Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for June 2019

(version 1.0)

Approved By

(Dr. HF Chan,
Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

Civil Engineering and Development Department

New Territories East Development Office

Suite 1213, Chinachem Golden Plaza

77 Mody Road

Tsimshatsui

Kowloon

Your reference:

Our reference:

HKCEDD08/50/105893

Date:

15 July 2019

Attention: Mr Lo Sai Pak, Sunny

BY FAX & POST (Fax no.: 2739 0076)

Dear Sirs

Agreement No.: NTE 06/2016

Independent Environmental Checker for Tseung Kwan O – Lam Tin Tunnel Monthly Environmental Monitoring and Audit Report for June 2019 (version 1.0)

We refer to emails of 9 and 12 July 2019 from Cinotech Consultants Limited attaching the Monthly Environmental Monitoring and Audit Report for June 2019 (version 1.0).

We have no further comment and hereby verify the captioned report in accordance with Clause 4.4 of the Environmental Permit no. EP-458/2013/C.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Ricky Lau on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

Independent Environmental Checker

LYMA/LCCR/lhmh

cc CEDD – Mr Edwin Leung (email: edwinleung@cedd.gov.hk)

AECOM - Mr K Y Chan (email: ky.chan@tko-ltt1-aecom.com)

AECOM – Mr Dominic Lam (email: dominic.cw.lam@tko-ltt1-aecom.com)

AECOM – Ms Mandy Fu (email: mandy.ky.fu@tko-ltt1-aecom.com)

AECOM - Mr Jason Yu (email: jason.hk.yu@tko-ltt1-aecom.com)

Cinotech – Dr H F Chan (email: hf.chan@cinotech.com.hk)

Cinotech – Mr K S Lee (email: ks.lee@cinotech.com.hk)

ANewR Consulting Limited

Unit 517, 5/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648

Email: info@anewr.com Web: www.anewr.com

TABLE OF CONTENTS

EXECUTIVE SUMMARYIntroduction	
Environmental Monitoring Works	
,	
•	
INTRODUCTION	9
Purpose of the Report	
PROJECT INFORMATION	11
Background	11
Project Organizations	
Construction Activities undertaken during the Reporting Month	
Summary of EM&A Requirements	16
AIR QUALITY	17
Monitoring Requirements	17
Monitoring Locations	
Monitoring Equipment	
C	
NOISE	22
Monitoring Requirements	22
Monitoring Locations	
WATER QUALITY	27
Monitoring Requirements	
6	
MODITORING METHOGOTORY	
Laboratory Analytical Methods	32
Laboratory Analytical Methods	32
Laboratory Analytical Methods	32 32 32
Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures	32 32 32
Laboratory Analytical Methods	32 32 33 33
	Introduction Environmental Monitoring Works Key Information in the Reporting Month Key Construction Work in the reporting month & the next reporting month Future Key Issues INTRODUCTION Purpose of the Report Structure of the Report PROJECT INFORMATION Background Project Organizations Construction Activities undertaken during the Reporting Month Status of Environmental Licences, Notification and Permits Summary of EM&A Requirements AIR QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Results and Observations NOISE Monitoring Requirements Monitoring Requirements Monitoring Locations Monitoring Locations Monitoring Requirements Monitoring Methodology and QA/QC Procedure Results and Observations WATER QUALITY

7.	CULTURAL HERITAGE	38
	Monitoring Requirement	38
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology	
	Alert, Alarm and Action Levels	
	Results	
	Mitigation Measures for Cultural Heritage	39
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	40
9.	LANDFILL GAS MONITORING	41
	Monitoring Requirement	41
	Monitoring Parameters and Frequency	41
	Monitoring Locations	41
	Monitoring Equipment	
	Results and Observations	42
10.	ENVIRONMENTAL AUDIT	43
	Site Audits	43
	Implementation Status of Environmental Mitigation Measures	43
11.	WASTE MANAGEMENT	44
12.	ENVIRONMENTAL NON-CONFORMANCE	45
	Summary of Exceedances	45
	Summary of Environmental Non-Compliance	
	Summary of Environmental Complaint	
	Summary of Environmental Summon and Successful Prosecution	
13.	FUTURE KEY ISSUES	46
	Key Issues for the Coming Month	47
14.	CONCLUSIONS AND RECOMMENDATIONS	49
	Conclusions	49
	Recommendations	

LIST OF TABLES

Table I	Non-compliance (exceedance) Recorded for the Project in the Reporting Month
Table II	Summary Table for Complaints in the Reporting Month
Table III	Summary of Documented Complaints in Reporting Month
Table IV	Summary Table for Key Construction Work in the Reporting Month
Table V	Summary Table for Site Activities in the next Reporting Period
Table 2.1	Key Project Contacts
Table 2.2	Summary Table for Major Site Activities in the Reporting Month
Table 2.3	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.4	Summary of the Status of Environmental Licences, Notification and Permits
Table 3.1	Locations for Air Quality Monitoring
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Major Dust Source during Air Quality Monitoring
Table 4.1	Noise Monitoring Stations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Major Noise Source during Noise Monitoring
Table 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.6	Baseline Noise Level and Noise Limit Level for Monitoring Stations (Evening-time
	& Daytime (Holiday))
Table 4.7	Baseline Noise Level and Noise Limit Level for Monitoring Stations (Night-time)
Table 5.1	Groundwater Quality Monitoring Stations
Table 5.2	Marine Water Quality Monitoring Stations
Table 5.3	Water Quality Monitoring Equipment
Table 5.4	Water Quality Monitoring Parameters and Frequency
Table 5.5	Methods for Laboratory Analysis for Water Samples
Table 5.6	Summary of Groundwater Quality Monitoring Results
Table 7.1	Cultural Heritage Monitoring Equipment
Table 7.2	AAA Levels for Monitoring for Cultural Heritage
Table 9.1	Landfill Gas Monitoring Equipment
Table 13.1	Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 1a	Site Portions under Works Contract No. NE/2015/01 (Lam Tin Side)
Figure 1b	Site Portions under Works Contract No. NE/2015/01 (Tseung Kwan O Side)
Figure 1c	Site Portions under Works Contract No. NE/2015/02
Figure 1d	Site Portions under Works Contract No. NE/2015/03
Figure 1e	Site Portions under Works Contract No. NE/2017/01
Figure 1f	Site Portions under Works Contract No. NE/2017/01
Figure 1g	Site Portions under Works Contract No. NE/2017/02
Figure 1h	Site Portions under Works Contract No. NE/2017/02
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Groundwater Quality Monitoring Stations
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring
Figure 7	Location of Post-translocation Coral Monitoring
Figure 8	Location of Monitoring for Cultural Heritage
Figure 9	Location of Water Quality Monitoring in Temporary Embayment

LIST OF APPENDICES

Appendix A Appendix B	Action and Limit Levels Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Groundwater Quality Monitoring Results, Graphical Presentations and Laboratory Testing Reports
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Quality Control Reports for Laboratory Analysis
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Appendix S	Not Used
Appendix T	Cultural Heritage Monitoring Results
Appendix U	Piezometer Monitoring Results
Appendix V	Surface Run-off Management Plan

EXECUTIVE SUMMARY

Introduction

- 1. This is the 32th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in June 2019.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge;
 - Contract No. NE/2017/01 Tseung Kwan O Lam Tin Tunnel –Tseung Kwan O Interchange and Associated Works
 - Contract No. NE/2017/02 Tseung Kwan O Lam Tin Tunnel Road P2/D4 and Associated Works.
 - Contract No. NE/2017/06 Tseung Kwan O Lam Tin Tunnel Traffic Control and Surveillance System(TCSS) and Associated Works
 - Contract No. NE/2017/07 Cross Bay Link, Tseung Kwan O Main Bridge and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

Environment al Monitoring	No. of Non-compliance (Exceedance)		No. of Non-compliance (Exceedance) due to Construction Activities of this Project		Action Taken
	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	0	0	0	0	N/A
Noise	6	0	Under investigation	0	Refer to Appendix K & O
Groundwater Quality	0	2	0	0	Refer to Appendix K
Marine Water Quality	41	224	0	0	Refer to Appendix K
Groundwater Level Monitoring (Piezometer Monitoring)	0	N/A ¹	0	N/A¹	N/A
Ecological	N/A	N/A	N/A	N/A	N/A
Cultural Heritage	0	0	0	0	N/A
Landfill Gas	0	0	0	0	N/A

Note:(1) No Limit Level for Groundwater Level Monitoring (Piezometer Monitoring).

Air Quality Monitoring

- 5. No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 6. No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 7. Six (6) Action Level exceedances were recorded due to the documented complaints received in this reporting month. The Summary of Documented Complaints in Reporting Month is tabulated in Table III.
- 8. No Limit Level exceedances for construction noise monitoring were recorded in the reporting month.

Groundwater Quality Monitoring

9. Two (2) Limit Level exceedances in groundwater quality monitoring were recorded in the reporting month.

Marine Water Quality Monitoring

10. All marine water quality monitoring was conducted as scheduled in the reporting month. There were forty-one (41) Action Level and two-hundred and twenty-four (224) Limit Level exceedances in marine water quality monitoring. During this reporting month, no sand plume was observed during the water quality monitoring and site audits, therefore there is no direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Details of this investigation are presented in **Section 5**. Daily silt curtain inspection and weekly diving inspection have been carried out by contractor, the record, as reviewed by the site auditors, indicated that silt curtains were found in good

conditions. No major deficiency of the silt curtains were also observed during site auditing.

11. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month.

Ecological Monitoring

12. Post-translation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

13. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in May 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

15. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

16. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 26, 20, 20, 18 and 20 June 2019 respectively. Details of the audit findings and implementation status are presented in **Section 10**.

Waste Management

17. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediment. Details of waste management data is presented in **Section 11** and **Appendix P**.

Key Information in the Reporting Month

18. Summary of key information in the reporting month is tabulated in Table II

Table II Summary Table for Complaints in the Reporting Month

			<u> </u>	
Monthly Complaints	Event Details		Action Taken	Status
Montiny Complaints	Number	Nature	Action Taken	Status
June 2019	11	Noise / Air / Water / Working Hours ² /	Details refer to App O	Draft CIRs submitted/On- going
May 2019	11	Noise/Air	Details refer to App O	Draft CIRs submitted
April 2019	17 ¹	Noise / Light/ Air / Working Hours ²	Details refer to App O	Draft CIRs submitted
March 2019	25	Noise / Air / Mosquitos	Details refer to App O	Draft CIRs submitted
February 2019	20	Noise/Air	Details refer to App O	Draft CIRs submitted
January 2019	39	Noise / Air / Water	Details refer to App O	Draft CIRs submitted/ Closed
Notifications of any summons & prosecutions received	0		N/A	N/A
Four new complaints was received after the submission of the EMA Report (April 2019) The validity of conducting works during Postricted Hours.				

^{2.} The validity of conducting works during Restricted Hours

19. Summary of complaints received in the reporting month is tabulated in **Table III.**

Table III Summary of Documented Complaints in Reporting Month

Complaint Type	Investigation Findings	Follow-up Action / Mitigation Measure
Lam Tin Side		
Noise nuisance from construction works during weekday daytime and evening times. Noise barriers was found missing in certain parts of the construction areas. Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Noise barriers for breakers and drill rigs have been adopted according to the CNMP, which is verified during the site audits. Dismantling of crusher shelter works were conducted in Portion III during the period of complaint. As confirmed by RE, only a cherry picker and an excavator was operated under valid CNP.	- Contractors are reminded to use intact noise barrier properly in accordance to the CNMP at all times - Contractors are recommended to use quiet quality mechanical PMEs - Use of noise barriers to shield the PMEs from the direct-line of sight to Yau Lai Estate is recommended
Vibration from the construction of Lam Tin Tunnel	Ground-borne noise emitted from the drilling works inside the tunnel is suspected as the cause for the vibration. However	No further mitigation measures can be provided and hence no follow-up action is required.
Tseung Kwan O Side		

Complaint Type	Investigation Findings	Follow-up Action / Mitigation Measure
Operation of Construction works during restricted hours	Construction works were conducted under valid CNPs with confirmation from RE and CCTV footage of the works area	- No follow-up actions are required
Complaint about dark smoke nuisance from the tug boat inside the cofferdam area.	 Dark smoke has been seen emitting dark smoke intermittently from tug boats No violation of the air pollution control (smoke) regulations have been observed 	 The contractors have replaced the air filters in the tug boats Contractors are reminded to replace the air filters regularly
Discharge of mud water into Junk Bay from TKOLT construction site	The muddy water in Junk Bay was suspected to be discharged from the upstream drainage due to heavy rainstorm, as sand plume was found near the outfalls at Junk Bay not within the cofferdam area	Contractors was reminded to cover all exposed grounds with tarpaulin and sandbags; and divert stormwater into wastewater treatment system where sufficient storage and treatment capacity is provided.
Odour nuisance from construction site near Tong Tin Street in daytime. Using impure oil in mobile crane was suspected as the source of odour.	 Only ULSD with Euro 5 standards was used in the mobile cranes at the site No leakage of oil from the mobile cranes was observed or reported. 	Contractor was reminded to store the oil tanks properly and avoid oil leakage from the tanks or PMEs at all times.

Key Construction Work in the reporting month & the next reporting month

20. Summary of key construction work in the reporting month is tabulated in **Table IV**.

Table IV Summary Table for Key Construction Work in the Reporting Month

Contract No.	Project Title	Site Activities	(June 2019)	
NE/2015/01	Tseung Kwan O –	Lam Tin	1) EHC2 U-Trough	
	Lam Tin Tunnel –	Interchange	2) Site Formation – Area 1G1,	
	Main Tunnel and Associated Works		Area 1G2, Area 2, Area 3,	
	Associated Works		Area 4 & Area 5	
			3) Administration Building	
		Main Tunnel	4) Main Tunnel Excavation	
			5) Main Tunnel Lining Works	
		TKO	6) Haul Road Construction and	
		Interchange	Site Formation & Slope Works	
			7) Cavern Excavation	
			8) Steel Platform for Bridge	
			Construction	
NE/2015/02	Tseung Kwan O –	 Backfilling 	works at P2 U-trough CH411 –	
	Lam Tin Tunnel –	CH500		
	Road P2 and	2) Backfilling work of pipe trench for 2100 storm		
	Associated Works	water drain pipe at Portion VII		
		3) Fabrication of ELS members for proposed ELS		
		system at CH318.00 – CH363.50		
		4) Backfilling	of P2A retaining wall	

Contract No.	Project Title	Site Activities (June 2019)
		 ELS works for CH318 – CH363.50 Construction of manhole for 2100 pipe (upper part) CCTV and air test works for 2100 pipe Installation of irrigation system at Portion IV near Ocean Shore EVA Site formation works and drainage for Road P2 CH500-CH650 Removal of sheet pile at Retaining Wall P2A Reclamation works at Portion IX Reinstatement of existing seawall at Portion VII Pipe pile wall for modification of existing seawall of Portion V Pre-drilling at P2 CH105 – CH264 Installation of socket H-pile at P2 CH105 – CH318 Pre-boring for s/p installation at P2 CH105 – CH318 Installation of interlock pipe pile wall Surcharging of surcharge zone 1b1, 1b2, 2a1 – 2a3
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	Installation of kalzip roofing systems on main deck E&M inside Pillar box
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works	 Installation of Precast Pile Cap Shell Pre-drilling Bored Piling Dismantling Works for Temporary Working Platform Construction of Temporary Working Platform
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	1) Trial pit 2) Underground utilities detection 3) Temporary traffic arrangement Setup 4) Bored Piles 5) Predrilling 6) Construction of Temporary cycle track 7) Construction of drainage and watermain 8) Pile Cap construction
NE/2017/06	Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	Erection of Contractor's site accommodation and project signboard at Po Yap Road, Tseung Kwan O

Future Key Issues

21. The future key environmental issues in the coming month include:

Table V Summary Table for Site Activities in the next Reporting Period

	1	of 1 2010	
Contract No. and Project Title	Site Activities	s (July 2019)	Key Environmental Issues *
NE/2015/01 -	Lam Tin	1) EHC2 U-Trough	(A)/(B)/(C)/(D)/
Tseung Kwan O –	Interchange	2) Site Formation – Area 1G1,	(E)/(G)
Lam Tin Tunnel –		Area 1G2, Area 2, Area 3, Area	
Main Tunnel and		4 & Area 5	
Associated Works		3) Administration Building	
	Main Tunnel	4) Main Tunnel Excavation	(B)
	TVIGITI I GITTE	5) Main Tunnel Lining Works	(D)
	TKO	6) Haul Road Construction and	(A)/(C)/(D)/(E)/
	Interchange	Site Formation & Slope Works	(F)/(I)
	interentinge	7) Cavern Excavation	(1) / (1)
		8) Steel Platform for Bridge	
		Construction	
NE/2015/02 -	1) Rockfillin	g works at P2 U-trough CH411 –	(A) / (B) / (C) / (D) /
	1) Backfilling CH500	g works at F2 O-trough C11411 –	(A)/(B)/(C)/(D)/
Tseung Kwan O – Lam Tin Tunnel –		a work of nine transh for 2100 starm	(E) / (G) / (I)
Road P2 and		g work of pipe trench for 2100 storm	
Associated Works		n pipe at Portion VII	
Associated works	· ·	n of ELS members for proposed ELS	
	•	CH318.00 – CH363.50	
		g of P2A retaining wall	
	· ·	s for CH318 – CH363.50	
	*	on of manhole for 2100 pipe (upper	
	part)		
	· ·	l air test works for 2100 pipe n of irrigation system at Portion IV	
	near Ocea		
		tion works and drainage for Road P2	
	CH500-CI		
	· ·	of sheet pile at Retaining Wall P2A	
	·	on works at Portion IX	
	VII	nent of existing seawall at Portion	
		vall for modification of existing	
	seawall of		
	· ·	g at P2 CH105 – CH264	
		n of socket H-pile at P2 CH105 –	
	CH318	C / C / DO CITADO	
		g for s/p installation at P2 CH105 –	
	CH318		
	· ·	n of interlock pipe pile wall	
		ng of surcharge zone 1b1, 1b2, 2a1 –	
	2a3		
NE/2015/03 -	1) Installation	n of false ceiling & lighting	(A) / (B) / (C) / (D) /
Tseung Kwan O –		d irrigation system	(E)
Lam Tin Tunnel –	· ·	hing & M.J installation	(2)
Northern	<i>5)</i> 11001 111118	w instantation	
Footbridge			
1 ootonage	<u> </u>		

onthly EM&A Report for June 2019	Monthly EM&
Key Environmental	
Key Environmental	

Site Activities (July 2019)	Key Environmental
	Issues *
1) Installation of Precast Pile Cap Shell	(A)/(B)/(E)/(F)/
2) Pre-drilling	(G)
3) Bored piling	
4) Dismantling Works for Temporary Working	
Platform	
5) Construction of Temporary Working Platform	
6) Construction of Pile Cap	
7) Construction of Pier	
1) Trial pit	(A)/(B)/(E)/(F)/
2) Underground utilities detection	(G)
3) Temporary traffic arrangement Setup	
4) Bored Piles	
5) Predrilling	
6) Construction of Temporary cycle track	
7) Construction of drainage and watermain	
8) Pile Cap construction	
1) Erection of Contractor's site accommodation	(A)/(B)/(C)/(D)/
and project signboard at Po Yap Road, Tseung	(E) / (F) / (G) / (H)
Kwan O	
	1) Installation of Precast Pile Cap Shell 2) Pre-drilling 3) Bored piling 4) Dismantling Works for Temporary Working Platform 5) Construction of Temporary Working Platform 6) Construction of Pile Cap 7) Construction of Pier 1) Trial pit 2) Underground utilities detection 3) Temporary traffic arrangement Setup 4) Bored Piles 5) Predrilling 6) Construction of Temporary cycle track 7) Construction of drainage and watermain 8) Pile Cap construction 1) Erection of Contractor's site accommodation and project signboard at Po Yap Road, Tseung

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 32th Monthly EM&A report summarizing the EM&A works for the Project in June 2019.

Purpose of the Report

1.2 This is the 32th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in June 2019.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: Water Quality Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring
 - Section 9: **Landfill Gas Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring

locations, monitoring results and Limit Levels and Action Plan

- Section 10: **Environmental Site Inspection** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
- Section 11: Waste Management summarises the waste management data in the reporting month.
- Section 12: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
- Section 13: **Future Key Issues** summarises the impact forecast and monitoring schedule for the next three months.
- **Section 14: Conclusions and Recommendation**

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project are:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.
 - Contract No. NE/2017/02: 15 March 2018.
 - Contract No. NE/2017/01: 23 May 2018.
 - Contract No. NE/2017/06: 09 November 2018.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)

2.6 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. LO Sai Pak, Sunny	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinotech	Environmental	Dr. HF Chan	2151 2088	3107 1388
Cinotecti	Team	Mr. KS Lee	2151 2091	3107 1300
AnewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities	(June 2019)
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Administration Building
		Main Tunnel	4) Main Tunnel Excavation5) Main Tunnel Lining Works
		TKO Interchange	 6) Haul Road Construction and Site Formation & Slope Works 7) Cavern Excavation 8) Steel Platform for Bridge Construction
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	CH500 2) Backfilling storm wate 3) Fabrication ELS system 4) Backfilling 5) ELS works 6) Construction part) 7) CCTV and 8) Installation near Ocean 9) Site format P2 CH500- 10) Removal o	g works at P2 U-trough CH411 – g work of pipe trench for 2100 or drain pipe at Portion VII of ELS members for proposed on at CH318.00 – CH363.50 g of P2A retaining wall of for CH318 – CH363.50 on of manhole for 2100 pipe (upper air test works for 2100 pipe of irrigation system at Portion IV of Shore EVA tion works and drainage for Road of Sheet pile at Retaining Wall P2A on works at Portion IX

Contract No	Contract No. Duaiset Title Site Activities (June 2010)			
Contract No.	Project Title	Site Activities (June 2019) 12) Reinstatement of existing seawall at Portion		
		VII		
		13) Pipe pile wall for modification of existing seawall of Portion V		
		14) Pre-drilling at P2 CH105 – CH264		
		15) Installation of socket H-pile at P2 CH105 – CH318		
		16) Pre-boring for s/p installation at P2 CH105 – CH318		
		17) Installation of interlock pipe pile wall Surcharging of surcharge zone 1b1, 1b2, 2a1 – 2a3		
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel –	Installation of kalzip roofing systems on main deck		
	Northern Footbridge	2) E&M inside Pillar box		
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O	 Installation of Precast Pile Cap Shell Pre-drilling Bored Piling 		
	Interchange and Associated Works	4) Dismantling Works for Temporary Working Platform		
		5) Construction of Temporary Working Platform		
NE/2017/02	Tseung Kwan O –	1) Trial pit		
	Lam Tin Tunnel –	2) Underground utilities detection		
	Road P2/D4 and	3) Temporary traffic arrangement Setup		
	Associated Works	4) Bored Piles		
		5) Predrilling		
		6) Construction of Temporary cycle track		
		7) Construction of drainage and watermain8) Pile Cap construction		
NE/2017/06	Tseung Kwan O –	Erection of Contractor's site accommodation		
111/201//00	Lam Tin Tunnel –	and project signboard at Po Yap Road,		
	Traffic Control and	Tseung Kwan O		
	Surveillance	1200000		
	System(TCSS) and			
	Associated Works			

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation

devices provided on site for treatment
before discharge
• Use of quiet plant and well-maintained
construction plant
 Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

C 4 AN	Permit / License No.	Valid Period		Gt. t	
Contract No.		From	То	Status	
Environmenta	al Permit (EP)				
N/A	EP-458/2013/C	20/1/2017	N/A	Valid	
Notification p	ursuant to Air Pollution Co	ntrol (Constru	ction Dust) Regulati	on	
NIE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid	
NE/2015/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid	
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid	
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid	
NE/2017/02	EPD Ref no.: 429867	19/01/2018	N/A	Valid	
NE/2017/01	EPD Ref no.: 430070	25/01/2018	N/A	Valid	
Billing Accoun	nt for Construction Waste D	isposal	•		
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid	
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid	
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid	
NE/2017/02	Account No. 7029651	22/12/2017	N/A	Valid	
NE/2017/01	Account No. 7029994	01/02/2018	N/A	Valid	
NE/2017/06	Account No. 7032520	22/11/2018	N/A	Valid	
Vessel Billing	Account under construction	waste disposa	al charging scheme		
Registration o	f Chemical Waste Producer				
NE/2015/01	Waste Producer No. 5218- 290-L2881-02	22/08/2016	N/A	Valid	
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid	
NE/2015/02	Waste Producer No. 5213-838-C4094-01	23/08/2016	N/A	Valid	
NE/2015/03	Waste Producer No. 5213- 265-W3435-04	19/07/2017	N/A	Valid	
NE/2017/02	Waste Producer No. 5213-833-Z4004-04	01/02/2018	N/A	Valid	
NE/2017/01	Waste Producer No. 5213- 833-C4262-01	12/02/2018	N/A	Valid	
Effluent Disch	Effluent Discharge License under Water Pollution Control Ordinance				

C 4 4 N	D '4/I' N	Val	Valid Period	
Contract No.	Permit / License No.	From	То	Status
	WT00025806-2016	18/07/2018	30/11/2021	Valid
	WT00026212-2016	16/05/2017	30/11/2021	Valid
NE/2015/01	WT00027354-2017	22/03/2017	31/03/2022	Valid
	WT00027405-2017	22/03/2017	31/03/2022	Valid
	WT-00028495-2017	11/08/2017	31/08/2022	Valid
	WT00026386-2016	15/12/2016	31/12/2021	Valid
NE/2015/02	WT00027226-2017	23/02/2017	28/02/2022	Valid
	WT00030654-2018	16/04/2018	30/04/2023	Valid
NE/2015/03	WT00027295-2017	20/03/2017	31/03/2022	Valid
NE (2015 (01	WT00030711-2018	11/04/2018	30/04/2023	Valid
NE/2017/01	WT00030716-2018	23/05/2018	31/05/2023	Valid
NE/2017/02	WT00030654-2018	16/04/2018	30/04/2023	Valid
Construction	Noise Permit (CNP)			-
	GW-RE0881-18	24/12/2018	22/06/2019	Expired on 2 June 2019
	GW-RE0171-19	08/03/2019	07/06/2019	Expired on (June 2019
NT (2017 (01	GW-RE0202-19	31/03/2019	30/06/2019	Expired on 3 June 2019
NE/2015/01	GW-RE0272-19	22/04/2019	21/06/2019	Expired on 2 June 2019
	GW-RE0347-19	13/5/2019	13/07/2019	Valid
	GW-RE0424-19	11/6/2019	03/09/2019	Valid
	GW-RE0425-19	23/6/2019	22/12/2019	Valid
	GW-RE0427-19	21/6/2019	20/09/2019	Valid
	GW-RE0833-18	02/12/2018	01/06/2019	Expired on 0 June 2019
	GW-RE0355-19	02/06/2019	01/12/2019	Valid
	GW-RE0366-19	14/05/2019	13/11/2019	Valid
NE/2015/02	GW-RE0008-19	15/01/2019	14/07/2019	Valid
	GW-RE0228-19	11/04/2019	10/10/2019	Valid
	GW-RE0299-19	26/04/2019	16/10/2019	Valid
	GW-RE0218-19	30/04/2019	29/06/2019	Expired on 2 June 2019
NE/2017/01	GW-RE0350-19	08/05/2019	05/11/2019	Valid
NE/2017/01	GW-RE0394-19	27/05/2019	26/08/2019	Valid
Marine Dump	oing Permit			
	EP/MD/19-086	14/01/2019	13/07/2019	Valid
NE/2017/01	EP/MD/20-021	01/06/2019	30/06/2019	Expired on 3 June 2019

Contract No. Permit / License No.	Downit / Licongo No	Vali	id Period	Status
	From	То	Status	
NE/2015/01	L-11-053	09/03/2018	08/03/2021	Valid

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans:
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 10** of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in June 2019.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
$AM4^{(1)}$	Sitting-out Area at Cha Kwo Ling Village	Ground Level
AM4(A) ^{(2) (*)}	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
$AM5(A)^{(*)}$	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3B / LD-5R	3
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-831	0
1-nour 151 Bust weter	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	2
IIVC Complet	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
	Davis Weather Monitor II, Model no. 7440	1
Wind Anemometer	Davis Weather Stations, Vantage Pro 2, Model No. 6152CUK	0

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 days
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Remove the red rubber cap from the AEROCET-531 inlet nozzle.
- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5µm and 5µm channels will show the cumulative counts of particles larger than 0.5µm and 5µm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300 / Hal-HPC301)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170 and GMW Model: GS2310) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart
 - the distance between the sampler and an obstacle, such as buildings, must be at least

twice the height that the obstacle protrudes above the sampler;

- a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3µm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centred with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminum strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

3.20 The following maintenance/calibration is required for the HVS:

- The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
- High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 No Action/Limit Level exceedance was recorded for both 1-hour TSP and 24-hour TSP monitoring.
- 3.22 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.23 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Table et : 1125 2 and 2 and 115 2 an		
Station	Major Dust Source	
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road	
AM2 – Sai Tso Wan Recreation Ground	N/A	
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza	
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road	
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road	
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound	
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road	

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)/Refuge floor (26/F)#
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

Remarks:

Monitoring Equipment

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

^{*} Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

[#] Monitoring location has changed from 41/f to 26/f on 23rd Nov 2018.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Sound Level Meter	SVAN 957/ 959 / 979	4
Calibrator	SV30A	1
Cambrator	Brüel & Kjær 4231	1

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**. Additional weekly impact monitoring are carried out for evening time (1900 – 2300 hours) for monitoring stations CM1, CM2, CM3 & CM6(A) and night-time (2300 – 0700 hours) for monitoring stations CM1, CM2 & CM3.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2	L ₁₀ (30 min)	0700-1900 hrs on normal weekdays	Once per week	Façade
CM3	dB(A)			Façade
CM4	L ₉₀ (30 min)			Façade
CM5	dB(A)			Façade
CM6(A)	L _{eq} (30 min)			Free Field
CM7(A)	dB(A)			Free Field
CM8(A)				Façade
CM1	L ₁₀ (5 min)	1000 07001		Façade
CM2	dB(A)	1900 – 0700 hrs on normal weekdays		Façade
CM3	$L_{90}(5 \text{ min})$ dB(A)	normai weekdays		Façade
CM6(A)	L _{eq} (5 min) dB(A)	1900 – 2300 hrs on normal weekdays		Free Field

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:

frequency weighting: A
time weighting : Fast
measurement time : 30 minutes

 Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.

- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 Six (6) Action Level exceedances were recorded due to the documented complaints received in this reporting month. No Limit Level exceedances for day-time, evening time and night-time construction noise monitoring were recorded in the reporting month.
- 4.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.11 The major noise source identified at the noise monitoring stations are shown in **Table 4.4**.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
СМЗ	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4.12 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to

facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**, **4.6** and **4.7**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	- 75
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	
(*) Noise Limit Le	evel is 65 dB(A) during school examination periods.	-

Table 4.6 Baseline Noise Level and Noise Limit Level for Monitoring Stations (Evening-time & Daytime (Holiday))

Station	Baseline Noise Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))	Noise Limit Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))		
CM1	64.4			
CM2	62.2	70		
CM3	64.7			
CM6(A)	60.2	65 ¹		
1. ASR B was add	1. ASR B was adopted according to the EIA as traffic in the surrounding area has not been changed.			

Table 4.7 Baseline Noise Level and Noise Limit Level for Monitoring Stations (Night-time)

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
	(Night-time (2300 – 0700 hrs)	(Night-time (2300 – 0700 hrs)
CM1	14-day baseline monitoring results for	
CM2	the time period of impact measurement	55
CM3	at each station would be adopted	

Current Tunnel Blasting Arrangement

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report for June 2019

- 4.13 The drill and blast method was evaluated as the most appropriate method and the general practice of this method was introduced during the EIA report assessment. The paragraphs 2.9.9 and 2.9.33 of the EIA Report mention that there might be one blast or multiple blasts and the maximum number of blast location per day would be determined by the Contractor to suite his method of working.
- 4.14 Notwithstanding the information provided by the Engineer at paragraphs 4.6.4 and 6.6.12 of the EIA Report, to minimize blast nuisance to the public and to respond to the community concerns, the tunnel blast should be arranged, where possible, avoiding the blast to be carried out during night time and shortening the blast duration by arranging various work fronts to be blasted at different time slots. Hence, it has become more desirable to split one tunnel blasting operation, which may consist of several blasting work fronts along the tunnels, into a total of two to three tunnel blasts per day. The tunnel blasts, which locate outside the MTR Protection Zone (RPZ) possessing insignificant risk to the MTR's structures would be carried out during day time and before 22:00. For the tunnel blasts within and in close vicinity to RPZ, Contractor's blasting assessment report revealed that those blasts have to be carried out after train service and, generally, at around 01:40.
- 4.15 Since the tunnelling works conducted in this reporting month are well outside the RPZ, no blasting was carried out during the mid-night.

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

- 5.1 Groundwater quality monitoring shall be conducted as identified in the EIA report (locations refer to **Figure 4**, Stream 1 to 3). According to the EM&A Manual, dissolved oxygen (DO), pH, temperature, turbidity, suspended solids (SS), 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate are the parameters for the monitoring. **Appendix A** shows the established Action and Limit Levels.
- 5.2 As stated in the Baseline Environmental Monitoring Plan submitted to EPD in September 2016, Groundwater quality monitoring could not be conducted at the other identified monitoring station in the EIA Report, Stream 4, as it was found to be not accessible due to safety reason. EPD has no further comment on the Plan in October 2016.

Marine Water Quality

- 5.3 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in-situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.
- 5.5 According to the Environmental Review Report (ERR) for Variations of Environmental Permit (Ref: C45-03), water quality monitoring and audit programme was implemented for monitoring of oxygen depletion (e.g. Dissolved Oxygen (DO) level) in this embayed waters during the period when the fully enclosed barrier is installed. A "Proposal for Water Quality Monitoring in Temporary Marine Embayment" has been submitted to EPD in July 2017 to propose the monitoring frequency, parameter, location, etc. EPD has no further comment on the Proposal.

Groundwater Level Monitoring (Piezometer Monitoring)

5.6 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was

recorded in the reporting month.

Monitoring Locations

Groundwater Quality

5.7 Stream 1 – Stream 3 is designated for the groundwater quality monitoring according to EM&A Manual. The locations are summarized in **Table 5.1** and shown on **Figure 4**.

Table 5.1 Groundwater Quality Monitoring Stations

Monitoring Streams	Descriptions	Sampling Location
Stream 1	Stream running between the Kwong Tin Estate and Lei Yue Mun Road	1 sampling
Stream 2	Stream on western coast of Chiu Keng Wan	location for each stream
Stream 3	Stream on western coast of Chiu Keng Wan	cacii stream

Marine Water Quality

5.8 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. One additional monitoring station (W1) is designated for monitoring of oxygen depletion in the embayed waters during the period when the fully enclosed barrier is installed. The locations are also summarized in **Table 5.2** and shown on **Figure 5** and **Figure 9**.

Table 5.2 Marine Quality Monitoring Stations

Monitoring	Descriptions	Coordinates	
Stations	Descriptions	Easting	Northing
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565
M2	Junk Bay Coral Site – Junk Bay	844076	817087
M3	Junk Bay Coral Site – Junk Island	844491	817890
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769
M6	Tseung Kwan O Salt Water Intake	845512	817442
C1	Control Station – Southeast	844696	814773
C2	Control Station – Northwest	842873	816014
G1	Gradient Station	844418	817560
G2	Gradient Station	844290	817384
G3	Gradient Station	844488	817735
G4	Gradient Station	844967	817551
W1	Ocean Shores (for WQM in temporary marine embayment)	844324	817791

Monitoring Equipment

5.9 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.10 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.11 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.12 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.13 Salinity compensation was built-in in the DO equipment.

Turbidity

5.14 Turbidity was measured in-situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

<u>pH</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.16 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.17 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labelled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In-Situ Instruments

5.19 All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.

- 5.20 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.21 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.22 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.23 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality System	YSI 6820-C-M	0
	Aquaread AP-2000-D	0
	YSI EXO1 Multiparameter Sondes	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.24 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

 Table 5.4
 Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit		Depth	Frequency
Groundwater Quality				
Stream 1- Stream 3	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Turbidity, NTU SS, mg/L BOD₅, mg O₂/L TOC, mg-TOC/L Total Nitrogen, mg/L Ammonia-N, mg NH₃-N/L Total Phosphate, mg-P/L 		Mid-depth	Biweekly (When the tunnel construction works are found within 50m of the location, weekly.)
Marine Water Quality				
M1	<u>In-situ:</u>		M1-M5, C1-C2,	3 days per week
M2	Dissolved oxygen (DO)		<u>G1-G4</u>	/
M3	concentration, DO saturation,	•	3 water depths:	2 per
M4	turbidity, pH, temperature and		1m below water	monitoring day
M5	salinity		surface, mid-depth	(1 for mid-ebb
M6			and 1m above sea	and 1 for mid-
C1	<u>Laboratory Testing:</u>		bed.	flood)

Monitoring Stations	Parameters, unit	Depth	Frequency
C2 G1 G2 G3 G4	Suspended Solids (SS)	 If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level) 	
Water Qualit	ty Monitoring in Temporary Ma	arine Embayment	
W1	 DO, mg/L DO Saturation, % pH Water Temperature (°C) Salinity, ppt 	 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth monitoring only. If the water depth is less than 6m, omit mid-depth monitoring 	Weekly during the period when the fully enclosed barrier is installed

Monitoring Methodology

Groundwater Quality

- 5.25 At each monitoring location, two consecutive in-situ measurements for DO concentration, DO saturation, pH, temperature and turbidity were taken for water samples on site. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.26 For SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate, measurement and grab samples of surface water was collected. Water samples of about adequate volume was collected and stored in high density polythene bottles. Following collection, water samples was stored in high density polythene bottles. Preservation H₂SO₄ was appropriately added for water samples for TOC, Total Nitrogen, Ammonia-N and Total Phosphate testing. Water samples was packed in ice and cooled to 4°C (without being frozen), delivered to the HOKLAS accredited laboratory, Wellab Limited and analyzed.

Marine Water Quality

- 5.27 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.29 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L $^{(1)}$	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	-
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	-
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ - N/L	-
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

- 1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.
- 2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

32

Sampling Management and Supervision

- 5.31 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.32 QA/QC procedures as attached in **Appendix J** are available for the parameters analysed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

Groundwater Quality Monitoring

- 5.33 Summary of groundwater quality monitoring results is shown in **Table 5.6**. Groundwater quality monitoring results, graphical presentations and laboratory testing reports are shown in **Appendix H**.
- 5.34 Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.35 Action and Limit Level for groundwater quality monitoring has been reviewed with consideration of monitoring results obtained from November 2016 to June 2017, as there was no tunnel boring or tunnel construction works from November 2016 to June 2017. A "Review Report for Action and Limit Levels of Groundwater Quality Monitoring" was submitted to EPD in August 2017. EPD has no further comment on the report and the updated Action and Limit Level is shown in **Appendix A**.

Table 5.6 Summary of Groundwater Quality Monitoring Results

		Parameters (unit)								
Date	Location	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	SS (mg/L)	BOD ₅ (mg O ₂ /L)	TOC (mg- TOC/L)	Total Nitrogen (mg/L)	NH ₃ -N (mg NH ₃ -N/L)	Total Phosphorus (mg-P/L)
	Stream 1	7.5	8.2	2.1	2.4	<u>3</u>	4	1.2	0.04	0.03
12 June 2019	Stream 2	7.5	8.1	1.2	2.2	2	3	1.2	0.05	0.03
	Stream 3	7.4	8.5	1.4	2.5	2	4	1.2	0.13	0.02
	Stream 1	7.9	8.1	0.3	<1.0	<u>3</u>	3	0.6	0.03	0.02
21 June 2019	Stream 2	7.9	8.3	0.4	<1.0	2	2	0.6	0.04	0.02
	Stream 3	7.9	8.1	0.3	<1.0	2	2	0.6	0.03	0.02
No. of Exceedance	Action Level	0	0	0	0	0	0	0	0	0
	Limit Level	0	0	0	0	2	0	0	0	0

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

5.36 Two (2) Limit Level Exceedances in groundwater quality monitoring were recorded in the reporting month.

Marine Water Quality Monitoring

5.37 Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway

nearby.

- 5.38 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix** I. Forty-one (41) Action Level and two-hundred and twenty-four (224) Limit Level exceedances were recorded in marine water quality monitoring.
- 5.39 The exceedance of SS has been recorded continuously and randomly at all monitoring stations in June. According to the data from Hong Kong Observatory, high rainfall was recorded in June and a high volume of upstream muddy water was discharged into the Junk Bay, as observed around the rainstorm events. No sand plume within the cofferdam area and no muddy water discharge at the designated discharge point within the Site were identified during the site inspection and water quality monitoring, and, as part of mitigation measures for marine works, silt curtains and cofferdam are deployed around the marine works area of the Project and no major deficiency of the conditions of the silt curtain and the cofferdam has been discovered.
- 5.40 In addition, muddy water was observed during weekly site inspection at a few outfalls in Junk Bay around the rainstorm events. The muddy water discharge occurred during the rainstorms would have resulted in an increase of the overall SS concentrations in Junk Bay and hence the SS limit level exceedance was recorded. No direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Therefore, no additional marine water quality monitoring was required. Details of the exceedance investigation report can be found in **Appendix K**.
- 5.41 Silt curtain inspections are carried out before the commencement of the construction works every day and diving surveys are also conducted once a week to inspect the silt curtain below the water level. The inspection report are verified by both the RE and the diving specialist and the records are reviewed weekly during the site audits.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.42 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.43 Tunnel construction activities are within +/- 50m of the piezometer gate in plan. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month. Details of the result are presented in **Appendix U**.

Mitigation Measures Adopted by Contractors for Surface runoff Prevention

5.44 During wet season, the Contractors have step up the mitigation measures adopted on Site, in order to prevent surface run-off and muddy water from discharging to the public areas. The Surface Run-off Management Plans for all contracts are attached in **Appendix V** and the mitigation measures adopted by each Contract are summarised below:

NE2015/01

- 5.45 At Lam Tin Side, the Site drainage systems are divided into two parts, namely the site formation and tunnel site drainage which includes:
 - 1. Site formation drainage system collects surface run-off from open excavation areas including slope works and flows naturally to the lowest point in the Site, where they are pumped to the wetseps and sedimentation tank for treatment near LTI site entrance before they are discharged to designated discharge point.
 - 2. Tunnel drainage system collects surface run-off from the tunnel which are then pumped to the sedimentation tanks near tunnel adit, where three sets of wetseps and sedimentation tanks were set up. The treated water will be discharged to designated discharge point near the Eastern Harbour Crossing (EHC) area.
- 5.46 At Eastern Harbour Crossing (EHC), two sets of wetseps and sedimentation tanks are set up on site. The wastewater will flow to the lowest catchpit by gravity, which are then pumped to wetseps for wastewater treatment. The sandbags/bunds are also set up at the vehicle entrance to surface run-off from the Site.
- 5.47 At Tseung Kwan O (TKO), the surface run-off from the slope are directed to the lowest point at cavern via the permanent drainage, which are then pumped to the sedimentation tanks for wastewater treatment via temporary pipes. The treated water will be discharged at designated discharge points. The wetseps and sedimentation tanks are provided under the BMCPC bridge and at the two sides of marine working platform. Water from natural stream will also be diverted to existing drainage to avoid overloading the capacity of the wastewater treatment system. The reservoir on the right side of marine working platform will be enlarged to cater for higher water storage demands. During heavy rainfall, the water stored at the exit of the tunnel shall be pumped into the sedimentation tanks on the right.

NE2015/02

- 1. The exposed sloped area at Portion 9 has been covered with tarpaulin to avoid surface run-off.
- 2. The bund wall near Area A has been extended to 300mm in depth along the drainage system at Area A, extra bund wall shall be provided at the gaps between the concrete block walls in Area A when necessary.
- 3. Soak away pit with a 600mm in diameter were bored into the ground, down to 14mPD, near the piling works area to cater for the surface runoff at portion 9. The stormwater and the water generated from the piling works are stored temporary at the pit around the soak away pit, which shall be pumped automatically into the soak away pit where they are soaked into the soil naturally.
- 4. The stormwater received in Portion 9 shall be directed and pumped via the flex tube and sump towards the water treatment system in Area A and Z. The peripheral open U-channel are also provided along the site boundary, which shall be directed to the storage tank and WetSep for treatment in Area A.
- 5. Regular cleaning depending on site conditions are provided for the WetSep at Area A and Z; and the storage tanks and sedimentation tanks at Area A. The water treated by the sedimentation tank and the wetsep shall be discharged towards the designated

discharge point. Quality of the effluent are also monitored regularly.

NE2017/02

- 1. Existing manholes are covered with sandbags and geotextiles to avoid surface runoff from entering the channels.
- 2. Stockpiles are covered with tarpaulin to avoid surface run-off.
- 3. Concrete blocks and sandbags are placed along the periphery of the site boundary to avoid surface run-off.
- 4. Stormwater within the site enters the excavated area and flow naturally into the sump due height difference. The stormwater collected in the sump shall be pumped into the sedimentation tank where the run-off are treated before discharging into the designated discharge point.

NE2015/03

- 1. The existing manhole cover are covered with geotextile to prevent muddy water from entering the existing U-channels along the side of Po Shun Road. Manhole inspection are carried out by taking silt measurement regularly in case if silt enters the channel, and silt shall be removed from the manhole if silt were found.
- 2. Sandbags were placed at the periphery of the site along the hoarding to prevent surface runoff from escaping the site.
- 3. Exposed slopes are covered with tarpaulin to prevent surface run-off.
- 4. The surface run-off shall be pumped into the sedimentation tank where they are treated before entering the designated discharge points

NE2017/01

1. Temporary peripheral open U-channels and sumps are provided for collecting the stormwater, which are pumped and directed towards the sedimentation tank for treatment. The treated water shall be directed to the designated discharge point.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. Location of post-translocation coral monitoring is shown in **Figure 7**. The fourth post-translocation coral monitoring was carried out on 07 November 2017. No further monitoring is required.

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be applied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 May 2017.
- 7.2 As stated in the "Built Heritage Mitigation Plan" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

7.3 One vibration monitoring point and three building settlement monitoring points were proposed for monitoring of the cultural heritage. The building settlement markers were placed on the wall on three sides of the Temple, except the front, of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.4 Building settlement is measured via a settlement marker attached to the wall of Cha Kwo Ling Tin Hau Temple by adhesive tape.
- 7.5 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "Guidance Note on Vibration Monitoring" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.6 **Table 7.1** summarizes the equipment employed by the Contractor for cultural heritage monitoring. Copies of calibration certificates are attached in **Appendix B**.

Table 7.1 Cultural Heritage Monitoring Equipment

Equipment	Manufacturer and Model	Quantity
Digital Level for tilting	Leica LS15	1
Digital Level for thining	Serial No.: 701141	1
Digital Caliper for tilting	Mitutoyo CD-6" ASX	1
Digital Camper for thining	Serial No.: A17047921	1
iCivil-1011 Inclinometer	iCivil-1011 Inclinometer	2
for building settlement	Serial No.: HK110118 / HK110120	2
Vibrographs for vibration	MiniMate Plus / MicroMate	
monitoring	manufactured by Instantel	
momtoring	Model No.: 716A0403 / 721A2501	

Monitoring Methodology

7.7 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.8 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Markers	6mm	8mm	10mm
Building Tilting ⁽¹⁾	1:2000	1:1500	1:1000

Remarks:

Results

7.9 In the reporting month, cultural heritage monitoring was carried out by the Contractor at the aforesaid location on 25 occasions. No AAA Level exceedance was recorded in the reporting month. The monitoring results are presented in **Appendix T**.

Mitigation Measures for Cultural Heritage

- 7.10 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.11 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

⁽¹⁾ Building tilting measurement was replaced by building settlement point measurement. The tilting can be calculated by the ratio of the maximum settlement difference between 2 points and the distance between the 2 points.

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Implementation Schedule and Recommended Mitigation Measures" (shown in **Appendix N**). The summaries of observations and recommendations related to landscape and visual impacts, if any, are shown in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and Figure 6 shows the landfill gas monitoring locations.

Excavation Locations : Portion III Manholes and Chambers : N/A Relocation of monitoring wells : N/A Any other Confined Spaces : N/A

Monitoring Equipment noise mitigation

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

41

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report for June 2019

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	ALTAIR 5X	
Portable gas detector	Multigas Detector	1
	(Serial No. 137333)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 120 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 5, 12, 19 and 26 June 2019
 - Contract No. NE/2015/02: 6, 13,20 and 27 June 2019
 - Contract No. NE/2015/03: 6, 13,20 and 27 June 2019
 - Contract No. NE/2017/01: 4, 13, 18 and 25 June 2019
 - Contract No. NE/2017/02: 6, 13,20 and 27 June 2019

Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 26, 20, 20, 18 and 20 June 2019 respectively.

Implementation Status of Environmental Mitigation Measures

- 10.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.4 During site inspections in the reporting month, no non-compliance was recorded on reporting month. The observations and recommendations made during the audit sessions are summarized in **Appendix L**.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for June 2019

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 Six (6) Action Level exceedances were recorded due to the documented complaints received in the reporting month. No exceedances of construction noise monitoring were recorded for day-time, evening-time and night-time respectively in the reporting month.
- 12.2 Two (2) Limit Level Exceedances for groundwater quality monitoring were recorded in the reporting month.
- 12.3 Forty-one (41) Action Level and two-hundred and twenty-four (224) exceedances were recorded in marine water quality monitoring.
- 12.4 Actions carried out in accordance with the Event and Action Plans in **Appendix M** are presented in **Appendix K** Summary of Exceedance.

Summary of Environmental Non-Compliance

12.5 No non-compliance was recorded on this reporting month.

Summary of Environmental Complaint

12.6 Eleven (11) environmental complaints were received in the reporting month. The Cumulative Complaint Log is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.7 No notification of summon or successful environmental prosecution was received in this reporting period. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Table 15.1 Summary Table for Site Activities in the next Reporting Feriou					
Contract No. and Project Title		Site Activities (June 2019)	Key Environmental		
			Issues *		
NE/2015/01 -	Lam Tin	1) EHC2 U-Trough	(A) / (B) / (C) /		
Tseung Kwan O –	Interchange	2) Site Formation – Area 1G1, Area	(D)/(E)/(G)		
Lam Tin Tunnel –		1G2, Area 2, Area 3, Area 4 & Area			
Main Tunnel and		5			
Associated Works		3) Administration Building			
	Main	4) Main Tunnel Excavation	(B)		
	Tunnel	5) Main Tunnel Lining Works			
	TKO	6) Haul Road Construction and Site	(A) / (C) / (D) /		
	Interchange	Formation & Slope Works	(E)/(F)/(I)		
		7) Cavern Excavation			
		8) Steel Platform for Bridge Construction			
NE/2015/02 -	1) Backfillir	g works at P2 U-trough CH411 – CH500	(A) / (B) / (C) /		
Tseung Kwan O –	· ·	ng work of pipe trench for 2100 storm	(A)/(B)/(C)/(C)/(D)/(E)/(G)/(D)		
Lam Tin Tunnel –		in pipe at Portion VII	(I)		
Road P2 and		on of ELS members for proposed ELS	、 /		
Associated Works	system at				
	4) Backfillin				
		as for CH318 – CH363.50			
	· ·	ion of manhole for 2100 pipe (upper part)			
		d air test works for 2100 pipe			
	8) Installation Ocean Sh	on of irrigation system at Portion IV near ore EVA			
		ation works and drainage for Road P2			
	CH500-C	<u> </u>			
	10) Removal	of sheet pile at Retaining Wall P2A			
		ion works at Portion IX			
		ment of existing seawall at Portion VII			
	of Portion	wall for modification of existing seawall			
		ng at P2 CH105 – CH264			
	15) Installatio	on of socket H-pile at P2 CH105 – CH318			
		g for s/p installation at P2 CH105 –			
	CH318				
		on of interlock pipe pile wall			
	18) Surchargi	ng of surcharge zone 1b1, 1b2, 2a1 – 2a3			

Contract No. and Project Title	Site Activities (June 2019)	Key Environmental Issues *
NE/2015/03 -	1) Installation of false ceiling & lighting	(A) / (B) / (C) /
Tseung Kwan O	2) Planter and irrigation system	(D) / (E)
– Lam Tin	3) Floor finishing & M.J installation	
Tunnel –		
Northern		
Footbridge		
NE/2017/01 -	1) Installation of Skylight glazing on Main Deck	(A) / (B) / (E) /
Tseung Kwan O	2) Modification work of temporary platform on Main	(F)/(G)
Interchange and	Deck	
Associated	3) Installation of Precast Pile Cap Shell	
Works	4) Pre-drilling	
	5) Bored piling	
	6) Dismantling Works for Temporary Working	
	Platform 7) Construction of Tourness Working Platforms	
	7) Construction of Temporary Working Platform	
	8) Construction of Pile Cap9) Construction of Pier	
NE/2017/02 -	1) Trial pit	(A) / (B) / (E) /
Tseung Kwan O	2) Underground utilities detection	(F)/(G)
- Lam Tin	3) Temporary traffic arrangement Setup	$(\Gamma) / (G)$
Tunnel - Road	4) Bored Piles	
P2/D4 and	5) Predrilling	
Associated	6) Construction of Temporary cycle track	
Works	7) Construction of drainage and watermain	
,,, 91115	8) Pile Cap Construction	
NE/2017/06 -	Erection of Contractor's site accommodation and	(A) / (B) / (C) /
Tseung Kwan O	project signboard at Po Yap Road, Tseung Kwan O	(A) / (B) / (C) / (D) / (E) / (F) /
– Lam Tin	project signobard at FO Tap Road, Tseding Rwan O	$(D)/(E)/(\Gamma)/$ $(G)/(H)$
Tunnel – Traffic		(0) / (11)
Control and		
Surveillance		
System(TCSS)		
and Associated		
Works		

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Key Issues for the Coming Month

13.3 Key environmental issues in the coming month include:

- Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- Noisy construction activity such as rock-breaking activities and piling works;
- Runoff from exposed slope or site area;
- Wastewater and runoff discharge from site;
- Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- Set up and implementation of temporary drainage system for the surface runoff;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Accumulation and storage of general and construction waste on site; and
- Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 32th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in June 2019 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 14.3 No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 14.4 Six (6) Action Level exceedances were recorded due to the documented complaints received in this reporting month. No exceedance was recorded during night-time in the reporting month.
- 14.5 No Limit Level exceedance was recorded for daytime construction noise in the reporting month.

