Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for December 2017

(version 2.0)

Approved By	Chujnt	
	(Dr. Priscilla Chøy, Environmental Team Leader)	

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
	Introduction	1
	Environmental Monitoring Works	1
	Key Information in the Reporting Month	3
	Key Construction Work in the reporting month & the next reporting month	3
	Future Key Issues	4
1.	INTRODUCTION	6
	Purpose of the Report	6
	Structure of the Report	
2.	PROJECT INFORMATION	
	Background	
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Status of Environmental Licences, Notification and Permits	
	Summary of EM&A Requirements	
3.	AIR QUALITY	12
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters and Frequency	
	Monitoring Methodology	
	Results and Observations	16
4.	NOISE	17
	Monitoring Requirements	17
	Monitoring Locations	
	Monitoring Equipments	
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	
	Updated Construction Noise Assessment	19
5.	WATER QUALITY	20
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipments	
	Monitoring Parameters and Frequency	
	Monitoring Methodology	
	Laboratory Analytical Methods	
	QA/QC Requirements	
	Decontamination Procedures	
	Sampling Management and Supervision	
	Results and Observations	
6.	ECOLOGY	27
	Post-Translocation Coral Monitoring	27
	Event and Action Plan	

	Results and Observations	27
7.	CULTURAL HERITAGE	
	Monitoring Requirement	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology	
	Alert, Alarm and Action Levels	
	Results	
	Mitigation Measures for Cultural Heritage	
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	
9.	LANDFILL GAS MONITORING	32
	Monitoring Requirement	
	Monitoring Parameters and Frequency	
	Monitoring Locations	
	Monitoring Equipment	
	Results and Observations	
10.	ENVIRONMENTAL AUDIT	
	Site Audits	
	Implementation Status of Environmental Mitigation Measures	
11.	WASTE MANAGEMENT	
12.	ENVIRONMENTAL NON-CONFORMANCE	
	Summary of Exceedances	36
	Summary of Environmental Non-Compliance	
	Summary of Environmental Complaint	
	Summary of Environmental Summon and Successful Prosecution	
13.	FUTURE KEY ISSUES	
	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	
14.	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	
	Recommendations	40

LIST OF TABLES

- Table I
 Non-compliance (exceedance) Recorded for the Project in the Reporting Month
- Table II
 Summary Table for Key Information in the Reporting Month
- Table 2.1Key Project Contacts
- Table 2.2Summary Table for Major Site Activities in the Reporting Month
- Table 2.3Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 2.4
 Summary of the Status of Environmental Licences, Notification and Permits
- Table 3.1Locations for Air Quality Monitoring
- Table 3.2Air Quality Monitoring Equipment
- Table 3.3Impact Dust Monitoring Parameters, Frequency and Duration
- Table 3.4Major Dust Source during Air Quality Monitoring
- Table 4.1Noise Monitoring Stations
- Table 4.2Noise Monitoring Equipment
- Table 4.3Noise Monitoring Parameters, Frequency and Duration
- Table 4.4Major Noise Source during Noise Monitoring
- Table 4.5Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 5.1Groundwater Quality Monitoring Stations
- Table 5.2Marine Water Quality Monitoring Stations
- Table 5.3Water Quality Monitoring Equipment
- Table 5.4Water Quality Monitoring Parameters and Frequency
- Table 5.5Methods for Laboratory Analysis for Water Samples
- Table 5.6Summary of Groundwater Quality Monitoring Results
- Table 6.1Location and Physical attributes of the Coral Recipient Site
- Table 7.1Vibration Monitoring Equipment
- Table 7.2AAA Levels for Monitoring for Cultural Heritage
- Table 7.3Vibration Monitoring Results
- Table 9.1Landfill Gas Monitoring Equipment
- Table 13.1
 Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

- Figure 1 Site Layout Plan
- Figure 1a Site Portions under Works Contract No. NE/2015/01 (Lam Tin Side)
- Figure 1b Site Portions under Works Contract No. NE/2015/01 (Tseung Kwan O Side)
- Figure 1c Site Portions under Works Contract No. NE/2015/02
- Figure 2 Locations of Air Quality Monitoring Stations
- Figure 3 Locations of Construction Noise Monitoring Stations
- Figure 4 Locations of Groundwater Quality Monitoring Stations
- Figure 5 Locations of Marine Water Quality Monitoring Stations
- Figure 6 Locations of Landfill Gas Monitoring
- Figure 7 Location of Post-translocation Coral Monitoring
- Figure 8 Location of Monitoring for Cultural Heritage
- Figure 9 Location of Water Quality Monitoring in Temporary Embayment

LIST OF APPENDICES

- Appendix A Action and Limit Levels
- Appendix B Copies of Calibration Certificates
- Appendix C Weather Information
- Appendix D Environmental Monitoring Schedules
- Appendix E 1-hour TSP Monitoring Results and Graphical Presentations
- Appendix F 24-hour TSP Monitoring Results and Graphical Presentations
- Appendix G Noise Monitoring Results and Graphical Presentations
- Appendix H Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory Testing Reports
- Appendix I Marine Water Quality Monitoring Results and Graphical Presentations
- Appendix J Quality Control Reports for Laboratory Analysis
- Appendix K Summary of Exceedance
- Appendix L Site Audit Summary
- Appendix M Event and Action Plans
- Appendix N Implementation Schedule And Recommended Mitigation Measures
- Appendix O Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- Appendix P Waste Generation in the Reporting Month
- Appendix Q Tentative Construction Programme
- Appendix R Record of Landfill Gas Monitoring by Contractor
- Appendix S Updated Construction Noise Assessment

EXECUTIVE SUMMARY

Introduction

- 1. This is the 14th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in December 2017.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in Table I.

Environmental Monitoring	No. of Non-compliance (Exceedance)		No. of Non-compliance (Exceedance) due to Construction Activities of this Project		Action Taken	
	Action Level	Limit Level	Action Level	Limit Level		
Air Quality	0	0	0	0	N/A	
Noise	9	0	9	0	Refer to the Appendix O	
Groundwater Quality	0	2	0	0	N/A (Refer to Part 8, Executive Summary)	
Marine Water Quality	0	0	0	0	N/A	
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A	
Ecological	N/A	N/A	N/A	N/A	N/A	
Cultural Heritage	0	0	0	0	N/A	
Landfill Gas	0	0	0	0	N/A	

1

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

Air Quality Monitoring

- 5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month. Nine (9) Action Level exceedance was recorded due to the documented complaints received in this reporting month. No Limit Level exceedance was recorded in the reporting month.

Water Quality Monitoring

- 8. Groundwater monitoring was conducted as scheduled in the reporting month. Two Limit Level exceedances were recorded in the reporting month which is considered to be non-Project related.
- 9. All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

11. Post-translation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

12. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in April 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

13. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

14. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

15. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection for NE/2015/01, NE/2015/02 and NE/2015/03 on 20, 21, 14 December 2017 respectively. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

16. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

17. Summary of key information in the reporting month is tabulated in **Table II**.

Event	Event Details		Action Taken	Status	Remark
Event	Number	Nature	Action Taken	Status	Kennar K
Complaint received by Project Team / Complaint referred by EPD (December 2017)	10	Construction dust / noise nuisance / Landscape and Visual Impacts	Under investigation	On-going	Details refer to
Complaint received by Project Team / Complaint referred by EPD (November 2017)	12	Construction dust / noise nuisance / Landscape and Visual Impacts	Investigation completed	Closed	App O
Notifications of any summons & prosecutions received	1	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance	N/A	Case adjourned to 18-Jan-18	

Table II Summary Table for Key Information in the Reporting Month

Key Construction Work in the reporting month & the next reporting month

18. Summary of key construction work in the reporting month is tabulated in Table III.

	Summary rabic for Key Co	Table for Key Construction work in the Reporting Month		
Contract No.	Project Title	Site Activities (December 2017)		
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile wall – Area 2A 	
		Main Tunnel	1) Main tunnel Excavation	
		TKO Interchange	 Haul Road Construction, Site Formation and Slope Works Temporary Barging Facilities & Temporary Platform Temporary Cut Slope For BMCPC Steel Platform for Bridge Construction 	

Table III Summary Table for Key Construction Work in the Reporting Month

		Monthly Eliner report for December 2017
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Re-provisioned DSD Transformer Room at Portion I Pre-bored works at Portion IV & VII Installation of Pre-Bored Socketed H-pile at Partian V and VI
		 Portion V and VI 4) Construction of Retaining Wall at Portion VIII 5) Reinstatement of Temporary Steel Cofferdam and Double Water Gate at Portion IX 6) Dredging Works at Portion IX 7) General Site Clearance and Hoarding Erection
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	 Pre-bored H Piles at West Pier Construction of Pile Cap PC3 Construction of Pier 3 (East Pier)

Future Key Issues

19. The future key environmental issues in the coming month include:

Table IV Summary Table for Site Activities in the next Reporting Period				
Contract No. and	Site Activities (January 2018)		Key environmental	
Project Title			issues *	
NE/2015/01 - Tseung	Lam Tin	1) EHC2 U-Trough	(A)/(B)/(C)/(D)/(E)	
Kwan O – Lam Tin	Interchange	2) Site Formation – Area 1G1,	(G)	
Tunnel – Main		Area 1G2, Area 2, Area 3, Area		
Tunnel and		4 & Area 5		
Associated Works		3) Pipe Pile Wall – Area 2A		
	Main Tunnel	1) Main Tunnel Excavation	(B)	
	ТКО	1) Haul Road Construction and	(A) / (C) / (D) / (E) / (F)	
	Interchange	Site Formation & Slope Works	/ (I)	
		2) Temporary Cut Slope For		
		BMCPC		
		3) Steel Platform for Bridge		
		Construction		
NE/2015/02 -	1) Rectification	on of defects (Portion I)	(A) / (B) / (C) / (D) /	
Tseung Kwan O –	2) Pre-bored v	works and sheet piling works at	(E) / (G) / (I)	
Lam Tin Tunnel –	Portion IV	& VII		
Road P2 and	3) Foot path a	nd carriageway construction at		
Associated Works	Portion IV	& VII		
	4) Removal of	f existing sea wall blocks at Portion		
	IV & VII	C C		
	5) Reconstruc	tion of existing outfall and		
	6) Temporary	road construction at Portion V & VI		
	7) Constructio	on of Retaining Wall at Portion VIII		
	/	0		
	/			
	Portion IX	č		
	 8) Dredging at Portion IX 9) Seawall Construction at Portion IX 10) Placing sand blanket at non-dredged area at 			

Table IV Summary Table for Site Activities in the next Reporting Period

NE/2015/03 -	1) Rebar fixing for Pile Cap no.PC3 at East Pier	(A)/(B)/(C)/(D)/(E)
Tseung Kwan O –	2) Pier Construction at East Pier	
Lam Tin Tunnel –		
Northern Footbridge		

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 14th Monthly EM&A report summarizing the EM&A works for the Project in December 2017.

Purpose of the Report

1.2 This is the 14th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in December 2017.

Structure of the Report

1.3 The structure of the report is as follows:

Section 1: **Introduction** – purpose and structure of the report.

Section 2: **Contract Information** – summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.

Section 3: Air Quality Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 4: **Noise Monitoring** – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 5: Water Quality Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 6: **Ecological Monitoring** – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.

Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.

Section 8: Landscape and Visual Monitoring Requirements - summarises the

requirements of landscape and visual monitoring

Section 9: Landfill Gas Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan

Section 10: **Environmental Site Inspection** – summarises the audit findings of the weekly site inspections undertaken within the reporting month.

Section 11: Waste Management – summarises the waste management data in the reporting month.

Section 12: **Environmental Non-conformance** – summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.

Section 13: **Future Key Issues** – summarises the impact forecast and monitoring schedule for the next three months.

Section 14: Conclusions and Recommendation

2. **PROJECT INFORMATION**

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project is:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)

Table 2.1	Key Proje			
Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Chiang Nin Tat, Eric	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinotech	Environmental	Dr. Priscilla Choy	2151 2089	3107 1388
Cinotech	Team	Ms. Ivy Tam	2151 2090	5107 1588
AnewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648

2.6 The key contacts of the Project are shown in **Table 2.1**.

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month				
Contract No.	Project Title	Site Activities	(December 2017)	
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile wall – Area 2A 	
		Main Tunnel	1. Main tunnel Excavation	
		TKO Interchange	 Haul Road Construction, Site Formation and Slope Works Temporary Barging Facilities & Temporary Platform Temporary Cut Slope For BMCPC Steel Platform for Bridge Construction 	
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Re-provisioned DSD Transformer Room at Portion I Pre-bored works at Portion IV & VII Installation of Pre-Bored Socketed H-pile at Portion V and VI Construction of Retaining Wall at Portion VIII Reinstatement of Temporary Steel Cofferdam and Double Water Gate at Portion IX Dredging Works at Portion IX General Site Clearance and Hoarding Frection 		
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	 General Site Clearance and Hoarding Erection Pre-bored H Piles at West Pier Construction of Pile Cap PC3 Construction of Pier 3 (East Pier) 		

Table 2.2	Summary Table for	Maior Site Activities in	n the Reporting Month
	Summary rabit for	major blic mentics n	i the hepot the month

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3	Construction Programme Showing the Inter-Relationship with
	Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4	Summary of the Status of Environmental Licences, Notification and
Permits	

Contract No.	Permit / License No.	Valid Period		Status
		From	То	Status
Environmental				
N/A	EP-458/2013/C	20/1/2017	N/A	Valid
Notification pu	rsuant to Air Pollution Contro			
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid
111/2010/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid
Billing Account	t for Construction Waste Dispo	osal		
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid
Vessel Billing A	Account under construction wa	ste disposal cha	rging scheme	
NE/2015/01	Account No. 7027764	31/10/2017	10/02/2018	Valid
Registration of	Chemical Waste Producer			
NE/2015/01	Waste Producer No. 5218- 290-L2881-02	22/08/2016	N/A	Valid
	Waste Producer No. 5213- 833-L2532-03	22/08/2016	N/A	Valid
NE/2015/02	Waste Producer No. 5213- 838-C4094-01	23/08/2016	N/A	Valid
NE/2015/03	Waste Producer No. 5213- 265-W3435-04	19/07/2017	N/A	Valid
Effluent Discha	arge License under Water Pollu	ution Control O	rdinance	-
	WT00025806-2016	22/11/2016	30/11/2021	Valid
	WT00026212-2016	09/11/2017	30/11/2021	Valid
NE/2015/01	WT00027354-2017	22/03/2017	31/03/2022	Valid
	WT00027405-2017	22/03/2017	31/03/2022	Valid
	WT-00028495-2017	11/08/2017	31/08/2022	Valid
NE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid
	WT00027226-2017	23/02/2017	28/02/2022	Valid
NIE /2015/02	WT00027295-2017	20/03/2017	18/04/2019	Valid
NE/2015/03	WT00027266-2017	08/03/2017	18/04/2019	Valid
Construction N	oise Permit (CNP)	1		1
NE/2015/01	GW-RE0508-17	27/06/2017	22/12/2017	Superseded by GW- RE1024-17

Contro at No	Valid Period		Status	
Contract No.	Permit / License No.	From	То	Status
	GW-RE0721-17	08/09/2017	07/12/2017	Superseded by GW- RE0933-17
	GW-RE0705-17	06/09/2017	05/03/2018	Valid
	GW-RE0838-17	30/10/2017	29/12/2017	Superseded by GW- RE0940-17
	GW-RE0828-17	27/10/2017	26/01/2018	Superseded by GW- RE0954-17
	GW-RE0835-17	27/10/2017	26/12/2017	Superseded by GW- RE1020-17
	GW-RE0940-17	11/12/2017	10/02/2018	Valid
	GW-RE0954-17	27/12/2017	26/01/2018	Valid
	GW-RE0933-17	01/12/2017	07/02/2018	Valid
	GW-RE1020-17	30/12/2017	29/03/2018	Valid
	GW-RE1024-17	23/12/2017	22/06/2018	Valid
NE/2015/02	GW-RE0414-17	02/06/2017	01/12/2017	Expired on 1 Dec 2017
	GW-RE0516-17	29/06/2017	22/12/2017	Expired on 22 Dec 2017
	GW-RE0800-17	11/10/2017	10/04/2018	Valid
	GW-RE0809-17	13/10/2017	12/04/2018	Valid
	GW-RE0826-17	30/10/2017	29/01/2018	Valid
	GW-RE0905-17	17/11/2017	15/05/2018	Valid
Marine Dumpi	ng Permit			
NE/2015/02	EP/MD/18-014	15/06/2017	14/12/2017	Expired on 14 Dec 2017
INE/2013/02	EP/MD/18-088	01/12/2017	31/12/2017	Expired on 31 Dec 2017

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in December 2017.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. Table 3.1 describes the air quality monitoring locations, which are also depicted in Figure 2.

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
AM4(A) ^{(2) (*)}	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
AM5(A) ^(*)	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) ^(*)	Park Central, L1/F Open Space Area	1/F

Table 3.1Locations for Air Quality Monitoring

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

Table 3.2A	ir Quality Monitoring Equipment	
Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3 / LD-3B	1
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-531	0
	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	5
IWC Somelon	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Tuble of Trequency and Full meters of the Quanty Monitoring	Table 3.3	Frequency and	Parameters of Air	Quality Monitoring
---	-----------	----------------------	--------------------------	--------------------

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Remove the red rubber cap from the AEROCET-531 inlet nozzle.
 - Turn on the power switch that is located on the right side of the AEROCET-531.

13

• On power up the product intro screen is displayed for 3 seconds. The intro screen

displays the product name and firmware version.

- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the $0.5\mu m$ and $5\mu m$ channels will show the cumulative counts of particles larger than $0.5\mu m$ and $5\mu m$ per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
 - a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
 - a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;

- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3µm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

Table 3.4 Major Dust Source during Air Quality Monitoring

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Table 4.1Noise Monitoring Stations

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2	Noise Monitoring Equipment
-----------	----------------------------

Equipment	Model and Make	Quantity
Integrating Sound Loval Mater	SVAN 955 / 957 / 977	5
Integrating Sound Level Meter	BSWA 801	0
Calibrator	SV30A	3
Calibrator	Brüel & Kjær 4231	1

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2	$L_{10}(30 \text{ min})$			Façade
CM3	dB(A)			Façade
CM4	L ₉₀ (30 min)	0700-1900 hrs on	Once per	Façade
CM5	dB(A)	normal weekdays	week	Façade
CM6(A)	$L_{eq}(30 \text{ min})$			Free Field
CM7(A)	dB(A)			Free Field
CM8(A)				Façade

 Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

- frequency weighting	: A
- time weighting	: Fast

- measurement time : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. Nine (9) Action Level exceedance was recorded due to the documented complaints received in this reporting month. No Limit Level exceedance was recorded in the reporting month.
- 4.10 Noise monitoring results and graphical presentations are shown in Appendix G.
- 4.11 The summary of exceedance record in the reporting month is shown in Appendix K.
- 4.12 The major noise source identified at the noise monitoring stations are shown in **Table** 4.4.

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

Table 4.4 Major Noise Source during Noise Monitoring

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**.

 Table 4.5
 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	- 75
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Updated Construction Noise Assessment

Contract No. NE/2015/01, Contract No. NE/2015/02 and Contract No. NE/2015/03

4.14 No update of Construction Noise Assessment in the reporting period. Any updated Construction Noise Assessment will be shown in **Appendix S.**

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

- 5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to **Figure 4**, Stream 1 to 3). According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.
- 5.2 As stated in the Baseline Environmental Monitoring Plan submitted to EPD in September 2016, Groundwater quality monitoring could not be conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. EPD has no further comment on the Plan in October 2016.

Marine Water Quality

- 5.3 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- 5.4 Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.
- 5.5 According to the Environmental Review Report (ERR) for Variations of Environmental Permit (Ref: C45-03), water quality monitoring and audit programme was implemented for monitoring of oxygen depletion (e.g. Dissolved Oxygen (DO) level) in this embayed waters during the period when the fully enclosed barrier is installed. A "Proposal for Water Quality Monitoring in Temporary Marine Embayment" has been submitted to EPD in July 2017 to propose the monitoring frequency, parameter, location, etc. EPD has no further comment on the Proposal.

Groundwater Level Monitoring (Piezometer Monitoring)

5.6 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.7 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.8 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. One additional monitoring station (W1) is designated for monitoring of oxygen depletion in the embayed waters during the period when the fully enclosed barrier is installed. The locations are also summarized in **Table 5.2** and shown on **Figure 5** and **Figure 9**.

Monitoring	Descriptions	Coord	Coordinates	
Stations	Descriptions	Easting	Northing	
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565	
M2	Junk Bay Coral Site – Junk Bay	844076	817087	
M3	Junk Bay Coral Site – Junk Island	844491	817890	
M4	Junk Bay Coral Site – Chiu Keng Wan	843209	816416	
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769	
M6	Tseung Kwan O Salt Water Intake	845512	817442	
C1	Control Station – Southeast	844696	814773	
C2	Control Station – Northwest	842873	816014	
G1	Gradient Station	844418	817560	
G2	Gradient Station	844290	817384	
G3	Gradient Station	844488	817735	
G4	Gradient Station	844967	817551	
W1	Ocean Shores (for WQM in temporary marine embayment)	844324	817791	

 Table 5.2 Marine Water Quality Monitoring Stations

Monitoring Equipments

5.9 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.10 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and

- a temperature of 0-45 degree Celsius.
- 5.11 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.12 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.13 Salinity compensation was built-in in the DO equipment.

<u>Turbidity</u>

5.14 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

pН

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.16 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.17 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In Situ Instruments

- 5.19 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.20 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.21 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.22 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed

uninterrupted even when some equipment is under maintenance, calibration, etc.

5.23 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi nonomotor Water Quality	YSI 6820-C-M	0
Multi-parameter Water Quality System	Aquaread AP-2000-D	0
System	YSI EXO1 Multiparameter Sondes	6
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Table 5.3 Water Quality Monitoring Equipment

Monitoring Parameters and Frequency

5.24 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4Water Quality Monitoring Parameters and Frequency			
Monitoring Stations	Parameters, unit	Depth	Frequency
Groundwater	Quality		
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)
Marine Wate	r Quality		
M1 M2 M3 M4 M5 M6 C1 C2 G1 C2 G1 G2 G3 G4	<u>In-situ:</u> Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity <u>Laboratory Testing:</u> Suspended Solids (SS)	 <u>M1-M5, C1-C2, G1-G4</u> 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. <u>M6</u> at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)

Monitoring Stations	Parameters, unit	Depth	Frequency
Water Qualit	y Monitoring in Temporary Ma	rine Embayment	
W1	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Salinity, ppt 	 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth monitoring only. If the water depth is less than 6m, omit mid-depth monitoring 	Weekly during the period when the fully enclosed barrier is installed

Monitoring Methodology

Groundwater Quality

- 5.25 At each monitoring location, two consecutive in-situ measurements for DO concentration, DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.26 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.27 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.29 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Parameters (Unit)	Proposed Method Reporting Limit		Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L $^{(1)}$	0.5 mg/L
$BOD_5 (mg O_2/L)$	APHA 19ed 5210B	$2 \text{ mg O}_2/L$	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.

2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.31 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.32 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

- 5.33 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results is shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.
- 5.34 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway

nearby.

5.35 Action and Limit Level for groundwater monitoring has been reviewed with consideration of monitoring results obtained from November 2016 to June 2017, as there was no tunnel boring or tunnel construction works from November 2016 to June 2017. A "Review Report for Action and Limit Levels of Groundwater Quality Monitoring" was submitted to EPD in August 2017. EPD has no further comment on the report and the updated Action and Limit Level is shown in **Appendix A**.

	Location	Parameters (unit)								
Date		рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD5 (mg O2/L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH3-N (mg NH3-N/L)	Total Phosphorus (mg-P/L)
6 Dec 2017	Stream 1	8.5	8.9	0.5	1.6	<2	4	1.0	< 0.05	< 0.05
	Stream 2	8.1	8.9	1.6	0.9	<2	3	1.0	< 0.05	< 0.05
	Stream 3	8.1	8.9	1.7	1.8	<2	4	1.0	< 0.05	< 0.05
20 Dec 2017	Stream 1	8.6	8.3	1.0	3	<2	5	0.9	0.05	< 0.05
	Stream 2	8.7	9.3	1.9	<u>48</u>	<2	6	1.2	< 0.05	<u>0.06</u>
	Stream 3	8.5	9.6	1.3	4	<2	3	<0.6	< 0.05	< 0.05
No. of Exceedance	Action Level	0	0	0	0	0	0	0	0	0
	Limit Level	0	0	0	1	0	0	0	0	1

Table 5.6	Summary of Groundwater Quality Monitoring Results
1 4010 010	Summary of Groundwater Quanty Monitoring Results

Note: *Bold Italic* means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

5.36 All groundwater monitoring was conducted as scheduled in the reporting month. Two Limit Level exceedance was recorded in the reporting month. It is considered that these exceedances (at Stream 2 –Stream on western coast of Chiu Keng Wan) are not project-related as there was no tunnel boring or tunnel construction works in Tseung Kwan O side in this reporting month.

Marine Water Quality Monitoring

- 5.37 All marine water quality monitoring was conducted as scheduled in the reporting month. Marine water monitoring results and graphical presentations are shown in Appendix I. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.38 Calculated Action and Limit Levels for Marine Water Quality is presented in Appendix I. No Action/Limit Level exceedance was recorded in the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.39 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.40 Construction Phase Piezometer Monitoring has not commenced in this reporting period.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. The fourth post-translocation coral monitoring was carried out on 07 November 2017.
- 6.4 Location of post-translocation coral monitoring is shown in **Figure 7**.

Event and Action Plan

- 6.5 The post-translocation monitoring result was evaluated against Action and Limit Levels presented in Appendix A. Evaluation was based on recorded changes in percentage of partial mortality of the corals.
- 6.6 If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in **Appendix M** will be implemented.
- 6.7 If observations of any die-off / abnormal conditions of the translocated corals are made during the post-translocation monitoring, the ET shall inform the Contractor, IEC and AFCD, and liaise with AFCD to investigate any mitigation measures needed.

Results and Observations

- 6.8 No post-translocation coral monitoring was conducted in the reporting month.
- 6.9 The post-translocation coral monitoring surveys were completed in November 2017.

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be aplied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 April 2017.
- 7.2 As stated in the approved "*Built Heritage Mitigation Plan*" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

- 7.3 One (1) vibration monitoring point, one (1) building settlement monitoring point and one (1) building tilting monitoring point are proposed for the vibration impacts monitoring of the construction works. The building settlement marker and the tiltmeter will be placed on the wall of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple.
- 7.4 Confirmation from the Cha Kwo Ling Tin Hau Temple on the installation of these monitoring equipment is yet to be obtained by the Contractor. Vibration monitoring was carried out at a temporary location outside the Cha Kwo Ling Tin Hau Temple in the reporting period. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.5 Building settlement was measured by surveyors via settlement marker and tiltmeter attached to the wall of the Cha Kwo Ling Tin Hau Temple.
- 7.6 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "*Guidance Note on Vibration Monitoring*" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.7 **Table 7.1** summarizes the equipment employed by the Contractor for vibration monitoring. Copies of calibration certificates are attached in **Appendix B**.

Equipment	Manufacturer and Model	Quantity	
DNA03 Digital Level for building	Leica Geosystems	1	
settlement and tilting	Article No.: 723289	1	
Vibrographs for vibration monitoring	MiniMate Plus manufactured by Instantel	1	
vibrographs for vibration monitoring	Model No.: 716A0403	1	

 Table 7.1 Vibration Monitoring Equipment

Monitoring Methodology

7.8 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement and tilting monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.9 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 TABLE Devels for Wondoring for Cultural Heritage								
Parameter	Alert Level	Alarm Level	Action Level					
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm					
Building Settlement Markers	6mm	8mm	10mm					
Building Tilting	1:2000	1:1500	1:1000					

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

Results

7.10 In the reporting month, vibration monitoring was carried out by the Contractor at the aforesaid location on 24 occasions. No AAA Level exceedance for vibration monitoring was recorded in the reporting month. The monitoring results are provided in **Table 7.3**.

		Tilting	Settlement (mm)	Vibration (mm/s)		
Date	Time			Measurement Direction		
				Tran	Vertical	Longitudinal
1-Dec-17	16:24	-0	+2	0.127	0.127	0.127
2-Dec-17	10:34	-0	+2	0.254	0.508	0.127
4-Dec-17	11:44	-1	+1	0.127	0.127	0.127
5-Dec-17	11:56	-0	+2	0.127	0.127	0.127
6-Dec-17	14:09	-0	+2	0.254	0.254	0.127
7-Dec-17	09:28	-0	+2	0.127	0.127	0.127
8-Dec-17	17:16	-2	+1	0.127	0.127	0.127
9-Dec-17	14:40	-2	+1	0.127	0.127	0.127
11-Dec-17	16:30	-1	+1	0.254	0.127	0.127
12-Dec-17	13:48	-1	+2	0.254	0.127	0.127
13-Dec-17	13:35	+0	+3	0.127	0.127	0.127
14-Dec-17	13:43	+0	+1	0.254	0.127	0.127
15-Dec-17	13:22	-1	+1	0.254	0.127	0.127
16-Dec-17	10:24	+0	+2	0.254	0.254	0.127
18-Dec-17	17:00	+0	+3	0.254	0.254	0.127
19-Dec-17	16:15	-0	+3	0.254	0.127	0.127
20-Dec-17	10:27	-0	+2	0.127	0.127	0.127
21-Dec-17	16:53	-1	+2	0.127	0.127	0.127
22-Dec-17	11:02	+0	+3	0.127	0.127	0.127
23-Dec-17	09:24	-0	+2	0.127	0.127	0.127
27-Dec-17	16:05	+0	+3	0.127	0.127	0.127
28-Dec-17	16:02	-1	+1	0.254	0.254	0.254

 Table 7.3 Vibration Monitoring Results

	Time	Tilting	Settlement (mm)	Vibration (mm/s)		
Date				Measurement Direction		
				Tran	Vertical	Longitudinal
29-Dec-17	15:15	-0	+2	0.254	0.127	0.127
30-Dec-17	16:02	-0	+2	0.127	0.127	0.127

Mitigation Measures for Cultural Heritage

- 7.11 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.12 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Implementation Schedule and Recommended Mitigation Measures" (shown in **Appendix N**). The summaries of observations and recommendations related to landscape and visual impacts, if any, are shown in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. Appendix A shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;-
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

- 9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.
 - Excavation Locations: Portion III
 - Manholes and Chambers: N/A
 - $\blacktriangleright \qquad \text{Relocation of monitoring wells:} \qquad \text{N/A}$
 - Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Table 9.1 Landfill Gas Monitoring Equipment		
Equipment Model and Make		Quantity
	Crowcon Tetra	
Intrinsically safe, portable gas detector	Portable Gas Detector	1
	(Serial No. 100486262/01-020)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 48 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in Appendix R. Copies of calibration certificates are attached in Appendix B.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 6, 13, 20 and 27 December 2017
 - Contract No. NE/2015/02: 7, 12, 21 and 28 December 2017
 - Contract No. NE/2015/03: 7, 14, 21 and 28 December 2017

Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01, NE/2015/02 and NE/2015/03 on 20, 21, 14 December 2017 respectively.

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-compliance was identified. The observations and recommendations made during the audit sessions are summarized in **Appendix L**.

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summited in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 Nine (9) Noise Action Level exceedance was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded in the reporting month.
- 12.2 Two Limit Level exceedances in groundwater quality monitoring were recorded in the reporting month which is considered to be non-Project related.
- 12.3 Should the monitoring results of the environmental monitoring parameters at any designated monitoring stations indicate that the Action / Limit Levels are exceeded, the actions in accordance with the Event and Action Plans in **Appendix M** be carried out.

Summary of Environmental Non-Compliance

12.4 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

12.5 Ten (10) environmental complaint was received in the reporting month. The Cumulative Complaint Log since the commencement of the Project is presented in Appendix O. The investigation status and result is also reported in Appendix O.

Summary of Environmental Summon and Successful Prosecution

12.6 There was no successful environmental prosecution since the Project commencement. One notification of summon related to Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance was received in this reporting period. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Contract No.	Project Title		(January 2018)
NE/2015/01	Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile wall – Area 2A
		Main Tunnel	1. Main tunnel Excavation
		TKO Interchange	 Haul Road Construction, Site Formation and Slope Works Temporary Cut Slope For BMCPC Steel Platform for Bridge Construction
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Pre-bored w IV & VII Foot path an IV & VII Removal of & VII Reconstruct of DN2100 Temporary Constructio Dredging at Seawall Con 	n of defects (Portion I) yorks and sheet piling works at Portion nd carriageway construction at Portion Cexisting sea wall blocks at Portion IV tion of existing outfall and installation drainage system at Portion IV & VII road construction at Portion V & VI n of Retaining Wall at Portion VIII Portion IX Instruction at Portion IX d blanket at non-dredged area at
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge		ng for Pile Cap no. PC3 at East Pier ruction at East Pier

 Table 13.1
 Summary Table for Site Activities in the next Reporting Period

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 14th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in December 2017 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. Nine (9) Action Level exceedance was recorded due to the documented complaints received in the reporting month. No Limit Level exceedance was recorded in the reporting month.

Water Quality Monitoring

- 14.5 Groundwater monitoring was conducted as scheduled in the reporting month. Two Limit Level exceedances were recorded in the reporting month which is considered to be non-Project related.
- 14.6 All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 The post-translocation coral monitoring surveys were completed in November 2017. No post-coral monitoring was conducted in the reporting month.

Monitoring on Cultural Heritage

14.8 No Alert Alarm and Action (AAA) Level exceedance of vibration monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-compliance was identified.

Complaint, Prosecution and Notification of Summons

14.12 Ten (10) environmental complaint, no successful prosecution and one notification of summon were received during the reporting period.

Recommendations

14.13 The following recommendations were made to the Contractor for the reporting month:

Air Quality Impact

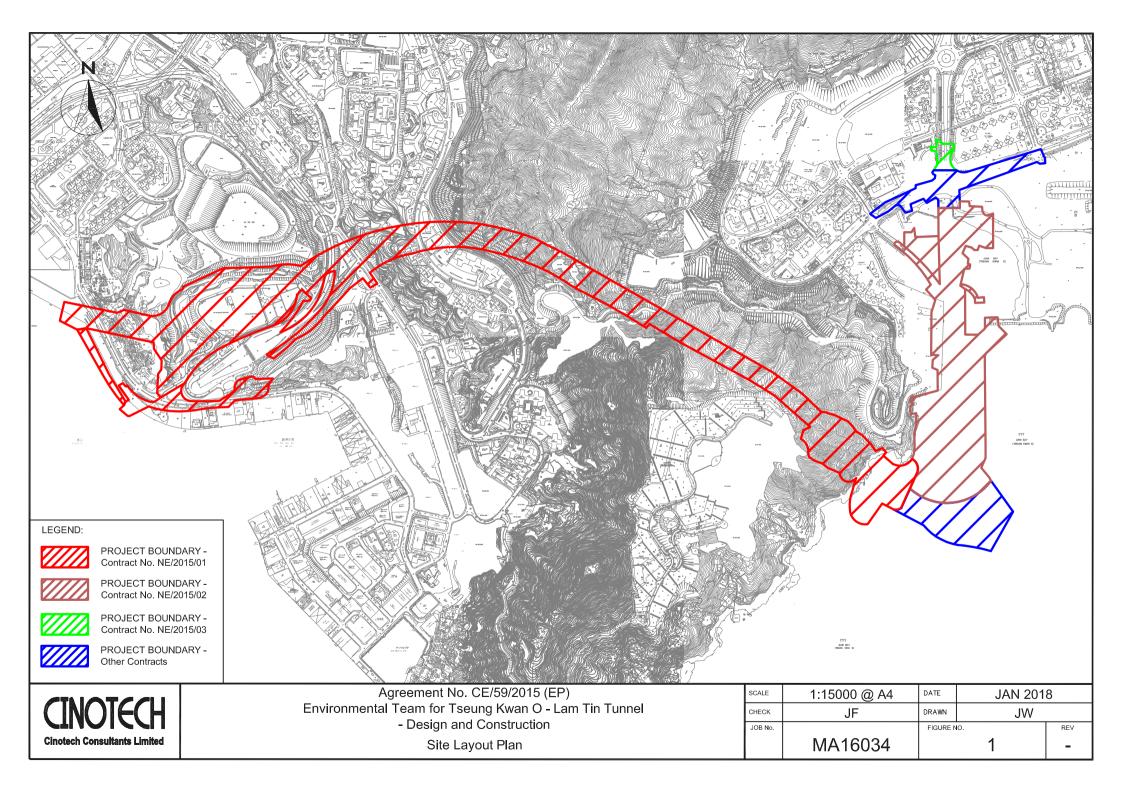
- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces and open slopes.
- To cover stockpile of dusty material by impervious material.
- To avoid dark smoke emitted from the generator.

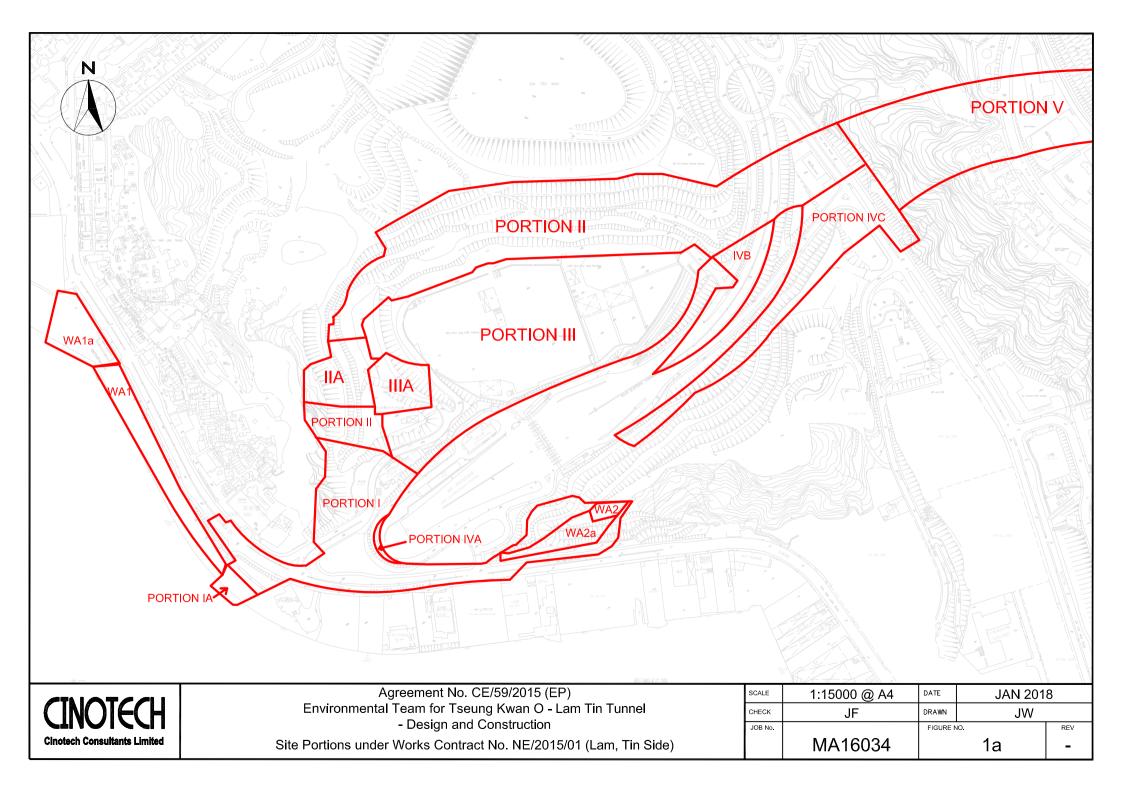
Construction Noise

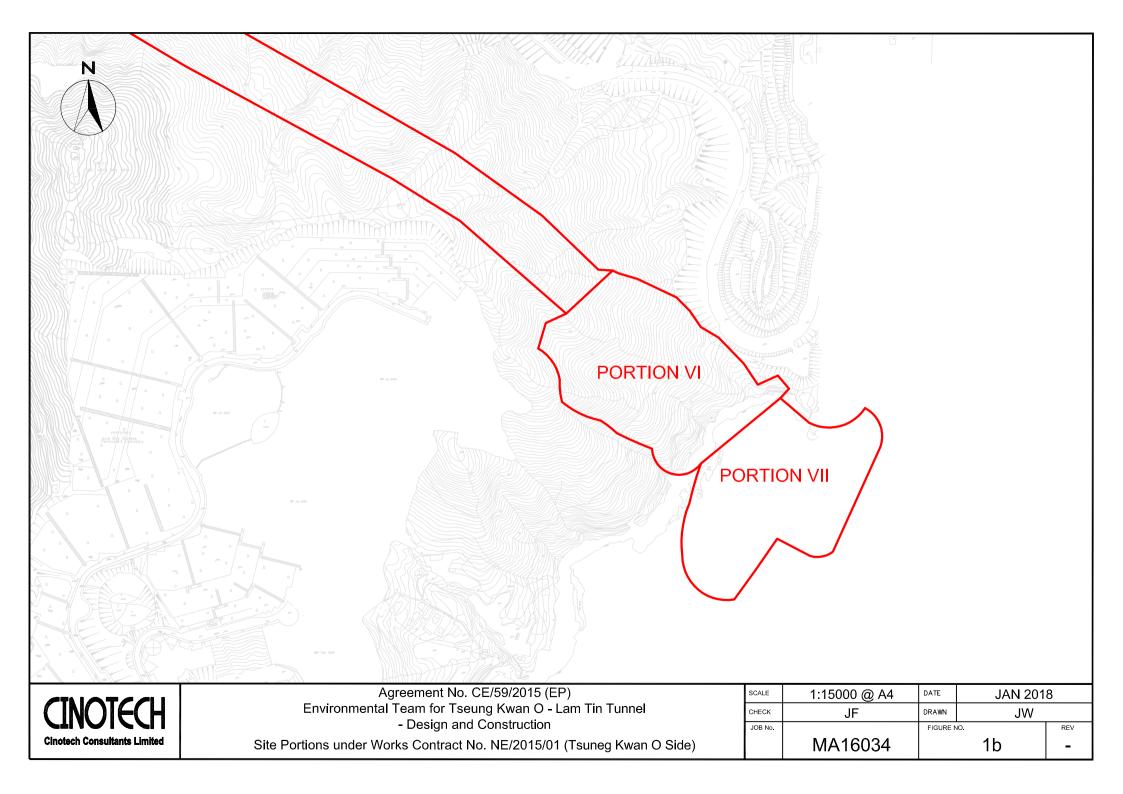
- To provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved Noise Mitigation Plan.
- To repair the gaps between the noise barriers.

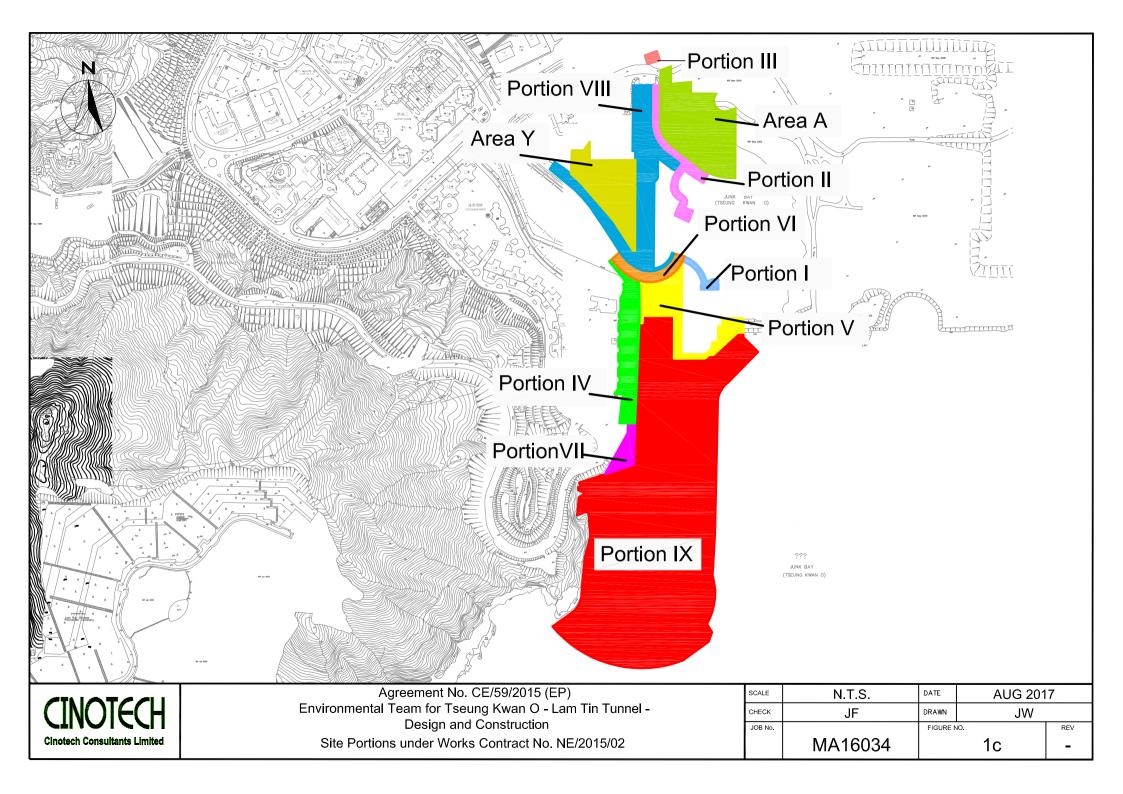
Water Quality Impact

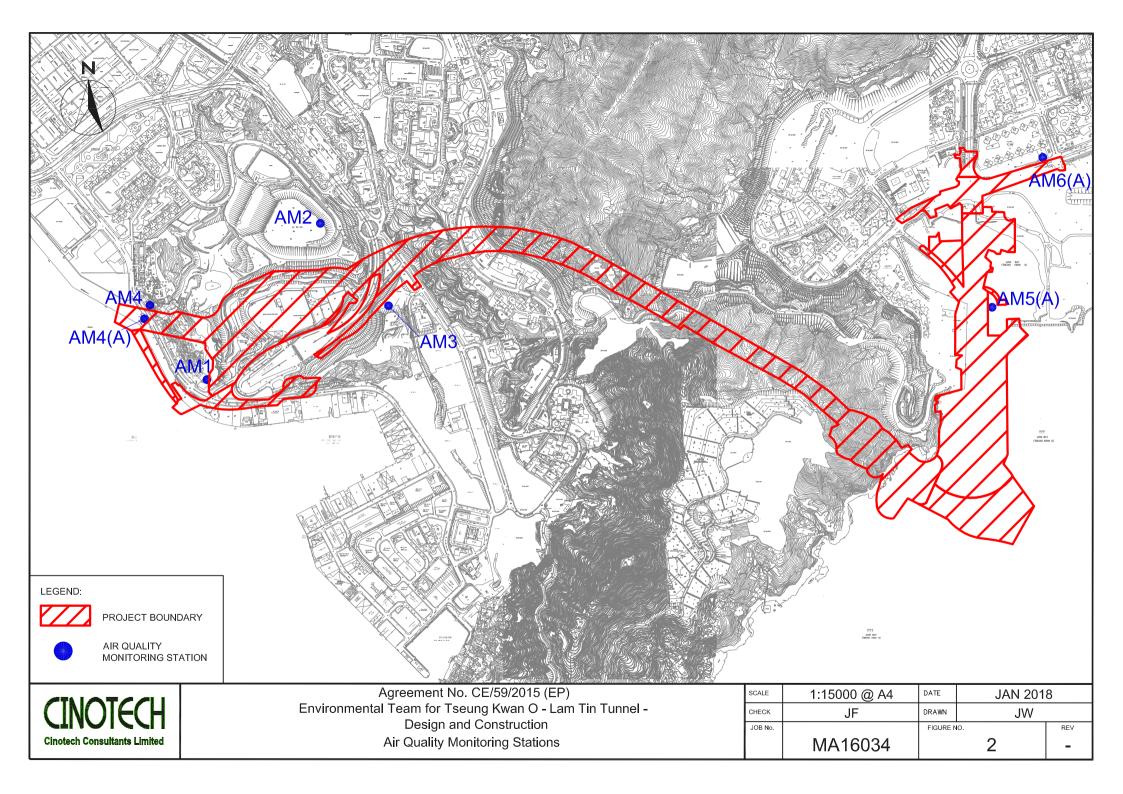
- To provide and repair the silt curtain to fully enclose the site and prevent any gap between the silt curtains.
- To review and implement temporary drainage system.
- To clear the litter, debris, silt and sediment in drainage or catchpits.
- To remove the sand or dusty material deposited near the seafront.
- To provide bund or covers to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To maintain the sedimentation tank more frequently to ensure proper wastewater treatment before discharge.

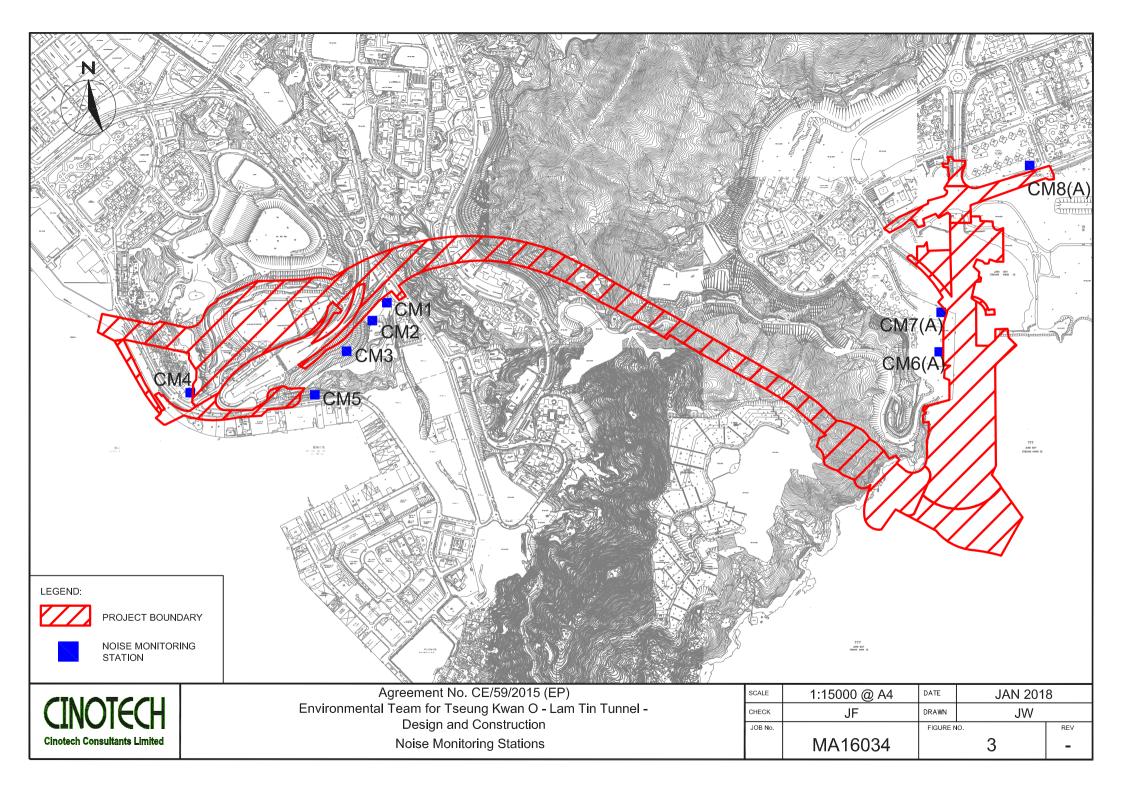

Waste/Chemical Management

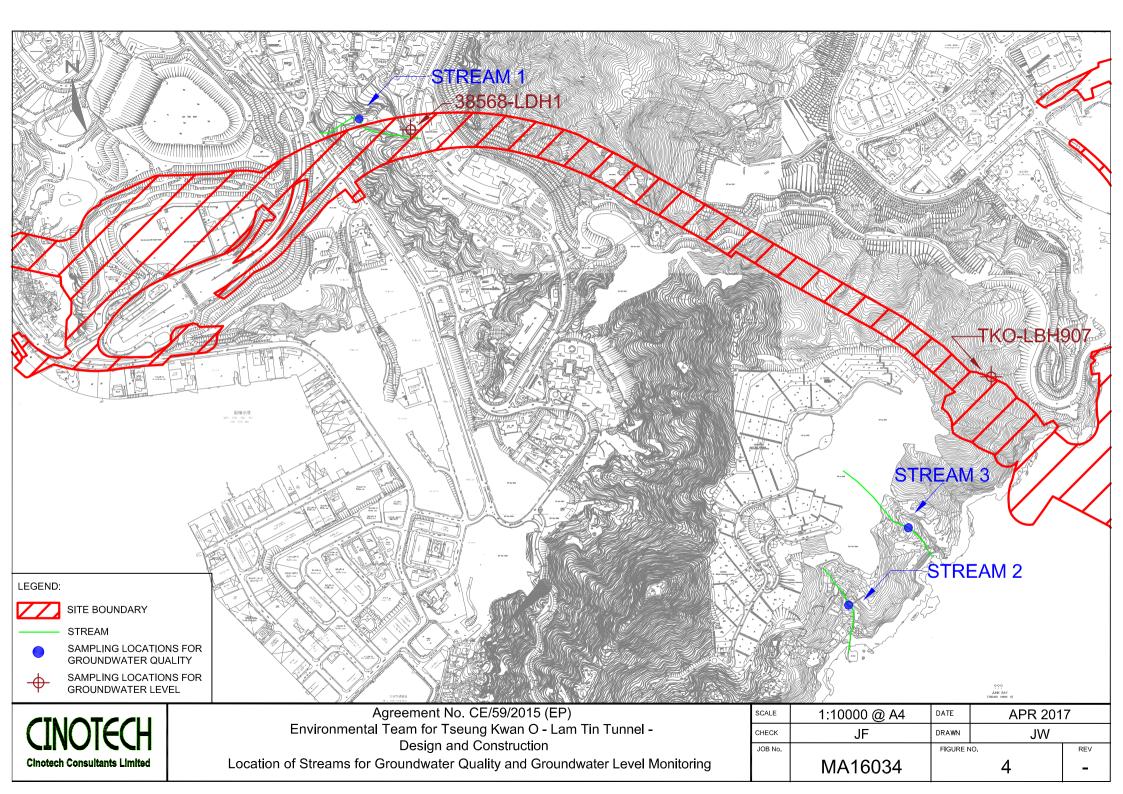

- To remove construction waste regularly.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment.
- To provide drip tray to chemical containers to avoid any chemical leakage.
- To remove the oil stain and disposed of as chemical waste.
- To remove the stagnant water regularly found inside the drip tray.

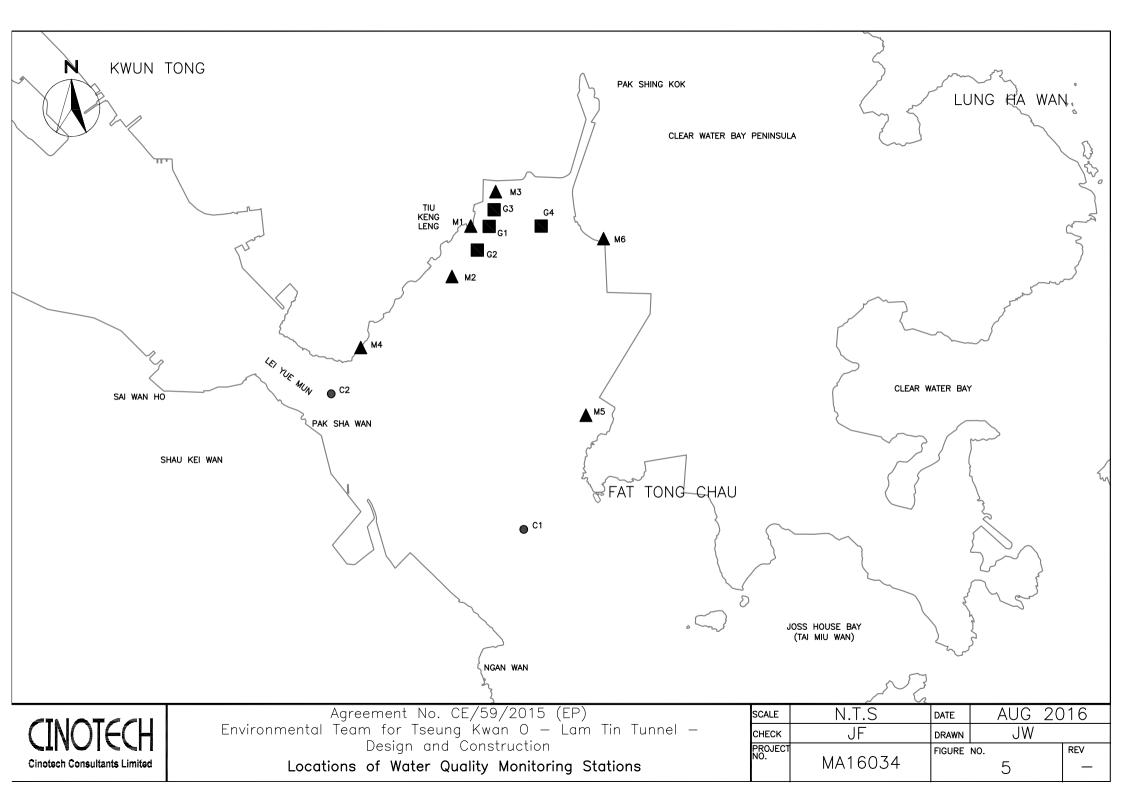

Landscape and Visual

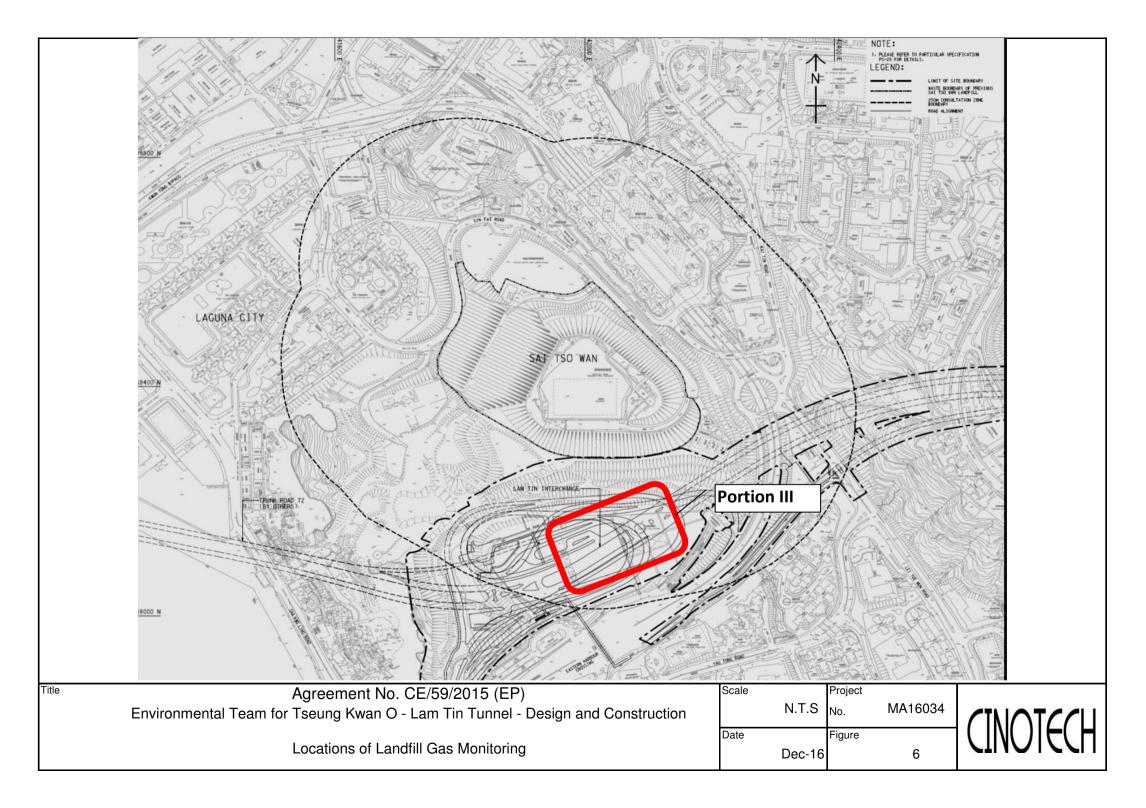

- To set up proper tree protection area.
- To avoid placing any construction materials in the tree protection zone.

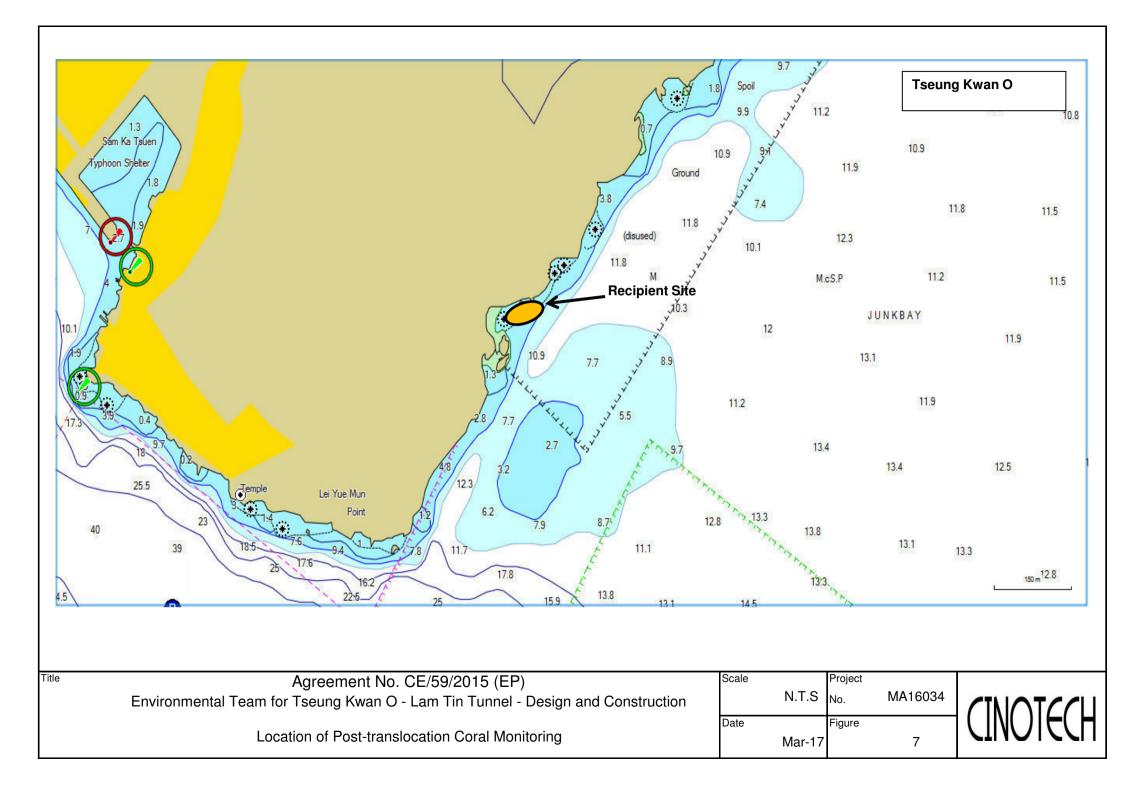

FIGURES

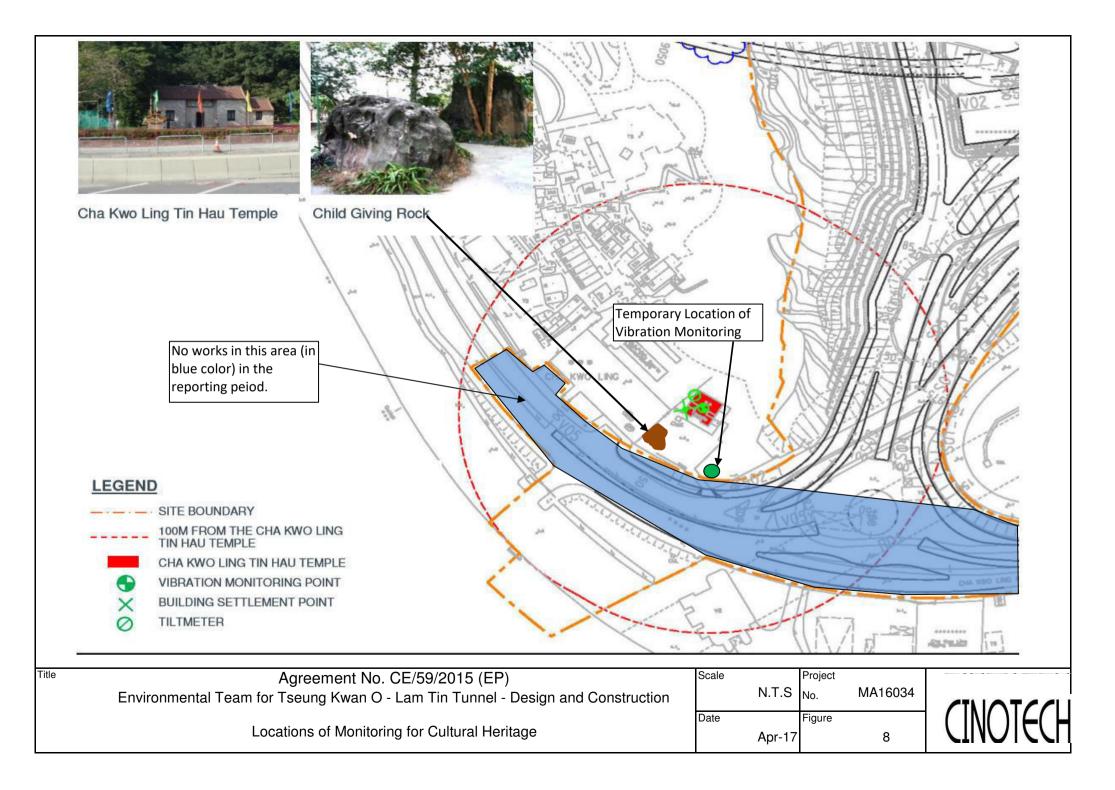












N	DCEAN SHDRES	LEGEND IMPACT STATIONS LOCATION OF TEMPORARY MARINE EMBAYMENT BY STEEL COFFERDAM RECLAMATION FOOTPRINT
	TIU KENG LENG W1	CURRENT SHORELINE
CINOTECH Cinotech Consultants Limited	Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction Location of Water Quality Monitoring Stations with Temporary Marine Embayment	- scale N.T.S date MAY 2017 <u>CHECK JF drawn JW</u> PROJECT MA16034 FIGURE NO. 9 REV - MA16034

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, µg/m ³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, µg/m ³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	260
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

<u>Noise</u>

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾

 1 70 dB(A) for schools and 65 dB(A) for schools during examination period.

 ² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 ³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit
DO in mg L ⁻¹	7.6	7.6
pH	6.0 - 8.9	6.0 - 9.0
BOD ₅ in mg L ⁻¹	2.0	2.0
	Stream 1 and Stream 2: 9	Stream 1 and Stream 2: 9
TOC in mg L ⁻¹	Stream 3: 6	Stream 3: 6
Total Nitrogen in mg L ⁻¹	2.0	2.1
Ammonia-N in mg L ⁻¹	0.15	0.20
Total Phosphate in mg L ⁻¹	0.05	0.05
SS in mg L ⁻¹	7.6	12.1
Turbidity in NTU	2.1	2.3

Notes:

1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.

2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907
Action Level (mPD)	+74.65	+17.59

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level	
Stations G1-G4, M1-M5				
DO in ma/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>	
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>	
	Station M6			
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>	
	Stations G1-G4	4, M1-M5		
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	<u>19.3 NTU</u> or 120% of upstream control station's Turbidity at the same tide of the same day	<u>22.2 NTU</u> or 130% of upstream control station's Turbidity at the same tide of the same day	
	Station M6			
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>	
Stations G1-G4				
	Surface	<u>6.0 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	<u>6.9mg/L</u> or 130% of upstream control station's SS at the same tide of the same day	
	Stations M1-M	<u>5</u>		
SS in mg/L (See Note 2, 4 ad 5)	Surface	<u>6.2 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day	
	Stations G1-G4	4, M1-M5		
	Bottom	<u>6.9 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day	
	<u>Station M6</u>			
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>	

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

5. Refer to Appendix I – Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

Water Quality Monitoring in Temporary Marine Embayment

Parameter (unit)	Depth	Action Level	Limit Level
DO in mg/L	Depth Average	<u>4.8 mg/L (4)</u>	<u>4 mg/L ⁽³⁾</u>
(See Note 1 and 2)	Bottom	<u>2.4 mg/L (4)</u>	<u>2 mg/L</u> ⁽³⁾

Notes:

1. "depth-averaged" is calculated by taking the arithmetic means of reading of all sampling depths.

2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

3. Current Water Quality Objectives (WQOs) for marine waters of Hong Kong

4. As an alert for adverse water quality impact, the Action Level is set as 120% of the Current WQOs for marine waters of Hong Kong.

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition
Mortality	If during Impact Monitoring a 15% increase	If during the Impact Monitoring a 25%
	in the percentage of partial mortality on hard	increase in the percentage of partial
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,
	Action Level is exceeded.	then the Limit Level is exceeded.

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

CINOTECH

						File No. MA16034/05/0008	
Project No.	AM1 - Tin Hau	Temple	·····	Operator:	MH	· · · · · · · · · · · · · · · · · · ·	
Date:	3-Nov-17		· ·	Next Due Date:	2-Jan-	18	
Equipment No.:	A-01-05		.	Serial No.	10599		
			Ambient C		1		
Temperatu	ire, Ta (K)	298.8	Pressure, Pa	ı (mmHg)		765.3	
		Or	fice Transfer Sta	ndard Inform	ation		
Serial No.		0993	Slope, mc	0.0578	Intercep	t, bc -0.04890	
Last Calibra	ation Date:	28-Feb-17			с = [ΔH x (Pa/760		
Next Calibr	ation Date:	27-Feb-18		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} / mc	
		•					
			Calibration of	TSP Sampler	r —		
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[Δ Н x (Ра/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis	
1	13.4		3.67		6.9	2.63	
2	9.8		3.14	55.15	5.4	2.33	
3	8.6		2.94	51.71	4.8	2.20	
4	5.5		2.35	41.53	3.1	1.76	
5	3.4		1.85	32.83	2.0	1.42	
By Linear Regr	agion of V on V						
Slope, mw =		•		Intercent bw:	0.145	3	
Correlation c		- 0.9		intercept, bit			
	Coefficient < 0.99			-			
		-,					
			Set Point C	alculation			
From the TSP Fi	eld Calibration C	urve, take Qstd					
From the Regres	sion Equation, th	e "Y" value acc	ording to				
					4 14		
		mw x Q	$std + bw = [\Delta W x]$	t (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore Se	t Point W = (m)	$w \ge Ostd + bw$	² x (760 / Pa) x ('	Ta / 298) =	3,33		
Therefore, be		w x Q3ta + 0W)	x(700710)X(14/200	3,33		
.					<u> </u>		
Remarks:							
			·				
						_	
Conducted by: L			hei			Date: <u>3-11-2-017</u>	
Checked by:	W.K. Teng	Signature:	Know	· · ·	,	Date: $3 - 11 - 2017$ Date: $3 - 11 - 2017$	
	()						

						File No.	MA16034/08/0008	
Project No.	AM2 - Sai Tso	Wan Recreation	Ground	Operator:	MH			
Date:	3-Nov-17			Next Due Date:	2-Jan-18			
Equipment No.:	A-01-08		Serial No.		1287			
			Ambient (Condition	1			
Temperature, Ta (K) 298.6			Pressure, Pa	a (mmHg)		765.8		
			fice Transfer Sta	T	I			
Serial		0993	Slope, mc	0.0578	Intercep		-0.04890	
Last Calibra	·	28-Feb-17 27-Feb-18			с = [ΔH x (Pa/760 (Pa/760) x (298/			
Next Calibra	anon Date:	27-reb-18			(Pa/700) X (298/	1a)] -DC}/T		
			Calibration of	TSP Sampler				
		Or		151 Sampler		HVS	winnenfeitenen er sig	
Calibration Point	ΔH (orifice),			Qstd (CFM)	ΔW (HVS), in.		760) x (298/Ta)] ^{1/2}	
Foint	in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	X - axis	of water		Y-axis	
1	13.6	3	.70	64.86	8.0		2.84	
2	10.6	3	.26	57.36	6.4		2.54	
3	8.7	2	.96	52.04	5.2		2.29	
4	5.4	2.33		41.18	3.2		1.79	
5	3.3	1	.82	32.38	2.1		1.45	
By Linear Regr	ession of Y on X							
Slope, mw =				Intercept, bw	0.038	6		
Correlation co	_	0.9		-				
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.					
			Set Point C	alculation				
From the TSP Fi		-						
From the Regres	sion Equation, th	e "Y" value acco	ording to					
		mw x Q	std + bw = $[\Delta W]_{X}$	(Pa/760) x (29	(98/Ta)] ^{1/2}			
			-					
Therefore, Se	t Point; W = (my	w x Qstd + bw $)^2$	x (760 / Pa) x (Ta / 298) =	3.58			
Remarks:								
Remarks:							,	
Conducted by:	EE MAN HEL	Signature	1.			Date:	7-11 2-17	
	WK. TANY		- hu Wwai		1	Date:	3-11-2017	
checked by.	0	-		· · · · · · · · · · · · · · · · · · ·		<u> </u>		

CINOTECH

						File No.	MA16034/03/0006
Project No.	AM3 - Yau Lai	Estate, Bik Lai I	louse Operator:		MH	MH	
Date:	3-Nov-17		. 1	Next Due Date:	2-Jan-	18	-
Equipment No.:	A-01-03		i	Serial No.	10379		-
			Ambient (ondition			
Temperatu	re. Ta (K)	298.2	Pressure, Pa			765.4	an a
		23012	11005010,1	(L		· · · · · · · · · · · · · · · · · · ·
		Ori	fice Transfer Sta	ndard Inform	ation		
Serial	No.	0993	Slope, mc 0.0578		Intercep	t, bc	-0.04890
Last Calibra	ation Date:	28-Feb-17		me x Qstd + bo	c = [ΔH x (Pa/760)) x (298/T a))] ^{1/2}
Next Calibra	ation Date:	27-Feb-18			(Pa/760) x (298/		
		•					
			Calibration of	TSP Sampler			
Calibration		Or	fice	1		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
11	12.6	3	3.56		7.5		2.75
2	10.8	3	.30	57.91	6.3		2.52
3	7.1	2	2.67	47.12	4.1		2.03
4	5.4	2.33		41.20	3.3		1.82
5	3.4	1	.85	32.87	2.1		1.45
By Linear Regr	ession of Y on X						
Slope , mw =	0.0432			Intercept, bw :	0.026	3	
Correlation co	oefficient* =	0.9	992	-			
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.				
			Set Point C	alculation			
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
		mw x Q	std + bw = $ \Delta W _{\lambda}$	(Pa/760) x (29	98/Ta)] ^{1/2}		
		-	-				
Therefore, Se	t Point; W = (m	$w \ge (1 + bw)^2$	x (760 / Pa) x (Ta / 298) =	3,53		
Remarks:							
	1 m		1				
Conducted by:	LEE MAN MEZ	Signature:	her"			Date:	3-11-2017
Checked by:	W.K. Tang	Signature:	Unai			Date:	3-11-2017

						File No.	MA16034/54/0008
Project No.	AM4(A) - Cha l	Kwo Ling Public	c Cargo Working	Operator:	MH		_
	Area Administr	ative Office					
Date:	9-Nov-17		. 1	Next Due Date:	8-Jan-	18	
Equipment No.:	A-01-54		-		1536		
			•				·
			Ambient C	Condition			
Temperatu	ıre, Ta (K)	300.6	Pressure, Pa	Pressure, Pa (mmHg) 763.4			
•							-
		Or	fice Transfer Sta	ndard Inform	ation		
Seria	l No.	0993	Slope, mc	0.0578	Intercep	t, bc	-0.04890
Last Calibra	ation Date:	28-Feb-17	1	me x Qstd + b	с = [ΔH x (Pa/760)) x (298/Ta)] ^{1/2}
Next Calibr	ation Date:	27-Feb-18	1	$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	(Pa/760) x (298/	$[\Gamma a]^{1/2} - bc\} /$	mc
		•					
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice),	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM)	ΔW (HVS), in.	[ΔW x (Pa/	/760) x (298/Ta)] ^{1/2}
	in. of water			X - axis	of water		Y-axis
1	17.4	· ·	4.16		10.4		3.22
2	13.5	3.67		64.31	8.1		2.84
3	10.2	3.19		56.01	6.5		2.54
4	6.9		2.62	46.22	4.5		2.12
5	4.3	:	2.07	36.66	3.0		1.73
By Linear Regr	ession of Y on X						
Slope , mw =	0.0409	-]	Intercept, bw •	0.230	7	
Correlation c	oefficient* =	0.9	996				
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.				
			Set Point C	alculation			
From the TSP Fi	ield Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acc	ording to				
			std + bw = [∆W x	(10 - 17 (0) (0 (1/2 NI/2		
		mw x Q	$sta + bw = [\Delta w x]$	(Pa/700) X (25	/8/1a)]		
Therefore, Se	et Point; W = (my	w x Ostd + bw)	² x (760 / Pa) x (′	Ta / 298) =	3.98		
		() () () () () () () () () ()		,			
Remarks:							
	- '						
Conducted by: /	EE MAN HEI	Signature:	her	<u>۲</u>		Date:	9-11-2017
	W.K. Tang	Signature:	Kina			Date:	9-11-2017
		-				•	<u> </u>

						File No.	MA16034/37/0008
Project No.	AM5(A) - Tseur	ng Kwan O DSI	Desilting Compo	Operator:	MH		
Date:	3-Nov-17			Next Due Date:	2-Jan-	18	
Equipment No.:	A-01-37			Serial No.	1704		
			Ambient (Condition			
Temperatu	ire, Ta (K)	299	Pressure, Pa			765.7	
· · · · · · · · · · · · · · · · · · ·				·	•		
		Ori	fice Transfer Sta	ndard Inform:	ation		
Serial No.		0993	Slope, mc	0.0578	Intercept		-0.04890
Last Calibra	ation Date:	28-Feb-17			с = [ΔH x (Pa/760		
Next Calibr	ation Date:	27-Feb-18		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/	Га)] ^{1/2} -bc} / 1	mc
us Authoriterations the second second second	enne minut na set at ene tatte pe		un printing, ester d'esta d'ini est interfério				
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	1/2
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	17.3	4.17		72.99	9.0		3.01
2	13.5	:	3.68	64.58	7.1		2.67
3	10.8		3.29	57.85	5.8		2.41
4	6.7	2	2.59	45.74	3.4		1.85
5	4.5		2.13	37.64	2.6		1.62
	ession of Y on X			.	0.040		
Slope, mw =				Intercept, bw :	0.060	1	
Correlation co			981	-			
*II Correlation C	Coefficient < 0.99	0, check and rec	allorate.				
			Set Point C	alculation			
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
			$std + bw = [\Delta W]$. (D) (B) (D)	NO/77 >11/2		
		mw x Q	$std + dw = \Delta w $	(Pa/700) X (25	/8/1a)j		
Therefore, Se	et Point; W = (my	w x Qstd + bw)	² x (760 / Pa) x (Ta / 298) =	3.21		
Remarks:							
			,				
Conducted by: 1/	<u>EE MAN UE</u> I	Signature:	he	1		Date:	3-11-2017
Checked by:	W.W. Tany	Signature:	Kwai			Date: -	3-11-2017

CINOTECH

••

						File No.	MA16034/07/0008		
Station	AM6 - Park Ce	entral		Operator:	WK				
Date:	29-Nov-17		Next Due Date:		28-Jan	-18			
Equipment No.:	A-01-07			Serial No.	10592				
	T. (III)		Ambient						
Temperatu	Ire, 1a (K)	298.8	Pressure, Pa	(mmHg)		766.4			
		Or	ifice Transfer Sta	undard Inform	ation				
Serial No. 0993			Slope, mc	0.0578	Intercep	-0.04890			
Last Calibra		28-Feb-17			$= [\Delta H \times (Pa/760)]$				
Next Calibr		27-Feb-18			(Pa/760) x (298/I				
				<u> </u>		<u> </u>			
			Calibration of	TSP Sampler					
Calibration		0	rfice			HVS			
Point	ΔH (orifice), in. of water	1		Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} X-axis		
1	11.4		3.39		7.2		2.69		
2	9.8		3.14	55.19	6.4		2.54		
3	7.5		2.75		4.9		2.22		
4	5,3		2.31		3.4		1.85		
5	3.7		1.93	34.24	2.5		1.59		
By Linear Regr Slope , mw = Correlation c									
*If Correlation C	-		.9992 racelibrata						
-11 Correlation C		90, check and	recambrate.						
			Set Point C	alculation					
From the TSP Fi	eld Calibration (Curve, take Qs	td = 43 CFM		· · · · · · · · · · · · · · · · · · ·				
From the Regres	sion Equation, th	ne "Y" value a	ccording to						
	_		_						
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (2	98/Ta)] ^{1/2}				
Therefore, Set	Point; W = (mv	v x Qstd + bw) ² x (760 / Pa) x ((Ta / 298) =	3.86				
<u> </u>									
Remarks:									
			1						
Conducted by:	LEE MAN ME	L Signature:	her	<u> </u>		Date: 2	9-11-2017		
Checked by:	will i Tary	Signature:	her Kr	222		Date:	29-11-2017 29-11-2017		

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 Fax

	ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A							
Date - Fo Operator	Tisch	7 Rootsmeter Orifice I.I		438320 0993	Ta (K) - Pa (mm) -	294 - 750.57		
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)		
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00 1.00	1.3860 0.9910 0.8840 0.8430 0.6970	3.2 6.4 7.9 8.7 12.6	2.00 4.00 5.00 5.50 8.00		
		D <i>i</i>	ATA TABULA'	rion				
Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)		
0.9967 0.9925 0.9904 0.9894 0.9842	0.7191 1.0015 1.1204 1.1737 1.4120	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9894 0.9884 0.9832	0.7184 1.0005 1.1192 1.1725 1.4106	0.8851 1.2517 1.3995 1.4678 1.7702		
intercep	Qstd slope (m) =2.04055Qa slope (m) =1.27776intercept (b) =-0.04890intercept (b) =-0.03059coefficient (r) =0.99995coefficient (r) =0.99995							
y axis =	- SQRT [H2O (I	Pa/760)(298/1	[[a)]	y axis =	SQRT [H20 (*	[a/Pa)]		

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time
Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

WELLAB LIMITED Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT							
APPLICANT:	Cinotech Consulta	ints Limited	Test Report No.:	C/170818			
	Room 1710, Technology Park,		Date of Issue:	2017-08-21			
	18 On Lai Street,		Date Received:	2017-08-18			
	Shatin, NT, Hong	Kong	Date Tested:	2017-08-18			
			Date Completed:	2017-08-21			
			Next Due Date:	2018-02-20			
ATTN:	Miss Mei Ling Tai	ng	Page:	1 of 2			
	Certi	ficate of Calibr	ration				
Item for calibra	ation:						
Description		: Weather Monitor II					
М	lanufacturer	: Davis Instrume	ents				
Μ	lodel No.	: 7440					

Test conditions:

Room Temperature Relative Humidity

Serial No.

: 22 degree Celsius : 64 %

: MC01010A44

Test Specifications:

1. Performance check of anemometer

2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/170818
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2018-02-20
Page:	2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1)	Reference Value (V1)	$\mathbf{D} = \mathbf{V}1 - \mathbf{V}2$
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dir	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45	45	0
90.2	90	0.2
135	135	0
180.1	180	0.1
224.9	225	-0.1
270	270	0
315.1	315	0.1
360	360	0

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/171027
Date of Issue:	2017-10-30
Date Received:	2017-10-27
Date Tested:	2017-10-27
Date Completed:	2017-10-30
Next Due Date:	2017-12-29
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:	
Description	: Laser Dust Monitor
Manufacturer	: Sibta
Model No.	: LD-3B
Serial No.	: 095029
Sensitivity (K) 1 CPM	: 0.001 mg/m ³
Sen. Adjustment Scale Setting	: 551 CPM
Equipment No.	: A-02-10
Test Conditions:	
Room Temperature	: 22 degree Celsius
Relative Humidity	: 67 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0027
Conclation racior (Cr)	0.0037

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

Certificate of Calibration

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/171020
Date of Issue:	2017-10-23
Date Received:	2017-10-20
Date Tested:	2017-10-20
Date Completed:	2017-10-23
Next Due Date:	2017-12-22
Page:	1 of 1

ATTN: Mr. W. K. Tang

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC300
Serial No.	: 3020408
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-26-01
Test Conditions:	
Room Temperature	: 20 degree Celsius
Relative Humidity	: 65 %

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.117
*****	*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT:Cinotech Consultants Limited
Room 1710, Technology Park,
18 On Lai Street,
Shatin, NT, Hong KongTest Report
Date of Issue
Date Receive
Date Tested:

Test Report No.:	C/171020A
Date of Issue:	2017-10-23
Date Received:	2017-10-20
Date Tested:	2017-10-20
Date Completed:	2017-10-23
Next Due Date:	2017-12-22
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration Item for Calibration: Description : Handheld Particle Counter : Hal Technology Manufacturer Model No. : Hal-HPC300 Serial No. : 3020409 Flow rate : 0.1 cfm Zero Count Test : 0 count per 5 minutes Equipment No. : A-26-02 **Test Conditions:** : 20 degree Celsius Room Temperature **Relative Humidity** :65%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.076

PATRICK TSE Laboratory Manager

TEST REPORT **Cinotech Consultants Limited** Test Report No .: C/171020B **APPLICANT:** Date of Issue: 2017-10-23 Room 1710, Technology Park, Date Received: 2017-10-20 18 On Lai Street, Date Tested: Shatin, NT, Hong Kong 2017-10-20 Date Completed: 2017-10-23 Next Due Date: 2017-12-22 ATTN: Mr. W. K. Tang Page: 1 of 1 **Certificate of Calibration** Item for Calibration: : Handheld Particle Counter Description Manufacturer : Hal Technology Model No. : Hal-HPC300 Serial No. : 3020410 Flow rate : 0.1 cfm : 0 count per 5 minutes Zero Count Test Equipment No. : A-26-03 **Test Conditions:** : 20 degree Celsius Room Temperature :65% **Relative Humidity Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc. 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Correlation Factor (CF)	1.125
*****	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

P^IATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/171222B	
Date of Issue:	2017-12-27	
Date Received:	2017-12-22	
Date Tested:	2017-12-22	
Date Completed:	2017-12-27	
Next Due Date:	2018-02-26	
Page:	1 of 1	

ATTN:

Mr. W. K. Tang

Certificate of Calibration Item for Calibration: Description : Handheld Particle Counter Manufacturer : Hal Technology Model No. : Hal-HPC300 Serial No. :3020410Flow rate : 0.1 cfm Zero Count Test : 0 count per 5 minutes Equipment No. : A-26-03 **Test Conditions:** Room Temperatre : 17-22 degree Celsius **Relative Humidity** :40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT C/171013C Test Report No.: APPLICANT: **Cinotech Consultants Limited** Date of Issue: 2017-10-16 Room 1710, Technology Park, Date Received: 2017-10-13 18 On Lai Street, Date Tested: 2017-10-13 Shatin, NT, Hong Kong Date Completed: 2017-10-16 Next Due Date: 2017-12-15 1 of 1 Page: ATTN: Mr. W. K. Tang **Certificate of Calibration** Item for Calibration: Description : Handheld Particle Counter : Hal Technology Manufacturer : Hal-HPC301 Model No. Serial No. : 3011701017 : 0.1 cfm Flow rate : 0 count per 5 minutes Zero Count Test : A-27-04 Equipment No. **Test Conditions:** : 21 degree Celsius Room Temperature **Relative Humidity** :60 % **Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc. 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Resu	Its:

Correlation Factor (CF)	1.155
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



******

## TEST REPORT

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/171215
Date of Issue:	2017-12-18
Date Received:	2017-12-15
Date Tested:	2017-12-15
Date Completed:	2017-12-18
Next Due Date:	2018-02-17
Page:	1 of 1

#### ATTN:

Mr. W. K. Tang

#### **Certificate of Calibration**

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC301
Serial No.	: 3011701017
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-27-04
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

#### . Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### **Results:**

Correlation Factor (CF)		
LOTTELATION PACTOR (L'E)	1 101	
	1 1 1 1 1	
	1.101	

**************************************

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.



## TEST REPORT

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/171013F
Date of Issue:	2017-10-16
Date Received:	2017-10-13
Date Tested:	2017-10-13
Date Completed:	2017-10-16
Next Due Date:	2017-12-15
Page:	1 of 1

#### ATTN:

#### Mr. W. K. Tang

## **Certificate of Calibration**

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC301
Serial No.	: 3011701012
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-27-07
Test Conditions:	
Room Temperature	: 21 degree Celsius
Relative Humidity	: 60 %

#### Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### **Results:**

Correlation Factor (CF)	1.152
****	

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



## **TEST REPORT**

APPLICANT:	<b>Cinotech Consultants Limited</b>
	Room 1710, Technology Park,
	18 On Lai Street,
	Shatin, NT, Hong Kong

Test Report No.:	C/171215B
Date of Issue:	2017-12-18
Date Received:	2017-12-15
Date Tested:	2017-12-15
Date Completed:	2017-12-18
Next Due Date:	2018-02-17
Page:	1 of 1

#### ATTN:

Mr. W. K. Tang

## **Certificate of Calibration**

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC301
Serial No.	: 3011701012
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-27-07
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

#### **Test Specifications & Methodology:**

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### **Results:**

Correlation Factor (CF)	1.120
******	******

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



## TEST REPORT

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/N/170915
Date of Issue:	2017-09-18
Date Received:	2017-09-15
Date Tested:	2017-09-15
Date Completed:	2017-09-18
Next Due Date:	2018-09-17
Page:	1 of 1

#### ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 955
Serial No.	: 12553
Microphone No.	: 35222
Equipment No.	: N-08-02

#### **Test conditions:**

Room Temperatre Relative Humidity : 22 degree Celsius : 60%

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager



2018-08-27

1 of 1

## **TEST REPORT**

# APPLICANT:Cinotech Consultants Limited<br/>Room 1710, Technology Park,<br/>18 On Lai Street,<br/>Shatin, NT, Hong KongTest Report No.:C/N/170825<br/>Date of Issue:<br/>2017-08-28Date Received:2017-08-25<br/>Date Tested:2017-08-25<br/>Date Completed:2017-08-25<br/>2017-08-28

ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21455
Microphone No.	: 43730
Equipment No.	: N-08-07
Test conditions:	
Room Temperatre	: 23 degree Celsius
Relative Humidity	: 60 %

Next Due Date:

Page:

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager



## TEST REPORT

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	C/N/170818
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2018-08-20
Page:	1 of 1

#### ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description: 'SVANTEK' Integrating Sound Level MeterManufacturer: SVANTEKModel No.: SVAN 957Serial No.: 21459Microphone No.: 43676Equipment No.: N-08-08

#### **Test conditions:**

Room Temperatre Relative Humidity : 22 degree Celsius

## Test Specifications:

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

:61%

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager



## TEST REPORT

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/170818A
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2018-08-20
Page:	1 of 1

ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21460
Microphone No.	: 43679
Equipment No.	: N-08-09
18:	

#### **Test conditions:**

Room Temperatre Relative Humidity : 22 degree Celsius : 61 %

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/170915C
Date of Issue:	2017-09-18
Date Received:	2017-09-15
Date Tested:	2017-09-15
Date Completed:	2017-09-18
Next Due Date:	2018-09-17
Page:	1 of 1

ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 977
Serial No.	: 45482
Microphone No.	: 63626
Equipment No.	: N-08-14
15:	

#### Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 60%

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager



	TEST	REPOR	Т	
APPLICANT:	Cinotech Consultants L	imited	Test Report No.:	C/N/170929
	Room 1710, Technology	y Park,	Date of Issue:	2017-09-30
	18 On Lai Street,		Date Received:	2017-09-29
	Shatin, NT, Hong Kong	5	Date Tested:	2017-09-29
			Date Completed:	2017-09-30
			Next Due Date:	2018-09-29
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibra	ation:			
]	Description	: Acoustic	al Calibrator	
I	Manufacturer	: SVANTI	EK	
1	Model No.	: SV30A		
5	Serial No.	: 24803		
J	Equipment No.	: N-09-03		
Test conditions	:			
]	Room Temperatre	: 21 degree	e Celsius	
	Relative Humidity	: 60 %		

#### Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

alizhe,



APPLICANT:	Cinotech Consultants L	imited	Test Report No.:	C/N/170929A
	Room 1710, Technology	' Park,	Date of Issue:	2017-09-30
	18 On Lai Street,		Date Received:	2017-09-29
	Shatin, NT, Hong Kong		Date Tested:	2017-09-29
			Date Completed:	2017-09-30
			Next Due Date:	2018-09-29
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibra	tion:			
Ι	Description	: Acoustica	al Calibrator	
Ν	Aanufacturer	: SVANTE	EK	
N	6. J.I.N.	. 01720 4		
I.	Aodel No.	: SV30A		
	lerial No.	: 3V30A : 24791		
S				
S	erial No. Equipment No.	: 24791		

#### **Methodology:**

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

: 60 %

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

**Relative Humidity** 

**PATRICK TSE** Laboratory Manager



TEST REPORT				
APPLICANT:	Cinotech Consultants L	imited	Test Report No.:	C/N/170929B
	Room 1710, Technology	Park,	Date of Issue:	2017-09-30
	18 On Lai Street,		Date Received:	2017-09-29
	Shatin, NT, Hong Kong		Date Tested:	2017-09-29
			Date Completed:	2017-09-30
			Next Due Date:	2018-09-29
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibra	tion:			
]	Description	: Acoustic	al Calibrator	
	Description Manufacturer	: Acoustic : SVANTE		
1	*			
ם ת	Manufacturer	: SVANTE		

#### **Test conditions:**

Room Temperatre Relative Humidity : 21 degree Celsius : 60 %

#### Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

**PATRICK TSE** 

Laboratory Manager



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/170818C
Date of Issue:	2017-08-21
Date Received:	2017-08-18
Date Tested:	2017-08-18
Date Completed:	2017-08-21
Next Due Date:	2018-08-20
Page:	1 of 1

#### ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Acoustical Calibrator : Brüel & Kjær : 4231 : 2412367 : N-02-03

#### **Test conditions:**

Room Temperatre Relative Humidity : 22 degree Celsius : 61 %

#### Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



2018-02-24

1 of 2

## **TEST REPORT**

APPLICANT:	<b>Cinotech Consultants Limited</b>	Test Report No.:	C/W/171124
	RM 1710, Technology Park,	Date of Issue:	2017-11-25
	18 On Lai Street,	Date Received:	2017-11-24
	Shatin, N.T., Hong Kong	Date Tested:	2017-11-24 to
			2017-11-25
		Date Completed:	2017-11-25

ATTN:

Miss Mei Ling Tang

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-03
Manufacturer:	YSI Incorporated	, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102982
- EXO conductivity/Temperature Sensor, Ti	599870	16G102304
- EXO Turbuduty Sensor, Ti	599101-01	16H102460
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100413

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Next Due Date:

Page:

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY: . For and On Behalf of WELLAB Ltd.

Thu



## **TEST REPORT**

C/W/171124
2017-11-25
2017-11-24
2017-11-24 to
2017-11-25
2017-11-25
2018-02-24
2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### **Temperature performance checking**

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.705	-0.005	N/A

#### pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.00	4.00 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.87	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.20	$9.18 \pm 0.10$	Pass

#### **D.O.** performance checking

		Instrument Readings (mg/L)	Accetance Criteria	Comment
Ze	ro DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.06	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### **Turbidity performance checking**

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.09	9.0-11.0	Pass
50 NTU	50.03	45.0-55.0	Pass
100 NTU	100.4	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment	
0.5 meter	0.50	0.45-0.55	Pass	
**************************************				



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

Test Report No.:	C/W/171124A
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	1 of 2

ATTN:

**Miss Mei Ling Tang** 

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-06	
Manufacturer:	YSI Incorporated,	YSI Incorporated, a Xylem brand	
Description:	Model No.	Serial No.	
- EXO Optical DO Sensor, Ti	599100-01	16H102985	
- EXO conductivity/Temperature Sensor, Ti	599870	16G102307	
- EXO Turbuduty Sensor, Ti	599101-01	16H102463	
- EXO pH Sensor Assembly, Guarded, Ti	599701	16H102985	

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



## **TEST REPORT**

Test Report No.:	C/W/171124A
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### **Conductivity performance checking**

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### **Temperature performance checking**

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.706	-0.006	N/A

#### pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.01	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.86	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.19	9.18 <u>+</u> 0.10	Pass

#### **D.O.** performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.07	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### **Turbidity performance checking**

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.02	9.0-11.0	Pass
50 NTU	50.06	45.0-55.0	Pass
100 NTU	100.3	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass
**************************************			



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

Test Report No.:	C/W/171124B
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	1 of 2

ATTN:

Miss Mei Ling Tang

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-13
Manufacturer:	YSI Incorporated, a Xylem brand	
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16J100937
- EXO conductivity/Temperature Sensor, Ti	599870	16H100171
- EXO Turbuduty Sensor, Ti	599101-01	16J101090
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100568

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PATRICK TSE Laboratory Manager



## **TEST REPORT**

Test Report No.:	C/W/171124B
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### **Temperature performance checking**

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.704	-0.004	N/A

#### pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.00	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.87	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.20	9.18 ± 0.10	Pass

#### **D.O.** performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.04	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.06	9.0-11.0	Pass
50 NTU	50.12	45.0-55.0	Pass
100 NTU	99.8	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass
*****	**************************************	T*************************************	****

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.



# TEST REPORT APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Test Report No.: C/ Date Received: 20 20 20 Date Completed: 20

 Test Report No.:
 C/W/171124C

 Date of Issue:
 2017-11-25

 Date Received:
 2017-11-24

 Date Tested:
 2017-11-24 to

 2017-11-25
 2017-11-25

 Date Completed:
 2017-11-25

 Next Due Date:
 2018-02-24

 Page:
 1 of 2

ATTN:

Miss Mei Ling Tang

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-20
Manufacturer:	YSI Incorporated	l, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16J100944
- EXO conductivity/Temperature Sensor, Ti	599870	16H100178
- EXO Turbuduty Sensor, Ti	599101-01	16J101097
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100706

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PÅTRICK TSE Laboratory Manager



WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

## **TEST REPORT**

Test Report No.:	C/W/171124C
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### **Conductivity performance checking**

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### **Temperature performance checking**

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.702	-0.002	N/A

#### pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.03	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.88	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.23	$9.18 \pm 0.10$	Pass

#### **D.O.** performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.09	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.07	9.0-11.0	Pass
50 NTU	50.27	45.0-55.0	Pass
100 NTU	100.6	90.0-110.0	Pass

#### Depth performance checking

Comment	Accetance Criteria	Instrument Readings (NTU)	Water Depth
Pass	0.45-0.55	0.50	0.5 meter
**	0.10 0100	0.50 0.50	



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

C/W/171124D
2017-11-25
2017-11-24
2017-11-24 to
2017-11-25
2017-11-25
2018-02-24
1 of 2

ATTN:

Miss Mei Ling Tang

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-61
Manufacturer:	YSI Incorporate	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16J100986
- EXO conductivity/Temperature Sensor, Ti	599870	16H100170
- EXO Turbuduty Sensor, Ti	599101-01	16J101140
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J101307

**Test conditions:** 

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.** 

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.



## TEST REPORT

Test Report No.:	C/W/171124D
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	2 of 2

## Certificate of Calibration

#### **Results:**

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### Temperature performance checking

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
20.7	20.704	-0.004	N/A

#### pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.05	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.87	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.20	9.18 <u>+</u> 0.10	Pass

#### **D.O.** performance checking

· · ·	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.04	Difference between Titration value and instrument reading	Pass
		<0.2mg/L	

#### **Turbidity performance checking**

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.03	9.0-11.0	Pass
50 NTU	50.08	45.0-55.0	Pass
100 NTU	100.2	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment	
0.5 meter	0.50	0.45-0.55	Pass	
**************************************				



## **TEST REPORT**

## APPLICANT: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

C/W/171124E
2017-11-25
2017-11-24
2017-11-24 to
2017-11-25
2017-11-25
2018-02-24
1 of 2

ATTN:

Miss Mei Ling Tang

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-85
Manufacturer:	YSI Incorporated	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	17A105009
- EXO conductivity/Temperature Sensor, Ti	599870	17A105103
- EXO Turbuduty Sensor, Ti	599101-01	17A104092
- EXO pH Sensor Assembly, Guarded, Ti	599701	17A105263

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.



## TEST REPORT

Test Report No.:	C/W/171124E
Date of Issue:	2017-11-25
Date Received:	2017-11-24
Date Tested:	2017-11-24 to
	2017-11-25
Date Completed:	2017-11-25
Next Due Date:	2018-02-24
Page:	2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### **Conductivity performance checking**

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 µS/cm)			

#### **Temperature performance checking**

Reference thermometer- E431 Readings (°C)	Instrument Readings (°C)	Correction (°C)	Comment
20.7	20.703	-0.003	N/A

#### pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.07	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.87	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.22	$9.18 \pm 0.10$	Pass

#### **D.O.** performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.01	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### **Turbidity performance checking**

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.09	9.0-11.0	Pass
50 NTU	50.13	45.0-55.0	Pass
100 NTU	100.3	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass
	**************************************	<b>*******</b>	****

## **CALIBRATION CERTIFICATE**

Calibration Item:

Calibration Date:

Method Used:

Next Calibration Date:

Model No .:

Serial No .:

Minimate Plus Unit (Calibration with Geophone BG16959) 716A0403 BE17506 11 April 2017 11 April 2018 In-house Method B3-001 In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

*References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

( Au Yeung Hang Chuen, Isaac ) 11 April 2017 Date:

R:\Service Dept\Calibration\Instantel\BE17506 (11-04-17)

## **CALIBRATION CERTIFICATE**

Calibration Item:TRIAXIAL GEOPHONE (Calibration with main<br/>unit BE17506)Part Number:714A9701Serial No.:BG16959Calibration Date:11 April 2017Next Calibration Date:11 April 2018Method Used:In-house Method B3-001In-house Testing Procedure No.:B3-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY470111	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
LDS Air Cooled Vibrator	V556	92794/1	
LDS Field Power Supply	FPS10L	ARA 04/05	
LDS Power Amplifier	PA1000L	ARA 07/06	

*References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

( Au Yeung Hang Chuen, Isaac ) Date: 11 April 2017



## Leica Geosystems Calibration Certificate Blue

Calibration Certificate Blue without measurement values issued by Authorised Service Centre

Product	DNA03 digital level	Certificate No.	347062-18012017
Article No.	723289	Inspection Date	18.01.2017
Serial No.	347062	Order No.	501047397
Equipment No.	5937807	PO No.	PO
Issued by	Authorised Service Centre Leica Geosystems Ltd. Kowloon, Hong Kong Hongkong	Ordered by	LEIGHTON - CHINA STATE J.V. HONG KONG Hongkong
		Customer	LEIGHTON - CHINA STATE J.V. HONG KONG Hongkong

#### Compliance

The Calibration Certificate Blue without measurement values issued by Authorised Service Centre corresponds to the Producer Inspection Certificate O in accordance with DIN 55 350 Part 18-4.2.1.

#### Certificate

We hereby certify that the product described has been tested and complies with the specifications of the product. The test equipment used is traceable to national standards or to recognized procedures. This is established by our Quality Management System, audited and certified to ISO 9001 by an independent national accredited certification body.





V Stella Kam Operations Manager

Leica Geosystems Ltd.

18.01.2017

Jacky Ng Service Manager

Certificate No. 347062-18012017 Article No. 5003367 This Certificate may not be reproduced other than in full except with prior written approval of the issuing authority. Leica Geosystems AG Heinrich-Wild-Strasse 9435 Heerbrugg Switzerland Telephone +41 71 / 727 31 31 www.leica-geosystems.com



## **Calibration Certificate**

Number: CCP/66453

Customer Name: Contact Person: Detector Model: Serial Number:

Far East Metal & Hardware Company Ms. Cherry Yiu Crowcon Tetra Portable Gas Detector 100486262/01-020

Sensor	Measuring	Alarm Level Settings					
Туре	Range	Alarm 1	Alarm 2	STEL	LTEL	Test Gas	Result
CH4	0 to 100%LEL	20	40	NA	NA	50%LEL	Passed
H2S	0 to 100ppm	5	10	10	5	25ppm	Passed
02	0 to 25%v/v	19.0	23.5	NA	NA	18.0%v/v	Passed
CO	0 to 500ppm	30	100	200	30	100ppm	Passed

## Next Calibration Date: 5th January 2018

#### **Remarks**:

- "Passed" refers to the detector has been successfully calibrated to meet with manufacturer tolerance of the instrument & sensor specification and repeatability ±5% FSD.
- 2. The above equipment has been tested and calibrated in accordance with procedures referred to in Crowcon's BSI validated ISO9001 quality manual. Test equipment used has been factory calibrated and is traceable to national standards. Canned calibration gas has been prepared in accordance with BS4559 and original gas mixture has been prepared using NPL (UK) certified Gravimetric Standard. Gas generator has been tested to meet with: Mil Std 45662A / ANSI/NCSL Z540-1

Mark Chan Technical Service Manager 6th January 2017



FireMark Hong Kong Limited Flat A, 11/F., Hop Hing Industrial Building, 704 Castle Peak Road, Lai Chi Kok, Kowloon, Hong Kong. Tel : (852) 2751 8871 Fax : (852) 2751 880

APPENDIX C WEATHER INFORMATION

# I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 December 2017	19.7 - 23.2	73	Trace
2 December 2017	17.5 - 22.9	73	0
3 December 2017	18.9 - 22.9	76	0
4 December 2017	18 - 22.3	71	0
5 December 2017	17.7 - 20.4	71	0
6 December 2017	17.5 - 21.1	73	0
7 December 2017	17.8 - 21.8	69	0
8 December 2017	15.3 - 19.4	49	0
9 December 2017	13.3 - 18	56	0
10 December 2017	14.9 - 20.4	60	0
11 December 2017	17 - 21.1	58	0
12 December 2017	17.4 - 20.6	70	Trace
13 December 2017	17.9 - 19	79	Trace
14 December 2017	18 - 21.1	78	Trace
15 December 2017	18.5 - 21.3	81	0
16 December 2017	12.2 - 19.5	67	0
17 December 2017	10.8 - 14	64	0
18 December 2017	9.8 - 15.8	57	0
19 December 2017	10.7 - 16.5	46	0

# I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 December 2017	12.4 - 17.8	40	0
21 December 2017	12.4 - 17	53	0
22 December 2017	14.5 - 19.1	65	0
23 December 2017	17.1 - 21.1	73	0
24 December 2017	18.1 - 23.1	60	0
25 December 2017	16.3 - 19.7	53	0
26 December 2017	16.3 - 19.7	73	0
27 December 2017	16.2 - 19.4	75	0
28 December 2017	17.1 - 20.6	76	Trace
29 December 2017	17.7 - 21.5	77	0
30 December 2017	17.6 - 22.6	71	0
31 December 2017	15.9 - 21	65	Trace

* The above information was extracted from the daily weather summary by Hong Kong Observatory.

