Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for April 2018

(version 2.0)

Approved By

(Dr. Priscilla Choy, Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Introduction	
	Environmental Monitoring Works	
	Key Information in the Reporting Month	
	Key Construction Work in the reporting month & the next reporting month Future Key Issues	
	•	
1.	INTRODUCTION	6
	Purpose of the Report	
	Structure of the Report	
2.	PROJECT INFORMATION	8
	Background	
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Status of Environmental Licences, Notification and Permits	
	Summary of EM&A Requirements	12
3.	AIR QUALITY	13
	Monitoring Requirements	13
	Monitoring Locations	13
	Monitoring Equipment	13
	Monitoring Parameters and Frequency	14
	Monitoring Methodology	14
	Results and Observations	17
4.	NOISE	18
	Monitoring Requirements	18
	Monitoring Locations	18
	Monitoring Equipments	18
	Monitoring Methodology and QA/QC Procedure	19
	Results and Observations	20
	Updated Construction Noise Assessment	20
5.	WATER QUALITY	21
	Monitoring Requirements	21
	Monitoring Locations	
	Monitoring Equipments	22
	Monitoring Parameters and Frequency	24
	Monitoring Methodology	25
	Laboratory Analytical Methods	26
	QA/QC Requirements	26
	Decontamination Procedures	26
	Sampling Management and Supervision	26
	Results and Observations	26
6.	ECOLOGY	28
	Post-Translocation Coral Monitoring	28
	Event and Action Plan	

Results and Observations	28
CULTURAL HERITAGE	29
Monitoring Requirement	29
Monitoring Locations	29
Monitoring Equipment	
Monitoring Methodology	
· · ·	
Mitigation Measures for Cultural Heritage	30
LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	31
LANDFILL GAS MONITORING	32
Monitoring Requirement	32
Monitoring Locations	
Monitoring Equipment	32
Results and Observations.	33
ENVIRONMENTAL AUDIT	34
Site Audits	34
Implementation Status of Environmental Mitigation Measures	34
WASTE MANAGEMENT	35
ENVIRONMENTAL NON-CONFORMANCE	36
Summary of Exceedances	36
Summary of Environmental Complaint	36
Summary of Environmental Summon and Successful Prosecution	
FUTURE KEY ISSUES	37
Key Issues for the Coming Month	38
Monitoring Schedule for the Next Month	
CONCLUSIONS AND RECOMMENDATIONS	39
Conclusions	39
Recommendations	
	CULTURAL HERITAGE Monitoring Requirement Monitoring Locations Monitoring Equipment Monitoring Methodology Alert, Alarm and Action Levels Results Mitigation Measures for Cultural Heritage LANDSCAPE AND VISUAL IMPACT REQUIREMENTS LANDFILL GAS MONITORING Monitoring Requirement Monitoring Parameters and Frequency Monitoring Equipment Results and Observations ENVIRONMENTAL AUDIT Site Audits Implementation Status of Environmental Mitigation Measures WASTE MANAGEMENT ENVIRONMENTAL NON-CONFORMANCE Summary of Exceedances Summary of Environmental Non-Compliance Summary of Environmental Compliant Summary of Environmental Summon and Successful Prosecution FUTURE KEY ISSUES Key Issues for the Coming Month Monitoring Schedule for the Next Month CONCLUSIONS AND RECOMMENDATIONS Conclusions

LIST OF TABLES

Table I	Non-compliance (exceedance) Recorded for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table III	Summary Table for Key Construction Work in the Reporting Month
Table IV	Summary Table for Site Activities in the next Reporting Period
Table 2.1	Key Project Contacts
Table 2.2	Summary Table for Major Site Activities in the Reporting Month
Table 2.3	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.4	Summary of the Status of Environmental Licences, Notification and Permits
Table 3.1	Locations for Air Quality Monitoring
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Major Dust Source during Air Quality Monitoring
Table 4.1	Noise Monitoring Stations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Major Noise Source during Noise Monitoring
Table 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 5.1	Groundwater Quality Monitoring Stations
Table 5.2	Marine Water Quality Monitoring Stations
Table 5.3	Water Quality Monitoring Equipment
Table 5.4	Water Quality Monitoring Parameters and Frequency
Table 5.5	Methods for Laboratory Analysis for Water Samples
Table 5.6	Summary of Groundwater Quality Monitoring Results
Table 6.1	Location and Physical attributes of the Coral Recipient Site
Table 7.1	Cultural Heritage Monitoring Equipment
Table 7.2	AAA Levels for Monitoring for Cultural Heritage
Table 9.1	Landfill Gas Monitoring Equipment
Table 13.1	Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 1a	Site Portions under Works Contract No. NE/2015/01 (Lam Tin Side)
Figure 1b	Site Portions under Works Contract No. NE/2015/01 (Tseung Kwan O Side)
Figure 1c	Site Portions under Works Contract No. NE/2015/02
Figure 1d	Site Portions under Works Contract No. NE/2015/03
Figure 1e	Site Portions under Works Contract No. NE/2017/01
Figure 1f	Site Portions under Works Contract No. NE/2017/01
Figure 1g	Site Portions under Works Contract No. NE/2017/02
Figure 1h	Site Portions under Works Contract No. NE/2017/02
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Groundwater Quality Monitoring Stations
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring
Figure 7	Location of Post-translocation Coral Monitoring
Figure 8	Location of Monitoring for Cultural Heritage
Figure 9	Location of Water Quality Monitoring in Temporary Embayment

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory
	Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Appendix S	Updated Construction Noise Assessment
Appendix T	Cultural Heritage Monitoring Results

EXECUTIVE SUMMARY

Introduction

- 1. This is the 18th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in April 2018.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge;
 - Contract No. NE/2017/01 Tseung Kwan O Lam Tin Tunnel -Tseung Kwan O Interchange and Associated Works
 - Contract No. NE/2017/02 Tseung Kwan O Lam Tin Tunnel Road P2/D4 and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

Environmental Monitoring	No. of Non-compliance (Exceedance)		No. of Non-compliance (Exceedance) due to Construction Activities of this Project		Action Taken
	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	13	0	0(*)	0	Refer to Appendix O
Groundwater Quality	1	12	0(*)	0(*)	N/A
Marine Water Quality	0	0	0	0	N/A
Groundwater Level Monitoring (Piezometer Monitoring)	N/A	N/A	N/A	N/A	N/A
Ecological	N/A	N/A	N/A	N/A	N/A
Cultural Heritage	0	0	0	0	N/A
Landfill Gas	0	0	0	0	N/A

Note (*): Environmental complaints received from April 2018 and the exceedance for groundwater quality recorded on 24 April 2018 are still under investigation.

Action Taken by the Contractor after received the complaint (Details of the complaints are shown in **Appendix 0**)

- Portable generator was enclosed by an acoustic enclosure;
- Vibratory roller was operated with an acoustic baffle;
- Immediately cleaned the dust and dirt on Tong Yin Street and Chi Shin Street;
- Additional notice would be set up to remind the truck driver to perform wheel washing properly before leaving site;
- Noise sources on the barge and dredger were covered with acoustic materials.
- To improve performance by dump truck drivers, training has been provided by the Contractor to all staffs and dump truck drivers.

Air Quality Monitoring

- 5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All noise monitoring was conducted as scheduled in the reporting month. Thirteen (13) Action Level exceedance was recorded due to the documented complaints received in this reporting month. No Limit Level exceedance was recorded in the reporting month.

Water Quality Monitoring

- 8. Groundwater monitoring was conducted as scheduled in the reporting month. One Action Level and Twelve Limit Level exceedances were recorded in the reporting.
- 9. All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 10. Construction phase daily piezometer monitoring was not carried out in this reporting period as there is no tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.

Ecological Monitoring

11. Post-translation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

12. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in April 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

13. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

14. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

15. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 25, 26, 11, 24, 16 April 2018 respectively. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

16. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Details of waste management data is presented in Section 11 and **Appendix P**.

Key Information in the Reporting Month

17. Summary of key information in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Dl.
Event	Number	Nature	Action Taken	Status	Remark
Complaint received by Project Team / Complaint referred by EPD (April 2018)	14	Noise nuisance / Light pollution / Odour nuisance	Under investigation	On-going	
Complaint received by Project Team / Complaint referred by EPD (March 2018)	17*	Construction dust / noise nuisance / Visual & Landscape	Under investigation	On-going	Details refer to App O
Complaint received by Project Team / Complaint referred by EPD (February 2018)	6	Construction dust / noise nuisance	Under investigation	On-going	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Note (*): The number of complaints in March 2018 has been updated.

Key Construction Work in the reporting month & the next reporting month

18. Summary of key construction work in the reporting month is tabulated in **Table III**.

Table III Summary Table for Key Construction Work in the Reporting Month

Contract No. Project Title	Site Activities (April 2018)
------------------------------	------------------------------

NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile wall – Area 2A Main tunnel Excavation
		TKO Interchange	Haul Road Construction, Site Formation and Slope Works Steel Platform for Bridge Construction
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Installation of DN2100 Concrete Pipe at Portion IV & VII ELS Installation for U-Trough at Portion V & VI Construction of Retaining Wall and U-Trough at Portion VIII Enhancement of Temporary Steel Cofferdam at Portion IX Dredging Works and Armour Rock Removal at Portion IX Treatment of Marine Sediment at Area A General Site Clearance and Hoarding Erection 	
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge		
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works		
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	1) Trial pit 2) Underground utilities detection 3) Temporary traffic arrangement Setup 4) Site office erection 5) Communication Liaison Center erection 6) Modification of traffic island 7) Fencing erection	

Future Key Issues

19. The future key environmental issues in the coming month include:

Table IV Summary Table for Site Activities in the next Reporting Period

Contract No. and	Site Activities (May 2018)		Key environmental
Project Title			issues *
NE/2015/01 - Tseung	Lam Tin	1) EHC2 U-Trough	(A)/(B)/(C)/(D)/(E)
Kwan O – Lam Tin	Interchange	2) Site Formation – Area 1G1,	(G)
Tunnel – Main		Area 1G2, Area 2, Area 3, Area	
Tunnel and		4 & Area 5	
Associated Works			
	Main Tunnel	1) Main Tunnel Excavation	(B)

	TKO Interchange	 Haul Road Construction and Site Formation & Slope Works Steel Platform for Bridge Construction 	(A) / (C) / (D) / (E) / (F) / (I)
NE/2015/02 - Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	NE/2015/02 - Tseung Kwan O - Lam Tin Tunnel - Road P2 and 1) Pre-bored works, sheet piling and interlocking pipe piles installation works at Portion IV & VII 2) Removal of existing seawall blocks at Portion IV & VII		(A) / (B) / (C) / (D) / (E) / (G) / (I)
NE/2015/03 - Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	1) Construction	on of Pile Cap PC4 and Sump Pit I mould for main deck	(A) / (B) / (C) / (D) / (E)
NE/2017/01 – Tseung Kwan O Interchange and Associated Works	2) Erection of and bore pi	on of Site Office Temporary platform for pre-drill le work vestigation Works	(A) / (B) / (E) / (F) / (G)
NE/2017/02 — Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	 Trial pit Underground Temporary Site office Communic Modification Fencing ere Predrilling 	nd utilities detection traffic arrangement Setup erection ation Liaison Center erection on of traffic island	(A) / (B) / (E) / (F) / (G)

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 18th Monthly EM&A report summarizing the EM&A works for the Project in April 2018.

Purpose of the Report

1.2 This is the 18th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in April 2018.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the

requirements of landscape and visual monitoring

- Section 9: **Landfill Gas Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan
- Section 10: **Environmental Site Inspection** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
- Section 11: Waste Management summarises the waste management data in the reporting month.
- Section 12: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
- Section 13: **Future Key Issues** summarises the impact forecast and monitoring schedule for the next three months.
- Section 14: Conclusions and Recommendation

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project is:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.
 - Contract No. NE/2017/02: 15 March 2018.
 - Contract No. NE/2017/01: 23 April 2018.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)
- 2.6 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Chiang Nin Tat, Eric	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinotech	Environmental	Dr. Priscilla Choy	2151 2089	2107 1200
Cinotecn	Team	Ms. Ivy Tam	2151 2090	3107 1388

AnewR	Independent Environmental	Mr. Adi Lee	2618 2836	3007 8648
	Checker			

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

1 able 2	Table 2.2 Summary Table for Major Site Activities in the Reporting Month			
Contract No.	Project Title	Site Activities	(April 2018)	
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Pipe Pile wall – Area 2A 	
		Main Tunnel	1. Main tunnel Excavation	
		TKO Interchange	Haul Road Construction, Site Formation and Slope Works Steel Platform for Bridge Construction	
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	IV & VII 2) ELS Installa 3) Construction Portion VIII 4) Enhancement Portion IX 5) Dredging W Portion IX 6) Treatment of	of DN2100 Concrete Pipe at Portion ation for U-Trough at Portion V & VI n of Retaining Wall and U-Trough at ant of Temporary Steel Cofferdam at Vorks and Armour Rock Removal at of Marine Sediment at Area A the Clearance and Hoarding Erection	
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	1. Erection of	f falsework system	
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works		on of Site Office	
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	3) Temporary4) Site office e5) Communica	ntion Liaison Center erection n of traffic island	

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

Contract No.	Permit / License No.	Valid Period		Chahus
Contract No.	Permit / License No.	From	To	Status
Environmental	Permit (EP)		_	
N/A	EP-458/2013/C	20/1/2017	N/A	Valid
Notification pu	rsuant to Air Pollution Contro	l (Construction	Dust) Regulation	
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid
NE/2013/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid
NE/2017/02	EPD Ref no.: 429867	19/01/2018	N/A	Valid
NE/2017/01	EPD Ref no.: 430070	25/01/2018	N/A	Valid
Billing Account	t for Construction Waste Dispo	sal		
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid
NE/2017/02	Account No. 7029651	22/12/2017	N/A	Valid
NE/2017/01	Account No. 7029994	01/02/2018	N/A	Valid
Vessel Billing A	Account under construction wa	ste disposal cha	rging scheme	
NE/2015/01	Account No. 7027764	29/01/2018	10/05/2018	Valid
Registration of	Chemical Waste Producer			
NE/2015/01	Waste Producer No. 5218- 290-L2881-02	22/08/2016	N/A	Valid
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid
NE/2015/02	Waste Producer No. 5213- 838-C4094-01	23/08/2016	N/A	Valid

Contract No.	Permit / License No.	Valid	d Period	Status
Contract No.		From	To	Status
NE/2015/03	Waste Producer No. 5213- 265-W3435-04	19/07/2017	N/A	Valid
NE/2017/02	Waste Producer No. 5213- 833-Z4004-04	01/02/2018	N/A	Valid
NE/2017/01	Waste Producer No. 5213-833-C4262-01	12/02/2018	N/A	Valid
Effluent Discharge License under Water Pollution Control Ordinance				
	WT00025806-2016	22/11/2016	30/11/2021	Valid
	WT00026212-2016	09/11/2017	30/11/2021	Valid
NE/2015/01	WT00027354-2017	22/03/2017	31/03/2022	Valid
	WT00027405-2017	22/03/2017	31/03/2022	Valid
	WT-00028495-2017	11/08/2017	31/08/2022	Valid
NIE/2015/02	WT00026386-2016	15/12/2016	31/12/2021	Valid
NE/2015/02	WT00027226-2017	23/02/2017	28/02/2022	Valid
NIE/2015/02	WT00027295-2017	20/03/2017	18/04/2019	Valid
NE/2015/03	WT00027266-2017	08/03/2017	18/04/2019	Valid
NE/2017/01	WT00030711-2018	11/04/2018	30/04/2023	Valid
NE/2017/02	WT00030654-2018	16/04/2018	30/04/2023	Valid
Construction N	loise Permit (CNP)			
	GW-RE1024-17	23/12/2017	22/06/2018	Valid
	GW-RE0084-18	10/02/2018	07/05/2018	Valid
	GW-RE0125-18	25/02/2018	24/05/2018	Valid
NE/2015/01	GW-RE0142-18	08/03/2018	04/05/2018	Valid
	GW-RE0141-18	02/03/2018	31/05/2018	Valid
	GW-RE0140-18	06/03/2018	05/09/2018	Valid
	GW-RE0278-18	26/04/2018	24/06/2018	Valid
	GW-RE0800-17	11/10/2017	10/04/2018	Expired on 10/04/2018
	GW-RE0809-17	13/10/2017	12/04/2018	Expired on 12/04/2018
NE/2015/02	GW-RE0905-17	17/11/2017	15/05/2018	Valid
1NL/ 2013/02	GW-RE0038-18	30/01/2018	29/04/2018	Expired on 29/04/2018
	GW-RE0869-17	04/11/2017	30/04/2018	Expired on 30/04/2018
	GW-RE0916-17	02/12/2017	01/06/2018	Valid
	GW-RE0966-17	14/03/2018	14/04/2018	Expired on 14/04/2018
NE/2015/03	GW-RE0162-18	27/03/2018	27/04/2018	Expired on 27/04/2018
	GW-RE0254-18	28/04/2018	20/05/2018	Valid

Contract No.	Permit / License No.	Valid	Valid Period	
Contract No.		From	To	Status
Marine Dumpi	ng Permit			
NE/2015/02	EP/MD/18-129	16/03/2018	15/09/2018	Valid
NE/2013/02	EP/MD/18-134	01/04/2018	30/04/2018	Valid
Specified Process (SP) License				
NE/2015/01	L-11-053	09/03/2018	08/03/2021	Valid

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in April 2018.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
$AM4(A)^{(2)}(*)$	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
AM5(A) ^(*)	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3 / LD-3B	0
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-531	0
	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	6
IIVC Complex	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
	Davis Weather Monitor II, Model no. 7440	0
Wind Anemometer	Davis Weather Stations, Vantage Pro 2, Model No. 6152CUK	1

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 day
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Remove the red rubber cap from the AEROCET-531 inlet nozzle.

- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5μm and 5μm channels will show the cumulative counts of particles larger than 0.5μm and 5μm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300 / Hal-HPC301)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170 and GMW Model: GS2310) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
 - a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;

- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3 µm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.

• High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.25 The summary of exceedance record in reporting month is shown in **Appendix K**. No exceedance was recorded for the air quality monitoring.
- 3.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks: * Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipments

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Loyal Mater	SVAN 955 / 957 / 977	4
Integrating Sound Level Meter	BSWA 801	1
Calibrator	SV30A	2
Calibrator	Brüel & Kjær 4231	2

Design and Construction

Monthly EM&A Report for April 2018

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2	$L_{10}(30 \text{ min})$			Façade
CM3	dB(A)			Façade
CM4	$L_{90}(30 \text{ min})$	0700-1900 hrs on	Once per	Façade
CM5	dB(A)	normal weekdays	week	Façade
CM6(A)	$L_{eq}(30 \text{ min})$			Free Field
CM7(A)	dB(A)			Free Field
CM8(A)				Façade

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

frequency weighting
time weighting
measurement time
A
Fast
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a
 Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before
 and after measurement will be more than 1.0 dB, the measurement would be
 considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. Thirteen (13) Action Level exceedance was recorded due to the documented complaints received in this reporting month. No Limit Level exceedance was recorded in the reporting month.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The major noise source identified at the noise monitoring stations are shown in **Table** 4.4.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.12 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	75
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Updated Construction Noise Assessment

<u>Contract No. NE/2015/01, Contract No. NE/2015/02, Contract No. NE/2015/03, Contract No. NE/2017/01 and Contract No. NE/2017/02</u>

4.13 No update of Construction Noise Assessment in the reporting period. Any updated Construction Noise Assessment will be shown in **Appendix S**.

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

- 5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to **Figure 4**, Stream 1 to 3). According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.
- 5.2 As stated in the Baseline Environmental Monitoring Plan submitted to EPD in September 2016, Groundwater quality monitoring could not be conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. EPD has no further comment on the Plan in October 2016.

Marine Water Quality

- 5.3 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in-situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- 5.4 Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.
- 5.5 According to the Environmental Review Report (ERR) for Variations of Environmental Permit (Ref: C45-03), water quality monitoring and audit programme was implemented for monitoring of oxygen depletion (e.g. Dissolved Oxygen (DO) level) in this embayed waters during the period when the fully enclosed barrier is installed. A "Proposal for Water Quality Monitoring in Temporary Marine Embayment" has been submitted to EPD in July 2017 to propose the monitoring frequency, parameter, location, etc. EPD has no further comment on the Proposal.

Groundwater Level Monitoring (Piezometer Monitoring)

5.6 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring has not commenced in this reporting period.

Monitoring Locations

Groundwater Quality

5.7 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each
Stream 3	Stream on western coast of Chiu Keng Wan	stream

Marine Water Quality

5.8 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. One additional monitoring station (W1) is designated for monitoring of oxygen depletion in the embayed waters during the period when the fully enclosed barrier is installed. The locations are also summarized in **Table 5.2** and shown on **Figure 5** and **Figure 9**.

Table 5.2 Marine Water Quality Monitoring Stations

Monitoring	Descriptions	Coor	Coordinates		
Stations	Descriptions	Easting	Northing		
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565		
M2	Junk Bay Coral Site – Junk Bay	844076	817087		
M3	Junk Bay Coral Site – Junk Island	844491	817890		
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416		
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769		
M6	Tseung Kwan O Salt Water Intake	845512	817442		
C1	Control Station – Southeast	844696	814773		
C2	Control Station – Northwest	842873	816014		
G1	Gradient Station	844418	817560		
G2	Gradient Station	844290	817384		
G3	Gradient Station	844488	817735		
G4	Gradient Station	844967	817551		
W1	Ocean Shores (for WQM in temporary marine embayment)	844324	817791		

Monitoring Equipments

5.9 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.10 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and

- a temperature of 0-45 degree Celsius.
- 5.11 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.12 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.13 Salinity compensation was built-in in the DO equipment.

Turbidity

5.14 Turbidity was measured in-situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

рΗ

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.16 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.17 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labeled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In-Situ Instruments

- 5.19 All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.20 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.21 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.22 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed

uninterrupted even when some equipment is under maintenance, calibration, etc.

5.23 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi namenatan Watan Ovality	YSI 6820-C-M	0
Multi-parameter Water Quality System	Aquaread AP-2000-D	0
System	YSI EXO1 Multiparameter Sondes	4
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.24 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4 Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit	Depth	Frequency
Groundwater	Quality		
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 	Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)
Marine Wate	r Quality		
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	 M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid-flood)

Monitoring Stations	Parameters, unit	Parameters, unit Depth	
Water Qualit	y Monitoring in Temporary Ma	rine Embayment	
W1	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Salinity, ppt 	 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth monitoring only. If the water depth is less than 6m, omit mid-depth monitoring 	Weekly during the period when the fully enclosed barrier is installed

Monitoring Methodology

Groundwater Quality

- 5.25 At each monitoring location, two consecutive in-situ measurements for DO concentration, DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.26 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.27 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.29 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L $^{(1)}$	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.31 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.32 QA/QC procedures as attached in **Appendix J** are available for the parameters analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

- 5.33 All groundwater quality monitoring was conducted as scheduled in the reporting month. Summary of groundwater quality monitoring results is shown in **Table 5.6**. Groundwater monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.
- 5.34 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.

¹⁾ Limit of Reporting is reported as Detection Limit for non-HOKLAS report.

²⁾ Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

5.35 Action and Limit Level for groundwater monitoring has been reviewed with consideration of monitoring results obtained from November 2016 to June 2017, as there was no tunnel boring or tunnel construction works from November 2016 to June 2017. A "Review Report for Action and Limit Levels of Groundwater Quality Monitoring" was submitted to EPD in August 2017. EPD has no further comment on the report and the updated Action and Limit Level is shown in **Appendix A**.

Table 5.6 Summary of Groundwater Quality Monitoring Results

					Parameters (unit)					
Date	Location	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
	Stream 1	7.8	7.8	1.4	3	<2	3	< 0.6	< 0.05	< 0.05
11 April 2018	Stream 2	8.2	7.7	2.0	3	<2	5	0.9	< 0.05	< 0.05
	Stream 3	N/A*								
	Stream 1	8	7.8	1.6	6.0	<u>4</u>	<u>12</u>	<u>3.7</u>	< 0.05	<u>0.06</u>
24 April 2018	Stream 2	8.1	7.8	1.0	6	<u>8</u>	<u>16</u>	<u>2.9</u>	0.07	<u>0.08</u>
	Stream 3	7.9	8	1.4	3.0	<u>4</u>	<u>8</u>	<u>2.9</u>	0.16	<u>0.1</u>
No. of	Action Level	0	0	0	0	0	0	0	1	0
Exceedance	Limit Level	0	0	0	0	3	3	3	0	3

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Remark*: No groundwater quality monitoring was conducted for Stream 3 on 11 April 2018 due to the drying out of the stream water on that day. The photo record is shown in **Appendix H.**

5.36 All groundwater monitoring was conducted as scheduled in the reporting month. One Action Level and Twelve Limit Level exceedances were recorded in the reporting month and drying out of stream water at Stream 3 was observed on 11 April 2018. It is considered that drying out of stream water is non project-related due to no tunnel boring or tunnel construction works in Tseung Kwan O side in this reporting month. And the Action & Limit Level exceedance for groundwater quality recorded on 24 April 2018 is still under investigation and the investigation details will be reported in the next reporting month.

Marine Water Quality Monitoring

- 5.37 All marine water quality monitoring was conducted as scheduled in the reporting month. Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.38 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix I**. No Action/Limit Level exceedance was recorded in the reporting period.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.39 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.40 No tunnel construction activity carried out within +/- 50m of the piezometer gate. Construction Phase Piezometer Monitoring has not commenced in this reporting period.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. The fourth post-translocation coral monitoring was carried out on 07 November 2017.
- 6.4 Location of post-translocation coral monitoring is shown in **Figure 7**.

Event and Action Plan

- 6.5 The post-translocation monitoring result was evaluated against Action and Limit Levels presented in **Appendix A**. Evaluation was based on recorded changes in percentage of partial mortality of the corals.
- 6.6 If the defined Action Level or Limit Level for coral monitoring is exceeded, the actions as set out in **Appendix M** will be implemented.
- 6.7 If observations of any die-off / abnormal conditions of the translocated corals are made during the post-translocation monitoring, the ET shall inform the Contractor, IEC and AFCD, and liaise with AFCD to investigate any mitigation measures needed.

Results and Observations

- 6.8 No post-translocation coral monitoring was conducted in the reporting month.
- 6.9 The post-translocation coral monitoring surveys were completed in November 2017.

7. **CULTURAL HERITAGE**

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be aplied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 April 2017.
- 7.2 As stated in the "Built Heritage Mitigation Plan" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

7.3 One vibration monitoring point and three building settlement monitoring points are proposed for monitoring of the cultural heritage. The building settlement markers are placed on the wall on three sides of the Temple, except the front, of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.4 Building settlement is measured via a settlement marker attached to the wall of Cha Kwo Ling Tin Hau Temple by adhesive tape.
- 7.5 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "Guidance Note on Vibration Monitoring" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.6 **Table 7.1** summarizes the equipment employed by the Contractor for cultural heritage monitoring. Copies of calibration certificates are attached in Appendix B.

Table 7.1 Cultural Heritage Monitoring Equipment

Equipment	Manufacturer and Model	Quantity
Digital Level for tilting	Leica Serial No.: 701133	1
iCivil-1011 Inclinometer for building settlement	iCivil-1011 Inclinometer Serial No.: HK110118 / HK110120	2
Vibrographs for vibration monitoring	MiniMate Plus manufactured by Instantel Model No.: 716A0403	3

Monitoring Methodology

7.7 Vibrograph (velocity seismograph) was deployed at each monitoring station to

Design and Construction

Monthly EM&A Report for April 2018

measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.8 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Markers	6mm	8mm	10mm
Building Tilting ⁽¹⁾	1:2000	1:1500	1:1000

Remarks: (1) Building tilting measurement was replaced by building settlement point measurement.

The tilting can be calculated by the ratio of the maximum settlement difference between 2 points and the distance between the 2 points.

Results

7.9 In the reporting month, cultural heritage monitoring was carried out by the Contractor at the aforesaid location on 23 occasions. No AAA Level exceedance was recorded in the reporting month. The monitoring results are presented in **Appendix T**.

Mitigation Measures for Cultural Heritage

- 7.10 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.11 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

Design and Construction

Monthly EM&A Report for April 2018

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Implementation Schedule and Recommended Mitigation Measures" (shown in **Appendix N**). The summaries of observations and recommendations related to landscape and visual impacts, if any, are shown in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;-
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Excavation Locations: Portion III
 Manholes and Chambers: N/A
 Relocation of monitoring wells: N/A
 Any other Confined Spaces: N/A

Monitoring Equipment

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Design and Construction

Monthly EM&A Report for April 2018

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	ALTAIR 5X	
Portable gas detector	Multigas Detector	1
	(Serial No. 120848)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 46 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 4, 11, 18 and 25 April 2018
 - Contract No. NE/2015/02: 6, 12, 17 and 26 April 2018
 - Contract No. NE/2015/03: 6, 11, 20 and 27 April 2018
 - Contract No. NE/2017/01: 24 April 2018
 - Contract No. NE/2017/02: 4, 9, 16, 23 and 30 April 2018

Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 25, 26, 11, 24, 16 April 2018 respectively. EPD has joined the site inspection on 26 April 2018.

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-compliance was identified. The observations and recommendations made during the audit sessions are summarized in **Appendix L**.
- 10.5 Further to the observations summarized in **Appendix L**, EPD has also identified the following observations during the inspection for Contract No. NE/2015/02 on 26 April 2018:
 - Dense white fume emitted from marine vessels on-site
 - Door of the engine of dredger was not closed properly

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction

Monthly EM&A Report for April 2018

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summited in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 Thirteen (13) Action Level exceedances for noise monitoring were recorded due to the documented complaints received in this reporting month.
- 12.2 One Action Level and Twelve Limit Level exceedances for groundwater quality monitoring were recorded in the reporting month.
- 12.3 Actions carried out in accordance with the Event and Action Plans in **Appendix M** are presented in **Appendix K** Summary of Exceedance.

Summary of Environmental Non-Compliance

12.4 No environmental non-compliance was recorded in the reporting month.

Summary of Environmental Complaint

12.5 Fourteen (14) environmental complaints were received in the reporting month. The Cumulative Complaint Log is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.6 No notification of summon or successful environmental prosecution was received in this reporting period. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Contract No.	<i>V</i>	I	Site Activities (May 2018)		
Contract No.	Project Title	·			
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 		
		Main Tunnel	Main tunnel Excavation		
		TKO Interchange	 Haul Road Construction, Site Formation and Slope Works Steel Platform for Bridge Construction 		
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	pipe piles in 2. Removal of & VII 3. Reconstruct of DN2100 of 4. Pre-bored w 5. Waterproofi construction 6. Dredging at 7. Seawall Cor	orks, sheet piling and interlocking stallation works at Portion IV & VII existing seawall blocks at Portion IV ion of existing outfall and installation drainage system at Portion IV & VII orks at Portion V & VI ng, backfilling works and wall at Portion VIII Portion IX instruction at Portion IX is blanket at non-dredged area at		
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge		on of Pile Cap PC4 and Sump Pit I mould for main deck		
NE/2017/01	Tseung Kwan O Interchange and Associated Works	 Construction of Site Office Erection of Temporary platform for pre-drill and bore pile work Ground Investigation Works 			
NE/2017/02	Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	3) Temporary t4) Site office e5) Communica6) Modification7) Fencing erec8) Predrilling	tion Liaison Center erection n of traffic island		

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Monitoring Schedule for the Next Month

13.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 18th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in April 2018 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 14.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

14.4 All noise monitoring was conducted as scheduled in the reporting month. Thirteen (13) Action Level exceedance was recorded due to the documented complaints received in this reporting month. No Limit Level exceedance was recorded in the reporting month.

Water Quality Monitoring

- 14.5 Groundwater monitoring was conducted as scheduled in the reporting month. One Action Level and Twelve Limit Level exceedances were recorded in the reporting month.
- 14.6 All marine water monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

14.7 The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

14.8 No Alert Alarm and Action (AAA) Level exceedance of cultural heritage monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.9 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.10 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.11 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-compliance was identified but environmental deficiency was observed. The environmental deficiency observed during the reporting month are shown in **Appendix L**.

Complaint, Prosecution and Notification of Summons

14.12 Fourteen (14) environmental complaints, no successful prosecution and notification of summon were received during the reporting period.

Recommendations

14.13 The following recommendations were made to the Contractor for the reporting month:

Air Ouality Impact

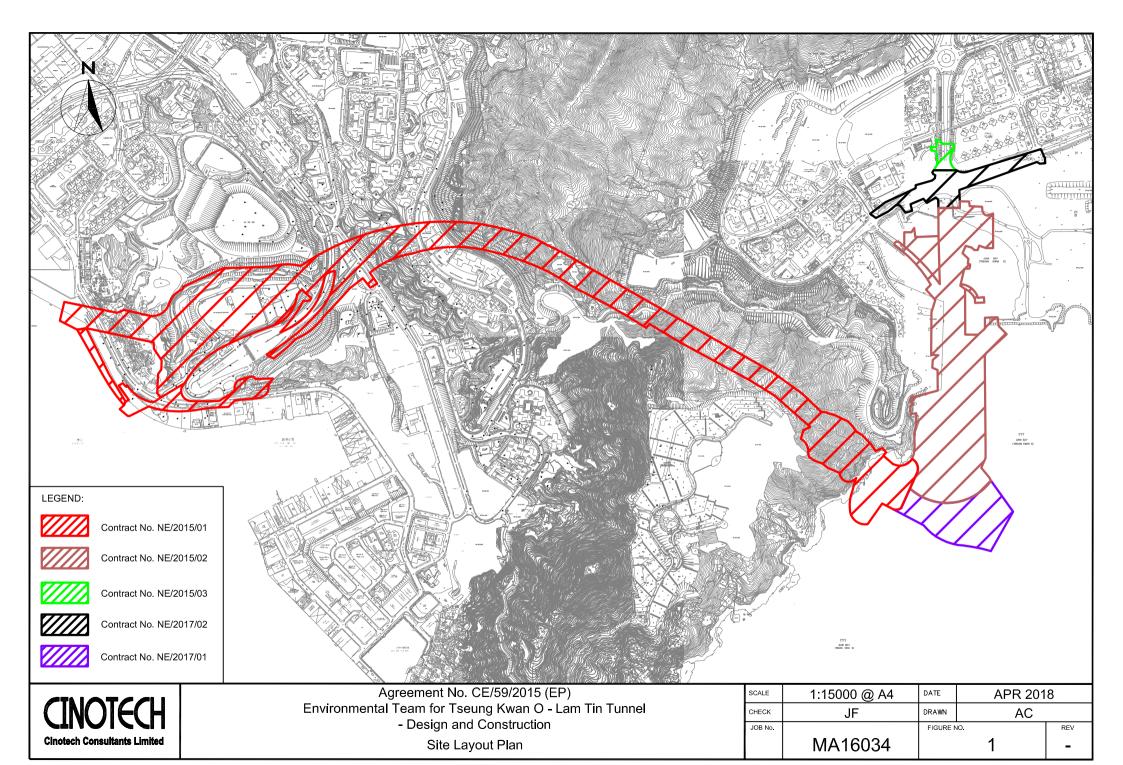
- To implement dust suppression measures such as water spray on all haul roads, stockpiles, dry surfaces and open slopes.
- To cover stockpile of dusty material by impervious material.
- To avoid dark smoke emitted from the generator.

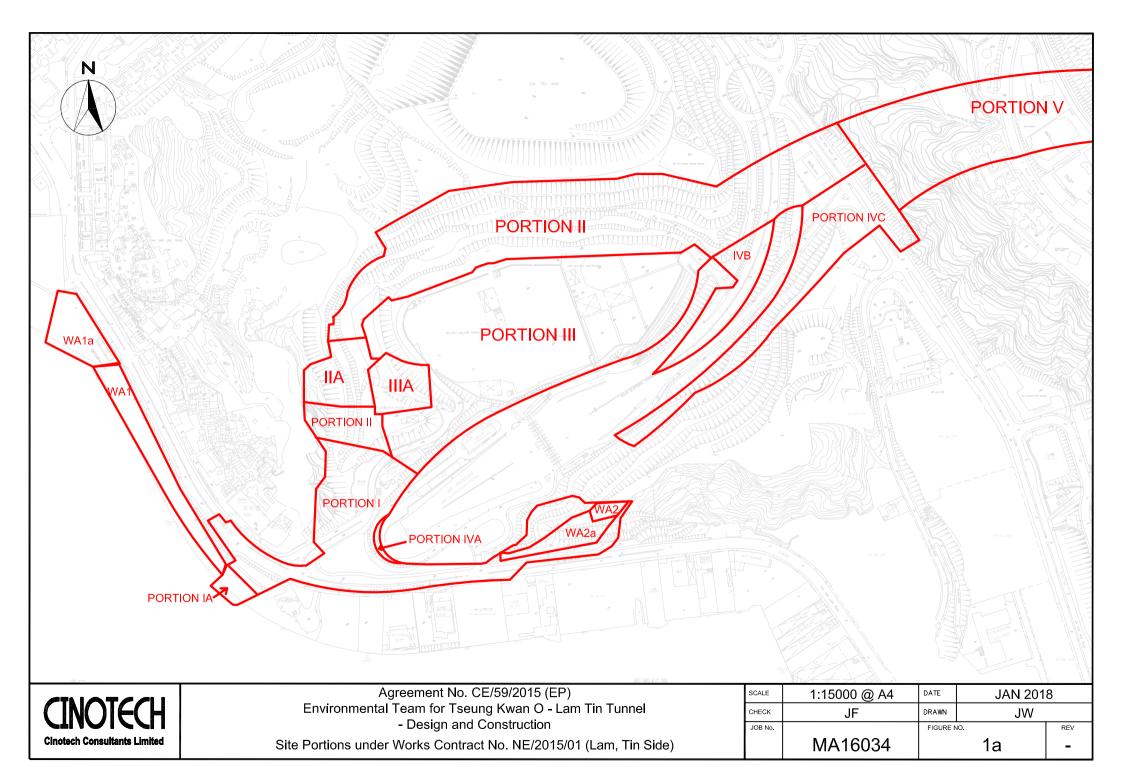
Construction Noise

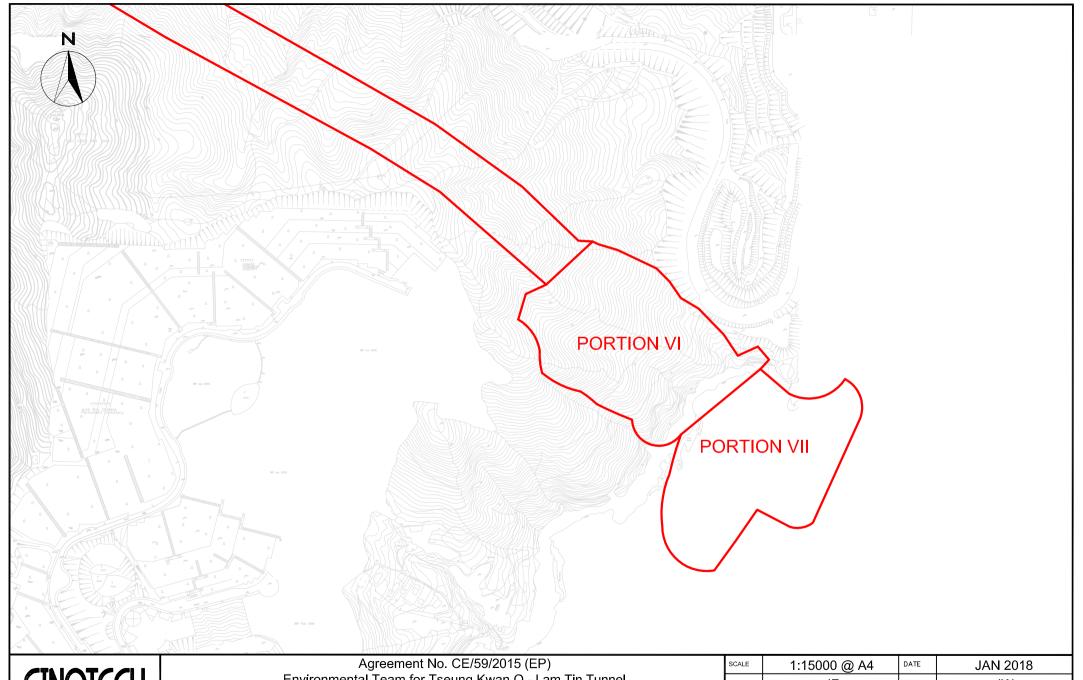
- To provide noise mitigation measures (e.g. Temporary noise barrier or Full enclosure) to PME as proposed in the approved Noise Mitigation Plan.
- To repair the gaps between the noise barriers.

Water Quality Impact

- To provide and repair the silt curtain to fully enclose the site and prevent any gap between the silt curtains.
- To review and implement temporary drainage system.
- To clear the litter, debris, silt and sediment in drainage or catchpits.
- To remove the sand or dusty material deposited near the seafront.
- To provide bund or covers to gullies and stockpile storage area on site to avoid leakage of surface runoff.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To maintain the sedimentation tank more frequently to ensure proper wastewater treatment before discharge.

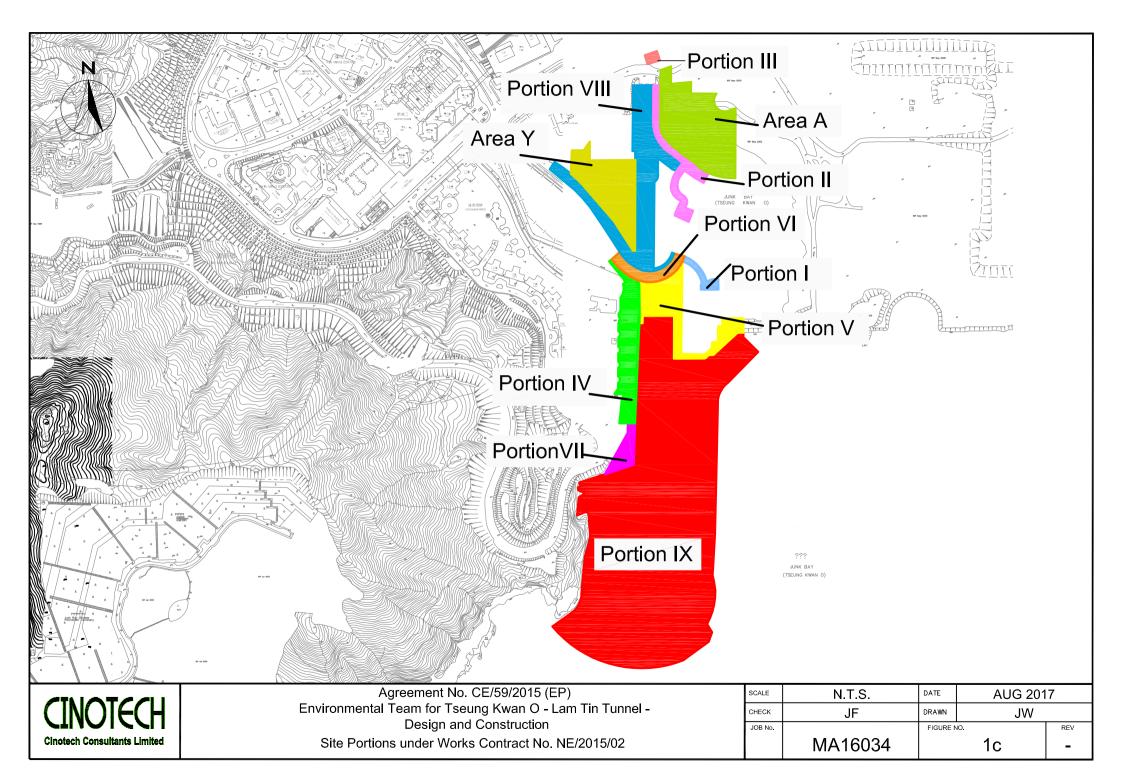

Waste/Chemical Management

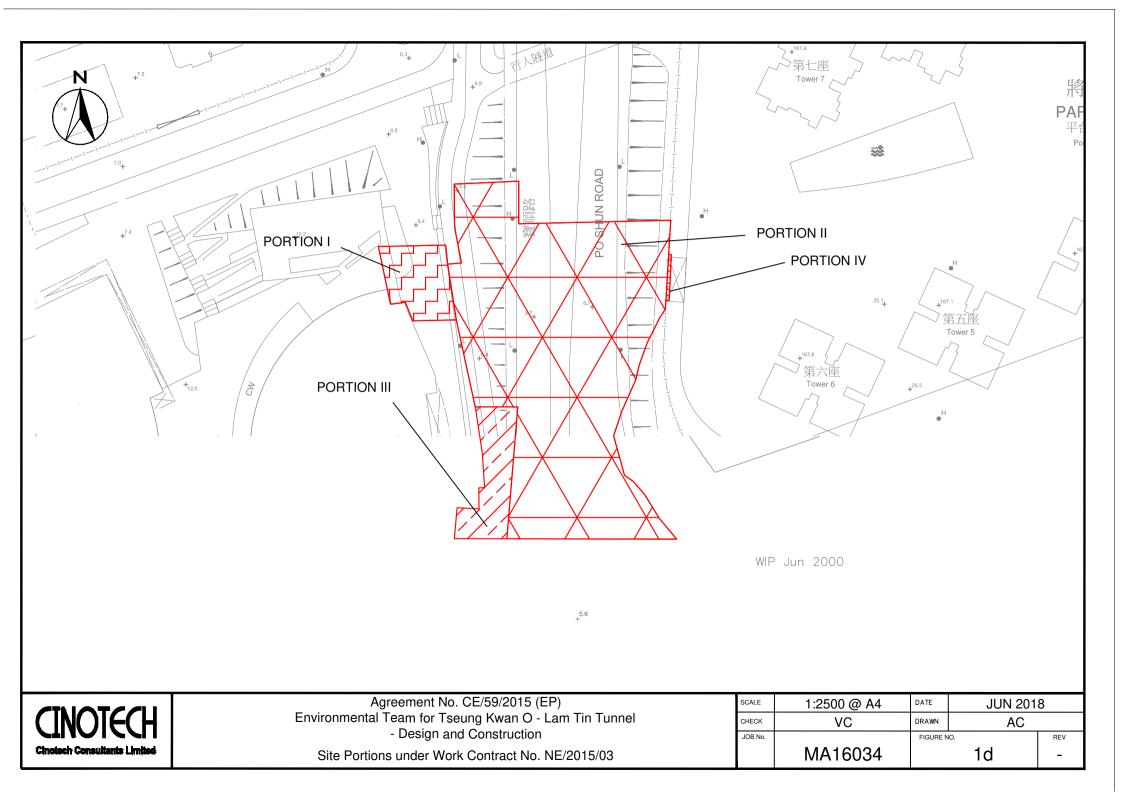

- To remove construction waste regularly.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment.
- To provide drip tray to chemical containers to avoid any chemical leakage.
- To remove the oil stain and disposed of as chemical waste.
- To remove the stagnant water regularly found inside the drip tray.

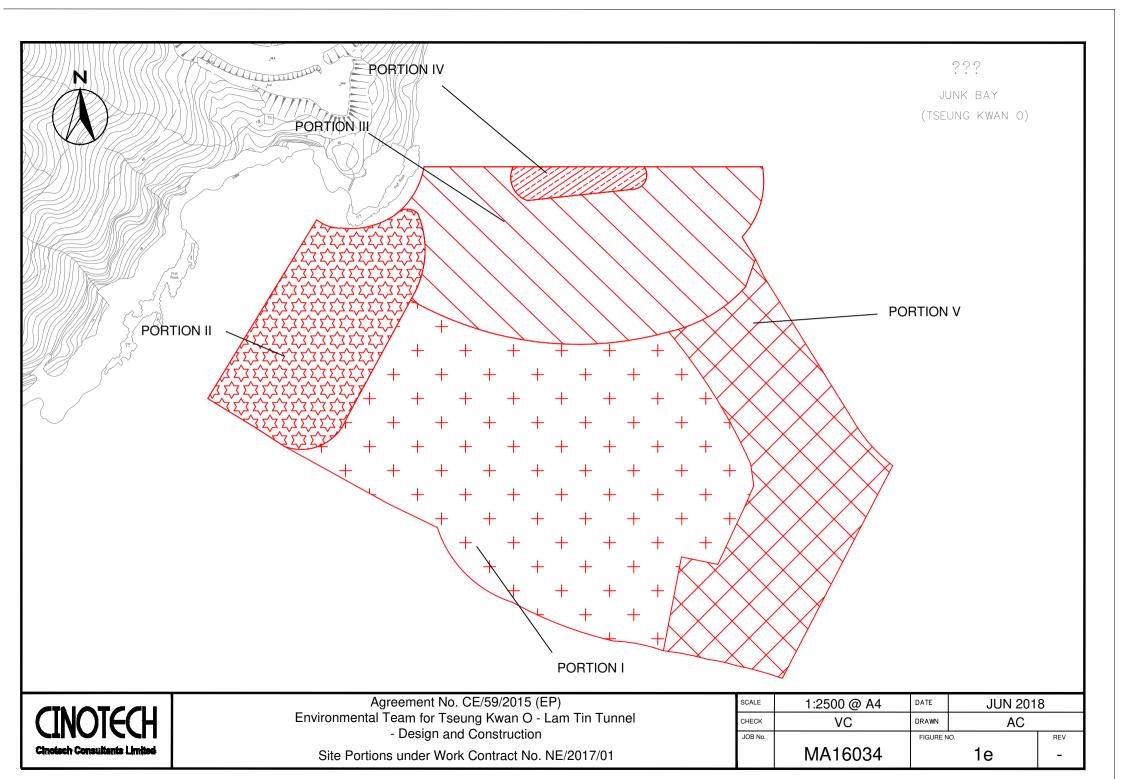

Landscape and Visual

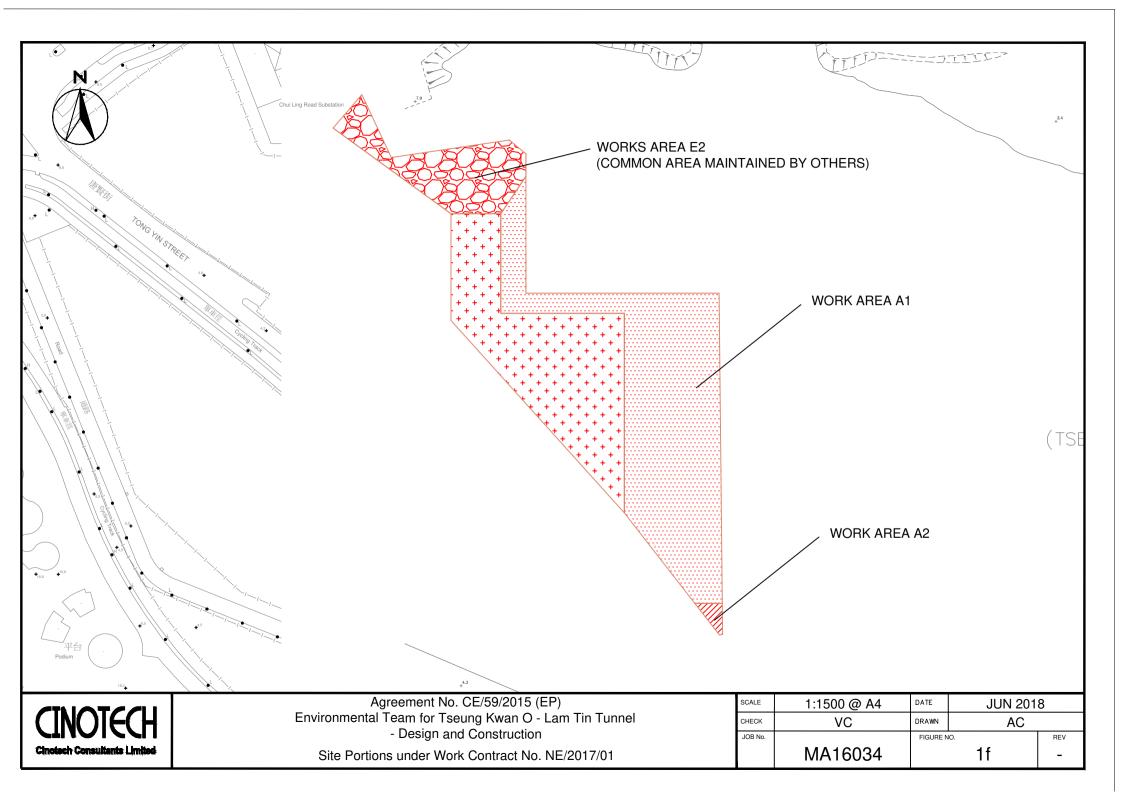
- To set up proper tree protection area.
- To avoid placing any construction materials in the tree protection zone.

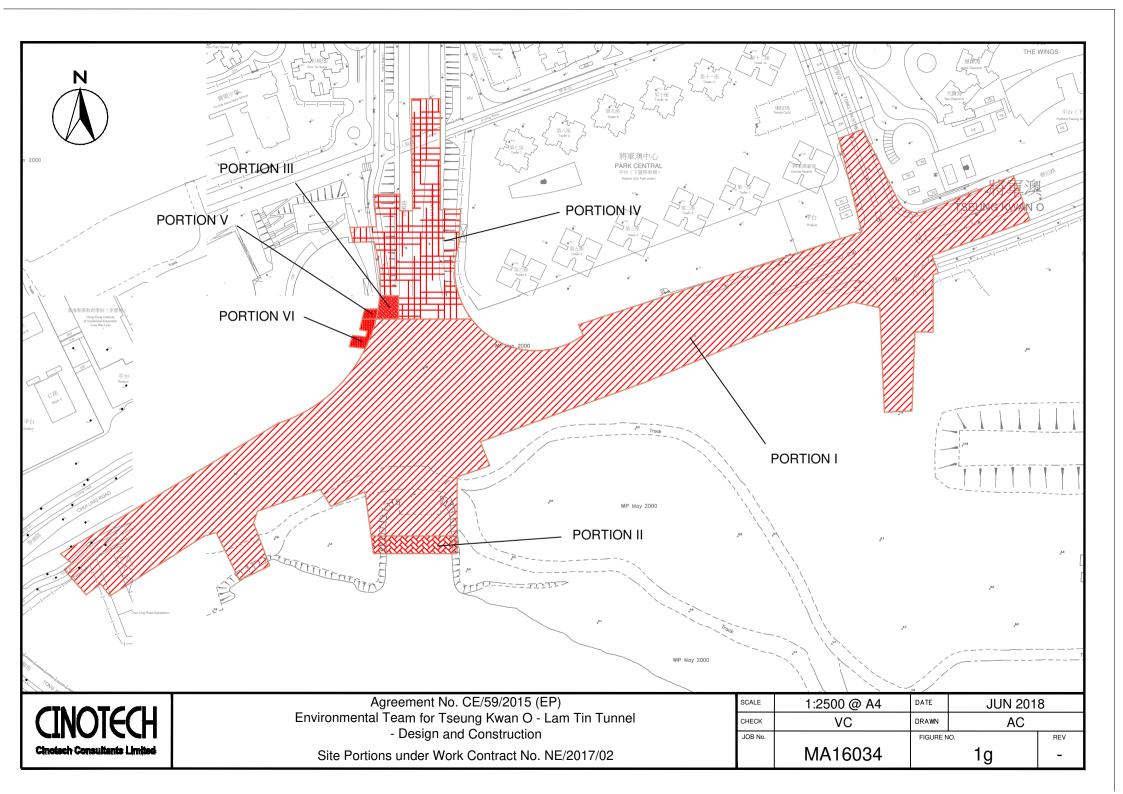
FIGURES

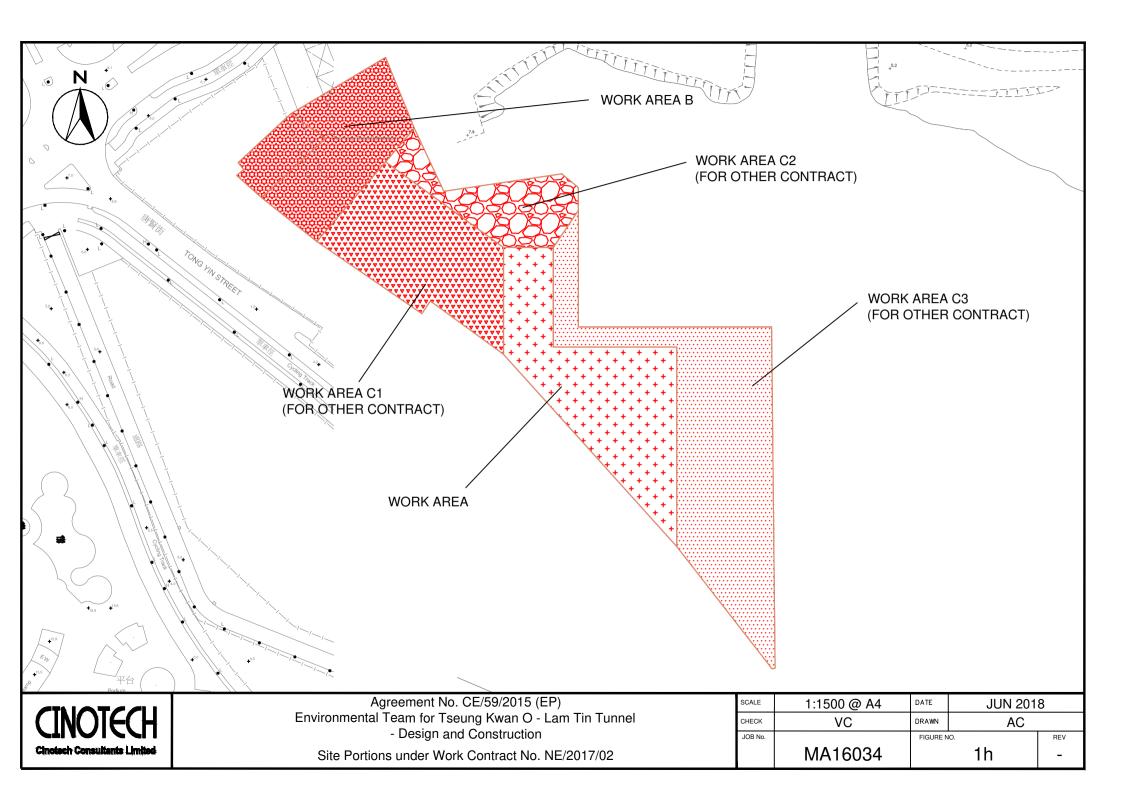


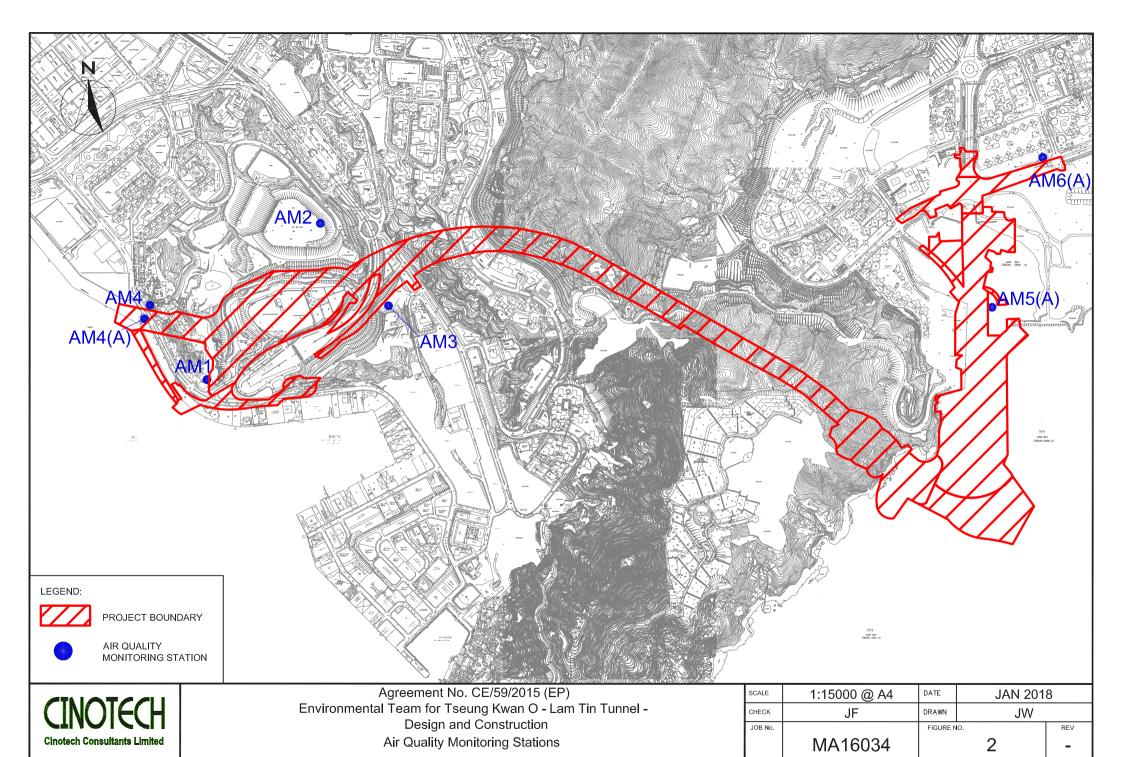


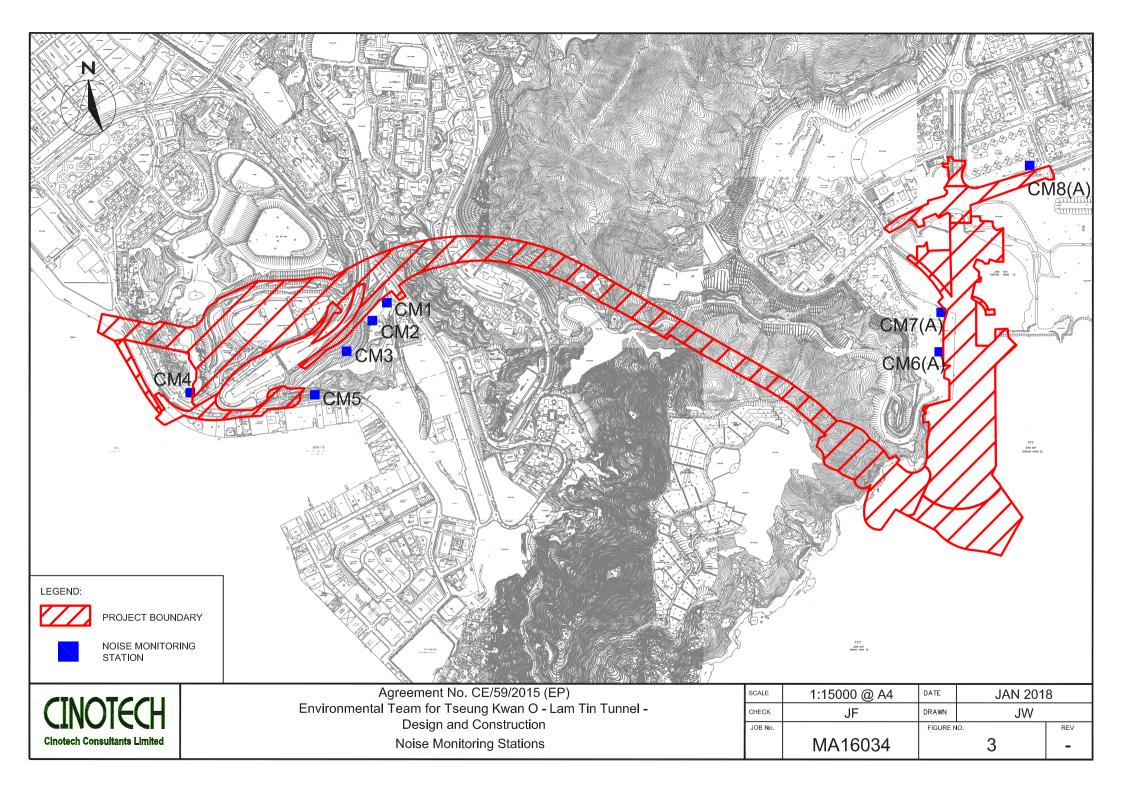


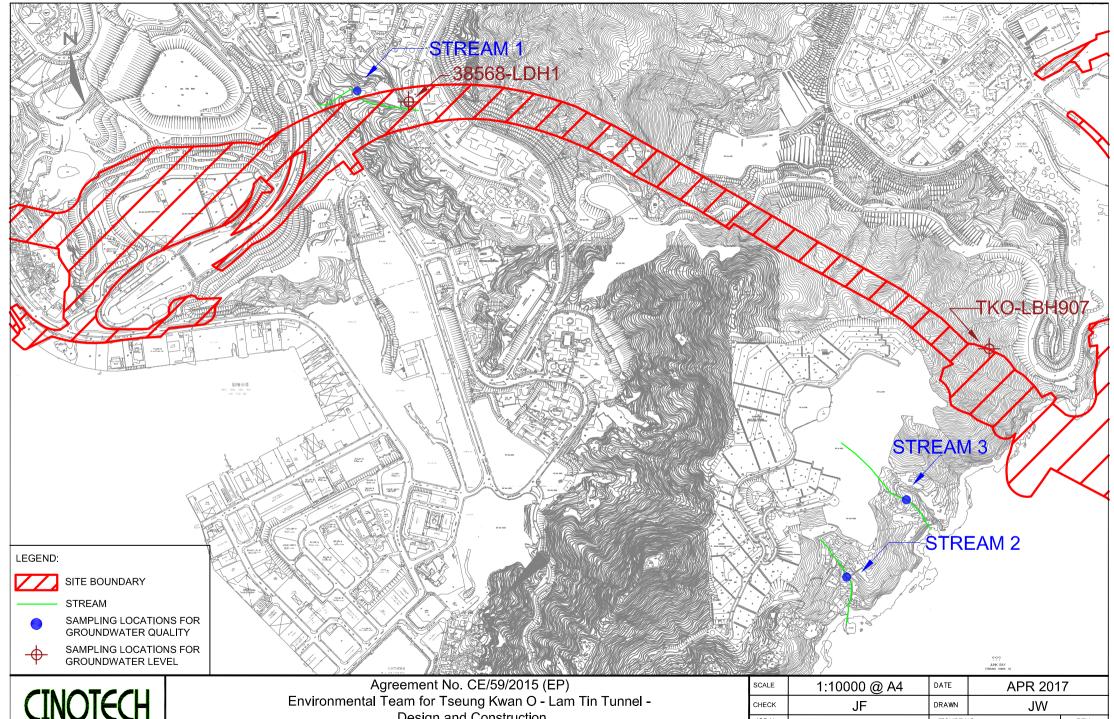

CINOTECH Cinotech Consultants Limited Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel
- Design and Construction
Site Portions under Works Contract No. NE/2015/01 (Tsuneg Kwan O Side)

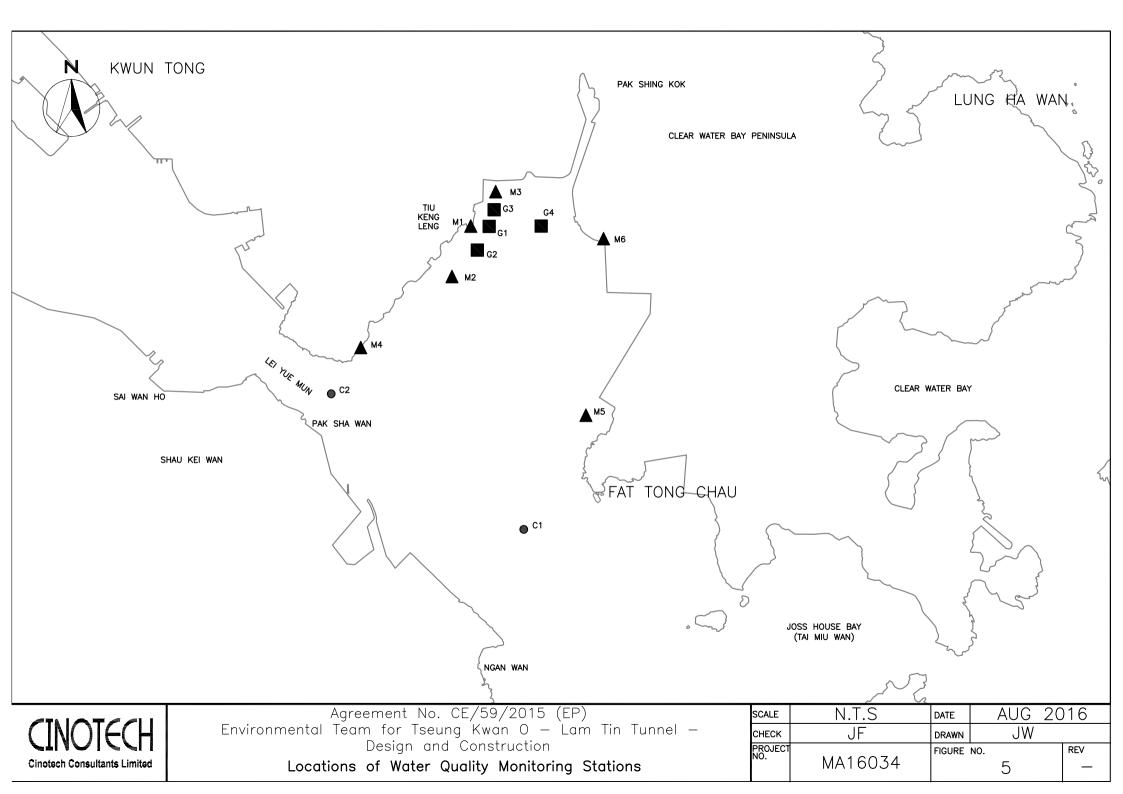

SCALE	1:15000 @ A4	DATE	JAN 201	8
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE 1	١٥.	REV
	MA16034		1b	I

