Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for August 2017

(version 1.0)

Approved By

(Dr. Priscilla Choy, Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY Introduction Environmental Monitoring Works Key Information in the Reporting Month Future Key Issues	1 1 3
1.	INTRODUCTION	4
	Purpose of the Report	
2.	PROJECT INFORMATION	6
	Background	6 7 8
3.	AIR QUALITY	11
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Results and Observations	11 11 12
4.	NOISE	16
	Monitoring Requirements Monitoring Locations Monitoring Equipments Monitoring Methodology and QA/QC Procedure Results and Observations Updated Construction Noise Assessment	16 16 17
5.	WATER QUALITY	19
	Monitoring Requirements Monitoring Locations Monitoring Equipments Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision Results and Observations	
6.	ECOLOGY	26
	Post-Translocation Coral Monitoring	26

	Results and Observations	27
7.	CULTURAL HERITAGE	32
	Monitoring Requirement	32
	Monitoring Locations	
	Monitoring Equipment	32
	Monitoring Methodology	
	Alert, Alarm and Action Levels	
	Results	
	Mitigation Measures for Cultural Heritage	34
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	35
9.	LANDFILL GAS MONITORING	36
	Monitoring Requirement	36
	Monitoring Parameters and Frequency	36
	Monitoring Locations	
	Monitoring Equipment	
	Results and Observations	37
10.	ENVIRONMENTAL AUDIT	38
	Site Audits	38
	Implementation Status of Environmental Mitigation Measures	
11.	WASTE MANAGEMENT	39
12.	ENVIRONMENTAL NON-CONFORMANCE	40
	Summary of Exceedances	40
	Summary of Environmental Non-Compliance	40
	Summary of Environmental Complaint	40
	Summary of Environmental Summon and Successful Prosecution	40
13.	FUTURE KEY ISSUES	41
	Key Issues for the Coming Month	42
	Monitoring Schedule for the Next Month	
14.	CONCLUSIONS AND RECOMMENDATIONS	43
	Conclusions	43
	Recommendations	44

LIST OF TABLES

Table I	Non-compliance (exceedance) Recorded for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 2.1	Key Project Contacts
Table 2.2	Summary Table for Major Site Activities in the Reporting Month
Table 2.3	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.4	Summary of the Status of Environmental Licences, Notification and Permits
Table 3.1	Locations for Air Quality Monitoring
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Major Dust Source during Air Quality Monitoring
Table 4.1	Noise Monitoring Stations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Major Noise Source during Noise Monitoring
Table 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 5.1	Groundwater Quality Monitoring Stations
Table 5.2	Marine Water Quality Monitoring Stations
Table 5.3	Water Quality Monitoring Equipment
Table 5.4	Water Quality Monitoring Parameters and Frequency
Table 5.5	Methods for Laboratory Analysis for Water Samples
Table 5.6	Summary of Groundwater Quality Monitoring Results
Table 6.1	Location and Physical attributes of the Coral Recipient Site
Table 6.2a	Original Corals under Contract No. NE/2015/01
Table 6.2b	Translocated Corals under Contract No. NE/2015/01
Table 6.3a	Original Corals under Contract No. NE/2015/02
Table 6.3b	Translocated Corals under Contract No. NE/2015/02
Table 7.1	Vibration Monitoring Equipment
Table 7.2	AAA Levels for Monitoring for Cultural Heritage
Table 7.3	Vibration Monitoring Results
Table 9.1	Landfill Gas Monitoring Equipment
Table 13.1	Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory
	Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Appendix S	Updated Construction Noise Assessment
Appendix T	Photo record of Post-Translocation Coral Monitoring Survey

EXECUTIVE SUMMARY

Introduction

- 1. This is the 10th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in August 2017.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

Environmental Monitoring	No. of Non-compliance (Exceedance)		No. of Non-compliance (Exceedance) due to Construction Activities of this Project		Action Taken
	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	0	0	0	0	N/A
Groundwater Quality	N/A	N/A	N/A	N/A	N/A
Marine Water Quality	0	0	0	0	N/A
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A
Ecological	0	0	0	0	N/A
Cultural Heritage	0	0	0	0	N/A
Landfill Gas	0	0	0	0	N/A

Air Quality Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10. No Action/Limit Level exceedance was recorded.

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10. No Action/Limit Level exceedance was recorded.

Water Quality Monitoring

- 8. According to the information provided by the Contractor, tunnel boring and tunnel construction works commenced in Lam Tin side from July 2017. Action and Limit Level for groundwater monitoring is under review with consideration of monitoring results obtained from November 2016 to June 2017.
- 9. All marine water monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 and 25 August 2017 was postponed to 24 and 26 August 2017 respectively due to issue of Hurricane Signal No. 10 on 23 August 2017. No Action/Limit Level exceedance was recorded. The details should be referred to **Appendix K**.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

11. 3rd Post-translocation coral monitoring survey was carried out on 22 August 2017. No action/limit level was exceeded in the monitoring survey conducted in August 2017.

Monitoring on Cultural Heritage

12. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in April 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

13. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

14. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

15. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection for NE/2015/01, NE/2015/02 and NE/2015/03 on 30, 30, 14 August 2017 respectively. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

16. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

17. Summary of key information in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Table 11 Summary Table for Key Information in the Reporting Month					
Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received by Project Team / Complaint referred by EPD (August 2017)	8	Muddy water discharge / Landscape and Visual Impacts	Under investigation	On-going	
Complaint received by Project Team / Complaint referred by EPD (July 2017)	3	Construction dust and noise nuisance	Investigation completed (except Complaint no. 57 in Appendix O)	On-going	Details refer to App O
Complaint received by Project Team / Complaint referred by EPD (June 2017)	8	Waste/Chemical Management, Construction dust and noise nuisance	Investigation report for Construction dust and noise nuisance during public holiday is re- submitted and completed	Closed	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 18. The future key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 10th Monthly EM&A report summarizing the EM&A works for the Project in August 2017.

Purpose of the Report

1.2 This is the 10th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in August 2017.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: Contract Information summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring

- Section 9: **Landfill Gas Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan
- Section 10: **Environmental Site Inspection** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
- Section 11: Waste Management summarises the waste management data in the reporting month.
- Section 12: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
- Section 13: **Future Key Issues** summarises the impact forecast and monitoring schedule for the next three months.
- Section 14: Conclusions and Recommendation

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project is:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)
- 2.6 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role Contact Person		Phone No.	Fax No.	
CEDD	Project Proponent	Mr. Chiang Nin Tat, Eric	2301 1384	2739 0076	
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698	
Cinotech	Environmental Team	Dr. Priscilla Choy	2151 2089	3107 1388	
Cinotech		Ms. Ivy Tam	2151 2090	3107 1300	
AnewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648	

Monthly EM&A Report for August 2017

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

 Table 2.2
 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities (August 2017)		
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Haul Road Construction EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, 2, 3, 4 & Area 5 Pipe Pile wall – Area 2A Ground Investigation 	
		Main Tunnel	1) Construction of Tunnel Adit	
		TKO Interchange	 Haul Road Construction, Site Formation and Slope Works Temporary Barging Facilities & Temporary Works Temporary Cut Slope For BMCPC 	
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works			
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	Pre-bored H-Pile Excavation for lagging wall Construction of run-in		

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Environmental Freeedon/Mittigation Measures					
Construction Works	Major Environmental Impact	Control Measures			
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier 			

Monthly EM&A Report for August 2017

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

Contract No.	Permit / License No.	Valid Period		Status			
		From	To	Status			
Environmental Permit (EP)							
N/A	EP-458/2013/C	20/1/2017	N/A	Valid			
Notification pur	rsuant to Air Pollution Contro	(Construction D	ust) Regulation				
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid			
112/13/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid			
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid			
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid			
Billing Account	for Construction Waste Dispo	sal					
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid			
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid			
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid			
Vessel Billing A	ccount under construction wa	ste disposal charg	ging scheme				
NE/2015/01	Account No. 7027764	10/05/2017	10/08/2017	Expired on 10 August 2017			
1,2,2013,01	Account No. 7027764	22/08/2017	10/11/2017	Valid			
Registration of	Chemical Waste Producer						
NE/2015/01	Waste Producer No. 5218-290-L2881-02	22/08/2016	N/A	Valid			
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid			
NE/2015/02	Waste Producer No. 5213-838-C4094-01	23/08/2016	N/A	Valid			
NE/2015/03	Waste Producer No. 5213-265-W3435-04	19/07/2017	N/A	Valid			
Effluent Discha	rge License under Water Pollu	ution Control Oro	dinance				
	WT00025806-2016	22/11/2016	30/11/2021	Valid			
	WT00026212-2016	25/11/2016	30/11/2021	Valid			
NE/2015/01	WT00027354-2017	22/03/2017	31/03/2022	Valid			
	WT00027405-2017	22/03/2017	31/03/2022	Valid			
	WT-00028495-2017	11/08/2017	31/08/2022	Valid			
NE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid			
NE/2015/02	WT00027226-2017	23/02/2017	28/02/2022	Valid			

		_	
Monthly	EM&A	Report for	August 2017

Contract No.	Permit / License No.	Valid Period		Status	
Contract 110.		From	To	Status	
NE/2015/03	WT00027295-2017	20/03/2017	18/04/2019	Valid	
NE/2013/03	WT00027266-2017	08/03/2017	18/04/2019	Valid	
Construction N	oise Permit (CNP)				
	GW-RE0154-17	08/03/2017	05/09/2017	Valid	
	GW-RE0191-17	20/03/2017	19/09/2017	Valid	
	GW-RE0496-17	27/06/2017	26/08/2017	Expired on 26 August 2017	
NE/2015/01	GW-RE0501-17	27/06/2017	26/08/2017	Expired on 26 August 2017	
	GW-RE0508-17	27/06/2017	22/12/2017	Valid	
	GW-RE0534-17	06/07/2017	23/09/2017	Valid	
	GW-RE0571-17	24/07/2017	23/09/2017	Valid	
	GW-RE0097-17	15/02/2017	14/08/2017	Expired on 14 August 2017	
	GW-RE0281-17	13/04/2017	02/10/2017	Valid	
	GW-RE0414-17	02/06/2017	01/12/2017	Valid	
NE/2015/02	GW-RE0510-17	29/06/2017	27/08/2017	Expired on 27 August 2017	
NE/2015/02	GW-RE0516-17	29/06/2017	22/12/2017	Valid	
	GW-RE0620-17	08/08/2017	07/09/2017	Valid	
	GW-RE0656-17	27/08/2017	26/10/2017	Valid	
	GW-RE0670-17	29/08/2017	28/10/2017	Valid	
Marine Dumping Permit					
NE/2015/02	EP/MD/17-174	31/05/2017	30/09/2017	Valid	
INE/2013/U2	EP/MD/18-014	15/06/2017	14/12/2017	Valid	

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for August 2017

- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in August 2017.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
AM4(A) ^{(2) (*)}	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
AM5(A) ^(*)	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3 / LD-3B	2
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-531	0
	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	7
IIVC Complex	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Remove the red rubber cap from the AEROCET-531 inlet nozzle.
 - Turn on the power switch that is located on the right side of the AEROCET-531.
 - On power up the product intro screen is displayed for 3 seconds. The intro screen

displays the product name and firmware version.

- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5μm and 5μm channels will show the cumulative counts of particles larger than 0.5μm and 5μm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
 - a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
 - a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;

- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of $0.3\mu m$ diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Lovel Mater	SVAN 955 / 957	9
Integrating Sound Level Meter	BSWA 801	0
Calibrator	SV30A	2
Cambrator	Brüel & Kjær 4231	2

Monthly EM&A Report for August 2017

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2	$L_{10}(30 \text{ min})$			Façade
CM3	dB(A)			Façade
CM4	$L_{90}(30 \text{ min})$	0700-1900 hrs on	Once per	Façade
CM5	dB(A)	normal weekdays	week	Façade
CM6(A)	$L_{eq}(30 \text{ min})$			Free Field
CM7(A)	dB(A)			Free Field
CM8(A)				Façade

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

frequency weighting
time weighting
measurement time
: A
: Fast
: 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq}, L₉₀ and L₁₀ was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10. No Action/Limit Level exceedance was recorded.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The summary of exceedance record in the reporting month is shown in **Appendix K**.
- 4.12 The major noise source identified at the noise monitoring stations are shown in **Table** 4.4.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table** 4.5.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	73
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Updated Construction Noise Assessment

Contract No. NE/2015/01, Contract No. NE/2015/02 and Contract No. NE/2015/03

4.14 No update of Construction Noise Assessment in the reporting period. Any updated Construction Noise Assessment will be shown in **Appendix S.**

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

- 5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to **Figure 4**, Stream 1 to 3). According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.
- 5.2 As stated in the Baseline Environmental Monitoring Plan submitted to EPD in September 2016, Groundwater quality monitoring could not be conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. EPD has no further comment on the Plan in October 2016.

Marine Water Quality

- 5.3 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.

Groundwater Level Monitoring (Piezometer Monitoring)

5.5 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.6 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are also summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.7 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. The locations are also summarized in **Table** 5.2 and shown on **Figure** 5.

Table 5.2 Marine Water Quality Monitoring Stations

Monitoring	Descriptions	Coord	Coordinates	
Stations	Descriptions	Easting	Northing	
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565	
M2	Junk Bay Coral Site – Junk Bay	844076	817087	
M3	Junk Bay Coral Site – Junk Island	844491	817890	
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416	
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769	
M6	Tseung Kwan O Salt Water Intake	845512	817442	
C1	Control Station – Southeast	844696	814773	
C2	Control Station – Northwest	842873	816014	
G1	Gradient Station	844418	817560	
G2	Gradient Station	844290	817384	
G3	Gradient Station	844488	817735	
G4	Gradient Station	844967	817551	

Monitoring Equipments

5.8 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.9 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.10 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.11 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.12 Salinity compensation was built-in in the DO equipment.

Turbidity

5.13 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

<u>pH</u>

5.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.15 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.16 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In Situ Instruments

- 5.18 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.19 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.20 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.21 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.22 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi managatan Watan Quality	YSI 6820-C-M	0
Multi-parameter Water Quality System	Aquaread AP-2000-D	0
System	YSI EXO1 Multiparameter Sondes	3
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.23 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4 Water Quality Monitoring Parameters and Frequency

1 able 5.4	water Quanty M	onitoring Parameters and F	requency
Monitoring Stations	Parameters, unit	Depth	Frequency
Groundwater	Quality		
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)
Marine Wate	r Quality		
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	 M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)

Monitoring Methodology

Groundwater Quality

5.24 At each monitoring location, two consecutive in-situ measurements for DO concentration, DO saturation, pH, temperature and turbidity were taken for water

samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

5.25 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.26 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.27 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.28 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L ⁽¹⁾	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	$2 \text{ mg O}_2/L$	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	-
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

- 1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.
- 2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.29 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.30 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.31 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

5.32 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results is shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for August 2017

Table 5.6 Summary of Groundwater Quality Monitoring Results

						Paramet	ers (unit)			
Date	Location	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
	Stream 1	8.2	8.2	1.5	1.9	<2	5	1.0	0.24	< 0.05
3 August 2017	Stream 2	8.4	8.4	1.3	2.9	<2	4	1.6	< 0.05	< 0.05
	Stream 3	8.2	8.1	2.0	2.3	<2	4	1.6	< 0.05	< 0.05
	Stream 1	7.8	7.8	0.3	2.6	<2	5	1.6	0.05	< 0.05
15 August 2017	Stream 2	7.6	7.8	1.7	1.9	<2	6	1.5	0.08	< 0.05
	Stream 3	7.8	7.8	1.8	1.4	<2	5	0.9	0.09	< 0.05
	Stream 1	7.9	7.8	1.3	2.0	<2	5	0.7	0.05	< 0.05
29 August 2017	Stream 2	7.6	7.7	2.0	1.8	<2	5	1.4	0.05	< 0.05
	Stream 3	7.2	7.7	1.2	2.3	<2	4	1.9	0.08	< 0.05

- 5.33 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.34 According to the information provided by the Contractor, tunnel boring and tunnel construction works commenced in Lam Tin side from July 2017. Action and Limit Level for groundwater monitoring is under review with consideration of monitoring results obtained from November 2016 to June 2017. Results interpretation and exceedance of Action and Limit Level will be presented in next Monthly EM&A Report.

Marine Water Quality Monitoring

- 5.35 All marine water quality monitoring was conducted as scheduled in the reporting month, except that monitoring on 23 and 25 August 2017 was postponed to 24 and 26 August 2017 respectively due to issue of Hurricane Signal No. 10 on 23 August 2017. Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.36 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix I.** No Action/Limit Level exceedance was recorded in the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.37 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.38 Construction Phase Piezometer Monitoring has not commenced in this reporting period.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. The third post-translocation coral monitoring was carried out on 22 August 2017.

Monitoring Methodology and Parameters

- 6.4 On 22 August 2017, the post-translocation coral monitoring survey was conducted at the Recipient Site (**Figure 7**) to monitor the health parameters of the translocated coral colonies as well as the tagged, original coral colonies at the Recipient Site.
- During the survey, the health conditions of each tagged coral colony was recorded, including percentage cover (%) of (1) sedimentation; (2) bleaching and (3) mortality. The general environmental conditions including weather, sea and tidal conditions of the coral recipient site will also be monitored.
- 6.6 The condition of each tagged coral colony was recorded by taking a photograph from an angle and distance that best represents the entire colony.
- 6.7 The result of the post-translocation monitoring was reviewed with reference to findings of the pre-translocation survey and the data from the tagged, original colonies at the recipient site.
- 6.8 All monitoring exercises were led and conducted by an experienced marine ecologist who is approved by AFCD.

Event and Action Plan

- 6.9 The post-translocation monitoring result was evaluated against Action and Limit Levels presented in **Appendix A**. Evaluation was based on recorded changes in percentage of partial mortality of the corals.
- 6.10 If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in **Appendix M** will be implemented.
- 6.11 If observations of any die-off / abnormal conditions of the translocated corals are made during the post-translocation monitoring, the ET shall inform the Contractor, IEC and AFCD, and liaise with AFCD to investigate any mitigation measures needed.

Results and Observations

6.12 The location of the survey site is shown in **Figure 7**, and survey conditions in **Table 6.1**. The code, species name, area, percentage of sedimentation level, bleaching and mortality of the tagged coral colonies are summarized in **Tables 6.2** and **6.3**. Photographs of the coral colonies, taken on 22 August 2017, are shown in **Appendix T**. The survey team had tried to take photographs of the corals from an angle and distance that best represented the colonies but difficulties sometimes occurred as a result of low water visibility during the surveys.

Table 6.1 Location and Physical attributes of the Coral Recipient Site

Sites	Co	GPS pordinates	Depth (m)	Visibility (m)	Substrate type	Weather	Tidal Condition	Sedimentation on Hard Substrate? (thickness, mm)
Recipient Site	Start End	N 22°17.333' E 114°14.744' N 22°17.344' E 114°14.763'	2.0 – 4.0	1.0 – 1.5	Sand with gravel, rubbles and boulders	Calm; Sunny	Flooding	YES (<1 - 5)

Tagged Coral colonies under Contract No. NE/2015/01

Tagged, original coral colonies at the Recipient Site

6.13 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on four (4) colonies (C03, C06, C07 and C09) by ~5 to 10%. No apparent coral bleaching or mortality was recorded.

Translocated coral colonies

- 6.14 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on two (2) colonies (02 and 06) by ~5 to 10%. Increased mortality was recorded on two (2) colonies (02 and 12) by ~5 to 50%, which was similar to the record in the 1st coral monitoring. No apparent coral bleaching was recorded.
- 6.15 The change in level of partial mortality was less than 20% of total number of translocated colonies, when compared with the baseline data in November 2016. No action/limit level of mortality was exceeded.
- 6.16 One colony (Code 12: *Menella* sp.) showed significant increase in morality (by 50%), which was also recorded in the 1st monitoring survey and remained the same in the 2nd and 3rd monitoring surveys. It is considered that increased mortality is due to its adaptability to changes in ambient physical conditions (e.g. water current and food availability) after coral translation, and/or direct disturbance caused by coral translocation. However, such high percentage change in mortality was not observed in other tagged or translocated corals, indicating such mortality was not commonly occurred in the tagged or translocated corals.

Tagged Coral colonies under Contract No. NE/2015/02

Tagged, original coral colonies at the Recipient Site

6.17 Sedimentation cover on the coral colonies ranged from <1 to 15%, with thickness ~1mm. When compared with baseline data in November 2016, increased

Monthly EM&A Report for August 2017

sedimentation cover was recorded four (4) colonies (SWJB-3, SWJB-5, SWJB-6 and SWJB-9) by \sim 5 to 15%. No apparent coral bleaching or mortality was recorded

Translocated coral colonies

- 6.18 Sedimentation cover on the coral colonies ranged from <1 to 10%, with thickness ~1mm. When compared with baseline data in November 2016, increased sedimentation cover was recorded on seven (7) colonies (TKW-T3, TKW-T9, TKW-T10, TKW-T11, TKW-T17, TKW-T23 and TKW-T24) by ~5 to 10%.
- 6.19 Decreased percentage in level of bleaching was recorded in the translocated coral colony TKW-T26 (*Gonipopra stutchburyi*) and TKW-T28 (*Porites* sp.). Such recovery from bleaching is not uncommon to occur in these coral species as they are regarded as long-lived species and survive under stressful Hong Kong marine environment.
- 6.20 Coral morality was recorded on 7 colonies (TKW-T4, TKW-T5, TKW-T12, TKW-T15, TKW-T22, TKW-T23 and TKW-T29), and the level of morality (<1 to 10%) was more or less the same as the level recorded in baseline survey in November 2016, except for TKW-T5. It is considered that increased mortality of coral colony TKW-T5 was due to their adaptability to changes in ambient physical conditions during change of seasons (e.g. water current). High percentage change in mortality was not observed in other tagged or translocated corals, indicating such mortality was not commonly occurred in the tagged or translocated corals, and not due to any nearby construction works.
- 6.21 The number of translocated coral colonies showed significant change in level of partial mortality was less than 20% of total number of translocated colonies, when compared with the baseline data in November 2016. Therefore, no action/limit level of mortality was exceeded.

Analysis of Results for Complaint Investigation

- 6.22 An environmental complaint about muddy discharge near the marine works site at Tseung Kwan O side was received by the EPD on 15th August 2017. The details of the environmental complaint and the follow up action is shown in **Appendix O** (Complaint No. 65).
- 6.23 Based on the results of post-translocation coral monitoring on 22 August 2017, no Action/Limit Level exceedance in mortality was recorded. Also, level of sedimentation and bleaching was more or less the same as the level recorded in baseline survey in November 2016. Therefore, it is considered that there is no adverse ecological impact to coral communities due to the incident of muddy discharge on 15 August 2017.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Monthly EM&A Report for August 2017

Table 6.2a. Original Corals under Contract No. NE/2015/01

		ans amacı cor	iti act 110.											
7		Size (max.		Sedimentatic (thickness, 1	Sedimentation, % (thickness, mm)			Bleaching, %	ing, %			Morta	Mortality, %	
Code	Coral Species	er,	Baseline	1st	2nd	3rd	Baseline	1^{st}	7 pu 7	3^{rd}	Baseline	1st	2nd	3rd
		CIII) ((Nov16)	(06Mar17)	(12May17)	(22Aug17)	(Nov16)	(06Mar17)	(12May17)	(12May17) (22Aug17) (Nov16)	(Nov16)	(06Mar17)	(12May17)	(22Aug17)
C01	Gonipopra stutchburyi	19	<1	<1 (1)	<1 (1)	<1 (1)	<	<	<	<1	~	< <u>-</u>	~	<1
C02	Cyphastrea serailia	26	∇	<1 (1)	<1 (1)	<1 (1)	7	~	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
C03.	Gonipopra stutchburyi	16	∇	<1 (1)	<1 (1)	10(1)	$\overline{\lor}$	√	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	7	$\overline{\lor}$
C04	Cyphastrea serailia	41	∇	<1 (1)	<1 (1)	<1 (1)	$\overline{\vee}$	~	$\overline{\lor}$	$\overline{\lor}$	√	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
C05	Cyphastrea serailia	29	∇	<1 (1)	(1)	<1 (1)	7	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
90D	Cyphastrea serailia	35	$\overline{\lor}$	<1 (1)	<1 (1)	5 (1) ▲	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	~	$\overline{\lor}$	$\overline{\vee}$
C07	Cyphastrea serailia	23	$\overline{\lor}$	<1 (1)	5(1)▲	5 (1) ▲	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
C08	Turbinaria peltata	12	$\overline{\ }$	<1 (1)	<1 (1)	<1 (1)	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
60D	Psammocora superficialis	48	$\overline{\lor}$	4 (1) 🖊	5(1)▲	5 (1) ▲	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$
C10	Psammocora superficialis	32	$\overline{\lor}$	<1 (1)	5(1)▲	<1 (1)	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	<u>~</u>	$\overline{\lor}$	$\overline{\vee}$
	Note: "▲" and "♥" indicate increased and decreased in percentage, respectively, when compared with the baseline data.	" indicate incre	eased and de	creased in percent	tage, respective	ly, when compa	red with the	baseline data.						

Table 6.2b Translocated Corals under Contract No. NE/2015/01.

7	S. S	Size (max.		Sedimentatia (thickness,	ntation, % ness, mm)			Bleaching, %	ng, %			Mortal	Mortality, %	
Code	Coral Species	diameter or	Baseline	1st	2 nd	3rd	Baseline	1st	Z nd	$3^{ m rd}$	Baseline	1st	Z _{nd}	3 rd
		iengui, cin)	(Nov16)	(06Mar17)	(12May17)	(22Aug17)	(Nov16)	(06Mar17)	(12May17)	(Nov16)	(Nov16)	(06Mar17)	(12May17) (22Aug1	(22Aug17)
01	Turbinaria peltata	L	<1	<1 (<1)	5 (<1) ▲	<1 (<1)	$\overline{\ }$	<1	<1	<	<1	<	<1	<1
02	Cyphastrea serailia	13	$\overline{\lor}$	<1 (<1)	<1 (<1)	5 (<1) ▲	$\overline{\lor}$	<u>~</u>	√	$\overline{\lor}$	35	40 ▶	▼ 0+	4 0 ▶
03	Gonipopra stutchburyi	14	<u>\</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
04	Gonipopra stutchburyi	12	<u>~</u>	\(\left\) \(<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
05	Gonipopra stutchburyi	17	<u>~</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
90	Gonipopra stutchburyi	15	~	<1 (<1)	10 (<1) ▲	10 (<1) ▲	$\overline{\lor}$	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	~	$\overline{\lor}$
07	Gonipopra stutchburyi	9	~	5 (<1) ▲	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>~</u>	√	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	~	$\overline{\lor}$
80	Dendronephthya sp.	10	<u>~</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
60	Menella sp.	13	<u>\</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
10	Echinogorgia sp.	19	<u>~</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$
11	Echinomuricea sp.	23	<u>~</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	7	$\overline{\vee}$	$\overline{\vee}$	$\overline{\lor}$	~	▽
12	Menella sp.	14	<u>~</u>	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	₹05	₹ 05	≥0 ▶
13	Menella sp.	20	$\overline{\lor}$	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	\ \ 	$\overline{\lor}$
14	Psammocora superficialis	16	~	<1 (<1)	<1 (<1)	<1 (<1)	7	\ \	7	<u>~</u>	\ \	$\overline{\lor}$	~	⊽
	at the state of th	: : : :].											

Note: "▲" and "♥" indicate increased and decreased in percentage, respectively, when compared with the baseline data.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Monthly EM&A Report for August 2017

Table 6.3a. Original Corals under Contract No. NE/2015/02.

-		Size (max.		Sedimentation (thickness,	Sedimentation, % (thickness, mm)			Bleac	Bleaching, %			Mort	Mortality, %	
Code	Coral Species	Ę.	Baseline	1^{st}	2nd	3rd	Baseline	1^{st}	2nd	3rd	Baseline	1^{st}	pu Z	3rd
		(III)	(Nov16)	(06Mar17)	06Mar17) (12May17)	(22Aug17)	(Nov16)	(06Mar17)	(12May17	(12May17) (22Aug17) (Nov16)	(Nov16)	(06Mar17)		(12May17)(22Aug17)
SWJB-1	Plesiastrea versipora	28	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	< <u>-</u>	<1	<	<u>~</u>	<1	\ <u>\</u>	~	<
SWJB-2	Plesiastrea versipora	20	<1 (<1)	<1 (<1)	5 (<1) ▲	<1 (<1)	$\overline{\lor}$	<u>~</u>	$\overline{\lor}$	<u>∨</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$
SWJB-3.	Porites sp.	73	<1 (<1)	<1 (<1)	5 (<1) ▲	10 (<1) ▲	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
SWJB-4	Dipsastraea speciose*	16	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	7	~	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
SWJB-5	Favites pentagona	17	<1 (<1)	<1 (<1)	5 (<1) ▲	10 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
SWJB-6	Plesiastrea versipora	35	<1 (<1)	<1 (<1)	<1 (<1)	5 (<1) ▲	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
SWJB-7	Plesiastrea versipora	19	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	7	~	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
SWJB-8	Favites flexuosa	25	([>) >	4 (<1) ▲	<1 (<1)	<1 (<1)	~	<u>~</u>	$\overline{\lor}$	~	$\overline{\lor}$	√	$\overline{\vee}$	~
SWJB-9.	Porites sp.	16	< (<1)	<1 (<1)	10 (<1) ▲	15 (<1) ▲	~	<u>~</u>	$\overline{\lor}$	~	$\overline{\lor}$	√	$\overline{\vee}$	~
SWJB-10	Favites chinesis	61	< (<1)	<1 (<1)	5 (<1) ▲	<1 (<1)	$\overline{\lor}$		$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	√	$\overline{\vee}$	<u>\</u>

indicate increased and decreased in percentage, respectively, when compared with the baseline data.

Cinotech

^{*} Former name: Favia speciosa

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Monthly EM&A Report for August 2017

~
9
15/
3
Ñ
函
NE/20
Τ.
9
_
ಕ
ŗ
₹
ä
ರ.
_
<u>=</u>
ınde
Ξ
5
rals
Ħ
3
\subseteq
2
₹
ొ
2
ans
Z
Ξ,
₹
٠
٥
₹
I E

		Size (max		Sedimentation	ntation. %								;	
Ç	Simo	diameter		(thickness, m	ess, mm)			Blead	Bleaching, %			Mort	Mortality, %	
Code	Coral Species	or length, Baseline cm) (Nov16)	Baseline (Nov16)	1st (06Mar17)	2 nd (12Mav17)	3 rd (22Au917)	Baseline (Nov16)	1st (06Mar17)	2 nd (12Mav17)	3rd (22 Au917)	Baseline (Nov16)	1st (06Mar17)	st 2nd 06Mar17/(12Mav17)	3rd (22A11917)
TKW-T1	Favites flexuosa	20	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)		<	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	⊽	()	<1
TKW-T2	Gonipopra stutchburyi	15	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	\ \	7	$\overline{\lor}$	$\overline{\vee}$	$\overline{\vee}$	<u>^</u>	\ \
TKW-T3	Porites sp.	12	(<1) √ (<1)	<1 (<1)	5 (<1) ▲	5 (<1) ▶	$\overline{\lor}$	\ \	7	7	$\overline{\vee}$	$\overline{\vee}$		\ \
TKW-T4	Porites sp.	55	(<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	\ \ 	\ \	7	S	S	5	5
TKW-T5	Porites sp.	14	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	5	5	5	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\stackrel{\vee}{\sim}$	5 ▲
TKW-T6	Gonipopra stutchburyi	10	<1 (<1)	4 (<1) ▶	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	~
TKW-T7	Gonipopra stutchburyi	15	< (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) < (<1) <	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\stackrel{\vee}{\sim}$	~
TKW-T8	Gonipopra stutchburyi	9	<1 (<1)	4 (<1) ▶	<1 (<1)	<1 (<1)	$\overline{\lor}$	\ \ \	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\stackrel{\vee}{\sim}$	~
TKW-T9	Gonipopra stutchburyi	17	(<1)</td <td>5 (<1) ▲</td> <td>5 (<1) ▲</td> <td>5 (<1) ▲</td> <td>$\overline{\lor}$</td> <td><u>\</u></td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\stackrel{\vee}{\sim}$</td> <td>~</td>	5 (<1) ▲	5 (<1) ▲	5 (<1) ▲	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\stackrel{\vee}{\sim}$	~
TKW-T10	Gonipopra stutchburyi	14	(<1)</td <td>10 (<1) ▲</td> <td>10 (<1) ▲</td> <td>10 (<1) ▲</td> <td>$\overline{\lor}$</td> <td><u>\</u></td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\overline{\lor}$</td> <td>$\stackrel{\vee}{\sim}$</td> <td>~</td>	10 (<1) ▲	10 (<1) ▲	10 (<1) ▲	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\stackrel{\vee}{\sim}$	~
TKW-T11	Coscinarea sp.	20	<1 (<1)	<1 (<1)	10 (<1) ▲	10 (<1) ▲	$\overline{\lor}$	\ \ \	7	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	< 1	~
TKW-T12	Plesiastrea versipora	20	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	5	5	5	5
TKW-T13	Gonipopra stutchburyi	16	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	~
TKW-T14	Favites magnistellata*	11	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$
TKW-T15	Porites sp.	21	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	~	S	5	5	5
TKW-T16	Astrea cutra#	10	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	∵ ∨	√	$\overline{\lor}$	$\overline{\lor}$	7	7	<u>~</u>
TKW-T17	Porites sp.	35	<1 (<1)	<1 (<1)	<1 (<1)	5 (<1) ▲	$\overline{\lor}$	<u>\</u>	√	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	~	~
TKW-T18	Platygyra acuta	15	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\vee}$	~	<u>\</u>	$\overline{\lor}$	~
TKW-T19	Favites flexuosa	20	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>\</u>	$\overline{\vee}$	$\overline{\vee}$	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	~
TKW-T20	Gonipopra stutchburyi	10	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>~</u>	√	7	$\overline{\lor}$	7	7	~
TKW-T21	Favites magnistellata*	12	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	7	<u>\</u>	$\overline{\lor}$	7	7	7	√	~
TKW-T22	Turbinaria peltata	27	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>~</u>	√	7	S	5	5	5
TKW-T23	Porites sp.	14	<1 (<1)	<1 (<1)	<1 (<1)	5 (<1) ▲	$\overline{\lor}$	<u>\</u>	√	$\overline{\vee}$	10	10	10	10
TKW-T24	Gonipopra stutchburyi	20	<1 (<1)	<1 (<1)	5 (<1) ▲	5 (<1) ▲	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\lor}$	~
TKW-T25	Plesiastrea versipora	14	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	<u>\</u>	$\overline{\vee}$	$\overline{\vee}$	$\overline{\lor}$	<u>\</u>	$\overline{\lor}$	~
TKW-T26	Gonipopra stutchburyi	9	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	10	10	5	≥ ₹	$\overline{\vee}$	$\overline{\vee}$	~	~
TKW-T27	Plesiastrea versipora	18	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	$\overline{\lor}$	~	$\overline{\lor}$	$\overline{\vee}$	~	<u>\</u>	$\overline{\lor}$	~
TKW-T28	Porites sp.	20	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	20	<u>∨</u>	<u>√</u>	▶	$\overline{\lor}$	$\overline{\vee}$	$\overline{\lor}$	~
TKW-T29	Astrea cutra#	13	<1 (<1)	<1 (<1)	<1 (<1)	<1 (<1)	<1	<1	<1	~	10	10	10	10
		1												

Note: "▲" and "♥" indicate increased and decreased in percentage, respectively, when compared with the baseline data.

^{*} Former name: Montastrea magnistellata # Former name: Montastrea curta

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be aplied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 April 2017.
- 7.2 As stated in the approved "Built Heritage Mitigation Plan" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

- 7.3 One (1) vibration monitoring point, one (1) building settlement monitoring point and one (1) building tilting monitoring point are proposed for the vibration impacts monitoring of the construction works. The building settlement marker and the tiltmeter will be placed on the wall of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple.
- 7.4 Confirmation from the Cha Kwo Ling Tin Hau Temple on the installation of these monitoring equipment is yet to be obtained by the Contractor. Vibration monitoring was carried out at a temporary location outside the Cha Kwo Ling Tin Hau Temple in the reporting period. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.5 Building settlement was measured by surveyors via settlement marker and tiltmeter attached to the wall of the Cha Kwo Ling Tin Hau Temple.
- 7.6 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "Guidance Note on Vibration Monitoring" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.7 **Table 7.1** summarizes the equipment employed by the Contractor for vibration monitoring. Copies of calibration certificates are attached in **Appendix B**.

Table 7.1 Vibration Monitoring Equipment

Equipment	Manufacturer and Model	Quantity
DNA03 Digital Level for building	Leica Geosystems	1
settlement and tilting	Article No.: 723289	1
Vibra ananha fan vibratian manitanina	MiniMate Plus manufactured by Instantel	7
Vibrographs for vibration monitoring	Model No.: 716A0403	/

Monitoring Methodology

7.8 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement and tilting monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.9 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

	8	· ·	
Parameter	Alert Level	Alarm Level	Action Level
			ppv: 5mm/s Maximum
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	Allowable Vibration
			Amplitude: 0.1mm
Building			
Settlement	6mm	8mm	10mm
Markers			
Building Tilting	1:2000	1:1500	1:1000

Results

7.10 In the reporting month, vibration monitoring was carried out by the Contractor at the aforesaid location on 25 occasions. No AAA Level exceedance for vibration monitoring was recorded in the reporting month. The monitoring results are provided in **Table 7.3**.

Table 7.3 Vibration Monitoring Results

Table 7	VIDIAL	ion Monitoring i	Acsures		X7:14:	(
D (7 73•		Settlement	_	Vibration	
Date	Time	Tilting	(mm)		<u> Ieasurement</u>	
			(11111)	Tran	Vertical	Longitudinal
1-Aug-17	17:10	+1	+0	0.381	1.270	0.254
2-Aug-17	10:51	+0	-1	0.254	0.381	0.254
3-Aug-17	10:49	+2	+0	0.508	0.381	0.254
4-Aug-17	09:32	+1	+0	0.254	0.254	0.254
5-Aug-17	10:14	+1	+0	0.127	0.254	0.127
7-Aug-17	10:01	+2	-1	0.127	0.127	0.127
8-Aug-17	15:56	+0	+0	0.127	0.127	0.254
9-Aug-17	10:10	+1	-1	0.127	0.127	0.127
10-Aug-17	09:58	+1	-1	0.254	0.127	0.127
11-Aug-17	09:59	+2	-1	0.254	0.127	0.127
12-Aug-17	15:00	+2	-1	0.127	0.254	0.254
14-Aug-17	10:11	+0	+0	0.254	0.381	0.254
15-Aug-17	14:56	+1	+0	0.254	0.127	0.127
16-Aug-17	15:01	+0	-1	0.127	0.127	0.254
17-Aug-17	15:49	-1	-1	0.127	0.127	0.127
18-Aug-17	09:22	+1	+0	0.127	0.127	0.127
19-Aug-17	/	+1	+1	Technical Errors		Errors
21-Aug-17	14:01	+1	+1	14:01	0.127	0.127
22-Aug-17	15:46	+1	+0	15:46	0.254	0.127
23-Aug-17	Cancelled as Hurricane Signal no. 10 in force					
24-Aug-17	10:16	+1	+0	0.127	0.254	0.127
25-Aug-17	10:12	+0	+0	0.127	0.127	0.127

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report for August 2017

Date	Time	Tilting	Settlement	Vibration (mm/s) Measurement Direction		,
			(mm)	Tran	Vertical	Longitudinal
26-Aug-17	08:39	+1	+0	0.254	0.254	0.254
28-Aug-17	15:46	+1	+0	0.254	0.254	0.127
29-Aug-17	17:05	+0	+2	0.127	0.127	0.127
30-Aug-17	10:58	+2	+2	0.127	0.254	0.127
31-Aug-17	14:21	+1	+1	0.127	0.127	0.127

Mitigation Measures for Cultural Heritage

- 7.11 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.12 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for August 2017

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures. The summaries of site audits are attached in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;-
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Excavation Locations: Portion III
 Manholes and Chambers: N/A
 Relocation of monitoring wells: N/A
 Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report for August 2017

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
Intrinsically safe, portable gas detector	Crowcon Tetra Portable Gas Detector (Serial No. 100486262/01-020)	1

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 52 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 2, 9, 16, 25 and 30 August 2017
 - Contract No. NE/2015/02: 3, 10, 15, 24 and 30 August 2017
 - Contract No. NE/2015/03: 3, 10, 14, 24 and 31 August 2017

Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01, NE/2015/02 and NE/2015/03 on 30, 30 and 14 August 2017 respectively.

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, one non-compliance was identified for Contract No. NE/2015/01 on 30 August 2017. It is observed that silt curtain for marine platform at TKO site was not repaired and maintained after the influence of typhoons in Hong Kong in late August 2017. In addition, temporary stockpiles of materials on marine platform should be located away from seafront and properly covered.
- 10.5 The Contractor has taken the initiative to improve/rectify the non-compliance as soon as possible. Leaks and damaged positions of the silt curtain has been repaired promptly by the Contractor on 31 August 2017. Further, during the following ET inspection on 6 September 2017, it is observed that the silt curtain is in generally good condition. No effluent discharge outside of silt curtain is observed on 6 September 2017

6 September 2017

10.6 The observations and recommendations made during the audit sessions are summarized in **Appendix L**.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for August 2017

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 No Action/Limit Level exceedance was recorded in the reporting period.
- 12.2 Should the monitoring results of the environmental monitoring parameters at any designated monitoring stations indicate that the Action / Limit Levels are exceeded, the actions in accordance with the Event and Action Plans in **Appendix M** be carried out.

Summary of Environmental Non-Compliance

One environmental non-compliance was recorded in the reporting month (See section 10.4 - 10.5).

Summary of Environmental Complaint

12.4 Eight environmental complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.5 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Contract No.	Project Title		(September 2017)
NE/2015/01	Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works	Lam Tin Interchange	 Haul Road Construction EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile Wall – Area 2A
		Main Tunnel	1) Construction of Tunnel Adit
		TKO Interchange	 Haul Road Construction and Site Formation & Slope Works Temporary Cut Slope For BMCPC Temporary Barging Facilities & Temporary Works Steel Platform for Bridge Construction
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Installation Construction loading tests Site Monito Reinstatement Water Gate Construction drainpipe in Dredging W Construction marine sedit Construction marine sedit Installation 	Vorks n of sloping seawall n of Treatment facilities for Type I ment n of Retaining Wall at Portion VIII of Steel Cofferdams at Portion VIII and Structural works for temporary
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	 Foundation Lagging Wa Pre-bored H 	all formwork, Bar fixing Concreting

Monthly EM&A Report for August 2017

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 10th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in August 2017 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality Monitoring

- 14.5 Tunnel boring and tunnel construction works commenced in Lam Tin side from July 2017. Action and Limit Level for groundwater monitoring is under review with consideration of monitoring results obtained from November 2016 to June 2017.
- 14.6 All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 The 3rd post-translocation coral monitoring survey was carried out on 22 August 2017. No Action/Limit Level exceedance in mortality was recorded.

Monitoring on Cultural Heritage

14.8 No Alert Alarm and Action (AAA) Level exceedance of vibration monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, one non-compliance was identified for Contract No. NE/2015/01 on 30 August 2017.

Complaint, Prosecution and Notification of Summons

14.12 Eight environmental complaint, no successful prosecution or notification of summons were received during the reporting period.

Recommendations

14.13 The following recommendations were made to the Contractor for the reporting month:

Air Quality Impact

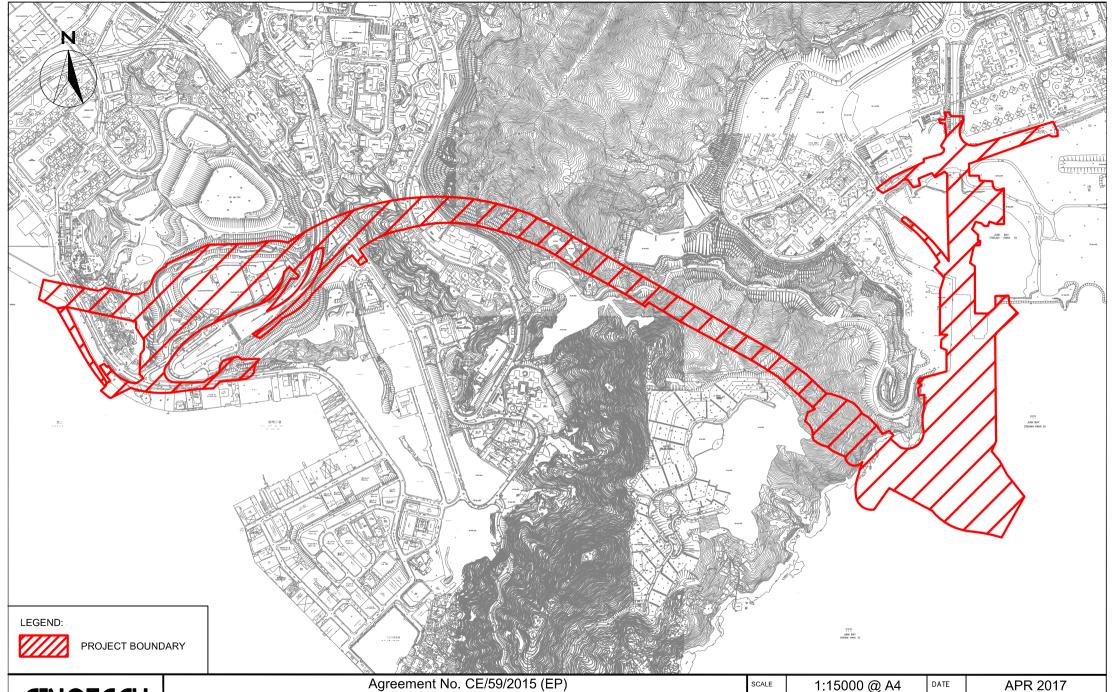
- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces and open slopes.
- To cover stockpile of dusty material by impervious material.

Construction Noise

- To provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved Noise Mitigation Plan.
- To repair the gaps between the noise barriers.

Water Quality Impact

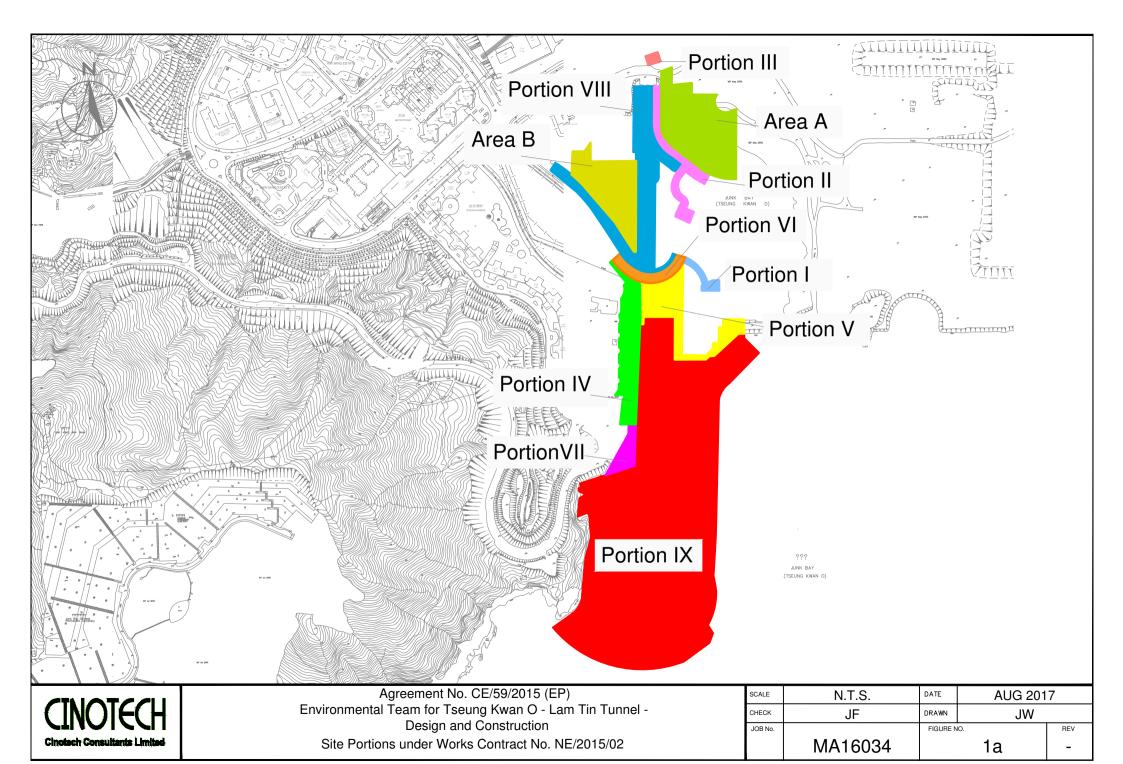
- To provide and repair the silt curtain to fully enclose the site and prevent any gap between the silt curtains.
- To review and implement temporary drainage system.
- To clear the litter, debris, silt and sediment in drainage or catchpits.
- To remove the sand or dusty material deposited near the seafront.
- To provide bund or covers to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

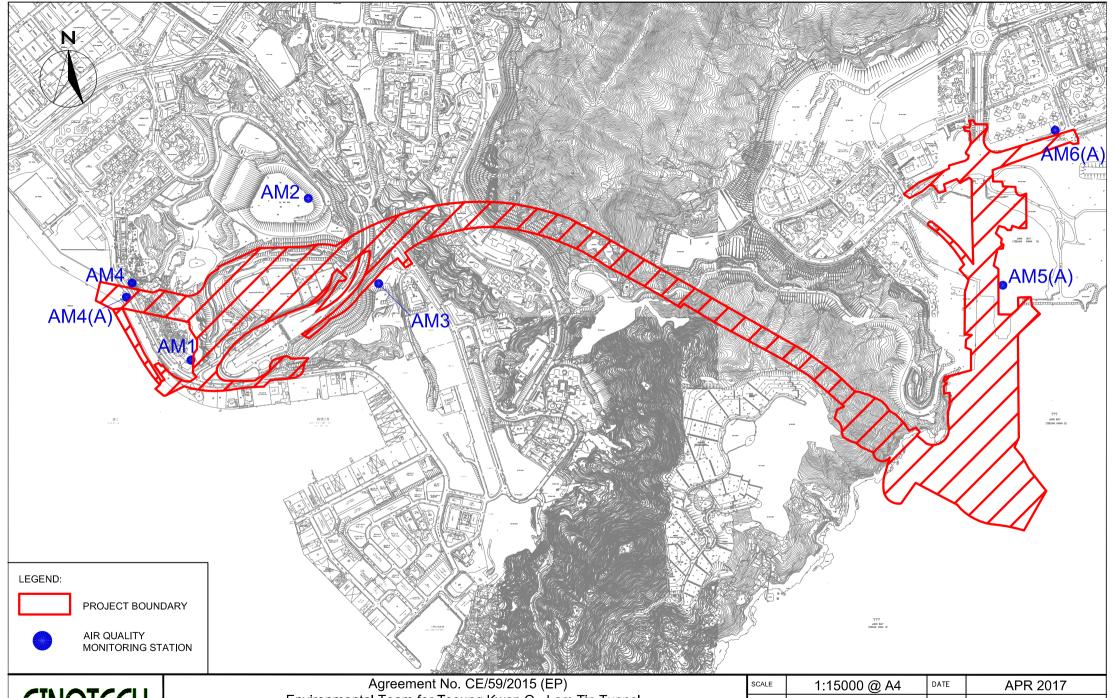

Waste/Chemical Management

- To remove construction waste regularly.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment.

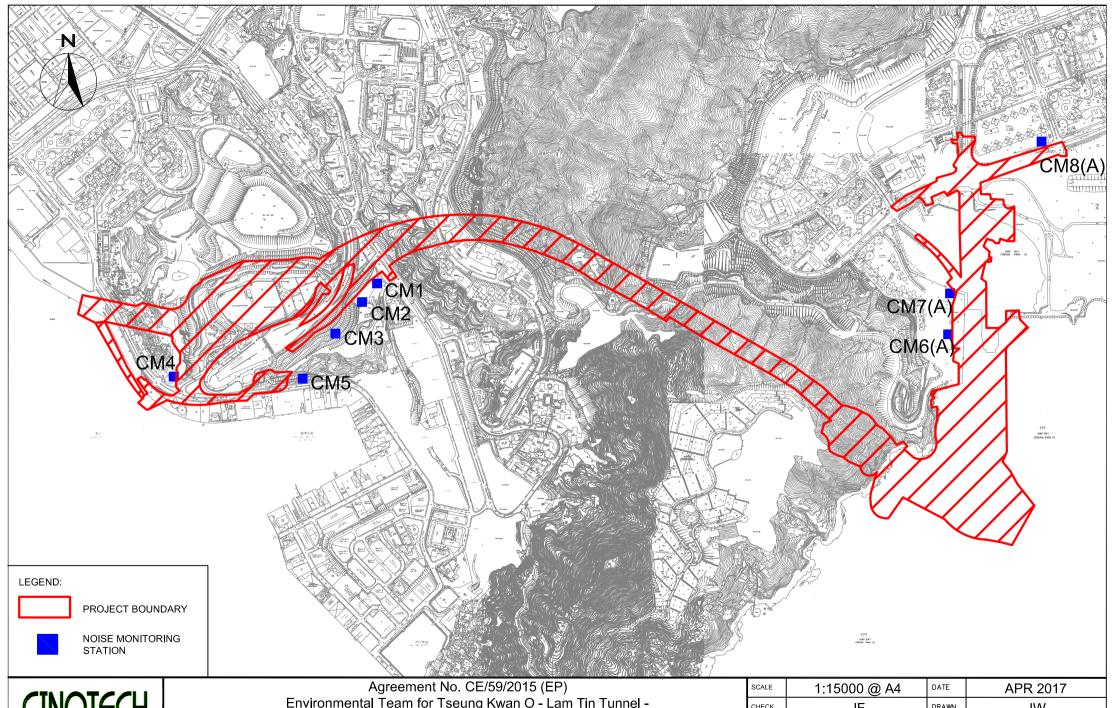
Landscape and Visual

- To set up proper tree protection area.
- To avoid placing any construction materials in the tree protection zone.

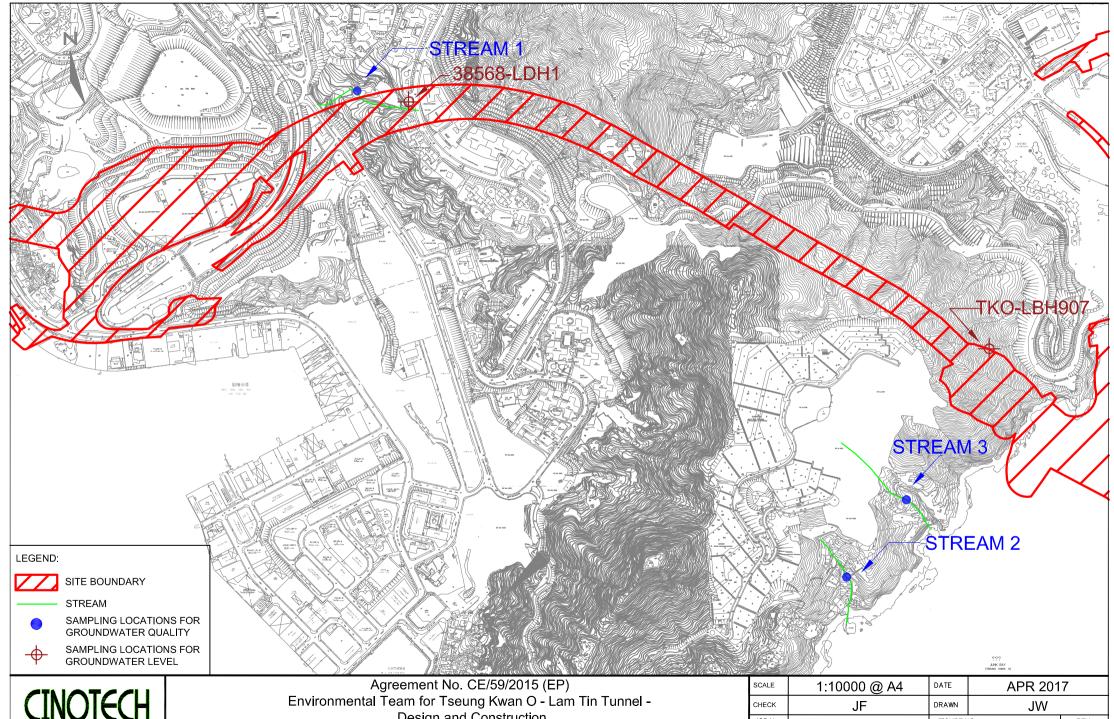

FIGURES



Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel
- Design and Construction
Site Layout Plan

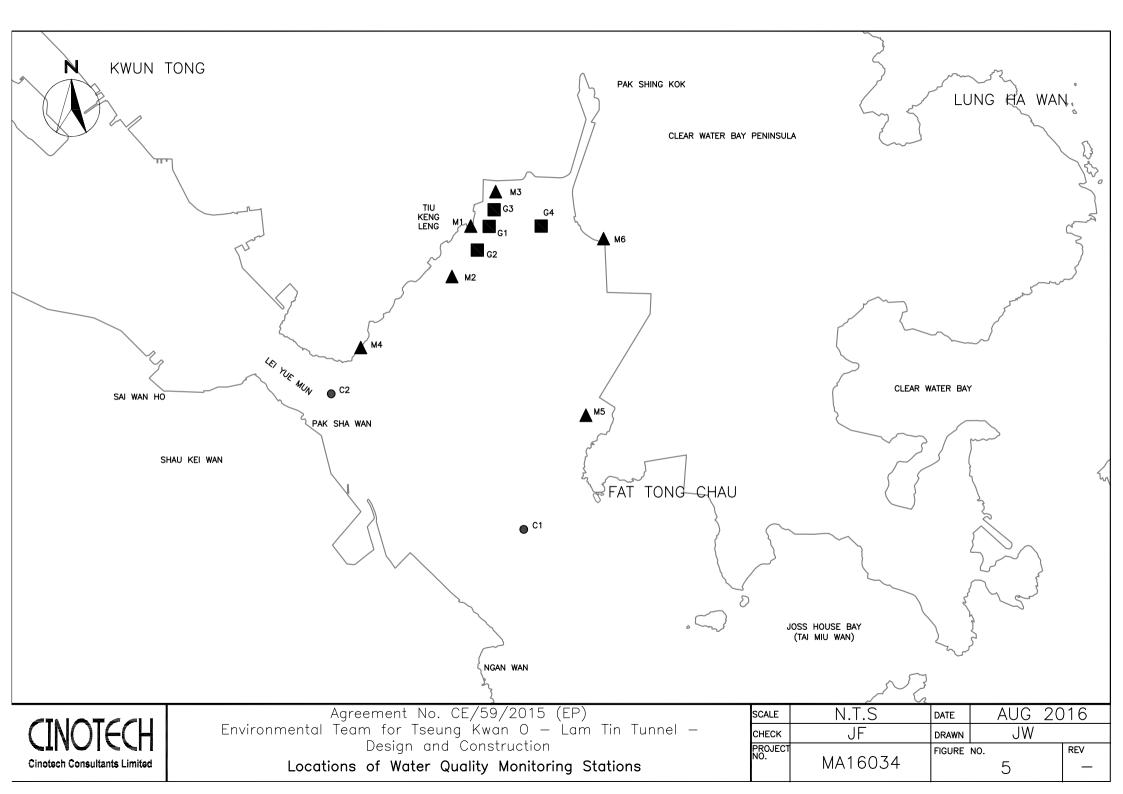

SCALE	1:15000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		1	-

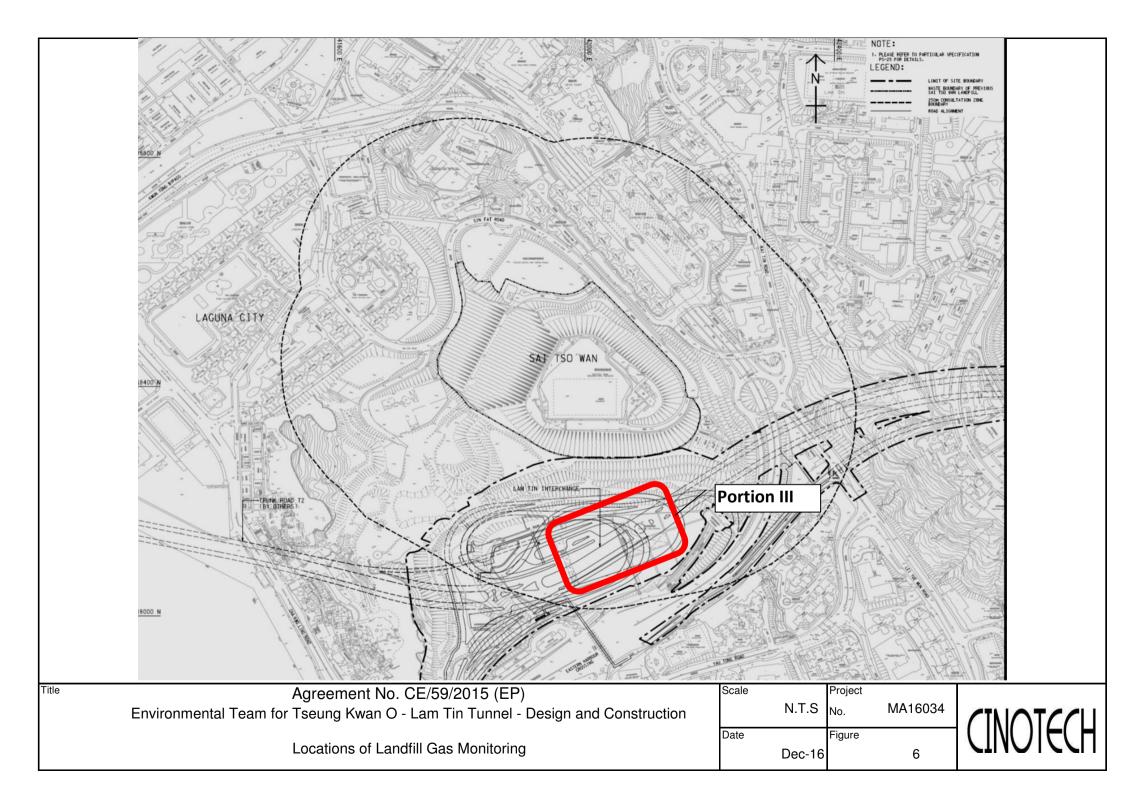
CINOTECH Cinotech Consultants Limited Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Air Quality Monitoring Stations

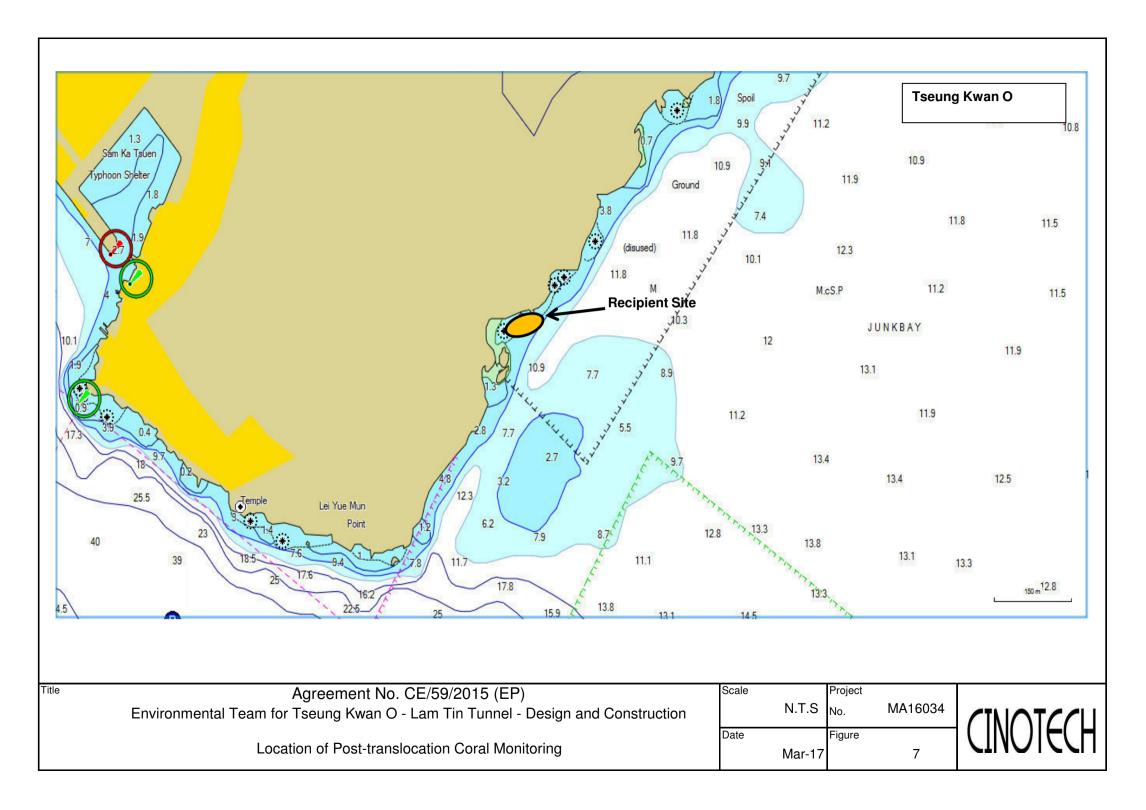

CALE	1:15000 @ A4	DATE	APR 2017	
HECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		2	-

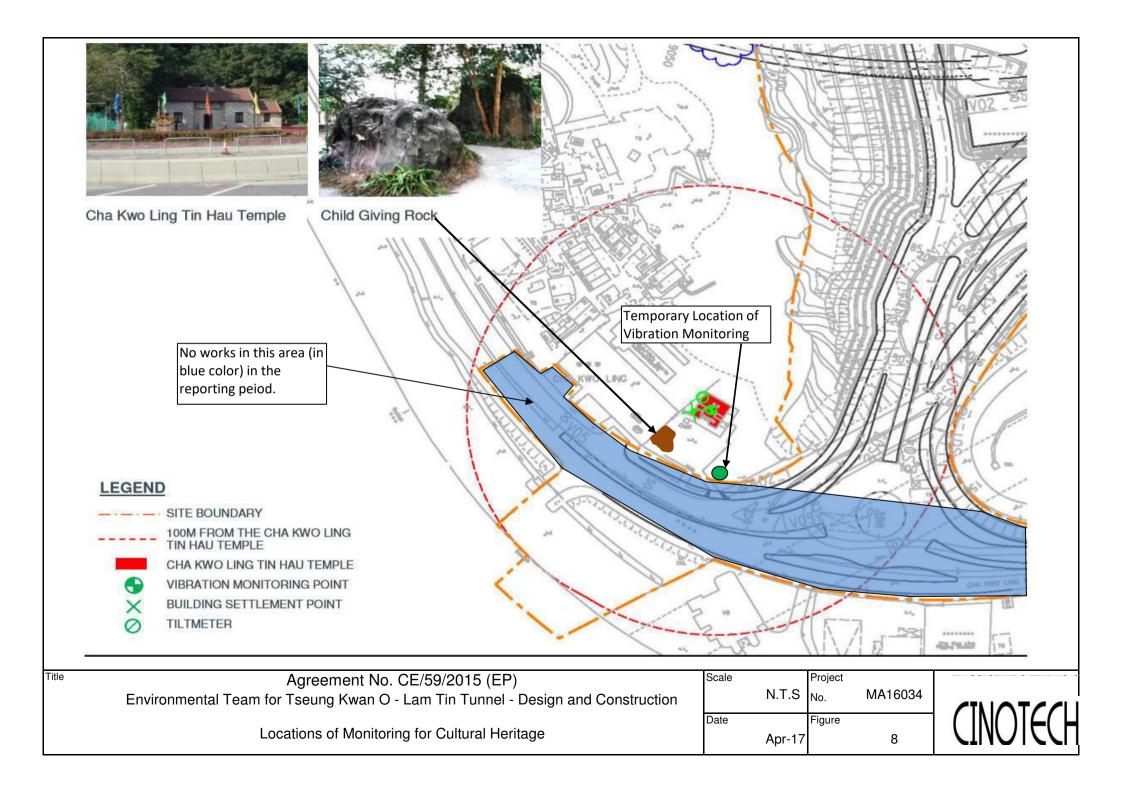
CINOTECH
Cinotech Consultants Limited

Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Noise Monitoring Stations


SCALE	1:15000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		3	-




Cinotech Consultants Limited


Design and Construction Location of Streams for Groundwater Quality and Groundwater Level Monitoring

SCALE	1:10000 @ A4	DATE	APR 201	7
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		4	-

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾	
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾	
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾	

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C

³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit
DO in mg L ⁻¹	7.6	7.5
рН	6.0 - 8.9	6.0 – 9.0
BOD ₅ in mg L ⁻¹	2.0	2.0
TOC in mg L ⁻¹	4.3	4.9
Total Nitrogen in mg L-1	1.7	1.7
Ammonia-N in mg L ⁻¹	0.05	0.06
Total Phosphate in mg L ⁻¹	0.05	0.05
SS in mg L ⁻¹	5.5	6.2
Turbidity in NTU	2.2	2.4

Notes:

- 1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907
Action Level (mPD)	+74.65	+17.59

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L			
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>			
	Station M6					
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>			
	Stations G1-G4	4, M1-M5				
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	19.3 NTU or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day			
	Station M6					
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4					
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	6.9mg/L or 130% of upstream control station's SS at the same tide of the same day			
	Stations M1-M5					
SS in mg/L (See Note 2, 4 ad 5)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day			
	Stations G1-G4	4, M1-M5	-			
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day			
	Station M6					
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>			

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.
- 5. Refer to Appendix I Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

ent Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition	
Mortality	If during Impact Monitoring a 15% increase		
ř	in the percentage of partial mortality on hard	increase in the percentage of partial	
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the	
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring	
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,	
	Action Level is exceeded.	then the Limit Level is exceeded.	

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Date: Date:

File No. MA16034/08/0006 Station: AMI - Tin Hau Temple MH Operator: Date: 11-Jul-17 10-Sep-17 Next Due Date: Equipment No.: A-01-05 10599 Serial No. Ambient Condition Temperature, Ta (K) 302.1 Pressure, Pa (mmHg) Orifice Transfer Standard Information Serial No.: 0993 Slope, mc (CFM) 0.0578 Intercept, bc -0.04890 Last Calibration Date: mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 28-Feb-17 Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$ Next Calibration Date: 27-Feb-18 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis in. of water Y-axis 13.1 1 3.60 63.09 7.6 2.74 9.7 3.09 54.41 5.9 2.41 3 8.6 2.91 51.28 4.9 2.20 4 5.4 2.31 40.81 3.4 1.83 5 3.1 1.75 31.12 2.0 1.41 By Linear Regression of Y on X Slope, mw = 0.0416 Intercept, bw: 0.1153 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: Lei Signature:
Checked by: Wk lang Signature:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/08/0006

Station:		m n	G 1			-
Deter	AM2 - Sai Tso	Wan Recreation		_ Operator: _ Next Due Date:	MH	
Date:	11-Jul-17				10-Sep	
Equipment No.:	A-01-08		_	Serial No.	1287	
			Ambient (Condition		
Temperatu	ıre, Ta (K)	302.6	Pressure, Pa	(mmHg)		760.3
		O ₁	rifice Transfer Sta	ndard Informa	tion	
Serial	No.:	0993	Slope, mc (CFM)	0.0578	Intercep	t, bc -0.04890
Last Calibra	ation Date:	28-Feb-17		mc x Qstd + be		0) x (298/Ta)] ^{1/2}
Next Calibr	ation Date:	27-Feb-18				Ta)] ^{1/2} -bc} / mc
		•	, <u>I</u>	-		72
			Calibration of	TSP Sampler		
Calibration		0	rfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[\Delta W x (Pa/760) x (298/Ta)]^1 Y-axis
1	13.6		3.66	64.20	7.8	2.77
2	10.9		3.28	57.57	6.2	2.47
3	8.4		2.88		5.0	2.22
4	5.2		2.26	40.02	3,3	1.80
5	3.3		1.80	32.06	2,1	1.44
_				Intercent, bw :	0.148	8
Slope, mw =	0.0407	_		Intercept, bw :_	0.148	8
Slope, mw = Correlation co	0.0407 oefficient* =	0.	9993	Intercept, bw :_	0.148	8
Slope, mw = Correlation c	0.0407	0.	9993	Intercept, bw :_	0.148	8
Slope, mw = Correlation co	0.0407 oefficient* =	0.	9993 ecalibrate.	20 A. W.	0.148	8
Slope, mw = Correlation c *If Correlation C	0.0407 oefficient* = Coefficient < 0.99	0.00, check and re	9993 ccalibrate. Set Point C	20 A. W.	0.148	8
Slope, mw = Correlation c *If Correlation C	0.0407 oefficient* =	0.00, check and re	9993 ccalibrate. Set Point C. 1 = 43 CFM	20 A. W.	0.148	8
Slope, mw = Correlation c *If Correlation C	0.0407 oefficient* = Coefficient < 0.99	0.00, check and recurve, take Qstdee "Y" value acc	9993 ccalibrate. Set Point Code 1 = 43 CFM coording to	alculation		8
Slope, mw = Correlation c *If Correlation C	0.0407 oefficient* = Coefficient < 0.99	0.00, check and recurve, take Qstdee "Y" value acc	9993 ccalibrate. Set Point C. 1 = 43 CFM	alculation		8
Slope, mw = Correlation of *If Correlation Of From the TSP Fi From the Regres	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (Set Point Content of the set of t	alculation (Pa/760) x (298	3/Ta)] ^{1/2}	
Slope, mw = Correlation of *If Correlation Of From the TSP Fi From the Regres	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (9993 ccalibrate. Set Point Code 1 = 43 CFM coording to	alculation (Pa/760) x (298		
Slope, mw = Correlation of *If Correlation Of From the TSP Fi From the Regres	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (Set Point Content of the set of t	alculation (Pa/760) x (298	3/Ta)] ^{1/2}	
Slope, mw = Correlation of *If Correlation Of From the TSP Fi From the Regres	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (Set Point Content of the set of t	alculation (Pa/760) x (298	3/Ta)] ^{1/2}	
Slope, mw = Correlation C *If Correlation C From the TSP Fi From the Regres Therefore, Se	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (Set Point Content of the set of t	alculation (Pa/760) x (298	3/Ta)] ^{1/2}	
Correlation of *If Correlation	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (Set Point Content of the set of t	alculation (Pa/760) x (298	3/Ta)] ^{1/2}	
Slope, mw = Correlation C *If Correlation C From the TSP Fi From the Regres Therefore, Se	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	0. 00, check and re Curve, take Qstd e "Y" value acc mw x (9993 ccalibrate. Set Point Content of the second of the	alculation (Pa/760) x (298)	3/Ta)] ^{1/2}	
Slope, mw = Correlation of *If Correlation C From the TSP Fi From the Regres Therefore, Se Remarks:	0.0407 coefficient* = Coefficient < 0.99 clied Calibration Calibration, the	O, check and re Curve, take Qstd e "Y" value acc mw x (w x Qstd + bw)	Set Point Content of the set of t	alculation (Pa/760) x (298)	3/Ta)] ^{1/2}	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/03/0005

Date:	2 X (1/25	AM3 - Yau Lai Estate, Bik Lai House Operator			MH		
	5-Jul-17	Next Due Date:		4-Sep-17			
Equipment No.	: <u>A-01-03</u>	·····		Serial No.	10379)	•
			Ambient C	Condition			
Temperati	ure, Ta (K)	301.6	Pressure, Pa	1	- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	758.6	ere erre en region dem er dignis eus desdueg rue dra d
1 1 1 1		20110	11000010,14	(111111115)		750.0	
		Ori	fice Transfer Sta	ndard Informa	tion		
Seria	1 No.:	0993	Slope, mc (CFM)	0.0578	Intercep	ot, bc	-0.04890
Last Calib	ration Date:	28-Feb-17	1	mc x Qstd + bc	= [ΔH x (Pa/76	0) x (298/Ta)	I ^{1/2}
Next Calib	ration Date:	27-Feb-18	($Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Ta)] ^{1/2} -bc} /	mc
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	3.53	61.86	7.0		2.63
2	10.7	3	3.25	57.08	6.0		2.43
3	7.1	2	2.65	46.65	4.1		2.01
4	5.3	2.29		40.42	3,2		1.78
5	3.2]	1.78	31.60	2.0		1.40
By Linear Reg Slope , mw =	ression of Y on X		1	Intercept, bw =	0.139	98	
Correlation of	coefficient* =	0.9	999				
*If Correlation	Coefficient < 0.99	0, check and rec	alibrate.				
			Set Point Ca	lculation			
From the TSP F	ield Calibration C	urve, take Qstd		lculation			
	ield Calibration C	•	= 43 CFM	lculation			
		e "Y" value acco	= 43 CFM ording to		17		
		e "Y" value acco	= 43 CFM		8/Ta)] ^{1/2}		
From the Regre	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to	(Pa/760) x (29	8/Ta)] ^{1/2}		
From the Regre	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			
From the Regre	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			
From the Regree	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			
From the Regree	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			
From the Regre	ssion Equation, the	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			
From the Regree	et Point; W = (my	mw x Qsv x Qstd + bw) ²	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29			5/7/2017
From the Regree	et Point; W = (my	e "Y" value acco mw x Q	= 43 CFM ording to $std + bw = [\Delta W x]$	(Pa/760) x (29		Date: Date:	5/7/2017 6/7/2017

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

File No. MA16034/54/0006 Station: Operator: MH AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office 18-Jul-17 Date: Next Due Date: 17-Sep-17 Equipment No.: A-01-54 Serial No. 1536 Ambient Condition Temperature, Ta (K) 297.4 Pressure, Pa (mmHg) Orifice Transfer Standard Information Serial No.: 0993 Slope, mc (CFM) 0.0578 Intercept, bc -0.04890 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ 28-Feb-17 Last Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 27-Feb-18 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Qstd (CFM) ΔW (HVS), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in, of water X - axis in. of water Y-axis 17.5 4.19 1 73.42 10.5 3,25 2 13.4 3.67 64.36 8.1 2.85 3 10.6 3.26 57.33 2.59 6.7 4 6.7 2.59 45.75 4.2 2.05 5 36.40 2.05 2.9 1.71 By Linear Regression of Y on X Slope, mw = 0.0419 Intercept, bw: 0.1650 Correlation coefficient* = 0.9994 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3.86 Remarks: Conducted by: his Signature: hes Checked by: Lik. Tang Signature: Date: Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16034/37/0006

Station:	AM5(A) - DSD Desilting Compound			Operator:	HL	, ,	
Date:	11-Jul-17]	- Next Due Date:	10-Sep		
Equipment No.:	A-01-37		_	Serial No.	1704		
			Ambient (Condition			
Temperatur	e, Ta (K)	302.7	Pressure, Pa	ı (mmHg)		761.3	
Sector Control	No.		ifice Transfer Sta	T I			0.0400
			Slope, mc (CFM)		$= [\Delta H \times (Pa/76)]$		-0.04890
Next Calibra		28-Feb-17 27-Feb-18	┥		:— _[ДН х (Ра/76) (Ра/760) х (298/		
- TVCAL CANOLE	mon Date.	27-100-10		Qata – ξ <u>[</u> ΔΠ λ	(1 a) / 00) X (230)	14) - 100 / 1	iic j
			Calibration of	TSP Sampler			
	Appropriate the Control of the Contr	0	rfice	in an animitare	11. (14. 17. 1. 17. 17. 17. 17. 17. 17. 17. 17.	HVS	Annual 19 (19 (19 (19 (19 (19 (19 (19 (19 (19
Calibration Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in, of water	[ΔW x (Pa/7	/60) x (298/Ta)] ^{1/2} Y-axis
1	17.4		4.14	72.55	8.8		2.95
2	13.2		3.61	63.30	7.0		2.63
3	10.9		3.28	57.60	5.8		2,39
4	6.7		2.57	45.34	3.4		1.83
5	4.3		2.06	36.49	2.3		1.51
By Linear Regre	ession of Y on X						
	0.0409			Intercept, bw :	0.008	0	
Correlation co	efficient* =	0,	9987	• • •			
*If Correlation C	 oefficient < 0.99	0, check and re	calibrate.	-			
			Set Point C	alculation			
From the TSP Fie	eld Calibration C	urve, take Qsto	= 43 CFM				
From the Regress	ion Equation, the	e "Y" value acc	ording to				
			$\mathbf{pstd} + \mathbf{bw} = \mathbf{\Delta W} \mathbf{x}$	· (D+/7(0) (20)	o /on_ \11/2		
		mw x (Sid + DM = [DM X	(Pa//60) X (29	8/12)]		
Therefore, Set	Point; W = (my	w x Qstd + bw)	o ² x (760 / Pa) x (Γa / 298)=	3.17		
					, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Remarks:							
_							
	,						
Conducted by:	pei	Signature:	he	<u></u>		Date:	11/7/2017
Checked by: _	WK Tang	Signature:	Kw.	<u>~</u>		Date: _	11/7/2017

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

File No. MA16034/07/0006

Station	AM6 - Park Cen	tral		Operator:	WK		_
Date:	2-Aug-17	Next Due Date:		1-Oct-17		_	
Equipment No.:	A-01-07		_	Serial No.	10592		_
			Ambient C	ondition			
Temperatu	re Ta(K)	302.6	Pressure, Pa		1, 53 143 54 54 55 54 54 5	753.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tomperatu	10, 14 (11)	302.0	11035010, 14	(mining)		133.1	
		Or	ifice Transfer Sta	ndard Inform:	ation		
Serial	No.:	0993	Slope, mc (CFM)	0.0578	Intercept	t, bc	-0.04890
Last Calibra	ation Date:	28-Feb-17	1	nc x Qstd + bo	$c = [\Delta H \times (Pa/760]]$)) x (298/Ta	a)] ^{1/2}
Next Calibr	ation Date:	27-Feb-18		$Qstd = \{ [\Delta H \ x] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc}	/ me
		•					
			Calibration of	TSP Sampler			
Calibration		O	rfice			HVS	
Point	ΔΗ (orifice), in. of water	[ΔH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis
1	11.7		3.38	59.36	7.4		2.69
2	9.7		3.08	54.12	6.1		2,44
3	7.6		2.72	48.00	4.8		2.17
4	5.3	ARTON STATE	2.28	40.23	3.3		1.80
5	3.4		1.82	32.39	2.4		1.53
By Linear Regr Slope , mw =	ession of Y on X 0.0435		1	ntercept, bw	0.088	1	.
Correlation co	oefficient* =	0.9	9980				
*If Correlation C	Coefficient < 0.99	0, check and re	calibrate.				
			Set Point Ca	leulation			
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, the	e "Y" value acc	ording to				
		mw v C	$2std + bw = [\Delta W x]$	(Pa/760) v (30	19/Ta)1 ^{1/2}		
		ших	gatu i bir [Ziri x	(1 a) 700) A (2)	70/14/)		
Therefore, Se	et Point; W = (mv	v x Qstd + bw)	$r^2 \times (760 / Pa) \times (760 / Pa)$	Ta / 298)=	3.93		-
	1/2/2007				, , , , , , , , , , , , , , , , , , ,		
Remarks:							
Conducted by: Checked by:		Signature: Signature:	hwa			Date: Date:	2/8/17 2 August 2017

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Fe Operator	•	Rootsmeter Orifice I.I	•	438320 0993 	Ta (K) - Pa (mm) -	294 - 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3860 0.9910 0.8840 0.8430 0.6970	3.2 6.4 7.9 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9904 0.9894 0.9842	0.7191 1.0015 1.1204 1.1737 1.4120	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9894 0.9884 0.9832	0.7184 1.0005 1.1192 1.1725 1.4106	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop intercept coefficie	= (b) $=$	2.04055 -0.04890 0.99995		Qa slope intercept coefficie	= (b) $=$	1.27776 -0.03059 0.99995
y axis =	SQRT [H20 (I	Pa/760)(298/	ra)]	y axis =	SQRT[H20([a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170217 Date of Issue: 2017-02-20

Date Received: 2017-02-17 Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-08-19

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II: Davis Instruments

Manufacturer Model No.

: 7440

Serial No.

: MC01010A44

Test conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

TEST REPORT

Test Report No.: C/170217

Date of Issue: 2017-02-20

Date Received: 2017-02-17

Date Tested: 2017-02-17

Date Completed: 2017-02-20

Next Due Date: 2017-08-19

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1) Reference Value (V1)		D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Direction (°)		Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90.3	90	0.3
135	135	0
180.1	180	0.1
224.8	225	-0.2
270.1	270	0.1
315	315	0
360	360	0

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/170331 Date of Issue: 2017-04-02 Date Received: 2017-03-31

Date Tested: 2017-03-31 Date Completed: 2017-04-02

Next Due Date: 2017-10-01

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description Manufacturer : Weather Monitor II : Davis Instruments

Model No.

: 7440

Serial No.

: MC20813A11

Test conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

: 54 %

Test Specifications:

1. Performance check of anemometer

2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.: C/W/170331
Date of Issue: 2017-04-02
Date Received: 2017-03-31
Date Tested: 2017-03-31
Date Completed: 2017-04-02
Next Due Date: 2017-10-01

Page: 2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1) Reference Value (V1)		D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Direction (°)		Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45	45	0
90	90	0
135.2	135	0.2
180	180	0
225.3	225	0.3
270.1	270	0.1
315.1	315	0.1
360	360	0

WBLLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170707
Date of Issue: 2017-07-10
Date Received: 2017-07-07
Date Tested: 2017-07-07
Date Completed: 2017-07-10
Next Due Date: 2017-09-09

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 541146

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 625 CPM

Equipment No.

: A-02-07

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park,
18 On Lai Street, Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

	The state of the s
Test Report No.:	C/170630
Date of Issue:	2017-07-03
Date Received:	2017-06-30
Date Tested:	2017-06-30
Date Completed:	2017-07-03
Next Due Date:	2017-09-02

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM

Equipment No. : A-02-10

Test Conditions:

Room Temperature : 23 degree Celsius

Relative Humidity : 65 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0036

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170616A
Date of Issue:	2017-06-19
Date Received:	2017-06-16
Date Tested:	2017-06-16
Date Completed:	2017-06-19
Next Due Date:	2017-08-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020408

Flow rate

: 0.1 cfm

Zero Count Test

. U.I CHIL

Zero Count 1 est

: 0 count per 5 minutes

Equipment No.

: A-26-01

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 65 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.131

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

WELLAB 匯 Testing & Research 力 Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170818
Date of Issue: 2017-08-21
Date Received: 2017-08-18
Date Tested: 2017-08-18

Date Completed: 2017-08-21 Next Due Date: 2017-10-20

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

middel 140.

. Hai-Hi Coo

Serial No.

: 3020408

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-01

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.119

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

C/170616B Test Report No .: Date of Issue: 2017-06-19 Date Received: 2017-06-16 Date Tested: 2017-06-16 Date Completed: 2017-06-19 Next Due Date: 2017-08-18

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

Manufacturer Model No.

Serial No.

Flow rate

Zero Count Test

Equipment No.

: Handheld Particle Counter

: Hal Technology

: Hal-HPC300

: 3020409

: 0.1 cfm

: 0 count per 5 minutes

: A-26-02

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

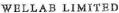
: 65 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.188

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170818A
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2017-10-20

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Model No.

: 3020409

Serial No.

: 0.1 cfm

Flow rate
Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-02

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.114

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170609K
Date of Issue: 2017-06-12
Date Received: 2017-06-09
Date Tested: 2017-06-09
Date Completed: 2017-06-12
Next Due Date: 2017-08-11

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020411

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-04

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

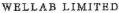
: 62 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.133

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PA/TRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/170811
Date of Issue: 2017-08-14
Date Received: 2017-08-11
Date Tested: 2017-08-11
Date Completed: 2017-08-14
Next Due Date: 2017-10-13

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.116

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170811B
Date of Issue:	2017-08-14
Date Received:	2017-08-11
Date Tested:	2017-08-11
Date Completed:	2017-08-14
Next Due Date:	2017-10-13

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701016

Flow rate
Zero Count Test

: 0.1 cfm : 0 count per 5 minutes

Equipment No.

: A-27-03

- -

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.111

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170609D
Date of Issue:	2017-06-12
Date Received:	2017-06-09
Date Tested:	2017-06-09
Date Completed:	2017-06-12
Mourt Due Date:	2017-08-11

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701013

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-08

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.178

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 1516, 1701 & 1716, Technology Park,
18 On Lai Street, Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/170811H
Date of Issue:	2017-08-14
Date Received:	2017-08-11
Date Tested:	2017-08-11
Date Completed:	2017-08-14
Next Due Date:	2017-10-13

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701015

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-09

Test Conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.095

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 1516, 1701 & 1716, Technology Park,
18 On Lai Street, Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160917B
Date of Issue: 2016-09-19
Date Received: 2016-09-17
Date Tested: 2016-09-17
Date Completed: 2016-09-19
Next Due Date: 2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

1

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12553

Microphone No.

: 35222

Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: 0

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161230
Date of Issue: 2017-01-03
Date Received: 2016-12-30
Date Tested: 2016-12-30
Date Completed: 2017-01-03

ATTN:

Mr. W. K. Tang

Page:

Next Due Date:

1 of 1

2018-01-02

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 955

Serial No.

: 14303

Microphone No.

: 35222

Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

Remark: 1)This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website; www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170825 Date of Issue: 2017-08-28 Date Received: 2017-08-25 2017-08-25 Date Tested: Date Completed: 2017-08-28

Next Due Date:

2018-08-27

Page:

1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957 : 21455

Serial No. Microphone No.

: 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170818	
Date of Issue:	2017-08-21	
Date Received:	2017-08-18	
Date Tested:	2017-08-18	
Date Completed:	2017-08-21	
Next Due Date:	2018-08-20	

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21459

Microphone No.

: 43676

Equipment No.

: N-08-08

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 61 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819C
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 957

Serial No.

: 21460 : 43679

Microphone No. Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170818A
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2018-08-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 61 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161128
Date of Issue:	2016-11-30
Date Received:	2016-11-28
Date Tested:	2016-11-28
Date Completed:	2016-11-30
Next Due Date:	2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.
Microphone No.