** Trace means rainfall less than 0.05 mm

II. Me	I. Mean Wind Speed and Wind Direction				
Da	ite	Time	Wind Speed m/s	Direction	
1-Dec	-2017	00:00	2.3	ENE	
1-Dec	-2017	01:00	2.3	ENE	
1-Dec	-2017	02:00	2.6	NE	
1-Dec	-2017	03:00	2.6	ESE	
1-Dec	-2017	04:00	2.5	ESE	
1-Dec	-2017	05:00	2.5	SE	
1-Dec	-2017	06:00	2.1	SE	
1-Dec	-2017	07:00	2.5	SE	
1-Dec	-2017	08:00	2.8	E	
1-Dec	-2017	09:00	3.1	SSE	
1-Dec	-2017	10:00	3.2	N	
1-Dec	-2017	11:00	3.6	NW	
1-Dec	-2017	12:00	3.8	W	
1-Dec	-2017	13:00	3.3	SSW	
1-Dec	-2017	14:00	3.2	SSW	
1-Dec	-2017	15:00	3.2	SE	
1-Dec	-2017	16:00	3.3	SE	
1-Dec	-2017	17:00	2.6	ESE	
1-Dec	-2017	18:00	2.3	ESE	
1-Dec	-2017	19:00	1.8	ESE	
1-Dec	-2017	20:00	1.7	ESE	
1-Dec	-2017	21:00	1.7	NE	
1-Dec	-2017	22:00	2.1	NE	
1-Dec	-2017	23:00	2.2	SE	
2-Dec	-2017	00:00	2	SE	
2-Dec	-2017	01:00	2.1	ESE	
2-Dec	-2017	02:00	2.5	SE	
2-Dec	-2017	03:00	1.9	SE	
2-Dec	-2017	04:00	2	S	
2-Dec	-2017	05:00	1.8	SSE	
2-Dec	-2017	06:00	1.8	SSE	
2-Dec	-2017	07:00	1.8	S	
2-Dec	-2017	08:00	1	W	
2-Dec	-2017	09:00	1	WSW	
2-Dec	-2017	10:00	1.6	WSW	
2-Dec	-2017	11:00	2.2	WSW	
2-Dec	-2017	12:00	2.6	SSW	

II. Mean Wind Speed and Wind Direction

II.	Mean Wind	Speed and Wind D	irection	
	2-Dec-2017	13:00	2.3	SW
	2-Dec-2017	14:00	2.3	SW
	2-Dec-2017	15:00	2.1	WSW
	2-Dec-2017	16:00	2.5	Ν
	2-Dec-2017	17:00	2.6	Ν
	2-Dec-2017	18:00	1.8	NE
	2-Dec-2017	19:00	1.4	NE
	2-Dec-2017	20:00	1	NE
	2-Dec-2017	21:00	1.7	E
	2-Dec-2017	22:00	2	S
	2-Dec-2017	23:00	1.7	SE
	3-Dec-2017	00:00	2	SE
	3-Dec-2017	01:00	2.2	SE
	3-Dec-2017	02:00	2.4	SE
	3-Dec-2017	03:00	2.6	SE
	3-Dec-2017	04:00	3	SE
	3-Dec-2017	05:00	2.4	SE
	3-Dec-2017	06:00	2.3	SE
	3-Dec-2017	07:00	1.9	SE
	3-Dec-2017	08:00	1.8	SE
	3-Dec-2017	09:00	1.4	SE
	3-Dec-2017	10:00	1.7	SE
	3-Dec-2017	11:00	2.7	SE
	3-Dec-2017	12:00	2.3	ESE
	3-Dec-2017	13:00	2.3	SE
	3-Dec-2017	14:00	2.9	NE
	3-Dec-2017	15:00	3	SE
	3-Dec-2017	16:00	2.6	S
	3-Dec-2017	17:00	1.7	SSW
	3-Dec-2017	18:00	1.9	S
	3-Dec-2017	19:00	2.2	SSW
	3-Dec-2017	20:00	1.8	SSW
	3-Dec-2017	21:00	1.5	S
	3-Dec-2017	22:00	1.8	SSE
	3-Dec-2017	23:00	1.4	S
	4-Dec-2017	00:00	1.8	S
	4-Dec-2017	01:00	2	S
	4-Dec-2017	02:00	2	S

II.	Mean Wind	Speed and Wind D	irection	
	4-Dec-2017	03:00	2	S
	4-Dec-2017	04:00	2	SE
	4-Dec-2017	05:00	2.8	SSE
	4-Dec-2017	06:00	2.6	SSE
	4-Dec-2017	07:00	2.6	SE
	4-Dec-2017	08:00	2.6	SE
	4-Dec-2017	09:00	2.9	NE
	4-Dec-2017	10:00	2.7	Ν
	4-Dec-2017	11:00	3.2	Ν
	4-Dec-2017	12:00	3.1	SE
	4-Dec-2017	13:00	3.4	S
	4-Dec-2017	14:00	3.5	SSW
	4-Dec-2017	15:00	3.4	SSE
	4-Dec-2017	16:00	3	SSW
	4-Dec-2017	17:00	2.7	SSW
	4-Dec-2017	18:00	2.3	SSE
	4-Dec-2017	19:00	2.4	SSE
	4-Dec-2017	20:00	2.3	SE
	4-Dec-2017	21:00	2.1	SE
	4-Dec-2017	22:00	2.6	SE
	4-Dec-2017	23:00	2.6	SSE
	5-Dec-2017	00:00	2.6	SE
	5-Dec-2017	01:00	2.5	SE
	5-Dec-2017	02:00	2.4	SE
	5-Dec-2017	03:00	3	SE
	5-Dec-2017	04:00	2.8	SE
	5-Dec-2017	05:00	2.6	SE
	5-Dec-2017	06:00	2.7	SE
	5-Dec-2017	07:00	1.7	SE
	5-Dec-2017	08:00	2.7	SE
	5-Dec-2017	09:00	3.6	SE
	5-Dec-2017	10:00	3.4	SE
	5-Dec-2017	11:00	2.6	SE
	5-Dec-2017	12:00	3.3	SE
	5-Dec-2017	13:00	3.6	SE
	5-Dec-2017	14:00	3.8	SE
	5-Dec-2017	15:00	3.9	SE
	5-Dec-2017	16:00	3.4	SE

II. Mean Wir	nd Speed and Wind D	irection	
5-Dec-2017	17:00	3.2	SSW
5-Dec-2017	18:00	3.3	SSW
5-Dec-2017	19:00	2.3	SSW
5-Dec-2017	20:00	2.4	SSW
5-Dec-2017	21:00	2	SSE
5-Dec-2017	22:00	2.4	SSE
5-Dec-2017	23:00	2	SE
6-Dec-2017	00:00	2.6	SE
6-Dec-2017	01:00	2.6	NE
6-Dec-2017	02:00	2	SSE
6-Dec-2017	03:00	2.2	SSE
6-Dec-2017	04:00	2	SE
6-Dec-2017	05:00	2	SSE
6-Dec-2017	06:00	1.7	SE
6-Dec-2017	07:00	1.3	SE
6-Dec-2017	08:00	1.5	ESE
6-Dec-2017	09:00	2.1	NNE
6-Dec-2017	10:00	2.3	NE
6-Dec-2017	11:00	2.8	ENE
6-Dec-2017	12:00	2.6	E
6-Dec-2017	13:00	2.8	W
6-Dec-2017	14:00	2.3	ESE
6-Dec-2017	15:00	2	W
6-Dec-2017	16:00	2.7	SE
6-Dec-2017	17:00	1.9	SE
6-Dec-2017	18:00	2.2	E
6-Dec-2017	19:00	1.7	E
6-Dec-2017	20:00	1.6	E
6-Dec-2017	21:00	1.4	SE
6-Dec-2017	22:00	1.3	E
6-Dec-2017	23:00	1.3	ESE
7-Dec-2017	00:00	1.7	N
7-Dec-2017	01:00	1.6	NNE
7-Dec-2017	02:00	1.5	ENE
7-Dec-2017	03:00	1.5	N
7-Dec-2017	04:00	1.4	NNE
7-Dec-2017	05:00	1.5	NE
7-Dec-2017	06:00	0.8	ESE

II. Mean Wind Speed and Wind Direction

II. Mean Wind	l Speed and Wind D	irection	
7-Dec-2017	07:00	1	ESE
7-Dec-2017	08:00	1.5	ESE
7-Dec-2017	09:00	2.3	Ν
7-Dec-2017	10:00	2.6	NE
7-Dec-2017	11:00	2.9	NE
7-Dec-2017	12:00	3	E
7-Dec-2017	13:00	2.6	E
7-Dec-2017	14:00	3	E
7-Dec-2017	15:00	3.4	ESE
7-Dec-2017	16:00	2.3	E
7-Dec-2017	17:00	2	NE
7-Dec-2017	18:00	1.5	NE
7-Dec-2017	19:00	1.8	NE
7-Dec-2017	20:00	1.7	NE
7-Dec-2017	21:00	1.9	E
7-Dec-2017	22:00	1.8	NE
7-Dec-2017	23:00	1.5	NE
8-Dec-2017	00:00	1.4	NE
8-Dec-2017	01:00	2	NE
8-Dec-2017	02:00	1.7	NE
8-Dec-2017	03:00	1.1	NE
8-Dec-2017	04:00	1.5	E
8-Dec-2017	05:00	2	E
8-Dec-2017	06:00	1.8	SE
8-Dec-2017	07:00	1.5	SE
8-Dec-2017	08:00	1.5	ESE
8-Dec-2017	09:00	1.8	E
8-Dec-2017	10:00	2.3	E
8-Dec-2017	11:00	2.9	ESE
8-Dec-2017	12:00	3	E
8-Dec-2017	13:00	2.4	E
8-Dec-2017	14:00	2.2	E
8-Dec-2017	15:00	2.7	ENE
8-Dec-2017	16:00	2	E
8-Dec-2017	17:00	1.8	E
8-Dec-2017	18:00	1.5	E
8-Dec-2017	19:00	1.5	SE
8-Dec-2017	20:00	1.2	SE

II. Mean Wind	<u>I Speed and Wind D</u>	irection	
8-Dec-2017	21:00	1.5	SE
8-Dec-2017	22:00	1.3	SE
8-Dec-2017	23:00	0.8	ESE
9-Dec-2017	00:00	1.4	ESE
9-Dec-2017	01:00	1.7	SE
9-Dec-2017	02:00	1.4	SE
9-Dec-2017	03:00	1.6	SE
9-Dec-2017	04:00	1.1	SE
9-Dec-2017	05:00	1.3	SE
9-Dec-2017	06:00	0.8	E
9-Dec-2017	07:00	1	Ν
9-Dec-2017	08:00	1.8	SSE
9-Dec-2017	09:00	2.8	SSE
9-Dec-2017	10:00	2.6	SE
9-Dec-2017	11:00	2.6	NNE
9-Dec-2017	12:00	3.1	E
9-Dec-2017	13:00	3	E
9-Dec-2017	14:00	1.9	ESE
9-Dec-2017	15:00	2.3	NE
9-Dec-2017	16:00	2.4	ESE
9-Dec-2017	17:00	2.5	ESE
9-Dec-2017	18:00	1.7	SE
9-Dec-2017	19:00	1.2	ESE
9-Dec-2017	20:00	0.9	E
9-Dec-2017	21:00	1.2	E
9-Dec-2017	22:00	1.1	ESE
9-Dec-2017	23:00	1.3	SE
10-Dec-2017	00:00	1.2	SSW
10-Dec-2017	01:00	0.7	SSW
10-Dec-2017	02:00	0.8	WNW
10-Dec-2017	03:00	0.8	W
10-Dec-2017	04:00	0.6	W
10-Dec-2017	05:00	0.6	NW
10-Dec-2017	06:00	0.6	ESE
10-Dec-2017	07:00	0.8	ESE
10-Dec-2017	08:00	0.8	ESE
10-Dec-2017	09:00	1	E
10-Dec-2017	10:00	1.9	NNE

II. Mean Wind Speed and Wind Direction

II. Mean Wi	nd Speed and Wind D	irection	
10-Dec-2017	11:00	2.4	NNE
10-Dec-2017	12:00	2.3	NE
10-Dec-2017	13:00	2.6	SE
10-Dec-2017	14:00	2.2	E
10-Dec-2017	15:00	1.8	E
10-Dec-2017	16:00	2.6	E
10-Dec-2017	17:00	2.4	E
10-Dec-2017	18:00	1.7	E
10-Dec-2017	19:00	1.3	E
10-Dec-2017	20:00	1.3	SE
10-Dec-2017	21:00	1.8	SE
10-Dec-2017	22:00	1.5	ESE
10-Dec-2017	23:00	1.7	SE
11-Dec-2017	00:00	2.2	SE
11-Dec-2017	01:00	2.3	E
11-Dec-2017	02:00	2.3	ENE
11-Dec-2017	03:00	1.7	ENE
11-Dec-2017	04:00	1.1	ENE
11-Dec-2017	05:00	1.5	E
11-Dec-2017	06:00	1.6	ESE
11-Dec-2017	07:00	1.5	E
11-Dec-2017	08:00	1.4	E
11-Dec-2017	09:00	1.3	Ν
11-Dec-2017	10:00	1.7	E
11-Dec-2017	11:00	2.5	NE
11-Dec-2017	12:00	2.3	NNE
11-Dec-2017	13:00	2.2	Ν
11-Dec-2017	14:00	2.2	SE
11-Dec-2017	15:00	2.1	SE
11-Dec-2017	16:00	2.2	SE
11-Dec-2017	17:00	1.4	SE
11-Dec-2017	18:00	1.1	SE
11-Dec-2017	19:00	1.1	SE
11-Dec-2017	20:00	1.3	SE
11-Dec-2017	21:00	1.1	ESE
11-Dec-2017	22:00	1.1	E
11-Dec-2017	23:00	1	E
12-Dec-2017	00:00	1.3	NE

II. Mea	n Wind	Speed and Wind D	irection	
12-Dec-	2017	01:00	1.1	NE
12-Dec-	2017	02:00	1.2	ESE
12-Dec-	2017	03:00	1.3	E
12-Dec-	2017	04:00	1.3	ESE
12-Dec-	2017	05:00	1	E
12-Dec-	2017	06:00	0.8	NE
12-Dec-	2017	07:00	1	SE
12-Dec-	2017	08:00	1.6	SE
12-Dec-	2017	09:00	2	SE
12-Dec-	2017	10:00	3	ESE
12-Dec-	2017	11:00	2.8	SE
12-Dec-	2017	12:00	3	Ν
12-Dec-	2017	13:00	3.1	W
12-Dec-	2017	14:00	2.7	SW
12-Dec-	2017	15:00	2.6	W
12-Dec-	2017	16:00	2.5	SSW
12-Dec-	2017	17:00	2	SW
12-Dec-	2017	18:00	1.8	SE
12-Dec-	2017	19:00	1.9	ESE
12-Dec-	2017	20:00	1.5	ESE
12-Dec-	2017	21:00	1.5	SE
12-Dec-	2017	22:00	1.6	NNE
12-Dec-	2017	23:00	2.4	NNE
13-Dec-	2017	00:00	1.4	E
13-Dec-	2017	01:00	1.6	NE
13-Dec-	2017	02:00	1.3	NE
13-Dec-	2017	03:00	1.3	NE
13-Dec-	2017	04:00	1.5	ESE
13-Dec-	2017	05:00	1.3	SE
13-Dec-	2017	06:00	1.5	E
13-Dec-	2017	07:00	1.6	SSW
13-Dec-	2017	08:00	1.3	SSW
13-Dec-	2017	09:00	1.8	SSW
13-Dec-	2017	10:00	1.8	S
13-Dec-	2017	11:00	2.3	SSW
13-Dec-	2017	12:00	2.8	S
13-Dec-	2017	13:00	3	SSE
13-Dec-	2017	14:00	3.6	SSE

II. Mean Wind	Speed and Wind D	irection	
13-Dec-2017	15:00	3	SE
13-Dec-2017	16:00	3	ENE
13-Dec-2017	17:00	2.6	ESE
13-Dec-2017	18:00	2.3	ESE
13-Dec-2017	19:00	2	ENE
13-Dec-2017	20:00	1.6	ESE
13-Dec-2017	21:00	1.8	ESE
13-Dec-2017	22:00	1.6	ESE
13-Dec-2017	23:00	1.8	SE
14-Dec-2017	00:00	1.8	ESE
14-Dec-2017	01:00	1.6	NE
14-Dec-2017	02:00	1.5	NE
14-Dec-2017	03:00	1.7	NE
14-Dec-2017	04:00	1	NE
14-Dec-2017	05:00	1.1	ESE
14-Dec-2017	06:00	1.3	S
14-Dec-2017	07:00	1.5	SE
14-Dec-2017	08:00	2	S
14-Dec-2017	09:00	2.1	SSW
14-Dec-2017	10:00	1.9	SSW
14-Dec-2017	11:00	2.8	SSW
14-Dec-2017	12:00	3.3	SSW
14-Dec-2017	13:00	3	S
14-Dec-2017	14:00	3.1	W
14-Dec-2017	15:00	2.4	W
14-Dec-2017	16:00	2.2	WNW
14-Dec-2017	17:00	2.4	W
14-Dec-2017	18:00	2.3	ENE
14-Dec-2017	19:00	2.2	ENE
14-Dec-2017	20:00	2	NE
14-Dec-2017	21:00	1.8	WSW
14-Dec-2017	22:00	2	WSW
14-Dec-2017	23:00	1.8	SW
15-Dec-2017	00:00	2	WSW
15-Dec-2017	01:00	1.2	W
15-Dec-2017	02:00	1.6	W
15-Dec-2017	03:00	1.8	SSE
15-Dec-2017	04:00	1.9	W

II. Mea	n Wind	Speed and Wind D	irection	
15-Dec-2	2017	05:00	2	WNW
15-Dec-2	2017	06:00	2.3	W
15-Dec-2	2017	07:00	2	WNW
15-Dec-2	2017	08:00	2	SSW
15-Dec-2	2017	09:00	2.4	W
15-Dec-2	2017	10:00	2.3	SSW
15-Dec-2	2017	11:00	2.6	SSW
15-Dec-2	2017	12:00	2.8	WSW
15-Dec-2	2017	13:00	2.9	SW
15-Dec-2	2017	14:00	3.2	W
15-Dec-2	2017	15:00	2.6	NW
15-Dec-2	2017	16:00	2.4	W
15-Dec-2	2017	17:00	2.2	W
15-Dec-2	2017	18:00	2	WNW
15-Dec-2	2017	19:00	1.3	Ν
15-Dec-2	2017	20:00	1.3	NNE
15-Dec-2	2017	21:00	1.5	NNE
15-Dec-2	2017	22:00	1.3	SSW
15-Dec-2	2017	23:00	1.8	SW
16-Dec-2	2017	00:00	1.6	ENE
16-Dec-2	2017	01:00	2.2	SSW
16-Dec-2	2017	02:00	1.6	NE
16-Dec-2	2017	03:00	1.5	SW
16-Dec-2	2017	04:00	1.5	S
16-Dec-2	2017	05:00	1.4	S
16-Dec-2	2017	06:00	1	S
16-Dec-2	2017	07:00	1.1	WSW
16-Dec-2	2017	08:00	1.2	SSW
16-Dec-2	2017	09:00	1.7	WSW
16-Dec-2	2017	10:00	2.1	W
16-Dec-2	2017	11:00	2	ESE
16-Dec-2	2017	12:00	2.6	ESE
16-Dec-2	2017	13:00	2.6	ESE
16-Dec-2	2017	14:00	2.1	SW
16-Dec-2	2017	15:00	1.9	W
16-Dec-2	2017	16:00	1.9	SSW
16-Dec-2	2017	17:00	2.2	SSW
16-Dec-2	2017	18:00	1.5	SSW

II.	Mean Wind	Speed and Wind D	irection	
	16-Dec-2017	19:00	1.5	SSW
	16-Dec-2017	20:00	0.9	W
	16-Dec-2017	21:00	1.3	WNW
	16-Dec-2017	22:00	1.1	W
	16-Dec-2017	23:00	1.6	W
	17-Dec-2017	00:00	1.8	W
	17-Dec-2017	01:00	2.1	W
	17-Dec-2017	02:00	2	W
	17-Dec-2017	03:00	2.4	S
	17-Dec-2017	04:00	1.8	WSW
	17-Dec-2017	05:00	2	SW
	17-Dec-2017	06:00	2.6	WNW
	17-Dec-2017	07:00	2.7	NE
	17-Dec-2017	08:00	2.7	ENE
	17-Dec-2017	09:00	2.5	NE
	17-Dec-2017	10:00	3	ENE
	17-Dec-2017	11:00	3.8	ENE
	17-Dec-2017	12:00	4.3	ENE
	17-Dec-2017	13:00	4	WNW
	17-Dec-2017	14:00	3.5	NNE
	17-Dec-2017	15:00	3.4	Ν
	17-Dec-2017	16:00	3.4	E
	17-Dec-2017	17:00	2.6	E
	17-Dec-2017	18:00	2.4	SW
	17-Dec-2017	19:00	2	N
	17-Dec-2017	20:00	1.9	WSW
	17-Dec-2017	21:00	1.8	WSW
	17-Dec-2017	22:00	1.9	WSW
	17-Dec-2017	23:00	1.9	W
	18-Dec-2017	00:00	2.1	W
	18-Dec-2017	01:00	2.3	W
	18-Dec-2017	02:00	2.1	WSW
	18-Dec-2017	03:00	1.8	ENE
	18-Dec-2017	04:00	1.9	ENE
	18-Dec-2017	05:00	2	N
	18-Dec-2017	06:00	1.8	Ν
	18-Dec-2017	07:00	1.5	SSW
	18-Dec-2017	08:00	2	S

II.	Mean Wind	Speed and Wind D	irection	
18-1	Dec-2017	09:00	2.5	SSW
18-1	Dec-2017	10:00	3.4	WSW
18-1	Dec-2017	11:00	3.5	WNW
18-1	Dec-2017	12:00	3.7	S
18-1	Dec-2017	13:00	3.4	W
18-1	Dec-2017	14:00	3.4	W
18-1	Dec-2017	15:00	3.7	Ν
18-1	Dec-2017	16:00	3.5	Ν
18-1	Dec-2017	17:00	3.2	NE
18-1	Dec-2017	18:00	2.8	NE
18-1	Dec-2017	19:00	2.5	NE
18-1	Dec-2017	20:00	2	Ν
18-l	Dec-2017	21:00	1.4	Ν
18-I	Dec-2017	22:00	1.4	NNE
18-l	Dec-2017	23:00	1.8	NNE
19-1	Dec-2017	00:00	2	NE
19-[	Dec-2017	01:00	2.3	Ν
19-1	Dec-2017	02:00	2.4	Ν
19-1	Dec-2017	03:00	2.3	NE
19-1	Dec-2017	04:00	2	NE
19-1	Dec-2017	05:00	2.1	NNE
19-1	Dec-2017	06:00	1.3	E
19-1	Dec-2017	07:00	1.4	E
19-1	Dec-2017	08:00	2.1	WNW
19-1	Dec-2017	09:00	1.7	E
19-[	Dec-2017	10:00	2	ENE
19-1	Dec-2017	11:00	3.1	NW
19-[	Dec-2017	12:00	3.8	WSW
19-[	Dec-2017	13:00	4.2	SW
19-1	Dec-2017	14:00	3.7	WSW
19-[	Dec-2017	15:00	3.6	SSW
19-1	Dec-2017	16:00	3.3	NE
19-[	Dec-2017	17:00	3.2	NE
19-[	Dec-2017	18:00	1.5	ENE
19-1	Dec-2017	19:00	1.2	ENE
19-[	Dec-2017	20:00	1.5	ENE
19-1	Dec-2017	21:00	1.3	Ν
19-[	Dec-2017	22:00	1.4	Ν

<u>II.</u>	viean wind	Speed and Wind D	irection	
19-0	Dec-2017	23:00	1	NNE
20-[	Dec-2017	00:00	1	NNE
20-[	Dec-2017	01:00	1.2	NNE
20-[	Dec-2017	02:00	1.6	NE
20-[	Dec-2017	03:00	1.2	ENE
20-[	Dec-2017	04:00	1.4	ENE
20-[	Dec-2017	05:00	1.4	ENE
20-[	Dec-2017	06:00	1.5	NE
20-[	Dec-2017	07:00	1.5	NE
20-[	Dec-2017	08:00	0.9	ENE
20-[	Dec-2017	09:00	1.5	NE
20-[	Dec-2017	10:00	1.8	NNE
20-0	Dec-2017	11:00	2.2	NE
20-0	Dec-2017	12:00	2	ENE
20-[	Dec-2017	13:00	2.2	E
20-0	Dec-2017	14:00	1.6	N
20-[	Dec-2017	15:00	1.8	NE
20-0	Dec-2017	16:00	2	NNE
20-0	Dec-2017	17:00	1.5	NNE
20-0	Dec-2017	18:00	1.2	W
20-0	Dec-2017	19:00	1.2	W
20-[	Dec-2017	20:00	1.1	W
20-0	Dec-2017	21:00	1.5	SW
20-0	Dec-2017	22:00	1	SW
20-[	Dec-2017	23:00	1.2	SW
21-[	Dec-2017	00:00	1.2	SW
21-[	Dec-2017	01:00	1	NNE
21-[	Dec-2017	02:00	1.4	ENE
21-[	Dec-2017	03:00	1.5	NNE
21-[	Dec-2017	04:00	1.2	WNW
21-[	Dec-2017	05:00	1	ESE
21-[	Dec-2017	06:00	1.1	Ν
21-[	Dec-2017	07:00	1.1	ENE
21-[	Dec-2017	08:00	1	E
21-[	Dec-2017	09:00	0.9	E
21-[	Dec-2017	10:00	1.5	E
21-[	Dec-2017	11:00	1.6	E
21-[	Dec-2017	12:00	2.1	ENE

II. Mean Wind	Speed and Wind D	irection	
21-Dec-2017	13:00	2	ENE
21-Dec-2017	14:00	1.8	NE
21-Dec-2017	15:00	1.4	ENE
21-Dec-2017	16:00	1.9	ENE
21-Dec-2017	17:00	2	SSW
21-Dec-2017	18:00	1.3	NNW
21-Dec-2017	19:00	1	W
21-Dec-2017	20:00	0.8	WNW
21-Dec-2017	21:00	1.2	NNE
21-Dec-2017	22:00	0.7	NW
21-Dec-2017	23:00	1	W
22-Dec-2017	00:00	1.4	WNW
22-Dec-2017	01:00	1	W
22-Dec-2017	02:00	1	SSW
22-Dec-2017	03:00	1.2	S
22-Dec-2017	04:00	1.1	W
22-Dec-2017	05:00	1	W
22-Dec-2017	06:00	1.3	W
22-Dec-2017	07:00	0.9	SSW
22-Dec-2017	08:00	1.5	W
22-Dec-2017	09:00	1.6	SSE
22-Dec-2017	10:00	1.4	WSW
22-Dec-2017	11:00	2	S
22-Dec-2017	12:00	2.1	NW
22-Dec-2017	13:00	1.6	SSW
22-Dec-2017	14:00	1.8	SSW
22-Dec-2017	15:00	2.8	W
22-Dec-2017	16:00	2.7	S
22-Dec-2017	17:00	2.2	SW
22-Dec-2017	18:00	2.1	S
22-Dec-2017	19:00	1.9	W
22-Dec-2017	20:00	1.8	WNW
22-Dec-2017	21:00	1.8	NNE
22-Dec-2017	22:00	1.3	N
22-Dec-2017	23:00	2.2	ESE
23-Dec-2017	00:00	1.9	SSW
23-Dec-2017	01:00	1.8	SE
23-Dec-2017	02:00	1.7	ESE

23-Dec-2017 03:00 1.8	SSE
23-Dec-2017 04:00 1.8	ESE
23-Dec-2017 05:00 2.2	SE
23-Dec-2017 06:00 1.9	ESE
23-Dec-2017 07:00 1.8	ENE
23-Dec-2017 08:00 1.9	ESE
23-Dec-2017 09:00 2.2	ESE
23-Dec-2017 10:00 2.2	SSE
23-Dec-2017 11:00 2.5	ESE
23-Dec-2017 12:00 2.5	SE
23-Dec-2017 13:00 2.9	ESE
23-Dec-2017 14:00 2.2	WNW
23-Dec-2017 15:00 2.9	E
23-Dec-2017 16:00 3.2	NNE
23-Dec-2017 17:00 3.2	SSE
23-Dec-2017 18:00 3.1	NE
23-Dec-2017 19:00 2.9	NW
23-Dec-2017 20:00 3	NW
23-Dec-2017 21:00 3.1	SW
23-Dec-2017 22:00 3.5	NE
23-Dec-2017 23:00 3.3	S
24-Dec-2017 00:00 3.4	WNW
24-Dec-2017 01:00 2.8	NE
24-Dec-2017 02:00 3.1	NE
24-Dec-2017 03:00 2.7	SE
24-Dec-2017 04:00 2.5	ESE
24-Dec-2017 05:00 2.5	ENE
24-Dec-2017 06:00 2	SW
24-Dec-2017 07:00 2	W
24-Dec-2017 08:00 2.2	NE
24-Dec-2017 09:00 2.5	NE
24-Dec-2017 10:00 3.2	ENE
24-Dec-2017 11:00 3.5	W
24-Dec-2017 12:00 2.4	SW
24-Dec-2017 13:00 2.6	SSW
24-Dec-2017 14:00 2.7	SE
24-Dec-2017 15:00 3.1	ESE
24-Dec-2017 16:00 2.8	ESE

II. Mean Wind	Speed and Wind D	irection	
24-Dec-2017	17:00	2.9	ESE
24-Dec-2017	18:00	3.6	SE
24-Dec-2017	19:00	3.7	SE
24-Dec-2017	20:00	3.7	SE
24-Dec-2017	21:00	4.1	SE
24-Dec-2017	22:00	3.9	ESE
24-Dec-2017	23:00	4.1	ESE
25-Dec-2017	00:00	4	ESE
25-Dec-2017	01:00	3.3	ESE
25-Dec-2017	02:00	3.6	SSE
25-Dec-2017	03:00	2.9	SSE
25-Dec-2017	04:00	3.3	WSW
25-Dec-2017	05:00	3.6	NE
25-Dec-2017	06:00	3.2	ENE
25-Dec-2017	07:00	3.1	SSE
25-Dec-2017	08:00	3	SE
25-Dec-2017	09:00	3.8	ESE
25-Dec-2017	10:00	3.8	ESE
25-Dec-2017	11:00	3.8	E
25-Dec-2017	12:00	3.2	ESE
25-Dec-2017	13:00	2.7	NNE
25-Dec-2017	14:00	3	NE
25-Dec-2017	15:00	2.5	ENE
25-Dec-2017	16:00	2.9	ENE
25-Dec-2017	17:00	2.3	ENE
25-Dec-2017	18:00	2.2	NE
25-Dec-2017	19:00	2	NNE
25-Dec-2017	20:00	2.3	ENE
25-Dec-2017	21:00	2	NE
25-Dec-2017	22:00	2	NE
25-Dec-2017	23:00	2.3	NNE
26-Dec-2017	00:00	2.8	NNE
26-Dec-2017	01:00	2.6	NNE
26-Dec-2017	02:00	2.6	ENE
26-Dec-2017	03:00	2.7	ESE
26-Dec-2017	04:00	1.8	NE
26-Dec-2017	05:00	1.7	NNE
26-Dec-2017	06:00	1.4	NNE

II. Mean Wind	Speed and Wind D	irection	
26-Dec-2017	07:00	1.8	SE
26-Dec-2017	08:00	1.8	NE
26-Dec-2017	09:00	1.9	SE
26-Dec-2017	10:00	1.7	SE
26-Dec-2017	11:00	2.4	ESE
26-Dec-2017	12:00	2.7	SE
26-Dec-2017	13:00	3.6	SSE
26-Dec-2017	14:00	2.4	WNW
26-Dec-2017	15:00	2.2	W
26-Dec-2017	16:00	2.6	WSW
26-Dec-2017	17:00	2.3	WSW
26-Dec-2017	18:00	1.8	WSW
26-Dec-2017	19:00	1.7	WNW
26-Dec-2017	20:00	1.4	ESE
26-Dec-2017	21:00	2	ENE
26-Dec-2017	22:00	1.7	E
26-Dec-2017	23:00	2.2	SSE
27-Dec-2017	00:00	2.3	NE
27-Dec-2017	01:00	1.9	NNE
27-Dec-2017	02:00	2	ENE
27-Dec-2017	03:00	2.2	SE
27-Dec-2017	04:00	1.8	W
27-Dec-2017	05:00	2	WSW
27-Dec-2017	06:00	1.5	WSW
27-Dec-2017	07:00	1.9	ESE
27-Dec-2017	08:00	2	NNE
27-Dec-2017	09:00	2.1	WNW
27-Dec-2017	10:00	2.3	WNW
27-Dec-2017	11:00	2.2	N
27-Dec-2017	12:00	2.7	N
27-Dec-2017	13:00	2.6	SW
27-Dec-2017	14:00	2.6	W
27-Dec-2017	15:00	2.5	SW
27-Dec-2017	16:00	2.2	WSW
27-Dec-2017	17:00	2.2	SW
27-Dec-2017	18:00	1.6	WNW
27-Dec-2017	19:00	1.4	NE
27-Dec-2017	20:00	1.2	NE

II. Mean Wi	ind Speed and Wind D	pirection	
27-Dec-2017	21:00	2.6	N
27-Dec-2017	22:00	1.3	N
27-Dec-2017	23:00	1.9	SSE
28-Dec-2017	00:00	1.8	W
28-Dec-2017	01:00	2.1	NNE
28-Dec-2017	02:00	2.4	WNW
28-Dec-2017	03:00	2.1	W
28-Dec-2017	04:00	2.3	SSE
28-Dec-2017	05:00	2	ENE
28-Dec-2017	06:00	2.2	NE
28-Dec-2017	07:00	2.3	WSW
28-Dec-2017	08:00	2.6	NE
28-Dec-2017	09:00	2.5	NE
28-Dec-2017	10:00	3.3	NE
28-Dec-2017	11:00	3	SE
28-Dec-2017	12:00	2.8	SE
28-Dec-2017	13:00	3.2	ENE
28-Dec-2017	14:00	2	ENE
28-Dec-2017	15:00	2.5	SSE
28-Dec-2017	16:00	2	ENE
28-Dec-2017	17:00	2.6	NNE
28-Dec-2017	18:00	1.9	ENE
28-Dec-2017	19:00	1.7	SW
28-Dec-2017	20:00	2.3	SE
28-Dec-2017	21:00	2.8	WSW
28-Dec-2017	22:00	2.6	ESE
28-Dec-2017	23:00	3	N
29-Dec-2017	00:00	2.8	NNE
29-Dec-2017	01:00	2.9	NNE
29-Dec-2017	02:00	2.8	NNE
29-Dec-2017	03:00	2.9	NE
29-Dec-2017	04:00	2.4	W
29-Dec-2017	05:00	3.1	WSW
29-Dec-2017	06:00	2.3	W
29-Dec-2017	07:00	2.3	W
29-Dec-2017	08:00	2.3	WSW
29-Dec-2017	09:00	2.3	WSW
29-Dec-2017	10:00	3.4	SSW

II. Mean Wind	<u>I Speed and Wind D</u>	irection	
29-Dec-2017	11:00	3.6	SSW
29-Dec-2017	12:00	3.3	W
29-Dec-2017	13:00	3.3	WNW
29-Dec-2017	14:00	3.1	N
29-Dec-2017	15:00	3.4	ENE
29-Dec-2017	16:00	4	NE
29-Dec-2017	17:00	4.1	SSW
29-Dec-2017	18:00	3.6	SSE
29-Dec-2017	19:00	3.1	SE
29-Dec-2017	20:00	3.1	SE
29-Dec-2017	21:00	1.7	E
29-Dec-2017	22:00	2.3	ENE
29-Dec-2017	23:00	3.4	ENE
30-Dec-2017	00:00	3.3	ESE
30-Dec-2017	01:00	3.4	ESE
30-Dec-2017	02:00	2.2	SSE
30-Dec-2017	03:00	3.3	ESE
30-Dec-2017	04:00	2.9	ESE
30-Dec-2017	05:00	3.7	S
30-Dec-2017	06:00	3.3	SSE
30-Dec-2017	07:00	3.3	SE
30-Dec-2017	08:00	2.1	SSE
30-Dec-2017	09:00	3	SE
30-Dec-2017	10:00	2.7	W
30-Dec-2017	11:00	1.5	NE
30-Dec-2017	12:00	1.1	ESE
30-Dec-2017	13:00	1.8	ESE
30-Dec-2017	14:00	0.9	W
30-Dec-2017	15:00	1.7	WSW
30-Dec-2017	16:00	1.5	WNW
30-Dec-2017	17:00	1.5	NW
30-Dec-2017	18:00	1.6	W
30-Dec-2017	19:00	1.8	SW
30-Dec-2017	20:00	1.8	W
30-Dec-2017	21:00	1.8	WNW
30-Dec-2017	22:00	1.8	NNE
30-Dec-2017	23:00	2.3	WSW
31-Dec-2017	00:00	2.1	ENE

II. Mean Wind	Mean Wind Speed and Wind Direction								
31-Dec-2017	01:00	2.3	NE						
31-Dec-2017	02:00	2	SE						
31-Dec-2017	03:00	2	SE						
31-Dec-2017	04:00	1.6	Ν						
31-Dec-2017	05:00	1.6	Ν						
31-Dec-2017	06:00	1.5	ENE						
31-Dec-2017	07:00	1.7	ENE						
31-Dec-2017	08:00	0.9	W						
31-Dec-2017	09:00	1.5	WSW						
31-Dec-2017	10:00	1.9	S						
31-Dec-2017	11:00	2	ENE						
31-Dec-2017	12:00	2.1	ESE						
31-Dec-2017	13:00	2.3	NE						
31-Dec-2017	14:00	2	NE						
31-Dec-2017	15:00	1.8	WSW						
31-Dec-2017	16:00	1.8	ENE						
31-Dec-2017	17:00	1.9	Ν						
31-Dec-2017	18:00	1.9	Ν						
31-Dec-2017	19:00	1.3	E						
31-Dec-2017	20:00	1.4	E						
31-Dec-2017	21:00	1.3	WNW						
31-Dec-2017	22:00	1.7	SSW						
31-Dec-2017	23:00	1.5	SSW						

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

#### Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (Decemeber 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	ž	ź			1-Dec	2-Dec
					1 hr TSP X3 [AM1, AM2, AM3, AM4]	
3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec
3-Dec	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	5-1760	0-Dec	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM3, CM5]	9-Dec
		24 hr TSP				
10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec
			1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM3, CM5]		
	24 hr TSP			[CM6(A), CM7(A), CM8(A)]	24 hr TSP	
17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec
		1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM3, CM5] [CM6(A), CM7(A), CM8(A)]	24 hr TSP		1 hr TSP X3 [AM1, AM2, AM3, AM4] [AM5(A), AM6(A)]
24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec
			24 hr TSP		1 hr TSP X3 [AM1, AM2, AM3, AM4] [AM5(A), AM6(A)] Noise [CM1, CM2, CM4] [CM3, CM5] [CM6(A), CM7(A), CM8(A)]	
31-Dec						

#### Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground AM3 - Yau Lai Estate Bik Lai House AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office AM5(A) - Tseung Kwan O DSD Desilting Compound AM6(A) - Park Central, L1/F Open Space Area

#### Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong
CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong
CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong
CM4 - Tin Hau Temple, Cha Kwo Ling
CM5 - CCC Kei Faat Primary School, Yau Tong
CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores
CM7(A) - Park Central, L1/F Open Space Area

#### Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (December 2017)

Sunday	Monday		Tuesday	Wednes	day	Thursday	Frida	ıy	Saturd	lay
			-					1-Dec		2-Dec
									Mid-Ebb Mid-Flood	11:02 16:57
3-Dec	4	-Dec	5-Dec		6-Dec	7-Dec		8-Dec		9-Dec
		2:37 8:15		Mid-Ebb Mid-Flood	14:18 19:41		Mid-Flood Mid-Ebb	10:45 16:05		
10-Dec	11	-Dec	12-Dec		13-Dec	14-Dec		15-Dec		16-Dec
	Mid-Ebb 1	3:45 9:54		Mid-Ebb Mid-Flood	08:52 15:15		Mid-Ebb Mid-Flood	10:36 16:22		
17-Dec	18	-Dec	19-Dec		20-Dec	21-Dec		22-Dec		23-Dec
		2:35 7:45		Mid-Ebb Mid-Flood	13:43 18:35		Mid-Flood Mid-Ebb	09:42 14:55		
24-Dec	25	-Dec	26-Dec		27-Dec	28-Dec		29-Dec		30-Dec
		1:59 7:40		Mid-Flood Mid-Ebb	13:31 20:03		Mid-Ebb Mid-Flood	08:37 14:56		
31-Dec										

## Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (December 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Dec	2-Dec
3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec
			Correction Orallity			
			Groundwater Quality Monitoring			
			Wontoring			
10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec
17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec
			Course lands a Orallita			
			Groundwater Quality Monitoring			
			Womoning			
24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec
31-Dec						

Monitoring Location: Stream 1, Stream 2, Stream 3

### Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule in Temporary Marine Embayment (December 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Dec	2-Dec
3-Dec	e 4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec
	Mid-Ebb 12:37 Mid-Flood 18:15					
10-Dec	: 11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec
			Mid-Ebb 08:52 Mid-Flood 15:15			
17-Dec	: 18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec
			Mid-Ebb 13:43 Mid-Flood 18:35			
24-Dec	: 25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec
					Mid-Ebb 08:37 Mid-Flood 14:56	

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction **Tentative Impact Air Quality and Noise Monitoring Schedule (January 2018)**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan
				1 hr TSP X3		
				[AM1, AM2, AM3, AM4]		
				[AM5(A), AM6(A)]		
		24 hr TSP			N7 1	
				Noise	Noise	
				[CM1, CM2, CM4]	[CM3, CM5]	
7 1	0 L	0.1	10 Jan	[CM6(A), CM7(A), CM8(A)]	10 Jan	12 L
7-Jan	8-Jan	9-Jan	10-Jan 1 hr TSP X3	11-Jan	12-Jan	13-Jan
			[AM1, AM2, AM3, AM4]			
			[AM1, AM2, AM3, AM4] [AM5(A), AM6(A)]			
	24 hr TSP				24 hr TSP	
	21111101		Noise	Noise	21111151	
			[CM1, CM2, CM4]	[CM1, CM2, CM3, CM5]		
			[CM6(A), CM7(A), CM8(A)]			
14-Jan	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan
		1 hr TSP X3				
		[AM1, AM2, AM3, AM4]				
		[AM5(A), AM6(A)]				
				24 hr TSP		
		Noise		Noise		
		[CM1, CM2, CM4]		[CM1, CM2, CM3, CM5]		
		[CM6(A), CM7(A), CM8(A)]				
21-Jan	22-Jan	23-Jan	24-Jan	25-Jan		27-Jan
	1 hr TSP X3				1 hr TSP X3	
	[AM1, AM2, AM3, AM4]				[AM1, AM2, AM3, AM4]	
	[AM5(A), AM6(A)]				[AM5(A), AM6(A)]	
	Noise	Noise	24 hr TSP		Noise	
	[CM1, CM2, CM4]	[CM3, CM5]			[CM6(A), CM7(A), CM8(A)]	
					$[\operatorname{CWO}(A), \operatorname{CWI}(A), \operatorname{CWO}(A)]$	
28-Jan	29-Jan	30-Jan	31-Jan			
20 gun	27 0 art					
		24 hr TSP				
	Noise					
	[CM3, CM5]					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

# Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground AM3 - Yau Lai Estate Bik Lai House AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office AM5(A) - Tseung Kwan O DSD Desilting Compound AM6(A) - Park Central, L1/F Open Space Area

# **Noise Monitoring Station**

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong CM4 - Tin Hau Temple, Cha Kwo Ling CM5 - CCC Kei Faat Primary School, Yau Tong CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores CM8(A) - Park Central, L1/F Open Space Area

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (January 2018)

Sunday	Monda	у	Tuesd	ay	Wednese		Thursd		Frida		Saturd	
		1-Jan		2-Jan		3-Jan		4-Jan		5-Jan		6-Jan
			Mid-Ebb Mid-Flood	12:28 17:56			Mid-Flood Mid-Ebb	8:41 14:08			Mid-Flood Mid-Ebb	10:16 15:47
7-Jan		8-Jan		9-Jan		10-Jan		11-Jan		12-Jan		13-Jan
	Mid-Flood Mid-Ebb	11:54 17:40			Mid-Ebb Mid-Flood	7:00 13:33			Mid-Ebb Mid-Flood	9:11 15:00		
14-Jan		15-Jan		16-Jan		17-Jan		18-Jan		19-Jan		20-Jan
	Mid-Ebb Mid-Flood	11:40 16:45			Mid-Ebb Mid-Flood	12:53 17:56			Mid-Flood Mid-Ebb	8:35 14:01		
21-Jan		22-Jan		23-Jan		24-Jan		25-Jan		26-Jan		27-Jan
	Mid-Flood Mid-Ebb	10:18 16:05			Mid-Flood Mid-Ebb	11:41 17:57			Mid-Ebb Mid-Flood	6:47 13:12		
28-Jan		29-Jan		30-Jan		31-Jan						
	Mid-Ebb Mid-Flood	10:32 15:58			Mid-Ebb Mid-Flood	12:22 17:47						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Groundwater Quality Monitoring Schedule (January 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan
					Groundwater Quality Monitoring	
7-Jan	8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan
14-Jan	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan
		Groundwater Quality Monitoring				
21-Jan	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan
28-Jan	29-Jan	30-Jan	31-Jan			
			Groundwater Quality Monitoring			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location:

Stream 1, Stream 2, Stream 3

#### Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule in Temporary Marine Embayment (January 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan
					Mid-Flood 9:29 Mid-Ebb 14:57	
7-Jan	8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan
				Mid-Ebb 8:07 Mid-Flood 14:18		
14-Jan	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan
		Mid-Ebb 12:17 Mid-Flood 17:20				
21-Jan	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan
			Mid-Flood 11:41 Mid-Ebb 17:57			
28-Jan	29-Jan	30-Jan	31-Jan			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Station:

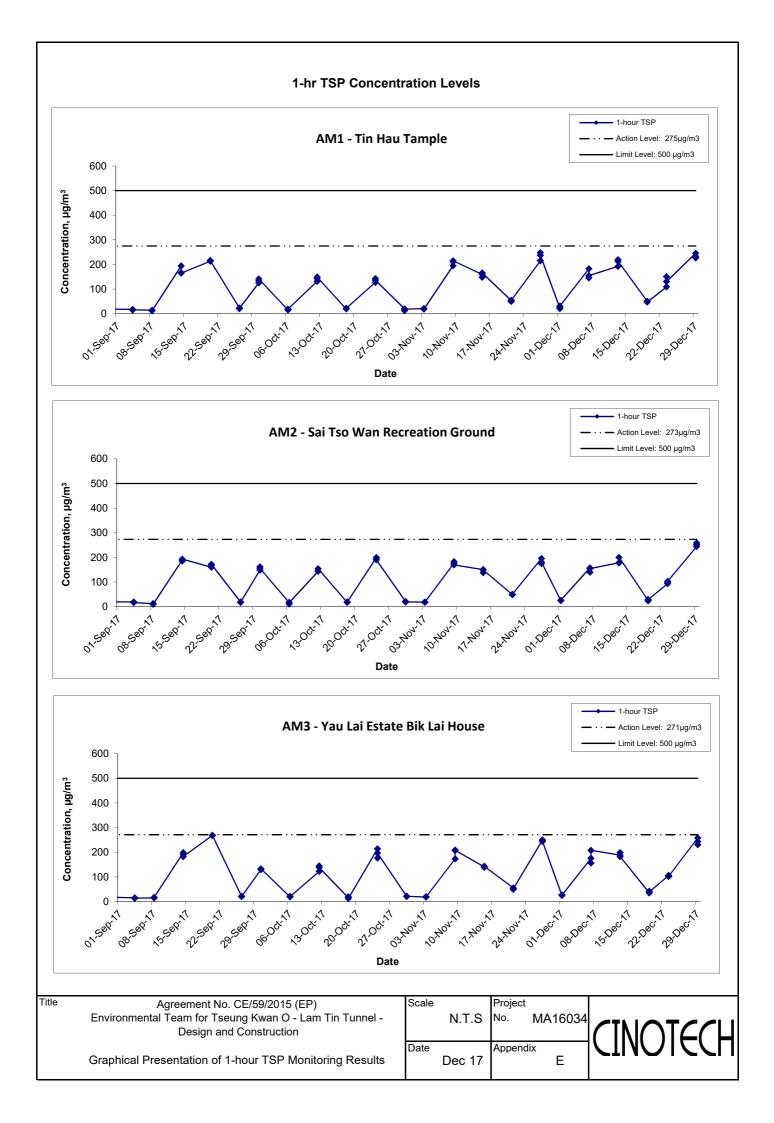
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

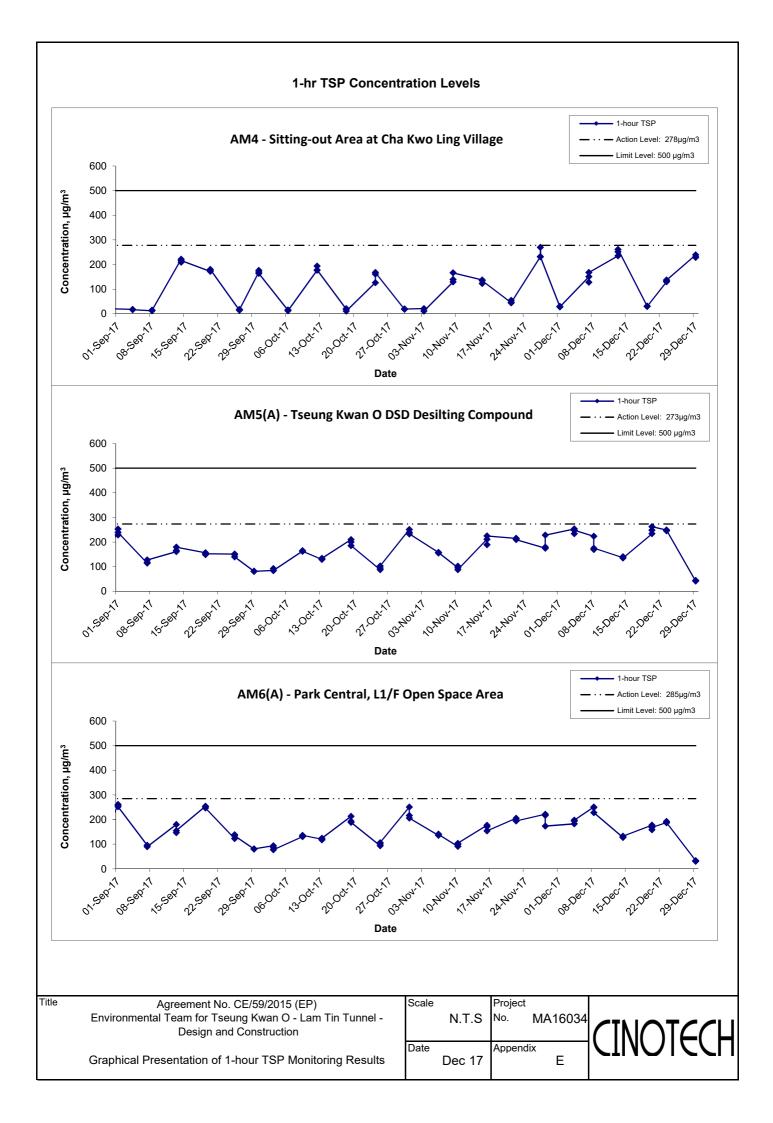
# Appendix E - 1-hour TSP Monitoring Results

Location AM1 -	Location AM1 - Tin Hau Temple						
Date	Time	Weather	Particulate Concentration ( µg/m ³ )				
1-Dec-17	9:00	Cloudy	24.6				
1-Dec-17	10:00	Cloudy	21.2				
1-Dec-17	11:00	Cloudy	31.3				
7-Dec-17	13:00	Sunny	182.5				
7-Dec-17	14:00	Sunny	146.0				
7-Dec-17	15:00	Sunny	154.9				
13-Dec-17	9:00	Cloudy	192.5				
13-Dec-17	10:00	Cloudy	219.5				
13-Dec-17	11:00	Cloudy	213.3				
19-Dec-17	9:00	Sunny	51.2				
19-Dec-17	10:00	Sunny	50.1				
19-Dec-17	11:00	Sunny	47.9				
23-Dec-17	9:00	Sunny	109.1				
23-Dec-17	10:00	Sunny	150.6				
23-Dec-17	11:00	Sunny	130.9				
29-Dec-17	13:00	Sunny	245.5				
29-Dec-17	14:00	Sunny	226.9				
29-Dec-17	15:00	Sunny	232.6				
		Average	135.0				
		Maximum	245.5				
		Minimum	21.2				

Location AM2 - Sai Tso Wan Recreation Ground						
Date	Time	Weather	Particulate Concentration ( µg/m ³ )			
1-Dec-17	13:00	Sunny	24.7			
1-Dec-17	14:00	Sunny	25.8			
1-Dec-17	15:00	Sunny	25.8			
7-Dec-17	9:00	Cloudy	157.4			
7-Dec-17	10:00	Cloudy	139.7			
7-Dec-17	11:00	Cloudy	154.2			
13-Dec-17	13:00	Cloudy	178.3			
13-Dec-17	14:00	Cloudy	177.2			
13-Dec-17	15:00	Cloudy	200.3			
19-Dec-17	13:10	Sunny	24.8			
19-Dec-17	14:10	Sunny	23.6			
19-Dec-17	15:10	Sunny	29.3			
23-Dec-17	13:00	Sunny	93.5			
23-Dec-17	14:00	Sunny	99.8			
23-Dec-17	15:00	Sunny	102.7			
29-Dec-17	13:00	Sunny	244.7			
29-Dec-17	14:00	Sunny	258.4			
29-Dec-17	15:00	Sunny	252.4			
		Average	122.9			
		Maximum	258.4			
		Minimum	23.6			

_ocation AM3 -	Yau Lai Esta	te Bik Lai House	
Date	Time	Weather	Particulate Concentration ( µg/m ³ )
1-Dec-17	9:00	Sunny	24.7
1-Dec-17	10:00	Sunny	26.9
1-Dec-17	11:00	Sunny	25.8
7-Dec-17	9:00	Cloudy	175.4
7-Dec-17	10:00	Cloudy	156.2
7-Dec-17	11:00	Cloudy	207.6
13-Dec-17	9:00	Cloudy	187.9
13-Dec-17	10:00	Cloudy	198.5
13-Dec-17	11:00	Cloudy	182.3
19-Dec-17	9:00	Sunny	34.9
19-Dec-17	10:00	Sunny	41.6
19-Dec-17	11:00	Sunny	39.4
23-Dec-17	9:00	Sunny	105.8
23-Dec-17	10:00	Sunny	101.4
23-Dec-17	11:00	Sunny	102.7
29-Dec-17	9:00	Sunny	258.2
29-Dec-17	10:00	Sunny	243.2
29-Dec-17	11:00	Sunny	231.0
		Average	124.3
		Maximum	258.2
		Minimum	24.7


# Appendix E - 1-hour TSP Monitoring Results


Location AM4 - Sitting-out Area at Cha Kwo Ling Village						
Date	Time	Weather	Particulate Concentration ( µg/m ³ )			
1-Dec-17	13:50	Sunny	29.0			
1-Dec-17	14:50	Sunny	30.2			
1-Dec-17	15:50	Sunny	27.9			
7-Dec-17	14:30	Sunny	150.9			
7-Dec-17	15:30	Sunny	128.0			
7-Dec-17	16:30	Sunny	167.8			
13-Dec-17	13:00	Cloudy	235.2			
13-Dec-17	14:00	Cloudy	251.5			
13-Dec-17	15:00	Cloudy	261.2			
19-Dec-17	13:10	Sunny	30.1			
19-Dec-17	14:10	Sunny	31.2			
19-Dec-17	15:10	Sunny	30.1			
23-Dec-17	13:00	Sunny	129.9			
23-Dec-17	14:00	Sunny	133.5			
23-Dec-17	15:00	Sunny	137.2			
29-Dec-17	8:25	Sunny	239.2			
29-Dec-17	9:25	Sunny	229.1			
29-Dec-17	10:25	Sunny	230.8			
		Average	137.4			
		Maximum	261.2			
		Minimum	27.9			

# Appendix E - 1-hour TSP Monitoring Results

Location AM5(A	Location AM5(A) - Tseung Kwan O DSD Desilting Compound						
Date	Time	Weather	Particulate Concentration ( µg/m ³ )				
4-Dec-17	9:00	Cloudy	253.6				
4-Dec-17	10:00	Cloudy	233.8				
4-Dec-17	11:00	Cloudy	247.9				
8-Dec-17	13:00	Fine	223.4				
8-Dec-17	14:00	Fine	169.6				
8-Dec-17	15:00	Fine	175.2				
14-Dec-17	9:00	Sunny	136.3				
14-Dec-17	10:00	Sunny	140.7				
14-Dec-17	11:00	Sunny	135.2				
20-Dec-17	9:00	Sunny	234.1				
20-Dec-17	10:00	Sunny	248.2				
20-Dec-17	11:00	Sunny	262.7				
23-Dec-17	9:00	Sunny	248.9				
23-Dec-17	10:00	Sunny	245.6				
23-Dec-17	11:00	Sunny	247.3				
29-Dec-17	9:00	Sunny	41.9				
29-Dec-17	10:00	Sunny	43.0				
29-Dec-17	11:00	Sunny	44.1				
		Average	185.1				
		Maximum	262.7				
		Minimum	41.9				

Location AM6(A) - Park Central, L1/F Open Space Area						
Date	Time	Weather	Particulate Concentration ( µg/m ³ )			
4-Dec-17	9:00	Cloudy	182.4			
4-Dec-17	10:00	Cloudy	194.3			
4-Dec-17	11:00	Cloudy	197.9			
8-Dec-17	9:00	Fine	250.8			
8-Dec-17	10:00	Fine	248.8			
8-Dec-17	11:00	Fine	228.1			
14-Dec-17	13:00	Sunny	127.3			
14-Dec-17	14:00	Sunny	128.5			
14-Dec-17	15:00	Sunny	132.9			
20-Dec-17	13:00	Sunny	177.3			
20-Dec-17	14:00	Sunny	158.7			
20-Dec-17	15:00	Sunny	168.5			
23-Dec-17	13:00	Sunny	187.9			
23-Dec-17	14:00	Sunny	192.3			
23-Dec-17	15:00	Sunny	187.2			
29-Dec-17	13:00	Sunny	33.1			
29-Dec-17	14:00	Sunny	32.0			
29-Dec-17	15:00	Sunny	30.9			
		Average	158.8			
		Maximum	250.8			
		Minimum	30.9			





APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

### Appendix F - 24-hour TSP Monitoring Results

### Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Dec-17	Cloudy	291.4	769.1	2.8547	3.0733	0.2186	2795.0	2819.0	24.0	1.23	1.23	1.23	1774.7	123.2
11-Dec-17	Cloudy	289.9	767.4	3.3318	3.5436	0.2118	2819.0	2843.0	24.0	1.23	1.23	1.23	1777.4	119.2
15-Dec-17	Sunny	291.7	767.6	2.8566	3.0679	0.2113	2843.0	2867.0	24.0	1.23	1.23	1.23	1771.8	119.3
21-Dec-17	Cloudy	287.1	773.1	2.8211	3.0455	0.2244	2867.0	2891.0	24.0	1.25	1.25	1.25	1794.1	125.1
27-Dec-17	Sunny	290.7	769.4	2.8154	3.0832	0.2678	2891.0	2915.0	24.0	1.23	1.23	1.23	1777.3	150.7
													Min	119.2
													Max	150.7
													Average	127.5

### Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Dec-17	Cloudy	291.7	768.6	2.8436	2.8976	0.0540	23759.3	23783.3	24.0	1.24	1.24	1.24	1782.9	30.3
11-Dec-17	Cloudy	289.6	767.2	3.3224	3.4112	0.0888	23783.3	23807.3	24.0	1.24	1.24	1.24	1787.8	49.7
15-Dec-17	Sunny	292.3	767.3	2.8960	2.9781	0.0821	23807.3	23831.3	24.0	1.24	1.24	1.24	1779.5	46.1
21-Dec-17	Cloudy	287.2	772.7	2.8813	3.0387	0.1574	23831.3	23855.3	24.0	1.25	1.25	1.25	1801.9	87.3
27-Dec-17	Sunny	291.4	769.1	2.8618	2.9762	0.1144	23855.3	23879.3	24.0	1.24	1.24	1.24	1784.4	64.1
													Min	30.3
													Max	87.3
													Average	55.5

### Location AM3 - Yau Lai Estate, Bik Lai House

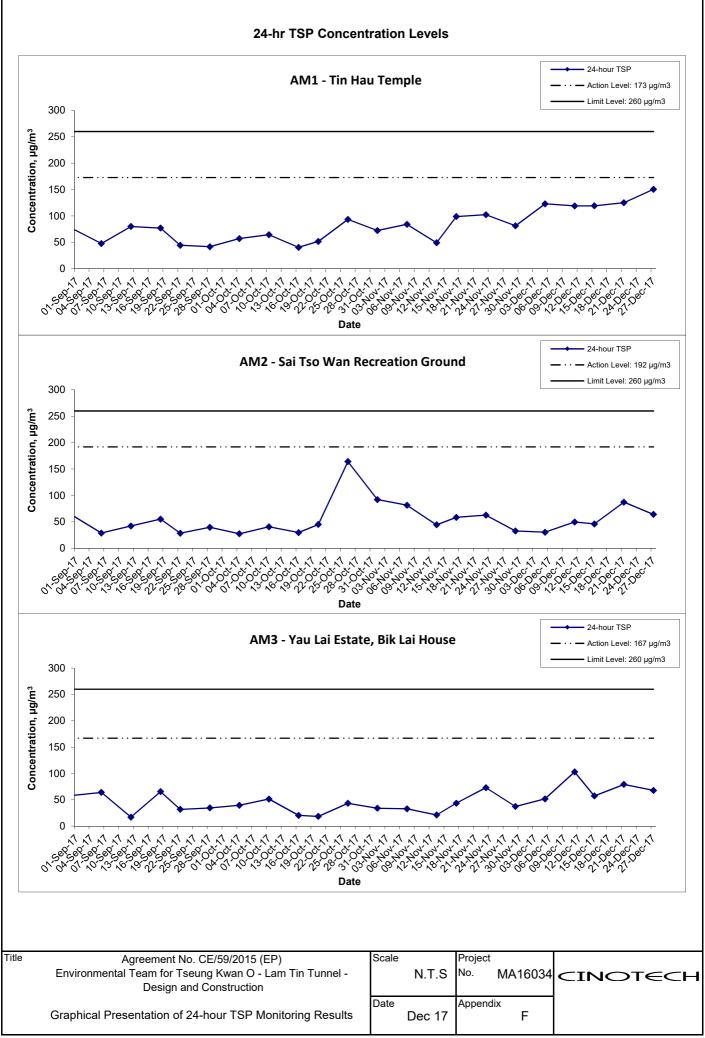
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	ə (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Dec-17	Cloudy	291.5	768.9	2.8100	2.9013	0.0913	12326.7	12350.7	24.0	1.23	1.23	1.23	1770.0	51.6
11-Dec-17	Cloudy	289.8	766.7	2.8558	3.0380	0.1822	12350.7	12374.7	24.0	1.23	1.23	1.23	1772.7	102.8
15-Dec-17	Sunny	292.2	768.2	2.8803	2.9813	0.1010	12374.7	12398.7	24.0	1.23	1.23	1.23	1767.0	57.2
21-Dec-17	Cloudy	286.8	772.6	2.9015	3.0429	0.1414	12398.7	12422.7	24.0	1.24	1.24	1.24	1789.0	79.0
27-Dec-17	Sunny	290.6	769.5	2.8437	2.9638	0.1201	12422.7	12446.7	24.0	1.23	1.23	1.23	1773.5	67.7
			-			-						-	Min	51.6
													Max	102.8

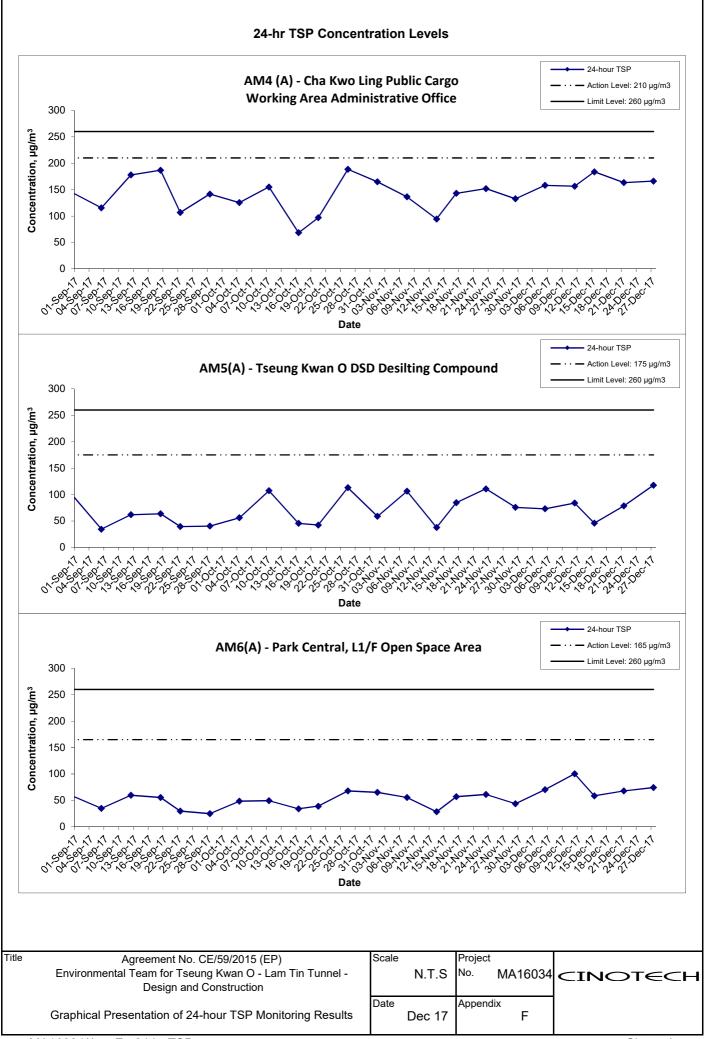
Average 71.7

### Appendix F - 24-hour TSP Monitoring Results

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m³)
5-Dec-17	Cloudy	292.1	768.7	2.8618	3.1456	0.2838	9313.2	9337.2	24.0	1.25	1.25	1.25	1794.4	158.2
11-Dec-17	Cloudy	290.4	766.2	2.8295	3.1106	0.2811	9337.2	9361.2	24.0	1.25	1.25	1.25	1797.0	156.4
15-Dec-17	Sunny	291.5	767.8	2.9185	3.2483	0.3298	9361.2	9385.2	24.0	1.25	1.25	1.25	1795.3	183.7
21-Dec-17	Cloudy	284.0	773.3	2.9328	3.2314	0.2986	9385.2	9409.2	24.0	1.26	1.28	1.27	1829.4	163.2
27-Dec-17	Sunny	291.5	768.6	2.8440	3.1424	0.2984	9409.2	9433.2	24.0	1.25	1.25	1.25	1796.4	166.1
													Min	156.4
													Max	183.7
													Average	165.5

### Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office


### Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m³)
5-Dec-17	Cloudy	291.8	768.3	2.8898	3.0194	0.1296	25573.6	25597.6	24.0	1.23	1.23	1.23	1772.8	73.1
11-Dec-17	Cloudy	289.5	767.4	2.9253	3.0746	0.1493	25597.6	25621.6	24.0	1.24	1.24	1.24	1779.0	83.9
15-Dec-17	Sunny	292.8	768.2	2.8558	2.9366	0.0808	25621.6	25645.6	24.0	1.23	1.23	1.23	1769.6	45.7
21-Dec-17	Cloudy	287.4	772.7	2.8212	2.9618	0.1406	25645.6	25669.6	24.0	1.24	1.24	1.24	1792.1	78.5
27-Dec-17	Sunny	291.8	768.9	2.8394	3.0480	0.2086	25669.6	25693.6	24.0	1.23	1.23	1.23	1773.5	117.6
													Min	45.7
													Max	117.6
													Average	79.8

### Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Dec-17	Cloudy	291.4	769.2	2.8782	3.0039	0.1257	16115.8	16139.8	24.0	1.24	1.24	1.24	1789.8	70.2
11-Dec-17	Cloudy	289.7	767.9	2.9146	3.0946	0.1800	16139.8	16163.8	24.0	1.25	1.25	1.25	1793.6	100.4
15-Dec-17	Sunny	291.5	766.5	2.8381	2.9426	0.1045	16163.8	16187.8	24.0	1.24	1.24	1.24	1786.3	58.5
21-Dec-17	Cloudy	287.0	773.6	2.8115	2.9345	0.1230	16187.8	16211.8	24.0	1.26	1.26	1.26	1809.1	68.0
27-Dec-17	Sunny	290.8	769.2	2.8378	2.9707	0.1329	16211.8	16235.8	24.0	1.24	1.24	1.24	1791.7	74.2
													Min	58.5
													Max	100.4

Average 74.2





APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

### Appendix G - Noise Monitoring Results

### (0700-1900 hrs on Normal Weekdays)

Location CM1 -	- Nga Lai Ho	ouse, Yau Lai	Estate Phas	e 1, Yau Toi	ng		
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
7-Dec-17	10:30	Cloudy	75.1	76.8	68.4		74.6
13-Dec-17	9:55	Cloudy	72.8	75.5	69.0	65.5	71.9
19-Dec-17	10:10	Sunny	74.3	76.5	71.0	05.5	73.7
29-Dec-17	10:00	Sunny	72.4	74.8	69.3		71.4

# Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
7-Dec-17	9:30	Cloudy	74.9	77.3	70.8		74.6
13-Dec-17	9:00	Cloudy	74.7	76.7	725.0	63.6	74.3
19-Dec-17	9:00	Sunny	74.9	76.9	72.1	03.0	74.6
29-Dec-17	9:00	Sunny	74.8	75.5	73.5		74.5

### Location CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

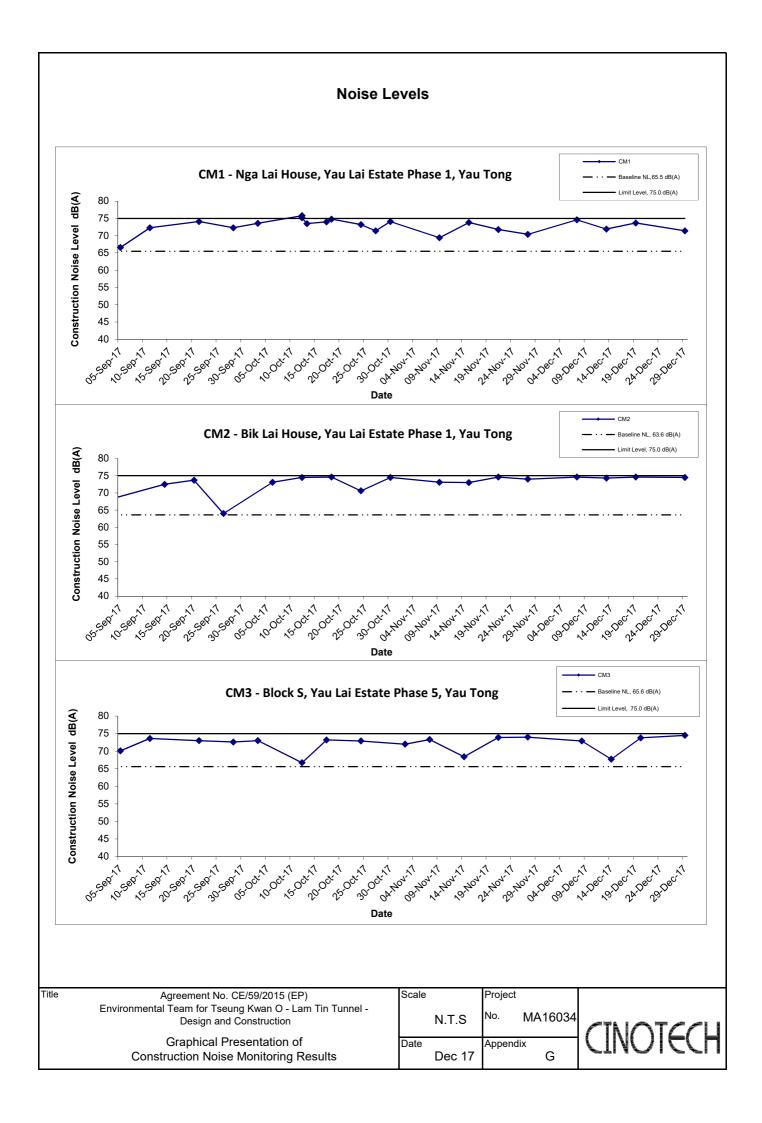
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
8-Dec-17	14:00	Sunny	73.6	76.2	68.9		72.9
14-Dec-17	10:45	Sunny	69.8	72.3	65.5	65.6	67.7
20-Dec-17	11:00	Sunny	74.4	76.7	70.5	05.0	73.8
29-Dec-17	11:00	Sunny	75.0	76.2	72.3		74.5

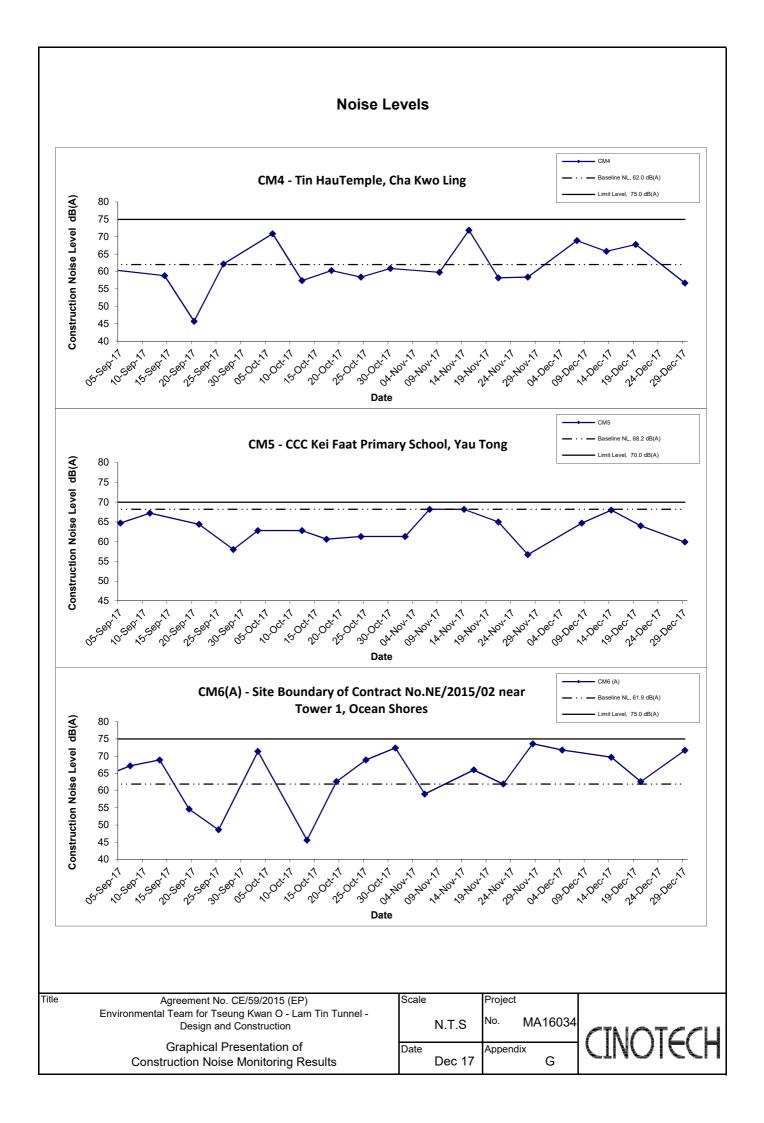
### Location CM4 - Tin Hau Temple, Cha Kwo Ling

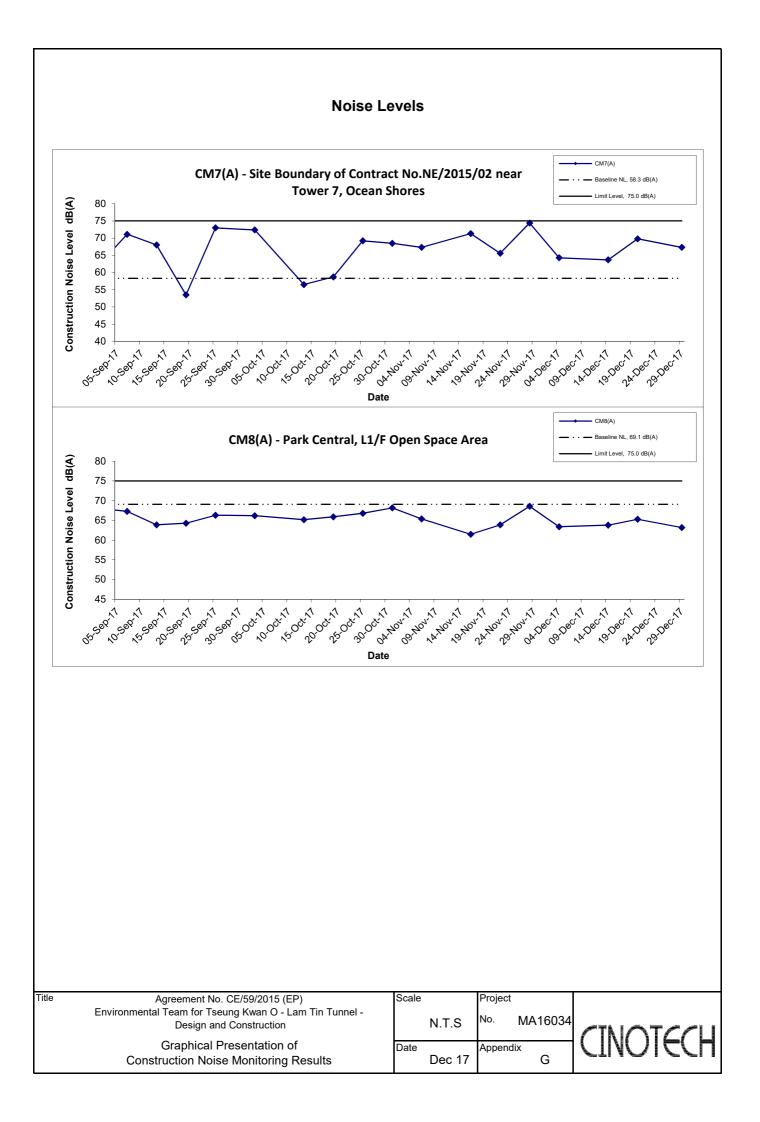
					Unit:	: dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
7-Dec-17	14:30	Sunny	69.7	72.5	63.3		68.9
13-Dec-17	15:20	Cloudy	67.3	69.5	63.2	62.0	65.8
19-Dec-17	9:05	Sunny	68.8	69.4	64.3	62.0	67.8
29-Dec-17	13:30	Sunny	56.7	59.2	52.0		56.7 Measured $\leq$ Baseline

# Location CM5 - CCC Kei Faat Primary School, Yau Tong

					Unit:	dB (A) (30-min)	
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
8-Dec-17	15:00	Sunny	69.8	71.6	67.1		64.7
14-Dec-17	11:30	Sunny	68.0	70.9	64.5	68.2	68.0 Measured $\leq$ Baseline
20-Dec-17	10:15	Sunny	69.6	72.3	63.1	00.2	64.0
29-Dec-17	14:30	Sunny	68.8	70.8	66.1	]	59.9


## Appendix G - Noise Monitoring Results


ocation CM6(	A) - Site Bo	undary of Cor	tract No. NE	E/2015/02 ne	ear Tower 1	Ocean Shores	
					Unit	: dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
4-Dec-17	13:45	Cloudy	72.2	75.2	66.5		71.8
14-Dec-17	14:45	Sunny	70.4	72.6	65.4	61.9	69.7
20-Dec-17	14:10	Sunny	65.3	68.2	58.1	01.9	62.6
29-Dec-17	11:00	Sunny	72.1	75.0	66.4		71.7


Location CM7(	Location CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores											
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Level	<b>Baseline Level</b>	Construction Noise Level					
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}					
4-Dec-17	13:00	Cloudy	65.3	68.2	58.4		64.3					
14-Dec-17	13:45	Sunny	64.8	67.2	59.0	58.3	63.7					
20-Dec-17	15:00	Sunny	70.1	72.6	63.1	56.5	69.8					
29-Dec-17	10:15	Sunny	67.8	69.6	60.2		67.3					

Location CM8(	Location CM8(A) - Park Central, L1/F Open Space Area										
				Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}				
4-Dec-17	9:15	Cloudy	63.4	65.6	61.2		63.4 Measured $\leq$ Baseline				
14-Dec-17	9:10	Sunny	63.8	65.6	61.2	69.1	63.8 Measured $\leq$ Baseline				
20-Dec-17	13:10	Sunny	70.6	73.0	65.9	09.1	65.3				
29-Dec-17	13:05	Sunny	70.1	71.5	67.2		63.2				

#### MA16034/App G - Noise







APPENDIX H GROUNDWATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

### Groundwater Quality Monitoring Results at Stream 1

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	эH	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
6-Dec-17	Sunny	16:22	Middle	21.2 21.2	21.2	8.5 8.5	8.5	1.6 1.6	1.6	99.9 99.1	99.5	8.9 8.9	8.9	0.5 0.5	0.5
20-Dec-17	Sunny	10:57	Middle	20.1 20.1	20.1	8.6 8.6	8.6	0.1 0.1	0.1	91.1 91.1	91.1	8.3 8.3	8.3	0.9 1.0	1.0

## Groundwater Quality Monitoring Results at Stream 2

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	эH	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
6-Dec-17	Sunny	14:28	Middle	21.2 21.2	21.2	8.1 8.1	8.1	0.6 0.6	0.6	100.6 100.8	100.7	8.9 8.9	8.9	1.6 1.6	1.6
20-Dec-17	Sunny	10:54	Middle	19.2 19.3	19.3	8.7 8.6	8.7	0.1 0.1	0.1	100.5 101.0	100.8	9.3 9.3	9.3	1.9 1.8	1.9

# Groundwater Quality Monitoring Results at Stream 3

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
6-Dec-17	Sunny	14:18	Middle	21.2 21.2	21.2	8.0 8.1	8.1	0.6 0.6	0.6	100.3 100.5	100.4	8.8 8.9	8.9	1.8 1.6	1.7
20-Dec-17	Sunny	10:51	Middle	18.5 18.5	18.5	8.4 8.5	8.5	1.0 1.0	1.0	102.7 102.4	102.6	9.6 9.5	9.6	1.3 1.2	1.3

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

					Р	arameters (ui	nit)			
Location	Date	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
Stream 1	6-Dec-17	8.5	8.9	0.5	1.6	<2	4	1.0	<0.05	<0.05
Stream	20-Dec-17	8.6	8.3	1.0	3.0	<2	5	0.9	0.05	<0.05
Stream 2	6-Dec-17	8.1	8.9	1.6	0.9	<2	3	1	<0.05	<0.05
Stream Z	20-Dec-17	8.7	9.3	1.9	48	<2	6	1.2	<0.05	0.06
Stream 3	6-Dec-17	8.1	8.9	1.7	1.8	<2	4	1	<0.05	<0.05
Sueams	20-Dec-17	8.5	9.6	1.3	4	<2	3	<0.6	<0.05	<0.05

# Summary of Groundwater Quality Monitoring Results



WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

# TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Report No.:	27971 2017-12-15
	1710, Technology Park, 18 On Lai Street,	Date of Issue: Date Received:	2017-12-13
	Shatin, N.T.	Date Tested:	2017-12-06
		Date Completed:	2017-12-15
ATTN:	Ms. Mei Ling Tang	Page:	1 of 1

#### Ms. Mei Ling Tang ATTN:

Sample Description	:	3 liquid samples as received from client said to be groundwater
Laboratory No.	:	27971
		MA16034 (Groundwater)
Project Name	:	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O-
5		Lam Tin Tunnel – Design and Construction
Custody No.	:	MA16034(Groundwater)/06122017
Sampling Date	:	2017-12-06

### **Tests Requested & Methodology:**

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

### **Results:**

Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	27971-1	27971-2	27971-3
Total Suspended Solids (mg/L)	1.6	0.9	1.8
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	4	3	4
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	1.0	1.0	1.0
Ammonia (mg NH ₃ -N/L)	< 0.05	< 0.05	<0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05	< 0.05

1)  $\leq =$  less than Remarks:

2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager



WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

# **TEST REPORT**

APPLICANT:	<b>Cinotech Consultants Limited</b>
	1710, Technology Park,
	18 On Lai Street,
	Shatin, N.T.

Report No.:	28050
Date of Issue:	2018-01-02
Date Received:	2017-12-20
Date Tested:	2017-12-20
Date Completed:	2018-01-02
Page:	1 of 1

### ATTN: Ms. Mei Ling Tang

Laboratory No.	:	
Project No.	:	MA16034 (Groundwater)
Project Name	:	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O-
		Lam Tin Tunnel – Design and Construction
Custody No.	:	MA16034(Groundwater)/20171220
Sampling Date	:	2017-12-20

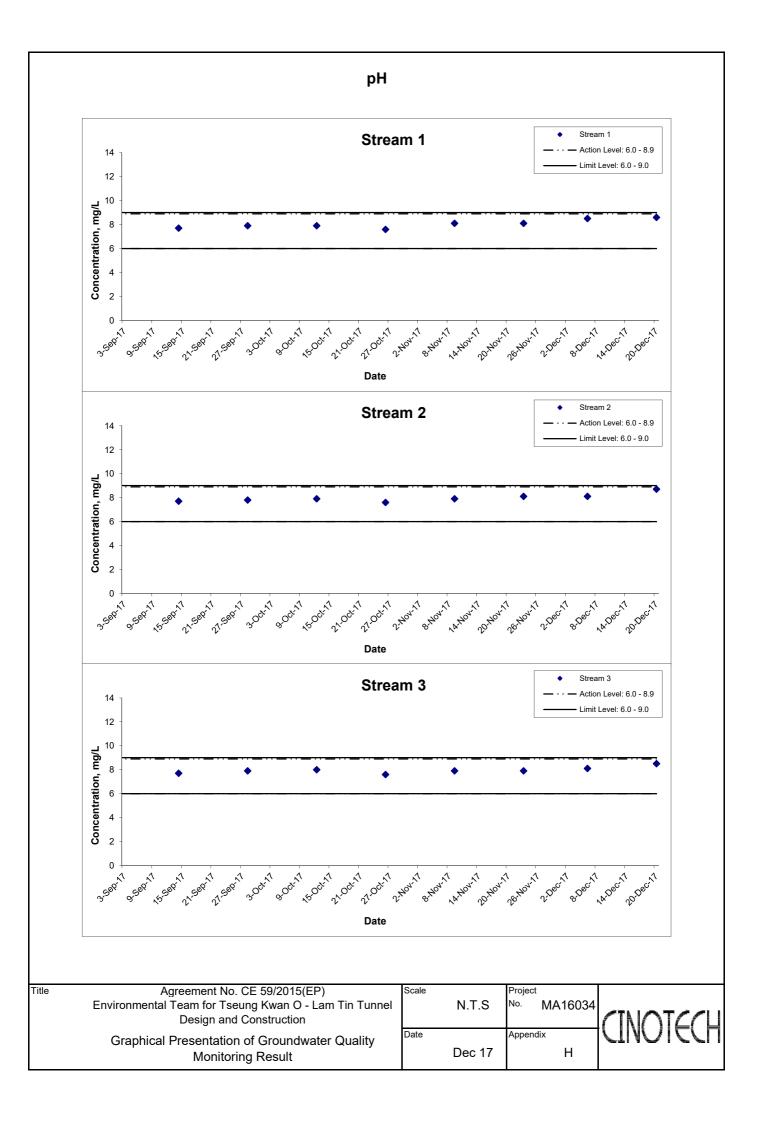
### Tests Requested & Methodology:

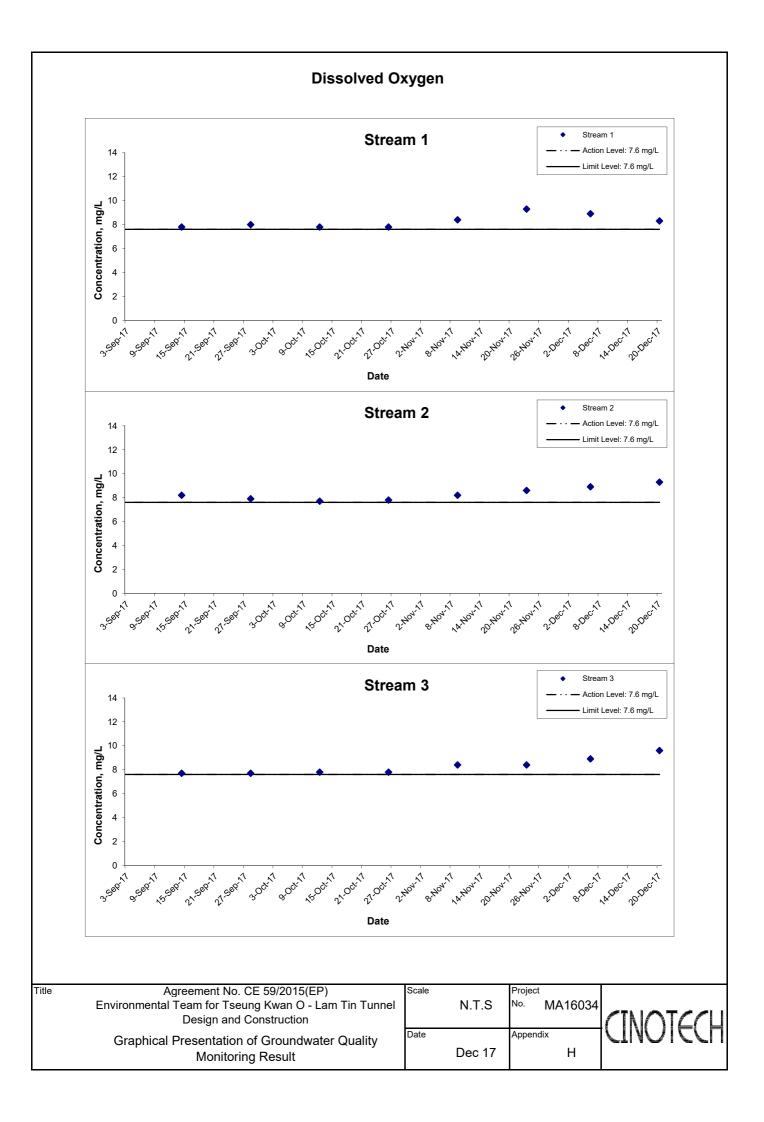
Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH3-N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

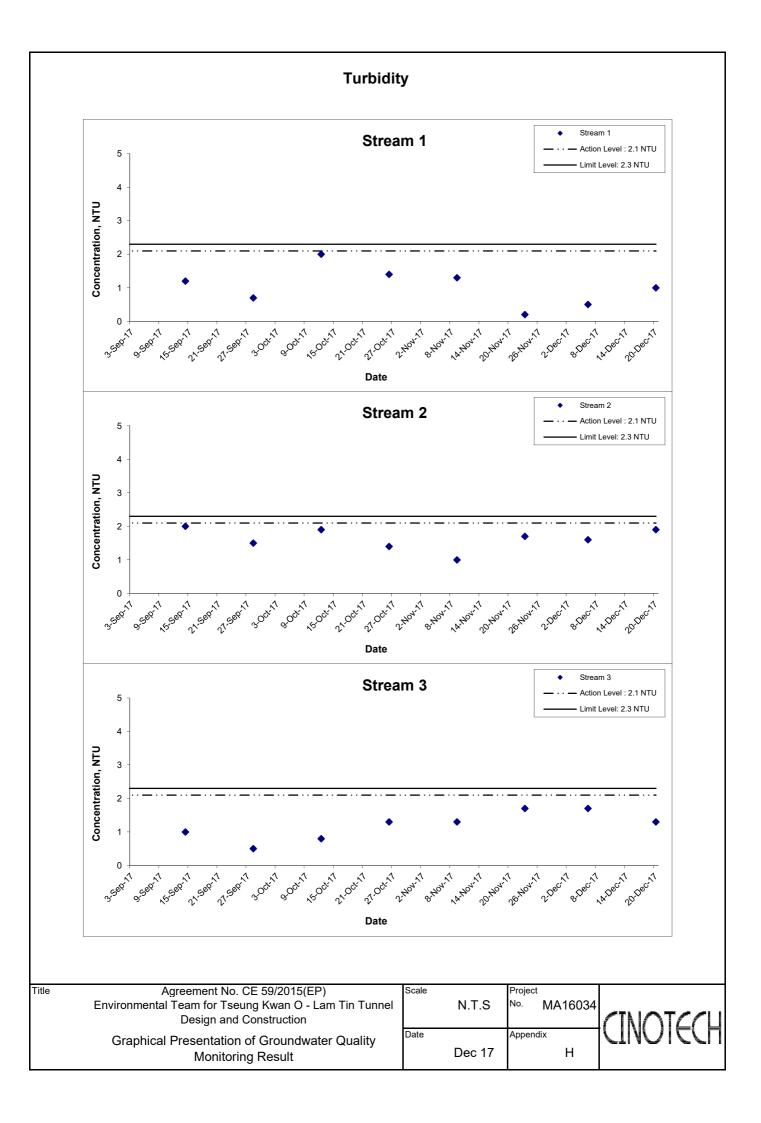
### **Results**:

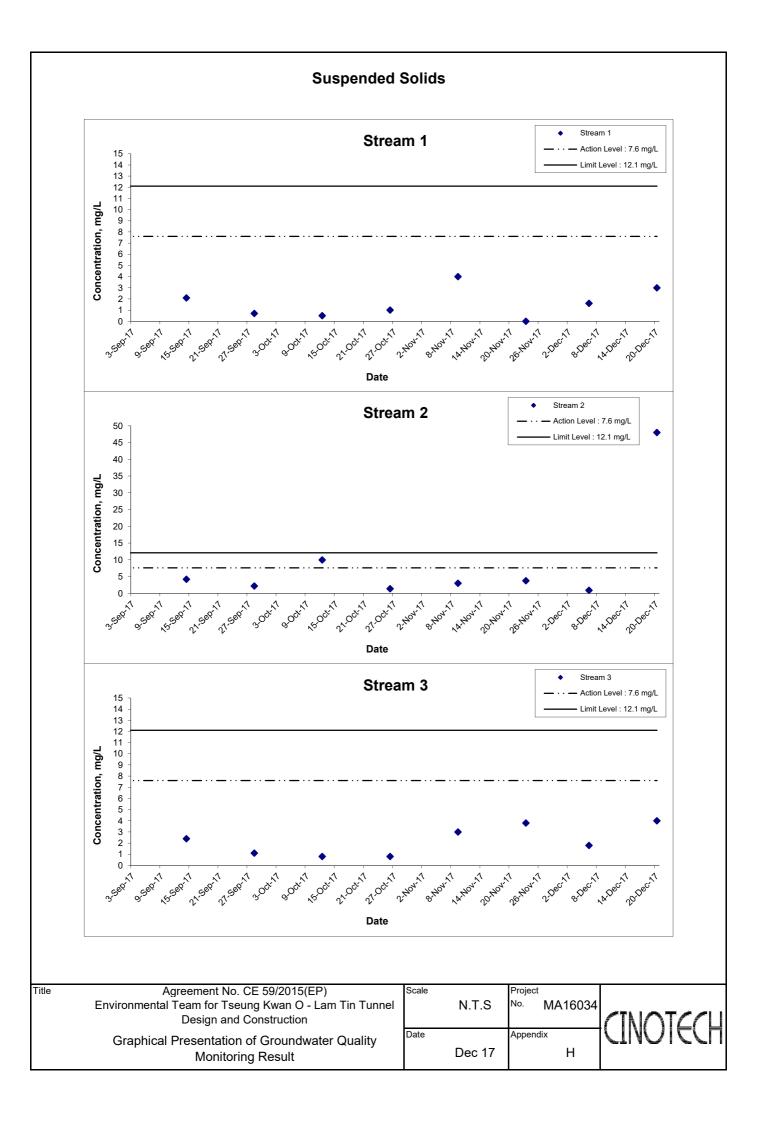
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	28050-1	28050-2	28050-3
Total Suspended Solids (mg/L)	3	48	4
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2	<2
Total Organic Carbon (mg-TOC/L)	5	6	3
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	0.9	1.2	<0.6
Ammonia (mg NH ₃ -N/L)	0.05	< 0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	0.06	< 0.05

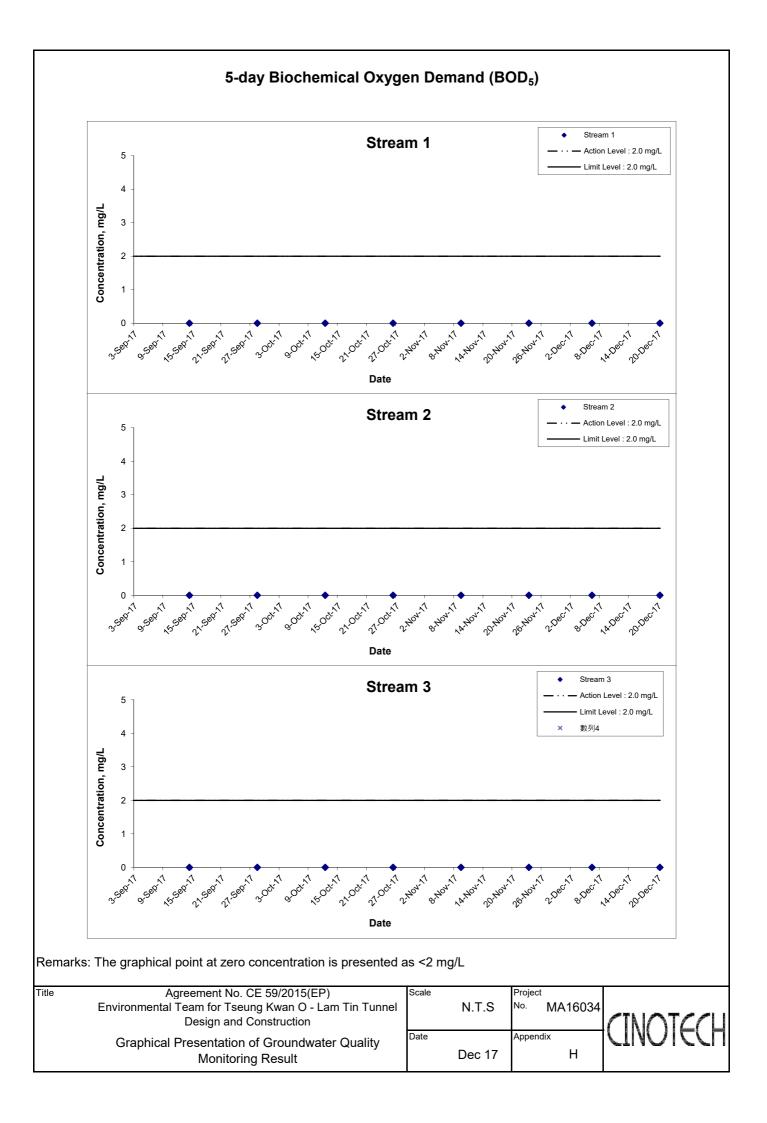
Remarks: 1)  $\leq$  = less than

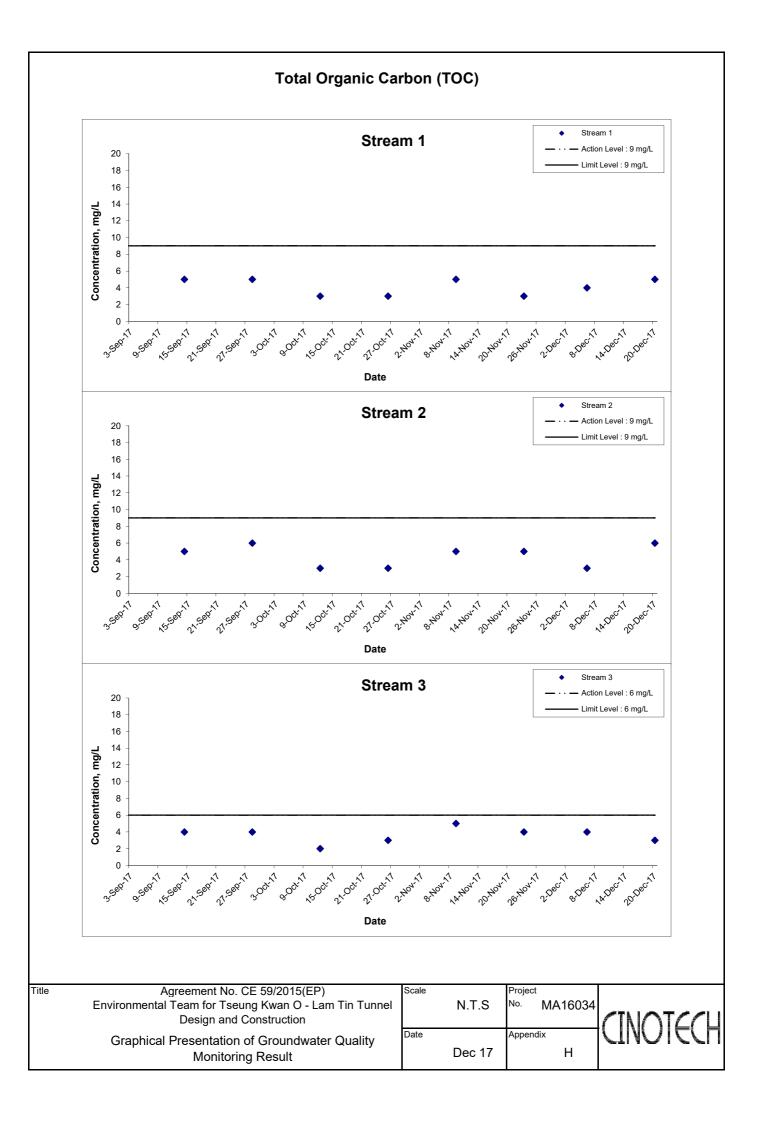

2) S = Surface, M = Middle, B = Bottom

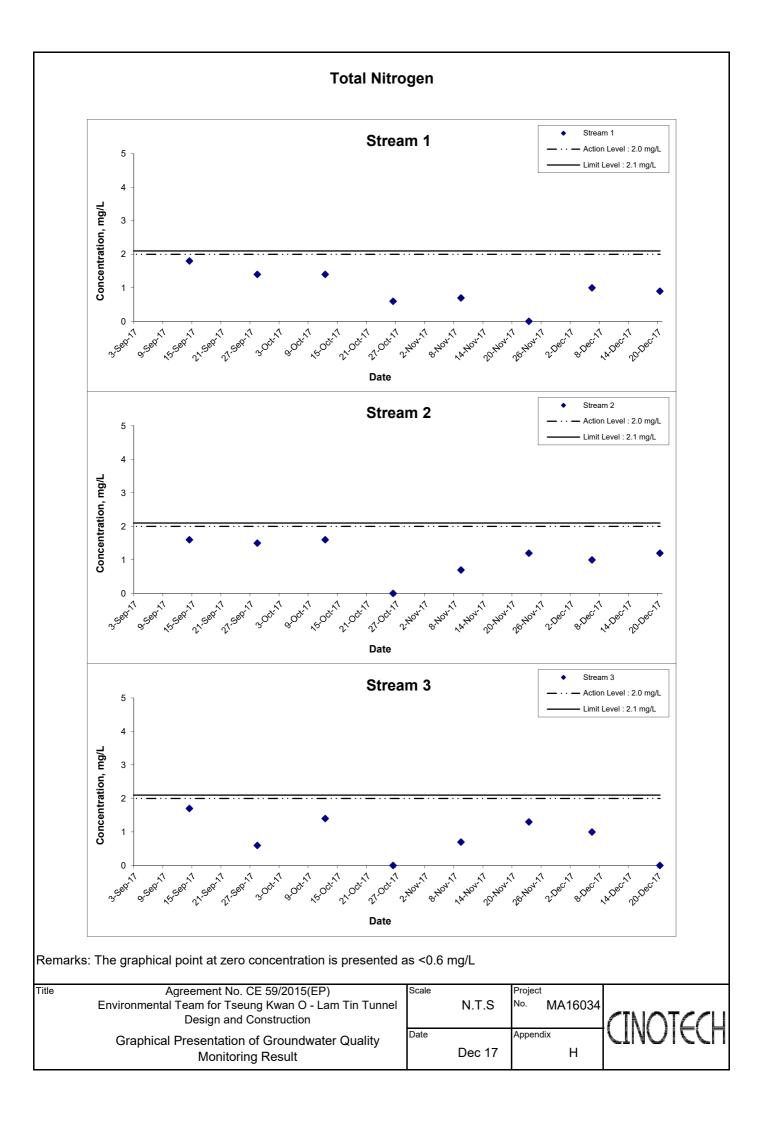

3) * Limit of Reporting is reported as Detection Limit

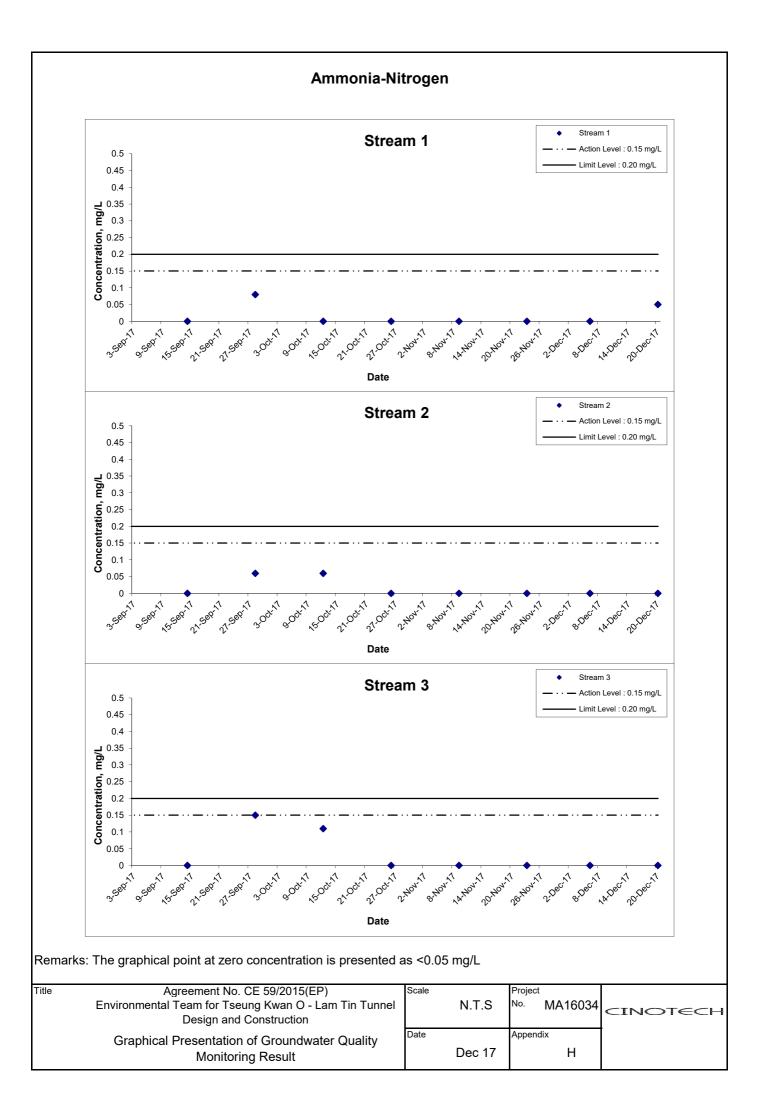

PREPARED AND CHECKED BY:

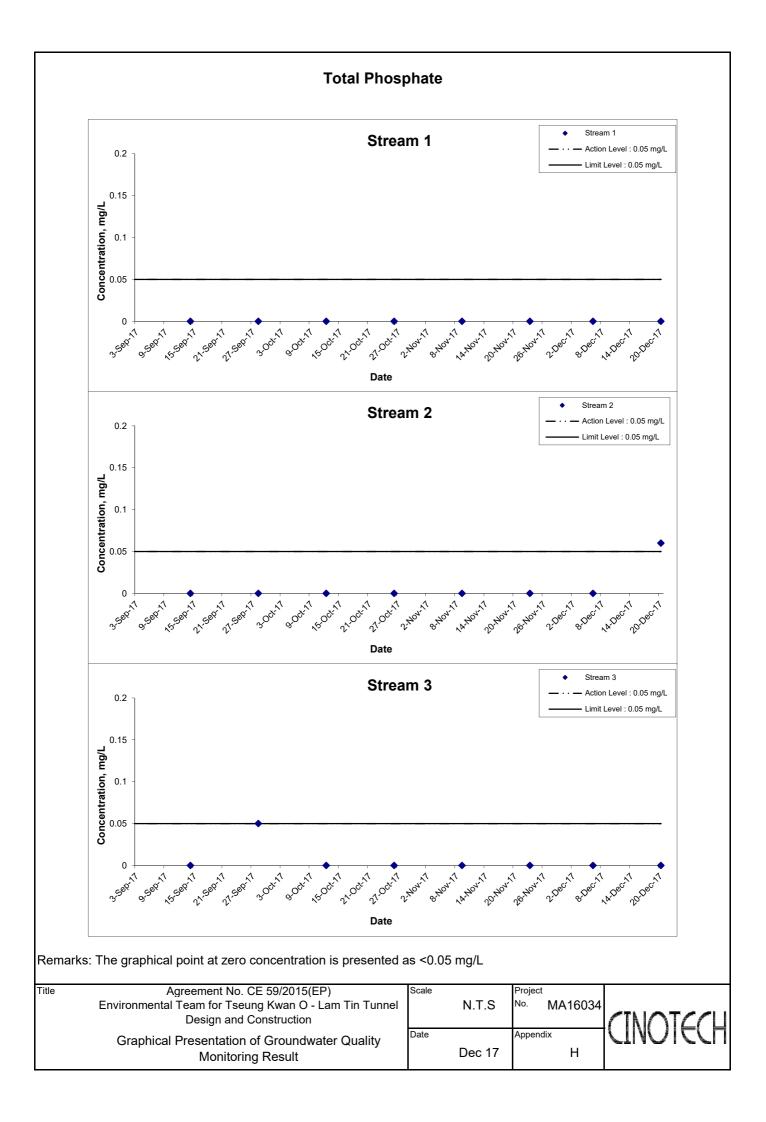

For and On Behalf of WELLAB Ltd.