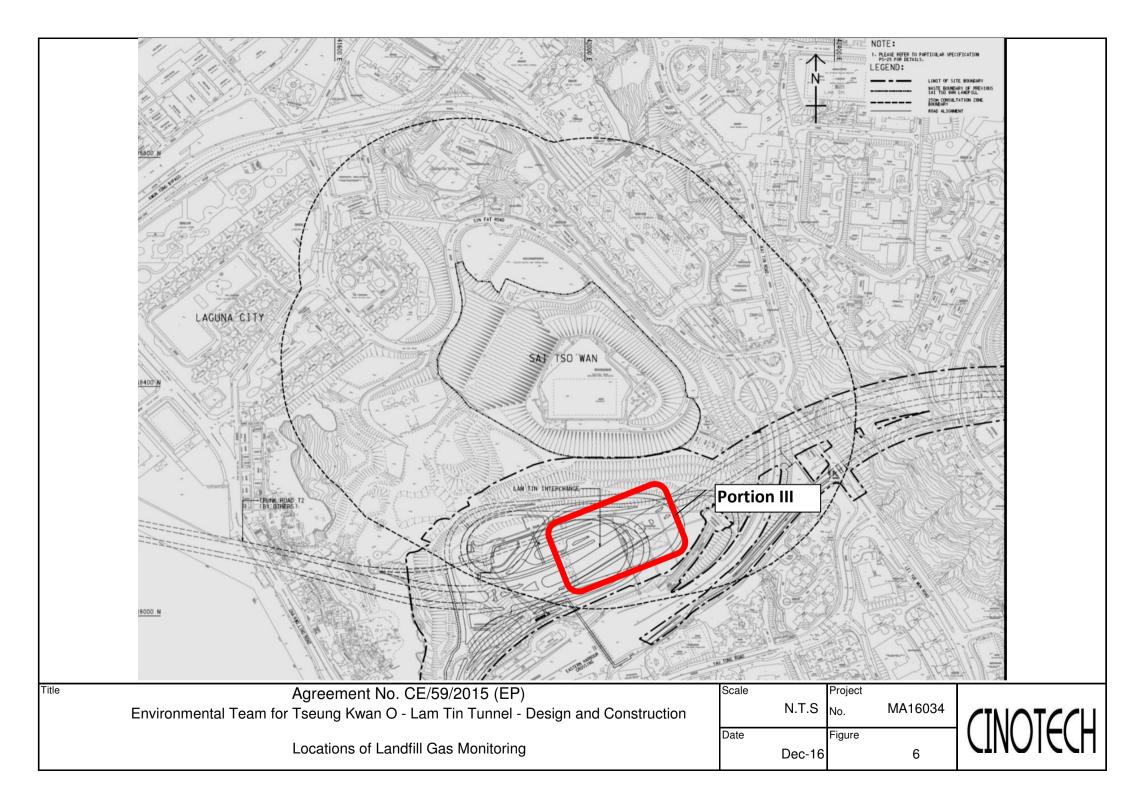




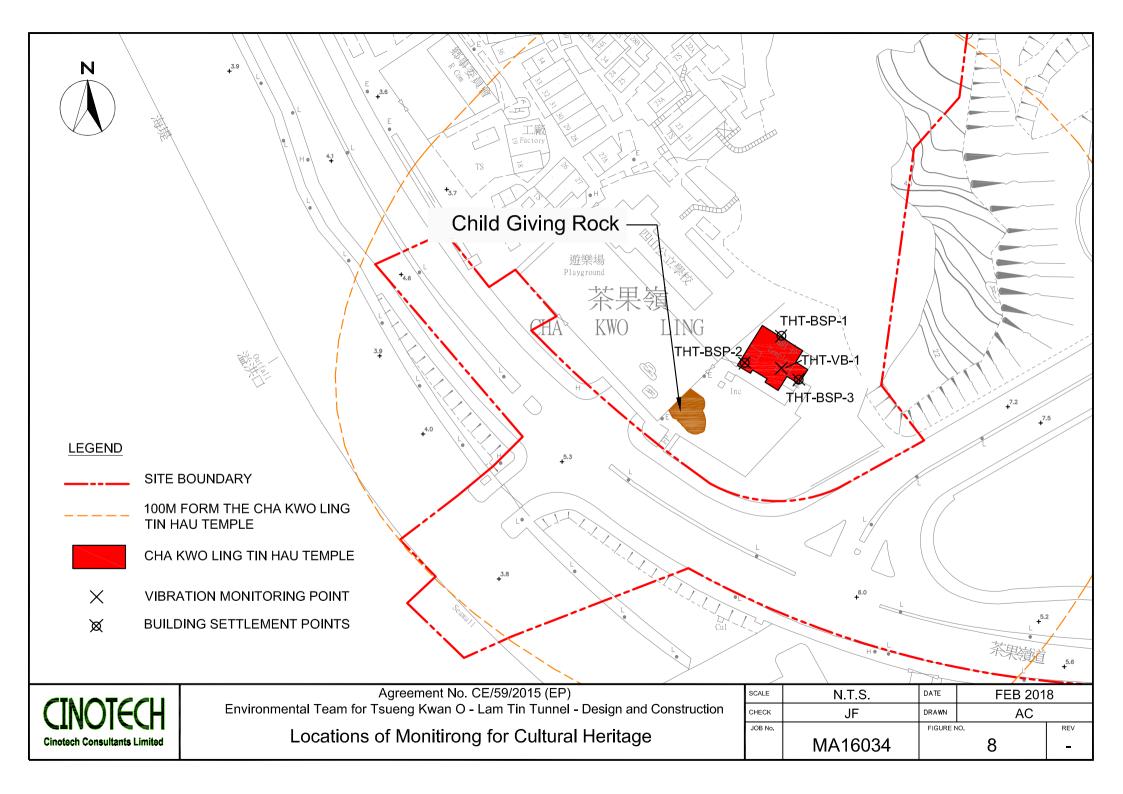


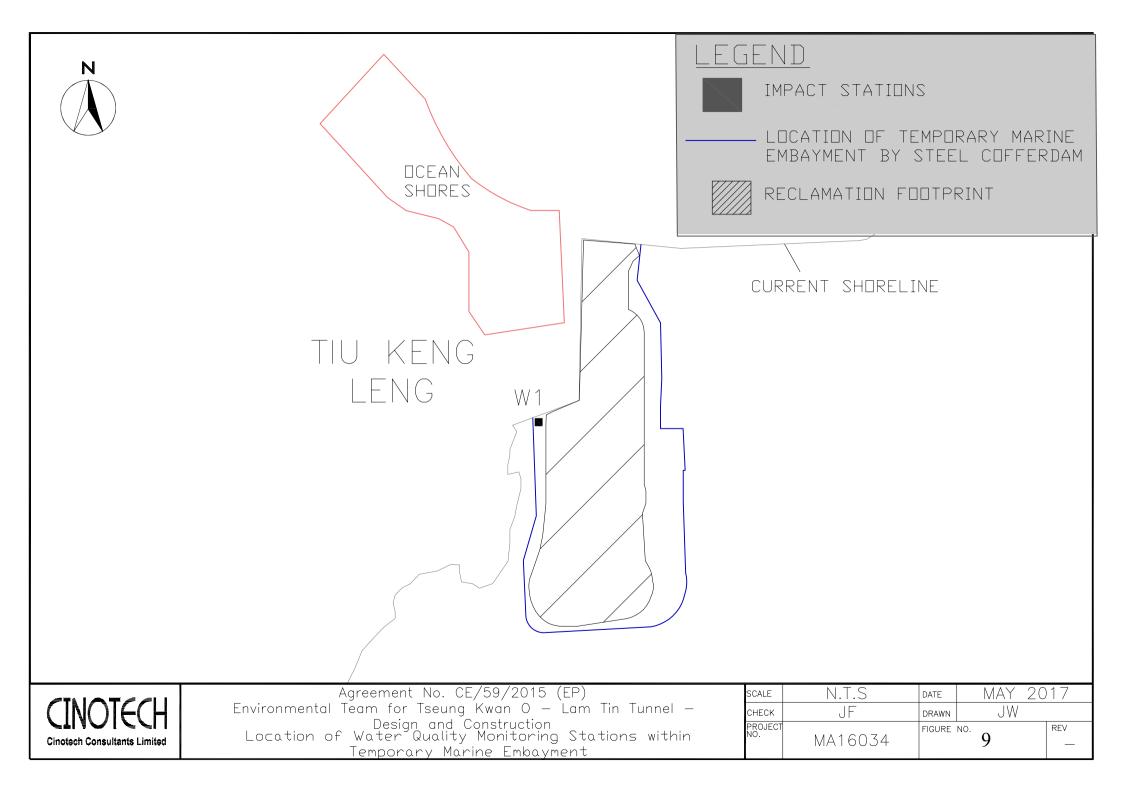






Cinotech Consultants Limited


Design and Construction Location of Streams for Groundwater Quality and Groundwater Level Monitoring


~~~ = ~//,	(11/2/2/18)			
SCALE	1:10000 @ A4	DATE	APR 201	7
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		4	-











# APPENDIX A ACTION AND LIMIT LEVELS

# **APPENDIX A – Action and Limit Levels**

# **Air Quality**

# 1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³	
AM1	Tin Hau Temple	275		
AM2	Sai Tso Wan Recreation Ground	273		
AM3	Yau Lai Estate Bik Lai House	271	500	
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500	
AM5(A)	Tseung Kwan O DSD Desilting Compound	273		
AM6(A)	Park Central, L1/F Open Space Area	285		

# 24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House 167		
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	260
AM5(A)	Tseung Kwan O DSD Desilting Compound 175		
AM6(A)	Park Central, L1/F Open Space Area	165	

# **Noise**

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

 ² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 3 If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

# **Water Quality**

## Groundwater

Parameters	Action	Limit
DO in mg L ⁻¹	7.6	7.6
рН	6.0 – 8.9	6.0 – 9.0
BOD ₅ in mg L ⁻¹	2.0	2.0
TO GL V 1	Stream 1 and Stream 2: 9	Stream 1 and Stream 2: 9
TOC in mg L ⁻¹	Stream 3: 6	Stream 3: 6
Total Nitrogen in mg L-1	2.0	2.1
Ammonia-N in mg L-1	0.15	0.20
Total Phosphate in mg L-1	0.05	0.05
SS in mg L ⁻¹	7.6	12.1
Turbidity in NTU	2.1	2.3

#### Notes:

- 1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

# **Groundwater Level Monitoring**

Drill Hole No.	38568-LDH1	TKO-LBH907
Action Level (mPD)	+74.65	+17.59

# Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level	
	Stations G1-G4	I, M1-M5		
DO::	Depth Average	4.9 mg/L	4.6 mg/L	
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>	
	Station M6			
	Intake Level	5.0 mg/L	4.7 mg/L	
	Stations G1-G4	I, M1-M5		
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	<u>19.3 NTU</u> or 120% of upstream control station's Turbidity at the same tide of the same day	22.2 NTU or 130% of upstream control station's Turbidity at the same tide of the same day	
	Station M6			
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>	
	Stations G1-G4			
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	6.9mg/L or 130% of upstream control station's SS at the same tide of the same day	
	<b>Stations M1-M</b>	<u>5</u>		
SS in mg/L (See Note 2, 4 ad 5)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day	
	<b>Stations G1-G</b> ⁴	<u>4, M1-M5</u>		
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day	
	Station M6			
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>	

## Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.
- 5. Refer to Appendix I Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

# Water Quality Monitoring in Temporary Marine Embayment

Parameter (unit)	Depth	Action Level	Limit Level
DO in mg/L	Depth Average	4.8 mg/L (4)	4 mg/L (3)
(See Note 1 and 2)	Bottom	2.4 mg/L (4)	2 mg/L ⁽³⁾

#### Notes:

- 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all sampling depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. Current Water Quality Objectives (WQOs) for marine waters of Hong Kong
- 4. As an alert for adverse water quality impact, the Action Level is set as 120% of the Current WQOs for marine waters of Hong Kong.

# **Ecology**

# Post-translocation Coral Monitoring

Parameter	<b>Action Level Definition</b>	Limit Level Definition
Mortality	If during Impact Monitoring a 15% increase	If during the Impact Monitoring a 25%
•	in the percentage of partial mortality on hard	increase in the percentage of partial
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,
	Action Level is exceeded.	then the Limit Level is exceeded.

# **Landfill Gas Monitoring**

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

# Alert, Alarm, Action Levels for Built Heritage Monitoring

Parameter	Alert Level	Alarm Level	Action Level	
Vibration	ppv:4.5mm/s	ppv: 4.8mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm	
Building Settlement Point	6mm	8mm	10mm	
Building Tilting	1:2000	1:1500	1:1000	

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



Project No.	AM1 - Tin Hau 'I	'emple				THE NO.	WA 10034/03/0010
Date:	2-Mar-18		Next Due Date:	- : 1-May-18		Operator:	MH
Equipment No.:		_	Model No.:		-	Serial No.:	10599
1F		<del></del>			-		100//
			Ambient	Condition			
Temperatu	ıre, Ta (K)	295.2	Pressure, Pa	(mmHg)		763.0	
		Q	Prifice Transfer S	tandard Inforn	nation		
Seria	l No.	2896	Slope, mc	0.0585	Intercep		-0.00045
Last Calibr	ation Date:	13-Feb-18		mc x Qstd + l	bc = [ΔH x (Pa/70	60) x (298/Ta)]	1/2
Next Calibr	ration Date:	13-Feb-19	$Qstd = \{ [\Delta H :$		x (Pa/760) x (298	3/Ta)] ^{1/2} -bc} / 1	nc
		•					
			Calibration o	f TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Γa)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/76	0) x (298/Ta)] ^{1/2} Y- axis
1	13.0	3	3.63	62.02	7.0		2.66
2	9.8	3	3.15	53.85	5.5		2.36
3	8.4	2	2.92	49.86	4.9		2.23
4	5.3	2	2.32	39.61	3.2		1.80
5	3.0	1	.74	29.80			1.39
By Linear Regr Slope , mw = Correlation c	0.0397 oefficient* =	-	992	Intercept, bw =	0.219	6	
*If Correlation C	Coefficient < 0.99	0, check and reca	alibrate.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd=				· · · · · · · · · · · · · · · · · · ·	3
		e "Y" value acco					
<b>.</b>	1 ,		-				
		mw x	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
TI E G	(D: 1 W /	0 1 1 1 12	? ( <b>7</b> (0 (D ) (	E /200)	2.68		
I nerefore, Se	et Point; w = ( m	w x Qsta + bw )	² x(760/Pa)x(	(a/298) = .	3.67		
Remarks:							
			,				
Conducted by:	LEE MON HO	2Signature:	hi	'n		Date:	2/3/218
Checked by	1	_	1/	n ´		Date:	0 1217.18

# High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



Project No.   Abd 2 - Sai Tao Wan Recreation Ground							File No.	MA16034/08/0010	
Equipment No.:   A-01-08	_		an Recreation Gro						
Ambient Condition   Temperature, Ta (K)   295.6   Pressure, Pa (mmHg)   762.9			_			-			
Temperature, Ta (K)   295.6   Pressure, Pa (mmHg)   762.9	Equipment No.	:A-01-08	<b>→</b>	Model No.	: GS2310	Serial No.:_		1287	
Scrial No.   2896   Slope, mc   0.0585   Intercept, be   -0.00045				Ambien	t Condition				
Serial No.   2896   Slope, mc   0.0585   Intercept, bc   -0.00045	Temperati	ure, Ta (K)	295.6	Pressure, Pa	a (mmHg)	762.9			
Serial No.   2896   Slope, mc   0.0585   Intercept, bc   -0.00045									
Last Calibration Date:   13-Feb-18   Mex Calibration Date:   13-Feb-19   Qstd = {[AH x (Pa/760) x (298/Ta)]^{1/2} - bc} / mc				Prifice Transfer S	tandard Infori	nation			
Calibration Date:   13-Feb-19   Qstd = { AII x (Pa/760) x (298/Ta) }^{1/2} - bc} / mc	Seria	ıl No.	2896	Slope, mc	·				
Calibration of TSP Sampler	Last Calibi	ration Date:	13-Feb-18						
Calibration   Point   Alf (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]^{1/2}   Qstd (CFM)   X - axis   AW (HVS), in. of water   axis   [AW x (Pa/760) x (298/Ta)]^{1/2}   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   Y   Y   Y   Y   Y   Y   Y	Next Calib	ration Date:	13-Feb-19	13-Feb-19 <b>Qstd</b> = { <b>[ΔH</b> :			к (Ра/760) х (298/Та)] ^{1/2} -bc} / mc		
Calibration   Point   Alf (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]^{1/2}   Qstd (CFM)   X - axis   AW (HVS), in. of water   axis   [AW x (Pa/760) x (298/Ta)]^{1/2}   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   X - axis   Av (Pa/760) x (298/Ta)]^{1/2}   Y   Y   Y   Y   Y   Y   Y   Y   Y			•			W			
Californion   Point   AH (orifice), in, of water   [AH x (Pa/760) x (298/Fa)]^{1/2}   Qstd (CFM)   X - axis   AW (HVS), in.   of water   axis   1   13.7   3.72   63.62   8.0   2.85   2.20   10.8   3.31   56.49   6.5   2.56   3.3   8.6   2.95   50.41   5.2   2.29   4   5.3   2.32   39.58   3.4   1.85   5   3.3   1.83   31.23   2.1   1.46				Calibration o	of TSP Sampler				
Point   AH (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]   1/2   X - axis   of water   axis    1	Calibration		Oı	fice					
2 10.8 3.31 56.49 6.5 2.56 3 8.6 2.95 50.41 5.2 2.29 4 5.3 2.32 39.58 3.4 1.85 5 3.3 1.83 31.23 2.1 1.46  By Linear Regression of Y on X Slope, mw = 0.0427 Intercept, bw = 0.1437  Correlation Coefficient < 0.9995 *If Correlation Coefficient < 0.9990, check and recalibrate.  Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: \[ LMW \( \textstyre{H\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\textstyre{L\			[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		1		[ΔW x (Pa/		
3	1	13.7	;	3.72	63.62	8.0		2.85	
4 5.3 2.32 39.58 3.4 1.85  5 3.3 1.83 31.23 2.1 1.46  By Linear Regression of Y on X  Slope, mw = 0.0427 Intercept, bw = 0.1437  Correlation Coefficient < 0.9995  *If Correlation Coefficient < 0.990, check and recalibrate.  Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  ΔW x (Pa/760) x (298/Ta)  ^{1/2} Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: M. M. W. Signature: Date: 2-3-2-68	2	10.8		3.31		6.5		2.56	
Set Point Calculation   Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =   3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3.87     3	3	8.6	:	2.95	50.41	5.2		2.29	
By Linear Regression of Y on X  Slope, mw =	4	5.3	2.32		39,58	3.4		1.85	
Slope, mw =	5	3.3		1.83	31.23	2,1	1.46		
*If Correlation Coefficient < 0.990, check and recalibrate.  Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: \[ \text{LUT MW HD} \text{ Signature:} \]  Date: \[ 2 - 3 - 20(8) \]	Slope, mw =	0.0427	-		Intercept, bw =	0.143	7		
Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: \[ \textstyle{LUT MW MD} \text{ Signature:} \]  Date: \[ 2 - 3 - 2\nabla \text{C} \text{ Signature:} \]		<del>-</del>							
From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: \[ \textstyle \textst	II Correlation (	_oemcient < 0.99	o, cneck and rec	anbrate.					
From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by: \[ \textstyle \textst				Sat Paint	Calculation				
From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [ΔW x (Pa/760) x (298/Ta)] ^{1/2} Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by:   Date: 2-3-2e(8)	From the TSP F	ield Calibration C	urve take Ostd		Calculation	n e meet teenn tilby i telebrica in teen in	e mare transfer en	The state of the s	
Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.87$ Remarks:  Conducted by:   Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.87$ Date: $2 - 3 - 2e/8$									
Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 3.87  Remarks:  Conducted by:     Date: 2 - 3 - 2068	Your the Regres	ssion Equation, un	c i value acce	nung to					
Remarks:  Conducted by:   Www MD Signature:   Date: 2-3-208			mw x	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}$	v x (Pa/760) x (2	298/Ta)] ^{1/2}			
Remarks:  Conducted by:   Www MD Signature:   Date: 2-3-208			0.1.1.5	2 (=60 (D ) (	TD (200)				
Conducted by: Www 402 Signature: has Date: 2-3-2018	Therefore, S	et Point; W = ( m	w x Qstd + bw )	" x ( 760 / Pa ) x (	Ta / 298)=	3.87			
Conducted by: W MN Signature: hc Date: 2-3-2018									
Conducted by: Www 402 Signature: has Date: 2-3-2018									
Conducted by: Www 402 Signature: has Date: 2-3-2018	Remarks:	•							
Conducted by: The May Will Signature: has Date: 2-3-20(8)									
Conducted by: The Man Man Signature: Act Date: 2-3-2018		****		•	,			<del></del>	
Checked by: (ALK 70:20 Signature: K. 100 Date: 9/3/2011	Conducted by:				hi		Date:	2-3-2018	



						File No.	MA16034/03/0008
Project No. Date:	AM3 - Yau Lai Es 2-Mar-18	state, Bik Lai Hou	Next Due Date	- 1 May 19		0	NATT.
Equipment No.:	-	<del></del>		: GS2310	_	Operator: Serial No.:	
Equipment 110	A-01-05	_	Wiodel No.		-	Serial No	10379
			Ambien	t Condition			
Temperatu	re, Ta (K)	295.6	Pressure, P	a (mmHg)		762.4	
		C	Prifice Transfer S	Standard Infor	nation		
Serial	l No.	2896	Slope, mc	0.0585	Intercep		-0.00045
Last Calibra	ation Date:	13-Feb-18			$bc = [\Delta H \times (Pa/76)]$		
Next Calibr	ation Date:	13-Feb-19		$Qstd = \{[\Delta H$	x (Pa/760) x (298	3/Ta)] ^{1/2} -bc} /	/ mc
	- 10 10.4 10.4 <u>- 1007 - 1800 - 1800 - 180</u>						
			Calibration of	of TSP Sampler			
Calibration		Or	fice	··r		HVS	
Point	ΔΗ (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	760) x (298/Ta)] ^{1/2} Y- axis
1	12.6	3	3.57	61.00	8.0		2.84
2	10.9	3	3.32	56.73	6.9		2.64
3	7.4	2	2.74	46.75	4.7		2.18
4	5.6	2	2.38	40.67	3.6	*-	1.91
5	3.5	1	.88	32.15	2.4		1.56
Slope , mw = Correlation co		0.9	996	Intercept, bw = -	0.100	8	
E control of the cont				Calculation			
From the TSP Fi	eld Calibration C	urve_take Ostd =		Carculation	The figure and the segurous per	<u></u>	A CONTRACTOR OF THE PROPERTY O
	sion Equation, the						
rom the regres.	sion isquation, the	z i value acco	ruing to				
		mw x	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	/ x (Pa/760) x (2	298/Ta)] ^{1/2}		
		1					
Therefore, Se	et Point; W = ( m	w x Qstd + bw ) ⁴	x (760 / Pa) x (	Ta / 298 ) =	4.06		
Remarks:							
romarks:			•				
•							
Conducted by:	LEE MAN HET	, Signature:	10	/ '		Date:	2-3-2-6
			11	<u> </u>		_	0.12/112
спескей ву:	wk lang	oignature:	$\mathcal{A}$	Non		Date:	VI)(POI)



						File No.	MA 16034/54/0010
Project No.		wo Ling Public Ca	rgo Working Area A		ice	_	
Date:	2-Mar-18		Next Due Date	: 1-May-18	_	Operator:	
Equipment No.	: <u>A-01-54</u>	_	Model No.	: TE-5170	-	Serial No.:	1536
			Ambien	t Condition			
Temperatu	ure, Ta (K)	294.9	Pressure, P			763.5	
•					· · · · · · · · · · · · · · · · · · ·		
			Drifice Transfer S	tandard Infori	nation		
Seria	ıl No.	2896	Slope, mc	0.0585	Intercep		-0.00045
Last Calibr	ation Date:	13-Feb-18			$bc = [\Delta H \times (Pa/70)]$		
Next Calibi	ration Date:	13-Feb-19		$Qstd = \{  \Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	mc
						33,38,50	
Name (1986)				of TSP Sampler	· 		
Calibration	ΔH (orifice),		fice	Ostd (OEM)	AW/IIVG) :	HVS	(0) (000/5) \(\frac{1}{2}\)
Point	in. of water	[ΔH x (Pa/76	(0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	(60) x (298/Ta)] ^{1/2} Y- axis
1	17.5	4	4,21	72.02	10.8		3.31
2	13.6	:	3.72	63.49	8.6		2.95
3	10.2		3.22	54.99	6.5		2.57
4	6.8	-	2.63	44.90	4.2		2.06
5	4.2		2.06	35.29	2.8		1.69
	0.0450	_	994	Intercept, bw =	0.081	6	
	Coefficient < 0.99			-			
	Demonstrative services the feature of the	greenstete kustete status gasten källera e			en e		Salkelmennesen en en en en en en en
				Calculation			
	ield Calibration C						
From the Regres	ssion Equation, th	e "Y" value acco	ording to				
		mw x	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
		·	•				
Therefore, S	et Point; W = ( m	w x Qstd + bw)	² x (760 / Pa) x (	Ta / 298 ) =	4.00		
Remarks:							
				10 11 11 11 11			
				/			
Conducted by:	LEE MAN HET	Signature:	· · · · · · · · · · · · · · · · · · ·	hi		Date:	2-3-2018
Checked by:	Wh Jang	Signature:	MM	<u>pri</u>		Date:	2/3/2018
	υ						



File No. MA16034/37/0010

Project No. AM5(A) - Tseung Kwan O DSD Desilting Compound Date: 2-Mar-18 Next Due Date: 1-May-18 Operator: MH Equipment No.: A-01-37 Model No.: GS2310 Serial No.: 1704 **Ambient Condition** Temperature, Ta (K) 295.4 Pressure, Pa (mmHg) 763.5 Orifice Transfer Standard Information Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 mc x Qstd + bc =  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 13-Feb-18 Qstd =  $\{ |\Delta H \times (Pa/760) \times (298/Ta) \}^{1/2} -bc \} / mc$ Next Calibration Date: 13-Feb-19 Calibration of TSP Sampler Orfice HVS Calibration  $\Delta H$  (orifice),  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2} Y$ Qstd (CFM) ΔW (HVS), in. Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in. of water X - axis of water axis 17.3 1 4.19 71.55 8.7 2.97 2 14.2 3.79 64.82 7.0 2.66 10.5 55.74 3 3.26 5.5 2.36 4 6.4 2.55 43.52 3.4 1.86 5 4.2 2.06 35.26 2.3 1.53 By Linear Regression of Y on X Slope, mw = 0.0393 Intercept, bw = _____ 0.1455 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: Lite Man Mil Signature:

Checked by: Like Jang Signature: Date: Date:



File No. MA16034/07/0010

Station AM6 - Park Central Date: 26-Mar-18 Next Due Date: 25-May-18 Operator: MH Equipment No.: A-01-07 Model No.: GS2310 Serial No.: 10592 **Ambient Condition** Temperature, Ta (K) 297.2 Pressure, Pa (mmHg) 765.4 Orifice Transfer Standard Information Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 mc x Qstd + bc =  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 13-Feb-18 Qstd =  $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 13-Feb-19 Calibration of TSP Sampler Orfice HVS Calibration  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Qstd (CFM) ΔW (HVS), in. Point  $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 1 11.6 3.42 58.48 7.7 2.79 2 9.7 3.13 53.48 6.4 2.54 3 7.4 2.73 46.71 4.9 2.22 4 5.3 2.31 39.53 3.6 1.91 5 3.5 1.88 32.13 2.3 1.52 By Linear Regression of Y on X 0.0101 Slope, mw = _____0.0475 Intercept, bw =____ Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw =  $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point;  $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: 18 Man 4112 Signature: Checked by: W(. 7an & Signature: Date: Date:





## RECALIBRATION **DUE DATE:**

February 13, 2019

**Calibration Certification Information** 

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

Ta: 293

Operator: Jim Tisch Calibration Model #:

Calibrator S/N: 2896 TE-5025A

Pa: 763.3

mm Hg

Run		Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
	1	1	2	1	1.4670	3.2	2.00
	2	3	4	1	1.0380	6.4	4.00
	3	5	6	1	0.9220	8.0	5.00
	4	7	8	1	0.8840	8.8	5.50
	5	9	10	1	0.7250	12.8	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left( \frac{Pa}{Pstd} \right) \left( \frac{Tstd}{Ta} \right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0172	0.6934	1.4293	0.9958	0.6788	0.8762	
1.0129	0.9758	2.0213	0.9916	0.9553	1.2392	
1.0107	1.0962	2.2599	0.9895	1.0732	1.3854	
1.0097	1.1422	2.3702	0.9885	1.1182	1.4530	
1.0043	1.3853	2.8586	0.9832	1.3562	1.7524	
	m=	2.06726		m=	1.29448	
QSTD	b=	-0.00045	QA [	b=	-0.00028	
	r=	0.99992	•	r=	0.99992	

Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime	
	For subsequent flow rat	e calculatio	ns:	
$\mathbf{Qstd} = \frac{1}{m} \left( \left( \sqrt{\Delta H \left( \frac{Pa}{Pstd} \right) \left( \frac{Tstd}{Ta} \right)} \right) - b \right) \qquad \mathbf{Qa} = \frac{1}{m} \left( \left( \sqrt{\Delta H \left( Ta/Pa \right)} \right) - b \right)$				

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
	ometric pressure (mm Hg)
b: intercept	
m: slope	

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/180127
Date of Issue: 2018-01-28

Date Received: 2018-01-27

Date Tested: 2018-01-27 Date Completed: 2018-01-28

Next Due Date: 2018-07-27

ATTN:

Mr. W.K. Tang

Page:

1 of 2

## **Certificate of Calibration**

#### Item for calibration:

Description

: Weather Stations, Vantage Pro2

Manufacturer

: Davis Instruments

Model No.

: 6152CUK

Serial No.

: AK130520007

#### **Test conditions:**

Room Temperature

: 21 degree Celsius

Relative Humidity

: 56 %

## **Test Specifications:**

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

#### Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

Test Report No.: C/W/180127
Date of Issue: 2018-01-28
Date Received: 2018-01-27
Date Tested: 2018-01-27
Date Completed: 2018-01-28
Next Due Date: 2018-07-27

Page:

2 of 2

#### **Results:**

#### 1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	D = V1 - V2	
2.00	2.00	0.00

## 2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.3	45	0.3
90.1	90	0.1
135	135	0
180.1	180	0.1
225.2	225	0.2
270.2	270	0.2
315	315	0
360	360	0



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 28394 Date of Issue: 2018-0

2018-02-25

Date Received:

2018-02-24

Date Tested:

Next Due Date:

2018-02-24 to

Date Completed:

2018-02-25 2018-02-25 2018-05-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-03
Manufacturer:	YSI Incorporated	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102982
- EXO conductivity/Temperature Sensor, Ti	599870	16G102304
- EXO Turbuduty Sensor, Ti	599101-01	16H102460
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100413

#### Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

 Test Report No.:
 28394

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24 to

 2018-02-25
 2018-02-25

 Date Completed:
 2018-02-25

 Next Due Date:
 2018-05-24

Page:

2 of 2

## **Certificate of Calibration**

#### Results:

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

#### Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.704	-0.004	N/A

#### pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		***************************************
pH QC buffer 4.00	4.01	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.89	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.18	$9.18 \pm 0.10$	Pass

## D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.05	Difference between Titration value and instrument reading <0.2mg/L	Pass

#### Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.02	9.0-11.0	Pass
50 NTU	50.07	45.0-55.0	Pass
100 NTU	100.5	90.0-110.0	Pass

## Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 28394A

Date of Issue: 2018-02-25

Date Received: 2018-02-24

Date Tested: 2018-02-24 to 2018-02-25

Date Completed: 2018-02-25

Next Due Date: 2018-05-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-06
Manufacturer:	YSI Incorporate	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102985
- EXO conductivity/Temperature Sensor, Ti	599870	16G102307
- EXO Turbuduty Sensor, Ti	599101-01	16H102463
- EXO pH Sensor Assembly, Guarded, Ti	599701	16H102985

#### Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE Laboratory Manager



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

 Test Report No.:
 28394A

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24 to

 2018-02-25
 2018-02-25

 Date Completed:
 2018-02-25

 Next Due Date:
 2018-05-24

Page:

2 of 2

## **Certificate of Calibration**

#### Results:

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

## Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)		-	
20.7	20.704	-0.004	N/A

#### pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.00	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.86	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.20	$9.18 \pm 0.10$	Pass

#### D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.00	8.03	Difference between	Pass
		Titration value and	
		instrument reading	
		<0.2mg/L	

#### Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.03	9.0-11.0	Pass
50 NTU	50.05	45.0-55.0	Pass
100 NTU	100.4	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

**APPLICANT:** 

**Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 28394B Date of Issue: 2018-02-

Date of Issue: 2018-02-25 Date Received: 2018-02-24

Date Tested: 2018-02-24 to

2018-02-25 Date Completed: 2018-02-25

Next Due Date:

2018-05-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-09
Manufacturer:	YSI Incorporated	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16H102988
- EXO conductivity/Temperature Sensor, Ti	599870	16G102310
- EXO Turbuduty Sensor, Ti	599101-01	16H102467
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100419

#### Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

#### Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

According to manufacturer instruction manual, APHA 200 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

 Test Report No.:
 28394B

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24 to

 2018-02-25
 2018-02-25

 Date Completed:
 2018-02-25

 Next Due Date:
 2018-05-24

Page:

2 of 2

#### **Certificate of Calibration**

#### **Results:**

#### Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCI stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

#### Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.7	20.704	-0.004	N/A

#### pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.07	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.89	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.22	$9.18 \pm 0.10$	Pass

#### D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.00	8.01	Difference between	Pass
		Titration value and	
-		instrument reading	
		<0.2mg/L	

## Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.23	9.0-11.0	Pass
50 NTU	50.18	45.0-55.0	Pass
100 NTU	100.4	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.weilab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 2
Date of Issue: 2

28394C 2018-02-25

Date Received:
Date Tested:

2018-02-24

.

2018-02-24 to 2018-02-25

Date Completed: Next Due Date:

2018-02-25 2018-05-24

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

#### **Certificate of Calibration**

#### Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-20
Manufacturer:	YSI Incorporate	d, a Xylem brand
Description:	Model No.	Serial No.
- EXO Optical DO Sensor, Ti	599100-01	16J100944
- EXO conductivity/Temperature Sensor, Ti	599870	16H100178
- EXO Turbuduty Sensor, Ti	599101-01	16J101097
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100706

#### Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

## **Test Specifications:**

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

Test Report No.: 28394C
Date of Issue: 2018-02-25
Date Received: 2018-02-24
Date Tested: 2018-02-24 to 2018-02-25
Date Completed: 2018-02-25
Next Due Date: 2018-05-24

Page:

2 of 2

#### **Certificate of Calibration**

#### Results:

## Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

## Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.0	20.002	-0.002	N/A

## pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.00	$4.00 \pm 0.10$	Pass
pH QC buffer 6.86	6.88	$6.86 \pm 0.10$	Pass
pH QC buffer 9.18	9.20	$9.18 \pm 0.10$	Pass

## D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.05	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.00	8.08	Difference between	Pass
		Titration value and	
		instrument reading	
		<0.2mg/L	

#### **Turbidity performance checking**

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.22	9.0-11.0	Pass
50 NTU	50.50	45.0-55.0	Pass
100 NTU	100.8	90.0-110.0	Pass

#### Depth performance checking

Water Depth	Instrument Readings (NTU)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28393

Date of Issue: 2018-22-26

Date Received: 2018-02-23 Date Tested: 2018-02-23

Date Completed: 2018-02-26

Next Due Date:

2018-04-25

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020408

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-01

**Test Conditions:** 

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

## Results:

Correlation Factor (CF)

1.104

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28393B

Date of Issue: 2

Date Received: 2

2018-22-26 2018-02-23

Date Tested:

2018-02-23

Date Completed:

2018-02-23

Next Due Date:

2018-04-25

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020410

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-03

**Test Conditions:** 

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

*************************

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

### Results:

Correlation Factor (CF)

1.164

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T:, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28392

Date of Issue: 2018-02-20

Date Received: 2018-02-15

Date Tested: 2018-02-15 Date Completed: 2018-02-20

Next Due Date: 2018-04-19

ATTN:

Mr. W. K. Tang

Page:

1 of 1

#### Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

**Test Conditions:** 

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

## Results:

Correlation Factor (CF)

1.223

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787
Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13 Date Completed: 2018-04-16

Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

**Test Conditions:** 

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

## Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### Results:

Correlation Factor (CF)

1.168

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website; www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28392D Date of Issue:

2018-02-20

Date Received: 2018-02-15

Date Tested: 2018-02-15

Date Completed: 2018-02-20

Next Due Date:

2018-04-19

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701016

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-03

**Test Conditions:** 

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

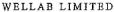
## **Test Specifications & Methodology:**

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

*************************

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### Results:


Correlation Factor (CF)

1.176

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TSE





Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787A

Date of Issue: 2018-04-16 Date Received: 2018-04-13

Date Tested: 2018-04-13

Date Completed: 2018-04-16 Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## **Certificate of Calibration**

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701016

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-03

**Test Conditions:** 

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

## Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### Results:

Correlation Factor (CF)

1.203

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

### TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28392A

Date of Issue: 2018-02-20 Date Received: 2018-02-15

Date Tested: 2018-02-15

Date Completed: 2018-02-20 Next Due Date: 2018-04-19

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer : Hal Technology

Model No. : Hal-HPC301 Serial No. : 3011701017

Flow rate : 0.1 cfm

Zero Count Test : 0 count per 5 minutes

Equipment No. : A-27-04

**Test Conditions:** 

Room Temperature : 17-22 degree Celsius

Relative Humidity : 40-70%

## Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

#### Results:

Correlation Factor (CF) 1.233

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TSE Laboratory Manager





Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: C

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 2

28788

Date of Issue: Date Received: 2018-04-16 2018-04-13

Date Tested:

2018-04-13

Date Completed:

2018-04-16

Next Due Date:

2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701017

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-04

**Test Conditions:** 

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

#### Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

## Results:

Correlation Factor (CF)

1.158

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

### TEST REPORT

APPLICANT: **Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28392B

Date of Issue: 2018-02-20

Date Received: 2018-02-15 Date Tested: 2018-02-15

Date Completed: 2018-02-20

Next Due Date: 2018-04-19

ATTN:

Mr. W. K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for Calibration:

Description

: Handheld Particle Counter

: Hal Technology

Manufacturer Model No. : Hal-HPC301

Serial No. : 3011701012

Flow rate : 0.1 cfm Zero Count Test : 0 count per 5 minutes

Equipment No. : A-27-07

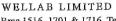
**Test Conditions:** 

Room Temperature : 17-22 degree Celsius

Relative Humidity : 40-70%

## **Test Specifications & Methodology:**

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.


#### Results:

1.161 Correlation Factor (CF)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE





Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170915A 2017-09-18 Date of Issue: Date Received: 2017-09-15 Date Tested: 2017-09-15 Date Completed: 2017-09-18 2018-09-17 Next Due Date:

ATTN:

Mr. W.K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12563

Microphone No.

: 34377

Equipment No.

: N-08-03

#### Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 60%

## **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.



WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170825
Date of Issue:	2017-08-28
Date Received:	2017-08-25
Date Tested:	2017-08-25
Date Completed:	2017-08-28
Next Due Date:	2018-08-27

ATTN:

Mr. W.K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21455

Microphone No. Equipment No.

: 43730

-- 1,---,

: N-08-07

## Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 60 %

## **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager



Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotec

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/170818

 Date of Issue:
 2017-08-21

 Date Received:
 2017-08-18

 Date Tested:
 2017-08-18

 Date Completed:
 2017-08-21

Page:

Next Due Date:

2018-08-20 1 of 1

ATTN:

Mr. W.K. Tang

## **Certificate of Calibration**

#### Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.
Microphone No.

: 21459 : 43676

Equipment No.

: N-08-08

#### Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 61 %

### **Test Specifications:**

Performance checking at 94 and 114 dB

## Methodology:

In-house method, according to manufacturer instruction manual

#### Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170818A

Date of Issue: 2017-08-21

Date Received: 2017-08-18

Date Tested: 2017-08-18

Date Completed: 2017-08-21

Next Due Date: 2018-08-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

## **Certificate of Calibration**

#### Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

#### Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 61 %

#### **Test Specifications:**

Performance checking at 94 and 114 dB

## Methodology:

In-house method, according to manufacturer instruction manual

#### Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/171215A
Date of Issue:	2017-12-18
Date Received:	2017-12-15
Date Tested:	2017-12-15
Date Completed:	2017-12-18
Next Due Date:	2018-12-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

## **Certificate of Calibration**

#### Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

: BSWA 801

Serial No.

: 35921

Equipment No.

: N-13-02

#### Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

#### Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

#### Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

## Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1  \mathrm{dB}$

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929B
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

#### Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No. Serial No. : SV30A : 24780

Equipment No.

: N-09-05

#### Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

## Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/171103
Date of Issue:	2017-11-06
Date Received:	2017-11-03
Date Tested:	2017-11-03
Date Completed:	2017-11-06
Next Due Date:	2018-11-05

ATTN:

Mr. W.K. Tang

Page:

1 of 1

#### Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

#### Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 64 %

## Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: Onte of Issue: 2

C/N/170818C 2017-08-21

Date Received:

2017-08-21

Date Tested:

2017-08-18

Date Completed:

2017-08-21

Next Due Date:

2018-08-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

## Certificate of Calibration

#### Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

#### Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 61 %

#### Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

## **CALIBRATION CERTIFICATE**

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14847)

Model No.: 716A0403
Serial No.: BE17904
Calibration Date: 9 April 2018

Next Calibration Date: 9 April 2019

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

( Wong, Keefe Solomon )

Date: 9 April 2018

## **CALIBRATION CERTIFICATE**

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20674)

Model No.: 716A0403 Serial No.: BE17902

Calibration Date: 10 April 2018
Next Calibration Date: 10 April 2019

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Model	Serial No.
714A0801	BA15521
714A9701	BG14463
2030	256812
SR760	41550
34410A	MY47011119
339A	810699
4370	30323
2647	2518810
269	2152173
V556	92794/1
FPS10L	ARA 04/05
PA1000L	ARA 07/06
	714A0801 714A9701 2030 SR760 34410A 339A 4370 2647 269 V556 FPS10L

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

( Wong, Keefe Solomon )

Date: 10 April 2018

## CALIBRATION CERTIFICATE

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16957)

Model No.: 716A0403

Serial No.: BE17505

Calibration Date: 22 March 2018 Next Calibration Date: 22 March 2019

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

( Leung Man Hin, Eric )

Date: 22 March 2018



### CERTIFICATE OF CALIBRATION

Calibration Date: 1st September 2017

Model: iCivil-1011 Inclinometer

Serial No.: HK110118

Method Used: By direct measurement

**Laboratory Conditions:** 

Ambient Temperature:  $(23\pm2)^{\circ}$ C Relative Humidity:  $(50\pm20)\%$ 

Test Reference Model Equipment ID

Dual-Axis Digital Angle Protractor TLL-90S EPC001

#### **Calibration Result**

#### X-Axis Measurement

Applied Angle (degree)	UUT Reading (degree)	Error (degree)	
10.011	9.943	-0.068	
5.005	4.976	-0.029	
1.003	0.995	-0.008	
0.001	-0.002	-0.003	
-1.005	-0.996	0.009	
-5.015	-4.976	0.039	
-10.009	-9.940	0.069	

#### Remarks:

1. The above calibration data applies only to the instrument described above.

Checked By:

Date: 1st September 2017

*** End of Report***



### **CERTIFICATE OF CALIBRATION**

Calibration Date: 1st September 2017

Model:

iCivil-1011 Inclinometer

Serial No.:

HK110120

Method Used:

By direct measurement

**Laboratory Conditions:** 

Ambient Temperature:

(23±2)°C

Relative Humidity:

(50 ±20)%

Test Reference

Model

Equipment ID

Dual-Axis Digital Angle Protractor

TLL-90S

EPC001

#### **Calibration Result**

X-Axis Measurement

Applied Angle (degree)	UUT Reading (degree)	Error (degree) -0.06	
10.005	9.945		
5.007	4.978	-0.029	
1.003	0.998	-0.005	
0.001	-0.001	-0.002	
-1.008	-0.998	0.01	
-5.010	-4.974	0.036	
-10.001	-9.943	0.058	

#### Remarks:

1. The above calibration data applies only to the instrument described above.

Checked By:

Date: 1st September 2017

*** End of Report***



### YSF Corporation Limited

5/A., Blk 1 Kin Ho Ind Bldg 20-24, Au Pui Wan St, Fo Tan, Shatin, N.T. Hong Kong

Phone: 852-8109 8368 Fax: 852-3007 4857

### **CERTIFICATE OF CALIBRATION**

Certificate No.

: CS-CC-170820

Customer

: Leighton-China State Joint Venture

Manufacturer

: Leica

Address

: 39/F., Sun Hung Kai Centre,

Equipment

: Digital Level

30 Harbour Road.

Model

: LS15 0.3mm

Hong Kong

Serial No.

Expire Date

:701133

Calibration Interval : 12 months

Calibration Date : 14th September, 2017 : 13th September, 2018 Reference Document: CS/ME/3(HKST) Report No.

: CS-CR-170820

The instrument has been checked and calibrated according to document procedures and using standards and instruments which are traceable to international accepted standards. The standards and instruments used in the calibration are calibrated on a schedule which is adjusted to maintain traceability at the required accuracy level, or have been derived from the ratio type of self-calibration techniques. This is established by our Quality Management System, audited to ISO9001 :2008 by an independent national accredited body.

The specified calibration interval is a recommendation. Depending on the type of use ambient conditions or accuracy requirements, other calibration intervals may be applicable. The user shall be responsible that calibration is carried out at adequate intervals.

YSF Corporation Ltd. hereby certifies this instrument meets or exceeds all published specifications of the manufacturer at present inforce. This calibration certificate may only be distruibuted in a complete and unchanged form. Unsigned calibration certificates are invalid.

Calibrated by

Wayne Ng, Service Engineer 14th September, 2017

Checked b

Wallace Yu, Service Manager 14th September, 2017

CKL/CSL/170820



# YSF Corporation Ltd.

### **Calibration Report**

Certificate No.	: CS-CC-170820		Certificate Report No.: CS-CR-170820		
Client	: Leighton-China State Joint Venture				
Address	: 39/F., Sun Hung Kai Centre, 30 Harbour Road, Hong Kong				
Item Calibrated	:Name/Description	n:Digital Level			
	Manufacturer:	Leica			
	Model:	LS15 0.3mm	<b>Eqt. No:</b> 701133		
Reference Standard	: 5198266 Calibration check	according to cus	tomer's requirement.		
Calibration Method	: Procedure CS02				
Calibration Condition	S				
Temperature	:(31±3℃)				
Relative Humidity	: 84% RH				
Date of Test	: 14th September, 2	2017			
Test Results	: PASS (All calibration attached calibration)	-	e within the tolerances as shown in the		
Calibrated by: Way Wayne Ng, Service Date: 14th Septem	e Engineer	HKCS Approv	ved Signatory:  Wallace Yu, Service Manager  Date: 14th September, 2017		

2, The values given in this calibration certificate only to the values measured at the time of test & any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. YSF Corporation Ltd. shall not be liable for any loss/damage resulting from the use of the equipment.

- 3, The test results apply to the above Unit-Under-Test only.
- 4, This certificate shall not be reproduced, except on full, without approval of YSF Corporation Ltd.



# YSF Corporation Ltd.

### **Calibration Report**

Certificate Report No.: CS-CR-170820

Certificate No. :CS-CC-170820

Client

: Leighton-China State Joint Venture

Address

: 39/F., Sun Hung Kai Centre, 30 Harbour Road, Hong Kong

Item Calibrated

:Name/Description: Digital Level

Manufacturer:

Leica

Model:

LS15 0.3mm

Eqt. No: 701133

Inspection Item	Result
Line of sight leveling	Pass
Compensation accuracy	Pass
Stadia spacing	Pass
Circular bubble level accuracy	Pass
Focusing	Pass
Hori. Motion	Pass

**Overall Inspection Result: PASS** 

Served by:

Wayne Ng, Service Engineer

Date: 14th September, 2017

Wallace Yu, Service Manager

YSF Corporation Ltdl.

Date: 14th September, 2017

We hereby confirm the inspection has been completed and complied with the specifications required.



### The Safety Company

MSA Corporate Center • 1000 Cranberry Woods Drive • Cranberry Township, PA 16066 www.msasafety.com

Telephone: (800) MSA-2222

### ALTAIR5X CERTIFICATE OF CALIBRATION

Serial Number: 120848

Part Number: A-ALT5X-A-N-K-D-1-0-0-T-0-0-0

Sales Order Number:

阿里

Factory Calibration Date: 08/18/17

#### Set Points

	METHANE 0-100.00 %LEL	O2 0-30.00 %VOL	CO 0-2000.00 PPM	H2S 0-200.00 PPM	NH3 0-100.00 PPM	
<b>Ψ</b> (Low)	10.00 %LEL	19.50 %VOL	25.00 PPM	10.00 PPM	25.00 PPM	
↑ (High)	20.00 %LEL	23.00 %VOL	100.00 PPM	15.00 PPM	50.00 PPM	
STEL			100.00 PPM	15.00 PPM	35.00 PPM	
<b>⊅</b> twa			25.00 PPM	10.00 PPM	25.00 PPM	
Calibrated Value	Methane 1.45 %VOL	O2 15.00 %VOL	CO 60.4 PPM	H2S 21.0 PPM	NH3 25 PPM	
Cylinder Lot #	1027601826B	1027601826B	1027601826B	1027601826B	201397	

All applicable inspections, testing, and calibrations were performed using NIST traceable equipment, where available, in accordance with MSA's ISO 9001 Certified Quality System. Each material, component, and/or instrument must be installed, operated and maintained in strict accordance with its labels, cautions, warnings, instructions, and within the limitations stated in the supplied instruction manual. Routine calibration checks, equipment inspections, and applicable preventative maintenance measures must be performed to verify that the materials, components, and/or instruments are operating properly. Failure to perform these tasks on a routine basis, or suggested intervals, with specified equipment or methods, may result in inaccurate readings.

Process Certified By:

Calibrated By: E. Weber

OUALITY ENGINEER

LOCATION: 1000 Cranberry Woods Drive • Cranberry Township, PA 16066-5296



### The Safety Company

MSA Corporate Center ● 1000 Cranberry Woods Drive ● Cranberry Township, PA 16066 www.msasafety.com

Telephone: (800) MSA-2222

### ALTAIR5X CERTIFICATE OF CALIBRATION

Serial Number: 120847

Part Number: A-ALT5X-A-N-K-D-1-0-0-T-0-0-0

Sales Order Number:

Factory Calibration Date: 08/18/17

#### **Set Points**

Set Points						
<b>Ψ</b> (Low)						
↑ (High)						
STEL						
<b>D</b> _{TWA}						
Calibrated Value	Methane 1.45 %VOL	O2 15.00 %VOL	CO 60.4 PPM	H2S 21.0 PPM	NH3 25 PPM	
Cylinder Lot#	1027601826B	1027601826B	1027601826B	1027601826B	201397	

All applicable inspections, testing, and calibrations were performed using NIST traceable equipment, where available, in accordance with MSA's ISO 9001 Certified Quality System. Each material, component, and/or instrument must be installed, operated and maintained in strict accordance with its labels, cautions, warnings, instructions, and within the limitations stated in the supplied instruction manual. Routine calibration checks, equipment inspections, and applicable preventative maintenance measures must be performed to verify that the materials, components, and/or instruments are operating properly. Failure to perform these tasks on a routine basis, or suggested intervals, with specified equipment or methods, may result in inaccurate readings.

Process Certified By:

Calibrated By: E. Weber

IJM HOFFMAN

**ČUALITY ENGINEER** 

LOCATION: 1000 Cranberry Woods Drive • Cranberry Township, PA 16066-5296

### APPENDIX C WEATHER INFORMATION

### I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 April 2018	21.3 – 27.9	73	-
2 April 2018	21.5 – 28.7	71	-
3 April 2018	21.9 – 29.4	74	-
4 April 2018	22.6 – 28.5	78	-
5 April 2018	22.7 – 27.8	78	-
6 April 2018	17.5 – 26.6	70	Trace
7 April 2018	16.1 – 20.3	45	Trace
8 April 2018	16.3 – 24.9	53	-
9 April 2018	19.0 – 26.5	75	-
10 April 2018	21.1 – 28.5	78	-
11 April 2018	22.5 – 27.6	83	-
12 April 2018	23.9 – 28.1	82	-
13 April 2018	24.6 – 30.6	79	Trace
14 April 2018	25.2 – 29.9	79	Trace
15 April 2018	18.6 – 25.7	85	17.2
16 April 2018	17.5 – 19.4	88	2.0
17 April 2018	17.4 – 22.9	82	0.2
18 April 2018	21.1 – 25.6	78	0.1
19 April 2018	21.4 – 26.3	76	-

### I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 April 2018	22.5 – 26.2	83	Trace
21 April 2018	23.0 – 27.5	83	Trace
22 April 2018	23.7 – 29.0	86	Trace
23 April 2018	24.3 – 30.2	79	Trace
24 April 2018	23.9 – 26.7	85	8.2
25 April 2018	23.3 – 24.7	79	Trace
26 April 2018	22.7 – 24.6	84	0.3
27 April 2018	22.9 – 28.5	80	Trace
28 April 2018	23.1 – 26.4	84	0.1
29 April 2018	23.9 – 29.3	82	Trace
30 April 2018	24.6 – 29.2	85	Trace

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

II. Mean Wind Speed and Wind Direction					
Date	Time	Wind Speed m/s	Direction		
1-Apr-2018	00:00	1.9	WNW		
1-Apr-2018	01:00	1.9	WNW		
1-Apr-2018	02:00	2.2	WNW		
1-Apr-2018	03:00	2	WNW		
1-Apr-2018	04:00	1.9	WNW		
1-Apr-2018	05:00	2.6	WNW		
1-Apr-2018	06:00	2.3	W		
1-Apr-2018	07:00	3	W		
1-Apr-2018	08:00	2.5	WNW		
1-Apr-2018	09:00	3	WNW		
1-Apr-2018	10:00	2.2	WNW		
1-Apr-2018	11:00	2.9	W		
1-Apr-2018	12:00	2.8	WNW		
1-Apr-2018	13:00	3.1	WNW		
1-Apr-2018	14:00	3.2	WNW		
1-Apr-2018	15:00	2.8	WNW		
1-Apr-2018	16:00	3	W		
1-Apr-2018	17:00	2.8	W		
1-Apr-2018	18:00	2.6	W		
1-Apr-2018	19:00	2.4	WSW		
1-Apr-2018	20:00	2.8	SSW		
1-Apr-2018	21:00	2.7	SSW		
1-Apr-2018	22:00	2.7	W		
1-Apr-2018	23:00	2.8	WNW		
2-Apr-2018	00:00	3.2	WNW		
2-Apr-2018	01:00	2.8	W		
2-Apr-2018	02:00	2.6	NE		
2-Apr-2018	03:00	2.5	ESE		
2-Apr-2018	04:00	2.4	NW		
2-Apr-2018	05:00	2.2	NNE		
2-Apr-2018	06:00	1.6	NNE		
2-Apr-2018	07:00	2.2	NE		
2-Apr-2018	08:00	2.1	Е		
2-Apr-2018	09:00	1.8	Е		
2-Apr-2018	10:00	2	ENE		
2-Apr-2018	11:00	2.5	Е		
2-Apr-2018	12:00	2.7	NE		

11.	Wican Wina	Speed and wind D	пссион	
	2-Apr-2018	13:00	2.4	WSW
	2-Apr-2018	14:00	2.6	WNW
	2-Apr-2018	15:00	2.4	W
	2-Apr-2018	16:00	2.1	SW
	2-Apr-2018	17:00	2.2	SW
	2-Apr-2018	18:00	2.1	SSW
	2-Apr-2018	19:00	2.2	SW
	2-Apr-2018	20:00	2.1	WSW
	2-Apr-2018	21:00	2.2	SW
	2-Apr-2018	22:00	1.9	SW
	2-Apr-2018	23:00	1.5	WNW
	3-Apr-2018	00:00	1.6	S
	3-Apr-2018	01:00	2.2	S
	3-Apr-2018	02:00	2	SSW
	3-Apr-2018	03:00	2	SSW
	3-Apr-2018	04:00	2.2	S
	3-Apr-2018	05:00	2.2	SSW
	3-Apr-2018	06:00	1.5	WNW
	3-Apr-2018	07:00	2.5	W
	3-Apr-2018	08:00	2.4	WNW
	3-Apr-2018	09:00	2.3	WNW
	3-Apr-2018	10:00	2.5	WNW
	3-Apr-2018	11:00	3	WNW
	3-Apr-2018	12:00	3.2	W
	3-Apr-2018	13:00	2.9	SE
	3-Apr-2018	14:00	3.3	SSW
	3-Apr-2018	15:00	3.5	WNW
	3-Apr-2018	16:00	2.3	WNW
	3-Apr-2018	17:00	1.8	WNW
	3-Apr-2018	18:00	1.8	WNW
	3-Apr-2018	19:00	1.8	WNW
	3-Apr-2018	20:00	1.4	WNW
	3-Apr-2018	21:00	1.7	WNW
	3-Apr-2018	22:00	1.5	WNW
	3-Apr-2018	23:00	1.4	SSW
	4-Apr-2018	00:00	1.5	SSW
	4-Apr-2018	01:00	1.6	WSW
	4-Apr-2018	02:00	1.9	WNW

11.	Mean wind	Speed and Wind D	rection	
	4-Apr-2018	03:00	1.6	WNW
	4-Apr-2018	04:00	1.4	WNW
	4-Apr-2018	05:00	1.8	W
	4-Apr-2018	06:00	1.4	SW
	4-Apr-2018	07:00	1.4	SW
	4-Apr-2018	08:00	1.5	SW
	4-Apr-2018	09:00	1.5	SW
	4-Apr-2018	10:00	1.9	WSW
	4-Apr-2018	11:00	2.6	SW
	4-Apr-2018	12:00	2.8	W
	4-Apr-2018	13:00	3.2	WSW
	4-Apr-2018	14:00	3	WSW
	4-Apr-2018	15:00	3	WSW
	4-Apr-2018	16:00	2.8	WNW
	4-Apr-2018	17:00	2.1	W
	4-Apr-2018	18:00	1.7	WSW
	4-Apr-2018	19:00	1.8	WSW
	4-Apr-2018	20:00	2	SW
	4-Apr-2018	21:00	1.8	WSW
	4-Apr-2018	22:00	2.1	WSW
	4-Apr-2018	23:00	2	WSW
	5-Apr-2018	00:00	1.8	WSW
	5-Apr-2018	01:00	1.5	WSW
	5-Apr-2018	02:00	1.7	SW
	5-Apr-2018	03:00	2	WNW
	5-Apr-2018	04:00	1.9	W
	5-Apr-2018	05:00	1.4	WNW
	5-Apr-2018	06:00	2	WSW
	5-Apr-2018	07:00	1.4	SSW
	5-Apr-2018	08:00	1.7	SW
	5-Apr-2018	09:00	2.1	SW
	5-Apr-2018	10:00	2.1	SW
	5-Apr-2018	11:00	1.6	WSW
	5-Apr-2018	12:00	1.9	SW
	5-Apr-2018	13:00	2.1	SW
	5-Apr-2018	14:00	2.1	W
	5-Apr-2018	15:00	2.9	W
	5-Apr-2018	16:00	2.5	W

II. Mean	Wind Speed ar	iu willu D	ii ection	
5-Apr-201	8 17	7:00	2.1	W
5-Apr-201	8 18	3:00	2.6	W
5-Apr-201	8 19	9:00	1.8	WNW
5-Apr-201	8 20	0:00	1.9	WNW
5-Apr-201	8 2 ⁻	1:00	1.5	WNW
5-Apr-201	8 22	2:00	2.1	W
5-Apr-201	8 23	3:00	1.8	W
6-Apr-201	8 00	0:00	1.9	W
6-Apr-201	8 0-	1:00	1.9	WNW
6-Apr-201	8 02	2:00	1.4	WNW
6-Apr-201	8 03	3:00	1.5	WSW
6-Apr-201	8 04	4:00	1.4	W
6-Apr-201	8 05	5:00	1.1	WNW
6-Apr-201	8 06	6:00	1	WNW
6-Apr-201	8 07	7:00	0.9	W
6-Apr-201	8 08	3:00	1.1	WSW
6-Apr-201	8 09	9:00	1.3	W
6-Apr-201	8 10	0:00	1.4	W
6-Apr-201	8 1	1:00	1.6	W
6-Apr-201	8 12	2:00	1.5	WNW
6-Apr-201	8 13	3:00	2.3	WNW
6-Apr-201	8 14	4:00	2.3	WNW
6-Apr-201	8 15	5:00	2.1	WNW
6-Apr-201	8 16	6:00	2.6	NW
6-Apr-201	8 17	7:00	1.9	W
6-Apr-201	8 18	3:00	1.8	W
6-Apr-201	8 19	9:00	1.5	WNW
6-Apr-201	8 20	0:00	1.5	WNW
6-Apr-201	8 2-	1:00	0.9	W
6-Apr-201	8 22	2:00	1	SSW
6-Apr-201	8 23	3:00	0.8	SSW
7-Apr-201	8 00	0:00	1	SSW
7-Apr-201	8 0-	1:00	0.8	SW
7-Apr-201	8 02	2:00	0.8	SSW
7-Apr-201	8 03	3:00	0.6	ESE
7-Apr-201	8 04	4:00	0.4	WSW
7-Apr-201	8 05	5:00	0.5	SW
7-Apr-201	8 06	6:00	0.6	SSE

II. Mean Wi	nd Speed and Wind D	Direction	
7-Apr-2018	07:00	0.5	ESE
7-Apr-2018	08:00	0.5	ENE
7-Apr-2018	09:00	0.9	SSE
7-Apr-2018	10:00	1.6	SSE
7-Apr-2018	11:00	1.7	E
7-Apr-2018	12:00	2.5	ESE
7-Apr-2018	13:00	2.3	ENE
7-Apr-2018	14:00	2.2	NE
7-Apr-2018	15:00	1.9	SSE
7-Apr-2018	16:00	1.6	SSE
7-Apr-2018	17:00	2	Е
7-Apr-2018	18:00	1.3	E
7-Apr-2018	19:00	0.9	E
7-Apr-2018	20:00	0.6	NE
7-Apr-2018	21:00	0.7	NE
7-Apr-2018	22:00	0.8	N
7-Apr-2018	23:00	0.7	NNE
8-Apr-2018	00:00	0.8	NE
8-Apr-2018	01:00	1	NE
8-Apr-2018	02:00	1	NE
8-Apr-2018	03:00	0.8	N
8-Apr-2018	04:00	0.8	NNE
8-Apr-2018	05:00	1	E
8-Apr-2018	06:00	1	NE
8-Apr-2018	07:00	0.9	ENE
8-Apr-2018	08:00	1.3	ENE
8-Apr-2018	09:00	1.4	ENE
8-Apr-2018	10:00	2.1	NE
8-Apr-2018	11:00	2.2	N
8-Apr-2018	12:00	2	NE
8-Apr-2018	13:00	2.1	NNE
8-Apr-2018	14:00	2	NE
8-Apr-2018	15:00	2.4	N
8-Apr-2018	16:00	1.7	E
8-Apr-2018	17:00	2.5	ENE
8-Apr-2018	18:00	1.9	S
8-Apr-2018	19:00	2.1	N
8-Apr-2018	20:00	1.9	NW

11.	Mean wind	Speed and Wind D	irection	
	8-Apr-2018	21:00	2.1	NW
	8-Apr-2018	22:00	2	WNW
	8-Apr-2018	23:00	2.1	W
	9-Apr-2018	00:00	2	WNW
	9-Apr-2018	01:00	2.4	WNW
	9-Apr-2018	02:00	1.9	WNW
	9-Apr-2018	03:00	1.8	SW
	9-Apr-2018	04:00	1.3	W
	9-Apr-2018	05:00	1.2	WSW
	9-Apr-2018	06:00	1.1	SW
	9-Apr-2018	07:00	1.3	W
	9-Apr-2018	08:00	2.1	WNW
	9-Apr-2018	09:00	2.8	W
	9-Apr-2018	10:00	2.8	WNW
	9-Apr-2018	11:00	2.9	WNW
	9-Apr-2018	12:00	3.2	WSW
	9-Apr-2018	13:00	2.5	SW
	9-Apr-2018	14:00	2.1	SE
	9-Apr-2018	15:00	2.5	N
	9-Apr-2018	16:00	2.5	E
	9-Apr-2018	17:00	2.5	ENE
	9-Apr-2018	18:00	1.9	ENE
	9-Apr-2018	19:00	1.5	ENE
	9-Apr-2018	20:00	1	Е
	9-Apr-2018	21:00	1.6	ENE
	9-Apr-2018	22:00	1.6	NE
	9-Apr-2018	23:00	1.6	ENE
	10-Apr-2018	00:00	1.6	NE
	10-Apr-2018	01:00	1.5	NE
	10-Apr-2018	02:00	1.5	NNE
	10-Apr-2018	03:00	2	N
	10-Apr-2018	04:00	1.6	ESE
	10-Apr-2018	05:00	1.5	ENE
	10-Apr-2018	06:00	0.8	ENE
	10-Apr-2018	07:00	0.9	ENE
	10-Apr-2018	08:00	1.3	N
	10-Apr-2018	09:00	1.6	NNE
	10-Apr-2018	10:00	2.3	N

11.	Wican Wind	Speed and wind D	nection	
	10-Apr-2018	11:00	2.4	ENE
	10-Apr-2018	12:00	2.8	N
	10-Apr-2018	13:00	2.8	SW
	10-Apr-2018	14:00	1.9	SSE
	10-Apr-2018	15:00	1.6	E
	10-Apr-2018	16:00	1.7	NNE
	10-Apr-2018	17:00	1.6	N
	10-Apr-2018	18:00	1.2	NNE
	10-Apr-2018	19:00	0.8	NNE
	10-Apr-2018	20:00	1.3	Е
	10-Apr-2018	21:00	0.9	Е
	10-Apr-2018	22:00	1.1	ENE
	10-Apr-2018	23:00	0.8	ENE
	11-Apr-2018	00:00	1.6	NE
	11-Apr-2018	01:00	0.8	ENE
	11-Apr-2018	02:00	0.8	ENE
	11-Apr-2018	03:00	0.7	ENE
	11-Apr-2018	04:00	1.4	NNE
	11-Apr-2018	05:00	1.2	ENE
	11-Apr-2018	06:00	1.6	SE
	11-Apr-2018	07:00	1.4	ENE
	11-Apr-2018	08:00	1.4	ENE
	11-Apr-2018	09:00	2.3	ENE
	11-Apr-2018	10:00	2	ENE
	11-Apr-2018	11:00	2.2	ESE
	11-Apr-2018	12:00	1.9	ESE
	11-Apr-2018	13:00	2.2	ESE
	11-Apr-2018	14:00	2.6	ENE
	11-Apr-2018	15:00	2.6	NE
	11-Apr-2018	16:00	1.9	NE
	11-Apr-2018	17:00	2.2	ESE
	11-Apr-2018	18:00	1.9	ESE
	11-Apr-2018	19:00	1.4	ENE
	11-Apr-2018	20:00	1.5	ESE
	11-Apr-2018	21:00	1.4	ENE
	11-Apr-2018	22:00	1	ENE
	11-Apr-2018	23:00	1.2	SSE
	12-Apr-2018	00:00	1.2	S

11.	Wican Willu	Speed and wind D	n ecuon	
	12-Apr-2018	01:00	1.3	SE
	12-Apr-2018	02:00	1.1	SE
	12-Apr-2018	03:00	1.3	SE
	12-Apr-2018	04:00	1.6	ESE
	12-Apr-2018	05:00	1.8	SE
	12-Apr-2018	06:00	1.4	ENE
	12-Apr-2018	07:00	1.4	ESE
	12-Apr-2018	08:00	2	SSE
	12-Apr-2018	09:00	2.3	SE
	12-Apr-2018	10:00	2.4	ENE
	12-Apr-2018	11:00	2.5	NE
	12-Apr-2018	12:00	3.4	NE
	12-Apr-2018	13:00	3.3	NE
	12-Apr-2018	14:00	3	SE
	12-Apr-2018	15:00	2.9	SSW
	12-Apr-2018	16:00	2.7	SSW
	12-Apr-2018	17:00	2.6	ESE
	12-Apr-2018	18:00	2.3	SE
	12-Apr-2018	19:00	2.6	SE
	12-Apr-2018	20:00	2.4	E
	12-Apr-2018	21:00	1.9	NE
	12-Apr-2018	22:00	1.9	ESE
	12-Apr-2018	23:00	2.2	N
	13-Apr-2018	00:00	2.4	ESE
	13-Apr-2018	01:00	2.5	ESE
	13-Apr-2018	02:00	2	ESE
	13-Apr-2018	03:00	1.9	SE
	13-Apr-2018	04:00	1.6	ESE
	13-Apr-2018	05:00	1.9	NE
	13-Apr-2018	06:00	2.2	WSW
	13-Apr-2018	07:00	1.9	WNW
	13-Apr-2018	08:00	1.7	WSW
	13-Apr-2018	09:00	2.2	NE
	13-Apr-2018	10:00	2.7	ENE
	13-Apr-2018	11:00	3.3	NNE
	13-Apr-2018	12:00	4	NNE
	13-Apr-2018	13:00	3.6	ENE
	13-Apr-2018	14:00	3.5	ENE

11.	Wican Wind	Speed and wind D	пссион	
	13-Apr-2018	15:00	3.3	NE
	13-Apr-2018	16:00	2.6	ENE
	13-Apr-2018	17:00	2.6	N
	13-Apr-2018	18:00	2.7	ESE
	13-Apr-2018	19:00	2.5	NE
	13-Apr-2018	20:00	2.6	NNE
	13-Apr-2018	21:00	2.8	NNE
	13-Apr-2018	22:00	2.3	ENE
	13-Apr-2018	23:00	2.5	ENE
	14-Apr-2018	00:00	2.3	NE
	14-Apr-2018	01:00	2	ENE
	14-Apr-2018	02:00	2.2	E
	14-Apr-2018	03:00	1.9	NNE
	14-Apr-2018	04:00	1.8	NE
	14-Apr-2018	05:00	2	NE
	14-Apr-2018	06:00	1.6	NE
	14-Apr-2018	07:00	2.1	ENE
	14-Apr-2018	08:00	2.5	NE
	14-Apr-2018	09:00	3.1	NE
	14-Apr-2018	10:00	2.6	NE
	14-Apr-2018	11:00	2.8	E
	14-Apr-2018	12:00	2.4	ENE
	14-Apr-2018	13:00	2.5	ENE
	14-Apr-2018	14:00	2.2	ENE
	14-Apr-2018	15:00	2.5	ENE
	14-Apr-2018	16:00	2.3	ENE
	14-Apr-2018	17:00	2	NE
	14-Apr-2018	18:00	1.8	NNE
	14-Apr-2018	19:00	2	NE
	14-Apr-2018	20:00	1.9	NE
	14-Apr-2018	21:00	2.2	N
	14-Apr-2018	22:00	2.3	ENE
	14-Apr-2018	23:00	2	S
	15-Apr-2018	00:00	2.2	NE
	15-Apr-2018	01:00	1.7	NE
	15-Apr-2018	02:00	2	NE
	15-Apr-2018	03:00	2.1	ENE
	15-Apr-2018	04:00	1.9	NNE

II. Mean Wind	Speed and Wind D	irection	
15-Apr-2018	05:00	1.7	NNE
15-Apr-2018	06:00	1.7	NNE
15-Apr-2018	07:00	2	NNE
15-Apr-2018	08:00	2.2	ENE
15-Apr-2018	09:00	2.1	SE
15-Apr-2018	10:00	2.4	SE
15-Apr-2018	11:00	2.2	SSE
15-Apr-2018	12:00	2.1	ESE
15-Apr-2018	13:00	1.7	ESE
15-Apr-2018	14:00	1.9	ESE
15-Apr-2018	15:00	2	ESE
15-Apr-2018	16:00	2.1	SE
15-Apr-2018	17:00	1.9	SSE
15-Apr-2018	18:00	1.8	NNE
15-Apr-2018	19:00	1.4	NE
15-Apr-2018	20:00	1.4	ENE
15-Apr-2018	21:00	1.4	NE
15-Apr-2018	22:00	1.4	ENE
15-Apr-2018	23:00	1.2	ENE
16-Apr-2018	00:00	1.5	ENE
16-Apr-2018	01:00	1.6	N
16-Apr-2018	02:00	1.4	ENE
16-Apr-2018	03:00	1.7	NE
16-Apr-2018	04:00	2	ENE
16-Apr-2018	05:00	2	E
16-Apr-2018	06:00	1.7	E
16-Apr-2018	07:00	2.1	Е
16-Apr-2018	08:00	2.1	Е
16-Apr-2018	09:00	2.3	S
16-Apr-2018	10:00	1.9	NE
16-Apr-2018	11:00	2	Е
16-Apr-2018	12:00	2.5	ENE
16-Apr-2018	13:00	2.4	ENE
16-Apr-2018	14:00	2.4	ENE
16-Apr-2018	15:00	2.3	NE
16-Apr-2018	16:00	2.5	ENE
16-Apr-2018	17:00	2.6	N
16-Apr-2018	18:00	1.9	ENE