Water Quality Monitoring

- 14.6 Two (2) Limit Level Exceedances in groundwater quality monitoring were recorded in the reporting month.
- 14.7 Forty-one (41) Action Level and two-hundred and twenty-four (224) Limit Level exceedances were recorded in marine water quality monitoring.
- 14.8 Tunnel construction activities are within +/- 50m of the piezometer gate in plan. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month. Details of the result are presented in **Appendix U**.

Ecological Monitoring

14.9 The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

14.10 No Alert Alarm and Action (AAA) Level exceedance of cultural heritage monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.11 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.12 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.13 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-compliance was identified. The environmental deficiency observed during the reporting month are shown in **Appendix L**.

Complaint, Prosecution and Notification of Summons

14.14 Eleven (11) environmental complaints, no successful prosecution and notification of summon were received during the reporting period.

Recommendations

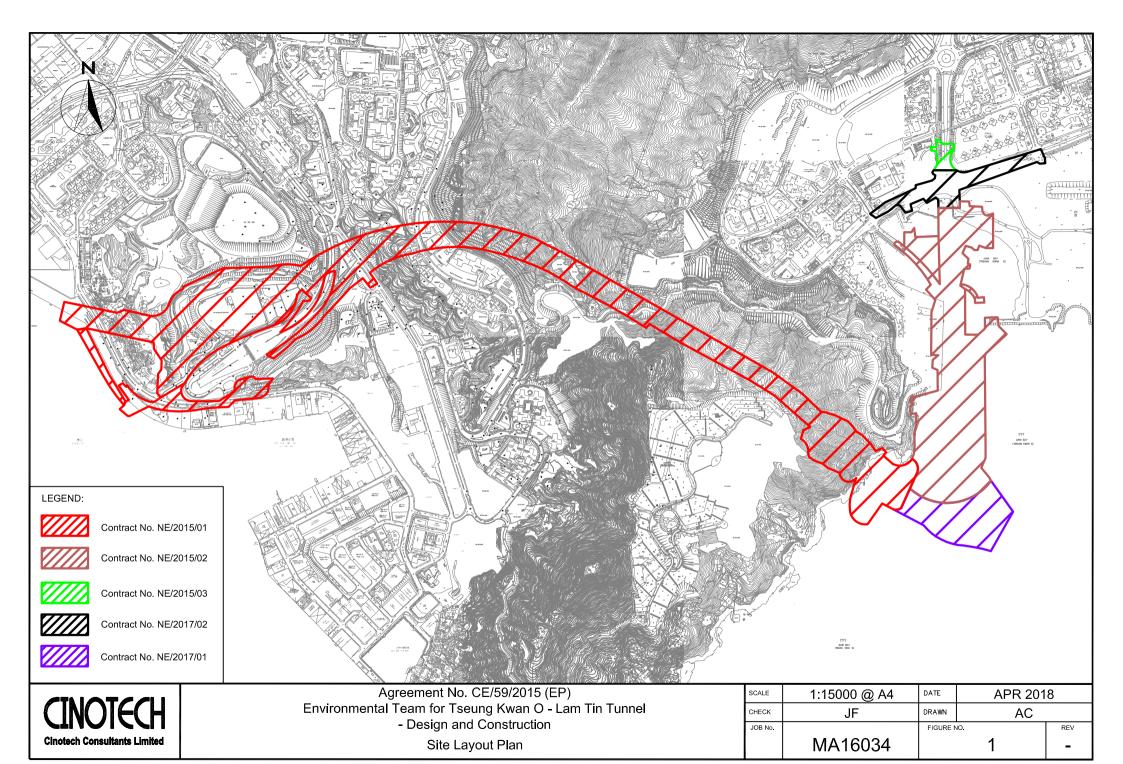
- 14.15 The following recommendations were made to the Contractor for the reporting month: Air Quality Impact
 - To regularly apply watering on dry surface should be applied to minimize erosion.
 - To aim the water spray at the rock breaking point for effective dust suppression.
 - To water materials before loading/unloading.
 - To turn off idle equipment.

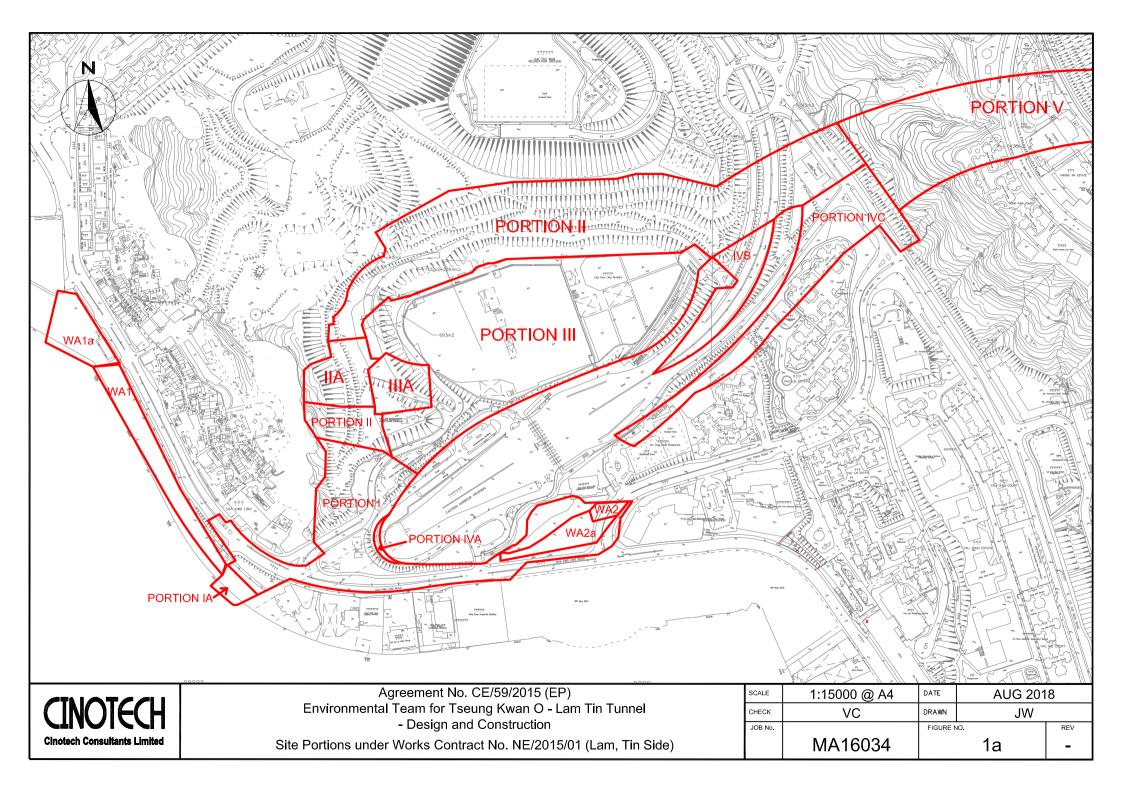
Construction Noise

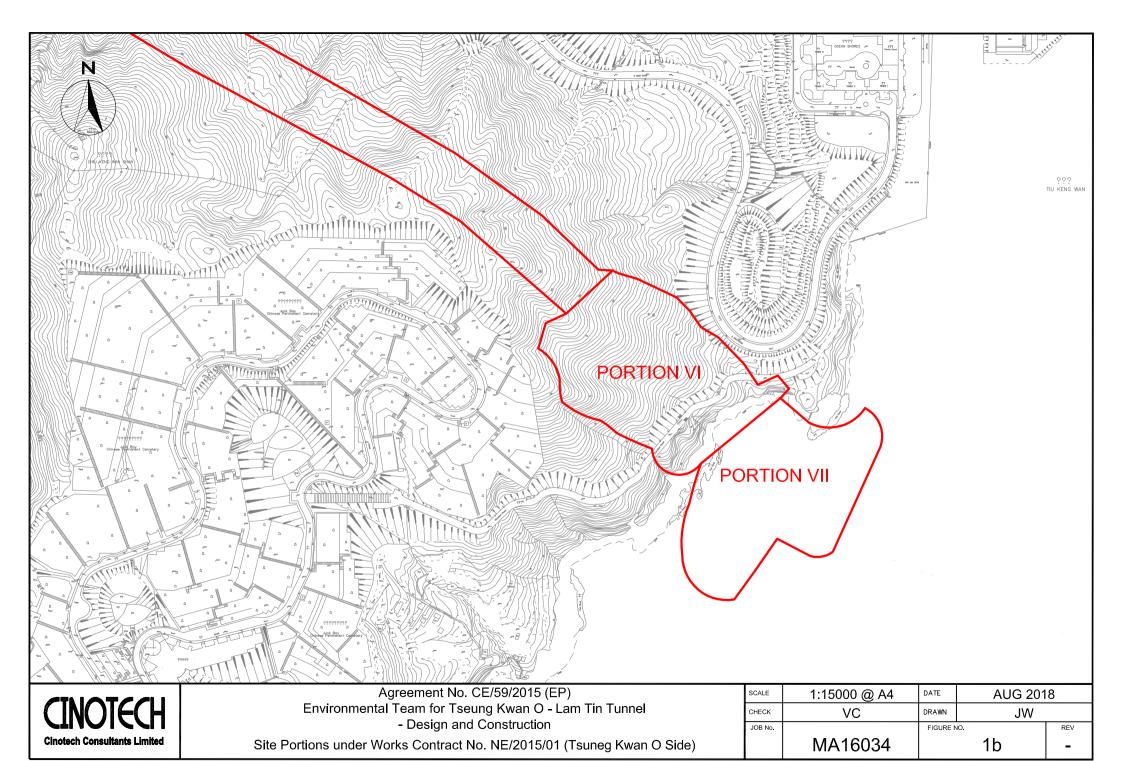
- To provide sufficient noise barriers for noisy PMEs as practically at LTI according to CNMP at all times
- To repair the gaps between the noise barriers.
- To place the barrier close to the breaking point for effective noise screening.
- To erect sound proof canvases on derrick lighter barge

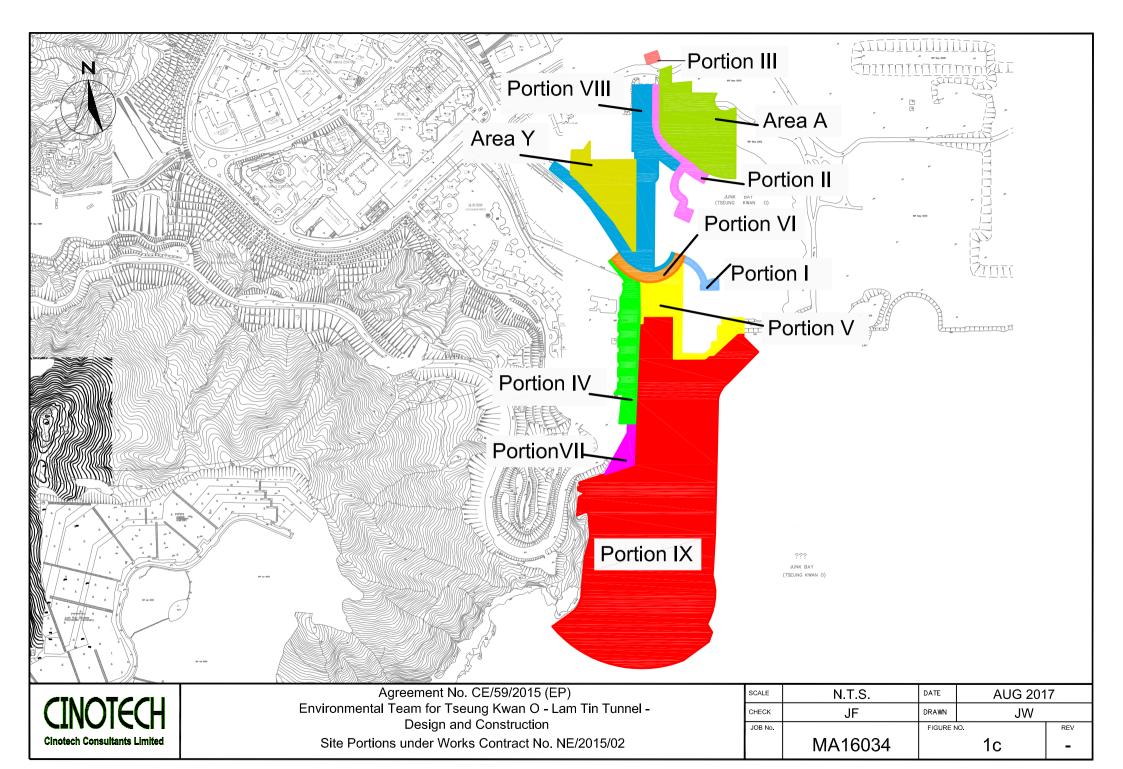
Water Quality Impact

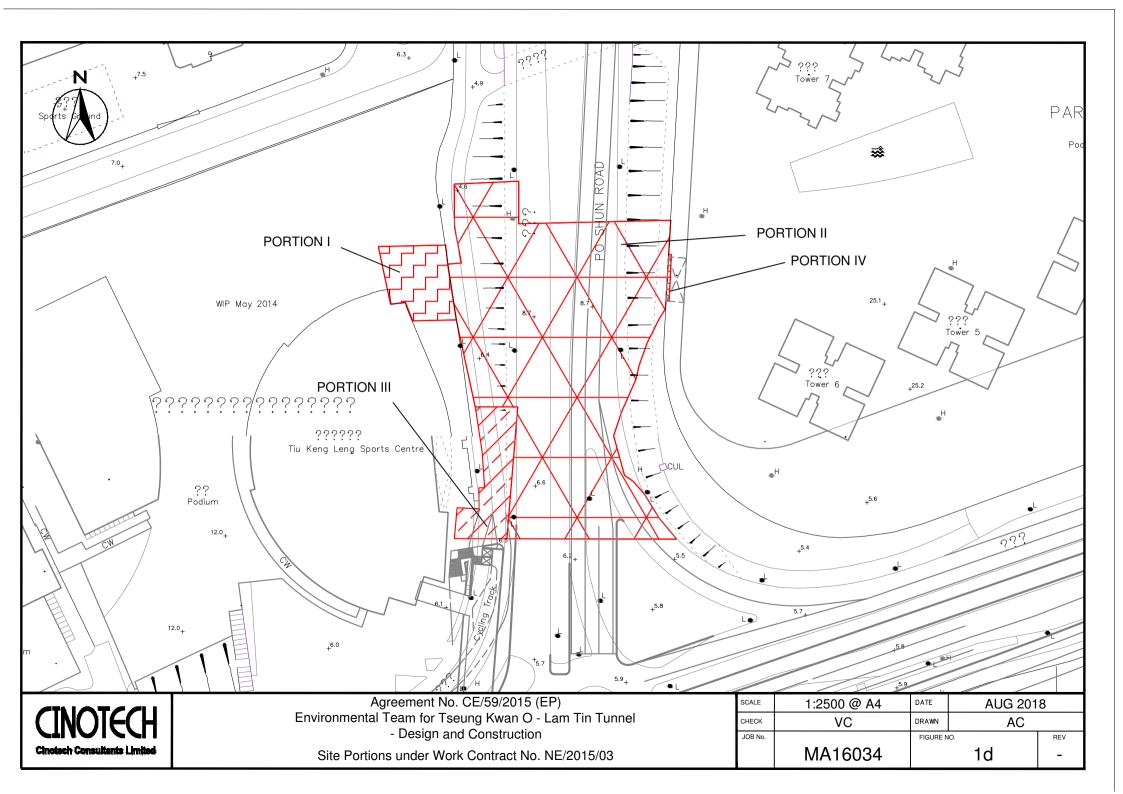
- To clear the oil slick and check for any damage of the silt curtain.
- To check whether the curtain has been set to the seabed.
- To ensure that the pumping rate of bored pile is sufficient to avoid discharging waste water into the sea.
- To clear floating refuse between the cofferdam and silt curtain.
- To clear oil slick within and outside cofferdam.
- To control the amount of loading materials in the barge to avoiding spillage.
- To cover stockpile near seafront.
- To remove wastewater and oil in drip tray.
- To remove pond/still water.
- To cover exposed ground with tarpaulin and sandbag to avoid surface run-off
- Provide sufficient storage/diversion for stormwater collected within the site during rainstorm, in order to avoid overflowing the water treatment tanks

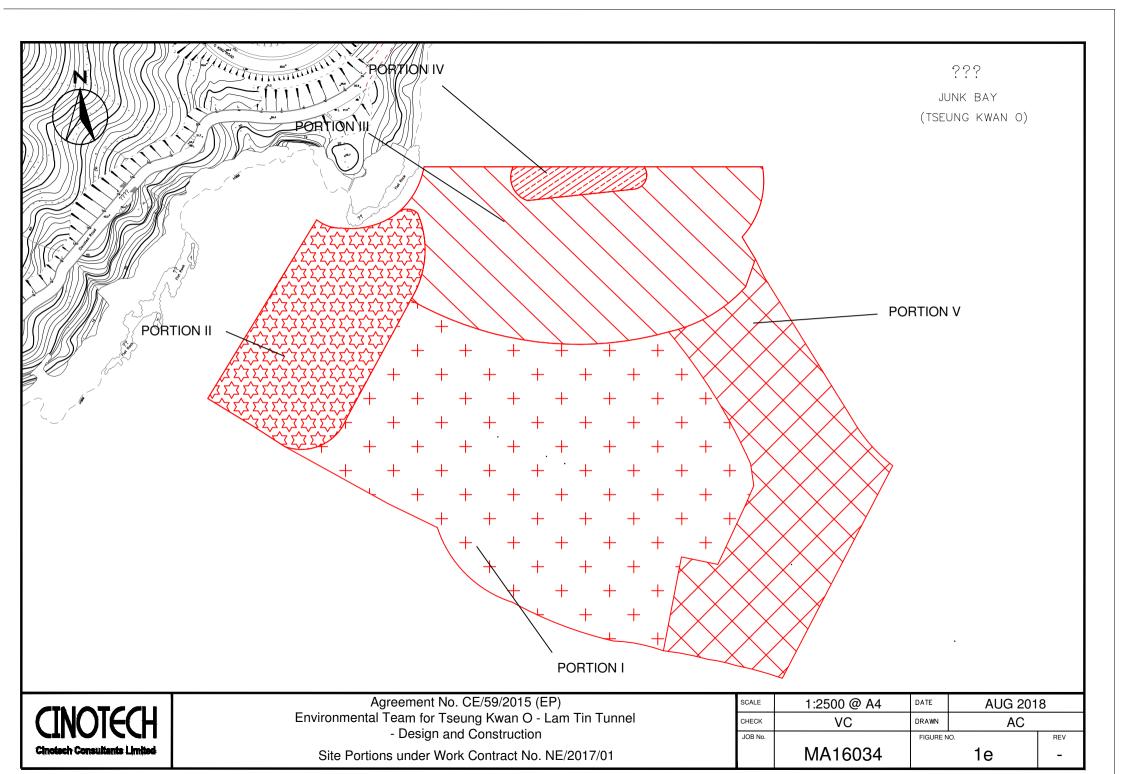

Waste/Chemical Management

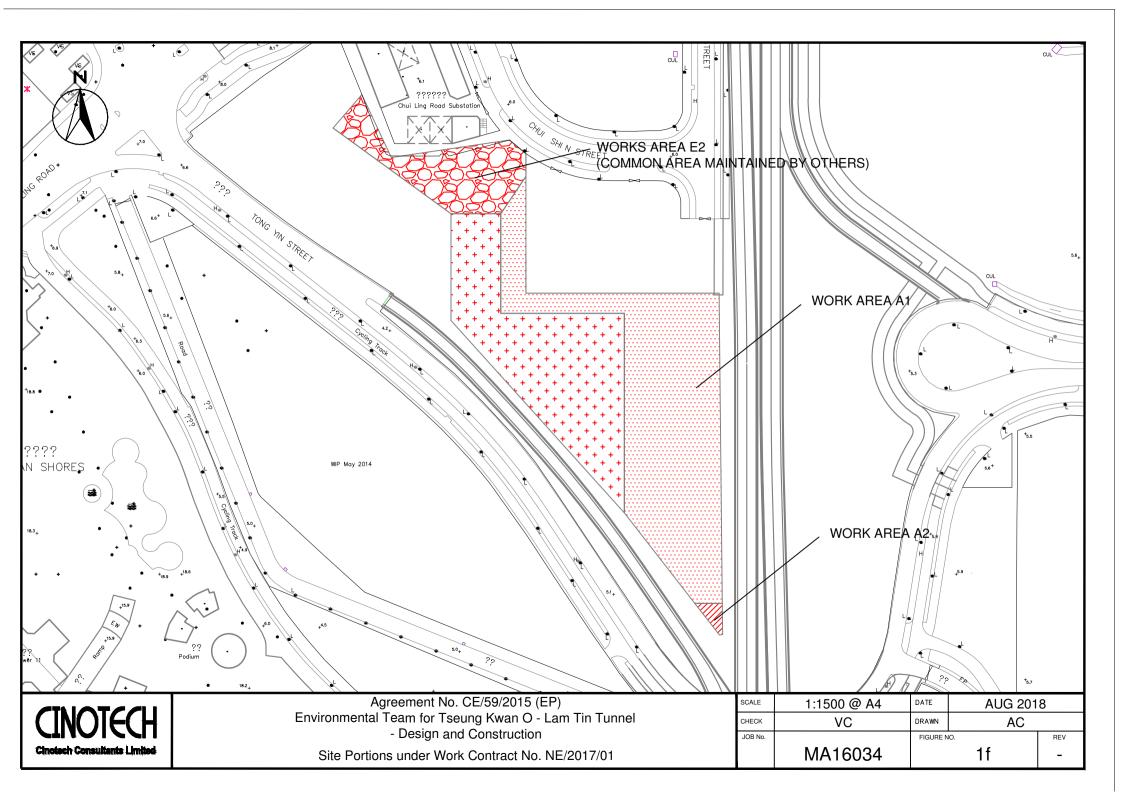

- To bund or lock the chemical storage area.
- To clear dripping oil from bored piling machine.
- To clear oil slick on seawater.
- To clear oil on the floor.

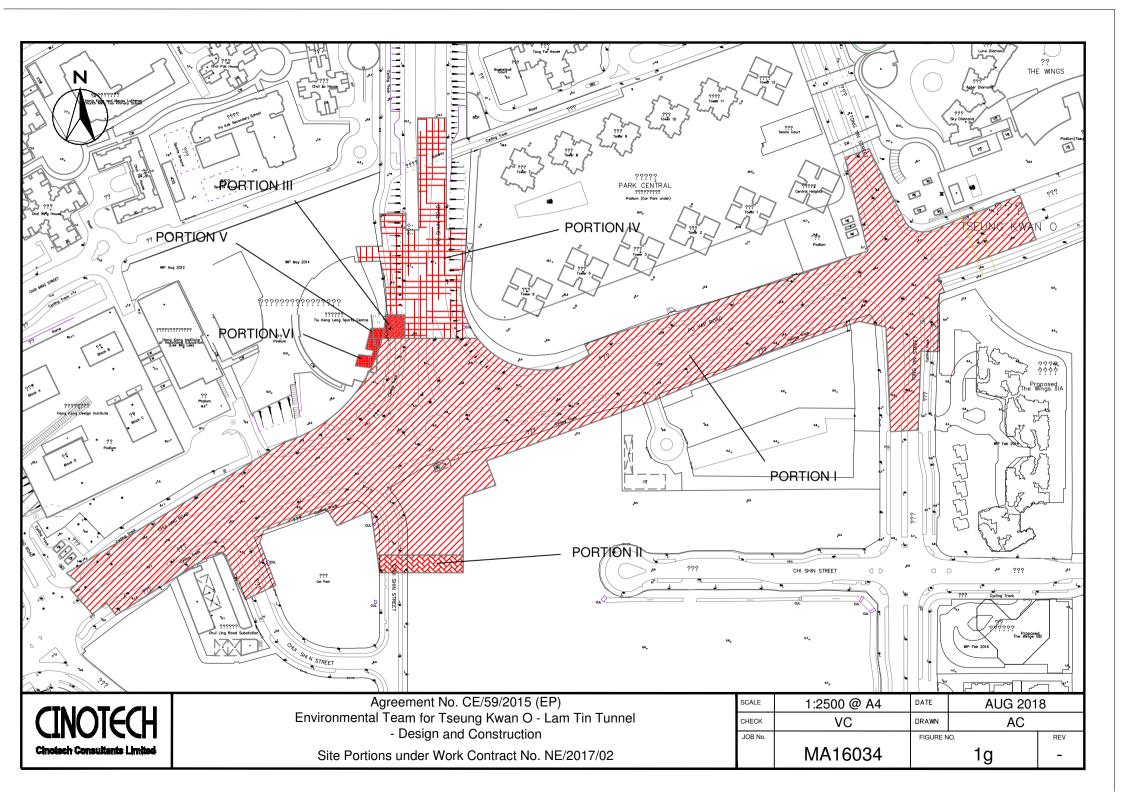

Landscape and Visual

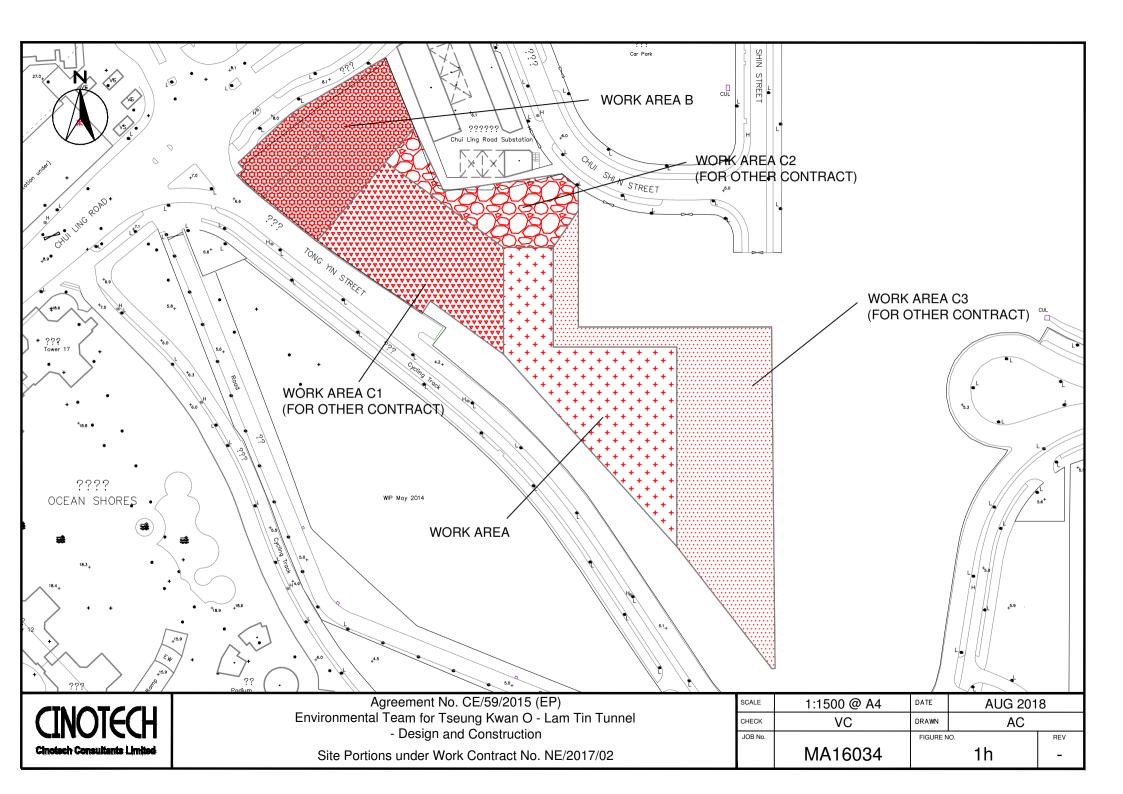

• To avoid placing any construction materials in the tree protection zone.

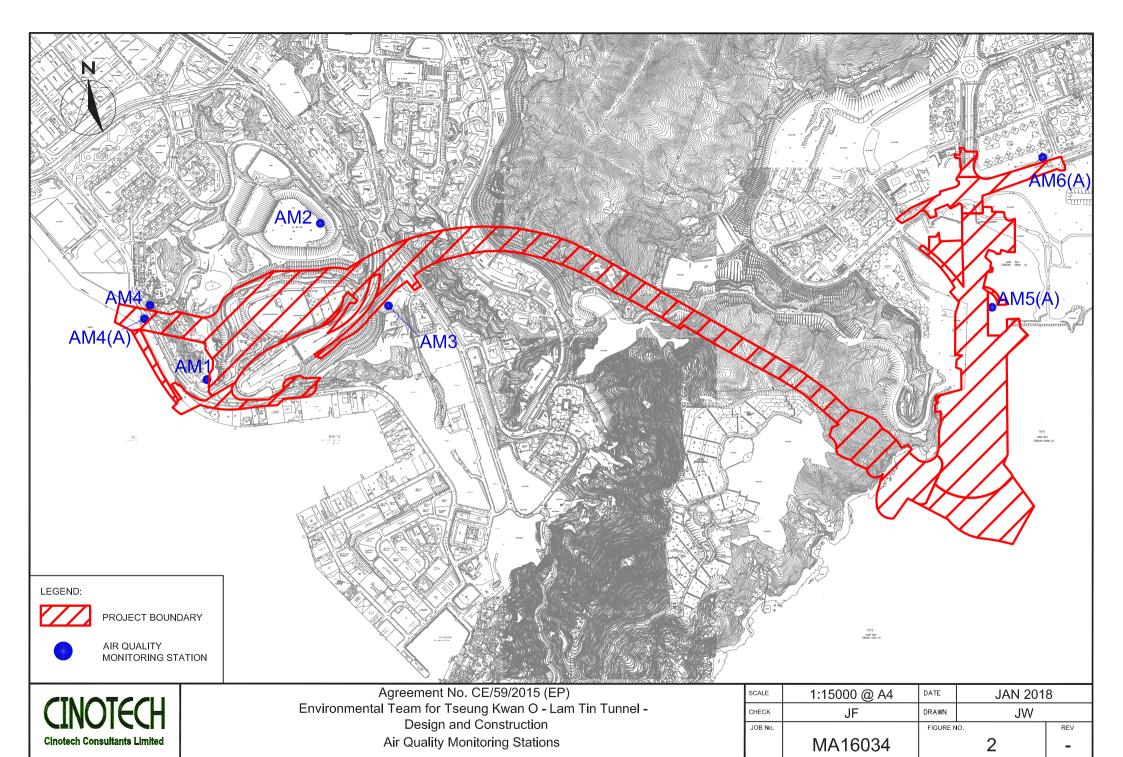

FIGURES

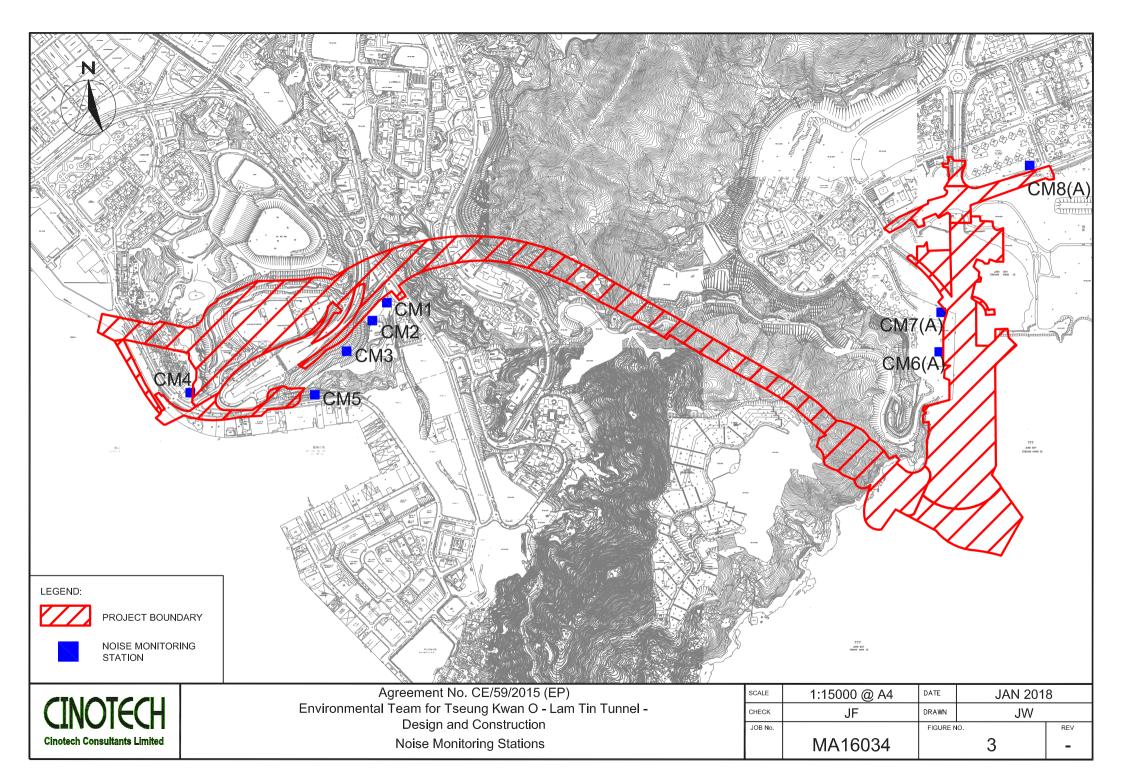


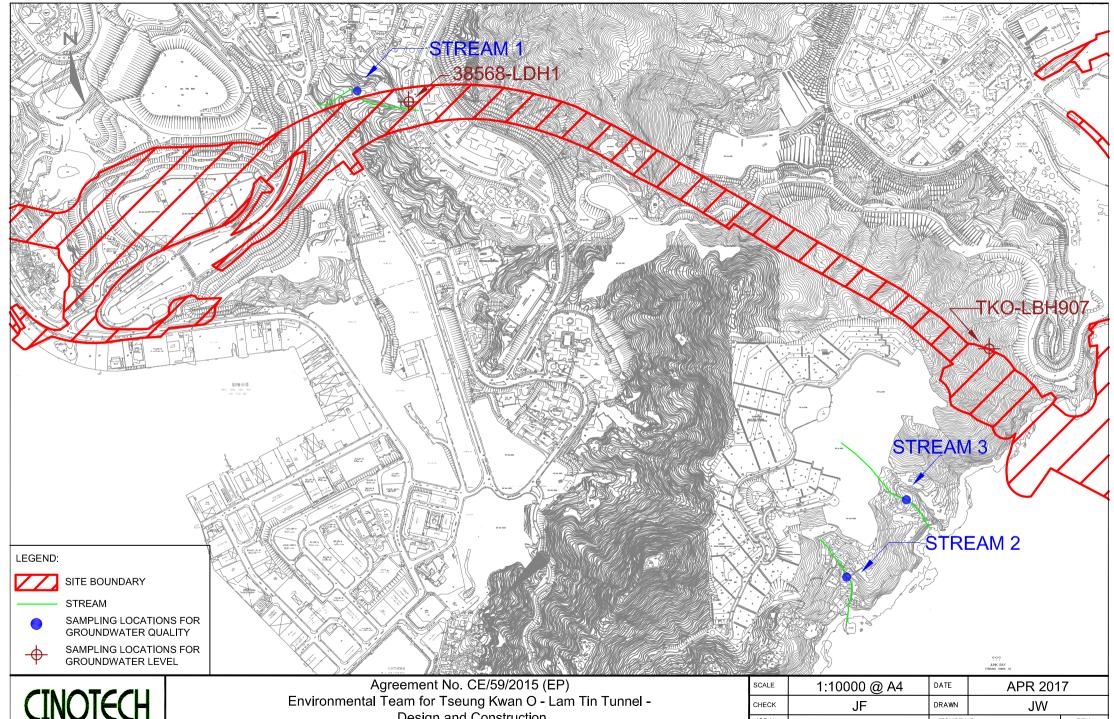


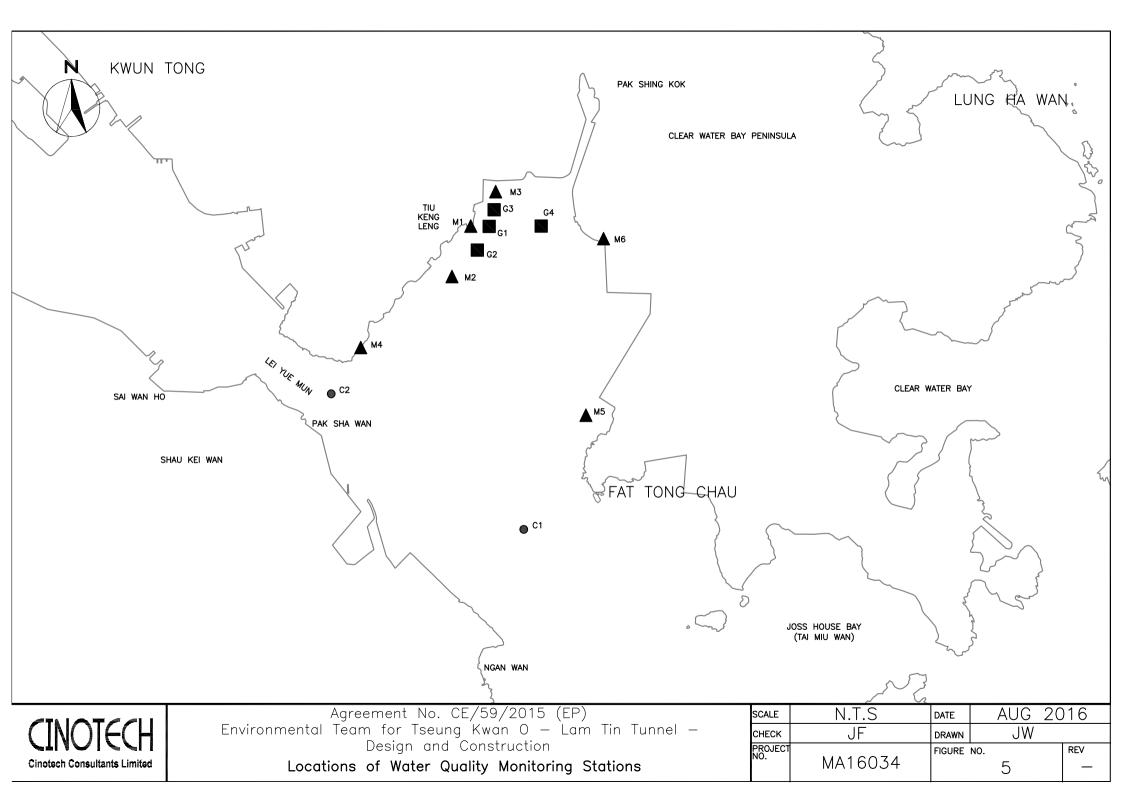


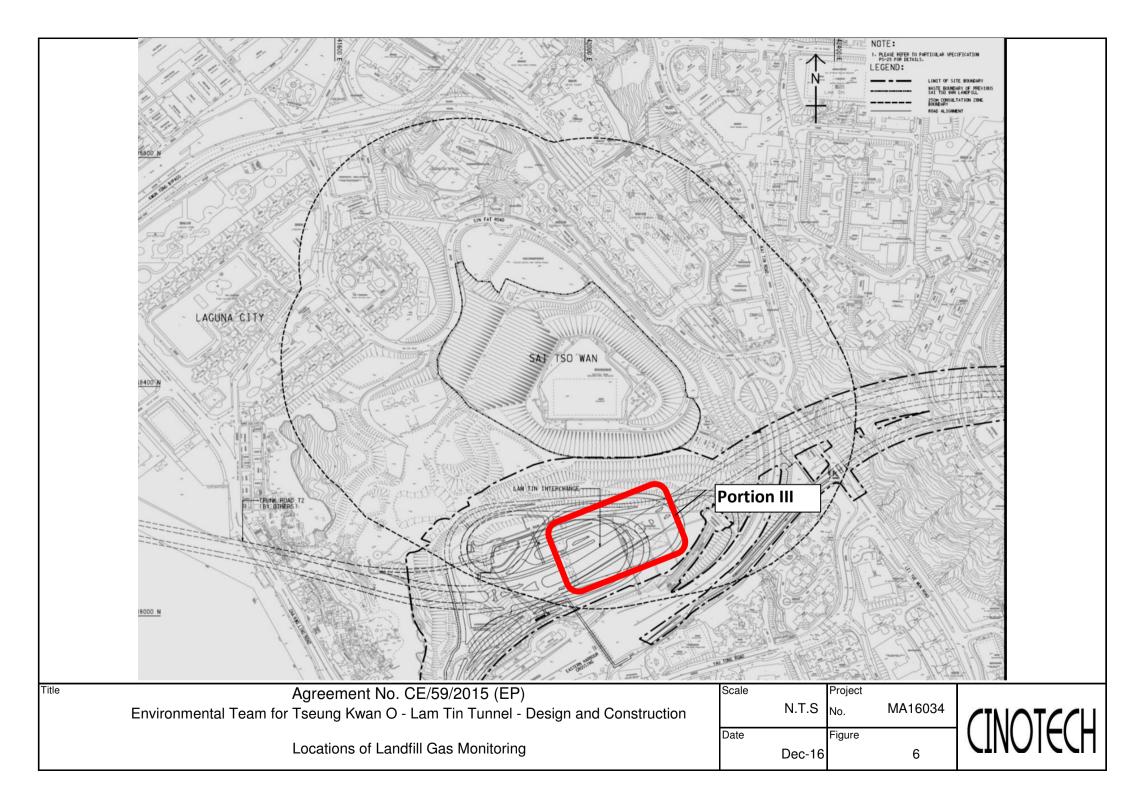


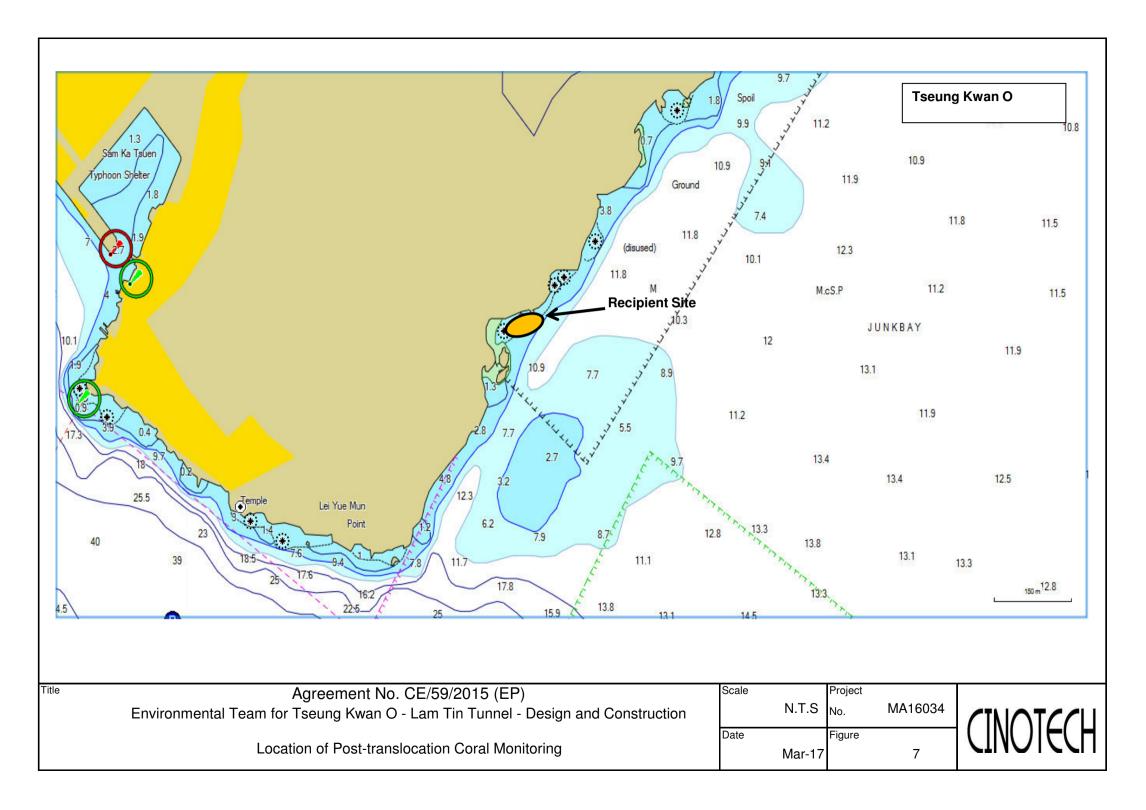


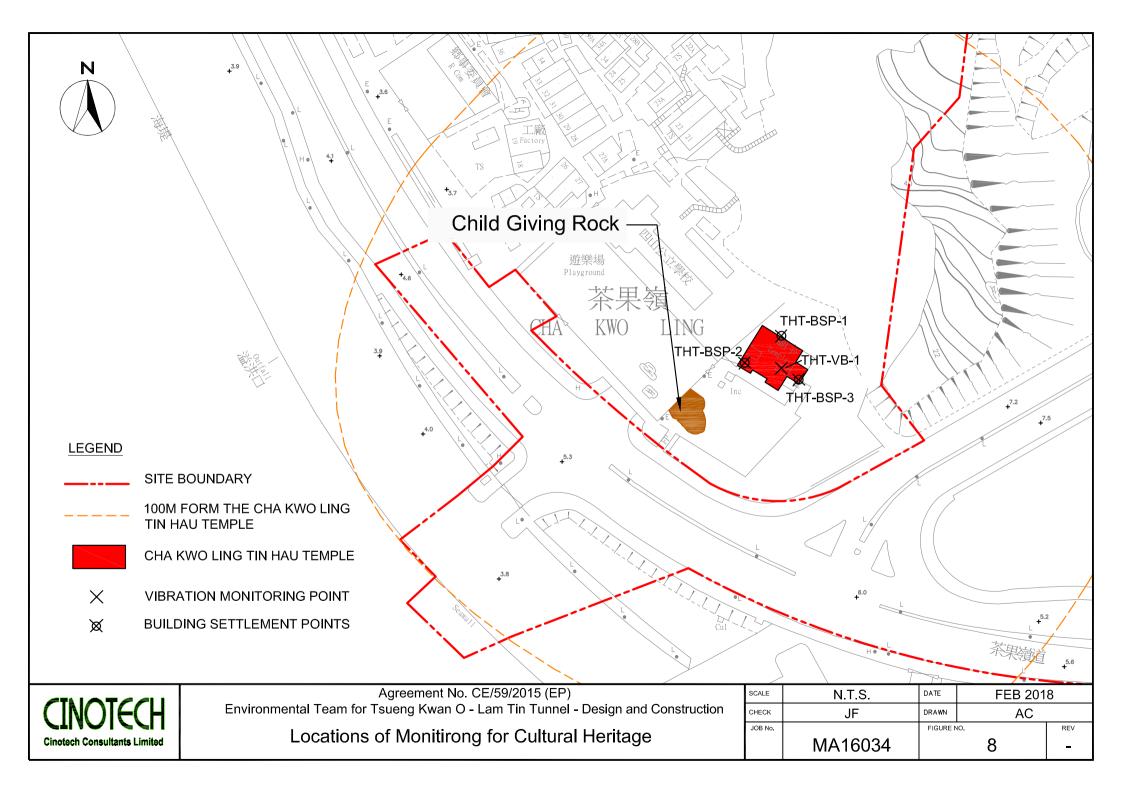


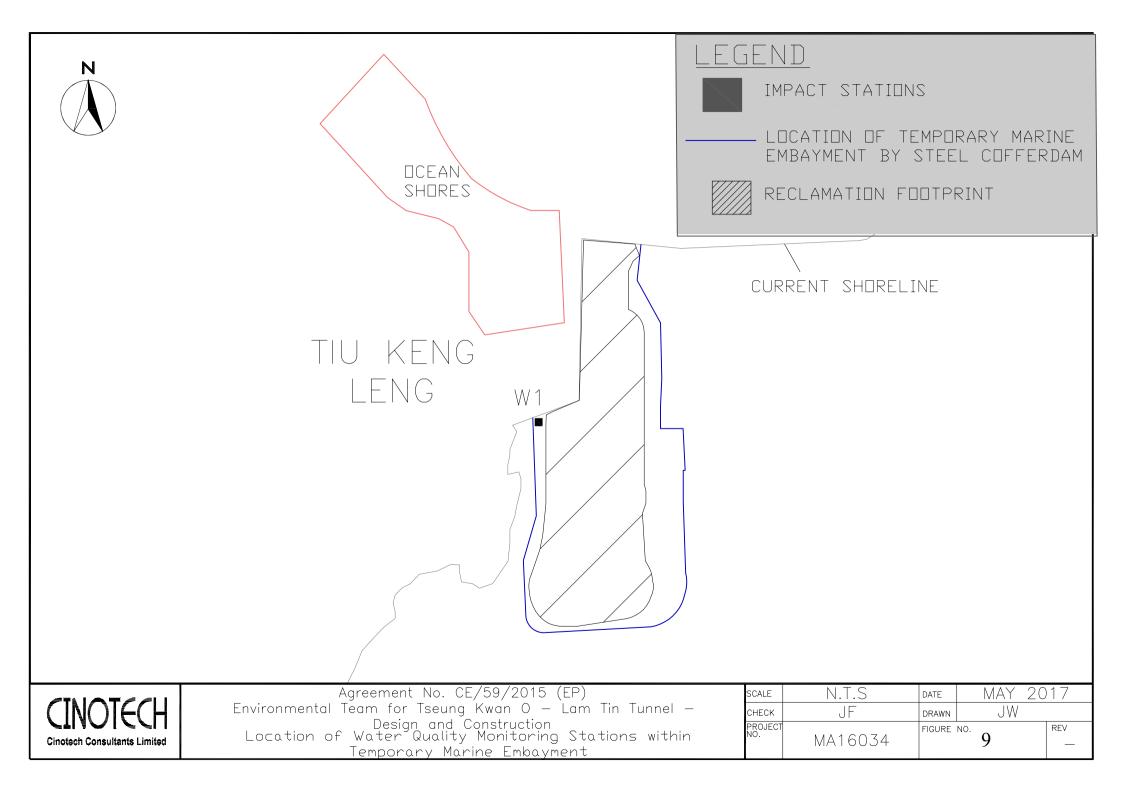







Cinotech Consultants Limited


Design and Construction Location of Streams for Groundwater Quality and Groundwater Level Monitoring


SCALE	1:10000 @ A4	DATE	APR 2017	
CHECK	JF	DRAWN	JW	
JOB No.		FIGURE N	10.	REV
	MA16034		4	-

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m ³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	260
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾	
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾	
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾	

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

 ² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 3 If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit	
DO in mg L ⁻¹	7.6	7.6	
рН	6.0 - 8.9	6.0 – 9.0	
BOD ₅ in mg L ⁻¹	2.0	2.0	
TOC: 1-1	Stream 1 and Stream 2: 9	Stream 1 and Stream 2: 9	
TOC in mg L ⁻¹	Stream 3: 6	Stream 3: 6	
Total Nitrogen in mg L ⁻¹	2.0	2.1	
Ammonia-N in mg L-1	0.15	0.20	
Total Phosphate in mg L ⁻¹	0.05	0.05	
SS in mg L ⁻¹	7.6	12.1	
Turbidity in NTU	2.1 2.3		

Notes:

- 1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907
Action Level (mPD)	+74.65	+17.59

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level		
	Stations G1-G4, M1-M5				
DO in mad	Depth Average	4.9 mg/L	4.6 mg/L		
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>		
	Station M6				
	Intake Level	5.0 mg/L	4.7 mg/L		
	Stations G1-G4	4, M1-M5			
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day		
	Station M6				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>		
	Stations G1-G4				
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	6.9mg/L or 130% of upstream control station's SS at the same tide of the same day		
	Stations M1-M	<u>5</u>			
SS in mg/L (See Note 2, 4 ad 5)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day		
	Stations G1-G4	4, M1-M5			
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day		
	Station M6				
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>		

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.
- 5. Refer to Appendix I Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

Water Quality Monitoring in Temporary Marine Embayment

Parameter (unit)	Depth	Action Level	Limit Level
DO in mg/L	Depth Average	4.8 mg/L (4)	4 mg/L (3)
(See Note 1 and 2)	Bottom	$2.4 mg/L$ $^{(4)}$	<u>2 mg/L</u> ⁽³⁾

Notes:

- 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all sampling depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. Current Water Quality Objectives (WQOs) for marine waters of Hong Kong
- 4. As an alert for adverse water quality impact, the Action Level is set as 120% of the Current WQOs for marine waters of Hong Kong.

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition	
Mortality	If during Impact Monitoring a 15% increase		
·	in the percentage of partial mortality on hard	rd increase in the percentage of partial	
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the	
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring	
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,	
	Action Level is exceeded.	then the Limit Level is exceeded.	