TRICK TSE Р Laboratory Manager














APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

## Appendix I - Action and Limit Levels for Marine Water Quality on 2 December 2017 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, <u>M1-M5</u>	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
The shirt is		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 10.6 NTU</u>	<u>C2: 11.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.3 mg/L</u>	<u>C2: 7.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

#### (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	iity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	1	Furbidity(NTL	U)	Suspe	nded Solids	(mg/L)
Econaci	Condition	Condition**	Time	Dept		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	97.1 95.6	96.4	7.0 6.9	7.0		2.8 2.4	2.6		4.9 4.8	4.9	
C1	Sunny	Moderate	12:26	Middle	9.5	22.3	22.3	8.2	8.2	33.0	33.0	95.2	95.1	6.8	6.8	6.9	2.5	2.5	2.8	2.8	2.8	3.7
				Bottom	18	22.3 22.2	22.2	8.2 8.2	8.2	33.0 33.1	33.1	94.9 95.2	95.2	6.8 6.8	6.8	6.8	2.5 3.5	3.4	-	2.8	3.4	
						22.2 22.4		8.2 8.2		33.1 32.8		95.1 95.0		6.8 6.8		0.0	3.3 2.2			3.5 4.8		
				Surface	1	22.4	22.4	8.2	8.2	32.8	32.8	94.9	95.0	6.8	6.8	6.8	2.4	2.3		4.9	4.9	1
C2	Sunny	Moderate	11:13	Middle	17	22.3 22.3	22.3	8.2 8.2	8.2	32.9 32.9	32.9	93.6 93.5	93.6	6.7 6.7	6.7		2.9 2.7	2.8	4.6	5.7 5.7	5.7	5.6
				Bottom	33	22.3 22.3	22.3	8.2 8.2	8.2	33.0 32.9	33.0	93.4 93.2	93.3	6.7 6.7	6.7	6.7	8.5 9.0	8.8	1	6.0 6.1	6.1	ĺ
				Surface	1	22.3	22.3	8.2	8.2	32.9	32.9	95.6	95.4	6.9	6.9		2.5	2.6		4.0	4.0	
G1	Sunny	Moderate	11:51	Middle	4	22.3 22.2	22.2	8.2 8.2	8.2	32.9 33.0	33.0	95.2 94.1	94.1	6.8 6.8	6.8	6.9	2.7 2.8	2.7	2.7	4.0 6.2	6.1	4.4
GI	Sunny	woderate	11.51			22.2 22.2		8.2 8.2		33.0 33.0		94.1 93.8		6.8 6.7			2.5 2.9		2.1	6.0 2.9		4.4
				Bottom	7	22.2	22.2	8.2	8.2	33.0	33.0	93.8	93.8	6.8	6.8	6.8	2.6	2.8		3.0	3.0	<u> </u>
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	32.9 32.9	32.9	96.0 95.7	95.9	6.9 6.9	6.9	6.9	2.5 2.4	2.5		3.8 3.8	3.8	
G2	Sunny	Moderate	11:40	Middle	5	22.2 22.2	22.2	8.2 8.2	8.2	33.0 33.0	33.0	95.3 95.1	95.2	6.9 6.8	6.9	0.9	2.4 2.4	2.4	2.6	5.0 4.9	5.0	4.0
				Bottom	9	22.2	22.3	8.2	8.2	33.0	33.1	94.9	94.9	6.8	6.8	6.8	2.6	2.8	1	3.1	3.1	t I
				Surface	1	22.3 22.3	22.4	8.2 8.2	8.2	33.1 32.9	32.9	94.9 93.9	93.3	6.8 6.7	6.7		2.9 5.6	5.3		3.0 3.0	2.9	
						22.4 22.3		8.2 8.2		32.9 33.0		92.7 93.4		6.7 6.7		6.7	5.0 4.4			2.8 6.0		
G3	Sunny	Moderate	11:57	Middle	4	22.2	22.3	8.2	8.2	33.0	33.0	93.4	93.4	6.7	6.7		4.3	4.4	4.2	6.1	6.1	4.8
				Bottom	7	22.2	22.2	8.2 8.2	8.2	33.0 33.0	33.0	93.5 93.3	93.4	6.7 6.7	6.7	6.7	3.1 2.9	3.0		5.4 5.6	5.5	
				Surface	1	22.4 22.3	22.4	8.2 8.2	8.2	32.9 33.0	33.0	96.3 95.9	96.1	6.9 6.9	6.9		2.1 2.0	2.1		3.7 3.8	3.8	
G4	Sunny	Moderate	12:09	Middle	4.5	22.2 22.2	22.2	8.2 8.2	8.2	33.0 33.0	33.0	94.5 94.5	94.5	6.8 6.8	6.8	6.9	3.0 2.9	3.0	3.2	4.0 4.1	4.1	4.7
				Bottom	8	22.2	22.3	8.2	8.2	33.0	33.0	92.5	92.5	6.7	6.7	6.7	4.2	4.5		6.0	6.1	1 1
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	33.0 32.9	32.9	92.5 94.9	94.1	6.6 6.8	6.8	-	4.7 3.0	3.0		6.2 3.1	3.1	
						22.3 22.2		8.2 8.2		32.9 32.9		93.3 94.6		6.7 6.8		6.8	3.0 3.1			3.1 2.4		4 .
M1	Sunny	Moderate	11:46	Middle	3	22.2	22.2	8.2	8.2	32.9	32.9	93.8	94.2	6.8	6.8		3.2	3.2	3.3	2.5	2.5	3.0
				Bottom	5	22.2 22.2	22.2	8.2 8.2	8.2	33.0 33.0	33.0	93.7 93.7	93.7	6.7 6.7	6.7	6.7	4.0 3.5	3.8		3.3 3.3	3.3	
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	97.1 96.3	96.7	7.0 6.9	7.0		2.0 1.7	1.9		2.2 2.2	2.2	
M2	Sunny	Moderate	11:32	Middle	6	22.3	22.3	8.2	8.2	33.1	33.1	96.6	96.5	6.9	6.9	7.0	2.3	2.3	2.5	3.3	3.3	3.0
				Bottom	11	22.3 22.3	22.3	8.2 8.2	8.2	33.1 33.1	33.1	96.4 95.6	95.6	6.9 6.9	6.9	6.9	2.3 3.2	3.3		3.2 3.6	3.6	
						22.3 22.4		8.2 8.2		33.1 32.9		95.6 93.4		6.9 6.7		0.0	3.3 3.9			3.6 5.1		<u>                                     </u>
				Surface	1	22.4 22.3	22.4	8.2 8.2	8.2	32.9 33.0	32.9	93.8 93.8	93.6	6.7 6.7	6.7	6.8	3.8	3.9	1	4.9 4.6	5.0	
M3	Sunny	Moderate	12:03	Middle	4	22.3	22.3	8.2	8.2	33.0	33.0	94.0	93.9	6.8	6.8		3.0	3.0	3.1	4.6	4.6	4.6
				Bottom	7	22.2 22.2	22.2	8.2 8.2	8.2	33.0 33.0	33.0	93.6 93.5	93.6	6.7 6.7	6.7	6.7	2.5 2.5	2.5		4.2 4.1	4.2	
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	33.1 33.1	33.1	97.2 95.8	96.5	7.0 6.9	7.0		3.4 3.8	3.6		5.2 5.2	5.2	
M4	Sunny	Moderate	11:23	Middle	5	22.3	22.3	8.2	8.2	33.1	33.1	95.8	95.7	6.9	6.9	7.0	3.4	3.5	3.5	5.1	5.1	4.7
				Bottom	9	22.3 22.3	22.3	8.2 8.2	8.2	33.1 33.1	33.1	95.5 95.3	95.3	6.9 6.8	6.8	6.8	3.5 3.5	3.5	1	5.1 3.8	3.8	
						22.3 22.2		8.2 8.2		33.1 33.0		95.2 95.8		6.8 6.9		0.0	3.4 3.5			3.8 5.0		<u> </u>
				Surface	1	22.3	22.3	8.2	8.2	33.0	33.0	95.0	95.4	6.8	6.9	6.9	3.4	3.5	1	5.2	5.1	1
M5	Sunny	Moderate	12:20	Middle	6	22.2 22.2	22.2	8.2 8.2	8.2	33.0 33.1	33.1	94.9 95.0	95.0	6.8 6.8	6.8		3.6 3.5	3.6	3.7	6.8 6.7	6.8	6.2
				Bottom	11	22.2 22.2	22.2	8.2 8.2	8.2	33.1 33.1	33.1	95.0 94.8	94.9	6.8 6.8	6.8	6.8	3.7 4.0	3.9		6.7 6.8	6.8	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Sunny	Moderate	12:15	Middle	1.3	22.3	22.3	8.2	8.2	33.0	33.0	96.3	96.3	6.9	6.9	6.9	2.4	2.4	2.4	4.0	4.0	4.0
	,			Bottom		- 22.3		8.2		33.0		96.3		6.9			2.4			4.0		
				Bollom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

# Appendix I - Action and Limit Levels for Marine Water Quality on 2 December 2017 (Mid-Flood Tide)

<u>Parameter</u> <u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level						
	Stations G1-G4	4, M1-M5							
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>						
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>						
	Station M6								
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>						
	Stations G1-G4	4 <u>, M1-M5</u>							
		<u>19.3 NTU</u>	<u>22.2 NTU</u>						
Turbidity in		or 120% of upstream control	or 130% of upstream control						
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide						
(See Note 2 and 4)		tide of the same day	of the same day						
		<u>C1: 9.6 NTU</u>	<u>C1: 10.4 NTU</u>						
	Station M6								
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>						
	Stations G1-G4	<u>1</u>							
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Surface	station's SS at the same tide of	station's SS at the same tide of the						
		the same day	same day						
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>						
	Stations M1-M	5							
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the						
(See Note 2 and 4)		the same day	same day						
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>						
	Stations G1-G4	4, M1-M5							
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Bottom	station's SS at the same tide of	station's SS at the same tide of the						
		the same day	same day						
		<u>C1: 4.4 mg/L</u>	<u>C1: 4.8 mg/L</u>						
	Station M6								
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>						

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

#### (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Economi	Condition	Condition**	Time	Бері		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.3 22.3	22.3	8.2 8.2	8.2	33.1 33.1	33.1	98.4 98.0	98.2	7.1 7.0	7.1	7.0	2.8 2.6	2.7		4.5 4.5	4.5	
C1	Sunny	Moderate	17:01	Middle	9	22.2 22.2	22.2	8.3 8.3	8.3	33.2 33.2	33.2	96.6 96.5	96.6	6.9 6.9	6.9	7.0	5.4 5.4	5.4	5.4	3.6 3.5	3.6	3.9
				Bottom	17	22.2 22.3	22.3	8.3 8.3	8.3	33.2 33.2	33.2	96.2 96.2	96.2	6.9 6.9	6.9	6.9	8.3 7.7	8.0		3.6 3.7	3.7	ĺ
				Surface	1	22.5 22.5	22.5	8.1 8.2	8.2	32.9 32.9	32.9	96.1 96.1	96.1	6.9 6.9	6.9		2.4 2.5	2.5		4.4 4.5	4.5	
C2	Sunny	Moderate	15:50	Middle	16.5	22.5 22.5	22.5	8.2 8.2	8.2	32.9 32.9	32.9	95.3 95.2	95.3	6.8 6.8	6.8	6.9	2.3 2.2	2.3	3.3	3.2 3.1	3.2	3.9
				Bottom	32	22.4 22.4	22.4	8.2 8.2	8.2	32.9 33.0	33.0	94.4 94.2	94.3	6.8 6.8	6.8	6.8	5.2 5.2	5.2		4.0 4.0	4.0	ĺ
				Surface	1	22.6 22.5	22.6	8.2 8.2	8.2	32.9 32.9	32.9	97.9 97.5	97.7	7.0 7.0	7.0	7.0	1.8 1.8	1.8		2.7 2.7	2.7	
G1	Sunny	Moderate	16:25	Middle	4	22.4 22.4	22.4	8.2 8.2	8.2	33.0 33.0	33.0	96.6 96.0	96.3	6.9 6.9	6.9	7.0	2.1 2.2	2.2	2.2	2.4 2.4	2.4	2.8
				Bottom	7	22.4 22.3	22.4	8.2 8.2	8.2	33.0 33.0	33.0	95.5 94.7	95.1	6.9 6.8	6.9	6.9	2.5 2.6	2.6		3.4 3.4	3.4	
				Surface	1	22.6 22.6	22.6	8.2 8.2	8.2	33.0 33.0	33.0	99.2 98.7	99.0	7.1 7.1	7.1	7.1	1.7 1.6	1.7		2.4 2.4	2.4	
G2	Sunny	Moderate	16:13	Middle	5	22.5 22.5	22.5	8.2 8.2	8.2	33.0 33.0	33.0	97.7 97.5	97.6	7.0 7.0	7.0	7.1	1.8 1.8	1.8	1.8	2.8 2.9	2.9	2.7
				Bottom	9	22.4 22.3	22.4	8.2 8.2	8.2	33.0 33.0	33.0	96.3 95.4	95.9	6.9 6.9	6.9	6.9	2.0 2.0	2.0		2.9 2.9	2.9	
				Surface	1	22.6 22.6	22.6	8.2 8.2	8.2	32.5 31.5	32.0	94.5 92.9	93.7	6.8 6.7	6.8	6.8	1.2 1.5	1.4		3.4 3.4	3.4	
G3	Sunny	Moderate	16:32	Middle	4	22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	93.8 93.6	93.7	6.7 6.7	6.7	0.0	2.9 2.7	2.8	2.6	3.5 3.4	3.5	3.5
				Bottom	7	22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	93.2 92.9	93.1	6.7 6.7	6.7	6.7	3.3 3.6	3.5		3.6 3.7	3.7	
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	33.0 33.0	33.0	99.9 98.8	99.4	7.2 7.1	7.2	7.1	1.9 1.8	1.9		2.7 2.7	2.7	ļ I
G4	Sunny	Moderate	16:43	Middle	4.5	22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	95.8 96.3	96.1	6.9 6.9	6.9		2.4 2.3	2.4	3.8	3.2 3.2	3.2	3.2
				Bottom	8	22.3 22.3	22.3	8.2 8.2	8.2	33.1 33.1	33.1	93.2 94.1	93.7	6.7 6.8	6.8	6.8	7.0 7.0	7.0		3.9 3.7	3.8	
				Surface	1	22.4 22.4	22.4	8.2 8.2	8.2	32.9 32.9	32.9	97.0 96.7	96.9	7.0 6.9	7.0	7.0	3.1 3.5	3.3		3.1 3.2	3.2	ļ
M1	Sunny	Moderate	16:19	Middle	3	22.4 22.4	22.4	8.2 8.2	8.2	32.9 32.9	32.9	96.6 96.3	96.5	6.9 6.9	6.9		3.4 3.8	3.6	3.8	4.0 4.0	4.0	3.9
				Bottom	5	22.4 22.4	22.4	8.2 8.2	8.2	33.0 33.0	33.0	96.2 95.6	95.9	6.9 6.9	6.9	6.9	4.6 4.6	4.6		4.4 4.3 3.5	4.4	
				Surface	1	22.5 22.5 22.3	22.5	8.2 8.2 8.2	8.2	33.0 33.0 33.0	33.0	99.0 98.7	98.9	7.1	7.1	7.1	2.1 1.9 1.8	2.0		3.5 3.5 5.0	3.5	ļ
M2	Sunny	Moderate	16:06	Middle	6	22.3 22.5 22.3	22.4	8.2 8.2 8.2	8.2	33.0 33.1	33.0	96.6 97.3 95.4	97.0	6.9 7.0 6.9	7.0		1.8 1.7 3.3	1.8	2.4	5.0 5.0 4.2	5.0	4.2
				Bottom	11	22.3	22.3	8.2	8.2	33.1	33.1	95.4 95.2 94.9	95.3	6.8	6.9	6.9	3.3 3.2 2.6	3.3		4.2 4.2 3.7	4.2	
				Surface	1	22.5 22.6 22.3	22.6	8.2 8.2 8.2	8.2	32.7 32.6 33.0	32.7	94.9 94.8 94.5	94.9	6.8 6.8 6.8	6.8	6.8	2.6 2.4 2.8	2.5	_	3.7 3.6 5.1	3.7	ļ
M3	Sunny	Moderate	16:36	Middle	4	22.3 22.3 22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	94.9 93.0	94.7	6.8 6.7	6.8		2.0 2.3 3.4	2.6	2.8	5.1 2.8	5.1	3.9
				Bottom	7	22.3	22.3	8.2 8.2	8.2	33.0 33.0	33.0	93.2 98.5	93.1	6.7 7.1	6.7	6.7	3.2	3.3		2.9	2.9	ļ!
				Surface	1	22.5	22.5	8.2 8.2	8.2	33.0 33.0	33.0	98.4 97.8	98.5	7.0	7.1	7.1	2.2	2.2		3.7 3.9	3.7	
M4	Sunny	Moderate	15:59	Middle	5	22.5	22.5	8.2 8.2	8.2	33.0 33.0	33.0	98.1 97.0	98.0	7.0	7.0		2.0	2.0	2.1	3.8 4.2	3.9	4.0
				Bottom	9	22.5	22.5	8.2	8.2	33.0 33.0	33.0	97.4 98.2	97.2	7.0	7.0	7.0	1.9	2.0		4.4	4.3	<u> </u>
			10.55	Surface	1	22.4	22.4	8.2	8.2	33.0 33.0	33.0	97.4 96.9	97.8	7.0	7.0	7.0	2.6	2.6	- <u>.</u> .	4.8	4.9	
M5	Sunny	Moderate	16:55	Middle	6	22.4	22.4	8.2	8.2	33.0 33.1	33.0	96.6 96.3	96.8	6.9 6.9	6.9	6.0	3.1 4.3	3.0	3.3	2.9	2.9	3.8
				Bottom	11	22.4	22.4	8.2	8.2	33.1	33.1	96.0	96.2	6.9	6.9	6.9	4.5	4.4		3.6	3.7	<u> </u>
	Qu	Moderat	16,50	Surface	-	- 22.2	-	- 8.2	-	- 33.0	-	- 96.5	-	- 6.9	-	6.9	- 4.1	-		- 4.3	-	4.2
M6	Sunny	Moderate	16:50	Middle	1.4	22.2	22.2	8.2	8.2	33.0	33.0	95.2	95.9	6.9	6.9		3.9	4.0	4.0	4.3	4.3	4.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

## Appendix I - Action and Limit Levels for Marine Water Quality on 4 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Trackiditeria		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
IN I U (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 5.6 NTU</u>	<u>C2: 6.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.5 mg/L</u>	<u>C2: 6.0 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.5 mg/L</u>	<u>C2: 6.0 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

#### (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	II (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	97.8 97.5	97.7	7.0 6.9	7.0		1.8 1.6	1.7		5.6 5.6	5.6	1
C1	Sunny	Moderate	12:22	Middle	10	22.3	22.3	8.2	8.2	34.0	34.1	96.6	96.4	6.9	6.9	7.0	2.0	2.1	2.4	4.3	4.4	4.8
0.	ounny	modorato	12.22			22.3 22.3		8.2 8.2		34.1 34.1		96.2 95.8		6.9 6.8			2.1 3.3		2	4.4		
				Bottom	19	22.3	22.3	8.2	8.2	34.1	34.1	95.6	95.7	6.8	6.8	6.8	3.2	3.3		4.3	4.3	
				Surface	1	22.4 22.4	22.4	8.1 8.1	8.1	33.9 34.0	34.0	97.1 96.4	96.8	6.9 6.9	6.9		1.7 2.0	1.9		5.2 5.1	5.2	
C2	Suppu	Moderate	11:18	Middle	17.5	22.4	22.3	8.1	8.1	34.0	34.0	95.2	95.0	6.8	6.8	6.9	2.0	2.3	2.6	3.3	3.3	4.4
02	Sunny	woderate	11.10	Midule	17.5	22.3 22.3	22.3	8.1 8.1	0.1	34.0 34.0	34.0	94.7 94.0	95.0	6.8 6.7	0.0		2.2 3.6	2.3	2.0	3.3 4.6	3.3	4.4
				Bottom	34	22.3	22.3	8.1	8.1	34.0 34.0	34.0	94.0 94.2	94.1	6.7	6.7	6.7	3.6	3.6		4.6	4.6	
				Surface	1	22.4 22.4	22.4	8.1 8.1	8.1	33.8 33.8	33.8	96.2 95.5	95.9	6.9 6.8	6.9		1.8 1.8	1.8		4.5 4.7	4.6	
G1	Sunny	Moderate	11:48	Middle	4	22.3	22.3	8.1	8.1	33.9	33.9	95.5	94.7	6.8	6.8	6.9	2.6	2.7	2.7	4.1	4.2	4.0
01	Sunny	wouldate	11.40	Midule		22.3 22.3		8.1 8.2		33.9 34.1	33.9	93.9 95.3	34.1	6.7 6.8	0.0		2.8 3.6		2.1	4.3	4.2	4.0
				Bottom	7	22.3	22.3	8.2	8.2	34.1	34.1	95.5 95.5	95.4	6.8	6.8	6.8	3.4	3.5		3.2	3.2	
				Surface	1	22.4	22.4	8.1	8.1	33.9	33.9	96.1	95.8	6.9	6.9		1.6	1.7		3.9	4.0	
<u></u>	0	Madanata	44.00	Middle	4.5	22.4 22.3	00.0	8.1 8.2		33.9 34.0	24.0	95.5 95.4	05.5	6.8 6.8	<u> </u>	6.9	1.8 2.1			4.0	0.7	
G2	Sunny	Moderate	11:39	Middle	4.5	22.3	22.3	8.2	8.2	34.0	34.0	95.5	95.5	6.8	6.8		2.2	2.2	2.2	3.6	3.7	3.9
				Bottom	8	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	95.6 95.5	95.6	6.8 6.8	6.8	6.8	2.7 2.8	2.8		4.0 3.9	4.0	1
				Surface	1	22.4	22.5	8.1	8.2	33.8	33.8	96.8	95.9	6.9	6.9		2.3	2.3		3.5	3.6	
G3	Sunny	Moderate	11:54			22.5 22.4	22.4	8.2 8.1		33.7 33.9	33.9	95.0 95.5	05.0	6.8 6.8		6.9	2.3		2.7	3.6 3.4	3.4	3.9
65	Sunny	woderate	11.54	Middle	4	22.4	22.4	8.2	8.2	33.9 34.0	33.9	95.0	95.3	6.8	6.8		2.3	2.3	2.7	3.4	3.4	3.9
				Bottom	7	22.4 22.4	22.4	8.2 8.2	8.2	34.0 34.0	34.0	92.9 92.7	92.8	6.6 6.6	6.6	6.6	3.9 3.3	3.6		4.9 4.7	4.8	1
				Surface	1	22.5 22.4	22.5	8.1	8.1	33.9 33.9	33.9	96.9	96.6	6.9	6.9		1.6	1.7		3.5	3.5	$\square$
G4	0	Madanata	12:05	Middle	4.5	22.4	22.3	8.1 8.1	0.4	33.9	33.9	96.2 96.1	95.8	6.9 6.9	6.9	6.9	1.7	1.9	1.9	3.4	2.2	2.9
64	Sunny	Moderate	12.05	Midule	4.5	22.3	22.3	8.1	8.1	33.9	33.9	95.4	95.6	6.8	0.9		1.9	1.9	1.9	2.2	2.2	2.9
				Bottom	8	22.3 22.2	22.3	8.2 8.1	8.2	34.0 34.0	34.0	93.2 93.0	93.1	6.7 6.7	6.7	6.7	1.9 2.0	2.0		3.1 3.1	3.1	1
				Surface	1	22.3	22.3	8.1	8.1	33.8	33.8	94.9	94.6	6.8	6.8		1.7	1.8		3.4	3.4	
	0	Madanata	44.44	Middle	0	22.3 22.3	00.0	8.1 8.1	0.4	33.7 33.8	22.0	94.3 95.4	05.0	6.7 6.8		6.8	1.8 1.8	4.0		3.4 3.3	2.2	2.4
M1	Sunny	Moderate	11:44	Middle	3	22.3	22.3	8.1	8.1	33.8	33.8	95.2	95.3	6.8	6.8		1.9	1.9	2.2	3.3	3.3	3.4
				Bottom	5	22.3 22.3	22.3	8.1 8.1	8.1	33.9 33.9	33.9	94.7 94.6	94.7	6.8 6.8	6.8	6.8	2.6 2.9	2.8		3.6 3.6	3.6	1
				Surface	1	22.5	22.5	8.1	8.2	34.0	34.0	97.1	96.9	6.9	6.9		1.6	1.6		5.2	5.2	
						22.5 22.4	00.4	8.2 8.2		34.0 34.0		96.7 96.6	00.5	6.9 6.9		6.9	1.6 1.9			5.2 3.3		
M2	Sunny	Moderate	11:34	Middle	6	22.3	22.4	8.2	8.2	34.1	34.1	96.4	96.5	6.9	6.9		2.1	2.0	2.0	3.3	3.3	4.2
				Bottom	11	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	95.9 96.0	96.0	6.9 6.9	6.9	6.9	2.5 2.3	2.4		4.2 4.2	4.2	1
				Surface	1	22.6	22.6	8.2	8.2	33.9	33.9	97.0	96.4	6.9	6.9		1.8	1.9		3.7	3.7	
140	0	Madagat	44.50			22.5 22.4		8.2 8.2		33.8 33.9		95.8 95.8		6.8 6.8		6.9	1.9 2.1			3.7 3.6		
M3	Sunny	Moderate	11:59	Middle	4	22.4	22.4	8.2	8.2	33.9	33.9	95.7	95.8	6.8	6.8		2.0	2.1	2.7	3.6	3.6	3.3
				Bottom	7	22.4 22.4	22.4	8.1 8.1	8.1	34.1 34.1	34.1	90.1 90.8	90.5	6.4 6.5	6.5	6.5	4.2 4.2	4.2		2.7 2.7	2.7	
				Surface	1	22.3	22.3	8.2	8.2	34.0	34.0	97.3	97.1	6.9	6.9		2.0	2.0		3.9	3.9	
14	Su	Mad	11.07	Middle		22.3 22.3		8.2 8.2		34.0 34.1		96.8 96.5		6.9 6.9		6.9	2.0			3.8 3.0		2.4
M4	Sunny	Moderate	11:27	Middle	5.5	22.3	22.3	8.2	8.2	34.1	34.1	96.4	96.5	6.9	6.9		2.4	2.6	2.4	3.1	3.1	3.4
				Bottom	10	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	96.0 95.9	96.0	6.9 6.9	6.9	6.9	2.6 2.7	2.7		3.1 3.1	3.1	
				Surface	1	22.4	22.5	8.1	8.1	33.9	33.9	94.6	94.5	6.8	6.8		2.8	2.6		5.4	5.4	
	0	Madagat	40.45			22.5 22.3		8.1 8.1		33.9 34.0		94.4 93.9		6.7 6.7		6.8	2.4 4.1			5.4 5.8		
M5	Sunny	Moderate	12:15	Middle	6	22.3	22.3	8.1	8.1	34.0	34.0	93.6	93.8	6.7	6.7		4.0	4.1	3.6	5.9	5.9	5.2
				Bottom	11	22.3 22.3	22.3	8.2 8.2	8.2	34.0 34.0	34.0	93.3 93.2	93.3	6.7 6.7	6.7	6.7	4.0 4.1	4.1		4.3 4.3	4.3	1
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
						- 22.3	05.5	- 8.1		- 33.9	0.15	- 95.7	05.5	- 6.8		6.8	- 1.6	4-	۰. I	- 3.0		
M6	Sunny	Moderate	12:11	Middle	1.5	22.3	22.3	8.1	8.1	34.0	34.0	95.4	95.6	6.8	6.8		1.6	1.6	1.6	3.0	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1
l						-		-		-		-		-			-					

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

### Appendix I - Action and Limit Levels for Marine Water Quality on 4 December 2017 (Mid-Flood Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>			
	Stations G1-G4		
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 4.3 NTU</u>	<u>C1: 4.7 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 2.6 mg/L</u>	<u>C1: 2.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 2.6 mg/L</u>	<u>C1: 2.9 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 3.8 mg/L</u>	<u>C1: 4.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

#### (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	n (mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	ar (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.4 22.4	22.4	8.2 8.2	8.2	34.0 34.0	34.0	97.8 97.4	97.6	7.0 6.9	7.0		1.8 1.8	1.8		2.2 2.2	2.2	
C1	Sunny	Moderate	17:49	Middle	9.5	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	96.8 96.6	96.7	6.9 6.9	6.9	7.0	1.7 1.9	1.8	2.4	1.8 1.8	1.8	2.4
				Bottom	18	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	95.8 95.5	95.7	6.8 6.8	6.8	6.8	3.3 3.9	3.6		3.1 3.3	3.2	
				Surface	1	22.6 22.6	22.6	8.1 8.1	8.1	33.8 33.8	33.8	95.2 95.2	95.2	6.8 6.8	6.8	6.8	2.1 2.2	2.2		2.3 2.2	2.3	1
C2	Sunny	Moderate	16:46	Middle	16.5	22.5 22.4	22.5	8.1 8.1	8.1	33.9 34.0	34.0	93.2 94.3	93.8	6.6 6.7	6.7	0.0	2.3 2.4	2.4	2.5	3.5 3.6	3.6	2.9
				Bottom	32	22.4 22.4	22.4	8.1 8.1	8.1	34.0 34.0	34.0	93.6 93.8	93.7	6.7 6.7	6.7	6.7	3.0 2.9	3.0		2.6 2.7	2.7	L
				Surface	1	22.5 22.6 22.3	22.6	8.2 8.2 8.2	8.2	33.8 33.9 34.0	33.9	99.0 98.0 95.4	98.5	7.1 7.0 6.8	7.1	7.0	1.7 1.8 2.3	1.8		2.4 2.4 2.2	2.4	ļ
G1	Sunny	Moderate	17:18	Middle	3.5	22.3 22.3 22.3	22.3	8.2 8.2	8.2	34.0 34.1 34.1	34.1	95.4 95.3	95.4	6.8 6.8	6.8		2.3 2.2 3.8	2.3	2.5	2.2 2.2 2.3	2.2	2.3
				Bottom	6	22.3	22.3	8.2	8.2	34.1	34.1	95.3	95.3	6.8	6.8	6.8	3.2	3.5		2.3	2.3	<u> </u>
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	98.9 98.5	98.7	7.0 7.0	7.0	7.0	1.7 1.6 1.7	1.7		2.2 2.2 3.5	2.2	ļ
G2	Sunny	Moderate	17:06	Middle	4	22.5 22.4 22.3	22.5	8.2 8.2 8.2	8.2	34.0 34.0 34.1	34.0	98.2 97.2 95.3	97.7	7.0 6.9 6.8	7.0		1.7 1.7 3.4	1.7	2.3	3.5 3.5 2.2	3.5	2.6
				Bottom	7	22.3	22.3	8.2	8.2	34.1	34.1	95.0	95.2	6.8	6.8	6.8	3.8	3.6		2.1	2.2	<u> </u>
				Surface	1	22.6 22.6	22.6	8.2 8.2	8.2	33.8 33.8	33.8	99.1 99.5	99.3	7.1	7.1	7.0	1.6 1.5	1.6		1.8 1.8	1.8	ļ
G3	Sunny	Moderate	17:24	Middle	3.5	22.3 22.3	22.3	8.2 8.2	8.2	34.0 34.0	34.0	95.7 96.3	96.0	6.8 6.9	6.9		2.0 2.1	2.1	2.3	2.0 1.9	2.0	2.0
	-			Bottom	6	22.3 22.3	22.3	8.2 8.2	8.2	34.1 34.1	34.1	95.4 95.2	95.3	6.8 6.8	6.8	6.8	3.1 3.5	3.3		2.1 2.2	2.2	
				Surface	1	22.4 22.4	22.4	8.2 8.2	8.2	33.9 33.9	33.9	98.1 97.8	98.0	7.0 7.0	7.0	7.0	1.6 1.5	1.6		2.1 2.0	2.1	
G4	Sunny	Moderate	17:33	Middle	4	22.4 22.4 22.3	22.4	8.2 8.2 8.2	8.2	34.0 34.0 34.1	34.0	97.0 97.0 95.6	97.0	6.9 6.9	6.9		1.8 1.7 2.8	1.8	2.1	1.8 1.9 2.2	1.9	2.1
				Bottom	7	22.3	22.3	8.2	8.2	34.1	34.1	95.6	95.6	6.8 6.8	6.8	6.8	2.8	2.8		2.2	2.2	
				Surface	1	22.4 22.4 22.3	22.4	8.2 8.2 8.2	8.2	33.9 33.9 34.0	33.9	98.3 97.7	98.0	7.0 7.0	7.0	7.0	2.3 2.6 2.6	2.5		2.0	2.0	
M1	Sunny	Moderate	17:12	Middle	3	22.3	22.4	8.2 8.2	8.2	34.0 34.0 34.1	34.0	96.2 96.4 95.6	96.3	6.9 6.9 6.8	6.9		2.0 2.8 3.6	2.7	2.9	2.5 2.4 3.2	2.5	2.6
				Bottom	5	22.3	22.3	8.2	8.2	34.1 34.0	34.1	95.7 99.0	95.7	6.8 7.0	6.8	6.8	3.6 1.7	3.6		3.2	3.2	<u> </u>
				Surface	1	22.5	22.5	8.2 8.2	8.2	34.0 34.1	34.0	98.5 96.4	98.8	7.0	7.0	7.0	1.7	1.7	-	2.0 2.0 1.6	2.0	
M2	Sunny	Moderate	17:00	Middle	5	22.4 22.5 22.3	22.5	8.2 8.2	8.2	34.1 34.0 34.1	34.1	90.4 97.5 95.7	97.0	6.9 6.8	6.9		2.0 1.7 2.3	1.9	1.9	1.6 1.6 3.1	1.6	2.3
	-			Bottom	9	22.3	22.3	8.2	8.2	34.1 34.1 33.7	34.1	95.7 95.8 96.9	95.8	6.8	6.8	6.8	2.3 2.1 2.0	2.2		3.2	3.2	
				Surface	1	22.5 22.4	22.5	8.2 8.2	8.2	33.8	33.8	96.2	96.6	6.9 6.9	6.9	6.9	1.9 2.2	2.0	-	2.1 2.1	2.1	ł
М3	Sunny	Moderate	17:28	Middle	3.5	22.3 22.4 22.4	22.4	8.2 8.2 8.2	8.2	34.0 33.9 34.1	34.0	94.8 95.1 90.9	95.0	6.8 6.8 6.5	6.8		2.2 2.3 4.2	2.3	2.8	3.0 3.0 2.1	3.0	2.4
				Bottom	6	22.4 22.4 22.5	22.4	8.2 8.2	8.2	34.1 34.1 34.0	34.1	90.9 91.7 98.9	91.3	6.5 7.0	6.5	6.5	4.2 3.7 1.6	4.0		2.1 2.1 1.8	2.1	
				Surface	1	22.5 22.5 22.5	22.5	8.2 8.2	8.2	34.0 34.0 34.0	34.0	98.8 97.7	98.9	7.0 7.0	7.0	7.0	1.0	1.7		1.8	1.8	
M4	Sunny	Moderate	16:55	Middle	4.5	22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	97.4 96.4	97.6	6.9 6.9	7.0		1.7	1.7	1.8	2.2	2.3	2.3
				Bottom	8	22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	96.5 98.0	96.5	6.9 7.0	6.9	6.9	1.8	2.0		2.6	2.7	
				Surface	1	22.4 22.5	22.4	8.2 8.2	8.2	34.0 34.0	34.0	96.9 96.7	97.5	6.9 6.9	7.0	7.0	1.0	1.8		2.6	2.6	
M5	Sunny	Moderate	17:43	Middle	5.5	22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	96.4 95.7	96.6	6.9 6.8	6.9		1.9	1.9	2.1	2.4 2.4 2.6	2.4	2.6
				Bottom	10	22.4	22.4	8.2	8.2	34.0	34.0	95.4	95.6	6.8	6.8	6.8	2.6	2.5		2.7	2.7	<u> </u>
			47.00	Surface	-	- 22.3	-	- 8.2	-	- 34.0	-	- 92.3	-	- 6.6	-	6.6	- 3.9	-		- 3.5	-	
M6	Sunny	Moderate	17:39	Middle	2.2	22.3	22.3	8.2	8.2	34.0	34.0	92.5	92.4	6.6	6.6		3.5	3.7	3.7	3.3	3.4	3.4
				Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	L

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

## Appendix I - Action and Limit Levels for Marine Water Quality on 6 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	Stations G1-G4	4, M1-M5	
	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	22.2 NTU
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 4)		<u>C2: 4.2 NTU</u>	<u>C2: 4.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		urbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	ii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	95.5 95.9	95.7	6.8 6.9	6.9		2.5 2.5	2.5		5.1 5.2	5.2	
C1	Fine	Moderate	15:28	Middle	9.5	22.1	22.1	8.2	8.2	34.0	34.0	95.2	95.3	6.8	6.8	6.9	2.7	2.7	2.7	4.7	4.7	4.9
01	1 me	moderate	10.20			22.1 22.1		8.2 8.2		34.0 34.0		95.4 94.6		6.8 6.8			2.6		2.1	4.7		4.5
				Bottom	18	22.1	22.1	8.2	8.2	34.0	34.0	94.0 93.6	94.1	6.7	6.8	6.8	2.7	2.8		4.9	4.9	
				Surface	1	22.1	22.1	8.1	8.2	33.9	34.0	96.1	95.5	6.9	6.9		2.9	2.9		4.5	4.5	
						22.1 22.1		8.2 8.2		34.0 34.0		94.8 93.5		6.8 6.7		6.9	2.9 3.2			4.4		
C2	Fine	Moderate	14:45	Middle	17	22.1	22.1	8.2	8.2	34.0	34.0	94.8	94.2	6.8	6.8		3.0	3.1	3.2	4.7	4.7	4.6
				Bottom	33	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	92.8 93.3	93.1	6.7 6.7	6.7	6.7	3.6 3.4	3.5		4.4 4.5	4.5	
				Surface	1	22.2	22.2	8.2	8.2	34.0	34.0	96.7	96.7	6.9	6.9		2.9	2.9		4.3	4.4	
						22.2 22.2		8.2 8.2	-	34.0 34.0		96.7 96.7		6.9 6.9		6.9	2.8 3.0			4.4		
G1	Fine	Moderate	15:05	Middle	4	22.2	22.2	8.2	8.2	34.0	34.0	96.6	96.7	6.9	6.9		2.8	2.9	3.0	6.7	6.7	5.2
				Bottom	7	22.2	22.2	8.2	8.2	34.0	34.0	96.0	96.0	6.9 6.9	6.9	6.9	3.2	3.1		4.3	4.4	
				<b>.</b> (		22.2 22.3	00.0	8.2 8.2		34.0 34.0		96.0 97.1	07.4	6.9	7.0		3.0 1.7	4.7		4.4	4.0	
				Surface	1	22.3	22.3	8.2	8.2	34.0	34.0	97.6	97.4	7.0	7.0	7.0	1.7	1.7		4.2	4.2	
G2	Fine	Moderate	14:58	Middle	5	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	96.5 96.6	96.6	6.9 6.9	6.9		2.0 2.0	2.0	2.2	4.5 4.4	4.5	4.3
				Bottom	9	22.2	22.2	8.2	8.2	34.0	34.0	96.0	95.6	6.9	6.9	6.9	3.0	3.0		4.1	4.3	
						22.1		8.2 8.2		34.0 34.0		95.2 96.3		6.8 6.9		0.0	2.9			4.5 5.0		
				Surface	1	22.2	22.2	8.2	8.2	34.0	34.0	96.4	96.4	6.9	6.9	6.9	2.5	2.6		5.1	5.1	
G3	Fine	Moderate	15:09	Middle	4	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	96.5 96.3	96.4	6.9 6.9	6.9	0.5	2.6 2.4	2.5	2.7	4.6 4.6	4.6	4.6
				Bottom	7	22.2	22.2	8.2	8.2	34.0	34.0	95.9	95.9	6.9	6.9	6.9	3.0	2.9		4.0	4.2	
				Bollom	1	22.2	22.2	8.2	8.2	34.0	34.0	95.9	95.9	6.9	6.9	6.9	2.8	2.9		4.1	4.Z	
				Surface	1	22.2 22.1	22.2	8.2 8.2	8.2	34.0 34.0	34.0	95.6 94.9	95.3	6.8 6.8	6.8		2.8 2.9	2.9		5.1 5.1	5.1	
G4	Fine	Moderate	15:17	Middle	4.5	22.1	22.1	8.2	8.2	34.0	34.0	94.9	94.8	6.8	6.8	6.8	2.8	2.9	2.9	5.6	5.5	4.7
			-			22.1 22.1		8.2 8.2		34.0 34.0		94.7 94.5		6.8 6.8			2.9 2.9			5.3 3.5		
				Bottom	8	22.1	22.1	8.2	8.2	34.0	34.0	94.6	94.6	6.8	6.8	6.8	2.8	2.9		3.4	3.5	
				Surface	1	22.2 22.3	22.3	8.2 8.2	8.2	34.0 34.0	34.0	95.9 97.5	96.7	6.9 7.0	7.0		2.6 2.5	2.6		3.6 3.5	3.6	
M1	Fine	Moderate	15:02	Middle	3	22.2	22.2	8.2	8.2	34.0	34.0	96.7	97.0	6.9	7.0	7.0	2.0	2.0	2.3	4.2	4.2	4.2
IVI I	1 IIIC	wouldate	13.02	Wildule	5	22.2 22.2	22.2	8.2 8.2	0.2	34.0 34.0	34.0	97.2 96.5	51.0	7.0 6.9	7.0		2.0 2.2	2.0	2.5	4.2 4.8	4.2	4.2
				Bottom	5	22.2	22.2	8.2	8.2	34.0	34.0	96.9 96.9	96.7	6.9	6.9	6.9	2.2	2.3		4.6	4.7	
				Surface	1	22.1	22.1	8.2	8.2	34.0	34.0	94.8	94.9	6.8	6.8		2.4	2.3		4.7	4.7	
	Circ.	Madanata	14.54	Madalla	0	22.1 22.1	00.4	8.2 8.2		34.0 34.0	24.0	95.0 94.6	04.7	6.8 6.8	<u> </u>	6.8	2.2 2.5	0.4		4.6 4.9	4.0	4.0
M2	Fine	Moderate	14:54	Middle	6	22.1	22.1	8.2	8.2	34.0	34.0	94.7	94.7	6.8	6.8		2.2	2.4	2.3	4.8	4.9	4.8
				Bottom	11	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.2 94.7	94.5	6.8 6.8	6.8	6.8	2.3 2.3	2.3		4.8 4.7	4.8	
				Surface	1	22.2	22.2	8.2	8.2	34.0	34.0	96.3	96.3	6.9	6.9		2.4	2.4		4.4	4.4	
						22.2 22.2		8.2 8.2		34.0 34.0		96.3 96.2		6.9 6.9		6.9	2.4		1	4.4 2.9		
M3	Fine	Moderate	15:13	Middle	4	22.2	22.2	8.2	8.2	34.0	34.0	96.6	96.4	6.9	6.9		2.4	2.4	2.4	2.8	2.9	3.6
				Bottom	7	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	95.8 96.0	95.9	6.9 6.9	6.9	6.9	2.5 2.4	2.5		3.4 3.3	3.4	
				Surface	1	22.2	22.1	8.2	8.2	34.0	34.0	94.7	94.7	6.8	6.8		2.4	2.6	-	3.6	3.6	
				Sunace	1	22.1	22.1	8.2		34.0 34.0	34.0	94.7 94.6	94.1	6.8	0.0	6.8	2.5 2.9		4	3.6	3.0	
M4	Fine	Moderate	14:51	Middle	5	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.6 94.5	94.6	6.8 6.8	6.8		2.9	2.9	2.8	3.1 3.1	3.1	3.4
				Bottom	9	22.1	22.1	8.2	8.2	34.0	34.0	94.2	94.1	6.8	6.8	6.8	2.8	2.9		3.5	3.5	I
<b> </b>						22.1 22.1		8.2 8.2		34.0 34.0		94.0 95.0		6.7 6.8			3.0 2.8		<u> </u>	3.4 4.6		
				Surface	1	22.1	22.1	8.2	8.2	34.0	34.0	95.0	95.0	6.8	6.8	6.8	2.7	2.8	1	4.7	4.7	ļ l
M5	Fine	Moderate	15:24	Middle	6	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.9 94.9	94.9	6.8 6.8	6.8		2.8 2.9	2.9	2.9	6.2 6.3	6.3	4.7
				Bottom	11	22.1	22.1	8.2	8.2	34.0	34.0	94.3	94.5	6.8	6.8	6.8	2.9	2.9	1	3.1	3.1	† I
<b></b>						22.1		8.2	0.2	34.0	01.0	94.6	01.0	6.8	0.0	0.0	2.8	2.0	<u> </u>	3.0	0.1	
				Surface	-		-	-	-		-	-	-		-	6.8		-			-	
M6	Fine	Moderate	15:20	Middle	2.1	22.1	22.1	8.2	8.2	34.0	34.0	94.7	94.8	6.8	6.8	0.0	2.9	2.9	2.9	4.3	4.3	4.3
				Bottom		22.1		8.2		34.0		94.8	<u> </u>	6.8			2.9		1	4.2		† I
L				DOLIDITI	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 6 December 2017 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	Stations G1-G4	1 M1.M5	
	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6	<u>4.2 mg/D</u>	<u>5.0 mg/L</u>
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4		<u></u>
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU		tide of the same day	of the same day
(See Note 2 and 4)		<u>C1: 5.0 NTU</u>	<u>C1: 5.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.5 mg/L</u>	<u>C1: 7.0 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	n (mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Econori	Condition	Condition**	Time	Бері		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.6 94.7	94.7	6.8 6.8	6.8		3.4 3.4	3.4		4.9 4.7	4.8	
C1	Fine	Moderate	19:06	Middle	9.5	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.1 94.0	94.1	6.7 6.7	6.7	6.8	4.1 3.9	4.0	3.9	4.4 4.4	4.4	4.9
				Bottom	18	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	93.5 93.5	93.5	6.7 6.7	6.7	6.7	4.0 4.4	4.2		5.4 5.3	5.4	
				Surface	1	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	97.7 94.8	96.3	7.0 6.8	6.9	6.8	3.0 2.9	3.0		5.4 5.4	5.4	ļ
C2	Fine	Moderate	18:14	Middle	17	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	93.7 93.2	93.5	6.7 6.7	6.7		2.9 3.1	3.0	3.5	3.8 3.9	3.9	4.3
				Bottom	33	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	93.3 93.3	93.3	6.7 6.7	6.7	6.7	4.3 4.4	4.4		3.5 3.6	3.6	
				Surface	1	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	95.0 94.6	94.8	6.8 6.8	6.8	6.8	2.4 2.2	2.3		4.4 4.4	4.4	ļ
G1	Fine	Moderate	18:34	Middle	4	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.8 94.8	94.8	6.8 6.8	6.8		2.6 2.8	2.7	2.6	4.6 4.6	4.6	4.0
				Bottom	7	22.2 22.1	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.7 94.4	94.6	6.8 6.8	6.8	6.8	2.8 2.9	2.9		3.1 3.0	3.1	
				Surface	1	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.6 94.8	94.7	6.8 6.8	6.8	6.8	2.7 2.5	2.6		4.1 4.2	4.2	ļ
G2	Fine	Moderate	18:27	Middle	5	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.8 94.7	94.8	6.8 6.8	6.8		2.6 2.4	2.5	2.7	3.3 3.3	3.3	3.7
				Bottom	9	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.0 94.5	94.3	6.7 6.8	6.8	6.8	3.2 2.9	3.1		3.6 3.5	3.6	<u> </u>
				Surface	1	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.5 94.5	94.5	6.8 6.8	6.8	6.8	3.1 3.0	3.1		2.9 3.0	3.0	ļ
G3	Fine	Moderate	18:37	Middle	4	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.7 94.7	94.7	6.8 6.8	6.8		2.7 2.8	2.8	3.0	2.9 3.0	3.0	3.1
				Bottom	7	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.3 94.3	94.3	6.8 6.8	6.8	6.8	3.1 3.3	3.2		3.3 3.2	3.3	
				Surface	1	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.4 94.6	94.5	6.8 6.8	6.8	6.8	3.3 3.1	3.2		4.8 4.7	4.8	ļ
G4	Fine	Moderate	18:47	Middle	4.5	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.5 94.5	94.5	6.8 6.8	6.8		2.9 3.0	3.0	3.4	5.6 5.4	5.5	4.7
				Bottom	8	22.1 22.1	22.1	8.2 8.2	8.2	34.0	34.0	94.1 94.1	94.1	6.7 6.7	6.7	6.7	4.0 3.7	3.9		3.8 3.8	3.8	
				Surface	1	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.9 95.0	95.0	6.8 6.8	6.8	6.8	2.4 2.2	2.3		3.8 3.8	3.8	ļ
M1	Fine	Moderate	18:31	Middle	3	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.8 95.0	94.9	6.8 6.8	6.8		2.4 2.4	2.4	2.4	3.4 3.4	3.4	3.9
				Bottom	5	22.2 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.7 94.6	94.7	6.8 6.8	6.8	6.8	2.6 2.5	2.6		4.5 4.4	4.5	
				Surface	1	22.2 22.1	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.7 94.5	94.6	6.8 6.8	6.8	6.8	3.0 3.0	3.0		3.2 3.2	3.2	ļ
M2	Fine	Moderate	18:25	Middle	6	22.1 22.2	22.2	8.2 8.2	8.2	34.0 34.0	34.0	94.5 94.5	94.5	6.8 6.8	6.8		3.0 3.0	3.0	3.1	3.8 4.0	3.9	3.9
				Bottom	11	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	93.8 94.1	94.0	6.7 6.7	6.7	6.7	3.3 3.3	3.3		4.6 4.6	4.6	
				Surface	1	22.1 22.1	22.1	8.2 8.2	8.2	34.0 34.0	34.0	94.5 94.7	94.6	6.8 6.8	6.8	6.8	3.0 2.9	3.0		4.4	4.5	ļ
M3	Fine	Moderate	18:41	Middle	4	22.1 22.1 22.1	22.1	8.2 8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.5 94.7 94.4	94.6	6.8 6.8	6.8		3.0 2.8	2.9	3.0	4.7 4.8 5.4	4.8	4.9
				Bottom	7	22.1 22.1 22.2	22.1	8.2	8.2	34.0	34.0	94.4 94.4 94.7	94.4	6.8 6.8	6.8	6.8	3.2 3.2	3.2		5.5	5.5	<u> </u>
				Surface	1	22.2 22.1 22.2	22.2	8.2 8.2 8.2	8.2	33.9 34.0 34.0	34.0	94.7 94.5 94.5	94.6	6.8 6.8	6.8	6.8	2.7 3.0 2.8	2.9		5.3 5.3 3.8	5.3	ļ
M4	Fine	Moderate	18:22	Middle	5	22.2 22.1 22.1	22.2	8.2 8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.5 94.3 94.0	94.4	6.8 6.8 6.7	6.8		2.8 3.0 3.2	2.9	3.0	3.8 3.9 4.5	3.9	4.6
				Bottom	9	22.1 22.1 22.1	22.1	8.2 8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.0 94.2 94.9	94.1	6.7 6.7 6.8	6.7	6.7	3.2 3.2 2.5	3.2		4.5 4.5 3.7	4.5	<u> </u>
				Surface	1	22.1 22.2 22.1	22.2	8.2 8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.9 94.6 94.6	94.8	6.8 6.8	6.8	6.8	2.5 2.7 2.9	2.6		3.7 3.7 4.0	3.7	ļ
M5	Fine	Moderate	18:56	Middle	6	22.1 22.2 22.1	22.2	8.2 8.2 8.2	8.2	34.0 34.0 34.0	34.0	94.6 94.5 94.2	94.6	6.8 6.7	6.8		2.9 2.8 3.1	2.9	2.8	4.0 4.0 3.6	4.0	3.8
				Bottom	11	22.1	22.2	8.2	8.2	34.0	34.0	94.2	94.2	6.8	6.8	6.8	2.9	3.0		3.5	3.6	<u> </u>
				Surface	-	22.1	-	8.2	-	34.0	-	94.7	-	6.8	-	6.8	2.8	-		3.7	-	<b> </b>
M6	Fine	Moderate	18:52	Middle	2.1	22.1	22.1	8.2	8.2	34.0	34.0	94.7	94.7	6.8	6.8		2.8	2.8	2.8	3.7	3.7	3.7
				Bottom	-	-	-		-		-	-	-		-	-	-	-		_	-	<u> </u>

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 8 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	Stations G1-G4	4, M1-M5	
	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6		
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	22.2 NTU
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 4.4 NTU</u>	<u>C2: 4.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	н	Salin	iity ppt	DO Satu	ration (%)	Disso	ved Oxygen	n (mg/L)	1	urbidity(NTl	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.3 23.4	23.4	8.4 8.4	8.4	32.1 32.0	32.1	74.4 72.9	73.7	5.3 5.2	5.3		1.6 1.5	1.6		5.6 5.5	5.6	1
C1	Sunny	Moderate	16:32	Middle	9.5	23.1	23.1	8.4	8.4	33.5	33.7	70.3	69.6	5.0	5.0	5.2	3.1	2.9	2.6	8.1	8.1	6.4
01	Outiny	moderate	10.02	Middle	5.0	23.1 23.0	20.1	8.4 8.4		33.8 34.2		68.9 66.0	00.0	4.9 4.7			2.7		2.0	8.0 5.4	0.1	0.4
				Bottom	18	23.0	23.0	8.4	8.4	34.2	34.2	65.7	65.9	4.7	4.7	4.7	3.3	3.3		5.4	5.4	
				Surface	1	23.4	23.4	8.3	8.3	32.6	32.7	71.3	72.2	5.0	5.1		1.7	1.7		5.9	5.9	
						23.4 23.2		8.3 8.3		32.7 33.8		73.1 70.5		5.2 5.0		5.1	1.6 3.1		-	5.8 5.0		i
C2	Sunny	Moderate	15:07	Middle	16	23.2	23.2	8.3	8.3	33.7	33.8	70.5	70.5	5.0	5.0		2.6	2.9	2.8	5.0	5.0	5.6
				Bottom	31	23.2 23.2	23.2	8.3 8.3	8.3	33.8 33.8	33.8	67.3 67.3	67.3	4.7 4.7	4.7	4.7	3.8 3.5	3.7		5.8 5.9	5.9	1
				Surface	1	23.2	23.4	8.4	8.4	31.9	31.9	76.0	75.8	5.4	5.4		1.0	1.0		3.6	3.7	
				Sunace		23.4	23.4	8.4	0.4	31.9	31.9	75.5	75.0	5.4	5.4	5.3	1.0	1.0		3.7	3.1	i
G1	Sunny	Moderate	15:46	Middle	4	23.4 23.4	23.4	8.3 8.3	8.3	32.0 32.0	32.0	73.2 73.0	73.1	5.2 5.2	5.2		1.3 1.4	1.4	1.4	4.4 4.4	4.4	4.7
				Bottom	7	23.4	23.4	8.3	8.3	32.1	32.1	72.6	72.6	5.1	5.1	5.1	1.7	1.7		5.8	5.9	t I
						23.4 23.4		8.3 8.4		32.1 31.7		72.6 78.4		5.1 5.6			1.7 1.1			5.9 5.5		<u> </u>
				Surface	1	23.4	23.4	8.4	8.4	31.7	31.7	77.7	78.1	5.5	5.6	5.4	1.1	1.1		5.5	5.5	1
G2	Sunny	Moderate	15:32	Middle	4.5	23.3 23.3	23.3	8.3	8.3	32.2 32.2	32.2	73.0	72.8	5.2	5.2	5.4	1.4 1.2	1.3	1.3	10.6	10.7	7.3
	-					23.3		8.3 8.3		32.2		72.6	70.7	5.1 5.2	5.0	5.0	1.2	4.0		10.8 5.7		• •
				Bottom	8	23.3	23.3	8.3	8.3	32.3	32.3	72.6	72.7	5.1	5.2	5.2	1.5	1.6		5.7	5.7	
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.7 31.6	31.7	77.2 76.6	76.9	5.5 5.4	5.5		1.0 1.1	1.1		5.2 5.2	5.2	1
G3	Sunny	Moderate	15:53	Middle	4	23.4	23.4	8.4	8.4	32.1	32.1	74.4	74.3	5.3	5.3	5.4	1.1	1.2	1.3	10.6	10.6	7.2
0.0	Outiny	moderate	10.00			23.4 23.3		8.4 8.4		32.1 32.4		74.1 74.6		5.3 5.3			1.2 1.4		1.0	10.5 5.8		1.2
				Bottom	7	23.3	23.3	8.4 8.4	8.4	32.4	32.4	74.6	74.6	5.3	5.3	5.3	1.4	1.5		6.0	5.9	
				Surface	1	23.4	23.4	8.4	8.4	31.9	31.7	75.2	75.5	5.3	5.4		0.9	0.9		4.3	4.3	
						23.4 23.4		8.4 8.3		31.5 32.0		75.7 72.5		5.4 5.1		5.3	0.9			4.3		+
G4	Sunny	Moderate	16:07	Middle	4.5	23.4	23.4	8.3	8.3	32.1	32.1	72.6	72.6	5.1	5.1		1.5	1.5	1.4	5.7	5.7	5.2
				Bottom	8	23.4 23.3	23.4	8.4 8.4	8.4	32.3 32.5	32.4	75.6 74.7	75.2	5.4 5.3	5.4	5.4	1.8 1.9	1.9		5.4 5.6	5.5	1
				Surface	1	23.5	23.5	8.4	8.4	31.8	31.8	85.9	86.2	6.1	6.1		1.2	1.1		4.5	4.5	
				Sunace	1	23.5	23.5	8.4	0.4	31.8	51.0	86.4	00.2	6.1	0.1	5.9	1.0	1.1		4.4	4.5	ļ
M1	Sunny	Moderate	15:40	Middle	3	23.4 23.4	23.4	8.4 8.4	8.4	32.0 32.0	32.0	78.8 81.9	80.4	5.6 5.8	5.7		1.4 1.2	1.3	1.4	4.1 4.0	4.1	4.5
				Bottom	5	23.4 23.4	23.4	8.4	8.4	32.2 32.2	32.2	77.8	78.0	5.5	5.5	5.5	1.7	1.7		5.0	5.0	í I
						23.4		8.4 8.4		32.2		78.1 77.9		5.5			1.6 1.0			5.0 6.0		
				Surface	1	23.4	23.4	8.4	8.4	31.9	31.9	76.4	77.2	5.4	5.5	5.4	1.0	1.0		6.1	6.1	1
M2	Sunny	Moderate	15:25	Middle	5.5	23.3 23.3	23.3	8.3 8.3	8.3	32.4 32.4	32.4	72.8 72.6	72.7	5.2 5.1	5.2	0.1	1.5 1.4	1.5	1.4	4.7 4.7	4.7	5.4
				Bottom	10	23.2	23.2	8.3	8.3	32.9	33.0	65.9	65.4	4.7	4.7	4.7	1.4	1.8		5.2	5.3	t I
				Dottom	10	23.2	23.2	8.3	0.5	33.1	33.0	64.9	05.4	4.6	4.7	4.7	1.9	1.0		5.3	5.5	<u> </u>
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.5 31.3	31.4	77.4 76.8	77.1	5.5 5.5	5.5	5.5	1.0 1.1	1.1		4.0 4.0	4.0	
МЗ	Sunny	Moderate	16:00	Middle	4	23.3	23.3	8.4	8.4	32.1	32.2	76.2	75.9	5.4	5.4	5.5	1.1	1.1	1.2	6.3	6.3	5.3
					_	23.3 23.3		8.4 8.4		32.2 32.3		75.5 75.1		5.4 5.3			1.1 1.5		1	6.3 5.5		ł
				Bottom	7	23.3	23.3	8.4	8.4	32.3	32.3	75.0	75.1	5.3	5.3	5.3	1.4	1.5		5.7	5.6	
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.3 31.4	31.4	85.2 84.6	84.9	6.1 6.0	6.1	_	0.8	0.8	_	3.1 3.2	3.2	7
M4	Sunny	Moderate	15:15	Middle	4.5	23.3	23.3	8.3	8.3	32.4	32.5	74.9	74.1	5.3	5.3	5.7	1.8	1.7	1.5	6.1	6.1	4.9
141-4	Gunny	moderate	10.10	Middid	4.0	23.3 23.3		8.3 8.3		32.5 32.6		73.2 72.4		5.2 5.1	0.0		1.5 2.1		1.0	6.1 5.4	0.1	7.5
				Bottom	8	23.3	23.3	8.3	8.3	32.6	32.6	72.4	72.3	5.1	5.1	5.1	2.1	1.9		5.4 5.3	5.4	
				Surface	1	23.4	23.4	8.3	8.3	31.7	31.7	71.4	70.9	5.1	5.1		1.1	1.1		6.1	6.1	
						23.4 23.4		8.3 8.3		31.7 31.9		70.4 70.5		5.0 5.0		5.1	1.1 1.5		1	6.1 10.6		ł
M5	Sunny	Moderate	16:23	Middle	6	23.4	23.4	8.3	8.3	32.0	32.0	70.1	70.3	5.0	5.0		1.8	1.7	1.9	10.5	10.6	7.7
				Bottom	11	23.1 23.1	23.1	8.4 8.4	8.4	33.4 33.4	33.4	63.9 62.9	63.4	4.5 4.4	4.5	4.5	2.9 2.6	2.8		6.3 6.2	6.3	1
				Surface		-		- 8.4		- 33.4		-		4.4			- 2.0	_		- 0.2	_	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.2	-	-	ł	-	-	ļ I
M6	Sunny	Moderate	16:16	Middle	1.2	23.4 23.4	23.4	8.4 8.4	8.4	31.8 31.8	31.8	73.7 73.4	73.6	5.2 5.2	5.2		1.2 1.1	1.2	1.2	7.5 7.5	7.5	7.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	i I
						-		-		-	L	-	L	-			-			-		

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 8 December 2017 (Mid-Flood Tide)

<u>Parameter</u> (unit)	Depth	Action Level	Limit Level
<u>(unit)</u>	Stations G1-G4	4. M1-M5	
	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6	<u></u>	<u></u>
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 4)		<u>C1: 4.7 NTU</u>	<u>C1: 5.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.7 mg/L</u>	<u>C1: 7.3 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.7 mg/L</u>	<u>C1: 7.3 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 8.0 mg/L</u>	<u>C1: 8.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	n (mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.7	31.7	72.7 72.2	72.5	5.1 5.1	5.1		1.2 1.4	1.3		5.6 5.6	5.6	
C1	Sunny	Moderate	10:55	Middle	9.5	23.7 23.7	23.7	8.3 8.3	8.3	33.0 33.0	33.0	72.3 72.3	72.3	5.1 5.1	5.1	5.1	2.0 1.9	2.0	2.4	3.3 3.3	3.3	5.2
				Bottom	18	23.7 23.7	23.7	8.4 8.4	8.4	34.2 34.2	34.2	72.7 72.6	72.7	5.1 5.1	5.1	5.1	3.6 4.1	3.9		6.6 6.7	6.7	
				Surface	1	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.7	31.7	72.2 72.5	72.4	5.1 5.1	5.1	5.1	1.3 1.4	1.4		3.9 4.0	4.0	
C2	Sunny	Moderate	09:25	Middle	17	23.7 23.7	23.7	8.3 8.3	8.3	33.2 33.1	33.2	72.2 72.2	72.2	5.1 5.1	5.1	0.1	4.0 3.8	3.9	3.2	4.0 3.8	3.9	4.1
				Bottom	33	23.7 23.7	23.7	8.3 8.4	8.4	34.2 34.3	34.3	72.6 73.2	72.9	5.1 5.1	5.1	5.1	4.6 3.8	4.2		4.3 4.2	4.3	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.6 76.6	76.6	5.4 5.4	5.4	5.4	1.1 1.1	1.1		3.6 3.4	3.5	ļ
G1	Sunny	Moderate	10:04	Middle	4	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.8 76.3	76.1	5.3 5.4	5.4		1.1 1.0	1.1	1.1	4.8 4.9	4.9	5.0
				Bottom	7	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.6 76.9	76.3	5.3 5.4	5.4	5.4	1.0 0.9	1.0		6.5 6.5	6.5	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.6 76.8	76.2	5.3 5.4	5.4	5.4	1.2 1.1	1.2		4.5 4.7	4.6	ļ
G2	Sunny	Moderate	09:50	Middle	4.5	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.3 76.2	75.8	5.3 5.4	5.4		1.1 1.0	1.1	1.4	5.9 5.9	5.9	5.1
				Bottom	8	23.8 23.8	23.8	8.4 8.3	8.4	32.1 32.1	32.1	74.6 71.5	73.1	5.3 5.0	5.2	5.2	1.9 1.8	1.9		4.8 4.9	4.9	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	77.0 77.2	77.1	5.4 5.4	5.4	5.4	1.0 1.0	1.0		5.5 5.4	5.5	ļ
G3	Sunny	Moderate	10:10	Middle	4	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.3 76.6	76.5	5.4 5.4	5.4		1.0 1.0	1.0	1.0	8.0 8.0	8.0	6.4
				Bottom	7	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.8 76.1	76.5	5.4 5.4	5.4	5.4	0.9	1.0		5.5 5.7	5.6	
				Surface	1	23.7 23.8	23.8	8.3 8.3	8.3	31.8 31.7	31.8	72.9 72.1	72.5	5.1 5.1	5.1	5.1	2.1 2.3	2.2		4.3 4.4	4.4	ļ
G4	Sunny	Moderate	10:32	Middle	4.5	23.7 23.8	23.8	8.3 8.3	8.3	31.9 31.9 31.9	31.9	71.7 71.4	71.6	5.1 5.0	5.1		3.7 3.5	3.6	3.0	5.1 5.2	5.2	4.7
				Bottom	8	23.7 23.7	23.7	8.3 8.3	8.3	32.1	32.0	71.8 72.0	71.9	5.1 5.1	5.1	5.1	3.2 3.2	3.2		4.6 4.5	4.6	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.3 76.5	76.4	5.4 5.4	5.4	5.4	1.0 0.9	1.0		5.2 5.2	5.2	ļ
M1	Sunny	Moderate	09:56	Middle	3	23.8 23.8 23.8	23.8	8.4 8.4 8.4	8.4	32.0 32.0 32.0	32.0	75.5 75.8 75.5	75.7	5.3 5.3 5.3	5.3		1.0 1.0 1.0	1.0	1.0	5.8 5.6 6.5	5.7	5.8
	-			Bottom	5	23.8	23.8	8.4	8.4	32.0	32.0	75.5	75.5	5.3	5.3	5.3	1.0	1.0		6.6	6.6	
				Surface	1	23.8 23.8 23.8	23.8	8.3 8.4 8.4	8.4	32.0 32.0 32.0	32.0	76.0 76.3 75.8	76.2	5.4 5.4	5.4	5.4	0.9	0.9		5.4 5.6 6.3	5.5	ļ
M2	Sunny	Moderate	09:40	Middle	6	23.8 23.8 23.8	23.8	8.4	8.4	32.0 32.0 32.1	32.0	75.8 75.6 70.7	75.7	5.3 5.3	5.3		0.9 0.9 4.2	0.9	2.0	6.1	6.2	5.8
	-			Bottom	11	23.8	23.8	8.3 8.3	8.3	32.2	32.2	69.8	70.3	5.0 4.9	5.0	5.0	4.3	4.3		5.7 5.7	5.7	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.6 76.9	76.8	5.4 5.4	5.4	5.4	1.0 1.0	1.0		5.6 5.6	5.6	ļ
M3	Sunny	Moderate	10:18	Middle	4	23.8 23.8 23.8	23.8	8.4 8.4 8.4	8.4	32.0 32.0 32.0	32.0	76.5 76.5 76.8	76.5	5.4 5.4 5.4	5.4		1.1 1.0 1.0	1.1	1.0	6.5 6.6 6.6	6.6	6.3
				Bottom	7	23.8 23.8 23.8	23.8	8.4 8.3	8.4	32.0 32.0 32.0	32.0	76.9	76.9	5.4 5.4 5.4	5.4	5.4	0.9	1.0		6.7 5.1	6.7	<u> </u>
				Surface	1	23.8 23.8 23.8	23.8	8.3 8.3 8.3	8.3	32.0 32.0 32.0	32.0	76.3 76.0	76.8	5.4 5.4 5.4	5.4	5.4	1.0 1.0 1.0	1.0		5.1 5.2 7.3	5.2	ļ
M4	Sunny	Moderate	09:33	Middle	5	23.8 23.8 23.8	23.8	8.3 8.3	8.3	32.0 32.0 32.1	32.0	75.5	75.8	5.4 5.3 5.0	5.4		1.0 1.0 2.4	1.0	1.5	7.3	7.3	5.7
				Bottom	9	23.8	23.8	8.3 8.3	8.3	32.1 32.1 31.7	32.1	71.4	71.3	5.0 5.1	5.0	5.0	2.4 2.4 1.3	2.4		4.4	4.5	<u> </u>
				Surface	1	23.8 23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.6 31.9	31.7	72.7	72.5	5.1 5.1	5.1	5.1	1.3 1.3 1.8	1.3		4.5	4.4	ļ
M5	Sunny	Moderate	10:47	Middle	6	23.0 23.7 23.7	23.8	8.3 8.4	8.3	31.9 31.9 32.2	31.9	71.0 71.7 72.3	71.8	5.1 5.1 5.1	5.1		1.8 3.9	1.8	2.2	9.5 9.5 6.9	9.5	6.9
	<u> </u>			Bottom	11	23.7	23.7	8.3	8.4	32.1	32.2	71.9	72.1	5.1	5.1	5.1	3.2	3.6		6.7	6.8	<u> </u>
				Surface	-	23.8	-	- 8.3	-	31.7	-	71.6	-	- 5.1	-	5.1	- 1.4	-		7.3	-	l
M6	Sunny	Moderate	10:39	Middle	1.2	23.8	23.8	8.3	8.3	31.7	31.7	71.8	71.7	5.1	5.1		1.4	1.3	1.3	7.5	7.4	7.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 11 December 2017 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
<u></u>	Stations G1-G4	4, <u>M1-M5</u>	I
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
<b>m</b> 1.11.		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 3.4 NTU</u>	<u>C2: 3.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.2 mg/L</u>	<u>C2: 7.8 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Image         Outer         Outer         Viate         Averato         Viate         Viate<	Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	urbidity(NTl	U)	Suspe	nded Solids	(mg/L)
	Location	Condition	Condition**	Time	Dept	ii (iii)		Average		Average		Average		Average		Average	DA*		Average	DA*		Average	DA*
					Surface	1		21.0		8.1		33.0		95.2		7.0			2.1			3.2	1
	<b>C1</b>	0	Madanata	40.40	Madalla	40	=	04.4		0.4		22.0		05.5		7.0	7.0		0.4			4.0	4.0
Image: borner         Image:	CI	Sunny	woderate	19:48	Middle	10		21.1		8.1		33.0		95.5	7.0	7.0			2.1	2.3		4.0	4.0
					Bottom	19		21.0		8.1		33.1		96.7		7.1	7.1		2.6			4.3	
					Quarteria	4	=	04.0		0.0		22.0		07.0		7.0			4.0			5.4	
					Surface	-	21.2	21.2	8.0	8.0	33.0	33.0	97.7	97.0	7.2	1.2	7.2	1.6	1.8		5.0	5.1	↓
Image         Image <td>C2</td> <td>Sunny</td> <td>Moderate</td> <td>18:41</td> <td>Middle</td> <td>17.5</td> <td></td> <td>21.2</td> <td></td> <td>8.0</td> <td></td> <td>33.0</td> <td></td> <td>97.8</td> <td></td> <td>7.2</td> <td></td> <td></td> <td>2.3</td> <td>2.3</td> <td></td> <td>4.9</td> <td>5.3</td>	C2	Sunny	Moderate	18:41	Middle	17.5		21.2		8.0		33.0		97.8		7.2			2.3	2.3		4.9	5.3
Barry         Barry <th< td=""><td></td><td></td><td></td><td></td><td>Bottom</td><td>34</td><td></td><td>21.2</td><td></td><td>8.0</td><td></td><td>33.0</td><td></td><td>07.0</td><td></td><td>7.2</td><td>7.2</td><td></td><td>2.9</td><td></td><td></td><td>6.0</td><td>1</td></th<>					Bottom	34		21.2		8.0		33.0		07.0		7.2	7.2		2.9			6.0	1
</td <td></td> <td></td> <td></td> <td></td> <td>Dottom</td> <td>54</td> <td></td> <td>21.2</td> <td></td> <td>0.0</td> <td></td> <td>55.0</td> <td></td> <td>51.5</td> <td></td> <td>1.2</td> <td>1.2</td> <td></td> <td>2.0</td> <td></td> <td></td> <td>0.0</td> <td></td>					Dottom	54		21.2		0.0		55.0		51.5		1.2	1.2		2.0			0.0	
M bit         M bit <th< td=""><td></td><td></td><td></td><td></td><td>Surface</td><td>1</td><td></td><td>21.2</td><td></td><td>8.0</td><td></td><td>33.0</td><td></td><td>97.4</td><td></td><td>7.1</td><td></td><td></td><td>2.6</td><td></td><td></td><td>4.1</td><td></td></th<>					Surface	1		21.2		8.0		33.0		97.4		7.1			2.6			4.1	
Image: state          ModeMode <th< td=""><td>G1</td><td>Sunny</td><td>Moderate</td><td>10.12</td><td>Middle</td><td>4.5</td><td>21.2</td><td>21.2</td><td>8.0</td><td>8.0</td><td>33.0</td><td>33.0</td><td>97.3</td><td>974</td><td>7.1</td><td>71</td><td>7.1</td><td>1.7</td><td>17</td><td>2.0</td><td>3.8</td><td>3.0</td><td>30</td></th<>	G1	Sunny	Moderate	10.12	Middle	4.5	21.2	21.2	8.0	8.0	33.0	33.0	97.3	974	7.1	71	7.1	1.7	17	2.0	3.8	3.0	30
Surfix         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C        C         C	01	Gunny	moderate	10.12	Middle	4.0		21.2				55.0		51.4		7.1			1.7	2.0		0.5	0.0
					Bottom	8		21.2		8.0		33.0		97.2		7.1	7.1		1.6			3.8	
					Surface	1		21.2		8.1	33.0	33.0	98.4	98.3		7.2		1.4	1.4			47	
Sum         Modera         Work         Work <t< td=""><td></td><td></td><td></td><td></td><td>ounace</td><td></td><td></td><td>21.2</td><td></td><td>0.1</td><td></td><td>00.0</td><td></td><td>50.5</td><td></td><td>1.2</td><td>7.2</td><td></td><td>1.4</td><td></td><td></td><td>4.7</td><td>ł I</td></t<>					ounace			21.2		0.1		00.0		50.5		1.2	7.2		1.4			4.7	ł I
Image: border b	G2	Sunny	Moderate	19:02	Middle	5.5		21.2		8.0		33.0		97.5		7.2			1.5	1.5		5.2	4.7
G3       Surry       Moderali       Surface       1       21       21       20       20       20       20       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       70       70       70      70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td></td> <td></td> <td></td> <td></td> <td>Bottom</td> <td>10</td> <td>21.1</td> <td>21.1</td> <td></td> <td>8.0</td> <td></td> <td>33.0</td> <td>95.6</td> <td>95.6</td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td>1.5</td> <td>1.6</td> <td></td> <td>4.1</td> <td>4.1</td> <td>1</td>					Bottom	10	21.1	21.1		8.0		33.0	95.6	95.6	7.0	7.0	7.0	1.5	1.6		4.1	4.1	1
App         App <td></td> <td></td> <td></td> <td></td> <td>Bottom</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.0</td> <td></td> <td></td> <td></td> <td>7.0</td> <td>1.0</td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td><u> </u></td>					Bottom	10						00.0				7.0	1.0		1.0				<u> </u>
G3     Nodes     9194     Made     5     212     712     820     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800     800 </td <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td>1</td> <td></td> <td>21.2</td> <td></td> <td>8.0</td> <td></td> <td>32.8</td> <td></td> <td>92.4</td> <td></td> <td>6.8</td> <td></td> <td></td> <td>8.0</td> <td></td> <td></td> <td>4.5</td> <td></td>					Surface	1		21.2		8.0		32.8		92.4		6.8			8.0			4.5	
Image         Image <th< td=""><td>G3</td><td>Sunny</td><td>Moderate</td><td>19:18</td><td>Middle</td><td>5</td><td></td><td>21.2</td><td>8.0</td><td>8.0</td><td>33.0</td><td>33.0</td><td></td><td>92.8</td><td>6.8</td><td>6.8</td><td>6.8</td><td>4.0</td><td>3.9</td><td>4.9</td><td>6.3</td><td>6.3</td><td>5.4</td></th<>	G3	Sunny	Moderate	19:18	Middle	5		21.2	8.0	8.0	33.0	33.0		92.8	6.8	6.8	6.8	4.0	3.9	4.9	6.3	6.3	5.4
Image: bord biase         Batter biase         Solution biase         Soluticolinabias         Solution biase         Solu		,							0.0		00.0												
App         App <td></td> <td></td> <td></td> <td></td> <td>Bottom</td> <td>9</td> <td></td> <td>21.1</td> <td></td> <td>8.0</td> <td></td> <td>33.0</td> <td></td> <td>92.9</td> <td></td> <td>6.8</td> <td>6.8</td> <td></td> <td>2.9</td> <td></td> <td></td> <td>5.4</td> <td></td>					Bottom	9		21.1		8.0		33.0		92.9		6.8	6.8		2.9			5.4	
G4         Num         Moderate         19.28         Moderate         21.3         0.81         0.30         30.0         96.0         7.1         7.1         22         7.1         32         7.2         3.3         3.3         30.0         96.0         7.1         7.1         7.1         22         7.2         3.3         3.3         30.0         96.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0					Surface	1		21.3		8.1		33.0		97.1		7.1			2.2			5.3	
G4       Sumy       Woderale       19.2       Wide       4       21.3       21.3       21.0       6.0       6.1       33.0       65.0       96.5       96.5       7.0       7.0       7.0       2.2       2.2       2.2       2.2       2.2       3.0       3.0       96.5       96.5       96.5       97.0       7.0       7.0       2.5       2.5       2.5       3.0       3.0       3.0       96.5       96.5       96.7       7.0       7.0       7.0       2.5       2.5       2.5       2.5       2.5       2.5       3.0       3.0       3.0       96.7       97.6       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>21.0</td><td></td><td>5</td><td></td><td>00.0</td><td></td><td></td><td></td><td></td><td></td><td>7.1</td><td></td><td></td><td></td><td></td><td></td><td>ł  </td></th<>							21.0		5		00.0						7.1						ł
image: biase interms         image: bi	G4	Sunny	Moderate	19:28	Middle	4		21.3		8.1		33.0		96.5		7.1			2.2	2.3		3.2	4.1
M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1 = M 1					Bottom	7		21.2		8.1		33.0		95.9		7.0	7.0		2.5			3.9	í
M         M         Moderale         M         M         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V<															-			2.0					<u> </u>
M1         Suny bit Moderale         Midele bit Moderale         Noderale (1)         Midele (1)         3.5         2.1.3         2.1.3         8.1         8.1         3.30         3.0         9/7         7.7         7.1         7.2         7.1         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7        7.7 <th< td=""><td></td><td></td><td></td><td></td><td>Surface</td><td>1</td><td></td><td>21.3</td><td></td><td>8.1</td><td></td><td>33.0</td><td></td><td>97.8</td><td></td><td>7.2</td><td>7.2</td><td></td><td>2.0</td><td></td><td></td><td>4.1</td><td>1</td></th<>					Surface	1		21.3		8.1		33.0		97.8		7.2	7.2		2.0			4.1	1
M2         Bottom         6         212         212         212         8.0         8.0         33.0         33.0         97.0         97.3         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1         7.1	M1	Sunny	Moderate	19:07	Middle	3.5		21.3		8.1		33.0		97.7		7.2	1.2		1.7	1.8		5.3	4.2
image: binomic						-																	ł I
M2         Surian         Image         I					Bottom	6	21.2	21.2	8.0	8.0	33.0	33.0	97.5	97.3	7.1	7.1	7.1	1.6	1.7		3.2	3.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Surface	1		21.2		8.1		33.0		98.7		7.2			2.4			3.2	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	140	0	Madanata	40.50	Madalla	0		04.0				22.0		00.0	=	74	7.2		0.5	0.5		2.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IVI2	Sunny	woderate	18:50	Middle	0	21.2	21.2	8.0	8.0	33.0	33.0	97.3	90.9	7.1	7.1		2.5	2.5	2.5	3.9	3.9	3.4
M3 = M3 = M4 = M4 = M4 = M4 = M4 = M4 =					Bottom	11		21.1		8.0		33.1		95.2		7.0	7.0		2.7			3.1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Surface	1	21.1	21.2	0.0	8.0		22.0	00.0	02.1	1.0	6.9			2.0		0.1	5.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Sunace			21.2		0.0		32.9		95.1		0.0	6.9		3.0			5.0	ļ I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M3	Sunny	Moderate	19:23	Middle	5		21.2		8.0		32.9		93.7		6.9			3.0	3.3		5.7	5.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Bottom	۵	21.2	21.2	8.0	80	33.0	33.0	93.7	93.7	6.9	69	69	3.1	3.1	1	6.0	60	í I
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ļ				DOLIDIT	5		21.2		0.0		55.0		33.1	0.0	0.5	0.5		5.1	ļ		0.0	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Surface	1		21.2		8.0		33.0		97.2		7.1	<b>.</b>		1.4			5.2	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M4	Sunny	Moderate	18:48	Middle	5	21.2	21.2	8.0	8.0	33.0	33.0	96.6	96.8	7.1	7.1	7.1		1.5	1.5	3.2	3.2	4.1
M6         Moderate         9         212         21.2         8.0         8.0         3.0         3.0         96.5         96.5         7.1         7.1         7.1         1.5         1.6         4.0         4.0         4.0           M5         Moderate         9.4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.1         4.0         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1 <t< td=""><td></td><td>carry</td><td></td><td></td><td>madio</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>55.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.L</td><td></td></t<>		carry			madio									55.0								5.L	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Bottom	9		21.2		8.0		33.0		96.5		7.1	7.1		1.6			4.0	i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Surface	1		21.1		8.0		33.0		93.3		6.9			3.8			3.2	
Middle       0       21.0       21.0       21.0       8.1       8.1       33.1       33.1       93.8       93.8       95.9       6.9       0.9       2.9       5.1       5.2       5.0       5.1       4.1         M6       Bottom       11       21.0       21.0       8.1       8.1       33.1       33.1       95.2       95.1       7.0       7.0       7.0       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8       2.8<																	6.9			4			ł
M6         Sunny         Moderate         19:34         Sunny         Sunny         Moderate         11         21.0 21.0         21.0 8.1         8.1 8.1         8.1 33.1         33.1 94.9         95.1 94.9         95.1         7.0         7.0         7.0         2.8         2.8         4.1         3.9         4.0           M6         Sunny         Moderate         19:34         Middle         4.1         21.2         21.2         8.0         8.0         33.0         95.2         95.2         7.0         7.0         7.0         2.8         2.8         4.1         3.9         4.0           M6         19:34         Middle         4         21.2         21.2         8.0         8.0         33.0         95.2         95.2         7.0         7.0         7.0         2.6         2.6         2.6         4.1         3.9         4.1           M6         19:34         21.2         21.2         8.0         8.0         33.0         95.2         95.2         7.0         7.0         7.0         2.6         2.6         2.6         4.1         4.0         4.1         4.0         4.1         4.0         4.1         4.0         4.1         4.0         4.1 <t< td=""><td>M5</td><td>Sunny</td><td>Moderate</td><td>19:40</td><td>Middle</td><td>6</td><td></td><td>21.0</td><td></td><td>8.1</td><td></td><td>33.1</td><td></td><td>93.8</td><td></td><td>6.9</td><td></td><td></td><td>3.1</td><td>3.2</td><td></td><td>5.1</td><td>4.1</td></t<>	M5	Sunny	Moderate	19:40	Middle	6		21.0		8.1		33.1		93.8		6.9			3.1	3.2		5.1	4.1
M6     Sunny     Moderate     19:34     Surface     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     <					Bottom	11	21.0	21.0	8.1	8.1	33.1	33.1		95.1	7.0	7.0	7.0	2.8	2.8	]	4.1	4.0	i l
M6     Sunny     Moderate     19:34     Middle     4     21.2     21.2     8.0     8.0     33.0     33.0     95.2     95.2     95.2     7.0     7.0     2.6     2.6     4.1       4.1     4.1     4.1     4.1     4.1     4.1     4.1     4.1     4.1								-							7.0			2.8	-				┝───┥
M6 Sunny Moderate 19:34 Middle 4 21.2 21.2 8.0 8.0 33.0 33.0 95.2 95.2 7.0 7.0 2.6 2.6 4.1 4.1 4.1 4.1					Surface	-	_	-		-		-	-	-	-	-	7.0	_	-		_	-	i I
· 21.2 8.0 33.0 95.2 7.0 2.5 4.0	M6	Sunny	Moderate	19:34	Middle	4		21.2		8.0		33.0		95.2		7.0	7.0		2.6	2.6		4.1	4.1
Bottom							- 21.2		8.0		- 33.0			<u> </u>	7.0			2.5		1			t I
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 11 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 4.2 NTU</u>	<u>C1: 4.6 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Depth	) (m)	Tempera	ature (°C)	F	ъH	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	; (mg/L)
Economi	Condition	Condition**	Time	Бери	. ()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	21.4 21.4	21.4	8.1 8.1	8.1	32.9 32.9	32.9	95.9 96.1	96.0	7.0 7.0	7.0	7.0	1.4 1.4	1.4		5.2 5.2	5.2	
C1	Sunny	Moderate	14:40	Middle	10	21.2 21.2	21.2	8.1 8.1	8.1	33.0 33.0	33.0	93.9 95.0	94.5	6.9 7.0	7.0	7.0	2.7 2.7	2.7	2.5	5.2 5.2	5.2	5.2
				Bottom	19	21.1 21.1	21.1	8.1 8.1	8.1	33.1 33.1	33.1	95.4 95.5	95.5	7.0 7.0	7.0	7.0	3.4 3.5	3.5		5.1 5.2	5.2	
				Surface	1	21.3 21.3	21.3	7.9 8.0	8.0	32.9 32.9	32.9	94.0 93.3	93.7	6.9 6.8	6.9	6.8	1.6 1.6	1.6		3.5 3.5	3.5	
C2	Sunny	Moderate	13:23	Middle	17	21.3 21.3	21.3	8.0 8.0	8.0	32.9 32.9	32.9	91.0 91.3	91.2	6.7 6.7	6.7	0.0	1.6 1.8	1.7	1.7	2.8 2.9	2.9	3.3
				Bottom	33	21.2 21.2	21.2	8.0 8.0	8.0	32.9 32.9	32.9	90.8 91.2	91.0	6.7 6.7	6.7	6.7	1.7 1.8	1.8		3.5 3.6	3.6	
				Surface	1	21.2 21.3	21.3	8.1 8.1	8.1	33.0 33.0	33.0	95.5 97.1	96.3	7.0 7.1	7.1	7.1	2.0 2.4	2.2		4.4 4.3	4.4	ļ
G1	Sunny	Moderate	14:02	Middle	4.5	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	95.2 95.2	95.2	7.0 7.0	7.0		2.1 2.3	2.2	2.2	4.4 4.3	4.4	4.9
				Bottom	8	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	94.6 94.8	94.7	6.9 7.0	7.0	7.0	2.1 2.4	2.3		5.9 5.9	5.9	
				Surface	1	21.3 21.3	21.3	8.1 8.1	8.1	33.0 33.0	33.0	95.6 95.5	95.6	7.0 7.0	7.0	7.0	1.6 1.6	1.6		3.8 3.7	3.8	ļ
G2	Sunny	Moderate	13:46	Middle	5	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	94.5 95.1	94.8	6.9 7.0	7.0		2.4 2.7	2.6	2.2	2.9 2.9	2.9	3.7
				Bottom	9	21.1 21.1	21.1	8.1 8.1	8.1	33.1 33.0	33.1	93.5 94.1	93.8	6.9 6.9	6.9	6.9	2.5 2.2	2.4		4.3 4.4	4.4	
				Surface	1	21.6 21.6	21.6	8.1 8.1	8.1	32.8 32.5	32.7	96.5 96.8	96.7	7.0 7.1	7.1	7.0	2.2 1.9	2.1		4.4 4.3	4.4	
G3	Sunny	Moderate	15:04	Middle	5	21.2 21.2	21.2	8.1 8.1	8.1	33.0 33.0	33.0	92.6 92.5	92.6	6.8 6.8	6.8		2.7 2.7	2.7	2.7	2.8 2.8	2.8	3.5
				Bottom	9	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	92.5 92.9	92.7	6.8 6.8	6.8	6.8	3.3 3.4	3.4		3.4 3.4	3.4	
				Surface	1	21.4 21.4	21.4	8.1 8.1	8.1	33.0 33.0	33.0	96.5 95.8	96.2	7.0 7.0	7.0	7.0	1.4 1.4	1.4		3.2 3.3	3.3	
G4	Sunny	Moderate	14:08	Middle	4	21.3 21.2	21.3	8.1 8.1	8.1	33.0 33.0	33.0	96.1 95.9	96.0	7.0	7.0		1.5 1.7	1.6	1.7	4.1 4.1	4.1	4.0
				Bottom	7	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	94.8 93.7	94.3	7.0 6.9	7.0	7.0	2.2 2.1	2.2		4.7 4.5	4.6	
				Surface	1	21.3 21.2	21.3	8.1 8.1	8.1	33.0 33.0	33.0	96.8 94.5	95.7	7.1 6.9	7.0	7.0	2.9 2.9	2.9	-	4.1 4.1	4.1	
M1	Sunny	Moderate	13:51	Middle	3	21.2 21.2	21.2	8.1 8.1	8.1	33.0 33.0	33.0	94.5 94.2	94.4	6.9 6.9	6.9		2.8 2.8	2.8	3.0	4.0 3.9	4.0	4.6
				Bottom	5	21.2 21.1	21.2	8.1 8.1	8.1	33.0 33.0	33.0	94.3 94.2	94.3	6.9 6.9	6.9	6.9	3.3 3.1	3.2		5.9 5.7	5.8	
				Surface	1	21.4 21.4	21.4	8.1 8.1	8.1	32.9 32.9	32.9	97.5 96.6	97.1	7.1	7.1	7.1	2.3 2.2	2.3		2.8 2.8	2.8	
M2	Sunny	Moderate	13:39	Middle	5.5	21.1 21.1	21.1	8.1 8.1	8.1	33.0 33.0	33.0	95.1 95.7	95.4	7.0 7.0	7.0		2.4 2.4	2.4	2.7	4.0 3.9	4.0	3.8
				Bottom	10	21.1 21.1	21.1	8.1 8.1	8.1	33.1 33.1	33.1	93.5 93.6	93.6	6.9 6.9	6.9	6.9	3.3 3.5	3.4		4.7 4.6	4.7	
				Surface	1	21.6 21.6	21.6	8.1 8.1	8.1	32.8 32.9	32.9	96.3 96.6	96.5	7.0 7.0	7.0	6.9	2.4 2.3	2.4		4.4 4.5	4.5	ļ
M3	Sunny	Moderate	14:56	Middle	4.5	21.2 21.2	21.2	8.1 8.1	8.1	33.0 33.0	33.0	91.8 92.1	92.0	6.7 6.7	6.7		2.7 2.6	2.7	2.9	4.3 4.3 4.4	4.3	4.4
				Bottom	8	21.2 21.2	21.2	8.1 8.1	8.1	33.0 33.0	33.0	90.8 91.2	91.0	6.7 6.7	6.7	6.7	3.4 3.5	3.5		4.5	4.5	
				Surface	1	21.3 21.3	21.3	8.1 8.1	8.1	32.9 32.9	32.9	97.5 96.8	97.2	7.1	7.1	7.1	1.6 1.5	1.6		4.2	4.3	
M4	Sunny	Moderate	13:31	Middle	4.5	21.2 21.2 21.1	21.2	8.1 8.1 8.1	8.1	33.0 33.0 33.0	33.0	96.0 96.2 95.3	96.1	7.0 7.0 7.0	7.0		1.5 1.5 1.8	1.5	1.7	4.5 4.3 3.6	4.4	4.1
				Bottom	8	21.1	21.1	8.1	8.1	33.0	33.0	95.6	95.5	7.0	7.0	7.0	1.8 1.9 2.1	1.9		3.6	3.6	
				Surface	1	21.4 21.3 21.2	21.4	8.1 8.1 8.1	8.1	32.9 32.9 32.9	32.9	97.5 95.3 94.9	96.4	7.1 7.0 7.0	7.1	7.0	2.1 2.3 2.2	2.2		3.7 3.7 4.1	3.7	ļ
M5	Sunny	Moderate	14:32	Middle	6	21.2 21.2 21.1	21.2	8.1 8.1 8.1	8.1	32.9 33.0 33.0	33.0	94.9 93.3 93.1	94.1	7.0 6.8 6.8	6.9		2.2 2.2 3.5	2.2	2.7	4.1 4.0 4.8	4.1	4.2
				Bottom	11	21.1	21.1	8.1	8.1	33.0	33.0	93.1	92.8	6.8	6.8	6.8	3.9	3.7		4.0 5.0	4.9	
				Surface	-	21.1	-	- 8.1	-	33.0	-	93.6	-	6.9	-	6.9	3.6	-		5.7	-	
M6	Sunny	Moderate	14:25	Middle	4.1	21.1	21.1	8.1	8.1	33.0	33.0	93.0 93.2	93.4	6.8	6.9		3.3	3.5	3.5	5.5	5.6	5.6
				Bottom	-		-		-	_	-	-	-		-	-	-	-		_	-	

