	24.1	24.3	8.2 8.2	8.2	29.7 30.1	29.7	100.7 97.5	101.3	7.1 6.9	7.2	7.1	2.5	2.3		3.6 2.3	3.6	
M5	Sunny	Moderate	19:11	Middle	5.5	24.0	24.2	8.2 8.2	8.2	30.1 30.0	30.1	96.5 93.0	97.0	6.8	6.9		3.3 5.2	3.4	3.6	2.2	2.3	4.1
				Bottom	10	24.0	24.1	8.2	8.2	30.0	30.0	92.8	92.9	6.6	6.6	6.6	5.2	5.2		6.5	6.4	
		.	40.50	Surface	-	26.6	-	8.2	-	29.7	-	109.2	-	7.4	-	7.5	3.3	-		5.2	-	
M6	Sunny	Moderate	18:52	Middle	2.4	26.2	26.4	8.2	8.2	29.8	29.8	109.4	109.3	7.5	7.5		3.5	3.4	3.4	5.1	5.2	5.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 12 May 2017 (Mid-Ebb Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in mo/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Troubidies in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.3 NTU</u>	<u>C2: 7.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 May 2017

(Mid-Ebb Tide)

	Moothor	Coo	Compling			T	-4 (00)		-U	Calin	it, nnt	DO Cotu	ration (9/)	Dissal	und Owner	/ma/l \		Turkiditu/NITI	1)	Cuana	ndad Calida	(ma/l.)
Location	Weather Condition	Sea Condition**	Sampling Time	Dep	th (m)	Value	ature (°C) Average	Value	Average	Value	ity ppt Average	Value	ration (%) Average	Value	ved Oxygen Average	DA*	Value	Turbidity(NTI Average	DA*	Value	nded Solids Average	(mg/L) DA*
	Condition	Condition	111110	Surface	1	24.7	24.7	8.1	8.2	29.9	29.8	111.7	112.3	7.8	7.9	5/1	3.6	4.0	5/1	4.2	4.2	5,1
				Curiado		24.7 24.5		8.2 8.2	0.2	29.6 31.0	20.0	112.8 101.4	112.0	7.9 7.1	7.0	7.5	4.4 5.6	1.0		4.2 4.1		
C1	Sunny	Moderate	14:17	Middle	10	24.5	24.5	8.2	8.2	30.9	31.0	101.4	101.2	7.1	7.1		5.8	5.7	4.9	4.1	4.1	3.8
				Bottom	19	24.1	24.1	8.2	8.2	31.4	31.4	99.0	98.9	7.0	7.0	7.0	4.7	4.9		3.1	3.1	
						24.1 24.1		8.2 8.1		31.3 30.1		98.8 105.1		6.9 7.4			5.0 3.1			3.1 5.7		
				Surface	1	24.1	24.2	8.2	8.2	30.2	30.2	106.2	105.7	7.5	7.5	7.3	3.0	3.1		5.8	5.8	
C2	Sunny	Moderate	12:11	Middle	18	24.2	24.1	8.2	8.2	31.3	31.3	100.1	100.1	7.0	7.1	1.3	4.6	4.4	4.5	4.1	4.2	5.1
	,					23.9 24.0		8.2 8.1		31.3 31.2		100.0 96.3		7.1 6.8			4.1 6.2	ļ		4.2 5.1		
				Bottom	35	23.9	24.0	8.2	8.2	31.3	31.3	95.6	96.0	6.7	6.8	6.8	6.0	6.1		5.2	5.2	
				Surface	1	24.7 24.6	24.7	8.1 8.2	8.2	31.3 31.4	31.4	103.3 102.4	102.9	7.2 7.1	7.2		2.7	2.8		4.9 4.9	4.9	
0.4			40.00		<u> </u>	24.6	24.0	8.1		31.4	24.0	102.4	400.0	7.1	7.0	7.1	4.3	4.0	0.5	4.9	4.0	
G1	Sunny	Moderate	13:03	Middle	4	24.5	24.6	8.1	8.1	31.6	31.6	100.6	100.9	7.0	7.0		4.0	4.2	3.5	4.2	4.2	4.4
				Bottom	7	24.6 24.5	24.6	8.1 8.2	8.2	32.1 32.1	32.1	101.7 100.5	101.1	7.1 7.0	7.1	7.1	3.5 3.5	3.5		4.1 4.1	4.1	
				0	1	24.6	04.0	8.2	0.0	31.7	04.7	107.4	400.5	7.5	7.4		2.5	0.5		5.7	F 7	
				Surface	'	24.6	24.6	8.1	8.2	31.6	31.7	105.6	106.5	7.3	7.4	7.3	2.5	2.5		5.7	5.7	
G2	Sunny	Moderate	12:40	Middle	5	24.6 24.5	24.6	8.1 8.1	8.1	31.7 31.6	31.7	102.5 101.4	102.0	7.1 7.1	7.1		4.4 4.6	4.5	4.3	5.3 5.3	5.3	5.2
				Bottom	9	24.5	24.5	8.1	8.1	32.4	32.3	98.4	98.0	6.8	6.8	6.8	5.8	5.8		4.5	4.6	
				Dottom		24.4	24.0	8.1	0.1	32.1	02.0	97.5	30.0	6.8	0.0	0.0	5.7	0.0		4.6	7.0	
				Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	31.7 31.8	31.8	112.2 111.2	111.7	7.8 7.7	7.8		2.0 2.3	2.2		5.8 5.9	5.9	
G3	Sunny	Moderate	13:13	Middle	4	24.7	24.7	8.1	8.2	31.7	31.7	109.1	109.2	7.6	7.6	7.7	3.5	3.3	2.8	1.8	1.9	3.9
00	Outliny	Woderate	10.10	- madio		24.7 24.7		8.2 8.2	ļ	31.7 32.1		109.2 104.7		7.6 7.3			3.0 2.7		2.0	1.9 4.0	ļ	0.0
				Bottom	7	24.7	24.7	8.2	8.2	31.9	32.0	104.7	104.8	7.3	7.3	7.3	3.3	3.0		3.9	4.0	
				Surface	1	24.6	24.6	8.2	8.2	29.8	29.9	94.1	94.6	6.6	6.7		2.1	2.1		4.3	4.4	
					-	24.6 24.6		8.2 8.1		29.9 30.7		95.1 90.3		6.7		6.5	2.0 4.2			7.2		
G4	Sunny	Moderate	13:35	Middle	4	24.4	24.5	8.2	8.2	30.8	30.8	90.2	90.3	6.3	6.3		4.4	4.3	3.7	7.3	7.3	5.7
				Bottom	7	24.4	24.4	8.2	8.2	31.7 31.5	31.6	90.3	90.0	6.3	6.3	6.3	4.8	4.6		5.2	5.3	
						24.3		8.2 8.1		31.5		89.6 100.4		6.3 7.0			4.4 3.0			5.4 5.4		
				Surface	1	24.5	24.5	8.1	8.1	31.6	31.8	101.1	100.8	7.0	7.0	7.2	3.3	3.2		5.5	5.5	
M1	Sunny	Moderate	12:52	Middle	3	24.5	24.6	8.1	8.1	32.0 32.1	32.1	104.4	104.9	7.3	7.3	12	4.0	4.3	4.1	7.2	7.2	5.7
					_	24.6 24.6		8.1 8.2		31.7		105.4 110.1		7.3 7.7			4.5 4.4			7.2 4.2		
				Bottom	5	24.6	24.6	8.2	8.2	31.6	31.7	109.3	109.7	7.6	7.7	7.7	4.9	4.7		4.3	4.3	
				Surface	1	24.3 24.4	24.4	8.2 8.1	8.2	30.3 30.3	30.3	99.0 97.6	98.3	7.0 6.9	7.0		2.5 2.7	2.6		4.7 4.7	4.7	
M2	Cuppy	Moderate	12:28	Middle	5.5	24.4	24.3	8.1	8.1	31.3	31.4	103.5	103.4	7.2	7.2	7.1	4.0	4.3	3.6	2.6	2.7	3.8
IVIZ	Sunny	Moderate	12.20	ivildule	5.5	24.2	24.3	8.1	0.1	31.4	31.4	103.3	103.4	7.2	1.2		4.5	4.3	3.0	2.7	2.1	3.0
				Bottom	10	24.1 24.1	24.1	8.2 8.1	8.2	31.3 31.4	31.4	95.7 96.0	95.9	6.7 6.7	6.7	6.7	3.6 4.2	3.9		3.9 4.0	4.0	
				Surface	1	24.8	24.8	8.2	8.2	29.7	29.7	97.9	97.8	6.9	6.9		2.0	2.2		3.2	3.2	
				Surface		24.8	24.0	8.2	0.2	29.6	29.1	97.7	37.0	6.9	0.9	6.7	2.3	2.2		3.1	5.2	
M3	Sunny	Moderate	13:26	Middle	4.5	24.6 24.5	24.6	8.2 8.2	8.2	30.1 30.1	30.1	92.1 92.5	92.3	6.5 6.5	6.5		3.9 4.0	4.0	3.4	3.6 3.6	3.6	2.6
				Bottom	8	24.3	24.3	8.1	8.1	30.7	30.7	94.9	94.5	6.7	6.7	6.7	4.0	4.1		0.9	0.9	
						24.3		8.1 8.2		30.6 32.0		94.1 109.1		6.6 7.6		0.7	4.1 2.5	1		0.9		
				Surface	1	24.2	24.2	8.1	8.2	32.0	32.0	107.9	108.5	7.5	7.6	7.5	2.6	2.6		3.3	3.4	
M4	Sunny	Moderate	12:19	Middle	4	24.2	24.2	8.2	8.2	32.0	31.9	104.4	105.2	7.3	7.4	7.5	4.5	4.7	4.1	3.0	3.1	2.5
	 					24.1 24.1		8.2 8.1		31.8 33.0		106.0 105.2		7.4			4.8 5.1			3.1 1.0		
				Bottom	7	24.1	24.1	8.1	8.1	32.7	32.9	105.3	105.3	7.3	7.3	7.3	5.1	5.1		1.0	1.0	
				Surface	1	24.6	24.6	8.2	8.2	29.8	29.9	103.2	103.0	7.3	7.3		3.0	3.0		3.8	3.9	
		l				24.6 24.5		8.2 8.2		29.9 30.9		102.8 99.0		7.2 6.9		7.1	3.0			3.9 4.7		
M5	Sunny	Moderate	14:04	Middle	5.5	24.4	24.5	8.2	8.2	31.0	31.0	99.0	99.0	6.9	6.9		3.9	3.7	4.1	4.6	4.7	4.4
				Bottom	10	24.4 24.2	24.3	8.2 8.2	8.2	31.6 31.6	31.6	94.3 93.9	94.1	6.6 6.6	6.6	6.6	5.6 5.7	5.7		4.4 4.5	4.5	
				Confee	1	- 24.2		- 0.2	1	- 31.0		- 33.8		-			5.1	1		0.0	0.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		0.0	0.0	
M6	Sunny	Moderate	13:46	Middle	2.4	24.4 24.4	24.4	8.2 8.2	8.2	29.6 30.4	30.0	104.2 106.3	105.3	7.4 7.5	7.5		4.2 4.3	4.3	4.3	3.5 3.5	3.5	3.5
				Bottom	-	-	_	-	_	-	_	-	_	-	_	_	-			0.0	0.0	
				DOLLOITI		-				-		-		-						0.0	0.0	

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 12 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>
	Stations M1-M	<u>15</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	T
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 May 2017

(Mid-Flood Tide)

1	Weather	Sea	Sampling	Б.	h ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4	26.4	8.2	8.2	30.2	30.2	113.1	111.5	7.6	7.6		4.5	4.6		4.9	4.8	
C1	Sunny	Moderate	20:33	Middle	10	25.3 25.5 24.7	25.1	8.1 8.2 8.2	8.2	30.2 30.7 30.7	30.7	109.9 103.2 101.5	102.4	7.6 7.1 7.1	7.1	7.4	4.6 5.2 5.0	5.1	5.2	4.6 4.6 4.7	4.7	4.7
				Bottom	19	25.5	24.9	8.1 8.2	8.2	30.7	30.7	100.7	99.6	6.9	6.9	6.9	5.7 5.8	5.8		4.5	4.6	
				Surface	1	25.5 25.0	25.3	8.2 8.2	8.2	31.0 30.9	31.0	108.3 106.3	107.3	7.4 7.4	7.4		2.3 2.4	2.4		3.9	3.9	
C2	Sunny	Moderate	18:31	Middle	18	25.4 24.5	25.0	8.2 8.1	8.2	30.7 30.7	30.7	103.9 101.5	102.7	7.2 7.1	7.2	7.3	1.3	1.4	2.7	3.8 3.9	3.9	3.8
				Bottom	35	25.3 24.5	24.9	8.2 8.2	8.2	30.6 30.6	30.6	101.8 100.9	101.4	7.0 7.1	7.1	7.1	4.3 4.1	4.2		3.7 3.6	3.7	
				Surface	1	26.6 25.5	26.1	8.1 8.2	8.2	30.4 30.6	30.5	108.1 107.2	107.7	7.3 7.4	7.4	7.2	2.1 2.1	2.1		3.9 3.9	3.9	
G1	Sunny	Moderate	19:20	Middle	4	26.5 25.2	25.9	8.2 8.2	8.2	30.5 30.6	30.6	103.0 100.6	101.8	7.0 7.0	7.0	7.2	1.7 1.8	1.8	3.5	3.3 3.3	3.3	3.7
				Bottom	7	25.6 25.3	25.5	8.2 8.2	8.2	30.9 30.9	30.9	101.1 100.0	100.6	6.9 6.9	6.9	6.9	6.4 6.5	6.5		3.9 3.9	3.9	
				Surface	1	26.9 25.5	26.2	8.2 8.2	8.2	31.2 31.0	31.1	108.2 105.4	106.8	7.3 7.2	7.3	7.2	3.8 4.2	4.0		4.1 4.2	4.2	
G2	Sunny	Moderate	18:58	Middle	5	26.6 25.0	25.8	8.1 8.2	8.2	31.1 31.1	31.1	103.9 102.1	103.0	7.0 7.1	7.1		4.3 3.9	4.1	3.7	2.9 3.0	3.0	3.4
				Bottom	9	25.6 24.9	25.3	8.2 8.2	8.2	31.4 31.3	31.4	97.3 96.9	97.1	6.7 6.7	6.7	6.7	2.8	2.9		3.1 3.0	3.1	
				Surface	1	26.3 25.7 26.2	26.0	8.1 8.1 8.1	8.1	30.6 30.5 30.8	30.6	110.4 109.1 103.7	109.8	7.5 7.5 7.1	7.5	7.3	2.7 2.8 3.4	2.8		3.8 3.8 4.5	3.8	
G3	Sunny	Moderate	19:30	Middle	4	25.2 25.5	25.7	8.1 8.2	8.1	30.8 31.1	30.8	102.3 99.0	103.0	7.1 7.1 6.8	7.1		3.5 6.3	3.5	4.0	4.5 4.4	4.5	4.3
				Bottom	7	25.3 25.3	25.4	8.1 8.2	8.2	31.2	31.2	99.7	99.4	6.9	6.9	6.9	5.2	5.8		4.5	4.5	
C4	Suppr:	Madarata	10.51	Surface	4	24.9 25.9	25.1	8.2 8.1	8.2	30.6 30.6	30.6	104.2	105.0 100.6	7.3 6.9	7.3	7.2	2.4	2.4		4.4 5.0	4.4	4.9
G4	Sunny	Moderate	19:51	Middle Bottom	7	24.5 25.0	25.2	8.1 8.1	8.1	30.8 31.0	30.7	99.7 103.3	100.6	7.0 7.2	7.0	7.2	3.1 3.8	3.1 4.3	3.3	5.1 5.1	5.1	4.9
	<u> </u>			Surface	1	24.7 27.3	26.8	8.2 8.2	8.2	31.1 30.9	30.8	102.0 109.3	102.7	7.1 7.3	7.3	1.2	4.7 2.0	2.1		5.3 3.0	3.1	
M1	Sunny	Moderate	19:10	Middle	3	26.3 26.5	26.1	8.2 8.1	8.2	30.7 30.8	30.8	107.1	103.6	7.3	7.1	7.2	2.1	2.5	2.8	3.1	3.4	3.4
•				Bottom	5	25.7 26.2	25.9	8.2 8.2	8.2	30.8 30.7 31.0	30.9	103.4	101.4	7.1 6.9	6.9	6.9	2.5 3.7	3.8	1	3.4	3.8	
				Surface	1	25.6 27.9	26.8	8.2	8.2	31.1	31.1	100.7	105.4	7.1	7.1		3.8	3.2		3.8 4.4	4.5	
M2	Sunny	Moderate	18:48	Middle	5.5	25.7 27.3 24.5	25.9	8.2 8.2 8.2	8.2	31.0 31.0 31.0	31.0	103.3 100.7 96.3	98.5	7.1 6.7 6.7	6.7	6.9	3.0 3.5 3.6	3.6	3.1	4.5 6.4 6.3	6.4	5.3
				Bottom	10	25.9 24.7	25.3	8.1 8.2	8.2	31.1 31.0	31.1	96.6 94.5	95.6	6.6 6.6	6.6	6.6	2.4 2.5	2.5		5.0 4.9	5.0	
				Surface	1	26.2 25.7	26.0	8.1 8.2	8.2	31.1 31.0	31.1	119.1 118.3	118.7	8.1 8.1	8.1		2.6 2.5	2.6		3.7	3.8	
М3	Sunny	Moderate	19:43	Middle	4.5	26.3 25.3	25.8	8.1 8.1	8.1	31.3 31.1	31.2	104.4 103.5	104.0	7.1 7.1	7.1	7.6	2.9 2.6	2.8	3.7	3.1 3.1	3.1	3.4
				Bottom	8	25.5 25.3	25.4	8.2 8.1	8.2	31.7 31.3	31.5	94.1 94.2	94.2	6.4 6.5	6.5	6.5	5.9 5.2	5.6		3.4 3.4	3.4	
				Surface	1	26.9 25.9	26.4	8.1 8.1	8.1	30.9 30.8	30.9	111.0 108.6	109.8	7.5 7.4	7.5	7.3	2.6 2.5	2.6		4.2 4.3	4.3	
M4	Sunny	Moderate	18:40	Middle	4	26.5 25.6	26.1	8.1 8.1	8.1	30.7 30.7	30.7	104.3 101.9	103.1	7.1 7.0	7.1	1.3	3.9 4.0	4.0	3.8	3.7 3.8	3.8	4.0
				Bottom	7	26.0 25.5	25.8	8.2 8.2	8.2	30.8 30.8	30.8	100.1 98.9	99.5	6.8 6.8	6.8	6.8	5.2 4.3	4.8		3.9 3.8	3.9	
				Surface	1	24.6 24.3	24.5	8.2 8.2	8.2	30.5 30.5	30.5	104.9 103.6	104.3	7.3 7.3	7.3	7.2	2.4	2.5		3.7	3.7	
M5	Sunny	Moderate	20:20	Middle	5.5	24.6 24.2	24.4	8.2 8.2	8.2	30.9 30.9	30.9	100.3 99.9	100.1	7.0 7.0	7.0		3.7 3.8	3.8	3.7	4.7 4.7	4.7	4.6
				Bottom	10	24.4 24.2	24.3	8.2 8.2	8.2	30.8 30.8	30.8	95.6 95.8	95.7	6.7 6.7	6.7	6.7	4.7 4.8	4.8		5.4 5.5	5.5	
				Surface	-	26.8	-	8.2	-	30.5	-	- - 112.5	-	- - 7.6	-	7.6	3.3	-		7.0	-	
M6	Sunny	Moderate	20:02	Middle	2.3	26.4	26.6	8.2	8.2	30.6	30.6	110.9	111.7	7.5	7.6		3.2	3.3	3.3	7.0	7.0	7.0
				Bottom	-		-	-	-	-	-	:	-	[-	-]	-		[-	

temarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 15 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4, M1-M5											
DO in mg/L (See Note 1 and 4)	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L									
	Bottom	<u>4.2 mg/L</u>	3.6 mg/L									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
T		or 120% of upstream control	or 130% of upstream control									
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide									
NTU (See Note 2 and 4)		tide of the same day	of the same day									
		<u>C2: 7.6 NTU</u>	<u>C2: 8.2 NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4	<u>I</u>										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Surface	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>									
	Stations M1-M5											
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the									
(See Note 2 and 4)		the same day	same day									
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>									
	Station M6											
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	th (m)	Temperature (°C)		р	pH Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids ((mg/L)	
Location	Condition	Condition*	Time	Бері	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
C1 Rainy Moderate		Moderate		Surface	1	25.5 25.3	25.4	7.9 7.9	7.9	30.5 30.6	30.6	102.9 101.3	102.1	7.1 7.0	7.1	6.9	3.4 3.7	3.6		4.9 5.0	5.0	i I
	Rainy		15:28	Middle	9.5	25.2 25.2	25.2	7.9 7.9	7.9	31.2 31.0	31.1	96.6 94.1	95.4	6.7 6.5	6.6		4.2 4.1	4.2	4.9	3.7 3.7	3.7	4.0
		Bottom	18	25.1 25.1	25.1	7.9 7.9	7.9	31.1 31.1	31.1	92.8 93.0	92.9	6.4 6.4	6.4	6.4	6.8 7.0	6.9		3.2 3.2	3.2			
C2 Rainy M			Surface	1	25.5 25.5	25.5	7.9 7.9	7.9	31.2 31.3	31.3	101.2 100.0	100.6	6.9 6.9	6.9		2.8 2.6	2.7		5.0 5.1	5.1		
	Rainy	ainy Moderate	13:20	Middle	17.5	25.4 25.3	25.4	7.9 7.9	7.9	31.2 31.1	31.2	95.4 95.4	95.4	6.6 6.6	6.6	6.8	2.6 2.4	2.5	3.8	4.4 4.5	4.5	5.0
			Bottom	34	25.1 25.0	25.1	7.8 7.9	7.9	30.9 31.0	31.0	92.4 92.6	92.5	6.4 6.4	6.4	6.4	6.2 6.3	6.3	1	5.4 5.4	5.4	[
G1 Rainy			Surface	1	25.6 25.6	25.6	7.9 7.9	7.9	30.9 31.0	31.0	99.5 100.3	99.9	6.8 6.9	6.9	0.7	3.1 3.3	3.2		3.2 3.2	3.2		
	Rainy	Moderate	14:11	Middle	4	25.5 25.5	25.5	7.9 7.9	7.9	31.0 31.0	31.0	94.3 95.2	94.8	6.5 6.5	6.5	6.5	3.5 3.6	3.6	3.9	2.2 2.2	2.2	3.9
				Bottom	7	25.5 25.4	25.5	7.9 7.9	7.9	31.2 31.4	31.3	95.2 94.8	95.0	6.5 6.5	6.5		4.8 4.9	4.9		6.1 6.2	6.2	
				Surface	1	25.9 25.9	25.9	7.8 7.9	7.9	31.5 31.4	31.5	99.5 98.1	98.8	6.8 6.7	6.8	6.7	4.7 4.6	4.7		5.6 5.6	5.6	6.4
G2	Rainy	Moderate	13:48	Middle	5	25.6 25.6	25.6	7.9 7.9	7.9	31.5 31.5	31.5	94.8 95.6	95.2	6.5 6.5	6.5		4.3	4.4	4.9	7.0 7.1	7.1	
				Bottom	9	25.2 25.2	25.2	8.0	8.0	31.7 31.7	31.7	89.7 90.7	90.2	6.2	6.2	6.2	5.7	5.7		6.4	6.4	
			Surface	1	25.8 25.8	25.8	7.8 7.9	7.9	31.0 30.9	31.0	101.5 103.3	102.4	6.9 7.1	7.0		3.5 3.4	3.5		2.1 2.1	2.1		
G3	Rainy	Moderate	14:21	Middle	4	25.6 25.6	25.6	7.9 7.8	7.9	31.2 31.2	31.2	96.0 95.2	95.6	6.6	6.6	6.8	4.1 4.2	4.2	4.7	4.2 4.2	4.2	4.2
				Bottom	7	25.5 25.5	25.5	7.8 7.9	7.9	31.5 31.6	31.6	93.6 92.3	93.0	6.4 6.3	6.4	6.4	6.3 6.5	6.4		6.3 6.4	6.4	
G4 Rainy M			Surface	1	25.1 25.2	25.2	7.8 7.8	7.8	31.0 30.9	31.0	99.2 98.2	98.7	6.9 6.8	6.9		2.9 3.0	3.0		4.4 4.4	4.4		
	Rainy	Moderate	e 14:44	Middle	4	25.0 25.0	25.0	7.8 7.8	7.8	30.9 31.3	31.1	96.1 96.6	96.4	6.7 6.7	6.7	6.8	3.5 3.6	3.6	4.1	4.2 4.2	4.2	3.8
				Bottom	7	25.0 24.9	25.0	7.9 7.8	7.9	31.4 31.5	31.5	95.2 96.1	95.7	6.6 6.7	6.7	6.7	5.6 5.5	5.6		2.7 2.7	2.7	
		Moderate	14:01	Surface	1	25.8 25.8	25.8	7.9 7.8	7.9	31.3 31.0	31.2	99.8 98.9	99.4	6.8 6.8	6.8	0.7	2.5 2.6	2.6		4.3 4.2	4.3	4.4
M1	Rainy			Middle	3	25.6 25.6	25.6	7.9 7.9	7.9	31.2 31.1	31.2	96.3 95.6	96.0	6.6 6.6	6.6	6.7	2.9 2.5	2.7	3.4	4.8 4.7	4.8	
				Bottom	5	25.3 25.2	25.3	7.8 7.9	7.9	31.1 31.4	31.3	92.6 92.6	92.6	6.4 6.4	6.4	6.4	4.8 4.8	4.8		3.9 4.0	4.0	
M2 Rain				Surface	1	25.7 25.7	25.7	7.9 7.9	7.9	31.5 31.5	31.5	97.5 96.4	97.0	6.7 6.6	6.7	6.5 6.1	4.0 3.9	4.0	5.0	3.6 3.6	3.6	3.8
	Rainy	Moderate	13:37	Middle	5.5	25.4 25.3	25.4	7.8 7.9	7.9	31.4 31.3	31.4	91.8 91.0	91.4	6.3 6.3	6.3		4.1 4.8	4.5		3.7 3.7	3.7	
				Bottom	10	25.0 25.0	25.0	7.8 7.9	7.9	31.5 31.4	31.5	88.3 88.4	88.4	6.1 6.1	6.1		6.4 6.6	6.5		4.2 4.1	4.2	
M3 Rainy			14:35	Surface	1	25.7 25.7	25.7	7.8 7.8	7.8	31.4 31.3	31.4	105.1 103.5	104.3	7.2 7.1	7.2		3.1 3.2	3.2		3.9 4.0	4.0	3.7
	Rainy	ainy Moderate		Middle	4.5	25.5 25.5	25.5	7.9 7.8	7.9	31.8 31.5	31.7	96.2 96.3	96.3	6.6 6.6	6.6	6.9	3.4 3.5	3.5	4.3	3.2 3.1	3.2	
			Bottom	8	25.3 25.4	25.4	7.8 7.9	7.9	32.1 31.8	32.0	90.6 92.1	91.4	6.2 6.3	6.3	6.3	6.0 6.5	6.3		4.0	4.0	Ī	
M4 Rainy				Surface	1	25.9 25.8	25.9	7.8 7.9	7.9	31.4 31.1	31.3	102.1 100.0	101.1	7.0 6.8	6.9		3.5 2.9	3.2		3.5 3.5	3.5	
	Rainy	Moderate	13:28	Middle	4	25.8 25.8	25.8	7.8 7.9	7.9	31.2 31.1	31.2	97.1 96.6	96.9	6.6 6.6	6.6	6.8	4.8 4.4	4.6	4.7	5.1 5.1	5.1	4.8
				Bottom	7	25.6 25.5	25.6	7.9 7.9	7.9	31.1 31.1	31.1	91.8 90.4	91.1	6.3 6.2	6.3	6.3	6.7 5.7	6.2	1	5.7 5.8	5.8	
				Surface	1	24.9 24.9	24.9	7.9 7.9	7.9	30.9 30.9	30.9	96.8 95.9	96.4	6.7 6.7	6.7	6.6 6.4	3.5 3.3	3.4		5.7 5.7	5.7	
M5	Rainy	Moderate	15:16	Middle	5.5	24.7 24.7	24.7	7.9 7.9	7.9	31.4 31.4	31.4	93.0 93.7	93.4	6.5 6.5	6.5		5.4 5.2	5.3	5.3	4.8 4.8	4.8	5.3
				Bottom	10	24.7 24.7	24.7	7.9 7.9	7.9	31.3 31.1	31.2	91.7 91.7	91.7	6.4 6.4	6.4		7.3 7.1	7.2	1	5.4 5.3	5.4	
			rate 14:55	Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
M6 Rainy	Rainy	Moderate		Middle	2.3	25.6 25.6	25.6	7.8 7.9	7.9	31.0 31.1	31.1	101.1 104.0	102.6	6.9 7.1	7.0		4.9 5.1	5.0	5.0	7.8 7.7	7.8	7.8
				Bottom	-	-	-		-	-	-	-	-		-	-	-	-			-	
	1							<u> </u>		<u> </u>		<u> </u>		<u> </u>			1	<u> </u>		<u> </u>		

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 15 May 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
, ,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 7.7 NTU</u>	<u>C1: 8.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 May 2017

(Mid-Flood Tide)

Loop#	Weather	Sea	Sampling	D	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5	25.4	8.0	8.0	30.4	30.2	104.4	103.8	7.2	7.2		4.1	4.3		3.5	3.5	
C1	Rainy	Moderate	08:33	Middle	9.5	25.2 25.5	25.2	8.0 8.1	8.1	30.0 31.3	31.4	103.2 96.2	95.3	7.2 6.6	6.6	6.9	6.3	6.2	5.6	3.5	3.0	4.1
01	rumy	modorato	00.00	Bottom	18	24.8 25.2	25.0	8.0 8.1	8.1	31.4 31.8	31.8	94.4 94.4	93.2	6.6 6.5	6.5	6.5	6.1 6.5	6.4	0.0	3.0 5.7	5.8	
				Surface	1	24.8 25.0		8.0 7.9	7.9	31.8 30.6		92.0 98.0	99.1	6.4 6.8		0.0	6.3 3.7			5.8 2.9		
00	Б.		00.05		-	25.0 24.9	25.0	7.9 7.9		30.5 31.7	30.6	100.2 93.1		7.0 6.4	6.9	6.7	3.3 4.9	3.5	4.0	3.0 4.3	3.0	
C2	Rainy	Moderate	06:25	Middle	17	24.8 24.7	24.9	7.9 8.0	7.9	31.6 31.7	31.7	93.5 89.1	93.3	6.5 6.2	6.5		4.8 6.2	4.9	4.9	4.3 3.5	4.3	3.6
				Bottom	33	24.6 25.5	24.7	7.9 8.0	8.0	31.7 31.7	31.7	91.1 97.0	90.1	6.3	6.3	6.3	6.1	6.2		3.5	3.5	
				Surface	1	25.2 25.5	25.4	8.0 8.0	8.0	31.8 31.9	31.8	96.3 95.3	96.7	6.6	6.6	6.6	4.0	4.0		3.8	3.8	
G1	Rainy	Moderate	07:18	Middle	4	25.2	25.4	8.0 8.0	8.0	31.9 32.6	31.9	94.2 93.4	94.8	6.5	6.5		4.3 4.6	4.4	4.4	3.8	3.8	3.6
				Bottom	7	25.4 25.2	25.3	8.1	8.1	32.4	32.5	92.8	93.1	6.4 6.4	6.4	6.4	4.9	4.8		3.3	3.3	
				Surface	1	25.4 25.4	25.4	8.0 8.0	8.0	32.2 32.1	32.2	102.6 100.4	101.5	7.0 6.9	7.0	6.9	2.9 3.0	3.0		2.8 2.8	2.8	
G2	Rainy	Moderate	06:55	Middle	5	25.4 25.2	25.3	8.0 8.0	8.0	32.1 32.0	32.1	97.4 96.6	97.0	6.7 6.6	6.7	0.0	5.6 5.9	5.8	5.4	3.0 3.0	3.0	3.1
				Bottom	9	25.4 25.1	25.3	8.0 8.0	8.0	32.9 32.5	32.7	93.7 93.6	93.7	6.4 6.4	6.4	6.4	7.8 6.8	7.3		3.6 3.6	3.6	
				Surface	1	25.5 25.5	25.5	8.1 8.1	8.1	32.1 32.3	32.2	103.3 103.7	103.5	7.1 7.1	7.1	7.4	2.4 2.5	2.5		2.8 2.8	2.8	
G3	Rainy	Moderate	07:29	Middle	4	25.5 25.5	25.5	8.0 8.0	8.0	32.1 32.2	32.2	102.0 101.3	101.7	7.0 6.9	7.0	7.1	4.4 4.2	4.3	3.5	4.0 4.0	4.0	3.9
				Bottom	7	25.5 25.5	25.5	8.1 8.1	8.1	32.6 32.2	32.4	97.8 97.8	97.8	6.7 6.7	6.7	6.7	3.6 4.0	3.8		4.8	4.8	•
				Surface	1	25.4 25.5	25.5	8.0 8.0	8.0	30.1 30.4	30.3	91.9 92.7	92.3	6.4 6.4	6.4		2.9 2.4	2.7		3.1	3.1	
G4	Rainy	Moderate	07:50	Middle	4	25.4 25.5	25.5	8.1 8.0	8.1	31.2 31.2	31.2	90.3 91.1	90.7	6.2	6.3	6.4	5.6 6.1	5.9	4.6	3.1 4.7 4.7	4.7	4.4
				Bottom	7	25.4	25.4	8.1	8.1	32.0	32.0	90.0	89.4	6.2	6.2	6.2	5.3	5.2		5.3	5.4	
				Surface	1	25.4 25.2	25.3	8.1 8.0	8.0	31.9 32.3	32.1	88.8 101.3	101.4	6.9	7.0		5.1 4.5	4.4		5.4 3.9	3.9	
M1	Rainy	Moderate	07:07	Middle	3	25.4 25.2	25.3	8.0	8.0	31.9 32.5	32.6	101.5 98.6	98.7	7.0 6.8	6.8	6.9	4.3 5.1	5.0	4.9	3.9 2.4	2.4	3.2
	,			Bottom	5	25.4 25.4	25.4	8.0 8.0	8.0	32.6 32.2	32.1	98.7 94.1	94.3	6.7 6.4	6.5	6.5	4.9 5.1	5.4		3.2	3.2	
					1	25.4 25.0		8.0 7.9		32.0 30.7		94.4 94.2		6.5		0.0	5.6 3.0			3.1		
M2	Dainy	Moderat-	06:43	Surface	5.5	25.1 25.1	25.1	8.0 7.9	8.0	30.8 31.8	30.8	95.3 93.4	94.8	6.6 6.4	6.6	6.6	3.3 5.4	3.2 5.2	4.4	3.5 6.4	3.5 6.4	E 0
IVIZ	Rainy	Moderate	00.43	Middle		24.9 25.1	25.0	8.0 8.0		31.7 31.8		93.3 90.8	93.4	6.5 6.3		0.0	4.9 4.8	1	4.4	6.4 5.1		5.0
				Bottom	10	24.8	25.0	8.1	8.1	31.8	31.8	90.9 95.4	90.9	6.3	6.3	6.3	4.9	4.9		5.2	5.2	
				Surface	1	25.6 25.6	25.6	8.1 8.0	8.1	30.0 30.5	30.0	95.1 91.2	95.3	6.6 6.3	6.6	6.5	2.5	2.4		4.0	4.0	
М3	Rainy	Moderate	07:42	Middle	4.5	25.5 25.6	25.6	8.1 8.0	8.1	30.4 31.1	30.5	90.5 90.0	90.9	6.2 6.2	6.3		5.2 4.9	5.1	4.3	3.2	3.2	3.1
				Bottom	8	25.4	25.5	8.0	8.0	31.0	31.1	89.4	89.7	6.2	6.2	6.2	5.7	5.3		2.2	2.2	
				Surface	1	25.1 25.0	25.1	8.0 8.0	8.0	30.4 30.4	30.4	101.4 99.8	100.6	7.0 6.9	7.0	6.9	3.0 3.4	3.2		3.5 3.5	3.5	
M4	Rainy	Moderate	06:34	Middle	4	24.9 24.8	24.9	8.0 8.0	8.0	30.5 30.6	30.6	97.9 98.0	98.0	6.8 6.8	6.8		5.2 5.4	5.3	5.1	3.2 3.2	3.2	3.1
		<u> </u>		Bottom	7	24.9 24.8	24.9	8.0 8.1	8.1	31.3 31.3	31.3	97.1 97.4	97.3	6.7 6.8	6.8	6.8	6.9 6.9	6.9	<u> </u>	2.7 2.7	2.7	
				Surface	1	24.9 25.1	25.0	8.1 8.0	8.1	30.1 30.1	30.1	96.2 97.0	96.6	6.7 6.7	6.7	6.6	3.9 3.5	3.7		3.1 3.1	3.1	
M5	Rainy	Moderate	08:19	Middle	5.5	25.2 24.9	25.1	8.0 8.1	8.1	31.3 31.4	31.4	92.5 92.1	92.3	6.4 6.4	6.4	0.0	4.7 4.4	4.6	5.2	4.2 4.3	4.3	3.7
				Bottom	10	25.1 24.9	25.0	8.1 8.1	8.1	32.0 32.0	32.0	88.0 88.4	88.2	6.1 6.1	6.1	6.1	8.0 6.5	7.3		3.6 3.6	3.6	•
				Surface	-		-	-	-	-	-	-	-	-	-		-	-		0.0	0.0	
M6	Rainy	Moderate	08:00	Middle	2.2	25.8 24.9	25.4	8.0 8.1	8.1	30.0 30.8	30.4	100.2 99.7	100.0	6.9	6.9	6.9	4.8 4.9	4.9	4.9	7.8 7.9	7.9	7.9
				Bottom	-	- 24.9	-	- 8.1	-	30.8	-	99.7	-	- 6.9	-	-	- 4.9	-	1	0.0	0.0	
	1		1			-		-			l		l		1	L	<u> </u>		L	0.0		

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 17 May 2017 (Mid-Ebb Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.0 NTU</u>	<u>C2: 7.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.6 mg/L</u>	<u>C2: 4.9 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 4.6 mg/L</u>	<u>C2: 4.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.6 mg/L</u>	<u>C2: 4.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.3 25.3	25.3	8.2 8.2	8.2	32.3 32.3	32.3	97.5 97.9	97.7	7.3 7.3	7.3	7.2	5.6 5.4	5.5		2.1 2.1	2.1	l
C1	Sunny	Moderate	17:38	Middle	10	25.1 25.1	25.1	8.2 8.2	8.2	32.9 33.0	33.0	93.3 94.0	93.7	7.0 7.1	7.1	1.2	5.5 5.7	5.6	5.7	2.2 2.2	2.2	2.0
				Bottom	19	24.9 24.9	24.9	8.2 8.3	8.3	32.9 32.8	32.9	95.4 94.1	94.8	7.2 7.1	7.2	7.2	6.6 5.6	6.1		1.6 1.6	1.6	
				Surface	1	25.1 25.0	25.1	8.2 8.2	8.2	32.7 32.7	32.7	99.0 97.9	98.5	7.4 7.3	7.4	7.4	4.2 4.4	4.3		3.8 3.8	3.8	
C2	Sunny	Moderate	14:47	Middle	18	24.7 24.7	24.7	8.2 8.2	8.2	32.5 32.6	32.6	97.3 97.0	97.2	7.3 7.3	7.3	7.4	6.0 5.8	5.9	5.3	4.0 4.1	4.1	3.9
				Bottom	35	24.3 24.3	24.3	8.3 8.3	8.3	32.8 32.8	32.8	99.9 99.9	99.9	7.5 7.5	7.5	7.5	5.7 5.9	5.8		3.8 3.8	3.8	
				Surface	1	26.0 26.0	26.0	8.2 8.2	8.2	33.0 33.0	33.0	106.5 106.4	106.5	8.0 8.0	8.0	7.8	5.2 4.7	5.0		1.9 1.9	1.9	Į
G1	Sunny	Moderate	16:26	Middle	4	25.6 25.5	25.6	8.3 8.3	8.3	32.9 32.7	32.8	99.6 99.7	99.7	7.5 7.5	7.5		5.6 4.6	5.1	5.1	3.9 3.9	3.9	2.4
				Bottom	7	25.1 25.1	25.1	8.3 8.3	8.3	30.9 31.0	31.0	99.3 99.1	99.2	7.5 7.4	7.5	7.5	5.0 5.2	5.1		1.4 1.4	1.4	<u> </u>
				Surface	1	25.9 25.9	25.9	8.3 8.2	8.3	32.4 32.4	32.4	99.9 99.7	99.8	7.5 7.5	7.5	7.3	1.2 1.2	1.2		3.2 3.3	3.3	Į
G2	Sunny	Moderate	16:06	Middle	5	25.8 25.7	25.8	8.2 8.3	8.3	32.3 32.2	32.3	94.9 93.1	94.0	7.1 7.0	7.1		1.3 1.3	1.3	3.0	3.9 3.9	3.9	3.3
				Bottom	9	25.1 25.1	25.1	8.3 8.3	8.3	30.5 30.6	30.6	91.5 91.5	91.5	6.9 6.9	6.9	6.9	6.5 6.5	6.5		2.8 2.8	2.8	<u> </u>
				Surface	1	25.8 25.8	25.8	8.2 8.2	8.2	32.5 32.5	32.5	106.7 106.6	106.7	8.0 8.0	8.0	7.9	5.1 5.7	5.4		2.2 2.2	2.2	Į
G3	Sunny	Moderate	16:36	Middle	4	25.8 25.7	25.8	8.2 8.2	8.2	32.4 32.4	32.4	102.9 102.5	102.7	7.7 7.7	7.7		4.6 4.5	4.6	5.1	2.8 2.9	2.9	2.4
				Bottom	7	25.6 25.6	25.6	8.2 8.2	8.2	33.1 32.1	32.6	100.4 101.2	100.8	7.5 7.6	7.6	7.6	5.2 5.3	5.3		2.0 2.0	2.0	
				Surface	1	25.7 25.7	25.7	8.2 8.2	8.2	33.1 33.1	33.1	105.1 105.1	105.1	7.9 7.9	7.9	7.8	5.4 5.5	5.5		3.9 3.8	3.9	ļ
G4	Sunny	Moderate	16:57	Middle	4	25.6 25.6	25.6	8.2 8.2	8.2	33.0 33.0	33.0	103.2 102.9	103.1	7.7	7.7		4.8 4.4	4.6	4.9	5.2 5.1	5.2	4.5
				Bottom	7	25.4 25.4	25.4	8.2 8.2	8.2	32.4 32.7	32.6	97.0 99.9	98.5	7.3 7.5	7.4	7.4	4.7 4.5	4.6		4.2 4.3	4.3	
				Surface	1	25.5 25.5	25.5	8.3 8.2	8.3	32.8 32.7	32.8	99.5 99.3	99.4	7.5 7.5	7.5	7.5	0.5 0.4	0.5		3.9 3.9	3.9	ļ
M1	Sunny	Moderate	16:17	Middle	3	25.7 25.7	25.7	8.2 8.2	8.2	32.7 32.7	32.7	99.6 99.7	99.7	7.5 7.5	7.5		1.1	1.1	0.9	2.1	2.2	2.6
				Bottom	5	25.4 25.5	25.5	8.2 8.2	8.2	32.3 32.4	32.4	99.4 99.0	99.2	7.5 7.4	7.5	7.5	1.2 1.2	1.2		1.8 1.8	1.8	
				Surface	1	26.0 25.8	25.9	8.3 8.3	8.3	32.1 32.8	32.5	106.9 107.1	107.0	8.0 8.0	8.0	7.8	5.0 4.7	4.9		1.4 1.4	1.4	ļ
M2	Sunny	Moderate	15:04	Middle	5.5	25.6 25.2	25.4	8.2 8.3	8.3	32.8 32.5	32.7	100.0 99.7	99.9	7.5 7.5	7.5		5.3 5.5	5.4	5.5	1.7	1.7	1.6
				Bottom	10	24.7 24.6	24.7	8.2 8.2	8.2	32.8 32.7	32.8	92.7 92.6	92.7	7.0 7.0	7.0	7.0	5.6 6.9	6.3		1.6 1.6	1.6	
				Surface	1	25.7 25.7	25.7	8.2 8.2	8.2	32.2 32.3	32.3	103.9 104.0	104.0	7.8 7.8	7.8	7.8	1.6	1.7		2.1	2.1	ļ
М3	Sunny	Moderate	16:49	Middle	4.5	25.6 25.7	25.7	8.2 8.2	8.2	32.3 32.3	32.3	102.1 102.7	102.4	7.7 7.7	7.7		4.8 5.1	5.0	4.4	2.1	2.2	2.1
				Bottom	8	25.3 25.3	25.3	8.3 8.2	8.3	31.0 30.9	31.0	94.5 92.9	93.7	7.1 7.0	7.1	7.1	6.4 6.6	6.5		1.9 1.9	1.9	
				Surface	1	25.8 25.8	25.8	8.2 8.2	8.2	32.5 32.6	32.6	100.3	100.4	7.5 7.5	7.5	7.5	2.1	2.2		1.4	1.4	ļ
M4	Sunny	Moderate	14:55	Middle	4	25.6 25.6	25.6	8.2 8.2	8.2	32.5 32.5	32.5	99.5 99.1	99.3	7.5 7.4	7.5		1.2	1.3	2.2	2.3	2.3	2.1
				Bottom	7	25.0 25.0	25.0	8.2 8.2	8.2	32.1 33.0	32.6	91.3 99.5	95.4	6.9 7.5	7.2	7.2	3.0 3.0	3.0		2.6 2.6	2.6	
				Surface	1	25.1 25.1	25.1	8.2 8.2	8.2	32.7 32.8	32.8	97.2 97.2	97.2	7.3 7.3	7.3	7.3	2.8	2.8		2.6	2.6	}
M5	Sunny	Moderate	17:26	Middle	5.5	25.0 25.0 24.9	25.0	8.3 8.2 8.3	8.3	32.6 32.5 32.3	32.6	96.2 96.0 91.9	96.1	7.2 7.2	7.2		4.5 4.6	4.6	4.7	2.0 2.0 2.0	2.0	2.2
				Bottom	10	24.9	24.9	8.2	8.3	32.3 32.3	32.3	90.6	91.3	6.9 6.8	6.9	6.9	6.9 6.3	6.6		2.0	2.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5		-		-	-	}
M6	Sunny	Moderate	17:08	Middle	2.3	25.5 25.5	25.5	8.2 8.2	8.2	33.0 33.0	33.0	100.4 100.5	100.5	7.5 7.5	7.5		3.4 3.3	3.4	3.4	3.1 3.1	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 17 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
(======================================		<u>C1: 3.1 NTU</u>	<u>C1: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.1 mg/L</u>	<u>C1: 4.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.1 mg/L</u>	<u>C1: 4.4 mg/L</u>
	Stations G1-G4	4, M1-M5	_
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 2.8 mg/L</u>	<u>C1: 3.0 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 May 2017

(Mid-Flood Tide)