11.	Wican Willu	Speed and wind D	пссион	
	16-Apr-2018	19:00	2.3	NE
	16-Apr-2018	20:00	1.7	ENE
	16-Apr-2018	21:00	1.9	ENE
	16-Apr-2018	22:00	1.4	ENE
	16-Apr-2018	23:00	1.9	N
	17-Apr-2018	00:00	1.9	NE
	17-Apr-2018	01:00	1.8	ENE
	17-Apr-2018	02:00	1.5	ENE
	17-Apr-2018	03:00	1.8	ENE
	17-Apr-2018	04:00	1.4	E
	17-Apr-2018	05:00	1.4	ENE
	17-Apr-2018	06:00	1.8	NE
	17-Apr-2018	07:00	1.7	NE
	17-Apr-2018	08:00	1.5	SE
	17-Apr-2018	09:00	1.8	NNE
	17-Apr-2018	10:00	1.9	NNE
	17-Apr-2018	11:00	2	ENE
	17-Apr-2018	12:00	2.4	ENE
	17-Apr-2018	13:00	1.8	ENE
	17-Apr-2018	14:00	1.9	ESE
	17-Apr-2018	15:00	2	ESE
	17-Apr-2018	16:00	2	ESE
	17-Apr-2018	17:00	1.4	SE
	17-Apr-2018	18:00	1.1	ESE
	17-Apr-2018	19:00	1.1	E
	17-Apr-2018	20:00	1	NE
	17-Apr-2018	21:00	1.2	N
	17-Apr-2018	22:00	1.2	SE
	17-Apr-2018	23:00	0.9	E
	18-Apr-2018	00:00	1.1	N
	18-Apr-2018	01:00	1.4	ENE
	18-Apr-2018	02:00	1.1	N
	18-Apr-2018	03:00	0.9	ENE
	18-Apr-2018	04:00	0.9	ENE
	18-Apr-2018	05:00	0.9	ENE
	18-Apr-2018	06:00	1.1	ENE
	18-Apr-2018	07:00	1.4	ESE
	18-Apr-2018	08:00	1.6	NNE

Speed and Wind D	irection	
09:00	2.6	ESE
10:00	2.4	SSE
11:00	2.4	ENE
12:00	2.2	ENE
13:00	2.3	NE
14:00	2.3	SE
15:00	2.2	SE
16:00	2	NE
17:00	1.6	NE
18:00	1.6	ENE
19:00	1.4	NE
20:00	1.2	ENE
21:00	1.3	ENE
22:00	1.3	NE
23:00	1.3	NE
00:00	1.2	NE
01:00	1.1	ENE
02:00	0.9	ENE
03:00	0.8	ESE
04:00	0.8	ENE
05:00	1	ENE
06:00	0.8	ENE
07:00	0.8	ENE
08:00	1.4	NNE
09:00	1.6	NE
10:00	2.7	ENE
11:00	3.1	ENE
12:00	2.5	NE
13:00	2.3	NE
14:00	2.1	NW
15:00	2.5	ENE
16:00	2.6	ENE
17:00	2.3	NE
18:00	2	NNE
19:00	1.5	E
20:00	1	WNW
21:00	0.8	SE
22:00	1.1	SE
	09:00 10:00 11:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 11:00 11:00 12:00 13:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00 11:00	10:00       2.4         11:00       2.4         12:00       2.2         13:00       2.3         14:00       2.3         15:00       2.2         16:00       2         17:00       1.6         18:00       1.6         19:00       1.4         20:00       1.3         22:00       1.3         22:00       1.3         23:00       1.3         00:00       1.2         01:00       1.1         02:00       0.9         03:00       0.8         04:00       0.8         05:00       1         06:00       0.8         07:00       0.8         08:00       1.4         09:00       1.6         10:00       2.7         11:00       3.1         12:00       2.5         13:00       2.3         14:00       2.1         15:00       2.5         16:00       2.6         17:00       2.3         18:00       2         19:00       1.5         20:00

11.	wican winu	Speed and wind D	n ection	
19-7	Apr-2018	23:00	1.1	SE
20-7	Apr-2018	00:00	1	E
20-7	Apr-2018	01:00	1	NE
20-7	Apr-2018	02:00	0.8	SSE
20-7	Apr-2018	03:00	1	SSE
20-7	Apr-2018	04:00	0.8	ENE
20-7	Apr-2018	05:00	0.8	NE
20-7	Apr-2018	06:00	0.8	NNE
20-7	Apr-2018	07:00	1	ENE
20-7	Apr-2018	08:00	1.6	ENE
20-7	Apr-2018	09:00	2.5	NNE
20-7	Apr-2018	10:00	2.7	NE
20-7	Apr-2018	11:00	3	ENE
20-7	Apr-2018	12:00	2.8	NE
20-7	Apr-2018	13:00	3	ENE
20-7	Apr-2018	14:00	2.3	ENE
20-7	Apr-2018	15:00	1.8	NNE
20-7	Apr-2018	16:00	1.7	NE
20-7	Apr-2018	17:00	1.4	Е
20-7	Apr-2018	18:00	0.9	Е
20-7	Apr-2018	19:00	0.9	Е
20-7	Apr-2018	20:00	0.8	Е
20-7	Apr-2018	21:00	0.8	ENE
20-7	Apr-2018	22:00	0.9	Е
20-7	Apr-2018	23:00	1	Е
21-	Apr-2018	00:00	1.5	ENE
21-	Apr-2018	01:00	1.4	ENE
21-	Apr-2018	02:00	1.4	Е
21-	Apr-2018	03:00	1.4	E
21-	Apr-2018	04:00	1.4	N
21-	Apr-2018	05:00	1.3	NE
21-	Apr-2018	06:00	0.9	NNE
21-	Apr-2018	07:00	0.8	NE
21-	Apr-2018	08:00	0.9	E
21-	Apr-2018	09:00	1.6	Е
21-	Apr-2018	10:00	2.1	E
21-	Apr-2018	11:00	2	SE
21-	Apr-2018	12:00	2.1	ESE

21-Apr-2018       13:00       1.7       SE         21-Apr-2018       14:00       1.2       SSE         21-Apr-2018       15:00       1.3       SSE         21-Apr-2018       16:00       1.7       ESE         21-Apr-2018       17:00       1.7       E         21-Apr-2018       18:00       0.9       ENE         21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE         22-Apr-2018       01:00       0.5       ENE	
21-Apr-2018       15:00       1.3       SSE         21-Apr-2018       16:00       1.7       ESE         21-Apr-2018       17:00       1.7       E         21-Apr-2018       18:00       0.9       ENE         21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       16:00       1.7       ESE         21-Apr-2018       17:00       1.7       E         21-Apr-2018       18:00       0.9       ENE         21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       17:00       1.7       E         21-Apr-2018       18:00       0.9       ENE         21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       18:00       0.9       ENE         21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       19:00       0.7       ENE         21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       20:00       0.6       E         21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	<u> </u>
21-Apr-2018       21:00       0.7       E         21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018       22:00       0.6       E         21-Apr-2018       23:00       0.6       ENE         22-Apr-2018       00:00       0.7       ENE	
21-Apr-2018 23:00 0.6 ENE 22-Apr-2018 00:00 0.7 ENE	
22-Apr-2018 00:00 0.7 ENE	
	•
22-Apr-2018 01:00 0.5 ENE	•
'	
22-Apr-2018 02:00 0.6 NE	
22-Apr-2018 03:00 0.5 ESE	
22-Apr-2018 04:00 0.9 ESE	
22-Apr-2018 05:00 0.6 SE	
22-Apr-2018 06:00 0.5 SSE	
22-Apr-2018 07:00 0.7 SSE	
22-Apr-2018 08:00 1.1 SE	
22-Apr-2018 09:00 1 SE	
22-Apr-2018 10:00 1.4 N	
22-Apr-2018 11:00 1.5 ENE	
22-Apr-2018 12:00 2.1 NNE	:
22-Apr-2018 13:00 2.2 NE	
22-Apr-2018 14:00 2.1 NE	
22-Apr-2018 15:00 2.5 ENE	
22-Apr-2018 16:00 2.6 NE	
22-Apr-2018 17:00 2.2 ESE	
22-Apr-2018 18:00 1.9 ESE	
22-Apr-2018 19:00 1.8 SSE	<u> </u>
22-Apr-2018 20:00 1.9 SSE	
22-Apr-2018 21:00 1.5 SSE	<u> </u>
22-Apr-2018 22:00 1.5 NE	
22-Apr-2018 23:00 1.6 SE	
23-Apr-2018 00:00 1.4 SSE	
23-Apr-2018 01:00 1.2 SSE	
23-Apr-2018 02:00 0.9 SSE	

11.	Mean wind	Speed and Wind D	Hechon	
	23-Apr-2018	03:00	0.7	ESE
	23-Apr-2018	04:00	1	N
	23-Apr-2018	05:00	0.8	WSW
	23-Apr-2018	06:00	0.9	NNW
	23-Apr-2018	07:00	0.8	N
	23-Apr-2018	08:00	1.6	NE
	23-Apr-2018	09:00	1.7	ESE
	23-Apr-2018	10:00	2.2	ENE
	23-Apr-2018	11:00	2.6	SW
	23-Apr-2018	12:00	2.8	N
	23-Apr-2018	13:00	3.2	W
	23-Apr-2018	14:00	2.6	SW
	23-Apr-2018	15:00	3.2	SW
	23-Apr-2018	16:00	3	SW
	23-Apr-2018	17:00	2.8	WSW
	23-Apr-2018	18:00	2.3	SE
	23-Apr-2018	19:00	2.1	Е
	23-Apr-2018	20:00	2.2	NE
	23-Apr-2018	21:00	2.5	NE
	23-Apr-2018	22:00	2.8	ENE
	23-Apr-2018	23:00	2.5	NE
	24-Apr-2018	00:00	2.5	NE
	24-Apr-2018	01:00	2.4	ENE
	24-Apr-2018	02:00	2.5	NE
	24-Apr-2018	03:00	2.1	ENE
	24-Apr-2018	04:00	1.8	ENE
	24-Apr-2018	05:00	2.2	ENE
	24-Apr-2018	06:00	1.9	ENE
	24-Apr-2018	07:00	1.9	ENE
	24-Apr-2018	08:00	2.5	NE
	24-Apr-2018	09:00	3.1	ENE
	24-Apr-2018	10:00	3.6	ENE
	24-Apr-2018	11:00	4	ENE
	24-Apr-2018	12:00	3	ENE
	24-Apr-2018	13:00	3.2	ENE
	24-Apr-2018	14:00	2.8	ENE
	24-Apr-2018	15:00	2.8	ENE
	24-Apr-2018	16:00	3	ENE

11.	Wicum Willia	Speed and wind D	ii cetion	
	24-Apr-2018	17:00	3.3	ENE
	24-Apr-2018	18:00	2.7	SW
	24-Apr-2018	19:00	2.7	ENE
	24-Apr-2018	20:00	2.5	ENE
	24-Apr-2018	21:00	2.2	ENE
	24-Apr-2018	22:00	2.8	Е
	24-Apr-2018	23:00	2.6	ENE
	25-Apr-2018	00:00	2.9	ENE
	25-Apr-2018	01:00	3.1	ENE
	25-Apr-2018	02:00	2.9	ESE
	25-Apr-2018	03:00	2.7	ENE
	25-Apr-2018	04:00	2.6	NE
	25-Apr-2018	05:00	2.5	N
	25-Apr-2018	06:00	2.3	NE
	25-Apr-2018	07:00	1.5	ENE
	25-Apr-2018	08:00	1.6	NE
	25-Apr-2018	09:00	2.6	NE
	25-Apr-2018	10:00	3	ENE
	25-Apr-2018	11:00	3.4	ENE
	25-Apr-2018	12:00	3.1	NE
	25-Apr-2018	13:00	2.7	ENE
	25-Apr-2018	14:00	2.7	NE
	25-Apr-2018	15:00	2.6	NE
	25-Apr-2018	16:00	2.5	NE
	25-Apr-2018	17:00	1.6	NNE
	25-Apr-2018	18:00	1.3	ENE
	25-Apr-2018	19:00	1.3	NE
	25-Apr-2018	20:00	1.7	NE
	25-Apr-2018	21:00	1.6	ENE
	25-Apr-2018	22:00	1.5	ENE
	25-Apr-2018	23:00	2.1	NE
	26-Apr-2018	00:00	1.7	NE
	26-Apr-2018	01:00	1.5	ENE
	26-Apr-2018	02:00	1.5	ENE
	26-Apr-2018	03:00	1.4	NE
	26-Apr-2018	04:00	1.6	E
	26-Apr-2018	05:00	1.1	ENE
	26-Apr-2018	06:00	0.6	ENE

11.	Wicali Willu	Speed and wind D	пссион	
	26-Apr-2018	07:00	0.8	ENE
	26-Apr-2018	08:00	0.7	ENE
	26-Apr-2018	09:00	1.7	SSE
	26-Apr-2018	10:00	2	SSE
	26-Apr-2018	11:00	2	SSE
	26-Apr-2018	12:00	2.8	SE
	26-Apr-2018	13:00	3	SSE
	26-Apr-2018	14:00	2.7	SSE
	26-Apr-2018	15:00	2.4	SSE
	26-Apr-2018	16:00	2.2	SSE
	26-Apr-2018	17:00	1.8	SSE
	26-Apr-2018	18:00	1.3	ENE
	26-Apr-2018	19:00	1.1	ENE
	26-Apr-2018	20:00	0.8	E
	26-Apr-2018	21:00	0.6	E
	26-Apr-2018	22:00	0.4	E
	26-Apr-2018	23:00	0.7	E
	27-Apr-2018	00:00	0.9	NNE
	27-Apr-2018	01:00	0.9	ENE
	27-Apr-2018	02:00	0.9	ENE
	27-Apr-2018	03:00	1.7	NNE
	27-Apr-2018	04:00	1.5	NNE
	27-Apr-2018	05:00	1.9	NNE
	27-Apr-2018	06:00	1.7	ENE
	27-Apr-2018	07:00	2	NE
	27-Apr-2018	08:00	2.2	N
	27-Apr-2018	09:00	2.4	W
	27-Apr-2018	10:00	2.7	N
	27-Apr-2018	11:00	3.4	ENE
	27-Apr-2018	12:00	2.9	ENE
	27-Apr-2018	13:00	2.9	ENE
	27-Apr-2018	14:00	3.1	NNE
	27-Apr-2018	15:00	2.7	ESE
	27-Apr-2018	16:00	2.5	SSE
	27-Apr-2018	17:00	2.6	ESE
	27-Apr-2018	18:00	2	ESE
	27-Apr-2018	19:00	2	E
	27-Apr-2018	20:00	2.5	E

II. Mean Win	nd Speed and Wind D	Pirection	
27-Apr-2018	21:00	3.2	E
27-Apr-2018	22:00	1.6	ESE
27-Apr-2018	23:00	1.8	Е
28-Apr-2018	00:00	1.8	ENE
28-Apr-2018	01:00	1.9	ENE
28-Apr-2018	02:00	2.1	E
28-Apr-2018	03:00	1.8	Е
28-Apr-2018	04:00	1.7	Е
28-Apr-2018	05:00	1.5	ENE
28-Apr-2018	06:00	1.5	ENE
28-Apr-2018	07:00	1.6	NE
28-Apr-2018	08:00	2.1	ENE
28-Apr-2018	09:00	2.6	NE
28-Apr-2018	10:00	3.1	ENE
28-Apr-2018	11:00	3.4	ENE
28-Apr-2018	12:00	3.2	ENE
28-Apr-2018	13:00	3	NNE
28-Apr-2018	14:00	2.6	NNE
28-Apr-2018	15:00	2.3	NNE
28-Apr-2018	16:00	2.4	ENE
28-Apr-2018	17:00	2.2	ENE
28-Apr-2018	18:00	1.8	E
28-Apr-2018	19:00	1.7	ENE
28-Apr-2018	20:00	1.5	NE
28-Apr-2018	21:00	2	ENE
28-Apr-2018	22:00	1.7	NE
28-Apr-2018	23:00	1.6	ENE
29-Apr-2018	00:00	1.5	ENE
29-Apr-2018	01:00	1.4	ENE
29-Apr-2018	02:00	1.4	ENE
29-Apr-2018	03:00	1.2	ENE
29-Apr-2018	04:00	1.3	ENE
29-Apr-2018	05:00	1.3	ENE
29-Apr-2018	06:00	1.1	E
29-Apr-2018	07:00	1.3	E
29-Apr-2018	08:00	1.5	E
29-Apr-2018	09:00	2	E
29-Apr-2018	10:00	2.7	Е

11.	Mean wind	Speed and wind D	Hection	
	29-Apr-2018	11:00	2.7	NNE
	29-Apr-2018	12:00	2.2	ENE
	29-Apr-2018	13:00	2	ENE
	29-Apr-2018	14:00	1.8	ENE
	29-Apr-2018	15:00	2	ENE
	29-Apr-2018	16:00	1.5	ENE
	29-Apr-2018	17:00	1.5	NE
	29-Apr-2018	18:00	1.1	NE
	29-Apr-2018	19:00	0.5	NE
	29-Apr-2018	20:00	0.6	NE
	29-Apr-2018	21:00	0.7	ENE
	29-Apr-2018	22:00	0.9	NE
	29-Apr-2018	23:00	0.7	ENE
	30-Apr-2018	00:00	0.7	NE
	30-Apr-2018	01:00	0.8	NE
	30-Apr-2018	02:00	0.7	NE
	30-Apr-2018	03:00	0.7	NE
	30-Apr-2018	04:00	1.1	ENE
	30-Apr-2018	05:00	0.9	ENE
	30-Apr-2018	06:00	1	ENE
	30-Apr-2018	07:00	1.7	ENE
	30-Apr-2018	08:00	2	ENE
	30-Apr-2018	09:00	2.1	ENE
	30-Apr-2018	10:00	2.2	ENE
	30-Apr-2018	11:00	2.2	ENE
	30-Apr-2018	12:00	2.7	ENE
	30-Apr-2018	13:00	2.7	ENE
	30-Apr-2018	14:00	2.2	NE
	30-Apr-2018	15:00	2.3	E
	30-Apr-2018	16:00	1.8	ENE
	30-Apr-2018	17:00	2	ESE
	30-Apr-2018	18:00	1.6	ENE
	30-Apr-2018	19:00	1.6	NE
	30-Apr-2018	20:00	1.3	ESE
	30-Apr-2018	21:00	1.2	ENE
	30-Apr-2018	22:00	1.2	NE
	30-Apr-2018	23:00	1.1	ENE

#### APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

#### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (April 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Apr	2-Apr	3-Apr 1 hr TSP X3 [AM1, AM2, AM3, AM4] [AM5(A), AM6(A)]	4-Apr 24 hr TSP	5-Apr	6-Apr	7-Apr
		Noise [CM1, CM2, CM4] [CM6(A), CM7(A), CM8(A)]	***	12.4	Noise [ CM3, CM5]	
8-Apr	9-Apr 1 hr TSP X3 [AM1, AM2, AM3, AM4] [AM5(A), AM6(A)]	10-Apr 24 hr TSP	11-Apr  1 hr TSP X3  [AM1, AM2, AM3, AM4]  Noise  [CM1, CM2, CM4]  [ CM3, CM5]	12-Apr	13-Apr  1 hr TSP X3  [AM5(A), AM6(A)]  Noise  [CM6(A), CM7(A), CM8(A)]	14-Apr
15-Apr	16-Apr 24 hr TSP	17-Apr  1 hr TSP X3  [AM1, AM2, AM3, AM4]  Noise  [CM1, CM2, CM4]	Noise [ CM3, CM5]	19-Apr  1 hr TSP X3 [AM5(A), AM6(A)]  Noise [CM6(A), CM7(A), CM8(A)]	20-Apr 24 hr TSP	21-Apr
22-Apr	23-Apr 1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	24-Apr Noise [ CM3, CM5]	25-Apr 1 hr TSP X3 [AM5(A), AM6(A)] Noise [CM6(A), CM7(A), CM8(A)]	26-Apr 24 hr TSP	27-Apr 1 hr TSP X3 [AM1, AM2, AM3, AM4]	28-Apr
29-Apr	30-Apr  1 hr TSP X3  [AM5(A), AM6(A)]  Noise  [CM6(A), CM7(A), CM8(A)]					

#### **Air Quality Monitoring Station**

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

#### Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule (April 2018)

Sunday	Monday		Tuesc		Wednes	sday	Thurso		Frida	ıy	Saturo	
1-Api	•	2-Apr		3-Apr		4-Apr		5-Apr		6-Apr		7-Apr
					Mid-Flood Mid-Ebb	08:25 14:45			Mid-Flood Mid-Ebb	09:19 16:06		
8-Api		9-Apr		10-Apr		11-Apr		12-Apr		13-Apr		14-Apr
			Mid-Flood Mid-Ebb	13:17 20:43			Mid-Ebb Mid-Flood	10:37 15:37			Mid-Ebb Mid-Flood	11:38 17:23
15-Apr	•	16-Apr		17-Apr		18-Apr		19-Apr		20-Apr		21-Apr
	Mid-Ebb Mid-Flood	12:42 18:56			Mid-Flood Mid-Ebb	07:33 13:58			Mid-Flood Mid-Ebb	08:42 15:28		
22-Api		23-Apr		24-Apr		25-Apr		26-Apr		27-Apr		28-Apr
	Mid-Flood Mid-Ebb	11:21 18:57			Mid-Ebb Mid-Flood	09:13 14:34			Mid-Ebb Mid-Flood	10:49 16:43		
29-Api		30-Apr										
	Mid-Ebb Mid-Flood	12:35 19:05										

Note: No marine construction works under this Project from 30 March 2018 to 2 April 2018.

Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (April 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr	7-Apr
8-Apr	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
			Groundwater Quality Monitoring			
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
•	•	•	•	•	•	
22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr
		Groundwater Quality Monitoring				
29-Apr	30-Apr					
_	1					

Monitoring Location:

Stream 1, Stream 2, Stream 3

### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction **Impact Water Quality Monitoring Schedule in Temporary Marine Embayment (April 2018)**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr	7-Apr
					Mid-Flood 09:19 Mid-Ebb 16:06	
8-Apr	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
			Mid-Ebb 09:57 Mid-Flood 14:35			
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
				Mid-Flood 08:07 Mid-Ebb 14:41		
22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr
		Mid-Ebb 07:50 Mid-Flood 12:54				
29-Apr	30-Apr					

#### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Air Quality and Noise Monitoring Schedule (May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
			24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4] [ CM3, CM5]	1 hr TSP X3 [AM5(A), AM6(A)]	
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]		1 hr TSP X3 [AM5(A), AM6(A)]  Noise [CM6(A), CM7(A), CM8(A)]	24 hr TSP Noise [ CM3, CM5]	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)]  Noise [CM6(A), CM7(A), CM8(A)] [ CM3, CM5]		24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4]	
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	1 hr TSP X3 [AM5(A), AM6(A)]		24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4]  Noise [CM1, CM2, CM4] [ CM3, CM5]	1 hr TSP X3 [AM5(A), AM6(A)]  Noise [CM6(A), CM7(A), CM8(A)]	
27-May	28-May	29-May	30-May	31-May		
	Noise [ CM3, CM5]	24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3, AM4] Noise [CM1, CM2, CM4]	1 hr TSP X3 [AM5(A), AM6(A)]  Noise [CM6(A), CM7(A), CM8(A)]		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

#### Air Quality Monitoring Station

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village

AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office

AM5(A) - Tseung Kwan O DSD Desilting Compound

AM6(A) - Park Central, L1/F Open Space Area

#### Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores

CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores

CM8(A) - Park Central, L1/F Open Space Area

#### Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
			Mid-Flood 07:16 Mid-Ebb 13:44		Mid-Flood 08:10 Mid-Ebb 14:56	
6-May	7-Ma	y 8-May	9-May	10-May	11-May	12-May
	Mid-Flood# 04:4 Mid-Ebb 17:1		Mid-Flood 12:39 Mid-Ebb 19:34		Mid-Ebb 10:01 Mid-Flood 15:10	
13-May	14-Ma	y 15-May	16-May	17-May	18-May	19-May
	Mid-Ebb 11:3 Mid-Flood 17:5		Mid-Ebb 12:58 Mid-Flood 19:34		Mid-Flood 07:39 Mid-Ebb 14:28	
20-May	21-Ma	y <b>22-May</b>	23-May	24-May	25-May	26-May
	Mid-Flood 10:0 Mid-Ebb 17:2		Mid-Flood 12:52 Mid-Ebb 19:48		Mid-Ebb 09:43 Mid-Flood 15:38	
27-May	28-Ma	y 29-May	30-May	31-May		
	Mid-Ebb 11:4 Mid-Flood 18:1		Mid-Ebb 12:50 Mid-Flood 19:46			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

#### Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

Remark(#): It is proposed that there is no need for mid-flood monitoring on 7 May 2018 based on the following reasons:

- a) There will be no marine works within the suitable tidal conditions (within  $\pm$  1.5 hour of the predicted mid-ebb or mid-flood tides).
- b) The above condition described in point a) occus for 2 or more consecutive days.

#### Agreement No. CE/59/2015 (EP)

# Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Groundwater Quality Monitoring Schedule (May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	•	•				-
					Groundwater Quality	
					Monitoring	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
13-Way	14-1 <b>v</b> 1ay	13-Way	10-111ay	17-11149	10-111ay	19-101ay
20.75	21.75		20.15	2125	22.16	2636
20-May	21-May	22-May	23-May	24-May	25-May	26-May
				Groundwater Quality		
				Monitoring Monitoring		
				Tromvoring		
27-May	28-May					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Location:

Stream 1, Stream 2, Stream 3

#### Agreement No. CE/59/2015 (EP)

## Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule in Temporary Marine Embayment (May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1-May	2-May	3-May	4-May	5-May
				Mid-Flood 07:44 Mid-Ebb 14:20		
6-May	7-May	8-May	9-May	10-May	11-May	12-May
					Mid-Ebb 10:01 Mid-Flood 15:10	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
		Mid-Ebb 12:17 Mid-Flood 18:46				
20-May	21-May	22-May	23-May	24-May	25-May	26-May
				Mid-Ebb 08:47 Mid-Flood 14:27		
27-May	28-May	29-May	30-May	31-May		
	Mid-Ebb 11:41 Mid-Flood 18:17					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

**Monitoring Station:** 

W1

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

# Appendix E - 1-hour TSP Monitoring Results

Location AM1 -	Tin Hau Tem	ple	
Date	Time	Weather	Particulate Concentration ( μg/m³)
3-Apr-18	13:00	Sunny	271.8
3-Apr-18	14:00	Sunny	258.9
3-Apr-18	15:00	Sunny	248.4
9-Apr-18	13:00	Sunny	268.7
9-Apr-18	14:00	Sunny	264.3
9-Apr-18	15:00	Sunny	264.1
11-Apr-18	13:00	Cloudy	191.8
11-Apr-18	14:00	Cloudy	176.5
11-Apr-18	15:00	Cloudy	201.0
17-Apr-18	9:00	Cloudy	174.4
17-Apr-18	10:00	Cloudy	193.0
17-Apr-18	11:00	Cloudy	184.9
23-Apr-18	9:00	Sunny	152.2
23-Apr-18	10:00	Sunny	156.0
23-Apr-18	11:00	Sunny	156.9
27-Apr-18	9:00	Sunny	179.5
27-Apr-18	10:00	Sunny	198.3
27-Apr-18	11:00	Sunny	207.3
	·	Average	208.2
		Maximum	271.8
		Minimum	152.2

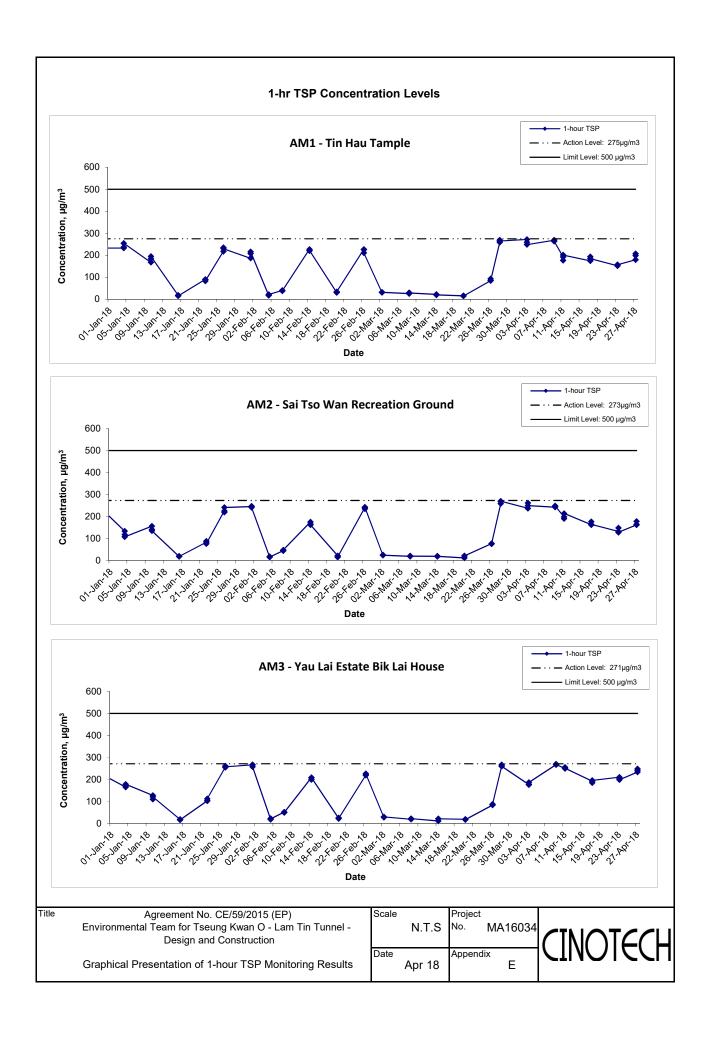
Location AM2 -	Sai Tso Wan	Recreation Ground	
Date	Time	Weather	Particulate Concentration ( μg/m³)
3-Apr-18	9:00	Sunny	237.3
3-Apr-18	10:00	Sunny	261.5
3-Apr-18	11:00	Sunny	249.7
9-Apr-18	9:00	Sunny	242.5
9-Apr-18	10:00	Sunny	246.1
9-Apr-18	11:00	Sunny	248.4
11-Apr-18	13:00	Sunny	198.2
11-Apr-18	14:00	Sunny	190.2
11-Apr-18	15:00	Sunny	213.9
17-Apr-18	9:00	Cloudy	162.3
17-Apr-18	10:00	Cloudy	176.7
17-Apr-18	11:00	Cloudy	164.2
23-Apr-18	9:00	Sunny	131.6
23-Apr-18	10:00	Sunny	148.4
23-Apr-18	11:00	Sunny	128.0
27-Apr-18	9:00	Sunny	161.7
27-Apr-18	10:00	Sunny	164.2
27-Apr-18	11:00	Sunny	178.1
		Average	194.6
		Maximum	261.5
		Minimum	128.0

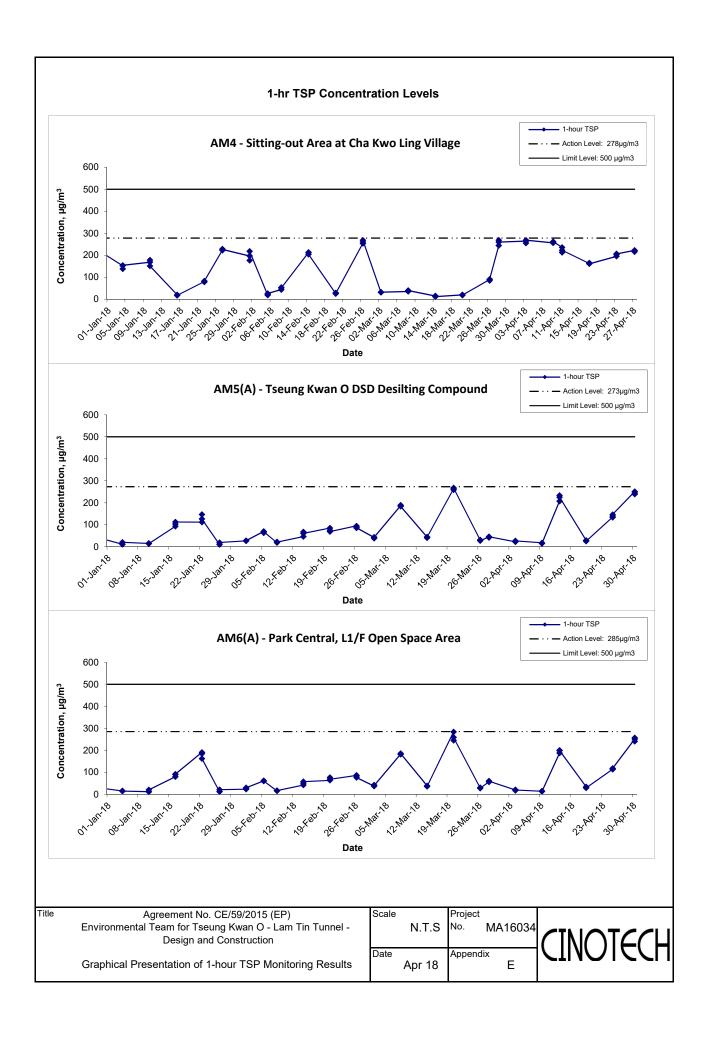
MA16034/App E - 1hr TSP Cinotech

# **Appendix E - 1-hour TSP Monitoring Results**

Location AM3 -	Yau Lai Esta	ite Bik Lai House	
Date	Time	Weather	Particulate Concentration ( μg/m³)
3-Apr-18	9:00	Sunny	176.4
3-Apr-18	10:00	Sunny	175.7
3-Apr-18	11:00	Sunny	185.9
9-Apr-18	9:00	Sunny	266.7
9-Apr-18	10:00	Sunny	270.1
9-Apr-18	11:00	Sunny	267.9
11-Apr-18	9:00	Cloudy	249.1
11-Apr-18	10:00	Cloudy	254.9
11-Apr-18	11:00	Cloudy	251.0
17-Apr-18	13:00	Cloudy	191.9
17-Apr-18	14:00	Cloudy	184.4
17-Apr-18	15:00	Cloudy	195.5
23-Apr-18	13:00	Sunny	209.8
23-Apr-18	14:00	Sunny	203.3
23-Apr-18	15:00	Sunny	198.5
27-Apr-18	13:00	Sunny	233.3
27-Apr-18	14:00	Sunny	241.7
27-Apr-18	15:00	Sunny	247.7
		Average	222.4
		Maximum	270.1
		Minimum	175.7

Location AM4 -	Location AM4 - Sitting-out Area at Cha Kwo Ling Village											
Date	Time	Weather	Particulate Concentration ( μg/m³)									
3-Apr-18	13:00	Sunny	264.5									
3-Apr-18	14:00	Sunny	254.9									
3-Apr-18	15:00	Sunny	268.4									
9-Apr-18	13:00	Sunny	256.2									
9-Apr-18	14:00	Sunny	259.1									
9-Apr-18	15:00	Sunny	262.1									
11-Apr-18	9:00	Sunny	235.7									
11-Apr-18	10:00	Sunny	213.2									
11-Apr-18	11:00	Sunny	222.8									
17-Apr-18	13:00	Cloudy	162.5									
17-Apr-18	14:00	Cloudy	164.7									
17-Apr-18	15:00	Cloudy	161.0									
23-Apr-18	13:00	Sunny	195.3									
23-Apr-18	14:00	Sunny	203.5									
23-Apr-18	15:00	Sunny	206.3									
27-Apr-18	13:00	Sunny	222.1									
27-Apr-18	14:00	Sunny	216.0									
27-Apr-18	15:00	Sunny	220.3									
		Average	221.6									
		Maximum	268.4									
		Minimum	161.0									


MA16034/App E - 1hr TSP Cinotech


# **Appendix E - 1-hour TSP Monitoring Results**

Location AM5(A	) - Tseung K	wan O DSD Desilt	ting Compound
Date	Time	Weather	Particulate Concentration ( μg/m³)
3-Apr-18	9:00	Sunny	22.1
3-Apr-18	10:00	Sunny	24.4
3-Apr-18	11:00	Sunny	26.8
9-Apr-18	13:00	Sunny	17.5
9-Apr-18	14:00	Sunny	16.3
9-Apr-18	15:00	Sunny	15.1
13-Apr-18	13:00	Sunny	207.4
13-Apr-18	14:00	Sunny	233.4
13-Apr-18	15:00	Sunny	225.5
19-Apr-18	8:50	Sunny	28.7
19-Apr-18	9:50	Sunny	27.6
19-Apr-18	10:50	Sunny	25.4
25-Apr-18	13:00	Cloudy	133.9
25-Apr-18	14:00	Cloudy	139.5
25-Apr-18	15:00	Cloudy	146.3
30-Apr-18	9:00	Cloudy	250.9
30-Apr-18	10:00	Cloudy	238.9
30-Apr-18	11:00	Cloudy	244.3
		Average	112.4
		Maximum	250.9
		Minimum	15.1

Location AM6(A	) - Park Cen	tral, L1/F Open Sp	ace Area
Date	Time	Weather	Particulate Concentration ( μg/m³)
3-Apr-18	13:15	Sunny	19.8
3-Apr-18	14:15	Sunny	17.5
3-Apr-18	15:15	Sunny	19.8
9-Apr-18	9:00	Sunny	14.0
9-Apr-18	10:00	Sunny	14.0
9-Apr-18	11:00	Sunny	12.8
13-Apr-18	9:00	Sunny	187.3
13-Apr-18	10:00	Sunny	200.0
13-Apr-18	11:00	Sunny	198.6
19-Apr-18	13:00	Sunny	33.1
19-Apr-18	14:00	Sunny	33.1
19-Apr-18	15:00	Sunny	28.7
25-Apr-18	8:30	Cloudy	113.4
25-Apr-18	9:30	Cloudy	115.7
25-Apr-18	10:30	Cloudy	118.0
30-Apr-18	13:00	Cloudy	250.6
30-Apr-18	14:00	Cloudy	240.9
30-Apr-18	15:00	Cloudy	256.5
		Average	104.1
		Maximum	256.5
		Minimum	12.8

MA16034/App E - 1hr TSP Cinotech





APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

## Appendix F - 24-hour TSP Monitoring Results

#### Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
4-Apr-18	Sunny	298.1	762.8	2.8218	3.0619	0.2401	3323.0	3347.0	24.0	1.22	1.22	1.22	1752.4	137.0
10-Apr-18	Cloudy	296.2	764.4	2.8608	3.0939	0.2331	3347.0	3371.0	24.0	1.22	1.22	1.22	1760.8	132.4
16-Apr-18	Cloudy	289.0	765.2	2.8658	2.9887	0.1229	3371.0	3395.0	24.0	1.24	1.24	1.24	1786.4	68.8
20-Apr-18	Cloudy	295.3	763.1	3.6315	3.8912	0.2597	3395.0	3419.0	24.0	1.22	1.22	1.22	1762.1	147.4
26-Apr-18	Cloudy	296.2	762.8	3.3734	3.5290	0.1556	3419.0	3443.0	24.0	1.22	1.22	1.22	1758.7	88.5
													Min	68.8
													Max	147.4
													Average	114.8

#### Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
4-Apr-18	Sunny	298.4	762.4	2.8285	2.9548	0.1263	24287.3	24311.3	24.0	1.22	1.21	1.21	1749.3	72.2
10-Apr-18	Sunny	296.8	764.7	2.8965	2.9852	0.0887	24311.3	24335.3	24.0	1.22	1.22	1.22	1757.2	50.5
16-Apr-18	Cloudy	288.5	765.8	2.8605	2.9259	0.0654	24335.3	24359.3	24.0	1.24	1.24	1.24	1785.7	36.6
20-Apr-18	Cloudy	295.8	763.7	3.3428	3.4305	0.0877	24359.3	24383.3	24.0	1.22	1.22	1.22	1759.2	49.9
26-Apr-18	Cloudy	296.4	762.7	3.3650	3.5076	0.1426	24383.3	24407.3	24.0	1.22	1.22	1.22	1756.0	81.2
													Min	36.6
													Max	81.2
													Average	58.1

#### Location AM3 - Yau Lai Estate, Bik Lai House

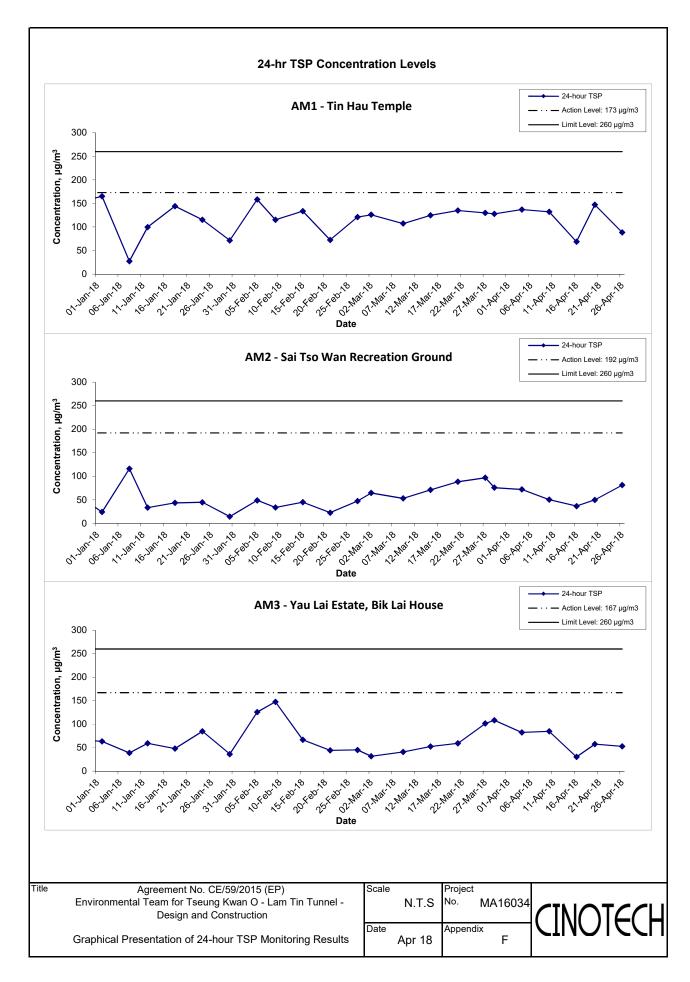
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
4-Apr-18	Sunny	298.0	763.3	2.8710	3.0152	0.1442	12854.7	12878.7	24.0	1.22	1.22	1.22	1754.2	82.2
10-Apr-18	Cloudy	296.7	764.1	3.2805	3.4294	0.1489	12878.7	12902.7	24.0	1.22	1.22	1.22	1759.2	84.6
16-Apr-18	Cloudy	288.2	765.6	2.8274	2.8814	0.0540	12902.7	12926.7	24.0	1.24	1.24	1.24	1788.1	30.2
20-Apr-18	Cloudy	296.4	763.2	3.3494	3.4507	0.1013	12926.7	12950.7	24.0	1.22	1.22	1.22	1759.0	57.6
26-Apr-18	Cloudy	296.6	762.3	3.3485	3.4410	0.0925	12950.7	12974.7	24.0	1.22	1.22	1.22	1757.3	52.6
													Min	30.2
													Max	84.6
													Average	61.5

MA16034/App F - 24 hr TSP Cinotech

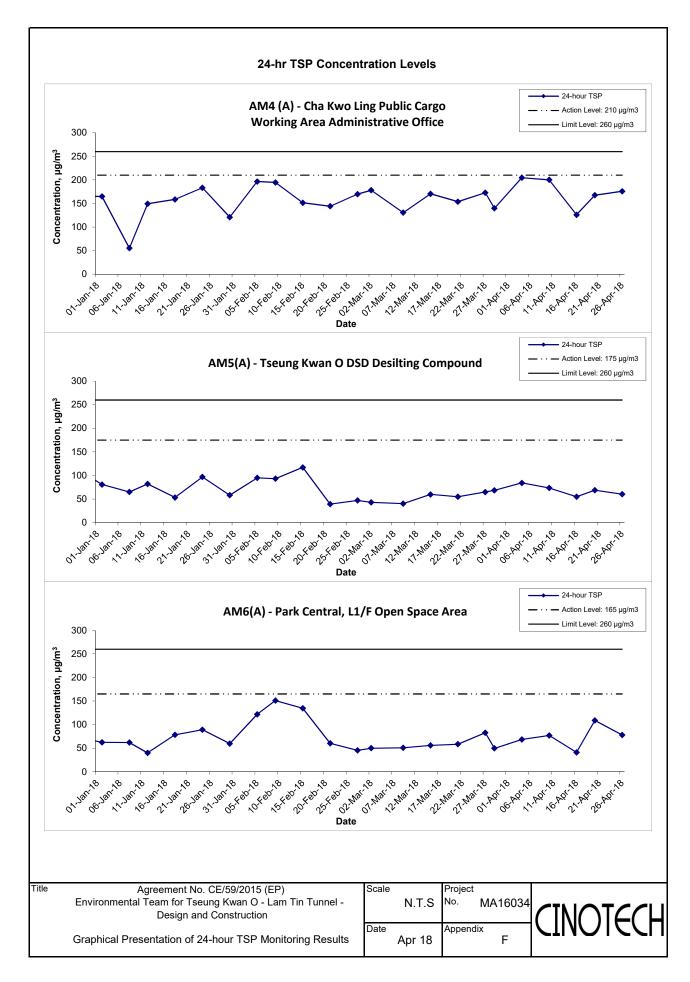
#### Appendix F - 24-hour TSP Monitoring Results

#### Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
4-Apr-18	Sunny	298.8	762.5	2.8810	3.2366	0.3556	9841.2	9865.2	24.0	1.21	1.21	1.21	1737.8	204.6
10-Apr-18	Sunny	296.7	764.4	2.9001	3.2497	0.3496	9865.2	9889.2	24.0	1.21	1.21	1.21	1746.5	200.2
16-Apr-18	Cloudy	288.4	766.0	2.8331	3.0564	0.2233	9889.2	9913.2	24.0	1.23	1.23	1.23	1774.5	125.8
20-Apr-18	Cloudy	295.0	764.7	3.6375	3.9309	0.2934	9913.2	9937.2	24.0	1.22	1.22	1.22	1752.1	167.5
26-Apr-18	Cloudy	295.7	762.6	3.3488	3.6560	0.3072	9937.2	9961.2	24.0	1.21	1.21	1.21	1747.4	175.8
													Min	125.8
													Max	204.6
													Average	174.8


#### Location AM5(A) - Tseung Kwan O DSD Desilting Compound

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
4-Apr-18	Sunny	298.1	762.9	2.8531	2.9990	0.1459	26170.9	26194.9	24.0	1.21	1.21	1.21	1736.1	84.0
10-Apr-18	Sunny	297.0	764.6	2.8323	2.9600	0.1277	26194.9	26218.9	24.0	1.21	1.21	1.21	1741.7	73.3
16-Apr-18	Sunny	289.4	764.8	3.6058	3.7022	0.0964	26218.9	26242.9	24.0	1.23	1.23	1.23	1766.6	54.6
20-Apr-18	Cloudy	295.2	763.6	3.2478	3.3674	0.1196	26242.9	26266.9	24.0	1.21	1.21	1.21	1746.2	68.5
26-Apr-18	Cloudy	296.3	762.4	3.3558	3.4605	0.1047	26266.9	26290.9	24.0	1.21	1.21	1.21	1741.2	60.1
													Min	54.6
													Max	84.0
													Average	68.1


#### Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	$(m^3)$	(µg/m ³ )
4-Apr-18	Sunny	298.4	764.3	3.3906	3.5106	0.1200	16643.8	16667.8	24.0	1.22	1.22	1.22	1753.4	68.4
10-Apr-18	Sunny	296.0	764.9	3.6572	3.7928	0.1356	16667.8	16691.8	24.0	1.22	1.22	1.22	1761.2	77.0
16-Apr-18	Sunny	288.8	765.1	3.6196	3.6927	0.0731	16691.8	16715.8	24.0	1.24	1.24	1.24	1783.4	41.0
20-Apr-18	Cloudy	296.5	763.6	3.6470	3.8386	0.1916	16715.8	16739.8	24.0	1.22	1.22	1.22	1758.2	109.0
26-Apr-18	Cloudy	296.6	762.7	3.3618	3.4988	0.1370	16739.8	16763.8	24.0	1.22	1.22	1.22	1756.9	78.0
													Min	41.0
													Max	109.0
													Average	74.7

MA16034/App F - 24 hr TSP Cinotech



VA16034/App F - 24 hr TSP Cinotech



MA16034/App F - 24 hr TSP Cinotech

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

#### Appendix G - Noise Monitoring Results

## (0700-1900 hrs on Normal Weekdays)

Location CM1	- Nga Lai Ho	ouse, Yau Lai	Estate Phas	se 1, Yau To	ng							
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Apr-18	10:30	Sunny	69.0	70.9	66.3		66.4					
11-Apr-18	11:30	Cloudy	71.2	73.9	72.1	65.5	69.8					
17-Apr-18	13:40	Cloudy	69.8 72.2 67.1 65.5 67.8									
23-Apr-18	14:15	Sunny	74.2 76.5 72.1 73.6									

Location CM2	- Bik Lai Ho	use, Yau Lai	Estate Phas	e 1, Yau To	Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong												
					Unit:	dB (A) (30-min)											
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level										
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}										
3-Apr-18	09:30	Sunny	68.8	70.8	66.2		67.2										
11-Apr-18	10:45	Cloudy	73.0	74.2	70.9	62.6	72.5										
17-Apr-18	13:00	Cloudy	68.8	70.8	63.6												
23-Apr-18	13:10	Sunny	74.5 77.1 72.3 74.1														

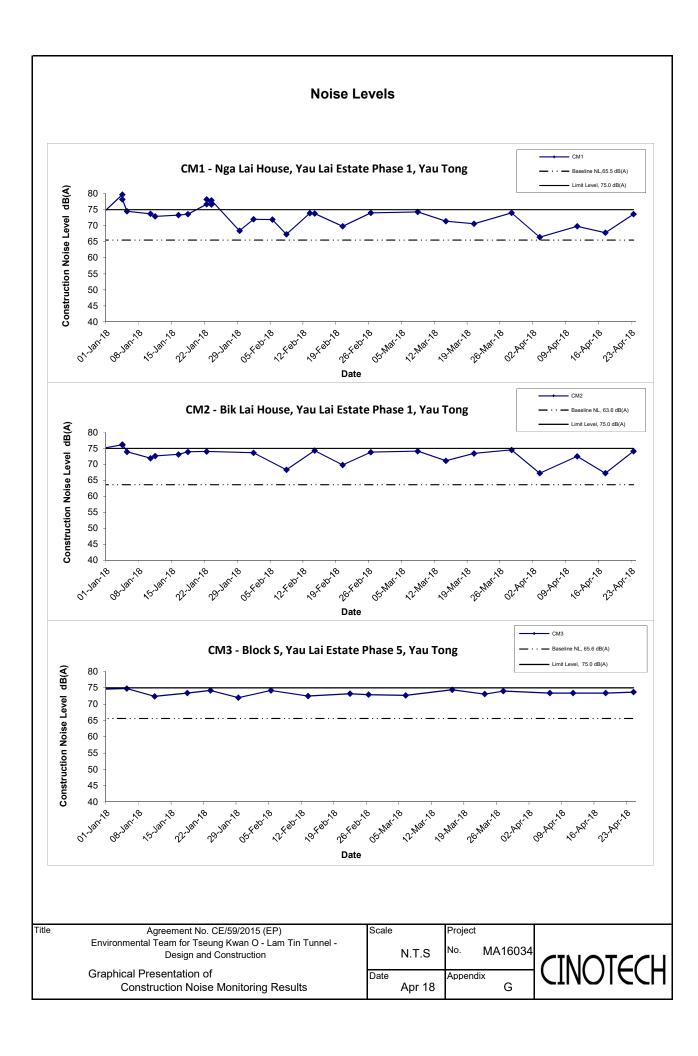
Location CM3	- Block S, Y	au Lai Estate	Phase 5, Ya	u Tong										
					Unit:	dB (A) (30-min)								
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level							
			L eq L 10 L 90 L eq L eq											
6-Apr-18	11:00	Cloudy	74.1	75.6	72.9		73.4							
11-Apr-18	11:30	Cloudy	74.1	76.2	70.9	65.6	73.4							
18-Apr-18	10:05	Cloudy	74.1	76.6	70.7	03.0	73.4							
24-Apr-18	16:15	Cloudy	74.3	74.3 76.5 71.5 73.7										

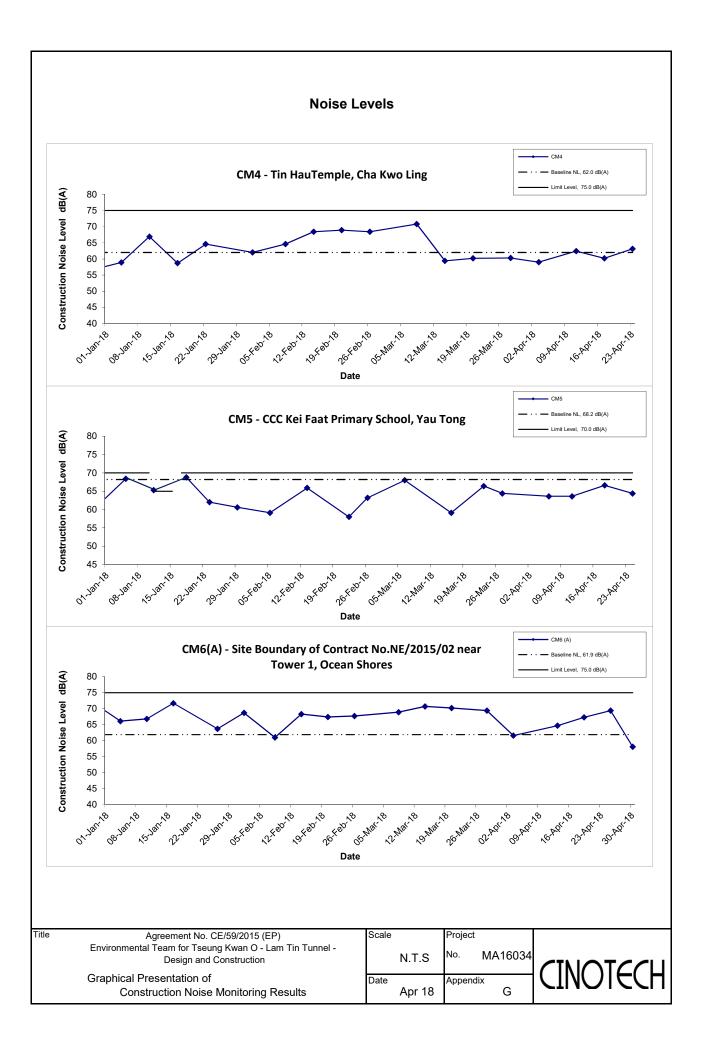
Location CM4	- Tin Hau Te	emple, Cha K	wo Ling									
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Apr-18	13:10	Sunny	59.0	61.7	53.4		59.0 Measured ≦ Baseline					
11-Apr-18	13:00	Cloudy	65.2	68.3	61.7	62.0	62.4					
17-Apr-18	15:00	Cloudy	64.2 66.1 61.8 62.0 60.2									
23-Apr-18	09:10	Sunny	65.6 66.8 60.4 63.1									

Location CM5	- CCC Kei F	aat Primary S	Location CM5 - CCC Kei Faat Primary School, Yau Tong												
					Unit:	dB (A) (30-min)									
Date	Date Time Weather Measured Noise Level Baseline Level Construction Noise Level														
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}								
6-Apr-18	10:15	Cloudy	69.5	71.6	66.3		63.6								
11-Apr-18	10:30	Cloudy	69.5	71.6	66.8	60.0	63.6								
18-Apr-18	10:45	Cloudy	70.5 73.0 66.4 68.2 66.6												
24-Apr-18	15:00	Cloudy	69.7 71.9 66.4 64.4												

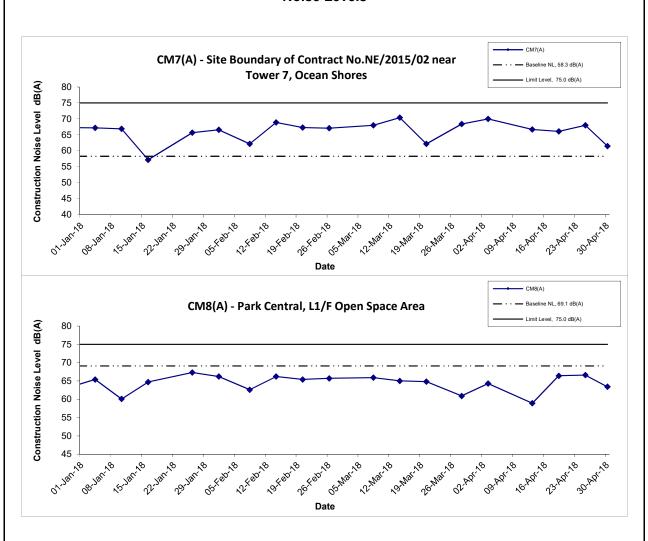
MA16034/App G - Noise Cinotech

#### Appendix G - Noise Monitoring Results


(0700-1900 hrs on Normal Weekdays)


(0700-1300 1113	on Nonna	weekuays)												
Location CM6(	(A) - Site Bo	undary of Co	ntract No. N	E/2015/02 n	ear Tower 1	, Ocean Shores								
					Unit:	dB (A) (30-min)								
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level							
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}							
3-Apr-18	11:30	Sunny	61.6	65.5	42.3		61.6Measured ≦ Baseline							
13-Apr-18	14:10	Sunny	66.5	68.3	61.2		64.7							
19-Apr-18	09:30	Sunny	68.4	69.0	63.5	61.9	67.3							
25-Apr-18	14:55	Cloudy	70.1	73.4	62.9		69.4							
30-Apr-18	11:30	Cloudy	63.4	63.4 65.2 59.5 58.1										

Location CM7(	A) - Site Bo	undary of Co	ntract No. N	E/2015/02 n	ear Tower 7	, Ocean Shores							
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L eq L10 L 90 L eq L eq									
3-Apr-18	10:50	Sunny	70.3	74.3	58.6		70.0						
13-Apr-18	13:25	Sunny	67.3	70.6	60.1		66.7						
19-Apr-18	10:45	Sunny	66.8	67.7	60.5	58.3	66.1						
25-Apr-18	13:30	Cloudy	68.4	69.7	61.3		68.0						
30-Apr-18	10:40	Cloudy	63.2	64.8	61.3		61.5						


Location CM8(	A) - Park Ce	entral, L1/F O	pen Space A	\rea								
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Apr-18	14:30	Sunny	64.3	67.8	57.3		64.3 Measured ≦ Baseline					
13-Apr-18	09:05	Sunny	69.5	71.8	61.7		58.9					
19-Apr-18	13:45	Sunny	66.4	67.7	62.5	69.1	66.4 Measured ≦ Baseline					
25-Apr-18	09:30	Cloudy	66.6	67.6	65.7		66.6 Measured ≦ Baseline					
30-Apr-18	13:10	Cloudy	63.4	63.4 64.9 61.0 63.4 Measured ≦ Baselin								

MA16034/App G - Noise Cinotech





#### **Noise Levels**



Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale Project
No. MA16034

Date Apr 18

Appendix
G

APPENDIX H GROUNDWATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

# Agreement No. CE/59/2015 (EP)

# **Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction**

## **Groundwater Quality Monitoring Results at Stream 1**

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)
Date	Condition	Time	Deptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
11-Apr-18	Sunny	16:38	Middle	28.7	28.7	7.8	7.8	1.2	1.2	101.0	101.0	7.8	7.8	1.4	1.4
П-Арі-То	Outliny	10.50	Middle	28.7	20.7	7.8	7.0	1.2	1.2	101.0	101.0	7.8	7.0	1.4	1.4
24-Apr-18	Rainy	13:55	Middle	27.8	27.8	8.0	8.0	0.2	0.2	99.2	99.2	7.8	7.8	1.6	1.6
24-Api-10	Tally	15.55	Middle	27.8	27.0	8.0	0.0	0.2	0.2	99.2	99.2	7.8	7.0	1.5	1.0

# **Groundwater Quality Monitoring Results at Stream 2**

Date	Weather	Sampling	Depth (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	ty(NTU)
Date	Condition	Time	Deptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
11-Apr-18	Sunny	12:37	Middle	28.5 28.5	28.5	8.2 8.2	8.2	0.3 0.3	0.3	99.6 99.6	99.6	7.7 7.7	7.7	1.9 2.0	2.0
24-Apr-18	Rainy	14:15	Middle	27.0 26.9	27.0	8.1 8.1	8.1	0.2 0.2	0.2	98.0 98.0	98.0	7.8 7.8	7.8	1.0 1.0	1.0

## **Groundwater Quality Monitoring Results at Stream 3**

Date	Weather	Sampling	Depth (m)	Temperature (°C) pH		Н	Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidit	ty(NTU)	
Date	Condition	Time	Deptil (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
24-Apr-18	Rainy	16:38	Middle	27.6 27.7	27.7	7.9 7.9	7.9	0.4	0.4	101.9 101.8	101.9	8.0 8.0	8.0	1.4	1.4
				21.1		7.5		0.4		101.0		0.0		1.4	

# Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

# **Summary of Groundwater Quality Monitoring Results**

		Parameters (unit)								
Location	Date	рН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
Stream 1	11-Apr-18	7.8	7.8	1.4	3	<2	3	<0.6	<0.05	<0.05
Sileani i	24-Apr-18	8	7.8	1.6	6.0	4	12	3.7	<0.05	0.06
Stream 2	11-Apr-18	8.2	7.7	2.0	3	<2	5	0.9	<0.05	<0.05
Su ealli 2	24-Apr-18	8.1	7.8	1.0	6	8	16	2.9	0.07	0.08
Stream 3	24-Apr-18	7.9	8	1.4	3.0	4	8	2.9	0.16	0.1



Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT:

Cinotech Consultants Limited

1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Report No.: 28692 Date of Issue: 2018-04-20 Date Received: 2018-04-11 Date Tested: 2018-04-11 Date Completed: 2018-04-20

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description :

2 liquid samples as received from client said to be groundwater

Laboratory No. :

28692

Project No. :

MA16034 (Groundwater)

Project Name : Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel - Design and Construction

Custody No. :

MA16034(Groundwater)/20180411

Sampling Date : 2018-04-11

Tests Requested & Methodology:

Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

#### Results

Acourts.		
Sample ID	Stream 1	Stream 2
Sampling Depth	S	S
Sample No.	28692-1	28692-2
Total Suspended Solids (mg/L)	3	3
Biochemical Oxygen Demand (mg O ₂ /L)	<2	<2
Total Organic Carbon (mg-TOC/L)	3	5
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	<0.6	0.9
Ammonia (mg NH ₃ -N/L)	<0.05	< 0.05
Total Phosphorus (mg-P/L)	< 0.05	< 0.05

Remarks:

 $\overline{1}$ ) < = less than

2) S = Surface, M = Middle, B = Bottom

3) * Limit of Reporting is reported as Detection Limit

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager



Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

1710, Technology Park,

18 On Lai Street, Shatin, N.T. Report No.: 28772 Date of Issue: 2018-05-04

Date Received: 2018-04-24 Date Tested: 2018-04-24

Date Completed: 2018-05-04

ATTN:

Ms. Mei Ling Tang

Page:

1 of 1

Sample Description :

3 liquid samples as received from client said to be groundwater

Laboratory No.

: 28772

Project No.

MA16034 (Groundwater)

Project Name :

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O -

Lam Tin Tunnel – Design and Construction

Custody No. :

MA16034(Groundwater)/20180424

Sampling Date

2018-04-24

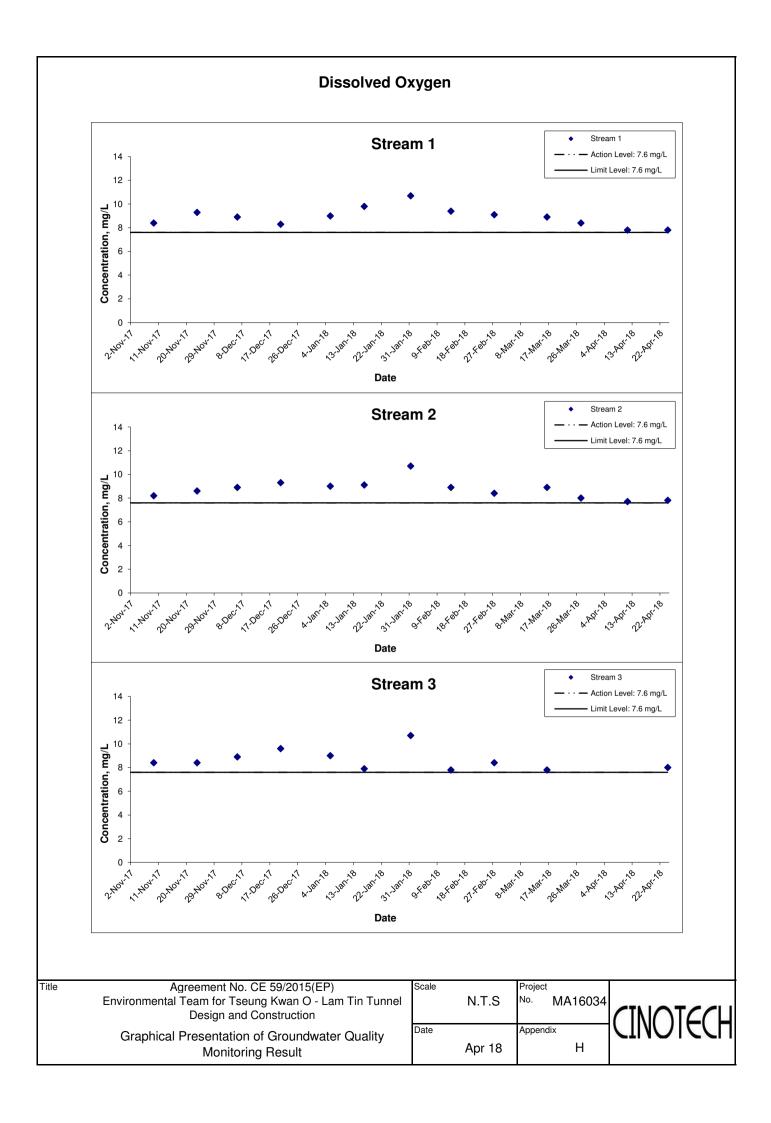
Tests Requested & Methodology:

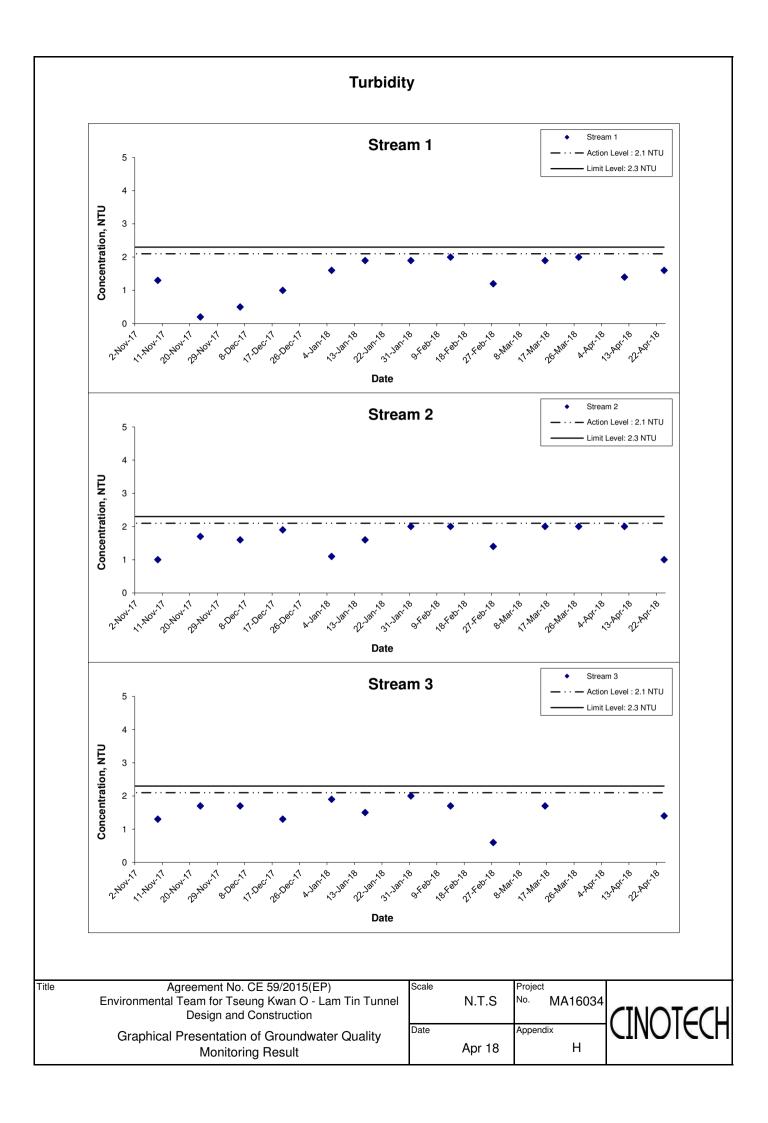
Item	Parameters	Ref. Method	Limit of reporting
1	Total Suspended Solids	APHA 17ed 2540 D	*0.5 mg/L
2	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg O ₂ /L
3	Total Organic Carbon	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L
4	Nitrogen (Total Kjeldahl + nitrate + nitrite)	In-house method SOP063 (FIA)	0.6 mg N/L
5	Ammonia	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L
6	Total Phosphorus	In-house method SOP055 (FIA)	0.05 mg-P/L

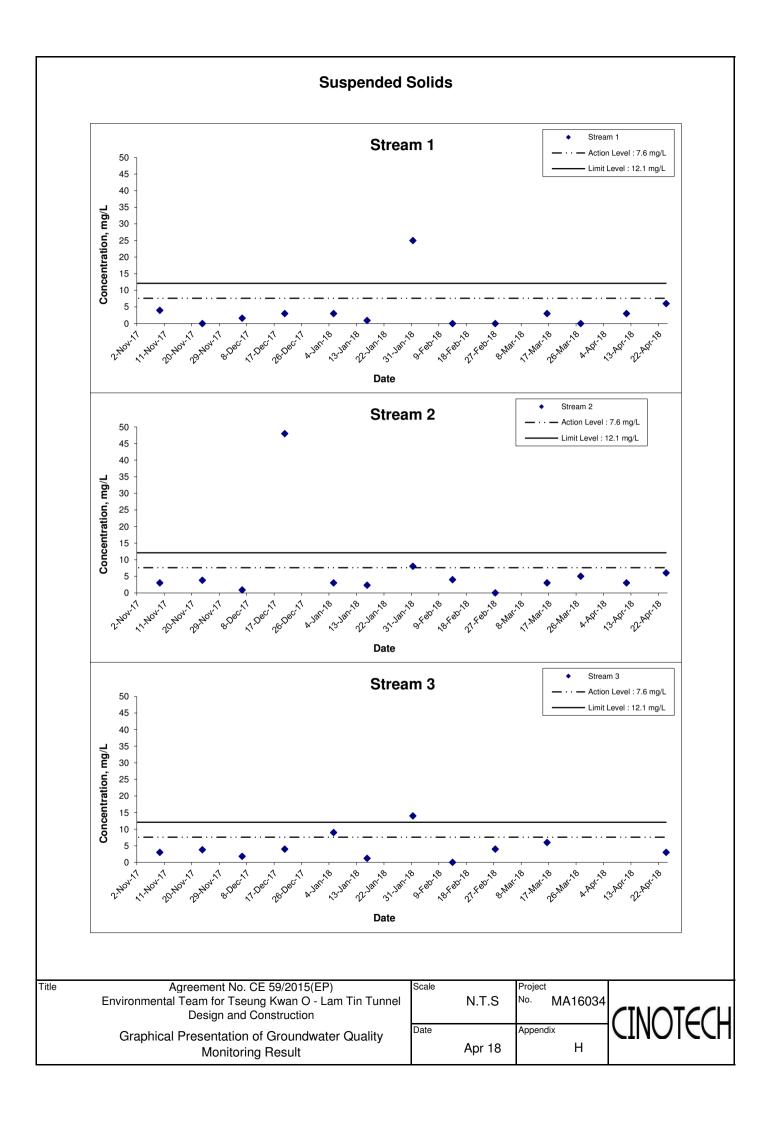
#### Results:

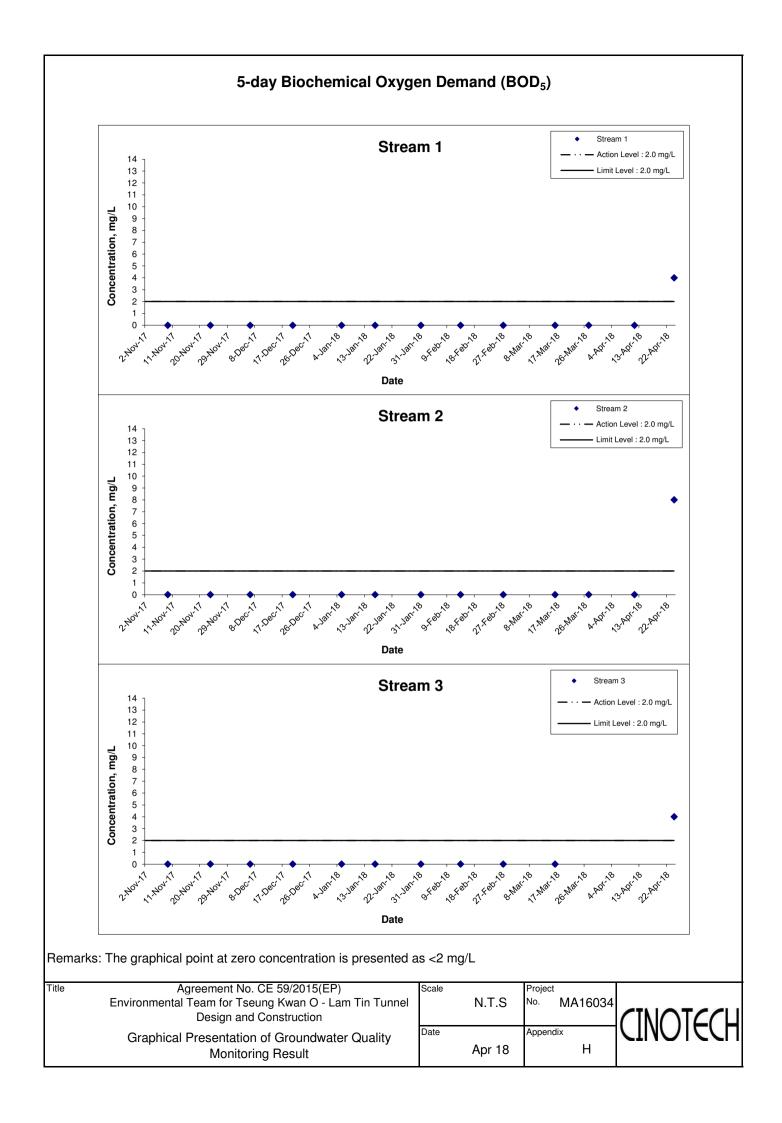
results.			
Sample ID	Stream 1	Stream 2	Stream 3
Sampling Depth	S	S	S
Sample No.	28772-1	28772-2	28772-3
Total Suspended Solids (mg/L)	6	6	3
Biochemical Oxygen Demand (mg O ₂ /L)	4	8	4
Total Organic Carbon (mg-TOC/L)	12	16	8
Nitrogen (Total Kjeldahl + nitrate + nitrite) (mg N/L)	3.7	2.9	2.9
Ammonia (mg NH ₃ -N/L)	< 0.05	0.07	0.16
Total Phosphorus (mg-P/L)	0.06	0.08	0.10

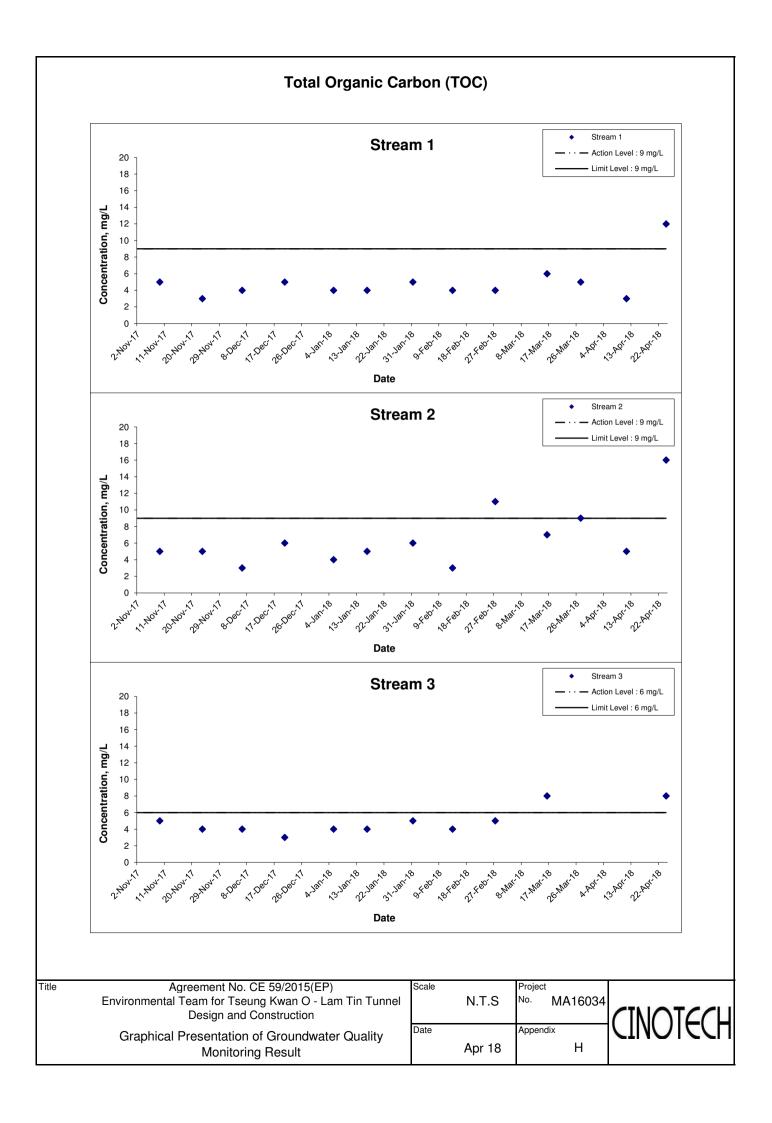

Remarks:

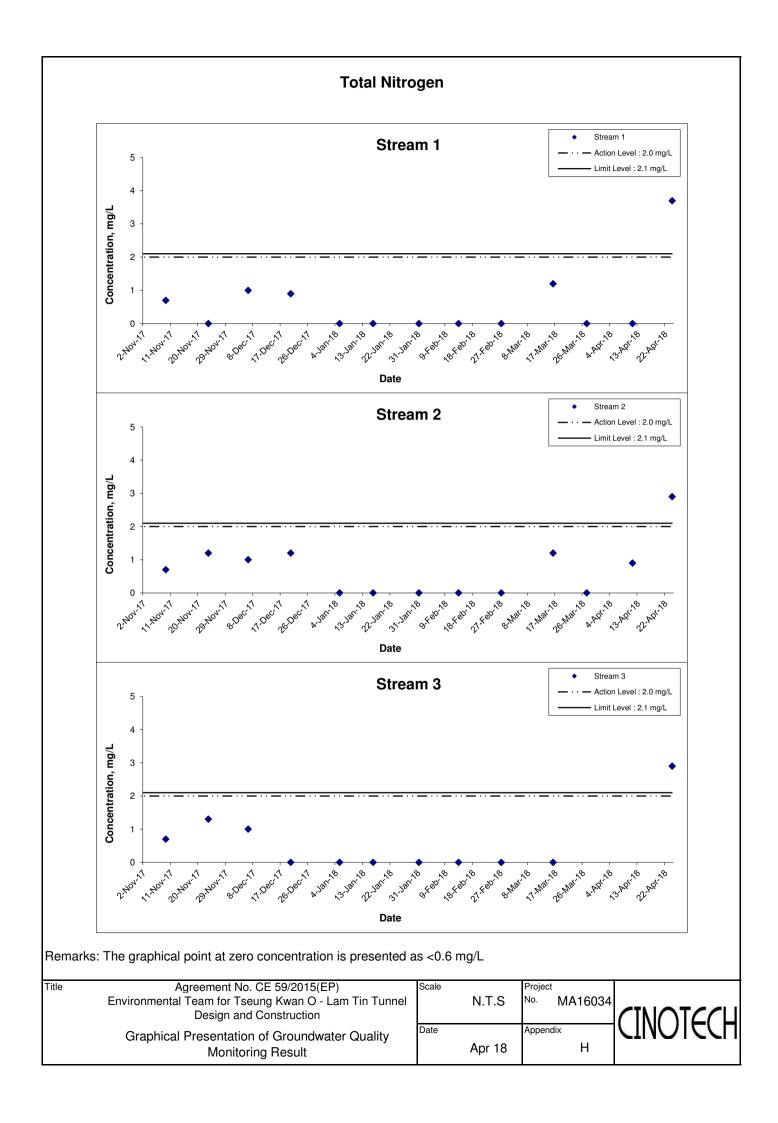

- 1) < = less than
- 2) S = Surface, M = Middle, B = Bottom
- 3) * Limit of Reporting is reported as Detection Limit


PREPARED AND CHECKED BY:


For and On Behalf of WELLAB Ltd.


PATRICK TSE Laboratory Manager

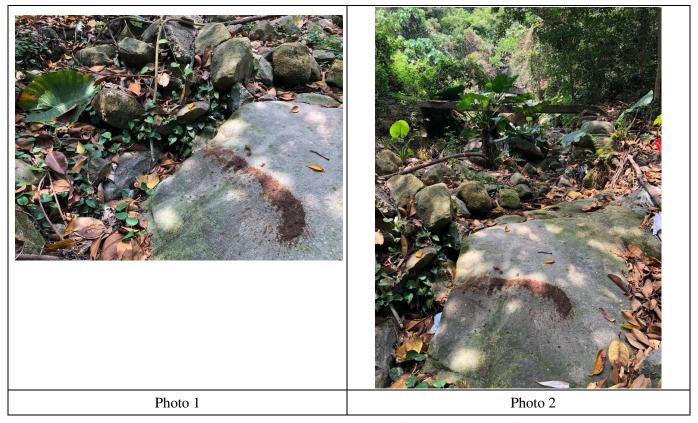





















Remark: No groundwater quality monitoring was conducted for stream 3 on 11 April 2018 due to the drying out of stream water on that day. (See Photo 1 & 2)

APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix I - Action and Limit Levels for Marine Water Quality on 4 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5						
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in		or 120% of upstream control	or 130% of upstream control				
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide				
(See Note 2 and 4)		tide of the same day	of the same day				
		<u>C2: 5.9 NTU</u>	<u>C2: 6.4 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
		station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>				
	Stations M1-M5						
	Surface	<u>6.2 mg/L</u>	<u>7.4 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
SS in mg/L		station's SS at the same tide of	station's SS at the same tide of the				
(See Note 2 and 4)		the same day	same day				
		<u>C2: 6.5 mg/L</u>	<u>C2: 7.0 mg/L</u>				
	Stations G1-G4	4, M1-M5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
		or 120% of upstream control	or 130% of upstream control				
	Bottom	station's SS at the same tide of	station's SS at the same tide of the				
		the same day	same day				
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

#### Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 April 2018

#### (Mid-Ebb Tide)

Marche   M	Control   Cont	Loop!:	Weather	Sea	Sampling	· ·	th (m)	Tempera	ature (°C)	р	Н	Salir	ity ppt	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Column   Modern   M	Surry   Moderate   16.00   Mod	Location				Dep	ırı (m)						, , , ,											DA*
Column   Models   Column   Models   Column   Models   Column   C	Surry   Moderale   16.00   Mode   0.00   22.0   21.5   62   62   62   62   62   62   62   6					Surface	1								1									
Modelle   Mode	Sump   Moderate   14.07   Moderate   15.09   Mode					Odirado			LL.O		0.2		00.1		100.0		7.0	7.3					0.1	į
Bolton   17   203   201   62   82   340   343   361   101   100   100   71   70   70   70	December   17   203   201   0.2   0.2   0.2   0.3   0.3   0.4   0.1   0.5   0.9   7.1   7.0   7.0   0.6   0.5   0.0   0.4	C1	Sunny	Moderate	16:06	Middle	9		21.5		8.2		34.3		104.5		7.2			3.7	3.8		3.5	4.0
Company   Comp	Surry   Modelme   14,000   17   193   201   82   82   82   82   83   83   83   83																				1			
Moderate   1-20   Moderate	Sump   Moderate   14.77   Mode   15.5   2.5   2.11   2.5   3.8   3.8   3.8   3.4   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8   3.8					Bottom	17		20.1		8.2		34.3		100.9		7.0	7.0		5.0			3.4	
Column   Modelle   14.57   Model   14.57   Model   16.5   2.09   2.11   8.1   8.2   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4	Moderate   14.37   Moderate   14.37   Moderate   14.37   Moderate   14.37   Moderate   14.37   Moderate   14.37   Moderate   14.38   Moderate   14.38   Moderate   14.38   Moderate   14.39   Moderate   14.39   Moderate   14.39   Moderate   15.00   Moderate					Surface	1		22.6	8.3	8.3		33.7	111.6	111.5	7.7	7.7		2.4	24		5.4	5.4	
Model   Mode	Surry   Moderate   15.19   Mod					Odirado			LL.O		0.0		00.7		111.0			7.4					0.1	į
Sump   Modelse   Sump	Return   Return   S2   205	C2	Sunny	Moderate	14:37	Middle	16.5		21.1		8.2		34.3		102.5		7.1			4.2	3.8		2.0	4.3
Survey   Modeware   15:19    Survey   Modeware   15:19    Survey   Modeware   15:19	Surrey   Moderate   1519   Moderate   1510   M																				1			
Model   Mode	Surry   Moderate   1519   Moderate   1510   Moderate   1508   Mo					Bottom	32		20.6		8.1		34.3		89.0		6.2	6.2		4.9			5.6	
Surry   Moderate   15-19   Mode   15-29   Mode   M	Moderate   15-19   Moderate   15-27   Moderate					Surface	1		23.8		8.3		33.5		113.5		7.8			2.8			2.6	
Moderate	Surry   Moderate   15:08   Mod																	7.6			_			ı
Bothon   B	Bottom   6   223   221   63   63   63   63   641   1032   1038   72   72   72   72   29   30   10   27   28   28	G1	Sunny	Moderate	15:19	Middle	3.5		23.2		8.2		33.6		107.4		7.4			2.4	2.7		4.6	3.3
Survey   Moderate   15.08   Survey   Moderate   15.08   Survey   Moderate   15.08   Mod	Surry   Moderate   15:08   Mod							20.0	00.0				24.4		400.0		7.0	7.0			1			
Surry   Moderate   15:08   Mod	Surny   Moderate   15.08   Moderate   15.07   Mod					Bottom	6	22.3	22.3		8.3		34.1		103.8		7.2	7.2		3.0			2.8	
Moderate   15:08   Moderate   Moderate   15:08   Moderate   Moderate   15:09   Moderate   15:09   Moderate   15:09   Moderate   15:09   Moderate   15:09   Moderate   15:09   Moderate   15:27   Moderate   15:28   Moderate   15:29   Moderate	Survey   Moderate   15:08   Middle   4.5   22.6   22.6   22.8   22.8   3.3   3.8   3.8   107.9   107.6   7.4   7.5   7.7   2.3   2.4   2.4   2.8   2.9   2.2   2.8   2.8   2.8   3.4   3.8   3.8   107.9   107.6   7.4   7.5   7.6   7.4   7.5   2.2   2.4   2.4   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8   2.8					Surface	1		23.5		8.2		33.5		113.8		7.8			2.3			2.2	
Surny   Moderate   15:06   Moderate   15:06   Moderate   15:06   Moderate   15:15   Mod	Surry   Moderate   15.00   Mod					Carraco		20.7	20.0	į	0.2	00.1	00.0		1.10.0	7.0	7.0	7.7		2.0	_			ı
Surny Moderale   Surn	Bottom   B   223   221   82   82   341   341   1056   1059   7,4   7,4   7,4   3.0   3.0   3.0   4.2   4.2	G2	Sunny	Moderate	15:08	Middle	4.5		22.6		8.3		33.8		107.6		7.5			2.4	2.6		3.9	3.4
Surny   Moderate   15.27   Surny   Moderate   15.27   Moderate   15.28   Moderate   15.	Surny   Moderate   15.27   Moderate   15.28   Moderate   15.27   Moderate   15.28   Moderate   15.29   Moderate   15.25   Moderate   15.29   Mod								00.4				24.4		405.0						1			
Sumy Moderate   1,24,2   24,4   8,2   23,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1   33,1	Sumy   Moderate   1527   Moderate   1528   Sum   Moderate   1528   Moderate   1528   Sum   Sum   Moderate   1528   Moderate   1528   Sum   Sum   Moderate   1528   Moderate   1528   Sum   Moderate   1528   Moderate   1528   Sum   Moderate   1528   Moderate   1528   Moderate   1528   Sum   Moderate   1528   Moderate   1528   Moderate   1528   Moderate   1528   Moderate   1528   Sum   Moderate   1528   Moderate   1528   Sum   Moderate   1528					Bottom	8		22.1		8.2		34.4		105.9		7.4	7.4		3.0			4.2	
Sumy Moderate   1527   Middle   3.5   22.9   8.2   8.2   8.3   33.6   33.6   92.5   8.4   8.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5	Surny Moderate 15:27 Middle 3.5 22.9 22.9 22.9 8.2 8.2 8.2 8.3 8.3 8.3 9.26 6.6 6.6 6.6 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.5 6.6 6.6 6.8 8.2 24 24 25 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2					Surface	1		24 1		8.2		33.1		99.8		7.0			24			3.0	
Surry   Moderate   15.24   Moderate   15.24   Moderate   15.25   Moderate   15.38   Mod	Surry   Moderate   15-27   Moderate   15-27   Moderate   15-28   Reg.					Odirado					0.2		00.1		00.0		7.0	6.8					0.0	į
Bottom   6   224   22.4   63   33.5   33.6   34.0   94.1   94.9   66   66   66   67.7   2.7   2.7   66   66   66   66   67.7   2.7   66   66   66   67.7   2.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7   67.7	Bottom   6   223   224   8.3   8.3   33.9   34.0   94.6   6.6   6.6   6.6   2.7   2.7   6.6   6.6   6.6	G3	Sunny	Moderate	15:27	Middle	3.5		22.9		8.2		33.6		92.6		6.5			2.4	2.5		6.1	5.2
Moderate   15.18   Surray   Moderate   15.15   Mo	Surny Moderate 15:38   Surface   1   233   224   8.2   8.2   335   33.6   110.07   110.6   7.6   7.7   7.5   2.4   2.4   2.4   2.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4   4.4					D .:	_		00.4				24.0		04.0					0.7	1			
Surny   Moderate   15:38   Mod	Surny Moderate 15.58					Bottom	6		22.4		8.3		34.0		94.9		6.6	6.6		2.7			6.6	
Moderate   15:38   Middle   4	Surny Moderate 15:38					Surface	1	23.3	23.4	8.3	8.3	33.6	33.6	111.5	110.6	7.7	7.7		2.4	2.4		4.5	4.6	
Moderate   15.56   Moderate   16.56   Moderate   15.55   Moderate	Surny   Moderate   1/38   Moderate   4   22/8   22/8   82   62   33.7   33.7   102.8   7.1   7.2   7.4   2.4   2.4   3.1   5.4   3.8   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3.4   3					Ourrace			20.4		0.0		00.0		110.0		7.7	7.5		2.7			4.0	
Bottom   7   216   8.1   8.1   34.3   34.3   104.8   104.9   7.3   7.3   7.3   7.3   7.3   7.3   4.6   4.6   4.4   4.4	Bottom   7   216   216   8.1   8.1   34.3   34.3   104.9   7.3   7.3   7.3   7.3   4.6   4.6   4.4   4.4   4.4	G4	Sunny	Moderate	15:38	Middle	4		22.8		8.2		33.7		102.9		7.2			2.4	3.1		5.4	4.8
Midelange   Sunny   Moderate   15:15   Surface   1   21:5   22:1   23:7   23:7   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:8   23:	Surny Moderate Surny					_															1			ł
Moderate Surny Modera	Sunny Moderate     Sunny Moderate					Bottom	7		21.6		8.1		34.3		104.9		7.3	7.3		4.6			4.4	
M1 Surny Moderate     15:15	Sunny   Moderate   15:15   Middle   3   22.9   23.1   8.2   8.2   33.6   33.9   33.9   30.2   97.1   67.   67.   68.   68.   24.   24.   24.   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5					Surface	1		23.7		8.2		33.5		108.9	7.4	7.5			2.4			3.7	
M1 Surny Moderate 15:15 Middle 3 22.9 23.1 8.2 8.2 8.3 8.6 106.3 106.5 7.3 7.3 2.4 2.4 2.4 7.5 7.5 7.5 7.5 7.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3 9 96.2 97.1 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	Sunny   Moderate   15:15   Middle   3   22.9   23.1   8.2   8.2   33.6   33.6   108.7   72   7.3   7.2   7.3   2.4   2.4   2.4   7.5   7.5   7.5   5.2					Odiracc	'		20.7		0.2		00.0		100.5		7.5	7.4		2.4			0.7	1
Bottom   5   22.4   22.5   8.3   8.3   33.9   33.9   96.2   97.1   6.7   6.8   6.8   6.8   2.4   2.5   4.5   4.5   4.5	Bottom   5   224   225   8.3   8.3   33.9   33.9   96.2   97.1   6.7   6.8   6.8   6.8   2.4   2.5   4.4   4.5	M1	Sunny	Moderate	15:15	Middle	3		23.1		8.2		33.6		105.5		7.3			2.4	2.4		7.5	5.2
M2 Sunny Moderate 14.58   Sufface 1 232   22.5   8.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3   3.3	Sunny Moderate					_															1			ł
M2 Sunny Moderate Note      Moderate   14:58	Sunny Moderate 14:58   Middle 5.5   22.3   8.3   8.3   8.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   33.3   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0   34.0					Bottom	5		22.5		8.3		33.9		97.1	6.8	6.8	6.8		2.5			4.5	
M2 Sunny Moderate     14:58	Sunny Moderate 14-58					Surface	1	23.2	22.7	8.2	0.2	33.6	22.5	109.3	110.6	7.5	7.6		2.5	2.5		4.5	4.4	
M2 Sunny Moderate 14:58 Middle 5.5 22.3 2.3 8.3 8.3 84.0 34.0 105.5 105.9 7.3 7.4 2.6 2.5 2.6 2.6 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Sunny Moderate 14:58					Juliace	'		20.7		0.5		33.3		110.0		7.0	7.5		2.5			4.4	
Bottom   10   222   22.2   8.2   8.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.	Bottom   10   222   22.2   8.2   8.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.2   34.	M2	Sunny	Moderate	14:58	Middle	5.5		22.3		8.3		34.0		105.9	7.3	7.4			2.6	2.6		4.0	4.3
M3 Sunny Moderate	Sumy   Moderate   15:31   Surface   1   24:1   23:3   8:2   8:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2   34:2		· ·												1	6.3					-			ł
M3 Sunny Moderate 15:31 Middle 3.5 23.0 22.3 8.2 8.2 33.5 32.9 85.8 86.5 6.1 6.1 6.6 2.5 2.5 2.7 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Sunny Moderate 15:31					Bottom	10		22.2		8.2		34.2		90.5		6.4	6.4		2.8			4.5	
M3 Sunny Moderate 15:31	Sunny Moderate 15:31 Middle 3.5 23.0 22.3 8.2 8.2 32.5 32.9 85.8 86.5 6.1 6.0 6.0 6.1 2.5 2.5 2.5 2.5 2.7 6.1 6.0 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1					Surface	1	24.1	22.2	8.2	0.2	33.1	22.6	102.0	101.0	7.1	7.0		2.4	2.5		2.7	2.7	
M3 Sunny Moderate 15:31 Middle 3.5 23.6 22.3 8.2 8.2 8.2 33.5 32.9 85.8 86.5 6.1 6.0 6.1 2.5 2.5 2.5 2.5 2.7 6.1 6.0 6.0 6.1 2.5 2.5 2.5 2.5 2.6 6.0 6.0 6.1 6.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.7 6.1 6.0 6.0 6.1 6.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Sunny   Moderate   15:31   Middle   3.5   23.0   22.3   8.2   8.2   33.5   32.9   87.1   86.5   6.0   6.1   25.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5					Juliace	'		20.0		0.5		32.0		101.0		7.0	6.6		2.5			2.1	
Bottom   6   22.3   21.6   8.2   8.3   33.7   33.4   96.0   95.9   6.7   6.7   6.7   6.7   6.7   3.0   2.9   3.0   2.6   2.6   2.6   2.6	Sunny   Moderate   Sunny   Mod	M3	Sunny	Moderate	15:31	Middle	3.5		22.3		8.2		32.9		86.5		6.1			2.5	2.7		6.0	3.8
M4 Sunny Moderate 14:46 Sunny Moderate 15:55 Middle 5.5 22.6 22.6 8.3 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.4 95.7 99.9 6.7 6.7 6.7 6.9 2.9 3.0 2.6 2.6 2.6 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	Sunny Moderate H4:46		,																		-			ł
M4 Sunny Moderate     14:46	Sunny Moderate     14:46					Bottom	6		21.6		8.3		33.4		95.9		6.7	6.7		3.0			2.6	
Mderate Sunny Moderate 14:46	Sunny Moderate     14:46					Curtoso	,	24.2	22.2	8.2	0.2	33.3	22.2	110.0	100.7	7.6	7.6		2.3	2.2		4.0	4.0	
M4 Sunny Moderate 14:46 Middle 5 22.5 22.5 8.3 8.3 8.3 34.0 34.0 104.4 104.3 7.2 7.3 7.3 24.4 2.4 2.4 3.1 2.5 2.5 2.5 8.3 8.3 8.3 34.0 34.0 104.4 104.4 104.3 7.2 7.3 7.3 2.4 2.4 2.4 2.4 3.1 2.5 2.5 2.5 8.3 8.3 8.3 34.0 104.4 104.4 104.4 104.5 7.2 7.3 7.3 2.4 2.4 2.4 2.4 2.4 3.1 2.5 2.5 2.5 8.3 8.3 8.3 34.0 104.4 104.4 104.4 104.5 7.3 7.3 7.4 7.4 7.4 7.4 100.6 6.9 7.1 100.6 6.9 7.1 100.6 6.9 7.1 100.6 6.9 7.1 100.6 6.9 7.1 100.6 6.9 7.1 100.6 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 10.9 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 100.6 7.1 1	Sunny Moderate 14:46 Middle 5 22.5 22.5 8.3 8.3 8.0 34.0 104.4 104.3 7.3 7.3 2.4 2.4 2.4 2.4 3.1 2.5 2.5 2.5 22.5 8.3 8.3 8.0 34.0 104.4 102.1 100.6 7.1 7.0 7.0 7.0 4.5 4.5 4.5 4.1 4.1 4.2 2.5 2.5 2.5 8.3 8.3 8.3 8.3 8.3 8.4 99.1 106.6 7.1 7.1 7.2 7.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2					Surface	'		23.3		0.3		33.2		109.7		7.0	7.5		2.3			4.0	j
Bottom 9 22.1 22.2 8.2 34.2 34.4 99.1 100.6 6.9 7.0 7.0 4.5 4.5 4.5 4.1 4.1 4.2 2.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8	Sunny Moderate Sunny	M4	Sunny	Moderate	14:46	Middle	5		22.5		8.3		34.0		104.3		7.3	7.0		2.4	3.1		2.5	3.6
M6 Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 8.2 34.0 34.0 106.7 106.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	Sunny Moderate     Surface		,																		-			ł
M6 Sunny Moderate 15:44 Surface 1 23.0 23.0 8.2 8.2 33.9 33.9 106.3 105.6 7.4 7.4 7.4 7.4 7.2 2.2 2.2 2.2 2.3 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Sunny Moderate I 5:55					Bottom	9		22.2		8.2		34.4		100.6		7.0	7.0		4.5			4.2	
M6 Sunny Moderate 15:45 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 34.0 106.7 106.5 7.3 7.4 7.4 7.4 7.4 7.4 7.4 2.1 2.1 2.1 6.6 6.4 6.5	Sunny Moderate     Sunny Moderate					C			00.0	8.2	0.0	33.9	00.0		405.0	7.4	7.4		2.2	0.0		5.1		
M6 Sunny Moderate 15:55 Middle 5.5 22.6 8.3 8.3 8.3 34.4 99.0 99.4 6.9 6.9 6.9 2.4 2.4 3.1 8.6 8.2 8.4 8.2 8.2 8.2 34.0 34.0 106.7 106.5 7.3 7.4 7.4 2.1 2.1 2.1 6.6 6.4 6.5	Sunny Moderate 15:55 Middle 5.5 22.6 22.6 8.3 8.3 8.3 34.4 34.4 99.0 99.0 99.0 6.9 6.9 6.9 2.4 2.4 3.1 8.2 34.0 34.0 106.2 106.5 7.3 7.4 7.4 2.1 2.1 2.1 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5					Surrace	'		23.0	8.2	8.2	33.9	33.9		105.6		7.4	72	2.2	2.2	]	5.1	5.1	
Bottom 10 21.0 8.1 8.1 34.3 34.3 88.9 89.1 6.2 6.2 6.2 4.5 4.9 4.7 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.7 106.5 7.3 7.4 7.4 2.1 2.1 6.6 6.4 6.5 6.5	M5	Sunnv	Moderate	15:55	Middle	5.5		22.6		8.3		34.4		99.4		6.9	7.2		2.4	3.1		8.4	5.5
M6 Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.2 106.5 7.3 7.4 7.4 2.1 2.1 6.6 6.4 6.5	Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.7 106.5 7.3 7.4 7.4 2.1 2.1 6.6 6.4 6.5 6.5		''' /												ļ						1			1
M6 Sunny Moderate 15:44 Surface	Sunny Moderate Surface					Bottom	10		21.0		8.1		34.3		89.1		6.2	6.2		4.7			3.1	l
M6 Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.7 106.5 7.3 7.4 7.4 2.1 2.1 6.6 6.4 6.5	Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.2 106.5 7.3 7.4 7.4 2.1 2.1 6.6 6.5 6.5					0 /		- 20.8				- 04.0				- 0.2			7.5		1	J. I		<b>—</b>
M6 Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.2 106.5 7.4 7.4 2.1 2.1 2.1 6.6 6.5 6.4 6.5	Sunny Moderate 15:44 Middle 2.1 22.4 22.4 8.2 8.2 34.0 34.0 106.7 106.5 7.4 7.4 2.1 2.1 2.1 6.6 6.4 6.5 6.5					Surface		<u>_</u> -			L ⁻	<u>_</u> -	<u> </u>	<u>_</u> -	L	<u>_</u> -	<u> </u>	7.4	L			<u></u> -		]
22.4 8.2 34.0 106.7 7.4 2.0 6.4	22.4 8.2 34.0 106.7 7.4 2.0 6.4	M6	Sunnv	Moderate	15:44	Middle	2.1		22.4		8.2		34.0		106.5		7.4	7.4		2.1	2.1		6.5	6.5
	Bottom -   -   -   -   -   -   -   -   -   -					3010		22.4		8.2	J	34.0	20	106.7	. 30.0	7.4			2.0		4	6.4	0	1 5.5
						Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	1

Remarks:

^{*}DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 4 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	1, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tuebidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u> </u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations M1-M	<u>5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations G1-G4	<u>1, M1-M5</u>	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.1 mg/L</u>	<u>C1: 6.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 April 2018

1	Weather	Sea	Sampling	Б	4l- ()	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.3 23.5	23.4	8.2 8.2	8.2	33.5 33.5	33.5	113.8 112.0	112.9	7.9 7.8	7.9		2.2 2.3	2.3		5.0 4.9	5.0	
C1	Sunny	Moderate	09:46	Middle	9	22.3 22.1	22.2	8.2 8.2	8.2	34.6 33.8	34.2	97.1 97.2	97.2	6.8 6.8	6.8	7.4	2.2	2.2	3.0	4.9 4.6 4.5	4.6	4.9
				Bottom	17	19.2 19.3	19.3	8.1 8.1	8.1	37.5 34.5	36.0	86.9 87.8	87.4	6.1 6.1	6.1	6.1	4.4 4.7	4.6		5.1 5.1	5.1	
				Surface	1	22.8 22.8	22.8	8.2 8.3	8.3	33.4 33.5	33.5	103.8 102.6	103.2	7.3 7.2	7.3	6.9	2.3 2.3	2.3		4.1 4.2	4.2	
C2	Sunny	Moderate	08:20	Middle	16.5	21.9 21.8	21.9	8.2 8.2	8.2	33.9 34.0	34.0	89.5 92.1	90.8	6.3 6.5	6.4	0.5	3.3 3.4	3.4	3.4	2.3 2.2	2.3	3.1
				Bottom	32	20.5 20.3	20.4	8.2 8.2	8.2	33.9 34.1	34.0	81.8 82.6	82.2	5.8 5.8	5.8	5.8	4.6 4.5	4.6		2.9 2.8	2.9	
				Surface	1	22.7 22.7 22.3	22.7	8.3 8.3 8.2	8.3	33.6 33.6 34.1	33.6	114.4 110.5 112.4	112.5	7.9 7.7 7.8	7.8	7.8	2.3 2.3 2.5	2.3		4.0 4.0 2.3	4.0	
G1	Sunny	Moderate	09:04	Middle	4	22.3 22.2 21.5	22.3	8.2 8.2 8.2	8.2	34.1 34.1 34.4	34.1	111.0 100.2	111.7	7.8 7.7 7.0	7.8		2.5 2.7 4.5	2.6	3.2	2.3 2.3 6.1	2.3	4.1
		l	l	Bottom	7	21.6	21.6	8.2 8.3	8.2	34.3	34.4	99.1	99.7	6.9 8.1	7.0	7.0	4.6	4.6		5.8	6.0	
				Surface	1	22.6 22.1	22.6	8.3 8.2	8.3	33.6 34.2	33.6	115.6	116.0	8.0 7.2	8.1	7.7	2.2	2.3		3.0	3.0	
G2	Sunny	Moderate	08:50	Middle	5	22.1	22.1	8.2 8.2	8.2	34.3 34.5	34.3	102.7 91.4	103.0	7.2 6.4	7.2	0.5	2.8	2.8	2.8	3.4 5.1	3.4	3.8
	<del> </del>	<u> </u>		Bottom	9	21.4	21.4	8.2 8.3	8.2	34.6 33.1	34.6	94.3	92.9	6.6	6.5	6.5	3.4	3.4		5.1 4.5	5.1	
G3	Cimmi	Moderat-	00:43	Surface	1	23.0	23.0	8.3 8.2	8.3	33.0 33.9	33.1 33.9	91.2	98.4	6.4 7.0	6.9	7.0	2.4	2.4	2.8	4.6	4.6	4.9
us	Sunny	Moderate	09:13	Middle Bottom	7	22.3 22.0	22.3	8.3 8.2	8.3	33.9 34.4	33.9	101.1 92.3	101.1 93.2	7.0 6.5	7.0 6.6	6.6	2.8 3.2	3.2	۷.8	4.5 3.6	4.5 3.7	4.3
				Surface	1	22.0	23.0	8.2	8.3	34.4 33.2	33.4	94.0	112.7	6.6 7.8	7.8	0.0	3.1 2.4	2.4		3.8 4.3	4.3	
G4	Sunny	Moderate	09:25	Middle	4.5	22.7	22.3	8.3 8.2	8.2	33.6 34.1	34.1	111.9	110.4	7.8	7.7	7.8	2.3	2.5	3.2	3.2	3.2	4.5
	,			Bottom	8	22.3 21.6 21.6	21.6	8.2 8.2 8.2	8.2	34.1 34.3 34.3	34.3	91.8 92.5	92.2	7.7 6.4 6.5	6.5	6.5	2.5 4.6 4.7	4.7		3.2 6.1 6.1	6.1	
				Surface	1	22.7 22.7	22.7	8.3 8.3	8.3	33.6 33.6	33.6	114.5 109.2	111.9	7.9 7.6	7.8		2.3	2.4		3.6	3.7	
M1	Sunny	Moderate	08:58	Middle	3	22.3 22.4	22.4	8.2 8.2	8.2	33.9 33.9	33.9	109.9 110.2	110.1	7.6 7.6	7.6	7.7	2.6	2.6	2.6	5.1 5.0	5.1	4.1
				Bottom	5	22.1 22.2	22.2	8.2 8.2	8.2	34.3 34.2	34.3	99.6 99.1	99.4	6.9 6.9	6.9	6.9	2.6 2.8	2.7		3.5 3.5	3.5	
				Surface	1	22.6 22.7	22.7	8.3 8.3	8.3	33.6 33.6	33.6	116.0 114.0	115.0	8.1 7.9	8.0	7.6	2.4 2.3	2.4		4.6 4.9	4.8	
M2	Sunny	Moderate	08:42	Middle	5.5	21.8 21.7	21.8	8.2 8.2	8.2	35.0 34.1	34.6	102.5 105.1	103.8	7.1 7.3	7.2	7.0	4.1 4.1	4.1	3.6	3.0 3.0	3.0	4.0
				Bottom	10	21.3 21.2	21.3	8.1 8.1	8.1	34.5 34.6	34.6	84.7 88.8	86.8	5.9 6.2	6.1	6.1	4.2 4.5	4.4		4.2 4.3	4.3	
				Surface	1	23.0 22.9	23.0	8.2 8.2	8.2	33.2 33.3	33.3	99.5 96.9	98.2	6.9 6.8	6.9	6.9	2.3	2.4		2.6	2.6	
M3	Sunny	Moderate	09:18	Middle	4	22.2 22.3	22.3	8.2 8.2	8.2	34.0 34.1	34.1	96.1 102.2	99.2	6.7 7.1	6.9		2.9	2.9	3.0	4.1 4.0	4.1	3.9
		<u> </u>	<u> </u>	Bottom	7	21.9 22.0 22.7	22.0	8.2 8.3 8.3	8.3	34.6 34.5 33.5	34.6	94.1 93.3 111.3	93.7	6.6 6.5 7.8	6.6	6.6	3.6 3.7 2.3	3.7		5.0 5.1 5.5	5.1	