: 23853 : 48530

Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wcllab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128B

Date of Issue: 2016-11-30

Date Received: 2016-11-28

Date Tested: 2016-11-28

Date Completed: 2016-11-30

Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957 : 23851

Serial No.
Microphone No.

: 48532

Equipment No.

: N-08-12

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160919
Date of Issue:	2016-09-21
Date Received:	2016-09-19
Date Tested:	2016-09-19
Date Completed:	2016-09-21
Next Due Date:	2017-09-20
1,0110 25 000 25 00001	

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 977

Serial No.
Microphone No.

: 45467 : 62838

Equipment No.

: N-08-13

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 56%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

The state of the s		_
Test Report No.:	C/N/160930A	_
Date of Issue:	2016-10-03	
Date Received:	2016-09-30	
Date Tested:	2016-09-30	
Date Completed:	2016-10-03	
Next Due Date:	2017-10-02	
_	4 04	_

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

-		
Test Report No.:	C/N/160930B	
Date of Issue:	2016-10-03	
Date Received:	2016-09-30	
Date Tested:	2016-09-30	
Date Completed:	2016-10-03	
Next Due Date:	2017-10-02	
		_

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, NT, Hong Kong,
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161104/1
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819D
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

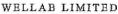
: 24 degree Celsius

Relative Humidity

: 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB 匯 Testing & Research 力 Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170818C
Date of Issue: 2017-08-21
Date Received: 2017-08-18
Date Tested: 2017-08-18
Date Completed: 2017-08-21
Next Due Date: 2018-08-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

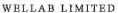
: 22 degree Celsius

Relative Humidity

: 61 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

 Test Report No.:
 C/W/170527A

 Date of Issue:
 2017-05-27

 Date Received:
 2017-05-27

 Date Tested:
 2017-05-27

Date Completed: Next Due Date:

2017-05-27 2017-08-26

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-06
_		(S/N: 16J100680)
Manufacturer:	YSI Incorporated, a	a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102985
- EXO conductivity/Temperature Sensor, Ti	599870	16G102307
- EXO Turbuduty Sensor, Ti	599101-01	16H102463
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100416

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/170527A
Date of Issue:	2017-05-27
Date Received:	2017-05-27
Date Tested:	2017-05-27
Date Completed:	2017-05-27
Next Due Date:	2017-08-26

Page:

2 of 2

Certificate of Calibration	
Genuicale of Gauntabon	
Out till out of out bration	

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	12982	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

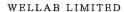
Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
22.4	22.407	-0.007	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.89	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.16	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.06	<0.1mg/L	Pass


Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.82	8.88	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.01	9.0-11.0	Pass
50 NTU	50.27	45.0-55.0	Pass
100 NTU	103.05	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.:	C/W/170527B
Date of Issue:	2017-05-27
Date Received:	2017-05-27
Date Tested:	2017-05-27
Date Completed:	2017-05-27
Next Due Date:	2017-08-26

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-09		
·		(S/N: 16J100869)		
Manufacturer:	YSI Incorporated,	YSI Incorporated, a Xylem brand		
Description:	Model No.	Serial No.		
- EXO Optical DO Sensor, Ti	599100-01	16H102988		
- EXO conductivity/Temperature Sensor, Ti	599870	16G102310		
- EXO Turbuduty Sensor, Ti	599101-01	16H102467		
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100419		

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 C/W/170527B

 Date of Issue:
 2017-05-27

 Date Received:
 2017-05-27

 Date Tested:
 2017-05-27

 Date Completed:
 2017-05-27

 Next Due Date:
 2017-08-26

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	12991	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
22.4	22.403	-0.003	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.90	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.04	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.82	8.70	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

	Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
	10 NTU	10.21	9.0-11.0	Pass
-	50 NTU	50.16	45.0-55.0	Pass
	100 NTU	100.46	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

 Test Report No.:
 C/W/170826A

 Date of Issue:
 2017-08-26

 Date Received:
 2017-08-26

 Date Tested:
 2017-08-26

 Date Completed:
 2017-08-26

 Next Due Date:
 2017-11-25

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-09
		(S/N: 16J100869)
Manufacturer:	YSI Incorporated, a	a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102988
- EXO conductivity/Temperature Sensor, Ti	599870	16G102310
- EXO Turbuduty Sensor, Ti	599101-01	16H102467
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100419

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 65%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/170826A
Date of Issue:	2017-08-26
Date Received:	2017-08-26
Date Tested:	2017-08-26
Date Completed:	2017-08-26
Next Due Date:	2017-11-25

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)		. ,	
22.4	22.407	-0.007	N/A

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.20	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	7.86	Difference between Titration value and instrument reading	Pass
		<0.2mg/L	

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.23	9.0-11.0	Pass
50 NTU	51.03	45.0-55.0	Pass
100 NTU	101.5	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: C/W/170826D

Date of Issue: 2017-08-26

Date Received: 2017-08-26

Date Tested: 2017-08-26

Date Completed:

2017-08-26

Next Due Date:

2017-08-20

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-85
		(S/N: 17B100180)
Manufacturer:	YSI Incorporated, a Xylem brand	
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	17A105009
- EXO conductivity/Temperature Sensor, Ti	599870	17A105103
- EXO Turbuduty Sensor, Ti	599101-01	17A104092
- EXO pH Sensor Assembly, Guarded, Ti	599701	17A105263

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 65%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.:	C/W/170826D
Date of Issue:	2017-08-26
Date Received:	2017-08-26
Date Tested:	2017-08-26
Date Completed:	2017-08-26
Next Due Date:	2017-11-25

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	12900	12246-13534	Pass
(12890 μS/cm)			
TE 4 0			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)		•	
22.4	22.408	-0.008	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.01	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.88	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.19	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	7.99	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.04	9.0-11.0	Pass
50 NTU	50.27	45.0-55.0	Pass
100 NTU	101.8	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG15180)

Model No.: 716A0403
Serial No.: BE15894

Calibration Date: 5 April 2017 Next Calibration Date: 5 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 5 April 2017

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16955)

Model No.: 716A0403 Serial No.: BE16223

Calibration Date: 6 April 2017
Next Calibration Date: 6 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 6 April 2017

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16959)

 Model No.:
 716A0403

 Serial No.:
 BE17506

Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16514)

Model No.: 716A0403

Serial No.: BE17905

Calibration Date: 11 April 2017

Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14851)

Model No.: 716A0403 Serial No.: BE17907

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17907)

 Part Number:
 714A9701

 Serial No.:
 BG14851

Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15894)

Part Number: 714A9701
Serial No.: BG15180
Calibration Date: 5 April 2017
Next Calibration Date: 5 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 5 April 2017

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17905)

Part Number: 714A9701
Serial No.: BG16514
Calibration Date: 11 April 2017
Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16223)

Part Number:

714A9701

Serial No.:

BG16955

Calibration Date:

6 April 2017

Next Calibration Date:

6 April 2018

Method Used:

In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References Model Serial No. Blastmate III 714A0801 BA15521 ISEE Triaxial Geophone 714A9701 BG14463 **GLOBAL SPECIALISTS 3MHz*** 2030 256812 Stanford Spectrum Analyzer SR760 41550 Aglient Multimeter* 34410A MY47011119 **HP Distortion Meter*** 339A 810699 Bruel & Kjaer Accelerometer* 4370 30323 Bruel & Kjaer Charge Amplifier* 2647 2518810 Bruel & Kjaer Conditional Amplifier* 269 2152173 LDS Air Cooled Vibrator V556 92794/1 LDS Field Power Supply FPS10L ARA 04/05 LDS Power Amplifier PA1000L ARA 07/06

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 6 April 2017

^{*}References are traceable to NIST or equivalent.

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17506)

Part Number: 714A9701
Serial No.: BG16959

Calibration Date: 11 April 2017 Next Calibration Date: 11 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20673)

Model No.: 716A0403 Serial No.: BE13849

Calibration Date: 13 April 2017 Next Calibration Date: 13 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13849)

Part Number:

714A9701

Serial No.:

BG20673

Calibration Date:

13 April 2017

Next Calibration Date:

13 April 2018

Method Used:

In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20674)

Model No.: 716A0403 Serial No.: BE17902

Calibration Date: 13 April 2017 Next Calibration Date: 13 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17902)

Part Number: 714A9701

Serial No.: BG20674

Calibration Date: 13 April 2017

Next Calibration Date: 13 April 2018

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Model	Serial No.
714A0801	BA15521
714A9701	BG14463
2030	256812
SR760	41550
34410A	MY47011119
339A	810699
4370	30323
2647	2518810
269	2152173
V556	92794/1
FPS10L	ARA 04/05
PA1000L	ARA 07/06
	714A0801 714A9701 2030 SR760 34410A 339A 4370 2647 269 V556 FPS10L

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Leica Geosystems Calibration Certificate Blue

Calibration Certificate Blue without measurement values issued by Authorised Service Centre

Product

DNA03 digital level

Certificate No.

347062-18012017

Article No.

723289

Inspection Date

18.01.2017

Serial No.

347062

Order No.

501047397

Equipment No.

5937807

PO No.

PO

Issued by

Authorised Service Centre Leica Geosystems Ltd.

Kowloon, Hong Kong

Ordered by

LEIGHTON - CHINA STATE J.V.

HONG KONG Hongkong

Hongkong

Customer

LEIGHTON - CHINA STATE J.V.

HONG KONG

Hongkong

Compliance

The Calibration Certificate Blue without measurement values issued by Authorised Service Centre corresponds to the Producer Inspection Certificate O in accordance with DIN 55 350 Part 18-4.2.1.

Certificate

We hereby certify that the product described has been tested and complies with the specifications of the product. The test equipment used is traceable to national standards or to recognized procedures. This is established by our Quality Management System, audited and certified to ISO 9001 by an independent national accredited certification body.

Leica Geosystems Ltd.

18.01.2017

Stella Kam Operations Manager Jacky Ng Service Manager

Calibration Certificate

Number: CCP/66453

Customer Name:

Far East Metal & Hardware Company

Contact Person:

Ms. Cherry Yiu

Detector Model:

Crowcon Tetra Portable Gas Detector

Serial Number:

100486262/01-020

Sensor	Measuring	Alarm Level Settings					
Type	Range	Alarm 1	Alarm 2	STEL	LTEL	Test Gas	Result
CH4	0 to 100%LEL	20	40	NA	NA	50%LEL	Passed
H2S	0 to 100ppm	5	10	10	5	25ppm	Passed
O2	0 to 25%v/v	19.0	23.5	NA	NA	18.0%v/v	Passed
CO	0 to 500ppm	30	100	200	30	100ppm	Passed

Next Calibration Date: 5th January 2018

Remarks:

- 1. "Passed" refers to the detector has been successfully calibrated to meet with manufacturer tolerance of the instrument & sensor specification and repeatability $\pm 5\%$ FSD.
- 2. The above equipment has been tested and calibrated in accordance with procedures referred to in Crowcon's BSI validated ISO9001 quality manual. Test equipment used has been factory calibrated and is traceable to national standards. Canned calibration gas has been prepared in accordance with BS4559 and original gas mixture has been prepared using NPL (UK) certified Gravimetric Standard. Gas generator has been tested to meet with: Mil Std 45662A/ANSI/NCSL Z540-1

Mark Chan

Technical Service Manager

6th January 2017

Hong Tong Tong

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 August 2017	28.3 - 33.2	80	5.9
2 August 2017	27.3 - 31	83	14.8
3 August 2017	25.3 - 29.8	88	66.7
4 August 2017	25.9 - 29.3	89	19.3
5 August 2017	27.1 - 34	80	0.9
6 August 2017	28.5 - 32.9	78	0
7 August 2017	27.3 - 33	77	6.9
8 August 2017	28.4 - 32.8	78	1.9
9 August 2017	26.3 - 31	81	14.3
10 August 2017	27.6 - 31.4	81	11.1
11 August 2017	28.9 - 31.6	79	3.5
12 August 2017	29 - 32.5	76	0
13 August 2017	28.6 - 32.4	76	0
14 August 2017	28.8 - 32.5	75	Trace
15 August 2017	28.1 - 32.9	74	0.2
16 August 2017	28.2 - 31.2	75	Trace
17 August 2017	27.9 - 33	73	0
18 August 2017	28.1 - 34.3	76	0
19 August 2017	28.4 - 34	71	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 August 2017	28.5 - 33.4	75	0
21 August 2017	28.6 - 34.5	72	0
22 August 2017	28 - 36.6	76	2
23 August 2017	25.4 - 29.5	89	67.1
24 August 2017	27.3 - 31.5	86	Trace
25 August 2017	27.8 - 32.7	81	0.1
26 August 2017	26.2 - 34.3	73	6.3
27 August 2017	24 - 26.9	95	165.3
28 August 2017	24.5 - 26.3	96	98.3
29 August 2017	24.6 - 31.4	79	0
30 August 2017	27 - 31.6	79	0.4
31 August 2017	26.2 - 32.8	77	4.1

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

II. Mean Wind S	Mean Wind Speed and Wind Direction				
1-Aug-2017	0:00	2	WNW		
1-Aug-2017	1:00	2.1	NW		
1-Aug-2017	2:00	1.8	N		
1-Aug-2017	3:00	1.5	S		
1-Aug-2017	4:00	1.6	S		
1-Aug-2017	5:00	1.7	S		
1-Aug-2017	6:00	1.8	N		
1-Aug-2017	7:00	1.9	NNE		
1-Aug-2017	8:00	2.3	NNE		
1-Aug-2017	9:00	2.1	NE		
1-Aug-2017	10:00	2.3	NE		
1-Aug-2017	11:00	2.4	NE		
1-Aug-2017	12:00	2.5	NE		
1-Aug-2017	13:00	2.5	NE		
1-Aug-2017	14:00	2.5	NNE		
1-Aug-2017	15:00	2.8	NE		
1-Aug-2017	16:00	3	NE		
1-Aug-2017	17:00	2.8	NE		
1-Aug-2017	18:00	2.3	NE		
1-Aug-2017	19:00	2.1	NE		
1-Aug-2017	20:00	1.9	NE		
1-Aug-2017	21:00	2	WNW		
1-Aug-2017	22:00	2.1	W		
1-Aug-2017	23:00	2	WSW		
2-Aug-2017	0:00	2	WSW		
2-Aug-2017	1:00	2	WSW		
2-Aug-2017	2:00	2	WSW		
2-Aug-2017	3:00	1.7	WSW		
2-Aug-2017	4:00	2	WSW		
2-Aug-2017	5:00	2	SW		
2-Aug-2017	6:00	1.7	WSW		
2-Aug-2017	7:00	1.8	WSW		
2-Aug-2017	8:00	1.8	WSW		
2-Aug-2017	9:00	1.8	W		
2-Aug-2017	10:00	2.2	WNW		
2-Aug-2017	11:00	2.2	W		
2-Aug-2017	12:00	2.2	WSW		
2-Aug-2017	13:00	2.1	SW		
			· · · · · · · · · · · · · · · · · · ·		

II.	Mean Wind S	peed and Wind Dir	ection	
	2-Aug-2017	14:00	2.2	SE
	2-Aug-2017	15:00	2.4	ENE
	2-Aug-2017	16:00	2.2	WSW
	2-Aug-2017	17:00	2.1	W
	2-Aug-2017	18:00	1.7	WNW
	2-Aug-2017	19:00	1.4	WNW
	2-Aug-2017	20:00	1.4	SSW
	2-Aug-2017	21:00	1.5	WSW
	2-Aug-2017	22:00	1.5	W
	2-Aug-2017	23:00	1.4	W
	3-Aug-2017	0:00	1.6	W
	3-Aug-2017	1:00	1.6	W
	3-Aug-2017	2:00	1.7	WSW
	3-Aug-2017	3:00	1.4	WSW
	3-Aug-2017	4:00	1.7	W
	3-Aug-2017	5:00	1.6	SSW
	3-Aug-2017	6:00	1.4	SW
	3-Aug-2017	7:00	1.3	SW
	3-Aug-2017	8:00	1.3	WSW
	3-Aug-2017	9:00	1.6	SW
	3-Aug-2017	10:00	1.6	SW
	3-Aug-2017	11:00	1.6	SW
	3-Aug-2017	12:00	2	SW
	3-Aug-2017	13:00	2.2	SSW
	3-Aug-2017	14:00	2.1	S
	3-Aug-2017	15:00	2	SSW
	3-Aug-2017	16:00	1.8	SSW
	3-Aug-2017	17:00	1.7	SSW
	3-Aug-2017	18:00	1.3	WNW
	3-Aug-2017	19:00	1.4	W
	3-Aug-2017	20:00	1.7	W
	3-Aug-2017	21:00	1.8	WNW
	3-Aug-2017	22:00	1.8	WNW
	3-Aug-2017	23:00	2.4	WNW
	4-Aug-2017	0:00	2	WNW
	4-Aug-2017	1:00	1.9	WNW
	4-Aug-2017	2:00	1.9	W
	4-Aug-2017	3:00	2.1	N

н.	Mean wind S	peea ana wina Dir	ection	
	4-Aug-2017	4:00	2.2	NNE
	4-Aug-2017	5:00	2.1	WNW
	4-Aug-2017	6:00	2.1	WNW
	4-Aug-2017	7:00	1.8	SSW
	4-Aug-2017	8:00	1.6	WNW
	4-Aug-2017	9:00	1.7	WSW
	4-Aug-2017	10:00	2.3	SW
	4-Aug-2017	11:00	2.4	SW
	4-Aug-2017	12:00	2.3	SSW
	4-Aug-2017	13:00	2.3	SSW
	4-Aug-2017	14:00	2	SW
	4-Aug-2017	15:00	2.1	SW
	4-Aug-2017	16:00	1.8	WNW
	4-Aug-2017	17:00	2.5	W
	4-Aug-2017	18:00	2.3	WNW
	4-Aug-2017	19:00	2.2	WNW
	4-Aug-2017	20:00	2.2	WNW
	4-Aug-2017	21:00	1.7	S
	4-Aug-2017	22:00	2	SSW
	4-Aug-2017	23:00	1.9	SSW
	5-Aug-2017	0:00	2.1	W
	5-Aug-2017	1:00	2.1	WNW
	5-Aug-2017	2:00	2.3	W
	5-Aug-2017	3:00	2.3	WNW
	5-Aug-2017	4:00	2.2	W
	5-Aug-2017	5:00	2.2	N
	5-Aug-2017	6:00	2.1	NNE
	5-Aug-2017	7:00	2	ESE
	5-Aug-2017	8:00	1.9	ESE
	5-Aug-2017	9:00	2.2	WNW
	5-Aug-2017	10:00	2.1	W
	5-Aug-2017	11:00	2.6	WNW
	5-Aug-2017	12:00	2.6	WNW
	5-Aug-2017	13:00	3	WNW
	5-Aug-2017	14:00	3.2	SW
	5-Aug-2017	15:00	3	SSW
	5-Aug-2017	16:00	2.9	SSW
	5-Aug-2017	17:00	2.8	ENE

II. Mean Wind	l Speed and Wind Dir	ection	
5-Aug-2017	18:00	2.9	SSW
5-Aug-2017	19:00	2.9	SW
5-Aug-2017	20:00	3	WNW
5-Aug-2017	21:00	3	WNW
5-Aug-2017	22:00	3.3	WSW
5-Aug-2017	23:00	3	N
6-Aug-2017	0:00	1.6	N
6-Aug-2017	1:00	1.7	WNW
6-Aug-2017	2:00	1.7	NNE
6-Aug-2017	3:00	1.5	ENE
6-Aug-2017	4:00	1.4	NE
6-Aug-2017	5:00	1.2	ENE
6-Aug-2017	6:00	1.1	NE
6-Aug-2017	7:00	1.4	ENE
6-Aug-2017	8:00	1.6	ENE
6-Aug-2017	9:00	1.5	E
6-Aug-2017	10:00	1.8	ENE
6-Aug-2017	11:00	2.3	E
6-Aug-2017	12:00	2.2	ENE
6-Aug-2017	13:00	2.6	ENE
6-Aug-2017	14:00	2.6	ENE
6-Aug-2017	15:00	2.8	ESE
6-Aug-2017	16:00	2.2	SW
6-Aug-2017	17:00	2.1	SW
6-Aug-2017	18:00	1.8	W
6-Aug-2017	19:00	1.5	WNW
6-Aug-2017	20:00	1.6	WNW
6-Aug-2017	21:00	1.6	WNW
6-Aug-2017	22:00	1.7	W
6-Aug-2017	23:00	1.6	W
7-Aug-2017	0:00	1.2	ENE
7-Aug-2017	1:00	1.2	ENE
7-Aug-2017	2:00	1.1	ENE
7-Aug-2017	3:00	1.2	WSW
7-Aug-2017	4:00	1.4	WSW
7-Aug-2017	5:00	1.7	WSW
7-Aug-2017	6:00	1.7	WSW
7-Aug-2017	7:00	1.5	WSW

11. IVI	iean wind S	peea ana wina Dir	ection	
7-Au	ug-2017	8:00	1.7	WSW
7-Aı	ıg-2017	9:00	4.7	WSW
7-Aı	ıg-2017	10:00	1.8	WSW
7-Aı	ıg-2017	11:00	2	WSW
7-Aı	ıg-2017	12:00	3	WSW
7-Aı	ıg-2017	13:00	2.3	WSW
7-Aı	ıg-2017	14:00	2	WSW
7-Au	ug-2017	15:00	1.6	WSW
7-Aı	ıg-2017	16:00	1.6	WSW
7-Aı	ıg-2017	17:00	1.6	WSW
7-Au	ug-2017	18:00	1.2	SW
7-Aı	ıg-2017	19:00	1.1	SW
7-Aı	ıg-2017	20:00	0.9	WSW
7-Au	ug-2017	21:00	0.6	W
7-Au	ıg-2017	22:00	0.9	WNW
7-Au	ıg-2017	23:00	0.8	WNW
8-Aı	ıg-2017	0:00	0.7	WNW
8-Aı	ıg-2017	1:00	0.9	WNW
8-Aı	ıg-2017	2:00	0.8	WNW
8-Aı	ıg-2017	3:00	1	W
8-Aı	ıg-2017	4:00	0.9	W
8-Aı	ıg-2017	5:00	1.4	W
8-Aı	ıg-2017	6:00	1.4	W
8-Aı	ıg-2017	7:00	1.7	S
8-Aı	ıg-2017	8:00	1.9	SW
8-Aı	ıg-2017	9:00	1.8	NW
8-Aı	ıg-2017	10:00	2.1	N
8-Aı	ug-2017	11:00	2.1	N
8-Aı	ıg-2017	12:00	2	NNE
8-Aı	ıg-2017	13:00	2	NE
8-Aı	ug-2017	14:00	1.9	ENE
8-Aı	ug-2017	15:00	1.7	WSW
8-Aı	ug-2017	16:00	1.8	W
8-Au	ıg-2017	17:00	2	WNW
8-Aı	ıg-2017	18:00	1.5	WSW
8-Aı	ıg-2017	19:00	1.5	WSW
8-Aı	ug-2017	20:00	1.2	WNW
8-Aı	ıg-2017	21:00	1.3	W

II. Mean wind	Speeu and wind Dir	CCHOII	
8-Aug-2017	22:00	1.5	WNW
8-Aug-2017	23:00	1.6	W
9-Aug-2017	0:00	1.8	W
9-Aug-2017	1:00	1.7	WNW
9-Aug-2017	2:00	1.6	NNW
9-Aug-2017	3:00	1.7	N
9-Aug-2017	4:00	1.5	N
9-Aug-2017	5:00	1.4	ESE
9-Aug-2017	6:00	1.4	ESE
9-Aug-2017	7:00	1.4	ESE
9-Aug-2017	8:00	1.5	NW
9-Aug-2017	9:00	2	ENE
9-Aug-2017	10:00	2.4	SSW
9-Aug-2017	11:00	2.4	WNW
9-Aug-2017	12:00	2.3	WNW
9-Aug-2017	13:00	2.1	W
9-Aug-2017	14:00	2.1	W
9-Aug-2017	15:00	1.9	WNW
9-Aug-2017	16:00	1.5	N
9-Aug-2017	17:00	1.5	N
9-Aug-2017	18:00	1.3	NE
9-Aug-2017	19:00	1.1	SSW
9-Aug-2017	20:00	0.9	SSW
9-Aug-2017	21:00	1.2	SW
9-Aug-2017	22:00	1.2	SW
9-Aug-2017	23:00	1.1	W
10-Aug-2017	0:00	1.1	W
10-Aug-2017	1:00	1.3	W
10-Aug-2017	2:00	1.9	W
10-Aug-2017	3:00	2.2	W
10-Aug-2017	4:00	2.1	W
10-Aug-2017	5:00	1.9	SW
10-Aug-2017	6:00	2	W
10-Aug-2017	7:00	2.1	WSW
10-Aug-2017	8:00	2.3	ESE
10-Aug-2017	9:00	2.5	SSE
10-Aug-2017	10:00	3	WSW
10-Aug-2017	11:00	2.8	WSW

11.	Mean wind S	peea ana wina Dir	ection	
10	-Aug-2017	12:00	3	N
10	-Aug-2017	13:00	2.8	WSW
10	-Aug-2017	14:00	2.1	SSW
10	-Aug-2017	15:00	1.9	WSW
10	-Aug-2017	16:00	1.8	WSW
10	-Aug-2017	17:00	1.8	WSW
10	-Aug-2017	18:00	1.8	SSW
10	-Aug-2017	19:00	1.5	SSW
10	-Aug-2017	20:00	1.3	W
10	-Aug-2017	21:00	1.3	WNW
10	-Aug-2017	22:00	1	WNW
10	-Aug-2017	23:00	1.1	WSW
11	-Aug-2017	0:00	1.6	WSW
11	-Aug-2017	1:00	1.5	W
11	-Aug-2017	2:00	1.5	W
11	-Aug-2017	3:00	1.5	WSW
11	-Aug-2017	4:00	1.5	WSW
11	-Aug-2017	5:00	2	WSW
11	-Aug-2017	6:00	2.3	W
11	-Aug-2017	7:00	2	W
11	-Aug-2017	8:00	1.8	W
11	-Aug-2017	9:00	2.3	W
11	-Aug-2017	10:00	2.3	WSW
11	-Aug-2017	11:00	2.2	W
11	-Aug-2017	12:00	2.5	W
11	-Aug-2017	13:00	2.5	WNW
11	-Aug-2017	14:00	2.7	W
11	-Aug-2017	15:00	2.8	W
11	-Aug-2017	16:00	2.2	SSW
11	-Aug-2017	17:00	2.5	SSW
11	-Aug-2017	18:00	2.4	SW
11	-Aug-2017	19:00	1.6	SSW
11	-Aug-2017	20:00	1.8	W
11	-Aug-2017	21:00	1.9	W
11	-Aug-2017	22:00	1.3	SW
11	-Aug-2017	23:00	1.5	W
12	-Aug-2017	0:00	1.6	W
12	-Aug-2017	1:00	1.6	SSW

II. Mean	wina Speed and w	ina Direction	
12-Aug-20	2:00	1.5	SSW
12-Aug-20	3:00	1.9	SSW
12-Aug-20	17 4:00	2	WSW
12-Aug-20	5:00	2.3	WSW
12-Aug-20	017 6:00	1.5	W
12-Aug-20	7:00	2.1	SW
12-Aug-20	917 8:00	2.4	SSW
12-Aug-20	9:00	2.5	WSW
12-Aug-20	10:00	3	WSW
12-Aug-20	11:00	3.1	WSW
12-Aug-20	12:00	3.7	W
12-Aug-20	13:00	3.9	WSW
12-Aug-20	14:00	3.4	WSW
12-Aug-20	15:00	2.8	WSW
12-Aug-20	16:00	3	WSW
12-Aug-20	17:00	2.8	W
12-Aug-20	18:00	2.5	W
12-Aug-20	19:00	2.1	N
12-Aug-20)17 20:00	1.7	WSW
12-Aug-20)17 21:00	1.7	WNW
12-Aug-20)17 22:00	1.7	WSW
12-Aug-20)17 23:00	2	WSW
13-Aug-20	0:00	2.2	WSW
13-Aug-20	1:00	2.2	WSW
13-Aug-20	2:00	2.3	WSW
13-Aug-20	3:00	2.3	W
13-Aug-20	17 4:00	1.7	WSW
13-Aug-20	5:00	2	W
13-Aug-20	017 6:00	2.1	WNW
13-Aug-20	7:00	1.8	W
13-Aug-20	917 8:00	2.1	W
13-Aug-20	9:00	2	W
13-Aug-20	10:00	2.5	WSW
13-Aug-20	11:00	2.7	WSW
13-Aug-20	12:00	3.3	W
13-Aug-20	13:00	3.2	WSW
13-Aug-20	017 14:00	3.1	WSW
13-Aug-20	15:00	2.9	S

II. Mean wind	Speed and wind Dir	cction	
13-Aug-2017	16:00	2.4	S
13-Aug-2017	17:00	2.2	SSW
13-Aug-2017	18:00	2	SSW
13-Aug-2017	19:00	1.9	SSW
13-Aug-2017	20:00	1.7	S
13-Aug-2017	21:00	2	SSW
13-Aug-2017	22:00	1.5	SW
13-Aug-2017	23:00	1.7	SW
14-Aug-2017	0:00	1.8	SW
14-Aug-2017	1:00	1.7	SW
14-Aug-2017	2:00	1.7	SW
14-Aug-2017	3:00	1.3	SSW
14-Aug-2017	4:00	1.5	SSW
14-Aug-2017	5:00	1.5	SW
14-Aug-2017	6:00	1.3	SW
14-Aug-2017	7:00	1.7	SW
14-Aug-2017	8:00	1.8	W
14-Aug-2017	9:00	2.4	WSW
14-Aug-2017	10:00	2.3	WNW
14-Aug-2017	11:00	2.3	SW
14-Aug-2017	12:00	2.6	S
14-Aug-2017	13:00	2.6	S
14-Aug-2017	14:00	2.2	S
14-Aug-2017	15:00	2.6	S
14-Aug-2017	16:00	2.4	S
14-Aug-2017	17:00	1.8	SSW
14-Aug-2017	18:00	1.4	W
14-Aug-2017	19:00	1.8	WNW
14-Aug-2017	20:00	1.4	W
14-Aug-2017	21:00	1.9	N
14-Aug-2017	22:00	1.7	NNE
14-Aug-2017	23:00	1.5	WNW
15-Aug-2017	0:00	1.9	SE
15-Aug-2017	1:00	1.4	SE
15-Aug-2017	2:00	1.6	ESE
15-Aug-2017	3:00	2.1	ESE
15-Aug-2017	4:00	1.7	ESE
15-Aug-2017	5:00	1.4	W
·		·	

н.	wiean wind S	peea ana wina Dir	ection	
	15-Aug-2017	6:00	1.6	SSW
	15-Aug-2017	7:00	1.7	SSW
	15-Aug-2017	8:00	1.8	SSW
	15-Aug-2017	9:00	2.2	WNW
	15-Aug-2017	10:00	2.6	WNW
	15-Aug-2017	11:00	2.5	WNW
	15-Aug-2017	12:00	2.6	W
	15-Aug-2017	13:00	2.4	ENE
	15-Aug-2017	14:00	2.7	ENE
	15-Aug-2017	15:00	2.4	WNW
	15-Aug-2017	16:00	2.3	WNW
	15-Aug-2017	17:00	2.3	NW
	15-Aug-2017	18:00	2.1	WNW
	15-Aug-2017	19:00	1.8	SW
	15-Aug-2017	20:00	1.7	N
	15-Aug-2017	21:00	1.6	E
	15-Aug-2017	22:00	1.6	E
	15-Aug-2017	23:00	1.8	SSW
	16-Aug-2017	0:00	1.8	WNW
	16-Aug-2017	1:00	1.7	W
	16-Aug-2017	2:00	1.5	SSW
	16-Aug-2017	3:00	1.5	W
	16-Aug-2017	4:00	1.8	WNW
	16-Aug-2017	5:00	2	W
	16-Aug-2017	6:00	1.8	WNW
	16-Aug-2017	7:00	2.2	S
	16-Aug-2017	8:00	2.1	S
	16-Aug-2017	9:00	2.4	SW
	16-Aug-2017	10:00	2.6	W
	16-Aug-2017	11:00	2.8	WSW
	16-Aug-2017	12:00	3	WSW
	16-Aug-2017	13:00	3.2	SSW
	16-Aug-2017	14:00	2.8	SW
	16-Aug-2017	15:00	2.8	SW
	16-Aug-2017	16:00	2.6	S
	16-Aug-2017	17:00	2.4	W
	16-Aug-2017	18:00	1.7	WSW
	16-Aug-2017	19:00	1.6	WNW

II. Mean Wind	Speed and Wind Dir	ection	
16-Aug-2017	20:00	1.3	SSW
16-Aug-2017	21:00	1.6	SSW
16-Aug-2017	22:00	1.7	SW
16-Aug-2017	23:00	1.3	W
17-Aug-2017	0:00	1.7	SW
17-Aug-2017	1:00	2	SW
17-Aug-2017	2:00	1.8	W
17-Aug-2017	3:00	2	WNW
17-Aug-2017	4:00	1.6	W
17-Aug-2017	5:00	1.6	W
17-Aug-2017	6:00	1.8	WNW
17-Aug-2017	7:00	2	SW
17-Aug-2017	8:00	2.3	SSW
17-Aug-2017	9:00	2.1	W
17-Aug-2017	10:00	2.2	SW
17-Aug-2017	11:00	2.6	SW
17-Aug-2017	12:00	2.8	SSW
17-Aug-2017	13:00	3.3	W
17-Aug-2017	14:00	2.6	SW
17-Aug-2017	15:00	3	SSW
17-Aug-2017	16:00	2.6	W
17-Aug-2017	17:00	1.8	W
17-Aug-2017	18:00	1.6	W
17-Aug-2017	19:00	1.9	WNW
17-Aug-2017	20:00	1.8	W
17-Aug-2017	21:00	1.5	WNW
17-Aug-2017	22:00	2.2	WSW
17-Aug-2017	23:00	2.6	SW
18-Aug-2017	0:00	2.5	WSW
18-Aug-2017	1:00	2.1	WNW
18-Aug-2017	2:00	2.2	W
18-Aug-2017	3:00	2.2	W
18-Aug-2017	4:00	2.3	W
18-Aug-2017	5:00	2.4	WNW
18-Aug-2017	6:00	2.4	W
18-Aug-2017	7:00	2.6	W
18-Aug-2017	8:00	2.6	WNW
18-Aug-2017	9:00	2.3	SW

II. Mean Wind	Speed and Wind Dir	ection	
18-Aug-2017	10:00	2.6	W
18-Aug-2017	11:00	2.7	WSW
18-Aug-2017	12:00	2.8	W
18-Aug-2017	13:00	2.5	W
18-Aug-2017	14:00	2.3	WSW
18-Aug-2017	15:00	2.3	SW
18-Aug-2017	16:00	2.2	SSW
18-Aug-2017	17:00	2.2	SSW
18-Aug-2017	18:00	2.2	SW
18-Aug-2017	19:00	1.6	WSW
18-Aug-2017	20:00	1.7	SW
18-Aug-2017	21:00	1.7	WSW
18-Aug-2017	22:00	1.5	WNW
18-Aug-2017	23:00	1.4	SSW
19-Aug-2017	0:00	1.5	W
19-Aug-2017	1:00	1.6	W
19-Aug-2017	2:00	1.7	WNW
19-Aug-2017	3:00	1.7	SSW
19-Aug-2017	4:00	1.7	W
19-Aug-2017	5:00	2	WNW
19-Aug-2017	6:00	1.8	WSW
19-Aug-2017	7:00	1.8	WSW
19-Aug-2017	8:00	2	WNW
19-Aug-2017	9:00	1.7	W
19-Aug-2017	10:00	2.6	W
19-Aug-2017	11:00	2.8	WNW
19-Aug-2017	12:00	2.8	WNW
19-Aug-2017	13:00	2.2	W
19-Aug-2017	14:00	2.5	S
19-Aug-2017	15:00	2.7	WNW
19-Aug-2017	16:00	2.7	SW
19-Aug-2017	17:00	2.5	SW
19-Aug-2017	18:00	2.2	SW
19-Aug-2017	19:00	1.8	E
19-Aug-2017	20:00	1.3	WSW
19-Aug-2017	21:00	1.4	W
19-Aug-2017	22:00	1.5	W
19-Aug-2017	23:00	1.4	NE

II. Mean Wind	Speed and Wind Dir	ection	
20-Aug-2017	0:00	1.7	E
20-Aug-2017	1:00	1.7	Е
20-Aug-2017	2:00	2	NE
20-Aug-2017	3:00	1.6	N
20-Aug-2017	4:00	1.6	SSW
20-Aug-2017	5:00	1.5	SSW
20-Aug-2017	6:00	1.5	SSW
20-Aug-2017	7:00	1.2	SW
20-Aug-2017	8:00	1.4	SW
20-Aug-2017	9:00	2	W
20-Aug-2017	10:00	2.6	SW
20-Aug-2017	11:00	2.4	SW
20-Aug-2017	12:00	2.7	WSW
20-Aug-2017	13:00	2.7	NE
20-Aug-2017	14:00	2.2	W
20-Aug-2017	15:00	2.1	N
20-Aug-2017	16:00	2	NNE
20-Aug-2017	17:00	1.7	SW
20-Aug-2017	18:00	1.7	SW
20-Aug-2017	19:00	1.3	W
20-Aug-2017	20:00	1.3	ENE
20-Aug-2017	21:00	1.4	NNE
20-Aug-2017	22:00	1.4	ESE
20-Aug-2017	23:00	1.5	WSW
21-Aug-2017	0:00	1.1	SSW
21-Aug-2017	1:00	1.5	SSW
21-Aug-2017	2:00	1.3	W
21-Aug-2017	3:00	1.3	SW
21-Aug-2017	4:00	1.2	SSW
21-Aug-2017	5:00	1.3	W
21-Aug-2017	6:00	1.3	NE
21-Aug-2017	7:00	1.4	W
21-Aug-2017	8:00	1.5	W
21-Aug-2017	9:00	1.8	ENE
21-Aug-2017	10:00	2	NE
21-Aug-2017	11:00	2.2	E
21-Aug-2017	12:00	1.6	ENE
21-Aug-2017	13:00	1.8	ENE

11.	Mean wind S	peed and Wind Dir	ection	
	21-Aug-2017	14:00	2	NE
	21-Aug-2017	15:00	2.6	ENE
	21-Aug-2017	16:00	2.1	N
	21-Aug-2017	17:00	2.1	ENE
	21-Aug-2017	18:00	2	ENE
	21-Aug-2017	19:00	1.6	ESE
	21-Aug-2017	20:00	1.3	ESE
	21-Aug-2017	21:00	1.4	E
	21-Aug-2017	22:00	1.1	E
	21-Aug-2017	23:00	1.5	ESE
	22-Aug-2017	0:00	1.6	SE
	22-Aug-2017	1:00	1.7	ENE
	22-Aug-2017	2:00	1.7	SE
	22-Aug-2017	3:00	2.1	NE
	22-Aug-2017	4:00	1.4	NE
	22-Aug-2017	5:00	1.6	NE
	22-Aug-2017	6:00	1.6	NE
	22-Aug-2017	7:00	1.6	NE
	22-Aug-2017	8:00	1.8	NE
	22-Aug-2017	9:00	1.6	SSE
	22-Aug-2017	10:00	2.8	E
	22-Aug-2017	11:00	2.7	ENE
	22-Aug-2017	12:00	3.2	ENE
	22-Aug-2017	13:00	3.1	ENE
	22-Aug-2017	14:00	3.2	E
	22-Aug-2017	15:00	3.4	WSW
	22-Aug-2017	16:00	3.7	WSW
	22-Aug-2017	17:00	3.2	SW
	22-Aug-2017	18:00	2.9	SW
	22-Aug-2017	19:00	3.5	S
	22-Aug-2017	20:00	3.6	SSE
	22-Aug-2017	21:00	4	E
	22-Aug-2017	22:00	4.3	SSE
	22-Aug-2017	23:00	4	SSE
	23-Aug-2017	0:00	4	SSE
	23-Aug-2017	1:00	4	SSE
	23-Aug-2017	2:00	3.8	SSE
	23-Aug-2017	3:00	4.2	S

II. Mean Wind	d Speed and Wind Dir	ection	
23-Aug-2017	4:00	4.6	SE
23-Aug-2017	5:00	4.9	ESE
23-Aug-2017	6:00	4.9	ESE
23-Aug-2017	7:00	5.1	ESE
23-Aug-2017	8:00	5.3	SSE
23-Aug-2017	9:00	5.1	S
23-Aug-2017	10:00	4.9	SE
23-Aug-2017	11:00	5.3	SSE
23-Aug-2017	12:00	5.2	S
23-Aug-2017	13:00	5	ESE
23-Aug-2017	14:00	5.8	S
23-Aug-2017	15:00	5.1	SSE
23-Aug-2017	16:00	5.6	SSE
23-Aug-2017	17:00	6	ESE
23-Aug-2017	18:00	5.3	SSE
23-Aug-2017	19:00	5	NNE
23-Aug-2017	20:00	4.9	NE
23-Aug-2017	21:00	4.7	S
23-Aug-2017	22:00	4.6	SSE
23-Aug-2017	23:00	3.8	S
24-Aug-2017	0:00	3.9	ESE
24-Aug-2017	1:00	3.7	ESE
24-Aug-2017	2:00	3.2	ESE
24-Aug-2017	3:00	3.1	SSE
24-Aug-2017	4:00	2.8	ESE
24-Aug-2017	5:00	3.1	ESE
24-Aug-2017	6:00	3.1	ESE
24-Aug-2017	7:00	3	ENE
24-Aug-2017	8:00	2.9	S
24-Aug-2017	9:00	3.3	SSE
24-Aug-2017	10:00	3.5	ENE
24-Aug-2017	11:00	3.8	ENE
24-Aug-2017	12:00	3.5	WNW
24-Aug-2017	13:00	3.7	WNW
24-Aug-2017	14:00	3.5	W
24-Aug-2017	15:00	3.4	W
24-Aug-2017	16:00	3.6	SW
24-Aug-2017	17:00	3.7	SW

11.	Mean wind S	peed and Wind Dir	ection	
	24-Aug-2017	18:00	2.6	SSW
	24-Aug-2017	19:00	2.8	SSW
	24-Aug-2017	20:00	2.6	WSW
	24-Aug-2017	21:00	3.6	WNW
	24-Aug-2017	22:00	3.5	WNW
	24-Aug-2017	23:00	3.3	WNW
	25-Aug-2017	0:00	3.2	WNW
	25-Aug-2017	1:00	3.1	SW
	25-Aug-2017	2:00	3.1	WNW
	25-Aug-2017	3:00	3.2	W
	25-Aug-2017	4:00	2.8	E
	25-Aug-2017	5:00	2.9	E
	25-Aug-2017	6:00	2.8	S
	25-Aug-2017	7:00	3	S
	25-Aug-2017	8:00	3	SSW
	25-Aug-2017	9:00	3.1	WSW
	25-Aug-2017	10:00	3.2	W
	25-Aug-2017	11:00	3.3	W
	25-Aug-2017	12:00	3.3	SSW
	25-Aug-2017	13:00	3.7	WSW
	25-Aug-2017	14:00	3.5	W
	25-Aug-2017	15:00	3.5	WSW
	25-Aug-2017	16:00	3.6	W
	25-Aug-2017	17:00	3.4	SW
	25-Aug-2017	18:00	3.4	SW
	25-Aug-2017	19:00	3.6	WNW
	25-Aug-2017	20:00	3.4	WSW
	25-Aug-2017	21:00	3	NE
	25-Aug-2017	22:00	3	NW
	25-Aug-2017	23:00	3	NNE
	26-Aug-2017	0:00	3	NE
	26-Aug-2017	1:00	3.1	ESE
	26-Aug-2017	2:00	2.8	WNW
	26-Aug-2017	3:00	3	W
	26-Aug-2017	4:00	3	SW
	26-Aug-2017	5:00	2.9	WSW
	26-Aug-2017	6:00	4.3	SSE
	26-Aug-2017	7:00	4.4	NW

II. Mean wind	Speed and wind Dir	CCHOII		
26-Aug-2017	8:00	4.5	WSW	
26-Aug-2017	9:00	4.4	W	
26-Aug-2017	10:00	3.4	W	
26-Aug-2017	11:00	3.3	W	
26-Aug-2017	12:00	3.4	WNW	
26-Aug-2017	13:00	3.6	WNW	
26-Aug-2017	14:00	3.5	WNW	
26-Aug-2017	15:00	3.4	WNW	
26-Aug-2017	16:00	3.5	WSW	
26-Aug-2017	17:00	3.4	W	
26-Aug-2017	18:00	3	WNW	
26-Aug-2017	19:00	3.2	W	
26-Aug-2017	20:00	4	W	
26-Aug-2017	21:00	3.7	NNE	
26-Aug-2017	22:00	3.7	NNE	
26-Aug-2017	23:00	3.6	SSE	
27-Aug-2017	0:00	3.6	SE	
27-Aug-2017	1:00	4.1	ESE	
27-Aug-2017	2:00	4.2	ESE	
27-Aug-2017	3:00	5.7	ESE	
27-Aug-2017	4:00	5.5	ESE	
27-Aug-2017	5:00	5.7	ESE	
27-Aug-2017	6:00	5.9	SE	
27-Aug-2017	7:00	5.8	SSE	
27-Aug-2017	8:00	6.1	ESE	
27-Aug-2017	9:00	6.3	SSE	
27-Aug-2017	10:00	6.1	SSE	
27-Aug-2017	11:00	6.8	E	
27-Aug-2017	12:00	6.3	SSE	
27-Aug-2017	13:00	5.6	S	
27-Aug-2017	14:00	5.4	E	
27-Aug-2017	15:00	4.3	SSE	
27-Aug-2017	16:00	5	SE	
27-Aug-2017	17:00	4.6	ESE	
27-Aug-2017	18:00	2.7	SSE	
27-Aug-2017	19:00	2.7	E	
27-Aug-2017	20:00	2.9	ESE	
27-Aug-2017	21:00	2.8	E	

11.	Wican Winu S	peed and wind Dir	ection		
	27-Aug-2017	22:00	2.5	ESE	
	27-Aug-2017	23:00	2.3	ESE	
	28-Aug-2017	0:00	2.4	ENE	
	28-Aug-2017	1:00	2.1	ENE	
	28-Aug-2017	2:00	2.5	ENE	
	28-Aug-2017	3:00	2.5	ENE	
	28-Aug-2017	4:00	2.4	NE	
	28-Aug-2017	5:00	2.3	NE	
	28-Aug-2017	6:00	2.4	NE	
	28-Aug-2017	7:00	2.2	NNE	
	28-Aug-2017	8:00	1.8	NE	
	28-Aug-2017	9:00	2.9	NNE	
	28-Aug-2017	10:00	3.3	ENE	
	28-Aug-2017	11:00	3.7	ENE	
	28-Aug-2017	12:00	3	N	
	28-Aug-2017	13:00	3.4	SSE	
	28-Aug-2017	14:00	3	NE	
	28-Aug-2017	15:00	2.9	ESE	
	28-Aug-2017	16:00	3.1	E	
	28-Aug-2017	17:00	3	ENE	
	28-Aug-2017	18:00	2.6	ENE	
	28-Aug-2017	19:00	2.4	NNE	
	28-Aug-2017	20:00	2.3	ENE	
	28-Aug-2017	21:00	2.2	ENE	
	28-Aug-2017	22:00	2.2	NNE	
	28-Aug-2017	23:00	2.1	NE	
	29-Aug-2017	0:00	2.1	ESE	
	29-Aug-2017	1:00	2.1	ENE	
	29-Aug-2017	2:00	1.8	SE	
	29-Aug-2017	3:00	1.8	S	
	29-Aug-2017	4:00	2	SE	
	29-Aug-2017	5:00	2	ESE	
	29-Aug-2017	6:00	2.3	SSE	
	29-Aug-2017	7:00	2 SSE		
	29-Aug-2017	8:00	2.1	SSE	
	29-Aug-2017	9:00	2.6	S	
	29-Aug-2017	10:00	3.2 S		
	29-Aug-2017	11:00	3	SSW	

11.	Mean wind S	peed and Wind Dir	ection	
	29-Aug-2017	12:00	2.8	SSW
	29-Aug-2017	13:00	2.5	SW
	29-Aug-2017	14:00	2.2	SW
	29-Aug-2017	15:00	2.1	NNW
	29-Aug-2017	16:00	1.8	ENE
	29-Aug-2017	17:00	1.6	ESE
	29-Aug-2017	18:00	1.6	SE
	29-Aug-2017	19:00	1.6	ENE
	29-Aug-2017	20:00	1.7	SSE
	29-Aug-2017	21:00	2.1	SSE
	29-Aug-2017	22:00	2.3	ESE
	29-Aug-2017	23:00	2.1	E
	30-Aug-2017	0:00	2	ESE
	30-Aug-2017	1:00	2.1	ESE
	30-Aug-2017	2:00	1.8	ENE
	30-Aug-2017	3:00	2.1	ENE
	30-Aug-2017	4:00	2	NE
	30-Aug-2017	5:00	2	ENE
	30-Aug-2017	6:00	1.8	ENE
	30-Aug-2017	7:00	2	NE
	30-Aug-2017	8:00	2.3	ENE
	30-Aug-2017	9:00	2.3	ENE
	30-Aug-2017	10:00	2.4	NE
	30-Aug-2017	11:00	2.5	SE
	30-Aug-2017	12:00	2.3	SSE
	30-Aug-2017	13:00	2.6	E
	30-Aug-2017	14:00	2.1	E
	30-Aug-2017	15:00	2.4	ESE
	30-Aug-2017	16:00	2.1	ESE
	30-Aug-2017	17:00	1.7	SE
	30-Aug-2017	18:00	1.9	S
	30-Aug-2017	19:00	2.2	S
	30-Aug-2017	20:00	2.5	S
	30-Aug-2017	21:00	2	SSE
	30-Aug-2017	22:00	2.3	SSE
	30-Aug-2017	23:00	2.5	SSE
	31-Aug-2017	0:00	2.1 SSE	
	31-Aug-2017	1:00	1.7	SE

II. Mean Wind S	. Mean wind Speed and wind Direction							
31-Aug-2017	2:00	2.1	SSE					
31-Aug-2017	3:00	1.6	SE					
31-Aug-2017	4:00	2.2	SE					
31-Aug-2017	5:00	2.2	SE					
31-Aug-2017	6:00	1.6	SSE					
31-Aug-2017	7:00	2	SSE					
31-Aug-2017	8:00	2	SSE					
31-Aug-2017	9:00	2	SSE					
31-Aug-2017	10:00	2.2	E					
31-Aug-2017	11:00	2.1	E					
31-Aug-2017	12:00	2	E					
31-Aug-2017	13:00	2.2	E					
31-Aug-2017	14:00	2.3	E					
31-Aug-2017	15:00	2.7	E					
31-Aug-2017	16:00	2.3	E					
31-Aug-2017	17:00	2.3	E					
31-Aug-2017	18:00	1.6	E					
31-Aug-2017	19:00	2	NNE					
31-Aug-2017	20:00	1.9	NNE					
31-Aug-2017	21:00	2	NE					
31-Aug-2017	22:00	1.9	NE					
31-Aug-2017	23:00	2.2	NE					

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Impact Air Quality and Noise Monitoring Schedule (August 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	Noise [CM3, CM5]	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)]	
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		Noise [CM1, CM3, CM5] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4]	
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
		Noise [CM1, CM3, CM5] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
	Noise [CM1, CM3, CM5] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	24 hr TSP	
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		
	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		Noise [CM1, CM3, CM5] 24 hr TSP		

Remarks: Monitoring scheduled on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10.

Air Quality Monitoring Station

Noise Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4(1) - Sitting-out Area at Cha Kwo Ling Village

AM4(A)(2) - Cha Kwo Ling Public Cargo Working Area Administrative Office

 $AM5(A) - Tseung\ Kwan\ O\ DSD\ Desilting\ Compound \\ AM6(A) - Park\ Central,\ L1/F\ Open\ Space\ Area$

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (August 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
				Groundwater Quality Monitoring		
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
		Groundwater Quality Monitoring				
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		
		Groundwater Quality Monitoring				

Monitoring Location: Stream 1, Stream 2, Stream 3

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (August 2017)

Sunday	Mond	ay	Tuesday	Wednes	sday	Thurso		Frida	ny	Sature	day
			1-Aug		2-Aug		3-Aug		4-Aug		5-Aug
				Mid-Ebb Mid-Flood	9:18 16:11			Mid-Ebb Mid-Flood	10:28 17:49		
6-Aug		7-Aug	8-Aug		9-Aug		10-Aug		11-Aug		12-Aug
	Mid-Ebb Mid-Flood	12:11 19:22		Mid-Flood Mid-Ebb	13:22 20:14			Mid-Flood Mid-Ebb	8:11 14:38	1	
13-Aug		14-Aug	15-Aug		16-Aug		17-Aug		18-Aug		19-Aug
	Mid-Flood Mid-Ebb	10:51 16:53		Mid-Ebb Mid-Flood	7:21 13:51			Mid-Ebb Mid-Flood	9:33 16:38		
20-Aug		21-Aug	22-Aug		23-Aug		24-Aug		25-Aug		26-Aug
	Mid-Ebb Mid-Flood	12:03 18:55				Mid-Flood Mid-Ebb	7:38 14:08			Mid-Flood Mid-Ebb	9:04 15:22
27-Aug		28-Aug	29-Aug		30-Aug		31-Aug				
	Mid-Flood Mid-Ebb	10:44 16:43		Mid-Ebb Mid-Flood	7:16 14:41						

Remarks: Monitoring scheduled on 23 August 2017 was postponed to 24 August 2017 due to issue of Hurricane Signal No. 10.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Post-Translocation Coral Monitoring Schedule (August 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-Aug	2-Aug	3-Aug	4-Aug	5-Aug
6-Aug	7-Aug	8-Aug	9-Aug	10-Aug	11-Aug	12-Aug
13-Aug	14-Aug	15-Aug	16-Aug	17-Aug	18-Aug	19-Aug
20-Aug	21-Aug	22-Aug	23-Aug	24-Aug	25-Aug	26-Aug
		Post-Translocation Coral Monitoring				
27-Aug	28-Aug	29-Aug	30-Aug	31-Aug		

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Air Quality and Noise Monitoring Schedule (September 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
-	-		-		1-Sep	2-Sep
					1 hr TSP X3 [AM5(A), AM6(A)]	
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	Noise [CM1, CM3, CM5]	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4]	
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
	Noise [CM1, CM3, CM5]	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
	24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]	Noise [CM1, CM3, CM5]	24 hr TSP	
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM2, CM4]		Noise [CM1, CM3, CM5] 24 hr TSP	1 hr TSP X3 [AM5(A), AM6(A)]	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Groundwater Quality Monitoring Schedule (September 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Sep	2-Sep
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
				Groundwater Quality		
				Monitoring		
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
		-				
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	Î	1	1		•	•
				Groundwater Quality		
				Monitoring		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location:

Stream 1, Stream 2, Stream 3

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (September 2017)

Sunday	Monday		Tuesday	Wednes	sday	Thursday	Frida	ny	Saturo	
								1-Sep		2-Sep
							Mid-Ebb Mid-Flood	9:07 16:57		
3-Sep		4-Sep	5-Sep		6-Sep	7-Sep		8-Sep		9-Sep
		11:06 18:20		Mid-Ebb Mid-Flood	12:21 19:03		Mid-Flood Mid-Ebb	7:20 13:39		
10-Sep		11-Sep	12-Sep		13-Sep	14-Sep		15-Sep		16-Sep
	Mid-Flood Mid-Ebb	9:47 15:45		Mid-Flood Mid-Ebb	12:19 17:44		Mid-Ebb Mid-Flood	8:12 15:35		
17-Sep		18-Sep	19-Sep		20-Sep	21-Sep		22-Sep		23-Sep
		11:01 17:48		Mid-Ebb Mid-Flood	12:27 18:48		Mid-Flood Mid-Ebb	7:27 13:42		
24-Sep		25-Sep	26-Sep		27-Sep	28-Sep		29-Sep		30-Sep
	Mid-Flood Mid-Ebb	9:34 15:28		Mid-Ebb Mid-Flood	4:29 # 11:53				Mid-Ebb Mid-Flood	8:19 16:24

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Note #: It is proposed that there is no need for mid-ebb monitoring on 27 September 2017 based on the following reasons:

- a) There will be no marine works within the suitable tidal conditions (within \pm 1.5 hour of the predicted mid-ebb or mid-flood tides).
- b) The above condition described in point a) occus for 2 or more consecutive days.

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix E - 1-hour TSP Monitoring Results

Location AM1 -	Tin Hau Tem	nple	
Date	Time	Weather	Particulate Concentration (μg/m³)
1-Aug-17	13:01	Fine	127.6
1-Aug-17	14:01	Fine	149.0
1-Aug-17	15:01	Fine	150.2
7-Aug-17	13:15	Sunny	57.6
7-Aug-17	14:15	Sunny	91.1
7-Aug-17	15:15	Sunny	52.5
11-Aug-17	9:00	Cloudy	13.1
11-Aug-17	10:00	Cloudy	17.8
11-Aug-17	11:00	Cloudy	11.9
17-Aug-17	13:00	Sunny	121.9
17-Aug-17	14:00	Sunny	219.1
17-Aug-17	15:00	Sunny	187.1
24-Aug-17	9:00	Cloudy	17.8
24-Aug-17	10:00	Cloudy	15.6
24-Aug-17	11:00	Cloudy	14.5
29-Aug-17	9:00	Sunny	21.3
29-Aug-17	10:00	Sunny	20.1
29-Aug-17	11:00	Sunny	19.0
		Average	72.6
		Maximum	219.1
		Minimum	11.9

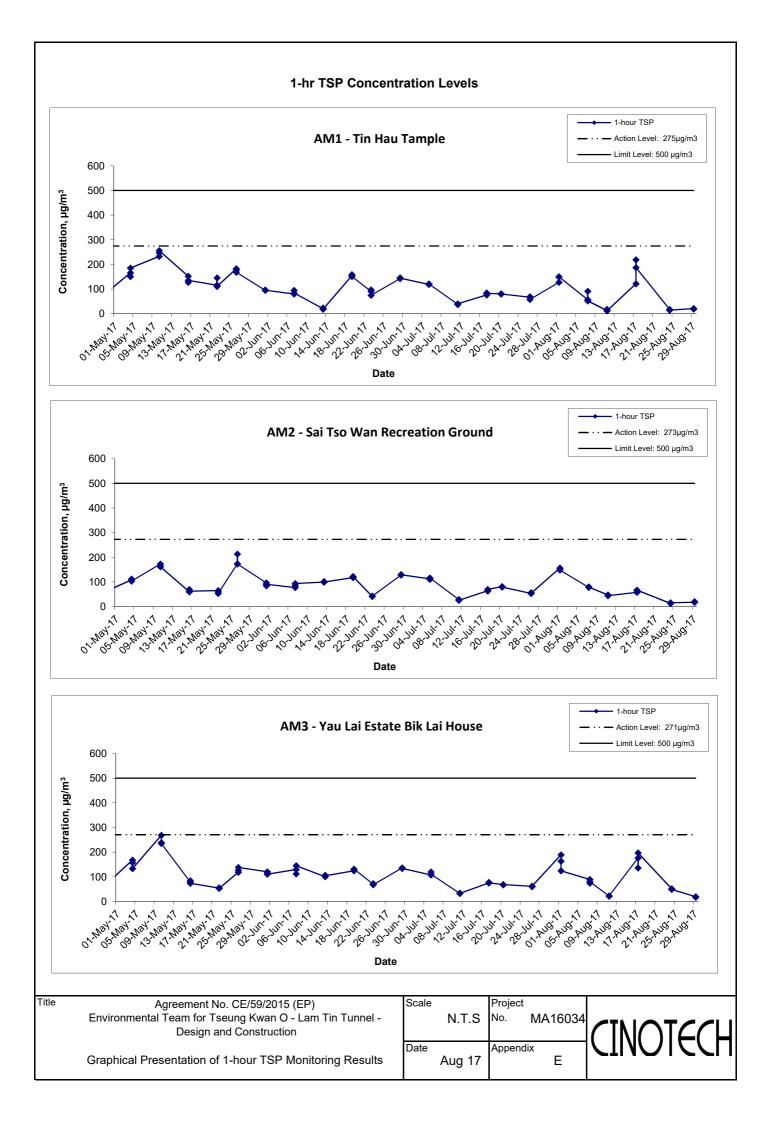
Location AM2 -	Sai Tso War	Recreation Groun	d
Date	Time	Weather	Particulate Concentration (µg/m³)
1-Aug-17	13:10	Sunny	157.0
1-Aug-17	14:10	Sunny	155.7
1-Aug-17	15:10	Sunny	148.2
7-Aug-17	13:05	Sunny	77.9
7-Aug-17	14:05	Sunny	79.8
7-Aug-17	15:05	Sunny	79.5
11-Aug-17	13:00	Cloudy	47.5
11-Aug-17	14:00	Cloudy	46.4
11-Aug-17	15:00	Cloudy	44.1
17-Aug-17	13:00	Sunny	58.0
17-Aug-17	14:00	Sunny	65.8
17-Aug-17	15:00	Sunny	67.0
24-Aug-17	13:00	Cloudy	13.4
24-Aug-17	14:00	Cloudy	13.4
24-Aug-17	15:00	Cloudy	15.6
29-Aug-17	13:00	Sunny	17.8
29-Aug-17	14:00	Sunny	17.8
29-Aug-17	15:00	Sunny	20.1
		Average	62.5
		Maximum	157.0
		Minimum	13.4

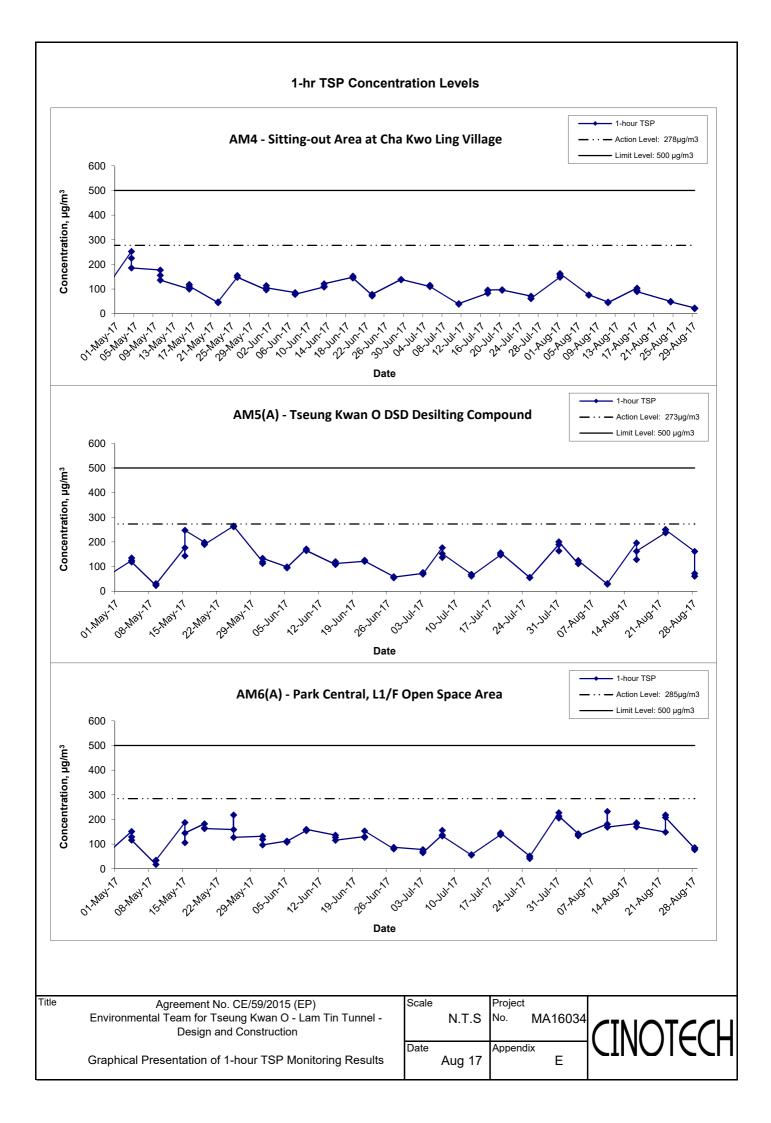
MA16034/App E - 1hr TSP Cinotech

Appendix E - 1-hour TSP Monitoring Results

Location AM3 -	Yau Lai Esta	te Bik Lai House	
Date	Time	Weather	Particulate Concentration (μg/m³)
1-Aug-17	8:45	Cloudy	189.5
1-Aug-17	9:45	Cloudy	163.0
1-Aug-17	10:45	Cloudy	124.1
7-Aug-17	9:00	Sunny	88.9
7-Aug-17	10:00	Sunny	74.5
7-Aug-17	11:00	Sunny	80.0
11-Aug-17	13:08	Cloudy	22.6
11-Aug-17	14:08	Cloudy	21.4
11-Aug-17	15:08	Cloudy	22.6
17-Aug-17	8:33	Fine	176.1
17-Aug-17	9:33	Fine	135.8
17-Aug-17	10:33	Fine	196.9
24-Aug-17	13:00	Cloudy	51.5
24-Aug-17	14:00	Cloudy	50.3
24-Aug-17	15:00	Cloudy	49.2
29-Aug-17	9:00	Sunny	18.9
29-Aug-17	10:00	Sunny	17.8
29-Aug-17	11:00	Sunny	17.8
		Average	83.4
	N		196.9
		Minimum	17.8

Location AM4 -	Sitting-out A	rea at Cha Kwo L	ing Village				
Date	Time	Weather	Particulate Concentration (μg/m³)				
1-Aug-17	9:00	Sunny	148.5				
1-Aug-17	10:00	Sunny	157.8				
1-Aug-17	11:00	Sunny	163.3				
7-Aug-17	9:05	Sunny	75.9				
7-Aug-17	10:05	Sunny	75.7				
7-Aug-17	11:05	Sunny	76.8				
11-Aug-17	9:00	Cloudy	47.5				
11-Aug-17	10:00	Cloudy	46.4				
11-Aug-17	11:00	Cloudy	45.2				
17-Aug-17	13:00	Sunny	104.0				
17-Aug-17	14:00	Sunny	95.3				
17-Aug-17	15:00	Sunny	90.0				
24-Aug-17	9:00	Cloudy	50.4				
24-Aug-17	10:00	Cloudy	49.2				
24-Aug-17	11:00	Cloudy	48.1				
29-Aug-17	13:00	Sunny	23.5				
29-Aug-17	14:00	Sunny	22.4				
29-Aug-17	15:00	Sunny	21.3				
		Average	74.5				
		Maximum	163.3				
		Minimum	21.3				


MA16034/App E - 1hr TSP Cinotech


Appendix E - 1-hour TSP Monitoring Results

Location AM5(A) - Tseung K	wan O DSD Desil	ting Compound
Date	Time	Weather	Particulate Concentration (μg/m³)
4-Aug-17	13:00	Cloudy	112.0
4-Aug-17	14:00	Cloudy	123.8
4-Aug-17	15:00	Cloudy	125.1
10-Aug-17	13:00	Cloudy	29.5
10-Aug-17	14:00	Cloudy	29.5
10-Aug-17	15:00	Cloudy	31.7
16-Aug-17	8:37	Sunny	196.3
16-Aug-17	9:37	Sunny	128.8
16-Aug-17	10:37	Sunny	162.4
22-Aug-17	8:35	Sunny	237.0
22-Aug-17	9:35	Sunny	250.6
22-Aug-17	10:35	Sunny	249.5
28-Aug-17	8:38	Rainy	162.0
28-Aug-17	9:38	Rainy	72.0
28-Aug-17	10:38	Rainy	61.2
		Average	131.4
			250.6
		Minimum	29.5

Location AM6(A) - Park Cen	tral, L1/F Open Sp	pace Area
Date	Time	Weather	Particulate Concentration (μg/m³)
4-Aug-17	13:20	Cloudy	142.4
4-Aug-17	14:20	Cloudy	137.3
4-Aug-17	15:20	Cloudy	133.7
10-Aug-17	13:08	Rainy	181.2
10-Aug-17	14:08	Rainy	233.0
10-Aug-17	15:08	Rainy	168.8
16-Aug-17	13:00	Sunny	183.3
16-Aug-17	14:00	Sunny	186.5
16-Aug-17	15:00	Sunny	170.4
22-Aug-17	13:00	Sunny	148.7
22-Aug-17	14:00	Sunny	218.6
22-Aug-17	15:00	Sunny	208.7
28-Aug-17	13:00	Rany	82.6
28-Aug-17	14:00	Rany	85.7
28-Aug-17	15:00	Rany	77.2
		Average	157.2
		Maximum	233.0
		Minimum	77.2

MA16034/App E - 1hr TSP Cinotech

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
3-Aug-17	Cloudy	298.7	754.3	2.8813	2.9442	0.0629	2267.0	2291.0	24.0	1.22	1.22	1.22	1762.1	35.7
9-Aug-17	Cloudy	303.6	757.1	2.8609	2.9314	0.0705	2291.0	2315.0	24.0	1.22	1.22	1.22	1750.4	40.3
15-Aug-17	Sunny	302.5	759.2	2.8429	2.8821	0.0392	2315.0	2339.0	24.0	1.22	1.22	1.22	1756.3	22.3
21-Aug-17	Sunny	303.4	756.5	2.8705	3.0193	0.1488	2339.0	2363.0	24.0	1.22	1.22	1.22	1750.2	85.0
25-Aug-17	Sunny	302.2	759.6	2.8538	2.9474	0.0936	2363.0	2387.0	24.0	1.22	1.22	1.22	1757.7	53.3
31-Aug-17	Cloudy	302.8	758.9	2.8958	3.0305	0.1347	2387.0	2411.0	24.0	1.22	1.22	1.22	1755.0	76.8
													Min	22.3
													Max	85.0
													Average	52.2

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Aug-17	Cloudy	297.6	754.7	2.8419	2.9174	0.0755	23231.3	23255.3	24.0	1.07	1.07	1.07	1534.1	49.2
9-Aug-17	Cloudy	302.7	757.0	2.8198	2.9309	0.1111	23255.3	23279.3	24.0	1.06	1.06	1.06	1522.5	73.0
15-Aug-17	Sunny	303.4	759.7	2.8210	2.9154	0.0944	23279.3	23303.3	24.0	1.06	1.06	1.06	1523.5	62.0
21-Aug-17	Sunny	303.8	756.9	2.8521	2.9145	0.0624	23303.3	23327.3	24.0	1.06	1.05	1.06	1519.4	41.1
25-Aug-17	Sunny	301.7	759.3	2.8691	2.8974	0.0283	23327.3	23351.3	24.0	1.06	1.06	1.06	1527.8	18.5
31-Aug-17	Cloudy	301.6	759.7	2.9248	3.0213	0.0965	23351.3	23375.3	24.0	1.06	1.06	1.06	1528.5	63.1
													Min	18.5
													Max	73.0
													Average	51.1

Location AM3 - Yau Lai Estate, Bik Lai House

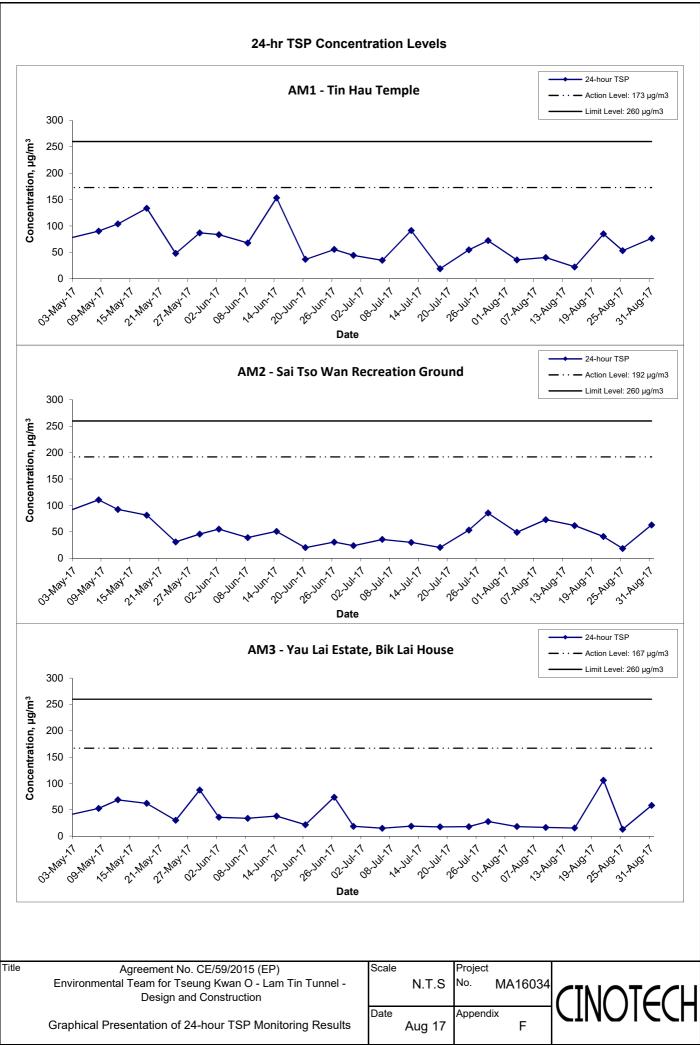
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
3-Aug-17	Cloudy	298.3	754.0	2.8616	2.8929	0.0313	11798.7	11822.7	24.0	1.21	1.21	1.21	1746.3	17.9
9-Aug-17	Cloudy	303.5	756.4	2.8672	2.8955	0.0283	11822.7	11846.7	24.0	1.20	1.20	1.20	1733.1	16.3
15-Aug-17	Sunny	302.8	758.7	2.8737	2.9001	0.0264	11846.7	11870.7	24.0	1.21	1.21	1.21	1738.0	15.2
21-Aug-17	Sunny	302.7	756.1	2.8390	3.0226	0.1836	11870.7	11894.7	24.0	1.21	1.20	1.20	1735.2	105.8
25-Aug-17	Sunny	302.5	758.7	2.8466	2.8690	0.0224	11894.7	11918.7	24.0	1.21	1.21	1.21	1739.0	12.9
31-Aug-17	Cloudy	302.4	758.5	2.9079	3.0089	0.1010	11918.7	11942.7	24.0	1.21	1.21	1.21	1739.1	58.1
													Min	12.9
													Max	105.8
													Average	37.7

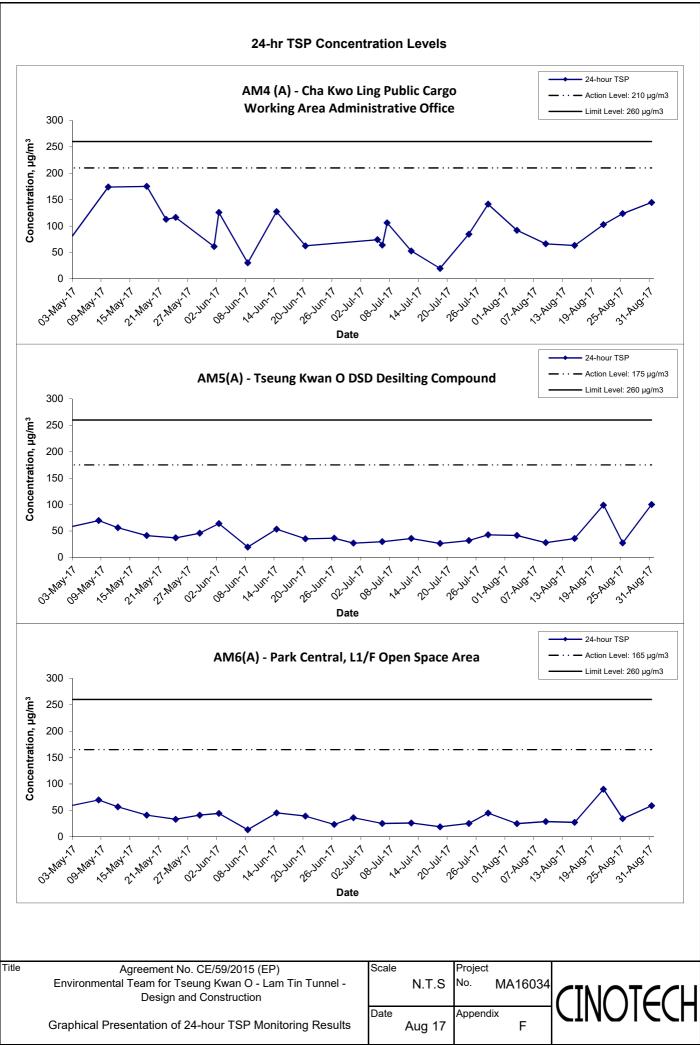
MA16034/App F - 24 hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
3-Aug-17	Cloudy	298.8	755.5	2.8771	3.0381	0.1610	8785.2	8809.2	24.0	1.22	1.22	1.22	1752.0	91.9
9-Aug-17	Cloudy	302.7	757.2	2.8788	2.9942	0.1154	8809.2	8833.2	24.0	1.21	1.21	1.21	1741.8	66.3
15-Aug-17	Sunny	303.1	757.5	2.8531	2.9634	0.1103	8833.2	8857.2	24.0	1.21	1.21	1.21	1740.9	63.4
21-Aug-17	Sunny	303.4	756.3	2.8513	3.0300	0.1787	8857.2	8881.2	24.0	1.21	1.21	1.21	1738.4	102.8
25-Aug-17	Sunny	301.8	758.9	2.8273	3.0433	0.2160	8881.2	8905.2	24.0	1.21	1.21	1.21	1746.7	123.7
31-Aug-17	Cloudy	303.3	758.2	2.8625	3.1143	0.2518	8905.2	8929.2	24.0	1.21	1.21	1.21	1741.1	144.6
													Min	63.4
													Max	144.6
													Average	98.8


Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Aug-17	Cloudy	298.6	754.1	2.8348	2.9080	0.0732	22527.5	22551.5	24.0	1.23	1.23	1.23	1765.7	41.5
9-Aug-17	Cloudy	303.4	756.7	2.8645	2.9133	0.0488	22551.5	22575.5	24.0	1.22	1.22	1.22	1754.6	27.8
15-Aug-17	Sunny	302.5	759.3	2.8702	2.9329	0.0627	22575.5	22599.5	24.0	1.22	1.22	1.22	1760.3	35.6
21-Aug-17	Sunny	302.8	757.2	2.8568	3.0306	0.1738	22599.5	22623.5	24.0	1.22	1.22	1.22	1757.0	98.9
25-Aug-17	Sunny	302.3	759.4	2.8479	2.8960	0.0481	22623.5	22647.5	24.0	1.22	1.22	1.22	1761.0	27.3
31-Aug-17	Cloudy	302.7	759.1	2.8876	3.0634	0.1758	22647.5	22671.5	24.0	1.22	1.22	1.22	1759.5	99.9
													Min	27.3
													Max	99.9
													Average	55.2

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Aug-17	Cloudy	297.9	754.2	2.8651	2.9087	0.0436	15587.8	15611.8	24.0	1.22	1.22	1.22	1760.8	24.8
9-Aug-17	Cloudy	303.2	757.4	2.8615	2.9116	0.0501	15611.8	15635.8	24.0	1.21	1.21	1.21	1748.5	28.7
15-Aug-17	Sunny	302.8	758.5	2.8656	2.9132	0.0476	15635.8	15659.8	24.0	1.22	1.22	1.22	1751.0	27.2
21-Aug-17	Sunny	303.5	756.4	2.8540	3.0110	0.1570	15659.8	15683.8	24.0	1.21	1.21	1.21	1746.4	89.9
25-Aug-17	Sunny	301.5	758.6	2.8641	2.9243	0.0602	15683.8	15707.8	24.0	1.22	1.22	1.22	1755.1	34.3
31-Aug-17	Cloudy	302.1	758.5	2.8710	2.9741	0.1031	15707.8	15731.8	24.0	1.22	1.22	1.22	1753.1	58.8
													Min	24.8
													Max	89.9
													Average	43.9

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

Location CM1	- Nga Lai Ho	ouse, Yau Lai	Estate Phas	e 1, Yau Toi	ng		
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	Construction Noise Level			
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
1-Aug-17	11:00	Cloudy	69.4	71.9	66.4		67.1
9-Aug-17	16:10	Cloudy	73.3	76.3	69.4		72.5
15-Aug-17	9:30	Sunny	69.7	73.0	63.8	65.5	67.6
21-Aug-17	9:30	Sunny	73.9	74.2	69.8		73.2
31-Aug-17	14:15	Sunny	72.9	75.1	68.3		72.0

Location CM2	Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong											
			Unit: dB (A) (30-min)									
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise									
			L _{eq}	L eq L 10 L 90 L eq L eq								
1-Aug-17	10:13	Cloudy	70.8	73.5	67.1		69.9					
7-Aug-17	9:00	Sunny	70.8	72.9	67.9		69.9					
17-Aug-17	9:06	Sunny	71.5	73.5	68.8	63.6	70.7					
24-Aug-17	13:00	Cloudy	69.4 71.0 67.3 68.1									
29-Aug-17	9:38	Sunny	74.2	76.8	70.4		73.8					

Location CM3	ocation CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	Measured Noise Level Baseline Level Construction Noise Lev									
			L _{eq}	L _{eq} L ₁₀ L ₉₀ L _{eq} L _{eq}									
2-Aug-17	10:10	Cloudy	72.4	73.9	70.2		71.4						
9-Aug-17	15:15	Cloudy	74.2	76.8	70.6		73.6						
15-Aug-17	10:30	Sunny	69.1	72.7	57.1	65.6	66.5						
21-Aug-17	11:00	Sunny	72.5 74.1 61.8 71.5										
31-Aug-17	14:05	Sunny	74.8	74.8 77.7 68.5 74.2									

Location CM4	- Tin Hau Te	mple, Cha Kv	vo Ling									
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise l	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L _{eq} L ₁₀ L ₉₀ L _{eq} L _{eq}								
1-Aug-17	14:05	Sunny	64.9	67.4	56.3		61.8					
7-Aug-17	14:15	Sunny	59.6	62.4	51.4		59.6 Measured ≦ Baseline					
17-Aug-17	13:05	Sunny	59.3	61.9	52.7	62.0	59.3 Measured ≦ Baseline					
24-Aug-17	10:15	Cloudy	59.4	62.3	52.6		59.4 Measured ≦ Baseline					
29-Aug-17	9:50	Sunny	64.3	67.6	59.4		60.4					

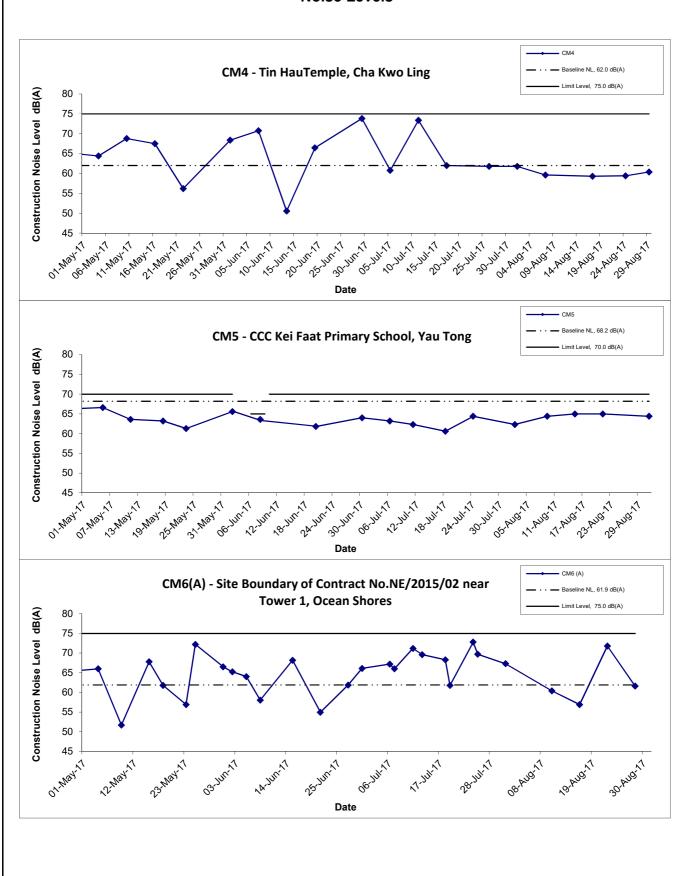
Location CM5	ocation CM5 - CCC Kei Faat Primary School, Yau Tong												
			dB (A) (30-min)										
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise Level										
			L _{eq}	L eq L 10 L 90 L eq L eq									
2-Aug-17	11:30	Cloudy	69.2	72.0	65.7		62.3						
9-Aug-17	14:00	Cloudy	69.7	72.3	65.4		64.4						
15-Aug-17	11:30	Sunny	69.9	72.8	66.0	68.2	65.0						
21-Aug-17	13:00	Sunny	69.9 73.0 66.1 65.0										
31-Aug-17	14:05	Sunny	69.7	69.7 72.1 65.6 64.4									

MA16034/App G - Noise Cinotech

Appendix G - Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

10100 1000 1110	on nonna	moonaajoj											
Location CM6(_ocation CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Mea	Measured Noise Level Baseline Level Construction Noise Level									
			L _{eq}	L eq L 10 L 90 L eq L eq									
10-Aug-17	14:30	Cloudy	60.4	62.3	57.1		60.4 Measured ≦ Baseline						
16-Aug-17	9:35	Sunny	63.1	63.7	56.7	61.9	56.9						
22-Aug-17	9:50	Sunny	72.2 61.1 48.0 71.8										
28-Aug-17	9:39	Cloudy	61.6	61.6 63.8 58.4 61.6 Measured ≦ Baseline									


Location CM7(ocation CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	Measured Noise Level Baseline Level Construction Noise Level									
			L _{eq}	L eq L 10 L 90 L eq L eq									
10-Aug-17	13:30	Cloudy	68.5	70.5	65.3		68.1						
16-Aug-17	8:55	Sunny	72.2	73.6	62.0	58.3	72.0						
22-Aug-17	9:07	Sunny	63.6 66.2 58.3 62.1										
28-Aug-17	8:55	Cloudy	60.2 63.5 56.7 55.7										

Location CM8(ocation CM8(A) - Park Central, L1/F Open Space Area										
			Unit:	dB (A) (30-min)							
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise Leve								
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
10-Aug-17	9:20	Cloudy	64.6	67.7	59.2		64.6 Measured ≦ Baseline				
16-Aug-17	13:06	Sunny	66.1	69.2	59.3	69.1	66.1 Measured ≦ Baseline				
22-Aug-17	13:34	Sunny	67.3	68.9	59.6	09.1	67.3 Measured ≤ Baseline				
28-Aug-17	13:21	Cloudy	68.6	71.4	61.3		68.6 Measured ≦ Baseline				

MA16034/App G - Noise Cinotech

Noise Levels CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong Baseline NL,65.5 dB(A) dB(A) Limit Level, 75.0 dB(A) 80 75 **Construction Noise Level** 70 65 60 55 50 45 40 01.118117 12,11247 77-1111-77 Date CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 Date Date Sur'illan'i Alan'i 40 26 Jun 1 rul, i 1 28-JUL-7 "She's way way way way she, she's ne's СМЗ CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong · · - Baseline NL, 65.6 dB(A) Limit Level, 75.0 dB(A) Construction Noise Level dB(A) 80 75 70 65 60 55 50 45 ormati'i Date Title Agreement No. CE/59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -No. MA16034 N.T.S Design and Construction Graphical Presentation of Date Appendix Construction Noise Monitoring Results Aug 17 G

Noise Levels

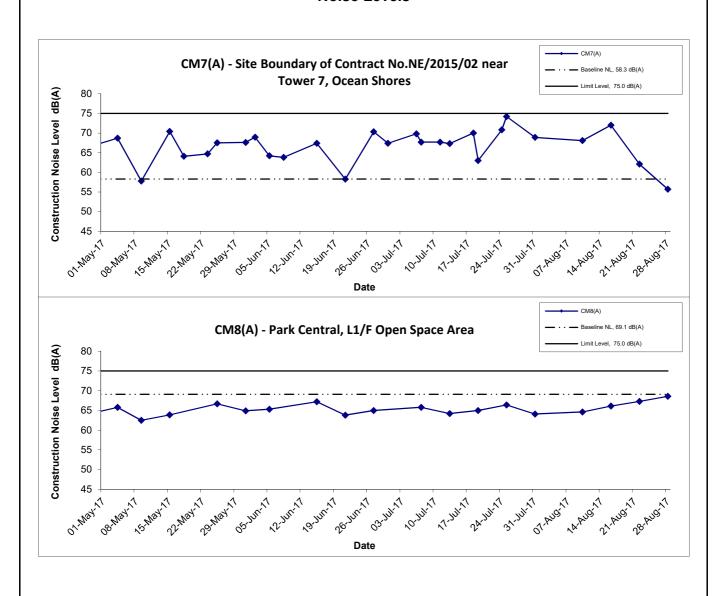
Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale

Project

N.T.S


No. MA16034

Date
Aug 17

Appendix

G

Noise Levels

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale Project
N.T.S No. MA16034

Date Aug 17 Appendix
G

APPENDIX H GROUNDWATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Groundwater Quality Monitoring Results at Stream 1

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	Н	Salini	ty ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Aug-17	Cloudy	16:46	Middle	19.0	19.0	8.2	8.2	0.1	0.1	87.8	87.8	8.2	0.2	1.5	1.5
3-Aug-17	Cloudy	10.40	Middle	19.0	19.0	8.1	0.2	0.1	0.1	87.8	67.6	8.1	0.2	1.4	1.5
15-Aug-17	Sunny	13:56	Middle	28.7	28.7	7.8	7 Ω	0.7	0.7	101.2	101.3	7.8	7.8	0.3	0.3
13-Aug-17	Suring	13.30	Middle	28.6	20.7	7.8	7.8	0.7	0.7	101.3	101.5	7.8	7.0	0.3	0.5
29-Aug-17	Cloudy	15:32	Middle	28.4	28.5	7.9	7.9	0.5	0.5	100.4	100.5	7.8	7.8	1.3	1.3
29-Aug-17	Cloudy	10.02	ivildule	28.5	20.5	7.9	7.9	0.5	0.5	100.5	100.5	7.8	7.0	1.3	1.3

Groundwater Quality Monitoring Results at Stream 2

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	р	Н	Salini	ty ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	ty(NTU)
Date	Condition	Time	Deput (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Aug-17	Cloudy	17:20	Middle	16.7	16.8	8.4	8.4	0.2	0.2	86.2	86.0	8.4	9.4	1.2	1.3
3-Aug-17	Cloudy	17.20	Middle	16.8	10.0	8.4	0.4	0.2	0.2	85.7	80.0	8.3	8.4	1.3	1.5
15-Aug-17	Sunny	14:55	Middle	26.9	26.9	7.6	7.6	0.1	0.1	97.1	97.2	7.8	7.8	1.7	17
13-Aug-17	Suring	14.55	Mildale	26.9	20.9	7.6	7.0	0.1	0.1	97.2	91.2	7.8	7.0	1.7	1.7
29-Aug-17	Cloudy	15:08	Middle	28.1	28.2	7.6	7.6	0.1	0.1	97.9	98.1	7.7	7.7	2.0	2.0
29-Aug-17	Cloudy	13.00	ivildale	28.2	20.2	7.6	7.0	0.1	0.1	98.3	30.1	7.7	1.1	2.0	2.0

Groundwater Quality Monitoring Results at Stream 3

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-Aug-17	Cloudy	16:58	Middle	20.0	20.0	8.2	8.2	0.1	0.1	89.3	89.4	8.1	8.1	2.0	2.0
3-Aug-17	Cloudy	10.50	Middle	20.0	20.0	8.2	0.2	0.1	0.1	89.4	09.4	8.1	0.1	2.0	2.0
15-Aug-17	Sunnv	14:39	Middle	26.9	26.9	7.8	7.8	0.1	0.1	97.3	97.2	7.8	7.8	1.7	1.8
15-Aug-17	Guilly	14.55	Middle	26.9	20.5	7.7	7.0	0.1	0.1	97.1	51.2	7.8	7.0	1.8	1.0
29-Aug-17	Cloudy	15:02	Middle	28.4	28.5	7.2	7.2	0.1	0.1	99.5	99.6	7.7	7.7	1.1	1.2
29-Aug-17	Cloudy	13.02	Middle	28.5	20.5	7.1	1.2	0.1	0.1	99.6	99.0	7.7	7.7	1.3	1.2

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Summary of Groundwater Quality Monitoring Results

					Р	arameters (uı	nit)			
Location	Date	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
	3-Aug-17	8.2	8.2	1.5	1.9	<2	5	1.0	0.24	<0.05
Stream 1	15-Aug-17	8.4	8.4	1.3	2.9	<2	4	1.6	<0.05	<0.05
	29-Aug-17	8.2	8.1	2	2.3	<2	4	1.6	<0.05	<0.05
	3-Aug-17	7.8	7.8	0.3	2.6	<2	5	1.6	0.05	<0.05
Stream 2	15-Aug-17	7.6	7.8	1.7	1.9	<2	6	1.5	0.08	<0.05
	29-Aug-17	7.8	7.8	1.8	1.4	<2	5	0.9	0.09	<0.05
	3-Aug-17	7.9	7.8	1.3	2.0	<2	5	0.7	0.05	<0.05
Stream 3	15-Aug-17	7.6	7.7	2	1.8	<2	5	1.4	0.05	<0.05
	29-Aug-17	7.2	7.7	1.2	2.3	<2	4	1.9	0.08	<0.05

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.: 27293

Date of Issue: 2017-08-11 Date Received: 2017-08-03

Date Tested: 2017-08-03

Date Completed: 2017-08-11

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description :

3 liquid samples as received from client said to be groundwater

Laboratory No.