1 6	Weather	Sea	Sampling	Г.	M- ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4	25.4	8.2	8.2	32.3	32.3	99.9	100.1	7.5	7.5		1.2	1.2		3.4	3.4	
C1	Sunny	Moderate	10:11	Middle	10.5	25.4 25.2 25.3	25.3	8.2 8.2 8.2	8.2	32.3 32.3 32.3	32.3	100.2 101.0 100.9	101.0	7.5 7.6 7.6	7.6	7.6	1.2 1.6 1.7	1.7	1.8	3.4 1.9 1.9	1.9	2.5
				Bottom	20	25.1 25.0	25.1	8.3 8.3	8.3	32.3 32.5	32.4	97.6 96.0	96.8	7.3 7.2	7.3	7.3	2.5	2.6		2.3	2.3	ĺ
				Surface	1	24.6 24.6	24.6	8.2 8.3	8.3	32.5 33.0	32.8	95.2 94.6	94.9	7.1 7.1	7.1		3.1 3.2	3.2		1.7	1.7	
C2	Sunny	Moderate	08:09	Middle	18	24.6 24.6	24.6	8.3 8.3	8.3	32.6 32.8	32.7	96.3 96.2	96.3	7.2 7.2	7.2	7.2	2.6 2.4	2.5	2.6	0.9	0.9	1.4
				Bottom	35	24.5 24.5	24.5	8.2 8.2	8.2	32.2 33.1	32.7	93.9 93.6	93.8	7.0 7.0	7.0	7.0	2.1 1.9	2.0		1.6 1.6	1.6	İ
				Surface	1	24.8 24.8	24.8	8.2 8.2	8.2	32.4 32.4	32.4	101.2 101.0	101.1	7.6 7.6	7.6	7.6	1.6 1.7	1.7		2.9 2.9	2.9	
G1	Sunny	Moderate	08:58	Middle	4	24.8 24.8	24.8	8.2 8.2	8.2	32.7 32.7	32.7	100.1 99.6	99.9	7.5 7.5	7.5	7.0	3.0 3.0	3.0	2.4	2.1	2.1	2.1
				Bottom	7	24.7 24.8	24.8	8.2 8.2	8.2	32.6 32.5	32.6	94.5 95.7	95.1	7.1 7.2	7.2	7.2	2.5 2.5	2.5		1.2 1.2	1.2	
				Surface	1	24.9 24.9	24.9	8.2 8.2	8.2	33.1 32.1	32.6	99.9 99.7	99.8	7.5 7.5	7.5	7.4	1.3 1.4	1.4		3.8 3.8	3.8	
G2	Sunny	Moderate	08:36	Middle	5	24.8 24.8 24.7	24.8	8.2 8.2 8.2	8.2	32.1 32.1 32.2	32.1	97.4 96.9 93.9	97.2	7.3 7.3 7.0	7.3		2.7 2.9 1.9	2.8	2.1	1.6 1.6 1.5	1.6	2.3
				Bottom	9	24.8	24.8	8.2	8.2	32.1 32.3	32.2	94.7	94.3	7.1	7.1	7.1	2.0	2.0		1.6	1.6	
				Surface	1	24.8 24.8 24.8	24.8	8.3 8.3 8.2	8.3	32.3 32.6	32.3	97.9 97.7 96.5	97.8	7.3 7.3 7.2	7.3	7.3	3.8	3.5		2.2 2.2 1.0	2.2	
G3	Sunny	Moderate	09:07	Middle	4	24.8	24.8	8.2 8.2	8.2	32.6 32.6	32.6	95.1 99.9	95.8	7.1 7.5	7.2		3.5	3.5	3.3	1.0	1.0	1.4
				Bottom	7	24.7	24.7	8.3	8.3	32.6 32.3	32.6	90.5	95.2	6.8	7.2	7.2	2.6	2.8		1.0	1.1	
G4	Sunny	Moderate	09:29	Surface Middle	1	24.8 24.7	24.8	8.2 8.2	8.2 8.2	32.3 32.3	32.3 32.3	91.3 91.1	91.5 91.0	6.9 6.8	6.9	6.9	3.9 2.4	4.1 2.5	3.1	3.9 2.5	3.9 2.5	2.8
G4	Suriny	Woderate	09.29	Bottom	7	24.7 24.6	24.7	8.2 8.3	8.3	32.3 32.5	32.5	90.9 94.4	94.9	6.8 7.1	7.2	7.2	2.5 2.6	2.7	3.1	2.5 2.0	2.0	2.0
				Surface	1	24.6	24.8	8.3 8.2	8.2	32.5 32.4	32.4	95.3 101.2	101.2	7.2 7.6	7.6	1.2	2.7	2.7		2.0 1.7	1.7	
M1	Sunny	Moderate	08:48	Middle	3	24.8	24.8	8.2 8.2	8.2	32.4 32.4	32.4	101.1 99.6	99.3	7.6 7.5	7.5	7.6	2.7	2.6	2.6	2.0	2.0	2.0
	,			Bottom	5	24.8 24.7 24.7	24.7	8.2 8.2 8.2	8.2	32.4 32.5 32.5	32.5	99.0 92.2 93.5	92.9	7.4 6.9 7.0	7.0	7.0	2.3 2.3 2.4	2.4		2.0 2.2 2.3	2.3	1
				Surface	1	24.7	24.7	8.2 8.2	8.2	32.7 32.8	32.8	90.9 91.7	91.3	6.8	6.9		1.4 1.6	1.5		2.2	2.2	
M2	Sunny	Moderate	08:26	Middle	5.5	24.7 24.6 24.6	24.6	8.2 8.2	8.2	33.1 33.1	33.1	97.7 97.9	97.8	7.3 7.3	7.3	7.1	8.0 7.7	7.9	3.7	3.9 4.0	4.0	2.9
				Bottom	10	24.6 24.6	24.6	8.3 8.2	8.3	32.1 32.1	32.1	97.2 97.2	97.2	7.3 7.3	7.3	7.3	1.9 1.7	1.8		2.6 2.6	2.6	ſ
				Surface	1	24.9 24.9	24.9	8.2 8.2	8.2	32.4 32.3	32.4	99.9 99.9	99.9	7.5 7.5	7.5	7.5	3.1 2.9	3.0		1.1 1.1	1.1	
M3	Sunny	Moderate	09:21	Middle	4.5	24.8 24.8	24.8	8.3 8.2	8.3	32.4 32.5	32.5	99.0 97.3	98.2	7.4 7.3	7.4	7.5	2.6 2.5	2.6	2.8	1.6 1.6	1.6	1.3
	<u> </u>			Bottom	8	24.5 24.5	24.5	8.2 8.2	8.2	33.0 33.0	33.0	96.9 97.0	97.0	7.3 7.3	7.3	7.3	2.7 2.8	2.8	<u> </u>	1.3 1.3	1.3	<u> </u>
				Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	32.2 32.2	32.2	90.9 90.9	90.9	6.8 6.8	6.8	6.9	3.5 3.5	3.5		3.7 3.7	3.7	
M4	Sunny	Moderate	08:18	Middle	4	24.7 24.7	24.7	8.2 8.2	8.2	32.2 32.3	32.3	92.0 92.2	92.1	6.9 6.9	6.9	0.0	2.2	2.2	2.6	3.6 3.5	3.6	3.2
				Bottom	7	24.6 24.6	24.6	8.2 8.2	8.2	32.7 32.6	32.7	90.7 90.9	90.8	6.8 6.8	6.8	6.8	2.0 2.1	2.1		2.2	2.2	
				Surface	1	25.0 25.0	25.0	8.3 8.3	8.3	32.7 32.6	32.7	99.6 99.5	99.6	7.5 7.5	7.5	7.5	1.4	1.4		1.6 1.7	1.7	ļ
M5	Sunny	Moderate	09:58	Middle	5.5	25.0 25.0 25.0	25.0	8.2 8.3 8.2	8.3	32.6 32.6 32.9	32.6	99.5 99.5 97.5	99.5	7.5 7.5 7.3	7.5		1.6 1.5 2.3	1.6	1.9	2.6 2.6 2.2	2.6	2.2
				Bottom	10	25.0	25.0	8.3	8.3	32.9	32.9	97.9	97.7	7.3	7.3	7.3	2.8	2.6		2.2	2.2	
***		.	00.40	Surface	-	24.9	-	8.3	-	30.9	-	96.6	-	7.3	-	7.3	2.2	-		1.4	-	
M6	Sunny	Moderate	09:40	Middle	2.5	24.9	24.9	8.2	8.3	30.9	30.9	95.4	96.0	7.2	7.3		2.2	2.2	2.2	1.4	1.4	1.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	i

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 19 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 6.7 NTU</u>	<u>C2: 7.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.0 mg/L</u>
	Stations M1-M	<u>15</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 2.5 mg/L</u>	<u>C2: 2.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.5 22.7	23.1	7.9 7.8	7.9	29.9 29.9	29.9	100.0 99.6	99.8	7.2 7.2	7.2	7.2	4.9 5.0	5.0		2.5 2.6	2.6	l
C1	Cloudy	Moderate	18:27	Middle	10	22.8 23.2	23.0	7.8 7.6	7.7	29.8 29.8	29.8	97.5 98.1	97.8	7.1 7.1	7.1	1.2	6.7 7.3	7.0	6.2	1.4 1.4	1.4	1.9
				Bottom	19	22.7 23.3	23.0	7.6 7.5	7.6	29.9 29.9	29.9	95.6 96.4	96.0	6.9 6.9	6.9	6.9	7.1 5.8	6.5		1.6 1.6	1.6	<u> </u>
				Surface	1	23.7 23.0	23.4	7.5 7.6	7.6	29.3 29.4	29.4	92.4 92.1	92.3	6.6 6.7	6.7	6.6	3.4 3.9	3.7		4.6 4.5	4.6	
C2	Cloudy	Moderate	16:49	Middle	18	22.5 23.0	22.8	7.5 7.5	7.5	29.7 29.6	29.7	89.1 90.4	89.8	6.5 6.5	6.5	0.0	4.1 3.4	3.8	4.4	1.6 1.6	1.6	2.8
				Bottom	35	23.4 22.8	23.1	7.4 7.5	7.5	29.7 29.5	29.6	92.1 90.1	91.1	6.6 6.5	6.6	6.6	5.5 5.6	5.6		2.0 2.1	2.1	
				Surface	1	23.3 23.1	23.2	7.9 8.0	8.0	29.6 29.6	29.6	94.8 94.6	94.7	6.8 6.8	6.8	6.9	3.8 3.5	3.7		1.8	1.8	ļ
G1	Cloudy	Moderate	17:34	Middle	4	23.3 23.1	23.2	7.8 7.9	7.9	29.9 30.0	30.0	96.3 96.9	96.6	6.9 7.0	7.0		4.6 5.2	4.9	4.9	2.5 2.5	2.5	1.8
				Bottom	7	23.4 23.0	23.2	7.8 7.8	7.8	29.9 30.1	30.0	97.8 95.8	96.8	7.0 6.9	7.0	7.0	5.9 6.1	6.0		1.2 1.2	1.2	
				Surface	1	22.7 23.5	23.1	8.0 8.0	8.0	30.2 30.1	30.2	95.2 96.1	95.7	6.9 6.9	6.9	6.9	3.2 3.4	3.3		5.2 5.4	5.3	ļ
G2	Cloudy	Moderate	17:18	Middle	5	22.9 23.0	23.0	7.8 7.8	7.8	30.2 30.0	30.1	95.0 94.4	94.7	6.9 6.8	6.9		4.3 4.2	4.3	4.4	2.3	2.3	3.1
				Bottom	9	22.7 23.2	23.0	7.8 7.8	7.8	30.4 30.3	30.4	94.8 95.0	94.9	6.9 6.8	6.9	6.9	5.5 5.6	5.6		1.6 1.6	1.6	
				Surface	1	22.6 23.4	23.0	8.1 8.0	8.1	29.9 29.8	29.9	95.0 95.6	95.3	6.9 6.9	6.9	6.9	4.6 5.6	5.1		1.2	1.2	ļ
G3	Cloudy	Moderate	17:43	Middle	4	23.5 22.9	23.2	7.9 7.9	7.9	29.9 29.7	29.8	94.9 94.1	94.5	6.8 6.8	6.8		5.8 5.1	5.5	5.2	1.6 1.7	1.7	1.4
				Bottom	7	23.2 23.0	23.1	7.9 7.7	7.8	30.0 30.0	30.0	95.1 93.0	94.1	6.8 6.7	6.8	6.8	5.1 4.9	5.0		1.3 1.3	1.3	
				Surface	1	22.9 22.8	22.9	8.0 7.9	8.0	29.5 29.4	29.5	95.6 95.0	95.3	6.9 6.9	6.9	7.0	3.9 4.0	4.0		1.6	1.6	ļ
G4	Cloudy	Moderate	18:02	Middle	4	22.4 23.3	22.9	7.8 7.8	7.8	29.6 29.5	29.6	95.8 95.7	95.8	7.0 6.9	7.0		4.5 4.8	4.7	5.1	1.7	1.7	1.8
				Bottom	7	23.0 23.3	23.2	7.7 7.6	7.7	30.0 29.9	30.0	93.4 95.1	94.3	6.7 6.8	6.8	6.8	6.5 6.6	6.6		2.0 2.1	2.1	<u> </u>
				Surface	1	23.7 23.8	23.8	8.0 8.0	8.0	30.0 29.8	29.9	93.1 94.4	93.8	6.6 6.7	6.7	6.8	3.7 4.3	4.0		2.4 2.5	2.5	ļ
M1	Cloudy	Moderate	17:25	Middle	3	23.4 23.3	23.4	7.9 7.9	7.9	30.0 30.2	30.1	94.2 94.5	94.4	6.8 6.8	6.8		5.8 6.4	6.1	5.0	2.0	2.1	2.2
				Bottom	5	22.4 23.4	22.9	7.7 7.8	7.8	30.3 30.2	30.3	90.8 93.5	92.2	6.6 6.7	6.7	6.7	4.6 5.4	5.0		2.0 2.2	2.1	<u> </u>
				Surface	1	23.4 23.6	23.5	7.9 7.9	7.9	29.4 29.4	29.4	94.4 95.6	95.0	6.8 6.9	6.9	6.9	3.4 3.3	3.4		2.5 2.5	2.5	ļ
M2	Cloudy	Moderate	17:08	Middle	5	22.3 23.6	23.0	7.8 7.8	7.8	29.6 29.6	29.6	94.4 95.0	94.7	6.9 6.8	6.9		3.8 3.7	3.8	3.6	1.3 1.3	1.3	1.7
				Bottom	9	23.3 23.1	23.2	7.8 7.8	7.8	29.6 29.6	29.6	91.9 93.6	92.8	6.6 6.8	6.7	6.7	3.3 3.9	3.6		1.3 1.3	1.3	
				Surface	1	23.0 23.3	23.2	7.8 7.6	7.7	29.5 29.7	29.6	95.9 96.5	96.2	6.9 6.9	6.9	6.9	3.7 3.8	3.8		2.6 2.6	2.6	<u> </u>
М3	Cloudy	Moderate	17:53	Middle	4	23.4 23.7	23.6	7.6 7.7	7.7	29.6 29.7	29.7	94.6 94.7	94.7	6.8 6.8	6.8		3.6 3.7	3.7	4.4	2.1 2.1	2.1	2.1
				Bottom	7	23.2 23.7	23.5	7.5 7.5	7.5	30.0 30.0	30.0	90.5 91.5	91.0	6.5 6.5	6.5	6.5	5.5 5.8	5.7		1.6 1.6	1.6	<u> </u>
				Surface	1	23.1 24.2	23.7	7.9 7.9	7.9	29.6 29.5	29.6	96.7 96.1	96.4	7.0 6.8	6.9	6.9	3.4 4.2	3.8		5.2 5.3	5.3	
M4	Cloudy	Moderate	16:59	Middle	4	22.9 22.7	22.8	7.7 7.7	7.7	29.7 29.8	29.8	93.7 93.3	93.5	6.8 6.8	6.8		3.8 4.7	4.3	4.4	2.5 2.6	2.6	3.2
				Bottom	7	23.3 22.9	23.1	7.7 7.7	7.7	29.9 30.0	30.0	92.0 91.0	91.5	6.6 6.6	6.6	6.6	4.8 5.6	5.2		1.7 1.7	1.7	
				Surface	1	22.4 23.1	22.8	7.7 7.7	7.7	30.5 30.0	30.3	96.3 97.3	96.8	7.0 7.0	7.0	7.0	5.2 5.2	5.2		1.4	1.4	ļ
M5	Cloudy	Moderate	18:19	Middle	5.5	22.9 22.8 22.6	22.9	7.6 7.5	7.6	29.8 29.9 29.9	29.9	96.0 95.7 94.6	95.9	7.0 6.9	7.0		5.4 6.3	5.9	5.6	2.6 2.6 1.8	2.6	1.9
				Bottom	10	23.1	22.9	7.5 7.5	7.5	29.9 30.0	30.0	96.2	95.4	6.9 6.9	6.9	6.9	5.4 5.9	5.7		1.8	1.8	
				Surface	-		-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	}
M6	Cloudy	Moderate	18:11	Middle	3.7	22.7 23.1	22.9	7.9 7.8	7.9	30.1 29.9	30.0	96.1 94.3	95.2	7.0 6.8	6.9		6.0 5.4	5.7	5.7	1.4 1.6	1.5	1.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 19 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in mo/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tymbi dityy in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.9 NTU</u>	<u>C1: 6,4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>
	Stations M1-M	<u>15</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.4 mg/L</u>	<u>C1: 4.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 May 2017

(Mid-Flood Tide)

1	Weather	Sea	Sampling	Б.	th (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.9	22.9	8.0	8.0	29.7	29.7	93.2	94.0	6.8	6.9		6.1	5.9		3.1	3.1	
C1	Old.	Madaata	44.00			22.8 23.5		7.9 7.7		29.6 29.8		94.7 95.5		6.9 6.8		6.9	5.6 4.5			3.1 1.7		0.0
CI	Cloudy	Moderate	11:20	Middle	10	23.1 23.7	23.3	7.7 7.7	7.7	29.8 30.0	29.8	92.9 94.2	94.2	6.7 6.7	6.8		4.1 5.1	4.3	5.0	1.7 3.7	1.7	2.8
				Bottom	19	23.5	23.6	7.7	7.7	30.0	30.0	94.1	94.2	6.7	6.7	6.7	4.7	4.9		3.7	3.7	
				Surface	1	22.6 22.5	22.6	7.8 7.9	7.9	29.7 29.7	29.7	90.8 90.2	90.5	6.6 6.6	6.6	6.6	3.7 3.8	3.8		2.5 2.5	2.5	
C2	Cloudy	Moderate	09:52	Middle	18	22.7 23.4	23.1	7.5 7.4	7.5	29.7 29.8	29.8	88.9 90.7	89.8	6.5 6.5	6.5	0.0	4.2 4.2	4.2	3.9	1.3 1.3	1.3	2.0
				Bottom	35	23.2 23.7	23.5	7.7 7.6	7.7	29.8 29.8	29.8	92.1 91.9	92.0	6.6 6.6	6.6	6.6	3.8 3.8	3.8		2.3	2.3	
				Surface	1	22.5 23.0	22.8	7.8 7.9	7.9	30.1 29.8	30.0	92.3 92.3	92.3	6.7 6.7	6.7		4.1 4.5	4.3		2.9	2.9	
G1	Cloudy	Moderate	10:37	Middle	4	23.3	23.3	7.7	7.8	30.0	30.0	94.3	93.2	6.8	6.7	6.7	5.1	5.3	5.0	3.6	3.6	2.7
	,			Bottom	7	23.3 23.3	23.2	7.8 7.8	7.9	30.0 30.0	30.0	92.1 93.4	93.2	6.6	6.7	6.7	5.4 5.4	5.5		3.5 1.6	1.6	
	1					23.0		8.0 7.8		30.0 29.8		93.0 94.6		6.7		0.7	5.5 4.1		<u> </u>	1.6 3.4		
				Surface	1	22.8 23.0	22.8	7.8 7.7	7.8	29.8 29.7	29.8	94.8 93.2	94.7	6.9 6.7	6.9	6.9	4.0 4.4	4.1		3.5 1.4	3.5	
G2	Cloudy	Moderate	10:20	Middle	5	23.0	23.0	7.7	7.7	29.8	29.8	94.5	93.9	6.8	6.8		4.8	4.6	4.7	1.4	1.4	2.2
				Bottom	9	22.9 22.7	22.8	7.6 7.7	7.7	29.8 29.8	29.8	93.0 91.2	92.1	6.7 6.6	6.7	6.7	5.2 5.3	5.3		1.6 1.7	1.7	
				Surface	1	23.4 23.2	23.3	7.8 7.9	7.9	29.7 29.7	29.7	95.1 93.4	94.3	6.8 6.7	6.8	6.9	3.6 4.2	3.9		1.4 1.4	1.4	
G3	Cloudy	Moderate	10:45	Middle	4	22.4 22.4	22.4	7.9 8.0	8.0	29.7 29.9	29.8	93.4 94.1	93.8	6.8 6.9	6.9	0.5	4.9 4.8	4.9	4.6	2.6 2.6	2.6	1.8
				Bottom	7	22.5 23.3	22.9	7.9 7.9	7.9	30.0 30.0	30.0	93.0 93.2	93.1	6.8 6.7	6.8	6.8	4.9 5.0	5.0		1.5 1.5	1.5	
				Surface	1	23.5 22.4	23.0	8.0	8.0	29.5	29.5	93.8	92.8	6.7	6.7		4.3	4.4		2.7	2.7	
G4	Cloudy	Moderate	10:59	Middle	4	23.3	23.0	7.9 8.0	8.0	29.5 30.0	30.1	91.8 92.0	91.6	6.6	6.6	6.7	4.5	4.1	4.4	1.6	1.7	2.5
	,			Bottom	7	22.7 23.4	23.2	7.9 7.9	8.0	30.1 30.0	30.1	91.2 92.3	91.7	6.6	6.6	6.6	3.9 4.6	4.6		2.9	3.0	
				Surface	1	23.0	22.9	7.8	7.8	30.1 30.1	30.0	91.0 94.4	94.6	6.6	6.8	3.0	4.6	4.3		3.0 1.6	1.7	
w	Ol. 1	M-2 1	40.00			23.0 22.4		7.8 7.8		29.9 29.8		94.7 92.2		6.8		6.8	4.4 4.5		4.0	1.7 1.1		4.0
M1	Cloudy	Moderate	10:28	Middle	3	22.3	22.4	7.7	7.8	29.8 29.9	29.8	92.0 92.6	92.1	6.7	6.7		4.6 5.0	4.6	4.6	1.1	1.1	1.2
				Bottom	5	22.9	23.1	7.7	7.7	30.0	30.0	91.6	92.1	6.6	6.7	6.7	4.9	5.0		0.8	0.8	
				Surface	1	23.0 22.7	22.9	7.7 7.8	7.8	29.6 29.5	29.6	93.0 90.6	91.8	6.7 6.6	6.7	6.7	3.8 4.0	3.9		1.1 1.1	1.1	
M2	Cloudy	Moderate	10:12	Middle	5	23.0 23.3	23.2	7.7 7.8	7.8	29.7 29.6	29.7	92.4 92.5	92.5	6.7 6.7	6.7	0.7	4.4 5.0	4.7	4.7	1.9 1.9	1.9	1.9
				Bottom	9	23.5 23.1	23.3	7.7 7.7	7.7	29.7 29.7	29.7	93.6 94.4	94.0	6.7 6.8	6.8	6.8	5.5 5.5	5.5		2.6 2.6	2.6	
				Surface	1	23.4 23.2	23.3	7.9 7.9	7.9	30.0 29.9	30.0	94.2 92.7	93.5	6.8 6.7	6.8		4.5	4.5		2.2	2.2	
M3	Cloudy	Moderate	10:51	Middle	4	22.7	22.9	7.7	7.7	30.2	30.2	91.2	91.7	6.6	6.6	6.7	4.5	4.7	4.2	2.0	2.1	2.0
	,			Bottom	7	23.1 22.7	23.1	7.7 7.7	7.8	30.2 30.3	30.4	92.2 89.9	89.6	6.6	6.5	6.5	4.7 3.4	3.5		2.1 1.7	1.7	
					1	23.4 23.0		7.8 7.7		30.4 29.8		89.2 93.0		6.4		3.5	3.6 3.5		l 	1.7 1.9		
	. .	l		Surface		22.4 22.8	22.7	7.6 7.7	7.7	29.7 29.7	29.8	91.3 92.6	92.2	6.7	6.7	6.7	3.6 4.0	3.6		1.8 1.6	1.9	
M4	Cloudy	Moderate	10:03	Middle	4	22.8	22.8	7.7	7.7	29.7 29.7	29.7	91.3 92.0	92.0	6.6	6.7		3.7 4.9	3.9	4.2	1.6	1.6	2.1
				Bottom	7	23.2	23.4	7.7	7.7	29.9	29.8	90.8	91.4	6.5	6.6	6.6	5.0	5.0		2.9	2.9	
				Surface	1	23.1 22.8	23.0	8.0 7.9	8.0	29.8 29.7	29.8	95.7 94.7	95.2	6.9 6.9	6.9	6.9	3.9 4.7	4.3		3.3 3.4	3.4	
M5	Cloudy	Moderate	11:13	Middle	5.5	23.2 22.6	22.9	7.9 7.9	7.9	29.7 29.7	29.7	94.4 92.4	93.4	6.8 6.7	6.8	5.5	4.5 4.6	4.6	4.9	4.6 4.7	4.7	3.9
				Bottom	10	22.9 23.1	23.0	7.9 7.8	7.9	29.8 29.8	29.8	91.5 94.0	92.8	6.6 6.8	6.7	6.7	6.1 5.4	5.8		3.5 3.5	3.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Cloudy	Moderate	11:08	Middle	3.8	23.1	22.7	8.0	7.9	29.9	30.0	90.6	89.7	6.5	6.5	6.5	6.5	6.5	6.5	2.3	2.4	2.4
-	,			Bottom	-	22.3		7.8	-	30.0	-	88.8	-	6.5	-	_	6.4	-	1	2.4	-	
				DOLLOIT		-	_	-	_	-		-	_	-	_	_	-			-	-	

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 22 May 2017 (Mid-Ebb Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
(======================================		<u>C2: 5.0 NTU</u>	<u>C2: 5.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.1 mg/L</u>	<u>C2: 4.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 4.1 mg/L</u>	<u>C2: 4.4 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 4.0 mg/L</u>	<u>C2: 4.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 22 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxyger	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	8.2 8.1	8.2	31.4 31.4	31.4	107.8 107.4	107.6	7.5 7.5	7.5	7.6	1.1 1.2	1.2		1.0 0.9	1.0	
C1	Rainy	Moderate	11:16	Middle	10	24.3 24.4	24.4	8.2 8.2	8.2	31.4 31.4	31.4	108.5 108.2	108.4	7.6 7.6	7.6		2.7 2.8	2.8	2.2	0.7 0.8	0.8	0.8
				Bottom	19	24.2 24.1	24.2	8.2 8.3	8.3	31.4 31.6	31.5	104.6 102.4	103.5	7.3 7.2	7.3	7.3	2.4 2.6	2.5		0.7 0.7	0.7	
				Surface	1	23.7 23.7	23.7	8.1 8.2	8.2	31.6 32.1	31.9	101.4 100.9	101.2	7.2 7.1	7.2		4.1 4.3	4.2		3.4 3.4	3.4	
C2	Rainy	Moderate	08:21	Middle	18	23.7	23.7	8.2 8.2	8.2	31.9 31.7	31.8	102.4 102.4	102.4	7.2 7.2	7.2	7.2	3.3 3.6	3.5	4.0	1.2	1.2	2.6
				Bottom	35	23.6 23.6	23.6	8.2 8.1	8.2	31.2 31.2	31.2	99.0 99.2	99.1	7.0 7.0	7.0	7.0	4.2 4.2	4.2		3.2	3.3	[
				Surface	1	23.9 23.9	23.9	8.1 8.2	8.2	31.5 31.4	31.5	107.8 107.5	107.7	7.6 7.6	7.6		2.5 2.5	2.5		1.3 1.3	1.3	
G1	Rainy	Moderate	10:02	Middle	4	23.9	23.9	8.2	8.2	31.7	31.8	106.2	106.6	7.5 7.5	7.5	7.6	3.9	4.0	3.3	0.9	0.9	0.9
				Bottom	7	23.9 23.8 23.9	23.9	8.2 8.1 8.2	8.2	31.8 31.7 31.6	31.7	107.0	101.5	7.1	7.2	7.2	4.0 3.2 3.3	3.3		0.9 0.6	0.6	1
				Surface	1	24.0	24.0	8.1	8.2	32.2	32.2	102.2 107.0	106.9	7.2 7.5	7.5		1.7	1.8		1.2	1.2	
G2	Rainy	Moderate	09:44	Middle	5	24.0 23.9	23.9	8.2 8.1	8.1	32.2 31.2	31.2	106.7 104.2	103.6	7.5 7.4	7.4	7.5	1.8 3.5	3.8	2.8	2.3	2.3	2.1
0.2	rumy	Moderate	00.11	Bottom	9	23.9 23.8	23.9	8.1 8.1	8.2	31.2 31.3	31.3	102.9 99.7	100.3	7.3 7.0	7.1	7.1	4.0 2.7	2.9	2.0	2.2	2.9	}
				Surface	1	23.9 23.9	23.9	8.2 8.2	8.2	31.2 31.4	31.4	100.8 104.3	104.0	7.1 7.4	7.4	7.1	3.0	4.0		2.8	2.2	
	.					23.9 23.9		8.2 8.1		31.4 31.7		103.7 102.5		7.3 7.2		7.3	4.0 4.6			2.2 1.3		
G3	Rainy	Moderate	10:12	Middle	4	23.9 23.8	23.9	8.2 8.2	8.2	31.7 31.7	31.7	101.7 95.8	102.1	7.2 6.8	7.2		4.7 3.2	4.7	4.0	1.3	1.3	1.7
	ı			Bottom	7	23.8	23.8	8.2	8.2	31.7	31.7	106.0 97.1	100.9	7.5	7.2	7.2	3.3	3.3		1.5	1.5	
				Surface	1	23.9	23.9	8.2 8.2	8.2	31.4 31.4	31.4	97.2 97.0	97.2	6.9 6.9	6.9	6.9	5.3	5.3		2.5	2.5	
G4	Rainy	Moderate	10:33	Middle	4	23.8	23.8	8.2	8.2	31.4	31.4	96.6	96.8	6.8	6.9		3.4	3.4	4.3	1.9	1.9	2.4
				Bottom	7	23.7 23.7	23.7	8.2 8.2	8.2	31.6 31.6	31.6	100.7 101.4	101.1	7.1 7.2	7.2	7.2	4.2 4.3	4.3		2.9 2.8	2.9	
				Surface	1	23.9 23.9	23.9	8.1 8.1	8.1	31.5 31.5	31.5	108.1 108.2	108.2	7.6 7.6	7.6	7.6	2.9 3.0	3.0		1.7 1.6	1.7	1
M1	Rainy	Moderate	09:55	Middle	3	23.9 23.9	23.9	8.2 8.1	8.2	31.5 31.5	31.5	105.8 106.0	105.9	7.5 7.5	7.5		3.1 3.2	3.2	3.3	1.5 1.5	1.5	1.8
				Bottom	5	23.8 23.8	23.8	8.2 8.2	8.2	31.6 31.6	31.6	97.7 99.1	98.4	6.9 7.0	7.0	7.0	3.7 3.8	3.8		2.0 2.1	2.1	<u> </u>
				Surface	1	23.8 23.8	23.8	8.2 8.1	8.2	31.8 31.8	31.8	96.9 97.9	97.4	6.8 6.9	6.9	7.1	2.1 2.3	2.2		1.3 1.3	1.3	
M2	Rainy	Moderate	08:39	Middle	5.5	23.7 23.7	23.7	8.1 8.2	8.2	32.2 32.2	32.2	103.8 104.3	104.1	7.3 7.3	7.3	7.1	4.5 4.6	4.6	3.2	1.3 1.4	1.4	1.5
				Bottom	10	23.7 23.7	23.7	8.1 8.2	8.2	31.2 31.2	31.2	102.9 103.0	103.0	7.3 7.3	7.3	7.3	2.6 2.7	2.7		1.8 1.6	1.7	ĺ
				Surface	1	24.0 24.0	24.0	8.2 8.2	8.2	31.4 31.5	31.5	106.5 106.4	106.5	7.5 7.5	7.5		3.4 3.5	3.5		1.8 1.7	1.8	
М3	Rainy	Moderate	10:27	Middle	4.5	23.9 23.9	23.9	8.2 8.2	8.2	31.6 31.5	31.6	103.6 106.1	104.9	7.3 7.5	7.4	7.5	3.4 3.5	3.5	3.6	1.6	1.6	2.0
				Bottom	8	23.6	23.6	8.1 8.1	8.1	32.1 32.1	32.1	103.0 103.6	103.3	7.3 7.3	7.3	7.3	3.7 3.7	3.7	1	2.6	2.6	
				Surface	1	23.8 23.8	23.8	8.1 8.2	8.2	31.2 31.3	31.3	96.8 96.7	96.8	6.8 6.8	6.8		3.7 4.0	3.9		1.1	1.1	
M4	Rainy	Moderate	08:32	Middle	4	23.8 23.8 23.8	23.8	8.2 8.2	8.2	31.3 31.4	31.4	97.9 98.0	98.0	6.9 6.9	6.9	6.9	4.0 4.5 4.1	4.3	3.8	1.1 1.2	1.2	1.4
				Bottom	7	23.7 23.7	23.7	8.2 8.2	8.2	31.7 31.7	31.7	96.5 96.3	96.4	6.8 6.8	6.8	6.8	2.8	3.1	1	1.9	1.9	
				Surface	1	24.1	24.1	8.3	8.3	31.7	31.7	106.7	106.5	7.5	7.5		2.1	2.2		1.7	1.7	
M5	Rainy	Moderate	11:02	Middle	5.5	24.1	24.1	8.3 8.2	8.2	31.7 31.7	31.7	106.2 106.6	106.6	7.4	7.5	7.5	2.2	2.7	2.6	0.6	0.6	1.1
				Bottom	10	24.1 24.1	24.1	8.2 8.2	8.2	31.7 32.0	32.0	106.6 104.2	104.7	7.5 7.3	7.4	7.4	2.7	2.9	1	0.6 1.1	1.1	<u> </u>
				Surface	-	24.1		8.2		32.0		105.2		7.4			3.1			1.1		
M6	Painy	Moderate	10:43	Middle	2.4	24.0	24.0	8.2	8.2	29.9	30.0	102.2	101.5	7.3	7.3	7.3	2.8	2.9	2.9	1.1	1.1	1.1
IVIO	Rainy	Moderate	10:43			24.0	Z4.U	8.2	0.2	30.0	30.0	100.8	101.5	7.2	1.3		3.0	2.9	2.9	1.1	1.1	1.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 22 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in mo/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 8.4 NTU</u>	<u>C1: 9.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 3.8 mg/L</u>	<u>C1: 4.2 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 3.8 mg/L</u>	<u>C1: 4.2 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.9 mg/L</u>	<u>C1: 5.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 22 May 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxyger	(mg/L)	1	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	8.2 8.1	8.2	31.4 31.4	31.4	104.4 105.4	104.9	7.3 7.4	7.4	7.3	5.9 5.9	5.9		3.2 3.1	3.2	
C1	Rainy	Moderate	16:51	Middle	10	24.3 24.3	24.3	8.2 8.2	8.2	32.1 31.9	32.0	101.4 100.1	100.8	7.1 7.0	7.1	7.0	7.0 7.1	7.1	6.7	1.7 1.7	1.7	3.0
				Bottom	19	24.1 24.1	24.1	8.2 8.2	8.2	31.9 32.0	32.0	101.2 102.3	101.8	7.1 7.2	7.2	7.2	6.5 7.5	7.0		4.0 4.2	4.1	
				Surface	1	24.3 24.2	24.3	8.2 8.2	8.2	31.7 31.8	31.8	106.5 105.0	105.8	7.4 7.3	7.4		5.6 5.8	5.7		3.0 3.1	3.1	
C2	Rainy	Moderate	14:11	Middle	18	23.9 23.9	23.9	8.2 8.1	8.2	31.6 31.7	31.7	103.7 103.5	103.6	7.3 7.3	7.3	7.4	6.8 6.7	6.8	6.2	1.6 1.6	1.6	2.1
				Bottom	35	23.5 23.5	23.5	8.2 8.2	8.2	31.9 31.9	31.9	106.2 105.9	106.1	7.5 7.5	7.5	7.5	5.5 6.4	6.0		1.6 1.6	1.6	
				Surface	1	25.2 25.2	25.2	8.1 8.2	8.2	32.1 32.1	32.1	116.7 116.6	116.7	8.0 8.0	8.0	7.8	5.3 5.4	5.4		2.1 2.1	2.1	
G1	Rainy	Moderate	15:51	Middle	4	24.8 24.7	24.8	8.2 8.2	8.2	32.0 31.8	31.9	107.7 107.9	107.8	7.5 7.5	7.5	7.0	6.1 6.1	6.1	5.9	4.3 4.1	4.2	2.5
				Bottom	7	24.3 24.3	24.3	8.2 8.2	8.2	31.0 31.0	31.0	106.1 105.7	105.9	7.4 7.4	7.4	7.4	6.1 6.2	6.2		1.1 1.1	1.1	
				Surface	1	25.1 25.1	25.1	8.2 8.2	8.2	31.5 31.4	31.5	108.6 108.4	108.5	7.5 7.5	7.5	7.3	2.6 2.7	2.7		2.6 2.5	2.6	
G2	Rainy	Moderate	15:30	Middle	5	25.0 24.9	25.0	8.2 8.2	8.2	31.3 31.3	31.3	102.8 100.7	101.8	7.1 7.0	7.1	7.5	2.4 2.5	2.5	4.1	2.7 2.7	2.7	2.8
				Bottom	9	24.3 24.3	24.3	8.2 8.3	8.3	30.7 30.6	30.7	97.6 97.2	97.4	6.9 6.8	6.9	6.9	6.8 7.4	7.1		3.0 2.9	3.0	
				Surface	1	25.0 25.0	25.0	8.1 8.2	8.2	31.6 31.6	31.6	115.7 115.8	115.8	8.0 8.0	8.0	7.9	5.6 6.2	5.9		2.6 2.6	2.6	
G3	Rainy	Moderate	16:01	Middle	4	24.9 25.0	25.0	8.1 8.1	8.1	31.5 31.5	31.5	111.3 111.7	111.5	7.7 7.7	7.7	1.9	5.4 5.6	5.5	6.5	6.0 5.8	5.9	3.6
				Bottom	7	24.8 24.8	24.8	8.2 8.1	8.2	32.1 31.2	31.7	109.4 109.6	109.5	7.6 7.6	7.6	7.6	8.0 8.3	8.2		2.3 2.3	2.3	
				Surface	1	24.9 24.9	24.9	8.2 8.2	8.2	32.1 32.1	32.1	114.4 114.0	114.2	7.9 7.9	7.9	7.8	6.3 7.4	6.9		2.5 2.4	2.5	
G4	Rainy	Moderate	16:24	Middle	4	24.8 24.8	24.8	8.1 8.1	8.1	32.1 32.1	32.1	111.1 111.9	111.5	7.7 7.7	7.7	7.0	4.9 6.0	5.5	5.8	2.2 2.2	2.2	2.2
				Bottom	7	24.6 24.6	24.6	8.1 8.2	8.2	31.5 31.7	31.6	104.8 108.2	106.5	7.3 7.5	7.4	7.4	4.6 5.4	5.0		1.8 1.8	1.8	
				Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	31.9 31.8	31.9	108.0 107.3	107.7	7.5 7.4	7.5	7.5	1.0 1.2	1.1		2.4 2.5	2.5	
M1	Rainy	Moderate	15:41	Middle	3	24.9 24.9	24.9	8.2 8.2	8.2	31.8 31.7	31.8	108.4 107.9	108.2	7.5 7.5	7.5	7.5	1.6 1.7	1.7	1.6	2.1 2.1	2.1	1.9
				Bottom	5	24.7 24.6	24.7	8.2 8.2	8.2	31.5 31.4	31.5	107.0 107.5	107.3	7.4 7.5	7.5	7.5	1.9 2.0	2.0		1.2 1.2	1.2	
				Surface	1	25.0 25.2	25.1	8.2 8.2	8.2	31.8 31.2	31.5	116.2 116.3	116.3	8.0 8.0	8.0	7.8	5.9 6.0	6.0		1.0 1.0	1.0	
M2	Rainy	Moderate	14:30	Middle	5.5	24.4 24.8	24.6	8.2 8.2	8.2	31.6 31.8	31.7	107.1 108.2	107.7	7.5 7.5	7.5	7.0	6.7 6.8	6.8	6.5	1.2 1.1	1.2	1.1
				Bottom	10	23.8 23.9	23.9	8.2 8.2	8.2	31.8 31.8	31.8	98.4 98.9	98.7	6.9 7.0	7.0	7.0	6.5 7.1	6.8		1.2 1.2	1.2	
				Surface	1	24.9 24.9	24.9	8.1 8.2	8.2	31.3 31.4	31.4	112.9 112.9	112.9	7.8 7.8	7.8	7.0	2.8 2.7	2.8		1.1 1.1	1.1	
M3	Rainy	Moderate	16:13	Middle	4.5	24.8 24.9	24.9	8.1 8.2	8.2	31.4 31.3	31.4	110.9 111.4	111.2	7.7 7.7	7.7	7.8	4.5 5.6	5.1	5.0	2.0 2.0	2.0	1.6
				Bottom	8	24.5 24.5	24.5	8.2 8.2	8.2	30.1 30.0	30.1	101.2 99.3	100.3	7.1 7.0	7.1	7.1	6.9 7.1	7.0		1.7 1.6	1.7	
				Surface	1	25.0 25.0	25.0	8.1 8.1	8.1	31.6 31.6	31.6	108.8 108.9	108.9	7.5 7.5	7.5	7.5	2.9 3.5	3.2		1.6 1.6	1.6	
M4	Rainy	Moderate	14:22	Middle	4	24.8 24.8	24.8	8.2 8.2	8.2	31.6 31.6	31.6	107.5 107.7	107.6	7.5 7.5	7.5	7.5	1.9 2.0	2.0	3.0	1.5 1.5	1.5	1.4
				Bottom	7	24.2 24.2	24.2	8.2 8.2	8.2	31.2 32.1	31.7	97.8 107.2	102.5	6.9 7.5	7.2	7.2	3.3 4.0	3.7		1.2 1.2	1.2	
				Surface	1	24.3 24.3	24.3	8.2 8.2	8.2	31.8 31.8	31.8	104.4 104.7	104.6	7.3 7.3	7.3	7.3	3.2 3.3	3.3		1.3 1.3	1.3	
M5	Rainy	Moderate	16:40	Middle	5.5	24.2 24.2	24.2	8.2 8.2	8.2	31.7 31.6	31.7	102.8 103.1	103.0	7.2 7.2	7.2	1.3	5.8 5.9	5.9	5.2	1.8 1.8	1.8	1.4
				Bottom	10	24.1 24.1	24.1	8.1 8.2	8.2	31.4 31.4	31.4	96.8 98.3	97.6	6.8 6.9	6.9	6.9	6.5 6.5	6.5		1.1 1.1	1.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Rainy	Moderate	16:32	Middle	2.4	24.7 24.7	24.7	8.2 8.2	8.2	32.0 32.0	32.0	108.9 108.6	108.8	7.5 7.5	7.5		4.8 4.9	4.9	4.9	1.5 1.5	1.5	1.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 24 May 2017 (Mid-Ebb Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 11.6 NTU</u>	<u>C2: 12.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>[</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	7.9 7.8	7.9	32.9 32.9	32.9	92.9 92.0	92.5	7.7 7.6	7.7	7.7	7.9 8.0	8.0		4.9 5.1	5.0	l
C1	Rainy	Moderate	11:40	Middle	10.5	23.5 23.6	23.6	7.9 7.9	7.9	32.9 32.9	32.9	93.0 93.6	93.3	7.7 7.7	7.7	7.7	9.0 9.4	9.2	8.9	5.1 5.3	5.2	5.2
				Bottom	20	23.3 23.4	23.4	8.0 7.9	8.0	33.1 32.9	33.0	88.3 89.6	89.0	7.3 7.4	7.4	7.4	9.3 9.4	9.4		5.3 5.4	5.4	
				Surface	1	22.9 22.9	22.9	8.0 7.9	8.0	33.3 33.6	33.5	87.9 87.1	87.5	7.3 7.2	7.3	7.4	9.8 10.4	10.1		5.9 5.8	5.9	l
C2	Rainy	Moderate	09:51	Middle	18.5	22.9 22.9	22.9	7.9 7.9	7.9	33.4 33.2	33.3	89.5 88.7	89.1	7.4 7.3	7.4	***	10.1 11.5	10.8	10.2	6.0 6.2	6.1	5.6
				Bottom	36	22.8 22.8	22.8	7.9 7.8	7.9	32.7 32.7	32.7	85.8 87.0	86.4	7.1 7.2	7.2	7.2	9.0 10.4	9.7		4.8 5.0	4.9	
				Surface	1	23.0 23.0	23.0	7.9 7.9	7.9	33.0 32.9	33.0	93.6 93.1	93.4	7.7	7.7	7.7	6.6 6.7	6.7		4.0 4.1	4.1	ļ
G1	Rainy	Moderate	10:39	Middle	4	23.0 23.0	23.0	7.9 7.9	7.9	33.3 33.2	33.3	92.7 91.9	92.3	7.7 7.6	7.7		8.3 9.0	8.7	7.6	5.4 5.6	5.5	4.6
				Bottom	7	23.0 22.9	23.0	7.9 7.8	7.9	33.1 33.1	33.1	87.5 87.4	87.5	7.2 7.2	7.2	7.2	7.1 7.4	7.3		4.1 4.3	4.2	<u> </u>
				Surface	1	23.2 23.2	23.2	7.9 7.9	7.9	33.7 33.7	33.7	91.2 91.4	91.3	7.5 7.5	7.5	7.5	5.0 5.9	5.5		4.2 4.5	4.4	ļ
G2	Rainy	Moderate	10:18	Middle	5	23.1 23.1	23.1	7.8 7.8	7.8	32.7 32.7	32.7	90.2 88.7	89.5	7.4 7.3	7.4		7.9 9.5	8.7	7.1	4.2 4.4	4.3	4.2
				Bottom	9	23.0 23.1	23.1	7.9 7.9	7.9	32.8 32.7	32.8	86.5 87.3	86.9	7.1 7.2	7.2	7.2	6.6 7.6	7.1		3.9 4.1	4.0	
				Surface	1	23.0 23.0	23.0	7.9 7.9	7.9	32.9 32.9	32.9	90.1 89.8	90.0	7.4 7.4	7.4	7.4	7.2 8.6	7.9		4.4 4.6	4.5	ļ
G3	Rainy	Moderate	10:48	Middle	4	23.0 23.0	23.0	7.8 7.9	7.9	33.2 33.2	33.2	88.3 87.5	87.9	7.3 7.2	7.3		7.2 7.7	7.5	7.8	4.1 4.0	4.1	3.9
				Bottom	7	22.9 22.9	22.9	7.9 7.9	7.9	33.2 33.1	33.2	91.7 82.2	87.0	7.6 6.8	7.2	7.2	7.8 7.9	7.9		3.2 3.0	3.1	
				Surface	1	23.1 23.1	23.1	7.9 7.9	7.9	32.9 32.8	32.9	84.1 83.9	84.0	6.9 6.9	6.9	7.0	8.7 9.7	9.2		3.9 3.6	3.8	ļ
G4	Rainy	Moderate	11:09	Middle	4.5	23.0 23.0	23.0	7.9 7.9	7.9	32.9 32.8	32.9	84.1 84.2	84.2	6.9 7.0	7.0		8.5 8.5	8.5	9.0	4.2 4.0	4.1	3.7
				Bottom	8	22.9 22.9	22.9	8.0 7.9	8.0	33.1 33.1	33.1	87.6 86.9	87.3	7.2 7.2	7.2	7.2	9.1 9.2	9.2		3.4 3.2	3.3	<u> </u>
				Surface	1	23.0 23.1	23.1	7.8 7.8	7.8	33.0 33.0	33.0	93.1 93.1	93.1	7.7	7.7	7.6	6.4 7.7	7.1		4.4	4.4	ļ
M1	Rainy	Moderate	10:31	Middle	3	23.0 23.1	23.1	7.9 7.9	7.9	33.0 33.0	33.0	91.5 91.4	91.5	7.5 7.5	7.5		7.4 7.4	7.4	7.3	5.1 4.9	5.0	4.0
				Bottom	5	23.0 22.9	23.0	7.9 7.8	7.9	33.1 33.1	33.1	84.7 85.3	85.0	7.0 7.0	7.0	7.0	6.7 8.2	7.5		2.7 2.7	2.7	
				Surface	1	23.0 23.0	23.0	7.9 7.8	7.9	33.3 33.3	33.3	83.8 84.9	84.4	6.9 7.0	7.0	7.2	6.9 7.0	7.0		5.3 5.4	5.4	ļ
M2	Rainy	Moderate	10:08	Middle	5.5	22.9 22.9	22.9	7.9 7.9	7.9	33.6 33.7	33.7	90.1 89.7	89.9	7.4 7.4	7.4		11.9 12.0	12.0	9.2	4.9 5.0	5.0	4.8
				Bottom	10	22.9 22.9	22.9	7.8 7.9	7.9	32.7 32.7	32.7	89.1 89.3	89.2	7.4 7.4	7.4	7.4	8.5 8.6	8.6		3.8 3.9	3.9	
				Surface	1	23.2	23.2	7.9 7.9	7.9	32.9 33.0	33.0	92.1 91.9	92.0	7.6 7.6	7.6	7.6	7.4 9.0	8.2]	3.4 3.4	3.4	ļ
М3	Rainy	Moderate	11:03	Middle	5	23.1 23.1	23.1	7.9 7.9	7.9	33.0 33.1	33.1	91.9 89.5	90.7	7.6 7.4	7.5	-	7.1 7.4	7.3	7.7	4.6 4.6	4.6	4.0
				Bottom	9	22.8 22.8	22.8	7.8 7.9	7.9	33.6 33.5	33.6	89.4 90.0	89.7	7.4 7.4	7.4	7.4	7.4 7.8	7.6		3.9 3.8	3.9	
				Surface	1	23.0 23.0	23.0	7.8 7.9	7.9	32.7 32.8	32.8	83.8 83.5	83.7	6.9	6.9	7.0	8.1 9.3	8.7		3.4	3.4	ļ
M4	Rainy	Moderate	10:02	Middle	4	23.0 23.0	23.0	7.9 7.9	7.9	32.8 32.8	32.8	85.3 85.1	85.2	7.0 7.0	7.0		6.9 7.6	7.3	7.7	4.9 4.8	4.9	4.5
				Bottom	7	22.9 22.9	22.9	7.9 7.9	7.9	33.2 33.2	33.2	83.5 82.9	83.2	6.9 6.8	6.9	6.9	7.0 7.1	7.1		5.1 5.0	5.1	
				Surface	1	23.3	23.3	8.0 8.0	8.0	33.2 33.2	33.2	90.7 91.8	91.3	7.5 7.6	7.6	7.6	6.5 6.6	6.6	1	3.4	3.4	ļ
M5	Rainy	Moderate	11:30	Middle	5.5	23.3	23.3	7.9 7.9	7.9	33.2 33.2	33.2	92.0 91.7	91.9	7.6 7.6	7.6		6.9 7.5	7.2	6.6	4.0 4.1	4.1	4.3
				Bottom	10	23.3 23.3	23.3	7.9 7.9	7.9	33.5 33.5	33.5	89.6 90.1	89.9	7.4 7.4	7.4	7.4	5.7 6.2	6.0		5.3 5.5	5.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	1	-	-	ļ
M6	Rainy	Moderate	11:19	Middle	2.6	23.2 23.2	23.2	7.9 7.9	7.9	31.4 31.4	31.4	89.0 87.8	88.4	7.3 7.3	7.3		6.2 6.3	6.3	6.3	4.4 4.6	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 24 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(500 11010 2 and 1)		<u>C1: 12.2 NTU</u>	<u>C1: 13.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C1: 5.4 mg/L	<u>C1: 5.9 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.2 mg/L</u>	<u>C1: 5.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 May 2017

(Mid-Flood Tide)