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

Alert, Alarm, Action Levels for Built Heritage Monitoring

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv:4.5mm/s	ppv: 4.8mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Point	6mm	8mm	10mm
Building Tilting	1:2000	1:1500	1:1000

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

Date of Calibration 11-Apr-19

Cerificate of Calibration

Handheld Particle Counter

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Hal Technology	Validity of Calibration Record	10-Jun-19
Model No.:	Hal -HPC301		
Serial No.:	3011701012		
Equipment No.:	A-27-07		
High Volume Sa	ampler No.: A-01-03		
Tisch Calibration	n Orifice No.: 3607		
	Calibration of	f 1 hr TSP	
Calibration	Laser Dust Monitor	HVS	
Point	Mass Concentration (μg/m3) X-axis	Mass concentration (Y-axis	ug/m³)
1	84	100.4	
2	68	96.2	
3	66	90.4	
Average	73	96	
By Linear Regr Slope, mw = Correlation co		ntercept, bw = 63.4644	<u> </u>
	Set Correlati	on Factor	
	centration by High Volume Sampler (μg/m³)	96	
	centration by Dust Meter (μg/m³)	73	
Measureing time		60	
Set Correlation I SCF = [K=Hig	Factor , SCF h Volume Sampler / Dust Meter, (μg/m3)]	1.32	
The Dust Monito Factor (CF) betw	I in according to the instruction manual: or was compared with a calibrated High Volume s ween the Dust Monitor and High Volume Sampler ers are weighted by HOKLAS laboratory (Wellab	r.	rate the Correlation
Calibrated by:	Wong Shing Kwai	Approved by: Henry Let	ang

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Handheld Particle Count	er	Date of Calibration	10-Jun-19
Manufacturer:	Hal Technology		Validity of Calibration Record	9-Aug-19
Model No.:	Hal -HPC301	-		
Serial No.:	3011701012			
Equipment No.:	A-27-07			
High Volume S	ampler No.: <u>A-01-03</u>			
Tisch Calibratio	on Orifice No.: 3607	-		
		Calibration of	1 hr TSP	
Calibration	Laser Du	ıst Monitor	HVS	
Point		ntration (µg/m3)	Mass concentration (μ	\lg/m^3)
1	X-axis		Y-axis	
2		120.5 127.1 114.0 121.8		
3		08.0	115.0	
Average		14.2	121.3	
	•		•	
By Linear Reg	ression of Y on X			
Slope, mw =	0.9659		Intercept, bw = 11.0281	
Correlation c	oefficient* =	0.9955	<u> </u>	
		Set Correlation	n Factor	
Particaulate Cor	ncentration by High Volun	ne Sampler (µg/m³)	121.3	
Particaulate Concentration by Dust Meter (μg/m³)		114.2		
Measureing time, (min)		60.0		
Set Correlation				
SCF = [K=Hig	gh Volume Sampler / Dus	t Meter, (μ g/m3)]	1.06	
In-house method	d in according to the instru	ection manual:		
The Dust Monit	tor was compared with a ca	alibrated High Volume Sa	ampler and The result was used to gener	rate the Correlation

Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Approved by:

Henry Leung Calibrated by: Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Laser Dust Mo	onitor		Date of	f Calibration	25-Apr-19				
Manufacturer:	Sibata Scientif	Tic Technology LTD.		Validity of Calibra	tion Record	24-Jun-19				
Model No.:	LD-3B	_								
Serial No.:	2Y6194	•								
Equipment No.:	SA-01-02	•	Sensitivity	0.001 mg/m3						
High Volume Sa	ampler No.:	A-01-03	Before Sens	sitivity Adjustment	578					
Tisch Calibratio	on Orifice No.:	3607	After Sensit	ivity Adjustment	578					
		Callba	-4:	ren	_					
		Laser Dust Monitor	ation of 1 hr T	ISP	HVS					
Calibration Point	Count / Minute		Mass	concentration (µ	ug/m³)					
Point	Total Count	X-axis			Y-axis					
1	3189.0	53.2			58.7					
2	3510.1	58.5			80.9					
3	3660.5	61.0			89.8					
Ave	rage	57.55			76.47					
Slope, mw =	By Linear Regression of Y on X Slope , mw = 3.9875									
Set Correlation SCF = [K=Hig		pler / Dust Meter, (μg/m3)	1	1.3						
The Dust Monit (CF) between the	or was compared to Dust Monitor	o the instruction manual: d with a calibrated High Volu and High Volume Sampler. l by HOKLAS laboratory (We	•	nd The result was used	d to generate the	Correlation Factor				
Calibrated by	: Ko/ Wong Shi	ing Kwai		Approved by: _	1	y Leung				

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Laser Dust Mo	nitor		Date of Calibration 25-Jun-19		
Manufacturer:	Sibata Scientif	ic Technology LTD.		Validity of Calibrat	tion Record	24-Aug-19
Model No.:	LD-3B					
Serial No.:	2Y6194					
Equipment No.:	SA-01-02		Sensitivity	0.001 mg/m3		
High Volume Sa	impler No.:	A-01-03	Before Sens	itivity Adjustment _	578	
Tisch Calibration	n Orifice No.:	3607	After Sensiti	Sensitivity Adjustment 578		
			Calibration of 1 hr T	CSP		
Calibration		Laser Dust Monit		HVS		
Point Total Count X-ax			Mass conce		ug/m³)	
1	3492	58	.2		70.5	
2	3843	64	.1		96.2	
3	4008	66	.8		106.4	
Aver	age	63.	02	91.03		
Set Correlation I			0.9992	rcept, bw =	-174.184	4
The Dust Monito (CF) between the	or was compared e Dust Monitor	the instruction manual with a calibrated High and High Volume Samby HOKLAS laborator	h Volume Sampler an pler.	d The result was used	l to generate the	: Correlation Factor
Calibrated by:	Wong Shi	ng Kwai		Approved by: _	Hen	y Leung

Date of Calibration 25-Apr-19

Cerificate of Calibration

Handheld Particle Counter

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Hal Technology	Validity of C	alibration Record 24-Jui	า-19			
Model No.:	Hal -HPC300						
Serial No.:	30117011019						
Equipment No.:	SA-01-03						
High Volume S	ampler No.: <u>A-01-03</u>						
Tisch Calibratio	on Orifice No.: 3607						
	(Calibration of 1 hr TSP					
Calibration	Laser Dust Monit	or	HVS				
Point	Mass Concentration (μ X-axis	ag/m3)	Mass concentration (μg/m³) Y-axis				
1	27.6		58.7				
2 37.8			80.9				
3	43.6		89.8				
Average	36.3		76.5				
By Linear Reg	ression of Y on X						
Slope, mw =	1.9703	Intercept, bw =	4.8798				
Correlation c	oefficient* = 0.99	64					
		Set Correlation Factor					
	ncentration by High Volume Sample	er (µg/m³)	76.5				
Particaulate Con	ncentration by Dust Meter (µg/m³)		36.3				
Measureing tim	e, (min)		60				
Set Correlation	·						
SCF = [K=Hig	gh Volume Sampler / Dust Meter,	(μg/m3)]	2.10				
The Dust Monit Factor (CF) bet	d in according to the instruction mar for was compared with a calibrated I ween the Dust Monitor and High Vo	High Volume Sampler and The re llume Sampler.	sult was used to generate the Co	orrelation			
mose miter pap	ers are weighted by HUKLAS labor	atory (w eliad litimed)					

Calibrated by: Approved by: Henry Leung

Date of Calibration 25-Jun-19

Cerificate of Calibration

Handheld Particle Counter

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Hal Technology		Validity of Calil	bration Record	24-Aug-19			
Model No.:	Hal -HPC300							
Serial No.:	30117011019							
Equipment No.:	SA-01-03							
High Volume Sa	ampler No.: <u>A-01-03</u>							
Tisch Calibration	n Orifice No.: 3607							
		Calibration	n of 1 hr TSP					
Calibration	Laser Du	st Monitor		HVS				
Point	1	tration (µg/m3) axis	Ma	Mass concentration (μg/m³) Y-axis				
1	2	9.0		70.5				
2	4	0.5		96.2				
3	4	6.0		106.4				
Average	3	8.5		91.0				
By Linear Regr	ression of Y on X							
Slope, mw =	2.1306		Intercept, bw =	9.0066				
Correlation co	oefficient* =	0.9991						
		Set Correl	ation Factor					
Particaulate Con	centration by High Volum	e Sampler (μg/m³)		91.0				
Particaulate Con	centration by Dust Meter	$(\mu g/m^3)$		38.5				
Measureing time	e, (min)			60				
Set Correlation 1	Factor, SCF							
SCF = [K=Hig	h Volume Sampler / Dust	t Meter, (μ g/m3)]	2.3	6				
In-house method	l in according to the instru	ction manual:						
TI D . M	1 1/1	111 . 1 TT 1 T 7 1	0 1 1701	1.				

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Wong Shing Kwai Approved by: Henry Leung

Date of Calibration 11-Apr-19

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scient	ific Technology LTD.	_	Validity of Calibra	ntion Record	10-Jun-19	
Model No.:	LD-5R						
Serial No.:	8Y2374						
Equipment No.:	SA-01-04		Sensitivity	0.001 mg/m3			
High Volume Sa	impler No.:	A-01-03	Before Sensit	ivity Adjustment	652		
Tisch Calibration	n Orifice No.:	3607	After Sensitiv	rity Adjustment	652		
		Ca	libration of 1 l	nr TSP			
Calibration		Laser Dust Monitor	r		HVS		
Point	M	Iass Concentration (μg/ X-axis	/m3)	Mass	concentration (μ Y-axis	ıg/m³)	
1		68			100.4		
2		65			96.2		
3		60			90.4		
Average		64.3			95.7		
By Linear Regr	ession of Y or	ı X					
Slope, $mw =$	1.24	08	Inter	cept, bw =	15.8408	·	
Correlation co	oefficient* =	0.9987	1	-			
		Se	t Correlation	Factor			
Particaulate Con	centration by l	High Volume Sampler	$(\mu g/m^3)$		96		
Particaulate Con	centration by l	Dust Meter (μg/m ³)			64		
Measureing time	e, (min)			60			
Set Correlation I	Factor, SCF						
SCF = [K=High	h Volume San	npler / Dust Meter, (μ	<i>μ</i> g/m3)]	1.5			
In-house method	l in according t	to the instruction manua	al:				
	_	ad with a solibusted IIi		nlar and The regult r	was used to sens	mata tha Campalatian	

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai

Approved by: Henry Leung

Date of Calibration 10-Jun-19

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scient	Sibata Scientific Technology LTD.		Validity of	9-Aug-19	
Model No.:	LD-5R					
Serial No.:	8Y2374					
Equipment No.:	SA-01-04		Sensitivi	ty <u>0.001 mg</u>	g/m3	
High Volume Sa	mpler No.:	A-01-03	Before S	ensitivity Adjustn	ment <u>652</u>	
Tisch Calibration	n Orifice No.:	3607	After Se	nsitivity Adjustme	ent <u>652</u>	
			Calibration	of 1 hr TSP		
Calibration		Laser Dust M	Ionitor		HVS	
Point	odel No.: LD-5R prial No.: 8Y2374 quipment No.: SA-01-04 Igh Volume Sampler No.: A-01-03 sch Calibration Orifice No.: 3607 Calibration Point Mass Concentration (no 1 91.2 2 87.1 3 80.5 Average 86.3 V Linear Regression of Y on X Slope, mw = 1.1214 Correlation coefficient* = 0.99 particaulate Concentration by High Volume Sample articaulate Concentration by Dust Meter (mg/m³) reasureing time, (min) et Correlation Factor, SCF			Mass concentration (Y-axis	(mg/m ³)	
1		91.2			127.1	
2		87.1			121.8	
3		80.5			115.0	
Average		86.3			121.3	
Slope, mw =	1.12	14	0.9980	Intercept, bw =	24.564	5
			Set Correlat	ion Factor		
Particaulate Con	centration by I	High Volume Sa	mpler (mg/m ³)		121.3	
Particaulate Con	centration by I	Dust Meter (mg/	m ³)		86.3	
Measureing time	e, (min)				60.0	
	Set Correlation Factor , SCF SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]				1.4	
	_			Sampler and The	e result was used to gene	erate the Correlation

Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai Approved by: Henry Leung

Date of Calibration 11-Apr-19

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scienti	ific Technology LTD.	_	Validity of Calibra	ation Record	10-Jun-19	
Model No.:	LD-5R						
Serial No.:	8Y2373						
Equipment No.:	SA-01-05		Sensitivity	0.001 mg/m3			
High Volume Sa	mpler No.:	A-01-03	Before Sensit	ivity Adjustment	657		
Tisch Calibration	n Orifice No.:	3607	After Sensitiv	vity Adjustment	657		
		Ca	libration of 1	hr TSP			
Calibration		Laser Dust Monitor	*		HVS		
Point	Point Mass Concentration (µ ₁ X-axis 1 67		/m3)	Mass	Mass concentration (μg/m³) Y-axis		
1		67 64			100.4		
2		64			96.2		
3		58			90.4		
Average		63			96		
By Linear Regr	ession of Y or	ıX					
Slope, $mw =$	1.09	05	Inter	cept, bw =	26.9667		
Correlation co	oefficient* =	0.9952		_			
		Se	t Correlation	Factor			
Particaulate Con	centration by I	High Volume Sampler	$(\mu g/m^3)$		96		
Particaulate Con	centration by I	Oust Meter (μg/m ³)			63		
Measureing time	e, (min)				60		
Set Correlation I							
SCF = [K=Hig	h Volume San	npler / Dust Meter, (μ	ι g/m3)]	1.5			
In-house method	l in according t	to the instruction manua	al:				
			and the second s				

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai

Approved by: Henry Leung

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator			Date of	10-Jun-19		
Manufacturer:	Sibata Scient	ific Technology LTD.	_	Validity of Calibra	ation Record	9-Aug-19	
Model No.:	LD-5R						
Serial No.:	8Y2373						
Equipment No.:	SA-01-05		Sensitivity	0.001 mg/m3			
High Volume Sa	mpler No.:	A-01-03	Before Sensit	vity Adjustment	657		
Tisch Calibration	n Orifice No.:	3607	After Sensitiv	ity Adjustment	657		
		Ca	libration of 1 h	r TSP			
Calibration		Laser Dust Monitor	•	HVS			
Point Mass Concentration (mg X-axis		/m3)	Mass concentration (mg/m³) Y-axis				
1		92.0		127.1			
2	87.0				121.8		
3	79.0				115.0		
Average		86.0		121.3			
By Linear Regr Slope, mw = Correlation co	0.92		Inter	cept, bw =	41.9000		
Correlation Co	emcient –	0.5581		-			
		Se	t Correlation I	actor			
	-	High Volume Sampler ((mg/m ³)		121.3		
Particaulate Con-	centration by l	Oust Meter (mg/m ³)			86.0		
Measureing time	e, (min)				60.0		
Set Correlation F	Factor, SCF						
SCF = [K=Higl	h Volume San	npler / Dust Meter, (μ	g/m3)]	1.4			
The Dust Monitor Factor (CF) betw	or was compar veen the Dust I	to the instruction manual ed with a calibrated Hig Monitor and High Volu ated by HOKLAS labo	gh Volume Sam me Sampler.	-	was used to gener	ate the Correlation	

Calibrated by: Wong Shing Kwai Approved by: Henry Leung

5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0017

Project No.	AM1 - Tin Hau	Temple					
Date:	18-A	pr-19	Next Due Date:	17-	Jun-19	Operator:	SK
Equipment No.:				GS		Serial No.	
			Ambient C	ondition			
Temperatu	re Ta (K)	297	Pressure, Pa			757.6	
Temperatu	10, 14 (11)	271	Tressure, ru	(11111115)		737.0	
		Or	ifice Transfer Star	ndard Informa	ntion		
Serial	l No.	3607	Slope, mc	0.0588	Intercept	t, bc	-0.02422
Last Calibra	ation Date:	8-Jan-19	r	nc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$) x (298/Ta)]	1/2
Next Calibra	ation Date:	8-Jan-20			(Pa/760) x (298/7		
	I		Calibration of	ΓSP Sampler			
Calibration		Oı	fice		1	HVS	1 /0
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.9		3.59	61.50	8.1		2.85
2	9.2		3.03	52.00	5.8		2.41
3	7.7		2.78	47.61	4.9		2.21
4	5.0		2.24	38.44	3.2	1.79	
5	2.8		1.67	28.87	2.0	1.41	
By Linear Regr Slope, mw = Correlation *If Correlation C	0.0441 coefficient* =	0	.9994	intercept, bw =	0.118	3	
			Set Point Ca	lculation			
	eld Calibration C	ne "Y" value acce	= 43 CFM		98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Ta / 298) =	4.06		
Remarks:							
Conducted by:	SK Wong	Signature:	6)			Date:	18 April 2019
Checked by:	Henry Leung	Signature:	- Hongoh	~5		Date:	18 April 2019

5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0018

Project No.	AM1 - Tin Hau	Temple					
Date:	17-J	un-19	Next Due Date:	16-2	Aug-19	Operator:	SK
Equipment No.:	A-()1-05	Model No.:	GS	S2310	Serial No	10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	300.6	Pressure, Pa	(mmHg)		755.7	
Gt1	N.		ifice Transfer Star			. 1	0.02422
Serial Last Calibra		3607 8-Jan-19	Slope, mc	0.0588	Intercept $c = [\Delta H \times (Pa/760)]$		-0.02422
Next Calibra		8-Jan-20			$(Pa/760) \times (298/7)$		
TVEXT CUITOR	ation Bute.			<u> </u>	(14,700) 11 (250)		
			Calibration of	ΓSP Sampler			
Calibration		Oı	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.8		3.55	60.82	8.2		2.84
2	9.3		3.03	51.90	5.8		2.39
3	7.6		2.74	46.96	4.8		2.18
4	5.0		2.22		3.2		1.78
	0.0431 coefficient* =	_	.9968	Intercept, bw =	0.176	6	
			Set Point Ca	lculation			
		Curve, take Qstd he "Y" value acc mw x ((Pa/760) x (29	98/Ta) ^{1/2}		
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Γα / 298) =	4.18		
Remarks:							
Conducted by: W	ONG SHING KWA	Signature:				Date: _	2019/6/17
Checked by:	HENRY. LEUNG	Signature:	Homy	جيره		Date:	2019/6/17

5-POINT CALIBRATION DATA SHEET

18 April 2019

Date:

File No. MA16034/08/0017 Project No. AM2 - Sai Tso Wan Recreation Ground 18-Apr-19 Next Due Date: 17-Jun-19 Operator: SK Date: Equipment No.: <u>A-01</u>-08 GS2310 Serial No. 1287 Model No.: **Ambient Condition** 757.6 Temperature, Ta (K) 297 Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 8.2 1 12.8 3.58 61.26 2.86 2 9.5 3.08 52.84 6.0 2.45 8.0 2.83 48.52 5.1 2.26 3 4.8 2.19 3.1 1.76 4 37.68 5 2.9 1.70 29.38 2.0 1.41 By Linear Regression of Y on X Slope , mw = _____0.0454 Intercept, bw = _____ 0.0634 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.06 Remarks: SK Wong Signature: 18 April 2019 Conducted by: Date:

Checked by: Henry Leung Signature:

5-POINT CALIBRATION DATA SHEET

2019/6/17

2019/6/17

Date:

Date:

File No. MA16034/08/0018 Project No. AM2 - Sai Tso Wan Recreation Ground 17-Jun-19 Next Due Date: 16-Aug-19 Operator: SK Date: Equipment No.: ______ A-01-08 GS2310 Serial No. 1287 Model No.: **Ambient Condition** 755.7 Temperature, Ta (K) 300.6 Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 8.3 1 12.9 3.57 61.06 2.86 2 9.6 3.08 52.73 6.0 2.43 8.0 2.81 48.17 5.1 2.24 3 4.9 3.2 4 2.20 37.79 1.78 5 2.8 1.66 28.67 2.1 1.44 By Linear Regression of Y on X Slope , mw = _____0.0438 Intercept, bw : 0.1503 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.19 Remarks:

Conducted by: WONG SHING KWAI Signature:

Checked by: HENRY.LEUNG Signature:

5-POINT CALIBRATION DATA SHEET

						File No.	MA16034/03/0017	
Project No.	AM3 - Yau Lai	Estate, Bik Lai I	Iouse					
Date:	18-A	pr-19	Next Due Date:	17-Jun-19		Operator:	SK	
Equipment No.:	A-0	1-03	Model No.:	Model No.: GS2310		Serial No.	10379	
			Ambient C					
Temperatur	re, Ta (K)	297	Pressure, Pa	(mmHg)		757.6		
		Or	ifice Transfer Star	ndard Informa	ntion			
Serial	No.	3607	Slope, mc	0.0588	Intercept		-0.02422	
Last Calibra	ation Date:	8-Jan-19	r	nc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$) x (298/Ta)]	1/2	
Next Calibra	ation Date:	8-Jan-20		Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$				
	T.		Calibration of	ΓSP Sampler				
Calibration	ATT (: 6)	Or	fice	0.1(GF) 0		HVS	- (2) (200 (F))71/2	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	Δ W (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis	
1	12.7		3.56		8.0		2.83	
2	9.5		3.08	52.84	6.2		2.49	
3	7.9		2.81		5.0		2.24	
4	5.2		2.28	39.20	3.3		1.82	
5	2.9		1.70	29.38	2.0		1.41	
_	ession of Y on X							
Slope, mw =		_		ntercept, bw =	0.065	3		
	coefficient* =		9992					
*If Correlation C	Coefficient < 0.99	0, check and rec	alıbrate.					
			Set Point Ca	lculation				
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM					
From the Regres	sion Equation, th	e "Y" value acco	ording to					
		mu v C	$\mathbf{pstd} + \mathbf{bw} = \mathbf{\Delta W} \mathbf{x}$	(Pa/760) v (20	19/Ta)1 ^{1/2}			
		mw x Q	ysta + bw – įΔw x	(Fa//00) X (25	76/1a)j			
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Ta / 298) =	4.06			
Remarks:								
			[1]					
Conducted by:	SK Wong	Signature:	1901			Date:	18 April 2019	
Checked by	Henry Leung	Signature:	Paner	Lat		Date:	18 April 2019	
Checked by.		Signature.	1 4200	\sim		-	10 April 2017	

5-POINT CALIBRATION DATA SHEET

File No. MA16034/03/0018

Project No.	AM3 - Yau Lai	Estate, Bik Lai l	House				
Date:	17-J	un-19	Next Due Date:	16-2	Aug-19	Operator:	SK
Equipment No.:	A-(01-03	Model No.:	G	S2310	Serial No	10379
			Ambient C	ondition			
Temperatu	re, Ta (K)	300.6	Pressure, Pa	(mmHg)		755.7	
~			ifice Transfer Star		I	.	0.00400
Serial		3607	Slope, mc	0.0588	Intercept $c = [\Delta H \times (Pa/760)]$		-0.02422
Last Calibra		8-Jan-19	-		с = [ДН х (Ра/760 (Pa/760) х (298/7		
Next Calibr	ration Date:	8-Jan-20		$Qsta = \{ \Delta H X$	(Pa//00) X (298/.	1 a) -bc} / f	пс
		<u>.</u>	Calibration of T	ΓSP Sampler			
Colibration		Oı	fice	р.с.		HVS	
Calibration Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		ΔW (HVS), in. of water	1	760) x (298/Ta)] ^{1/2} Y-axis
1	12.5		3.51	60.11	7.9		2.79
2	9.4		3.04	52.18	6.2		2.47
3	7.9		2.79	47.87	5.0		2.22
4	5.2		2.26	38.92	3.2		1.78
5	2.8		1.66 28.67 2.0		1.40		
Slope , mw = Correlation	coefficient* =	_	.9974 calibrate.		0.072	8	
E TCD E	: 11 C-17	Curve, take Qstd	Set Point Ca	alculation			
		ne "Y" value acc		(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, So	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Га / 298) =	4.13		
Remarks:							
Conducted by: W	VONG SHING KWA	Signature:	61			Date:	2019/6/17
Checked by:	HENRY. LEUNG	Signature:	Henry	~~		Date:	2019/6/17

Equipment No.: <u>A-01</u>-54

Temperature, Ta (K)

Serial No.

Last Calibration Date:

Next Calibration Date:

 ΔH (orifice),

in. of water

12.9

9.8

7.8

Calibration

Point

1

2

3

Project No.

Date:

5-POINT CALIBRATION DATA SHEET

18-Apr-19

297

3607

8-Jan-19

8-Jan-20

Orfice

3.59

3.13

2.79

File No. MA16034/54/0017 AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office Next Due Date: 17-Jun-19 Operator: SK TE-5170 Serial No. _____1536 Model No.: **Ambient Condition** Pressure, Pa (mmHg) 757.6 **Orifice Transfer Standard Information** 0.0588 Slope, mc Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ **Calibration of TSP Sampler** HVS $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ X - axis of water Y-axis 8.5 2.92 61.50 53.66 6.4 2.53 47.91 5.3 2.30

4	5.2		2.28	39.20	3.4	1.84
5	3.2		1.79	30.84	2.1	1.45
Slope , mw = Correlation	coefficient* =	_	0.9995	Intercept, bw :	-0.0222	
*If Correlation	Coefficient < 0.99	0, check and r	ecalibrate.			
			Set Poin	t Calculation		
From the TSP F	Field Calibration C	urve, take Qst	d = 43 CFM			
From the Regre	ession Equation, th	e "Y" value ac	cording to			
Therefore, S	Set Point; W = (m			W x (Pa/760) x (298/ x (Ta / 298) =	Ta)] ^{1/2} 4.14	
Remarks:						
Conducted by:	SK Wong	Signature:	<u> </u>	<u> </u>	Γ	Date: 18 April 2019
Checked by	Henry Leung	Signature:	they	- Ch-57	Γ	Date: 18 April 2019
F:\Cinotech Soluti	ions\Equipment\Calibratio	n Cert\HVS\MA160	34_20190418_AM4(A)	_(A-01-54).xls		

5-POINT CALIBRATION DATA SHEET

CINTECH File No. MA16034/54/0018

Project No.	AM4(A) - Cha	Kwo Ling Public	Cargo Working A	rea Administra	tive Office		
Date:	17-J	[un-19	Next Due Date:	16-	Aug-19	Operator:	SK
Equipment No.:	A-0)1-54	Model No.:	TE	E-5170	Serial No.	1536
			Ambient C	ondition			
Temperatur	re, Ta (K)	300.6	Pressure, Pa	(mmHg)		755.7	
			ifice Transfer Sta	1	I	T	
Serial		3607	Slope, mc	0.0588	Intercept		-0.02422
Last Calibra		8-Jan-19			$c = [\Delta H \times (Pa/760)]$		
Next Calibra	ation Date:	8-Jan-20		$Qstd = \{ \Delta H x \}$	(Pa/760) x (298/7	[a)] - bc} / 1	nc
				TCD C 1			
		0-	Calibration of	1 SP Sampler		IIVC	
Calibration Point	ΔH (orifice),		fice	Qstd (CFM)	ΔW (HVS), in.	HVS [ΔW x (Pa/	760) x (298/Ta)] ^{1/2}
Fonit	in. of water	[ΔH x (Pa//6	50) x (298/Ta)] ^{1/2}	X - axis	of water		Y-axis
1	12.6		3.52	60.35	8.4		2.88
2	9.8		3.11	53.27	6.3		2.49
3	7.7		2.76	47.27	5.3		2.29
4	5.2		2.26	38.92	3.4		1.83
5	3.1		1.75	30.14	2.0		1.40
By Linear Regr		X					
Slope, mw =		_		Intercept, bw :	-0.046	9	
	coefficient* =		.9986	-			
*If Correlation C	oefficient < 0.9	90, check and red	calibrate.				
			Set Point C	alculation			
From the TSP Fig	eld Calibration	Curve, take Qstd					
From the Regress	sion Equation, t	he "Y" value acco	ording to				
	•		-		1/2		
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore Se	et Point: W = (r	nw x Ostd + bw)	² x (760 / Pa) x (′	Ta / 298) =	4.19		
Therefore, Se	(1	aw A Qua (ow)	x (700 / 1 u) x (147 270)	4.17		
Remarks:							
			[n]				
Conducted by: W	ONG SHING KWA	I Signature:				Date:	2019/6/17
Checked by:	HENRY. LEUNG	Signature:	<u>Homy</u>	Long		Date:	2019/6/17

5-POINT CALIBRATION DATA SHEET

File No. MA16034/37/0017

Project No.	AM5(A) - Tseur	ng Kwan O DSD	Desilting Compou	ınd		•	
Date:	18-A	pr-19	Next Due Date:	17-	Jun-19	Operator:	SK
Equipment No.:	A-0	1-37	Model No.:	GS	S2310	Serial No.	1704
			Ambient C	Condition	ı		
Temperatu	re, Ta (K)	297	Pressure, Pa	(mmHg)		757.6	
		O	fice Tuensfey Ste	ndaud Infaum	ntian .		
Serial	No.	3607	Slope, mc	0.0588	Intercept	- bc	-0.02422
Last Calibra		8-Jan-19			$c = [\Delta H \times (Pa/760]]$		
Next Calibra	-	8-Jan-20			(Pa/760) x (298/		
					, , ,	<u> </u>	
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	13.4		3.66	62.67	8.5		2.92
2	10.1		3.18	54.47	6.5		2.55
3	8.1		2.85	48.82	5.2		2.28
4	5.4	2	2.32	39.94	3.5		1.87
5	3.3		1.82	31.31	2.3		1.52
By Linear Regr Slope , mw =	ession of Y on X			Intercent by	0.094	2	
- ·	coefficient* =	-	9997	intercept, bw -	0.034	<u> </u>	
	Coefficient < 0.99			_			
ii condution c	octificient (0.7)	o, eneck and rec	unorate.				
			Set Point C	alculation			
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
			$\mathbf{vstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	- (D-/7(0) - (3(NO/TE - \11/2		
		mw x Q	$\mathbf{y}\mathbf{s}\mathbf{t}\mathbf{a} + \mathbf{b}\mathbf{w} = \mathbf{\Delta}\mathbf{w} \mathbf{x}$	x (Pa//60) x (25	98/1a)]		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (Ta / 298) =	4.11		
D 1							
Remarks:							
G 1 : **	CIZ W.	G.	ta)			D.	10 4 2010
Conducted by:	SK Wong	Signature:		•		Date:	18 April 2019
Checked by:	Henry Leung	Signature:	things	X-57		Date:	18 April 2019

5-POINT CALIBRATION DATA SHEET

Date:

2019/6/17

File No. MA16034/37/0018 AM5(A) - Tseung Kwan O DSD Desilting Compound Project No. 17-Jun-19 Next Due Date: 16-Aug-19 Operator: SK Date: Equipment No.: A-01-37 Model No.: GS2310 Serial No. 1704 **Ambient Condition** 755.7 Temperature, Ta (K) 300.6 Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 2.91 1 12.8 3.55 60.82 8.6 2 10.1 3.16 54.07 6.5 2.53 8.1 2.83 48.47 5.2 2.26 3 5.3 2.29 3.4 1.83 4 39.28 5 3.2 1.78 30.62 2.2 1.47 By Linear Regression of Y on X Slope , mw = _____0.0474 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.18 Remarks: Conducted by: WONG SHING KWAI Signature: 2019/6/17 Date:

Checked by: HENRY.LEUNG Signature:

5-POINT CALIBRATION DATA SHEET

17 May 2019

Date:

File No. MA16034/07/0017 Project No. AM6 - Park Central 17-May-19 Next Due Date: 16-Jul-19 Operator: SK Date: Equipment No.: A-01-07 GS2310 _____ Serial No. ____ 10592 Model No.: **Ambient Condition** 302.6 754.4 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 1 10.8 3.25 55.67 6.6 2.54 2 8.6 2.90 49.72 5.3 2.28 6.8 2.58 44.26 4.2 2.03 3 4.3 2.6 1.59 4 2.05 35.28 5 2.8 1.65 28.55 1.8 1.33 By Linear Regression of Y on X Intercept, bw = ______ 0.0190 Slope, mw = 0.0453Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.96$ Remarks: 17 May 2019 Conducted by: SK Wong Signature: Date:

Checked by: Henry Leung Signature:

TE-5025A

RECALIBRATION **DUE DATE:**

January 8, 2020

ertificate o

Calibration Certification Information

Cal. Date: January 8, 2019 Rootsmeter S/N: 438320

Ta: 294

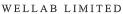
Pa: 748.0

Operator: Jim Tisch Calibration Model #:

Calibrator S/N: 3607

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4340	3.2	2.00
2	3	4	1	1.0190	6.3	4.00
3	5	6	1	0.9110	7.8	5.00
4	7	8	1	0.8650	8.7	5.50
5	9	10	1	0.7150	12.6	8.00


	Data Tabulation				
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9934	0.6927	1.4125	0.9957	0.6944	0.8866
0.9892	0.9708	1.9976	0.9916	0.9731	1.2538
0.9872	1.0837	2.2334	0.9896	1.0862	1.4018
0.9860	1.1399	2.3424	0.9884	1.1426	1.4703
0.9808	1.3718	2.8251	0.9832	1.3750	1.7732
	m=	2.07879		m=	1.30170
QSTD[b=	-0.02422	QA [b=	-0.01520
	r=	0.99997		r=	0.99997

	Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	= Va/ΔTime		
	For subsequent flow rate calculations:				
Qstd=	$1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b $	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 30760

 Date of Issue:
 2019-02-23

 Date Received:
 2019-02-22

 Date Tested:
 2019-02-22

 Date Completed:
 2019-02-23

 Next Due Date:
 2019-08-22

ATTN: Mr. W.K. Tang Page: 1 of 2

Certificate of Calibration

Item for calibration:

Description : Weather Monitor II Manufacturer : Davis Instruments

Model No. : 7440

Serial No. : MC01010A44

Test conditions:

Room Temperature : 17-22 degree Celsius

Relative Humidity : 40-70 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

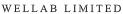
For and On Behalf of WELLAB Ltd.

PATRICK TSE *Laboratory Manager*

TEST REPORT

Test Report No.: 30760
Date of Issue: 2019-02-23
Date Received: 2019-02-22
Date Tested: 2019-02-22
Date Completed: 2019-02-23
Next Due Date: 2019-08-22

Page: 2 of 2


Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	1.95	0.05

2. Performance check of wind direction sensor

Wind Dir	Difference D (°)	
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45	45	0
90	90	0
135.5	135	0.5
180	180	0
225	225	0
270.5	270	0.5
315	315	0
360	360	0

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	30293
Date of Issue:	2018-11-24
Date Received:	2018-11-23
Date Tested:	2018-11-23
Date Completed:	2018-11-24
Next Due Date:	2019-11-23

ATTN: Mr. W.K. Tang

Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 23852
Microphone No. : 43690
Equipment No. : N-08-11

Test conditions:

Room Temperatre : 17-22 degree Celsius

Relative Humidity : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 30294

 Date of Issue:
 2018-11-24

 Date Received:
 2018-11-23

 Date Tested:
 2018-11-23

 Date Completed:
 2018-11-24

 Next Due Date:
 2019-11-23

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 23851

Equipment No.

: N-08-12

Test conditions:

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

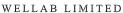
Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:


Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TSE

Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	29817A
Date of Issue:	2018-09-29
Date Received:	2018-09-28
Date Tested:	2018-09-28
Date Completed:	2018-09-29
Next Due Date:	2019-09-28

ATTN: Mr. W.K. Tang Page: 1 of 1

Item for calibration:

Description : Acoustical Calibrator

Manufacturer : SVANTEK
Model No. : SV30A
Serial No. : 10965
Equipment No. : N-09-02

Test conditions:

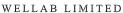
Room Temperatre : 17-22 degree Celsius

Relative Humidity : 40-70%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:


Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	30289
Date of Issue:	2018-11-04
Date Received:	2018-11-03
Date Tested:	2018-11-03
Date Completed:	2018-11-04
Next Due Date:	2019-11-03

ATTN: Mr. W.K. Tang Page: 1 of 1

Item for calibration:

Description : Acoustical Calibrator

Manufacturer : Brüel & Kjær

Model No. : 4231 Serial No. : 2326353 Equipment No. : N-02-01

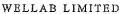
Test conditions:

Room Temperatre : 17-22 degree Celsius

Relative Humidity : 40-70 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 29501 Date of Issue: 2018-08-27 Date Received: 2018-08-24 Date Tested: 2018-08-24 Date Completed: 2018-08-27 Next Due Date: 2019-08-26

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 957

Serial No. Microphone No.

: 21455 : 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/171213/2
Date of Issue:	2018-12-13
Date Received:	2018-12-12
Date Tested:	2018-12-12
Date Completed:	2018-12-13
Next Due Date:	2019-12-12

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 979
Serial No. : 27190
Microphone No. : 167465
Equipment No. : SN-01-02

Test conditions:

Room Temperatre : 22 degree Celsius

Relative Humidity : 58 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1KHz)	Measured SPL	Tolerance
At 94.0 SPL	94.0	94.0 ± 0.1dB
At 114.0 SPL	114.0	114.0 ± 0.1dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED Room 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 31536 Date of Issue: 2019-0

2019-05-28

Date Received:
Date Tested:

2019-05-27 2019-05-27 to

2019-05-28

Date Completed:

2019-05-28

ATTN:

Mr. Henry Leung

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-06
Manufacturer:	YSI Incorporated, a	Xylem brand
Description:	Model No.	Serial No.
- EXO1 Sonde, 100 meter Depth, 4 Sensor ports	599501-02	16J100680
- EXO Optical DO Sensor, Ti	599100-01	16H102985
- EXO conductivity/Temperature Sensor, Ti	599870	16G102307
- EXO Turbuduty Sensor, Ti	599101-01	16H102463
- EXO pH Sensor Assembly, Guarded, Ti	599701	16H102985

Test conditions:

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

WELLAB LIMITED Room 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: Date of Issue:

31536 2019-05-28

Date Received:
Date Tested:

2019-05-27 2019-05-27 to

2019-05-28

Date Completed:

2019-05-28

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.0	20.000	0.000	N/A

pH performance checking

	Instrument Readings (pH unit)	Accetance Criteria	Comment
pH QC buffer 4.00	4.01	4.00 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.86	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.20	9.18 <u>+</u> 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.09	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.00	7.86	Difference between	Pass
		Titration value and	
		instrument reading	
		<0.2mg/L	

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.01	9.0-11.0	Pass
50 NTU	50.04	45.0-55.0	Pass
100 NTU	99.5	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (m)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14849)

Model No.: 716A0403 Serial No.: BE15892

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15892)

Part Number: 714A9701
Serial No.: BG14849

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE15892)

Model No.: 714A9801

Serial No.: BH10228

Calibration Date: 18 March 2019 Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY470111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14853)

Model No.: 716A0403

Serial No.: BE17906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Isaac Au Yeung

A STATE WAS TO BE STONE OF THE

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17906)

Part Number: 714A9701 Serial No.: BG14853

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Isaac_#Au Yeung

X Parist XXXXX Marches - 1012

Calibration Item: Linear Microphone (Calibration with main unit

BE17906)

Model No.: 714A9801

Serial No.: BH11454

Calibration Date: 22 March 2019
Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14852)

Model No.: 716A0403 Serial No.: BE15890

Calibration Date: 22 March 2019
Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by: (Isaac Au Yeung)

× 6/11分類 建存 1/21-5 1/27

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15890)

Part Number: 714A9701
Serial No.: BG14852

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by: (Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE15890)

Model No.: 714A9801

Serial No.: BH11455

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16955)

Model No.: 716A0403 Serial No.: BE16223

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by: (Isaac Au Yeung)

2886H 28H Varc 2013

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16223)

Part Number:

714A9701

Serial No.:

BG16955

Calibration Date:

22 March 2019

Next Calibration Date:

22 March 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.:

B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE16223)

Model No.: 714A9801

Serial No.: BH11458

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

*References are traceable to NIST or equivalent.

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20672)

Model No .:

716A0403

Serial No.:

BE17504

Calibration Date:

15 April 2019

Next Calibration Date:

15 April 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References Model Serial No. Blastmate III 714A0801 BA15521 ISEE Triaxial Geophone 714A9701 BG14463 GLOBAL SPECIALISTS 3MHz* 2030 256812 Stanford Spectrum Analyzer SR760 41550 Aglient Multimeter* 34410A MY47011119 **HP Distortion Meter*** 339A 810699 Bruel & Kjaer Accelerometer* 4370 30323 Bruel & Kjaer Charge Amplifier* 2647 2518810 Bruel & Kjaer Conditional Amplifier* 269 2152173 LDS Air Cooled Vibrator V556 92794/1 LDS Field Power Supply FPS10L ARA 04/05 LDS Power Amplifier PA1000L ARA 07/06

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 15 April 2019

^{*}References are traceable to NIST or equivalent.

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17504)

Part Number: 714A9701
Serial No.: BG20672

Calibration Date: 15 April 2019 Next Calibration Date: 15 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 15 April 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE17504)

Model No.: 714A9801 Serial No.: BH11460

Calibration Date: 15 April 2019
Next Calibration Date: 15 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 15 April 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16515)

Model No.: 716A0403
Serial No.: BE16354
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Next Calibration Date: 8 April 2020
Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16354)

Part Number: 714A9701
Serial No.: BG16515
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE16354)

Model No.: 714A9801

Serial No.: BH12477

Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG15353)

Model No.: 716A0403 Serial No.: BE15891

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15891)

Part Number: 714A9701 Serial No.: BG15353

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG15180)

Model No.: 716A0403 Serial No.: BE15894

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15894)

Part Number: 714A9701 Serial No.: BG15180

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE17905)

Model No.: 714A9801
Serial No.: BH14079
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17905)

Part Number: 714A9701
Serial No.: BG16514
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16514)

 Model No.:
 716A0403

 Serial No.:
 BE17905

Calibration Date: 8 April 2019 Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20673)

Model No.: 716A0403 Serial No.: BE13849

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13849)

Part Number:

714A9701

Serial No .:

BG20673

Calibration Date:

19 March 2019

Next Calibration Date:

19 March 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.:

B3-001

Model	Serial No.
714A0801	BA15521
714A9701	BG14463
2030	256812
SR760	41550
34410A	MY47011119
339A	810699
4370	30323
2647	2518810
269	2152173
V556	92794/1
FPS10L	ARA 04/05
PA1000L	ARA 07/06
	714A0801 714A9701 2030 SR760 34410A 339A 4370 2647 269 V556 FPS10L

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE13849)

Model No.: 714A9801 Serial No.: BH13154

Calibration Date: 18 March 2019
Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16512)

Model No.: 716A0403 Serial No.: BE13853

Calibration Date: 28 February 2019
Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13853)

Part Number: 714A9701 Serial No.: BG16512

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16959)

Model No.: 716A0403
Serial No.: BE17506
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 8 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17506)

Part Number: 714A9701
Serial No.: BG16959
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 8 April 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE17506)

Model No.: 714A9801

Serial No.: BH10227

Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Linear Microphone (Calibration with main unit

BE17904)

Model No .:

714A9801

Serial No.:

BH14080

Calibration Date:

8 April 2019

Next Calibration Date:

8 April 2020

Method Used:

In-house Method MM-002

In-house Testing Procedure No.:

MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17904)

Part Number: 714A9701
Serial No.: BG14847
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14847)

Model No.: 716A0403 Serial No.: BE17904

Calibration Date: 8 April 2019 Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16957)

Model No.: 716A0403 Serial No.: BE17505

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17505)

Part Number: 714A9701 Serial No.: BG16957

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG19189)

Model No.: 716A0403 Serial No.: BE21658

Calibration Date: 15 April 2019 Next Calibration Date: 15 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 15 April 2019

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit BE21658)

Part Number:

714A9701

Serial No .:

BG19189

Calibration Date:

15 April 2019

Next Calibration Date:

15 April 2020

Method Used:

Test References

ISEE Triaxial Geophone

Blastmate III

In-house Method B3-001

In-house Testing Procedure No.: B3-001

> Model Serial No. 714A0801 BA15521 714A9701 BG14463

GLOBAL SPECIALISTS 3MHz* 2030 256812 Stanford Spectrum Analyzer SR760 41550

Aglient Multimeter* 34410A MY47011119

HP Distortion Meter* 339A 810699 Bruel & Kjaer Accelerometer* 4370 30323

Bruel & Kjaer Charge Amplifier* 2647 2518810

Bruel & Kjaer Conditional Amplifier* 269 2152173

LDS Air Cooled Vibrator V556 92794/1 LDS Field Power Supply FPS10L ARA 04/05

LDS Power Amplifier PA1000L ARA 07/06

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 15 April 2019

^{*}References are traceable to NIST or equivalent.

Calibration Item: Linear Microphone (Calibration with main unit

BE21658)

Model No.: 714A9801

Serial No.: BH12476

Calibration Date: 15 April 2019

Next Calibration Date: 15 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 15 April 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG17240)

Model No.: 716A0403 Serial No.: BE20015

Calibration Date: 19 March 2019
Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE20015)

Part Number: 714A9701
Serial No.: BG17240

Calibration Date: 19 March 2019
Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE20015)

Model No.: 714A9801 Serial No.: BH12658

Calibration Date: 18 March 2019

Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit UM12902)

Part Number:

721A2901

Serial No .:

UM12902

Calibration Date:

14 May 2019

Next Calibration Date:

14 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.:

MM-001

Test References	Model	
Blastmate III	The state of the s	Serial No.
	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*		41550
HP Distortion Meter*	34410A	MY47011119
	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*	269	2518810
DS Air Cooled Vibrator		2152173
DS Field Power Supply	V556	92794/1
경험에는 내가 기뻐하다 보니 되었다면 뭐죠? (5) 이용하다는 경고하는 것이 없었다.	FPS10L	ARA 04/05
DS Power Amplifier	PA1000L	
References		ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date:

14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12902)

 Model No.:
 721A2501

 Serial No.:
 UM12902

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12902)

Model No.: 721A0201 Serial No.: UL3397

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12904)

Model No.: 721A0201 Serial No.: UL3400

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173
kD of our and the state of the		2132173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac

Calibration Item: Micromate Unit (Calibration with Geophone

UM12904)

Model No.: 721A2501 Serial No.: UM12904

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	
Blastmate III		Serial No.
ISEE Triaxial Geophone	714A0801	BA15521
	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*		41550
HP Distortion Meter*	34410A	MY47011119
	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*		2518810
LDS Air Cooled Vibrator	269	2152173
	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
DS Power Amplifier	PA1000L	
References are traceable to NIGE	=======	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12904)

Part Number: 721A2901
Serial No.: UM12904
Calibration Date: 14 May 2019

Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12905)

Model No.: 721A0201 Serial No.: UL3401

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Bate: 14-May 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12905)

Part Number:

721A2901

Serial No.:

UM12905

Calibration Date:

14 May 2019

Next Calibration Date:

14 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.: M

MM-001

Test References	Model	Sowial Na
Blastmate III	714A0801	Serial No.
ISEE Triaxial Geophone	714A9701	BA15521
GLOBAL SPECIALISTS 3MHz*	2030	BG14463
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*	34410A	41550
HP Distortion Meter*	339A	MY47011119
Bruel & Kjaer Accelerometer*	4370	810699
Bruel & Kjaer Charge Amplifier*	2647	30323
Bruel & Kjaer Conditional Amplifier*	269	2518810
LDS Air Cooled Vibrator	V556	2152173
LDS Field Power Supply	FPS10L	92794/1
LDS Power Amplifier	PA1000L	ARA 04/05
*D C	TATOUOL	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12905)

Model No.: 721A2501
Serial No.: UM12905
Calibration Date: 14 May 2019
Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	6
Blastmate III	714A0801	Serial No.
ISEE Triaxial Geophone	714A9701	BA15521
GLOBAL SPECIALISTS 3MHz*		BG14463
Stanford Spectrum Analyzer	2030	256812
	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*	269	2518810
LDS Air Cooled Vibrator	V556	2152173
LDS Field Power Supply		92794/1
LDS Power Amplifier	FPS10L	ARA 04/05
*Poforona *Pofor	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12906)

Model No.: 721A2501 Serial No.: UM12906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Hu

Au Yeung Hang Chuen, Isaac

Date: Warsh 2017

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12906)

Part Number: 721A2901 Serial No.: UM12906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Date HWW. Hater X 1014

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12906)

Model No.: 721A0201 Serial No.: UL3399

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 22 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12907)

Part Number: 721A2901 Serial No.: UM12907

Calibration Date: 28 February 2019
Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Micromate Unit (Calibration with Geophone

UM12907)

Model No.: 721A2501 Serial No.: UM12907

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12907)

Model No.: 721A0201 Serial No.: UL3398

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12928)

Part Number: 721A2901
Serial No.: UM12928
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM12928)

Model No.: 721A2501

Serial No.: UM12928

Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12928)

Model No.: 721A0201
Serial No.: UL3383
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit UM12929)

Part Number:

721A2901

Serial No.:

UM12929

Calibration Date:

2 May 2019

Next Calibration Date:

2 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.:

MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date:

2 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12929)

Model No.: 721A2501
Serial No.: UM12929
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12929)

Model No.: 721A0201 Serial No.: UL3384

Calibration Date: 2 May 2019 Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13698)

Part Number: 721A2901
Serial No.: UM13698
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13698)

Model No.: 721A2501

Serial No.: UM13698

Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13701)

Part Number: 721A2901
Serial No.: UM13701
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13701)

Model No.: 721A2501
Serial No.: UM13701
Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13695)

Part Number: 721A2901
Serial No.: UM13695
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13695)

Model No.: 721A2501
Serial No.: UM13695
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13695)

Model No.: 721A0201
Serial No.: UL3396
Calibration Date: 2 May 2019

Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13696)

Model No.: 721A0201 Serial No.: UL3394

Calibration Date: 30 April 2019
Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

No.
521
463
2
011119
9
10
73
/1
04/05
07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13696)

Part Number: 721A2901 Serial No.: UM13696

Calibration Date: 30 April 2019 **Next Calibration Date:** 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric) Date:

Calibration Item: Micromate Unit (Calibration with Geophone

UM13696)

Model No.: 721A2501
Serial No.: UM13696
Calibration Date: 30 April 2019

Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13699)

 Part Number:
 721A2901

 Serial No.:
 UM13699

Calibration Date: 30 April 2019
Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

nin

Date: 30 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13699)

Model No.: 721A2501 Serial No.: UM13699

Calibration Date: 30 April 2019 Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)
Date: 30 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13702)

Model No.: 721A2501
Serial No.: UM13702
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13702)

Part Number: 721A2901
Serial No.: UM13702
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13702)

 Model No.:
 721A0201

 Serial No.:
 UL3395

Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Wong, Keefe Solomon)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13703)

Model No.: 721A2501

Serial No.: UM13703

Calibration Date: 25 April 2019

Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13703)

Part Number:

721A2901

Serial No.:

UM13703

Calibration Date:

25 April 2019

Next Calibration Date:

25 April 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812 41550	
Stanford Spectrum Analyzer	SR760		
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
LDS Air Cooled Vibrator	V556	92794/1	
DS Field Power Supply	FPS10L	ARA 04/05	
LDS Power Amplifier	PA1000L	ARA 07/06	
		1110107700	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date:

ni

25 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13704)

Model No.: 721A2501

Serial No.: UM13704

Calibration Date: 30 April 2019

Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
LDS Air Cooled Vibrator	V556	92794/1	
LDS Field Power Supply	FPS10L	ARA 04/05	
LDS Power Amplifier	PA1000L	ARA 07/06	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13704)

Part Number: 721A2901 Serial No.: UM13704

Calibration Date: 30 April 2019 Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
LDS Air Cooled Vibrator	V556	92794/1	
LDS Field Power Supply	FPS10L	ARA 04/05	
LDS Power Amplifier	PA1000L	ARA 07/06	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13704)

 Model No.:
 721A0201

 Serial No.:
 UL3385

Calibration Date: 25 April 2019 Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
Linear Microphone	714A9801	BH11561	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Microphone*	4193	2677340	
Low Frequency Calibrator*	42AE	105366	
Bruel & Kjaer Conditional Amplifier*	269	2152173	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13708)

Model No.: 721A2501 Serial No.: UM13708

Calibration Date: 25 April 2019
Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
DS Air Cooled Vibrator	V556	92794/1	
DS Field Power Supply	FPS10L		
LDS Power Amplifier	PA1000L	ARA 04/05 ARA 07/06	
		711th U//UU	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13708)

Part Number: 721A2901 Serial No.: UM13708

Calibration Date: 25 April 2019
Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13708)

Model No.: 721A0201 Serial No.: UL3386

Calibration Date: 25 April 2019
Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
Linear Microphone	714A9801	BH11561	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Microphone*	4193	2677340	
Low Frequency Calibrator*	42AE	105366	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
		=102175	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric

MSA Corporate Center • 1000 Cranberry Woods Drive • Cranberry Township, PA 16066 www.msasafety.com

Telephone: (800) MSA-2222

ALTAIR5X CERTIFICATE OF CALIBRATION

Serial Number: 152097

Part Number: A-ALT5X-A-N-K-D-1-B-0-T-0-0-0

阿

Factory Calibration Date: 03/29/19

Set Points

	METHANE 0-100.00 %LEL	O2 0-30.00 %VOL	CO 0-2000.00 PPM	H2S 0-200.00 PPM	NH3 0-100.00 PPM	CO2 0-9.99 %VOL
Ψ (Low)	10.00 %LEL	19.50 %VOL	25.00 PPM	10.00 PPM	25.00 PPM	0.50 %VOL
↑ (High)	20.00 %LEL	23.00 %VOL	100.00 PPM	15.00 PPM	50.00 PPM	1.50 %VOL
STEL			100.00 PPM	15.00 PPM	35.00 PPM	0.50 %VOL
D _{TWA}			25.00 PPM	10.00 PPM	25.00 PPM	1.50 %VOL
្រី Calibrated Value	Methane 1.460 %VOL	O2 14.99 %VOL	CO 59.90 PPM	H2S 20.13 PPM	NH3 25 PPM	CO2 2.502 %VOL
Cylinder Lot #	122- 401221543-1A	122- 401221543-1A	122- 401221543-1A	122- 401221543-1A	224895	141- 401019452- 1N461052

Calibration Certification

All applicable inspections, testing, and calibrations were performed using NIST traceable equipment, where available, in accordance with MSA's ISO 9001 Certified Quality System. Each material, component, and/or instrument must be installed, operated and maintained in strict accordance with its labels, cautions, warnings, instructions, and within the limitations stated in the supplied instruction manual. Routine calibration checks, equipment inspections, and applicable preventative maintenance measures must be performed to verify that the materials, components, and/or instruments are operating properly. Failure to perform these tasks on a routine basis, or suggested intervals, with specified equipment or methods, may result in inaccurate readings.

Conformance Statement

MSA certifies that the materials, components, and/or instruments delivered in this shipment conform to all applicable specifications. The items delivered have been processed through the appropriate approved document controlled procedures for Receiving, Manufacturing and Inspection. The materials, components, and/or instruments were inspected, tested, and calibrated, as applicable, per the associated drawings, standards requirements, and/or specifications, and were deemed acceptable by appropriate authorized personnel.