27293

Project No.

MA16034 (Groundwater)

Project Name:

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel - Design and Construction

Custody No.

MA16034(Groundwater)/170803

Sampling Date

2017-08-03

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

results.			T
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	27293-1	27293-2	27293-3
Total Suspended Solids (mg/L)	1.9	2.9	2.3
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	5	4	4
Nitrogen (Total Kjeldahl + nitrate +	1.0	1.6	1.6
nitrite) (mg N/L)			
Ammonia (mg NH ₃ -N/L)	0.24	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

Remarks:

1) < = less than

2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

27350 Report No.: Date of Issue: 2017-08-22 Date Received: 2017-08-15 2017-08-15 Date Tested: 2017-08-22 Date Completed:

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description

3 liquid samples as received from client said to be groundwater

Laboratory No.

27350

Project No.

MA16034 (Groundwater)

Project Name

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/170815

Sampling Date

2017-08-15

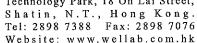
Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

Results:

Results: Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	27350-1	27350-2	27350-3
Total Suspended Solids (mg/L)	2.6	1.9	1.4
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	5	6	5
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	1.6	1.5	0.9
Ammonia (mg NH ₃ -N/L)	0.05	0.08	0.09
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

Remarks: $1) \le less than$


2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Page:

Report No.:

Date of Issue:

Date Tested:

Date Received:

Date Completed:

2017-08-29 2017-09-05

2017-09-05

2017-08-29

27425

1 of 1

ATTN:

Ms. Mei Ling Tang

3 liquid samples as received from client said to be groundwater Sample Description

Laboratory No.

27425

Project No.

MA16034 (Groundwater)

Project Name :

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No.

MA16034(Groundwater)/170829

Sampling Date

2017-08-29

Tests Requested & Methodology:

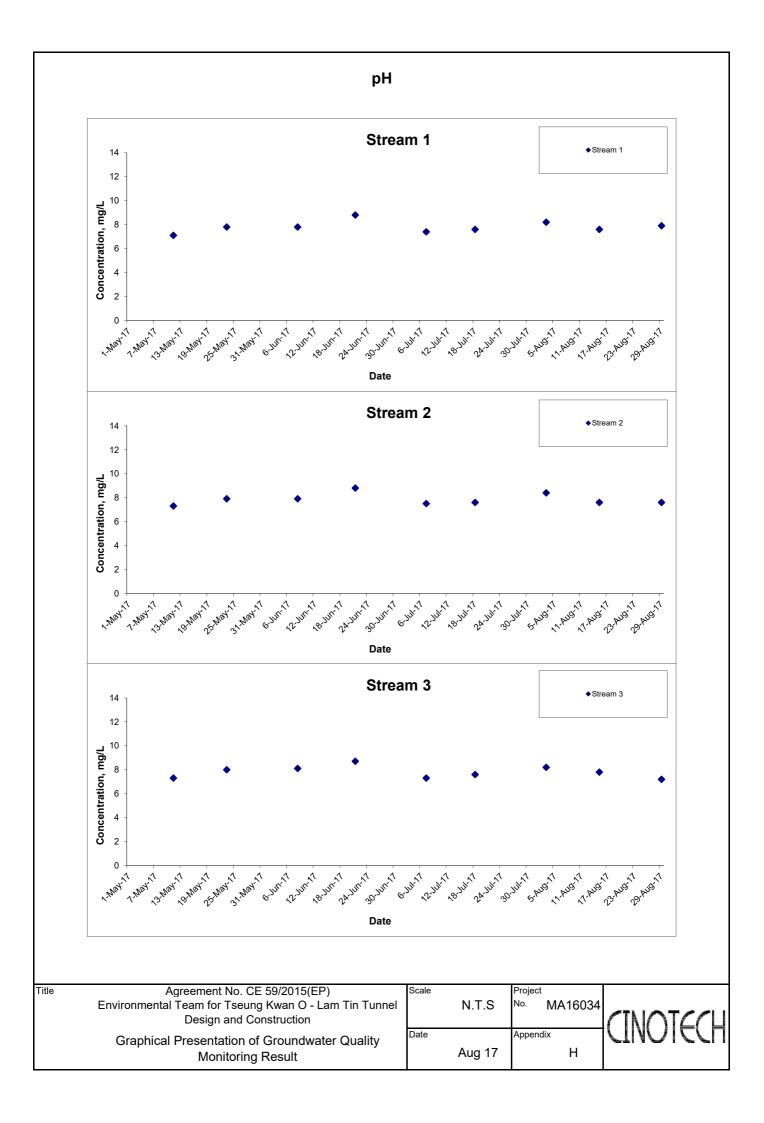
Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

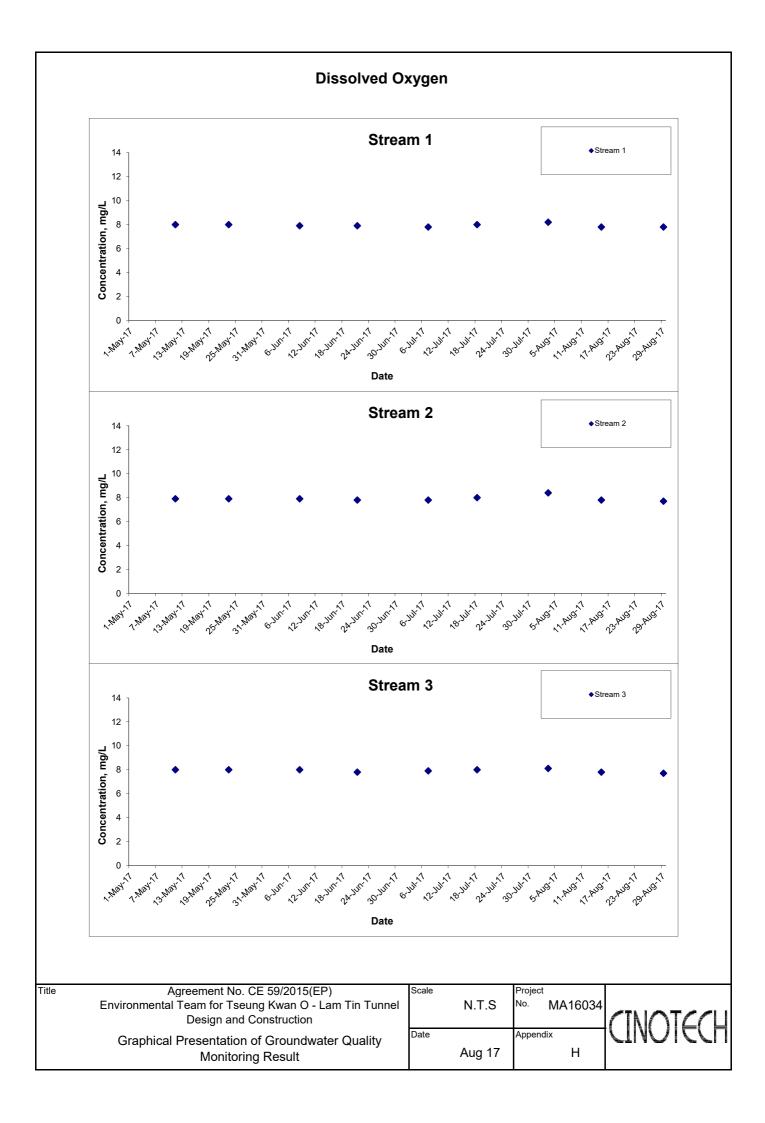
Regulte

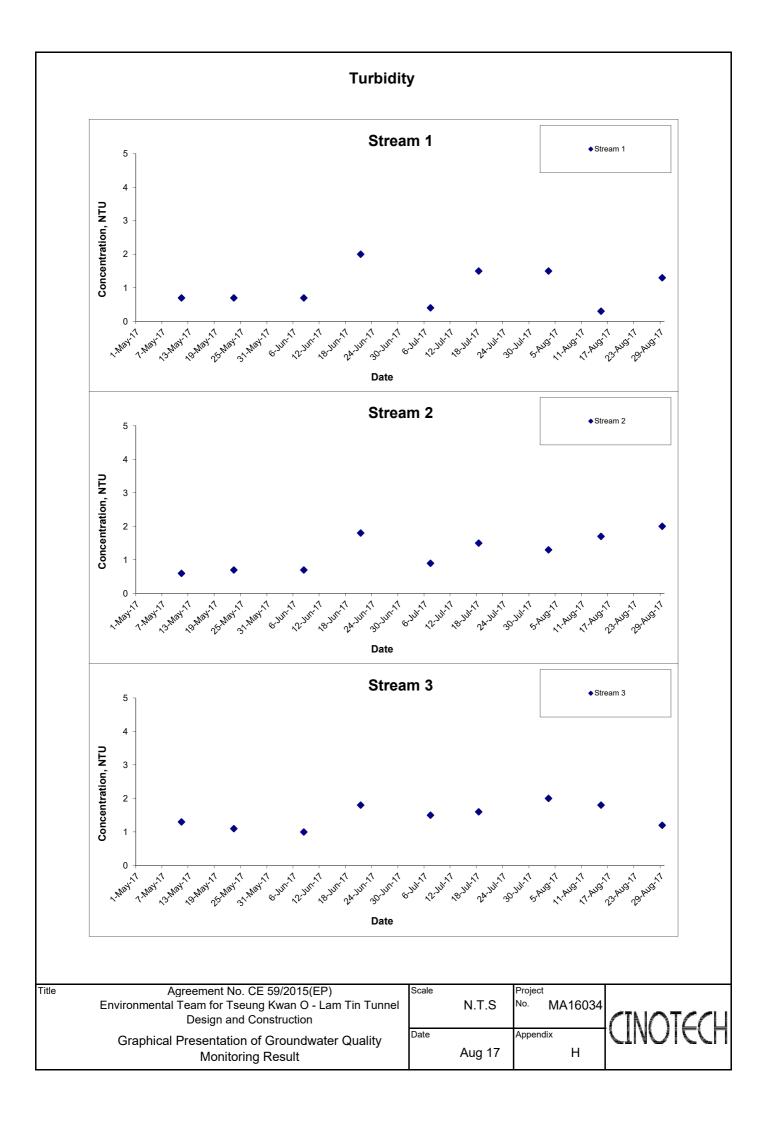
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	27425-1	27425-2	27425-3
Total Suspended Solids (mg/L)	2.0	1.8	2.3
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	5	5	4
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	0.7	1.4	1.9
Ammonia (mg NH ₃ -N/L)	0.05	0.05	0.08
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

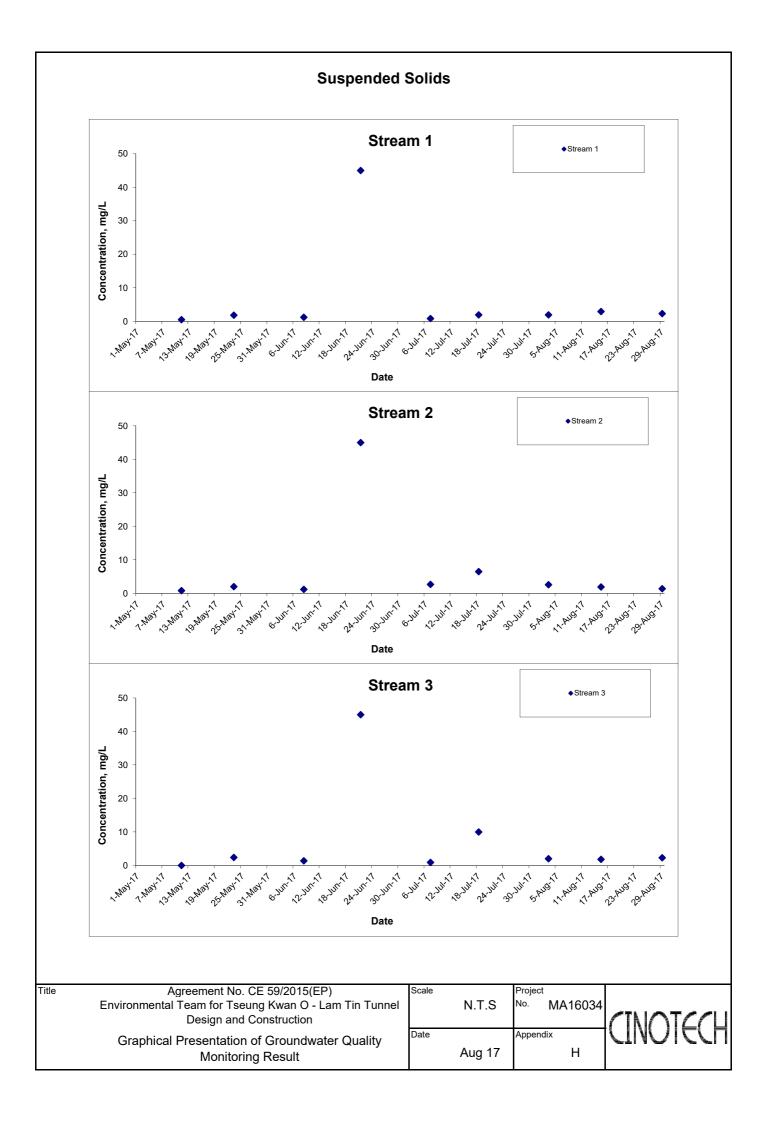
Remarks:

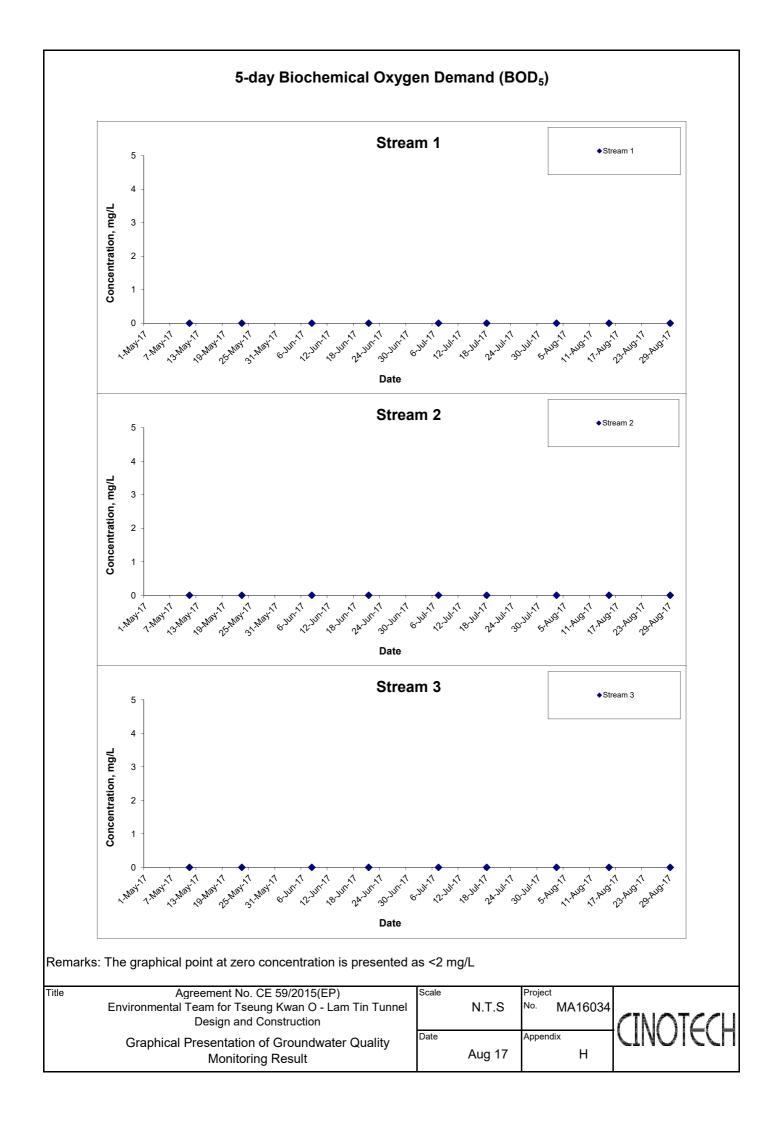
1) < = less than

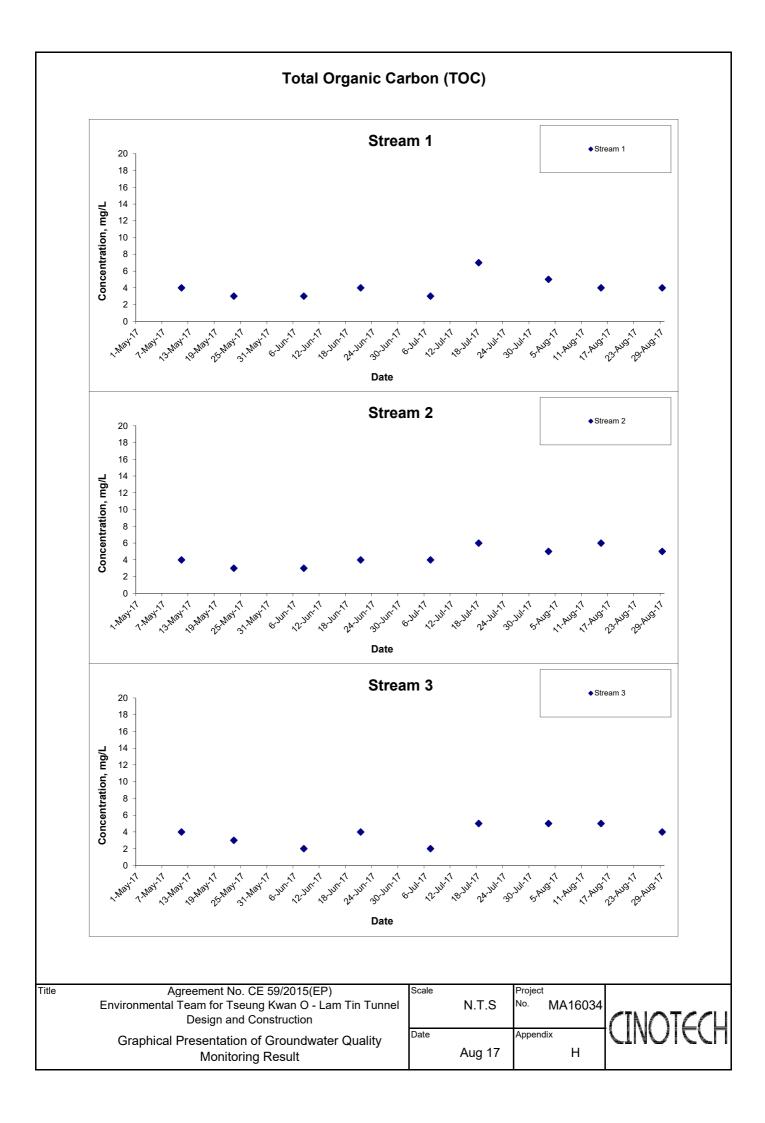

2) S = Surface, M = Middle, B = Bottom

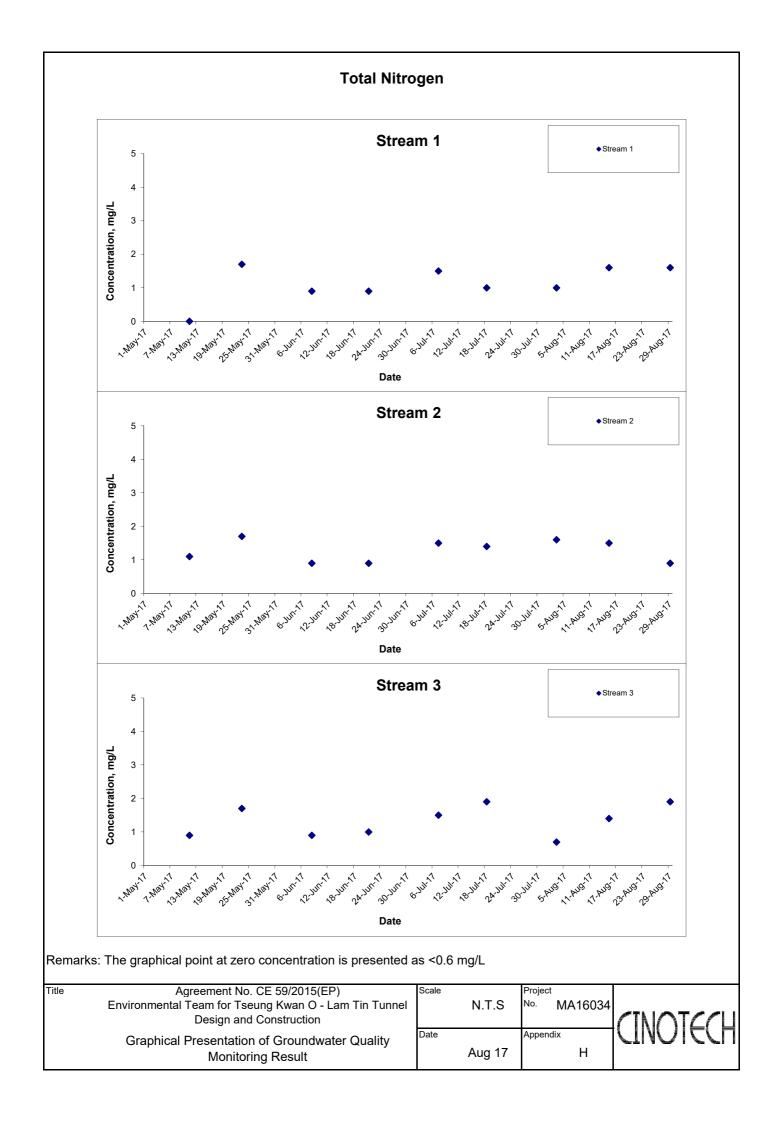

3) * Limit of Reporting is reported as Detection Limit

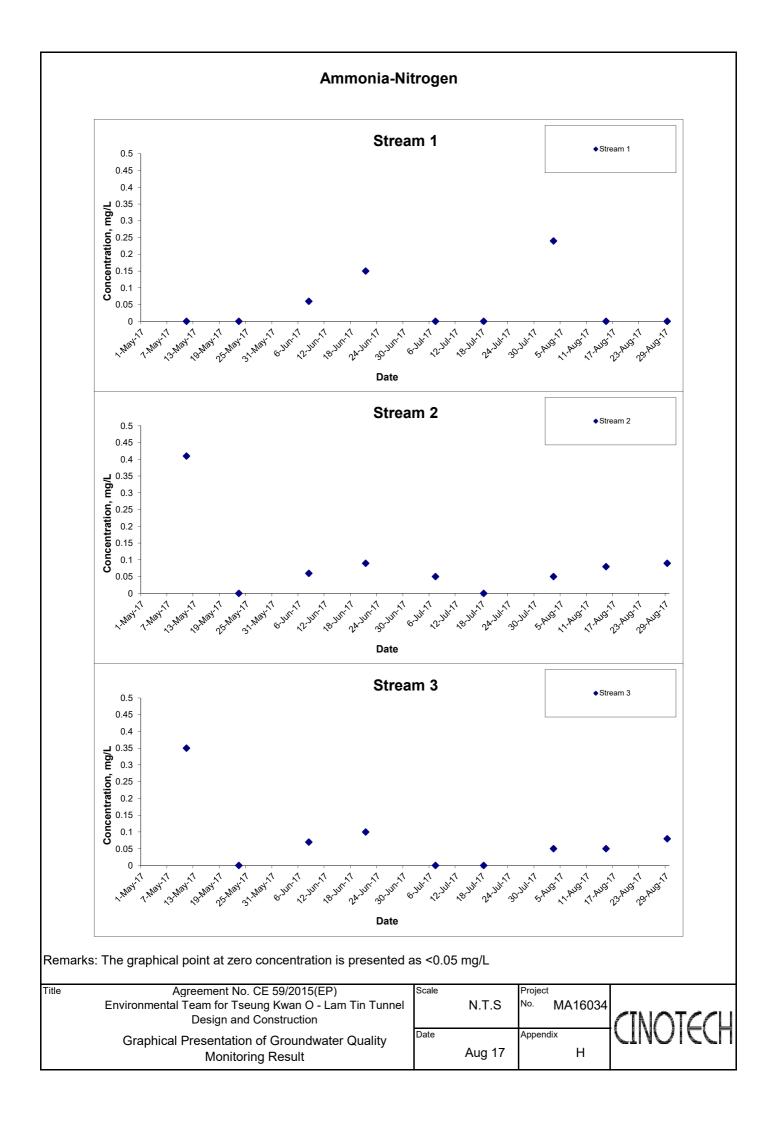

PREPARED AND CHECKED BY:

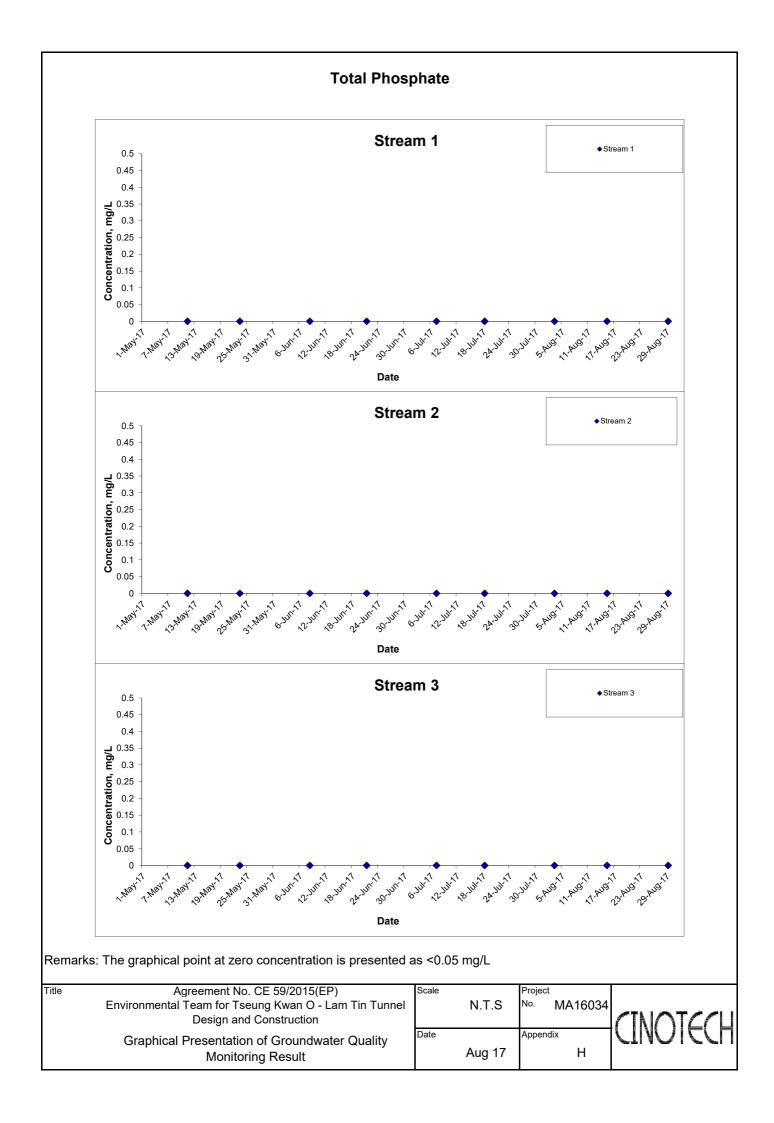

For and On Behalf of WELLAB Ltd.


PATRICK TSE Laboratory Manager









APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	
Location	Condition	Condition**	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.9	27.7	8.6 8.6	8.6	28.8 27.2	28.0	84.4 89.0	86.7	5.7 6.0	5.9	5.1	1.8 1.5	1.7		4.3 4.3	4.3	
C1	Rainy	Calm	10:45	Middle	9	24.4 24.4	24.4	8.6 8.6	8.6	33.1 33.1	33.1	60.4 59.4	59.9	4.2 4.1	4.2	0.1	2.1 2.1	2.1	2.3	6.5 6.4	6.5	5.8
				Bottom	17	23.8 23.8	23.8	8.6 8.6	8.6	33.4 33.4	33.4	62.8 62.5	62.7	4.4 4.4	4.4	4.4	2.9 3.2	3.1		6.6 6.7	6.7	
				Surface	1	28.7 28.7	28.7	8.4 8.6	8.5	25.5 25.6	25.6	88.0 86.9	87.5	5.9 5.8	5.9	5.4	1.9 1.9	1.9		5.7 5.4	5.6	
C2	Rainy	Calm	09:10	Middle	17	24.0 24.0	24.0	8.5 8.5	8.5	33.3 33.3	33.3	70.6 69.7	70.2	4.9 4.9	4.9	0.4	3.3 3.0	3.2	3.0	6.7 6.8	6.8	6.3
				Bottom	33	24.0 24.0	24.0	8.5 8.5	8.5	33.3 33.3	33.3	62.1 62.7	62.4	4.3 4.4	4.4	4.4	3.8 3.8	3.8		6.6 6.5	6.6	
				Surface	1	28.7 28.7	28.7	8.7 8.7	8.7	27.6 27.7	27.7	91.1 89.8	90.5	6.1 6.0	6.1	5.6	0.9 0.9	0.9		4.1 4.3	4.2	
G1	Rainy	Calm	10:01	Middle	4	25.7 26.2	26.0	8.6 8.6	8.6	32.2 31.5	31.9	73.8 74.9	74.4	5.0 5.1	5.1	0.0	1.4 1.3	1.4	1.6	5.5 5.8	5.7	4.9
				Bottom	7	24.9 24.9	24.9	8.5 8.5	8.5	33.6 33.6	33.6	65.7 67.1	66.4	4.5 4.6	4.6	4.6	2.2 2.5	2.4		4.6 4.8	4.7	
				Surface	1	28.5 28.5	28.5	8.7 8.7	8.7	28.0 28.0	28.0	99.7 98.6	99.2	6.6 6.6	6.6	5.8	1.7 1.6	1.7		5.5 5.6	5.6	
G2	Rainy	Calm	09:43	Middle	4.5	25.6 25.6	25.6	8.6 8.6	8.6	32.7 32.8	32.8	73.3 73.2	73.3	5.0 5.0	5.0	0.0	1.5 1.5	1.5	2.0	8.3 8.0	8.2	6.7
				Bottom	8	24.5 24.6	24.6	8.5 8.5	8.5	33.0 33.9	33.5	63.0 63.7	63.4	4.4 4.4	4.4	4.4	3.0 2.6	2.8		6.2 6.2	6.2	
				Surface	1	29.1 29.0	29.1	8.7 8.7	8.7	28.1 27.6	27.9	108.0 101.2	104.6	7.1 6.7	6.9	6.1	1.0 1.1	1.1		5.7 5.9	5.8	
G3	Rainy	Calm	10:09	Middle	4	26.5 26.6	26.6	8.6 8.6	8.6	31.5 31.4	31.5	76.7 76.1	76.4	5.2 5.1	5.2	0.1	1.2 1.2	1.2	2.0	7.0 7.0	7.0	6.4
				Bottom	7	24.8 24.7	24.8	8.5 8.5	8.5	33.8 33.9	33.9	67.8 68.4	68.1	4.6 4.7	4.7	4.7	3.4 3.8	3.6		6.3 6.2	6.3	
				Surface	1	28.6 28.5	28.6	8.6 8.7	8.7	28.0 28.0	28.0	102.5 94.4	98.5	6.8 6.3	6.6	5.8	1.0 1.0	1.0		5.4 5.4	5.4	
G4	Rainy	Calm	10:21	Middle	5	26.0 26.1	26.1	8.5 8.6	8.6	32.1 31.6	31.9	72.6 71.2	71.9	4.9 4.8	4.9	5.0	1.4 1.3	1.4	1.6	6.5 6.1	6.3	6.1
				Bottom	9	25.3 25.2	25.3	8.5 8.5	8.5	33.1 33.3	33.2	62.6 62.9	62.8	4.3 4.3	4.3	4.3	2.3 2.7	2.5		6.5 6.4	6.5	
				Surface	1	28.7 28.7	28.7	8.6 8.7	8.7	27.6 27.6	27.6	105.9 104.1	105.0	7.0 6.9	7.0	5.9	0.9 0.9	0.9		4.9 4.9	4.9	
M1	Rainy	Calm	09:56	Middle	3	26.5 27.0	26.8	8.5 8.6	8.6	31.1 30.5	30.8	69.3 70.3	69.8	4.7 4.7	4.7	5.5	1.3 1.3	1.3	1.4	5.2 5.3	5.3	5.0
				Bottom	5	25.1 25.4	25.3	8.5 8.5	8.5	33.3 32.9	33.1	66.4 67.3	66.9	4.5 4.6	4.6	4.6	2.3 1.9	2.1		4.8 4.8	4.8	
				Surface	1	28.5 28.5	28.5	8.7 8.7	8.7	28.1 28.1	28.1	100.8 97.3	99.1	6.7 6.5	6.6	5.8	1.0 1.0	1.0		5.6 5.3	5.5	
M2	Rainy	Calm	09:37	Middle	5.5	25.4 25.3	25.4	8.6 8.6	8.6	33.0 33.1	33.1	72.7 72.2	72.5	5.0 4.9	5.0	5.0	1.4 1.2	1.3	1.9	4.5 4.6	4.6	4.8
				Bottom	10	24.3 24.3	24.3	8.5 8.5	8.5	33.2 33.1	33.2	62.1 62.8	62.5	4.3 4.4	4.4	4.4	3.4 3.1	3.3		4.4 4.3	4.4	
				Surface	1	29.0 28.9	29.0	8.7 8.7	8.7	28.1 28.2	28.2	103.6 102.1	102.9	6.8 6.7	6.8	5.9	1.0 0.9	1.0		4.3 4.3	4.3	
МЗ	Rainy	Calm	10:13	Middle	4	26.5 26.2	26.4	8.6 8.6	8.6	31.6 32.0	31.8	72.5 71.6	72.1	4.9 4.8	4.9	5.9	1.3 1.4	1.4	2.0	5.3 5.4	5.4	4.3
				Bottom	7	24.5 24.6	24.6	8.5 8.5	8.5	33.1 34.0	33.6	66.9 68.4	67.7	4.6 4.7	4.7	4.7	3.4 3.5	3.5		3.3 3.3	3.3	
		_	_	Surface	1	28.5 28.4	28.5	8.7 8.7	8.7	28.1 28.0	28.1	97.9 92.5	95.2	6.5 6.2	6.4		1.0 1.1	1.1		3.7 3.9	3.8	
M4	Rainy	Calm	09:28	Middle	5	25.6 26.0	25.8	8.5 8.6	8.6	32.6 31.8	32.2	72.4 76.0	74.2	4.9 5.2	5.1	5.8	1.4 1.4	1.4	2.0	6.0 6.0	6.0	5.1
<u> </u>				Bottom	9	24.1 24.7	24.4	8.5 8.5	8.5	33.3 33.7	33.5	62.5 62.7	62.6	4.3 4.3	4.3	4.3	3.5 3.6	3.6		5.5 5.6	5.6	
			_	Surface	1	28.0 28.2	28.1	8.7 8.7	8.7	28.3 28.0	28.2	87.0 89.8	88.4	5.8 6.0	5.9	- A	1.2 1.1	1.2		3.6 3.4	3.5	
M5	Rainy	Calm	10:36	Middle	6	24.6 24.9	24.8	8.6 8.6	8.6	34.0 33.6	33.8	68.5 70.3	69.4	4.7 4.8	4.8	5.4	3.0 2.5	2.8	2.8	5.5 5.5	5.5	4.6
				Bottom	11	24.0 24.0	24.0	8.6 8.6	8.6	33.4 33.4	33.4	66.3 66.3	66.3	4.6 4.6	4.6	4.6	4.2 4.3	4.3		4.9 4.6	4.8	
				Surface	-		-		-	-	-	-	-	-	-	6.9	-	-		-	-	
M6	Rainy	Calm	10:30	Middle	2.3	28.7 28.7	28.7	8.7 8.7	8.7	27.9 27.9	27.9	103.6 103.2	103.4	6.9 6.8	6.9	0.9	0.9 0.9	0.9	0.9	5.1 5.1	5.1	5.1
				Bottom	-	-	-		-	-	-		-	-	-	-	-	-		-	-	

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 2 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 4.6 NTU</u>	<u>C2: 5.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.7 mg/L	<u>C2: 7.3 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 8.0 mg/L	<u>C2: 8.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 August 2017

(Mid-Flood Tide)

Loop#	Weather	Sea	Sampling	D	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.8	28.8	8.9	8.9	27.4	27.5	96.2	96.5	6.4	6.4		1.4	1.4		6.0	5.9	
						28.8 24.2		8.9 8.6		27.6 33.1		96.8 71.0		6.4 4.9		5.7	1.3 2.4	-	1	5.8 6.3		ł
C1	Cloudy	Calm	16:04	Middle	9.5	24.2	24.2	8.6	8.6	33.1	33.1	71.3	71.2	5.0	5.0		2.4	2.3	3.0	6.3	6.3	6.2
				Bottom	18	23.8	23.8	8.6	8.6	33.4	33.4	62.3	62.5	4.4	4.4	4.4	4.9	5.2		6.4	6.4	Ì
				Dottoili	10	23.8	20.0	8.6	0.0	33.4	00.4	62.6	02.0	4.4	7.7	7.7	5.5	0.2		6.4	0.4	
				Surface	1	28.5 28.4	28.5	8.6 8.7	8.7	27.8 27.8	27.8	115.1 114.2	114.7	7.7 7.6	7.7		1.1	1.1		5.5 5.8	5.7	
-00			44.47			24.1	04.4	8.5	0.5	33.2	00.0	68.3	00.0	4.8	4.0	6.3	3.6		0.5	6.7	0.7	
C2	Cloudy	Calm	14:47	Middle	17	24.1	24.1	8.5	8.5	33.2	33.2	69.2	68.8	4.8	4.8		4.0	3.8	3.5	6.7	6.7	6.1
				Bottom	33	24.0	24.0	8.5	8.5	33.2	33.3	68.3	68.2	4.8	4.8	4.8	5.1	5.6		5.8	5.9	Ī
						24.0 27.6		8.5 8.7		33.3 29.6		68.1 79.4		4.7 5.3			6.1 1.3	1		5.9 4.1		
				Surface	1	27.6	27.6	8.7	8.7	29.5	29.6	80.1	79.8	5.4	5.4		1.2	1.3		4.1	4.1	
G1	Cloudy	Calm	15:18	Middle	4	25.6	26.3	8.6	8.6	32.5	31.6	76.2	77.3	5.2	5.3	5.4	1.4	1.5	2.2	4.4	4.4	4.5
Gi	Cioudy	Callii	13.10	Wildule	7	27.0	20.5	8.6	0.0	30.7	31.0	78.4	11.5	5.3	0.0		1.5	1.5	2.2	4.3	4.4	4.5
				Bottom	7	24.6 24.6	24.6	8.5 8.5	8.5	34.0 34.0	34.0	62.5 60.6	61.6	4.3 4.2	4.3	4.3	3.5 3.8	3.7		5.0 4.9	5.0	
				0.6		28.4	00.4	8.8		28.4	00.4	114.1	440.5	7.6	7.0		1.0	4.0		4.2	4.0	
				Surface	1	28.4	28.4	8.8	8.8	28.4	28.4	112.9	113.5	7.5	7.6	6.2	1.0	1.0		4.2	4.2	l
G2	Cloudy	Calm	15:07	Middle	4.5	25.2	25.3	8.6	8.6	33.1	33.0	69.1	70.7	4.7	4.8	0.2	1.3	1.3	1.6	5.3	5.3	5.3
	,					25.4 24.5		8.6 8.5		32.9 34.0		72.2 65.1		4.9 4.5			1.2 2.2	1	1	5.3 6.1		ł
				Bottom	8	24.5	24.5	8.5	8.5	34.0	34.0	64.1	64.6	4.4	4.5	4.5	2.5	2.4		6.4	6.3	
				Curfoso	1	28.5	20.6	8.8	8.8	28.5	28.4	109.8	111.8	7.3	7.4		1.8	10		5.6	E 6	
				Surface		28.7	28.6	8.8	0.0	28.3	20.4	113.7	111.0	7.5	7.4	6.1	1.9	1.9	1	5.5	5.6	ļ
G3	Cloudy	Calm	15:26	Middle	4	25.5 25.3	25.4	8.6 8.5	8.6	33.0 33.3	33.2	69.9 70.2	70.1	4.8 4.8	4.8		1.7 1.9	1.8	2.8	7.6 7.8	7.7	5.8
						24.5		8.5		33.0		62.4		4.8			4.6		1	4.2		ł
				Bottom	7	24.6	24.6	8.5	8.5	33.0	33.0	63.3	62.9	4.4	4.4	4.4	4.5	4.6		4.1	4.2	
				Surface	1	28.0	28.2	8.7	8.8	28.8	28.5	97.2	96.8	6.5	6.5		1.0	1.1		4.0	3.9	
				Gundo		28.4	20.2	8.8	0.0	28.2	20.0	96.4	00.0	6.4	0.0	5.7	1.1		_	3.8	0.0	ļ
G4	Cloudy	Calm	15:39	Middle	4.5	24.9 25.0	25.0	8.6 8.6	8.6	33.6 33.5	33.6	72.5 69.8	71.2	5.0 4.8	4.9		2.0	2.0	2.6	8.0 7.8	7.9	5.7
				D-#	8	24.5	04.5	8.5	0.5	33.1	22.4	62.3	CO 0	4.3	4.0	4.0	4.7	4.0	1	5.4		t
				Bottom	8	24.5	24.5	8.5	8.5	33.1	33.1	62.1	62.2	4.3	4.3	4.3	4.5	4.6		5.2	5.3	
				Surface	1	28.4	28.4	8.8	8.8	28.4	28.4	108.7	109.3	7.2	7.3		1.4	1.3		4.0	3.9	
						28.4 26.0		8.8 8.6		28.4 32.1		109.9 76.0		7.3 5.2		6.4	1.2	-	4	3.8 6.2		ŀ
M1	Cloudy	Calm	15:13	Middle	4	26.1	26.1	8.6	8.6	31.8	32.0	82.6	79.3	5.6	5.4		1.5	1.7	2.7	6.4	6.3	5.2
				Bottom	7	24.5	24.6	8.5	8.5	33.0	33.5	62.3	62.3	4.3	4.3	4.3	5.0	5.0		5.5	5.5	Ī
				Bottom	<u> </u>	24.6	21.0	8.5	0.0	34.0	00.0	62.2	02.0	4.3	1.0		4.9	0.0		5.5	0.0	
				Surface	1	28.3 28.3	28.3	8.8 8.7	8.8	28.4 28.4	28.4	110.1 106.2	108.2	7.3 7.1	7.2		0.9	1.0		4.5 4.3	4.4	
MO	01	0-1	45:04	Maria alla		24.9	04.0	8.5	0.5	33.6	22.0	71.8	70.4	4.9	4.0	6.0	2.0	0.0	0.0	5.3		
M2	Cloudy	Calm	15:01	Middle	5.5	24.9	24.9	8.5	8.5	33.6	33.6	68.4	70.1	4.7	4.8		2.0	2.0	2.3	5.5	5.4	5.2
				Bottom	10	24.3	24.3	8.5 8.5	8.5	33.2 33.2	33.2	62.6 61.3	62.0	4.3	4.3	4.3	3.8	3.8		5.6 5.7	5.7	
						28.8		8.8		28.2		114.7		7.6			1.3	<u> </u>		6.0		
				Surface	1	28.8	28.8	8.8	8.8	28.1	28.2	115.8	115.3	7.7	7.7	0.4	1.3	1.3		5.8	5.9	
M3	Cloudy	Calm	15:31	Middle	4	25.3	25.3	8.5	8.5	33.3	33.3	75.2	73.8	5.1	5.0	6.4	1.9	1.9	3.0	7.4	7.4	6.3
WIO	Oloudy	Gaini	10.01	Wilduic		25.2	20.0	8.5	0.0	33.3	00.0	72.3	70.0	4.9	0.0		1.9	1.5	0.0	7.4	7.4	0.5
				Bottom	7	24.6 24.6	24.6	8.5 8.5	8.5	33.0 33.0	33.0	63.9 64.5	64.2	4.4 4.5	4.5	4.5	5.9 5.8	5.9		5.7 5.5	5.6	
	Ì	Ì	Ì	C.,,ef	1	28.6	20.7	8.8	0.0	28.1	20.0	109.8	100.4	7.3	7.0	Ì	1.2	1.0	Ì	4.6	4.7	Ì
				Surface	1	28.8	28.7	8.9	8.9	27.9	28.0	108.9	109.4	7.2	7.3	6.2	1.2	1.2	1	4.7	4.7	ļ
M4	Cloudy	Calm	14:54	Middle	5	25.9	26.3	8.6	8.6	32.1	31.6	72.7	73.2	4.9	5.0	0.2	1.2	1.1	1.5	5.7	5.6	5.0
	'				1	26.6 24.8		8.6 8.5		31.0 33.6		73.7 63.7		5.0 4.4			1.0 2.1	1	1	5.5 4.6		ł
	<u></u>	<u></u>	<u> </u>	Bottom	9	24.8	24.8	8.5	8.5	33.6	33.6	62.7	63.2	4.3	4.4	4.4	2.2	2.2	<u></u>	4.6	4.6	<u> </u>
				Surface	1	27.8	27.9	8.8	8.8	28.6	28.6	103.2	101.4	6.9	6.8		1.4	1.4		6.0	6.0	
				Guriace	<u> </u>	27.9	21.3	8.8	3.0	28.5	20.0	99.5	101.4	6.7	0.0	6.3	1.3	1.54	4	5.9	0.0	ļ
M5	Cloudy	Calm	15:54	Middle	6	24.6 24.6	24.6	8.6 8.6	8.6	33.8 33.8	33.8	84.4 81.2	82.8	5.8 5.6	5.7		1.9 2.0	2.0	2.8	4.2 4.2	4.2	5.0
				D-4	,,	24.0	04.0	8.5	6.5	33.2	20.0	74.4	710	5.0	F.0		5.1		1	4.2	4-7	t
				Bottom	11	24.1	24.2	8.5	8.5	33.3	33.3	74.0	74.2	5.1	5.2	5.2	5.1	5.1		4.6	4.7	
				Surface	-	-	_	-	_	-	_	-	_	-	-		-	-		-	-	
						-		- 0.0		- 20.0		77.4				5.3	- 10		4	- 6.0		ł
M6	Cloudy	Calm	15:46	Middle	2.2	26.8 26.8	26.8	8.6 8.6	8.6	30.8 30.8	30.8	77.4 79.3	78.4	5.2 5.3	5.3		1.0 1.1	1.1	1.1	6.3 6.5	6.4	6.4
				Bottom	-	-		-	_	-	-	-	-	-	_	-	-		1	-	_	İ
				DOILOTT		-	-	-		-		-		-	_	_	-	_		-	_	

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 2 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G	4, M1-M5	
DO in mg/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 6.2 NTU</u>	<u>C1: 6.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Stations M1-M	<u>15</u>	<u> </u>
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.7 mg/L</u>	<u>C1: 8.3 mg/L</u>
	Station M6		I
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.4	27.4	8.6 8.6	8.6	27.6 27.4	27.5	93.2 93.6	93.4	6.3 6.4	6.4	5.7	1.4 1.4	1.4		5.5 5.4	5.5	1
C1	Sunny	Calm	11:50	Middle	10	24.3 24.4	24.4	8.6 8.6	8.6	33.7 33.6	33.7	71.1 71.2	71.2	4.9 4.9	4.9	0.7	3.0 3.1	3.1	2.6	5.5 5.5	5.5	5.7
				Bottom	19	23.8 23.7	23.8	8.6 8.6	8.6	33.3 33.4	33.4	76.3 79.2	77.8	5.3 5.5	5.4	5.4	3.0 3.5	3.3		6.1 6.2	6.2	
				Surface	1	27.5 27.6	27.6	8.5 8.6	8.6	27.0 27.2	27.1	97.0 95.2	96.1	6.6 6.5	6.6	5.8	1.1 1.1	1.1		5.6 5.5	5.6	
C2	Sunny	Calm	09:47	Middle	17.5	24.0 23.9	24.0	8.5 8.6	8.6	33.1 33.2	33.2	71.4 72.3	71.9	5.0 5.0	5.0	0.0	4.0 4.3	4.2	3.4	5.4 5.4	5.4	5.6
				Bottom	34	23.9 23.8	23.9	8.6 8.6	8.6	33.2 33.3	33.3	72.2 75.1	73.7	5.0 5.2	5.1	5.1	4.9 4.7	4.8		5.9 5.8	5.9	<u> </u>
				Surface	1	27.5 27.6	27.6	8.8 8.7	8.8	27.7 28.5	28.1	108.6 94.5	101.6	7.4 6.4	6.9	6.5	1.0 1.0	1.0		4.8 4.8	4.8	1
G1	Sunny	Calm	10:50	Middle	4	26.4 26.2	26.3	8.6 8.6	8.6	30.6 30.9	30.8	91.3 88.7	90.0	6.2 6.0	6.1		0.9 1.0	1.0	1.3	7.7 7.8	7.8	6.2
				Bottom	7	24.4 24.4	24.4	8.5 8.5	8.5	34.0 33.0	33.5	66.1 62.4	64.3	4.6 4.3	4.5	4.5	1.9 1.8	1.9		5.9 6.1	6.0	<u> </u>
				Surface	1	27.4 28.3	27.9	8.7 8.7	8.7	28.4 28.9	28.7	98.1 97.3	97.7	6.6 6.5	6.6	6.4	1.1 1.0	1.1		5.3 5.1	5.2	1
G2	Sunny	Calm	10:26	Middle	4.5	26.1 28.3	27.2	8.6 8.6	8.6	31.1 31.9	31.5	87.0 98.0	92.5	5.9 6.4	6.2		1.0	1.0	1.4	4.6 4.6	4.6	5.4
				Bottom	8	24.4 27.9	26.2	8.5 8.5	8.5	34.0 32.6	33.3	63.3 67.7	65.5	4.4 4.4	4.4	4.4	2.1 2.1	2.1		6.3 6.3	6.3	<u> </u>
				Surface	1	27.4 27.4	27.4	8.7 8.7	8.7	28.4 28.5	28.5	87.5 85.7	86.6	5.9 5.8	5.9	5.5	1.2 1.1	1.2		4.2 4.1	4.2	1
G3	Sunny	Calm	11:01	Middle	4	26.4 26.3	26.4	8.6 8.6	8.6	30.7 30.9	30.8	76.0 71.1	73.6	5.2 4.8	5.0		1.0 0.9	1.0	1.5	4.6 4.7	4.7	4.9
				Bottom	7	24.8 24.7	24.8	8.5 8.5	8.5	33.4 33.6	33.5	65.1 63.4	64.3	4.5 4.4	4.5	4.5	2.2 2.2	2.2		5.6 5.7	5.7	<u> </u>
				Surface	1	27.5 27.3	27.4	8.7 8.7	8.7	28.7 29.0	28.9	98.4 83.9	91.2	6.6 5.7	6.2	6.0	3.1	3.1		5.7 5.4	5.6	1
G4	Sunny	Calm	11:27	Middle	4.5	26.6 25.9	26.3	8.6 8.6	8.6	30.3 31.4	30.9	90.4 80.4	85.4	6.1 5.5	5.8		0.8 0.9	0.9	2.2	5.6 5.6	5.6	5.8
				Bottom	8	24.5 24.5	24.5	8.5 8.5	8.5	33.9 33.9	33.9	67.8 70.1	69.0	4.7 4.8	4.8	4.8	2.7 2.7	2.7		6.3 6.3	6.3	<u> </u>
				Surface	1	27.5 27.5	27.5	8.7 8.7	8.7	28.5 28.4	28.5	100.5 100.8	100.7	6.8 6.8	6.8	6.5	1.1	1.1		3.2 3.2	3.2	
M1	Sunny	Calm	10:39	Middle	3	27.0 27.1	27.1	8.6 8.6	8.6	29.3 29.2	29.3	90.1 93.0	91.6	6.1 6.3	6.2		1.0 1.0	1.0	1.2	3.8 3.9	3.9	4.5
				Bottom	5	26.0 25.9	26.0	8.6 8.6	8.6	31.3 31.5	31.4	70.6 67.6	69.1	4.8 4.6	4.7	4.7	1.5 1.6	1.6		6.5 6.5	6.5	<u> </u>
				Surface	1	27.5 27.4	27.5	8.8 8.7	8.8	28.2 28.2	28.2	103.8	102.3	7.0 6.8	6.9	5.8	1.3 1.3	1.3		4.3 4.3	4.3	
M2	Sunny	Calm	10:16	Middle	6	25.4 25.2	25.3	8.5 8.5	8.5	32.5 32.7	32.6	67.8 65.5	66.7	4.6 4.5	4.6		1.0 1.1	1.1	2.2	6.1 5.9	6.0	4.5
				Bottom	11	24.1 24.0	24.1	8.5 8.6	8.6	33.2 33.2	33.2	65.4 65.0	65.2	4.6 4.5	4.6	4.6	4.2 4.3	4.3		3.2 3.2	3.2	<u> </u>
				Surface	1	26.7 26.4	26.6	8.6 8.6	8.6	29.8 30.1	30.0	89.8 79.7	84.8	6.1 5.4	5.8	5.4	2.0	2.2		4.7	4.6	1
М3	Sunny	Calm	11:13	Middle	4	26.1 26.0	26.1	8.6 8.5	8.6	31.2 31.3	31.3	74.3 72.0	73.2	5.1 4.9	5.0		3.9 4.1	4.0	3.7	6.4	6.5	5.6
				Bottom	7	25.0 25.1	25.1	8.5 8.5	8.5	33.1 33.0	33.1	63.4 64.9	64.2	4.3 4.4	4.4	4.4	4.9 5.1	5.0		5.7 5.8	5.8	<u> </u>
				Surface	1	27.4 27.4	27.4	8.7 8.7	8.7	28.5 28.5	28.5	96.1 94.1	95.1	6.5 6.4	6.5	5.6	1.2	1.1		3.3	3.3	1
M4	Sunny	Calm	10:08	Middle	5.5	26.6 26.3	26.5	8.6 8.6	8.6	30.3 30.9	30.6	71.0 65.4	68.2	4.8	4.6		0.8	0.8	1.2	3.7	3.7	2.8
				Bottom	10	24.5 24.6	24.6	8.5 8.6	8.6	33.5 33.5	33.5	63.5 63.4	63.5	4.4 4.4	4.4	4.4	1.8 1.7	1.8		1.5 1.5	1.5	<u> </u>
				Surface	1	27.3 27.1	27.2	8.7 8.7	8.7	28.0 28.6	28.3	88.0 79.8	83.9	6.0 5.4	5.7	5.3	1.1	1.2		3.8	3.8	1
M5	Sunny	Calm	11:41	Middle	6	25.0 25.2 24.1	25.1	8.5 8.6 8.6	8.6	32.9 32.5 33.2	32.7	67.9 70.3 66.0	69.1	4.7 4.8 4.6	4.8		1.5 1.6 4.6	1.6	2.4	5.2 5.0 6.4	5.1	5.1
				Bottom	11	24.1	24.1	8.6	8.6	33.2	33.2	65.1	65.6	4.6 4.5	4.6	4.6	4.6 4.4	4.5		6.4	6.4	<u> </u>
				Surface	-	27.5	-	8.7	-	28.6	-	97.1	-	- - 6.5	-	6.6	4.5	-		6.1	-	ļ
M6	Sunny	Calm	11:34	Middle	1.4	27.5	27.5	8.7	8.7	28.5	28.6	97.1	97.9	6.7	6.6		4.5 4.2	4.4	4.4	6.1	6.1	6.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 4 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 5.8 NTU</u>	<u>C2: 6.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 August 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.9 8.9	8.9	28.8 28.8	28.8	122.4 121.6	122.0	8.2 8.1	8.2	6.7	0.9 0.8	0.9		5.8 5.8	5.8	
C1	Sunny	Calm	18:08	Middle	9.5	24.1 24.2	24.2	8.6 8.6	8.6	33.9 33.9	33.9	75.0 75.0	75.0	5.2 5.2	5.2	0.7	2.3 2.2	2.3	3.7	5.9 4.8	5.4	5.8
				Bottom	18	23.6 23.6	23.6	8.6 8.6	8.6	33.4 33.4	33.4	67.3 67.0	67.2	4.7 4.7	4.7	4.7	8.1 7.5	7.8		6.0 6.1	6.1	
				Surface	1	27.9 27.9	27.9	8.8 8.9	8.9	28.3 28.1	28.2	130.5 130.6	130.6	8.7 8.8	8.8	6.9	1.9 2.0	2.0		5.9 5.8	5.9	
C2	Sunny	Calm	16:27	Middle	16.5	24.3 24.3	24.3	8.5 8.6	8.6	33.8 33.8	33.8	70.2 70.4	70.3	4.9 4.9	4.9	0.5	2.3 2.3	2.3	3.2	4.1 4.2	4.2	4.8
				Bottom	32	23.9 23.9	23.9	8.6 8.6	8.6	33.2 33.2	33.2	67.7 67.5	67.6	4.7 4.7	4.7	4.7	5.8 5.0	5.4		4.5 4.3	4.4	
				Surface	1	27.3 27.6	27.5	8.8 7.9	8.4	28.3 25.5	26.9	106.2 94.5	100.4	7.2 6.5	6.9	6.9	1.6 1.8	1.7		5.1 5.0	5.1	
G1	Sunny	Calm	17:20	Middle	3.5	26.7 26.7	26.7	8.7 8.7	8.7	29.7 29.7	29.7	100.9 100.6	100.8	6.9 6.8	6.9		1.3 1.4	1.4	1.5	3.8 3.8	3.8	4.6
				Bottom	6	25.3 25.3	25.3	8.6 8.6	8.6	32.2 32.2	32.2	67.3 67.6	67.5	4.6 4.6	4.6	4.6	1.4 1.4	1.4		4.9 5.1	5.0	<u> </u>
				Surface	1	27.4 27.2	27.3	8.8 8.8	8.8	28.0 28.2	28.1	108.6 100.5	104.6	7.4 6.8	7.1	6.6	1.9 1.6	1.8		3.6 3.5	3.6	
G2	Sunny	Calm	17:02	Middle	4	26.3 26.1	26.2	8.6 8.6	8.6	30.4 30.7	30.6	91.2 87.8	89.5	6.2 6.0	6.1		1.3 1.3	1.3	1.5	2.3 2.3	2.3	2.5
				Bottom	7	24.9 25.0	25.0	8.5 8.6	8.6	33.2 33.0	33.1	66.8 64.9	65.9	4.6 4.5	4.6	4.6	1.3 1.3	1.3		1.7 1.7	1.7	
				Surface	1	27.5 27.5	27.5	8.8 8.8	8.8	28.0 27.8	27.9	106.7 107.8	107.3	7.2 7.3	7.3	7.0	1.9 1.8	1.9		4.7 4.7	4.7	
G3	Sunny	Calm	17:29	Middle	3.5	27.1 27.2	27.2	8.7 8.7	8.7	29.2 29.1	29.2	97.0 100.1	98.6	6.6 6.8	6.7		1.2 1.1	1.2	1.6	5.1 5.1	5.1	4.4
				Bottom	6	25.2 25.3	25.3	8.5 8.5	8.5	32.8 32.7	32.8	65.8 69.0	67.4	4.5 4.7	4.6	4.6	1.8 1.5	1.7		3.5 3.5	3.5	
				Surface	1	27.5 27.4	27.5	8.8 8.8	8.8	27.9 27.9	27.9	111.9 110.7	111.3	7.6 7.5	7.6	7.0	1.9 1.9	1.9		5.7 5.6	5.7	1
G4	Sunny	Calm	17:44	Middle	4	27.0 27.0	27.0	8.7 8.7	8.7	29.3 29.3	29.3	94.8 94.5	94.7	6.4 6.4	6.4		1.1	1.2	1.5	4.3 4.3	4.3	4.0
				Bottom	7	25.1 25.0	25.1	8.5 8.5	8.5	32.9 33.0	33.0	68.8 72.4	70.6	4.7 5.0	4.9	4.9	1.4 1.3	1.4		1.8 1.9	1.9	
				Surface	1	27.1 27.1	27.1	8.7 8.7	8.7	28.7 28.6	28.7	92.7 93.7	93.2	6.3 6.4	6.4	6.6	1.5	1.6		5.6 5.7	5.7	
M1	Sunny	Calm	17:12	Middle	3	27.0 27.0	27.0	8.7 8.7	8.7	29.1 29.1	29.1	98.8 98.8	98.8	6.7 6.7	6.7		1.2	1.3	1.6	5.8 5.7	5.8	5.7
				Bottom	5	25.5 25.4	25.5	8.5 8.6	8.6	32.3 32.4	32.4	75.4 74.0	74.7	5.2 5.1	5.2	5.2	1.7 1.9	1.8		5.6 5.6	5.6	
				Surface	1	27.2 27.4	27.3	8.7 8.8	8.8	28.4 28.0	28.2	99.7 110.1	104.9	6.8 7.5	7.2	6.2	1.5 1.7	1.6		4.2 4.1	4.2	
M2	Sunny	Calm	16:54	Middle	5	26.3 26.1	26.2	8.6 8.6	8.6	30.7 31.2	31.0	76.4 75.6	76.0	5.2 5.1	5.2		1.1	1.2	1.4	4.0 4.1	4.1	4.2
				Bottom	9	24.4 24.4	24.4	8.5 8.6	8.6	33.8 33.8	33.8	69.3 70.1	69.7	4.8 4.8	4.8	4.8	1.3 1.4	1.4		4.3 4.3	4.3	<u> </u>
				Surface	1	27.6 27.5	27.6	8.8 8.8	8.8	27.4 27.8	27.6	114.4 108.1	111.3	7.7 7.3	7.5	6.9	2.0 1.8	1.9		3.4	3.4	
М3	Sunny	Calm	17:36	Middle	3.5	27.1 27.1	27.1	8.7 8.7	8.7	29.3 29.2	29.3	91.0 94.3	92.7	6.1 6.4	6.3		1.0 1.0	1.0	1.6	2.1 2.1	2.1	3.5
				Bottom	6	25.3 25.4	25.4	8.5 8.5	8.5	32.6 32.6	32.6	64.7 65.5	65.1	4.4 4.5	4.5	4.5	1.9 1.8	1.9		5.1 5.0	5.1	<u> </u>
				Surface	1	27.5 27.6	27.6	8.8 8.8	8.8	28.4 28.1	28.3	113.9 123.2	118.6	7.7 8.3	8.0	7.0	1.3	1.3		4.4	4.4	
M4	Sunny	Calm	16:44	Middle	4.5	26.8 26.9	26.9	8.6 8.7	8.7	29.9 29.7	29.8	87.2 90.7	89.0	5.9 6.1	6.0		1.0 0.9	1.0	1.1	5.2 5.0	5.1	4.7
				Bottom	8	25.9 25.7	25.8	8.6 8.6	8.6	31.5 31.8	31.7	84.8 83.3	84.1	5.8 5.7	5.8	5.8	0.8	0.9		4.7 4.7	4.7	
				Surface	1	27.4 27.5	27.5	8.7 8.7	8.7	28.6 28.4	28.5	100.4	100.6	6.8	6.8	5.9	1.2	1.2		5.1 5.3	5.2	
M5	Sunny	Calm	17:59	Middle	5.5	26.1 26.3 24.2	26.2	8.6 8.6 8.6	8.6	30.9 30.7 33.9	30.8	72.8 73.5	73.2	5.0 5.0	5.0		1.4 1.4	1.4	2.6	5.8 5.8 4.1	5.8	5.0
				Bottom	10	24.2	24.2	8.6	8.6	33.9 33.9	33.9	72.8 69.8	71.3	5.0 4.8	4.9	4.9	5.3 5.3	5.3		3.9	4.0	<u></u>
				Surface	-		-		-	-	-		-	-	-	6.7		-		-	-	
M6	Sunny	Calm	17:52	Middle	2.2	27.2 27.3	27.3	8.7 8.7	8.7	28.5 28.4	28.5	97.4 98.6	98.0	6.6 6.7	6.7		1.7 1.6	1.7	1.7	3.0 2.8	2.9	2.9
				Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	<u> </u>

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 4 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 9.4 NTU</u>	<u>C1: 10.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations M1-M	<u>5</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.3 mg/L</u>	<u>C1: 7.9 mg/L</u>
	Station M6		I
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 07 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	_	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 27.7	27.7	8.9 8.9	8.9	30.8 30.7	30.8	134.5 133.6	134.1	8.9 8.9	8.9	6.9	0.9 1.0	1.0		5.9 5.9	5.9	
C1	Sunny	Calm	12:32	Middle	10	23.9 23.8	23.9	8.6 8.7	8.7	33.0 33.1	33.1	68.6 70.6	69.6	4.8 4.9	4.9	0.5	1.5 1.6	1.6	1.9	5.3 5.3	5.3	5.4
				Bottom	19	23.6 23.5	23.6	8.6 8.6	8.6	33.3 33.4	33.4	64.7 64.0	64.4	4.5 4.5	4.5	4.5	3.0 3.0	3.0		5.2 4.9	5.1	
				Surface	1	26.2 26.4	26.3	8.7 8.7	8.7	31.2 31.0	31.1	85.2 89.0	87.1	5.8 6.0	5.9	6.0	1.6 1.4	1.5		5.3 5.3	5.3	
C2	Sunny	Calm	10:51	Middle	17	25.6 25.6	25.6	8.7 8.7	8.7	32.0 32.0	32.0	89.9 89.2	89.6	6.1 6.1	6.1	0.0	1.8 1.5	1.7	3.1	6.2 5.9	6.1	5.9
				Bottom	33	24.1 23.9	24.0	8.6 8.6	8.6	33.7 33.9	33.8	63.4 65.0	64.2	4.4 4.5	4.5	4.5	6.0 6.1	6.1		6.4 6.4	6.4	
				Surface	1	26.4 26.5	26.5	8.7 8.7	8.7	31.0 30.9	31.0	92.9 91.9	92.4	6.3 6.2	6.3	6.0	1.5 1.5	1.5		5.4 5.5	5.5	
G1	Sunny	Calm	11:34	Middle	3.5	25.9 26.0	26.0	8.7 8.7	8.7	31.5 31.5	31.5	82.5 82.8	82.7	5.6 5.6	5.6		1.6 1.5	1.6	1.6	5.7 5.6	5.7	5.5
				Bottom	6	24.8 24.6	24.7	8.7 8.7	8.7	32.9 33.1	33.0	64.0 61.4	62.7	4.4 4.2	4.3	4.3	1.7 1.8	1.8		5.4 5.3	5.4	<u> </u>
				Surface	1	26.5 26.7	26.6	8.7 8.7	8.7	31.0 30.9	31.0	92.4 93.5	93.0	6.2 6.3	6.3	6.0	1.4 1.4	1.4		5.5 5.5	5.5	
G2	Sunny	Calm	11:22	Middle	4.5	25.9 26.0	26.0	8.7 8.7	8.7	31.4 31.4	31.4	80.7 83.3	82.0	5.5 5.7	5.6		1.6 1.6	1.6	1.7	5.4 5.2	5.3	5.2
				Bottom	8	24.4 24.4	24.4	8.7 8.7	8.7	33.4 33.4	33.4	63.9 64.4	64.2	4.4 4.5	4.5	4.5	2.4 2.0	2.2		4.9 4.9	4.9	
				Surface	1	26.5 26.4	26.5	8.7 8.7	8.7	30.9 31.0	31.0	93.8 89.7	91.8	6.3 6.1	6.2	6.0	1.5 1.6	1.6		5.9 5.8	5.9	
G3	Sunny	Calm	11:42	Middle	3.5	26.0 26.0	26.0	8.7 8.7	8.7	31.4 31.4	31.4	83.7 83.5	83.6	5.7 5.7	5.7		1.5 1.6	1.6	1.7	6.0 6.1	6.1	5.7
				Bottom	6	24.6 24.6	24.6	8.7 8.7	8.7	33.2 33.2	33.2	63.5 64.4	64.0	4.4 4.4	4.4	4.4	1.8 1.8	1.8		5.0 4.9	5.0	
				Surface	1	26.4 26.4	26.4	8.7 8.7	8.7	30.9 30.9	30.9	87.3 87.4	87.4	5.9 5.9	5.9	5.7	1.8 1.8	1.8		5.1 5.3	5.2	1
G4	Sunny	Calm	11:57	Middle	4	25.9 25.9	25.9	8.7 8.7	8.7	31.5 31.6	31.6	80.8 80.7	80.8	5.5 5.5	5.5		1.5 1.6	1.6	1.7	4.9 4.6	4.8	5.1
				Bottom	7	24.7 24.8	24.8	8.6 8.7	8.7	33.0 32.9	33.0	64.5 65.8	65.2	4.4 4.5	4.5	4.5	1.7 1.6	1.7		5.3 5.4	5.4	
				Surface	1	26.6 26.4	26.5	8.7 8.7	8.7	30.9 31.1	31.0	93.7 90.9	92.3	6.3 6.2	6.3	6.0	1.4	1.6		5.8 5.7	5.8	
M1	Sunny	Calm	11:30	Middle	3	26.0 26.0	26.0	8.7 8.7	8.7	31.4 31.4	31.4	83.7 82.7	83.2	5.7 5.6	5.7		1.7	1.8	1.7	7.0 6.9	7.0	6.3
				Bottom	5	25.7 25.4	25.6	8.7 8.7	8.7	31.8 32.1	32.0	75.8 69.9	72.9	5.2 4.8	5.0	5.0	1.7 1.7	1.7		6.1 6.2	6.2	
				Surface	1	26.5 26.6	26.6	8.7 8.7	8.7	31.0 30.9	31.0	93.6 93.9	93.8	6.3 6.3	6.3	6.0	1.6 1.6	1.6		5.6 5.5	5.6	
M2	Sunny	Calm	11:14	Middle	4.5	26.1 26.1	26.1	8.7 8.7	8.7	31.3 31.4	31.4	84.1 81.3	82.7	5.7 5.5	5.6		1.6 1.6	1.6	1.7	5.5 5.6	5.6	5.9
				Bottom	8	24.9 24.9	24.9	8.7 8.7	8.7	32.9 32.9	32.9	60.8 64.2	62.5	4.2 4.4	4.3	4.3	1.8 1.9	1.9		6.3 6.5	6.4	<u> </u>
				Surface	1	26.6 26.4	26.5	8.7 8.7	8.7	30.9 30.9	30.9	94.3 89.7	92.0	6.4 6.1	6.3	5.9	1.8	1.7		5.3 5.2	5.3	
М3	Sunny	Calm	11:47	Middle	3.5	25.9 25.9	25.9	8.7 8.7	8.7	31.5 31.5	31.5	79.8 81.0	80.4	5.4 5.5	5.5		1.6 1.6	1.6	1.7	5.0 5.0	5.0	5.2
				Bottom	6	24.6 24.8	24.7	8.6 8.7	8.7	33.1 33.0	33.1	63.3 64.1	63.7	4.4 4.4	4.4	4.4	1.8 1.7	1.8		5.4 5.4	5.4	<u> </u>
				Surface	1	26.2 26.3	26.3	8.7 8.7	8.7	31.2 31.1	31.2	85.2 85.4	85.3	5.8 5.8	5.8	5.8	1.5	1.5		5.8 5.8	5.8	
M4	Sunny	Calm	11:00	Middle	5	26.1 26.2	26.2	8.7 8.7	8.7	31.2 31.2	31.2	83.4 84.4	83.9	5.7 5.7	5.7		1.5 1.6	1.6	2.1	5.1 4.8	5.0	5.1
				Bottom	9	24.6 24.2	24.4	8.6 8.6	8.6	33.3 33.6	33.5	65.6 61.3	63.5	4.5 4.2	4.4	4.4	2.9 3.4	3.2		4.6 4.5	4.6	<u> </u>
				Surface	1	27.4 27.5	27.5	8.9 8.9	8.9	30.8 30.8	30.8	134.4 128.8	131.6	9.0 8.6	8.8	6.8	1.0	1.0		3.9 4.1	4.0	
M5	Sunny	Calm	12:16	Middle	5.5	24.2 24.5	24.4	8.6 8.6	8.6	33.7 33.4	33.6	66.4 67.6	67.0	4.6 4.7	4.7		2.1	2.1	1.6	5.1 5.0	5.1	4.9
				Bottom	10	23.8 23.7	23.8	8.6 8.6	8.6	33.2 33.2	33.2	63.4 61.6	62.5	4.4 4.3	4.4	4.4	1.7 1.7	1.7		5.6 5.7	5.7	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.9	-	-		-	-	
M6	Sunny	Calm	12:06	Middle	2.1	27.2 27.3	27.3	8.9 8.9	8.9	30.8 30.8	30.8	132.9 133.4	133.2	8.9 8.9	8.9		1.0 1.1	1.1	1.1	6.8 6.8	6.8	6.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 7 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.3 NTU</u>	<u>C2: 7.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.7 mg/L</u>	<u>C2: 8.3mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 07 August 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	D4	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.8	26.8	8.8	8.8	30.8	30.8	113.5	109.7	7.6	7.4		2.1	2.0		5.5	5.6	
C1	Sunny	Moderate	19:51	Middle	10	26.7 24.8	24.8	8.8 8.7	8.7	30.8 32.7	32.7	105.8 75.0	75.1	7.1 5.2	5.2	6.3	1.9 2.6	2.7	3.8	5.6 7.1	7.0	6.4
01	Curry	Woderate	13.51			24.8 23.5		8.7 8.6		32.7 33.3		75.2 62.8		5.2 4.4		4.5	2.7 6.9		0.0	6.8		0.4
				Bottom	19	23.5 27.3	23.5	8.6 8.9	8.6	33.3 31.6	33.3	64.1 146.7	63.5	4.5 9.8	4.5	4.5	6.4 1.3	6.7		6.7 4.0	6.7	
				Surface	1	27.2	27.3	8.9	8.9	31.6	31.6	139.3	143.0	9.3	9.6	7.2	1.3	1.3		3.9	4.0	ļ
C2	Sunny	Moderate	18:05	Middle	17	23.7 23.8	23.8	8.6 8.6	8.6	33.1 33.9	33.5	66.1 72.1	69.1	4.6 5.0	4.8		3.0 2.9	3.0	3.2	4.5 4.3	4.4	4.9
				Bottom	33	23.4 23.4	23.4	8.6 8.6	8.6	33.4 33.4	33.4	64.1 63.5	63.8	4.5 4.5	4.5	4.5	5.3 5.0	5.2		6.3 6.5	6.4	
				Surface	1	27.2 27.2	27.2	8.9 8.9	8.9	31.6 31.6	31.6	147.9 146.3	147.1	9.8 9.7	9.8	7.0	1.2 1.4	1.3		5.5 5.2	5.4	
G1	Sunny	Moderate	18:50	Middle	4.5	24.7 24.8	24.8	8.7 8.7	8.7	33.1 33.0	33.1	76.7 80.6	78.7	5.3 5.5	5.4	7.6	1.8 1.8	1.8	1.8	6.3 6.2	6.3	6.1
				Bottom	8	24.3	24.3	8.6 8.6	8.6	33.5 33.5	33.5	70.6 68.1	69.4	4.9 4.7	4.8	4.8	2.1	2.2		6.7 6.5	6.6	İ
				Surface	1	26.9	27.0	8.9	8.9	31.7	31.7	139.0	139.3	9.3	9.3		1.4	1.4		5.5	5.5	<u> </u>
G2	Sunny	Moderate	18:35	Middle	5	27.1 24.6	24.6	8.9 8.6	8.7	31.6 33.2	33.2	139.5 74.2	74.1	9.3 5.1	5.1	7.2	1.3 2.0	2.0	2.0	5.4 5.3	5.3	5.9
GZ	Summy	Woderate	16.55			24.6 24.0		8.7 8.6		33.2 33.8		73.9 66.5		5.1 4.6		4.0	1.9 2.5	 	2.0	5.3 6.8		5.5
				Bottom	9	23.8 27.3	23.9	8.6 8.9	8.6	33.9 31.4	33.9	65.7 140.7	66.1	4.6 9.4	4.6	4.6	2.7 1.3	2.6		6.7 5.8	6.8	
				Surface	1	27.4	27.4	8.9	8.9	31.4	31.4	140.7	140.7	9.3	9.4	7.6	1.2	1.3		5.7	5.8	1
G3	Sunny	Moderate	19:02	Middle	4	24.8 24.9	24.9	8.7 8.7	8.7	33.0 32.9	33.0	83.1 84.6	83.9	5.7 5.8	5.8		1.7 1.8	1.8	1.7	6.0 6.0	6.0	6.0
				Bottom	7	24.4 24.3	24.4	8.7 8.6	8.7	33.4 33.5	33.5	72.0 69.3	70.7	5.0 4.8	4.9	4.9	1.9 2.1	2.0		6.2 5.9	6.1	
				Surface	1	27.3 27.3	27.3	8.9 8.9	8.9	31.2 31.2	31.2	144.8 138.2	141.5	9.6 9.2	9.4	8.2	1.3 1.4	1.4		5.2 5.8	5.5	
G4	Sunny	Moderate	19:17	Middle	4.5	25.2 26.2	25.7	8.7 8.8	8.8	32.4 31.7	32.1	103.3 102.3	102.8	7.1 6.9	7.0	0.2	2.0 1.6	1.8	2.2	6.9 7.0	7.0	6.3
				Bottom	8	23.9 23.9	23.9	8.6 8.6	8.6	33.9 33.9	33.9	68.3 68.9	68.6	4.7 4.8	4.8	4.8	3.3 3.4	3.4	1	6.5 6.5	6.5	
				Surface	1	27.4 27.3	27.4	8.9 8.9	8.9	31.6 31.6	31.6	147.6 142.6	145.1	9.8 9.5	9.7		1.3	1.3		5.0 4.9	5.0	
M1	Sunny	Moderate	18:44	Middle	3	25.8	25.6	8.8	8.8	32.2	32.4	90.1	89.8	6.1	6.1	7.9	1.6	1.6	1.6	6.6	6.6	6.1
	,			Bottom	5	25.4 24.8	24.8	8.7 8.7	8.7	32.5 33.1	33.1	89.5 77.5	76.7	6.1 5.3	5.3	5.3	1.5 1.9	1.9		6.6	6.7	ł
						24.8 27.0		8.7 8.9		33.0 31.7		75.8 147.7		5.2 9.9		0.0	1.8			6.6 6.1		
	_			Surface	1	26.9 24.5	27.0	8.9 8.7	8.9	31.7 33.2	31.7	138.6 76.4	143.2	9.3 5.3	9.6	7.4	1.4 1.9	1.4		5.8 6.1	6.0	ł
M2	Sunny	Moderate	18:26	Middle	5.5	24.5	24.5	8.6	8.7	33.3 33.3	33.3	74.2 66.9	75.3	5.1 4.7	5.2		1.9	1.9	2.3	6.4	6.3	6.4
				Bottom	10	23.5	23.6	8.6	8.6	33.3	33.3	65.3	66.1	4.6	4.7	4.7	3.5	3.5		6.7	6.8	
				Surface	1	26.7 27.2	27.0	8.9 8.9	8.9	31.6 31.3	31.5	131.5 146.6	139.1	8.8 9.8	9.3	7.2	1.4 1.3	1.4		5.6 5.5	5.6]
М3	Sunny	Moderate	19:09	Middle	4	25.1 25.1	25.1	8.7 8.7	8.7	32.7 32.7	32.7	73.8 74.8	74.3	5.1 5.1	5.1		1.6 1.6	1.6	1.6	6.4 6.5	6.5	5.9
				Bottom	7	24.4 24.5	24.5	8.7 8.7	8.7	33.4 33.3	33.4	63.0 64.0	63.5	4.4 4.4	4.4	4.4	2.0 1.8	1.9		5.6 5.5	5.6	
				Surface	1	26.9 26.9	26.9	8.9 8.9	8.9	31.7 31.6	31.7	145.5 145.4	145.5	9.7 9.7	9.7		1.3	1.2		4.6 4.8	4.7	
M4	Sunny	Moderate	18:14	Middle	5	24.6 24.6	24.6	8.7 8.7	8.7	33.2 33.0	33.1	76.2 75.5	75.9	5.3 5.2	5.3	7.5	1.9	2.0	2.1	5.6 5.6	5.6	5.5
				Bottom	9	23.7	23.7	8.6	8.6	33.1	33.2	65.5	65.5	4.6	4.6	4.6	3.0	3.0		6.1	6.1	†
				Surface	1	23.7 27.3	27.3	8.6 8.9	8.9	33.3 31.2	31.2	65.4 145.9	141.5	9.7	9.4		3.0 1.5	1.6		6.1	6.1	
M5	Sunny	Moderate	19:36	Middle	6	27.2 24.8	24.8	8.9 8.7	8.7	31.2 32.7	32.8	137.0 76.0	76.5	9.1 5.2	5.3	7.4	1.6 2.4	2.5	2.9	6.0 5.7	5.7	5.8
CIVI	Julily	wouerate	15.30			24.8 23.7		8.7 8.6		32.8 33.1		77.0 64.8		5.3 4.5		4.0	2.5 4.7	 	2.8	5.7 5.7		5.0
				Bottom	11	23.7	23.7	8.6	8.6	33.1	33.1	66.1	65.5	4.6	4.6	4.6	4.2	4.5		5.5	5.6	<u> </u>
				Surface	-		-	-	-		-	-	-	-	-	9.5		-			-	1
M6	Sunny	Moderate	19:25	Middle	2.1	27.2 27.2	27.2	8.9 8.9	8.9	31.2 31.2	31.2	142.1 140.8	141.5	9.5 9.4	9.5		1.4 1.4	1.4	1.4	7.8 8.1	8.0	8.0
	I	I		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 7 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.0 NTU</u>	<u>C1: 8.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 8.0 mg/L</u>	<u>C1: 8.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 09 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	
Econion	Condition	Condition*	Time	Бері	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.2 26.2	26.2	8.1 8.1	8.1	31.2 31.2	31.2	89.7 87.0	88.4	6.1 5.9	6.0	5.4	1.5 1.3	1.4		4.5 4.5	4.5	l
C1	Cloudy	Calm	19:37	Middle	9.5	23.9 23.8	23.9	8.1 8.1	8.1	33.6 33.6	33.6	68.0 67.0	67.5	4.7 4.7	4.7	0.4	2.4 2.2	2.3	2.7	7.6 7.3	7.5	5.1
				Bottom	18	23.3 23.3	23.3	8.1 8.1	8.1	33.1 33.1	33.1	62.7 62.7	62.7	4.4 4.4	4.4	4.4	4.6 4.3	4.5		3.3 3.1	3.2	<u> </u>
				Surface	1	26.5 26.5	26.5	8.1 8.1	8.1	30.7 30.7	30.7	90.9 88.8	89.9	6.2 6.0	6.1	5.4	3.4 3.7	3.6		5.8 5.5	5.7	ĺ
C2	Cloudy	Calm	18:44	Middle	16.5	24.6 24.6	24.6	8.1 8.1	8.1	33.6 33.6	33.6	67.8 67.3	67.6	4.7 4.6	4.7	0.1	2.2 2.3	2.3	3.4	4.0 3.8	3.9	4.8
				Bottom	32	24.6 24.6	24.6	8.1 8.1	8.1	33.6 33.6	33.6	67.2 66.7	67.0	4.6 4.6	4.6	4.6	4.2 4.4	4.3		4.8 4.8	4.8	L
				Surface	1	26.2 26.2	26.2	8.2 8.2	8.2	31.9 31.9	31.9	103.7 103.1	103.4	7.0 7.0	7.0	7.0	1.1 1.0	1.1		4.0 4.2	4.1	l
G1	Cloudy	Calm	19:07	Middle	3.5	26.2 26.1	26.2	8.2 8.2	8.2	32.0 32.0	32.0	102.7 101.7	102.2	6.9 6.9	6.9		1.2 1.0	1.1	2.1	4.9 4.7	4.8	4.6
				Bottom	6	24.4 24.4	24.4	8.1 8.1	8.1	33.9 33.9	33.9	62.6 62.6	62.6	4.3 4.3	4.3	4.3	4.2 3.8	4.0		5.1 4.9	5.0	<u> </u>
				Surface	1	26.0 26.1	26.1	8.2 8.2	8.2	32.1 32.1	32.1	97.4 97.6	97.5	6.6 6.6	6.6	6.4	1.1 1.1	1.1		5.1 5.1	5.1	l
G2	Cloudy	Calm	19:00	Middle	4	25.9 25.9	25.9	8.2 8.2	8.2	32.2 32.2	32.2	90.3 89.4	89.9	6.1 6.1	6.1		1.4 1.4	1.4	1.9	4.1 4.1	4.1	4.8
				Bottom	7	24.0 24.2	24.1	8.1 8.1	8.1	33.3 33.2	33.3	62.7 62.4	62.6	4.4 4.3	4.4	4.4	3.0 3.2	3.1		5.2 5.1	5.2	
				Surface	1	26.5 26.7	26.6	8.3 8.3	8.3	31.8 31.6	31.7	126.6 128.2	127.4	8.5 8.6	8.6	7.5	0.5 0.5	0.5		4.1 4.0	4.1	l
G3	Cloudy	Calm	19:12	Middle	3.5	26.0 26.1	26.1	8.2 8.2	8.2	32.0 31.9	32.0	91.2 92.5	91.9	6.2 6.3	6.3	7.0	1.3 1.4	1.4	1.3	4.4 4.4	4.4	4.4
				Bottom	6	25.8 25.8	25.8	8.2 8.2	8.2	32.6 32.5	32.6	82.2 85.2	83.7	5.6 5.8	5.7	5.7	1.8 1.9	1.9		4.9 4.7	4.8	<u> </u>
				Surface	1	26.4 26.6	26.5	8.2 8.3	8.3	31.2 30.9	31.1	104.8 106.8	105.8	7.1 7.2	7.2	6.8	0.8 0.7	0.8		4.8 4.7	4.8	l
G4	Cloudy	Calm	19:20	Middle	4	26.1 26.0	26.1	8.2 8.2	8.2	32.0 32.1	32.1	96.4 93.5	95.0	6.5 6.3	6.4	0.0	1.1 1.3	1.2	2.0	4.5 4.4	4.5	4.8
				Bottom	7	24.3 24.3	24.3	8.1 8.1	8.1	34.0 33.9	34.0	63.0 64.4	63.7	4.3 4.4	4.4	4.4	3.8 4.1	4.0		5.2 5.0	5.1	
				Surface	1	26.2 26.2	26.2	8.2 8.2	8.2	32.0 32.0	32.0	104.9 101.0	103.0	7.1 6.8	7.0	6.9	1.1 1.2	1.2		4.6 4.4	4.5	ĺ
M1	Cloudy	Calm	19:03	Middle	3	26.1 26.1	26.1	8.2 8.2	8.2	32.0 32.1	32.1	97.8 100.1	99.0	6.6 6.8	6.7	0.0	1.1 1.1	1.1	1.5	4.2 4.2	4.2	4.7
				Bottom	5	25.9 25.9	25.9	8.2 8.2	8.2	32.3 32.3	32.3	91.0 90.5	90.8	6.2 6.1	6.2	6.2	2.1 2.2	2.2		5.7 5.3	5.5	
				Surface	1	26.0 26.0	26.0	8.2 8.2	8.2	32.1 32.1	32.1	98.5 97.6	98.1	6.7 6.6	6.7	6.7	0.9 1.0	1.0		4.2 4.1	4.2	ĺ
M2	Cloudy	Calm	18:56	Middle	-	-	-	-	-	-	-	-	-	-	-	0.1	-	-	1.9	4.9 5.0	5.0	4.6
				Bottom	9	23.9 23.9	23.9	8.1 8.1	8.1	33.5 33.5	33.5	62.2 64.5	63.4	4.3 4.5	4.4	4.4	2.9 2.6	2.8		4.7 4.7	4.7	<u> </u>
				Surface	1	26.8 26.7	26.8	8.3 8.3	8.3	31.6 31.7	31.7	129.9 134.3	132.1	8.7 9.0	8.9	8.1	0.3 0.3	0.3		4.3 4.3	4.3	i
М3	Cloudy	Calm	19:14	Middle	3.5	26.5 26.3	26.4	8.2 8.2	8.2	31.9 32.1	32.0	108.6 108.1	108.4	7.3 7.3	7.3	5.1	0.6 0.7	0.7	0.9	4.7 4.6	4.7	4.9
				Bottom	6	26.1 25.9	26.0	8.2 8.1	8.2	32.3 32.5	32.4	88.9 81.1	85.0	6.0 5.5	5.8	5.8	1.6 1.6	1.6		5.6 5.6	5.6	<u> </u>
			-	Surface	1	26.1 26.1	26.1	8.2 8.2	8.2	32.1 32.2	32.2	100.6 97.5	99.1	6.8 6.6	6.7	6.4	1.1 1.2	1.2		4.6 4.4	4.5	ļ
M4	Cloudy	Calm	18:51	Middle	4.5	26.0 25.9	26.0	8.2 8.2	8.2	32.3 32.4	32.4	88.8 89.8	89.3	6.0 6.1	6.1		1.8 1.8	1.8	2.0	6.7 6.9	6.8	4.9
				Bottom	8	25.5 25.5	25.5	8.1 8.1	8.1	32.7 32.7	32.7	77.7 75.5	76.6	5.3 5.1	5.2	5.2	3.0 2.9	3.0		3.5 3.5	3.5	
				Surface	1	26.4 26.4	26.4	8.1 8.1	8.1	30.9 31.0	31.0	89.2 85.8	87.5	6.0 5.8	5.9	5.5	1.1 1.1	1.1		5.6 5.8	5.7	
M5	Cloudy	Calm	19:32	Middle	5.5	25.7 25.2	25.5	8.1 8.1	8.1	32.2 32.8	32.5	75.7 72.5	74.1	5.2 5.0	5.1		2.6 2.6	2.6	2.4	6.2 5.9	6.1	5.5
				Bottom	10	23.8 23.9	23.9	8.1 8.1	8.1	33.3 33.4	33.4	64.1 62.9	63.5	4.5 4.4	4.5	4.5	3.6 3.6	3.6		4.6 4.8	4.7	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-		-	-	ļ
M6	Cloudy	Calm	19:27	Middle	2.1	26.0 25.9	26.0	8.1 8.1	8.1	31.9 31.9	31.9	84.0 82.2	83.1	5.7 5.6	5.7		1.3 1.2	1.3	1.3	8.0 8.0	8.0	8.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 9 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Tumbidituin		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 5.2 NTU</u>	<u>C2: 6.0 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>				
	Stations M1-M	<u>5</u>	_				
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	7.9 mg/L				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 09 August 2017