		<b>.</b>		Surface	1	22.7 22.8 22.6	22.8	8.3 8.3	8.3	33.5 33.6	33.5	109.8	110.6	7.8 7.7 6.3	7.8	7.2	2.3 2.4	2.3		5.5 5.4 3.1	5.5	
M4	Sunny	Moderate	08:29	Middle	5	22.4 22.5	22.5	8.2 8.2	8.3	33.9 33.8	33.8	94.9 84.3	92.6	6.6 5.9	6.5		2.5	2.5	2.5	3.1	3.1	4.0
				Bottom	9	22.3	22.4	8.2 8.3	8.2	34.1 33.6	34.0	86.7 112.0	85.5	6.1 7.8	6.0	6.0	2.7	2.6		3.3 4.5	3.4	
ME	Cimmi	Moderat-	00:27	Surface	1 5.5	22.9 22.5	22.8	8.3 8.2	8.3	33.6 33.9	33.6	111.0	111.5	7.7 7.6	7.8 7.5	7.7	2.3	2.5	2.1	4.4 8.4	4.5	F 4
M5	Sunny	Moderate	09:37	Middle Bottom	5.5	22.5 21.8	22.5	8.2 8.2	8.2	33.8 33.9	33.9 34.0	107.0 109.3	108.0	7.4 7.6	7.5	7.6	2.3 4.4	2.4	3.1	8.5 3.1	8.5 3.1	5.4
				Surface	- 10	21.7	- 21.0	8.2	0.2	34.0	34.0	108.0	100.7	7.5	7.0	7.0	4.3	4.4		3.0	3.1	
M6	Sunny	Moderate	09:31	Middle	1.6	22.6	22.6	8.2	8.3	33.7	33.7	94.1	94.0	6.6	6.6	6.6	2.3	2.3	2.3	3.4	3.5	3.5
0	Carriy	ocorate	00.01	Bottom	-	22.6	-	8.3	-	33.7	-	93.8	-	6.5	-	-	2.3	-	2.0	3.5	-	3.5
				20110.11		-		-		-		-		-			-			-		

Appendix I - Action and Limit Levels for Marine Water Quality on 6 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 3.4 NTU</u>	<u>C2: 3.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.7 mg/L</u>	<u>C2: 7.3 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.8 mg/L</u>	<u>C2: 8.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 April 2018

	Weather	Sea	Sampling			Tempor	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Susne	nded Solids	(ma/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average		Value	Average	DA*
	Condition	Condition	THITC	0		22.5		8.0	8.0	33.2		97.9		7.0	1	DA	1.1		DA	5.0		DA
				Surface	1	22.6	22.6	8.0	8.0	32.9	33.1	97.0	97.5	6.9	7.0	6.9	1.1	1.1		6.2	5.6	
C1	Sunny	Calm	16:41	Middle	10	22.5	22.4	8.0	8.0	33.2	33.3	96.4	95.3	6.9	6.8	0.5	2.0	2.0	1.7	4.8	4.9	5.8
•						22.3		8.0		33.4		94.1		6.7	*		2.0		1	4.9		
				Bottom	19	22.3 22.3	22.3	8.0 8.0	8.0	33.4 33.4	33.4	94.5 94.0	94.3	6.8 6.7	6.8	6.8	2.0	2.0		6.9 6.7	6.8	
						22.8		7.9		32.4		92.8		6.6			1.0		1	5.0		
				Surface	1	22.8	22.8	7.9	7.9	32.5	32.5	92.8	92.8	6.6	6.6	6.7	1.1	1.1		6.1	5.6	
C2	Sunny	Calm	14:40	Middle	17	22.3	22.3	8.0	8.0	33.5	33.5	93.2	93.3	6.7	6.7	6.7	2.3	2.4	2.1	2.8	2.8	5.0
OZ.	Odiniy	Gain	14.40	ivildale	.,,	22.3	22.0	8.0	0.0	33.5	00.0	93.3	30.0	6.7	0.7		2.4	2.7		2.7	2.0	3.0
				Bottom	33	22.2	22.2	8.0	8.0	33.6	33.6	92.5	92.6	6.6	6.6	6.6	2.8	2.8		6.4	6.5	
						22.2 23.0		8.0 8.0		33.6 33.0		92.6 102.0	-	6.6 7.2			0.8		-	6.5 4.2		
				Surface	1	23.0	23.0	8.0	8.0	33.0	33.0	102.0	102.0	7.2	7.2	۱	0.7	0.8		4.2	4.3	
G1	Sunny	Calm	15:40	Middle	4	22.7	22.7	8.0	8.0	33.2	33.2	98.5	98.5	7.0	7.0	7.1	1.4	1.4	1.5	5.7	5.8	4.5
GI	Sunny	Gaiiii	13.40	Middle	4	22.6	22.1	8.0	0.0	33.2	33.2	98.5	90.0	7.0	7.0		1.4	1.4	1.5	5.8	5.6	4.5
				Bottom	7	22.3	22.3	8.0	8.0	33.5	33.5	96.7	96.6	6.9	6.9	6.9	2.4	2.4		3.3	3.3	
						22.3		8.0		33.5		96.5		6.9			2.4		<u> </u>	3.2		
				Surface	1	23.1 23.1	23.1	8.0 8.0	8.0	32.9 32.9	32.9	103.7 103.4	103.6	7.4 7.3	7.4		0.7 0.7	0.7		3.0 3.1	3.1	
	_					22.5		8.0		33.2		99.1		7.1	<del></del>	7.3	0.7		1	4.0		
G2	Sunny	Calm	15:20	Middle	5	22.5	22.5	8.0	8.0	33.3	33.3	98.7	98.9	7.1	7.1		1.0	1.0	1.0	4.1	4.1	4.2
				Bottom	9	22.3	22.3	8.0	8.0	33.5	33.5	96.6	96.5	6.9	6.9	6.9	1.2	1.3	1	5.2	5.4	
				Dottom	J	22.3	22.0	8.0	0.0	33.5	00.0	96.4	30.5	6.9	0.5	0.5	1.4	1.0		5.5	0.4	
				Surface	1	22.5	22.5	8.0	8.0	32.6	32.6	96.8	96.6	6.9	6.9		2.0	2.0		5.5	5.5	
						22.5 22.4		8.0 8.0		32.6 33.4		96.3 94.8	ļ	6.9 6.8		6.9	2.0		4	5.5 3.7		
G3	Sunny	Calm	15:52	Middle	4	22.4	22.4	8.0	8.0	33.4	33.4	94.6	94.9	6.8	6.8		2.8	2.9	2.7	3.6	3.7	4.1
				Bottom	7	22.2	22.2	8.0	8.0	33.7	33.7	94.4	94.4	6.8	6.8	6.8	3.2	3.2	1	3.0	3.1	
				Bottom	/	22.2	22.2	8.0	8.0	33.7	33.7	94.4	94.4	6.8	6.8	6.8	3.2	3.2		3.1	3.1	
				Surface	1	22.5	22.5	8.0	8.0	33.2	33.2	100.6	100.8	7.2	7.2		1.4	1.4		5.9	5.9	
				Odirado	· ·	22.5	LL.O	8.0	0.0	33.2	00.2	100.9	100.0	7.2	· ·-	7.2	1.4			5.8	0.0	
G4	Sunny	Calm	16:14	Middle	4	22.4 22.5	22.5	8.0 8.0	8.0	33.4 33.3	33.4	99.8 100.1	100.0	7.1 7.2	7.2		1.1	1.2	1.4	6.2 6.3	6.3	6.3
				_		22.3		8.1		33.7		98.3	<u> </u>	7.0			1.6		-	6.7		
				Bottom	7	22.2	22.2	8.0	8.1	33.7	33.7	97.9	98.1	7.0	7.0	7.0	1.8	1.7		6.6	6.7	
				Surface	1	23.1	23.1	8.0	8.0	33.0	33.0	102.1	101.6	7.2	7.2		0.8	0.9		2.8	2.8	
				Juliace	'	23.0	20.1	8.0	0.0	33.0	33.0	101.1	101.0	7.2	1.2	7.1	0.9	0.5		2.8	2.0	
M1	Sunny	Calm	15:31	Middle	3	22.7	22.7	8.0	8.0	33.2	33.2	98.8	98.8	7.0	7.0		1.2	1.2	1.2	4.7	4.7	3.9
	-					22.7 22.5		8.0 8.0		33.2 33.3		98.7 97.8	1	7.0 7.0			1.1		4	4.7		
				Bottom	5	22.5	22.5	8.0	8.0	33.3	33.3	97.7	97.8	7.0	7.0	7.0	1.6	1.6		4.2	4.3	
				C	1	23.1	00.4	8.0	0.0	32.9	00.0	103.5	400.0	7.3	7.0		0.6	0.0		4.6	4.7	
				Surface	ı ı	23.1	23.1	8.0	8.0	32.9	32.9	103.1	103.3	7.3	7.3	7.1	0.6	0.6		4.7	4.7	
M2	Sunny	Calm	15:10	Middle	5.5	22.4	22.4	8.0	8.0	33.4	33.4	95.8	95.9	6.9	6.9	l	1.4	1.4	1.2	5.8	5.8	5.0
	,					22.4 22.2		8.0 8.0		33.4 33.7		95.9 95.9		6.9 6.9			1.4		4	5.7 4.4		
				Bottom	10	22.2	22.2	8.0	8.0	33.7	33.7	95.9	95.9	6.9	6.9	6.9	1.4	1.5		4.4	4.5	
				0 (		22.6	00.0	8.0		33.0	00.0	91.9	00.4	6.6			2.9		l l	5.5		
				Surface	1	22.6	22.6	8.0	8.0	33.0	33.0	92.3	92.1	6.6	6.6	6.7	2.8	2.9	]	5.6	5.6	
M3	Sunny	Calm	16:02	Middle	4	22.4	22.4	8.0	8.0	33.4	33.4	95.4	95.2	6.8	6.8	0.7	2.6	2.7	2.9	6.1	6.1	6.1
****						22.4		8.0		33.4		94.9		6.8			2.7			6.0		
				Bottom	7	22.2 22.2	22.2	8.0 8.0	8.0	33.7 33.7	33.7	93.9 94.1	94.0	6.7 6.7	6.7	6.7	3.0	3.0		6.5 6.5	6.5	
				0 /		22.9	20.0	8.0		33.0	00.4	101.3	400 =	7.2	7.0		0.9	4.0	1	3.7	0.0	
				Surface	1	22.8	22.9	8.0	8.0	33.1	33.1	100.1	100.7	7.1	7.2	7.4	1.0	1.0		3.5	3.6	
M4	Sunny	Calm	14:55	Middle	5	22.6	22.6	8.0	8.0	33.2	33.2	97.0	97.0	6.9	6.9	7.1	1.4	1.5	1.6	3.5	3.6	4.4
	Carriy	Jaim		madic		22.6	-2.0	8.0	5.0	33.2	55.2	97.0	57.0	6.9	3.5	ļ	1.5		1 "."	3.6	0.0	
				Bottom	9	22.4 22.4	22.4	8.0 8.0	8.0	33.4 33.4	33.4	94.1 93.8	94.0	6.7 6.7	6.7	6.7	2.2	2.2	1	5.9 5.9	5.9	
						22.4		8.0	<del>   </del>	33.4		101.2	H	7.2	<del>   </del>	<b> </b>	0.8	<del>                                     </del>	<b>-</b>	3.0		
				Surface	1	22.5	22.5	8.0	8.0	33.1	33.1	101.2	101.2	7.2	7.2	7.0	0.8	0.8		3.0	3.0	
M5	Sunny	Calm	16:31	Middle	5	22.6	22.6	8.0	8.0	33.1	33.1	100.4	100.4	7.2	7.2	7.2	1.0	0.9	0.9	5.7	5.7	4.0
IVIS	Junny	Caiiii	10.51	MINUTE	J	22.6	22.0	8.0	0.0	33.1	33.1	100.4	100.4	7.2	1.2		0.8	0.5	0.5	5.7	5.1	4.0
				Bottom	9	22.4	22.4	8.0	8.0	33.4	33.4	97.5	97.5	7.0	7.0	7.0	1.1	1.1	1	3.2	3.2	
						22.4		8.0	1	33.4		97.4	<b> </b>	7.0	1		1.1	1	<b> </b>	3.2		
				Surface	-	-	-	_	-	-	-	-	-		-		-	-			-	
Me	Cummi	Colm	16:04	Middle	2.1	22.4	22.4	8.0	0.0	33.4	22.4	97.8	07.7	7.0	7.0	7.0	2.2	2.2	1	6.9	6.0	6.0
M6	Sunny	Calm	16:24	Middle	2.1	22.4	22.4	8.0	8.0	33.4	33.4	97.6	97.7	7.0	7.0		2.1	2.2	2.2	6.8	6.9	6.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
						-	l	-		-		-	į.	-	<u> </u>		-	<u> </u>		-		

Appendix I - Action and Limit Levels for Marine Water Quality on 6 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 3.1 NTU</u>	<u>C1: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations M1-M	<u>5</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

## Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 April 2018

1 1	Weather	Sea	Sampling	-	4h ()	Temper	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.0 23.0	23.0	8.0 8.0	8.0	32.8 32.8	32.8	95.0 95.2	95.1	6.7 6.8	6.8		0.7 0.8	0.8		4.8 4.9	4.9	
C1	Sunny	Calm	10:42	Middle	9.5	22.5 22.5	22.5	8.0 8.0	8.0	33.2 33.2	33.2	96.9 97.2	97.1	6.9 6.9	6.9	6.9	0.7 0.8	0.8	1.4	4.2 4.2	4.2	4.9
				Bottom	18	22.1 22.1	22.1	8.0 8.0	8.0	33.9 33.9	33.9	94.8 94.8	94.8	6.8 6.8	6.8	6.8	2.6 2.5	2.6		5.6 5.8	5.7	
				Surface	1	22.6 22.6	22.6	8.0 8.0	8.0	32.9 32.9	32.9	94.1 94.3	94.2	6.7 6.7	6.7	6.7	0.7 0.7	0.7		4.4 4.4	4.4	
C2	Sunny	Calm	08:31	Middle	17	22.3 22.3	22.3	8.0 8.0	8.0	33.4 33.4	33.4	93.4 93.4	93.4	6.7 6.7	6.7	0.7	1.3 1.3	1.3	1.6	4.3 4.2	4.3	4.3
				Bottom	33	22.1 22.1	22.1	8.0 8.0	8.0	33.8 33.8	33.8	93.9 94.0	94.0	6.7 6.7	6.7	6.7	2.7 2.7	2.7		4.3 4.3	4.3	
				Surface	1	22.9 22.8	22.9	8.0 8.0	8.0	32.8 32.8	32.8	96.6 96.3	96.5	6.9 6.9	6.9	6.9	0.6 0.6	0.6		4.7 4.6	4.7	
G1	Sunny	Calm	09:35	Middle	4	22.7 22.7 22.5	22.7	8.0 8.0 8.0	8.0	32.9 32.9 33.1	32.9	97.2 97.4 95.9	97.3	6.9 6.9 6.9	6.9		0.7 0.6 1.0	0.7	8.0	4.2 4.2 3.4	4.2	4.1
				Bottom	7	22.5 22.8	22.5	8.0 8.0	8.0	33.1 32.8	33.1	95.9 95.9 95.8	95.9	6.9	6.9	6.9	1.0	1.0		3.4 3.4 5.5	3.4	
				Surface	1	22.6 22.7 22.6	22.8	8.0 8.0	8.0	32.8 33.0	32.8	95.9 96.2	95.9	6.8 6.9 6.9	6.9	6.9	0.6 0.6 0.7	0.6		5.6 2.7	5.6	
G2	Sunny	Calm	09:15	Middle	5	22.6 22.5	22.6	8.0 8.0	8.0	33.0 33.2	33.0	96.0 94.9	96.1	6.9 6.8	6.9		0.7 0.7 0.8	0.7	0.7	2.7	2.7	3.9
		1	1	Bottom	9	22.4	22.5	8.0 8.0	8.0	33.2 32.2	33.2	94.9 94.7	94.9	6.8 6.7	6.8	6.8	0.8	0.8		3.5 3.4	3.5	
				Surface	1	23.3	23.4	8.0 8.0	8.0	32.4 33.0	32.3	96.0 97.3	95.4	6.8	6.8	6.9	0.4	0.4		3.4	3.4	
G3	Sunny	Calm	09:49	Middle	7	22.7	22.7	8.0	8.0	33.0 33.1	33.0	97.6 95.5	97.5	7.0 6.8	7.0	0.0	0.7	0.7	0.7	3.3 5.2	3.3	4.0
				Bottom	1	22.6 22.9	22.6	8.0	8.0	33.1 32.9	33.1 32.9	95.5 97.9	95.5 97.7	6.8 7.0	6.8 7.0	6.8	0.9	0.9		5.3 4.8	5.3	
G4	Sunny	Calm	10:10	Middle	4	22.9 22.7	22.9	8.0 8.0	8.0	32.8 32.9	32.9	97.4 98.4	98.4	6.9 7.0	7.0	7.0	0.6	0.6	0.7	5.1 6.6	6.7	5.9
04	Suriny	Calli	10.10	Bottom	7	22.7 22.6	22.6	8.0 8.0	8.0	32.9 33.1	33.1	98.4 97.4	97.5	7.0 7.0	7.0	7.0	0.7 0.8	0.7	0.7	6.8 5.9	5.9	5.5
				Surface	1	22.6 22.8	22.8	8.0	8.0	33.1 32.8	32.9	97.5 96.5	96.1	7.0 6.9	6.9	7.0	0.8	0.7		5.9 2.8	2.8	
M1	Sunny	Calm	09:26	Middle	3	22.8	22.8	8.0	8.0	32.9 32.9	32.9	95.6 95.3	95.3	6.8	6.8	6.9	0.7	0.8	0.8	3.3	3.3	3.4
				Bottom	5	22.8	22.7	8.0	8.0	32.9 32.9 32.9	32.9	95.2 94.3	94.4	6.8	6.7	6.7	0.8	0.8		3.3 4.2 4.2	4.2	
				Surface	1	22.7 22.7 22.7	22.7	8.0 8.0 8.0	8.0	32.9 32.9 32.9	32.9	94.4 97.0 96.7	96.9	6.7 6.9 6.9	6.9		0.8 0.7 0.7	0.7		2.1 2.1	2.1	
M2	Sunny	Calm	09:05	Middle	5.5	22.4 22.5	22.5	8.0 8.0	8.0	33.3 33.2	33.3	95.3 95.3	95.3	6.8 6.8	6.8	6.9	0.8 0.8	0.8	1.2	2.9	3.0	3.3
				Bottom	10	22.3	22.3	8.0	8.0	33.5 33.5	33.5	94.7 94.7	94.7	6.8	6.8	6.8	2.0	2.0		4.8 4.7	4.8	
				Surface	1	23.0 23.1	23.1	8.0 8.0	8.0	32.6 32.4	32.5	95.3 96.2	95.8	6.8 6.8	6.8	0.0	0.5 0.5	0.5		2.7 2.7	2.7	
МЗ	Sunny	Calm	09:59	Middle	4	22.8 22.8	22.8	8.0 8.0	8.0	32.9 32.9	32.9	97.7 97.3	97.5	7.0 6.9	7.0	6.9	0.6 0.7	0.7	0.7	3.5 3.4	3.5	3.3
				Bottom	7	22.7 22.7	22.7	8.0 8.0	8.0	33.0 33.0	33.0	92.9 94.7	93.8	6.6 6.8	6.7	6.7	0.8 0.7	0.8		3.6 3.7	3.7	
				Surface	1	22.9 23.0	23.0	8.0 8.0	8.0	32.8 32.8	32.8	96.0 96.1	96.1	6.8 6.8	6.8	6.8	0.5 0.5	0.5		5.3 5.4	5.4	
M4	Sunny	Calm	08:50	Middle	5	22.5 22.5	22.5	8.0 8.0	8.0	33.2 33.2	33.2	95.2 95.5	95.4	6.8 6.8	6.8	3.0	0.8	0.9	1.1	2.1	2.1	3.9
				Bottom	9	22.3 22.3	22.3	8.0 8.0	8.0	33.5 33.5	33.5	95.3 95.4	95.4	6.8 6.8	6.8	6.8	1.8 2.1	2.0		4.2 4.2	4.2	
				Surface	1	22.9 23.1	23.0	8.0 8.0	8.0	32.8 32.8	32.8	95.0 94.8	94.9	6.8 6.7	6.8	6.8	0.7 0.7	0.7		5.1 5.2	5.2	
M5	Sunny	Calm	10:28	Middle	5	22.6 22.4 22.3	22.5	8.0 8.0 8.0	8.0	33.0 33.2 33.4	33.1	95.6 95.4 94.9	95.5	6.8 6.8 6.8	6.8		1.0 1.2 1.5	1.1	1.1	2.6 2.6 5.9	2.6	4.6
				Bottom	9	22.3	22.3	8.0	8.0	33.4 33.5	33.5	94.9 95.0	95.0	6.8	6.8	6.8	1.5	1.6		5.9 6.1	6.0	
				Surface	-	22.7	-	8.0	-	33.0	-	97.9	-	7.0	-	7.0	0.8	-		3.4	-	
M6	Sunny	Calm	10:21	Middle	2.1	22.7	22.7	8.0	8.0	33.0	33.0	97.8	97.9	7.0	7.0		0.9	0.9	0.9	3.4	3.4	3.4
				Bottom	-	-	-	_	-		-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 10 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1:1:		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Prote 2 and 1)		<u>C2: 2.6 NTU</u>	<u>C2: 2.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		6.0 mg/L	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	<b>Stations M1-M</b>	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.1mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 8.0 mg/L</u>	<u>C2: 8.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 April 2018

1 4:	Weather	Sea	Sampling	Б	M- ()	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.8 22.7	22.8	8.5 8.5	8.5	33.6 33.6	33.6	123.7 122.0	122.9	8.8 8.7	8.8		0.5 0.4	0.5		4.1 4.1	4.1	
C1	Sunny	Calm	20:18	Middle	9	22.1 22.0	22.1	8.4 8.4	8.4	33.6 33.6	33.6	106.3 107.3	106.8	7.6 7.7	7.7	8.3	0.4 0.6 0.6	0.6	0.8	5.2 5.3	5.3	5.2
				Bottom	17	22.0	22.0	8.4 8.4	8.4	33.6 33.6	33.6	102.7 103.4	103.1	7.4 7.4	7.4	7.4	1.3	1.2		6.2	6.2	
				Surface	1	22.2 22.2	22.2	8.4 8.4	8.4	33.5 33.5	33.5	98.0 100.8	99.4	7.0 7.2	7.1		2.2	2.2		5.2 5.0	5.1	
C2	Sunny	Calm	19:15	Middle	16.5	22.1 22.1	22.1	8.4 8.4	8.4	33.5 33.6	33.6	98.5 98.5	98.5	7.1 7.1	7.1	7.1	2.0	2.0	2.1	5.1 5.1	5.1	5.6
				Bottom	32	21.9	22.0	8.4 8.4	8.4	33.6 33.6	33.6	94.6 95.4	95.0	6.8	6.9	6.9	2.2	2.2		6.6	6.7	
				Surface	1	23.3 23.4	23.4	8.5 8.5	8.5	33.5 33.5	33.5	129.3 132.0	130.7	9.1 9.3	9.2		0.7 0.8	0.8		5.4 5.3	5.4	
G1	Sunny	Calm	19:42	Middle	4	23.0 23.0	23.0	8.5 8.5	8.5	33.5 33.5	33.5	125.2 125.3	125.3	8.9 8.9	8.9	9.1	0.6 0.7	0.7	0.8	6.5 6.5	6.5	5.6
				Bottom	7	22.7 22.7	22.7	8.5 8.5	8.5	33.5 33.5	33.5	124.5 124.3	124.4	8.9 8.8	8.9	8.9	0.9	0.9		4.8 5.0	4.9	
				Surface	1	23.0 23.0	23.0	8.5 8.5	8.5	33.5 33.5	33.5	118.7 122.7	120.7	8.4 8.7	8.6	0.0	0.7 0.7	0.7		5.4 5.3	5.4	
G2	Sunny	Calm	19:33	Middle	5	22.4 22.4	22.4	8.5 8.5	8.5	33.5 33.5	33.5	123.1 123.9	123.5	8.8 8.9	8.9	8.8	0.7 0.7	0.7	0.8	4.9 4.7	4.8	5.2
				Bottom	9	22.0 22.0	22.0	8.5 8.5	8.5	33.6 33.6	33.6	117.4 115.0	116.2	8.4 8.3	8.4	8.4	0.9	0.9		5.3 5.2	5.3	
		_		Surface	1	23.6 23.5	23.6	8.5 8.5	8.5	33.5 33.5	33.5	134.8 135.8	135.3	9.4 9.5	9.5	9.6	0.6 0.7	0.7		5.7 6.0	5.9	_
G3	Sunny	Calm	19:47	Middle	4	23.1 23.1	23.1	8.5 8.5	8.5	33.5 33.5	33.5	135.5 135.4	135.5	9.6 9.6	9.6	3.0	0.8 1.0	0.9	0.9	6.9 6.7	6.8	5.3
				Bottom	7	22.5 22.5	22.5	8.5 8.5	8.5	33.5 33.5	33.5	133.3 128.5	130.9	9.5 9.2	9.4	9.4	1.0 1.2	1.1		3.1 3.0	3.1	
				Surface	1	23.5 23.5	23.5	8.5 8.5	8.5	33.5 33.5	33.5	134.3 135.0	134.7	9.4 9.5	9.5	9.4	0.7 0.6	0.7		4.7 4.6	4.7	
G4	Sunny	Calm	19:59	Middle	4.5	23.0 23.1	23.1	8.5 8.5	8.5	33.5 33.5	33.5	129.4 129.1	129.3	9.2 9.1	9.2	0.1	0.8 0.7	0.8	1.3	5.7 5.5	5.6	5.6
				Bottom	8	22.1 22.4	22.3	8.5 8.5	8.5	33.6 33.6	33.6	124.2 128.9	126.6	8.9 9.2	9.1	9.1	2.3 2.4	2.4		6.3 6.7	6.5	
				Surface	1	23.3 23.3	23.3	8.5 8.5	8.5	33.5 33.5	33.5	128.3 129.0	128.7	9.0 9.1	9.1	9.0	0.7 0.8	0.8		4.0 4.0	4.0	
M1	Sunny	Calm	19:38	Middle	3	23.1 23.0	23.1	8.5 8.5	8.5	33.5 33.5	33.5	125.9 125.1	125.5	8.9 8.8	8.9		0.6 0.7	0.7	0.8	3.8 3.7	3.8	4.2
				Bottom	5	22.9 22.9	22.9	8.5 8.5	8.5	33.5 33.5	33.5	122.3 123.4	122.9	8.7 8.7	8.7	8.7	0.8 0.7	0.8		4.8 4.9	4.9	
				Surface	1	22.9 22.9	22.9	8.5 8.5	8.5	33.5 33.5	33.5	121.6 121.3	121.5	8.6 8.6	8.6	8.1	0.4 0.5	0.5		5.3 5.3	5.3	
M2	Sunny	Calm	19:28	Middle	6	22.0 22.0	22.0	8.4 8.4	8.4	33.6 33.6	33.6	103.6 104.3	104.0	7.5 7.5	7.5		1.1	1.1	1.0	5.8 5.6	5.7	5.4
				Bottom	11	21.9 21.9	21.9	8.4 8.4	8.4	33.6 33.6	33.6	101.8 105.0	103.4	7.3 7.6	7.5	7.5	1.4	1.3		5.1 5.0	5.1	
				Surface	1	23.5	23.4	8.5 8.5	8.5	33.5 33.5	33.5	133.6 136.2	134.9	9.4 9.6	9.5	9.6	0.6	0.6		4.3 4.4	4.4	
М3	Sunny	Calm	19:53	Middle	4	23.0 23.0	23.0	8.5 8.5 8.5	8.5	33.5 33.5	33.5	134.6 135.3	135.0	9.5 9.6	9.6		0.8 0.8	0.8	1.1	7.7 7.6 3.8	7.7	5.3
	<u> </u>			Bottom	7	22.5 22.2	22.4	8.5	8.5	33.5 33.5 33.5	33.5	131.2 120.3	125.8	9.4 8.6	9.0	9.0	2.0 1.9	2.0		3.8	3.8	
				Surface	1	22.3 22.3 22.2	22.3	8.4 8.4 8.4	8.4	33.5 33.5 33.6	33.5	103.7 104.4 100.9	104.1	7.4 7.5 7.2	7.5	7.4	1.3 1.1 1.4	1.2		4.2 4.0 2.9	4.1	
M4	Sunny	Calm	19:22	Middle	5	22.0 22.0	22.1	8.4 8.4	8.4	33.6 33.6	33.6	98.7 98.0	99.8	7.1 7.1	7.2		1.4	1.4	1.5	3.0 5.6	3.0	4.2
				Bottom	9	21.9	22.0	8.4 8.5	8.4	33.6 33.5	33.6	97.0 125.0	97.5	7.0 8.9	7.1	7.1	2.0	2.0		5.6 5.6	5.6	
				Surface	1	22.7 22.7 22.6	22.7	8.5 8.5	8.5	33.6 33.5	33.6	126.1 126.3	125.6	9.0 9.0	9.0	9.0	0.8 0.7	0.8		5.6 5.1	5.6	
M5	Sunny	Calm	20:11	Middle	5.5	22.6 22.4	22.6	8.5 8.5	8.5	33.5 33.6	33.5	126.5 124.9	126.4	9.0	9.0		0.7	0.8	0.9	6.0	6.1	5.7
				Bottom	10	22.4	22.4	8.5	8.5	33.6	33.6	123.9	124.4	8.9	8.9	8.9	1.1	1.1		5.5	5.5	
140				Surface	-	23.3	-	8.5	-	33.5	-	131.8	-	9.3	-	9.4	0.7	-		5.9	-	
M6	Sunny	Calm	20:03	Middle	1.1	23.3	23.3	8.5	8.5	33.5	33.5	134.7	133.3	9.5	9.4		0.7	0.7	0.7	5.7	5.8	5.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 10 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 4.9 NTU</u>	<u>C1: 5.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations M1-M	<u>5</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.7 mg/L</u>	<u>C1: 7.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 April 2018

1	Weather	Sea	Sampling	Б	4h ()	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.3 22.8	22.6	8.5 8.5	8.5	33.5 33.5	33.5	115.1 115.3	115.2	8.2 8.2	8.2		1.0 1.0	1.0		5.8 5.7	5.8	
C1	Sunny	Calm	14:11	Middle	9	22.8 22.0 22.2	22.1	8.4 8.5	8.5	33.5 33.7 33.6	33.7	101.8 112.6	107.2	7.3 8.1	7.7	8.0	1.5 1.4	1.5	2.2	5.7 5.7 5.5	5.6	5.7
				Bottom	17	21.9	21.9	8.4 8.4	8.4	33.7 33.7	33.7	97.8 99.2	98.5	7.0	7.1	7.1	4.0	4.1		5.6	5.6	
				Surface	1	22.7 22.5	22.6	8.3 8.4	8.4	33.4 33.4	33.4	106.8 105.9	106.4	7.6 7.6	7.6		0.9	0.9		5.9 5.7	5.8	
C2	Sunny	Calm	13:15	Middle	16.5	22.0 22.0	22.0	8.4 8.4	8.4	33.6 33.6	33.6	96.9 97.1	97.0	7.0 7.0	7.0	7.3	1.3 1.2	1.3	1.1	5.0 5.0	5.0	4.6
				Bottom	32	22.0 22.0	22.0	8.4 8.4	8.4	33.6 33.6	33.6	97.6 96.7	97.2	7.0 7.0	7.0	7.0	1.2 1.2	1.2		2.9 2.8	2.9	
				Surface	1	23.3 23.4	23.4	8.5 8.5	8.5	33.5 33.5	33.5	127.5 128.5	128.0	9.0 9.0	9.0	9.0	0.7 0.7	0.7		4.5 4.5	4.5	
G1	Sunny	Calm	13:40	Middle	4	22.3 22.5	22.4	8.5 8.5	8.5	33.5 33.5	33.5	124.4 127.2	125.8	8.9 9.1	9.0	3.0	0.9 0.8	0.9	0.9	5.4 5.7	5.6	5.4
				Bottom	7	22.0 22.0	22.0	8.5 8.5	8.5	33.6 33.6	33.6	117.0 119.0	118.0	8.4 8.6	8.5	8.5	1.1 1.0	1.1		5.9 6.2	6.1	
				Surface	1	23.1 23.1	23.1	8.5 8.5	8.5	33.5 33.5	33.5	120.9 121.3	121.1	8.5 8.6	8.6	8.8	0.7 0.8	0.8		4.9 5.0	5.0	
G2	Sunny	Calm	13:31	Middle	5	22.2 22.3	22.3	8.5 8.5	8.5	33.6 33.5	33.6	123.5 122.9	123.2	8.9 8.8	8.9	0.0	0.7 0.8	0.8	1.0	5.1 5.1	5.1	5.1
				Bottom	9	21.9 21.9	21.9	8.4 8.4	8.4	33.6 33.6	33.6	107.8 109.0	108.4	7.8 7.9	7.9	7.9	1.3 1.4	1.4		5.1 5.1	5.1	
				Surface	1	22.7 22.8	22.8	8.5 8.5	8.5	33.4 33.5	33.5	122.0 126.9	124.5	8.7 9.0	8.9	8.9	0.9 0.8	0.9		5.5 5.4	5.5	
G3	Sunny	Calm	13:44	Middle	3.5	22.3 22.3	22.3	8.5 8.5	8.5	33.5 33.5	33.5	122.9 124.1	123.5	8.8 8.9	8.9	0.0	1.3 1.2	1.3	1.1	8.7 8.7	8.7	6.9
				Bottom	6	22.0 22.0	22.0	8.5 8.5	8.5	33.6 33.6	33.6	118.7 120.6	119.7	8.5 8.7	8.6	8.6	1.2 1.1	1.2		6.3 6.4	6.4	
				Surface	1	22.7 22.9	22.8	8.5 8.5	8.5	33.5 33.5	33.5	128.3 130.1	129.2	9.1 9.2	9.2	9.2	1.0 0.9	1.0		5.5 5.7	5.6	
G4	Sunny	Calm	13:53	Middle	4.5	22.3 22.1	22.2	8.5 8.5	8.5	33.6 33.6	33.6	130.5 127.1	128.8	9.3 9.1	9.2		1.1 1.0	1.1	2.1	4.7 4.8	4.8	5.4
				Bottom	8	21.9 21.9	21.9	8.4 8.4	8.4	33.6 33.6	33.6	110.4 95.4	102.9	8.0 6.9	7.5	7.5	4.1 4.2	4.2		5.6 5.7	5.7	
				Surface	1	23.6 23.7	23.7	8.4 8.5	8.5	33.5 33.5	33.5	123.1 129.1	126.1	8.6 9.0	8.8	8.8	0.6	0.7		4.4	4.4	
M1	Sunny	Calm	13:35	Middle	3	23.0 22.9	23.0	8.5 8.5	8.5	33.5 33.5	33.5	122.5 124.3	123.4	8.7 8.8	8.8		0.8	8.0	1.1	4.6 4.6	4.6	4.8
				Bottom	5	22.2 22.1	22.2	8.4 8.5	8.5	33.5 33.6	33.6	116.2 116.5	116.4	8.3 8.4	8.4	8.4	1.6 1.9	1.8		5.5 5.3	5.4	
				Surface	1	23.0 23.0	23.0	8.4 8.4	8.4	33.5 33.5	33.5	114.6 117.3	116.0	8.1 8.3	8.2	8.6	0.5 0.5	0.5		5.5 5.4	5.5	
M2	Sunny	Calm	13:27	Middle	6	22.3 22.2	22.3	8.5 8.5 8.4	8.5	33.5 33.6 33.6	33.6	125.2 125.3	125.3	9.0 9.0 7.0	9.0		0.5 0.6 2.0	0.6	1.1	8.5 8.4 3.2	8.5	5.7
				Bottom	11	21.9 21.8 23.6	21.9	8.4 8.5	8.4	33.6 33.5	33.6	97.4 99.1 124.3	98.3	7.0 7.2 8.7	7.1	7.1	2.4	2.2		3.1 5.2	3.2	
				Surface	1	23.3	23.5	8.5 8.5	8.5	33.5 33.5	33.5	126.5 131.7	125.4	8.9 9.4	8.8	9.2	1.1	1.1		5.2 5.2 5.6	5.2	
М3	Sunny	Calm	13:47	Middle	3.5	22.3 22.0	22.3	8.5 8.5	8.5	33.5 33.6	33.5	132.6 124.2	132.2	9.5 8.9	9.5		1.3	1.3	1.3	5.6 6.2	5.6	5.7
			1	Bottom	6	22.1 22.8	22.1	8.5 8.4	8.5	33.6 33.5	33.6	126.2 126.3	125.2	9.1 7.6	9.0	9.0	1.5	1.5		6.2	6.2	
				Surface	1	22.8 22.7 22.1	22.8	8.4 8.4 8.4	8.4	33.5 33.6	33.5	108.7 104.9	107.5	7.5 7.7 7.5	7.7	7.7	0.8 0.8	0.8		4.3 4.3 5.9	4.3	
M4	Sunny	Calm	13:22	Middle	5	22.2	22.2	8.4 8.4	8.4	33.6 33.6	33.6	109.9	107.4	7.9 7.2	7.7		1.0	1.1	1.2	5.9	5.9	5.4
				Bottom	9	22.1 22.5	22.1	8.4 8.4	8.4	33.6 33.6	33.6	102.9	101.8	7.4 8.0	7.3	7.3	1.6	1.8		5.9 4.5	6.0	
				Surface	1	22.5 22.6 22.1	22.6	8.4 8.4	8.4	33.6 33.6	33.6	113.2	112.6	8.1 7.8	8.1	8.0	1.2	1.3		5.0 5.7	4.8	
M5	Sunny	Calm	14:04	Middle	5.5	22.1	22.1	8.4 8.4	8.4	33.6 33.6	33.6	109.9	109.5	7.9 7.6	7.9	7.0	1.3	1.3	1.4	5.9 5.3	5.8	5.3
				Bottom	10	22.0	22.0	8.4	8.4	33.6	33.6	105.1	105.2	7.6	7.6	7.6	1.5	1.5		5.4	5.4	
***			40.50	Surface	-	23.0	-	8.4	-	33.5	-	113.0	-	8.0	-	8.4	0.7	-		8.0	-	
M6	Sunny	Calm	13:58	Middle	1.1	22.2	22.6	8.5	8.5	33.5	33.5	121.5	117.3	8.7	8.4		0.7	0.7	0.7	8.0	8.0	8.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 12 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1:1:		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Prote 2 and 1)		<u>C2: 3.1 NTU</u>	<u>C2: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		6.0 mg/L	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.0 mg/L</u>	<u>C2: 6.5mg/L</u>
	<b>Stations M1-M</b>	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 6.0 mg/L	<u>C2: 6.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.6 mg/L</u>	<u>C2: 8.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 April 2018

1	Weather	Sea	Sampling	Б.	M- ()	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.0 22.9	23.0	8.4 8.4	8.4	33.3 33.3	33.3	109.1 108.0	108.6	7.7 7.7	7.7		0.6 0.6	0.6		5.4 5.3	5.4	
C1	Sunny	Calm	10:44	Middle	9.5	22.5 22.4	22.5	8.4 8.4	8.4	33.5 33.6	33.6	102.1 101.3	101.7	7.7 7.3 7.2	7.3	7.5	1.0	1.0	1.5	4.1 4.0	4.1	4.4
				Bottom	18	22.1 22.1	22.1	8.4 8.4	8.4	33.7 33.7	33.7	97.4 96.9	97.2	7.0 7.0	7.0	7.0	2.8	2.8		3.6 3.6	3.6	
				Surface	1	22.6 22.6	22.6	8.3 8.4	8.4	33.3 33.3	33.3	98.9 99.6	99.3	7.1 7.1	7.1	7.1	1.5 1.4	1.5		4.9 5.0	5.0	
C2	Sunny	Calm	09:32	Middle	16.5	22.4 22.3	22.4	8.4 8.4	8.4	33.5 33.5	33.5	98.4 98.5	98.5	7.0 7.1	7.1	7.1	1.1 1.1	1.1	1.7	5.5 5.6	5.6	5.6
				Bottom	32	22.2 22.2	22.2	8.4 8.4	8.4	33.6 33.6	33.6	97.0 97.1	97.1	7.0 7.0	7.0	7.0	2.6 2.6	2.6		6.4 6.2	6.3	
				Surface	1	23.1 23.0	23.1	8.5 8.5	8.5	33.3 33.4	33.4	128.2 125.5	126.9	9.1 8.9	9.0	8.7	0.5 0.4	0.5		5.7 5.7	5.7	
G1	Sunny	Calm	10:06	Middle	4	22.5 22.6	22.6	8.5 8.5	8.5	33.5 33.5	33.5	116.6 118.5	117.6	8.3 8.4	8.4		1.5 1.5	1.5	1.2	5.1 5.1	5.1	5.8
				Bottom	7	22.4 22.4	22.4	8.4 8.5	8.5	33.5 33.5 33.4	33.5	107.7 108.9 135.4	108.3	7.7 7.8	7.8	7.8	1.4	1.5		6.7 6.7	6.7	
				Surface	1	23.0 23.0 22.7	23.0	8.5 8.5 8.5	8.5	33.4 33.4 33.5	33.4	131.7 120.5	133.6	9.6 9.3 8.6	9.5	9.1	0.4 0.5 0.7	0.5		5.4 5.5 6.7	5.5	
G2	Sunny	Calm	09:55	Middle	5	22.7 22.3	22.7	8.5 8.4	8.5	33.4 33.5	33.5	119.2 105.3	119.9	8.5 7.5	8.6		0.7 0.6 1.4	0.7	0.9	6.5 6.2	6.6	6.1
		l	l	Bottom	9	22.3	22.3	8.4 8.5	8.4	33.5 33.4	33.5	104.2	104.8	7.5 7.5	7.5	7.5	1.5	1.5		6.3	6.3	
				Surface	1	23.0	23.0	8.5 8.5	8.5	33.4	33.4	131.7	132.0	9.3	9.4	9.3	1.0	0.9		3.9	3.9	
G3	Sunny	Calm	10:12	Middle Bottom	3.5 6	22.8 22.6	22.8	8.5 8.5	8.5 8.5	33.4 33.5	33.5 33.5	130.1 121.5	128.1	9.2 8.7	9.1	8.7	0.8	0.8	0.8	2.5	2.6 4.7	3.7
				Surface	1	22.6 23.1	23.1	8.5 8.5	8.5	33.5 33.4	33.4	120.7 136.5	133.6	8.6 9.6	9.4	0.7	0.8	0.6		4.7 5.2	5.1	
G4	Sunny	Calm	10:25	Middle	4	23.0 22.7	22.6	8.5 8.5	8.5	33.4 33.4	33.4	130.7 116.1	111.8	9.2 8.3	8.0	8.7	0.7 1.1	1.1	1.5	5.0 4.5	4.5	4.4
Q+	Ourniy	Cairi	10.23	Bottom	7	22.5 22.4	22.5	8.5 8.4	8.4	33.4 33.5	33.5	107.4 99.9	101.4	7.7 7.1	7.2	7.2	1.0 2.7	2.7	1.5	4.5 3.7	3.6	7.7
				Surface	1	22.5 23.0	23.0	8.4 8.5	8.5	33.5 33.2	33.3	102.8 124.2	122.4	7.3 8.8	8.7		2.7 0.9	0.9		3.5 3.9	3.9	
M1	Sunny	Calm	10:01	Middle	3	22.9 22.6	22.7	8.5 8.5	8.5	33.3 33.5	33.5	120.5 115.2	116.2	8.5 8.2	8.3	8.5	0.9 1.7 1.8	1.8	1.9	3.9 4.2 4.3	4.3	4.1
				Bottom	5	22.8 22.4 22.5	22.5	8.5 8.4 8.5	8.5	33.4 33.5 33.5	33.5	117.1 110.0 113.6	111.8	8.3 7.9 8.1	8.0	8.0	3.1 2.6	2.9		4.3 4.1 4.0	4.1	
				Surface	1	22.7 22.6	22.7	8.5 8.4	8.5	33.4 33.4	33.4	117.5 113.4	115.5	8.4 8.1	8.3		0.7 0.7	0.7		4.5 4.3	4.4	
M2	Sunny	Calm	09:50	Middle	6	22.5 22.5	22.5	8.4 8.5	8.5	33.5 33.5	33.5	113.8 114.4	114.1	8.1 8.2	8.2	8.3	0.8	0.8	1.0	5.0 5.0	5.0	4.6
				Bottom	11	22.3 22.3	22.3	8.4 8.4	8.4	33.5 33.5	33.5	102.8 103.3	103.1	7.4 7.4	7.4	7.4	1.5 1.4	1.5		4.3 4.3	4.3	
				Surface	1	22.9 23.0	23.0	8.5 8.5	8.5	33.3 33.3	33.3	130.9 131.3	131.1	9.3 9.3	9.3	9.5	0.8 1.0	0.9	-	3.0 2.9	3.0	
МЗ	Sunny	Calm	10:18	Middle	3.5	22.9 22.8	22.9	8.5 8.5	8.5	33.5 33.5	33.5	136.6 135.7	136.2	9.7 9.6	9.7	3.5	0.7 0.8	0.8	0.9	4.8 4.8	4.8	4.5
				Bottom	6	22.8 22.7	22.8	8.5 8.5	8.5	33.5 33.5	33.5	130.2 126.9	128.6	9.3 9.0	9.2	9.2	0.8 0.9	0.9		5.6 5.6	5.6	
				Surface	1	22.5 22.5	22.5	8.4 8.4	8.4	33.4 33.4	33.4	99.7 100.1	99.9	7.1 7.2	7.2	7.2	1.6 1.6	1.6		4.1 4.1	4.1	
M4	Sunny	Calm	09:41	Middle	5	22.3 22.4	22.4	8.4 8.4	8.4	33.6 33.5	33.6	99.3 99.6	99.5	7.1 7.1	7.1		1.6	1.6	1.7	4.4 4.5	4.5	5.0
				Bottom	9	22.2 22.2	22.2	8.4 8.4	8.4	33.6 33.6	33.6	99.0 99.1	99.1	7.1 7.1	7.1	7.1	1.8	1.8		6.2 6.4	6.3	
				Surface	1	22.6 22.6 22.4	22.6	8.4 8.4 8.4	8.4	33.4 33.4 33.4	33.4	105.9 105.3 102.4	105.6	7.6 7.5 7.3	7.6	7.5	0.8 0.9 1.2	0.9		5.1 5.1 4.9	5.1	
M5	Sunny	Calm	10:37	Middle	5	22.4	22.4	8.4 8.4	8.4	33.5 33.6	33.5	101.1	101.8	7.3 7.2 7.1	7.3	<u> </u>	1.4	1.3	1.3	4.8 6.7	4.9	5.6
				Bottom	9	22.3	22.3	8.4	8.4	33.6	33.6	98.6	98.8	7.1	7.1	7.1	1.9	1.8		6.8	6.8	
140	0	0-1	40.00	Surface	- 0.4	22.5		8.4	- 0.4	33.4	- 00.4	102.9	- 400.0	7.3	7.4	7.4	0.9	-	0.0	4.5	-	4.5
M6	Sunny	Calm	10:30	Middle	2.1	22.5	22.5	8.4	8.4	33.4	33.4	103.6	103.3	7.4	7.4		0.8	0.9	0.9	4.5	4.5	4.5
		l	1	Bottom	-	-	-	-	-	-	-	-	-	l -	-	-	-	-		l -	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 12 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 4.6 NTU</u>	<u>C1: 4.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C1: 6.6 mg/L	<u>C1: 7.2 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9  mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C1: 8.0 mg/L	<u>C1: 8.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 April 2018

1 1	Weather	Sea	Sampling	-	4h ()	Temper	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.7 22.9	22.8	8.4 8.4	8.4	33.3 33.3	33.3	103.6 104.5	104.1	7.4 7.4	7.4		0.9 0.9	0.9		5.5 5.4	5.5	
C1	Sunny	Calm	15:21	Middle	9.5	22.5 22.5 22.5	22.5	8.4 8.4 8.4	8.4	33.5 33.4	33.5	101.2 102.4	101.8	7.4 7.2 7.3	7.3	7.4	1.0 1.0	1.0	1.9	5.4 5.5 5.4	5.5	5.9
				Bottom	18	22.2	22.2	8.4	8.4	33.8	33.8	95.8 96.2	96.0	6.9	6.9	6.9	3.9	3.8		6.6	6.7	
				Surface	1	22.9 22.9	22.9	8.4 8.4	8.4	33.2 33.2	33.2	97.7 98.3	98.0	6.9 7.0	7.0		1.1	1.1		4.5 4.4	4.5	
C2	Sunny	Calm	14:10	Middle	17	22.4 22.4	22.4	8.4 8.4	8.4	33.5 33.5	33.5	95.8 95.9	95.9	6.9 6.9	6.9	7.0	1.8	1.8	1.6	3.9	3.9	4.4
				Bottom	33	22.2 22.2	22.2	8.4 8.4	8.4	33.6 33.6	33.6	95.5 95.7	95.6	6.8 6.9	6.9	6.9	1.9 2.0	2.0		4.7 4.7	4.7	
				Surface	1	23.7 23.8	23.8	8.6 8.6	8.6	33.4 33.4	33.4	149.8 148.5	149.2	10.5 10.4	10.5	10.4	0.5 0.5	0.5		5.1 4.8	5.0	
G1	Sunny	Calm	14:42	Middle	4	23.4 23.5	23.5	8.6 8.6	8.6	33.4 33.4	33.4	146.8 147.4	147.1	10.3 10.3	10.3	10.4	0.5 0.5	0.5	0.9	6.1 5.9	6.0	4.7
				Bottom	7	22.4 22.4	22.4	8.4 8.5	8.5	33.5 33.5	33.5	108.7 107.9	108.3	7.8 7.7	7.8	7.8	1.6 1.9	1.8		3.0 3.0	3.0	
				Surface	1	23.7 23.8	23.8	8.6 8.6	8.6	33.4 33.4	33.4	149.1 142.3	145.7	10.4 9.9	10.2	9.9	0.6 0.6	0.6		3.4 3.3	3.4	
G2	Sunny	Calm	14:31	Middle	5	22.9 22.8	22.9	8.6 8.6	8.6	33.4 33.4	33.4	135.0 133.1	134.1	9.6 9.4	9.5	5.5	1.1 1.2	1.2	1.1	4.7 4.6	4.7	4.1
				Bottom	9	22.3 22.3	22.3	8.4 8.5	8.5	33.5 33.5	33.5	107.0 107.5	107.3	7.7 7.7	7.7	7.7	1.7 1.5	1.6		4.0 4.1	4.1	
				Surface	1	23.7 23.7	23.7	8.6 8.6	8.6	33.2 33.2	33.2	142.6 143.3	143.0	10.0 10.0	10.0	9.9	0.7 0.8	0.8		5.4 5.2	5.3	
G3	Sunny	Calm	14:48	Middle	3.5	23.3 23.2	23.3	8.6 8.6	8.6	33.3 33.3	33.3	138.3 140.7	139.5	9.7 9.9	9.8	5.5	0.8 0.9	0.9	8.0	5.6 5.4	5.5	5.4
				Bottom	6	22.5 22.6	22.6	8.5 8.5	8.5	33.5 33.5	33.5	117.2 116.9	117.1	8.4 8.3	8.4	8.4	0.8 0.7	0.8		5.5 5.5	5.5	
				Surface	1	23.4 23.5	23.5	8.5 8.5	8.5	33.4 33.4	33.4	133.0 131.6	132.3	9.3 9.2	9.3	9.3	1.2 1.1	1.2		4.7 4.6	4.7	
G4	Sunny	Calm	15:00	Middle	4	23.4 23.4	23.4	8.5 8.5	8.5	33.4 33.4	33.4	131.9 132.8	132.4	9.3 9.3	9.3		1.1 1.1	1.1	2.1	10.6 10.6	10.6	6.4
				Bottom	7	22.3 22.4	22.4	8.4 8.4	8.4	33.5 33.5	33.5	97.8 100.0	98.9	7.0 7.2	7.1	7.1	3.9 3.8	3.9		3.8 3.7	3.8	
				Surface	1	23.8 23.7	23.8	8.6 8.6	8.6	33.4 33.4	33.4	150.1 148.4	149.3	10.5 10.4	10.5	10.3	0.4	0.4		4.2 4.1	4.2	
M1	Sunny	Calm	14:37	Middle	3	23.7	23.6	8.6 8.6	8.6	33.4 33.4	33.4	149.3 138.8	144.1	10.4 9.8	10.1		0.6 0.6	0.6	0.6	3.0 3.1	3.1	4.5
				Bottom	5	23.1 22.9	23.0	8.5 8.5	8.5	33.4 33.4	33.4	130.7 134.2	132.5	9.2 9.5	9.4	9.4	1.0 0.8	0.9		6.1 6.0	6.1	
				Surface	1	23.6 23.6	23.6	8.6 8.6	8.6	33.4 33.4	33.4	151.3 143.2	147.3	10.6	10.3	9.9	1.0	1.0		5.3 5.3	5.3	
M2	Sunny	Calm	14:24	Middle	6	23.1	22.9	8.6 8.5	8.6	33.4 33.5	33.5	138.7 126.2	132.5	9.8 9.0	9.4		1.0	1.1	1.8	5.7 5.7 2.7	5.7	4.6
				Bottom	11	22.2 22.2	22.2	8.4 8.4	8.4	33.6 33.6	33.6	97.9 97.3	97.6	7.0 7.0	7.0	7.0	3.4 3.4 0.5	3.4		2.7	2.7	
				Surface	1	24.0 24.0 23.2	24.0	8.6 8.6 8.6	8.6	33.3 33.3 33.3	33.3	153.0 151.4 139.1	152.2	10.7 10.5 9.8	10.6	10.2	0.5 0.5 1.2	0.5		4.8 4.8 7.8	4.8	
МЗ	Sunny	Calm	14:53	Middle	3.5	23.4 22.6	23.3	8.6 8.5	8.6	33.3 33.5	33.3	139.1 139.9 119.0	139.5	9.8 9.8 8.5	9.8		1.1	1.2	1.0	7.8 7.7 6.5	7.8	6.4
		1	1	Bottom	6	22.6 22.6 23.6	22.6	8.5 8.5	8.5	33.5 33.4	33.5	115.9 135.5	117.5	8.3 9.5	8.4	8.4	1.1	1.2		6.4 4.9	6.5	
				Surface	1	23.6 23.4	23.6	8.5 8.5	8.5	33.4 33.4 33.4	33.4	134.3 133.5	134.9	9.5 9.4 9.4	9.5	9.5	0.5 0.6	0.5		4.9 4.8 5.0	4.9	
M4	Sunny	Calm	14:18	Middle	5	23.3	23.4	8.5 8.5	8.5	33.4 33.5	33.4	134.8	134.2	9.5 8.7	9.5		0.6	0.6	0.7	5.0	5.0	5.4
				Bottom	9	22.9	22.8	8.5 8.4	8.5	33.4 33.4	33.5	125.0	123.7	8.9 7.5	8.8	8.8	0.9	1.0		6.4	6.4	
				Surface	1	22.9 22.7	22.9	8.4 8.4	8.4	33.3 33.4	33.4	105.3 107.0 105.2	106.7	7.6 7.5	7.6	7.6	0.9	0.9		6.0	6.1	
M5	Sunny	Calm	15:13	Middle	5	22.5	22.6	8.4 8.4	8.4	33.4	33.4	103.7	104.5	7.4 7.3	7.5	7.0	1.3	1.3	1.2	4.2	4.2	5.6
				Bottom	9	22.5	22.5	8.4	8.4	33.5	33.5	101.9	101.8	7.3	7.3	7.3	1.3	1.3		6.5	6.4	
140			45.00	Surface	-	23.5	-	8.5	-	33.3	-	133.6	-	9.4	-	9.4	0.6	-		7.0	-	7.0
M6	Sunny	Calm	15:06	Middle	2.1	23.4	23.5	8.5	8.5	33.4	33.4	132.3	133.0	9.3	9.4		0.6	0.6	0.6	6.9	7.0	7.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 14 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 3.2 NTU</u>	<u>C2: 3.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.0 mg/L</u>	<u>C2: 6.5 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.0 mg/L</u>	<u>C2: 6.5 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9  mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 7.6 mg/L	<u>C2: 8.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 April 2018

Location	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
Location	Condition	Condition**	Time	Бор	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.9 22.9	22.9	8.2 8.2	8.2	33.5 33.5	33.5	101.0 100.9	101.0	7.2 7.1	7.2	7.2	1.3 1.3	1.3		4.5 4.5	4.5	l
C1	Cloudy	Calm	12:00	Middle	9	22.9 22.9	22.9	8.2 8.2	8.2	33.6 33.6	33.6	101.1 100.8	101.0	7.2 7.1	7.2	7.12	1.2 1.2	1.2	1.4	6.0 6.0	6.0	5.4
				Bottom	17	22.6 22.6	22.6	8.3 8.3	8.3	34.0 34.0	34.0	98.8 98.7	98.8	7.0 7.0	7.0	7.0	1.7 1.6	1.7		5.8 5.7	5.8	L
				Surface	1	23.0 23.0	23.0	8.1 8.2	8.2	33.3 33.4	33.4	98.5 98.0	98.3	7.0 6.9	7.0	7.0	1.3 1.5	1.4		5.0 4.9	5.0	
C2	Cloudy	Calm	10:56	Middle	16.5	22.7 22.7	22.7	8.2 8.2	8.2	33.7 33.7	33.7	97.3 97.5	97.4	6.9 6.9	6.9	7.0	2.2 1.9	2.1	2.1	4.5 4.4	4.5	5.3
				Bottom	32	22.6 22.6	22.6	8.2 8.2	8.2	33.8 33.9	33.9	97.1 96.8	97.0	6.9 6.9	6.9	6.9	2.7 2.6	2.7		6.2 6.4	6.3	
				Surface	1	23.7 23.7	23.7	8.3 8.3	8.3	33.3 33.3	33.3	123.3 122.5	122.9	8.6 8.6	8.6	8.3	0.6 0.7	0.7		5.2 5.4	5.3	
G1	Cloudy	Calm	11:26	Middle	4	22.8 22.8	22.8	8.3 8.3	8.3	33.6 33.6	33.6	113.7 111.0	112.4	8.1 7.9	8.0		1.0	1.0	1.0	5.2 5.5	5.4	5.5
				Bottom	7	22.8 22.7	22.8	8.2 8.2	8.2	33.7 33.8	33.8	104.3 102.1	103.2	7.4 7.3	7.4	7.4	1.1 1.2	1.2		5.7 5.9	5.8	
				Surface	1	23.1 23.3	23.2	8.3 8.3	8.3	33.5 33.5	33.5	118.9 121.0	120.0	8.4 8.5	8.5	8.2	0.8	0.8		4.3 4.4	4.4	
G2	Cloudy	Calm	11:15	Middle	5	22.8	22.9	8.2 8.3	8.3	33.6 33.6	33.6	107.1 111.0	109.1	7.6 7.9	7.8		1.0 0.8	0.9	1.0	3.0 3.9	3.5	4.4
				Bottom	9	22.7 22.7	22.7	8.2 8.2	8.2	33.8 33.8	33.8	100.2 99.9	100.1	7.1 7.1	7.1	7.1	1.3 1.2	1.3		5.2 5.4	5.3	<u> </u>
				Surface	1	23.4 23.6	23.5	8.3 8.3	8.3	33.4 33.3	33.4	129.1 131.6	130.4	9.1 9.2	9.2	8.9	0.7 0.7	0.7		3.2	3.3	
G3	Cloudy	Calm	11:32	Middle	4	23.0	23.0	8.3 8.3	8.3	33.5 33.5	33.5	121.3 122.1	121.7	8.6 8.6	8.6		0.8 0.8	0.8	0.9	4.0 4.1	4.1	3.8
				Bottom	7	22.7 22.7	22.7	8.2 8.3	8.3	33.6 33.6	33.6	108.1 109.6	108.9	7.7 7.8	7.8	7.8	1.3 1.2	1.3		4.0 3.9	4.0	
				Surface	1	23.5	23.7	8.3 8.3	8.3	33.3 33.1	33.2	121.3 119.1	120.2	8.5 8.3	8.4	8.1	0.5 0.6	0.6		3.4	3.5	
G4	Cloudy	Calm	11:41	Middle	4	22.9 22.9	22.9	8.3 8.2 8.2	8.3	33.5 33.5	33.5	110.3 105.7	108.0	7.8 7.5	7.7		0.9 1.0	1.0	1.5	5.6 5.7 6.3	5.7	5.2
				Bottom	7	22.6 22.6	22.6	8.2	8.2	33.9 33.9	33.9	98.7 97.8	98.3	7.0 7.0	7.0	7.0	3.0 2.7	2.9		6.2	6.3	
				Surface	1	23.7	23.7	8.3 8.3 8.3	8.3	33.4 33.3	33.4	124.4 123.2	123.8	8.7 8.6	8.7	8.4	0.6	0.7		3.3 3.4 4.0	3.4	
M1	Cloudy	Calm	11:22	Middle	3	22.9 23.0 22.9	23.0	8.3 8.3	8.3	33.6 33.6 33.6	33.6	112.0 114.0 109.5	113.0	7.9 8.1 7.8	8.0		1.2 1.2 1.3	1.2	1.1	4.0 4.0 4.5	4.0	4.0
				Bottom	5	22.9	22.9	8.3 8.2	8.3	33.6 33.6	33.6	110.5 105.8	110.0	7.8	7.8	7.8	1.4	1.4		4.9 5.2	4.7	
				Surface	1	22.9	23.0	8.2 8.2	8.2	33.6 33.6	33.6	105.6 105.7 102.9	105.8	7.5 7.5 7.3	7.5	7.5	0.9	0.9		5.2 5.2	5.2	l
M2	Cloudy	Calm	11:10	Middle	6	22.8 22.6	22.8	8.2 8.2	8.2	33.6 33.9	33.6	103.6	103.3	7.4 7.0	7.4		1.1	1.1	1.3	3.7 5.7	3.7	4.9
				Bottom	11	22.6	22.6	8.2 8.3	8.2	33.9 33.4	33.9	97.6 127.7	98.0	6.9 9.0	7.0	7.0	2.1	2.0		5.7 5.6	5.7	
				Surface	1	23.7	23.5	8.3 8.3	8.3	33.2 33.5	33.3	130.1	128.9	9.1 8.2	9.1	8.7	0.8	0.8	1	5.6 5.7	5.6	
M3	Cloudy	Calm	11:36	Middle	4	22.9 22.6	23.0	8.3 8.2	8.3	33.5 33.7	33.5	114.7 99.4	115.4	8.1 7.1	8.2		1.1	1.1	1.2	5.6 4.3	5.7	5.2
				Bottom	7	22.6	22.6	8.2 8.2	8.2	33.6 33.6	33.7	100.0	99.7	7.1 7.2	7.1	7.1	1.8	1.8		4.3 5.2	4.3	
				Surface	1	22.9 22.6	23.0	8.2 8.2	8.2	33.7 33.8	33.7	103.4	102.5	7.2 7.3 7.0	7.3	7.2	1.5	1.5		5.1 5.7	5.2	l
M4	Cloudy	Calm	11:03	Middle	5	22.6 22.6	22.6	8.2 8.2	8.2	33.8 33.8	33.8	98.4 98.1	98.5	7.0 7.0	7.0		2.1	2.2	2.0	5.7 6.8	5.7	5.9
				Bottom	9	22.6	22.6	8.2 8.2	8.2	33.8 33.5	33.8	98.1	98.1	7.0	7.0	7.0	2.4	2.4		6.6 5.3	6.7	
145	01- 1	0-1	44.54	Surface	1	23.4	23.4	8.2 8.2	8.2	33.5 33.6	33.5	107.6 104.8	108.9	7.6 7.4	7.7	7.6	0.9	0.9		5.4 5.2	5.4	F.0
M5	Cloudy	Calm	11:54	Middle	5.5	22.8	22.8	8.2 8.2	8.2	33.6 33.7	33.6	103.9	104.4	7.4 7.0	7.4	7.0	1.3	1.3	1.4	5.1 5.1	5.2	5.2
				Bottom	10	22.7	22.7	8.2	8.2	33.7	33.7	98.4	98.6	7.0	7.0	7.0	2.1	2.1		5.1	5.1	
MG	Claudi	Colm	11.40	Surface	-	22.9	- 22.0	8.2	- 0.0	33.5		102.1	100.1	7.2	7.0	7.2	1.1	- 11		4.9	- 40	4.0
M6	Cloudy	Calm	11:48	Middle	2	22.9	22.9	8.2	8.2	33.5	33.5	102.0	102.1	7.2	7.2		1.1	1.1	1.1	4.7	4.8	4.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 14 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 5.5 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>
	Stations G1-G4	4, M1-M5	T
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 April 2018

1	Weather	Sea	Sampling	Б.	M- ()	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.2 23.1	23.2	8.2 8.2	8.2	33.3 33.4	33.4	98.5 97.7	98.1	7.0 6.9	7.0		1.2 1.3	1.3		5.2 5.4	5.3	
C1	Cloudy	Calm	17:05	Middle	10	22.7 22.7	22.7	8.2 8.2 8.2	8.2	33.4 33.9 33.8	33.9	99.3 97.8	98.6	7.1 7.0	7.1	7.1	2.0 1.9	2.0	2.6	3.0	3.0	4.6
				Bottom	19	22.5 22.5	22.5	8.2 8.2	8.2	34.0 34.0	34.0	96.2 96.2	96.2	6.8	6.8	6.8	4.6 4.6	4.6		5.4 5.6	5.5	
				Surface	1	23.4 23.4	23.4	8.1 8.1	8.1	33.0 33.1	33.1	93.6 96.4	95.0	6.6 6.8	6.7	0.7	1.5 1.6	1.6		3.7 3.8	3.8	
C2	Cloudy	Calm	16:07	Middle	17	23.0 23.4	23.2	8.1 8.1	8.1	33.4 33.1	33.3	92.5 96.5	94.5	6.6 6.8	6.7	6.7	2.1 1.9	2.0	1.9	6.3 6.5	6.4	5.0
				Bottom	33	23.0 23.3	23.2	8.2 8.2	8.2	33.4 33.2	33.3	92.2 96.1	94.2	6.5 6.8	6.7	6.7	2.1 1.9	2.0		5.0 4.8	4.9	
				Surface	1	23.7 23.8	23.8	8.3 8.3	8.3	33.4 33.4	33.4	131.3 135.2	133.3	9.2 9.4	9.3	9.1	0.8 0.7	0.8		5.6 5.8	5.7	
G1	Cloudy	Calm	16:34	Middle	4	23.5 23.5	23.5	8.3 8.3	8.3	33.4 33.4	33.4	126.1 127.1	126.6	8.9 8.9	8.9		0.9 0.8	0.9	1.0	4.1 4.2	4.2	4.3
				Bottom	7	23.0	23.0	8.3 8.3	8.3	33.5 33.5 33.4	33.5	115.3 119.6	117.5	8.2 8.5	8.4	8.4	1.2 1.2	1.2		3.0 3.0	3.0	
				Surface	1	23.5 23.6 23.3	23.6	8.3 8.3 8.3	8.3	33.4 33.4 33.5	33.4	129.3 130.9 125.5	130.1	9.1 9.2 8.8	9.2	9.1	0.9 0.9 1.4	0.9		5.2 5.1 4.6	5.2	
G2	Cloudy	Calm	16:25	Middle	5	23.3 22.7	23.3	8.3 8.2	8.3	33.5 33.7	33.5	125.8 103.8	125.7	8.9 7.4	8.9		1.3	1.4	1.3	4.6 4.6 6.4	4.6	5.4
				Bottom	9	22.7	22.7	8.3 8.4	8.3	33.6 33.1	33.7	110.3 139.4	107.1	7.8	7.6	7.6	1.6	1.6		6.4	6.4	
				Surface	1	24.2	24.2	8.4 8.3	8.4	33.2	33.2	143.4	141.4	10.0	9.9	9.6	0.8	0.8		3.4	3.5	
G3	Cloudy	Calm	16:39	Middle Bottom	7	23.5	23.5	8.3 8.3	8.3	33.3 33.5	33.3 33.5	133.2 119.8	132.4	9.3 8.5	9.3	8.5	0.8	0.9	0.9	3.6 5.1	3.6 5.1	4.1
				Surface	1	23.0 23.5	23.5	8.3 8.3	8.3	33.5 33.5	33.5	118.2 126.9	127.1	8.4 8.9	8.9	6.5	1.1 0.7	0.8		5.0 4.3	4.3	
G4	Cloudy	Calm	16:49	Middle	4	23.5 23.4	23.4	8.3 8.3	8.3	33.5 33.5	33.5	127.2 126.7	127.1	8.9 8.9	8.8	8.9	0.8	0.0	1.1	4.3 2.9	2.9	4.1
G.	Oloudy	Odilli	10.43	Bottom	7	23.4 23.1	23.1	8.3 8.3	8.3	33.5 33.6	33.6	124.2 111.7	111.5	8.7 7.9	7.9	7.9	0.9 1.7	1.7	1.1	2.8 5.0	5.0	7.1
				Surface	1	23.0 23.9	23.9	8.2 8.3	8.3	33.6 33.4	33.4	111.3 135.5	136.2	7.9 9.5	9.5		1.6 0.9	1.0		4.9 5.7	5.7	
M1	Cloudy	Calm	16:30	Middle	3	23.9	23.7	8.3 8.3	8.3	33.4 33.4	33.4	136.9 133.8	134.1	9.5 9.4 9.4	9.4	9.5	0.9	0.9	1.1	5.7 3.6	3.5	4.5
				Bottom	5	23.7 23.4 23.5	23.5	8.3 8.3 8.3	8.3	33.4 33.4 33.4	33.4	134.4 128.6 127.5	128.1	9.4 9.0 9.0	9.0	9.0	0.8 1.3 1.4	1.4		3.4 4.2 4.2	4.2	
				Surface	1	23.5	23.5	8.3 8.3	8.3	33.5 33.5	33.5	127.0 128.9	128.0	8.9 9.0	9.0		0.8	0.8		5.0 5.0	5.0	
M2	Cloudy	Calm	16:20	Middle	6	23.2 23.3	23.3	8.3 8.3	8.3	33.5 33.5	33.5	120.3 123.9	122.1	8.5 8.7	8.6	8.8	1.0	1.0	1.2	5.7 5.7	5.7	5.2
				Bottom	11	22.7 22.7	22.7	8.3 8.3	8.3	33.8 33.8	33.8	105.2 103.7	104.5	7.5 7.4	7.5	7.5	1.6 1.8	1.7		4.9 4.7	4.8	
				Surface	1	24.1 24.1	24.1	8.3 8.3	8.3	33.1 33.2	33.2	140.8 142.1	141.5	9.8 9.9	9.9	9.6	1.1 0.9	1.0		5.4 5.4	5.4	
M3	Cloudy	Calm	16:43	Middle	4	23.5 23.5	23.5	8.3 8.3	8.3	33.3 33.3	33.3	130.7 130.5	130.6	9.2 9.2	9.2	3.0	1.1 1.2	1.2	1.1	7.4 7.7	7.6	5.7
				Bottom	7	23.0 23.0	23.0	8.3 8.3	8.3	33.5 33.5	33.5	120.7 120.5	120.6	8.5 8.5	8.5	8.5	1.0 1.0	1.0		4.1 4.1	4.1	
				Surface	1	23.8 23.9	23.9	8.3 8.3	8.3	33.5 33.5	33.5	136.6 136.4	136.5	9.5 9.5	9.5	9.1	0.7 0.8	0.8		5.6 5.9	5.8	
M4	Cloudy	Calm	16:14	Middle	5	23.1	23.1	8.3 8.3	8.3	33.5 33.5	33.5	120.4 122.1	121.3	8.5 8.6	8.6		0.8	0.8	0.9	4.8 4.7	4.8	5.5
				Bottom	9	22.9 22.9	22.9	8.2 8.2	8.2	33.7 33.6	33.7	106.1 108.2	107.2	7.5 7.7	7.6	7.6	1.1	1.1		5.9 5.9	5.9	
				Surface	1	23.2 23.2 23.1	23.2	8.2 8.2 8.2	8.2	33.3 33.3 33.4	33.3	103.1 101.0 100.2	102.1	7.3 7.1 7.1	7.2	7.2	1.3 1.2 1.2	1.3		4.8 5.1 4.6	5.0	
M5	Cloudy	Calm	16:59	Middle	5.5	23.0	23.1	8.2 8.2	8.2	33.4 33.5	33.4	99.5 98.9	99.9	7.0 7.0	7.1		1.2	1.2	1.6	4.7 5.0	4.7	4.9
				Bottom	10	22.9	22.9	8.2	8.2	33.5	33.5	98.5	98.7	7.0	7.0	7.0	2.2	2.4		5.0	5.0	
Mo	Cleviti	Oct	10:54	Surface	-	23.4	- 00.4	8.3	-	33.5		123.5	100.0	8.7	- 0.7	8.7	1.0	- 1.0	10	6.8	-	6.0
M6	Cloudy	Calm	16:54	Middle	2	23.4	23.4	8.3	8.3	33.5	33.5	124.0	123.8	8.7	8.7		1.0	1.0	1.0	6.7	6.8	6.8
			1	Bottom	l -	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 16 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1:1:		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Prote 2 and 1)		<u>C2: 3.1 NTU</u>	<u>C2: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		6.0 mg/L	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.2 mg/L</u>	<u>C2: 6.8 mg/L</u>
	<b>Stations M1-M</b>	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		C2: 6.2 mg/L	<u>C2: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.8 mg/L</u>	<u>C2: 8.5 mg/L</u>
	Station M6		
	Intake Level	8.3 mg/L	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 16 April 2018

Location	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl		Suspe	nded Solids	
Location	Condition	Condition**	Time	Depi	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA'
				Surface	1	22.8 22.8	22.8	8.4 8.4	8.4	33.5 33.5	33.5	88.8 88.9	88.9	6.3 6.3	6.3		2.8 3.0	2.9		3.9 3.9	3.9	
C1	Rainy	Calm	13:57	Middle	10	22.8 22.8	22.8	8.4	8.4	33.5 33.5	33.5	88.8 88.8	88.8	6.3 6.3	6.3	6.3	3.1 2.9	3.0	3.0	6.9	6.9	5.7
				Bottom	19	22.7	22.7	8.4 8.4 8.4	8.4	33.6 33.6	33.6	89.2 90.2	89.7	6.3	6.4	6.4	3.0	3.0		6.8 6.3 6.4	6.4	
				Surface	1	22.8	22.8	8.4	8.4	33.4	33.4	88.7	88.6	6.3	6.3		1.8	1.9		5.1	5.2	
C2	Rainy	Calm	12:33	Middle	17	22.8	22.8	8.3 8.3	8.3	33.3 33.4	33.4	88.4 88.4	88.3	6.3	6.3	6.3	2.1	2.1	2.2	5.2 4.4	4.4	5.
				Bottom	33	22.8 22.8 22.8	22.8	8.3 8.3 8.3	8.3	33.4 33.4 33.4	33.4	88.2 88.4 88.5	88.5	6.3 6.3 6.3	6.3	6.3	2.0 2.6 2.6	2.6		4.3 6.5 6.4	6.5	
				Surface	1	22.6	22.6	8.4	8.4	33.6	33.6	91.9	92.0	6.5	6.6		0.8	0.9		3.5	3.5	
G1	Rainy	Calm	13:08	Middle	3	22.6 22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6 33.7	33.7	92.1 92.2 92.5	92.4	6.6	6.6	6.6	0.9	0.9	0.9	3.4 8.2	8.2	5
				Bottom	5	22.6 22.7 22.7	22.7	8.4 8.4 8.4	8.4	33.7 33.7 33.7	33.7	93.2 93.5	93.4	6.6 6.6 6.7	6.7	6.7	0.8 1.0 0.9	1.0		8.1 5.0 5.1	5.1	
				Surface	1	22.6	22.6	8.4	8.4	33.7	33.7	93.5	93.2	6.7	6.7		1.4	1.4		4.8	4.9	
G2	Rainy	Calm	12:57	Middle	4.5	22.6	22.7	8.4	8.4	33.7 33.7	33.7	92.8 92.3	92.5	6.6	6.6	6.7	1.3	1.3	1.4	6.5	6.5	6.
				Bottom	8	22.6	22.7	8.4 8.4	8.4	33.7 33.8	33.8	92.6 91.3	91.2	6.6	6.5	6.5	1.3	1.5		6.4	6.6	
				Surface	1	22.7	22.7	8.4	8.4	33.8 33.6	33.6	91.1	91.0	6.5	6.5		1.5	1.7		6.7 5.5	5.5	
G3	Rainy	Calm	13:15	Middle	3.5	22.7	22.7	8.4 8.4	8.4	33.6 33.7	33.7	91.5 91.9	92.0	6.5	6.5	6.5	1.6	1.5	1.4	5.4	5.7	5
				Bottom	6	22.7	22.7	8.4 8.4	8.4	33.7 33.7	33.7	92.1 91.1	91.6	6.5	6.5	6.5	1.5	1.1		5.4 4.8 4.7	4.8	
				Surface	1	22.7	22.6	8.4 8.4	8.4	33.7 33.6	33.6	92.1 92.9	92.9	6.6	6.6		1.0	1.1		5.2	5.2	
G4	Rainy	Calm	13:28	Middle	4	22.6 22.6 22.6	22.6	8.4 8.4 8.4	8.4	33.6 33.6 33.6	33.6	92.8 92.5 92.7	92.6	6.6 6.6	6.6	6.6	1.0 1.2 1.1	1.2	1.2	5.2 5.5 5.4	5.5	5
				Bottom	7	22.6 22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	92.7 92.2 92.4	92.3	6.6	6.6	6.6	1.3	1.4		5.3 5.6	5.5	
				Surface	1	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6	33.6	93.1 92.3	92.7	6.6 6.6	6.6		1.3	1.4		5.7 5.9	5.8	
M1	Rainy	Calm	13:03	Middle	3	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	93.5 93.3	93.4	6.7	6.7	6.7	1.2	1.2	1.3	4.4 4.4	4.4	5
				Bottom	5	22.7 22.7	22.7	8.4 8.4	8.4	33.7 33.7	33.7	93.0 93.1	93.1	6.6 6.6	6.6	6.6	1.2	1.3		5.3 5.3	5.3	
				Surface	1	22.6 22.7	22.7	8.4 8.4	8.4	33.7 33.7	33.7	94.0 92.9	93.5	6.7 6.6	6.7		1.0	1.0		4.9 4.7	4.8	
M2	Rainy	Calm	12:50	Middle	5.5	22.7 22.7	22.7	8.4 8.4	8.4	33.7 33.7	33.7	92.0 91.6	91.8	6.5 6.5	6.5	6.6	1.3	1.2	1.3	4.9 4.6	4.8	5
				Bottom	10	22.7	22.7	8.4 8.4	8.4	33.8 33.8	33.8	90.2	90.5	6.4	6.4	6.4	1.7	1.7		6.1	6.2	
				Surface	1	22.7	22.7	8.4 8.4	8.4	33.1 33.3	33.2	88.1 89.1	88.6	6.3 6.3	6.3		1.1	1.1		4.0 4.3	4.2	
МЗ	Rainy	Calm	13:19	Middle	3	22.7 22.7	22.7	8.4 8.4	8.4	33.3 33.7	33.5	88.2 92.0	90.1	6.3 6.5	6.4	6.4	1.0	1.0	1.2	3.5 3.6	3.6	4
				Bottom	5	22.7 22.8	22.8	8.4 8.4	8.4	33.8 33.8	33.8	90.7 88.1	89.4	6.4 6.3	6.4	6.4	1.6 1.6	1.6	L	4.0 4.2	4.1	
				Surface	1	22.7 22.7	22.7	8.4 8.4	8.4	33.6 33.6	33.6	91.5 91.1	91.3	6.5 6.5	6.5	6.5	1.6	1.7		5.5 5.6	5.6	
M4	Rainy	Calm	12:40	Middle	5.5	22.7 22.7	22.7	8.4 8.4	8.4	33.7 33.6	33.7	91.3 90.7	91.0	6.5 6.4	6.5	0.0	2.2	2.2	2.1	6.5 6.4	6.5	6
				Bottom	10	22.7 22.7	22.7	8.4 8.4	8.4	33.8 33.7	33.8	91.2 90.6	90.9	6.5 6.4	6.5	6.5	2.5 2.5	2.5		6.5 6.6	6.6	
				Surface	1	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6	33.6	94.2 93.9	94.1	6.7 6.7	6.7	6.7	1.1 1.0	1.1		4.8 4.8	4.8	
M5	Rainy	Calm	13:46	Middle	5	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	94.2 93.9	94.1	6.7 6.7	6.7	0.7	0.9 1.0	1.0	1.0	5.5 5.7	5.6	5
				Bottom	9	22.7 22.6	22.7	8.4 8.4	8.4	33.8 33.7	33.8	93.5 94.0	93.8	6.6 6.7	6.7	6.7	0.9 0.9	0.9		5.5 5.5	5.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
M6	Rainy	Calm	13:37	Middle	2	22.7 22.7	22.7	8.4 8.4	8.4	33.8 33.8	33.8	89.9 89.8	89.9	6.4 6.4	6.4	5.4	2.1 2.1	2.1	2.1	6.4 6.4	6.4	6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 16 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 2.6 NTU</u>	<u>C1: 2.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.1 mg/L</u>	<u>C1: 6.6 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.1 mg/L</u>	<u>C1: 6.6 mg/L</u>
	Stations G1-G4	4, M1-M5	T
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.6 mg/L</u>	<u>C1: 8.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 16 April 2018

1	Weather	Sea	Sampling	Б.	M- ()	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.6 22.7	22.7	8.4 8.4	8.4	33.5 33.5	33.5	90.5 89.9	90.2	6.4 6.4	6.4		1.6 1.7	1.7		5.1 5.0	5.1	
C1	Rainy	Calm	18:54	Middle	10	22.7 22.7 22.7	22.7	8.4 8.4 8.4	8.4	33.5 33.6	33.6	90.1 89.7	89.9	6.4 6.4	6.4	6.4	1.7 1.7 1.6	1.7	1.9	4.9 5.1	5.0	5.5
				Bottom	19	22.7	22.7	8.4 8.4	8.4	33.6 33.6	33.6	91.6 90.8	91.2	6.5 6.5	6.5	6.5	2.2	2.2		6.2 6.4	6.3	
				Surface	1	22.7 22.8	22.8	8.3 8.3	8.3	33.3 33.3	33.3	86.6 86.5	86.6	6.2 6.2	6.2	6.2	1.7 2.0	1.9		5.6 5.3	5.5	
C2	Rainy	Calm	17:39	Middle	17	22.8 22.8	22.8	8.3 8.3	8.3	33.4 33.4	33.4	86.4 86.9	86.7	6.1 6.2	6.2	0.2	1.9 2.2	2.1	2.1	6.4 6.1	6.3	5.9
				Bottom	33	22.8 22.7	22.8	8.3 8.4	8.4	33.5 33.6	33.6	87.9 89.3	88.6	6.2 6.3	6.3	6.3	2.4 2.4	2.4		6.0 6.0	6.0	
				Surface	1	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	92.7 92.4	92.6	6.6 6.6	6.6	6.6	1.1 1.1	1.1		4.2 4.3	4.3	
G1	Rainy	Calm	18:14	Middle	3.5	22.6 22.6 22.7	22.6	8.4 8.4 8.4	8.4	33.7 33.7 33.7	33.7	92.3 92.3 91.9	92.3	6.6 6.6	6.6		1.0	1.1	1.1	4.7 4.8 6.8	4.8	5.3
				Bottom	6	22.6	22.7	8.4	8.4	33.7 33.7 33.7	33.7	92.1	92.0	6.5 6.6	6.6	6.6	1.2	1.2		6.8	6.8	
				Surface	1	22.6 22.6 22.6	22.6	8.4 8.4 8.4	8.4	33.7 33.6 33.7	33.7	93.1 92.8 92.7	93.0	6.6 6.6 6.6	6.6	6.6	0.8 0.8 0.9	8.0		5.9 5.9 4.2	5.9	
G2	Rainy	Calm	18:03	Middle	4	22.6 22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	92.7 92.5 92.7	92.6	6.6 6.6	6.6		0.8	0.9	8.0	4.1 4.1	4.2	4.7
			l	Bottom	7	22.6	22.6	8.4 8.4	8.4	33.7 33.6	33.7	92.6 90.7	92.7	6.6	6.6	6.6	0.7	0.8		4.1	4.1	
				Surface	1	22.7	22.7	8.4 8.4	8.4	33.7 33.7	33.7	89.9 90.6	90.3	6.4 6.4	6.5	6.5	2.1	2.2		5.1 6.1	5.1	
G3	Rainy	Calm	18:19	Middle Bottom	3.5 6	22.7 22.7	22.7	8.4 8.4	8.4	33.8	33.8	90.1	90.4	6.4	6.4	6.4	2.2	2.1	2.2	6.1	6.1	5.9
				Surface	1	22.7 22.4	22.4	8.4 8.4	8.4	33.8 33.4	33.4	90.6 87.4	87.4	6.4 6.3	6.3	0.4	2.5 1.0	1.0		6.5 4.5	4.5	
G4	Rainy	Calm	18:31	Middle	4	22.4 22.6	22.6	8.4 8.4	8.4	33.4 33.6	33.6	87.3 92.3	92.0	6.2 6.6	6.6	6.5	0.9 1.1	1.1	1.5	4.5 5.8	5.9	4.2
4	riany	Odilli	10.01	Bottom	7	22.5 22.7	22.7	8.4 8.4	8.4	33.6 33.8	33.8	91.7 90.4	90.4	6.5 6.4	6.4	6.4	1.1 2.3	2.3	1.5	5.9 2.1	2.1	7.2
				Surface	1	22.7 22.6	22.6	8.4 8.4	8.4	33.8 33.7	33.7	90.3 92.1	92.2	6.4	6.6		2.3 1.2	1.2		2.1 4.2	4.2	
M1	Rainy	Calm	18:09	Middle	3.5	22.6 22.6	22.7	8.4 8.4	8.4	33.7 33.7	33.7	92.2 92.3	92.5	6.6	6.6	6.6	1.2	1.4	1.4	2.6	2.6	4.2
				Bottom	6	22.7 22.7 22.6	22.7	8.4 8.4 8.4	8.4	33.7 33.7 33.7	33.7	92.6 92.4 92.1	92.3	6.6 6.6 6.6	6.6	6.6	1.5 1.7 1.7	1.7		2.6 5.7 5.7	5.7	
				Surface	1	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6	33.6	93.8 93.1	93.5	6.7 6.6	6.7		0.9 0.8	0.9		5.5 5.2	5.4	
M2	Rainy	Calm	17:57	Middle	5.5	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	92.9 92.7	92.8	6.6 6.6	6.6	6.7	0.9 0.8	0.9	1.3	3.7 3.7	3.7	4.5
				Bottom	10	22.7 22.7	22.7	8.4 8.4	8.4	33.8 33.8	33.8	92.0 92.0	92.0	6.5 6.5	6.5	6.5	2.0 2.0	2.0		4.3 4.2	4.3	
				Surface	1	22.7 22.7	22.7	8.4 8.4	8.4	33.6 33.6	33.6	92.2 91.3	91.8	6.6 6.5	6.6	6.6	1.2 1.2	1.2		5.6 5.7	5.7	
МЗ	Rainy	Calm	18:25	Middle	3	22.7 22.7	22.7	8.4 8.4	8.4	33.6 33.7	33.7	91.8 90.8	91.3	6.5 6.5	6.5	0.0	1.2 1.5	1.4	1.4	7.0 6.9	7.0	6.0
				Bottom	5	22.7 22.7	22.7	8.4 8.4	8.4	33.8 33.7	33.8	89.2 90.4	89.8	6.3 6.4	6.4	6.4	1.5 1.4	1.5		5.2 5.2	5.2	
				Surface	1	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6	33.6	93.9 93.7	93.8	6.7 6.7	6.7	6.7	1.1	1.1		4.8 4.7	4.8	
M4	Rainy	Calm	17:46	Middle	5.5	22.6 22.6 22.6	22.6	8.4 8.4 8.4	8.4	33.7 33.7 33.7	33.7	93.6 93.5 93.2	93.6	6.7 6.7 6.6	6.7		1.2 1.1 1.3	1.2	1.2	5.0 4.7 4.7	4.9	4.8
				Bottom	10	22.6 22.7	22.6	8.4 8.4 8.4	8.4	33.7 33.7 33.4	33.7	93.2 93.3 88.1	93.3	6.6 6.3	6.6	6.6	1.3	1.3		4.7 4.7 4.1	4.7	
				Surface	1	22.7 22.7 22.7	22.7	8.4 8.4	8.4	33.4 33.5	33.4	87.7 88.0	87.9	6.2 6.3	6.3	6.3	2.5 2.3 2.5	2.4		4.1 4.9 5.2	4.5	
M5	Rainy	Calm	18:47	Middle	6.5	22.7	22.7	8.4 8.4	8.4	33.5 33.6	33.5	87.7 88.8	87.9	6.2 6.3	6.3		2.4	2.5	2.4	5.7 4.9	5.5	4.8
				Bottom	12	22.7	22.7	8.4	8.4	33.6	33.6	89.1	89.0	6.3	6.3	6.3	2.3	2.4		4.1	4.5	
M6	Pains	Colm	10:26	Surface	- 2.1	22.6	22.6	8.4	9.4	33.5	33.5	90.1	90.1	6.4	6.4	6.4	1.9	1.9	1.0	8.0	7.0	7.0
IVIO	Rainy	Calm	18:36	Middle Bottom	2.1	22.6	22.6	8.4	8.4	33.5	33.5	90.1	90.1	6.4	0.4	_	1.8	1.9	1.9	7.7	7.9	7.9
	I		l	DULLUITI	l -	-	_	-	1 -	-	1 -	-	1 -	l -	1 -	_	-	1 -		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 18 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 3.1 NTU</u>	<u>C2: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.1 mg/L	<u>C2: 6.6 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9 mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.6 mg/L	<u>C2: 7.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 18 April 2018

Land	Weather	Sea	Sampling		4h ()	Temnera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.7 22.7	22.7	8.3 8.3	8.3	33.6 33.5	33.6	89.9 88.6	89.3	6.4 6.3	6.4		1.7 1.7	1.7		4.4 4.5	4.5	
C1	Sunny	Calm	13:54	Middle	9.5	22.7	22.7	8.4 8.4	8.4	33.6 33.6	33.6	88.6 88.6	88.6	6.3 6.3	6.3	6.4	1.8	1.9	1.9	5.2 5.1	5.2	4.8
				Bottom	18	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.6	33.6	88.2 88.2	88.2	6.3 6.3	6.3	6.3	2.0	2.0		4.8 4.8	4.8	
				Surface	1	22.7 22.7	22.7	8.3 8.3	8.3	33.4 33.4	33.4	87.2 87.2	87.2	6.2 6.2	6.2	6.2	1.8 1.7	1.8		5.1 5.0	5.1	
C2	Sunny	Calm	13:05	Middle	16.5	22.7 22.7	22.7	8.3 8.3	8.3	33.5 33.5	33.5	86.4 86.7	86.6	6.1 6.2	6.2	0.2	2.2 2.0	2.1	2.2	5.0 5.0	5.0	5.2
				Bottom	32	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.6	86.4 87.1	86.8	6.2 6.2	6.2	6.2	2.6 2.5	2.6		5.4 5.5	5.5	
				Surface	1	22.7 22.7	22.7	8.3 8.3 8.3	8.3	33.4 33.4 33.6	33.4	89.4 88.2	88.8	6.4 6.3	6.4	6.4	0.8 0.7 1.9	0.8		5.5 5.5 2.6	5.5	
G1	Sunny	Calm	13:28	Middle	4.5	22.6 22.6 22.6	22.6	8.3 8.4	8.3	33.6 33.7 33.8	33.7	88.4 87.7 90.3	88.1	6.3 6.2 6.4	6.3		2.1 2.5	2.0	1.8	2.6 2.6 3.3	2.6	3.8
		l	l	Bottom	8	22.6	22.6	8.4 8.3	8.4	33.8	33.8	90.2	90.3	6.4	6.4	6.4	2.4	2.5		3.3	3.3	
				Surface	1	22.7 22.6	22.7	8.3 8.3	8.3	33.5 33.6	33.5	88.3 88.5	88.4	6.3 6.3	6.3	6.3	1.0	1.0		4.0 4.8	4.0	
G2	Sunny	Calm	13:21	Middle	5	22.6 22.6	22.6	8.3 8.4	8.3	33.6 33.7	33.6	88.4 90.6	88.5	6.3 6.4	6.3		1.1	1.1	1.3	4.8	4.8	4.5
	<del> </del>	<u> </u>		Bottom	9	22.6	22.6	8.4 8.3	8.4	33.7 33.3	33.7	90.2 87.5	90.4	6.4	6.4	6.4	1.8	1.8		4.6 5.1	4.7	
G3	Cummi:	Colm	10,00	Surface	1	22.8	22.8	8.3 8.3	8.3	33.3 33.4	33.3	85.8 86.5	86.7	6.1	6.2	6.2	1.6	1.6	1.7	5.1	5.1	4.0
us	Sunny	Calm	13:32	Middle Bottom	7	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.5	85.4 85.8	86.0 85.6	6.1 6.1	6.1	6.1	1.5 1.9	2.0	1.7	4.1 2.9	2.9	4.0
				Surface	1	22.6 22.7	22.7	8.3 8.3	8.3	33.6 33.5	33.5	85.3 86.4	86.4	6.1	6.2	0.1	2.0 1.9	2.0		2.9 3.3	3.2	
G4	Sunny	Calm	13:39	Middle	4.5	22.7 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.5	86.3 86.4	86.4	6.1	6.2	6.2	0.7	0.7	1.7	3.1 4.4	4.5	3.6
	,			Bottom	8	22.6 22.6 22.6	22.6	8.3 8.3 8.3	8.3	33.5 33.7 33.7	33.7	86.3 87.0 86.0	86.5	6.2 6.2 6.1	6.2	6.2	0.7 2.5 2.5	2.5		4.5 3.2 3.2	3.2	
				Surface	1	22.6 22.7	22.7	8.3 8.3	8.3	33.5 33.5	33.5	88.2 86.3	87.3	6.3	6.2		1.4	1.4		5.0 5.2	5.1	
M1	Sunny	Calm	13:24	Middle	3	22.6 22.6	22.6	8.3 8.3	8.3	33.6 33.6	33.6	87.6 87.3	87.5	6.2 6.2	6.2	6.2	2.3	2.3	2.2	6.6 6.6	6.6	5.7
				Bottom	5	22.6 22.6	22.6	8.4 8.3	8.4	33.7 33.7	33.7	87.8 87.4	87.6	6.2 6.2	6.2	6.2	2.9 2.7	2.8		5.4 5.3	5.4	
				Surface	1	22.6 22.6	22.6	8.3 8.4	8.4	33.5 33.5	33.5	89.3 89.5	89.4	6.4 6.4	6.4	6.4	1.6 1.6	1.6		4.6 4.7	4.7	
M2	Sunny	Calm	13:16	Middle	6	22.6 22.6	22.6	8.4 8.3	8.4	33.6 33.6	33.6	89.8 89.4	89.6	6.4 6.4	6.4	0.1	1.5 1.5	1.5	1.9	2.6 2.4	2.5	3.7
				Bottom	11	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	90.3 90.0	90.2	6.4 6.4	6.4	6.4	2.6 2.4	2.5		3.8 3.8	3.8	
				Surface	1	22.7 22.7	22.7	8.3 8.3	8.3	33.4 33.4	33.4	83.5 84.4	84.0	5.9 6.0	6.0	6.1	1.2	1.3		4.9 5.0	5.0	
МЗ	Sunny	Calm	13:35	Middle	4	22.6 22.6 22.6	22.6	8.3 8.3 8.3	8.3	33.5 33.5 33.6	33.5	85.6 84.8 85.1	85.2	6.1 6.0 6.1	6.1		1.5 1.5 1.1	1.5	1.3	3.4 3.2 4.6	3.3	4.3
				Bottom	7	22.6 22.6 22.6	22.6	8.3 8.3	8.3	33.6 33.6	33.6	83.7 90.5	84.4	6.0	6.1	6.1	1.2	1.2		4.6 4.7 4.8	4.7	
				Surface	1	22.6 22.7 22.6	22.7	8.4 8.4	8.4	33.6 33.6	33.6	88.6 89.1	89.6	6.3 6.3	6.4	6.4	2.5 2.5	2.4		4.7 3.6	4.8	
M4	Sunny	Calm	13:11	Middle	5	22.6 22.6	22.6	8.4 8.4	8.4	33.6 33.7	33.6	88.5 89.6	88.8	6.3	6.3	0.4	2.8	2.7	2.7	3.7 5.2	3.7	4.6
				Bottom	9	22.6 22.7	22.6	8.4 8.3	8.4	33.7	33.7 33.6	89.6 87.9	89.6 88.4	6.4	6.4	6.4	3.1	2.9 1.9		5.4	5.3	
M5	Sunny	Calm	13:49	Middle	6	22.7 22.6	22.7	8.4 8.4	8.4	33.6 33.7	33.6	88.8 89.8	90.2	6.3 6.4	6.4	6.4	1.9	1.9	2.0	5.6 5.5	5.5	5.6
IVIJ	Julily	Odiiii	10.43	Bottom	11	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.8	33.8	90.5 90.9	91.0	6.4 6.5	6.5	6.5	1.8 2.5	2.4	2.0	5.5 5.4	5.4	5.0
				Surface	-	22.6	-	8.4	-	33.8	-	91.1	-	6.5	-	5.5	2.2	-		5.3	-	
M6	Sunny	Calm	13:44	Middle	2.1	22.7	22.7	8.3	8.3	33.5	33.5	89.3	89.2	6.4	6.4	6.4	0.8	0.9	0.9	6.7	6.6	6.6
				Bottom	-	22.7	-	8.3	-	33.5	-	89.0	-	6.3	-	-	0.9	-		6.4	-	
	1					-		-	1	-	1	-	1	-	l		-	1		-		

Appendix I - Action and Limit Levels for Marine Water Quality on 18 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	4.9 mg/L	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 3.4 NTU</u>	<u>C1: 3.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.3 mg/L</u>	<u>C1: 7.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 18 April 2018

1	Weather	Sea	Sampling	-	4h ()	Temper	ature (°C)	r	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.6 22.6	22.6	8.3 8.4	8.4	33.6 33.5	33.6	86.9 87.1	87.0	6.2 6.2	6.2		2.2 2.0	2.1		5.0 4.9	5.0	
C1	Sunny	Calm	08:00	Middle	9	22.6 22.5	22.6	8.4 8.4 8.4	8.4	33.5 33.7 33.7	33.7	89.9 89.5	89.7	6.4 6.4	6.4	6.3	2.3	2.3	2.4	6.0 6.1	6.1	5.7
				Bottom	17	22.6 22.6	22.6	8.4 8.4	8.4	33.9 33.9	33.9	93.4 93.4	93.4	6.6 6.6	6.6	6.6	2.8	2.8		6.2	6.1	
				Surface	1	22.6 22.6	22.6	8.3 8.3	8.3	33.6 33.4	33.5	89.2 85.9	87.6	6.4 6.1	6.3	6.3	1.3 1.3	1.3		5.8 5.6	5.7	
C2	Sunny	Calm	07:02	Middle	16.5	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.5	87.3 86.8	87.1	6.2 6.2	6.2	6.3	1.4 1.4	1.4	1.4	6.5 6.4	6.5	6.3
				Bottom	32	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.6	87.1 87.8	87.5	6.2 6.3	6.3	6.3	1.5 1.5	1.5		6.8 6.7	6.8	
				Surface	1	22.5 22.5	22.5	8.3 8.3	8.3	33.4 33.4	33.4	86.0 86.1	86.1	6.1 6.2	6.2	6.2	1.3 1.2	1.3		5.2 5.1	5.2	
G1	Sunny	Calm	07:30	Middle	4.5	22.5 22.5	22.5	8.3 8.3 8.3	8.3	33.5 33.5 33.6	33.5	85.9 85.8 87.0	85.9	6.1 6.1	6.1		1.4	1.4	1.4	6.0 5.9 4.7	6.0	5.3
				Bottom	8	22.6 22.6	22.6	8.3	8.3	33.6 33.4	33.6	86.9	87.0	6.2 6.2	6.2	6.2	1.5	1.5		4.5	4.6	
				Surface	1	22.4 22.4 22.5	22.4	8.3 8.3 8.3	8.3	33.4 33.4 33.4	33.4	86.5 86.4 86.6	86.5	6.2 6.2 6.2	6.2	6.2	1.0 1.0 1.1	1.0		4.5 4.4 4.1	4.5	
G2	Sunny	Calm	07:20	Middle	5	22.5	22.5	8.3	8.3	33.5	33.5	86.8	86.7	6.2	6.2		1.3	1.2	1.1	4.1	4.1	5.0
				Bottom	9	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.6	87.0 87.3	87.2	6.2 6.2	6.2	6.2	1.2 1.2	1.2		6.4 6.5	6.5	
				Surface	1	22.5 22.5	22.5	8.3 8.3	8.3	33.3 33.3	33.3	85.3 84.6	85.0	6.1 6.0	6.1	6.1	1.5	1.5		5.5 5.4	5.5	
G3	Sunny	Calm	07:34	Middle	4	22.6 22.6 22.6	22.6	8.3 8.3 8.3	8.3	33.5 33.5 33.6	33.5	84.7 84.4 84.8	84.6	6.0 6.0 6.0	6.0		1.7 1.6 1.9	1.7	1.7	6.8 6.7 6.1	6.8	6.1
				Bottom	7	22.6	22.6	8.4 8.3	8.4	33.7	33.7	86.9	85.9	6.2	6.1	6.1	1.8	1.9		6.1	6.1	
				Surface	1	22.5 22.5 22.5	22.5	8.3 8.3	8.3	33.5 33.5 33.5	33.5	85.8 85.4 85.2	85.6	6.1 6.1 6.1	6.1	6.2	0.9 1.1 1.0	1.0		5.6 5.7 5.5	5.7	
G4	Sunny	Calm	07:44	Middle	5	22.6 22.6	22.6	8.3 8.4	8.3	33.6 33.7	33.6	86.6 84.9	85.9	6.2	6.2		1.2	1.1	1.3	5.5 6.8	5.5	6.0
				Bottom	9	22.6	22.6	8.4 8.3	8.4	33.7 33.5	33.7	86.9 84.8	85.9	6.2	6.1	6.1	1.5	1.7		6.6 4.0	6.7	
M1	Sunny	Calm	07:25	Surface Middle	3	22.5 22.5	22.5	8.3 8.3	8.3 8.3	33.5 33.5	33.5 33.5	84.6 84.7	84.7 84.6	6.0 6.0	6.1	6.1	1.2	1.2	1.3	3.9 4.2	4.0	4.4
IVII	Suriny	Gaiii	07.25	Bottom	5	22.5 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.6	84.5 85.0	85.6	6.0 6.1	6.1	6.1	1.3 1.4	1.4	1.3	4.2 5.0	5.0	4.4
				Surface	1	22.6 22.6	22.6	8.3 8.3	8.3	33.6 33.5	33.5	86.1 88.6	88.0	6.1	6.3	0.1	1.2	1.4		5.0 3.7	3.7	
M2	Sunny	Calm	07:15	Middle	6	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.5	87.3 87.6	87.4	6.2	6.2	6.3	1.3	1.4	1.4	2.9	2.8	4.0