Lees#	Weather	Sea	Sampling	n	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7	23.7	7.9	7.9	32.9	32.9	89.1	89.6	7.4	7.4		9.6	10.5		4.4	4.5	
C1	Rainy	Moderate	18:04	Middle	10	23.7	23.5	7.9 7.9 7.9	7.9	32.8 33.6	33.5	90.1 86.8	86.4	7.4 7.2 7.1	7.2	7.3	11.3	13.8	11.5	4.6 4.1 4.2	4.2	4.3
	-			Bottom	19	23.5 23.3 23.3	23.3	7.9 7.9 7.9	7.9	33.4 33.3 33.5	33.4	85.9 86.8 87.9	87.4	7.1 7.2 7.3	7.3	7.3	14.8 10.1 10.2	10.2		4.2	4.3	Ì
				Surface	1	23.5 23.4	23.5	7.9 7.9 7.9	7.9	33.2	33.3	91.7	90.7	7.6	7.5		9.5	10.6		4.2 4.5 4.5	4.5	
C2	Rainy	Moderate	16:16	Middle	18	23.1	23.1	7.9 7.9 7.9	7.9	33.3 33.1 33.1	33.1	89.7 90.1 89.8	90.0	7.4 7.4 7.4	7.4	7.5	11.7 10.2 10.7	10.5	10.4	3.7 3.8	3.8	4.1
				Bottom	35	22.7	22.7	7.9 7.9 7.9	7.9	33.4 33.4	33.4	92.3 91.9	92.1	7.6 7.6	7.6	7.6	10.0	10.0		3.8	3.9	Ì
				Surface	1	24.4	24.4	7.8 7.9	7.9	33.6 33.6	33.6	98.2 98.6	98.4	8.1 8.1	8.1		10.6 10.9	10.8		5.0 5.0	5.0	
G1	Rainy	Moderate	17:05	Middle	4	24.0 23.9	24.0	7.9 7.9 7.9	7.9	33.5 33.2	33.4	91.6 91.9	91.8	7.6 7.6	7.6	7.9	8.8 9.2	9.0	9.9	5.4 5.0	5.2	4.8
				Bottom	7	23.5	23.5	7.9 7.9	7.9	32.5 32.5	32.5	91.1 90.6	90.9	7.5 7.5	7.5	7.5	8.9 10.8	9.9		4.4 4.1	4.3	ľ
				Surface	1	24.3 24.3	24.3	7.9 7.9	7.9	32.9 32.9	32.9	91.3 91.4	91.4	7.5 7.5	7.5		6.5 7.9	7.2		5.0 4.8	4.9	
G2	Rainy	Moderate	16:44	Middle	5	24.2 24.1	24.2	7.9 7.9	7.9	32.8 32.8	32.8	87.5 85.7	86.6	7.2 7.1	7.2	7.4	6.0 7.5	6.8	7.9	4.6 4.6	4.6	4.8
				Bottom	9	23.5	23.5	8.0 7.9	8.0	32.1 32.2	32.2	83.5 84.1	83.8	6.9 6.9	6.9	6.9	8.9 10.7	9.8	1	4.9 5.0	5.0	ſ
				Surface	1	24.2 24.2	24.2	7.8 7.9	7.9	33.0 33.0	33.0	97.9 98.3	98.1	8.1 8.1	8.1		9.4 9.5	9.5		3.7 3.6	3.7	
G3	Rainy	Moderate	17:15	Middle	4	24.1 24.2	24.2	7.8 7.9	7.9	33.0 32.9	33.0	94.3 95.0	94.7	7.8 7.8	7.8	8.0	10.0 11.3	10.7	10.2	5.9 5.9	5.9	4.9
				Bottom	7	24.0 24.0	24.0	7.8 7.8	7.8	33.6 32.7	33.2	92.9 93.2	93.1	7.7 7.7	7.7	7.7	10.3 10.4	10.4		5.0 4.9	5.0	ĺ
				Surface	1	24.1 24.1	24.1	7.9 7.9	7.9	33.6 33.6	33.6	97.0 95.6	96.3	8.0 7.9	8.0	7.9	11.5 12.5	12.0		4.3 4.4	4.4	
G4	Rainy	Moderate	17:37	Middle	4	24.0 24.0	24.0	7.8 7.8	7.8	33.6 33.5	33.6	95.1 94.6	94.9	7.8 7.8	7.8	1.9	7.6 8.0	7.8	9.7	5.2 5.5	5.4	4.7
				Bottom	7	23.8 23.8	23.8	7.9 7.8	7.9	33.2 33.0	33.1	92.5 89.8	91.2	7.6 7.4	7.5	7.5	8.6 9.7	9.2		4.4 4.3	4.4	ĺ
				Surface	1	23.9 23.9	23.9	7.9 7.9	7.9	33.3 33.4	33.4	91.7 91.6	91.7	7.6 7.6	7.6	7.6	5.0 5.9	5.5		2.9 3.1	3.0	
M1	Rainy	Moderate	16:57	Middle	3	24.1 24.1	24.1	7.9 7.9	7.9	33.3 33.2	33.3	91.6 91.4	91.5	7.6 7.5	7.6	7.0	6.2 6.3	6.3	5.7	4.6 4.3	4.5	3.7
				Bottom	5	23.8 23.9	23.9	7.9 7.9	7.9	32.9 32.9	32.9	91.9 91.4	91.7	7.6 7.5	7.6	7.6	5.2 5.4	5.3		3.7 3.6	3.7	
				Surface	1	24.2 24.4	24.3	7.9 7.9	7.9	33.3 32.7	33.0	98.9 98.4	98.7	8.2 8.1	8.2	7.9	10.2 10.3	10.3		3.6 3.4	3.5	1
M2	Rainy	Moderate	16:36	Middle	5.5	23.6 24.0	23.8	7.9 7.9	7.9	33.1 33.3	33.2	91.3 91.8	91.6	7.5 7.6	7.6		12.0 12.1	12.1	10.8	6.0 6.1	6.1	4.6
				Bottom	10	23.0 23.1	23.1	7.9 7.9	7.9	33.3 33.3	33.3	85.8 84.7	85.3	7.1 7.0	7.1	7.1	9.6 10.2	9.9		4.2 4.4	4.3	
				Surface	1	24.1	24.1	7.9 7.9	7.9	32.8 32.8	32.8	96.4 96.0	96.2	8.0 7.9	8.0	7.9	8.0 8.2	8.1		4.2	4.2	ļ
М3	Rainy	Moderate	17:26	Middle	4.5	24.0 24.1 23.7	24.1	7.8 7.9 7.9	7.9	32.9 32.8 31.5	32.9	94.4 94.3 85.5	94.4	7.8 7.8 7.1	7.8		9.7 9.8 10.8	9.8	9.6	4.6 4.7 4.0	4.7	4.3
				Bottom	8	23.7	23.7	7.9 7.9	7.9	31.6 33.1	31.6	87.0 92.0	86.3	7.1 7.2 7.6	7.2	7.2	11.0	10.9		4.0 4.1 3.8	4.1	<u> </u>
				Surface	1	24.2 24.2 24.0	24.2	7.9 7.8 7.9	7.9	33.1 33.1	33.1	92.0 92.3 91.2	92.2	7.6 7.6 7.5	7.6	7.6	8.4 6.7	7.8		3.7 3.5	3.8	ł
M4	Rainy	Moderate	16:25	Middle	4	24.0 24.0 23.4	24.0	7.9 7.9 7.9	7.9	33.1 32.7	33.1	91.2 92.1 83.8	91.7	7.5 7.6 6.9	7.6		6.8 7.1	6.8	7.5	3.6 4.3	3.6	3.9
				Bottom	7	23.4	23.4	7.9 7.9	7.9	33.6	33.2	92.4 89.6	88.1	7.6 7.4	7.3	7.3	8.4 8.6	7.8		4.4	4.4	
				Surface	1	23.5 23.4	23.5	7.9 7.9	7.9	33.3 33.2	33.3	89.9 88.3	89.8	7.4	7.4	7.4	9.1 9.5	8.9		4.0	4.0	1 _
M5	Rainy	Moderate	17:56	Middle	5.5	23.4	23.4	7.9 7.9	7.9	33.0 32.9	33.1	88.5 84.8	88.4	7.3 7.0	7.3	7.0	11.6 11.3	10.6	10.3	4.0 3.1	3.9	3.7
	<u> </u>			Bottom	10	23.3	23.3	7.9	7.9	32.9	32.9	83.5	84.2	6.9	7.0	7.0	11.2	11.3	<u> </u>	3.0	3.1	<u> </u>
MC	Daine	Madaai	47.45	Surface	-	23.9	-	7.9	7.0	33.5		92.9	-	7.7		7.7	10.2	- 40.0	40.0	4.0	-	
M6	Rainy	Moderate	17:45	Middle	2.4	23.9	23.9	7.9	7.9	33.5	33.5	92.3	92.6	7.6	7.7		10.3	10.3	10.3	4.1	4.1	4.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ĺ

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 26 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M <u>5</u>	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 5.4 NTU</u>	<u>C2: 5.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations M1-M	<u>[5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.0 mg/L</u>	<u>C2: 6.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Do-4	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5	25.5	8.1	8.2	31.8	31.8	111.3	111.5	7.6	7.6		1.3	1.3		5.5	5.5	
C1	Cloudy	Moderate	13:07	Middle	10.5	25.5 25.3	25.4	8.2 8.2	8.2	31.8 31.8	31.8	111.6	112.1	7.6	7.7	7.7	2.7	2.9	2.2	3.1	3.1	3.4
	,			Bottom	20	25.4 25.2	25.2	8.2 8.3	8.3	31.8 31.8	31.9	112.2 108.0	106.9	7.7 7.4	7.4	7.4	3.0 2.0	2.3		3.0 1.5	1.6	
				Surface	1	25.1 24.7	24.7	8.3 8.1	8.2	32.0 32.2	32.4	105.8 105.4	104.8	7.3 7.3	7.3		2.5 4.0	3.9		1.6 4.9	4.9	
C2	Cloudy	Moderate	11:20	Middle	18.5	24.7 24.7	24.7	8.2 8.2	8.2	32.5 32.1	32.2	104.2 106.2	106.3	7.2 7.4	7.4	7.4	3.7 3.1	3.1	3.8	4.9 2.6	2.6	4.2
02	Cloudy	Wioderate	11.20	Bottom	36	24.7 24.6	24.6	8.2 8.1	8.2	32.3 31.6	31.6	106.3 102.9	100.5	7.4 7.2	7.2	7.2	3.1 4.5	4.5	3.0	2.5 5.0	5.0	4.2
				Surface	1	24.6 24.8	24.8	8.2 8.2	8.2	31.6 31.9	31.9	102.0 111.5	111.3	7.1 7.7	7.7	1.2	4.5 2.4	2.4		4.9 1.7	1.7	
G1	01	Moderate	12:09	Middle	4.5	24.8 24.8	24.8	8.2 8.2	8.2	31.8 32.2	32.2	111.1 110.6	110.3	7.7 7.6	7.6	7.7	2.4 4.4	4.5	3.5	1.7 1.5	1.6	1.7
GI	Cloudy	Moderate	12:09		8	24.8 24.7		8.2 8.1	8.2	32.1 32.1	32.2	109.9 104.1	104.7	7.6 7.2		7.0	4.6 3.4	3.5	3.5	1.6 1.9		1.7
				Bottom		24.8 25.0	24.8	8.2 8.2		32.0 32.6		105.2 110.1		7.3 7.6	7.3	7.3	3.6 1.7			1.8 1.4	1.9	
	<u>.</u>			Surface	1	25.0 24.9	25.0	8.2 8.1	8.2	32.6 31.6	32.6	110.1 107.6	110.1	7.6 7.4	7.6	7.5	1.8 4.2	1.8		1.4 1.6	1.4	
G2	Cloudy	Moderate	11:48	Middle	5	24.9 24.8	24.9	8.2	8.2	31.6 31.7	31.6	106.2 103.1	106.9	7.4 7.1	7.4	7.0	4.1	4.2	2.9	1.7	1.7	2.1
				Bottom	9	24.9 24.8	24.9	8.2 8.2	8.2	31.6 31.8	31.7	103.9 107.3	103.5	7.2 7.4	7.2	7.2	2.6 4.2	2.8		3.1 0.8	3.1	
				Surface	1	24.8	24.8	8.2 8.2	8.2	31.8 32.1	31.8	107.0 105.5	107.2	7.4	7.4	7.4	4.4	4.3		0.8	0.8	
G3	Cloudy	Moderate	12:19	Middle	4.5	24.8	24.8	8.2 8.2	8.2	32.1 32.1	32.1	104.8 109.4	105.2	7.2 7.6	7.3		4.0	4.3	4.0	1.3	1.4	1.3
				Bottom	8	24.7	24.7	8.2	8.2	32.1 31.8	32.1	98.7	104.1	6.8	7.2	7.2	3.5	3.5		1.8	1.8	
				Surface	1	24.9	24.9	8.2 8.2	8.2	31.7 31.8	31.8	100.4 100.4 100.6	100.4	6.9 7.0	6.9	7.0	5.8	5.8		1.5	1.5	ļ
G4	Cloudy	Moderate	12:39	Middle	4.5	24.8	24.8	8.2 8.2	8.2	31.7 32.0	31.8	100.0	100.4	6.9 7.2	7.0		3.3 4.5	3.3	4.6	2.8	2.9	2.2
				Bottom	8	24.7	24.7	8.3 8.1	8.3	32.0 32.0 31.9	32.0	105.0	104.4	7.3	7.3	7.3	4.6	4.6		2.2	2.2	
				Surface	1	24.8	24.9	8.2 8.2	8.2	31.9 31.9	31.9	111.2	111.3	7.7 7.6	7.7	7.7	3.1 3.1	3.1		3.4 2.1	3.3	
M1	Cloudy	Moderate	11:59	Middle	3	24.8 24.8	24.9	8.2 8.2	8.2	31.9 32.0	31.9	109.4 109.3 101.3	109.4	7.6 7.6 7.0	7.6		3.2	3.2	3.5	2.1	2.1	3.1
				Bottom	5	24.6 24.7 24.8	24.8	8.2 8.2	8.2	32.0 32.0	32.0	102.2	101.8	7.0 7.1 6.9	7.1	7.1	4.1	4.2		3.8	3.8	
				Surface	1	24.8	24.8	8.2	8.2	32.2	32.2	101.5	100.7	7.0	7.0	7.2	2.5	2.4		2.5	2.6	
M2	Cloudy	Moderate	11:38	Middle	5.5	24.7 24.7	24.7	8.2 8.2	8.2	32.6 32.5	32.6	107.5 107.6	107.6	7.4 7.4	7.4		2.7 2.9	2.8	3.0	1.5 1.4	1.5	1.9
				Bottom	10	24.7 24.7	24.7	8.2 8.1	8.2	31.6 31.6	31.6	106.6 106.5	106.6	7.4 7.4	7.4	7.4	3.7 3.6	3.7		1.7 1.7	1.7	
				Surface	1	25.0 25.0	25.0	8.2 8.2	8.2	31.9 31.8	31.9	110.1 110.3	110.2	7.6 7.6	7.6	7.6	3.6 3.7	3.7		2.6 2.7	2.7	
М3	Cloudy	Moderate	12:30	Middle	5	24.9 24.9	24.9	8.2 8.2	8.2	31.9 32.0	32.0	109.6 106.9	108.3	7.6 7.4	7.5		3.3 3.0	3.2	3.6	3.0 2.9	3.0	2.5
				Bottom	9	24.6 24.6	24.6	8.2 8.2	8.2	32.5 32.5	32.5	106.8 107.1	107.0	7.4 7.4	7.4	7.4	3.7 3.8	3.8		1.8 1.8	1.8	
				Surface	1	24.8 24.8	24.8	8.2 8.1	8.2	31.7 31.6	31.7	99.9 99.7	99.8	6.9 6.9	6.9	7.0	3.5 3.6	3.6		5.0 4.8	4.9	
M4	Cloudy	Moderate	11:29	Middle	4	24.8 24.8	24.8	8.2 8.2	8.2	31.7 31.7	31.7	101.2 101.7	101.5	7.0 7.0	7.0		3.2 3.3	3.3	3.3	5.1 5.3	5.2	4.3
				Bottom	7	24.7 24.7	24.7	8.2 8.2	8.2	32.1 32.1	32.1	99.7 99.3	99.5	6.9 6.9	6.9	6.9	2.6 3.1	2.9		2.7 2.6	2.7	
				Surface	1	25.1 25.1	25.1	8.3 8.3	8.3	32.2 32.1	32.2	110.3 109.5	109.9	7.6 7.5	7.6	7.6	2.1	2.2		2.6 2.5	2.6	ļ
M5	Cloudy	Moderate	12:57	Middle	5.5	25.1 25.1	25.1	8.2 8.2	8.2	32.1 32.1	32.1	110.3 110.3	110.3	7.6 7.6	7.6		2.4	2.4	2.6	2.9 3.0	3.0	3.1
				Bottom	10	25.1 25.1	25.1	8.2 8.2	8.2	32.4 32.4	32.4	107.5 108.6	108.1	7.4 7.5	7.5	7.5	3.0 3.1	3.1		3.5 3.6	3.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
M6	Cloudy	Moderate	12:49	Middle	2.6	25.0 25.0	25.0	8.2 8.2	8.2	30.3 30.4	30.4	105.5 104.3	104.9	7.3 7.3	7.3		3.1 3.0	3.1	3.1	2.5 2.5	2.5	2.5
		l		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	l

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 26 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in mo/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tymbi dityy in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 8.5 NTU</u>	<u>C1: 9.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.7 mg/L</u>	<u>C1: 7.3 mg/L</u>
	Stations M1-M	<u>15</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.7 mg/L</u>	<u>C1: 7.3 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.2 mg/L</u>	<u>C1: 4.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 May 2017

(Mid-Flood Tide)

Loop#	Weather	Sea	Sampling	D	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Depi	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.5	25.5	8.2	8.2	31.8	31.8	107.6	108.1	7.4	7.4		6.8	6.5		5.5	5.6	
C1	Cloudy	Madarata	10:25			25.5 25.3		8.2 8.2		31.8 32.3		108.5 103.8		7.4 7.1		7.3	6.1 8.6	-	7.0	5.6 1.3		2.5
CI	Cloudy	Moderate	19:35	Middle	9.5	25.3 25.1	25.3	8.2 8.2	8.2	32.5 32.4	32.4	105.0 105.8	104.4	7.2 7.3	7.2		7.8 7.2	8.2	7.3	1.2 3.5	1.3	3.5
				Bottom	18	25.1	25.1	8.2	8.2	32.3	32.4	104.4	105.1	7.2	7.3	7.3	7.0	7.1		3.5	3.5	
				Surface	1	25.3 25.2	25.3	8.2 8.2	8.2	32.1 32.2	32.2	110.5 108.5	109.5	7.6 7.4	7.5	7.5	5.6 5.5	5.6		1.8 1.8	1.8	
C2	Cloudy	Moderate	17:51	Middle	17.5	24.9 24.9	24.9	8.2 8.2	8.2	32.0 32.1	32.1	107.4 107.3	107.4	7.4 7.4	7.4	7.5	5.6 5.6	5.6	5.8	2.7 2.6	2.7	2.5
				Bottom	34	24.5 24.5	24.5	8.2 8.2	8.2	32.3 32.3	32.3	109.6	109.7	7.6	7.6	7.6	6.2	6.2		2.9	3.0	
				Surface	1	26.2	26.2	8.2	8.2	32.5	32.5	120.3	120.5	7.6 8.1	8.1		5.3	6.0		3.7	3.7	
G1	Olevedie	Moderate	18:40	Middle	3.5	26.2 25.8	25.8	8.2 8.2	8.2	32.5 32.4	32.3	120.6 111.5	111.4	8.1 7.6	7.6	7.9	6.6 5.7	5.4	5.6	3.7 2.5	2.5	2.5
GI	Cloudy	Moderate	18:40			25.7 25.3		8.2 8.2		32.2 31.4		111.3 109.2		7.6 7.5			5.1 5.0		5.0	2.5 1.2		2.5
				Bottom	6	25.3	25.3	8.2	8.2	31.4	31.4	108.8	109.0	7.5	7.5	7.5	6.0	5.5		1.2	1.2	
				Surface	1	26.1 26.1	26.1	8.2 8.2	8.2	31.8 31.8	31.8	111.6 111.6	111.6	7.6 7.6	7.6	7.4	2.6 2.5	2.6		3.7 3.7	3.7	
G2	Cloudy	Moderate	18:19	Middle	4	26.0 25.9	26.0	8.2 8.2	8.2	31.7 31.7	31.7	106.6 104.2	105.4	7.2 7.1	7.2		2.2 2.2	2.2	3.8	1.6 1.5	1.6	2.6
				Bottom	7	25.3 25.3	25.3	8.3 8.2	8.3	31.0 31.1	31.1	100.4 101.0	100.7	6.9 7.0	7.0	7.0	6.5 6.8	6.7		2.6 2.6	2.6	
				Surface	1	26.0	26.0	8.2	8.2	32.0	32.0	119.7	119.7	8.1	8.1		6.3	6.0		1.6	1.6	
G3	Cloudy	Moderate	18:49	Middle	3.5	26.0 26.0	26.0	8.2 8.2	8.2	32.0 31.8	31.9	119.7 115.6	115.3	7.8	7.8	8.0	5.7 6.6	6.2	6.5	2.0	2.1	1.6
	O.Guay	Moderate	10.10	Bottom	6	25.9 25.8	25.8	8.2 8.2	8.2	31.9 32.5	32.1	114.9 112.9	113.1	7.8 7.7	7.7	7.7	5.7 7.4	7.2	0.0	2.1 1.1	1.1	
						25.8 25.9		8.2 8.2		31.6 32.5		113.3 117.4		7.7 7.9		7.7	7.0 7.0	<u> </u>		1.1		
				Surface	1	25.9	25.9	8.2	8.2	32.5 32.5	32.5	118.1	117.8	8.0	8.0	7.9	7.1	7.1		1.2	1.2	
G4	Cloudy	Moderate	19:09	Middle	3	25.8 25.8	25.8	8.1 8.2	8.2	32.5	32.5	115.7 114.9	115.3	7.8 7.8	7.8		5.1 5.6	5.4	6.0	1.1 1.2	1.2	1.9
				Bottom	5	25.6 25.6	25.6	8.2 8.2	8.2	31.9 32.1	32.0	108.6 111.8	110.2	7.4 7.6	7.5	7.5	5.6 5.5	5.6		3.3 3.4	3.4	
				Surface	1	25.7 25.7	25.7	8.2 8.2	8.2	32.3 32.2	32.3	111.5 111.3	111.4	7.6 7.6	7.6		1.0 1.2	1.1		4.1 4.1	4.1	
M1	Cloudy	Moderate	18:30	Middle	2.5	25.9 25.9	25.9	8.2 8.2	8.2	32.2 32.1	32.2	112.1 111.5	111.8	7.6 7.6	7.6	7.6	1.4 1.4	1.4	1.6	2.6 2.6	2.6	3.4
				Bottom	4	25.6 25.7	25.7	8.2 8.2	8.2	31.8	31.9	111.5	111.2	7.6	7.6	7.6	2.1	2.2	1	3.4	3.5	
			l 	Surface	1	26.2	26.1	8.2	8.2	31.6	31.9	110.8 120.3	120.4	7.6 8.1	8.2		3.4	3.5		1.8	1.9	
Mo	Olevertee	Madaata	40.00			26.0 25.8		8.2 8.2		32.2 32.2		120.5 111.7		8.2 7.6		7.9	3.5 7.1	<u> </u>		1.9 2.9		
M2	Cloudy	Moderate	18:09	Middle	4.5	25.4 24.9	25.6	8.2 8.2	8.2	32.0 32.2	32.1	110.6 102.0	111.2	7.6 7.0	7.6		6.6 7.3	6.9	5.7	2.8 2.7	2.9	2.5
				Bottom	8	24.8	24.9	8.2	8.2	32.2	32.2	102.2	102.1	7.1	7.1	7.1	6.3	6.8		2.6	2.7	
				Surface	1	25.9 25.9	25.9	8.2 8.2	8.2	31.7 31.8	31.8	117.1 116.7	116.9	8.0 7.9	8.0	7.9	2.8 2.9	2.9		3.1 3.0	3.1	
М3	Cloudy	Moderate	19:01	Middle	3.5	25.8 25.9	25.9	8.2 8.2	8.2	31.8 31.7	31.8	114.3 114.9	114.6	7.8 7.8	7.8	7.5	5.0 6.1	5.6	5.1	2.9 3.0	3.0	3.1
				Bottom	6	25.5 25.5	25.5	8.2 8.2	8.2	30.5 30.4	30.5	104.4 102.6	103.5	7. <u>2</u> 7.1	7.2	7.2	7.2 6.2	6.7		3.3 3.2	3.3	
				Surface	1	26.0	26.0	8.2	8.2	32.0	32.0	112.5	112.4	7.6	7.6	Ì	3.5	3.3	Ì	1.9	1.9	
M4	Cloudy	Moderate	18:00	Middle	3.5	26.0 25.8	25.8	8.2 8.2	8.2	32.0 32.0	32.0	112.2 111.7	111.3	7.6 7.6	7.6	7.6	3.1 2.1	2.1	2.7	1.8	1.9	1.9
					6	25.8 25.2		8.2 8.2		32.0 31.6		110.8 101.0		7.5 7.0		7.0	2.0	1		1.9		
	<u> </u>	1		Bottom		25.2 25.3	25.2	8.2 8.2	8.2	32.5 32.2	32.1	111.2 108.4	106.1	7.6 7.4	7.3	7.3	2.6 3.4	2.6		1.8 1.9	1.8	
				Surface	1	25.3	25.3	8.2	8.2	32.2	32.2	108.3	108.4	7.4	7.4	7.4	3.5	3.5		1.8	1.9	
M5	Cloudy	Moderate	19:26	Middle	5	25.2 25.2	25.2	8.2 8.2	8.2	32.1 31.9	32.0	106.5 106.3	106.4	7.3 7.3	7.3		5.4 6.7	6.1	5.8	2.7 2.8	2.8	2.1
				Bottom	9	25.1 25.1	25.1	8.3 8.2	8.3	31.8 31.8	31.8	101.9 100.5	101.2	7.0 6.9	7.0	7.0	7.3 8.1	7.7		1.6 1.6	1.6	
				Surface	-	-	-	-	-		-	-	-	-	-		-	-		-	-	
M6	Cloudy	Moderate	19:18	Middle	1.9	25.7	25.7	8.2	8.2	32.4	32.4	112.2	112.4	7.6	7.6	7.6	6.7	6.7	6.7	1.6	1.7	1.7
	'			Bottom	_	25.7		8.2	_	32.4	_	112.5	_	7.6	_	_	6.6	_		1.7		
]	Dottoili		-		-	_	-	_	-	_	-			-	1 -		-	,	

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 29 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M <u>5</u>	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 8.9 NTU</u>	<u>C2: 9.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations M1-M	<u>[5</u>	
		6.2 mg/L	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 29 May 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ı	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.3 25.3	25.3	8.2 8.2	8.2	30.8 30.8	30.8	104.2 104.3	104.3	7.2 7.2	7.2	7.1	4.7 4.8	4.8		4.2 4.1	4.2	
C1	Sunny	Moderate	15:30	Middle	10	25.1 25.1	25.1	8.2 8.2	8.2	31.4 31.5	31.5	99.7 100.2	100.0	6.9 6.9	6.9	7.1	7.1 6.8	7.0	6.4	6.1 6.3	6.2	5.6
				Bottom	19	24.9 24.9	24.9	8.2 8.3	8.3	31.4 31.3	31.4	101.7 100.0	100.9	7.0 6.9	7.0	7.0	7.7 7.0	7.4		6.5 6.5	6.5	
				Surface	1	24.9 24.8	24.9	8.2 8.2	8.2	31.2 31.2	31.2	105.3 103.8	104.6	7.3 7.2	7.3	7.3	3.5 3.8	3.7		4.9 4.9	4.9	
C2	Sunny	Moderate	13:49	Middle	18	24.6 24.5	24.6	8.2 8.2	8.2	31.0 31.1	31.1	102.8 102.2	102.5	7.2 7.1	7.2		4.8 4.8	4.8	5.3	6.0 5.9	6.0	5.6
				Bottom	35	24.1 24.1 26.0	24.1	8.3 8.2 8.2	8.3	31.3 31.3 31.5	31.3	104.6 104.8 116.6	104.7	7.4 7.4 7.9	7.4	7.4	7.3 7.4 6.5	7.4		5.8 5.9 4.8	5.9	
				Surface	1	26.0 26.0 25.6	26.0	8.2 8.2	8.2	31.5 31.4	31.5	115.6 107.1	116.1	7.9 7.9 7.3	7.9	7.7	6.4 6.5	6.5		4.6	4.7	
G1	Sunny	Moderate	14:36	Middle	4	25.5 25.1	25.6	8.3 8.2	8.3	31.2 29.4	31.3	107.1 107.3 104.9	107.2	7.4 7.3	7.4		6.6 5.9	6.6	6.5	4.6 3.7	4.5	4.3
	1			Bottom	7	25.1 25.6	25.1	8.3 8.2	8.3	29.5 30.9	29.5	104.9 107.7	104.9	7.3 7.4	7.3	7.3	6.8 7.9	6.4		3.5	3.6	
				Surface	1	25.7 25.7	25.7	8.2 8.2	8.2	30.8 30.8	30.9	106.8	107.3	7.4 7.3 7.0	7.4	7.2	6.4 3.7	7.2		2.8	2.8	
G2	Sunny	Moderate	14:16	Middle	5	25.5 24.9	25.6	8.2 8.3	8.2	30.7 29.0	30.8	99.9 96.2	101.0	6.9	7.0		4.0	3.9	5.2	4.5	4.5	3.6
				Bottom	9	25.0 25.8	25.0	8.3 8.2	8.3	29.1 31.0	29.1	95.8 114.9	96.0	6.7 7.9	6.8	6.8	4.6 5.4	4.6		3.4 5.8	3.6	
				Surface	1	25.8 25.8	25.8	8.2 8.2	8.2	31.0 31.0 30.9	31.0	114.8 110.7	114.9	7.9 7.9 7.6	7.9	7.8	6.2 5.5	5.8		5.6 4.2	5.7	
G3	Sunny	Moderate	14:45	Middle	4	25.7 25.6	25.8	8.2 8.2	8.2	30.9 31.6	30.9	110.7	110.7	7.6 7.4	7.6		5.7 8.6	5.6	6.7	4.2	4.2	4.2
				Bottom	7	25.6 25.7	25.6	8.2 8.2	8.2	30.6 31.6	31.1	108.5	108.6	7.5	7.5	7.5	8.7 6.8	8.7		2.7	2.8	<u> </u>
				Surface	1	25.7 25.6	25.7	8.2 8.2	8.2	31.5 31.5	31.6	113.5 111.4	113.3	7.8 7.6	7.8	7.7	6.4 5.2	6.6		4.2	4.5	
G4	Sunny	Moderate	15:04	Middle	4	25.6 25.4	25.6	8.2 8.2	8.2	31.5 30.9	31.5	111.5 104.0	111.5	7.6 7.2	7.6		4.4 5.1	4.8	5.6	5.6 4.9	5.8	5.1
				Bottom	7	25.4 25.4	25.4	8.2 8.2	8.2	31.2 31.3	31.1	107.9	106.0	7.4	7.3	7.3	5.4	5.3		4.8	4.9	<u> </u>
				Surface	1	25.3 25.5	25.4	8.2 8.2	8.2	31.2 31.2	31.3	106.0 107.1	106.4	7.3 7.4	7.3	7.4	6.6 5.8	6.8		2.5	2.6	
M1	Sunny	Moderate	14:27	Middle	3	25.7 25.2	25.6	8.2 8.2	8.2	31.2 30.8	31.2	107.0	107.1	7.3 7.4	7.4		5.9 6.7	5.9	6.4	4.8	4.6	3.8
				Bottom	5	25.5 25.8	25.4	8.2	8.2	30.9	30.9	106.3	106.4	7.3	7.4	7.4	6.0	6.4		4.3	4.2	
	_			Surface	1	25.6 25.4	25.7	8.2 8.2	8.3	31.3 31.3	31.0	115.5 107.5	115.5	7.9 7.4	7.9	7.7	8.5 3.4	8.3		4.6	4.4	
M2	Sunny	Moderate	14:07	Middle	5.5	25.0 24.5	25.2	8.2 8.2	8.2	31.0 31.2	31.2	106.2 97.6	106.9	7.4 6.8	7.4		3.3 6.2	3.4	6.0	5.9 4.3	6.1	4.9
				Bottom	10	24.5	24.5	8.2	8.2	31.2	31.2	97.8 111.7	97.7	6.8	6.8	6.8	6.3	6.3		4.0	4.2	
		.	44.50	Surface	1	25.7 25.6	25.7	8.2 8.2	8.2	30.8	30.8	111.6 109.7	111.7	7.7	7.7	7.6	2.6	2.4		4.7	4.8	
M3	Sunny	Moderate	14:56	Middle	4.5	25.7 25.3	25.7	8.2 8.3	8.2	30.8 29.5	30.8	110.0	109.9	7.5 7.0	7.5		4.6 6.9	4.3	4.6	4.1 6.3	4.2	5.0
				Bottom	8	25.3 25.6	25.3	8.2 8.2	8.3	29.4	29.5	98.3	99.3	6.8	6.9	6.9	7.3	7.1		5.9	6.1	
M4	Cuppi:	Madarata	19.50	Surface	4	25.6 25.5	25.6	8.2 8.2	8.2	31.1 31.0	31.1	107.8 107.0	107.9	7.4 7.4	7.4	7.4	8.7 3.5	7.9	E 7	5.4 3.9	5.3	4.4
IVI4	Sunny	Moderate	13:58	Middle	7	25.4 24.8	25.5	8.2 8.2	8.2	31.0 30.6	31.0	105.8 96.0	106.4	7.3 6.7	7.4	7.0	3.6 5.7	3.6	5.7	3.7 4.2	3.8	4.4
				Bottom Surface	1	24.8 25.1	24.8 25.1	8.2 8.2	8.2	31.6 31.2	31.1	105.8 103.5	100.9	7.3 7.2	7.0	7.0	5.6 3.0	5.7		4.2 3.9	4.2	
M5	Queen	Moderate	15:20	Middle	5.5	25.1 25.0	25.1	8.2 8.3	8.2	31.3 31.1	31.3	103.7 102.5	103.6 102.1	7.2 7.1	7.2 7.1	7.2	3.6 6.8	3.3 7.2	5.8	4.0 4.6	4.0	3.7
CIVI	Sunny	wouerate	10:20	Bottom	10	25.0 24.9	25.0	8.2 8.3	8.3	31.0 30.8	31.1	101.7 97.4	96.6	7.1 6.8	6.8	6.8	7.6 6.4	6.9	3.8	4.2 2.6	2.8	3.1
				Surface	-	24.9	24.8	8.2	0.3	30.8	50.0	95.8	50.0	6.7	0.0	0.0	7.4	0.8		2.9	2.0	—
M6	Sunny	Moderate	15:13	Middle	2.1	25.5	25.5	8.2	8.2	31.5	31.5	108.3	108.3	7.4	7.4	7.4	6.5	6.0	6.0	3.9	4.1	4.1
IVIO	Sumiy	wouerate	10.10	Bottom	2.1	25.5	20.0	8.2	0.2	31.5 -	31.0	108.3	100.3	7.4	7.4		5.4	0.0	0.0	4.2	4.1	4.1
				BOLLOM	-	-	-	-	_	-	_	-	-	-	_	-	-	-		-	-	<u> </u>

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 29 May 2017 (Mid-Flood Tide)

Parameter (unit)	Depth	Action Level	Limit Level									
	Stations G1-G	4, M1-M5										
DO in mo/I	Depth Average	4.9 mg/L	4.6 mg/L									
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control									
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide									
(See Note 2 and 4)		tide of the same day	of the same day									
,		<u>C1: 8.3 NTU</u>	<u>C1: 9.0 NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4	<u>4</u>										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Surface	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>									
	Stations M1-M	<u>15</u>										
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the									
(See Note 2 and 4)		the same day	same day									
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>									
	Stations G1-G4	4 <u>, M1-M5</u>										
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C1:6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>									
	Station M6											
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 29 May 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Do-4	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTU) Suspended So			nded Solids	(mg/L)
Location	Condition	Condition**	Time	⊔ері	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.2 25.2	25.2	8.1 8.2	8.2	30.8 30.8	30.8	106.6 107.0	106.8	7.4 7.4	7.4	7.5	4.4 4.4	4.4		5.9 5.5	5.7	
C1	Sunny	Moderate	09:32	Middle	10	25.1 25.2	25.2	8.2 8.2	8.2	30.8 30.8	30.8	107.7 108.5	108.1	7.5 7.5	7.5	7.5	5.2 5.1	5.2	5.5	7.3 7.2	7.3	6.0
				Bottom	19	25.0 24.8	24.9	8.3 8.3	8.3	30.8 31.0	30.9	103.8 101.4	102.6	7.2 7.1	7.2	7.2	6.3 7.5	6.9		5.0 5.0	5.0	
	C2 Sunny Mode			Surface	1	24.5 24.4	24.5	8.2 8.2	8.2	31.0 31.5	31.3	99.7 100.1	99.9	7.0 7.0	7.0		3.9 3.7	3.8		3.6 3.6	3.6	
C2		Moderate	07:49	Middle	18	24.5 24.4	24.5	8.2 8.2	8.2	31.1 31.3	31.2	101.1 101.6	101.4	7.1 7.1	7.1	7.1	6.0 6.2	6.1	5.6	4.8 4.5	4.7	3.9
				Bottom	35	24.3 24.4	24.4	8.2 8.2	8.2	30.7 31.6	31.2	98.3 98.0	98.2	6.9 6.8	6.9	6.9	7.2 6.7	7.0		3.4 3.2	3.3	
				Surface	1	24.6 24.7	24.7	8.2 8.2	8.2	31.0 30.9	31.0	106.6 107.2	106.9	7.4 7.5	7.5	7.5	4.8 4.1	4.5		3.4 3.3	3.4	
G1	Sunny	Moderate	08:37	Middle	4	24.6 24.6	24.6	8.2 8.2	8.2	31.2 31.2	31.2	105.3 105.7	105.5	7.3 7.4	7.4	7.5	7.1 7.1	7.1	6.0	4.5 4.1	4.3	3.8
				Bottom	7	24.5 24.7	24.6	8.2 8.2	8.2	31.1 31.0	31.1	100.1 101.4	100.8	7.0 7.1	7.1	7.1	7.0 5.9	6.5		3.5 3.6	3.6	
				Surface	1	24.7 24.8	24.8	8.2 8.2	8.2	31.6 30.6	31.1	106.2 105.9	106.1	7.4 7.4	7.4	7.0	5.7 5.2	5.5		4.4 4.3	4.4	
G2	Sunny	Moderate	08:16	Middle	5	24.7 24.6	24.7	8.2 8.2	8.2	30.6 30.6	30.6	102.7 102.7	102.7	7.2 7.2	7.2	7.3	7.2 6.9	7.1	6.7	4.4 4.1	4.3	4.6
				Bottom	9	24.6 24.6	24.6	8.2 8.2	8.2	30.7 30.6	30.7	98.7 99.8	99.3	6.9 7.0	7.0	7.0	6.8 8.4	7.6		5.4 5.0	5.2 5.2 5.5 7 8.0 3.8 6 3.7 7 4.8	
				Surface	1	24.7 24.7	24.7	8.3 8.3	8.3	30.8 30.8	30.8	103.3 103.1	103.2	7.2 7.2	7.2	7.0	3.4 4.2	3.8		5.7 5.2	5.5	
G3	Sunny	Moderate	08:47	Middle	4	24.6 24.6	24.6	8.2 8.2	8.2	31.1 31.1	31.1	101.7 100.5	101.1	7.1 7.0	7.1	7.2	5.1 5.1	5.1	4.5	7.7 8.3	8.0	5.8
				Bottom	7	24.5 24.6	24.6	8.2 8.2	8.2	31.1 31.1	31.1	105.8 95.4	100.6	7.4 6.7	7.1	7.1	4.7 4.6	4.7		3.9 3.6	3.8	
				Surface	1	24.6 24.6	24.6	8.2 8.2	8.2	30.8 30.8	30.8	96.5 95.9	96.2	6.7 6.7	6.7	6.7	5.0 5.7	5.4		3.6 3.7	3.7	
G4	Sunny	Moderate	09:06	Middle	4	24.5 24.6	24.6	8.2 8.2	8.2	30.8 30.8	30.8	95.8 95.5	95.7	6.7 6.7	6.7	0.7	4.7 4.5	4.6	5.6	4.7 4.8	4.8	4.7
				Bottom	7	24.4 24.5	24.5	8.3 8.3	8.3	31.1 31.0	31.1	99.2 100.7	100.0	6.9 7.0	7.0	7.0	6.8 6.7	6.8		5.9 5.2	5.6	
		Moderate		Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	30.9 30.9	30.9	107.4 106.4	106.9	7.5 7.4	7.5	7.4	4.7 4.8	4.8		4.4 4.4	4.4	3.6
M1	Sunny		08:27	Middle	3	24.6 24.6	24.6	8.2 8.2	8.2	30.9 30.9	30.9	105.2 104.9	105.1	7.3 7.3	7.3		5.4 5.4	5.4	5.3	3.4 3.3	3.4	
				Bottom	5	24.6 24.5	24.6	8.2 8.2	8.2	31.0 31.0	31.0	97.1 98.5	97.8	6.8 6.9	6.9	6.9	6.3 5.3	5.8		3.1 3.1	3.1	
				Surface	1	24.5 24.5	24.5	8.2 8.2	8.2	31.2 31.3	31.3	95.6 96.7	96.2	6.7 6.8	6.8	7.0	4.0 3.8	3.9		3.3 3.6	3.5	
M2	Sunny	Moderate	08:06	Middle	5.5	24.4 24.4	24.4	8.2 8.2	8.2	31.6 31.6	31.6	102.8 103.2	103.0	7.2 7.2	7.2	7.0	5.2 5.3	5.3	5.8	3.4 3.4	3.4	3.9
				Bottom	10	24.4 24.3	24.4	8.3 8.2	8.3	30.6 30.6	30.6	102.6 101.9	102.3	7.2 7.2	7.2	7.2	7.4 8.8	8.1		4.5 4.8	4.7	
				Surface	1	24.7 24.7	24.7	8.2 8.2	8.2	30.9 30.8	30.9	105.4 106.1	105.8	7.3 7.4	7.4	7.4	4.8 4.7	4.8		3.0 3.2	3.1	
M3	Sunny	Moderate	08:58	Middle	4.5	24.6 24.7	24.7	8.3 8.2	8.3	30.9 31.0	31.0	104.9 102.8	103.9	7.3 7.2	7.3		7.7 7.7	7.7	6.7	4.4 4.6	4.5	3.9
				Bottom	8	24.3 24.3	24.3	8.2 8.2	8.2	31.5 31.5	31.5	101.5 102.5	102.0	7.1 7.2	7.2	7.2	7.4 7.9	7.7		4.2 4.2	4.2	
				Surface	1	24.6 24.6	24.6	8.2 8.1	8.2	30.7 30.7	30.7	95.6 95.7	95.7	6.7 6.7	6.7	6.8	2.9 3.2	3.1		3.3 3.1	3.2	
M4	Sunny	Moderate	07:58	Middle	4	24.5 24.6	24.6	8.2 8.2	8.2	30.7 30.8	30.8	96.2 97.2	96.7	6.7 6.8	6.8		3.5 4.0	3.8	4.0	4.6 4.2	4.4	3.5
				Bottom	7	24.5 24.4	24.5	8.2 8.2	8.2	31.2 31.1	31.2	95.8 95.5	95.7	6.7 6.7	6.7	6.7	4.8 5.2	5.0		2.7 2.9	2.8	
				Surface	1	24.9 24.8	24.9	8.3 8.3	8.3	31.2 31.1	31.2	105.9 105.7	105.8	7.3 7.3	7.3	7.3	6.1 5.4	5.8		3.4 3.6	3.5	
M5	Sunny	Moderate	09:22	Middle	5.5	24.8 24.8	24.8	8.2 8.2	8.2	31.1 31.1	31.1	105.1 105.2	105.2	7.3 7.3	7.3		6.8 6.9	6.9	5.4	3.6 3.5	3.6	3.2
				Bottom	10	24.8 24.9	24.9	8.2 8.2	8.2	31.4 31.4	31.4	103.9 104.0	104.0	7.2 7.2	7.2	7.2	3.6 3.2	3.4		2.8 2.4	2.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-		-	-	
M6	Sunny	Moderate	09:14	Middle	2.3	24.7 24.7	24.7	8.2 8.2	8.2	29.4 29.4	29.4	101.9 100.1	101.0	7.2 7.0	7.1		6.9 6.8	6.9	6.9	7.0 6.3	6.7	6.7
			Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-		

emarks: *DA: Depth-Avera

Appendix I - Action and Limit Levels for Marine Water Quality on 31 May 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level										
	Stations G1-G4	4, M1-M <u>5</u>											
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>										
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>										
	Station M6												
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>										
	Stations G1-G4, M1-M5												
		<u>19.3 NTU</u>	<u>22.2 NTU</u>										
Turbidity in		or 120% of upstream control	or 130% of upstream control										
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide										
(See Note 2 and 4)		tide of the same day	of the same day										
		<u>C2: 9.4 NTU</u>	<u>C2: 10.1 NTU</u>										
	Station M6												
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>										
	Stations G1-G4												
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
	Surface	station's SS at the same tide of	station's SS at the same tide of the										
		the same day	same day										
		<u>C2: 4.3 mg/L</u>	<u>C2: 4.7 mg/L</u>										
	Stations M1-M5												
		6.2 mg/L	<u>7.4 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the										
(See Note 2 and 4)		the same day	same day										
		<u>C2: 4.3 mg/L</u>	<u>C2: 4.7 mg/L</u>										
	Stations G1-G	4, M1-M5											
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
	Bottom	station's SS at the same tide of	station's SS at the same tide of the										
		the same day	same day										
		<u>C2: 4.9 mg/L</u>	<u>C2: 5.3 mg/L</u>										
	Station M6												
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>										

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 31 May 2017

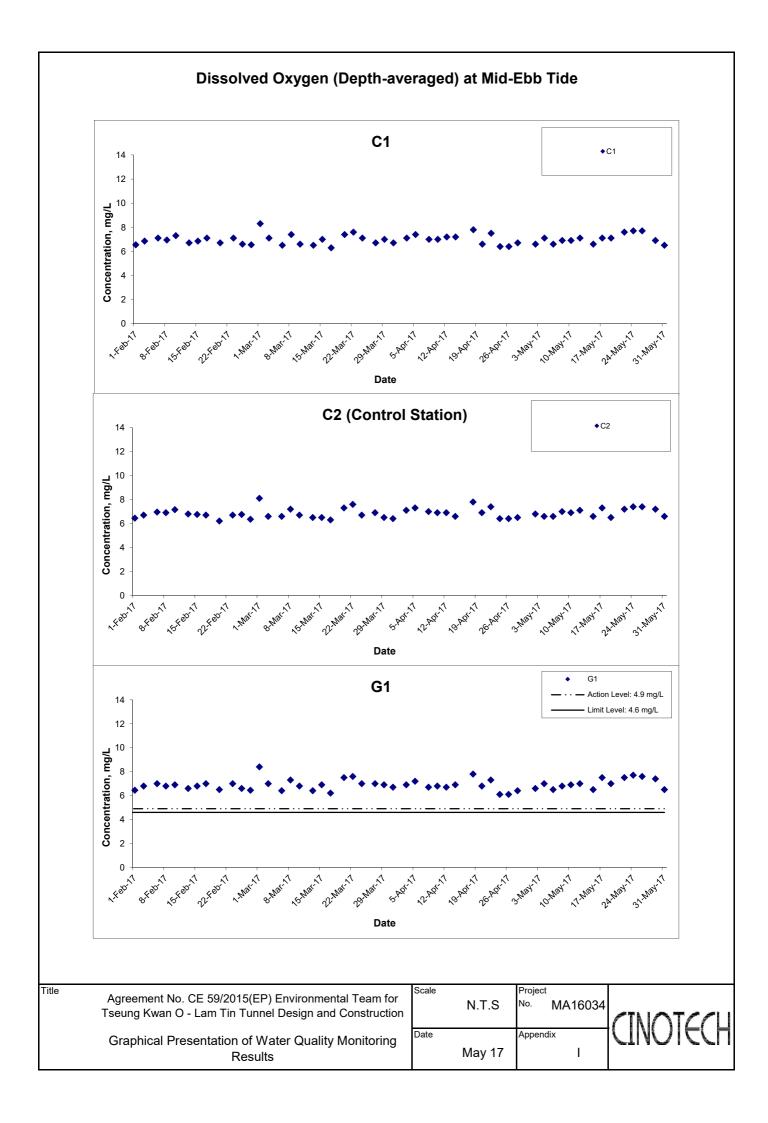
(Mid-Ebb Tide)