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 13 December 2017 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
<u></u>	Stations G1-G4	4, <u>M1-M5</u>	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	<u> </u>
		<u>19.3 NTU</u>	22.2 NTU
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 4)		<u>C2: 3.5 NTU</u>	<u>C2: 3.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.6 mg/L</u>	<u>C2:6.1 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	эΗ	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NTl		Suspe	nded Solids	(mg/L)
Economi	Condition	Condition**	Time	Бері		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	100.5 98.0	99.3	7.4 7.2	7.3		2.1 2.2	2.2		4.0 3.9	4.0	
C1	Sunny	Moderate	10:08	Middle	10	20.7	20.7	8.1	8.1	33.1	33.1	97.9	98.0	7.2	7.2	7.3	2.4	2.5	2.5	4.3	4.3	4.3
				Bottom	19	20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	98.0 97.6	97.8	7.2	7.2	7.2	2.5	2.8	-	4.3 4.6	4.6	
						20.7 20.8		8.1 8.0		33.1 33.1		97.9 97.2		7.2		1.2	2.7			4.5 4.8		
				Surface	1	20.8	20.8	8.0	8.0	33.1	33.1	97.7	97.5	7.2	7.2	7.2	1.8	1.8		4.8	4.8	ļļ
C2	Sunny	Moderate	08:49	Middle	17	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	97.5 97.7	97.6	7.2 7.2	7.2		2.5 2.5	2.5	2.4	4.6 4.5	4.6	4.7
				Bottom	33	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	97.9 97.8	97.9	7.2 7.2	7.2	7.2	2.9 2.9	2.9	1	4.6 4.8	4.7	í l
				Surface	1	20.7	20.7	8.0	8.0	33.0	33.0	97.4	95.8	7.2	7.1		3.5	3.5		4.6	4.6	
G1	Sunny	Moderate	09:28	Middle	4.5	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	94.1 95.3	95.2	7.0 7.0	7.0	7.1	3.4 2.6	2.6	3.1	4.6 6.8	6.9	4.9
GI	Sunny	Moderate	09:28		-	20.7 20.8	_	8.0 8.0		33.0 33.0		95.1 95.3		7.0 7.0	-		2.5 3.0	-	3.1	7.0		4.9
				Bottom	8	20.8	20.8	8.0	8.0	33.1	33.1	95.4	95.4	7.0	7.0	7.0	3.3	3.2		3.3	3.3	
				Surface	1	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	97.7 95.9	96.8	7.2 7.1	7.2	7.2	2.2 2.2	2.2		2.8 2.7	2.8	
G2	Sunny	Moderate	09:17	Middle	5.5	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	96.1 96.3	96.2	7.1 7.1	7.1	1.2	2.2 2.0	2.1	2.4	5.2 5.1	5.2	4.4
				Bottom	10	20.8	20.8	8.0	8.0	33.1	33.1	95.6	95.5	7.1	7.1	7.1	2.6	2.8		5.3	5.3	t t
						20.8 20.7		8.0 8.0		33.1 32.7		95.4 95.3		7.0			3.0 2.2			5.2 2.6		╞━━━━┩
				Surface	1	20.7 20.8	20.7	8.0 8.0	8.0	32.6 33.0	32.7	94.1 94.5	94.7	7.0 7.0	7.1	7.1	2.2 2.7	2.2		2.5 3.9	2.6	ļ
G3	Sunny	Moderate	09:36	Middle	5	20.8	20.8	8.0	8.0	33.0	33.0	94.7	94.6	7.0	7.0		2.8	2.8	2.8	3.8	3.9	3.2
				Bottom	9	20.8 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	94.5 94.5	94.5	7.0 7.0	7.0	7.0	3.2 3.3	3.3		3.1 2.9	3.0	
				Surface	1	20.7 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	97.9 93.9	95.9	7.2 6.9	7.1		2.4 2.7	2.6		3.1 3.0	3.1	
G4	Sunny	Moderate	09:49	Middle	4	20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	94.8	94.5	7.0	7.0	7.1	2.4	2.5	2.6	3.6	3.6	3.8
	-			Bottom	7	20.8 20.8	20.8	8.0	8.0	33.0	33.0	94.1 94.6	94.8	6.9 7.0	7.0	7.0	2.5 2.6	2.7	1	3.6 4.7	4.8	
						20.8		8.0 8.0		33.0 33.0		94.9 96.6		7.0		1.0	2.7			4.8 2.5	-	<b> </b>
				Surface	1	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	94.3 94.5	95.5	7.0	7.1	7.1	2.7	2.7		2.6 4.0	2.6	ļļ
M1	Sunny	Moderate	09:23	Middle	3.5	20.7	20.7	8.0	8.0	33.0	33.0	94.6	94.6	7.0 7.0	7.0		2.8	2.9	2.9	4.1	4.1	3.4
				Bottom	6	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	94.0 94.5	94.3	7.0 7.0	7.0	7.0	3.0 2.9	3.0		3.5 3.5	3.5	
				Surface	1	20.7 20.7	20.7	8.0 8.0	8.0	33.0 33.0	33.0	98.8 96.2	97.5	7.3 7.1	7.2		2.0 1.9	2.0		4.8 4.8	4.8	
M2	Sunny	Moderate	09:10	Middle	6	20.8	20.8	8.0	8.0	33.1	33.1	95.8	96.0	7.1	7.1	7.2	2.0	2.0	2.3	3.6	3.6	3.9
	,					20.8 20.8		8.0 8.0		33.0 33.1		96.1 95.3		7.1		7.0	2.0 2.9			3.6 3.2		
				Bottom	11	20.8 20.8	20.8	8.0 8.0	8.0	33.1 32.7	33.1	95.4 96.7	95.4	7.0 7.1	7.0	7.0	2.9 4.7	2.9		3.2 4.3	3.2	<u> </u>
				Surface	1	20.8	20.8	8.0	8.0	33.0	32.9	93.5	95.1	6.9	7.0	7.0	4.8	4.8		4.3	4.3	ļļ
M3	Sunny	Moderate	09:42	Middle	5	20.8 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	94.3 94.4	94.4	7.0 7.0	7.0		4.8 4.7	4.8	4.4	4.0 4.0	4.0	4.2
				Bottom	9	20.8 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	94.9 94.8	94.9	7.0 7.0	7.0	7.0	3.4 3.5	3.5		4.2 4.2	4.2	
	Ì			Surface	1	20.7	20.7	8.1	8.1	33.1	33.1	99.5	98.0	7.4	7.3		1.4	1.4		4.4	4.4	
M4	Sunnv	Moderate	09:00	Middle	5	20.7 20.8	20.8	8.0 8.0	8.0	33.0 33.1	33.1	96.5 96.8	96.7	7.1	7.1	7.2	1.4 1.5	1.5	1.6	4.4 3.2	3.2	3.6
	,				-	20.7 20.7		8.0 8.0		33.1 33.1		96.6 96.0		7.1		7.4	1.5 1.8			3.2 3.1		
<u> </u>	<u> </u>			Bottom	9	20.7	20.7	8.0	8.0	33.1 33.1	33.1	96.5 100.5	96.3	7.1	7.1	7.1	1.9 1.8	1.9		3.1	3.1	ļ]
				Surface	1	20.7	20.7	8.1 8.1	8.1	33.1	33.1	97.3	98.9	7.2	7.3	7.3	1.8	1.8		3.1	3.1	ļ
M5	Sunny	Moderate	10:00	Middle	6	20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	97.7 97.2	97.5	7.2 7.2	7.2		1.8 1.9	1.9	1.9	2.1 2.2	2.2	2.5
				Bottom	11	20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	97.3 97.4	97.4	7.2 7.2	7.2	7.2	2.1 2.0	2.1	]	2.2 2.3	2.3	[
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Suppris	Madarata	09:55	Middle	4	- 20.8	20.8	- 8.0	8.0	- 33.1	33.1	- 94.9	94.9	- 7.0	7.0	7.0	- 2.2	2.2	2.2	- 3.8		2.0
IVIO	Sunny	Moderate	09:55		4	20.8	20.8	8.0	8.0	33.1	33.1	94.8	94.9	7.0	7.0		2.2	2.2	2.2	3.8	3.8	3.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 13 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tradiditaria		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 4.8 NTU</u>	<u>C1: 5.2 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.4 mg/L</u>	<u>C1: 5.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	n (mg/L)	-	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Econtion	Condition	Condition**	Time	Dept	ar (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.6 20.6	20.6	8.1 8.1	8.1	33.1 33.1	33.1	100.0 98.3	99.2	7.4 7.3	7.4	7.4	2.4 2.5	2.5		5.2 5.2	5.2	
C1	Sunny	Moderate	15:23	Middle	10	20.6 20.6	20.6	8.1 8.1	8.1	33.2 33.2	33.2	98.6 98.5	98.6	7.3 7.3	7.3	7.4	3.3 3.2	3.3	3.3	3.7 3.7	3.7	4.5
				Bottom	19	20.6 20.6	20.6	8.1 8.1	8.1	33.2 33.2	33.2	98.3 98.7	98.5	7.3 7.3	7.3	7.3	3.9 4.0	4.0		4.5 4.5	4.5	
				Surface	1	20.8 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	96.6 96.8	96.7	7.1 7.1	7.1	7.1	2.1 2.0	2.1		3.2 3.3	3.3	l
C2	Sunny	Moderate	14:08	Middle	17	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	96.5 96.7	96.6	7.1 7.1	7.1		2.1 2.1	2.1	1.9	2.5 2.5	2.5	3.2
				Bottom	33	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	96.8 96.8	96.8	7.1 7.1	7.1	7.1	1.5 1.5	1.5		3.7 3.6	3.7	<u> </u>
				Surface	1	20.7 20.8	20.8	8.1 8.0	8.1	33.0 33.0	33.0	97.5 96.0	96.8	7.2 7.1	7.2	7.1	3.0 2.5	2.8		4.3 4.2	4.3	ļ
G1	Sunny	Moderate	14:44	Middle	4.5	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	94.7 95.4	95.1	7.0 7.0	7.0		3.2 3.1	3.2	3.2	3.8 3.8	3.8	3.9
				Bottom	8	20.8 20.8	20.8	8.0 8.0	8.0	33.1 33.1	33.1	94.9 95.1	95.0	7.0 7.0	7.0	7.0	3.5 3.5	3.5		3.4 3.5	3.5	<u> </u>
				Surface	1	20.7 20.7	20.7	8.1 8.1	8.1	32.9 32.8	32.9	97.2 96.5	96.9	7.2	7.2	7.2	2.0 1.7	1.9		3.4 3.4	3.4	ļ
G2	Sunny	Moderate	14:35	Middle	5	20.7 20.7	20.7	8.1 8.0	8.1	33.1 33.1	33.1	96.4 96.2	96.3	7.1 7.1	7.1		2.0 1.9	2.0	2.0	1.9 1.9	1.9	3.0
				Bottom	9	20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	96.2 96.5	96.4	7.1	7.1	7.1	2.1 1.8	2.0		3.7 3.6	3.7	<u> </u>
				Surface	1	20.8 20.8	20.8	8.1 8.0	8.1	32.8 32.8	32.8	98.2 95.7	97.0	7.3 7.1	7.2	7.2	2.7 2.9	2.8		2.6 2.6	2.6	ļ
G3	Sunny	Moderate	14:49	Middle	4.5	20.8 20.8	20.8	8.0 8.0	8.0	32.9 32.9	32.9	95.7 95.8	95.8	7.1 7.1	7.1		2.5 2.6	2.6	3.0	2.6 2.6	2.6	2.5
				Bottom	8	20.8 20.8	20.8	8.0 8.0	8.0	33.0 33.0	33.0	95.5 95.3	95.4	7.1 7.0	7.1	7.1	3.5 3.7	3.6		2.3 2.2	2.3	<u> </u>
				Surface	1	20.7 20.8	20.8	8.1 8.0	8.1	33.0 33.0	33.0	98.4 95.1	96.8	7.3	7.2	7.1	2.5 2.7	2.6		2.7 2.7	2.7	ļ
G4	Sunny	Moderate	15:05	Middle	4	20.8 20.8	20.8	8.0 8.0 8.0	8.0	33.0 33.0 33.1	33.0	95.2 95.1 94.2	95.2	7.0 7.0	7.0		2.8 3.0 4.1	2.9	3.3	2.6 2.6 2.0	2.6	2.4
				Bottom	7	20.8 20.8	20.8	8.0	8.0	33.1	33.1	94.4	94.3	7.0 7.0	7.0	7.0	4.1 4.8 3.5	4.5		2.0	2.0	<u> </u>
				Surface	1	20.7 20.7	20.7	8.0 8.0 8.0	8.0	33.0 33.0 33.0	33.0	95.5 94.7 94.7	95.1	7.1 7.0	7.1	7.1	3.5 3.7 3.8	3.6		2.8 2.8 2.2	2.8	ļ
M1	Sunny	Moderate	14:40	Middle	3	20.7 20.7 20.8	20.7	8.0 8.0 8.0	8.0	33.0 33.0	33.0	94.7 94.8 94.8	94.8	7.0 7.0 7.0	7.0		3.8 5.0	3.8	4.0	2.2 2.1 2.3	2.2	2.4
				Bottom	5	20.8	20.8	8.0 8.1	8.0	33.1 32.9	33.1	94.8 99.4	94.8	7.0	7.0	7.0	4.3	4.7		2.3	2.3	<u> </u>
				Surface	1	20.0	20.7	8.1 8.1	8.1	32.9 33.1	32.9	96.7 96.7	98.1	7.2	7.3	7.2	1.6	1.6	-	2.6	2.6	ł
M2	Sunny	Moderate	14:28	Middle	5.5	20.7 20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	96.7 96.6	96.7	7.1	7.1		1.7	1.7	1.7	3.3 3.7	3.3	3.2
				Bottom	10	20.7	20.7	8.1 8.1	8.1	33.1 32.6	33.1	96.7 97.2	96.7	7.1	7.1	7.1	1.8	1.8		3.7	3.7	<u> </u>
				Surface	1	20.7 20.8 20.8	20.8	8.0 8.0	8.1	32.6 33.0 33.0	32.8	97.2 94.8 94.7	96.0	7.0	7.1	7.1	2.9 3.2 4.4	3.1		2.4 2.4 2.6	2.4	ł
M3	Sunny	Moderate	14:59	Middle	4.5	20.8	20.8	8.0 8.0 8.0	8.0	33.0 33.1	33.0	94.7 94.5 94.1	94.6	7.0 6.9	7.0		4.4 4.3 4.6	4.4	4.0	2.6	2.6	2.8
				Bottom	8	20.8	20.8	8.0 8.1	8.0	33.1 33.1	33.1	94.1 99.4	94.1	6.9 7.3	6.9	6.9	4.6	4.6		3.4 4.2	3.5	
				Surface	1	20.7 20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	97.7 97.7	98.6	7.2	7.3	7.3	2.4 2.1 2.5	2.3		4.2	4.2	
M4	Sunny	Moderate	14:18	Middle	4.5	20.7 20.7 20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	97.6 97.5	97.7	7.2	7.2		2.3	2.4	2.3	2.7	2.7	3.1
				Bottom	8	20.7	20.7	8.1 8.1	8.1	33.1 33.1	33.1	97.6 100.0	97.6	7.2	7.2	7.2	2.2	2.3		2.3	2.3	
				Surface	1	20.0	20.7	8.1 8.1	8.1	33.1 33.1	33.1	98.0 97.8	99.0	7.2	7.3	7.3	2.6	2.8		2.5	2.5	
M5	Sunny	Moderate	15:16	Middle	6	20.7	20.7	8.1 8.1	8.1	33.1 33.2	33.1	97.8 97.4	97.8	7.2	7.2	7.0	2.7	2.7	2.8	2.8	2.9	2.7
				Bottom	11	20.6	20.7	8.1	8.1	33.2	33.2	97.9	97.7	7.2	7.2	7.2	3.1	3.0		2.6	2.6	<u> </u>
				Surface	-	20.8	-	- 8.1	-	33.1	-	95.3	-	- 7.0	-	7.0	2.2	-		4.0	-	
M6	Sunny	Moderate	15:12	Middle	4	20.8	20.8	8.1	8.1	33.1	33.1	95.3	95.3	7.0	7.0		2.1	2.2	2.2	4.0	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	L

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 15 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 6.2 NTU</u>	<u>C2: 6.8 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.4 mg/L</u>	<u>C2: 5.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.0 mg/L</u>	<u>C2: 5.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	эΗ	Salir	iity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl		Suspe	nded Solids	(mg/L)
Econation	Condition	Condition**	Time	Dept		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.7	31.7	72.7 72.2	72.5	5.1 5.1	5.1	<b>5</b> 4	2.2 2.4	2.3		2.9 2.8	2.9	
C1	Cloudy	Moderate	10:40	Middle	9.5	23.7 23.7	23.7	8.3 8.3	8.3	33.0 33.0	33.0	72.3 72.3	72.3	5.1 5.1	5.1	5.1	3.0 2.9	3.0	3.4	4.6 4.6	4.6	3.5
				Bottom	18	23.7 23.7	23.7	8.4 8.4	8.4	34.2 34.2	34.2	72.7 72.6	72.7	5.1 5.1	5.1	5.1	4.6 5.1	4.9		2.9 2.8	2.9	
				Surface	1	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.7	31.7	72.2 72.5	72.4	5.1 5.1	5.1		2.3 2.4	2.4		4.4 4.6	4.5	
C2	Cloudy	Moderate	09:10	Middle	17	23.7 23.7	23.7	8.3 8.3	8.3	33.2 33.1	33.2	72.2	72.2	5.1	5.1	5.1	5.0 4.8	4.9	4.2	3.5 3.4	3.5	4.1
				Bottom	33	23.7 23.7	23.7	8.3 8.4	8.4	34.2 34.3	34.3	72.6 73.2	72.9	5.1 5.1	5.1	5.1	5.5 4.8	5.2		4.2 4.2	4.2	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.6 76.6	76.6	5.4 5.4	5.4	5.4	2.1 2.1	2.1		2.5 2.5	2.5	
G1	Cloudy	Moderate	09:49	Middle	4	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.8 76.3	76.1	5.3 5.4	5.4	0.1	2.1 2.0	2.1	2.1	3.2 3.3	3.3	2.7
				Bottom	7	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.6 76.9	76.3	5.3 5.4	5.4	5.4	2.1 1.8	2.0		2.4 2.4	2.4	
				Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.6 76.8	76.2	5.3 5.4	5.4	5.4	2.2 2.1	2.2		3.5 3.5	3.5	
G2	Cloudy	Moderate	09:35	Middle	5	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.3 76.2	75.8	5.3 5.4	5.4		2.1 2.0	2.1	2.2	2.6 2.7	2.7	2.8
				Bottom	9	23.8 23.8	23.8	8.4 8.3	8.4	32.1 32.1	32.1	74.6 71.5	73.1	5.3 5.0	5.2	5.2	2.4	2.4		2.1 2.1	2.1	
				Surface	1	23.8 23.8 23.8	23.8	8.4 8.4 8.4	8.4	32.0 32.0 32.0	32.0	77.0 77.2 76.3	77.1	5.4 5.4 5.4	5.4	5.4	2.0 2.1 2.0	2.1		3.2 3.1 3.1	3.2	ļ
G3	Cloudy	Moderate	09:55	Middle	4	23.8 23.8 23.8	23.8	8.4 8.4 8.4	8.4	32.0 32.0 32.0	32.0	76.3 76.6 76.8	76.5	5.4 5.4 5.4	5.4		2.0 2.0 1.9	2.0	2.0	3.1 3.1 1.7	3.1	2.7
				Bottom	7	23.8 23.7	23.8	8.4 8.3	8.4	32.0 32.0 31.8	32.0	76.8 76.1 72.9	76.5	5.4 5.4 5.1	5.4	5.4	2.1	2.0		1.7	1.7	
				Surface	1	23.7 23.8 23.7	23.8	8.3 8.3	8.3	31.0 31.7 31.9	31.8	72.9	72.5	5.1 5.1 5.1	5.1	5.1	3.3	3.2		2.8 2.8 3.0	2.8	
G4	Cloudy	Moderate	10:17	Middle	4.5	23.8	23.8	8.3 8.3	8.3	31.9 31.9	31.9	71.4	71.6	5.0	5.1		4.5	4.6	4.0	3.0	3.0	3.2
				Bottom	8	23.7	23.7	8.3 8.4	8.3	32.1 32.0	32.0	72.0	71.9	5.1	5.1	5.1	4.6	4.2		3.7	3.7	
	01-	Mad	00.11	Surface	1	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.5	76.4	5.4	5.4	5.4	2.3	2.3		3.1 6.3	3.1	4.2
M1	Cloudy	Moderate	09:41	Middle	3	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	75.8	75.7	5.3 5.3	5.3	F 0	2.0	2.0	2.1	6.3 3.6	6.3	4.3
				Bottom	5	23.8 23.8	23.8	8.4 8.3	8.4	32.0 32.0	32.0	75.5 76.0	75.5	5.3 5.4	5.3	5.3	2.0	2.0		3.5 5.1	3.6	
M2	Cloudy	Moderate	09:25	Surface Middle	1 5.5	23.8 23.8	23.8 23.8	8.4 8.4	8.4 8.4	32.0 32.0	32.0 32.0	76.3 75.8	76.2 75.7	5.4 5.3	5.4 5.3	5.4	2.0 1.9	1.9 1.9	2.7	5.1 2.6	5.1 2.6	3.5
IVIZ	Cioudy	wouerale	05.25	Bottom	10	23.8 23.8	23.8	8.4 8.3	8.3	32.0 32.1	32.0	75.6 70.7	70.3	5.3 5.0	5.0	5.0	1.9 4.3	4.2	2.1	2.5 2.8	2.0	5.5
				Surface	10	23.8 23.8	23.8	8.3 8.4	8.4	32.2 32.0	32.0	69.8 76.6	76.8	4.9 5.4	5.4	0.0	4.0 2.0	2.0		2.8 2.9	2.0	
M3	Cloudy	Moderate	10:03	Middle	4	23.8 23.8	23.8	8.4 8.4	8.4	32.0 32.0	32.0	76.9	76.5	5.4 5.4	5.4	5.4	2.0	2.0	2.0	2.9	2.6	3.4
				Bottom	7	23.8 23.8 23.8	23.8	8.4 8.4 8.4	8.4	32.0 32.0 32.0	32.0	76.5 76.8 76.9	76.9	5.4 5.4 5.4	5.4	5.4	2.0 2.0 1.9	2.0		2.5 4.8 4.6	4.7	
				Surface	1	23.8 23.8 23.8	23.8	8.3 8.3	8.3	32.0 32.0 32.0	32.0	76.9	76.8	5.4 5.4 5.4	5.4		2.1	2.0		4.6 3.0 3.1	3.1	
M4	Cloudy	Moderate	09:18	Middle	5	23.8 23.8 23.8	23.8	8.3 8.3	8.3	32.0 32.0 32.0	32.0	76.0 75.5	75.8	5.4 5.3	5.4	5.4	2.0	2.0	2.5	3.0 3.0	3.0	2.7
				Bottom	9	23.8 23.8	23.8	8.3 8.3	8.3	32.1 32.1	32.1	71.2 71.4	71.3	5.0 5.0	5.0	5.0	3.4 3.4	3.4	1	1.8 1.9	1.9	İ
				Surface	1	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.6	31.7	72.2	72.5	5.1 5.1	5.1	5.4	2.3 2.3	2.3		2.3 2.3	2.3	
M5	Cloudy	Moderate	10:32	Middle	6	23.8 23.7	23.8	8.3 8.3	8.3	31.9 31.9	31.9	71.8 71.7	71.8	5.1 5.1	5.1	5.1	2.8 2.8	2.8	3.2	4.3 4.4	4.4	3.3
				Bottom	11	23.7 23.7	23.7	8.4 8.3	8.4	32.2 32.1	32.2	72.3 71.9	72.1	5.1 5.1	5.1	5.1	4.9 4.2	4.6		3.1 3.0	3.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-		-	-	
M6	Cloudy	Moderate	10:24	Middle	2.2	23.8 23.8	23.8	8.3 8.3	8.3	31.7 31.7	31.7	71.6 71.8	71.7	5.1 5.1	5.1	5.1	2.4 2.2	2.3	2.3	3.0 3.1	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 15 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 7.3 NTU</u>	<u>C1: 7.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>4</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.8 mg/L</u>	<u>C1: 5.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 4.8 mg/L</u>	<u>C1: 5.2 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 4.7 mg/L</u>	<u>C1: 5.1 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	n (mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Economi	Condition	Condition**	Time	Dept	an (ini)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.3 23.4	23.4	8.4 8.4	8.4	32.1 32.0	32.1	78.6 77.2	77.9	5.6 5.5	5.6		2.6 2.5	2.6		4.0 4.0	4.0	
C1	Cloudy	Moderate	16:20	Middle	9.5	23.1 23.1	23.1	8.4 8.4	8.4	33.5 33.8	33.7	74.5 73.2	73.9	5.3 5.2	5.3	5.5	4.1 3.7	3.9	4.2	4.1 4.2	4.2	4.0
				Bottom	18	23.0 23.0	23.0	8.4 8.4	8.4	34.2 34.2	34.2	70.2 70.0	70.1	5.0 4.9	5.0	5.0	5.8 6.3	6.1		3.9 3.9	3.9	
				Surface	1	23.4 23.4	23.4	8.3 8.3	8.3	32.6 32.7	32.7	75.5 77.4	76.5	5.3 5.5	5.4	5.4	2.7 2.6	2.7		4.2 4.1	4.2	1
C2	Cloudy	Moderate	14:55	Middle	17	23.2 23.2	23.2	8.3 8.3	8.3	33.8 33.7	33.8	74.8 74.8	74.8	5.3 5.3	5.3	0.1	4.1 3.6	3.9	3.8	1.6 1.6	1.6	2.8
				Bottom	33	23.2 23.2	23.2	8.3 8.3	8.3	33.8 33.8	33.8	67.3 67.3	67.3	4.7 4.7	4.7	4.7	4.8 4.5	4.7		2.7 2.6	2.7	
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.9 31.9	31.9	76.0 75.5	75.8	5.4 5.4	5.4	5.3	2.0 2.0	2.0		4.2 4.2	4.2	ļ
G1	Cloudy	Moderate	15:34	Middle	4	23.4 23.4 23.4	23.4	8.3 8.3 8.3	8.3	32.0 32.0 32.1	32.0	73.2 73.0 72.6	73.1	5.2 5.2 5.1	5.2		2.3 2.4 2.7	2.4	2.4	6.2 6.4 3.7	6.3	4.8
				Bottom	7	23.4	23.4	8.3	8.3	32.1	32.1	72.6	72.6	5.1	5.1	5.1	2.7	2.7		3.8	3.8	<u> </u>
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.7 31.7	31.7	78.4 77.7	78.1	5.6 5.5	5.6	5.4	2.1 2.1 2.4	2.1		3.0 3.0	3.0	ļ
G2	Cloudy	Moderate	15:20	Middle	5	23.3 23.3 23.3	23.3	8.3 8.3 8.3	8.3	32.2 32.2 32.3	32.2	73.0 72.6 72.7	72.8	5.2 5.1 5.2	5.2		2.4 2.2 2.7	2.3	2.3	3.2 3.2 3.4	3.2	3.2
				Bottom	9	23.3	23.3	8.3	8.3	32.3	32.3	72.6	72.7	5.1	5.2	5.2	2.7 2.5 2.0	2.6		3.4	3.4	<u> </u>
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.7 31.6	31.7	77.2 76.6	76.9	5.5 5.4	5.5	5.4	2.1	2.1		3.4 3.3	3.4	
G3	Cloudy	Moderate	15:41	Middle	4	23.4 23.4	23.4	8.4 8.4	8.4	32.1 32.1	32.1	74.4 74.1	74.3	5.3 5.3	5.3		2.1 2.2	2.2	2.3	5.5 5.4	5.5	3.6
				Bottom	7	23.3 23.3	23.3	8.4 8.4	8.4	32.4 32.3	32.4	74.6 74.6	74.6	5.3 5.3	5.3	5.3	2.4 2.5	2.5		2.0 1.9	2.0	
				Surface	1	23.4 23.4	23.4	8.4 8.4	8.4	31.9 31.5	31.7	75.2 75.7	75.5	5.3 5.4	5.4	5.3	2.0 1.8 2.4	1.9		2.2	2.2	
G4	Cloudy	Moderate	15:55	Middle	4.5	23.4 23.4 23.4	23.4	8.3 8.3 8.4	8.3	32.0 32.1 32.3	32.1	72.5 72.6 75.6	72.6	5.1 5.1 5.4	5.1		2.4 2.5 2.8	2.5	2.4	2.6 2.6 3.4	2.6	2.7
				Bottom	8	23.3	23.4	8.4 8.4	8.4	32.5 31.8	32.4	74.7	75.2	5.3 6.1	5.4	5.4	2.0 2.9 2.2	2.9		3.4 3.4 3.8	3.4	<u> </u>
				Surface	1	23.5 23.4	23.5	8.4 8.4	8.4	31.8 32.0	31.8	86.4 78.8	86.2	6.1 5.6	6.1	5.9	2.0	2.1	-	3.8	3.8	
M1	Cloudy	Moderate	15:28	Middle	3	23.4 23.4 23.4	23.4	8.4 8.4	8.4	32.0 32.2	32.0	81.9 77.8	80.4	5.8 5.5	5.7		2.2	2.3	2.4	3.5 3.9	3.5	3.7
				Bottom	5	23.4	23.4	8.4 8.4	8.4	32.2 31.8	32.2	78.1	78.0	5.5 5.5	5.5	5.5	2.6	2.7		3.8	3.9	
				Surface	1	23.4	23.4	8.4 8.3	8.4	31.9 32.4	31.9	76.4	77.2	5.4	5.5	5.4	2.0	2.0		3.9	3.9	
M2	Cloudy	Moderate	15:13	Middle	5.5	23.3	23.3	8.3 8.3	8.3	32.4 32.9	32.4	72.6	72.7	5.1 4.7	5.2		2.4	2.5	2.4	2.6	2.6	3.7
				Bottom	10	23.2	23.2	8.3 8.4	8.3	33.1 31.5	33.0	64.9 77.4	65.4	4.6	4.7	4.7	2.9	2.8		4.4	4.5	
				Surface	1	23.4	23.4	8.4 8.4	8.4	31.3 32.1	31.4	76.8	77.1	5.5 5.4	5.5	5.5	2.1	2.1		3.2	3.3	
M3	Cloudy	Moderate	15:48	Middle	4	23.3	23.3	8.4 8.4	8.4	32.2	32.2	75.5	75.9	5.4	5.4		2.1	2.1	2.2	2.8	2.8	3.3
				Bottom	7	23.3	23.3	8.4 8.4	8.4	32.3 31.3	32.3	75.0 85.2	75.1	5.3	5.3	5.3	2.4	2.5		3.9	3.9	
	Claute	Modt	15:00	Surface	1	23.4 23.3	23.4	8.4 8.3	8.4	31.4 32.4	31.4	84.6 74.9	84.9	6.0 5.3	6.1	5.7	1.7	1.8	25	3.9	3.9	2.0
M4	Cloudy	Moderate	15:03	Middle	5	23.3 23.3	23.3	8.3 8.3	8.3	32.5 32.6	32.5	73.2 72.4	74.1	5.2	5.3	54	2.5	2.7	2.5	2.6	2.6	3.0
				Bottom	9	23.3 23.4	23.3	8.3 8.3	8.3	32.6 31.7	32.6	72.1 71.4	72.3	5.1	5.1	5.1	2.7	2.9		2.5	2.5	
	Olaud	Madamat	40:44	Surface	1	23.4 23.4	23.4	8.3 8.3	8.3	31.7 31.9	31.7	70.4 70.5	70.9	5.0	5.1	5.1	2.1 2.5	2.1		3.6	3.6	
M5	Cloudy	Moderate	16:11	Middle	6	23.4 23.1	23.4 23.1	8.3 8.4	8.3 8.4	32.0 33.4	32.0 33.4	70.1 63.9	70.3 63.4	5.0 4.5	5.0 4.5	4.5	2.8	2.7 3.8	2.9	2.6	2.6	2.6
				Bottom	11	23.1	23.1	8.4	0.4	33.4	- 33.4	62.9	03.4	4.4	4.5	4.5	3.6	3.8		1.6	1.6	<u> </u>
MG	Cloudy	Moderate	16:04	Surface	-	- 23.4		- 8.4	- 0 4	- 31.8		- 73.7	79.6	- 5.2		5.2	- 2.2		2.2	- 2.0	-	2.0
M6	Cloudy	Moderate	16:04	Middle	2.1	23.4	23.4	8.4	8.4	31.8	31.8	73.4	73.6	5.2	5.2		2.1	2.2	2.2	2.0	2.0	2.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 18 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, <u>M1-M5</u>	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	·
		<u>19.3 NTU</u>	22.2 NTU
m 1.11.		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(500 1 (600 2 and 1)		<u>C2: 6.8 NTU</u>	<u>C2: 7.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Stations G1-G4	4 <u>, M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	<u>Station M6</u>		1
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxyger	(mg/L)	1	Turbidity(NT	J)	Suspe	nded Solids	; (mg/L)
Econaci	Condition	Condition**	Time	Dept		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	20.6 20.8	20.7	8.4 8.4	8.4	31.7 31.7	31.7	92.4 91.3	91.9	6.9 6.8	6.9		1.4 1.4	1.4		3.5 3.6	3.6	
C1	Sunny	Moderate	12:31	Middle	10	19.6	19.5	8.3	8.3	32.8	32.4	78.0	77.8	5.9	5.9	6.4	1.3	1.4	2.8	4.1	4.1	4.5
	,		-	Bottom	19	19.4 16.5	16.6	8.3 8.1	8.1	32.0 32.7	32.7	77.6 65.7	66.1	5.9 5.3		5.3	1.4 5.5	5.7		4.1 5.8	5.8	
				Bollom	19	16.6	10.0	8.1		32.7	32.1	66.5	00.1	5.3	5.3	5.3	5.9	5.7		5.8	5.8	
				Surface	1	20.2 20.1	20.2	8.3 8.4	8.4	31.6 31.7	31.7	84.0 82.9	83.5	6.3 6.2	6.3	5.9	1.5 1.5	1.5		5.2 5.2	5.2	
C2	Sunny	Moderate	11:06	Middle	17	19.2 19.1	19.2	8.3 8.3	8.3	32.2 32.2	32.2	71.1 73.3	72.2	5.4 5.6	5.5	5.5	2.5 2.5	2.5	3.2	5.3 5.2	5.3	5.5
				Bottom	33	17.8	17.7	8.2	8.2	32.1	32.3	63.5	63.7	5.0	5.0	5.0	5.7	5.7		5.9	5.9	t t
						17.6 20.0		8.2 8.4		32.4 31.8		63.9 92.1		5.0 6.9			5.6 1.5			5.9 5.9		
				Surface	1	20.0	20.0	8.4 8.3	8.4	31.8 32.3	31.8	89.1 89.8	90.6	6.7	6.8	6.8	1.5	1.5		5.7	5.8	ļļ
G1	Sunny	Moderate	11:49	Middle	4.5	19.5	19.6	8.3	8.3	32.3	32.3	88.8	89.3	6.8 6.7	6.8		1.9	1.8	2.6	5.3 5.3	5.3	4.9
				Bottom	8	18.8 18.9	18.9	8.3 8.3	8.3	32.7 32.5	32.6	79.2 78.4	78.8	6.1 6.0	6.1	6.1	4.4 4.5	4.5		3.4 3.5	3.5	Í
				Surface	1	19.9	19.9	8.4	8.4	31.9	31.9	93.8	93.4	7.1	7.1		2.3	2.3		4.3	4.3	
						19.9 19.5		8.4 8.3		31.9 32.5		93.0 82.5		7.0 6.3		6.7	2.2			4.3		4 .
G2	Sunny	Moderate	11:36	Middle	5	19.4	19.5	8.3	8.3	32.5	32.5	82.0	82.3	6.2	6.3		1.9	2.0	2.3	4.1	4.1	4.9
				Bottom	9	18.8 18.7	18.8	8.3 8.3	8.3	32.7 32.8	32.8	72.2 74.5	73.4	5.5 5.7	5.6	5.6	2.4 2.6	2.5		6.4 6.2	6.3	
				Surface	1	20.2 20.3	20.3	8.4 8.4	8.4	31.3 31.2	31.3	85.2 73.4	79.3	6.4 5.5	6.0		1.5 1.6	1.6		5.0 4.9	5.0	
G3	Sunny	Moderate	11:59	Middle	4	19.6	19.6	8.4	8.4	31.2	32.1	80.7	80.7	5.5 6.1	6.1	6.1	2.0	2.0	2.0	4.9 5.1	5.2	4.9
00	Cunny	Woderate	11.00			19.6 19.3		8.4 8.3		32.1 32.6		80.7 73.7		6.1 5.6			2.0 2.4		2.0	5.3 4.4		4.5
				Bottom	7	19.3	19.3	8.3	8.3	32.6	32.6	75.1	74.4	5.7	5.7	5.7	2.3	2.4		4.3	4.4	
				Surface	1	20.6 20.0	20.3	8.4 8.4	8.4	31.4 31.9	31.7	91.6 89.9	90.8	6.9 6.8	6.9		1.6 1.5	1.6		4.7 4.6	4.7	
G4	Sunny	Moderate	12:10	Middle	4.5	19.6 19.6	19.6	8.3 8.3	8.3	32.3 32.3	32.3	88.3 88.2	88.3	6.7	6.7	6.8	1.6	1.7	2.7	7.3	7.5	5.3
				Bottom	8	19.6	18.9	8.3	8.3	32.5	32.5	72.5	72.8	6.7 5.6	5.6	5.6	1.7 4.8	4.9		7.6	3.6	ł
					0	18.9 20.0		8.3 8.4		32.5 31.8		73.1 92.1		5.6 6.9	5.0	5.0	4.9 1.5			3.6 5.5	3.0	ļļ
				Surface	1	20.0	20.0	8.4	8.4	31.8	31.8	87.8	90.0	6.6	6.8	6.8	1.5	1.5		5.4	5.5	1
M1	Sunny	Moderate	11:43	Middle	3	19.7 19.7	19.7	8.3 8.3	8.3	32.1 32.1	32.1	87.9 88.1	88.0	6.7 6.7	6.7	0.0	1.8 1.7	1.8	1.7	5.4 5.3	5.4	5.4
				Bottom	5	19.4	19.5	8.3	8.3	32.5 32.4	32.5	79.6	79.4	6.0	6.0	6.0	1.8	1.9		5.2	5.2	t l
				Surface	1	19.5 19.9	20.0	8.3 8.4	8.4	32.4	31.8	79.2 93.6	92.8	6.0 7.1	7.0		2.0	1.6		5.2 5.6	5.5	
						20.0 19.1		8.4 8.3		31.8 33.2		91.9 81.7		6.9 6.2		6.7	1.5 3.3			5.4 4.3		4 l
M2	Sunny	Moderate	11:27	Middle	5.5	19.0	19.1	8.3	8.3	32.3	32.8	83.2	82.5	6.4	6.3		3.3	3.3	2.8	4.2	4.3	4.8
				Bottom	10	18.6 18.5	18.6	8.2 8.2	8.2	32.7 32.9	32.8	66.8 70.0	68.4	5.1 5.4	5.3	5.3	3.4 3.7	3.6		4.6 4.5	4.6	
				Surface	1	20.3	20.3	8.4	8.5	31.4	31.5	80.2	79.2	6.0	6.0		1.5	1.5		5.7	5.6	
МЗ	Sunny	Moderate	12:04	Middle	4	20.2 19.5	19.6	8.5 8.3	8.4	31.5 32.3	32.3	78.1 76.7	79.3	5.9 5.8	6.0	6.0	1.5 2.1	2.1	2.2	5.4 8.5	8.5	6.3
WIG	Sunny	wouchald	12.04			19.6 19.2		8.4 8.3		32.3 32.8		81.9 75.2		6.2 5.7			2.1 2.8		2.2	8.4 4.7		0.5
				Bottom	7	19.3	19.3	8.5	8.4	32.7	32.8	74.5	74.9	5.7	5.7	5.7	2.9	2.9		4.8	4.8	
				Surface	1	20.0 20.1	20.1	8.4 8.4	8.4	31.7 31.7	31.7	90.1 89.0	89.6	6.8 6.7	6.8		1.5 1.5	1.5		4.9 4.7	4.8	
M4	Sunny	Moderate	11:14	Middle	5	20.0	19.9	8.4 8.3	8.4	31.9 32.1	32.0	72.7	74.5	5.5 5.8	5.7	6.3	1.6	1.6	1.6	3.4 3.2	3.3	4.2
				Bottom	9	19.8	19.7	8.3	8.3	32.1	32.2	67.7	68.7	5.1	5.2	5.2	1.6	1.8		4.4	4.4	
						19.6 20.1		8.3 8.4		32.3 31.8	-	69.6 90.1		5.3 6.8	-	J.2	1.9 1.8			4.3		Ļ]
				Surface	1	20.2	20.2	8.4	8.4	31.8	31.8	89.4	89.8	6.7	6.8	6.7	1.5	1.7		4.1	4.1	ļļ
M5	Sunny	Moderate	12:22	Middle	6	19.8 19.8	19.8	8.3 8.3	8.3	32.1 32.0	32.1	87.2 85.8	86.5	6.6 6.5	6.6		1.6 1.5	1.6	3.0	7.4 7.4	7.4	4.9
				Bottom	11	19.1	19.1	8.3	8.3	32.2	32.2	86.4	85.9	6.6	6.6	6.6	5.6	5.7	1	3.3	3.3	
				Surface		19.0		8.3		32.2	_	- 85.3		6.5			5.7			3.2	_	┝───┦
					-	- 19.9	-	- 8.3		- 31.9		- 75.6		- 5.7		5.7	- 1.5	-		- 4.0		4 l
M6	Sunny	Moderate	12:17	Middle	2.1	19.9	19.9	8.4	8.4	31.9	31.9	75.3	75.5	5.7	5.7		1.5	1.5	1.5	3.9	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
ļ	i										L				L							

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 18 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 4.9 NTU</u>	<u>C1: 5.3 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Econtori	Condition	Condition**	Time	Dopt		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	19.9 19.8	19.9	8.3 8.3	8.3	31.5 31.7	31.6	83.6 82.6	83.1	6.3 6.3	6.3		1.8 1.8	1.8		5.0 5.0	5.0	
C1	Sunny	Moderate	17:55	Middle	9.5	18.7 18.9	18.8	8.2 8.3	8.3	32.5 32.4	32.5	83.2 81.0	82.1	6.4 6.2	6.3	6.3	3.0 2.6	2.8	2.9	5.8 5.9	5.9	5.4
				Bottom	18	17.6 17.1	17.4	8.2 8.2	8.2	32.3 32.8	32.6	78.1 76.2	77.2	6.1 6.0	6.1	6.1	4.0 4.1	4.1		5.4 5.2	5.3	
				Surface	1	20.0 19.9	20.0	8.4 8.3	8.4	31.8 31.9	31.9	89.1 88.7	88.9	6.7 6.7	6.7	6.5	1.6 1.6	1.6		3.7 4.0	3.9	
C2	Sunny	Moderate	16:25	Middle	17.5	18.6 18.2	18.4	8.3 8.2	8.3	32.7 32.3	32.5	75.9 84.2	80.1	5.9 6.5	6.2	0.5	3.3 3.4	3.4	3.0	6.1 6.0	6.1	4.7
				Bottom	34	17.9 17.8	17.9	8.2 8.2	8.2	32.8 32.1	32.5	69.0 68.8	68.9	5.4 5.4	5.4	5.4	4.0 4.1	4.1		3.9 4.1	4.0	
				Surface	1	21.2 21.1	21.2	8.5 8.5	8.5	31.7 31.7	31.7	91.6 92.2	91.9	6.8 6.8	6.8	6.7	1.9 1.9	1.9		4.9 4.7	4.8	
G1	Sunny	Moderate	17:08	Middle	3.5	20.4 20.6	20.5	8.4 8.4	8.4	31.9 31.8	31.9	87.2 85.8	86.5	6.5 6.4	6.5		1.6 1.6	1.6	1.9	3.8 3.9	3.9	4.6
				Bottom	6	19.6 19.6	19.6	8.4 8.3	8.4	32.3 32.2	32.3	82.2 83.1	82.7	6.2 6.3	6.3	6.3	2.1 2.2	2.2		5.1 5.0	5.1	
				Surface	1	20.6 21.0	20.8	8.4 8.4	8.4	31.8 31.7	31.8	91.3 91.6	91.5	6.8 6.8	6.8	6.7	1.5 1.5	1.5		5.2 5.2	5.2	
G2	Sunny	Moderate	16:56	Middle	4.5	19.9 19.9	19.9	8.4 8.4	8.4	32.0 32.0	32.0	86.2 85.7	86.0	6.5 6.5	6.5	0.1	1.5 1.6	1.6	1.8	3.8 3.8	3.8	4.8
				Bottom	8	19.3 19.6	19.5	8.3 8.3	8.3	32.9 32.4	32.7	84.4 84.2	84.3	6.4 6.4	6.4	6.4	2.2 2.1	2.2		5.4 5.4	5.4	
				Surface	1	21.3 21.5	21.4	8.4 8.4	8.4	31.3 31.3	31.3	82.1 81.2	81.7	6.1 6.0	6.1	5.9	1.6 1.6	1.6		3.9 3.9	3.9	l
G3	Sunny	Moderate	17:16	Middle	3.5	20.2 20.2	20.2	8.4 8.4	8.4	31.8 31.8	31.8	74.4 74.7	74.6	5.6 5.6	5.6		1.5 1.6	1.6	1.7	4.3 4.3	4.3	4.1
				Bottom	6	19.7 19.6	19.7	8.4 8.3	8.4	32.1 32.2	32.2	76.1 75.6	75.9	5.8 5.7	5.8	5.8	1.9 1.9	1.9		4.2 4.1	4.2	
				Surface	1	20.7 20.8	20.8	8.5 8.5	8.5	31.8 31.8	31.8	89.7 88.6	89.2	6.7 6.6	6.7	6.5	1.6 1.5	1.6		5.4 5.1	5.3	l
G4	Sunny	Moderate	17:27	Middle	4	20.1 20.1	20.1	8.4 8.4	8.4	31.9 31.9	31.9	83.1 82.3	82.7	6.3 6.2	6.3		1.6 1.6	1.6	2.7	4.4 4.3	4.4	4.9
				Bottom	7	18.9 18.9	18.9	8.2 8.2	8.2	32.5 32.5	32.5	82.6 82.8	82.7	6.3 6.3	6.3	6.3	4.8 4.7	4.8		4.9 4.8	4.9	
				Surface	1	21.0 21.1	21.1	8.4 8.4	8.4	31.7 31.7	31.7	86.7 90.0	88.4	6.4 6.7	6.6	6.5	1.6 1.5	1.6		3.4 3.4	3.4	l
M1	Sunny	Moderate	17:03	Middle	3	20.3 20.5	20.4	8.4 8.4	8.4	31.8 31.8	31.8	85.3 84.4	84.9	6.4 6.3	6.4		1.6 1.5	1.6	1.6	4.7 4.7	4.7	4.1
				Bottom	5	19.7 19.8	19.8	8.4 8.4	8.4	32.1 32.1	32.1	77.0 78.3	77.7	5.8 5.9	5.9	5.9	1.6 1.8	1.7		4.1 4.0	4.1	
				Surface	1	20.5 21.4	21.0	8.4 8.4	8.4	31.8 31.5	31.7	88.0 91.0	89.5	6.6 6.7	6.7	6.6	1.6 1.5	1.6		5.1 5.1	5.1	l
M2	Sunny	Moderate	16:47	Middle	4.5	19.6 19.7	19.7	8.4 8.4	8.4	32.3 32.3	32.3	84.1 85.0	84.6	6.4 6.4	6.4		1.8 1.7	1.8	1.8	8.1 8.1	8.1	6.3
				Bottom	8	19.5 19.5	19.5	8.3 8.3	8.3	32.4 32.4	32.4	71.6 72.8	72.2	5.4 5.5	5.5	5.5	1.9 1.9	1.9		5.8 5.6	5.7	
				Surface	1	21.4 19.7	20.6	8.4 8.5	8.5	31.3 30.3	30.8	83.5 78.8	81.2	6.2 6.0	6.1	5.7	1.6 1.6	1.6		3.8 3.7	3.8	7
М3	Sunny	Moderate	17:20	Middle	3.5	20.3 18.9	19.6	8.4 8.4	8.4	31.7 30.4	31.1	70.2 67.1	68.7	5.3 5.2	5.3		1.7 1.7	1.7	1.8	3.2 3.2	3.2	3.7
				Bottom	6	19.6 18.2	18.9	8.3 8.4	8.4	32.2 30.9	31.6	76.8 74.0	75.4	5.8 5.8	5.8	5.8	2.2 2.1	2.2		4.2 4.2	4.2	
				Surface	1	21.5 19.8	20.7	8.4 8.4	8.4	31.6 31.3	31.5	90.2 86.4	88.3	6.6 6.6	6.6	6.5	1.5 1.5	1.5		3.2 3.2	3.2	ļ
M4	Sunny	Moderate	16:34	Middle	5	19.8 19.8	19.8	8.4 8.4	8.4	32.2 32.2	32.2	83.5 83.7	83.6	6.3 6.3	6.3		1.6 1.6	1.6	2.3	3.6 3.6	3.6	4.3
				Bottom	9	19.4 19.6	19.5	8.3 8.3	8.3	32.7 32.4	32.6	78.8 81.5	80.2	6.0 6.2	6.1	6.1	3.7 3.7	3.7		6.1 5.9	6.0	
				Surface	1	20.4 20.3	20.4	8.4 8.4	8.4	32.1 32.1	32.1	85.8 84.6	85.2	6.4 6.3	6.4	6.2	1.4 1.4	1.4		4.5 4.5	4.5	
M5	Sunny	Moderate	17:44	Middle	5.5	19.9 19.9	19.9	8.4 8.4	8.4	32.6 32.6	32.6	80.3 79.9	80.1	6.0 6.0	6.0		1.5 1.6	1.6	2.3	6.5 6.6	6.6	5.6
				Bottom	10	18.3 18.2	18.3	8.2 8.2	8.2	32.5 32.5	32.5	69.3 69.6	69.5	5.4 5.4	5.4	5.4	3.7 4.0	3.9		5.5 5.6	5.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
M6	Sunny	Moderate	17:33	Middle	2.1	19.7 19.7	19.7	8.3 8.3	8.3	32.3 32.2	32.3	84.6 85.0	84.8	6.4 6.4	6.4		2.4 2.2	2.3	2.3	4.2 4.2	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 20 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
()	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Toutilitation		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
()		<u>C2: 5.3 NTU</u>	<u>C2: 5.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.8 mg/L</u>	<u>C2: 7.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	urbidity(NT	U)	Suspe	nded Solids	; (mg/L)
Eocation	Condition	Condition**	Time	Depi	ii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.7 18.7	18.7	8.1 8.1	8.1	32.3 32.3	32.3	99.7 98.5	99.1	7.7 7.6	7.7		2.6 2.7	2.7		4.1 3.9	4.0	1
C1	Sunny	Moderate	13:46	Middle	9	18.6	18.6	8.0	8.1	32.3	32.3	98.2	98.0	7.6	7.6	7.7	2.8	2.9	3.5	4.5	4.6	4.7
C1	Sunny	would are	13.40	Wildule	3	18.6	10.0	8.1	0.1	32.3	32.3	97.8	30.0	7.6	7.0		2.9	2.3	3.5	4.7	4.0	4.7
				Bottom	17	18.3 18.3	18.3	8.1 8.1	8.1	32.3 32.2	32.3	96.5 96.4	96.5	7.5 7.5	7.5	7.5	4.5 5.0	4.8		5.4 5.5	5.5	
				Surface	1	18.6	18.6	8.2	8.2	32.3	32.3	98.3	97.9	7.6	7.6		3.0	3.1		5.9	5.9	
				Sunace		18.6	10.0	8.2	0.2	32.3	32.3	97.5	51.5	7.5	7.0	7.5	3.2 3.5	5.1		5.9	5.5	ļ
C2	Sunny	Moderate	12:36	Middle	16.5	18.6 18.6	18.6	8.2 8.2	8.2	32.3 32.3	32.3	96.4 96.2	96.3	7.4 7.4	7.4		3.5	3.5	3.7	4.2 4.3	4.3	5.3
				Bottom	32	18.5	18.6	8.2	8.2	32.3	32.3	95.9	96.1	7.4	7.4	7.4	4.3	4.4		5.7	5.7	t I
						18.6 18.8		8.2 8.1		32.3 32.3		96.3 98.5		7.4 7.6			4.4 3.0			5.7 4.7		<b>└───</b> ┥
				Surface	1	18.8	18.8	8.1	8.1	32.3	32.3	98.5	98.2	7.5	7.6	7.0	3.0	3.1		4.7	4.6	i I
G1	Sunny	Moderate	13:09	Middle	4	18.7	18.7	8.1	8.1	32.3	32.3	97.4	97.2	7.5	7.5	7.6	4.2	4.2	4.1	2.3	2.4	3.8
	,					18.7 18.7		8.1 8.1		32.3 32.3		96.9 96.6		7.5			4.1 4.8			2.4		
				Bottom	7	18.7	18.7	8.1	8.1	32.3	32.3	96.3	96.5	7.4	7.4	7.4	5.0	4.9		4.3	4.4	
				Surface	1	18.8	18.8	8.0	8.1	32.3	32.3	98.8	98.6	7.6	7.6		2.8	2.7		4.1	4.1	
						18.8 18.7		8.1 8.0		32.3 32.3		98.4 97.8		7.6 7.5		7.6	2.6			4.0		ł .
G2	Sunny	Moderate	12:59	Middle	5	18.7	18.7	8.1	8.1	32.3	32.3	97.5	97.7	7.5	7.5		3.6	3.7	3.8	5.6	5.6	5.3
				Bottom	9	18.6	18.6	8.0	8.1	32.3	32.3	96.0	96.4	7.4	7.5	7.5	5.0	5.0		6.1	6.1	Í
						18.6 18.7		8.1 8.0		32.3 32.1		96.7 96.2		7.5			5.0 5.4			6.0 3.2		
				Surface	1	18.7	18.7	8.1	8.1	32.1	32.1	95.3	95.8	7.3	7.4	7.4	4.9	5.2		3.1	3.2	1
G3	Sunny	Moderate	13:16	Middle	4	18.6 18.6	18.6	8.0 8.1	8.1	32.2 32.2	32.2	95.5 94.6	95.1	7.4	7.4		4.0 3.9	4.0	4.7	4.6 4.7	4.7	3.9
				D. //	-	18.6	10.0	8.0		32.2		94.0	05.0	7.4		7.4	4.5	4.0		3.9		i
				Bottom	7	18.6	18.6	8.1	8.1	32.2	32.3	94.7	95.0	7.3	7.4	7.4	5.0	4.8		3.9	3.9	
				Surface	1	18.8 18.8	18.8	8.1 8.1	8.1	32.2 32.3	32.3	98.8 98.5	98.7	7.6	7.6		2.7 2.4	2.6		4.2	4.2	1
G4	Sunny	Moderate	13:27	Middle	4.5	18.7	18.7	8.1	8.1	32.3	32.3	98.3	98.2	7.6	7.6	7.6	2.4	2.6	3.1	4.2	4.2	4.2
64	Sunny	would are	13.27	Wildule	4.5	18.7	10.7	8.1	0.1	32.3	32.3	98.1	90.2	7.6	7.0		2.5	2.0	3.1	4.2	4.2	4.2
				Bottom	8	18.6 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	95.8 96.1	96.0	7.4 7.4	7.4	7.4	4.2 4.2	4.2		4.2 4.3	4.3	1
				Surface	1	18.8	18.8	8.1	8.1	32.2	32.2	97.5	97.1	7.5	7.5		6.5	6.6		5.4	5.3	
				Surrace		18.8	10.0	8.1	0.1	32.2	32.2	96.7	97.1	7.4	7.5	7.5	6.7	0.0		5.2	5.5	1 I
M1	Sunny	Moderate	13:05	Middle	3	18.7 18.7	18.7	8.1 8.1	8.1	32.3 32.3	32.3	97.6 96.9	97.3	7.5 7.5	7.5		4.0 4.1	4.1	5.2	5.2 5.1	5.2	5.3
				Bottom	5	18.6	18.7	8.1	8.1	32.3	32.3	96.9	96.9	7.5	7.5	7.5	5.0	5.0		5.3	5.4	t I
				Dottoin	5	18.7	10.7	8.1	0.1	32.3	02.0	96.9	50.5	7.5	1.5	1.0	4.9 3.0	0.0		5.5	0.4	Ļ]
				Surface	1	18.8 18.8	18.8	8.1 8.1	8.1	32.3 32.3	32.3	98.9 98.2	98.6	7.6 7.6	7.6	7.0	3.0	3.0		5.5 5.1	5.3	1
M2	Sunny	Moderate	12:52	Middle	6	18.6	18.6	8.0	8.1	32.3	32.3	96.8	96.7	7.5	7.5	7.6	3.7	3.9	4.0	5.1	5.1	5.0
	ounny	modorato	12.02	midulo	ů	18.6 18.5	10.0	8.1 8.1	0.1	32.3 32.3		96.5 96.0	00.1	7.5			4.1 5.0	0.0		5.0 4.7	0.1	0.0
				Bottom	11	18.5	18.5	8.1	8.1	32.3	32.3	95.8	95.9	7.4	7.4	7.4	5.0	5.0		4.7	4.7	i I
				Surface	1	18.7	18.8	8.1	8.1	32.2	32.2	98.2	97.9	7.6	7.6		3.9	3.9		3.8	3.8	
						18.8 18.6		8.1 8.1		32.2 32.3		97.6 96.6		7.5		7.6	3.9 4.3		1	3.7		ł
M3	Sunny	Moderate	13:21	Middle	4	18.6	18.6	8.1	8.1	32.3	32.3	95.8	96.2	7.4	7.5		4.2	4.3	4.4	4.5	4.5	4.5
				Bottom	7	18.6	18.6	8.1	8.1	32.3	32.3	96.0	95.9	7.4	7.4	7.4	5.1	5.1		5.2	5.3	
						18.6 18.7		8.1 8.1		32.3 32.3		95.8 99.5		7.4			5.1 3.1			5.4 5.2		<b>—</b>
				Surface	1	18.7	18.7	8.1	8.1	32.3	32.3	98.8	99.2	7.6	7.7	7.7	3.0	3.1		5.1	5.2	↓ Ⅰ
M4	Sunny	Moderate	12:46	Middle	5	18.6 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	98.6 97.3	98.0	7.6 7.5	7.6	1.1	3.3 3.3	3.3	3.4	4.7 4.8	4.8	5.3
						18.6	10.0	8.1		32.3		97.3		7.5		7.5	3.3		1	4.8	5.0	†
				Bottom	9	18.6	18.6	8.1	8.1	32.3	32.3	96.5	96.8	7.5	7.5	7.5	3.7	3.8		5.8	5.8	
				Surface	1	18.8 18.8	18.8	8.0 8.1	8.1	32.3 32.3	32.3	98.1 98.3	98.2	7.5 7.6	7.6		3.1 2.9	3.0		5.8 5.6	5.7	
145	0	Madamat	10.10	Madala	<u> </u>	18.8	40.0	8.1	0.4	32.3	20.0	98.3 96.8	07.0	7.6	7.5	7.6	3.5	2.5		7.3	7.4	
M5	Sunny	Moderate	13:40	Middle	6	18.8	18.8	8.1	8.1	32.3	32.3	97.2	97.0	7.5	7.5		3.4	3.5	3.8	7.5	7.4	6.5
				Bottom	11	18.7 18.6	18.7	8.1 8.1	8.1	32.3 32.3	32.3	96.3 95.9	96.1	7.4 7.4	7.4	7.4	4.9 4.8	4.9		6.2 6.4	6.3	
				Surface		-		-		-	-	-		-			-	-		- 0.4		
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	1	-	-	ļ
M6	Sunny	Moderate	13:33	Middle	1.4	18.6 18.6	18.6	8.0 8.0	8.0	32.3 32.3	32.3	96.4 96.0	96.2	7.4 7.4	7.4		3.6 3.8	3.7	3.7	4.3 4.3	4.3	4.3
				Bottom		-	_	-	_	-	_	-		-			-		1	-	_	i I
L				Dottom	-	-	-	-	-	-	-	-	_	-	-	-	-	-		-	-	l .

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 20 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Trank i liter in		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 6.0 NTU</u>	<u>C1: 6.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.7 mg/L</u>	<u>C1: 8.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	эΗ	Salir	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	n (mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Ecolation	Condition	Condition**	Time	Dept	ar (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	99.0 97.8	98.4	7.7 7.6	7.7	7.0	3.8 3.7	3.8		5.2 5.2	5.2	1
C1	Sunny	Moderate	18:09	Middle	9	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	97.4 96.9	97.2	7.5 7.5	7.5	7.6	4.0 3.8	3.9	4.2	6.7 6.7	6.7	6.1
				Bottom	17	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	96.5 96.2	96.4	7.5 7.5	7.5	7.5	4.9 5.1	5.0		6.3 6.4	6.4	
				Surface	1	18.8 18.8	18.8	7.7 8.1	7.9	32.2 32.2	32.2	99.3 97.8	98.6	7.6 7.5	7.6	7.5	2.1 2.1	2.1		5.2 5.3	5.3	ĺ
C2	Sunny	Moderate	17:06	Middle	16.5	18.7 18.6	18.7	8.0 8.2	8.1	32.3 32.3	32.3	95.9 95.3	95.6	7.4 7.4	7.4	1.5	2.5 2.8	2.7	2.6	3.6 3.6	3.6	4.7
				Bottom	32	18.6 18.6	18.6	8.1 8.2	8.2	32.3 32.3	32.3	95.5 95.4	95.5	7.4 7.4	7.4	7.4	3.1 3.0	3.1		5.3 5.1	5.2	
				Surface	1	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.2	32.2	96.8 96.4	96.6	7.5 7.4	7.5	7.5	6.7 6.5	6.6		4.8 4.5	4.7	ļ
G1	Sunny	Moderate	17:37	Middle	4	18.6 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	96.2 96.1	96.2	7.4 7.4	7.4		6.9 6.2	6.6	6.3	5.2 5.2	5.2	5.1
				Bottom	7	18.5 18.5	18.5	8.1 8.1	8.1	32.3 32.3	32.3	95.9 95.9	95.9	7.4 7.4	7.4	7.4	5.5 5.7	5.6		5.5 5.2	5.4	
				Surface	1	18.8 18.8	18.8	8.1 8.1	8.1	32.3 32.3	32.3	100.9 100.3	100.6	7.8 7.7	7.8	7.7	3.6 3.6	3.6		4.7 4.5	4.6	ļ
G2	Sunny	Moderate	17:27	Middle	5	18.6 18.7	18.7	8.1 8.1	8.1	32.3 32.3	32.3	97.8 97.7	97.8	7.5 7.5	7.5		3.9 3.7	3.8	4.4	4.9 5.0	5.0	5.1
				Bottom	9	18.5 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	96.5 96.8	96.7	7.5 7.5	7.5	7.5	5.8 5.7	5.8		5.8 5.8	5.8	
				Surface	1	18.5 18.6	18.6	8.1 8.0	8.1	32.2 32.2	32.2	97.4 96.2	96.8	7.5 7.4	7.5	7.5	3.1 3.6	3.4		5.4 5.4	5.4	ļ
G3	Sunny	Moderate	17:43	Middle	4	18.6 18.6	18.6	8.0 8.0	8.0	32.2 32.2	32.2	96.0 95.7	95.9	7.4 7.4	7.4		3.9 4.4	4.2	4.4	6.3 6.0	6.2	5.6
				Bottom	7	18.6 18.6	18.6	8.0 8.0	8.0	32.2 32.3	32.3	95.7 95.3	95.5	7.4 7.4	7.4	7.4	5.5 5.6	5.6		5.1 5.0	5.1	
				Surface	1	18.6 18.7	18.7	8.1 8.0	8.1	32.2 32.3	32.3	99.7 97.8	98.8	7.7 7.5	7.6	7.6	2.8 2.7	2.8		4.1 4.0	4.1	ļ
G4	Sunny	Moderate	17:52	Middle	4.5	18.7 18.6	18.7	8.1 8.1	8.1	32.3 32.3	32.3	97.8 97.5	97.7	7.5	7.5		3.5 3.6	3.6	3.7	4.2	4.3	4.3
				Bottom	8	18.5 18.4	18.5	8.0 8.1	8.1	32.3 32.3	32.3	96.0 95.7	95.9	7.4 7.4	7.4	7.4	4.9 4.7	4.8		4.5 4.6	4.6	<u> </u>
				Surface	1	18.7 18.7	18.7	8.1 8.1	8.1	32.3 32.3	32.3	99.8 98.5	99.2	7.7	7.7	7.7	4.2 4.5 4.3	4.4		4.7 4.5	4.6	ļ
M1	Sunny	Moderate	17:33	Middle	3	18.7 18.7 18.7	18.7	8.1 8.1 8.1	8.1	32.3 32.3 32.3	32.3	98.9 98.3 97.8	98.6	7.6 7.6 7.5	7.6		4.3 4.5 5.5	4.4	4.8	5.0 5.1 5.9	5.1	5.2
	-			Bottom	5	18.7 18.7	18.7	8.1 8.1	8.1	32.3 32.3	32.3	97.8 97.4 100.8	97.6	7.5	7.5	7.5	5.5 5.5 2.5	5.5		5.9 5.9 3.5	5.9	<u> </u>
				Surface	1	18.8	18.8	8.1 8.1	8.1	32.3 32.3	32.3	100.0	100.4	7.7	7.8	7.7	2.5	2.5		3.5 4.6	3.5	ł
M2	Sunny	Moderate	17:21	Middle	6	18.7 18.4	18.7	8.1 8.1	8.1	32.3 32.3 32.3	32.3	98.8 95.7	98.6	7.6	7.6		2.5 5.4	2.8	3.6	4.0	4.6	4.1
				Bottom	11	18.4	18.4	8.1 8.1	8.1	32.3 32.2	32.3	96.1 97.8	95.9	7.4 7.5	7.4	7.4	5.6 4.4	5.5		4.4 4.2 4.5	4.3	<u> </u>
				Surface	1	18.7	18.7	8.1	8.1	32.2 32.3	32.2	96.7 96.5	97.3	7.5	7.5	7.5	4.4 4.7 4.5	4.6		4.6	4.6	ł
M3	Sunny	Moderate	17:47	Middle	4	18.6 18.6	18.7	8.1 8.1 8.1	8.1	32.3 32.3 32.3	32.3	96.2 96.2	96.4	7.4 7.4 7.4	7.4		4.5 4.9 3.8	4.7	4.4	5.5 5.6 4.6	5.6	4.9
				Bottom	7	18.6	18.6	8.1 8.2	8.1	32.3 32.3	32.3	96.1 100.4	96.2	7.4 7.4 7.7	7.4	7.4	3.8	3.8		4.6	4.6	<u> </u>
				Surface	1	18.7	18.7	8.2 8.1	8.2	32.3 32.3	32.3	99.2 97.7	99.8	7.6	7.7	7.6	2.4 2.3 3.8	2.4	· ·	3.1 4.0	3.2	ł
M4	Sunny	Moderate	17:14	Middle	5	18.6	18.6	8.2 8.1	8.2	32.3 32.3	32.3	97.7 96.2	97.7	7.5	7.5		4.0	3.9	4.0	4.0	4.0	4.5
	<u> </u>			Bottom	9	18.5	18.5	8.2	8.2	32.3	32.3	96.3 99.3	96.3	7.5	7.5	7.5	5.6	5.6		6.4 3.2	6.4	<u> </u>
				Surface	1	18.6	18.6	8.0 8.0	8.0	32.3 32.3	32.3	98.3 98.2	98.8	7.6	7.7	7.7	3.2	3.2	4	3.2 3.2 10.0	3.2	<b>i</b>
M5	Sunny	Moderate	18:03	Middle	6	18.6 18.5	18.6	8.1 8.0	8.1	32.3 32.3	32.3	97.6 97.1	97.9	7.5	7.6	7.5	3.3 4.3	3.3	3.7	9.8	9.9	6.1
				Bottom	11	18.5	18.5	8.1	8.1	32.3	32.3	96.8	97.0	7.5	7.5	7.5	4.6	4.5		5.3	5.3	┝───
			47.57	Surface	-	- 18.5	-	- 8.1	-	- 32.3	-	- 100.0	-	- 7.7	-	7.6	- 3.4	-	- <u>.</u> ,	- 7.7	-	+
M6	Sunny	Moderate	17:57	Middle	1.2	18.6	18.6	8.1	8.1	32.3	32.3	96.5	98.3	7.5	7.6		3.4	3.4	3.4	7.6	7.7	7.7
				Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 22 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 8.3 NTU</u>	<u>C2: 9.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.0 mg/L</u>	<u>C2: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	iity ppt	DO Satu	ration (%)	Disso	lved Oxyger	(mg/L)	1	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	ii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.6 18.6	18.6	8.3 8.3	8.3	33.7 33.7	33.7	98.8 98.3	98.6	7.6 7.5	7.6		2.0 2.0	2.0		5.3 5.4	5.4	
C1	Sunny	Calm	15:13	Middle	9.5	18.3	18.4	8.3	8.3	33.8 33.8	33.8	96.8	96.8	7.4	7.4	7.5	2.8	2.8	3.6	5.3	5.2	4.8
	-			Bottom	18	18.4 18.2	18.2	8.3 8.3	8.3	33.7	33.7	96.8 95.2	95.1	7.4	7.3	7.3	5.7	6.1		5.1 3.8	3.8	1
						18.1 18.5		8.3 8.3		33.7 33.7		95.0 97.2		7.3		1.0	6.5 2.0			3.8 4.9		
				Surface	1	18.5	18.5	8.3	8.3	33.7	33.7	97.4	97.3	7.5	7.5	7.4	2.2	2.1		4.9	4.9	4
C2	Sunny	Calm	14:02	Middle	17	18.2 18.3	18.3	8.3 8.3	8.3	33.7 33.7	33.7	94.8 95.0	94.9	7.3 7.3	7.3		4.0 3.6	3.8	4.3	6.4 6.4	6.4	5.7
				Bottom	33	18.2 18.3	18.3	8.3 8.3	8.3	33.7 33.7	33.7	94.6 94.6	94.6	7.3 7.3	7.3	7.3	6.9 6.8	6.9		5.9 5.7	5.8	
				Surface	1	18.7 18.8	18.8	8.3 8.3	8.3	33.7 33.7	33.7	97.7 97.7	97.7	7.5 7.5	7.5		3.5 3.2	3.4		3.2 3.3	3.3	
G1	Sunny	Calm	14:37	Middle	4	18.5	18.5	8.3	8.3	33.7	33.7	97.0	96.7	7.4	7.4	7.5	3.1	2.9	3.0	6.2	6.3	3.8
	,		-	Bottom	7	18.4 18.4	18.4	8.3 8.3	8.3	33.7 33.7	33.7	96.4 95.6	95.5	7.4 7.3	7.3	7.3	2.7 2.7	2.6		6.3 1.9	1.9	ł
						18.4 18.7		8.3 8.3		33.7 33.7		95.3 97.9		7.3		1.5	2.5			1.9 3.0		
				Surface	1	18.7	18.7	8.3 8.3	8.3	33.7 33.7	33.7	97.3	97.6	7.4	7.5	7.5	2.3	2.3		2.9	3.0	
G2	Sunny	Calm	14:23	Middle	5	18.5 18.6	18.6	8.3	8.3	33.7	33.7	96.7 97.0	96.9	7.4 7.4	7.4		3.0	3.0	3.4	4.7	4.7	4.1
				Bottom	9	18.4 18.4	18.4	8.3 8.3	8.3	33.7 33.7	33.7	95.7 95.2	95.5	7.4 7.3	7.4	7.4	4.5 5.1	4.8		4.5 4.4	4.5	
				Surface	1	18.7 18.7	18.7	8.3 8.3	8.3	33.5 33.5	33.5	96.1 95.6	95.9	7.4 7.3	7.4		6.4 6.8	6.6		5.8 5.8	5.8	
G3	Sunny	Calm	14:43	Middle	4	18.7	18.7	8.3	8.3	33.7	33.7	95.8	95.3	7.3	7.3	7.4	7.4	7.7	7.5	7.0	7.0	5.9
	-			Bottom	7	18.6 18.5	18.5	8.3 8.3	8.3	33.6 33.7	33.7	94.8 94.7	93.9	7.3 7.3	7.3	7.3	8.0 7.7	8.1		7.0 4.9	4.9	ł
						18.4 18.7		8.3 8.3		33.7 33.7		93.1 99.0	1	7.2		1.5	8.4 1.7			4.8 2.7		
				Surface	1	18.7 18.5	18.7	8.3 8.3	8.3	33.7 33.7	33.7	98.0 97.7	98.5	7.5 7.5	7.6	7.6	1.8 2.1	1.8		2.7 2.6	2.7	
G4	Sunny	Calm	14:55	Middle	4.5	18.4	18.5	8.3	8.3	33.7	33.7	96.5	97.1	7.4	7.5		2.4	2.3	3.2	2.6	2.6	3.4
				Bottom	8	18.3 18.3	18.3	8.3 8.3	8.3	33.8 33.8	33.8	93.5 93.8	93.7	7.2 7.2	7.2	7.2	5.5 5.6	5.6		4.9 4.9	4.9	
				Surface	1	18.5 18.6	18.6	8.3 8.3	8.3	33.7 33.7	33.7	96.9 97.0	97.0	7.4 7.4	7.4		4.9 4.4	4.7		3.9 4.0	4.0	
M1	Sunny	Calm	14:32	Middle	3	18.5 18.6	18.6	8.3 8.3	8.3	33.7 33.7	33.7	97.0 96.8	96.9	7.4	7.4	7.4	3.9 4.4	4.2	4.4	5.2	5.2	4.5
				Bottom	5	18.5	18.5	8.3	8.3	33.7	33.7	96.5	96.6	7.4	7.4	7.4	4.4	4.4		4.1	4.3	1
				Surface	1	18.5 18.7	18.7	8.3 8.3	8.3	33.7 33.7	33.7	96.6 98.5	98.1	7.4	7.5		4.4 1.9	1.9		4.4 3.0	3.0	
						18.7 18.6		8.3 8.3		33.7 33.7		97.7 97.4		7.5		7.5	1.9 2.2			2.9 4.4		
M2	Sunny	Calm	14:17	Middle	6	18.7 18.4	18.7	8.3 8.3	8.3	33.7 33.7	33.7	97.3 94.2	97.4	7.4 7.2	7.5		2.0 5.6	2.1	3.1	4.5 3.4	4.5	3.6
				Bottom	11	18.4	18.4	8.3	8.3	33.7	33.7	95.0	94.6	7.3	7.3	7.3	5.0	5.3		3.4	3.4	
				Surface	1	18.8 18.7	18.8	8.3 8.3	8.3	33.5 33.6	33.6	96.7 95.8	96.3	7.4 7.3	7.4	74	4.9 4.6	4.8		4.0 4.1	4.1	
М3	Sunny	Calm	14:48	Middle	4	18.7 18.7	18.7	8.3 8.3	8.3	33.7 33.7	33.7	96.2 96.0	96.1	7.4 7.3	7.4	7.4	4.0 4.1	4.1	5.0	3.1 3.3	3.2	3.6
				Bottom	7	18.4	18.5	8.3 8.3	8.3	33.7 33.7	33.7	94.2 94.9	94.6	7.2	7.3	7.3	6.4 6.0	6.2	1	3.4	3.4	Í
				Surface	1	18.6	18.6	8.3	8.3	33.7	33.7	98.6	98.5	7.5	7.5		2.1	2.1		2.5	2.6	
M4	Sunny	Calm	14:10	Middle	5	18.6 18.4	18.3	8.3 8.3	8.3	33.7 33.7	33.7	98.3 96.4	96.2	7.5 7.4	7.4	7.5	2.1 3.3	3.4	4.3	2.6 3.5	3.5	3.0
111-4	Sunny	Gain	14.10		-	18.2 18.4		8.3 8.3		33.7 33.7		95.9 95.8		7.4 7.4			3.5 7.3		4.0	3.4 2.8		3.0
				Bottom	9	18.3	18.4	8.3	8.3	33.7	33.7	95.6	95.7	7.4	7.4	7.4	7.3	7.3		2.8	2.8	<u> </u>
				Surface	1	18.6 18.6	18.6	8.3 8.3	8.3	33.7 33.7	33.7	98.7 98.4	98.6	7.5 7.5	7.5	7.5	1.9 1.9	1.9		4.2 4.3	4.3	l
M5	Sunny	Calm	15:08	Middle	6	18.3 18.4	18.4	8.3 8.3	8.3	33.7 33.7	33.7	96.7 96.9	96.8	7.4 7.5	7.5		2.5 2.5	2.5	3.5	5.9 5.8	5.9	4.5
				Bottom	11	18.1 18.2	18.2	8.3 8.3	8.3	33.7 33.7	33.7	95.6 95.7	95.7	7.4 7.4	7.4	7.4	6.5 5.4	6.0		3.4 3.3	3.4	İ İ
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Sunny	Calm	15:01	Middle	2	- 18.5	18.6	- 8.3	8.3	- 33.7	33.7	- 98.9	98.9	- 7.6	7.6	7.6	- 2.0	2.1	2.1	- 2.8	2.8	2.8
inio	Ganny	Gain	10.01		-	18.6	10.0	8.3	0.0	33.7	00.7	98.9	50.5	7.6	1.0		2.1	2.1	2.1	2.8	2.0	2.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 22 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.0 NTU</u>	<u>C1: 8.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.8 mg/L</u>	<u>C1: 6.2 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	эΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	n (mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	ii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	33.7 33.7	33.7	97.7 97.5	97.6	7.5 7.5	7.5		1.8 2.0	1.9		4.8 4.8	4.8	
C1	Sunny	Calm	11:01	Middle	9.5	18.1 18.1	18.1	8.3 8.3	8.3	33.7 33.7	33.7	97.1 96.7	96.9	7.5 7.5	7.5	7.5	6.4 6.7	6.6	5.1	4.1 4.1	4.1	4.6
				Bottom	18	18.0 18.0	18.0	8.3 8.3	8.3	33.7 33.7	33.7	97.5 97.6	97.6	7.6 7.6	7.6	7.6	6.6 6.7	6.7		4.9 4.9	4.9	
				Surface	1	18.4 18.3	18.4	8.3 8.3	8.3	33.7 33.7	33.7	97.6 98.0	97.8	7.5 7.5	7.5	7.5	2.2 2.4	2.3		3.6 3.5	3.6	l
C2	Sunny	Calm	09:56	Middle	17	18.2 18.2	18.2	8.3 8.3	8.3	33.7 33.7	33.7	96.9 96.8	96.9	7.5 7.5	7.5		3.7 4.2	4.0	3.8	2.8 2.7	2.8	3.2
				Bottom	33	18.2 18.2	18.2	8.3 8.3	8.3	33.7 33.7	33.7	96.6 96.5	96.6	7.4 7.4	7.4	7.4	5.3 4.8	5.1		3.1 3.2	3.2	<u> </u>
				Surface	1	18.3 18.3	18.3	8.3 8.3	8.3	33.7 33.7	33.7	97.1 97.0	97.1	7.5 7.5	7.5	7.5	3.1 3.0	3.1	_	4.9 4.7	4.8	ļ
G1	Sunny	Calm	10:30	Middle	4	18.3 18.3	18.3	8.3 8.3	8.3	33.7 33.7	33.7	96.8 96.9	96.9	7.4 7.5	7.5		2.9 2.6	2.8	3.5	6.9 6.7	6.8	5.6
				Bottom	7	18.2 18.2	18.2	8.3 8.3	8.3	33.8 33.8	33.8	95.8 95.8	95.8	7.4 7.4	7.4	7.4	4.7 4.6	4.7		5.2 5.1	5.2	<u> </u>
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	33.8 33.8	33.8	98.1 97.7	97.9	7.5 7.5	7.5	7.5	2.2 2.2	2.2	_	1.9 1.9	1.9	ļ
G2	Sunny	Calm	10:18	Middle	5	18.4 18.4	18.4	8.3 8.3	8.3	33.8 33.8	33.8	97.5 96.9	97.2	7.5	7.5		2.7 2.4	2.6	2.7	4.3 4.2	4.3	3.0
				Bottom	9	18.3 18.3	18.3	8.4 8.3	8.4	33.8 33.8	33.8	96.2 96.0	96.1	7.4 7.4	7.4	7.4	3.1 3.5	3.3		2.9 2.9	2.9	<u> </u>
				Surface	1	18.3 18.3	18.3	8.4 8.3	8.4	33.7 33.7	33.7	95.6 95.2	95.4	7.4 7.3	7.4	7.4	5.5 5.7	5.6	_	5.3 5.2	5.3	ļ
G3	Sunny	Calm	10:37	Middle	4	18.3 18.3	18.3	8.4 8.3	8.4	33.7 33.7	33.7	95.3 95.0	95.2	7.3 7.3	7.3		6.4 6.5	6.5	6.4	10.2 10.3	10.3	6.6
				Bottom	7	18.3 18.3	18.3	8.3 8.3	8.3	33.7 33.7	33.7	95.0 94.7	94.9	7.3 7.3	7.3	7.3	7.0 6.9	7.0		4.2 4.2	4.2	<u> </u>
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	33.7 33.7	33.7	96.1 96.4	96.3	7.4 7.3	7.4	7.4	3.4 3.4	3.4		3.6 3.6	3.6	ļ
G4	Sunny	Calm	10:48	Middle	4.5	18.4 18.5 18.3	18.5	8.3 8.3 8.3	8.3	33.8 33.7 33.8	33.8	97.5 95.6 95.7	96.6	7.5	7.4		2.2 2.4 4.9	2.3	3.6	3.0 3.1 3.9	3.1	3.6
				Bottom	8	18.3	18.3	8.3 8.4	8.3	33.8 33.7	33.8	95.7	95.7	7.4 7.4	7.4	7.4	4.9 5.1 4.1	5.0		4.0 4.8	4.0	<u> </u>
				Surface	1	18.3	18.3	8.3 8.3	8.4	33.7 33.8	33.7	97.0 97.0 96.1	97.0	7.5 7.5 7.4	7.5	7.5	4.1 3.7 4.8	3.9		4.0 4.9 7.1	4.9	ł
M1	Sunny	Calm	10:26	Middle	3	18.3	18.3	8.3 8.3	8.3	33.8 33.8	33.8	96.7 95.8	96.4	7.4 7.4 7.4	7.4		4.0 4.4 6.1	4.6	4.9	7.3	7.2	5.5
				Bottom	5	18.3	18.3	8.3 8.4	8.3	33.8 33.8	33.8	96.1 97.8	96.0	7.4 7.5	7.4	7.4	6.2 2.0	6.2		4.2	4.3	<u> </u>
				Surface	1	18.4 18.3	18.4	8.3 8.4	8.4	33.8 33.8	33.8	97.6 96.5	97.7	7.5	7.5	7.5	2.0	2.0		2.8	2.8	ł
M2	Sunny	Calm	10:12	Middle	6	18.3	18.3	8.3 8.3	8.4	33.8 33.8	33.8	96.6 95.4	96.6	7.4 7.4 7.4	7.4		3.6 6.6	3.6	4.1	1.7	1.7	2.5
				Bottom	11	18.3	18.3	8.3 8.3	8.3	33.8 33.6	33.8	95.8 96.6	95.6	7.4	7.4	7.4	6.5 5.2	6.6	1	3.0	3.0	
				Surface	1	18.5 18.3	18.5	8.3 8.3	8.3	33.6 33.8	33.6	96.4 95.6	96.5	7.4 7.4 7.4	7.4	7.4	4.7	5.0	-	3.3 4.0	3.3	
M3	Sunny	Calm	10:42	Middle	4	18.3 18.3	18.3	8.3 8.3	8.3	33.7 33.8	33.8	95.8 94.9	95.7	7.4 7.3	7.4		5.6 5.8	5.4	5.4	4.0 4.1 4.5	4.1	3.9
				Bottom	7	18.3	18.3	8.3 8.3	8.3	33.8 33.7	33.8	94.9 98.3	94.9	7.3	7.3	7.3	5.6	5.7		4.3	4.4	<u> </u>
		. ·	10.51	Surface	1	18.3	18.3	8.4 8.4	8.4	33.7 33.7	33.7	97.5 96.6	97.9	7.5	7.6	7.6	3.0 4.5	3.2	- <u>.</u>	5.1	5.0	<i>.</i> -
M4	Sunny	Calm	10:04	Middle	5	18.3	18.3	8.4 8.4	8.4	33.7 33.8	33.7	96.8 96.0	96.7	7.5	7.5		3.9	4.2	4.1	3.8 4.6	3.9	4.5
				Bottom	9	18.3	18.3	8.4	8.4	33.7 33.7	33.8	96.3 97.7	96.2	7.4	7.4	7.4	4.7	4.9		4.6	4.6	
			40.50	Surface	1	18.5	18.5	8.3 8.3	8.3	33.7 33.8	33.7	97.5 96.5	97.6	7.5	7.5	7.5	1.8	1.8	l	2.8	2.9	
M5	Sunny	Calm	10:58	Middle	6	18.3	18.3	8.3 8.4	8.3	33.8 33.7	33.8	96.2 96.8	96.4	7.4	7.4	75	4.6	4.6	4.7	7.7	7.7	4.9
				Bottom	11	18.0	18.0	8.3	8.4	33.7	33.7	96.6	96.7	7.5	7.5	7.5	7.7	7.8		4.0	4.0	
110	0	0.1	40.50	Surface	-	- 18.6	-	- 8.3	-	- 33.8	-	- 97.9	-	- 7.5	-	7.5	- 1.9	-		- 2.8	-	
M6	Sunny	Calm	10:53	Middle	2	18.6	18.6	8.3	8.3	33.8	33.8	97.8	97.9	7.5	7.5		1.9	1.9	1.9	2.7	2.8	2.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 25 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 4.3 NTU</u>	<u>C2: 4.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	ьΗ	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Furbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Eocation	Condition	Condition**	Time	Dopt		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.3 18.3	18.3	8.7 8.8	8.8	32.1 32.1	32.1	99.6 99.4	99.5	7.6 7.6	7.6	7.0	1.2 1.2	1.2		4.5 4.3	4.4	1
C1	Sunny	Calm	18:17	Middle	9.5	18.2	18.2	8.8	8.8	32.1	32.1	98.2	98.2	7.6	7.6	7.6	1.3	1.3	1.4	5.1	5.1	5.0
	-			Bottom	18	18.2 18.1	18.1	8.8 8.8	8.8	32.1 32.1	32.1	98.2 96.4	96.4	7.6	7.4	7.4	1.3 1.7	1.7		5.1 5.4	5.4	t l
				Bollom	10	18.1 18.5		8.8 8.6		32.1 32.0		96.3 99.3		7.4		7.4	1.7 1.9			5.4 4.8		
				Surface	1	18.5	18.5	8.8	8.7	32.0	32.1	99.3 98.5	98.9	7.6 7.5	7.6	7.5	2.0	2.0		4.8	4.9	1
C2	Sunny	Calm	17:06	Middle	17	18.5 18.5	18.5	8.8 8.8	8.8	32.0 32.1	32.1	97.2 97.1	97.2	7.4 7.4	7.4	1.5	2.2	2.3	2.6	2.6 2.4	2.5	4.3
				Bottom	33	18.1	18.1	8.8	8.8	32.1	32.1	95.4	95.6	7.4	7.4	7.4	3.6	3.6		5.4	5.5	i
				<u> </u>		18.1 18.5	10.5	8.8 8.8		32.1 32.0		95.8 99.7		7.4	7.0		3.6 1.8			5.5 3.5	0.5	
				Surface	1	18.5	18.5	8.8	8.8	32.0	32.0	99.5	99.6	7.6	7.6	7.6	2.0	1.9		3.4	3.5	4
G1	Sunny	Calm	17:39	Middle	4.5	18.5 18.5	18.5	8.8 8.8	8.8	32.1 32.1	32.1	99.1 99.3	99.2	7.6 7.6	7.6		1.6 1.7	1.7	2.1	4.1 4.0	4.1	3.5
				Bottom	8	18.4 18.5	18.5	8.8 8.8	8.8	32.1 32.1	32.1	97.9 98.7	98.3	7.5 7.6	7.6	7.6	2.6 2.7	2.7		3.1 2.9	3.0	Í I
				Surface	1	18.4	18.4	8.7	8.8	32.0	32.1	100.5	100.1	7.7	7.7		1.4	1.5		4.1	4.1	
						18.4 18.5		8.8 8.7		32.1 32.1		99.7 99.6		7.6 7.6		7.7	1.5			4.0 4.2		ł
G2	Sunny	Calm	17:31	Middle	5.5	18.5	18.5	8.8	8.8	32.1	32.1	99.3	99.5	7.6	7.6		1.2	1.2	1.3	4.2	4.2	4.8
				Bottom	10	18.4 18.4	18.4	8.7 8.8	8.8	32.1 32.1	32.1	98.8 98.7	98.8	7.6 7.6	7.6	7.6	1.2 1.2	1.2		5.9 6.0	6.0	1
				Surface	1	18.6	18.6	8.8	8.8	31.9	31.9	99.7	98.8	7.6	7.6		2.3	2.3		4.0	4.1	
G3	Sunny	Calm	17:44	Middle	4.5	18.5 18.5	18.5	8.8 8.8	8.8	31.8 32.1	32.1	97.8 98.1	97.7	7.5 7.5	7.5	7.6	2.3 2.0	2.2	2.8	4.2	6.0	5.4
65	Sunny	Califi	17.44			18.5 18.3		8.8 8.8		32.1 32.1		97.2 95.9		7.4 7.4			2.4 3.9		2.0	6.0 6.0		5.4
				Bottom	8	18.3	18.3	8.8	8.8	32.1	32.1	95.7	95.8	7.3	7.4	7.4	4.0	4.0		6.0	6.0	
				Surface	1	18.4 18.5	18.5	8.8 8.7	8.8	32.0 32.1	32.1	101.5 99.4	100.5	7.8 7.6	7.7		1.3 1.4	1.4		2.8 2.7	2.8	1
G4	Sunny	Calm	17:54	Middle	4.5	18.4	18.4	8.8	8.8	32.1	32.1	100.0	99.4	7.7	7.7	7.7	1.6	1.7	2.2	3.3	3.3	3.4
	-			Bottom	8	18.4 18.2	18.3	8.7 8.7	8.7	32.1 32.1	32.1	98.7 95.5	96.3	7.6	7.4	7.4	1.7 3.1	3.4		3.3 4.1	4.1	1
				Bollom	8	18.3 18.5	18.3	8.7	8.7	32.1	32.1	97.0 100.3	90.3	7.4	7.4	7.4	3.6 1.2	3.4		4.0	4.1	<u> </u>
				Surface	1	18.5	18.5	8.8 8.8	8.8	32.0 32.0	32.0	100.3	100.2	7.7 7.7	7.7	7.7	1.2	1.2		5.0 4.8	4.9	1
M1	Sunny	Calm	17:36	Middle	3.5	18.5 18.5	18.5	8.8 8.8	8.8	32.0 32.0	32.0	99.8 100.0	99.9	7.6 7.7	7.7	1.1	1.2 1.1	1.2	1.2	3.5 3.5	3.5	3.6
				Bottom	6	18.5	18.5	8.8	8.8	32.1	32.1	99.3	99.5	7.6	7.6	7.6	1.2	1.2		2.4	2.4	1
						18.5 18.4		8.8 8.7		32.0 32.0		99.6 98.6		7.6		-	1.2			2.4		
				Surface	1	18.4	18.4	8.8	8.8	32.0	32.0	98.2	98.4	7.5	7.6	7.6	1.1 1.0	1.1		3.1 3.2	3.2	4
M2	Sunny	Calm	17:24	Middle	6	18.4 18.4	18.4	8.7 8.8	8.8	32.0 32.0	32.0	97.7 97.7	97.7	7.5 7.5	7.5		1.0	1.0	1.1	3.3	3.3	4.1
				Bottom	11	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	97.1 97.0	97.1	7.5 7.4	7.5	7.5	1.1 1.1	1.1		5.8 5.8	5.8	1
				Surface	1	18.6	18.6	8.8	8.8	32.1	32.1	100.2	99.5	7.7	7.6		1.2	1.3		3.9	4.0	
140	Su	Calm	17:40			18.6 18.6		8.8 8.8		32.1 32.1		98.8 99.0		7.5		7.6	1.3 1.3		10	4.1 5.2		40
M3	Sunny	Calm	17:48	Middle	4.5	18.6 18.3	18.6	8.8 8.8	8.8	32.1 32.1	32.1	97.9 95.8	98.5	7.5 7.3	7.6		1.5 3.1	1.4	1.9	5.3 4.5	5.3	4.6
				Bottom	8	18.3	18.3	8.8	8.8	32.1	32.1	95.7	95.8	7.4	7.4	7.4	3.1	3.1		4.3	4.4	<u> </u>
				Surface	1	18.4 18.4	18.4	8.7 8.8	8.8	32.0 32.1	32.1	99.1 98.5	98.8	7.6 7.6	7.6		1.0 1.2	1.1		5.6 5.7	5.7	
M4	Sunny	Calm	17:15	Middle	5	18.4	18.4	8.8	8.8	32.1	32.1	98.2	98.1	7.5	7.5	7.6	1.1	1.2	1.2	5.9	5.9	5.6
	, i				0	18.4 18.4		8.8 8.8		32.1 32.1		97.9 97.5		7.5		75	1.2 1.3			5.9 5.0		t l
				Bottom	9	18.4	18.4	8.8	8.8	32.1	32.1	97.5	97.5	7.5	7.5	7.5	1.2	1.3		5.2	5.1	<u> </u>
				Surface	1	18.4 18.4	18.4	8.7 8.8	8.8	32.1 32.1	32.1	97.6 97.6	97.6	7.5 7.5	7.5	7.5	1.3 1.3	1.3		4.8 4.8	4.8	1
M5	Sunny	Calm	18:08	Middle	6	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	97.2 96.9	97.1	7.5 7.4	7.5	7.5	1.3 1.3	1.3	1.4	3.5 3.5	3.5	4.9
				Bottom	11	18.2	18.2	8.8	8.8	32.1	32.1	95.8	95.8	7.4	7.4	7.4	1.6	1.5		6.5	6.4	1
						18.2		8.8		32.1		95.7		7.4			1.4			6.2		
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-			-	ļ
M6	Sunny	Calm	17:59	Middle	2.7	18.5 18.5	18.5	8.7 8.7	8.7	32.0 32.0	32.0	99.4 99.2	99.3	7.6 7.6	7.6		1.0 1.0	1.0	1.0	4.2 4.2	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	Í I
				1		-		· ·	l	-			1	-		1	-	1		-	1	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 25 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tour shi diteo in		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 3.0 NTU</u>	<u>C1: 3.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.6 mg/L</u>	<u>C1: 6.1 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.6 mg/L</u>	<u>C1: 6.1 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	iity ppt	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	1	Furbidity(NT	U)	Suspe	ended Solids	(mg/L)
Econtori	Condition	Condition**	Time	Dept		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.5 18.5	18.5	8.8 8.8	8.8	32.0 32.0	32.0	96.5 96.4	96.5	7.4 7.4	7.4	7.4	1.9 1.8	1.9		4.6 4.8	4.7	
C1	Sunny	Calm	11:50	Middle	9	18.2 18.2	18.2	8.8 8.8	8.8	32.1 32.1	32.1	95.6 95.7	95.7	7.4 7.4	7.4	7.4	1.5 1.5	1.5	2.0	4.6 4.6	4.6	5.1
				Bottom	17	17.8 17.8	17.8	8.9 8.9	8.9	32.0 32.0	32.0	95.9 96.5	96.2	7.4 7.5	7.5	7.5	2.5 2.5	2.5		5.9 5.9	5.9	
				Surface	1	18.5 18.5	18.5	8.5 8.6	8.6	32.0 32.0	32.0	92.1 92.7	92.4	7.0 7.1	7.1	7.4	1.3 1.5	1.4		5.2 5.2	5.2	
C2	Sunny	Calm	10:35	Middle	17	18.4 18.5	18.5	8.6 8.6	8.6	32.0 32.0	32.0	92.1 91.0	91.6	7.1 7.0	7.1	7.1	2.1 1.9	2.0	1.9	4.0 3.9	4.0	4.4
				Bottom	33	18.4 18.4	18.4	8.6 8.6	8.6	32.0 32.0	32.0	92.3 91.6	92.0	7.1 7.0	7.1	7.1	2.2 2.2	2.2		3.9 3.8	3.9	
				Surface	1	18.4 18.3	18.4	8.8 8.9	8.9	31.9 32.0	32.0	97.2 96.8	97.0	7.5 7.4	7.5	7.5	1.5 1.5	1.5		4.7 4.8	4.8	ļ
G1	Sunny	Calm	11:03	Middle	4.5	18.3 18.2	18.3	8.8 8.9	8.9	32.0 32.1	32.1	96.8 96.3	96.6	7.4 7.4	7.4		1.8 1.7	1.8	1.8	4.3 4.3	4.3	4.4
				Bottom	8	18.2 18.2	18.2	8.8 8.8	8.8	32.1 32.1	32.1	95.9 96.0	96.0	7.4 7.4	7.4	7.4	2.3 2.1	2.2		4.2 4.0	4.1	
				Surface	1	18.2 18.2	18.2	8.7 8.7	8.7	32.0 32.0	32.0	98.0 96.9	97.5	7.5 7.5	7.5	7.5	1.3 1.3	1.3		2.7 2.7	2.7	ļ I
G2	Sunny	Calm	10:54	Middle	5	18.2 18.2	18.2	8.7 8.7	8.7	32.1 32.1	32.1	96.8 96.6	96.7	7.5 7.4	7.5		1.6 1.5	1.6	1.6	3.2 3.0	3.1	3.0
				Bottom	9	18.2 18.2	18.2	8.7 8.7	8.7	32.1 32.1	32.1	95.6 96.1	95.9	7.4 7.4	7.4	7.4	1.8 1.7	1.8		3.1 3.1	3.1	
				Surface	1	18.6 18.6	18.6	8.8 8.8	8.8	32.1 32.1	32.1	97.3 96.6	97.0	7.4 7.4	7.4	7.4	2.8 2.8	2.8		4.9 4.9	4.9	ļ
G3	Sunny	Calm	11:08	Middle	4	18.4 18.5	18.5	8.8 8.8	8.8	32.1 32.1	32.1	95.9 96.1	96.0	7.3 7.4	7.4		1.8 1.9	1.9	2.3	5.6 5.8	5.7	5.7
				Bottom	7	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	94.9 95.0	95.0	7.3 7.3	7.3	7.3	2.1 2.0	2.1		6.4 6.3	6.4	
				Surface	1	18.4 18.4	18.4	8.8 8.8	8.8	32.1 32.1	32.1	97.5 97.1	97.3	7.5 7.4	7.5	7.5	1.6 1.5	1.6		3.4 3.5	3.5	ļ
G4	Sunny	Calm	11:24	Middle	4.5	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	96.5 96.2	96.4	7.4 7.4	7.4	-	1.6 1.8	1.7	2.0	4.5 4.7	4.6	4.0
				Bottom	8	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	95.5 95.6	95.6	7.3 7.4	7.4	7.4	2.8 2.8	2.8		4.1 3.9	4.0	
				Surface	1	18.3 18.3	18.3	8.7 8.8	8.8	32.1 32.1	32.1	96.5 95.8	96.2	7.4 7.4	7.4	7.4	1.5 1.7	1.6		5.1 5.0	5.1	ļ
M1	Sunny	Calm	11:00	Middle	3.5	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	95.9 95.9	95.9	7.4 7.4	7.4		1.7 1.7	1.7	1.7	3.5 3.4	3.5	5.1
				Bottom	6	18.3 18.3	18.3	8.8 8.8	8.8	32.1 32.1	32.1	95.6 95.6	95.6	7.3 7.3	7.3	7.3	1.8 1.9	1.9		6.5 6.7	6.6	
				Surface	1	18.2 18.2	18.2	8.7 8.7	8.7	32.0 32.0	32.0	97.2 96.8	97.0	7.5 7.5	7.5	7.5	1.3 1.2	1.3		3.5 3.5	3.5	ļ
M2	Sunny	Calm	10:50	Middle	6	18.1 18.1	18.1	8.7 8.7	8.7	32.0 32.0	32.0	96.5 96.5	96.5	7.4 7.4	7.4		1.3 1.2	1.3	1.4	8.0 8.3	8.2	5.0
				Bottom	11	18.2 18.2	18.2	8.7 8.7	8.7	32.1 32.1	32.1	95.7 96.2	96.0	7.4 7.4	7.4	7.4	1.6 1.5	1.6		3.5 3.3	3.4	
				Surface	1	18.5 18.6	18.6	8.7 8.8	8.8	32.1 32.1	32.1	98.1 98.1	98.1	7.5 7.5	7.5	7.5	1.5 1.3	1.4		3.7 3.8	3.8	1 7
М3	Sunny	Calm	11:19	Middle	4	18.4 18.5	18.5	8.7 8.8	8.8	32.1 32.1	32.1	97.2 97.5	97.4	7.4 7.5	7.5		1.5 1.5	1.5	1.6	7.8 7.6	7.7	5.1
				Bottom	7	18.4 18.4	18.4	8.7 8.8	8.8	32.1 32.1	32.1	95.7 94.4	95.1	7.3 7.2	7.3	7.3	1.8 2.0	1.9		3.7 3.7	3.7	
				Surface	1	18.5 18.5	18.5	8.6 8.6	8.6	32.0 32.0	32.0	95.8 93.8	94.8	7.3 7.2	7.3	7.3	1.2 1.2	1.2	]	5.0 5.2	5.1	ļ
M4	Sunny	Calm	10:42	Middle	5	18.5 18.5	18.5	8.6 8.6	8.6	32.0 32.0	32.0	93.8 93.4	93.6	7.2 7.2 7.2	7.2		1.2 1.2	1.2	1.2	4.2 4.2	4.2	4.0
				Bottom	9	18.5 18.5	18.5	8.6 8.7	8.7	32.0 32.0	32.0	93.5 93.1	93.3	7.2 7.1	7.2	7.2	1.1 1.3	1.2		2.6 2.6	2.6	
				Surface	1	18.4 18.5	18.5	8.7 8.8	8.8	32.0 32.0	32.0	97.3 95.9	96.6	7.5 7.3	7.4	7.4	1.2	1.2	1	2.9 3.0	3.0	ļ
M5	Sunny	Calm	11:41	Middle	5	18.4 18.4 18.3	18.4	8.8 8.8 8.8	8.8	32.0 32.0 32.0	32.0	95.5 95.4 94.9	95.5	7.3 7.3 7.3	7.3		1.3 1.3 1.4	1.3	1.3	8.2 8.4 6.4	8.3	5.9
				Bottom	9	18.3	18.3	8.8 8.8	8.8	32.0 32.0	32.0	94.9 94.9	94.9	7.3	7.3	7.3	1.4 1.2	1.3		6.5	6.5	<u> </u>
				Surface	-	-	-		-	-	-		-	-	-	7.3	-	-	4	-	-	ļ
M6	Sunny	Calm	11:31	Middle	2.2	18.4 18.4	18.4	8.8 8.8	8.8	32.1 32.1	32.1	95.3 95.3	95.3	7.3 7.3	7.3		1.3 1.4	1.4	1.4	6.7 6.9	6.8	6.8
				Bottom	-		-		-		-	-	-	-	-	-		-			-	

Remarks: *DA: Depth-Averaged

### Appendix I - Action and Limit Levels for Marine Water Quality on 27 December 2017 (Mid-Ebb Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>		4 3.64 3.67	
	Stations G1-G4		
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 3.6 NTU</u>	<u>C2: 3.9 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

## (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Η	Salir	iity ppt	DO Satu	ration (%)	Disso	ved Oxyger	n (mg/L)		Furbidity(NT	U)	Suspe	ended Solids	(mg/L)
Eocation	Condition	Condition**	Time	Бері		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.1 18.1	18.1	8.2 8.2	8.2	34.0 34.0	34.0	101.2 101.1	101.2	7.8 7.8	7.8		1.2 1.1	1.2		2.2	2.2	
C1	Sunny	Moderate	19:34	Middle	9	18.0	18.0	8.2	8.2	33.9	33.9	100.9	101.0	7.8	7.8	7.8	1.7	1.8	1.7	4.6	4.6	3.0
CI	Sunny	wouldiate	13.34	Middle	3	18.0	10.0	8.2	0.2	33.9	33.5	101.1	101.0	7.8	7.0		1.8	1.0	1.7	4.6	4.0	3.0
				Bottom	17	17.9 17.9	17.9	8.2 8.2	8.2	33.9 33.9	33.9	100.0 100.6	100.3	7.7 7.8	7.8	7.8	2.1 2.2	2.2		2.2	2.2	
-				Surface	1	18.3	18.3	8.1	8.2	34.0	34.0	102.2	102.1	7.9	7.9		1.3	1.3		5.3	5.4	
				Sunace		18.3	10.5	8.2	0.2	34.0	34.0	101.9	102.1	7.8	7.5	7.8	1.3	1.5		5.4	3.4	,
C2	Sunny	Moderate	18:34	Middle	16.5	18.1 18.0	18.1	8.1 8.2	8.2	34.0 34.0	34.0	98.6 98.6	98.6	7.6 7.6	7.6		1.9 2.0	2.0	2.1	4.2 4.2	4.2	5.2
				Bottom	32	18.0	18.0	8.1	8.2	34.0	34.0	98.4	98.5	7.6	7.6	7.6	2.9	3.0		5.9	5.9	
				Bottom	02	18.0	10.0	8.2	0.2	34.0	0 1.0	98.5	00.0	7.6	7.0	1.0	3.0 1.4	0.0		5.8	0.0	
				Surface	1	18.5 18.5	18.5	8.2 8.2	8.2	33.8 33.9	33.9	102.5 102.3	102.4	7.9 7.8	7.9		1.4	1.5		5.4 5.3	5.4	1
G1	Sunny	Moderate	19:00	Middle	3.5	18.5	18.5	8.2	8.2	33.9	33.9	102.2	102.2	7.8	7.8	7.9	1.6	1.6	1.6	4.5	4.5	4.3
0.	ounny	modorato	10.00	madio		18.5 18.3	10.0	8.2 8.2		33.9 34.0		102.2	102.2	7.8	7.0		1.5 1.7			4.4 2.9	1.0	
				Bottom	6	18.4	18.4	8.2	8.2	33.9	34.0	101.3	100.9	7.8	7.8	7.8	1.7	1.7		2.8	2.9	1
				Surface	1	18.5	18.5	8.2	8.2	33.9	33.9	102.6	102.6	7.9	7.9		1.4	1.4		3.9	4.0	
						18.5 18.5		8.2 8.2		33.9 34.0		102.5 102.5		7.9 7.8		7.9	1.3 1.6		-	4.0		
G2	Sunny	Moderate	18:51	Middle	4.5	18.5	18.5	8.2	8.2	34.0	34.0	102.3	102.4	7.8	7.8		1.5	1.6	1.5	5.0	5.0	4.0
				Bottom	8	18.3	18.3	8.2	8.2	34.0	34.0	99.4	99.3	7.6	7.6	7.6	1.4	1.4		3.0	3.1	
						18.3 18.4		8.2 8.2	-	34.0 33.8		99.2 99.4		7.6			1.4 2.5			3.1 5.3		
				Surface	1	18.4	18.4	8.2	8.2	33.8	33.8	99.4	99.4	7.6	7.6	7.6	2.5	2.5		5.3	5.3	
G3	Sunny	Moderate	19:07	Middle	3.5	18.3	18.3	8.2	8.2	33.9	33.9	98.7	98.9	7.6	7.6	7.0	3.2	3.1	2.9	5.6	5.6	4.8
	,					18.3 18.3		8.2 8.2		33.9 33.9		99.1 98.5		7.6 7.6			3.0 2.9		-	5.5 3.6		
				Bottom	6	18.3	18.3	8.2	8.2	33.9	33.9	98.4	98.5	7.6	7.6	7.6	3.2	3.1		3.6	3.6	
				Surface	1	18.5	18.5	8.2	8.2	33.9	33.9	101.9	101.5	7.8	7.8		1.4	1.5		4.5	4.5	
						18.5 18.4		8.2 8.2	-	33.9 34.0		101.1 100.4		7.7		7.7	1.5 1.9		-	4.4		
G4	Sunny	Moderate	19:17	Middle	4	18.3	18.4	8.2	8.2	34.0	34.0	97.9	99.2	7.5	7.6		2.2	2.1	2.3	4.3	4.3	3.8
				Bottom	7	18.3	18.3	8.1 8.1	8.1	34.0 34.0	34.0	96.3 94.9	95.6	7.4	7.4	7.4	3.1 3.2	3.2		2.5 2.4	2.5	
						18.3 18.5		8.1		34.0		94.9		7.3 7.8			2.5			5.2		
				Surface	1	18.5	18.5	8.2	8.2	33.9	33.9	100.8	101.4	7.7	7.8	7.8	2.8	2.7		5.0	5.1	
M1	Sunny	Moderate	18:56	Middle	3	18.5	18.5	8.2	8.2	33.9	33.9	102.2	102.2	7.8	7.8	7.0	1.6	1.7	2.0	3.5	3.5	4.2
	-			_		18.5 18.5		8.2 8.2		33.9 33.9		102.1 101.9		7.8 7.8			1.7 1.5			3.4 4.1		1
				Bottom	5	18.5	18.5	8.2	8.2	33.9	33.9	102.1	102.0	7.8	7.8	7.8	1.5	1.5		4.1	4.1	
				Surface	1	18.5 18.5	18.5	8.2	8.2	33.9 33.9	33.9	103.2 102.5	102.9	7.9 7.8	7.9		1.6 1.4	1.5		3.5 3.5	3.5	
			10.10			18.5	40.5	8.2 8.2		33.9		102.5	404.0	7.8	7.0	7.9	1.4			2.4		0.7
M2	Sunny	Moderate	18:46	Middle	6	18.5	18.5	8.2	8.2	34.0	34.0	101.2	101.3	7.8	7.8		1.6	1.5	1.5	2.4	2.4	2.7
				Bottom	11	18.3 18.2	18.3	8.2 8.2	8.2	34.0 34.0	34.0	99.0 98.3	98.7	7.6	7.6	7.6	1.4	1.6		2.1	2.1	
				Guidana	4	18.4	40.4	8.1	0.4	33.7	20.7	97.5	07.0	7.5	7.5		3.0	2.0		4.0	4.0	
				Surface	1	18.4	18.4	8.1	8.1	33.7	33.7	98.0	97.8	7.5	7.5	7.5	2.9	3.0	_	4.0	4.0	, I
M3	Sunny	Moderate	19:10	Middle	3.5	18.3 18.3	18.3	8.1 8.1	8.1	33.9 33.9	33.9	97.6 97.9	97.8	7.5	7.5		2.9 2.8	2.9	2.6	5.7 5.5	5.6	4.8
				Bottom	6	18.3	18.3	8.2	8.2	34.0	34.0	98.4	98.4	7.6	7.6	7.6	1.8	1.9	1	4.7	4.8	i l
	l			DOLIOITI	0	18.3	10.0	8.2	0.2	34.0	34.0	98.4	50.4	7.6	0.1	0.1	1.9	1.8	<u> </u>	4.8	4.0	
				Surface	1	18.5 18.5	18.5	8.2 8.2	8.2	33.9 33.9	33.9	102.9 102.9	102.9	7.9 7.9	7.9		1.3 1.3	1.3		5.4 5.7	5.6	
M4	Sunny	Moderate	18:40	Middle	4.5	18.1	18.1	8.2	8.2	34.0	34.0	100.7	100.4	7.8	7.8	7.9	1.8	1.7	1.6	3.3	3.2	4.2
141-4	Ganny	Mouchate	10.40	midule	7.0	18.1	10.1	8.2	0.2	34.0	04.0	100.1	100.4	7.7	7.0	<u> </u>	1.6	1.7	1.0	3.1	0.2	7.4
I				Bottom	8	18.1 18.1	18.1	8.2 8.2	8.2	34.0 34.0	34.0	99.5 99.4	99.5	7.7 7.7	7.7	7.7	1.6 1.9	1.8	1	3.7 3.8	3.8	
	İ			Surface	1	18.1	18.1	8.2	8.2	34.0	34.0	99.3	99.2	7.7	7.7		2.0	2.0	1	2.8	2.8	
				Sunace		18.1	10.1	8.2	0.2	34.0	04.0	99.1	33.2	7.6		7.7	2.0	2.0	4	2.8	2.0	ł
M5	Sunny	Moderate	19:28	Middle	5.5	18.0 18.0	18.0	8.2 8.2	8.2	34.0 34.0	34.0	99.1 99.0	99.1	7.7 7.6	7.7		2.0 2.0	2.0	2.0	2.3 2.2	2.3	2.7
I				Bottom	10	17.9	17.9	8.2	8.2	34.0	34.0	98.9	98.9	7.7	7.7	7.7	1.8	1.9	1	2.9	2.9	1
L				Dottorill	10	17.9	17.5	8.2	0.2	34.0	04.0	98.8	50.5	7.6			2.0	1.5	<u> </u>	2.8	2.0	
				Surface	-	-	-		-	-	-		-	-	-		-	-		-	-	
M6	Sunny	Moderate	19:23	Middle	1.4	18.3	18.4	8.2	8.2	34.0	34.0	102.7	102.5	7.9	7.9	7.9	1.4	1.5	1.5	2.1	2.1	2.1
WO	Ganny	mouchate	13.20	midule	1.4	18.4	10.4	8.2	0.2	34.0	04.0	102.2	102.0	7.8	1.5	<u> </u>	1.5	1.0	1.5	2.1	2.1	<u></u> -
				Bottom	-	-	-	1	-	-	-	-	-	-	-	-	-	-	1	-	-	
<u>l</u>			0	0		r			I						r	r		I				