				Bottom	11	22.6 22.6 22.6	22.6	8.3 8.3 8.3	8.3	33.5 33.5	33.6	87.2 87.2 86.9	87.1	6.2 6.2	6.2	6.2	1.4	1.4		2.7 5.4 5.4	5.4	
				Surface	1	22.5 22.5 22.5	22.5	8.3 8.3	8.3	33.3 33.3	33.3	84.4 83.6	84.0	6.0 6.0	6.0		1.4	1.1		3.6 3.5	3.6	
МЗ	Sunny	Calm	07:38	Middle	4	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.5	83.3 82.9	83.1	5.9 5.9	5.9	6.0	1.1	1.1	1.2	8.6 8.2	8.4	5.4
				Bottom	7	22.6 22.6	22.6	8.3 8.3	8.3	33.7 33.6	33.7	82.1 81.9	82.0	5.8 5.8	5.8	5.8	1.3	1.3		4.3 4.2	4.3	
				Surface	1	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.6	87.8 88.2	88.0	6.3 6.3	6.3	6.3	1.5	1.6		5.1 4.9	5.0	
M4	Sunny	Calm	07:10	Middle	5	22.6 22.6	22.6	8.4 8.3	8.4	33.6 33.6	33.6	88.3 88.2	88.3	6.3 6.3	6.3	0.3	2.5 2.5	2.5	2.2	6.6 6.9	6.8	6.1
				Bottom	9	22.6 22.6	22.6	8.4 8.4	8.4	33.7 33.7	33.7	88.8 89.6	89.2	6.3 6.4	6.4	6.4	2.4 2.4	2.4		6.5 6.7	6.6	
				Surface	1	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.5	33.5	86.5 86.2	86.4	6.2 6.1	6.2	6.2	1.7 1.6	1.7		4.1 4.1	4.1	
M5	Sunny	Calm	07:54	Middle	6	22.6 22.6	22.6	8.3 8.3	8.3	33.5 33.6	33.6	85.8 85.5	85.7	6.1 6.1	6.1	-	1.9 1.9	1.9	2.0	5.9 5.9	5.9	5.0
				Bottom	11	22.5 22.5	22.5	8.4 8.4	8.4	33.7 33.8	33.8	88.9 91.7	90.3	6.3 6.5	6.4	6.4	2.4 2.3	2.4		5.1 5.0	5.1	
				Surface	-	22.6	-	8.3	-	33.5	-	- 87.9	-	6.3	-	6.3	1.4	-		7.8	-	
M6	Sunny	Calm	07:49	Middle	2.1	22.6	22.6	8.3	8.3	33.5	33.5	87.6 -	87.8	6.2	6.3		1.4	1.4	1.4	7.8	7.8	7.8
				Bottom	-	1 -	-	] [	-	] [	-	-	-	-	-	-	1 -	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 20 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 5.0 NTU</u>	<u>C2: 5.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.6 mg/L	<u>C2: 7.2 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9  mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.7 mg/L	<u>C2: 7.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 April 2018

1 "	Weather	Sea	Sampling	-	4h ()	Temners	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.8 22.8	22.8	7.9 7.9	7.9	33.4 33.4	33.4	88.8 86.7	87.8	6.3 6.2	6.3		2.6 2.7	2.7		5.1 5.1	5.1	
C1	Cloudy	Calm	15:50	Middle	9	22.8 22.8 22.8	22.8	7.9 7.9 7.9	7.9	33.4 33.4 33.4	33.4	86.9 86.8	86.9	6.2 6.2	6.2	6.3	2.8 3.0	2.9	3.5	4.9 5.0	5.0	4.8
				Bottom	17	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	88.0 87.6	87.8	6.3 6.2	6.3	6.3	4.8 4.9	4.9		4.3 4.3	4.3	
				Surface	1	22.9 22.9	22.9	7.9 7.9	7.9	33.2 33.2	33.2	87.1 86.0	86.6	6.2 6.1	6.2	6.2	3.1 3.0	3.1		5.4 5.5	5.5	
C2	Cloudy	Calm	14:33	Middle	16.5	22.8 22.8	22.8	7.9 7.9	7.9	33.3 33.4	33.4	85.4 85.5	85.5	6.1 6.1	6.1	0.2	5.7 5.7	5.7	4.3	5.2 5.3	5.3	5.5
				Bottom	32	22.8 22.8	22.8	7.9 7.9	7.9	33.4 33.4	33.4	85.5 85.4	85.5	6.1 6.1	6.1	6.1	4.2 4.2	4.2		5.5 5.6	5.6	
				Surface	1	23.0 23.0	23.0	7.9 7.9	7.9	33.4 33.4	33.4	91.5 90.5	91.0	6.5 6.4	6.5	6.4	1.0	1.0		3.5 3.5	3.5	
G1	Cloudy	Calm	15:10	Middle	4	22.8 22.8	22.8	7.9 7.9	7.9	33.5 33.5	33.5	88.8 88.8	88.8	6.3 6.3	6.3		1.9 1.7	1.8	1.5	2.7	2.8	4.2
				Bottom	7	22.7 22.7	22.7	7.9 7.9	7.9	33.6 33.6 33.4	33.6	87.6 88.2	87.9	6.2 6.3	6.3	6.3	1.8	1.8		6.3 6.2	6.3	
				Surface	1	22.9 22.9 22.8	22.9	7.9 7.9 7.9	7.9	33.4 33.4 33.5	33.4	92.1 91.3 89.4	91.7	6.5 6.5 6.4	6.5	6.5	1.2 1.2 2.5	1.2		5.5 5.5 5.3	5.5	
G2	Cloudy	Calm	14:59	Middle	5	22.8 22.7	22.8	7.9 7.9	7.9	33.5 33.6	33.5	89.6 87.9	89.5	6.4 6.3	6.4		2.3	2.4	2.3	5.2 5.6	5.3	5.5
				Bottom	9	22.7 22.7 22.9	22.7	7.9 7.9	7.9	33.6 32.6	33.6	88.2 85.7	88.1	6.3 6.1	6.3	6.3	3.1	3.2		5.7 4.1	5.7	
				Surface	1	22.8	22.9	7.9 7.9	7.9	33.3	33.0	84.5 88.0	85.1	6.0	6.1	6.1	2.2	2.5		4.2	4.2	
G3	Cloudy	Calm	15:17	Middle Bottom	7	22.8 22.8	22.9	7.9 7.9	7.9 7.9	33.4 33.6	33.5 33.6	83.2 87.1	85.6 86.5	5.9 6.2	6.1	6.2	3.3	3.4	3.1	5.4 3.5	5.4 3.5	4.4
				Surface	1	22.7 22.9	22.9	7.9 7.9	7.9	33.6 33.5	33.5	85.8 92.8	92.2	6.1 6.6	6.6	0.2	3.4 1.0	1.1		3.5 3.2	3.2	
G4	Cloudy	Calm	15:29	Middle	4.5	22.9 22.8	22.8	7.9 7.9	7.9	33.5 33.5	33.5	91.6 90.1	90.0	6.5 6.4	6.4	6.5	1.1	1.2	2.0	3.2 11.0	11.1	6.5
u+	Oloudy	Cairi	10.23	Bottom	8	22.8 22.8	22.8	7.9 7.9	7.9	33.5 33.6	33.6	89.9 82.6	84.1	6.4 5.9	6.0	6.0	1.3 3.9	3.7	2.0	11.1 5.1	5.2	0.5
				Surface	1	22.8 22.9	22.9	7.9 7.9	7.9	33.6 33.4	33.4	85.6 91.6	90.5	6.5	6.4		3.5 1.0	1.1		5.2 4.3	4.3	
M1	Cloudy	Calm	15:05	Middle	3	22.9 22.8	22.8	7.9 7.9	7.9	33.4 33.4	33.4	89.3 88.7	88.8	6.3	6.3	6.4	1.2	1.5	1.4	4.3 4.8 4.8	4.8	4.7
				Bottom	5	22.8 22.8 22.8	22.8	7.9 7.9 7.9	7.9	33.4 33.5 33.5	33.5	88.8 88.1 88.5	88.3	6.3 6.3 6.3	6.3	6.3	1.5 1.7 1.7	1.7		4.8 4.8 4.9	4.9	
				Surface	1	22.9 22.9	22.9	7.9 7.9 7.9	7.9	33.4 33.4	33.4	93.7 91.9	92.8	6.7 6.5	6.6		1.1	1.1		4.6 4.7	4.7	
M2	Cloudy	Calm	14:52	Middle	6	22.8 22.8	22.8	7.9 7.9	7.9	33.4 33.4	33.4	91.3 91.2	91.3	6.5 6.5	6.5	6.6	1.2	1.2	2.1	3.9 4.0	4.0	4.9
				Bottom	11	22.7 22.7	22.7	7.9 7.9	7.9	33.6 33.5	33.6	86.6 88.2	87.4	6.2 6.3	6.3	6.3	4.0	4.0		5.9	5.9	
				Surface	1	22.8 22.8	22.8	7.9 7.9	7.9	33.3 33.3	33.3	78.7 79.3	79.0	5.6 5.6	5.6	6.0	2.0 2.1	2.1		4.8 4.8	4.8	
М3	Cloudy	Calm	15:23	Middle	4	22.9 22.9	22.9	7.9 7.9	7.9	33.5 33.5	33.5	89.9 89.4	89.7	6.4 6.3	6.4	6.0	1.0 1.2	1.1	2.5	5.2 5.4	5.3	5.3
				Bottom	7	22.7 22.7	22.7	7.9 7.9	7.9	33.6 33.6	33.6	85.2 83.9	84.6	6.1 6.0	6.1	6.1	4.1 4.7	4.4		5.9 5.8	5.9	
				Surface	1	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	89.6 88.8	89.2	6.4 6.3	6.4	6.4	2.4 2.6	2.5		4.8 4.9	4.9	
M4	Cloudy	Calm	14:43	Middle	5	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	88.8 88.4	88.6	6.3 6.3	6.3		2.4 2.6	2.5	2.5	4.6 4.5	4.6	4.9
				Bottom	9	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	88.4 88.2	88.3	6.3 6.3	6.3	6.3	2.5 2.6	2.6		5.3 5.2	5.3	
				Surface	1	22.8 22.9	22.9	8.0 8.0	8.0	33.5 33.5	33.5	93.6 92.3	93.0	6.6 6.5	6.6	6.6	1.5	1.5		4.5 4.6	4.6	
M5	Cloudy	Calm	15:42	Middle	5.5	22.8 22.8 22.7	22.8	8.0 8.0 8.0	8.0	33.5 33.5 33.6	33.5	91.1 90.9 92.4	91.0	6.5 6.5 6.6	6.5		2.0 1.9 2.8	2.0	2.1	3.8 3.9 2.5	3.9	3.7
				Bottom	10	22.7	22.7	8.0	8.0	33.6	33.6	91.4	91.9	6.5	6.6	6.6	2.6	2.7		2.5	2.5	
				Surface	-	22.9	-	7.9	-	33.5	-	92.0		6.5	-	6.5	1.1	-		4.2	-	
M6	Cloudy	Calm	15:36	Middle	1.4	22.9	22.9	7.9	7.9	33.5	33.5	91.4	91.7	6.5	6.5		1.0	1.1	1.1	4.1	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 20 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 4.1 NTU</u>	<u>C1: 4.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.6 mg/L</u>	<u>C1: 7.2 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 8.2 mg/L</u>	<u>C1: 8.8 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 April 2018

	Weather	Sea	Sampling			Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	22.7 22.7	22.7	8.0 8.0	8.0	33.5 33.5	33.5	92.4 92.1	92.3	6.6 6.6	6.6		1.5 1.6	1.6		5.4 5.5	5.5	
C1	Cloudy	Calm	10:03	Middle	9	22.6 22.6	22.6	8.0 8.0	8.0	33.6 33.6	33.6	94.2 94.3	94.3	6.7 6.7	6.7	6.7	2.0	2.1	2.4	5.8 6.0	5.9	6.1
				Bottom	17	22.6 22.6	22.6	8.0 8.0	8.0	33.6 33.6	33.6	94.5 94.5	94.5	6.7 6.7	6.7	6.7	3.4 3.4	3.4		6.8 6.8	6.8	
				Surface	1	22.8 22.8	22.8	7.8 7.9	7.9	33.3 33.3	33.3	87.6 87.3	87.5	6.2 6.2	6.2	6.2	1.5 1.5	1.5		5.8 5.8	5.8	
C2	Cloudy	Calm	08:47	Middle	16.5	22.8 22.8 22.7	22.8	7.9 7.9 7.9	7.9	33.4 33.4 33.5	33.4	86.6 85.1 87.7	85.9	6.2 6.1 6.2	6.2		2.0 2.0 3.3	2.0	2.3	5.8 5.9 5.7	5.9	5.8
				Bottom	32	22.7 22.7 22.8	22.7	7.9 7.9	7.9	33.6 33.4	33.6	89.6 90.2	88.7	6.4 6.4	6.3	6.3	3.3 1.1	3.3		5.7 5.7 5.6	5.7	
04	Olevetic	0-1	00.05	Surface	1	22.8	22.8	7.9 7.9	7.9	33.4	33.4	88.8 88.7	89.5	6.3	6.4	6.4	1.0	1.1	4.0	5.6 5.4	5.6	F 7
G1	Cloudy	Calm	09:25	Middle Bottom	7	22.8 22.8	22.8	7.9 7.9	7.9 7.9	33.4 33.5	33.4	88.3 88.5	88.5 88.5	6.3	6.3	6.3	1.2	1.2	1.2	5.5	5.5 6.0	5.7
				Surface	1	22.8 22.8	22.8	7.9 7.9	7.9	33.5 33.4	33.4	88.5 90.4	89.9	6.3 6.4	6.4	6.3	1.1	1.1		6.0 4.2	4.3	
G2	Cloudy	Calm	09:09	Middle	5	22.8 22.8	22.8	7.9 7.9	7.9	33.4 33.4	33.4	89.4 88.8	88.7	6.4 6.3	6.3	6.4	1.1 1.2	1.2	1.4	4.3 8.0	8.0	5.2
G.E	Cioday	ou	00.00	Bottom	9	22.8 22.7	22.7	7.9 7.9	8.0	33.4 33.6	33.6	88.5 89.2	89.3	6.3 6.3	6.4	6.4	1.2	1.8		8.0 3.4	3.4	0.2
				Surface	1	22.7 22.8 22.8	22.8	7.9 7.9	7.9	33.6 33.2 33.3	33.3	89.3 89.2 87.1	88.2	6.4 6.3 6.2	6.3		1.8 1.0 1.0	1.0		3.4 3.2 3.3	3.3	
G3	Cloudy	Calm	09:31	Middle	4	22.8 22.8	22.8	7.9 7.9 7.9	7.9	33.6 33.5	33.6	85.4 86.2	85.8	6.1 6.1	6.1	6.2	1.4	1.4	1.5	3.9 4.0	4.0	3.2
				Bottom	7	22.7 22.7	22.7	7.9 7.9	7.9	33.6 33.6	33.6	86.9 86.9	86.9	6.2 6.2	6.2	6.2	2.1	2.1		2.2	2.3	
				Surface	1	22.8 22.8	22.8	7.9 7.9	7.9	33.5 33.5	33.5	90.8 89.9	90.4	6.5 6.4	6.5	6.5	1.1 1.1	1.1		2.5 2.5	2.5	
G4	Cloudy	Calm	09:42	Middle	4.5	22.8 22.7	22.8	7.9 8.0	8.0	33.5 33.5	33.5	89.4 90.3	89.9	6.4 6.4	6.4		1.1	1.2	1.3	4.3 4.2	4.3	3.9
				Bottom	8	22.7 22.7	22.7	8.0 8.0	8.0	33.6 33.6	33.6	89.8 87.9	88.9	6.4 6.3	6.4	6.4	1.4	1.6		5.0 5.0	5.0	
				Surface	1	22.8 22.8 22.8	22.8	7.9 7.9 7.9	7.9	33.4 33.4 33.4	33.4	89.9 88.5 88.6	89.2	6.4 6.3 6.3	6.4	6.4	1.1 1.2 1.2	1.2		5.2 5.2 4.8	5.2	
M1	Cloudy	Calm	09:17	Middle	3	22.8 22.8	22.8	7.9 7.9	7.9	33.4 33.5	33.4	88.2 88.3	88.4	6.3 6.3	6.3		1.1	1.2	1.2	5.0 5.7	4.9	5.3
				Bottom	5	22.8 22.7	22.8	7.9 7.9	7.9 7.9	33.5 33.4	33.5	87.7 89.9	88.0 89.7	6.2	6.3	6.3	1.3	1.3		5.6 4.9	5.7	
M2	Cloudy	Calm	09:03	Surface Middle	6	22.7 22.7	22.7	7.9 7.9	7.9	33.4 33.4	33.4	89.4 88.9	88.9	6.4 6.3	6.4	6.4	1.2	1.3	1.7	4.8 5.0	4.9	4.9
	Cioday	ou	00.00	Bottom	11	22.7	22.7	7.9 8.0	8.0	33.4 33.6	33.6	88.8 89.9	89.7	6.3	6.4	6.4	2.8	2.7		4.8	4.9	
				Surface	1	22.7	22.8	7.9 7.9 7.9	7.9	33.6 33.3	33.3	89.4 88.9	88.7	6.4	6.3		2.5 1.1	1.1		5.4 5.4	5.4	
M3	Cloudy	Calm	09:36	Middle	4	22.8 22.9 22.9	22.9	7.9 7.9 7.9	7.9	33.3 33.5 33.5	33.5	88.5 87.7 87.4	87.6	6.3 6.2 6.2	6.2	6.3	1.1 1.1 1.2	1.2	1.4	5.4 3.3 3.2	3.3	5.0
				Bottom	7	22.7 22.7	22.7	7.9 7.9	7.9	33.6 33.6	33.6	87.6 87.6	87.6	6.2 6.2	6.2	6.2	2.0	2.0		6.4 6.4	6.4	
				Surface	1	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	90.3 89.6	90.0	6.4 6.4	6.4	6.4	1.3 1.3	1.3		5.6 5.4	5.5	
M4	Cloudy	Calm	08:55	Middle	5	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	89.3 89.2	89.3	6.4 6.3	6.4	0.4	1.4 1.2	1.3	1.3	2.9 2.9	2.9	4.2
				Bottom	9	22.7 22.7	22.7	7.9 7.9	7.9	33.5 33.5	33.5	88.8 88.8	88.8	6.3 6.3	6.3	6.3	1.5 1.3	1.4		4.3 4.3	4.3	
				Surface	1	22.8 22.8 22.7	22.8	7.9 7.9 7.9	7.9	33.4 33.4 33.5	33.4	89.5 89.4 89.4	89.5	6.4 6.4 6.4	6.4	6.4	1.4 1.3 2.0	1.4		3.9 3.9 7.3	3.9	
M5	Cloudy	Calm	09:56	Middle	5.5	22.7 22.7 22.7	22.7	7.9 7.9 8.0	7.9	33.5 33.6	33.5	89.4 89.2 90.9	89.3	6.4 6.3 6.5	6.4		1.9 2.1	2.0	1.9	7.4 7.4	7.4	5.1
				Bottom	10	22.7	22.7	8.0	8.0	33.6	33.6	91.7	91.3	6.5	6.5	6.5	2.4	2.3		4.1	4.0	
M6	Cloudy	Calm	09:49	Surface Middle	1.5	22.8	22.8	7.9	7.9	33.5	33.5	90.1	90.1	6.4	6.4	6.4	1.1	1.2	1.2	2.5	2.5	2.5
IVIO	Cioudy	Odill	03.43	Bottom	-	22.8	-	7.9	-	33.5	-	90.0	- 30.1	6.4	- 0.4	_	1.2		1.2	2.5	-	2.5
	1		i	Dottoill		-		-	1	-		-	1	-	1	ĺ	-		l	-		

Appendix I - Action and Limit Levels for Marine Water Quality on 23 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tandai ditaa in		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 4.0 NTU</u>	<u>C2: 4.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 5.9 mg/L	<u>C2: 6.4 mg/L</u>
	Stations M1-M	5	
		<u>6.2 mg/L</u>	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 5.9 mg/L</u>	<u>C2: 6.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.9 mg/L</u>	<u>C2: 8.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 23 April 2018

Location C	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Furbidity(NTI			nded Solids	
	Condition	Condition**	Time		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6 23.6	23.6	8.4 8.4	8.4	33.2 33.2	33.2	89.2 89.0	89.1	6.3 6.2	6.3	6.3	2.1 2.1	2.1		4.6 4.6	4.6	
C1	Fine	Moderate	19:15	Middle	10	22.9 22.8	22.9	8.4 8.4	8.4	33.7 33.8	33.8	88.3 89.2	88.8	6.2 6.3	6.3		3.2 3.4	3.3	2.9	3.9 3.8	3.9	3.9
				Bottom	19	22.8 22.8	22.8	8.5 8.5	8.5	33.9 33.9	33.9	91.6 91.7	91.7	6.5 6.5	6.5	6.5	3.3 3.2	3.3		3.1 3.0	3.1	
				Surface	1	23.7 23.7	23.7	8.4 8.4	8.4	33.2 33.2	33.2	90.9 90.7	90.8	6.4 6.3	6.4	6.4	1.1 1.1	1.1		4.8 4.9	4.9	
C2	Fine	Moderate	17:31	Middle	17	22.9 22.9	22.9	8.5 8.5	8.5	33.7 33.8	33.8	88.5 88.7	88.6	6.3 6.3	6.3	6.4	2.6 2.7	2.7	2.4	4.6 4.7	4.7	5.4
				Bottom	33	22.8 22.8	22.8	8.6 8.6	8.6	33.9 33.9	33.9	91.5 91.7	91.6	6.5 6.5	6.5	6.5	3.3 3.2	3.3		6.5 6.6	6.6	
				Surface	1	24.1 24.1	24.1	8.4 8.4	8.4	33.6 33.6	33.6	101.9 102.2	102.1	7.1 7.1	7.1	7.1	1.2 1.3	1.3		3.6 3.7	3.7	
G1	Fine	Moderate	18:19	Middle	4	24.0 24.0	24.0	8.4 8.4	8.4	33.6 33.6	33.6	101.9 101.6	101.8	7.1 7.1	7.1	7.1	1.3 1.3	1.3	1.4	4.9 4.7	4.8	4.5
				Bottom	7	23.1 23.0	23.1	8.4 8.4	8.4	33.8 33.8	33.8	96.2 96.2	96.2	6.8 6.8	6.8	6.8	1.5 1.5	1.5		5.1 5.0	5.1	
				Surface	1	24.0 24.0	24.0	8.4 8.4	8.4	33.6 33.6	33.6	100.7 100.7	100.7	7.0 7.0	7.0	7.0	1.4 1.4	1.4		5.0 5.1	5.1	
G2	Fine	Moderate	18:00	Middle	5	24.0 24.0	24.0	8.4 8.4	8.4	33.6 33.6	33.6	100.8 100.8	100.8	7.0 7.0	7.0	7.0	1.5 1.4	1.5	1.5	8.5 8.4	8.5	5.9
				Bottom	9	22.9 22.9	22.9	8.5 8.5	8.5	33.8 33.8	33.8	95.7 95.6	95.7	6.8 6.8	6.8	6.8	1.5 1.5	1.5		4.1 4.0	4.1	
				Surface	1	24.2 24.2	24.2	8.4 8.4	8.4	33.6 33.6	33.6	99.7 100.1	99.9	6.9 6.9	6.9	7.0	1.4 1.4	1.4		3.1 3.1	3.1	
G3	Fine	Moderate	18:28	Middle	4	23.7 23.8	23.8	8.4 8.4	8.4	33.6 33.6	33.6	100.1 100.3	100.2	7.0 7.0	7.0	7.0	1.5 1.5	1.5	1.8	4.1 4.2	4.2	4.1
				Bottom	7	23.1 22.9	23.0	8.4 8.4	8.4	33.7 33.8	33.8	94.2 93.7	94.0	6.6 6.6	6.6	6.6	2.7 2.3	2.5		5.0 5.1	5.1	
				Surface	1	24.2 24.2	24.2	8.4 8.4	8.4	33.6 33.6	33.6	100.6 100.7	100.7	7.0 7.0	7.0	7.0	1.4 1.4	1.4		3.6 3.5	3.6	
G4	Fine	Moderate	18:45	Middle	4	23.0 23.0	23.0	8.4 8.4	8.4	33.7 33.7	33.7	97.3 96.8	97.1	6.9 6.8	6.9	7.0	1.8 1.9	1.9	1.9	3.6 3.6	3.6	3.8
				Bottom	7	22.8 22.8	22.8	8.5 8.5	8.5	34.0 34.0	34.0	90.2 90.8	90.5	6.4 6.4	6.4	6.4	2.4 2.5	2.5		4.1 4.0	4.1	
				Surface	1	24.0 24.0	24.0	8.4 8.4	8.4	33.6 33.6	33.6	100.5 100.6	100.6	7.0 7.0	7.0	7.0	1.3 1.1	1.2		5.4 5.4	5.4	
M1	Fine	Moderate	18:10	Middle	3	24.0 24.0	24.0	8.4 8.4	8.4	33.6 33.6	33.6	100.6 100.5	100.6	7.0 7.0	7.0	7.0	1.3 1.3	1.3	1.3	3.9 3.9	3.9	4.5
				Bottom	5	23.9 23.9	23.9	8.4 8.4	8.4	33.6 33.6	33.6	100.4 100.3	100.4	7.0 7.0	7.0	7.0	1.3 1.3	1.3		4.1 4.1	4.1	
				Surface	1	23.9 23.9	23.9	8.4 8.4	8.4	33.6 33.6	33.6	100.7 100.7	100.7	7.0 7.0	7.0	7.0	1.3 1.3	1.3		5.6 5.5	5.6	
M2	Fine	Moderate	17:52	Middle	6	23.9 23.9	23.9	8.4 8.4	8.4	33.6 33.6	33.6	100.6 100.5	100.6	7.0 7.0	7.0	7.0	1.3 1.3	1.3	1.3	3.9 4.0	4.0	4.7
				Bottom	11	23.2 23.0	23.1	8.4 8.4	8.4	33.7 33.8	33.8	95.9 95.8	95.9	6.7 6.8	6.8	6.8	1.3 1.3	1.3		4.5 4.4	4.5	
				Surface	1	24.1 24.2	24.2	8.4 8.4	8.4	33.6 33.6	33.6	100.5 100.5	100.5	7.0 7.0	7.0	7.0	2.2 2.2	2.2		3.6 3.6	3.6	
M3	Fine	Moderate	18:37	Middle	4	24.1 24.0	24.1	8.4 8.4	8.4	33.6 33.6	33.6	100.4 100.5	100.5	7.0 7.0	7.0	7.0	1.4 1.4	1.4	1.7	7.5 7.6	7.6	6.0
				Bottom	7	23.6 23.4	23.5	8.4 8.4	8.4	33.6 33.6	33.6	99.7 99.0	99.4	7.0 6.9	7.0	7.0	1.4 1.4	1.4		6.8 6.7	6.8	
				Surface	1	23.6 23.6	23.6	8.4 8.4	8.4	33.2 33.2	33.2	89.6 89.4	89.5	6.3 6.3	6.3	6.3	1.9 2.0	2.0		4.6 4.6	4.6	
M4	Fine	Moderate	17:42	Middle	5	23.4 23.4	23.4	8.4 8.4	8.4	33.3 33.3	33.3	88.7 88.6	88.7	6.2 6.2	6.2	0.3	2.2 2.3	2.3	2.4	3.8 3.6	3.7	3.8
				Bottom	9	23.2 23.0	23.1	8.4 8.4	8.4	33.5 33.6	33.6	88.4 88.1	88.3	6.2 6.2	6.2	6.2	2.9 2.8	2.9		3.0 2.9	3.0	
				Surface	1	23.6 23.6	23.6	8.4 8.4	8.4	33.2 33.2	33.2	89.5 89.3	89.4	6.3 6.3	6.3	6.3	2.0 1.9	2.0		5.6 5.6	5.6	
M5	Fine	Moderate	19:06	Middle	5.5	23.5 23.3	23.4	8.4 8.4	8.4	33.3 33.4	33.4	88.6 88.3	88.5	6.2 6.2	6.2	0.3	2.2 2.3	2.3	2.5	5.1 5.2	5.2	5.7
				Bottom	10	23.1 22.9	23.0	8.4 8.4	8.4	33.5 33.7	33.6	88.2 88.2	88.2	6.2 6.2	6.2	6.2	2.9 3.4	3.2		6.3 6.5	6.4	
				Surface	-	-	-	-	-	-	-	-	-	=	-	7.0	-	-		-	-	
M6	Fine	Moderate	18:54	Middle	2.1	24.1 24.1	24.1	8.4 8.4	8.4	33.6 33.6	33.6	100.7 100.7	100.7	7.0 7.0	7.0	7.0	1.4 1.4	1.4	1.4	5.9 6.0	6.0	6.0
				Bottom	-	-	-		=	-	=	-	-	-	-	=	-	=		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 23 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 2.5 NTU</u>	<u>C1: 2.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.8 mg/L</u>	<u>C1: 7.4 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.1 mg/L</u>	<u>C1: 6.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 23 April 2018

Contain   Weather   Sea   Surpring   Contain	5.8 5.7				
C1	5.6		erage	е	DA
C1	2.8	5.8 5.7	i.7		
Bottom   17   227   227   8.6   8.6   339   339   929   929   6.6   6.6   6.6   6.6   2.1   2.1	3.7	3.8 3.7	3.8		4.9
Solution   Color   C	5.1	E 1	i.1		
C2		3.8 3.7	3.8		
Surface   1   2.05   2.07   2.27   8.2   8.2   8.2   3.3   3.3   3.3   3.3   3.2   8.2   8.6   6.6   6.6   6.6   1.5   1.5   1.5	4.8	4.8	8.8		4.3
G1 Fine Moderate   1:43   Middle   4   232   232   8.5   8.5   33.6   33.6   33.1   32.0   6.6   6.6   1.9   1.8	4.3	4.3	1.3		
Moderate   11-36   Moderate   11-37   Moderate   11-37   Moderate   11-37   Moderate   11-38   Moderate	5.2	5.2			
G2 Fine Moderate	9.7	9.7			6.3
G2 Fine Moderate 11:27   Middle 5   22.9   22.9   8.5   8.5   33.8   33.8   33.8   32.4   33.5   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.8   33.	4.1	4.1			
Fine   Moderate   11-27   Mode   1-27   Mo	4.1	4.1		_	
Fine   Moderate   12:01   Surface   1   23:5   23:5   8:4   8:4   8:4   8:4   33:5   33:8   33:5   33:0   33:0   6:5   6:5   6:5   6:5   1.5   1.5   1.5	3.5	3.5			4.2
Fine   Moderate   12:01   Middle   4   23.5   23.5   8.4   8.4   33.5   33.5   33.5   39.0   92.9   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5	4.8	4.8		-	
Bottom   7   22.9   22.9   8.5   33.8   33.8   92.3   92.4   6.5   6.5   6.5   2.6   2.6	5.6	5.6		-	5.2
Surface   1   23.6   23.6   8.5   33.8   92.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5	4.3	4.3 4.3		-	5.2
G4 Fine Moderate 12:17 Middle 4 23.0 23.0 8.5 8.5 33.7 33.7 93.4 93.5 6.6 6.6 6.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	5.0 5.0	5.0 5.0 5.0	5.0	+	
Bottom   7   22.9   22.9   8.5   8.5   33.8   33.8   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.6   33.	4.3	5.0 4.3 4.5	1.4		5.0
M1 Fine Moderate 11:36	5.5	5.5	i.5		
M1 Fine Moderate 11:36 Middle 3 23.1 23.1 8.4 8.4 33.7 33.7 92.2 92.2 6.5 6.5 6.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	3.5	2.5	3.5	Ť	
M2 Fine Moderate 11:18 Surface 1 23.2 23.3 8.5 8.5 33.6 33.6 33.6 92.8 92.7 6.6 6.6 6.6 6.6 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		5.1 4.9	i.0		4.8
M2 Fine Moderate 11:18 Middle 6 23.0 23.0 8.5 8.5 33.6 33.0 93.3 93.4 6.6 6.6 6.6 1.4 1.4 1.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7		5.9 5.6	i.8		
M2 Fine Moderate 11:18 Middle 6 23.0 22.9 23.0 8.5 8.5 8.5 33.8 92.7 92.7 6.6 6.6 6.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	5.1	5.1	5.0		
M3 Fine Moderate 12:09 Middle 4 23.5 23.6 8.4 8.4 33.5 33.6 92.9 92.9 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.8	4.8	1.9		4.8
M3 Fine Moderate 12:09 Middle 4 23.5 23.5 8.4 8.4 8.4 33.5 33.8 33.8 93.2 95.3 6.5 6.5 6.5 6.5 6.5 1.4 1.4 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	4.5	4.5	1.5		
HIS PRICE HOUSE 12.99 WHOLE 4 23.4 23.5 8.4 0.4 33.6 35.0 92.9 92.9 82.9 6.5 0.5 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.0	5.0		4	
Bultin / 23.0 25.0 8.4 6.4 33.8 55.0 91.8 91.6 6.5 6.5 6.5 2.3 2.3 2.5	5.3	5.3		4	5.
	5.0	5.0		+	
Surface 1 23.1 23.1 8.5 6.3 33.6 33.0 93.1 93.1 6.6 6.0 6.6 1.3 1.3	5.8	5.8		4	4
NA File Modelate 11.10 Model 5 22.9 25.0 8.5 0.3 33.8 35.0 92.8 92.6 6.6 0.0 1.7 1.7 1.7 1.8 Rettom 9 22.8 22.8 8.5 8.5 8.5 33.9 33.9 93.3 93.4 6.6 6.6 6.6 2.2 2.5	4.4 3.0	3.0 3.0		-	4.4
22.8 8.5 33.9 93.4 6.6 2.7 Surface 1 23.6 23.5 8.4 8.4 33.5 33.5 93.7 93.4 6.6 6.6 1.3 1.4	5.3 5.4	5.3 5.4		+	
M5 Fine Moderate 12:33 Middle 5.5 23.2 23.2 8.4 8.4 33.6 33.6 92.7 92.7 6.5 6.5 6.6 1.9 1.9 1.9	5.6 5.5	5.6 5.5		-	5.
23.1 8.4 33.6 92.7 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.3 _{4.3}	4.3		-	٥.
Surface	4.2	4.2		$\dagger$	
M6 Fine Moderate 12:25 Middle 2.1 23.5 23.6 8.4 8.4 33.5 33.5 93.6 93.6 6.6 6.6 1.4 1.4 1.4		3.4 3.4 3.4	3.4	1	3.4
Bottom		3.4	-	1	

Appendix I - Action and Limit Levels for Marine Water Quality on 25 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidituin		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C2: 6.0 NTU</u>	<u>C2: 6.5 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C2: 6.6 mg/L	<u>C2: 7.2 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.6 mg/L</u>	<u>C2: 7.2 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9  mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.7 mg/L</u>	C2: 7.3 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

## Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 25 April 2018

#### (Mid-Ebb Tide)

Landina	Weather	Sea	Sampling		4l- />	Temper	ature (°C)	þ	Н	Salir	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition*	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.2	23.2	8.5	8.5	33.5	33.5	90.9	90.8	6.4	6.4		0.9	0.9		5.2	5.2	
				Odirado		23.2	20.2	8.5	0.0	33.5	00.0	90.7	00.0	6.4	0	6.5	0.8	0.0		5.2	U.L	
C1	Cloudy	Calm	10:20	Middle	10	23.2 23.2	23.2	8.5 8.5	8.5	33.6 33.6	33.6	91.7 91.5	91.6	6.5 6.5	6.5		1.4 1.5	1.5	2.7	4.4 4.3	4.4	4.7
						22.9		8.6		34.1		91.2		6.4			5.5		1	4.5	<u> </u>	1
				Bottom	19	22.9	22.9	8.6	8.6	34.1	34.1	91.2	91.2	6.4	6.4	6.4	5.6	5.6		4.4	4.5	
				Surface	1	23.3	23.3	8.5	8.5	33.4	33.4	87.4	87.3	6.2	6.2		1.7	1.7		5.5	5.5	
				Odirado		23.3	20.0	8.5	0.0	33.3	00.1	87.2	07.0	6.1	0.2	6.4	1.7			5.4	0.0	
C2	Cloudy	Calm	09:22	Middle	17	22.9 22.9	22.9	8.6 8.6	8.6	34.1 34.1	34.1	91.5 91.5	91.5	6.5 6.5	6.5		3.4 3.5	3.5	3.4	6.8 6.6	6.7	5.9
						22.8		8.6		34.1		91.7		6.5			5.1		1	5.5		-
				Bottom	33	22.8	22.8	8.6	8.6	34.2	34.2	91.8	91.8	6.5	6.5	6.5	4.8	5.0		5.6	5.6	
				Surface	1	23.2	23.2	8.5	8.5	33.7	33.7	92.0	91.9	6.5	6.5		1.1	1.1		2.9	2.9	
						23.2		8.5		33.7		91.7		6.5		6.5	1.1		_	2.9		1
G1	Cloudy	Calm	09:50	Middle	4	23.1	23.1	8.5 8.5	8.5	33.8 33.8	33.8	91.0 90.8	90.9	6.4 6.4	6.4		1.3	1.3	1.4	6.4 6.7	6.6	4.9
					_	23.0	00.0	8.5	0.5	33.9	00.0	91.2	04.0	6.4			1.7	4.0	1	5.1		1
				Bottom	7	23.0	23.0	8.5	8.5	33.9	33.9	90.7	91.0	6.4	6.4	6.4	2.1	1.9		5.4	5.3	
				Surface	1	23.1	23.1	8.5	8.5	33.7	33.7	92.0	92.0	6.5	6.5		1.2	1.3		3.5	3.6	
				Carraco		23.1	20	8.5	0.0	33.7	00.7	91.9	02.0	6.5	0.0	6.6	1.3		_	3.6	0.0	1
G2	Cloudy	Calm	09:41	Middle	5	23.1 23.1	23.1	8.5 8.5	8.5	33.8 33.7	33.8	92.9 93.0	93.0	6.6 6.6	6.6		1.2	1.3	1.7	6.1 6.2	6.2	5.4
				ъ.,		23.0	00.0	8.5	0.5	34.0	04.0	91.9	24.0	6.5		0.5	2.5	0.5	1	6.6		1
				Bottom	9	23.0	23.0	8.5	8.5	34.0	34.0	91.7	91.8	6.5	6.5	6.5	2.5	2.5		6.4	6.5	
				Surface	1	23.2	23.3	8.5	8.5	33.5	33.5	90.8	90.8	6.4	6.4		1.3	1.3		5.0	4.9	
				Odirado		23.3	20.0	8.5	0.0	33.4	00.0	90.8	00.0	6.4	0	6.4	1.3	1.0		4.7		
G3	Cloudy	Calm	09:55	Middle	4	23.1 23.0	23.1	8.5 8.5	8.5	33.9 33.9	33.9	89.3 88.1	88.7	6.3 6.2	6.3		2.1 2.1	2.1	2.2	8.7 8.7	8.7	6.7
				D .:	_	23.0	00.0	8.5	0.5	34.0	04.0	90.5	20.4	6.4			2.9		1	6.6		1
				Bottom	7	23.0	23.0	8.5	8.5	34.0	34.0	90.3	90.4	6.4	6.4	6.4	3.3	3.1		6.5	6.6	
				Surface	1	23.2	23.2	8.5	8.5	33.7	33.7	89.7	89.6	6.3	6.3		2.1	2.0		4.2	4.2	
				Ourrace		23.2	20.2	8.5	0.0	33.6	00.7	89.5	00.0	6.3	0.0	6.4	1.8	2.0		4.1	7.2	
G4	Cloudy	Calm	10:04	Middle	4	23.0 23.0	23.0	8.5 8.5	8.5	34.0 34.0	34.0	92.7 92.1	92.4	6.5 6.5	6.5		2.2	2.1	2.4	4.8 5.0	4.9	4.7
				_		23.0		8.5		34.0		92.1		6.5			3.4		-	4.9		1
				Bottom	7	23.0	23.0	8.6	8.6	34.0	34.0	92.5	92.3	6.5	6.5	6.5	2.9	3.2		5.0	5.0	
				Surface	1	23.1	23.1	8.5	8.5	33.7	33.7	90.8	90.1	6.4	6.4		1.9	1.8		3.0	3.0	
				Ourrace	'	23.1	20.1	8.5	0.5	33.7	00.7	89.4	30.1	6.3	0.4	6.4	1.7	1.0	_	3.0	0.0	1
M1	Cloudy	Calm	09:46	Middle	3	23.1	23.1	8.5	8.5	33.7 33.7	33.7	89.7	89.7	6.3 6.3	6.3		1.9	1.9	1.9	3.9 3.7	3.8	4.0
				_		23.1		8.5 8.5		33.7		89.6 89.5		6.3			1.8 2.0		-	5.3		1
				Bottom	5	23.1	23.1	8.5	8.5	33.7	33.8	89.5	89.5	6.3	6.3	6.3	2.0	2.0		5.3	5.3	
				Surface	1	23.2	23.2	8.5	8.5	33.5	33.6	91.2	91.3	6.4	6.4		1.3	1.4		4.1	4.0	
				Ourrace	'	23.2	20.2	8.5	0.5	33.6	00.0	91.3	31.0	6.4	0.4	6.5	1.4	1	_	3.9	4.0	1
M2	Cloudy	Calm	09:35	Middle	5.5	23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	91.2 91.5	91.4	6.4	6.5		1.7	1.7	2.4	3.6	3.6	3.9
						22.9		8.5		34.1		90.4		6.4			4.1		-	3.5 4.2		1
				Bottom	10	23.0	23.0	8.5	8.5	34.0	34.1	90.6	90.5	6.4	6.4	6.4	4.1	4.1		4.1	4.2	
				Surface	1	23.3	23.3	8.5	8.5	33.5	33.6	89.7	88.9	6.3	6.3		1.8	2.0		4.9	4.9	
				Juliace		23.2	20.0	8.5	0.0	33.6	00.0	88.0	00.0	6.2	0.0	6.3	2.2	2.0	1	4.9	4.5	1
M3	Cloudy	Calm	10:00	Middle	4	23.0 23.0	23.0	8.5 8.5	8.5	33.9 33.9	33.9	88.0 88.8	88.4	6.2 6.3	6.3		3.3 3.1	3.2	3.1	6.3 6.0	6.2	5.5
					_	23.0		8.5		33.9		89.9		6.3			4.1	<b>!</b>	1	5.5		1
	<u></u>	L		Bottom	7	23.0	23.0	8.5	8.5	34.0	34.0	89.9	89.9	6.4	6.4	6.4	4.1	4.1	<u> </u>	5.5	5.5	<u> </u>
				Surface	1	23.2	23.2	8.5	8.5	33.6	33.7	89.2	89.5	6.3	6.3		1.9	2.1		4.8	4.8	
				Juliace		23.1	20.2	8.5	0.0	33.7	55.7	89.7	00.0	6.3	0.0	6.4	2.3	2.1	1	4.8	4.0	1
M4	Cloudy	Calm	09:29	Middle	5	23.0	23.0	8.5 8.5	8.5	33.9	34.0	91.0	91.2	6.4	6.5		2.5	2.5	2.5	4.4	4.5	4.6
						23.0 22.9		8.5		34.0 34.0		91.3 92.3		6.5 6.5			2.5		-	4.5 4.5		1
				Bottom	9	23.0	23.0	8.6	8.6	34.0	34.0	92.0	92.2	6.5	6.5	6.5	2.7	2.8		4.3	4.4	
				Surface	1	23.2	23.2	8.4	8.5	33.5	33.5	89.8	90.2	6.3	6.4		1.5	1.5		4.9	4.9	
			i	Guilace		23.2	20.2	8.5	0.0	33.5	00.0	90.5	JU.2	6.4	J. <del>4</del>	6.4	1.4	1.0	1	4.8	7.3	1
					1	23.2	23.2	8.5	8.5	33.6 33.6	33.6	91.0 90.9	91.0	6.4	6.4		1.5 1.6	1.6	2.5	4.1 4.0	4.1	4.2
M5	Cloudy	Calm	10:14	Middle	5.5		20.2					90.9	1	6.4				1				
M5	Cloudy	Calm	10:14			23.2		8.5 8.5						6.3			4.2		1			1
M5	Cloudy	Calm	10:14	Middle Bottom	10		23.0	8.5 8.5 8.5	8.5	33.9 33.9	33.9	89.8 89.8	89.8	6.3 6.3	6.3	6.3	4.2 4.4	4.3		3.6 3.5	3.6	
M5	Cloudy	Calm	10:14	Bottom	10	23.2 23.0	23.0	8.5	8.5	33.9		89.8				6.3		4.3		3.6		
M5	Cloudy	Calm	10:14			23.2 23.0 23.0		8.5 8.5 -	8.5	33.9 33.9 -	33.9	89.8 89.8 -	89.8	6.3 - -	6.3		4.4 - -	4.3		3.6 3.5 -	3.6	
M5 M6	Cloudy	Calm	10:14	Bottom	10	23.2 23.0 23.0 - - 23.0	23.0	8.5 8.5 - - 8.5	8.5 - 8.5	33.9 33.9 - - 33.9		89.8 89.8 - - 88.5		6.3 - - 6.2		6.2	4.4 - - 3.0	4.3	3.0	3.6 3.5 - - 6.7		6.8
				Bottom Surface	10	23.2 23.0 23.0	23.0	8.5 8.5 -	-	33.9 33.9 -	-	89.8 89.8 -	-	6.3 - -	-		4.4 - -	-	3.0	3.6 3.5 -	-	6.8

Remarks:

^{*}DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 25 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	I, M1-M5	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	4.6 mg/L
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Tumbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
,		<u>C1: 5.2 NTU</u>	<u>C1: 6.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>I</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		C1: 5.9 mg/L	<u>C1: 6.4 mg/L</u>
	Stations M1-M	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 5.9 mg/L</u>	<u>C1: 6.4 mg/L</u>
	Stations G1-G4	<u>I, M1-M5</u>	
		6.9  mg/L	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.4 mg/L</u>	C1: 6.9 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 25 April 2018

## (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
	Condition	Condition**	Time		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.4 33.4	33.4	96.4 94.2	95.3	6.8 6.6	6.7	6.7	1.4 1.4	1.4		5.0 4.8	4.9	
C1	Cloudy	Calm	15:04	Middle	10	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	95.7 95.0	95.4	6.7 6.7	6.7		1.3 1.3	1.3	2.3	7.9 7.6	7.8	6.0
				Bottom	19	22.8 22.8	22.8	8.6 8.6	8.6	34.1 34.1	34.1	93.7 93.6	93.7	6.6 6.6	6.6	6.6	4.2 4.3	4.3		5.3 5.3	5.3	
				Surface	1	23.2 23.2	23.2	8.5 8.6	8.6	33.4 33.4	33.4	87.2 89.2	88.2	6.2 6.3	6.3	6.4	1.0 0.9	1.0		3.0 3.0	3.0	
C2	Cloudy	Calm	14:05	Middle	17	23.0 23.0	23.0	8.6 8.6	8.6	33.9 33.9	33.9	91.7 91.7	91.7	6.5 6.5	6.5	0.4	1.6 1.6	1.6	2.1	6.6 6.6	6.6	4.3
				Bottom	33	22.9 22.9	22.9	8.7 8.7	8.7	34.1 34.1	34.1	92.7 92.7	92.7	6.6 6.6	6.6	6.6	3.4 3.7	3.6		3.4 3.4	3.4	
				Surface	1	23.1 23.2	23.2	8.5 8.5	8.5	33.6 33.5	33.6	96.8 95.7	96.3	6.8 6.8	6.8	6.8	1.4 1.4	1.4		4.0 4.0	4.0	
G1	Cloudy	Calm	14:34	Middle	4	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.6	33.7	94.5 95.8	95.2	6.7 6.8	6.8	0.0	1.5 1.4	1.5	1.5	4.2 4.0	4.1	4.5
				Bottom	7	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	93.7 93.7	93.7	6.6 6.6	6.6	6.6	1.5 1.5	1.5		5.3 5.3	5.3	
				Surface	1	23.1 23.1	23.1	8.5 8.5	8.5	33.6 33.6	33.6	95.9 95.3	95.6	6.8 6.7	6.8	6.7	0.6 0.6	0.6		4.2 4.2	4.2	
G2	Cloudy	Calm	14:25	Middle	5	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	93.0 93.1	93.1	6.6 6.6	6.6	0.7	2.4 2.7	2.6	1.6	3.7 3.7	3.7	4.4
				Bottom	9	23.0 23.0	23.0	8.5 8.6	8.6	33.9 33.9	33.9	91.4 91.2	91.3	6.5 6.4	6.5	6.5	1.5 1.5	1.5		5.2 5.1	5.2	
				Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.4 33.4	33.4	96.1 95.7	95.9	6.8 6.7	6.8	6.7	1.4 1.3	1.4		2.7 2.6	2.7	
G3	Cloudy	Calm	14:39	Middle	4	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	92.7 92.7	92.7	6.5 6.5	6.5	0.7	1.5 1.7	1.6	2.0	2.9 3.0	3.0	3.6
				Bottom	7	23.0 23.0	23.0	8.5 8.6	8.6	34.0 33.9	34.0	91.6 91.6	91.6	6.5 6.5	6.5	6.5	3.1 3.0	3.1		5.1 5.0	5.1	
				Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.6 33.6	33.6	94.5 93.7	94.1	6.7 6.6	6.7	6.7	1.6 1.6	1.6		4.1 3.9	4.0	
G4	Cloudy	Calm	14:48	Middle	4	23.2 23.2	23.2	8.5 8.5	8.5	33.7 33.7	33.7	93.2 94.1	93.7	6.6 6.6	6.6		1.7 1.6	1.7	2.5	4.6 4.7	4.7	4.1
				Bottom	7	23.0 23.0	23.0	8.5 8.5	8.5	34.0 34.0	34.0	89.9 90.1	90.0	6.3 6.4	6.4	6.4	4.2 4.2	4.2		3.6 3.7	3.7	
				Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.6 33.6	33.6	93.8 93.8	93.8	6.6 6.6	6.6	6.6	1.3 1.2	1.3		5.3 5.0	5.2	
M1	Cloudy	Calm	14:30	Middle	3	23.2 23.1	23.2	8.5 8.5	8.5	33.6 33.7	33.7	93.3 92.8	93.1	6.6 6.5	6.6		1.3 1.4	1.4	1.4	3.9 3.8	3.9	4.4
				Bottom	5	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	92.5 92.6	92.6	6.5 6.5	6.5	6.5	1.4 1.4	1.4		4.2 4.2	4.2	
				Surface	1	23.1 23.1	23.1	8.5 8.5	8.5	33.6 33.6	33.6	95.6 95.4	95.5	6.7 6.7	6.7	6.7	0.4 0.4	0.4		5.6 5.5	5.6	
M2	Cloudy	Calm	14:20	Middle	6	23.1 23.1	23.1	8.5 8.5	8.5	33.7 33.7	33.7	94.1 93.9	94.0	6.6 6.6	6.6		0.6 0.6	0.6	1.6	6.8 5.6	6.2	5.8
				Bottom	11	22.9 22.9	22.9	8.6 8.6	8.6	34.0 34.0	34.0	91.7 91.7	91.7	6.5 6.5	6.5	6.5	3.9 3.9	3.9		5.5 5.5	5.5	
		,		Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.5 33.5	33.5	94.3 93.7	94.0	6.7 6.6	6.7	6.6	2.0 2.0	2.0		5.2 5.2	5.2	
M3	Cloudy	Calm	14:42	Middle	4	23.1 23.1	23.1	8.5 8.5	8.5	33.8 33.8	33.8	92.2 91.8	92.0	6.5 6.5	6.5	0.0	2.6 2.6	2.6	2.5	8.9 8.9	8.9	5.8
				Bottom	7	23.0 23.0	23.0	8.6 8.6	8.6	34.0 34.0	34.0	91.6 91.5	91.6	6.5 6.5	6.5	6.5	2.8 2.9	2.9		3.3 3.3	3.3	
				Surface	1	23.1 23.1	23.1	8.6 8.6	8.6	33.5 33.5	33.5	92.5 93.0	92.8	6.5 6.6	6.6	6.6	1.2 1.2	1.2		3.9 3.8	3.9	
M4	Cloudy	Calm	14:13	Middle	5	23.1 23.1	23.1	8.6 8.6	8.6	33.7 33.7	33.7	93.0 93.2	93.1	6.6 6.6	6.6		1.1	1.2	1.2	4.3 4.2	4.3	4.6
				Bottom	9	23.1 23.1	23.1	8.6 8.6	8.6	33.7 33.7	33.7	93.1 93.2	93.2	6.6 6.6	6.6	6.6	1.2 1.2	1.2		5.4 5.8	5.6	
				Surface	1	23.2 23.2	23.2	8.5 8.5	8.5	33.6 33.6	33.6	94.9 94.8	94.9	6.7 6.7	6.7	6.7	1.4	1.4		4.8 4.9	4.9	
M5	Cloudy	Calm	14:59	Middle	5.5	23.1 23.1	23.1	8.5 8.5	8.5	33.8 33.8	33.8	93.3 93.0	93.2	6.6 6.6	6.6		2.0 2.1	2.1	2.8	5.0 5.0	5.0	5.0
				Bottom	10	22.8 22.8	22.8	8.6 8.6	8.6	34.1 34.1	34.1	93.3 93.3	93.3	6.6 6.6	6.6	6.6	4.9 5.0	5.0		5.1 4.9	5.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
M6	Cloudy	Calm	14:54	Middle	2	23.2 23.2	23.2	8.5 8.5	8.5	33.7 33.7	33.7	97.4 97.4	97.4	6.9 6.9	6.9		1.1 1.1	1.1	1.1	4.6 4.5	4.6	4.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 27 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO::/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
(**************************************	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1:1:		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Note 2 and 4)		<u>C2: 3.4 NTU</u>	<u>C2: 3.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		6.0 mg/L	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	<b>Stations M1-M</b>	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	7.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 7.9 mg/L</u>	<u>C2: 8.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 27 April 2018

#### (Mid-Ebb Tide)

	Weather	Sea	Sampling	-		Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	_	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	91.5 91.2	91.4	6.5 6.4	6.5		1.6 1.7	1.7		4.6 4.6	4.6	
C1	Fine	Calm	12:07	Middle	10	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	91.1 90.8	91.0	6.4 6.4	6.4	6.5	1.6 1.8	1.7	2.2	5.6 5.3	5.5	5.0
				Bottom	19	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	91.6 90.9	91.3	6.5 6.4	6.5	6.5	3.1 3.2	3.2		4.9 5.0	5.0	
				Surface	1	23.3 23.2	23.3	8.0 8.1	8.1	33.1 33.2	33.2	92.9 90.5	91.7	6.6 6.4	6.5	6.4	1.5 1.5	1.5		5.2 5.4	5.3	
C2	Fine	Calm	11:03	Middle	16.5	23.2 23.2	23.2	8.0 8.1	8.1	33.2 33.2	33.2	89.5 89.5	89.5	6.3 6.3	6.3	0.4	2.1 1.9	2.0	2.1	6.2 6.2	6.2	6.0
				Bottom	32	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	88.3 88.3	88.3	6.2 6.2	6.2	6.2	2.9 2.6	2.8		6.6 6.5	6.6	
				Surface	1	23.2 23.3	23.3	8.1 8.1	8.1	33.2 33.2	33.2	90.4 89.1	89.8	6.4 6.3	6.4	6.4	0.9	0.9		5.5 5.7	5.6	
G1	Fine	Calm	11:36	Middle	4	23.2 23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3 33.4	33.3	91.3 90.6 90.4	91.0	6.4 6.4	6.4		1.1 1.2	1.2	1.1	5.4 5.5 4.0	5.5	5.0
				Bottom	7	23.2	23.2	8.1 8.1	8.1	33.4 33.4 33.3	33.4	90.4	90.4	6.4 6.4	6.4	6.4	1.1	1.1		4.0	4.0	
				Surface	1	23.2 23.2 23.2	23.2	8.1 8.1 8.1	8.1	33.3 33.4	33.3	91.8 91.1 90.8	91.5	6.5 6.4 6.4	6.5	6.5	1.3 1.4 1.7	1.4		5.0 5.0 5.7	5.0	
G2	Fine	Calm	11:24	Middle	5	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	90.7 89.7	90.8	6.4 6.3	6.4		1.8	1.8	2.1	5.7 5.5 4.6	5.6	5.1
				Bottom	9	23.1	23.1	8.1 8.1	8.1	33.4 33.2	33.4	89.2 91.9	89.5	6.3	6.3	6.3	3.3	3.2		4.6	4.6	
	_			Surface	1	23.3	23.3	8.1 8.1	8.1	33.2	33.2	91.7 91.2	91.8	6.4 6.4	6.5	6.5	1.1	1.1		3.8 4.2	3.8	
G3	Fine	Calm	11:41	Middle Bottom	7	23.2	23.2	8.1	8.1	33.3 33.4	33.3	90.7	91.0	6.4	6.4	6.4	0.8	0.9	0.9	4.1 3.7	3.7	3.9
				Surface	1	23.2 23.3	23.4	8.1 8.1	8.1	33.4 33.3	33.3	90.1 93.0	92.4	6.4 6.6	6.6	6.4	0.8	1.0		3.7 3.0	3.0	
G4	Fine	Calm	11:50	Middle	4	23.4 23.2	23.2	8.1 8.1	8.1	33.2 33.3	33.3	91.7 91.7	91.7	6.5 6.5	6.5	6.6	1.1 0.9	1.0	1.5	3.0 5.2	5.2	4.9
u+	Tillo	Odilli	11.50	Bottom	7	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.4	33.4	91.6 85.9	86.6	6.5 6.1	6.2	6.2	1.0 2.3	2.4	1.5	5.2 6.3	6.4	4.5
				Surface	1	23.2	23.3	8.1 8.1	8.1	33.4 33.2	33.2	87.2 88.3	87.7	6.2	6.2		2.5 1.5	1.6		6.4 5.5	5.5	
M1	Fine	Calm	11:30	Middle	3	23.3	23.2	8.1 8.1	8.1	33.2 33.3 33.3	33.3	90.3	90.2	6.1 6.4 6.4	6.4	6.3	1.6	1.4	1.6	5.5 5.1	5.1	5.3
				Bottom	5	23.2 23.2 23.2	23.2	8.1 8.1 8.1	8.1	33.4 33.4	33.4	90.0 90.2 89.9	90.1	6.4 6.3	6.4	6.4	1.4 1.9 1.7	1.8		5.1 5.3 5.0	5.2	
				Surface	1	23.3	23.3	8.1 8.1	8.1	33.3 33.2	33.3	92.9 92.4	92.7	6.5 6.5	6.5		1.0 0.9	1.0		4.1 4.2	4.2	
M2	Fine	Calm	11:18	Middle	5.5	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	93.2 93.2	93.2	6.6 6.6	6.6	6.6	1.2 1.2	1.2	1.4	6.6 6.7	6.7	5.8
				Bottom	10	23.2 23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	92.1 90.9	91.5	6.5 6.4	6.5	6.5	1.9 2.0	2.0		6.5 6.3	6.4	
				Surface	1	23.3 23.5	23.4	8.1 8.1	8.1	33.2 33.2	33.2	90.7 90.7	90.7	6.4 6.5	6.5	6.5	1.0 1.0	1.0		5.3 5.3	5.3	
М3	Fine	Calm	11:45	Middle	4	23.2 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	91.4 91.2	91.3	6.5 6.5	6.5	0.5	0.7 0.7	0.7	1.1	5.7 5.7	5.7	5.6
				Bottom	7	23.2 23.3	23.3	8.1 8.1	8.1	33.4 33.3	33.4	89.3 90.2	89.8	6.2 6.1	6.2	6.2	1.7 1.7	1.7		5.7 5.8	5.8	
				Surface	1	23.2	23.2	8.1 8.1	8.1	33.3 33.4	33.4	90.9 91.2	91.1	6.4 6.4	6.4	6.5	1.7	1.7		4.4 4.2	4.3	
M4	Fine	Calm	11:11	Middle	5	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	91.4	91.1	6.5 6.4	6.5		2.3	2.5	2.3	7.0 6.9	7.0	5.6
				Bottom	9	23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	90.4 90.5	90.5	6.4 6.4	6.4	6.4	2.8 2.7	2.8		5.4 5.5	5.5	
				Surface	1	23.3 23.2 23.2	23.3	8.1 8.1 8.1	8.1	33.3 33.4 33.4	33.4	90.8 90.2 90.8	90.5	6.4 6.4 6.4	6.4	6.4	2.4 2.8 1.9	2.6		5.6 5.4 4.4	5.5	
M5	Fine	Calm	12:01	Middle	5.5	23.2	23.2	8.1 8.1	8.1	33.4 33.5	33.4	90.4 91.9	90.6	6.4	6.4		1.9	1.9	2.4	4.4 4.3 4.2	4.4	4.7
				Bottom	10	23.2	23.2	8.1	8.1	33.5	33.5	91.5	91.7	6.5	6.5	6.5	2.7	2.8		4.2	4.2	
MC	Fi	0-1	44.50	Surface	-	23.2	-	8.1	- 0.4	33.2	-	91.7	- 04.7	6.5	-	6.5	1.1	-		7.0	- 74	7.4
M6	Fine	Calm	11:56	Middle	2	23.2	23.2	8.1	8.1	33.2	33.2	91.7	91.7	6.5	6.5		1.1	1.1	1.1	7.1	7.1	7.1
				Bottom		-	-	-	-	-	-	-	-	_	-	-	-	_		-	-	

Appendix I - Action and Limit Levels for Marine Water Quality on 27 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 8.0 NTU</u>	<u>C1: 8.7 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations M1-M	<u>[5</u>	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 6.2 mg/L</u>	<u>C1: 6.8 mg/L</u>
	Stations G1-G4	4, M1-M5	T
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.3 mg/L</u>	<u>C1: 7.9 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 27 April 2018

## (Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			nded Solids	
Location	Condition	Condition**	Time	Борс	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	93.0 92.4	92.7	6.6 6.5	6.6	6.6	1.3 1.4	1.4		5.1 5.2	5.2	l
C1	Fine	Calm	16:26	Middle	10	23.2 23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	92.4 92.5	92.5	6.5 6.5	6.5	0.0	1.9 1.8	1.9	3.3	5.5 5.4	5.5	5.6
				Bottom	19	23.2 23.2	23.2	8.1 8.1	8.1	33.5 33.5	33.5	91.7 91.3	91.5	6.5 6.4	6.5	6.5	6.8 6.6	6.7		6.0 6.2	6.1	L
				Surface	1	23.5 23.4	23.5	8.0 8.0	8.0	33.1 33.1	33.1	91.9 90.3	91.1	6.5 6.4	6.5	6.5	1.3 1.3	1.3		5.1 5.0	5.1	
C2	Fine	Calm	15:30	Middle	16.5	23.2 23.2	23.2	8.0 8.0	8.0	33.3 33.3	33.3	90.1 89.9	90.0	6.4 6.3	6.4	0.0	2.2 2.5	2.4	2.2	7.3 7.2	7.3	5.9
				Bottom	32	23.2 23.2	23.2	8.0 8.0	8.0	33.3 33.3	33.3	89.8 90.3	90.1	6.3 6.4	6.4	6.4	2.9 2.9	2.9		5.2 5.2	5.2	
				Surface	1	23.7 24.0	23.9	8.1 8.1	8.1	33.2 33.2	33.2	97.3 97.4	97.4	6.8 6.8	6.8	6.8	0.9 0.9	0.9		5.6 5.5	5.6	l
G1	Fine	Calm	15:57	Middle	4	23.7 23.8	23.8	8.1 8.1	8.1	33.2 33.2	33.2	96.8 96.6	96.7	6.8 6.8	6.8		0.9 0.9	0.9	1.1	7.2 7.4	7.3	5.9
				Bottom	7	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.4	33.4	92.9 91.6	92.3	6.6 6.5	6.6	6.6	1.7 1.5	1.6		4.6 4.7	4.7	
				Surface	1	23.7 23.7	23.7	8.1 8.1	8.1	33.2 33.3	33.3	96.1 96.5	96.3	6.7 6.8	6.8	6.8	0.9 1.0	1.0		5.8 5.9	5.9	
G2	Fine	Calm	15:47	Middle	5	23.3 23.4	23.4	8.1 8.1	8.1	33.3 33.3	33.3	96.0 96.4	96.2	6.8 6.8	6.8	0.0	0.7 0.7	0.7	0.9	13.0 12.9	13.0	8.3
				Bottom	9	23.2 23.2	23.2	8.1 8.1	8.1	33.4 33.3	33.4	93.2 94.8	94.0	6.6 6.7	6.7	6.7	1.1 1.0	1.1		6.1 6.0	6.1	
				Surface	1	24.1 23.8	24.0	8.1 8.1	8.1	33.1 33.1	33.1	96.7 95.3	96.0	6.7 6.7	6.7	6.7	1.2 1.4	1.3		4.4 4.4	4.4	
G3	Fine	Calm	16:02	Middle	4	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	95.7 94.9	95.3	6.7 6.7	6.7	J.,	0.9 1.0	1.0	1.0	3.8 3.9	3.9	3.8
				Bottom	7	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	92.7 93.1	92.9	6.5 6.6	6.6	6.6	0.8 0.8	0.8		3.2 3.1	3.2	
				Surface	1	23.8 23.9	23.9	8.1 8.1	8.1	33.2 33.2	33.2	96.9 97.3	97.1	6.8 6.8	6.8	6.8	0.9 0.8	0.9		4.8 4.9	4.9	
G4	Fine	Calm	16:12	Middle	4	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	94.6 95.2	94.9	6.7 6.7	6.7	0.0	0.8 0.9	0.9	1.0	5.0 5.2	5.1	5.2
				Bottom	7	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	91.8 94.0	92.9	6.5 6.6	6.6	6.6	1.3 1.3	1.3		5.7 5.7	5.7	
				Surface	1	23.8 23.9	23.9	8.1 8.1	8.1	33.2 33.2	33.2	97.0 96.9	97.0	6.8 6.8	6.8	6.8	0.9 0.8	0.9		5.7 5.8	5.8	
M1	Fine	Calm	15:52	Middle	3	23.7 23.8	23.8	8.1 8.1	8.1	33.2 33.2	33.2	96.2 96.4	96.3	6.7 6.7	6.7	0.0	1.0 1.0	1.0	1.1	5.8 6.0	5.9	5.6
				Bottom	5	23.5 23.5	23.5	8.1 8.1	8.1	33.3 33.3	33.3	94.2 94.2	94.2	6.6 6.6	6.6	6.6	1.3 1.2	1.3		5.1 5.1	5.1	
				Surface	1	23.5 23.5	23.5	8.1 8.1	8.1	33.3 33.3	33.3	96.7 96.0	96.4	6.8 6.7	6.8	6.8	1.0 1.0	1.0		2.5 2.6	2.6	
M2	Fine	Calm	15:43	Middle	6	23.2 23.3	23.3	8.1 8.1	8.1	33.4 33.3	33.4	94.4 93.6	94.0	6.7 6.6	6.7	0.0	1.2 1.2	1.2	1.5	5.6 5.6	5.6	3.9
				Bottom	11	23.2 23.2	23.2	8.1 8.1	8.1	33.4 33.4	33.4	92.4 92.0	92.2	6.5 6.5	6.5	6.5	2.4 2.3	2.4		3.5 3.5	3.5	
				Surface	1	24.2 23.7	24.0	8.1 8.1	8.1	32.9 33.1	33.0	95.8 95.4	95.6	6.7 6.7	6.7	6.7	1.3 1.3	1.3		5.4 5.4	5.4	
М3	Fine	Calm	16:06	Middle	4	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	95.1 95.5	95.3	6.7 6.7	6.7	5.,	0.9 1.0	1.0	1.1	5.4 5.6	5.5	4.7
				Bottom	7	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	93.1 93.3	93.2	6.6 6.6	6.6	6.6	1.0 0.9	1.0		3.2 3.1	3.2	<u></u>
				Surface	1	23.5 23.5	23.5	8.1 8.1	8.1	33.3 33.3	33.3	94.6 96.1	95.4	6.7 6.8	6.8	6.8	1.2 1.1	1.2		5.2 5.3	5.3	
M4	Fine	Calm	15:37	Middle	5	23.3 23.3	23.3	8.1 8.1	8.1	33.4 33.4	33.4	96.2 96.1	96.2	6.8 6.8	6.8	0.0	1.1 1.0	1.1	1.1	4.6 4.6	4.6	4.6
				Bottom	9	23.3 23.3	23.3	8.1 8.1	8.1	33.4 33.4	33.4	96.2 95.9	96.1	6.8 6.8	6.8	6.8	1.0 1.1	1.1		3.9 3.9	3.9	
				Surface	1	23.4 23.4	23.4	8.1 8.1	8.1	33.2 33.2	33.2	92.3 91.3	91.8	6.5 6.4	6.5	6.5	1.4 1.4	1.4		5.3 5.3	5.3	
M5	Fine	Calm	16:21	Middle	6	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	90.8 90.7	90.8	6.4 6.4	6.4	3.5	1.6 1.9	1.8	1.9	4.5 4.7	4.6	5.2
				Bottom	11	23.3 23.3	23.3	8.1 8.1	8.1	33.3 33.3	33.3	90.0 89.8	89.9	6.3 6.3	6.3	6.3	2.2 2.5	2.4		5.6 5.5	5.6	
				Surface	-	-	-	-	=	-	=	-	-	-	-	6.3	-	-		-	-	
M6	Fine	Calm	16:17	Middle	2	23.2 23.2	23.2	8.1 8.1	8.1	33.3 33.3	33.3	89.7 89.7	89.7	6.3 6.3	6.3	0.0	2.4 2.5	2.5	2.5	4.5 4.4	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 30 April 2018 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	<u> </u>
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
,	Station M6		
	Intake Level	<u>5.0 mg/L</u>	4.7 mg/L
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
T 1:1:		or 120% of upstream control	or 130% of upstream control
Turbidity in	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
NTU (See Note 2 and 4)		tide of the same day	of the same day
(See Prote 2 and 1)		<u>C2: 3.1 NTU</u>	<u>C2: 3.4 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	1	
		6.0 mg/L	6.9 mg/L
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	<b>Stations M1-M</b>	<u>5</u>	
		6.2 mg/L	7.4 mg/L
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C2: 6.4 mg/L</u>	<u>C2: 6.9 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C2: 6.1 mg/L</u>	<u>C2: 6.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 April 2018

#### (Mid-Ebb Tide)

	Weather	Sea	Sampling			Tompor	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	1	Turbidity(NTI	U)	Susne	nded Solids	(ma/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	Condition	Jonation		Curfoo-		23.9		8.1		33.1		91.3		6.4			1.5			4.9		
				Surface	1	23.9	23.9	8.1	8.1	33.1	33.1	91.6	91.5	6.4	6.4	6.5	1.7	1.6	]	4.7	4.8	I
C1	Cloudy	Moderate	12:38	Middle	10	23.7	23.7	8.1	8.1	33.3	33.3	92.4	92.2	6.5	6.5	0.5	1.9	1.9	1.8	5.4	5.5	4.8
-	,					23.7		8.1 8.1		33.3 33.4		92.0		6.4			1.8		4	5.5 4.1		1
				Bottom	19	23.7	23.7	8.1	8.1	33.4	33.4	92.9 93.0	93.0	6.5 6.5	6.5	6.5	2.1	2.0		4.1	4.1	l
				04		23.8	00.0	8.0	0.0	33.1	00.4	91.5	00.0	6.4	0.4		2.0	0.0	<u> </u>	5.3	F 0	
				Surface	1	23.8	23.8	8.0	8.0	33.1	33.1	90.0	90.8	6.3	6.4	6.4	1.9	2.0		5.3	5.3	l
C2	Cloudy	Moderate	11:29	Middle	16.5	23.7	23.7	8.0	8.0	33.1	33.2	90.1	90.0	6.3	6.3	0.4	1.6	1.8	2.1	5.6	5.6	5.3
	,					23.7 23.7		8.0 8.0		33.2 33.2		89.8 89.6		6.3 6.3			1.9 2.5		4	5.6 5.1		l
				Bottom	32	23.6	23.7	8.1	8.1	33.3	33.3	89.7	89.7	6.3	6.3	6.3	2.7	2.6		5.1	5.1	l
				Surface	1	23.9	23.9	8.1	8.1	33.2	33.2	93.8	93.7	6.6	6.6		1.0	1.0		5.1	5.2	
				Ouridee	'	23.8	20.0	8.1	0.1	33.2	00.2	93.6	30.7	6.5	0.0	6.6	1.0	1.0		5.2	5.2	l
G1	Cloudy	Moderate	12:04	Middle	4	23.7	23.7	8.1	8.1	33.3 33.3	33.3	93.7	93.6	6.6	6.6		1.8	1.7	1.7	5.9	5.9	5.2
						23.7 23.7		8.1 8.1		33.4		93.4 93.8		6.5 6.6			1.5		4	5.8 4.4		l
				Bottom	7	23.6	23.7	8.1	8.1	33.4	33.4	93.5	93.7	6.6	6.6	6.6	2.4	2.4		4.4	4.4	
				Surface	1	23.8	23.9	8.1	8.1	33.2	33.2	95.6	95.6	6.7	6.7		1.4	1.3		4.3	4.3	
				Juliace	'	23.9	20.9	8.1	0.1	33.2	30.2	95.5	93.0	6.7	0.7	6.7	1.2	1.5		4.2	4.5	l
G2	Cloudy	Moderate	11:53	Middle	5	23.7	23.7	8.1	8.1	33.4	33.4	95.2	95.2	6.7	6.7		1.3	1.2	1.3	5.2	5.1	4.9
	·				<u> </u>	23.7 23.6		8.1 8.1	<del>  </del>	33.4 33.4		95.2 94.6	<del> </del>	6.7 6.6	<del></del>	H	1.1	<del>   </del>	1	5.0 5.4		
				Bottom	9	23.6	23.6	8.1	8.1	33.4	33.4	94.9	94.8	6.6	6.6	6.6	1.3	1.4		5.3	5.4	
				Surface	1	23.9	23.9	8.1	8.1	33.1	33.1	93.3	92.9	6.5	6.5		1.0	1.1		5.8	5.8	
				Ourrace	'	23.8	20.0	8.1	0.1	33.1	00.1	92.4	32.3	6.5	0.0	6.5	1.1	1		5.8	5.0	
G3	Cloudy	Moderate	12:10	Middle	4	23.7 23.7	23.7	8.1	8.1	33.2	33.2	91.5 91.4	91.5	6.4 6.4	6.4		1.6 1.6	1.6	1.4	3.6 3.7	3.7	4.0
						23.7		8.1 8.1		33.2 33.3		92.3		6.5			1.3	<u> </u>	-	2.6		
				Bottom	7	23.6	23.6	8.1	8.1	33.3	33.3	91.2	91.8	6.4	6.5	6.5	1.6	1.5		2.5	2.6	
				Surface	1	23.8	23.8	8.1	8.1	33.2	33.2	94.3	94.1	6.6	6.6		0.9	0.9		2.8	2.8	
				Odiracc	'	23.8	20.0	8.1	0.1	33.2	00.2	93.9	34.1	6.6	0.0	6.5	0.9	0.5		2.7	2.0	
G4	Cloudy	Moderate	12:20	Middle	4	23.6 23.6	23.6	8.1 8.1	8.1	33.3 33.3	33.3	91.2 90.5	90.9	6.4 6.3	6.4		2.0 2.2	2.1	1.8	4.4 4.4	4.4	3.4
				D ::		23.6	00.0	8.1		33.4	00.4	92.4	24.0	6.5		0.5	2.4		1	2.8		1
				Bottom	7	23.6	23.6	8.1	8.1	33.4	33.4	91.4	91.9	6.4	6.5	6.5	2.1	2.3		2.9	2.9	
				Surface	1	23.9	23.9	8.1	8.1	33.2	33.2	94.0	93.9	6.6	6.6		1.5	1.6		3.6	3.6	
					·	23.8		8.1	***	33.2		93.8		6.6		6.6	1.6		4	3.5		
M1	Cloudy	Moderate	11:59	Middle	3	23.7 23.8	23.8	8.1 8.1	8.1	33.3 33.3	33.3	94.0 93.6	93.8	6.6 6.5	6.6		1.8 1.7	1.8	1.8	5.6 5.6	5.6	4.9
				D-#	5	23.7	23.7	8.1	8.1	33.3	33.3	94.2	04.4	6.6	6.6	6.6	2.2	2.1	1	5.3	5.4	
				Bottom	3	23.7	23.7	8.1	0.1	33.3	33.3	93.9	94.1	6.6	0.0	0.0	2.0	2.1		5.4	3.4	
				Surface	1	23.9	23.9	8.1	8.1	33.2	33.2	95.9	95.9	6.7	6.7		0.7	0.8		4.6	4.7	
						23.9		8.1		33.2		95.8		6.7		6.7	0.8		4	4.7		
M2	Cloudy	Moderate	11:48	Middle	5.5	23.7 23.7	23.7	8.1 8.1	8.1	33.3 33.3	33.3	95.7 95.3	95.5	6.7 6.7	6.7		0.9 0.9	0.9	1.2	7.3 7.5	7.4	5.1
				D-#	10	23.6	23.6	8.1	8.1	33.4	33.4	93.6	93.9	6.6	6.6	6.6	1.9	1.8	1	3.3	3.3	
				Bottom	10	23.6	23.6	8.1	8.1	33.4	33.4	94.1	93.9	6.6	6.6	6.6	1.6	1.8		3.3	3.3	
				Surface	1	23.8	23.8	8.1	8.1	33.1	33.1	90.1	91.1	6.3	6.4		1.0	1.1		4.3	4.3	
						23.8 23.7		8.1 8.1		33.1 33.2		92.0 91.5		6.4 6.4		6.4	0.9		1	4.3		, !
M3	Cloudy	Moderate	12:15	Middle	4	23.7	23.7	8.1	8.1	33.2	33.2	92.0	91.8	6.4	6.4		0.9	0.9	1.4	4.1	4.1	4.4
				Bottom	7	23.6	23.6	8.1	8.1	33.3	33.3	89.1	89.3	6.2	6.3	6.3	2.4	2.3	1	4.6	4.7	
				DOLLOTT	,	23.6	20.0	8.1	0.1	33.3	30.3	89.5	03.5	6.3	0.5	0.5	2.2	2.0		4.7	4.7	
				Surface	1	23.7	23.7	8.1	8.1	33.3	33.3	91.6	91.5	6.4	6.4		2.2	2.2		5.7	5.9	, 7
						23.7 23.6		8.1 8.1	1	33.3 33.3		91.3 91.4	1	6.4		6.4	2.1	1	-	6.0 3.6		
M4	Cloudy	Moderate	11:38	Middle	5	23.6	23.6	8.1	8.1	33.3	33.3	91.2	91.3	6.4	6.4		2.2	2.2	2.3	3.8	3.7	5.1
				Bottom	9	23.6	23.6	8.1	8.1	33.4	33.4	90.4	90.9	6.3	6.4	6.4	2.6	2.6		5.5	5.7	
				Dottom		23.6	20.0	8.1	J. 1	33.4	55.7	91.4	55.5	6.4	5.7	5.4	2.5	0	<u> </u>	5.8	5.7	
				Surface	1	23.8 23.8	23.8	8.1	8.1	33.2 33.2	33.2	93.4 93.9	93.7	6.5	6.6		1.3	1.4	1	4.2	4.2	
		<b></b> .	40.51			23.8	05 -	8.1 8.1		33.2	05 -	93.9		6.6 6.6		6.6	1.4		1 , _	3.3	0	
M5	Cloudy	Moderate	12:31	Middle	5.5	23.7	23.7	8.1	8.1	33.3	33.3	94.2	94.4	6.6	6.6		1.3	1.3	1.5	3.3	3.3	3.6
				Bottom	10	23.6	23.6	8.1	8.1	33.4	33.4	94.0	94.1	6.6	6.6	6.6	1.7	1.7		3.3	3.2	
				20110111		23.6	20.0	8.1	U	33.4	00	94.1	V	6.6	0.0	0.0	1.7			3.1	0.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		l -	-	
140	Olevid	Madai	40.05	Marian	4.5	23.7	00.7	8.1	0.4	33.2	00.0	92.4	00.5	6.5	0.5	6.5	1.0	4.0	1	4.1	4.0	4.0
M6	Cloudy	Moderate	12:25	Middle	1.5	23.7	23.7	8.1	8.1	33.2	33.2	92.5	92.5	6.5	6.5		1.0	1.0	1.0	4.3	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	, !
	l	l			l	-	1	-	1	-		-	1	-		1	-	1		_		

Remarks:

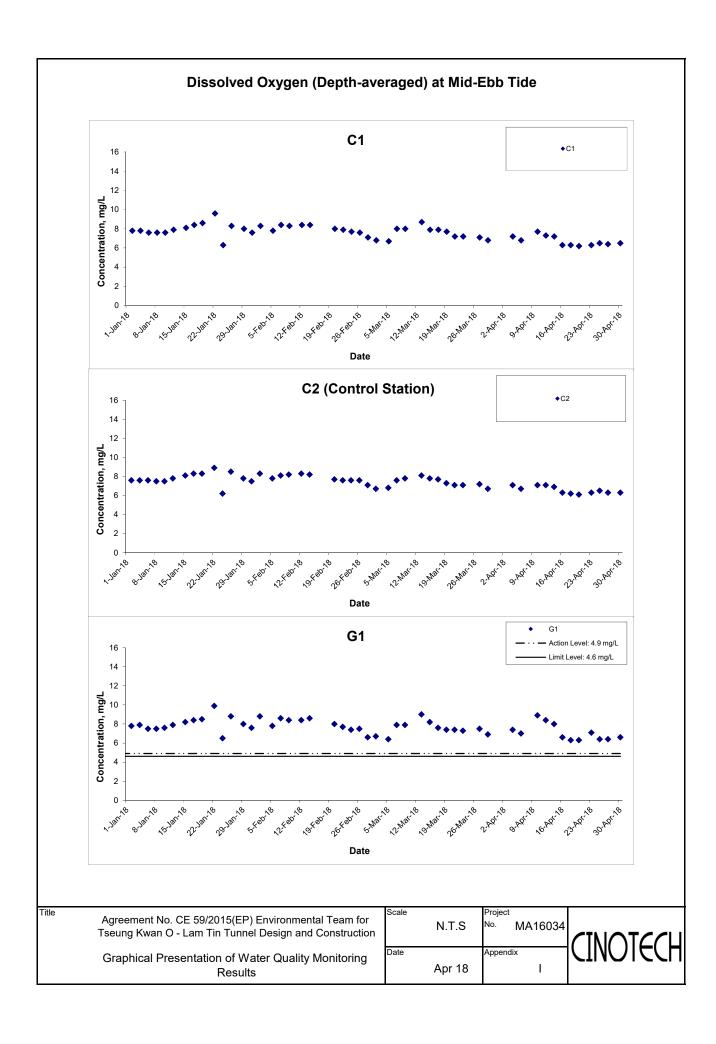
^{*}DA: Depth-Averaged

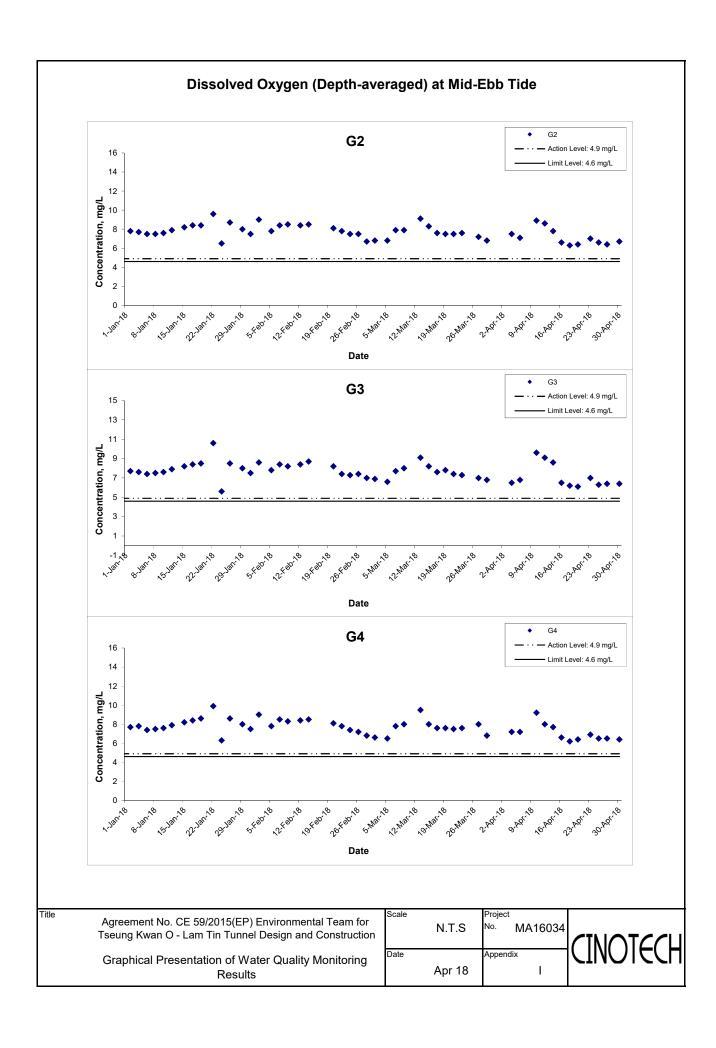
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

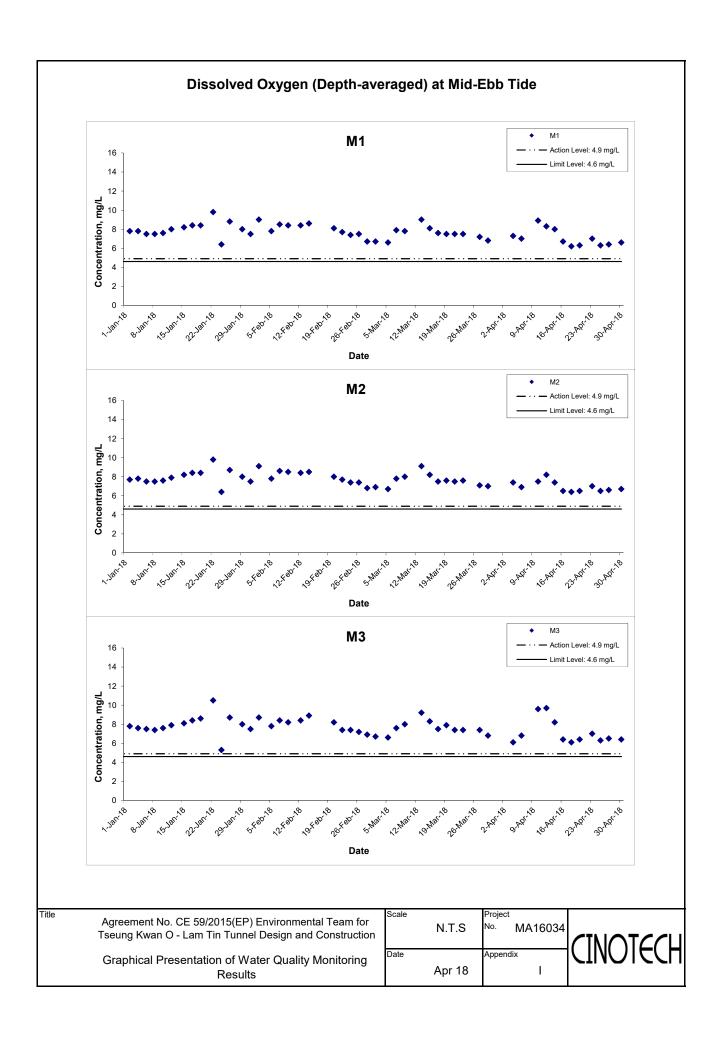
Appendix I - Action and Limit Levels for Marine Water Quality on 30 April 2018 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4	4, M1-M5	
DO in ma/I	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	3.6 mg/L
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in		or 120% of upstream control	or 130% of upstream control
Turbidity in NTU	Bottom	station's Turbidity at the same	station's Turbidity at the same tide
(See Note 2 and 4)		tide of the same day	of the same day
		<u>C1: 2.6 NTU</u>	<u>C1: 2.9 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u>1</u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Stations M1-M	<u>5</u>	_
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of the
(See Note 2 and 4)		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Stations G1-G4	4, M1-M5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of the
		the same day	same day
		<u>C1: 7.1 mg/L</u>	<u>C1: 7.7 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

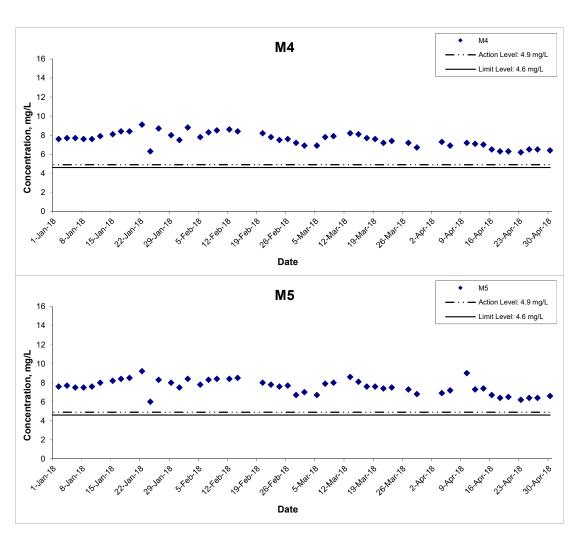
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.


# Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 30 April 2018


## (Mid-Flood Tide)

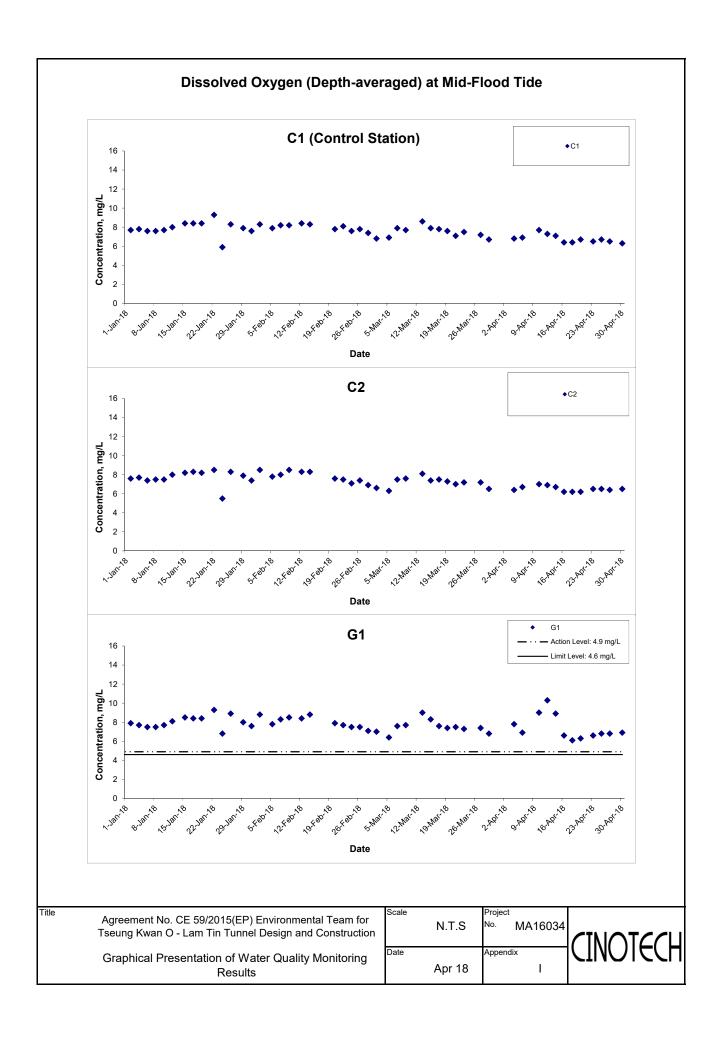

Location	Weather	Sea	Sampling	Dent	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			Turbidity(NT			nded Solids	
Location	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.1	24.1	8.0 8.0	8.0	32.7 32.7	32.7	86.5 86.9	86.7	6.0 6.1	6.1	6.2	1.5 1.7	1.6		5.8 5.9	5.9	l
C1	Cloudy	Moderate	18:47	Middle	10	23.8 23.8	23.8	8.1 8.1	8.1	33.2 33.2	33.2	89.9 89.5	89.7	6.3 6.3	6.3		1.6 1.5	1.6	1.8	2.6 2.6	2.6	4.8
				Bottom	19	23.6 23.7	23.7	8.1 8.1	8.1	33.5 33.3	33.4	93.4 91.8	92.6	6.5 6.4	6.5	6.5	2.2 2.2	2.2		5.9 5.9	5.9	
				Surface	1	24.2 24.2	24.2	8.0 8.0	8.0	32.5 32.5	32.5	85.1 85.1	85.1	5.9 5.9	5.9	6.2	1.6 1.6	1.6		4.7 4.6	4.7	
C2	Cloudy	Moderate	17:38	Middle	16	23.8 23.8	23.8	8.1 8.1	8.1	33.2 33.2	33.2	92.4 92.0	92.2	6.5 6.4	6.5	0.2	2.0 2.1	2.1	2.0	6.9 7.1	7.0	5.8
				Bottom	31	23.7 23.7	23.7	8.1 8.1	8.1	33.3 33.3	33.3	92.7 92.5	92.6	6.5 6.5	6.5	6.5	2.3 2.3	2.3		5.6 5.7	5.7	
				Surface	1	24.3 24.4	24.4	8.1 8.1	8.1	33.1 33.1	33.1	99.7 99.6	99.7	6.9 6.9	6.9	6.9	0.8 0.8	0.8		5.5 5.6	5.6	
G1	Cloudy	Moderate	18:12	Middle	4	24.0 23.9	24.0	8.1 8.1	8.1	33.2 33.2	33.2	98.3 98.1	98.2	6.9 6.8	6.9		0.9 0.9	0.9	1.2	6.8 6.6	6.7	5.6
				Bottom	7	23.6 23.6	23.6	8.1 8.1	8.1	33.4 33.5	33.5	95.1 95.8	95.5	6.7 6.7	6.7	6.7	1.9 2.1	2.0		4.4 4.4	4.4	
				Surface	1	24.4 24.4	24.4	8.1 8.1	8.1	33.1 33.1	33.1	99.6 99.2	99.4	6.9 6.9	6.9	6.9	0.8	0.9		5.0 5.1	5.1	
G2	Cloudy	Moderate	18:02	Middle	5	23.8 23.7	23.8	8.1 8.1	8.1	33.3 33.3	33.3	97.2 97.0	97.1	6.8 6.8	6.8		1.1	1.1	1.5	2.7 2.8	2.8	4.0
				Bottom	9	23.6 23.6	23.6	8.1 8.1	8.1	33.5 33.5	33.5	94.2 94.9	94.6	6.6 6.6	6.6	6.6	2.3 2.5	2.4		3.9 4.0	4.0	
				Surface	1	24.6 24.6	24.6	8.1 8.1	8.1	33.1 33.1	33.1	99.7 99.2	99.5	6.9 6.8	6.9	6.7	0.7 0.8	8.0		5.6 5.7	5.7	l
G3	Cloudy	Moderate	18:17	Middle	4	23.9 23.8	23.9	8.1 8.1	8.1	33.2 33.2	33.2	93.6 93.1	93.4	6.5 6.5	6.5		2.0 1.9	2.0	1.6	5.6 5.7	5.7	5.6
				Bottom	7	23.6 23.7	23.7	8.1 8.1	8.1	33.4 33.4	33.4	94.4 94.1	94.3	6.6 6.6	6.6	6.6	2.2	2.1		5.3 5.4	5.4	
				Surface	1	24.3 24.2	24.3	8.1 8.1	8.1	33.1 33.2	33.2	98.6 99.1	98.9	6.8 6.9	6.9	6.9	1.5	1.5		5.0 5.1	5.1	
G4	Cloudy	Moderate	18:29	Middle	4	24.0 24.0	24.0	8.1 8.1 8.1	8.1	33.2 33.2	33.2	98.5 98.0	98.3	6.9 6.8	6.9		1.3 1.6 2.1	1.5	1.7	4.5 4.6 3.0	4.6	4.2
				Bottom	7	23.7 23.7	23.7	8.1	8.1	33.4 33.3	33.4	96.4 96.5	96.5	6.7 6.7	6.7	6.7	2.0	2.1		3.0	3.0	
				Surface	1	24.4 24.4	24.4	8.1 8.1	8.1	33.1 33.1 33.1	33.1	93.9 93.2	93.6	6.5 6.5	6.5	6.5	1.3 1.4 1.4	1.4		2.6 2.7 3.3	2.7	
M1	Cloudy	Moderate	18:08	Middle	3	24.2 24.2 23.8	24.2	8.1 8.1 8.1	8.1	33.1 33.2	33.1	92.0 91.1 93.0	91.6	6.4 6.3 6.5	6.4		1.4	1.4	1.3	3.2 3.2	3.3	3.1
				Bottom	5	23.8	23.8	8.1 8.1	8.1	33.2 33.2	33.2	93.6	93.3	6.5 6.9	6.5	6.5	1.2	1.2		3.2 2.7	3.2	
				Surface	1	24.4	24.3	8.1 8.1	8.1	33.2 33.2	33.2	100.0	100.0	6.9	6.9	6.9	0.9	0.9		2.7	2.7	l
M2	Cloudy	Moderate	17:55	Middle	5.5	24.2	24.2	8.1 8.1	8.1	33.2 33.4	33.2	99.3	99.3	6.9 6.6	6.9		0.9	0.9	1.4	4.4 2.1	4.4	3.1
				Bottom	10	23.6 24.6	23.6	8.1 8.1	8.1	33.5 33.1	33.5	93.9 98.4	94.1	6.6	6.6	6.6	2.5	2.4		2.0	2.1	
				Surface	1	24.6 23.9	24.6	8.1 8.1	8.1	33.0	33.1	98.4 95.7	98.4	6.8	6.8	6.8	0.8	0.8	1	2.9	3.0	
M3	Cloudy	Moderate	18:22	Middle	4	23.9 23.6	23.9	8.1 8.1	8.1	33.2 33.5	33.2	96.6 93.4	96.2	6.7 6.5	6.7		1.7	1.7	1.7	2.9 5.8	2.9	3.9
				Bottom	7	23.6	23.6	8.1 8.1	8.1	33.4 33.2	33.5	90.3	91.9	6.3	6.4	6.4	2.5	2.5	<u> </u>	6.0 5.3	5.9	
				Surface	1	24.2	24.2	8.1 8.1	8.1	33.2 33.2	33.2	99.6 99.4	98.2	6.9	6.8	6.9	0.9	1.0	1	5.3 3.4	5.3	l
M4	Cloudy	Moderate	17:48	Middle	5	24.2	24.2	8.1 8.1	8.1	33.2	33.2	100.1	99.8	7.0 6.9	7.0		0.9	1.0	1.1	3.4 4.5	3.4	4.4
				Bottom	9	23.8	23.8	8.1 8.0	8.1	33.3 32.8	33.3	97.7 89.3	98.1	6.8	6.9	6.9	1.2	1.2		4.4 5.4	4.5	
145	01- 1	Mand	40.40	Surface	1	24.1	24.1	8.0 8.0	8.0	32.8 32.9	32.8	88.8 88.6	89.1	6.2	6.2	6.2	1.5	1.5	4	5.6 6.5	5.5	
M5	Cloudy	Moderate	18:40	Middle	5.5	24.0	24.0	8.0 8.1	8.0	32.9 32.9	32.9	88.4 88.3	88.5	6.2	6.2		1.7	1.6	1.7	6.7	6.6	6.1
				Bottom	10	24.0	24.0	8.1	8.1	33.0	33.0	88.2	88.3	6.2	6.2	6.2	2.1	2.0		6.1	6.1	
MG	Claudi	Madarata	10.05	Surface	1.5	24.3	- 04.9	8.1	0.1	33.2		98.5	-	6.8		6.8	1.1	1.1		3.9	-	2.0
M6	Cloudy	Moderate	18:35	Middle	1.5	24.3	24.3	8.1	8.1	33.2	33.2	98.7	98.6	6.8	6.8		1.1	1.1	1.1	3.7	3.8	3.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

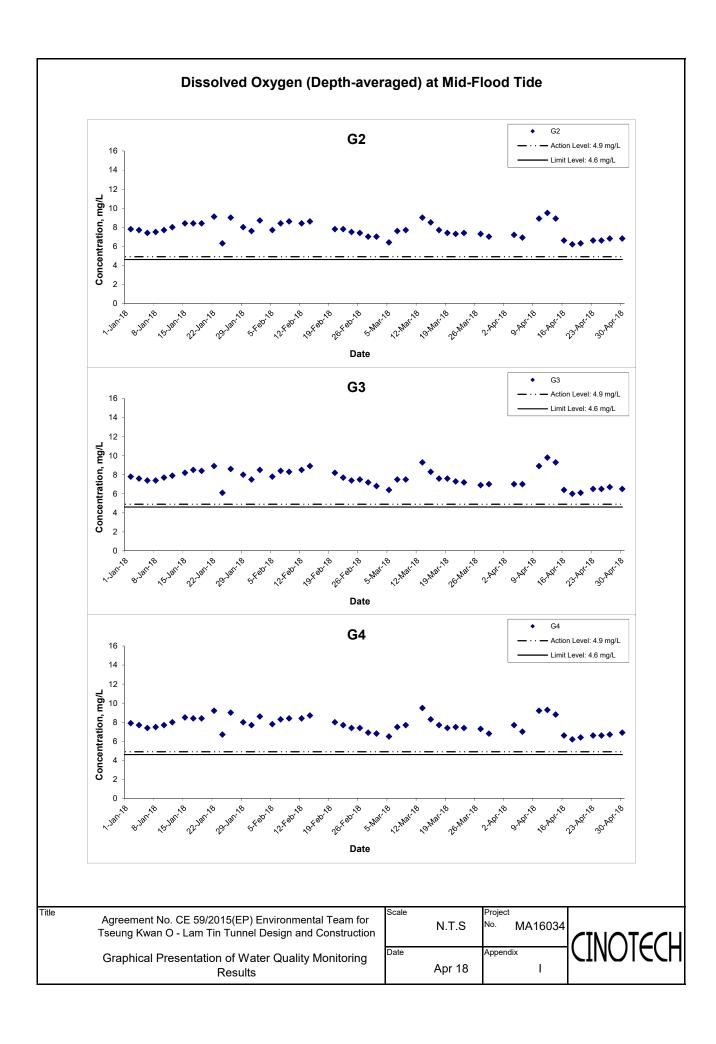
Remarks: *DA: Depth-Averaged

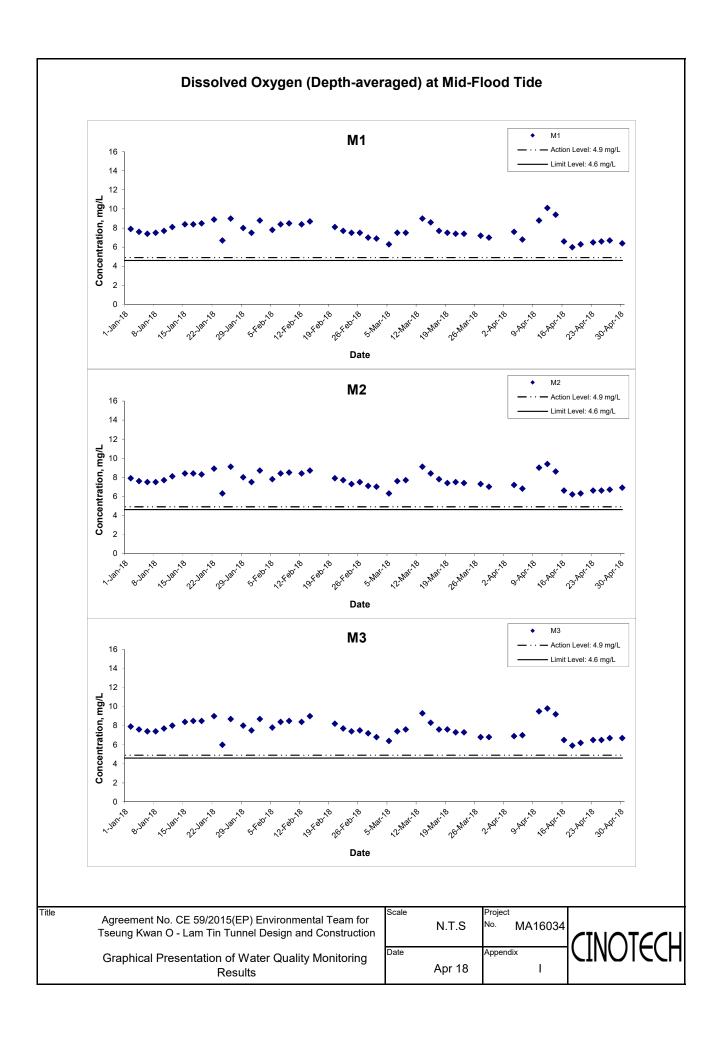

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.



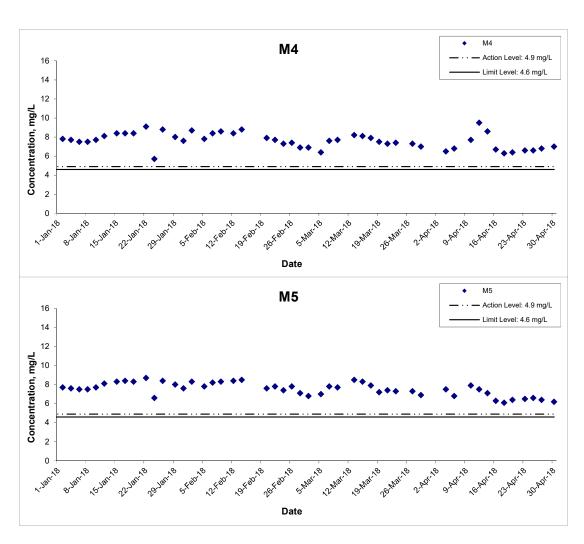






# Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide

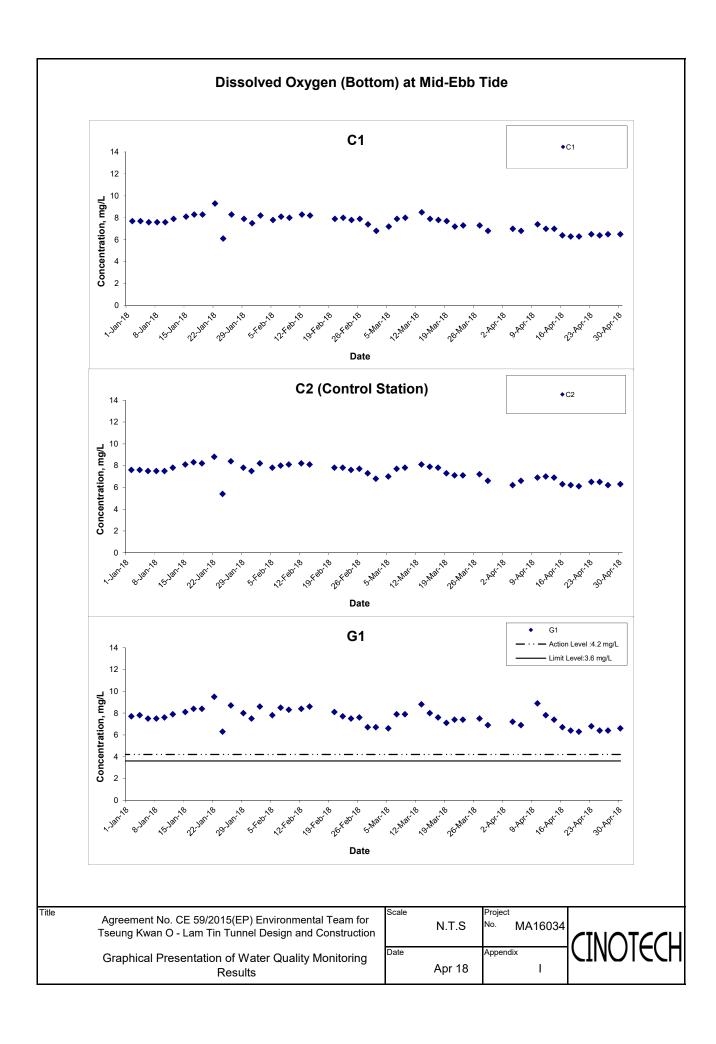


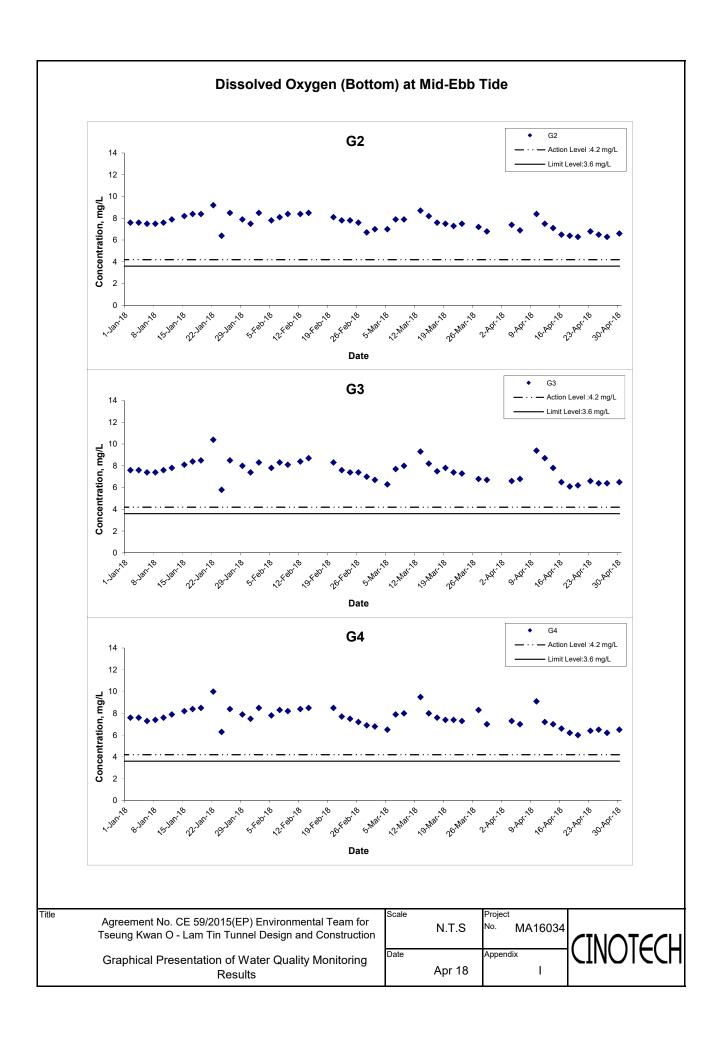

Scale	N.T.S	Projec No.	MA16034
Date	Apr 18	Apper	ndix 

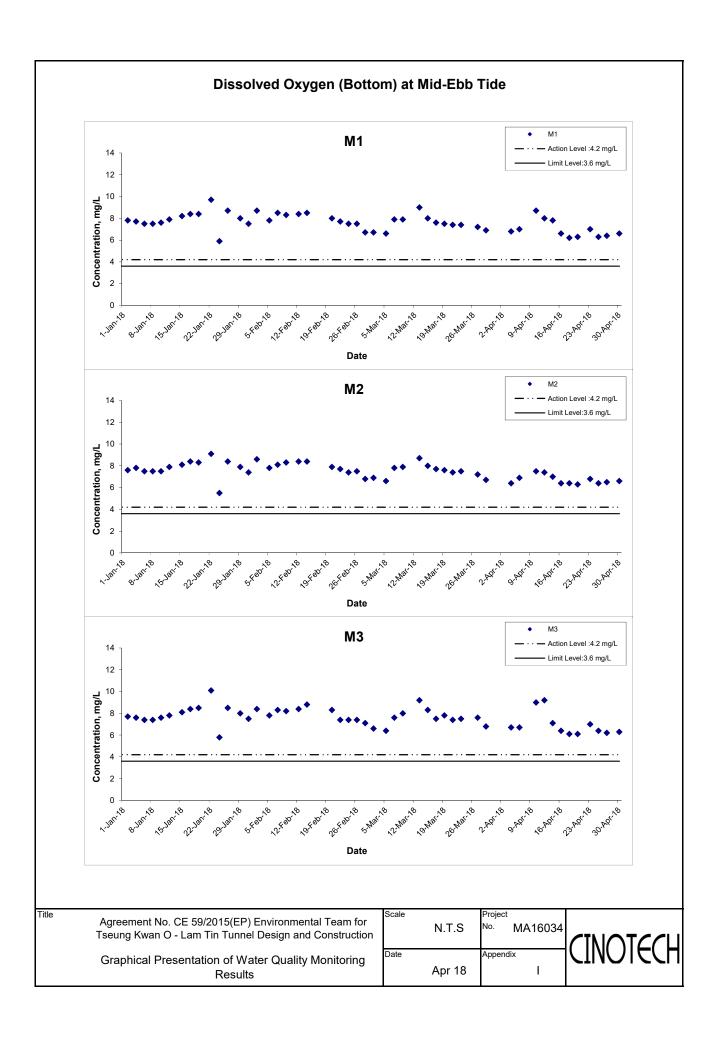




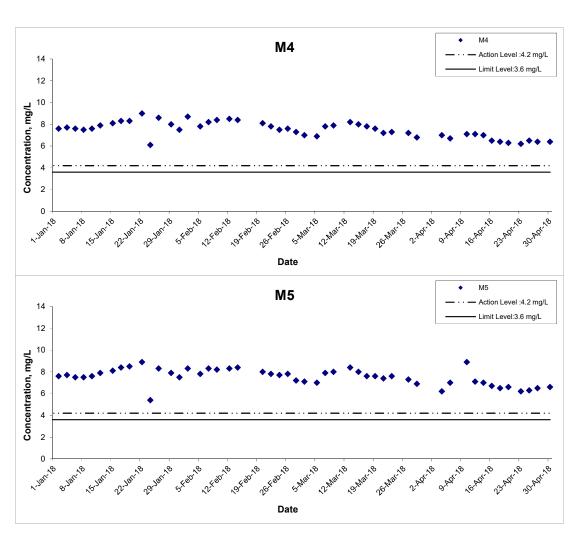




# Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide

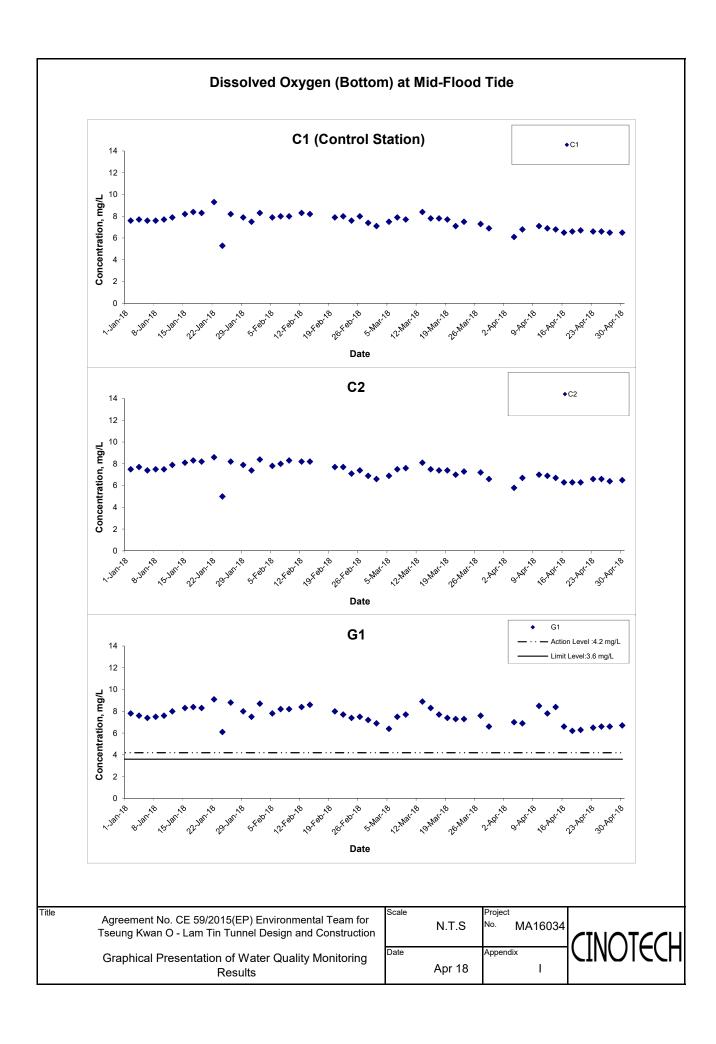


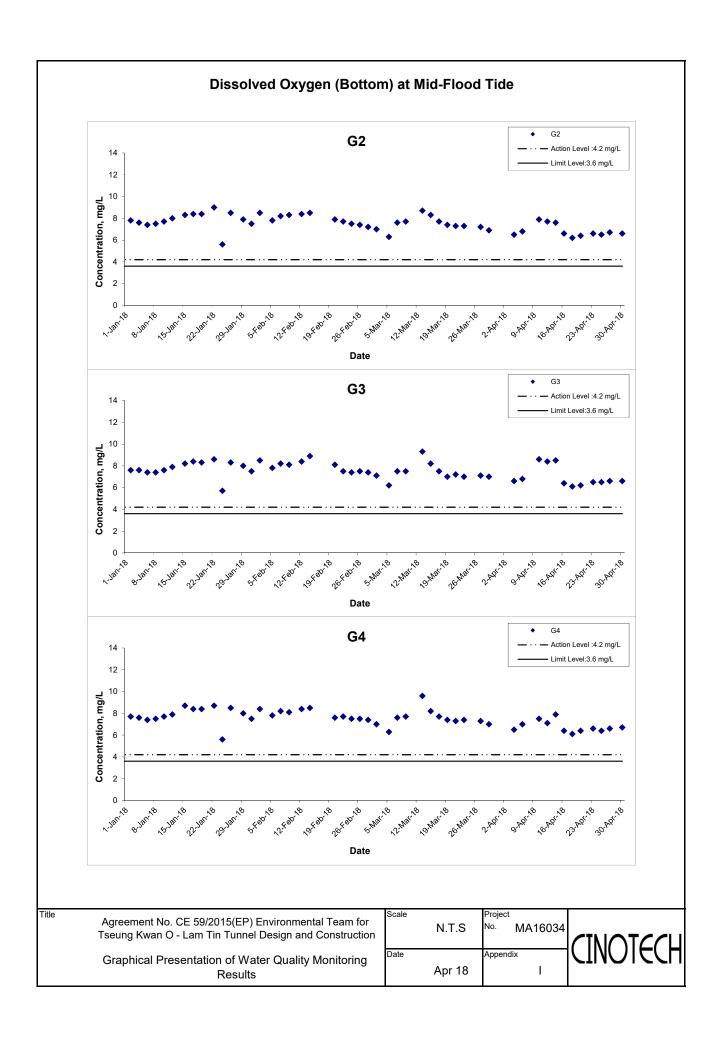

Scale	N.T.S	Projec No.	MA16034
Date	Apr 18	Apper	ndix 

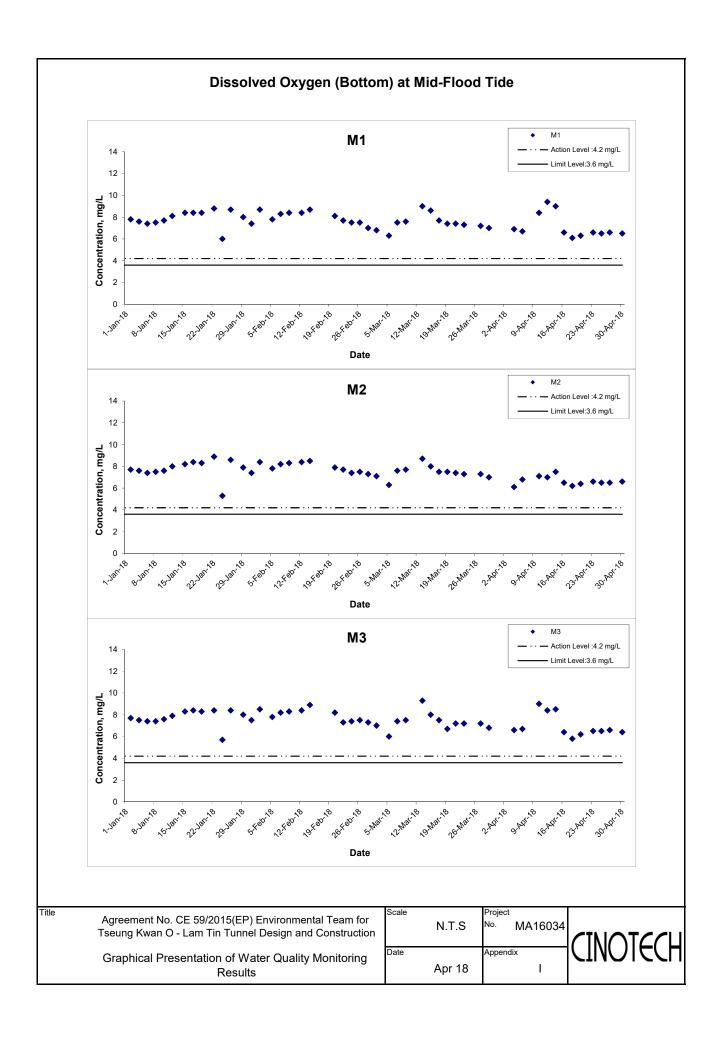




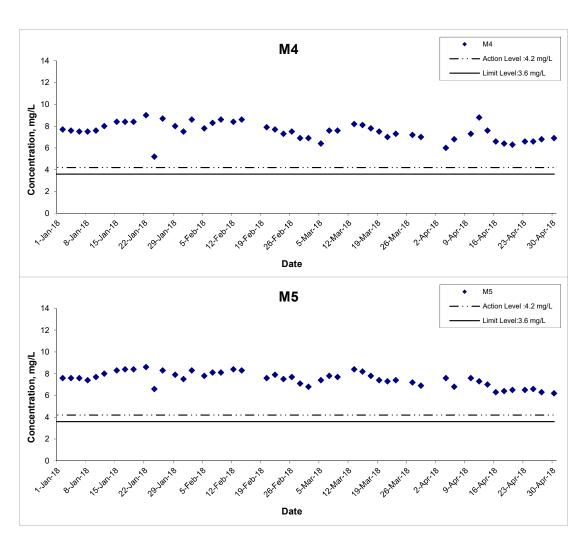




# Dissolved Oxygen (Bottom) at Mid-Ebb Tide



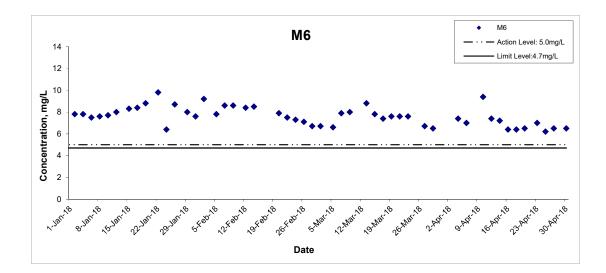

Scale	N.T.S	Projec No.	MA16034
Date	Apr 18	Apper	ndix 











# Dissolved Oxygen (Bottom) at Mid-Flood Tide

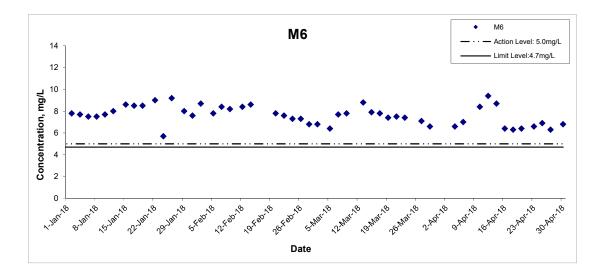


S	Scale	N.T.S	Project No.	MA16034
C	ate	Apr 18	Apper	ndix 



# Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide



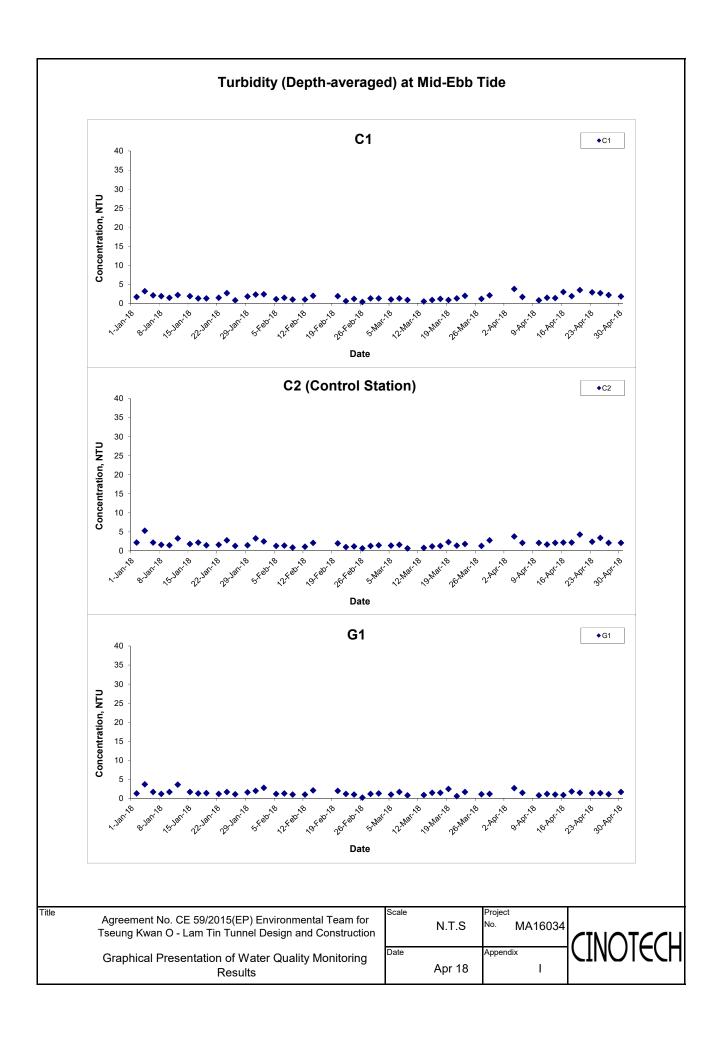

Title
Agreement No. CE 59/2015(EP) Environmental Team for
Tseung Kwan O - Lam Tin Tunnel Design and Construction

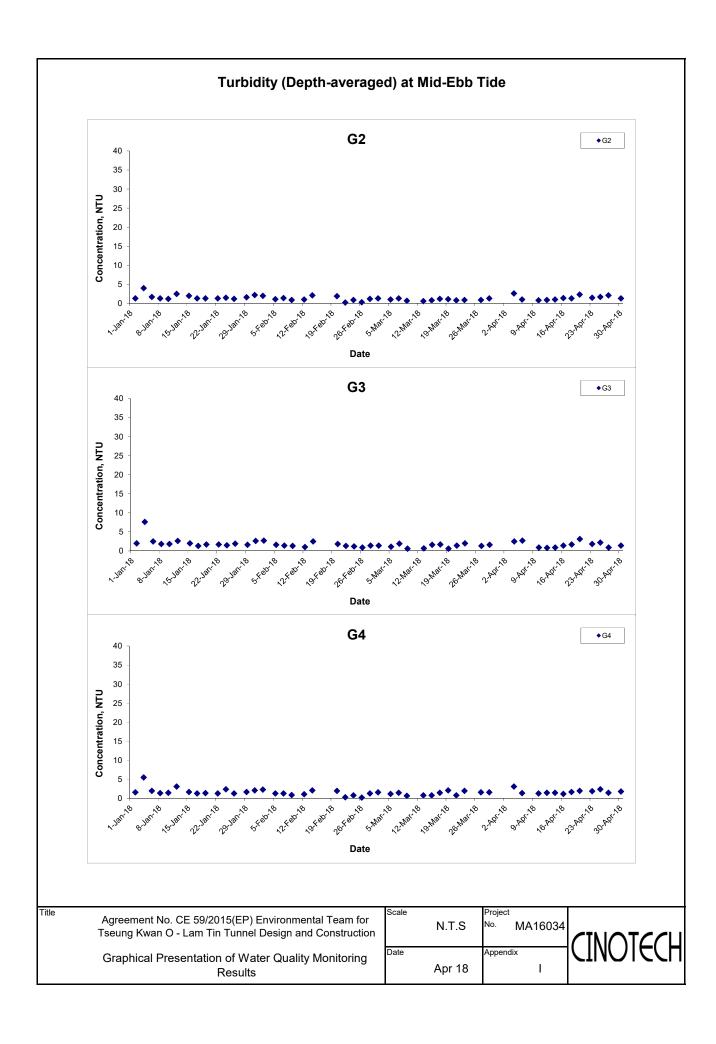
Graphical Presentation of Water Quality Monitoring Results

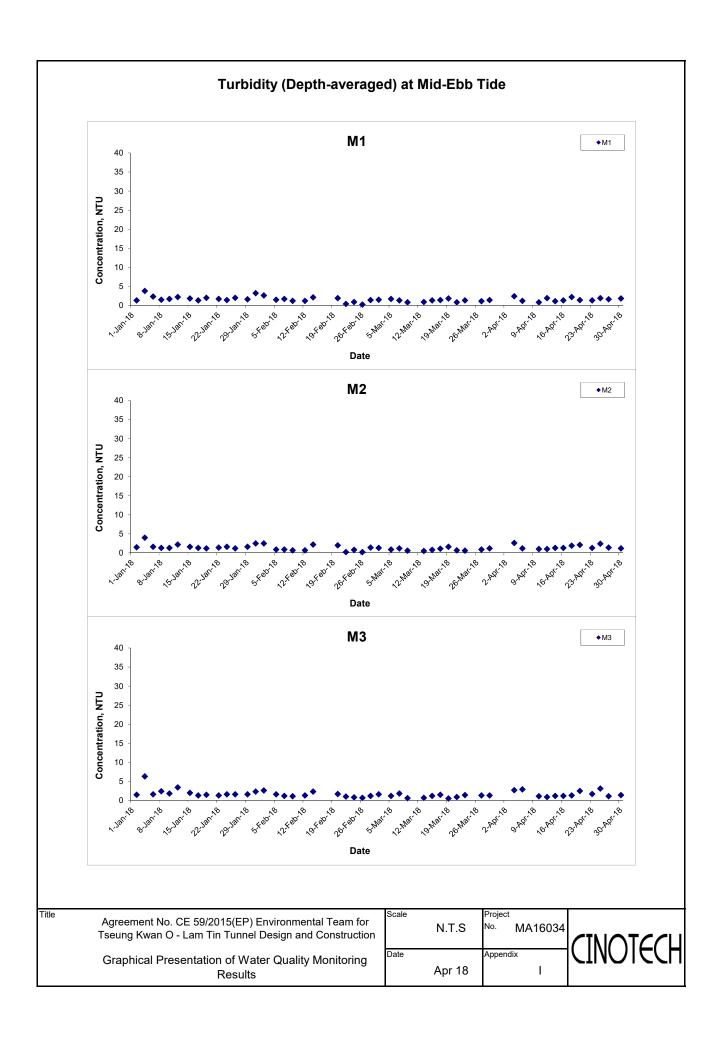
Scale		Project	
	N.T.S	No. MA16034	
Date		Appendix	
	Apr 18	I	



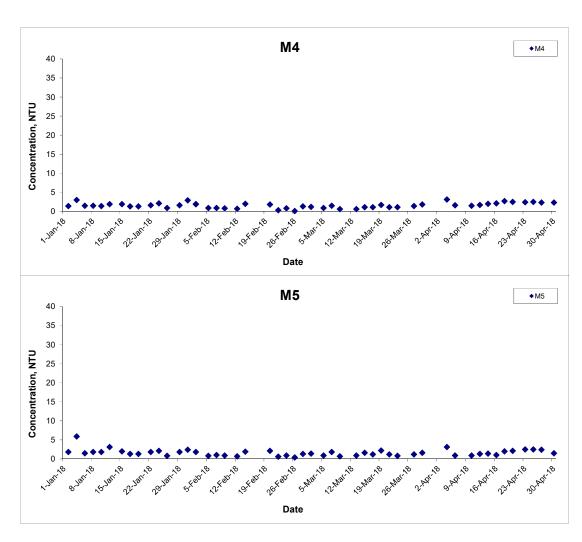
# Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide





Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring

Results







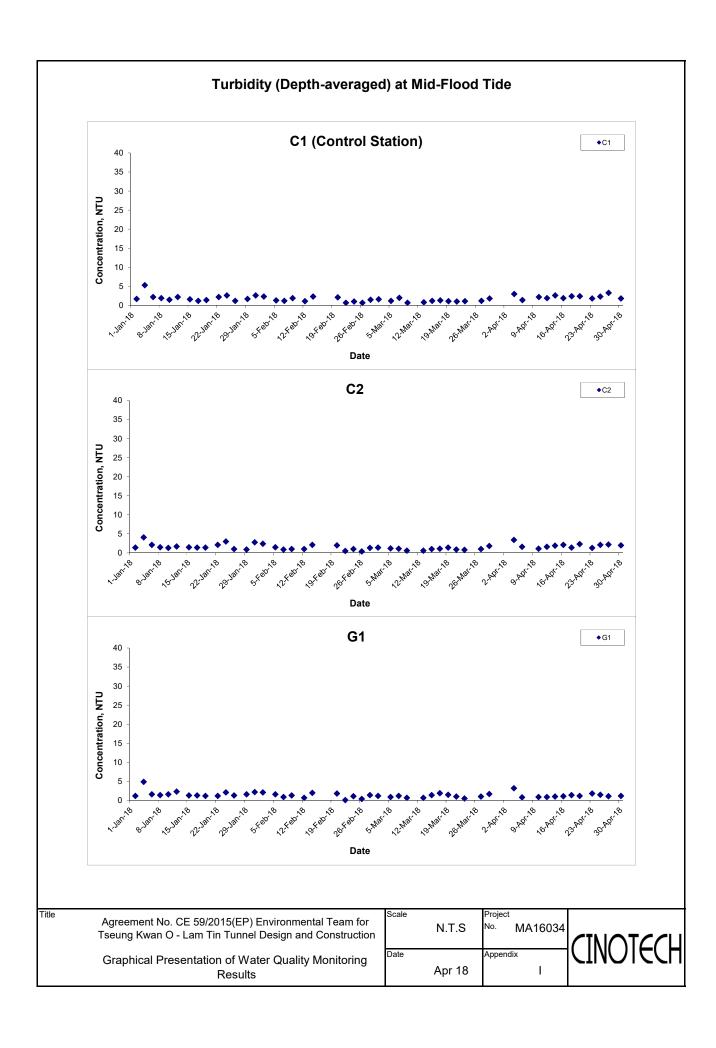


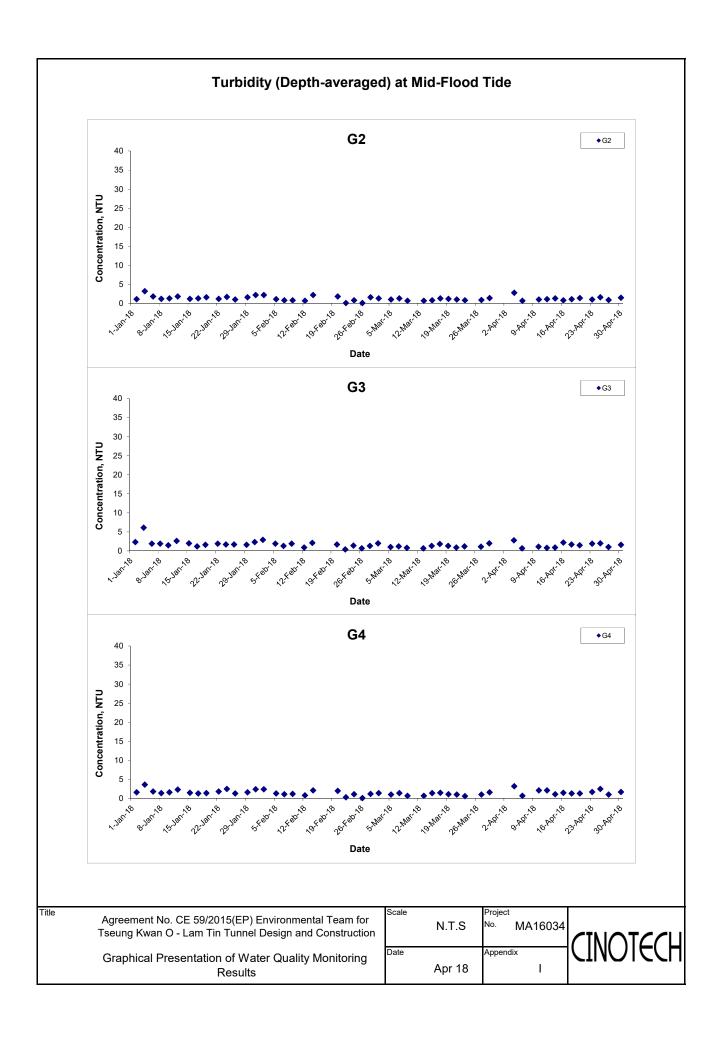

# Turbidity (Depth-averaged) at Mid-Ebb Tide

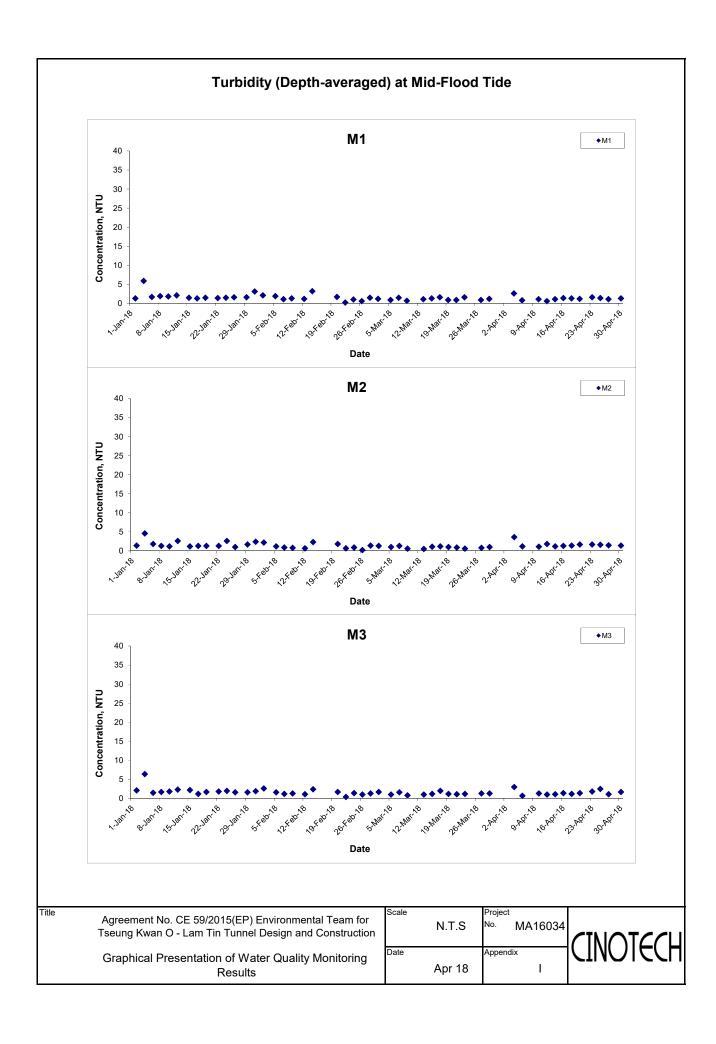


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring

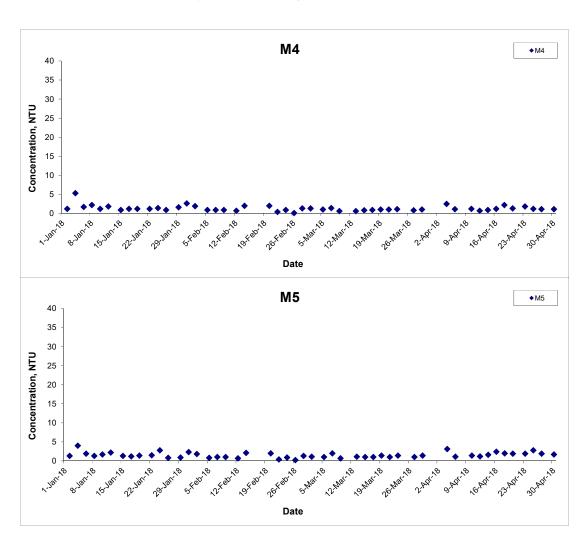
Results


Title


N.T.S Project
No. MA16034


Date Appendix

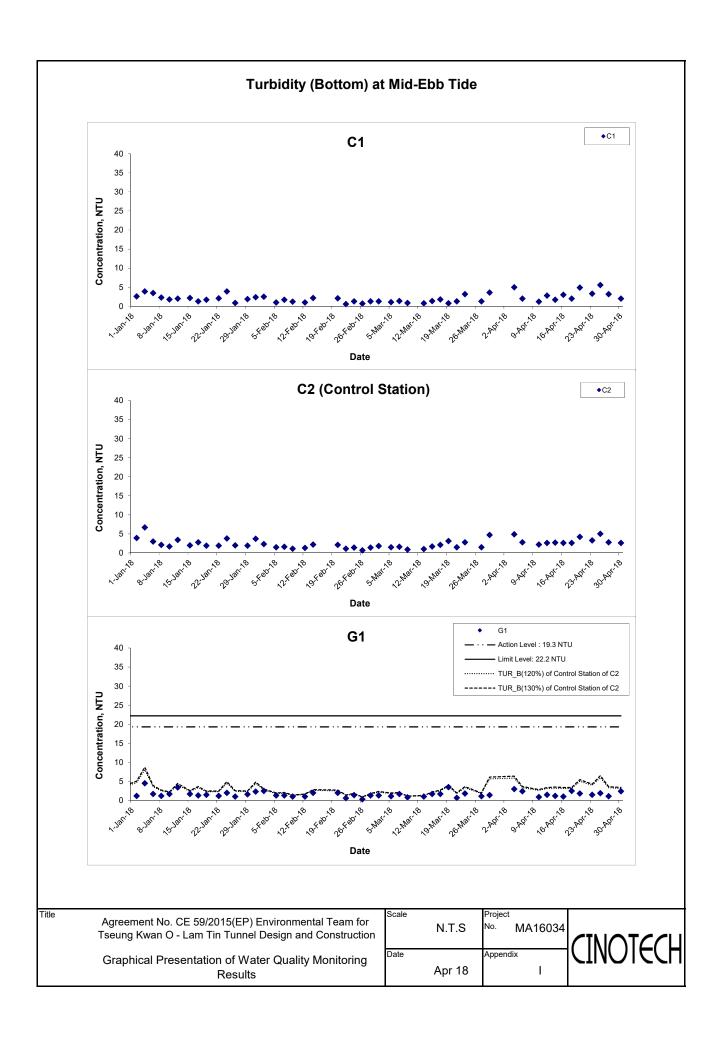
Apr 18 I

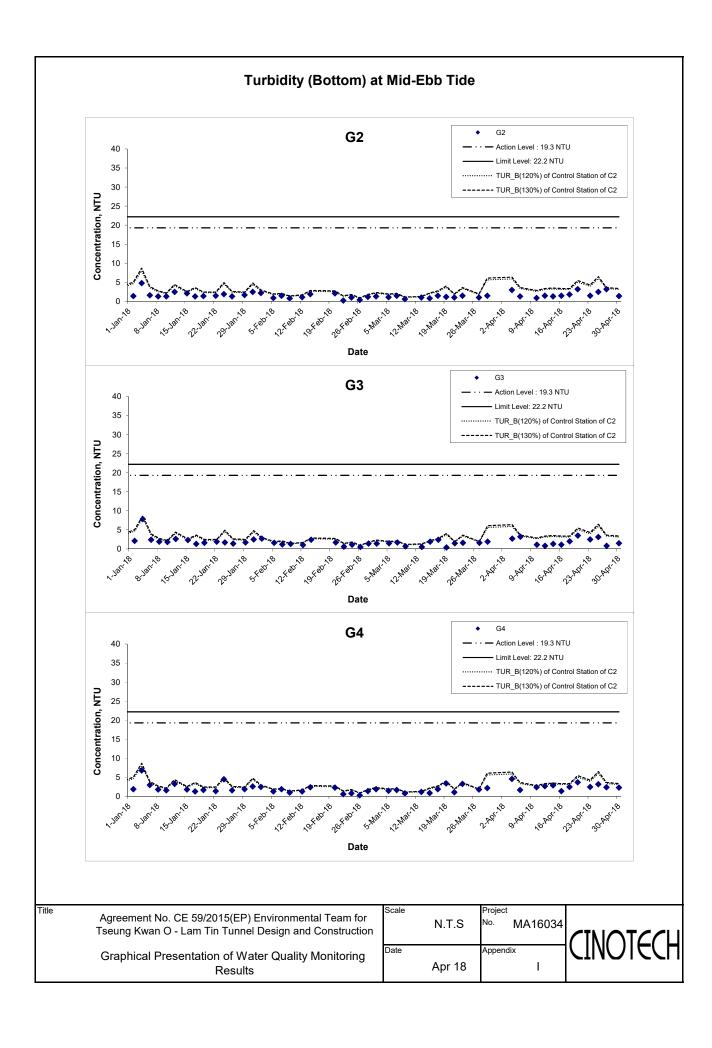


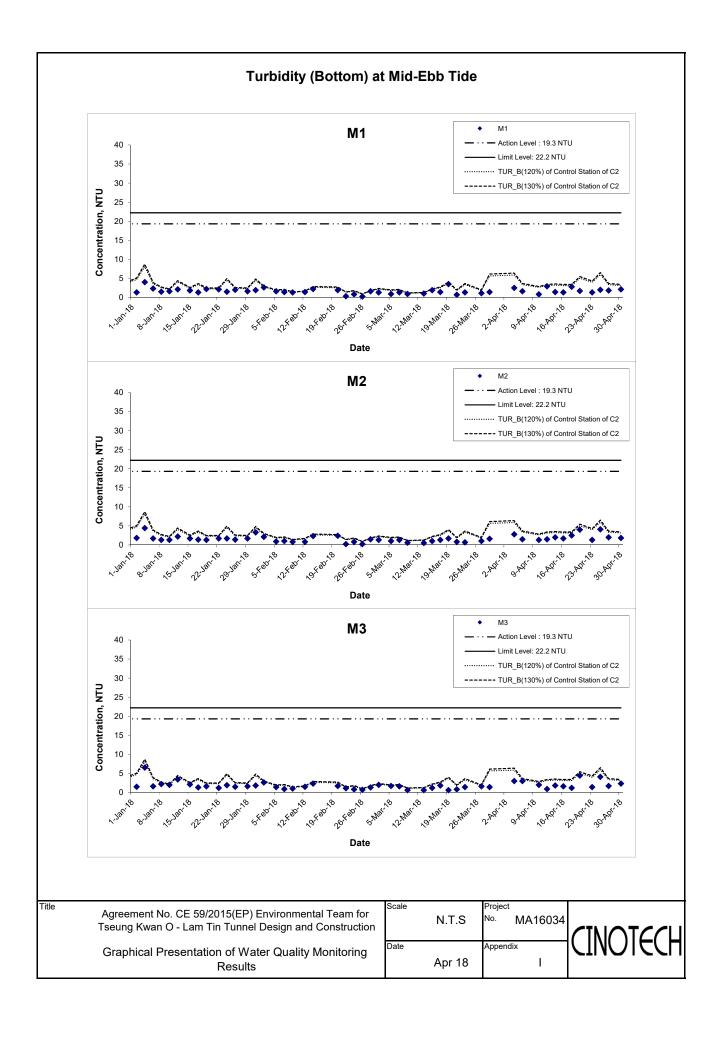




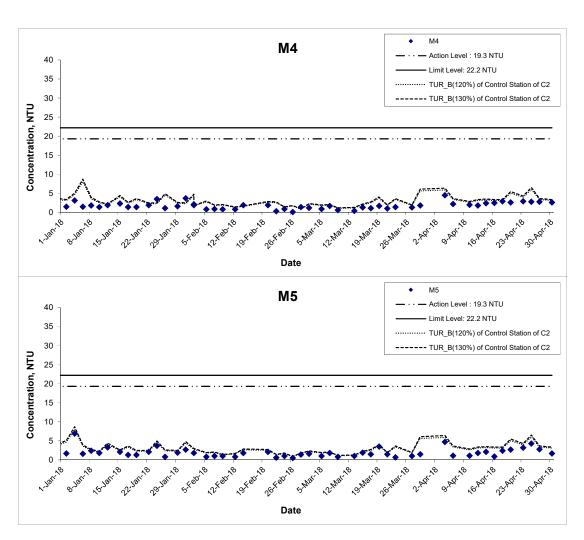




### Turbidity (Depth-averaged) at Mid-Flood Tide



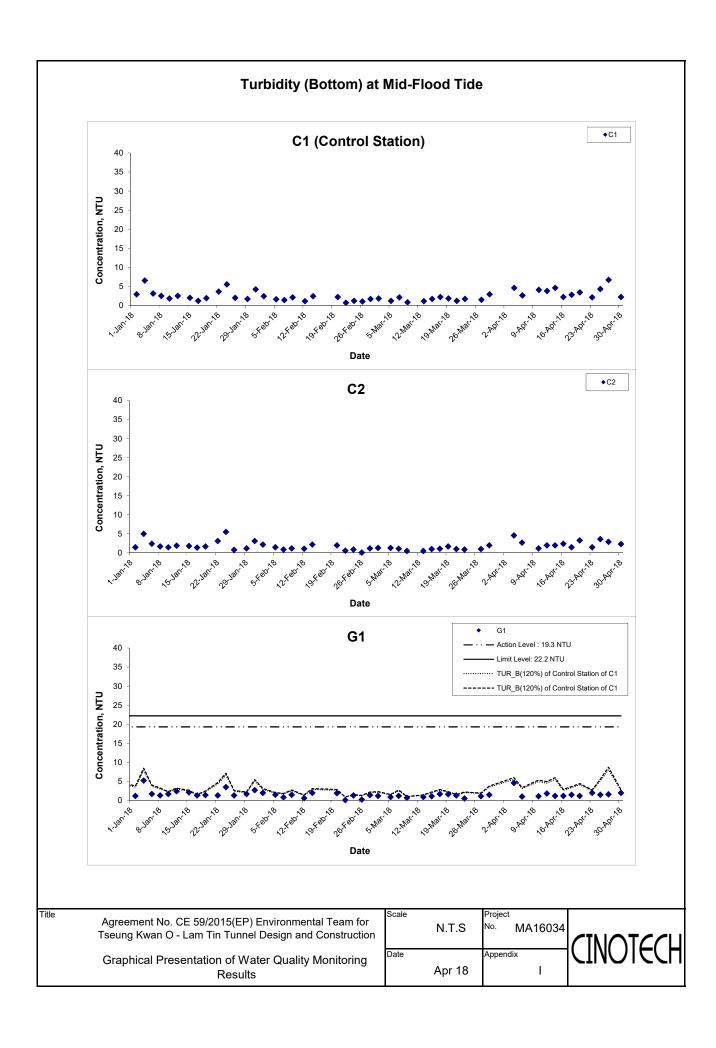


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

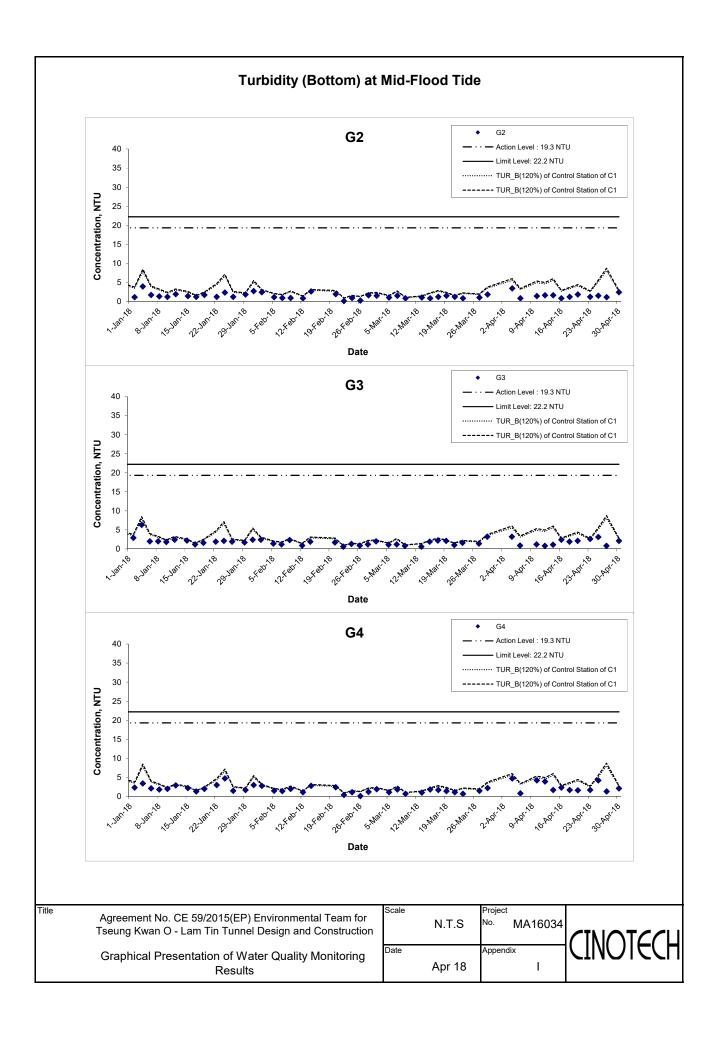
Graphical Presentation of Water Quality Monitoring Results

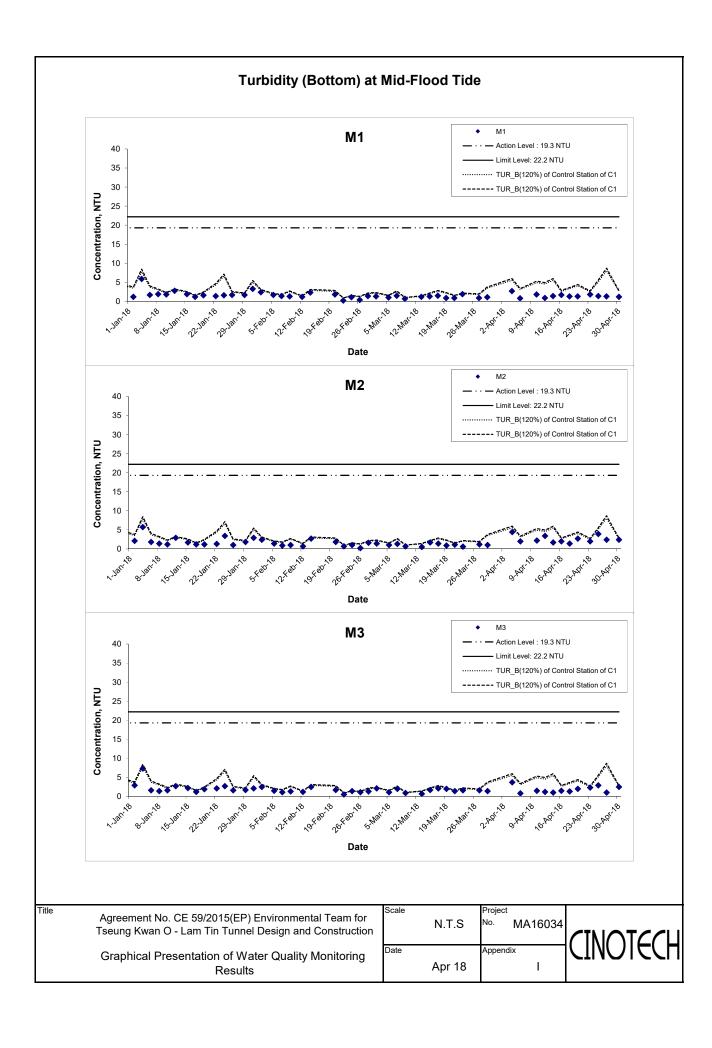




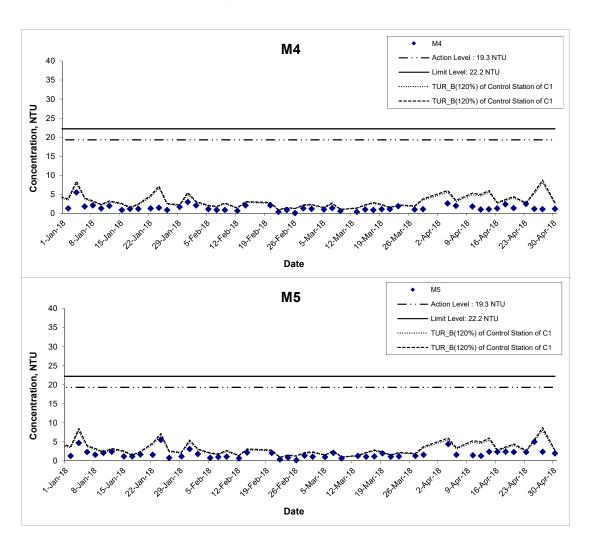




## Turbidity (Bottom) at Mid-Ebb Tide



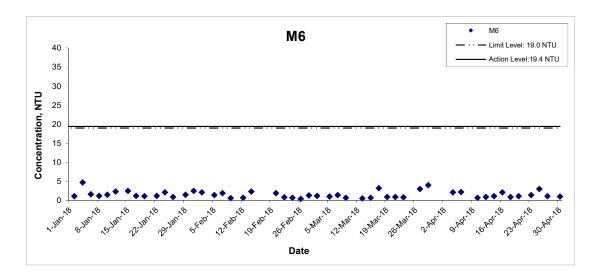

Scale	N.T.S	Projec No.	MA16034
Date	Apr 18	Apper	ndix 











## **Turbidity (Bottom) at Mid-Flood Tide**







#### Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Title

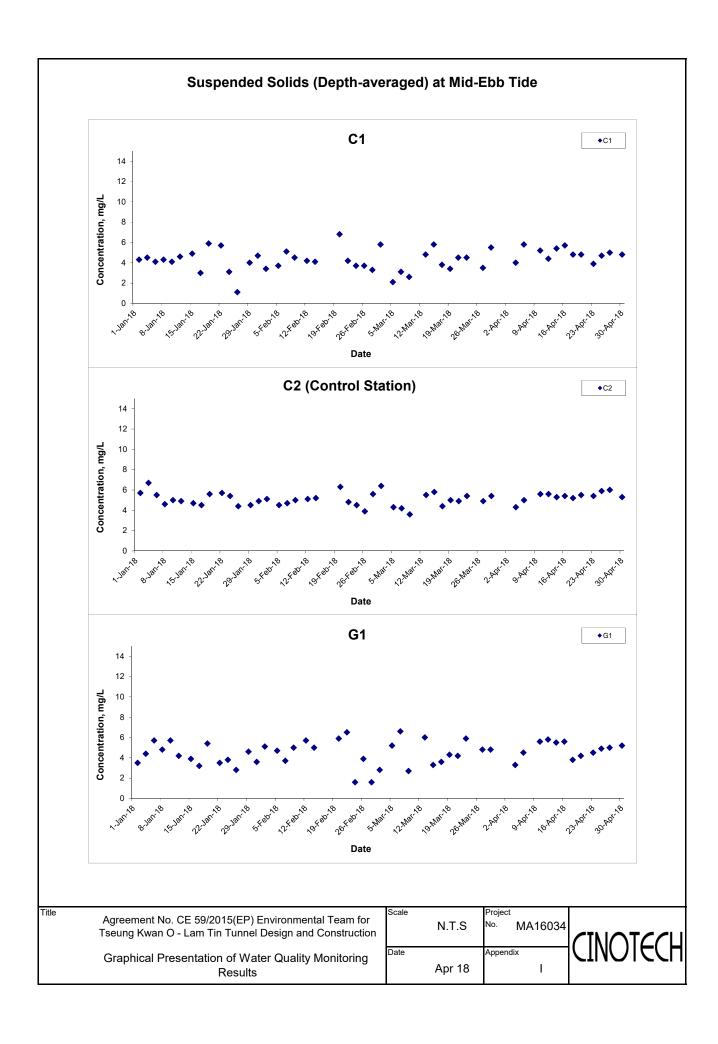
Graphical Presentation of Water Quality Monitoring Results

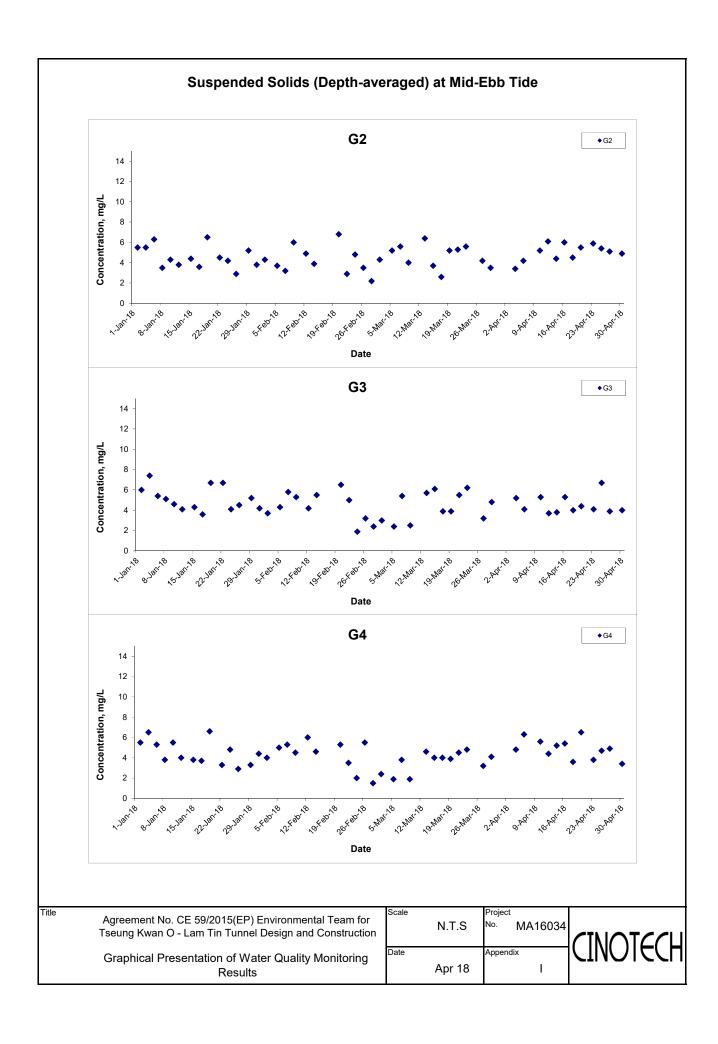
Scale	•	Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Apr 18		1

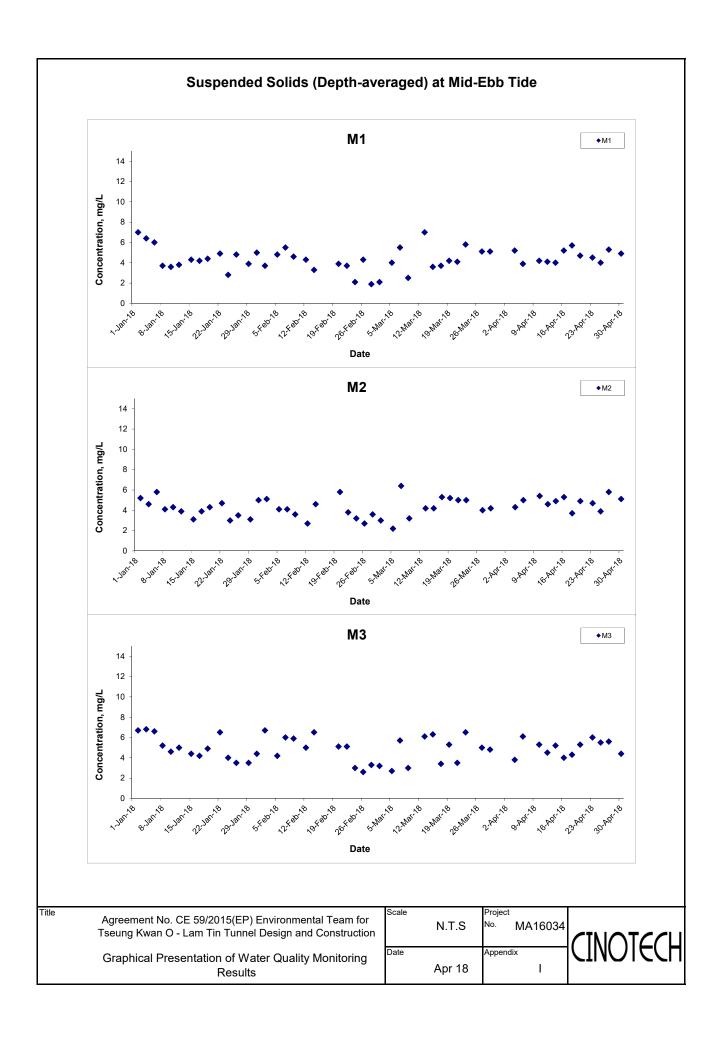


#### Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

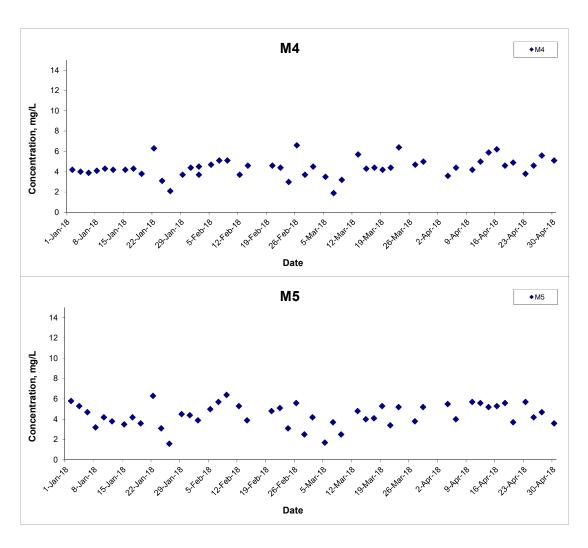



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Title

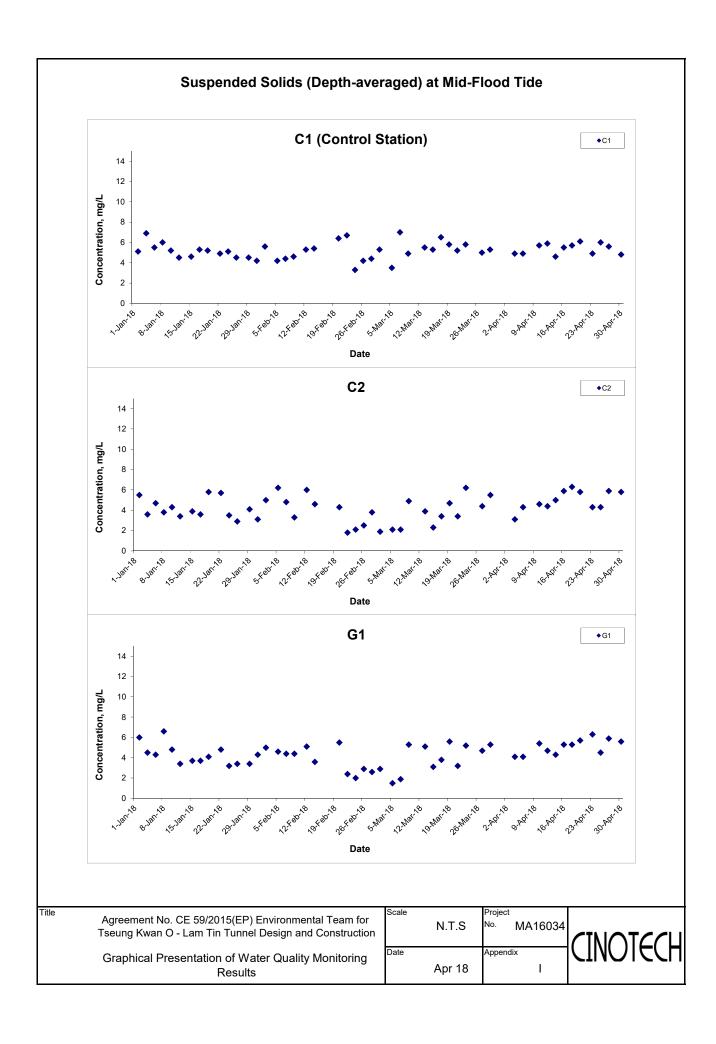

Graphical Presentation of Water Quality Monitoring Results

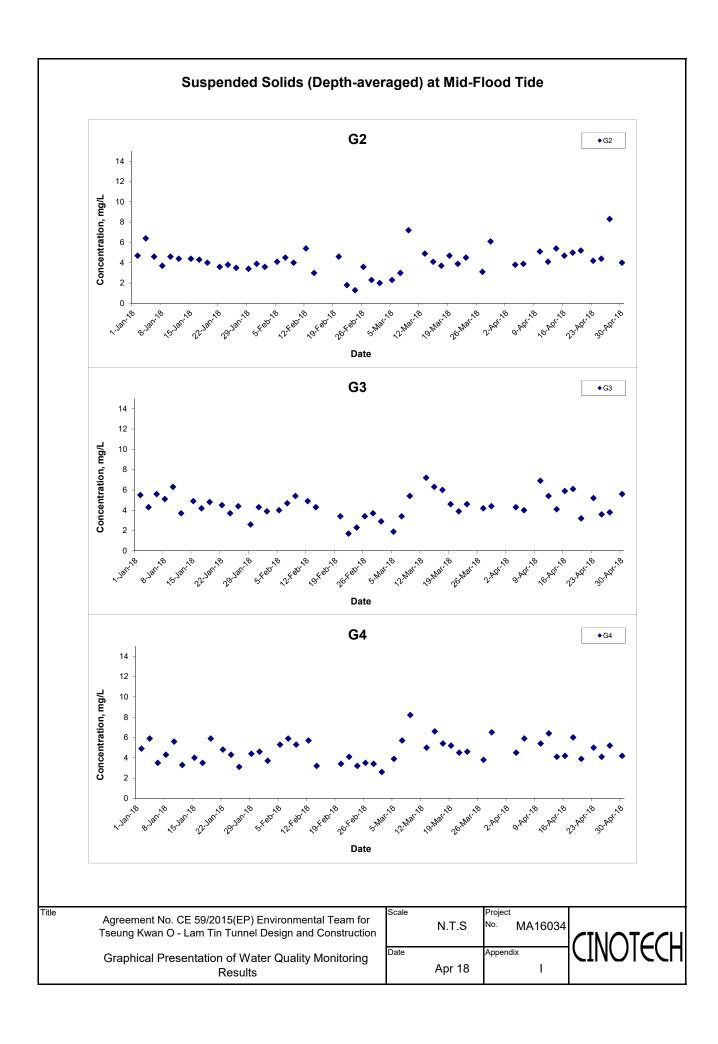
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Apr 18		I

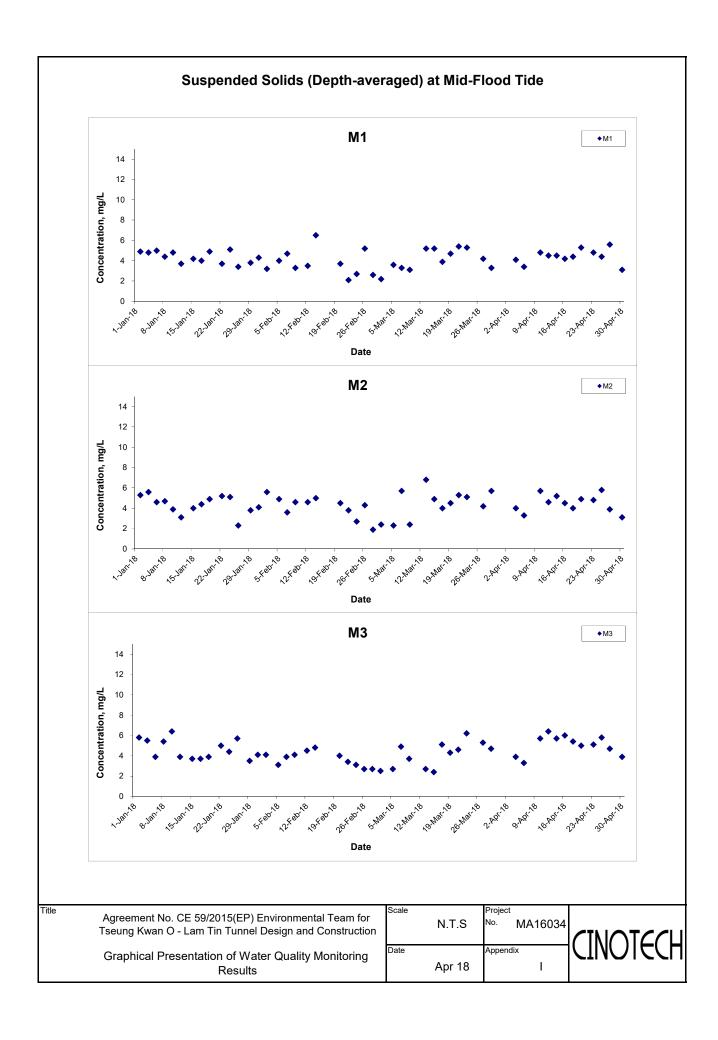




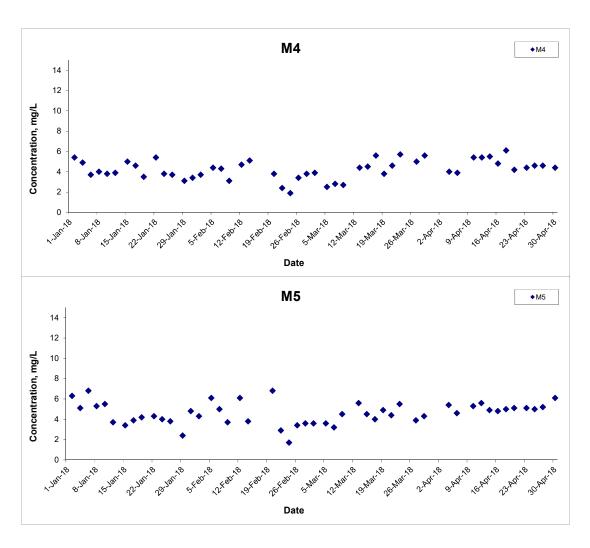




# Suspended Solids (Depth-averaged) at Mid-Ebb Tide



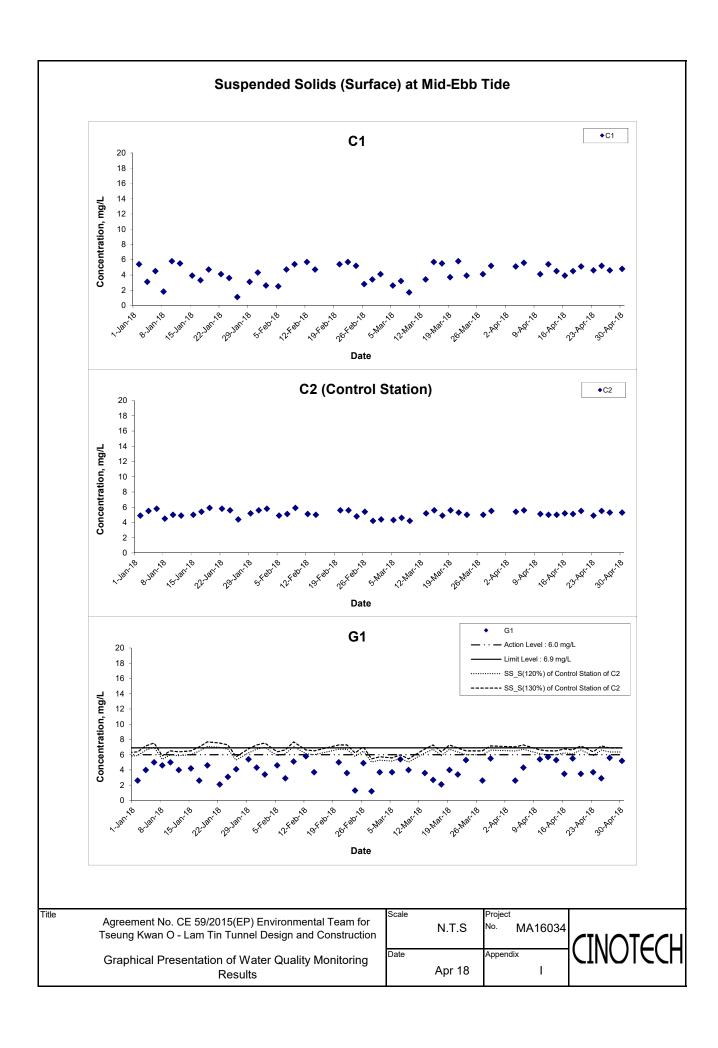

Scale		Project	
	N.T.S	No.	MA16034
Date		Appendi	ix
	Apr 18		I

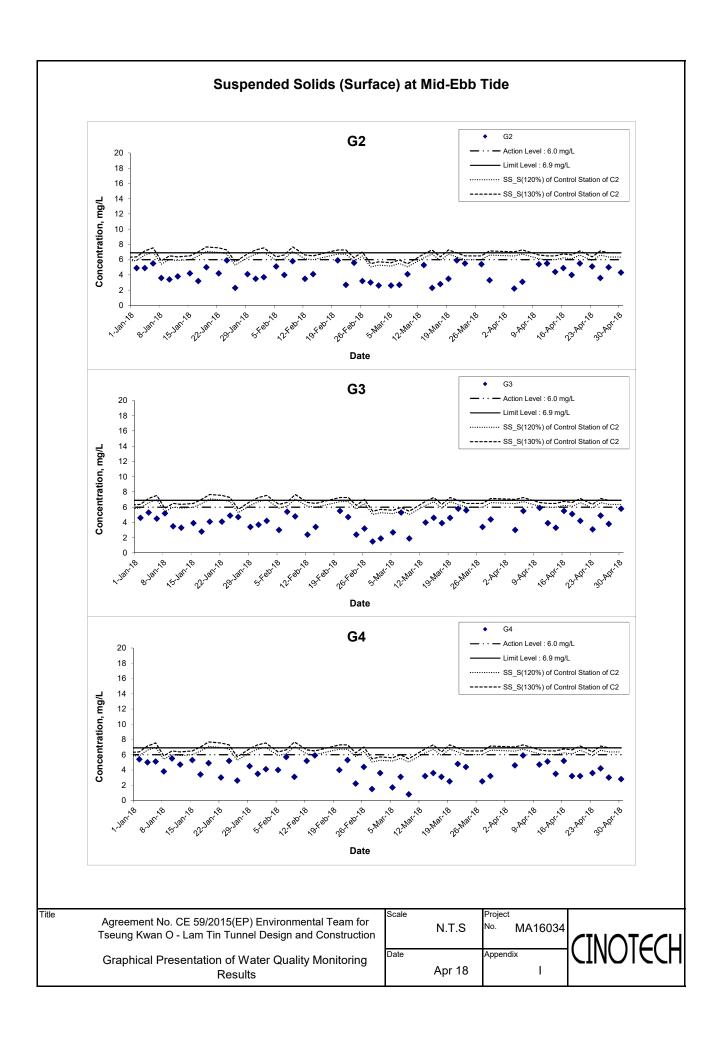


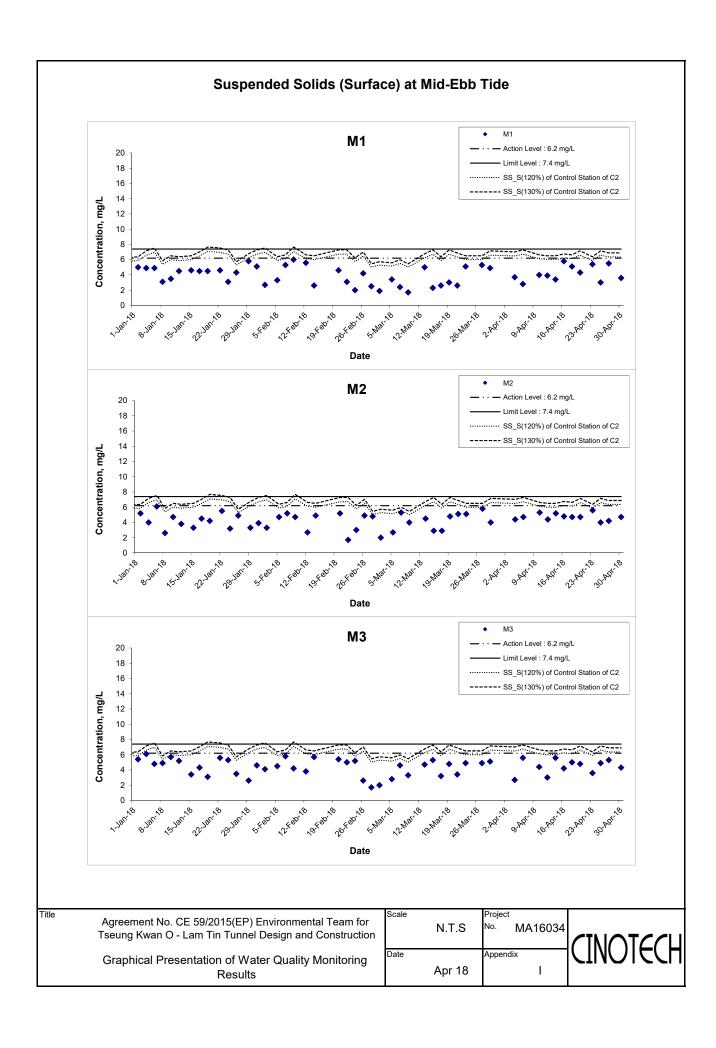




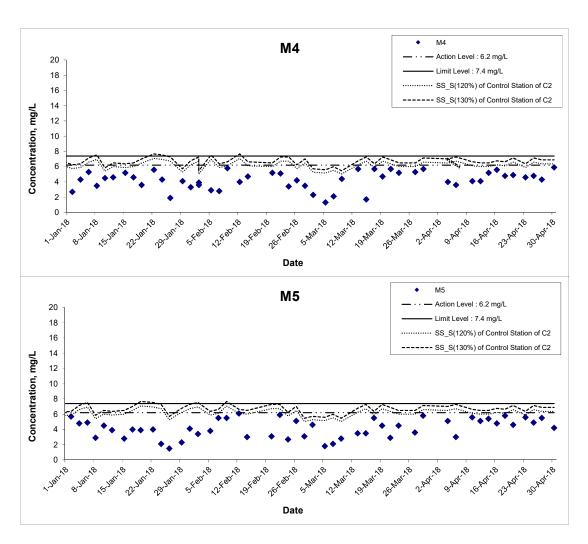


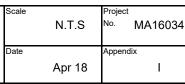


# Suspended Solids (Depth-averaged) at Mid-Flood Tide



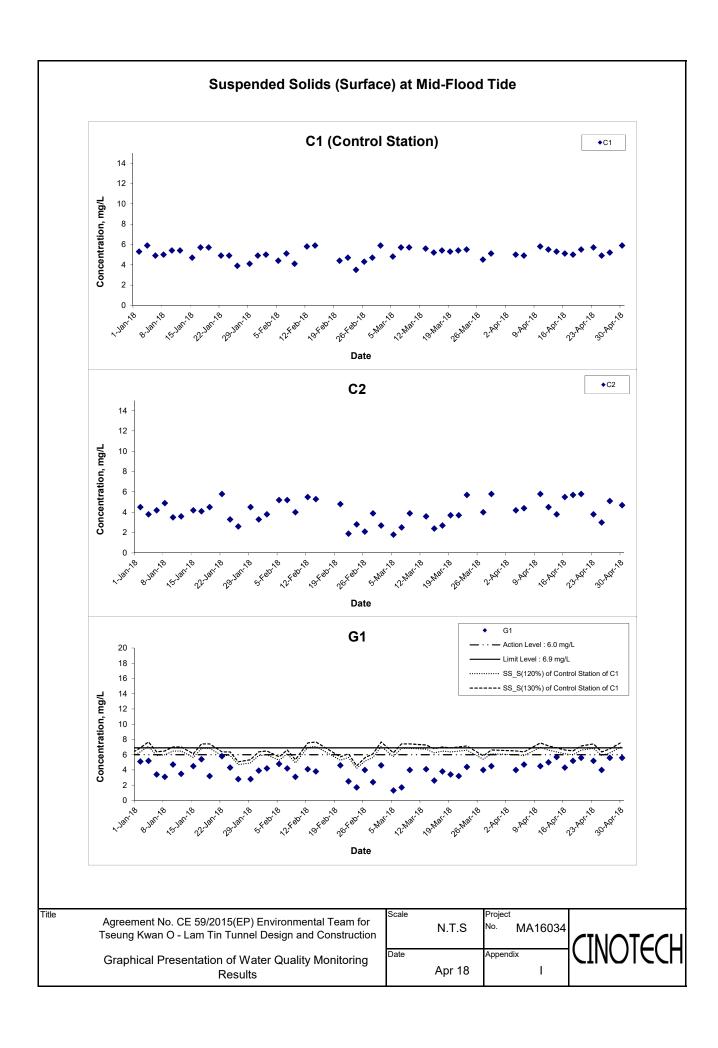