(Mid-Flood Tide)

Location Condition Condition Time Depth (m) Depth (m) Value Average je DA*	Value	Average	DA*	
Surface 1 25.7 26.3 8.1 6.1 31.9 31.0 76.9 62.9 5.2 5.0 5.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3				DA"
C4 Cloudy Colm 12:46 Middle 9.5 24.6 24.8 8.1 9.1 33.5 23.3 67.9 69.0 4.7 4.9 3.2 3.2		4.9 4.8	4.9	
		3.6	0.0	
C1 Cloudy Calm 13:46 Middle 9.5 24.9 24.8 8.1 6.1 33.1 35.3 69.8 66.9 4.8 4.6 3.3 3.3	3.4	3.5	3.6	4.3
Bottom 18 24.1 24.0 8.1 8.1 33.2 33.4 64.3 63.6 4.5 4.5 4.5 3.7 3.7 3.7		4.4	4.3	
26.7 9.0 20.5 92.7 6.0 4.4		5.5		
Surface 1 26.8 20.6 8.0 0.0 30.3 30.4 88.0 00.4 5.9 0.0 5.2 1.0 1.1		5.4	5.5	ı
C2 Cloudy Calm 12:25 Middle 17.5 23.8 23.8 8.0 8.0 8.0 33.7 60.7 61.7 4.2 4.3 5.2 6.4 6.1 6.3	3.8	5.4 5.3	5.4	5.0
Bottom 34 23.8 23.8 8.0 8.0 33.6 33.7 63.0 62.6 4.4 4.4 4.4 4.4 4.0 4.1		4.0	4.1	i l
23.7 8.0 33.7 62.1 4.3 4.1		4.1	4.1	
Surface 1 26.7 8.3 8.3 31.9 32.0 125.3 122.5 8.4 8.2 1.8 1.8 1.8 1.8		3.5 3.5	3.5	
262 92 322 1060 72 7.7	1.5	4.3	4.0	3.9
26.3 8.2 32.2 106.1 7.2 0.9	1.5	4.3	4.3	3.9
Bottom 6 25.4 25.6 8.1 8.2 33.2 33.0 82.4 89.7 5.6 6.1 6.1 1.7 1.8 1.8		3.7 3.8	3.8	
Surface 1 26.5 26.5 8.3 8.3 32.1 32.1 119.5 119.4 8.0 8.0 1.0 0.9		3.5	3.5	
26.5 8.3 32.1 119.2 8.0 7.6 0.8		3.4	3.5	ı
G2 Cloudy Calm 13:03 Middle 4 26.2 26.2 8.2 8.2 32.5 32.4 103.9 105.7 7.0 7.1 1.0 1.0 1.0	1.3	4.0 4.0	4.0	3.7
242 80 333 652 45 20		3.6	2.5	i l
24.5 8.0 33.0 64.7 4.5 2.1		3.4	3.5	
Surface 1 26.6 26.7 8.3 8.3 8.3 32.1 32.0 116.3 119.0 7.8 8.2 8.0 0.8 0.8		2.5 2.5	2.5	
264 93 222 1113 75 7.8 00	4.5	4.3	4.0	2.0
G3 Cloudy Calm 13:19 Middle 3.5 26.5 20.5 8.3 6.3 32.2 32.2 114.9 113.1 7.7 7.6 0.9 0.9	1.5	4.2	4.3	3.8
Bottom 6 24.4 25.0 8.0 8.1 33.1 33.2 75.5 76.4 5.2 5.3 5.3 5.3 2.8 2.8 2.8		4.7 4.6	4.7	
272 83 314 1327 888 066		3.5	0.5	
Surface 1 27.2 27.2 8.3 6.3 31.4 31.4 129.3 131.0 8.6 6.7 7.8 0.6 0.6		3.5	3.5	ı
G4 Cloudy Calm 13:29 Middle 4 26.2 26.3 8.2 8.2 32.1 32.1 103.2 102.3 7.0 6.8 6.9 1.2 1.1	1.0	4.0 4.0	4.0	3.8
255 91 230 736 50 13		4.0	4.0	i l
Bottom 7 25.5 25.5 8.1 8.1 33.9 33.0 73.4 75.5 5.3 5.2 5.2 1.3 1.3		3.9	4.0	
Surface 1 26.4 26.5 8.2 8.3 8.3 32.3 112.4 113.5 7.6 7.7 7.7 1.2 1.1		4.2 4.1	4.2	
M1 Cloudy Calm 13:09 Middle 3 26.4 26.4 8.2 8.3 32.3 32.3 108.8 110.9 7.3 7.5 7.6 1.4 1.4	1.4	4.0	4.0	4.0
26.4 8.3 32.3 112.9 7.6 1.4	1.4	4.0	4.0	4.0
Bottom 5 25.9 25.8 8.2 8.2 32.9 33.0 89.2 86.6 6.0 5.7 5.9 5.9 1.5 1.6		3.6 3.7	3.7	
Surface 1 26.4 26.5 8.2 8.2 32.3 32.3 114.7 113.9 7.7 7.7 0.8 0.9		4.9	4.9	
26.5 8.2 32.3 113.1 7.6 7.8 0.9		4.8	4.9	, I
M2 Cloudy Calm 12:58 Middle 5 26.1 26.1 8.2 8.2 32.6 32.6 101.2 101.0 6.8 6.8 6.8 1.0 1.1	1.5	5.0 4.9	5.0	4.9
Bettom 0 23.8 23.0 8.0 9.0 33.8 23.7 67.2 66.0 4.7 4.7 4.7 2.7 2.5		4.9	4.9	i l
23.9 8.0 33.6 66.5 4.6 2.2		4.8	4.9	
Surface 1 26.9 26.9 8.3 8.3 31.5 31.4 120.4 117.5 119.0 8.1 8.0 0.8 0.8 0.8		3.2	3.2	
M3 Cloudy Calm 13:23 Middle 3.5 26.3 26.3 8.2 8.2 8.2 32.3 32.3 107.4 107.3 7.2 7.2 7.6 1.1 1.1	1.4	3.0	3.0	3.4
26.3 8.2 32.3 107.2 7.2 1.1	1.4	3.0	5.0	J. 4
Bottom 6 25.5 25.4 25.5 8.1 8.1 33.1 33.1 72.6 72.8 4.9 5.0 5.0 5.0 2.2 2.4		3.9 3.8	3.9	, ,
Surface 1 25.6 25.6 8.1 8.1 32.7 32.8 81.8 81.4 5.6 5.6 1.5 1.5		4.0	3.9	
25.5 8.1 32.8 81.0 5.5 5.4 1.6		3.7	3.8	}
M4 Cloudy Calm 12:35 Middle 4.5 25.1 25.2 8.1 8.1 8.1 33.3 33.2 73.7 74.0 5.0 5.1 5.1 0.9 1.0	1.2	4.5 4.5	4.5	4.5
Bottom 8 24.6 24.7 8.1 8.1 33.9 33.0 64.1 64.2 4.4 4.4 4.4 1.0 1.0		5.0	5.0	i
24.7 8.1 33.8 64.3 4.4 0.9		5.0	5.0	
Surface 1 25.6 25.6 8.1 8.1 32.2 32.2 88.1 87.5 6.0 6.0 3.2 3.3 3.3		5.6 5.5	5.6	, I
256 84 322 872 50 0.0 37	3.2	4.7	4.7	4.9
25.6 8.1 32.2 86.3 5.9 3.3	3.2	4.6	4.7	4.9
Bottom 10 25.6 25.6 8.1 8.1 32.2 32.3 71.9 71.8 4.9 4.9 4.9 4.9 2.6 2.7 2.7		4.5 4.4	4.5	, I
63		-	-	, ,
M6 Cloudy Calm 13:34 Middle 2.1 26.0 26.0 8.2 8.2 32.4 32.4 92.4 6.3 6.3 1.1 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	1.3	5.3 5.4	5.4	5.4
80tbm		- 5.4		i
DUUMI '		-	_	

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 9 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in mg/L	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C1: 4.4 NTU</u>	<u>C1: 4.8 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>				
	Stations M1-M	5					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	7.9 mg/L				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 5.2 mg/L</u>	<u>C1: 6.0 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 11 August 2017

(Mid-Ebb Tide)

Loopf	Weather	Sea	Sampling	D- 1	th (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.1	25.7	8.1	8.1	31.4	32.0	86.8	84.8	5.9	5.8		1.5	1.6		5.5	5.6	
C1	Fine	Moderate	14:38	Middle	9	25.2 24.1	23.9	8.1	8.1	32.5 32.1	32.3	82.8 72.8	71.9	5.7 5.1	5.1	5.5	2.5	2.7	2.4	4.0	4.0	4.3
				Bottom	17	23.7 23.5	23.5	8.1 8.1	8.1	32.5 32.8	32.9	70.9 69.9	70.0	5.0 4.9	4.9	4.9	2.9	2.8		4.0 3.1	3.2	
				Surface	1	23.4 26.2	26.3	8.1 8.1	8.1	33.0 31.5	31.5	70.1 88.1	88.6	4.9 6.0	6.0		2.7 0.9	0.9		3.2 5.1	5.1	
C2	Fine	Moderate	13:11	Middle	17.5	26.3 23.2	23.2	8.1 8.1	8.1	31.5 33.1	33.2	89.0 69.1	69.3	6.0 4.9	4.9	5.5	5.3	5.3	3.8	5.0 4.2	4.2	4.5
02	1 1110	modorato	10.11	Bottom	34	23.2 23.2	23.2	8.1 8.1	8.1	33.2 33.2	33.2	69.4 69.4	69.3	4.9 4.9	4.9	4.9	5.3 5.0	5.2	0.0	4.1	4.3	
				Surface	1	23.1 26.3	26.3	8.1 8.2	8.2	33.2 32.1	32.1	69.2 110.7	110.5	4.9 7.5	7.5	1.0	5.3 0.6	0.6		4.2 4.6	4.6	
G1	Fine	Moderate	13:49	Middle	4	26.3 25.0	25.1	8.2 8.1	8.1	32.1 33.2	33.2	110.2 87.5	86.7	7.4 6.0	6.0	6.8	1.2	1.2	1.1	4.5 5.3	5.3	4.4
01	Tillo	Woderate	10.40	Bottom	7	25.1 23.9	23.9	8.1 8.1	8.1	33.1 32.5	32.5	85.8 69.5	69.8	5.9 4.9	4.9	4.9	1.1 1.4	1.4		5.2 3.1	3.2	4.4
				Surface	1	23.9 26.4	26.4	8.1 8.2	8.2	32.5 32.2	32.2	70.1 110.5	110.6	4.9 7.4	7.5	4.0	1.4 0.6	0.7		3.2	3.0	
G2	Fine	Madarata	13:37	Middle	4.5	26.3 24.0	24.0	8.2 8.1	8.1	32.2 32.3	32.3	110.7 72.3	73.5	7.5 5.1	5.2	6.4	0.7 1.3	1.3	1.3	3.0 4.0	4.0	3.4
G2	rille	Moderate	13.37		8	24.0 23.5		8.1 8.1		32.2 32.8		74.6 68.0		5.2 4.8		4.0	1.3 2.0	2.0	1.3	3.9		3.4
				Bottom		23.5 26.6	23.5	8.1 8.2	8.1	32.8 31.9	32.8	68.8 118.6	68.4	4.8 8.0	4.8	4.8	1.9 0.5	<u> </u>		3.2 3.4	3.3	
62	Fin-	Madaat	40.55	Surface Middle	3.5	26.8 25.8	26.7	8.2 8.2	8.2	31.8 32.4	31.9	119.8 103.4	119.2 106.4	8.0 7.0	8.0 7.2	7.6	0.6	0.6	4.0	3.3	3.4	20
G3	Fine	Moderate	13:55			26.4 24.3	26.1	8.2 8.1	8.2	32.0 33.9	32.2	109.3 66.9		7.4 4.6		4.0	0.9 2.2	0.9	1.2	3.9 3.9	3.9	3.8
				Bottom	6	24.4 26.9	24.4	8.1 8.2	8.1	33.9 31.7	33.9	65.3 119.5	66.1	4.5 8.0	4.6	4.6	2.2 0.4	2.2		4.0 2.9	4.0	
0.4	_	.	44.40	Surface	1	26.7 25.8	26.8	8.2 8.2	8.2	32.0 32.4	31.9	116.1 102.2	117.8	7.8 6.9	7.9	7.5	0.4	0.4	4.0	2.8	2.9	0.5
G4	Fine	Moderate	14:13	Middle	4	25.9 23.8	25.9	8.2 8.0	8.2	32.3 32.6	32.4	104.2	103.2	7.1 4.4	7.0	4.5	0.8 4.1	0.9	1.9	4.0	4.0	3.9
	<u> </u>			Bottom	7	23.8	23.8	8.0	8.0	32.7	32.7	63.6	63.5	4.5 7.6	4.5	4.5	4.6	4.4		4.9	4.9	
	_		40.44	Surface	1	26.4 25.6	26.3	8.2 8.1	8.2	32.1 32.7	32.2	113.7	113.5	7.7 6.1	7.7	6.9	0.6	0.7		4.8	4.8	
M1	Fine	Moderate	13:44	Middle	3.5	25.3 23.9	25.5	8.1 8.1	8.1	33.0 32.4	32.9	85.4 70.7	87.2	5.8	6.0		1.7	1.8	1.4	4.0	4.1	4.3
	<u> </u>			Bottom	6	23.9	23.9	8.1	8.1	32.4 32.4	32.4	70.0	70.4	4.9 7.2	5.0	5.0	1.6	1.6		3.9	4.0	
		l		Surface	1	26.0 23.7	26.0	8.2 8.1	8.2	32.4 32.7	32.4	104.4 71.6	105.3	7.1 5.0	7.2	6.2	0.7	0.7		5.3	5.4	
M2	Fine	Moderate	13:30	Middle	5.5	23.7	23.7	8.1 8.1	8.1	32.6 33.1	32.7	72.5 70.1	72.1	5.1 5.0	5.1		2.0	2.2	2.7	3.9 4.6	3.9	4.7
				Bottom	10	23.2	23.2	8.1 8.2	8.1	33.1 31.5	33.1	69.6	69.9	4.9 7.5	5.0	5.0	5.3	5.3		4.7	4.7	
	_			Surface	1	26.7 26.1	26.7	8.2 8.2	8.2	31.5 32.1	31.5	114.5 104.9	113.1	7.7 7.1	7.6	7.3	0.6	0.6		5.9 5.5	5.9	
М3	Fine	Moderate	14:02	Middle	3.5	26.1 26.1 24.8	26.1	8.1 8.0	8.2	32.0 33.5	32.1	97.0 64.9	101.0	6.6	6.9		0.6 0.7 1.5	0.8	1.0	5.6 3.5	5.6	5.0
	<u> </u>			Bottom	6	24.0 24.7 25.7	24.8	8.0 8.2	8.0	33.6 32.7	33.6	63.3	64.1	4.3 6.9	4.4	4.4	1.6	1.6		3.5 3.5 4.3	3.5	
				Surface	1	25.7 25.7 24.9	25.7	8.2 8.2	8.2	32.7 32.7 33.3	32.7	99.3 87.5	100.6	6.7 6.0	6.8	6.6	0.7 0.6 1.0	0.7		4.3 4.2 3.8	4.3	
M4	Fine	Moderate	13:22	Middle	5	25.4 23.6	25.2	8.2 8.1	8.2	32.9 32.8	33.1	94.9 71.2	91.2	6.5 5.0	6.3		0.8	0.9	1.3	3.8 4.8	3.8	4.3
				Bottom	9	23.6 23.6 25.1	23.6	8.1 8.1	8.1	32.8 32.8 33.0	32.8	69.4 83.8	70.3	4.9 5.7	5.0	5.0	2.2 2.6	2.4		4.8 4.7	4.8	
				Surface	1	25.2	25.2	8.1	8.1	33.0	33.0	83.6	83.7	5.7	5.7	5.7	1.4	1.4		4.7	4.8	
M5	Fine	Moderate	14:28	Middle	5.5	25.1 25.1	25.1	8.1 8.1	8.1	33.0 33.0	33.0	83.2 82.6	82.9	5.7 5.7	5.7		1.5 1.5	1.5	1.5	4.3 4.2	4.3	4.1
				Bottom	10	23.9 23.9	23.9	8.1 8.1	8.1	32.3 32.4	32.4	70.1 69.9	70.0	4.9 4.9	4.9	4.9	1.6 1.5	1.6		3.3 3.2	3.3	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
M6	Fine	Moderate	14:20	Middle	2.1	26.3 26.3	26.3	8.2 8.2	8.2	32.3 32.3	32.3	107.2 108.0	107.6	7.2 7.3	7.3		0.6 0.6	0.6	0.6	2.8 2.9	2.9	2.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 11 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 6.2 NTU</u>	<u>C2: 6.8 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>				
	Stations M1-M	<u>5</u>					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.2 mg/L</u>	<u>C2: 6.0 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 11 August 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	an (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.7 25.7	25.7	8.1 8.1	8.1	32.2 32.1	32.2	82.4 81.4	81.9	5.6 5.5	5.6		0.7 0.8	0.8		5.3 5.3	5.3	
0.4	-		00.00		0.5	23.5	00.5	8.1		32.9	00.0	70.3	74.0	5.0		5.4	1.7	4.7		3.0		4.5
C1	Fine	Moderate	09:03	Middle	9.5	23.5	23.5	8.1	8.1	32.9	32.9	72.3	71.3	5.1	5.1		1.7	1.7	2.3	3.1	3.1	4.5
				Bottom	18	23.1	23.1	8.1 8.1	8.1	33.3 33.3	33.3	71.8 71.7	71.8	5.1 5.1	5.1	5.1	4.6 4.4	4.5		5.1 5.1	5.1	
				Cf	-	26.1	00.0	8.1	0.4	31.7	24.7	97.2	07.4	6.6	0.0		0.6	0.0		4.6	4.0	
				Surface	1	26.2	26.2	8.1	8.1	31.6	31.7	96.9	97.1	6.6	6.6	5.7	0.6	0.6		4.6	4.6	
C2	Fine	Moderate	07:27	Middle	17.5	23.5 23.6	23.6	8.1 8.1	8.1	32.8 32.8	32.8	68.7 68.8	68.8	4.8 4.8	4.8		3.1 3.0	3.1	2.7	4.7 4.6	4.7	4.6
				Bottom	34	23.4	23.5	8.1	8.1	32.9	32.9	68.4	68.4	4.8	4.8	4.8	4.5	4.5		4.4	4.4	
				Bottom	34	23.5	23.5	8.1	8.1	32.8	32.9	68.4	08.4	4.8	4.8	4.8	4.5	4.5		4.3	4.4	
				Surface	1	25.5 25.3	25.4	8.1 8.1	8.1	32.5 32.7	32.6	85.6 81.1	83.4	5.8 5.5	5.7		0.9 1.0	1.0		3.7 3.8	3.8	
64	Fine	Moderate	08:07	Middle	3.5	24.4	24.4	8.1	8.1	33.8	33.9	68.6	68.1	4.7	4.7	5.2	1.6	1.7	4.0	3.8	3.9	2.0
G1	Fine	Moderate	08:07	Middle	3.5	24.3	24.4	8.1	8.1	33.9	33.9	67.6	68.1	4.7	4.7		1.7	1.7	1.8	3.9	3.9	3.9
				Bottom	6	23.5 23.5	23.5	8.1 8.1	8.1	32.9 32.9	32.9	65.5 64.3	64.9	4.6 4.5	4.6	4.6	2.5 2.7	2.6		3.9 4.0	4.0	
				0 (,	25.5	05.5	8.1	0.4	32.3	00.4	87.5	07.0	6.0			0.9	4.0		3.7		
				Surface	1	25.5	25.5	8.1	8.1	32.4	32.4	86.4	87.0	5.9	6.0	5.3	1.0	1.0		3.7	3.7	
G2	Fine	Moderate	07:53	Middle	4	24.1 24.0	24.1	8.1 8.1	8.1	32.1 32.2	32.2	65.7 64.6	65.2	4.6 4.5	4.6		1.9 2.0	2.0	1.8	2.5	2.5	3.2
				5 "	-	23.5	00.5	8.1	0.4	32.2	00.0	66.2	25.0	4.7			2.4	0.4		3.4		
				Bottom	7	23.5	23.5	8.1	8.1	32.9	32.9	65.5	65.9	4.6	4.7	4.7	2.3	2.4		3.3	3.4	
				Surface	1	26.1 25.8	26.0	8.1 8.1	8.1	31.7 32.2	32.0	99.7 89.9	94.8	6.8 6.1	6.5		0.9 0.8	0.9		3.9 4.0	4.0	
						24.4		8.1		33.8		66.5		4.6		5.5	1.7			3.1		
G3	Fine	Moderate	08:16	Middle	3.5	24.4	24.4	8.0	8.1	33.8	33.8	64.3	65.4	4.4	4.5		1.8	1.8	2.2	3.2	3.2	4.1
				Bottom	6	23.9	23.9	8.1 8.0	8.1	32.3 32.4	32.4	62.5 63.1	62.8	4.4 4.4	4.4	4.4	3.5 4.2	3.9		5.2 5.2	5.2	
-						25.1		8.1		32.9		81.9		5.6			1.0			5.0		
				Surface	1	25.6	25.4	8.1	8.1	32.2	32.6	89.9	85.9	6.1	5.9	5.2	1.0	1.0		5.0	5.0	
G4	Fine	Moderate	08:37	Middle	4	24.0	24.1	8.1	8.1	32.3 32.1	32.2	64.3	64.1	4.5	4.5	0.2	2.1 2.1	2.1	2.4	3.3 3.3	3.3	4.0
					_	24.1 23.5		8.1 8.1		32.1		63.9 61.7		4.5 4.3			4.0			3.7		
				Bottom	7	23.5	23.5	8.1	8.1	32.9	32.9	60.4	61.1	4.3	4.3	4.3	4.1	4.1		3.6	3.7	
				Surface	1	25.3 25.4	25.4	8.1 8.1	8.1	32.7 32.6	32.7	81.8 81.3	81.6	5.6 5.5	5.6		1.4 1.4	1.4		5.0 5.1	5.1	
M1	Fine	M	00.00	Middle	_	24.3	04.5	8.1	0.4	33.9	22.0	70.3	74.5	4.9	F.0	5.3	3.2	2.5	2.4	4.2	4.0	4.7
MII	rine	Moderate	08:00	ivildale	3	24.6	24.5	8.1	8.1	33.6	33.8	72.6	71.5	5.0	5.0		3.7	3.5	3.4	4.1	4.2	4.7
				Bottom	5	23.7 23.8	23.8	8.1 8.1	8.1	32.6 32.6	32.6	63.4 63.2	63.3	4.5 4.4	4.5	4.5	5.2 5.1	5.2		4.8 4.9	4.9	
				0 (25.7	05.7	8.1	0.4	32.2	00.0	89.3	00.7	6.1			1.0			3.5	0.0	
				Surface	1	25.6	25.7	8.1	8.1	32.2	32.2	88.1	88.7	6.0	6.1	5.4	0.9	1.0		3.6	3.6	
M2	Fine	Moderate	07:45	Middle	5	23.5 23.6	23.6	8.1 8.1	8.1	32.9 32.8	32.9	66.4 66.1	66.3	4.7 4.6	4.7		2.5 2.4	2.5	2.5	3.7 3.7	3.7	3.7
				Bottom	9	23.3	23.3	8.1	8.1	33.1	33.1	65.5	65.6	4.6	4.6	4.6	4.3	3.9		3.7	3.7	
				Bollom	9	23.3	23.3	8.1	8.1	33.1	33.1	65.7	05.0	4.6	4.6	4.6	3.5	3.9		3.7	3.7	
				Surface	1	26.2 26.1	26.2	8.1 8.1	8.1	31.7 31.7	31.7	97.5 97.2	97.4	6.6 6.6	6.6		0.3	0.3		4.1 4.1	4.1	
M3	Fine	Moderate	08:23	Middle	3.5	24.4	24.4	8.0	8.0	33.9	33.9	63.0	65.3	4.3	4.5	5.6	1.6	1.8	2.4	3.9	3.9	4.4
IVIS	Fille	wouerate	00.23	wildule	3.0	24.3	24.4	8.0	0.0	33.9	33.8	67.6	00.3	4.7	4.0		1.9	1.0	2.4	3.8	3.8	4.4
				Bottom	6	23.6 23.9	23.8	8.1 8.0	8.1	32.8 32.5	32.7	66.5 65.4	66.0	4.7 4.6	4.7	4.7	5.1 5.1	5.1		5.2 5.1	5.2	
				Curfoo-	1	25.7	25.7	8.1	0.1	32.2	22.2	90.5	00.2	6.2	6.2		0.8	0.0		3.9	4.0	
				Surface	1	25.7	25.7	8.1	8.1	32.2	32.2	89.9	90.2	6.1	0.2	5.9	0.8	0.8		4.0	4.0	ļ
M4	Fine	Moderate	07:36	Middle	4.5	25.2 25.0	25.1	8.1 8.1	8.1	32.8 33.0	32.9	81.4 78.5	80.0	5.6 5.4	5.5		1.1 1.2	1.2	2.2	2.5 2.5	2.5	3.7
				D-#		23.4	00.4	8.1	8.1	33.0	33.0	67.2	00.0	4.7	4.7	4.7	4.7	4.6		4.5	4.5	
				Bottom	8	23.4	23.4	8.1	8.1	33.0	33.0	66.6	66.9	4.7	4.7	4.7	4.5	4.0		4.4	4.5	
				Surface	1	25.5 25.4	25.5	8.1 8.1	8.1	32.6 32.5	32.6	83.9 82.6	83.3	5.7 5.6	5.7		0.5 0.4	0.5		2.9 3.0	3.0	
M5	Fine	Madarata	00:54	Middle		24.1	24.1	8.1	0.1	32.0	22.1	70.9	70.4	5.0	E 0	5.4	1.1	1.1	1.4	2.9	2.0	3.3
CIVI	Fine	Moderate	08:54	Middle	5.5	24.1	24.1	8.1	8.1	32.1	32.1	69.8	70.4	4.9	5.0		1.1	1.1	1.4	2.9	2.9	3.3
				Bottom	10	23.3 23.3	23.3	8.1 8.1	8.1	33.0 33.0	33.0	68.1 68.2	68.2	4.8 4.8	4.8	4.8	2.7 2.7	2.7	1	3.8	3.9	
1				0		- 23.3		-		-		-		+.0	1		-			- 3.8		
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-		-	-	
M6	Fine	Moderate	08:44	Middle	2	25.3	25.4	8.1	8.1	32.6 32.5	32.6	84.8	85.2	5.8	5.8		1.0	1.0	1.0	5.5	5.5	5.5
				D-H		25.4		8.1		3Z.5 -		85.6		5.8	 		0.9		1	5.4		1
				Bottom		<u> </u>	-						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		

Remarks: *DA: Depth-Averag

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 11 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
		<u>C1: 5.4 NTU</u>	<u>C1: 5.9 NTU</u>				
	Station M6		_				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	1					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>				
	Stations M1-M	<u>[5</u>	<u> </u>				
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C1: 5.3 mg/L</u>	<u>C1: 5.7 mg/L</u>				
	Station M6		I				
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 August 2017

(Mid-Ebb Tide)

Least	Weather	Sea	Sampling	n	th (m)	Tempera	ture (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.1	26.1	8.2	8.2	31.4	31.4	124.1	122.1	8.4	8.3		1.8	1.8		5.7	5.7	
C1	Sunny	Calm	17:02	Middle	10	26.0	23.7	8.2 8.2	8.2	31.4 33.8	33.9	72.5	71.0	8.2 5.1	5.0	6.7	1.8	1.7	2.5	5.6	5.6	5.8
	,			Bottom	19	23.6 23.2	23.2	8.2 8.2	8.2	34.0 32.5	32.5	69.5 63.6	63.8	4.9 4.5	4.5	4.5	1.8 4.2	4.1		5.5 6.0	6.0	
				Surface	1	23.2 26.8	26.1	8.2 8.1	8.2	32.5 30.6	31.4	63.9 98.9	97.8	4.5 6.7	6.7		4.0 1.7	1.8		5.9 5.6	5.6	
C2	Sunny	Calm	15:41	Middle	17	25.4 23.3	23.3	8.2 8.2	8.2	32.1 32.3	32.3	96.6 64.1	64.2	6.6 4.5	4.6	5.7	1.9 3.9	3.8	3.2	5.5 5.1	5.1	5.8
02	Curiny	Cairi	10.41	Bottom	33	23.3 23.3	23.3	8.2 8.2	8.2	32.3 32.4	32.4	64.2 64.1	63.9	4.6 4.5	4.5	4.5	3.7	4.0	0.2	5.0 6.8	6.8	0.0
				Surface	1	23.2 26.9	26.9	8.2 8.2	8.2	32.4 31.9	32.0	63.6 129.1	129.7	4.5 8.6	8.7	4.0	4.2 1.2	1.3		6.8 5.8	5.9	
G1	Sunny	Calm	16:22	Middle	4	26.9 25.8	25.8	8.2 8.2	8.2	32.0 32.2	32.2	130.2 135.3	134.3	8.7 9.2	9.2	9.0	1.4	1.2	1.8	5.9 6.0	6.0	5.9
GI	Sumiy	Callii	10.22	Bottom	7	25.8 23.8	23.9	8.2 8.2	8.2	32.2 33.8	33.8	133.3 62.9	63.9	9.1 4.4	4.5	4.5	1.2 2.9	3.0	1.0	6.0 5.7	5.8	5.5
					1	23.9 26.3	26.4	8.2 8.2	8.2	33.8 32.3	32.3	64.9 129.4	130.7	4.5 8.7	8.8	4.5	3.0 1.3	1.4		5.8 5.0		
60	C	0-1	40:40	Surface		26.4 24.0		8.2 8.2		32.2 33.7		132.0 80.1		8.9 5.6		7.1	1.4 2.0	-	0.4	5.1 5.8	5.1	
G2	Sunny	Calm	16:12	Middle	5	24.0 23.5	24.0	8.2 8.2	8.2	33.6 32.1	33.7	72.3 62.4	76.2	5.0 4.4	5.3	4.5	2.0 3.6	2.0	2.4	5.8 5.9	5.8	5.6
		<u> </u>		Bottom	9	23.5 27.2	23.5	8.2 8.2	8.2	32.2 31.5	32.2	63.4 125.9	62.9	4.5 8.4	4.5	4.5	3.7 1.4	3.7		6.0 4.9	6.0	
				Surface	1	26.2 25.8	26.7	8.2 8.2	8.2	32.0 32.3	31.8	123.9 118.1	124.9	8.4 8.0	8.4	8.2	1.4	1.4		4.8 7.4	4.9	1
G3	Sunny	Calm	16:27	Middle	4	25.6 24.9	25.7	8.2 8.2	8.2	32.4 32.8	32.4	117.7	117.9	8.0 6.4	8.0		2.3	2.3	1.9	7.5	7.5	6.0
				Bottom	7	24.8	24.9	8.2	8.2	33.0 31.6	32.9	80.7 127.6	87.1	5.6 8.4	6.0	6.0	2.0	2.0		5.4	5.5	
				Surface	1	27.5 26.4	27.6	8.2 8.2	8.2	31.8 31.9	31.7	126.9 113.3	127.3	8.4 7.6	8.4	8.1	1.4	1.3		4.5	4.6	1
G4	Sunny	Calm	16:41	Middle	4.5	26.3	26.4	8.2 8.2	8.2	31.9 32.1	31.9	114.7 62.9	114.0	7.7 4.4	7.7		1.3	1.4	2.0	5.5	5.5	4.7
				Bottom	8	23.5	23.5	8.2	8.2	32.1	32.1	62.4	62.7	4.4	4.4	4.4	3.2	3.3		4.0	4.0	
				Surface	1	26.8 26.4	26.7	8.2 8.2	8.2	32.1 32.1	32.1	124.9 116.8	124.3	8.3 7.9	8.3	8.1	1.4	1.4		4.8	4.9	
M1	Sunny	Calm	16:18	Middle	3	26.1	26.3	8.2 8.2	8.2	32.1 32.8	32.1	117.5 98.6	117.2	7.9 6.8	7.9		1.5	1.5	1.5	6.2	6.3	5.6
				Bottom	5	25.0 26.0	25.0	8.2 8.2	8.2	32.8 32.3	32.8	102.9	100.8	7.1 8.1	7.0	7.0	1.7	1.6		5.6 5.9	5.6	
				Surface	1	25.9 23.8	26.0	8.2 8.2	8.2	32.3 33.8	32.3	118.6 77.7	118.9	8.0 5.4	8.1	6.8	1.3	1.3	1	6.0 7.6	6.0	1
M2	Sunny	Calm	16:07	Middle	5.5	23.9 23.5	23.9	8.2 8.2	8.2	33.7 32.1	33.8	76.2 63.7	77.0	5.3 4.5	5.4		1.8 4.2	1.8	2.4	7.6	7.6	5.8
				Bottom	10	23.4	23.5	8.2 8.2	8.2	32.1 32.2 31.7	32.2	60.7	62.2	4.3 8.6	4.4	4.4	4.2 4.2	4.2		3.7 4.1	3.7	
				Surface	1	27.2 26.0	27.1	8.2 8.2	8.2	31.5 32.1	31.6	129.2 113.2	128.8	8.6 7.7	8.6	8.2	1.0	1.1	1	4.1	4.1	1
М3	Sunny	Calm	16:33	Middle	4	25.9 24.5	26.0	8.2 8.2	8.2	32.3 33.3	32.2	113.2 113.3 75.1	113.3	7.7 7.7 5.2	7.7		1.2	1.2	1.7	6.9 5.2	6.9	5.4
				Bottom	7	23.9 25.9	24.2	8.2 8.2	8.2	33.7 32.3	33.5	74.0 125.0	74.6	5.1	5.2	5.2	2.8	2.8		5.2 5.2 3.9	5.2	
				Surface	1	25.9 25.8 24.4	25.9	8.2	8.2	32.4	32.4	125.0 125.3 84.4	125.2	8.5 8.5	8.5	7.2	1.3 1.3 1.7	1.3	1	3.9 3.8 6.9	3.9	1
M4	Sunny	Calm	16:01	Middle	5	24.2	24.3	8.2 8.2	8.2	33.2 33.4	33.3	84.9	84.7	5.8 5.9	5.9		1.7	1.7	2.3	7.0	7.0	5.7
				Bottom	9	23.4 23.3	23.4	8.2 8.2	8.2	32.3 32.3	32.3	62.3 64.3	63.3	4.4 4.6	4.5	4.5	3.8 3.8	3.8		6.3 6.1	6.2	
				Surface	1	26.8 26.6	26.7	8.2 8.2	8.2	31.4 31.5	31.5	132.5 131.0	131.8	8.9 8.8	8.9	7.6	1.3	1.4		3.2	3.3	1
M5	Sunny	Calm	16:53	Middle	6	24.7 26.0	25.4	8.2 8.2	8.2	33.1 32.0	32.6	90.3 92.7	91.5	6.2 6.3	6.3		2.1	2.3	2.3	4.2 4.3	4.3	4.0
				Bottom	11	23.7 23.7	23.7	8.2 8.2	8.2	33.9 33.9	33.9	66.3 66.7	66.5	4.6 4.7	4.7	4.7	3.4 3.1	3.3		4.5 4.1	4.3	
				Surface	-	-	1	-	-	-	-	-	-	-	-	8.3	-	-		-	1]
M6	Sunny	Calm	16:47	Middle	2.1	26.9 26.8	26.9	8.2 8.2	8.2	31.8 31.9	31.9	123.1 123.7	123.4	8.2 8.3	8.3		1.2 1.3	1.3	1.3	7.9 8.0	8.0	8.0
	l			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 14 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	4, M1-M5					
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 4.8 NTU</u>	<u>C2: 5.2 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Surface	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>				
	Stations M1-M	<u>5</u>	_				
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	7.9 mg/L				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 8.2 mg/L</u>	<u>C2: 8.8 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 August 2017

(Mid-Flood Tide)

1	Weather	Sea	Sampling	Б.	h ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.2	26.1	8.2	8.2	31.6	31.7	100.6	100.5	6.8	6.8		1.2	1.3		5.2	5.2	
C1	Sunny	Calm	12:18	Middle	10	25.9 23.5	23.5	8.2 8.2	8.2	31.7 32.2	32.2	100.3 70.5	69.1	6.8 5.0	4.9	5.9	1.4	1.7	2.5	5.2 6.3	6.4	5.6
01	Curry	Gaini	12.10			23.5 23.1		8.2 8.2	8.2	32.1 32.5	32.5	67.6 65.1		4.8 4.6		4.0	1.7 4.3		2.0	6.4 5.1		0.0
				Bottom	19	23.1 25.7	23.1	8.2 8.2		32.5 31.9		65.0 100.5	65.1	4.6 6.9	4.6	4.6	4.5 1.0	4.4		5.1 4.1	5.1	
				Surface	1	26.2 23.4	26.0	8.2 8.2	8.2	32.0 32.2	32.0	98.8 63.6	99.7	6.7 4.5	6.8	5.7	1.0	1.0		3.9	4.0	
C2	Sunny	Calm	10:44	Middle	17	23.7	23.6	8.2 8.2	8.2	33.9 34.0	33.1	64.7 64.3	64.2	4.5	4.5		3.8	3.8	2.6	4.4	4.4	4.4
				Bottom	33	23.6 23.7	23.7	8.2	8.2	33.9	34.0	64.7	64.5	4.5 4.5	4.5	4.5	2.9 2.9	2.9		4.8	4.8	
				Surface	1	26.2 26.0	26.1	8.2 8.2	8.2	32.0 32.1	32.1	114.1 116.3	115.2	7.7 7.9	7.8	6.1	1.4 1.6	1.5		3.6 3.6	3.6	
G1	Sunny	Calm	11:34	Middle	4	23.6 23.8	23.7	8.2 8.2	8.2	34.0 33.8	33.9	61.4 64.9	63.2	4.3 4.5	4.4		4.0 4.0	4.0	3.4	6.1 6.2	6.2	5.1
				Bottom	7	23.4 23.4	23.4	8.2 8.2	8.2	32.2 32.2	32.2	61.8 61.5	61.7	4.4 4.4	4.4	4.4	4.7 4.7	4.7		5.5 5.5	5.5	
				Surface	1	26.0 25.9	26.0	8.2 8.2	8.2	32.0 32.0	32.0	125.8 121.9	123.9	8.5 8.3	8.4	0.4	1.0 1.0	1.0		5.5 5.6	5.6	
G2	Sunny	Calm	11:23	Middle	5	23.6 23.6	23.6	8.2 8.2	8.2	34.0 34.0	34.0	63.8 59.2	61.5	4.5 4.1	4.3	6.4	2.8 3.1	3.0	3.0	5.6 5.6	5.6	5.8
				Bottom	9	23.4	23.4	8.2 8.2	8.2	32.3 32.3	32.3	61.9 61.6	61.8	4.4	4.4	4.4	5.1	5.1	1	6.1 6.0	6.1	
				Surface	1	26.2	26.3	8.1	8.2	32.0	32.0	130.7	130.4	8.8	8.8		2.0	1.9		4.7	4.7	
G3	Sunny	Calm	11:44	Middle	4	26.3 24.5	24.6	8.2 8.2	8.2	31.9 33.2	33.1	71.8	73.6	5.0	5.1	7.0	3.5	3.6	3.6	5.2	5.2	5.0
-	<u> </u>			Bottom	7	24.6	23.5	8.2 8.2	8.2	33.0 32.1	32.1	75.4 63.1	63.2	5.2 4.5	4.5	4.5	3.6 5.1	5.2		5.1 4.9	5.0	
	<u> </u>		<u> </u>	Surface	1	23.5 25.6	25.8	8.2 8.2	8.2	32.1 32.1	32.0	63.2 122.2	122.5	4.5 8.3	8.3		5.2 1.1	1.1		5.0 4.8	4.8	
G4	Sunny	Calm	12:00	Middle	4.5	26.0 23.6	23.8	8.2 8.2	8.2	31.9 34.0	33.9	122.7 66.2	65.8	8.3 4.6	4.6	6.5	1.1 2.2	2.2	2.5	4.7 4.4	4.5	4.6
0.7	Guiniy	Jaim	12.00	Bottom	8	23.9 23.4	23.5	8.2 8.2	8.2	33.7 32.2	32.2	65.3 63.4	63.2	4.5 4.5	4.5	4.5	2.2 4.2	4.3	2.0	4.5 4.3	4.4	7.0
						23.5 25.8		8.2 8.2		32.2 32.2		62.9 114.7		4.5 7.8		4.5	4.4 1.4			4.4 5.4		
				Surface	1	25.7 24.5	25.8	8.2	8.2	32.3 33.1	32.3	114.6 84.6	114.7	7.8 5.8	7.8	6.9	1.4	1.4		5.5	5.5	
M1	Sunny	Calm	11:29	Middle	3	25.1 23.5	24.8	8.2 8.2	8.2	32.6 32.1	32.9	88.6 65.4	86.6	6.1 4.6	6.0		1.7	1.8	2.0	4.8	4.9	5.3
				Bottom	5	23.5	23.5	8.2	8.2	32.1	32.1	65.7	65.6	4.6	4.6	4.6	2.7	2.8		5.6	5.6	
				Surface	1	25.4 25.3	25.4	8.2 8.2	8.2	32.3 32.3	32.3	103.3 112.6	108.0	7.1 7.7	7.4	6.0	3.3	3.3		4.9 4.8	4.9	
M2	Sunny	Calm	11:16	Middle	5.5	23.6 23.7	23.7	8.2 8.2	8.2	34.0 34.0	34.0	61.1 65.4	63.3	4.3 4.6	4.5		3.4 3.3	3.4	3.4	4.5 4.6	4.6	4.9
				Bottom	10	23.4 23.3	23.4	8.2 8.2	8.2	32.3 32.3	32.3	62.3 62.0	62.2	4.4 4.4	4.4	4.4	3.5 3.6	3.6		5.1 5.1	5.1	
				Surface	1	26.3 25.9	26.1	8.2 8.2	8.2	31.9 32.0	32.0	121.9 122.0	122.0	8.2 8.3	8.3	6.7	1.0 1.1	1.1		5.5 5.6	5.6	
М3	Sunny	Calm	11:51	Middle	4	24.5 24.5	24.5	8.2 8.2	8.2	33.2 33.1	33.2	68.9 73.9	71.4	4.8 5.1	5.0	6.7	3.7 3.8	3.8	3.1	4.4 4.3	4.4	5.2
				Bottom	7	23.5 23.7	23.6	8.2 8.2	8.2	32.2 34.0	33.1	65.1 67.1	66.1	4.6 4.7	4.7	4.7	4.4 4.3	4.4		5.6 5.6	5.6	
				Surface	1	26.2	26.1	8.2 8.2	8.2	32.0 32.0	32.0	115.1 112.2	113.7	7.8 7.6	7.7		1.5	1.5		5.7 5.6	5.7	
M4	Sunny	Calm	11:01	Middle	4.5	25.9 23.5	24.7	8.2 8.2	8.2	32.1 32.1	32.1	68.8 65.0	66.9	4.7 4.6	4.7	6.2	2.5	2.5	2.1	5.6 5.7	5.7	5.4
				Bottom	8	23.8 23.4	23.6	8.2 8.2	8.2	33.8 32.2	33.0	67.1 62.8	65.0	4.7 4.4	4.6	4.6	2.2	2.3		4.8 4.8	4.8	
				Surface	1	26.0	26.0	8.2	8.2	31.7	31.7	104.7	105.7	7.1	7.2		1.4	1.3		4.3	4.3	
M5	Sunny	Calm	12:11	Middle	6	25.9 23.8	23.9	8.2 8.2	8.2	31.7 33.8	33.7	106.7 66.1	69.8	7.3 4.6	4.9	6.1	2.2	2.1	2.7	7.6	7.6	5.1
				Bottom	11	23.9 23.4	23.4	8.2 8.2	8.2	33.6 32.3	32.3	73.4 63.9	64.2	5.1 4.5	4.6	4.6	1.9 4.7	4.8		7.5 3.4	3.5	
				Surface	-	23.4	23.4	8.2	0.2	32.3	32.3	64.4		4.6		7.0	4.8	4.0		3.5		
MC	0	0.1	40.07			26.2		8.2		31.8		125.1	400.0	8.5	-	8.6	1.1		4.0	5.1		
M6	Sunny	Calm	12:07	Middle	2.1	26.0	26.1	8.2	8.2	31.9	31.9	126.9	126.0	8.6	8.6		1.2	1.2	1.2	5.0	5.1	5.1
				Bottom	-	_	-	-	-	_	-	_	-	_	-	-	-	-			-	

emarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 14 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level						
	Stations G1-G4	4, M1-M5							
DO in mg/L	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>						
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>						
	Station M6								
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>						
	Stations G1-G4	4, M1-M5							
		<u>19.3 NTU</u>	<u>22.2 NTU</u>						
Turbidity in		or 120% of upstream control	or 130% of upstream control						
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide						
(See Note 2 and 4)		tide of the same day	of the same day						
		<u>C1: 5.3 NTU</u>	<u>C1: 5.7 NTU</u>						
	Station M6								
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>						
	Stations G1-G4	<u>1</u>							
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Surface	station's SS at the same tide of	station's SS at the same tide of the						
		the same day	same day						
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>						
	Stations M1-M	5							
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the						
(See Note 2 and 4)		the same day	same day						
		C1: 6.2 mg/L	<u>C1: 6.8 mg/L</u>						
	Stations G1-G4	4, M1-M5							
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Bottom	station's SS at the same tide of	station's SS at the same tide of the						
		the same day	same day						
		<u>C1: 6.1 mg/L</u>	<u>C1: 6.6 mg/L</u>						
	Station M6								
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>						

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 16 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling Depth (m)			Tomporataro (O)			pH Salinity ppt			DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids		(mg/L)
Location	Condition	Condition*	Time	Бері	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	urface 1	25.6 24.8	25.2	8.7 8.7	8.7	31.6 32.6	32.1	95.2 85.4	90.3	6.5 5.9	6.2	5.6	2.2 2.2	2.2		5.2 5.1	5.2	i
C1	Sunny	Calm	08:45	Middle	9.5	23.6 23.5	23.6	8.7 8.7	8.7	34.2 34.3	34.3	71.1 69.8	70.5	5.0 4.9	5.0	0.0	2.1 2.1	2.1	2.1	6.4 4.3	5.4	5.2
				Bottom	18	23.4 23.3	23.4	8.7 8.7	8.7	34.4 34.5	34.5	69.3 68.2	68.8	4.8 4.8	4.8	4.8	2.1 2.1	2.1		5.0 4.9	5.0	1 1
C2	Sunny	Calm		Surface	1	26.9 26.8	26.9	8.6 8.7	8.7	29.9 29.9	29.9	114.1 113.0	113.6	7.7 7.6	7.7		1.6	1.7		5.8 5.8	5.8	
			07:07	Middle	16.5	23.4 23.4	23.4	8.6 8.6	8.6	34.4 34.3	34.4	67.0 67.9	67.5	4.7 4.7	4.7	6.2	3.3	3.1	3.1	4.6 4.6	4.6	5.2
				Bottom	32	23.3	23.4	8.6 8.6	8.6	34.4 34.4	34.4	66.1 66.2	66.2	4.6 4.6	4.6	4.6	4.5 4.4	4.5		5.3 5.2	5.3	1
G1				Surface	1	26.3	26.3	9.0	9.0	31.9 31.9	31.9	163.5	163.9	11.0	11.1		1.5	1.5		4.5	4.5	
	Sunny	Calm	07:55	Middle	3.5	26.3 25.2	25.2	8.8	8.8	32.5	32.5	164.2 111.2	111.6	7.6	7.7	9.4	1.4	1.7	1.7	4.5 6.1	6.1	5.2
	,			Bottom	6	25.2	23.8	8.8	8.7	32.5 34.1	34.1	112.0 61.3	64.2	7.7 4.3	4.5	4.5	1.7	1.9	_	4.8	4.9	(
				Surface	1	23.8 26.0	26.1	8.7 8.9	8.9	34.0 32.0	32.0	67.0 146.9	150.0	10.0	10.2		1.9	1.4		4.9	4.8	
G2	Sunny	Calm	07:41	Middle	4.5	26.2 24.8	24.9	8.9 8.8	8.8	32.0 32.9	32.8	153.1 103.5	104.9	10.3 7.1	7.2	8.7	1.4	1.6	1.6	4.8 5.5	5.6	5.4
G2	Sunny	Callii	07.41	Bottom	8	25.0 23.6	23.6	8.8 8.7	8.7	32.7 34.2	34.2	106.2 64.9	64.1	7.3 4.5	4.5	4.5	1.7 1.7	1.7	1.0	5.6 5.9	5.9	3.4
						23.6 27.2		8.6 9.0		34.2 31.8		63.2 189.1		4.4 12.6		4.5	1.7		\vdash	5.9 4.9		
		Calm	08:04	Surface	1	27.0 24.8	27.1	9.0 8.7	9.0	31.9 33.3	31.9	184.2 82.9	186.7	12.3 5.7	12.5	9.0	1.1	1.1	_	4.9	4.9	5.0
G3	Sunny			Middle	3.5	24.6	24.7	8.7	8.7	33.5 34.2	33.4	75.4 54.5	79.2	5.2 4.4	5.5		0.9	0.9	1.5	4.9 5.3	4.9	
				Bottom	6	23.6	23.6	8.6 9.0	8.6	34.2 31.8	34.2	54.8 166.6	54.7	4.3	4.4	4.4	2.7	2.6		5.2	5.3	
G4	Sunny	Calm	08:20	Surface	1	26.8	26.6	9.0	9.0	31.6	31.7	191.4	179.0	12.8	12.0	9.1	1.3	1.3	1.8	5.3	5.3	
				Middle	4	24.4 24.5	24.5	8.7 8.7	8.7	33.4 33.3	33.4	86.6 92.8	89.7	6.0 6.4	6.2		1.2 1.5	1.4		7.2 7.2	7.2	6.1
				Bottom	7	23.6 23.6	23.6	8.6 8.6	8.6	34.2 34.2	34.2	60.4 61.0	60.7	4.2 4.3	4.3	4.3	2.6 2.6	2.6		5.8 5.9	5.9	
	Sunny	Calm	07:48	Surface	1	26.4 27.0	26.7	9.0 9.0	9.0	31.8 31.6	31.7	163.1 177.6	170.4	11.0 11.9	11.5	10.9	1.3 1.1	1 1.2		4.6 4.5	4.6	4.8
M1				Middle	3	26.4 26.0	26.2	8.9 8.9	8.9	31.9 32.2	32.1	160.7 141.5	151.1	10.8 9.6	10.2		1.3 1.5	1.4	1.8	4.2 4.3	4.3	
				Bottom	5	25.3 24.6	25.0	8.8 8.7	8.8	32.9 33.5	33.2	98.6 96.4	97.5	6.7 6.6	6.7	6.7	2.8 2.9	2.9		5.4 5.6	5.5	į ,
				Surface	1	26.4 26.1	26.3	9.0 8.9	9.0	31.8 31.9	31.9	173.1 152.3	162.7	11.7 10.3	11.0	8.4	1.1 1.2	1.2		5.1 5.2	5.2	1
M2	Sunny	Calm	07:31	Middle	5.5	24.3 24.1	24.2	8.7 8.7	8.7	33.5 33.6	33.6	85.8 78.0	81.9	5.9 5.4	5.7	0.4	1.1 1.3	1.2	2.5	5.4 5.5	5.5	5.2
				Bottom	10	23.3 23.3	23.3	8.7 8.7	8.7	34.5 34.5	34.5	62.6 63.1	62.9	4.4 4.4	4.4	4.4	5.1 5.0	5.1		5.0 4.9	5.0	1
				Surface	1	27.4 27.3	27.4	9.0 9.0	9.0	31.7 31.8	31.8	199.4 195.0	197.2	13.2 12.9	13.1		1.0 1.0	1.0		5.4 5.3	5.4	
МЗ	Sunny	Calm	08:11	Middle	3.5	24.7 24.8	24.8	8.7 8.7	8.7	33.4 33.3	33.4	81.5 85.6	83.6	5.6 5.9	5.8	9.5	0.9	0.9	1.6	5.8 5.9	5.9	5.7
				Bottom	6	23.7	23.8	8.6 8.6	8.6	34.1 34.1	34.1	48.0 45.6	46.8	4.3 4.4	4.4	4.4	3.1 2.9	3.0		5.6 5.7	5.7	
				Surface	1	27.0 27.0	27.0	9.0 9.0	9.0	31.7 31.7	31.7	190.7 188.0	189.4	12.7 12.5	12.6		0.8	0.8		6.0 5.8	5.9	
M4	Sunny	Calm	07:20	Middle	4.5	25.0 24.7	24.9	8.8 8.8	8.8	33.2 33.4	33.3	105.9 97.8	101.9	7.3 6.7	7.0	9.8	1.4 1.3	1.4	1.3	5.0 4.9	5.0	5.2
				Bottom	8	23.7	23.7	8.7 8.7	8.7	34.1 34.2	34.2	71.7 71.1	71.4	5.0	5.0	5.0	1.7	1.8	1	4.8 4.7	4.8	į
				Surface	1	25.7	25.7	8.8	8.8	31.7	31.7	113.6	113.9	7.8	7.8		1.6	1.6		4.2	4.3	
M5	Sunny	Calm	08:35	Middle	5.5	25.7 24.4	24.6	8.8	8.7	31.7	33.0	83.3	87.7	7.8 5.8	6.1	7.0	1.5	2.0	2.6	4.3	4.1	4.7
	,	-		Bottom	10	24.8	23.4	8.7 8.7	8.7	32.7 34.4	34.4	92.0 61.3	61.7	6.3 4.3	4.3	4.3	2.0 4.1	4.1		5.7	5.8	(
			08:29	Surface	-	23.4	-	8.7	_	34.4	_	62.0	_	4.3	-	11.4	4.0	-		5.8		==
M6	Sunny	Calm		Middle	2.1	26.3	26.3	9.0	9.0	31.9	31.9	168.7	168.8	11.4	11.4		1.9	1.9	1.9	5.8	5.8	5.8
IVIO						26.3	20.3	9.0	5.0	31.9	31.8	168.8	100.0	11.4			1.9	1.8	1.8	5.7	J.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 16 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4, M1-M5											
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L									
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Tumbidity in		or 120% of upstream control	or 130% of upstream control									
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide									
(See Note 2 and 4)		tide of the same day	of the same day									
,		<u>C2: 5.4 NTU</u>	<u>C2: 5.9NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4											
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Surface	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>									
	Stations M1-M	<u>5</u>	<u> </u>									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the									
(See Note 2 and 4)		the same day	same day									
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>									
	Stations G1-G4	4, M1-M5	I									
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	station's SS at the same tide of	station's SS at the same tide of the									
		the same day	same day									
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>									
	Station M6		T									
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 16 August 2017

(Mid-Flood Tide)

	Location	Weather	Sea	Sampling	ng Depth (m)		Temperature (°C)		pН		Salinity ppt		DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	Turbidity(NTU)			Suspe	(mg/L)	
Color Colo	Location	Condition	Condition**	Time	Бері	ui (iii <i>)</i>		Average		Average		Average		Average		Average	DA*		Average	DA*		Average	DA*
Column Surry Colu					Surface	1		26.6		9.1		31.8		202.9		13.7			1.5			5.4	
Camp Camp	0.4			45.07		40		00.5		0.7		04.5		74.0			9.5			0.5			
Sumple Color Col	C1	Sunny	Calm	15:07	Middle	10	23.5	23.5	8.7	8.7	01.0	34.5	76.7	74.6	5.4	5.3		1.7	1.7	2.5	5.0	5.0	5.2
C2 Surry Caim 13.34 Modes 1 1 263 23 28 3 6 8 7 8 9 8 20 8 9 8 20 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Bottom	19		23.3		8.7		34.6		69.6		4.9	4.9		4.3			5.3	
Color Colo					0.1		20.0	00.0	0.1		01.0	00.0	70.0	100.7	1.0	40.0		1.0		\vdash	U.L	4.0	
Column C					Surrace	1	26.3	26.3	9.0	8.9	32.0	32.0	181.4	180.7	12.2	12.2	8.6	1.4	1.4		3.9	4.0	
Martin M	C2	Sunny	Calm	13:34	Middle	17		23.5		8.6		34.4		69.8		4.9			3.3	3.0		5.3	4.5
Sumy Calm Late Sumy					Dattom	22		22.2		0.6		24.5		60.2		4.0	4.0		4.4	1		4.2	
Sumy Cam					Bottom	33		23.3		8.0		34.5		08.3		4.8	4.8		4.4		4.3	4.3	
Survey Caim Models Survey Caim Models Survey Surve					Surface	1		26.5		9.1		32.1		195.0		13.1			1.4			5.2	
Mathematical Registration Mathematical Registration	04	0	0-1	44.40	NAC-JUL-	2.5		04.0		0.0		20.0		400.0		7.4	10.1		0.0	0.5		0.5	
	G1	Sunny	Calm	14:18	Middle	3.5		24.9		8.8		33.3		102.6		7.1			2.2	2.5		6.5	5.3
Sumy Calm 14.02 Sumy Calm 14.02 Suffice 1					Bottom	6		23.6		8.7		34.3		69.9		4.9	4.9		3.9			4.3	
Surry Calm 14:00 Model 6.5 23.5					0.6			00.7				20.0		407.7		40.0			4.0	+		4.0	
Calm Calm					Surrace	1	26.7	26.7	9.1	9.1	32.0	32.0	196.1	197.7	13.1	13.3	9.2	1.5	1.6		4.9	4.9	
	G2	Sunny	Calm	14:02	Middle	5.5		23.5		8.7		34.3		73.1		5.1			1.8	2.8		5.7	5.1
Sum Cam					- ·	40		00.4				04.5		04.4		4.5			4.0	1		4.7	
Sumy Calm 14-26 Mode 3.5 2.39 2.29 8.7 8.7 3.40 3.40 8.6 6.8 3.40 3.40 8.6 6.8 3.40 3.40 8.6 6.8 3.40 3.40 8.6 6.8 3.40 3.40 8.6 6.8 3.40 3.40 8.6 6.8 3.40 3.40 8.6 3.40 3.40 8.6 3.40 3.					Bottom	10	23.4	23.4	8.6	8.6	34.5	34.5	65.8	64.1		4.5	4.5	5.0	4.9		4.7	4.7	
G3			Calm	14:26	Surface	1		26.3		9.0		32.3		174.4		11.8			1.8	2.7		3.2	5.0
Mode Notice Notice Society		_																					
Section Californ	G3	Sunny			Middle	3.5	23.9	23.9	8.7	8.7	33.9	34.0	71.7	69.7	5.0	4.9		2.1	2.2		6.8	6.8	
Main Summy Calm 14:31 Surface 1 26:4 26:4 26:5					Bottom	6		23.6		8.6		34.3		59.3		4.4			4.1			5.0	
Sumy Calm 14:39 Modele 1 26.3 26.4 9.1 9.1 32.2 32.2 209.3 271.6 14.1 14.3 9.7 1.8 18. 5.1 5.1 4.9	-		Calm	14:39			20.0		0.0		0 1.L		00.0							2.9	1.0		4.9
G4 Sunny Caim 14:39 Model 4 23.8 23.8 8.7 8.7 34.0 34.1 71.5 71.6 5.0 5.0 5.0 2.0 2.1 2.9 5.1 5.1 4.9 6.0 6.0 7 2.3 5.2 2.5 6.6 8.7 34.8 34.4 34.4 62.4 66.4 4.4 4.7 4.7 5.0 4.9 4.5 4.5 4.6 6.6 4.4 4.4 4.7 5.0 4.9 4.5 4.5 4.6 6.6 4.4 4.4 4.7 5.0 4.9 4.5 4.5 4.5 4.6 4.6 4.6 4.4 4.7 5.0 4.9 4.5 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	G4				Surface	1		26.4		9.1		32.2		211.6		14.3			1.8			5.1	
Mathematical Registration Mathematical Registration		Sunny			Middle	4		23.8		8.7		34.1		71.6		5.0	0.7		2.1			5.1	
M1 Sumy Calm 14:11 Sumy Calm 14:14 Sumy Calm 14:15 Sumy Calm 14:16 Sumy Calm 1						_																	
M1 Sunny Calm					Bottom	7		23.5		8.7		34.4		66.4		4.7	4./		4.9			4.6	
M1 Sunny Calm 14:11 Middle 3 252 252 8.8 8.8 331 332 111.5 112.3 7.6 7.7 7		Sunny	Calm	14:11	Surface	1		27.2		9.1		32.0		192.3		12.8	10.3		2.4	4.7		5.8	5.6
Miles Samp Calm Miles S 25.2 23.2 8.8 8.8 6.8 33.1 13.0 11.2 7.7 7.7 7.7 6.9 7.3 7.5 5.8 5					NA: Julia	2		05.0		0.0		22.0		440.0		7.7			7.0			5.0	
Maximum Maxi	IVII				ivildale	3	25.2	25.2	8.8	8.8	33.1	33.2	113.0	112.3	7.7	1.1		6.9	7.3		5.8	5.8	
M2 Sunny Calm 13:55					Bottom	5		23.5		8.7		34.3		66.1		4.6			4.3			5.3	
M2 Sunny Calm					06	4		00.0		0.0		20.0		407.0		40.0			4.0			4.0	
Main Main					Surface	- 1		20.3		9.0		32.0	196.4	197.0	13.2	13.3	9.3		1.0	1		4.0	
Bottom 10 23.4 23.4 23.6 8.6 8.6 34.5 34.5 65.6 65.5 4.6 4.6 4.6 5.1 5.2 5.2 5.0 5.0 5.0 5.4	M2	Sunny	Calm	13:55	Middle	5.5		23.6		8.7		34.3		73.8		5.2			1.7	2.8		4.1	4.7
M3 Sunny Calm Yes Sunny Calm					D-#	40		00.4		0.0		24.5		05.5		4.0	4.0		5.0	1		F.4	
M3 Sunny Calm Middle 3.5 23.8 24.5 8.6 8.7 8.7 29.2 31.7 65.9 64.5 5.3 5.3 2.1					Bottom	10		23.4		8.0		34.5		05.5	•	4.6	4.6		5.2			5.4	
M3 Sunny Calm					Surface	1		25.7		8.9		30.2		148.5		10.2	1		2.9			5.3	
M3 Surny Caim 14.32 Middle 3.5 25.1 24.5 8.7 8.7 29.2 31.7 63.1 64.5 5.2 5.3 5.3 2.1 2.1 3.2 5.3 5.3 5.3 Bottom 6 23.5 24.5 8.6 8.6 34.3 33.5 56.2 57.3 56.8 4.3 4.3 4.3 4.6 4.6 4.6 4.6 4.3 4.3 4.3 M4 Sunny Caim 13.44 Middle 4.5 25.0 25.0 8.8 8.8 33.0 32.0 192.3 191.8 12.9 12.9 Bottom 8 23.8 23.9 23.9 8.7 8.7 34.1 34.0 34.1 31.5 5.7 5.7 5.7 5.7 2.5 2.4 M5 Sunny Caim 14.56 Middle 6 23.7 27.2 27.1 9.1 9.1 31.8 31.7 229.2 220.3 224.8 15.3 14.7 15.0 M6 Sunny Caim 14.48 Middle 2.1 23.3 23.3 8.7 8.7 34.1 34.5 34.	140	Suppor	Colm	14.22	Middle	3 =		24 5		9.7		24.7		64 5		5.9	7.8		2.4	2.2		5.9	5.0
M4 Sunny Calm 14:56 Middle 2.1 2.33 Surface 1.23.3 2.3.3 8.7 8.7 34.1 34.5 34	IVIO	Suriny	Callii	14.32	ivildule	3.3		24.0		0.1		31.7		04.0		0.0			2.1	3.2		0.0	5.0
M4 Sunny Calm 13:44 Sunny Calm 13:44 Sunny Calm 14:48 Sun					Bottom	6		24.5		8.6		33.5		56.8		4.3	4.3		4.6			4.3	
Md Sunny Calm Sunny Calm					Surface	4		26.5		0.0		32.0		101.0		12.0			1.5	<u> </u>		3.6	
M4 Sunny Calm 13:44 Middle 4.5 25.0 25.0 8.8 8.8 8.8 33.0 33.1 127.9 125.6 8.5 8.7 2.0 2.0 2.0 2.0 5.3 5.3 4.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8					Surrace		26.4	20.5		9.0		32.0		191.8	12.9	12.9	10.8		1.5			3.0	
Bottom 8 23.8 23.9 8.7 8.7 34.1 34.1 81.5 5.7 5.7 5.7 5.7 5.7 2.5 2.4 5.2 5.2	M4	Sunny	Calm	13:44	Middle	4.5		25.0		8.8		33.1		125.6		8.7			2.0	2.0		5.3	4.7
M6 Sunny Calm 14:48 Sunder Calm 14:48 Sunder Calm 14:48 Middle 2.1 25.0 25.1 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9					Dotton-			22.0		0.7		24.1		01.5		E 7	E 7		2.4	1		E 2	
M6 Sunny Calm					Bottom	8	23.9	23.9	8.7	σ./	34.0	34.1	81.5	σ1.5	5.7	5./	5.7	2.3	2.4	<u> </u>	5.1	5.2	
M6 Sunny Calm 14:56 Middle 6 23.7 23.8 8.7 8.7 34.1 34.0 34.1 68.2 71.4 4.8 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 5.4 5.4 5.2 5.0 10.0 2.8 2.7 2.8 2.8 2.8 2.7 2.8 2.8 2.7 2.8 2					Surface	1		27.1		9.1		31.7		224.8		15.0			1.3			5.6	
M6 Sunny Calm 14:48 Middle 2.1 25.0 25.1 8.9 8.9 32.8 32.7 133.9 143.5 9.2 9.9 9.9 16.6 1.6 1.6 5.5 5.4 5.5 5.5 5.5	145	C		14:50	Michalla	_		22.0		0.7		24.4		74.4		E ^	10.0		2.7			E 4	E 0
M6 Sunny Calm 14:48 Middle 2.1 25.0 25.1 8.9 8.9 8.9 32.8 32.7 133.9 143.5 9.2 10.5 9.9 9.9 16.6 1.6 1.6 5.5 5.4 5.5 5.5	IVI5	Sunny	caim	14:56	iviidale	ь	23.8	∠3.8	8.7	ő./	34.0	34.1	74.5	/1.4	5.2	5.0	_	2.5	2.1	2.8	5.3	5.4	5.2
M6 Sunny Calm 14:48 Surface - 1					Bottom	11		23.3		8.7		34.5		63.3		4.4			4.3			4.6	
M6 Sunny Calm 14:48 Middle 2.1 25.0 25.1 8.9 8.9 32.8 32.7 133.9 143.5 9.2 10.5 9.9 1.6 1.6 1.6 5.5 5.4 5.5 5.5	-	1			Cont		- 23.3		0./	1	J4.5 -	1	- 03.5	1	4.4	1	_	4.2	1	1	4.0		
M6 Sunny Calm 14:48 Middle 2.1 25.0 25.1 8.9 8.9 32.8 32.7 133.9 143.5 9.2 9.9 1.6 1.6 1.6 5.5 5.5 5.5					зипасе	-	-	-	-	-	-	-	-	-	-	_	9.9	-	-]	-	-	
	M6	Sunny	Calm	14:48	Middle	2.1		25.1		8.9		32.7		143.5		9.9	1		1.6	1.6		5.5	5.5
Bouom					D-#						32.0	-		1	10.5	 		1.5	-	1			
					Bottom			_			<u> </u>			<u> </u>	<u> </u>			<u> </u>		<u> </u>		-	

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 16 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.2 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.5 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C1: 6.5 mg/L	<u>C1: 7.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 18 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н	Salin	ity ppt		ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	
Location	Condition	Condition*	Time	Борг	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.7 25.7	25.7	8.8 8.8	8.8	31.7 31.5	31.6	101.7 101.3	101.5	6.9 6.9	6.9	7.0	2.2 2.1	2.2		4.4 4.2	4.3	l
C1	Sunny	Calm	10:53	Middle	9.5	23.5 23.9	23.7	8.7 8.7	8.7	33.4 33.9	33.7	99.3 101.6	100.5	7.0 7.1	7.1	7.0	3.0 3.2	3.1	3.0	4.0 4.0	4.0	4.3
				Bottom	18	23.4 23.5	23.5	8.7 8.7	8.7	33.5 33.4	33.5	66.1 69.7	67.9	4.6 4.9	4.8	4.8	3.9 3.3	3.6		4.5 4.4	4.5	
				Surface	1	26.3 26.1	26.2	8.7 8.8	8.8	30.9 31.2	31.1	113.3 111.0	112.2	7.7 7.5	7.6	7.6	1.6 1.6	1.6		4.2 4.2	4.2	
C2	Sunny	Calm	09:09	Middle	16.5	23.5 23.5	23.5	8.6 8.6	8.6	33.4 33.4	33.4	109.5 106.8	108.2	7.7 7.5	7.6	7.0	4.3 4.3	4.3	3.9	3.9 4.0	4.0	4.3
				Bottom	32	23.4 23.4	23.4	8.6 8.6	8.6	33.5 33.5	33.5	66.8 66.1	66.5	4.7 4.6	4.7	4.7	5.9 5.6	5.8		4.7 4.7	4.7	
				Surface	1	26.3 26.6	26.5	9.0 9.0	9.0	32.0 31.9	32.0	81.5 98.3	89.9	5.5 6.6	6.1	9.3	0.9	0.9		3.8 3.7	3.8	ļ
G1	Sunny	Calm	09:57	Middle	3.5	25.8 25.3	25.6	9.0 8.9	9.0	32.3 32.7	32.5	179.4 183.8	181.6	12.2 12.6	12.4		1.0 1.0	1.0	1.1	3.9 3.9	3.9	3.3
				Bottom	6	24.4 24.4	24.4	8.7 8.7	8.7	33.5 33.6	33.6	157.6 142.2	149.9	10.9 9.8	10.4	10.4	1.4 1.3	1.4		2.1	2.2	
				Surface	1	26.3 26.2	26.3	9.0 9.0	9.0	31.9 31.9	31.9	68.8 61.6	65.2	4.6 4.2	4.4	8.1	0.8 0.7	0.8		1.5 1.5	1.5	ļ
G2	Sunny	Calm	09:41	Middle	5.5	24.4 24.4	24.4	8.7 8.7	8.7	33.5 33.6	33.6	177.0 165.1	171.1	12.2 11.4	11.8		1.4 1.3	1.4	2.6	3.0 2.8	2.9	3.0
				Bottom	10	23.4 23.4	23.4	8.6 8.6	8.6	33.5 33.5	33.5	89.9 86.8	88.4	6.3 6.1	6.2	6.2	5.7 5.6	5.7		4.5 4.4	4.5	
				Surface	1	26.2 26.2	26.2	9.0 9.0	9.0	32.0 31.9	32.0	92.4 95.1	93.8	6.2 6.4	6.3	8.5	0.6 0.6	0.6		2.3	2.4	ļ
G3	Sunny	Calm	10:07	Middle	3.5	25.2 25.5	25.4	8.8 8.8	8.8	32.8 32.5	32.7	158.3 156.2	157.3	10.8 10.6	10.7		0.9 0.8	0.9	1.3	2.4	2.4	2.7
				Bottom	6	23.8 23.8	23.8	8.6 8.6	8.6	33.2 33.1	33.2	119.0 128.6	123.8	8.3 9.0	8.7	8.7	2.4 2.5	2.5		3.3 3.4	3.4	
				Surface	1	26.1 26.2	26.2	8.9 8.9	8.9	32.1 32.1	32.1	89.0 94.1	91.6	6.0 6.4	6.2	7.9	1.2	1.3		3.5 3.6	3.6	ļ
G4	Sunny	Calm	10:26	Middle	4	25.4 25.7	25.6	8.9 8.9	8.9	32.5 32.3	32.4	147.4 133.8	140.6	10.1 9.1	9.6		1.2 1.2	1.2	1.3	4.6 4.6	4.6	4.0
				Bottom	7	24.0 24.4	24.2	8.6 8.7	8.7	33.9 33.6	33.8	128.2 136.6	132.4	8.9 9.4	9.2	9.2	1.3 1.2	1.3		3.8 3.8	3.8	
				Surface	1	26.1 26.1	26.1	8.9 8.9	8.9	32.0 32.0	32.0	91.0 95.0	93.0	6.2 6.4	6.3	8.2	0.6 0.6	0.6		2.2	2.2	ļ
M1	Sunny	Calm	09:49	Middle	3	25.8 25.9 24.9	25.9	8.9 8.9 8.7	8.9	32.3 32.2 33.2	32.3	146.8 148.3	147.6	10.0 10.1 9.4	10.1		0.7 0.7	0.7	0.9	1.8 1.8 4.5	1.8	2.8
				Bottom	5	24.9 24.4 25.8	24.7	8.7 8.9	8.7	33.6 32.3	33.4	136.6 139.4 85.1	138.0	9.6 5.8	9.5	9.5	1.3 1.2 1.1	1.3		4.5 4.5	4.5	
				Surface	1	25.8 23.8	25.8	8.9 8.7	8.9	32.1 33.1	32.2	85.0 146.1	85.1	5.8 10.2	5.8	8.0	1.1	1.1		4.4 2.9	4.4	ļ
M2	Sunny	Calm	09:32	Middle	6	23.8 23.9 23.4	23.9	8.7 8.6	8.7	33.0 33.5	33.1	146.1 146.2 71.1	146.2	10.2 10.2 5.0	10.2		1.4	1.5	1.6	2.9 2.9 4.3	2.9	3.9
				Bottom	11	23.5	23.5	8.7	8.7	33.5	33.5	71.1	71.6	5.0	5.1	5.1	2.2	2.1		4.4	4.4	
				Surface	-		-	-	-		-	170.6	-		-	11.3	-	-		2.2	2.2	ł
М3	Sunny	Calm	-	Middle	3.5	25.3 25.2	25.3	8.9 8.8	8.9	32.7 32.8	32.8	170.6 158.7	164.7	11.6 10.9	11.3		0.9 1.0	1.0	1.2	4.8 4.9	4.9	3.3
				Bottom	6	24.2 24.7	24.5	8.6 8.7	8.7	33.8 33.3	33.6	126.5 122.2	124.4	8.8 8.4	8.6	8.6	1.4 1.2	1.3		2.7 2.7	2.7	
				Surface	1	25.3 25.2	25.3	8.8	8.8	32.5 32.4	32.5	66.6 80.2	73.4	4.6 5.5	5.1	6.5	1.9 1.9 1.4	1.9		3.9	3.9	}
M4	Sunny	Calm	09:22	Middle	5	24.2 24.6 24.1	24.4	8.7 8.8 8.7	8.8	33.8 33.3 33.8	33.6	116.5 109.0	112.8	8.1 7.5 6.1	7.8		1.4 1.4 4.3	1.4	2.6	3.1 3.2 4.4	3.2	3.8
				Bottom	9	24.2	24.2	8.7	8.7	33.8 33.7 32.2	33.8	88.1 88.1	88.1	6.1	6.1	6.1	4.3 4.7 2.1	4.5		4.4 4.4 3.3	4.4	
				Surface	1	25.5 25.6	25.6	8.8 8.8 8.8	8.8	32.2 32.1 32.2	32.2	98.3 89.0 106.9	93.7	6.7 6.1	6.4	6.9	2.1 2.0 1.9	2.1		3.3 3.4 5.4	3.4	}
M5	Sunny	Calm	10:42	Middle	5.5	25.4 25.4 24.6	25.4	8.8 8.8 8.7	8.8	32.2 32.2 33.1	32.2	106.9 108.8 103.8	107.9	7.3 7.4 7.2	7.4		1.9 1.9 6.0	1.9	3.2	5.4 5.5 2.6	5.5	3.8
				Bottom	10	25.3	25.0	8.8	8.8	32.3	32.7	103.8	104.2	7.2	7.2	7.2	5.3	5.7		2.6	2.6	
				Surface	-	26.0	-	9.0	-	32.2	-	79.2	-	5.4	-	5.6	1.1	-		2.6	-	}
M6	Sunny	Calm	10:36	Middle	2.1	25.9	26.0	9.0	9.0	32.3	32.3	83.4	81.3	5.4	5.6		1.0	1.1	1.1	2.6	2.6	2.6
				Bottom	-		-		-		-		-		-	-		-			-	<u> </u>

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 18 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.0 NTU</u>	<u>C2: 7.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.0 mg/L</u>	<u>C2: 5.5 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.0 mg/L</u>	<u>C2: 5.5 mg/L</u>
	Stations G1-G4	4, M1-M5	_
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>
	Station M6		I
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 18 August 2017

(Mid-Flood Tide)