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 27 December 2017 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Truckiditer in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 3.4 NTU</u>	<u>C1: 3.6 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

## (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	F	н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	n (mg/L)	1	Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	ar (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.0 18.0	18.0	8.2 8.2	8.2	34.0 34.0	34.0	100.2 100.1	100.2	7.7 7.7	7.7		1.5 1.3	1.4		4.8 4.9	4.9	
C1	Sunny	Moderate	13:54	Middle	9.5	18.0 18.0	18.0	8.2 8.2	8.2	34.0 34.0	34.0	99.1 98.9	99.0	7.7 7.7	7.7	7.7	1.6 1.7	1.7	2.0	5.6 5.6	5.6	5.4
				Bottom	18	18.0 18.0	18.0	8.2 8.2	8.2	34.0 34.0	34.0	98.0 98.1	98.1	7.6 7.6	7.6	7.6	2.7 2.8	2.8		5.8 5.8	5.8	
				Surface	1	18.4 18.4	18.4	8.0 8.1	8.1	34.0 34.0	34.0	99.7 99.5	99.6	7.7 7.6	7.7	7.6	1.0 0.9	1.0		2.6 2.6	2.6	
C2	Sunny	Moderate	12:48	Middle	16.5	18.4 18.4	18.4	8.1 8.1	8.1	34.0 34.0	34.0	96.7 96.8	96.8	7.4 7.4	7.4	1.0	1.0 1.0	1.0	1.0	5.1 5.0	5.1	3.3
				Bottom	32	18.4 18.4	18.4	8.1 8.1	8.1	34.0 34.0	34.0	96.0 96.6	96.3	7.4 7.4	7.4	7.4	1.0 1.0	1.0		2.1 2.2	2.2	
				Surface	1	18.4 18.4	18.4	8.1 8.1	8.1	33.9 33.9	33.9	100.3 100.3	100.3	7.7 7.7	7.7	7.7	1.7 1.6	1.7		2.5 2.5	2.5	l
G1	Sunny	Moderate	13:22	Middle	4	18.3 18.3	18.3	8.1 8.1	8.1	33.9 33.9	33.9	100.6 100.2	100.4	7.7 7.7	7.7		1.4 1.5	1.5	1.5	3.8 3.7	3.8	4.3
				Bottom	7	18.2 18.2	18.2	8.1 8.1	8.1	34.0 34.0	34.0	100.1 100.0	100.1	7.7 7.7	7.7	7.7	1.2 1.2	1.2		6.8 6.4	6.6	
				Surface	1	18.4 18.4	18.4	8.1 8.1	8.1	33.9 33.9	33.9	100.5 100.0	100.3	7.7 7.7	7.7	7.7	1.4 1.4	1.4		2.8 2.8	2.8	ļ
G2	Sunny	Moderate	13:10	Middle	5	18.3 18.3	18.3	8.1 8.1	8.1	34.0 34.0	34.0	99.0 99.2	99.1	7.6 7.6	7.6		1.6 1.6	1.6	1.5	3.5 3.6	3.6	3.3
				Bottom	9	18.2 18.3	18.3	8.1 8.1	8.1	34.0 34.0	34.0	98.0 98.6	98.3	7.5 7.6	7.6	7.6	1.5 1.7	1.6		3.3 3.4	3.4	
				Surface	1	18.7 18.6	18.7	8.1 8.1	8.1	33.5 33.6	33.6	100.4 100.0	100.2	7.7	7.7	7.6	1.6 1.6	1.6		5.3 5.2	5.3	ļ
G3	Sunny	Moderate	13:29	Middle	4	18.3 18.3	18.3	8.1 8.1	8.1	33.9 33.9	33.9	98.2 96.8	97.5	7.5 7.4	7.5		2.9 2.9	2.9	2.5	5.2 5.3	5.3	5.4
				Bottom	7	18.3 18.3	18.3	8.1 8.1	8.1	34.0 34.0	34.0	96.9 96.4	96.7	7.5 7.4	7.5	7.5	2.7 3.0	2.9		5.6 5.5	5.6	
				Surface	1	18.5 18.5	18.5	8.1 8.1	8.1	34.0 33.9	34.0	98.4 98.1	98.3	7.5 7.5	7.5	7.5	2.3 2.1	2.2		3.2 3.3	3.3	ļ
G4	Sunny	Moderate	13:40	Middle	4.5	18.3 18.3	18.3	8.1 8.1	8.1	34.0 34.0 34.0	34.0	97.0 97.1	97.1	7.5	7.5		2.4 2.2	2.3	2.5	3.1 3.2	3.2	3.1
				Bottom	8	18.2 18.2	18.2	8.1 8.1	8.1	34.0	34.0	96.1 96.5	96.3	7.4 7.4	7.4	7.4	3.1 2.9	3.0		2.8 2.8	2.8	
				Surface	1	18.4 18.4	18.4	8.1 8.1	8.1	34.0 34.0 34.0	34.0	99.4 99.2	99.3	7.6 7.6	7.6	7.6	2.3 2.5	2.4		3.8 3.8	3.8	ļ
M1	Sunny	Moderate	13:17	Middle	3	18.3 18.3 18.2	18.3	8.1 8.1 8.1	8.1	34.0 34.0 34.0	34.0	98.3 98.7 97.9	98.5	7.6 7.6 7.5	7.6		2.3 2.5 2.4	2.4	2.4	3.6 3.7 4.4	3.7	4.0
				Bottom	5	18.2 18.4	18.2	8.1 8.1	8.1	34.0 34.0 34.0	34.0	97.9 98.1 101.1	98.0	7.5	7.5	7.5	2.4 2.6 1.5	2.5		4.4 4.4 2.2	4.4	
				Surface	1	18.4	18.4	8.1 8.1	8.1	33.9 34.0	34.0	100.5	100.8	7.7	7.8	7.7	1.4	1.5		2.2	2.2	ļ
M2	Sunny	Moderate	13:03	Middle	6	18.3	18.3	8.1 8.1	8.1	34.0 34.0 34.0	34.0	99.3 99.1	99.4	7.6	7.6		1.5	1.6	1.8	4.7 4.5 3.7	4.6	3.5
				Bottom	11	18.2	18.2	8.1 8.1	8.1	34.0 33.7	34.0	97.9 100.2	98.0	7.5	7.6	7.6	2.2	2.2		3.5 4.7	3.6	<u> </u>
				Surface	1	18.7	18.6	8.1	8.1	33.1 33.9	33.4	98.9	99.6	7.6	7.7	7.7	2.1	2.0		4.8	4.8	ļ
M3	Sunny	Moderate	13:34	Middle	4	18.4 18.3	18.4	8.1 8.1 8.1	8.1	33.8 34.0	33.9	98.5 98.0	98.6	7.6 7.6 7.5	7.6		2.3 2.1 2.1	2.2	2.1	1.6 1.7 2.7	1.7	3.1
				Bottom	7	18.3	18.3	8.1 8.1	8.1	34.0 33.9	34.0	97.4 101.2	97.7	7.5	7.5	7.5	1.9	2.0		2.6 4.6	2.7	<u> </u>
				Surface	1	18.4	18.4	8.1 8.1	8.1	33.9 33.9	33.9	101.2	101.2	7.8	7.8	7.8	1.2	1.2		4.6	4.6	4
M4	Sunny	Moderate	12:55	Middle	5	18.3	18.3	8.1 8.1	8.1	33.9 34.0	33.9	100.8	100.8	7.7	7.7		1.2	1.2	1.3	2.2	2.2	3.1
				Bottom	9	18.3	18.3	8.1 8.1	8.1	34.0 34.0	34.0	100.3	100.3	7.7	7.7	7.7	1.4	1.4		2.6	2.6	<u> </u>
				Surface	1	18.2	18.2	8.1 8.2	8.1	34.0 34.0	34.0	100.0	100.3	7.7	7.7	7.7	1.2	1.2		1.8	1.8	4
M5	Sunny	Moderate	13:49	Middle	6	18.0 18.0	18.0	8.1 8.1	8.2	34.0 34.0	34.0	98.7 97.5	98.6	7.6	7.6	7.5	1.6 1.7	1.6	1.5	1.4	1.4	2.2
				Bottom	11	18.0	18.0	8.1	8.1	34.0	34.0	97.6	97.6	7.5	7.5	7.5	1.6	1.7		3.4	3.4	<u> </u>
				Surface	-	- 18.0	-	- 8.2	-	- 34.0	-	- 100.2	-	- 7.7	-	7.8	- 1.3	-		- 4.2	-	l
M6	Sunny	Moderate	13:44	Middle	1.3	18.4	18.2	8.1	8.2	34.0	34.0	101.2	100.7	7.8	7.8		1.3	1.3	1.3	4.0	4.1	4.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

Remarks: *DA: Depth-Averaged

# Appendix I - Action and Limit Levels for Marine Water Quality on 29 December 2017 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
		<u>C2: 3.1 NTU</u>	<u>C2: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

## (Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxyger	n (mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depi	II (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	98.7 98.9	98.8	7.6 7.6	7.6		1.3 1.3	1.3		3.3 3.3	3.3	
			00.55		40	18.0	10.0	8.4		33.9		98.3	00.4	7.6	7.0	7.6	1.5			2.5	0.5	
C1	Sunny	Moderate	08:55	Middle	10	18.0	18.0	8.4	8.4	33.9	33.9	98.4	98.4	7.6	7.6		1.5	1.5	1.5	2.5	2.5	3.4
				Bottom	19	17.9 18.0	18.0	8.4 8.4	8.4	33.9 33.9	33.9	98.4 98.2	98.3	7.6 7.6	7.6	7.6	1.8 1.6	1.7		4.5 4.5	4.5	
						18.0		8.3		33.9		98.2		7.6			1.0			4.5		
				Surface	1	18.1	18.2	8.4	8.4	33.9	33.9	97.2	97.2	7.5	7.5	7.5	1.4	1.4		4.7	4.8	
C2	Sunny	Moderate	07:33	Middle	16.5	18.1	18.1	8.3	8.4	33.9	33.9	96.6	96.5	7.5 7.4	7.5	1.0	1.4	1.4	1.8	4.1	4.1	4.7
				_		18.1 18.1		8.4 8.4		33.9 33.9		96.4 97.0		7.4			1.4 2.6			4.1 5.2		
				Bottom	32	18.1	18.1	8.4	8.4	33.9	33.9	97.0	97.0	7.5	7.5	7.5	2.5	2.6		5.2	5.2	
				Surface	1	18.0	18.1	8.4	8.4	33.9	33.9	98.0	97.7	7.6	7.6		3.5	3.4		5.4	5.5	
						18.1 18.0		8.4 8.4		33.9 33.9		97.3 97.6		7.5		7.6	3.2 3.0			5.5 6.5		
G1	Sunny	Moderate	08:09	Middle	4.5	18.0	18.0	8.4	8.4	33.9	33.9	97.6	97.6	7.5	7.5		3.2	3.1	3.0	6.3	6.4	4.9
				Bottom	8	18.0	18.0	8.4	8.4	33.9	33.9	98.2	98.1	7.6	7.6	7.6	2.7	2.6		2.8	2.8	
						18.0 18.1		8.4 8.4		33.9 33.9		97.9 97.3		7.6 7.5			2.5 1.9			2.8		
				Surface	1	18.1	18.1	8.4	8.4	33.8	33.9	96.7	97.0	7.5	7.5	7.5	2.0	2.0		2.2	2.2	
G2	Sunny	Moderate	07:57	Middle	5	18.1	18.1	8.4	8.4	33.9	33.9	97.4	97.4	7.5	7.5	7.5	1.9	2.0	1.9	3.9	4.0	3.8
02	ounny	modorato	01.01	madio		18.1 18.1	10.1	8.4 8.4		33.9 34.0		97.4 97.7	07.11	7.5			2.1 1.8			4.0 5.1		
				Bottom	9	18.1	18.1	8.4	8.4	33.9	34.0	97.7	97.7	7.5	7.5	7.5	1.8	1.8		5.1	5.1	
				Surface	1	18.1	18.1	8.4	8.4	33.9	33.9	96.0	96.0	7.4	7.4		3.0	3.0		3.4	3.3	
				Gunade		18.1	10.1	8.4	0.4	33.8	00.0	96.0	50.0	7.4	1.4	7.5	3.0	0.0		3.2	0.0	
G3	Sunny	Moderate	08:15	Middle	4	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	96.7 96.8	96.8	7.5 7.5	7.5		2.4 2.4	2.4	2.8	5.6 5.4	5.5	4.1
				Bottom	7	18.1	18.1	8.4	8.4	33.9	33.9	96.9	97.0	7.5	7.5	7.5	2.8	2.9		3.6	3.6	
				BOLLOIN	1	18.0	10.1	8.4	0.4	33.9	33.9	97.0	97.0	7.5	7.5	7.5	3.0	2.9		3.6	3.0	
				Surface	1	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	95.2 95.2	95.2	7.3 7.3	7.3		1.2 1.3	1.3		3.7 3.8	3.8	
G4	0	Ma danata	08:31	Madalla	4.5	18.1	18.1	8.4	8.4	33.9	33.9	95.2	95.2	7.3	7.3	7.3	1.9	1.9	1.8	3.7	3.6	4.4
G4	Sunny	Moderate	08:31	Middle	4.5	18.1	18.1	8.4	8.4	33.9	33.9	95.2	95.2	7.3	1.3		1.9	1.9	1.8	3.5	3.0	4.4
				Bottom	8	18.1 18.1	18.1	8.4 8.4	8.4	34.0 34.0	34.0	95.9 96.0	96.0	7.4 7.4	7.4	7.4	2.3 2.2	2.3		5.7 5.7	5.7	
				o (		18.0	10.1	8.4		33.9		97.1	00.0	7.5	7.5		3.1			2.1		
				Surface	1	18.1	18.1	8.4	8.4	33.9	33.9	96.5	96.8	7.5	7.5	7.5	3.2	3.2		2.1	2.1	
M1	Sunny	Moderate	08:03	Middle	3	18.1 18.1	18.1	8.4 8.4	8.4	34.0 34.0	34.0	96.9 96.9	96.9	7.5 7.5	7.5	1.0	2.6 2.7	2.7	2.9	3.7 3.6	3.7	2.9
					_	18.0		8.4		34.0		90.9		7.5			2.7			2.8		
				Bottom	5	18.0	18.0	8.4	8.4	34.0	34.0	97.8	97.6	7.6	7.6	7.6	2.9	2.9		2.9	2.9	
				Surface	1	18.0	18.0	8.4	8.4	33.9	33.9	97.5	97.5	7.5	7.5		1.8	1.8		3.1	3.1	
						18.0 18.1		8.4 8.4		33.9 33.9		97.5 97.8		7.5		7.5	1.7			3.0 3.6		
M2	Sunny	Moderate	07:51	Middle	5.5	18.1	18.1	8.4	8.4	33.9	33.9	97.5	97.7	7.5	7.5		1.7	1.7	1.7	3.6	3.6	3.8
				Bottom	10	18.1 18.0	18.1	8.4 8.4	8.4	33.9 33.9	33.9	98.1 98.1	98.1	7.6	7.6	7.6	1.7	1.7		4.5	4.6	
						18.0		8.4		33.9		98.1		7.6			2.5			4.6 5.0		
				Surface	1	18.1	18.2	8.4	8.4	33.8	33.8	96.6	96.5	7.5	7.5	7.5	2.5	2.5		5.0	5.0	
M3	Sunny	Moderate	08:22	Middle	4	18.1	18.1	8.4	8.4	34.0	34.0	96.4	96.6	7.4	7.5	1.5	2.9	2.8	2.8	4.0	4.0	4.6
	, í					18.1 18.1		8.4 8.4		33.9 34.0		96.8 96.2		7.5			2.6 3.0		1	4.0		-
				Bottom	7	18.0	18.1	8.4	8.4	33.9	34.0	97.0	96.6	7.5	7.5	7.5	3.0	3.0		4.7	4.7	
				Surface	1	18.1	18.1	8.4	8.4	33.9	33.9	97.7	97.5	7.5	7.5		1.5	1.5		5.2	5.2	
						18.1 18.1		8.4 8.4		33.9 33.9		97.2 97.8		7.5		7.5	1.4 1.6		-	5.2 4.2		
M4	Sunny	Moderate	07:43	Middle	5	18.1	18.1	8.4	8.4	33.9	33.9	97.8 97.6	97.7	7.5	7.5		1.6	1.6	1.6	4.2	4.2	5.0
				Bottom	9	18.1	18.1	8.4	8.4	33.9	33.9	97.7	97.7	7.5	7.5	7.5	1.7	1.8	1	5.5	5.5	
				20110111		18.1		8.4 8.4		33.9 33.9		97.7 97.5		7.5			1.9 1.4			5.5 3.9	0.0	
				Surface	1	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	97.5 97.2	97.4	7.5 7.5	7.5		1.4 1.5	1.5		3.9	3.8	
M5	Sunny	Moderate	08:45	Middle	5.5	18.1	18.1	8.4	8.4	33.9	33.9	96.9	96.9	7.5	7.5	7.5	1.4	1.4	1.7	2.5	2.5	2.8
	Samy		00.40	madio		18.1		8.4		33.9		96.9		7.5			1.4			2.5		2.0
				Bottom	10	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	96.6 96.4	96.5	7.5 7.4	7.5	7.5	2.1 2.1	2.1		2.2 2.2	2.2	
	İ			Surface	_	-	_	-		-	_	-	İ .	-	-	İ	-	-	İ	-		
				Guilade		-	-	-	-	-	-	-	<u> </u>	-	-	7.4	-	-	4	-		.
M6	Sunny	Moderate	08:39	Middle	2.1	18.1 18.1	18.1	8.4 8.4	8.4	33.9 34.0	34.0	95.7 95.8	95.8	7.4 7.4	7.4		3.0 2.9	3.0	3.0	2.3 2.4	2.4	2.4
				Bottom	_	-	_	-		-		-		-			-		1	-		
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

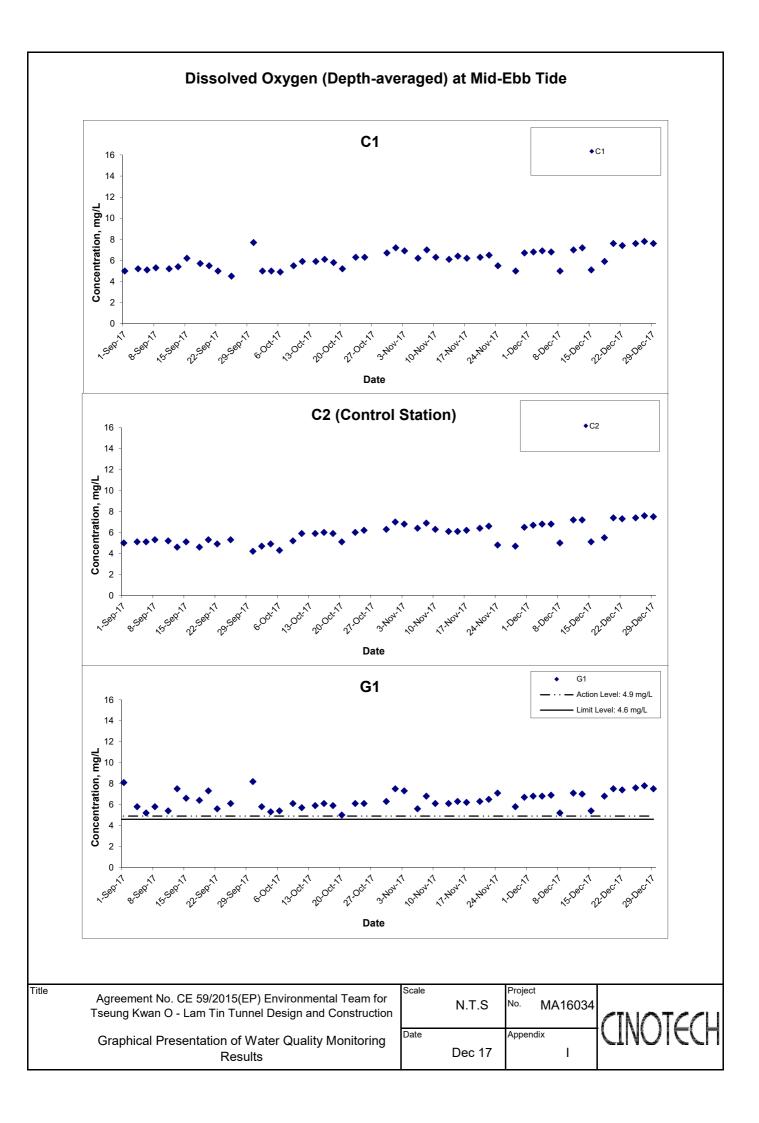
# Appendix I - Action and Limit Levels for Marine Water Quality on 29 December 2017 (Mid-Flood Tide)

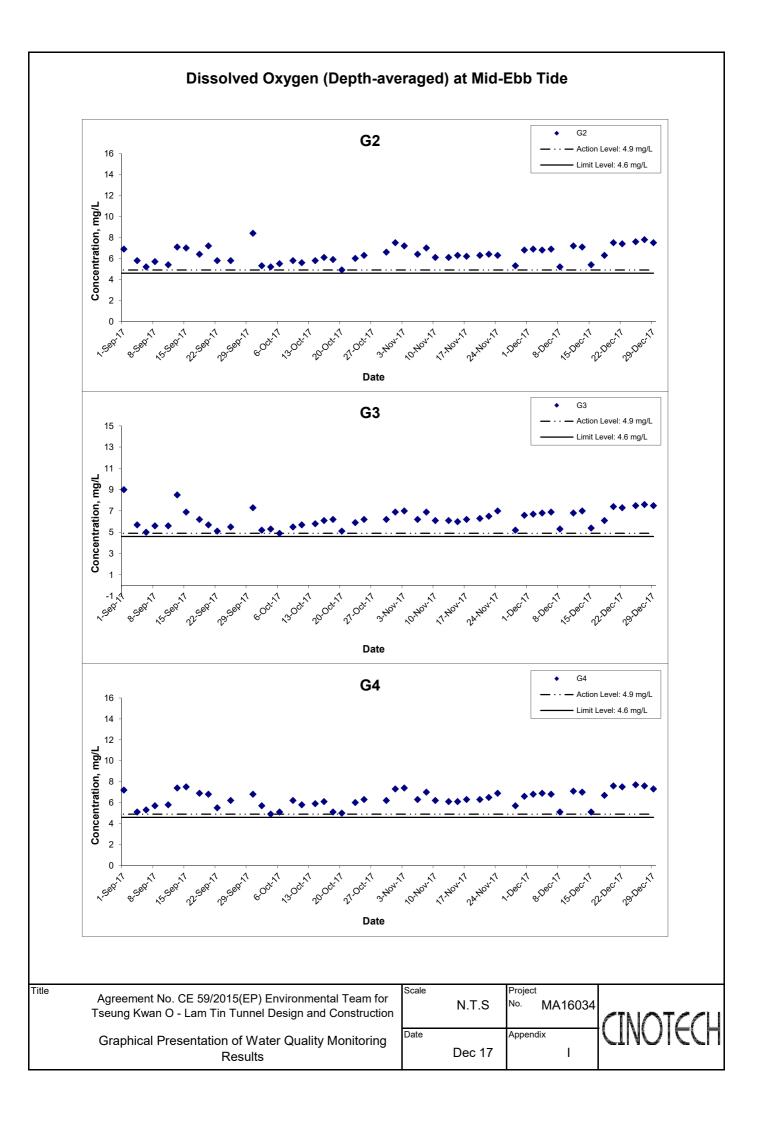
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	Stations G1-G4	1. M1-M5	
	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
DO in mg/L	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
(See Note 1 and 4)	Station M6	<u></u>	<u></u>
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4		<u> </u>
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 4)		<u>C1: 4.7 NTU</u>	<u>C1: 5.1 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	<u>.</u>
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.2 mg/L</u>	<u>C1: 5.6 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.2 mg/L</u>	<u>C1: 5.6 mg/L</u>
	Stations G1-G4	4, <u>M1-M5</u>	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

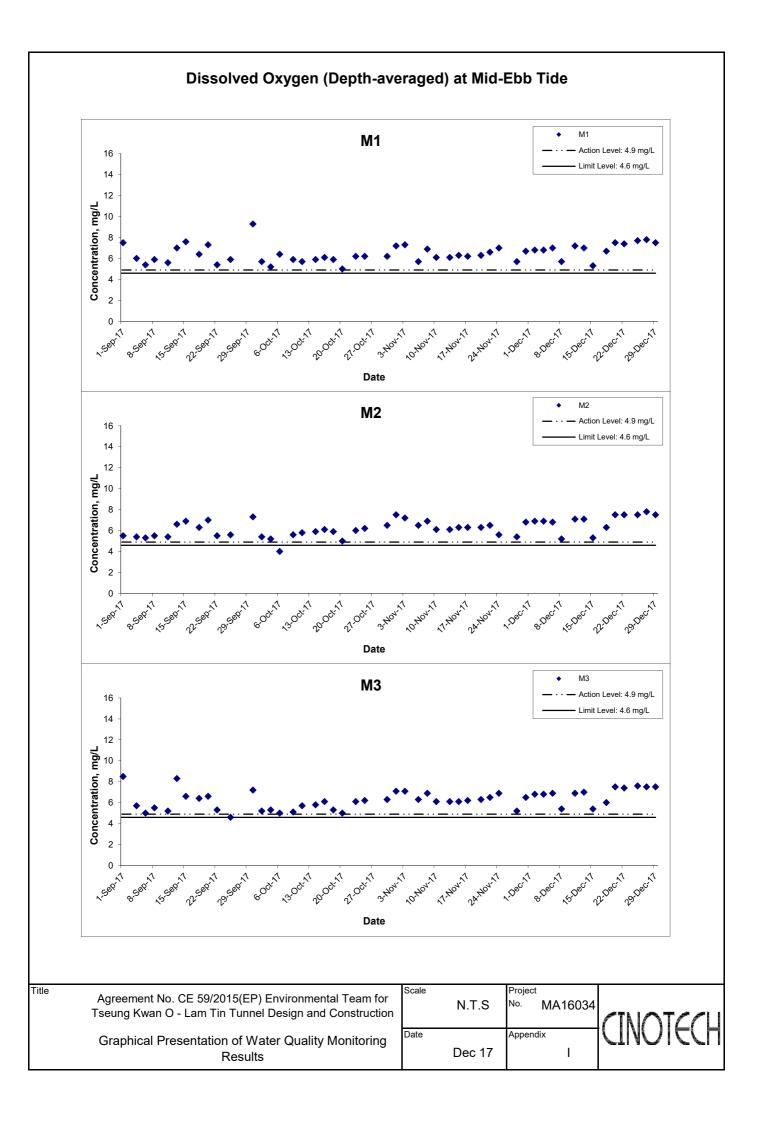
Notes:

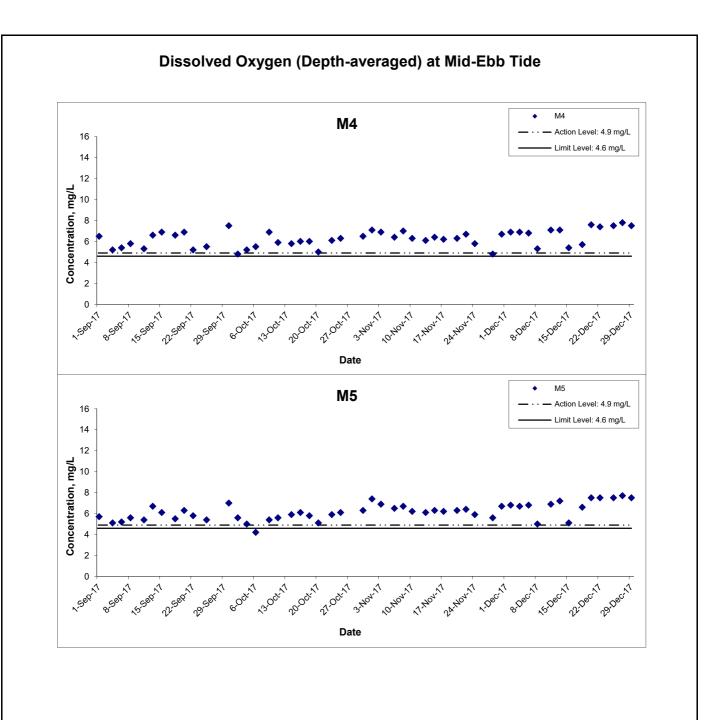
1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

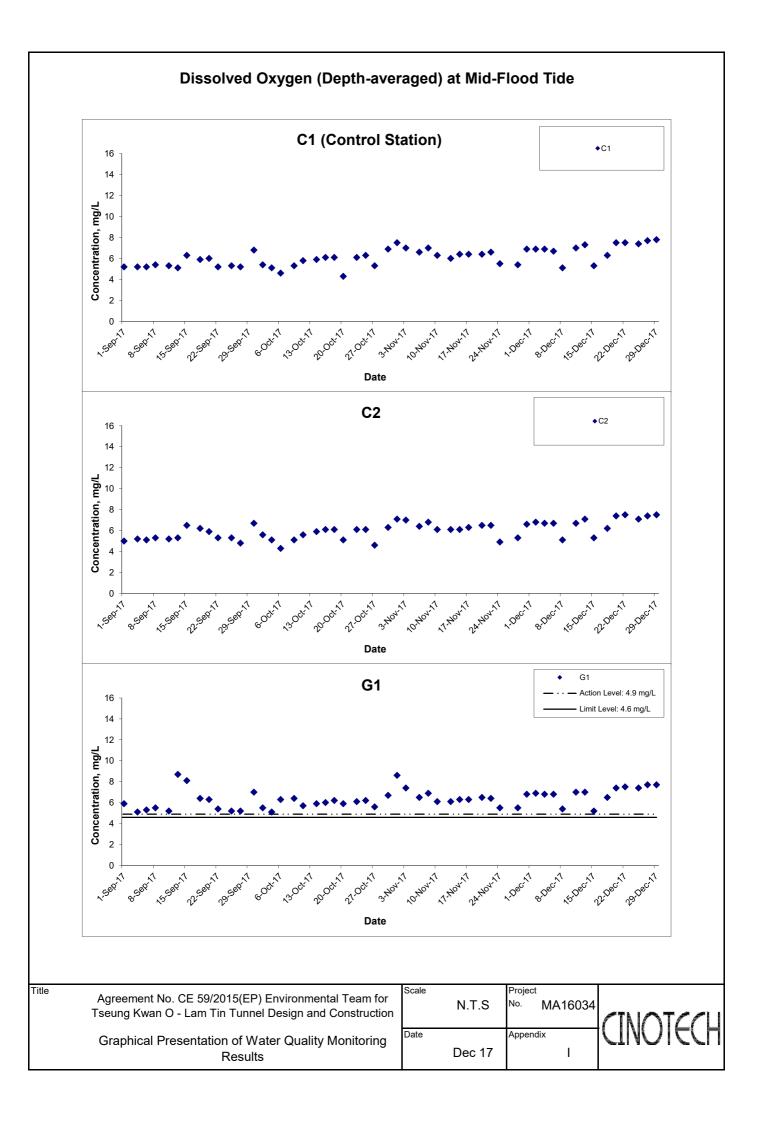

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

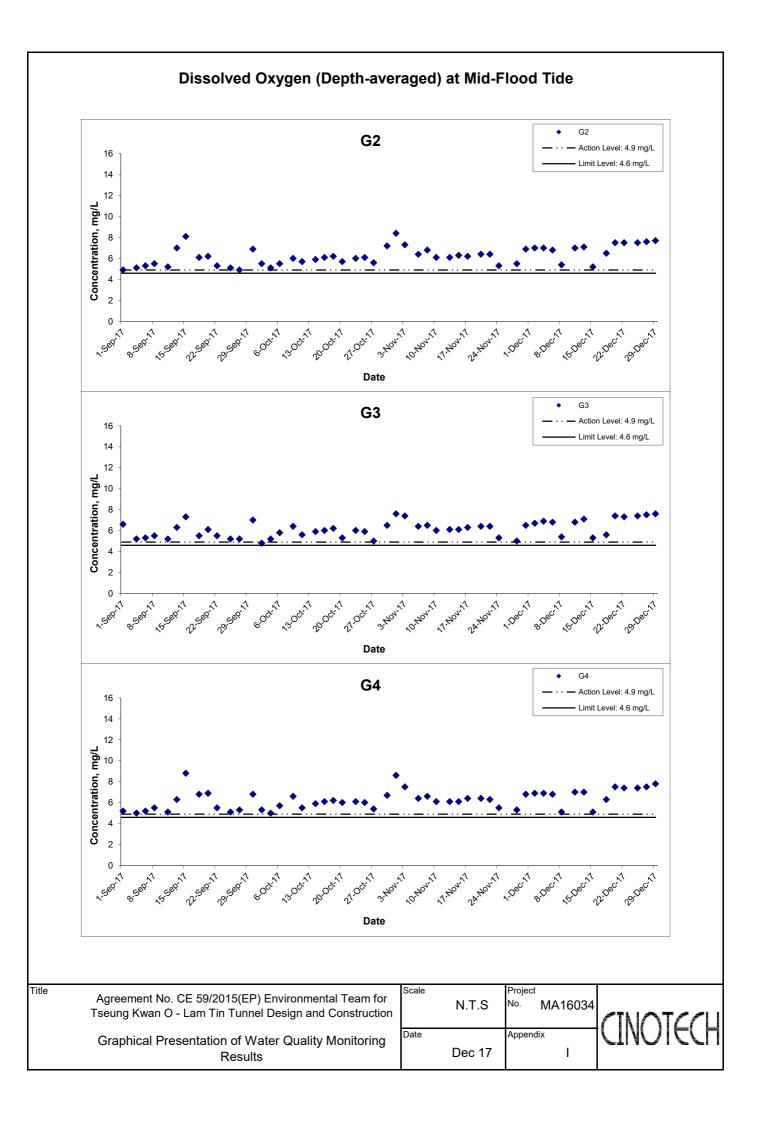

4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

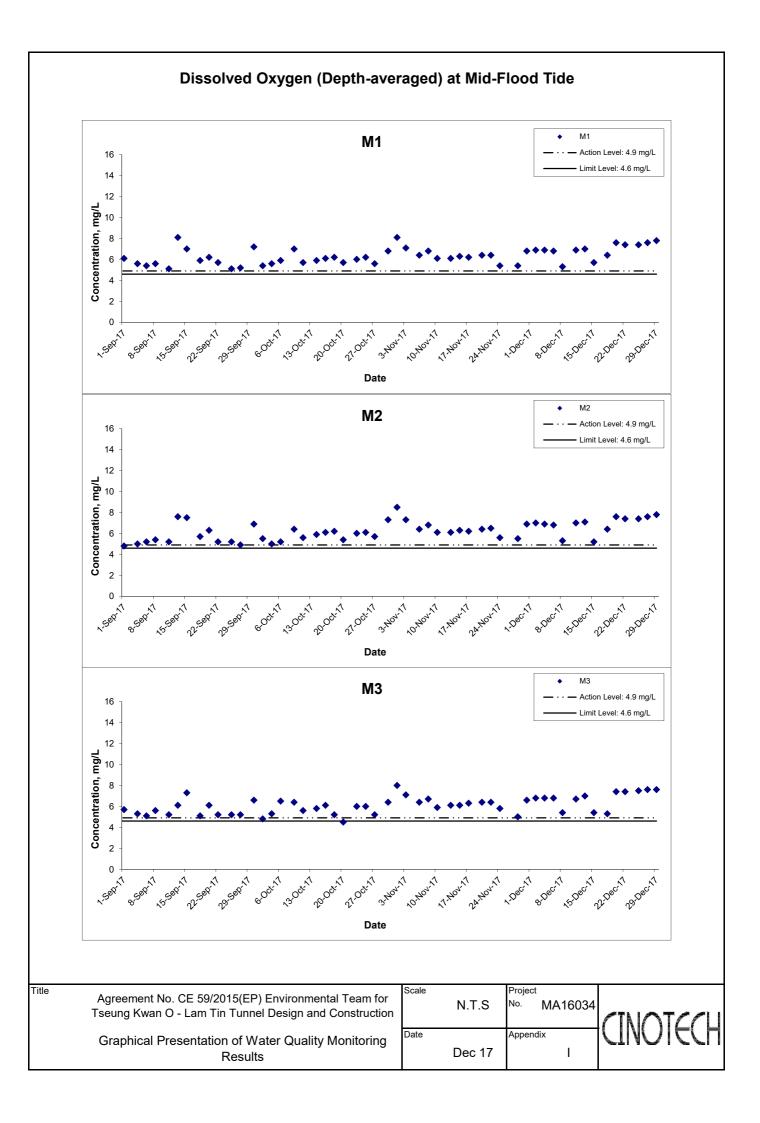

## (Mid-Flood Tide)

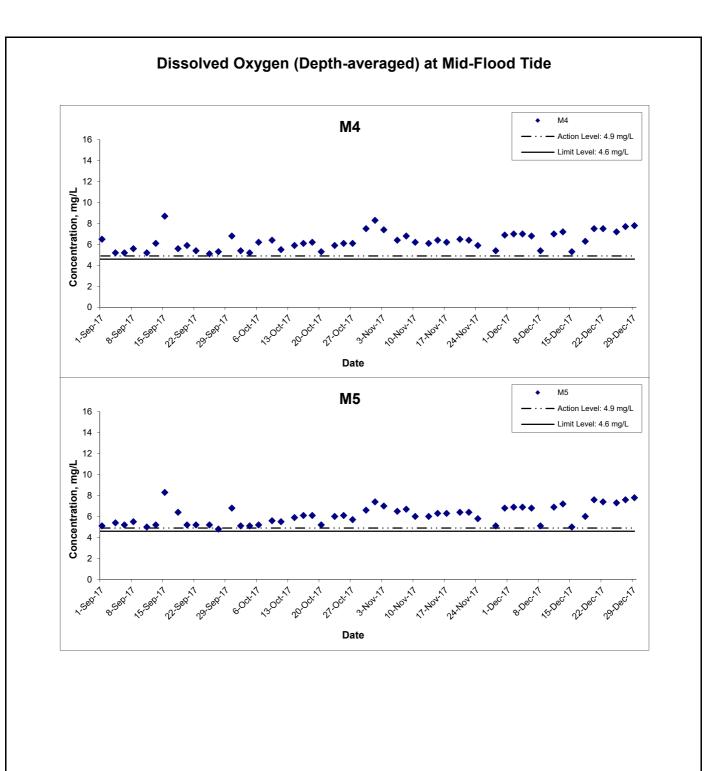

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	ьΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
Economi	Condition	Condition**	Time	Dopt		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	102.3 102.1	102.2	7.9 7.9	7.9	7.0	1.5 1.5	1.5		4.3 4.3	4.3	
C1	Sunny	Moderate	16:08	Middle	10	18.1 18.0	18.1	8.4 8.4	8.4	33.9 33.9	33.9	100.4 100.4	100.4	7.8 7.8	7.8	7.9	2.4 2.3	2.4	2.6	4.5 4.5	4.5	4.6
				Bottom	19	17.9 17.9	17.9	8.4 8.4	8.4	33.9 33.9	33.9	99.1 99.0	99.1	7.7 7.7	7.7	7.7	4.3 3.5	3.9		4.9 5.0	5.0	
				Surface	1	18.5 18.5	18.5	8.3 8.3	8.3	33.8 33.8	33.8	98.9 99.4	99.2	7.6 7.6	7.6	7.6	1.2 1.2	1.2		3.6 3.6	3.6	
C2	Sunny	Moderate	14:44	Middle	16.5	18.2 18.2	18.2	8.3 8.3	8.3	33.9 33.9	33.9	97.0 97.1	97.1	7.5 7.5	7.5		1.3 1.2	1.3	1.6	4.3 4.1	4.2	3.9
				Bottom	32	18.0 18.1	18.1	8.3 8.3	8.3	33.9 33.9	33.9	96.7 96.4	96.6	7.5 7.4	7.5	7.5	2.2 2.4	2.3		4.1 3.9	4.0	
				Surface	1	18.7 18.7	18.7	8.4 8.4	8.4	33.8 33.8	33.8	100.5 100.6	100.6	7.7 7.7	7.7	7.7	2.4 2.6	2.5		4.0 4.1	4.1	ļ I
G1	Sunny	Moderate	15:24	Middle	4.5	18.2 18.3	18.3	8.4 8.4	8.4	33.9 33.9	33.9	99.6 100.0	99.8	7.7 7.7	7.7		2.4 2.3	2.4	2.6	4.6 4.4	4.5	3.7
				Bottom	8	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	98.0 98.5	98.3	7.6 7.6	7.6	7.6	3.0 3.0	3.0		2.4 2.4	2.4	
				Surface	1	18.7 18.4	18.6	8.4 8.4	8.4	33.8 33.9	33.9	101.3 100.8	101.1	7.7 7.7	7.7	7.7	1.8 1.9	1.9		5.0 5.1	5.1	
G2	Sunny	Moderate	15:11	Middle	5	18.4 18.3	18.4	8.4 8.4	8.4	33.9 33.9	33.9	100.3 100.6	100.5	7.7 7.7	7.7		1.8 2.1	2.0	2.0	4.1 4.1	4.1	4.7
				Bottom	9	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	98.7 99.8	99.3	7.6 7.7	7.7	7.7	2.2 1.8	2.0		4.8 4.8	4.8	
				Surface	1	18.7 18.8	18.8	8.4 8.4	8.4	33.6 33.6	33.6	100.9 101.0	101.0	7.7 7.7	7.7	7.7	2.3 2.1	2.2		4.6 4.8	4.7	
G3	Sunny	Moderate	15:31	Middle	4	18.3 18.4	18.4	8.4 8.4	8.4	33.8 33.9	33.9	99.1 99.5	99.3	7.6 7.6	7.6		2.9 2.9	2.9	2.6	6.7 6.7	6.7	4.8
				Bottom	7	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	98.3 98.3	98.3	7.6 7.6	7.6	7.6	2.8 2.6	2.7		3.1 3.1	3.1	
				Surface	1	18.7 18.5	18.6	8.4 8.4	8.4	33.9 33.9	33.9	102.6 102.6	102.6	7.8 7.9	7.9	7.9	1.1 1.2	1.2		3.5 3.5	3.5	ļ I
G4	Sunny	Moderate	15:46	Middle	4.5	18.5 18.5	18.5	8.4 8.4	8.4	33.9 33.9	33.9	102.3 102.4	102.4	7.8 7.8	7.8		1.1 1.2	1.2	1.5	4.3 4.4	4.4	4.4
				Bottom	8	18.2 18.1	18.2	8.4 8.4	8.4	33.9 33.9	33.9	99.4 98.6	99.0	7.7 7.6	7.7	7.7	1.9 2.0	2.0		5.3 5.4	5.4	
				Surface	1	18.5 18.5	18.5	8.4 8.4	8.4	33.9 33.9	33.9	101.1 101.2	101.2	7.7 7.8	7.8	7.8	2.3 2.1	2.2		3.8 3.9	3.9	ļ
M1	Sunny	Moderate	15:18	Middle	3	18.5 18.5	18.5	8.4 8.4	8.4	33.9 33.9	33.9	101.3 101.3	101.3	7.8 7.8	7.8		2.2 2.0	2.1	2.2	2.2 2.2	2.2	3.0
				Bottom	5	18.5 18.5	18.5	8.4 8.4	8.4	33.9 33.9	33.9	102.5 102.3	102.4	7.9 7.8	7.9	7.9	2.2 2.3	2.3		3.0 2.9	3.0	
				Surface	1	18.6 18.6	18.6	8.4 8.4	8.4	33.9 33.9	33.9	102.5 102.5	102.5	7.8 7.8	7.8	7.8	1.1 1.1	1.1		3.1 3.0	3.1	ļ
M2	Sunny	Moderate	15:04	Middle	5.5	18.5 18.6	18.6	8.4 8.4	8.4	33.9 33.9	33.9	101.8 101.9	101.9	7.8 7.8	7.8		1.3 1.3	1.3	1.4	1.9 1.8	1.9	2.3
				Bottom	10	18.2 18.4	18.3	8.4 8.4	8.4	33.9 33.9	33.9	100.6 100.8	100.7	7.7 7.7	7.7	7.7	1.8 1.7	1.8		2.0 2.0	2.0	
				Surface	1	18.6 18.4	18.5	8.4 8.4	8.4	33.5 33.7	33.6	100.6 99.0	99.8	7.7	7.7	7.7	3.1 3.1	3.1		3.8 3.8	3.8	ļ
М3	Sunny	Moderate	15:38	Middle	4	18.2 18.3	18.3	8.4 8.4	8.4	33.9 33.8	33.9	98.7 98.8	98.8	7.6 7.6	7.6		2.8 3.2	3.0	3.1	2.4 2.3	2.4	3.0
				Bottom	7	18.1 18.1	18.1	8.4 8.4	8.4	34.0 33.9	34.0	97.6 97.5	97.6	7.5 7.5	7.5	7.5	3.0 3.5	3.3		2.9 2.9	2.9	
				Surface	1	18.7 18.8	18.8	8.4 8.4	8.4	33.9 33.9	33.9	102.3 102.2	102.3	7.8 7.8	7.8	7.8	1.5 1.5	1.5		4.1 4.2	4.2	ļ
M4	Sunny	Moderate	14:55	Middle	5	18.6 18.7	18.7	8.4 8.4	8.4	33.9 33.9	33.9	102.2 102.1	102.2	7.8 7.8	7.8		1.3 1.5	1.4	1.4	1.6 1.6	1.6	2.6
				Bottom	9	18.5 18.5	18.5	8.4 8.4	8.4	33.9 33.9	33.9	101.7 101.7	101.7	7.8 7.8	7.8	7.8	1.3 1.3	1.3		2.1 2.0	2.1	
				Surface	1	18.4 18.4	18.4	8.4 8.4	8.4	33.9 33.9	33.9	102.2 102.2	102.2	7.8 7.8	7.8	7.8	1.4 1.3	1.4		3.1 3.2	3.2	ļ
M5	Sunny	Moderate	15:59	Middle	5.5	18.1 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	100.5 100.4	100.5	7.8	7.8		1.6 1.5	1.6	1.5	2.0 2.0	2.0	2.7
				Bottom	10	18.0 18.1	18.1	8.4 8.4	8.4	33.9 33.9	33.9	99.3 100.1	99.7	7.7 7.7	7.7	7.7	1.6 1.3	1.5		2.9 2.9	2.9	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-		-	-	ļ
M6	Sunny	Moderate	15:53	Middle	2	18.2 18.2	18.2	8.4 8.4	8.4	33.9 33.9	33.9	102.4 102.3	102.4	7.9 7.9	7.9		1.4 1.4	1.4	1.4	6.5 6.5	6.5	6.5
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

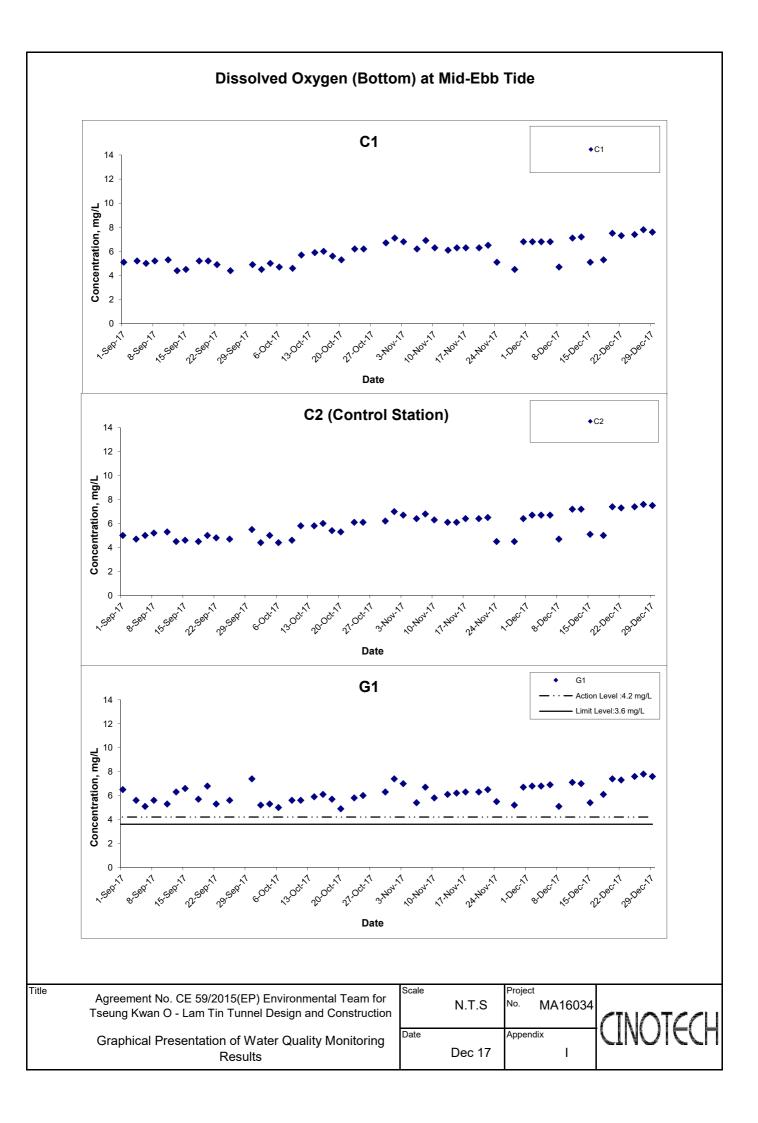


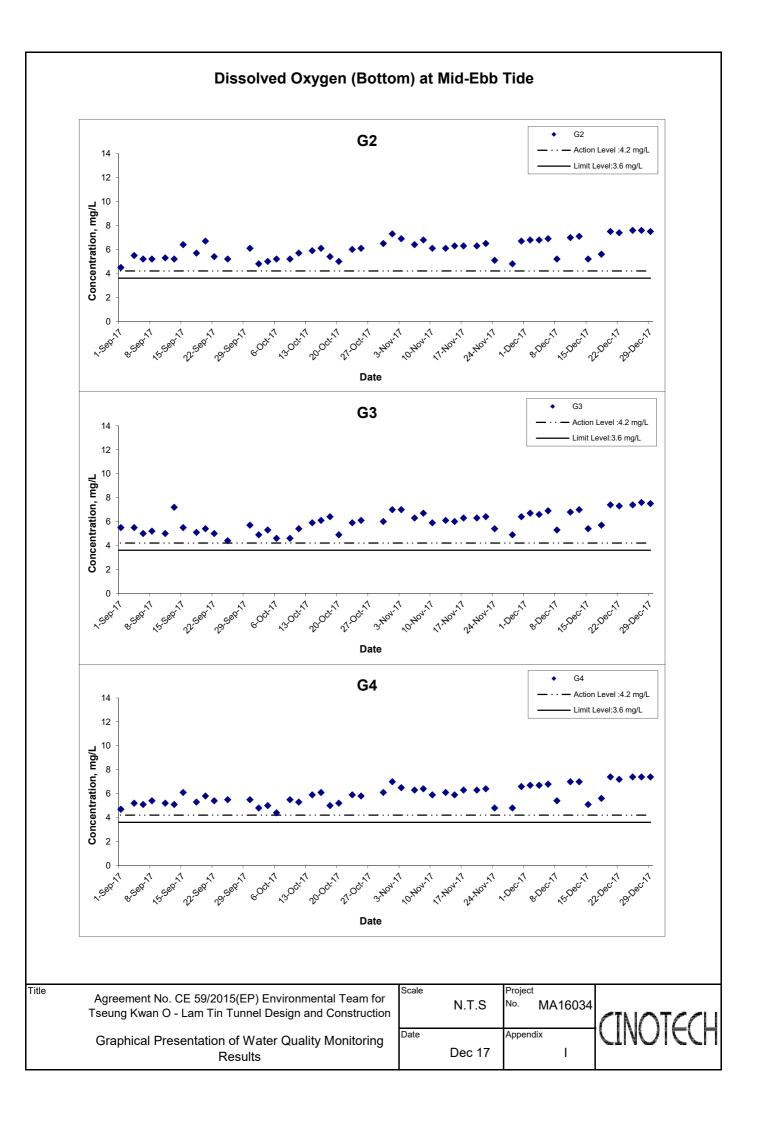



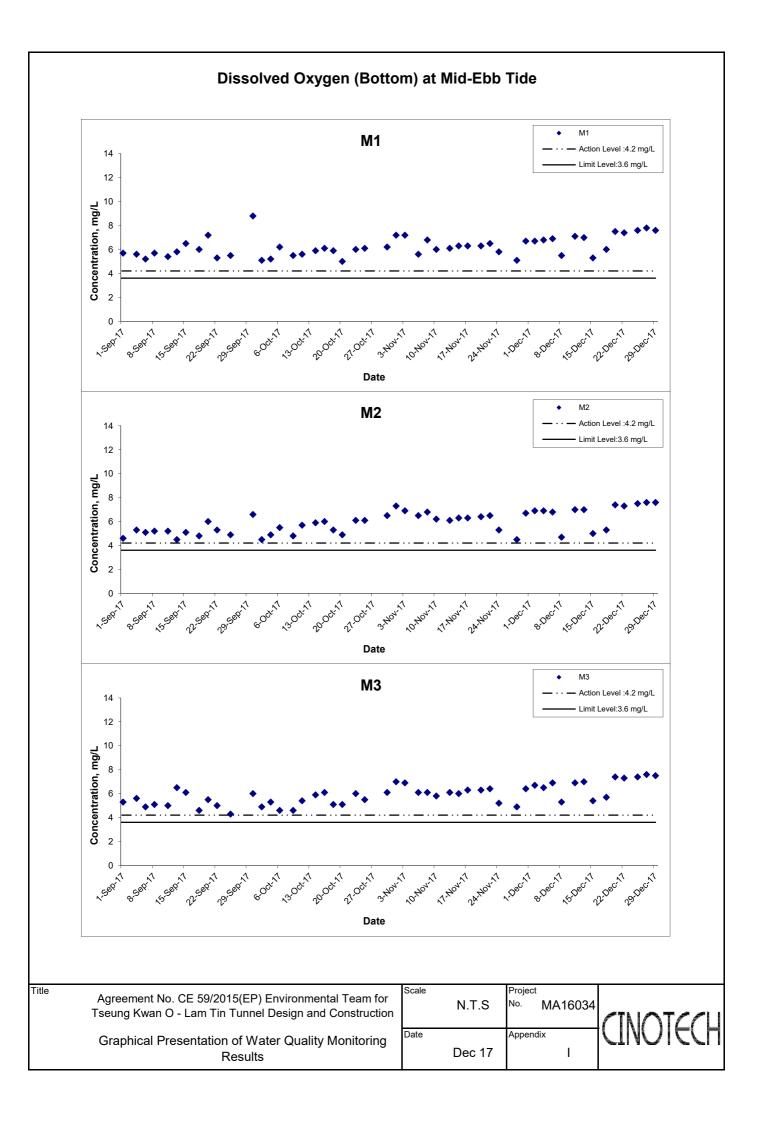



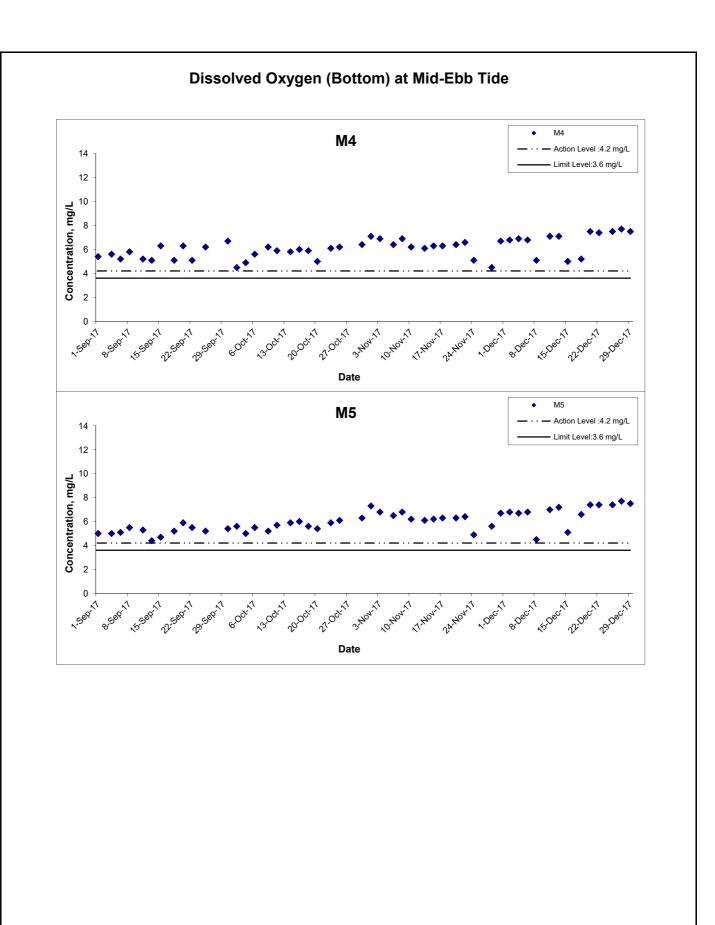




Title	Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale	N.T.S	Project No.	MA16034	
	Graphical Presentation of Water Quality Monitoring Results	Date	Dec 17	Append	ix I	

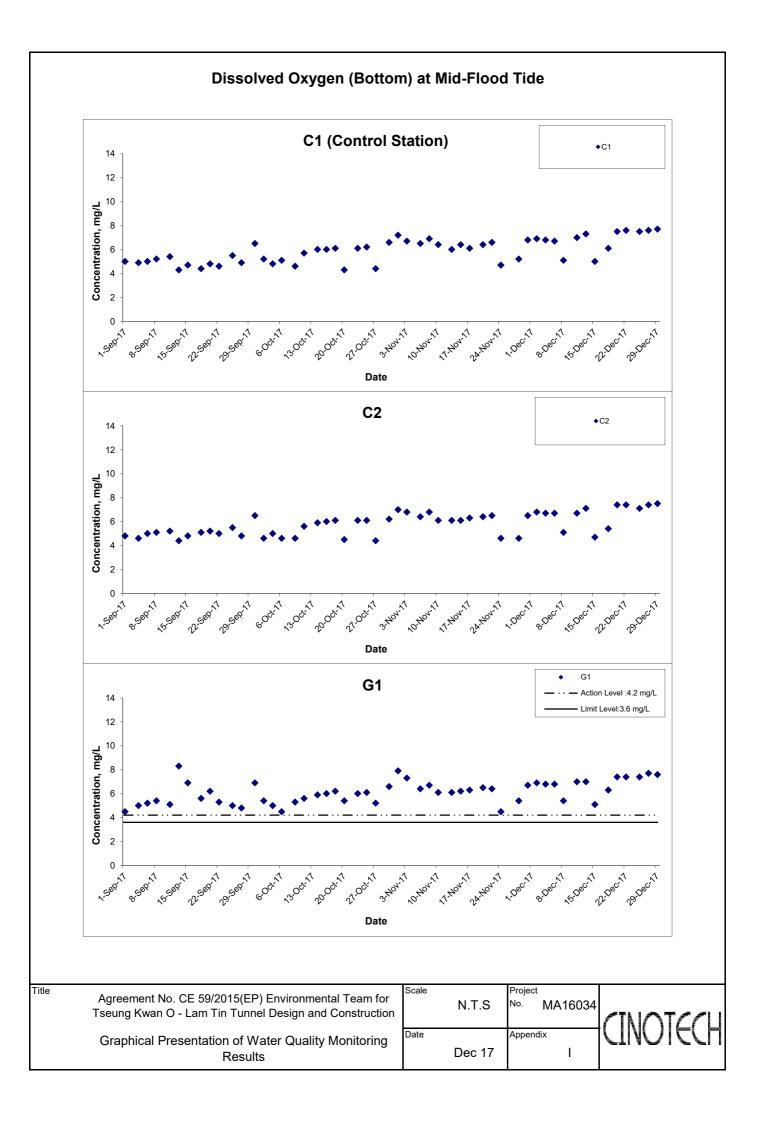


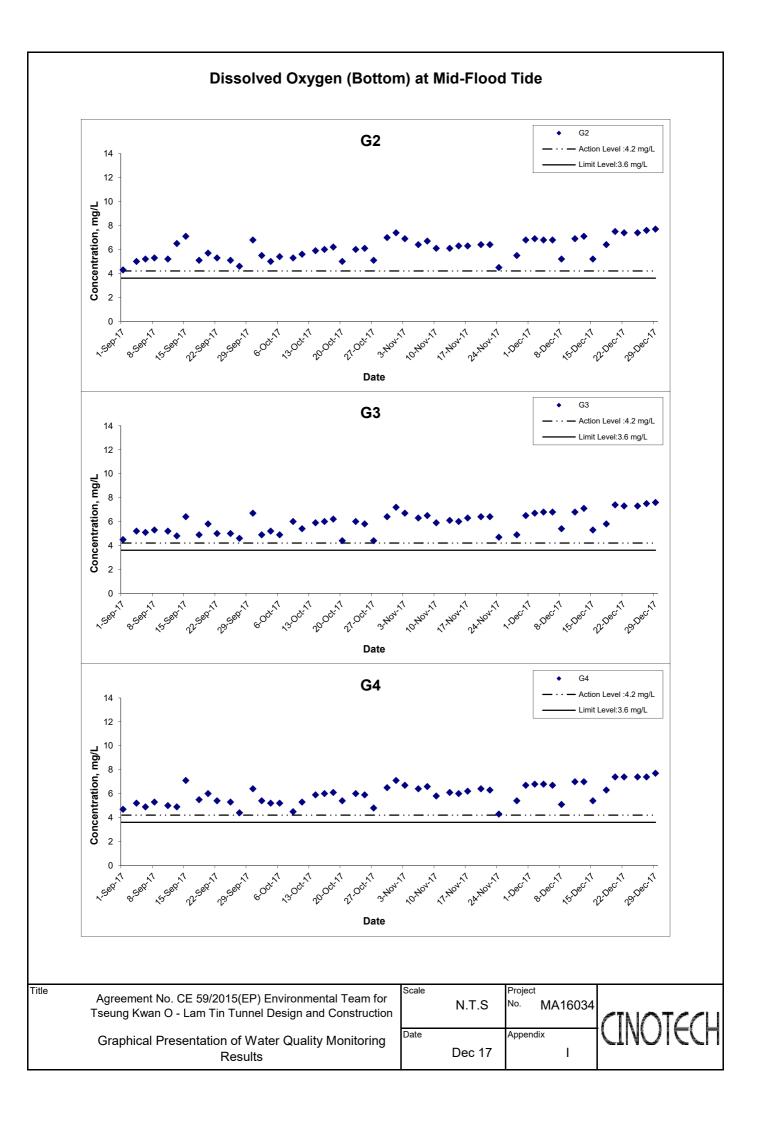



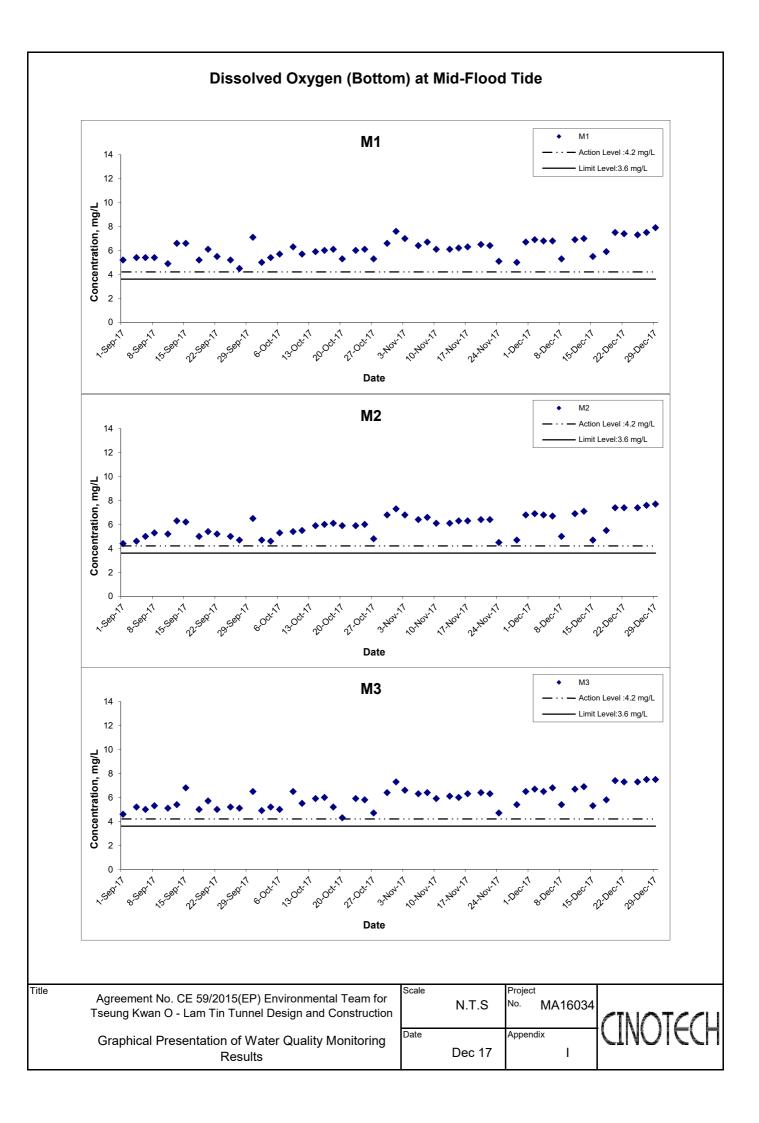



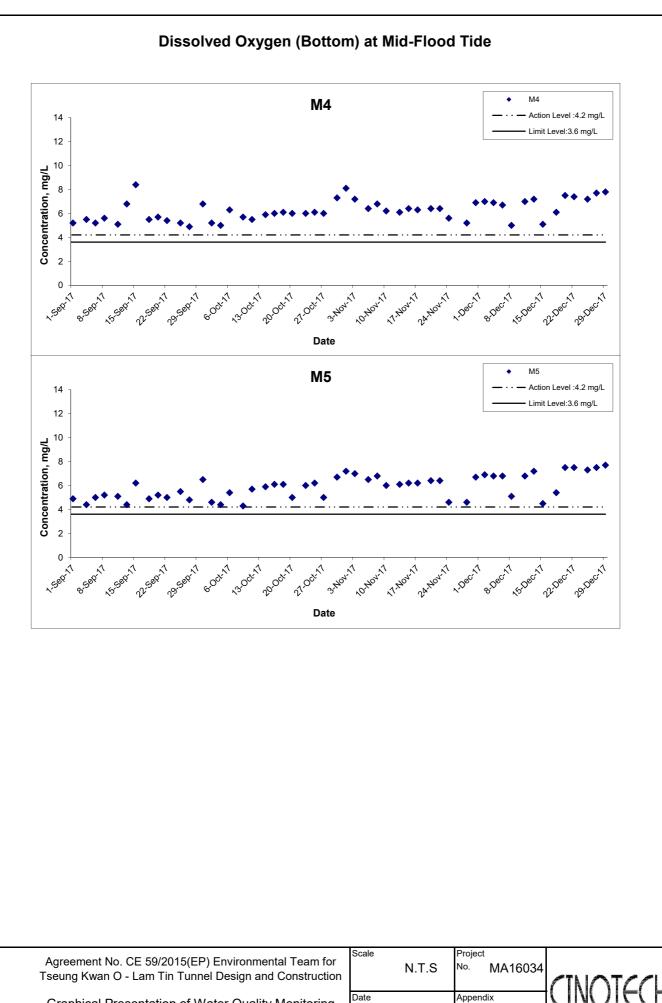




Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 17		



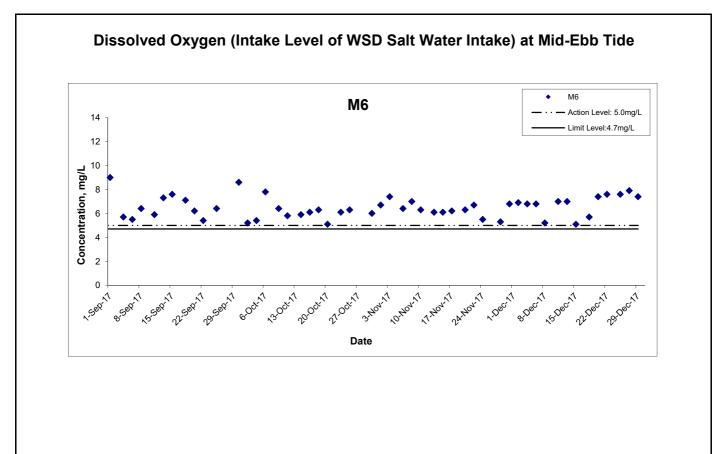




Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 17		

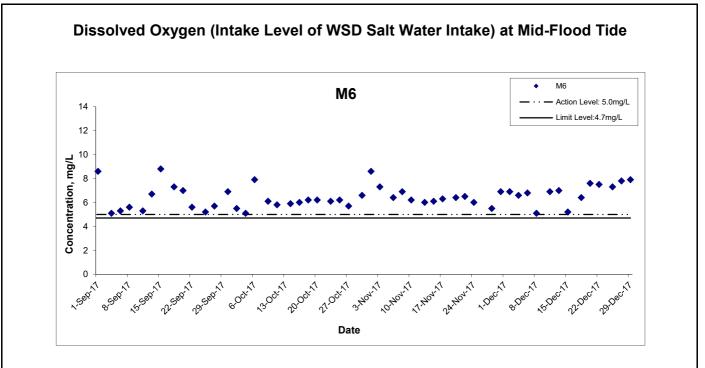




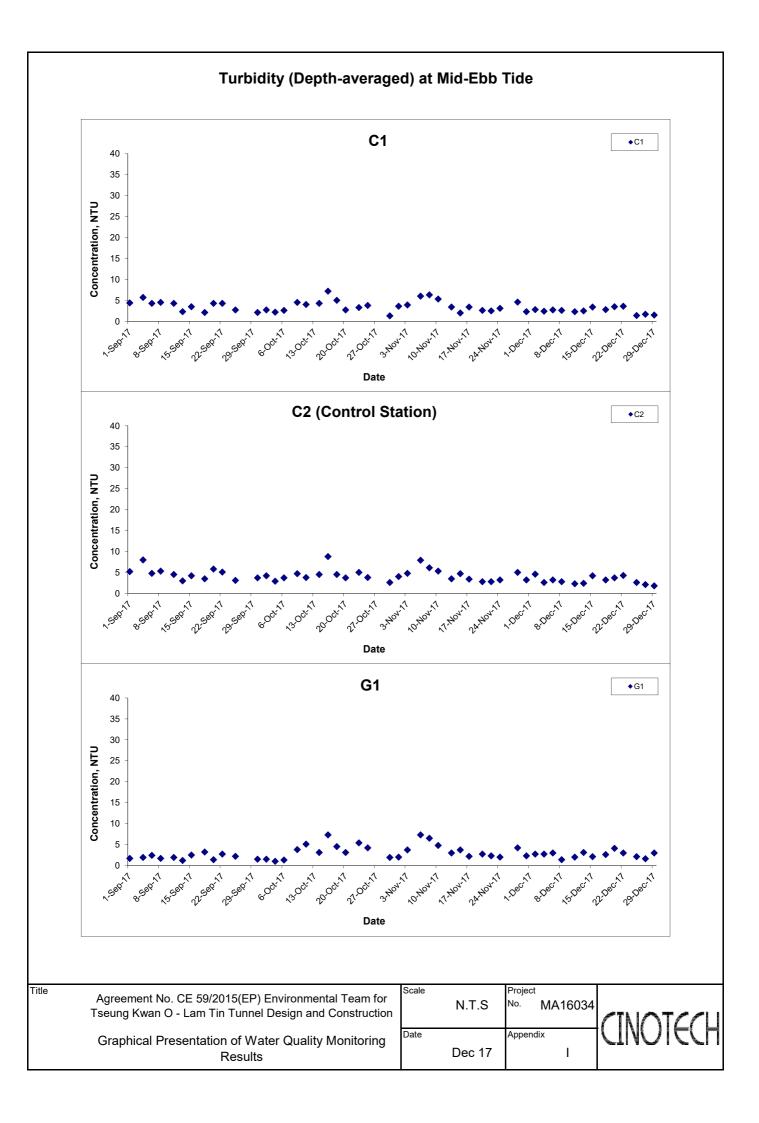


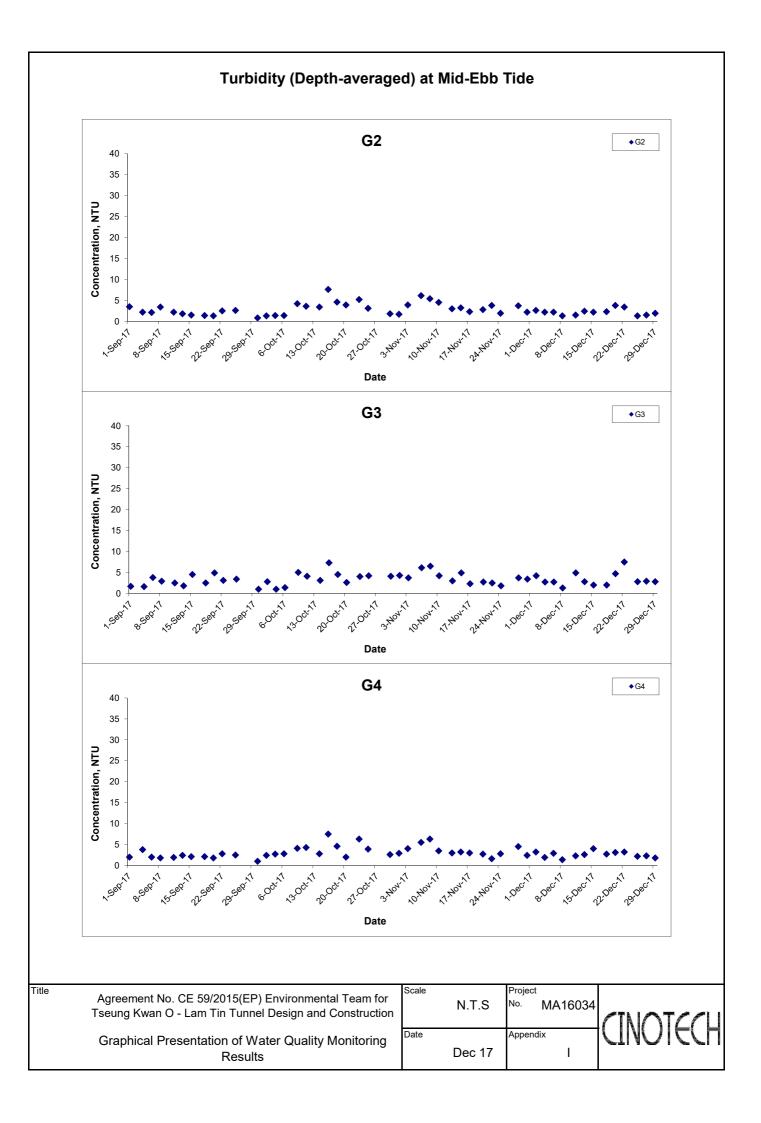


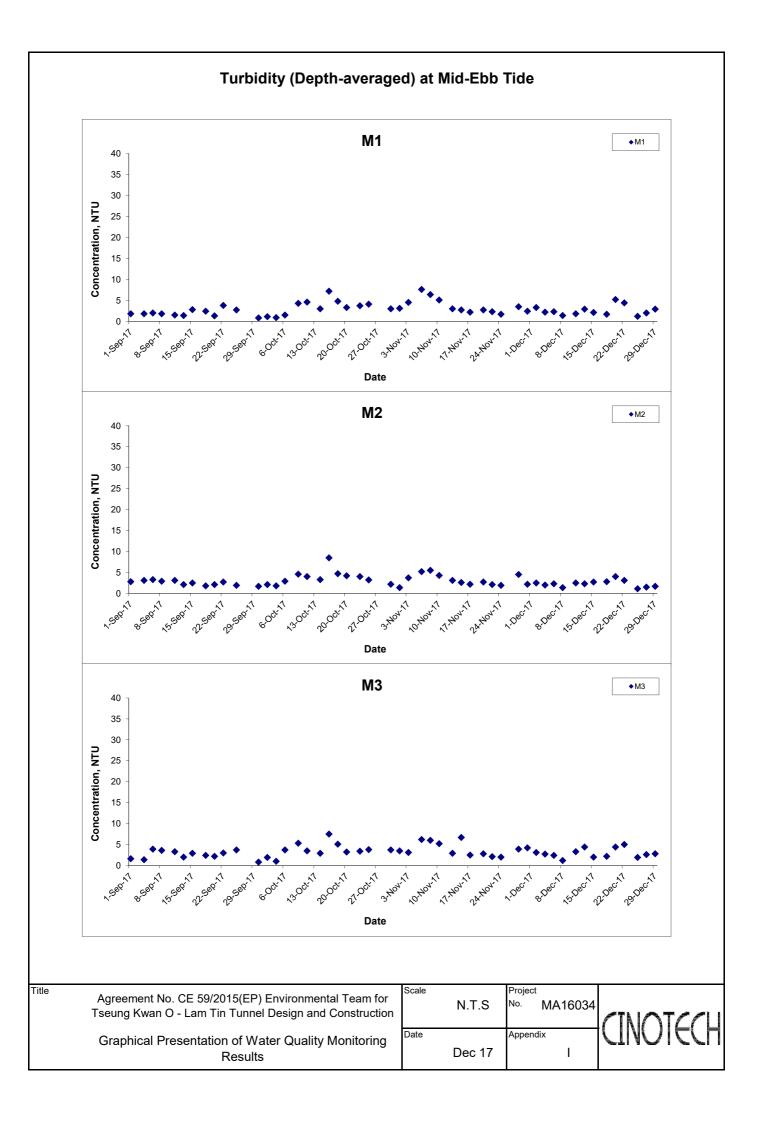

Graphical Presentation of Water Quality Monitoring Results

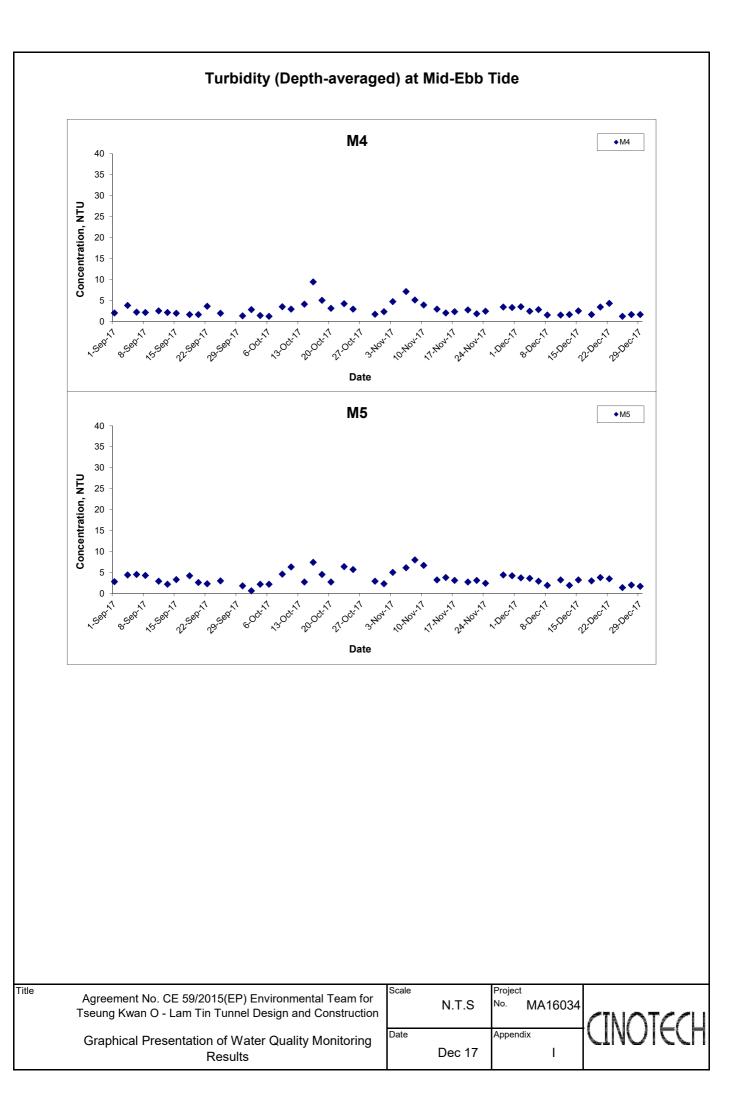

Title

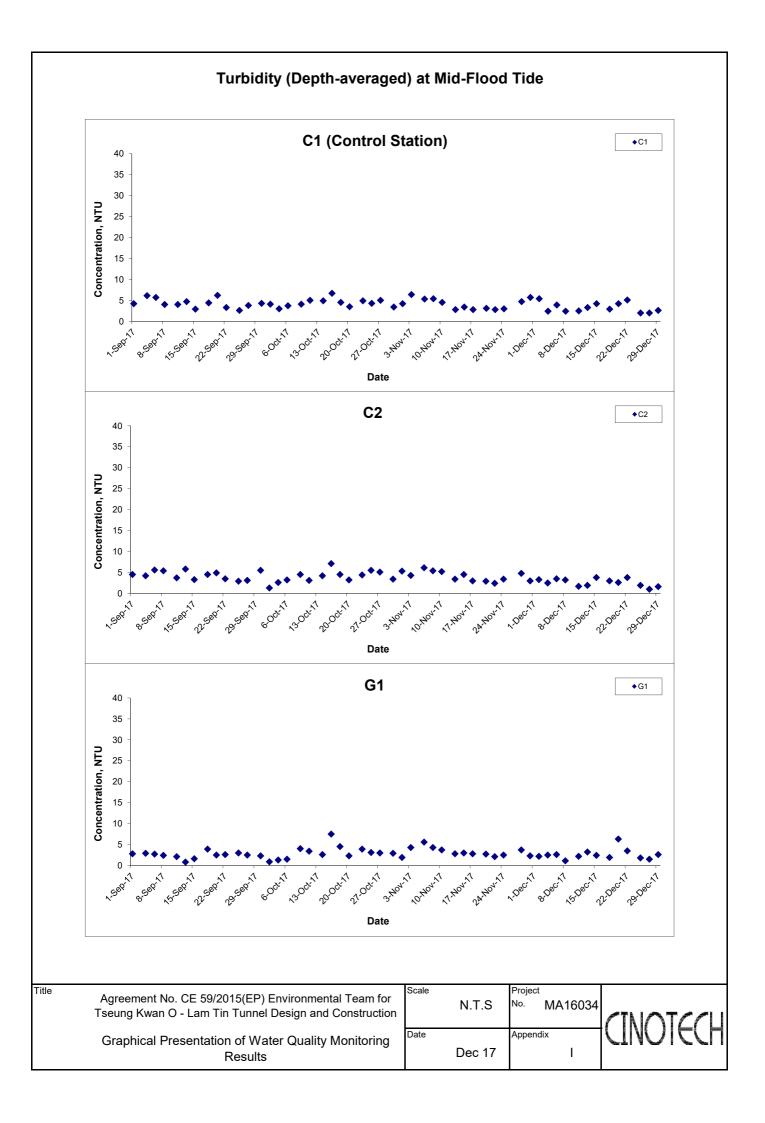


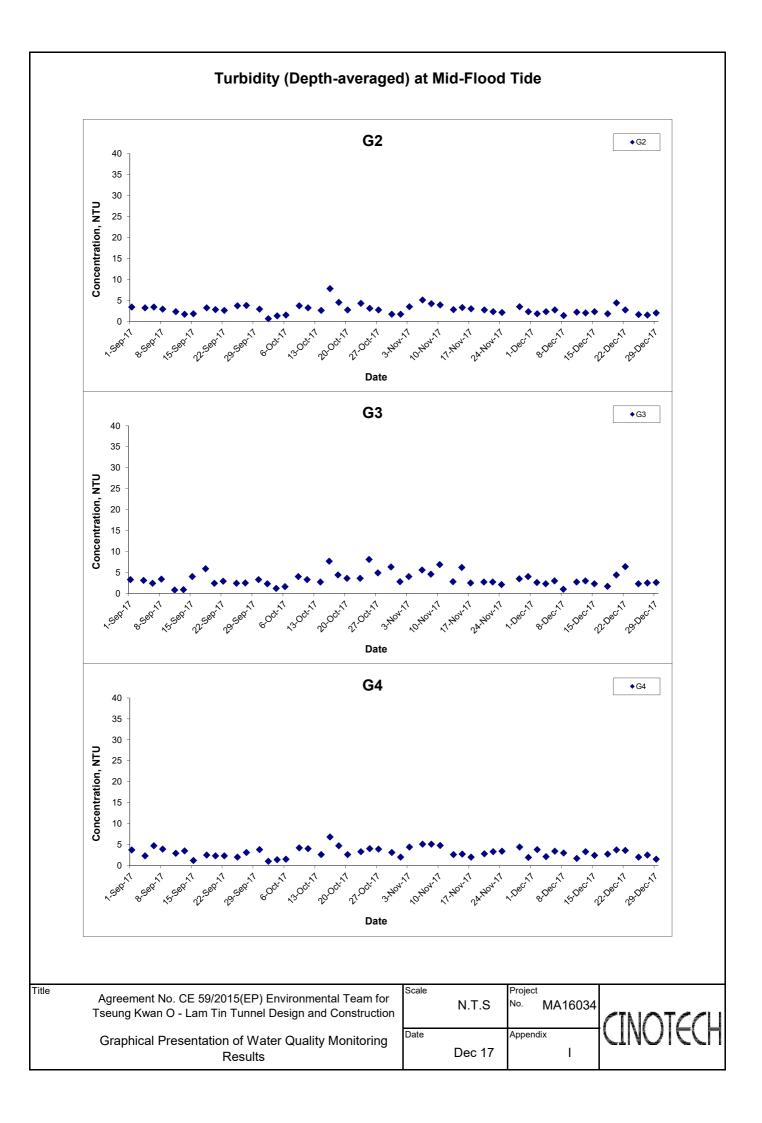

I

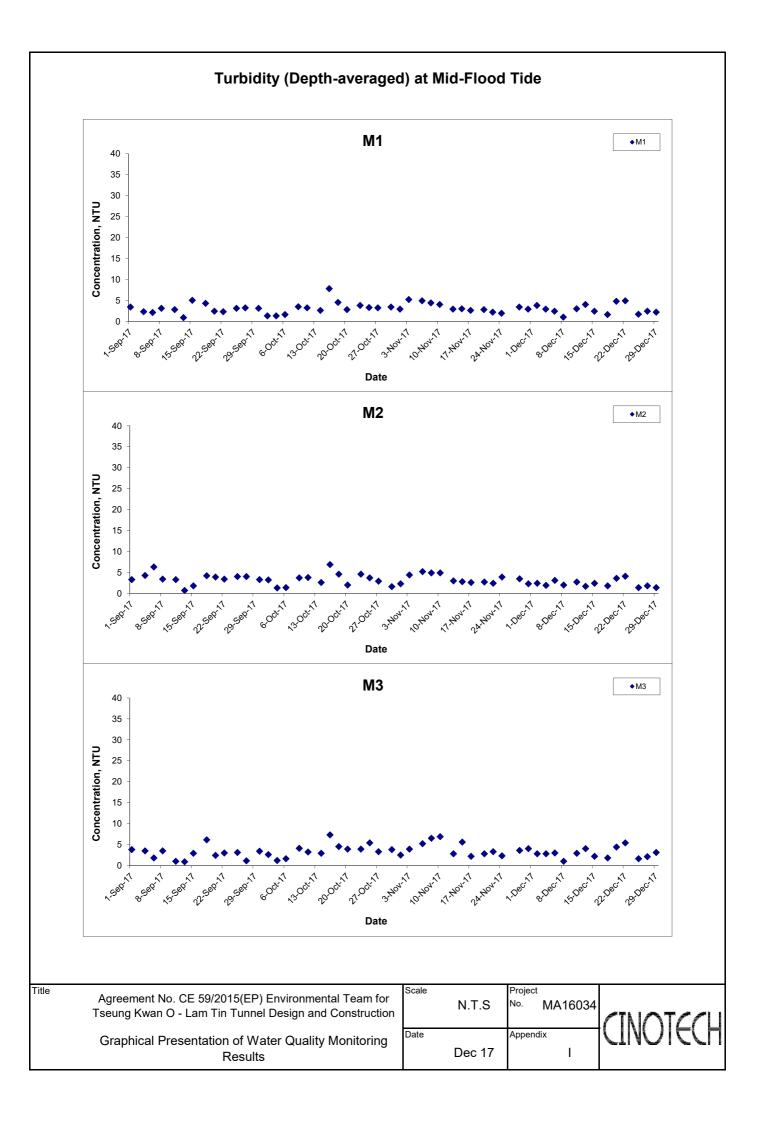


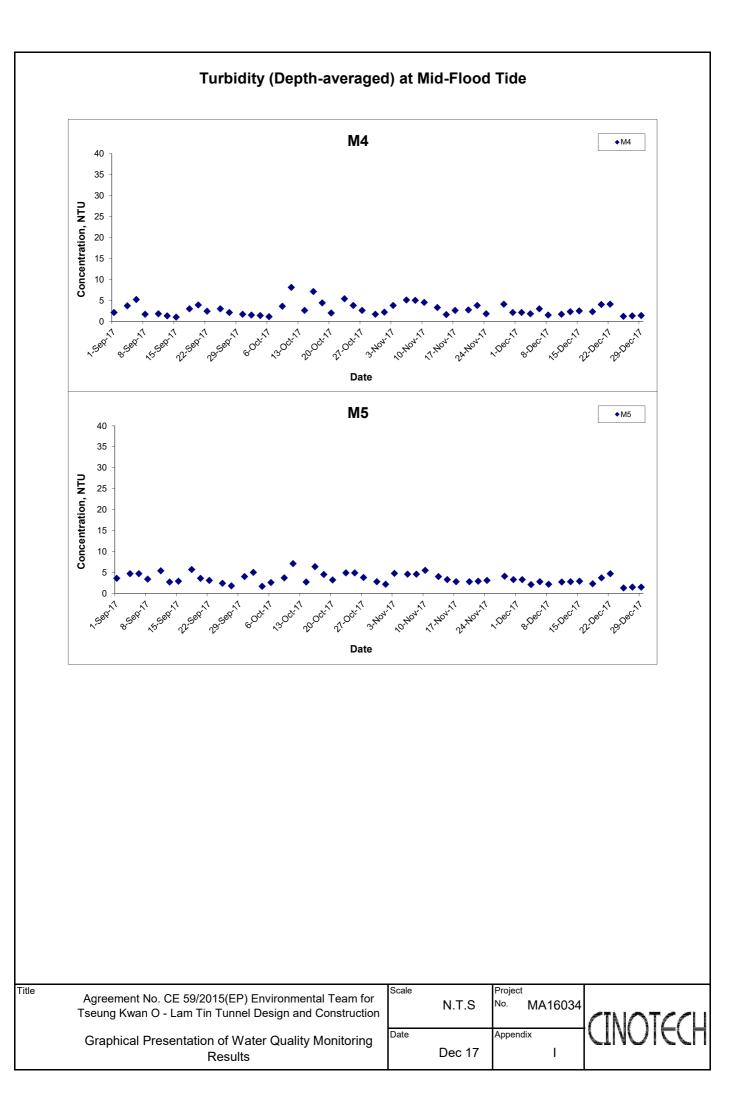


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project ^{No.} MA16034	CINOTCOL
Graphical Presentation of Water Quality Monitoring	Date	Appendix	LINUIECH
Results	Dec 17	I	

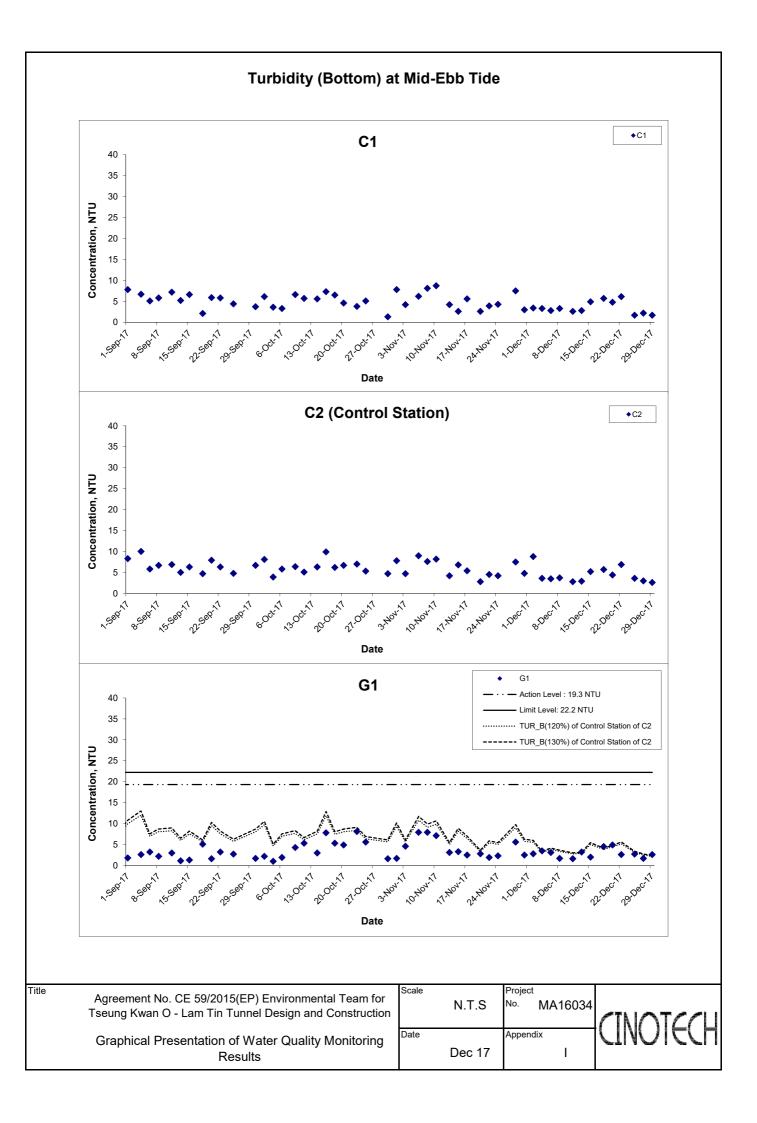


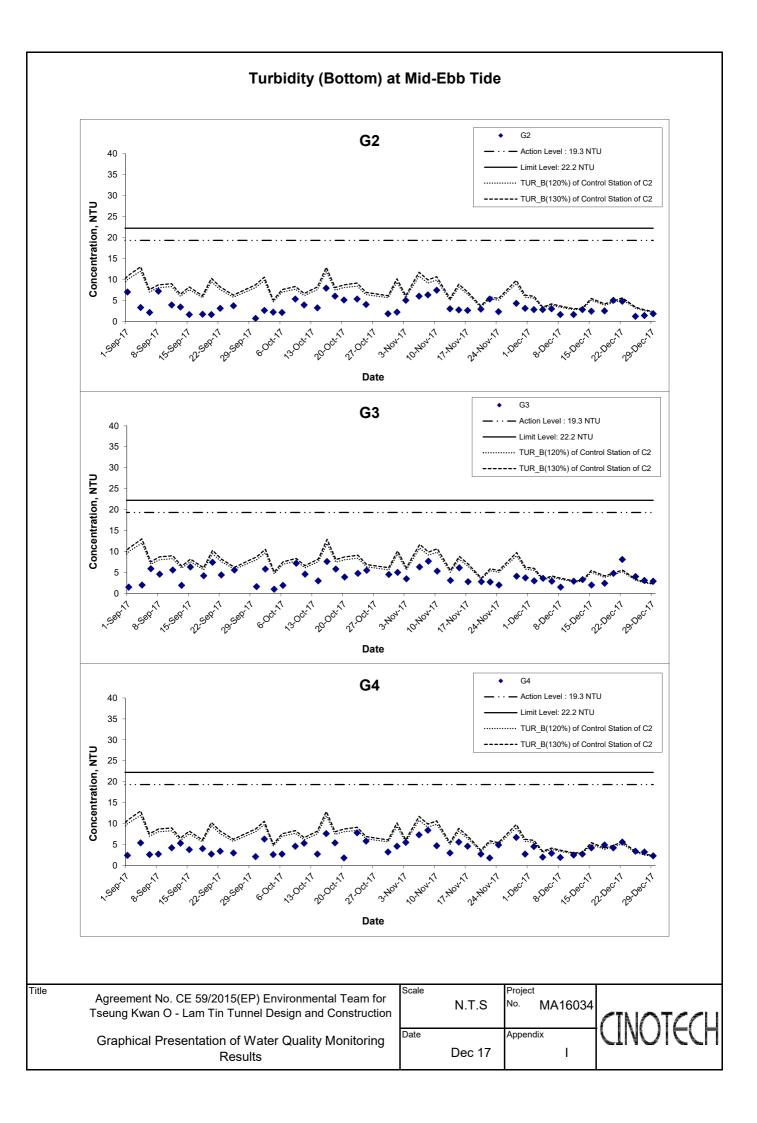


Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	
Graphical Presentation of Water Quality Monitoring Results	Date Dec 17	Appendix 	