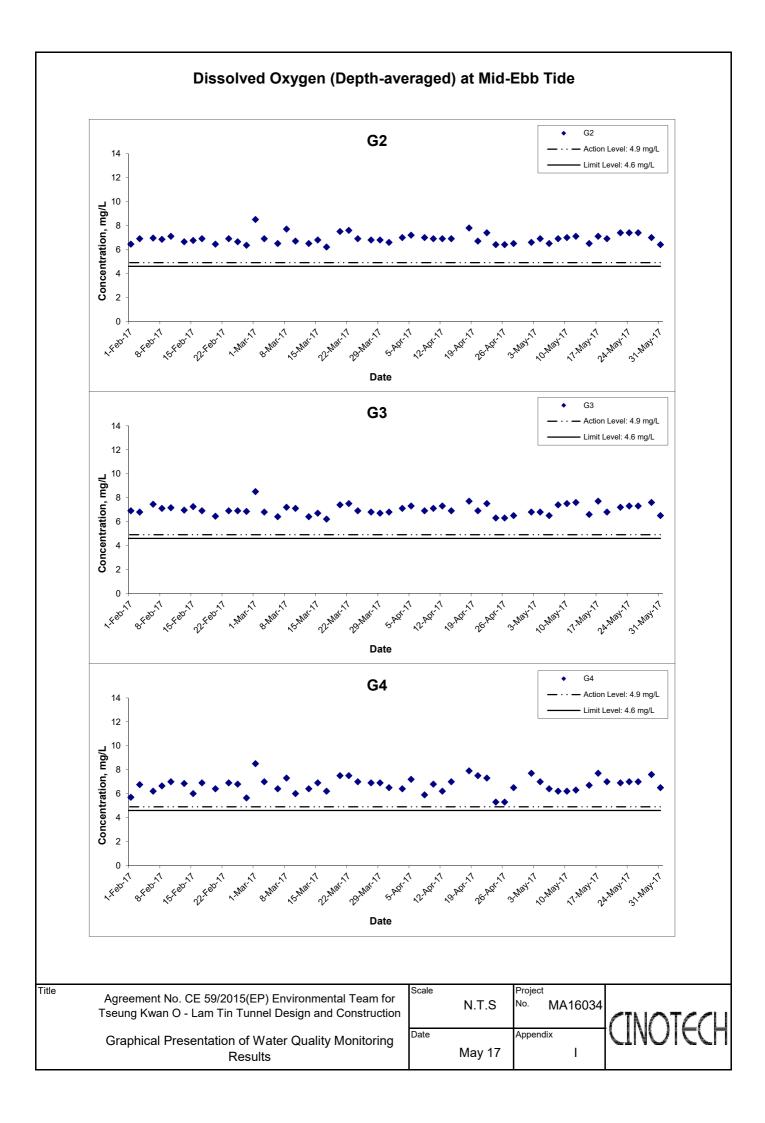
Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.3 26.4	26.4	7.9 8.0	8.0	32.0 32.1	32.1	97.6 97.9	97.8	6.6 6.6	6.6	6.6	4.7 4.8	4.8		2.7 2.8	2.8	1
C1	Sunny	Moderate	17:48	Middle	10	26.1 26.1	26.1	8.0 8.0	8.0	32.2 32.3	32.3	96.3 96.6	96.5	6.5 6.5	6.5	0.0	5.4 5.7	5.6	6.1	3.8 3.9	3.9	3.3
				Bottom	19	25.7 25.7	25.7	8.1 8.0	8.1	32.4 32.4	32.4	93.2 93.5	93.4	6.3 6.4	6.4	6.4	7.7 7.9	7.8		3.2 3.3	3.3	
				Surface	1	26.4 26.2	26.3	8.0 8.0	8.0	31.9 31.8	31.9	99.1 98.4	98.8	6.7 6.7	6.7	6.7	4.6 4.6	4.6		3.5 3.6	3.6	
C2	Sunny	Moderate	15:52	Middle	18	25.9 25.9	25.9	7.9 7.9	7.9	32.5 32.5	32.5	96.8 96.2	96.5	6.6 6.5	6.6	0.1	5.2 5.3	5.3	5.9	2.1 2.1	2.1	3.3
				Bottom	35	25.5 25.7	25.6	7.8 7.8	7.8	32.7 32.7	32.7	93.6 94.1	93.9	6.4 6.4	6.4	6.4	7.8 7.8	7.8		4.1 4.1	4.1	<u> </u>
				Surface	1	26.5 26.3	26.4	8.0 8.0	8.0	32.2 32.3	32.3	98.5 97.6	98.1	6.6 6.6	6.6	6.6	3.6 3.7	3.7		3.8 3.7	3.8	1
G1	Sunny	Moderate	16:46	Middle	4	26.1 25.9	26.0	8.1 8.1	8.1	32.4 32.4	32.4	96.2 96.0	96.1	6.5 6.5	6.5		5.5 5.7	5.6	5.3	6.6 6.5	6.6	4.5
				Bottom	7	26.1 25.8	26.0	8.1 8.1	8.1	32.5 32.6	32.6	95.4 94.6	95.0	6.4 6.4	6.4	4 6.4	6.6 6.5	6.6		2.9 3.0	3.0	<u> </u>
				Surface	1	26.3 26.3	26.3	8.0 8.0	8.0	32.6 32.5	32.6	97.5 97.0	97.3	6.6 6.5	6.6	6.5	4.2 4.3	4.3		2.3 2.4	2.4	1
G2	Sunny	Moderate	16:25	Middle	5	26.3 26.2	26.3	8.0 8.0	8.0	32.7 32.7	32.7	95.2 95.0	95.1	6.4 6.4	6.4		4.6 4.7	4.7	5.1	3.3 3.4	3.4	2.4
				Bottom	9	25.8 25.7	25.8	8.1 8.1	8.1	32.9 32.8	32.9	93.7 93.4	93.6	6.3 6.3	6.3	6.3	6.3 6.2	6.3		1.5 1.5	1.5	<u> </u>
				Surface	1	26.4 26.4	26.4	8.0 8.0	8.0	32.3 32.3	32.3	98.1 98.7	98.4	6.6 6.6	6.6	6.6	4.4 4.3	4.4		2.2 2.2	2.2	1
G3	Sunny	Moderate	16:58	Middle	4	26.2 26.1	26.2	7.9 7.9	7.9	32.4 32.5	32.5	97.1 96.4	96.8	6.5 6.5	6.5		6.7 6.8	6.8	6.4	6.2 6.1	6.2	3.4
				Bottom	7	25.8 25.8	25.8	7.9 7.9	7.9	32.7 32.7	32.7	94.1 93.4	93.8	6.4 6.3	6.4	6.4	7.8 7.9	7.9	<u> </u>	1.8 1.9	1.9	<u> </u>
				Surface	1	26.1 26.2	26.2	8.0 8.0	8.0	32.4 32.4	32.4	99.0 99.9	99.5	6.7 6.7	6.7	6.6	4.3 4.2	4.3	5.9	2.0	2.0	1
G4	Sunny	Moderate	17:21	Middle	4	25.9 25.9	25.9	8.1 8.1	8.1	32.6 32.7	32.7	95.7 96.6	96.2	6.5 6.5	6.5		5.4 5.5	5.5		2.2	2.2	2.2
				Bottom	7	25.9 25.8	25.9	8.1 8.1	8.1	32.9 33.0	33.0	95.1 95.0	95.1	6.4 6.4	6.4	6.4	7.9 7.8	7.9		2.4 2.4	2.4	<u> </u>
			16:36	Surface	1	26.4 26.3	26.4	8.0 7.9	8.0	32.4 32.4	32.4	98.0 98.0	98.0	6.6 6.6	6.6	6.6	4.6 4.6	4.6		2.0	2.0	
M1	Sunny	Moderate		Middle	3	26.2 26.2	26.2	8.0 8.0	8.0	32.5 32.6	32.6	96.6 97.0	96.8	6.5 6.5	6.5		5.8 6.3	6.1	6.1	2.5 2.6	2.6	2.4
				Bottom	5	25.8 25.9	25.9	8.0 8.0	8.0	32.6 32.6	32.6	95.1 96.1	95.6	6.4 6.5	6.5	6.5	7.8 7.5	7.7		2.7 2.5	2.6	<u> </u>
			16:13	Surface	1	26.5 26.4	26.5	7.9 7.9	7.9	31.8 31.8	31.8	98.6 98.3	98.5	6.6 6.6	6.6	6.6	4.2 4.7	4.5		2.4	2.4	
M2	Sunny	Moderate		Middle	5.5	26.3 25.9	26.1	8.0 8.0	8.0	32.4 32.5	32.5	97.5 97.1	97.3	6.6 6.6	6.6		4.6 4.5	4.6	4.9	1.6 1.6	1.6	2.4
				Bottom	10	25.8 25.7	25.8	8.1 8.0	8.1	32.2 32.2	32.2	94.1 94.1	94.1	6.4 6.4	6.4	6.4	5.5 5.6	5.6		3.3 3.1	3.2	<u> </u>
				Surface	1	26.4 26.3	26.4	7.8 7.8	7.8	32.5 32.5	32.5	98.1 98.2	98.2	6.6 6.6	6.6	6.6	4.3 4.4	4.4		3.5 3.4	3.5	1
М3	Sunny	Moderate	17:09	Middle	4.5	26.2 26.2	26.2	7.8 7.8	7.8	32.7 32.6	32.7	97.1 96.6	96.9	6.5 6.5	6.5		5.8 5.8	5.8	5.9	3.1 3.2	3.2	3.2
				Bottom	8	26.1 25.9	26.0	8.0 8.1	8.1	32.8 32.7	32.8	94.2 94.4	94.3	6.3 6.4	6.4	6.4	7.7 7.2	7.5		2.9 2.9	2.9	<u> </u>
				Surface	1	26.5 26.4	26.5	8.0 7.9	8.0	32.4 32.5	32.5	99.0 99.1	99.1	6.6 6.7	6.7	6.6	4.4	4.4		2.7	2.7	ļ
M4	Sunny	Moderate	16:02	Middle	4	26.3 26.3	26.3	7.9 7.9	7.9	32.8 32.8	32.8	96.1 95.7	95.9	6.5 6.4	6.5		5.5 5.7	5.6	5.5	2.7	2.7	2.7
				Bottom	7	25.9 25.8	25.9	7.8 7.9	7.9	32.8 32.9	32.9	92.1 91.2	91.7	6.2 6.2	6.2	6.2	6.4 6.3	6.4		2.7 2.6	2.7	Щ.
				Surface	1	26.2 26.2	26.2	7.8 7.8	7.8	32.4 32.4	32.4	98.6 98.9	98.8	6.6 6.7	6.7	6.7	4.8 5.1	5.0		4.0 3.9	4.0	1
M5	Sunny	Moderate	17:38	Middle	5.5	26.2 26.0	26.1	8.0 7.9	8.0	32.5 32.5	32.5	98.5 98.2	98.4	6.6 6.6	6.6		6.8 6.5	6.7	6.4	3.8	3.8	3.3
				Bottom	10	25.8 25.7	25.8	8.0 8.1	8.1	32.5 32.6	32.6	95.9 96.5	96.2	6.5 6.6	6.6	6.6	7.4 7.5	7.5		2.2 2.2	2.2	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	1
M6	Sunny	Moderate	17:31	Middle	3.1	26.2 26.3	26.3	8.0 8.1	8.1	32.3 32.3	32.3	97.5 96.9	97.2	6.6 6.5	6.6		5.2 5.4	5.3	5.3	2.5 2.6	2.6	2.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

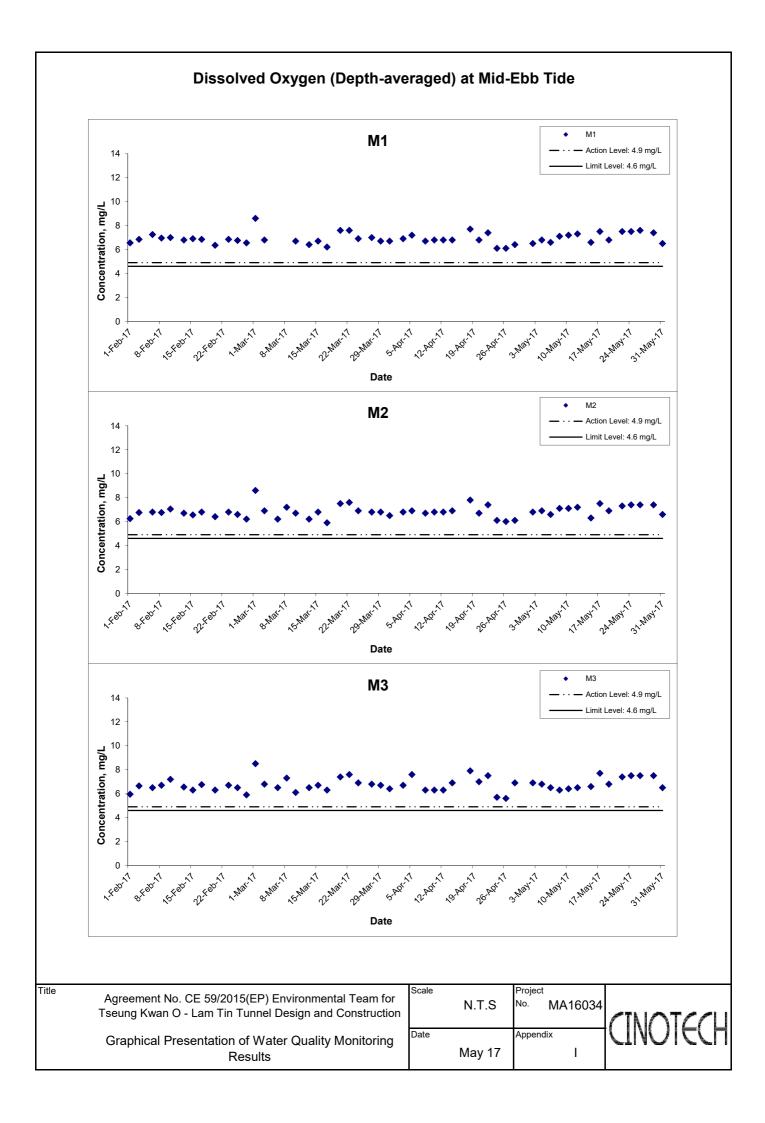
emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 31 May 2017 (Mid-Flood Tide)

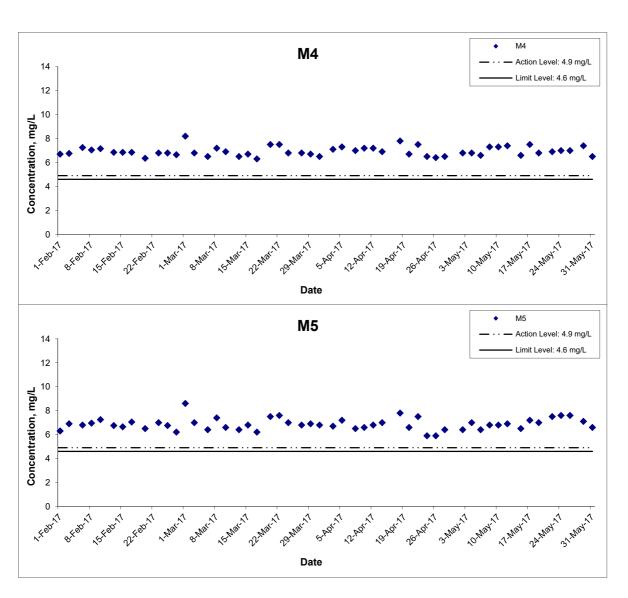
Parameter (unit)	Depth	Action Level	Limit Level										
	Stations G1-G	4, M1-M5											
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L										
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L										
	Station M6												
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>										
	Stations G1-G4, M1-M5												
		<u>19.3 NTU</u>	<u>22.2 NTU</u>										
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control										
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide										
NTU (See Note 2 and 4)		tide of the same day	of the same day										
(500 11010 2 and 1)		<u>C1: 10.3 NTU</u>	<u>C1:11.2 NTU</u>										
	Station M6												
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>										
	Stations G1-G4												
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
	Surface	station's SS at the same tide of	station's SS at the same tide of the										
		the same day	same day										
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>										
	Stations M1-M5												
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the										
(See Note 2 and 4)		the same day	same day										
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>										
	Stations G1-G4	4, M1-M5											
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>										
		or 120% of upstream control	or 130% of upstream control										
	Bottom	station's SS at the same tide of	station's SS at the same tide of the										
		the same day	same day										
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>										
	Station M6												
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>										


- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 31 May 2017


(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	(mg/L)	
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.2 26.3	26.3	7.9 7.9	7.9	32.3 32.2	32.3	99.4 99.7	99.6	6.7 6.7	6.7	6.7	4.7 4.8	4.8		5.9 5.8	5.9	1
C1	Sunny	Moderate	10:32	Middle	10	26.1 26.3	26.2	7.9 7.8	7.9	32.3 32.4	32.4	97.1 98.3	97.7	6.6 6.6	6.6		6.7 6.9	6.8	6.7	4.1 4.0	4.1	4.9
				Bottom	19	25.8 25.7	25.8	8.0 7.9	8.0	32.5 32.6	32.6	94.2 94.6	94.4	6.4 6.4	6.4	6.4	8.6 8.5	8.6		4.5 4.6	4.6	
				Surface	1	25.8 25.8	25.8	8.1 8.1	8.1	32.2 32.1	32.2	97.8 97.3	97.6	6.6 6.6	6.6	6.6	4.6 4.4	4.5		5.8 5.7	5.8	
C2	Sunny	Moderate	08:36	Middle	18	25.6 25.8	25.7	8.1 8.0	8.1	32.4 32.5	32.5	96.7 97.0	96.9	6.6 6.6	6.6	0.0	6.2 6.3	6.3	5.9	2.5 2.5	2.5	3.4
				Bottom	35	25.6 25.7	25.7	8.1 8.1	8.1	32.6 32.5	32.6	92.7 92.4	92.6	6.3 6.3	6.3	6.3	6.7 7.0	6.9		2.0 2.0	2.0	
				Surface	1	26.3 26.1	26.2	8.0 8.0	8.0	32.0 32.0	32.0	97.0 96.7	96.9	6.5 6.5	6.5	6.5	4.9 5.1	5.0		2.2	2.2	1
G1	Sunny	Moderate	09:28	Middle	4	25.7 25.8	25.8	8.0 8.0	8.0	32.1 32.2	32.2	95.7 96.2	96.0	6.5 6.5	6.5		6.2 6.3	6.3	6.3	2.5 2.5	2.5	2.4
				Bottom	7	25.6 25.6	25.6	8.0 8.1	8.1	32.2 32.3	32.3	92.4 92.7	92.6	6.3 6.3	6.3	6.3	7.4 7.6	7.5		2.4 2.4	2.4	<u> </u>
				Surface	1	26.2 26.2	26.2	7.9 7.9	7.9	32.5 32.5	32.5	99.7 100.1	99.9	6.7 6.7	6.7	6.6	4.7 4.9	4.8		1.7 1.7	1.7	1
G2	Sunny	Moderate	09:07	Middle	5	25.9 26.1	26.0	8.0 7.9	8.0	32.5 32.5	32.5	96.2 96.2	96.2	6.5 6.5	6.5		5.8 5.6	5.7	5.9	1.8	1.8	1.9
				Bottom	9	25.5 25.6	25.6	8.0 8.0	8.0	32.7 32.8	32.8	94.2 94.0	94.1	6.4 6.4	6.4	6.4	7.1 7.2	7.2		2.1 2.1	2.1	<u> </u>
				Surface	1	26.2 26.3	26.3	8.1 8.0	8.1	32.3 32.3	32.3	98.4 97.6	98.0	6.6 6.6	6.6	6.6	3.8 3.5	3.7		2.0 2.0	2.0	1
G3	Sunny	Moderate	09:39	Middle	4	25.9 25.8	25.9	8.1 8.1	8.1	32.4 32.6	32.5	95.2 95.5	95.4	6.4 6.5	6.5		4.4 4.5	4.5	4.6	2.3	2.4	2.3
				Bottom	7	25.7 25.8	25.8	8.2 8.1	8.2	32.7 32.8	32.8	94.2 94.9	94.6	6.4 6.4	6.4	6.4	5.7 5.2	5.5	<u> </u>	2.4 2.5	2.5	Щ
				Surface	1	26.1 26.2	26.2	8.0 8.0	8.0	32.0 32.0	32.0	97.2 95.4	96.3	6.6 6.4	6.5	6.5	4.4	4.5	5.4	2.3	2.3	1
G4	Sunny	Moderate	10:03	Middle	4	25.7 25.7	25.7	8.1 8.0	8.1	32.1 32.2	32.2	94.7 94.2	94.5	6.4 6.4	6.4		4.8 4.9	4.9		3.1 3.0	3.1	2.8
				Bottom	7	25.7 25.6	25.7	8.1 8.1	8.1	32.3 32.3	32.3	91.5 92.0	91.8	6.2 6.3	6.3	6.3	6.6 6.8	6.7		2.8 2.9	2.9	<u> </u>
			09:19	Surface	1	26.5 26.3	26.4	7.9 8.0	8.0	32.0 32.1	32.1	99.2 99.2	99.2	6.7 6.7	6.7	6.6	3.5 3.1	3.3		1.8	1.8	3.2
M1	Sunny	Moderate		Middle	3	25.9 26.2	26.1	8.0 8.0	8.0	32.3 32.3	32.3	95.8 96.0	95.9	6.5 6.5	6.5		5.8 5.9	5.9	5.3	4.1 4.0	4.1	
				Bottom	5	25.8 25.8	25.8	8.0 8.0	8.0	32.2 32.1	32.2	93.7 94.4	94.1	6.4 6.4	6.4	6.4	6.7 6.5	6.6		3.9 3.7	3.8	
		Moderate	08:55	Surface	1	25.8 26.0	25.9	8.0 8.0	8.0	32.2 32.3	32.3	97.7 98.2	98.0	6.6 6.6	6.6	6.6	3.7 3.7	3.7		3.4 3.5	3.5	4.0
M2	Sunny			Middle	5.5	25.6 25.8	25.7	7.9 7.9	7.9	32.3 32.2	32.3	96.5 96.9	96.7	6.6 6.6	6.6	0.0	5.3 5.5	5.4	5.4	3.4 3.5	3.5	
				Bottom	10	25.6 25.6	25.6	8.0 8.0	8.0	32.5 32.5	32.5	95.3 94.6	95.0	6.5 6.4	6.5	6.5	7.2 7.2	7.2		5.0 4.9	5.0	Щ.
				Surface	1	26.1 26.0	26.1	8.0 8.0	8.0	32.1 32.1	32.1	96.4 96.3	96.4	6.5 6.5	6.5	6.5	4.9 4.5	4.7		1.8	1.8	1
М3	Sunny	Moderate	09:51	Middle	4.5	25.9 25.8	25.9	8.0 8.0	8.0	32.3 32.4	32.4	94.2 94.8	94.5	6.4 6.4	6.4		6.7 6.8	6.8	6.5	1.6	1.7	2.3
				Bottom	8	25.7 25.7	25.7	8.1 8.1	8.1	32.5 32.5	32.5	93.1 92.7	92.9	6.3	6.3	6.3	8.2 7.9	8.1		3.4 3.3	3.4	Щ.
				Surface	1	26.1 26.3	26.2	8.0 8.0	8.0	32.0 32.0	32.0	98.5 98.4	98.5	6.7	6.7	6.7	3.5 3.7	3.6		2.5 2.5	2.5	1
M4	Sunny	Moderate	08:46	Middle	4	25.7 25.8	25.8	8.0 8.0	8.0	32.1 32.1	32.1	97.4 97.3	97.4	6.6 6.6	6.6		3.9 3.9	3.9	4.3	5.2 5.2	5.2	3.6
				Bottom	7	25.5 25.5	25.5	8.1 8.1	8.1	32.2 32.2	32.2	95.4 95.0	95.2	6.5 6.5	6.5	6.5	5.2 5.8	5.5		3.1 3.0	3.1	Щ
				Surface	1	26.3 26.9	26.6	7.9 8.0	8.0	31.8 31.9	31.9	98.3 99.2	98.8	6.6 6.6	6.6	6.5	4.7 5.1	4.9		5.9 5.7	5.8	1
M5	Sunny	Moderate	10:22	Middle	5.5	25.9 25.8	25.9	7.9 7.9	7.9	32.4 32.6	32.5	94.9 94.5	94.7	6.4	6.4		6.5 6.7	6.6	6.7	1.8	1.9	3.4
				Bottom	10	25.7 25.6	25.7	8.1 8.1	8.1	32.4 32.4	32.4	93.8 93.9	93.9	6.4 6.4	6.4	6.4	8.9 8.4	8.7		2.4 2.5	2.5	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		0.0	0.0	1
M6	Sunny	Moderate	10:14	Middle	3.1	26.3 26.2	26.3	8.0 8.1	8.1	32.3 32.3	32.3	97.2 97.6	97.4	6.5 6.6	6.6		5.6 5.9	5.8	5.8	3.0 3.1	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.0 0.0	0.0	<u> </u>

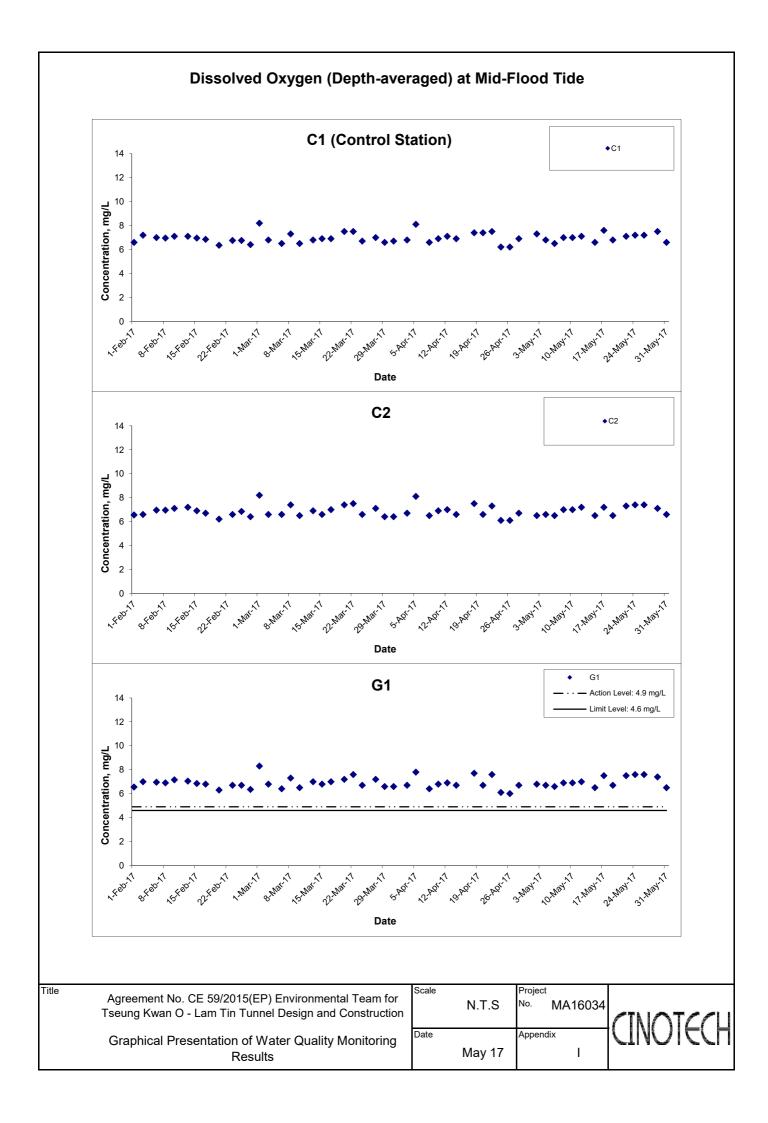

emarks: *DA: Depth-Averag

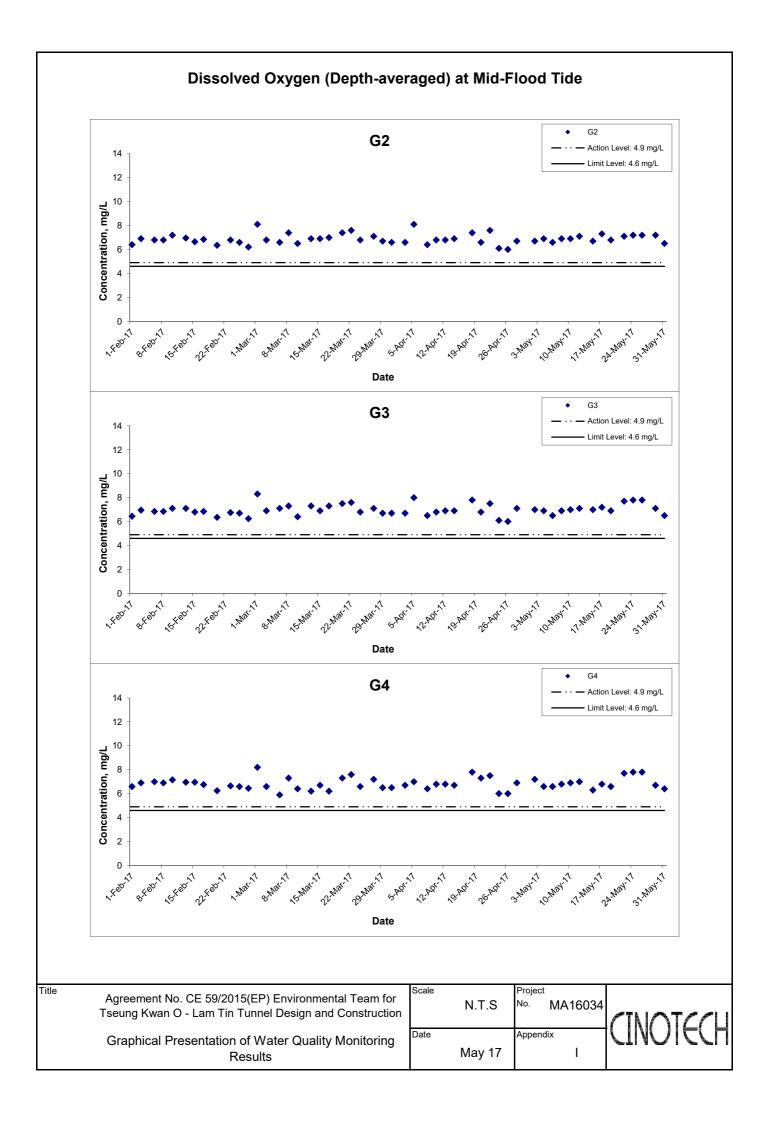
Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide

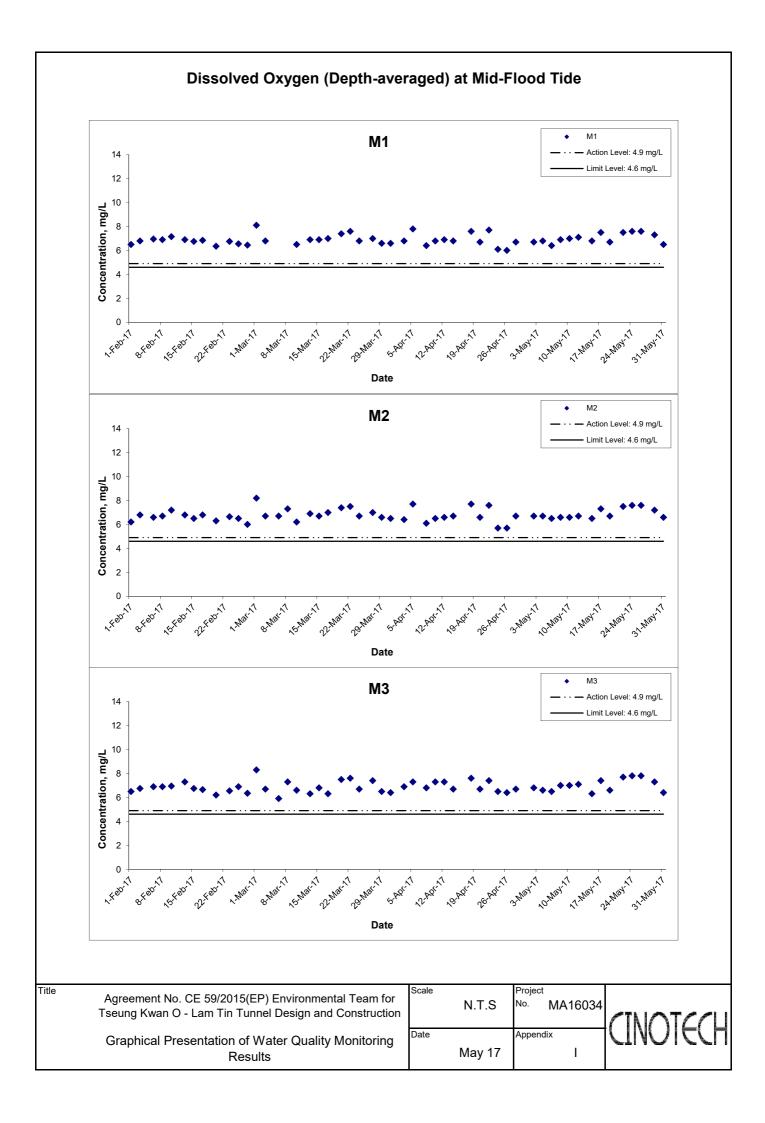
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

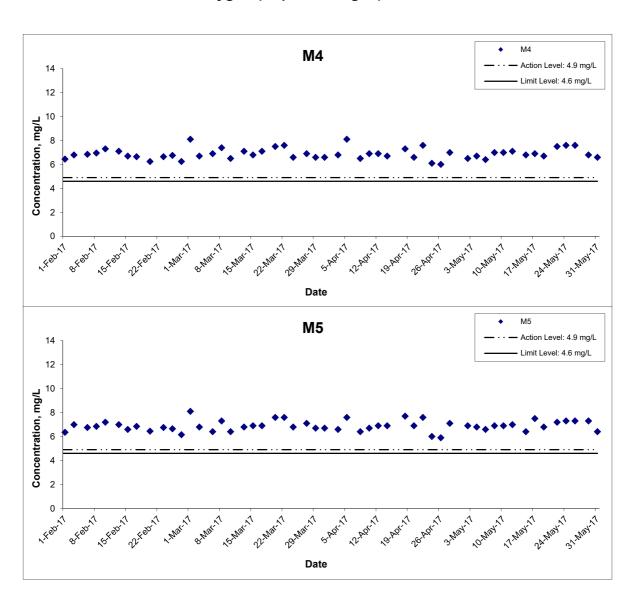
Scale


N.T.S


Project
No. MA16034


Date

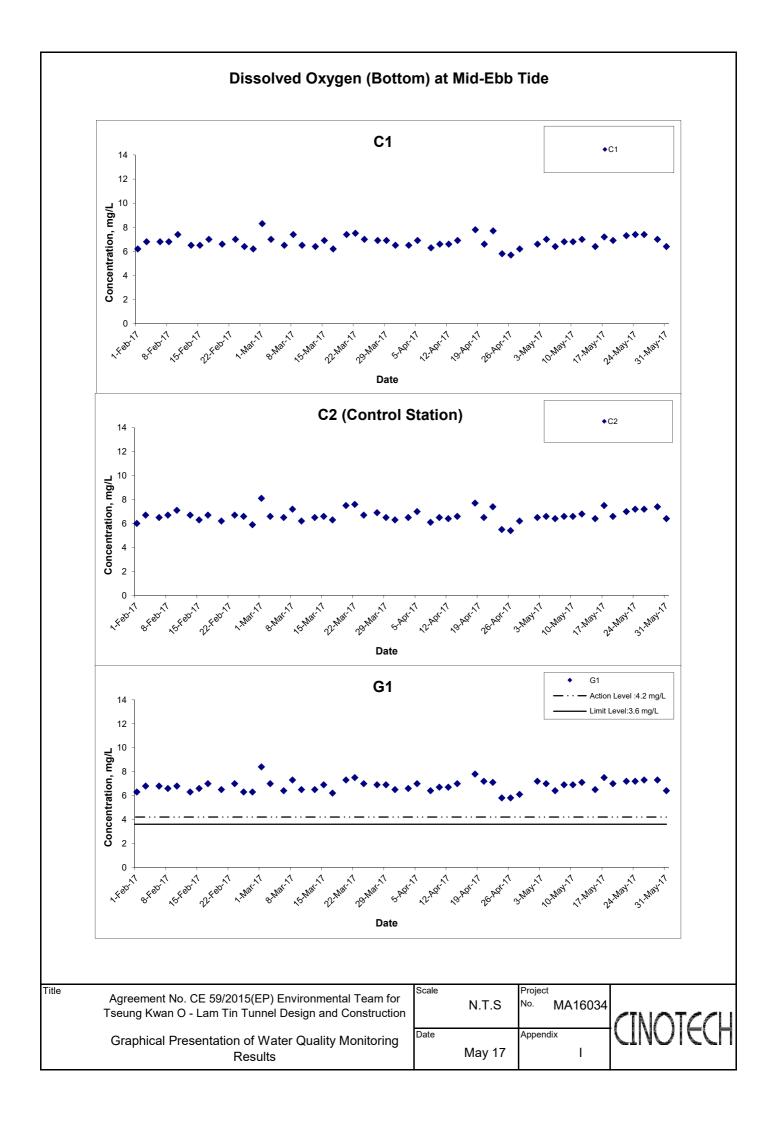
May 17

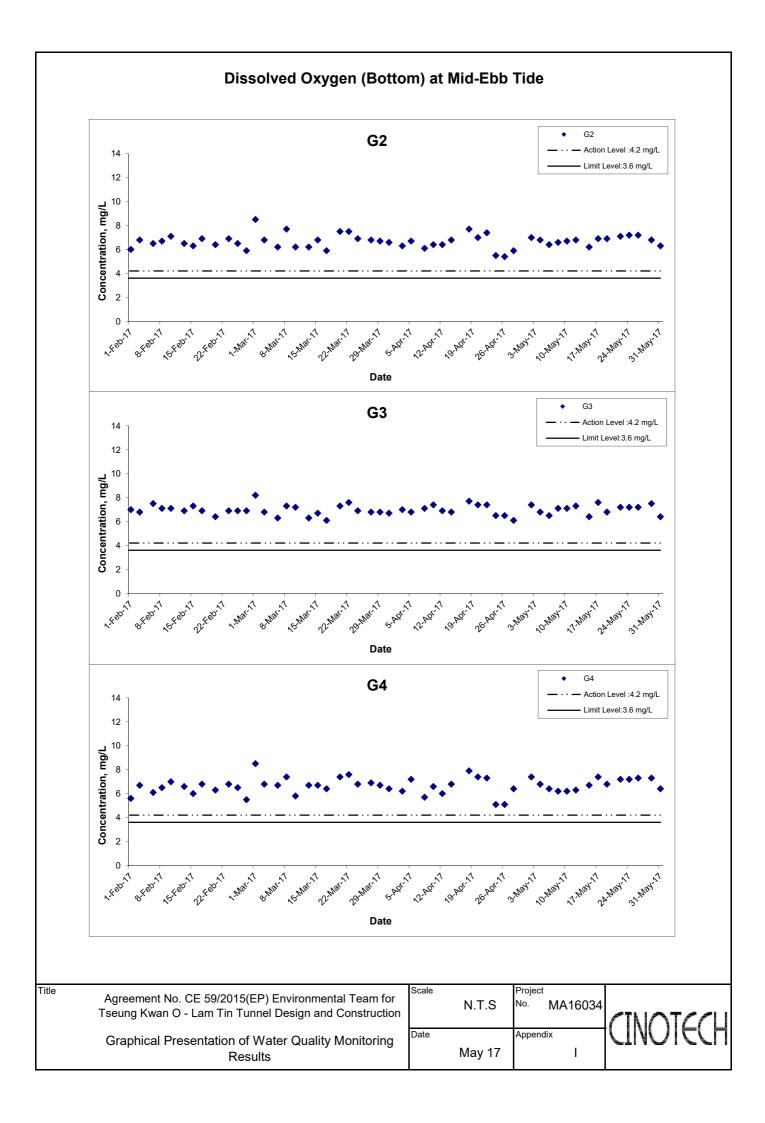

I

Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

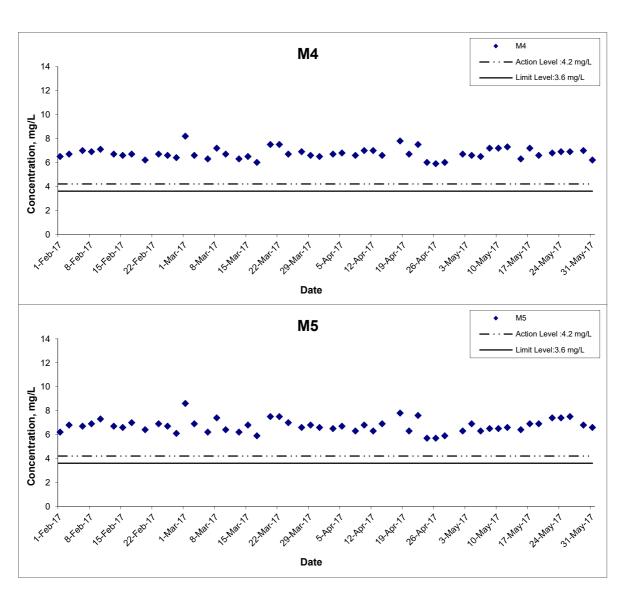
Graphical Presentation of Water Quality Monitoring


Results


Scale


N.T.S

Project
No. MA16034



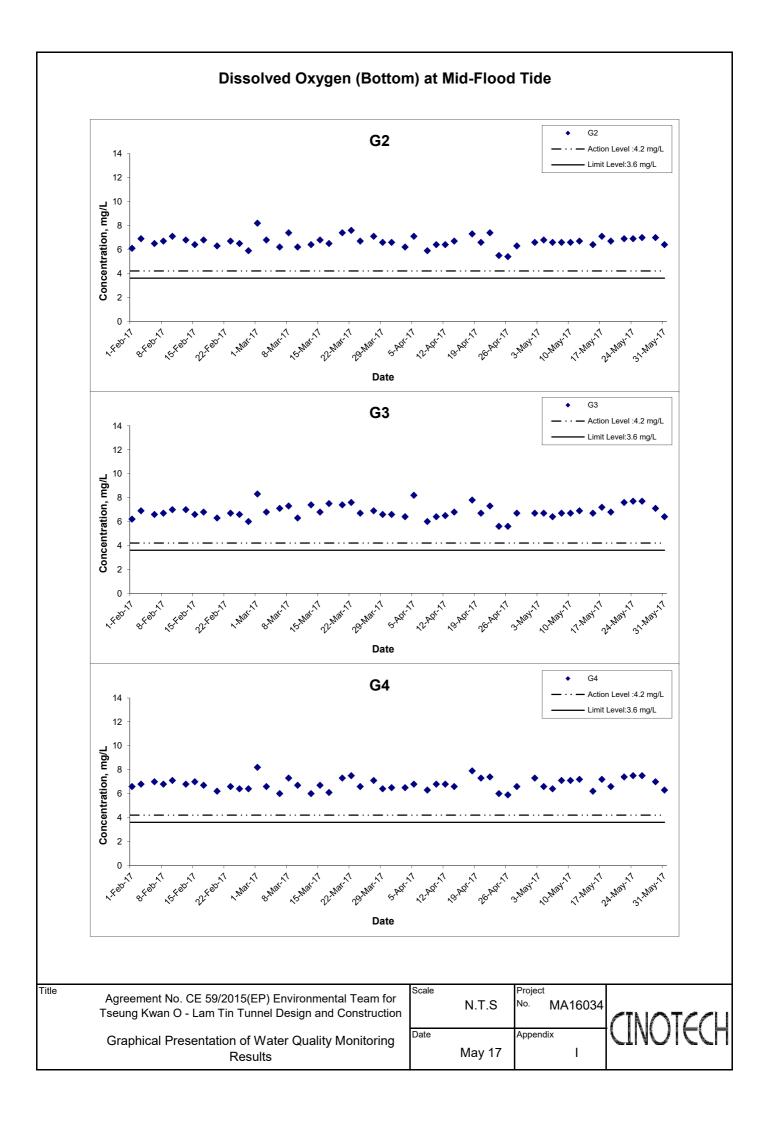
Dissolved Oxygen (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

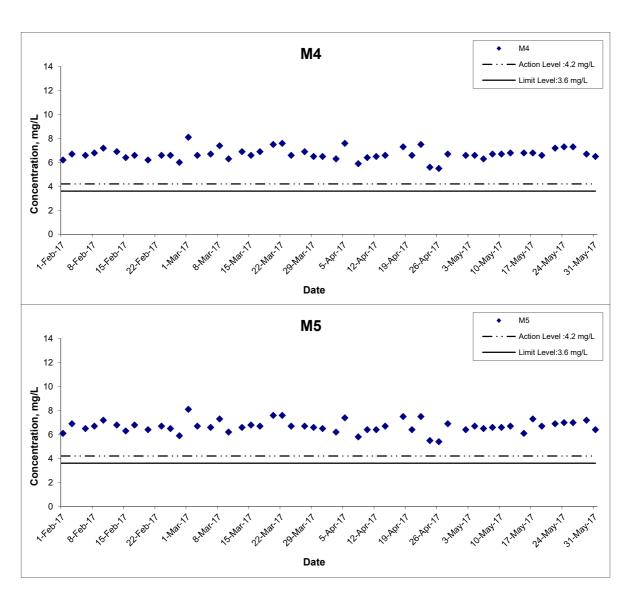
Scale


N.T.S

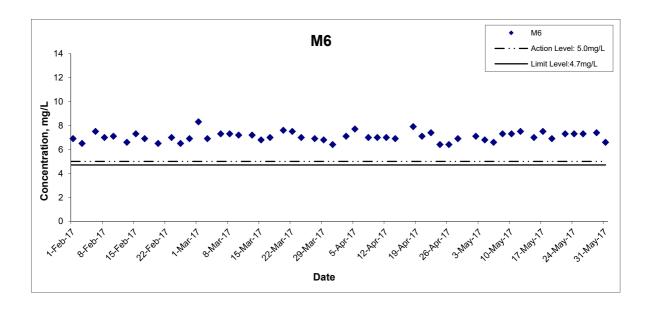

Project
No. MA16034

Appendix

May 17


CINOTECH

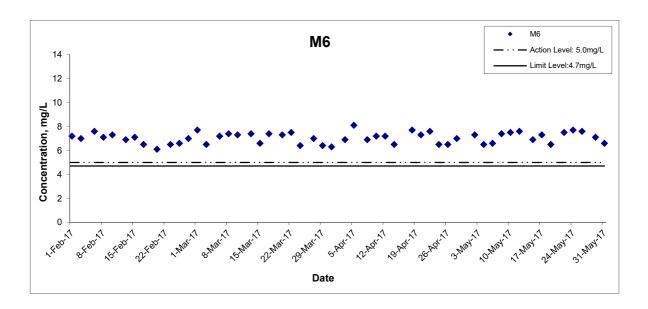
Dissolved Oxygen (Bottom) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring

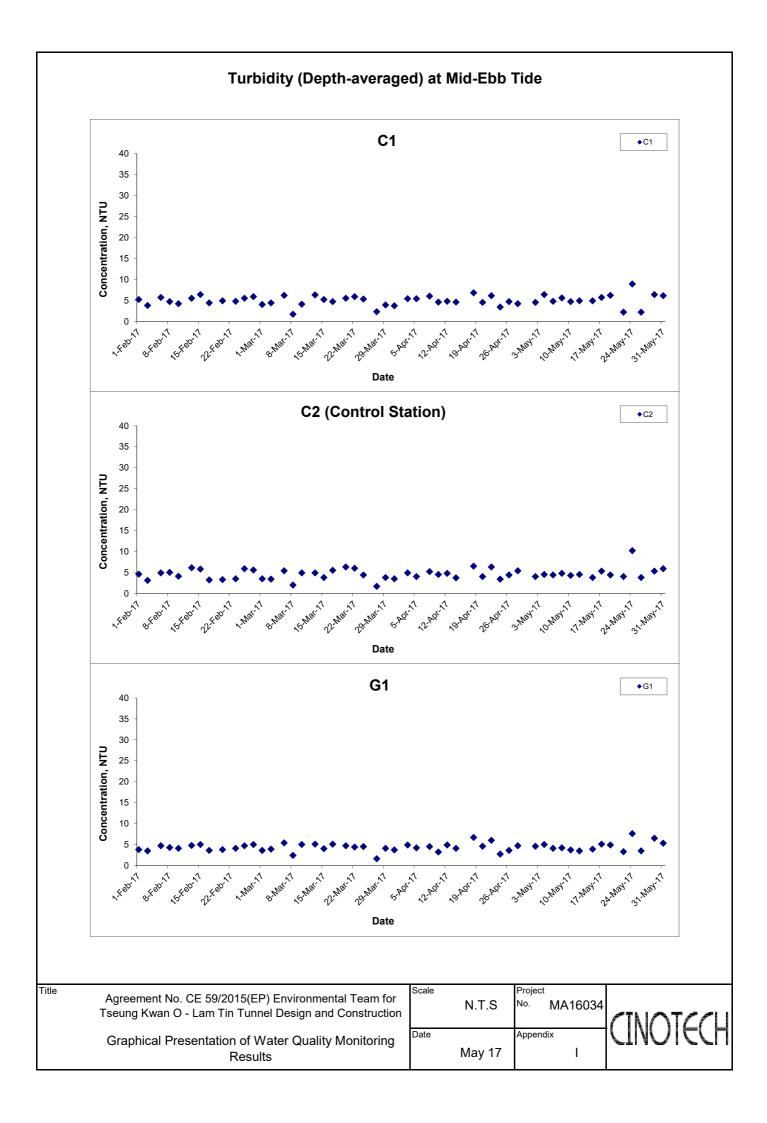
Results

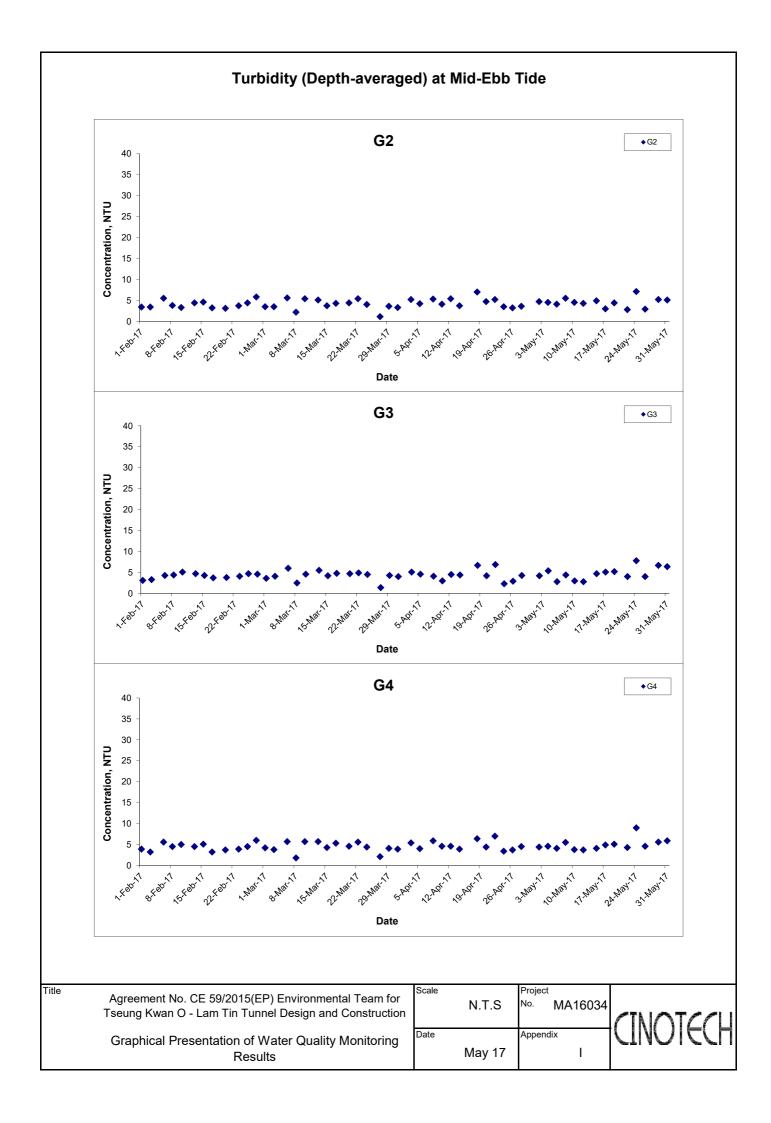
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