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

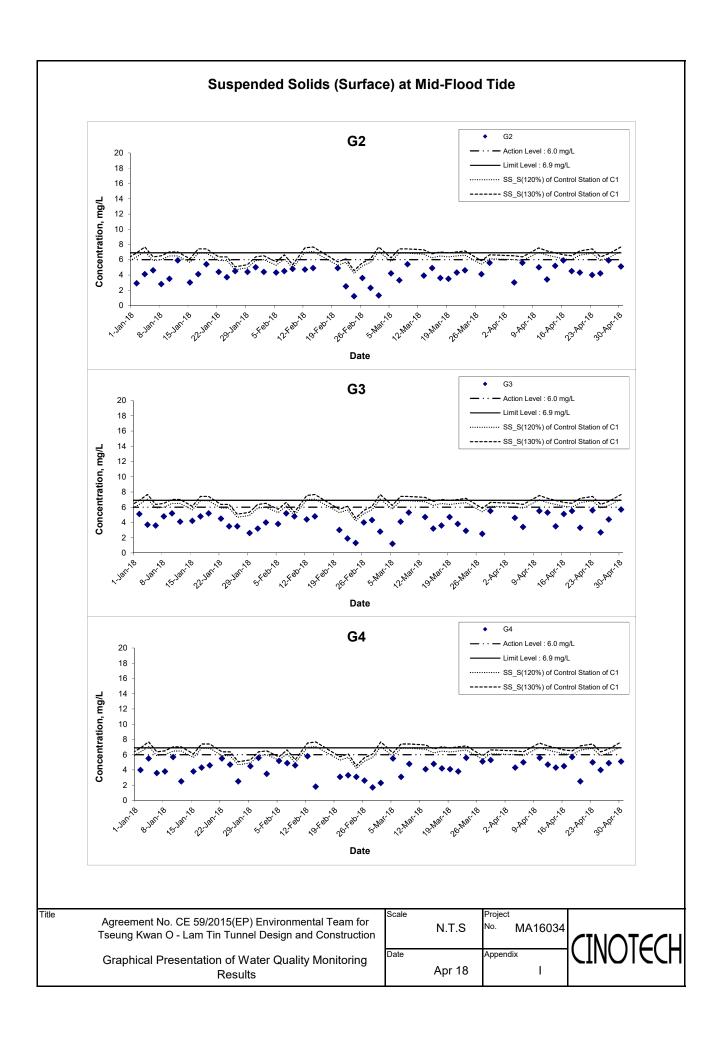
Graphical Presentation of Water Quality Monitoring Results

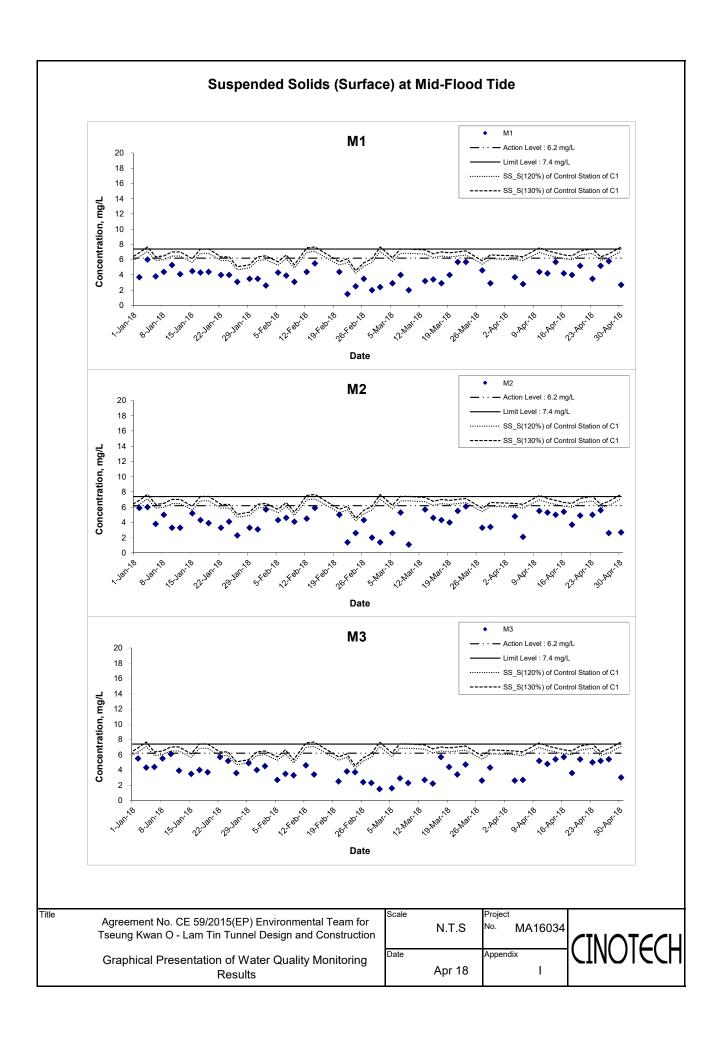


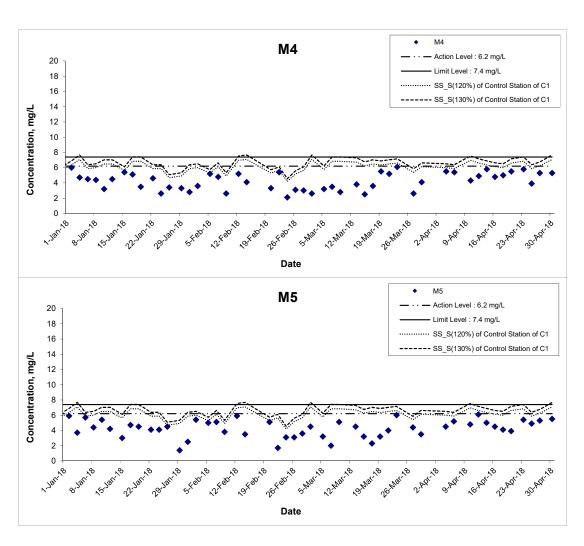




# Suspended Solids (Surface) at Mid-Ebb Tide

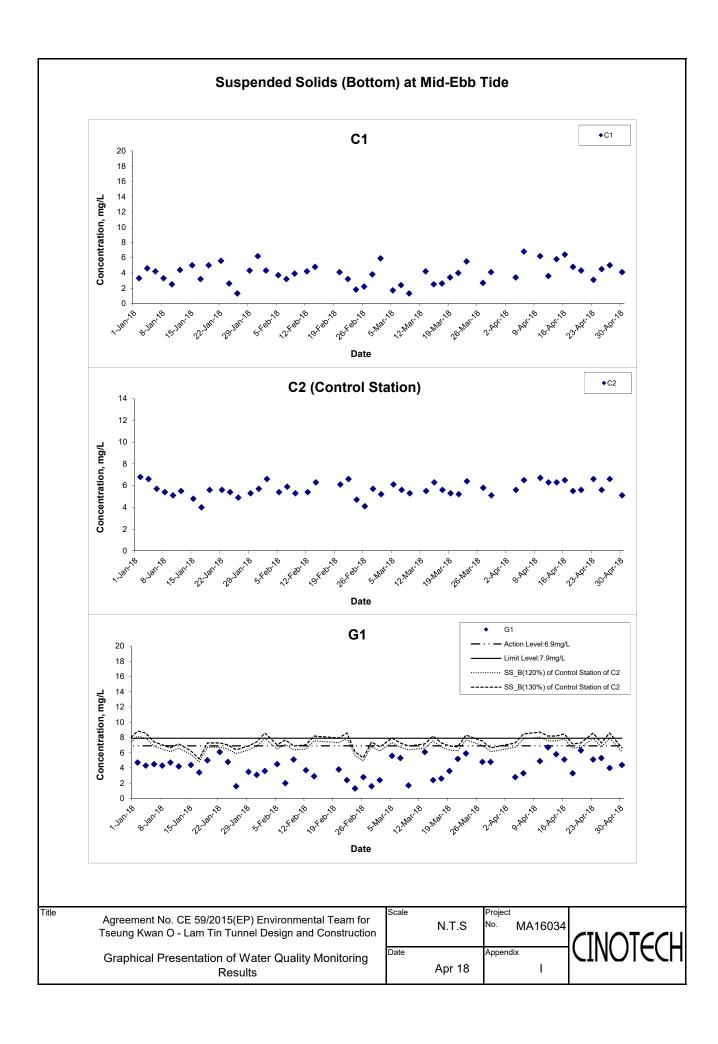


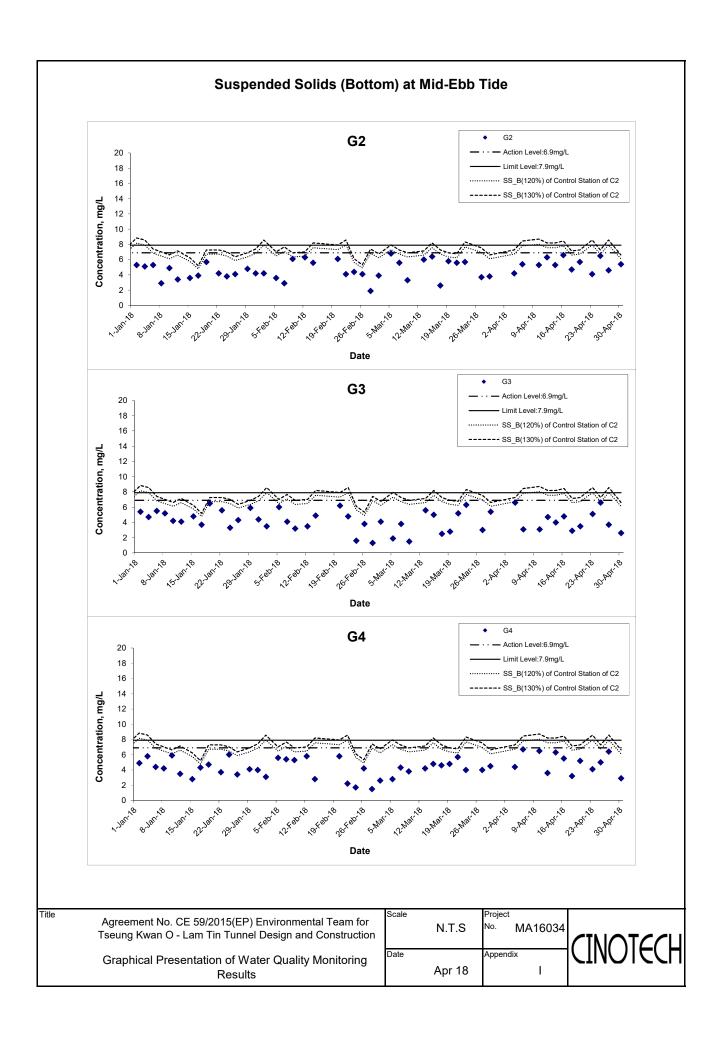


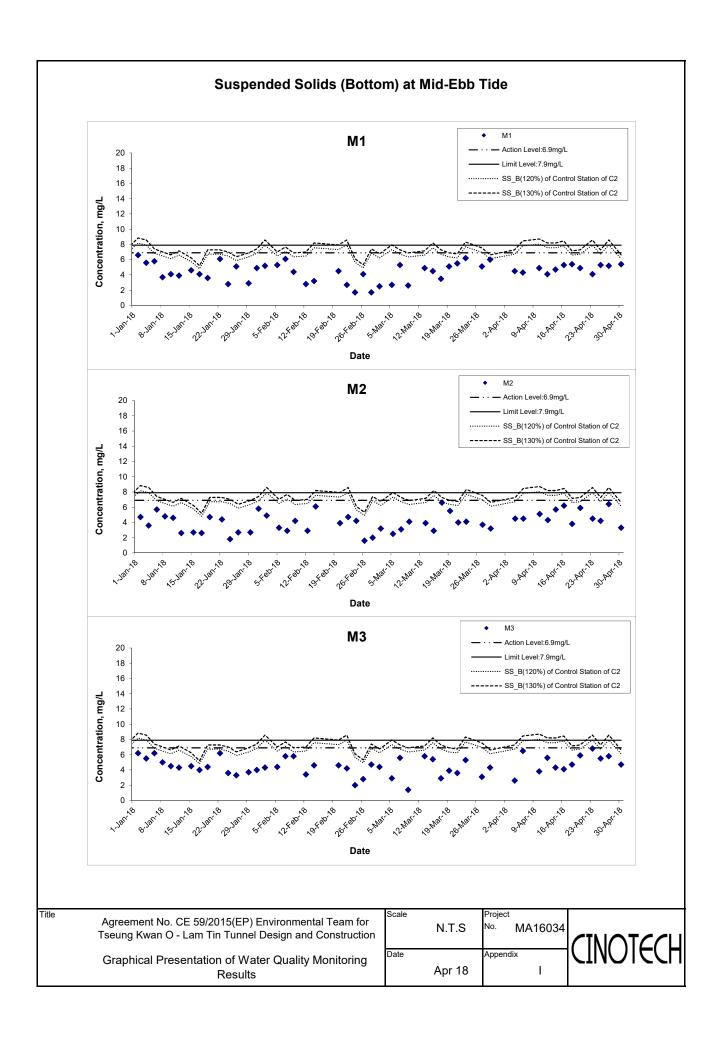





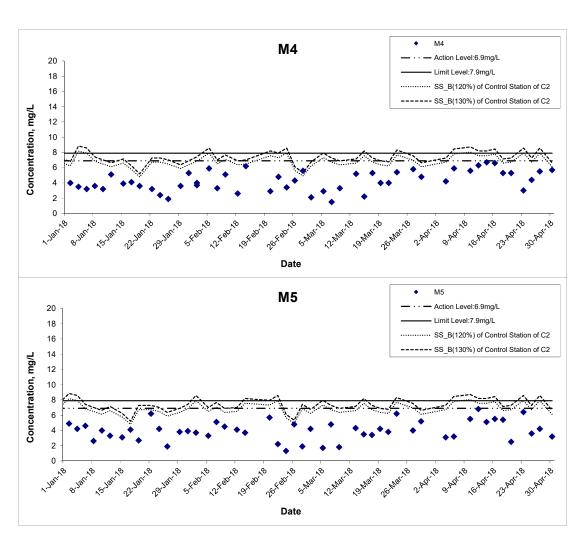




## Suspended Solids (Surface) at Mid-Flood Tide

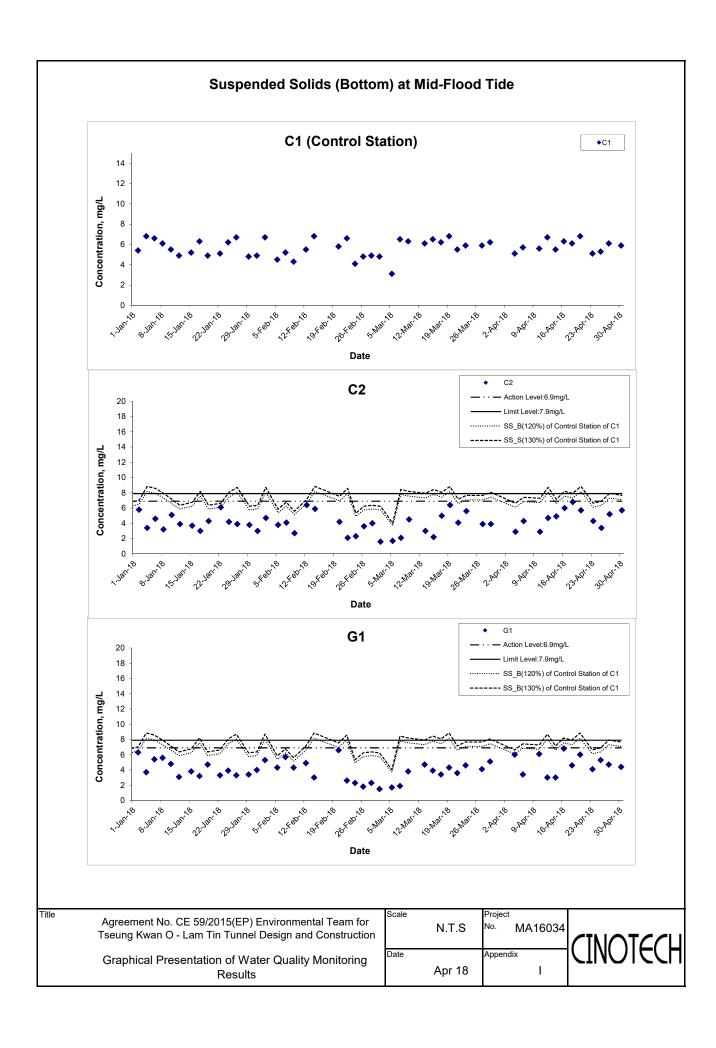


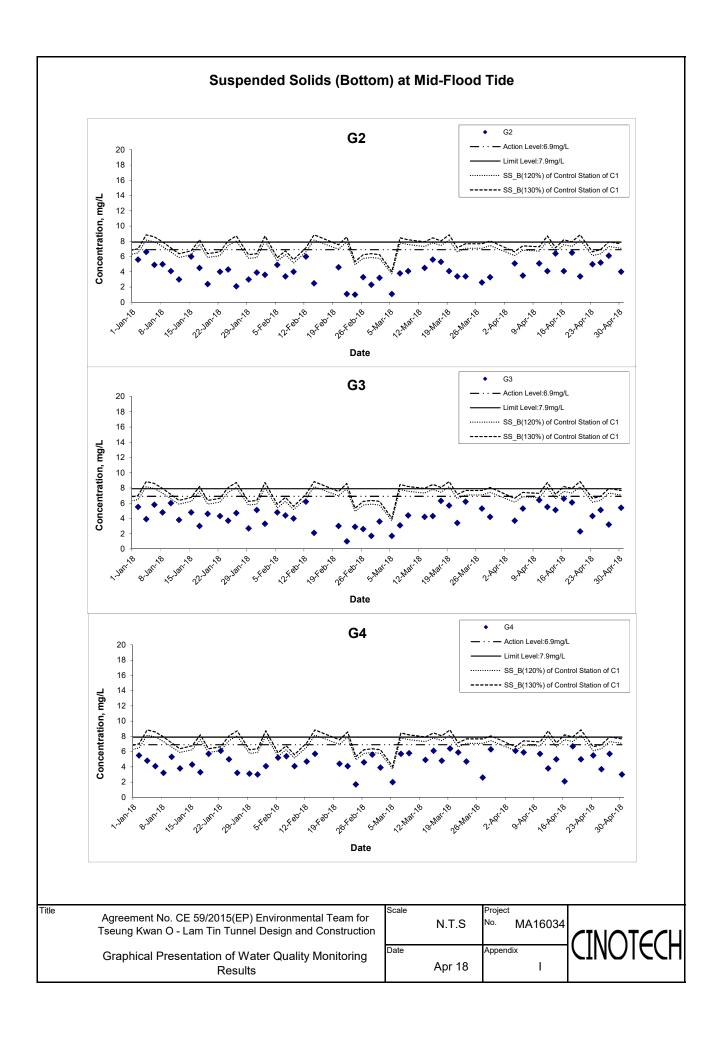

Scale		Project	
	N.T.S	No.	MA16034
Date		Append	ix
	Apr 18		I

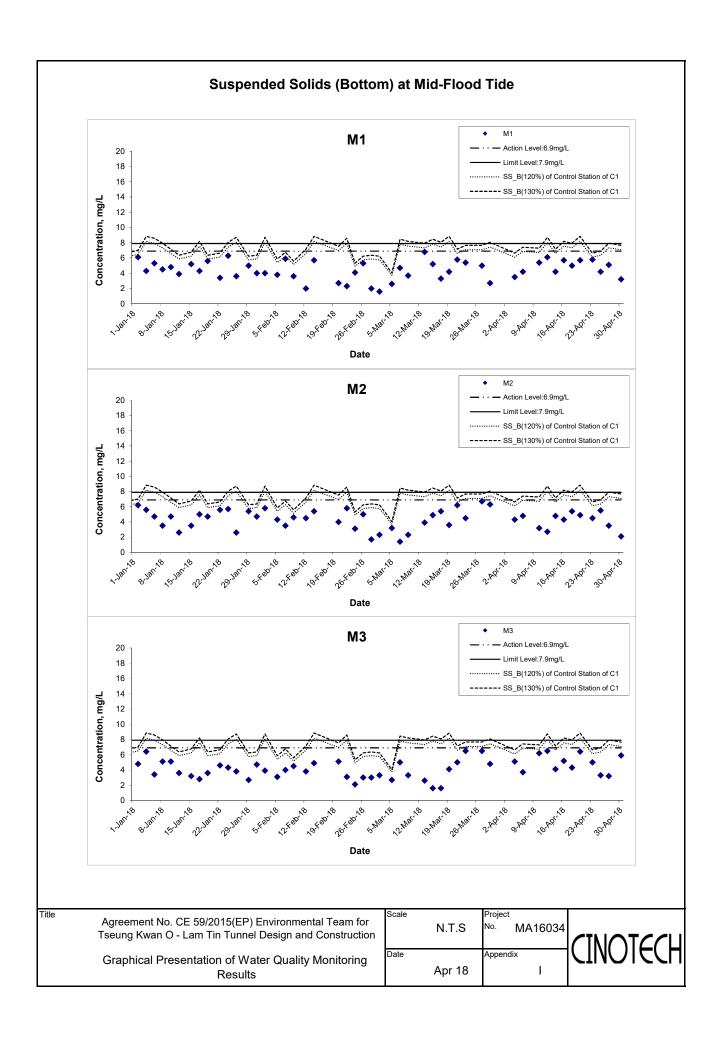




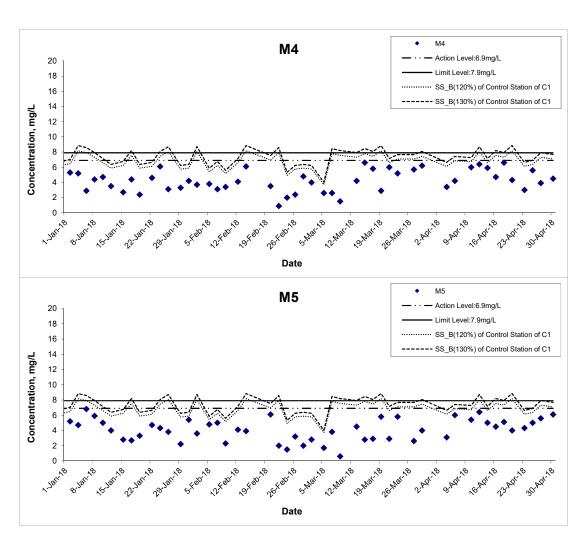




### Suspended Solids (Bottom) at Mid-Ebb Tide



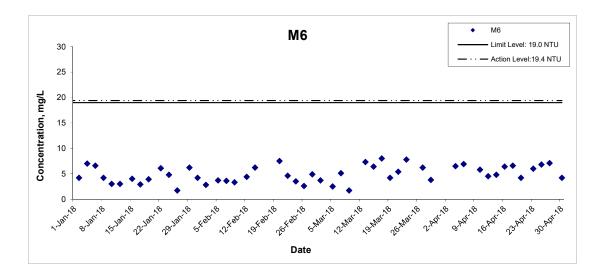

Scale	N.T.S	Projec No.	MA16034
Date	Apr 18	Apper	ndix 











### Suspended Solids (Bottom) at Mid-Flood Tide



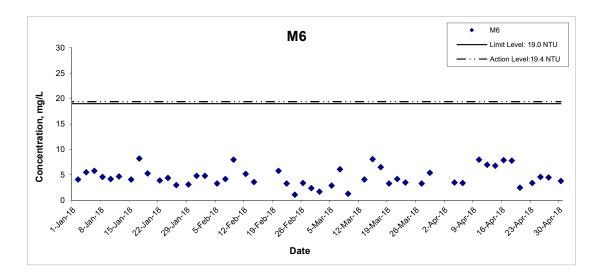
Scale		Project	
	N.T.S	No.	MA16034
Date		Appendi	ix
	Apr 18		I



#### Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring

Results

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Apr 18		I



# Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring

Results

oring Date

Scale

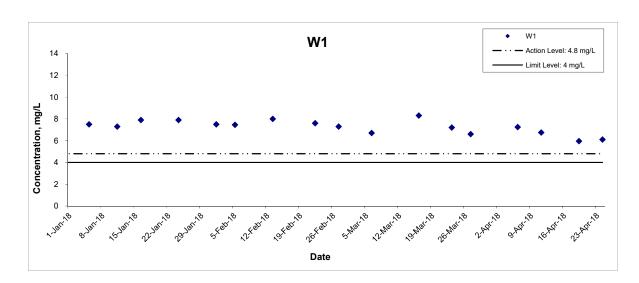
N.T.S

Apr 18

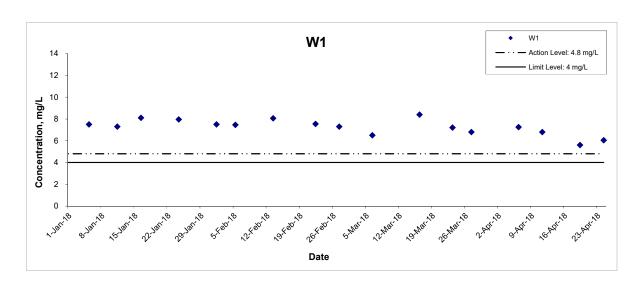
Project
No. MA16034

Appendix




#### Water Quality Monitoring Results at W1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Deptl	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	6) Dissolved Oxygen (mg		(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*
				Surface	1	18.8 18.8	18.8	8.2 8.2	8.2	32.3 32.3	32.3	93.2 93.2	93.2	7.3 7.3	7.3	7.3
6-Apr-18	Cloudy	Calm	16:10	Middle	•	-	-		-		-	-	-		-	7.3
				Bottom	3.9	18.6 18.6	18.6	8.2 8.2	8.2	32.3 32.3	32.3	92.1 92.1	92.1	7.2 7.1	7.2	7.2
				Surface	1	23.0 23.0	23.0	8.0 8.0	8.0	32.7 32.7	32.7	96.3 96.3	96.3	6.8 6.8	6.8	
11-Apr-18	Sunny	Calm	09:29	Middle		-	-		-		-	-	-		-	0.0
				Bottom	3.8	22.8 22.8	22.8	7.9 7.9	7.9	32.8 32.9	32.9	93.5 93.1	93.3	6.7 6.6	6.7	6.7
				Surface	1	23.1 23.0	23.1	8.2 8.3	8.3	33.2 33.2	33.2	86.4 83.3	84.9	6.1 5.9	6.0	6.0
19-Apr-18	Sunny	Calm	16:07	Middle	i	-	-		-		-	-		-	0.0	
				Bottom	2.5	23.0 23.0	23.0	8.3 8.3	8.3	33.2 33.2	33.2	82.9 82.5	82.7	5.9 5.9	5.9	5.9
				Surface	1	23.7 23.7	23.7	7.9 7.9	7.9	33.0 33.0	33.0	86.5 86.5	86.5	6.1 6.1	6.1	6.1
24-Apr-18	Cloudy	Calm	08:52	Middle	1	-	-		-			-	0.1			
				Bottom	3.6	23.7 23.7	23.7	7.9 7.9	7.9	33.0 33.0	33.0	86.3 86.2	86.3	6.1 6.0	6.1	6.1


#### Water Quality Monitoring Results at W1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	
				Surface	1	18.8 18.8	18.8	8.1 8.1	8.1	32.3 32.3	32.3	92.9 92.8	92.9	7.3 7.2	7.3	7.3	
6-Apr-18	Cloudy	Calm	09:17	Middle	,	-	-		-		-	-	-		-	1.5	
				Bottom	4	18.6 18.6	18.6	8.2 8.2	8.2	32.3 32.3	32.3	92.4 92.4	92.4	7.2 7.2	7.2	7.2	
				Surface	1	23.0 23.1	23.1	8.0 8.0	8.0	32.7 32.7	32.7	95.0 95.8	95.4	6.8 6.8	6.8	6.8	
11-Apr-18	Sunny	Calm	14:50	Middle		-	-	1 1	-		-	-	-		-	0.6	
					Bottom	4	22.7 22.6	22.7	8.0 8.0	8.0	32.7 32.8	32.8	94.7 92.9	93.8	6.8 6.7	6.8	6.8
				Surface	1	22.4 22.5	22.5	8.2 8.3	8.3	33.0 33.0	33.0	78.7 78.1	78.4	5.6 5.6	5.6	5.6	
19-Apr-18	Sunny	Calm	08:50	Middle		-	-		-		-	-	-		-	5.0	
				Bottom	3.1	22.5 22.5	22.5	8.3 8.3	8.3	33.1 33.1	33.1	77.8 77.6	77.7	5.6 5.5	5.6	5.6	
				Surface	1	23.7 23.7	23.7	7.9 7.9	7.9	33.0 33.0	33.0	86.7 86.7	86.7	6.1 6.1	6.1	6.1	
24-Apr-18	Cloudy	Calm	alm 12:42	Middle	,	-	-		-		-	-	-		-	0.1	
				Bottom	3.8	23.7 23.7	23.7	7.9 7.9	7.9	33.0 33.0	33.0	85.7 85.6	85.7	6.0 6.0	6.0	6.0	

### Dissolved Oxygen (Depth-Averaged) at Mid-Ebb Tide



### Dissolved Oxygen (Depth-Averaged) at Mid-Flood Tide



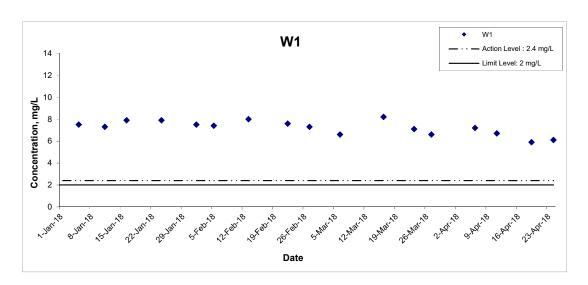
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Additional Water Quality

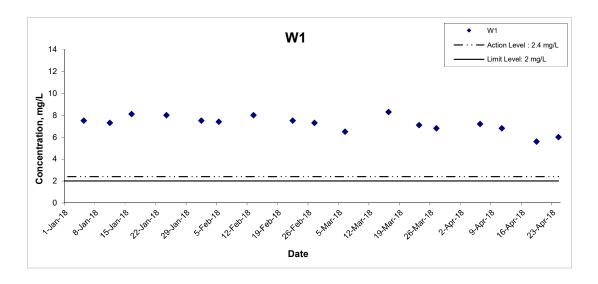
Monitoring Results

Scale

N.T.S


Project
No. MA16034

Date


Appendix

Appendix

#### Dissolved Oxygen (Bottom) at Mid-Ebb Tide



#### Dissolved Oxygen (Bottom) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Graphical Presentation of AddititionalWater Quality
Monitoring Results

Scale

N.T.S

Project
No. MA16034

Date
Appendix
Apr 18

I

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS



Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

1710, Technology Park,

18 On Lai Street,

Shatin, N.T.

Date of Issue:

Report No.:

QC28692 2018-04-20

Date Received:

2018-04-11

Date Tested:
Date Completed:

2018-04-11 2018-04-20

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

#### Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	<0.01

Method OC

Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	98	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	196	170-220
Total Organic Carbon (%)	91	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	98	80-120
Total Phosphorus (%)	102	80-120

Remarks: 1)  $\leq$  = less than

*********************************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Valuation y Manager

²⁾ N/A = Not applicable

³⁾ This report is the summary of quality control data for report number 28692.

Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

 Report No.:
 QC28692

 Date of Issue:
 2018-04-20

 Date Received:
 2018-04-11

 Date Tested:
 2018-04-11

 Date Completed:
 2018-04-20

Date Completed: Page:

2 of 2

## QC report:

Sample Duplicate

Parameter	28692-2 chk	Acceptance
Suspended Solids (SS) (%)	1	RPD≤20%
Biochemical Oxygen Demand (%)	N/A	RPD≤20%
Total Organic Carbon (%)	7	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	N/A	RPD≤20%
Total Phosphorus (%)	N/A	RPD≤20%

Sample Spike

Parameter	28692-2 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	94	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	93	80-120
Total Phosphorus (%)	96	80-120

Remarks:  $1) \le 1$  less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 28692.



Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

# TEST REPORT

APPLICANT:

**Cinotech Consultants Limited** 

1710, Technology Park,

18 On Lai Street, Shatin, N.T. Report No.: Date of Issue: QC28772 2018-05-04

Date Received:

2018-04-24

Date Tested:
Date Completed:

2018-04-24 2018-05-04

ATTN:

Ms. Mei Ling Tang

Page:

1 of 2

QC report:

#### Method Blank

Parameter	MB 1	Acceptance
Suspended Solids (SS) (mg/L)	<0.5	<0.5
Biochemical Oxygen Demand	N/A	N/A
Total Organic Carbon (mg-TOC/L)	<0.2	<0.2
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (mg NH ₃ -N/L)	< 0.01	<0.01
Total Phosphorus (mg-P/L)	< 0.01	<0.01

Method OC

Michiga QC		
Parameter	MQC1	Acceptance
Suspended Solids (SS) (%)	95	80-120
Biochemical Oxygen Demand (mg O ₂ /L)	186	170-220
Total Organic Carbon (%)	102	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	96	80-120
Total Phosphorus (%)	101	80-120

Remarks: 1)  $\leq$  = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 28772.

********************************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED
Rms 1502 1516 1701-1702 &

Rms 1502, 1516, 1701-1702 & 1713-1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

## TEST REPORT

 Report No.:
 QC28772

 Date of Issue:
 2018-05-04

 Date Received:
 2018-04-24

 Date Tested:
 2018-04-24

 Date Completed:
 2018-05-04

Page:

2 of 2

# QC report:

Sample Duplicate

Sample Dupitcate		•
Parameter	28772-3 chk	Acceptance
Suspended Solids (SS) (%)	3	RPD≤20%
Biochemical Oxygen Demand (%)	3	RPD≤20%
Total Organic Carbon (%)	2	RPD≤20%
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	2	RPD≤20%
Total Phosphorus (%)	2	RPD≤20%

Sample Spike

Parameter	28772-3 spk	Acceptance
Suspended Solids (SS) (%)	N/A	N/A
Biochemical Oxygen Demand (%)	N/A	N/A
Total Organic Carbon (%)	100	80-120
Nitrogen (Total Kjeldahl + nitrate + nitrite)	N/A	N/A
Ammonia (%)	101	80-120
Total Phosphorus (%)	93	80-120

Remarks: 1) < = less than

- 2) N/A = Not applicable
- 3) This report is the summary of quality control data for report number 28772.



#### TEST REPORT

# **QC REPORT**

**APPLICANT: Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28657

Date of Issue:

2018/4/6

Date Received:

Date Completed:

2018/4/4

Date Tested:

2018/4/4

2018/4/6 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/4

Number of Sample:

136

Custody No.: ********** MA16034-CE/59/2015(EP)/180404

**Total Suspended Solids** Duplicate Analysis QC Recovery, % Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L 4.0 4.0 0 M4se

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

**APPLICANT: Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28665

Date of Issue:

2018/4/9

Date Received:

2018/4/6

Date Tested:

2018/4/6

Date Completed: Page:

2018/4/9

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

******************************

Project No.:

MA16034

Sampling Date:

2018/4/6

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180406

Total Suspended Solids **Duplicate Analysis** OC Recovery, % Sampling Point Trial 1, Trial 2, Difference, % mg/L mg/L 3.7 5 M4se 3.5 102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28676

Date of Issue:

2018/4/11

Date Received:

2018/4/10

Date Tested:

2018/4/10

Date Completed:

Page:

2018/4/11

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/10

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180410

Total Suspended Solids	Du	plicate Analy	QC Recovery, %		
Sampling Point	Trial 1,	Trial 2,	Difference,	u.	
	mg/L	mg/L	%		
M4se	4.2	4.5	7	97	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28686

Date of Issue:

2018/4/13

Date Received:

2018/4/12

Date Tested:

2018/4/12

Date Tested:
Date Completed:

Page:

2018/4/12

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/12

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180412

Total Suspended Solids

Duplicate Analysis

OC Recovery, %

Trial 1, Trial 2, Difference, mg/L mg/L %

M4se

4.1 4.3 6 107

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28700

Date of Issue:

2018/4/16

Date Received:

2018/4/14

Date Tested:

2018/4/14

Date Completed:

Page:

2018/4/16

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/14

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180414

	Total Suspended Solids	Du	plicate Analy	⁄sis	QC Recovery, %	
	Sampling Point	Trial 1,	Trial 2, ~	Difference,		
		mg/L	mg/L	%		
	M4se	5.2	5.5	6	104	
,	*********	*******	*END OF RE	PORT****	******	*****

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28706

Date of Issue:

2018/4/17

Date Received:

2018/4/16

Date Tested:

Date Completed:

102

2018/4/16 2018/4/17

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

%

Project No .:

MA16034

Sampling Date:

2018/4/16

mg/L

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180416

Total Suspended Solids **Duplicate Analysis** OC Recovery, % Trial 1, Sampling Point Trial 2, Difference.

mg/L

2 M4se 5.5 5.6 

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

# **QC REPORT**

**APPLICANT: Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28719

Date of Issue:

106

2018/4/19

Date Received:

2018/4/18

Date Tested:

Page:

2018/4/18

Date Completed:

2018/4/19

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

3

Project No.:

MA16034

4.8

Sampling Date:

2018/4/18

Number of Sample:

136

Custody No.:

M4se

MA16034-CE/59/2015(EP)/180418

Total Suspended Solids

Duplicate Analysis

QC Recovery, %

Sampling Point

Trial 1, Trial 2, Difference, mg/L mg/L %

4.7

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28738

Date of Issue:

2018/4/23

Date Received:

2018/4/20

Date Tested:

Page:

2018/4/20

Date Completed:

2018/4/23

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/20

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180420

Total Suspended Solids	Du	plicate Analy	QC Recovery, %	
Sampling Point	Trial 1, Trial 2, Difference,		Difference,	. "···
	mg/L	mg/L	%	
M4se	4.8	4.9	4	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28747

Date of Issue:

2018/4/24

Date Received:

2018/4/23

Date Tested:

2018/4/23

Date Completed:

2018/4/23

Page:

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/23

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180423

Total Suspended Solids

Duplicate Analysis

QC Recovery, %

Sampling Point

Trial 1, Trial 2, Difference, mg/L mg/L %

M4se

4.6

4.5

2

100

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

**APPLICANT: Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28765

Date of Issue:

2018/4/26

Date Received:

2018/4/25

Date Tested:

Page:

2018/4/25

Date Completed:

2018/4/26

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/25

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180425

Total Suspended Solids **Duplicate Analysis** OC Recovery, % Sampling Point Trial 1, Trial 2, Difference. mg/L mg/L % 2 M4se 4.8 4.6 107

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

#### TEST REPORT

# **QC REPORT**

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28784

Date of Issue:

2018/4/30

Date Received:

2018/4/27

Date Tested:

Page:

2018/4/27

Date Completed:

2018/4/30

1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/27

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)/180427

Total Suspended Solids	Du	plicate Anal	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
M4se	44	44	1	95

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE



#### TEST REPORT

# **QC REPORT**

**APPLICANT: Cinotech Consultants Limited** 

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Report No.: 28801

Date of Issue: 2018/5/2

Date Received: 201

2018/4/30

Date Tested:

2018/4/30

Date Completed: Page:

2018/5/2 1 of 1

ATTN: Ms. Mei Ling Tang

Project Name:

Environmental Team for Tseung Kwan O - Lam Tin Tunnel -

Design and Construction Agreement No. CE/59/2015 (EP)

Project No.:

MA16034

Sampling Date:

2018/4/30

Number of Sample:

136

Custody No.:

MA16034-CE/59/2015(EP)180430

Total Suspended Solids

Duplicate Analysis

Sampling Point

Trial 1, Trial 2, Difference, mg/L mg/L %

M4se

5.7

5.6

2

QC Recovery, %

101

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

#### APPENDIX K SUMMARY OF EXCEEDANCE

# **Appendix K – Summary of Exceedance**

**Reporting Period: April 2018** 

# (A) Exceedance Report for Air Quality (NIL in the reporting month)

#### (B) Exceedance Report for Construction Noise

#### **Action Level for Construction Noise**

(Thirteen (13) Action Level exceedances were recorded due to the documented complaints received in this reporting month.)

#### **Limit Level for Construction Noise**

(NIL in the reporting month)

#### (C) Exceedance Report for Water Quality

(No exceedance for marine water quality monitoring in the reporting month)

(One Action Level and Twelve Limit Level exceedances in groundwater quality monitoring as followed:

Date	Monitoring Location	Monitoring Parameter	Monitoring Results	Action Level	Limit Level
24 April 2018	Stream 1	Biochemical Oxygen Demand	4 mg O ₂ /L	2.0	2.0
24 April 2018	Stream 1	Total Organic Carbon	12 mg-TOC/L	9	9
24 April 2018	Stream 1	Total Nitrogen	3.7 mg N/L	2.0	2.1
24 April 2018	Stream 1	Total Phosphorus	0.06 mg-P/L	0.05	0.05
24 April 2018	Stream 2	Biochemical Oxygen Demand	8 mg O ₂ /L	2.0	2.0
24 April 2018	Stream 2	Total Organic Carbon	16 mg-TOC/L	9	9
24 April 2018	Stream 2	Total Nitrogen	2.9 mg N/L	2.0	2.1
24 April 2018	Stream 2	Total Phosphorus	0.08 mg-P/L	0.05	0.05
24 April 2018	Stream 3	Biochemical Oxygen Demand	4 mg O ₂ /L	2.0	2.0
24 April 2018	Stream 3	Total Organic Carbon	8 mg-TOC/L	6	6
24 April 2018	Stream 3	Total Nitrogen	2.9 mg N/L	2.0	2.1
24 April 2018	Stream 3	Ammonia-N	0.16 mg NH ₃ -N/L	0.15	0.20
24 April 2018	Stream 3	Total Phosphorus	0.1 mg-P/L	0.05	0.05

Note: The exceedance for groundwater quality recorded on 24 April 2018 is still under investigation.

# (D) Exceedance Report for Ecology (NIL in the reporting month)

#### (E) Exceedance Report for Cultural Heritage

# Appendix K – Summary of Exceedance (NIL in the reporting month)

(F) Exceedance Report for Landfill Gas (NIL in the reporting month)

#### APPENDIX L SITE AUDIT SUMMARY

# Appendix L - Site Audit Summary (April 2018)

#### Contract No. NE/2015/01

Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
Gaps between silt curtains in TKO site should be avoided.	28 March 2018	✓	Improved/rectified on 4 April 2018.
Silt curtain near marine platform in TKO site should be maintained to prevent untreated discharge.	25 April 2018	#	Follow up action will be reported in next reporting month
Noise			
Landscape and Visual			
Air Quality			
Water spraying should be provided to slopes in LTI for dust suppression.	28 March 2018	✓	Improved/rectified on 4 April 2018.
NRMM labels should be properly displayed on PMEs in Portion 6 in TKO site.	11 April 2018	<b>√</b>	Improved/rectified on 18 April 2018
Water spraying should be provided to slopes in LTI more frequently for dust suppression.	18 April 2018	<b>√</b>	Improved/rectified on 25 April 2018
Water sprinklers on Slope H should be provided to all breaking works for dust suppression.	25 April 2018	#	Follow up action will be reported in next reporting month
Waste / Chemical Management			
Drip tray should be provided to chemical containers in WA1.	4 April 2018	<b>√</b>	Improved/rectified on 11 April 2018.
PME in Portion 6 in TKO site should be maintained regularly to avoid oil leakage.	11 April 2018	✓	Improved/rectified on 18 April 2018
Impact on Cultural Heritage			
Permits / Licenses			

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but improved by the contractor

# Appendix L - Site Audit Summary (April 2018)

# Contract No. NE/2015/02

Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works

Items	Date	Status*	Follow up Action	
Water Quality		-	-	
Silt curtains near the double water gate are observed	22 March 2018	×	Item remarked on 29 March 2018.	
damaged. The Contractor should maintain the silt		**		
curtains properly and ensure the geotextile is extended	29 March 2018	✓	Improved/rectified on 6 April 2018.	
to seabed.				
To repair the damaged silt curtain at the double water	26 Amril 2019	ш	Follow up action will be reported in	
gate and deploy silt curtains around the cofferdam properly without gaps.	26 April 2018	#	next reporting month	
The Contractor was reminded to clear the sediment at			Follow up action will be reported in	
the unloading area at Portion 7 regularly.	26 April 2018	#	next reporting month	
Noise		I		
The Contractor was reminded to properly erect noise				
barriers for the drill rig in Portion 7 to reduce noise	17 April 2018	✓	Improved/rectified on 26 April 2018.	
nuisance to nearby NSR.	r	,	r	
To place the acoustic box properly for breaking work in	26 April 2018	#	Follow up action will be reported in	
Portion 4.	20 April 2016	#	next reporting month	
The Contractor was reminded to erect an effective				
acoustic mat for the derrick barge at the unloading area	26 April 2018	#	Follow up action will be reported in	
in Portion 7 and properly erect the noise barrier near the	r		next reporting month	
entrance of Portion 7.  The Contractor was reminded to replace NRMM labels			Follow up action will be reported in	
when needed.	26 April 2018	#	next reporting month	
Landscape and Visual			next reporting month	
Lanuscupe una visuai				
 Air Quality				
Haul road at Portion 4 was observed dry. The Contractor should provide sufficient water spraying for dust	29 March 2018	<b>√</b>	Improved/restified on 6 April 2019	
suppression.	29 Water 2016	<b>V</b>	Improved/rectified on 6 April 2018.	
The Contractor was reminded to repair the retractable				
tube of the drill rig in Portion 4 and ensure its integrity	12 April 2018	✓	Improved/rectified on 17 April 2018.	
at all time.	1			
The Contractor was reminded to provide water spraying	26 April 2018	#	Follow up action will be reported in	
for unloading / loading activity at Portion 5	20 April 2016	#	next reporting month	
The Contractor was reminded to maintain the			Follow up action will be reported in	
construction vessels regularly to prevent black smoke	26 April 2018	#	next reporting month	
emission.  The Contractor was reminded to lower the level of				
stockpiles in Work Area A and cover them with	26 April 2018	#	Follow up action will be reported in	
impervious sheet.	20 April 2010	11	next reporting month	
Waste / Chemical Management	<u> </u>	1	ı	
To clear the oil stain found under the pre-boring		_		
machine in Portion 5.	29 March 2018	✓	Improved/rectified on 6 April 2018.	
The Contractor was reminded to properly clear the oil	26 April 2010	щ	Follow up action will be reported in	
stain at the double water gate and Portion 4.	26 April 2018	#	next reporting month	
stant at the double water gate and I official 1.				
Impact on Cultural Heritage				

# **Agreement No. CE 59/2015 (EP)**

# Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction Monthly EM&A Report

# Appendix L - Site Audit Summary (April 2018)

Items	Date	Status*	Follow up Action

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

# Appendix L - Site Audit Summary (April 2018)

#### Contract No. NE/2015/03

Tseung Kwan O - Lam Tin Tunnel - Northern Footbridge

Items	Date	Status*	Follow up Action					
Water Quality								
Water leakage was found in the sedimentation tank in West Pier. The Contractor was reminded to rectify immediately and check the performance regularly	27 April 2018	#	Follow up action will be reported in next reporting month					
Noise								
Landscape and Visual	Landscape and Visual							
Air Quality								
Waste / Chemical Management								
Impact on Cultural Heritage								
Permits / Licenses								

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

# Appendix L - Site Audit Summary (April 2018)

#### Contract No. NE/2017/01

Tseung Kwan O - Lam Tin Tunnel – Tsueng Kwan O Interchange and Associated Works

Items	Date	Status*	Follow up Action					
Water Quality								
-								
Noise	Noise							
Landscape and Visual								
Air Quality								
Waste / Chemical Management								
Impact on Cultural Heritage								
Permits / Licenses	Permits / Licenses							

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

# Appendix L - Site Audit Summary (April 2018)

#### Contract No. NE/2017/02

Tseung Kwan O - Lam Tin Tunnel – Road P2/D4 and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
Noise			
Landscape and Visual			
Air Quality			
Dusty materials should be removed to prevent dust generation.	30 April 2018	#	Follow up action will be reported in next reporting month
Waste / Chemical Management			
General refuse should be collected and disposed regularly.	04 April 2018	<b>√</b>	Improved/rectified on 9 April 2018.
Impact on Cultural Heritage			
Permits / Licenses		·	

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

#### APPENDIX M EVENT AND ACTION PLANS

# **Event and Action Plan for Air Quality (Dust)**

ENTENIE		ACTION							
EVENT	ET	IEC	ER	CONTRACTOR					
Action level being exceeded by one sampling	<ol> <li>Identify source, investigate the causes of complaint and propose remedial measures;</li> <li>Inform IEC and ER;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily.</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method.</li> </ol>	1. Notify Contractor.	<ol> <li>Rectify any unacceptable practice;</li> <li>Amend working methods if appropriate.</li> </ol>					
Action level being exceeded by two or more consecutive sampling	<ol> <li>Identify source;</li> <li>Inform IEC and ER;</li> <li>Advise the ER on the         effectiveness of the proposed         remedial measures;</li> <li>Repeat measurements to confirm         findings;</li> <li>Increase monitoring frequency to         daily;</li> <li>Discuss with IEC and Contractor         on remedial actions required;</li> <li>If exceedance continues, arrange</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ET on the effectiveness of the proposed remedial measures;</li> <li>Supervise Implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol>	<ol> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol>					

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
	8. If exceedance stops, cease additional monitoring.								
Limit level being exceeded by one sampling	<ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures;</li> <li>Inform Contractor ,IEC, ER, and EPD;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily;</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.</li> </ol>	<ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>Supervise implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol>					
Limit level being exceeded by two or more consecutive sampling	<ol> <li>Notify IEC, ER, Contractor and EPD;</li> <li>Identify source;</li> <li>Repeat measurement to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> </ol>	<ol> <li>Discuss amongst ER, ET, and         Contractor on the potential         remedial actions;</li> <li>Review Contractor's remedial         actions whenever necessary to         assure their effectiveness and         advise the ER accordingly;</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> </ol>					

				ACT	ION			
EVENT	ET	ET		IEC		ER		ONTRACTOR
	5. Carry of working possible implements. 6. Arrange ER to did to be take	ut analysis of Contractor's a procedures to determine mitigation to be ented; e meeting with IEC and ascuss the remedial actions	3. Superv	ise the implementation of all measures.	<ul><li>4.</li><li>5.</li></ul>	Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.		Resubmit proposals if problem still not under control;
	keep IEO of the re	tor's remedial actions and C, EPD and ER informed sults; dance stops, cease al monitoring.						

#### **Event and Action Plan for Construction Noise**

EVENT	ACTION							
		ET		IEC		ER		CONTRACTOR
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose		
	4.	Discuss with the Contractor and		advise the ER accordingly;		remedial measures for the analysed		
		formulate remedial measures;	3.	Supervise the implementation of		noise problem;		
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are		
		check mitigation effectiveness.				properly implemented.		
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as
		implemented;				what portion of the work is		determined by the ER until the
	6.	Inform IEC, ER and EPD the causes				responsible and instruct the		exceedance is abated.
		and actions taken for the				Contractor to stop that portion of		
		exceedances;				work until the exceedance is abated.		

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
	7. Assess effectiveness of Contractor's					
	remedial actions and keep IEC, EPD					
	and ER informed of the results;					
	8. If exceedance stops, cease additional					
	monitoring.					

### **Event and Action Plan for Marine Water Quality**

	Action				
Event	ET	IEC	ER	CONTRACTOR	
Action level being exceeded by one sampling day at water sensitive receiver(s)	<ul> <li>Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate;</li> <li>If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings;</li> <li>Inform IEC and contractor;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>If exceedance occurs at WSD salt water intake, inform WSD;</li> <li>Discuss mitigation measures with IEC and Contractor;</li> <li>Repeat measurement on next day of exceedance.</li> </ul>	<ul> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> </ul>	<ul> <li>Discuss with IEC on the proposed mitigation measures;</li> <li>Make agreement on the mitigation proposal.</li> </ul>	<ul> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment;</li> <li>Amend working methods if appropriate;</li> <li>Discuss with ET and IEC and propose mitigation measures to IEC and ER;</li> <li>Implement the agree mitigation measures.</li> </ul>	
Action level being exceeded by two	Identify the source(s) of impact by comparing the results with those	Discuss with ET and Contractor on the mitigation measures;	Discuss with IEC on the proposed mitigation measures;	Inform the Engineer and confirm     notification of the non-compliance in	
or	collected at the control stations as		Make agreement on the mitigation	writing;	
more consecutive	appropriate;		proposal;	Rectify unacceptable practice;	

	Action				
Event	ET	IEC	ER	CONTRACTOR	
sampling days at	If exceedance is found to be caused	Review proposal on mitigation	Assess the effectiveness of the	Check all plant and equipment and	
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working	
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;	
	findings;	Assess the effectiveness of the		Discuss with ET, IEC and ER and	
	Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC	
	Check monitoring data, all plant,			and ER within 3 working days;	
	equipment and Contractor's working			Implement the agreed mitigation	
	methods;			measures.	
	Discuss mitigation measures with				
	IEC and Contractor;				
	Ensure mitigation measures are				
	implemented;				
	Prepare to increase the monitoring				
	frequency to daily;				
	If exceedance occurs at WSD salt				
	water intake, inform WSD;				
	Repeat measurement on next day of				
	exceedance.				
Limit level being	• Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm	
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in	
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;	
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;	
receiver(s)		and advise the ER accordingly;	review the working methods;		

Event	ET	IEC	ER	CONTRACTOR
	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working
	repeat in-situ measurement to		Assess the effectiveness of the	methods;
	confirm findings;		implemented mitigation measures.	Discuss with ET, IEC and ER and
	Inform IEC, contractor, AFCD and			submit proposal of mitigation
	EPD			measures to IEC and ER within 3
	Check monitoring data, all plant,			working days of notification;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC, ER and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
sampling days at		and advise the ER accordingly;	review the working methods;	

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
water sensitive	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working
	in-situ measurement to confirm		Assess the effectiveness of the	methods;
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		Consider and instruct, if necessary,	submit proposal of mitigation
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3
	Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;
	equipment and Contractor's working		until no exceedance of Limit level.	Implement the agreed mitigation
	methods;			measures;
	Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

#### **Limit Levels and Action Plan for Landfill Gas**

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		Increase ventilation to restore carbon dioxide to <
		0.5%

# **Event and Action Plan for Coral Post-Translocation Monitoring**

Event	Action			
	ET Leader	· IEC ER		Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.		
				3. Implement the agreed measures.

## **Mitigation Measures for Vibration Monitoring**

Level	Contingency Action
Alert Level	The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	The Engineer shall be informed immediately.
	The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	The Contractor shall carry out design review of the works

#### Action Level

- Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
- The Contractor shall immediately implement the measures defined in the contingency plan
- The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
- The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
- To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

# <u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

#### **Key:**

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
Air Qual	ity Impact							
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	*(1)/#(1)	3.12
	roads	dust impact		Work Sites	phase			
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	٨	3.12
	hall, provision of water spraying and flexible dust curtains	dust impact		Points	phase			
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air		
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control		
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	*(1)/#(1)	
	unpaved roads, particularly during dry weather.					Dust) Regulation		
	- Use of frequent watering for particularly dusty construction areas and areas close						*(1)/#(1)	
	to ASRs.							
	- Side enclosure and covering of any aggregate or dusty material storage piles to							

Αp	ril	20	18
----	-----	----	----

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	reduce emissions. Where this is not practicable owing to frequent usage,							
	watering shall be applied to aggregate fines.							
	- Open stockpiles shall be avoided or covered. Where possible, prevent placing						*(1)/#(1)	
	dusty material storage piles near ASRs.							
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between						۸	
	site locations.							
	- Establishment and use of vehicle wheel and body washing facilities at the exit						N/A	
	points of the site.							
	- Provision of wind shield and dust extraction units or similar dust mitigation						*(1)/#(1)	
	measures at the loading area of barging point, and use of water sprinklers at the							
	loading area where dust generation is likely during the loading process of loose							
	material, particularly in dry seasons/ periods.							
	- Provision of not less than 2.4m high hoarding from ground level along site						٨	
	boundary where adjoins a road, streets or other accessible to the public except							
	for a site entrance or exit.							
	- Imposition of speed controls for vehicles on site haul roads.						٨	
	- Where possible, routing of vehicles and positioning of construction plant should						۸	
	be at the maximum possible distance from ASRs							
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						۸	
	should be covered entirely by impervious sheeting or placed in an area sheltered							
	on the top and the 3 sides.							
	- Instigation of an environmental monitoring and auditing program to monitor the						۸	

<b>April 2018</b>	Αı	ori	12	01	8
-------------------	----	-----	----	----	---

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	construction process in order to enforce controls and modify method of work if							
	dusty conditions arise.							
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO		
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		۸	
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^	
	serviced regularly to avoid emission of black smoke.	construction						
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^	
	ultra low sulphur diesel fuel (ULSD)	plants						
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	*(2)/#(2)	
	machines	pollution		construction	stage			
		emission from		sites				
		construction						
		vehicles and						
		plants						
Noise Im	pact (Construction Phase)							
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	N/A	
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase			
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact						
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the						
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the						
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs						
	and Concrete Pump.		_		_			_

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the approved	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	*(3)/#(3)	
Mitigation	Noise Mitigation Plan	construction			phase			
Plan		noise impact						
		arising from the						
		Project at the						
		affected NSRs						
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO		
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		۸	
	serviced regularly during the construction program	noise impact						
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					۸	
	properly maintained during the construction program.	Project at the						
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					۸	
	- Machines and plant (such as trucks) that may be in intermittent use should be						۸	
	shut down between works periods or should be throttled down to a minimum.							
	- Plant known to emit noise strongly in one direction should, wherever possible, be						۸	
	orientated so that the noise is directed away from the nearby NSRs.							
	- Material stockpiles and other structures should be effectively utilized, wherever						۸	
	practicable, in screening noise from on-site construction activities.							
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A	
		construction		near school	phase			
		noise impact						
		arising from the						

recommended Measures & Main Concerns to address    Project at the affoctory   Project at the affoctory	<del>, .рр</del> .	WIT LEWICHTATION SCHEDOLL AND HECOMMICINDED WITHOU	1110111111271001					. ۲۰۱۶	11 2010
recommended Measures & Main Concerns to address  Project at the affocted NSRs  Project at the affocted NSRs  The dry density of filling material for the TKO-LT Tunnel reclamation should be inpacts from filling activities  S5.8.24 The dry density of filling material for the TKO-LT Tunnel reclamation should be inpacts from filling activities  S5.8.1 Non-dredged method by constructing steel cellular caisson structure with stone column installation (also including the installation of seawall boundation. During the stone column installation (also including the installation of seawall boundation of seawall be employed around the active stone column installation (also including the installation of seawall be employed around the active stone column installation of seawall be completed prior to the filling activities  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m two flor marrine access) shall be completed prior to the filling barge trips per day shall be made with a maximum daily rate of 3,000m ² (i.e. 1,000 m ² per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single sitt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling aperations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of collected rams to cover the filling activities.	EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
Measures & Main Concerns to address   Main Concerns to address			the	implement	the	Implement	requirements or		Condition
Main Concerns to address   Project at the affocted NSRs			recommended	the	measures	the	standards for the		
Water Quality Impact (Construction Phase)			Measures &	measures?		measures?	measures to		
Project at the affected NSRs			Main Concerns				achieve?		
### Water Quality Impact (Construction Phase)    S5.6.24   The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m², with fine content of 25% or less   Control potential impacts from Contractors filling activities   CEDD's Contractors   CEDD's Cont			to address						
Water Quality Impact (Construction Phase)  S5.6.24 The dry density of filling material for the TKO-LT Turnel reclamation should be 1,900kg/m³, with fine content of 25% or less impacts from filling activities  S5.8.1 Non-dredged method by constructing steel cellular caisson structure with stone column installation (also including the installation of seawall foundation. During the stone column installation (also including the installation of seawall foundation. During the stone column installation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m wide for marine access) shall be completed prior to the filling activities  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an activities. The seawall opening of about 50m wide for marine access) shall be employed activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per dray shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m² per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities.			Project at the						
S5.6.24 The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m³, with fine content of 25% or less  S5.8.1 Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation points.  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m² (i.e. 1,000 m² per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities    Control potential impacts from filling activities   Contractors   Contractors			affected NSRs						
1,900kg/m³, with fine content of 25% or less   Impacts from filling activities   Contractors   Phase   Construction	Water Q	uality Impact (Construction Phase)							
S5.8.1 Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities activities.	S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A	
S5.8.1 Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities  S5.8.2 Eactivities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m ³ (i.e. 1,000 m ³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities.  Control potential CEDD's Work site Construction EIAO-TM, WPCO, Waste Disposal (*4)/#(4) 3.3C		1,900kg/m³, with fine content of 25% or less	impacts from	Contractors		Phase			
column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation points.  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities of from filling activities.  S5.8.3 Control potential impacts from Contractors filling activities  CEDD's Work site Construction EIAO-TM, WPCO, Waste Disposal (*4)/#(4) 3.3C			filling activities						
column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation points.  S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities    Gontrol potential impacts from Contractors   CEDD's   Work site   Construction   Phase   EIAO-TM, WPCO, Waste Disposal (4)/#(4)   3.3C   Ordinance (WDO)   Phase   Contractors   Contractors   Phase   Contractors   Phase   Contractors   Contractors   Phase   Contractors   Contractors   Phase   Contractors   Contractors   Contractors   Phase   Contractors   Contractors   Phase   Contractors   Contractors   Contractors   Contractors   Contractors   Phase   Contractors   Contracto	S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A	3.2B
S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the  - filling activities  Control potential  CEDD's  Work site  Construction  Phase  FIAO-TM, WPCO  N/A  3.2C  Contractors  Filling activities  Control potential  CEDD's  Contractors  Filling activities  CEDD's  Contractors  Flaso-TM, WPCO,  Phase  Waste Disposal  *(4)/#(4)  3.3C		column shall be adopted for construction of seawall foundation.  During the stone	impacts from	Contractors		Phase			
S5.8.2 Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities  Control potential impacts from Contractors  Control potential CEDD's  Work site Construction  Phase  EIAO-TM, WPCO  N/A  3.2C  Control potential impacts from Contractors  EIAO-TM, WPCO  N/A  3.2C  Control potential impacts from Contractors  Phase  Ordinance (WDO)		column installation (also including the installation of steel cellular caisson), silt curtain	filling activities						
opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the  impacts from Contractors  Control potential  CEDD's  Work site  Contractors  Phase  Waste Disposal  *(4)/#(4)  3.3C		shall be employed around the active stone column installation points.							
activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities  filling activities  filling activities  filling activities  filling activities  filling activities	S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A	3.2C
selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the    Control potential impacts from filling activities   Contractors   Phase   Waste Disposal Ordinance (WDO)   *(4)/#(4)   3.3C   Control potential   CEDD's   Contractors   Contra		opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase			
barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the    Double   Control potential   CEDD's   Work site   Construction   EIAO-TM, WPCO,   Waste Disposal   *(4)/#(4)   3.3C   Control potential   Centractors   Contractors   Contractors		activities. The seawall opening of about 50m wide for marine access shall be	filling activities						
per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the filling activities of the contractors from filling activities of the contractors from filling activities of the contractors of t		selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling							
shall be carried out behind the seawall with the use of single silt curtain at the marine access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the  S5.8.3 Other good site practices should be undertaken during filling operations include:  - Control potential impacts from Contractors  Fhase Waste Disposal (4)/#(4) 3.3C  Ordinance (WDO)		barge trips per day shall be made with a maximum daily rate of $3,000\mathrm{m}^3$ (i.e. $1,000\mathrm{m}^3$							
access.  S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the  Control potential CEDD's Work site Construction  EIAO-TM, WPCO,  Waste Disposal *(4)/#(4) 3.3C  Filling activities		per trip) for the filling operation at the reclamation area for Road P2. All filling works							
S5.8.3 Other good site practices should be undertaken during filling operations include:  - all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the  Control potential CEDD's Work site Construction  Contractors From Contractors Filling activities  Contractors From Filling activities  Construction Flase Flao-TM, WPCO, Waste Disposal (4)/#(4) 3.3C		shall be carried out behind the seawall with the use of single silt curtain at the marine							
- all marine works should adopt the environmental friendly construction methods impacts from as far as practically possible including the use of cofferdams to cover the filling activities Phase Waste Disposal *(4)/#(4) 3.3C		access.							
as far as practically possible including the use of cofferdams to cover the filling activities Ordinance (WDO)	S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,		
		- all marine works should adopt the environmental friendly construction methods	impacts from	Contractors		Phase	Waste Disposal	*(4)/#(4)	3.3C
		as far as practically possible including the use of cofferdams to cover the	filling activities				Ordinance (WDO)		
construction area to separate the construction works from the sea;  and marine-		construction area to separate the construction works from the sea;	and marine-						

<b>April 2018</b>	Αı	ori	12	01	8
-------------------	----	-----	----	----	---

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
			the	implement	the	Implement	requirements or		Condition
			recommended	the	measures	the	standards for the		
			Measures &	measures?		measures?	measures to		
			Main Concerns				achieve?		
			to address						
	-	floating single silt curtain shall be employed for all marine works;	based					*(4)/#(4)	
	-	all vessels should be sized so that adequate clearance is maintained between	construction					۸	
		vessels and the seabed in all tide conditions, to ensure that undue turbidity is not							
		generated by turbulence from vessel movement or propeller wash;							
	-	all hopper barges should be fitted with tight fitting seals to their bottom openings						۸	
		to prevent leakage of material;							
	-	excess material shall be cleaned from the decks and exposed fittings of barges						۸	
		before the vessel is moved;							
	-	adequate freeboard shall be maintained on barges to reduce the likelihood of						۸	
		decks being washed by wave action;							
	-	loading of barges and hoppers should be controlled to prevent splashing of filling						۸	
		material into the surrounding water. Barges or hoppers should not be filled to a							
		level that will cause the overflow of materials or polluted water during loading or							
		transportation;						۸	
	-	any pipe leakages shall be repaired quickly. Plant should not be operated with							
		leaking pipes;						۸	
	-	construction activities should not cause foam, oil, grease, scum, litter or other							
		objectionable matter to be present on the water within the site or dumping						۸	
		grounds; and							
	-	before commencement of the reclamation works, the holder of Environmental							2.8
		Permit has to submit plans showing the phased construction of the reclamation,							
		design and operation of the silt curtain.							

<b>April 2018</b>	Α	pril	20	18
-------------------	---	------	----	----

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,		
	consideration of good site practices.	filling activities				WPCO		
		and marine						
		based						
		construction						
ERR	To minimize water quality impact arising from the dredging and filling works for	Control potential	CEDD's	Work site	Construction	ProPECC PN		
S5.6.1	Reclamation for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,		
	- Before carrying out any dredging and underwater filling works, a temporary	dredging and				WPCO	٨	
	barrier shall first be constructed to a height above the high water mark to	filling works for						
	completely enclose the works site (without any opening at the barrier wall)	Reclamation for						
	- The temporary barrier fully enclosing the dredging and underwater filling works	Road P2					۸	
	site shall not be removed before completion of all dredging and underwater							
	filling works.						N/A	
	- Water quality sampling and testing shall be carried out to demonstrate that the							
	water quality inside the enclosed barrier is comparable to the ambient or							
	baseline levels prior to the removal of the fully enclosed barrier.						۸	
	- Silt curtains shall be deployed for the installation and removal of the temporary							3.3E
	barrier and at the double water gates marine access opening during its							
	operation. The general of arrangement of silt curtain is shown in Figure 7 of the							
	existing Environmental Permit (No. EP-458/2013/C).							ļ

							11 2010
Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
	the	implement	the	Implement	requirements or		Condition
	recommended	the	measures	the	standards for the		
	Measures &	measures?		measures?	measures to		
	Main Concerns				achieve?		
	to address						
It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,		
management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO		
effluents.	runoff and land-						
	based						
	construction						
Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^	
both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,		
hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS		
	runoff and land-			Phase			
	based						
	construction						
Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	#(5)	
with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,		
Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS		
best management practices, as detailed in below, should be implemented to ensure that	runoff and land-						
all construction runoff complies with WPCO standards and no unacceptable impact on	based						
the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction						
construction site should be controlled to comply with the standards for effluents							
discharged into the corresponding WCZ under the TM-DSS.							
	It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.  Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.  Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents	Recommended Mitigation Measures    Dobjectives of the recommended Measures & Main Concerns to address   It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.    Any practical options for the diversion and realignment of drainage should comply with based construction   Any practical options for the diversion and realignment of drainage should comply with based construction   Control potential impacts from construction in the purpose of the diversion and realignment of drainage should comply with construction site runoff and land-based construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents	Recommended Mitigation Measures    Objectives of the recommended Measures & Main Concerns to address   CEDD's	the recommended Measures & Main Concerns to address  It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.  Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.  Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction site past management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents  Implement the measures measures?  Main Concerns to address  Control potential construction site runoff and drainage should be measured impacts from construction  Control potential construction  Control potential impacts from construction  Control potential construction site runoff and drainage should be implemented to ensure that all construction site runoff and land-based construction site runoff and land-	Recommended Mitigation Measures    Objectives of the recommended measures & Main Concerns to address	Recommended Mitigation Measures    Objectives of the recommended Measures & Main Concerns to address to addres	Recommended Mitigation Measures  Main Concerns to address and prevent high loading of SS from entering the marine environment. Proper site effluents.  Any practical options for the diversion and realignment of drainage software form hydraulic capacity of all drains.  Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EDP's Practice Note for Professional Prostsuction  Construction Site Drainage (ProPECC PN 1/34, Good housekeeping and stomwater all construction studies that agard construction for the diversion and drainage should be controlled to comply with the standards for effluents  Construction Site profit and land-based construction site runoff and drainage should be prevented or minimised in accordance of the standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction file should be controlled to comply with the standards for effluents  Construction site should be controlled to comply with the standards for effluents  Construction site should be controlled to comply with the standards for effluents  Construction site should be controlled to comply with the standards for effluents  Construction site should be controlled to comply with the standards for effluents  Construction site should be controlled to comply with the standards for effluents  Construction  Construction site should be controlled to comply with the standards for effluents  Construction  Construction site should be controlled to comply with the standards for effluents  Construction  Construction site should be controlled to comply with the standards for effluents  Construction  Construction site should be controlled to comply with the standards for effluents  Construction  Cons

April	2018
-------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN		
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,		
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO		
	of appropriate mitigation measures which include:	runoff and land-						
	- use of sediment traps; and	based					N/A	
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					۸	
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,		
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO		
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-						
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based						
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction						
	The design of efficient silt removal facilities should be based on the guidelines in							
	Appendix A1 of ProPECC PN 1/94.							
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,		
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO		
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-						
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based						
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction						
	other means.							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	#(6)	
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,		
	measure which can be used for settling surface runoff prior to disposal.  The system	construction site				WPCO		
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5		
	particularly suited to applications where the influent is pumped.	based						
		construction						
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,		
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO		
	intercepting channels should be provided where necessary.	runoff and land-				S5		
		based						
		construction						
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,		
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO		
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5		
		based						
		construction						