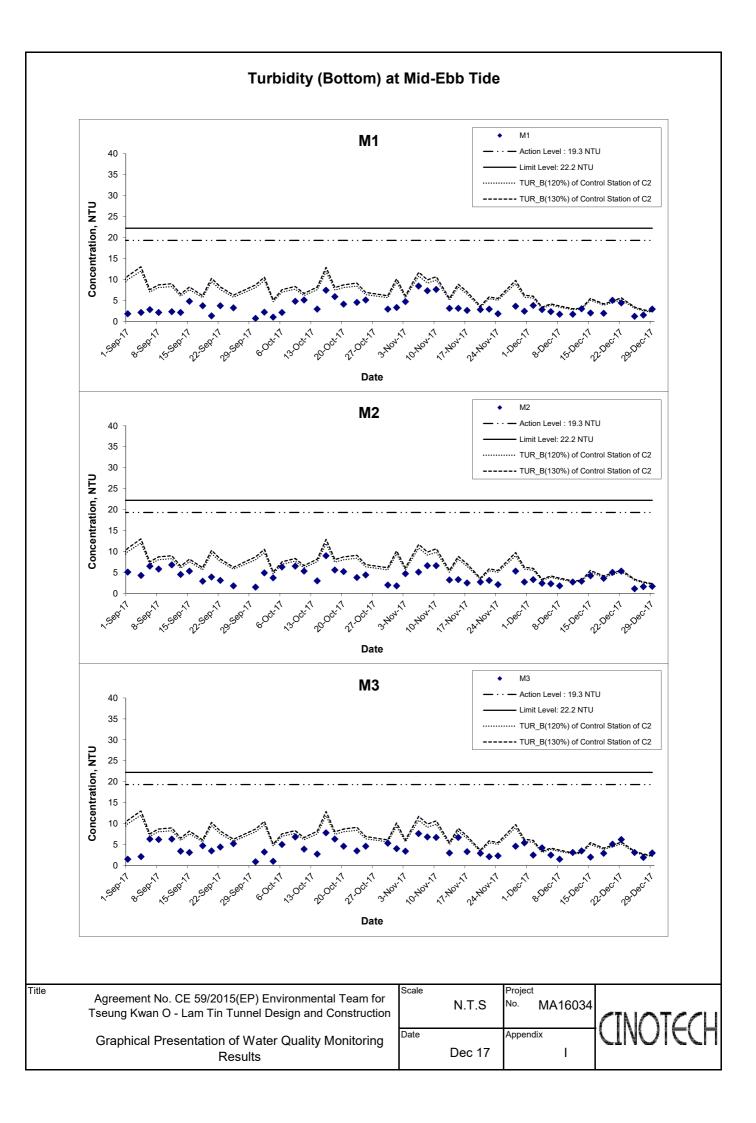


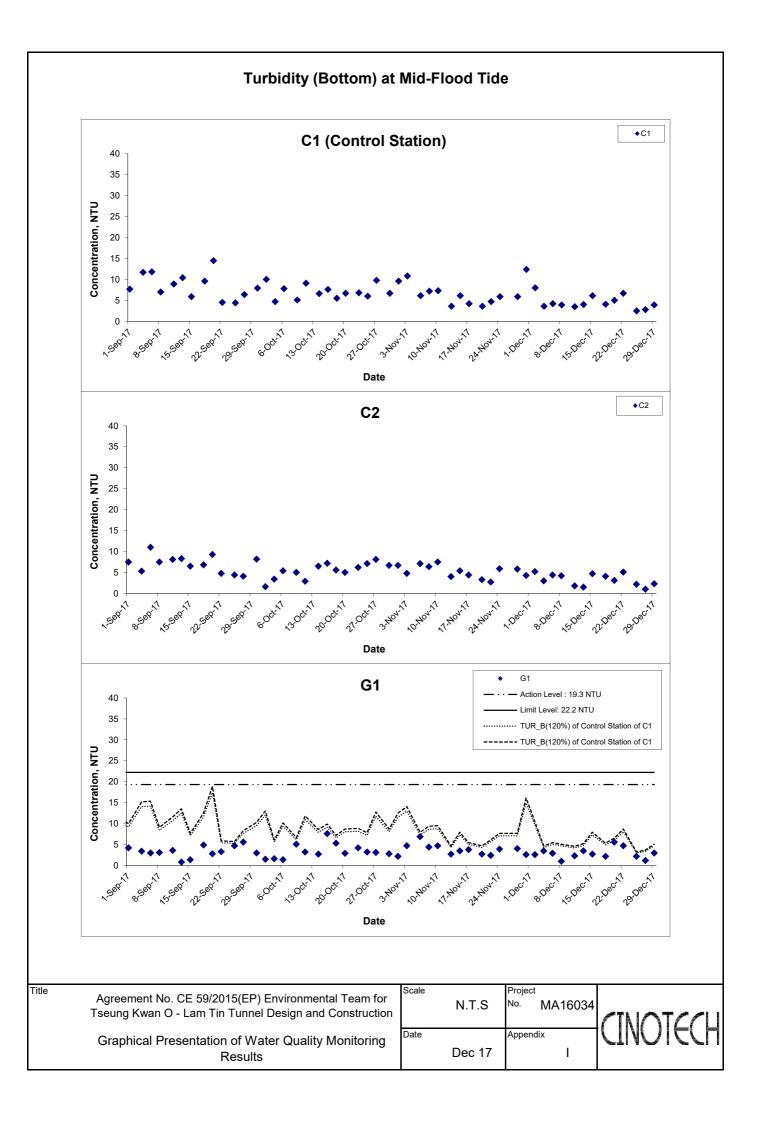



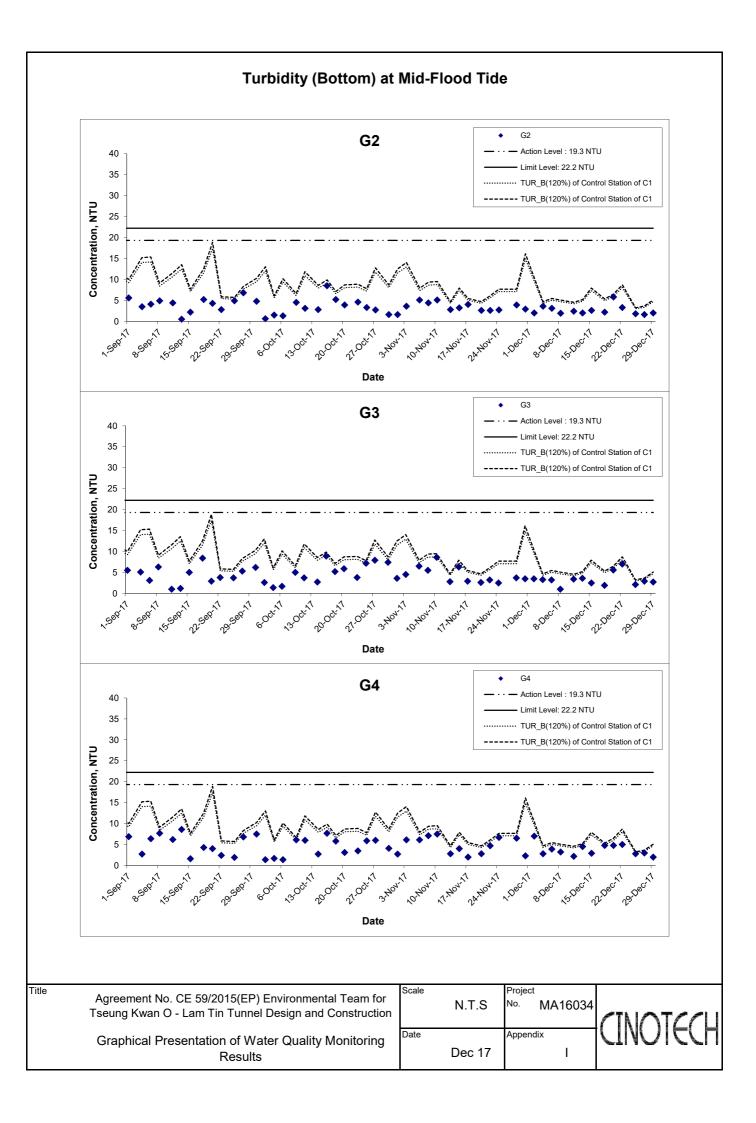



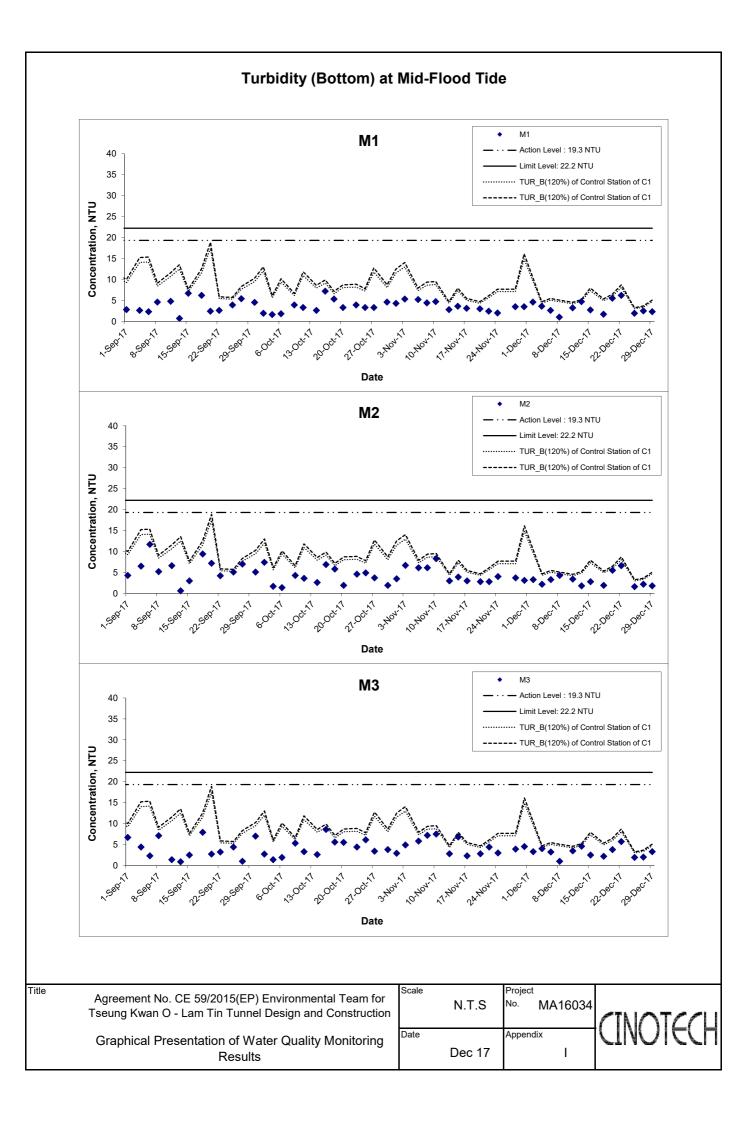


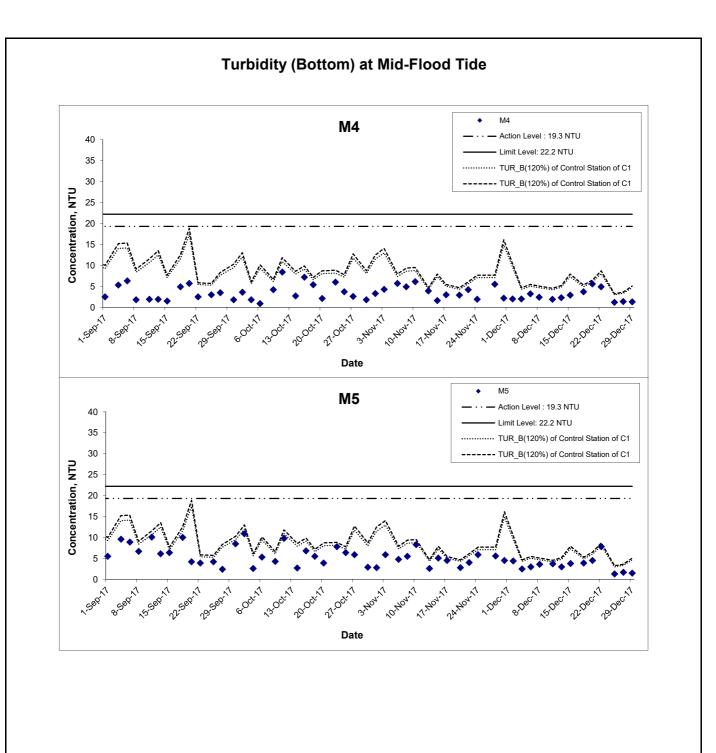




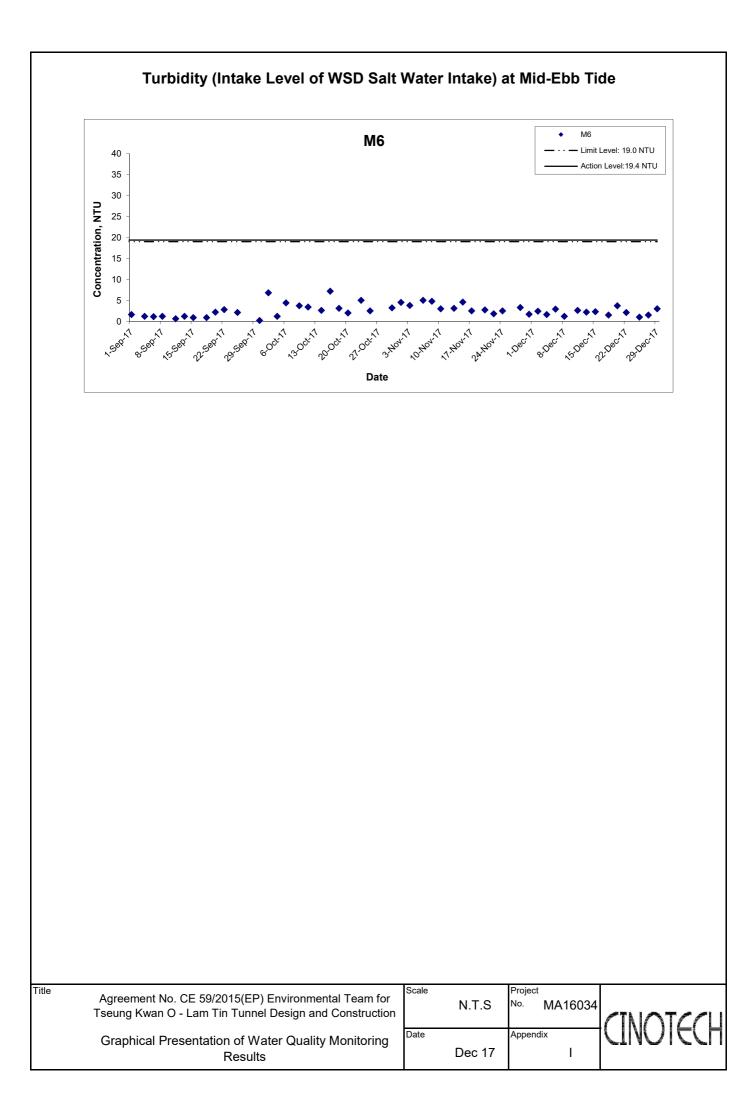


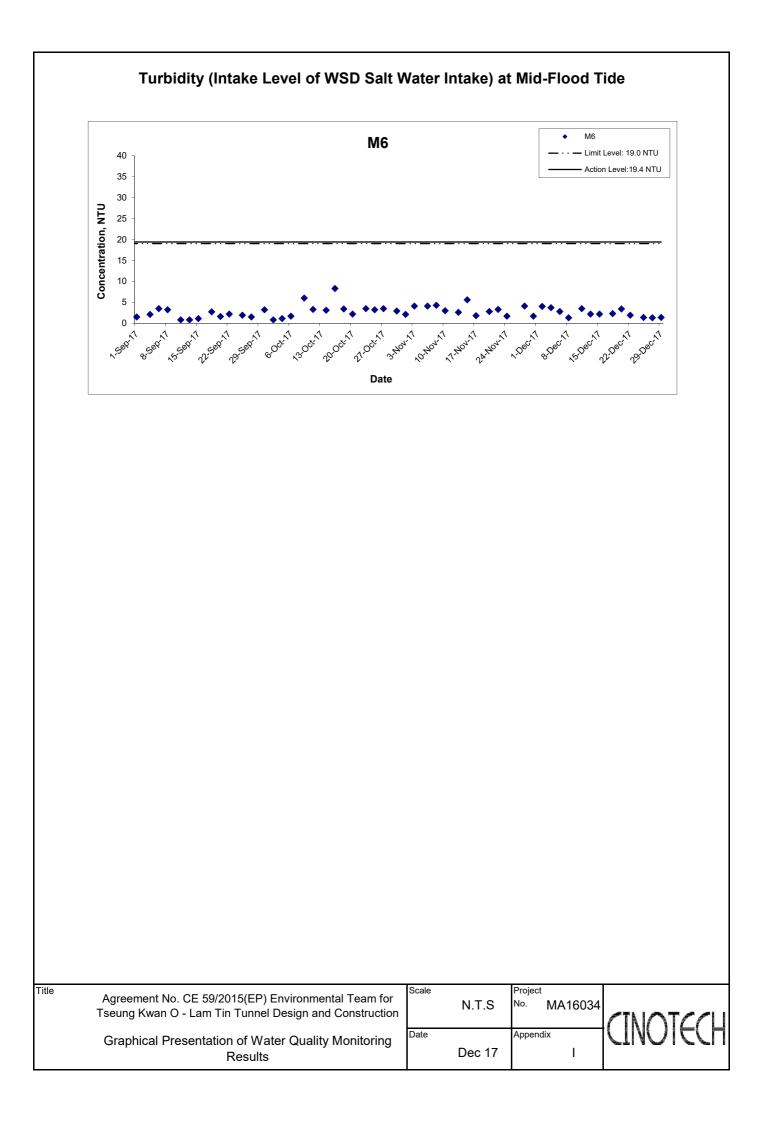



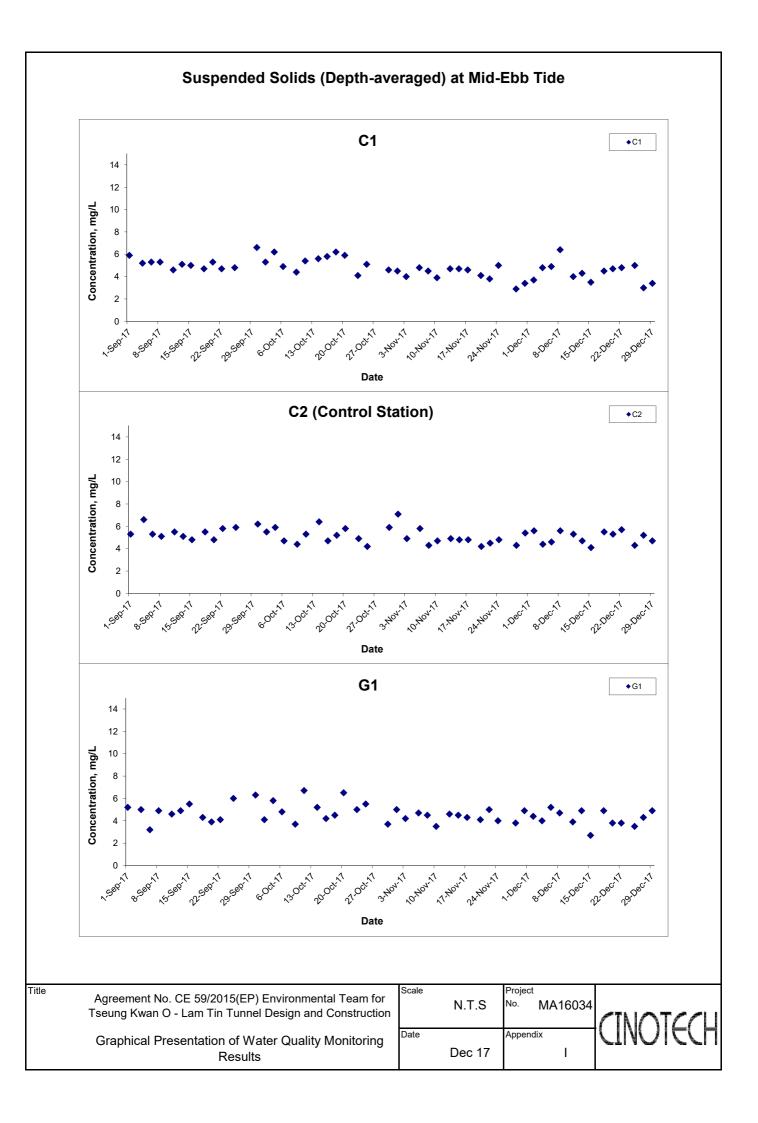



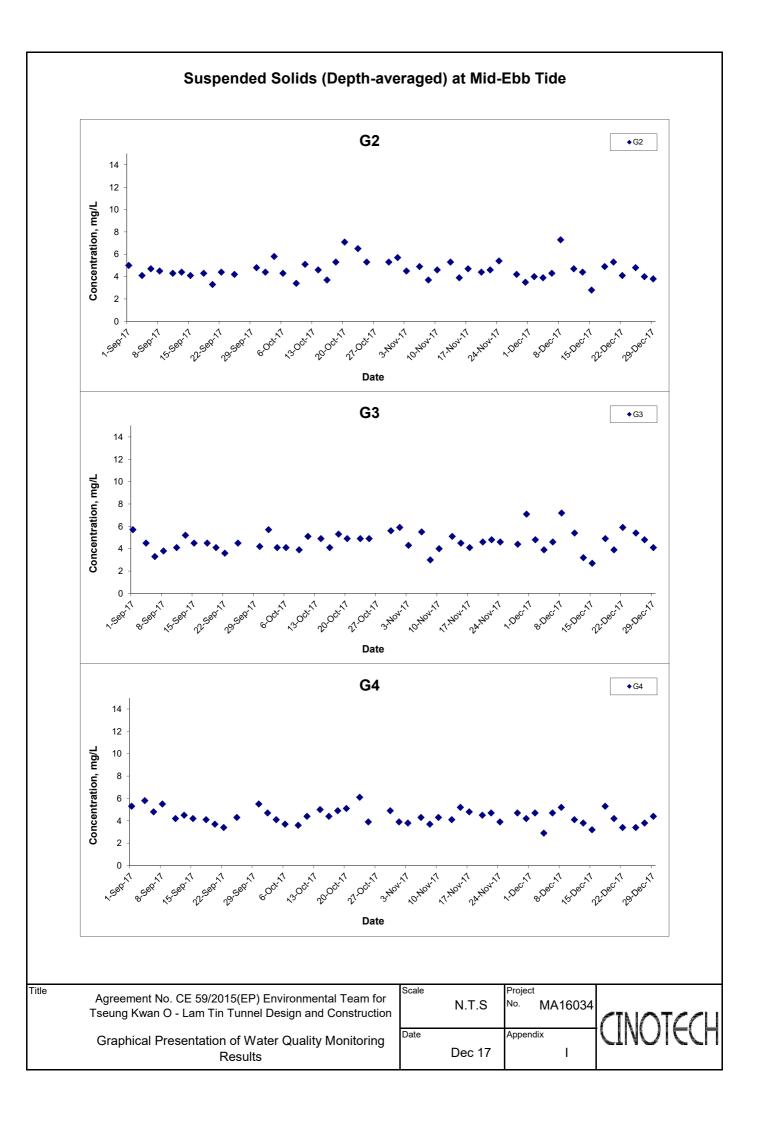



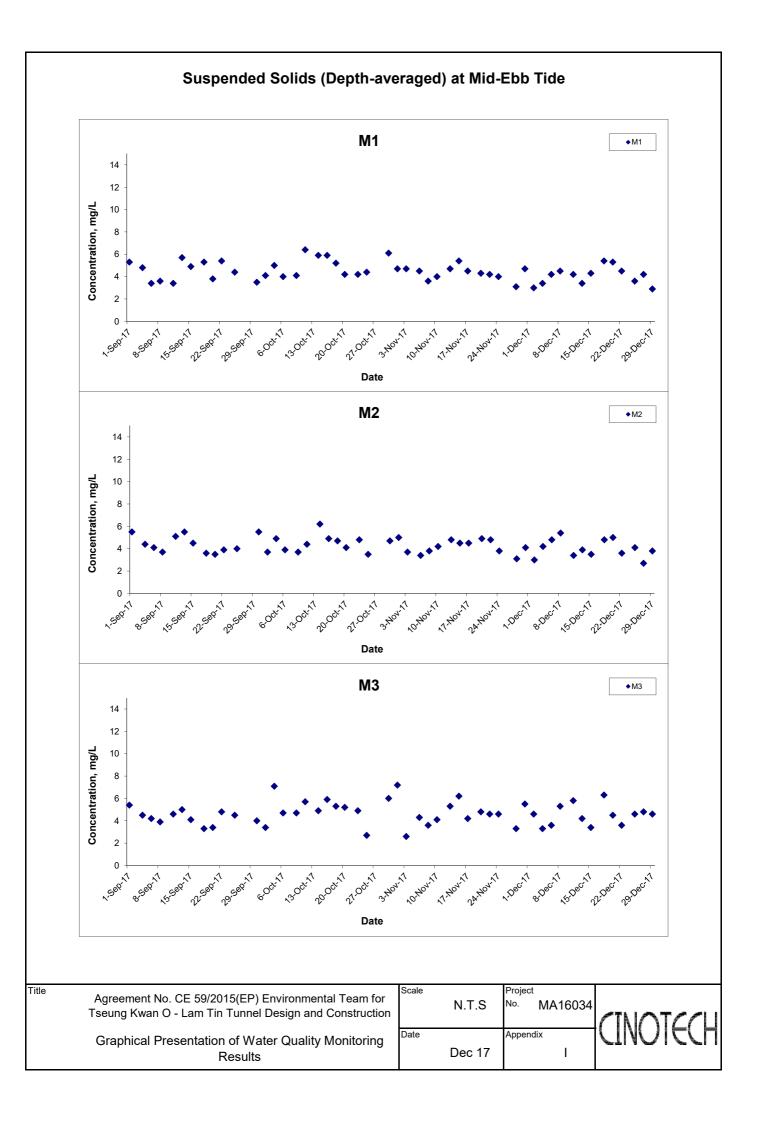

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	^{Scale} N.T.S	Project ^{No.} MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 17	I	

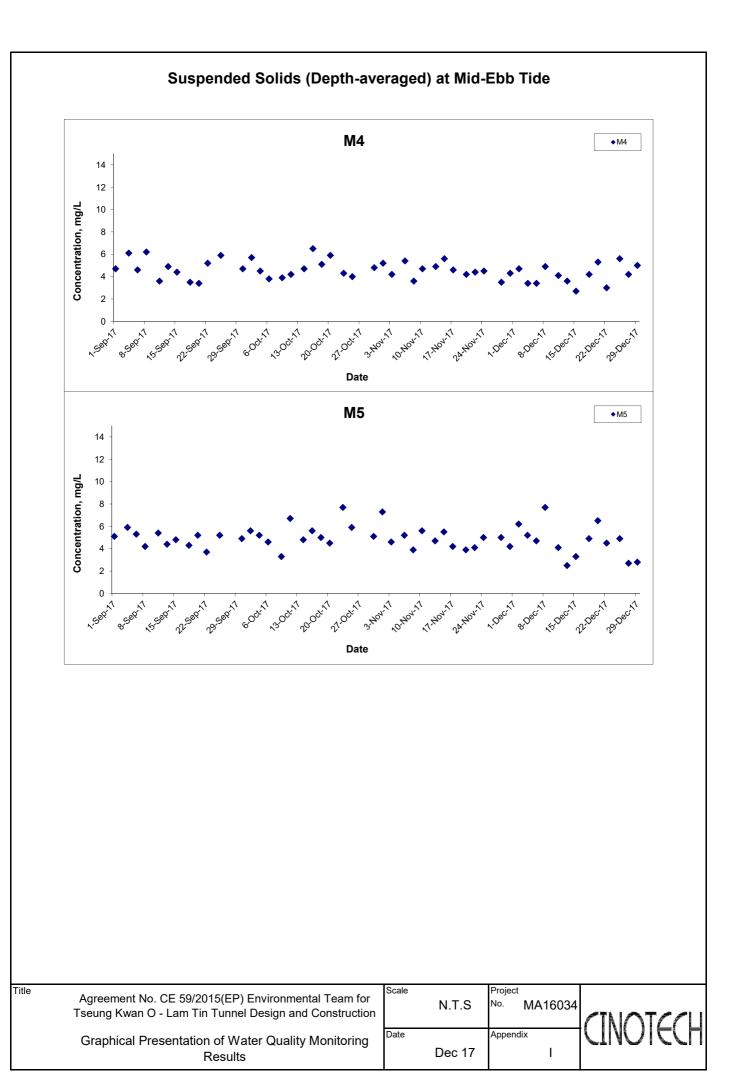


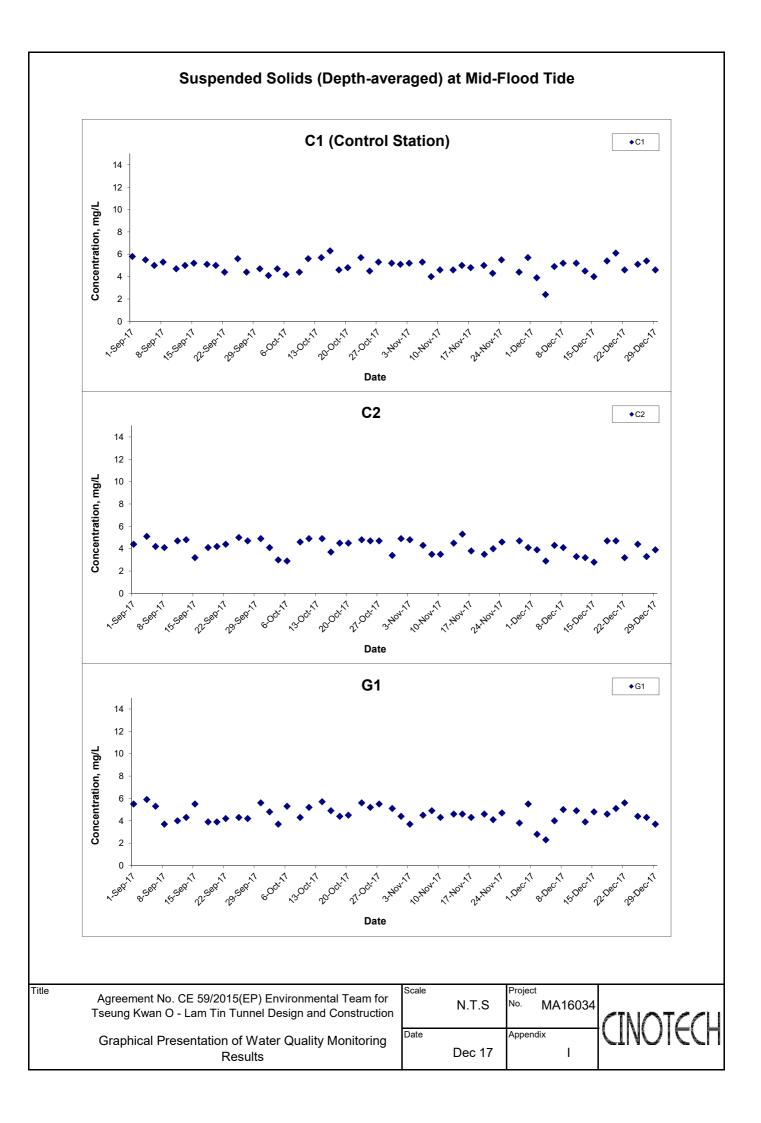



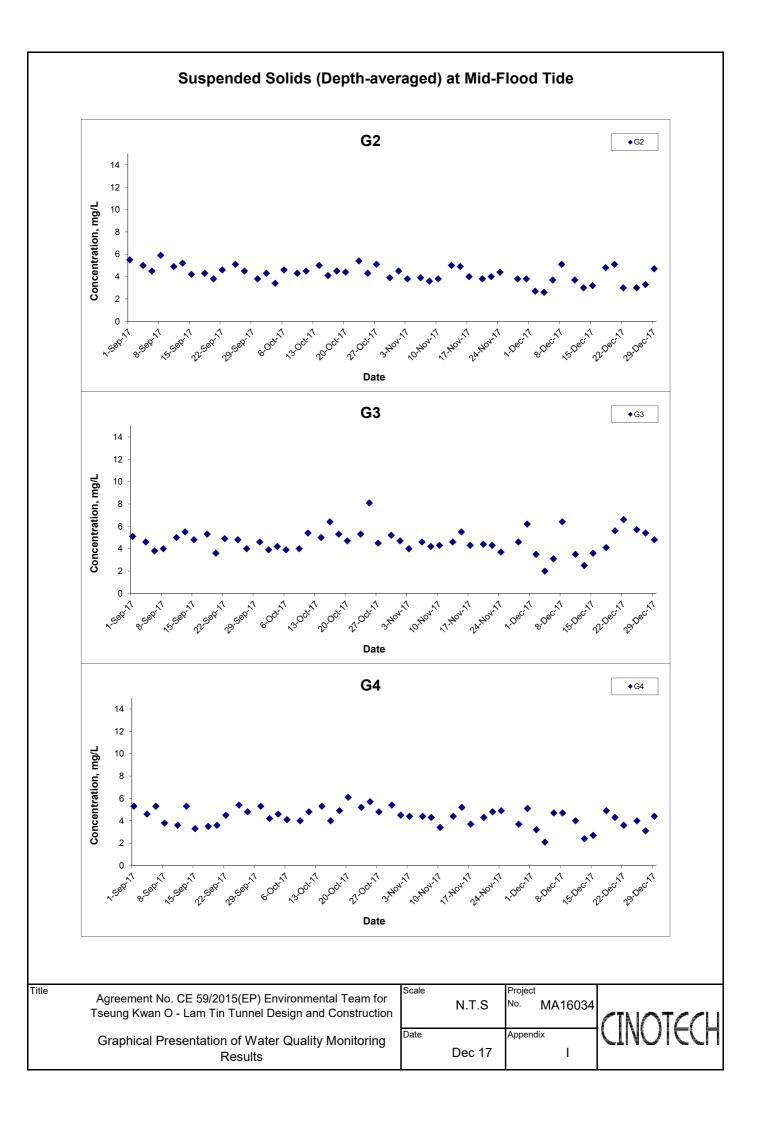



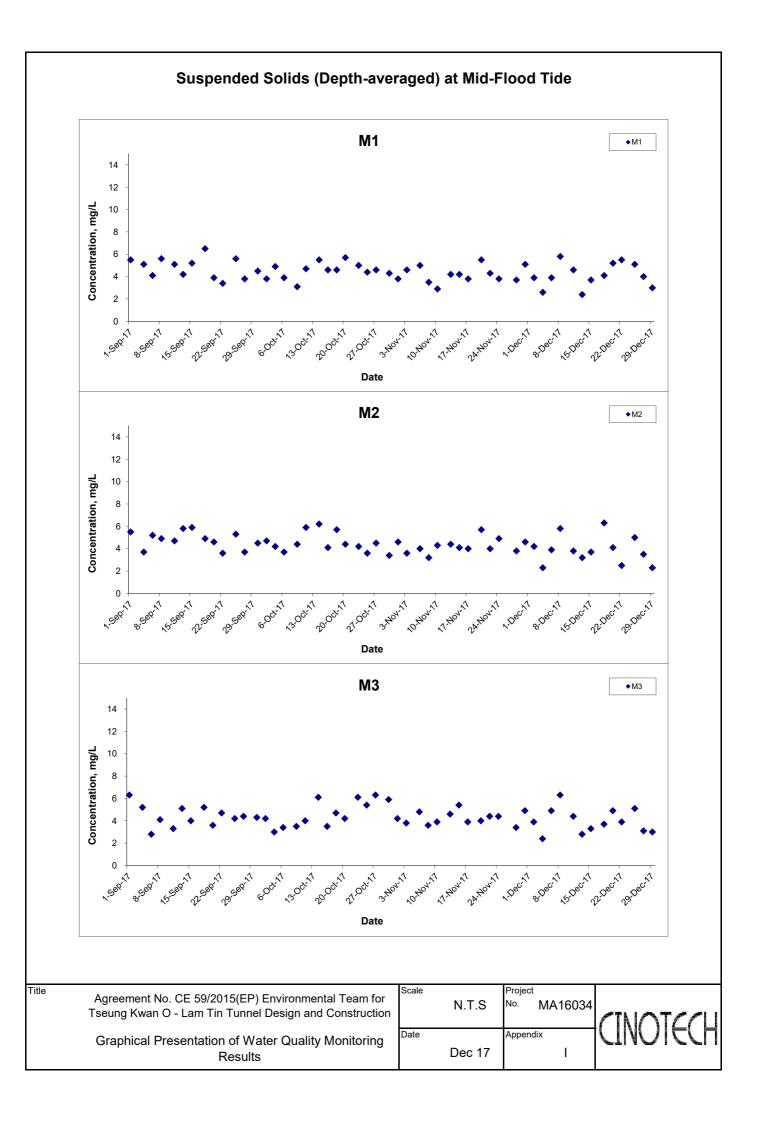



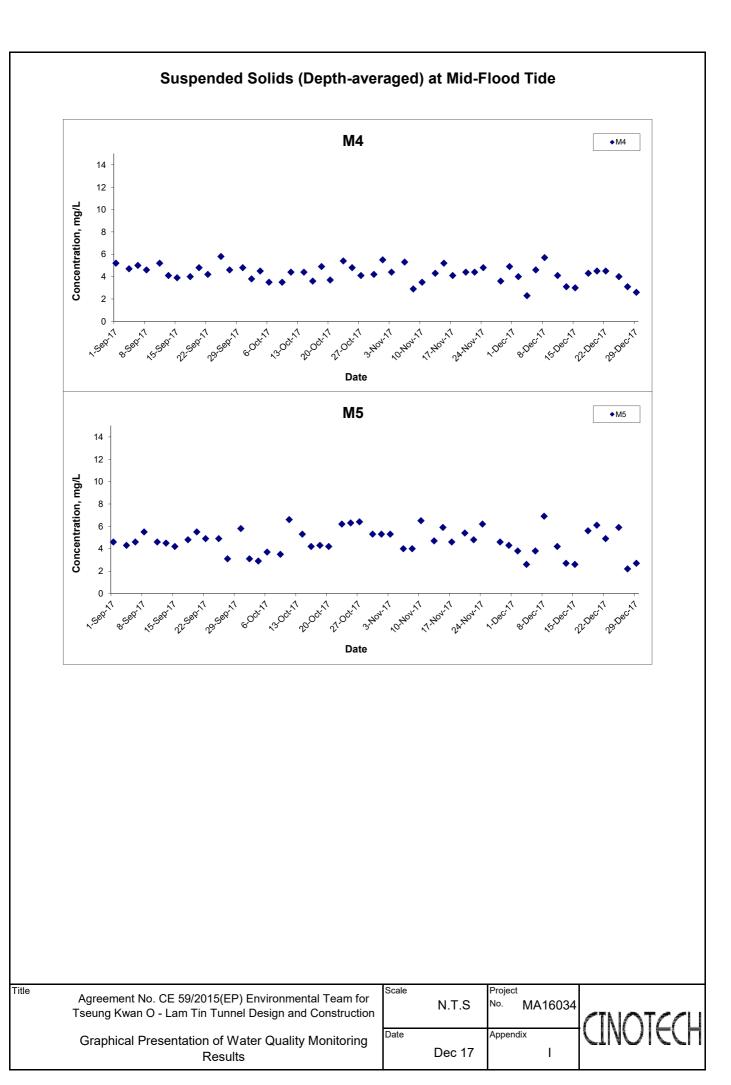


Title Agreement No. CE 59/2015(EP) Environmental Team for	Scale	Project	CINOTCOL
Tseung Kwan O - Lam Tin Tunnel Design and Construction	N.T.S	^{No.} MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 17	7 I	

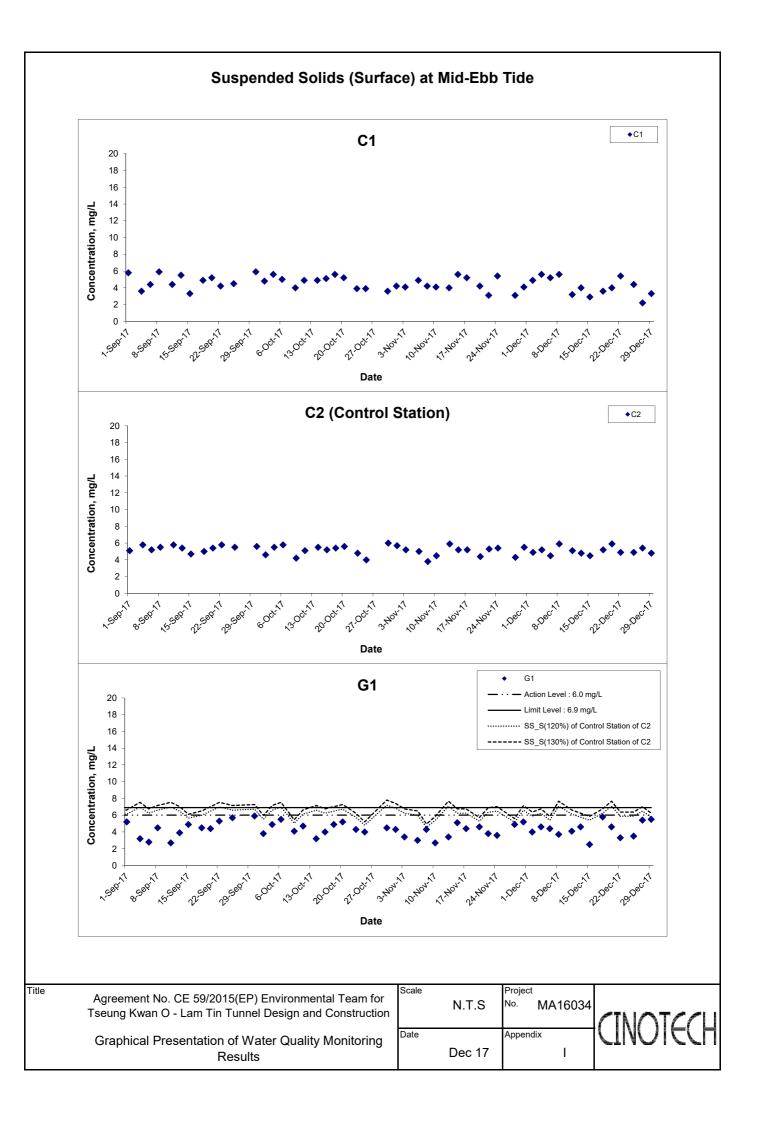


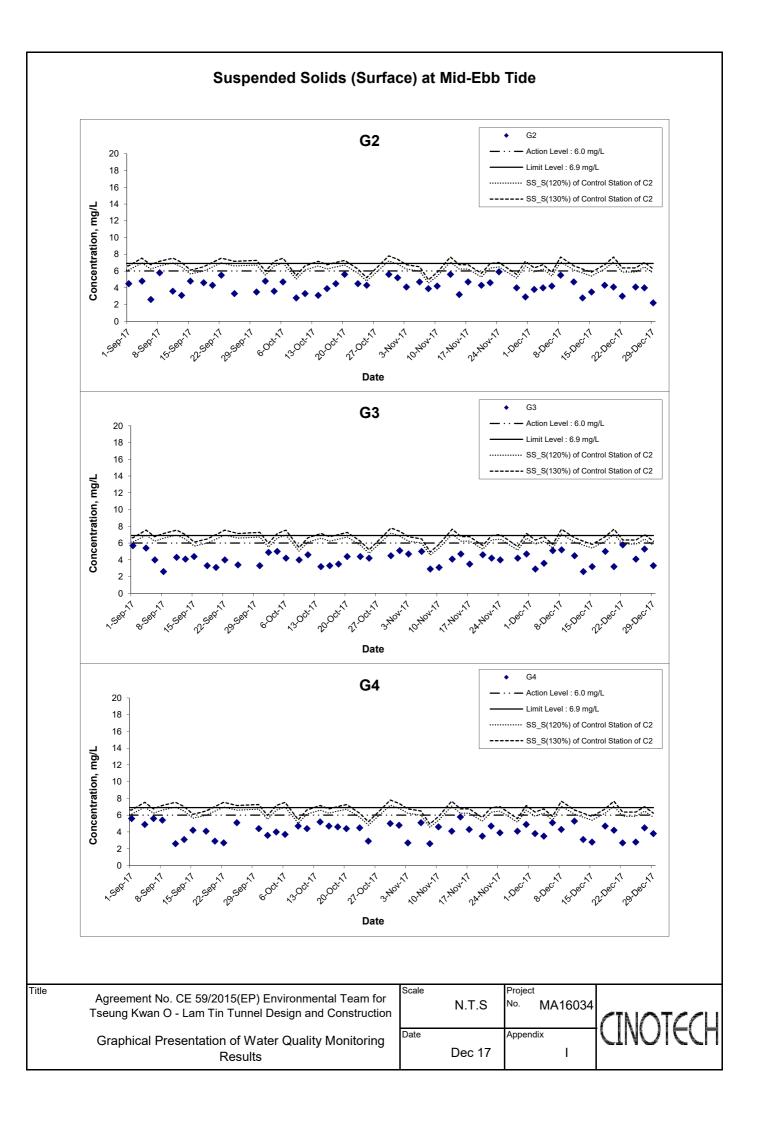



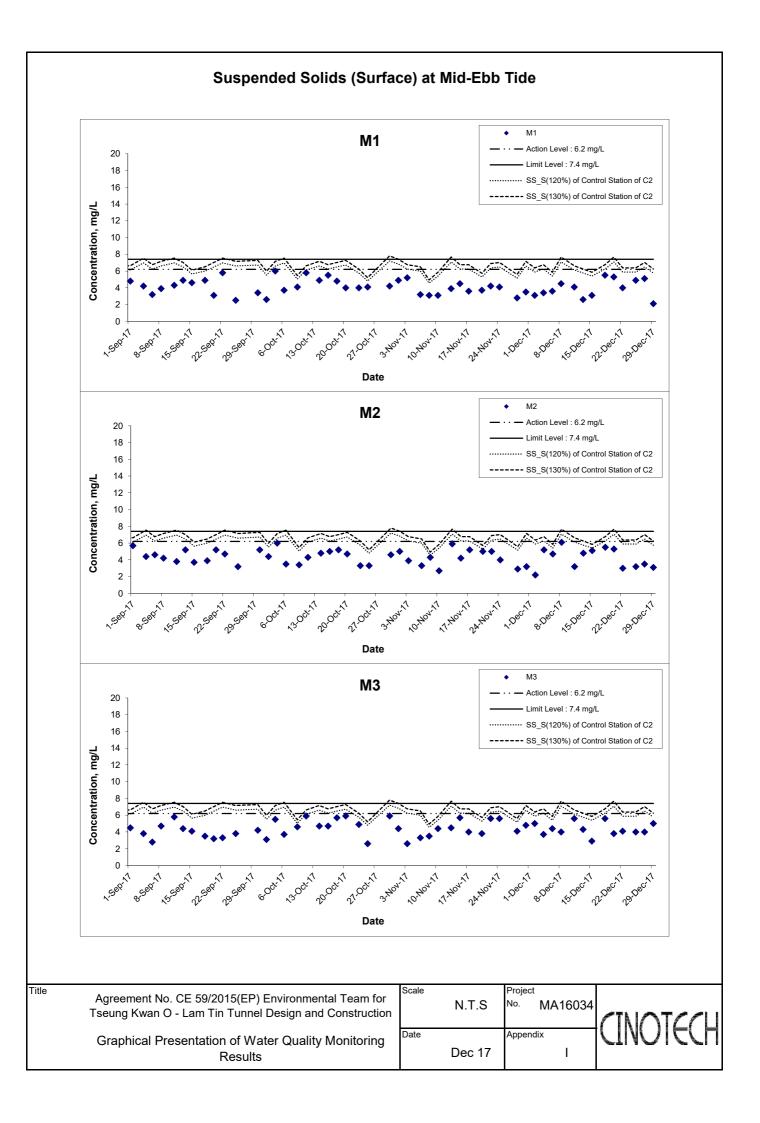



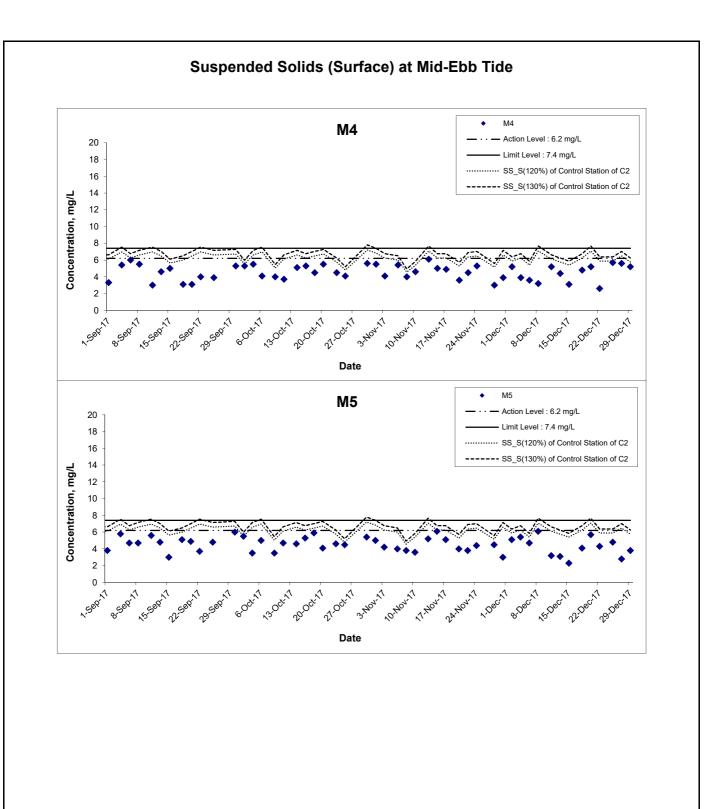



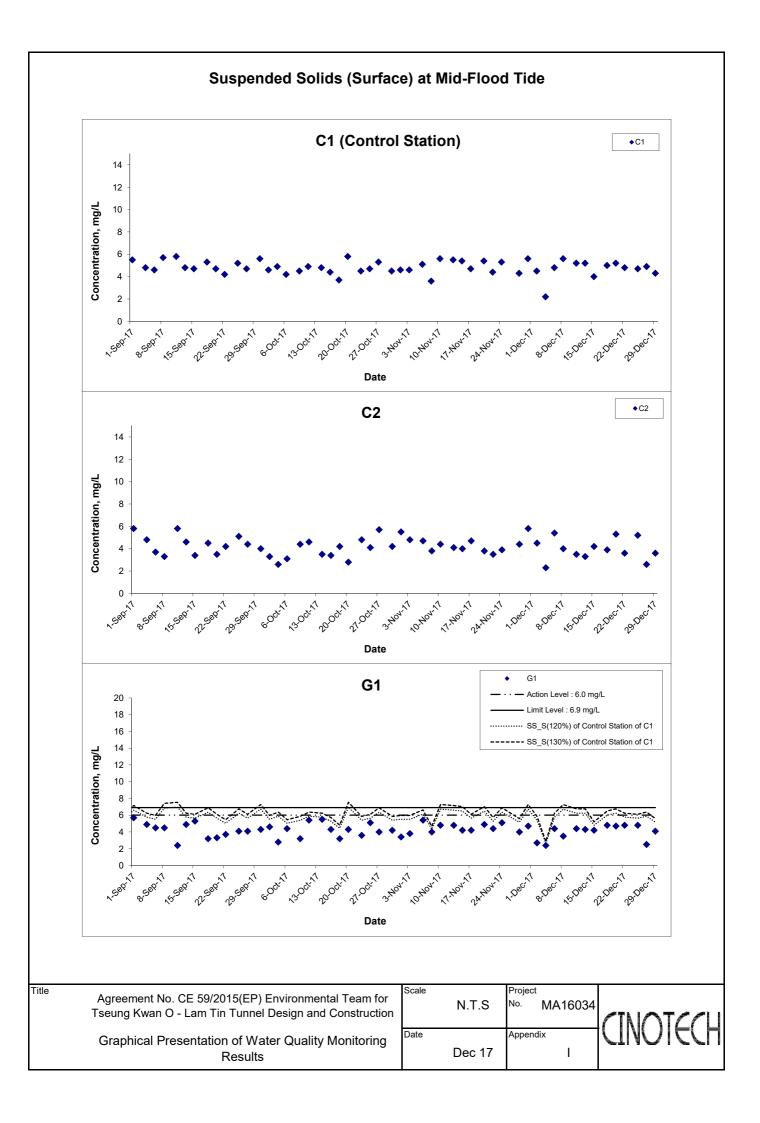



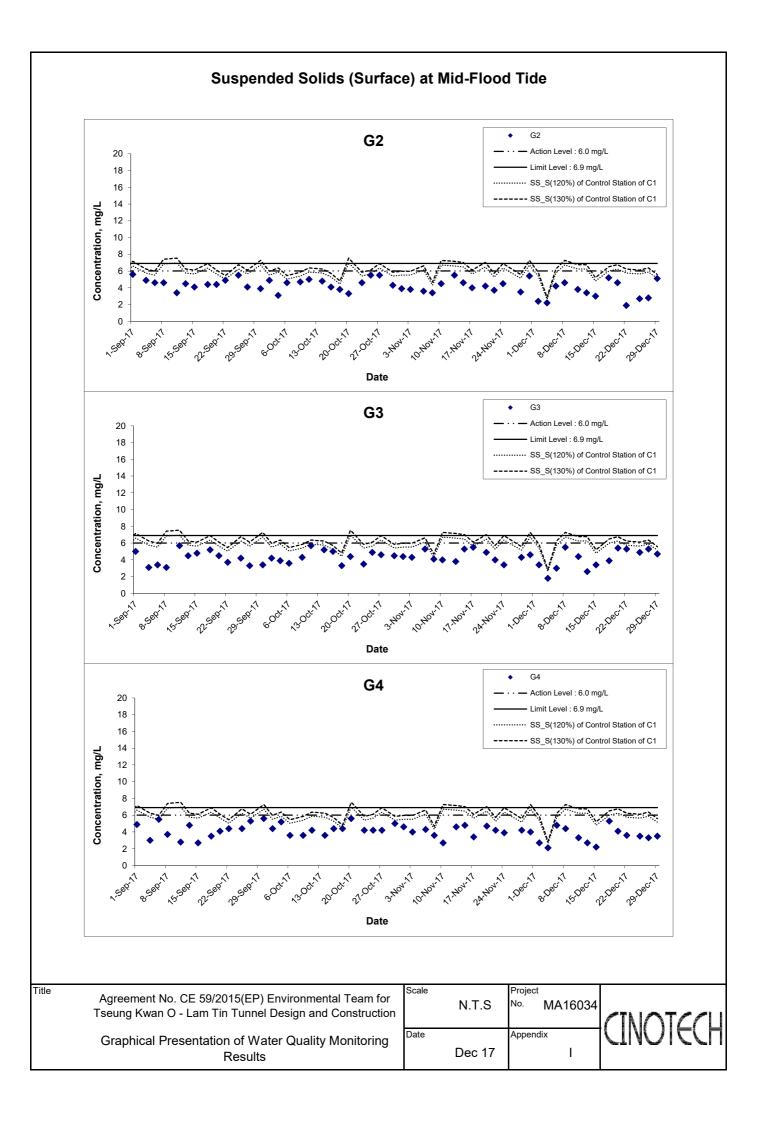



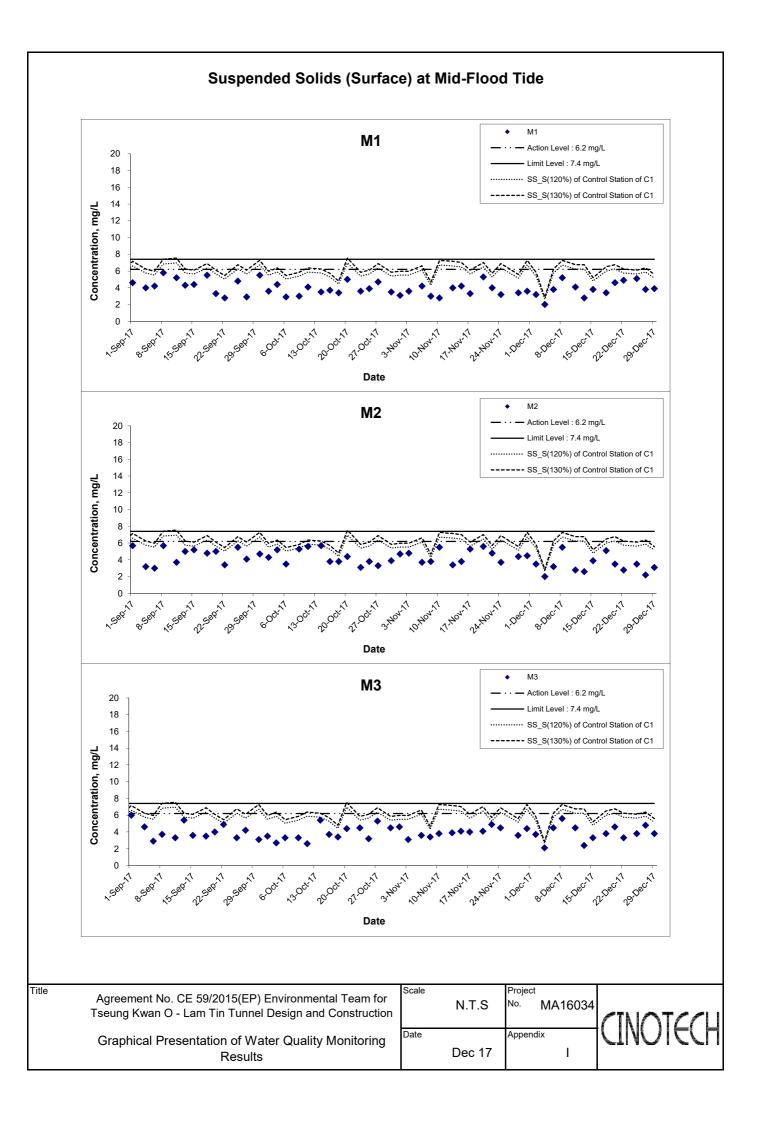



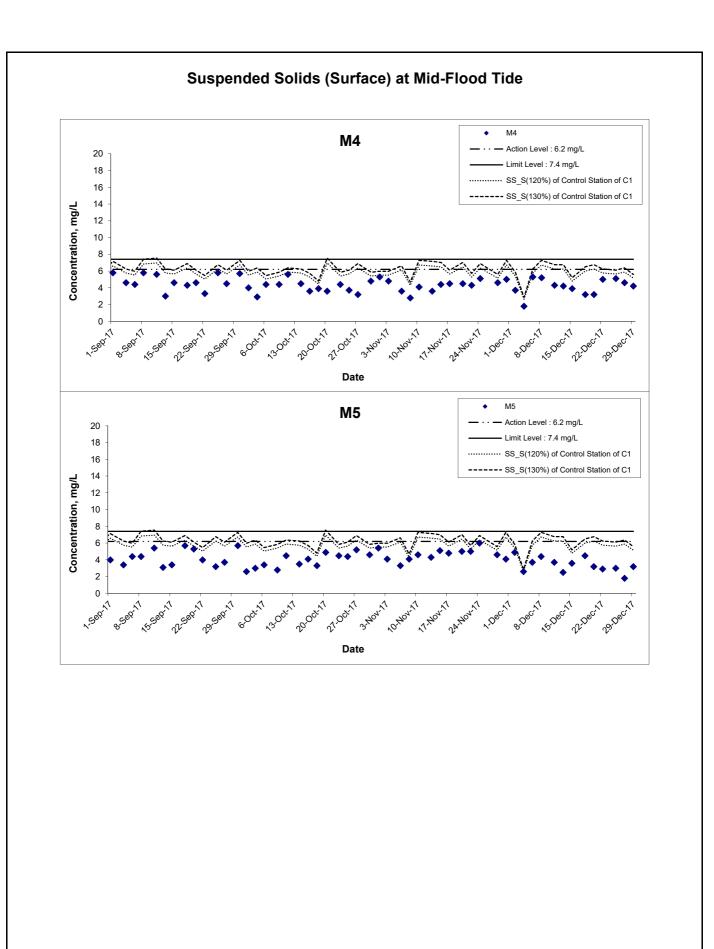





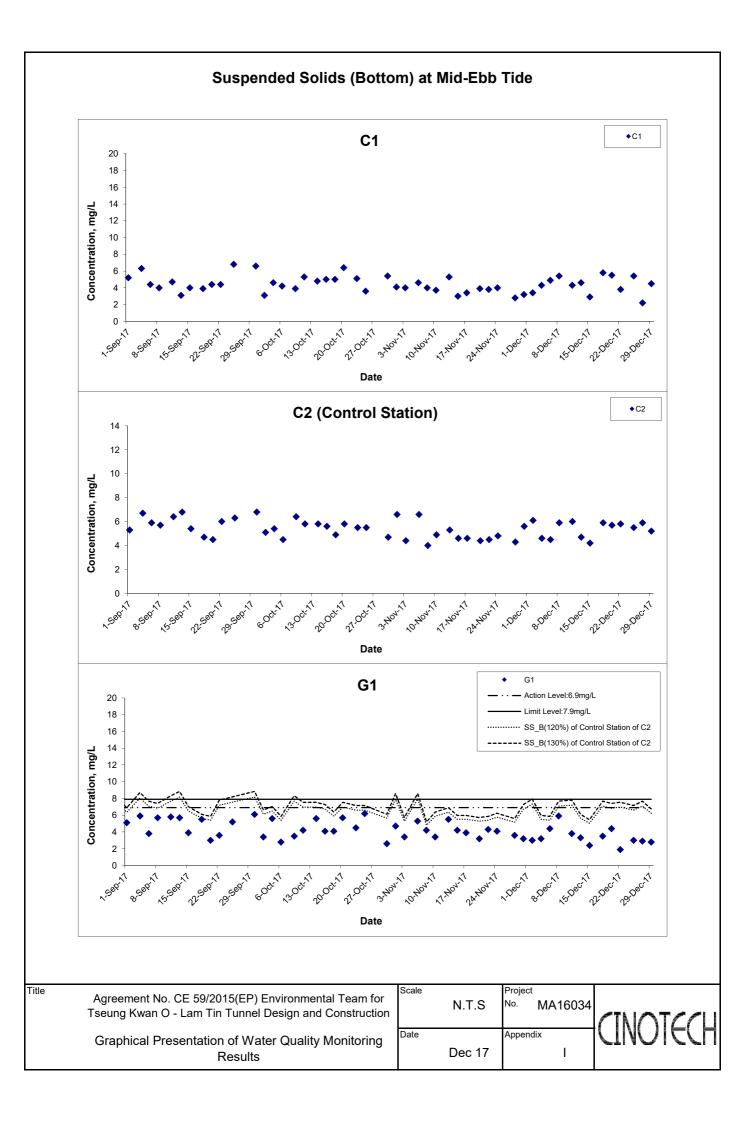



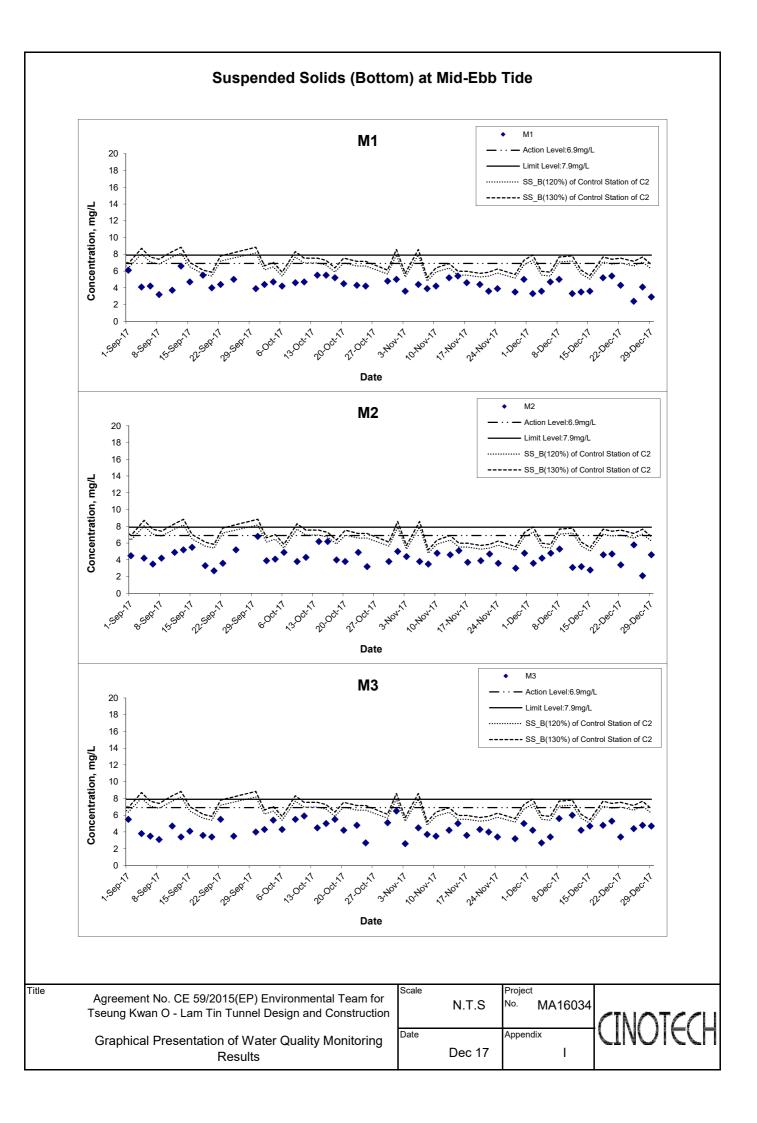



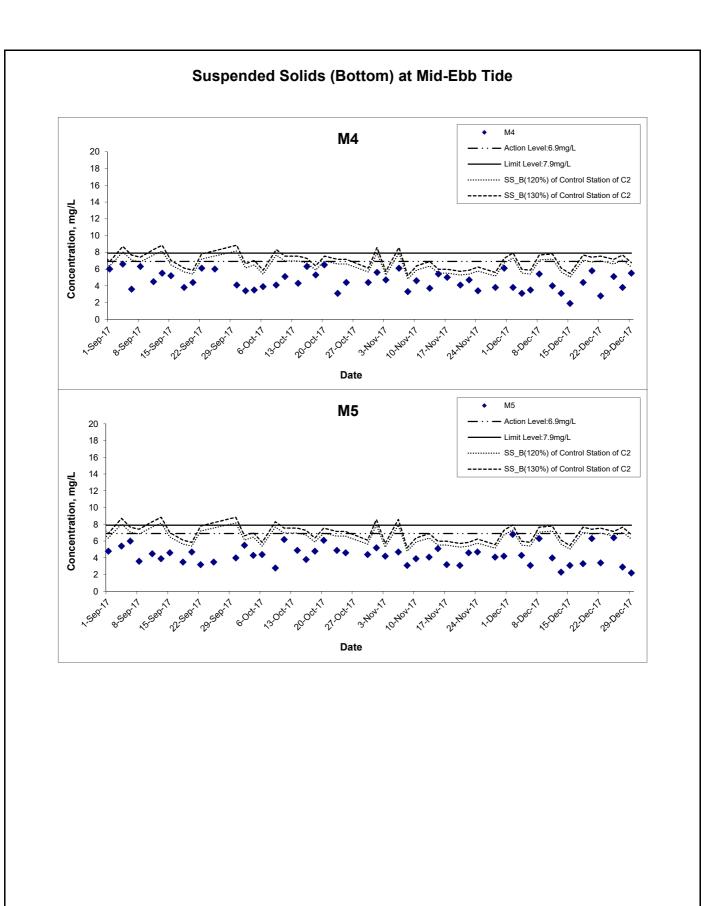

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	CINUIECH
Results	Dec 17	I	



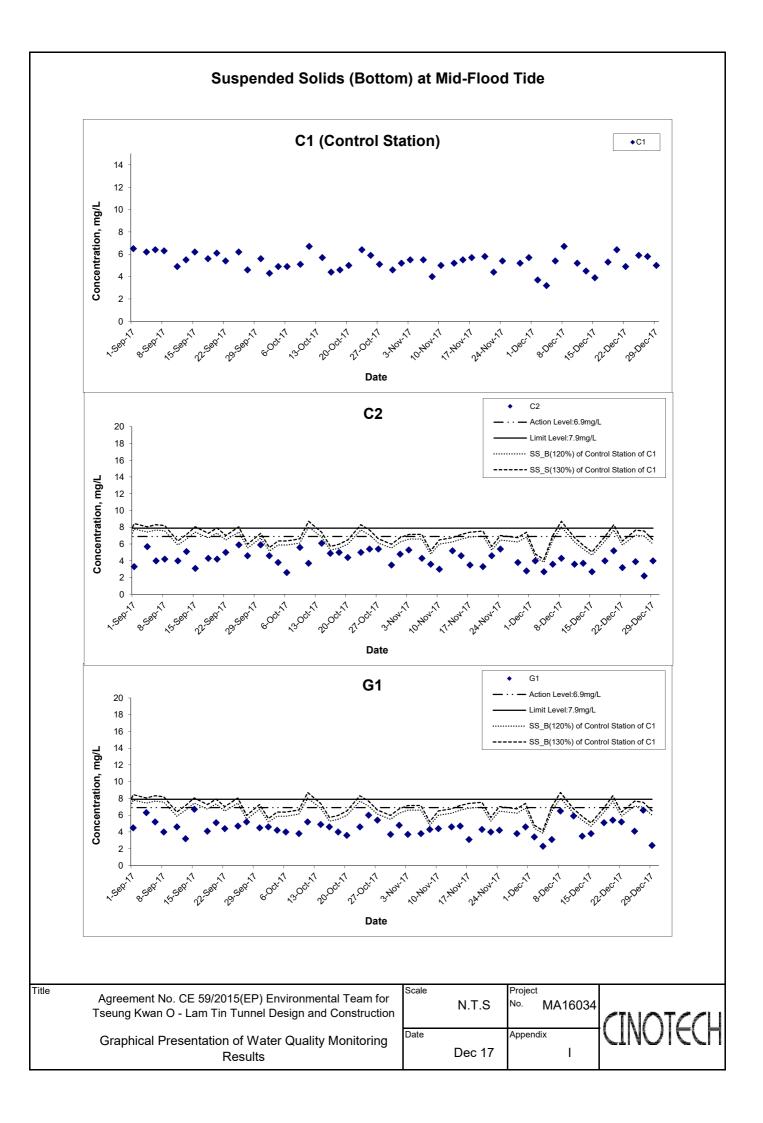


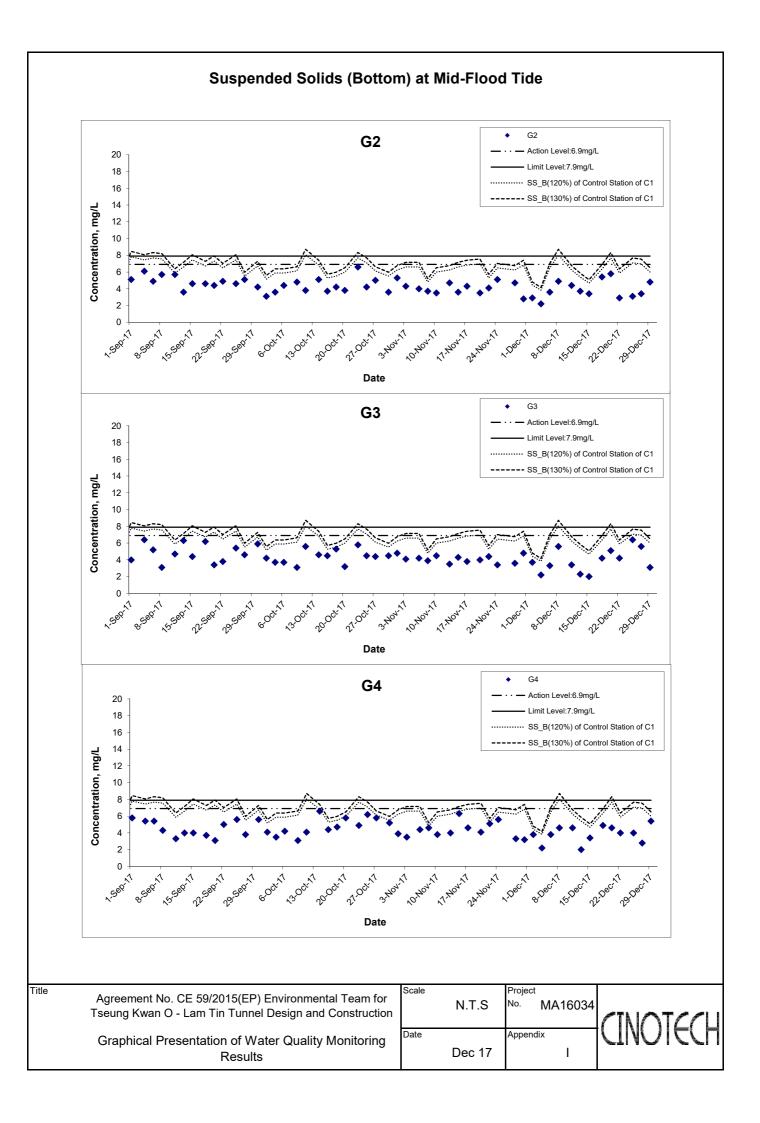


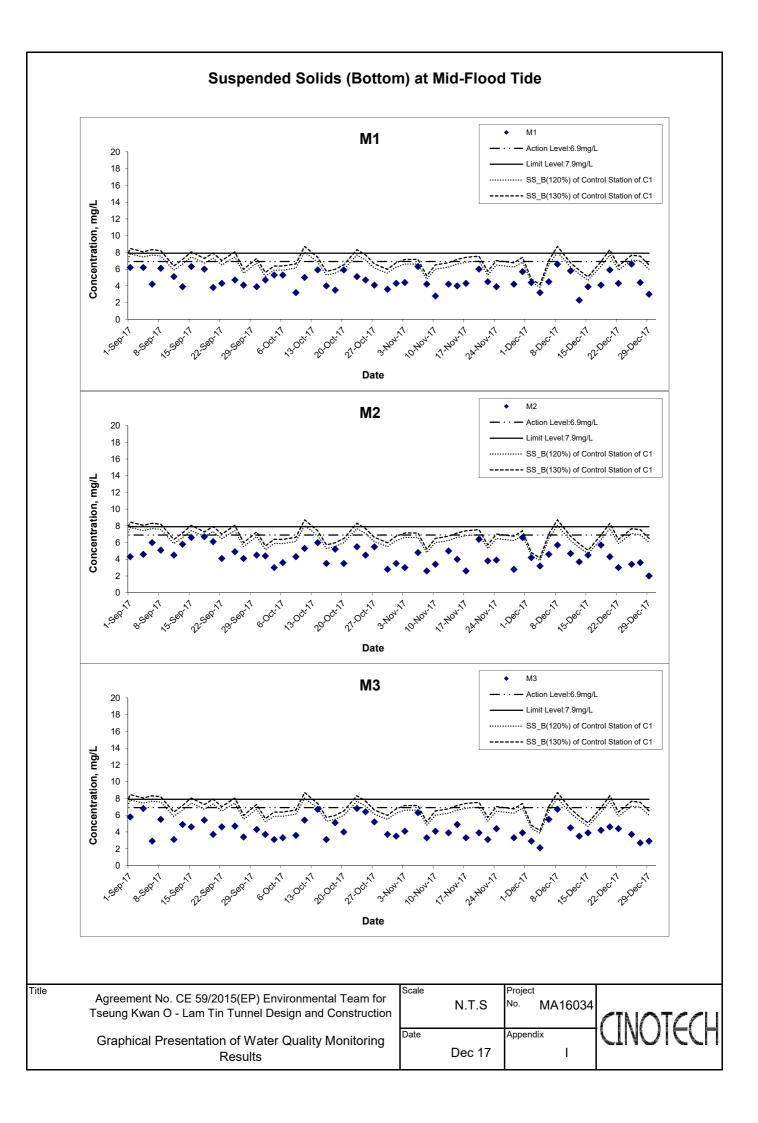


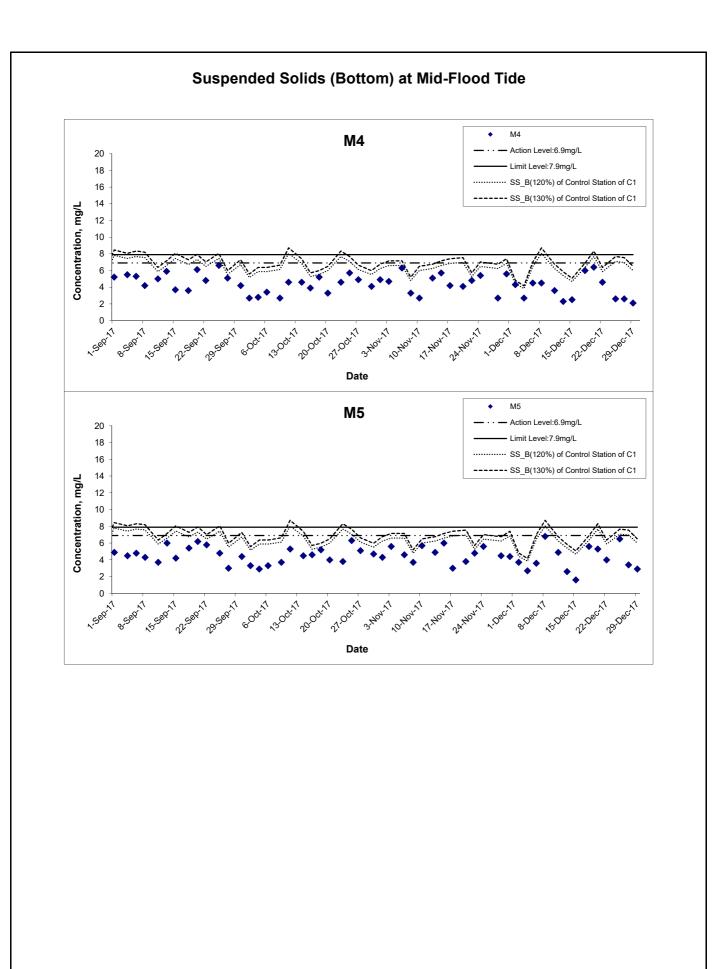




Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	
Graphical Presentation of Water Quality Monitoring Results	Date Dec 17	Appendix 7 I	

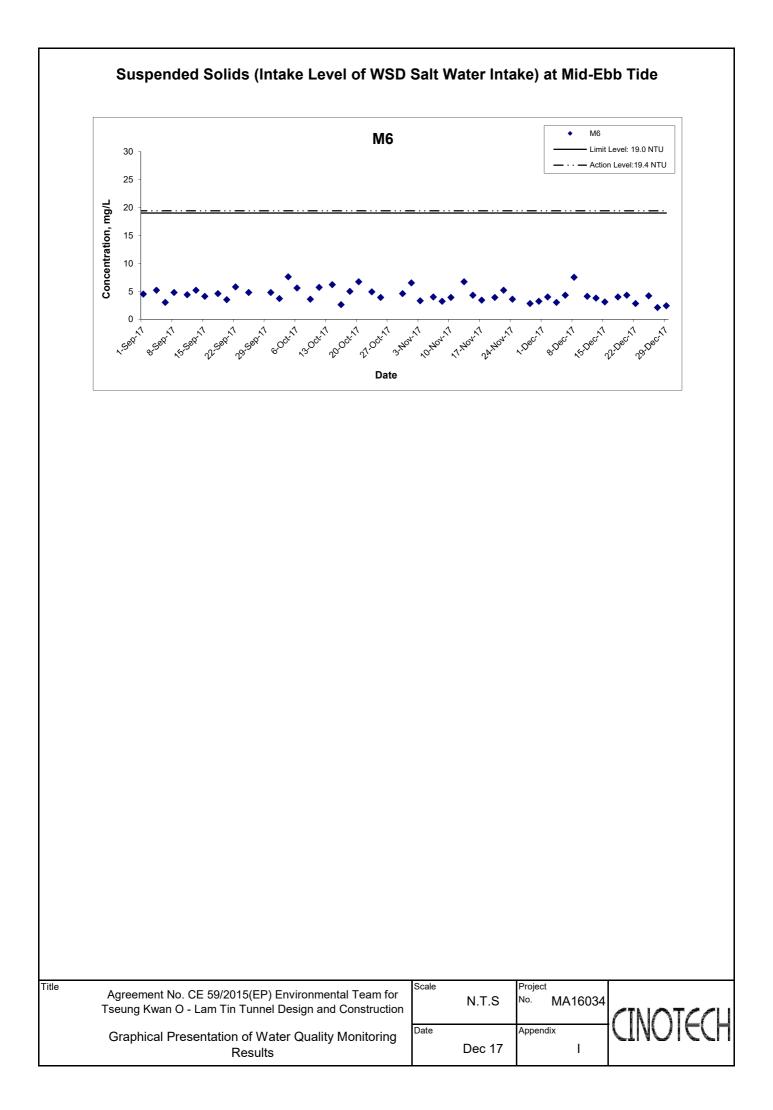


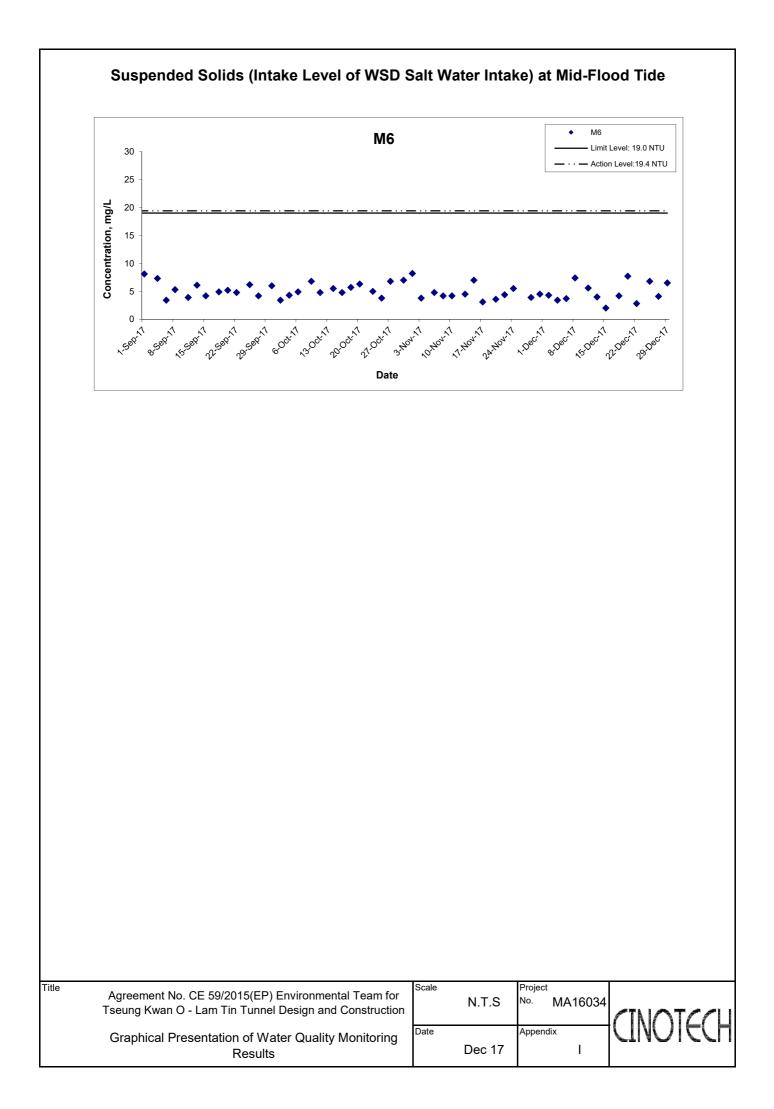




Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	CINOTCOL
Graphical Presentation of Water Quality Monitoring	Date	Appendix	
Results	Dec 17	I	



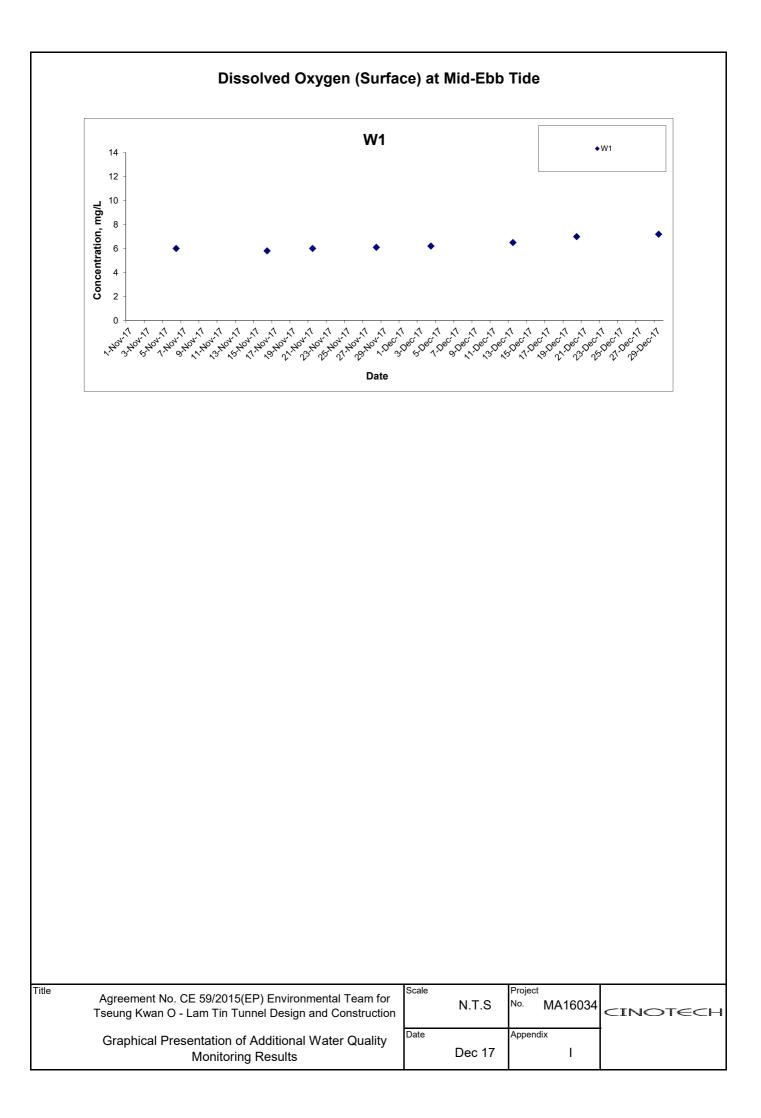



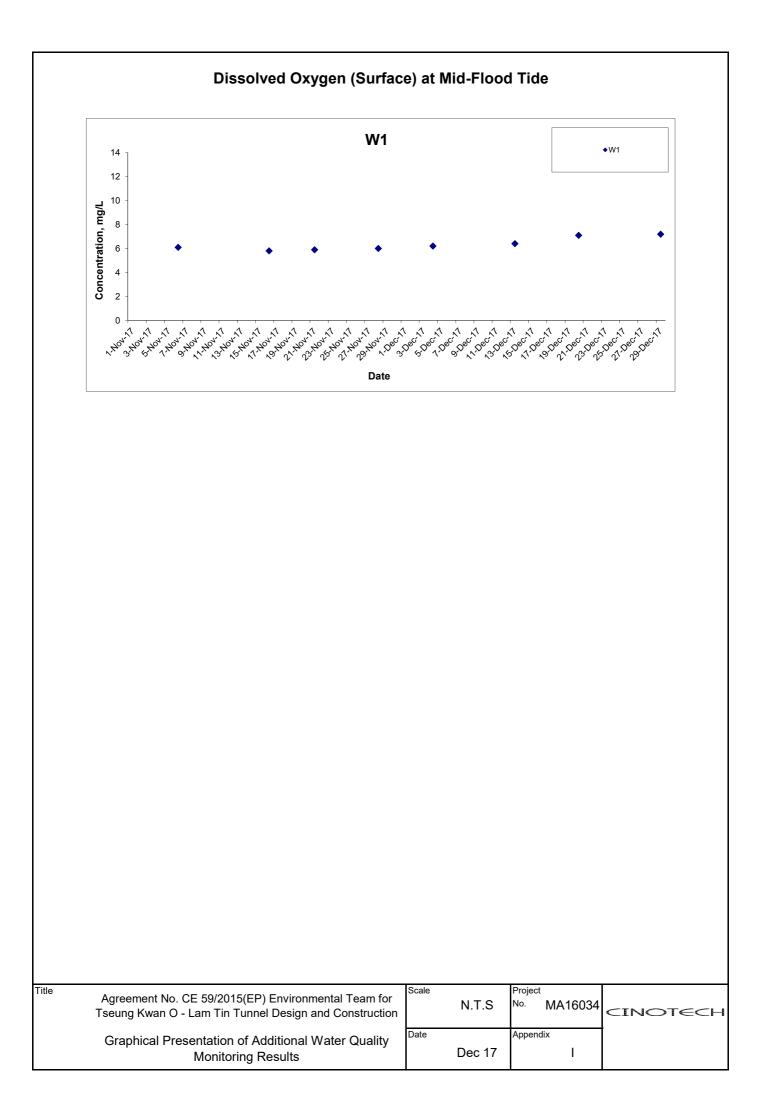


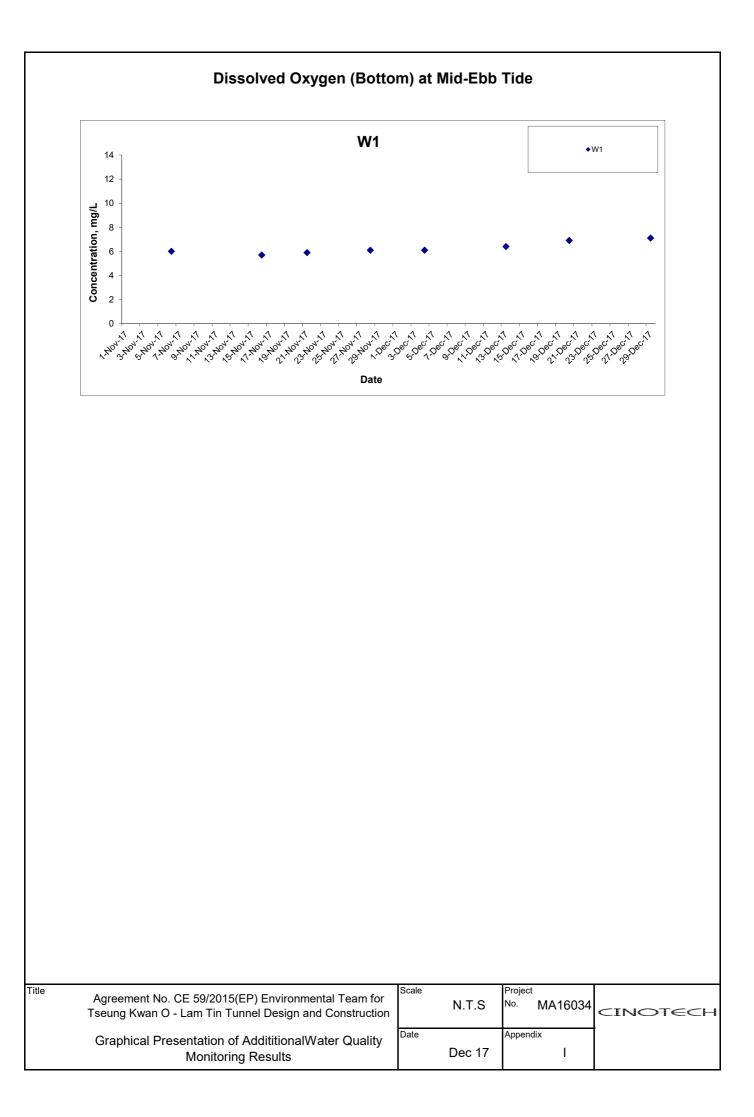


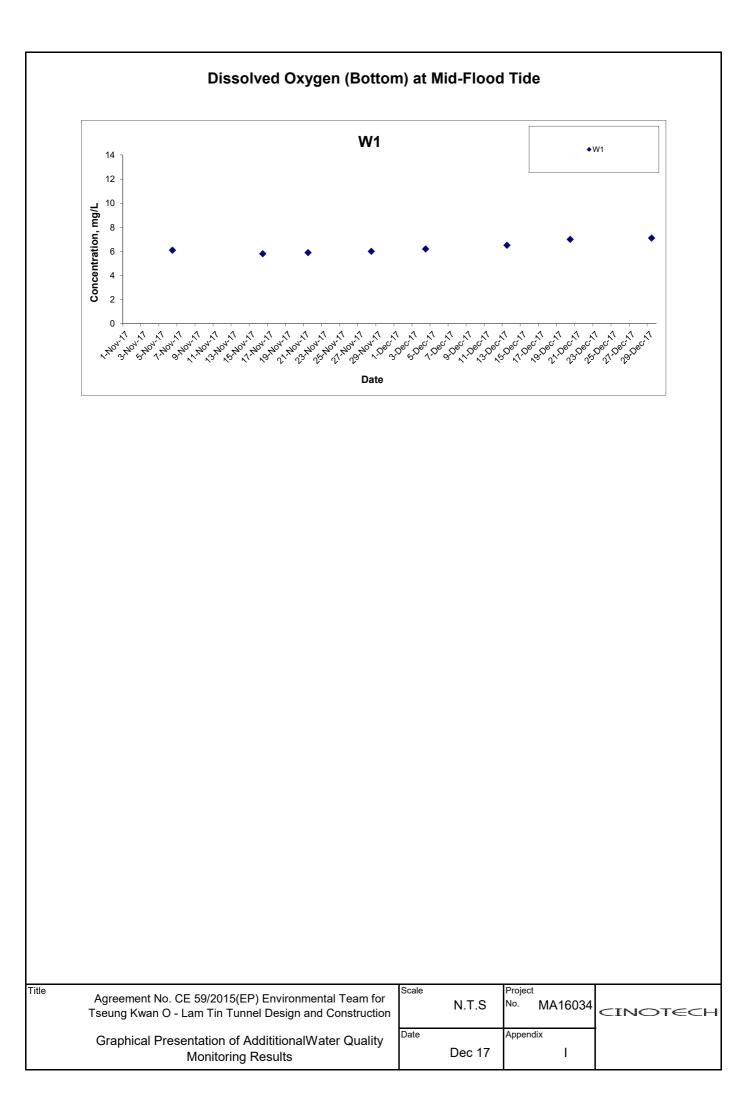

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction		Project No. MA16034	
Graphical Presentation of Water Quality Monitoring	Date	Appendix	CINUIECH
Results	Dec 17	I	







## Water Quality Monitoring Results at W1 - Mid-Ebb Tide


Date	Weather	Sea	Sampling	ing Depth (m)		Tempera	ature (°C)	pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)											
Date	Condition	Condition**	Time	Depti	1 (11)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*									
				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	33.2 33.2	33.2	86.7 86.7	86.7	6.2 6.2	6.2	6.2	10.1 9.8	10.0										
4-Dec-17	4-Dec-17 Sunny	Moderate	12:29	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	11.2									
				Bottom	3.6	22.4 22.4	22.4	8.2 8.2	8.2	33.2 33.2	33.2	84.0 84.4	84.2	6.0 6.1	6.1	6.1	12.3 12.3	12.3										
				Surface	1	20.7 20.7	20.7	8.2 8.2	8.2	32.7 32.7	32.7	87.2 86.5	86.9	6.5 6.4	6.5	6.5	10.4 10.4	10.4										
13-Dec-17	13-Dec-17 Sunny	Moderate	09:44	Middle	-	-	-		-	-	-		-	-	-	0.5	-	-	10.8									
				Bottom	3.7	20.7 20.7	20.7	8.2 8.2	8.2	32.7 32.7	32.7	86.9 87.0	87.0	6.4 6.4	6.4	6.4	12.0 10.2	11.1										
		Moderate		Surface	1	18.8 18.8	18.8	8.0 8.0	8.0	33.1 33.0	33.1	91.3 91.2	91.3	7.0 7.0	7.0	7.0	12.9 12.6	12.8										
20-Dec-17	Sunny		Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	13:29	Middle	-	-	-		-		-		-	-	-	7.0	-	-	13.3
				Bottom	3.8	19.0 18.9	19.0	8.0 8.0	8.0	33.2 33.2	33.2	89.9 89.7	89.8	6.9 6.8	6.9	6.9 13.8 13.7 13.6 13.7												
				09:47	09:47	09:47	Surface	1	18.8 18.8	18.8	8.1 8.1	8.1	32.3 32.3	32.3	93.0 92.7	92.9	7.2 7.1	7.2	7.2	15.0 15.3	15.2							
29-Dec-17	Sunny	Calm	n 09:47				09:47	09:47	09:47	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	15.7			
				Bottom	4	18.7 18.7	18.7	8.2 8.2	8.2	32.3 32.3	32.3	92.5 92.5	92.5	7.1 7.1	7.1	7.1	15.5 16.7	16.1										


## Water Quality Monitoring Results at W1 - Mid-Flood Tide

Date	Weather Sea Samp		Sampling	Eampling Depth (m)		Temperature (°C)		pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)								
Date	Condition	Condition**	Time	Depu	(11)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*						
4-Dec-17 Sunn				Surface	1	22.5 22.5	22.5	8.2 8.2	8.2	33.1 33.1	33.1	87.1 87.0	87.1	6.2 6.2	6.2	6.2	11.5 11.1	11.3							
	Sunny	Moderate	17:10	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	12.4						
				Bottom	4.4	22.5 22.5	22.5	8.1 8.1	8.1	33.1 33.1	33.1	86.6 86.5	86.6	6.2 6.2	6.2	6.2	13.6 13.3	13.5							
13-Dec-17 Sunny				Surface	1	20.8 20.8	20.8	8.2 8.2	8.2	32.7 32.7	32.7	86.2 86.2	86.2	6.4 6.4	6.4	6.4	13.6 13.1	13.4							
	Sunny	Moderate	16:11	Middle	-		-		-	-	-	-	-	-	-	0.4	-	-	13.2						
				Bottom	4.2	20.7 20.8	20.8	8.2 8.2	8.2	32.7 32.7	32.7	87.7 87.6	87.7	6.5 6.5	6.5	6.5	12.8 13.1	13.0							
		Moderate		Surface	1	18.7 18.7	18.7	8.1 8.1	8.1	33.0 33.0	33.0	92.0 92.0	92.0	7.1 7.1	7.1	7.1	11.0 10.8	10.9							
20-Dec-17	Sunny		Moderate	Moderate	Moderate	18:12	Middle	-		-		-	-	-	-	-	-	-	7.1	-	-	12.8			
							Bottom	4	18.7 18.7	18.7	8.0 8.0	8.0	33.1 33.1	33.1	90.8 90.8	90.8	7.0 7.0	7.0	7.0	15.0 14.4	14.7				
							Surface	1	18.8 18.8	18.8	8.2 8.2	8.2	32.3 32.3	32.3	93.2 93.1	93.2	7.2 7.2	7.2	7.2	15.5 15.3	15.4				
29-Dec-17	Sunny	Calm	n 16:10	16:10	16:10	16:10	16:10	16:10	m 16:10	Middle	-		-		-	-	-	-	-	-	-	1.2	-	-	16.4
				Bottom	3.9	18.7 18.7	18.7	8.2 8.2	8.2	32.3 32.3	32.3	92.1 92.0	92.1	7.1 7.1	7.1	7.1	17.4 17.3	17.4							









APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS



## TEST REPORT

### APPLICANT: Cinotech Consultants Limited 1710, Technology Park, 18 On Lai Street, Shatin, N.T.

## ATTN: Ms. Mei Ling Tang QC report:

Report No.:	QC27971
Date of Issue:	2017-12-15
Date Received:	2017-12-06
Date Tested:	2017-12-06
Date Completed:	2017-12-15
Page:	1 of 2

#### Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	<0.01	<0.01

#### Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	105	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	189	170-220
Total Organic Carbon (%)	100	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	107	80-120
Total Phosphorus (%)	94	80-120

Remarks: 1)  $\leq$  = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27971.

*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager



## **TEST REPORT**

Report No.:	QC27971
Date of Issue:	2017-12-15
Date Received:	2017-12-06
Date Tested:	2017-12-06
Date Completed:	2017-12-15
Page:	2 of 2

QC report:

Parameter	27971-3 chk	Acceptance
Suspended Solids (SS) (%)	1	RPD <u>&lt;</u> 20%
Biochemical Oxygen Demand (%)	N/A	RPD <u>&lt;</u> 20%
Total Organic Carbon (%)	2	RPD_20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD_20%
Total Phosphorus (%)	N/A	RPD <u>&lt;</u> 20%

#### Sample Spike

Parameter	27971-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	108	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	105	80-120
Total Phosphorus (%)	106	80-120

Remarks: 1)  $\leq$  = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 27971.



## TEST REPORT

#### APPLICANT: Cinotech Consultants Limited 1710, Technology Park, 18 On Lai Street, Shatin, N.T.

# ATTN: Ms. Mei Ling Tang QC report:

Report No.:	QC28050
Date of Issue:	2018-01-02
Date Received:	2017-12-20
Date Tested:	2017-12-20
Date Completed:	2018-01-02
Page:	1 of 2

Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	<0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	<0.01

#### Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	95	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	190	170-220
Total Organic Carbon (%)	102	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	98	80-120
Total Phosphorus (%)	98	80-120

Remarks: 1)  $\leq$  = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 28050.

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager



## **TEST REPORT**

Report No.:	QC28050
Date of Issue:	2018-01-02
Date Received:	2017-12-20
Date Tested:	2017-12-20
Date Completed:	2018-01-02
Page:	2 of 2

QC report:

Sample Duplicate		
Parameter	28050-3 chk	Acceptance
Suspended Solids (SS) (%)	3	RPD_20%
Biochemical Oxygen Demand (%)	N/A	RPD_20%
Total Organic Carbon (%)	2	RPD_20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD <u>&lt;</u> 20%
Total Phosphorus (%)	N/A	RPD<20%

#### Sample Spike

Parameter	28050-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	103	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	106	80-120
Total Phosphorus (%)	92	80-120

Remarks: 1)  $\leq$  = less than

2) N/A = Not applicable

3) This report is the summary of quality control data for report number 28050.



## **TEST REPORT**

## **QC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	27941
RM 1710, To	echnology Park,	Date of Issue:	2017/12/4
18 On Lai St	ireet,	Date Received:	2017/12/2
Shatin, N.T.	Shatin, N.T., Hong Kong		2017/12/2
		Date Completed:	2017/12/4
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Enviromental Team for Tseung	Kwan O - Lam Tin Tunne	- I -
	Design and Construction Agre	ement No. CE/59/2015 (H	EP)
Project No.:	MA16034		
Sampling Date:	2017/12/2		
Number of Sample:	136		
Custody No.:	MA16034-CE/59/2015(EP)/1712	202	

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.2	5.2	0	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

abulls.

PATRICK TSE Laboratory Manager



## **TEST REPORT**

#### **QC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	27946
RM 1710, Te	chnology Park,	Date of Issue:	2017/12/5
18 On Lai St	reet,	Date Received:	2017/12/4
Shatin, N.T.,	Hong Kong	Date Tested:	2017/12/4
		Date Completed:	2017/12/5
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Enviromental Team for Tseung Kwan	O - Lam Tin Tunne	1 -
	Design and Construction Agreement	t No. CE/59/2015 (E	SP)
Project No.:	MA16034		
Sampling Date:	2017/12/4		
Number of Sample:	136		
Custody No.:	MA16034-CE/59/2015(EP)/171204		
********	*************	*******	*******

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3.9	3.8	3	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Ç atilulse

PATRICK TSE Laboratory Manager



### **TEST REPORT**

#### **QC REPORT**

APPLICANT: Cinotech Co	onsultants Limited	Report No.:	27960
RM 1710, T	echnology Park,	Date of Issue:	2017/12/7
18 On Lai S	treet,	Date Received;	2017/12/6
Shatin, N.T.	Shatin, N.T., Hong Kong		2017/12/6
		Date Completed:	2017/12/7
ATTN: Ms. Mei Ling Tang		Page:	1 of 1
Project Name:	Enviromental Team for Tseung Ky	wan O - Lam Tin Tunne	el -
	Design and Construction Agreer	nent No. CE/59/2015 (I	EP)
Project No.:	MA16034		
Sampling Date:	2017/12/6		
Number of Sample:	136		
Custody No.:	MA16034-CE/59/2015(EP)/17120	)6	
*********************	*****	***************	******
		·	

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3.6	3.6	0	104

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

atthe

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

## **QC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	27980	
RM 1710, Te	echnology Park,	Date of Issue:	2017/12/11	
18 On Lai St	reet,	Date Received:	2017/12/8	
Shatin, N.T.,	Hong Kong	Date Tested:	2017/12/8	
		Date Completed:	2017/12/11	
ATTN: Ms. Mei Ling Tang		Page:	1 of 1	
Project Name:	t Name: Enviromental Team for Tseung Kwan O - Lam Tin Tunnel -			
	Design and Construction Agreement	t No. CE/59/2015 (I	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/8			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171208			
*********	*************	******	*******	***

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	3.1	3.2	5	103

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Paralle

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

### **QC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	27994	
RM 1710, To	echnology Park,	Date of Issue:	2017/12/12	
18 On Lai St	treet,	Date Received:	2017/12/11	
Shatin, N.T.	, Hong Kong	Date Tested:	2017/12/11	
		Date Completed:	2017/12/12	
ATTN: Ms. Mei Ling Tang		Page:	1 of 1	
Project Name:	Enviromental Team for Tseung Kwan	O - Lam Tin Tunne	:1 -	
	Design and Construction Agreemen	t No. CE/59/2015 (I	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/11			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171211			
*****	******	***************	*********	**

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.2	5.3	2	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Fatul le

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

## **QC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	28009	
RM 1710, To	echnology Park,	Date of Issue:	2017/12/14	
18 On Lai St	treet,	Date Received:	2017/12/13	
Shatin, N.T.,	, Hong Kong	Date Tested:	2017/12/13	
		Date Completed:	2017/12/14	
ATTN: Ms. Mei Ling Tang		Page:	l of l	
Project Name:	Enviromental Team for Tseung Kwan O - Lam Tin Tunnel -			
	Design and Construction Agreement	t No. CE/59/2015 (E	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/13			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171213			
*********	******	******	***********	*****

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.4	4.4	0	104

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrahlee

PATRICK TSE Laboratory Manager



,

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

### TEST REPORT

## **QC REPORT**

APPLICANT: Cinotech Consultants Limited		Report No.:	28022	
RM 1710, Technology Park,		Date of Issue:	2017/12/18	
18 On Lai Street,		Date Received:	2017/12/15	
Shatin, N.T., Hong Kong		Date Tested:	2017/12/15	
		Date Completed:	2017/12/18	
ATTN: Ms. Mei Ling Tang		Page:	l of l	
Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -				
	Design and Construction Agreement	t No. CE/59/2015 (E	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/15			
Number of Sample:	136			
Custody No.: MA16034-CE/59/2015(EP)/171215				
***************************************				

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	,
M4se	3.0	2.9	4	90

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patrikle

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

### **QC REPORT**

APPLICANT: Cinotech Co	APPLICANT: Cinotech Consultants Limited		28033	
RM 1710, Te	RM 1710, Technology Park,		2017/12/19	
18 On Lai St	treet,	Date Received:	2017/12/18	
Shatin, N.T., Hong Kong		Date Tested:	2017/12/18	
		Date Completed:	2017/12/19	
ATTN: Ms. Mei Ling Tang		Page:	l of l	
Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -				
	Design and Construction Agreement	: No. CE/59/2015 (I	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/18			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171218			
*******	************	*****	********	**

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial I,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	4.9	4.7	3	97

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Pahile/Se

PATRICK TSE Laboratory Manager



#### TEST REPORT

## **OC REPORT**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	28048	
RM 1710, Technology Park,		Date of Issue:	2017/12/21	
18 On Lai Street, Date Received			2017/12/20	
Shatin, N.T., Hong Kong		Date Tested:	2017/12/20	
		Date Completed:	2017/12/21	-
ATTN: Ms. Mei Ling Tang		Page:	1 of 1	
Project Name:	Project Name: Enviromental Team for Tseung Kwan O - Lam Tin Tunnel -			
	Design and Construction Agreemen	t No. CE/59/2015 (I	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/20			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171220			
*****	*********	******	************	***

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.2	5.1	2	100

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

( Datirh Te

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

## **<u>QC REPORT</u>**

APPLICANT: Cinotech Co	nsultants Limited	Report No.:	28070		
RM 1710, Technology Park,		Date of Issue:	2017/12/27		
18 On Lai St	18 On Lai Street,		2017/12/22		
Shatin, N.T.,	Shatin, N.T., Hong Kong		2017/12/22		
		Date Completed:	2017/12/27		
ATTN: Ms. Mei Ling Tang		Page:	1 of 1		
Project Name:	Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -				
	Design and Construction Agreemer	nt No. CE/59/2015 (I	EP)		
Project No.:	MA16034				
Sampling Date:	2017/12/22				
Number of Sample:	136				
Custody No.:	MA16034-CE/59/2015(EP)/171222				
*****	********	*****	********	****	

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	2.5	2.6	5	98

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Pathlelse

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

### **QC REPORT**

<b>APPLICANT:</b> Cinotech Co	nsultants Limited	Report No.:	28082	
RM 1710, Te	echnology Park,	Date of Issue:	2017/12/27	
18 On Lai St	18 On Lai Street, Date Received: 2017/12/25			
Shatin, N.T.,	Hong Kong	Date Tested:	2017/12/25	
		Date Completed:	2017/12/27	
ATTN: Ms. Mei Ling Tang		Page:	l of l	
Project Name:	Project Name: Environmental Team for Tseung Kwan O - Lam Tin Tunnel -			
	Design and Construction Agreemen	t No. CE/59/2015 (H	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/25			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171225			
******	******	******	********	*****

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.6	5.7	3	102

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patintelse

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

### **QC REPORT**

APPLICANT: Cinotech Co.	nsultants Limited	Report No.:	28085	
RM 1710, Technology Park,		Date of Issue:	2017/12/28	
18 On Lai St	reet,	Date Received:	2017/12/27	
Shatin, N.T.,	Hong Kong	Date Tested:	2017/12/27	
		Date Completed:	2017/12/28	
ATTN: Ms. Mei Ling Tang		Page:	1 of 1	•
Project Name:	Enviromental Team for Tseung Kwar	n O - Lam Tin Tunne	×l -	
	Design and Construction Agreemen	it No. CE/59/2015 (H	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/27			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171227			
********	******	*******	******	*****
		÷		

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	5.4	5.7	5	99

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Patricte

PATRICK TSE Laboratory Manager



### TEST REPORT

## **QC REPORT**

APPLICANT: Cinotech Co	Report No.:	28097		
RM 1710, Te	Date of Issue:	2018/1/2		
18 On Lai St	treet,	Date Received:	2017/12/29	
Shatin, N.T.,	Hong Kong	Date Tested:	2017/12/29	
		Date Completed:	2018/1/2	
ATTN: Ms. Mei Ling Tang		Page:	1 of 1	
Project Name:	Enviromental Team for Tseung Kwan	O - Lam Tin Tunne	-1 -	
	Design and Construction Agreement	No. CE/59/2015 (E	EP)	
Project No.:	MA16034			
Sampling Date:	2017/12/29			
Number of Sample:	136			
Custody No.:	MA16034-CE/59/2015(EP)/171229			
*****	******	******	**************	****

Γ	Total Suspended Solids	Duplicate Analysis		QC Recovery, %			
Г	Sampling Point	Trial 1,	Trial 2,	Difference,			
		mg/L	mg/L	%			
Г	M4se	5.2	5.2	1	108		
*	**************************************						

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

Watchle

PATRICK TSE Laboratory Manager

APPENDIX K SUMMARY OF EXCEEDANCE

## Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

## **Appendix K – Summary of Exceedance**

**Reporting Period: December 2017** 

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise

<u>Action Level for Construction Noise</u> (Nine (9) Action Level exceedance was recorded due to the documented complaints received in this reporting month.)