Mathematical Control Mathematical Control	Location	Weather	Sea	Sampling	Dont	th (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
C1 Burly Call 1636 Marks 6 25 37 67 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	Location	Condition	Condition**	Time	Бері	ui (iii <i>)</i>		Average		Average		Average		Average		Average	DA*		Average	DA*		Average	DA*
Column C					Surface	1		26.6		9.0		31.7		68.9		4.6			1.9			4.8	
County C	0.4			40.00		0.5		00.7		0.7		00.0		400.4		44.5	8.1		0.4			0.4	
Series 1	C1	Sunny	Calm	16:36	Middle	9.5	23.6	23.7	8.7	8.7	33.3	33.2	159.6	163.1	11.2	11.5		2.3	2.4	3.4	3.4	3.4	4.4
C2 Sumy Calm 10c4 Mode 1 273 271 6.8 6.9 223 325 604 612 45 64 66 67 77 13 13 13 14 44 43 44 45 45 45 45 4					Bottom	18		23.3		8.7		33.6		74.5		5.3	5.3		6.0			4.9	
Color					0.1		20.0	07.4	0.1		00.0	00.5	70.0	00.0	U.L	4.0		0.1	4.0		1.0		
Column C					Surrace	1	27.3	27.1	8.9	8.9	32.5	32.5	69.0	69.2	4.6	4.6	7.7	1.2	1.3		4.3	4.4	ı
Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm 1944 Mode Survey Calm Survey C	C2	Sunny	Calm	15:04	Middle	16.5		24.8		8.8		33.1		157.6		10.8			2.4	3.3		3.5	3.8
Surry Cam 15-46 Surry Cam 15-46 Surry Cam 15-46 Surry Cam 15-46 Surry Cam 15-46 Surry Cam Surry Surry Cam Surry Cam Surry Surr					Dattom	22		22.5		0.6		22.4		102.4		7.0	7.0		6.2			2.6	i l
Surry Calm Surry Calm Surry Calm					Bottom	32		23.5		8.0		33.4		103.4		1.3	1.3		0.2			3.0	
Surry Calm 1546 Model 3.5 \$\frac{24.5}{2.5} \frac{2.5}{2.5}					Surface	1		26.5		9.0		32.3		69.0		4.6			2.3			4.4	
Portion Port	04	0	0-1	45:40	NAC JULI	2.5		04.0		0.0		22.0		450.7		40.0	7.6		4.5	2.0		2.0	4.0
Surrey Calm 15:54 Surface 1 28:6 28:5 8:4 8:8 30:3 33:2 63:9 68:8 44 45 15 17 29 29 29 20 20 20 20 20	G1	Sunny	Calm	15:48	Middle	3.5		24.3		8.8		33.8		152.7		10.6			4.5	3.2		3.0	4.0
Sumpy Caim 1536 Suffect 1 266 265 89 89 322 322 667 668 4.5 4.5 7.6 1.6 1.7 2.9					Bottom	6		23.7		8.7		33.2		82.6		5.8	5.8		2.7			4.5	
Surrey Calm 1534 Mode 6 233 23.5 8.7 6.8 8.9 6.9 32.2 8.7 8.8 6.9 8.7 33.3 155.5 150.5					0.1			00.5				20.0		05.0		1.5						0.0	
Summy Calm 15:4 Mode 5					Surrace	1	26.3	26.5	8.9	8.9	32.2	32.2	64.7	65.8	4.4	4.5	7.6	1.8	1.7		2.9	2.9	ı
Surry Calm Surr	G2	Sunny	Calm	15:34	Middle	5		23.9		8.7		33.1		152.0		10.7			3.3	3.8		3.9	3.7
Surray Calm 15.59 Surface 1 26.56 26.4 8.9					·			00.4				00.5		00.0		4.0	4.0		0.4	1		4.0	í l
Sumy Calm 158 Mode 1 260 261 89 90 322 324 681 1882 172 46.8 4.9 4.9 4.5 4.4 4.4 4.4 4.4 4.5					Bottom	9	23.4	23.4	8.6	8.6	33.5	33.5	68.5	69.3	4.8	4.9	4.9	6.5	6.4		4.2	4.2	
G3					Surface	1		26.4		9.0		32.1		72.7		4.9			3.3			5.2	
Surry Calm 1586 Mottle S.5 250 2.2. 8.8 6.5 3.30 3.2. 148.2 10.2. 10.9 5.3 4.9		_															7.9		l	٠			
Summy Calim 16-13 Sufface 1 25-5 25-8 8.9 8.9 3.2 3.2 3.2 4.0 4.0 4.5 4.2 4.4 4.5	G3	Sunny	Calm	15:58	Middle	3.5	25.0	25.2	8.8	8.8	33.0	32.9	148.2	158.2	10.2	10.9		5.3	4.9	4.9	4.3	4.4	4.2
G4 Sunny Cam 16:13 Surface 1 258 259 69 69 89 89 322 323 662 66.7 64.5 4.5 4.4 4.5 1.9 1.8 1.9 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0					Bottom	6		23.7		8.7		33.2		109.6		7.7	7.7		6.5			3.1	
Surney Calm 16:13 Modele 4.5 2.59 8.9 8.9 3.0	-						20.7		0.0		00.L				7.0	<u> </u>					0.0		$\overline{}$
G4 Sunny Calm 1613 Middle 4.5 235 237 8.7 8.7 8.7 33.5 33.2 13.6 33.8 13.3 3.7 9.7 9.7 2.5 3.6 3.3 3.3 3.1 3.3 3.3 3.4					Surface	1	25.9	25.9	8.9	8.9	32.2	32.3	66.7	64.5	4.5	4.4	7 1	1.8	1.9		2.9	3.0	ı
Mathematical Region Bottom	G4	Sunny	Calm	16:13	Middle	4.5		23.7		8.7		33.2		138.3		9.7			2.5	3.6		3.1	3.3
M1 Sumy Calm 1540 Su																			-	1			1
M1 Sunny Calm 15:40 Middle 3 24.2 26.3 8.9 8.9 32.4					Bottom	8		23.5	8.7	8.7		33.5		68.7		4.9	4.9		6.5			3.8	
M1 Sunny Calm 1540 Middle 3 243 243 8.7 8.7 33.6 33.7 147.4 145.9 10.0 10.1 2 8.7 8.8 3.3 5.9 3.2 3.2 3.5					Surface	1		26.3		8.9		32.4		63.9		4.3			3.2			3.8	
Mile Suny Calm 10.40 Mile S 24.3 24.3 8.7 8.7 8.7 8.7 8.8 33.4 33.4 75.2 75.3 5.3 5.3 5.3 5.3 6.3 6.3 6.3 6.3 3.6		0	0-1	45:40	NA: Julia	2		04.0		0.7		20.7		445.0		40.4	7.2		0.0			2.0	2.5
Max Surface	IVII	Sunny	Caim	15:40	ivildale	3	24.3	24.3	8.7	8.7	33.6	33.7	144.4	145.9	10.0	10.1		7.8	8.3	5.9	3.2	3.2	3.5
M2 Sunny Calm					Bottom	5		23.7		8.6		33.4		75.3		5.3	5.3		6.3			3.6	
M2 Sunny Calm					Confess	4		05.0		0.0		20.0		70.0		4.0			4.0			2.5	
M2 Sunny Calm 15:23 Middle 5.5 23.6 23.7 23.7 23.7 8.7 8.7 33.2 33.2 143.6 146.2 10.4 10.3 3.2 3.3 3.8 61.5 5.0 5.0					Surface	- 1	26.0	25.9		8.9		32.3		70.9	4.4	4.8	7.6		1.9			3.5	ı
Bottom 10 234 23.4 8.6 8.6 33.5 33.5 67.2 70.4 4.9 5.0 5.0 6.5 6.5 6.3 5.5 5.5	M2	Sunny	Calm	15:23	Middle	5.5		23.7		8.7		33.2		146.2		10.3			3.3	3.8		6.0	5.0
M3 Sunny Calm 16:03 Middle 3.5 24.6 26.5 9.0 9.0 32.1 32.1 67.3 65.0 4.2 4.4 8.2 2.6 2.5 4.9					D-#	40		00.4		0.0		22.5		70.4		5.0	5.0						i l
M3 Sunny Calm 16:03 Middle 3.5 24.6 24.8 8.7 8.8 8.8 33.4 33.2 171.9 174.9 12.2 12.0 11.8 12.0 12.0 12.0 17.4 7.5 7.5 5.6 17.5 17.4 17.5 17.4 17.5 17.4 17.5 17.					Bottom	10		23.4		8.0		33.5		70.4		5.0	5.0		0.3			5.5	
M3 Sunny Calm 16:03 Middle 3.5 24.6 24.8 8.7 25.0 24.8 8.8 33.4 33.0 33.2 177.8 174.9 12.2 12.0 8.2 7.4 7.5 7.5 5.3 4.2 4.3 4.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9					Surface	1		26.5		9.0		32.1		65.0	-	4.4	1		2.5			4.9	, T
M6 Sunny Calm 16:05 Middle 3.5 25.0 24.6 8.8 6.8 33.0 33.5 171.9 174.9 11.8 12.0 7.5 7.5 7.5 1.5 3.3 4.3 4.3 4.5 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	140	Quant	Colm	16:02	Middle	3 =		24.0		9.0		32.7		174.0		12.0	8.2		7 =	F 9		4.3	4.0
M4 Sunny Calm 15:13 Surface 1 26.5 24.5 24.5 24.7 24.7 8.8 8.7 8.7 33.2 32.2 32.2 67.7 3.8 4.8 4.7 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 7.9 1.4 11.0 1.5 1.4 11.0 1.5 1.	IVIO	Suriny	Callii	10.03	ivildule	3.3		24.0		0.0		33.2		174.9		12.0			7.0	5.5		4.3	4.9
M4 Sunny Calm 15:13					Bottom	6		23.5		8.6		33.5		96.5		6.8	6.8		5.8			5.6	
M4 Sunny Calm 15:13 Middle					Quefoos	4		26.7		0.0		30.0		60 F		17			1 =	1		4.0	
M4 Sunny Calm 15:13 Middle 4.5 24.5 24.7 8.8 8.8 8.8 33.4 33.3 33.4 162.0 159.0 11.8 11.0 3.2 3.4 3.3 3.2 2.5 2.5 3.1 162.0 10.8 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 15.1 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16					Surrace		26.9	20.7		9.0		32.2		09.5		4.7	7.9		1.5	4		4.9	, /
Bottom 8 23.6 23.8 8.7 8.7 33.3 33.2 99.1 101.4 6.9 7.1 7.1 4.9 4.9 4.9 2.0 2.0 2.0	M4	Sunny	Calm	15:13	Middle	4.5		24.7		8.8		33.4		159.0		11.0			3.3	3.2		2.5	3.1
M6 Sunny Calm 16:20 Middle 2.2 24.7 24.7 8.8 8.8 8.8 33.2 33.2 103.7 101.4 7.2 7.1 7.1 4.9 4.9 4.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0					Dott	_		22.0		0.7		20.0		104.4		7.4	7.4		4.0	1		2.0	i 1
M6 Sunny Calm 16:27 Middle 6 23.7 23.7 8.7 8.7 33.2 33.2 155.5 155.4 10.9 10.9 10.9 8.3 1.9 1.9 2.2 2.2 3.2 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3					Bottom	ō	23.9	23.8	8.7	8.7	33.0	33.2	103.7	101.4	7.2	7.1	7.1	4.9	4.9	<u> </u>	2.0	2.0	
M5 Sunny Calm 16:27 Middle 6 23.7 23.7 8.7 8.7 33.2 33.2 155.5 155.4 155.5 10.9 10.9 10.9 6.3 3.6 3.5 3.5 3.2 3.1 3.2 3.4 4.8 4.7 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9					Surface	1		26.7		9.0		32.1		83.9		5.7	1		1.9			2.2	
M6 Sunny Calm 16:27 Middle 6 23.7 23.7 8.7 8.7 8.7 33.2 33.2 155.4 155.3 10.9 10.9 3.4 3.5 3.5 3.1 3.2 3.4 8.7 8.7 8.7 8.7 33.3 33.3 33.3 73.3 72.0 5.1 5.1 5.1 5.2 5.2 5.0 4.8 4.8 4.7 8.8 8.8 8.8 33.2 33.2 33.2 95.4 94.8 6.5 6.5 6.5 6.5 6.5 6.5 6.9 7.0 7.0 7.0	145	0	0-1	40.07	NA: Juli	_		00.7		0.7		22.0		455.5		40.0	8.3		2.5	2.5		2.0	2.4
M6 Sunny Calm 16:20 Middle 2.2 24.7 24.7 8.8 8.8 8.8 33.2 33.2 95.4 94.8 6.5 6.6 6.6 6.6 6.5 6.5 6.5 6.5 6.9 7.0 7.0	M5	Sunny	Calm	16:27	Middle	6	23.7	23.7	8.7	8.7	33.2	33.2	155.4	155.5	10.9	10.9		3.4	3.5	3.5	3.1	3.2	3.4
M6 Sunny Calm 16:20 Surface -					Bottom	11		23.6		8.7		33.3		72.0		5.1	5.1		5.0			4.7	
M6 Sunny Calm 16:20 Middle 2.2 24.7 24.7 8.8 8.8 8.8 33.2 33.2 94.2 94.8 6.5 6.5 6.5 6.5 6.5 6.5 6.70 7.0 7.0	-				Cont		- 23.0		0./	1	- 33.3		70.0	1	J.U -	1		4.8	1	1	4.0		
M6 Sunny Calm 16:20 Middle 2.2 24.7 24.7 8.8 8.8 8.8 33.2 33.2 95.4 94.8 6.5 6.5 6.5 6.5 6.5 6.5 6.9 7.0 7.0 7.0					Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-]	-	-	ı l
24.7 6.8 33.2 99.4 0.0 0.5 0.9	M6	Sunny	Calm	16:20	Middle	2.2		24.7		8.8		33.2		94.8		6.6			6.5	6.5		7.0	7.0
					D-#						JJ.Z		90.4	1	- 0.0	 		U.5 -	1	1			i l
					Bottom		<u> </u>		-		-		-					-		<u> </u>		-	

emarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 18 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 7.2 NTU</u>	<u>C1: 7.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C1: 5.8 mg/L	<u>C1: 6.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Борг	()	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.4 24.9	25.2	8.8 8.7	8.8	32.6 33.0	32.8	99.2 87.9	93.6	6.8 6.0	6.4	5.7	2.5 2.8	2.7		4.4 4.5	4.5	l
C1	Sunny	Calm	12:28	Middle	9.5	24.0 24.1	24.1	8.7 8.7	8.7	33.0 33.9	33.5	72.8 71.1	72.0	5.1 4.9	5.0	3.7	3.7 3.6	3.7	3.5	3.5 3.6	3.6	4.0
				Bottom	18	23.7 23.8	23.8	8.6 8.7	8.7	33.3 33.2	33.3	62.6 63.7	63.2	4.4 4.5	4.5	4.5	4.0 3.9	4.0		3.9 4.0	4.0	
				Surface	1	26.0 25.8	25.9	8.6 8.7	8.7	32.2 32.3	32.3	109.3 106.2	107.8	7.4 7.2	7.3	6.0	1.6 1.9	1.8		5.2 5.2	5.2	
C2	Sunny	Calm	11:13	Middle	17	23.9 23.8	23.9	8.6 8.6	8.6	33.1 33.2	33.2	66.2 64.8	65.5	4.6 4.5	4.6	0.0	4.7 4.5	4.6	3.6	7.0 7.1	7.1	6.0
				Bottom	33	23.7 23.8	23.8	8.6 8.6	8.6	33.3 33.2	33.3	62.9 64.1	63.5	4.4 4.5	4.5	4.5	4.5 4.4	4.5		5.6 5.9	5.8	
				Surface	1	25.2 25.0	25.1	8.8 8.8	8.8	33.3 33.3	33.3	116.0 109.2	112.6	7.9 7.5	7.7	6.9	1.2 1.2	1.2		3.7 3.6	3.7	Į
G1	Sunny	Calm	11:48	Middle	4	24.3 24.4	24.4	8.7 8.8	8.8	33.9 33.8	33.9	87.2 88.1	87.7	6.0 6.1	6.1		1.9 1.7	1.8	1.9	5.5 5.6	5.6	5.0
				Bottom	7	24.1 24.2	24.2	8.7 8.7	8.7	33.0 33.0	33.0	76.2 76.2	76.2	5.3 5.3	5.3	5.3	2.6 2.6	2.6		5.6 5.6	5.6	<u> </u>
				Surface	1	24.9 24.7	24.8	8.8 8.8	8.8	33.5 33.5	33.5	109.4 102.1	105.8	7.5 7.0	7.3	6.5	1.3 1.4	1.4		5.0 5.0	5.0	Į
G2	Sunny	Calm	11:38	Middle	5	24.2 24.2	24.2	8.7 8.7	8.7	34.0 34.0	34.0	81.5 79.6	80.6	5.6 5.5	5.6		1.6 1.5	1.6	2.5	5.4 5.5	5.5	4.9
				Bottom	9	23.6 23.6	23.6	8.6 8.6	8.6	33.4 33.4	33.4	59.6 61.5	60.6	4.2 4.3	4.3	4.3	4.2 4.7	4.5		4.1 4.1	4.1	<u> </u>
				Surface	1	25.5 25.3	25.4	8.8 8.8	8.8	33.2 33.3	33.3	110.0 110.0	110.0	7.5 7.5	7.5	6.5	1.2 1.2	1.2		4.6 4.6	4.6	Į
G3	Sunny	Calm	11:53	Middle	4	24.3 24.4	24.4	8.7 8.7	8.7	33.9 33.9	33.9	76.2 77.8	77.0	5.3 5.4	5.4		3.1 3.0	3.1	2.7	6.1 6.1	6.1	5.8
				Bottom	7	23.9 23.8	23.9	8.6 8.6	8.6	33.2 33.3	33.3	64.4 61.9	63.2	4.5 4.3	4.4	4.4	3.4 3.9	3.7		6.6 6.5	6.6	
				Surface	1	25.6 25.4	25.5	8.9 8.9	8.9	33.2 33.2	33.2	137.6 132.6	135.1	9.3 9.0	9.2	8.3	1.1 1.2	1.2		3.0 3.1	3.1	ļ
G4	Sunny	Calm	12:06	Middle	4.5	24.7 24.7	24.7	8.8 8.8	8.8	33.5 33.6	33.6	108.0 105.1	106.6	7.4 7.2	7.3		1.4 1.2	1.3	2.3	4.4	4.4	4.2
				Bottom	8	24.0 24.0	24.0	8.7 8.7	8.7	33.1 33.1	33.1	70.6 73.4	72.0	4.9 5.1	5.0	5.0	4.1 4.8	4.5		5.1 5.1	5.1	
				Surface	1	25.0 25.0	25.0	8.8 8.8	8.8	33.4 33.4	33.4	117.9 115.6	116.8	8.1 7.9	8.0	7.2	1.3	1.3		5.5 5.5	5.5	ļ
M1	Sunny	Calm	11:43	Middle	3	24.7 24.7	24.7	8.7 8.7	8.7	33.6 33.5	33.6	92.1 92.8	92.5	6.3 6.4	6.4		1.8 1.6	1.7	1.7	4.6 4.6	4.6	4.7
				Bottom	5	24.3 24.3	24.3	8.7 8.7	8.7	33.9 33.9	33.9	82.8 81.9	82.4	5.7 5.7	5.7	5.7	2.1 2.3	2.2		4.1 4.1	4.1	
				Surface	1	25.3 25.2	25.3	8.8 8.8	8.8	33.3 33.3	33.3	114.7 113.5	114.1	7.8 7.7	7.8	6.6	2.2	2.3		3.7 3.6	3.7	ļ
M2	Sunny	Calm	11:31	Middle	5.5	24.3 23.9	24.1	8.7 8.7	8.7	33.9 33.2	33.6	79.3 72.0	75.7	5.5 5.0	5.3		1.5 1.7	1.6	2.3	4.4	4.4	4.4
				Bottom	10	23.8 23.6	23.7	8.7 8.6	8.7	33.3 33.4	33.4	69.3 64.6	67.0	4.8 4.5	4.7	4.7	3.1 3.0	3.1		5.2 5.2	5.2	
				Surface	1	25.9 26.1	26.0	8.7 8.8	8.8	33.0 33.0	33.0	105.2 113.9	109.6	7.1	7.4	6.6	0.9 1.1	1.0		4.3 4.2	4.3	ļ
М3	Sunny	Calm	11:57	Middle	4	24.4 24.5	24.5	8.7 8.7	8.7	33.8 33.8	33.8	80.9 85.1	83.0	5.6 5.9	5.8		2.6 2.3	2.5	2.5	5.1 5.1	5.1	5.2
				Bottom	7	23.9 23.9	23.9	8.7 8.6	8.7	33.2 33.2	33.2	62.9 62.7	62.8	4.4 4.4	4.4	4.4	3.9 3.8	3.9		6.0 6.1	6.1	
				Surface	1	24.9 24.8	24.9	8.7 8.7	8.7	33.2 33.3	33.3	88.9 85.5	87.2	6.1 5.9	6.0	5.9	4.5 4.5	4.5		5.0 4.9	5.0	ļ
M4	Sunny	Calm	11:24	Middle	5	24.6 24.5	24.6	8.7 8.7	8.7	33.5 33.7	33.6	83.6 80.0	81.8	5.8 5.5	5.7		4.8 4.6	4.7	4.2	4.5 4.3	4.4	4.8
				Bottom	9	24.3 24.3	24.3	8.7 8.7	8.7	33.8 33.8	33.8	77.6 76.8	77.2	5.4 5.3	5.4	5.4	3.4 3.6	3.5		5.0 5.1	5.1	
				Surface	1	25.5 25.2	25.4	8.8 8.8	8.8	33.3 33.4	33.4	106.0 99.7	102.9	7.2 6.8	7.0	6.8	1.7 2.0	1.9		5.9 5.7	5.8	}
M5	Sunny	Calm	12:20	Middle	6	25.0 24.9 24.2	25.0	8.8 8.8	8.8	33.5 33.5 33.9	33.5	95.8 94.4	95.1	6.6 6.5	6.6		2.8 2.8 3.4	2.8	2.7	6.6 6.7 4.2	6.7	5.6
				Bottom	11	24.2	24.2	8.7 8.7	8.7	33.9 33.9	33.9	76.7 75.3	76.0	5.3 5.2	5.3	5.3	3.4 3.4	3.4		4.2	4.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-		-	-	}
M6	Sunny	Calm	12:11	Middle	2	25.4 25.4	25.4	8.8 8.8	8.8	33.2 33.2	33.2	122.9 121.1	122.0	8.4 8.2	8.3		1.4 1.3	1.4	1.4	4.5 4.4	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 21 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 5.4 NTU</u>	<u>C2: 5.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 August 2017

(Mid-Flood Tide)

Loopf	Weather	Sea	Sampling	D	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8	24.7	8.7	8.7	33.6	33.7	94.4	91.3	6.5	6.3		2.2	2.1		4.9	4.9	
C1	Sunny	Calm	18:35	Middle	9.5	24.6 24.0	24.1	8.7 8.7	8.7	33.8 33.2	33.2	88.2 73.0	74.5	6.1 5.1	5.2	5.8	2.0	2.7	4.6	4.8 6.6	6.7	5.7
01	Curry	Cairii	10.00	Bottom	18	24.1 23.4	23.4	8.7 8.6	8.6	33.1 33.6	33.6	75.9 63.5	63.2	5.3 4.5	4.5	4.5	2.5 9.3	8.9	4.0	6.8 5.3	5.4	J.,
						23.4 25.8		8.6 8.6		33.6 32.8		62.9 115.6		4.4 7.8		4.5	8.5 1.7			5.4 4.9		
				Surface	1	26.2 23.9	26.0	8.8	8.7	32.4 33.2	32.6	125.1 67.8	120.4	8.4 4.7	8.1	6.6	1.8	1.8		4.9	4.9	ł
C2	Sunny	Calm	17:38	Middle	16.5	24.8	24.4	8.7 8.6	8.7	33.1 33.4	33.2	79.3 72.0	73.6	5.5 5.0	5.1		4.6	4.6	3.4	4.9	4.8	4.8
				Bottom	32	24.4	24.5	8.6	8.6	33.6	33.5	71.2	71.6	4.9	5.0	5.0	4.1	3.8		4.8	4.8	
				Surface	1	25.9 25.9	25.9	8.8 8.8	8.8	32.8 32.8	32.8	121.6 119.7	120.7	8.2 8.1	8.2	7.7	2.1 2.2	2.2		3.5 3.5	3.5	Į
G1	Sunny	Calm	18:06	Middle	3.5	25.2 25.3	25.3	8.8 8.8	8.8	33.1 33.0	33.1	102.6 103.8	103.2	7.0 7.1	7.1		3.1 2.6	2.9	3.5	3.9 3.9	3.9	3.9
				Bottom	6	24.4 24.4	24.4	8.7 8.7	8.7	33.8 33.8	33.8	80.7 82.5	81.6	5.6 5.7	5.7	5.7	5.0 5.6	5.3		4.3 4.4	4.4	
				Surface	1	25.4 25.4	25.4	8.8 8.8	8.8	32.9 32.9	32.9	106.2 104.6	105.4	7.2 7.1	7.2	7.5	2.1 2.4	2.3		3.2 3.3	3.3	
G2	Sunny	Calm	17:58	Middle	4	25.4 25.4	25.4	8.8 8.8	8.8	33.2 33.2	33.2	113.4 114.3	113.9	7.7 7.8	7.8	7.5	4.3 3.8	4.1	3.3	5.5 5.6	5.6	4.4
				Bottom	7	24.4 24.2	24.3	8.7 8.7	8.7	33.8 33.8	33.8	81.6 75.1	78.4	5.6 5.2	5.4	5.4	3.7	3.6		4.3	4.3	
				Surface	1	26.0	25.9	8.8	8.8	32.8	32.9	130.0	124.8	8.8	8.5		1.6	1.8		4.6	4.6	
G3	Sunny	Calm	18:11	Middle	3.5	25.7 25.6	25.6	8.8	8.8	32.9 32.9	32.9	119.5 116.0	114.7	7.9	7.8	8.2	2.1	2.2	2.2	5.2	5.2	5.3
	,			Bottom	6	25.6 25.4	25.5	8.8	8.8	32.9 33.1	33.1	113.3 114.6	114.4	7.7	7.8	7.8	2.3	2.5		5.1 6.1	6.1	ĺ
				Surface	1	25.5 26.2	26.2	8.8	8.8	33.0 32.7	32.7	114.1 120.2	121.4	7.8 8.1	8.2		2.4 1.6	1.7		6.0 3.9	3.9	
G4	Sunny	Calm	18:19	Middle	4	26.1 25.4	25.4	8.8 8.8	8.8	32.7 33.1	33.1	122.5 121.4	121.1	8.3 8.3	8.3	8.3	1.8 2.7	2.6	3.5	3.9 5.8	5.9	5.2
G4	Sullily	Callii	10.19		-	25.4 24.6		8.8 8.7		33.1 33.7		120.7 89.8		8.2 6.2		0.0	2.5 6.0	<u> </u>	3.3	6.0 5.8		5.2
				Bottom	7	24.6 25.6	24.6	8.8	8.8	33.7 33.1	33.7	92.8 116.1	91.3	6.4 7.9	6.3	6.3	6.2 3.0	6.1		5.9 4.8	5.9	——
				Surface	1	25.5 25.5	25.6	8.8 8.8	8.8	33.1	33.1	120.4 118.9	118.3	8.2 8.1	8.1	8.2	2.7	2.9		4.9	4.9	ł
M1	Sunny	Calm	18:02	Middle	3	25.5	25.5	8.8	8.8	33.1	33.2	120.4	119.7	8.2	8.2		2.9	3.0	4.1	4.7	4.8	4.3
				Bottom	5	25.4 25.4	25.4	8.8 8.8	8.8	33.3 33.3	33.3	118.8 119.5	119.2	8.1 8.1	8.1	8.1	6.2 6.6	6.4		3.1 3.2	3.2	<u> </u>
				Surface	1	25.5 25.6	25.6	8.8 8.8	8.8	33.0 33.0	33.0	112.3 112.5	112.4	7.6 7.6	7.6	6.7	2.1 2.0	2.1		4.9 5.1	5.0	Į
M2	Sunny	Calm	17:53	Middle	5	24.5 24.5	24.5	8.7 8.7	8.7	33.6 33.7	33.7	85.9 82.9	84.4	5.9 5.7	5.8	0.7	4.5 4.0	4.3	4.3	4.2 4.1	4.2	4.5
				Bottom	9	23.7 23.8	23.8	8.6 8.7	8.7	33.3 33.3	33.3	62.8 66.6	64.7	4.4 4.7	4.6	4.6	6.5 6.5	6.5		4.1 4.2	4.2	
				Surface	1	25.8 25.8	25.8	8.8 8.8	8.8	33.0 33.0	33.0	125.4 131.9	128.7	8.5 8.9	8.7		1.9 1.8	1.9		4.8 4.8	4.8	
М3	Sunny	Calm	18:14	Middle	3.5	25.8 25.7	25.8	8.8 8.9	8.9	33.1 33.2	33.2	136.4 136.6	136.5	9.2 9.2	9.2	9.0	1.6 1.7	1.7	1.9	4.1 4.0	4.1	4.3
				Bottom	6	25.6 25.5	25.6	8.9 8.8	8.9	33.2 33.2	33.2	134.0 132.0	133.0	9.1 9.0	9.1	9.1	2.0	2.2		4.0	4.1	
				Surface	1	25.8	25.8	8.8	8.8	33.1	33.1	121.9	121.3	8.2	8.2		2.0	2.0		5.1	5.0	
M4	Sunny	Calm	17:46	Middle	4.5	25.8 24.8	25.0	8.8 8.7	8.8	33.1 33.5	33.4	120.6 93.2	96.5	8.2 6.4	6.6	7.4	3.8	3.5	3.3	6.2	6.3	5.7
	ĺ ,			Bottom	8	25.1 24.4	24.5	8.8 8.7	8.7	33.3 33.7	33.7	99.8 81.3	84.3	6.8 5.6	5.8	5.8	3.2 4.6	4.3		5.9	5.9	İ
				Surface	1	24.6 25.6	25.6	8.7 8.8	8.8	33.6 32.4	32.4	87.2 101.6	100.8	6.0	6.9	0.0	3.9 2.1	2.2		5.8 4.1	4.2	
M5	Cuppi	Colm	10.07			25.6 25.5		8.8 8.8		32.4 32.7		100.0 103.8		6.8 7.1		7.0	2.2	-	4.0	4.3 5.5		1 4-
CIVI	Sunny	Calm	18:27	Middle	5.5	25.4 23.7	25.5	8.8 8.6	8.8	32.9 33.3	32.8	103.3 70.8	103.6	7.0 5.0	7.1	4.0	3.0 6.8	2.9	4.2	5.5 3.8	5.5	4.5
				Bottom	10	23.7	23.7	8.6	8.6	33.4	33.4	66.8	68.8	4.7	4.9	4.9	8.4	7.6		3.8	3.8	
				Surface	-	- 2F 2	-	-	-	33.0	-	106 1	-	7.0	-	7.2	2.8	-		7 -	-	}
M6	Sunny	Calm	18:23	Middle	2.1	25.3 25.3	25.3	8.8 8.8	8.8	33.0 32.9	33.0	106.1 106.0	106.1	7.2 7.2	7.2		2.8	2.6	2.6	7.5 7.5	7.5	7.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	l

temarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 21 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 10.7 NTU</u>	<u>C1: 11.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C1: 5.9 mg/L	<u>C1: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.5 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.3 27.8	28.6	8.7 8.7	8.7	25.8 24.5	25.2	107.8 99.2	103.5	7.2 6.8	7.0	6.2	7.5 7.5	7.5		5.2 5.2	5.2	
C1	Cloudy	Moderate	15:12	Middle	9.5	27.1 25.8	26.5	8.5 8.5	8.5	27.0 25.6	26.3	78.7 73.0	75.9	5.4 5.2	5.3	0.2	8.1 8.1	8.1	9.3	5.2 5.4	5.3	5.7
				Bottom	18	25.1 23.9	24.5	8.4 8.4	8.4	30.9 29.3	30.1	70.7 66.6	68.7	4.9 4.8	4.9	4.9	12.4 12.3	12.4		6.5 6.4	6.5	
				Surface	1	29.1 29.2	29.2	8.5 8.7	8.6	25.5 25.3	25.4	110.1 109.5	109.8	7.3 7.3	7.3	6.2	7.7 7.8	7.8		5.6 5.7	5.7	
C2	Cloudy	Moderate	13:35	Middle	17	26.8 26.8	26.8	8.4 8.5	8.5	27.4 27.4	27.4	71.9 73.1	72.5	4.9 5.0	5.0	0.2	8.9 8.5	8.7	9.1	5.4 5.4	5.4	5.6
				Bottom	33	26.4 26.5	26.5	8.4 8.4	8.4	28.5 28.3	28.4	65.4 66.2	65.8	4.5 4.5	4.5	4.5	10.8 10.8	10.8		5.7 5.6	5.7	
				Surface	1	28.2 28.3	28.3	8.6 8.6	8.6	26.3 26.3	26.3	93.2 93.2	93.2	6.3 6.3	6.3	6.2	7.8 7.8	7.8		3.6 3.6	3.6	Į
G1	Cloudy	Moderate	14:28	Middle	3	28.2 28.1	28.2	8.6 8.6	8.6	26.3 26.4	26.4	91.4 87.9	89.7	6.2 5.9	6.1		7.9 8.3	8.1	8.2	5.1 5.0	5.1	4.7
				Bottom	5	28.0 27.9	28.0	8.6 8.6	8.6	26.6 26.5	26.6	83.0 81.8	82.4	5.6 5.5	5.6	5.6	8.8 8.5	8.7		5.4 5.3	5.4	<u></u>
				Surface	1	28.4 28.4	28.4	8.7 8.7	8.7	25.8 25.8	25.8	97.2 97.8	97.5	6.6 6.6	6.6	6.2	8.3 8.1	8.2		5.8 5.9	5.9	Į
G2	Cloudy	Moderate	14:07	Middle	4	28.1 28.0	28.1	8.6 8.6	8.6	26.4 26.5	26.5	86.3 86.2	86.3	5.8 5.8	5.8		7.8 7.7	7.8	8.6	4.5 4.6	4.6	4.9
				Bottom	7	27.6 27.8	27.7	8.6 8.6	8.6	26.9 26.8	26.9	73.3 79.1	76.2	5.0 5.4	5.2	5.2	10.0 9.3	9.7		4.1 4.0	4.1	<u> </u>
				Surface	1	28.6 28.4	28.5	8.7 8.7	8.7	25.3 25.6	25.5	106.8 97.6	102.2	7.2 6.6	6.9	6.2	8.1 8.0	8.1		5.1 5.1	5.1	Į
G3	Cloudy	Moderate	14:36	Middle	3.5	27.9 27.9	27.9	8.6 8.6	8.6	26.5 26.5	26.5	80.5 79.9	80.2	5.5 5.4	5.5		8.5 8.4	8.5	9.4	7.8 8.0	7.9	6.1
				Bottom	6	27.5 27.5	27.5	8.5 8.5	8.5	26.9 26.9	26.9	65.0 65.9	65.5	4.4 4.5	4.5	4.5	11.7 11.5	11.6		5.1 5.3	5.2	
				Surface	1	28.4 28.4	28.4	8.7 8.7	8.7	26.2 26.2	26.2	97.7 97.5	97.6	6.6 6.6	6.6	6.4	8.6 8.8	8.7		5.2 5.2	5.2	ļ
G4	Cloudy	Moderate	14:52	Middle	4	28.2 28.3	28.3	8.6 8.6	8.6	26.4 26.3	26.4	90.9 91.8	91.4	6.1 6.2	6.2		7.8 7.8	7.8	8.5	5.5 5.6	5.6	5.6
				Bottom	7	27.9 27.9	27.9	8.6 8.6	8.6	26.5 26.5	26.5	81.6 81.8	81.7	5.5 5.5	5.5	5.5	9.0 9.0	9.0		6.1 5.9	6.0	
				Surface	1	28.1 28.1	28.1	8.6 8.6	8.6	26.2 26.1	26.2	87.6 87.0	87.3	5.9 5.9	5.9	5.9	8.6 8.5	8.6		6.0 5.8	5.9	ļ
M1	Cloudy	Moderate	14:18	Middle	3	28.1 28.1	28.1	8.6 8.6	8.6	26.4 26.3	26.4	87.2 87.2	87.2	5.9 5.9	5.9		8.2 8.3	8.3	8.7	6.5 6.3	6.4	5.5
				Bottom	5	27.8 28.0	27.9	8.6 8.6	8.6	26.6 26.4	26.5	77.2 83.9	80.6	5.2 5.7	5.5	5.5	9.1 9.2	9.2		4.2 4.1	4.2	
				Surface	1	28.6 28.8	28.7	8.7 8.7	8.7	25.7 25.6	25.7	108.2 111.6	109.9	7.3 7.5	7.4	6.5	7.9 7.8	7.9		5.7 5.6	5.7	ļ
M2	Cloudy	Moderate	13:56	Middle	5.5	28.0 27.9	28.0	8.6 8.6	8.6	26.5 26.6	26.6	82.7 82.0	82.4	5.6 5.6	5.6		8.0 8.1	8.1	8.0	5.0 5.1	5.1	5.4
				Bottom	10	28.8 27.5	28.2	8.7 8.5	8.6	25.3 27.1	26.2	67.2 71.1	69.2	4.5 4.8	4.7	4.7	7.8 7.9	7.9		5.3 5.2	5.3	
				Surface	1	28.4 28.4	28.4	8.7 8.7	8.7	25.5 25.6	25.6	95.7 95.8	95.8	6.5 6.5	6.5	5.6	8.1 8.2	8.2		3.5 3.5	3.5	ļ
М3	Cloudy	Moderate	14:42	Middle	3.5	27.7 27.8	27.8	8.5 8.5	8.5	26.4 26.4	26.4	66.4 69.6	68.0	4.5 4.7	4.6		10.0 9.6	9.8	9.7	5.2 5.2	5.2	4.6
				Bottom	6	27.5 27.5	27.5	8.5 8.5	8.5	26.8 26.7	26.8	61.9 62.7	62.3	4.2 4.3	4.3	4.3	11.5 10.9	11.2		5.1 5.1	5.1	
				Surface	1	29.3 29.3	29.3	8.8 8.8	8.8	25.1 25.1	25.1	118.2 117.7	118.0	7.9 7.8	7.9	7.4	7.9 7.8	7.9		3.4 3.4	3.4	ļ
M4	Cloudy	Moderate	13:46	Middle	4.5	28.4 28.4	28.4	8.7 8.7	8.7	25.8 25.8	25.8	100.9 102.3	101.6	6.8 6.9	6.9		7.8 7.8	7.8	7.9	4.1 4.2	4.2	4.2
				Bottom	8	28.4 28.3	28.4	8.6 8.7	8.7	26.1 25.9	26.0	88.4 95.0	91.7	6.0 6.4	6.2	6.2	8.0 7.9	8.0		4.9 5.0	5.0	
				Surface	1	28.0 28.0	28.0	8.6 8.6	8.6	26.5 26.5	26.5	84.8 84.8	84.8	5.7 5.7	5.7	5.6	8.7 8.6	8.7		4.8	4.8	}
M5	Cloudy	Moderate	15:03	Middle	5.5	27.8 27.6 27.5	27.7	8.6 8.6 8.6	8.6	26.8 27.0 27.1	26.9	81.3 77.7	79.5	5.5 5.3	5.4		8.8 8.6	8.7	9.0	5.3 5.3 5.3	5.3	5.2
				Bottom	10	27.6	27.6	8.6	8.6	27.1 27.0	27.1	75.2 75.9	75.6	5.1 5.2	5.2	5.2	9.7 9.7	9.7		5.5	5.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.4		-		-	-	}
M6	Cloudy	Moderate	14:58	Middle	2.1	28.2 28.3	28.3	8.6 8.6	8.6	26.3 26.2	26.3	94.2 94.6	94.4	6.4 6.4	6.4		8.1 8.1	8.1	8.1	5.0 4.9	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	<u> </u>

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 24 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 13.0 NTU</u>	<u>C2: 14.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Station M6		T
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 August 2017

(Mid-Flood Tide)

Lassian	Weather	Sea	Sampling	Б.	Mr. ()	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.0	27.0	8.5	8.5	25.7	25.8	88.6	87.2	6.1	6.0		7.8	7.9		5.4	5.4	
C1	Cloudy	Moderate	08:51	Middle	9.5	26.9 26.2	26.3	8.5 8.4	8.4	25.8 26.4	26.3	85.7 71.6	73.2	5.9 5.0	5.1	5.6	7.9 8.2	8.2	8.5	5.4 4.1 4.2	4.2	5.3
				Bottom	18	26.3 25.0 23.4	24.2	8.4	8.3	26.2 28.5 31.3	29.9	74.8 64.7	65.4	5.2 4.6	4.7	4.7	9.4	9.5		6.4 6.2	6.3	
				Surface	1	26.3	26.3	8.2 8.4	8.4	25.5	25.5	90.2	88.9	6.3	6.2		9.6 8.0	8.0		4.4 4.3	4.4	
C2	Cloudy	Moderate	07:11	Middle	17	26.3 25.6 25.6	25.6	8.4 8.4 8.3	8.4	25.5 27.2 27.2	27.2	87.6 72.9 72.2	72.6	6.1 5.1 5.1	5.1	5.7	7.9 9.2 9.1	9.2	8.9	5.5 5.7	5.6	4.8
				Bottom	33	25.4 25.3	25.4	8.3 8.3	8.3	27.7 27.8	27.8	62.6 65.3	64.0	4.4 4.6	4.5	4.5	9.4	9.4		4.5 4.2	4.4	
				Surface	1	27.7 27.8	27.8	8.6 8.6	8.6	24.9 24.8	24.9	102.5 102.6	102.6	7.0 7.0	7.0		7.7 7.8	7.8		4.7 4.5	4.6	
G1	Cloudy	Moderate	07:59	Middle	4	27.3 27.3	27.3	8.6 8.6	8.6	25.2 25.2	25.2	93.4 93.5	93.5	6.4 6.4	6.4	6.7	7.8 8.0	7.9	8.4	6.2 6.2	6.2	5.9
				Bottom	7	26.7 26.8	26.8	8.5 8.5	8.5	25.9 25.7	25.8	75.9 77.0	76.5	5.3 5.3	5.3	5.3	9.5 9.4	9.5		6.8	6.8	
				Surface	1	27.1 27.0	27.1	8.6 8.5	8.6	25.3 25.4	25.4	94.2 85.5	89.9	6.5 5.9	6.2		7.6 7.6	7.6		5.9 5.8	5.9	
G2	Cloudy	Moderate	07:43	Middle	4.5	27.1 26.8	27.0	8.5 8.5	8.5	25.3 25.7	25.5	93.0 79.3	86.2	6.4 5.5	6.0	6.1	7.6 7.7	7.7	8.1	5.6 5.6	5.6	5.9
				Bottom	8	26.7 26.7	26.7	8.5 8.5	8.5	26.0 26.0	26.0	74.8 77.4	76.1	5.2 5.4	5.3	5.3	9.0	8.9		6.1 6.2	6.2	
				Surface	1	27.9 27.6	27.8	8.6 8.6	8.6	24.8 24.9	24.9	101.9 100.9	101.4	7.0 6.9	7.0	0.7	7.7 7.8	7.8		3.1 3.1	3.1	
G3	Cloudy	Moderate	08:09	Middle	4	27.2 26.6	26.9	8.5 8.5	8.5	25.3 25.6	25.5	91.9 91.7	91.8	6.3 6.4	6.4	6.7	8.1 8.0	8.1	8.8	5.5 5.6	5.6	5.1
				Bottom	7	26.7 27.8	27.3	8.5 8.6	8.6	25.9 24.8	25.4	88.3 86.6	87.5	6.1 5.9	6.0	6.0	10.4 10.8	10.6		6.5 6.5	6.5	
				Surface	1	27.6 27.8	27.7	8.6 8.6	8.6	25.2 25.1	25.2	104.1 104.9	104.5	7.1 7.2	7.2	6.9	7.6 7.5	7.6		4.8 4.8	4.8	
G4	Cloudy	Moderate	08:24	Middle	4.5	27.2 27.3	27.3	8.6 8.6	8.6	25.3 25.3	25.3	90.8 98.1	94.5	6.3 6.8	6.6	0.9	7.8 7.8	7.8	8.6	3.7 3.6	3.7	4.4
				Bottom	8	26.5 26.4	26.5	8.4 8.4	8.4	25.8 25.9	25.9	63.9 63.9	63.9	4.4 4.5	4.5	4.5	10.3 10.7	10.5		4.7 4.7	4.7	
				Surface	1	27.8 28.1	28.0	8.6 8.6	8.6	25.0 25.0	25.0	102.6 105.0	103.8	7.0 7.1	7.1	7.1	7.7 7.7	7.7		6.0 6.1	6.1	
M1	Cloudy	Moderate	07:52	Middle	3	27.7 27.6	27.7	8.6 8.6	8.6	25.1 25.1	25.1	102.7 100.5	101.6	7.0 6.9	7.0		7.8 7.8	7.8	7.9	5.2 5.2	5.2	6.0
				Bottom	5	27.3 27.2	27.3	8.6 8.5	8.6	25.3 25.3	25.3	93.1 89.3	91.2	6.4 6.2	6.3	6.3	8.2 8.3	8.3		6.6 6.7	6.7	
				Surface	1	28.2 28.2	28.2	8.6 8.6	8.6	25.0 25.0	25.0	106.5 106.4	106.5	7.2 7.2	7.2	6.8	7.5 7.5	7.5		5.8 5.8	5.8	
M2	Cloudy	Moderate	07:34	Middle	5.5	27.3 27.4	27.4	8.5 8.6	8.6	25.4 25.5	25.5	91.3 92.5	91.9	6.3 6.4	6.4		8.0 7.9	8.0	8.1	5.3 5.1	5.2	5.8
				Bottom	10	26.7 26.7	26.7	8.4 8.5	8.5	26.0 26.1	26.1	76.7 77.3	77.0	5.3 5.4	5.4	5.4	8.7 8.6	8.7		6.3 6.2	6.3	
				Surface	1	27.7 27.5	27.6	8.6 8.6	8.6	24.9 24.9	24.9	101.5 100.0	100.8	7.0 6.9	7.0	6.7	7.7 7.7 7.9	7.7		6.0	6.0	
М3	Cloudy	Moderate	08:15	Middle	4	27.2 27.3 27.3	27.3	8.5 8.6 8.6	8.6	25.0 25.0 25.3	25.0	91.9 93.6 94.4	92.8	6.3 6.5 6.5	6.4		7.9 8.0 9.6	8.0	8.5	3.7 4.0 3.6	3.9	4.5
				Bottom	7	26.6 28.2	27.0	8.4 8.6	8.5	25.6 25.1	25.5	94.4 92.9 105.6	93.7	6.5 7.2	6.5	6.5	9.6 9.7 7.5	9.7		3.6 3.6	3.6	
				Surface	1	28.2 28.2 27.6	28.2	8.6 8.6	8.6	25.1 25.0 25.3	25.1	106.0 95.8	105.8	7.2 7.2 6.6	7.2	6.8	7.5 7.5 7.8	7.5		5.0 2.5	5.0	
M4	Cloudy	Moderate	07:22	Middle	5	27.4 27.0	27.5	8.5 8.5	8.6	25.3 25.4 25.8	25.4	90.4 81.6	93.1	6.2 5.6	6.4		7.8 7.9 8.6	7.9	8.0	2.5 2.6 3.2	2.6	3.6
				Bottom	9	26.9 27.1	27.0	8.5 8.5	8.5	25.9 25.8	25.9	82.6 90.1	82.1	5.7	5.7	5.7	8.5 7.9	8.6		3.3	3.3	
		l		Surface	1	27.1 26.7	27.1	8.5 8.5	8.5	25.8 26.2	25.8	88.8 81.2	89.5	6.1 5.6	6.2	5.9	7.9 7.8	7.9		5.7 5.7	5.8	
M5	Cloudy	Moderate	08:42	Middle	6	26.7 25.7	26.7	8.5 8.4	8.5	26.1 27.5	26.2	81.5 63.5	81.4	5.6 4.4	5.6	.	7.8 8.7	7.8	8.1	5.7 3.7	5.7	5.0
				Bottom	11	25.5	25.6	8.4	8.4	27.8	27.7	62.7	63.1	4.4	4.4	4.4	8.7	8.7		3.5	3.6	
***		.	00.07	Surface	-	27.1		8.5	-	25.3	-	88.1	-	6.1	-	6.1	10.3	-		7.6	-	
M6	Cloudy	Moderate	08:37	Middle	2.1	27.1	27.1	8.5	8.5	25.3	25.3	87.8	88.0	6.1	6.1		10.5	10.4	10.4	7.7	7.7	7.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 24 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 11.4 NTU</u>	<u>C1: 12.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.9 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.9 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.6 mg/L</u>	<u>C1: 8.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.1 26.0	26.1	7.9 7.9	7.9	31.3 31.5	31.4	84.3 81.6	83.0	5.7 5.5	5.6	5.7	7.1 7.1	7.1		5.9 5.8	5.9	
C1	Cloudy	Moderate	15:50	Middle	9.5	24.8 25.0	24.9	7.9 7.9	7.9	33.6 33.2	33.4	80.5 85.9	83.2	5.5 5.9	5.7	5.7	8.3 7.9	8.1	8.2	4.2 4.4	4.3	4.6
				Bottom	18	23.8 23.2	23.5	7.8 7.8	7.8	33.3 33.8	33.6	65.1 57.1	61.1	4.6 4.4	4.5	4.5	9.3 9.4	9.4		3.5 3.5	3.5	
				Surface	1	26.1 26.1	26.1	8.0 7.9	8.0	31.6 31.6	31.6	69.2 67.9	68.6	5.7 5.6	5.7	5.4	6.9 6.9	6.9		5.6 5.8	5.7	ļ
C2	Cloudy	Moderate	14:20	Middle	17.5	24.7 24.4	24.6	7.9 7.8	7.9	33.8 33.3	33.6	61.6 57.4	59.5	5.2 5.0	5.1		8.6 8.7	8.7	8.3	4.4 4.2	4.3	4.8
				Bottom	34	24.1	24.0	7.8 7.8	7.8	33.9 33.1	33.5	54.6 51.8	53.2	4.8 4.6	4.7	4.7	9.3 9.4	9.4		4.5 4.5	4.5	
				Surface	1	27.3 27.2	27.3	8.0 8.0	8.0	31.4 31.4	31.4	94.5 94.6	94.6	6.3 6.3	6.3	6.1	7.2 7.2	7.2		5.2 5.3	5.3	ļ
G1	Cloudy	Moderate	15:02	Middle	3.5	26.5 26.8	26.7	8.0 8.0	8.0	31.6 31.5	31.6	86.3 88.7	87.5	5.8 6.0	5.9		6.9 6.9	6.9	7.2	5.8 5.7	5.8	5.5
				Bottom	6	25.8 25.8	25.8	7.9 7.9	7.9	32.1 32.0	32.1	80.3 80.2	80.3	5.5 5.5	5.5	5.5	7.4 7.5	7.5		5.2 5.3	5.3	
				Surface	1	26.7 27.1	26.9	8.0 8.0	8.0	31.5 31.4	31.5	88.2 90.6	89.4	5.9 6.0	6.0	5.6	6.8 6.8	6.8		3.8	3.8	ļ
G2	Cloudy	Moderate	14:51	Middle	4.5	26.0 26.0	26.0	7.9 7.9	7.9	31.8 31.7	31.8	77.0 76.4	76.7	5.2 5.2	5.2		6.8 6.9	6.9	7.1	5.8 5.9	5.9	4.6
				Bottom	8	25.4 25.7	25.6	7.8 7.9	7.9	32.6 32.1	32.4	74.1 71.9	73.0	5.1 4.9	5.0	5.0	7.5 7.4	7.5		3.9 4.1	4.0	
				Surface	1	27.5 27.6	27.6	8.0 8.0 8.0	8.0	31.1 31.0 31.5	31.1	92.1 93.4	92.8	6.1 6.2	6.2	6.0	6.9 6.9 6.8	6.9		4.7 4.7	4.7	ļ
G3	Cloudy	Moderate	15:11	Middle	3.5	26.4 26.4 25.9	26.4	8.0 7.9	8.0	31.5 31.5 31.8	31.5	85.8 85.6 75.4	85.7	5.8 5.8	5.8		6.8 6.9 7.2	6.9	7.0	7.5 7.5 5.0	7.5	5.8
				Bottom	6	25.8	25.9	7.9	7.9	31.9	31.9	75.2	75.3	5.1 5.1	5.1	5.1	7.2	7.2		5.2	5.1	
				Surface	1	26.8 26.9	26.9	8.0 8.0	8.0	31.5 31.5	31.5	92.9 93.4	93.2	6.2 6.3	6.3	6.0	6.9 6.8	6.9		5.6 5.8	5.7	ļ
G4	Cloudy	Moderate	15:22	Middle	4	26.3 26.2	26.3	8.0 7.9	8.0	31.6 31.6	31.6	86.2 82.5	84.4	5.8 5.6	5.7		6.9 6.9	6.9	8.1	5.0 5.1	5.1	4.6
				Bottom	7	25.1 25.1	25.1	7.8 7.8	7.8	33.2 33.3	33.3	80.7 79.7	80.2	5.5 5.5	5.5	5.5	10.1 10.6	10.4		3.1 3.0	3.1	
				Surface	1	27.1 27.2	27.2	8.0 7.9	8.0	31.5 31.4	31.5	91.9 91.2	91.6	6.1 6.1	6.1	6.0	6.9 6.8	6.9		3.7	3.6	ļ
M1	Cloudy	Moderate	14:58	Middle	3	26.4 26.6	26.5	7.9 7.9 7.9	7.9	31.6 31.5 31.9	31.6	84.1 86.8	85.5	5.7 5.8	5.8		6.9 6.8	6.9	6.9	6.3 6.2 3.7	6.3	4.5
				Bottom	5	25.8 25.9	25.9	7.9	7.9	31.8	31.9	76.5 79.4	78.0	5.2 5.4	5.3	5.3	6.9 7.1	7.0		3.6	3.7	
				Surface	1	26.7 27.6	27.2	7.9 8.0	8.0	31.5 31.3	31.4	80.4 89.8	85.1	5.4 6.0	5.7	5.4	6.9 6.8	6.9		3.7 3.5	3.6	ļ
M2	Cloudy	Moderate	14:41	Middle	4.5	25.8 25.8	25.8	7.9 7.9	7.9	32.0 32.0	32.0	72.6 77.1	74.9	4.9 5.2	5.1		7.1 7.0	7.1	7.1	3.8 3.8	3.8	3.8
				Bottom	8	25.7 25.7	25.7	7.9 7.8	7.9	32.1 32.1	32.1	71.0 70.4	70.7	4.8 4.8	4.8	4.8	7.2 7.2	7.2		4.0 4.1	4.1	
				Surface	1	27.6 25.8	26.7	8.0 8.0	8.0	31.0 33.0	32.0	93.2 88.4	90.8	6.2	6.1	5.9	6.9 6.9	6.9		5.6 5.6	5.6	}
М3	Cloudy	Moderate	15:15	Middle	3.5	26.4 25.1	25.8	8.0 8.0	8.0	31.5 33.2	32.4	86.6 80.7	83.7	5.8 5.5	5.7		7.0 7.0	7.0	7.1	6.9 6.7	6.8	5.3
				Bottom	6	25.8 24.4	25.1	7.8 7.9	7.9	31.9 33.6	32.8	75.3 75.3	75.3	5.1 5.2	5.2	5.2	7.5 7.4	7.5		3.6 3.5	3.6	<u> </u>
				Surface	1	27.7 25.9	26.8	8.0 7.9	8.0	31.3 31.0	31.2	92.0 83.2	87.6	6.1 5.7	5.9	5.6	6.8	6.8		4.4 4.1	4.3	}
M4	Cloudy	Moderate	14:29	Middle	5	25.9 25.9	25.9	7.9 7.9	7.9	32.0 32.0	32.0	77.7 77.5	77.6	5.3 5.3	5.3		6.9 6.9	6.9	7.6	4.2 4.1	4.2	3.8
				Bottom	9	25.5 25.8	25.7	7.8 7.9	7.9	32.5 32.1	32.3	63.9 72.4	68.2	4.4 4.9	4.7	4.7	9.0 9.0	9.0		3.1 2.9	3.0	
				Surface	1	26.5 26.4	26.5	7.9 7.9	7.9	31.8 31.8	31.8	83.1 81.6	82.4	5.6 5.5	5.6	5.3	6.7 6.7	6.7		5.0 4.8	4.9	}
M5	Cloudy	Moderate	15:38	Middle	5.5	26.1 26.1 24.4	26.1	7.9 7.9 7.8	7.9	32.3 32.3 33.6	32.3	71.5 72.9 74.8	72.2	4.8 4.9 5.2	4.9		6.8 6.9 9.0	6.9	7.6	6.2 6.1 3.8	6.2	5.0
				Bottom	10	24.4	24.4	7.8	7.8	33.6	33.6	74.3	74.6	5.2 5.1	5.2	5.2	9.0	9.2		3.7	3.8	
				Surface	-	25.8	-	7.9	-	32.0	-	73.3	-	5.4	-	5.4	6.7	-		2.4	-	ł
M6	Cloudy	Moderate	15:28	Middle	2.1	25.8	25.9	7.9 7.9	7.9	31.9	32.0	73.3	73.6	5.4	5.4		6.5	6.6	6.6	2.4	2.4	2.4
				Bottom	-	-	-		-		-	- :	-	-	-	-		-			-	

emarks: *DA: Denth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 26 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 11.3 NTU</u>	<u>C2: 12.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 August 2017

(Mid-Flood Tide)

Lassian	Weather	Sea	Sampling	Б.	th (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.6	25.6	7.9	7.9	32.5	32.5	74.7	74.7	5.1	5.1		5.9	5.9		4.6	4.6	
C1	Cloudy	Moderate	10:29	Middle	10	25.6 24.9	25.0	7.9 8.0	8.0	32.5 33.1	33.1	74.7 73.5	73.6	5.1	5.0	5.1	5.9 8.2	8.0	8.1	4.6 5.4	5.5	5.6
				Bottom	19	25.0 24.9 24.9	24.9	8.0 8.0 8.0	8.0	33.1 33.2 33.2	33.2	73.6 73.5 73.5	73.5	5.0 5.0 5.0	5.0	5.0	7.8 10.5 10.4	10.5		5.5 6.8 6.7	6.8	
				Surface	1	25.7	25.7	7.8 7.8	7.8	31.7	31.7	67.1	67.0	5.6	5.6		7.1	7.0		5.2 5.1	5.2	
C2	Cloudy	Moderate	08:58	Middle	17	25.7 25.4 25.4	25.4	7.8 7.9 7.9	7.9	31.7 32.3 32.3	32.3	66.8 69.2 69.2	69.2	5.6 5.7 5.7	5.7	5.7	7.8 7.7	7.8	8.5	3.6 3.5	3.6	4.8
				Bottom	33	25.1 25.1	25.1	7.9 7.9	7.9	32.9 32.9	32.9	70.8 70.8	70.8	4.9 4.9	4.9	4.9	10.3	10.6		5.7 5.6	5.7	
				Surface	1	25.6 25.5	25.6	7.9 7.9	7.9	32.2 32.3	32.3	71.3 71.0	71.2	5.9 5.8	5.9		6.1 6.3	6.2		3.5 3.4	3.5	
G1	Cloudy	Moderate	09:43	Middle	4	25.4 25.4	25.4	7.9 7.9	7.9	32.4 32.4	32.4	70.6 70.6	70.6	5.8 5.8	5.8	5.9	6.7 6.6	6.7	7.0	3.6 3.4	3.5	3.8
				Bottom	7	25.3 25.3	25.3	7.9 7.9	7.9	32.5 32.5	32.5	69.7 69.8	69.8	4.8 4.8	4.8	4.8	8.2 7.9	8.1		4.3 4.2	4.3	
				Surface	1	25.7 25.7	25.7	7.9 7.9	7.9	32.2 32.2	32.2	72.7 72.7	72.7	6.0 6.0	6.0		6.1 6.1	6.1		5.1 5.1	5.1	
G2	Cloudy	Moderate	09:29	Middle	5	25.4 25.4	25.4	7.9 7.9	7.9	32.4 32.4	32.4	70.8 71.0	70.9	5.8 5.9	5.9	6.0	6.9 6.7	6.8	7.7	3.9 3.8	3.9	4.0
				Bottom	9	25.1 25.1	25.1	7.9 7.9	7.9	32.9 32.9	32.9	71.6 71.6	71.6	4.9 4.9	4.9	4.9	10.0 10.2	10.1		2.9 2.9	2.9	
				Surface	1	25.9 25.9	25.9	7.9 7.9	7.9	32.0 32.0	32.0	72.4 72.1	72.3	5.9 5.9	5.9	5.9	5.4 5.5	5.5		4.6 4.6	4.6	
G3	Cloudy	Moderate	09:51	Middle	4	25.6 25.6	25.6	7.9 7.9	7.9	32.3 32.4	32.4	70.7 70.7	70.7	5.8 5.8	5.8	5.5	5.9 6.0	6.0	5.9	3.8 3.8	3.8	4.3
				Bottom	7	25.5 25.5	25.5	7.9 7.9	7.9	32.5 32.5	32.5	68.9 68.9	68.9	4.7 4.7	4.7	4.7	6.2 6.4	6.3		4.3 4.5	4.4	
				Surface	1	25.6 25.8	25.7	7.9 7.9	7.9	32.2 32.2	32.2	71.8 72.3	72.1	5.9 5.9	5.9	5.9	5.8 5.6	5.7		3.4 3.4	3.4	
G4	Cloudy	Moderate	10:06	Middle	4.5	25.4 25.4	25.4	7.9 7.9	7.9	32.4 32.4	32.4	70.6 70.6	70.6	5.8 5.8	5.8		6.5 6.4	6.5	6.5	4.4 4.3	4.4	4.2
				Bottom	8	25.4 25.4	25.4	7.9 7.9	7.9	32.6 32.6	32.6	66.0 67.8	66.9	4.5 4.6	4.6	4.6	7.2 7.5	7.4		4.8 4.7	4.8	
				Surface	1	25.6 25.7	25.7	7.9 7.9	7.9	32.3 32.3	32.3	72.4 72.5	72.5	5.9 5.9	5.9	5.9	6.0 5.9	6.0		4.2	4.3	
M1	Cloudy	Moderate	09:36	Middle	3	25.5 25.5	25.5	7.9 7.9	7.9	32.3 32.3	32.3	71.1 71.4 70.2	71.3	5.9 5.9	5.9		6.3 6.5	6.4	6.5	4.4 4.3	4.4	3.9
				Bottom	5	25.3 25.3 25.7	25.3	7.9 7.9 7.9	7.9	32.4 32.5 32.2	32.5	70.2 70.1 73.9	70.2	4.8 4.8	4.8	4.8	6.8 7.3 6.0	7.1		3.1 3.1 4.5	3.1	
				Surface	1	25.7 25.8 25.4	25.8	7.9 7.9 7.9	7.9	32.2 32.1 32.5	32.2	73.9 74.1 71.0	74.0	6.0 6.0 5.9	6.0	6.0	5.9 7.0	6.0		4.5 4.4 3.8	4.5	
M2	Cloudy	Moderate	09:20	Middle	5.5	25.4 25.4 25.1	25.4	7.9 7.9 8.0	7.9	32.5 33.0	32.5	71.0 71.2 73.1	71.1	5.9 5.0	5.9		7.0 7.0 9.2	7.0	7.5	3.8 6.6	3.8	5.0
				Bottom	10	25.1 25.9	25.1	8.0 7.9	8.0	33.0 32.1	33.0	73.0 71.5	73.1	5.0	5.0	5.0	9.8	9.5		6.5 4.5	6.6	
Ma	Claud	Madaat	00.57	Surface	1	25.9 25.7	25.9	7.9 7.9	7.9	32.1 32.4	32.1	71.5 69.7	71.5	5.9 5.7	5.9	5.9	5.5 5.8	5.4		4.5 4.9	4.5	4.6
M3	Cloudy	Moderate	09:57	Middle Bottom	7	25.7 25.5	25.7 25.6	7.9 7.9	7.9 7.9	32.3 32.6	32.4	69.9 66.1	69.8 65.9	5.8 4.5	5.8 4.5	4.5	5.8	5.8 6.1	5.8	4.7 5.0	4.8 5.1	4.8
				Surface	1	25.6 25.4	25.6	7.9 7.9	7.9	32.5 32.5	32.6	65.7 71.9	71.8	4.5 5.9	5.9	4.5	6.2 7.4	7.5		5.2 3.6	3.7	
M4	Cloudy	Moderate	09:11	Middle	4.5	25.3 25.2	25.4	7.9 7.9	7.9	32.6 32.7	32.0	71.6 71.7	71.8	5.9 5.9	5.9	5.9	7.5 8.7	8.9	9.1	3.8 8.1	8.1	5.6
141-4	Oloudy	iodciale	03.11	Bottom	8	25.2 25.2	25.2	7.9 7.9	7.9	32.7 32.8	32.8	71.7 71.5	71.7	5.9 4.9	4.9	4.9	9.1 10.7	10.8	5.1	8.0 4.8	4.9	5.5
		<u> </u>		Surface	1	25.1 25.9	25.9	7.9	7.9	32.8 32.0	32.0	71.5 71.5	70.7	4.9 5.9	5.9		10.9 5.9	6.0		4.9	4.2	
M5	Cloudy	Moderate	10:20	Middle	6	25.8 25.2	25.2	7.9 7.9	7.9	32.0 32.6	32.7	69.9 69.2	69.4	5.8 5.7	5.8	5.9	6.0 8.4	8.5	8.3	4.2	4.8	5.1
				Bottom	11	25.2 25.0	25.0	7.9 8.0 8.0	8.0	32.7 33.1	33.1	69.6 71.6 71.7	71.7	5.8 4.9	4.9	4.9	8.5 10.7	10.4		6.3	6.4	
				Surface	-	25.0	-	- 8.0	-	33.0	-		-	4.9	-		10.1	-		6.4	-	
M6	Cloudy	Moderate	10:13	Middle	2.4	25.6	25.6	7.9 7.9	7.9	32.2 32.2	32.2	72.4 71.8	72.1	5.9 5.9	5.9	5.9	6.0	6.0	6.0	4.8	4.9	4.9
				Bottom	-	25.6	-	7.9	-	32.2	-	- 71.8	-	- 5.9	-	-	6.0	-		5.0	-	
						-			1									1		-		

emarks: *DA: Denth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 26 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 12.6 NTU</u>	<u>C1: 13.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.5 mg/L</u>	C1: 6.0 mg/L
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 8.2 mg/L</u>	<u>C1: 8.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 August 2017

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxyger	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.7 25.7	25.7	8.0 8.0	8.0	29.8 29.4	29.6	80.6 81.0	80.8	5.6 5.6	5.6	5.6	3.3 3.4	3.4		4.0 4.1	4.1	
C1	Cloudy	Moderate	16:36	Middle	9.5	25.6 25.6	25.6	8.0 8.0	8.0	32.6 32.6	32.6	80.2 79.9	80.1	5.5 5.4	5.5		5.1 4.9	5.0	6.9	3.7 3.6	3.7	4.2
				Bottom	18	25.6 25.6	25.6	8.1 8.1	8.1	33.6 33.6	33.6	84.3 84.4	84.4	5.7 5.7	5.7	5.7	12.3 12.3	12.3		4.8 4.8	4.8	
				Surface	1	25.6 25.6	25.6	7.9 7.9	7.9	31.0 31.2	31.1	77.3 77.0	77.2	5.3 5.3	5.3		3.6 3.8	3.7		5.5 5.5	5.5	
C2	Cloudy	Moderate	15:16	Middle	17.5	25.6 25.6	25.6	8.0 8.0	8.0	33.1 33.0	33.1	84.9 83.8	84.4	5.8 5.7	5.8	5.6	10.9 10.9	10.9	8.5	4.5 4.5	4.5	5.0
				Bottom	34	25.6 25.6	25.6	8.0 8.0	8.0	33.1 33.2	33.2	85.8 85.4	85.6	5.8 5.8	5.8	5.8	10.8 11.0	10.9		5.0 4.9	5.0	
				Surface	1	25.6	25.6	8.0	8.0	30.7	30.8	83.7	82.8	5.8	5.7		3.2	3.3		3.6	3.6	
G1	Cloudy	Moderate	15:51	Middle	4	25.6 25.6	25.6	8.0	8.0	30.8 32.1	32.1	79.6	79.4	5.6 5.4 5.4	5.4	5.6	9.5	9.4	8.5	5.0	5.0	4.0
				Bottom	7	25.6 25.6	25.6	8.0	8.0	32.1 32.9	32.9	79.2 78.2	78.3	5.3	5.3	5.3	9.3	12.8		3.2	3.3	}
				Surface	1	25.6 25.6	25.6	8.0	8.0	32.8 30.8	30.9	78.4 81.7	81.2	5.3 5.6	5.6		12.5 3.2	3.3		3.3	3.6	
G2	Cloudy	Moderate	15:39	Middle	5	25.6 25.6	25.6	8.0 8.0	8.0	30.9 32.4	32.4	80.6 79.0	79.0	5.5 5.4	5.4	5.5	3.3 8.3	8.3	7.6	3.5	3.4	3.6
02	Cioday	Woderate	13.35	Bottom	9	25.6 25.6	25.6	8.0	8.0	32.4 33.1	33.1	79.0 83.2	82.7	5.4 5.6	5.6	5.6	8.3 10.8	11.3	7.0	3.4	3.8	3.0
						25.6 25.6		8.0 8.0		33.0 30.6		82.2 82.2		5.6 5.7		5.0	11.8 6.8			3.9 5.3		
				Surface	1	25.6 25.6	25.6	8.0	8.0	30.8 32.2	30.7	81.9 78.5	82.1	5.6 5.4	5.7	5.6	7.0	6.9		5.2	5.3	
G3	Cloudy	Moderate	15:58	Middle	4	25.6 25.6	25.6	8.0	8.0	32.3 32.8	32.3	79.2 77.2	78.9	5.4 5.2	5.4		7.4	7.6	8.5	6.0	6.0	5.6
				Bottom	7	25.6 25.6	25.6	8.0 8.0	8.0	32.9 30.1	32.9	79.1 87.7	78.2	5.4	5.3	5.3	10.7	11.0		5.4	5.4	
				Surface	1	25.6	25.6	8.0	8.0	30.2	30.2	85.4	86.6	5.9	6.0	5.7	4.0	4.3		4.1	4.2	
G4	Cloudy	Moderate	16:10	Middle	4.5	25.6 25.6	25.6	8.0 8.0	8.0	32.5 32.5	32.5	78.2 78.2	78.2	5.3 5.3	5.3		5.2 5.5	5.4	6.9	4.2 4.2	4.2	4.2
				Bottom	8	25.6 25.6	25.6	8.0 8.0	8.0	32.8 32.9	32.9	79.6 79.4	79.5	5.4 5.4	5.4	5.4	10.9 11.0	11.0		4.2 4.3	4.3	<u> </u>
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	30.5 30.6	30.6	87.0 84.4	85.7	6.0 5.8	5.9	5.8	6.2 5.3	5.8		4.9 5.0	5.0	
M1	Cloudy	Moderate	15:46	Middle	3	25.6 25.6	25.6	8.0 8.0	8.0	31.2 31.5	31.4	83.0 82.0	82.5	5.7 5.6	5.7	0.0	5.5 6.2	5.9	6.9	5.0 5.0	5.0	5.1
				Bottom	5	25.6 25.6	25.6	8.0 8.0	8.0	32.6 32.6	32.6	77.5 77.1	77.3	5.3 5.2	5.3	5.3	8.9 9.3	9.1		5.4 5.3	5.4	<u> </u>
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	30.6 30.6	30.6	82.2 81.5	81.9	5.7 5.6	5.7		3.4 3.5	3.5		4.9 4.8	4.9	
M2	Cloudy	Moderate	15:32	Middle	6	25.6 25.6	25.6	8.0 8.0	8.0	32.3 32.3	32.3	79.9 79.4	79.7	5.4 5.4	5.4	5.6	5.1 6.2	5.7	6.3	4.7 4.7	4.7	4.8
				Bottom	11	25.6 25.6	25.6	8.0 8.0	8.0	33.1 33.1	33.1	83.6 83.1	83.4	5.7 5.6	5.7	5.7	9.3 10.1	9.7		4.7 4.7	4.7	1
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	31.1 30.8	31.0	81.4 81.1	81.3	5.6 5.6	5.6		7.0 6.9	7.0		4.4	4.4	
M3	Cloudy	Moderate	16:03	Middle	4	25.6	25.6	8.0 8.0	8.0	32.3 32.0	32.2	78.0 79.3	78.7	5.3 5.4	5.4	5.5	8.8	8.0	7.9	5.5	5.5	4.6
				Bottom	7	25.6 25.6 25.6	25.6	8.0 8.0	8.0	32.8 32.7	32.8	75.7 75.8	75.8	5.4 5.1 5.2	5.2	5.2	7.1 8.5 8.6	8.6	1	5.5 4.0 3.9	4.0	
				Surface	1	25.6	25.6	8.0	8.0	29.4	29.6	88.0	87.8	6.1	6.1		3.8	4.0		4.2	4.3	
M4	Cloudy	Moderate	15:24	Middle	4.5	25.6 25.6	25.6	8.0	8.0	29.7 32.3	32.5	87.6 80.2	80.0	5.5	5.5	5.8	6.0	6.0	6.9	4.3	4.1	4.1
	,			Bottom	8	25.6 25.6	25.6	8.0	8.0	32.6 33.0	33.1	79.7 82.9	83.2	5.4 5.6	5.7	5.7	6.0 10.5	10.7	1	3.8	3.8	<u> </u>
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	33.1 31.3	31.2	83.5 81.1	80.9	5.7 5.6	5.6	J	10.8	3.0		3.8	3.8	
M5	Cloudy	Moderate	16:27	Middle	6	25.6 25.6	25.6	8.0 8.0	8.0	31.1 32.2	32.3	80.7 78.7	78.9	5.5 5.4	5.4	5.5	3.1 3.7	3.8	4.8	3.8 4.6	4.6	4.0
CIVI	Cloudy	Moderate	10:27			25.6 25.6		8.0 8.0		32.3 32.6		79.0 78.7		5.4 5.4		E 4	3.8 7.1		4.5	4.5 3.7		4.0
				Bottom	11	25.6	25.6	8.0	8.0	32.6	32.6	78.5	78.6	5.3	5.4	5.4	8.2	7.7	<u> </u>	3.7	3.7	
				Surface	-	25.6	-	8.0	-	30.8	-	79.4	-	5.5	-	5.5	3.1	-	1	3.9	-	
M6	Cloudy	Moderate	16:17	Middle	2.3	25.6	25.6	8.0	8.0	30.8	30.8	79.5	79.5	5.5	5.5		3.2	3.2	3.2	3.8	3.9	3.9
				Bottom	-	-	-		-	-	-		-	_	-	-	-	-			-	

emarks: *DA: Depth-Averag

Appendix I - Action and Limit Levels for Marine Water Quality on 28 August 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 13.1 NTU</u>	<u>C2: 14.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations M1-M	<u>5</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6 mg/L</u>	<u>C2: 6.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 August 2017

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.6 25.5	25.6	8.0 8.0	8.0	31.0 31.0	31.0	83.6 83.9	83.8	5.7 5.8	5.8	5.8	4.5 4.0	4.3		4.5 4.6	4.6	l
C1	Cloudy	Moderate	11:27	Middle	9.5	25.6 25.6	25.6	8.0 8.0	8.0	32.9 32.9	32.9	84.9 84.9	84.9	5.8 5.8	5.8	5.6	7.0 6.8	6.9	7.3	4.3 4.2	4.3	4.9
				Bottom	18	25.7 25.7	25.7	8.1 8.1	8.1	33.3 33.3	33.3	85.6 85.5	85.6	5.8 5.8	5.8	5.8	10.1 11.0	10.6		5.8 5.8	5.8	
				Surface	1	25.5 25.5	25.5	8.0 8.0	8.0	30.2 29.0	29.6	90.5 89.4	90.0	6.2 6.2	6.2	5.8	4.6 4.5	4.6		3.9 3.8	3.9	l
C2	Cloudy	Moderate	10:07	Middle	17	25.6 25.6	25.6	8.0 8.0	8.0	32.4 32.5	32.5	77.1 78.2	77.7	5.3 5.3	5.3		5.0 5.1	5.1	6.1	4.1 4.1	4.1	3.9
				Bottom	33	25.6 25.6	25.6	8.0 8.0	8.0	32.6 32.7	32.7	76.4 78.6	77.5	5.2 5.3	5.3	5.3	8.0 8.9	8.5		3.6 3.6	3.6	
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	30.2 30.9	30.6	85.6 83.0	84.3	5.9 5.7	5.8	5.7	7.9 8.0	8.0		5.1 5.1	5.1	ļ
G1	Cloudy	Moderate	10:44	Middle	4	25.6 25.6	25.6	8.0 8.0	8.0	32.0 31.4	31.7	81.0 82.5	81.8	5.5 5.7	5.6		4.0 3.8	3.9	5.6	4.9 4.9	4.9	4.6
				Bottom	7	25.6 25.6	25.6	8.0 8.0	8.0	32.3 32.3	32.3	79.9 79.8	79.9	5.4 5.4	5.4	5.4	4.9 4.9	4.9		3.8 3.7	3.8	
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	30.1 29.8	30.0	86.8 85.9	86.4	6.0 5.9	6.0	5.8	5.6 5.8	5.7		4.7 4.6	4.7	ļ
G2	Cloudy	Moderate	10:33	Middle	5	25.6 25.6	25.6	8.0 8.0	8.0	32.3 32.3	32.3	80.9 80.5	80.7	5.5 5.5	5.5		4.3 4.5	4.4	5.6	4.2 4.3	4.3	4.3
				Bottom	9	25.6 25.6	25.6	8.0 8.0	8.0	32.5 32.5	32.5	79.4 79.1	79.3	5.4 5.4	5.4	5.4	6.7 6.9	6.8		3.8 3.8	3.8	
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	30.3 29.8	30.1	85.3 84.2	84.8	5.9 5.8	5.9	5.8	5.1 5.8	5.5		4.0 4.1	4.1	ļ
G3	Cloudy	Moderate	10:51	Middle	4	25.6 25.6	25.6	8.0 8.0	8.0	31.1 31.1	31.1	83.4 82.8	83.1	5.7 5.7	5.7		7.8 7.7	7.8	7.1	8.2 8.0	8.1	6.1
				Bottom	7	25.6 25.6	25.6	8.0 8.0	8.0	31.9 31.9	31.9	82.3 82.3	82.3	5.6 5.6	5.6	5.6	7.6 8.6	8.1		6.1 5.9	6.0	
				Surface	1	25.5 25.5	25.5	8.0 8.0	8.0	30.0 29.9	30.0	85.9 85.1	85.5	5.9 5.9	5.9	5.8	4.3 4.1	4.2		5.0 4.9	5.0	ļ
G4	Cloudy	Moderate	11:03	Middle	4.5	25.6 25.6	25.6	8.0 8.0	8.0	31.8 31.8	31.8	81.3 81.1	81.2	5.6 5.5	5.6		4.2 4.4	4.3	4.5	6.4 6.5	6.5	5.4
				Bottom	8	25.6 25.6	25.6	8.0 8.0	8.0	32.2 32.1	32.2	80.3 80.1	80.2	5.5 5.5	5.5	5.5	4.9 4.9	4.9		4.6 4.6	4.6	
				Surface	1	25.5 25.5	25.5	8.0 8.0	8.0	29.8 30.0	29.9	89.4 87.2	88.3	6.2	6.1	5.9	6.1 6.9	6.5		5.0 5.0	5.0	ļ
M1	Cloudy	Moderate	10:39	Middle	3	25.6 25.6	25.6	8.0 8.0	8.0	31.6 31.5	31.6	83.7 83.6	83.7	5.7 5.7	5.7		8.8 7.7	8.3	8.4	7.4 7.4	7.4	5.5
				Bottom	5	25.6 25.6	25.6	8.0 8.0	8.0	32.1 32.1	32.1	81.7 81.1	81.4	5.6 5.5	5.6	5.6	10.5 10.2	10.4		4.2 4.2	4.2	
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	29.9 30.1	30.0	87.3 84.9	86.1	6.0 5.9	6.0	5.8	7.5 7.7	7.6		5.1 5.0	5.1	ļ
M2	Cloudy	Moderate	10:26	Middle	6	25.6 25.6	25.6	8.0 8.0	8.0	32.5 32.5	32.5	81.7 81.3	81.5	5.6 5.5	5.6		4.9 4.9	4.9	7.6	4.2 4.1	4.2	4.7
				Bottom	11	25.6 25.6	25.6	8.0 8.0	8.0	32.6 32.6	32.6	78.7 78.4	78.6	5.4 5.3	5.4	5.4	10.2 10.1	10.2		4.8 4.8	4.8	
				Surface	1	25.6 25.5	25.6	8.0 8.0	8.0	30.3 27.1	28.7	84.3 84.3	84.3	5.8 5.9	5.9	5.8	7.2 7.4	7.3		5.5 5.3	5.4	ļ
М3	Cloudy	Moderate	10:55	Middle	4	25.6 25.6	25.6	8.0 8.0	8.0	31.2 31.3	31.3	82.4 82.1	82.3	5.7 5.6	5.7		9.3 9.8	9.6	9.5	5.6 5.6	5.6	5.5
				Bottom	7	25.6 25.6	25.6	8.0 8.0	8.0	31.9 32.1	32.0	80.8 80.2	80.5	5.5 5.5	5.5	5.5	11.0 12.0	11.5		5.6 5.4	5.5	
				Surface	1	25.5 25.5	25.5	8.0 8.0	8.0	29.4 28.2	28.8	91.4 91.8	91.6	6.3 6.4	6.4	6.2	4.8 4.9	4.9		3.6 3.5	3.6	ļ
M4	Cloudy	Moderate	10:15	Middle	4.5	25.6 25.6	25.6	8.0 8.0	8.0	31.2 31.3	31.3	87.4 86.7	87.1	6.0 5.9	6.0		4.7 4.7	4.7	5.1	4.3	4.3	4.2
				Bottom	8	25.6 25.6	25.6	8.0 8.0	8.0	32.3 32.4	32.4	84.0 84.2	84.1	5.7 5.7	5.7	5.7	5.6 5.7	5.7		4.8 4.7	4.8	
				Surface	1	25.6 25.6	25.6	8.0 8.0	8.0	29.8 29.9	29.9	85.1 84.3	84.7	5.9 5.8	5.9	5.6	5.0 5.0	5.0		5.2 5.1	5.2	}
M5	Cloudy	Moderate	11:18	Middle	6	25.6 25.6 25.7	25.6	8.0 8.0 8.1	8.0	31.7 31.6 33.2	31.7	77.7 77.8 86.9	77.8	5.3 5.3 5.9	5.3		3.7 3.3 9.4	3.5	6.1	5.8 5.7 3.6	5.8	4.9
				Bottom	11	25.6	25.7	8.1	8.1	33.2 33.1	33.2	85.2	86.1	5.9 5.8	5.9	5.9	9.4 10.0	9.7		3.6	3.6	
				Surface	-	25.6	-	8.0	-	31.9	-	81.3	-	5.6	-	5.6	4.4	-		4.0	-	ł
M6	Cloudy	Moderate	11:10	Middle	2.2	25.6	25.6	8.0	8.0	31.9	31.9	81.3 79.8	80.6	5.5	5.6		4.4	4.3	4.3	4.0	4.0	4.0
				Bottom	-		-		-		-		-	-	-	-		-			-	<u> </u>

emarks: *DA: Depth-Average

Appendix I - Action and Limit Levels for Marine Water Quality on 28 August 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 12.7 NTU</u>	<u>C1: 13.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.5 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations G1-G4	4, M1-M5	T
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 August 2017

(Mid-Ebb Tide)

Martin M		10/	0	Camalia			T =				0-6-		DO 0-4	+: (0/ \	Discol		//I \		TL.: Jile ./AITI	1)	0	0 - 1:	(/l \
C1	Location				Dep	th (m)																	
Control Modern Control Modern Control Modern Control					Surface	1	26.0		8.0		31.8		74.6		5.1			2.5			4.3		
Sump Moderate Part Par					Curiado			20.0		0.0		01		7 0.0		0.0	5.2		2			1.0	
Company Comp	C1	Sunny	Moderate	07:57	Middle	9.5		25.6		8.1		33.3		78.2		5.3			3.5	3.5		4.6	4.9
Surry Moderate M					Bottom	18		25.5		8.1		33.6		80.9		5.5	5.5		4.6			5.8	
Surry Moderale Color Color Moderale Color Moderale Color Moderale Color									0.1		00.0		01.0		0.0						0.0		
Column Moderate Colu					Surface	1		26.3		7.9		30.6		72.9		5.0	E 2		1.8			5.1	
Moderate Part Moderate Part Moderate Part Moderate Part	C2	Sunny	Moderate	06:44	Middle	17		25.6		8.0		33.5		77.7		5.3	5.2		5.8	4.6		7.3	6.2
Survey Modelene Surv		,							0.0		0.0							0.0	ļ	ł			
Column C					Bottom	33		25.5		8.1	33.6	33.6		78.8	5.3	5.3	5.3		6.3			6.1	
Surrey Moderate O7-16 Mode A 258 258 8.0 8.0 322 32.8 775 771 5.2 5.3 5.4 2.8 2.8 2.5 2.7 5.0 5.1 3.9					Surface	1		26.4		8.0		31.7		79.5		5.4			1.7			3.4	
Simple Moderate O'16 Moderate O'17 Moderate O'17	0.4			07.40		<u> </u>		05.0				00.0		77.4			5.4		0.5				
Surrey Moderate 07-29 Mo	G1	Sunny	Moderate	07:16	Middle	4		25.8		8.0		32.8	76.6	77.1		5.3			2.5	2.7		5.1	3.9
Moderate Moderate					Bottom	7		25.6		8.0		33.2		74.9		5.1	5.1		3.8			3.3	
Surrey Moderate Original Property Moderate Original Property Original Proper					Surface	-1		26.5		9.0		21.0		91.6	4.1	5.5			17			2.6	
Sump Moderate Wideland Wi					Surface			20.5		0.0		31.0		01.0		5.5	5.5		1.7			2.0	
Sump Moderate Part Moderate Part	G2	Sunny	Moderate	07:03	Middle	5		25.7		8.0		33.0		79.3		5.4			2.4	2.4		2.7	3.4
Sumy Noderate Part Sum Sum Noderate Part Sum Part Sum Noderate Part Sum Sum Sum Sum Sum Noderate Part Sum					Bottom	q	25.6	25.6	8.1	8.1	33.3	33.3	78.7	78.3	5.3	5.3	5.3	3.2	3.2	1	5.1	5.0	ľ
Surrey Moderate Oracle					Bottom			20.0		0.1		00.0		7 0.0		0.0	0.0		0.2			0.0	
Moderate Graph Moderate					Surface	1		26.5		8.0		31.7		79.4		5.4			1.6			3.4	
Summy Moderate M	G3	Sunny	Moderate	07:23	Middle	4		25.8		8.0		32.7		76.5		5.2	5.3		2.2	2.4		5.9	4.4
Suriny Moderate O7.32 Surface 1 25.6 25.6 8.0 8.0 33.1 33.4 74.0 74.8 5.0 30 30 32 33.5 3.7 3.6																			ļ				
Surny Moderate 07:37 Moderate 07:38 Surface 1 282 284 80 80 32.8 32.8 78.5 5.3 5.3 5.4 1.9 1.8 3.0 3.0 3.1					Bottom	7		25.6		8.0		33.2		73.4		5.0	5.0		3.5			3.8	
Moderate O7-17					Surface	1		26.4		8.0		31.9		79.9		5.4			1.8			3.0	
Moderate 07-17 Moderate 07-17 Moderate 07-17 Moderate 07-17 Moderate 07-12 Moderate		_															5.4						
Surny Moderate Surny Moderate Office	G4	Sunny	Moderate	07:37	Middle	4.5	25.7	25.7	8.0	8.0	32.8	32.8	78.3	78.5	5.3	5.3		2.1	2.1	2.6	3.0	3.0	3.1
M1 Sunny Moderate V1-12 Middle Sun					Bottom	8		25.6		8.0		33.3		73.1		5.0	5.0		3.8			3.4	
M1 Sunny Moderate 07:42 Middle 3 26.0 25.9 8.0 8.0 317 77.2 76.7 5.2 5.2 5.3 1.5 1.7 1.9 2.2 2.9 2.9 4.2 Bottom 5 25.7 25.7 8.0 8.0 8.0 32.8 76.2 76.7 5.2 5.2 5.2 1.0 1.0 1.9 2.2 2.9 2.9 4.2 Bottom 5 22.5 25.7 25.7 8.0 8.0 8.0 33.0 33.0 75.3 75.8 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5					06			20.5		0.0		24.0		70.0		F 0			4.0	<u> </u>		2.4	
M1 Sunny Moderate 07:12 Middle 3 259 8.0 8.0 8.0 324 772 767 5.2 5.2 1.0 1.0 1.9 2.2 2.9 2.9 4.2 Bettom 5 257 25.7 8.0 8.0 8.0 33.0 33.0 75.3 75.8 5.2 5.2 5.2 3.1 3.2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7					Surface	'		20.5		8.0		31.0		79.2		5.3	5.3		1.0			3.1	
Bottom S 25.7 25.7 8.0 8.0 8.0 33.0 33.0 75.8 5.2 5.2 5.2 3.1 3.2 6.6 6.7	M1	Sunny	Moderate	07:12	Middle	3		25.9		8.0		32.4		76.7		5.2			1.9	2.2		2.9	4.2
M2 Sunny Moderate 06:59 Surface 1 26:7 8.0 8.0 8.0 31.5 31.5 82.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5					Bottom	5	25.7	25.7	8.0	8.0	33.0	33.0	76.2	75.8	5.2	5.2	5.2	3.1	3.2		6.6	6.7	
M2 Sumy Moderate 06:59 Middle 6 25:7 8.0 8.0 8.0 31.5 81.7 82.1 5.5 5.3 5.3 5.4 5.4 2.5 2.5 2.7 4.8 4.8 4.8 4.8 4.9 4.9 8.0 32.8 32.9 78.1 78.1 77.4 5.5 5.3 5.3 5.3 5.3 3.9 4.0 4.0 5.2 5.1 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3					Dottom			20.1	0.0	0.0		00.0		70.0	0.1	0.2	0.2	U.L	0.2		0.7	0.7	
M2 Sunny Moderate 06.59 Middle 6 25.7 25.7 8.0 8.0 8.0 32.8 32.9 78.1 78.9 5.4 2.5 2.5 2.7 4.8 4.8 4.9 4.9 4.9 5.3 5.3 5.3 5.0 4.0 5.1 5.2 5.2 5.2 5.1 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3					Surface	1		26.7		8.0		31.5		82.1		5.5			1.6			4.7	
M3 Sunny Moderate M6 Sunny	M2	Sunny	Moderate	06:59	Middle	6		25.7		8.0		32.9		78.9		5.4	5.5		2.5	2.7		4.8	4.9
M3 Sunny Moderate 07:29		,																		ł			
M3 Sunny Moderate 07:29 Middle 4 25.8 8.0 8.0 8.0 32.6 72.9 77.9 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6					Bottom	11		25.6		8.1	33.4	33.4	77.1	77.4	5.2	5.3	5.3	4.0	4.0		5.1	5.2	
M3 Sunny Moderate 07:29 Middle 4 25.8 25.8 8.0 8.0 8.0 32.6 72.9 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 1.0 2.0 2.0 2.5 3.6 3.6 3.6 4.4 8.0 8.0 8.0 32.6 71.6 72.3 4.9 4.9 4.9 4.9 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2					Surface	1		26.5		8.0		31.7		78.2		5.3			1.6			3.4	
M6 Sunny Moderate 07:43 Middle 2 25.8 25.8 8.0 8.0 8.0 32.6 32.6 71.6 72.5 4.9 4.9 4.9 1.9 2.0 2.5 3.6 3.0 4.4 Sunny Moderate 07:48 Middle 4.5 25.9 25.9 8.0 8.0 8.0 33.1 33.1 33.1 71.4 77.4 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	140	0		07.00	N 41-41-41-			05.0		0.0		20.0		70.0		4.0	5.1		0.0	0.5		2.0	4.4
M4 Sunny Moderate Of 1:42	M3	Sunny	Moderate	07:29	Middle	4	25.8	25.8	8.0	8.0	32.6	32.6	71.6	72.3	4.9	4.9		1.9	2.0	2.5	3.6	3.6	4.4
M4 Sunny Moderate 06:52 Surface 1					Bottom	7		25.6		8.0		33.1		70.1		4.8	4.8		3.9			6.1	
Mderate Moderate					Curfoso	-1		26.5		۰.		20.0		90.2		c c			1.0			c c	
Mderate Usi2 Middle 4.5 25.8 29.9 8.0 8.0 32.4 77.5 77.9 5.3 5.3 2.9 3.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0					Suriace	'		20.0		0.0		30.0		00.2		ა.ა	5.4		1.0			0.0	
Moderate Moderate	M4	Sunny	Moderate	06:52	Middle	4.5		25.9		8.0		32.4		77.9		5.3			2.3	2.4		3.4	4.3
M6 Sunny Moderate 07:43 Surface 1 26.2 26.4 8.0 8.0 8.0 31.7 31.5 80.2 80.3 5.4 5.4 5.4 1.8 1.7 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.1 3.1 31.5 80.2 80.3 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4					Bottom	8	25.6	25.6	8.0	8.0	33.2	33.3	77.7	77.4	5.3	5.3	5.3	2.9	3.1	1	4.0	4.0	
M6 Sunny Moderate 07:48 Middle			<u> </u>												Ţ.=					<u> </u>			
M6 Sunny Moderate 07:48 Middle 6 25.8 25.9 8.0 8.0 8.0 32.7 78.0 78.5 5.4 2.4 2.5 3.2 6.2 6.2 4.3 32.3 33.4 77.5 5.3 5.4 2.4 2.5 3.2 6.2 6.2 4.3 32.4 33.4 33.4 33.4 77.5 5.2 5.3 5.3 5.3 5.8 5.2 5.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1					Surface	1		26.4		8.0		31.5		80.3		5.4	5.4		1.7			3.5	
Bottom 11 25.6 25.6 8.1 8.1 8.1 33.3 33.4 77.5 77.2 5.3 5.3 5.8 5.2 5.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	M5	Sunny	Moderate	07:48	Middle	6		25.9		8.0		32.5		78.5		5.4	5.4		2.5	3.2		6.2	4.3
M6 Sunny Moderate 07:43 Middle 2.1 25.9 25.9 8.0 8.0 8.0 32.4 32.4 78.9 79.1 5.4 5.2 5.3 5.3 5.4 5.4 1.9 2.0 2.0 2.0 5.1 5.2 5.2 5.2																			ļ	1			ŀ
M6 Sunny Moderate 07:43 Middle 2.1 25.9 25.9 8.0 8.0 8.0 32.4 32.4 78.9 79.1 5.4 5.4 1.9 2.0 2.0 2.0 5.1 5.2 5.2 5.2		<u> </u>	<u> </u>		Bottom	11		25.6		ъ.1		33.4		11.2		5.3	5.3		5.5	<u> </u>		3.1	
M6 Sunny Moderate 07:43 Middle 2.1 25.9 25.9 8.0 8.0 8.0 32.4 32.4 79.3 79.1 5.4 5.4 1.9 2.0 2.0 5.1 5.2 5.2			1		Surface	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	-	-	
wild Sulliy inductate 07.43 inducte 2.1 25.9 20.9 8.0 6.0 32.4 52.4 78.9 79.1 5.3 5.4 2.0 2.0 2.0 5.2 5.2 5.2	Me	Suppr	Moderate	07:43	Middle	2.1	25.9	25.0	8.0	9.0	32.4	32.4	79.3	70.1	5.4	5.4	5.4	1.9	2.0	2.0	5.1	5.2	5.2
	IVIO	Juliny	wouchale	07.40	wildule	2.1		23.5		0.0		32.4		13.1		J. 4			2.0	2.0		J.2	J.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	

emarks: *DA: Denth-Avera

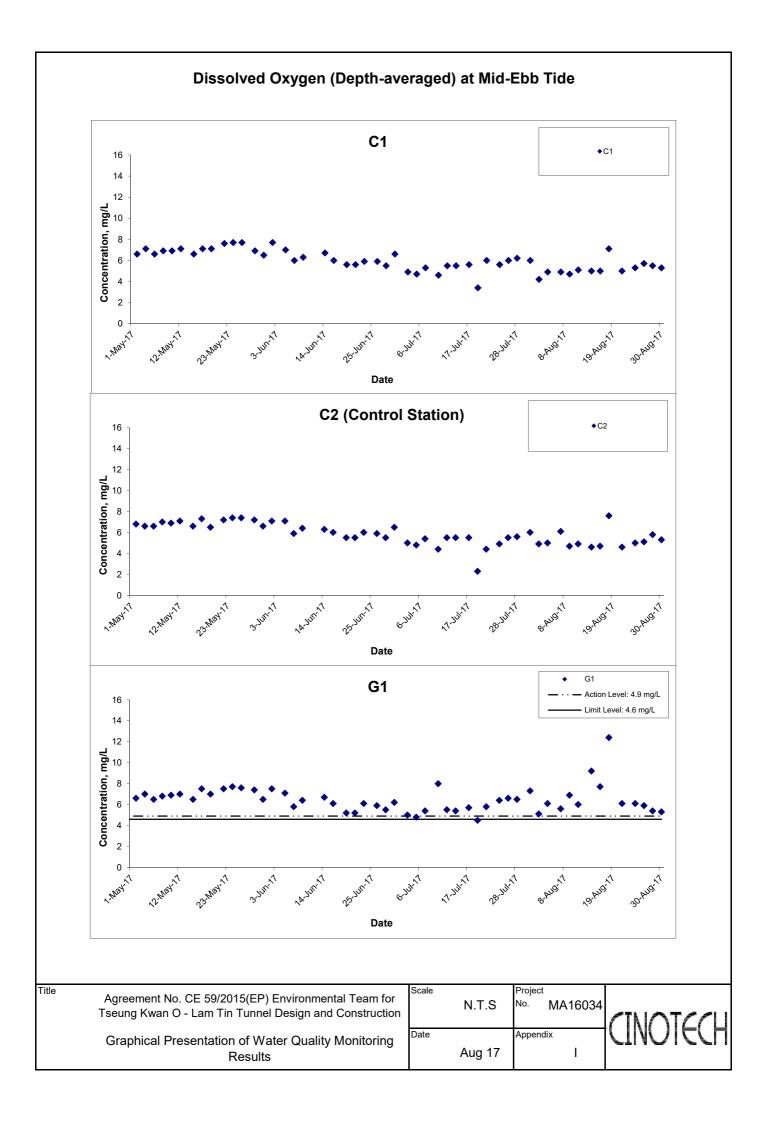
Appendix I - Action and Limit Levels for Marine Water Quality on 30 August 2017 (Mid-Ebb Tide)