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	material) of more than 50m³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,		
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO		
	materials, soil, silt or debris into any drainage system.	runoff and land-						

	IN LEMENTATION SOFIEDOLE AND TECOMMENDED MITTOR							11 2010
EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
		based						
		construction						
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,		
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO		
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-						
	unduly overload the foul sewerage system.	based						
		construction						
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨	
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,		
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO		
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-						
	especially for areas located near steep slopes.	based						
		construction						
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,		
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO		
	periods of heavy rain.	runoff and land-						
		based						
		construction						

The is - i	MI LEMENTATION SOFTEBOLE AND TECOMMENDED MITTOR						7 .10.	11 2010
EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	no earth, mud, debris and the like is deposited by them on roads.	impacts from	Contractors		Phase	1/94, EIAOTM,		
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO		
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-						
	basis to ensure the continued efficiency of the process. The section of access road	based						
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction						
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil							
	and silty water to public roads and drains.							
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,		
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO		
		runoff and land-						
		based						
		construction						
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,		
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO		
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-						
		based						
		construction						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,		
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO		
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-						
	temporarily diverted drainage should be reinstated to its original condition when the	based						
	construction work has finished or the temporary diversion is no longer required.	construction						
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,		
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO		
		runoff and land-						
		based						
		construction						
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸	
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS		
	construction and operational phases	construction site						
		runoff and land-						
		based						
		construction						
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,		
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO		
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
		based						
		construction						
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,		
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings		
5.18	also be monitored by piezometers.	runoff and land-				Ordinance		
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based						
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction						
	significant change of groundwater levels would therefore be expected. Any chemicals/							
	foaming agents which would be entrained to the groundwater should be							
	biodegradable and non-toxic throughout the tunnel construction. Potential							
	groundwater quality impact would be minimal as the used material is non-toxic and							
	biodegradable. No adverse groundwater quality would therefore be expected.							
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to							
	preserve the groundwater levels at all times during the tunnel construction are set out							
	in Table 5.18.							
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A	
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,		
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO		
	removal facilities.	runoff and land-			Phas			
		based						
		construction						

<b>April 2018</b>	Α	pr	il	20	18	
-------------------	---	----	----	----	----	--

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
S5.8.31	similar equipment should whenever practicable be recycled.  The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,		
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO		
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-						
	online standby pump of adequate capacity and with automatic alternating devices.	based						
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction						
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6							
	to 10). Disposal of wastewater into storm drains will require more elaborate							
	treatment.							
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,		
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO		
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-						
	The section of construction road between the wheel washing bay and the public road	based						
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction						
	off from entering public road drains.							
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	reconditioned and reused wherever practicable.   If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,		
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO		
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-						
	basis.	based						
		construction		_				

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,		
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO		
	Memorandum on Effluent Standards.	runoff and land-						
		based						
		construction						
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,		
	discharged into storm drains.	construction site				WPCO		
		runoff and land-						
		based						
		construction						
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A	
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,		
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO		
		runoff and land-			Phase			
		based						
		construction						
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,		
	sewers/drains.	construction site				WPCO		
		runoff and land-						

App II - I	ELMENTATION SOTIEDOLE AND TECONIMENDED MITTOR							11 2010
EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
		based						
		construction						
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,		
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO		
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-						
	removal facility, and pH adjustment as necessary	based						
		construction						
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,		
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO		
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-						
	acceptable to storm drains and the receiving waters	based						
		construction						
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,		
	providing at least 20 minutes retention during peak flow.	construction site				WPCO		
		runoff and land-						
		based						
		construction						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	^	
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,		
		construction site				WPCO		
		runoff and land-						
		based						
		construction						
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(7)/#(7)	
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,		
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO		
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-						
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based						
		construction						
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸	
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,		
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO		
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-						
	contractor to serve the large number of construction workers over the construction	based						
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction						
	practices.							
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸	
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO		
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	(General) Regulation should be observed and complied with for control of chemical	spillage of						
	wastes.	chemicals						
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	*(8)	
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase			
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental						
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of						
	control these discharges.	chemicals						
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,		
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO		
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental						
	requirements to deal with chemical wastes. General requirements are given as	spillage of						
	follows:	chemicals					۸	
	- suitable containers should be used to hold the chemical wastes to avoid leakage							
	or spillage during storage, handling and transport;						۸	
	- chemical waste containers should be suitably labelled, to notify and warn the							
	personnel who are handling the wastes, to avoid accidents; and						۸	
	- storage area should be selected at a safe location on site and adequate space							
	should be allocated to the storage area.							
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨	
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase			
	site boundary and the neighbouring water free from rubbish.	floating refuse						
		and debris			_		_	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
Ecologic	cal Impact							
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A		
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		۸	
	wherever possible.	traffic	Contractor					
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					۸	
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat						
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and						
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust						
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					۸	
	adjacent vegetation and habitats during the construction activities							
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A		
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		^	
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding						
	habitats.	habitats					^	
	- Construction activities should be restricted to works areas that should be clearly							
	demarcated. The works areas should be reinstated after completion of the works.						^	
	- Waste skips should be provided to collect general refuse and construction wastes.							
	The wastes should be properly disposed off-site in a timely manner.						^	
	- General drainage arrangements should include sediment and oil traps to collect							
	and control construction site run-off.						^	
	- Open burning on works sites is illegal, and should be strictly prohibited.						^	
	- Measures should also be put into place so that litter, fuel and solvents do not enter							_

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	the nearby watercourses.							
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A		
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A	
	would generally be adopted.	inflow						
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A	
	the groundwater inflow and ensure that the tunnel would meet the long term water							
	tightness requirements.							
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A		
	Coral translocation	coral	team,	reclamation	construction			
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			^	
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint				
	other suitable locations as far as practicable.		operator					
	- The coral translocation should be conducted during the winter months (November-						۸	
	March) in order to avoid disturbance during their spawning period (i.e. July to							
	October).						۸	
	- A detailed coral translocation plan with a description on the methodology for							
	pretranslocation coral survey, translocation methodology, identification/proposal of							
	coral recipient site, monitoring methodology for posttranslocation should be						^	
	prepared during the detailed design stage.							

April 2	2018
---------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- The coral translocation plan should be subject to approval by relevant authorities							
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the							
	translocation exercises should be conducted by experienced marine ecologist(s)							
	who is/are approved by AFCD prior to commencement of coral translocation.							
	Post translocation Monitoring						٨	
	- A coral monitoring programme is recommended to assess any adverse and							
	unacceptable impacts to the translocated coral communities						۸	
	- Information gathered during each posttranslocation monitoring survey should							
	include observations on the presence, survival, health condition and growth of the							
	translocated coral colonies.  These parameters should then be compared with							
	the baseline results collected from the pre-translocation survey.							
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO		
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	landbased	phase		N/A	
	opening of newly installed seawall and marine works area.	especially on	contractor	works area				
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					۸	
	- Proper waste and dumping management; and	level; minimize						
	- Standard good-site practice for land-based construction.	the					۸	
		contamination of					٨	
		wastewater						
		discharge,						
		accidental						
		chemical						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
		spillage and						
		construction site						
		runoff to the						
		receiving water						
		bodies						
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A		
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		٨	
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor					
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.							
	In addition, vegetation at the temporarily affected area should be reinstated with							
	species similar to the existing condition.							
Fisherie	s Impact							
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO		
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		٨	
	opening of newly installed seawall and marine works area.	especially on	Contractor					
		suspended solid						
		level						
Waste M	lanagement (Construction Phase)							
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal		
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	٨	
	good site practices, arrangements for collection and effective disposal to an	impacts				354)		
	appropriate facility, of all wastes generated at the site;							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- Training of site personnel in site cleanliness, proper waste management and					Land	۸	
	chemical handling procedures;					(Miscellaneous		
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	۸	
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	۸	
	of waste by either covering trucks or by transporting wastes in enclosed					28)		
	containers; and						*(9)	
	- Regular cleaning and maintenance programme for drainage systems, sumps and							
	oil interceptors.							
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal		
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	۸	
	or stockpiles to enhance reuse or recycling of materials and their proper					354)		
	disposal;						^	
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land		
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	۸	
	workforce;					Provisions)		
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^	
	contamination of construction materials; and					28)		
	- Plan and stock construction materials carefully to minimize amount of waste							
	generated and avoid unnecessary generation of waste.							
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.		
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^	
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of							
	different categories of waste to be generated from the construction activities. Such a							
	management plan should incorporate site specific factors, such as the designation of							
	areas for segregation and temporary storage of reusable and recyclable materials.							
	The EMP should be submitted to the Engineer for approval.   The Contractor should							
	implement the waste management practices in the EMP throughout the construction							
	stage of the Project. The EMP should be reviewed regularly and updated by the							
	Contractor.							
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.		
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	۸	
	as far as possible.							
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-		
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase			
	minimize the impacts include:	adverse						
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					٨	
	containment, thus minimizing the potential of pollution;	impacts arising						
	- Maintain and clean storage areas routinely;	from waste					۸	
	- Stockpiling area should be provided with covers and water spraying system to	storage					^	
	prevent materials from wind-blown or being washed away; and							
	- Different locations should be designated to stockpile each material to enhance						۸	
	reuse.							
S8.6.8	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction			

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- Remove waste in timely manner;	potential		sites	Phase		^	
	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^	
	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^	
	the use of covered trucks or in enclosed containers;	impacts arising						
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					^	
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and						
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal						
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);							
	- Waste should be disposed of at licensed waste disposal facilities; and						۸	
	- Maintain records of quantities of waste generated, recycled and disposed.						^	
S8.6.9	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.		
	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^	
	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse						
	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental						
	recording system for the amount of waste generated, recycled and disposed	impacts arising						
	(including disposal sites) should be proposed.	from waste						
		collection and						
		disposal						
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.		
S8.6.13	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^	
	materials before disposal off-site.	adverse						
	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	٨	

April 2	2018	8
---------	------	---

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	temporary storage areas for the sorted materials.					33/2002		
	- The C&D materials should at least be segregated into inert and non-inert						۸	
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.		
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005		
	for reusing the non-inert portion should be investigated before disposal of at							
	designated landfills							
S8.6.15 –	Sediments	To ensure the	contractor	All works	Construction	RBRG		
S8.6.16	- Sediment encountered may be reused as filling material on-site after cement	sediment to be		areas with	Phase		N/A	
	stabilization. Cement-stabilization process is undertaken by mixing sediment and	disposed of in		sediments				
	cement and will convert sediment to earth filling material. The treated sediment	an authorized		concern				
	has to comply with Risk-Based Remediation Goals (RBRGs) before being reused	and least						
	in order not to raise any land contamination issue. The adoption of RBRGs to	impacted way						
	assess stabilized sediment has been proposed in the current C&DMMP. MFC							
	has no adverse comment on the current C&DMMP. The sediment quality							
	indicates that all sediments comply with most stringent RBRGs except for one							
	sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the RBRG.							
	Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening							
	results do not indicate sediment as contaminated soil. It is anticipated that reuse							
	of sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to							
	land contamination.							
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-						N/A	
	EBH501 33.95m) as filling material after cement stabilization is also a suitable							

<b>April 2018</b>	Α	pr	il	20	18	
-------------------	---	----	----	----	----	--

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
			the	implement	the	Implement	requirements or		Condition
			recommended	the	measures	the	standards for the		
			Measures &	measures?		measures?	measures to		
			Main Concerns				achieve?		
			to address						
		treatment. Sediment quality indicates the sediment sample (TKO-EBH501 3-							
		3.95m) exceed RBRG for lead. While cement stabilization will immobilize metal							
		contaminants, it is capable to treat the exceedance on lead. The stabilized							
		material should comply with UTS of Lead and UCS. If the treated material do not							
		comply with UTS or UCS, re-stabilization have to be undertaken to meet							
		compliance of UTS and UCS before reusing the treated sediment as filling							
		material. However, further agreement on final disposal/treatment on sediment							
		under sample (TKO-EBH501 3-3.95m) has to be sought from DEP							
S8.6.17 –	Se	ediments (con't)	To determine the	Contractor	All works	Construction			
S8.6.20	-	Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		N/A	
		relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments				
		disposal of sediments or cement stabilization of sediment.	sediment		concern				
	-	A treatment area should be confined for carrying out the cement stabilization						N/A	
		mixing and temporary stockpile. The area should be designed to prevent							
		leachate from entering the ground. Leachate, if any, should be collected and							
		discharged according to the Water Pollution Control Ordinance (WPCO).							
	-	In order to minimise the potential odour / dust emissions during boring,						N/A	
		excavation and transportation of the sediment, the excavated sediments should							
		be kept wet during excavation/boring and should be properly covered when							
		placed on barges/trucks. Loading of the excavated sediment to the barge							
		should be controlled to avoid splashing and overflowing of the sediment slurry to							
		the surrounding water.						N/A	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- In order to minimise the exposure to contaminated materials, workers should,							
	when necessary, wear appropriate personal protective equipments (PPE) when							
	handling contaminated sediments. Adequate washing and cleaning facilities							
	should also be provided on site.							
S8.6.21	Sediments (con't)	To ensure the	contractor	All works	Construction	ETWB TC(W) No.		
	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be		areas with	Phase	34/2002 &	N/A	
	requirements and procedures for excavated sediment disposal specified under	disposed of in		sediments		Dumping at Sea		
	ETWB TC(W) No. 34/2002 shall be followed. MFC is responsible for the	an authorized		concern		Ordinance		
	provision and management of disposal capacity and facilities for the excavated	and least						
	sediment, while the permit of marine dumping is required under the Dumping at	impacted way						
	Sea Ordinance and is the responsibility of the DEP.							
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.		
	- For allocation of sediment disposal sites and application of marine dumping	best handling		areas with	Phase	34/2002 &	N/A	
	permit, separate SSTP has to be submitted to EPD for agreement under DASO.	and disposal		sediments		Dumping at Sea		
	Additional site investigation, based on the SSTP, maybe carried out in order to	option of		concern		Ordinance		
	confirm the disposal arrangements for the proposed sediments removal. A	sediment						
	Sediment Quality Report (SQR) shall then be required for EPD agreement under							
	DASO prior to the tendering of the construction contract, discussing in details the							
	site investigation, testing results as well as the delineation of each of the							
	categories of excavated materials and the corresponding types of disposal.							
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.		
S8.6.28	- The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	N/A	

<b>April 2018</b>	Α	pr	il	20	18	
-------------------	---	----	----	----	----	--

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
			the	implement	the	Implement	requirements or		Condition
			recommended	the	measures	the	standards for the		
			Measures &	measures?		measures?	measures to		
			Main Concerns				achieve?		
			to address						
		transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea		
		excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance		
		options and ETWB TC(W) No. 34/2002.	statutory					N/A	
	-	Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements						
		temporary stockpiling of contaminated sediments is necessary, the excavated							
		sediment should be covered by tarpaulin and the area should be placed within							
		earth bunds or sand bags to prevent leachate from entering the ground, nearby							
		drains and surrounding water bodies. The stockpiling areas should be completely							
		paved or covered by linings in order to avoid contamination to underlying soil or							
		groundwater. Separate and clearly defined areas should be provided for							
		stockpiling of contaminated and uncontaminated materials. Leachate, if any,							
		should be collected and discharged according to the Water Pollution Control						N/A	
		Ordinance (WPCO).							
	-	In order to minimise the potential odour / dust emissions during boring and							
		transportation of the sediment, the excavated sediments should be kept wet							
		during excavation/boring and should be properly covered when placed on							
		barges. Loading of the excavated sediment to the barge should be controlled to						N/A	
		avoid splashing and overflowing of the sediment slurry to the surrounding water.							
	-	The barge transporting the sediments to the designated disposal sites should be							
		equipped with tight fitting seals to prevent leakage and should not be filled to a							
		level that would cause overflow of materials or laden water during loading or							
		transportation. In addition, monitoring of the barge loading shall be conducted to							

<b>April</b>	201	8
--------------	-----	---

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	ensure that loss of material does not take place during transportation. Transport						N/A	
	barges or vessels shall be equipped with automatic self-monitoring devices as							
	specified by the DEP.							
	- In order to minimise the exposure to contaminated materials, workers should,							
	when necessary, wear appropriate personal protective equipments (PPE) when						N/A	
	handling contaminated sediments. Adequate washing and cleaning facilities							
	should also be provided on site.							
	- Another possible arrangement for Type 3 disposal is by geosynthetic							
	containment. A geosynthetic containment method is a method whereby the							
	sediments are sealed in geosynthetic containers and, at the disposal site, the							
	containers would be dropped into the designated contaminated mud pit where							
	they would be covered by further mud disposal and later by the mud pit capping,							
	thereby meeting the requirements for fully confined mud disposal.							
S8.6.26	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice		
	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^	
	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and		
	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of		
	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes		
	chemical wastes should be used, and incompatible chemicals should be stored							
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal		
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)		
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation		
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre							
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal							
	(Chemical Waste) (General) Regulation.							
S8.6.27	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	٨	
	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services		
	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.		
	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)		
	Preferably an enclosed and covered area should be provided to reduce the							
	occurrence of 'wind blown' light material.							
Impact of	on Cultural Heritage (Construction Phase)							
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;		
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	۸	
	m) should be provided;	impacts						
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						٨	
	festival;						٨	
	- Monitoring of vibration impacts should be conducted when the construction							
	works are less than 100m from the temple.							
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits on		
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	indirect vibration			Phase	Heritage Buildings	^	3.7
	limit of 5mm/s measured inside the historical buildings;	impact				by CEDD; GCHIA;		
	- Monitoring of vibration should be carried out during construction phase.					AMO.	^	3.7

April	2018
-------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin						٨	3.7
	Hau Temple as well.							
	- A proposal with details for the mitigation measures and monitoring of impacts on						٨	3.7
	built heritage shall be submitted to AMO for comments before commencement of							
	work.							
Landsca	pe and Visual Impact (Construction Phase)							
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	٨	
10.8.1	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and			
		landscape areas			during			
					construction			
					period			
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	٨	
10.8.1		duration of	Contractor)		planning			
		impact						
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	٨	
10.8.1	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular		
	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification		
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	٨	
10.8.1	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree		
	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection		
	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in		
	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	contractor's works areas. (Tree protection measures will be detailed at Tree Removal			)		Specification		
	Application stage).							
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	۸	
10.8.1	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree		
	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection		
	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in		
	preparation shall be allowed in the construction programme.			Application(s		Particular		
				)		Specification		
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	۸	
10.8.1	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction			
	years.	works		and edge of	period			
				Road P2				
				landscape				
				deck, TKO				
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A	
10.8.1		intrusion	Contractor)		construction	Specification		
					period			
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	۸	
10.8.1	night working periods.	intrusion	Contractor)		construction			
					period			
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	۸	
10.8.1	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding			

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^	
10.8.1		visual intrusion	Contractor)	structures	construction			
		and integration			stage			
		with						
		environment						
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	۸	
10.8.1		contamination of	Contractor)	reclamation,	construction			
		water courses		TKO	period			
		and water bodie		tunnel				
				portal, Cha				
				Kwo Ling				
				roadworks				
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A	
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and			
		integration with		for barging	reclamation			
		existing coastlin		points at	stages			
				TKO and				
				Lam Tin and				
				permanent				
				reclamation				
				for TKO				
				Interchange				

<b>April 2018</b>	Α	pr	il	20	18	
-------------------	---	----	----	----	----	--

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
				slip roads				
				and Road				
				P2				
Landfill	Gas Hazard (Design and Construction Phase)							
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	^	
	hazards, should be present on site throughout the groundworks phase. The Safety	workers from		within the	phase	Hazard		
	Officer should be provided with an intrinsically safe portable instrument, which is	landfill gas		Sai Tso Wan		Assessment		
	appropriately calibrated and able to measure the following gases in the ranges	hazards		Landfill		Guidance Note		
	indicated below:			Consultation				
	Methane 0-100% LEL and 0100% v/v			Zone				
	Carbon dioxide 0-100%							
	Oxygen 0-21%							
S11.5.10	Safety Measures	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas		
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all	workers from		within the	phase	Hazard	^	
	excavation workers, supervisors and engineers working within the Consultation	landfill gas		Sai Tso Wan		Assessment		
	Zone, should receive appropriate training on working in areas susceptible to	hazards		Landfill		Guidance Note		
	landfill gas, fire and explosion hazards.			Consultation		Labour		
	- An excavation procedure or code of practice to minimize landfill gas related risk			Zone		Department's	^	
	should be devised and carried out.					Code of Practice		
	- No worker should be allowed to work alone at any time in or near to any					for Safety and	^	
	excavation. At least one other worker should be available to assist with a					Health at Work in		

April	2018
-------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	rescue if needed.					Confined Space	^	
	- Smoking, naked flames and all other sources of ignition should be prohibited							
	within 15m of any excavation or ground-level confined space. "No smoking"							
	and "No naked flame" notices should be posted prominently on the							
	construction site and, if necessary, special areas should be designed for						۸	
	smoking.							
	- Welding, flame-cutting or other hot works should be confined to open areas at						۸	
	least 15m from any trench or excavation.							
	- Welding, flame-cutting or other hot works may only be carried out in trenches or							
	confined spaces when controlled by a "permit to work" procedure, properly							
	authorized by the Safety Officer (or, in the case of small developments, other						۸	
	appropriately qualified person).							
	- The permit to work procedure should set down clearly the requirements for							
	continuous monitoring for methane, carbon dioxide and oxygen throughout the							
	period during which the hot works are in progress.  The procedure should also							
	require the presence of an appropriately qualified person, in attendance outside							
	the 'confined area', who should be responsible for reviewing the gas							
	measurements as they are made, and who should have executive responsibility							
	for suspending the work in the event of unacceptable or hazardous conditions.							
	Only those workers who are appropriately trained and fully aware of the						٨	
	potentially hazardous conditions which may arise should be permitted to carry							
	out hot works in confined areas.							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	- Where there are any temporary site offices, or any other buildings located within							
	the Sai Tso Wan Landfill Consultation Zone which have enclosed spaces with							
	the capacity to accumulate landfill gas, then they should either be located in an							
	area which has been proven to be free of landfill gas (by survey using portable							
	gas detectors); or be raised clear of the ground by a minimum of 500mm. This						٨	
	aims to create a clear void under the structure which is ventilated by natural air							
	movement such that emission of gas from the ground are mixed and diluted by							
	air.							
	- Any electrical equipment, such as motors and extension cords, should be							
	intrinsically safe. During piping assembly or conduiting construction, all						۸	
	valves/seals should be closed immediately after installation. As construction							
	progresses, all valves/seals should be closed to prevent the migration of gases						۸	
	through the pipeline/conduit. All piping /conduiting should be capped at the end						٨	
	of each working day.							
	- During construction, adequate fire extinguishing equipment, fire-resistant clothing						۸	
	and breathing apparatus (BA) sets should be made available on site.							
	- Fire drills should be organized at not less than six monthly intervals.							
	- The contractor should formulate a health and safety policy, standards and							
	instructions for site personnel to follow.						٨	
	- All personnel who work on the site and all visitors to the site should be made							
	aware of the possibility of ignition of gas in the vicinity of excavations. Safety							
	notices (in Chinese and English) should be posted at prominent position around							

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
			the	implement	the	Implement	requirements or		Condition
			recommended	the	measures	the	standards for the		
			Measures &	measures?		measures?	measures to		
			Main Concerns				achieve?		
			to address						
		the site warning danger of the potential hazards.							
	-	Service runs within the Consultation Zone should be designated as "special							
		routes"; utilities companies should be informed of this and precautionary							
		measures should be implemented. Precautionary measures should include							
		ensuring that staff members are aware of the potential hazards of working in						^	
		confined spaces such as manholes and service chambers, and that appropriate							
		monitoring procedures are in place to prevent hazards due to asphyxiating							
		atmospheres in confined spaces. Detailed guidance on entry into confined							
		spaces is given in Code of Practice on Safety and Health at Work in Confined							
		Spaces (Labour Department, Hong Kong).							
	-	Periodically during ground-works construction within the 250m Consultation							
		Zone, the works area should be monitored for methane, carbon dioxide and							
		oxygen using appropriately calibrated portable gas detection equipment. The							
		monitoring frequency and areas to be monitored should be set down prior to							
		commencement of ground-works either by the Safety Officer or an approved and							
		appropriately qualified person.							
S11.5.26	Мо	onitoring	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas		
-	•	Routine monitoring should be carried out in all excavations, manholes,	workers from		within the	phase	Hazard	^	
S11.5.31		chambers, relocation of monitoring wells and any other confined spaces that	landfill gas		Sai Tso Wan		Assessment		
		may have been created. All measurements in excavations should be made	hazards		Landfill		Guidance Note		
		with the extended monitoring tube located not more than 10 mm from the			Consultation				
		exposed ground surface. Monitoring should be performed properly to make			Zone				

April	2018
-------	------

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
			the	implement	the	Implement	requirements or		Condition
			recommended	the	measures	the	standards for the		
			Measures &	measures?		measures?	measures to		
			Main Concerns				achieve?		
			to address						
		sure that the area is free of landfill gas before any man enters into the area.							
	•	For excavations deeper than 1m, measurements should be carried out:						٨	
		- at the ground surface before excavation commences;-							
		- immediately before any worker enters the excavation;							
		- at the beginning of each working day for the entire period the excavation							
		remains open; and							
		- periodically throughout the working day whilst workers are in the excavation.							
	•	For excavations between 300mm and 1m deep, measurements should be						۸	
		carried out:							
		- directly after the excavation has been completed; and							
		- periodically whilst the excavation remains open.						۸	
	•	For excavations less than 300mm deep, monitoring may be omitted, at the							
		discretion of the Safety Officer or other appropriately qualified person.						۸	
	•	Depending on the results of the measurements, actions required will vary and							
		should be set down by the Safety Officer or other appropriately qualified						۸	
		person.							
	•	The exact frequency of monitoring should be determined prior to the							
		commencement of works, but should be at least once per day, and be carried							
		out by a suitably qualified or qualified person before starting the work of the							
		day. Measurements shall be recorded and kept as a record of safe working							
		conditions with copies of the site diary and submitted to the Engineer for							
		approval. The Contractor may elect to carry out monitoring via an automated							

April	2018	3
-------	------	---

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	E.P
		the	implement	the	Implement	requirements or		Condition
		recommended	the	measures	the	standards for the		
		Measures &	measures?		measures?	measures to		
		Main Concerns				achieve?		
		to address						
	monitoring system.							
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan	construction	Contractor	Project sites	Construction	EPD's Landfill Gas	N/A	
	Landfill Consultation Zone should be minimized by suitable precautionary measures	stage within the		within the	phase	Hazard		
	recommended in Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Sai Tso Wan		Sai Tso Wan		Assessment		
		Protect the		Landfill		Guidance Note		
		workers from		Consultation				
		landfill gas		Zone				
		hazards						

## App N - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

## **Key:**

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Qua	lity Impac	t			
* (1)	S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	NE/2015/01	Construction of  Lam Tin	Water spraying should be provided to slopes in LTI more frequently for dust suppression.
				Interchange	
	S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction  Dust) Regulation and good site practices:  - Use of regular watering to reduce dust emissions from exposed site surfaces	NE/2015/01	Construction of  Lam Tin  Interchange	Water spraying should be provided to slopes in LTI for dust suppression.
	-	and unpaved roads, particularly during dry weather.  - Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	NE/2015/02	Construction of Road P2	Haul road at Portion 4 was observed dry. The Contractor should provide sufficient water spraying for dust suppression.
		- Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of	NE/2015/02	Construction of Road P2	The Contractor was reminded to repair the retractable tube of the drill rig in Portion 4 and ensure its integrity at all time.
# (1)		loose material, particularly in dry seasons/ periods.  - Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs.	NE/2015/01	Construction of  Lam Tin  Interchange	Water sprinklers on Slope H should be provided to all breaking works for dust suppression.
			NE/2015/02	Construction of Road P2	The Contractor was reminded to provide water spraying for unloading / loading activity at Portion 5

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
			NE/2015/02	Construction of	The Contractor was reminded to lower the level of
				Road P2	stockpiles in Work Area A and cover them with
					impervious sheet.
			NE/2017/02	Construction of	Dusty materials should be removed to prevent dust
				Road P2/D4	generation.
'	/	Emission from Vehicles and Plants	NE/2015/02	Construction of	The Contractor was reminded to maintain the
		Only well-maintained plant should be operated on-site and plant should be		Road P2	construction vessels regularly to prevent black smoke
		serviced regularly to avoid emission of black smoke.			emission.
* (2)	/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	NE/2015/01	Construction of	NRMM labels should be properly displayed on PMEs in
		machines		TKO Portal	Portion 6 in TKO site.
# (2)			NE/2015/02	Construction of	The Contractor was reminded to replace NRMM labels
				Road P2	when needed.
Noise In	npact (Cor	nstruction Phase)			
* (3)	Noise	Use of Temporary Noise Barriers or Full Enclosure for PME according to the	NE/2015/02	Construction of	The Contractor was reminded to properly erect noise
	Mitigation	approved Noise Mitigation Plan		Road P2	barriers for the drill rig in Portion 7 to reduce noise
	Plan				nuisance to nearby NSR.
# (3)			NE/2015/02	Construction of	To place the acoustic box properly for breaking work in
				Road P2	Portion 4.
			NE/2015/02	Construction of	The Contractor was reminded to erect an effective
				Road P2	acoustic mat for the derrick barge at the unloading area
					in Portion 7 and properly erect the noise barrier near
					the entrance of Portion 7.
		act (Construction Phase)			
Water G	uality Imp				

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
lemark					
		- all marine works should adopt the environmental friendly construction		TKO Portal	avoided.
		methods as far as practically possible including the use of cofferdams to cover the construction area to separate the construction works from the sea;  - floating single silt curtain shall be employed for all marine works;	NE/2015/02	Construction of Road P2	Silt curtains near the double water gate are observed damaged. The Contractor should maintain the silt curtains properly and ensure the geotextile is extended to seabed.
(4)			NE/2015/02	Construction of Road P2	To repair the damaged silt curtain at the double water gate and deploy silt curtains around the cofferdam properly without gaps.
			NE/2015/01	Construction of TKO Portal	Silt curtain near marine platform in TKO site should be maintained to prevent untreated discharge.
(5)	S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-DSS.	NE/2015/02	Construction of Road P2	The Contractor was reminded to clear the sediment at the unloading area at Portion 7 regularly.
(6)	S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	NE/2015/03	Construction of  Northern  Footbridge	Water leakage was found in the sedimentation tank in West Pier. The Contractor was reminded to rectify immediately and check the performance regularly

April 2	2018
---------	------

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
* (7)	S 5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	NE/2015/01	Construction of	PME in Portion 6 in TKO site should be maintained
		far as possible be located within roofed areas. The drainage in these covered areas		TKO Portal	regularly to avoid oil leakage.
		should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage			
		should be contained and cleaned up immediately. Waste oil should be collected and	NE/2015/02	Construction of	To clear the oil stain found under the pre-boring
		stored for recycling or disposal in accordance with the Waste Disposal Ordinance.		Road P2	machine in Portion 5.
# (7)			NE/2015/02	Construction of	The Contractor was reminded to properly clear the oil
				Road P2	stain at the double water gate and Portion 4.
* (8)	S5.8.45	Any service shop and maintenance facilities should be located on hard standings	NE/2015/01	Construction of	Drip tray should be provided to chemical containers in
		within a bunded area, and sumps and oil interceptors should be provided.		Lam Tin	WA1.
		Maintenance of vehicles and equipment involving activities with potential for		Interchange	
		leakage and spillage should only be undertaken within the areas appropriately			
		equipped to control these discharges.			
Waste I	Manageme	nt (Construction Phase)			
* (9)	S8.6.3	Good Site Practices and Waste Reduction Measures	NE/2017/02	Construction of	General refuse should be collected and disposed
		- Regular cleaning and maintenance programme for drainage systems, sumps		Road P2/D4	regularly.
		and oil interceptors.			

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

## Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

## Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
118	25 th January 2018	Not specified/ Construction of Lam Tin Interchange	Public	Air Quality	Conduction dust nuisance from works near Cha Kwo Ling Road and the complainant requested more wheel washing and water spray at Cha Kwo Ling Road near site entrance.  (EPD Reference No.: K15/RE/00002751-18)	N	No specific dust generation works was carried out near Cha Kwo Ling Road. Water browser had been deployed for washing at junction between Cha Kwo Ling Road and site entrance to minimize dust impact to Cha Kwo Ling Road.	Closed
121	29 th January 2018	Not specified/ Construction of Lam Tin Interchange	Public	Air Quality	The complainant complained that a breaking operating in LTI near East Harbour Crossing Admin Building without water spray. (EPD Reference No.: K15/RE/00003007-16)	N	According to the Engineer's site diaries, the major construction activities at the location of the complaint recorded included breaking works from 0800 hrs to 1800 hrs with 1 no. of backhoe with hydraulic breaker in operation on 29 th January 2018. The breaking works near the location of the complaint is regarded to be the source of dust nuisance, thus the complaint is considered to be project related.  The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below:  Breaking of rocks was provided with water spraying to reduce fugitive emission; and  Hoarding with tarpaulin sheets were erected to further reduce dust generation due to breaking works.  With the above mitigation measures put in place, it is considered that construction dust impacts due to the construction of Lam Tin Interchange have been brought to a minimum.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
122	1 st , 9 th , 15 th February 2018	Not specified/ near Cha Kwo Ling Tsuen and Tin Hau Temple	Public	Air Quality	The complainant complained the dust nuisance on Cha Kwo Ling Road near Yau Tong and Tin Hau Temple.	N	According to the information provided by the Contractor and confirmed by the Engineer of the Project, there were no construction activities in Portion 1 adjacent to Cha Kwo Ling Road during the time of complaint. Apart from the road traffic on Cha Kwo Ling Road, it is considered that the entering and leaving of construction vehicles from Portion 1 would	
123	2 nd February 2018	Not specified/ near Cha Kwo Ling Tsuen	Public	Air Quality	Resident of Cha Kwo Ling Tsuen complained the dust nuisance on Cha Kwo Ling Road	N	also contribute to the dust and noise nuisance on Cha Kwo Ling Road.  The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation	
124	13 th February 2018	Not specified/ Construction of Lam Tin Interchange	Public	Air Quality	Resident of Cha Kwo Ling Tsuen complained the dust nuisance due to daytime open blasting and the broken dust curtain at Cha Kwo Ling Barging Point. (EPD Reference No.: K15/RE/00004536-18)	N	Measures" of EM&A Manual as follows:  Air Quality:  Vehicle washing bay was set up at the site access of Portion 1 near Cha Kwo Ling Road (See Photo 1);  The access road leading to and exiting from the wheel washing bay to Cha Kwo Ling Road was hard-paved to prevent vehicle tracking of soil and mud to public roads	
125	14 th February 2018	Not specified/ near Cha Kwo Ling Tsuen	Public	Noise	Resident of Cha Kwo Ling Tsuen complained the noise of dump trunks and construction vehicles during night time	Y	<ul> <li>(See Photo 2);</li> <li>Water trucks and workers were dispatched to clear dust on Cha Kwo Ling Road and frequently perform water spraying to reduce dust generation due to vehicle movement (See Photo 3);</li> <li>Broken dust screen deployed in Cha Kwo Ling Barging Point was replaced (See Photo 4);</li> <li>Noise:</li> <li>Steel bridge with full enclosure was used by construction vehicles to access Cha Kwo Ling Barging Point to reduce noise nuisance generated by entering or leaving of dump trucks from Cha Kwo Ling Barging Point (See Photo 5).</li> <li>The following recommendations were made to further enhance the mitigation measures:</li> <li>To provide a hard-surfaced road between any cleaning facility and the public road</li> <li>To treat exposed earth by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen or other suitable surface stabilizer within six months after the</li> </ul>	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>To increase the frequency of cleaning Cha Kwo Ling by water trucks and workers to avoid the accumulation of dust on the public road;</li> <li>Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water spraying so as to maintain the entire surface wet; and</li> <li>To continue to properly implement noise mitigation measures as recommended in the Environmental Monitoring &amp; Audit Manual and approved Noise Mitigation Plan;</li> <li>The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.</li> </ul>	
126	21 st February 2018	19 th February 2018 / Construction of Road P2	Sai Kung District Council Member Mr. Chan Kai Wai	Noise	The complainant complained that barge was working in the marine works area in front of Ocean Shores from 7 am and emit loud noise.	Y	According to the information provided and confirmed by the Engineer, no marine works were being conducted in Portion IX on 19 February 2018.  The CCTV footage (provided by the Contractor, checked by Environmental Team and Independent Environmental Checker) confirms that no marine works were carried out from 7:00 to 10:00 am on 19 February 2018. Therefore, the complaint is considered non-Project related.  For necessary PME operating during public holidays (including Sunday) on land-based works area, the Contractor is reminded to comply with the conditions of relevant CNPs and adopt good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved Noise Mitigation Plan of this Contract, including the following:  Only well-maintained plant should be operated onsite and plant should be serviced regularly during the construction program; Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program; Mobile plant, if any, should be sited as far away from NSRs as possible;	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							<ul> <li>Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum;</li> <li>Plant known to emit noise strongly in one direction should, wherever possible be oriented so that the noise is directly away from the nearby NSRs;</li> <li>Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.</li> <li>Furthermore, the Contractor had implemented environmental mitigation measures to minimize the noise nuisance from construction barges as follows:</li> <li>Maintenance of barge including lubrication of moving parts was performed to minimized noise from worn or loose parts;</li> <li>Noise source on barge was covered with acoustic materials;</li> <li>The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.</li> </ul>	
127	22 nd February 2018	Not specified/ Construction of Lam Tin Interchange	Public	Noise	The complainant complained the noise time construction noise from the site.	Y	Under Investigation	On- going