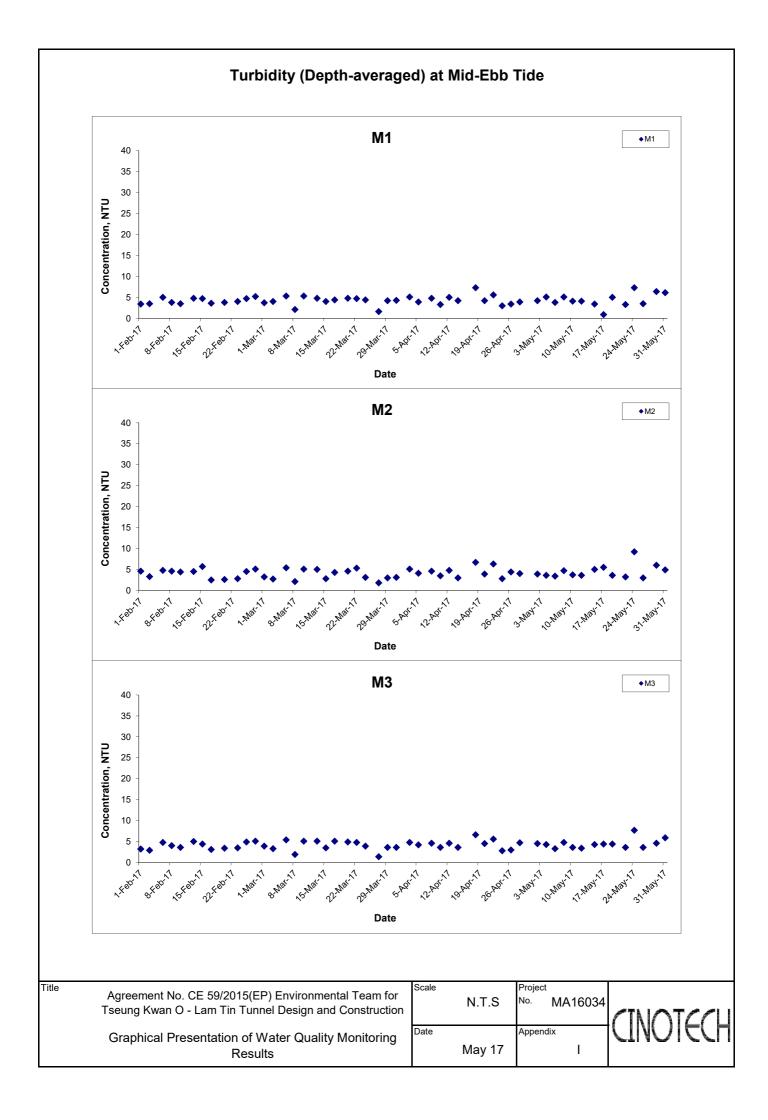


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

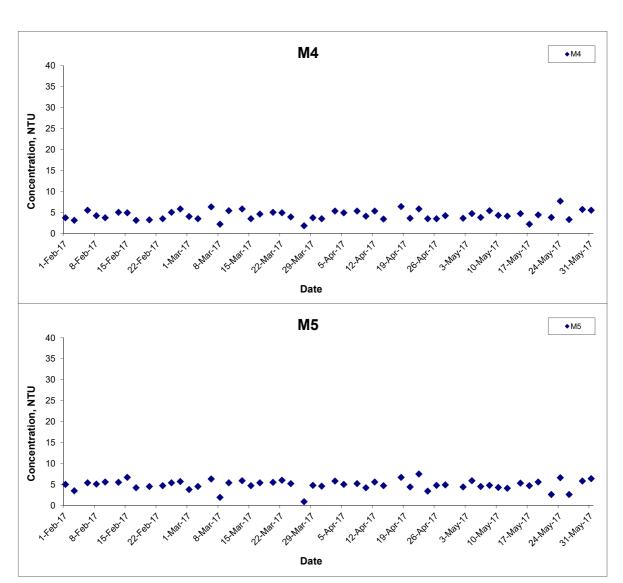
Scale		Proje	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	May 17		1


Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide




Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

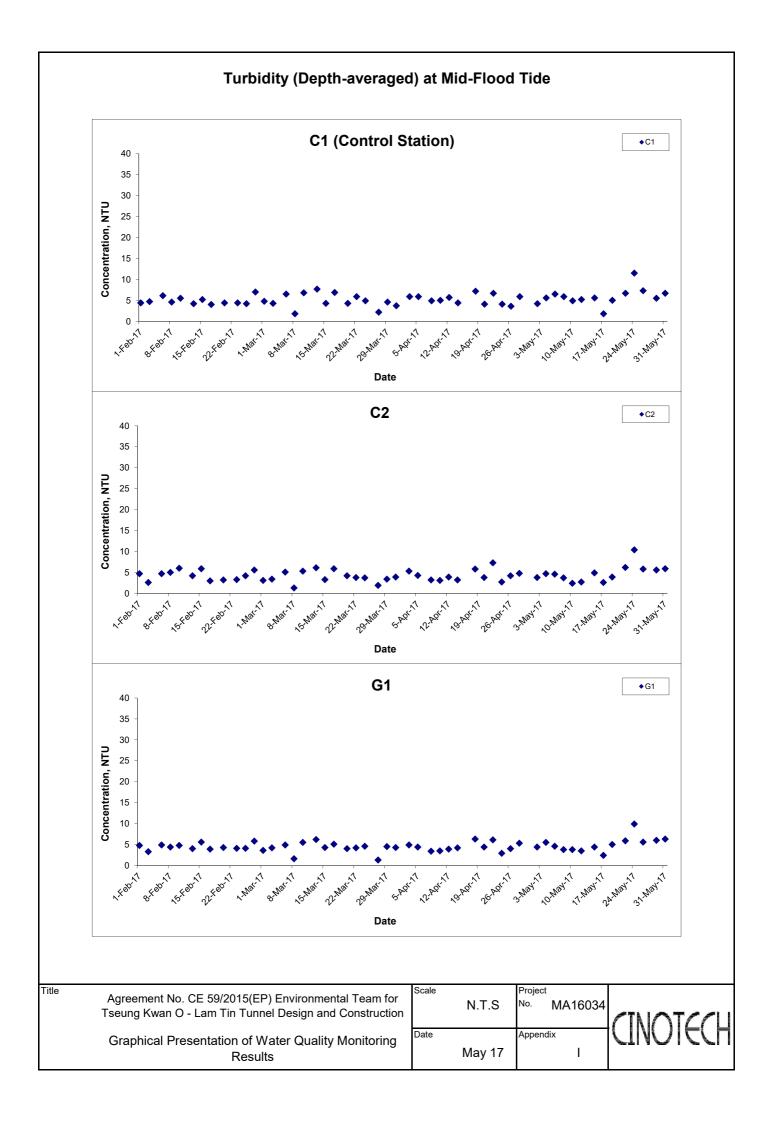
Scale		Projec	Project		
	N.T.S	No.	MA16034		
Date		Appei	Appendix		
	May 17		1		

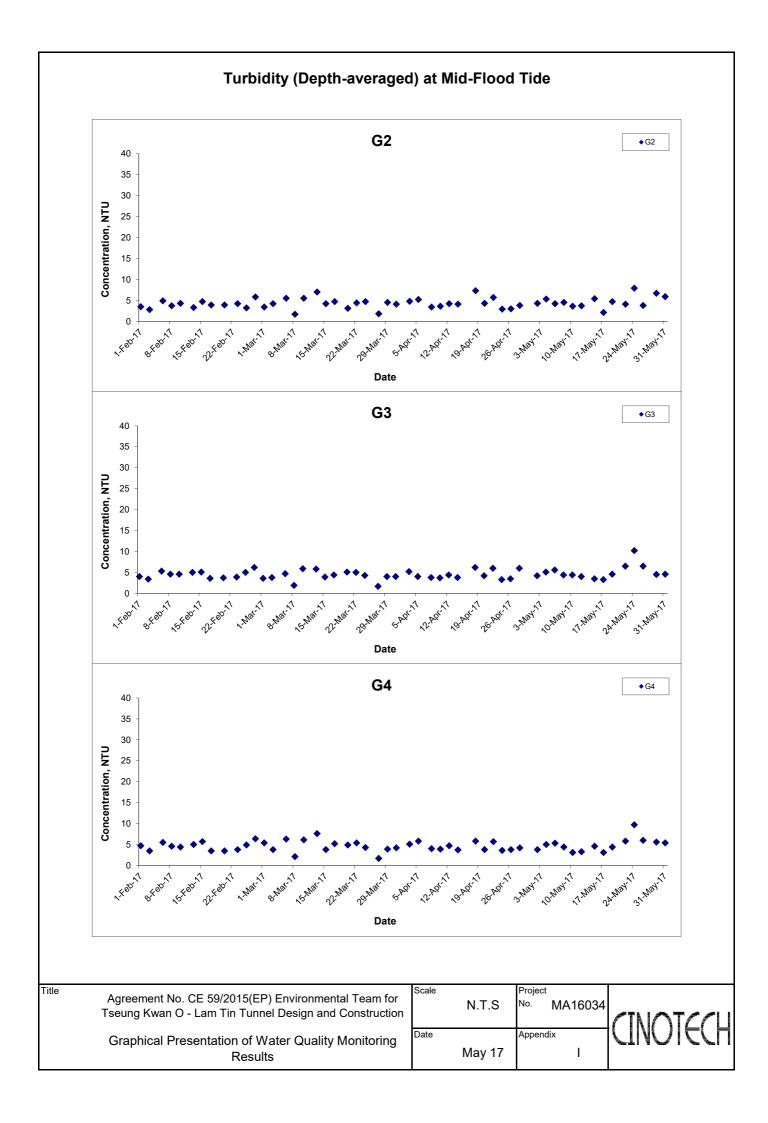


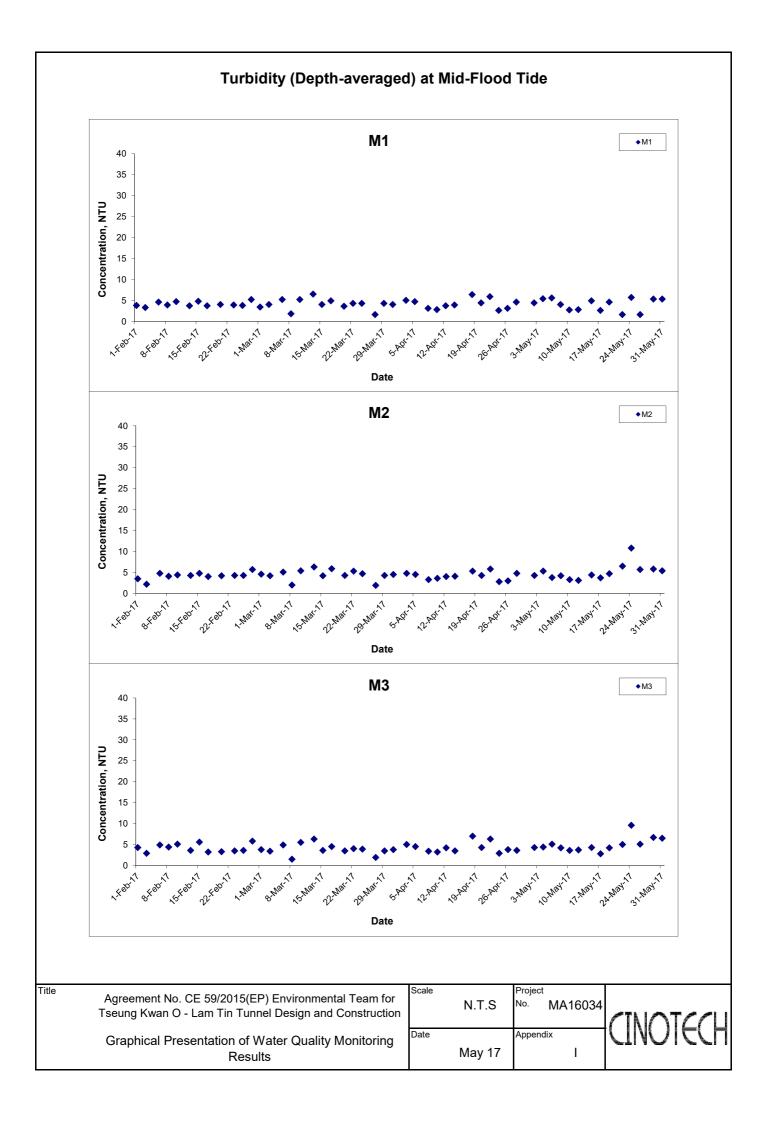
Turbidity (Depth-averaged) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

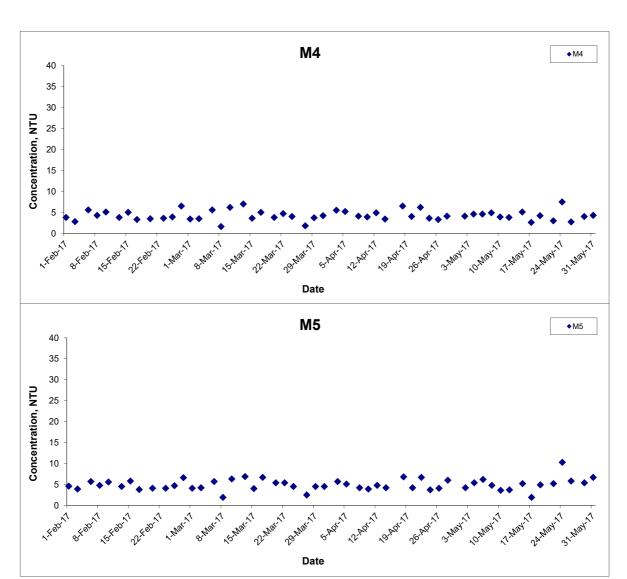
Graphical Presentation of Water Quality Monitoring

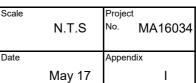

Results

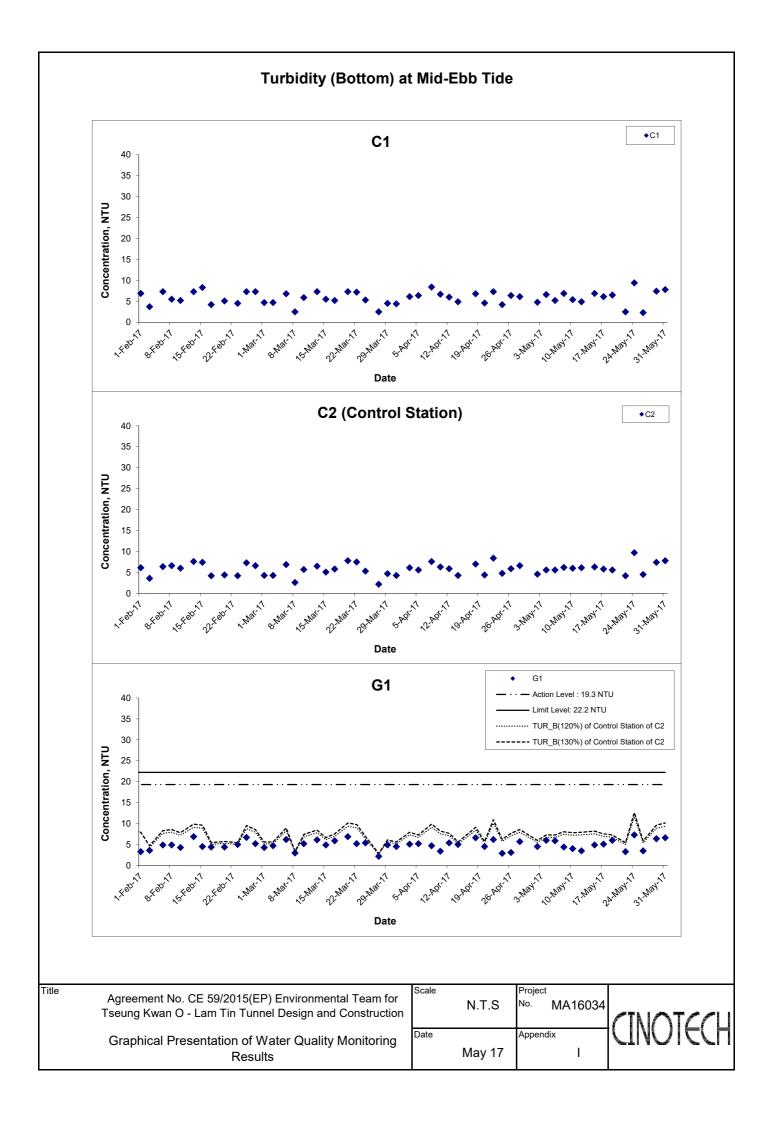

Title


N.T.S Project
No. MA16034

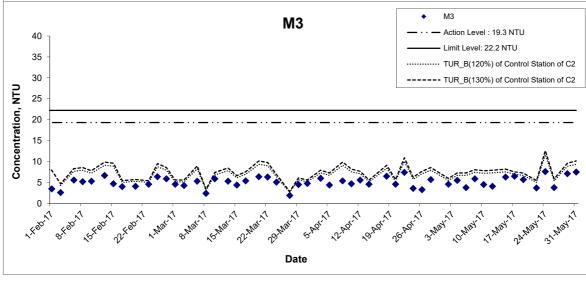
Date Appendix
I



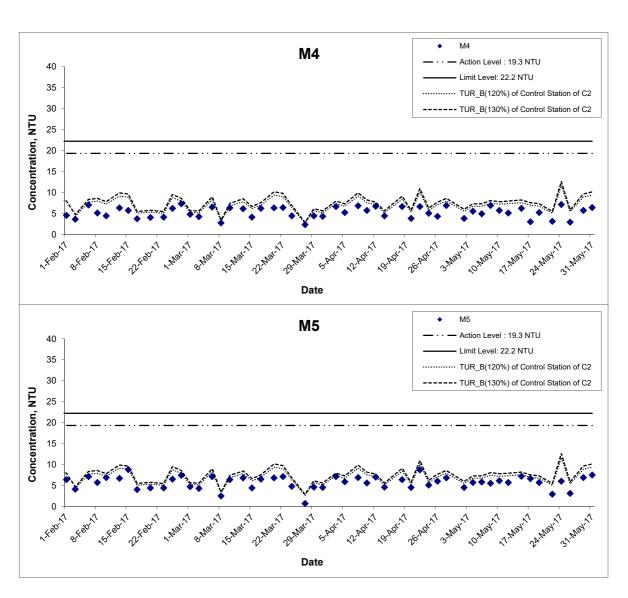



Turbidity (Depth-averaged) at Mid-Flood Tide

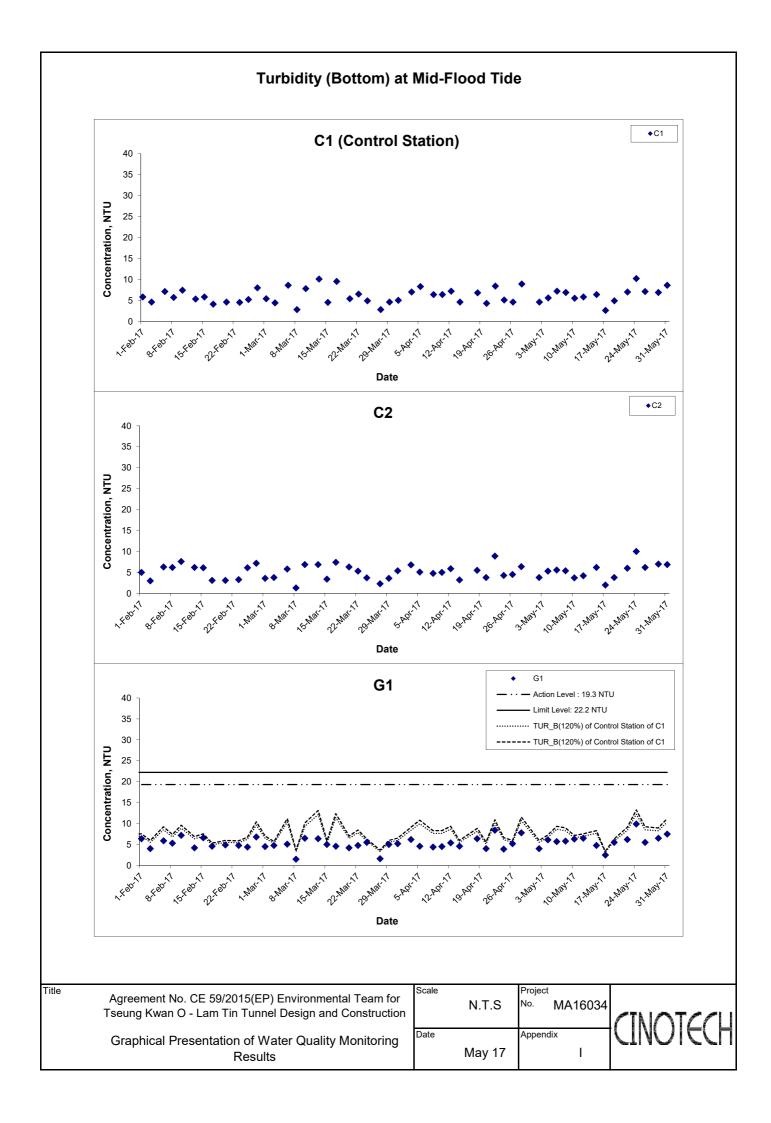
Title
Agreement No. CE 59/2015(EP) Environmental Team for
Tseung Kwan O - Lam Tin Tunnel Design and Construction



Turbidity (Bottom) at Mid-Ebb Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ······ TUR_B(120%) of Control Station of C2 30 - TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ··· TUR_B(120%) of Control Station of C2 30 TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date G4 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 ----- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction

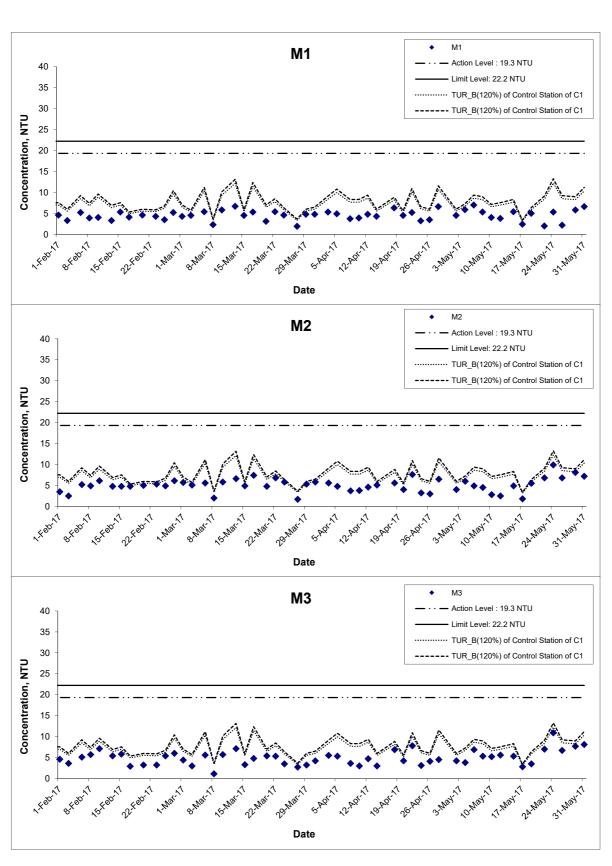

Appendix **Graphical Presentation of Water Quality Monitoring** May 17 I Results

Turbidity (Bottom) at Mid-Ebb Tide **M1** - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 -- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 Date **M2** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date МЗ **M3** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10



Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix Date **Graphical Presentation of Water Quality Monitoring** I May 17 Results

Turbidity (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECL
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CINOICCU

Turbidity (Bottom) at Mid-Flood Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 --- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 Date G3 - Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 -- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 0 Date G4 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 Date

Title	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale		Project No.	MA16034	CINOTCCL
	Graphical Presentation of Water Quality Monitoring Results	Date	May 17	Append	lix 	

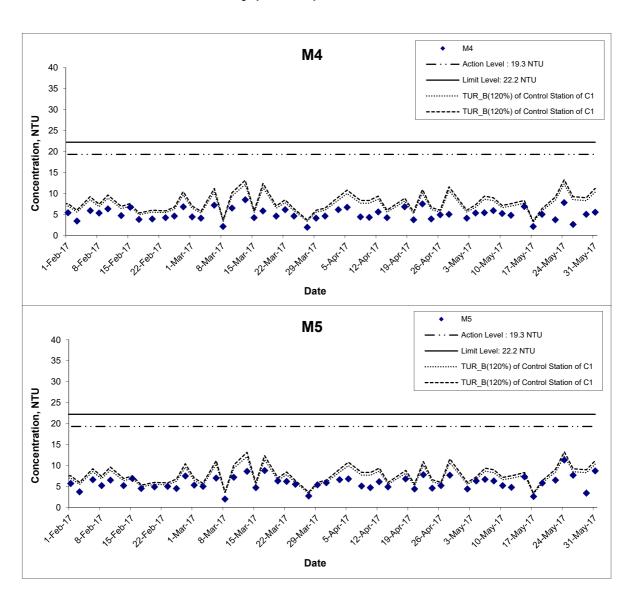
Turbidity (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

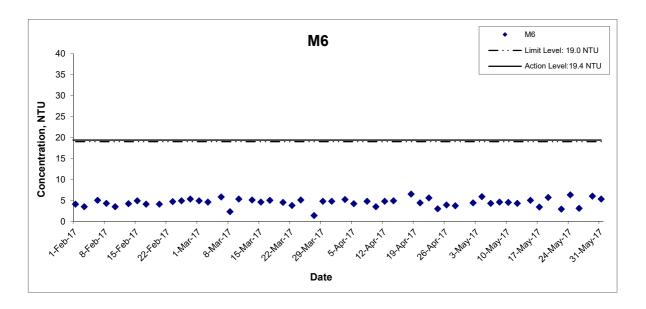
Scale

N.T.S

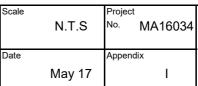

Project
No. MA16034

INT.S

Appendix
May 17

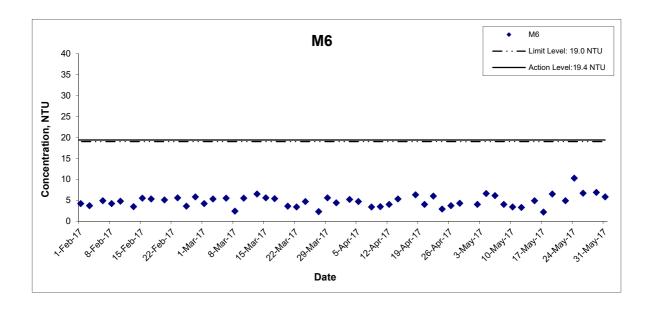

I

Turbidity (Bottom) at Mid-Flood Tide



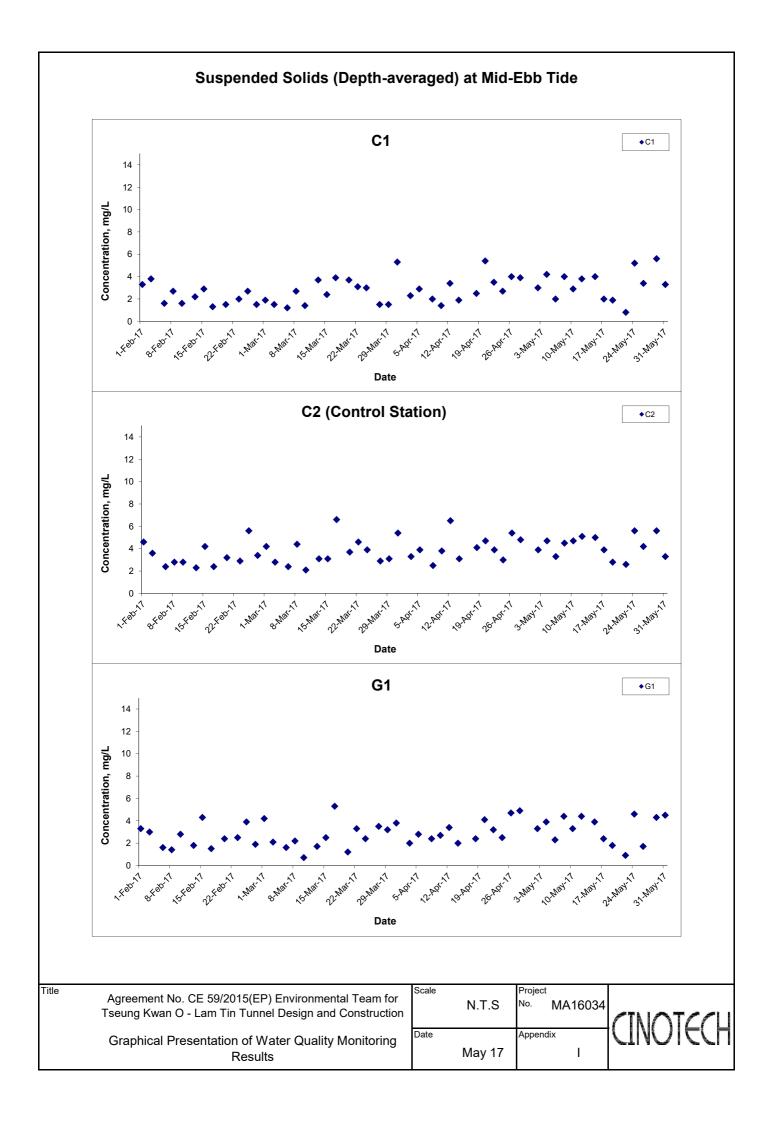
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CTIACLE

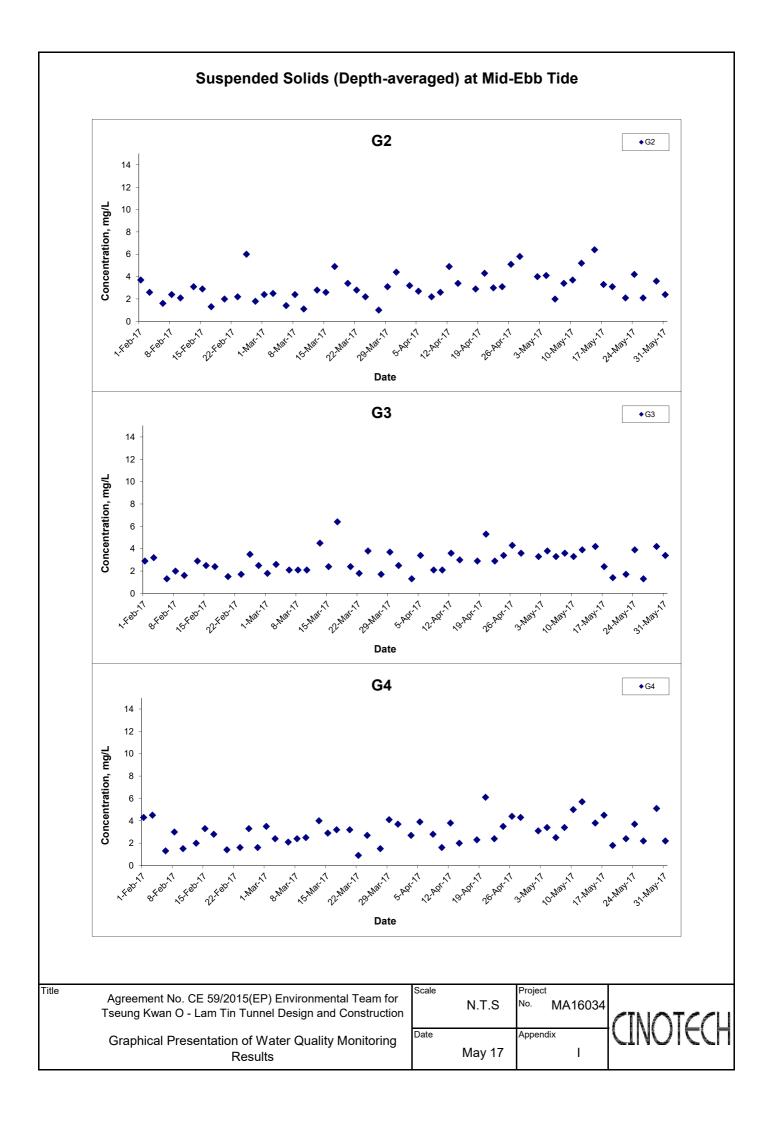
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

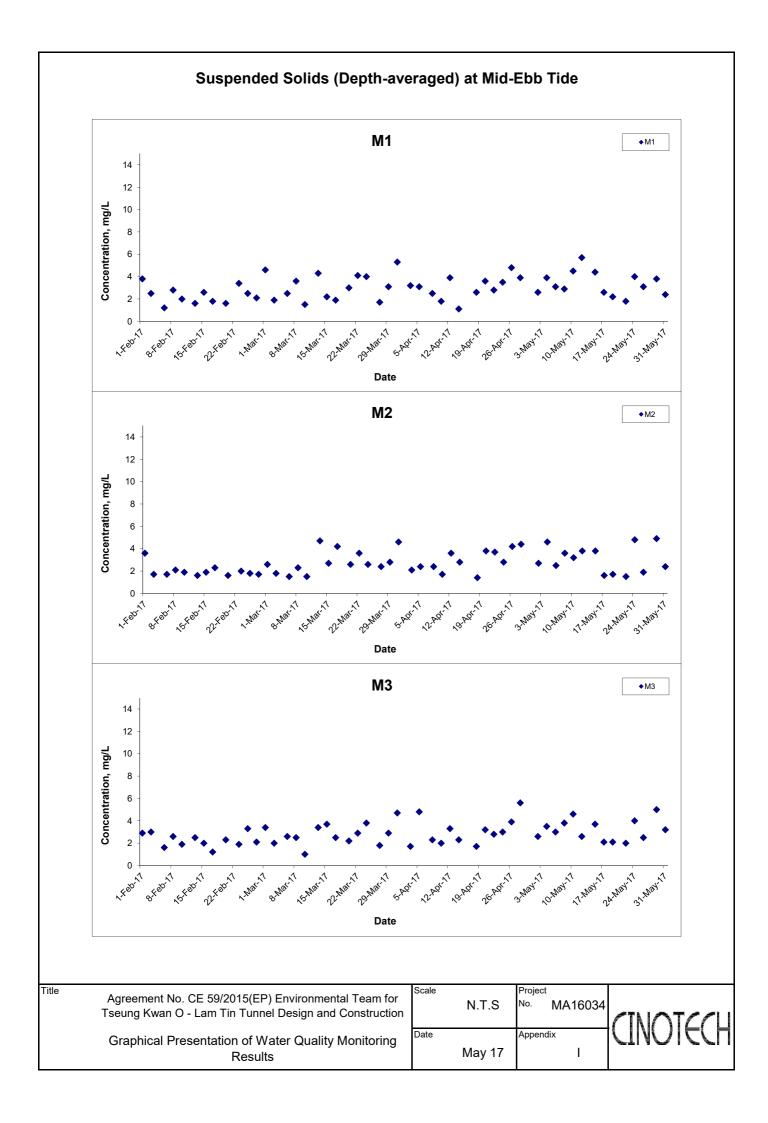


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

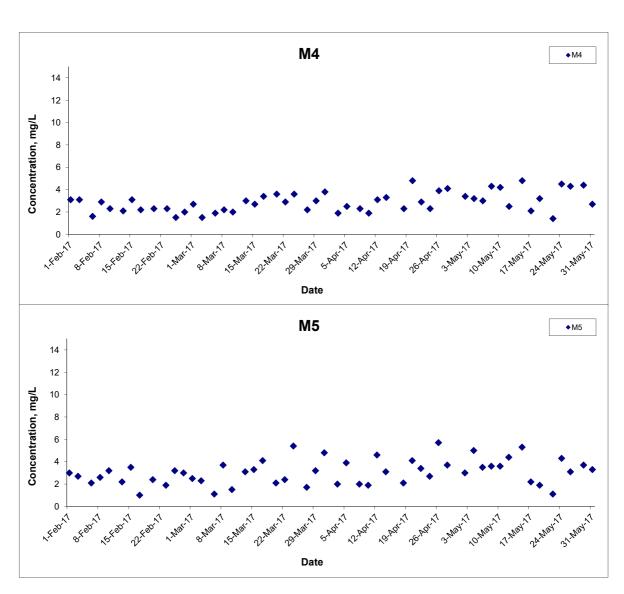
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

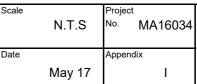


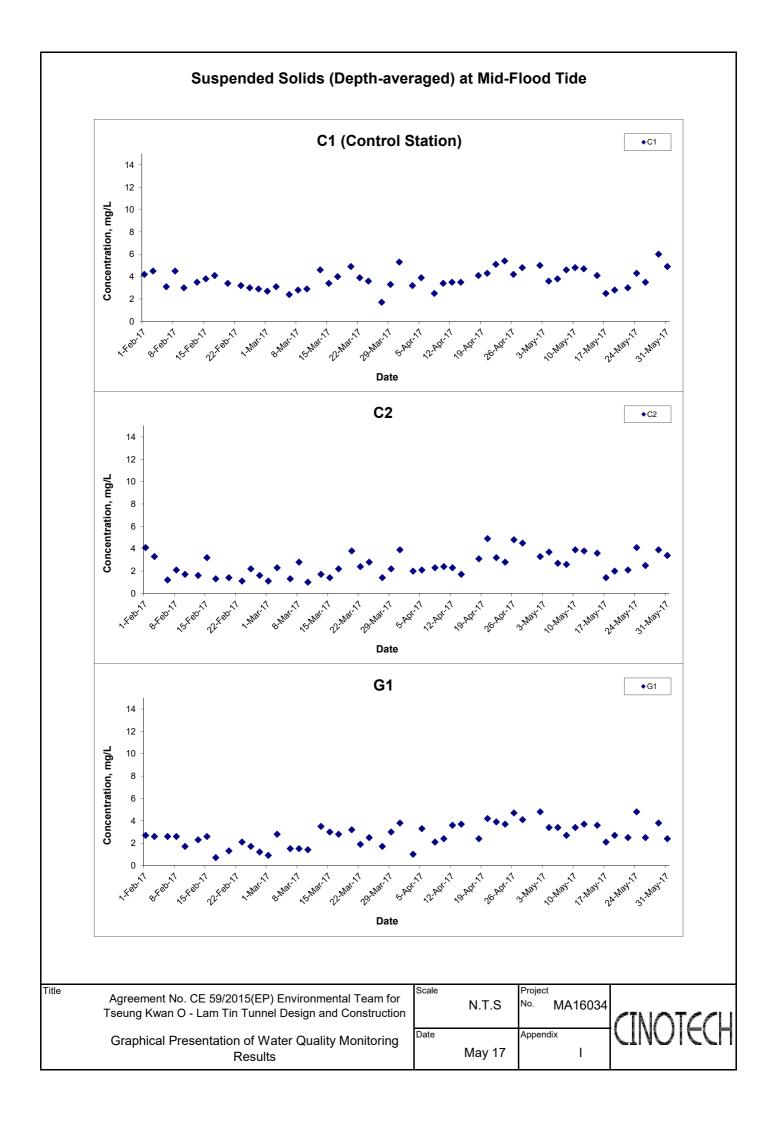

Title

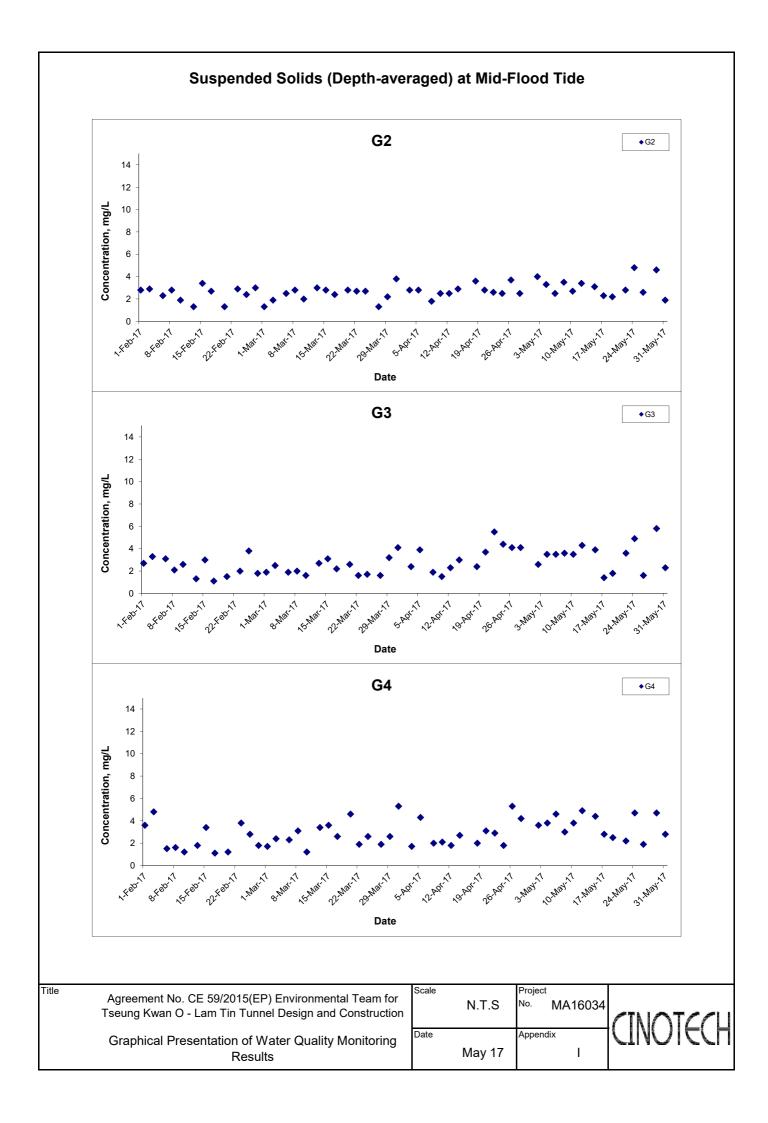

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

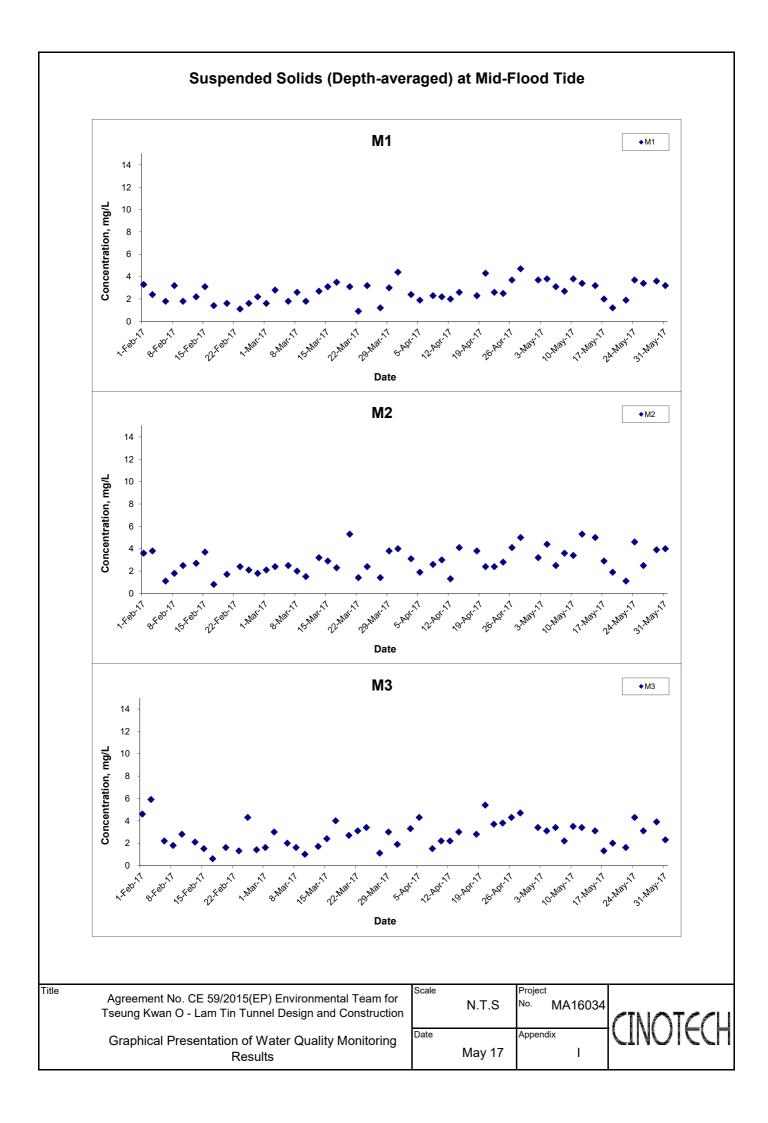
-		•
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	May 17	1

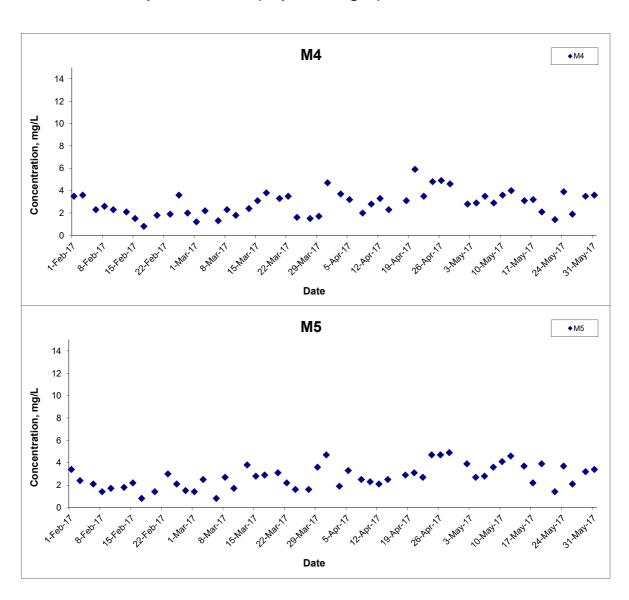


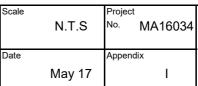



Suspended Solids (Depth-averaged) at Mid-Ebb Tide

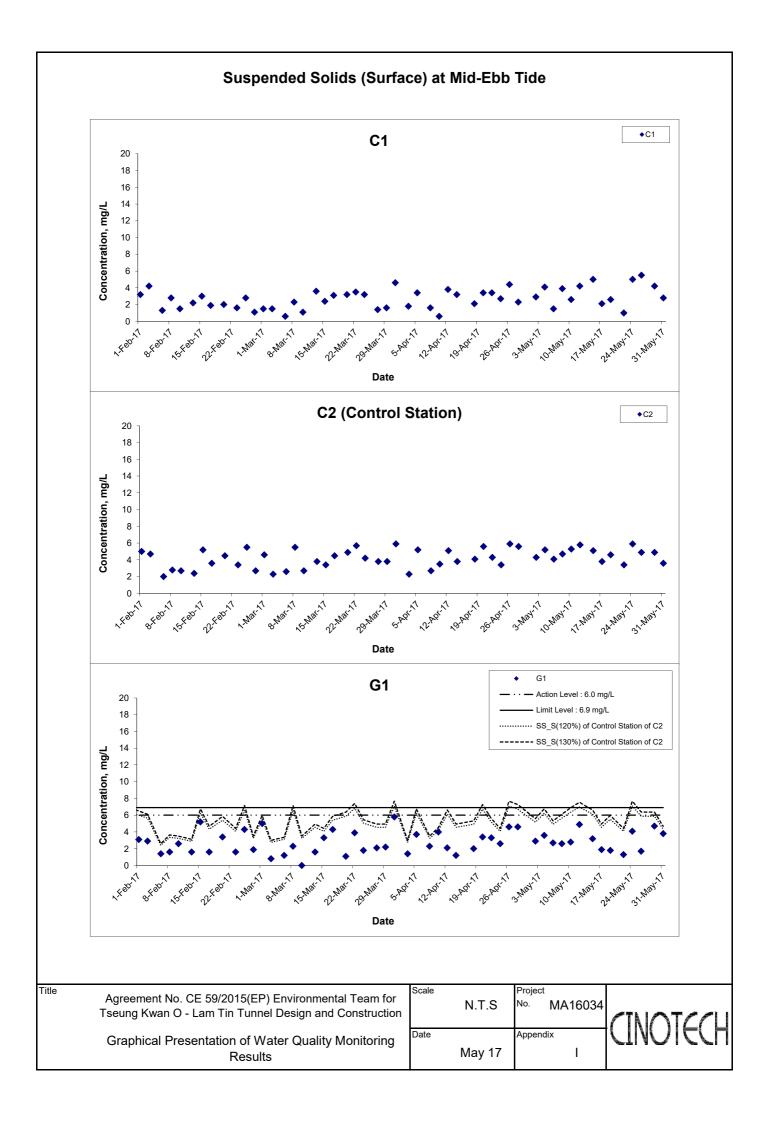



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction



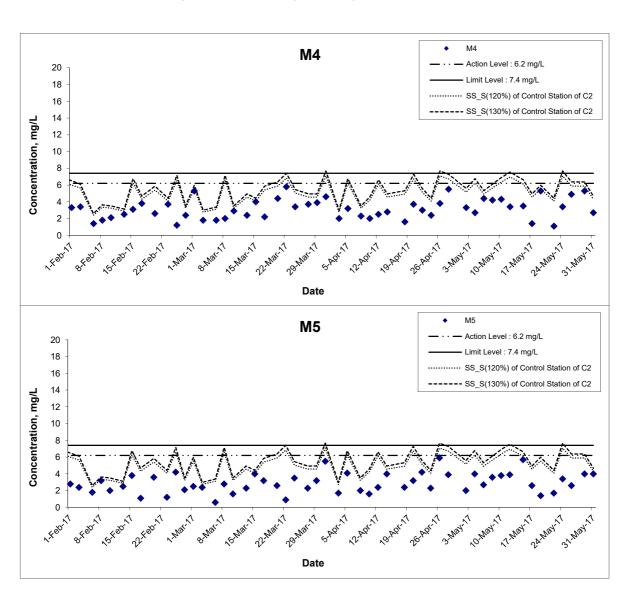


Suspended Solids (Depth-averaged) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results