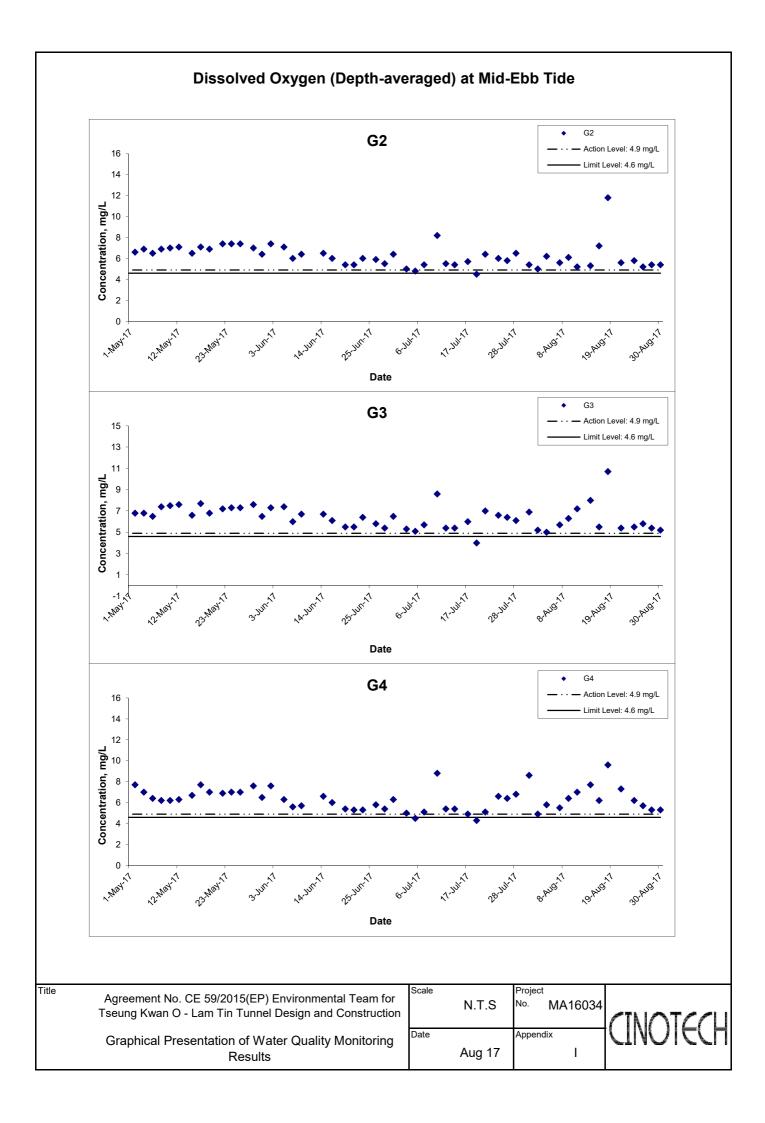
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 7.6 NTU</u>	<u>C2: 8.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.3 mg/L</u>	<u>C2: 7.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

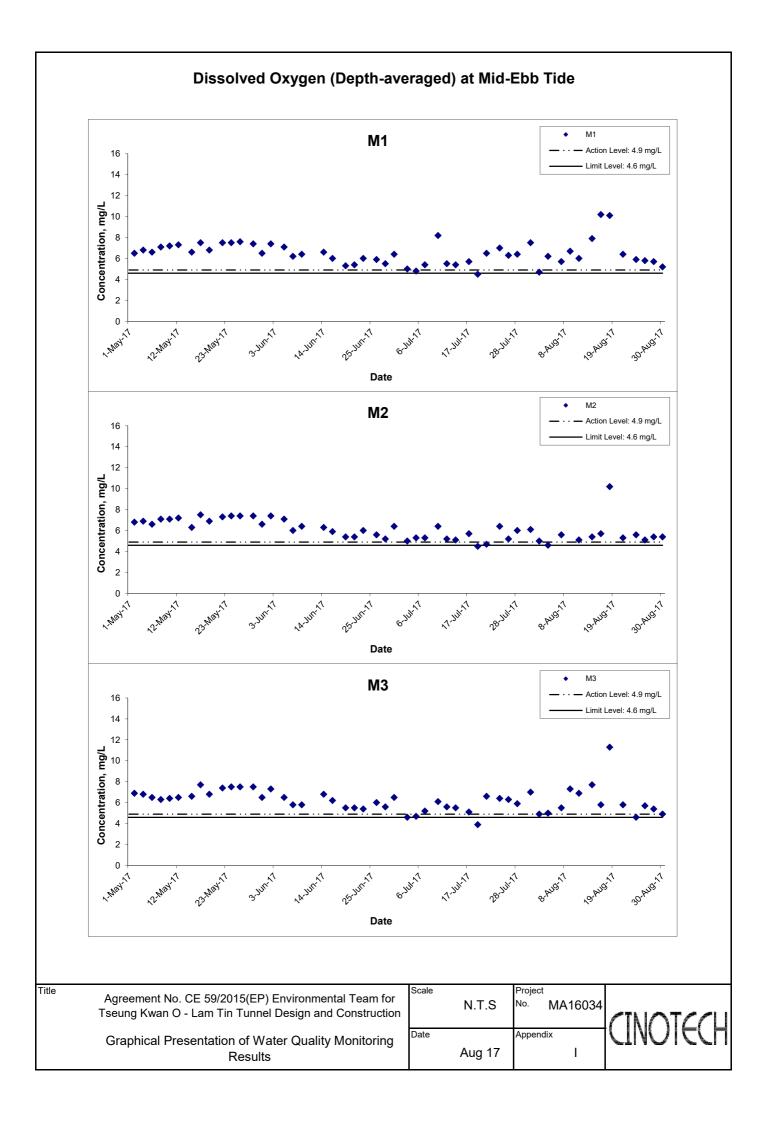
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 August 2017

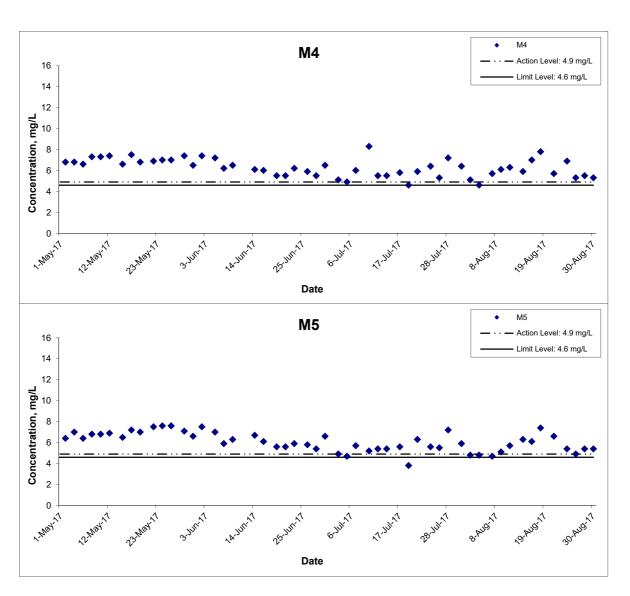
(Mid-Flood Tide)

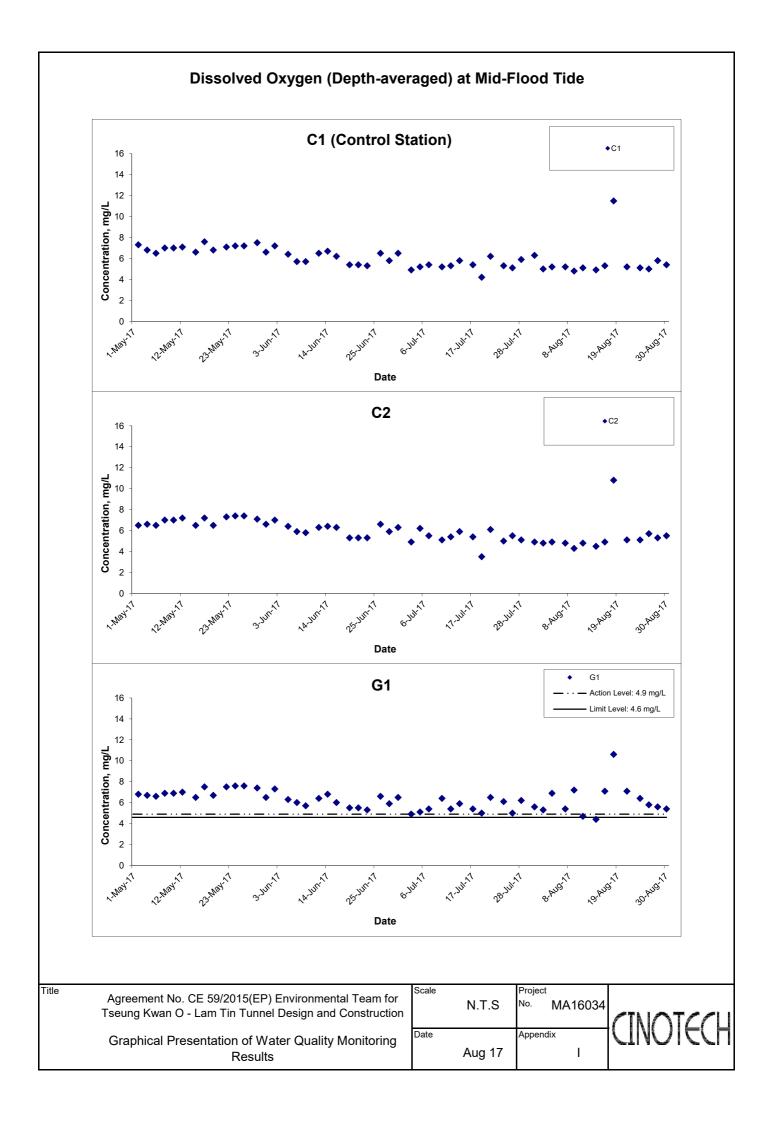

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.8 26.7	26.8	8.0 8.0	8.0	31.4 31.7	31.6	84.6 88.4	86.5	5.7 5.9	5.8		1.8 1.8	1.8		4.7 4.7	4.7	
0.4		l.,			0.5	25.7	05.7	8.1	0.4	33.3	00.0	80.1	70.4	5.4		5.6	2.6	0.7		3.2		
C1	Sunny	Moderate	14:41	Middle	9.5	25.7	25.7	8.0	8.1	33.0	33.2	78.6	79.4	5.3	5.4		2.7	2.7	4.4	3.2	3.2	4.2
				Bottom	18	25.6 25.6	25.6	8.1 8.1	8.1	33.6 33.6	33.6	80.0 79.9	80.0	5.4 5.4	5.4	5.4	8.2 8.9	8.6		4.5 4.6	4.6	
-				0 (26.4	00.0	7.9	7.0	31.5	24.0	78.9	70.0	5.3			1.8	4.0		4.6	4.0	
				Surface	1	26.7	26.6	7.9	7.9	31.0	31.3	79.1	79.0	5.3	5.3	5.4	1.7	1.8		4.2	4.3	ı
C2	Sunny	Moderate	13:24	Middle	17.5	25.7 25.7	25.7	8.0 8.0	8.0	33.1 33.1	33.1	80.1 81.1	80.6	5.4 5.5	5.5		2.6	2.5	4.1	2.8	2.9	3.7
				Bottom	34	25.5	25.5	8.0	8.1	33.5	33.5	79.0	79.0	5.4	5.4	5.4	8.0	7.9	1	3.8	3.8	i l
				Bottom	34	25.5	25.5	8.1	8.1	33.5	33.5	79.0	79.0	5.4	5.4	5.4	7.8	7.9		3.7	3.8	
				Surface	1	26.9 27.3	27.1	8.0 8.0	8.0	31.8 31.5	31.7	90.2 91.4	90.8	6.0 6.1	6.1		1.6 1.5	1.6		3.9 4.0	4.0	
G1	0		40.55	Mariana	4	25.8	05.0	8.0	8.0	32.7	20.0	78.5	70.0	5.3	5.4	5.8	2.3	0.4	2.3	3.0	2.0	0.7
G1	Sunny	Moderate	13:55	Middle	4	25.7	25.8	8.0	8.0	32.9	32.8	79.3	78.9	5.4	5.4		2.4	2.4	2.3	3.0	3.0	3.7
				Bottom	7	25.6 25.6	25.6	8.1 8.0	8.1	33.3 33.3	33.3	78.3 77.9	78.1	5.3 5.3	5.3	5.3	2.8	2.9		4.0 3.9	4.0	
				0 (28.3	07.0	8.0		31.1	24.0	97.2	04.7	6.4	0.0		1.5	1		4.9	4.0	
				Surface	1	27.2	27.8	8.0	8.0	31.5	31.3	92.1	94.7	6.1	6.3	6.0	1.5	1.5		4.9	4.9	ı
G2	Sunny	Moderate	13:44	Middle	5	25.7 25.7	25.7	8.0 8.0	8.0	33.1 33.1	33.1	81.8 82.4	82.1	5.5 5.6	5.6		2.2 2.1	2.2	2.5	3.3 3.2	3.3	4.0
						25.6		8.1		33.4		78.3		5.3			3.6		1	3.6		1
				Bottom	9	25.6	25.6	8.1	8.1	33.4	33.4	77.6	78.0	5.3	5.3	5.3	3.9	3.8		3.7	3.7	1
				Surface	1	27.3	27.2	8.0	8.0	31.1	31.3	90.5	90.6	6.0	6.0		1.5	1.5		2.9	2.9	
	_					27.1 26.1		8.0 8.0		31.4 32.3		90.6 82.9		6.0 5.6		5.8	1.5 1.9		1	2.9 6.8		1
G3	Sunny	Moderate	14:01	Middle	4	26.0	26.1	8.0	8.0	32.4	32.4	80.9	81.9	5.5	5.6		1.9	1.9	3.8	6.9	6.9	4.6
				Bottom	7	25.6 25.6	25.6	8.0 8.0	8.0	33.2 33.2	33.2	72.1 69.7	70.9	4.9 4.7	4.8	4.8	7.1 8.8	8.0		3.8	3.9	
-						27.9		8.0		31.4		89.1		5.9			1.4		1	3.4		
				Surface	1	27.8	27.9	8.0	8.0	31.4	31.4	88.0	88.6	5.8	5.9	5.7	1.5	1.5		3.3	3.4	
G4	Sunny	Moderate	14:17	Middle	4.5	25.7	25.7	8.0	8.0	32.8	32.9	81.7	81.1	5.5	5.5	5.7	1.9	2.0	4.4	4.5	4.5	4.2
	-					25.7 25.6		8.0 8.0		32.9 33.3		80.5 70.5		5.5 4.8			2.0 9.7		-	4.4		, ,
				Bottom	8	25.6	25.6	8.0	8.0	33.3	33.3	71.7	71.1	4.9	4.9	4.9	9.8	9.8		4.5	4.6	
				Surface	1	26.6	26.5	8.0	8.0	32.0	32.1	85.4	84.6	5.7	5.7		1.7	1.9		3.6	3.7	
						26.4 25.8		8.0 8.0		32.1 32.8		83.8 77.3		5.6 5.2		5.5	2.0		1	3.7 5.4		1
M1	Sunny	Moderate	13:49	Middle	3	25.8	25.8	8.0	8.0	32.7	32.8	78.8	78.1	5.3	5.3		2.4	2.5	2.5	5.2	5.3	4.6
				Bottom	5	25.7	25.7	8.0	8.0	33.0	33.0	75.9	75.8	5.1	5.1	5.1	3.0	3.2		4.9	4.9	
-						25.7 27.7		8.0		33.0 31.4		75.6 94.7		5.1 6.3			3.3 1.4		1	4.8 3.6		
				Surface	1	28.0	27.9	8.0	8.0	31.3	31.4	95.3	95.0	6.3	6.3	5.9	1.4	1.4		3.6	3.6	
M2	Sunny	Moderate	13:39	Middle	6	25.6	25.6	8.1	8.1	33.3	33.3	79.5	79.4	5.4	5.4	5.9	2.9	2.8	3.3	3.1	3.2	3.9
	ĺ					25.6 25.6		8.1 8.0		33.3 33.4		79.2 76.7		5.4 5.2			2.6 5.4		-	3.2 4.8		1
				Bottom	11	25.6	25.6	8.0	8.0	33.4	33.4	75.7	76.2	5.1	5.2	5.2	5.8	5.6		4.7	4.8	1
				Surface	1	27.2	27.1	8.0	8.0	31.1	31.3	91.5	90.0	6.1	6.0		1.5	1.5		4.1	4.1	
						26.9 26.1		8.0 8.0		31.5 32.3		88.5 78.3		5.9 5.3		5.7	1.5 1.8		4	4.1 3.2		,
М3	Sunny	Moderate	14:08	Middle	4	26.0	26.1	8.0	8.0	32.3	32.4	77.0	77.7	5.2	5.3		1.9	1.9	2.7	3.2	3.2	3.7
				Bottom	7	25.6	25.7	8.0	8.0	33.2	33.2	71.8	71.7	4.9	4.9	4.9	4.9	4.8		3.7	3.7	
						25.7 27.9		8.0		33.1 31.1		71.5 94.6		4.8 6.2			4.6 1.3		<u> </u>	3.7		
				Surface	1	28.0	28.0	8.0	8.0	31.0	31.1	94.8	94.7	6.3	6.3		1.3	1.3		3.9	3.9	, ,
M4	Sunny	Moderate	13:31	Middle	4.5	26.2	26.2	8.0	8.0	32.3	32.3	85.9	85.6	5.8	5.8	6.1	1.7	1.8	1.9	3.6	3.6	3.9
						26.2 25.7		8.0 8.0		32.3 33.0		85.2 79.5		5.7		 	1.8 2.6			3.6 4.1		1
				Bottom	8	25.7	25.7	8.0 8.0	8.0	33.0	33.0	79.5 79.3	79.4	5.4 5.4	5.4	5.4	2.6	2.6		4.1	4.1	, ,
				Surface	1	27.3	27.3	8.0	8.0	31.5	31.5	87.0	86.3	5.8	5.8		1.6	1.6		3.5	3.5	
				Juilace	_ '	27.3	21.3	8.0	0.0	31.5	51.5	85.5	00.3	5.7	5.0	5.6	1.6	1.0	1	3.4	5.5	}
M5	Sunny	Moderate	14:32	Middle	5.5	25.8 25.8	25.8	8.1 8.0	8.1	33.0 33.0	33.0	80.3 80.0	80.2	5.4 5.4	5.4		2.7 2.6	2.7	2.6	3.5 3.7	3.6	3.8
				Bottom	10	25.7	25.7	8.1	8.1	33.2	33.3	79.2	78.3	5.4	5.3	5.3	3.3	3.4	1	4.4	4.4	i l
				DOMOIT	10	25.6	23.1	8.1	0.1	33.3	33.3	77.3	10.5	5.2	5.5	5.5	3.5	J. 4		4.4	4.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Cunni	Madarat-	14:24	Middle	2.1	27.4	27.4	8.0	8.0	31.5	21.5	87.8	87.4	5.8	5.8	5.8	1.1	1.1	1.1	5.4	5.4	5.4
IVIO	Sunny	Moderate	14.24	Middle	2.1	27.4	21.4	8.0	0.0	31.5	31.5	87.0	07.4	5.8	0.0		1.1	1.1	1.1	5.4	0.4	0.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ı /
	1	l					l		1		1	-	1		1	l	_	l	<u> </u>	_		

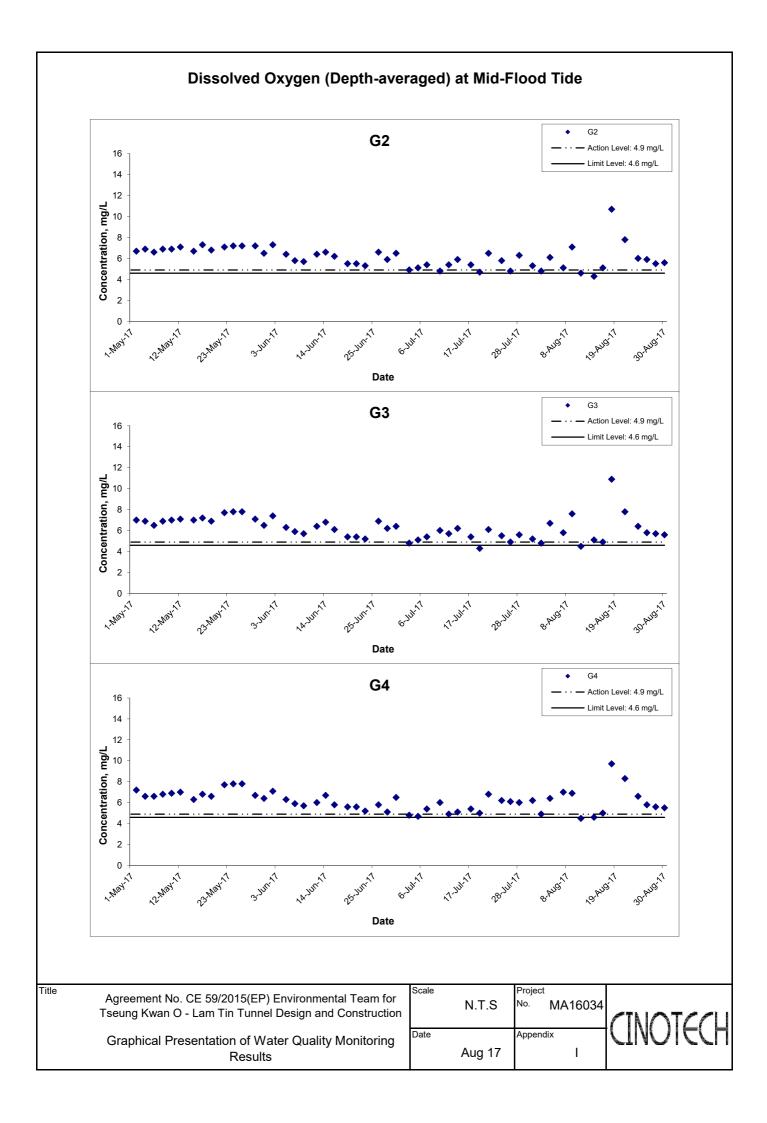

emarks: *DA: Depth-Average

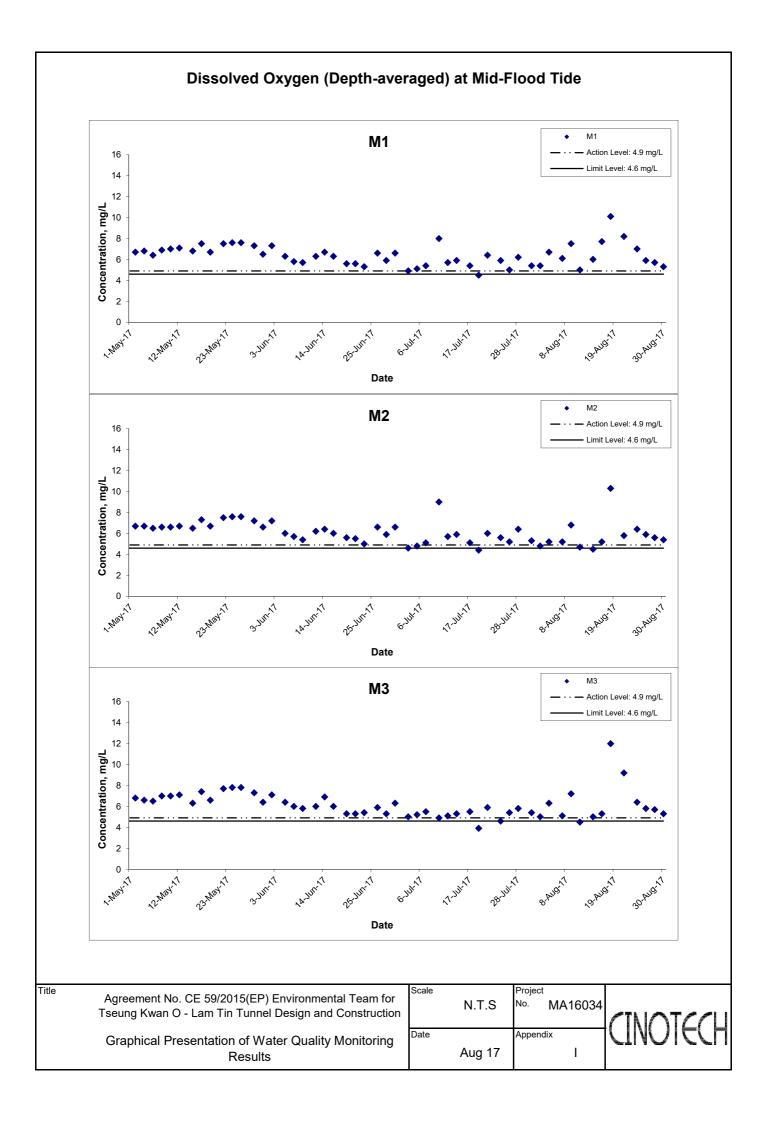

Appendix I - Action and Limit Levels for Marine Water Quality on 30 August 2017 (Mid-Flood Tide)

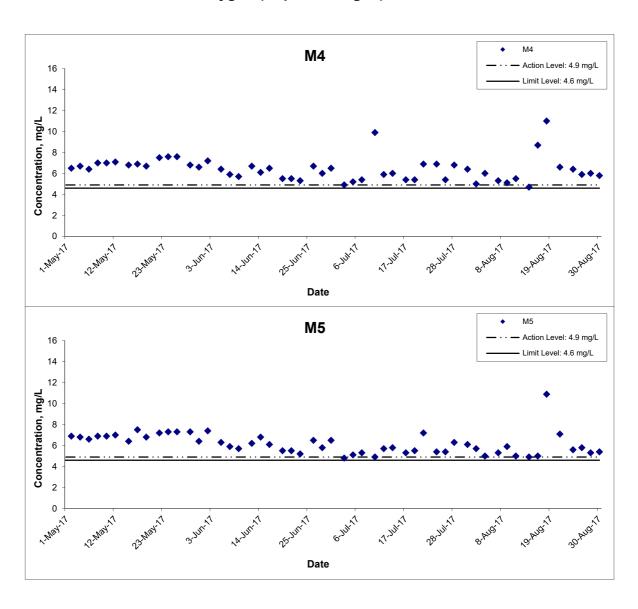
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5						
DO in mg/L	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5						
	Bottom	<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
NTU		station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
,		<u>C2: 10.3 NTU</u>	<u>C2: 11.2 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	<u>1</u>					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
	Surface	or 120% of upstream control	or 130% of upstream control				
		station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>				
	Stations M1-M5						
	Surface	<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L		station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 5.6 mg/L</u>	<u>C2: 6.1 mg/L</u>				
	Stations G1-G4, M1-M5						
	Bottom	<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
		station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 5.5 mg/L</u>	<u>C2: 6.0 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

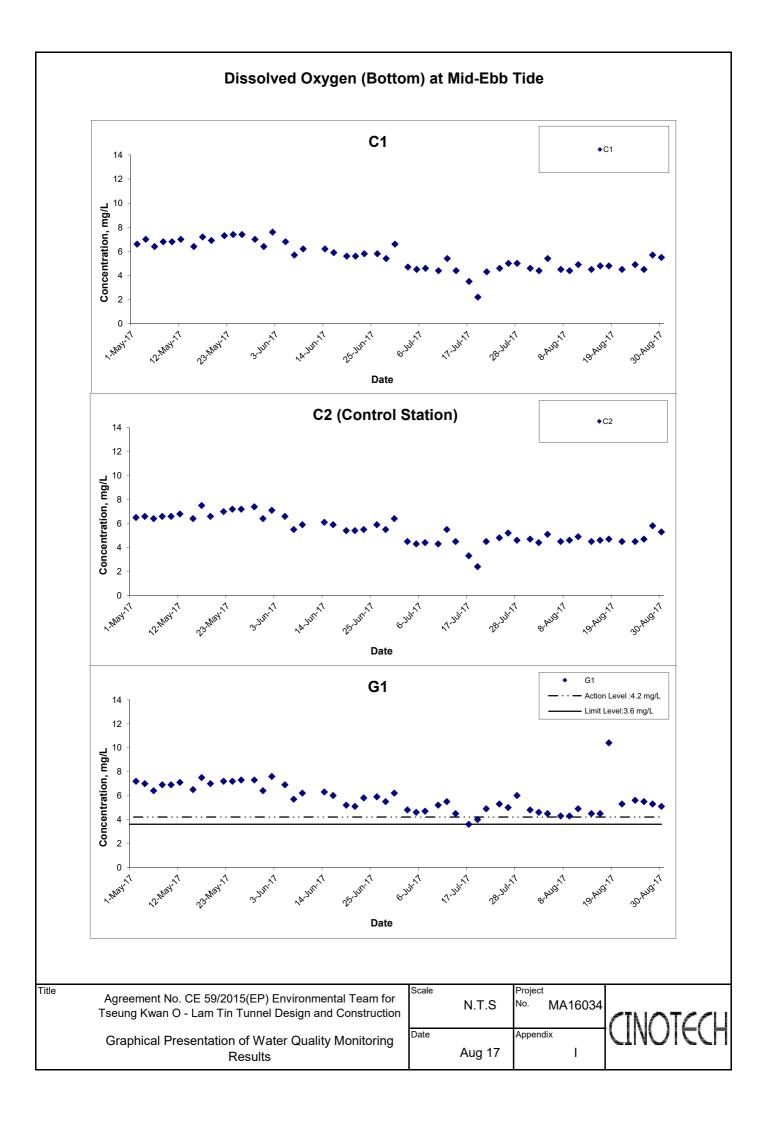

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality conditio

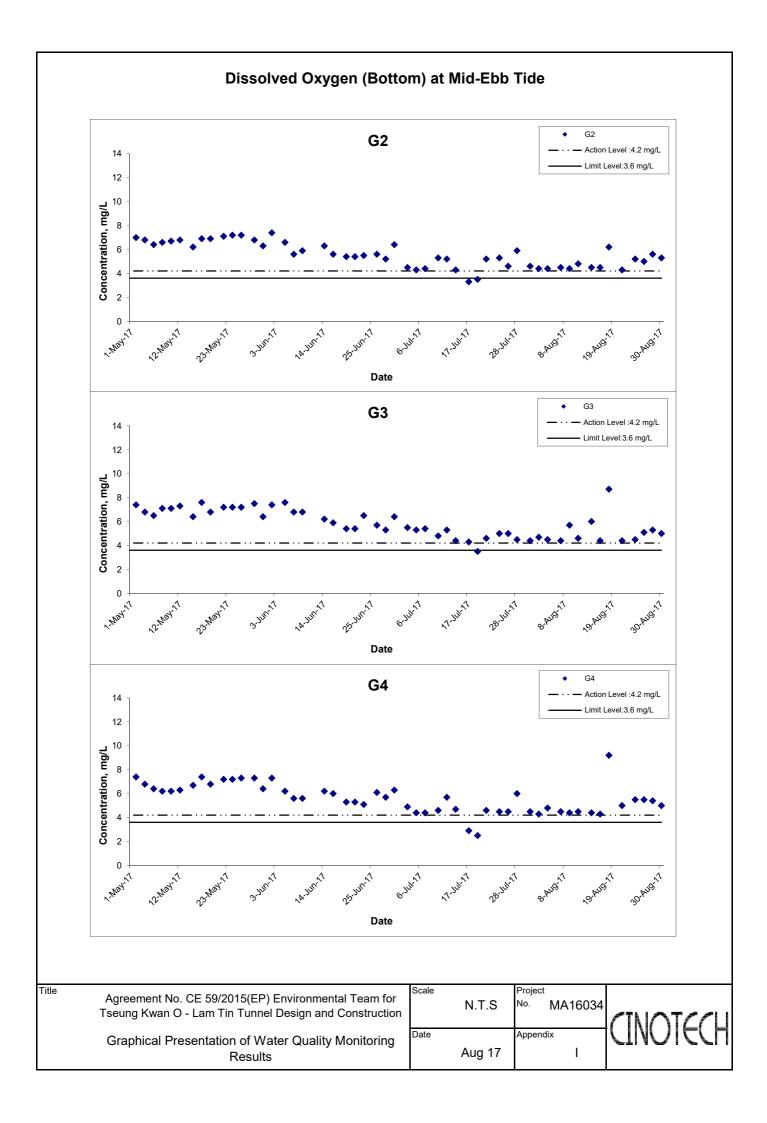


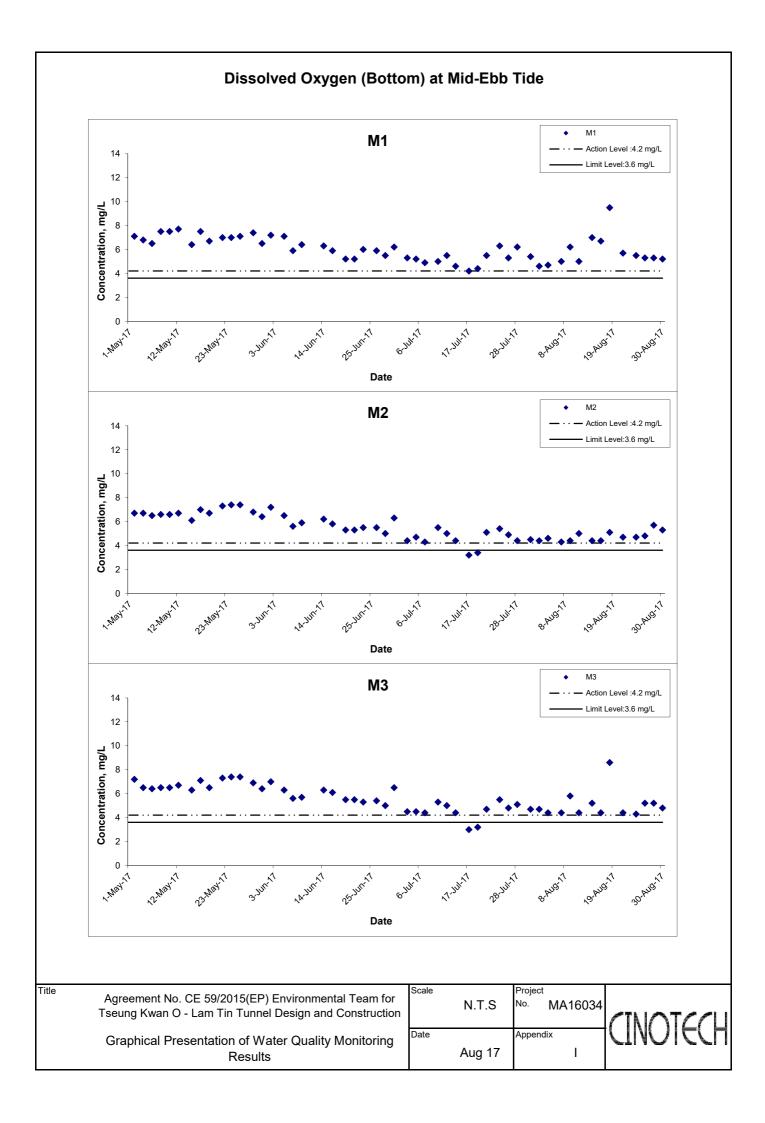


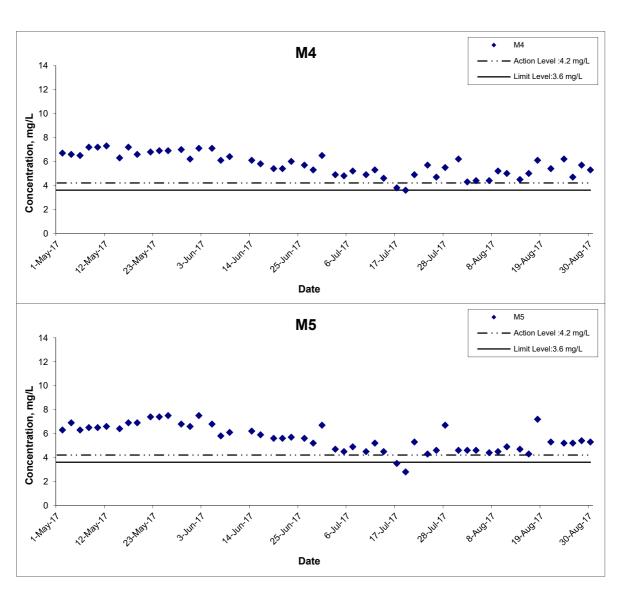

Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINATECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	MOICU



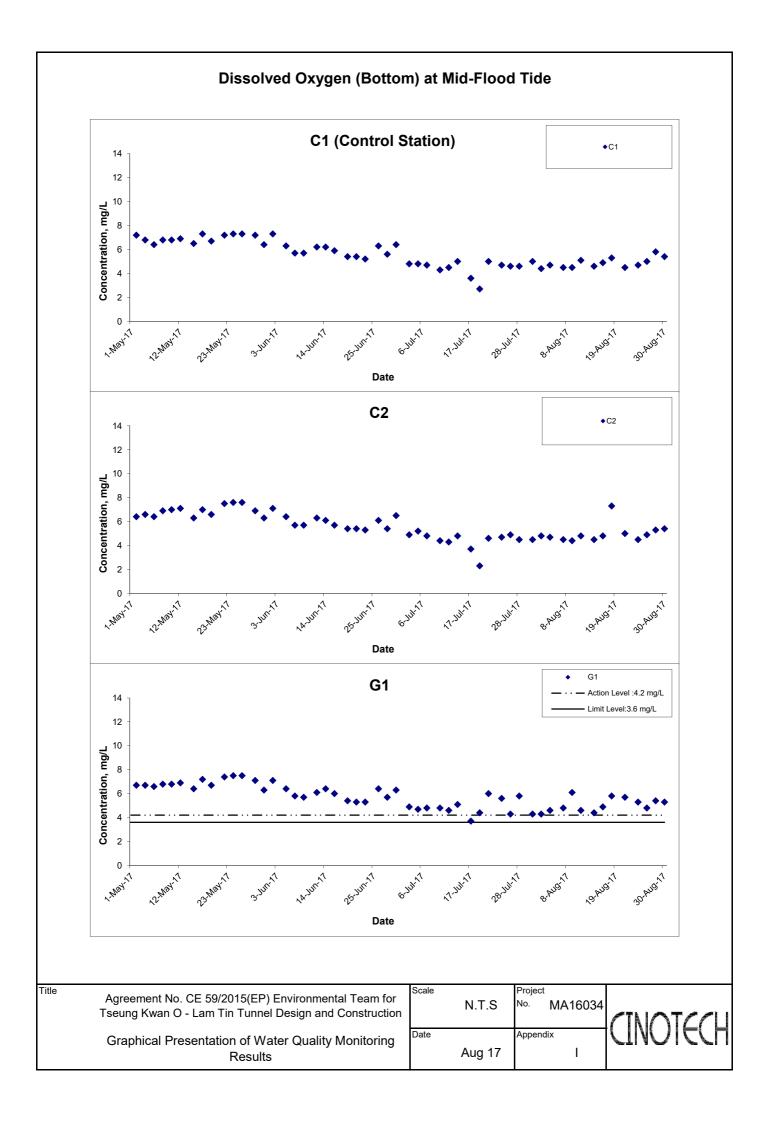


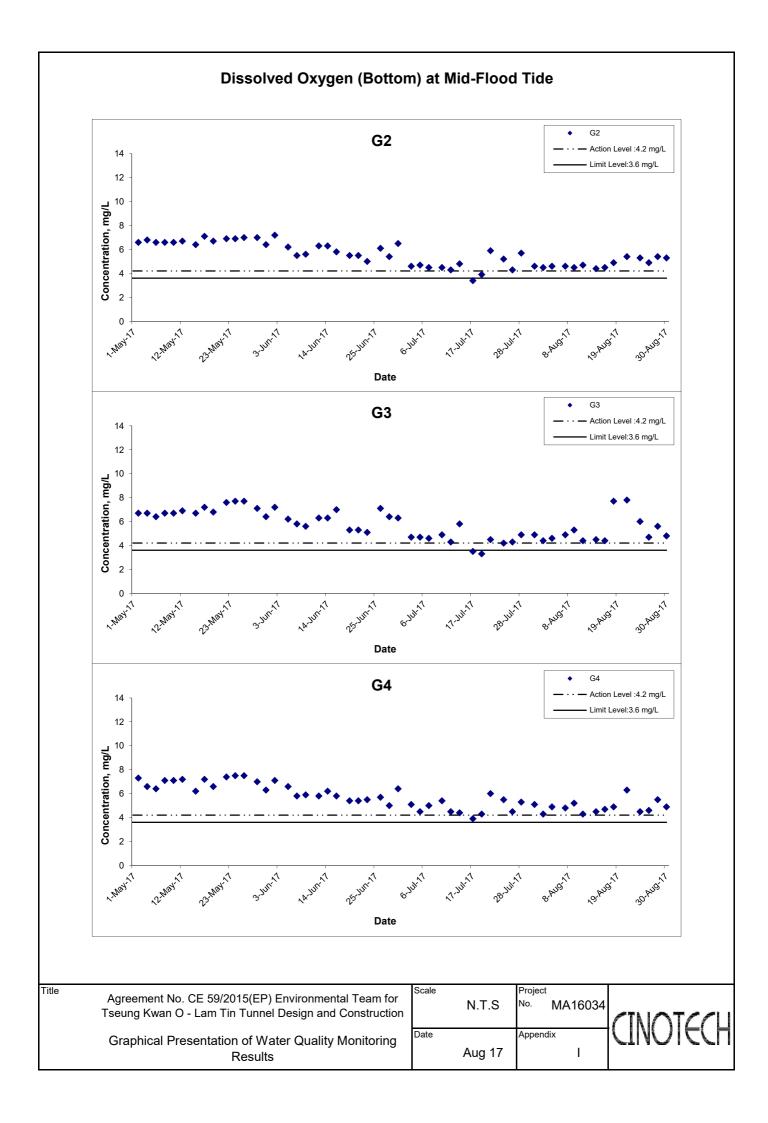

Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide

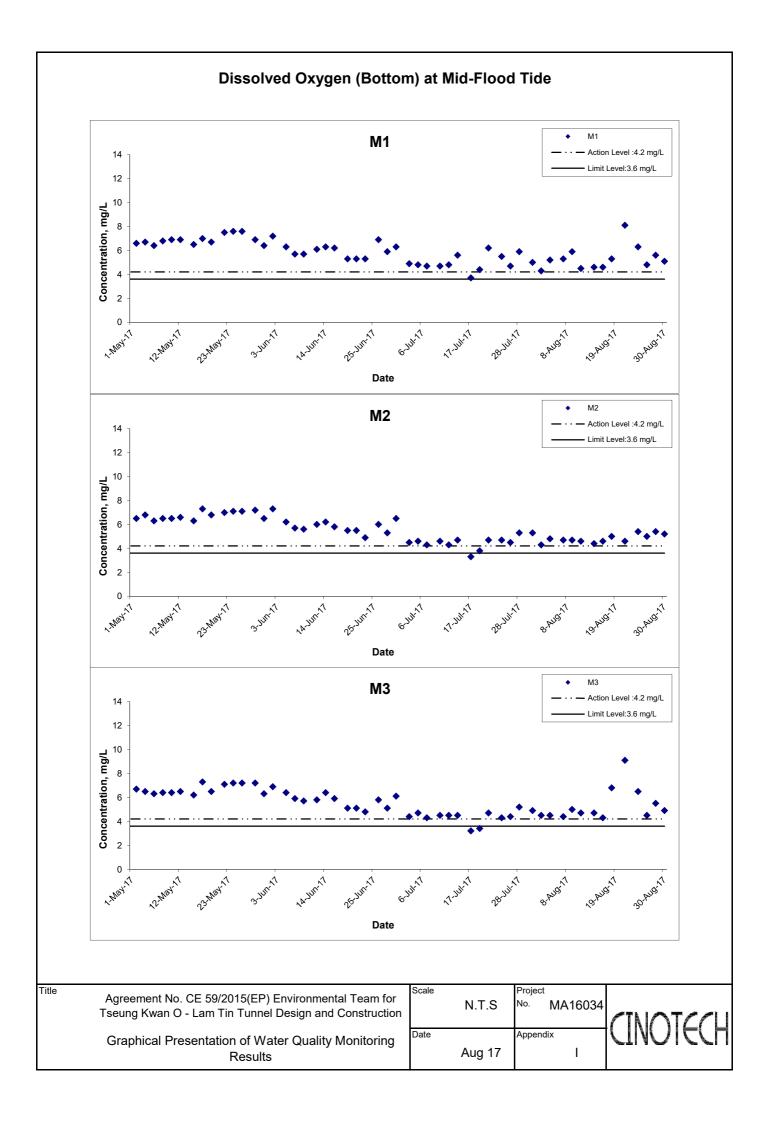

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECL
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	CINOIECE

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

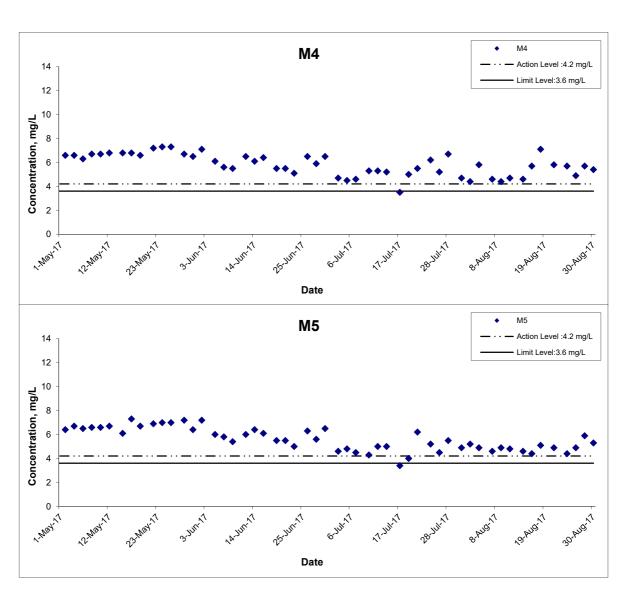
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

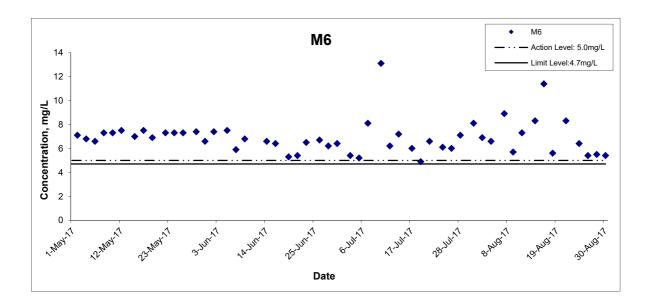

Scale


N.T.S

Project
No. MA16034


Appendix
Aug 17

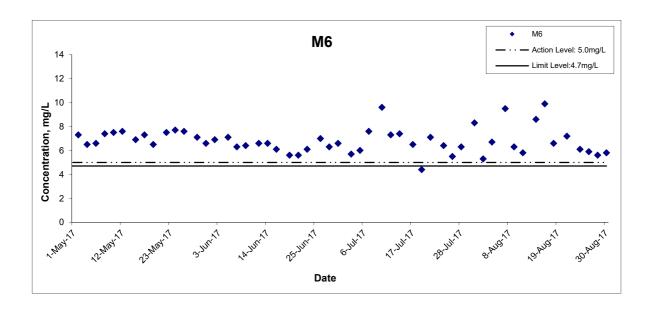
Dissolved Oxygen (Bottom) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

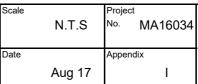
Graphical Presentation of Water Quality Monitoring

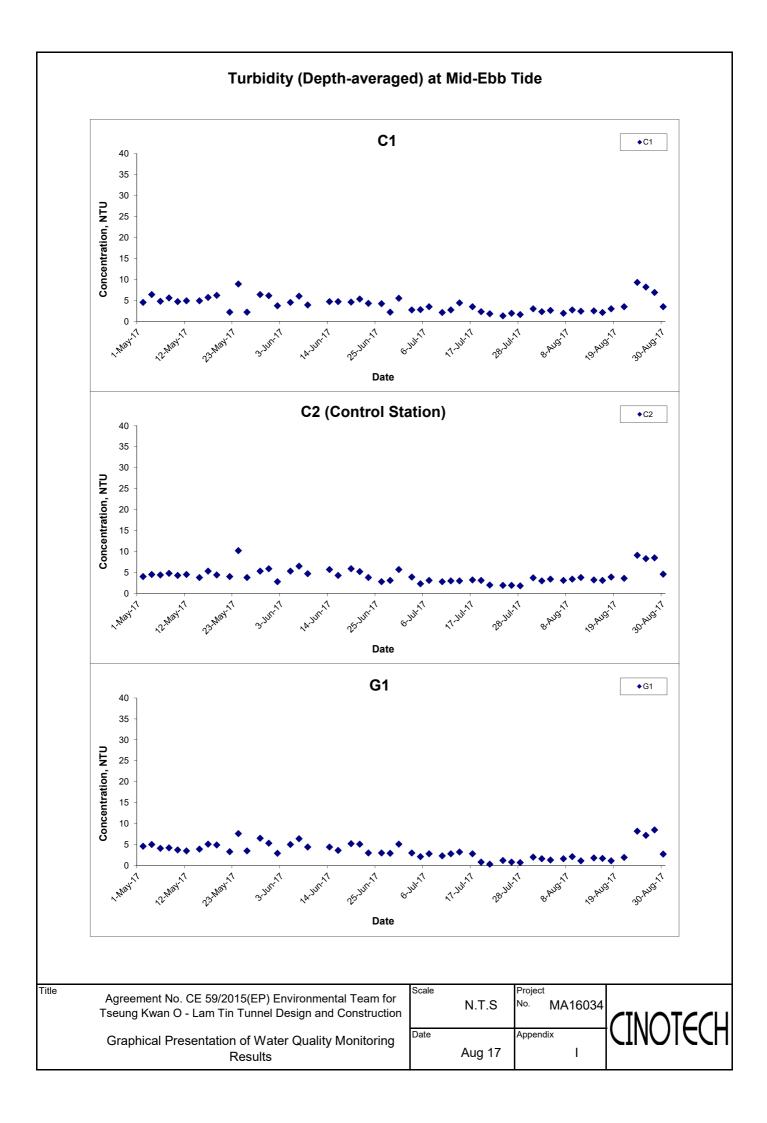
Results

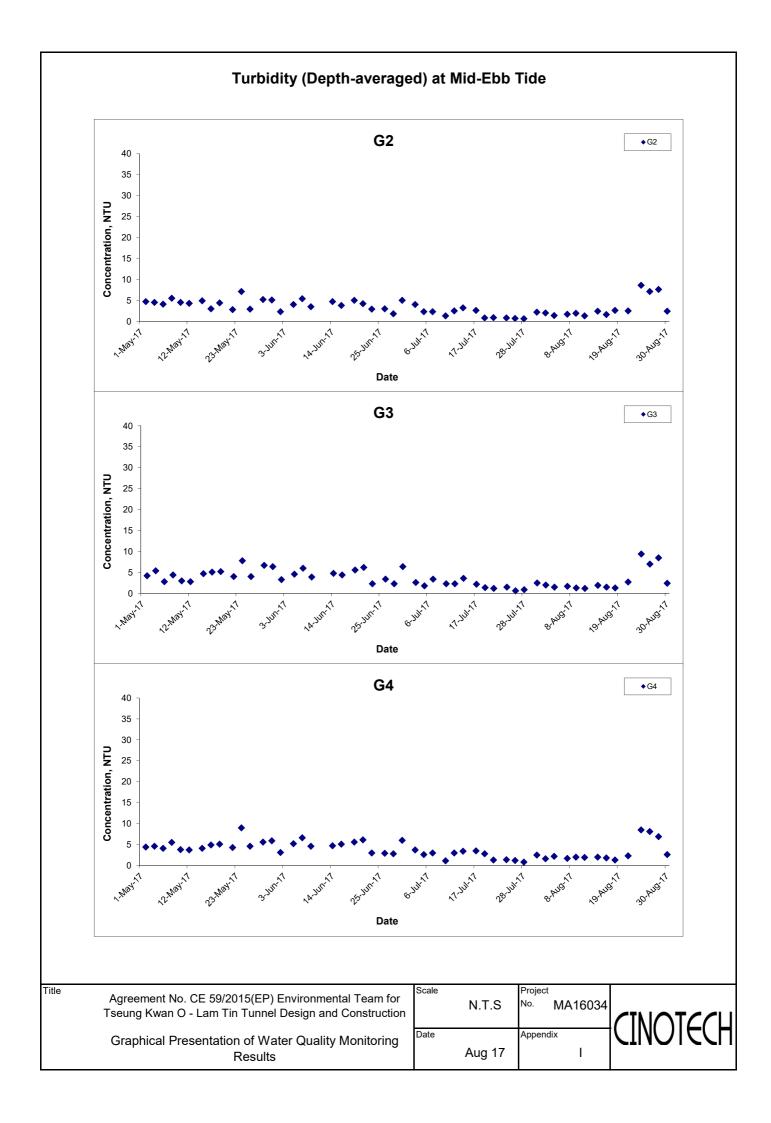
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

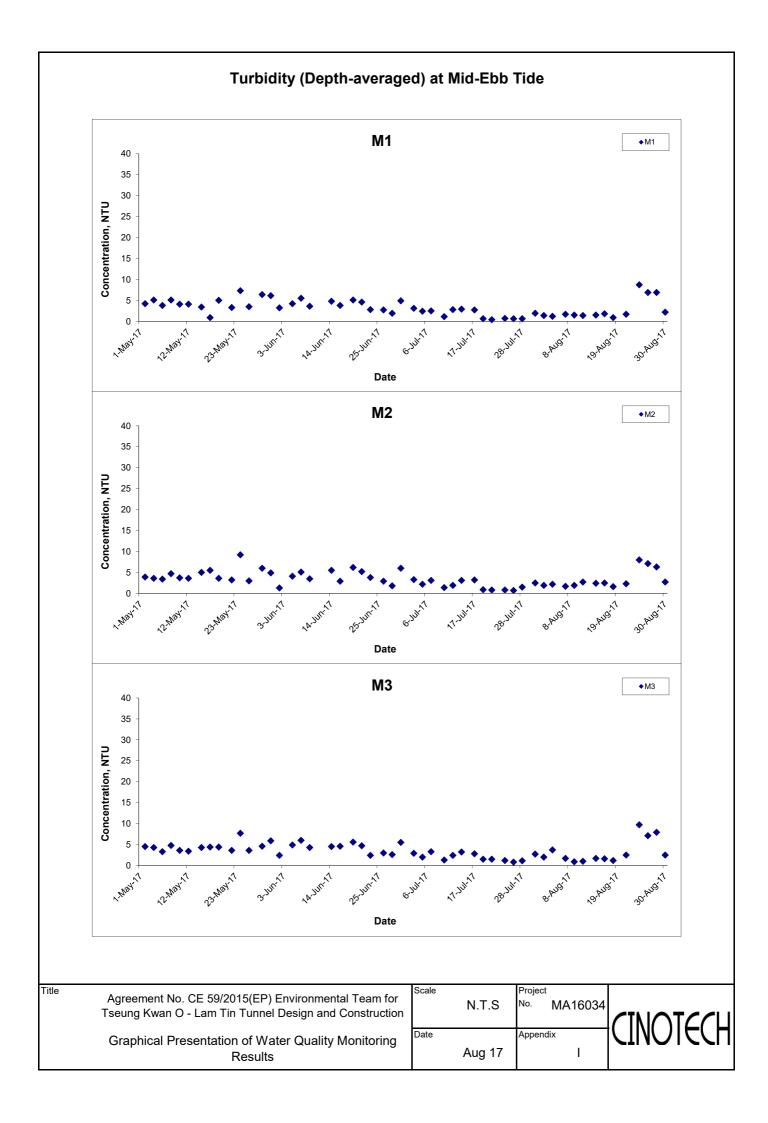

Title Agreement

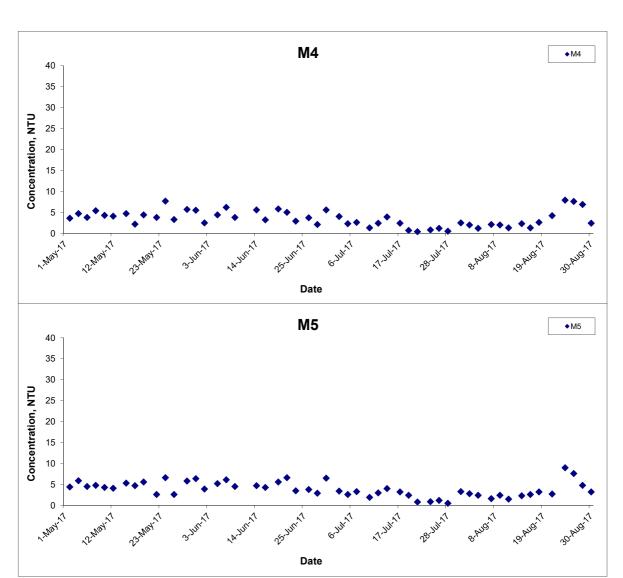
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Scale		Project	
	N.T.S	No.	MA16034
Date		Apper	ndix
	Aug 17		1

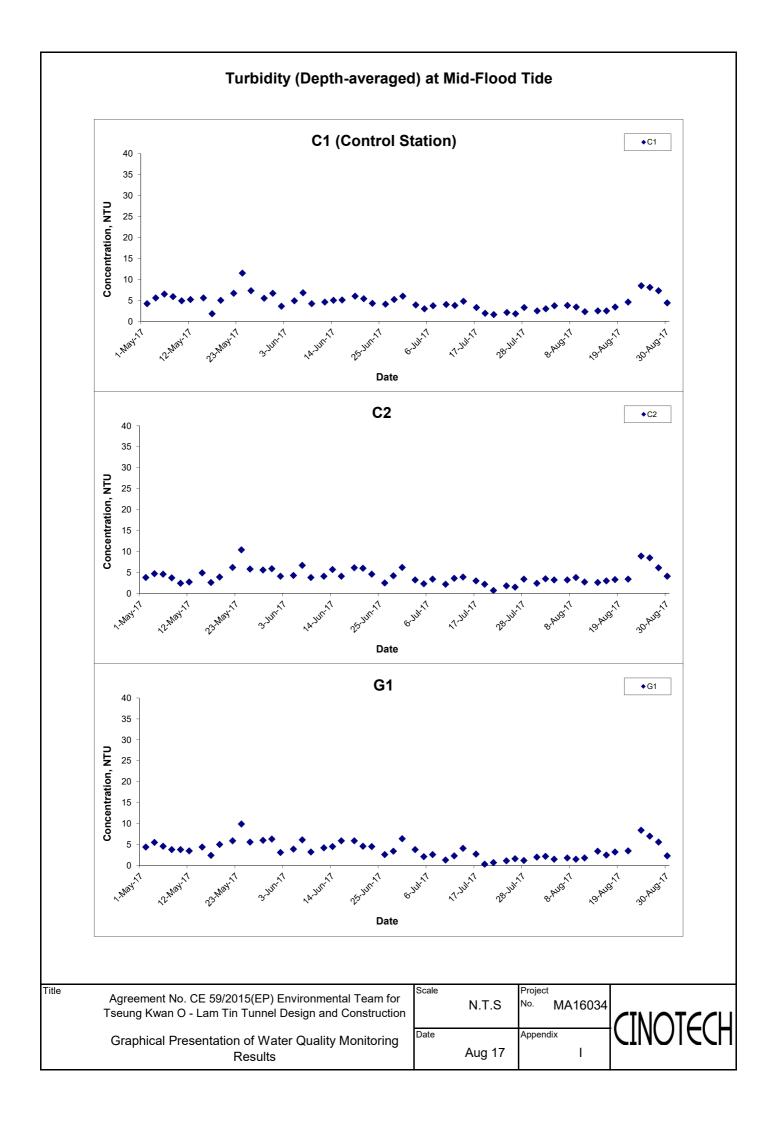

Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

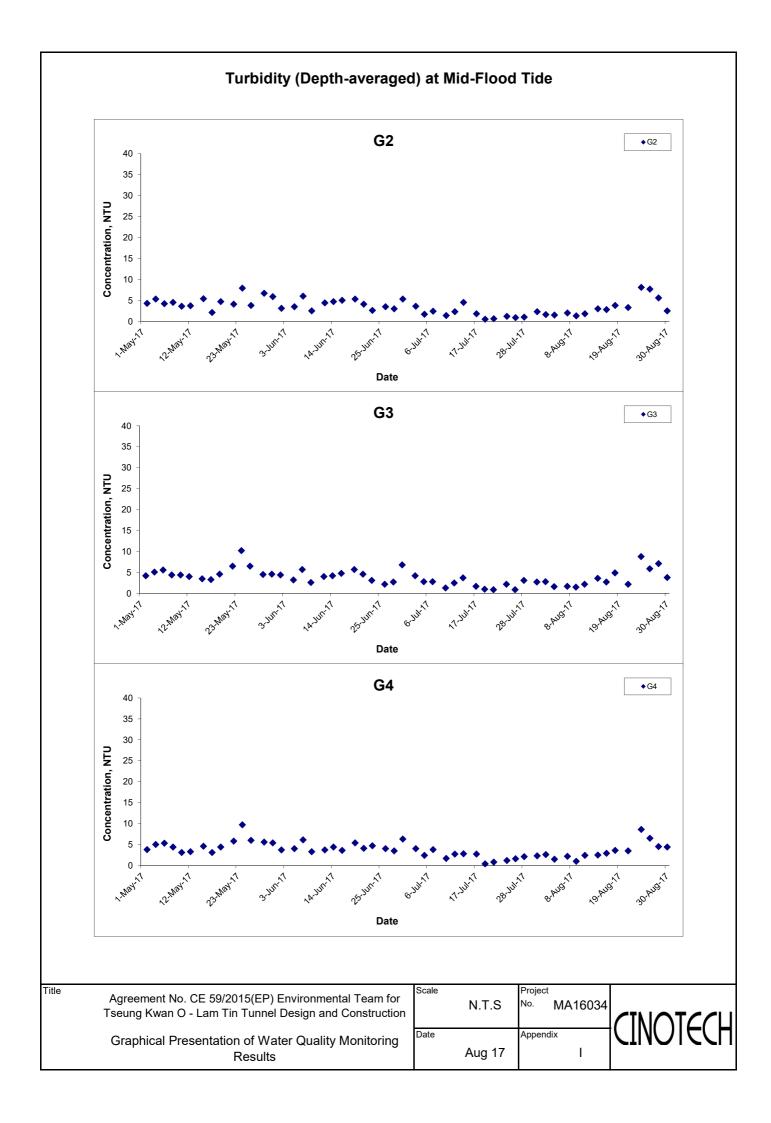


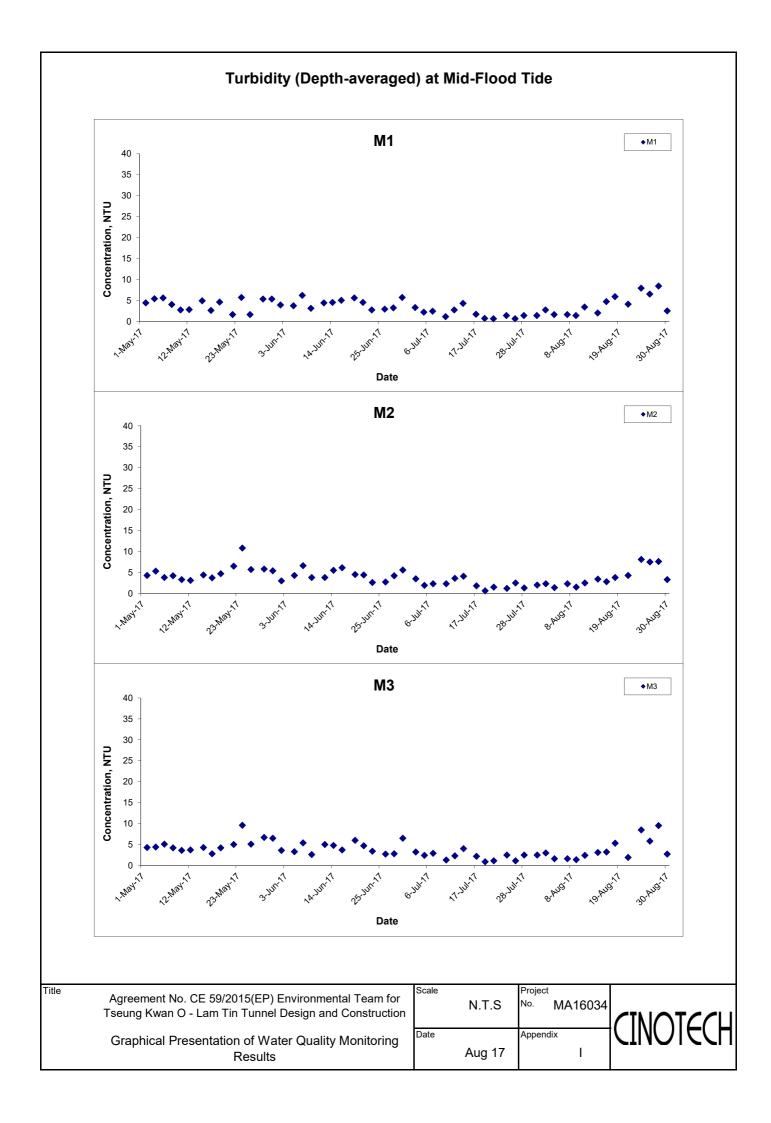

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction



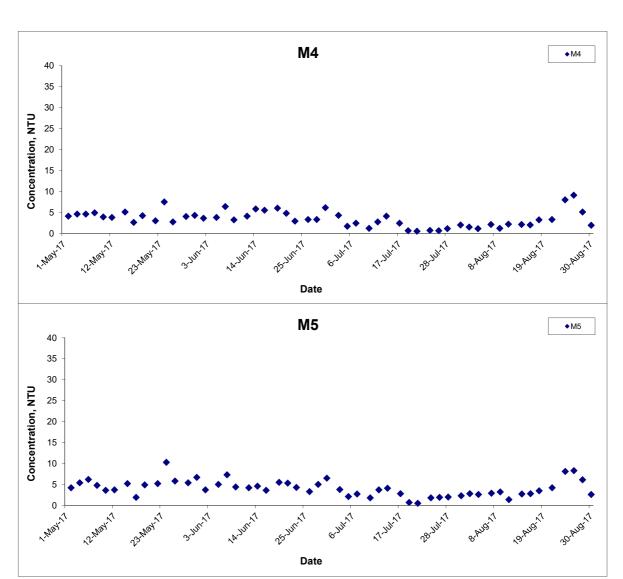
Turbidity (Depth-averaged) at Mid-Ebb Tide



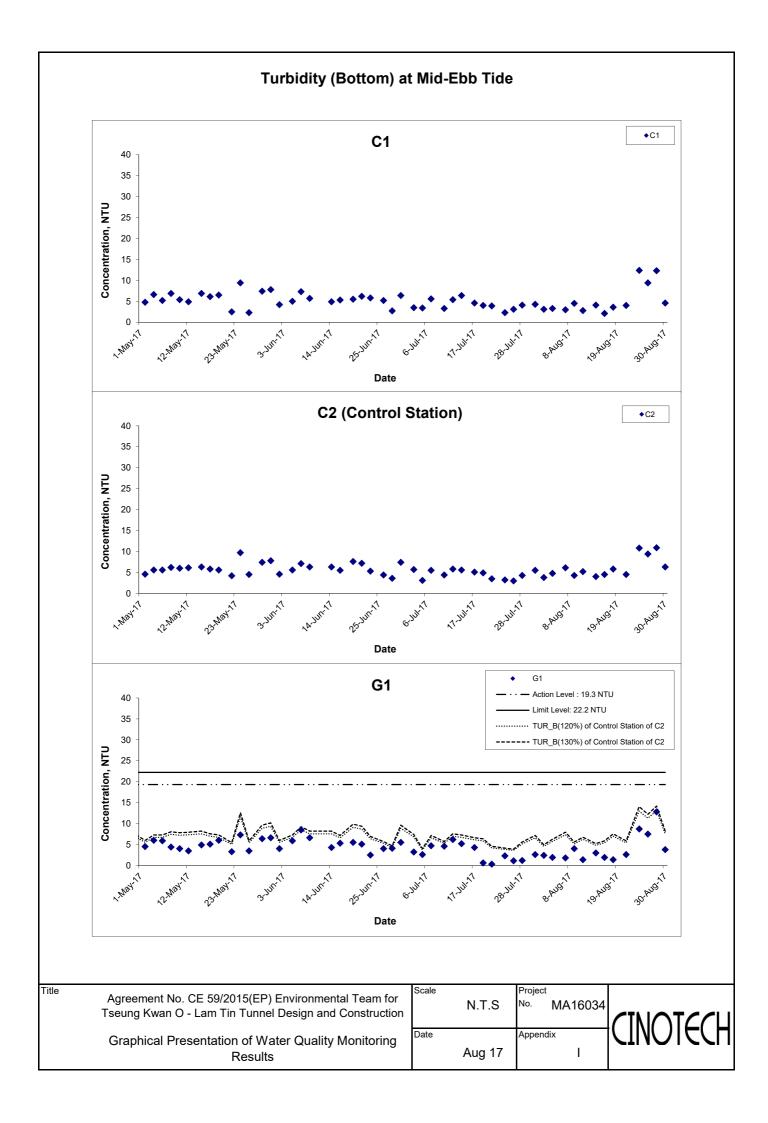

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring


Results

Title



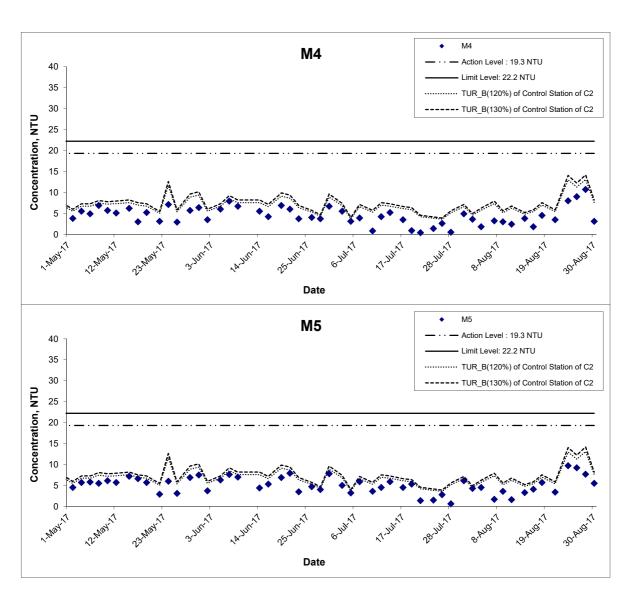
Turbidity (Depth-averaged) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

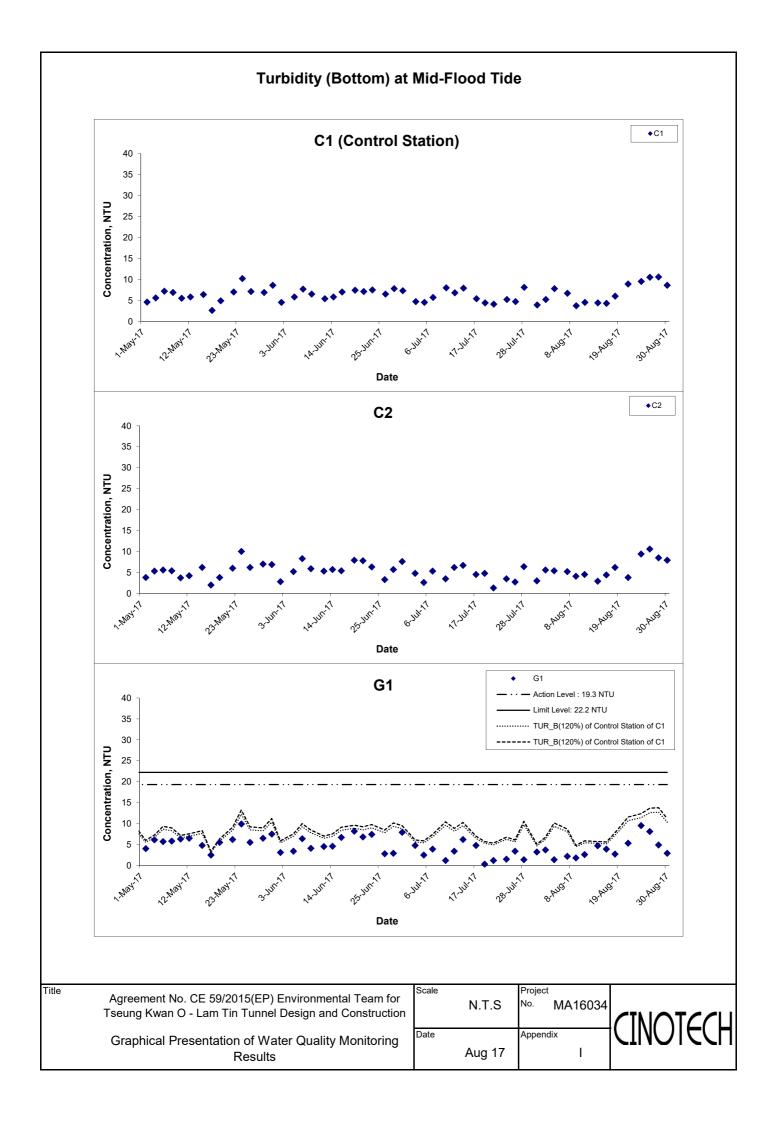
Graphical Presentation of Water Quality Monitoring

Results

Title



Turbidity (Bottom) at Mid-Ebb Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ······ TUR_B(120%) of Control Station of C2 30 TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 5 0 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date G4 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 ----- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I


Results

Turbidity (Bottom) at Mid-Ebb Tide **M**1 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ······ TUR_B(120%) of Control Station of C2 30 - TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 Date M2 **M2** Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date МЗ **M3** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C2 30 --- TUR_B(130%) of Control Station of C2 Concentration, NTU 25 20 15 10 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

Turbidity (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	NTS	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	CINOICCU

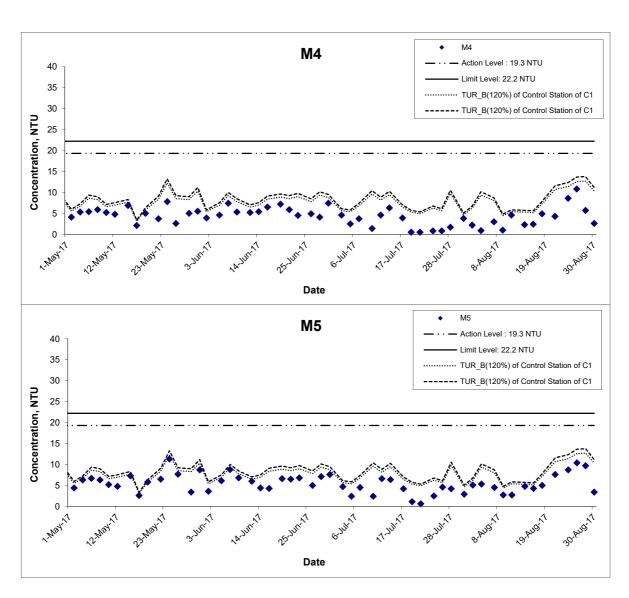
Turbidity (Bottom) at Mid-Flood Tide G2 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 -- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 Date G3 Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ···· TUR_B(120%) of Control Station of C1 30 - TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 0 Date G4 Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 30 --- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

Turbidity (Bottom) at Mid-Flood Tide M1 - Action Level : 19.3 NTU 40 Limit Level: 22.2 NTU 35 ····· TUR_B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 10 Date **M2** Action Level: 19.3 NTU 40 Limit Level: 22.2 NTU 35 TUR_B(120%) of Control Station of C1 ---- TUR_B(120%) of Control Station of C1 30 Concentration, NTU 25 20 15 10 0 Date **M3** Action Level: 19.3 NTU 40 35 TUR B(120%) of Control Station of C1 30 ----- TUR_B(120%) of Control Station of C1 Concentration, NTU 25 20 15 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

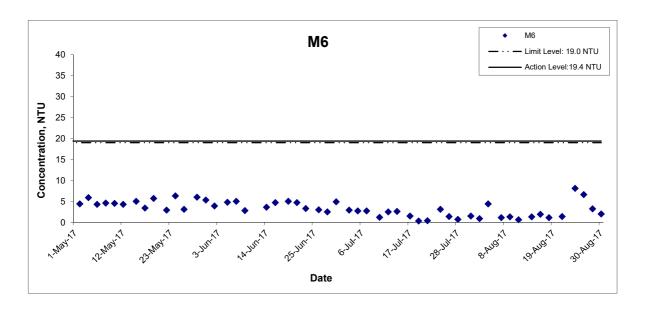
Graphical Presentation of Water Quality Monitoring Results

Agreement No. CE 59/2015(EP) Environmental Team for N.T.S


No. MA16034

Date

Aug 17


Aug 17

Turbidity (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	

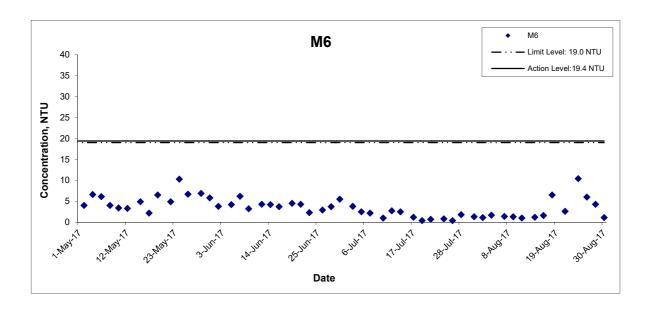
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

toring Da

Scale

N.T.S

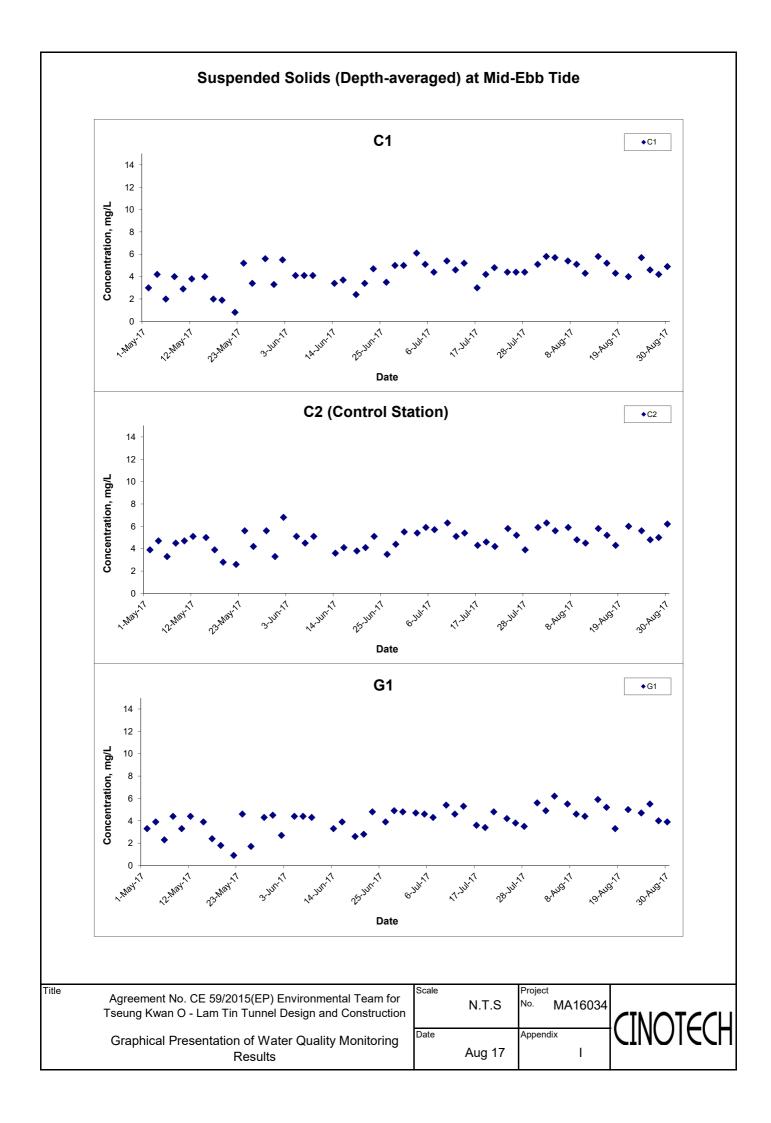

Aug 17

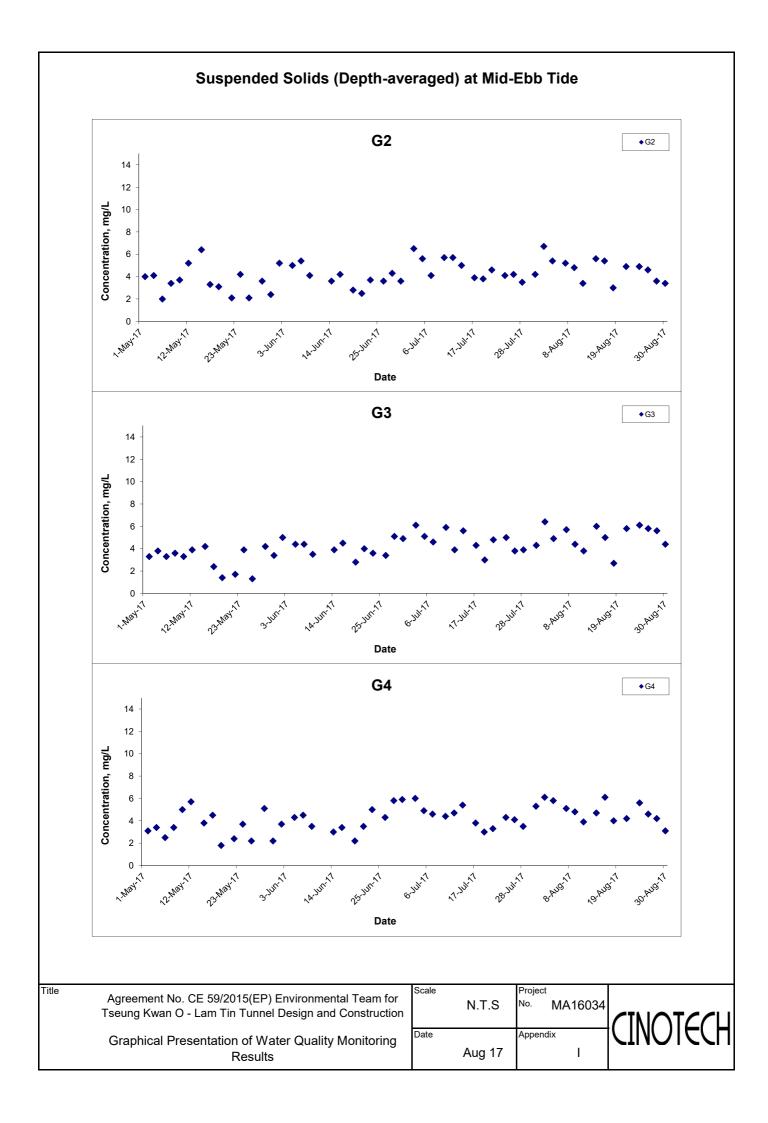
Project
No. MA16034
Appendix

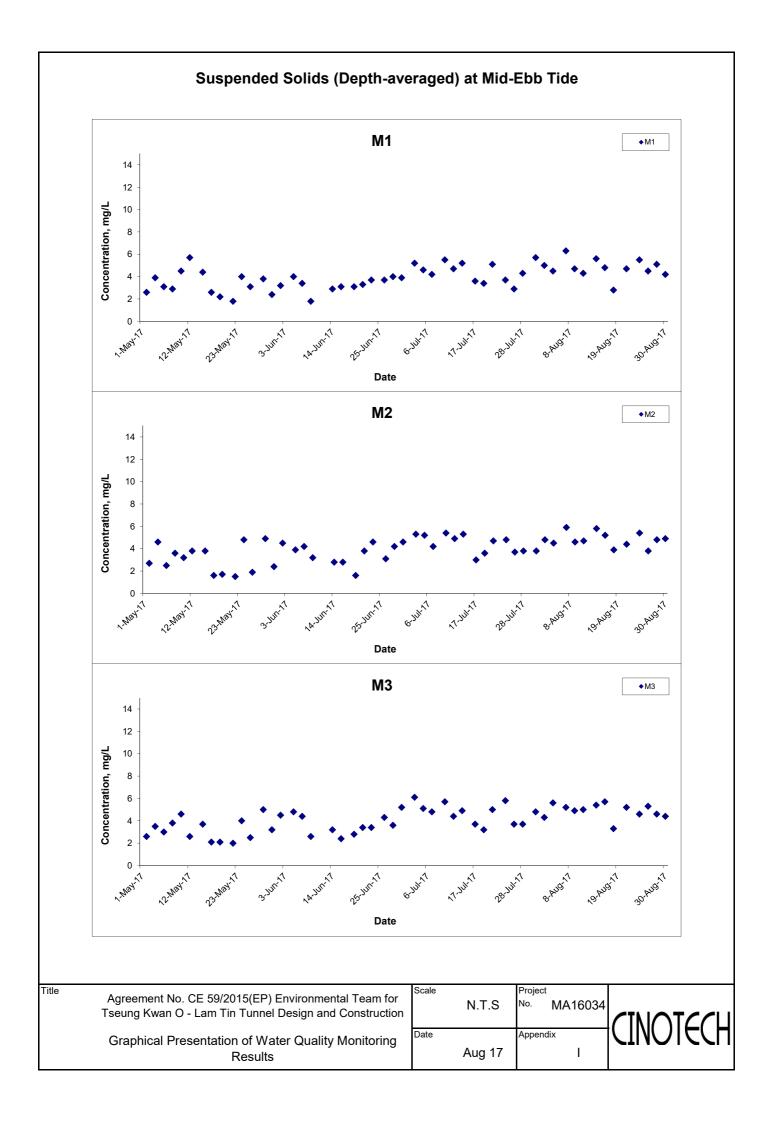
I

HCINOTEC

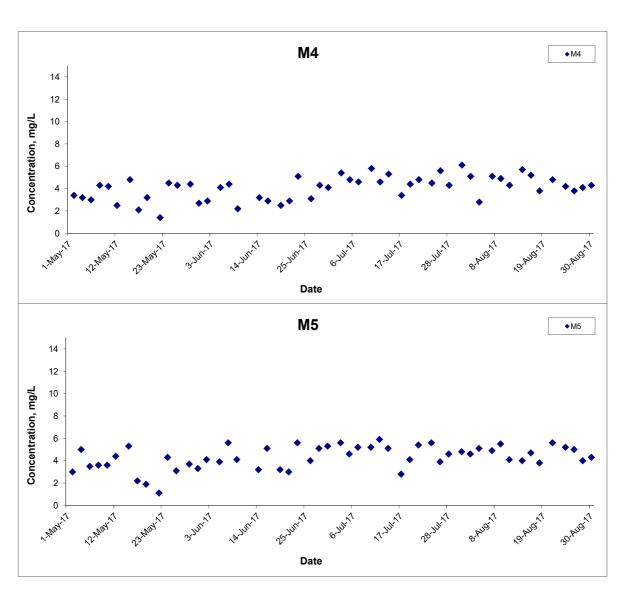
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