128 ⁽⁴⁾	3 rd March 2018	3 rd March 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noise nuisance due to the breaking work at Lam Tin Interchange in the morning.	Y	Under Investigation	On- going
129 ⁽⁴⁾	3 rd March 2018	3 rd March 2018 / near Ocean Shore	Resident of Ocean Shore	Noise	The complainant complained the noise nuisance from the construction site near the Ocean Shore at 8:30am.	Y	According to the information provided and confirmed by the Engineer, one backhoe was deployed for site clearance on 3 March 2018. Major construction works were not yet commenced during the time of complaint but site clearance works in the morning. The excessive sound from movement of the poorly maintained backhoe is considered the	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							source of noise nuisance.	
							The Contractor had implemented mitigation measures to prevent similar noise disturbance as follows:	
							<ul> <li>The use of concerned backhoe was stopped immediately by the Engineer upon receipt of the complaint.</li> <li>Maintenance was provided to the concerned backhoe to avoid unnecessary disturbance.</li> </ul>	
							The Engineer and the Environmental Team have reminded the Contractor to keep all powered mechanical equipment in good condition to minimize the noise impact from site clearance to nearby sensitive receiver.	
							The following recommendations were made to further enhance the preventive measures:	
							<ul> <li>To maintain equipment in good condition to ensure quietest operation possible;</li> </ul>	
							<ul> <li>To repair any loosen and worn parts of the equipment, as soon as possible, to reduce excessive noise disturbance;</li> </ul>	
							To schedule works carefully to avoid noisy works during sensitive hours;	
							<ul> <li>To locate noisy equipment as far away as possible from any noise sensitive receivers;</li> </ul>	
							<ul> <li>To provide training to workers regularly on proper operation or appropriate use of equipment to avoid unnecessary noise impact.</li> </ul>	
							The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	
130	6 th March 2018	Not specified/ Not specified	Anonymous	Air Quality	The complainant complained the dust nuisance from the	N	Under Investigation	On- going

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					construction site and no water spraying system was observed near the construction site. He request to review the water sparing system more frequently			
131	7 th March 2018	Not specified / near Cha Kwo Ling Tsuen and Tin Hau Temple	Public	Air Quality	The complainant complained the dust nuisance on Cha Kwo Ling Road near Yau Tong and Tin Hau Temple. He request to perform frequent water spraying on Cha Kwo Ling Road.	N	Under Investigation	On- going
132	8 th March 2018	24 th February 2018 / Not specified	CEDD	Air Quality	The complainant complained that one dump truck left the site access being improperly / poorly covered	N	According to checking by the Contractor of Contract No. NE/2015/02, it is noted that one dump truck left the site access being improperly / poorly covered. According to the CCTV Record at site entrance at Chi Shin Street, the vehicle left the site at 16:13 hrs on 24 February 2018. The record is shown in below CCTV captures.  To improve performance by dump truck drivers, training has been provided by the Contractor to all staffs and dump truck drivers.  Other than CCTV monitoring, the Contractor has deployed staff at the access to check the dump trucks to ensure that they are properly covered before leaving the site  According to the weekly site inspection conducted by the Environmental Team on 13, 22 and 29 March 2018, no observation was identified regarding dump trucks leaving the site uncovered or poorly covered.  The environmental condition of the site and control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	Closed
133	16 th March 2018	Not specified/ Construction of Lam Tin	Resident of Yung Lai House, Yau	Noise	The complainant complained the noisy breaking work at Lam Tin	Y	Under Investigation	On- going

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	22 nd March 2018	Interchange	Lai Estate		Interchange at around 7pm.  The complainant complained the noisy breaking work at Lam Tin Interchange after 7pm on 16 March 2018.			
134	19 th March 2018	Not specified / near Cha Kwo Ling Tsuen and Tin Hau Temple	Public	Air Quality	The complainant complained the dust nuisance from the construction site near Cha Kwo Ling Tsuen	N	Under Investigation	On- going
135	20 th March 2018	Not specified / near Cha Kwo Ling Road	茶果嶺居民 關注組	Air Quality & Noise	The complainant complained about the dust nuisance near Cha Kwo Ling Road, construction noise at barging point at around 7am and blasting noise at Cha Kwo Ling site.	Y	Under Investigation	On- going
136	27 th March 2018	Not specified / near Po Shun Road	Anonymous	Noise	The complainant complained the noise nuisance from the footbridge construction works near Po Shun Road during nighttime.	Y	According to the information provided and confirmed by the Engineer, night time construction works were only being conducted within site boundary under this contract on 27 March 2018. Therefore, no night time construction works were carried out on 10 March 2018.  One valid Construction Noise Permit (CNP) (No. GW-RE0162-18) was granted to the Contractor for the construction works at Po Shun Road near Po Yap Road, one group of powered mechanical equipment (PME) will be allowed for any day not being holiday and not immediately following a general holiday from 00:30 - 05:30. Therefore, No violation of CNP was observed.  The Contractor had implemented environmental measures to minimize noise nuisance to the nearby sensitive receivers as follows:  • The portable generator was enclosed by an acoustic enclosure.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							The vibratory roller was operated with an acoustic baffle.	
							The following recommendations are made to further enhance the mitigation measures:	
							To regularly check and review the noise control activities that are being carried out on site to ensure compliance with statutory requirement.	
							To locate noisy equipment as far away as possible from the NSR nearby.	
							Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.	
							To provide training for the workers to prevent unnecessary noise disturbance.	
							The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	
		26 th March			The complainant complained about dust/dirt being brought		According to the information provided and confirmed by the Engineer, no dump truck was found improperly covered before leaving the site on 26 March 2018.	
137 ⁽⁵⁾	26 th March 2018	26 th March 2018 / Construction of Road P2	Anonymous	Air Quality	onto Tong Yin Street/Chin Shin Street by the vehicles travelling to and from TKO-LTT construction site, causing air nuisance and affecting the passerby/residents	N	According to the weekly site inspection conducted by the Environmental Team in March 2018, no observation was identified regarding dusty trail around site entrance nor dump truck leaving the site improperly covered/without wheel-washed. Manual wheel-washing was observed at the exit of the unloading area in Portion VII and the wheel-washing	Closed
	27 th March 2018	26 th March 2018 / Construction of Road P2	Anonymous	Air Quality	The complainant complained that some of the excavated materials fell from the dump trucks and accumulated on the road near Tong Yin Street		facility at the site exit was observed functioning properly.  The Contractor had undertaken initiatives to minimize dust generation due to vehicle movement of dump trucks to the nearby sensitive receivers as follows:	

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					and Chi Shin Street.		<ul> <li>Immediately cleaned the dust and dirt on Tong Yin Street and Chi Shin Street;</li> <li>Additional notice would be set up to remind the truck driver to perform wheel-washing properly before leaving site.</li> </ul>	
							The Contractor has deployed staff at the access to check the dump trucks to ensure they are properly covered and wheel-washed before leaving the site	
							The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	
138	27 th March 2018	Not specified / near Po Shun Road	Anonymous	Noise	The complainant complained the noise nuisance from the footbridge construction works near Po Shun Road from 12am to 5am.	Y		
139	28 th March 2018	Not specified / near Po Shun Road	Resident of Park Central	Noise	The complainant complained the noise nuisance from the footbridge construction works near Po Shun Road during nighttime. She request to erect the noise barrier to minimize the noise nuisance to the nearby sensitive receiver.	Y	See Investigation / Mitigation Action for Complaint No. 136.	Closed
140	28 th March 2018	Not specified / near Po Shun Road	Property Management Office of Park Central	Noise	The complainant complained the noise nuisance from the footbridge construction works near Po Shun Road during nighttime. He received few of complaints from resident and request to erect the	Y		

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
					noise barrier to minimize the noise nuisance to the nearby sensitive receiver.			
							According to the information provided and confirmed by the Engineer, one unit of derrick barge was mobilizing during the time of complaint on 29 March 2018. The frictional noise from the cable when moving the derrick barge is likely the source of noise nuisance.	
							According to the information provided and confirmed by the Engineer, no land-based and marine-based construction works except general site cleanliness was performed on 8 April 2018. No noise impact would be expected from site cleanliness.	
141	29 th March 2018	Not specified/ Not specified	Sai Kung District Council Member Mr.	Noise	The complainant complained the noise nuisance from the marine work site due to the	Y	One valid Construction Noise Permit (CNP) (No.: GW-RE0038-18) was granted to the Contractor for marine-based construction site near Ocean Shores, no use of powered mechanical equipment (PME) will be allowed for general holidays (including Sunday) at marine works area under this Contract. Since no land-based and marine-based construction activity was carried out on 8 April 2018 (Sunday), no violation of CNP is found in this regard.	Closed
			Chan Kai Wai		movement of barge.		According to the Construction Noise Permit (CNP) (No.: GW-RE0038-18), no use of PME will be permitted for general holidays (including Sundays) at marine works area under this Contract. In this regard, the Contractor has utilized CCTV to keep track of the activities in marine portions and ensure no works are being conducted during restricted hours.	
							For necessary PME operating during public holidays (including Sunday) on land-based works area, the Contractor is reminded to comply with the conditions of relevant CNPs and adopt good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved Noise Mitigation Plan of this Contract, including the following:	
							Only well-maintained plant should be operated on- site and plant should be serviced regularly during the	

Monthly EM&A Report (April 2018)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							construction program;  • Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum;  • Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers;	
							Furthermore, the Contractor had implemented environmental mitigation measures to minimize noise nuisance from construction barges as follows:	
							<ul> <li>Maintenance of barge including lubrication of moving parts was performed to minimize noise from worn or loose parts;</li> <li>Noise source on barge was covered with acoustic materials</li> <li>Nylon rope was used instead of wire rope to reduce the frictional noise when securing the barge in place</li> </ul>	
							According to the regular noise monitoring conducted at Noise Monitoring Station CM6(A) and CM7(A), it is considered that no adverse noise impact was brought to the nearby sensitive receivers with the implementation of noise mitigation measures by the Contractor.	
							The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
142	29 th March 2018	Not specified / near Po Shun Road	Anonymous	Noise	The complainant complained the noise nuisance from the footbridge construction works near Po Shun Road during nighttime. He request to stop all construction work during nighttime.	Y		
143	29 th March 2018	Not specified / near Tiu Keng Leng Road	Anonymous	Noise	The complainant complained the noise nuisance from the footbridge construction works near Tiu Keng Leng Road during nighttime on 27th March 2018.	Y	See Investigation / Mitigation Action for Complaint No. 136.	Closed
144	29 th March 2018	Not specified / near Po Shun Road	Public	Noise	The complainant complained about the noise arising from the footbridge construction works near Po Shun Road after midnight of 10 March 2018.	Y		
145	2 nd April 2018	Public holiday/ Construction Works near Eastern Habour Crossing tunnel portal	Resident of Yau Lai Estate	Noise	The complainant complained the noise nuisance due to the construction work near Eastern Habour Crossing tunnel portal on public holiday. (started from 9:00 am)	Y	Under Investigation	On- going
146	9 th April 2018	8 th April 2018/work site at the waterfront	Public	Noise	The complainant complaining about construction noise emanated from the work	Y	See Investigation / Mitigation Action for Complaint No. 142.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
		near Ocean Shore			site at the waterfront near Ocean Shore Block 1 on 8 April 2018, starting from 8am. The complainant said noise were generated from barges, machine and construction vehicles and causing nuisance.			
147	15 th April 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noisy construction work at Lam Tin Interchange on public holiday.	Y	Under Investigation	On- going
148	15 th April 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noisy construction work at Lam Tin Interchange.	Y	Under Investigation	On- going
149	17 th April 2018	Not specified/ Construction of Lam Tin Interchange	Sham Shui Po District Council Member Mr. Ho Kai Ming	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	Under Investigation	On- going
150	17 th April 2018	Not specified/ Construction of Lam Tin Interchange	Property Management Office of Yau Lai Estate	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange.	Y	Under Investigation	On- going
151	20 th April 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Nga Lai Estate, Yau Lai Estate	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	Under Investigation	On- going
152	23 th April 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noisy breaking work from two breakers at Lam Tin Interchange. He requested the Contractor to review the noise mitigation measures on site.	Y	Under Investigation	On- going

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
153	23 th April 2018	Not specified/ Construction of Lam Tin Interchange	Kwun Tong District Council Member Mr. Lai Shu Ho	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	Under Investigation	On- going
154	23 th April 2018	Not specified / Construction of Road P2	Public	Noise	The complainant complained about noise from construction activities at the sea area near Ocean Shore Block 6 starting 8:30-8:45am on 23 April 2018. She suspected the noise is from drilling/breaking works.	Y	Under Investigation	On- going
155	25 th April 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate, Yau Lai Estate	Noise	The complainant complained the noise nuisance due to the breaking work at Lam Tin Interchange.	Y	Under Investigation	On- going
156	26 th April 2018	Not specified / Construction of TKO portal	Resident of Laguna City	Light	The complainant complained that two spotlights were used during daytime and nighttime causing light nuisance to the residents. She requested to direct the strong lighting toward the sea.	N	Under Investigation	On- going
157	30 th April 2018	Not specified/ Construction of Lam Tin Interchange	Property Management Office of Kwong Tin Estate	Noise	The complainant complained the noise nuisance due to the breaking work at Lam Tin Interchange.	Y	Under Investigation	On- going
158	30 th April 2018	Not specified / Construction of Road P2	Public	Noise & Odour	The complainant complained the construction noise and odour nuisance from the construction vessel.	Y	Under Investigation	On- going

Note:

(1) Previous case received on 01 March 2018 on air quality near Cha Kwo Ling Tsuen and Tin Hau Temple is confirmed to be non-project related.

- (2) Previous case received on 20 March 2018 on landscape and visual impact near Cha Kwo Ling Road is confirmed to be non-project related.
- (3) Previous case received on 27 March 2018 on construction noise nuisance in TKO portal is confirmed to be Enquiry on the Project instead of a documented complaint.
- (4) Two environmental complaints received on 3 March 2018 have been updated in the above table.
- (5) For the Case 137, it is noted that the same complaint was received on 26 & 27 March 2018 through different channels regarding the same issue on 26 March 2018. Therefore, it is considered as ONE number of complaint.

**Cumulative Complaint Log since commencement of Project** 

<b>Reporting Month</b>	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	<b>Number of Prosecutions in Reporting Month</b>
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
June 2017	8	0	0
July 2017	3	0	0
August 2017	8	0	0
September 2017	14	0	0
October 2017	8	0	0
November 2017	12	0	0
December 2017	10	1	0
January 2018	11	0	0
February 2018	6	0	0
March 2018	17*	0	0
April 2018	14	0	0
Total	161	1	0

Note (*): The Number of Complaints in March 2018 has been updated.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report (April 2018)

## **Cumulative Log for Notifications of Summons**

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS2 4138/ 2017	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	First hearing on 29 Mar 2018	0	1
NE/2015/03						
NE/2017/01			1			
NE/2017/02			I.			

### **Cumulative Log for Successful Prosecutions**

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02						
NE/2015/03						
NE/2017/01						
NE/2017/02						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

# Contract No.: NE/2015/01

### **Monthly Summary Waste Flow Table for 2018**

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (	Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill (see Note 10)	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
January	118.887	44.216	25.727	60.437	32.723	0.000	0.000	0.308	0.000	1.200	0.094
February	76.419	34.880	8.626	54.212	13.581	0.000	0.000	0.000	0.000	0.800	0.046
March	140.974	31.352	57.578	49.166	34.230	0.000	0.000	0.020	0.000	0.000	0.052
April	123.925	30.310	57.340	42.266	24.319	0.000	0.000	0.368	0.000	1.200	0.058
Мау											
June											
Sub-total	460.205	140.758	149.271	206.081	104.853	0.000	0.000	0.696	0.000	3.200	0.250
July											
August											
September											
October											
November											
December											
Total	460.205	140.758	149.271	206.081	104.853	0.000	0.000	0.696	0.000	3.200	0.250

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated



Notes: (1) The performance target are given in PS Clause 6(14)

- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the amount of C&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m3. (PS Clause 1.105(4) refers)
- (5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
- (6) Conversion factors for reporting purpose:

in-situ: rock = 2.5 tonnes/m³; soil = 2.0 tonnes/m³

- (7) excavated: rock = 2.0 tonnes/m³; soil = 1.8 tonnes/m³; broken concrete and bitumen = 2.4 tonnes/m³, soil and rock = 1.9 tonnes/m³
- (8) C&D Waste = 0.9 tonnes/m³; bentonite slurry = 2.8 tonnes/m³

Diesel density: 0.8kg/l

Numbers are rounded off to the nearest three decimal places

The "Total Quantity Generated" equals to the sum of "Reuse in the Contract", "Reuse in Other Projects" and "Disposed as Public Fill"

#### Monthly Summary Waste Flow Table for 2018 Year

		Actual Quan	tities of Inert C&I	) Materials Genera	ted Monthly			<b>Actual Quantities</b>	of C&D Wastes G	Senerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³ ]	[in '000m ³ ]	[in '000m ³ ]	[in '000m ³ ]	[in '000m ³ ]	[in '000m ³ ]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³ ]
Jan	0.30510	0.00000	0.11060	0.00000	0.00850	0.18600	0.00000	0.00000	0.00000	0.00000	0.07544
Feb	1.12247	0.00000	0.01080	0.00000	1.08367	0.02800	32.04000	0.00000	0.00000	0.00000	0.05240
Mar	6.50826	0.00000	0.04500	0.00000	6.46326	0.00000	10.46000	0.00000	0.00000	0.00000	0.04520
Apr	77.68090	0.00000	0.00000	0.00000	3.82690	73.85400	14.78000	0.00000	0.00000	0.00000	0.03010
May											
June											
SUB- TOTAL	85.61673	0.00000	0.16640	0.00000	11.38233	74.06800	57.28000	0.00000	0.00000	0.00000	0.20314
Jul											
Aug											
Sep											
Oct											
Nov											
Dec					•						
TOTAL	85.61673	0.00000	0.16640	0.00000	11.38233	74.06800	57.28000	0.00000	0.00000	0.00000	0.20314

**Note:** Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

**Conversion to 1000m**³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material



# **Monthly Summary of Waste Flow Table for 2018**

Name of Person completing the Record: Ricky Hon

	Actual Qu	antities of Ine	ert C&D Materi	ials Generate	d Monthly	Actual Quantities of Non-inert C&D Wastes Generated Monthly							
Month	Total Quantity	Broken Concrete	Reused in the Contract	Reused in other	Disposed as Public Fill	Metals	Paper/ cardboard	Plastics	Chemical Waste	Others, e.g. general			
	Generated	(see Note 1)	tilo contidot	Projects	1 45110 1 111		packaging	(see Note 2)	Waste	refuse			
	(in '000m ³ )	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000m ³ )							
Jan	0	0	0	0	0	0	0	0	0	0			
Feb	0	0	0	0	0	0	0	0	0	0.143			
Mar	0	0	0	0	0	0	0	0	0	0			
Apr	0	0	0	0	0	0	0	0	0	0.0975			
May													
Jun													
Sub-total	0	0	0	0	0	0	0	0	0	0.2405			
Jul													
Aug													
Sept													
Oct													
Nov			_					_	_				
Dec													
Total	0	0	0	0	0	0	0	0	0	0.2405			

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m3 by volume.

Wing Lee (SK) Construction Company Limited	Rev. No.	Draft
NE/2015/03 - Environmental Management Plan	Isano Doto	16 Dec 2016
Appendices - Appendix 13	Issue Date	16 Dec 2016

Name of Department : <u>CEDD</u> Contract No. : <u>NE/2015/03</u>

# Monthly Summary Waste Flow Table for 2018 (year)

		Actual Qua	antities of Inert	C&D Materials G	enerated Month	ly	A	ctual Quantities	of C&D Wastes	Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 m ³ )	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³ )
Accumulated From 2017	0.84697	0	0.175365	0.290915	0.350135	0.03056	0	0	0	0	0.03079
Jan	0.2397525	0	0	0.0642025	0.17555	0	0	0	0	0	0.00614
Feb	0.0722875	0	0	0.0722875	0	0	0	0	0	0	0
Mar	0.05853	0	0	0	0.05853	0	0	0	0	0	0
Apr	0.007575	0	0	0	0.007575	0	0	0	0	0	0
May											
June											
Sub-total											
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	1.225109	0	0.175365	0.427405	0.59179	0.03056	0	0	0	0	0.03693

Notes: (1) The performance targets are given in PS Clause 6.14.

⁽²⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

³⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

⁽⁴⁾ The *Contractor* shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the *works*, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the *works* is equal to or exceeding 50,000 m₃.

### Monthly Summary Waste Flow Table for 2018

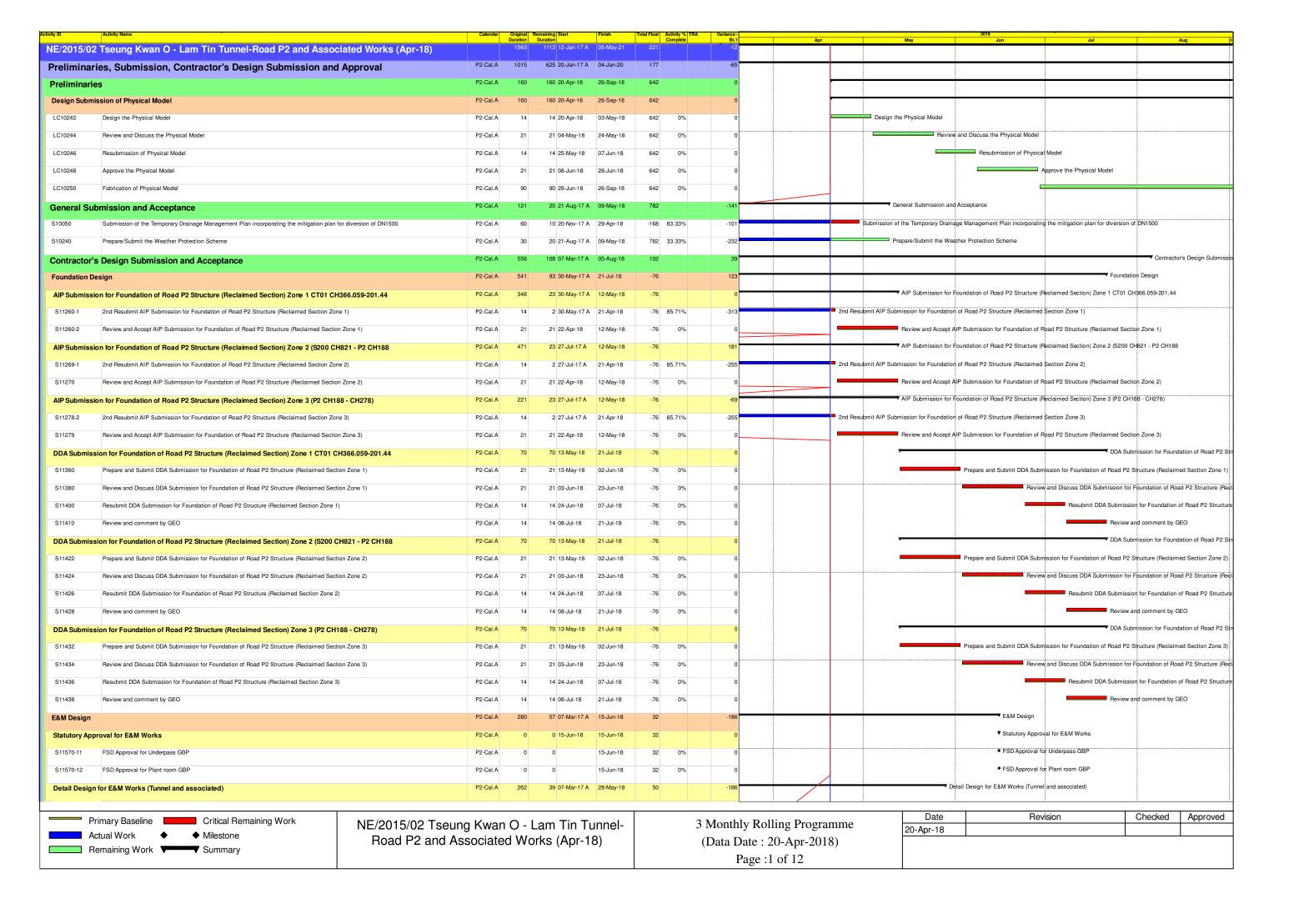


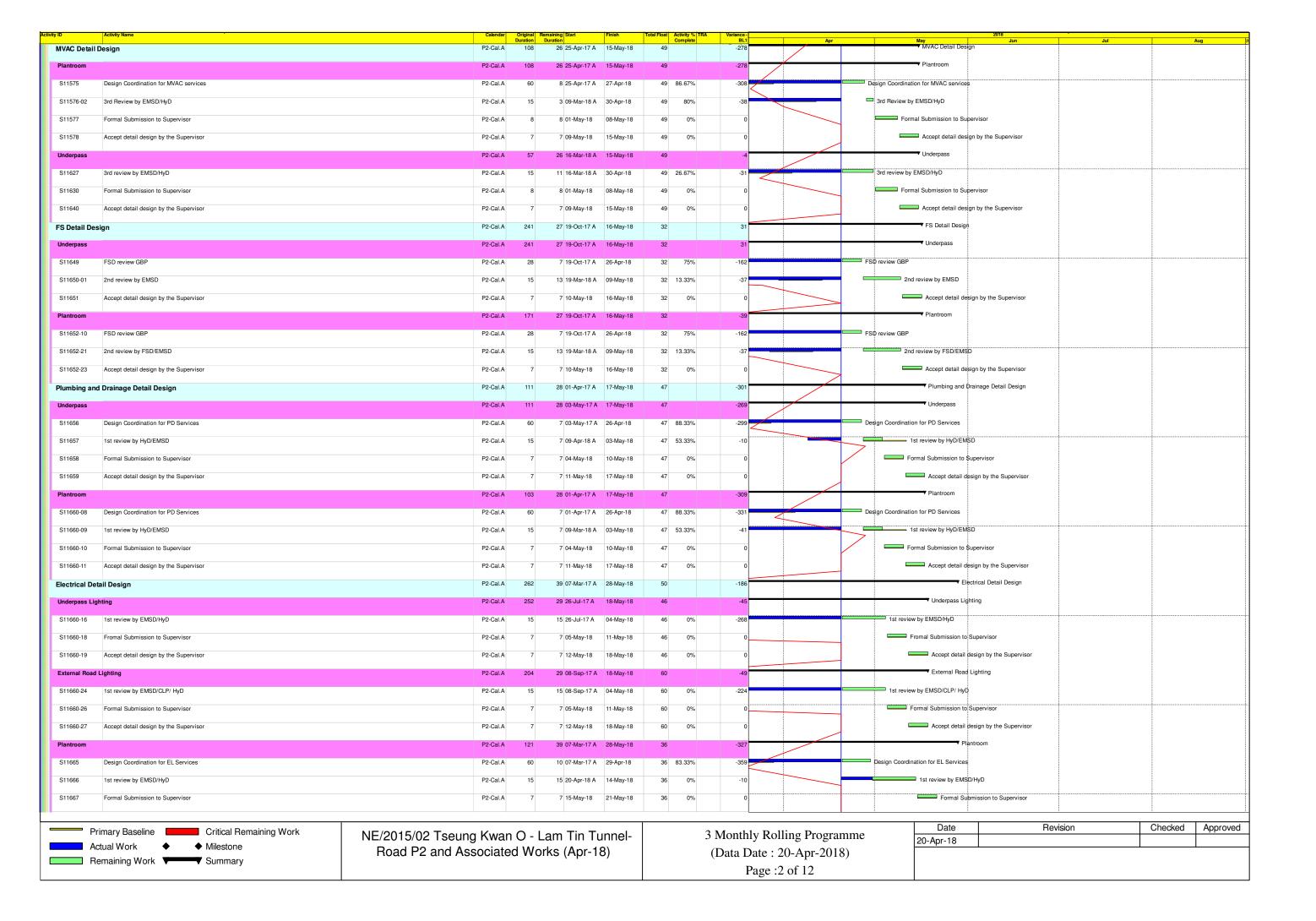
Contract No.: NE/2017/01

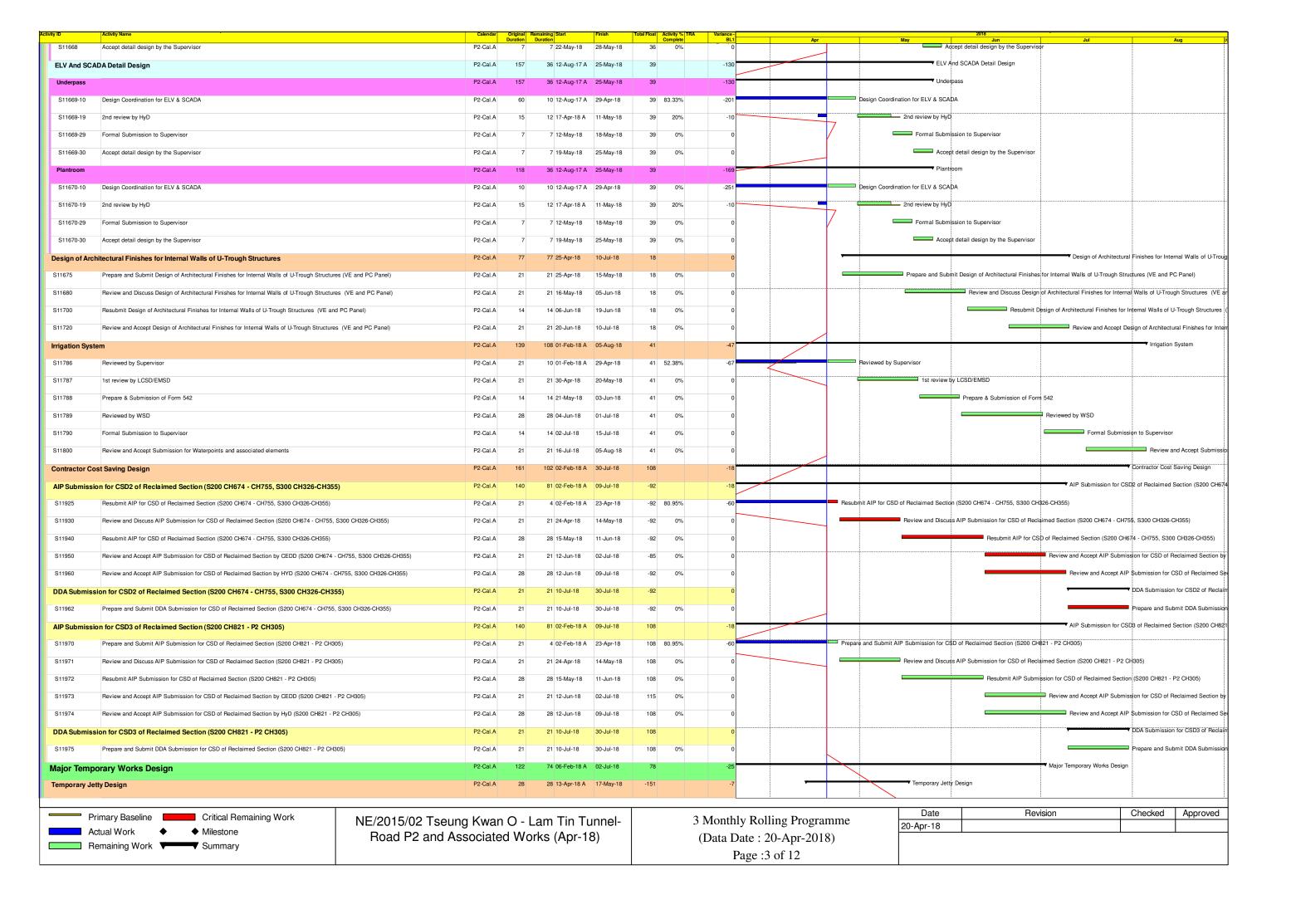
Name of Department: Civil Engineering and Development Department

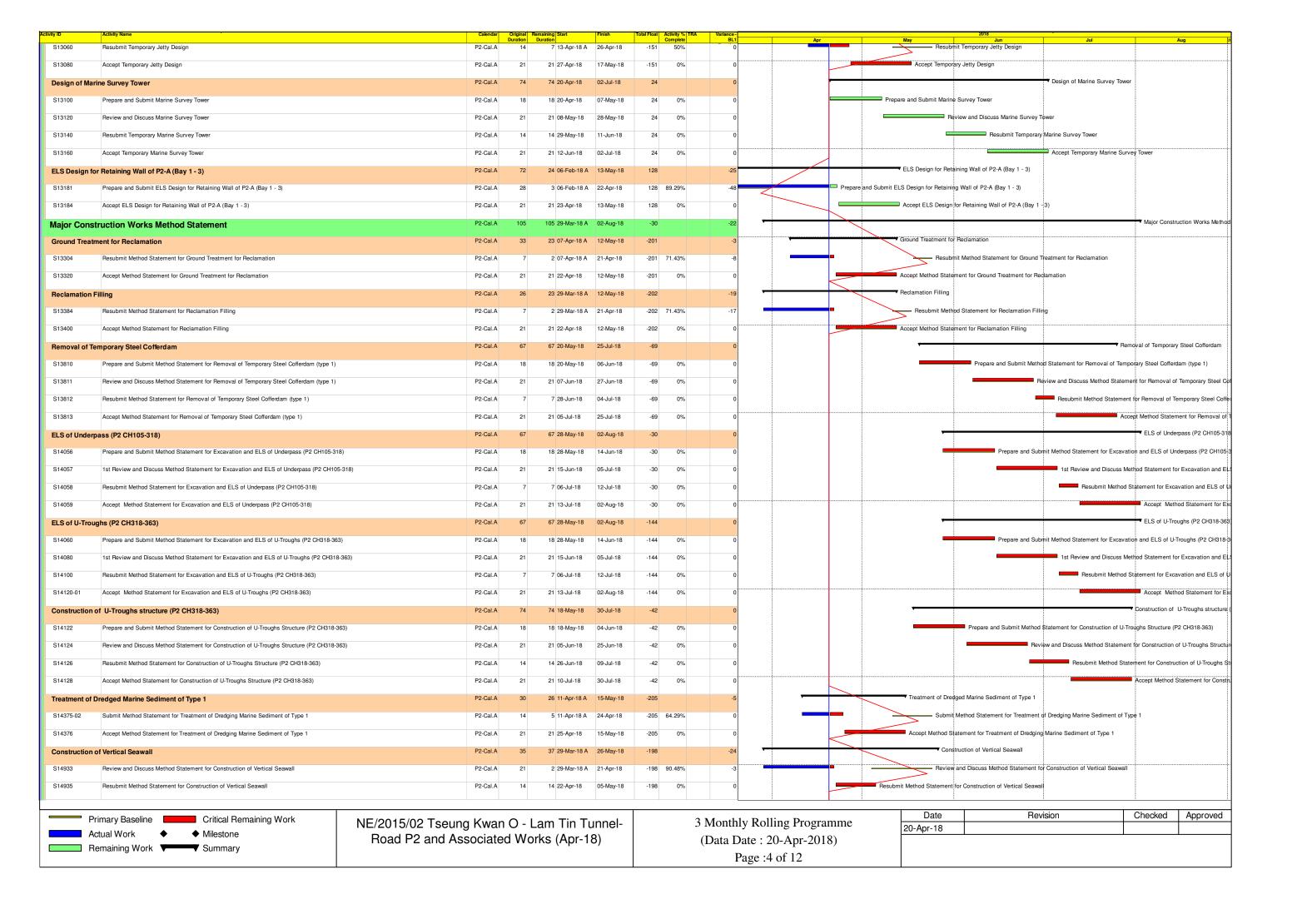
	Actu	al Quantities	of Inert C&D	) Materials G	enerated Mo	nthly	Actual	Quantities of	f C&D Wastes	Generated M	<b>l</b> onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0
May											
Jun											
Sub-total	0	0	0	0	0	0	0	0	0	0	0
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0	0	0	0	0	0	0	0	0	0	0

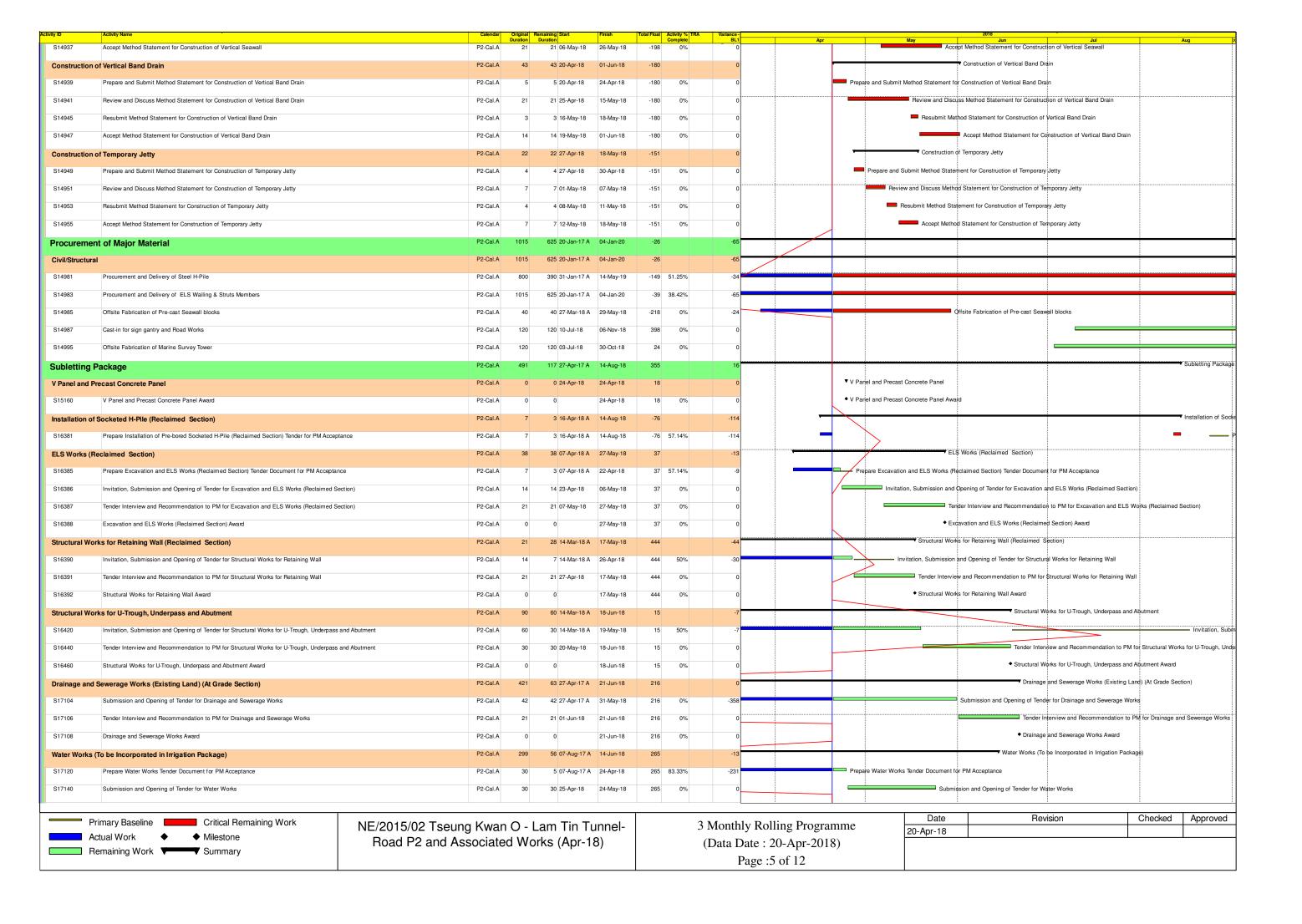
Notes:

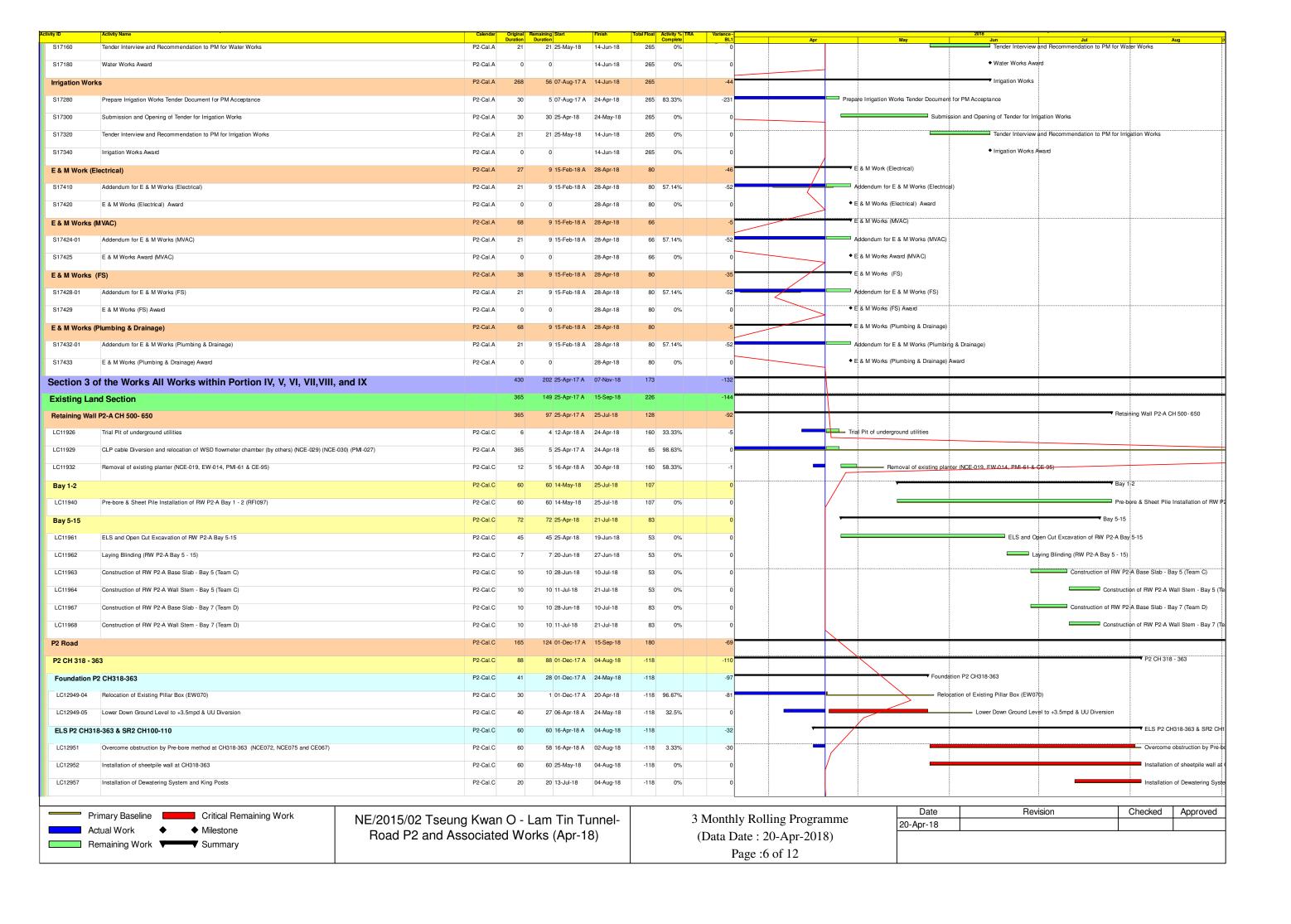

- 1. Assume the density of soil fill is 2 ton/m³.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m³.
- 3. Assume each truck of C&D wastes is 5m³.
- 4. The inert C&D materials except slurry and bentonite are disposed at Tseung Kwan O Area 137 Fill Bank.
- 5. The slurry and bentonite are disposed at Tseung Kwan O Area 137 Fill Bank.
- 6. The non-inert C&D wastes are disposed at NENT.
- 7. Assume the density of metal is 7,850 kg/m³.
- 8. Assume the density of plastic is 941 kg/m³.

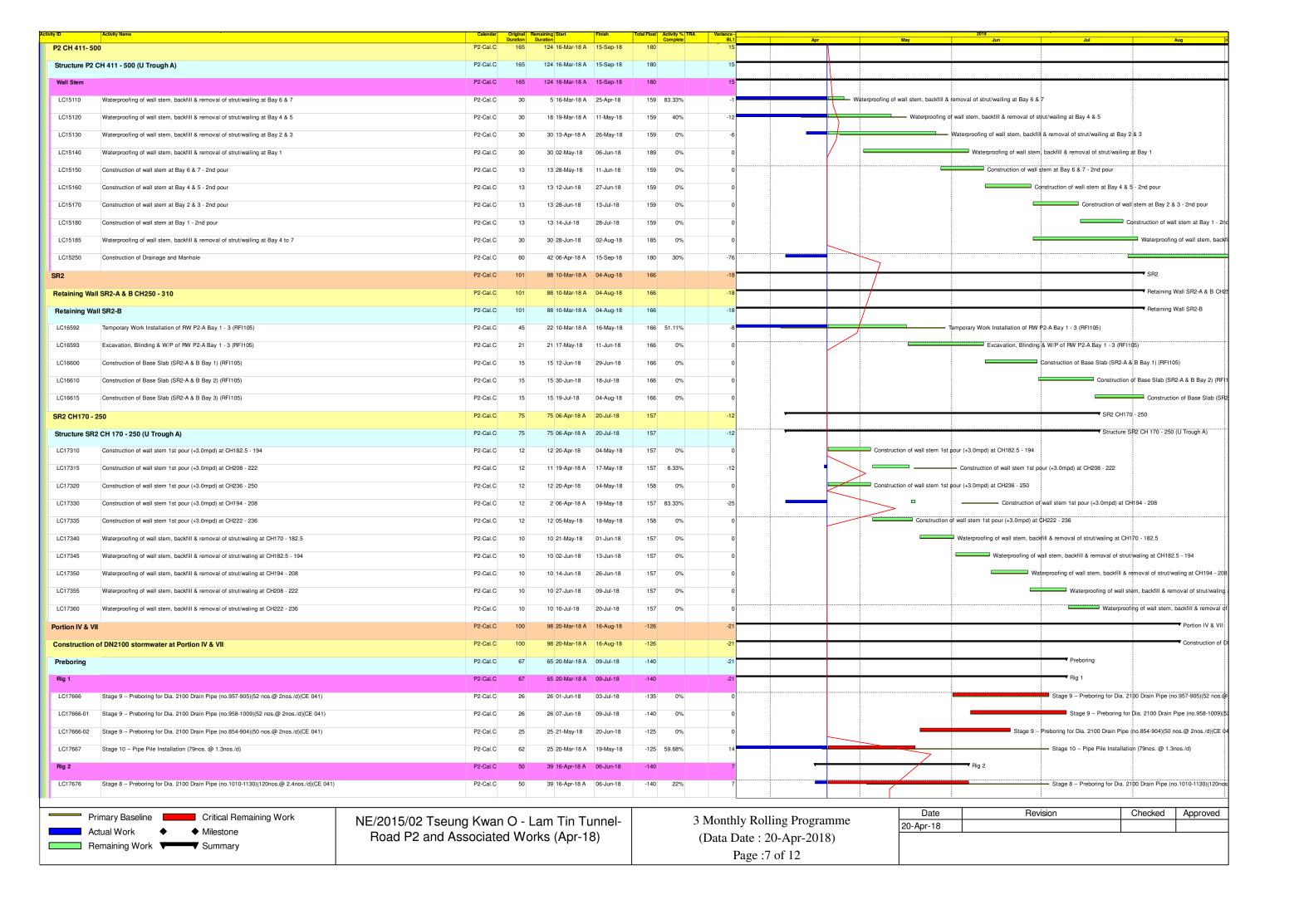

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

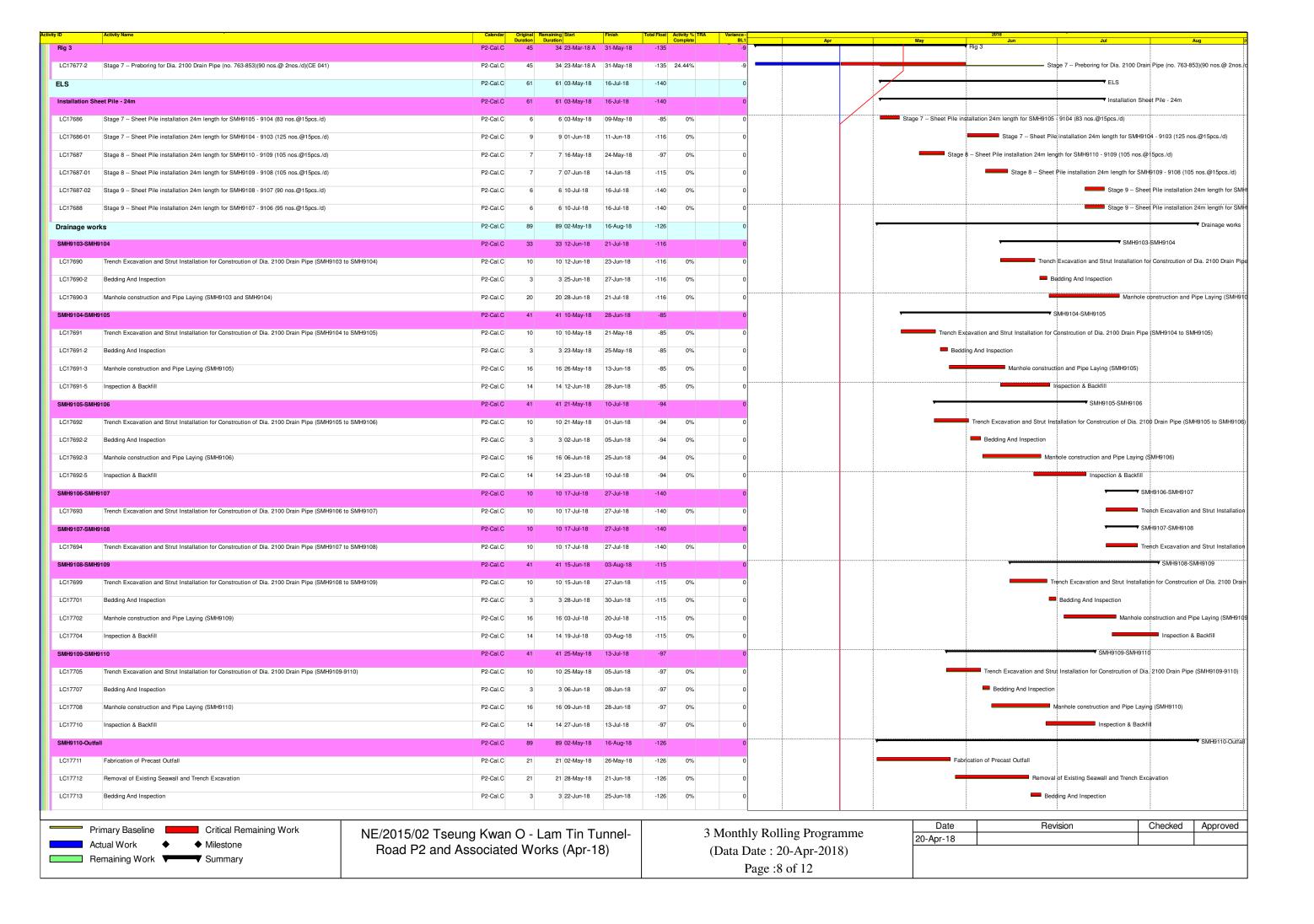

# **High Level 3 Months Look Ahead Programme**

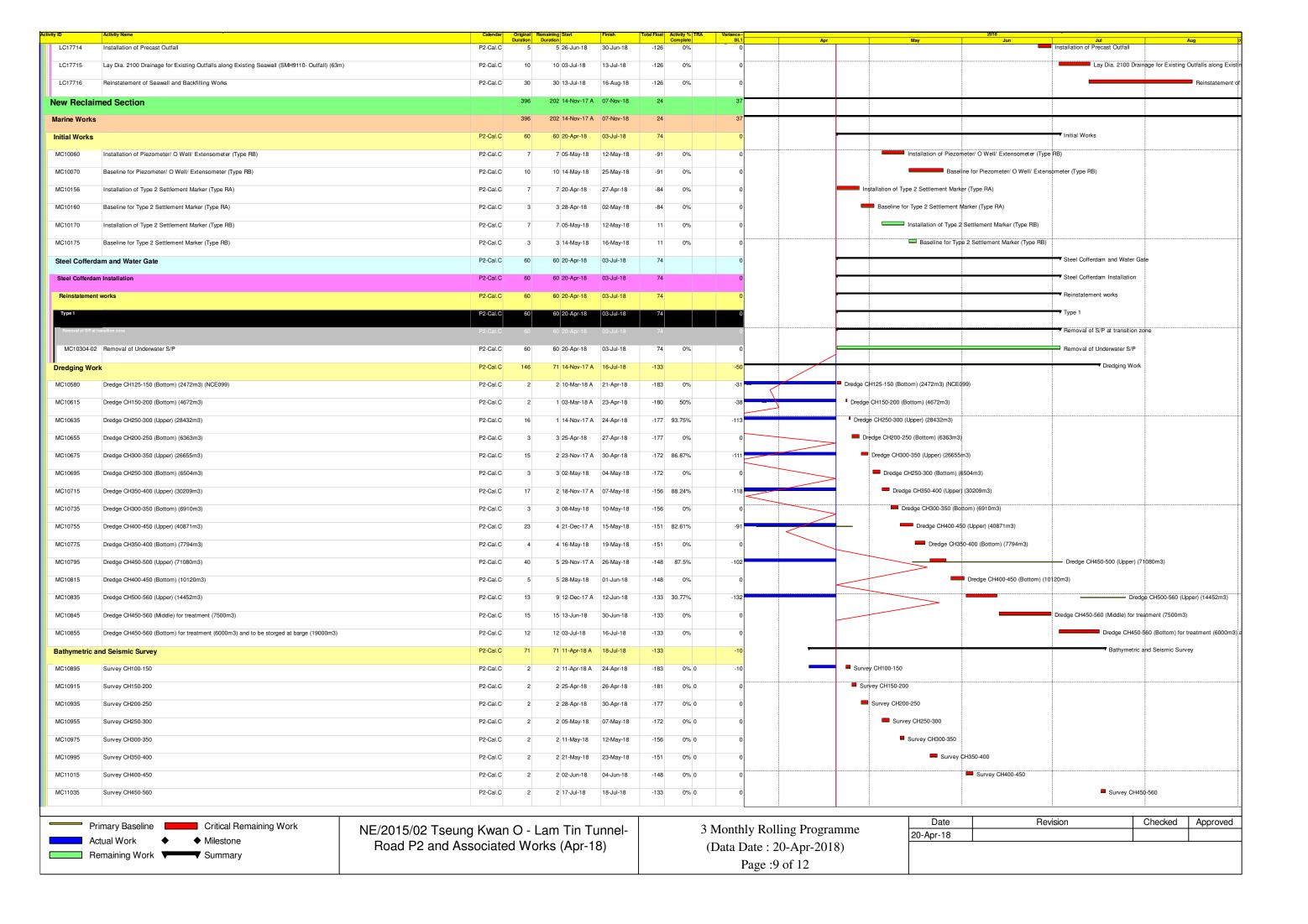

Activities	Apr-18	May-18	Jun-18
Lam Tin Interchange			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2 &5			
Site Formation - Area 2			
Site Formation - Area 3			
Site Formation - Area 4			
Soldier Pile Wall - Area 2A			
Main Tunnel			
MT Excavation			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Steel Platform for Bridge Construction	<del></del>		

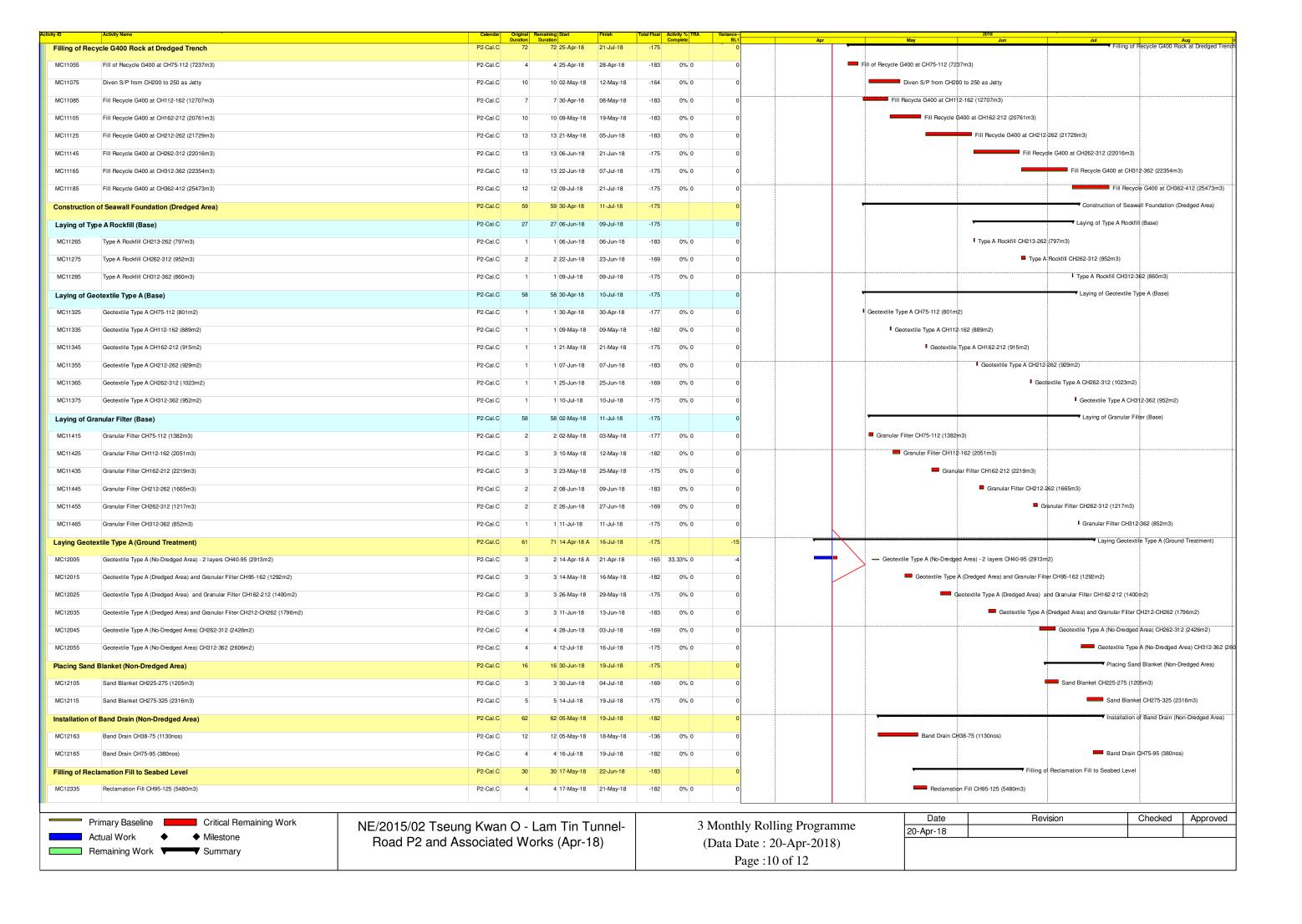

NE/2015/01














activity ID	Activity Name		Original Re uration		Finish		omplete TRA	Variance BI	L1 Apr		Мау	2018 Jun Ji	ıl	Aug
MC12345	Reclamation Fill CH125-175 (6281m3)	P2-Cal.C	5	5 30-May-18	04-Jun-18	-175	0% 0		0			Reclamation Fill CH125-175 (6281m3)		
MC12355	Reclamation Fill CH175-225 (8443m3)	P2-Cal.C	6	6 14-Jun-18	21-Jun-18	-183	0% 0		0			Reclamation Fill CH175-225		
Laying of Ge	otextile Type A on Top of Reclamation Fill	P2-Cal.C	26	26 23-May-18	22-Jun-18	-183			0		<del>-</del>	Laying of Geotextile Type	A on Top of Reclamation Fill	
MC12415	Geotextile Type A CH80-115 (437m2)	P2-Cal.C	1	1 23-May-18	23-May-18	-182	0% 0		0		■ Geotex	ttle Type A CH80-115 (437m2)		
MC12425	Geotextile Type A CH115-165 (683m2)	P2-Cal.C	1	1 05-Jun-18	05-Jun-18	-171	0% 0		0			Geotextile Type A CH115-165 (683m2)		
MC12435	Geotextile Type A CH165-215 (784m2)	P2-Cal.C	1	1 22-Jun-18	22-Jun-18	-183	0% 0		0			■ Geotextile Type A CH165-2	:15 (784m2)	
Construction	of Eastern Seawall Up to +2.5mPD	P2-Cal.C	36	36 24-May-18	06-Jul-18	-182			0		<b>▼</b>	Constructi	on of Eastern Seawall Up to +2.5n	nPD
Filling of G40	0 Rock as East Seawall Core (+2.5mPD)	P2-Cal.C	28	28 24-May-18	26-Jun-18	-183			0		<b>▼</b>	Filling of G400 Rock a	s East Seawall Core (+2.5mPD)	
MC11505	Fill G400 at CH80-115 (2508m3) for Vectrical Seawall	P2-Cal.C	2	2 24-May-18	25-May-18	-182	0% 0		0		■ Fill (	G400 at CH80-115 (2508m3) for Vectrical Seawall		
MC11510	Construction of temporary 1500 dia. drain pipe (CH70 - 110)	P2-Cal.C	9	9 26-May-18	05-Jun-18	-182	0% 0		0		_	Construction of temporary 1500 dia. drain pipe	(CH70 - 110)	
MC11515	Fill G400 at CH115-165 (3900m3) for Vectrical Seawall	P2-Cal.C	2	2 06-Jun-18	07-Jun-18	-171	0% 0		0			Fill G400 at CH115-165 (3900m3) for Vectric	al Seawall	
MC11525	Fill G400 at CH165-215 (5826m3) for Vectrical Seawall	P2-Cal.C	3	3 23-Jun-18	26-Jun-18	-183	0% 0		0			Fill G400 at CH165-21	5 (5826m3) for Vectrical Seawall	
Laying of Typ	e A Rockfill as East Seawall Core (+2.5mPD)	P2-Cal.C	8	8 23-Jun-18	03-Jul-18	-182			0			Laying of Typ	e A Rockfill as East Seawall Core	(+2.5mPD)
MC11605	Type A Rockfill CH80-115 (2023m3) After Vectrical Seawall Completion	P2-Cal.C	4	4 23-Jun-18	27-Jun-18	-182	0% 0		0			Type A Rockfill CH80	-115 (2023m3) After Vectrical Sea	wall Completion
MC11615	Type A Rockfill CH115-165 (2880m3) After Vectrical Seawall Completion	P2-Cal.C	4	4 28-Jun-18	03-Jul-18	-182	0% 0		0			Type A Rockfi	II CH115-165 (2880m3) After Vectr	rical Seawall Compl
Laying of Ge	otextile Type A as East Seawall Core (+2.5mPD)	P2-Cal.C	5	5 28-Jun-18	04-Jul-18	-182			0			▼ Laying of Ge	otextile Type A as East Seawall C	ore (+2.5mPD)
MC11705	Geotextile Type A CH80-115 (757m2)	P2-Cal.C	1	1 28-Jun-18	28-Jun-18	-179	0% 0		0			□ Geotextile Type A C	H80-115 (757m2)	
MC11715	Geotextile Type A CH115-165 (1138m2)	P2-Cal.C	1	1 04-Jul-18	04-Jul-18	-182	0% 0		0				rpe A CH115-165 (1138m2)	
	anular Filter as East Seawall Core (+2.5mPD)	P2-Cal.C	6	6 29-Jun-18	06-Jul-18	-182			0				Granular Filter as East Seawall Co	re (+2.5mPD)
MC11805	Granular Filter CH80-115 (739m3)	P2-Cal.C	1	1 29-Jun-18	29-Jun-18	-179	0% 0		0			☐ Granular Filter CH		,
MC11815	Granular Filter CH115-165 (1061m3)	P2-Gal.C	'	2 05-Jul-18	06-Jul-18	-182	0% 0		0				ilter CH115-165 (1061m3)	
			40				0% 0					- Gianulai P	Construction of Vert	ical Soawall
	of Vertical Seawall	P2-Cal.C	43	43 06-Jun-18	27-Jul-18	-183						Construction of Vertical Se		icai Seawaii
	of Vertical Seawall (Type 2 & 3)	P2-Cal.C	14	14 06-Jun-18	22-Jun-18	-182								
MC11905	Installation of guidance rail for leveling stone	P2-Cal.C	2	2 06-Jun-18	07-Jun-18	-182	0% 0		0			Installation of guidance rail for leveling ston		
MC11915	Seawall (Type 2 & 3) Laying of leveling stone Type 2 & 3	P2-Cal.C	3	3 08-Jun-18	11-Jun-18	-182	0% 0		0			Seawall (Type 2 & 3) Laying of leveling		
MC11925	Seawall (Type 2 & 3) Laying of M9 (18 nos)	P2-Cal.C	2	2 12-Jun-18	13-Jun-18	-182	0% 0		0			Seawall (Type 2 & 3) Laying of M9 (1		
MC11935	Seawall (Type 2 & 3) Laying 1st Layer (39 nos)	P2-Cal.C	4	4 14-Jun-18	19-Jun-18	-182	0% 0		0			Seawall (Type 2 & 3) Laying 1		
MC11945	Seawall (Type 2 & 3) Laying 2nd Layer (32 nos)	P2-Cal.C	3	3 20-Jun-18	22-Jun-18	-182	0% 0		0			Seawall (Type 2 & 3) Layir		
Construction	of Vertical Seawall (Type 1 & 4)	P2-Cal.C	26	26 27-Jun-18	27-Jul-18	-183			0			•	Construction of Vert	ical Seawall (Type
MC11955	Installation of guidance rail for leveling stone	P2-Cal.C	2	2 27-Jun-18	28-Jun-18	-183	0% 0		0			Installation of guida	nce rail for leveling stone	
MC11965	Seawall (Type 1 & 4) Laying of leveling stone Type 1 & 4	P2-Cal.C	5	5 29-Jun-18	05-Jul-18	-183	0% 0		0			Seawall (Ty	pe 1 & 4) Laying of leveling stone	Type 1 & 4
MC11975	Seawall (Type 1 & 4) Laying of M9 (65 nos)	P2-Cal.C	7	7 06-Jul-18	13-Jul-18	-183	0% 0		0			Se	eawall (Type 1 & 4) Laying of M9 (6	65 nos)
MC11985	Seawall (Type 1 & 4) Laying 1st Layer (124 nos)	P2-Cal.C	12	12 14-Jul-18	27-Jul-18	-183	0% 0		0			-	Seawall (Type 1 & 4	) Laying 1st Layer (
Filling of Rec	amation Fill to -2.0mPD	P2-Cal.C	64	64 23-Apr-18	10-Jul-18	-182			0			▼ Filling	of Reclamation Fill to -2.0mPD	
MC12653	Reclamation Fill to -2.0mPD CH0-40 (2113m3) - Sandfill	P2-Cal.C	2	2 23-Apr-18	24-Apr-18	-136	0% 0		0	Recla	mation Fill to -2.0mPD CH0-40 (21	13m3) - Sandfill		
MC12655	Reclamation Fill to -2.0mPD CH40-80 (3435m3) - Sandfill	P2-Cal.C	2	2 25-Apr-18	26-Apr-18	-136	0% 0		0	■ Red	lamation Fill to -2.0mPD CH40-80	(3435m3) - Sandfill		
MC12655-01	Construction of temporary 1500 dia. drain pipe (CH30 - 70)	P2-Cal.C	7	7 30-Apr-18	08-May-18	-134	0%		0		Construction of temporal	ny 1500 dia. drain pipe (CH30 - 70)		
MC12665	Reclamation Fill to -2.0mPD CH80-155 (4382m3)	P2-Cal.C	3	3 07-Jul-18	10-Jul-18	-182	0% 0		0			Recla	mation Fill to -2.0mPD CH80-155	(4382m3)
Filling of Rec	lamation Fill -2.0 to +2.5mPD	P2-Cal.C	66	66 25-Apr-18	14-Jul-18	-182			0	•		▼ F	illing of Reclamation Fill -2.0 to +2	2.5mPD
MC12883	Reclamation Fill to +2.5mPD CH0-40 (7413m3) - Sandfill	P2-Cal.C	4	4 25-Apr-18	28-Apr-18	-132	0% 0		0	<b>—</b> F	eclamation Fill to +2.5mPD CH0-4	0 (7413m3) - Sandfill		
MC12885	Reclamation Fill to +2.5mPD CH40-80 (10195m3) - Sandfill	P2-Cal.C	6	6 27-Apr-18	04-May-18	-136	0% 0		0		Reclamation Fill to +2.5mPD	¢H40-80 (10195m3) - Sandfill		
MC12890	Construction of temporary 1500 dia. drain pipe (CH0 - 30)	P2-Cal.C	5	5 09-May-18	14-May-18	-134	0% 0		0		Construction of te	emporary 1500 dia. drain pipe (CH0 -30)		
MC12895	Reclamation Fill to +2.5mPD CH80-150 (8362m3)	P2-Cal.C	4	4 11-Jul-18	14-Jul-18	-182	0% 0		0			<b>■</b> F	Reclamation Fill to +2.5mPD CH80	-150 (8362m3)
												<u>                                     </u>	<u> </u>	
Pi	imary Baseline Critical Remaining Work	NE/2015/02 Tseung Kwan	) ₋ I	am Tin Tı	ınnel-		3	Mont	thly Rolling Program	nme	Date	Revision	Checked	Approved
Ad	ctual Work   Milestone	Road P2 and Associated							Date : 20-Apr-2018		20-Apr-18			<u> </u>
R	emaining Work Summary	1033 - 2 4 7 1000014104		(, ,,,, , ,	-,		'		Page :11 of 12	,				
									1 age .11 01 12					

ty ID	Activity Name	Calendar	Duration	Remaining Start Duration	Finish	Total Float Activity % TRA Complete	Variance - BL1	Apr	Mav	2018 Jun	Jul	Aug
Filling of Con	pacted Fill +2.5 to +5.5mPD	P2-Cal.C		6 19-May-18	26-May-18	-132	DL1	Apr	way Fill	ing of Compacted Fill +2.5 to +5.5ml	PD Sui	Aug
Filling of Con	pacted Fill +2.5 to +5.5MPD	1 2-0ai.0	U	0 13-Way-10	20-iviay-10	-102	· ·					
MC12950	Compacted Fill to +5.5mPD CH0-40 (5773m3)	P2-Cal.C	6	6 19-May-18	26-May-18	-132 0% 0	0		Cou	; mpacted Fill to +5.5mPD CH0-40 (57	73m3)	
WIC12930	Compacted Fill to +3.5mi D Grio-40 (3775mb)	1 2-0ai.0	o o	0 13-Way-10	20-iviay-10	-132 0/8 0	0			11540104 1 111 10 40.0111 15 0110 40 (07	76110)	
Surcharge			123	123 28-May-18	27-Sen-18	-158	0		·····			
Suicharge			.20	120 20 1114) 10	27 Cop 10	.00	Ů					
Placing Surc	narne	P2-Cal.C	3	3 28-May-18	30-May-18	-123	0		<del>-</del>	Placing Surcharge		
r laoing care	mayo			· · · · · · · · · · · · · · · · ·								
MC13015	Placing Surcharge Area 1a (CH0-30) (2990m3)	P2-Cal.C	3	3 28-May-18	30-May-18	-123 0%	0		_	Placing Surcharge Area 1a (CH0-30	) (2990m3)	
				,	1							
Surcharging		P2-Cal.A	120	120 31-May-18	27-Sep-18	-158	0			<del>-</del>		
MC13155	Surcharge Area 1a (CH0-30) (2990m3)	P2-Cal.A	120	120 31-May-18	27-Sep-18	-158 0%	0			<u> </u>		-
Full-scale Tre	atment of Cement S/S of Marine Sediment	P2-Cal.C	313	145 06-Jan-18 A	07-Nov-18	16	65					:
									_			
MC14075	Treatment	P2-Cal.C	250	89 06-Jan-18 A	30-Aug-18	-164 64.4%	58					
MC14080	Curing, Stockpiling and Filling	P2-Cal.C	313	145 06-Jan-18 A	07-Nov-18	16 53.67%	65					1
Modification '	Norks of Existing Seawall	P2-Cal.C	35	35 29-Jun-18	09-Aug-18	95	0					Modification W
MC14145	Excavation and Removal of existing seawall	P2-Cal.C	15	15 29-Jun-18	17-Jul-18	95 0%	0			-	Excavation a	nd Removal of existing seaw
MC14165	Excavation down to -0.5mPD	P2-Cal.C	20	20 18-Jul-18	09-Aug-18	95 0%	0					Excavation dov
Section 4	of the Works - Preservation and Protection of Existing Trees	P2-Cal.A	1563	1112 12-Jan-17 A	05-May-21	-221	-12					
C25260	Preservation and Protection of Existing Trees	P2-Cal.A	1451	1109 12-Jan-17 A	05-May-21	-221 23.57%	-124					1
		_										
C25280	Nursery Transplanted Trees at the Contractor's holding nursery	P2-Cal.A	1177	1011 28-Apr-17 A	24-Jan-21	-120 14.1%	-191					

NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works (Apr-18) 3 Monthly Rolling Programme (Data Date : 20-Apr-2018) Page :12 of 12

Date	Revision	Checked	Approved
20-Apr-18			

#### NE/2017/02 - Updated Programme (April 2018) C10790 MS for Contractor's site office (review & discuss) 6d 90% 1 13-Mar-18 A 09-Apr-18 09-Apr-18 09-Apr-18 24-Anr-18 25-Anr-18 14 03-May-18 C10800 MS for Contractor's site office (resubmit) 6d 0% 6 09-Apr-18 16-Apr-18 09-Apr-18 16-Apr-18 25-Apr-18 14 7d 21 16-Apr-18 07-May-18 16-Apr-18 07-May-18 24-May-18 C10810 MS for Contractor's site office (accept) 21 03-May-18 C10820 6d 0 08-Feb-18 A 22-Feb-18 A 09-Apr-18 09-Apr-18 11-Apr-18 11-Apr-18 MS for temporary road construction (review & discuss) 0 23-Feb-18 A 05-Mar-18 A 09-Apr-18 09-Apr-18 11-Apr-18 11-Apr-18 C10840 6d 1 06-Mar-18 A 09-Apr-18 09-Apr-18 09-Apr-18 MS for temporary road construction (resubmit) 90% 11-Apr-18 11-Apr-18 C10850 21 7d 21 09-Apr-18 30-Apr-18 MS for temporary road construction (accept) 0% 09-Apr-18 30-Apr-18 12-Apr-18 02-May-18 6d C10860 12 12 16-Apr-18 15-May-18 MS for watermain (prepare & submit) 0% 30-Apr-18 16-Apr-18 30-Apr-18 02-May-18 12 C10870 MS for watermain (review & discuss) 6d 0% 6 30-Apr-18 08-May-18 30-Apr-18 08-May-18 16-May-18 23-May-18 12 • C10880 6d 6 08-May-18 15-May-18 08-May-18 15-May-18 MS for watermain (resubmit) 0% 24-May-18 30-May-18 12 C10890 MS for watermain (accept) 21 7d 0% 21 15-May-18 05-Jun-18 15-May-18 05-Jun-18 31-May-18 20-Jun-18 15 C10900 MS for tree transplanting, preservation, protection (prepare & submit) 6d 100% 0 08-Mar-18 A 15-Mar-18 A 08-Apr-18 08-Apr-18 09-Apr-18 09-Apr-18 C10910 MS for tree transplanting, preservation, protection (review & discuss) 6d 90% 1 16-Mar-18 A 09-Apr-18 09-Apr-18 09-Apr-18 09-Apr-18 09-Apr-18 C10920 6d 6 09-Apr-18 16-Apr-18 09-Apr-18 16-Apr-18 10-Apr-18 16-Apr-18 MS for tree transplanting, preservation, protection (resubmit) 0% MS for tree transplanting, preservation, protection (accept) C10930 21 7d 0% 21 16-Apr-18 07-May-18 16-Apr-18 07-May-18 17-Apr-18 07-May-18 MS for instrumentation & ADMS (prepare & submit) 6d 12 18-May-18 02-Jun-18 18-May-18 02-Jun-18 C10940 14-Jun-18 28-Jun-18 21 C10950 MS for instrumentation & ADMS (review & discuss) 6d 12 02-Jun-18 16-Jun-18 02-Jun-18 13-Jul-18 21 MS for instrumentation & ADMS (resubmit) 6 16-Jun-18 25-Jun-18 16-Jun-18 25-Jun-18 14-Jul-18 17-Aug-18 C10970 MS for instrumentation & ADMS (accept by PM & MTRCL) 0% 28 25-Jun-18 23-Jul-18 25-Jun-18 23-Jul-18 21-Jul-18 25 C10980 MS for drainage (prepare & submit) 6 09-Apr-18 16-Apr-18 09-Apr-18 16-Apr-18 10-Apr-18 16-Apr-18 C10990 6d 6 16-Apr-18 MS for drainage (review & discuss) 0% 23-Apr-18 16-Apr-18 23-Apr-18 17-Apr-18 23-Apr-18 C11000 MS for drainage (resubmit) 6d 6 23-Apr-18 30-Apr-18 23-Apr-18 30-Apr-18 24-Apr-18 30-Apr-18 C11010 MS for drainage (accept) 21 7d 0% 21 30-Apr-18 21-May-18 30-Apr-18 21-May-18 02-May-18 22-May-18 C11020 MS for predrilling (prepare & submit) 12 6d 0% 12 18-May-18 02-Jun-18 18-May-18 02-Jun-18 07-Jul-18 20-Jul-18 C11030 MS for predrilling (review & discuss) 12 6d 12 02-Jun-18 16-Jun-18 02-Jun-18 16-Jun-18 21-Jul-18 03-Aug-18 25-Jun-18 16-Jun-18 25-Jun-18 10-Aug-18 C11040 MS for predrilling (resubmit) 6d 6 16-Jun-18 04-Aug-18 C11050 MS for predrilling (accept by PM & MTRCL) 28 7d 28 25-Jun-18 23-Jul-18 25-Jun-18 23-Jul-18 11-Aug-18 07-Sep-18 0% C11060 12 6d 12 01-Aug-18* 14-Aug-18 MS for bored pile (prepare & submit) 01-Aug-18 14-Aug-18 02-Nov-18 15-Nov-18 C11070 MS for bored pile (review & discuss) 12 15-Aug-18 28-Aug-18 15-Aug-18 28-Aug-18 16-Nov-18 29-Nov-18 C11080 MS for bored pile (resubmit) 6d 6 29-Aug-18 04-Sep-18 29-Aug-18 04-Sep-18 30-Nov-18 06-Dec-18 C11090 MS for bored pile (accept by PM & MTRCL) 7d 0% 28 05-Sep-18 02-Oct-18 05-Sep-18 02-Oct-18 07-Dec-18 03-Jan-19 C11100 12 12 03-Jul-18* 16-Jul-18 MS for construction of socketted H-pile (prepare & submit) 0% 03-Jul-18 16-Jul-18 08-Jan-19 21-Jan-19 C11110 23-Jul-18 17-Jul-18 22-Jan-19 28-Jan-19 MS for construction of socketted H-pile (review & discuss) 0% 6 17-Jul-18 23-Jul-18 C11120 6d 156 6 24-Jul-18 30-Jul-18 24-Jul-18 30-Jul-18 29-Jan-19 04-Feb-19 MS for construction of socketted H-pile (resubmit) 0% MS for construction of socketted H-pile (accept by PM & MTRCL) C11130 28 7d 0% 28 31-Jul-18 27-Aug-18 31-Jul-18 27-Aug-18 08-Feb-19 07-Mar-19 192 C11140 MS for socketted H-pile testing (prepare & submit) 12 6d 0% 12 01-Nov-18 14-Nov-18 01-Nov-18 14-Nov-18 15-May-19 28-May-19 155 MS for socketted H-pile testing (review & discuss) C11150 6d 0% 6 15-Nov-18 21-Nov-18 15-Nov-18 21-Nov-18 29-May-19 04-Jun-19 155 MS for socketted H-pile testing (resubmit) C11160 6d 6 22-Nov-18 28-Nov-18 22-Nov-18 28-Nov-18 05-Jun-19 12-Jun-19 155 MS for socketted H-pile testing (accept) 13-Jun-19 C11170 21 7d 21 29-Nov-18 19-Dec-18 29-Nov-18 19-Dec-18 03-Jul-19 196 C11180 6d 12 02-May-19* 16-May-19 02-May-19 16-May-19 MS for bored pile testing (prepare & submit) 16-Jul-19 29-Jul-19 61 C11190 6d 6 17-May-19 23-May-19 MS for bored pile testing (review & discuss) 17-May-19 23-May-19 30-Jul-19 05-Aug-19 61 C11200 MS for bored pile testing (resubmit) 6 24-May-19 30-May-19 24-May-19 30-May-19 06-Aug-19 12-Aug-19 C11210 MS for bored pile testing (accept) 21 31-May-19 20-Jun-19 31-May-19 20-Jun-19 13-Aug-19 C11220 MS for construction of pile cap (prepare & submit) 12 12 22-May-19 04-Jun-19 22-May-19 04-Jun-19 04-Jun-19 18-Jun-19 C11230 6d 12-Jun-19 19-Jun-19 MS for construction of pile cap (review & discuss) 0% 6 05-Jun-19 05-Jun-19 12-Jun-19 25-Jun-19 C11240 6d 19-Jun-19 13-Jun-19 19-Jun-19 MS for construction of pile cap (resubmit) 0% 6 13-Jun-19 26-Jun-19 03-Jul-19 MS for construction of pile cap (accept by PM & MTRCL) C11250 28 7d 0% 28 20-Jun-19 17-Jul-19 20-Jun-19 17-Jul-19 04-Jul-19 31-Jul-19 14 C11260 MS for construction of pier/column (prepare & submit) 12 6d 12 10-Jun-19 22-Jun-19 10-Jun-19 22-Jun-19 19-Aug-19 31-Aug-19 59 C11270 MS for construction of pier/column (review & discuss) 6d 0% 6 24-Jun-19 29-Jun-19 24-Jun-19 29-Jun-19 10-Sep-19 17-Sep-19 66 C11280 MS for construction of pier/column (resubmit) 6d 0% 6 02-Jul-19 08-Jul-19 02-Jul-19 08-Jul-19 18-Sep-19 24-Sep-19 66 C11290 MS for construction of pier/column (accept) 21 7d 0% 21 09-Jul-19 29-Jul-19 09-Jul-19 29-Jul-19 25-Sep-19 15-Oct-19 16-Sep-19 C11300 MS for construction of bridge deck (prepare & submit) 12 6d 0% 12 06-Jul-19 19-Jul-19 06-Jul-19 19-Jul-19 02-Sep-19 49 C11310 MS for construction of bridge deck (review & discuss) 6d 6 20-Jul-19 26-Jul-19 20-Jul-19 26-Jul-19 07-Dec-19 13-Dec-19 117 0% C11320 6d 6 27-Jul-19 117 MS for construction of bridge deck (resubmit) 0% 02-Aug-19 27-Jul-19 02-Aug-19 14-Dec-19 20-Dec-19 21 7d C11330 MS for construction of bridge deck (accept) 21 03-Aug-19 23-Aug-19 03-Aug-19 23-Aug-19 21-Dec-19 C11340 MS for construction of lift shaft (prepare & submit) 6d 12 06-Aug-19 19-Aug-19 06-Aug-19 19-Aug-19 02-Sep-19 C11350 MS for construction of lift shaft (review & discuss) 6d 25-Nov-19 30-Nov-19 0% 6 20-Aug-19 26-Aug-19 20-Aug-19 26-Aug-19 80 C11360 6d 6 27-Aug-19 02-Sep-19 27-Aug-19 02-Sep-19 02-Dec-19 07-Dec-19 MS for construction of lift shaft (resubmit) 0% 80 C11370 21 7d 21 03-Sep-19 23-Sep-19 03-Sep-19 23-Sep-19 97 MS for construction of lift shaft (accept) 0% 09-Dec-19 29-Dec-19 C11380 MS for construction of staircase (prepare & submit) 12 6d 0% 12 06-Aug-19 19-Aug-19 06-Aug-19 19-Aug-19 02-Sep-19 16-Sep-19 23 C11390 MS for construction of staircase (review & discuss) 6d 0% 6 20-Aug-19 26-Aug-19 20-Aug-19 26-Aug-19 17-Sep-19 23-Sep-19 23 C11400 MS for construction of staircase (resubmit) 6d 0% 6 27-Aug-19 02-Sep-19 27-Aug-19 02-Sep-19 24-Sep-19 30-Sep-19 23 C11410 MS for construction of staircase (accept) 21 7d 0% 21 03-Sep-19 23-Sep-19 03-Sep-19 23-Sep-19 02-Oct-19 22-Oct-19 29 C11420 MS for installation of bearing and movement joints (prepare & submit) 12 6d 12 17-Jun-19 29-Jun-19 17-Jun-19 29-Jun-19 02-Dec-19 14-Dec-19 140 0% C11430 MS for installation of bearing and movement joints (review & discuss) 6d 6 02-Jul-19 08-Jul-19 02-Jul-19 16-Dec-19 21-Dec-19 140 08-Jul-19 15-Jul-19 C11440 MS for installation of bearing and movement joints (resubmit) 6 09-Jul-19 09-Jul-19 15-Jul-19 23-Dec-19 31-Dec-19 C11450 7d MS for installation of bearing and movement joints (accept) 21 21 16-Jul-19 05-Aug-19 16-Jul-19 05-Aug-19 01-Jan-20 MS for prestressing (prepare & submit) C11460 12 02-Dec-19* 14-Dec-19 02-Dec-19 14-Dec-19 17-Feb-20 29-Feb-20 C11470 MS for prestressing (review & discuss) 6 16-Dec-19 21-Dec-19 16-Dec-19 21-Dec-19 02-Mar-20 C11480 MS for prestressing (resubmit) 09-Mar-20 14-Mar-20 6 23-Dec-19 31-Dec-19 23-Dec-19 31-Dec-19 MS for prestressing (accept) C11490 21 7d 0% 21 01-Jan-20 21-Jan-20 01-Jan-20 21-Jan-20 16-Mar-20 05-Apr-20 75 C11500 MS for flexible surfacing (prepare & submit) 12 6d 0% 12 02-Oct-18* 15-Oct-18 02-Oct-18 15-Oct-18 20-Dec-18 05-Jan-19 67 C11510 MS for flexible surfacing (review & discuss) 6d 0% 6 16-Oct-18 23-Oct-18 16-Oct-18 23-Oct-18 07-Jan-19 12-Jan-19 67 C11520 MS for flexible surfacing (resubmit) 6d 0% 6 24-Oct-18 30-Oct-18 24-Oct-18 30-Oct-18 14-Jan-19 19-Jan-19 67 C11530 MS for flexible surfacing (accept) 21 7d 0% 21 31-Oct-18 20-Nov-18 31-Oct-18 20-Nov-18 21-Jan-19 10-Feb-19 82

■ Detailed First Programme (DWP-R0) ◆ Milestone NE/2017/02 - Tseung Kwan O - Lam Tin Tunnel Actual Work Summarv Remaining Work **Updated Programme** Critical Remaining Work

	Date	Revision	Checked	Approved
	09-Apr-18	RWP-2018-04 (Data date 8-Apr-18)	TC	
Page 3 of 9				

Road P2/D4 and Associated Works

#### NE/2017/02 - Updated Programme (April 2018)

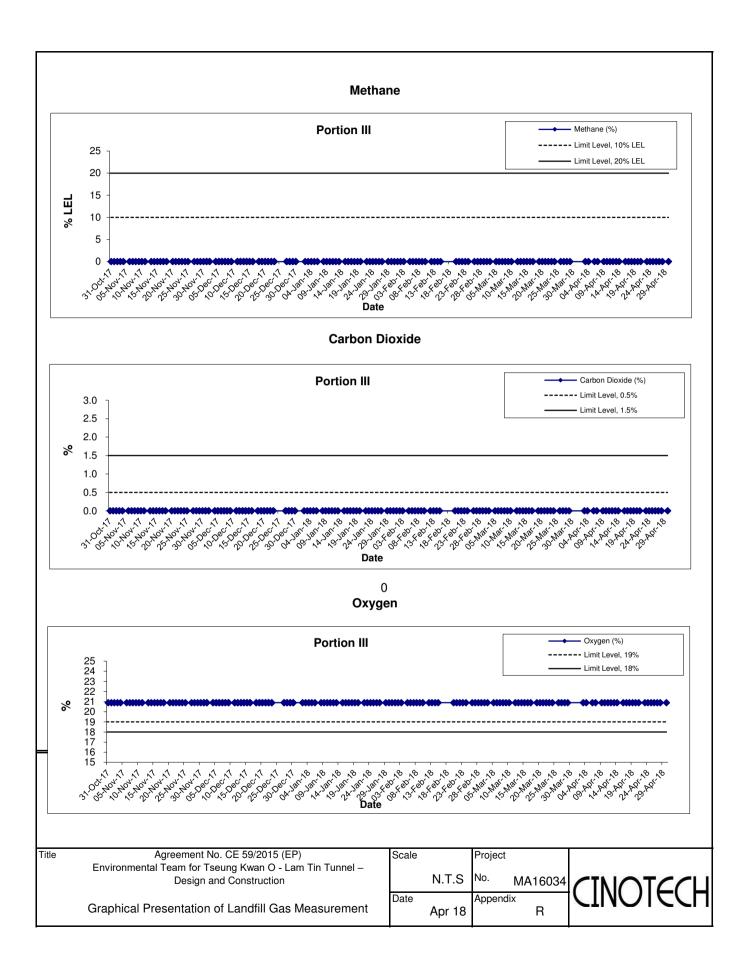
Activity ID	Activity Name	Original Duration	Calendar	Activity %	Remaining Start Duration	Finish	Early Start	Early Finish	Late Start	Late Finish	Total	Time Risk			2018					2019			202	0					2021	
014500	Death should be Barting A			Complete	* ****	01.400	10.1 00	04.400	04 1 1 00	04 4 00	Float	Allowance	Dec Jan Feb	Mar Apr N	May Jun Jul	Aug Sep	Oct Nov De	ec Jan Feb	Mar Apr Ma	ay Jun Jul Aug Sep Oct No	v Dec Jan	Feb Mar A	Apr May Jun	Jul Aug Se	p Oct Nov	Dec Jan	Feb Mar	Apr May	Jun Jul Auç	J Sep Oct Nov
C14560	Deck structure Portion 4	36	6d	0%	36 18-Jun-20	01-Aug-20	18-Jun-20	01-Aug-20	21-Jul-20	31-Aug-20	25												1   7	=						
C14570	Remove falsework Portion 4	6	6d	0%	6 01-Aug-20	08-Aug-20	01-Aug-20	08-Aug-20	01-Sep-20	07-Sep-20	25					ļļļ			ļļ <u>.</u>							ļļ				
C14580	Falsework Portion 5	12	6d	0%		28-Aug-20		28-Aug-20	10-Sep-20	23-Sep-20	22													=	<u> </u>					
C14590	Deck structure Portion 5	36	6d	0%	36 29-Aug-20	12-Oct-20	29-Aug-20	12-Oct-20	24-Sep-20	07-Nov-20	22													=	푸니			.		
C14600	Remove falsework Portion 5	6	6d	0%	6 13-Oct-20	19-Oct-20	13-Oct-20	19-Oct-20	23-Nov-20	28-Nov-20	34													1_1						
C14610	Falsework Portion 6a	12	6d	0%	12 08-Aug-20	22-Aug-20	08-Aug-20	22-Aug-20	10-Sep-20	23-Sep-20	27													=						
C14620	Deck structure Portion 6a	36	6d	0%	36 21-Sep-20	05-Nov-20	21-Sep-20	05-Nov-20	24-Sep-20	07-Nov-20	2					<u> </u>					<u>.iii</u>									
C14630	Remove falsework Portion 6a	6	6d	0%	6 05-Nov-20	12-Nov-20	05-Nov-20	12-Nov-20	23-Nov-20	28-Nov-20	14																	.		
C14640	Falsework Portion 6b	12	6d	0%	12 08-Aug-20	22-Aug-20	08-Aug-20	22-Aug-20	08-Sep-20	21-Sep-20	25													=						
C14650	Bearing Portion 6b	3	6d	0%	3 08-Aug-20	12-Aug-20	08-Aug-20	12-Aug-20	22-Sep-20	24-Sep-20	37																			
C14660	Deck structure Portion 6b	38	6d	0%	38 21-Sep-20	07-Nov-20	21-Sep-20	07-Nov-20	22-Sep-20	07-Nov-20	0	2																		
C14670	Remove falsework Portion 6b	6	6d	0%	6 07-Nov-20	14-Nov-20	07-Nov-20	14-Nov-20	23-Nov-20	28-Nov-20	12																			
C14680	Install fabricated movement joints (4 nos.)	12	6d	0%	12 07-Nov-20	21-Nov-20	07-Nov-20	21-Nov-20	09-Nov-20	21-Nov-20	0																			
C14690	Falsework for arch structure and arch cladding	16	6d	0%	16 15-Aug-20	02-Sep-20	15-Aug-20	02-Sep-20	29-Aug-20	16-Sep-20	12																			
C14700	Erect arch structure and arch cladding	60	6d	0%	60 16-Sep-20	28-Nov-20	16-Sep-20	28-Nov-20	17-Sep-20	28-Nov-20	0														#	4				
C14710	Finishing works	50	6d	0%	50 28-Sep-20	28-Nov-20	28-Sep-20	28-Nov-20	29-Sep-20	28-Nov-20	0															á l				
Irrigation Sys	stem	517			517 01-Mar-19	29-Jul-20	01-Mar-19	29-Jul-20	30-May-19	01-Aug-20	3								•					₹ :						
C14720	Details of irrigation system (prepare & submit)	18	6d	0%	18 01-Mar-19*	21-Mar-19	01-Mar-19	21-Mar-19	30-May-19	20-Jun-19	71								=											
C14730	Details of irrigation system (review & discuss)	12	6d	0%	12 22-Mar-19	04-Apr-19	22-Mar-19	04-Apr-19	21-Jun-19	05-Jul-19	71																			
C14740	Details of irrigation system (resubmit)	12	6d	0%	12 06-Apr-19	23-Apr-19	06-Apr-19	23-Apr-19	06-Jul-19	19-Jul-19	71																			
C14750	Details of irrigation system (accept)	21	7d	0%	21 24-Apr-19	14-May-19	24-Apr-19	14-May-19	20-Jul-19	09-Aug-19	87																			
C14760	MS for irrigation system (prepare & submit)	18	6d	0%	18 01-Aug-19*	21-Aug-19	01-Aug-19	21-Aug-19	23-Sep-19	15-Oct-19	44																			
C14770	MS for irrigation system (review & discuss)	12	6d	0%	12 22-Aug-19	04-Sep-19	22-Aug-19	04-Sep-19	16-Oct-19	29-Oct-19	44	i i						1111			11111									
C14780	MS for irrigation system (resubmit)	12	6d	0%	12 05-Sep-19	19-Sep-19	05-Sep-19	19-Sep-19	30-Oct-19	12-Nov-19	44																			
C14790	MS for irrigation system (accept)	21	7d	0%	21 20-Sep-19	10-Oct-19	20-Sep-19	10-Oct-19	13-Nov-19	03-Dec-19	54																			
C14800	Material order and delivery of irrigation system	96	6d	0%	96 15-May-19	05-Sep-19	15-May-19	05-Sep-19	10-Aug-19	03-Dec-19	73																			
C14810	Install irrigation system	170	6d	0%	170 29-Nov-19	30-Jun-20	29-Nov-19	30-Jun-20	04-Dec-19	04-Jul-20	3																			
C14820	Testing and commissioning of irrigation system	24	6d	0%	24 30-Jun-20	29-Jul-20	30-Jun-20	29-Jul-20	06-Jul-20	01-Aug-20	3							1 1			1111								111	
Landscaping	g Softworks	509			509 02-Jul-19	21-Nov-20	02-Jul-19	21-Nov-20	23-Sep-19	28-Nov-20	7									1 <del>1 1 1 1 1</del>					—					
C14830	MS for landscaping works (prepare & submit)	18	6d	0%	18 02-Jul-19*	22-Jul-19	02-Jul-19	22-Jul-19	23-Sep-19	15-Oct-19	70																	.		
C14840	MS for landscaping works (review & discuss)	18	6d	0%	18 23-Jul-19	12-Aug-19	23-Jul-19	12-Aug-19	16-Oct-19	05-Nov-19	70																			
C14850	MS for landscaping works (resubmit)	6	6d	0%	6 13-Aug-19	-	13-Aug-19	19-Aug-19	06-Nov-19	12-Nov-19	70																	.		
C14860	MS for landscaping works (accept)	21	7d	0%	21 20-Aug-19	-	20-Aug-19	09-Sep-19		03-Dec-19	85							-11			111111				11111		1		1111	
C14870	Landscaping Softworks (at-grade)	290	6d	0%	290 29-Nov-19	21-Nov-20		21-Nov-20		25-Nov-20	3																			
	Landscaping Softworks (on footbridge)	94	6d	0%	94 06-Jul-20	27-Oct-20		27-Oct-20		28-Nov-20	28																	.		
Establishme		365	7d		365 21-Nov-20	21-Nov-21	21-Nov-20		30-Nov-20		8														-	+	+	$\overline{}$		+++-
	Establishment Works	365	7d	0%			21-Nov-20		30-Nov-20		8																أطف	نبند		
314000	Local distriction of the control of	555	7 0	0 70	330 21 1404-20	21 1404 21	_1 1404 20		30 1404 20	20 1404 21	3			ــــالــــــــــــــــــــــــــــــــ						<u> </u>								=		

NE/2017/02 - Tseung Kwan O - Lam Tin Tunnel Road P2/D4 and Associated Works Updated Programme

	Date	Revision	Checked	Approved
	09-Apr-18	RWP-2018-04 (Data date 8-Apr-18)	TC	
Page 9 of 9				

Subject: 3 Months Look Ahead Programme										
Activities	May,18	Jun,18	Jul,18							
Erection of falsework system										
Construction of Pile Cap PC4 and Sump Pit										
Install steel mould for main deck										

Subject: Construction Programme (Apr, 2018)										
Activities	Week 1	Week 2	Week 3	Week 4						
Erection of falsework system										


Activity ID	Activity Name	Original Duration	ginal Start ation	Finish			201	8	
		Duration			Apr	Ma	у	Jun	Jul
Tseung Kwan	O Lam Tin Tunnel - Tseung Kwan O Interchange and Associated Works _180316 1709	880	03-Apr-18	19-Mar-21					
Construction	Works	880	03-Apr-18	19-Mar-21					
Construction	Works of Contractor Site Accommodation	880	03-Apr-18	19-Mar-21					
CON-10010	Erect hoarding and construct contractor's site accommodation (CSA)	18	03-Apr-18	24-Apr-18					
CON-10020	Maintenance CSA during contract period	862	25-Apr-18	19-Mar-21					
Temporary Pla	atform and Ground Investigation	102	16-May-18	14-Sep-18					
Ground Inves	stigation Works (Including Erection Temporary Work)	102	16-May-18	14-Sep-18					
Phase I - Portion	1 & V	102	16-May-18	14-Sep-18					
CON-10070	Ground Investigation works (Phase 1) (1no Sl/Team/8days), Including Temporary Work, Plant Mobilization, Testing - 4 rigs	102	16-May-18	14-Sep-18		С	i		
Bored Pile Co	onstruction & Pile Test (59nos)(Including Removal of Temporary Work)	108	07-Jul-18	13-Nov-18					
Bored Pile C	onstruction at Bridge ML	108	07-Jul-18	13-Nov-18					
CON-10100	Bored Pile, Pile Test & Removal of Temporary Work for ML1G, 2 Piles (1pile/1.5mon, team 1)	108	07-Jul-18	13-Nov-18					
CON-10110	Bored Pile, Pile Test & Removal of Temporary Work for ML 1F-N, 2 Piles (1pile/1.5mon, team 2)	108	07-Jul-18	13-Nov-18					
CON-10120	Bored Pile, Pile Test & Removal of Temporary Work for ML1F-S, 2 Piles (1pile/1.5mon, team 3)	108	07-Jul-18	13-Nov-18					
Bored Pile C	onstruction at Bridge S300	69	07-Jul-18	26-Sep-18					
CON-10180	Bored Pile, Pile Test & Removal of Temporary Work for S300 4A, 1 Pile (1pile/1.5mon, team 4)	69	07-Jul-18	26-Sep-18					
						1			

Potential Compensation Events	NE/2017/01 Tseung Kwan O - Lam Tin Tunnel	Page 1 of 1
Actual Work	Tseung Kwan O Interchange and Associated Works	
Remaining Work		
Critical Remaining Work	Construction Programme (Period: 1-4-2018 to 31-7-2018)	
◆ Milestone	NE/2017/01	

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	3-Apr-18	08:30	Sunny	25	0	0	20.9
	3-Apr-18	13:01	Sunny	29	0	0	20.9
	4-Apr-18	08:30	Sunny	24	0	0	20.9
	4-Apr-18	13:02	Sunny	28	0	0	20.9
	6-Apr-18	08:30	Cloudy	22	0	0	20.9
	6-Apr-18	13:00	Rainy	26	0	0	20.9
	7-Apr-18	08:30	Cloudy	18	0	0	20.9
	7-Apr-18	13:02	Rainy	21	0	0	20.9
	9-Apr-18	08:30	Sunny	18	0	0	20.9
	9-Apr-18	13:01	Sunny	26	0	0	20.9
	10-Apr-18	08:30	Cloudy	21	0	0	20.9
	10-Apr-18	13:00	Cloudy	28	0	0	20.9
	11-Apr-18	08:30	Cloudy	22	0	0	20.9
	11-Apr-18	13:00	Cloudy	27	0	0	20.9
	12-Apr-18	08:30	Sunny	23	0	0	20.9
	12-Apr-18	13:02	Sunny	28	0	0	20.9
	13-Apr-18	08:30	Cloudy	24	0	0	20.9
	13-Apr-18	13:02	Cloudy	30	0	0	20.9
	14-Apr-18	08:30	Cloudy	25	0	0	20.9
	14-Apr-18	13:00	Rainy	30	0	0	20.9
	16-Apr-18	08:30	Cloudy	17	0	0	20.9
	16-Apr-18	13:00	Cloudy	19	0	0	20.9
	17-Apr-18	08:30	Cloudy	17	0	0	20.9
Portion III	17-Apr-18	13:00	Cloudy	23	0	0	20.9
	18-Apr-18	08:30	Cloudy	21	0	0	20.9
	18-Apr-18	13:00	Cloudy	26	0	0	20.9
	19-Apr-18	08:30	Cloudy	21	0	0	20.9
	19-Apr-18	13:02	Sunny	16	0	0	20.9
	20-Apr-18	08:30	Rainy	22	0	0	20.9
	20-Apr-18	13:02	Cloudy	26	0	0	20.9
	21-Apr-18	08:30	Rainy	23	0	0	20.9
	21-Apr-18	13:00	Cloudy	28	0	0	20.9
	23-Apr-18	08:30	Rainy	24	0	0	20.9
	23-Apr-18	13:01	Rainy	30	0	0	20.9
	24-Apr-18	08:30	Cloudy	23	0	0	20.9
	24-Apr-18	13:00	Cloudy	27	0	0	20.9
	25-Apr-18	08:30	Cloudy	23	0	0	20.9
	25-Apr-18	13:00	Cloudy	25	0	0	20.9
	26-Apr-18	08:30	Cloudy	22	0	0	20.9
	26-Apr-18	13:01	Cloudy	25	0	0	20.9
	27-Apr-18	08:30	Rainy	22	0	0	20.9
	27-Apr-18	13:02	Cloudy	28	0	0	20.9
	28-Apr-18	08:30	Sunny	23	0	0	20.9
	28-Apr-18	13:01	Cloudy	26	0	0	20.9
	30-Apr-18	08:30	Rainy	24	0	0	20.9
	30-Apr-18	13:04	Rainy	29	0	0	20.9



APPENDIX S UPDATED CONSTRUCTION NOISE ASSESSMENT

No update on Construction Noise Assessment in the reporting month

APPENDIX T CULTURAL HERITAGE MONITORING RESULTS

# Appendix T – Cultural Heritage Monitoring Results

			Tilting			Settlement (mm	)		Vibration (	(mm/s)
Date	Time	Angle (deg) between	Angle (deg) between	Angle (deg) between					Measurement	Direction
		THT-BSP-1 & THT-BSP-2	THT-BSP-1 & THT-BSP-3	THT-BSP-2 & THT-BSP-3	THT-BSP-1	THT-BSP-2	THT-BSP-3	Tran	Vertical	Longitudinal
3-Apr-18	13:23	1:6896	1:14018	-1:16901	+3	+1	+2	0.127	0.254	0.254
4-Apr-18	17:13	1:6896	1:7009	0	+4	+2	+2	0.127	0.254	0.254
6-Apr-18	16:05	1:3448	1:4673	-1:16901	+4	+0	+1	0.127	0.127	0.254
7-Apr-18	10:47	1:4597	1:7009	-1:16901	+4	+1	+2	0.254	0.254	0.127
9-Apr-18	17:03	1:4597	1:4673	0	+4	+1	+1	0.254	0.254	0.127
10-Apr-18	16:51	1:6896	1:4673	1:16901	+2	+0	-1	0.127	0.254	0.254
11-Apr-18	13:47	0	1:14018	1:16901	+2	+2	+1	0.254	0.254	0.127
12-Apr-18	11:01	1:3448	1:4673	-1:16901	+4	+0	+1	0.254	0.254	0.127
13-Apr-18	9:14	1:6896	1:7009	0	+3	+1	+1	0.254	0.254	0.127
14-Apr-18	14:30	1:4597	1:7009	-1:16901	+4	+1	+2	0.254	0.254	0.127
16-Apr-18	17:05	1:6896	1:7009	0	+3	+1	+1	0.254	0.254	0.127
17-Apr-18	17:12	1:6896	1:14018	-1:16901	+3	+1	+2	0.254	0.254	0.127
18-Apr-18	13:37	1:4597	1:7009	-1:16901	+3	+0	+1	0.254	0.254	0.127
19-Apr-18	16:55	1:4597	1:7009	-1:16901	+2	-1	+0	0.254	0.254	0.127
20-Apr-18	16:52	1:4597	1:7009	-1:16901	+3	+0	+1	0.254	0.254	0.127
21-Apr-18	15:52	1:4597	1:7009	-1:16901	+3	+0	+1	0.254	0.254	0.127
23-Apr-18	17:10	-1:13792	-1:14018	0	+2	+3	+3	0.254	0.254	0.127
24-Apr-18	17:20	1:6896	1:7009	0	+4	+2	+2	0.254	0.254	0.127
25-Apr-18	17:11	1:13792	1:14018	0	+3	+2	+2	0.254	0.254	0.127
26-Apr-18	17:02	1:13792	1:4673	1:8451	+2	+1	-1	0.127	0.127	0.254
27-Apr-18	15:34	1:3448	1:4673	-1:16901	+4	+0	+1	0.127	0.127	0.254
28-Apr-18	10:26	0	1:14018	1:16901	+2	+2	+1	0.254	0.254	0.127
30-Apr-18	16:20	1:4597	1:7009	-1:16901	+3	+0	+1	0.254	0.254	0.127
Alert Le	evel		1:2000			6			4.5	
Alarm L	evel		1:1500		8			4.8		
Action L	evel		1:1000			10			5	

Note: **Bold** means Alert Level exceedance

**Bold Italic** means Alarm Level exceedance

**Bold Italic with underline** means Action Level exceedance