Suspended Solids (Surface) at Mid-Ebb Tide G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C2 16 ----- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 6 Date G3 - Action Level : 6.0 mg/L 20 · Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date G4 - Action Level : 6.0 mg/L 20 - Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CINOICCU

Suspended Solids (Surface) at Mid-Ebb Tide **M1** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 6 Date М2 **M2** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C2 16 ----- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date МЗ **M3** - Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 0 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I May 17 Results

Suspended Solids (Surface) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTCCL
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CTIACLE

Suspended Solids (Surface) at Mid-Flood Tide C1 (Control Station) **◆**C1 14 12 Concentration, mg/L 10 8 6 2 15 F8 D1 1 Date ◆C2 C2 14 12 Concentration, mg/L 10 8 6 2 0 Date G1 G1 Action Level: 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 -- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L. Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I May 17 Results

Suspended Solids (Surface) at Mid-Flood Tide G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C1 16 ----- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 Date G3 Action Level : 6.0 mg/L 20 Limit Level: 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 Date G4 - Action Level : 6.0 mg/L 20 - Limit Level : 6.9 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CTINOIZCU

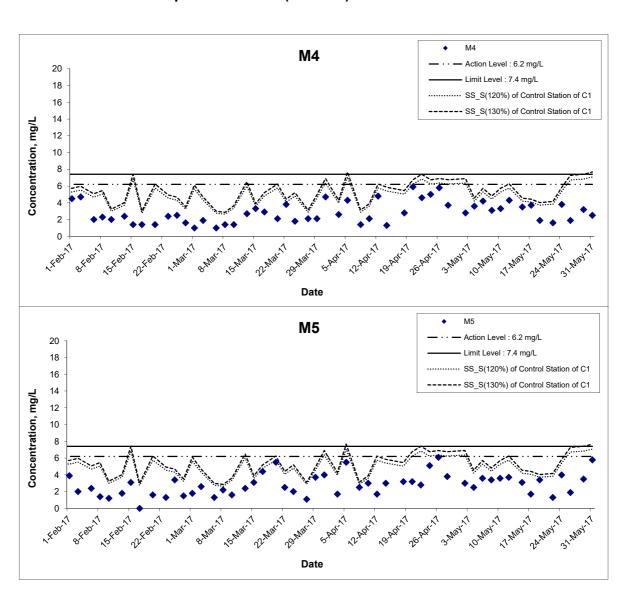
Suspended Solids (Surface) at Mid-Flood Tide M1 **M1** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 · · SS_S(120%) of Control Station of C1 16 --- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 Date М2 **M2** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C1 16 ----- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 Date МЗ **M3** - Action Level : 6.2 mg/L 20 - Limit Level : 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 0 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L. Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

Project
No. MA16034


Date

May 17

Appendix

I

Suspended Solids (Surface) at Mid-Flood Tide

ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

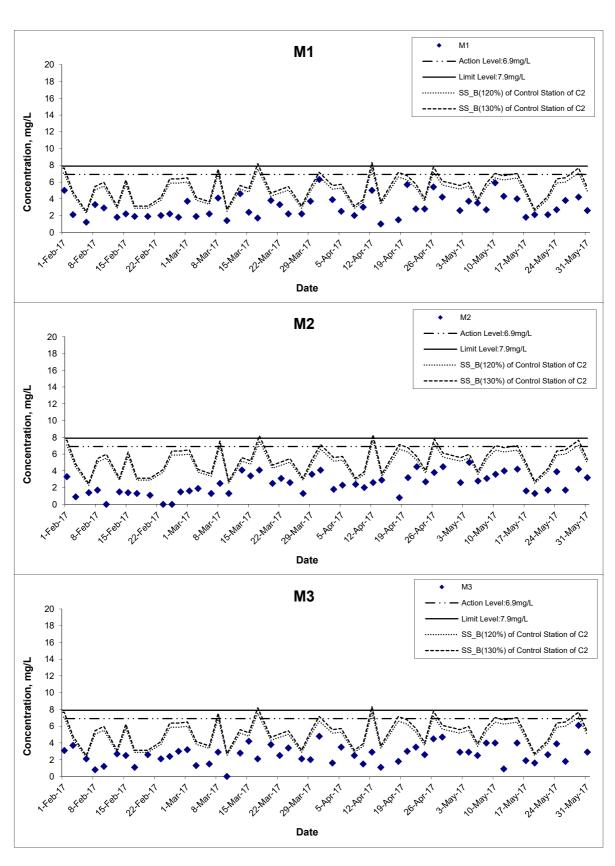
Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S

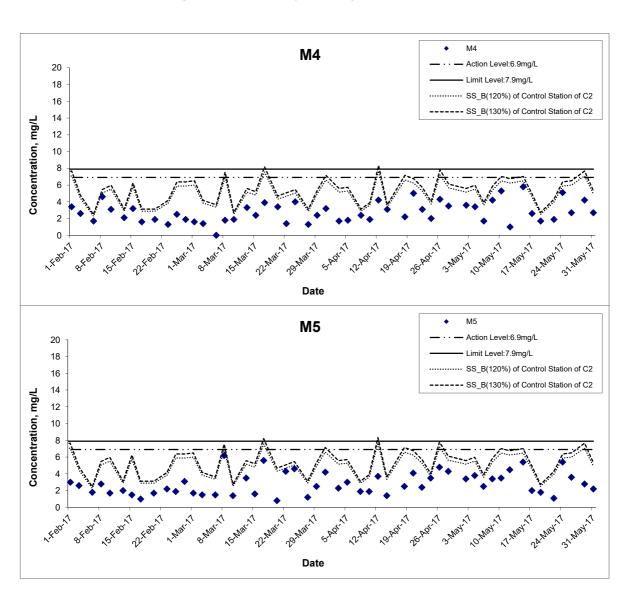
Project
No. MA16034

Date


May 17

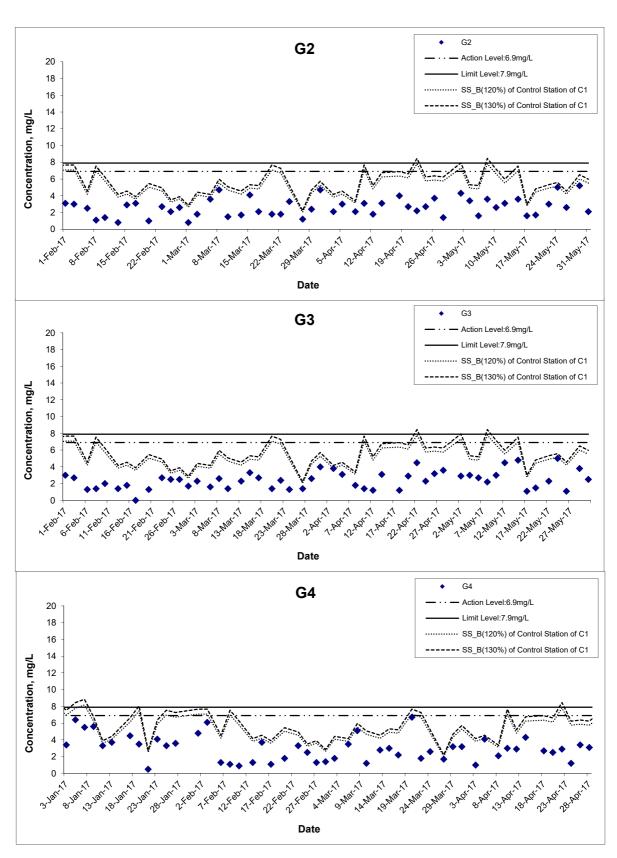
I

Suspended Solids (Bottom) at Mid-Ebb Tide **◆**C1 **C1** 20 18 16 14 Concentration, mg/L 12 10 8 6 Date ◆C2 C2 (Control Station) 14 12 10 Concentration, mg/L 6 0 Date G1 Action Level:6.9mg/L 20 18 SS B(120%) of Control Station of C2 16 --- SS_B(130%) of Control Station of C2 Concentration, mg/L 12 10 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L. Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I May 17 Results


Suspended Solids (Bottom) at Mid-Ebb Tide G2 G2 20 · · - Action Level:6.9mg/L Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C2 16 ---- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 Date G3 · · - Action Level:6.9mg/L 20 - Limit Level:7.9mg/L 18 ···· SS_B(120%) of Control Station of C2 16 --- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date G4 20 Action Level:6.9mg/L Limit Level:7.9mg/L 18 ······ SS_B(120%) of Control Station of C2 16 --- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 Date ReMayks: The graphical point at zero concentration is presented as <2.5mg/L. Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I May 17 Results

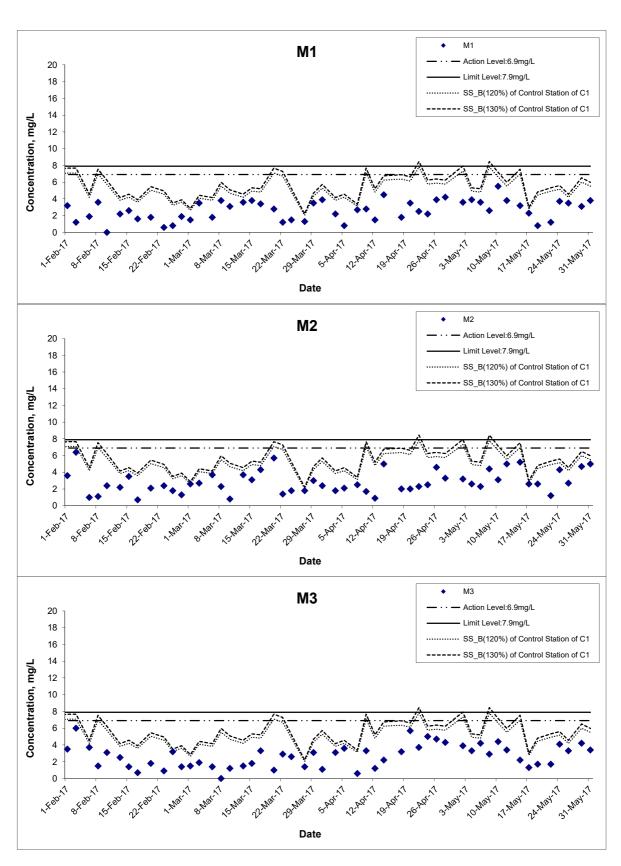
Suspended Solids (Bottom) at Mid-Ebb Tide

ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.


Suspended Solids (Bottom) at Mid-Ebb Tide

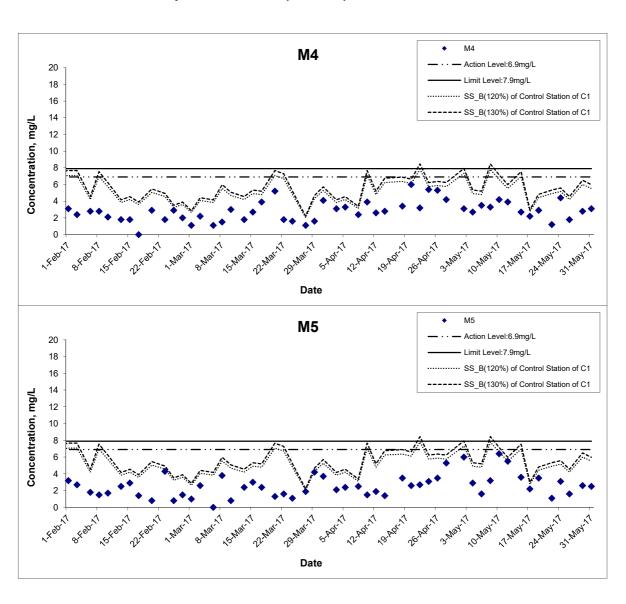
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CINOICCU

Suspended Solids (Bottom) at Mid-Flood Tide C1 (Control Station) **◆**C1 14 12 Concentration, mg/L 10 8 6 2 15 F8 D1 1 Date C2 C2 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 · · · SS B(120%) of Control Station of C1 16 -- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 Date G1 G1 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 ···· SS_B(120%) of Control Station of C1 16 -- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** May 17 I Results


Suspended Solids (Bottom) at Mid-Flood Tide

ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NITS	Project No. MA16034	CINOTCCLI
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CINOICCU


Suspended Solids (Bottom) at Mid-Flood Tide

ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date May 17	Appendix	CINOIZCU

Suspended Solids (Bottom) at Mid-Flood Tide

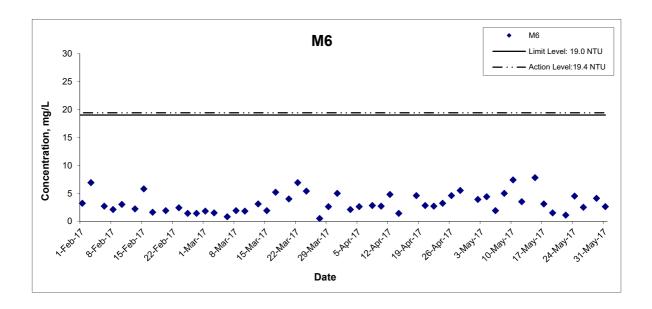
ReMayks: The graphical point at zero concentration is presented as <2.5mg/L.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale

N.T.S


Project
No. MA16034

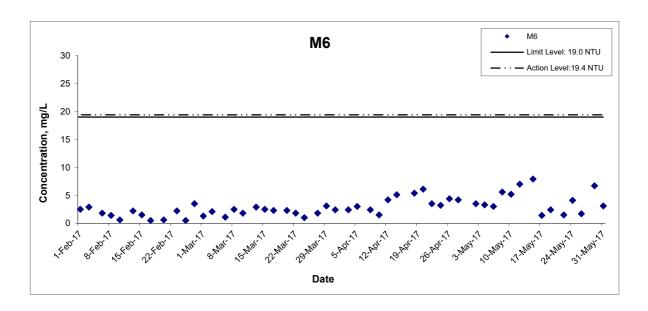
Date

May 17

I

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

Title


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

		_
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	May 17	1

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	May 17		1

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.: Date of Issue: QC26913-V1 2017-06-14

Date Received:

2017-05-11

Date Tested:
Date Completed:

2017-05-11 2017-05-22

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	< 0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	< 0.01

Method QC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	97	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	176	170-220
Total Organic Carbon (%)	100	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	100	80-120
Total Phosphorus (%)	97	80-120

Remarks: 1) < = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 26913.
- 4) This report supersedes the one dated 2017-05-22 with certificate number QC26913

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TINKY TING

Senior Chemist

Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26913-V1

 Date of Issue:
 2017-06-14

 Date Received:
 2017-05-11

 Date Tested:
 2017-05-11

 Date Completed:
 2017-05-22

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26913-3 chk	Acceptance
Suspended Solids (SS) (%)	N/A	RPD <u><</u> 20%
Biochemical Oxygen Demand (%)	N/A	RPD <u><</u> 20%
Total Organic Carbon (%)	3	RPD <u><</u> 20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	0	RPD≤20%
Total Phosphorus (%)	N/A	RPD <u><</u> 20%

Sample Spike

Bumple Spike		· ·
Parameter	26913-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	107	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	109	80-120
Total Phosphorus (%)	103	80-120

Remarks: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 26913.
- 4) This report supersedes the one dated 2017-05-22 with certificate number QC26913

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.: Date of Issue: QC26955 2017-06-01

Date Received:

2017-05-23 2017-05-23

Date Tested: Date Completed:

2017-06-01

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH3-N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	< 0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	102	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	173	170-220
Total Organic Carbon (%)	107	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	109	80-120
Total Phosphorus (%)	104	80-120

Remarks: 1) \leq = less than

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26955.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC26955

 Date of Issue:
 2017-06-01

 Date Received:
 2017-05-23

 Date Tested:
 2017-05-23

 Date Completed:
 2017-06-01

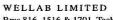
Page:

2 of 2

QC report:

Sample Duplicate

Parameter	26955-3 chk	Acceptance
Suspended Solids (SS) (%)	N/A	RPD <u><</u> 20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	3	RPD <u>≤</u> 20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD <u><</u> 20%
Total Phosphorus (%)	N/A	RPD≤20%


Sample Spike

Sample Spine		
Parameter	26955-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	112	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	88	80-120
Total Phosphorus (%)	107	80-120

Remarks: $1) \le less than$

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 26955.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26872

Date of Issue: 4/5/2017 Date Received: 2/5/2017

Date Tested: 2/5/2017

Date Completed: 4/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

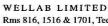
Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 2/5/2017

Number of Sample: 136


Custody No.: MA16034-CE/59/2015(EP)/170502

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3.3	3.4	4	99

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26879

Date of Issue: 5/5/2017 Date Received: 4/5/2017

Date Tested: 4/5/2017

Date Completed: 5/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 4/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170504

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	2.6	2.6	1	103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26890 Date of Issue: 8/5/2017

Date Received: 6/5/2017

Date Tested: 6/5/2017 Date Completed: 8/5/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

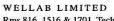
Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.: MA16034 Sampling Date: 6/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170506



Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.3	4.2	3	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26891

Date of Issue: 9/5/2017 Date Received: 8/5/2017

Date Tested: 6/5/2017 Date Completed: 9/5/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.: MA16034 Sampling Date: 8/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170508

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.1	4.3	4	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26899 Date of Issue: 11/5/2017

Date Received: 10/5/2017

Date Tested: 10/5/2017 Date Completed: 11/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 10/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170510

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.4	4.2	5	99

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26908

Date of Issue: 15/5/2017 Date Received: 12/5/2017

Date Tested: 12/5/2017 Date Completed: 15/5/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.: MA16034 Sampling Date: 12/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170512

ı	Total Suspended Solids	Duplicate Analysis			QC Recovery, %
ı	Sampling Point	Trial 1,	Trial 2,	Difference,	
		mg/L	mg/L	%	
ı	M4se	3.4	3.1	10	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26917 Date of Issue: 16/5/2017 Date Received: 15/5/2017

Date Tested: 15/5/2017

Date Completed: 16/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 15/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170515

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3.5	3.3	5	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26930

Date of Issue: 18/5/2017 Date Received: 17/5/2017

Date Tested: 17/5/2017

Date Completed: 18/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 17/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170517

	Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Γ	Sampling Point	Trial 1,	Trial 2,	Difference,	
		mg/L	mg/L	%	
ſ	M4be	2.6	2.6	1	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26938

Date of Issue: 23/5/2017 Date Received: 19/5/2017

Date Tested: 19/5/2017 Date Completed: 23/5/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

Custody No.:

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.: MA16034 Sampling Date: 19/5/2017

Number of Sample: 136

MA16034-CE/59/2015(EP)/170519

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.2	5.4	3	102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26943

Date of Issue: 23/5/2017 Date Received: 22/5/2017

Date Tested: 22/5/2017

Date Completed: 23/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034

Sampling Date: 22/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170522

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
C2se	3.4	3.5	1	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26951

Date of Issue: 25/5/2017 Date Received: 24/5/2017

Date Tested: 24/5/2017

Date Tested: 24/3/2017

Date Completed: 25/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034 Sampling Date: 24/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170524

ľ	Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Ī	Sampling Point	Trial 1,	Trial 2,	Difference,	
I		mg/L	mg/L	%	
I	M4se	3.4	3.4	1	104

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26961

Date of Issue: 29/5/2017 Date Received: 26/5/2017

Date Tested: 26/5/2017 Date Completed: 29/5/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.: MA16034

Sampling Date: 26/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170526

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.0	4.8	5	101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26969

Date of Issue: 31/5/2017 Date Received: 29/5/2017

Date Tested: 29/5/2017

Date Tested: 29/5/2017

Date Completed: 31/5/2017

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Page:

Project No.: MA16034

Sampling Date: 29/5/2017

Number of Sample: 136

Custody No.: MA16034-CE/59/2015(EP)/170529

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.1	4.9	4	105

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 26974

Date of Issue: 1/6/2017 Date Received: 31/5/2017

Date Tested: 31/5/2017 Date Completed: 1/6/2017

Page: 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

31/5/2017

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170531

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	2.7	2.7	1	102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

APPENDIX K SUMMARY OF EXCEEDANCE

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

Reporting Period: May 2017

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (Nine Action Level exceedance was recorded due to the documented complaints received in the reporting month)
- (C) Exceedance Report for Water Quality (NIL in the reporting month)
- (D) Exceedance Report for Ecology (NIL in the reporting month)
- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas (NIL in the reporting month)\

APPENDIX L SITE AUDIT SUMMARY

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170502
Date	2 May 2017 (Tuesday)
Time	08:45 – 10:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
150500 001	B. Water Quality	77.40
170502-O01	Stagnant water should be cleared at TKO site.	B12
	C. Ecology	
	No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual	
	No environmental deficiency was identified during site inspection.	
	E. Air Quality	
	No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact	
170502-O02	Mitigation measure for noise emission of the drill rig at CKL site should be applied where neccessary.	F2,7
	G. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	H. Permits/Licences	İ
	No environmental deficiency was identified during site inspection	
	I. Impact on Cultural Heritage	
	No environmental deficiency was identified during site inspection	Light
	J. Others	***************************************
	• Follow-up on previous audit sessions (Ref. No.: 170419 and 170426), follow up action	***************************************
	for item ref no. 170419-R02 and 170419-R03 is needed to be reviewed during the next site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	W-	2 May 2017
hecked by	Dr. Priscilla Choy	WIA	2 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170510
Date	10 May 2017 (Wednesday)
Time	09:00 - 10:45

Ref. No.	Non-Compliance	Related Item No.
₩	None identified	_

Ref. No.	Remarks/Observations	Related Item No.
170510-R04	 B. Water Quality To repair silt curtain for marine works in TKO to ensure that geotextile is extended to seabed. 	B 28
	C. Ecology • No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
170510-R03 170510-R05	 E. Air Quality To provide adequate water spray to drilling works in Portion 4c to avoid dust generation. To cover stockpile of sand in TKO to avoid dust generation. 	E 5 E 6
170510-O01 170510-R02	 F. Construction Noise Impact Noise mitigation measure are not observed for drill rig in Portion 3. The Contractor is reminded to provide temporary noise barrier according to the updated NMP. To provide adequate noise barrier to drilling works and to repair the existing noise barrier to avoid gaps in Portion 4c. 	F 11 F 5
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	H. Permits/Licences No environmental deficiency was identified during site inspection	
	I. Impact on Cultural Heritage • No environmental deficiency was identified during site inspection	
	 J. Others Follow-up on previous audit sessions (Ref. No.: 170502), follow up action for item ref no. 170502-O02 is needed to be reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung	12	10 May 2017
hecked by	Dr. Priscilla Choy	W.	10 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170517
Date	17 May 2017 (Wednesday)
Time	09:00 – 10:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170517-R01 170517-R02 170517-R03	 B. Water Quality To repair the silt curtain in TKO that geotextile should be extended to seabed. To repair the holes at bottom of compartment of sedimentation tank in TKO. To remove the mud accumulated in U-channel near discharge point in TKO. 	B 28 B 6i B 7
	C. Ecology • No environmental deficiency was identified during site inspection. D. Landscape & Visual	
	 No environmental deficiency was identified during site inspection. E. Air Quality No environmental deficiency was identified during site inspection. 	
170517-R04 170517-R05	 F. Construction Noise Impact To repair the gaps of temporary noise barrier for drill rig in Portion 3. To repair the temporary noise enclosure for breaker in Portion 3. 	F7 F7
	 G. Waste / Chemical Management No environmental deficiency was identified during site inspection. 	
	H. Permits/Licences No environmental deficiency was identified during site inspection	
	I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection	
	 J. Others Follow-up on previous audit sessions (Ref. No.: 170510), follow up action for item ref no. 170510-R04 is needed to be reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung		17 May 2017
Checked by	Dr. Priscilla Choy	W.	17 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	170524
Date	24 May 2017 (Wednesday)
Time	09:00 – 10:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170524-O01	 B. Water Quality Muddy water observed near marine works in Tseung Kwan O. The Contractor is reminded to regularly maintain silt curtain on-site and ensure that geotextile is extended to seabed. 	B 28
170524-O02	Overflow of muddy water observed from sedimentation tank in Tseung Kwan O under Red Rainstorm Warning Signal. The Contractor is reminded to ensure that the tank is of adequate capacity for wastewater treatment.	B 6ii, 6iii
	C. Ecology No environmental deficiency was identified during site inspection.	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
	E. Air Quality No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	H. Permits/Licences No environmental deficiency was identified during site inspection	
	I. Impact on Cultural Heritage • No environmental deficiency was identified during site inspection	
	 J. Others Follow-up on previous audit sessions (Ref. No.: 170517), follow up action for item ref no. 170517-R01 and 170517-R02 is needed to be reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung		24 May 2017
Checked by	Dr. Priscilla Choy	MI	24 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/01

Tseung Kwan O-Lam Tin Tunnel-Main Tunnel and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170531	
Date	31 May 2017 (Wednesday)	
Time	08:45 – 10:45	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Ref. No. Remarks/Observations	
	B. Water Quality No environmental deficiency was identified during site inspection.	
	 C. Ecology No environmental deficiency was identified during site inspection. 	770000
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	market Ma
170531-R01	 E. Air Quality Dry unpaved area was observed. Contractor was advised to provide spraying regularly. 	E 5
	 F. Construction Noise Impact No environmental deficiency was identified during site inspection. 	Total such
170531-R02	G. Waste / Chemical Management Oil containers should be provided with drip tray. (Barging Point)	G 10
	H. Permits/Licences No environmental deficiency was identified during site inspection	
	I. Impact on Cultural Heritage No environmental deficiency was identified during site inspection	
	 J. Others Follow-up on previous audit sessions (Ref. No.: 170524), all identified environmental deficiency was observed improved/rectified by the Contractor. 	

	Name	Şignature	Date
Recorded by	Johnny Fung	12	31 May 2017
Checked by	Dr. Priscilla Choy	NI	31 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170504
Date	4 May 2017 (Thursday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
170504-R01	To repair the holes near the discharge point in Area A.	B 21
170504-R02	To replace the broken sand bags near the gullies in Portion 1.	B 20
***************************************	C. Ecology	
	No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual	·
	No environmental deficiency was identified during site inspection.	
	• No environmental deficiency was identified during site hispection.	
	E. Air Quality	
	No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact	
	No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	H. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	I. Others	
	Follow-up on previous audit section (Ref. No.: 170426), follow up action is needed to be	
	reviewed for item no. 170426-R01.	

	Name	Signature	Date
Recorded by	Johnny Fung		4 May 2017
Checked by	Dr. Priscilla Choy	NI	4 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170511
Date	11 May 2017 (Thursday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170511-R01 170511-R03 170511-R04	 B. Water Quality To remove muddy water / sediment accumulated in catchpits / U-channels in Area A. To replace broken sand bags deployed for gullies in Portion 1. To provide bunds to holes near discharge point in Area A. 	B 7 B 20 B 21
	C. Ecology • No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
170511-R02	E. Air Quality To cover stockpiles of dusty material in Area A after works.	E 6
	F. Construction Noise Impact No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	 I. Others Follow-up on previous audit section (Ref. No.: 170504), follow up action for item ref no. 170504-R01 and 170504-R02 is needed to be reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung		11 May 2017
Checked by	Dr. Priscilla Choy	WI	11 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary

Checklist Reference Number	170516
Date	16 May 2017 (Tuesday)
Time	9:00-10:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	~

Ref. No.	Remarks/Observations	Related Item No.
170516-O01 170516-O02	 B. Water Quality To remove muddy water / sediment accumulated in catchpits / U-channels in Area A. Silt and sedimets observed at footing of hoarding at Portion SR2B. The Contractor is reminded of remove the silt and sediment to avoid wastewater flow out of site. 	В 7 В 20
	C. Ecology • No environmental deficiency was identified during site inspection.	
	D. Landscape & Visual No environmental deficiency was identified during site inspection.	
	E. Air Quality No environmental deficiency was identified during site inspection.	
	F. Construction Noise Impact • No environmental deficiency was identified during site inspection.	
170516-R03	G. Waste / Chemical Management To remove construction waste accumulated near site office.	G 4ii
	H. Permits/Licences No environmental deficiency was identified during site inspection.	
	 I. Others Follow-up on previous audit section (Ref. No.: 170511), follow up action for item ref no. 170511-R01 is needed to be reviewed during the next site inspection. 	

	Name	Signature	Date
Recorded by	Johnny Fung		16 May 2017
Checked by	Dr. Priscilla Choy	I WI	16 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/02

Tseung Kwan O-Lam Tin Tunnel-Road P2 and Associated Works

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	170525
Date	25 May 2017 (Thursday)
Time	14:00-15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality No environmental deficiency was identified during site inspection.	33.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
	 C. Ecology No environmental deficiency was identified during site inspection. 	
	 D. Landscape & Visual No environmental deficiency was identified during site inspection. 	
-	E. Air QualityNo environmental deficiency was identified during site inspection.	
The second secon	F. Construction Noise Impact • No environmental deficiency was identified during site inspection.	
	G. Waste / Chemical Management No environmental deficiency was identified during site inspection.	
170525-R01	 H. Permits/Licences To display valid Environmental Permit and Construction Noise Permit for marine works area. 	H1,5
	 I. Others Follow-up on previous audit section (Ref. No.: 170516), all identified environmental deficiency was observed improved/rectified by the Contractor 	

	Name	Signature	Date
Recorded by	Johnny Fung		25 May 2017
Checked by	Dr. Priscilla Choy	NIA	25 May 2017

Environmental Team for Tseung Kwan O-Lam Tin Tunnel - Design and Construction

Contract NE/2015/03

Tseung Kwan O-Lam Tin Tunnel-Northern Footbridge

Weekly Site Inspection Record Summary

Checklist Reference Number	170531
Date	31 May 2017 (Wednesday)
Time	14:00 – 14:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
170531-R01	Water Quality Contractor was reminded to place geotextile materials on all the manholes before commencing any construction works.	B 11
	C. Landscape & Visual No environmental deficiency was identified during site inspection.	
	D. Air Quality No environmental deficiency was identified during site inspection.	
170531-O03	E. Construction Noise Impact Contractor was advised to place noise emission label on the air compressor.	E 8
170531-O01 170531-O02	 F. Waste / Chemical Management Contractor was advised to clean oil stains on the paved road. Contractor was advised to clean all muddy silt in the drip tray. 	F 9 F 10
7 7700000000000000000000000000000000000	G. Permits/Licences No environmental deficiency was identified during site inspection	
	H. Others • N/A	

	Name	Signature	Date
Recorded by	Johnny Fung		31 May 2017
Checked by	Dr. Priscilla Choy	KI	31 May 2017

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

DY/DN/D	ACTION						
EVENT	ET	IEC	ER	CONTRACTOR			
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 			
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			

IN ZIONIZO	ACTION							
EVENT	ET	IEC	ER	CONTRACTOR				
	8. If exceedance stops, cease additional monitoring.							
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit level being exceeded by two or more consecutive sampling	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; 				

		ACTION				
EVENT	ET	IEC	ER	CONTRACTOR		
	 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 	remedial measures.	 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is 	4. Resubmit proposals if problem still not under control;5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.		
	 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. 		abated.			

Event and Action Plan for Construction Noise

EVENT				ACT	ION			
		ET		IEC		ER		CONTRACTOR
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose		
	4.	Discuss with the Contractor and		advise the ER accordingly;		remedial measures for the analysed		
		formulate remedial measures;	3.	Supervise the implementation of		noise problem;		
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are		
		check mitigation effectiveness.				properly implemented.		
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as
		implemented;				what portion of the work is		determined by the ER until the
	6.	Inform IEC, ER and EPD the causes				responsible and instruct the		exceedance is abated.
		and actions taken for the				Contractor to stop that portion of		
		exceedances;				work until the exceedance is abated.		

EVENT	ACTION								
	ET	IEC	ER	CONTRACTOR					
	7. Assess effectiveness of Contractor's								
	remedial actions and keep IEC, EPD								
	and ER informed of the results;								
	8. If exceedance stops, cease additional								
	monitoring.								

Event and Action Plan for Marine Water Quality

	Action						
Event	ET	IEC	ER	CONTRACTOR			
Action level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the ER and confirm			
exceeded by one	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in			
sampling day at	collected at the control stations as	Review proposal on mitigation	Make agreement on the mitigation	writing;			
water sensitive	appropriate;	measures submitted by Contractor	proposal.	Rectify unacceptable practice;			
receiver(s)	If exceedance is found to be caused	and advise the ER accordingly;		Check all plant and equipment;			
	by the reclamation activities,	Assess the effectiveness of the		Amend working methods if			
	repeat in-situ measurement to	implemented mitigation measures.		appropriate;			
	confirm findings;			Discuss with ET and IEC and			
	Inform IEC and contractor;			propose mitigation measures to IEC			
	Check monitoring data, all plant,			and ER;			
	equipment and Contractor's working			Implement the agree mitigation			
	methods;			measures.			
	If exceedance occurs at WSD salt						
	water intake, inform WSD;						
	Discuss mitigation measures with						
	IEC and Contractor;						
	Repeat measurement on next day of						
	exceedance.						
Action level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC on the proposed	Inform the Engineer and confirm			
exceeded by two	comparing the results with those	the mitigation measures;	mitigation measures;	notification of the non-compliance in			
or	collected at the control stations as		Make agreement on the mitigation	writing;			
more consecutive	appropriate;		proposal;	Rectify unacceptable practice;			

	Action						
Event	ET	IEC	ER	CONTRACTOR			
sampling days at	If exceedance is found to be caused	Review proposal on mitigation	Assess the effectiveness of the	Check all plant and equipment and			
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working			
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;			
	findings;	Assess the effectiveness of the		Discuss with ET, IEC and ER and			
	Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC			
	Check monitoring data, all plant,			and ER within 3 working days;			
	equipment and Contractor's working			Implement the agreed mitigation			
	methods;			measures.			
	Discuss mitigation measures with						
	IEC and Contractor;						
	Ensure mitigation measures are						
	implemented;						
	Prepare to increase the monitoring						
	frequency to daily;						
	If exceedance occurs at WSD salt						
	water intake, inform WSD;						
	Repeat measurement on next day of						
	exceedance.						
Limit level being	• Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm			
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in			
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;			
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;			
receiver(s)		and advise the ER accordingly;	review the working methods;				

	Action					
Event	ET	IEC	ER	CONTRACTOR		
	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and		
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	repeat in-situ measurement to		Assess the effectiveness of the	methods;		
	confirm findings;		implemented mitigation measures.	Discuss with ET, IEC and ER and		
	Inform IEC, contractor, AFCD and			submit proposal of mitigation		
	EPD			measures to IEC and ER within 3		
	Check monitoring data, all plant,			working days of notification;		
	equipment and Contractor's working			Implement the agreed mitigation		
	methods;			measures.		
	Discuss mitigation measures with					
	IEC, ER and Contractor;					
	Ensure mitigation measures are					
	implemented;					
	Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level;					
	If exceedance occurs at WSD salt					
	water intake, inform WSD.					
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm		
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in		
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;		
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;		
sampling days at		and advise the ER accordingly;	review the working methods;			

Event	ET	IEC	ER	CONTRACTOR		
water sensitive	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and		
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	in-situ measurement to confirm		Assess the effectiveness of the	methods;		
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and		
	• Inform IC(E), AFCD, contractor		Consider and instruct, if necessary,	submit proposal of mitigation		
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3		
	Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;		
	equipment and Contractor's working		until no exceedance of Limit level.	Implement the agreed mitigation		
	methods;			measures;		
	Discuss mitigation measures with			As directed by the Engineer, to		
	IC(E), ER and Contractor;			slow down or to stop all or part of		
	Ensure mitigation measures are			the construction activities.		
	implemented;					
	Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level for two consecutive days;					
	If exceedance occurs at WSD salt					
	water intake, inform WSD.					

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		Increase ventilation to restore carbon dioxide to <
		0.5%

Event and Action Plan for Coral Post-Translocation Monitoring

Event	Action			
	ET Leader	IEC	ER	Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.		
				3. Implement the agreed measures.

Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	The Engineer shall be informed immediately.
	The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	The Contractor shall carry out design review of the works

Action Level

- Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
- The Contractor shall immediately implement the measures defined in the contingency plan
- The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
- The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
- To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
Air Qual	ity Impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	* (1) / #
		dust impact		Work Sites	phase		(1)
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall,	To minimize the	Contractor	Barging	Construction	APCO	N/A
	provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	٨
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close to						* (1) /
	ASRs.						#(1)
	- Side enclosure and covering of any aggregate or dusty material storage piles to reduce						
	emissions. Where this is not practicable owing to frequent usage, watering shall be						٨

May 2017

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty						
	material storage piles near ASRs.						* (2)
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between site						
	locations.						۸
	- Establishment and use of vehicle wheel and body washing facilities at the exit points of						
	the site.						۸
	- Provision of wind shield and dust extraction units or similar dust mitigation measures at						
	the loading area of barging point, and use of water sprinklers at the loading area where						N/A
	dust generation is likely during the loading process of loose material, particularly in dry						
	seasons/ periods.						
	- Provision of not less than 2.4m high hoarding from ground level along site boundary						
	where adjoins a road, streets or other accessible to the public except for a site entrance						۸
	or exit.						
	- Imposition of speed controls for vehicles on site haul roads.						
	- Where possible, routing of vehicles and positioning of construction plant should be at the						٨
	maximum possible distance from ASRs						٨
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be						
	covered entirely by impervious sheeting or placed in an area sheltered on the top and the						٨
	3 sides.						
	- Instigation of an environmental monitoring and auditing program to monitor the						
	construction process in order to enforce controls and modify method of work if dusty						۸
	conditions arise.						

May	2017
-----	------

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	•APCO	
	All vehicles shall be shut down in intermittent use.	pollution emission		construction	stage		٨
	Only well-maintained plant should be operated on-site and plant should be serviced	from construction		sites			٨
	regularly to avoid emission of black smoke.	vehicles and plants					
	All diesel fuelled construction plant within the works areas shall be powered by ultra low						٨
	sulphur diesel fuel (ULSD)						
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	٨
		pollution emission		construction	stage		
		from construction		sites			
		vehicles and plants					
Noise Im	pact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck,	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	N/A
	Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile	construction noise			phase		
	Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance,	impact arising from					
	Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air	the Project at the					
	Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter	affected NSRs					
	Bore Piling, Grout Mixer & Pump and Concrete Pump.						
Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the approved Noise	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	* (3)
Mitigation	Mitigation Plan	construction noise			phase		
Plan		impact arising from					
		the Project at the					
		affected NSRs					

May 2017

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be serviced	construction noise	Proponent		Period		# (13)
	regularly during the construction program	impact arising from					
	- Silencers or mufflers on construction equipment should be utilized and should be properly	the Project at the					۸
	maintained during the construction program.	affected NSRs					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.						۸
	- Machines and plant (such as trucks) that may be in intermittent use should be shut down						۸
	between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						۸
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						۸
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction noise		near school	phase		
		impact arising from					
		the Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m ³ ,	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	with fine content of 25% or less	impacts from filling	Contractors		Phase		
		activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	be adopted for construction of seawall foundation. During the stone column installation (also	impacts from filling	Contractors		Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	including the installation of steel cellular caisson), silt curtain shall be employed around the	activities					
	active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	about 50m for marine access) shall be completed prior to the filling activities. The seawall	impacts from filling	Contractors		Phase		
	opening of about 50m wide for marine access shall be selected at a location as indicatively	activities					
	shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a						
	maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the						
	reclamation area for Road P2. All filling works shall be carried out behind the seawall with						
	the use of single silt curtain at the marine access.						
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction methods as far as	impacts from filling	Contractors		Phase	Waste Disposal	۸
	practically possible including the use of cofferdams to cover the construction area to	activities and				Ordinance (WDO)	
	separate the construction works from the sea;	marine-based					
	- floating single silt curtain shall be employed for all marine works;	construction					* (4)
	- all vessels should be sized so that adequate clearance is maintained between vessels						۸
	and the seabed in all tide conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings to						۸
	prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges before						^
	the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of decks						۸
	being washed by wave action;						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
	3	recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address	incusures:		measures.	achieve?	
	loading of barges and harmore should be controlled to provent enlashing of filling material	addiess				acineve:	^
	- loading of barges and hoppers should be controlled to prevent splashing of filling material						
	into the surrounding water. Barges or hoppers should not be filled to a level that will						
	cause the overflow of materials or polluted water during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated with leaking						۸
	pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						٨
	objectionable matter to be present on the water within the site or dumping grounds; and						
	- before commencement of the reclamation works, the holder of Environmental Permit has						٨
	to submit plans showing the phased construction of the reclamation, design and						
	operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from filling	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	activities and				WPCO	
		marine based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for Reclamation	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary barrier shall	dredging and filling				WPCO	٨
	first be constructed to a height above the high water mark to completely enclose the	works for					
	works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site	Road P2					٨
	shall not be removed before completion of all dredging and underwater filling works.						
	Water quality sampling and testing shall be carried out to demonstrate that the water						N/A
				1		1	<u> </u>

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	quality inside the enclosed barrier is comparable to the ambient or baseline levels prior						
	to the removal of the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier						۸
	and at the double water gates marine access opening during its operation. The general						
	of arrangement of silt curtain is shown in Figure 7 of the existing Environmental Permit						
	(No. EP-458/2013/C).						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (5)
	prevent high loading of SS from entering the marine environment. Proper site management is	impacts from	Contractors		Phase	1/94, EIAOTM,	
	essential to minimise surface water runoff, soil erosion and sewage effluents.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	٨
]	engineering and environmental requirements in order to ensure adequate hydraulic capacity of	impacts from	Contractors		and	1/94, EIAOTM,	
	all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management	construction site				WPCO, TM-DSS	
	practices, as detailed in below, should be implemented to ensure that all construction runoff	runoff and land-					
	complies with WPCO standards and no unacceptable impact on the WSRs arises due to	based construction					
	construction of the TKO-LT Tunnel. All discharges from the construction site should be						
1	controlled to comply with the standards for effluents discharged into the corresponding WCZ						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated with the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	above ground construction activities can be readily controlled through the use of appropriate	construction site				WPCO	
	mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based construction					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.						٨
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (6)
	pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be marked and surrounded by dykes or embankments for flood protection. Temporary	construction site				WPCO	
	ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via	runoff and land-					
	a silt retention pond. Permanent drainage channels should incorporate sediment basins or	based construction					
	traps and baffles to enhance deposition rates. The design of efficient silt removal facilities						
	should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	during the rainy season (April to September). All exposed earth areas should be completed as	impacts from	Contractors		Phase	1/94, EIAOTM,	
	soon as possible after earthworks have been completed, or alternatively, within 14 days of the	construction site				WPCO	
	cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	runoff and land-					
	rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should	based construction					
	be covered by tarpaulin or other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (7)
	approximately 6 to 8m3 capacity, are recommended as a general mitigation measure which	impacts from	Contractors		Phase	1/94, EIAOTM,	
	can be used for settling surface runoff prior to disposal. The system capacity is flexible and	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	able to handle multiple inputs from a variety of sources and particularly suited to applications	runoff and land-				S5	
	where the influent is pumped.	based construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	surface protection should be carried out immediately after the final surfaces are formed to	impacts from	Contractors		Phase	1/94, EIAOTM,	
	prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels	construction site				WPCO	
	should be provided where necessary.	runoff and land-				S5	
		based construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches.	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	trenches in wet seasons is necessary, they should be dug and backfilled in short sections.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Rainwater pumped out from trenches or foundation excavations should be discharged into	construction site				WPCO	
	storm drains via silt removal facilities.	runoff and land-				S5	
		based construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Measures should be taken to prevent the washing away of construction materials, soil, silt or	construction site				WPCO	
	debris into any drainage system.	runoff and land-					
		based construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (8) /
	temporarily sealed so as to prevent silt, construction materials or debris being washed into the	impacts from	Contractors		Phase	1/94, EIAOTM,	# (8)
	drainage system and storm runoff being directed into foul sewers. Discharge of surface run-	construction site				WPCO	
	off into foul sewers must always be prevented in order not to unduly overload the foul	runoff and land-					
	sewerage system.	based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to	construction site				WPCO	
	the control of silty surface runoff during storm events, especially for areas located near steep	runoff and land-					
	slopes.	based construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	the release of oils and grease into the storm water drainage system after accidental spillages.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	The interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth,	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	mud, debris and the like is deposited by them on roads.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wheel washing bay should be provided at every site exit, and washwater should have sand	construction site				WPCO	
	and silt settled out and removed at least on a weekly basis to ensure the continued efficiency	runoff and land-					
	of the process. The section of access road leading to, and exiting from, the wheelwash bay	based construction					
	to the public road should be paved with sufficient backfall toward the wheel-wash bay to						
	prevent vehicle tracking of soil and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	grit should be removed regularly, at the onset of and after each rainstorm to ensure that these	impacts from	Contractors		Phase	1/94, EIAOTM,	
	facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based construction					

	MILEMENTATION SOTTEBOLE AND TECONIMENDED MITTIGATION					iviay	2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	commencement of other construction activities. Sediment traps should be installed in order to	impacts from	Contractors		Phase	1/94, EIAOTM,	
	minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall	construction site				WPCO	
	be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure proper	construction site				WPCO	
	and efficient operation at all times and particularly following rain storms. The temporarily	runoff and land-					
	diverted drainage should be reinstated to its original condition when the construction work has	based construction					
	finished or the temporary diversion is no longer required.						
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas,	Control potential	CEDD's	Work site	Construction	ProPECC PN	# (9)
	within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent	impacts from	Contractors		Phase	1/94, EIAOTM,	
	spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	discharges and the existing or planned seawater intakes during construction and operational	impacts from	Contractors		Phase	TMDSS	
	phases	construction site					
		runoff and land-					
		based construction			_		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	water level in basement or foundation construction, and groundwater seepage pumped out of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tunnels or caverns under construction should be discharged into storm drains after the	construction site				WPCO	
	removal of silt in silt removal facilities.	runoff and land-					
		based construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel.	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	during the excavation. The groundwater levels above the tunnel will also be monitored by	construction site				WPCO, Buildings	
5.18	piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the	runoff and land-				Ordinance	
	groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to	based construction					
	reduce the groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the groundwater						
	should be biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive						
	measures in the form of an Action Plan with pre-emptive and re-active to preserve the						
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	far as practicable be recirculated after sedimentation. When there is a need for final disposal,	impacts from	Contractors		and	1/94, EIAOTM,	
	the wastewater should be discharged into storm drains via silt removal facilities.	construction site			Construction	WPCO	
		runoff and land-			Phas		
		based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
S5.8.31	equipment should whenever practicable be recycled. The discharge of wastewater should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any	construction site				WPCO	
	water recycling system should be provided with an online standby pump of adequate capacity	runoff and land-					
	and with automatic alternating devices. Under normal circumstances, surplus wastewater may	based construction					
	be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to						
	within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more						
	elaborate treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should	impacts from	Contractors		Phase	1/94, EIAOTM,	
	be provided at every site exit if practicable and wash-water should have sand and silt settled	construction site				WPCO	
	out or removed before discharging into storm drains. The section of construction road	runoff and land-					
	between the wheel washing bay and the public road should be paved with backfall to reduce	based construction					
	vehicle tracking of soil and to prevent site run-off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and reused wherever practicable. If the disposal of a certain residual quantity cannot be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a	construction site				WPCO	
	marine dumping licence from EPD on a case-by-case basis.	runoff and land-					
		based construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be treated to the respective effluent standards applicable to foul sewer, storm drains or	impacts from	Contractors		Phase	1/94, EIAOTM,	
	the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	construction site				WPCO	
		runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
		based construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	other purposes as far as practicable. Surplus unpolluted water could be discharged into	impacts from	Contractors		Phase	1/94, EIAOTM,	
	storm drains.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	sought during the design stage of the works with regard to the disposal of the sterilizing water.	impacts from	Contractors		and	1/94, EIAOTM,	
	The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering,	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	internal decoration, cleaning of works and similar activities should not be discharged into the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should	construction site				WPCO	
	undergo the removal of settleable solids in a silt removal facility, and pH adjustment as	runoff and land-					
	necessary	based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there	impacts from	Contractors		Phase	1/94, EIAOTM,	
	is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for	construction site				WPCO	
	disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving	runoff and land-					
	waters	based construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains,	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be discharged into foul sewer via grease traps capable of providing at least 20 minutes	impacts from	Contractors		Phase	1/94, EIAOTM,	
	retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	possible be located within roofed areas. The drainage in these covered areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained	construction site				WPCO	
	and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal	runoff and land-					
	in accordance with the Waste Disposal Ordinance.	based construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	existing trunk sewer or sewage treatment facilities. The construction sewage may need to be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	handled by portable chemical toilets prior to the commission of the on-site sewer system.	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the	runoff and land-					
	large number of construction workers over the construction site. The Contractor shall also be	based construction					
	responsible for waste disposal and maintenance practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary	impacts from	Contractors		Phase	WDO	
	regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be	accidental spillage					
	observed and complied with for control of chemical wastes.	of chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	۸
	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	impacts from	Contractors		Phase		
	and equipment involving activities with potential for leakage and spillage should only be	accidental spillage					
	undertaken within the areas appropriately equipped to control these discharges.	of chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical	impacts from	Contractors		Phase	WDO	
	Wastes" published under the Waste Disposal Ordinance details the requirements to deal with	accidental spillage					
	chemical wastes. General requirements are given as follows:	of chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage or						# (10)
	spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the personnel						۸
	who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space should be						۸
	allocated to the storage area.						_
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	basis. The contractor should be responsible for keeping the water within the site boundary	impacts from	Contractors		Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	and the neighbouring water free from rubbish.	floating refuse and					
		debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team /	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted wherever	human and traffic	Contractor	works are	Phase		٨
	possible.	disturbance to					
	- Hoarding or fencing should be erected around the works area boundaries during the	terrestrial habitat					٨
	construction phase. The hoarding would screen adjacent habitats from construction	and wildlife; and					
	phase activities, reduce noise disturbance to these habitats and also to restrict access to	reduce dust					
	habitats adjacent to works areas by site workers;	generation					
	- Regular spraying of haul roads to minimize impacts of dust deposition on adjacent						۸
	vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access routes	disturbance to		works are	Phase		۸
	selected on existing disturbed land to minimise disturbance to natural habitats.	surrounding					
	- Construction activities should be restricted to works areas that should be clearly	habitats					٨
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes. The						۸
	wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect and						۸
	control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						٨
	- Measures should also be put into place so that litter, fuel and solvents do not enter the	_					٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures would	groundwater inflow			Phase		N/A
	generally be adopted.						
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce the						N/A
	groundwater inflow and ensure that the tunnel would meet the long term water tightness						
	requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design team,	Within	Prior	N/A	
	Coral translocation	coral	contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally common		project	areas and			^
	Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable		operator	pier footprint			
	locations as far as practicable.						
	- The coral translocation should be conducted during the winter months (November-March)						^
	in order to avoid disturbance during their spawning period (i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for						^
	pretranslocation coral survey, translocation methodology, identification/proposal of coral						
	recipient site, monitoring methodology for posttranslocation should be prepared during the						
	detailed design stage.						^
	- The coral translocation plan should be subject to approval by relevant authorities (e.g.						
	EPD and AFCD) before commencement of the coral translocation. All the translocation						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	exercises should be conducted by experienced marine ecologist(s) who is/are approved						
	by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and unacceptable						۸
	impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should include						^
	observations on the presence, survival, health condition and growth of the translocated						
	coral colonies. These parameters should then be compared with the baseline results						
	collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design Team,	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	contractor	landbased	phase		N/A
	newly installed seawall and marine works area.	especially on		works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					۸
	- Proper waste and dumping management; and	level; minimize the					
	- Standard good-site practice for land-based construction.	contamination of					۸
		wastewater					۸
		discharge,					
		accidental					
		chemical spillage					
		and construction					
		site runoff to the					
		receiving water					
		bodies					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design Team,	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy standard	the vegetation loss	contractor	works area	phase		۸
	trees within or in vicinity of the affected area as far as practicable. Such compensatory						
	planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at						
	the temporarily affected area should be reinstated with species similar to the existing						
	condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design Team /	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	Contractor	area	phase		۸
	newly installed seawall and marine works area.	especially on					
		suspended solid					
		level					
Waste N	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for good	management			Phase	Ordinance (Cap.	۸
	site practices, arrangements for collection and effective disposal to an appropriate facility,	impacts				354)	
	of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and chemical					Land	۸
	handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	* (11)
	- Appropriate measures to minimize windblown litter and dust during transportation of					Ordinance (Cap.	^
	waste by either covering trucks or by transporting wastes in enclosed containers; and					28)	
	- Regular cleaning and maintenance programme for drainage systems, sumps and oil						* (5)