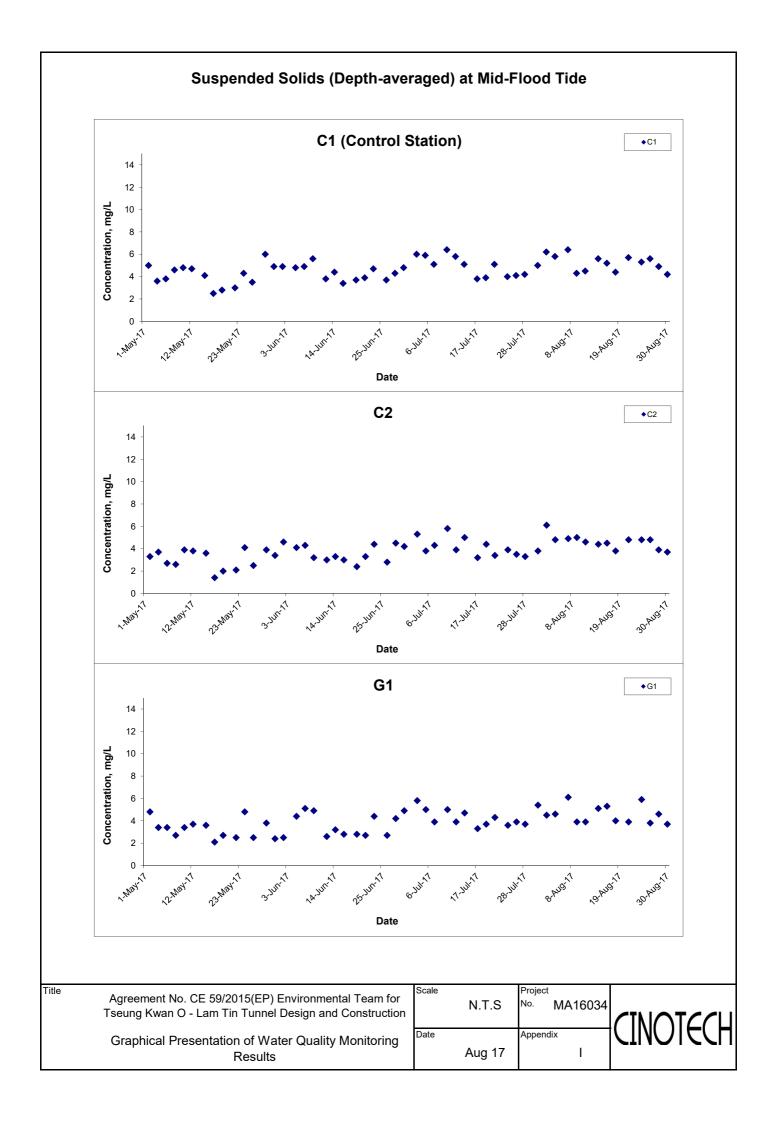


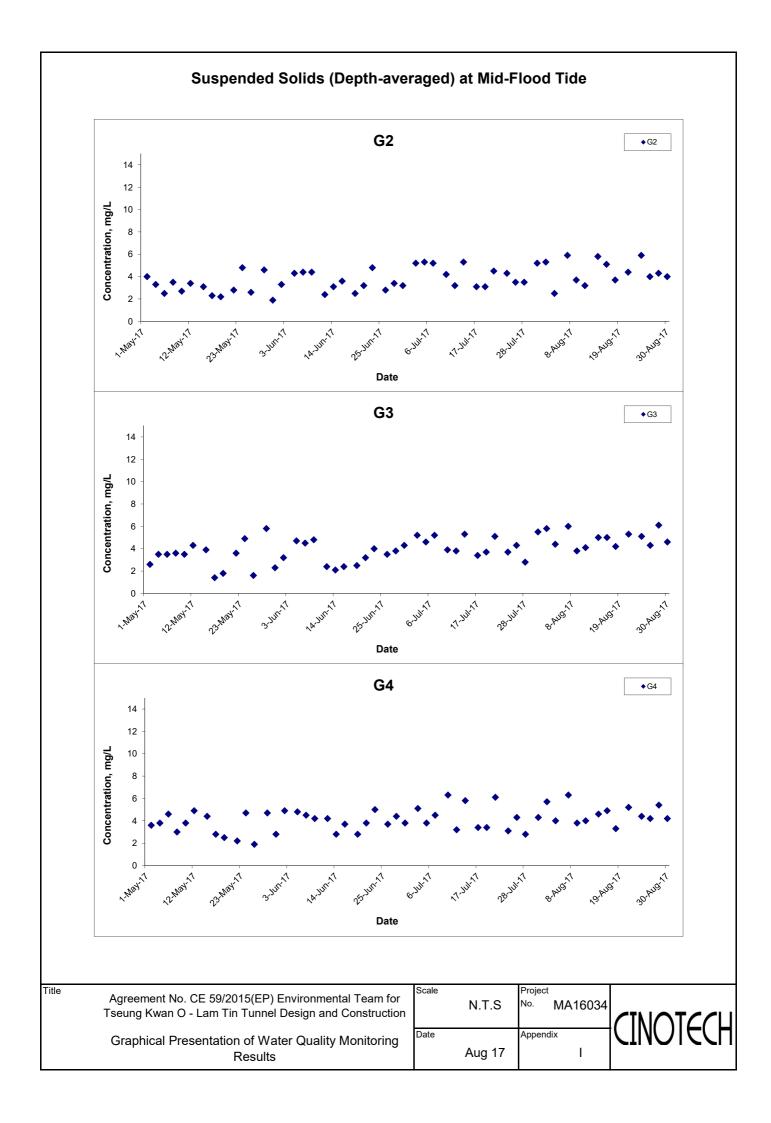

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

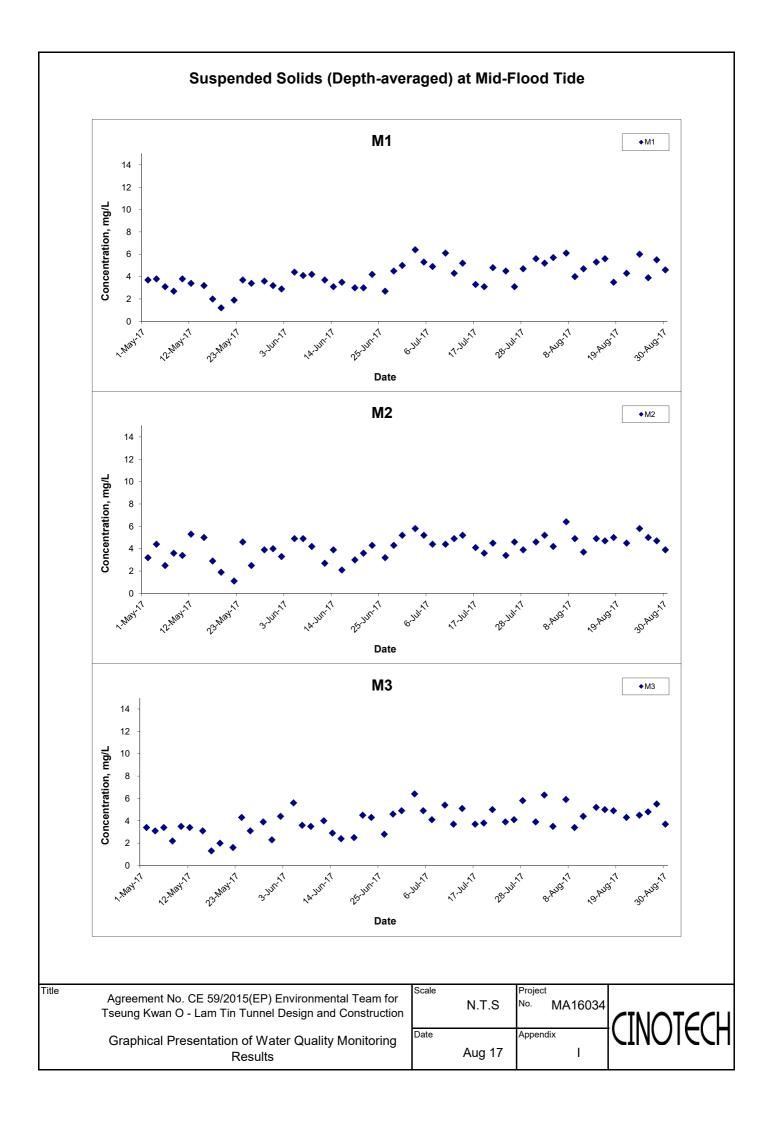

Title

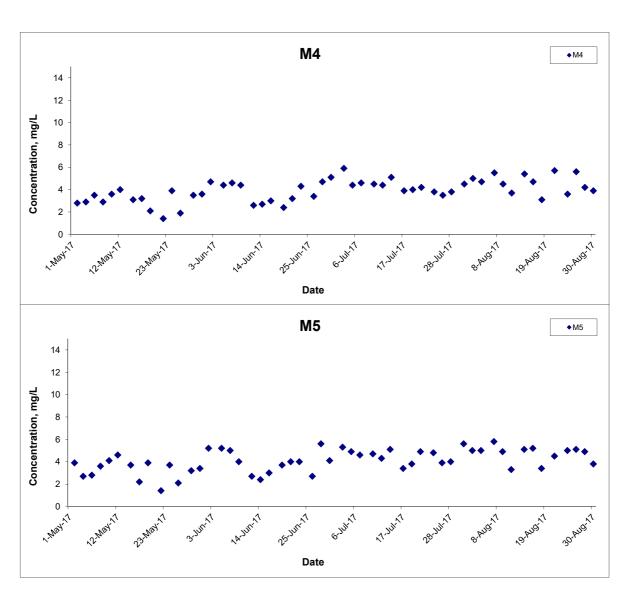
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Aug 17		I

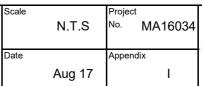


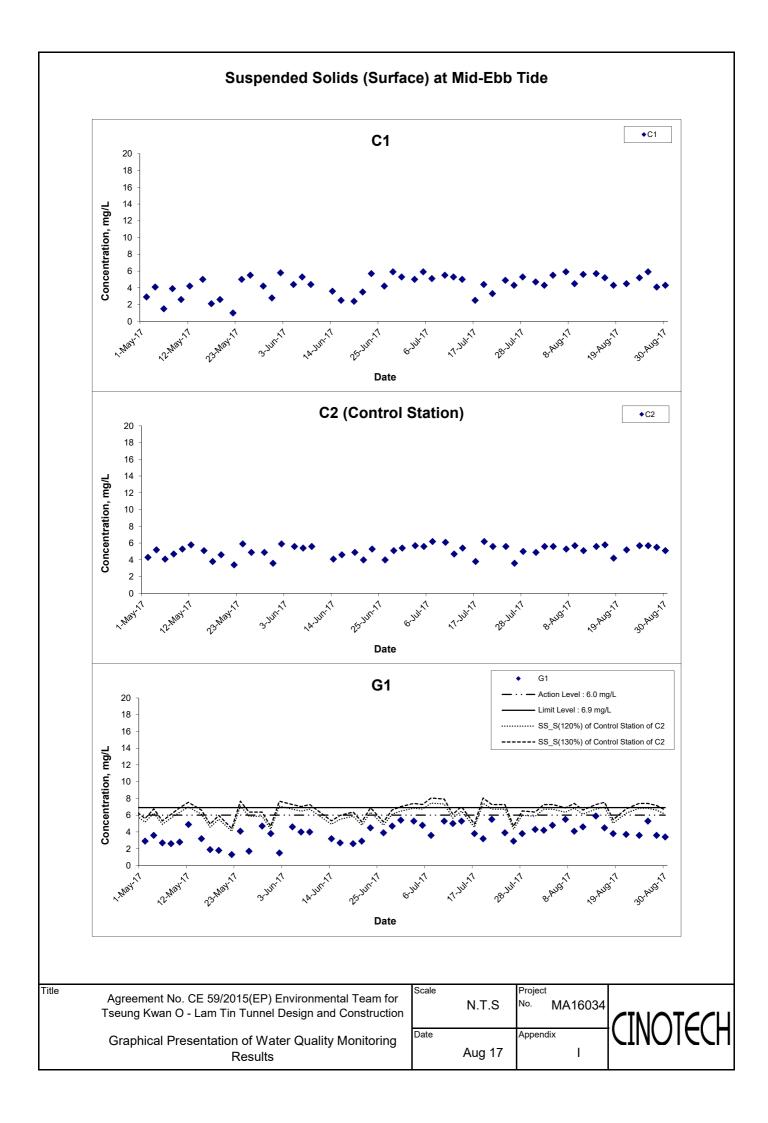




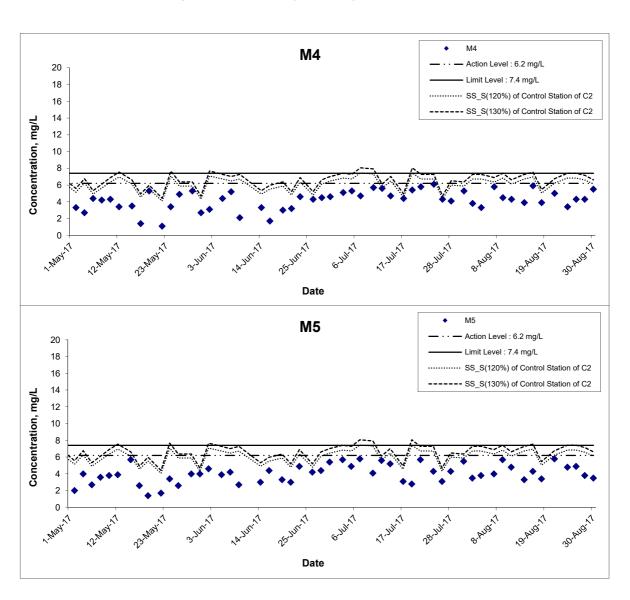

Suspended Solids (Depth-averaged) at Mid-Ebb Tide


Title		Scale		Proiect	
	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		N.T.S	No. N	ИА16034
	Graphical Presentation of Water Quality Monitoring Results	Date	Aug 17	Appendix	I

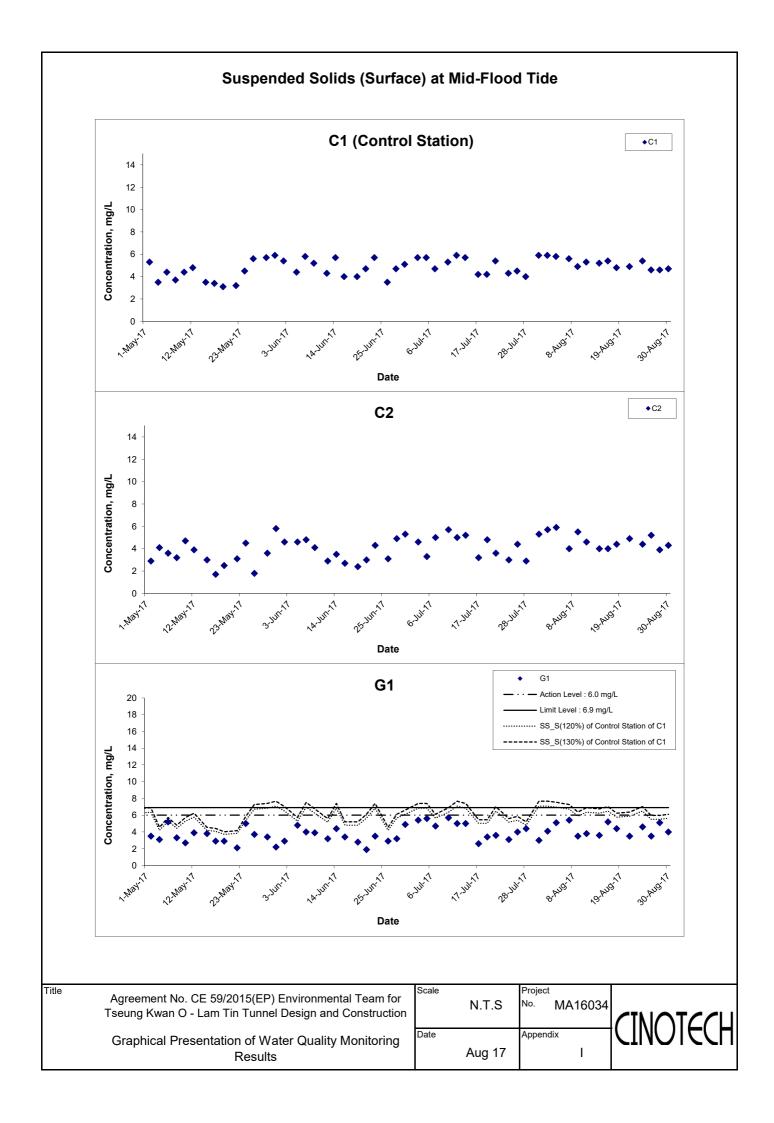



Suspended Solids (Depth-averaged) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale	N.T
Graphical Presentation of Water Quality Monitoring Results	Date A	Aug

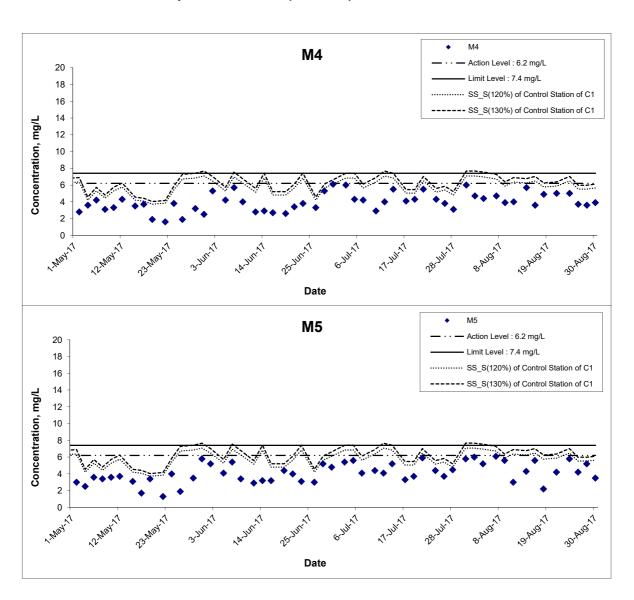


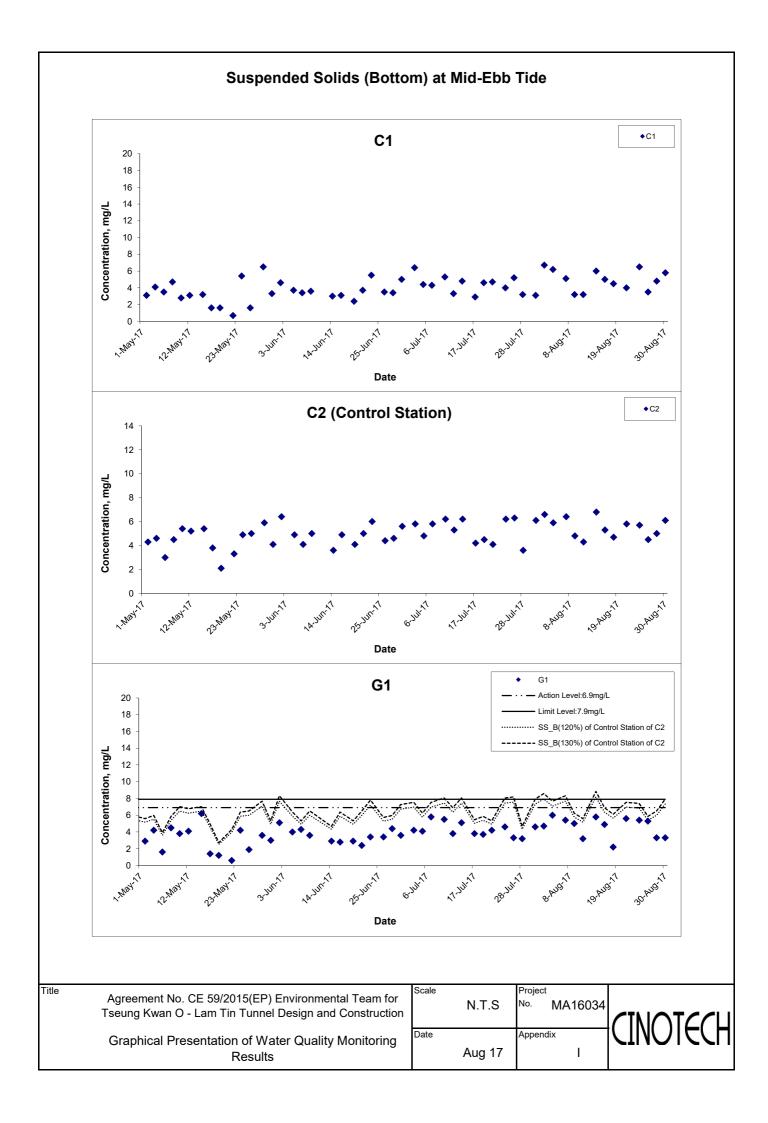
Suspended Solids (Surface) at Mid-Ebb Tide G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C2 16 ----- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 6 Date G3 G3 Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date G4 - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 Date Remarks: The graphical point at zero concentration is presented as <2.5mg/L.


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	CINOISCU

Suspended Solids (Surface) at Mid-Ebb Tide M1 **M**1 Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 6 2 Date М2 **M2** · · - Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS S(120%) of Control Station of C2 16 ----- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 0 Date МЗ **M3** - Action Level : 6.2 mg/L 20 - Limit Level : 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C2 16 ---- SS_S(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 2 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I Aug 17 Results

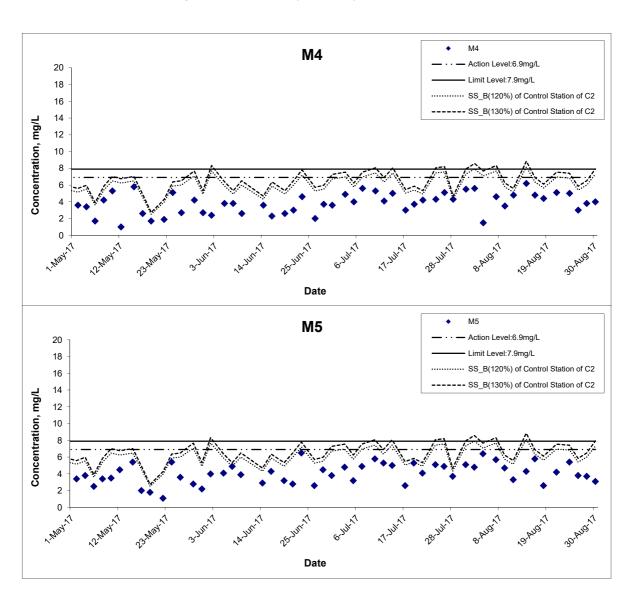
Suspended Solids (Surface) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	


Suspended Solids (Surface) at Mid-Flood Tide G2 G2 · · - Action Level : 6.0 mg/L 20 Limit Level : 6.9 mg/L 18 ······ SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 6 2 Date G3 G3 Action Level: 6.0 mg/L 20 Limit Level: 6.9 mg/L 18 SS_S(120%) of Control Station of C1 16 --- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 0 Date G4 - Action Level : 6.0 mg/L 20 - Limit Level : 6.9 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 --- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

Suspended Solids (Surface) at Mid-Flood Tide M1 **M1** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 · SS_S(120%) of Control Station of C1 16 -- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 4 2 0 Date М2 **M2** Action Level : 6.2 mg/L 20 Limit Level : 7.4 mg/L 18 SS_S(120%) of Control Station of C1 16 ---- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 0 Date МЗ **M3** - Action Level : 6.2 mg/L 20 - Limit Level : 7.4 mg/L 18 ····· SS_S(120%) of Control Station of C1 16 --- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 0 Date Remarks: The graphical point at zero concentration is presented as <2.5mg/L. Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

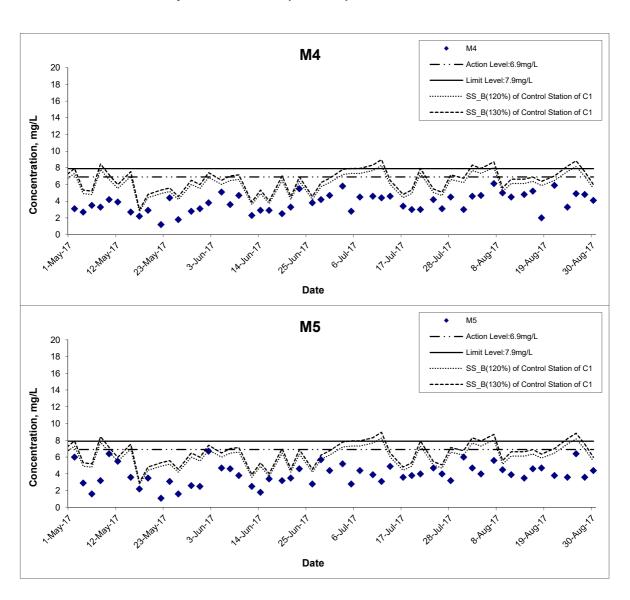
Suspended Solids (Surface) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	

Suspended Solids (Bottom) at Mid-Ebb Tide G2 G2 20 · · - Action Level:6.9mg/L Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C2 16 ---- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 Date G3 · · - Action Level:6.9mg/L 20 - Limit Level:7.9mg/L 18 ···· SS_B(120%) of Control Station of C2 16 -- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 0 Date G4 Action Level:6.9mg/L 20 · Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C2 16 ---- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 2 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

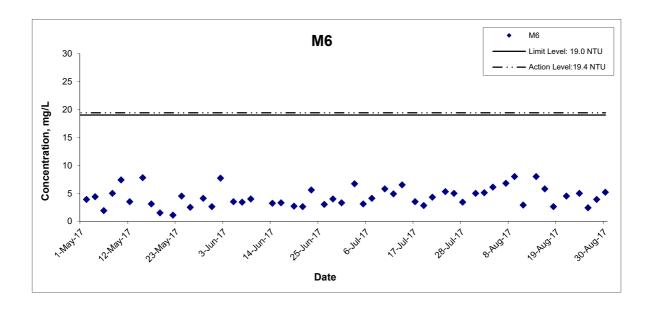
Suspended Solids (Bottom) at Mid-Ebb Tide **M**1 - Action Level:6.9mg/L 20 · Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C2 16 ----- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 2 0 Date М2 **M2** Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS B(120%) of Control Station of C2 16 ---- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 0 Date **M3** Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 ···· SS_B(120%) of Control Station of C2 16 --- SS_B(130%) of Control Station of C2 14 Concentration, mg/L 12 10 8 6 2 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** I Aug 17 Results

Suspended Solids (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	

Suspended Solids (Bottom) at Mid-Flood Tide C1 (Control Station) **◆**C1 14 12 Concentration, mg/L 10 8 6 2 0 Date C2 C2 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 ···· SS B(120%) of Control Station of C1 16 -- SS_S(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 2 0 Date G1 G1 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 ···· SS_B(120%) of Control Station of C1 16 -- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 6 2 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

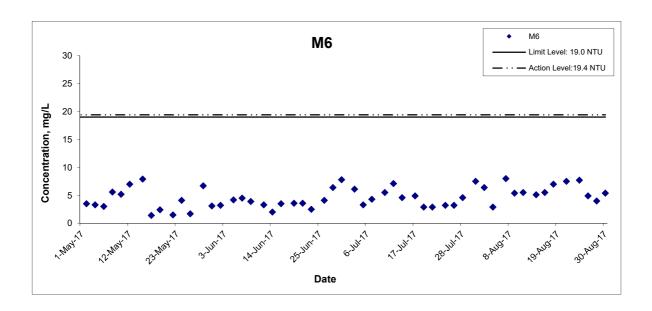
Suspended Solids (Bottom) at Mid-Flood Tide G2 G2 · · - Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 Date G3 G3 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 6 0 Date G4 G4 Action Level:6.9mg/L 20 18 SS_B(120%) of Control Station of C1 16 ----- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results


Suspended Solids (Bottom) at Mid-Flood Tide M1 **M**1 Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 ····· SS_B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 6 4 2 0 Date М2 **M2** · · - Action Level:6.9mg/L 20 Limit Level:7.9mg/L 18 SS B(120%) of Control Station of C1 16 ---- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 8 2 0 Date МЗ **M3** Action Level:6.9mg/L 20 · Limit Level:7.9mg/L 18 SS_B(120%) of Control Station of C1 16 --- SS_B(130%) of Control Station of C1 14 Concentration, mg/L 12 10 6 2 0 Date Title Project Scale Agreement No. CE 59/2015(EP) Environmental Team for No. N.T.S MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Appendix Date **Graphical Presentation of Water Quality Monitoring** Aug 17 I Results

Suspended Solids (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Aug 17	Appendix	

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	Aug 17		I

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring

Results

oring Date

Scale

N.T.S

Aug 17

Project
No. MA16034
Appendix

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Report No.:

QC27293

Date of Issue:

Date Received:

2017-08-11 2017-08-03

Date Tested:

2017-08-03

Date Completed:

2017-08-11

Page:

1 of 2

ATTN:

Ms. Mei Ling Tang

QC report:

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	<0.01

Method QC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	100	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	177	170-220
Total Organic Carbon (%)	102	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	104	80-120
Total Phosphorus (%)	91	80-120

Remarks: 1) <= less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27293.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Report No.: QC27293 Date of Issue: 2017-08-11 Date Received: 2017-08-03 2017-08-03 Date Tested: Date Completed: 2017-08-11

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	27293-3 chk	Acceptance
Suspended Solids (SS) (%)	3	RPD <u><</u> 20%
Biochemical Oxygen Demand (%)	N/A	RPD <u>≤</u> 20%
Total Organic Carbon (%)	3	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD<20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	27293-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	96	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	104	80-120
Total Phosphorus (%)	97	80-120

Remarks: $1) \le less than$

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 27293.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T. Report No.:
Date of Issue:
Date Received:

QC27350 2017-08-22

Date Received:

2017-08-15 2017-08-15

Date Completed:

2017-08-22

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

MEEHOU DIAHK	MD 1	Acceptance
Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	< 0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate +	N/A	N/A
nitrite)		
Ammonia (mg NH ₃ -N/L)	< 0.01	< 0.01
Total Phosphorus (mg-P/L)	<0.01	<0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	90	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	187	170-220
Total Organic Carbon (%)	103	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	86	80-120
Total Phosphorus (%)	93	80-120

Remarks: 1) \leq = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27350.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

 Report No.:
 QC27350

 Date of Issue:
 2017-08-22

 Date Received:
 2017-08-15

 Date Tested:
 2017-08-15

 Date Completed:
 2017-08-22

Page:

2 of 2

QC report:

Sample Duplicate

Sample Duplicate		
Parameter	27350-3 chk	Acceptance
Suspended Solids (SS) (%)	5	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	3	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	6	RPD <u><</u> 20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	27350-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	99	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	112	80-120
Total Phosphorus (%)	90	80-120

Remarks: 1) <= less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27350.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

 Report No.:
 QC27425

 Date of Issue:
 2017-09-05

 Date Received:
 2017-08-29

 Date Tested:
 2017-08-29

 Date Completed:
 2017-09-05

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

Method Blank

MCHOG BAGIIL				
Parameter	MB 1	Acceptance		
Suspended Solids (SS) (mg/L)	<0.5	<0.5		
Biochemical Oxygen Demand	N/A	N/A		
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2		
Nitrogen (Total Kjeldahl + nitrate +	N/A	N/A		
nitrite)				
Ammonia (mg NH ₃ -N/L)	< 0.01	< 0.01		
Total Phosphorus (mg-P/L)	<0.01	<0.01		

Method QC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	100	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	177	170-220
Total Organic Carbon (%)	101	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	87	80-120
Total Phosphorus (%)	99	80-120

Remarks: 1) <= less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27425.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rms 1214, 1502, 1516, 1701 & 1716,
Technology Park, 18 On Lai Street,
Shatin, N.T., Hong Kong.
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 QC27425

 Date of Issue:
 2017-09-05

 Date Received:
 2017-08-29

 Date Tested:
 2017-08-29

Date Completed: 2

2017-09-05

Page:

2 of 2

QC report:

Sample Duplicate

Parameter	27425-3 chk	Acceptance
Suspended Solids (SS) (%)	3	RPD <u><</u> 20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	2	RPD<20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	1	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	27425-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	87	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	97	80-120
Total Phosphorus (%)	101	80-120

Remarks: 1) \leq = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 27425.

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: Date of Issue: 27272 2017/08/03

Date Received:

2017/08/02

Date Tested:

2017/08/02

Date Completed:

2017/08/03

Page:

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/02

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170802

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	3.7	3.7	0	97

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27290

Date of Issue: 2017/08/07

Date Received: 2017/08/04

Date Tested: 2017/08/04

1 of 1

Date Completed: 2017/08/07

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Page:

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/04

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170804

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	3,3	3.3	2	98

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

27298 2017/08/08

Date of Issue:

Date Received:

2017/08/07

Date Tested:

2017/08/07

Report No.:

Date Completed: Page:

2017/08/08

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/07

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170807

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial I, Trial 2, Difference,			
	mg/L	mg/L	%	_
M4se	5.8	5.7	1	101

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

atiral le

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27309

Date of Issue: 2017/08/10

Date Received:

2017/08/09

Date Tested:

2017/08/09

Date Completed:

Page:

2017/08/10

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/09

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170809

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	4.6	4.5	3	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrille

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Report No.:

Date of Issue:

Date Received:

Date Tested:

14/8/2017 1 of 1

27326

14/8/2017

11/8/2017

11/8/2017

ATTN: Ms. Mei Ling Tang

Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

11/8/2017

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170811

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4se	4.3	4.3	1	100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrablee

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Date Completed: Page:

Report No.:

Date of Issue:

Date Received:

Date Tested:

15/8/2017 1 of 1

27334

15/8/2017

14/8/2017

14/8/2017

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

14/8/2017

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170814

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
M4me	6.9	7.0	1	98

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: Date of Issue: 27348 17/8/2017

Date Received:

16/8/2017

Date Tested:

16/8/2017

1 of 1

Date Completed:

Page:

17/8/2017

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

16/8/2017

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170816

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	6.0	5.9	1	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

OC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27357

Date of Issue: 2017/08/21 Date Received:

2017/08/18 Date Tested: 2017/08/18

Date Completed: 2017/08/21

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/18

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170818

QC Recovery, % Total Suspended Solids Duplicate Analysis Sampling Point Trial 2, Difference, Trial 1, mg/L mg/L % 105 3.8 M4se 3.9

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patrilla

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27368 Date of Issue:

2017/08/22

Date Received:

2017/08/21

Date Tested:

Page:

2017/08/21

Date Completed:

2017/08/22

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/21

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170821

QC Recovery, % Total Suspended Solids Duplicate Analysis Sampling Point Trial 1, Trial 2, Difference. % mg/L mg/L 7 99 5.0 5.3 M4se

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Patientese

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27384

Date of Issue: 2017/08/25 2017/08/24

Date Received: Date Tested: 2017/08/24

Date Completed: 2017/08/25

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/24

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170824

QC Recovery, % Duplicate Analysis Total Suspended Solids Difference. Sampling Point Trial 1, Trial 2, mg/L mg/L % 3.4 0 103 M4se 3.4

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 27390

Date of Issue: 2017/08/28

Date Received: 2017/08/26 Date Tested: 2017/08/26

1 of 1

Date Completed: 2017/08/28

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Page:

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/26

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170826

QC Recovery, % Total Suspended Solids Duplicate Analysis Sampling Point Trial 1, Trial 2, Difference mg/L mg/L % 101 4 4.4 4.5 M4se

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.:

27403 2017/08/29

Date of Issue: Date Received:

2017/08/28

Date Tested:

2017/08/28

Date Completed:

Page:

2017/08/29

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2017/08/28

Number of Sample: 136

Custody No.:

MA16034-CE/59/2015(EP)/170828

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.2	4.3	2	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

QC REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: Date of Issue: 27422 2017/08/31

Date Received:

2017/08/30

Date Tested:

103

2017/08/30

Date Completed:

Page:

2017/08/31

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

5.4

Sampling Date:

2017/08/30

Number of Sample: 136

Custody No.:

M4se

MA16034-CE/59/2015(EP)/170830

Total Suspended Solids Duplicate Analysis QC Recovery, % Sampling Point Trial 1, Difference, Trial 2, mg/L mg/L %

5.5

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

APPENDIX K SUMMARY OF EXCEEDANCE

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

Reporting Period: August 2017

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Water Quality
 (Action and Limit Level for groundwater monitoring is under review with consideration of monitoring results obtained from November 2016 to June 2017.)

No exceedance for marine water quality monitoring in the reporting month)

- (D) Exceedance Report for Ecology (NIL in the reporting month)
- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas (NIL in the reporting month)

APPENDIX L SITE AUDIT SUMMARY

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Appendix L - Site Audit Summary (August 2017)

Contract No. NE/2015/01

Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
General refuse and construction material observed near silt curtain in TKO site. The Contractor is reminded to	12 July 2017	×	Item remarked on 19 July 2017
provide silt curtain in accordance with the silt curtain	19 July 2017	×	Item remarked on 26 July 2017
deployment plan.	26 July 2017	✓	Improved/rectified on 2 August 2017
The Contractor was reminded to maintain the silt curtain in TKO site after rain events to avoid effluent outside the silt curtain.	2 August 2017	✓	Improved/rectified on 9 August 2017
Silt curtain for marine platform at TKO site should be repaired and maintained after typhoon events to avoid effluent discharge outside the silt curtain. Temporary stockpiles of materials on marine platform should be located away from seafront and properly covered.	30 August 2017	•	Improved on 31 August and 6 September 2017 that silt curtain for marine platform at TKO site has been repaired on 31 August 2017 and no effluent discharge is observed on the sea on 6 September 2017.
Noise			
Powered mechanical equipment at LTI near tunnel portal should be shielded with acoustic materials at breaker head to reduce noise nuisance to nearby NSRs.	9 August 2017	1	Improved/rectified on 16 August 2017
Landscape and Visual			
Fencing of tree protection zone should be well-maintained at LTI near sedimentation tank.	30 August 2017	#	Follow up action will be reported in next reporting month
Air Quality			
Water spraying should be provided more frequently at LTI near bored-pile area to prevent dust generation.	26 July 2017	√	Improved/rectified on 2 August 2017
Stockpiles at Portion 1a along the Cha Kwo Ling seafront should be cleared after the installation of new barging point to prevent dust generation.	26 July 2017	✓	Improved/rectified on 2 August 2017
Water spraying should be provided more frequently at LTI near bored pile area for dust suppression.	16 August 2017	√	Improved/rectified on 25 August 2017
Waste / Chemical Management			
Drip tray should be provided to chemical containers near temporary steel bridge in Portion 1a to prevent leakage.	26 July 2017	✓	Improved/rectified on 2 August 2017
Housekeeping on temporary steel bridge at Portion 1a should be enhanced and accumulation of waste should be avoided.	26 July 2017	√	Improved/rectified on 2 August 2017
Oil stains at Portion IVC near the site entrance should be properly removed as chemical waste.	9 August 2017	√	Improved/rectified on 16 August 2017
Impact on Cultural Heritage			
Permits / Licenses			

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but improved by the contractor

MA16034/App L L-1 CINOTECH

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Appendix L - Site Audit Summary (August 2017)

Contract No. NE/2015/02

Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works

Items	Date	Status*	Follow up Action	
Water Quality				
To clear the surface water regularly near site entrance of in Portion 5. The contractor was reminded to provide pumps to divert the accumulated surface water.	26 July 2017	√	Improved/rectified on 3 August 2017	
The Contractor is reminded to remove the accumulated sediment from the ditch in Portion 8 near the site entrance.	10 August 2017	√	Improved/rectified on 15 August 2017	
The Contractor is reminded to clear the debris/ construction materials regularly in Portion 7 along the seafront. To improve housekeeping as far as practicable to prevent runoff going into the water during rain events.	15 August 2017	✓	Improved/rectified on 24 August 2017	
Accumulation of floating refuse is observed in Portion 9 near Type 2 cofferdam. The Contractor is reminded to clear the general refuse regularly.	24 August 2017	✓	Improved/rectified on 30 August 2017	
The Contractor is reminded to implement mitigation	24 August 2017	×	Item remarked on 30 August 2017	
measures to avoid spillage of silty water from the steel tanks in Portion 9 during storm events.	30 August 2017	# Follow up action will be reported in next reporting month		
Noise				
To provide proper maintenance to the air compressor in Portion 5 near sheet piling works. The door of air compressor was observed broken while operating.	26 July 2017	✓	Improved/rectified on 3 August 2017	
Landscape and Visual				
Air Quality				
Waste / Chemical Management				
To remove general refuse regularly near site entrances of Portion 5 and 6. Waste collection points were observed not enough.	26 July 2017	✓	Improved/rectified on 3 August 2017	
To remove stagnant water in the drip tray at Portion 8 near steel piling area.	3 August 2017	✓	Improved/rectified on 10 August 2017	
Impact on Cultural Heritage				
Permits / Licenses				
✓ Observation/reminder was made during site audit but i	mproved/rectified	by the cont	reator in the next site audit	

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

Appendix L - Site Audit Summary (August 2017)

Contract No. NE/2015/03

Tseung Kwan O - Lam Tin Tunnel - Northern Footbridge

Items	Date	Status*	Follow up Action
Water Quality			
Noise		I	
Landscape and Visual		<u> </u>	
	8 June 2017	×	Item remarked on 12 June 2017
	12 June 2017	×	Item remarked on 22 June 2017
To set up proper tree protection area in West Pier for	22 June 2017	×	Item remarked on 28 June 2017
retained trees and remove the construction waste.	28 June 2017	×	Item remarked on 10 July 2017
	10 July 2017	✓	Improved/rectified on 10 August 2017
Air Quality			
Waste / Chemical Management			
Chemical Container/Chemical Waste in East Pier near Air Compressor should be stored in drip tray to prevent leakage.	14 August 2017	√	Improved/rectified on 24 August 2017
Chemical Container/Chemical Waste in West Pier near the mobile generator was found without drip tray. The contractor was reminded to put them in drip tray to prevent leakage.	24 August 2017	√	Improved/rectified on 31 August 2017
Chemical Container in East Pier near the air compressor should be put in the drip tray to prevent leakage.	31 August 2017	#	Follow up action will be reported in next reporting month
Impact on Cultural Heritage			
Permits / Licenses			

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

DY/DN/D		ACT	TION	
EVENT	ET	IEC	IEC ER	
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

	ACTION									
EVENT	ET	IEC	ER	CONTRACTOR						
	8. If exceedance stops, cease additional monitoring.									
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 						
Limit level being exceeded by two or more consecutive sampling	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; 						

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
	 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 	remedial measures.	 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is 	4. Resubmit proposals if problem still not under control;5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.					
	 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. 		abated.						

Event and Action Plan for Construction Noise

EVENT				ACT	ION			
		ET		IEC		ER		CONTRACTOR
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose		
	4.	Discuss with the Contractor and		advise the ER accordingly;		remedial measures for the analysed		
		formulate remedial measures;	3.	Supervise the implementation of		noise problem;		
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are		
		check mitigation effectiveness.				properly implemented.		
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as
		implemented;				what portion of the work is		determined by the ER until the
	6.	Inform IEC, ER and EPD the causes				responsible and instruct the		exceedance is abated.
		and actions taken for the				Contractor to stop that portion of		
		exceedances;				work until the exceedance is abated.		

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
	7. Assess effectiveness of Contractor's					
	remedial actions and keep IEC, EPD					
	and ER informed of the results;					
	8. If exceedance stops, cease additional					
	monitoring.					

Event and Action Plan for Marine Water Quality

	Action					
Event	ET	IEC	ER	CONTRACTOR		
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate; If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation proposal. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agree mitigation measures. 		
Action level being exceeded by two	• Identify the source(s) of impact by comparing the results with those	Discuss with ET and Contractor on the mitigation measures;	Discuss with IEC on the proposed mitigation measures;	Inform the Engineer and confirm notification of the non-compliance in		
or	collected at the control stations as		Make agreement on the mitigation	writing;		
more consecutive	appropriate;		proposal;	Rectify unacceptable practice;		

	Action					
Event	ET	IEC	ER	CONTRACTOR		
sampling days at	If exceedance is found to be caused	Review proposal on mitigation	Assess the effectiveness of the	Check all plant and equipment and		
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working		
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;		
	findings;	Assess the effectiveness of the		Discuss with ET, IEC and ER and		
	Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC		
	Check monitoring data, all plant,			and ER within 3 working days;		
	equipment and Contractor's working			Implement the agreed mitigation		
	methods;			measures.		
	Discuss mitigation measures with					
	IEC and Contractor;					
	Ensure mitigation measures are					
	implemented;					
	Prepare to increase the monitoring					
	frequency to daily;					
	If exceedance occurs at WSD salt					
	water intake, inform WSD;					
	Repeat measurement on next day of					
	exceedance.					
Limit level being	• Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm		
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in		
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;		
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;		
receiver(s)		and advise the ER accordingly;	review the working methods;			

	Action					
Event	ET	IEC	ER	CONTRACTOR		
	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and		
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	repeat in-situ measurement to		Assess the effectiveness of the	methods;		
	confirm findings;		implemented mitigation measures.	Discuss with ET, IEC and ER and		
	Inform IEC, contractor, AFCD and			submit proposal of mitigation		
	EPD			measures to IEC and ER within 3		
	Check monitoring data, all plant,			working days of notification;		
	equipment and Contractor's working			Implement the agreed mitigation		
	methods;			measures.		
	Discuss mitigation measures with					
	IEC, ER and Contractor;					
	Ensure mitigation measures are					
	implemented;					
	Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level;					
	If exceedance occurs at WSD salt					
	water intake, inform WSD.					
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm		
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in		
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;		
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;		
sampling days at		and advise the ER accordingly;	review the working methods;			

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
water sensitive	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working
	in-situ measurement to confirm		Assess the effectiveness of the	methods;
	findings;		implemented mitigation measures;	Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		Consider and instruct, if necessary,	submit proposal of mitigation
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3
	Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;
	equipment and Contractor's working		until no exceedance of Limit level.	Implement the agreed mitigation
	methods;			measures;
	Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		Increase ventilation to restore carbon dioxide to <
		0.5%

Event and Action Plan for Coral Post-Translocation Monitoring

Event	Action			
	ET Leader	IEC	ER	Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.		
				3. Implement the agreed measures.

Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	The Engineer shall be informed immediately.
	The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	The Contractor shall carry out design review of the works

Action Level

- Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
- The Contractor shall immediately implement the measures defined in the contingency plan
- The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
- The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
- To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
Air Qual	ity Impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	*(1)
		dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall,	To minimize the	Contractor	Barging	Construction	APCO	N/A
	provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	*(1)
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close to						*(1)
	ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles to reduce						٨
	emissions. Where this is not practicable owing to frequent usage, watering shall be						

- 14 dd		ELMENTATION SCHEDOLE AND RECOMMENDED MITHATION	, 1331123				,	31 2017
EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for	
			Concerns to	measures?		measures?	the measures to	
			address				achieve?	
		applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty						*(2)
		material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between site						٨
		locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit points of						٨
		the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation measures at						N/A
		the loading area of barging point, and use of water sprinklers at the loading area where						
		dust generation is likely during the loading process of loose material, particularly in dry						
		seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site boundary						٨
		where adjoins a road, streets or other accessible to the public except for a site entrance						
		or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						٨
	-	Where possible, routing of vehicles and positioning of construction plant should be at the						٨
		maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be						٨
		covered entirely by impervious sheeting or placed in an area sheltered on the top and the						
		3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						٨
		construction process in order to enforce controls and modify method of work if dusty						
		conditions arise.						

EIA Ref.	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
	ŭ	recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address	mododiooi		ououroor	achieve?	
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution emission		construction	stage		٨
	Only well-maintained plant should be operated on-site and plant should be serviced	from construction		sites	ciago		٨
	regularly to avoid emission of black smoke.	vehicles and		0.100			
	All diesel fuelled construction plant within the works areas shall be powered by ultra low	plants					٨
	sulphur diesel fuel (ULSD)	pano					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	٨
		pollution emission		construction	stage		
		from construction		sites	ciago		
		vehicles and		Sitos			
		plants					
Noise In	npact (Construction Phase)	pano					
S4.8	Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck,	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	N/A
0 1.0	Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile	construction noise	Contractor	TTOIN GILOS	phase		14/71
	Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance,	impact arising from			pridoo		
	Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air	the Project at the					
	Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter	affected NSRs					
	Bore Piling, Grout Mixer & Pump and Concrete Pump.	anected Norts					
NI-!		T to be to - to -	0	Wasta Oita a	0	FIAO TM NOO	*(0)
Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the approved Noise	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	*(3)
Mitigation	Mitigation Plan	construction noise			phase		
Plan		impact arising from					
		the Project at the					

affected NSRs

Recommended Mitigation Measures

EIA Ref.

Augu	st 2017
What	Status
requirements or	
standards for	
the measures to	
achieve?	
EIAO-TM, NCO	
	*(4)
	۸
	۸
	٨
	۸
	٨
EIAO-TM, NCO	N/A
EIAO-TM, WPCO	N/A

LIA Hei.	rieconinended wildgation weasures	Objectives of the	WIIO to	Location of	Wilelito	vviiat	Statu
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be serviced	construction noise	Proponent		Period		*(4)
	regularly during the construction program	impact arising from					
	- Silencers or mufflers on construction equipment should be utilized and should be properly	the Project at the					٨
	maintained during the construction program.	affected NSRs					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.						٨
	- Machines and plant (such as trucks) that may be in intermittent use should be shut down						٨
	between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						٨
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						٨
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction noise		near school	phase		
		impact arising from					
		the Project at the					
		affected NSRs					
Water G	Quality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m³,	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	with fine content of 25% or less	impacts from filling	Contractors		Phase		
		activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	be adopted for construction of seawall foundation. During the stone column installation (also	impacts from filling	Contractors		Phase		

Objectives of the

Who to

Location of

When to

August 2017

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	including the installation of steel cellular caisson), silt curtain shall be employed around the	activities					
	active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	about 50m for marine access) shall be completed prior to the filling activities. The seawall	impacts from filling	Contractors		Phase		
	opening of about 50m wide for marine access shall be selected at a location as indicatively	activities					
	shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a						
	maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the						
	reclamation area for Road P2. All filling works shall be carried out behind the seawall with						
	the use of single silt curtain at the marine access.						
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM,	
	- all marine works should adopt the environmental friendly construction methods as far as	impacts from filling	Contractors		Phase	WPCO, Waste	#(5)
	practically possible including the use of cofferdams to cover the construction area to	activities and				Disposal	
	separate the construction works from the sea;	marine-based				Ordinance	
	- floating single silt curtain shall be employed for all marine works;	construction				(WDO)	*(6)
	- all vessels should be sized so that adequate clearance is maintained between vessels						^
	and the seabed in all tide conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings to						^
	prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges before						۸
	the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of decks						۸
	being washed by wave action;						

August 2	2017
----------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- loading of barges and hoppers should be controlled to prevent splashing of filling material						۸
	into the surrounding water. Barges or hoppers should not be filled to a level that will						
	cause the overflow of materials or polluted water during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated with leaking						۸
	pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						۸
	objectionable matter to be present on the water within the site or dumping grounds; and						
	- before commencement of the reclamation works, the holder of Environmental Permit has						۸
	to submit plans showing the phased construction of the reclamation, design and						
	operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from filling	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	activities and				WPCO	
		marine based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for Reclamation	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary barrier shall	dredging and filling				WPCO	۸
	first be constructed to a height above the high water mark to completely enclose the	works for					
	works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site	Road P2					۸
	shall not be removed before completion of all dredging and underwater filling works.						
	- Water quality sampling and testing shall be carried out to demonstrate that the water						N/A

August	2017

1-1-	MIT ELMIENTATION SCHEDOLE AND RECOMMENDED MITHATION					710.90	31 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	quality inside the enclosed barrier is comparable to the ambient or baseline levels prior						
	to the removal of the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier						۸
	and at the double water gates marine access opening during its operation. The general						
	of arrangement of silt curtain is shown in Figure 7 of the existing Environmental Permit						
	(No. EP-458/2013/C).						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(7)
	prevent high loading of SS from entering the marine environment. Proper site management is	impacts from	Contractors		Phase	1/94, EIAOTM,	
	essential to minimise surface water runoff, soil erosion and sewage effluents.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	۸
	engineering and environmental requirements in order to ensure adequate hydraulic capacity of	impacts from	Contractors		and	1/94, EIAOTM,	
	all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	Control potential	CEDD's	Work site	Construction	ProPECC PN	• (8)
	guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management	construction site				WPCO, TM-DSS	
	practices, as detailed in below, should be implemented to ensure that all construction runoff	runoff and land-					
	complies with WPCO standards and no unacceptable impact on the WSRs arises due to	based construction					
	construction of the TKO-LT Tunnel. All discharges from the construction site should be						
	controlled to comply with the standards for effluents discharged into the corresponding WCZ						

Augu	st 2017
t	Status

	MIT LEMENTATION SCHEDOLE AND RECOMMENDED MITIGATION	SIT MEASONES				31 2017	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated with the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	above ground construction activities can be readily controlled through the use of appropriate	construction site				WPCO	
	mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based construction					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.						^
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (18)
	pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be marked and surrounded by dykes or embankments for flood protection. Temporary	construction site				WPCO	
	ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via	runoff and land-					
	a silt retention pond. Permanent drainage channels should incorporate sediment basins or	based construction					
	traps and baffles to enhance deposition rates. The design of efficient silt removal facilities						
	should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	during the rainy season (April to September). All exposed earth areas should be completed as	impacts from	Contractors		Phase	1/94, EIAOTM,	
	soon as possible after earthworks have been completed, or alternatively, within 14 days of the	construction site				WPCO	
	cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	runoff and land-					
	rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should	based construction					
	be covered by tarpaulin or other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	approximately 6 to 8m3 capacity, are recommended as a general mitigation measure which	impacts from	Contractors		Phase	1/94, EIAOTM,	
	can be used for settling surface runoff prior to disposal. The system capacity is flexible and	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	able to handle multiple inputs from a variety of sources and particularly suited to applications	runoff and land-				S5	
	where the influent is pumped.	based construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	surface protection should be carried out immediately after the final surfaces are formed to	impacts from	Contractors		Phase	1/94, EIAOTM,	
	prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels	construction site				WPCO	
	should be provided where necessary.	runoff and land-				S5	
		based construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	trenches in wet seasons is necessary, they should be dug and backfilled in short sections.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Rainwater pumped out from trenches or foundation excavations should be discharged into	construction site				WPCO	
	storm drains via silt removal facilities.	runoff and land-				S5	
		based construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Measures should be taken to prevent the washing away of construction materials, soil, silt or	construction site				WPCO	
	debris into any drainage system.	runoff and land-					
		based construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	temporarily sealed so as to prevent silt, construction materials or debris being washed into the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	drainage system and storm runoff being directed into foul sewers. Discharge of surface run-	construction site				WPCO	
	off into foul sewers must always be prevented in order not to unduly overload the foul	runoff and land-					
	sewerage system.	based construction					

EIA Ref.	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	Augu	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?	measures	measures?	the measures to	
		address	ilicasures:		ilicasures:	achieve?	
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
33.6.16		'		WOIK SILE			
	when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to	construction site				WPCO	
	the control of silty surface runoff during storm events, especially for areas located near steep	runoff and land-					
	slopes.	based construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	the release of oils and grease into the storm water drainage system after accidental spillages.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	The interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth,	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	mud, debris and the like is deposited by them on roads. An adequately designed and located	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wheel washing bay should be provided at every site exit, and washwater should have sand	construction site				WPCO	
	and silt settled out and removed at least on a weekly basis to ensure the continued efficiency	runoff and land-					
	of the process. The section of access road leading to, and exiting from, the wheelwash bay	based construction					
	to the public road should be paved with sufficient backfall toward the wheel-wash bay to						
	prevent vehicle tracking of soil and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	grit should be removed regularly, at the onset of and after each rainstorm to ensure that these	impacts from	Contractors		Phase	1/94, EIAOTM,	
	facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					

based construction

, , bb , , .	IN LEMENTATION SOFIEDOLE AND TRESOMMENDED MITTAATION				7.ugu	31 2017	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	commencement of other construction activities. Sediment traps should be installed in order to	impacts from	Contractors		Phase	1/94, EIAOTM,	
	minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall	construction site				WPCO	
	be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure proper	construction site				WPCO	
	and efficient operation at all times and particularly following rain storms. The temporarily	runoff and land-					
	diverted drainage should be reinstated to its original condition when the construction work has	based construction					
	finished or the temporary diversion is no longer required.						
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas,	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent	impacts from	Contractors		Phase	1/94, EIAOTM,	
	spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater	Control potential	CEDD's	Work site	Construction	EIAO-TM,	۸
	discharges and the existing or planned seawater intakes during construction and operational	impacts from	Contractors		Phase	WPCO, TMDSS	
	phases	construction site					
		runoff and land-					
		based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	water level in basement or foundation construction, and groundwater seepage pumped out of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tunnels or caverns under construction should be discharged into storm drains after the	construction site				WPCO	
	removal of silt in silt removal facilities.	runoff and land-					
		based construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel.	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	during the excavation. The groundwater levels above the tunnel will also be monitored by	construction site				WPCO, Buildings	
5.18	piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the	runoff and land-				Ordinance	
	groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to	based construction					
	reduce the groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the groundwater						
	should be biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive						
	measures in the form of an Action Plan with pre-emptive and re-active to preserve the						
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	far as practicable be recirculated after sedimentation. When there is a need for final disposal,	impacts from	Contractors		and	1/94, EIAOTM,	
	the wastewater should be discharged into storm drains via silt removal facilities.	construction site			Construction	WPCO	
		runoff and land-			Phas		
		based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
S5.8.31	equipment should whenever practicable be recycled. The discharge of wastewater should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any	construction site				WPCO	
	water recycling system should be provided with an online standby pump of adequate capacity	runoff and land-					
	and with automatic alternating devices. Under normal circumstances, surplus wastewater may	based construction					
	be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to						
	within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more						
	elaborate treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should	impacts from	Contractors		Phase	1/94, EIAOTM,	
	be provided at every site exit if practicable and wash-water should have sand and silt settled	construction site				WPCO	
	out or removed before discharging into storm drains. The section of construction road	runoff and land-					
	between the wheel washing bay and the public road should be paved with backfall to reduce	based construction					
	vehicle tracking of soil and to prevent site run-off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and reused wherever practicable. If the disposal of a certain residual quantity cannot be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a	construction site				WPCO	
	marine dumping licence from EPD on a case-by-case basis.	runoff and land-					
		based construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be treated to the respective effluent standards applicable to foul sewer, storm drains or	impacts from	Contractors		Phase	1/94, EIAOTM,	
	the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	construction site				WPCO	
		runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
		based construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	other purposes as far as practicable. Surplus unpolluted water could be discharged into	impacts from	Contractors		Phase	1/94, EIAOTM,	
	storm drains.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	sought during the design stage of the works with regard to the disposal of the sterilizing water.	impacts from	Contractors		and	1/94, EIAOTM,	
	The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering,	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	internal decoration, cleaning of works and similar activities should not be discharged into the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should	construction site				WPCO	
	undergo the removal of settleable solids in a silt removal facility, and pH adjustment as	runoff and land-					
	necessary	based construction					

App N - I	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	MEASURES			I	Augu	st 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there	impacts from	Contractors		Phase	1/94, EIAOTM,	
	is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for	construction site				WPCO	
	disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving	runoff and land-					
	waters	based construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains,	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be discharged into foul sewer via grease traps capable of providing at least 20 minutes	impacts from	Contractors		Phase	1/94, EIAOTM,	
	retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(9)
	possible be located within roofed areas. The drainage in these covered areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained	construction site				WPCO	
	and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal	runoff and land-					
	in accordance with the Waste Disposal Ordinance.	based construction			_		
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	existing trunk sewer or sewage treatment facilities. The construction sewage may need to be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	handled by portable chemical toilets prior to the commission of the on-site sewer system.	construction site				WPCO	

basis. The contractor should be responsible for keeping the water within the site boundary

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION		Whata	I a antion of	When to		st 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the	runoff and land-					
	large number of construction workers over the construction site. The Contractor shall also be	based construction					
	responsible for waste disposal and maintenance practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced	Control potential	CEDD's	Work site	Construction	EIAO-TM,	٨
	from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary	impacts from	Contractors		Phase	WPCO, WDO	
	regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be	accidental spillage					
	observed and complied with for control of chemical wastes.	of chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	*(10)/
	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	impacts from	Contractors		Phase		*(11)
	and equipment involving activities with potential for leakage and spillage should only be	accidental spillage					
	undertaken within the areas appropriately equipped to control these discharges.	of chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Control potential	CEDD's	Work site	Construction	EIAO-TM,	
	Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical	impacts from	Contractors		Phase	WPCO, WDO	
	Wastes" published under the Waste Disposal Ordinance details the requirements to deal with	accidental spillage					
	chemical wastes. General requirements are given as follows:	of chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage or						#(12)
	spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the personnel						۸
	who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space should be						٨
	allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily	Control potential	CEDD's	Work site	Construction	EIAO-TM,	*(13)

impacts

from

Contractors

Phase

WPCO,

<u> , , , ,</u>	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	INILAGUALG				- Augu	51 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	and the neighbouring water free from rubbish.	floating refuse and					
		debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted wherever	human and traffic	/ Contractor	works are	Phase		۸
	possible.	disturbance to					
	- Hoarding or fencing should be erected around the works area boundaries during the	terrestrial habitat					۸
	construction phase. The hoarding would screen adjacent habitats from construction	and wildlife; and					
	phase activities, reduce noise disturbance to these habitats and also to restrict access to	reduce dust					
	habitats adjacent to works areas by site workers;	generation					
	- Regular spraying of haul roads to minimize impacts of dust deposition on adjacent						۸
	vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access routes	disturbance to		works are	Phase		۸
	selected on existing disturbed land to minimise disturbance to natural habitats.	surrounding					
	- Construction activities should be restricted to works areas that should be clearly	habitats					^
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes. The						^
	wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect and						٨
	control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						٨
	- Measures should also be put into place so that litter, fuel and solvents do not enter the						۸

Aug	ust	2017	
-----	-----	------	--

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address	incusures:		ilicasures:	achieve?	
		audiess				acilieve:	
	nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures would	groundwater inflow			Phase		N/A
	generally be adopted.						
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce the						N/A
	groundwater inflow and ensure that the tunnel would meet the long term water tightness						
	requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design team,	Within	Prior	N/A	
	Coral translocation	coral	contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally common		project	areas and			^
	Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable		operator	pier footprint			
	locations as far as practicable.						
	- The coral translocation should be conducted during the winter months (November-March)						۸
	in order to avoid disturbance during their spawning period (i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for						۸
	pretranslocation coral survey, translocation methodology, identification/proposal of coral						
	recipient site, monitoring methodology for posttranslocation should be prepared during the						
	detailed design stage.						^
	- The coral translocation plan should be subject to approval by relevant authorities (e.g.						
	EPD and AFCD) before commencement of the coral translocation. All the translocation						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	exercises should be conducted by experienced marine ecologist(s) who is/are approved						
	by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and unacceptable						^
	impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should include						^
	observations on the presence, survival, health condition and growth of the translocated						
	coral colonies. These parameters should then be compared with the baseline results						
	collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design Team,	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	contractor	landbased	phase		N/A
	newly installed seawall and marine works area.	especially on		works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize the					
	- Standard good-site practice for land-based construction.	contamination of					٨
		wastewater					^
		discharge,					
		accidental					
		chemical spillage					
		and construction					
		site runoff to the					
		receiving water					
		bodies					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design Team,	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy standard	the vegetation loss	contractor	works area	phase		۸
	trees within or in vicinity of the affected area as far as practicable. Such compensatory						
	planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at						
	the temporarily affected area should be reinstated with species similar to the existing						
	condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design Team	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	/ Contractor	area	phase		٨
	newly installed seawall and marine works area.	especially on					
		suspended solid					
		level					
Waste N	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for good	management			Phase	Ordinance (Cap.	٨
	site practices, arrangements for collection and effective disposal to an appropriate facility,	impacts				354)	
	of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and chemical					Land	٨
	handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	۸
	- Appropriate measures to minimize windblown litter and dust during transportation of					Ordinance (Cap.	٨
	waste by either covering trucks or by transporting wastes in enclosed containers; and					28)	
	- Regular cleaning and maintenance programme for drainage systems, sumps and oil						^

as possible.

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips or	reduction			Phase	Ordinance (Cap.	۸
	stockpiles to enhance reuse or recycling of materials and their proper disposal;					354)	
	- Encourage collection of aluminium cans by providing separate labelled bins to enable this						٨
	waste to be segregated from other general refuse generated by the workforce;					Land	
	- Proper storage and site practices to minimize the potential for damage or contamination					(Miscellaneous	٨
	of construction materials; and					Provisions)	
	- Plan and stock construction materials carefully to minimize amount of waste generated					Ordinance (Cap.	۸
	and avoid unnecessary generation of waste.					28)	
88.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with	reduction			Phase	19/2005	٨
	ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of different categories of waste to be						
	generated from the construction activities. Such a management plan should incorporate site						
	specific factors, such as the designation of areas for segregation and temporary storage of						
	reusable and recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects as far	reduction			Phase	19/2005	٨

Aug	ust	2017	
-----	-----	------	--

The i	N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES August 20					Ot 2017	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential adverse			Phase		
	minimize the impacts include:	environmental					
	- Waste, such as soil, should be handled and stored well to ensure secure containment,	impacts arising					۸
	thus minimizing the potential of pollution;	from waste					
	- Maintain and clean storage areas routinely;	storage					۸
	- Stockpiling area should be provided with covers and water spraying system to prevent						۸
	materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance reuse.						۸
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction		
	- Remove waste in timely manner;	potential adverse			Phase		۸
	- Waste collectors should only collect wastes prescribed by their permits;	environmental					۸
	- Impacts during transportation, such as dust and odour, should be mitigated by the use of	impacts arising					٨
	covered trucks or in enclosed containers;	from waste					
	- Obtain relevant waste disposal permits from the appropriate authorities, in accordance	collection and					۸
	with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of	disposal					
	Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions)						
	Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities; and						۸
	- Maintain records of quantities of waste generated, recycled and disposed.						۸
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip	potential adverse			Phase	6/2010	۸
	Ticket System for Disposal of Construction & Demolition Materials, to monitor disposal of	environmental					

Augus	st 2017
Vhat	Status
ements or	
lards for	
easures to	
nieve?	
TCW No.	
	٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount	impacts arising					
	of waste generated, recycled and disposed (including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and recyclable materials	potential adverse			Phase	6/2010	^
	before disposal off-site.	environmental					
	- Specific areas shall be provided by the Contractors for sorting and to provide temporary					ETWB TCW No.	٨
	storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert materials, in						^
	which the inert portion could be reused and recycled in the reclamation as far as					ETWB TCW No.	
	practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion					19/2005	
	should be investigated before disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG	
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement stabilization.	sediment to be		areas with	Phase		N/A
	Cement-stabilization process is undertaken by mixing sediment and cement and will	disposed of in an		sediments			
	convert sediment to earth filling material. The treated sediment has to comply with Risk-	authorized and		concern			
	Based Remediation Goals (RBRGs) before being reused in order not to raise any land	least impacted					
	contamination issue. The adoption of RBRGs to assess stabilized sediment has been	way					
	proposed in the current C&DMMP. MFC has no adverse comment on the current						
	C&DMMP. The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the						
	RBRG. Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	results do not indicate sediment as contaminated soil. It is anticipated that reuse of						
	sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to land						
	contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-EBH501						
	33.95m) as filling material after cement stabilization is also a suitable treatment.						N/A
	Sediment quality indicates the sediment sample (TKO-EBH501 3-3.95m) exceed RBRG						
	for lead. While cement stabilization will immobilize metal contaminants, it is capable to						
	treat the exceedance on lead. The stabilized material should comply with UTS of Lead						
	and UCS. If the treated material do not comply with UTS or UCS, re-stabilization have to						
	be undertaken to meet compliance of UTS and UCS before reusing the treated sediment						
	as filling material. However, further agreement on final disposal/treatment on sediment						
	under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant,	best handling and		areas with	Phase		N/A
	shall be adhered to during boring, excavation, transportation and disposal of sediments	treatment of		sediments			
	or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization mixing and						N/A
	temporary stockpile. The area should be designed to prevent leachate from entering the						
	ground. Leachate, if any, should be collected and discharged according to the Water						
	Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring, excavation and						N/A
	transportation of the sediment, the excavated sediments should be kept wet during						
	excavation/boring and should be properly covered when placed on barges/trucks.						

S8.6.24 -

Sediments (con't)

EIA Ref.	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	St 2017 Status
EIA Rei.	necommended witigation weasures	,					Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	Loading of the excavated sediment to the barge should be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.	
	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be		areas with	Phase	34/2002 &	N/A
	requirements and procedures for excavated sediment disposal specified under ETWB	disposed of in an		sediments		Dumping at Sea	
	TC(W) No. 34/2002 shall be followed. MFC is responsible for the provision and	authorized and		concern		Ordinance	
	management of disposal capacity and facilities for the excavated sediment, while the	least impacted					
	permit of marine dumping is required under the Dumping at Sea Ordinance and is the	way					
	responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping permit,	best handling and		areas with	Phase	34/2002 &	N/A
	separate SSTP has to be submitted to EPD for agreement under DASO. Additional site	disposal option of		sediments		Dumping at Sea	
	investigation, based on the SSTP, maybe carried out in order to confirm the disposal	sediment		concern		Ordinance	
	arrangements for the proposed sediments removal. A Sediment Quality Report (SQR)						
	shall then be required for EPD agreement under DASO prior to the tendering of the						
	construction contract, discussing in details the site investigation, testing results as well as						
	the delineation of each of the categories of excavated materials and the corresponding						
	types of disposal.						

To ensure

Contractor

All works

Construction

ETWB TC(W) No.

Augus	t 2017
-------	--------

EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for	
			Concerns to	measures?		measures?	the measures to	
			address				achieve?	
S8.6.28	-	The excavated sediments is expected to be loaded onto the barge and transported to the	handling of		areas with	Phase	34/2002 &	N/A
		designated disposal sites allocated by the MFC. The excaveted sediment would be	sediments are in		sediments		Dumping at Sea	
		disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.	accordance to		concern		Ordinance	
	-	Stockpiling of contaminated sediments should be avoided as far as possible. If	statutory					N/A
		temporary stockpiling of contaminated sediments is necessary, the excavated sediment	requirements					
		should be covered by tarpaulin and the area should be placed within earth bunds or sand						
		bags to prevent leachate from entering the ground, nearby drains and surrounding water						
		bodies. The stockpiling areas should be completely paved or covered by linings in order						
		to avoid contamination to underlying soil or groundwater. Separate and clearly defined						
		areas should be provided for stockpiling of contaminated and uncontaminated materials.						
		Leachate, if any, should be collected and discharged according to the Water Pollution						
		Control Ordinance (WPCO).						
	-	In order to minimise the potential odour / dust emissions during boring and transportation						N/A
		of the sediment, the excavated sediments should be kept wet during excavation/boring						
		and should be properly covered when placed on barges. Loading of the excavated						
		sediment to the barge should be controlled to avoid splashing and overflowing of the						
		sediment slurry to the surrounding water.						
	-	The barge transporting the sediments to the designated disposal sites should be						N/A
		equipped with tight fitting seals to prevent leakage and should not be filled to a level that						
		would cause overflow of materials or laden water during loading or transportation. In						
		addition, monitoring of the barge loading shall be conducted to ensure that loss of						
		material does not take place during transportation. Transport barges or vessels shall be						
		equipped with automatic self-monitoring devices as specified by the DEP.						

Augu	st 2017
at	Status
ents or	
ds for	
ures to	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic containment. A						N/A
	geosynthetic containment method is a method whereby the sediments are sealed in						
	geosynthetic containers and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be covered by further mud						
	disposal and later by the mud pit capping, thereby meeting the requirements for fully						
	confined mud disposal.						
S8.6.26	Chemical Wastes.	To ensure proper	Contractor	All works	Construction	Code of Practice	
	- If chemical wastes are produced at the construction site, the Contractor would be	management of		sites	Phase	on the	٨
	required to register with the EPD as a Chemical Waste Producer and to follow the	chemical waste				Packaging,	
	guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of					Labelling and	
	Chemical Wastes. Good quality containers compatible with the chemical wastes should					Storage of	
	be used, and incompatible chemicals should be stored separately. Appropriate labels					Chemical Wastes	
	should be securely attached on each chemical waste container indicating the						
	corresponding chemical characteristics of the chemical waste, such as explosive,					Waste Disposal	
	flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a					(Chemical Waste)	
	licensed collector to transport and dispose of the chemical wastes, to either the Chemical					(General)	
	Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the					Regulation	
	Waste Disposal (Chemical Waste) (General) Regulation.						
S8.6.27	General Refuse	To ensure proper	Contractor	All works	Construction	Public Health and	*(14)/*(15)

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- General refuse should be stored in enclosed bins or compaction units separate from C&D	management of		sites	Phase	Municipal	
	material. A reputable waste collector should be employed by the contractor to remove	general refuse				Services	
	general refuse from the site, separately from C&D material. Preferably an enclosed and					Ordinance (Cap.	
	covered area should be provided to reduce the occurrence of 'wind blown' light material.					132)	
Impact c	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1 m)	and visual impacts			Phase	AMO	۸
	should be provided;						
	- The open yard in front of the temple should be kept as usual for annual Tin Hau festival;						۸
	- Monitoring of vibration impacts should be conducted when the construction works are						۸
	less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent indirect	Contractors	Work areas	Construction	Vibration Limits	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of	vibration impact			Phase	on Heritage	۸
	5mm/s measured inside the historical buildings;					Buildings by	
	- Monitoring of vibration should be carried out during construction phase.					CEDD; GCHIA;	۸
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau					AMO.	۸
	Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts on built						۸
	heritage shall be submitted to AMO for comments before commencement of work.						
Landsca	ape and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid	Avoid impact on	CEDD (via	General	Construction	N/A	٨
10.8.1	impacts on adjacent landscape.	adjacent	Contractor)		planning and		
		landscape areas			during		

י זו קקר	IMPLEMENTATION SCHEDOLE AND RECOMMENDED MITIGATION	IN WEASURES			August 20		
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
					construction		
					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration	CEDD (via	N/A	Construction	N/A	۸
10.8.1		of impact	Contractor)		planning		
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be	To allow re-use of	CEDD (via	General	Site clearance	As per the	۸
10.8.1	stripped and stored for re-use in the construction of the soft landscape works. The Contract	topsoil	Contractor)			Particular	
	Specification shall include storage and reuse of topsoil as appropriate.					Specification	
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	#(16)/*(17)
10.8.1	protected during construction. Detailed Tree Protection Specification shall be provided in the	loss	Contractor)	approved	and	and as per tree	
	Contract Specification, under which the Contractor shall be required to submit, for approval, a			Tree Removal	throughout	protection	
	detailed working method statement for the protection of trees prior to undertaking any works			Application(s)	construction	measures in	
	adjacent to all retained trees, including trees in contractor's works areas. (Tree protection				period	Particular	
	measures will be detailed at Tree Removal Application stage).					Specification	
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable.	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	۸
10.8.1	Where possible, trees should be transplanted direct to permanent locations rather than	preservation of	Contractor)	approved		and as per tree	
	temporary holding nurseries. A detailed tree transplanting specification shall be provided in the	existing trees		Tree Removal		protection	
	Contract Specification and sufficient time for preparation shall be allowed in the construction			Application(s)		measures in	
	programme.					Particular	
						Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	۸
10.8.1	hoardings. Trees shall be capable of reaching a height >10m within 10 years.	screening of the	Contractor)	Interchange	construction		
		works		and edge of	period		
				Road P2			

The is	IMPLEMENTATION SCHEDOLE AND RECOMMENDED MITIGATION	N WEASURES				St 2017	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
				landscape			
				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1		intrusion	Contractor)		construction	Specification	
					period		
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night	To reduce visual	CEDD (via	General	Throughout	N/A	٨
10.8.1	working periods.	intrusion	Contractor)		construction		
					period		
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of	CEDD (via	Project site	Excretion of	N/A	٨
10.8.1	surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	٨
10.8.1		visual intrusion	Contractor)	structures	construction		
		and integration			stage		
		with environment					
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	۸
10.8.1		contamination of	Contractor)	reclamation,	construction		
		water courses and		TKO tunnel	period		
		water bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		

hazards.

EIA Ref.	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	St 2017 Status
	Tioodillionada Illinganon Illoada do	recommended	implement	the	Implement	requirements or	Julia
		Measures & Main	the	measures	the	standards for	
				illeasures			
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
		existing coastlin		points at TKO	stages		
				and Lam Tin			
				and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads and			
				Road P2			
Landfill	Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related	Protect the	Contractor	Project sites	Construction	EPD's Landfill	٨
	hazards, should be present on site throughout the groundworks phase. The Safety Officer	workers from		within the Sai	phase	Gas Hazard	
	should be provided with an intrinsically safe portable instrument, which is appropriately	landfill gas		Tso Wan		Assessment	
	calibrated and able to measure the following gases in the ranges indicated below:	hazards		Landfill		Guidance Note	
	Methane 0-100% LEL and 0100% v/v			Consultation			
	Carbon dioxide 0-100%			Zone			
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the	Contractor	Project sites	Construction	EPD's Landfill	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all excavation	workers from		within the Sai	phase	Gas Hazard	٨
	workers, supervisors and engineers working within the Consultation Zone, should receive	landfill gas		Tso Wan	-	Assessment	
]	J				1	1

Consultation

Labour

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- An excavation procedure or code of practice to minimize landfill gas related risk should			Zone		Department's	۸
	be devised and carried out.					Code of Practice	
	- No worker should be allowed to work alone at any time in or near to any excavation. At					for Safety and	۸
	least one other worker should be available to assist with a rescue if needed.					Health at Work in	
	- Smoking, naked flames and all other sources of ignition should be prohibited within 15m					Confined Space	۸
	of any excavation or ground-level confined space. "No smoking" and "No naked						
	flame" notices should be posted prominently on the construction site and, if necessary,						
	special areas should be designed for smoking.						
	- Welding, flame-cutting or other hot works should be confined to open areas at least 15m						۸
	from any trench or excavation.						
	- Welding, flame-cutting or other hot works may only be carried out in trenches or confined						۸
	spaces when controlled by a "permit to work" procedure, properly authorized by the						
	Safety Officer (or, in the case of small developments, other appropriately qualified						
	person).						
	- The permit to work procedure should set down clearly the requirements for continuous						۸
	monitoring for methane, carbon dioxide and oxygen throughout the period during which						
	the hot works are in progress. The procedure should also require the presence of an						
	appropriately qualified person, in attendance outside the 'confined area', who should be						
	responsible for reviewing the gas measurements as they are made, and who should have						
	executive responsibility for suspending the work in the event of unacceptable or						
	hazardous conditions. Only those workers who are appropriately trained and fully aware						
	of the potentially hazardous conditions which may arise should be permitted to carry out						
	hot works in confined areas.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- Where there are any temporary site offices, or any other buildings located within the Sai						^
	Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to						
	accumulate landfill gas, then they should either be located in an area which has been						
	proven to be free of landfill gas (by survey using portable gas detectors); or be raised						
	clear of the ground by a minimum of 500mm. This aims to create a clear void under the						
	structure which is ventilated by natural air movement such that emission of gas from the						
	ground are mixed and diluted by air.						
	- Any electrical equipment, such as motors and extension cords, should be intrinsically						۸
	safe. During piping assembly or conduiting construction, all valves/seals should be closed						
	immediately after installation. As construction progresses, all valves/seals should be						
	closed to prevent the migration of gases through the pipeline/conduit. All piping						
	/conduiting should be capped at the end of each working day.						
	- During construction, adequate fire extinguishing equipment, fire-resistant clothing and						۸
	breathing apparatus (BA) sets should be made available on site.						
	- Fire drills should be organized at not less than six monthly intervals.						۸
	- The contractor should formulate a health and safety policy, standards and instructions for						۸
	site personnel to follow.						
	- All personnel who work on the site and all visitors to the site should be made aware of the						۸
	possibility of ignition of gas in the vicinity of excavations. Safety notices (in Chinese and						
	English) should be posted at prominent position around the site warning danger of the						
	potential hazards.						
	- Service runs within the Consultation Zone should be designated as "special routes";						^
	utilities companies should be informed of this and precautionary measures should be						

Augus	st 2017
t	Status
nte or	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	implemented. Precautionary measures should include ensuring that staff members are						
	aware of the potential hazards of working in confined spaces such as manholes and						
	service chambers, and that appropriate monitoring procedures are in place to prevent						
	hazards due to asphyxiating atmospheres in confined spaces. Detailed guidance on						
	entry into confined spaces is given in Code of Practice on Safety and Health at Work in						
	Confined Spaces (Labour Department, Hong Kong).						
	- Periodically during ground-works construction within the 250m Consultation Zone, the						٨
	works area should be monitored for methane, carbon dioxide and oxygen using						
	appropriately calibrated portable gas detection equipment. The monitoring frequency						
	and areas to be monitored should be set down prior to commencement of ground-works						
	either by the Safety Officer or an approved and appropriately qualified person.						
S11.5.26	Monitoring	Protect the	Contractor	Project sites	Construction	EPD's Landfill	
-	Routine monitoring should be carried out in all excavations, manholes, chambers,	workers from		within the Sai	phase	Gas Hazard	٨
S11.5.31	relocation of monitoring wells and any other confined spaces that may have been	landfill gas		Tso Wan		Assessment	
	created. All measurements in excavations should be made with the extended	hazards		Landfill		Guidance Note	
	monitoring tube located not more than 10 mm from the exposed ground surface.			Consultation			
	Monitoring should be performed properly to make sure that the area is free of landfill			Zone			
	gas before any man enters into the area.						
	For excavations deeper than 1m, measurements should be carried out:						٨
	- at the ground surface before excavation commences;-						
	- immediately before any worker enters the excavation;						
	- at the beginning of each working day for the entire period the excavation remains open;						
	and						

Auc	just	201	7
-----	------	-----	---

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for	
		Concerns to	measures?		measures?	the measures to	
		address				achieve?	
	- periodically throughout the working day whilst workers are in the excavation.						
	• For excavations between 300mm and 1m deep , measurements should be carried out:						۸
	- directly after the excavation has been completed; and						
	- periodically whilst the excavation remains open.						
	• For excavations less than 300mm deep, monitoring may be omitted, at the discretion of						۸
	the Safety Officer or other appropriately qualified person.						
	Depending on the results of the measurements, actions required will vary and should						۸
	be set down by the Safety Officer or other appropriately qualified person.						
	The exact frequency of monitoring should be determined prior to the commencement of						۸
	works, but should be at least once per day, and be carried out by a suitably qualified or						
	qualified person before starting the work of the day. Measurements shall be recorded						
	and kept as a record of safe working conditions with copies of the site diary and						
	submitted to the Engineer for approval. The Contractor may elect to carry out						
	monitoring via an automated monitoring system.						
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill	construction stage	Contractor	Project sites	Construction	EPD's Landfill	N/A
	Consultation Zone should be minimized by suitable precautionary measures recommended in	within the Sai Tso		within the Sai	phase	Gas Hazard	
	Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Wan		Tso Wan		Assessment	
		Protect the		Landfill		Guidance Note	
		workers from		Consultation			
		landfill gas		Zone			
		hazards					

App N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Qua	lity Impac	t			
* (1)	S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	NE/2015/01	Construction of	Water spraying should be provided more frequently at Lam
		roads		Lam Tin	Tin Interchange to prevent dust generation.
				Interchange	
	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction			
		Dust) Regulation and good site practices:			
		- Use of regular watering to reduce dust emissions from exposed site surfaces			
		and unpaved roads, particularly during dry weather.			
		- Use of frequent watering for particularly dusty construction areas and areas			
		close to ASRs.			
* (2)	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction	NE/2015/01	Construction of	Stockpiles at Portion 1a should be cleared after the
		Dust) Regulation and good site practices:		Cha Kwo Ling	installation of new barging point to prevent dust generation.
		- Open stockpiles shall be avoided or covered. Where possible, prevent		Barging Point	
		placing dusty material storage piles near ASRs.			
Noise I	mpact (Co	nstruction Phase)	•	•	
*(3)	Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the	NE/2015/01	Construction of	Powered mechanical equipment at LTI should be shield
	Mitigation	approved Noise Mitigation Plan		Lam Tin	with acoustic materials at breaker head to reduce noise
	Plan			Interchange	nuisance to nearby Noise Sensitive Receivers.

Auc	ust	201	7
-----	-----	-----	---

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
*(4)	S4.9	Good Site Practice - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program	NE/2015/02	Construction of Road P2	To provide proper maintenance to the air compressor in Portion 5 near sheet piling works. The door of air compressor was observed broken while operating.
Water G	Quality Imp	pact (Construction Phase)			
#(5)	S5.8.3	all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the construction area to separate the construction works from the sea;	NE/2015/02	Construction of Road P2	The Contractor is reminded to implement mitigation measures to avoid spillage of silty water from the steel tanks in Portion 9 during storm events.
*(6)	S5.8.3	Other good site practices should be undertaken during filling operations include: floating single silt curtain shall be employed for all marine works;	NE/2015/01	Construction of TKO Portal	Construction material observed near silt curtain in TKO site. The Contractor is reminded to provide silt curtain in accordance with the silt curtain deployment plan. The Contractor was reminded to maintain the silt curtain in TKO site after rain events to avoid effluent outside the silt curtain.
*(7)	S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.	NE/2015/02	Construction of Road P2	To clear the surface water regularly near site entrance in Portion 5. The contractor was reminded to provide pumps to divert the accumulated surface water.
• (8)	S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-DSS.	NE/2015/01	Construction of TKO Portal	Silt curtain for marine platform at TKO site should be repaired and maintained after typhoon events to avoid effluent discharge outside the silt curtain. Temporary stockpiles of materials on marine platform should be located away from seafront and properly covered.

August 2	2017
----------	------

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
*(9)	S 5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	NE/2015/01	Construction of Lam Tin Interchange	Oil stains at Portion IVC should be properly removed as chemical waste.
*(10)	S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	NE/2015/01 NE/2015/02	Construction of TKO Portal Construction of Road P2	Drip tray should be provided to chemical containers near temporary steel bridge in Portion 1a to prevent leakage. To remove stagnant water in trip tray at Portion 8 SR2.
#(12)	S 5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport;	NE/2015/03	Construction of Northern Footbridge	Chemical Container/ Chemical waste in East/West Pier was found without drip tray. The Contractor was reminded to put them in drip tray to prevent leakage.
*(13)	S 5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	NE/2015/02	Construction of Road P2	Accumulation of floating refuse is observed in Portion 9 near Type 2 cofferdam. The Contractor is reminded to clear the general refuse regularly.