<u>Limit Level for Construction Noise</u> (NIL in the reporting month)

(C) Exceedance Report for Water Quality

(Two Limit Level exceedance in groundwater quality monitoring as followed:

Date	Monitoring Location	Monitoring Parameter	Monitoring Results	Action Level	Limit Level
20 Dec 2017	Stream 2	Suspended Solids	48 mg/L	7.6	12.1
20 Dec 2017	Stream 2	Total Phosphorus	0.06 mg-P/L	0.05	0.05

It is considered that the exceedance (at Stream 2 –Stream on western coast of Chiu Keng Wan) is not project-related as there was no tunnel boring or tunnel construction works in Tseung Kwan O side in this reporting period.)

(No exceedance for marine water quality monitoring in the reporting month)

- (D) Exceedance Report for Ecology (NIL in the reporting month)
- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas (NIL in the reporting month)

APPENDIX L SITE AUDIT SUMMARY

## Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

#### Appendix L - Site Audit Summary (December 2017)

Contract No. NE/2015/01

*Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works* 

Items	Date	Status*	Follow up Action
Water Quality			· · · · · · · · · · · · · · · · · · ·
Noise			
Noise barriers should be placed next to breaking works at LTI to reduce noise nuisance to nearby NSRs.	20 December 2017	✓	Improved/rectified on 27 December 2017.
Landscape and Visual			
Air Quality			
	06 December 2017	×	Item remarked on 13 December 2017.
Water spraying should be provided more frequently on slopes in LTI for dust suppression.	13 December 2017	×	Item remarked on 20 December 2017.
	20 December 2017	√	Improved/rectified on 27 December 2017.
Waste / Chemical Management			
Oil stains at Portion IVC near storage cupboard should be properly cleared as chemical waste.	29 November 2017	√	Improved/rectified on 06 December 2017.
Oil stains at Portion 6 in TKO site should be properly disposed of as chemical waste.	13 December 2017	✓	Improved/rectified on 20 December 2017.
Oil stains at Portion IVC should be properly cleared as chemical waste.	27 December 2017	#	Follow up action will be reported in next reporting month
Impact on Cultural Heritage			
Permits / Licenses			

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

# Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

• Non-compliance but improved by the contractor

## Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

#### Appendix L - Site Audit Summary (December 2017) Contract No. NE/2015/02

Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
Noise			
The Contractor was reminded to provide sufficient noise barriers to the winches on the double water gate to minimize noise nuisance to nearby NSR.	07 December 2017	√	Improved/rectified on 12 December 2017.
The Contractor was reminded to properly maintain the acoustic materials on the head of breaker in Portion 7 to minimize noise nuisance to nearby NSR.	12 December 2017	√	Improved/rectified on 21 December 2017.
Landscape and Visual			
Air Quality			
Waste / Chemical Management			
Housekeeping should be enhanced at Portion 7 and accumulation of waste should be avoided.	28 December 2017	#	Follow up action will be reported in next reporting month
Impact on Cultural Heritage			
Permits / Licenses			

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

# Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

• Non-compliance but rectified by the contractor

## Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

## Appendix L - Site Audit Summary (December 2017)

#### Contract No. NE/2015/03

Tseung Kwan O - Lam Tin Tunnel - Northern Footbridge

Items	Date	Status*	Follow up Action			
Water Quality						
Mud and Sand was observed accumulated in the sedimentation tank in west pier. The Contractor is	14 December 2017	×	Item remarked on 21 December 2017.			
reminded to remove the mud regularly.	21 December 2017	$\checkmark$	Improved/rectified on 28 December 2017.			
Noise						
Landscape and Visual						
To remove air compressor vessel away from tree protection zone in west pier.	14 December 2017	√	Improved/rectified on 21 December 2017.			
Air Quality						
Waste / Chemical Management						
Spoil and debris observed accumulated in drip tray of air compressor in west pier. The Contractor is reminded to remove the material from drip tray.	14 December 2017	$\checkmark$	Improved/rectified on 21 December 2017.			
Impact on Cultural Heritage						
Permits / Licenses	Permits / Licenses					

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
 # Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

• Non-compliance but rectified by the contractor

APPENDIX M EVENT AND ACTION PLANS

#### Event and Action Plan for Air Quality (Dust)

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
Action level being exceeded by one sampling	<ol> <li>Identify source, investigate the causes of complaint and propose remedial measures;</li> <li>Inform IEC and ER;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily.</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method.</li> </ol>	1. Notify Contractor.	<ol> <li>Rectify any unacceptable practice;</li> <li>Amend working methods if appropriate.</li> </ol>					
Action level being exceeded by two or more consecutive sampling	<ol> <li>Identify source;</li> <li>Inform IEC and ER;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>Repeat measurements to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> <li>Discuss with IEC and Contractor on remedial actions required;</li> <li>If exceedance continues, arrange meeting with IEC and ER;</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ET on the effectiveness of the proposed remedial measures;</li> <li>Supervise Implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol>	<ol> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol>					

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
	8. If exceedance stops, cease additional monitoring.								
Limit level being exceeded by one sampling	<ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures;</li> <li>Inform Contractor ,IEC, ER, and EPD;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily;</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>Supervise implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol>					
Limit level being exceeded by two or more consecutive sampling	<ol> <li>Notify IEC, ER, Contractor and EPD;</li> <li>Identify source;</li> <li>Repeat measurement to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> </ol>	<ol> <li>Discuss amongst ER, ET, and Contractor on the potential remedial actions;</li> <li>Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly;</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> </ol>					

	ACTION								
EVENT		ЕТ	IEC		ER	CONTRACTOR			
	5.	Carry out analysis of Contractor's	3. Supervise the implementation of	4.	Ensure remedial measures	4. Resubmit proposals if problem still			
		working procedures to determine	remedial measures.		properly implemented;	not under control;			
		possible mitigation to be		5.	If exceedance continues, consider	5. Stop the relevant portion of works			
		implemented;			what portion of the work is	as determined by the ER until the			
	6.	Arrange meeting with IEC and			responsible and instruct the	exceedance is abated.			
		ER to discuss the remedial actions			Contractor to stop that portion of				
		to be taken;			work until the exceedance is				
	7.	Assess effectiveness of			abated.				
		Contractor's remedial actions and							
		keep IEC, EPD and ER informed							
		of the results;							
	8.	If exceedance stops, cease							
		additional monitoring.							

#### Event and Action Plan for Construction Noise

EVENT		ACTION								
	ET	IEC	ER	CONTRACTOR						
Action	1. Notify IEC and Contractor;	1. Review the analysed results	1. Confirm receipt of notification of	1. Submit noise mitigation proposals to						
Level	2. Carry out investigation;	submitted by the ET;	failure in writing;	IEC;						
	3. Report the results of investigation to	2. Review the proposed remedial	2. Notify Contractor;	2. Implement noise mitigation proposals.						
	the IEC, ER and Contractor;	measures by the Contractor and	3. Require Contractor to propose							
	4. Discuss with the Contractor and	advise the ER accordingly;	remedial measures for the analysed							
	formulate remedial measures;	3. Supervise the implementation of	noise problem;							
	5. Increase monitoring frequency to	remedial measures.	4. Ensure remedial measures are							
	check mitigation effectiveness.		properly implemented.							
Limit	1. Identify source;	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to avoid						
Level	2. Inform IEC, ER, EPD and	Contractor on the potential remedial	failure in writing;	further exceedance;						
	Contractor;	actions;	2. Notify Contractor;	2. Submit proposals for remedial						
	3. Repeat measurements to confirm	2. Review Contractors remedial actions	3. Require Contractor to propose	actions to IEC within 3 working						
	findings;	whenever necessary to assure their	remedial measures for the analysed	days of notification;						
	4. Increase monitoring frequency;	effectiveness and advise the ER	noise problem;	3. Implement the agreed proposals;						
	5. Carry out analysis of Contractor's	accordingly;	4. Ensure remedial measures properly	4. Resubmit proposals if problem still						
	working procedures to determine	3. Supervise the implementation of	implemented;	not under control;						
	possible mitigation to be	remedial measures.	5. If exceedance continues, consider	5. Stop the relevant portion of works as						
	implemented;		what portion of the work is	determined by the ER until the						
	6. Inform IEC, ER and EPD the causes		responsible and instruct the	exceedance is abated.						
	and actions taken for the		Contractor to stop that portion of							
	exceedances;		work until the exceedance is abated.							

EVENT	ACTION					
	ЕТ	IEC	ER	CONTRACTOR		
	7. Assess effectiveness of Contractor's					
	remedial actions and keep IEC, EPD					
	and ER informed of the results;					
	8. If exceedance stops, cease additional					
	monitoring.					

#### Event and Action Plan for Marine Water Quality

		Act	tion	
Event	ЕТ	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day at water sensitive receiver(s)	<ul> <li>Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate;</li> <li>If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings;</li> <li>Inform IEC and contractor;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>If exceedance occurs at WSD salt water intake, inform WSD;</li> <li>Discuss mitigation measures with IEC and Contractor;</li> <li>Repeat measurement on next day of exceedance.</li> </ul>	<ul> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> </ul>	<ul> <li>Discuss with IEC on the proposed mitigation measures;</li> <li>Make agreement on the mitigation proposal.</li> </ul>	<ul> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment;</li> <li>Amend working methods if appropriate;</li> <li>Discuss with ET and IEC and propose mitigation measures to IEC and ER;</li> <li>Implement the agree mitigation measures.</li> </ul>
Action level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IEC on the proposed	• Inform the Engineer and confirm
exceeded by two	comparing the results with those collected at the control stations as	the mitigation measures;	<ul><li>mitigation measures;</li><li>Make agreement on the mitigation</li></ul>	notification of the non-compliance in writing;
more consecutive	appropriate;		proposal;	<ul><li>Rectify unacceptable practice;</li></ul>

Event	Action				
	ЕТ	IEC	ER	CONTRACTOR	
sampling days at	• If exceedance is found to be caused	Review proposal on mitigation	• Assess the effectiveness of the	• Check all plant and equipment and	
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working	
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;	
	findings;	• Assess the effectiveness of the		• Discuss with ET, IEC and ER and	
	• Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC	
	• Check monitoring data, all plant,			and ER within 3 working days;	
l	equipment and Contractor's working			• Implement the agreed mitigation	
	methods;			measures.	
	• Discuss mitigation measures with				
	IEC and Contractor;				
	• Ensure mitigation measures are				
	implemented;				
	• Prepare to increase the monitoring				
	frequency to daily;				
	• If exceedance occurs at WSD salt				
	water intake, inform WSD;				
	• Repeat measurement on next day of				
	exceedance.				
Limit level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IEC, ET and	• Inform the ER and confirm	
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in	
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;	
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	• Rectify unacceptable practice;	
receiver(s)		and advise the ER accordingly;	review the working methods;		

	Action					
Event	ЕТ	IEC	ER	CONTRACTOR		
	• If exceedance is found to be caused	• Assess the effectiveness of the	• Make agreement on the mitigation	• Check all plant and equipment and		
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	repeat in-situ measurement to		• Assess the effectiveness of the	methods;		
	confirm findings;		implemented mitigation measures.	• Discuss with ET, IEC and ER and		
	• Inform IEC, contractor, AFCD and			submit proposal of mitigation		
	EPD			measures to IEC and ER within 3		
	• Check monitoring data, all plant,			working days of notification;		
	equipment and Contractor's working			• Implement the agreed mitigation		
	methods;			measures.		
	• Discuss mitigation measures with					
	IEC, ER and Contractor;					
	• Ensure mitigation measures are					
	implemented;					
	• Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level;					
	• If exceedance occurs at WSD salt					
	water intake, inform WSD.					
Limit level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IC(E), ET and	• Inform the ER and confirm		
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in		
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;		
consecutive	appropriate;	measures submitted by Contractor	• Request Contractor to critically	• Rectify unacceptable practice;		
sampling days at		and advise the ER accordingly;	review the working methods;			

	Action					
Event	ЕТ	IEC	ER	CONTRACTOR		
water sensitive	• If exceedance is found to be caused	• Assess the effectiveness of the	• Make agreement on the mitigation	Check all plant and equipment and		
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	in-situ measurement to confirm		• Assess the effectiveness of the	methods;		
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and		
	• Inform IC(E), AFCD, contractor		• Consider and instruct, if necessary,	submit proposal of mitigation		
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3		
	• Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;		
	equipment and Contractor's working		until no exceedance of Limit level.	• Implement the agreed mitigation		
	methods;			measures;		
	• Discuss mitigation measures with			• As directed by the Engineer, to		
	IC(E), ER and Contractor;			slow down or to stop all or part of		
	• Ensure mitigation measures are			the construction activities.		
	implemented;					
	• Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level for two consecutive days;					
	• If exceedance occurs at WSD salt					
	water intake, inform WSD.					

#### Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	• Ventilate to restore oxygen to >19%
	<18%	Stop works
		• Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	>1% by	• Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to $<10\%$
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to $< 0.5\%$
Dioxide	>1.5%	Stop works
		• Evacuate personnel / prohibit entry
		• Increase ventilation to restore carbon dioxide to <
		0.5%

Event	Action			
	ET Leader	IEC	ER	Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.	-	
				3. Implement the agreed measures.

# **Event and Action Plan for Coral Post-Translocation Monitoring**

## Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	• The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	• The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	• The Engineer shall be informed immediately.
	• The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	• The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	• The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	• The Contractor shall carry out design review of the works

Action Level	•	Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
	•	The Contractor shall immediately implement the measures defined in the contingency plan
	•	The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
	•	The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
	•	To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

# Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project

### (Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

- **Key:** ^ Mitigation measure was fully implemented.
  - * Observation/reminder was made during site audit but improved/rectified by the contractor.
  - # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
  - X Non-compliance of mitigation measure
  - Non-compliance but rectified by the contractor
  - N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of the recommended Measures & Main	Who to implement the	Location of the measures	When to Implement the	What requirements or standards for the	Status
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
Air Qual	ity Impact						-
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	*(1)
		dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall,	To minimize the	Contractor	Barging	Construction	APCO	N/A
	provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	*(1)
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close to						*(1)
	ASRs.h						
	- Side enclosure and covering of any aggregate or dusty material storage piles to reduce						
	emissions. Where this is not practicable owing to frequent usage, watering shall be						٨

		LEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					Decembe	
EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for the	
			Concerns to	measures?		measures?	measures to	
			address				achieve?	
		applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty						^
		material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between site						^
		locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit points of						N/A
		the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation measures at						
		the loading area of barging point, and use of water sprinklers at the loading area where						
		dust generation is likely during the loading process of loose material, particularly in dry						^
		seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site boundary						
		where adjoins a road, streets or other accessible to the public except for a site entrance						^
		or exit.						۸
	-	Imposition of speed controls for vehicles on site haul roads.						
	-	Where possible, routing of vehicles and positioning of construction plant should be at the						^
		maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be						۸
		covered entirely by impervious sheeting or placed in an area sheltered on the top and the						
		3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						
		construction process in order to enforce controls and modify method of work if dusty						
		conditions arise.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to		ineasures			
			measures?		measures?	measures to	
		address				achieve?	
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution emission		construction	stage		٨
	Only well-maintained plant should be operated on-site and plant should be serviced	from construction		sites			٨
	regularly to avoid emission of black smoke.	vehicles and plants					
	• All diesel fuelled construction plant within the works areas shall be powered by ultra low						٨
	sulphur diesel fuel (ULSD)						
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	٨
		pollution emission		construction	stage		
		from construction		sites			
		vehicles and plants					
Noise In	npact (Construction Phase)						1
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck,	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	N/A
	Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile	construction noise			phase		
	Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance,	impact arising from					
	Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air	the Project at the					
	Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter	affected NSRs					
	Bore Piling, Grout Mixer & Pump and Concrete Pump.						
Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the approved Noise	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	*(2)
Mitigation	Mitigation Plan	construction noise			phase		
Plan		impact arising from					
		the Project at the					
		affected NSRs					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement the	requirements or standards for the measures to	
		Measures & Main	the	measures			
		Concerns to	measures?		measures?		
		address				achieve?	
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be serviced	construction noise	Proponent		Period		^
	regularly during the construction program	impact arising from					
	- Silencers or mufflers on construction equipment should be utilized and should be properly	the Project at the					^
	maintained during the construction program.	affected NSRs					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.						^
	- Machines and plant (such as trucks) that may be in intermittent use should be shut down						^
	between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction noise		near school	phase		
		impact arising from					
		the Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m ³ ,	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	with fine content of 25% or less	impacts from filling	Contractors		Phase		
		activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	be adopted for construction of seawall foundation. During the stone column installation (also	impacts from filling	Contractors		Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	including the installation of steel cellular caisson), silt curtain shall be employed around the	activities					
	active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	about 50m for marine access) shall be completed prior to the filling activities. The seawall	impacts from filling	Contractors		Phase		-
	opening of about 50m wide for marine access shall be selected at a location as indicatively	activities					
	shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a						
	maximum daily rate of 3,000m ³ (i.e. 1,000 m ³ per trip) for the filling operation at the						
	reclamation area for Road P2. All filling works shall be carried out behind the seawall with						
	the use of single silt curtain at the marine access.						
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction methods as far as	impacts from filling	Contractors		Phase	Waste Disposal	^
	practically possible including the use of cofferdams to cover the construction area to	activities and				Ordinance (WDO)	
	separate the construction works from the sea;	marine-based					
	- floating single silt curtain shall be employed for all marine works;	construction					^
	- all vessels should be sized so that adequate clearance is maintained between vessels						^
	and the seabed in all tide conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings to						^
	prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges before						^
	the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of decks						^
	being washed by wave action;						

						Decembe	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- loading of barges and hoppers should be controlled to prevent splashing of filling material						٨
	into the surrounding water. Barges or hoppers should not be filled to a level that will						
	cause the overflow of materials or polluted water during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated with leaking						٨
	pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						٨
	objectionable matter to be present on the water within the site or dumping grounds; and						
	- before commencement of the reclamation works, the holder of Environmental Permit has						٨
	to submit plans showing the phased construction of the reclamation, design and						
	operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from filling	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	activities and				WPCO	
		marine based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for Reclamation	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary barrier shall	dredging and filling				WPCO	٨
	first be constructed to a height above the high water mark to completely enclose the	works for					
	works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site	Road P2					٨
	shall not be removed before completion of all dredging and underwater filling works.						
	- Water quality sampling and testing shall be carried out to demonstrate that the water						N/A

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION						2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	quality inside the enclosed barrier is comparable to the ambient or baseline levels prior						
	to the removal of the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier						٨
	and at the double water gates marine access opening during its operation. The general						
	of arrangement of silt curtain is shown in Figure 7 of the existing Environmental Permit						
	(No. EP-458/2013/C).						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	prevent high loading of SS from entering the marine environment. Proper site management is	impacts from	Contractors		Phase	1/94, EIAOTM,	
	essential to minimise surface water runoff, soil erosion and sewage effluents.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	٨
	engineering and environmental requirements in order to ensure adequate hydraulic capacity of	impacts from	Contractors		and	1/94, EIAOTM,	
	all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management	construction site				WPCO, TM-DSS	
	practices, as detailed in below, should be implemented to ensure that all construction runoff	runoff and land-					
	complies with WPCO standards and no unacceptable impact on the WSRs arises due to	based construction					
	construction of the TKO-LT Tunnel. All discharges from the construction site should be						
	controlled to comply with the standards for effluents discharged into the corresponding WCZ						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated with the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	above ground construction activities can be readily controlled through the use of appropriate	construction site				WPCO	
	mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based construction					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.						٨
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be marked and surrounded by dykes or embankments for flood protection. Temporary	construction site				WPCO	
	ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via	runoff and land-					
	a silt retention pond. Permanent drainage channels should incorporate sediment basins or	based construction					
	traps and baffles to enhance deposition rates. The design of efficient silt removal facilities						
	should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	during the rainy season (April to September). All exposed earth areas should be completed as	impacts from	Contractors		Phase	1/94, EIAOTM,	
	soon as possible after earthworks have been completed, or alternatively, within 14 days of the	construction site				WPCO	
	cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	runoff and land-					
	rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should	based construction					
	be covered by tarpaulin or other means.						
65.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(3)
	approximately 6 to 8m ³ capacity, are recommended as a general mitigation measure which	impacts from	Contractors		Phase	1/94, EIAOTM,	
	can be used for settling surface runoff prior to disposal. The system capacity is flexible and	construction site				WPCO	

Location of the measures	When to Implement the	What requirements or standards for the	Status
	the		
measures		Standards for the	
	mogeuroe'?	measures to	
	measures?		
		35	
			<u> </u>
Work site	Construction	ProPECC PN	^
	Phase	1/94, EIAOTM,	
		WPCO	
		S5	
Work site	Construction	ProPECC PN	^
	Phase	1/94, EIAOTM,	
		WPCO	
		S5	
Work site	Construction	ProPECC PN	^
	Phase	1/94, EIAOTM,	
		WPCO	
Work site	Construction	ProPECC PN	٨
	Phase	1/94, EIAOTM,	
		WPCO	
	Work site	Phase         Work site       Construction         Phase         Work site       Construction         /94, EIAOTM, WPCO S5Work siteConstructionProPECC PNPhase1/94, EIAOTM, WPCO S5WPCO S5Work siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNPhase1/94, EIAOTM, WPCOWPCOWork siteConstructionProPECC PNPhase1/94, EIAOTM, WPCOWPCOWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork siteConstructionProPECC PNWork site	

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					Decembel	2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to	construction site				WPCO	
	the control of silty surface runoff during storm events, especially for areas located near steep	runoff and land-					
	slopes.	based construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	the release of oils and grease into the storm water drainage system after accidental spillages.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	The interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth,	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	mud, debris and the like is deposited by them on roads. An adequately designed and located	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wheel washing bay should be provided at every site exit, and washwater should have sand	construction site				WPCO	
	and silt settled out and removed at least on a weekly basis to ensure the continued efficiency	runoff and land-					
	of the process. The section of access road leading to, and exiting from, the wheelwash bay	based construction					
	to the public road should be paved with sufficient backfall toward the wheel-wash bay to						
	prevent vehicle tracking of soil and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	grit should be removed regularly, at the onset of and after each rainstorm to ensure that these	impacts from	Contractors		Phase	1/94, EIAOTM,	
	facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based construction					

<u> App N - I</u>	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	MEASURES				Decembe	r 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	commencement of other construction activities. Sediment traps should be installed in order to	impacts from	Contractors		Phase	1/94, EIAOTM,	
	minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall	construction site				WPCO	
	be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure proper	construction site				WPCO	
	and efficient operation at all times and particularly following rain storms. The temporarily	runoff and land-					
	diverted drainage should be reinstated to its original condition when the construction work has	based construction					
	finished or the temporary diversion is no longer required.						
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent	impacts from	Contractors		Phase	1/94, EIAOTM,	
	spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	discharges and the existing or planned seawater intakes during construction and operational	impacts from	Contractors		Phase	TMDSS	
	phases	construction site					
		runoff and land-					
		based construction					

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION		Wheete	I a satism of	When to	December	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	1
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	water level in basement or foundation construction, and groundwater seepage pumped out of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tunnels or caverns under construction should be discharged into storm drains after the	construction site				WPCO	
	removal of silt in silt removal facilities.	runoff and land-					
		based construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel.	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	during the excavation. The groundwater levels above the tunnel will also be monitored by	construction site				WPCO, Buildings	
5.18	piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the	runoff and land-				Ordinance	
	groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to	based construction					
	reduce the groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the groundwater						
	should be biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive						
	measures in the form of an Action Plan with pre-emptive and re-active to preserve the						
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	far as practicable be recirculated after sedimentation. When there is a need for final disposal,	impacts from	Contractors		and	1/94, EIAOTM,	
	the wastewater should be discharged into storm drains via silt removal facilities.	construction site			Construction	WPCO	
		runoff and land-			Phas		l
		based construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
S5.8.31	equipment should whenever practicable be recycled. The discharge of wastewater should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any	construction site				WPCO	
	water recycling system should be provided with an online standby pump of adequate capacity	runoff and land-					
	and with automatic alternating devices. Under normal circumstances, surplus wastewater may	based construction					
	be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to						
	within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more						
	elaborate treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should	impacts from	Contractors		Phase	1/94, EIAOTM,	
	be provided at every site exit if practicable and wash-water should have sand and silt settled	construction site				WPCO	
	out or removed before discharging into storm drains. The section of construction road	runoff and land-					
	between the wheel washing bay and the public road should be paved with backfall to reduce	based construction					
	vehicle tracking of soil and to prevent site run-off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and reused wherever practicable. If the disposal of a certain residual quantity cannot be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a	construction site				WPCO	
	marine dumping licence from EPD on a case-by-case basis.	runoff and land-					
		based construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be treated to the respective effluent standards applicable to foul sewer, storm drains or	impacts from	Contractors		Phase	1/94, EIAOTM,	
	the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	construction site				WPCO	
		runoff and land-					

App N - I	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	MEASURES				December	r 2017
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
		based construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	other purposes as far as practicable. Surplus unpolluted water could be discharged into	impacts from	Contractors		Phase	1/94, EIAOTM,	
	storm drains.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	sought during the design stage of the works with regard to the disposal of the sterilizing water.	impacts from	Contractors		and	1/94, EIAOTM,	
	The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering,	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	internal decoration, cleaning of works and similar activities should not be discharged into the	impacts from	Contractors		Phase	1/94, EIAOTM,	
	stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should	construction site				WPCO	
	undergo the removal of settleable solids in a silt removal facility, and pH adjustment as	runoff and land-					
	necessary	based construction					

EIA Ref.	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION		Who to	Location of	When to	What	Status
EIA REI.	Recommended Mitigation Measures	Objectives of the					Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there	impacts from	Contractors		Phase	1/94, EIAOTM,	
	is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for	construction site				WPCO	
	disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving	runoff and land-					
	waters	based construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains,	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be discharged into foul sewer via grease traps capable of providing at least 20 minutes	impacts from	Contractors		Phase	1/94, EIAOTM,	
	retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(4)/#(4)
	possible be located within roofed areas. The drainage in these covered areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained	construction site				WPCO	
	and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal	runoff and land-					
	in accordance with the Waste Disposal Ordinance.	based construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	existing trunk sewer or sewage treatment facilities. The construction sewage may need to be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	handled by portable chemical toilets prior to the commission of the on-site sewer system.	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to		ineasures		measures to	
			measures?		measures?		
		address				achieve?	
	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the	runoff and land-					
	large number of construction workers over the construction site. The Contractor shall also be	based construction					
	responsible for waste disposal and maintenance practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary	impacts from	Contractors		Phase	WDO	
	regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be	accidental spillage					
	observed and complied with for control of chemical wastes.	of chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	*(5)
	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	impacts from	Contractors		Phase		
	and equipment involving activities with potential for leakage and spillage should only be	accidental spillage					
	undertaken within the areas appropriately equipped to control these discharges.	of chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical	impacts from	Contractors		Phase	WDO	
	Wastes" published under the Waste Disposal Ordinance details the requirements to deal with	accidental spillage					
	chemical wastes. General requirements are given as follows:	of chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage or						٨
	spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the personnel						٨
	who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space should be						^
	allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	basis. The contractor should be responsible for keeping the water within the site boundary	impacts from	Contractors		Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	and the neighbouring water free from rubbish.	floating refuse and					
		debris					
Ecologia	cal Impact					•	•
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team /	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted wherever	human and traffic	Contractor	works are	Phase		^
	possible.	disturbance to					
	- Hoarding or fencing should be erected around the works area boundaries during the	terrestrial habitat					^
	construction phase. The hoarding would screen adjacent habitats from construction	and wildlife; and					
	phase activities, reduce noise disturbance to these habitats and also to restrict access to	reduce dust					
	habitats adjacent to works areas by site workers;	generation					
	- Regular spraying of haul roads to minimize impacts of dust deposition on adjacent						٨
	vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access routes	disturbance to		works are	Phase		^
	selected on existing disturbed land to minimise disturbance to natural habitats.	surrounding					
	- Construction activities should be restricted to works areas that should be clearly	habitats					٨
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes. The						٨
	wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect and						٨
	control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						٨
	- Measures should also be put into place so that litter, fuel and solvents do not enter the						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	nearby watercourses.						
6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
50.0.0	The drained tunnel construction method with groundwater inflow control measures would	groundwater inflow	Contractor	Turiner	Phase	N/A	N/A
		groundwater milow			Phase		N/A
	generally be adopted.						
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce the						N/A
	groundwater inflow and ensure that the tunnel would meet the long term water tightness						
	requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design team,	Within	Prior	N/A	
	Coral translocation	coral	contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally common		project	areas and			^
	Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable		operator	pier footprint			
	locations as far as practicable.						
	- The coral translocation should be conducted during the winter months (November-March)						^
	in order to avoid disturbance during their spawning period (i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for						^
	pretranslocation coral survey, translocation methodology, identification/proposal of coral						
	recipient site, monitoring methodology for posttranslocation should be prepared during the						
	detailed design stage.						^
	- The coral translocation plan should be subject to approval by relevant authorities (e.g.						
	EPD and AFCD) before commencement of the coral translocation. All the translocation						

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					December	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	exercises should be conducted by experienced marine ecologist(s) who is/are approved						
	by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and unacceptable						۸
	impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should include						۸
	observations on the presence, survival, health condition and growth of the translocated						
	coral colonies. These parameters should then be compared with the baseline results						
	collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design Team,	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	contractor	landbased	phase		N/A
	newly installed seawall and marine works area.	especially on		works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					۸
	- Proper waste and dumping management; and	level; minimize the					
	- Standard good-site practice for land-based construction.	contamination of					۸
		wastewater					۸
		discharge,					
		accidental					
		chemical spillage					
		and construction					
		site runoff to the					
		receiving water					
		bodies					
		•	•	•		•	

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design Team,	Land-based	Construction	N/A	
	<ul> <li>Felling of mature trees should be compensated by planting of standard or heavy standard</li> </ul>	the vegetation loss	contractor	works area	phase		٨
	trees within or in vicinity of the affected area as far as practicable. Such compensatory						
	planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at						
	the temporarily affected area should be reinstated with species similar to the existing						
	condition.						
Fisherie	es Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design Team /	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	Contractor	area	phase		^
	newly installed seawall and marine works area.	especially on					
		suspended solid					
		level					
Waste I	Anagement (Construction Phase)	I	I	I	I	1	
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for good	management			Phase	Ordinance (Cap.	^
	site practices, arrangements for collection and effective disposal to an appropriate facility,	impacts				354)	
	of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and chemical					Land	٨
	handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation of					Ordinance (Cap.	^
	waste by either covering trucks or by transporting wastes in enclosed containers; and					28)	
	- Regular cleaning and maintenance programme for drainage systems, sumps and oil						#(6)

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement the measures?	the	Implement	requirements or	
		Measures & Main		measures	the	standards for the measures to achieve?	
		Concerns to			measures?		
		address					
	interceptors.						
68.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips or	reduction			Phase	Ordinance (Cap.	^
	stockpiles to enhance reuse or recycling of materials and their proper disposal;					354)	
	- Encourage collection of aluminium cans by providing separate labelled bins to enable this						٨
	waste to be segregated from other general refuse generated by the workforce;					Land	
	- Proper storage and site practices to minimize the potential for damage or contamination					(Miscellaneous	٨
	of construction materials; and					Provisions)	
	- Plan and stock construction materials carefully to minimize amount of waste generated					Ordinance (Cap.	^
	and avoid unnecessary generation of waste.					28)	
68.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with	reduction			Phase	19/2005	^
	ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of different categories of waste to be						
	generated from the construction activities. Such a management plan should incorporate site						
	specific factors, such as the designation of areas for segregation and temporary storage of						
	reusable and recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects as far	reduction			Phase	19/2005	^
	as possible.						

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					December 2017		
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status	
		recommended	implement	the	Implement	requirements or		
		Measures & Main	the	measures	the	standards for the		
		Concerns to	measures?		measures?	measures to achieve?		
		address						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work sites	Construction	-		
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential adverse			Phase			
	minimize the impacts include:	environmental						
	- Waste, such as soil, should be handled and stored well to ensure secure containment,	impacts arising					^	
	thus minimizing the potential of pollution;	from waste storage						
	- Maintain and clean storage areas routinely;						^	
	- Stockpiling area should be provided with covers and water spraying system to prevent						^	
	materials from wind-blown or being washed away; and							
	- Different locations should be designated to stockpile each material to enhance reuse.						^	
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction			
	- Remove waste in timely manner;	potential adverse			Phase		^	
	- Waste collectors should only collect wastes prescribed by their permits;	environmental					^	
	- Impacts during transportation, such as dust and odour, should be mitigated by the use of	impacts arising					^	
	covered trucks or in enclosed containers;	from waste						
	- Obtain relevant waste disposal permits from the appropriate authorities, in accordance	collection and					^	
	with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of	disposal						
	Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions)							
	Ordinance (Cap. 28);							
	- Waste should be disposed of at licensed waste disposal facilities; and						^	
	- Maintain records of quantities of waste generated, recycled and disposed.						^	
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.		
	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip	potential adverse			Phase	6/2010	^	
	Ticket System for Disposal of Construction & Demolition Materials, to monitor disposal of	environmental						

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	MEAGONEO		December 2017			
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount	impacts arising					
	of waste generated, recycled and disposed (including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and recyclable materials	potential adverse			Phase	6/2010	٨
	before disposal off-site.	environmental					
	- Specific areas shall be provided by the Contractors for sorting and to provide temporary					ETWB TCW No.	۸
	storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert materials, in						۸
	which the inert portion could be reused and recycled in the reclamation as far as					ETWB TCW No.	
	practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion					19/2005	
	should be investigated before disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG	
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement stabilization.	sediment to be		areas with	Phase		N/A
	Cement-stabilization process is undertaken by mixing sediment and cement and will	disposed of in an		sediments			
	convert sediment to earth filling material. The treated sediment has to comply with Risk-	authorized and		concern			
	Based Remediation Goals (RBRGs) before being reused in order not to raise any land	least impacted way					
	contamination issue. The adoption of RBRGs to assess stabilized sediment has been						
	proposed in the current C&DMMP. MFC has no adverse comment on the current						
	C&DMMP. The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the						
	RBRG. Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						

<b>.</b>	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					December 2017		
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status	
		recommended	implement	the	Implement	requirements or		
		Measures & Main	the	measures	the	standards for the		
		Concerns to	measures?		measures?	measures to		
		address				achieve?		
	results do not indicate sediment as contaminated soil. It is anticipated that reuse of							
	sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to land							
	contamination.							
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-EBH501							
	33.95m) as filling material after cement stabilization is also a suitable treatment.						N/A	
	Sediment quality indicates the sediment sample (TKO-EBH501 3-3.95m) exceed RBRG							
	for lead. While cement stabilization will immobilize metal contaminants, it is capable to							
	treat the exceedance on lead. The stabilized material should comply with UTS of Lead							
	and UCS. If the treated material do not comply with UTS or UCS, re-stabilization have to							
	be undertaken to meet compliance of UTS and UCS before reusing the treated sediment							
	as filling material. However, further agreement on final disposal/treatment on sediment							
	under sample (TKO-EBH501 3-3.95m) has to be sought from DEP							
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction			
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant,	best handling and		areas with	Phase		N/A	
	shall be adhered to during boring, excavation, transportation and disposal of sediments	treatment of		sediments				
	or cement stabilization of sediment.	sediment		concern				
	- A treatment area should be confined for carrying out the cement stabilization mixing and						N/A	
	temporary stockpile. The area should be designed to prevent leachate from entering the							
	ground. Leachate, if any, should be collected and discharged according to the Water							
	Pollution Control Ordinance (WPCO).							
	- In order to minimise the potential odour / dust emissions during boring, excavation and						N/A	
	transportation of the sediment, the excavated sediments should be kept wet during							
	excavation/boring and should be properly covered when placed on barges/trucks.							

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION			December 2017			
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	Loading of the excavated sediment to the barge should be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.	
	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be		areas with	Phase	34/2002 &	N/A
	requirements and procedures for excavated sediment disposal specified under ETWB	disposed of in an		sediments		Dumping at Sea	
	TC(W) No. 34/2002 shall be followed. MFC is responsible for the provision and	authorized and		concern		Ordinance	
	management of disposal capacity and facilities for the excavated sediment, while the	least impacted way					
	permit of marine dumping is required under the Dumping at Sea Ordinance and is the						
	responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping permit,	best handling and		areas with	Phase	34/2002 &	N/A
	separate SSTP has to be submitted to EPD for agreement under DASO. Additional site	disposal option of		sediments		Dumping at Sea	
	investigation, based on the SSTP, maybe carried out in order to confirm the disposal	sediment		concern		Ordinance	
	arrangements for the proposed sediments removal. A Sediment Quality Report (SQR)						
	shall then be required for EPD agreement under DASO prior to the tendering of the						
	construction contract, discussing in details the site investigation, testing results as well as						
	the delineation of each of the categories of excavated materials and the corresponding						
	types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure handling	Contractor	All works	Construction	ETWB TC(W) No.	

<u></u>	- IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES						December 2017			
EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status		
			recommended	implement	the	Implement	requirements or			
			Measures & Main	the	measures	the	standards for the			
			Concerns to	measures?		measures?	measures to			
			address				achieve?			
S8.6.28	-	The excavated sediments is expected to be loaded onto the barge and transported to the	of sediments are in		areas with	Phase	34/2002 &	N/A		
		designated disposal sites allocated by the MFC. The excaveted sediment would be	accordance to		sediments		Dumping at Sea			
		disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.	statutory		concern		Ordinance			
	-	Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					N/A		
		temporary stockpiling of contaminated sediments is necessary, the excavated sediment								
		should be covered by tarpaulin and the area should be placed within earth bunds or sand								
		bags to prevent leachate from entering the ground, nearby drains and surrounding water								
		bodies. The stockpiling areas should be completely paved or covered by linings in order								
		to avoid contamination to underlying soil or groundwater. Separate and clearly defined								
		areas should be provided for stockpiling of contaminated and uncontaminated materials.								
		Leachate, if any, should be collected and discharged according to the Water Pollution								
		Control Ordinance (WPCO).								
	-	In order to minimise the potential odour / dust emissions during boring and transportation						N/A		
		of the sediment, the excavated sediments should be kept wet during excavation/boring								
		and should be properly covered when placed on barges. Loading of the excavated								
		sediment to the barge should be controlled to avoid splashing and overflowing of the								
		sediment slurry to the surrounding water.								
	-	The barge transporting the sediments to the designated disposal sites should be						N/A		
		equipped with tight fitting seals to prevent leakage and should not be filled to a level that								
		would cause overflow of materials or laden water during loading or transportation. In								
		addition, monitoring of the barge loading shall be conducted to ensure that loss of								
		material does not take place during transportation. Transport barges or vessels shall be								
		equipped with automatic self-monitoring devices as specified by the DEP.								

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION			December 2017			
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic containment. A						N/A
	geosynthetic containment method is a method whereby the sediments are sealed in						
	geosynthetic containers and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be covered by further mud						
	disposal and later by the mud pit capping, thereby meeting the requirements for fully						
	confined mud disposal.						
S8.6.26	Chemical Wastes.	To ensure proper	Contractor	All works sites	Construction	Code of Practice	
	- If chemical wastes are produced at the construction site, the Contractor would be	management of			Phase	on the Packaging,	٨
	required to register with the EPD as a Chemical Waste Producer and to follow the	chemical waste				Labelling and	
	guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of					Storage of	
	Chemical Wastes. Good quality containers compatible with the chemical wastes should					Chemical Wastes	
	be used, and incompatible chemicals should be stored separately. Appropriate labels						
	should be securely attached on each chemical waste container indicating the					Waste Disposal	
	corresponding chemical characteristics of the chemical waste, such as explosive,					(Chemical Waste)	
	flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a					(General)	
	licensed collector to transport and dispose of the chemical wastes, to either the Chemical					Regulation	
	Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the						
	Waste Disposal (Chemical Waste) (General) Regulation.						
S8.6.27	General Refuse	To ensure proper	Contractor	All works sites	Construction	Public Health and	٨
-							

#### **App N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES** December 2017 EIA Ref. What **Recommended Mitigation Measures** Objectives of the Who to Location of When to Status the recommended implement Implement requirements or Measures & Main the measures the standards for the Concerns to measures? measures? measures to address achieve? General refuse should be stored in enclosed bins or compaction units separate from C&D management of Phase Municipal material. A reputable waste collector should be employed by the contractor to remove general refuse Services general refuse from the site, separately from C&D material. Preferably an enclosed and Ordinance (Cap. covered area should be provided to reduce the occurrence of 'wind blown' light material. 132) Impact on Cultural Heritage (Construction Phase) EIAO; GCHIA; S9.6.4 Dust and visual impacts To prevent dust Contractors Work areas Construction Temporarily fenced off buffer zone with allowance for public access (minimum 1 m) and visual impacts Phase AMO ۸ should be provided; The open yard in front of the temple should be kept as usual for annual Tin Hau festival; ۸ Monitoring of vibration impacts should be conducted when the construction works are ۸ less than 100m from the temple. S9.6.4 Indirect vibration impact To prevent indirect Contractors Work areas Construction Vibration Limits Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of vibration impact Phase on Heritage ٨ Buildings by 5mm/s measured inside the historical buildings; CEDD: GCHIA: ٨ Monitoring of vibration should be carried out during construction phase. ٨ Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau AMO. Temple as well. A proposal with details for the mitigation measures and monitoring of impacts on built ٨ heritage shall be submitted to AMO for comments before commencement of work. Landscape and Visual Impact (Construction Phase) Table CM1 - Construction area and contractor's temporary works areas to be minimised to avoid Avoid impact on CEDD (via Construction N/A ۸ General 10.8.1 impacts on adjacent landscape. adjacent landscape Contractor) planning and areas during

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the measures?	measures	the measures?	standards for the measures to achieve?	
		Concerns to					
		address					
					construction		
					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration	CEDD (via	N/A	Construction	N/A	^
10.8.1		of impact	Contractor)		planning		
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be	To allow re-use of	CEDD (via	General	Site clearance	As per the	^
10.8.1	stripped and stored for re-use in the construction of the soft landscape works. The Contract	topsoil	Contractor)			Particular	
	Specification shall include storage and reuse of topsoil as appropriate.					Specification	
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	*(7)
10.8.1	protected during construction. Detailed Tree Protection Specification shall be provided in the	loss	Contractor)	approved	and	and as per tree	
	Contract Specification, under which the Contractor shall be required to submit, for approval, a			Tree Removal	throughout	protection	
	detailed working method statement for the protection of trees prior to undertaking any works			Application(s)	construction	measures in	
	adjacent to all retained trees, including trees in contractor's works areas. (Tree protection				period	Particular	
	measures will be detailed at Tree Removal Application stage).					Specification	
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable.	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1	Where possible, trees should be transplanted direct to permanent locations rather than	preservation of	Contractor)	approved		and as per tree	
	temporary holding nurseries. A detailed tree transplanting specification shall be provided in the	existing trees		Tree Removal		protection	
	Contract Specification and sufficient time for preparation shall be allowed in the construction			Application(s)		measures in	
	programme.					Particular	
						Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1	hoardings. Trees shall be capable of reaching a height >10m within 10 years.	screening of the	Contractor)	Interchange	construction		
		works		and edge of	period		
				Road P2			

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					Decembe	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the measures to	
		Concerns to	measures?		measures?		
		address				achieve?	
				landscape			
				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1		intrusion	Contractor)		construction	Specification	
					period		
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1	working periods.	intrusion	Contractor)		construction		
					period		
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of visual	CEDD (via	Project site	Excretion of	N/A	^
10.8.1	surrounding area	intrusion	Contractor)	Boundary	site hoarding		
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of visual	CEDD (via	Built	Design and	N/A	^
10.8.1		intrusion and	Contractor)	structures	construction		
		integration with			stage		
		environment					
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	ТКО	Throughout	N/A	^
10.8.1		contamination of	Contractor)	reclamation,	construction		
		water courses and		TKO tunnel	period		
		water bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		

мр N -	IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION	MEASURES	December 201				
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to implement the	Location of the measures	When to Implement the	What	Status
		recommended				requirements or	
		Measures & Main				standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
		existing coastlin		points at TKO	stages		
				and Lam Tin			
				and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads and			
				Road P2			
Landfill	Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill	^
	hazards, should be present on site throughout the groundworks phase. The Safety Officer	from landfill gas		within the Sai	phase	Gas Hazard	
	should be provided with an intrinsically safe portable instrument, which is appropriately	hazards		Tso Wan		Assessment	
	calibrated and able to measure the following gases in the ranges indicated below:			Landfill		Guidance Note	
	Methane 0-100% LEL and 0100% v/v			Consultation			
	Carbon dioxide 0-100%			Zone			
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all excavation	from landfill gas		within the Sai	phase	Gas Hazard	^
	workers, supervisors and engineers working within the Consultation Zone, should receive	hazards		Tso Wan		Assessment	
	appropriate training on working in areas susceptible to landfill gas, fire and explosion			Landfill		Guidance Note	

EIA Ref.		Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
			recommended	implement	the	Implement	requirements or	
			Measures & Main	the	measures	the	standards for the	
			Concerns to	measures?		measures?	measures to	
			address				achieve?	
	-	An excavation procedure or code of practice to minimize landfill gas related risk should			Zone		Department's	٨
		be devised and carried out.					Code of Practice	
	-	No worker should be allowed to work alone at any time in or near to any excavation. At					for Safety and	٨
		least one other worker should be available to assist with a rescue if needed.					Health at Work in	
	-	Smoking, naked flames and all other sources of ignition should be prohibited within 15m					Confined Space	٨
		of any excavation or ground-level confined space. "No smoking" and "No naked						
		flame" notices should be posted prominently on the construction site and, if necessary,						
		special areas should be designed for smoking.						
	-	Welding, flame-cutting or other hot works should be confined to open areas at least 15m						٨
		from any trench or excavation.						
	-	Welding, flame-cutting or other hot works may only be carried out in trenches or confined						٨
		spaces when controlled by a "permit to work" procedure, properly authorized by the						
		Safety Officer (or, in the case of small developments, other appropriately qualified						
		person).						
	-	The permit to work procedure should set down clearly the requirements for continuous						٨
		monitoring for methane, carbon dioxide and oxygen throughout the period during which						
		the hot works are in progress. The procedure should also require the presence of an						
		appropriately qualified person, in attendance outside the 'confined area', who should be						
		responsible for reviewing the gas measurements as they are made, and who should have						
		executive responsibility for suspending the work in the event of unacceptable or						
		hazardous conditions. Only those workers who are appropriately trained and fully aware						
		of the potentially hazardous conditions which may arise should be permitted to carry out						
		hot works in confined areas.						

EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- Where there are any temporary site offices, or any other buildings located within the Sai						^
	Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to						
	accumulate landfill gas, then they should either be located in an area which has been						
	proven to be free of landfill gas (by survey using portable gas detectors); or be raised						
	clear of the ground by a minimum of 500mm. This aims to create a clear void under the						
	structure which is ventilated by natural air movement such that emission of gas from the						
	ground are mixed and diluted by air.						
	- Any electrical equipment, such as motors and extension cords, should be intrinsically						^
	safe. During piping assembly or conduiting construction, all valves/seals should be closed						
	immediately after installation. As construction progresses, all valves/seals should be						
	closed to prevent the migration of gases through the pipeline/conduit. All piping						
	/conduiting should be capped at the end of each working day.						
	- During construction, adequate fire extinguishing equipment, fire-resistant clothing and						^
	breathing apparatus (BA) sets should be made available on site.						
	- Fire drills should be organized at not less than six monthly intervals.						^
	- The contractor should formulate a health and safety policy, standards and instructions for						^
	site personnel to follow.						
	- All personnel who work on the site and all visitors to the site should be made aware of the						^
	possibility of ignition of gas in the vicinity of excavations. Safety notices (in Chinese and						
	English) should be posted at prominent position around the site warning danger of the						
	potential hazards.						
	- Service runs within the Consultation Zone should be designated as "special routes";						^
	utilities companies should be informed of this and precautionary measures should be						

	IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION				December 2017			
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status	
		recommended	implement	the	Implement	requirements or		
		Measures & Main	the	measures	the	standards for the		
		Concerns to	measures?		measures?	measures to		
		address				achieve?		
	implemented. Precautionary measures should include ensuring that staff members are							
	aware of the potential hazards of working in confined spaces such as manholes and							
	service chambers, and that appropriate monitoring procedures are in place to prevent							
	hazards due to asphyxiating atmospheres in confined spaces. Detailed guidance on							
	entry into confined spaces is given in Code of Practice on Safety and Health at Work in							
	Confined Spaces (Labour Department, Hong Kong).							
	- Periodically during ground-works construction within the 250m Consultation Zone, the						٨	
	works area should be monitored for methane, carbon dioxide and oxygen using							
	appropriately calibrated portable gas detection equipment. The monitoring frequency							
	and areas to be monitored should be set down prior to commencement of ground-works							
	either by the Safety Officer or an approved and appropriately qualified person.							
S11.5.26	Monitoring	Protect the workers	Contractor	Project sites	Construction	EPD's Landfill		
-	• Routine monitoring should be carried out in all excavations, manholes, chambers,	from landfill gas		within the Sai	phase	Gas Hazard	٨	
S11.5.31	relocation of monitoring wells and any other confined spaces that may have been	hazards		Tso Wan		Assessment		
	created. All measurements in excavations should be made with the extended			Landfill		Guidance Note		
	monitoring tube located not more than 10 mm from the exposed ground surface.			Consultation				
	Monitoring should be performed properly to make sure that the area is free of landfill			Zone				
	gas before any man enters into the area.							
	• For excavations <b>deeper than 1m</b> , measurements should be carried out:						٨	
	- at the ground surface before excavation commences;-							
	- immediately before any worker enters the excavation;							
	- at the beginning of each working day for the entire period the excavation remains open;							
	and							

	MPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION					December	
EIA Ref.	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Status
		recommended	implement	the	Implement	requirements or	
		Measures & Main	the	measures	the	standards for the	
		Concerns to	measures?		measures?	measures to	
		address				achieve?	
	- periodically throughout the working day whilst workers are in the excavation.						
	• For excavations <b>between 300mm and 1m deep</b> , measurements should be carried out:						^
	- directly after the excavation has been completed; and						
	- periodically whilst the excavation remains open.						
	• For excavations less than 300mm deep, monitoring may be omitted, at the discretion of						^
	the Safety Officer or other appropriately qualified person.						
	• Depending on the results of the measurements, actions required will vary and should						^
	be set down by the Safety Officer or other appropriately qualified person.						
	• The exact frequency of monitoring should be determined prior to the commencement of						^
	works, but should be at least once per day, and be carried out by a suitably qualified or						
	qualified person before starting the work of the day. Measurements shall be recorded						
	and kept as a record of safe working conditions with copies of the site diary and						
	submitted to the Engineer for approval. The Contractor may elect to carry out						
	monitoring via an automated monitoring system.						
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill	construction stage	Contractor	Project sites	Construction	EPD's Landfill	N/A
	Consultation Zone should be minimized by suitable precautionary measures recommended in	within the Sai Tso		within the Sai	phase	Gas Hazard	
	Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Wan		Tso Wan		Assessment	
		Protect the workers		Landfill		Guidance Note	
		from landfill gas		Consultation			
		hazards		Zone			

# App N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

- **Key:** * Observation/reminder was made during site audit but improved/rectified by the contractor.
  - # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
  - X Non-compliance of mitigation measure
  - Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Qua	lity Impact				
* (1)	S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	NE/2015/01	Construction of	Water spraying should be provided more frequently on
		roads		Lam Tin	slopes in LTI for dust suppression.
				Interchange	
	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction			
		Dust) Regulation and good site practices:			
		- Use of regular watering to reduce dust emissions from exposed site surfaces			
		and unpaved roads, particularly during dry weather.			
		- Use of frequent watering for particularly dusty construction areas and areas			
		close to ASRs.			
Noise lı	mpact (Cor	nstruction Phase)			
* (2)	Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the	NE/2015/01	Construction of	Noise barriers should be placed next to breaking works at
	Mitigation	approved Noise Mitigation Plan		Lam Tin	LTI to reduce noise nuisance to nearby NSRs.
	Plan			Interchange	
			NE/2015/02	Construction of	The Contractor was reminded to provide sufficient noise
				Road P2	barriers to the winches on the double water gate to minimize noise nuisance to nearby NSR.

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
			NE/2015/02	Construction of	The Contractor was reminded to properly maintain the
				Road P2	acoustic materials on the head of breaker in Portion 7 to minimize noise nuisance to nearby NSR.
Water G	Quality Imp	act (Construction Phase)		I	1
* (3)	S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual	NE/2015/03	Construction of	Mud and Sand was observed accumulated in the
		cells of approximately 6 to 8m ³ capacity, are recommended as a general mitigation		Northern	sedimentation tank in west pier. The Contractor is reminded
		measure which can be used for settling surface runoff prior to disposal. The		Footbridge	to remove the mud regularly.
		system capacity is flexible and able to handle multiple inputs from a variety of			
		sources and particularly suited to applications where the influent is pumped.			
Ecologi	ical Impact				-
* (4)	S 5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	NE/2015/01	Construction of	Oil stains at Portion IVC near storage cupboard should be
		far as possible be located within roofed areas. The drainage in these covered areas		Lam Tin	properly cleared as chemical waste.
		should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage		Interchange	
		should be contained and cleaned up immediately. Waste oil should be collected and	NE/2015/01	Construction of	Oil stains at Portion 6 in TKO site should be properly
		stored for recycling or disposal in accordance with the Waste Disposal Ordinance.		TKO Portal	disposed of as chemical waste.
# (4)			NE/2015/01	Construction of	Oil stains at Portion IVC should be properly cleared as
				Lam Tin	chemical waste.
				Interchange	
* (5)	S5.8.45	Any service shop and maintenance facilities should be located on hard standings	NE/2015/03	Construction of	Spoil and debris observed accumulated in drip tray of ai
		within a bunded area, and sumps and oil interceptors should be provided.		Northern	compressor in west pier. The Contractor is reminded to
		Maintenance of vehicles and equipment involving activities with potential for		Footbridge	remove the material from drip tray.
		leakage and spillage should only be undertaken within the areas appropriately			
		equipped to control these discharges.			
Waste I	Manageme	nt (Construction Phase)			·

Decembe	er 2017
---------	---------

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
# (6)	S8.6.3	Good Site Practices and Waste Reduction Measures	NE/2015/02	Construction of	Housekeeping should be enhanced at Portion 7 and
		- Regular cleaning and maintenance programme for drainage systems, sumps		Road P2	accumulation of waste should be avoided.
		and oil interceptors.			
* (7)	Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to	NE/2015/03	Construction of	To remove air compressor vessel away from tree
	10.8.1	be carefully protected during construction. Detailed Tree Protection Specification		Northern	protection zone in west pier.
		shall be provided in the Contract Specification, under which the Contractor shall be		Footbridge	
		required to submit, for approval, a detailed working method statement for the			
		protection of trees prior to undertaking any works adjacent to all retained trees,			
		including trees in contractor's works areas. (Tree protection measures will be			
		detailed at Tree Removal Application stage).			

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

## Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

### Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
1	7 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Air Quality & Noise	The complainant complained about the construction noise and dust near Yau Lai Estate. (EPD Reference No.: K15/RE/00032001-16)	Y	<ul> <li>According to information provided by the Contractor, powered Mechanical Equipment being operated for construction of Lam Tin Interchange on 7 and 9 December 2016 include breaker, dump truck, backhoes, drilling rig and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking.</li> <li>The Contractors had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual to reduce construction dust and noise nuisance to the vicinity.</li> <li>According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 6 – 14 December 2016. Similarly, no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 6 – 16 December 2016. With the implementation of environmental mitigation measures by Contractor on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.</li> </ul>	Closed
2	9 th December 2016	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	Noise	The complainant complained about the construction noise near Yau Lai Estate. (EPD Reference No.: K15/RE/00032317-16)	Y		Closed
3	9 th December 2016	Not Specified / Construction of Road P2	Sai Kung District Council Member Mr. Chan Kai Wai	Air Quality & Noise	The complainant complained about the noise nuisance during transportation of construction materials on haul road and dust generation during construction activities.	Y	No construction activities were carried out for both construction of Road P2 and TKO portal during night time or at about 7am. Therefore, no construction noise nuisance were generated during night-time or at about 7am under this Project and it is considered that these noise nuisance is not project- related. The Contractors of this Project had implemented environmental	Closed
4	20 th December 2016	Not Specified / Construction of Road P2	Resident of Ocean Shore	Noise	The complainant complained about the lighting and noise nuisance on construction vessels moored near Ocean Shores during night time.	Y	mitigation measures for air quality, noise and visual impact (night-time lighting) in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual. The Contractors had taken the initiative to provide additional noise mitigation measures to works since the complaints were received	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
5	22nd December 2016	21 Dec 2016 at night / Construction of TKO portal	Resident of Block 3, Ocean Shores	Noise	The complainant concerned the noise generated by the construction works at hillside near Block 3 of Ocean Shores in daytime.	Y	<ul> <li>including:</li> <li>Temporary noise barrier had been installed to reduce noise nuisance from piling works in construction of Road P2 Provision of noise enclosure to cover generators for reducing its noise nuisance in TKO portal; and</li> </ul>	Closed
6	22nd December 2016	Not specified / Construction of TKO portal	Public	Noise	The complainant complained about the noise generated by the construction works at hillside in daytime.	Y	<ul> <li>Provision of portable noise enclosures at breakers and generators to reduce noise emission from works in TKO portal</li> <li>According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded in December 2016. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.</li> <li>According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety purpose was observed from the construction vessel and anchors.</li> </ul>	Closed
7	22nd December 2016	Not specified / Construction of Road P2	Resident from Ocean Shore	Noise	The complainant complained about the noise nuisance of broadcast on construction vessel near Ocean Shores at 7am and the noise generated by the construction works outside Tseung Kwan O Chinese Permanent Cemetery.	Y		Closed
8	22 nd December 2016	Not specified / Construction of Road P2 and TKO portal	Resident from Ocean Shore	Noise	The complainant complained about the noise nuisance generated by construction works of Tseung Kwan O portal in daytime and noise nuisance of "loud speaker" on construction vessel near Ocean Shores.	Y		Closed
9	16 th December 2016	Not Specified / near Ocean Shores	DC member	Noise & (Light)	The complainant complained that they noticed about 2 work vessels were being used at 00:00-01:00 and also moored there overnight which caused light pollution and affecting the residents.	Y	According to the findings of investigation, minimum lighting on the construction vessel was required for guard watching the works site. Adverse night-time light and noise nuisance from the marine works area near Ocean Shores as alleged by the complainant are considered not caused by this Project. The Contractor had continuously implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
10	17 th January 2017	5 January 2017 / near Ocean Shores	DC member	Noise & (Light)	The complainant complained that marine vessels were used at about 22:00 and around 01:00 on 5 Jan 2017, again causing noise and light nuisance to the residents.	Y	<ul> <li>Mitigation Measures" of EM&amp;A Manual. To avoid strong light emission towards the sensitive receivers, night-time lighting is properly controlled by hooding all lights (except necessary lighting for safety purpose and guard watching);</li> <li>According to the ET's ad-hoc site inspection during night-time, no unacceptable noise nuisance from this Project was heard. No strong light emission from all the construction vessels near Ocean Shores was observed yet minimum lighting for marine safety and guard watching purpose was observed from the construction vessel and anchors.</li> <li>The Contractor was recommended to continuously implement the following visual impact mitigation measures:</li> <li>necessary lighting on construction vessels should be oriented as much as possible such that direct strong lighting towards the sensitive receivers is avoided.</li> <li>Strong lighting that may be in intermittent use should be shut down between works periods</li> </ul>	Closed
11	23 rd December 2016	Not Specified / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	Water	The complainant complaint about the Soil/muddy water from construction site near Cha Kwo Ling Tsuen. (EPD Reference No.: K15/RE/00033951-16)	N	No construction works were being carried out on 23rd December 2016 at Portion WA1, which is the site portion near Cha Kwo Ling Tsuen. Despite, it was recorded that some muddy water was flowing from the Contractor's wheel washing facility to the gullies within the site boundary.	Closed
12	29 th December 2016	23 rd December 2016 / near Cha Kwo Ling Tsuen	Cha Kwo Ling Tsuen	Water	The complainant complaint that some muddy water flowing from the wheel washing facility to the gullies within the site boundary.	N	For complaint of muddy water on 23rd December 2016, the Contractor has fixed the clear water hose for wheel washing on 24th December 2016 early morning. During the recent weekly site inspections to Site Portion WA1, no muddy water was observed leaked out of the Site Boundary.	Closed
13	6 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	Noise	The complainant complained about the noise nuisance during rock breaking at the Eastern Harbour Crossing (EHC) portal and lack of noise mitigation measures during the works.	Y	After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers. The Contractor had implemented environmental mitigation measures in	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
14	6 th January 2017	Not Specified / Cha Kwo Ling Road	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance generated by the excavation works at Cha Kwo Ling Road on 6 January 2017 just after 7 a.m.	Y	accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: <u>Air Quality</u> Use of frequent watering during construction of Lam Tin Interchange, including watering of eight times a day on active work area, exposed area and paved haul roads to mitigate air quality impacts to the nearby	Closed
15	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	Air Quality & Noise	The complainant complained about the noise nuisance during the construction works near Yau Lai Estate at 7:15am. He requested to erect noise barriers and set up water spraying system to minimize the noise and air nuisances to the nearby residents.	Y	<ul> <li>Air Sensitive Receivers (ASRs)</li> <li><u>Noise</u></li> <li>Provision of portable noise enclosures to head of breakers to reduce noise emission during rock breaking works in Lam Tin Interchange;</li> <li>Provision of portable noise enclosures to reduce noise nuisance from drilling works and generator in Lam Tin Interchange; and</li> <li>Use of Quiet PME on-site including generator and hydraulic excavator.</li> <li>The Contractor has taken the initiative to implement additional noise</li> </ul>	Closed
16	6 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Cheuk Lai House	Noise	ThecomplainantcomplainedtheconstructionnoisegeneratedfromthisProject(EPDReferenceNo.:K15/RE/00000564-17)	Y	<ul> <li>mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings:</li> <li>Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange;</li> <li>Commencement time of daily construction works for construction of</li> </ul>	Closed
17	6 th January 2017	Not Specified / Construction site near Yau Lai Estate	Resident of Yau Lai Estate Bik Lai House	Noise	The Yau Lai Estate Property Services Management Office mentioned that one of the resident of Yau Lai Estate had complained to Hong Kong Housing Authority (HKHA) about the noise generated by the construction works.	Y	<ul> <li>Lam Tin Interchange has been postponed from 7am to 8am each day.</li> <li>According to the regular air quality and noise monitoring for this Project, no Action or Limit Level Exceedance was recorded from 16 December 2016 to 19 January 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.</li> <li>Nevertheless, the Contractor was recommended to continue to properly</li> </ul>	Closed
18	10 th January 2017	Not Specified	Anonymous	Noise	The complainant complained the construction noise generated (EPD Reference No.: K15/RE/00000967-17)	Y	implement and strictly follow the air quality and noise mitigation measures as recommended in the Environmental Monitoring & Audit Manual and approved Noise Mitigation Plan to minimize environmental impact on the construction site.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
19	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noise generated from rock breaking at Lam Tin Interchange. He requested concrete actions to improve the situation.	Y		Closed
20	12 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	ThecomplainantcomplainedthenoisegeneratedfromrockbreakingatLamTinInterchange.	Y		Closed
21	13 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	ThecomplainantcomplainedtheconstructionnoisegeneratedatLamTinInterchangeatramin themorning.	Y		Closed
22	13 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	Anonymous	Noise	The complainant complained about the noise generated by the construction works near the toll plaza of the Eastern Harbour Crossing (EHC). The complainant complained again on 24 Jan 2017 and mentioned the noise problem still affected the daily life of residents	Y		Closed
23	16 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning.	Y		Closed
24	17 th January 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	ThecomplainantcomplainedtheconstructionnoisegeneratedatLamTinInterchange.	Y		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
25	26 th January 2017	Not Specified / Construction Works near Eastern Habour Crossing tunnel portal	黃國健議員 及 何啟明議員	Noise	LC members referred complaints about the noise generated by the construction works near the EHC tunnel portal. They mentioned that the noise generated by the construction works had greatly affected the daily life of nearby residents, especially occupants of Block 5 of Yau Lai Estate and those who lived at the upper floors.	Y	<ul> <li>After investigation, it was found out that necessary rock breaking works by hydraulic or pneumatic breakers was conducted during excavation for tunnel adit at Lam Tin Interchange. Noise nuisance from the works area is considered due to the high noise level emission during use of hydraulic or pneumatic breakers.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual.</li> <li>The Contractor has taken the initiative to implement additional noise mitigation measures in order to further minimize noise nuisance to the nearby sensitive receivers, including the followings:</li> <li>Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange;</li> <li>Commencement time of daily construction works for construction of Lam Tin Interchange has been postponed from 7am to 8am each day.</li> </ul>	Closed
26	27 th January 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yau Lai Estate Bik Lai House	Noise	The complainant complained the construction noise generated at Lam Tin Interchange at 7am in the morning. (EPD Ref No. K15/RE/00002945-17)	Y	According to information provided by the Contractor, powered Mechanical Equipment being operated on site during the time of complaint include breaker, dump truck, backhoes, drilling rig, mobile crane and small bulldozer. They were operated on and off with some idling time. It is considered that noise nuisance during the time of complaint was mainly due to high noise level emission during the use of breaker for rock breaking.	Closed
27	9 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about the noise nuisance during the construction works of Lam Tin Interchange at 8:10am. (EPD Reference No.: K15/RE/00003855- 17)	Y	<ul> <li>In addition to the the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual, the Contractor has implemented the following additional noise mitigation measures since late including:</li> <li>Provision and installation of additional temporary noise barrier during rock breaking works for construction of Lam Tin Interchange;</li> <li>Sound absorptive materials with 50mm thickness were hanged on</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
28	13 th February 2017	Not Specified / construction of Lam Tin Interchange	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about the noise nuisance during the construction works of Lam tin Interchange.	Y	<ul> <li>rock mountain wall as well as temporary noise barrier containers; and</li> <li>Adoption of alternative rock breaking method such as partial rock breaking by rock splitter.</li> <li>In addition, the Contractor has taken the initiative to explore measures to further reduce construction noise nuisance such as:</li> <li>Installation of cantilever barrier on top of the containers;</li> <li>Installation of tuned mass dampers on breaker head; and</li> <li>Use of acoustic mat cover and a retractable noise barrier where feasible.</li> <li>According to the regular noise monitoring no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 from 2 – 15 February 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.</li> </ul>	Closed
29	23 rd February 2017	18 Feb 2017 / Slope Works at Lei Yue Mun Road	Anonymous	Air Quality	The complainant complained about the dust generated by the slope works opposite to Lam Tin Ambulance Deport on 18 February 2017 afternoon. He mentioned that the dust greatly affected the pedestrian.	N	The major source of construction dust nuisance was construction of a temporary storage area. As per investigation, the Contractor has provided environmental mitigation measures to prevent dust generation for the slope works. Water spray was prepared and provided next to the works for dust suppression during the use of handheld breaker.	Closed
30	23 rd February 2017	Not Specified / BMCPC Footpath	Sai Kung District Council Member Mr. Chan Kai Wai	(Safety)	Mr. Chan complained that some of the excavated materials fell from the dump trucks on the BMCPC footpath affecting the safety of pedestrian and hikers.	N	<ul> <li>The major source of construction dust nuisance was formation of temporary site haul road.</li> <li>As per investigation, the following environmental mitigation measures are implemented by the Contractor:</li> <li>Water truck was provided for dust suppression at least 8 times per day along the footpath within our site boundary;</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
31	2 nd March 2017	Not Specified / Construction Works near BMCPC Footpath	A resident of Ocean Shores	Air Quality	The complainant complained about the dust generated by the construction works near the existing BMCPC footpath	N	<ul> <li>Wheel washing were provided for all dump trucks once loaded;</li> <li>All the dump trucks were covered properly with a mechanical cover once loaded.</li> <li>The dump trucks were loaded in a specific area (off the footpath) near the formation works area.</li> </ul>	Closed
32	^{8th} March 2017	7 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Public	Air Quality & Noise	The complainant complained the dust and noise generated by the slope works near Sin Fat Road Tennis Court	Y	<ul> <li>The major source of construction dust and noise nuisance was shotcreting of slope surface, and drilling for soil nail.</li> <li>As per investigation, the following environmental mitigation measures are implemented by the Contractor:</li> <li>Tarpaulin sheets were provided along the slope adjacent to the</li> </ul>	Closed
33	10 th March 2017	4 Mar 2017 / Slope works near Sin Fat Road Tennis Court	Anonymous	Air Quality	The complainant complained the dust generated by the slope works near Sin Fat Road Tennis Court.	Ν	<ul> <li>tennis court during shotcreting;</li> <li>After the complaint was received, the dust screen for tennis court has been enhanced immediately with additional tarpaulin along the fencing of tennis court;</li> <li>Additional acoustic sheets were also provided to minimize construction noise nuisance to users of the tennis courts;</li> <li>At the location of shotcreting / drilling of slope works, additional tarpaulin sheet was placed at source to minimize dust generation due to the works</li> </ul>	Closed
34	13 th March 2017	27 Feb – 12 Mar 2017 / Barging point in front of Ocean Shore	Public	Noise	The complainant complained about noise from the loading / unloading activities at the barging point in front of Ocean Shore for material delivery to the LT-TKO Tunnel work site during 3:00 am and 4:00am over the past 2 weeks.	Y	According to information provided by the Contractors, no works, including any loading / unloading works, was carried out during the restricted hours at site area near Ocean Shores in early March 2017. The complaint is concluded to be non-Project related. The Engineer and the Environmental Team have reminded the contractor(s) not to carry out any works, especially loading/unloading activities near the Ocean Shores during restricted hours to minimize noise nuisance to the nearby residents.	Closed
35	21 st March 2017	Not Specified / Construction Works near Cha Kwo Ling Village	茶果嶺鄉民 聯誼會書記 鍾先生	Water & Waste/Che mical Managemen t	The complainant stated that villagers concerned about the waste water produced by car washing in construction site will flow into the sea/ existing drainage system directly	Ν	In accordance with the information provided by the Contractor of the Project, vehicle wheel washing near Cha Kwo Ling Village was carried out site access of Portion 1 and Portion WAII. At Portion 1, a 'WetSep' wastewater treatment system was installed to treat wastewater from vehicle washing washing. For Portion WAII, surface runoff collection system is also installed near the site access. Also, concrete sand bag bunds are provided near seafront of Portion WAII to prevent wastewater	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					and requested the contractors to improve the situation.		flowing into the sea. Despite, the Contractor was reminded to fully implement the relevant water quality mitigation measures according to the EM&A Manual on site. The Contractor was also recommended to provide training for all workers again to increase awareness of their environmental responsibilities and properly collect and treat all wastewater generated due to construction works.	
36	25 th March 2017	Not Specified / Construction Works of TKO Portal	Public	Air Quality	The complainant complaint about the construction dust impact due to marine works and construction of tunnel of this Project.	Ν	<ul> <li>The major source of construction dust and noise nuisance was site formation works for TKO Portal and marine works for construction of temporary barging facilities</li> <li>As per investigation, the following environmental mitigation measures are implemented by the Contractor:</li> <li>Provision of frequent watering including watering of eight times a day on active work area, exposed area and paved haul roads;</li> <li>Installation of automatic sprinklers for water spray to minimize dust generation;</li> <li>Shotcreting or hydroseeding to surface of TKO Portal site formation;</li> <li>Provision of wheel washing to vehicles out of site;</li> <li>Covering of dusty slope surface by impervious material such tarpaulin sheets.</li> <li>During the weekly site inspections by the Environmental Team (ET), no deficiencies about exhaust gas or black smoke generation was observed from the Powered Mechanical Equipment (PME) on site of construction of TKO Portal. Air quality impact due to exhaust gas or black smoke emission from PME is considered insignificant from the Project.</li> </ul>	Closed
37	6 th April 2017	1 Apr 2017 / Slope works near Sin Fat Road Tennis Court	Public	Air Quality	The complainant complained the smell and dust generated by the slope works near Sin Fat Road Tennis Court on 1 April 2017. He suspected that the shotcrete may contain toxic substances and may affect the health.	Ν	See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
38	4 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained about construction noise nuisance near Nga Lai House, Yau Lai Estate and lack of noise mitigation measures during construction works.	Y	According to information provided by the Contractor, necessary rock breaking work was carried out in May 2017 by excavator-mounted breakers and drill rig at Portion IVC, which is in close vicinity of the complainant. Also, 2 nos. of excavator / drill rig were operated in May 2017 for excavation and drilling and rock hill. Noise nuisance concerned by the complainant is considered due to the high noise level emission during use of these Powered Mechanical Equipment (PME). The Contractors had implemented environmental mitigation measures on	Closed
39	8 th May 2017	Not Specified / Construction site near Yau Lai Estate	Kwun Tong District Council Member Mr. Lai Shu Ho	Air Quality & Noise	The complainant complained about construction noise nuisance and air pollution generated by this Project.	Y	site according to the EM&A Manual to reduce air quality impact and noise nuisance to the vicinity. Weekly Environmental Site Inspection has been on-going in May 2017. Recommendations was made on site by the Engineer and the ET to increase the effectiveness of the noise mitigation measures. According to the regular air quality monitoring conducted at Air Quality Monitoring Stations AM3, no Action or Limit Level Exceedance was recorded from 4, 10 and 16 May 2017. Similarly, no Limit Level Exceedance was recorded in May 2017 at Noise Monitoring Station CM1 and CM2. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality and noise impact was brought to the nearby sensitive receivers by the works of this Project.	Closed
40	9 th May 2017	Not Specified / Construction of Road P2 near Ocean Shores	Public	Noise	The complainant complained about noise and environmental nuisance resulting from the piling works.	Y	<ul> <li>Major construction activities near Ocean Shores in early May included sheetpiling works and pre-boring works for construction of Road P2. Powered Mechanical Equipments (PME) operated included drilling rigs and piling rigs (vibration hammer), which are considered to be the source of noise nuisance resulting from piling work.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual and the approved Noise Mitigation Plan. Movable temporary noise barrier is erected on ground in vicinity of the piling areas to reduce noise emission during piling works. Acoustic material are also hanged on the piling rigs to shield noise from the Powered Mechanical Equipment (PME) to nearby noise sensitive receivers.</li> <li>According to the regular noise monitoring conducted at Noise Monitoring Stations CM6(A) and CM7(A), no Limit Level Exceedance was recorded from 1- 14 May 2017. With the implementation of</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							environmental mitigation measures by Contractors on site, it is considered that no adverse noise impact was brought to the nearby sensitive receivers by the works of this Project.	
41	10 th May 2017	Not Specified / Construction of Road P2 near Ocean Shores	Public	Noise	The complainant complained about noise nuisance from the use of the generators until midnight.	Y	During evening time, two generators were operated between 7pm - 11pm for site office use only. No generators were used until midnight according to the Contractor. Additional temporary noise barrier is installed by the Contractor to	Closed
42	10 th May 2017	Not Specified / Slope works near Sin Fat Road Tennis Court	Public	Air Quality	The complainant complained about the generation of construction dust from this Project	N	screen noise due to use of generators during evening time See Investigation / Mitigation Action for Complaint No. 32 and 33.	Closed
43	15 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
44	16 th May 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Public	Noise	The complainant complained about construction noise nuisance during construction works at work site near Nga Lai House, Yau Lai Estate from 8 am to 7 pm.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
45	17 th May 2017	3 rd May 2017 / Marine Works Area in TKO Side	Public	Noise	The complainant complained about the noisy ongoing construction works on a public holiday.	Y	No marine works was carried out under Contract No. NE/2015/01 on public holidays on 30 April, 1 May and 3 May 2017. While marine construction works was carried out on public holiday under Contract No. NE/2015/02 on 3 May 2017 between 9am to 5pm. One derrick barge was operated for the marine works during this period.no violation of CNP (No. GW-RE0317-17) conditions is observed during the time of complaint. The Engineer and the Environmental Team have reminded the contractor(s) to minimize construction works during public holidays or restricted hours to minimize noise nuisance to the nearby residents.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
46	25 th May 2017	Not Specified / Construction site near Tin Hau Temple	茶果嶺鄉民 聯誼會主席 羅悅屏	Noise	The complainant complaint about the noisy rock breaking works near Tin Hau Temple and poor efficiency of vehicle wheel washing on site.	Y	<ul> <li>According to information provided by the Contractor of the Project, excavation and rock breaking by 1 no. of excavator/excavator-mounted breaker was carried out intermittently during daytime of the time of complaint near Tin Hau Temple. The tip of the breaker is wrapped with acoustic blanket and followed by erection of noise barrier.</li> <li>A wheel washing bay had been installed at the site entrance on Cha Kwo Ling Road to construction of Lam Tin Interchange. A 'WetSep' wastewater treatment system was installed to treat wastewater from vehicle washing washing.</li> <li>The Contractor was reminded to fully implement on site the relevant noise and water quality mitigation measures according to the EM&amp;A Manual and the approved Noise Mitigation Plan.</li> </ul>	Closed
47	27 th May 2017	Not Specified / Construction site at Lei Yue Mun Road	Public	Noise	The complainant complained about construction noise nuisance during construction works at work site at Lei Yue Mun Road.	Y	See Investigation / Mitigation Action for Complaint No. 38 and 39.	Closed
48	1 st June 2017	Not Specified / Construction site near Yung Lai House, Yau Lai Estate	Public	Noise	The complainant complained about construction dust and noise nuisance during construction works at work site near Yung Lai House, Yau Lai Estate (EPD Reference No.: K15/RE/00016902-17)	Y	<ul> <li>According to the information provided by the Contractor, the major construction activities performed in June and mid-July included excavation and drilling in Portion IVC near Lei Yue Mun Road, excavation and rock breaking at Lam Tin Interchange and rock breaking next to Yau Tong Site Office.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual as below:</li> <li><u>Air Quality:</u></li> <li>Water spraying was provided during breaking works at Portion IVC, slope G of Lam Tin Interchange and works area near Yau Tong Site Office to minimize dust generation due to the works.</li> <li><u>Noise:</u></li> <li>Operating PMEs at Portion IVC, slope G of Lam Tin Interchange and works area near Yau Tong Site Office were on and off with idling time.</li> <li>Excavator-mounted breakers were mounted with acoustic sheets.</li> <li>Noise barriers were erected during the breaking works at Portion IV,</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul><li>slope G of Lam Tin Interchange and works area near Yau Tong Site Office to minimize construction noise nuisance.</li><li>With the implementation of environmental mitigation measures by Contractors on site, it is considered that air quality and noise nuisance by</li></ul>	
49	7 th June 2017	7 th June 2017 / Construction site near Sin Fat Road Tennis Courts	Correspond ent of Sin Fat Road Tennis Courts	Air Quality	The complainant complained about construction dust nuisance near the tennis courts.	N	<ul> <li>the works has been brought to a minimum level.</li> <li>In accordance with the information provided by the Contractor of the Project, the major construction activities at the location of complaints were shotcreting of slope surface and drilling for soil nail near Sin Fat Road Tennis Court.</li> <li>The Contractor immediately stopped the shotcreting works adjacent to the tennis courts upon the complaint, and re-schedule the works such that the shotcreting works near the tennis court are performed only when the tennis courts are not in use. The Contractor also cleared the dust brought by the construction in the tennis courts on the same day of the complaint.</li> <li>the Contractor was reminded to fully implement the relevant air quality mitigation measures according to the EM&amp;A Manual on site.</li> </ul>	Closed
50	8 th June 2017	30 th May 2017 / marine works area inside the cofferdam installed under the Project	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained about marine construction work being carried out on 30 May 2017 (a public holiday) within the reclamation area near Ocean Shore under this Project (EPD Reference No.: N08/RE/019540-17)	Y	According to information provided by the Contractor and confirmation by the Engineer, no marine construction activities were conducted on public holiday on 30th May 2017 within the cofferdams installed in the reclamation area under this Project. The complaint on 30th May 2017 therefore considered to be non-Project related.	Closed
51	15 th June 2017	Not Specified / Construction site near Nga Lai House, Yau Lai Estate	Public	Air Quality & Noise	The complainant complained about construction dust and noise nuisance during construction works at work site near Nga Lai House, Yau Lai Estate. (EPD Reference No.: K15/RE/00018656-17)	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed
52	21 st June 2017	Not Specified / Construction	Public	Noise	Thecomplainantcomplainedaboutconstructionnoise	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
		site near Yau Lai Estate			nuisance from work site near Yau Lai Estate.			
53	24 th June 2017	24 th June 2017 / land- based works area near Ocean Shores	Resident of Ocean Shores	Noise	The complainant complained about construction noise nuisance from land-based works area near Ocean Shores	Y	According to the information provided by the Contractor, the major construction activities during the time of complaint includes breaking of hard material. Upon received of the complaint, the Contractor has taken the initiative to minimize construction noise nuisance by erecting temporary noise barrier during rock breaking works. Nonetheless, the Contractor was recommended to implement and strictly follow the noise mitigation measures as recommended in the EM&A Manual and Noise Mitigation Plan in order to reduce construction noise impact on site.	Closed
54	26 th June 2017	26 th June 2017 / marine works area near Ocean Shores	Public	Waste/ Chemical Managemen t	The complainant complained about oil spill on sea near marine works site near Ocean Shores	N	<ul> <li>According to the information provided by the Contractor, marine works were conducted on 26 June 2017, including lifting operation for the concrete block from water gate to derrick barge. 3 derrick barges and 3 sampan were in operation for the marine works.</li> <li>According to records of the Contractor, no report of oil spill from the derrick barges was received from the site foremen. Oil spillage was not found in the afternoon on 26 June 2017. Therefore, the complaint is considered to be non-Project related.</li> </ul>	Closed
55	27 th June 2017	25 th June 2017/ marine works area near Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained about marine construction work being carried out on public holidays within the marine works area near Ocean Shore under this Project	Y	Minor marine construction activities was conducted on public holiday 25th June 2017 within the reclamation area under this Project. Removal of damaged parts of steel cofferdam, which are damaged under adverse weather conditions in June 2017. The Engineer and the Environmental Team reminded the Contractor(s) not to conduct any works near Ocean Shores during public holidays (including Sundays) to avoid noise nuisance to the nearby residents. Also, no use of PME will be allowed for general holidays (including Sundays) at marine works area under this Contract according to the latest CNP granted to the Contractor.	Closed
56	6 th July 2017	Not Specified / Construction site near Yau Lai Site Office	Resident of Yat Lai House, Yau Lai Estate	Noise	The complainant complained about construction noise nuisance from work site near Yau Tong Site Office.	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
57	14 th July 2017	Not Specified / Construction sites near Cha Kwo Ling Road	Kwun Tong District Council Member Mr. Mok Kin Shing	Air Quality	The complainant complained about construction dust nuisance due to works and vehicles on Cha Kwo Ling Road	Ν	<ul> <li>The Contractor had implemented the following to reduce dust nuisance caused by construction vehicles on Cha Kwo Ling Road:</li> <li>Mobilize water trucks to perform water spraying along Cha Kwo Ling Road to suppress dust generation due to movement of vehicles</li> <li>Dispatch workers to clear dust near vehicle exits from the construction site on Cha Kwo Ling Road.</li> <li>Performing frequent water spraying by water trucks on Cha Kwo Ling Road;</li> <li>Frequent clearance of dust near site exits on Cha Kwo Ling Road;</li> <li>Provision of wheel washing for site vehicles at paved site exits to reduce vehicle tracking of soil on Cha Kwo Ling Road;</li> <li>Despite, the Contractor was reminded to fully implement the relevant air quality mitigation measures according to the EM&amp;A Manual on site, including:</li> <li>Maintenance of wheel washing machines on a regular basis to ensure sand and silt settled out in wash-water;</li> <li>Reminding all site vehicles to perform wheel washing before leaving the site; and</li> <li>To ensure materials on construction trucks are covered by impervious materials before leaving the site to prevent fugitive emission.</li> </ul>	Closed
58	18 th July 2017	Not Specified / Construction sites near Yau Lai Estate	Yau Lai Estate Property Services Managemen t Office	Noise	The complainant complained about construction noise nuisance from work site near Yau Lai Estate.	Y	See Investigation / Mitigation Action for Complaint No. 48.	Closed
59	2 nd August 2017	2 nd August 2017 / construction site under this Project in Tseung Kwan O	Drainage Services Department	Water Quality	Muddy flow was noted in Tseung Kwan O DSD desilting compound. Muddy discharge should be flow down along the western one / two cell(s) of the DSD box culvert	N	According to information provided by the Contractor, no discharge of muddy water was reported and wastewater treatment system were functioned properly on the day of event. No muddy effluent discharge was recorded from the weekly site inspection reports in July. The site effluent was appeared visually acceptable in reference to the results of daily visual checking by the Contractor and the weekly site inspection	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					underneath the desilting compound. The complainant suspected that TKO-LT Tunnel project should be the major construction site discharging into the cell(s).		<ul> <li>conducted on 3rd August, 2017.</li> <li>The Contractor has taken initiatives to ensure the quality of the wastewater discharge from the construction site as followed:</li> <li>Temporary drainage system were developed on site and number of sub-drains were distributed within the site area to divert wastewater and allow longer settling time for surface runoff prior to further treatment before discharging</li> <li>Daily visual checking was conducted to check the physical appearance of treated effluent and to ensure proper performance of the wastewater treatment system.</li> <li>Manholes were adequately covered and temporarily sealed to prevent silt, construction materials or debris being washed into the drainage system</li> <li>Apart from visual checking, inspection of effluent was provided by the Contractor on rainy days to make sure the quality of treated wastewater discharge is in compliance of the discharge license requirements.</li> <li>It is considered that the wastewater generated from the construction activities of the Project was collected and treated properly before discharging to the designated discharge point on 2nd August, 2017. As the same discharge point is shared by other box culverts, it is considered that the source of silty discharge at location of complaint was runoff or effluent collected from other upstream sources such as that collected by drainage systems in Tseung Kwan O town centre and other construction</li> </ul>	
60	2 nd August 2017	Not Specified / construction site at Lei Yun Mun Road	Anonymous	Landscape and Visual Impact	The complainant complained the long tree branches and weeds and request proper trimming.	Ν	<ul> <li>According to the information provided by the Contractor, clearance of weeds adjacent to Lam Tin Ambulance Depot and pruning of overgrown trees within the Site area have been undertaken by the Contractor.</li> <li>Upon received of the complaint, the Contractor has taken the initiative to remove weeds adjacent to Lam Tin Ambulance Depot. In addition, the Contractor has performed pruning of excess branches of trees on Lei Yue Mun Road and established fencing of tree protection zones for</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							existing trees.	
61	11 th August 2017	Not Specified / construction site in Green Cross-hatched Black Area near Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained the poor health and condition of trees and lack of tree protection facility.	N		
62	11 th August 2017	9 th August 2017 / construction site in Green Cross-hatched Black Area near Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained the poor health and condition of trees; and that they were felled.	N	Based on the information gather in the investigation, it is considered that retained trees adjacent to the construction area of Portion IV are carefully managed and properly fenced off within the tree protection zone. No heavy vehicles or equipment stationed in the vicinity of retained tree and tree protection zone are observed free from storage and dumping.	Closed
63	11 th August 2017	Not Specified / construction site near Ocean Shores near the BMCPC footpath	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained that trees within the Project Site were felled.	Ν	Tree Survey and Tree Assessment Reports are conducted by qualified Arborist (ISA Certified Arborist) to monitor the performance of the retained trees throughout the construction period. Advance tree survey works were done and consent was granted from the Engineer for the removal of defective trees.	
64	14 th August 2017	Not Specified / construction site near Ocean Shores near the BMCPC footpath	Sai Kung District Council Member Mr. Chan Kai Wai	Landscape and Visual Impact	The complainant complained that trees within the Project Site were felled.	Ν		
65	15 th August 2017	15 th August 2017 / marine works site at TKO side	Sai Kung District Council Member Mr. Chan Kai Wai	Water Quality	Muddy discharge from the marine works site (near the Type 2 cofferdam) at TKO side occurred in the morning.	Ν	It is considered that the muddy discharge was caused by the overflowing of coarse material within the steel tank and the sediment being disturbed by the cofferdam during the reinstatement of the position of steel tank. The Contractor did not stop the works immediately and which contributed to the large spreading area of sediment. The Contractor did not provide proper deployment of the silt curtain system to stop the muddy discharge generated from the abovementioned work to the surrounding water. The Contractor is advised to implement the following measures to	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>avoid/ minimize the generation of muddy discharge from marine works:</li> <li>1. Marine works should be stopped immediately when the silt curtain system is found malfunctioned or when sediment dispersion is observed.</li> <li>2. Deterioration of cofferdam or silt curtain, as the mitigation measures to water quality, should be repaired immediately or at a reasonable time.</li> <li>3. Cofferdams should be designed and installed properly in order to withstand any conceivable adverse weather conditions and precautions measure should be taken in advance particularly during typhoon season.</li> <li>4. Materials with high silt content should be avoided to use as filling materials in the steel tanks for cofferdams. They should be replaced with materials with minimal silt content, such as pebbles, rocks and etc. to reduce pollution to the marine environment when spill over.</li> <li>5. The steel tanks filled with finer aggregate materials should be securely covered or locked in the tank, so that no materials will be spilled over the sea.</li> <li>6. Silt curtain should be deployed properly before commencement of works.</li> <li>7. Regular inspection should be performed to examine the integrity of the cofferdam and performance of silt curtains.</li> </ul>	
66	17 th August 2017	Not Specified / construction site at Lei Yun Mun Road	Anonymous	Landscape and Visual Impact	The complainant complained the long tree branches and lack of tree protection facilities on site.	Ν	See Investigation / Mitigation Action for Complaint No. 60.	Closed
67	1 st September 2017	Not Specified / near Eastern Harbour Crossing	Anonymous	Landscape and Visual Impact	The complainant complained poor tree health and lack of tree protection facilities on site.	N	According to the information provided by the Contractor and confirmed by the Engineer, the Contractor had implemented environmental mitigation measures on site as confirmed by the Engineer to minimize the deterioration of existing landscape and visual quality by construction works under this Contract. The Contractor was reminded to provide proper tree management and adequate tree protection measures toward retained trees on site, including the measures as follows:	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>Regular site inspection shall be conducted to verify whether all tree protection measures are in place during construction work;</li> <li>Temporary protective fencing shall be well-maintained to ensure the integrity of the tree protection zone;</li> <li>No materials or machinery shall be stored or placed within the area of a tree's crown to avoid soil compaction or pollution; and</li> <li>Any foreseeable damage to trees and fencings shall be reported and rectified as soon as practicable.</li> </ul>	
68	4 th September 2017	Not Specified / Construction site near Sin Fat Road Tennis Courts	Public	Air Quality	The complainant complained the construction dust and odour nuisance	Ν	<ul> <li>According to the information provided by the Contractor, the major construction activities during the time of complaint included excavation, rock breaking.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual as below:</li> <li>Breaking works were provided with water spraying to reduce fugitive emission;</li> <li>Tarpaulin sheets were provided along Sin Fat Road Tennis Court;</li> <li>Frequent water spraying on unpaved area and haul roads at Lam Tin Interchange;</li> <li>Wheel washing facility at exits of Lam Tin Interchange to prevent mud trailing of vehicles and dust generation.</li> <li>According to the regular air quality monitoring, no Action or Limit Level Exceedance was recorded at Air Quality Monitoring Station AM2 and AM3 in September 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse air quality impact was brought to the nearby sensitive receivers by the works of this Project.</li> <li>The following recommendations were given by the ET to further enhance effectiveness of the mitigation measures:</li> <li>To provide a hard-surfaced road between any cleaning facility and the public road</li> <li>To treat exposed earth by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen or other suitable surface stabilizer within six months after the last construction activity within the site;</li> <li>Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							spraying so as to maintain the entire surface wet.	
69	5 th September 2017	Not Specified / near Eastern Harbour Crossing	Anonymous	Landscape and Visual Impact	The complainant complained poor tree health and lack of tree protection facilities on site.	Ν	See Investigation / Mitigation Action for Complaint No. 67.	Closed
09	19 th September 2017	Not Specified / near Eastern Harbour Crossing	Anonymous	Landscape and Visual Impact	The complainant complained poor tree health and lack of tree protection facilities on site.	Ν		Closed
	9 th September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Ping Tin Estate	Noise	The complainant complained daytime noise nuisance that commenced early in the morning	Y	<ul> <li>According to the information provided by the Contractor, the major construction activities at the location of complaint recorded included excavation, rock breaking and drilling during September 2017.</li> <li>Operated PME during the time of complaints are consistent with the proposed quantities in the latest Construction Noise Assessment.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual as below:</li> <li>Erected noise barriers with acoustic mats facing Ping Tin Estate and along breaking works at Portion IVc;</li> <li>Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat.</li> </ul>	Closed
70	22 nd September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Ping Tin Estate	Noise	The complainant complained daytime construction noise nuisance.	Y	<ul> <li>According to the regular noise monitoring, no Limit Level Exceedance was recorded at Noise Monitoring Station CM1, Station CM2 and Station CM3 in September 2017. With the implementation of environmental mitigation measures by Contractors on site, it is considered that no adverse noise impact was brought to the nearby sensitive receivers by the works of this Project.</li> <li>The following recommendations were given by the ET to further enhance effectiveness of the mitigation measures:</li> <li>Frequent checking and repair the gaps or broken tarpaulin sheets and acoustic sheets;</li> <li>To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively;</li> <li>To continue to properly implement noise mitigation measures as</li> </ul>	

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>recommended in the Environmental Monitoring &amp; Audit Manual and approved Noise Mitigation Plan;</li> <li>To continue to strictly follow the requirements in the approved Noise Mitigation Plan; and</li> <li>To reschedule operation time and reduce operation duration of each PME.</li> </ul>	
71	11 th September 2017	3 rd September 2017 / Construction of Lam Tin Interchange	Anonymou s	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange	Y	<ul> <li>The Contractor had taken the initiative to implement environmental mitigation measures specified to blasting as below:</li> <li>Installed steel-type blasting door mounted with sound absorptive lining to absorb noise from blasting in the tunnel;</li> <li>Ensured blasting doors were fully closed when blasting works were undertaken</li> <li>Erected noise barriers with TMD and SilentMAT adjacent to</li> </ul>	Closed
	21 st September 2017	19 th September 2017 / Construction of Lam Tin Interchange	Anonymou s	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange	Y	<ul> <li>blasting door facing Yau Lai Estate</li> <li>Placed acoustic materials on slopes adjacent to blasting door</li> <li>With the implementation of environmental mitigation measures by Contractors on site, it is considered that blasting noise impact to the nearby sensitive receivers has been brought to a minimum.</li> </ul>	
72	11 th September 2017	Not Specified / Construction of Tseung Kwan O Portal	Resident of Ocean Shores	Air Quality	The complainant complained the construction dust nuisance	Ν	<ul> <li>According to the information provided by the Contractor, the major construction activities at the location of complaint recorded included breaking works and shotcreting works from 0830 hrs to 1800 hrs during early September 2017.</li> <li>The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual as below:</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	12 th September 2017	Not Specified / Construction of Tseung Kwan O Portal	Resident of Ocean Shores	Air Quality	The complainant complained the construction dust nuisance	N	<ul> <li>Water spraying on unpaved or exposed area for dust suppression;</li> <li>Breaking of rocks was provided with water spraying to reduce fugitive emission;</li> <li>Automatic water sprinklers were provided and in operation;</li> <li>Manual water spraying was provided to haul roads to reduce dust generation due to movement of construction vehicles;</li> <li>Tarpaulin sheets were erected along the access road to reduce dust nuisance to pedestrians.</li> </ul>	
73	12 th September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Nga Lai House, Yau Lai Estate	Air Quality / Noise	The complainant complained the construction dust and noise nuisance from works	Y	See Investigation / Mitigation Action for Complaint No. 68 and 70.	Closed
74	15 th September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Laguna City	Noise	The complainant complained the construction noise nuisance from works	Y	See Investigation / Mitigation Action for Complaint No. 70.	Closed
75	18 th September 2017	Not Specified / Construction of Lam Tin Interchange	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained the noise nuisance during night time blasting works at the LamTin Interchange	Y	See Investigation / Mitigation Action for Complaint No. 71.	Closed
76	21 st September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Yung Lai House, Yau Lai Estate	Noise	The complainant complained about the construction noise nuisance from the construction of Lam Tin Interchange and tunnel blasting at nights. He also stated there were construction works near Lam Tin Interchange on public holidays.	Y	See Investigation / Mitigation Action for Complaint No. 70 and 71.	Closed
77	26 th September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Cheuk Lai House, Yau Lai Estate	Noise	The complainant complained about the night time construction noise nuisance	Y	See Investigation / Mitigation Action for Complaint No. 70.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
78	26 th September 2017	Not Specified / Construction of Lam Tin Interchange	Resident of Laguna City	Noise	The complainant complained the blasting noise nuisance during works at the Lam Tin Interchange	Y	See Investigation / Mitigation Action for Complaint No. 71.	Closed
79	27 th September 2017	17 th , 20 th , 23 rd September 2017 / Construction of Lam Tin Interchange	Public	Noise	The complainant complained about the construction noise nuisance due to road works near Lam Tin Interchange.	Y	See Investigation / Mitigation Action for Complaint No. 70.	Closed
80	28 th September 2017	Not Specified / Construction of Lam Tin Interchange	Property Managemen t Office of Laguna City	Noise	The complainant complained the noise nuisance during night time blasting works at the LamTin Interchange	Y	See Investigation / Mitigation Action for Complaint No. 71.	Closed
81	3 rd October 2017	30 th September 2017 / Construction of Road P2	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained that construction works starts too early between 8-9 am on 30 September 2017 (Saturday).	Y	As confirmed by the Engineer, construction work including excavation work was carried out on the morning of 30 September 2017. One unit of backhoe was in operation during the time of complaint for such work in Portion VIII. The operated powered mechanical equipment (backhoe) was considered as the source of noise nuisance resulting from such work. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved Noise Mitigation Plan to reduce noise nuisance brought to nearby noise sensitive receivers as follows: Additional acoustic mat was hung closely to the powered mechanical equipment to minimize noise impact to the nearby sensitive receivers In addition, other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Plan of this Contract had been implemented by the Contractor, including the following: • Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; • Mobile plant, if any, should be sited as far away as possible from noise sensitive receivers;	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum; and</li> <li>Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers.</li> </ul>	
82	3 rd October 2017	Not Specified / CRE Site Office	Anonymous	Landscape and Visual Impact	The complainant complained the long tree branches and weeds and lack of tree protection facilities.	N	See Investigation / Mitigation Action for Complaint No. 67.	Closed
83	6 th October 2017	6 th October 2017 / Construction of TKO Portal	Public	Waste Management	The complainant complained that construction waste was disposed on slope near O King Road.	Ν	<ul> <li>In accordance with the information provided by the Contractor of the Project and confirmed by the AECOM (hereinafter called "the Engineer"), the major construction activities undertaken at the location of complaint included breaking works in early October 2017. Inert C&amp;D including concrete debris, rubble and sand were the major types of waste derived from the abovementioned works activity in October 2017.</li> <li>The Contractor has immediately removed the concerned construction waste in the vicinity of O King Road. In addition, the Contractor has taken initiatives to maintain the environmental conditions in the works area as shown below:</li> <li>Provided waste skips at Portion 6 for collection of construction waste;</li> <li>Provided recycle bins for sorting and recycling of general refuse generated by workforce;</li> <li>Placed more enclosed rubbish bins to reduce the occurrence of 'windblown' light general refuse; and</li> <li>Removed C&amp;D waste from the site by a reputable waste collector on a regular basis.</li> </ul>	Closed
84	17 th October 2017	17 th October 2017 / Marine Works Area for Road P2	Public	Water Quality	The complainant concerns marine water pollution in Tseung Kwan O on 17 Oct 2017, which might due to construction activities of this Project.	N	Based on the information gathered in the investigation, it is considered that muddy water recorded by the complainant was not caused by the construction activities (land-based and marine-based) carried out during the time of complaint. Also, wastewater generated from the construction activities of the Project was collected and treated properly before discharging as the site effluent was appeared visually acceptable and the wastewater treatment systems were preformed properly.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							As the location of the muddy water was appeared adjoining the Tseung Kwan O DSD Desilting Compound, a high volume of upstream discharge collected from rain events (3-4 am of 17 October 2017) is a possible cause of muddy water. Based on the above observations and findings, this complaint is considered to be non-Project related.	
85	18 th October 2017	Not Specified / Construction of Lam Tin Interchange	Public	Noise	The complainant complained about the noise nuisance due to construction of Lam Tin Interchange	Y	<ul> <li>According to the Engineer's Site Diaries, the major construction activities performed in October 2017 and early November 2017 included rock breaking and excavation at Lam Tin Interchange and Portion IVC near Lei Yue Mun Road.</li> <li>In addition to other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&amp;A Manual and the Noise Mitigation Plan of this Contract had been implemented by the Contractor, including the following:</li> <li>Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program;</li> <li>Mobile plant, if any, should be sited as far away from NSRs as possible;</li> <li>Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum; and</li> <li>Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSR</li> <li>Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.</li> </ul>	Closed
86	25 th October 2017	24 th October 2017 / Construction of Lam Tin Interchange	Public	Air & Noise	The complainant complained about the noise nuisance due to blasting works at nighttime and request water spraying on breakers.	Y	<ul> <li>The Contractor had implemented environmental mitigation measures to minimize the noise nuisance to the nearby noise sensitive receivers:</li> <li>Ensured blasting doors were fully closed when blasting works were undertaken</li> <li>Installed steel-type blasting door mounted with sound absorptive lining to absorb noise from blasting in the tunnel</li> <li>Erected noise barriers with TMD and SilentMAT adjacent to blasting door facing Yau Lai Estate</li> <li>Placed acoustic materials on slopes adjacent to blasting door</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>The following recommendations were made to further enhance the mitigation measures</li> <li>To frequently check and maintain the acoustic materials on slopes, absorptive lining adhered on blasting doors on a regular basis;</li> <li>To ensure no gaps between noise barriers adjacent to the blasting doors</li> <li>For air quality impact during the use of breakers, the Contractor has provided breaking works with water spraying to reduce fugitive emission</li> </ul>	
87	26 th October 2017	23 th October 2017 / Construction of marine works outside Ocean Shores	Public	Noise	The complainant complaint about noise nuisance which may due to construction of marine work outside Ocean Shores at nighttime.	Y	<ul> <li>According to the site diaries provided by the Engineer, marine construction works carried out near the Ocean Shores on 23 October 2017 and 1 November 2017 included the reinstatement of cofferdams. One unit of derrick lighter was in operation on both days. The working period of the remedial works for cofferdam were between 0800 – 2100 hours on 23 October 2017 and 0800 – 2030 hours on 1 November 2017.</li> <li>As confirmed by the Engineer, the marine works on 1 November 2017 were stopped at 2030 hours. Potential marine traffic noise from the movement of nearby vessels might have contributed to the noise after 2030 hours on 1 November 2017.</li> <li>The Contractor had covered noise source on the barge with acoustic materials to minimize the noise nuisance from marine works to the nearby noise sensitive receivers during night time. The following recommendations were made to further enhance the mitigation measures</li> <li>To frequently check and maintain the acoustic materials on a regular basis;</li> <li>To ensure no visible gaps between units of noise barriers for effective noise shielding;</li> <li>To schedule site operations in such a way to avoid working in the sensitive hour as far as practicable;</li> <li>For unavoidable night works with a CNP, carefully schedule noisy works at locations close to any sensitive receiver so as to reduce noise disturbance.</li> </ul>	Closed
88	27 th , 30 th October	Not Specified / Construction	Resident of Bik Lai	Noise	The complainant complained about noise	Y	For blasting works at night, see Investigation / Mitigation Action for Complaint No. 86.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	2017 / 6 th November 2017	of Lam Tin Interchange	House, Yau Lai Estate		nuisance as it is observed that no acoustic materials are provided to breaker. She also complained about the noise nuisance due to blasting works at nights. (EPD Reference No.: K15/RE/00035946- 17)		<ul> <li>For construction noise impacts due to use of breakers, the Contractor has implemented the following to minimize the impacts:</li> <li>Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat at Slope H in Lam Tin Interchange;</li> <li>Erected movable cantilevered noise barriers next to breaking works at Portion IVC</li> </ul>	
89	1 st November 2017	Not Specified / Construction of marine works outside Ocean Shores	Resident of Ocean Shore	Noise & Light	The complainant complained about the lighting and noise nuisance on construction vessels near Ocean Shores.	Y	<ul> <li>According to the Engineer's Site Diaries, the major construction activities performed including Reinstatement of Type 2 Cofferdam. One unit of derrick barge was in operation for such works from 0800 – 2030 hours on 1 November 2017. Therefore, no violation of CNP is found.</li> <li>The Contractor had implemented environmental mitigation measures to minimize the nuisance from marine works to the nearby noise sensitive receivers during night time as follows:</li> <li>Noise source on the barge was covered with acoustic materials;</li> <li>To avoid strong light emission towards the sensitive receivers, night-time lighting was properly controlled by hooding all lights (except necessary lighting for safety and guard watching purpose).</li> </ul>	Closed
90	2 nd November 2017	1 st November 2017 night- time / Portion IX outside Tower 1, Ocean Shore	Public	Noise	The complainant complained about the construction noise nuisance due to the marine works at night. He claimed that the noise lasted until 8:50 pm.	Y	See Investigation / Mitigation Action for Complaint No. 87.	Closed
91	13 th November 2017	Not Specified / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	The complainant complained about the noise nuisance due to construction works at Lam Tin Interchange at about 7 am.	Y	<ul> <li>According to the Engineer's Site Diaries, the major construction activities performed in November 2017 included drilling and excavation at Lam Tin Interchange and Portion IVC near Lei Yue Mun Road. Also, night time construction works including Mucking out of spoil after blasting works was carried out during 21 – 23 November 2017 (0400-0500 hours).</li> <li>According to Construction Noise Assessment of this Contract, operated PME during the time of complaints are consistent with the proposed quantities in the latest Construction Noise Assessment. Also, no violation of CNP (No. GW-RE0838-17) conditions was observed during the time</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
92	14 th November 2017	Not Specified / Lam Tin Interchange	Resident of Hong Nga Court	Noise	The complainant complained about the noise nuisance due to construction works at Lam Tin Interchange. He requested to erect noise barriers and used low noise construction equipment to minimize the noise nuisances to the nearby residents.	Y	<ul> <li>of complaint.</li> <li>The following had been implemented by the Contractor to minimize noise impact :</li> <li>Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat at Slope H in Lam Tin Interchange;</li> <li>Erected movable cantilevered noise barriers next to breaking works at Portion IVC.</li> <li>According to the regular noise monitoring conducted at Noise Monitoring Stations CM1, CM2 and CM3, no Limit Level Exceedance was recorded in 18 October – 30 November 2017. With the implementation of environmental mitigation measures by the Contractor, it is considered that no adverse noise impact was brought to the nearby sensitive receivers.</li> </ul>	Closed
93	14 th November 2017	14 th November 2017 / Construction of TKO Portal	Public	Noise	The complainant complained about the continuous noise (started from 7:13 am) made by a worker by hitting / kicking a truck.	Y	<ul> <li>As confirmed by the Engineer, construction activity including excavation works was conducted in Portion VIII at the time of complaint. Removing mud from dump truck container was carried out during the course. The excessive sound from kicking/ hitting the dump truck to remove mud from its container is considered the source of noise nuisance. The use of concerned dump truck in Portion VIII conformed to the approved Noise Mitigation Plan.</li> <li>The Contractor had implemented additional control measures to prevent similar noise disturbance as follows:</li> <li>Training sessions had been provided to the workers from subcontractors to improve their awareness of proper handling of equipment.</li> <li>Site supervision had been enhanced to promote good site practice so as to avoid any unnecessary disturbance created from on-site activities.</li> <li>The Engineer and the Environmental Team have reminded the Contractor to keep implementing noise mitigation measures as stated in the approved Noise Mitigation Plan to further reduce the noise impact from construction site to nearby sensitive receiver.</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>The following recommendations were made to further enhance the mitigation measures:</li> <li>To maintain equipment in good condition to ensure quietest operation possible.</li> <li>To repair any loosen and worn parts of the equipment, as soon as possible, to reduce excessive noise disturbance.</li> <li>To provide training to the workers regularly on proper operation or appropriate use of equipment to avoid unnecessary noise impact.</li> <li>To take care when loading and unloading materials in order to attenuate undesired noise.</li> </ul>	
94	15 th November 2017	Not Specified / Construction of marine works outside Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Air Quality	The complainant complained the odour nuisance from the construction vessels near Ocean Shore.	Ν	According to the Engineer's Site Diaries, the major marine construction activities included dredging operations. PME used included tug boat, dredging and hopper barge. The Contractor had implemented environmental mitigation measures to	Closed
95	15 th November 2017	9 th November 2017 / Construction of marine works outside Ocean Shores	Sai Kung District Council Member Mr. Chan Kai Wai	Air Quality	The complainant complained the black smoke generation from the construction vessels and affected to the nearby sensitive receivers.	N	<ul> <li>minimize the nuisance from marine works to the nearby noise sensitive receivers during night time as follows:</li> <li>Ultra-low sulphur diesel was used to reduce emission of sulphur emission to nearby sensitive receivers.</li> <li>Odour suppressant will be applied to dredged sediment when unpleasant smell is detected.</li> <li>Visual assessment with Ringelmann chart was conducted in a regular interval to monitor dark smoke emission;</li> <li>In addition, odour patrol was conducted twice a day by the Engineer's qualified odour panel member to identify any odour nuisance due to marine works;</li> </ul>	Closed
96	16 th November 2017	Not Specified / Ocean Shore Emergency Vehicular Access	Public	Landscape and Visual Impact	The complainant complained that trees near the Ocean Shore Emergency Vehicular Access were felled.	N	According to the information provided and confirmed by the Engineer, tree removal application for the concerned area has granted approval from District Lands Office on 1 August 2017. The felling of a total of 59 trees at the concerned area as recommended in the Tree Assessment Schedule was approved by the District Lands Office. None of them are registered Old and Valuable Tree and neither of them are rare nor endangered species. The following was implemented by Contractor:	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>Tree protection zones were established and surrounded by fences to protect retained trees adjacent to the construction area of Portion IV.</li> <li>Tree protection zones at Portion IV were free of machinery and material that are likely to be injurious to the tree.</li> <li>Regular tree assessments were conducted by qualified Arborist to monitor the condition of retained trees.</li> </ul>	
97	23 rd November 2017	21 st & 23 rd November 2017 / Lam Tin Interchange	Resident of Yau Lai Estate Block A Nga Lai House	Noise	The complainant complained about the noise nuisance due to construction works at Lam Tin Interchange on 21 st & 23 rd November 2017 at about 4am. She claimed that the noise lasted for 1 hours.	Y	See Investigation / Mitigation Action for Complaint No. 91-92.	Closed
98	28 th November 2017	Not Specified / Lam Tin Interchange	Resident of Yung Lai House, Yau Lai Estate	Noise	The complainant complained about the construction noise nuisance at Lam Tin Interchange.	Y	See Investigation / Mitigation Action for Complaint No. 91-92.	Closed
99	28 th November 2017	Not Specified / Construction of TKO Portal	Resident of Ocean Shore	Noise	The complainant complained about the noise nuisance due to construction works near the Ocean Shore.	Y	Based on the gathered information, construction works including removal of armour rock seawall and excavation were conducted in Portion V at the time of complaint. The operated powered mechanical equipment and the noise from loading/ unloading were considered the sources of noise nuisance. As confirmed by the Engineer, the type and quantity of operated derrick lighter and backhoe were in compliance	Closed
100	30 th November 2017	28 th and 30 th December 2017 / Marine works site	Public	Noise	The complainant complained about the daytime construction noise from the marine works. He said about the loud noise from the dropping of materials from the dredgers into the barges which caused annoyance to nearby residents on 28 and 30 November morning till noon.	Y	<ul> <li>quantity of operated definer lighter and backhoe were in compnance with the approved Noise Mitigation Plan.</li> <li>The Contractor had implemented environmental mitigation measures to minimize the noise nuisance from construction works to the nearby noise sensitive receivers as follows:</li> <li>A soil layer was placed over the basin of barge to act as a cushion when loading hard materials into barge.</li> <li>The grab bucket was kept at the lowest level, as far as practicable, when loading hard materials into the barge.</li> <li>Noise source on the barge was covered with acoustic materials.</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
101	2 nd , 14 th , 16 th , 20 th and 23 rd December 2017	2 nd December 2017 / Construction of Road P2	Resident of Ocean Shore	Noise	The complainant complained the noise nuisance due to the operation of the excavator on the beach near Ocean Shore on 2 Dec 2017 at about 8am.	Y	• To erect additional noise barriers in Portion V According to the regular noise monitoring conducted at Noise Monitoring Station CM6(A) and CM7(A), it is considered that no adverse noise impact was brought to the nearby sensitive receivers with the implementation of noise mitigation measures.	Closed
102	6 th , 11 th December 2017	Not Specified / Construction site near Cha Kwo Ling Road	茶果嶺鄉民 聯誼會黃添 財先生	Air Quality	The complainant complained the construction dust near Cha Kwo Ling Road. He requested water spraying to the site entrance for dust suppression.	N	<ul> <li>In accordance with the information provided by the Contractor of the Project and confirmed by the Engineer, no construction activity was carried out adjacent to Cha Kwo Ling Road during the time of complaint. A steel bridge was set up for dump trucks heading to Barging Facility to avoid dust generation due to vehicle movement of dump trucks on Cha Kwo Ling Road.</li> <li>The Contract has undertaken the following measures near Cha Kwo Ling Road after the complaint to reduce the dust nuisance to nearby air sensitive receivers, including:</li> <li>mobilized water trucks to perform water spraying along Cha Kwo Ling Road to suppress dust generation due to movement of vehicles;</li> <li>water spraying at the exit of Contractor Office on a regular basis for dust suppression due to entry and leaving of vehicles;</li> <li>wheel washing for site vehicles at paved site exits for Lam Tin Interchange work site to reduce vehicle tracking of soil on Cha Kwo Ling Road</li> </ul>	On- going
103	16 th December 2017	16 th December 2017 / Not Specified	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained the noise nuisance from construction site at nighttime and call 999.	Y	<ul> <li>According to information provided by Engineer, the following is implemented immediately on the following day to minimize noise nuisance due to the construction vessels:</li> <li>apply lubricants to the vessels and the joints</li> <li>Replace Steel Cable by Ropes</li> <li>Regular noise barrier for winch at barges</li> </ul>	On- going
104	18 th December 2017	Not Specified / Lam Tin Interchange	Resident of Ping Ting Estate	Noise	The complainant complained about the construction noise nuisance at Lam Tin Interchange at about 7 am.	Y	Under Investigation	On- going
105	18 th December	Not Specified / Construction	Public	Noise	The complainant complained about noise	Y	Under Investigation	On- going