Process Certified By:

Calibrated By: T. Skal

JAM HOFFMAN OUALITY ENGINEER

APPENDIX C WEATHER INFORMATION

D.4.	Mean Air	Mean Relative	Precipitation	
Date	Temperature (°C)	Humidity (%)	(mm)	
1 June 2019	27.2	87	32.6	
2 June 2019	27.2	86	3.0	
3 June 2019	27.5	85	34.1	
4 June 2019	28.0	89	38.1	
5 June 2019	29.4	82	0.0	
6 June 2019	30.2	78	Trace	
7 June 2019	30.1	77	0.0	
8 June 2019	30.1	76	1.1	
9 June 2019	30.1	79	4.1	
10 June 2019	29.5	81	3.3	
11 June 2019	27.5	91	111.6	
12 June 2019	27.5	91	1.5	
13 June 2019	27.7	88	55.8	
14 June 2019	28.4	76	16.5	
15 June 2019	28.6	74	Trace	
16 June 2019	27.9	80	0.0	
17 June 2019	27.6	88	4.7	
18 June 2019	28.6	88	11.1	
19 June 2019	28.9	87	14.0	
20 June 2019	30.1	80	0.5	

	Mean Air	Mean Relative	Precipitation	
Date	Temperature (°C)	Humidity (%)	(mm)	
21 June 2019	30.8	77	0.7	
22 June 2019	30.7	78	0.7	
23 June 2019	30.3	80	3.2	
24 June 2019	29.1	85	16.8	
25 June 2019	27.2	89	35.4	
26 June 2019	28.6	86	0.9	
27 June 2019	30.2	83	3.5	
28 June 2019	30.5	82	2.2	
29 June 2019	31.0	79	0.6	
30 June 2019	29.5	85	33.1	

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
1-Jun-19	00:00	0.3	NE	2-Jun-19	12:00	1.8	ENE
1-Jun-19	01:00	0.4	NE	2-Jun-19	13:00	1.3	SW
1-Jun-19	02:00	0.9	ENE	2-Jun-19	14:00	1.3	ESE
1-Jun-19	03:00	0.4	WSW	2-Jun-19	15:00	1.3	SW
1-Jun-19	04:00	0.4	SW	2-Jun-19	16:00	0.9	SE
1-Jun-19	05:00	0	ENE	2-Jun-19	17:00	2.2	SW
1-Jun-19	06:00	0.4	SW	2-Jun-19	18:00	1.3	SW
1-Jun-19	07:00	1.3	ENE	2-Jun-19	19:00	1.3	SW
1-Jun-19	08:00	2.2	SW	2-Jun-19	20:00	1.3	SW
1-Jun-19	09:00	0	Е	2-Jun-19	21:00	0.4	SW
1-Jun-19	10:00	1.8	ENE	2-Jun-19	22:00	0	N
1-Jun-19	11:00	1.3	ENE	2-Jun-19	23:00	0	
1-Jun-19	12:00	0.9	SSE	3-Jun-19	00:00	0.4	NNE
1-Jun-19	13:00	0.9	SW	3-Jun-19	01:00	0.4	WSW
1-Jun-19	14:00	1.3	ENE	3-Jun-19	02:00	1.3	SW
1-Jun-19	15:00	2.2	SW	3-Jun-19	03:00	0.4	SW
1-Jun-19	16:00	2.2	SW	3-Jun-19	04:00	0.4	SW
1-Jun-19	17:00	0.9	SSW	3-Jun-19	05:00	0.4	N
1-Jun-19	18:00	0.9	SW	3-Jun-19	06:00	0.4	WSW
1-Jun-19	19:00	0.4	ENE	3-Jun-19	07:00	0.4	SW
1-Jun-19	20:00	0.4	SW	3-Jun-19	08:00	0.4	ENE
1-Jun-19	21:00	0.4	SW	3-Jun-19	09:00	0.4	SE
1-Jun-19	22:00	1.3	ENE	3-Jun-19	10:00	0.9	SW
1-Jun-19	23:00	0.9	SW	3-Jun-19	11:00	1.8	SW
2-Jun-19	00:00	0.9	SW	3-Jun-19	12:00	0.4	SW
2-Jun-19	01:00	0	SSW	3-Jun-19	13:00	1.3	ENE
2-Jun-19	02:00	0	SW	3-Jun-19	14:00	1.3	ENE
2-Jun-19	03:00	0.4	SW	3-Jun-19	15:00	0.9	ESE
2-Jun-19	04:00	0.4	WSW	3-Jun-19	16:00	0.4	S
2-Jun-19	05:00	0.4	SW	3-Jun-19	17:00	0	S
2-Jun-19	06:00	0.9	SW	3-Jun-19	18:00	0.4	S
2-Jun-19	07:00	0.4	SW	3-Jun-19	19:00	0.4	S
2-Jun-19	08:00	0.9	SW	3-Jun-19	20:00	0.9	SW
2-Jun-19	09:00	1.3	SW	3-Jun-19	21:00	0.9	SW
2-Jun-19	10:00	0.9	SW	3-Jun-19	22:00	0.4	SW
2-Jun-19	11:00	1.8	ENE	3-Jun-19	23:00	0.9	SW

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
4-Jun-19	00:00	0	SW	5-Jun-19	12:00	3.1	ENE
4-Jun-19	01:00	0	SW	5-Jun-19	13:00	2.2	ENE
4-Jun-19	02:00	0.4	SW	5-Jun-19	14:00	2.2	ENE
4-Jun-19	03:00	0.4	SW	5-Jun-19	15:00	1.3	ENE
4-Jun-19	04:00	0.4	WSW	5-Jun-19	16:00	1.3	ENE
4-Jun-19	05:00	0.4	ESE	5-Jun-19	17:00	1.3	ENE
4-Jun-19	06:00	0	NE	5-Jun-19	18:00	2.2	ENE
4-Jun-19	07:00	0.4	SW	5-Jun-19	19:00	1.3	ENE
4-Jun-19	08:00	0.4	SW	5-Jun-19	20:00	1.3	ENE
4-Jun-19	09:00	1.8	ENE	5-Jun-19	21:00	1.3	ENE
4-Jun-19	10:00	2.7	ENE	5-Jun-19	22:00	0.9	NNE
4-Jun-19	11:00	1.8	ENE	5-Jun-19	23:00	0.9	NNE
4-Jun-19	12:00	1.3	SW	6-Jun-19	00:00	0.9	NNE
4-Jun-19	13:00	1.3	SW	6-Jun-19	01:00	0.9	NNE
4-Jun-19	14:00	1.3	SW	6-Jun-19	02:00	1.3	ENE
4-Jun-19	15:00	0.9	SSW	6-Jun-19	03:00	0.9	NE
4-Jun-19	16:00	0.4	Е	6-Jun-19	04:00	0.9	NNE
4-Jun-19	17:00	0.9	ENE	6-Jun-19	05:00	2.2	ENE
4-Jun-19	18:00	0.9	ENE	6-Jun-19	06:00	2.7	ENE
4-Jun-19	19:00	0.9	NE	6-Jun-19	07:00	2.7	ENE
4-Jun-19	20:00	0.9	ENE	6-Jun-19	08:00	4	ENE
4-Jun-19	21:00	0	ESE	6-Jun-19	09:00	3.1	ENE
4-Jun-19	22:00	0	ESE	6-Jun-19	10:00	1.8	ENE
4-Jun-19	23:00	0.4	NE	6-Jun-19	11:00	1.8	ENE
5-Jun-19	00:00	0	NNE	6-Jun-19	12:00	3.1	ENE
5-Jun-19	01:00	0.4	NE	6-Jun-19	13:00	3.1	ENE
5-Jun-19	02:00	0.4	NE	6-Jun-19	14:00	2.7	ENE
5-Jun-19	03:00	0.4	NNE	6-Jun-19	15:00	2.7	ENE
5-Jun-19	04:00	1.3	ENE	6-Jun-19	16:00	1.3	ENE
5-Jun-19	05:00	1.8	ENE	6-Jun-19	17:00	2.2	ENE
5-Jun-19	06:00	2.2	ENE	6-Jun-19	18:00	2.2	ENE
5-Jun-19	07:00	2.2	ENE	6-Jun-19	19:00	2.2	ENE
5-Jun-19	08:00	2.7	ENE	6-Jun-19	20:00	1.8	ENE
5-Jun-19	09:00	3.6	ENE	6-Jun-19	21:00	1.8	ENE
5-Jun-19	10:00	3.6	ENE	6-Jun-19	22:00	1.3	ENE
5-Jun-19	11:00	4	ENE	6-Jun-19	23:00	0.9	NE

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
7-Jun-19	00:00	1.3	ENE	8-Jun-19	12:00	1.3	ESE
7-Jun-19	01:00	0.9	NNE	8-Jun-19	13:00	0.9	ESE
7-Jun-19	02:00	0.4	ENE	8-Jun-19	14:00	1.3	Е
7-Jun-19	03:00	1.3	ENE	8-Jun-19	15:00	1.3	ENE
7-Jun-19	04:00	0.9	SW	8-Jun-19	16:00	2.7	ENE
7-Jun-19	05:00	0.9	SW	8-Jun-19	17:00	2.2	ENE
7-Jun-19	06:00	1.3	ENE	8-Jun-19	18:00	2.2	ENE
7-Jun-19	07:00	1.3	ESE	8-Jun-19	19:00	2.2	ENE
7-Jun-19	08:00	1.3	ESE	8-Jun-19	20:00	2.2	ENE
7-Jun-19	09:00	1.8	Е	8-Jun-19	21:00	1.8	ENE
7-Jun-19	10:00	1.8	ESE	8-Jun-19	22:00	1.8	ENE
7-Jun-19	11:00	1.8	SW	8-Jun-19	23:00	1.3	ENE
7-Jun-19	12:00	1.8	Е	9-Jun-19	00:00	1.3	ENE
7-Jun-19	13:00	1.3	Е	9-Jun-19	01:00	1.3	ESE
7-Jun-19	14:00	1.3	ESE	9-Jun-19	02:00	1.8	ENE
7-Jun-19	15:00	2.2	ENE	9-Jun-19	03:00	0.4	S
7-Jun-19	16:00	0.9	SW	9-Jun-19	04:00	0.4	Е
7-Jun-19	17:00	2.2	ENE	9-Jun-19	05:00	0.4	SSW
7-Jun-19	18:00	1.3	SE	9-Jun-19	06:00	0.4	S
7-Jun-19	19:00	1.3	ENE	9-Jun-19	07:00	0.4	Е
7-Jun-19	20:00	1.8	ENE	9-Jun-19	08:00	0.4	Е
7-Jun-19	21:00	1.3	ESE	9-Jun-19	09:00	0.4	Е
7-Jun-19	22:00	0.9	ENE	9-Jun-19	10:00	0.4	SSW
7-Jun-19	23:00	0.9	ENE	9-Jun-19	11:00	0.4	S
8-Jun-19	00:00	1.3	ENE	9-Jun-19	12:00	0.4	S
8-Jun-19	01:00	1.3	ENE	9-Jun-19	13:00	0.4	S
8-Jun-19	02:00	1.3	ENE	9-Jun-19	14:00	0.4	Е
8-Jun-19	03:00	1.3	ENE	9-Jun-19	15:00	0	Е
8-Jun-19	04:00	1.3	Е	9-Jun-19	16:00	0.4	SSW
8-Jun-19	05:00	0.9	SW	9-Jun-19	17:00	0.9	SSW
8-Jun-19	06:00	1.8	SW	9-Jun-19	18:00	0.4	ESE
8-Jun-19	07:00	2.2	ENE	9-Jun-19	19:00	0.4	Е
8-Jun-19	08:00	1.3	Е	9-Jun-19	20:00	0.4	Е
8-Jun-19	09:00	1.8	ENE	9-Jun-19	21:00	0.9	S
8-Jun-19	10:00	1.8	Е	9-Jun-19	22:00	0.4	S
8-Jun-19	11:00	1.3	ESE	9-Jun-19	23:00	0	S

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
10-Jun-19	00:00	0.4	ESE	11-Jun-19	12:00	1.3	ENE
10-Jun-19	01:00	0	S	11-Jun-19	13:00	1.3	ENE
10-Jun-19	02:00	0	S	11-Jun-19	14:00	0.9	NNE
10-Jun-19	03:00	0.4	SSW	11-Jun-19	15:00	1.3	NNE
10-Jun-19	04:00	0.4	ESE	11-Jun-19	16:00	0.9	NNE
10-Jun-19	05:00	0.4	ESE	11-Jun-19	17:00	0.9	NNE
10-Jun-19	06:00	0.4	Е	11-Jun-19	18:00	0.9	NE
10-Jun-19	07:00	0	SSW	11-Jun-19	19:00	0.4	ENE
10-Jun-19	08:00	0.4	Е	11-Jun-19	20:00	0.9	NNE
10-Jun-19	09:00	0	ESE	11-Jun-19	21:00	0.9	ENE
10-Jun-19	10:00	0.4	Е	11-Jun-19	22:00	0.4	Е
10-Jun-19	11:00	0.4	ESE	11-Jun-19	23:00	0.4	NE
10-Jun-19	12:00	0.4	ESE	12-Jun-19	00:00	0.4	ENE
10-Jun-19	13:00	0.9	SSW	12-Jun-19	01:00	0.9	ENE
10-Jun-19	14:00	2.2	SSW	12-Jun-19	02:00	1.8	ENE
10-Jun-19	15:00	1.8	SSW	12-Jun-19	03:00	0.9	SW
10-Jun-19	16:00	0.4	S	12-Jun-19	04:00	0.4	SW
10-Jun-19	17:00	0.9	S	12-Jun-19	05:00	0.9	SW
10-Jun-19	18:00	0.9	S	12-Jun-19	06:00	0.4	SW
10-Jun-19	19:00	0.9	S	12-Jun-19	07:00	0.9	ENE
10-Jun-19	20:00	1.8	SW	12-Jun-19	08:00	0.9	SSW
10-Jun-19	21:00	0	SW	12-Jun-19	09:00	1.3	SW
10-Jun-19	22:00	0	SSW	12-Jun-19	10:00	0.9	SW
10-Jun-19	23:00	0.4	ENE	12-Jun-19	11:00	0.9	SW
11-Jun-19	00:00	0.4	ENE	12-Jun-19	12:00	0.4	SW
11-Jun-19	01:00	1.3	ENE	12-Jun-19	13:00	0.9	SW
11-Jun-19	02:00	1.8	ENE	12-Jun-19	14:00	0.9	SW
11-Jun-19	03:00	1.3	ENE	12-Jun-19	15:00	0.4	SW
11-Jun-19	04:00	1.3	ENE	12-Jun-19	16:00	0.9	SW
11-Jun-19	05:00	0.9	Е	12-Jun-19	17:00	0.9	SSW
11-Jun-19	06:00	1.8	SSW	12-Jun-19	18:00	0.4	S
11-Jun-19	07:00	1.3	S	12-Jun-19	19:00	0.9	SSW
11-Jun-19	08:00	1.3	WSW	12-Jun-19	20:00	0	ESE
11-Jun-19	09:00	1.8	ENE	12-Jun-19	21:00	0.4	S
11-Jun-19	10:00	1.8	ENE	12-Jun-19	22:00	0.4	NNE
11-Jun-19	11:00	1.8	ENE	12-Jun-19	23:00	0.4	SSW

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
13-Jun-19	00:00	0.9	SSW	14-Jun-19	12:00	1.3	NNE
13-Jun-19	01:00	0.9	S	14-Jun-19	13:00	1.3	NNE
13-Jun-19	02:00	1.8	SW	14-Jun-19	14:00	1.3	ENE
13-Jun-19	03:00	0.9	SSW	14-Jun-19	15:00	1.3	NE
13-Jun-19	04:00	0.9	S	14-Jun-19	16:00	0.9	ENE
13-Jun-19	05:00	1.3	ENE	14-Jun-19	17:00	1.3	ENE
13-Jun-19	06:00	1.3	ENE	14-Jun-19	18:00	0.9	NNE
13-Jun-19	07:00	1.3	Е	14-Jun-19	19:00	0.9	NNE
13-Jun-19	08:00	1.8	SW	14-Jun-19	20:00	0.9	NNE
13-Jun-19	09:00	1.3	ESE	14-Jun-19	21:00	0.9	NNE
13-Jun-19	10:00	0.9	Е	14-Jun-19	22:00	1.3	ENE
13-Jun-19	11:00	0.9	NNE	14-Jun-19	23:00	1.3	NNE
13-Jun-19	12:00	0.9	ENE	15-Jun-19	00:00	1.3	NNE
13-Jun-19	13:00	1.3	ENE	15-Jun-19	01:00	1.3	NE
13-Jun-19	14:00	1.3	ENE	15-Jun-19	02:00	1.3	NNE
13-Jun-19	15:00	0.9	ENE	15-Jun-19	03:00	1.3	NNE
13-Jun-19	16:00	0.4	ENE	15-Jun-19	04:00	1.3	NNE
13-Jun-19	17:00	0.4	N	15-Jun-19	05:00	1.3	NNE
13-Jun-19	18:00	0.4	SW	15-Jun-19	06:00	2.2	ENE
13-Jun-19	19:00	0.4	SSW	15-Jun-19	07:00	2.2	ENE
13-Jun-19	20:00	0.4	WSW	15-Jun-19	08:00	1.8	ENE
13-Jun-19	21:00	0.9	SSW	15-Jun-19	09:00	1.8	NNE
13-Jun-19	22:00	0.4	SW	15-Jun-19	10:00	1.8	NNE
13-Jun-19	23:00	0.4	SW	15-Jun-19	11:00	1.3	NNE
14-Jun-19	00:00	0.9	SW	15-Jun-19	12:00	1.3	NNE
14-Jun-19	01:00	1.3	SW	15-Jun-19	13:00	0.9	NNE
14-Jun-19	02:00	1.3	SSW	15-Jun-19	14:00	1.3	ENE
14-Jun-19	03:00	0.9	ENE	15-Jun-19	15:00	1.3	ENE
14-Jun-19	04:00	1.8	ENE	15-Jun-19	16:00	1.3	NNE
14-Jun-19	05:00	2.7	ENE	15-Jun-19	17:00	1.3	NNE
14-Jun-19	06:00	1.8	NNE	15-Jun-19	18:00	1.3	NNE
14-Jun-19	07:00	1.8	ENE	15-Jun-19	19:00	0.9	NNE
14-Jun-19	08:00	1.8	NE	15-Jun-19	20:00	1.3	NNE
14-Jun-19	09:00	1.8	ENE	15-Jun-19	21:00	0.9	NNE
14-Jun-19	10:00	1.8	ENE	15-Jun-19	22:00	0.9	NNE
14-Jun-19	11:00	1.3	ENE	15-Jun-19	23:00	0.9	NNE

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
16-Jun-19	0:00	0.9	NNE	17-Jun-19	12:00	1.3	ENE
16-Jun-19	1:00	0.9	NNE	17-Jun-19	13:00	1.3	ENE
16-Jun-19	2:00	1.3	NNE	17-Jun-19	14:00	1.3	ENE
16-Jun-19	3:00	1.3	NE	17-Jun-19	15:00	0.9	ENE
16-Jun-19	4:00	1.8	NNE	17-Jun-19	16:00	1.3	ENE
16-Jun-19	5:00	1.8	NNE	17-Jun-19	17:00	1.3	ENE
16-Jun-19	6:00	1.8	NNE	17-Jun-19	18:00	0.9	NE
16-Jun-19	7:00	1.3	ENE	17-Jun-19	19:00	0.4	NE
16-Jun-19	8:00	1.8	NNE	17-Jun-19	20:00	0.4	NE
16-Jun-19	9:00	1.3	NE	17-Jun-19	21:00	0.4	NE
16-Jun-19	10:00	0.9	NNE	17-Jun-19	22:00	0.4	N
16-Jun-19	11:00	1.8	ENE	17-Jun-19	23:00	0.4	N
16-Jun-19	12:00	1.3	ENE	18-Jun-19	0:00	0.9	N
16-Jun-19	13:00	1.3	ENE	18-Jun-19	1:00	0.4	NE
16-Jun-19	14:00	1.3	ENE	18-Jun-19	2:00	0.9	ENE
16-Jun-19	15:00	1.3	ENE	18-Jun-19	3:00	0.9	ENE
16-Jun-19	16:00	1.3	ENE	18-Jun-19	4:00	2.2	ENE
16-Jun-19	17:00	1.3	ENE	18-Jun-19	5:00	1.8	ENE
16-Jun-19	18:00	1.3	ENE	18-Jun-19	6:00	1.8	SW
16-Jun-19	19:00	1.3	ENE	18-Jun-19	7:00	1.8	SW
16-Jun-19	20:00	0.9	NE	18-Jun-19	8:00	2.7	ENE
16-Jun-19	21:00	0.9	ENE	18-Jun-19	9:00	3.1	ENE
16-Jun-19	22:00	0.9	NE	18-Jun-19	10:00	2.7	ENE
16-Jun-19	23:00	0.9	ENE	18-Jun-19	11:00	2.2	ENE
17-Jun-19	0:00	0.9	N	18-Jun-19	12:00	0.9	SW
17-Jun-19	1:00	1.3	NNE	18-Jun-19	13:00	0	NNE
17-Jun-19	2:00	2.7	ENE	18-Jun-19	14:00	0.4	NE
17-Jun-19	3:00	3.1	ENE	18-Jun-19	15:00	0.9	ENE
17-Jun-19	4:00	3.1	ENE	18-Jun-19	16:00	0.9	ENE
17-Jun-19	5:00	1.8	ENE	18-Jun-19	17:00	0.4	NNE
17-Jun-19	6:00	1.8	ENE	18-Jun-19	18:00	0.4	NNE
17-Jun-19	7:00	1.8	ENE	18-Jun-19	19:00	0.4	NNE
17-Jun-19	8:00	1.3	SW	18-Jun-19	20:00	0.4	NNE
17-Jun-19	9:00	0.4	SSW	18-Jun-19	21:00	0.9	NNE
17-Jun-19	10:00	1.3	ENE	18-Jun-19	22:00	0.4	NNE
17-Jun-19	11:00	1.8	ENE	18-Jun-19	23:00	0.9	NNE

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
19-Jun-19	0:00	0.4	NNE	20-Jun-19	12:00	1.3	SW
19-Jun-19	1:00	0.9	ENE	20-Jun-19	13:00	0.9	Е
19-Jun-19	2:00	0.4	ENE	20-Jun-19	14:00	1.3	ENE
19-Jun-19	3:00	0.9	SW	20-Jun-19	15:00	2.2	ENE
19-Jun-19	4:00	0.9	SSW	20-Jun-19	16:00	0.9	ENE
19-Jun-19	5:00	1.3	ESE	20-Jun-19	17:00	0.9	ENE
19-Jun-19	6:00	1.3	ENE	20-Jun-19	18:00	0.9	SW
19-Jun-19	7:00	1.3	SW	20-Jun-19	19:00	0.9	Е
19-Jun-19	8:00	1.3	Е	20-Jun-19	20:00	0.9	SE
19-Jun-19	9:00	1.3	SSW	20-Jun-19	21:00	0.9	ENE
19-Jun-19	10:00	1.3	ESE	20-Jun-19	22:00	1.8	ENE
19-Jun-19	11:00	0.9	ENE	20-Jun-19	23:00	0.9	SW
19-Jun-19	12:00	0.9	ESE	21-Jun-19	0:00	0.9	SW
19-Jun-19	13:00	0.9	ENE	21-Jun-19	1:00	0.9	SW
19-Jun-19	14:00	2.2	ENE	21-Jun-19	2:00	0.9	ENE
19-Jun-19	15:00	1.8	ENE	21-Jun-19	3:00	1.3	SSW
19-Jun-19	16:00	1.8	ENE	21-Jun-19	4:00	1.3	Е
19-Jun-19	17:00	2.2	ENE	21-Jun-19	5:00	0.4	ESE
19-Jun-19	18:00	2.2	ENE	21-Jun-19	6:00	0.4	ESE
19-Jun-19	19:00	2.2	ENE	21-Jun-19	7:00	0.4	SSW
19-Jun-19	20:00	1.8	ENE	21-Jun-19	8:00	0	SSW
19-Jun-19	21:00	1.8	ENE	21-Jun-19	9:00	0.4	SSW
19-Jun-19	22:00	0.9	ESE	21-Jun-19	10:00	0.4	SSW
19-Jun-19	23:00	0.9	SW	21-Jun-19	11:00	1.3	SW
20-Jun-19	0:00	0.9	ESE	21-Jun-19	12:00	0.9	SW
20-Jun-19	1:00	0.9	SW	21-Jun-19	13:00	0.9	ENE
20-Jun-19	2:00	0.9	ENE	21-Jun-19	14:00	0.9	SW
20-Jun-19	3:00	1.3	ESE	21-Jun-19	15:00	0.9	Е
20-Jun-19	4:00	1.3	ENE	21-Jun-19	16:00	1.3	ENE
20-Jun-19	5:00	1.8	Е	21-Jun-19	17:00	1.3	ENE
20-Jun-19	6:00	1.3	Е	21-Jun-19	18:00	0.9	ENE
20-Jun-19	7:00	1.8	ESE	21-Jun-19	19:00	1.3	ESE
20-Jun-19	8:00	1.8	ESE	21-Jun-19	20:00	1.3	ENE
20-Jun-19	9:00	1.8	S	21-Jun-19	21:00	1.3	ENE
20-Jun-19	10:00	1.3	ESE	21-Jun-19	22:00	1.3	ESE
20-Jun-19	11:00	0.9	S	21-Jun-19	23:00	0.9	Е

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
22-Jun-19	0:00	0.9	SW	23-Jun-19	12:00	1.3	SSW
22-Jun-19	1:00	1.3	SW	23-Jun-19	13:00	0.4	SSW
22-Jun-19	2:00	1.3	SW	23-Jun-19	14:00	1.3	SSW
22-Jun-19	3:00	1.8	Е	23-Jun-19	15:00	0.4	SSW
22-Jun-19	4:00	1.3	ENE	23-Jun-19	16:00	0.9	SSW
22-Jun-19	5:00	1.8	ENE	23-Jun-19	17:00	0.4	ESE
22-Jun-19	6:00	1.3	ENE	23-Jun-19	18:00	0.9	SSW
22-Jun-19	7:00	1.3	ESE	23-Jun-19	19:00	0.9	ENE
22-Jun-19	8:00	1.3	Е	23-Jun-19	20:00	0.9	ESE
22-Jun-19	9:00	1.3	ESE	23-Jun-19	21:00	0.4	Е
22-Jun-19	10:00	0.9	Е	23-Jun-19	22:00	0.4	ENE
22-Jun-19	11:00	1.3	SW	23-Jun-19	23:00	0	NNE
22-Jun-19	12:00	0.9	Е	24-Jun-19	0:00	0.4	ENE
22-Jun-19	13:00	0.4	S	24-Jun-19	1:00	1.8	ENE
22-Jun-19	14:00	1.8	ENE	24-Jun-19	2:00	1.3	ENE
22-Jun-19	15:00	1.3	ENE	24-Jun-19	3:00	1.3	ENE
22-Jun-19	16:00	1.8	ENE	24-Jun-19	4:00	1.8	ENE
22-Jun-19	17:00	0.9	ENE	24-Jun-19	5:00	0.9	ENE
22-Jun-19	18:00	0.9	Е	24-Jun-19	6:00	1.8	ENE
22-Jun-19	19:00	0.9	ENE	24-Jun-19	7:00	2.2	SW
22-Jun-19	20:00	1.3	ENE	24-Jun-19	8:00	2.2	ENE
22-Jun-19	21:00	2.2	ENE	24-Jun-19	9:00	1.8	ENE
22-Jun-19	22:00	0.9	ENE	24-Jun-19	10:00	0.4	NE
22-Jun-19	23:00	0.9	ENE	24-Jun-19	11:00	0.4	SW
23-Jun-19	0:00	0.9	ENE	24-Jun-19	12:00	0.9	ENE
23-Jun-19	1:00	1.3	ESE	24-Jun-19	13:00	0.9	ENE
23-Jun-19	2:00	0.9	SE	24-Jun-19	14:00	1.3	ENE
23-Jun-19	3:00	1.3	ESE	24-Jun-19	15:00	2.2	ENE
23-Jun-19	4:00	1.8	ENE	24-Jun-19	16:00	0.9	ENE
23-Jun-19	5:00	0.9	SSW	24-Jun-19	17:00	1.3	ENE
23-Jun-19	6:00	0.9	SSW	24-Jun-19	18:00	0.4	ENE
23-Jun-19	7:00	1.3	SSW	24-Jun-19	19:00	0.4	NE
23-Jun-19	8:00	2.2	SSW	24-Jun-19	20:00	0.9	ENE
23-Jun-19	9:00	2.2	SSW	24-Jun-19	21:00	0.4	NE
23-Jun-19	10:00	1.3	SSW	24-Jun-19	22:00	0.4	NE
23-Jun-19	11:00	2.2	SSW	24-Jun-19	23:00	1.3	NE

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
25-Jun-19	0:00	1.3	SW	26-Jun-19	12:00	1.3	NE
25-Jun-19	1:00	0.4	SW	26-Jun-19	13:00	1.3	NE
25-Jun-19	2:00	0.4	SW	26-Jun-19	14:00	1.3	NE
25-Jun-19	3:00	0.9	SW	26-Jun-19	15:00	1.3	NE
25-Jun-19	4:00	1.3	SW	26-Jun-19	16:00	0.9	NNE
25-Jun-19	5:00	1.3	SW	26-Jun-19	17:00	1.3	ENE
25-Jun-19	6:00	1.3	SW	26-Jun-19	18:00	1.3	ENE
25-Jun-19	7:00	0.9	SW	26-Jun-19	19:00	1.8	ENE
25-Jun-19	8:00	0.9	SW	26-Jun-19	20:00	0.9	NE
25-Jun-19	9:00	1.3	SW	26-Jun-19	21:00	0.9	NNE
25-Jun-19	10:00	1.3	ENE	26-Jun-19	22:00	1.3	ENE
25-Jun-19	11:00	1.8	SW	26-Jun-19	23:00	1.3	ENE
25-Jun-19	12:00	1.3	SW	27-Jun-19	0:00	0.4	NE
25-Jun-19	13:00	0.4	NE	27-Jun-19	1:00	0.9	SW
25-Jun-19	14:00	0.9	SW	27-Jun-19	2:00	1.3	ENE
25-Jun-19	15:00	1.3	SW	27-Jun-19	3:00	1.3	ENE
25-Jun-19	16:00	1.3	ENE	27-Jun-19	4:00	2.7	ENE
25-Jun-19	17:00	1.3	ENE	27-Jun-19	5:00	1.8	ENE
25-Jun-19	18:00	1.8	ENE	27-Jun-19	6:00	1.3	ENE
25-Jun-19	19:00	1.3	ENE	27-Jun-19	7:00	1.3	ENE
25-Jun-19	20:00	1.3	ENE	27-Jun-19	8:00	2.2	ENE
25-Jun-19	21:00	0.9	NNE	27-Jun-19	9:00	2.2	ENE
25-Jun-19	22:00	0.9	NE	27-Jun-19	10:00	1.3	ENE
25-Jun-19	23:00	0.9	NNE	27-Jun-19	11:00	2.2	ENE
26-Jun-19	0:00	0.9	NNE	27-Jun-19	12:00	1.8	NE
26-Jun-19	1:00	1.3	ENE	27-Jun-19	13:00	1.3	ENE
26-Jun-19	2:00	0.9	SW	27-Jun-19	14:00	0.9	NNE
26-Jun-19	3:00	1.8	ENE	27-Jun-19	15:00	1.3	NE
26-Jun-19	4:00	1.3	NNE	27-Jun-19	16:00	0.9	NNE
26-Jun-19	5:00	2.2	ENE	27-Jun-19	17:00	0.9	ENE
26-Jun-19	6:00	1.3	SSW	27-Jun-19	18:00	1.3	NE
26-Jun-19	7:00	0.9	ENE	27-Jun-19	19:00	0.4	NE
26-Jun-19	8:00	0.9	NNE	27-Jun-19	20:00	0.9	ENE
26-Jun-19	9:00	3.1	ENE	27-Jun-19	21:00	0.9	SSW
26-Jun-19	10:00	1.8	ENE	27-Jun-19	22:00	0.9	ENE
26-Jun-19	11:00	1.8	NE	27-Jun-19	23:00	0.4	NNE

		Wind Speed				Wind Speed	
Date	Time	m-s	Direction	Date	Time	m-s	Direction
28-Jun-19	0:00	0.9	SW	29-Jun-19	12:00	1.3	NNE
28-Jun-19	1:00	0.4	NE	29-Jun-19	13:00	1.3	NNE
28-Jun-19	2:00	0.9	ENE	29-Jun-19	14:00	1.3	NNE
28-Jun-19	3:00	1.3	ENE	29-Jun-19	15:00	1.8	NNE
28-Jun-19	4:00	1.8	ENE	29-Jun-19	16:00	1.3	NNE
28-Jun-19	5:00	1.8	ENE	29-Jun-19	17:00	1.3	NNE
28-Jun-19	6:00	1.8	ENE	29-Jun-19	18:00	1.3	NNE
28-Jun-19	7:00	3.1	ENE	29-Jun-19	19:00	0.9	NNE
28-Jun-19	8:00	2.7	ENE	29-Jun-19	20:00	1.3	ENE
28-Jun-19	9:00	1.8	SSW	29-Jun-19	21:00	0.9	NNE
28-Jun-19	10:00	1.3	SSW	29-Jun-19	22:00	0.9	NNE
28-Jun-19	11:00	0.4	NNE	29-Jun-19	23:00	0.4	S
28-Jun-19	12:00	0.4	NNE	30-Jun-19	0:00	0.9	SSE
28-Jun-19	13:00	0.4	NNE	30-Jun-19	1:00	0.9	S
28-Jun-19	14:00	0.9	NNE	30-Jun-19	2:00	0.9	NNE
28-Jun-19	15:00	0.4	NNE	30-Jun-19	3:00	1.8	NNE
28-Jun-19	16:00	0.4	NNE	30-Jun-19	4:00	1.3	NNE
28-Jun-19	17:00	0.9	NNE	30-Jun-19	5:00	1.3	NNE
28-Jun-19	18:00	0.4	NE	30-Jun-19	6:00	1.8	NNE
28-Jun-19	19:00	0.4	NNE	30-Jun-19	7:00	1.3	NNE
28-Jun-19	20:00	0.4	NNE	30-Jun-19	8:00	0.9	NNE
28-Jun-19	21:00	1.3	NE	30-Jun-19	9:00	3.1	ENE
28-Jun-19	22:00	0.9	NNE	30-Jun-19	10:00	1.8	ENE
28-Jun-19	23:00	0.4	N	30-Jun-19	11:00	1.8	NE
29-Jun-19	0:00	0.4	ENE	30-Jun-19	12:00	1.3	NE
29-Jun-19	1:00	0.4	NE	30-Jun-19	13:00	1.3	NE
29-Jun-19	2:00	0.9	ENE	30-Jun-19	14:00	1.3	NE
29-Jun-19	3:00	0.4	N	30-Jun-19	15:00	1.3	NE
29-Jun-19	4:00	1.3	NNE	30-Jun-19	16:00	0.9	NNE
29-Jun-19	5:00	1.8	NNE	30-Jun-19	17:00	1.3	ENE
29-Jun-19	6:00	2.2	NNE	30-Jun-19	18:00	1.3	ENE
29-Jun-19	7:00	1.8	NE	30-Jun-19	19:00	1.8	ENE
29-Jun-19	8:00	1.8	NNE	30-Jun-19	20:00	0.9	NE
29-Jun-19	9:00	1.8	NNE	30-Jun-19	21:00	0.9	NNE
29-Jun-19	10:00	2.2	NNE	30-Jun-19	22:00	1.3	ENE
29-Jun-19	11:00	1.3	NNE	30-Jun-19	23:00	1.3	ENE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (June 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jun
2-Jun	3-Jun Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A)] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-20:00)] [CM6(A)]		5-Jun	6-Jun 1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3] 24 hrs TSP	7.Jun	8-Jun
9-Jun	10-Jun	11-Jun	12-Jun 12-Jun 24 hrs TSP	13-Jun 1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A)] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-20:00)]	14-Jun Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	15-Jun
16-Jun	17-Jun	18-Jun	19-Jun 1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM5, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A)] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-20:00)] [CM6(A)]	20-Jun	21-Jun Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	22-Jun
23-Jun	24-Jun 24 hrs TSP	25-Jun 1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A)] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-20:00)]	26-Jun	27-Jun	28-Jun Noise [Evening time (19:00-23:00)] [CM1. CM2. CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	29-Jun 24 hrs TNP
30-Jun						

Air Quality Monitoring Station

AMI - Tin Hau Temple
AM2 - Sai Tso Wan Recreation Ground
AM3 - Yau Lan Estate Bis Las House
AM4 - Yau Lan Estate Bis Las House
AM4" - Stitine-out Area at Cha Kwo Line Willace
AM4(A)" - Cha Kwo Line Phile Carpo Working Area Administrative Office
AM5(A) - Tseung Kwan O DSD Desilting Compound
AM6(A) - Take Central Lift Open Space Area
AM6(A) - Park Central Lift Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong
CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong
CM3 - Block 3, Yau Lai Estate Phase 1, Yau Tong
CM3 - Block 3, Yau Lai Estate Phase 5, Yau Tong
CM5 - CCC Kei Fau Primary School, Yau Tong
CM6 - CCC Kei Fau Primary School, Yau Tong
CM6 (A) - Site Boundary of Contract No. NE2/015/02 near Tower 1, Ocean Shores
CM7(A) - Site Boundary of Contract No. NE2/015/02 near Tower 7, Ocean Shores
CM8(A) - Part Central, LiFe Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction **Impact Water Quality Monitoring Schedule (June 2019)**

Sunday	Monda	y	Tuesday	Wednes	day	Thursday	Friday	Sa	iturday
									1-Jun
2-Jun		3-Jun	4-Jun		5-Jun	6-Jun	7-Jı	ın	8-Jun
	Mid-Ebb	10:26		Mid-Ebb	11:54			Mid-Flood	
	Mid-Flood	16:47		Mid-Flood	18:46			Mid-Ebb	14:11
9-Jun		10-Jun	11-Jun		12-Jun	13-Jun	14-Jı	ın	15-Jun
	Mid-Flood	8:22		Mid-Flood	N/A		Mid-Flood 12:2	:9	
	Mid-Ebb	15:44		Mid-Ebb	17:13		Mid-Ebb 18:	57	
16-Jun		17-Jun	18-Jun		19-Jun	20-Jun	21-Jı	ın	22-Jun
10 0411		17 3411	10 3411		17 3411	20 3411	2130		22 3411
	Mid-Ebb	10:25		Mid-Ebb	11:21		Mid-Flood N	A	
	Mid-Flood	16:30		Mid-Flood	18:02		Mid-Ebb 12:2	.5	
23-Jun		24-Jun	25-Jun		26-Jun	27-Jun	28-Jı	ın	29-Jun
23-3uii		24-Jun	25-3uii		20-3411	27-3411	20-31		27-Jun
	Mid-Flood	8:00		Mid-Flood	8:55		Mid-Flood 11:	9	
	Mid-Ebb	14:32		Mid-Ebb	16:10		Mid-Ebb 18:	0	
30-Jun									
30-3un									

Monitoring Station: C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule in Temporary Marine Embayment June 2019

Sunday	Monday	,	Tuesday	Wednesday	Thursday	Friday	Saturday
•			j	j	j	j	1-Jun
2-Jun		3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun
	Mid-Ebb Mid-Flood	12:19 19:02					
9-Jun		10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun
	Mid-Flood Mid-Ebb	11:21 18:27					
16-Jun		17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun
	Mid-Ebb Mid-Flood	12:22 19:26					
23-Jun		24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun
	Mid-Flood Mid-Ebb	9:45 16:44					
30-Jun							

Monitoring Station: W1

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Groundwater Quality Monitoring Schedule (June 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jun
2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun
9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun
			Groundwater Quality			
			Monitoring			
			Womtoring			
16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun
					Groundwater Quality	
					Monitoring	
23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun
30-Jun						

Monitoring Location: Stream 1, Stream 2, Stream 3

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix E - 1-hour TSP Monitoring Results

Location AM1 -	Tin Hau Ten	nple	
Date	Time	Weather	Particulate Concentration (μg/m³)
31-May-19	13:00	Cloudy	64.0
31-May-19	14:00	Cloudy	82.0
31-May-19	15:00	Cloudy	76.0
6-Jun-19	7:00	Sunny	165.2
6-Jun-19	8:00	Sunny	143.3
6-Jun-19	9:00	Sunny	142.3
13-Jun-19	10:15	Rainy	120.0
13-Jun-19	13:00	Rainy	117.0
13-Jun-19	14:00	Rainy	108.0
19-Jun-19	13:00	Cloudy	96.0
19-Jun-19	14:00	Cloudy	99.6
19-Jun-19	15:00	Cloudy	110.5
25-Jun-19	9:00	Rainy	109.5
25-Jun-19	10:00	Rainy	110.0
25-Jun-19	11:00	Rainy	113.7
		Average	110.5
		Maximum	165.2
		Minimum	64.0

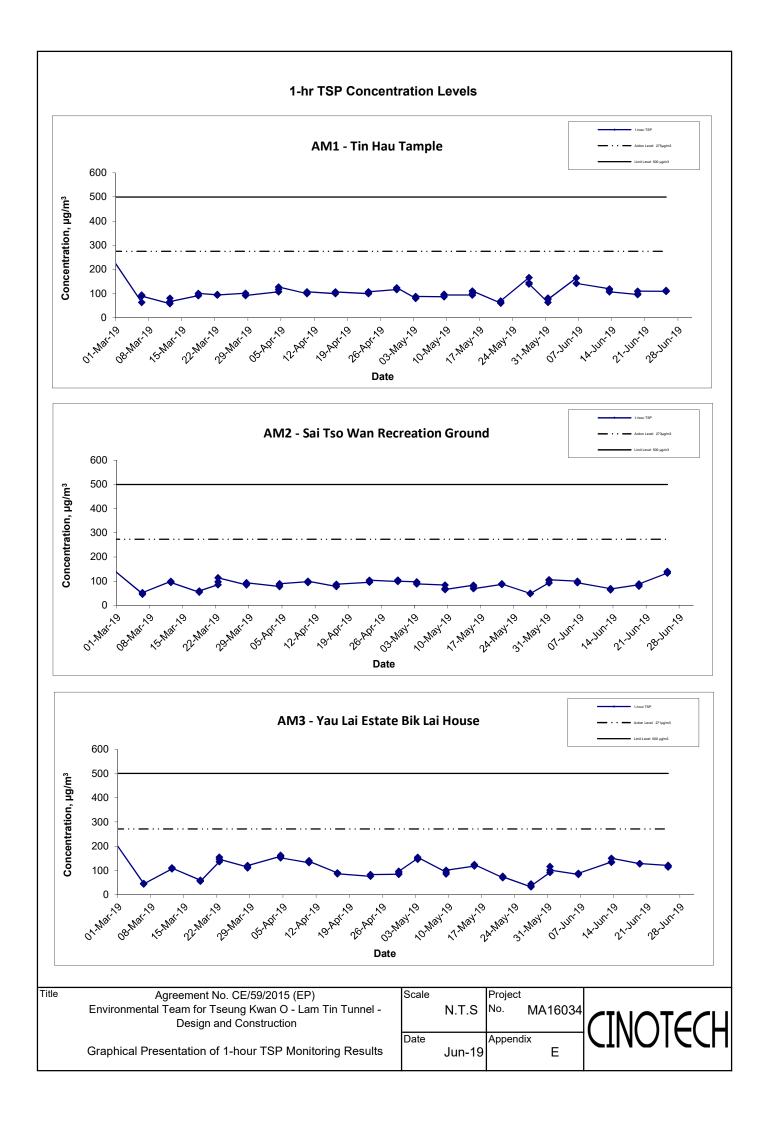
Location AM2 -	Sai Tso War	n Recreation Grou	und
Date	Time	Weather	Particulate Concentration (µg/m³)
31-May-19	9:00	Fine	92.4
31-May-19	10:00	Fine	103.0
31-May-19	11:00	Fine	105.6
6-Jun-19	10:15	Sunny	99.5
6-Jun-19	13:00	Sunny	94.5
6-Jun-19	14:00	Sunny	93.5
13-Jun-19	9:00	Rainy	68.9
13-Jun-19	10:00	Rainy	63.6
13-Jun-19	11:00	Rainy	66.8
19-Jun-19	9:00	Sunny	84.8
19-Jun-19	10:00	Sunny	79.5
19-Jun-19	11:00	Sunny	88.0
25-Jun-19	7:30	Cloudy	133.0
25-Jun-19	8:30	Cloudy	138.6
25-Jun-19	9:30	Cloudy	140.0
	_	Average	96.8
		Maximum	140.0
		Minimum	63.6

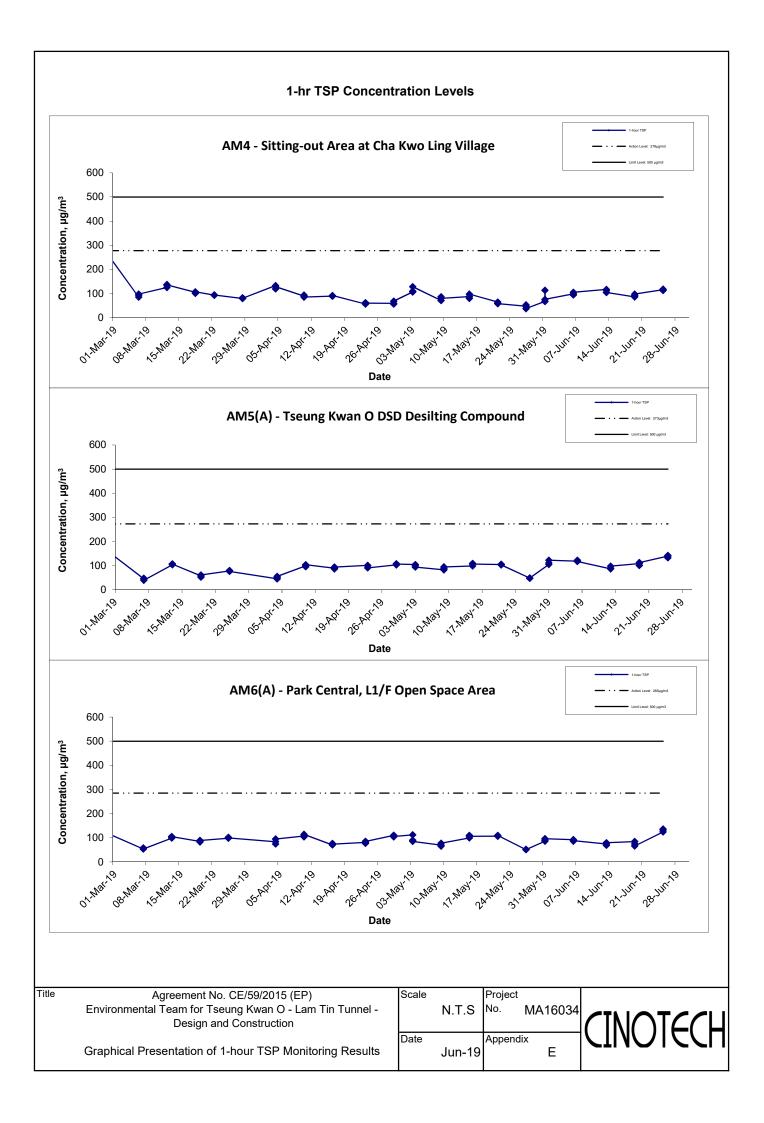
MA16034/App E - 1hr TSP Cinotech

Appendix E - 1-hour TSP Monitoring Results

Location AM3 -	Yau Lai Esta	ate Bik Lai House	
Date	Time	Weather	Particulate Concentration (μg/m³)
31-May-19	9:00	Cloudy	92.0
31-May-19	10:00	Cloudy	116.0
31-May-19	11:00	Cloudy	101.0
6-Jun-19	15:30	Sunny	83.6
6-Jun-19	16:30	Sunny	86.6
6-Jun-19	17:30	Sunny	87.6
13-Jun-19	7:00	Rainy	135.0
13-Jun-19	8:00	Rainy	133.5
13-Jun-19	9:00	Rainy	150.0
19-Jun-19	16:30	Cloudy	127.3
19-Jun-19	17:30	Cloudy	127.8
19-Jun-19	18:30	Cloudy	128.1
25-Jun-19	13:00	Rainy	120.7
25-Jun-19	14:00	Rainy	114.1
25-Jun-19	15:00	Rainy	117.1
		Average	114.7
		Maximum	150.0
		Minimum	83.6

Location AM4 -	Sitting-out A	Area at Cha Kwo I	Ling Village
Date	Time	Weather	Particulate Concentration (μg/m³)
31-May-19	16:00	Cloudy	68.0
31-May-19	17:00	Cloudy	114.0
31-May-19	18:00	Cloudy	76.0
6-Jun-19	9:00	Sunny	99.0
6-Jun-19	10:00	Sunny	95.0
6-Jun-19	11:00	Sunny	105.6
13-Jun-19	15:30	Rainy	117.0
13-Jun-19	16:30	Rainy	114.0
13-Jun-19	17:30	Rainy	105.0
19-Jun-19	9:00	Cloudy	86.2
19-Jun-19	10:00	Cloudy	92.3
19-Jun-19	11:00	Cloudy	97.9
25-Jun-19	16:00	Rainy	115.8
25-Jun-19	17:00	Rainy	118.9
25-Jun-19	18:00	Rainy	113.7
		Average	101.2
		Maximum	118.9
		Minimum	68.0


MA16034/App E - 1hr TSP Cinotech


Appendix E - 1-hour TSP Monitoring Results

Location AM5(A) - Tseung k	(wan O DSD Desi	lting Compound
Date	Time	Weather	Particulate Concentration (µg/m³)
31-May-19	13:00	Fine	105.6
31-May-19	14:00	Fine	112.2
31-May-19	15:00	Fine	122.8
6-Jun-19	13:00	Sunny	118.8
6-Jun-19	14:00	Sunny	122.8
6-Jun-19	15:00	Sunny	117.5
13-Jun-19	16:00	Rainy	86.9
13-Jun-19	17:00	Rainy	90.1
13-Jun-19	18:00	Rainy	98.6
19-Jun-19	13:00	Sunny	109.0
19-Jun-19	14:00	Sunny	100.7
19-Jun-19	15:00	Sunny	113.4
25-Jun-19	11:00	Cloudy	140.0
25-Jun-19	13:00	Cloudy	142.8
25-Jun-19	14:00	Cloudy	133.0
		Average	114.3
		Maximum	142.8
		Minimum	86.9

Location AM6(A	A) - Park Cen	tral, L1/F Open S	pace Area
Date	Time	Weather	Particulate Concentration (μg/m³)
31-May-19	16:00	Fine	85.8
31-May-19	17:00	Fine	89.8
31-May-19	18:00	Fine	96.4
6-Jun-19	16:00	Sunny	92.4
6-Jun-19	17:00	Sunny	85.8
6-Jun-19	18:00	Sunny	88.4
13-Jun-19	13:00	Rainy	74.2
13-Jun-19	14:00	Rainy	68.9
13-Jun-19	15:00	Rainy	79.5
19-Jun-19	16:00	Sunny	84.8
19-Jun-19	17:00	Sunny	75.0
19-Jun-19	18:00	Sunny	66.0
25-Jun-19	16:00	Cloudy	124.6
25-Jun-19	17:00	Cloudy	133.0
25-Jun-19	18:00	Cloudy	135.8
		Average	92.0
		Maximum	135.8
		Minimum	66.0

MA16034/App E - 1hr TSP Cinotech

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Particulate Elapse Time S		Sampling	Flow Rate (m³/min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m³)
31-May-19	Sunny	299.5	757.1	3.4808	3.5945	0.1137	5364.8	5388.8	24.0	1.30	1.30	1.30	1871.9	60.7
6-Jun-19	Sunny	303.2	758.8	3.4680	3.5621	0.0941	5388.8	5412.8	24.0	1.29	1.29	1.29	1862.0	50.5
12-Jun-19	Rainy	300.6	754.1	3.5079	3.5957	0.0878	5412.8	5436.8	24.0	1.30	1.29	1.29	1864.2	47.1
18-Jun-19	Sunny	301.8	757.0	3.5424	3.5804	0.0380	5436.8	5460.8	24.0	1.22	1.22	1.22	1750.2	21.7
24-Jun-19	Cloudy	301.2	755.8	3.5160	3.6296	0.1136	5460.8	5484.8	24.0	1.21	1.22	1.22	1750.7	64.9
													Min	21.7
													Max	64.9
													Average	49.0

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) F		Elapse Time		Sampling	Flow Rate (m³/min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
31-May-19	Sunny	299.5	757.1	3.5208	3.5590	0.0382	26276.0	26300.0	24.0	1.21	1.21	1.21	1743.9	21.9
6-Jun-19	Sunny	303.2	758.8	3.4783	3.5179	0.0396	26300.0	26324.0	24.0	1.20	1.20	1.20	1734.9	22.8
12-Jun-19	Rainy	300.6	754.1	3.5451	3.6244	0.0793	26324.0	26348.0	24.0	1.21	1.21	1.21	1736.9	45.7
18-Jun-19	Sunny	301.8	757.0	3.4500	3.5214	0.0714	26348.0	26372.0	24.0	1.22	1.21	1.21	1749.0	40.8
24-Jun-19	Cloudy	301.2	755.8	3.4877	3.5945	0.1068	26372.0	26396.0	24.0	1.21	1.22	1.21	1749.5	61.0
					-			-	-		-		Min	21.9
													Max	61.0
													Average	38.5