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips or	reduction			Phase	Ordinance (Cap.	٨
	stockpiles to enhance reuse or recycling of materials and their proper disposal;					354)	
	- Encourage collection of aluminium cans by providing separate labelled bins to enable this						٨
	waste to be segregated from other general refuse generated by the workforce;					Land	
	- Proper storage and site practices to minimize the potential for damage or contamination					(Miscellaneous	٨
	of construction materials; and					Provisions)	
	- Plan and stock construction materials carefully to minimize amount of waste generated					Ordinance (Cap.	٨
	and avoid unnecessary generation of waste.					28)	
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with	reduction			Phase	19/2005	٨
	ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of different categories of waste to be						
	generated from the construction activities. Such a management plan should incorporate site						
	specific factors, such as the designation of areas for segregation and temporary storage of						
	reusable and recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects as far	reduction			Phase	19/2005	٨
	as possible.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential adverse			Phase		
	minimize the impacts include:	environmental					
	- Waste, such as soil, should be handled and stored well to ensure secure containment,	impacts arising					۸
	thus minimizing the potential of pollution;	from waste storage					
	- Maintain and clean storage areas routinely;						۸
	- Stockpiling area should be provided with covers and water spraying system to prevent						۸
	materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance reuse.						۸
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction		
	- Remove waste in timely manner;	potential adverse			Phase		* (11)
	- Waste collectors should only collect wastes prescribed by their permits;	environmental					۸
	- Impacts during transportation, such as dust and odour, should be mitigated by the use of	impacts arising					۸
	covered trucks or in enclosed containers;	from waste					
	- Obtain relevant waste disposal permits from the appropriate authorities, in accordance	collection and					۸
	with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of	disposal					
	Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions)						
	Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities; and						۸
	- Maintain records of quantities of waste generated, recycled and disposed.						۸
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip	potential adverse			Phase	6/2010	^
	Ticket System for Disposal of Construction & Demolition Materials, to monitor disposal of	environmental					

May	2017
-----	------

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount	impacts arising					
	of waste generated, recycled and disposed (including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and recyclable materials	potential adverse			Phase	6/2010	^
	before disposal off-site.	environmental					
	- Specific areas shall be provided by the Contractors for sorting and to provide temporary					ETWB TCW No.	^
	storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert materials, in						^
	which the inert portion could be reused and recycled in the reclamation as far as					ETWB TCW No.	
	practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion					19/2005	
	should be investigated before disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG	
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement stabilization.	sediment to be		areas with	Phase		N/A
	Cement-stabilization process is undertaken by mixing sediment and cement and will	disposed of in an		sediments			
	convert sediment to earth filling material. The treated sediment has to comply with Risk-	authorized and		concern			
	Based Remediation Goals (RBRGs) before being reused in order not to raise any land	least impacted way					
	contamination issue. The adoption of RBRGs to assess stabilized sediment has been						
	proposed in the current C&DMMP. MFC has no adverse comment on the current						
	C&DMMP. The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the						
	RBRG. Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	results do not indicate sediment as contaminated soil. It is anticipated that reuse of						
	sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to land						
	contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-EBH501						
	33.95m) as filling material after cement stabilization is also a suitable treatment.						N/A
	Sediment quality indicates the sediment sample (TKO-EBH501 3-3.95m) exceed RBRG						
	for lead. While cement stabilization will immobilize metal contaminants, it is capable to						
	treat the exceedance on lead. The stabilized material should comply with UTS of Lead						
	and UCS. If the treated material do not comply with UTS or UCS, re-stabilization have to						
	be undertaken to meet compliance of UTS and UCS before reusing the treated sediment						
	as filling material. However, further agreement on final disposal/treatment on sediment						
	under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant,	best handling and		areas with	Phase		N/A
	shall be adhered to during boring, excavation, transportation and disposal of sediments	treatment of		sediments			
	or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization mixing and						N/A
	temporary stockpile. The area should be designed to prevent leachate from entering the						
	ground. Leachate, if any, should be collected and discharged according to the Water						
	Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring, excavation and						N/A
	transportation of the sediment, the excavated sediments should be kept wet during						
	excavation/boring and should be properly covered when placed on barges/trucks.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	Loading of the excavated sediment to the barge should be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.	
	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be		areas with	Phase	34/2002 &	N/A
	requirements and procedures for excavated sediment disposal specified under ETWB	disposed of in an		sediments		Dumping at Sea	
	TC(W) No. 34/2002 shall be followed. MFC is responsible for the provision and	authorized and		concern		Ordinance	
	management of disposal capacity and facilities for the excavated sediment, while the	least impacted way					
	permit of marine dumping is required under the Dumping at Sea Ordinance and is the						
	responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping permit,	best handling and		areas with	Phase	34/2002 &	N/A
	separate SSTP has to be submitted to EPD for agreement under DASO. Additional site	disposal option of		sediments		Dumping at Sea	
	investigation, based on the SSTP, maybe carried out in order to confirm the disposal	sediment		concern		Ordinance	
	arrangements for the proposed sediments removal. A Sediment Quality Report (SQR)						
	shall then be required for EPD agreement under DASO prior to the tendering of the						
	construction contract, discussing in details the site investigation, testing results as well as						
	the delineation of each of the categories of excavated materials and the corresponding						
	types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure handling	Contractor	All works	Construction	ETWB TC(W) No.	

EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for the	
			Concerns to	measures?		measures?	measures to	
			address				achieve?	
S8.6.28	-	The excavated sediments is expected to be loaded onto the barge and transported to the	of sediments are in		areas with	Phase	34/2002 &	N/A
		designated disposal sites allocated by the MFC. The excaveted sediment would be	accordance to		sediments		Dumping at Sea	
		disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.	statutory		concern		Ordinance	
	-	Stockpilling of contaminated sediments should be avoided as far as possible. If	requirements					N/A
		temporary stockpiling of contaminated sediments is necessary, the excavated sediment						
		should be covered by tarpaulin and the area should be placed within earth bunds or sand						
		bags to prevent leachate from entering the ground, nearby drains and surrounding water						
		bodies. The stockpiling areas should be completely paved or covered by linings in order						
		to avoid contamination to underlying soil or groundwater. Separate and clearly defined						
		areas should be provided for stockpiling of contaminated and uncontaminated materials.						
		Leachate, if any, should be collected and discharged according to the Water Pollution						
		Control Ordinance (WPCO).						
	-	In order to minimise the potential odour / dust emissions during boring and transportation						N/A
		of the sediment, the excavated sediments should be kept wet during excavation/boring						
		and should be properly covered when placed on barges. Loading of the excavated						
		sediment to the barge should be controlled to avoid splashing and overflowing of the						
		sediment slurry to the surrounding water.						
	-	The barge transporting the sediments to the designated disposal sites should be						N/A
		equipped with tight fitting seals to prevent leakage and should not be filled to a level that						
		would cause overflow of materials or laden water during loading or transportation. In						
		addition, monitoring of the barge loading shall be conducted to ensure that loss of						
		material does not take place during transportation. Transport barges or vessels shall be						
		equipped with automatic self-monitoring devices as specified by the DEP.				_		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic containment. A						N/A
	geosynthetic containment method is a method whereby the sediments are sealed in						
	geosynthetic containers and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be covered by further mud						
	disposal and later by the mud pit capping, thereby meeting the requirements for fully						
	confined mud disposal.						
S8.6.26	Chemical Wastes.	To ensure proper	Contractor	All works sites	Construction	Code of Practice	
	- If chemical wastes are produced at the construction site, the Contractor would be	management of			Phase	on the Packaging,	۸
	required to register with the EPD as a Chemical Waste Producer and to follow the	chemical waste				Labelling and	
	guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of					Storage of	
	Chemical Wastes. Good quality containers compatible with the chemical wastes should					Chemical Wastes	
	be used, and incompatible chemicals should be stored separately. Appropriate labels						
	should be securely attached on each chemical waste container indicating the					Waste Disposal	
	corresponding chemical characteristics of the chemical waste, such as explosive,					(Chemical Waste)	
	flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a					(General)	
	licensed collector to transport and dispose of the chemical wastes, to either the Chemical					Regulation	
	Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the						
	Waste Disposal (Chemical Waste) (General) Regulation.						
S8.6.27	General Refuse	To ensure proper	Contractor	All works sites	Construction	Public Health and	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- General refuse should be stored in enclosed bins or compaction units separate from C&D	management of			Phase	Municipal	۸
	material. A reputable waste collector should be employed by the contractor to remove	general refuse				Services	
	general refuse from the site, separately from C&D material. Preferably an enclosed and					Ordinance (Cap.	
	covered area should be provided to reduce the occurrence of 'wind blown' light material.					132)	
Impact of	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1 m)	and visual impacts			Phase	AMO	۸
	should be provided;						
	- The open yard in front of the temple should be kept as usual for annual Tin Hau festival;						۸
	- Monitoring of vibration impacts should be conducted when the construction works are						۸
	less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent indirect	Contractors	Work areas	Construction	Vibration Limits	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of	vibration impact			Phase	on Heritage	۸
	5mm/s measured inside the historical buildings;					Buildings by	
	- Monitoring of vibration should be carried out during construction phase.					CEDD; GCHIA;	۸
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau					AMO.	۸
	Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts on built						۸
	heritage shall be submitted to AMO for comments before commencement of work.						
Landsca	ape and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid	Avoid impact on	CEDD (via	General	Construction	N/A	٨
10.8.1	impacts on adjacent landscape.	adjacent landscape	Contractor)		planning and		
		areas			during		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
					construction		
					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration	CEDD (via	N/A	Construction	N/A	۸
10.8.1		of impact	Contractor)		planning		
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be	To allow re-use of	CEDD (via	General	Site clearance	As per the	۸
10.8.1	stripped and stored for re-use in the construction of the soft landscape works. The Contract	topsoil	Contractor)			Particular	
	Specification shall include storage and reuse of topsoil as appropriate.					Specification	
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	* (12)
10.8.1	protected during construction. Detailed Tree Protection Specification shall be provided in the	loss	Contractor)	approved	and	and as per tree	
	Contract Specification, under which the Contractor shall be required to submit, for approval, a			Tree Removal	throughout	protection	
	detailed working method statement for the protection of trees prior to undertaking any works			Application(s)	construction	measures in	
	adjacent to all retained trees, including trees in contractor's works areas. (Tree protection				period	Particular	
	measures will be detailed at Tree Removal Application stage).					Specification	
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable.	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	٨
10.8.1	Where possible, trees should be transplanted direct to permanent locations rather than	preservation of	Contractor)	approved		and as per tree	
	temporary holding nurseries. A detailed tree transplanting specification shall be provided in the	existing trees		Tree Removal		protection	
	Contract Specification and sufficient time for preparation shall be allowed in the construction			Application(s)		measures in	
	programme.					Particular	
						Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	٨
10.8.1	hoardings. Trees shall be capable of reaching a height >10m within 10 years.	screening of the	Contractor)	Interchange	construction		
		works		and edge of	period		
				Road P2			

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
				landscape			
				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1		intrusion	Contractor)		construction	Specification	
					period		
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night	To reduce visual	CEDD (via	General	Throughout	N/A	٨
10.8.1	working periods.	intrusion	Contractor)		construction		
					period		
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of visual	CEDD (via	Project site	Excretion of	N/A	۸
10.8.1	surrounding area	intrusion	Contractor)	Boundary	site hoarding		
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of visual	CEDD (via	Built	Design and	N/A	٨
10.8.1		intrusion and	Contractor)	structures	construction		
		integration with			stage		
		environment					
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	ТКО	Throughout	N/A	٨
10.8.1		contamination of	Contractor)	reclamation,	construction		
		water courses and		TKO tunnel	period		
		water bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
		existing coastlin		points at TKO	stages		
				and Lam Tin			
				and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads and			
				Road P2			
Landfill	Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill	٨
	hazards, should be present on site throughout the groundworks phase. The Safety Officer	from landfill gas		within the Sai	phase	Gas Hazard	
	should be provided with an intrinsically safe portable instrument, which is appropriately	hazards		Tso Wan		Assessment	
	calibrated and able to measure the following gases in the ranges indicated below:			Landfill		Guidance Note	
	Methane 0-100% LEL and 0100% v/v			Consultation			
	Carbon dioxide 0-100%			Zone			
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all excavation	from landfill gas		within the Sai	phase	Gas Hazard	٨
	workers, supervisors and engineers working within the Consultation Zone, should receive	hazards		Tso Wan		Assessment	
	appropriate training on working in areas susceptible to landfill gas, fire and explosion			Landfill		Guidance Note	
	hazards.			Consultation		Labour	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- An excavation procedure or code of practice to minimize landfill gas related risk should			Zone		Department's	۸
	be devised and carried out.					Code of Practice	
	- No worker should be allowed to work alone at any time in or near to any excavation. At					for Safety and	۸
	least one other worker should be available to assist with a rescue if needed.					Health at Work in	
	- Smoking, naked flames and all other sources of ignition should be prohibited within 15m					Confined Space	۸
	of any excavation or ground-level confined space. "No smoking" and "No naked						
	flame" notices should be posted prominently on the construction site and, if necessary,						
	special areas should be designed for smoking.						
	- Welding, flame-cutting or other hot works should be confined to open areas at least 15m						۸
	from any trench or excavation.						
	- Welding, flame-cutting or other hot works may only be carried out in trenches or confined						۸
	spaces when controlled by a "permit to work" procedure, properly authorized by the						
	Safety Officer (or, in the case of small developments, other appropriately qualified						
	person).						
	- The permit to work procedure should set down clearly the requirements for continuous						٨
	monitoring for methane, carbon dioxide and oxygen throughout the period during which						
	the hot works are in progress. The procedure should also require the presence of an						
	appropriately qualified person, in attendance outside the 'confined area', who should be						
	responsible for reviewing the gas measurements as they are made, and who should have						
	executive responsibility for suspending the work in the event of unacceptable or						
	hazardous conditions. Only those workers who are appropriately trained and fully aware						
	of the potentially hazardous conditions which may arise should be permitted to carry out						
	hot works in confined areas.						

EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for the	
			Concerns to	measures?		measures?	measures to	
			address				achieve?	
	- Where there are ar	ny temporary site offices, or any other buildings located within the Sai						^
	Tso Wan Landfill C	consultation Zone which have enclosed spaces with the capacity to						
	accumulate landfill	gas, then they should either be located in an area which has been						
	proven to be free o	f landfill gas (by survey using portable gas detectors); or be raised						
	clear of the ground	by a minimum of 500mm. This aims to create a clear void under the						
	structure which is v	ventilated by natural air movement such that emission of gas from the						
	ground are mixed a	and diluted by air.						
	- Any electrical equip	oment, such as motors and extension cords, should be intrinsically						۸
	safe. During piping	assembly or conduiting construction, all valves/seals should be closed						
	immediately after in	nstallation. As construction progresses, all valves/seals should be						
	closed to prevent the	ne migration of gases through the pipeline/conduit. All piping						
	/conduiting should	be capped at the end of each working day.						
	- During construction	n, adequate fire extinguishing equipment, fire-resistant clothing and						۸
	breathing apparatu	s (BA) sets should be made available on site.						
	- Fire drills should be	e organized at not less than six monthly intervals.						۸
	- The contractor sho	uld formulate a health and safety policy, standards and instructions for						۸
	site personnel to fo	llow.						
	- All personnel who	work on the site and all visitors to the site should be made aware of the						۸
	possibility of ignitio	n of gas in the vicinity of excavations. Safety notices (in Chinese and						
	English) should be	posted at prominent position around the site warning danger of the						
	potential hazards.							
	- Service runs within	the Consultation Zone should be designated as "special routes";						۸
	utilities companies	should be informed of this and precautionary measures should be						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	implemented. Precautionary measures should include ensuring that staff members are						
	aware of the potential hazards of working in confined spaces such as manholes and						
	service chambers, and that appropriate monitoring procedures are in place to prevent						
	hazards due to asphyxiating atmospheres in confined spaces. Detailed guidance on						
	entry into confined spaces is given in Code of Practice on Safety and Health at Work in						
	Confined Spaces (Labour Department, Hong Kong).						
	- Periodically during ground-works construction within the 250m Consultation Zone, the						^
	works area should be monitored for methane, carbon dioxide and oxygen using						
	appropriately calibrated portable gas detection equipment. The monitoring frequency						
	and areas to be monitored should be set down prior to commencement of ground-works						
	either by the Safety Officer or an approved and appropriately qualified person.						
S11.5.26	Monitoring	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill	
-	Routine monitoring should be carried out in all excavations, manholes, chambers,	from landfill gas		within the Sai	phase	Gas Hazard	^
S11.5.31	relocation of monitoring wells and any other confined spaces that may have been	hazards		Tso Wan		Assessment	
	created. All measurements in excavations should be made with the extended			Landfill		Guidance Note	
	monitoring tube located not more than 10 mm from the exposed ground surface.			Consultation			
	Monitoring should be performed properly to make sure that the area is free of landfill			Zone			
	gas before any man enters into the area.						
	For excavations deeper than 1m, measurements should be carried out:						^
	- at the ground surface before excavation commences;-						
	- immediately before any worker enters the excavation;						
	- at the beginning of each working day for the entire period the excavation remains open	;					
	and						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- periodically throughout the working day whilst workers are in the excavation.						
	• For excavations between 300mm and 1m deep , measurements should be carried out:						۸
	- directly after the excavation has been completed; and						
	- periodically whilst the excavation remains open.						
	• For excavations less than 300mm deep, monitoring may be omitted, at the discretion of						۸
	the Safety Officer or other appropriately qualified person.						
	Depending on the results of the measurements, actions required will vary and should						۸
	be set down by the Safety Officer or other appropriately qualified person.						
	The exact frequency of monitoring should be determined prior to the commencement of						۸
	works, but should be at least once per day, and be carried out by a suitably qualified or						
	qualified person before starting the work of the day. Measurements shall be recorded						
	and kept as a record of safe working conditions with copies of the site diary and						
	submitted to the Engineer for approval. The Contractor may elect to carry out						
	monitoring via an automated monitoring system.						
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill	construction stage	Contractor	Project sites	Construction	EPD's Landfill	N/A
	Consultation Zone should be minimized by suitable precautionary measures recommended in	within the Sai Tso		within the Sai	phase	Gas Hazard	
	Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Wan		Tso Wan		Assessment	
		Protect the workers		Landfill		Guidance Note	
		from landfill gas		Consultation			
		hazards		Zone			

App N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Qualit	ty Impact				
* (1)	S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	NE/2015/01	Construction of	To provide adequate water spray to drilling works in Portion
		roads		Emergency	4c to avoid dust generation.
	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction		Egress Point	
# (1)		Dust) Regulation and good site practices:	NE/2015/01	Construction of	Dry unpaved area was observed. Contractor was advised to
		- Use of regular watering to reduce dust emissions from exposed site surfaces		Lam Tin	provide spraying regularly.
		and unpaved roads, particularly during dry weather.		Interchange	
		- Use of frequent watering for particularly dusty construction areas and areas			
		close to ASRs.			
* (2)	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction	NE/2015/01	Site Formation of	To cover stockpile of sand in TKO to avoid dust generation.
		Dust) Regulation and good site practices:		TKO Portal	
		- Open stockpiles shall be avoided or covered. Where possible, prevent	NE/2015/02	Construction of	To cover stockpiles of dusty material in Area A after works.
		placing dusty material storage piles near ASRs.		Road P2	
Noise II	mpact (Cor	nstruction Phase)			
* (3)	Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the	NE/2015/01	Construction of	
	Mitigation	approved Noise Mitigation Plan		Lam Tin	Mitigation measure for noise emission of the drill rig at CKL site should be applied where necessary.
	Plan			Interchange	
			NE/2015/01	Construction of	To provide adequate noise barrier to drilling works and to
				Emergency	repair the existing noise barrier to avoid gaps in Portion 4c.

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
				Egress Point	
			NE/2015/01	Construction of	
				Lam Tin	To repair the gaps of temporary noise barrier for drill rig in Portion 3.
				Interchange	
			NE/2015/01	Construction of	
				Lam Tin	To repair the temporary noise enclosure for breaker in Portion 3.
				Interchange	
# (13)	S4.9	Good Site Practice	NE/2015/03	Construction of	Contractor was advised to place noise emission label on the
		- Only well-maintained plant should be operated on-site and plant should be		Northern	air compressor
		serviced regularly during the construction program		Footbridge	
Water G	uality Imp	pact (Construction Phase)			
* (4)	S5.8.3	Other good site practices should be undertaken during filling operations include:	NE/2015/01	Construction of	To repair silt curtain for marine works in TKO to ensure that geotextile is extended to seabed.
		- floating single silt curtain shall be employed for all marine works;		TKO Portal	To repair the silt curtain in TKO that geotextile should be extended to seabed.
					Muddy water observed near marine works in Tseung Kwan
					O. The Contractor is reminded to regularly maintain silt
					curtain on-site and ensure that geotextile is extended to
					seabed.
* (5)	S5.8.5 /	It is important that appropriate measures are implemented to control runoff and	NE/2015/01	Construction of	To set up proper drainage system in CKL
	S8.6.3	drainage and prevent high loading of SS from entering the marine environment.		TKO Portal	
		Proper site management is essential to minimise surface water runoff, soil erosion	NE/2015/01	Construction of	To remove the mud accumulated in U-channel near
		and sewage effluents.		Lam Tin	discharge point in TKO.
				Interchange	
		Good Site Practices and Waste Reduction Measures	NE/2015/02	Construction of	To repair the holes near the discharge point in Area A to
		- Regular cleaning and maintenance programme for drainage systems, sumps		Road P2	prevent surface runoff flow into the discharge point.
		and oil interceptors	NE/2015/02	Construction of	To remove muddy water / sediment accumulated in
				Road P2	catchpits / U-channels in Area A.

May 2	01	7
-------	----	---

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
* (6)	S5.8.9	Construction site should be provided with adequately designed perimeter channel	NE/2015/01	Site Formation of	Stagnant water should be cleared at TKO site.
		and pretreatment facilities and proper maintenance. The boundaries of critical		TKO Portal	
		areas of earthworks should be marked and surrounded by dykes or embankments	NE/2015/02	Construction of	Silt and sediments observed at footing of hoarding at
		for flood protection. Temporary ditches should be provided to facilitate runoff		Road P2	Portion SR2B. The Contractor is reminded to remove the silt
		discharge into the appropriate watercourses, via a silt retention pond. Permanent			and sediment to avoid wastewater flow out of site.
		drainage channels should incorporate sediment basins or traps and baffles to			
		enhance deposition rates. The design of efficient silt removal facilities should be			
		based on the guidelines in Appendix A1 of ProPECC PN 1/94.			
* (7)	S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual	NE/2015/01	Site Formation of	Overflow of muddy water observed from sedimentation tank
		cells of approximately 6 to 8m³ capacity, are recommended as a general mitigation		TKO Portal	in Tseung Kwan O under Red Rainstorm Warning Signal.
		measure which can be used for settling surface runoff prior to disposal. The			The Contractor is reminded to ensure that the tank is of
		system capacity is flexible and able to handle multiple inputs from a variety of			adequate capacity for wastewater treatment
		sources and particularly suited to applications where the influent is pumped.			
* (8)	S5.8.15	Manholes (including newly constructed ones) should always be adequately	NE/2015/02	Construction of	To replace the broken sand bags near the gullies in Portion
		covered and temporarily sealed so as to prevent silt, construction materials or		Road P2	1.
# (8)		debris being washed into the drainage system and storm runoff being directed into	NE/2015/03	Construction of	Contractor was reminded to place geotextile materials on all
<i>"</i> (e)		foul sewers. Discharge of surface run-off into foul sewers must always be	. 12,20 . 0,00	Northern	the manholes before commencing any construction works.
		prevented in order not to unduly overload the foul sewerage system.		Footbridge	and manifest sold occurrence of the contraction with the
				. commage	
# (9)	S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on	NE/2015/01	Construction of	Oil containers should be provided with drip tray.
		sealed areas, within bunds of a capacity equal to 110% of the storage capacity of		Cha Kwo Ling	
		the largest tank, to prevent spilled fuel oils from reaching the coastal waters.		Barging Point	
			NE/2015/03	Construction of	Contractor was advised to clean all muddy silt in the drip
				Northern	tray.
				Footbridge	
# (10)	S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	NE/2015/03	Construction of	Contractor was advised to clean oil stains on the paved

Status / EIA Ref.		Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder				
Remark									
		Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and		Northern	road.				
		Storage of Chemical Wastes" published under the Waste Disposal Ordinance		Footbridge					
		details the requirements to deal with chemical wastes. General requirements are							
		given as follows:							
		- suitable containers should be used to hold the chemical wastes to avoid							
		leakage or spillage during storage, handling and transport;							
Waste I	Waste Management (Construction Phase)								
* (11)	S8.6.3 /	Good Site Practices and Waste Reduction Measures	NE/2015/02	Construction of	To remove construction waste accumulated near site office.				
	S 8.6.8	- Provision of sufficient waste disposal points and regular collection of waste;		Road P2					
		Storage, Collection and Transportation of Waste (con't)							
		Remove waste in timely manner;							
Landsc	ape and Vi	sual Impact (Construction Phase)							
* (12)	Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to	NE/2015/01	Construction of	To properly set-up tree protection area in Portion 3.				
	10.8.1	be carefully protected during construction. Detailed Tree Protection Specification		Lam Tin					
		shall be provided in the Contract Specification, under which the Contractor shall be		Interchange					
		required to submit, for approval, a detailed working method statement for the							
		protection of trees prior to undertaking any works adjacent to all retained trees,							
		including trees in contractor's works areas. (Tree protection measures will be							
		detailed at Tree Removal Application stage).							

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
1	7 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained about the construction noise and dust near Yau Lai Estate. (EPD Reference No.: K15/RE/00032001-16)	According to information provided by the Contractor, powered Mechanical Equipment being operated for construction of Lam Tin Interchange on 7 and 9 December 2016 include breaker, dump truck, backhoes, drilling rig and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking. The Contractors had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation".	Closed
2	9 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	The complainant complained about the construction noise near Yau Lai Estate. (EPD Reference No.: K15/RE/00032317-16)	Measures" of EM&A Manual to reduce construction dust and noise nuisance to the vicinity. According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 6 – 14 December 2016. Similarly, no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 6 – 16 December 2016. With the implementation of environmental mitigation measures by Contractor on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	Closed
3	9 th December 2016	('onstruction of l		The complainant complained about the noise nuisance during transportation of construction materials on haul road and dust generation during construction activities.	No construction activities were carried out for both construction of Road P2 and TKO portal during night time or at about 7am. Therefore, no construction noise nuisance were generated during night-time or at about 7am under this Project and it is considered that these noise nuisance is not project- related. The Contractors of this Project had implemented environmental	Closed
4	20 th December 2016	Not Specified / Construction of Road P2	Resident of Ocean Shore	The complainant complained about the lighting and noise nuisance on construction vessels moored near Ocean Shores during night time.	mitigation measures for air quality, noise and visual impact (night-time lighting) in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual. The Contractors had taken the initiative to provide additional noise	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
5	22nd December 2016	21 Dec 2016 at night / Construction of TKO portal	Resident of Block 3, Ocean Shores	The complainant concerned the noise generated by the construction works at hillside near Block 3 of Ocean Shores in daytime.	mitigation measures to works since the complaints were received including: - Temporary noise barrier had been installed to reduce noise nuisance from piling works in construction of Road P2 Provision of noise	Closed
6	22nd December 2016	Not specified / Construction of TKO portal	Public	The complainant complained about the noise generated by the construction works at hillside in daytime.	enclosure to cover generators for reducing its noise nuisance in TKO portal; and - Provision of portable noise enclosures at breakers and generators to reduce noise emission from works in TKO portal	Closed
7	22nd December 2016	Not specified / Construction of Road P2	Resident from Ocean Shore	The complainant complained about the noise nuisance of broadcast on construction vessel near Ocean Shores at 7am and the noise generated by the construction works outside Tseung Kwan O Chinese Permanent Cemetery.	According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded in December 2016. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise	Closed
8	22 nd December 2016	Not specified / Construction of Road P2 and TKO portal	Resident from Ocean Shore	The complainant complained about the noise nuisance generated by construction works of Tseung Kwan O portal in daytime and noise nuisance of "loud speaker" on construction vessel near Ocean Shores.	According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety purpose was observed from the construction vessel and anchors.	Closed
9	16 th December 2016	Not Specified / near Ocean Shores	DC member	The complainant complained that they noticed about 2 work vessels were being used at 00:00-01:00 and also moored there overnight which caused light pollution and affecting the residents.	According to the findings of investigation, minimum lighting on the construction vessel was required for guard watching the works site. Adverse night-time light and noise nuisance from the marine works area near Ocean Shores as alleged by the complainant are considered not caused by this Project. The Contractor had continuously implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed"	Closed
10	17 th January 2017	5 January 2017 / near Ocean Shores	DC member	The complainant complained that marine vessels were used at about 22:00 and around 01:00 on 5 Jan 2017, again causing noise and light nuisance to the residents.	Mitigation Measures" of EM&A Manual. To avoid strong light emission towards the sensitive receivers, night-time lighting is properly controlled by hooding all lights (except necessary lighting for safety purpose and guard watching); According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety and guard watching	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
	aard.	N. Co. Co. I.		The complainant complaint about the Soil/muddy water	purpose was observed from the construction vessel and anchors. The Contractor was recommended to continuously implement the following visual impact mitigation measures: • necessary lighting on construction vessels should be oriented as much as possible such that direct strong lighting towards the sensitive receivers is avoided. • Strong lighting that may be in intermittent use should be shut down between works periods	
11	23 rd December 2016	Not Specified / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	from construction site near Cha Kwo Ling Tsuen. (EPD Reference No.: K15/RE/00033951-16)	No construction works were being carried out on 23rd December 2016 at Portion WA1, which is the site portion near Cha Kwo Ling Tsuen. Despite, it was recorded that some muddy water was flowing from the Contractor's wheel washing facility to the gullies within the site boundary.	Closed
12	29 th December 2016	23 rd December 2016 / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	The complainant complaint that some muddy water flowing from the wheel washing facility to the gullies within the site boundary.	For complaint of muddy water on 23rd December 2016, the Contractor has fixed the clear water hose for wheel washing on 24th December 2016 early morning. During the recent weekly site inspections to Site Portion WA1, no muddy water was observed leaked out of the Site Boundary.	Closed
13	6 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	The complainant complained about the noise nuisance during rock breaking at the Eastern Harbour Crossing (EHC) portal and lack of noise mitigation measures during the construction works.	tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers.	Closed
14	6 th January 2017	Not Specified / Cha Kwo Ling Road	Resident of Yau Lai Estate	The complainant complained about the noise nuisance generated by the excavation works at Cha Kwo Ling Road on 6 January 2017 just after 7 a.m.	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: Air Quality Use of frequent watering during construction of Lam Tin Interchange, including watering of eight times a day on active work area, exposed area	Closed
15	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	The complainant complained about the noise nuisance during the construction works near Yau Lai Estate at 7:15am. He requested to erect noise barriers and set up water spraying	and paved haul roads to mitigate air quality impacts to the nearby Air Sensitive Receivers (ASRs) Noise Provision of portable noise enclosures to head of breakers to reduce noise emission during rock breaking works in Lam Tin Interchange;	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
				system to minimize the noise and air nuisances to the nearby residents.	 Provision of portable noise enclosures to reduce noise nuisance from drilling works and generator in Lam Tin Interchange; and Use of Quiet PME on-site including generator and hydraulic excavator. 	
16	6 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Cheuk Lai House	The complainant complained the construction noise generated from this Project (EPD Reference No.: K15/RE/00000564-17)	The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings: • Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange:	Closed
17	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	The Yau Lai Estate Property Services Management Office mentioned that one of the resident of Yau Lai Estate had complained to Hong Kong Housing Authority (HKHA) about the noise generated by the construction works.	 during rock breaking works for construction of Lam Tin Interchange; Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day. According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded from 16 December 2016 to 19 January 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no 	Closed
18	10 th January 2017	Not Specified	Unknown	The complainant complained the construction noise generated from this Project (EPD Reference No.: K15/RE/00000967-17)	adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project. Nevertheless, the Contractor was recommended to continue to properly implement and strictly follow the air quality and noise mitigation measures as recommended in the Environmental Monitoring & Audit	Closed
19	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	The complainant complained the noise generated from rock breaking at Lam Tin Interchange. He requested concrete actions to improve the situation.		Closed
20	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained the noise generated from rock breaking at Lam Tin Interchange.		Closed
21	13 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning.		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
22	13 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	Anonymous	The complainant complained about the noise generated by the construction works near the toll plaza of the Eastern Harbour Crossing (EHC). The complainant complained again on 24 Jan 2017 and mentioned the noise problem still affected the daily life of residents		Closed
23	16 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning.		Closed
24	17 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained the construction noise generated at Lam Tin Interchange.		Closed
25	26 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	黃國健議員及 何啟明議員	LC members referred complaints about the noise generated by the construction works near the EHC tunnel portal. They mentioned that the noise generated by the construction works had greatly affected the daily life of nearby residents, especially occupants of Block 5 of Yau Lai Estate and those who lived at the upper floors.	After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual. The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings: Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange; Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
26	27 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning. (EPD Ref No. K15/RE/00002945-17)	According to information provided by the Contractor, powered Mechanical Equipment being operated on site during the time of complaint include breaker, dump truck, backhoes, drilling rig, mobile crane and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of	Closed
27	9 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	The complainant complained about the noise nuisance during the construction works of Lam Tin Interchange at 8:10am. (EPD Reference No.: K15/RE/00003855-17)	complaint was mainly due to high noise level emission during the use of breaker for rock breaking. In addition to the the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual, the Contractor has implemented the following additional noise mitigation measures since late including: Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange;	Closed
28	13 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	The complainant complained about the noise nuisance during the construction works of Lam tin Interchange.	 Sound absorptive materials with 50mm thickness were hanged on rock mountain wall as well as temporary noise barrier containers; and Adoption of alternative rock breaking method such as partial rock breaking by rock splitter. In addition, the Contractor has taken the initiative to explore measures to further reduce construction noise nuisance such as: Installation of cantilever barrier on top of the containers; Installation of tuned mass dampers on breaker head; and Use of acoustic mat cover and a retractable noise barrier where feasible. According to the regular noise monitoring no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 2 – 15 February 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project. 	Closed
29	23 rd February 2017	18 Feb 2017 / Slope Works at Lei Yue Mun Road	Anonymous	The complainant complained about the dust generated by the slope works opposite to Lam Tin Ambulance Deport on 18 February 2017 afternoon. He mentioned that the dust greatly affected the pedestrian.	The major source of construction dust nuisance was construction of a temporary storage area. As per investigation, the Contractor has provided environmental mitigation measures to prevent dust generation for the slope works. Water spray was prepared and provided next to the works for dust suppression during the use of handheld breaker.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
30	23 rd February 2017	Not Specified / BMCPC Footpath	陳繼偉議員	Mr. Chan complained that some of the excavated materials fell from the dump trucks on the BMCPC footpath affecting the safety of pedestrian and hikers.	The major source of construction dust nuisance was formation of temporary site haul road. As per investigation, the following environmental mitigation measures are implemented by the Contractor:	Closed
31	2 nd March 2017	Not Specified / Construction Works near BMCPC Footpath	A resident of Ocean Shores	The complainant complained about the dust generated by the construction works near the existing BMCPC footpath	 Water truck was provided for dust suppression at least 8 times per day along the footpath within our site boundary; Wheel washing were provided for all dump trucks once loaded; All the dump trucks were covered properly with a mechanical cover once loaded. The dump trucks were loaded in a specific area (off the footpath) near the formation works area. 	
32	8 th March 2017	7 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Public	The complainant complained the dust and noise generated by the slope works near Sin Fat Road Tennis Court	The major source of construction dust and noise nuisance was shotcreting of slope surface, and drilling for soil nail. As per investigation, the following environmental mitigation measures are implemented by the Contractor: Tarpaulin sheets were provided along the slope adjacent to the	Closed
33	10 th March 2017	4 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Anonymous	The complainant complained the dust generated by the slope works near Sin Fat Road Tennis Court.	 Tarpaulin sheets were provided along the slope adjacent to the tennis court during shotcreting; After the complaint was received, the dust screen for tennis court has been enhanced immediately with additional tarpaulin along the fencing of tennis court; Additional acoustic sheets were also provided to minimize construction noise nuisance to users of the tennis courts; At the location of shotcreting / drilling of slope works, additional tarpaulin sheet was placed at source to minimize dust generation due to the works 	
34	13 th March 2017	27 Feb – 12 Mar 2017 / Barging point in front of Ocean Shore	Public	The complainant complained about noise from the loading / unloading activities at the barging point in front of Ocean Shore for material delivery to the LT-TKO Tunnel work site during 3:00 am and 4:00am over the past 2 weeks.	According to information provided by the Contractors, no works, including any loading / unloading works, was carried out during the restricted hours at site area near Ocean Shores in early March 2017. The complaint is concluded to be non-Project related. The Engineer and the Environmental Team have reminded the contractor(s) not to carry out any works, especially loading/unloading activities near the Ocean Shores during restricted hours to minimize noise nuisance to the nearby residents.	
35	21 st March 2017	Not Specified / Construction Works	茶果嶺鄉民聯誼 會書記鍾先生	The complainant stated that villagers concerned about the	In accordance with the information provided by the Contractor of the Project, vehicle wheel washing near Cha Kwo Ling Village was carried	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
		near Cha Kwo Ling Village		waste water produced by car washing in construction site will flow into the sea/ existing drainage system directly and requested the contractors to improve the situation.	out site access of Portion 1 and Portion WAII. At Portion 1, a 'WetSep' wastewater treatment system was installed to treat wastewater from vehicle washing washing. For Portion WAII, surface runoff collection system is also installed near the site access. Also, concrete sand bag bunds are provided near seafront of Portion WAII to prevent wastewater flowing into the sea.	
					Despite, the Contractor was reminded to fully implement the relevant water quality mitigation measures according to the EM&A Manual on site. The Contractor was also recommended to provide training for all workers again to increase awareness of their environmental responsibilities and properly collect and treat all wastewater generated due to construction works.	
36	25 th March 2017	Not Specified / Construction Works of TKO Portal	Public	The complainant complaint about the construction dust impact due to marine works and construction of tunnel of this Project.	The major source of construction dust and noise nuisance was site formation works for TKO Portal and marine works for construction of temporary barging facilities As per investigation, the following environmental mitigation measures are implemented by the Contractor: Provision of frequent watering including watering of eight times a day on active work area, exposed area and paved haul roads; Installation of automatic sprinklers for water spray to minimize dust generation; Shotcreting or hydroseeding to surface of TKO Portal site formation; Provision of wheel washing to vehicles out of site; Covering of dusty slope surface by impervious material such tarpaulin sheets. During the weekly site inspections by the Environmental Team (ET), no deficiencies about exhaust gas or black smoke generation was observed from the Powered Mechanical Equipment (PME) on site of construction of TKO Portal. Air quality impact due to exhaust gas or black smoke emission from PME is considered insignificant from the Project.	Closed
37	6 th April 2017	1 Apr 2017 / Slope works near Sin Fat Road Tennis Court	Public	The complainant complained the smell and dust generated by the slope works near Sin Fat Road Tennis Court on 1 April 2017. He suspected that the	See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
				shotcrete may contain toxic substances and may affect the health.		
38	4 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	黎樹濠議員	The complainant complained about construction noise nuisance near Nga Lai House, Yau Lai Estate and lack of noise mitigation measures during construction works.	breaking work was carried out in May 2017 by excavator-mounted breakers and drill rig at Portion IVC, which is in close vicinity of the complainant. Also, 2 nos. of excavator / drill rig were operated in May 2017 for excavation and drilling and rock hill. Noise nuisance concerned by the complainant is considered due to the high noise level emission	Closed
39	8 th May 2017	Not Specified / Construction site near Yau Lai Estate	黎樹濠議員	The complainant complained about construction noise nuisance and air pollution generated by this Project.	during use of these Powered Mechanical Equipment (PME). The Contractors had implemented environmental mitigation measures on site according to the EM&A Manual to reduce air quality impact and noise nuisance to the vicinity. Weekly Environmental Site Inspection has been on-going in May 2017. Recommendations was made on site by the Engineer and the ET to increase the effectiveness of the noise mitigation measures. According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 4, 10 and 16 May 2017. Similarly, no Limit Level Exceedance was recorded in May 2017 at Noise Monitoring Station CM1 and CM2. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	Closed
40	9 th May 2017	Not Specified / Construction of Road P2 near Ocean Shores	Public	The complainant complained about noise and environmental nuisance resulting from the piling works.	Major construction activities near Ocean Shores in early May included sheetpiling works and pre-boring works for construction of Road P2. Powered Mechanical Equipments (PME) operated included drilling rigs and piling rigs (vibration hammer), which are considered to be the source of noise nuisance resulting from piling work. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved Noise Mitigation Plan. Movable temporary noise barrier is erected on ground in vicinity of the piling areas to reduce noise emission during piling works. Acoustic material are also hanged on the piling rigs to shield noise from the Powered Mechanical Equipment (PME) to nearby noise sensitive receivers. According to the regular noise monitoring conducted at Noise Monitoring Stations CM6(A) and CM7(A), no Limit Level Exceedance was recorded	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
					from 1- 14 May 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse noise impact was brought to the nearby sensitive receivers by the works of this Project.	
41	10 th May 2017	Not Specified / Construction of Road P2 near Ocean Shores	Public	The complainant complained about noise nuisance from the use of the generators until midnight.	During evening time, two generators were operated between 7pm - 11pm for site office use only. No generators were used until midnight according to the Contractor. Additional temporary noise barrier is installed by the Contractor to screen noise due to use of generators during evening time	Closed
42	10 th May 2017	Not Specified / Slope works near Sin Fat Road Tennis Court	Public	The complainant complained about the generation of construction dust from this Project	See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed
43	15 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	黎樹濠議員	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
44	16 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Public	The complainant complained about construction noise nuisance during construction works at work site near Nga Lai House, Yau Lai Estate from 8 am to 7 pm.	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
45	17 th May 2017	3 rd May 2017 / Marine Works Area in TKO Side	Public	The complainant complained about the noisy ongoing construction works on a public holiday.	operated for the marine works during this period no violation of CNP (No. GW-RE0317-17) conditions is observed during the time of complaint. The Engineer and the Environmental Team have reminded the contractor(s) to minimize construction works during public holidays or	
46	25 th May 2017	Not Specified / Construction site near Tin Hau Temple	茶果嶺鄉民聯誼 會主席羅悅屏	The complainant complaint about the noisy rock breaking works near Tin Hau Temple and poor efficiency of vehicle wheel washing on site.	restricted hours to minimize noise nuisance to the nearby residents. According to information provided by the Contractor of the Project, excavation and rock breaking by 1 no. of excavator/excavator-mounted breaker was carried out intermittently during daytime of the time of complaint near Tin Hau Temple. The tip of the breaker is wrapped with acoustic blanket and followed by erection of noise barrier. A wheel washing bay had been installed at the site entrance on Cha Kwo	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Details of Complaint	Investigation/ Mitigation Action	File Closed
					Ling Road to construction of Lam Tin Interchange. A 'WetSep wastewater treatment system was installed to treat wastewater from vehicle washing washing. The Contractor was reminded to fully implement on site the relevan	
					noise and water quality mitigation measures according to the EM&A Manual and the approved Noise Mitigation Plan.	
47	27 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	Public	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed

Note (*): The complaints were received in this reporting period and yet to be included in the previous Monthly EM&A Reports.