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
*(18)	S5.8.9	Construction site should be provided with adequately designed perimeter channel	NE/2015/02	Construction of	The Contractor is reminded to remove the accumulated
		and pretreatment facilities and proper maintenance. The boundaries of critical		Road P2	sediment from the ditch in Portion 8 near the site entrance.
		areas of earthworks should be marked and surrounded by dykes or embankments			
		for flood protection. Temporary ditches should be provided to facilitate runoff			
		discharge into the appropriate watercourses, via a silt retention pond. Permanent			
		drainage channels should incorporate sediment basins or traps and baffles to			
		enhance deposition rates. The design of efficient silt removal facilities should be			
		based on the guidelines in Appendix A1 of ProPECC PN 1/94.			
Waste I	Manageme	nt (Construction Phase)			
*(14)	S8.6.27	General Refuse	NE/2015/01	Construction of	Housekeeping on temporary steel bridge at Portion 1a
		General refuse should be stored in enclosed bins or compaction units separate		Lam Tin	should be enhanced and accumulation of waste should be
		from C&D material. A reputable waste collector should be employed by the		Interchange	avoided.
		contractor to remove general refuse from the site, separately from C&D material.			
		Preferably an enclosed and covered area should be provided to reduce the			
*(15)		occurrence of 'wind blown' light material.	NE/2015/02	Construction of	To remove general refuse regularly near site entrances of
				Road P2	Portion 5 and 6. Waste Collection points were observed not
					enough.
					The Contractor is reminded to clear the debris/construction
					materials regularly in Portion 7 along the sea front. To
					improve housekeeping as far as practicable to prevent
					runoff going into the water during rain events.
Landsca	ape and Vi	isual Impact (Construction Phase)			
#(16)	Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to	NE/2015/01	Construction of	Fencing of tree protection zone should be maintained at LTI
	10.8.1	be carefully protected during construction. Detailed Tree Protection Specification		TKO Portal	to protect retained trees.
		shall be provided in the Contract Specification, under which the Contractor shall be			
		required to submit, for approval, a detailed working method statement for the			

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
*(17)		protection of trees prior to undertaking any works adjacent to all retained trees,	NE/2015/03	Construction of	To set up proper tree protection area for retained trees and
		including trees in contractor's works areas. (Tree protection measures will be		Northern	remove the construction waste.
		detailed at Tree Removal Application stage).		Footbridge	

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
1	7 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Air Quality & Noise	The complainant complained about the construction noise and dust near Yau Lai Estate. (EPD Reference No.: K15/RE/00032001-16)	Y	According to information provided by the Contractor, powered Mechanical Equipment being operated for construction of Lam Tin Interchange on 7 and 9 December 2016 include breaker, dump truck, backhoes, drilling rig and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking. The Contractors had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual to reduce	Closed
2	9 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	Noise	The complainant complained about the construction noise near Yau Lai Estate. (EPD Reference No.: K15/RE/00032317-16)	Y	measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual to reduce construction dust and noise nuisance to the vicinity. According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 6 – 14 December 2016. Similarly,	Closed
3	9 th December 2016	Not Specified / Construction of Road P2	Sai Kung District Council Member Mr. Chan Kai Wai	Air Quality & Noise	The complainant complained about the noise nuisance during transportation of construction materials on haul road and dust generation during construction activities.	Y	No construction activities were carried out for both construction of Road P2 and TKO portal during night time or at about 7am. Therefore, no construction noise nuisance were generated during night-time or at about 7am under this Project and it is considered that these noise nuisance is not project-related. The Contractors of this Project had implemented environmental mitigation measures for air quality, noise and visual impact (night-time lighting) in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
4	20 th December 2016	Not Specified / Construction of Road P2	Resident of Ocean Shore	Noise	The complainant complained about the lighting and noise nuisance on construction vessels moored near Ocean Shores during night time.	Y	The Contractors had taken the initiative to provide additional noise mitigation measures to works since the complaints were received including: - Temporary noise barrier had been installed to reduce noise nuisance from piling works in construction of Road P2 Provision of noise enclosure to cover generators for reducing	Closed
5	22nd December 2016	21 Dec 2016 at night / Construction of TKO portal	Resident of Block 3, Ocean Shores	Noise	The complainant concerned the noise generated by the construction works at hillside near Block 3 of Ocean Shores in daytime.	Y	According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded in December 2016. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project. According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety purpose was observed from the construction vessel and anchors.	Closed
6	22nd December 2016	Not specified / Construction of TKO portal	Public	Noise	The complainant complained about the noise generated by the construction works at hillside in daytime.	Y		Closed
7	22nd December 2016	Not specified / Construction of Road P2	Resident from Ocean Shore	Noise	The complainant complained about the noise nuisance of broadcast on construction vessel near Ocean Shores at 7am and the noise generated by the construction works outside Tseung Kwan O Chinese Permanent Cemetery.	Y		Closed

Monthly EM&A Report (August 2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
8	22 nd December 2016	Not specified / Construction of Road P2 and TKO portal	Resident from Ocean Shore	Noise	The complainant complained about the noise nuisance generated by construction works of Tseung Kwan O portal in daytime and noise nuisance of "loud speaker" on construction vessel near Ocean Shores.	Y		Closed
9	16 th December 2016	Not Specified / near Ocean Shores	DC member	Noise & (Light)	The complainant complained that they noticed about 2 work vessels were being used at 00:00-01:00 and also moored there overnight which caused light pollution and affecting the residents.	Y	According to the findings of investigation, minimum lighting on the construction vessel was required for guard watching the works site. Adverse night-time light and noise nuisance from the marine works area near Ocean Shores as alleged by the complainant are considered not caused by this Project. The Contractor had continuously implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual. To avoid strong light emission towards the sensitive receivers, night-time lighting is properly controlled by hooding all lights (except necessary lighting for safety purpose and guard watching);	Closed
10	17 th January 2017	5 January 2017 / near Ocean Shores	DC member	Noise & (Light)	The complainant complained that marine vessels were used at about 22:00 and around 01:00 on 5 Jan 2017, again causing noise and light nuisance to the residents.	Y	According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety and guard watching purpose was observed from the construction vessel and anchors. The Contractor was recommended to continuously implement the following visual impact mitigation measures: • necessary lighting on construction vessels should be oriented as much as possible such that direct strong lighting towards the sensitive receivers is avoided. • Strong lighting that may be in intermittent use should be shut down between works periods	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
11	23 rd December 2016	Not Specified / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	Water	The complainant complaint about the Soil/muddy water from construction site near Cha Kwo Ling Tsuen. (EPD Reference No.: K15/RE/00033951-16)	N	2016 at Portion WA1, which is the site portion near Cha Kwo Ling Tsuen. Despite, it was recorded that some muddy water was flowing from the Contractor's wheel washing facility to the gullies within the site boundary.	Closed
12	29 th December 2016	23 rd December 2016 / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	Water	The complainant complaint that some muddy water flowing from the wheel washing facility to the gullies within the site boundary.	N	For complaint of muddy water on 23rd December 2016, the Contractor has fixed the clear water hose for wheel washing on 24th December 2016 early morning. During the recent weekly site inspections to Site Portion WA1, no muddy water was observed leaked out of the Site Boundary.	
13	6 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	Noise	The complainant complained about the noise nuisance during rock breaking at the Eastern Harbour Crossing (EHC) portal and lack of noise mitigation measures during the construction works.	Y	After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: Air Quality	Closed
14	6 th January 2017	Not Specified / Cha Kwo Ling Road	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance generated by the excavation works at Cha Kwo Ling Road on 6 January 2017 just after 7 a.m.	Y	Use of frequent watering during construction of Lam Tin Interchange, including watering of eight times a day on active work area, exposed area and paved haul roads to mitigate air quality impacts to the nearby Air Sensitive Receivers (ASRs) Noise Provision of portable noise enclosures to head of breakers to reduce noise emission during rock breaking works in Lam Tin	Closed

Design and Construction
Monthly EM&A Report (August 2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
15	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	Air Quality & Noise	The complainant complained about the noise nuisance during the construction works near Yau Lai Estate at 7:15am. He requested to erect noise barriers and set up water spraying system to minimize the noise and air nuisances to	Y	 Interchange; Provision of portable noise enclosures to reduce noise nuisance from drilling works and generator in Lam Tin Interchange; and Use of Quiet PME on-site including generator and hydraulic excavator. The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings: Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange; Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day. According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded from 16 December 2016 to 19 January 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project. 	Closed
16	6 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Cheuk Lai House	Noise	the nearby residents. The complainant complained the construction noise generated from this Project (EPD Reference No.: K15/RE/00000564-17)	Y		Closed
17	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	Noise	The Yau Lai Estate Property Services Management Office mentioned that one of the resident of Yau Lai Estate had complained to Hong Kong Housing Authority (HKHA) about the noise generated by the construction works.	Y	Nevertheless, the Contractor was recommended to continue to properly implement and strictly follow the air quality and noise mitigation measures as recommended in the Environmental Monitoring & Audit Manual and approved Noise Mitigation Plan to minimize environmental impact on the construction site.	Closed
18	10 th January 2017	Not Specified	Anonymous	Noise	The complainant complained the construction noise generated from this Project (EPD Reference	Y		Closed

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report (August 2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					No.: K15/RE/00000967- 17)			
19	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noise generated from rock breaking at Lam Tin Interchange. He requested concrete actions to improve the situation.	Y		Closed
20	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	The complainant complained the noise generated from rock breaking at Lam Tin Interchange.	Y		Closed
21	13 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning.	Y		Closed
22	13 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	Anonymous	Noise	The complainant complained about the noise generated by the construction works near the toll plaza of the Eastern Harbour Crossing (EHC). The complainant complained again on 24 Jan 2017 and mentioned the noise problem still affected the daily life of residents	Y		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
23	16 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning.	Y		Closed
24	17 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	The complainant complained the construction noise generated at Lam Tin Interchange.	Y		Closed
25	26 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	黃國健議員及 何啟明議員	Noise	LC members referred complaints about the noise generated by the construction works near the EHC tunnel portal. They mentioned that the noise generated by the construction works had greatly affected the daily life of nearby residents, especially occupants of Block 5 of Yau Lai Estate and those who lived at the upper floors.	Y	After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual. The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings: Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange; Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day.	Closed
26	27 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning. (EPD Ref No. K15/RE/00002945-17)	Y	According to information provided by the Contractor, powered Mechanical Equipment being operated on site during the time of complaint include breaker, dump truck, backhoes, drilling rig, mobile crane and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
27	9 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about the noise nuisance during the construction works of Lam Tin Interchange at 8:10am. (EPD Reference No.: K15/RE/00003855-17)	Y	 In addition to the the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual, the Contractor has implemented the following additional noise mitigation measures since late including: Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange; Sound absorptive materials with 50mm thickness were hanged on rock mountain wall as well as temporary noise barrier containers; and 	Closed
28	13 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about the noise nuisance during the construction works of Lam tin Interchange.	Y	 Adoption of alternative rock breaking method such as partial rock breaking by rock splitter. In addition, the Contractor has taken the initiative to explore measures to further reduce construction noise nuisance such as: Installation of cantilever barrier on top of the containers; Installation of tuned mass dampers on breaker head; and Use of acoustic mat cover and a retractable noise barrier where feasible. According to the regular noise monitoring no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 2 – 15 February 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project. 	Closed
29	23 rd February 2017	18 Feb 2017 / Slope Works at Lei Yue Mun Road	Anonymous	Air Quality	The complainant complained about the dust generated by the slope works opposite to Lam Tin Ambulance Deport on 18 February 2017 afternoon. He mentioned that the dust greatly affected	N	The major source of construction dust nuisance was construction of a temporary storage area. As per investigation, the Contractor has provided environmental mitigation measures to prevent dust generation for the slope works. Water spray was prepared and provided next to the works for dust suppression during the use of handheld breaker.	Closed

Monthly	EM&A	Report ((August	2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					Mr. Chan complained that			
30	23 rd February 2017	Not Specified / BMCPC Footpath	Sai Kung District Council Member Mr. Chan Kai Wai	(Safety)	some of the excavated materials fell from the dump trucks on the BMCPC footpath affecting the safety of pedestrian and hikers.	N	measures are implemented by the Contractor: > Water truck was provided for dust suppression at least 8 times per day along the footpath within our site boundary; > Wheel washing were provided for all dump trucks once loaded; > All the dump trucks were covered properly with a mechanical cover once loaded.	Closed
31	2 nd March 2017	Not Specified / Construction Works near BMCPC Footpath	A resident of Ocean Shores	Air Quality	The complainant complained about the dust generated by the construction works near the existing BMCPC footpath	N		Closed
32	8 th March 2017	7 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Public	Air Quality & Noise	The complainant complained the dust and noise generated by the slope works near Sin Fat Road Tennis Court	Y	The major source of construction dust and noise nuisance was shotcreting of slope surface, and drilling for soil nail. As per investigation, the following environmental mitigation measures are implemented by the Contractor: Tarpaulin sheets were provided along the slope adjacent to	Closed
33	10 th March 2017	4 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Anonymous	Air Quality	The complainant complained the dust generated by the slope works near Sin Fat Road Tennis Court.	N	the tennis court during shotcreting; After the complaint was received, the dust screen for tennis court has been enhanced immediately with additional tarpaulin along the fencing of tennis court; Additional acoustic sheets were also provided to minimize construction noise nuisance to users of the tennis courts; At the location of shotcreting / drilling of slope works, additional tarpaulin sheet was placed at source to minimize dust generation due to the works	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
34	13 th March 2017	27 Feb – 12 Mar 2017 / Barging point in front of Ocean Shore	Public	Noise	The complainant complained about noise from the loading / unloading activities at the barging point in front of Ocean Shore for material delivery to the LT-TKO Tunnel work site during 3:00 am and 4:00am over the past 2 weeks.	Y	According to information provided by the Contractors, no works, including any loading / unloading works, was carried out during the restricted hours at site area near Ocean Shores in early March 2017. The complaint is concluded to be non-Project related. The Engineer and the Environmental Team have reminded the contractor(s) not to carry out any works, especially loading/unloading activities near the Ocean Shores during restricted hours to minimize noise nuisance to the nearby residents.	Closed
35	21 st March 2017	Not Specified / Construction Works near Cha Kwo Ling Village	茶果嶺鄉民聯 誼會書記鍾先 生	Water & Waste/Chemic al Management	The complainant stated that villagers concerned about the waste water produced by car washing in construction site will flow into the sea/ existing drainage system directly and requested the contractors to improve the situation.	N	In accordance with the information provided by the Contractor of the Project, vehicle wheel washing near Cha Kwo Ling Village was carried out site access of Portion 1 and Portion WAII. At Portion 1, a 'WetSep' wastewater treatment system was installed to treat wastewater from vehicle washing washing. For Portion WAII, surface runoff collection system is also installed near the site access. Also, concrete sand bag bunds are provided near seafront of Portion WAII to prevent wastewater flowing into the sea. Despite, the Contractor was reminded to fully implement the relevant water quality mitigation measures according to the EM&A Manual on site. The Contractor was also recommended to provide training for all workers again to increase awareness of their environmental responsibilities and properly collect and treat all wastewater generated due to construction works.	Closed
36	25 th March 2017	Not Specified / Construction Works of TKO Portal	Public	Air Quality	The complainant complaint about the construction dust impact due to marine works and construction of tunnel of this Project.	N	The major source of construction dust and noise nuisance was site formation works for TKO Portal and marine works for construction of temporary barging facilities As per investigation, the following environmental mitigation measures are implemented by the Contractor: Provision of frequent watering including watering of eight times a day on active work area, exposed area and paved haul roads; Installation of automatic sprinklers for water spray to minimize dust generation;	Closed

		_		
Monthly	EM&A	Report	(August	2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							 Shotcreting or hydroseeding to surface of TKO Portal site formation; Provision of wheel washing to vehicles out of site; Covering of dusty slope surface by impervious material such tarpaulin sheets. During the weekly site inspections by the Environmental Team (ET), no deficiencies about exhaust gas or black smoke generation was observed from the Powered Mechanical Equipment (PME) on site of construction of TKO Portal. Air quality impact due to exhaust gas or black smoke emission from PME is considered insignificant from the Project. 	
37	6 th April 2017	1 Apr 2017 / Slope works near Sin Fat Road Tennis Court	Public	Air Quality	The complainant complained the smell and dust generated by the slope works near Sin Fat Road Tennis Court on 1 April 2017. He suspected that the shotcrete may contain toxic substances and may affect the health.	N	See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed
38	4 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained about construction noise nuisance near Nga Lai House, Yau Lai Estate and lack of noise mitigation measures during construction works.	Y	According to information provided by the Contractor, necessary rock breaking work was carried out in May 2017 by excavator-mounted breakers and drill rig at Portion IVC, which is in close vicinity of the complainant. Also, 2 nos. of excavator / drill rig were operated in May 2017 for excavation and drilling and rock hill. Noise nuisance concerned by the complainant is considered due to the high noise level emission during use of these Powered Mechanical Equipment (PME).	Closed
39	8 th May 2017	Not Specified / Construction site near Yau Lai Estate	Kwun Tong District Council Member Mr. Lai Shu Ho	Air Quality & Noise	The complainant complained about construction noise nuisance and air pollution generated by this Project.	Y	The Contractors had implemented environmental mitigation measures on site according to the EM&A Manual to reduce air quality impact and noise nuisance to the vicinity. Weekly Environmental Site Inspection has been on-going in May 2017. Recommendations was made on site by the Engineer and the ET to increase the effectiveness of the noise mitigation measures.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 4, 10 and 16 May 2017. Similarly, no Limit Level Exceedance was recorded in May 2017 at Noise Monitoring Station CM1 and CM2. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	
40	9 th May 2017	Not Specified / Construction of Road P2 near Ocean Shores	Public	Noise	The complainant complained about noise and environmental nuisance resulting from the piling works.	Y	Major construction activities near Ocean Shores in early May included sheetpiling works and pre-boring works for construction of Road P2. Powered Mechanical Equipments (PME) operated included drilling rigs and piling rigs (vibration hammer), which are considered to be the source of noise nuisance resulting from piling work. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved Noise Mitigation Plan. Movable temporary noise barrier is erected on ground in vicinity of the piling areas to reduce noise emission during piling works. Acoustic material are also hanged on the piling rigs to shield noise from the Powered Mechanical Equipment (PME) to nearby noise sensitive receivers. According to the regular noise monitoring conducted at Noise Monitoring Stations CM6(A) and CM7(A), no Limit Level Exceedance was recorded from 1- 14 May 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse noise impact was brought to the nearby sensitive receivers by the works of this	
41	10 th May 2017	Not Specified / Construction of Road P2 near Ocean	Public	Noise	The complainant complained about noise nuisance from the use of the generators until	Y	During evening time, two generators were operated between 7pm - 11pm for site office use only. No generators were used until midnight according to the Contractor. Additional temporary noise barrier is installed by the Contractor to	Closed
42	10 th May 2017	Shores Not Specified / Slope works near Sin Fat Road Tennis	Public	Air Quality	midnight. The complainant complained about the generation of construction dust	N	screen noise due to use of generators during evening time See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
		Court			from this Project			
43	15 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
44	16 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Public	Noise	The complainant complained about construction noise nuisance during construction works at work site near Nga Lai House, Yau Lai Estate from 8 am to 7 pm.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
45	17 th May 2017	3 rd May 2017 / Marine Works Area in TKO Side	Public	Noise	The complainant complained about the noisy ongoing construction works on a public holiday.	Y	No marine works was carried out under Contract No. NE/2015/01 on public holidays on 30 April, 1 May and 3 May 2017. While marine construction works was carried out on public holiday under Contract No. NE/2015/02 on 3 May 2017 between 9am to 5pm. One derrick barge was operated for the marine works during this period.no violation of CNP (No. GW-RE0317-17) conditions is observed during the time of complaint. The Engineer and the Environmental Team have reminded the contractor(s) to minimize construction works during public holidays or restricted hours to minimize noise nuisance to the nearby residents.	Closed
46	25 th May 2017	Not Specified / Construction site near Tin Hau Temple	茶果嶺鄉民聯 誼會主席羅悅 屏	Noise	The complainant complaint about the noisy rock breaking works near Tin Hau Temple and poor efficiency of vehicle wheel washing on site.	Y	According to information provided by the Contractor of the Project, excavation and rock breaking by 1 no. of excavator/excavator-mounted breaker was carried out intermittently during daytime of the time of complaint near Tin Hau Temple. The tip of the breaker is wrapped with acoustic blanket and followed by erection of noise barrier. A wheel washing bay had been installed at the site entrance on Cha Kwo Ling Road to construction of Lam Tin Interchange. A 'WetSep' wastewater treatment system was installed to treat wastewater from vehicle washing washing.	Closed

Monthly EM&A Report (August 2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	
							The Contractor was reminded to fully implement on site the relevant noise and water quality mitigation measures according to the EM&A Manual and the approved Noise Mitigation Plan.	
47	27 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	Public	Noise	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	
48	1 st June 2017	Not Specified / Construction site near Yung Lai House, Yau Lai Estate	Public	Noise	The complainant complained about construction dust and noise nuisance during construction works at work site near Yung Lai House, Yau Lai Estate (EPD Reference No.: K15/RE/00016902-17)	Y	According to the information provided by the Contractor, the major construction activities performed in June and mid-July included excavation and drilling in Portion IVC near Lei Yue Mun Road, excavation and rock breaking at Lam Tin Interchange and rock breaking next to Yau Tong Site Office. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: Air Quality: Water spraying was provided during breaking works at Portion IVC, slope G of Lam Tin Interchange and works area near Yau Tong Site Office to minimize dust generation due to the works. Noise: Operating PMEs at Portion IVC, slope G of Lam Tin Interchange and works area near Yau Tong Site Office were on and off with idling time. Excavator-mounted breakers were mounted with acoustic sheets. Noise barriers were erected during the breaking works at Portion IV, slope G of Lam Tin Interchange and works area near Yau Tong Site Office to minimize construction noise nuisance. With the implementation of environmental mitigation measures by Contractors on site, it is considered that air quality and noise nuisance by the works has been brought to a minimum level.	Closed
49	7 th June 2017	7 th June 2017 / Construction site near Sin Fat Road	Correspondent of Sin Fat Road Tennis Courts	Air Quality	The complainant complained about construction dust nuisance near the	N	In accordance with the information provided by the Contractor of the Project, the major construction activities at the location of complaints were shotcreting of slope surface and drilling for soil nail near Sin Fat Road Tennis Court.	Closed

Monthly EM&A Report (August 2017)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
		Tennis Courts			tennis courts.		The Contractor immediately stopped the shotcreting works adjacent to the tennis courts upon the complaint, and re-schedule the works such that the shotcreting works near the tennis court are performed only when the tennis courts are not in use. The Contractor also cleared the dust brought by the construction in the tennis courts on the same day of the complaint. the Contractor was reminded to fully implement the relevant air	
							quality mitigation measures according to the EM&A Manual on site.	
50	8 th June 2017	30 th May 2017 / marine works area inside the cofferdam installed under the Project	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained about marine construction work being carried out on 30 May 2017 (a public holiday) within the reclamation area near Ocean Shore under this Project (EPD Reference No.: N08/RE/019540-17)	Y	According to information provided by the Contractor and confirmation by the Engineer, no marine construction activities were conducted on public holiday on 30th May 2017 within the cofferdams installed in the reclamation area under this Project. The complaint on 30th May 2017 therefore considered to be non-Project related.	Closed
51	15 th June 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Public	Air Quality & Noise	The complainant complained about construction dust and noise nuisance during construction works at work site near Nga Lai House, Yau Lai Estate. (EPD Reference No.: K15/RE/00018656-17)	Y	See Investigation / Mitigation Action for Complaint No. 48.	
52	21st June 2017	Not Specified / Construction site near Yau Lai Estate	Public	Noise	The complainant complained about construction noise nuisance from work site near Yau Lai	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					Estate.			
53	24 th June 2017	24 th June 2017 / land-based works area near Ocean Shores	Resident of Ocean Shores	Noise	The complainant complained about construction noise nuisance from land-based works area near Ocean Shores	Y	According to the information provided by the Contractor, the major construction activities during the time of complaint includes breaking of hard material. Upon received of the complaint, the Contractor has taken the initiative to minimize construction noise nuisance by erecting temporary noise barrier during rock breaking works. Nonetheless, the Contractor was recommended to implement and strictly follow the noise mitigation measures as recommended in the EM&A Manual and Noise Mitigation Plan in order to reduce construction noise impact on site.	Closed
54	26 th June 2017	26th June 2017 / marine works area near Ocean Shores	Public	Waste/ Chemical Management	The complainant complained about oil spill on sea near marine works site near Ocean Shores	N	According to the information provided by the Contractor, marine works were conducted on 26 June 2017, including lifting operation for the concrete block from water gate to derrick barge. 3 derrick barges and 3 sampan were in operation for the marine works. According to records of the Contractor, no report of oil spill from the derrick barges was received from the site foremen. Oil spillage was not found in the afternoon on 26 June 2017. Therefore, the complaint is considered to be non-Project related.	Closed
55	27 th June 2017	25 th June 2017/ marine works area near Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained about marine construction work being carried out on public holidays within the marine works area near Ocean Shore under this Project	Y	Minor marine construction activities was conducted on public holiday 25th June 2017 within the reclamation area under this Project. Removal of damaged parts of steel cofferdam, which are damaged under adverse weather conditions in June 2017. The Engineer and the Environmental Team reminded the Contractor(s) not to conduct any works near Ocean Shores during public holidays (including Sundays) to avoid noise nuisance to the nearby residents. Also, no use of PME will be allowed for general holidays (including Sundays) at marine works area under this Contract according to the latest CNP granted to the Contractor.	Closed
56	6 th July 2017	Not Specified / Construction site near Yau Lai Site Office	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about construction noise nuisance from work site near Yau Tong Site Office.	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
57	14 th July 2017	Not Specified / Construction sites near Cha Kwo Ling Road	Kwun Tong District Council Member Mr. Mok Kin Shing	Air Quality	The complainant complained about construction dust nuisance due to works and vehicles on Cha Kwo Ling Road	N	 The Contractor had implemented the following to reduce dust nuisance caused by construction vehicles on Cha Kwo Ling Road: Mobilize water trucks to perform water spraying along Cha Kwo Ling Road to suppress dust generation due to movement of vehicles Dispatch workers to clear dust near vehicle exits from the construction site on Cha Kwo Ling Road. Performing frequent water spraying by water trucks on Cha Kwo Ling Road; Frequent clearance of dust near site exits on Cha Kwo Ling Road; Provision of wheel washing for site vehicles at paved site exits to reduce vehicle tracking of soil on Cha Kwo Ling Road; Despite, the Contractor was reminded to fully implement the relevant air quality mitigation measures according to the EM&A Manual on site, including: Maintenance of wheel washing machines on a regular basis to ensure sand and silt settled out in wash-water; Reminding all site vehicles to perform wheel washing before leaving the site; and To ensure materials on construction trucks are covered by impervious materials before leaving the site to prevent fugitive emission. 	On- going
58	18 th July 2017	Not Specified / Construction sites near Yau Lai Estate	Yau Lai Estate Property Services Management Office	Noise	The complainant complained about construction noise nuisance from work site near Yau Lai Estate.	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed
59	2 nd August 2017	2 nd August 2017 / construction site under this Project in Tseung Kwan	Drainage Services Department	Water Quality	Muddy flow was noted in Tseung Kwan O DSD desilting compound. Muddy discharge	N	According to information provided by the Contractor, no discharge of muddy water was reported and wastewater treatment system were functioned properly on the day of event. No muddy effluent discharge was recorded from the weekly site inspection reports in July. The site effluent was appeared visually acceptable in	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	
		0			should be flow down along the western one / two cell(s) of the DSD box culvert underneath the desilting compound. The complainant suspected that TKO-LT Tunnel project should be the major construction site discharging into the cell(s).		reference to the results of daily visual checking by the Contractor and the weekly site inspection conducted on 3rd August, 2017. The Contractor has taken initiatives to ensure the quality of the wastewater discharge from the construction site as followed: Temporary drainage system were developed on site and number of sub-drains were distributed within the site area to divert wastewater and allow longer settling time for surface runoff prior to further treatment before discharging Daily visual checking was conducted to check the physical appearance of treated effluent and to ensure proper performance of the wastewater treatment system. Manholes were adequately covered and temporarily sealed to prevent silt, construction materials or debris being washed into the drainage system Apart from visual checking, inspection of effluent was provided by the Contractor on rainy days to make sure the quality of treated wastewater discharge is in compliance of the discharge license requirements. It is considered that the wastewater generated from the construction activities of the Project was collected and treated properly before discharging to the designated discharge point on 2 nd August, 2017. As the same discharge point is shared by other box culverts, it is considered that the source of silty discharge at location of complaint was runoff or effluent collected from other upstream sources such as that collected by drainage systems in Tseung Kwan O town centre and other construction sites in vicinity.	
60	2 nd August 2017	Not Specified / construction site at Lei Yun Mun Road	Anonymous	Landscape and Visual Impact	The complainant complained the long tree branches and weeds and request proper trimming.	N	Under Investigation	On- going
61	11 th August 2017	Not Specified / construction site in Green	Sai Kung District Council	Landscape and Visual Impact	The complainant complained the poor health and condition	N	Under Investigation	On- going

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	
		Cross-hatched Black Area near Ocean Shores	Member Mr. Chan Kai Wai		of trees and lack of tree protection facility.			
62	11 th August 2017	9th August 2017 / construction site in Green Cross-hatched Black Area near Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained the poor health and condition of trees; and that they were felled.	N	Under Investigation	On- going
63	11 th August 2017	Not Specified / construction site near Ocean Shores near the BMCPC footpath	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained that trees within the Project Site were felled.	N	Under Investigation	On- going
64	14 th August 2017	Not Specified / construction site near Ocean Shores near the BMCPC footpath	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained that trees within the Project Site were felled.	N	Under Investigation	On- going
65	15 th August 2017	15 th August 2017 / marine works site at TKO side	Sai Kung District Council Member Mr. Chan Kai Wai	Water Quality	Muddy discharge from the marine works site (near the Type 2 cofferdam) at TKO side occurred in the morning.	N	It is considered that the muddy discharge was caused by the overflowing of coarse material within the steel tank and the sediment being disturbed by the cofferdam during the reinstatement of the position of steel tank. The Contractor did not stop the works immediately and which contributed to the large spreading area of sediment. The Contractor did not provide proped deployment of the silt curtain system to stop the muddy discharge generated from the abovementioned work to the surrounding water. The Contractor is advised to implement the following measures to avoid/minimize the generation of muddy discharge from marine works: 1. Marine works should be stopped immediately when the silt curtain system is found malfunctioned or when sediments.	

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							 dispersion is observed. Deterioration of cofferdam or silt curtain, as the mitigation measures to water quality, should be repaired immediately or at a reasonable time. Cofferdams should be designed and installed properly in order to withstand any conceivable adverse weather conditions and precautions measure should be taken in advance particularly during typhoon season. Materials with high silt content should be avoided to use as filling materials in the steel tanks for cofferdams. They should be replaced with materials with minimal silt content, such as pebbles, rocks and etc. to reduce pollution to the marine environment when spill over. The steel tanks filled with finer aggregate materials should be securely covered or locked in the tank, so that no materials will be spilled over the sea. Silt curtain should be deployed properly before commencement of works. Regular inspection should be performed to examine the integrity of the cofferdam and performance of silt curtains. 	
66	17 th August 2017	Not Specified / construction site at Lei Yun Mun Road	Anonymous	Landscape and Visual Impact	The complainant complained the long tree branches and lack of tree protection facilities on site.	N	Under Investigation	On- going

Note (*): The complaints were received in this reporting period and yet to be included in the previous Monthly EM&A Reports.

Monthly EM&A Report (August 2017)

Cumulative Complaint Log since commencement of Project

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
June 2017	8	0	0
July 2017	3	0	0
August 2017	8	0	0
Total	66	0	0

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report (August 2017)

Cumulative Log for Notifications of Summons

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02			-			
NE/2015/03						

Cumulative Log for Successful Prosecutions

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02			-			
NE/2015/03						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Monthly Summary Waste Flow Table for 2017

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	40.484	1.350	22.688	5.063	12.733	0.000	0.000	0.257	0.000	0.000	0.292
February	23.357	5.159	12.911	3.874	6.572	0.000	0.000	0.000	0.000	1.000	0.488
March	20.078	2.885	6.359	11.713	2.006	0.000	0.000	0.120	0.000	0.000	0.284
April	13.516	0.070	4.862	7.751	0.903	0.000	0.000	0.151	0.000	0.000	0.396
Мау	49.156	0.380	12.420	36.168	0.568	0.000	0.000	0.000	0.000	0.000	0.189
June	37.960	2.949	17.914	19.409	0.637	0.000	0.000	0.114	0.000	0.000	0.138
Sub-total	184.551	12.793	77.154	83.978	23.419	0.000	0.000	0.642	0.000	1.000	1.787
July	33.640	2.302	4.851	28.223	0.566	0.000	0.000	0.160	0.000	0.000	0.166
August	65.934	2.483	6.054	52.830	7.050	0.000	0.000	0.146	0.000	0.000	0.082
September											
October											
November											
December											
Total	284.125	17.578	88.059	165.031	31.035	0.000	0.000	0.948	0.000	1.000	2.035

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

Monthly Summary Waste Flow Table for 2017 Year

		Actual Quant	tities of Inert C&I) Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes G	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	1.02115	0.00000	0.00000	0.00000	1.02115	0.00000	0.00000	0.00000	0.00000	0.00000	0.02306
Feb	1.04554	0.00000	0.00000	0.00000	1.04554	0.00000	0.00000	0.00000	0.00000	0.00000	0.01994
Mar	0.03860	0.00000	0.00000	0.00000	0.03860	0.00000	0.00000	0.00000	0.00000	0.00000	0.03012
Apr	0.02184	0.00000	0.00000	0.00000	0.02184	0.00000	0.00000	0.00000	0.00000	0.00000	0.18326
May	0.80922	0.00000	0.00000	0.75824	0.05099	0.00000	0.00000	0.00000	0.00000	0.00000	0.11508
June	6.89667	0.00000	0.00000	0.93488	5.96179	0.00000	9.82000	0.00000	0.00000	0.00000	0.03430
SUB- TOTAL	9.83301	0.00000	0.00000	1.69312	8.13990	0.00000	9.82000	0.00000	0.00000	0.00000	0.40576
Jul	5.97521	0.00000	0.00000	0.00000	5.97521	0.00000	0.00000	0.00000	0.00000	0.00000	0.03072
Aug	3.97983	0.00000	0.00000	0.00000	3.97983	0.00000	0.00000	0.00000	0.00000	0.00000	0.17294
Sep											
Oct											
Nov											
Dec											
TOTAL	19.78805	0.00000	0.00000	1.69312	18.09494	0.00000	9.82000	0.00000	0.00000	0.00000	0.60942

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

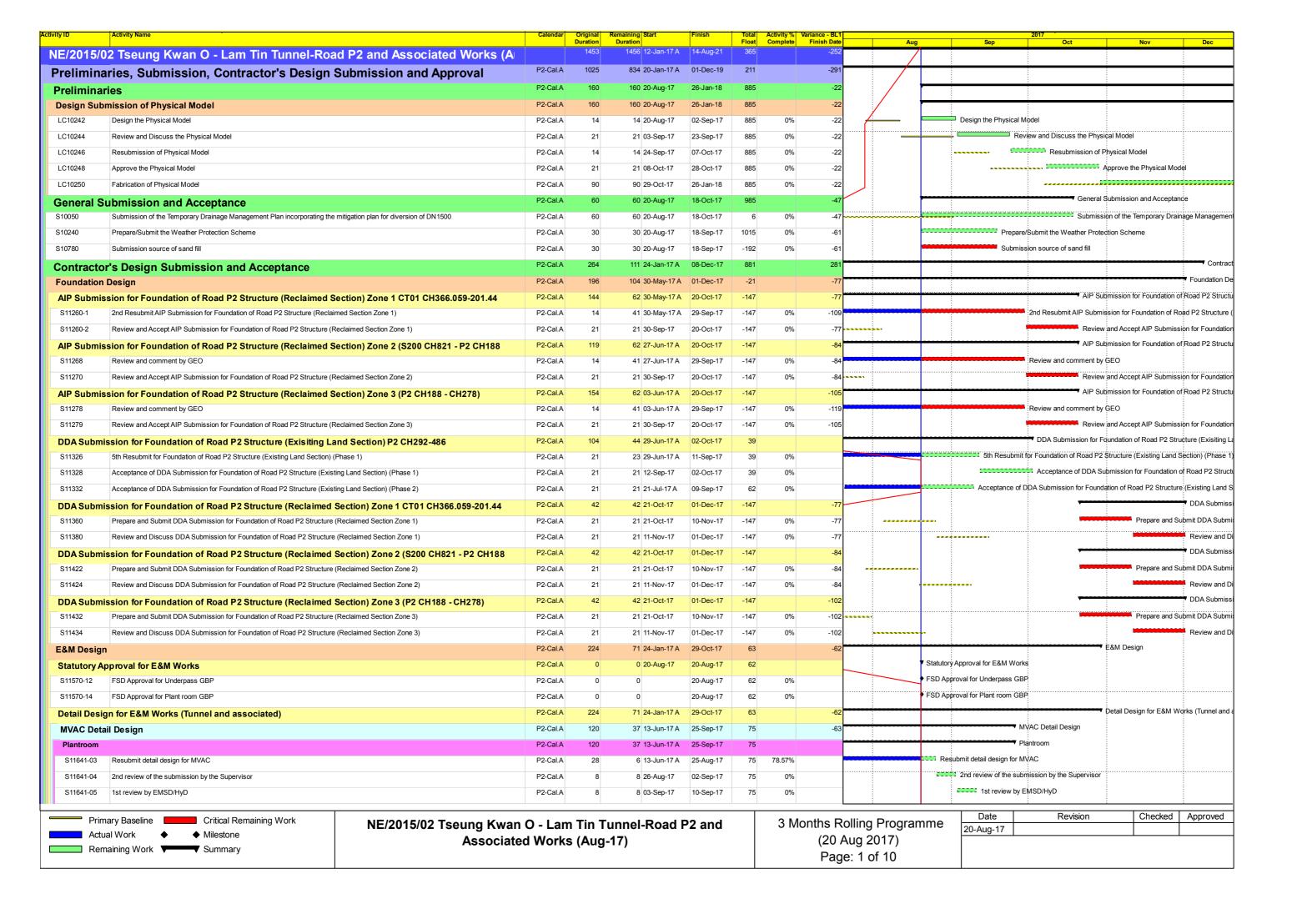
Wing Lee (SK) Construction Company Limited	Rev. No.	Draft
NE/2015/03 - Environmental Management Plan	Isana Data	16 Dec 2016
Appendices - Appendix 13	Issue Date	16 Dec 2016

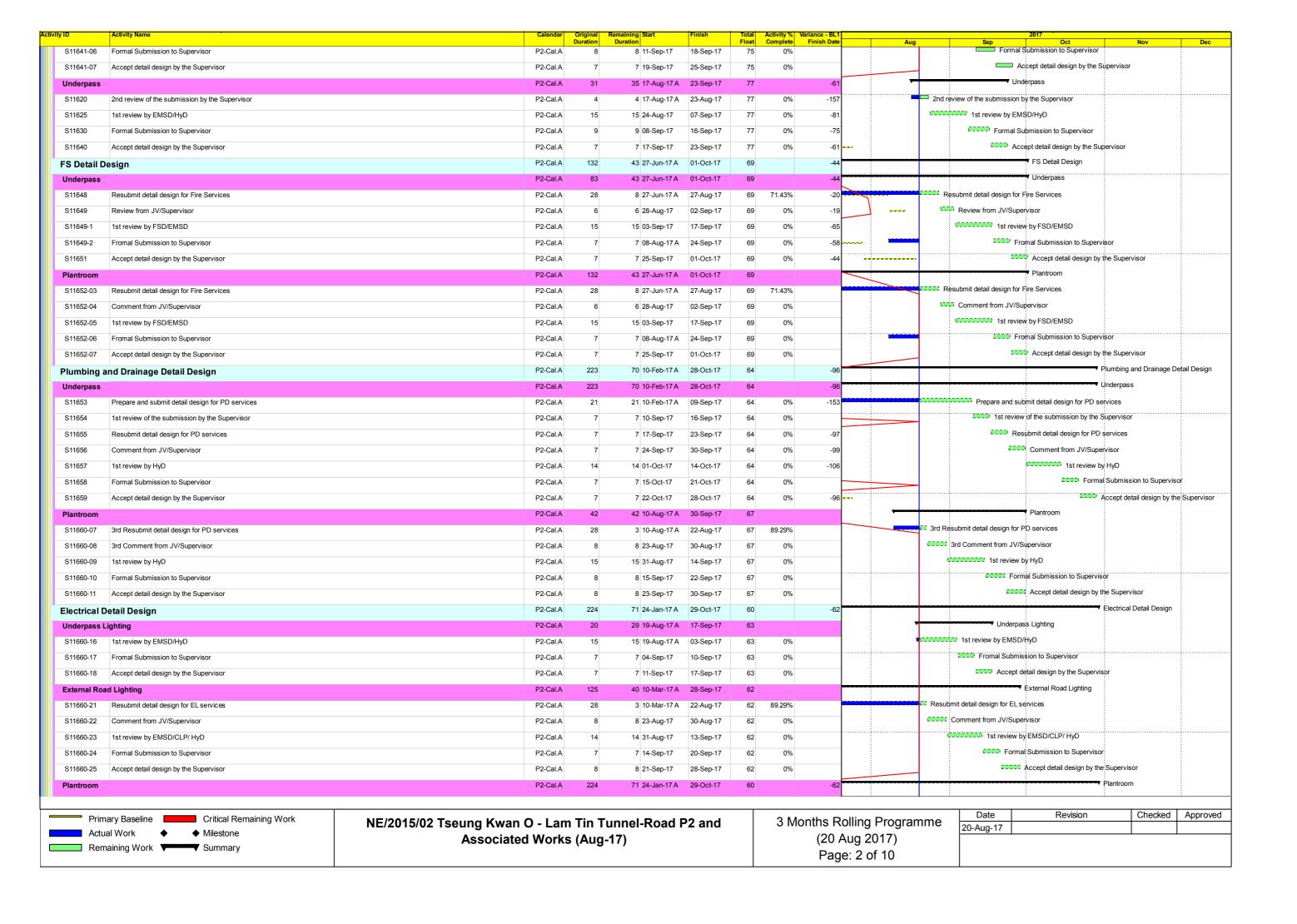
Contract No.: NE/2015/03 Name of Department: <u>CEDD</u>

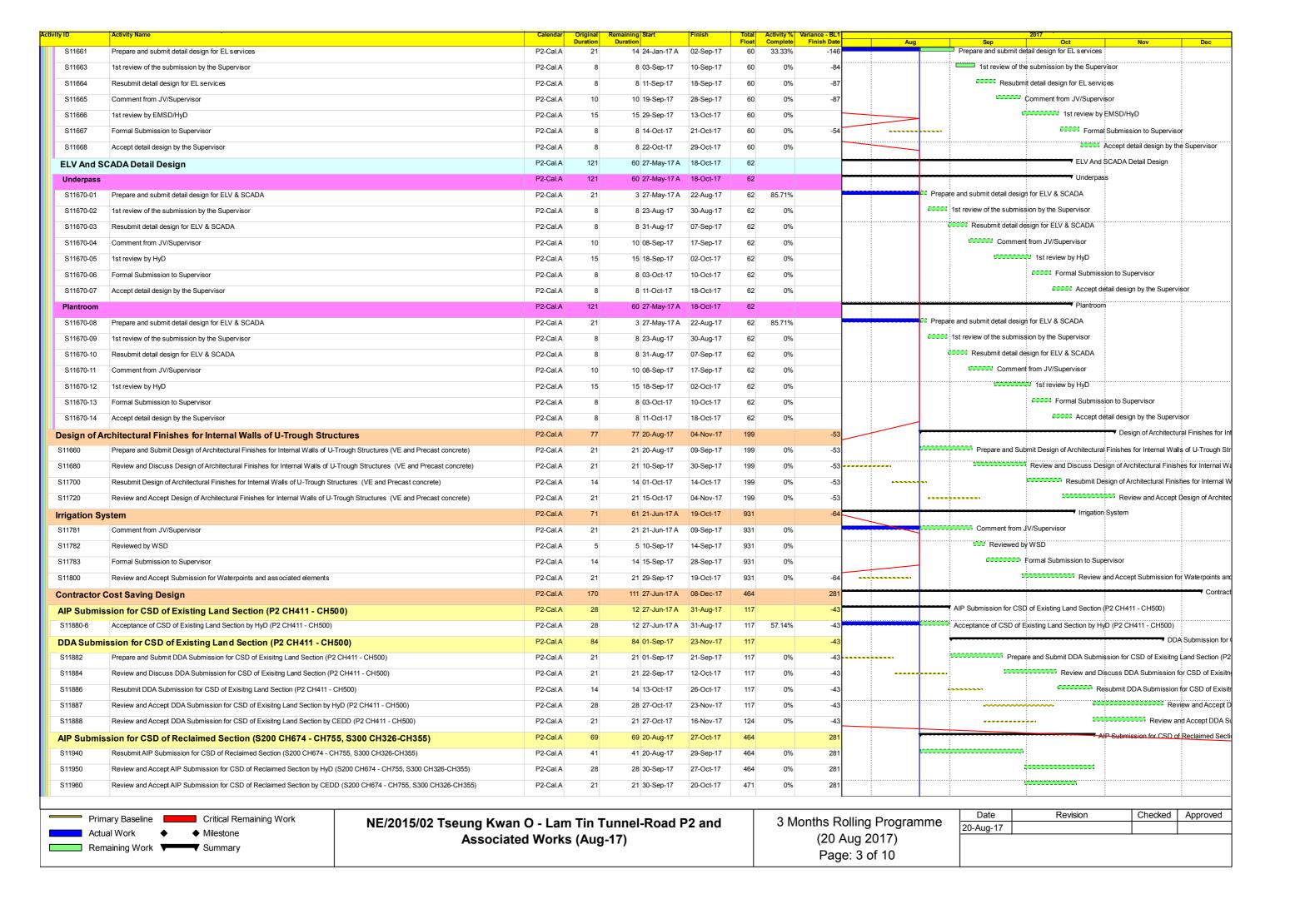
Monthly Summary Waste Flow Table for 2017 (year)

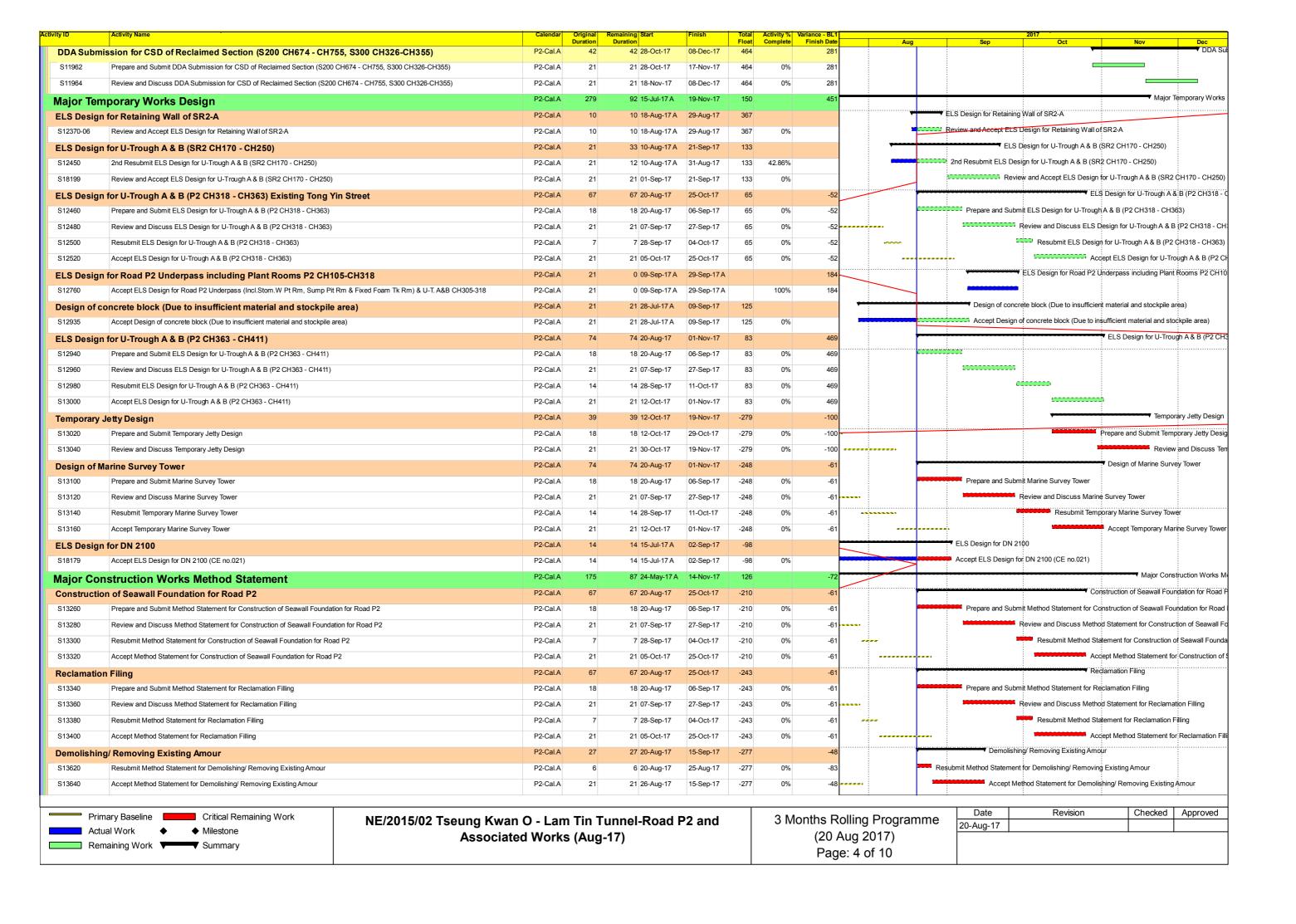
		Actual Quant	ities of Inert C&	&D Materials Gen	erated Monthly		A	ctual Quantities of	of C&D Wastes	Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Projects Public Fill Imp		Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0.001982	0	0	0	0	0	0	0	0	0	0.001982
Mar	0.00146	0	0	0	0.00146	0	0	0	0	0	0
Apr	0.008668	0	0	0	0.0075	0	0	0	0	0	0.001168
May	0.01052	0	0	0	0	0	0	0	0	0	0.01052
June	.00596	0	0	0	0	0	0	0	0	0	0.00596
Sub-total	0.046428	0	0	0	0.00896	0	0	0	0	0	0.01963
July	0.01207	0	0	0	0.01207	0	0	0	0	0	0
Aug	0.09174	0	0	0	0.09174	0	0	0	0	0	0
Sept											
Oct		_				·					
Nov											
Dec											
Total	0.150238	0	0	0	0.10381	0	0	0	0	0	0.046428

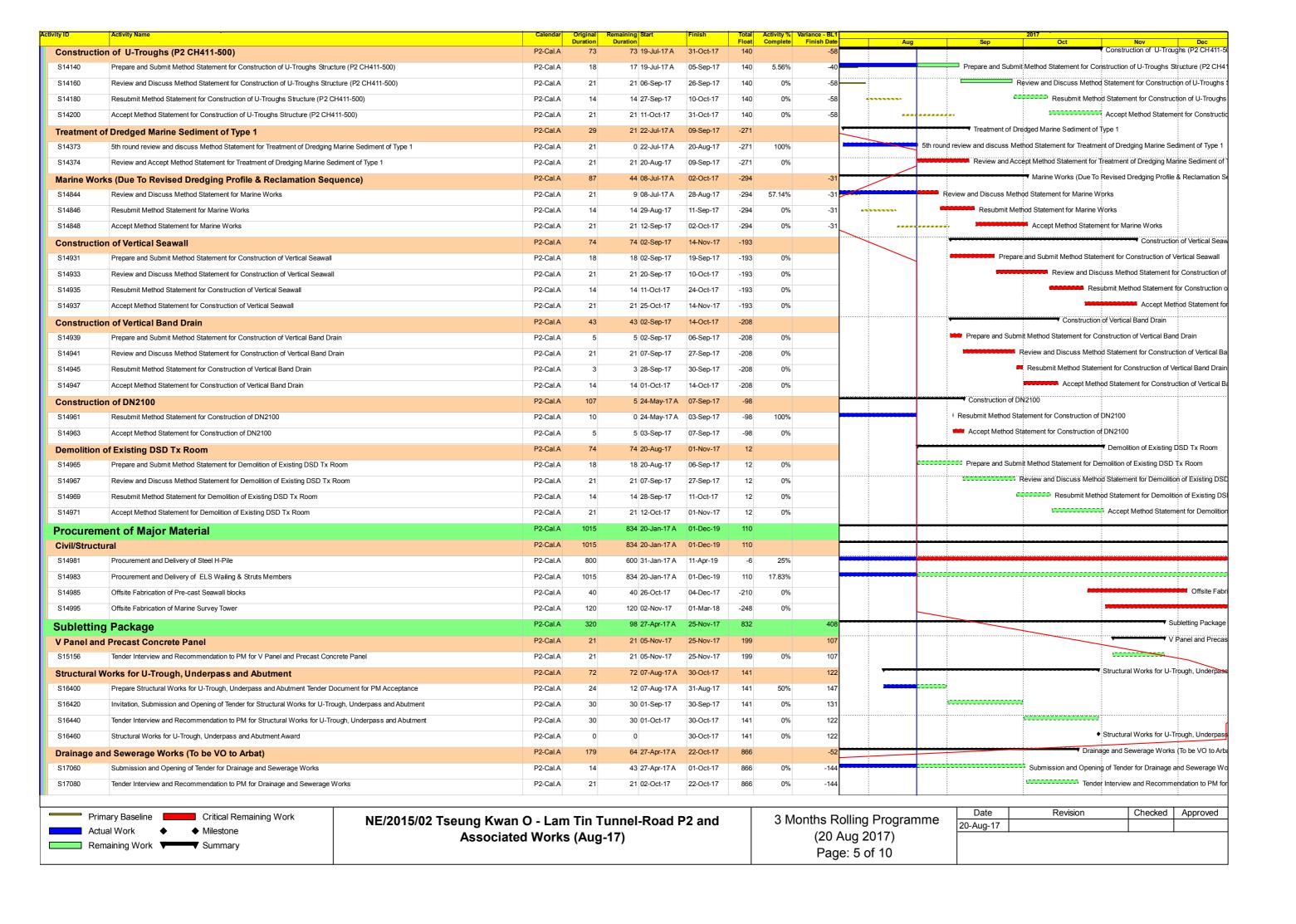
Notes:

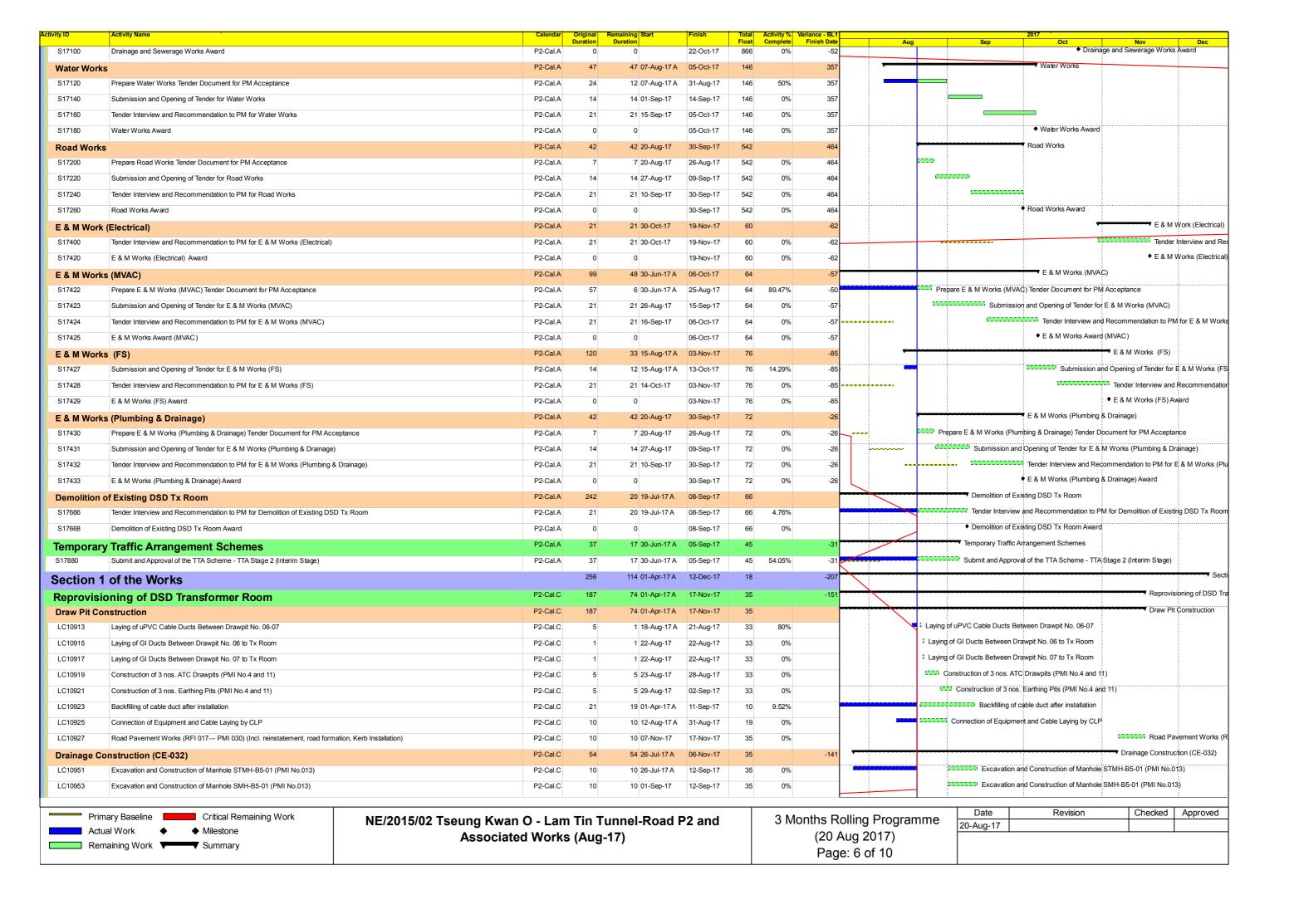

- (1) The performance targets are given in PS Clause 6.14.
- The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials. (2)
- (3)
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the works is equal to or exceeding 50,000 m₃.

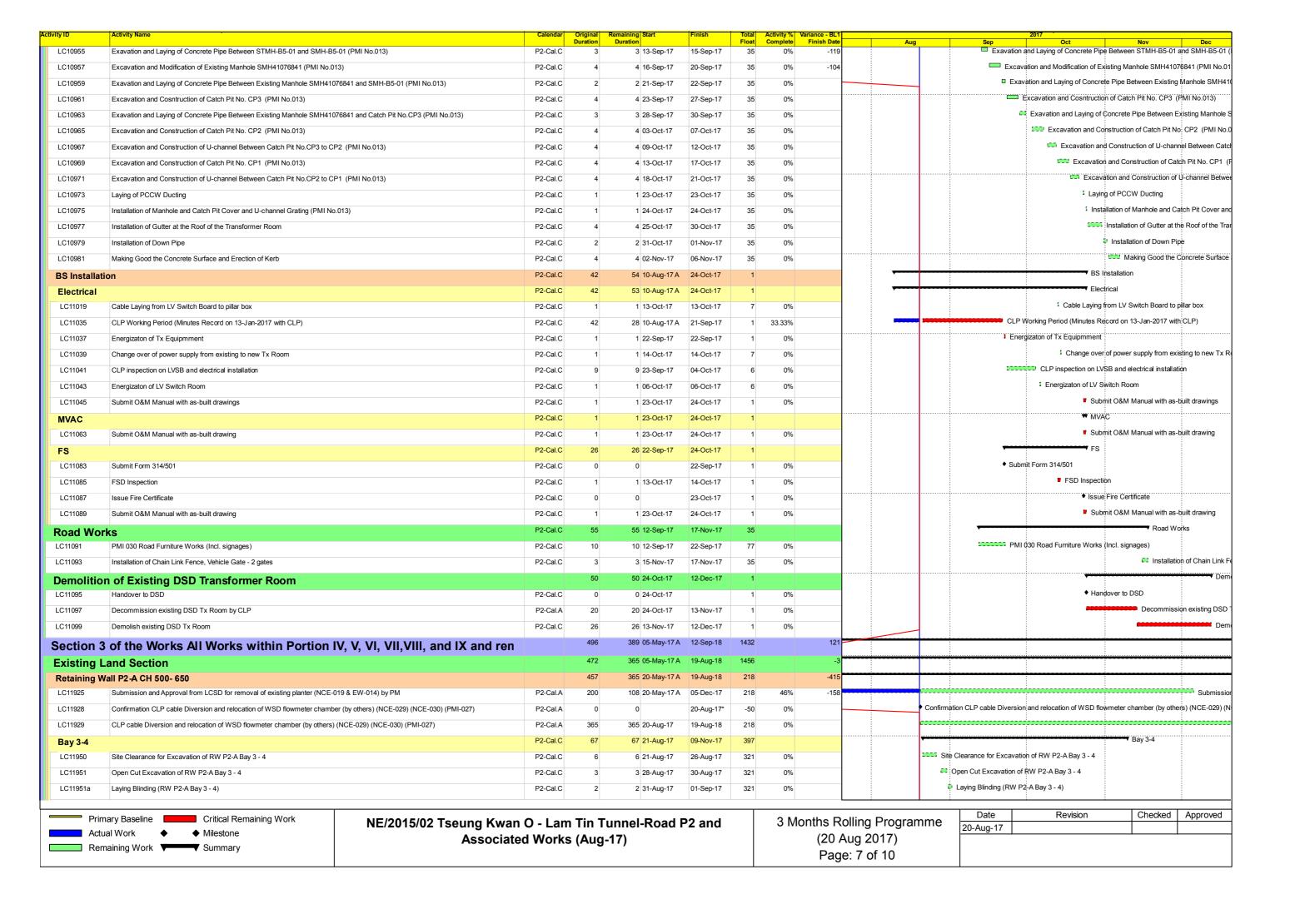

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

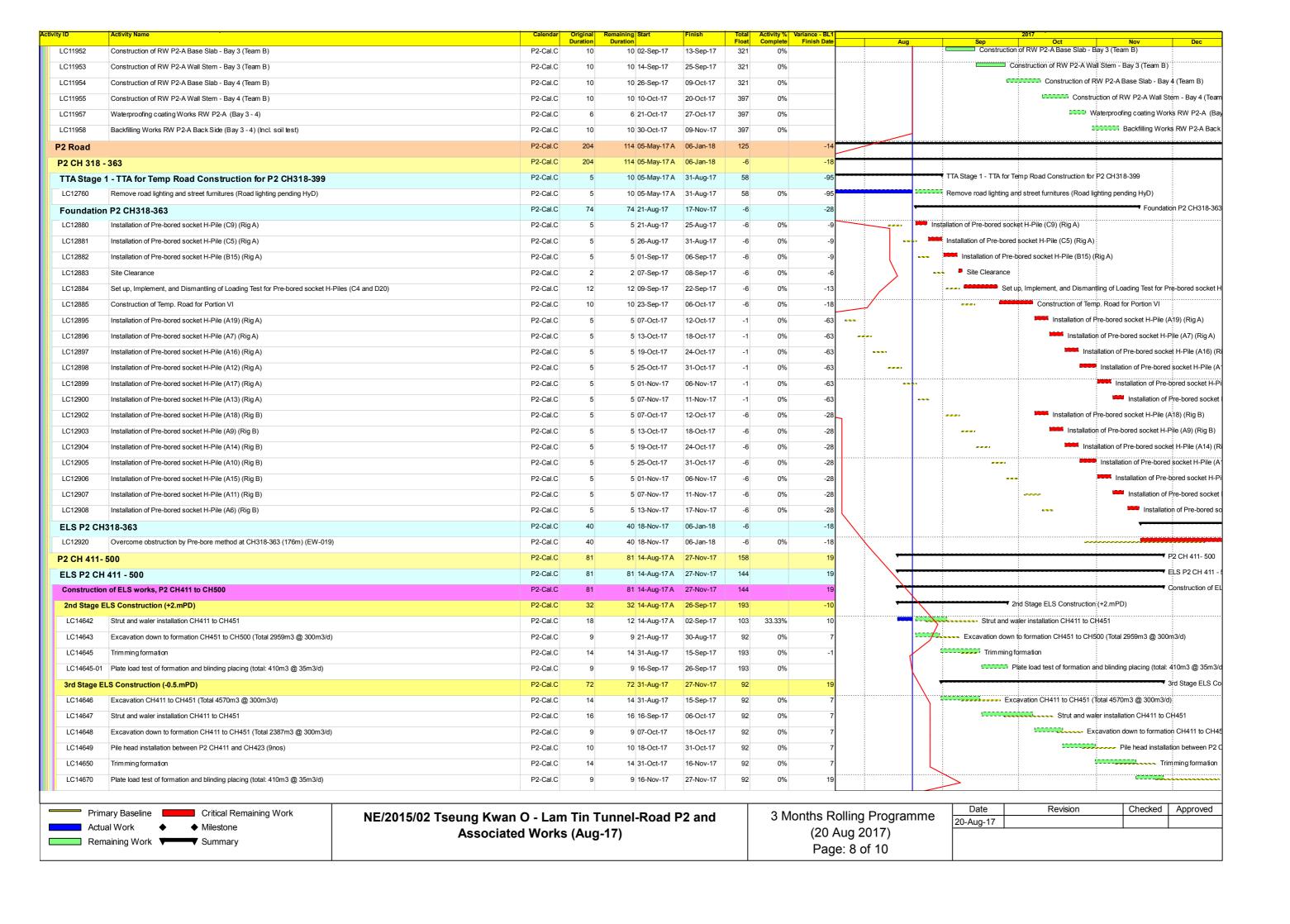

High Level 3 Months Look Ahead Programme

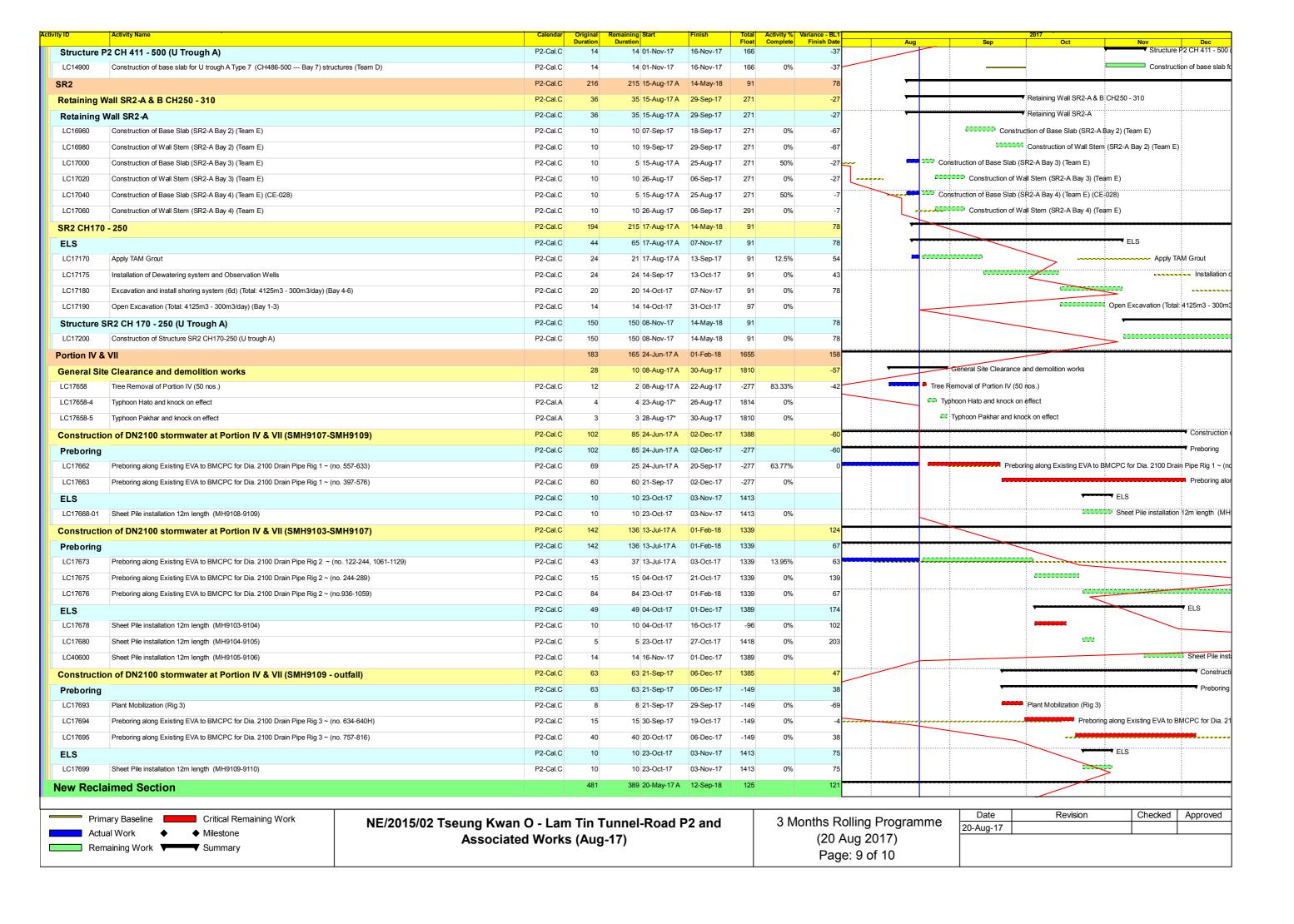

Activities	Sep-17	Oct-17	Nov-17
Lam Tin Interchange			
Haul Road Construction			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2 &5			
Site Formation - Area 2			
Site Formation - Area 3			
Site Formation - Area 4			
Pipe Pile Wall - Area 2A			
Main Tunnel			
Construction Adit			
MT Excavation			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Temporary Cut Slope For BMCPC			
Temporary Barging Facilities & Temporary Works			
Steel Platform for Bridge Construction			


NE/2015/01 29/08/2017









ty ID	Activity Name	Calendar	Original Duration	Remainin Duratio		Finish	Total Float	Activity % Complete	Variance - BL1 Finish Date	Au	g l	Sep	2017 Oct	Nov Dec
Marine Worl	ds .		481		9 20-May-17 A	12-Sep-18	125		121					
Initial Work	S	P2-Cal.C	92	7	0 26-Jul-17 A	13-Nov-17	-71		184	-				▼ Initial Works
MC10156	Installation of Type 2 Settlement Marker (Type RA)	P2-Cal.C	7		7 02-Nov-17	09-Nov-17	-71	0%						Installation of Type 2 Settleme
MC10160	Baseline for Type 2 Settlement Marker (Type RA)	P2-Cal.C	3		3 10-Nov-17	13-Nov-17	-71	0%	184					•
Steel Coffe	rdam and Water Gate	P2-Cal.C	81	5	9 26-Jul-17 A	31-Oct-17	-254		-57	 	+			Steel Cofferdam and Water Gate
	dam Installation	P2-Cal.C	81	5	9 26-Jul-17 A	31-Oct-17	-254						<u> </u>	Steel Cofferdam Installation
Reinstateme	ent works	P2-Cal.C	81	5	9 26-Jul-17 A	31-Oct-17	-254						<u> </u>	Reinstatement works
Type 2 &3 Sheet	Pile	P2-Cal.C	59	3	6 26-Jul-17 A	30-Sep-17	-231			· · · · · · · · · · · · · · · · · · ·			Type 2 &3 Sheet Pile	
MC10294	Type 2 bedding reinstatement (42 Tanks)	P2-Cal.C	27		0 28-Jul-17 A	23-Sep-17	-231	0%				Тур	e 2 bedding reinstatemen	(42 Tanks)
MC10295	Fabrication and re-installation of flexible connection membrane between two tanks (36nos)	P2-Cal.C	22		2 06-Sep-17	30-Sep-17	-231	0%						ilation of flexible connection membrane b
	<u>``</u>				1								ment of Type 3 concrete b	
MC10296	Reinstatement of Type 3 concrete block wall (18 nos.)	P2-Cal.C	46		4 26-Jul-17 A	16-Sep-17	-231	47.83%						
MC10297	Re-install the tanks 2c-1 and 2c-2 after completion of type 1 sheet pile reinstatement	P2-Cal.C	12		2 11-Sep-17	23-Sep-17	-231	0%				Ke-	install the tanks 2c-1 and	2c-2 after completion of type 1 sheet pile
Type 1 Sheet Pil	e	P2-Cal.C	59	5	9 14-Aug-17 A	31-Oct-17	-260							Type 1 Sheet Pile
MC10287	Fabrication of Type 1 Sheet Piles (1348 pcs.)	P2-Cal.C	28	4	6 14-Aug-17 A	14-Oct-17	-260	0%		-			Fabrication	of Type 1 Sheet Piles (1348 pcs.)
MC10289	Erection of Temporary Guide Frame for Type 1 Reinstatement (Stage 2)	P2-Cal.C	32	3	2 01-Sep-17	10-Oct-17	-243	0%					Erection of Ter	porary Guide Frame for Type 1 Reinstat
MC10290	Installation / Reinstatement of Type 1 sheet Pile (1348 pcs.) Including rock fill (2,180m3)	P2-Cal.C	42	4	0 18-Aug-17 A	07-Oct-17	-260	4.76%					Installation / Rein	statement of Type 1 sheet Pile (1348 pcs
MC10291	Final Connection to Double Water Gate	P2-Cal.C	25	2	5 29-Sep-17	31-Oct-17	-260	0%				ı		Final Connection to Double Water Ga
Water Gate		P2-Cal.C	41	4	8 01-Aug-17 A	17-Oct-17	-249		-46	<u> </u>	-		₩ater G	ate
MC10395	Re-fabrication and installation of flap gates	P2-Cal.C	41	2	4 01-Aug-17 A	16-Sep-17	-249	41.46%	-40			Re-fabrica	ition and installation of flag	gates
MC10400	Water Gate Delivery	P2-Cal.C	6		6 18-Sep-17	23-Sep-17	-249	0%	-28	_		₩a	ter Gate Delivery	
MC10425	Bedding reinstatement (1386m3)	P2-Cal.C	6		6 25-Sep-17	30-Sep-17	-249	0%					Bedding reinstatement	(1386m3)
													Re-Installation of	
MC10445	Re-Installation of Water Gate System	P2-Cal.C	4		4 03-Oct-17	07-Oct-17	-249	0%						
MC10465	Installation counter weight (concrete blocks) (341 blocks)	P2-Cal.C	8		8 09-Oct-17	17-Oct-17	-249	0%					Installatio	on counter weight (concrete blocks) (341
Dredging W	/ork	P2-Cal.C	28	2	8 01-Nov-17	02-Dec-17	-260							Dredging '
MC10500	Dredge CH50-71 (Upper) (1777m3)	P2-Cal.C	1		1 01-Nov-17	01-Nov-17	-260	0%						Dredge CH50-71 (Upper) (1777m3)
MC10505	Dredge CH71-100 (Upper) (7108m3)	P2-Cal.C	4		4 02-Nov-17	06-Nov-17	-260	0%						Dredge CH71-100 (Upper) (7108
MC10515	Dredge CH100-150 (Upper) (17770m3)	P2-Cal.C	10	1	0 07-Nov-17	17-Nov-17	-260	0%						Dredge CH100-150 (U
MC10525	Dredge CH150-200 (Upper) (23101m3)	P2-Cal.C	13	1	3 18-Nov-17	02-Dec-17	-260	0%						Dredge C
Full-scale T	reatment of Cement S/S of Marine Sediment		481	38	9 20-May-17 A	12-Sep-18	125		121		+			
MC14015	Loading and unloading Point	P2-Cal.C	34	3	7 20-May-17 A	03-Oct-17	130	0%			2000000		: Loading and unloadir	g:Point
MC14020	Delivery of concrete block	P2-Cal.A	0		0	20-Aug-17*	146	0%	510		Delivery of co	ncrete block		
MC14035	Set up of Curing Area	P2-Cal.C	48	4	8 11-Sep-17	08-Nov-17	101	0%				2000000000		Set up of Curing Area
MC14055	Set up Cement S/S Treatment Facility	P2-Cal.C	48		8 11-Sep-17	08-Nov-17	101	0%						Set up Cement S/S Treatment
					1									23. ap 33
MC14075	Treatment	P2-Cal.C	250		0 09-Nov-17	12-Sep-18	101	0%						
ection 4	of the Works - Preservation and Protection of Existing Trees	P2-Cal.A	1451	145	6 12-Jan-17 A	14-Aug-21	-322		-252					
C25260	Preservation and Protection of Existing Trees	P2-Cal.A	1451	145	6 12-Jan-17 A	14-Aug-21	-322	0%	-252				:	
ection 5	of the Works - Landscaping Works	P2-Cal.C	182	10	9 12-Jan-17 A	30-Dec-17	-167		-107					
225320	Tree Transplanting Preparation Works	P2-Cal.C	182	40	9 12-Jan-17 A	30-Dec-17	-167	40.11%	-107		<u></u>			<u>.i</u>

Primary Baseline Critical Remaining Work

Actual Work ♦ Milestone

Remaining Work

Summary

NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works (Aug-17)

3 Months Rolling Programme (20 Aug 2017) Page: 10 of 10

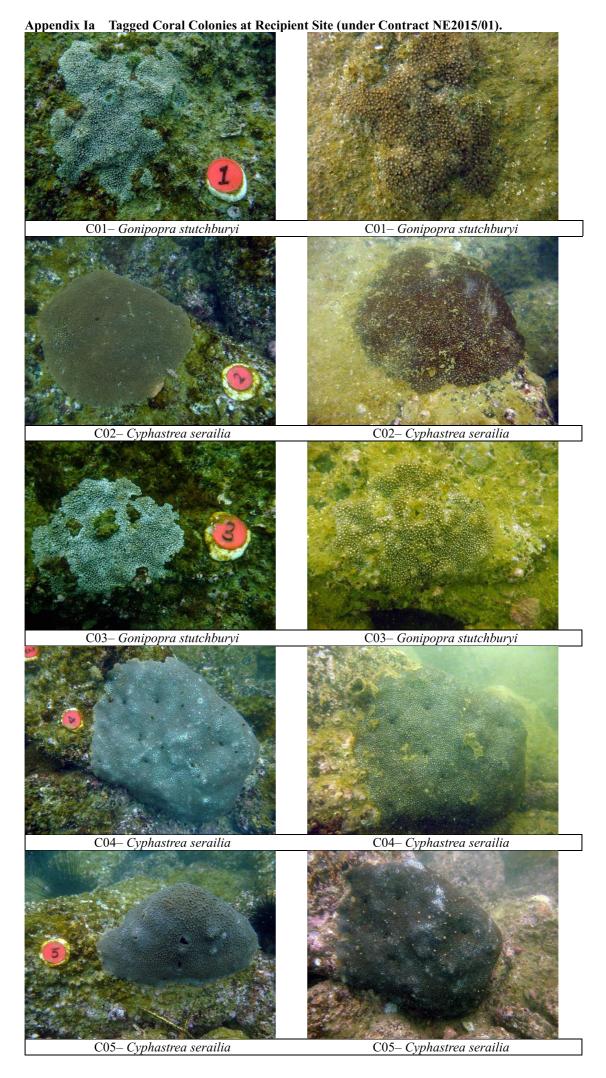
Date	Revision	Checked	Approved
20-Aug-17			

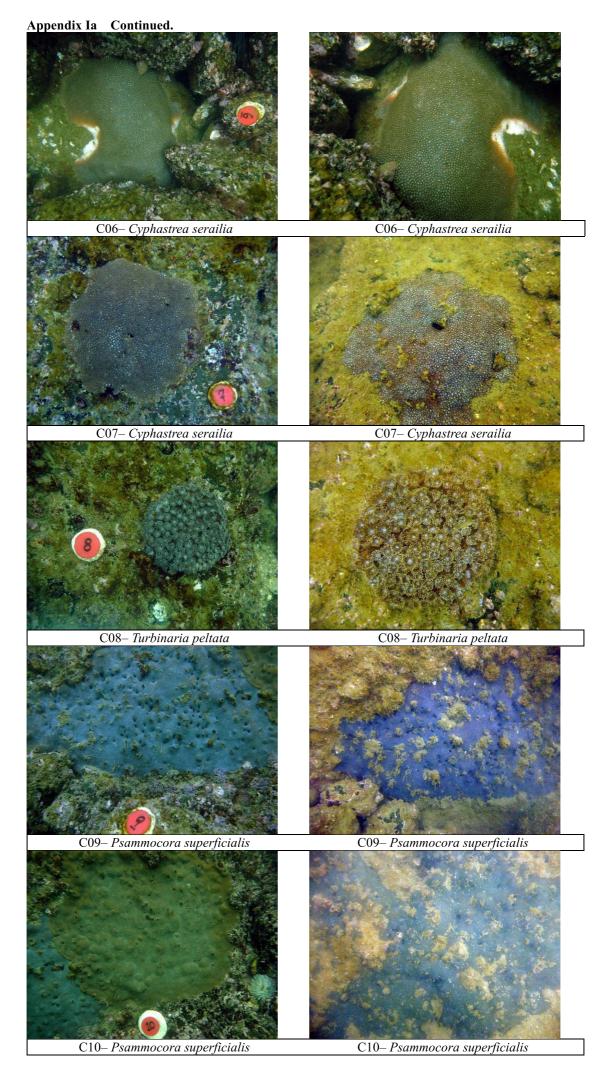
Subject: 3 Months Look Ahead Programme

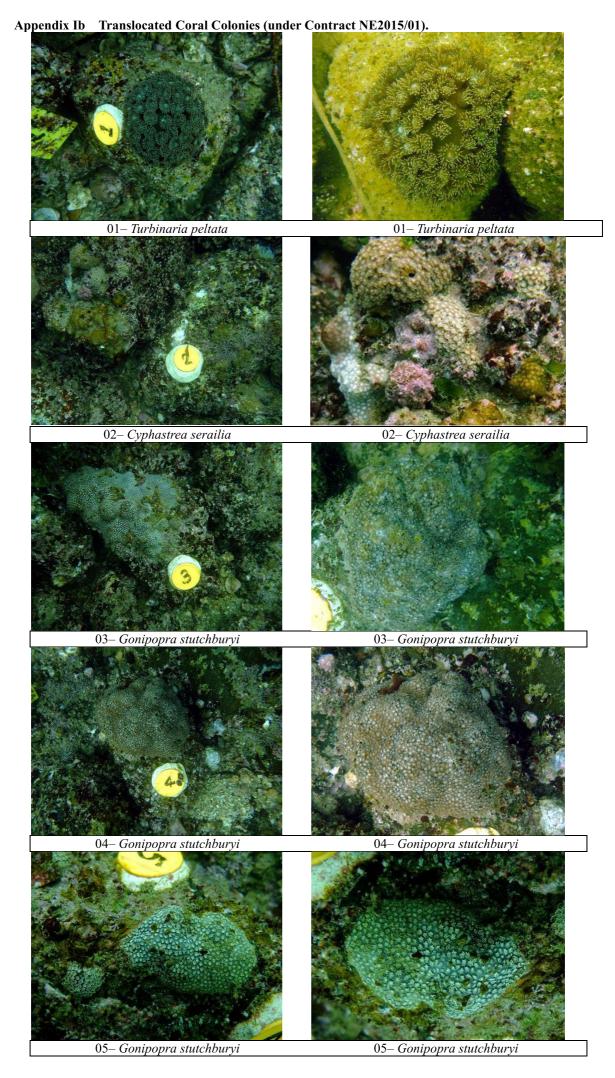
Activities	Sept	2017	Oct	2017	Nov	2017
Cosntruction of soldier wall panels						
Piling construction at East Pier						
Piling construction at West Pier						

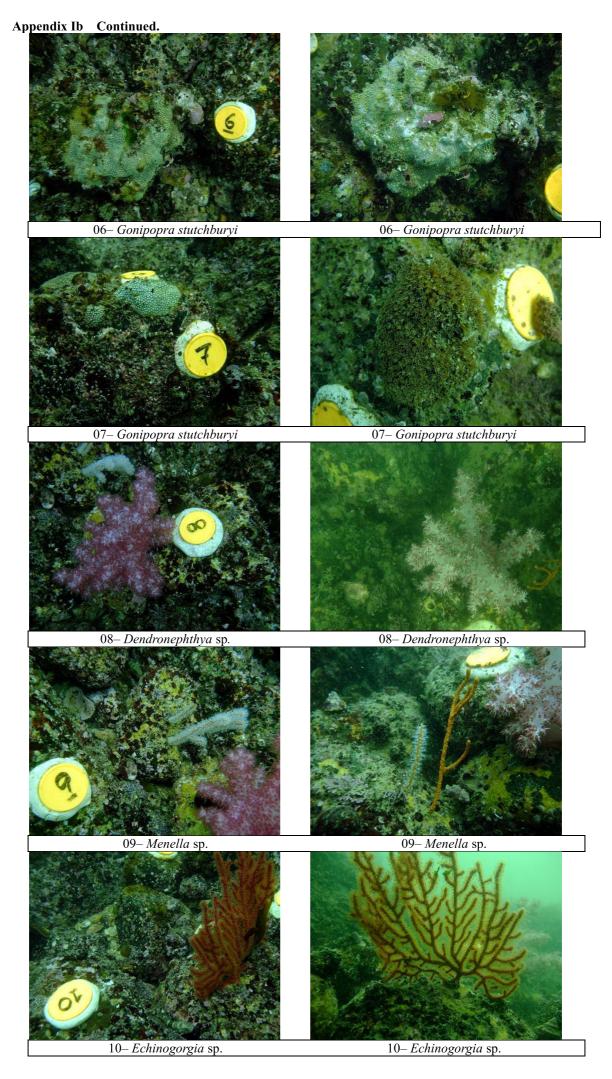
APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

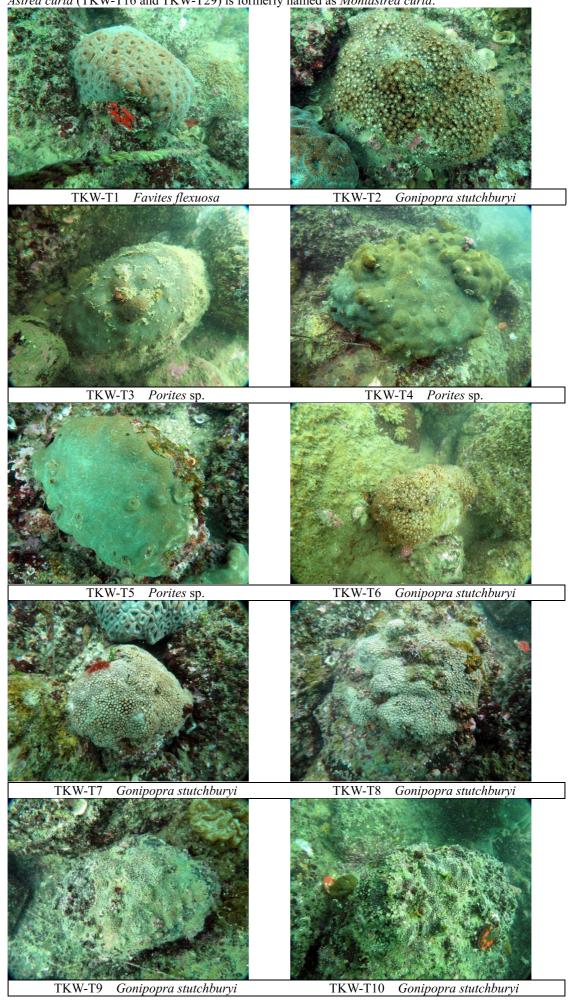

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	1-Aug-17	8:30	Sunny	30	0	0	20.9
	1-Aug-17	13:02	Cloudy	35	0	0	20.9
	2-Aug-17	8:30	Cloudy	30	0	0	20.9
	2-Aug-17	13:01	Cloudy	36	0	0	20.9
	3-Aug-17	8:30	Sunny	31	0	0	20.9
	3-Aug-17	13:01	Cloudy	35	0	0	20.9
	4-Aug-17	8:30	Cloudy	31	0	0	20.9
	4-Aug-17	13:03	Cloudy	34	0	0	20.9
	5-Aug-17	8:30	Cloudy	30	0	0	20.9
	5-Aug-17	13:03	Rainy	34	0	0	20.9
	7-Aug-17	8:30	Rainy	29	0	0	20.9
	7-Aug-17	13:04	Rainy	33	0	0	20.9
	8-Aug-17	8:30	Cloudy	31	0	0	20.9
	8-Aug-17	13:02	Sunny	35	0	0	20.9
	9-Aug-17	8:30	Cloudy	31	0	0	20.9
	9-Aug-17	13:01	Cloudy	35	0	0	20.9
	10-Aug-17	8:30	Cloudy	31	0	0	20.9
	10-Aug-17	13:02	Cloudy	35	0	0	20.9
	11-Aug-17	8:30	Sunny	29	0	0	20.9
	11-Aug-17	13:05	Cloudy	35	0	0	20.9
	12-Aug-17	8:30	Sunny	32	0	0	20.9
	12-Aug-17	13:01	Sunny	35	0	0	20.9
	14-Aug-17	8:30	Sunny	30	0	0	20.9
	14-Aug-17	13:04	Sunny	35	0	0	20.9
	15-Aug-17	8:30	Sunny	30	0	0	20.9
	15-Aug-17	13:00	Sunny	34	0	0	20.9
Portion III	16-Aug-17	8:30	Cloudy	29	0	0	20.9
r ortion in	16-Aug-17	13:02	Cloudy	33	0	0	20.9
	17-Aug-17	8:30	Cloudy	30	0	0	20.9
	17-Aug-17	13:00	Cloudy	34	0	0	20.9
	18-Aug-17	8:30	Cloudy	31	0	0	20.9
	18-Aug-17	13:02	Cloudy	35	0	0	20.9
	19-Aug-17	8:30	Sunny	31	0	0	20.9
	19-Aug-17	13:02	Sunny	35	0	0	20.9
	21-Aug-17	8:30	Sunny	31	0	0	20.9
	21-Aug-17	13:03	Sunny	34	0	0	20.9
	22-Aug-17	8:30	Rainy	28	0	0	20.9
	22-Aug-17	13:02	Rainy	32	0	0	20.9
	23-Aug-17	10.02	-	ncelled due to Hurricane Sign			20.0
	24-Aug-17	8:30	Rainy	28	0	0	20.9
	24-Aug-17	13:01	Rainy	32	0	0	20.9
	25-Aug-17	8:30	Rainy	30	0	0	20.9
	25-Aug-17 25-Aug-17	13:03	Rainy	34	0	0	20.9
	26-Aug-17	8:30	Cloudy	31	0	0	20.9
	26-Aug-17 26-Aug-17	13:00	Cloudy	34	0	0	20.9
	28-Aug-17	8:30	Sunny	32	0	0	20.9
		13:03		36	0	0	20.9
	28-Aug-17		Sunny	29	-	 	20.9
	29-Aug-17	8:30	Cloudy		0	0	
	29-Aug-17	13:07	Cloudy	35	0	0	20.9
	30-Aug-17	8:30	Cloudy	29	0	0	20.9
	30-Aug-17	13:00	Cloudy	34	0	0	20.9
	31-Aug-17	8:30	Sunny	31	0	0	20.9
	31-Aug-17	13:01	Cloudy	33	0	0	20.9

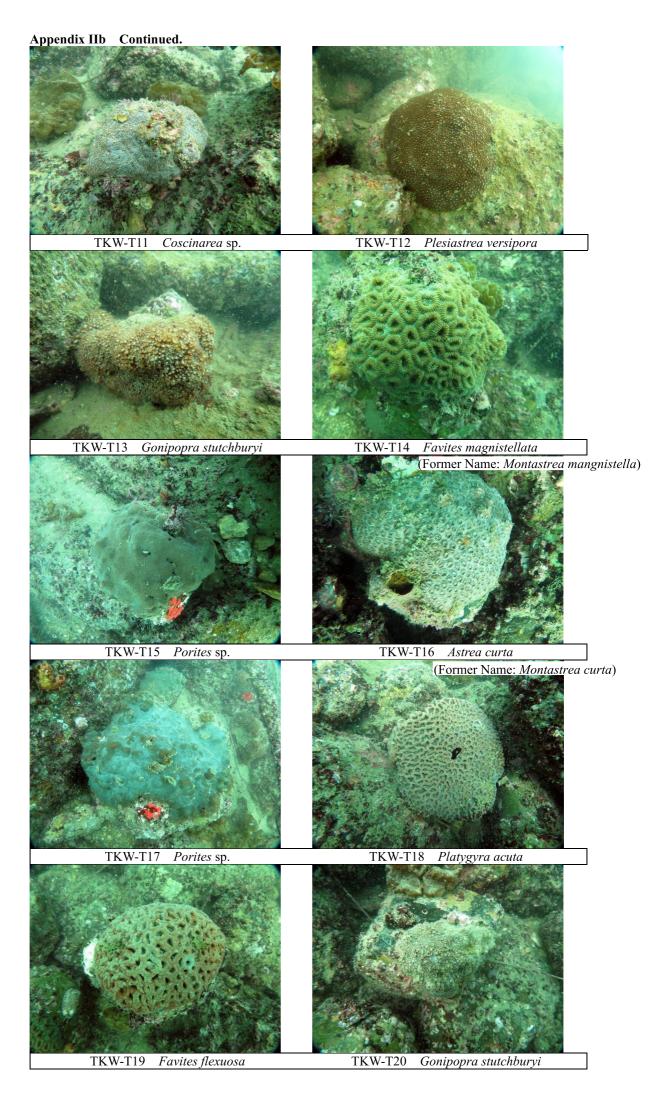

Methane **Portion III** - Methane (%) ----- Limit Level, 10% LEL 25 Limit Level, 20% LEL 20 15 % LEL 10 5 **Carbon Dioxide Portion III** - Carbon Dioxide (%) ---- Limit Level, 0.5% 3.0 Limit Level, 1.5% 2.5 2.0 % 1.5 1.0 0.5 0.0 Date Oxygen **Portion III** Oxygen (%) ----- Limit Level, 19% 25 24 Limit Level, 18% 23 22 21 20 % 19 18 17 16 15 Title Agreement No. CE 59/2015 (EP) Scale Project Environmental Team for Tseung Kwan O - Lam Tin Tunnel -N.T.S No. Design and Construction MA16034 Date Appendix Graphical Presentation of Landfill Gas Measurement R Aug 17

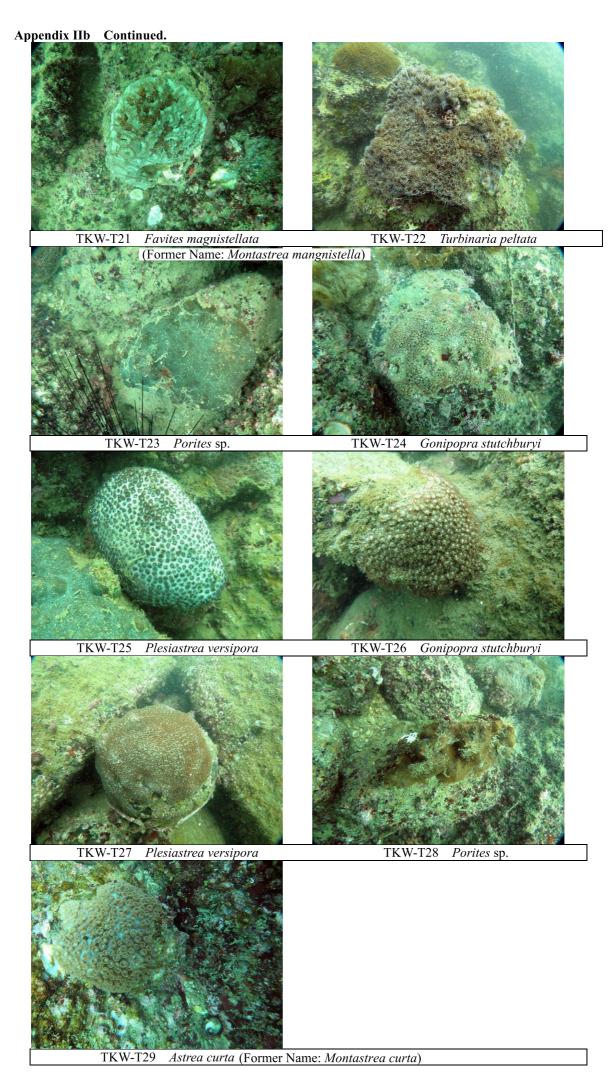

APPENDIX S UPDATED CONSTRUCTION NOISE ASSESSMENT


No update on Construction Noise Assessment in the reporting month

APPENDIX T PHOTO RECORD OF POST-TRANSLOCATION CORAL MONITORING SURVEY







Appendix IIa Tagged Coral Colonies at Recipient Site (under Contract NE2015/02). SWJB1– Plesiastrea versipora SWJB2– Plesiastrea versipora SWJB3–*Porites* sp. SWJB4– Dipsastraea speciosa (Former Name: Favia speciosa) SWJB5– Favites pentagona SWJB6– Plesiastrea versipora SWJB8– Favites flexuosa SWJB7– Plesiastrea versipora SWJB9-Porites sp. SWJB10– Favites chinesis

Appendix IIb Translocated Coral Colonies (under Contract NE2015/02). Note the coral species *Favites magnistellata* (TKW-T14 and TKW-T21) is formerly named as *Montastrea magnistellata*; and *Astrea curta* (TKW-T16 and TKW-T29) is formerly named as *Montastrea curta*.