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	2017	of Road P2			from handling of steel at the water front storage area near Ocean Shore (portion VII).			
106	19 th December 2017	Not Specified / Construction of Road P2	Public	Air Quality and Noise	The complainant complained the noise nuisance and odour nuisance from the construction vessel near Ocean Shore.	Y	<ul> <li>According to information provided by Engineer, the following is implemented immediately on the following day to minimize noise nuisance due to the construction vessels:</li> <li>apply lubricants to the vessels and the joints</li> <li>Replace Steel Cable by Ropes</li> <li>Regular noise barrier for winch at barges</li> </ul>	On- going
107	20 th December 2017	Not Specified / Not Specified	Public	Noise	The complainant complained about machine noise from excavation of rock near the rocky shore. He complained that there is no hoarding / barrier to surround the workfront and the use of inappropriate machine.	Y	Under Investigation	On- going
108	20 th December 2017	20 th December 2017 / Lam Tin Interchange	Resident of Nga Lai House, Yau Lai Estate	Noise	The complainant complained about the construction noise nuisance due to the rock breaking work at Lam Tin Interchange at nighttime.	Y	Under Investigation	On- going
109	20 th , 31 st December 2017	Not Specified / Lam Tin Interchange	Resident of Nga Lai House, Yau Lai Estate	Noise	The complainant complained about the construction noise nuisance at Lam Tin Interchange at nighttime.	Y	Under Investigation	On- going
110	20 th December 2017	18 th December 2017 / Construction of Road P2	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained about the construction noise nuisance at about 6pm.	Y	Under Investigation	On- going

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
June 2017	8	0	0
July 2017	3	0	0
August 2017	8	0	0
September 2017	14	0	0
October 2017	8	0	0
November 2017	12	0	0
December 2017	10	1	0
Total	110	1	0

### **Cumulative Complaint Log since commencement of Project**

# **<u>Cumulative Log for Notifications of Summons</u>**

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS2 4138/ 2017	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	The case is adjourned to 18-Jan- 18	1	1
NE/2015/03						

# **<u>Cumulative Log for Successful Prosecutions</u>**

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02						
NE/2015/03						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH Name of Department: Civil Engineering Development Department



### Monthly Summary Waste Flow Table for 2017

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual	Quantities of	C&D Wastes	Generated	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
January	40.484	1.350	22.688	5.063	12.733	0.000	0.000	0.257	0.000	0.000	0.292
February	23.357	5.159	12.911	3.874	6.572	0.000	0.000	0.000	0.000	1.000	0.488
March	20.078	2.885	6.359	11.713	2.006	0.000	0.000	0.120	0.000	0.000	0.284
April	13.516	0.070	4.862	7.751	0.903	0.000	0.000	0.151	0.000	0.000	0.396
Мау	49.156	0.380	12.420	36.168	0.568	0.000	0.000	0.000	0.000	0.000	0.189
June	37.960	2.949	17.914	19.409	0.637	0.000	0.000	0.114	0.000	0.000	0.138
Sub-total	184.551	12.793	77.154	83.978	23.419	0.000	0.000	0.642	0.000	1.000	1.787
July	33.640	2.302	4.851	28.223	0.566	0.000	0.000	0.160	0.000	0.000	0.166
August	65.934	2.483	6.054	52.830	7.050	0.000	0.000	0.146	0.000	0.000	0.082
September	64.150	12.654	10.483	52.113	1.554	0.000	0.000	0.233	0.000	0.000	0.082
October	47.354	18.954	9.708	33.995	3.651	0.000	0.000	0.000	0.000	0.000	0.044
November	82.264	25.996	11.436	60.924	9.904	0.000	0.000	0.000	0.000	1.815	0.076
December	91.224	31.035	21.566	47.027	22.631	0.000	0.000	0.000	0.000	0.000	0.051
Total	569.117	106.217	141.252	359.090	68.775	0.000	0.000	1.181	0.000	2.815	2.288

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

# Monthly Summary Waste Flow Table for 2017 Year

		Actual Quan	tities of Inert C&I	D Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes G	Generated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	<b>[in '000m</b> ³ ]	<b>[in '000m</b> ³ ]	<b>[in '000m</b> ³ ]	<b>[in '000m</b> ³ ]	<b>[in '000m</b> ³ ]	<b>[in '000m</b> ³ ]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	<b>[in '000m</b> ³ ]
Jan	1.08165	0.00000	0.06050	0.00000	1.02115	0.00000	0.00000	0.00000	0.00000	0.00000	0.02306
Feb	1.05393	0.00000	0.00000	0.00000	1.05393	0.00000	0.00000	0.00000	0.00000	0.00000	0.02132
Mar	0.03860	0.00000	0.00000	0.00000	0.03860	0.00000	0.00000	0.00000	0.00000	0.00000	0.03012
Apr	1.15464	0.00000	1.13280	0.00000	0.02184	0.00000	0.00000	0.00000	0.00000	0.00000	0.18326
May	0.80922	0.00000	0.00000	0.75824	0.05099	0.00000	0.00000	0.00000	0.00000	0.00000	0.11508
June	6.60644	0.00000	0.46800	0.17665	5.96179	0.00000	9.82000	0.00000	0.00000	0.00000	0.03430
SUB- TOTAL	10.74448	0.00000	1.66130	0.93489	8.14829	0.00000	9.82000	0.00000	0.00000	0.00000	0.40714
Jul	5.97521	0.00000	0.00000	0.00000	5.97521	0.00000	0.00000	0.00000	0.00000	0.00000	0.03072
Aug	4.01153	0.00000	0.03170	0.00000	3.97983	0.00000	0.00000	0.00000	0.00000	0.00000	0.17294
Sep	7.31145	0.00000	0.00000	0.00000	7.31145	0.00000	11.86000	0.00000	0.00000	0.00000	0.14874
Oct	2.14193	0.00000	0.00000	0.00000	1.85075	0.29118	28.23000	0.00000	0.00000	0.00000	0.03040
Nov	3.25355	0.00000	0.96000	0.0000	2.24580	0.04775	289.51000	0.00000	0.00000	0.00000	0.06794
Dec	0.18070	0.00000	0.03640	0.0000	0.11180	0.03250	40.80000	0.00000	0.00000	0.00000	0.06118
TOTAL	33.61884	0.00000	2.68940	0.93489	29.62312	0.37143	380.22000	0.00000	0.00000	0.00000	0.91906

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005 Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Wing Lee (SK) Construction Company Limited	Rev. No.	Draft
NE/2015/03 - Environmental Management Plan	Issue Date	16 Dec 2016
Appendices - Appendix 13	issue Date	10 Dec 2010

Name of Department : <u>CEDD</u>

Contract No. : <u>NE/2015/03</u>

# Monthly Summary Waste Flow Table for 2017 (year)

		Actual Quant	tities of Inert C&	D Materials Gen	erated Monthly		А	ctual Quantities of	of C&D Wastes (	Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³ )
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0.001982
Mar	0.00146	0	0	0	0.00146	0	0	0	0	0	0
Apr	0.05	0	0.0425	0	0.0075	0	0	0	0	0	0.001168
May	0	0	0	0	0	0	0	0	0	0	0.01052
June	0.03056	0	0	0	0	0.03056	0	0	0	0	0.00596
Sub-total	0.08202	0	0.0425	0	0.00896	0.03056	0	0	0	0	0.01963
July	0.05	0	0.03793	0	0.01207	0	0	0	0	0	0
Aug	0.1074	0	0	0	0.1074	0	0	0	0	0	0
Sept	0.09	0	0.081885	0	0.008115	0	0	0	0	0	0
Oct	0.330485	0	0	0.290915	0.03957	0	0	0	0	0	0.00946
Nov	0.1	0	0.01305	0	0.08695	0	0	0	0	0	0.0017
Dec	0.08707	0	0	0	0.08707	0	0	0	0	0	0
Total	0.846975	0	0.175365	0.290915	0.350135	0.03056	0	0	0	0	0.03079

Notes: (1) The performance targets are given in PS Clause 6.14.

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) The *Contractor* shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the *works*, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the *works* is equal to or exceeding 50,000 m₃.

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME Contract No. NE/2015/01

# High Level 3 Months Look Ahead Programme

Activities	Jan-18	Feb-18	Mar-18
Lam Tin Interchange			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2 &5			
Site Formation - Area 2			
Site Formation - Area 3			
Site Formation - Area 4			
Soldier Pile Wall - Area 2A			
Main Tunnel			
MT Excavation			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Temporary Cut Slope For BMCPC			
Steel Platform for Bridge Construction			

Activity ID Activity Name	Calendar	Original Duration	Remaining Start Duration	Finish	Total Float	Activity %	Variance - BL1 TRA Finish Date	2017 Dec		2018
NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works (D		1563	1232 12-Jan-17 A	04-May-21	365	Complete	-11	Dec	Jan	Feb Mar Apr
Target Key Date and Section Completion of the Works	P2-Cal.C	0	0 30-Dec-17	30-Dec-17	0		0		Target Key Date and Se	ection Completion of the Works
K10300 Section 1 All Works within Portion I and III	P2-Cal.C	0	0	30-Dec-17*	0	0%	0		<ul> <li>Section 1_All Works with</li> </ul>	ithin Portion Land III
	P2-Cal.A	0	0 30-Dec-17	30-Dec-17	0	0,0	0		_	ection Completion of the Works (Calendar Day)
Target Key Date and Section Completion of the Works (Calendar Day)		-			-	08/	0		<ul> <li>Section 1_All Works with</li> </ul>	
K10410 Section 1_All Works within Portion I and III	P2-Cal.A	0	0	30-Dec-17*	0	0%	0			d Section Completion of the Works
Contract Key Date and Section Completion of the Works	P2-Cal.A	U	0 31-Dec-17	31-Dec-17	0		U			
A10500 Section 1_All Works within Portion I and III	P2-Cal.A	0	0	31-Dec-17*	0	0%	0		<ul> <li>Section 1_All Works w</li> </ul>	
Area Handover Date	P2-Cal.A	22	22 31-Dec-17	22-Jan-18	0		0		Area	a Handover Date
A10700 Area X (Additional Works Area)	P2-Cal.A	0	0	31-Dec-17*	0	0%	0		<ul> <li>Area X (Additional Wo</li> </ul>	
A10720 Zone 1 of Area Y (Additional Works Area)	P2-Cal.A	0	0	22-Jan-18*	0	0%	0		<ul> <li>Zone</li> </ul>	e 1 of Area Y (Additional Works Area)
Preliminaries, Submission, Contractor's Design Submission and Approval	P2-Cal.A	1015	744 20-Jan-17 A	02-Jan-20	179		-63			
Preliminaries	P2-Cal.A	160	160 20-Dec-17	28-May-18	763		0			
Design Submission of Physical Model	P2-Cal.A	160	160 20-Dec-17	28-May-18	763		0			+
LC10242 Design the Physical Model	P2-Cal.A	14	14 20-Dec-17	02-Jan-18	763	0%	0		Design the Physical	Model
LC10244 Review and Discuss the Physical Model	P2-Cal.A	21	21 03-Jan-18	23-Jan-18	763	0%	0		Rev	view and Discuss the Physical Model
LC10246 Resubmission of Physical Model	P2-Cal.A	14	14 24-Jan-18	06-Feb-18	763	0%	0			Resubmission of Physical Model
LC10248 Approve the Physical Model	P2-Cal.A	21	21 07-Feb-18	27-Feb-18	763	0%	0			Approve the Physical Model
LC10250 Fabrication of Physical Model	P2-Cal.A	90	90 28-Feb-18	28-May-18	763	0%	0			
General Submission and Acceptance	P2-Cal.A	121	30 21-Aug-17 A	18-Jan-18	893		0		Genera	I Submission and Acceptance
S10050 Submission of the Temporary Drainage Management Plan incorporating the mitigation plan for diversion of DN1500	P2-Cal.A	60	30 20-Nov-17 A	18-Jan-18	-44	50%	0		Submis	sion of the Temporary Drainage Management Plan incorporating t
S10240 Prepare/Submit the Weather Protection Scheme	P2-Cal.A	30	20 21-Aug-17 A	08-Jan-18	903	33.33%	-81		Prepare/Submit	the Weather Protection Scheme
S10780 Submission source of sand fill	P2-Cal.A	30	20 14-Sep-17 A	08-Jan-18	-175	33.33%	-81		Submission sou	irce of sand fill
Contractor's Design Submission and Acceptance	P2-Cal.A	425	98 24-Jan-17 A	27-Mar-18	172		0			Contractor's Desi
Foundation Design	P2-Cal.A	418	91 30-May-17 A	20-Mar-18	28		0			✓ Foundation Design
AIP Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 1 CT01 CH366.059-201.44	P2-Cal.A	239	35 30-May-17 A	23-Jan-18	28		0		AIP	\$ubmission for Foundation of Road P2 Structure (Reclaimed Se
S11260-1 2nd Resubmit AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 1)	P2-Cal.A	14	14 30-May-17 A	02-Jan-18	28	0%	-204	-	2nd Resubmit AIP S	ubmission for Foundation of Road P2 Structure (Reclaimed Section
S11260-2 Review and Accept AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 1)	P2-Cal.A	21	21 03-Jan-18	23-Jan-18	28	0%	0			view and Accept AIP Submission for Foundation of Road P2 Struc
AIP Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 2 (S200 CH821 - P2 CH188	P2-Cal.A	362	35 27-Jul-17 A	23-Jan-18	28		0		AIP	Submission for Foundation of Road P2 Structure (Reclaimed Se
S11269-1 2nd Resubmit AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 2)	P2-Cal.A	14	14 27-Jul-17 A	02-Jan-18	28	0%	-327		2nd Resubmit AIP S	ubmission for Foundation of Road P2 Structure (Reclaimed Section
S11270 Review and Accept AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 2)	P2-Cal.A	21	21 03-Jan-18	23-Jan-18	28	0%	0		Rev	view and Accept AIP Submission for Foundation of Road P2 Struc
AIP Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 3 (P2 CH188 - CH278)	P2-Cal.A	112	35 27-Jul-17 A	23-Jan-18	28		0			Submission for Foundation of Road P2 Structure (Reclaimed Se
S11278-2 2nd Resubmit AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 3)	P2-Cal.A	14	14 27-Jul-17 A	02-Jan-18	28	0%	-77		2nd Resubmit AIP Si	ubmission for Foundation of Road P2 Structure (Reclaimed Section
S11279 Review and Accept AIP Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 3)	P2-Cal.A	21	21 03-Jan-18	23-Jan-18	28	0%	0			view and Accept AIP Submission for Foundation of Road P2 Struc
DDA Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 1 CT01 CH366.059-201.44	P2-Cal.A	56	56 24-Jan-18	20-Mar-18	28		0			DDA Submission for Fc
S11360 Prepare and Submit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 1)	P2-Cal.A	21	21 24-Jan-18	13-Feb-18	28	0%	0		_	Prepare and Submit DDA Submission for Foundatio
S11380 Review and Discuss DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 1)	P2-Cal.A	21	21 14-Feb-18	06-Mar-18	28	0%	0			Review and Discuss DDA Submiss
S11400     Resubmit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 1)	P2-Cal.A	14	14 07-Mar-18	20-Mar-18	28	0%	0			Resubmit DDA Submis
	P2-Cal.A	56	56 24-Jan-18	20-Mar-18	28		0			■ DDA Submission for Fc
DDA Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 2 (S200 CH821 - P2 CH188 S1142 Prepare and Submit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 2)	P2-Cal.A	21	21 24-Jan-18	13-Feb-18	28	0%	0		_	Prepare and Submit DDA Submission for Foundatio
S11424     Review and Discuss DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 2)	P2-Cal.A	21	21 14-Feb-18	06-Mar-18	28	0%	0			Review and Discuss DDA Submiss
S11424 Review and Discuss DDA Submission for Foundation of Road P2 Structure (Reclaimed Section 2016 2)     S11426 Resubmit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section 2016 2)	P2-Cal.A	14	14 07-Mar-18	20-Mar-18	20	0%	0			Resubmit DDA Submis
	P2-Cal.A	56	56 24-Jan-18	20-Mar-18	28	0.10	0			DDA Submission for Fo
DDA Submission for Foundation of Road P2 Structure (Reclaimed Section) Zone 3 (P2 CH188 - CH278) S11432 Prepare and Submit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 3)	P2-Cal.A	21		13-Feb-18	28	0%	0		_	Prepare and Submit DDA Submission for Foundatio
S11432         Prepare and Submit DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 3)           S11434         Review and Discuss DDA Submission for Foundation of Road P2 Structure (Reclaimed Section Zone 3)			21 24-Jan-18			0%	0			Review and Discuss DDA Submission for Poundation
	P2-Cal.A	21	21 14-Feb-18 14 07-Mar-18	06-Mar-18 20-Mar-18	28	0%	0			Review and Discuss DDA Submis
		14 U/-Mar-18 77 24-Jan-17 A	20-Mar-18 06-Mar-18		076	0			E&M Design	
E&M Design	P2-Cal.A	352	77 24-Jan-17 A	oo-war-18	33		U			· Law Design
									Date	Revision Checked Approved
Primary Baseline Critical Remaining Work NE/2015/02 Tseung Kwa	n O - Larr	ו Tin T	unnel-Road I	P2 and		3 M	onths Rollin	g Programme	20-Dec-17	
Actual Work  Actual Work  Associat	ted Works	s (Dec	-17)				(20 Decemb	er 2017)		I
Remaining Work V Summary							Page: 1	of 9		
							0		1	

Activity ID	Activity Name	Calendar	Original Duration	Remaining Duration	Start	Finish	Total Float	Activity % Complete	Variance - BL1 TRA Finish Date		2017 Dec	Jan	2018 Feb Mar	Apr
Statutory A	proval for E&M Works	P2-Cal.A	0		06-Feb-18	06-Feb-18	61	Complete	0		Dec	Jan	▼ Statutory Approval for E&M Works	Obi
S11570-11	FSD Approval for Underpass GBP	P2-Cal.A	0	C	)	06-Feb-18	61	0%	0				<ul> <li>FSD Approval for Underpass GBP</li> </ul>	
S11570-12	FSD Approval for Plant room GBP	P2-Cal.A	0	C	)	06-Feb-18	61	0%	0				<ul> <li>FSD Approval for Plant room GBP</li> </ul>	
Detail Desi	n for E&M Works (Tunnel and associated)	P2-Cal.A	352	77	7 24-Jan-17 A	06-Mar-18	33		0				Detail Design for E&N	// Works (Tun
MVAC Det	il Design	P2-Cal.A	85	32	2 04-Dec-17 A	20-Jan-18	78		0			K	IVAC Detail Design	
Plantroom		P2-Cal.A	85	32	2 04-Dec-17 A	20-Jan-18	78		0	· ·			lantroom	
S11575-6	5th review of the submission by the Supervisor	P2-Cal.A	8	2	2 04-Dec-17 A	21-Dec-17	78	75%	-47			5th review of the submiss	ion by the Supervisor	
S11576	1st review by EMSD/HyD	P2-Cal.A	15	15	5 22-Dec-17	05-Jan-18	78	0%	0			1st review by	EMSD/HyD	
S11577	Formal Submission to Supervisor	P2-Cal.A	8	8	3 06-Jan-18	13-Jan-18	78	0%	0	-		Forma	Submission to Supervisor	
S11578	Accept detail design by the Supervisor	P2-Cal.A	7	7	7 14-Jan-18	20-Jan-18	78	0%	0			·····	ccept detail design by the Supervisor	
Underpass		P2-Cal.A	85	32	2 04-Dec-17 A	20-Jan-18	78		0				Inderpass	
S11620-6	5th review of the submission by the Supervisor	P2-Cal.A	8	2	2 04-Dec-17 A	21-Dec-17	78	75%	-47	-		5th review of the submiss	ion by the Supervisor	
S11625	1st review by EMSD/HyD	P2-Cal.A	15		5 22-Dec-17	05-Jan-18	78	0%	0			1st review by	EMSD/HyD	
S11630	Formal Submission to Supervisor	P2-Cal.A	8		3 06-Jan-18	13-Jan-18	78	0%	0				Submission to Supervisor	
S11640	Accept detail design by the Supervisor	P2-Cal.A	7		7 14-Jan-18	20-Jan-18	78	0%	0				ccept detail design by the Supervisor	
FS Detail I		P2-Cal.A	57		9 17-Nov-17 A	07-Jan-18	41		8			FS Detail D		
Underpass	esign	P2-Cal.A	49		17-Nov-17 A	07-Jan-18	41		0			Underpass	Ŭ .	
S11650	1st review by FSD/EMSD	P2-Gal.A	49		2 17-Nov-17 A	31-Dec-17	41	20%	-27			1st review by FSI	D/EMSD	
S11651		P2-Cal.A	7		7 01-Jan-18	07-Jan-18	41	0%	-27				il design by the Supervisor	
	Accept detail design by the Supervisor							0%	8			Plantroom	a design by the Supervisor	
Plantroom		P2-Cal.A	15		9 17-Nov-17 A	07-Jan-18	41							
S11652-12	1st review by FSD/EMSD	P2-Cal.A	15		2 17-Nov-17 A	31-Dec-17	41	20%	15				eview by FSD/EMSD	
S11652-13	Accept detail design by the Supervisor	P2-Cal.A	7		7 01-Jan-18	07-Jan-18	41	0%	0			Accept deta	ill design by the Supervisor	
	nd Drainage Detail Design	P2-Cal.A	335		0 10-Feb-17 A	17-Feb-18	50		0				Plumbing and Drainage Detail Desi	ign
Underpass		P2-Cal.A	335		0 10-Feb-17 A	17-Feb-18	50		0				Underpass	
S11653	Prepare and submit detail design for PD services	P2-Cal.A	21	11	10-Feb-17 A	30-Dec-17	50	47.62%	-265				it detail design for PD services	
S11654	1st review of the submission by the Supervisor	P2-Cal.A	7	7	31-Dec-17	06-Jan-18	50	0%	0				the submission by the Supervisor	
S11655	Resubmit detail design for PD services	P2-Cal.A	7	7	7 07-Jan-18	13-Jan-18	50	0%	0			Resub	mit detail design for PD services	
S11656	2nd review from Supervisor	P2-Cal.A	7	7	7 14-Jan-18	20-Jan-18	50	0%	0			2	nd review from Supervisor	
S11657	1st review by HyD	P2-Cal.A	14	14	1 21-Jan-18	03-Feb-18	50	0%	0			-	1st review by HyD	
S11658	Formal Submission to Supervisor	P2-Cal.A	7	7	04-Feb-18	10-Feb-18	50	0%	0				Formal Submission to Supervisor	
S11659	Accept detail design by the Supervisor	P2-Cal.A	7	7	7 11-Feb-18	17-Feb-18	50	0%	0				Accept detail design by the Supervi	sor
Plantroom		P2-Cal.A	64	34	15-Nov-17 A	22-Jan-18	76		0				Plantroom	
S11660-08-4	7th review from Supervisor	P2-Cal.A	8	3	3 15-Nov-17 A	22-Dec-17	76	62.5%	-25			7th review from Supervis	or	
S11660-09	1st review by HyD/EMSD	P2-Cal.A	15	15	5 23-Dec-17	06-Jan-18	76	0%	0			1st review by	/ HyD/EMSD	
S11660-10	Formal Submission to Supervisor	P2-Cal.A	8	8	3 07-Jan-18	14-Jan-18	76	0%	0			Forma	al Submission to Supervisor	
S11660-11	Accept detail design by the Supervisor	P2-Cal.A	8	8	3 15-Jan-18	22-Jan-18	76	0%	0				Accept detail design by the Supervisor	
Electrical	etail Design	P2-Cal.A	352	77	7 24-Jan-17 A	06-Mar-18	33		0				Electrical Detail Desig	gn
Underpass	ighting	P2-Cal.A	131	29	9 26-Jul-17 A	17-Jan-18	81		0	-			lerpass Lighting	
S11660-16	1st review by EMSD/HyD	P2-Cal.A	15	15	5 26-Jul-17 A	03-Jan-18	81	0%	-102			1st review by E	MSD/HyD	
S11660-18	Fromal Submission to Supervisor	P2-Cal.A	7	7	7 04-Jan-18	10-Jan-18	81	0%	0			Fromal S	ubmission to Supervisor	
S11660-19	Accept detail design by the Supervisor	P2-Cal.A	7	7	7 11-Jan-18	17-Jan-18	81	0%	0			Acc	ept detail design by the Supervisor	
External Ro	ld Lighting	P2-Cal.A	84	30	08-Sep-17A	18-Jan-18	80		0			Ex	ternal Road Lighting	
S11660-24	1st review by EMSD/CLP/ HyD	P2-Cal.A	15	15	5 08-Sep-17 A	03-Jan-18	80	0%	-54	-		1st review by E	MSD/CLP/ HyD	
S11660-26	Formal Submission to Supervisor	P2-Cal.A	7	7	7 04-Jan-18	10-Jan-18	80	0%	0				ubmission to Supervisor	
S11660-27	Accept detail design by the Supervisor	P2-Cal.A	8		3 11-Jan-18	18-Jan-18	80	0%	0			Ac	cept detail design by the Supervisor	
Plantroom		P2-Cal.A	352		7 24-Jan-17 A		33		0				Plantroom	
S11661	Prepare and submit detail design for EL services	P2-Cal.A	21		) 24-Jan-17 A	08-Jan-18	33	4.76%	-274			Prepare an	d submit detail design for EL services	
Actu	ary Baseline Critical Remaining Work Al Work ♦ Milestone Associated				I-Road F	P2 and			onths Rollin (20 Decemb Page: 2	per 201		Date 20-Dec-17	Revision Checked A	pproved

Activity	ID	Activity Name	Calendar	Original Re Duration	emaining Start Duration	Finish	Total Float	Activity % Va	riance - BL1 TRA Finish Date	2017 Dec	2018 Jan Feb Mar Apr
	S11663	1st review of the submission by the Supervisor	P2-Cal.A	8	8 09-Jan-18	16-Jan-18	33	0%	0	Dec	Ist review of the submission by the Supervisor
	S11664	Resubmit detail design for EL services	P2-Cal.A	8	8 17-Jan-18	24-Jan-18	33	0%	0	_	Resubmit detail design for EL services
	S11665	2nd review from Supervisor	P2-Cal.A	10	10 25-Jan-18	03-Feb-18	33	0%	0		2nd review from Supervisor
	S11666	1st review by EMSD/HyD	P2-Cal.A	15	15 04-Feb-18	18-Feb-18	33	0%	0	-	1st review by EMSD/HyD
	S11667	Formal Submission to Supervisor	P2-Cal.A	8	8 19-Feb-18	26-Feb-18	33	0%	0	_	Formal Submission to Supervisor
		Accept detail design by the Supervisor	P2-Cal.A	8	8 27-Feb-18	06-Mar-18	33	0%	0	_	Accept detail design by the Supervi
			P2-Cal.A	64	33 12-Dec-17 A	21-Jan-18	27		0		T ELV And SCADA Detail Design
		ADA Detail Design	P2-Cal.A	33	33 12-Dec-17 A	21-Jan-18	27		0		Underpass
	Underpass								-		
		4th review from Supervisor	P2-Cal.A	10	2 12-Dec-17 A	21-Dec-17	27	80%	8		4th review from Supervisor
	S11669-18	1st review by HyD	P2-Cal.A	15	15 22-Dec-17	05-Jan-18	27	0%	0		1st review by HyD
	S11669-19	Formal Submission to Supervisor	P2-Cal.A	8	8 06-Jan-18	13-Jan-18	27	0%	0		Formal Submission to Supervisor
	S11669-20	Accept detail design by the Supervisor	P2-Cal.A	8	8 14-Jan-18	21-Jan-18	27	0%	0		Accept detail design by the Supervisor
F	Plantroom		P2-Cal.A	64	33 12-Dec-17 A	21-Jan-18	27		0		Plantroom
	S11670-08	4th review from Supervisor	P2-Cal.A	10	2 12-Dec-17 A	21-Dec-17	27	80%	-23		4th review from Supervisor
	S11670-18	1st review by HyD	P2-Cal.A	15	15 22-Dec-17	05-Jan-18	27	0%	0	· · ·	1st review by HyD
	S11670-19	Formal Submission to Supervisor	P2-Cal.A	8	8 06-Jan-18	13-Jan-18	27	0%	0	-	Formal Submission to Supervisor
	S11670-20	Accept detail design by the Supervisor	P2-Cal.A	8	8 14-Jan-18	21-Jan-18	27	0%	0	-	Accept detail design by the Supervisor
De	sian of Arc	hitectural Finishes for Internal Walls of U-Trough Structures	P2-Cal.A	77	77 20-Dec-17	06-Mar-18	114		0	<u> </u>	Design of Architectural Finishes for
		Prepare and Submit Design of Architectural Finishes for Internal Wals of U-Trough Structures (VE and PC Panel)	P2-Cal.A	21	21 20-Dec-17	09-Jan-18	114	0%	0		Prepare and Submit Design of Architectural Finishes for Internal Walls of U-Trou
		Review and Discuss Design of Architectural Finishes for Internal Walls of U-Trough Structures (VE and PC Panel)	P2-Cal.A	21	21 10-Jan-18	30-Jan-18	114	0%	0	_	Review and Discuss Design of Architectural Finishes for Interna
		Resubmit Design of Architectural Finishes for Internal Walls of U-Trough Structures (VE and PC Panel)	P2-Cal.A	14	14 31-Jan-18	13-Feb-18	114	0%	0	_	Resubmit Design of Architectural Finishes for Intern
		Review and Accept Design of Architectural Finishes for Internal Walls of U-Trough Structures (VE and PC Parier)			21 14-Feb-18					_	Review and Accept Design of Arch
			P2-Cal.A	21		06-Mar-18	114	0%	0		Irrigation System
	igation Sys		P2-Cal.A	206	74 16-Nov-17 A	03-Mar-18	196		0		
		Prepare & Submission of Form 542	P2-Cal.A	14	11 16-Nov-17 A	30-Dec-17	196	21.43%	-129		Prepare & Submission of Form 542
S	11789	Reviewed by WSD	P2-Cal.A	28	28 31-Dec-17	27-Jan-18	196	0%	0		Reviewed by WSD
S	11790	Formal Submission to Supervisor	P2-Cal.A	14	14 28-Jan-18	10-Feb-18	196	0%	0		Formal Submission to Supervisor
S	11800	Review and Accept Submission for Waterpoints and associated elements	P2-Cal.A	21	21 11-Feb-18	03-Mar-18	196	0%	0		Review and Accept Submission for W
Co	ontractor C	ost Saving Design	P2-Cal.A	98	98 20-Dec-17	27-Mar-18	14		0		Contractor Cost S
A	IP Submiss	ion for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	56	56 20-Dec-17	13-Feb-18	14		0		AIP Submission for CSD of Reclaimed Section (S20
S	11940	Resubmit AIP Submission for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	28	28 20-Dec-17	16-Jan-18	14	0%	0		Resubmit AIP Submission for CSD of Reclaimed Section (S200 CH674 - C
s	11950	Review and Accept AIP Submission for CSD of Reclaimed Section by HyD (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	28	28 17-Jan-18	13-Feb-18	14	0%	0	-	Review and Accept AIP Submission for CSD of Rec
s	11960	Review and Accept AIP Submission for CSD of Reclaimed Section by CEDD (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	21	21 17-Jan-18	06-Feb-18	21	0%	0	-	Review and Accept AIP Submission for CSD of Reclaime
Б		sion for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	42	42 14-Feb-18	27-Mar-18	14		0		DDA Submission
		Prepare and Submit DDA Submission for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	21	21 14-Feb-18	06-Mar-18	14	0%	0		Prepare and Submit DDA Submiss
		Review and Discuss DDA Submission for CSD of Reclaimed Section (S200 CH674 - CH755, S300 CH326-CH355)	P2-Cal.A	21	21 07-Mar-18	27-Mar-18	14	0%	0	_	Review and Discu
								078	-		✓ Major Temporary Works Des
		oorary Works Design	P2-Cal.A	137	85 26-Oct-17 A	14-Mar-18	249		0		
		or U-Trough A & B (P2 CH318 - CH363) Existing Tong Yin Street	P2-Cal.A	64	24 26-Oct-17 A	12-Jan-18	-116		0		ELS Design for U-Trough A & B (P2 CH318 - CH363) Existing Tong Yin Street
		Resubmit ELS Design for U-Trough A & B (P2 CH318 - CH363) + CE No.12 IW (T8 1day)	P2-Cal.A	7	3 26-Oct-17 A	22-Dec-17	-116	57.14%	-36		Resubmit ELS Design for U-Trough A & B (P2 CH318 - CH363) + CE No.12 IW (T8 1day)
S	12520	Accept ELS Design for U-Trough A & B (P2 CH318 - CH363) + CE No.12 IW (T8 1day)	P2-Cal.A	21	21 23-Dec-17	12-Jan-18	-116	0%	0		Accept ELS Design for U-Trough A & B (P2 CH318 - CH363) + CE No.12 IW
EL	_S Design f	or Road P2 Underpass (Non-Plant Room Section) P2 CH105-CH318	P2-Cal.A	83	31 22-Nov-17 A	19-Jan-18	67		0		ELS Design for Road P2 Underpass (Non-Plant Room Section) P2 CH1
S	12752	Resubmit ELS Design for Road P2 Underpass (CH105-318)	P2-Cal.A	28	10 22-Nov-17 A	29-Dec-17	67	64.29%	-34		Resubmit ELS Design for Road P2 Underpass (CH105-318)
S	12760	Accept ELS Design for Road P2 Underpass (CH105-318)	P2-Cal.A	21	21 30-Dec-17	19-Jan-18	67	0%	0		Accept ELS Design for Road P2 Underpass (CH105-318)
EL	S Design f	or Road P2 Underpass (Plant Rooms) P2 CH105-CH318	P2-Cal.A	50	31 24-Nov-17 A	19-Feb-18	67		0	-	ELS Design for Road P2 Underpass (Plant Roc
S	17940	Resubmit ELS Design for Road P2 Underpass (Incl.Stom.W Pt Rm, Sump Pit Rm & Fixed Foam Tk Rm)	P2-Cal.A	28	10 24-Nov-17 A	29-Jan-18	67	64.29%	-1	<b>│</b>	Resubmit ELS Design for Road P2 Underpass (Incl.Stom.W Pt
S	17960	Accept ELS Design for Road P2 Underpass (Incl.Stom.W Pt Rm, Sump Pit Rm & Fixed Foam Tk Rm)	P2-Cal.A	21	21 30-Jan-18	19-Feb-18	67	0%	0	-	Accept ELS Design for Road P2 Underpass (Ir
Te	emporary Je	tty Desian	P2-Cal.A	74	74 31-Dec-17	14-Mar-18	-89		0		Temporary Jetty Design
		Prepare and Submit Temporary Jetty Design	P2-Cal.A	18	18 31-Dec-17	17-Jan-18	-89	0%	0		Prepare and Submit Temporary Jetty Design
		,	04.7					2.0	,		, , , , , , , , , , , , , , , , , , , ,
	D.:	n Danalina - Oritical Danasinina Wash									Date Revision Checked Approved
		ry Baseline Critical Remaining Work NE/2015/02 Tseung Kwan				2 and		3 Mo	nths Rollin	g Programme	20-Dec-17
		Work Milestone Associated	d Work	s (Dec-1	7)			(2	20 Decemb	per 2017)	
	Kema	ining Work V Summary							Page: 3	B of 9	

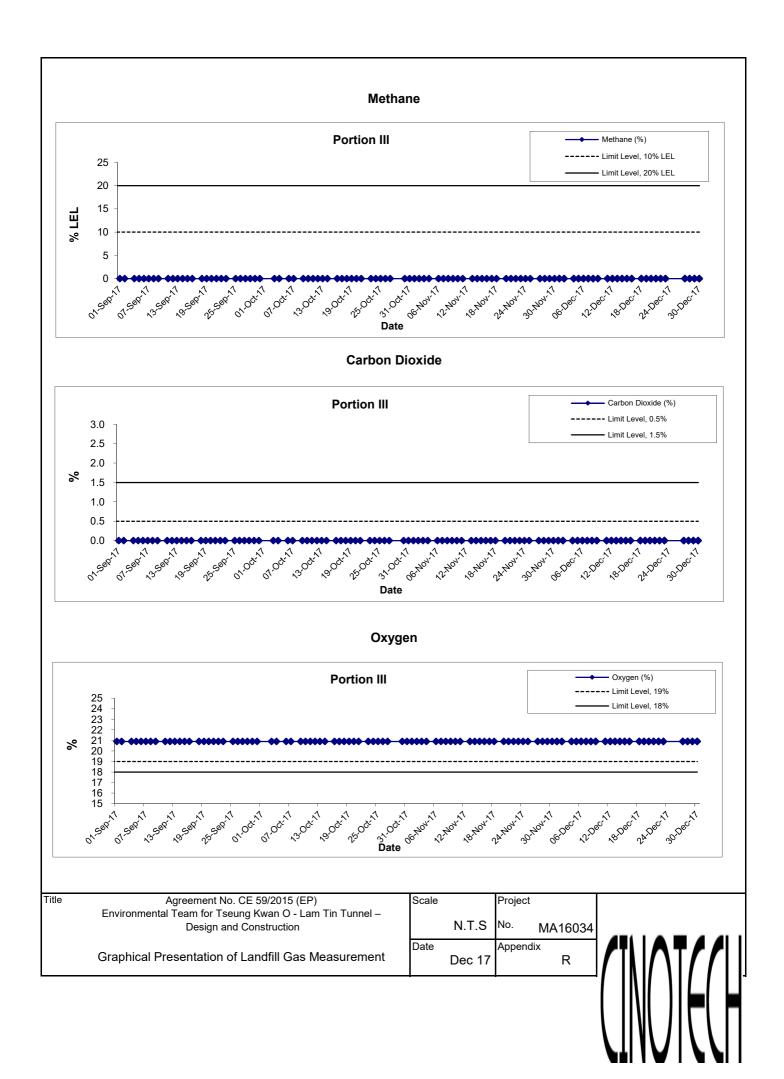
Activity ID	Activity Name	Calendar	Original	Remaining Start	Finish	Total	Activity %	Variance - BL1 TRA	2017	2018
S13040	Review and Discuss Temporary Jetty Design	P2-Cal.A	21	21 18-Jan-18	07-Feb-18	Float -89	Complete 0%	0	Dec	Jan Feb Mar Apr Review and Discuss Temporary Jetty Design
S13060	Resubmit Temporary Jetty Design	P2-Cal.A	14	14 08-Feb-18	21-Feb-18	-89	0%	0		Resubmit Temporary Jetty Design
S13080	Accept Temporary Jetty Design	P2-Cal.A	21	21 22-Feb-18	14-Mar-18	-89	0%	0		Accept Temporary Jetty Des
Design of Ma	rine Survey Tower	P2-Cal.A	74	74 20-Dec-17	03-Mar-18	145		0		Design of Marine Survey Tower
S13100	Prepare and Submit Marine Survey Tower	P2-Cal.A	18	18 20-Dec-17	06-Jan-18	145	0%	0		Prepare and Submit Marine Survey Tower
S13120	Review and Discuss Marine Survey Tower	P2-Cal.A	21	21 07-Jan-18	27-Jan-18	145	0%	0		Review and Discuss Marine Survey Tower
S13140	Resubmit Temporary Marine Survey Tower	P2-Cal.A	14	14 28-Jan-18	10-Feb-18	145	0%	0		Resubmit Temporary Marine Survey Tower
S13160	Accept Temporary Marine Survey Tower	P2-Cal.A	21	21 11-Feb-18	03-Mar-18	145	0%	0		Accept Temporary Marine Survey Tow
ELS Design		P2-Cal.A	65	65 01-Dec-17 A	22-Feb-18	-44		0		ELS Design for Outfall
S13162	Prepare and Submit ELS Design for Outfall (CE no.006)	P2-Cal.A	18	9 01-Dec-17 A	28-Dec-17	-44	50%	9		Prepare and Submit ELS Design for Outfall (CE no.006)
S13164	Review and Discuss ELS Design for Outfall	P2-Cal.A	21	21 29-Dec-17	18-Jan-18	-44	0%	0		Review and Discuss ELS Design for Outfall
S13166	Resubmit ELS Design for Outfall	P2-Cal.A	14	14 19-Jan-18	01-Feb-18	-44	0%	0		Resubmit ELS Design for Outfall
S13168	Accept ELS Design for Outfall	P2-Cal.A	21	21 02-Feb-18	22-Feb-18	-44	0%	0		Accept ELS Design for Outfall
							0%			ELS Design for "U-Trough A Type 3 and U-Trough B Type 4" CH821-105
	or "U-Trough A Type 3 and U-Trough B Type 4" CH821-105	P2-Cal.A	40	31 22-Nov-17 A	19-Jan-18	303	28.57%	0		<ul> <li>Resubmit ELS Design for U-Trough A Type 3 &amp; U-trough B Type 4 (S200 CH821 - P2 CH</li> </ul>
S13178	Resubmit ELS Design for U-Trough A Type 3 & U-trough B Type 4 (S200 CH821 - P2 CH105)	P2-Cal.A	14	10 22-Nov-17 A	29-Dec-17	303		-5		
S13179	Accept ELS Design for U-Trough A Type 3 & U-trough B Type 4 (S200 CH821 - P2 CH105)	P2-Cal.A	21	21 30-Dec-17	19-Jan-18	303	0%	0		Accept ELS Design for U-Trough A Type 3 & U-trough B Type 4 (S200 (
Major Con	struction Works Method Statement	P2-Cal.A	127	101 08-Dec-17 A	30-Mar-18	67		0		✓ Major Construc
Construction	of Seawall Foundation for Road P2	P2-Cal.A	67	67 31-Dec-17	07-Mar-18	-171		0		Construction of Seawall Foundatio
S13260	Prepare and Submit Method Statement for Construction of Seawall Foundation for Road P2	P2-Cal.A	18	18 31-Dec-17	17-Jan-18	-171	0%	0		Prepare and Submit Method Statement for Construction of Seawall Found
S13280	Review and Discuss Method Statement for Construction of Seawall Foundation for Road P2	P2-Cal.A	21	21 18-Jan-18	07-Feb-18	-171	0%	0		Review and Discuss Method Statement for Construction
S13300	Resubmit Method Statement for Construction of Seawall Foundation for Road P2	P2-Cal.A	7	7 08-Feb-18	14-Feb-18	-171	0%	0		Resubmit Method Statement for Construction of Se
S13320	Accept Method Statement for Construction of Seawall Foundation for Road P2	P2-Cal.A	21	21 15-Feb-18	07-Mar-18	-171	0%	0		Accept Method Statement for Con
Reclamation	Filling	P2-Cal.A	67	67 20-Dec-17	24-Feb-18	-185		0		Reclamation Filling
S13340	Prepare and Submit Method Statement for Reclamation Filling	P2-Cal.A	18	18 20-Dec-17	06-Jan-18	-185	0%	0		Prepare and Submit Method Statement for Reclamation Filling
S13360	Review and Discuss Method Statement for Reclamation Filling	P2-Cal.A	21	21 07-Jan-18	27-Jan-18	-185	0%	0		Review and Discuss Method Statement for Reclamation Filling
S13380	Resubmit Method Statement for Reclamation Filling	P2-Cal.A	7	7 28-Jan-18	03-Feb-18	-185	0%	0		Resubmit Method \$tatement for Reclamation Filling
S13400	Accept Method Statement for Reclamation Filling	P2-Cal.A	21	21 04-Feb-18	24-Feb-18	-185	0%	0		Accept Method Statement for Reclamation
ELS of Unde	rpass (P2 CH105-318)	P2-Cal.A	39	39 20-Feb-18	30-Mar-18	67		0		ELS of Underp:
S14056	Prepare and Submit Method Statement for Excavation and ELS of Underpass (P2 CH105-318)	P2-Cal.A	18	18 20-Feb-18	09-Mar-18	67	0%	0		Prepare and Submit Method Stal
S14057	1st Review and Discuss Method Statement for Excavation and ELS of Underpass (P2 CH105-318)	P2-Cal.A	21	21 10-Mar-18	30-Mar-18	67	0%	0		1st Review and
FLS of U-Tro	ughs (P2 CH318-363)	P2-Cal.A	67	67 13-Jan-18	20-Mar-18	-74		0		ELS of U-Troughs (P2 (
S14060	Prepare and Submit Method Statement for Excavation and ELS of U-Troughs (P2 CH318-363)	P2-Cal.A	18	18 13-Jan-18	30-Jan-18	-74	0%	0		Prepare and Submit Method Statement for Excavation and ELS
S14080	1st Review and Discuss Method Statement for Excavation and ELS of U-Troughs (P2 CH318-363)	P2-Cal.A	21	21 31-Jan-18	20-Feb-18	-74	0%	0	-	1st Review and Discuss Method Statement for
S14100	Resubmit Method Statement for Excavation and ELS of U-Troughs (P2 CH318-363)	P2-Cal.A	7	7 21-Feb-18	27-Feb-18	-74	0%	0	-	Resubmit Method Statement for Excavat
S14120-01	Accept Method Statement for Excavation and ELS of U-Troughs (P2 CH318-363)	P2-Cal.A	21	21 28-Feb-18	20-Mar-18	-74	0%	0		Accept Method Statem
		P2-Cal.A	18	18 04-Mar-18	21-Mar-18	-31	070	0		Construction of U-Tro
S14122	of U-Troughs structure (P2 CH318-363) Prepare and Submit Method Statement for Construction of U-Troughs Structure (P2 CH318-363)						09/	0		Prepare and Submit M
		P2-Cal.A	18	18 04-Mar-18	21-Mar-18	-31	0%	-		reatment of Dredged Marine Sediment of Type 1
	Dredged Marine Sediment of Type 1	P2-Cal.A	10	3 08-Dec-17 A	22-Dec-17	-183		-19		teview and Accept Method Statement for Treatment of Dredging Marine Sediment of Type 1
S14374	Review and Accept Method Statement for Treatment of Dredging Marine Sediment of Type 1	P2-Cal.A	10	3 08-Dec-17 A	22-Dec-17	-183	70%	-19		
	of Vertical Seawall	P2-Cal.A	74	74 31-Dec-17	14-Mar-18	-181		0		Construction of Vertical Sea
S14931	Prepare and Submit Method Statement for Construction of Vertical Seawall	P2-Cal.A	18	18 31-Dec-17	17-Jan-18	-181	0%	0		Prepare and Submit Method Statement for Construction of Vertical Seawa
S14933	Review and Discuss Method Statement for Construction of Vertical Seawall	P2-Cal.A	21	21 18-Jan-18	07-Feb-18	-181	0%	0		Review and Discuss Method Statement for Construction
S14935	Resubmit Method Statement for Construction of Vertical Seawall	P2-Cal.A	14	14 08-Feb-18	21-Feb-18	-181	0%	0		Resubmit Method Statement for Construction
S14937	Accept Method Statement for Construction of Vertical Seawall	P2-Cal.A	21	21 22-Feb-18	14-Mar-18	-181	0%	0		Accept Method Statement fo
Construction	of Vertical Band Drain	P2-Cal.A	43	43 20-Dec-17	31-Jan-18	-189		0		Construction of Vertical Band Drain
S14939	Prepare and Submit Method Statement for Construction of Vertical Band Drain	P2-Cal.A	5	5 20-Dec-17	24-Dec-17	-189	0%	0	-	Prepare and Submit Method \$tatement for Construction of Vertical Band Drain
S14941	Review and Discuss Method Statement for Construction of Vertical Band Drain	P2-Cal.A	21	21 25-Dec-17	14-Jan-18	-189	0%	0		Review and Discuss Method Statement for Construction of Vertical Band Dra
Actua	ary Baseline Critical Remaining Work NE/2015/02 Tseung Kwa I Work ♦ ♦ Milestone Associa	an O - Lan ated Work			P2 and			lonths Rollin (20 Decemb Page: 4	,	Date Revision Checked Approved 20-Dec-17

Activity ID	Activity Name	Calendar	Original	Remaining Start	Finish	Total	Activity %	Variance - BL1 TRA		2017	2018
S14945	Resubmit Method Statement for Construction of Vertical Band Drain	P2-Cal.A	Juration 3		17-Jan-18	-189	Complete 0%	0		Dec	Jan Feb Mar Apr Resubmit:Method Statement for Construction of Vertical Band Drain
S14947	Accept Method Statement for Construction of Vertical Band Drain	P2-Cal.A	14	14 18-Jan-18	31-Jan-18	-189	0%	0			Accept Method Statement for Construction of Vertical Band Dr
Constructio	n of Temporary Jetty	P2-Cal.A	22	22 22-Feb-18	15-Mar-18	-89		0			Construction of Temporary
S14949	Prepare and Submit Method Statement for Construction of Temporary Jetty	P2-Cal.A	4	4 22-Feb-18	25-Feb-18	-89	0%	0			Prepare and Submit Method Statement for
S14951	Review and Discuss Method Statement for Construction of Temporary Jetty	P2-Cal.A	7		04-Mar-18	-89	0%	0			Review and Discuss Method Statem
S14953	Resubmit Method Statement for Construction of Temporary Jetty	P2-Cal.A	4		08-Mar-18	-89	0%	0			Resubmit Method Statement for (
S14955	Accept Method Statement for Construction of Temporary Jetty	P2-Cal.A	7		15-Mar-18	-89	0%	0			Accept Method Statement fr
	n of DN2100	P2-Cal.A	35		23-Jan-18	-72		0			Construction of DN2100
S14961	Resubmit Method Statement for Construction of DN2100	P2-Cal.A	14		02-Jan-18	-72	0%	0			Resubmit Method Statement for Construction of DN2100
S14962							0%	0			Accept Method Statement for Construction of DN2100
	Accept Method Statement for Construction of DN2100	P2-Cal.A	21 1015		23-Jan-18	-72	0%				
	ent of Major Material	P2-Cal.A			02-Jan-20	17		-63			
Civil/Structu		P2-Cal.A	1015		02-Jan-20	17		-63			
S14981	Procurement and Delivery of Steel H-Pile	P2-Cal.A	800		13-May-19	-186	36.25%	-33			
S14983	Procurement and Delivery of ELS Wailing & Struts Members	P2-Cal.A	1015	744 20-Jan-17 A	02-Jan-20	17	26.7%	-63			
S14985	Offsite Fabrication of Pre-cast Seawall blocks	P2-Cal.A	40	40 27-Jan-18	07-Mar-18	-171	0%	0			Offsite Fabrication of Pre-cast Set
S14995	Offsite Fabrication of Marine Survey Tower	P2-Cal.A	120	120 04-Mar-18	01-Jul-18	145	0%	0			
S15001	Procurement and Delivery of 1500DN materials	P2-Cal.A	90	90 02-Jan-18	01-Apr-18	-117	0%	0			Procurement
Subletting	Package	P2-Cal.A	344	100 27-Apr-17 A	29-Mar-18	322		0			Subletting Pack
V Panel and	Precast Concrete Panel	P2-Cal.A	21	21 14-Feb-18	06-Mar-18	114		0			V Panel and Precast Concrete Pan
S15156	Tender Interview and Recommendation to PM for V Panel and Precast Concrete Panel (Re-tender due to revise dwg)	P2-Cal.A	21	21 14-Feb-18	06-Mar-18	114	0%	0			Tender Interview and Recommenda
S15160	V Panel and Precast Concrete Panel Award	P2-Cal.A	0	0	06-Mar-18	114	0%	0		_	◆ V Panel and Precast Concrete Par
Structural W	orks for U-Trough, Underpass and Abutment	P2-Cal.A	189	100 01-Sep-17 A	29-Mar-18	96		0			Structural Work:
S16400	Prepare Structural Works for U-Trough, Underpass and Abutment Tender Document for PM Acceptance	P2-Cal.A	60	10 01-Sep-17 A	29-Dec-17	96	83.33%	-39			Prepare Structural Works for U-Trough, Underpass and Abutment Tender Document for F
S16420	Invitation, Submission and Opening of Tender for Structural Works for U-Trough, Underpass and Abutment	P2-Cal.A	60	60 30-Dec-17	27-Feb-18	96	0%	0			Invitation, Submission and Opening of Te
S16440	Tender Interview and Recommendation to PM for Structural Works for U-Trough, Underpass and Abutment	P2-Cal.A	30	30 28-Feb-18	29-Mar-18	96	0%	0			Tender Interview
Drainage an	d Sewerage Works (Existing Land) (At Grade Section)	P2-Cal.A	300	63 27-Apr-17 A	20-Feb-18	338		0			Drainage and Sewerage Works (Existing Lanc
S17104	Submission and Opening of Tender for Drainage and Sewerage Works	P2-Cal.A	42	42 27-Apr-17 A	30-Jan-18	338	0%	-237			Submission and Opening of Tender for Drainage and Sewerage
S17106	Tender Interview and Recommendation to PM for Drainage and Sewerage Works	P2-Cal.A	21		20-Feb-18	338	0%	0			Tender Interview and Recommendation to PM
S17108	Drainage and Sewerage Works Award	P2-Cal.A	0		20-Feb-18	338	0%	0			◆ Drainage and Sewerage Works Award
	d Sewerage Works (Reclaimed Section)	P2-Cal.A	279		23-Jan-18	135		0			
S17110	Prepare Drainage and Sewerage Works Tender Document for PM Acceptance	P2-Cal.A	30	Ť	20-Dec-17	135	100%	-214			Prepare Drainage and Sewerage Works Tender Document for PM Acceptance
S17112	Submission and Opening of Tender for Drainage and Severage Works	P2-Cal.A	14		02-Jan-18	135	0%	0			Submission and Opening of Tender for Drainage and Sewerage Works
S17114	Tender Interview and Recommendation to PM for Drainage and Sewerage Works	P2-Cal.A	21		23-Jan-18	135	0%	0			Tender Interview and Recommendation to PM for Drainage and Sewe
S17114	Drainage and Sewerage Works Award	P2-Cal.A					0%	0			Drainage and Sewerage Works Award
			0		23-Jan-18	135	0%	0			Vater Works (To be Incorporated in Irrigation Pa
	(To be Incorporated in Irrigation Package)	P2-Cal.A	183	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	18-Feb-18	361					
S17120	Prepare Water Works Tender Document for PM Acceptance	P2-Cal.A	30		29-Dec-17	361	66.67%	-102			Prepare Water Works Tender Document for PMAcceptance
S17140	Submission and Opening of Tender for Water Works	P2-Cal.A	30		28-Jan-18	361	0%	0			Submission and Opening of Tender for Water Works
S17160	Tender Interview and Recommendation to PM for Water Works	P2-Cal.A	21		18-Feb-18	361	0%	0			Tender Interview and Recommendation to PM fc
S17180	Water Works Award	P2-Cal.A	0		18-Feb-18	361	0%	0			Water Works Award
Irrigation W	vrks	P2-Cal.A	152	61 07-Aug-17 A	18-Feb-18	361		0			V Irrigation Works
S17280	Prepare Irrigation Works Tender Document for PM Acceptance	P2-Cal.A	30	10 07-Aug-17 A	29-Dec-17	361	66.67%	-71			Prepare Irrigation Works Tender Document for PM Acceptance
S17300	Submission and Opening of Tender for Irrigation Works	P2-Cal.A	30	30 30-Dec-17	28-Jan-18	361	0%	0			Submission and Opening of Tender for Irrigation Works
S17320	Tender Interview and Recommendation to PM for Irrigation Works	P2-Cal.A	21	21 29-Jan-18	18-Feb-18	361	0%	0			Tender Interview and Recommendation to PM fc
S17340	Irrigation Works Award	P2-Cal.A	0	0	18-Feb-18	361	0%	0			◆ Irrigation Works Award
E & M Work	(Electrical)	P2-Cal.A	0	0 06-Mar-18	06-Mar-18	83		0			▼ E & M Work (Electrical)
S17420	E & M Works (Electrical) Award	P2-Cal.A	0	0	06-Mar-18	83	0%	0			E & M Works (Electrical) Award
E & M Work	s (MVAC)	P2-Cal.A	21	21 20-Dec-17	09-Jan-18	89		0			E & M Works (MVAC)
_									L		<b>↓</b> ↓ ↓ ↓ ↓ ↓
Prim	ary Baseline Critical Remaining Work NE/2015/02 Tseung Kwan		n Tin	Tunnol Bood	bac CC		2 14	onths Rolling	n Dro	aromm	Date Revision Checked Approved
	NE/2015/02 1 Seuring Rwain				2 aliu				-	-	20-Dec-17
Rem	aining Work Summary		s (De	6-17)				(20 Decemb		,,,,	
								Page: 5	ot 9		

Activity ID	Activity Name	Calendar	Original	Remaining Start	Finish	Total	Activity %	Variance - BL1 TRA		2017	2018
S17424	Tender Interview and Recommendation to PM for E & M Works (MVAC)	P2-Cal.A	Duration 21	21 20-Dec-17	09-Jan-18	Float 89	Complete 0%	Finish Date 0		Dec	Jan Feb Mar Apr Tender Interview and Recommendation to PM for E & M Works (MVAC)
S17425	E & M Works Award (MVAC)	P2-Cal.A	0	0	09-Jan-18	89	0%	0			E & M Works Award (MVAC)
E & M Work	(FS)	P2-Cal.A	0	0 07-Jan-18	07-Jan-18	41		0			▼ E & M Works (FS)
S17429	E & M Works (FS) Award	P2-Cal.A	0	0	07-Jan-18	41	0%	0			E & M Works (FS) Award
F & M Work	(Plumbing & Drainage)	P2-Cal.A	171		06-Feb-18	61		0			E & M Works (Plumbing & Drainage)
S17430	Prepare E & M Works (Plumbing & Drainage) Tender Document for PM Acceptance	P2-Cal.A	40		02-Jan-18	61	65%	-96			Prepare E & M Works (Plumbing & Drainage) Tender Document for PM Acceptance
S17431	Submission and Opening of Tender for E & M Works (Plumbing & Drainage)	P2-Cal.A	14	-	16-Jan-18	61	0%	0			Submission and Opening of Tender for E & M Works (Plumbing & Drainage
S17432	Tender Interview and Recommendation to PM for E & M Works (Plumbing & Drainage)	P2-Cal.A	21		06-Feb-18	61	0%	0			Tender Interview and Recommendation to PM for E & M V
S17433	E & M Works (Plumbing & Drainage) Award	P2-Cal.A	0		06-Feb-18	61	0%	0	_		◆ E & M Works (P)umbing & Drainage) Award
		P2-Cal.C	14		08-Jan-18	1276	070	0		-	Section 1 of the Works
	of the Works									_	
	n of Existing DSD Transformer Room	P2-Cal.C	14		08-Jan-18	1276		0		·	Demolition of Existing DSD Transformer Room
LC11096	Outstanding Works: Installation of Gutter (CE 083) & Fall Arrest System (PMI 054)	P2-Cal.C	14		08-Jan-18	1276	0%	0			Outstanding Works: Installation of Gutter (CE 083) & Fall Arrest System (PMI 05
Section 3	of the Works All Works within Portion IV, V, VI, VII, VIII, and IX		613	399 25-Apr-17 A	22-Jan-19	154		0		/	
Existing L	and Section		579	196 25-Apr-17 A	03-Jul-18	357		169		/	
Retaining W	all P2-A CH 500 - 650		579	126 25-Apr-17 A	24-Apr-18	427		239			
LC11925	Felling and Transplantation for Trees and Removal Planter at Chui Shin Street (NCE-019, EW-014 and PMI-61)	P2-Cal.A	200	17 20-May-17 A	05-Jan-18	65	91.5%	-31			Felling and Transplantation for Trees and Removal Planter at Chui Shin Street (NCE
LC11926	Trial Pit of underground utilities	P2-Cal.C	6	6 06-Jan-18	12-Jan-18	234	0%	0			Trial Pit of underground utilities
LC11929	CLP cable Diversion and relocation of WSD flowmeter chamber (by others) (NCE-029) (NCE-030) (PMI-027)	P2-Cal.A	365	126 25-Apr-17 A	24-Apr-18	65	65.48%	239			
Bay 3-4		P2-Cal.C	10	10 30-Nov-17 A	03-Jan-18	434		-26			▼ Bay 3-4
LC11958	Backfilling Works RW P2-A Back Side (Bay 3 - 4) (Incl. soil test)	P2-Cal.C	10	10 30-Nov-17 A	03-Jan-18	434	0%	-26 6			Backfilling Works RW P2-A Back Side (Bay3 - 4) (Incl. soil test)
P2 Road		P2-Cal.C	101	79 17-Nov-17 A	28-Mar-18	193		0			P2 Road
P2 CH 318	363	P2-Cal.C	79	79 20-Dec-17	28-Mar-18	-155		0		<b>\</b>	P2 CH 318 - 363
	P2 CH318-363	P2-Cal.C	34	34 20-Dec-17	31-Jan-18	-110		0			Foundation P2 CH318-363
LC12948	Construction of temporary road for stage 2B TTA - footpath diversion	P2-Cal.C	14		08-Jan-18	-155	0%	0		$\setminus$	Construction of temporary road for stage 2B TTA - footpath diversion
LC12949	Construction of temporary road for stage 2B TTA - BMCPC EVA diversion	P2-Cal.C	20		31-Jan-18	-110	0%	0	-		Construction of temporary road for stage 2B TTA - BMCPC EV
		P2-Cal.C	65		28-Mar-18	-155	0,0	0			v ELS P2 CH318-3
	Plant Mebilization		5				0%	0			Plant Mobilization
LC12950		P2-Cal.C			13-Jan-18	-155					
LC12951	Overcome obstruction by Pre-bore method at CH318-363 (176m)(EW-019)(CE-020)	P2-Cal.C	60		28-Mar-18	-155	0%	0			Qvercome obstru
P2 CH 411-		P2-Cal.C	100	78 17-Nov-17 A	27-Mar-18	194		0			
	2 CH 411 - 500 (U Trough A)	P2-Cal.C	100		27-Mar-18	194		0			Structure P2 CH 4
Base Slab		P2-Cal.C	42		15-Jan-18	195		0		/	Base Slab
LC14720	Laying Blinding at CH411-423	P2-Cal.C	3		22-Dec-17	168	0%	-22	-4		Laying Blinding at CH411-423
LC14810	Waterproofing Works at CH411 - 423	P2-Cal.C	2		27-Dec-17	168	0%	0			Waterproofing Works at CH411 - 423
LC14820	Construction of Base Slab at CH411 - 423	P2-Cal.C	13	13 28-Dec-17	12-Jan-18	168	0%	0			Construction of Base Slab at CH411 - 423
LC14970	Waterproofing Works at CH449 - 468	P2-Cal.C	2	2 28-Dec-17	29-Dec-17	195	0%	0			Waterproofing Works at CH449 - 468
LC14980	Construction of Base Slab at CH449 - 468	P2-Cal.C	13	13 30-Dec-17	15-Jan-18	195	0%	0			Construction of Base Slab at CH449 - 468
Wall Stem		P2-Cal.C	78	78 23-Nov-17 A	27-Mar-18	194		0			✓ Wall Stem
LC15030	Backfilling of base slab & removal of strut/waling at CH475 - 500	P2-Cal.C	5	5 23-Nov-17 A	27-Dec-17	176	0%	0			Backfilling of base slab & removal of strut/waling at CH475 - 500
LC15035	Construction of upstand wall at CH500	P2-Cal.C	5	5 28-Dec-17	03-Jan-18	176	0%	0			Construction of upstand wall at CH500
LC15040	Construction of wall stem at CH475 - 500 1st pour x 2 side (+4.0mpd)	P2-Cal.C	13	13 13-Jan-18	27-Jan-18	168	0%	0			Construction of wall stem at CH475 - 500 1st pour x 2 side (+4.0rr
LC15050	Waterproofing of wall stem, backfill & removal of strut/waling at CH475 - 500	P2-Cal.C	7	7 29-Jan-18	05-Feb-18	221	0%	0			Waterproofing of wall stem, backfill & removal of strut/walir
LC15070	Backfilling of base slab & removal of strut/waling at CH423 - 449	P2-Cal.C	5	5 28-Dec-17	03-Jan-18	192	0%	0			Backfilling of base slab & removal of strut/walling at CH423 - 449
LC15075	Construction of upstand wall at CH423	P2-Cal.C	5	5 04-Jan-18	09-Jan-18	192	0%	0			Construction of upstand wall at CH423
LC15080	Construction of wall stem at CH423 - 449 1st pour x 2 side (+1.0mpd)	P2-Cal.C	13	13 07-Feb-18	24-Feb-18	168	0%	0			Construction of wall stem at CH423 - 449 1
LC15090	Waterproofing of wall stem, backfill & removal of strut/waling at CH423 - 449	P2-Cal.C	7	7 26-Feb-18	05-Mar-18	187	0%	0			Waterproofing of wall stem, backfill
LC15130	Backfilling of base slab & removal of strut/waling at CH411 - 423	P2-Cal.C	5	5 13-Jan-18	18-Jan-18	192	0%	0			Backfilling of base slab & removal of strut/waling at CH4 11 - 423
LC15140	Construction of wall stem at CH411 - 423 1st pour x 2 side (+1.0mpd)	P2-Cal.C	8	8 29-Jan-18	06-Feb-18	168	0%	0			Construction of wall stem at CH411 - 423 1st pour x 2 side
Prim	ary Baseline Critical Remaining Work NE/2015/02 Tseung Kwan	0.120	n Tin '	Tunnel-Road G	22 and		3 M	onths Rollin	a Pro	aramme	Date Revision Checked Approved
Actu	al Work   Milestone  Associate				- 4114			(20 Decemb			20-Dec-17
Rem	aining Work Summary		5 (56)	,				Page: 6		.,,	
								Fage: 6	019		

Activity ID	Activity Name	Calendar	Original Duration	Remaining Start Duration	Finish	Total Float	Activity % Complete	Variance - BL1 TRA Finish Date	2017	2018 Jan Feb Mar Apr
LC15150	Waterproofing of wall stern, backfill & removal of strut/waling at CH411 - 423	P2-Cal.C	7	7 07-Feb-18	14-Feb-18	187	0%	0	Dec	Waterproofing of wall stem, backfill & removal of str
LC15160	Construction of wall stem at CH411 - 423 2nd pour x 2 side (+4.0mpd)	P2-Cal.C	13	13 13-Mar-18	27-Mar-18	168	0%	0		Construction of w
LC15190	Backfilling of base slab & removal of strut/waling at CH449 - 475	P2-Cal.C	5	5 19-Jan-18	24-Jan-18	192	0%	0		Backfilling of base slab & removal of strut/waling at CH449 - 475
LC15200	Construction of wall stem at CH449 - 475 1st pour x 2 side (+4.0mpd)	P2-Cal.C	13	13 26-Feb-18	12-Mar-18	168	0%	0		Construction of wall stem at C
LC15210	Waterproofing of wall stem, backfill & removal of strut/waling at CH449 - 475	P2-Cal.C	7	7 13-Mar-18	20-Mar-18	200	0%	0		Waterproofing of wall st
SR2		P2-Cal.C	100	75 01-Nov-17 A	23-Mar-18	369		0		SR2
Retaining	Wall SR2-A & B CH250 - 310	P2-Cal.C	20	10 01-Nov-17 A	03-Jan-18	434		23		Retaining Wall SR2-A & B CH250 - 310
	Wall SR2-A	P2-Cal.C	20	10 01-Nov-17 A	03-Jan-18	434		23		Retaining Wall SR2-A
LC17140	Backfilling Works	P2-Cal.C	20	10 01-Nov-17 A	03-Jan-18	434	50%	23 10		Backfilling Works
SR2 CH17	0 - 250	P2-Cal.C	100	75 04-Dec-17 A	23-Mar-18	311		0		SR2 CH170 - 250
Structure	SR2 CH 170 - 250 (U Trough A)	P2-Cal.C	100	75 04-Dec-17 A	23-Mar-18	311		0		Structure SR2 CH 17
LC17215	Construction of base slab & drainage trench at CH182 - 195	P2-Cal.C	16	9 04-Dec-17 A	02-Jan-18	295	43.75%	-18		Construction of base slab & drainage trench at CH182 - 195
LC17225	Construction of base slab & drainage trench at CH208 - 222	P2-Cal.C	16	14 04-Dec-17 A	08-Jan-18	290	12.5%	-23		Construction of base slab & drainage trench at CH208 - 222
LC17230	Waterproofing works for base slab at CH195 - 208	P2-Cal.C	1	1 03-Jan-18	03-Jan-18	295	0%	0		Waterproofing works for base slab at CH195 - 208
LC17235	Construction of base slab & drainage trench at CH195 - 208	P2-Cal.C	16	16 04-Jan-18	22-Jan-18	295	0%	0		Construction of base slab & drainage trench at CH195 - 208
LC17240	Waterproofing works for base slab at CH222 - 236	P2-Cal.C	1	1 09-Jan-18	09-Jan-18	290	0%	0		Waterproofing works for base slab at CH222 - 236
LC17245	Construction of base slab & drainage trench at CH222 - 236	P2-Cal.C	16	16 10-Jan-18	27-Jan-18	290	0%	0		Construction of base slab & drainage trench at CH222 - 236
LC17250	Waterproofing works for base slab at CH170 - 182	P2-Cal.C	1	1 23-Jan-18	23-Jan-18	295	0%	0		Waterproofing works for base slab at CH170 - 182
LC17255	Construction of base slab & drainage trench at CH170 - 182	P2-Cal.C	16	16 24-Jan-18	10-Feb-18	295	0%	0		Construction of base slab & drainage trench at CH170
LC17260	Waterproofing works for base slab at CH236 - 250	P2-Cal.C	10	1 29-Jan-18	29-Jan-18	290	0%	0		Waterproofing works for base slab at CH236 - 250
LC17265			16	16 30-Jan-18	20-Feb-18		0%	0		Construction of base slab & drainage trench al
	Construction of base slab & drainage trench at CH236 - 250	P2-Cal.C				290				Backfilling for base slab & removal of strut/waling at CH182 - 195
LC17280	Backfilling for base slab & removal of strut/waling at CH182 - 195	P2-Cal.C	5	5 03-Jan-18	08-Jan-18	329	0%	0		Backfilling for base slab & removal of strut/waling at CH102 - 195     Backfilling for base slab & removal of strut/waling at CH208 - 222
LC17285	Backfilling for base slab & removal of strut/waling at CH208 - 222	P2-Cal.C	5	5 09-Jan-18	13-Jan-18	324	0%	0		
LC17290	Backfilling for base slab & removal of strut/waling at CH195 - 208	P2-Cal.C	5	5 23-Jan-18	27-Jan-18	312	0%	0		Backfilling for base slab & removal of strut/waling at CH195 - 208
LC17295	Backfilling for base slab & removal of strut/waling at CH222 - 236	P2-Cal.C	5	5 29-Jan-18	02-Feb-18	307	0%	0		Backfilling for base slab & removal of strut/waling at CH222 -
LC17300	Backfilling for base slab & removal of strut/waling at CH170 - 182	P2-Cal.C	5	5 12-Feb-18	20-Feb-18	295	0%	0		Backfilling for base slab & removal of strut/wal
LC17305	Backfilling for base slab & removal of strut/waling at CH236 - 250	P2-Cal.C	5	5 21-Feb-18	26-Feb-18	290	0%	0		Backfilling for base slab & removal of stru
LC17310	Construction of wall stem 1st pour (+3.0mpd) at CH222 - 236	P2-Cal.C	9	9 27-Feb-18	08-Mar-18	290	0%	0		Construction of wall stem 1st pou
LC17315	Construction of wall stem 1st pour (+3.0mpd) at CH182 - 195	P2-Cal.C	9	9 21-Feb-18	02-Mar-18	295	0%	0		Construction of wall stem 1st pour (+3
LC17320	Construction of wall stem 1st pour (+3.0mpd) at CH208 - 222	P2-Cal.C	9	9 09-Mar-18	19-Mar-18	290	0%	0		Construction of wall ster
LC17325	Construction of wall stem 1st pour (+3.0mpd) at CH170 - 182	P2-Cal.C	9	9 03-Mar-18	13-Mar-18	295	0%	0		Construction of wall stem 1st
LC17335	Construction of wall stem 1st pour (+3.0mpd) at CH236 - 250	P2-Cal.C	9	9 14-Mar-18	23-Mar-18	295	0%	0		Construction of wall s
LC17340	Waterproofing of wall stem, backfill & removal of strut/waling at CH222 - 236	P2-Cal.C	7	7 01-Mar-18	08-Mar-18	324	0%	0		Waterproofing of wall stem, backl
LC17345	Waterproofing of wall stem, backfill & removal of strut/waling at CH182 - 195	P2-Cal.C	7	7 23-Feb-18	02-Mar-18	329	0%	0		Waterproofing of wall stern, backfill & r
LC17350	Waterproofing of wall stem, backfill & removal of strut/waling at CH208 - 222	P2-Cal.C	7	7 12-Mar-18	19-Mar-18	306	0%	0		Waterproofing of wall ste
LC17355	Waterproofing of wall stem, backfill & removal of strut/waling at CH170 - 182	P2-Cal.C	7	7 06-Mar-18	13-Mar-18	311	0%	0		Waterproofing of wall stem, b
Portion IV	& VII	P2-Cal.C	180	154 20-Nov-17 A	03-Jul-18	-99		0		
General S	te Clearance and demolition works	P2-Cal.C	56	30 20-Nov-17 A	26-Jan-18	-171		0		General Site Clearance and demolition works
LC17658-7	Construction of 6m Temporary Road (After Chung Yeung Festival (NCE70)	P2-Cal.C	30	20 20-Nov-17 A	15-Jan-18	-171	33.33%	-16		Construction of 6m Temporary Road (After Chung Yeung Festival (NCE70)
LC17658-8	Lower Down Ground Level to +3.5mpd for Existing Road for Preboring Works	P2-Cal.C	25	25 28-Dec-17	26-Jan-18	-171	0%	0		Lower Down Ground Level to +3.5mpd for Existing Road for Prebo
Construct	on of DN2100 stormwater at Portion IV & VII	P2-Cal.C	168	154 30-Nov-17 A	03-Jul-18	-99		0	•	
Preboring		P2-Cal.C	124	124 27-Jan-18	03-Jul-18	-161		0		
Rig 1		P2-Cal.C	124	124 27-Jan-18	03-Jul-18	-161		0		
LC17665	Plant Mobilization for Pipe Pile (After Road Diversion and Lower Down Existin	g Road) P2-Cal.C	14	14 27-Jan-18	12-Feb-18	-161	0%	0		Plant Mobilization for Pipe Pile (After Road Diversion
LC17666	Stage 9 Preboring for Dia. 2100 Drain Pipe (no.825-936)(112 nos.@ 1.5nos	/d)(CE 041) P2-Cal.C	75	75 13-Feb-18	19-May-18	-140	0%	0		
LC17667	Stage 10 Pipe Pile Installation (165nos. @ 1.5nos./d)	P2-Cal.C	110	110 13-Feb-18	03-Jul-18	-161	0%	0		
Rig 2		P2-Cal.C	82	82 27-Jan-18	11-May-18	-171		0		· · · · · · · · · · · · · · · · · · ·
_										
Pr	mary Baseline Critical Remaining Work	NE/2015/02 Tseung Kwan O - Lan	n Tin '	Tunnel-Road P	2 and		3 M	Ionths Rolling	Programme	Date Revision Checked Approved
Ac	ual Work	Associated Work						(20 Decemb		20-Dec-17
Re	maining Work	Associated WOIN	5 (De	<b>-</b> -11)				`	, ,	
								Page: 7	019	

Activity ID	Activity Name	Calendar	Original Duration	Remaining Start	Finish	Total Float	Activity % Va	ariance - BL1 TRA Finish Date	2017 Dec	2018 Jan Feb Mar Apr
LC17676	Stage 8 Preboring for Dia. 2100 Drain Pipe (no.936-1059)(124 nos.@ 1.5no	s./d)(CE 041) P2-Cal.C	82	82 27-Jan-18	11-May-18	-171	0%	0	Dec	
Rig 3		P2-Cal.C	46	46 27-Jan-18	24-Mar-18	-102		0		Rig 3
LC17677	Plant Mobilization (Rig 3)(After Road Diversion and Lower Down Existing Roa	i) P2-Cal.C	6	6 27-Jan-18	02-Feb-18	-102	0%	0		Plant Mobilization (Rig 3)(After Road Diversion and Lower Dc
LC17677-	2 Stage 7 – Preboring for Dia. 2100 Drain Pipe (no. 757-816)(60 nos.@ 1.5nos.	d)(CE 041) P2-Cal.C	40	40 03-Feb-18	24-Mar-18	-102	0%	0		Stage 7 Preboring
ELS		P2-Cal.C	28	10 30-Nov-17 A	03-Jan-18	-42		4	•	ELS
Installati	on Sheet Pile - 12m	P2-Cal.C	28	10 30-Nov-17 A	03-Jan-18	-42		4	•	V Installation Sheet Pile - 12m
LC17683	Stage 5 Sheet Pile installation 12m length (120 nos.@15pcs./d)	P2-Cal.C	10	10 30-Nov-17 A	03-Jan-18	-42	0%	4		Stage 5 Sheet Pile installation 12m length (120 nos.@15pcs./d)
LC17684	Stage 6 Sheet Pile installation 12m length (50 nos.@15pcs./d)	P2-Cal.C	5	5 30-Nov-17 A	27-Dec-17	-37	0%	-14		Stage 6 Sheet Pile installation 12m length (50 nos.@15pcs./d)
Drainag	e works	P2-Cal.C	90	90 20-Dec-17	14-Apr-18	-35		0		Tra
SMH9110	Outfall	P2-Cal.C	90	90 20-Dec-17	14-Apr-18	-35		0		SM
LC17711	Trench Excavation and Strut Installation for Constrcution of Dia. 2100 Drain P	pe (SMH9110 to Outfall) P2-Cal.C	15	15 20-Dec-17	09-Jan-18	-21	0%	0		Trench Excavation and Strut Installation for Constrcution of Dia. 2100 Drain Pipe
LC17712	Toe Grout	P2-Cal.C	14	14 10-Jan-18	25-Jan-18	-21	0%	0		Toe Grout
LC17713	Bedding And Inspection	P2-Cal.C	7	7 26-Jan-18	02-Feb-18	-21	0%	0		Bedding And Inspection
LC17714	Outfall Construction	P2-Cal.C	40	40 23-Feb-18	14-Apr-18	-35	0%	0		Ou
New Re	claimed Section	P2-Cal.C	348	322 21-Sep-17 A	22-Jan-19	60		0		
Marine W	orks	P2-Cal.C	348	322 21-Sep-17 A	22-Jan-19	60		0		
Initial Wo	rks	P2-Cal.C	86	60 15-Nov-17 A	06-Mar-18	168		0		- ✓ Initial Works
MC10156	Installation of Type 2 Settlement Marker (Type RA)	P2-Cal.C	7	7 21-Dec-17	30-Dec-17	-15	0%	0		Installation of Type 2 Settlement Marker (Type RA)
MC10160	Baseline for Type 2 Settlement Marker (Type RA)	P2-Cal.C	3	3 02-Jan-18	04-Jan-18	-15	0%	0		Baseline for Type 2 \$ettlement Marker (Type RA)
Steel Co	fferdam and Water Gate	P2-Cal.C	86	60 15-Nov-17 A	06-Mar-18	168		0		Steel Cofferdam and Water Gate
Steel Co	ferdam Installation	P2-Cal.C	60	60 20-Dec-17	06-Mar-18	168		0		Steel Cofferdam Installation
Reinstat	ement works	P2-Cal.C	60	60 20-Dec-17	06-Mar-18	168		0		Reinstatement works
Type 1		P2-Cal.C	60	60 20-Dec-17	06-Mar-18	168		0		Type 1
Removal o	S/P at transition zone	P2-Cal.C	60	60 20-Dec-17	06-Mar-18	168		0		Removal of S/P at transition zone
MC103	14-02 Removal of Underwater S/P	P2-Cal.C	60	60 20-Dec-17	06-Mar-18	168	0%	0		Removal of Underwater S/P
Weather	Protection and Remaining Works for Steel Cofferdam (not affect the dr	edging works) P2-Cal.C	54	28 15-Nov-17 A	24-Jan-18	200		0	<u> </u>	Weather Protection and Remaining Works for Steel Cofferdam (not -
Frabrica	ion	P2-Cal.C	28	7 15-Nov-17 A	29-Dec-17	200		-5	/	Frabrication
MC14514	Order and Delivery of Floating Breakwater	P2-Cal.C	28	7 15-Nov-17 A	29-Dec-17	200	75%	-5		Order and Delivery of Floating Breakwater
Installat	on	P2-Cal.C	28	28 25-Nov-17 A	24-Jan-18	200		0		Installation
MC1446	Installation of remining CHS near Type 1B (6 nos)	P2-Cal.C	3	3 20-Dec-17	22-Dec-17	221	0%	0		Installation of remining CHS near Type 1B (6 nos)
MC1448	Installation of remining Guide Beam (19 nos)	P2-Cal.C	10	4 25-Nov-17 A	29-Dec-17	221	63%	8		Installation of remining Guide Beam (19 nos)
MC1448	Installation of Floating Breakwater	P2-Cal.C	21	21 30-Dec-17	24-Jan-18	200	0%	0		Installation of Floating Breakwater
Rockfill		P2-Cal.C	43	14 18-Nov-17 A	08-Jan-18	214		3		Rockfill
MC14493	Rockfill of top layer at western side	P2-Cal.C	12	9 18-Nov-17 A	02-Jan-18	214	25%	-23		Rockfill of top layer at western side
MC14493	Rockfill of top layer at eastern side	P2-Cal.C	7	5 15-Dec-17 A	08-Jan-18	214	28.57%	3		Rockfill of top layer at eastern side
Dredging	Work	P2-Cal.C	198	170 08-Nov-17 A	23-Jul-18	-174		2		
MC10495	Removal of Existing Rock Armour CH0-71 (10488m3) (EW059)	P2-Cal.C	20	16 16-Nov-17 A	10-Jan-18	-166	20%	-22		Removal of Existing Rock Armour CH0-71 (10488m3) (EW059)
MC10500	Dredge CH50-71 (Upper) (1777m3)	P2-Cal.C	1	1 20-Dec-17	20-Dec-17	-178	0%	0		Dredge;CH50-71 (Upper) (1777rh3)
MC10505	Dredge CH71-100 (Upper) (7108m3)	P2-Cal.C	4	4 21-Dec-17	27-Dec-17	-178	0%	0	- 1	Dredge CH71-100 (Upper):(7108m3)
MC10515	Dredge CH100-150 (Upper) (17770m3)	P2-Cal.C	10	10 28-Dec-17	09-Jan-18	-178	0%	0		Dredge CH100-150 (Upper) (17770m3)
MC10525	Dredge CH150-200 (Upper) (23101m3)	P2-Cal.C	13	13 10-Jan-18	24-Jan-18	-178	0%	0		Dredge CH150-200 (Upper) (23101m3)
MC10535	Dredge CH50-71 (Bottom) (1109m3)	P2-Cal.C	1	1 25-Jan-18	25-Jan-18	-178	0%	0	-	Dredge CH50-71 (Bottom) (1109m3)
MC10555	Dredge CH71-100 (Bottom) (2725m3)	P2-Cal.C	2	2 26-Jan-18	27-Jan-18	-178	0%	0		Dredge CH71-100 (Bottom) (2725m3)
MC10575	Dredge CH100-150 (Bottom) (4944m3)	P2-Cal.C	3	3 29-Jan-18	31-Jan-18	-178	0%	0	-	Dredge CH100-150 (Bottom) (4944m3)
MC10595	Dredge CH200-250 (Upper) (26655m3)	P2-Cal.C	15	8 08-Nov-17 A	10-Feb-18	-177	45%	-19		Dredge CH290-250 (Upper) (26655m3)
MC10615	Dredge CH150-200 (Bottom) (4672m3)	P2-Cal.C	3	3 10-Feb-18	14-Feb-18	-177	0%	0		Dredge CH150-200 (Bottom) (4672m3)
MC10635	Dredge CH250-300 (Upper) (28432m3)	P2-Cal.C	16	5 14-Nov-17 A	23-Feb-18	-177	69%	-8		Dredge CH250-300 (Upper) (28432m3)
	· · · · · · · · · · · · · · · · · · ·	1 2-060.0	.5				5575	,		
A	rimary Baseline Critical Remaining Work ctual Work	NE/2015/02 Tseung Kwan O - Lan Associated Work			P2 and			20 Decemb		Date Revision Checked Approved 20-Dec-17
F	emaining Work VIII Summary			- /			(4	Page: 8		


Activity Name         Catedor         Original Duration         Remaining Duration         Deriginal Duration         Remaining Duration         Deriginal Duration         Fields Duration         Fields	eb Mar Apr Dredge CH200-250 (Bottom) (6363m3) Dredge CH300-350 (Uppe Dredge CH250-300 (Bottom Dredge CH250-300 (Bottom Dredge C
MC10695       Dredge CH250-300 (Bottom) (6504m3)       P2-Call       4       4       10-Mar-18       15-Mar-18       -177       0%       0         MC10715       Dredge CH350-400 (Upper) (30209m3)       P2-Call       17       16       18-Nov-17A       07-Apr-18       -177       5.88%       -5         MC10715       Dredge CH450-500 (Upper) (71080m3)       P2-Call       40       38       29-Nov-17A       03-Jul-18       -177       2.5%       1       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -177       15.88%       -5       -178       16       17       12.9%       1       -178       16       17       15.88%       -5       -178       18       16       -178       18       16       -178       18       16       -178       18       16       -178       18       16       -178       18       16       -178       18       16       -178       18       18       178       18<	Dredge CH250-300 (Bottom Dredge C
MC10715       Dredge CH350-400 (Upper) (30209m3)       P2-Cal.C       17       16       18-Nov-17A       07-Apr-18       -17       5.88%       -5         MC10795       Dredge CH450-500 (Upper) (71080m3)       P2-Cal.C       40       38       29-Nov-17A       03-Jul-18       -177       2.5%       1       -         MC10795       Dredge CH500-560 (Upper) (2100m3)       P2-Cal.C       40       38       29-Nov-17A       03-Jul-18       -177       2.5%       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	Dredge C
MC10795       Dredge CH450-500 (Upper) (71080m3)       P2-Cal.C       40       39       29-Nov-17A       03-Jul-18       -177       2.5%       1       1         MC10795       Dredge CH450-560 (Upper) (23101m3)       P2-Cal.C       13       11       12-Dec-17A       23-Jul-18       -174       15.38%       2       1       1       15-Dec-17A       23-Jul-18       -174       15.38%       2       1       1       10-Dec-17A	
MC10835       Dredge CH500-560 (Upper) (23101m3)       P2-Cal.C       13       11       12-Dec-17A       23-Jul-18       -174       15.38%       2         Bathymetric and Seismic Survey       P2-Cal.C       38       38       29-Jan-18       174       15.38%       2         MC10875       Survey CH50-100       P2-Cal.C       2       2       29-Jan-18       0.147       0%       0       0       9	■ Bathymetric and Seismic :
Bathymetric and Seismic Survey         P2-Cal.C         38         38         29-Jan-18         17-Mar-18         -167         0           MC10875         Survey CH50-100         P2-Cal.C         2         2         2-Jan-18         0-Jan-18         -167         0         0         Image: Survey CH	
MC10875         Survey CH50-100         P2-Cal.C         2         2         29-Jan-18         30-Jan-18         -177         0%         0         0	Bathymetric and Seismic
MC10875 Survey CH50-100 P2-Cal.C 2 2 29-Jan-18 30-Jan-18 -177 0% 0 0	
	150-100
MC10895 Survey CH100-150 P2-Cal.C 2 2 01-Feb-18 02-Feb-18 -178 0% 0 0	CH100-150
	Survey CH150-200
MC10935 Survey CH200-250 P2-Cal.C 2 2 28-Feb-18 02-Mar-18 -164 0% 0 0	Survey CH200-250
MC10955 SurveyCH250-300 P2-CalC 2 2 15-Mar-18 17-Mar-18 -167 0% 0 0	Survey CH250-300
Filling of Recycle G400 Rock at Dredged Trench P2-Cal.C 46 46 03-Feb-18 06-Apr-18 -167 0	▼ Filling of F
	of Recycle G400 at CH60-112 (7237rn3)
MC11075 Diven S/P from CH175 to 225 as Jetty P2-Cal.C 10 10 02-Mar-18 14-Mar-18 -151 0% 0 0	Diven S/P from CH175 to 22
MC11085     Fill Recycle G400 at CH112-162 (12707m3)     P2-Cal.C     7     7     7     20-Feb-18     28-Feb-18     -162     0%     0	Fill Recycle G400 at CH112-162 (12707
MC1105         Fill Recycle G400 at CH162-212 (20761m3)         P2-Cal.C         10         10/02-Mar-18         1-164         0%         0         0	Fill Recycle G400 at CH162-
MC11125     Fill Recycle G400 at CH212-262 (21729m3)     P2-Cal.C     13     13     17-Mar-18     06-Apr-18     -167     0%     0	Fill Recyc
Construction of Eastern Seawall (Dredged Area)         P2-Cal.C         30         30         08-Feb-18         19-Mar-18         -157         0	Construction of Eastern
	Laying of Geotextile Type A
	otextile Type A CH60-112 (801m2)
	Geotextile Type A CH12-162 (889m2)
	Geotextile Type A CH162-21
	Laying of Granular Filter
Laying of Granular Filter (Trench)         P2-Cal.C         29         29         09-Feb-18         19-Mar-18         -157         0	
	iranular Filter CH60-112 (1382m3)
MC11425 Granular Filter CH112-162 (2051m3) P2-Cal.C 3 3 01-Mar-18 05-Mar-18 -151 0% 0 0	Granular Filter CH112-162 (2051m3
MC11435 Granular Filter CH162-212 (2219m3) P2-Cal.C 3 3 15-Mar-18 19-Mar-18 -157 0% 0 0	Granular Filter CH162-2
Laying Geotextile Type A P2-Cal.C 33 33 12-Feb-18 26-Mar-18 -157 0	Laving Geotextile T
	Geotextile Type A (No-Dredged Area) CH0-112
MC12015 Geotextile Type A (Dredged Area) and Granular Filter CH112-162 (1292m2) P2-Ca.l.C 6 6 6 05-Mar-18 12-Mar-18 -151 0% 0 0	Geotextile Type A (Dredged Ar
MC12025 Geotextile Type A (Dredged Area) and Granular Filter CH162-212 (1400m2) P2-Ca.IC 6 6 6 19-Mar-18 26-Mar-18 -157 0% 0 0	Geotextile Type A (
Placing Sand Blanket (Non-Dredged Area) P2-Cal 8 8 21-Feb-18 01-Mar-18 -178 0	Placing Sand Blanket (Non-Dredged Ar
MC12095 Sand Blanket CH0-100 (3527m3) P2-CaLC 8 8 21-Feb-18 01-Mar-18 -178 0% 0 0	Sand Blanket CH0-100 (3527m3)
Installation of Band Drain (Non-Dredged Area) P2-CalC 24 24 02-Mar-18 29-Mar-18 -178 0	Installation of Ba
MC12165 Band Drain CH0-100 (2366nos) P2-CaLC 24 24 02-Mar-18 29-Mar-18 -178 0% 0 0	Band Drain CHC
Full-scale Treatment of Cement S/S of Marine Sediment     P2-Cal C     348     322     21-Sep-17A     22-Jan-19     60     0	
MC14035 Set up of Curing Area P2-Cal.C 48 9 21-Sep-17A 02-Jan-18 -31 81.25% 13	
MC14055 Set up Cement S/S Treatment Facility P2-CaLC 48 9 21-Sep-17A 02-Jan-18 -31 81.25% 13	reatment Facility
MC14075 Treatment P2-Ca.I.C 250 250 03-Jan-18 06-Nov-18 -31 0% 0	
MC14080 Curing, Stockpling and Filling P2-Ca1.C 313 313 03-Jan-18 22-Jan-19 60 0% 0	
Section 4 of the Works - Preservation and Protection of Existing Trees	
LC25260 Preservation and Protection of Existing Trees P2-CaI.A 1451 1109 12-Jan-17 A 04-May-21 -220 23.56% -123	
LC25280 Nursery Transplanted Trees at the Contractor's holding nursery P2-CaLA 1177 1011 28-Apr-17A 25-Sep-20 1 14.1% 210	
Primary Baseline Critical Remaining Work NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and 3 Months Rolling Programme	sion Checked Approved
Actual Wark A Minetene	
Actual Work Chec-17) (20 December 2017)	
Page: 9 of 9	

Subject: 3 Months Look Ahe	ad Progr	amme	
Activities	Jan-18	Feb-18	Mar-18
Excavation of Pile Caps PC1 & PC2			
Construction of Pile Caps PC1 & PC2			
Excavation for PC4 sump pit and FT1			

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	1-Dec-17	8:30	Rainy	18	0	0	20.9
	1-Dec-17	13:02	Rainy	24	0	0	20.9
	2-Dec-17	8:30	Sunny	17	0	0	20.9
	2-Dec-17	13:00	Sunny	25	0	0	20.9
	4-Dec-17	8:30	Sunny	17	0	0	20.9
	4-Dec-17	13:02	Sunny	23	0	0	20.9
	5-Dec-17	8:30	Cloudy	18	0	0	20.9
	5-Dec-17	13:01	Cloudy	23	0	0	20.9
	6-Dec-17	8:30	Sunny	18	0	0	20.9
	6-Dec-17	13:00	Sunny	24	0	0	20.9
	7-Dec-17	8:29	Sunny	19	0	0	20.9
	7-Dec-17	13:03	Cloudy	25	0	0	20.9
	8-Dec-17	8:30	Sunny	20	0	0	20.9
	8-Dec-17	13:02	Sunny	25	0	0	20.9
	9-Dec-17	8:30	Sunny	16	0	0	20.9
	9-Dec-17	13:00	Sunny	19	0	0	20.9
	11-Dec-17	8:30	Sunny	16	0	0	20.9
	11-Dec-17	13:03	Cloudy	22	0	0	20.9
	12-Dec-17	8:30	Rainy	17	0	0	20.9
	12-Dec-17	13:02	Rainy	22	0	0	20.9
	13-Dec-17	8:30	Rainy	18	0	0	20.9
	13-Dec-17	13:02	Cloudy	21	0	0	20.9
	14-Dec-17	8:30	Rainy	18	0	0	20.9
Portion III	14-Dec-17	13:04	Cloudy	22	0	0	20.9
Fortion III	15-Dec-17	8:30	Sunny	18	0	0	20.9
	15-Dec-17	13:03	Sunny	21	0	0	20.9
	16-Dec-17	8:30	Sunny	12	0	0	20.9
	16-Dec-17	13:01	Cloudy	19	0	0	20.9
	18-Dec-17	8:30	Cloudy	10	0	0	20.9
	18-Dec-17	13:00	Cloudy	15	0	0	20.9
	19-Dec-17	8:30	Cloudy	9	0	0	20.9
	19-Dec-17	13:04	Cloudy	15	0	0	20.9
	20-Dec-17	8:30	Sunny	12	0	0	20.9
	20-Dec-17	13:00	Sunny	18	0	0	20.9
	21-Dec-17	8:30	Sunny	11	0	0	20.9
	21-Dec-17	13:00	Sunny	16	0	0	20.9
	22-Dec-17	8:30	Sunny	15	0	0	20.9
	22-Dec-17	13:02	Sunny	20	0	0	20.9
	23-Dec-17	8:30	Cloudy	16	0	0	20.9
	23-Dec-17	13:01	Cloudy	22	0	0	20.9
	27-Dec-17	8:30	Sunny	16	0	0	20.9
	27-Dec-17	13:00	Sunny	20	0	0	20.9
	28-Dec-17	8:30	Rainy	16	0	0	20.9
	28-Dec-17	13:02	Cloudy	20	0	0	20.9
	29-Dec-17	8:30	Sunny	17	0	0	20.9
	29-Dec-17	13:02	Sunny	22	0	0	20.9
	30-Dec-17	8:30	Sunny	17	0	0	20.9
	30-Dec-17	13:01	Sunny	23	0	0	20.9

#### APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR



APPENDIX S UPDATED CONSTRUCTION NOISE ASSESSMENT No update on Construction Noise Assessment in the reporting month

APPENDIX T PHOTO RECORD OF POST-TRANSLOCATION CORAL MONITORING SURVEY No post-translocation coral monitoring was conducted in the reporting month