Cumulative Complaint Log since commencement of Project

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
Total	47	0	0

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report (May 2017)

Cumulative Log for Notifications of Summons

Contract No,	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02						
NE/2015/03						

Cumulative Log for Successful Prosecutions

Contract No,	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02						
NE/2015/03						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Monthly Summary Waste Flow Table for 2017

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	40.484	1.350	22.688	5.063	12.733	0.000	0.000	0.257	0.000	0.000	0.292
February	23.357	5.159	12.911	3.874	6.572	0.000	0.000	0.000	0.000	1.000	0.488
March	20.078	2.885	6.359	11.713	2.006	0.000	0.000	0.120	0.000	0.000	0.284
April	13.516	0.070	4.862	7.751	0.903	0.000	0.000	0.151	0.000	0.000	0.396
Мау	49.156	0.380	12.420	36.168	0.568	0.000	0.000	0.000	0.000	0.000	0.189
June											
Sub-total	146.591	9.844	59.240	64.569	22.782	0.000	0.000	0.528	0.000	1.000	1.649
July											
August											
September											
October											
November											
December											
Total	146.591	9.844	59.240	64.569	22.782	0.000	0.000	0.528	0.000	1.000	1.649

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

Monthly Summary Waste Flow Table for 2017 Year

Contract No. NE/2015/02

		Actual Quant	tities of Inert C&I) Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity	Hard Rock and	Reused in the	Reused in other	Disposal as	Imported Fill	Metals	Paper /	Plastics	Chemical Waste	Other, e.g.
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	1.02115	0.00000	0.00000	0.00000	1.02115	0.00000	0.00000	0.00000	0.00000	0.00000	0.02306
Feb	1.04554	0.00000	0.00000	0.00000	1.04554	0.00000	0.00000	0.00000	0.00000	0.00000	0.01994
Mar	0.03860	0.00000	0.00000	0.00000	0.03860	0.00000	0.00000	0.00000	0.00000	0.00000	0.03012
Apr	0.02184	0.00000	0.00000	0.00000	0.02184	0.00000	0.00000	0.00000	0.00000	0.00000	0.18326
May	0.05099	0.00000	0.00000	0.00000	0.05099	0.00000	0.00000	0.00000	0.00000	0.00000	0.11508
June											
SUB-											
TOTAL											
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
TOTAL	2.17811	0.00000	0.00000	0.00000	2.17811	0.00000	0.00000	0.00000	0.00000	0.00000	0.37146

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002 Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005
Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Wing Lee (SK) Construction Company Limited	Rev. No.	Draft
NE/2015/03 - Environmental Management Plan	Issue Date	16 Dec 2016
Appendices - Appendix 13	issue Date	10 Dec 2010

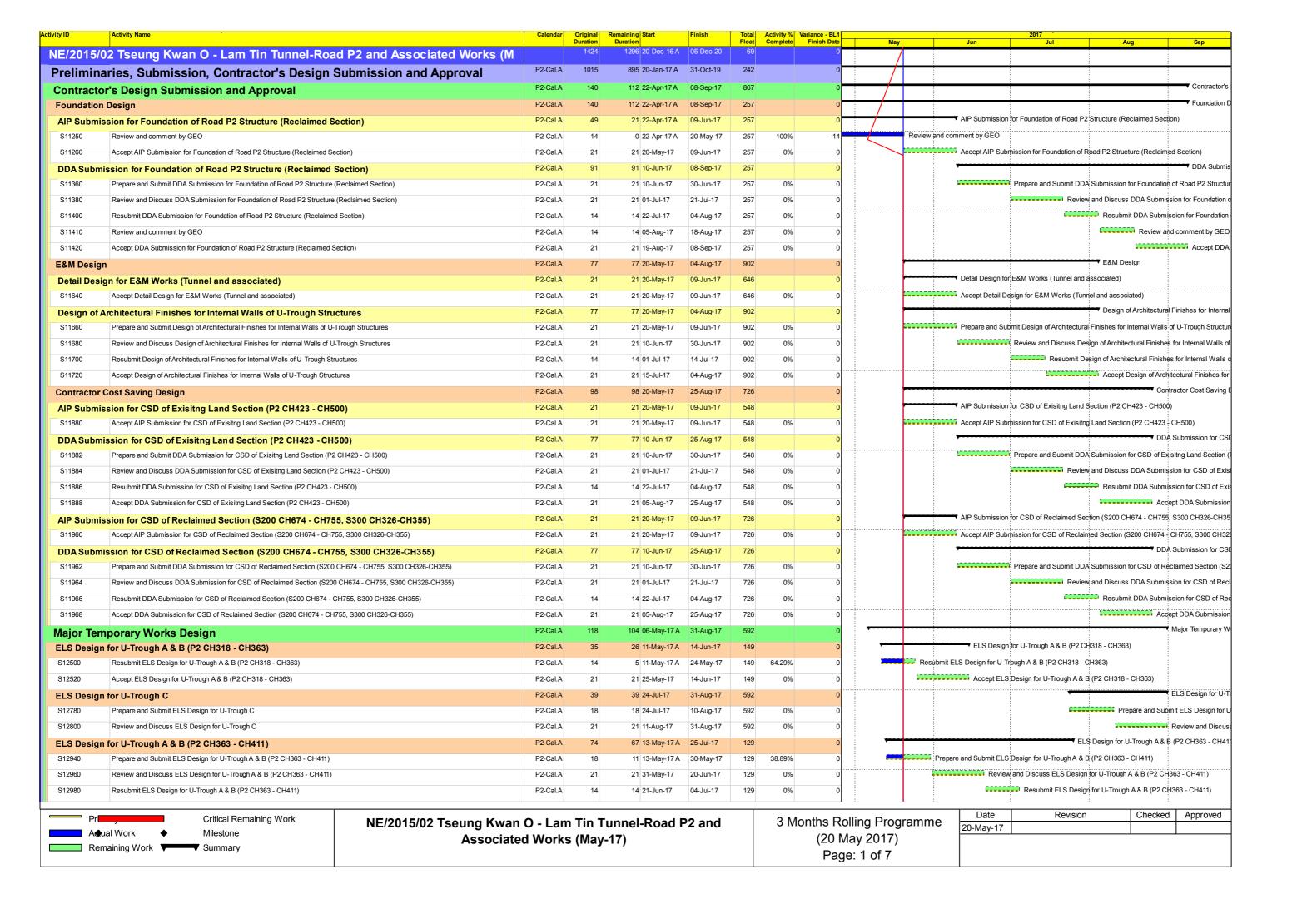
Contract No.: <u>NE/2015/03</u> Name of Department : <u>CEDD</u>

Monthly Summary Waste Flow Table for 2017 (year)

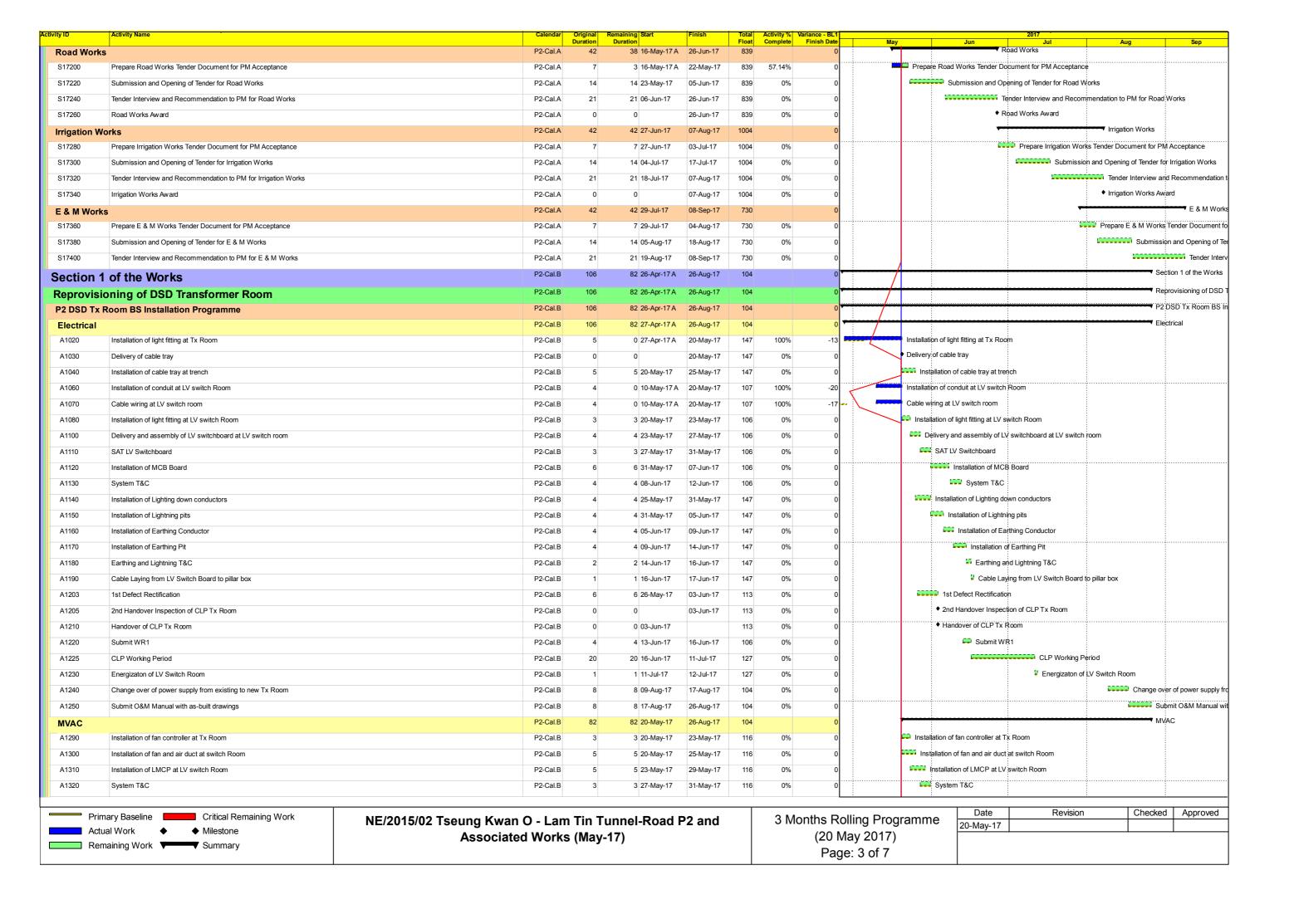
		Actual Quan	tities of Inert Co	&D Materials Ger	nerated Monthly		A	ctual Quantities of	of C&D Wastes (Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0.001982	0	0	0	0	0	0	0	0	0	0.001982
Mar	0.00146	0	0	0	0.00146	0	0	0	0	0	0
Apr	0.008668	0	0	0	0.0075	0	0	0	0	0	0.001168
May	0.01052	0	0	0	0	0	0	0	0	0	0.01052
June											
Sub-total											
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	0.02263	0	0	0	0.00896	0	0	0	0	0	0.01367

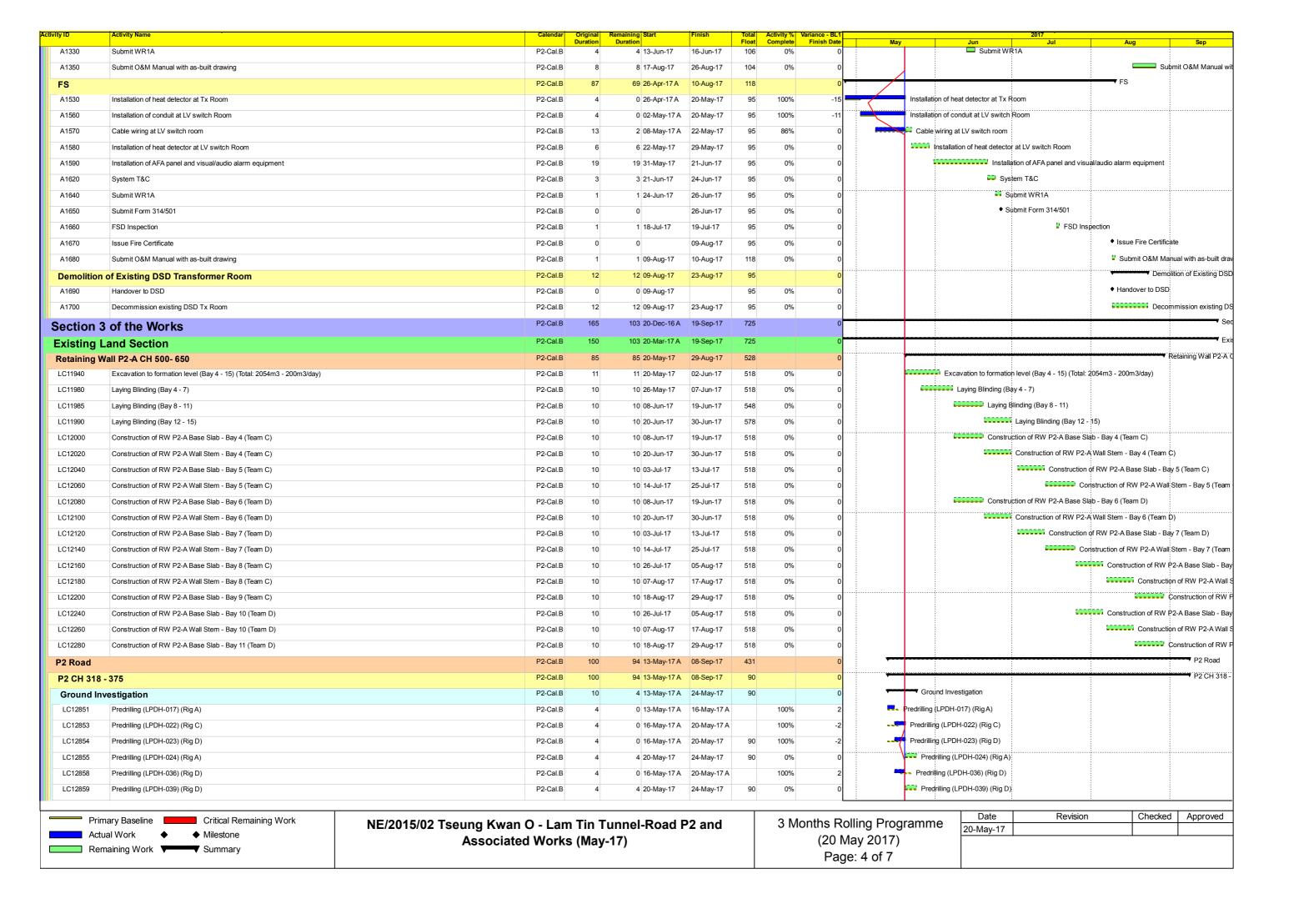
Notes: (1) The performance targets are given in PS Clause 6.14.

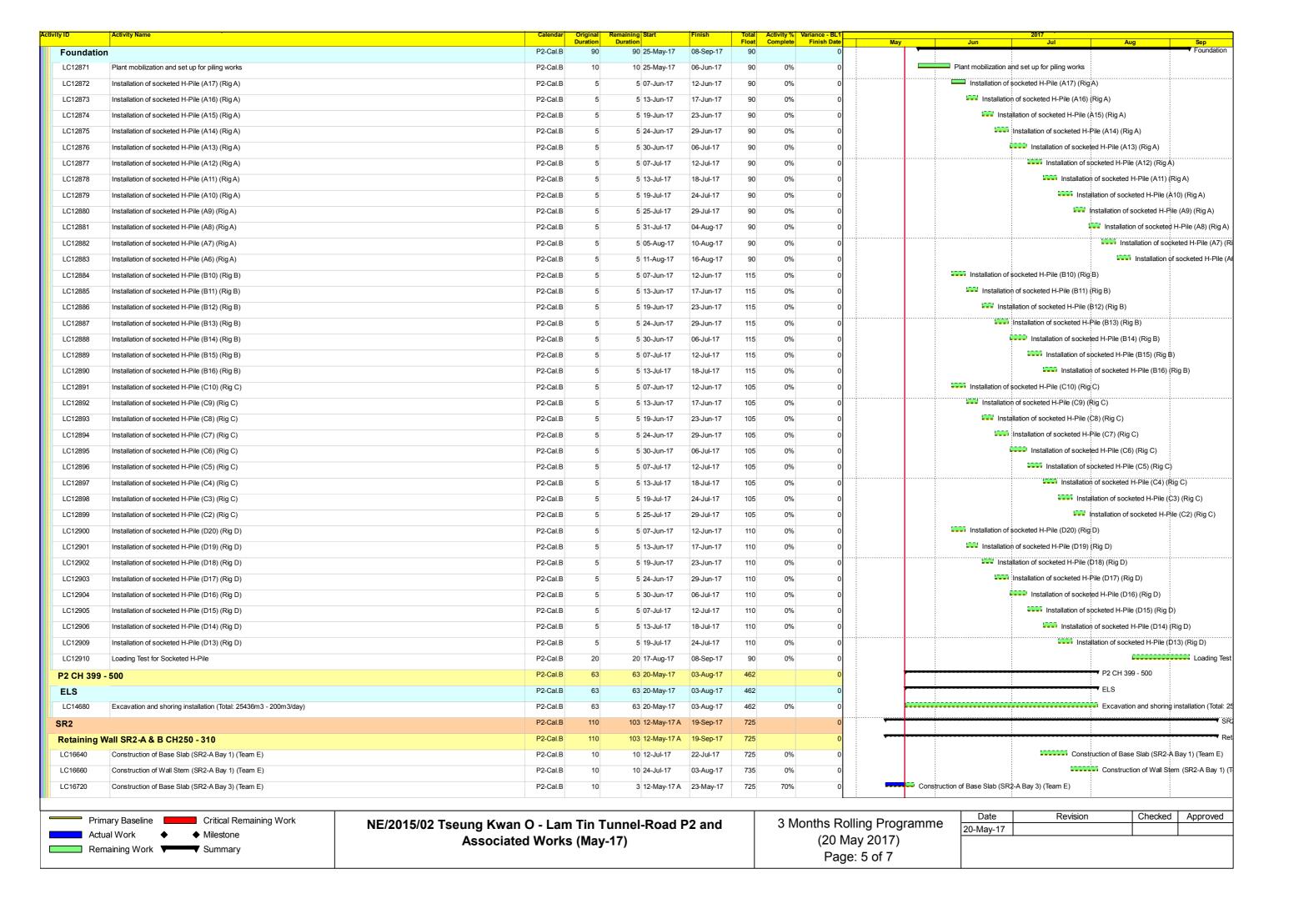
The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials. (2)

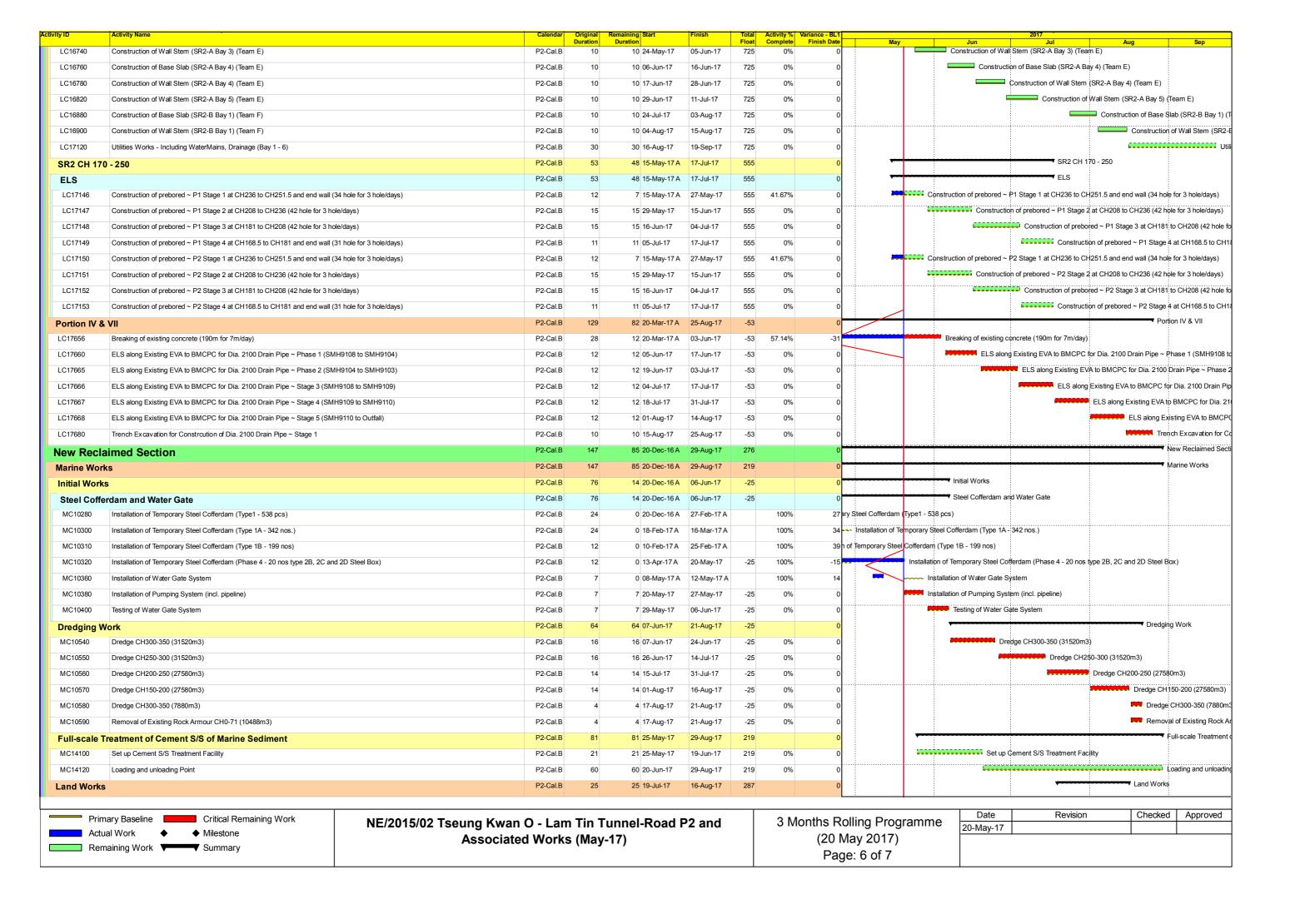

The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the works is equal to or exceeding 50,000 m₃.


APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME


High Level 3 Months Look Ahead Programme


Activities	Jun-17	Jul-17	Aug-17
Lam Tin Interchange			
Haul Road Construction			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2			
Site Formation - Area 2			
Site Formation - Area 3			
Site Formation - Area 4			
Temp Steel Bridge across CKL Road & Barging Facility			
Pipe Pile Wall - Area 2A			
Ground Investigation			
Main Tunnel			
Tunnel Team Mobilisation Works			
Construction Adit			
MT Excavation			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Temporary Cut Slope For BMCPC			
Temporary Barging Facilities & Temporary Works			


NE/2015/01 26/05/2017



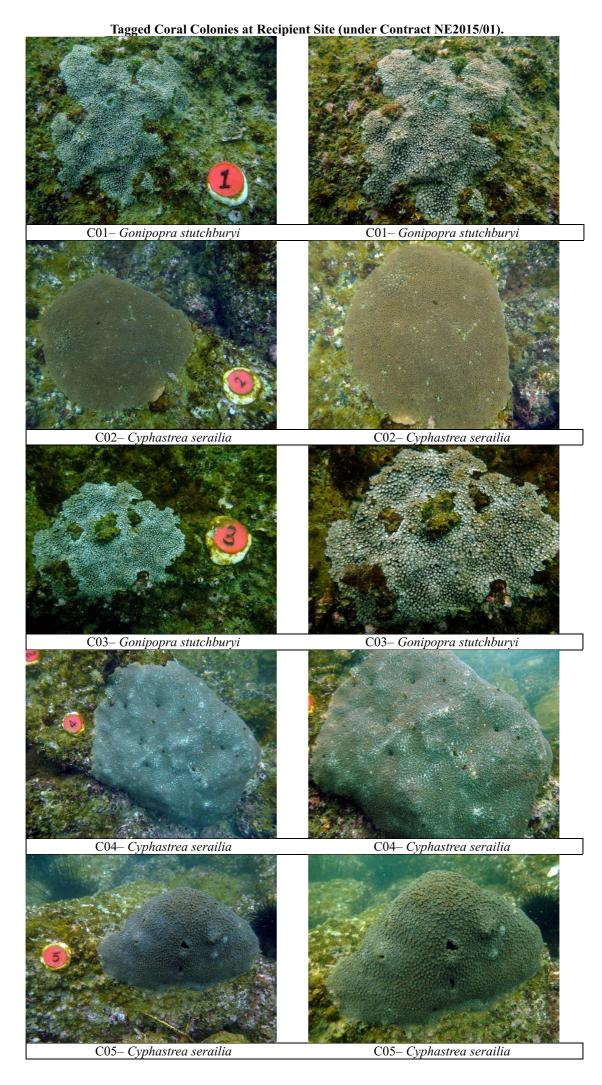
ivity ID Activity Name		Calendar	Original Duration	Remaining Start	Finish	Total	Activity %	Variance - BL1			2017	
						Float	Complete	Finish Date	May	Jun	Jul	Aug Sep
Road P2 Underpass		P2-Cal.B	25	25 19-Jul-17	16-Aug-17	287		0				Road P2 Underpass
Underpass		P2-Cal.B	25	25 19-Jul-17	16-Aug-17	287		0			▼	Underpass
Underpass P2 Ch 216 - 292 & P2 Ch 292 - 318		P2-Cal.B	25	25 19-Jul-17	16-Aug-17	287		0			-	Underpass P2 Ch 216 - 2
Foundation		P2-Cal.B	25	25 19-Jul-17	16-Aug-17	287		0		 		Foundation
LC17789 Installation of socketed H-Pile (A18) (Rig B)		P2-Cal.B	5	5 19-Jul-17	24-Jul-17	287	0%	0			Ins	stallation of socketed H-Pile (A18) (Rig B)
LC17790 Installation of socketed H-Pile (A19) (Rig B)		P2-Cal.B	5	5 25-Jul-17	29-Jul-17	287	0%	0				Installation of socketed H-Pile (A19) (Rig
LC17791 Installation of socketed H-Pile (A20) (Rig B)		P2-Cal.B	5	5 31-Jul-17	04-Aug-17	287	0%	0				Installation of socketed H-Pile (A20)
LC17792 Installation of socketed H-Pile (A21) (Rig B)		P2-Cal.B	5	5 05-Aug-17	10-Aug-17	287	0%	0				Installation of socketed H-Pile (
LC17793 Installation of socketed H-Pile (C14) (Rig B)		P2-Cal.B	5	5 11-Aug-17	16-Aug-17	287	0%	0		 		Installation of socketed H-
LC17794 Installation of socketed H-Pile (C15) (Rig D)		P2-Cal.B	5	5 25-Jul-17	29-Jul-17	287	0%	0				Installation of socketed H-Pile (C15) (Rig
LC17795 Installation of socketed H-Pile (C16) (Rig D)		P2-Cal.B	5	5 31-Jul-17	04-Aug-17	287	0%	0				Installation of socketed H-Pile (C16)
LC17796 Installation of socketed H-Pile (D24) (Rig D)		P2-Cal.B	5	5 05-Aug-17	10-Aug-17	287	0%	0				Installation of socketed H-Pile (
LC17797 Installation of socketed H-Pile (D25) (Rig D)		P2-Cal.B	5	5 11-Aug-17	16-Aug-17	287	0%	0				Installation of socketed H-
Section 4 of the Works - Preservation	and Protection of Existing Trees	P2-Cal.A	1424	1296 12-Jan-17 A	05-Dec-20	-69		0		 		
.C25260 Preservation and Protection of Existing Trees	•	P2-Cal.A	1424	1296 12-Jan-17 A	05-Dec-20	-69	8.99%	0	;	.		
Section 5 of the Works - Landscaping	ı Works	P2-Cal.B	180	79 12-Jan-17 A	22-Aug-17	-21		0		 	 	Section 5 of the Wor
C25320 Tree Transplanting Preparation Works	,	P2-Cal.B	180	79 12-Jan-17 A	22-Aug-17	-21	56.11%	0		 <u>:</u>	:	: Tree Transplanting P
LG25520 Tree Transplaining Preparation Works		PZ-Cal.b	100	19 12-Jan-17 A	22-Mug-17	-21	50.11%	0		 :		Tree mansplanting F

Date	Revision	Checked	Approved
20-May-17			

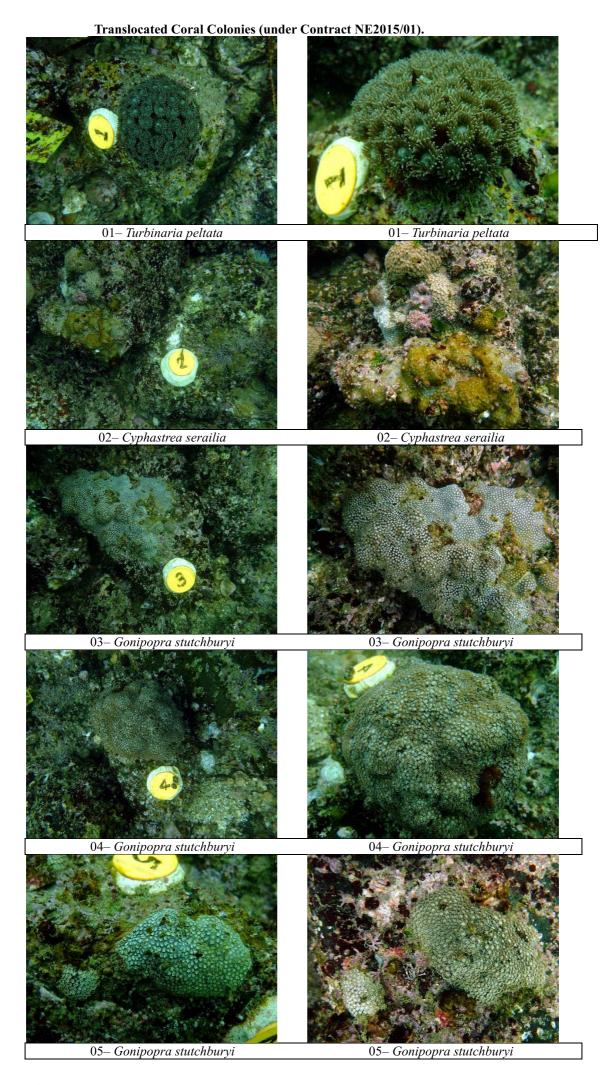
Activities LD Task	<u> </u>		Remaining Durat		Duration	Early Start	Early Finish	Late Start	Late Finish	Actual Start	Actual Finish	Predecessors Successors	Total Slack	
Gen	neral information	Cal A	0 days	100%	11 days	6/12/16	16/12/16	6/12/16	16/12/16	6/12/16	16/12/16		0 days	
K00001 Co	Ontract Date	Cal A	0 days	100%	0 days	6/12/16	6/12/16	6/12/16	6/12/16	6/12/16	6/12/16	4	0 days	♦ 6/12
	roject Start Date		0 days	100%	1 day	16/12/16	16/12/16	16/12/16	16/12/16		16/12/16	3 29.24:25:50:51:52:53:54:58:28:87	SS+327 days:210 days	
Site	Access Date(Portion I,II,III,IV)	Cal A	0 days	100%	0 days	16/12/16	16/12/16	16/12/16	16/12/16	16/12/16	16/12/16		0 days	♦ 16/12
Com	mpletion Date	Cal A	383.8 days	0%	383.8 days	13/4/19	1/5/20	13/4/19	1/5/20	NA	NA		0 days	
	Completion date for Section 1	Cal A	0 days	0%	0 days	30/4/19	30/4/19	30/4/19	30/4/19	NA	NA	516;410;110;35;495;498;519;513	0 days	₫ቀ 304
	Completion date for Section 2	Cal A	0 days	0%	0 days	13/4/19	13/4/19	13/4/19	13/4/19	NA	NA	522 525	0 days	○ 134
	Completion date for Section 3	Cal A	0 days	0%	0 days	13/4/19	13/4/19	13/4/19	13/4/19	NA	NA		0 days	♦ 13/4
K00010 Co	Completion date for Section 4	Cal A	0 days	0%	0 days	1/5/20	1/5/20	1/5/20	1/5/20	NA	NA	528	0 days	
Area	a Handover date for (Work Area A & B)	Cal A	0 days	0%	0 days	15/4/19	15/4/19	15/4/19	15/4/19	NA	NA		0 days	■ ◆ 154
Prel	liminary,General,Design Submission	Cal A	351.68 days	40%	586 days	16/12/16	24/7/18	16/12/16	24/7/18	16/12/16	NA		0 days	
Maj	jor subcontractor(s) award dates	Cal A	52.1 days	76%	214 days	17/12/16	18/7/17	17/12/16	18/7/17	17/12/16	NA		0 days	
Proc	curement of Major Materials	Cal A	494.52 days	4%	515 days	26/4/17	22/9/18	26/4/17	22/9/18	26/4/17	NA		0 days	
Gen	neral works	Cal B	80.82 days	28%	112 days	17/1/17	22/6/17	17/1/17	22/6/17	17/1/17	NA		0 days	
	tion 1	Cal B	145.37 days 12.08 days	31% 88%	211.4 days		18/11/17	6/2/17	18/11/17	6/2/17	NA		0 days	
	redrilling works(approx. 4 nos.) Discover uncharted utitilies along soldier pile alignment	Cal B Cal B	0 days	100%	97.5 days 37.8 days		20/6/17 23/5/17	6/2/17 29/3/17	20/6/17 23/5/17	6/2/17 29/3/17	NA 23/5/17		0 days	
	et up temporary working platform	Cal B	26.89 days	20%	33.8 days		8/6/17	25/4/17	8/6/17	25/4/17	NA		0 days 0 days	Fert
											IVA			
Co	Construction of soldier wall	Cal B	154.17 days	3%	159.2 days	27/5/17	18/11/17	27/5/17	18/11/17	NA	NA		0 days	La
Co	Construction of retaining wall(5 Bays)(25.8m)(Team B & C)	Cal B	120.35 days	10%	133.2 days	19/4/17	14/10/17	19/4/17	14/10/17	19/4/17	NA		0 days	
Pilir	ng works(West side)	Cal B	99 days	0%	99 days	4/10/17	15/2/18	4/10/17	15/2/18	NA	NA		0 days	
Pilir	ng works(East side)(Pier 3)(6 nos. H-pile)	Cal B	50 days	0%	50 days	4/8/17	10/10/17	4/8/17	10/10/17	NA	NA		0 days	ш-1
Pipe	e cap for Pier 1 / 2 (Team C & B) & Lift Shaft(Team C)	Cal B	29 days	0%	29 days	15/2/18	28/3/18	15/2/18	28/3/18	NA	NA		0 days	шн
Con	nstruction of FT-1 & FT-2(Team C)	Cal B	35 days	0%	35 days	14/4/18	1/6/18	14/4/18	1/6/18	NA	NA		0 days	LET .
Pipe	e cap for Pier 3(Team A)	Cal B	18 days	0%	18 days	15/2/18	14/3/18	15/2/18	14/3/18	NA	NA		0 days	LIFT
Pier	r 1 / 2 (GL 1-2)(Team C) & (GL 2-3)(Team B)	Cal B	43 days	0%	43 days	9/3/18	10/5/18	9/3/18	10/5/18	NA	NA		0 days	<u>—</u>
Con	nstruction of Pier 3(GL 4)(Team A)	Cal B	36 days	0%	36 days	14/3/18	5/5/18	14/3/18	5/5/18	NA	NA		0 days	<u>un</u>
Brid	dge construction	Cal B	389 days	0%	389 days	2/9/17	18/2/19	2/9/17	18/2/19	NA	NA		0 days	
Mai	in components on footbridge	Cal B	436 days	0%	436 days	8/9/17	30/4/19	8/9/17	30/4/19	NA	NA		0 days	
Othe	ners	Cal B	50 days	0%	50 days	1/2/19	9/4/19	1/2/19	9/4/19	NA	NA		0 days	
	tion 2 - Preservation and Protection of Existing Trees		504 days	0%	504 days		13/4/19	26/5/17		NA	NA		0 days	
	tion 3 - Landscape Works		550.8 days	196	554.2 days		13/4/19	16/3/17	13/4/19		NA		0 days	
					_					10/3/1/				
Sect	tion 4 - Establishment Works	Cal A	367 days	0%	367 days	30/4/19	1/5/20	30/4/19	1/5/20	NA	NA		0 days	L L

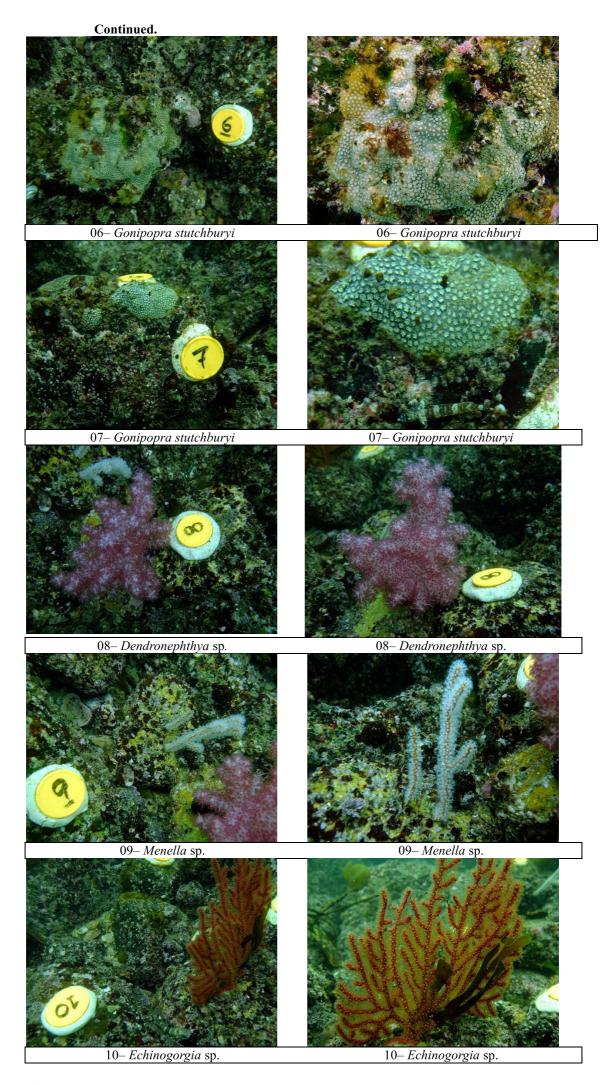
APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

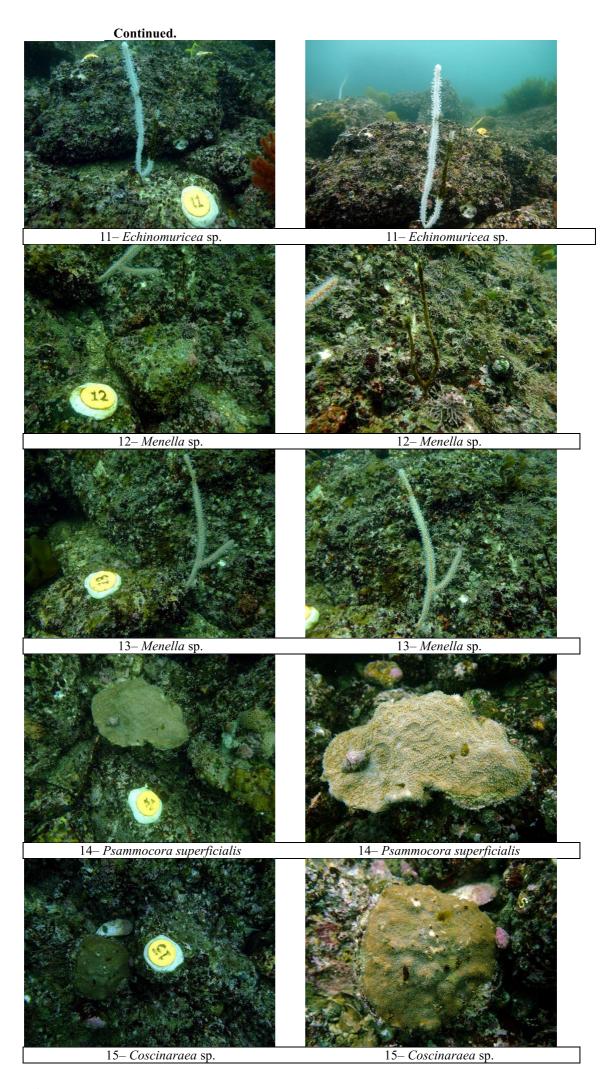
APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

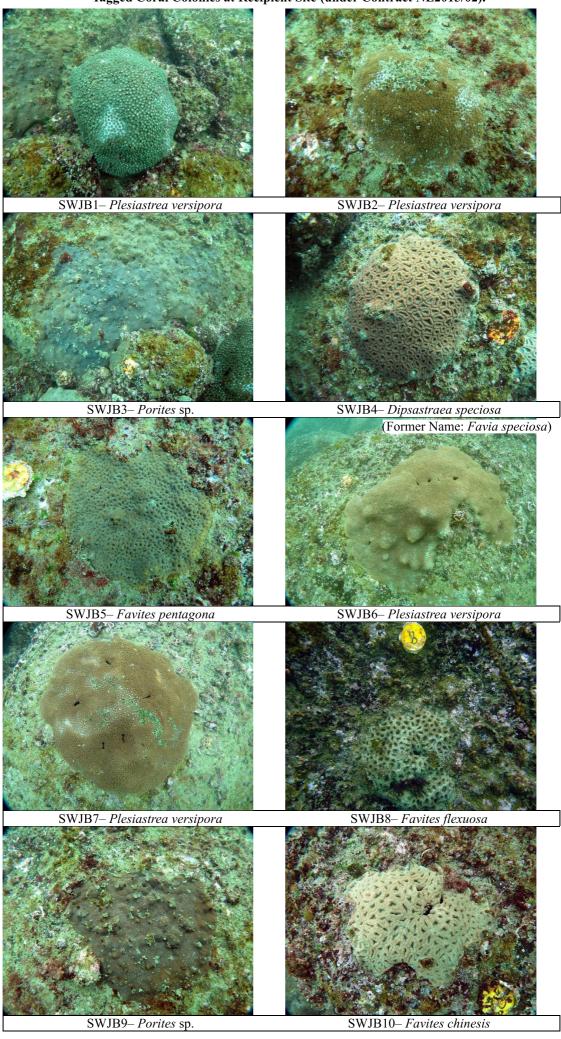

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	2-May-17	8:29	Sunny	22	0	0	20.9
	2-May-17	13:03	Sunny	27	0	0	20.9
	4-May-17	8:28	Sunny	22	0	0	20.9
	4-May-17	13:05	Sunny	28	0	0	20.9
	5-May-17	8:31	Cloudy	23	0	0	20.9
	5-May-17	13:00	Cloudy	28	0	0	20.9
	6-May-17	8:29	Sunny	21	0	0	20.9
	6-May-17	13:07	Sunny	26	0	0	20.9
	8-May-17	8:30	Cloudy	23	0	0	20.9
	8-May-17	13:05	Cloudy	27	0	0	20.9
	9-May-17	8:28	Cloudy	22	0	0	20.9
	9-May-17	13:03	Cloudy	28	0	0	20.9
	10-May-17	8:30	Sunny	21	0	0	20.9
	10-May-17	13:02	Sunny	27	0	0	20.9
	11-May-17	8:30	Cloudy	22	0	0	20.9
	11-May-17	13:00	Cloudy	28	0	0	20.9
	12-May-17	8:30	Sunny	23	0	0	20.9
	12-May-17	13:01	Sunny	27	0	0	20.9
	13-May-17	8:28	Cloudy	22	0	0	20.9
	13-May-17	13:00	Cloudy	26	0	0	20.9
	15-May-17	8:30	Sunny	24	0	0	20.9
	15-May-17	13:02	Sunny	28	0	0	20.9
	16-May-17	8:28	Cloudy	26	0	0	20.9
n	16-May-17	13:00	Cloudy	29	0	0	20.9
Portion III	17-May-17	8:30	Sunny	24	0	0	20.9
	17-May-17	13:05	Sunny	29	0	0	20.9
	18-May-17	8:30	Cloudy	25	0	0	20.9
	18-May-17	13:02	Cloudy	28	0	0	20.9
	19-May-17	8:30	Sunny	28	0	0	20.9
	19-May-17	13:30	Sunny	28	0	0	20.9
	20-May-17	8:30	Sunny	28	0	0	20.9
	20-May-17	13:25	Sunny	28	0	0	20.9
	22-May-17	8:45	Sunny	28	0	0	20.9
	22-May-17	13:25	Sunny	28	0	0	20.9
	23-May-17	8:35	Cloudy	28	0	0	20.9
	23-May-17	13:15	Cloudy	29	0	0	20.9
	24-May-17	8:25	Rainy	29	0	0	20.9
	24-May-17	13:30	Rainy	30	0	0	20.9
	25-May-17	8:35	Cloudy	28	0	0	20.9
	25-May-17	13:25	Cloudy	30	0	0	20.9
	26-May-17	8:25	Sunny	28	0	0	20.9
	26-May-17	13:40	Sunny	30	0	0	20.9
	27-May-17	8:40	Sunny	29	0	0	20.9
	27-May-17	13:35	Sunny	31	0	0	20.9
	29-May-17	8:45	Sunny	29	0	0	20.9
	29-May-17	13:36	Sunny	31	0	0	20.9
	31-May-17	8:35	Sunny	29	0	0	20.9
	31-May-17	13:37	Sunny	31	0	0	20.9

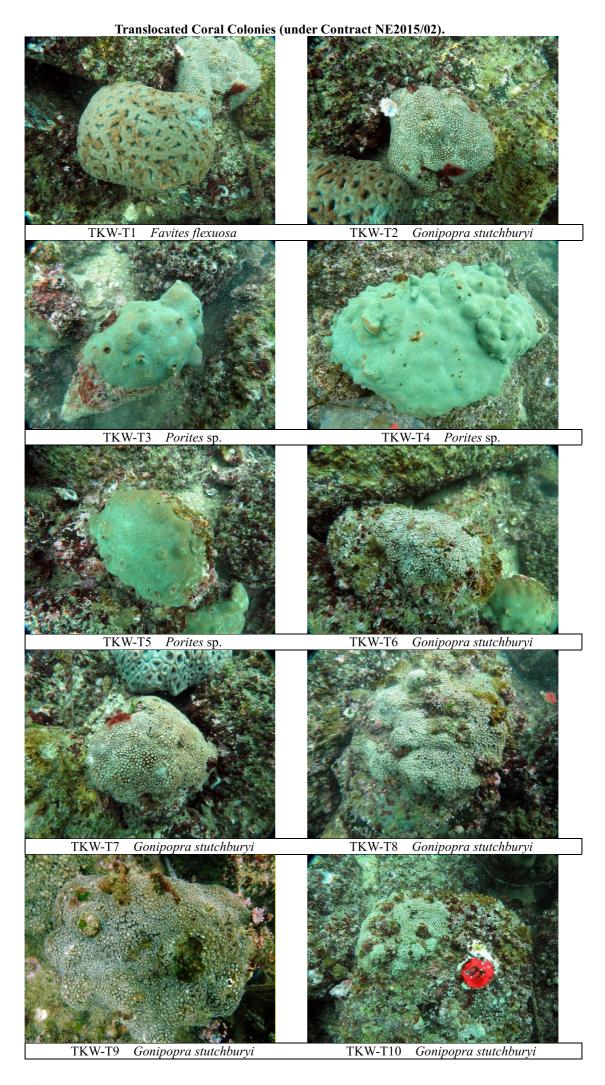
Methane **Portion III** - Methane (%) ----- Limit Level, 10% LEL 25 Limit Level, 20% LEL 20 15 % LEL 10 5 n **Carbon Dioxide Portion III** - Carbon Dioxide (%) ----- Limit Level, 0.5% 3.0 Limit Level, 1.5% 2.5 2.0 % 1.5 1.0 0.5 0.0 Date Oxygen **Portion III** Oxygen (%) ----- Limit Level, 19% Limit Level, 18% 24 23 22 21 20 % 19 18 17 16 15 Date Agreement No. CE 59/2015 (EP) Title Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -N.T.S No. Design and Construction MA16034 Date Appendix Graphical Presentation of Landfill Gas Measurement R May 17

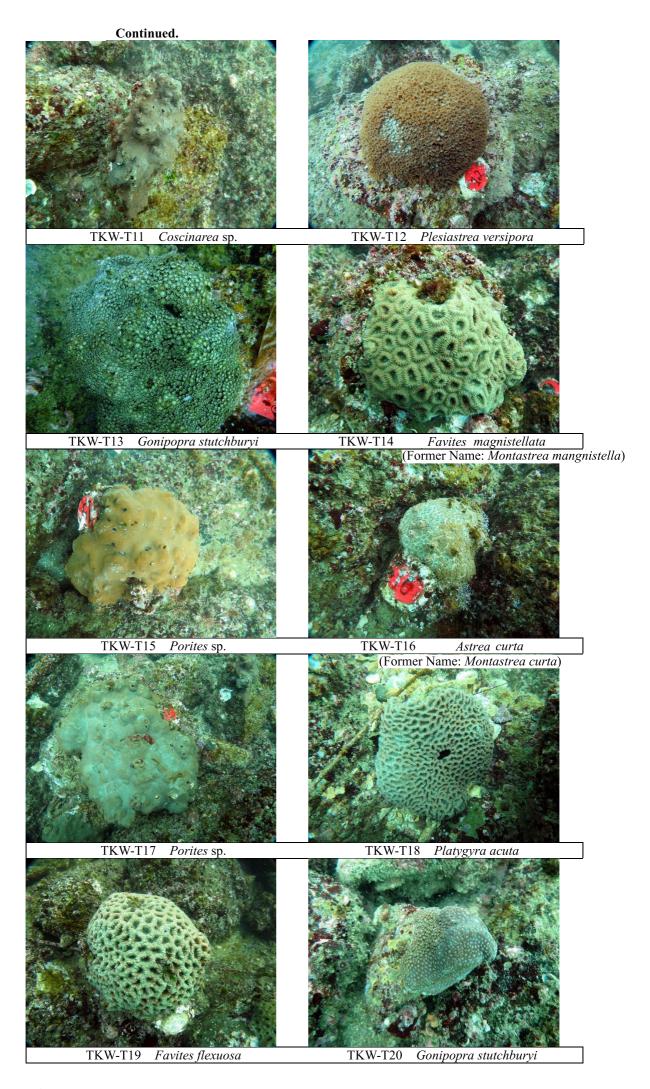

APPENDIX S UPDATED CONSTRUCTION NOISE ASSESSMENT

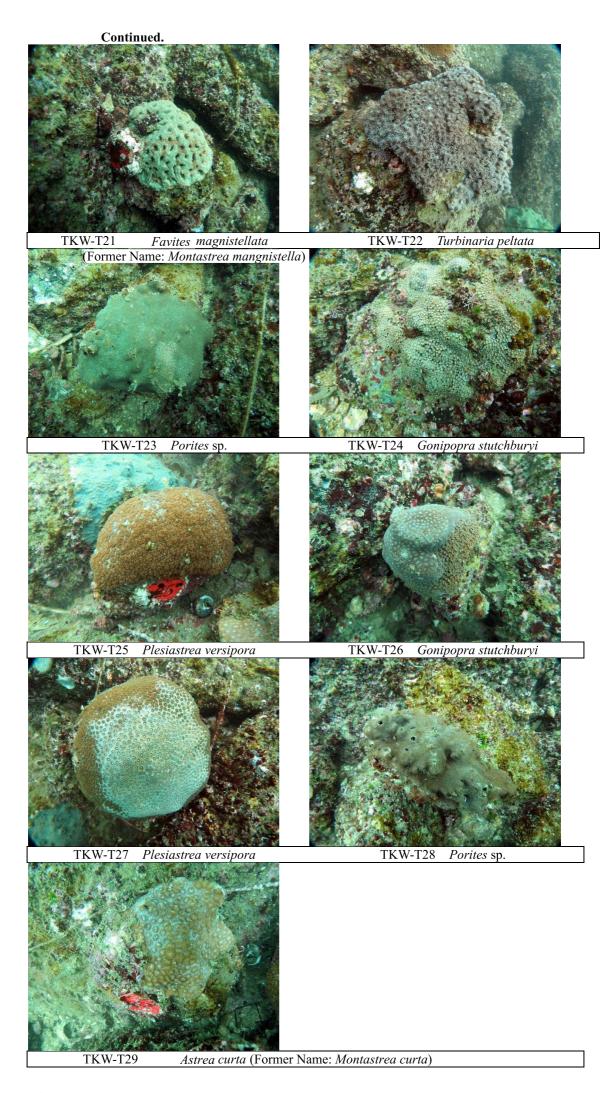

No update on Construction Noise Assessment in the reporting month


APPENDIX T PHOTO RECORD OF POST-TRANSLOCATION CORAL MONITORING SURVEY









Tagged Coral Colonies at Recipient Site (under Contract NE2015/02).