Location AM3 - Yau Lai Estate, Bik Lai House

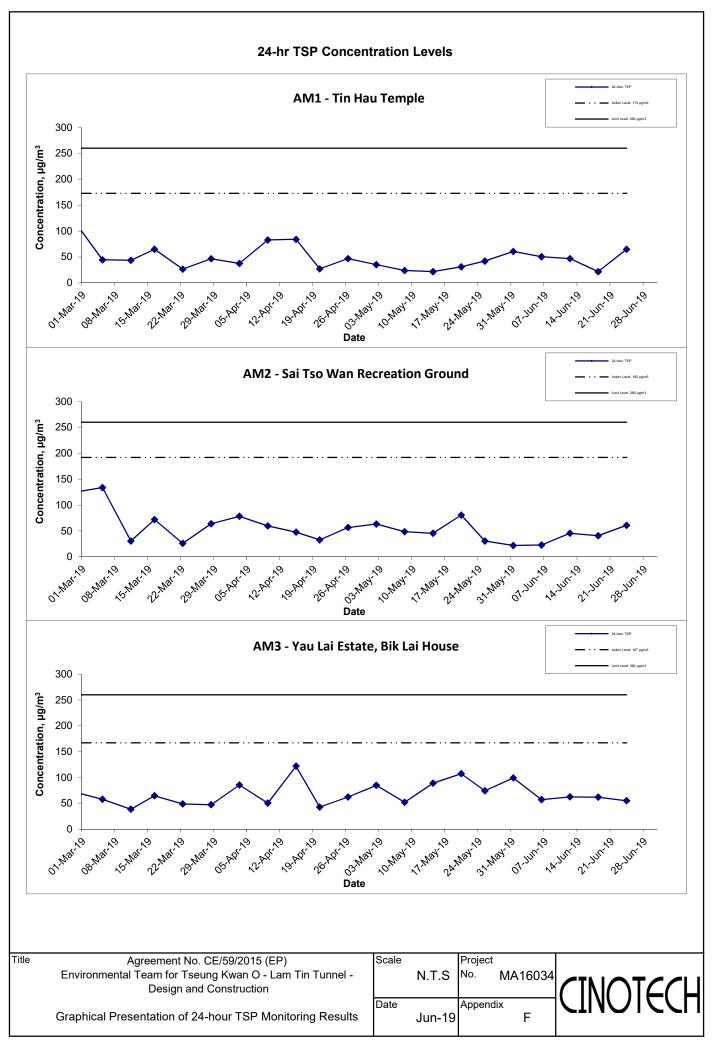
Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	8	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
31-May-19	Sunny	299.5	757.1	3.5011	3.6742	0.1731	483.3	507.3	24.0	1.21	1.21	1.21	1746.0	99.1
6-Jun-19	Sunny	303.2	758.8	3.4793	3.5785	0.0992	562.3	586.3	24.0	1.21	1.21	1.21	1737.0	57.1
12-Jun-19	Rainy	300.6	754.1	3.4634	3.5722	0.1088	586.3	610.3	24.0	1.21	1.21	1.21	1739.0	62.6
18-Jun-19	Sunny	301.8	757.0	3.4997	3.6080	0.1083	610.3	634.3	24.0	1.22	1.22	1.22	1751.5	61.8
24-Jun-19	Cloudy	301.2	755.8	3.4868	3.5834	0.0966	634.3	658.3	24.0	1.21	1.22	1.22	1754.2	55.1
													Min	55.1
													Max	99.1
													Average	67.1

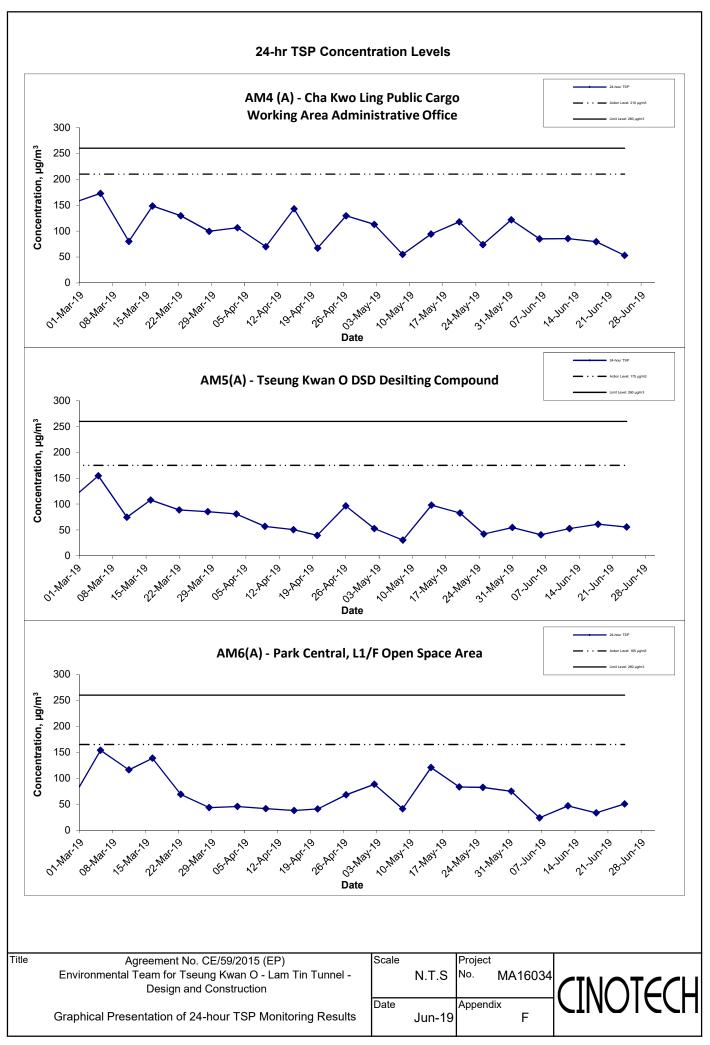
MA16034/App F - 24 hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m³)
31-May-19	Sunny	299.5	757.1	3.4987	3.7114	0.2127	11492.0	11516.0	24.0	1.21	1.21	1.21	1746.1	121.8
6-Jun-19	Sunny	303.2	758.8	3.4771	3.6250	0.1479	11576.4	11600.4	24.0	1.21	1.21	1.21	1738.2	85.1
12-Jun-19	Rainy	300.6	754.1	3.4669	3.6157	0.1488	11600.4	11624.4	24.0	1.21	1.21	1.21	1740.1	85.5
18-Jun-19	Sunny	301.8	757.0	3.4745	3.6137	0.1392	11624.4	11648.4	24.0	1.21	1.21	1.21	1748.8	79.6
24-Jun-19	Cloudy	301.2	755.8	3.4701	3.5633	0.0932	11648.4	11672.4	24.0	1.21	1.22	1.21	1749.2	53.3
									-		-		Min	53.3
													Max	121.8
													Average	85.1


Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
31-May-19	Sunny	299.5	757.1	3.4666	3.5622	0.0956	27989.3	28013.3	24.0	1.21	1.21	1.21	1742.6	54.9
6-Jun-19	Sunny	303.2	758.8	3.5321	3.6024	0.0703	28013.3	28037.3	24.0	1.20	1.20	1.20	1733.4	40.6
12-Jun-19	Rainy	300.6	754.1	3.4659	3.5572	0.0913	28053.1	28077.1	24.0	1.21	1.20	1.21	1735.5	52.6
18-Jun-19	Cloudy	301.8	757.0	3.4376	3.5444	0.1068	28077.1	28101.1	24.0	1.22	1.22	1.22	1751.1	61.0
24-Jun-19	Cloudy	301.2	755.8	3.4814	3.5787	0.0973	28101.1	28125.1	24.0	1.21	1.22	1.22	1751.6	55.6
									-				Min	40.6
													Max	61.0
													Average	52.9

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
31-May-19	Sunny	299.5	757.1	3.4738	3.6059	0.1321	590.7	614.7	24.0	1.23	1.22	1.23	1765.3	74.8
6-Jun-19	Sunny	303.2	758.8	3.5187	3.5606	0.0419	614.7	638.7	24.0	1.22	1.22	1.22	1756.4	23.9
12-Jun-19	Rainy	300.6	754.1	3.4749	3.5573	0.0824	638.7	662.7	24.0	1.22	1.22	1.22	1758.4	46.9
18-Jun-19	Sunny	301.8	757.0	3.4713	3.5299	0.0586	662.7	686.7	24.0	1.22	1.22	1.22	1758.4	33.3
24-Jun-19	Cloudy	301.2	755.8	3.4747	3.5633	0.0886	686.7	710.7	24.0	1.22	1.22	1.22	1758.8	50.4
													Min	23.9
											1758.41		Max	74.8
													Average	45.8

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

(0700-1900 hrs on Normal Weekdays)

					Unit:	Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level						
24.0			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
3-Jun-19	14:00	Sunny	71.6	74.3	68.7		70						
13-Jun-19	9:53	Rainy	66.6	67.9	65.1	CE E	60						
19-Jun-19	14:00	Cloudy	72.0	75.1	70.2	65.5	71						
25-Jun-19	13:45	Cloudy	71.4	74.9	69.9		70						

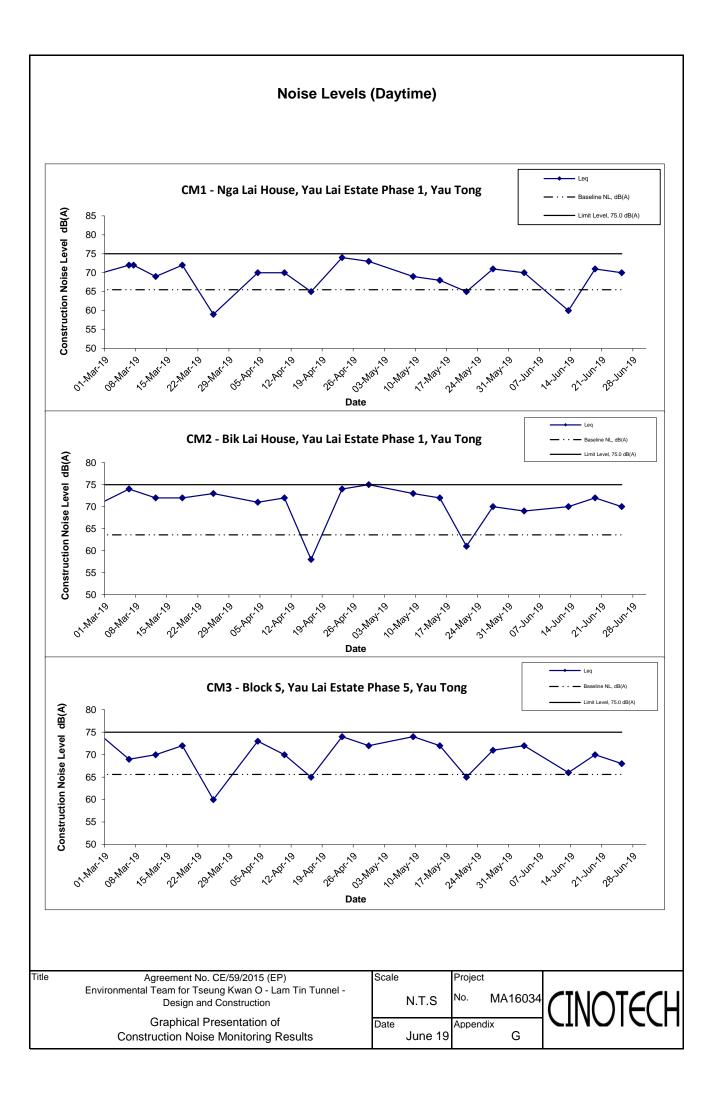
Location CM2	Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong												
				Unit: dB (A) (30-min)									
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level						
Dato	711110	Wodinor	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
3-Jun-19	13:00	Sunny	69.9	72.4	65.7		69						
13-Jun-19	18:30	Rainy	71.0	73.0	67.2	63.6	70						
19-Jun-19	15:00	Cloudy	72.9	74.8	70.7	03.0	72						
25-Jun-19	13:00	Cloudy	71.3	74.3	69.6		70						

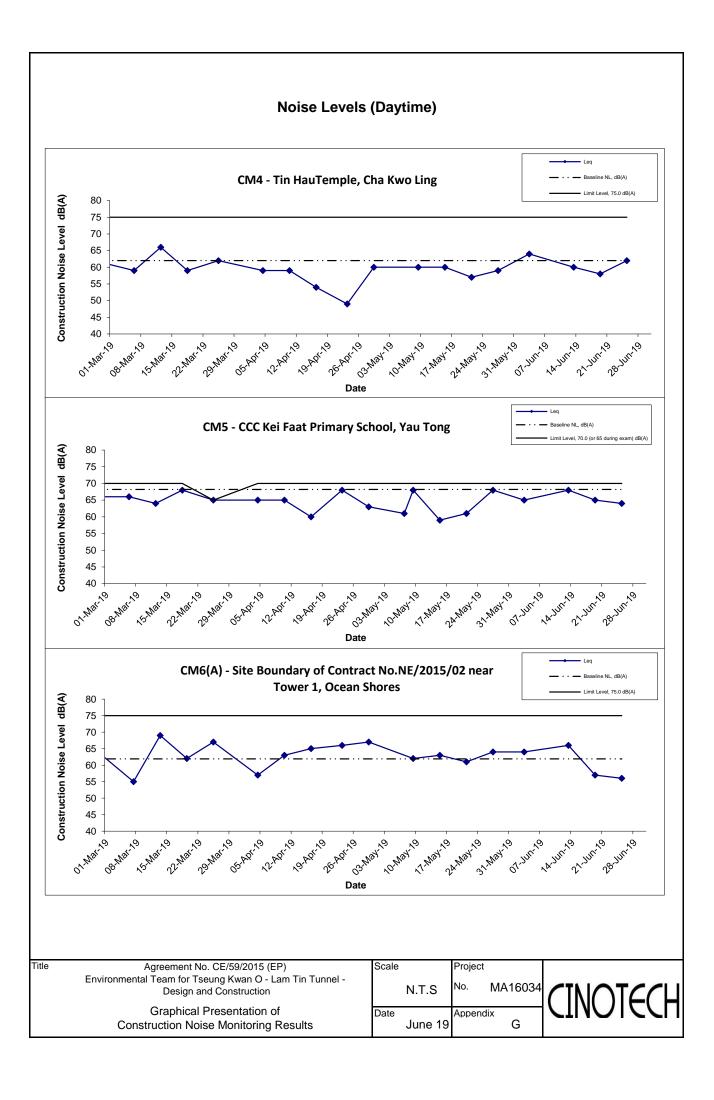
Location CM3	ocation CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level						
Date	Time	Weather	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
3-Jun-19	15:00	Sunny	72.6	74.9	69.2		72						
13-Jun-19	17:45	Rainy	69.0	69.9	67.3	65.6	66						
19-Jun-19	13:00	Cloudy	71.5	73.8	69.3	65.6	70						
25-Jun-19	15:30	Cloudy	69.8	73.9	69.1		68						

Location CM4	Location CM4 - Tin Hau Temple, Cha Kwo Ling											
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level					
Date	Time	vvcatilei	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Jun-19	11:00	Sunny	66.4	69.2	63.9		64					
13-Jun-19	13:00	Rainy	64.2	67.0	60.4	00	60					
19-Jun-19	9:00	Cloudy	63.5	65.6	60.1	62	58					
25-Jun-19	11:30	Cloudy	64.9	68.7	62.1		62					

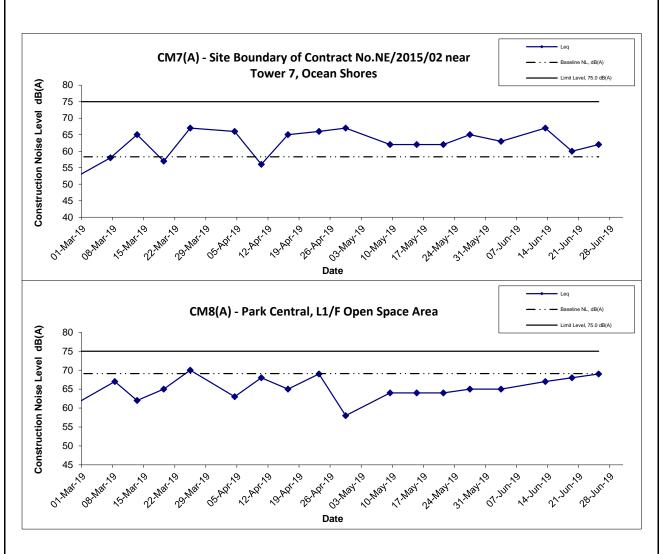
Location CM5 -	ocation CM5 - CCC Kei Faat Primary School, Yau Tong											
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level					
Date	11110	Weather	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Jun-19	10:00	Sunny	65.4	68.9	61.6		65Measured ≦ Baseline					
13-Jun-19	14:00	Rainy	67.6	69.4	65.4	68.2	68Measured ≦ Baseline					
19-Jun-19	10:00	Cloudy	65.1	67.4	62.3	00.2	65Measured ≦ Baseline					
25-Jun-19	14:45	Cloudy	69.5	71.5	67.0		64					

MA16034/App G - Noise Cinotech


(0700-1900 hrs on Normal Weekdays)


(0100 1000 1110	700 1000 iii o oii Normai Weekaayoj												
Location CM6(ocation CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
Balo	111110	Wodinor	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
3-Jun-19	15:00	Sunny	66.3	69.1	63.5		64						
13-Jun-19	14:00	Rainy	67.6	70.6	63.2	64.0	66						
19-Jun-19	13:30	Sunny	63.2	68.5	57.1	61.9	57						
25-Jun-19	13:00	Cloudy	62.8	68.1	56.8		56						

Location CM7(ocation CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores												
				Unit: dB (A) (30-min)									
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level						
Date	Time	Wedner	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
3-Jun-19	14:00	Sunny	64.1	67.3	61.8		63						
13-Jun-19	15:00	Rainy	67.8	71.2	64.0	58.3	67						
19-Jun-19	14:30	Sunny	62.5	65.3	58.3	50.5	60						
25-Jun-19	14:00	Cloudy	63.4	66.3	59.4		62						


Location CM8(ocation CM8(A) - Park Central, L1/F Open Space Area											
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
Date	Time	Weather	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Jun-19	13:00	Sunny	65.4	68.4	62.1		65Measured ≤ Baseline					
13-Jun-19	13:00	Rainy	67.4	71.2	63.9	69.1	67Measured ≤ Baseline					
19-Jun-19	16:00	Sunny	68.2	72.5	65.7	09.1	68Measured ≦ Baseline					
25-Jun-19	11:30	Cloudy	69.1	73.5	66.8		69Measured ≤ Baseline					

MA16034/App G - Noise Cinotech

Noise Levels (Daytime)

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of
Construction Noise Monitoring Results

Scale
N.T.S

No. MA16034

Date
June 19

Appendix
G

(Restricted Hours - 19:00 to 23:00 on all other days & 07:00 to 23:00 holidays)

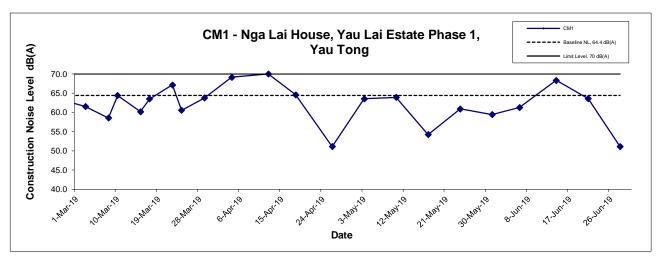
Location CM1	- Nga Lai Ho	use, Yau Lai	Estate Phas	e 1, Yau Tor	ng			
D-1-	T:	\A/ 4h		dB (A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	20:55		61.4	63.3	59.4			
6-Jun-19	21:00	Cloudy	61.2	62.7	59.6	61.3		61Measured ≦ Baseline
	21:05		61.2	62.5	59.7			
	19:50		70.0	71.2	67.0			
14-Jun-19	19:55	Cloudy	69.8	70.9	67.7	69.8		68
	20:00		69.5	70.7	68.1		64.4	
	20:30		63.7	65.9	60.2		04.4	
21-Jun-19	20:35	Cloudy	63.5	66.1	60.3	63.6		64Measured ≦ Baseline
	20:40		63.5	65.7	60.3			
	21:00		64.3	67.3	61.1			
28-Jun-19	21:05	Cloudy	64.9	67.6	60.9	64.6		51
	21:10		64.6	67.4	60.9			

		147 41		dB (A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	20:30		61.7	62.8	58.8					
6-Jun-19	20:35	Cloudy	60.8	61.9	59.2	61.1		61Measured ≦ Baseline		
	20:40		60.6	61.7	59.2					
	20:15		70.0	72.9	69.3					
14-Jun-19	20:20	Cloudy	70.6	71.8	69.2	70.8		70		
	20:25		71.6	72.7	70.3		62.2			
	20:00		63.4	66.6	60.1		62.2			
21-Jun-19	20:05	Cloudy	63.7	66.4	59.9	63.4		57		
	20:10		63.1	66.4	59.8					
	21:30		63.9	65.3	61.1			_		
28-Jun-19 2	21:35	Cloudy	64.0	65.5	61.2	63.9		59		
	21:40	1	63.7	65.1	60.9					

D .		144 41		dB (/	A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L eq		
	20:00		60.7	62.0	59.1					
6-Jun-19	20:05	Cloudy	60.3	61.5	59.0	60.2		60Measured ≦ Baseline		
	20:10		59.6	60.7	58.3					
	20:45		65.2	66.4	64.0					
14-Jun-19	20:50	Cloudy	65.9	67.4	64.2	65.5		58		
	20:55		65.5	66.8	64.1		64.7			
	19:35		65.9	68.2	63.1		04.7			
21-Jun-19	19:40	Cloudy	66.1	67.4	64.3	65.9		60		
	19:45		65.6	67.9	63.0					
	22:00		62.6	65.2	62.1					
	22:05	Cloudy	62.3	65.6	62.0	62.5		63Measured ≦ Baseline		
	22:10		62.5	65.3	62.2					

Location CM6(A) - Site Bo	undary of Cor	tract No. NE	/2015/02 ne	ar Tower 1,	Ocean Shores		
Data	Ti) A / 4		dB (A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	19:00		64.2	67.4	61.9			
3-Jun-19	19:05	Sunny	64.4	67.1	61.7	64.2		62
	19:10		63.9	67.6	62.1			
	19:00	Rainy	65.8	67.9	62.5	65.8		
13-Jun-19	19:05		66.2	68.2	62.4			64
	19:10		65.3	68.0	62.1		60.2	
	19:00		63.8	66.5	61.2		00.2	
19-Jun-19	19:05	Sunny	63.5	66.2	61.0	63.8		61
	19:10		64.1	67.2	61.8			
	19:00		65.4	67.5	62.1		•	
25-Jun-19	19:05	Cloudy	66.0	67.8	62.5	65.6		64
	19:10		65.3	67.6	62.1			

(Restricted Hours - 2300-0700 on all days)

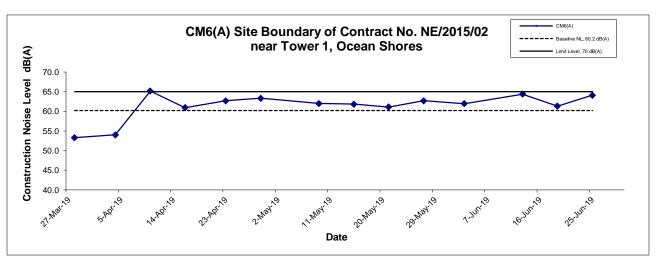

	T	\A/ (dB (A	A) (5-min)		Baseline Level	Construction Noise Leve			
Date	Time	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}			
	23:01		61.1	62.1	59.7						
6-Jun-19	23:06	Cloudy	61.5	63.1	59.7	61.5	63.7	62Measured ≦ Baseline			
	23:11		62.0	63.7	60.2						
14-Jun-19	23:00		62.3	63.7	59.1						
	23:05	Cloudy	62.1	63.6	59.0	62.1	63.7	62Measured ≦ Baseline			
	23:10		62.0	63.9	58.9						
	23:00		61.3	63.6	58.4						
21-Jun-19	23:05	Cloudy	61.4	63.9	58.7	61.4	63.7	61Measured ≦ Baseline			
	23:10		61.4	63.6	58.7						
	23:03		61.9	65.2	59.1		_				
28-Jun-19	23:08	Cloudy	62.1	65.7	59.3	62.1	63.7	62Measured ≦ Baseline			
	23:13		62.3	65.8	59.2						

Data	T	14/ (l		dB (A	4) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	23:20		60.4	61.8	59.0					
6-Jun-19	23:25	Cloudy	60.9	62.4	58.9	60.7	61.2	61Measured Baseline¹		
	23:30		60.8	61.9	59.0					
	23:20		61.5	63.9	58.5					
14-Jun-19	23:25	Cloudy	61.0	64.0	58.7	61.3	61.2	45		
	23:30		61.3	63.8	58.6					
	23:20		61.5	63.9	58.7					
21-Jun-19	23:25	Cloudy	61.4	63.7	58.0	61.3	61.2	45		
	23:30		61.6	63.6	58.1					
	23:23		61.9	66.0	60.1		_			
28-Jun-19	23:28	Cloudy	62.4	66.1	60.3	62.1	61.2	55		
	23:33		62.1	65.7	60.3					

Location CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong												
D-1-	T:	M/ 11		dB (A) (5-min)		Baseline Level	Construction Noise Level				
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}				
	23:45		59.5	60.5	57.5							
6-Jun-19	23:50	Cloudy	58.8	60.2	57.2	59.0	62.9	59Measured ≦ Baseline ¹				
23:55			58.6	59.9	56.6							
	23:40		58.7	61.9	57.2	58.9						
14-Jun-19	23:45	Cloudy	59.0	62.1	57.0		62.9	59Measured ≤ Baseline ¹				
	23:50		58.9	61.7	57.0							
	23:40		60.9	63.4	58.9							
21-Jun-19	23:45	Cloudy	61.2	63.7	58.4	61.1	62.9	61Measured Baseline¹				
	23:50		61.3	63.6	58.6							
	23:45		60.1	62.1	57.9							
28-Jun-19	23:50	Cloudy	60.3	62.3	58.0	60.1	62.9	60Measured ≤ Baseline ¹				
	23:55		59.8	61.9	57.7							

Remark 1: Since baseline level is greater than the measured level, which indicates that the measured level dominated by the traffic noise from the nearby Eastern harbour Crossing Tunnel, the measured levels are not considered as valid exceedances.

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Restricted Noise Monitoring Results

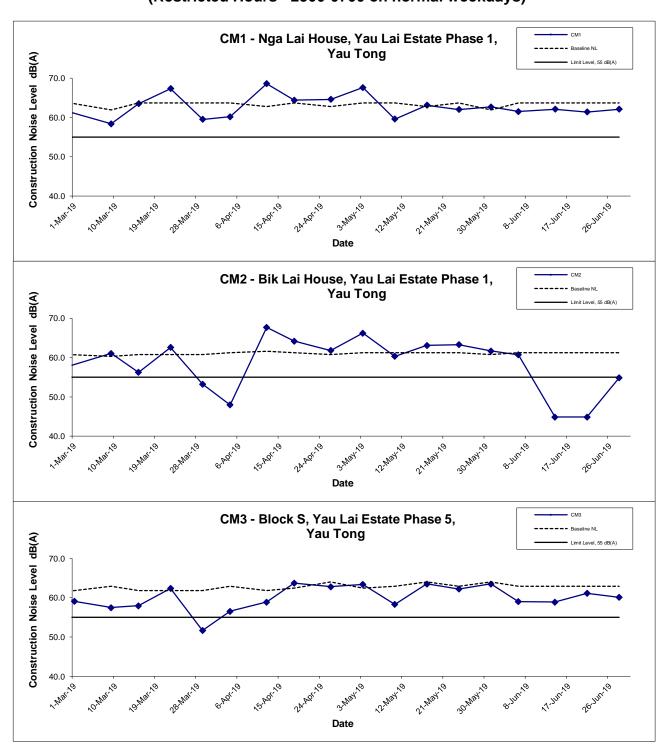
Scale Project
No. MA16034

Date Jun 19

G

Noise Levels (Restricted Hours - 19:00 - 23:00 on normal weekdays)

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Restricted Noise Monitoring Results

Scale Project
No. MA16034

Date Jun 19

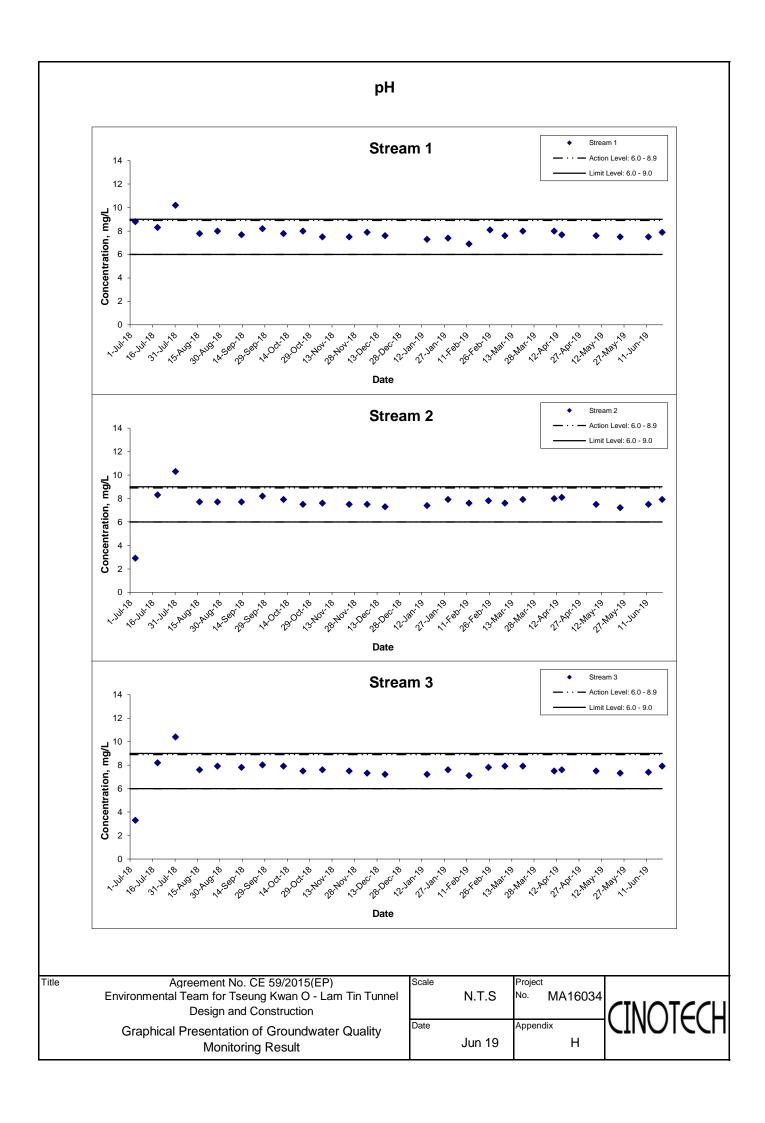
G

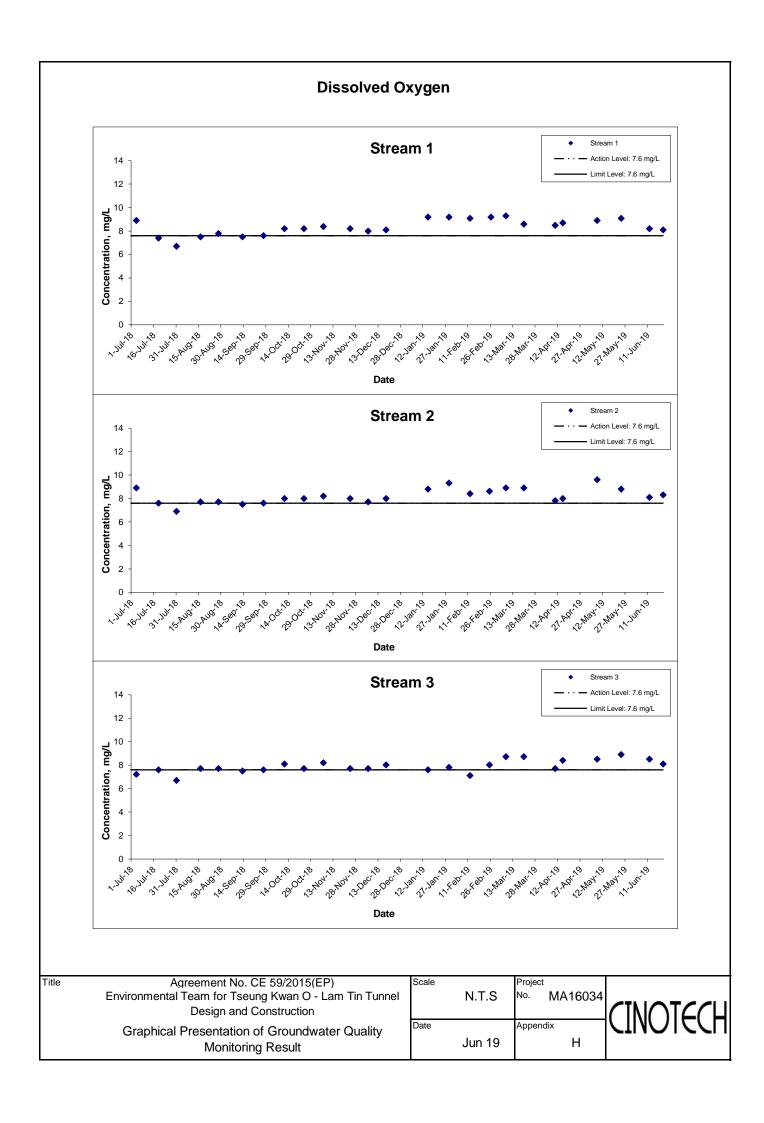
Title	Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction	Scale	N.T.S	Project No.	MA16034	CINOTCCII
	Graphical Presentation of Restricted Noise Monitoring Results	Date	Jun 19	Append		CINOIECH

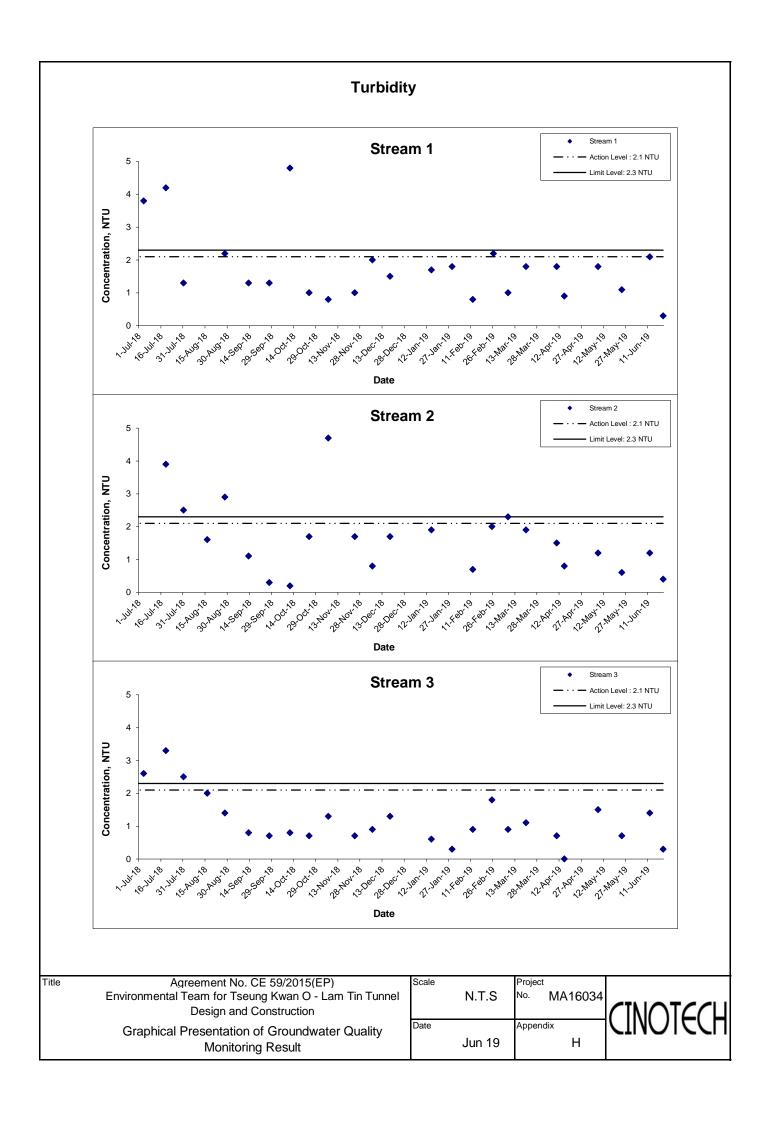
APPENDIX H GROUNDWATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

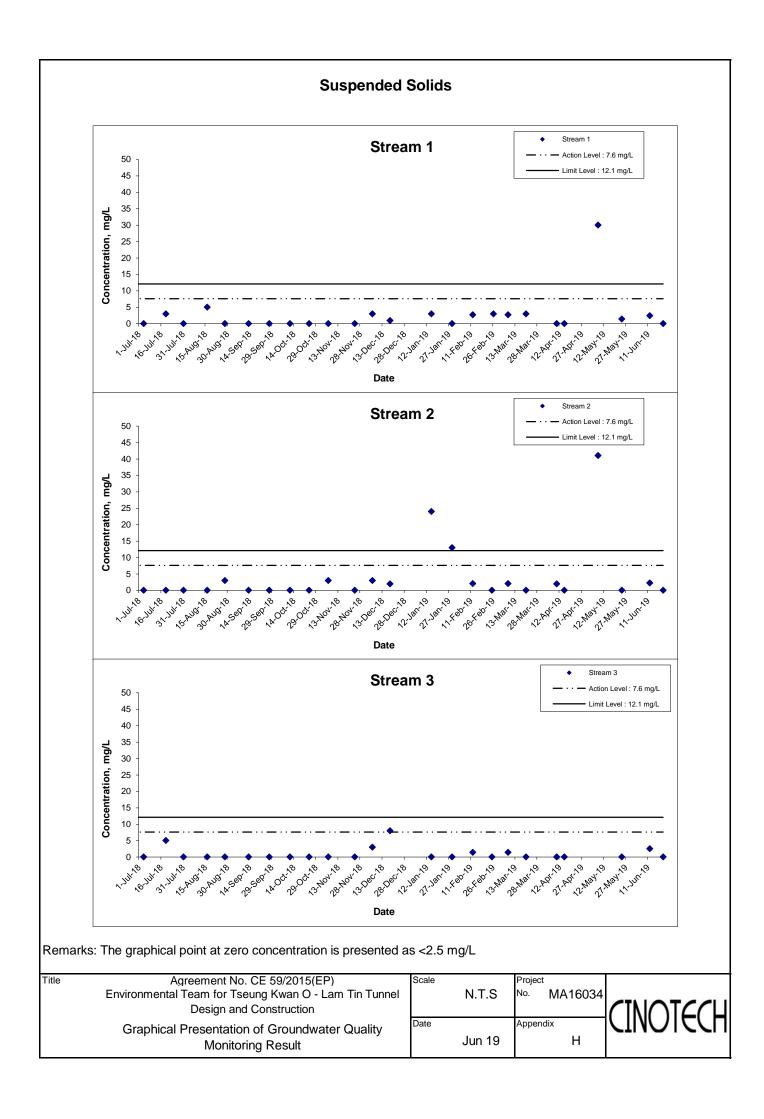
Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

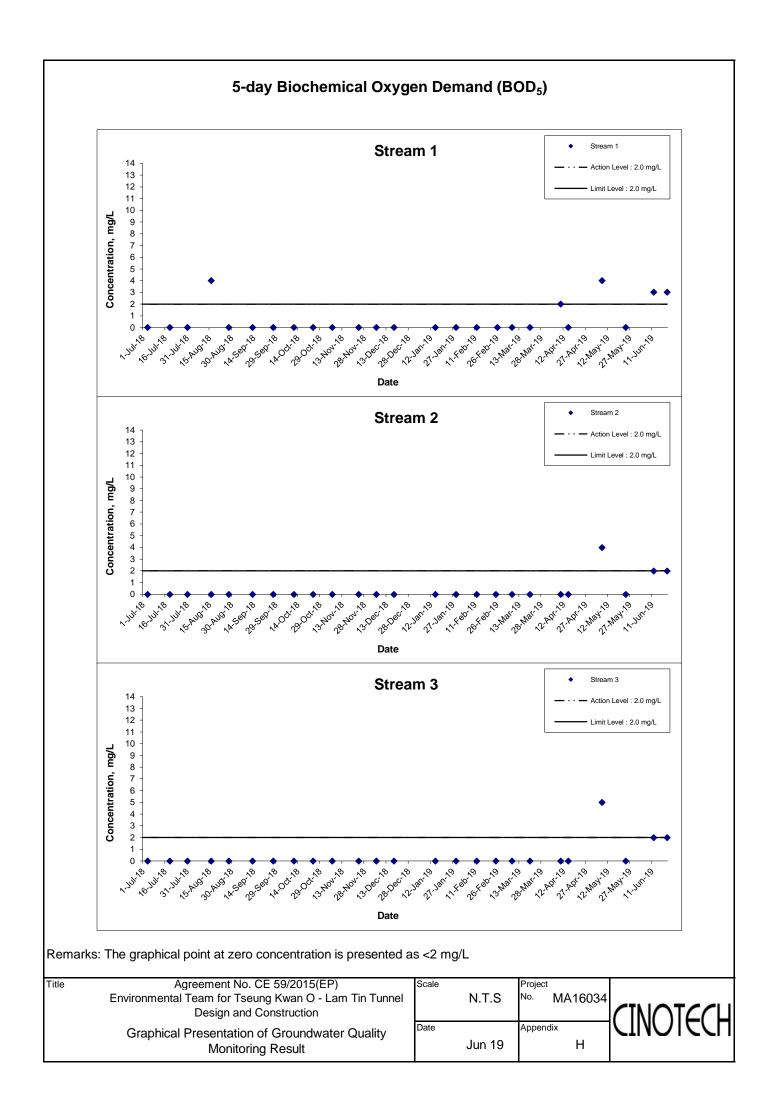
Groundwater Quality Monitoring Results at Stream 1

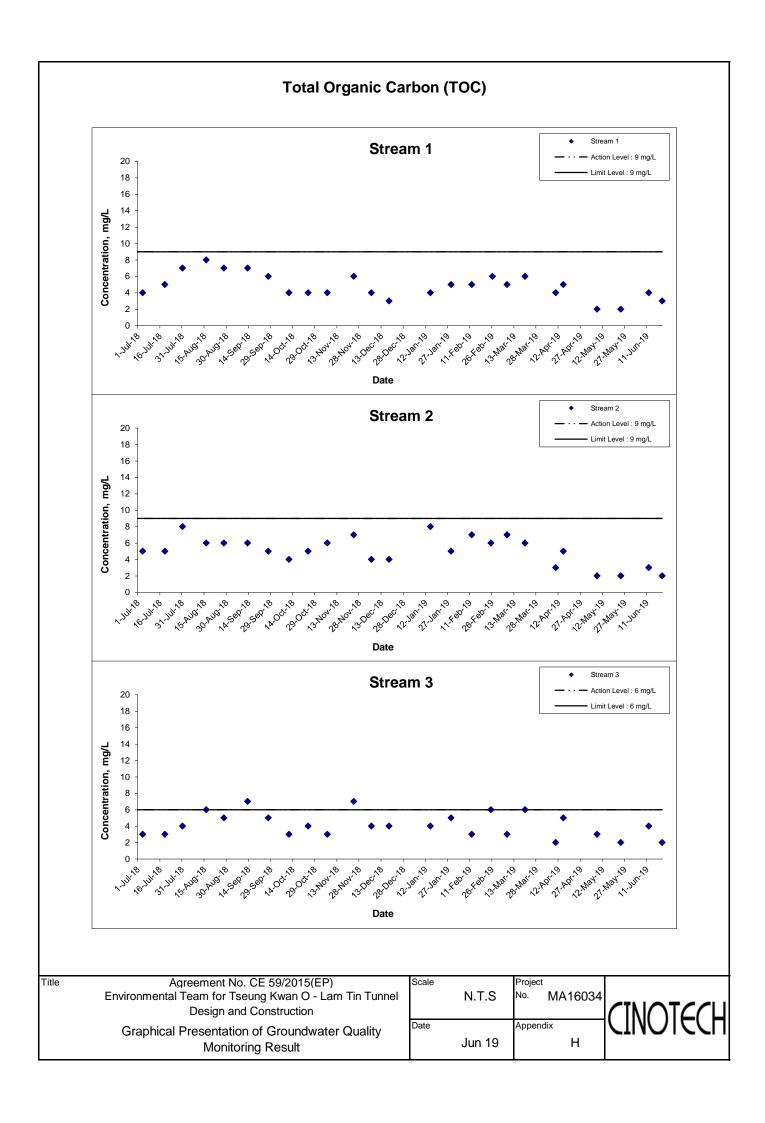

Date	Weather	Sampling	Depth (m)	Temperature (°C)		pН		Salini	ty ppt	DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Берит (тіт)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
12-Jun-19	Fine	16:46	Stream1	26.7	26.7	7.5	7.5	0.4	0.4	104.5	104.5	8.2	8.2	2.0	2.1
12-5011-15	1 1116	10.40	Otreami	26.7	20.7	7.5	7.5	0.4	0.4	104.5	104.5	8.2	0.2	2.1	2.1
21-Jun-19	Fine	16:17	Stream1	28.2	28.2	7.9	7.0	0.6	0.6	104.0	104.0	8.1	9.1	0.2	0.3
21-Juli-19	Tille	10.17	Stream	28.2	20.2	7.9	7.9	0.6	0.0	104.0	104.0	8.1	0.1	0.3	0.3

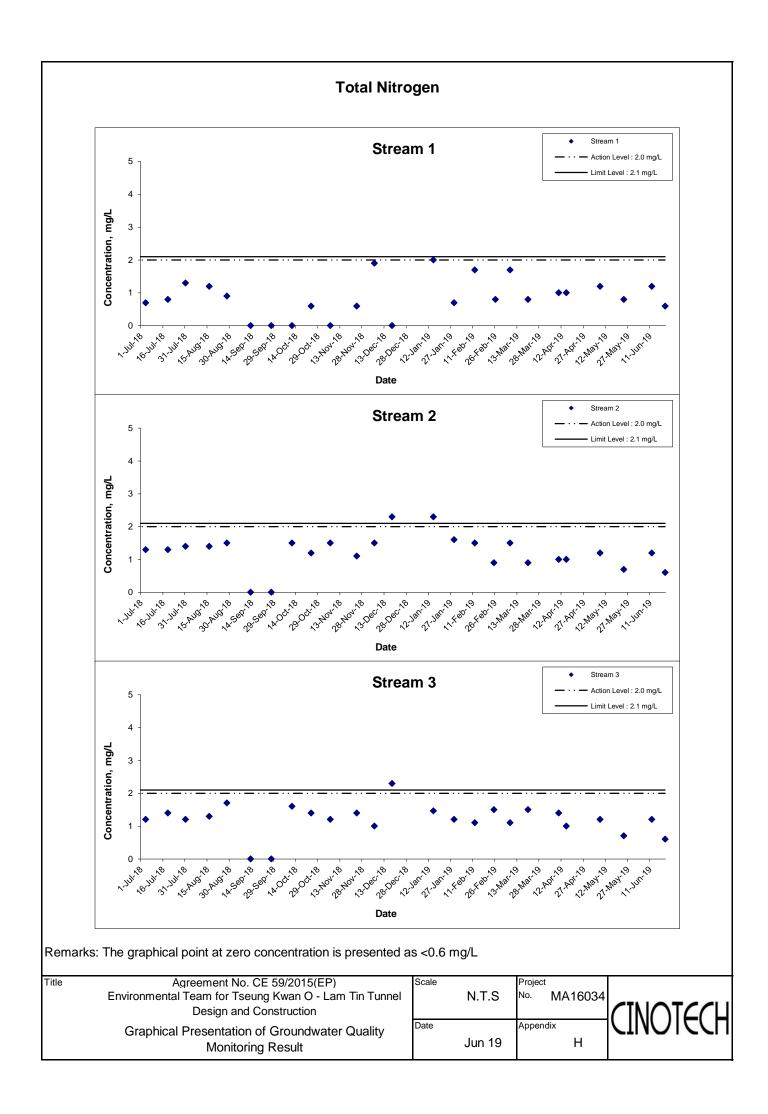

Groundwater Quality Monitoring Results at Stream 2

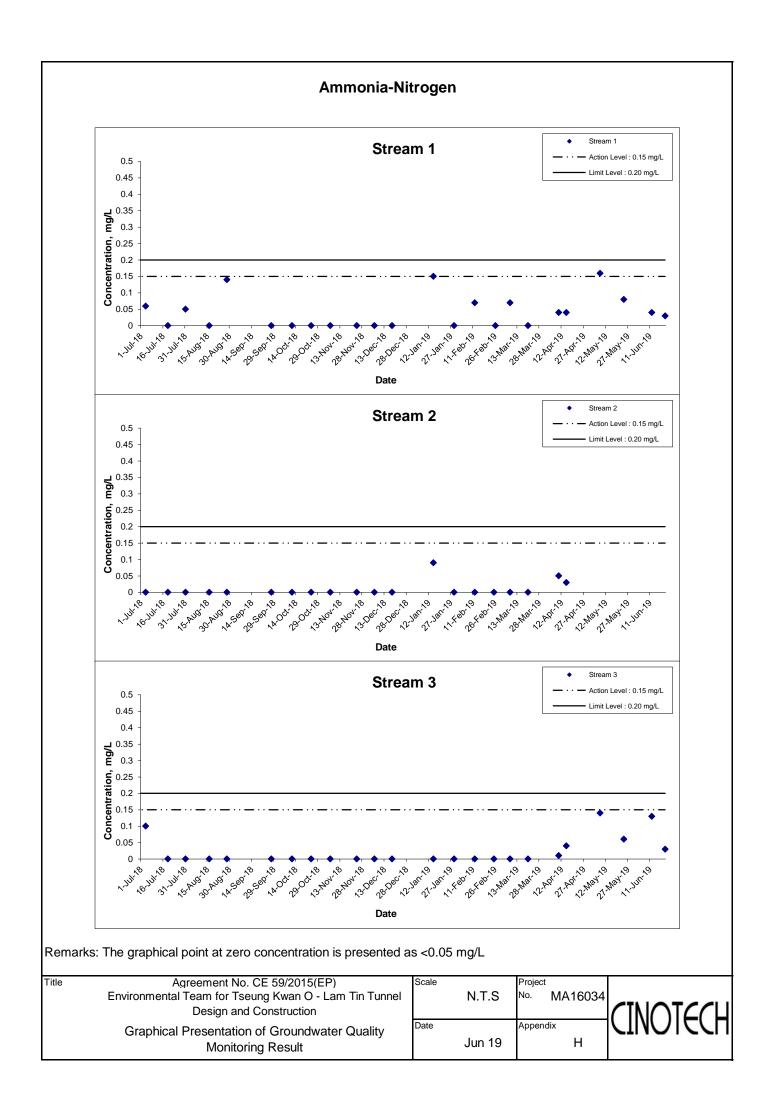

Date	Weather	Sampling	Depth (m) Temperature (°C)		ature (°C)	рН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Doptii (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
12-Jun-19	Fine	16:52	stream2	26.3	26.3	7.5	7.5	0.1	0.1	101.5	101.4	8.1	8.1	1.1	1.2
12-3411-19	1 1116	10.52	Stream2	26.3	20.3	7.5	7.5	0.1	0.1	101.3	101.4	8.1	0.1	1.2	1.2
21-Jun-19	Fine	16:56	stream2	28.2	28.2	7.9	7.0	0.3	0.3	102.3	102.3	8.3	8.3	0.4	0.4
21-Juli-19	ille	Fine 16:56	Streamz	28.2	20.2	7.9	7.9	0.3	0.3	102.2	102.3	8.3	0.3	0.4	0.4

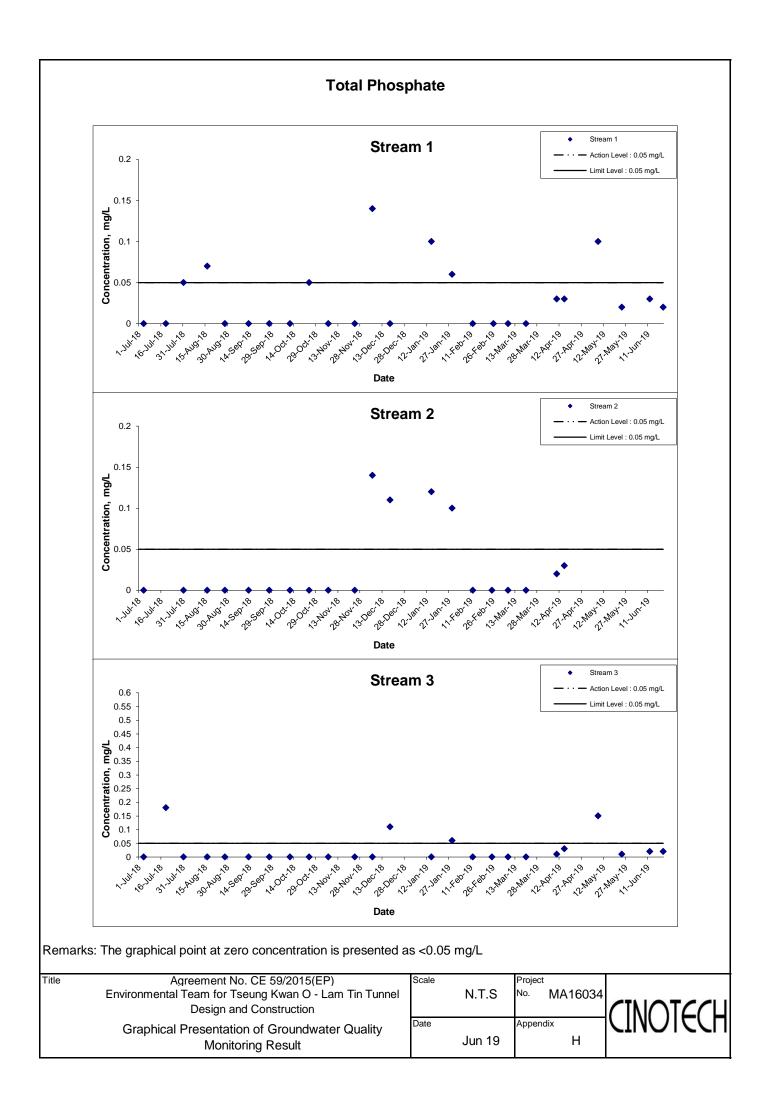

Groundwater Quality Monitoring Results at Stream 3


Date	Weather	Sampling	Denth (m)	Depth (m) Temperatur		Temperature (°C) pH		Salini	ty ppt	DO Satu	ration (%)	Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Date	Condition	Time	Doptii (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
12-Jun-19	Fine	17:02	stream3	26.6	26.6	7.4	7.4	0.1	0.1	98.4	98.3	8.6	8.5	1.4	1 4
12-Juli-19 Fille 17	17.02	31104110	26.6	20.0	7.4	/ /		0.1	98.2	30.0	8.5	0.0	1.4	1.4	
21-Jun-19	Fine	17:08	stream3	28.3	28.3	7.9	7.0	0.4	0.4	100.1	100.1	8.1	8.1	0.3	0.3
21-3411-19	Tille	17:08	streams	28.3	20.5	7.9	7.9	0.4	0.4	100.1	100.1	8.1	0.1	0.3	0.3









APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	26.0 25.9	26.0	8.8 8.8	8.8	32.8 32.8	32.8	88.4 84.1	86.3	6.0 5.7	5.8	5.8	1.9 2.0	1.9		18.2 18.7	18.5	
C1	Cloudy	Moderate	11:47	Middle	9.0	25.7 25.8	25.7	8.8 8.8	8.8	33.6 33.4	33.5	84.9 84.2	84.6	5.7 5.7	5.7		2.5 2.9	2.7	2.2	6.1	6.2	9.9
				Bottom	17.0	25.7 25.7	25.7	8.8 8.8	8.8	33.7 33.7	33.7	84.5 84.1	84.3	5.7 5.7	5.7	5.7	2.2 2.0	2.1		5.0 5.0	5.0	
				Surface	1.1	26.0 26.0	26.0	8.9 9.0	8.9	32.0 32.0	32.0	83.4 82.6	83.0	5.7 5.6	5.6	5.6	2.7 2.6	2.6		16.6 16.4	16.5	
C2	Cloudy	Moderate	10:50	Middle	16.0	25.6 25.7	25.7	8.9 9.0	8.9	33.8 33.6	33.7	83.6 83.7	83.7	5.6 5.7	5.6		4.3 3.6	4.0	3.5	16.6 16.8	16.7	15.5
				Bottom	31.0	25.7 25.6	25.6	8.9 9.0	8.9	33.6 33.9	33.8	83.6 83.4	83.5	5.6 5.6	5.6	5.6	4.2 3.8	4.0		13.3 13.4	13.4	
				Surface	1.0	25.9 25.9	25.9	8.9 8.9	8.9	33.0 33.0	33.0	90.0 88.5	89.3	6.1 6.0	6.0	6.0	1.4 1.4	1.4		13.1 13.5	13.3	
G1	Cloudy	Moderate	11:16	Middle	4.0	25.9 25.9	25.9	8.9 8.9	8.9	33.0 33.0	33.0	89.1 88.7	88.9	6.0 6.0	6.0		1.5 1.4	1.4	1.4	23.0 22.3	22.7	16.2
				Bottom	6.9	25.9 25.9	25.9	8.9 8.9	8.9	33.1 33.1	33.1	88.2 87.9	88.1	6.0 5.9	5.9	5.9	1.5 1.3	1.4		12.7 12.5	12.6	
				Surface	1.0	25.8 25.8	25.8	8.9 9.0	8.9	33.1 33.3	33.2	94.2 87.1	90.7	6.4 5.9	6.1	6.1	0.9 1.0	1.0		11.5 11.5	11.5	
G2	Cloudy	Moderate	11:07	Middle	5.0	25.8 25.8	25.8	9.0 8.9	9.0	33.2 33.2	33.2	89.6 87.8	88.7	6.1 5.9	6.0		0.5 0.4	0.4	1.2	14.5 14.3	14.4	17.2
				Bottom	9.0	25.6 25.7	25.6	8.9 8.9	8.9	34.0 33.8	33.9	86.1 86.1	86.1	5.8 5.8	5.8	5.8	2.2 2.3	2.2		25.4 26.0	25.7	
				Surface	1.0	25.9 25.9	25.9	8.8 8.9	8.9	31.9 32.7	32.3	87.1 84.9	86.0	5.9 5.7	5.8	5.8	1.6 1.9	1.8		10.8 10.7	10.8	
G3	Cloudy	Moderate	11:19	Middle	4.0	25.9 25.9	25.9	8.9 8.9	8.9	33.0 32.6	32.8	85.0 84.6	84.8	5.7 5.7	5.7		2.3 2.1	2.2	2.3	13.0 13.0	13.0	13.5
				Bottom	7.0	25.6 25.9	25.7	8.9 8.8	8.9	34.0 33.1	33.6	85.1 84.2	84.7	5.7 5.7	5.7	5.7	3.3 2.9	3.1		16.8 16.9	16.9	
				Surface	1.0	26.0 25.9	25.9	8.8 8.8	8.8	31.5 32.5	32.0	91.4 86.4	88.9	6.2 5.9	6.0	5.9	2.3 2.6	2.4		16.6 16.2	16.4	
G4	Cloudy	Moderate	11:30	Middle	4.0	25.9 25.9	25.9	8.8 8.8	8.8	32.9 33.1	33.0	84.5 83.8	84.2	5.7 5.7	5.7		2.0 1.7	1.9	2.2	5.0 5.2	5.1	9.6
				Bottom	7.0	25.8 25.7	25.7	8.8 8.8	8.8	33.6 33.9	33.7	84.2 84.5	84.4	5.7 5.7	5.7	5.7	2.3 2.5	2.4		7.3 7.0	7.2	
				Surface	1.0	26.0 25.9	25.9	8.9 8.9	8.9	32.2 32.9	32.6	89.2 87.4	88.3	6.0 5.9	6.0	6.0	1.0 1.1	1.1		8.4 8.7	8.6	
M1	Cloudy	Moderate	11:11	Middle	3.0	25.9 25.9	25.9	8.9 8.9	8.9	32.6 32.8	32.7	88.2 87.1	87.7	6.0 5.9	5.9		1.2 0.9	1.0	1.2	5.5 5.5	5.5	5.8
				Bottom	5.0	25.8 25.8	25.8	8.9 8.9	8.9	33.2 33.2	33.2	87.6 87.2	87.4	5.9 5.9	5.9	5.9	1.2 1.6	1.4		3.2 3.2	3.2	
				Surface	1.0	25.8 25.8	25.8	8.9 8.9	8.9	33.3 33.3	33.3	90.5 87.3	88.9	6.1 5.9	6.0	5.9	2.2 2.5	2.4		18.5 18.8	18.7	
M2	Cloudy	Moderate	11:03	Middle	6.0	25.6 25.7	25.7	8.9 8.9	8.9	34.1 33.6	33.8	86.1 86.9	86.5	5.8 5.9	5.8		2.4 2.2	2.3	2.5	27.8 29.0	28.4	24.9
				Bottom	11.0	25.5 25.5	25.5	9.0 9.0	9.0	34.2 34.2	34.2	86.0 86.2	86.1	5.8 5.8	5.8	5.8	2.8 3.1	2.9		27.6 27.5	27.6	
				Surface	1.0	25.8 25.8	25.8	8.8 8.8	8.8	31.6 33.0	32.3	87.2 84.3	85.8	5.9 5.7	5.8	5.8	2.1 2.5	2.3		18.5 18.5	18.5	
M3	Cloudy	Moderate	11:26	Middle	4.0	25.9 25.9	25.9	8.8 8.8	8.8	33.0 32.7	32.9	84.5 84.0	84.3	5.7 5.7	5.7		2.9 2.6	2.7	2.8	8.6 8.5	8.6	11.7
				Bottom	7.0	25.6 25.6	25.6	8.8 8.8	8.8	33.9 34.0	33.9	83.9 83.9	83.9	5.7 5.7	5.7	5.7	3.4 3.7	3.5		7.9 7.9	7.9	
				Surface	1.0	25.9 25.8	25.8	9.0 9.0	9.0	32.5 33.2	32.8	84.0 84.6	84.3	5.7 5.7	5.7	5.7	4.0 3.3	3.6		13.1 13.4	13.3	
M4	Cloudy	Moderate	10:57	Middle	5.0	25.7 25.8	25.7	9.0 9.0	9.0	33.4 33.3	33.4	84.6 84.4	84.5	5.7 5.7	5.7		3.9 3.4	3.6	3.6	8.1 8.3	8.2	11.2
				Bottom	8.9	25.7 25.7	25.7	9.0 8.9	8.9	33.5 33.6	33.6	84.6 85.3	85.0	5.7 5.8	5.7	5.7	3.4 3.9	3.6		12.0 12.1	12.1	
				Surface	1.1	25.9 25.9	25.9	8.8 8.8	8.8	33.0 33.1	33.0	88.5 85.5	87.0	6.0 5.8	5.9	5.8	2.1 2.4	2.2		13.9 14.2	14.1	
M5	Cloudy	Moderate	11:42	Middle	6.0	25.8 25.8	25.8	8.8 8.8	8.8	33.1 33.1	33.1	85.8 85.3	85.6	5.8 5.8	5.8		2.5 2.2	2.3	2.3	35.2 36.9	36.1	22.5
				Bottom	11.0	25.8 25.8	25.8	8.8 8.8	8.8	33.3 33.2	33.3	85.1 84.9	85.0	5.7 5.7	5.7	5.7	2.1 2.6	2.4		17.3 17.5	17.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-			-	
M6	Cloudy	Moderate	11:35	Middle	2.0	25.9 25.9	25.9	8.8 8.8	8.8	32.4 32.4	32.4	90.8 89.1	90.0	6.1 6.0	6.1		1.4 1.3	1.3	1.3	14.0 14.5	14.3	14.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 3 June 2019 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 4.8 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 5.2 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 19.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 21.5 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 19.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 21.5 mg/L
	Stations G1-G4, M1-M5	· · · · · · · · · · · · · · · · · · ·	<u>027 2370 mg/2</u>
	On the state of th	6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 16.0 mg/L	or 130% of upstream control
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 June 2019

(Mid-Flood Tide)

Learther	Weather	Sea	Sampling	5.	th (m)	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	26.1 26.1	26.1	8.7 8.8	8.7	31.7 31.9	31.8	84.2 81.2	82.7	5.7 5.5	5.6		2.8 3.2	3.0		19.4 19.4	19.4	
C1	Cloudy	Moderate	18:45	Middle	8.9	25.9 25.9	25.9	8.8 8.8	8.8	32.5 32.5	32.5	81.0 80.6	80.8	5.5 5.5	5.5	5.5	3.9 3.7	3.8	3.6	22.4 22.5	22.5	17.9
				Bottom	17.0	25.7 25.4	25.5	8.8	8.8	33.5 34.4	34.0	81.4 81.3	81.4	5.5	5.5	5.5	3.9	4.1		11.8	11.9	
				Surface	1.0	26.4	26.4	8.9	8.9	30.7	30.7	84.7	83.2	5.7	5.6		3.4	3.6		17.0	17.5	
C2	Cloudy	Moderate	17:43	Middle	15.9	26.4 25.8	25.8	8.9 8.9	8.9	30.8 32.9	33.0	81.7 80.0	80.4	5.5 5.4	5.4	5.5	3.9 6.1	6.0	5.3	17.9 8.8	8.8	12.4
OZ.	Cioudy	Woderate	17.40	Bottom	31.0	25.8 25.8	25.8	8.9 8.9	8.9	33.1 33.1	33.1	80.8 80.4	80.6	5.5 5.4	5.4	5.4	5.9 6.4	6.2	0.0	8.8 10.6	10.9	12.7
						25.8 26.1		8.9 8.8		33.1 32.2		80.8 93.5		5.5 6.3		5.4	6.0 2.3			11.2 20.0		
				Surface	1.0	26.1	26.1	8.8	8.8	32.3	32.2	89.8	91.7	6.1	6.2	6.1	2.4	2.4		20.5	20.3	
G1	Cloudy	Moderate	18:09	Middle	4.0	26.0 26.1	26.0	8.8 8.8	8.8	32.5 32.6	32.5	88.9 90.2	89.6	6.0 6.1	6.0		2.0	2.2	2.3	19.0 19.1	19.1	16.9
				Bottom	7.0	26.0 26.0	26.0	8.8 8.8	8.8	32.9 32.8	32.9	87.9 88.4	88.2	5.9 6.0	5.9	5.9	2.3 2.6	2.5		11.4 11.5	11.5	
				Surface	1.0	26.1 26.0	26.1	8.9 8.9	8.9	32.6 32.8	32.7	92.1 87.6	89.9	6.2 5.9	6.1	6.0	2.9 2.8	2.9		17.7 18.2	18.0	
G2	Cloudy	Moderate	17:58	Middle	5.0	26.0 26.0	26.0	8.9 8.9	8.9	32.8 33.0	32.9	89.6 86.9	88.3	6.0 5.9	5.9	0.0	2.8 2.7	2.8	2.9	9.9 9.8	9.9	15.5
				Bottom	9.0	25.9 25.9	25.9	8.9 8.8	8.8	33.2 33.2	33.2	86.9 85.8	86.4	5.9 5.8	5.8	5.8	3.1 2.8	3.0		18.7 18.4	18.6	
				Surface	1.0	26.3 25.9	26.1	8.8	8.8	31.3 31.6	31.4	93.1 89.9	91.5	6.3	6.2		2.3	2.5		13.2 13.4	13.3	
G3	Cloudy	Moderate	18:14	Middle	4.0	26.0	26.0	8.8	8.8	32.7	32.7	91.9	91.0	6.2	6.1	6.2	1.8	1.7	2.1	11.0	11.1	12.2
				Bottom	7.0	25.9 25.9	25.9	8.8	8.8	32.7 33.1	33.0	90.0 84.3	84.1	6.1 5.7	5.7	5.7	1.7 2.2	2.2		11.1 12.2	12.2	
				Surface	1.0	25.9 26.0	26.2	8.8	8.6	33.0 32.2	31.7	83.8 91.9	92.9	5.7 6.2	6.3		2.1 3.4	3.2		12.1 12.1	12.3	
G4	Cloudy	Moderate	18:26	Middle	4.5	26.3 26.0		8.6 8.6	8.6	31.2 32.6	32.7	93.9 90.1	90.0	6.4 6.1	6.1	6.2	3.0	3.3	3.4	12.4 7.3		10.7
04	Cioudy	Woderate	10.20			26.0 25.9	26.0	8.6 8.6		32.8 33.0		89.8 85.0		6.1 5.7			3.4 3.6		3.4	7.0 12.9	7.2	10.7
				Bottom	7.0	25.9 26.4	25.9	8.6	8.6	33.2 31.8	33.1	83.2 93.1	84.1	5.6	5.7	5.7	4.1 3.6	3.9		12.7	12.8	
				Surface	1.0	26.0	26.2	8.8	8.8	32.8	32.3	85.5	89.3	5.8	6.0	6.0	3.9	3.7		6.2	6.2	
M1	Cloudy	Moderate	18:04	Middle	3.0	26.2 26.1	26.1	8.8 8.8	8.8	32.3 32.6	32.4	89.8 86.3	88.1	6.1 5.8	5.9		3.5 3.6	3.5	3.8	15.0 15.2	15.1	11.0
				Bottom	4.9	26.0 26.0	26.0	8.8 8.8	8.8	32.9 32.8	32.9	85.3 85.0	85.2	5.8 5.7	5.7	5.7	3.8 4.2	4.0		11.8 11.7	11.8	
				Surface	0.9	26.2 26.0	26.1	9.0 9.0	9.0	32.4 33.0	32.7	93.6 87.3	90.5	6.3 5.9	6.1	6.0	1.9 1.8	1.9		16.6 17.1	16.9	
M2	Cloudy	Moderate	17:53	Middle	6.0	25.9 26.0	26.0	9.0 8.9	9.0	33.1 32.9	33.0	88.5 88.9	88.7	6.0 6.0	6.0	0.0	1.2 1.5	1.4	2.2	20.6 20.6	20.6	16.5
				Bottom	11.0	25.7 25.6	25.7	9.0 8.9	9.0	33.8 34.0	33.9	86.1 84.0	85.1	5.8 5.7	5.7	5.7	3.1 3.5	3.3		11.8 12.0	11.9	
				Surface	1.0	26.1 25.9	26.0	8.7 8.7	8.7	31.8 32.7	32.2	91.9 88.3	90.1	6.2 6.0	6.1		3.6 3.4	3.5		10.0 10.1	10.1	
МЗ	Cloudy	Moderate	18:22	Middle	4.0	26.0	26.0	8.7	8.7	32.7 32.7 32.7	32.7	85.7 84.1	84.9	5.8	5.7	5.9	3.4 3.1 3.2	3.1	3.4	11.0	11.2	11.7
				Bottom	7.0	26.0 25.9 25.9	25.9	8.7 8.7 8.7	8.7	32.7 33.0 33.2	33.1	84.9	83.7	5.7	5.6	5.6	3.2 3.6 3.5	3.6		11.3 14.1 13.8	14.0	
				Surface	1.0	26.4	26.2	8.9	8.9	31.5	31.7	82.4 86.4	83.5	5.6 5.8	5.6		4.4	4.3		26.4	26.9	
M4	Cloudy	Moderate	17:48	Middle	4.9	26.1 26.0	26.0	8.9 8.9	8.9	32.0 32.2	32.3	80.6 81.0	80.9	5.5 5.5	5.5	5.6	4.3	4.2	4.4	27.4 7.9	7.8	14.1
IVI -1	Oloudy	Moderate	17.40	Bottom	9.0	26.0 25.9	25.9	9.0 8.9	8.9	32.4 32.7	32.7	80.8 82.6	82.6	5.5 5.6	5.6	5.6	4.4 4.8	4.6	7.7	7.6 7.6	7.6	13.1
						25.9 26.3		8.9 8.7		32.7 32.0		82.6 87.5		5.6 5.9		0.0	4.4 3.5			7.6 11.2		
				Surface	1.0	26.1	26.2	8.7	8.7	32.1	32.0	81.6	84.6	5.5	5.7	5.6	3.3	3.4		10.9	11.1	
M5	Cloudy	Moderate	18:38	Middle	6.0	26.1 26.1	26.1	8.7 8.7	8.7	32.1 32.2	32.1	83.1 81.4	82.3	5.6 5.5	5.6		3.3 2.8	3.0	3.2	9.0	8.9	8.6
				Bottom	11.1	26.1 26.1	26.1	8.7 8.7	8.7	32.1 32.2	32.2	81.6 81.4	81.5	5.5 5.5	5.5	5.5	3.0 3.2	3.1		5.9 5.7	5.8	
·				Surface	-		-		-	-	-	-	-	-	-	6.2	-	-			-	
M6	Cloudy	Moderate	18:32	Middle	2.0	26.2 26.0	26.1	8.7 8.7	8.7	31.9 32.7	32.3	93.3 90.1	91.7	6.3 6.1	6.2	0.2	2.4 2.5	2.4	2.4	19.3 19.4	19.4	19.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
	1								1				1			1						

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 3 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.9 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 5.3 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 23.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 25.2 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 23.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 25.2 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 14.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 15.5 mg/L
	Station M6	1	1
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 05 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value 26.5	Average	Value	Average	Value	Average	Value	Average	Value 5.4	Average	DA*	Value 3.3	Average	DA*	Value 7.0	Average	DA*
				Surface	0.9	26.5	26.5	8.3 8.3	8.3	31.5 31.5	31.5	79.8 79.9	79.9	5.4	5.4	5.3	3.4 4.2	3.3		7.0	7.0	
C1	Fine	Calm	08:50	Middle	9.0	25.9 25.9	25.9	8.3 8.3	8.3	33.4 33.4 33.4	33.4	76.9 76.9	76.9	5.2 5.2	5.2		4.2 4.2 4.6	4.2	4.0	8.2 8.5	8.4	7.2
				Bottom	16.9	25.9 25.9	25.9	8.3 8.3	8.3	33.4	33.4	76.6 76.7	76.7	5.2 5.2	5.2	5.2	4.6	4.6		6.4 6.3	6.4	
				Surface	1.0	26.9 26.9	26.9	8.2 8.3	8.2	30.7 30.7	30.7	85.6 85.2	85.4	5.8 5.8	5.8	5.4	3.2 3.2	3.2		9.1 9.5	9.3	
C2	Fine	Calm	08:00	Middle	16.0	25.9 25.9	25.9	8.3 8.3	8.3	33.3 33.3	33.3	75.5 75.4	75.5	5.1 5.1	5.1		6.5 6.6	6.5	5.4	6.0 6.0	6.0	8.7
				Bottom	31.1	25.9 25.9	25.9	8.3 8.3	8.3	33.3 33.3	33.3	75.4 75.4	75.4	5.1 5.1	5.1	5.1	6.5 6.5	6.5		10.6 10.9	10.8	
				Surface	1.1	27.1 27.1	27.1	8.3 8.3	8.3	32.4 32.3	32.4	90.0 90.0	90.0	6.0 6.0	6.0	5.8	1.7	1.7		6.9 7.1	7.0	
G1	Fine	Calm	08:24	Middle	4.0	26.8 26.5	26.7	8.3 8.3	8.3	32.6 32.9	32.8	84.7 84.5	84.6	5.7 5.7	5.7		1.7 1.7	1.7	2.0	5.7 5.8	5.8	6.8
				Bottom	7.1	26.2 26.1	26.2	8.3 8.3	8.3	33.3 33.4	33.3	80.9 80.5	80.7	5.4 5.4	5.4	5.4	2.7 2.7	2.7		7.5 7.8	7.7	
				Surface	1.0	27.0 27.0	27.0	8.3 8.3	8.3	32.8 32.8	32.8	90.4 90.1	90.3	6.0 6.0	6.0	5.9	2.0 2.0	2.0		6.3 6.3	6.3	
G2	Fine	Calm	08:13	Middle	4.1	26.5 26.5	26.5	8.3 8.3	8.3	33.1 33.1	33.1	85.1 85.1	85.1	5.7 5.7	5.7		1.9 1.9	1.9	2.0	6.4 6.5	6.5	7.0
				Bottom	7.0	26.3 26.3	26.3	8.3 8.3	8.3	33.3 33.3	33.3	84.1 83.8	84.0	5.6 5.6	5.6	5.6	1.9 2.1	2.0		8.3 8.1	8.2	<u> </u>
				Surface	1.0	27.3 27.3	27.3	8.3 8.3	8.3	31.9 31.9	31.9	92.1 92.2	92.2	6.1 6.1	6.1	5.9	2.1 2.1	2.1		5.8 5.9	5.9	
G3	Fine	Calm	08:28	Middle	4.0	26.9 26.8	26.9	8.3 8.3	8.3	32.5 32.5	32.5	85.2 84.8	85.0	5.7 5.7	5.7		2.3 2.3	2.3	2.3	11.2 11.5	11.4	7.6
				Bottom	7.0	25.8 25.8	25.8	8.3 8.3	8.3	34.0 34.0	34.0	77.8 77.8	77.8	5.3 5.3	5.3	5.3	2.7 2.6	2.6		5.5 5.6	5.6	
				Surface	1.0	27.1 27.1	27.1	8.3 8.3	8.3	32.3 32.2	32.3	84.6 84.8	84.7	5.6 5.7	5.6	5.4	2.1 2.1	2.1		7.1 7.1	7.1	}
G4	Fine	Calm	08:38	Middle	4.0	26.7 26.6	26.7	8.3 8.3	8.3	32.3 32.4	32.3	78.3 77.9	78.1	5.3 5.2	5.2		2.0 1.9	1.9	2.3	7.7 7.4	7.6	8.2
				Bottom	7.0	26.0 25.9	25.9	8.3 8.3	8.3	33.5 33.6	33.6	76.1 76.0	76.1	5.1 5.1	5.1	5.1	2.7 2.8	2.8		9.8 10.0	9.9	
				Surface	1.0	27.3 27.2	27.2	8.3 8.3	8.3	32.2 32.3	32.3	88.4 87.9	88.2	5.9 5.8	5.9	5.7	2.4 2.5	2.5		4.9 4.9	4.9	
M1	Fine	Calm	08:17	Middle	3.0	26.7 26.7	26.7	8.3 8.3	8.3	32.8 32.8	32.8	83.3 83.3	83.3	5.6 5.6	5.6		2.4 2.3	2.4	2.8	5.4 5.4	5.4	5.4
				Bottom	5.0	26.6 26.5	26.6	8.3 8.3	8.3	32.9 32.9	32.9	82.3 81.9	82.1	5.5 5.5	5.5	5.5	3.5 3.3	3.4		5.9 6.1	6.0	
				Surface	1.0	26.9 26.8	26.8	8.3 8.3	8.3	32.6 32.7	32.7	88.5 88.1	88.3	5.9 5.9	5.9	5.7	2.6 2.7	2.6		6.2 6.1	6.2	1
M2	Fine	Calm	08:10	Middle	6.0	26.1 26.1	26.1	8.3 8.3	8.3	33.6 33.6	33.6	82.1 82.0	82.1	5.5 5.5	5.5		2.4 2.4	2.4	2.7	5.1 5.1	5.1	6.0
				Bottom	11.0	26.0 26.0	26.0	8.3 8.3	8.3	33.7 33.7	33.7	81.2 81.0	81.1	5.5 5.5	5.5	5.5	2.9 3.0	2.9		6.5 6.9	6.7	
				Surface	1.0	27.1 27.1	27.1	8.3 8.3	8.3	32.2 32.2	32.2	88.4 88.7	88.6	5.9 5.9	5.9	5.7	2.5 2.4	2.5		8.1 8.3	8.2	
M3	Fine	Calm	08:33	Middle	4.1	26.5 26.4	26.5	8.3 8.3	8.3	32.9 33.0	33.0	80.8 80.9	80.9	5.4 5.4	5.4		2.5 2.4	2.4	2.5	8.0 8.4	8.2	7.7
				Bottom	7.1	25.8 25.8	25.8	8.3 8.3	8.3	33.9 34.0	34.0	78.4 78.2	78.3	5.3 5.3	5.3	5.3	2.7 2.7	2.7		6.6 6.6	6.6	
				Surface	1.1	26.5 26.5	26.5	8.3 8.3	8.3	31.7 31.7	31.7	81.7 81.5	81.6	5.5 5.5	5.5	5.4	3.3 3.4	3.3		10.5 10.3	10.4	
M4	Fine	Calm	08:06	Middle	5.0	26.1 26.1	26.1	8.3 8.3	8.3	32.7 32.7	32.7	77.6 77.6	77.6	5.2 5.2	5.2		4.4 4.5	4.4	3.9	7.1 7.3	7.2	8.1
				Bottom	9.1	26.2 26.2	26.2	8.3 8.3	8.3	33.0 33.0	33.0	80.5 80.6	80.6	5.4 5.4	5.4	5.4	3.9 3.9	3.9		6.6 6.6	6.6	<u> </u>
				Surface	1.1	26.4 26.5	26.5	8.3 8.3	8.3	32.3 32.2	32.3	83.8 83.9	83.9	5.6 5.7	5.6	5.6	2.6 2.5	2.6		4.4 4.3	4.4	
M5	Fine	Calm	08:46	Middle	6.0	26.4 26.4	26.4	8.3 8.3	8.3	32.3 32.3	32.3	81.3 81.5	81.4	5.5 5.5	5.5		2.2 2.3	2.2	2.3	4.2 4.2	4.2	4.5
				Bottom	11.0	26.3 26.3	26.3	8.3 8.3	8.3	32.4 32.4	32.4	79.2 79.3	79.3	5.3 5.4	5.3	5.3	2.0 2.0	2.0		4.9 4.8	4.9	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
M6	Fine	Calm	08:41	Middle	2.0	27.0 27.2	27.1	8.3 8.3	8.3	32.5 32.3	32.4	88.6 88.5	88.6	5.9 5.9	5.9	0.0	2.4 2.2	2.3	2.3	9.7 9.9	9.8	9.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 5 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
БО: И	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 7.8 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 8.4 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.1 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.1 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 14.0 mg/L
	Station M6	1	1
	Intake Level	8.3 mg/L	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 05 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ture (°C)		рН		ity ppt		ration (%)		ved Oxygen			Turbidity(NT			nded Solids	
	Condition	Condition*	Time		,	Value 26.4	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	26.3	26.4	8.4 8.4	8.4	31.4 31.5	31.4	78.8 78.7	78.8	5.3 5.3	5.3	5.2	2.8 2.8	2.8		3.8 3.9	3.9	
C1	Fine	Calm	13:27	Middle	8.9	25.8 25.8	25.8	8.3 8.3	8.3	33.1 33.1	33.1	76.7 76.7	76.7	5.2 5.2	5.2		3.5 3.4	3.5	3.4	6.6 6.6	6.6	4.6
				Bottom	17.1	25.6 25.6	25.6	8.3 8.3	8.3	33.8 33.8	33.8	76.1 76.1	76.1	5.1 5.1	5.1	5.1	4.0 3.9	3.9		3.1 3.3	3.2	
				Surface	1.0	26.7 26.7	26.7	8.3 8.3	8.3	30.7 30.7	30.7	80.5 80.6	80.6	5.4 5.4	5.4	5.3	3.7 3.6	3.7		4.2 4.4	4.3	
C2	Fine	Calm	12:17	Middle	16.0	25.8 25.7	25.7	8.3 8.3	8.3	33.1 33.2	33.1	75.5 75.4	75.5	5.1 5.1	5.1	0.0	4.0 4.0	4.0	4.0	6.5 6.7	6.6	8.8
				Bottom	31.0	25.7 25.7	25.7	8.3 8.3	8.3	33.3 33.4	33.3	75.4 75.3	75.4	5.1 5.1	5.1	5.1	4.2 4.2	4.2		15.7 15.2	15.5	
				Surface	1.0	26.8 26.9	26.9	8.3 8.3	8.3	32.4 32.4	32.4	88.6 88.6	88.6	5.9 5.9	5.9	5.7	1.8 1.8	1.8		5.7 5.6	5.7	
G1	Fine	Calm	12:52	Middle	4.1	26.4 26.5	26.5	8.3 8.3	8.3	32.8 32.8	32.8	83.2 83.3	83.3	5.6 5.6	5.6	0.1	1.7 1.7	1.7	1.7	8.9 9.0	9.0	7.5
				Bottom	7.0	26.0 26.0	26.0	8.3 8.3	8.3	33.3 33.2	33.2	81.3 81.5	81.4	5.5 5.5	5.5	5.5	1.7 1.8	1.7		7.9 7.9	7.9	
				Surface	1.0	26.4 26.4	26.4	8.3 8.3	8.3	33.1 33.0	33.0	86.5 86.5	86.5	5.8 5.8	5.8	5.8	2.8 2.7	2.8		4.7 4.8	4.8	
G2	Fine	Calm	12:39	Middle	4.0	26.5 26.5	26.5	8.3 8.3	8.3	32.9 33.0	33.0	85.8 85.7	85.8	5.7 5.7	5.7	3.0	2.3 2.3	2.3	2.4	4.9 4.9	4.9	6.1
				Bottom	7.0	26.2 26.1	26.1	8.3 8.3	8.3	33.2 33.3	33.3	84.4 83.3	83.9	5.7 5.6	5.6	5.6	2.2 2.3	2.2		8.7 8.3	8.5	
				Surface	1.1	26.9 26.9	26.9	8.3 8.3	8.3	32.6 32.5	32.6	86.6 87.2	86.9	5.8 5.8	5.8	5.6	2.2 2.2	2.2		7.6 7.6	7.6	
G3	Fine	Calm	12:58	Middle	4.0	26.4 26.1	26.3	8.3 8.3	8.3	32.8 33.1	33.0	82.2 81.9	82.1	5.5 5.5	5.5	3.0	2.7 2.8	2.7	2.8	6.6 6.7	6.7	7.1
				Bottom	7.0	25.5 25.5	25.5	8.3 8.3	8.3	34.1 34.2	34.1	77.2 77.0	77.1	5.2 5.2	5.2	5.2	3.6 3.5	3.6		6.8 7.0	6.9	
				Surface	1.0	27.4 27.4	27.4	8.3 8.3	8.3	31.3 31.3	31.3	94.7 94.9	94.8	6.3 6.3	6.3	6.0	1.6 1.6	1.6		8.3 8.6	8.5	
G4	Fine	Calm	13:08	Middle	4.0	26.3 26.3	26.3	8.3 8.3	8.3	32.9 32.9	32.9	85.8 86.1	86.0	5.8 5.8	5.8	0.0	1.8 1.8	1.8	1.9	6.5 6.4	6.5	9.9
				Bottom	6.9	25.9 25.9	25.9	8.3 8.3	8.3	33.5 33.4	33.5	79.6 79.2	79.4	5.4 5.3	5.3	5.3	2.2 2.3	2.3		14.3 15.0	14.7	
				Surface	1.0	26.8 26.9	26.9	8.3 8.3	8.3	32.4 32.3	32.3	86.0 86.0	86.0	5.7 5.7	5.7	5.6	2.0 2.0	2.0		4.1 4.1	4.1	
M1	Fine	Calm	12:46	Middle	3.0	26.4 26.4	26.4	8.3 8.3	8.3	32.8 32.8	32.8	82.8 82.8	82.8	5.5 5.5	5.5	5.0	2.8 2.8	2.8	2.7	4.5 4.5	4.5	4.8
				Bottom	4.9	26.4 26.4	26.4	8.3 8.3	8.3	32.9 32.9	32.9	82.3 82.3	82.3	5.5 5.5	5.5	5.5	3.2 3.3	3.3		5.8 6.0	5.9	
				Surface	1.1	26.6 26.5	26.6	8.3 8.3	8.3	32.8 32.8	32.8	86.4 86.3	86.4	5.8 5.8	5.8	5.6	0.9	0.9		6.8 7.1	7.0	
M2	Fine	Calm	12:33	Middle	5.0	25.8 25.8	25.8	8.3 8.3	8.3	33.7 33.7	33.7	81.6 81.5	81.6	5.5 5.5	5.5	5.0	1.1 0.9	1.0	2.9	5.3 5.5	5.4	7.6
				Bottom	11.0	25.4 25.4	25.4	8.3 8.3	8.3	34.3 34.3	34.3	77.2 77.2	77.2	5.2 5.2	5.2	5.2	6.8 6.7	6.7		10.7 10.3	10.5	
				Surface	1.1	27.1 27.0	27.1	8.3 8.3	8.3	31.7 31.8	31.7	89.6 89.8	89.7	6.0 6.0	6.0	5.6	2.0 2.0	2.0		4.9 4.9	4.9	
М3	Fine	Calm	13:02	Middle	4.0	26.4 26.3	26.4	8.3 8.3	8.3	32.5 32.6	32.5	77.9 77.6	77.8	5.2 5.2	5.2	3.0	1.7 1.7	1.7	1.8	5.8 5.7	5.8	5.8
				Bottom	7.0	25.7 25.7	25.7	8.3 8.3	8.3	33.6 33.7	33.6	76.6 76.4	76.5	5.2 5.2	5.2	5.2	1.9 1.9	1.9		6.7 6.9	6.8	
				Surface	1.0	26.3 26.3	26.3	8.3 8.3	8.3	31.8 31.8	31.8	78.8 78.8	78.8	5.3 5.3	5.3	5.3	3.5 3.5	3.5		6.0 5.8	5.9	
M4	Fine	Calm	12:25	Middle	4.9	26.1 26.1	26.1	8.3 8.3	8.3	32.4 32.5	32.4	78.5 78.5	78.5	5.3 5.3	5.3	5.5	4.0 4.1	4.1	3.6	4.6 4.9	4.8	5.1
				Bottom	9.1	26.1 26.1	26.1	8.3 8.3	8.3	32.9 33.0	32.9	80.7 81.1	80.9	5.4 5.5	5.4	5.4	3.4 3.3	3.4		4.4 4.6	4.5	
				Surface	1.0	26.2 26.2	26.2	8.3 8.3	8.3	32.4 32.3	32.3	79.6 79.7	79.7	5.4 5.4	5.4	5.4	2.5 2.5	2.5		4.3 4.4	4.4	
M5	Fine	Calm	13:19	Middle	6.0	26.2 26.2	26.2	8.3 8.3	8.3	32.3 32.3	32.3	80.2 80.2	80.2	5.4 5.4	5.4	5.4	2.6 2.7	2.6	2.6	4.6 4.8	4.7	5.4
				Bottom	11.1	26.1 26.1	26.1	8.3 8.3	8.3	32.4 32.5	32.4	79.3 79.1	79.2	5.4 5.3	5.3	5.3	2.5 2.5	2.5		7.1 7.2	7.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
M6	Fine	Calm	13:13	Middle	2.0	26.9 26.8	26.9	8.3 8.3	8.3	32.5 32.5	32.5	88.5 88.6	88.6	5.9 5.9	5.9	3.5	2.0 2.0	2.0	2.0	8.8 8.8	8.8	8.8
1				Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 5 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 17	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.7 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 5.1 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 4.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 5.0 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 4.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 5.0 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C1: 4.2 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	27.1 26.9	27.0	8.7 8.6	8.7	31.8 32.3	32.0	101.2 100.9	101.1	6.7 6.7	6.7	6.3	1.9 2.2	2.0		6.1 6.1	6.1	l
C1	Sunny	Moderate	16:36	Middle	9.0	26.1 26.5	26.3	8.6 8.6	8.6	33.8 33.2	33.5	87.3 91.0	89.2	5.8 6.1	6.0		1.0 1.2	1.1	1.6	17.4 17.8	17.6	11.7
				Bottom	17.1	26.1 25.6	25.9	8.6 8.6	8.6	33.9 34.8	34.3	87.6 80.2	83.9	5.9 5.4	5.6	5.6	1.9 1.5	1.7		11.4 11.5	11.5	
				Surface	1.0	27.1 27.3	27.2	8.9 8.9	8.9	31.7 31.2	31.5	101.4 97.4	99.4	6.8 6.5	6.6	F.0	2.3 2.9	2.6		9.8 9.6	9.7	
C2	Sunny	Moderate	15:46	Middle	15.9	25.3 25.4	25.4	9.0 8.9	8.9	35.4 35.4	35.4	75.7 75.6	75.7	5.1 5.1	5.1	5.9	4.2 3.7	4.0	3.7	9.2 9.4	9.3	10.7
				Bottom	31.0	25.3 25.4	25.4	8.9 8.9	8.9	35.4 35.4	35.4	75.6 75.6	75.6	5.1 5.1	5.1	5.1	4.4 4.5	4.5		13.0 13.1	13.1	l
				Surface	0.9	27.3 27.3	27.3	8.8 8.7	8.8	32.4 32.3	32.4	115.4 118.3	116.9	7.6 7.8	7.7		2.1 2.3	2.2		6.7 6.7	6.7	
G1	Sunny	Moderate	16:10	Middle	4.0	26.5 26.8	26.6	8.8 8.8	8.8	33.0 32.8	32.9	101.9 102.2	102.1	6.8 6.8	6.8	7.3	1.9	2.0	2.3	13.0 12.7	12.9	12.7
				Bottom	7.0	25.8 25.5	25.7	8.7 8.7	8.7	34.5 35.0	34.7	81.9 77.2	79.6	5.5	5.3	5.3	2.6	2.5		18.3	18.7	l
				Surface	1.0	27.3 27.3	27.3	8.9 8.8	8.8	32.4 32.4	32.4	122.4 117.2	119.8	8.1 7.8	7.9		2.8 2.5	2.7		13.3 13.3	13.3	
G2	Sunny	Moderate	16:00	Middle	5.0	26.1 26.8	26.4	8.8 8.8	8.8	33.9	33.4	86.9 93.8	90.4	5.8 6.2	6.0	7.0	1.7	1.8	2.0	13.8	13.5	11.5
				Bottom	9.0	25.8	25.8	8.8 8.8	8.8	34.6 34.4	34.5	80.5	82.1	5.4 5.6	5.5	5.5	1.3	1.3		7.8 7.5	7.7	l
				Surface	1.0	25.8	27.5	8.8	8.8	31.9	32.0	83.6 133.8	130.5	8.9	8.6		2.3	2.4	<u> </u>	9.0	8.9	
G3	Sunny	Moderate	16:15	Middle	4.0	27.6 27.0	26.9	8.8	8.8	32.2 32.4	32.5	127.2 116.6	114.7	7.7	7.6	8.1	1.8	2.0	2.3	8.8	8.2	9.7
				Bottom	7.0	26.8 26.1	25.8	8.8	8.7	32.6 33.9	34.4	112.7 82.2	80.8	7.5 5.5	5.4	5.4	2.3	2.4		8.3 11.7	11.9	l
				Surface	1.0	25.6 27.7	27.7	8.7 8.8	8.8	34.9 31.9	31.9	79.4 131.6	131.9	5.3 8.7	8.7		2.6	2.2		12.1 23.2	23.1	
G4	Sunny	Moderate	16:24	Middle	4.0	27.7 27.1	27.0	8.8	8.7	31.9 32.4	32.4	132.1 114.1	112.4	8.7 7.6	7.5	8.1	1.8	1.9	2.8	22.9 12.1	12.1	16.0
	,			Bottom	7.0	26.9 25.6	25.6	8.7 8.6	8.6	32.5 35.0	34.9	110.7 77.2	77.9	7.4 5.2	5.2	5.2	2.1 4.6	4.2		12.1 12.9	12.9	
				Surface	1.0	25.6 27.5	27.1	8.6 8.8	8.8	34.8 32.2	32.6	78.6 113.4	110.6	5.3 7.5	7.3		3.8 1.6	1.7		12.8 6.3	6.3	
M1	Sunny	Moderate	16:05	Middle	3.0	26.7 27.0	27.0	8.8 8.8	8.8	33.1 32.6	32.6	107.7 109.1	108.5	7.2 7.2	7.2	7.3	1.7	1.8	2.2	6.2 7.2	7.4	6.8
	Cuiny	moderate	10.00	Bottom	5.0	27.0 26.7	26.6	8.8 8.8	8.8	32.6 33.0	33.2	107.8 94.3	93.6	7.2 6.3	6.2	6.2	1.8 3.1	3.3		7.6 6.6	6.8	0.0
				Surface	1.0	26.5 26.7	26.8	8.7 8.9	8.8	33.4 33.0	33.3	92.9 103.7	99.6	6.2 6.9	6.6	0.2	3.5 1.5	1.5		6.9 5.7	5.7	
M2	Sunny	Moderate	15:56	Middle		26.8 25.7		8.8 8.8	8.8	33.6 34.8		95.4 82.5	1	6.3 5.5		6.1	1.4 0.9	0.8	1.5	5.7 18.0		11.9
IVIZ	Suriny	Wioderate	13.30		6.0	25.7 25.5	25.7 25.5	8.8 8.8	8.8	34.7 35.0	34.7 35.2	81.8 79.5	82.2 78.4	5.5 5.3	5.5	5.3	0.8 2.1	2.3	1.5	18.4 11.6	18.2	11.5
				Bottom	11.0	25.4 27.7		8.8 8.8		35.3 31.1		77.2 136.9		5.2 9.1	5.3	5.3	2.5 2.3			11.9 9.9	11.8	
				Surface	1.0	27.6 27.5	27.7	8.8	8.8	32.3 31.6	31.7	125.7 126.5	131.3	8.3 8.4	8.7	8.5	2.6	2.5		10.0	10.0	
M3	Sunny	Moderate	16:18	Middle	4.1	27.3 25.7	27.4	8.8 8.6	8.8	31.9 34.6	31.8	124.1 79.2	125.3	8.2 5.3	8.3		1.6	1.7	2.6	9.7 5.5	9.7	8.4
				Bottom	6.9	25.6 27.7	25.7	8.6	8.6	34.8	34.7	80.1 100.3	79.7	5.4	5.3	5.3	3.7	3.5		5.4 7.0	5.5	
				Surface	1.1	26.7 25.3	27.2	8.9 9.0	8.9	33.2 35.4	32.3	89.5	94.9	5.9	6.3	5.7	3.5 4.8	3.7		6.9	7.0	
M4	Sunny	Moderate	15:51	Middle	4.9	25.3 25.4 25.3	25.4	8.8 8.9	8.9	35.4 35.2 35.4	35.3	76.5 76.6 75.9	76.6	5.1 5.1 5.1	5.1		4.8 4.7 4.5	4.7	4.3	20.2 20.0 19.7	20.1	15.7
				Bottom	8.9	25.4	25.4	8.9 8.8	8.9	35.4 35.3 32.5	35.4	76.1	76.0	5.1	5.1	5.1	4.5 4.6 2.4	4.6		20.2	20.0	
				Surface	1.1	27.2 27.0	27.1	8.7	8.7	32.6	32.5	116.8 113.4	115.1	7.7 7.5	7.6	7.1	2.7	2.5		8.5	8.5	
M5	Sunny	Moderate	16:30	Middle	6.0	26.6 26.6	26.6	8.7 8.7	8.7	33.0 33.1	33.1	101.5 93.5	97.5	6.8 6.2	6.5		1.3 1.4	1.3	2.5	11.6 11.4	11.5	10.5
				Bottom	10.8	25.6 25.8	25.7	8.6 8.6	8.6	34.8 34.5	34.7	79.0 80.9	80.0	5.3 5.4	5.4	5.4	3.5 3.5	3.5		11.4 11.3	11.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
M6	Sunny	Moderate	16:25	Middle	2.0	27.4 27.1	27.2	8.7 8.7	8.7	32.1 32.4	32.2	117.5 116.6	117.1	7.8 7.7	7.8		1.9 1.7	1.8	1.8	7.1 7.4	7.3	7.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 8 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
БО: И	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 5.3 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 5.8 NTU
	Station M6	<u></u>	<u></u>
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.6 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.6 mg/L
	Stations G1-G4, M1-M5		<u>021 1210 mg/2</u>
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 17.0 mg/L
	Station M6		1
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value	Average	Value 8.7	Average	Value	Average	Value	Average	Value	Average	DA*	Value 1.9	Average	DA*	Value	Average	DA*
				Surface	1.0	26.6 26.5	26.6	8.7	8.7	32.2 32.5	32.4	92.3 88.6	90.5	6.2 5.9	6.1	5.7	1.6	1.7		15.7 16.1	15.9	
C1	Sunny	Moderate	09:26	Middle	9.1	25.5 25.6	25.5	8.7 8.7	8.7	35.1 34.9	35.0	79.3 80.2	79.8	5.3 5.4	5.4		1.3 1.5	1.4	2.3	13.7 14.2	14.0	12.1
				Bottom	17.0	25.3 25.3	25.3	8.7 8.7	8.7	35.6 35.6	35.6	76.5 76.6	76.6	5.1 5.1	5.1	5.1	4.1 3.5	3.8		6.3 6.4	6.4	
				Surface	1.0	26.7 26.7	26.7	8.7 8.6	8.6	31.9 31.8	31.8	85.9 86.8	86.4	5.8 5.8	5.8	5.5	2.1 1.7	1.9		17.3 17.8	17.6	
C2	Sunny	Moderate	08:34	Middle	16.0	25.5 25.5	25.5	8.7 8.7	8.7	35.1 35.0	35.0	76.5 77.3	76.9	5.1 5.2	5.2		2.3 2.4	2.3	2.2	12.3 12.5	12.4	15.3
				Bottom	31.0	25.5 25.5	25.5	8.7 8.7	8.7	35.1 35.1	35.1	76.5 76.5	76.5	5.1 5.1	5.1	5.1	2.3 2.6	2.4		16.1 16.0	16.1	
				Surface	1.0	26.8 26.7	26.7	8.7 8.7	8.7	31.8 32.1	32.0	99.8 94.7	97.3	6.7 6.3	6.5	6.1	2.6 2.6	2.6		10.2 10.0	10.1	
G1	Sunny	Moderate	09:00	Middle	4.0	26.4 26.3	26.3	8.7 8.7	8.7	33.0 33.4	33.2	84.0 87.3	85.7	5.6 5.8	5.7		2.2 2.0	2.1	2.3	13.6 13.6	13.6	11.7
				Bottom	7.0	25.6 25.8	25.7	8.7 8.7	8.7	34.8 34.5	34.6	80.0 79.7	79.9	5.4 5.3	5.4	5.4	2.4 2.1	2.3		11.3 11.4	11.4	
				Surface	1.0	26.7 26.8	26.8	8.7 8.6	8.7	32.3 32.3	32.3	100.0 96.5	98.3	6.7 6.4	6.6	6.0	2.0 1.7	1.8		4.0 4.1	4.1	
G2	Sunny	Moderate	08:50	Middle	5.0	25.8 25.9	25.8	8.6 8.6	8.6	34.4 34.2	34.3	82.3 82.3	82.3	5.5 5.5	5.5		2.2 1.8	2.0	2.1	6.1 6.0	6.1	8.4
				Bottom	9.1	25.5 25.6	25.6	8.6 8.6	8.6	35.0 34.9	34.9	78.3 79.4	78.9	5.3 5.3	5.3	5.3	2.9 2.4	2.7		15.2 15.2	15.2	
				Surface	1.1	26.9 26.4	26.6	8.7 8.7	8.7	31.9 33.1	32.5	101.4 95.5	98.5	6.8 6.4	6.6	6.1	2.0 1.7	1.8		15.9 16.3	16.1	
G3	Sunny	Moderate	09:04	Middle	4.0	25.9 26.5	26.2	8.7 8.7	8.7	34.2 32.8	33.5	80.0 84.9	82.5	5.4 5.7	5.5	0.1	1.7 1.6	1.6	1.6	16.7 17.5	17.1	14.3
				Bottom	7.0	25.9 25.8	25.9	8.7 8.7	8.7	34.0 34.4	34.2	79.4 78.7	79.1	5.3 5.3	5.3	5.3	1.5 1.4	1.4		9.8 9.7	9.8	
				Surface	1.0	26.8 26.8	26.8	8.7 8.7	8.7	31.2 31.1	31.2	101.6 102.3	102.0	6.8 6.9	6.9	6.3	2.2 1.9	2.0		22.5 22.1	22.3	
G4	Sunny	Moderate	09:11	Middle	4.0	26.1 26.2	26.2	8.7 8.7	8.7	33.5 33.6	33.6	83.9 86.1	85.0	5.6 5.8	5.7	0.0	1.2 0.9	1.0	2.4	14.0 14.2	14.1	17.0
				Bottom	7.0	25.6 25.6	25.6	8.7 8.7	8.7	34.8 34.8	34.8	77.2 76.6	76.9	5.2 5.1	5.2	5.2	4.1 4.2	4.1		14.5 14.8	14.7	
				Surface	1.0	27.0 26.2	26.6	8.6 8.6	8.6	31.9 33.5	32.7	100.2 91.6	95.9	6.7 6.1	6.4	6.1	1.4 1.6	1.5		9.8 9.8	9.8	
M1	Sunny	Moderate	08:55	Middle	3.0	26.6 26.6	26.6	8.6 8.6	8.6	32.8 32.9	32.8	86.2 85.3	85.8	5.8 5.7	5.7	0.1	1.4 1.2	1.3	1.4	4.6 4.8	4.7	6.2
				Bottom	5.0	26.0 26.2	26.1	8.6 8.6	8.6	33.9 33.6	33.8	77.1 78.1	77.6	5.2 5.2	5.2	5.2	1.5 1.3	1.4		3.9 4.0	4.0	
				Surface	1.0	26.9 26.9	26.9	8.8 8.8	8.8	32.0 31.9	32.0	98.3 97.2	97.8	6.6 6.5	6.5	6.1	2.7 2.7	2.7		5.7 5.8	5.8	
M2	Sunny	Moderate	08:46	Middle	6.0	26.0 25.9	26.0	8.8 8.8	8.8	34.0 34.1	34.1	85.0 84.0	84.5	5.7 5.6	5.7	0.1	2.6 2.3	2.5	3.0	12.7 12.9	12.8	11.0
				Bottom	11.0	25.4 25.4	25.4	8.8 8.8	8.8	35.2 35.4	35.3	76.5 76.5	76.5	5.1 5.1	5.1	5.1	3.9 3.9	3.9		14.6 14.4	14.5	
				Surface	1.0	26.8 27.0	26.9	8.7 8.7	8.7	31.7 31.2	31.4	106.7 99.0	102.9	7.1 6.6	6.9	6.4	2.3 2.1	2.2		9.9 10.0	10.0	
M3	Sunny	Moderate	09:07	Middle	4.0	26.6 26.4	26.5	8.7 8.7	8.7	32.6 33.1	32.9	88.9 85.3	87.1	5.9 5.7	5.8	J	2.0 1.6	1.8	2.0	8.6 8.8	8.7	10.0
				Bottom	7.0	25.9 25.7	25.8	8.7 8.7	8.7	34.0 34.6	34.3	78.0 75.5	76.8	5.2 5.1	5.2	5.2	1.9 2.1	2.0		11.2 11.2	11.2	
				Surface	0.9	26.8 26.8	26.8	8.9 8.9	8.9	32.1 32.1	32.1	99.2 95.5	97.4	6.6 6.4	6.5	6.0	1.7 2.0	1.9		8.1 8.1	8.1	
M4	Sunny	Moderate	08:41	Middle	5.0	26.4 25.6	26.0	8.9 8.8	8.9	33.0 34.7	33.9	85.3 80.5	82.9	5.7 5.4	5.6	5.0	1.8 2.0	1.9	2.4	7.1 7.5	7.3	10.7
				Bottom	9.0	25.5 25.5	25.5	8.8 8.8	8.8	35.2 35.1	35.1	76.9 75.6	76.3	5.2 5.1	5.1	5.1	3.2 3.5	3.4		16.4 17.0	16.7	<u> </u>
				Surface	0.9	27.1 26.1	26.6	8.7 8.7	8.7	32.3 33.7	33.0	98.1 88.1	93.1	6.5 5.9	6.2	5.8	1.8 2.1	2.0		22.2 21.7	22.0	
M5	Sunny	Moderate	09:22	Middle	6.0	25.6 25.7	25.7	8.7 8.7	8.7	34.9 34.5	34.7	79.4 79.7	79.6	5.3 5.4	5.3	0.0	2.2 1.9	2.0	2.2	28.1 28.6	28.4	19.4
				Bottom	11.0	25.4 25.4	25.4	8.7 8.7	8.7	35.3 35.2	35.3	77.3 77.7	77.5	5.2 5.2	5.2	5.2	2.9 2.4	2.7		7.9 7.9	7.9	
				Surface	-	-			-		-		-		-	6.7		-			-	
M6	Sunny	Moderate	09:16	Middle	2.0	26.8 26.8	26.8	8.7 8.7	8.7	31.5 31.6	31.5	99.7 99.4	99.6	6.7 6.7	6.7	0.7	1.2 1.3	1.2	1.2	10.6 10.7	10.7	10.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

temarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 8 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.5 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 4.9 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 19.1 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 20.7 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 19.1 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 20.7 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 7.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 8.3 mg/L
	Station M6	•	
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value 27.5	Average	Value 8.7	Average	Value 30.3	Average	Value	Average	Value 8.4	Average	DA*	Value 2.1	Average	DA*	Value 7.7	Average	DA*
				Surface	1.0	27.5	27.5	8.7	8.7	30.3	30.3	125.2 126.1 74.5	125.7	8.4	8.4	6.7	2.1	2.1		7.6	7.7	
C1	Cloudy	Calm	19:08	Middle	9.1	25.2 25.3	25.2	8.5 8.5	8.5	35.4 35.2 35.7	35.3	75.2	74.9	5.0 5.1	5.0		0.7 0.7	0.7	1.3	8.3 8.7	8.5	7.2
				Bottom	17.1	24.9 24.9	24.9	8.5 8.5	8.5	35.8	35.8	72.1 71.5	71.8	4.9 4.8	4.9	4.9	1.3 1.2	1.2		5.5 5.5	5.5	
				Surface	1.1	27.0 27.0	27.0	8.7 8.7	8.7	30.2 30.2	30.2	98.6 98.6	98.6	6.6 6.6	6.6	6.3	1.5 1.5	1.5		9.5 9.4	9.5	
C2	Cloudy	Calm	18:00	Middle	16.5	26.0 26.1	26.1	8.6 8.6	8.6	33.7 33.6	33.6	87.7 88.7	88.2	5.9 6.0	5.9		1.4 1.4	1.4	1.6	8.6 8.5	8.6	10.3
				Bottom	32.0	25.9 25.8	25.9	8.6 8.6	8.6	34.0 34.1	34.0	81.8 81.8	81.8	5.5 5.5	5.5	5.5	1.7 1.9	1.8		12.9 12.6	12.8	
				Surface	1.1	27.4 27.4	27.4	8.8 8.8	8.8	30.8 30.8	30.8	129.5 129.7	129.6	8.6 8.6	8.6	7.4	1.1 0.9	1.0		12.0 11.8	11.9	
G1	Cloudy	Calm	18:25	Middle	4.0	25.9 25.9	25.9	8.5 8.5	8.5	34.0 34.1	34.0	90.0 96.5	93.3	6.0 6.5	6.3		1.5 1.6	1.6	1.7	10.5 11.0	10.8	10.6
				Bottom	7.1	25.8 25.6	25.7	8.5 8.5	8.5	34.4 34.7	34.6	78.9 77.9	78.4	5.3 5.2	5.3	5.3	2.6 2.4	2.5		9.1 9.4	9.3	
				Surface	1.0	27.4 27.4	27.4	8.7 8.7	8.7	31.2 31.2	31.2	118.8 120.6	119.7	7.9 8.0	8.0	6.7	1.1 1.2	1.2		11.6 12.0	11.8	
G2	Cloudy	Calm	18:13	Middle	5.0	25.6 25.6	25.6	8.5 8.5	8.5	34.8 34.8	34.8	79.6 81.0	80.3	5.4 5.4	5.4	0.,	1.3 1.4	1.3	1.4	7.6 7.5	7.6	10.3
				Bottom	9.0	25.3 25.2	25.3	8.5 8.5	8.5	35.3 35.4	35.4	73.3 73.0	73.2	4.9 4.9	4.9	4.9	1.6 1.6	1.6		11.3 11.8	11.6	
				Surface	1.0	27.4 27.4	27.4	8.7 8.7	8.7	30.7 30.7	30.7	122.9 129.3	126.1	8.2 8.6	8.4	7.5	1.3 1.4	1.4		12.5 12.1	12.3	
G3	Cloudy	Calm	18:29	Middle	4.0	26.2 26.2	26.2	8.5 8.5	8.5	33.4 33.5	33.5	93.6 105.4	99.5	6.3 7.1	6.7	7.5	1.2 1.3	1.2	1.5	6.2 6.3	6.3	7.6
				Bottom	7.0	25.9 25.7	25.8	8.5 8.5	8.5	34.1 34.5	34.3	80.1 77.9	79.0	5.4 5.2	5.3	5.3	1.9 1.9	1.9		4.1 4.2	4.2	
				Surface	1.0	27.4 27.4	27.4	8.7 8.7	8.7	30.4 30.5	30.4	118.4 130.5	124.5	7.9 8.7	8.3	7.1	1.6 1.5	1.5		10.9 11.4	11.2	
G4	Cloudy	Calm	18:47	Middle	4.1	25.9 25.8	25.9	8.5 8.5	8.5	34.1 34.2	34.1	84.0 93.5	88.8	5.6 6.3	6.0	7	1.6 1.6	1.6	1.9	9.1 9.3	9.2	9.6
				Bottom	7.1	25.7 25.4	25.5	8.5 8.5	8.5	34.6 35.1	34.9	72.9 72.4	72.7	4.9 4.9	4.9	4.9	2.5 2.6	2.6		8.4 8.5	8.5	
				Surface	1.1	27.5 27.6	27.5	8.7 8.7	8.7	31.2 31.2	31.2	110.5 113.1	111.8	7.3 7.5	7.4	6.6	1.1 1.0	1.0		6.1 6.0	6.1	
M1	Cloudy	Calm	18:17	Middle	3.0	26.3 26.3	26.3	8.5 8.5	8.5	33.4 33.4	33.4	86.7 87.0	86.9	5.8 5.8	5.8	0.0	1.7 1.6	1.6	2.4	3.6 3.6	3.6	7.4
				Bottom	5.1	25.9 25.5	25.7	8.5 8.5	8.5	34.1 35.0	34.5	73.0 70.9	72.0	4.9 4.8	4.8	4.8	4.5 4.8	4.6		12.7 12.5	12.6	
				Surface	1.1	27.4 27.5	27.5	8.7 8.7	8.7	31.5 31.4	31.4	124.3 126.2	125.3	8.2 8.4	8.3	7.1	1.2 1.1	1.2		7.9 7.7	7.8	
M2	Cloudy	Calm	18:09	Middle	5.5	25.9 25.8	25.9	8.5 8.5	8.5	33.6 33.1	33.3	85.4 90.4	87.9	5.8 6.1	5.9	7	1.3 1.2	1.2	1.4	9.6 9.7	9.7	9.1
				Bottom	10.5	25.4 25.2	25.3	8.5 8.5	8.5	35.2 35.5	35.4	74.8 74.0	74.4	5.0 5.0	5.0	5.0	1.7 1.7	1.7		9.7 9.7	9.7	
				Surface	1.0	27.6 27.5	27.5	8.8 8.8	8.8	29.8 30.2	30.0	131.2 134.0	132.6	8.8 8.9	8.9	7.2	1.1 1.1	1.1		13.3 13.6	13.5	
МЗ	Cloudy	Calm	18:36	Middle	4.0	25.9 25.9	25.9	8.5 8.5	8.5	34.2 34.2	34.2	80.5 86.2	83.4	5.4 5.8	5.6	1.2	1.8 1.5	1.7	1.7	9.7 9.8	9.8	10.6
				Bottom	7.0	25.4 25.4	25.4	8.5 8.5	8.5	35.1 35.2	35.2	72.4 71.9	72.2	4.9 4.8	4.9	4.9	2.6 2.8	2.7		8.4 8.7	8.6	
				Surface	1.3	27.2 27.3	27.3	8.7 8.7	8.7	31.2 31.2	31.2	118.5 119.5	119.0	7.9 8.0	7.9	6.7	1.6 1.6	1.6		10.8 11.2	11.0	
M4	Cloudy	Calm	18:04	Middle	5.4	25.9 25.9	25.9	8.5 8.5	8.5	34.0 34.1	34.1	81.2 80.4	80.8	5.5 5.4	5.4	0.7	1.6 1.7	1.6	1.8	12.9 13.0	13.0	9.4
				Bottom	9.7	25.5 25.3	25.4	8.5 8.5	8.5	34.9 35.2	35.1	73.2 72.9	73.1	4.9 4.9	4.9	4.9	2.0 2.1	2.1		4.2 4.3	4.3	
				Surface	1.1	27.3 27.3	27.3	8.7 8.7	8.7	30.8 30.7	30.8	121.2 122.1	121.7	8.1 8.1	8.1	6.8	2.5 2.5	2.5		6.9 7.1	7.0	
M5	Cloudy	Calm	19:02	Middle	6.1	25.6 25.6	25.6	8.5 8.5	8.5	34.8 34.8	34.8	80.7 81.5	81.1	5.4 5.5	5.5	3.0	2.1 2.0	2.1	2.2	7.7 7.8	7.8	7.0
				Bottom	11.0	25.3 25.2	25.3	8.5 8.5	8.5	35.2 35.4	35.3	73.4 72.8	73.1	4.9 4.9	4.9	4.9	1.9 1.9	1.9		6.3 6.3	6.3	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.7	-	-		-	-	
M6	Cloudy	Calm	18:56	Middle	2.3	27.5 27.5	27.5	8.7 8.7	8.7	30.6 30.6	30.6	130.0 130.1	130.1	8.7 8.7	8.7	0.7	1.3 1.3	1.3	1.3	7.7 7.8	7.8	7.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 10 June 2019 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 17	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.2 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 2.3 NTU
	Station M6	l	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.3 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.3 mg/L
	Stations G1-G4, M1-M5		<u> </u>
	, , , ,	6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
	G. A. D.	<u>C2: 15.3 mg/L</u>	<u>C2: 16.6 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value	Average	Value	Average	Value 30.3	Average	Value	Average	Value	Average	DA*	Value 1.7	Average	DA*	Value	Average	DA*
				Surface	1.0	27.5 27.5	27.5	8.7 8.7	8.7	30.3	30.3	128.4 128.4	128.4	8.6 8.6	8.6	6.8	1.7	1.7		13.0 12.9	13.0	
C1	Cloudy	Calm	11:48	Middle	9.0	25.1 25.0	25.1	8.5 8.5	8.5	35.6 35.6	35.6	74.2 73.2	73.7	5.0 4.9	5.0		2.4 2.5	2.4	2.5	11.7 11.2	11.5	10.7
				Bottom	17.0	24.9 24.9	24.9	8.5 8.5	8.5	35.8 35.8	35.8	69.9 70.0	70.0	4.7 4.7	4.7	4.7	3.5 3.5	3.5		7.6 8.0	7.8	
				Surface	1.1	27.1 26.7	26.9	9.0 8.9	9.0	31.4 31.7	31.5	100.6 99.4	100.0	6.7 6.7	6.7	6.2	1.5 1.4	1.4		12.7 12.8	12.8	
C2	Cloudy	Calm	10:50	Middle	16.1	26.0 26.0	26.0	8.8 8.8	8.8	33.8 33.8	33.8	86.1 86.3	86.2	5.8 5.8	5.8		1.7 1.6	1.7	1.8	12.0 11.6	11.8	12.4
				Bottom	31.1	25.9 25.9	25.9	8.7 8.7	8.7	34.0 34.1	34.1	83.6 83.0	83.3	5.6 5.6	5.6	5.6	2.2	2.2		12.4 12.7	12.6	
				Surface	1.0	27.5 27.5	27.5	8.8 8.8	8.8	30.7 30.7	30.7	129.7 130.5	130.1	8.6 8.7	8.7	7.4	2.0 1.9	2.0		6.2 6.4	6.3	
G1	Cloudy	Calm	11:16	Middle	4.1	26.3 26.6	26.5	8.6 8.6	8.6	33.3 32.6	32.9	91.1 93.2	92.2	6.1 6.2	6.2		2.2 2.6	2.4	2.0	9.3 8.9	9.1	8.6
				Bottom	7.1	25.5 25.4	25.4	8.6 8.6	8.6	35.0 35.2	35.1	77.2 76.7	77.0	5.2 5.2	5.2	5.2	1.7 1.7	1.7		10.4 10.5	10.5	
				Surface	1.1	27.4 27.4	27.4	8.7 8.7	8.7	31.2 31.2	31.2	127.6 127.8	127.7	8.5 8.5	8.5	6.8	1.4 1.4	1.4		6.1 5.9	6.0	
G2	Cloudy	Calm	11:04	Middle	5.1	25.5 25.7	25.6	8.5 8.5	8.5	34.9 34.6	34.8	75.1 77.4	76.3	5.1 5.2	5.1		1.8 1.8	1.8	1.6	13.0 13.6	13.3	10.0
				Bottom	9.0	25.4 25.3	25.3	8.5 8.5	8.5	35.2 35.4	35.3	73.3 72.9	73.1	4.9 4.9	4.9	4.9	1.7 1.6	1.7		10.8 10.7	10.8	
				Surface	1.0	27.3 27.2	27.2	8.7 8.7	8.7	31.0 31.0	31.0	127.2 126.6	126.9	8.5 8.5	8.5	8.1	0.6 0.6	0.6		8.8 8.9	8.9	
G3	Cloudy	Calm	11:20	Middle	2.0	27.0 27.2	27.1	8.7 8.7	8.7	31.4 31.1	31.2	112.4 116.1	114.3	7.5 7.8	7.6	0	0.7 0.6	0.7	1.1	6.7 6.6	6.7	6.5
				Bottom	7.0	25.4 25.3	25.4	8.5 8.5	8.5	35.2 35.3	35.2	80.4 78.0	79.2	5.4 5.3	5.3	5.3	2.0 1.9	1.9		4.1 4.0	4.1	
				Surface	1.1	27.4 27.5	27.4	8.7 8.7	8.7	30.4 30.4	30.4	131.2 132.1	131.7	8.8 8.8	8.8	7.4	0.8 0.8	0.8		12.4 12.6	12.5	
G4	Cloudy	Calm	11:30	Middle	4.0	25.8 25.8	25.8	8.5 8.5	8.5	34.4 34.2	34.3	86.6 95.0	90.8	5.8 6.4	6.1		1.3 1.3	1.3	1.4	5.7 5.9	5.8	8.9
				Bottom	7.1	25.6 25.6	25.6	8.5 8.5	8.5	34.7 34.8	34.8	76.0 75.1	75.6	5.1 5.0	5.1	5.1	2.0 2.0	2.0		8.2 8.3	8.3	
				Surface	1.0	27.5 27.6	27.5	8.7 8.7	8.7	31.1 31.1	31.1	115.5 116.5	116.0	7.7 7.7	7.7	7.2	1.3 1.3	1.3		7.2 7.4	7.3	
M1	Cloudy	Calm	11:08	Middle	3.0	26.8 26.8	26.8	8.6 8.6	8.6	32.4 32.4	32.4	99.0 100.6	99.8	6.6 6.7	6.7	7.2	1.5 1.4	1.5	2.6	10.1 10.1	10.1	9.5
				Bottom	5.0	25.5 25.5	25.5	8.6 8.5	8.6	34.7 35.0	34.9	71.3 69.8	70.6	4.8 4.7	4.7	4.7	4.6 5.6	5.1		11.1 11.3	11.2	
				Surface	1.0	27.4 27.4	27.4	8.7 8.7	8.7	31.4 31.4	31.4	127.8 128.3	128.1	8.5 8.5	8.5	7.2	1.1 1.1	1.1		10.1 10.3	10.2	
M2	Cloudy	Calm	11:00	Middle	5.5	25.8 25.8	25.8	8.5 8.5	8.5	33.8 33.2	33.5	84.1 89.6	86.9	5.7 6.1	5.9	7.2	1.4 1.3	1.4	1.3	5.8 6.0	5.9	7.2
				Bottom	10.0	25.3 25.2	25.2	8.5 8.5	8.5	35.4 35.5	35.5	74.6 73.4	74.0	5.0 4.9	5.0	5.0	1.5 1.5	1.5		5.6 5.6	5.6	
				Surface	1.1	27.5 27.5	27.5	8.7 8.7	8.7	30.4 30.5	30.5	118.9 122.2	120.6	7.9 8.2	8.0	7.4	1.6 1.5	1.5		3.7 3.6	3.7	
М3	Cloudy	Calm	11:22	Middle	4.0	26.3 26.1	26.2	8.5 8.5	8.5	33.2 33.7	33.4	97.0 107.7	102.4	6.5 7.2	6.9		1.4 1.3	1.4	1.6	6.3 6.4	6.4	6.9
				Bottom	7.1	25.8 25.7	25.7	8.5 8.5	8.5	34.3 34.5	34.4	79.4 78.0	78.7	5.3 5.2	5.3	5.3	2.0 2.0	2.0		10.6 10.5	10.6	
				Surface	1.0	27.2 27.2	27.2	8.7 8.7	8.7	31.2 31.3	31.3	118.7 119.2	119.0	7.9 7.9	7.9	6.6	2.3 2.2	2.2		5.5 5.6	5.6	
M4	Cloudy	Calm	10:55	Middle	5.0	25.9 25.9	25.9	8.6 8.6	8.6	34.1 34.1	34.1	79.5 80.4	80.0	5.3 5.4	5.4	3.0	2.2 2.1	2.2	2.1	13.2 13.0	13.1	9.3
				Bottom	9.0	25.4 25.4	25.4	8.5 8.5	8.5	35.1 35.1	35.1	73.0 73.0	73.0	4.9 4.9	4.9	4.9	1.9 2.0	2.0		9.2 9.2	9.2	<u> </u>
				Surface	1.0	27.3 27.3	27.3	8.7 8.7	8.7	30.8 30.8	30.8	121.7 122.1	121.9	8.1 8.2	8.1	6.7	1.4 1.4	1.4		5.5 5.6	5.6	
M5	Cloudy	Calm	11:42	Middle	5.5	25.6 25.6	25.6	8.5 8.5	8.5	34.8 34.8	34.8	77.7 78.8	78.3	5.2 5.3	5.3	0	1.9 1.5	1.7	2.0	6.4 6.4	6.4	7.4
				Bottom	10.0	25.2 25.1	25.2	8.5 8.5	8.5	35.5 35.5	35.5	71.9 71.6	71.8	4.8 4.8	4.8	4.8	2.9 2.8	2.8		10.1 10.3	10.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-		-	-	
M6	Cloudy	Calm	11:38	Middle	2.2	27.5 27.5	27.5	8.7 8.7	8.7	30.6 30.6	30.6	129.4 129.6	129.5	8.6 8.6	8.6	0.0	0.9 1.1	1.0	1.0	9.1 8.7	8.9	8.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 10 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.2 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 4.5 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 15.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 16.8 mg/L
	Stations M1-M5	<u> </u>	
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 15.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 16.8 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C1: 10.1 mg/L
	Station M6	•	
	Intake Level	8.3 mg/L	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 June 2019

(Mid-Ebb Tide)

Lasatian	Weather	Sea	Sampling		uh. ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	26.4 26.4	26.4	8.6 8.6	8.6	30.9 30.9	30.9	89.8 89.7	89.8	6.1 6.1	6.1		1.7 1.6	1.7		7.0 6.9	7.0	
C1	Cloudy	Moderate	09:04	Middle	9.1	25.0 25.0	25.0	8.5 8.5	8.5	35.3 35.3	35.3	66.0 65.9	66.0	4.5 4.5	4.5	5.3	2.0	2.0	2.5	7.1 7.0	7.1	6.4
ĺ				Bottom	17.1	24.7	24.7	8.5	8.4	35.8	35.8	63.5	63.4	4.3	4.3	4.3	3.8	3.8		5.3	5.3	
				Surface	1.0	24.7 26.4	26.4	8.4 8.5	8.5	35.8 30.9	30.9	63.2 86.7	87.0	4.3 5.9	5.9		3.7 1.5	1.5		5.2 7.2	7.2	
						26.4 25.0		8.5 8.4		30.8 35.3		87.3 65.0	1	5.9 4.4		5.1	1.5 2.2			7.1 4.3		
C2	Cloudy	Moderate	09:12	Middle	16.2	25.0 24.7	25.0	8.4 8.4	8.4	35.3 35.8	35.3	65.2 63.1	65.1	4.4 4.3	4.4		2.3 4.5	2.3	2.8	4.2 7.7	4.3	6.3
				Bottom	31.0	24.7 26.2	24.7	8.4 8.7	8.4	35.8 31.6	35.8	63.0 84.0	63.1	4.3	4.3	4.3	4.6	4.5		7.4 5.5	7.6	
l İ				Surface	1.0	26.2	26.2	8.7	8.7	31.7	31.7	83.4	83.7	5.6	5.7	5.3	1.5	1.6		5.6	5.6	
G1	Cloudy	Moderate	08:39	Middle	4.1	25.8 25.6	25.7	8.6 8.6	8.6	33.3 33.9	33.6	72.4 71.5	72.0	4.9 4.8	4.9		1.6 1.5	1.6	1.6	6.1 6.2	6.2	5.5
				Bottom	7.1	25.3 25.3	25.3	8.6 8.5	8.5	35.0 35.0	35.0	63.4 62.8	63.1	4.3 4.2	4.3	4.3	1.7 1.6	1.7		4.7 4.7	4.7	
				Surface	1.1	26.0 26.0	26.0	8.6 8.6	8.6	32.2 32.1	32.2	82.8 83.0	82.9	5.6 5.6	5.6	5.2	0.5 0.6	0.5		7.5 7.3	7.4	
G2	Cloudy	Moderate	08:31	Middle	5.0	25.5 25.5	25.5	8.6 8.6	8.6	34.1 34.1	34.1	72.2 71.9	72.1	4.9 4.9	4.9	J.2	1.0 1.0	1.0	0.9	4.5 4.4	4.5	5.7
! 				Bottom	9.1	25.1 24.9	25.0	8.6 8.6	8.6	35.1 35.5	35.3	66.2 65.6	65.9	4.5 4.4	4.5	4.5	1.2	1.2		5.2 5.3	5.3	
				Surface	1.1	26.3 26.2	26.3	8.6 8.6	8.6	31.2 31.5	31.4	87.8 86.3	87.1	6.0 5.8	5.9		2.1	2.0		6.1	6.2	
G3	Cloudy	Moderate	08:43	Middle	4.1	25.7 25.5	25.6	8.6 8.6	8.6	34.3 34.4	34.3	69.5 68.4	69.0	4.7 4.6	4.6	5.3	2.6 2.8	2.7	2.4	5.7 5.8	5.8	5.6
ļ				Bottom	7.1	25.3	25.3	8.5	8.5	34.9	35.0	61.7	61.0	4.2	4.1	4.1	2.3	2.4		4.9	5.0	
				Surface	1.1	25.3 26.4	26.4	8.5 8.7	8.7	35.1 31.8	31.8	60.3 88.1	87.8	4.1 5.9	5.9		2.5 1.4	1.5		5.0 5.8	5.8	
G4	Cloudy	Moderate	08:51	Middle	4.1	26.3 25.3	25.3	8.7 8.6	8.6	31.8 34.7	34.7	87.5 71.2	70.5	5.9 4.8	4.8	5.3	1.6	1.2	1.5	5.8 6.5	6.5	6.2
				Bottom	7.1	25.3 25.3	25.2	8.6 8.5	8.4	34.7 35.1	35.1	69.7 53.7	53.7	4.7 3.6	3.6	3.6	1.2 1.7	1.7		6.5 6.2	6.3	
				Surface	1.1	25.2 26.3	26.2	8.4 8.7	8.7	35.2 31.6	31.6	53.6 83.9	83.0	3.6 5.7		3.0	1.8	1.2		6.3 4.6	4.6	
						26.2 26.2		8.6 8.6		31.7 31.9		82.0 77.1		5.5 5.2	5.6	5.4	1.2			4.5 8.9		
M1	Cloudy	Moderate	08:35	Middle	3.0	26.0 25.7	26.1	8.6 8.6	8.6	32.5 33.4	32.2	75.3 70.7	76.2	5.1 4.8	5.2		1.2 1.2	1.2	1.2	8.9 4.9	8.9	6.1
				Bottom	5.0	25.6 26.3	25.7	8.6	8.6	33.8	33.6	70.1 91.6	70.4	4.7	4.8	4.8	1.3	1.3		4.9 5.4	4.9	
ļ				Surface	1.1	26.3 25.9	26.3	8.8 8.7	8.8	30.9 32.7	31.0	92.1	91.9	6.2	6.2	5.8	1.6	1.6		5.3	5.4	
M2	Cloudy	Moderate	08:28	Middle	6.0	25.7	25.8	8.7	8.7	33.4	33.1	80.1 79.0	79.6	5.3	5.4		1.5	1.4	1.8	6.2	6.2	6.6
				Bottom	11.0	25.0 24.9	25.0	8.6 8.6	8.6	35.3 35.6	35.4	65.7 64.9	65.3	4.4 4.4	4.4	4.4	2.2	2.4		8.1 8.5	8.3	
1				Surface	1.1	26.2 26.2	26.2	8.6 8.6	8.6	31.9 31.8	31.9	81.5 83.0	82.3	5.5 5.6	5.6	5.1	1.2 1.2	1.2		11.3 11.7	11.5	
M3	Cloudy	Moderate	08:46	Middle	4.1	25.7 25.5	25.6	8.6 8.5	8.6	33.5 34.4	33.9	68.9 67.1	68.0	4.7 4.5	4.6		1.0 1.0	1.0	1.1	9.6 9.6	9.6	9.5
				Bottom	7.0	25.4 25.3	25.4	8.5 8.5	8.5	34.9 35.0	34.9	60.1 60.0	60.1	4.1 4.0	4.0	4.0	1.0 1.1	1.1		7.2 7.3	7.3	
				Surface	1.1	26.2 26.3	26.2	9.0 9.0	9.0	31.5 31.3	31.4	89.1 90.8	90.0	6.0 6.2	6.1	5.5	1.4 1.4	1.4		7.3 7.5	7.4	
M4	Cloudy	Moderate	08:22	Middle	5.1	25.5 25.5	25.5	8.8 8.8	8.8	33.9 34.1	34.0	74.5 72.4	73.5	5.0 4.9	5.0	0.0	0.6	0.5	1.0	5.6 5.8	5.7	6.8
· 				Bottom	9.1	25.2 25.2	25.2	8.7 8.7	8.7	34.8 34.8	34.8	67.7 67.7	67.7	4.6 4.6	4.6	4.6	1.1	1.1		7.3 7.5	7.4	
				Surface	1.1	26.5 26.1	26.3	8.7 8.7	8.7	31.4 31.8	31.6	91.8 91.0	91.4	6.2	6.2		1.4	1.3		5.6 5.8	5.7	
M5	Cloudy	Moderate	08:59	Middle	6.6	25.1	25.0	8.6	8.6	35.3	35.3	71.2	70.7	4.8	4.8	5.5	1.1	1.1	1.4	12.2	12.5	7.5
· 				Bottom	12.0	25.0 24.9	24.9	8.6 8.5	8.5	35.3 35.5	35.5	70.1 65.2	65.2	4.4	4.4	4.4	2.0	1.8	1	12.7 4.5	4.5	
				Surface	-	24.9	_	8.5	_	35.5	_	65.1	-	4.4	_		1.7	-		4.4	-	
M6	Cloudy	Moderate	08:54	Middle	2.2	26.0	26.0	8.6	8.6	32.6	32.5	79.1	79.4	5.3	5.4	5.4	2.2	2.2	2.2	6.7	6.8	6.8
	2.300,					26.0	25.0	8.6	3.0	32.5	02.0	79.7		5.4	-		2.2			6.9	5.0	3.0
ĺ				Bottom	l -	-	l -	-	l -	-	_	- 1	l -	-	l -	_	-	l -		-	-	

emarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 12 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 5.4 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 5.9 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 9.3 mg/L
	Stations M1-M5	<u>C2. 6.0 mg/L</u>	<u>C2. 7.3 mg/L</u>
	Stations 1/11-1/13	6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.6 mg/L	or 130% of upstream control
	Stations G1-G4, M1-M5	5	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 0.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 0.0 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	h (m)		ature (°C)		рН		ity ppt		ration (%)		lved Oxygen			Furbidity(NT			nded Solids	
	Condition	Condition*	Time		,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	26.2 26.3	26.3	8.6 8.7	8.6	32.0 31.6	31.8	101.8 109.3	105.6	6.9 7.4	7.1	6.1	1.7	1.7		4.6 4.7	4.7	
C1	Cloudy	Moderate	14:49	Middle	9.0	25.5 25.7	25.6	8.5 8.5	8.5	34.0 33.5	33.8	73.3 75.7	74.5	5.0 5.1	5.0		1.4	1.4	1.6	4.6 4.5	4.6	4.9
				Bottom	17.1	25.0 24.7	24.8	8.5 8.5	8.5	35.3 35.8	35.6	65.7 65.2	65.5	4.4 4.4	4.4	4.4	1.9 1.8	1.8		5.5 5.6	5.6	
				Surface	1.1	26.7 26.7	26.7	8.7 8.6	8.7	30.9 30.9	30.9	109.8 107.6	108.7	7.4 7.3	7.3	5.9	1.8 1.7	1.7		5.9 5.9	5.9	
C2	Cloudy	Moderate	14:55	Middle	16.0	25.1 24.9	25.0	8.5 8.4	8.5	35.1 35.5	35.3	69.1 65.8	67.5	4.7 4.5	4.6		1.2 1.3	1.2	1.7	4.6 4.6	4.6	6.6
				Bottom	31.0	24.8 24.8	24.8	8.5 8.4	8.4	35.6 35.6	35.6	65.9 64.8	65.4	4.5 4.4	4.4	4.4	2.0 1.9	2.0		9.1 9.2	9.2	
				Surface	1.0	26.2 25.5	25.8	8.6 8.5	8.5	32.1 34.1	33.1	88.4 74.7	81.6	6.0 5.0	5.5	5.0	2.7 2.6	2.6		5.4 5.4	5.4	
G1	Cloudy	Moderate	14:27	Middle	4.1	25.7 25.6	25.7	8.5 8.5	8.5	33.7 33.9	33.8	67.2 66.7	67.0	4.5 4.5	4.5		2.2 2.0	2.1	2.2	5.5 5.7	5.6	5.1
				Bottom	7.0	25.2 25.2	25.2	8.5 8.5	8.5	35.2 35.1	35.1	64.3 64.2	64.3	4.3 4.3	4.3	4.3	1.8 1.7	1.8		4.3 4.4	4.4	
				Surface	1.1	26.1 26.3	26.2	8.5 8.6	8.5	32.3 31.9	32.1	84.7 88.4	86.6	5.7 6.0	5.8	5.2	2.0 2.1	2.0		6.2 6.4	6.3	
G2	Cloudy	Moderate	14:16	Middle	5.0	25.3 25.3	25.3	8.5 8.5	8.5	34.8 34.8	34.8	68.8 69.3	69.1	4.6 4.7	4.7		2.0 2.0	2.0	2.0	5.4 5.5	5.5	6.0
				Bottom	9.0	24.9 25.0	25.0	8.5 8.5	8.5	35.5 35.4	35.4	65.6 66.1	65.9	4.4 4.5	4.5	4.5	1.9 2.0	2.0		6.2 6.3	6.3	
				Surface	1.1	26.1 25.7	25.9	8.5 8.5	8.5	33.0 33.5	33.2	79.4 70.5	75.0	5.3 4.8	5.1	4.8	2.1 2.1	2.1		7.0 7.2	7.1	
G3	Cloudy	Moderate	14:30	Middle	4.1	25.6 25.6	25.6	8.5 8.5	8.5	33.8 33.8	33.8	68.7 67.1	67.9	4.6 4.5	4.6		2.1 2.0	2.0	2.2	5.9 6.1	6.0	5.9
				Bottom	7.1	25.3 25.4	25.3	8.5 8.5	8.5	35.0 34.5	34.7	61.9 65.2	63.6	4.2 4.4	4.3	4.3	2.2 1.9	2.1		4.4 4.5	4.5	
				Surface	1.0	25.9 26.2	26.1	8.5 8.5	8.5	33.2 32.5	32.9	82.3 85.8	84.1	5.5 5.8	5.7	5.1	3.0 3.1	3.1		5.6 5.6	5.6	
G4	Cloudy	Moderate	14:36	Middle	4.0	25.2 25.5	25.4	8.5 8.5	8.5	35.0 34.3	34.7	64.5 69.2	66.9	4.4 4.7	4.5		5.6 5.8	5.7	4.1	7.4 7.3	7.4	6.5
				Bottom	7.0	25.0 25.0	25.0	8.4 8.4	8.4	35.4 35.4	35.4	62.5 63.5	63.0	4.2 4.3	4.3	4.3	3.6 3.6	3.6		6.6 6.3	6.5	
				Surface	1.1	25.6 25.8	25.7	8.5 8.5	8.5	34.0 33.5	33.7	68.7 71.1	69.9	4.6 4.8	4.7	4.7	2.1 1.9	2.0		3.6 3.7	3.7	
M1	Cloudy	Moderate	14:23	Middle	3.0	25.5 25.9	25.7	8.5 8.5	8.5	34.3 33.4	33.8	65.8 71.1	68.5	4.4 4.8	4.6		1.5 1.6	1.5	1.9	5.5 5.3	5.4	5.0
				Bottom	5.0	25.4 25.6	25.5	8.5 8.5	8.5	34.7 34.2	34.4	63.2 65.4	64.3	4.3 4.4	4.3	4.3	2.0 2.1	2.1		5.8 6.1	6.0	
				Surface	1.1	26.2 26.0	26.1	8.6 8.5	8.6	32.1 32.8	32.4	89.9 80.1	85.0	6.1 5.4	5.7	5.2	2.1 1.9	2.0		4.1 4.2	4.2	
M2	Cloudy	Moderate	14:13	Middle	6.0	25.1 25.3	25.2	8.5 8.5	8.5	35.2 34.9	35.0	69.5 67.9	68.7	4.7 4.6	4.6		1.1	1.1	1.7	5.2 5.3	5.3	5.7
				Bottom	10.9	24.9 24.9	24.9	8.5 8.5	8.5	35.6 35.6	35.6	65.4 64.8	65.1	4.4 4.4	4.4	4.4	2.1	2.0		7.7 7.8	7.8	
				Surface	1.1	25.9 25.9	25.9	8.5 8.5	8.5	33.1 32.8	33.0	79.6 77.1	78.4	5.4 5.2	5.3	4.9	1.9 2.0	2.0		3.7 3.7	3.7	
M3	Cloudy	Moderate	14:32	Middle	4.0	25.6 25.4	25.5	8.5 8.5	8.5	34.0 34.6	34.3	67.0 64.9	66.0	4.5 4.4	4.4		2.4 2.4	2.4	2.6	3.4 3.6	3.5	4.0
				Bottom	7.0	25.2 25.1	25.2	8.4 8.4	8.4	35.1 35.4	35.2	59.9 58.9	59.4	4.0	4.0	4.0	3.3 3.3	3.3		4.9 4.9	4.9	
				Surface	1.0	26.9 26.9	26.9	8.8 8.8	8.8	30.2 30.3	30.2	115.9 114.1	115.0	7.8 7.7	7.7	6.9	2.1 2.1	2.1		5.0 5.0	5.0	
M4	Cloudy	Moderate	14:08	Middle	5.0	26.0 26.2	26.1	8.8 8.6	8.7	32.8 32.1	32.5	89.4 88.9	89.2	6.0 6.0	6.0		0.9	0.8	1.9	4.2 4.4	4.3	5.0
				Bottom	9.0	25.4 25.4	25.4	8.7 8.7	8.7	34.3 34.3	34.3	71.9 72.1	72.0	4.9 4.9	4.9	4.9	2.6 2.6	2.6		5.6 5.7	5.7	
				Surface	1.1	26.4 26.4	26.4	8.6 8.6	8.6	31.5 31.5	31.5	105.5 105.8	105.7	7.1 7.1	7.1	6.0	1.9 1.9	1.9		4.8 4.8	4.8	
M5	Cloudy	Moderate	14:44	Middle	6.0	25.0 25.2	25.1	8.5 8.5	8.5	35.1 34.7	34.9	69.8 72.8	71.3	4.7 4.9	4.8		1.6 1.5	1.5	1.6	5.0 4.9	5.0	4.6
				Bottom	11.1	24.8 25.0	24.9	8.5 8.5	8.5	35.6 35.2	35.4	65.5 66.8	66.2	4.4 4.5	4.5	4.5	1.3 1.3	1.3		4.0 4.1	4.1	
				Surface	,	-	-	-	-	-	-	-	-	-	-	5.3	-	-		-	,	
M6	Cloudy	Moderate	14:40	Middle	2.1	25.9 25.9	25.9	8.5 8.5	8.5	33.3 33.1	33.2	78.8 78.8	78.8	5.3 5.3	5.3		1.3 1.3	1.3	1.3	8.8 9.2	9.0	9.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 12 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.2 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.4 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	same day	or 130% of upstream control station's SS at the same tide of the same day
	Stations M1-M5	<u>C1: 5.6 mg/L</u>	<u>C1: 6.0 mg/L</u>
	Stations WII-WIS	(2/I	7.4/I
SS in mg/L (See Note 2 and 4)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 5.6 mg/L	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 6.0 mg/L
	Stations G1-G4, M1-M5	5	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 6.7 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.2 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 June 2019

(Mid-Ebb Tide)

Leadles	Weather	Sea	Sampling	Б.	uh. ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition*	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	27.1 27.0	27.1	8.8 8.7	8.7	31.4 31.5	31.5	111.5 102.5	107.0	7.4 6.9	7.1		2.3 2.1	2.2		8.0 8.1	8.1	
C1	Fine	Calm	11:01	Middle	9.1	25.8 25.3	25.5	8.6 8.6	8.6	34.0 35.1	34.5	75.1 68.4	71.8	5.1 4.6	4.8	6.0	1.3	1.3	2.0	3.7 3.7	3.7	5.9
				Bottom	17.1	25.3 25.1	25.2	8.6 8.6	8.6	35.1 35.6	35.3	71.4	69.8	4.8	4.7	4.7	2.3	2.3		5.8	5.9	
				Surface	1.1	25.1	27.2	9.0	8.9	35.6	30.8	107.0	110.0	4.6 7.2	7.4		1.6	1.8		10.3	10.5	
C2	Fine	Calm	10:04	Middle		27.3 25.1		8.8 8.7		30.7 35.1	34.9	112.9 65.4	65.4	7.5 4.4	4.4	5.9	2.0 4.3	1	4.0	10.6 5.1		7.1
02	rille	Callii	10.04		16.1	25.2 25.1	25.2	8.5 8.6	8.6 8.6	34.7 35.2		65.4 64.3		4.4 4.4		4.0	4.4 5.7	4.4	4.0	5.4 5.6	5.3	7.1
				Bottom	31.2	25.1 27.4	25.1	8.6 8.8		35.2 30.8	35.2	64.1 114.6	64.2	4.3 7.6	4.3	4.3	6.0 2.8	5.9		5.6 9.9	5.6	
				Surface	1.0	27.5	27.4	8.8	8.8	30.6	30.7	111.7	113.2	7.4	7.5	6.3	2.8	2.8		10.2	10.1	
G1	Fine	Calm	10:30	Middle	4.0	25.7 25.5	25.6	8.7 8.6	8.7	33.3 34.1	33.7	79.1 69.5	74.3	5.4 4.7	5.0		3.7 4.2	3.9	3.8	12.1 12.6	12.4	9.1
				Bottom	7.1	25.5 25.3	25.4	8.7 8.7	8.7	34.1 34.5	34.3	67.1 65.3	66.2	4.5 4.4	4.5	4.5	4.6 5.1	4.8		4.7 4.8	4.8	
				Surface	1.0	27.4 27.3	27.4	8.8 8.8	8.8	30.8 31.5	31.2	120.4 106.6	113.5	8.0 7.1	7.6	6.4	3.2 3.1	3.2		2.0 2.0	2.0	
G2	Fine	Calm	10:19	Middle	5.1	25.8 25.5	25.6	8.6 8.6	8.6	32.7 34.0	33.4	85.2 71.4	78.3	5.8 4.8	5.3	0.4	2.3	2.5	2.8	3.0 2.9	3.0	3.0
				Bottom	9.1	25.6 25.3	25.4	8.6 8.6	8.6	34.0 34.7	34.4	70.1 67.7	68.9	4.7 4.6	4.7	4.7	2.6 2.6	2.6		3.8 4.0	3.9	
				Surface	1.0	27.9	27.9	8.8	8.8	30.0	29.6	122.5	121.0	8.1	8.0		4.5	4.5		7.4	7.3	
G3	Fine	Calm	10:35	Middle	4.0	27.9 25.9	26.0	8.8 8.7	8.7	29.2 32.3	32.2	119.4 83.3	82.0	8.0 5.6	5.5	6.8	4.5 3.7	3.7	3.9	7.1 11.2	11.1	8.1
				Bottom	7.1	26.2 25.8	25.6	8.7 8.7	8.6	32.1 33.3	33.8	80.6 66.4	64.5	5.4 4.5	4.4	4.4	3.6	3.4		11.0 6.1	6.1	
				Surface	1.1	25.4 27.5	27.6	8.6 8.8	8.8	34.3 30.8	30.8	62.5 121.3	122.0	4.2 8.1	8.1		3.3 2.4	2.3		6.0 6.7	6.8	
G4	Et .	0-1	40:44			27.7 25.7		8.8 8.6		30.9 33.1		122.7 75.7		8.1 5.1		6.5	2.3 1.6		2.2	6.9 6.7		8.0
G4	Fine	Calm	10:44	Middle	4.1	25.7 25.5	25.7	8.6 8.6	8.6	33.6 34.1	33.3	68.1 64.1	71.9	4.6 4.3	4.9		1.7 2.6	1.6	2.2	6.8	6.8	0.0
				Bottom	7.2	25.4 27.7	25.5	8.6	8.6	34.3	34.2	63.5	63.8	4.3	4.3	4.3	2.7	2.7		10.6	10.4	
				Surface	1.0	26.8	27.2	8.9 8.8	8.9	31.7	31.1	119.2 101.8	110.5	7.9 6.8	7.4	6.5	2.1	2.1		6.4	6.6	
M1	Fine	Calm	10:25	Middle	3.1	27.0 26.0	26.5	8.7 8.7	8.7	31.4 32.9	32.2	88.5 77.1	82.8	5.9 5.2	5.6		2.2 2.1	2.2	2.2	7.8 7.6	7.7	8.5
				Bottom	5.1	26.1 25.7	25.9	8.7 8.7	8.7	32.9 33.6	33.2	75.5 69.3	72.4	5.1 4.7	4.9	4.9	2.2 2.3	2.2		11.3 11.1	11.2	
				Surface	1.1	27.6 26.7	27.1	9.0 8.8	8.9	30.6 31.6	31.1	110.2 110.2	110.2	7.4 7.4	7.4	6.5	2.2 2.1	2.1		7.8 7.8	7.8	
M2	Fine	Calm	10:14	Middle	6.0	25.8 25.8	25.8	8.8 8.6	8.7	33.1 33.4	33.2	87.7 78.1	82.9	5.9 5.3	5.6	0.5	2.7 3.0	2.8	2.6	6.9 7.0	7.0	7.4
				Bottom	11.1	25.5 25.2	25.3	8.7 8.6	8.7	34.1 34.9	34.5	71.2 66.7	69.0	4.8 4.5	4.7	4.7	2.9	2.9		7.4 7.4	7.4	
				Surface	1.1	27.2	27.0	8.8	8.7	29.7	29.9	103.9	99.6	7.0	6.7		3.6	3.6		8.1	8.1	
МЗ	Fine	Calm	10:39	Middle	4.0	26.8 27.0	26.5	8.7 8.8	8.7	30.1 30.4	31.6	95.2 94.3	85.5	6.4	5.8	6.2	3.6	3.8	3.7	8.0	7.9	9.1
				Bottom	7.1	25.9 25.8	25.6	8.6	8.6	32.8 33.4	33.7	76.7 69.8	66.2	5.2 4.7	4.5	4.5	3.9	3.7		7.8	11.4	
				Surface	1.1	25.5 27.6	27.5	8.6 8.9	8.9	33.9 30.5	30.6	62.6 129.7	129.0	4.2 8.6	8.6		3.6 2.6	2.7		7.1	7.1	
M4	Fine	Calm	10:10	Middle	5.0	27.4 27.2		8.9 8.9		30.6 30.9		128.3 101.0		8.6 6.8		7.7	2.8		2.2	7.1 6.2		6.7
IVI **	Fille	Callii	10.10			26.6 26.4	26.9	8.8	8.9	31.9 32.3	31.4	101.0 98.1	101.0	6.8 6.6	6.8	6.5	2.0 1.7	2.1	2.2	6.1 6.9	6.2	0.7
				Bottom	9.1	26.3 27.1	26.4	8.8	8.8	32.4 31.2	32.3	96.4 114.5	97.3	6.5 7.7	6.5	6.5	1.8	1.8		6.8	6.9	
				Surface	1.0	27.1	27.1	8.7	8.7	31.5	31.3	105.5	110.0	7.0	7.3	6.1	1.3	1.3		7.0	7.1	
M5	Fine	Calm	10:57	Middle	5.6	25.4 25.2	25.3	8.6 8.6	8.6	33.9 34.7	34.3	75.7 65.7	70.7	5.1 4.4	4.8		2.4 2.1	2.3	2.3	5.2 5.1	5.2	5.3
				Bottom	10.0	25.2 25.1	25.2	8.6 8.6	8.6	34.8 35.1	34.9	67.1 66.0	66.6	4.5 4.5	4.5	4.5	3.4 3.4	3.4		3.8 3.7	3.8	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Fine	Calm	10:51	Middle	2.3	27.9 27.7	27.8	8.8 8.8	8.8	30.7 30.8	30.7	118.0 108.9	113.5	7.8 7.2	7.5	7.5	1.4 1.3	1.4	1.4	4.2 4.3	4.3	4.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	
	1	ı			1	-			1		1		1		ı	1		1	1			

emarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 14 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 7.0 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 7.6 NTU
	Station M6	<u> </u>	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 12.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 13.6 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 12.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 13.6 mg/L
	Stations G1-G4, M1-M5		<u>027 1010 mg/2</u>
	Sinvavas OI OII IIIIII	6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 6.7 mg/L	or 130% of upstream control
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value	Average	Value	Average	Value 31.4	Average	Value 111.6	Average	Value	Average	DA*	Value 2.3	Average	DA*	Value 4.6	Average	DA*
				Surface	1.1	27.1 27.0	27.1	8.8 8.7	8.7	31.5	31.5	103.9	107.8	7.4 6.9	7.2	6.0	2.3	2.3		4.8	4.7	
C1	Fine	Calm	16:30	Middle	9.1	25.6 25.4	25.5	8.6 8.6	8.6	34.4 35.0	34.7	74.2 69.4	71.8	5.0 4.7	4.8		2.1 2.1	2.1	3.1	3.8 3.8	3.8	4.6
				Bottom	17.3	25.2 25.1	25.1	8.6 8.6	8.6	35.3 35.6	35.4	70.4 67.4	68.9	4.8 4.5	4.6	4.6	4.9 4.7	4.8		5.5 5.3	5.4	
				Surface	1.1	27.1 27.3	27.2	9.0 8.8	8.9	30.9 30.7	30.8	107.4 114.0	110.7	7.2 7.6	7.4	5.9	2.0 2.0	2.0		6.9 6.7	6.8	
C2	Fine	Calm	15:32	Middle	16.1	25.1 25.3	25.2	8.6 8.6	8.6	35.1 34.6	34.8	65.2 66.1	65.7	4.4 4.5	4.4		2.3 2.1	2.2	3.4	3.5 3.4	3.5	4.6
				Bottom	31.1	25.1 25.1	25.1	8.6 8.6	8.6	35.2 35.2	35.2	64.3 64.1	64.2	4.4 4.3	4.3	4.3	5.8 5.9	5.9		3.4 3.5	3.5	
				Surface	1.1	27.4 27.5	27.4	8.8 8.8	8.8	30.8 30.6	30.7	114.6 115.3	115.0	7.6 7.7	7.7	6.3	2.8 2.7	2.7		2.6 2.7	2.7	
G1	Fine	Calm	15:58	Middle	4.1	25.7 25.6	25.6	8.7 8.6	8.7	33.7 33.8	33.8	77.0 70.6	73.8	5.2 4.8	5.0		3.7 3.7	3.7	3.8	3.8 3.7	3.8	3.9
				Bottom	7.0	25.4 25.3	25.4	8.7 8.6	8.7	34.3 34.5	34.4	66.1 64.4	65.3	4.5 4.4	4.4	4.4	4.6 5.1	4.8		5.2 5.3	5.3	
				Surface	1.0	27.4 27.4	27.4	8.8 8.8	8.8	30.8 31.1	31.0	120.0 110.9	115.5	8.0 7.4	7.7	6.4	3.3 3.0	3.1		8.4 8.4	8.4	
G2	Fine	Calm	15:47	Middle	5.1	25.8 25.6	25.7	8.6 8.6	8.6	33.4 33.9	33.7	78.8 71.1	75.0	5.3 4.8	5.1	• • •	1.7 1.9	1.8	2.6	5.4 5.2	5.3	7.1
				Bottom	9.0	25.3 25.2	25.3	8.6 8.6	8.6	34.6 34.8	34.7	69.1 67.0	68.1	4.7 4.5	4.6	4.6	2.7 2.7	2.7		7.4 7.5	7.5	
				Surface	1.2	27.8 27.9	27.9	8.8 8.8	8.8	30.2 29.3	29.7	121.4 121.0	121.2	8.1 8.1	8.1	6.8	3.7 3.4	3.6		4.3 4.3	4.3	
G3	Fine	Calm	16:03	Middle	4.0	26.1 26.2	26.1	8.7 8.7	8.7	32.5 32.0	32.2	85.6 80.4	83.0	5.8 5.4	5.6	0.0	3.3 2.9	3.1	3.6	8.4 8.6	8.5	6.2
				Bottom	7.1	25.6 25.3	25.4	8.6 8.6	8.6	33.9 34.4	34.2	64.3 61.1	62.7	4.3 4.1	4.2	4.2	4.0 4.2	4.1		5.7 5.7	5.7	
				Surface	1.1	27.5 27.7	27.6	8.8 8.8	8.8	30.7 30.7	30.7	121.5 124.4	123.0	8.1 8.3	8.2	6.4	2.0 2.1	2.0		9.4 9.1	9.3	
G4	Fine	Calm	16:13	Middle	4.1	25.7 25.7	25.7	8.6 8.6	8.6	33.5 33.6	33.5	72.1 68.0	70.1	4.9 4.6	4.7	0.4	3.4 3.0	3.2	3.5	6.5 6.4	6.5	7.3
				Bottom	7.1	25.4 25.4	25.4	8.6 8.6	8.6	34.4 34.3	34.4	63.4 63.0	63.2	4.3 4.3	4.3	4.3	5.4 5.3	5.4		6.0 6.1	6.1	
				Surface	1.1	27.7 27.2	27.4	8.9 8.8	8.9	30.5 31.1	30.8	120.0 109.8	114.9	8.0 7.3	7.7	6.5	2.6 2.7	2.7		4.4 4.7	4.6	
M1	Fine	Calm	15:54	Middle	3.0	26.5 26.2	26.3	8.7 8.7	8.7	32.2 32.6	32.4	82.6 78.5	80.6	5.5 5.3	5.4	0.5	2.2 2.3	2.3	2.5	6.6 6.5	6.6	5.7
				Bottom	5.1	25.8 25.7	25.8	8.7 8.7	8.7	33.3 33.6	33.5	74.1 68.5	71.3	5.0 4.6	4.8	4.8	2.5 2.4	2.4		5.9 5.9	5.9	
				Surface	1.0	27.5 26.5	27.0	9.0 8.7	8.9	30.7 31.8	31.2	99.4 99.4	99.4	6.7 6.7	6.7	6.1	2.4 2.6	2.5		4.6 4.7	4.7	
M2	Fine	Calm	15:43	Middle	6.1	25.8 25.8	25.8	8.8 8.6	8.7	33.2 33.4	33.3	83.4 78.8	81.1	5.6 5.3	5.5	0.1	1.9 1.9	1.9	2.6	2.8 2.8	2.8	4.7
				Bottom	11.0	25.2 25.2	25.2	8.7 8.6	8.6	34.8 35.0	34.9	67.8 65.9	66.9	4.6 4.5	4.5	4.5	3.5 3.3	3.4		6.7 6.7	6.7	
				Surface	1.1	27.3 26.9	27.1	8.8 8.7	8.8	29.6 30.1	29.9	104.5 94.9	99.7	7.0 6.4	6.7	6.1	3.5 3.6	3.5		2.4 2.4	2.4	
МЗ	Fine	Calm	16:07	Middle	4.1	26.8 26.2	26.5	8.8 8.6	8.7	31.1 32.3	31.7	86.4 77.7	82.1	5.8 5.2	5.5	0.1	3.6 3.9	3.7	3.6	4.4 4.4	4.4	4.3
				Bottom	7.1	25.6 25.5	25.6	8.6 8.6	8.6	33.8 33.9	33.9	65.6 63.2	64.4	4.4 4.3	4.4	4.4	3.8 3.6	3.7		6.1 6.2	6.2	
				Surface	1.0	27.7 27.6	27.6	8.9 8.9	8.9	30.4 30.5	30.4	131.1 129.4	130.3	8.7 8.6	8.7	7.6	2.8 2.8	2.8		4.8 4.8	4.8	
M4	Fine	Calm	15:38	Middle	5.1	27.3 26.5	26.9	8.9 8.8	8.9	30.8 32.2	31.5	97.0 97.0	97.0	6.5 6.5	6.5	1.0	1.6 1.6	1.6	2.1	3.8 3.9	3.9	5.0
				Bottom	9.2	26.3 26.3	26.3	8.8 8.8	8.8	32.4 32.5	32.4	98.5 91.5	95.0	6.6 6.2	6.4	6.4	1.8 1.8	1.8		6.4 6.4	6.4	
				Surface	1.1	27.1 27.1	27.1	8.8 8.7	8.7	31.2 31.2	31.2	114.7 106.9	110.8	7.7 7.1	7.4	6.1	1.3 1.5	1.4		5.5 5.7	5.6	
M5	Fine	Calm	16:25	Middle	6.2	25.4 25.3	25.3	8.6 8.6	8.6	34.3 34.6	34.5	74.0 66.6	70.3	5.0 4.5	4.8	0.1	1.5 1.8	1.6	1.8	8.0 8.1	8.1	5.9
				Bottom	11.0	25.2 25.1	25.1	8.6 8.6	8.6	34.9 35.2	35.1	66.4 65.1	65.8	4.5 4.4	4.4	4.4	2.4 2.6	2.5		4.1 4.1	4.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
M6	Fine	Calm	16:19	Middle	2.3	27.8 27.5	27.7	8.8 8.8	8.8	30.7 31.0	30.8	117.4 103.4	110.4	7.8 6.9	7.3	1.3	1.7 1.5	1.6	1.6	7.6 7.5	7.6	7.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 14 June 2019 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 5.8 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 6.3 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	same day
		<u>C1: 5.6 mg/L</u>	<u>C1: 6.1 mg/L</u>
	Stations M1-M5	Т	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
SS in mg/L (See Note 2 and 4)	Surface	same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C1: 5.6 mg/L</u>	<u>C1: 6.1 mg/L</u>
	Stations G1-G4, M1-M5		_
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 6.5 mg/L	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 7.0 mg/L
	Station M6	1	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	Борі	····/	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value 1.7	Average	DA*	Value	Average	DA*
				Surface	1.0	29.7 29.8	29.7	8.9 8.9	8.9	32.4 32.3	32.4	105.6 105.4	105.5	7.1 7.0	7.0	6.8	1.9	1.8		6.3 6.5	6.4	
C1	Cloudy	Moderate	12:47	Middle	8.9	29.5 29.5	29.5	8.9 8.8	8.8	32.4 32.5	32.4	99.2 100.4	99.8	6.5 6.6	6.6		1.7 2.1	1.9	1.9	6.6 6.5	6.6	5.6
				Bottom	17.0	29.5 29.4	29.4	8.8 8.8	8.8	32.5 32.4	32.5	99.0 94.8	96.9	6.5 6.2	6.4	6.4	1.9 2.3	2.1		3.7 3.8	3.8	
				Surface	1.0	29.7 29.8	29.7	8.9 8.8	8.9	32.4 32.3	32.4	106.2 106.0	106.1	7.0 7.0	7.0	6.8	2.0 2.1	2.0		2.9 2.9	2.9	
C2	Cloudy	Moderate	11:52	Middle	15.9	29.5 29.5	29.5	8.8 8.8	8.8	32.4 32.4	32.4	98.0 99.2	98.6	6.5 6.6	6.5		2.0 2.2	2.1	2.2	4.2 4.3	4.3	3.7
				Bottom	31.0	29.5 29.4	29.4	8.8 8.8	8.8	32.5 32.4	32.5	97.8 93.6	95.7	6.5 6.2	6.3	6.3	2.2 2.6	2.4		4.0 4.0	4.0	
				Surface	1.1	29.5 29.5	29.5	8.9 8.9	8.9	31.7 31.7	31.7	104.8 105.0	104.9	7.0 7.0	7.0	6.9	2.5 2.6	2.6		12.7 12.2	12.5	
G1	Cloudy	Moderate	12:20	Middle	4.0	29.6 29.6	29.6	8.9 8.9	8.9	32.0 32.2	32.1	104.3 103.5	103.9	6.9 6.9	6.9		1.9 1.6	1.8	2.5	5.3 5.2	5.3	7.9
				Bottom	7.0	29.5 29.4	29.5	8.9 8.9	8.9	32.5 32.5	32.5	95.2 95.0	95.1	6.3 6.3	6.3	6.3	3.1 3.4	3.2		5.9 6.1	6.0	
				Surface	1.0	29.5 29.6	29.5	8.8 8.8	8.8	32.1 32.1	32.1	105.0 105.2	105.1	7.0 7.0	7.0	6.8	2.5 2.5	2.5		2.8 2.8	2.8	
G2	Cloudy	Moderate	12:08	Middle	5.0	29.5 29.5	29.5	8.8 8.8	8.8	32.4 32.4	32.4	101.2 101.1	101.2	6.7 6.7	6.7		0.3 0.3	0.3	1.7	3.1 3.1	3.1	3.0
				Bottom	9.1	29.5 29.4	29.4	8.8 8.8	8.8	32.5 32.6	32.6	94.4 94.3	94.4	6.2 6.2	6.2	6.2	2.1 2.6	2.4		3.1 3.1	3.1	
				Surface	1.0	29.3 29.4	29.4	8.9 8.9	8.9	28.8 31.9	30.4	101.9 102.7	102.3	6.9 6.8	6.9	6.7	2.2 1.9	2.0		2.7 2.7	2.7	
G3	Cloudy	Moderate	12:24	Middle	3.9	29.5 29.4	29.5	8.9 8.9	8.9	32.3 32.3	32.3	97.7 97.5	97.6	6.5 6.5	6.5	0.7	1.4 1.6	1.5	1.8	8.5 8.8	8.7	5.1
				Bottom	7.0	29.4 29.4	29.4	8.8 8.8	8.8	32.5 32.5	32.5	90.8 90.5	90.7	6.0 6.0	6.0	6.0	1.8 1.7	1.7		4.1 4.0	4.1	
				Surface	1.0	29.5 29.5	29.5	8.8 8.8	8.8	32.2 32.2	32.2	105.7 105.8	105.8	7.0 7.0	7.0	7.0	3.3 3.3	3.3		5.1 5.3	5.2	
G4	Cloudy	Moderate	12:34	Middle	4.0	29.6 29.6	29.6	8.8 8.8	8.8	32.2 32.3	32.3	105.6 104.7	105.2	7.0 6.9	7.0	1.0	2.9 2.4	2.6	2.8	4.6 4.6	4.6	4.5
				Bottom	7.0	29.5 29.5	29.5	8.8 8.8	8.8	32.5 32.5	32.5	96.1 95.4	95.8	6.4 6.3	6.3	6.3	2.3 2.6	2.5		3.7 3.6	3.7	
				Surface	1.0	29.5 29.4	29.4	8.9 9.1	9.0	31.7 31.8	31.7	92.7 91.8	92.3	6.2 6.1	6.1	6.1	2.5 2.7	2.6		2.6 2.6	2.6	
M1	Cloudy	Moderate	12:16	Middle	3.0	29.5 29.5	29.5	9.1 9.1	9.1	31.8 31.9	31.9	91.5 91.6	91.6	6.1 6.1	6.1	0.1	2.8 2.8	2.8	2.9	3.7 3.8	3.8	4.1
				Bottom	5.0	29.4 29.4	29.4	9.1 9.1	9.1	32.4 32.4	32.4	88.5 88.7	88.6	5.9 5.9	5.9	5.9	2.9 3.4	3.1		5.9 5.9	5.9	
				Surface	1.1	29.7 29.7	29.7	8.8 8.8	8.8	32.3 32.3	32.3	107.2 107.2	107.2	7.1 7.1	7.1	6.9	2.1 2.1	2.1		6.7 6.4	6.6	
M2	Cloudy	Moderate	12:03	Middle	6.0	29.6 29.6	29.6	8.8 8.8	8.8	32.4 32.4	32.4	102.5 102.3	102.4	6.8 6.8	6.8	0.5	1.5 1.6	1.5	1.9	6.6 6.4	6.5	6.8
				Bottom	10.6	29.5 29.4	29.5	8.8 8.8	8.8	32.5 32.6	32.5	93.4 91.7	92.6	6.2 6.1	6.1	6.1	2.0 2.3	2.1		7.3 7.4	7.4	
				Surface	1.0	29.5 29.5	29.5	8.8 8.8	8.8	32.2 32.2	32.2	100.4 100.2	100.3	6.7 6.6	6.6	6.6	1.5 1.5	1.5		6.4 6.6	6.5	
М3	Cloudy	Moderate	12:30	Middle	4.1	29.5 29.5	29.5	8.8 8.8	8.8	32.3 32.3	32.3	100.1 100.1	100.1	6.6 6.6	6.6	0.0	1.7 1.8	1.7	1.7	4.4 4.4	4.4	5.6
				Bottom	7.0	29.4 29.4	29.4	8.8 8.8	8.8	32.4 32.4	32.4	94.6 94.3	94.5	6.3 6.3	6.3	6.3	1.8 1.7	1.8		5.8 5.9	5.9	
				Surface	0.9	29.7 29.7	29.7	8.8 8.8	8.8	32.3 32.3	32.3	106.1 106.2	106.2	7.0 7.0	7.0	7.0	2.3 2.4	2.3		6.9 6.9	6.9	
M4	Cloudy	Moderate	11:57	Middle	5.0	29.7 29.7	29.7	8.8 8.8	8.8	32.3 32.3	32.3	106.2 106.3	106.3	7.0 7.0	7.0		2.5 2.5	2.5	2.2	2.8 2.8	2.8	4.3
				Bottom	8.9	29.7 29.7	29.7	8.8 8.8	8.8	32.4 32.4	32.4	103.5 103.4	103.5	6.8 6.8	6.8	6.8	1.6 1.9	1.7		3.1 3.1	3.1	
				Surface	1.0	29.4 29.4	29.4	8.8 8.8	8.8	32.6 32.6	32.6	99.2 98.1	98.7	6.6 6.5	6.5	6.4	3.6 3.6	3.6		8.8 8.9	8.9	
M5	Cloudy	Moderate	12:42	Middle	6.0	29.3 29.3	29.3	8.8 8.8	8.8	32.7 32.7	32.7	95.3 95.1	95.2	6.3 6.3	6.3	0.4	2.8 3.0	2.9	3.6	4.0 3.9	4.0	5.4
				Bottom	11.0	29.3 29.3	29.3	8.8 8.8	8.8	32.7 32.7	32.7	93.2 92.4	92.8	6.2 6.1	6.2	6.2	4.2 4.5	4.4		3.4 3.4	3.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
M6	Cloudy	Moderate	12:37	Middle	2.0	29.6 29.6	29.6	8.8 8.8	8.8	32.4 32.4	32.4	104.0 103.7	103.9	6.9 6.8	6.9	0.5	2.8 2.8	2.8	2.8	2.7 2.7	2.7	2.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 17 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M5	5				
DO : /I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>			
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>			
	Station M6					
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>19.3 NTU</u>	<u>22.2 NTU</u>			
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 2.9 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 3.1 NTU			
	Station M6	<u> </u>				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4					
		6.0 mg/L	6.9 mg/L			
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 3.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 3.8 mg/L			
	Stations M1-M5		<u></u>			
		6.2 mg/L	7.4 mg/L			
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 3.8 mg/L			
	Stations G1-G4, M1-M5	5				
		6.9 mg/L	7.9 mg/L			
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 4.8 mg/L	or 130% of upstream control			
	Station M6					
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>			

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 June 2019

(Mid-Flood Tide)

Coation Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient	Value Average 4.8 4.8 4.8 4.3 4.3 4.4 4.9 7.0 7.0 5.4 5.6 5.5 9.3 9.3 5.1 5.3 6.6 6.5 6.5 6.6 6.8 6.5 5.9 5.9 6.9 6.9 3.5 3.6 5.2 5.3 5.3 5.4 5.7 5.8 4.8 4.8 4.8 4.4 4.3 4.4 4.3 4.4 4.3 10.6	5.4 5.4 6.7 6.3
C1 Cloudy Moderate 19:47 Moderate 19:48 Moderate 19:48 Moderate 19:49 Moderate 19:49 Moderate 19:20 Moderate 19:2	4.8 4.8 4.8 4.4 4.4 6.9 7.0 7.0 7.0 7.0 5.4 5.5 5.6 5.6 5.6 6.6 6.5 6.6 6.5 6.5 6.5	6.7
Surface 19.20 Moderate 1	4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	6.7
C2 Cloudy Moderate 18:52 Surface 1.0 27.4 27.5 8.8 8.8 32.5 32.5 32.6	7.0 7.0 5.4 5.5 5.5 5.6 9.3 9.3 9.3 5.1 5.4 5.3 6.6 6.5 6.6 6.5 6.6 6.5 5.8 5.9 5.9 6.9 6.9 6.9 6.9 6.5 5.3 5.3 5.4 5.4 5.7 5.8 5.8 5.4 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4	6.3
C2	5.6 5.5 5.6 9.3 9.3 9.3 9.3 5.1 5.3 5.4 5.3 5.6 6.5 6.5 6.5 5.8 5.9 5.9 6.9 6.9 3.5 3.6 3.6 5.2 5.3 5.3 5.4 5.4 5.7 5.8 5.8 4.8 4.8 4.8 4.8 4.8 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.3 4.4	6.3
C2 Cloudy Moderate 18:52 Moderate 19:20 Moderate 19	9.3 9.3 9.3 5.1 5.3 5.4 5.5 6.6 6.6 6.5 6.5 6.8 5.9 5.9 6.9 6.9 3.5 3.6 3.6 5.2 5.3 5.3 5.4 5.4 5.7 5.8 4.8 4.8 4.8 4.8 4.4 4.3 4.4 4.3	6.3
G1 Cloudy Moderate 19:20 Middle	5.4 5.3 6.6 6.6 6.5 6.3 6.5 6.8 5.9 5.9 6.9 6.9 6.9 3.5 3.6 3.6 5.2 5.3 5.3 5.3 5.4 5.4 5.7 5.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4	5.2
G1 Cloudy Moderate 19:20 Middle	6.5 6.6 6.5 6.6 6.6 5.8 5.9 5.9 6.9 6.9 6.9 3.6 5.2 5.3 5.3 5.3 5.4 5.4 5.4 4.8 4.8 4.8 4.8 4.8 4.8 4.8	5.2
G1 Cloudy Moderate 19:20 Middle 4.0 27.4 27.4 8.9 8.9 8.9 32.2 32.2 103.2 103.1 6.8 6.8 6.8 1.3 1.4 2.9 Bottom 7.1 27.2 27.2 27.2 8.9 8.9 32.6 32.6 94.5 94.4 6.3 6.2 6.2 6.2 4.5 4.5 4.4 27.4 8.8 8.8 32.0 32.0 105.5 7.0 7.0 7.0 6.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	6.6 6.5 5.8 5.9 5.9 6.9 6.9 6.9 3.5 3.6 3.6 5.2 5.3 5.3 5.4 5.4 5.7 5.8 5.8 4.8 4.8 4.4 4.4	5.2
G2 Cloudy Moderate 19:08 Surface 1.0 27.4 27.4 8.8 8.8 32.0 32.0 105.5 105.5 7.0 7.0 7.0 6.8 2.6	5.9 6.9 6.9 6.9 6.9 3.5 3.6 3.6 5.2 5.3 5.4 5.7 5.8 4.8 4.8 4.8 4.4 4.4 4.4 4.4 4.4 4.4 4	
G2 Cloudy Moderate 19:08 Middle 5:0 27.3 27.3 8.8 8.8 8.8 32.4 32.4 101.0 101.0 6.7 6.7 6.7 6.8 2.6 2.0 0.3 0.3 0.3 2.2 101.0 0.0 101.0 6.7 6.7 6.7 6.7 6.8 2.6 2.6 2.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	6.9 6.9 3.6 3.6 3.6 3.6 5.2 5.3 5.3 5.4 5.4 5.7 5.8 4.8 4.8 4.8 4.4 4.4 4.3 4.4	
G2 Cloudy Moderate 19:08 Middle 5.0 27.3 27.3 8.8 8.8 32.4 32.4 101.0 101.0 6.7 6.7 6.7 0.3 0.3 0.3 2.2 8.8 8.8 32.4 32.4 101.0 101.0 6.7 6.7 6.7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	3.6 5.2 5.3 5.3 5.4 5.4 5.7 5.8 4.8 4.8 4.8 4.4 4.4 4.3	
G3 Cloudy Moderate 19:24 Middle 4.0 27.4 27.4 8.8 8.8 8.8 32.6 32.6 32.6 32.6 93.7 93.8 6.2 6.2 6.2 6.2 3.5 3.8 3.7 G4 Cloudy Moderate 19:34 Middle 4.0 27.4 27.4 8.8 8.8 8.8 32.1 105.8 105.9 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	5.3 5.3 5.4 5.4 5.7 5.8 4.8 4.8 4.8 4.4 4.4	5.3
G3 Cloudy Moderate 19:24 Middle 4.0 27.2 27.2 8.9 8.9 8.9 32.4 32.4 97.1 97.2 6.4 6.4 6.4 6.7 1.3 1.4 1.9 1.9 1.9 1.7 Eq. (27.4) Eq.	5.4 5.4 5.7 5.8 5.8 4.8 4.8 4.8 4.4 4.4 4.4	5.3
G3 Cloudy Moderate 19:24 Middle 4.0 27.2 27.2 8.9 8.9 8.9 32.4 32.4 97.2 97.2 6.4 6.4 6.4 1.9 1.9 1.9 1.7 Bottom 7.0 27.1 27.1 8.8 8.8 8.8 32.5 32.5 89.9 90.1 90.0 6.0 6.0 6.0 6.0 17.7 17.7 17. G4 Cloudy Moderate 19:34 Middle 4.0 27.4 27.4 8.8 8.8 8.8 32.1 32.1 105.8 105.9 7.0 7.0 7.0 6.9 3.3 3.4 3.4 103.4 103.8 6.9 6.9 18.9 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	5.8	5.3
G4 Cloudy Moderate 19:34 Surface 1.0 27.4 27.4 8.8 8.8 32.1 32.1 105.9 105.9 17.0 7.0 7.0 6.9 3.3 3.4 3.4 105.9 10	4.8 4.8 4.4 4.4 4.3 4.4	
G4 Cloudy Moderate 19:34 Middle 4.0 27.4 8.8 6.8 32.1 105.9 109.5 7.0 7.0 6.9 3.4 3.4 3.4 103.1 105.9 109.5 7.0 7.0 7.0 6.9 3.4 3.4 3.4 103.1 105.9 109.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	4.3	
G4 Cloudy Moderate 19:34 Middle 4.0 27.4 27.4 8.8 8.8 32.4 103.1 103.8 6.9 6.9 2.2 2.0 3.1 8.8 8.8 32.4 103.1 103.8 6.9 6.9 6.9 2.2 2.0 3.1 103.1 103.8 6.9 6.9 6.9 1.8 2.2 2.0 3.1 103.1 103.8 6.9 6.9 6.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	10.6	l
Surface 0.9 27.2 27.2 9.1 9.1 31.8 91.7 6.1 6.1 2.9 2.9	10.8	7.1
Sulface 0.9 272 27.2 04 9.1 24.9 31.0 04.6 91.7 64 0.1 2.9 2.9	6.3 6.2 6.3	
27.2 9.1 31.8 91.6 6.1 2.9	3.3 3.4	
M1 Cloudy Moderate 19:16 Middle 3.0 27.3 27.3 9.1 9.1 32.2 92.3 92.4 6.1 6.1 6.1 0.1 2.6 2.7 3.6	4.3 4.3	7.3
Bottom 5.0 27.2 27.2 9.1 9.0 32.5 32.5 88.7 5.9 5.9 5.9 5.2 5.2 5.2	14.2 14.0	
Surface 1.0 27.5 27.5 8.8 8.8 32.3 32.3 108.0 107.4 7.1 7.1 6.9 1.7 1.7	8.0 8.0	
M2 Cloudy Moderate 19:03 Middle 5.9 27.4 27.4 8.8 8.8 32.4 32.4 102.3 102.3 6.8 6.7 0.9 2.8 2.6 3.4	6.3 6.3	6.6
Bottom 10.9 27.1 27.1 8.7 8.7 32.7 32.7 89.9 89.7 6.0 5.9 5.9 5.9 6.1 6.0	5.3 5.5	
Surface 1.0 27.3 27.3 8.8 8.8 32.1 32.1 100.3 100.2 6.6 6.6 6.6 1.5 1.5 1.5	5.6 5.5	
M3 Cloudy Moderate 19:30 Middle 4.0 27.3 27.2 8.8 8.8 32.3 32.4 100.6 100.4 6.6 6.6 6.6 1.9 1.9 1.7	7.1 6.8 7.0	7.0
Bottom 7.0 27.2 27.2 8.8 8.8 32.4 32.4 93.9 93.5 6.2 6.2 6.2 1.7 1.7	8.3 8.6	
Surface 1.0 27.5 27.5 8.8 8.8 32.3 32.3 106.5 105.6 7.0 7.0 7.0 1.9 2.1 2.1	4.3 4.3	
M4 Cloudy Moderate 18:57 Middle 5.1 27.5 27.5 8.8 8.8 32.3 32.3 105.2 104.7 7.0 7.0 7.0 2.5 2.4 2.5 2.3	4.0 4.0	3.7
Bottom 9.0 27.5 27.5 8.8 8.8 32.4 32.4 104.7 104.2 6.8 6.8 6.8 6.8 2.4 2.4	2.9 2.9	
Surface 1.0 27.2 27.2 8.8 8.8 32.6 32.7 97.4 97.1 6.4 6.4 6.4 6.3 3.6 3.6 3.6	6.8 6.9	
M5 Cloudy Moderate 19:42 Middle 6.0 27.1 27.1 8.8 8.8 32.7 32.7 94.5 94.6 6.3 6.3 6.3 3.6 3.6 3.9	6.7 7.0 6.9	6.3
Bottom 10.9 27.1 27.1 8.8 8.8 32.7 32.7 92.6 92.7 6.1 6.1 6.1 4.5 4.4	5.1 5.1 5.1	
Surface		
M6 Cloudy Moderate 19:37 Middle 2.0 27.4 27.4 8.8 8.8 32.4 32.4 103.1 103.0 6.8 6.8 2.9 2.9 2.9 2.9	6.7 6.9	6.8
Bottom - :	-	1

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 17 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6	•					
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.5 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.7 NTU				
	Station M6	<u> </u>	<u> </u>				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	•					
		6.0 mg/L	6.9 mg/L				
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 5.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 6.2 mg/L				
	Stations M1-M5						
		6.2 mg/L	7.4 mg/L				
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 5.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 6.2 mg/L				
	Stations G1-G4, M1-M5	5					
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>				
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 8.3 mg/L	or 130% of upstream control				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depti	h (m)		ture (°C)		рН		ity ppt		ration (%)		ved Oxygen			Turbidity(NT			nded Solids	
	Condition	Condition*	Time		,	Value 27.4	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	27.5	27.5	8.8 8.7	8.7	31.9 31.8	31.8	86.3 86.1	86.2	5.7 5.7	5.7	5.7	2.3	2.2		5.0 5.1	5.1	
C1	Sunny	Calm	14:09	Middle	9.0	27.2 27.2	27.2	8.8 8.8	8.8	32.7 32.6	32.7	86.6 86.5	86.6	5.7 5.7	5.7		3.8 3.2	3.5	3.2	7.3 7.3	7.3	6.3
				Bottom	17.1	27.2 27.2	27.2	8.8 8.8	8.8	32.8 32.8	32.8	86.4 86.3	86.4	5.7 5.7	5.7	5.7	3.4 4.0	3.7		6.3 6.5	6.4	
				Surface	1.1	27.6 27.6	27.6	8.9 8.8	8.8	31.6 31.7	31.7	86.7 86.2	86.5	5.7 5.7	5.7	5.7	2.0 2.1	2.0		11.0 10.9	11.0	
C2	Sunny	Calm	13:14	Middle	16.5	27.3 27.2	27.2	8.9 8.8	8.9	32.3 32.5	32.4	84.8 84.9	84.9	5.6 5.6	5.6		2.6 2.8	2.7	2.6	4.5 4.6	4.6	6.5
				Bottom	32.0	27.2 27.2	27.2	8.9 8.8	8.8	32.6 32.6	32.6	85.0 85.3	85.2	5.6 5.6	5.6	5.6	3.1 3.2	3.1		4.1 4.0	4.1	
				Surface	1.0	28.0 27.9	27.9	8.9 8.9	8.9	31.6 31.7	31.6	99.5 97.4	98.5	6.5 6.4	6.5	6.3	1.5 1.5	1.5		4.5 4.5	4.5	
G1	Sunny	Calm	13:39	Middle	4.0	27.5 27.6	27.5	8.9 8.9	8.9	32.3 32.1	32.2	91.6 91.8	91.7	6.0 6.1	6.0		1.6 1.7	1.7	1.6	3.7 3.5	3.6	4.1
				Bottom	7.1	27.4 27.4	27.4	8.9 8.8	8.9	32.4 32.4	32.4	89.6 90.2	89.9	5.9 6.0	5.9	5.9	1.5 1.8	1.7		4.3 4.3	4.3	
				Surface	1.0	27.7 27.7	27.7	8.8 8.8	8.8	32.0 32.0	32.0	97.2 94.9	96.1	6.4 6.3	6.3	6.2	0.6 0.7	0.7		4.0 4.0	4.0	
G2	Sunny	Calm	13:29	Middle	5.0	27.6 27.5	27.5	8.8 8.8	8.8	32.2 32.2	32.2	94.0 92.9	93.5	6.2 6.1	6.2	0.2	1.0 1.1	1.0	0.8	5.1 5.3	5.2	4.3
				Bottom	9.1	27.4 27.4	27.4	8.8 8.8	8.8	32.4 32.4	32.4	91.2 92.0	91.6	6.0 6.1	6.0	6.0	0.7 0.8	0.7		3.6 3.6	3.6	
				Surface	1.1	28.0 27.9	28.0	8.9 8.8	8.8	31.2 31.3	31.3	98.3 98.0	98.2	6.5 6.5	6.5	6.2	2.2 2.1	2.2		4.0 4.0	4.0	
G3	Sunny	Calm	13:42	Middle	4.1	27.6 27.5	27.5	8.8 8.8	8.8	32.1 32.3	32.2	91.4 90.8	91.1	6.0 6.0	6.0	0.2	2.3 2.6	2.4	2.4	5.3 5.2	5.3	4.5
				Bottom	7.0	27.3 27.3	27.3	8.8 8.9	8.8	32.5 32.4	32.5	84.7 85.0	84.9	5.6 5.6	5.6	5.6	2.7 2.4	2.6		4.2 4.3	4.3	
				Surface	1.0	27.9 28.2	28.0	8.8 8.8	8.8	31.4 31.1	31.2	97.5 98.2	97.9	6.4 6.5	6.4	6.1	2.5 2.1	2.3		3.4 3.4	3.4	
G4	Sunny	Calm	13:48	Middle	4.0	27.5 27.5	27.5	8.8 8.8	8.8	32.3 32.3	32.3	83.8 89.4	86.6	5.5 5.9	5.7	0.1	2.0 2.1	2.0	2.4	3.0 2.9	3.0	4.9
				Bottom	7.0	27.3 27.1	27.2	8.8 8.8	8.8	32.5 32.5	32.5	83.4 81.5	82.5	5.5 5.5	5.5	5.5	2.8 2.7	2.7		8.0 8.4	8.2	
				Surface	1.1	28.0 27.9	27.9	8.8 8.8	8.8	31.8 31.8	31.8	91.1 88.7	89.9	6.0 5.8	5.9	5.8	1.4 1.6	1.5		3.1 3.0	3.1	
M1	Sunny	Calm	13:33	Middle	3.1	27.6 27.6	27.6	8.8 8.8	8.8	32.2 32.2	32.2	87.6 87.3	87.5	5.8 5.8	5.8	5.0	1.8 2.0	1.9	1.9	3.4 3.3	3.4	3.3
				Bottom	5.0	27.4 27.5	27.4	8.8 8.8	8.8	32.4 32.3	32.3	85.9 87.0	86.5	5.7 5.7	5.7	5.7	2.6 2.1	2.4		3.6 3.6	3.6	
				Surface	1.0	27.8 27.9	27.9	8.9 8.8	8.8	31.9 31.9	31.9	97.3 96.3	96.8	6.4 6.3	6.4	6.3	1.5 1.8	1.7		2.7 2.6	2.7	
M2	Sunny	Calm	13:25	Middle	5.5	27.5 27.5	27.5	8.9 8.8	8.8	32.4 32.4	32.4	93.7 93.5	93.6	6.2 6.2	6.2	0.5	0.7 0.8	0.8	1.4	4.2 4.1	4.2	3.4
				Bottom	10.0	27.3 27.4	27.3	8.8 8.8	8.8	32.7 32.5	32.6	87.9 89.6	88.8	5.8 5.9	5.9	5.9	1.9 1.9	1.9		3.3 3.3	3.3	
				Surface	1.1	27.9 27.9	27.9	8.8 8.8	8.8	31.5 31.4	31.4	96.7 98.1	97.4	6.4 6.5	6.4	6.0	2.2 2.6	2.4		4.3 4.1	4.2	
М3	Sunny	Calm	13:44	Middle	4.0	27.4 27.5	27.5	8.8 8.8	8.8	32.3 32.2	32.3	89.3 82.6	86.0	5.9 5.5	5.7	0.0	2.0 2.2	2.1	2.4	6.2 6.1	6.2	5.0
				Bottom	7.0	27.3 27.2	27.3	8.8 8.8	8.8	32.6 32.6	32.6	84.5 78.7	81.6	5.6 5.2	5.4	5.4	2.8 2.9	2.9		4.5 4.6	4.6	
				Surface	1.0	28.0 28.0	28.0	8.8 8.9	8.8	32.1 32.1	32.1	98.9 98.3	98.6	6.5 6.4	6.5	6.4	1.9 1.6	1.8		6.7 6.7	6.7	
M4	Sunny	Calm	13:20	Middle	5.0	27.8 27.8	27.8	8.8 8.8	8.8	32.2 32.2	32.2	95.9 96.5	96.2	6.3 6.3	6.3	0.4	1.3 1.1	1.2	1.4	3.2 3.3	3.3	4.7
				Bottom	9.0	27.7 27.7	27.7	8.9 8.9	8.9	32.3 32.2	32.2	95.1 95.7	95.4	6.3 6.3	6.3	6.3	1.4 1.1	1.3		4.0 4.1	4.1	
				Surface	1.0	27.7 27.6	27.6	8.8 8.8	8.8	32.3 32.3	32.3	95.4 93.5	94.5	6.3 6.2	6.2	6.2	2.1 2.0	2.1		4.5 4.4	4.5	
M5	Sunny	Calm	14:03	Middle	6.0	27.5 27.4	27.4	8.8 8.8	8.8	32.4 32.4	32.4	92.8 92.2	92.5	6.1 6.1	6.1	5.2	1.4 1.4	1.4	1.8	4.6 4.5	4.6	4.8
				Bottom	11.0	27.4 27.4	27.4	8.8 8.8	8.8	32.5 32.5	32.5	91.5 91.3	91.4	6.0 6.0	6.0	6.0	2.0 2.1	2.1		5.6 5.4	5.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
M6	Sunny	Calm	13:57	Middle	2.2	27.6 27.6	27.6	8.8 8.8	8.8	32.2 32.2	32.2	95.6 95.1	95.4	6.3 6.3	6.3	0.3	2.4 2.4	2.4	2.4	3.8 3.8	3.8	3.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 19 June 2019 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M3	5				
DO: 4	Depth Average	4.9 mg/L	4.6 mg/L			
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>			
	Station M6	•				
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>19.3 NTU</u>	<u>22.2 NTU</u>			
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.8 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.1 NTU			
	Station M6					
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4					
		6.0 mg/L	6.9 mg/L			
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 13.1 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 14.2 mg/L			
	Stations M1-M5					
		6.2 mg/L	7.4 mg/L			
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 13.1 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 14.2 mg/L			
	Stations G1-G4, M1-M5	5				
		<u>6.9 mg/L</u>	7.9 mg/L			
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of th same day			
	G. II. N.C.	<u>C2: 4.9 mg/L</u>	<u>C2: 5.3 mg/L</u>			
	Station M6		9.6 mg/I			
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>			

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 June 2019

(Mid-Flood Tide)

Location		Sea	Sampling	Depth	n (m)		ture (°C)		рН		ity ppt		ration (%)		ved Oxygen			Turbidity(NTI			nded Solids	
	Condition	Condition*	Time		. (,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	27.4 27.4	27.4	8.9 8.9	8.9	32.1 32.2	32.1	91.8 91.5	91.7	6.1 6.1	6.1	6.2	2.2 2.1	2.2		5.3 5.3	5.3	
C1	Sunny	Calm	09:59	Middle	9.0	27.4 27.4	27.4	8.9 8.9	8.9	32.9 32.9	32.9	95.4 94.3	94.9	6.3 6.2	6.3		2.0 2.1	2.0	2.5	4.0 3.9	4.0	4.5
				Bottom	17.1	27.2 27.2	27.2	8.9 8.9	8.9	33.1 33.1	33.1	90.8 91.1	91.0	6.0 6.0	6.0	6.0	3.5 3.3	3.4		4.1 4.1	4.1	
				Surface	1.0	27.3 27.3	27.3	9.3 9.0	9.1	32.1 32.1	32.1	88.8 88.9	88.9	5.9 5.9	5.9	5.9	2.0 2.1	2.1		3.4 3.4	3.4	
C2	Sunny	Calm	09:08	Middle	16.0	27.4 27.4	27.4	9.0 9.0	9.0	32.4 32.3	32.4	89.9 89.8	89.9	5.9 5.9	5.9	0.0	0.5 0.6	0.6	1.2	4.3 4.3	4.3	3.7
				Bottom	31.1	27.2 27.3	27.2	9.0 9.0	9.0	32.9 32.7	32.8	89.2 89.3	89.3	5.9 5.9	5.9	5.9	0.9 0.8	0.9		3.4 3.4	3.4	
				Surface	1.0	27.4 27.4	27.4	8.9 8.9	8.9	30.6 31.4	31.0	93.3 89.6	91.5	6.2 6.0	6.1	6.0	2.0 2.5	2.2		5.4 5.5	5.5	
G1	Sunny	Calm	09:31	Middle	4.0	27.4 27.4	27.4	8.9 8.9	8.9	32.0 32.3	32.2	90.0 89.1	89.6	6.0 5.9	5.9	0.0	0.5 0.4	0.5	1.6	9.3 9.4	9.4	7.1
				Bottom	7.0	27.3 27.3	27.3	8.9 8.9	8.9	32.4 32.5	32.5	83.9 82.9	83.4	5.6 5.5	5.5	5.5	2.0 2.0	2.0		6.7 6.5	6.6	
				Surface	1.1	27.4 27.4	27.4	9.1 9.0	9.1	32.0 32.2	32.1	91.2 90.2	90.7	6.0 6.0	6.0	6.0	0.6 0.5	0.5		4.9 4.9	4.9	
G2	Sunny	Calm	09:21	Middle	5.0	27.4 27.3	27.4	9.1 9.0	9.1	32.3 32.3	32.3	90.2 89.6	89.9	6.0 5.9	5.9	0.0	0.6 0.7	0.6	0.9	8.1 7.9	8.0	5.4
				Bottom	9.1	27.3 27.3	27.3	9.1 9.0	9.0	32.7 32.7	32.7	89.9 91.0	90.5	5.9 6.0	6.0	6.0	1.5 1.4	1.4		3.4 3.4	3.4	
				Surface	1.0	27.4 27.4	27.4	8.9 8.9	8.9	31.0 31.6	31.3	92.1 91.0	91.6	6.1 6.0	6.1	6.0	0.2 0.1	0.1		4.8 4.5	4.7	
G3	Sunny	Calm	09:34	Middle	4.1	27.4 27.4	27.4	8.9 8.9	8.9	32.2 32.2	32.2	90.8 90.7	90.8	6.0 6.0	6.0	0.0	0.5 0.4	0.4	0.3	3.7 3.8	3.8	4.3
				Bottom	7.0	27.5 27.4	27.4	9.0 8.9	8.9	32.3 32.3	32.3	91.8 90.2	91.0	6.1 6.0	6.0	6.0	0.4 0.4	0.4		4.4 4.4	4.4	
				Surface	1.1	27.5 27.4	27.4	8.9 8.9	8.9	30.9 31.7	31.3	92.6 90.9	91.8	6.2 6.0	6.1	6.1	1.9 1.8	1.8		8.6 9.0	8.8	
G4	Sunny	Calm	09:42	Middle	4.0	27.4 27.4	27.4	8.9 8.9	8.9	32.0 31.8	31.9	90.7 90.9	90.8	6.0 6.0	6.0	0.1	1.9 1.8	1.9	1.5	2.9 3.0	3.0	5.5
				Bottom	7.0	27.4 27.4	27.4	8.9 8.9	8.9	32.2 32.2	32.2	89.5 89.7	89.6	5.9 5.9	5.9	5.9	0.9 0.9	0.9		4.9 4.8	4.9	
				Surface	1.0	27.5 27.5	27.5	8.9 9.0	8.9	31.5 31.7	31.6	89.4 84.9	87.2	5.9 5.6	5.8	5.7	2.0 1.8	1.9		6.0 6.0	6.0	
M1	Sunny	Calm	09:26	Middle	3.0	27.4 27.4	27.4	8.9 9.0	8.9	32.0 32.1	32.0	85.4 83.8	84.6	5.7 5.5	5.6	5.7	2.6 2.7	2.6	3.1	5.9 5.8	5.9	6.0
				Bottom	5.1	27.4 27.3	27.3	9.0 9.0	9.0	32.3 32.5	32.4	84.8 82.6	83.7	5.6 5.5	5.5	5.5	4.2 5.2	4.7		6.2 6.1	6.2	
				Surface	1.1	27.4 27.4	27.4	9.1 9.1	9.1	32.1 32.4	32.3	91.7 91.5	91.6	6.1 6.0	6.1	6.0	1.5 1.7	1.6		4.7 4.8	4.8	
M2	Sunny	Calm	09:17	Middle	5.3	27.4 27.4	27.4	9.1 9.1	9.1	32.4 32.5	32.5	91.0 91.0	91.0	6.0 6.0	6.0	6.0	1.7 1.5	1.6	1.5	5.3 5.2	5.3	7.6
				Bottom	9.5	27.3 27.3	27.3	9.1 9.1	9.1	32.6 32.6	32.6	91.0 91.1	91.1	6.0 6.0	6.0	6.0	1.6 1.3	1.4		13.1 12.7	12.9	
				Surface	1.1	27.4 27.4	27.4	9.0 8.9	8.9	31.3 31.7	31.5	91.9 91.2	91.6	6.1 6.0	6.1	6.4	1.3 1.3	1.3		4.0 4.1	4.1	
M3	Sunny	Calm	09:38	Middle	4.0	27.4 27.4	27.4	9.0 8.9	8.9	32.1 32.2	32.2	91.4 91.0	91.2	6.0	6.0	6.1	1.1	1.1	1.1	3.7 3.8	3.8	3.5
				Bottom	7.1	27.4 27.4	27.4	8.9 8.9	8.9	32.3 32.3	32.3	85.0 86.1	85.6	5.6 5.7	5.6	5.6	1.1 1.1	1.1		2.8 2.7	2.8	
				Surface	1.0	27.4 27.4	27.4	8.9 8.9	8.9	32.2 32.3	32.2	91.5 90.7	91.1	6.1 6.0	6.0	6.0	2.3 2.2	2.2		5.7 5.6	5.7	
M4	Sunny	Calm	09:13	Middle	5.0	27.4 27.4	27.4	8.9 8.9	8.9	32.2 32.3	32.2	91.3 90.8	91.1	6.0 6.0	6.0	0.0	2.0 1.8	1.9	1.7	7.1 7.0	7.1	5.9
				Bottom	9.1	27.4 27.4	27.4	8.9 8.9	8.9	32.3 32.3	32.3	90.8 90.4	90.6	6.0 6.0	6.0	6.0	1.1 1.1	1.1		5.0 5.0	5.0	
Ī				Surface	1.1	27.4 27.4	27.4	8.9 8.9	8.9	32.1 32.1	32.1	89.8 89.2	89.5	5.9 5.9	5.9	5.9	2.3 2.0	2.2		3.2 3.3	3.3	
M5	Sunny	Calm	09:54	Middle	5.5	27.4 27.4	27.4	8.9 8.9	8.9	32.4 32.4	32.4	89.1 89.0	89.1	5.9 5.9	5.9	J.9	1.8	1.7	2.1	6.4 6.2	6.3	4.9
				Bottom	10.0	27.3 27.3	27.3	8.9 8.9	8.9	32.5 32.6	32.5	88.5 88.0	88.3	5.9 5.8	5.8	5.8	2.4 2.5	2.5		5.2 5.3	5.3	
Ī				Surface	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-		-	-	
M6	Sunny	Calm	09:47	Middle	2.2	27.5 27.4	27.4	8.9 8.9	8.9	32.1 32.1	32.1	91.2 90.8	91.0	6.0 6.0	6.0	0.0	2.0 2.1	2.0	2.0	4.7 4.6	4.7	4.7
								-		-		-		_			-		1	-		1

temarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 19 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M5	5				
DO: 4	Depth Average	4.9 mg/L	4.6 mg/L			
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>			
	Station M6	•				
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>19.3 NTU</u>	<u>22.2 NTU</u>			
Turbidity in NTU (See Note 2 and 4)	Bottom	of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day			
		<u>C1: 4.1 NTU</u>	<u>C1: 4.5 NTU</u>			
	Station M6	T				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4	ı				
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>			
	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day			
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>			
	Stations M1-M5					
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>			
SS in mg/L (See Note 2 and 4)	Surface	same day	or 130% of upstream control station's SS at the same tide of the same day			
		<u>C1: 6.4 mg/L</u>	<u>C1: 6.9 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>			
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	same day			
	G. P. M.	<u>C1: 4.7 mg/L</u>	<u>C1: 5.1 mg/L</u>			
	Station M6	T				
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>			

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 47.	,	Value 27.5	Average	Value 7.9	Average	Value	Average	Value	Average	Value	Average	DA*	Value 3.1	Average	DA*	Value 6.4	Average	DA*
				Surface	1.1	27.6	27.5	7.9	7.9	31.7 31.6	31.6	80.7 80.2	80.5	5.3 5.3	5.3	5.2	3.1	3.1		6.7	6.6	
C1	Sunny	Calm	14:45	Middle	9.0	26.8 27.1	27.0	7.9 7.9	7.9	33.0 32.7	32.9	75.1 77.3	76.2	5.0 5.1	5.1		3.5 3.2	3.4	3.2	9.7 9.7	9.7	8.4
				Bottom	17.1	26.4 25.8	26.1	7.9 7.9	7.9	33.7 34.6	34.1	68.7 64.9	66.8	4.6 4.4	4.5	4.5	3.3 3.4	3.3		9.1 8.8	9.0	
				Surface	1.0	27.9 27.8	27.9	8.5 8.1	8.3	30.5 30.7	30.6	83.0 81.3	82.2	5.5 5.4	5.4	5.0	2.5 2.7	2.6		3.7 3.8	3.8	
C2	Sunny	Calm	13:54	Middle	16.5	26.2 26.3	26.3	8.5 8.1	8.3	33.9 33.7	33.8	67.3 68.6	68.0	4.5 4.6	4.5		6.3 5.8	6.0	4.9	5.5 5.6	5.6	5.2
				Bottom	32.0	26.1 26.4	26.3	8.5 8.1	8.3	34.1 33.5	33.8	66.0 68.5	67.3	4.4 4.6	4.5	4.5	6.5 5.7	6.1		6.2 6.3	6.3	
				Surface	1.0	28.2 28.2	28.2	8.0 8.0	8.0	31.8 31.8	31.8	98.1 97.0	97.6	6.4 6.4	6.4	6.2	1.5 1.6	1.6		3.8 3.7	3.8	
G1	Sunny	Calm	14:18	Middle	4.0	27.9 27.9	27.9	8.0 8.0	8.0	32.0 32.0	32.0	92.1 92.8	92.5	6.0 6.1	6.1		1.3 1.3	1.3	1.9	2.6 2.5	2.6	3.6
				Bottom	7.1	27.4 27.3	27.3	8.0 8.0	8.0	32.6 32.7	32.7	82.1 78.5	80.3	5.4 5.2	5.3	5.3	2.6 3.0	2.8		4.6 4.5	4.6	
				Surface	1.1	28.0 28.1	28.1	8.0 8.0	8.0	32.1 32.0	32.0	94.7 93.6	94.2	6.2 6.1	6.2	6.0	1.4 1.6	1.5		3.0 3.0	3.0	
G2	Sunny	Calm	14:09	Middle	5.0	27.7 27.7	27.7	8.0 7.9	8.0	32.2 32.1	32.1	88.8 87.8	88.3	5.8 5.8	5.8		1.9 1.9	1.9	1.3	3.2 3.1	3.2	4.1
				Bottom	9.0	26.5 26.6	26.6	8.0 7.9	8.0	33.7 33.6	33.7	74.3 75.0	74.7	4.9 5.0	5.0	5.0	0.5 0.5	0.5		6.2 6.2	6.2	
				Surface	1.0	28.4 28.4	28.4	8.0 8.0	8.0	31.6 31.5	31.5	103.2 100.8	102.0	6.7 6.6	6.7	6.3	1.9 1.8	1.9		4.7 4.8	4.8	
G3	Sunny	Calm	14:23	Middle	4.0	27.9 28.0	28.0	8.0 8.0	8.0	31.9 31.8	31.9	92.9 91.2	92.1	6.1 6.0	6.0	0.0	1.4 1.5	1.4	2.0	6.6 6.7	6.7	5.8
				Bottom	7.0	27.3 27.4	27.3	8.0 8.0	8.0	32.9 32.7	32.8	77.8 79.0	78.4	5.1 5.2	5.2	5.2	2.9 2.8	2.8		5.9 5.9	5.9	
				Surface	1.1	28.6 28.6	28.6	8.0 7.9	7.9	31.4 31.4	31.4	107.5 107.5	107.5	7.0 7.0	7.0	6.5	1.5 1.3	1.4		7.0 7.0	7.0	
G4	Sunny	Calm	14:30	Middle	4.1	27.8 28.0	27.9	8.0 7.9	7.9	32.0 31.8	31.9	91.2 92.8	92.0	6.0 6.1	6.0	0.0	1.1 1.2	1.2	1.4	3.5 3.4	3.5	5.8
				Bottom	7.0	27.3 27.4	27.3	7.9 7.9	7.9	32.8 32.6	32.7	71.7 79.6	75.7	4.7 5.3	5.0	5.0	1.5 1.7	1.6		6.8 7.1	7.0	
				Surface	1.0	28.5 28.5	28.5	8.0 8.0	8.0	31.9 31.9	31.9	94.7 93.7	94.2	6.2 6.1	6.1	6.0	0.7 0.8	0.7		3.9 4.0	4.0	
M1	Sunny	Calm	14:14	Middle	3.1	28.2 28.2	28.2	8.0 8.0	8.0	32.0 32.0	32.0	90.3 91.9	91.1	5.9 6.0	6.0	0.0	1.1 0.9	1.0	1.0	5.3 5.3	5.3	4.1
				Bottom	5.1	27.9 27.9	27.9	8.0 8.0	8.0	32.1 32.1	32.1	88.5 85.5	87.0	5.8 5.6	5.7	5.7	1.5 1.3	1.4		3.1 3.0	3.1	
				Surface	1.0	28.2 28.0	28.1	8.0 8.0	8.0	32.1 32.1	32.1	96.8 93.3	95.1	6.3 6.1	6.2	6.0	1.6 1.3	1.4		6.7 6.6	6.7	
M2	Sunny	Calm	14:05	Middle	5.5	27.4 27.4	27.4	8.0 8.0	8.0	32.5 32.5	32.5	86.1 86.4	86.3	5.7 5.7	5.7	0.0	0.9 0.9	0.9	1.3	5.8 5.8	5.8	5.7
				Bottom	10.1	26.5 26.5	26.5	8.0 8.0	8.0	33.7 33.7	33.7	73.7 73.6	73.7	4.9 4.9	4.9	4.9	1.5 1.6	1.5		4.7 4.6	4.7	
				Surface	1.0	28.0 28.2	28.1	7.9 7.9	7.9	31.7 31.6	31.7	85.1 94.6	89.9	5.6 6.2	5.9	5.9	1.7 1.6	1.6		4.7 4.6	4.7	
М3	Sunny	Calm	14:26	Middle	4.0	27.7 27.8	27.7	7.9 7.9	7.9	32.0 32.0	32.0	87.6 89.5	88.6	5.8 5.9	5.8	5.0	1.5 1.4	1.5	2.3	5.5 5.4	5.5	6.3
				Bottom	7.1	27.5 27.3	27.4	8.0 7.9	7.9	32.5 32.8	32.7	80.1 77.7	78.9	5.3 5.1	5.2	5.2	3.8 3.9	3.8		8.8 8.7	8.8	
				Surface	1.1	27.6 27.7	27.7	8.0 8.0	8.0	32.0 31.9	31.9	85.9 85.7	85.8	5.7 5.7	5.7	5.7	1.5 1.7	1.6		7.3 7.7	7.5	
M4	Sunny	Calm	14:00	Middle	5.1	27.7 27.7	27.7	8.1 8.0	8.0	32.0 32.0	32.0	86.5 86.5	86.5	5.7 5.7	5.7	0	1.6 2.0	1.8	1.8	5.9 5.8	5.9	5.6
				Bottom	9.0	27.1 27.0	27.0	8.1 8.0	8.0	32.9 33.1	33.0	81.0 78.5	79.8	5.4 5.2	5.3	5.3	2.0 2.2	2.1		3.6 3.5	3.6	<u> </u>
				Surface	1.1	27.7 27.8	27.7	7.9 7.9	7.9	32.0 32.1	32.0	88.4 87.2	87.8	5.8 5.7	5.8	5.7	1.0 0.9	1.0		4.4 4.4	4.4	
M5	Sunny	Calm	14:39	Middle	6.0	27.6 27.6	27.6	7.9 7.9	7.9	32.1 32.1	32.1	84.8 86.0	85.4	5.6 5.7	5.6	0	0.8 0.7	0.7	2.3	2.9 3.0	3.0	3.6
				Bottom	11.1	26.2 26.3	26.2	7.9 7.9	7.9	34.2 34.1	34.1	68.2 70.2	69.2	4.6 4.7	4.6	4.6	5.2 5.0	5.1		3.6 3.5	3.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
M6	Sunny	Calm	14:34	Middle	2.2	28.1 28.0	28.0	7.9 7.9	7.9	31.8 31.8	31.8	97.4 96.2	96.8	6.4 6.3	6.3	0.3	0.9 1.0	1.0	1.0	8.4 8.0	8.2	8.2
				Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 21 June 2019 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M5	5				
DO: 4	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>			
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>			
	Station M6					
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>19.3 NTU</u>	<u>22.2 NTU</u>			
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 7.3 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 7.9 NTU			
	Station M6					
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4					
		6.0 mg/L	6.9 mg/L			
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 4.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 4.9 mg/L			
	Stations M1-M5	<u>02. 1.5 mg/L</u>	<u>02. 11.7 mg/11</u>			
	Sections 1121 1120	6.2 mg/L	7.4 mg/L			
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 4.9 mg/L			
	Stations G1-G4, M1-M5	5				
		6.9 mg/L	7.9 mg/L			
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 7.5 mg/L	or 130% of upstream control			
	Station M6		1			
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L			

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
Location	Condition	Condition*	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	27.7 27.7	27.7	7.8 7.8	7.8	32.0 32.0	32.0	88.9 87.3	88.1	5.9 5.7	5.8	5.6	0.9 1.1	1.0		2.6 2.7	2.7	
C1	Sunny	Calm	10:08	Middle	9.1	27.1 27.3	27.2	7.8 7.8	7.8	32.8 32.6	32.7	79.5 81.3	80.4	5.3 5.4	5.3		1.3 1.5	1.4	1.3	2.4 2.4	2.4	3.1
				Bottom	17.0	26.4 26.8	26.6	7.8 7.8	7.8	33.8 33.4	33.6	71.5 77.7	74.6	4.8 5.2	5.0	5.0	1.4 1.5	1.4		4.4 4.3	4.4	
				Surface	1.1	27.8 27.8	27.8	8.4 8.2	8.3	31.6 31.7	31.7	88.2 87.4	87.8	5.8 5.8	5.8	5.4	1.8 1.9	1.8		8.0 8.1	8.1	
C2	Sunny	Calm	09:16	Middle	16.0	26.8 26.6	26.7	8.3 8.3	8.3	33.3 33.6	33.5	75.0 73.9	74.5	5.0 4.9	4.9	5.4	2.2 2.7	2.5	2.3	2.5 2.4	2.5	4.4
				Bottom	31.1	26.6 26.2	26.4	8.3 8.3	8.3	33.7 34.1	33.9	74.9 68.8	71.9	5.0 4.6	4.8	4.8	2.7 2.8	2.7		2.8 2.8	2.8	1
				Surface	1.1	27.9 27.8	27.8	8.0 8.0	8.0	31.8 31.9	31.8	90.1 87.1	88.6	5.9 5.7	5.8		2.4 2.5	2.5		3.9 4.0	4.0	
G1	Sunny	Calm	09:41	Middle	4.1	27.5 27.4	27.5	8.0 8.0	8.0	32.4 32.4	32.4	82.4 81.8	82.1	5.4 5.4	5.4	5.6	1.2	1.2	1.8	2.4	2.4	2.8
				Bottom	7.0	27.0 27.2	27.1	8.0	8.0	33.1 32.8	32.9	78.5 80.0	79.3	5.2	5.2	5.2	1.9	1.8		2.0	2.1	
				Surface	1.0	28.1 28.0	28.0	8.0 8.0	8.0	31.8 31.8	31.8	90.6 88.5	89.6	5.9 5.8	5.9		1.4 1.5	1.5		2.7 2.7	2.7	
G2	Sunny	Calm	09:32	Middle	5.0	27.4 26.9	27.2	8.0 8.0	8.0	32.6 33.3	33.0	81.2 78.5	79.9	5.4 5.2	5.3	5.6	1.5	1.6	1.9	2.5	2.5	2.5
				Bottom	9.0	26.7 26.6	26.7	8.1 8.0	8.0	33.6 33.6	33.6	75.2 73.6	74.4	5.0 4.9	4.9	4.9	2.6 2.6	2.6	1	2.4 2.3	2.4	
				Surface	1.1	28.0 27.9	27.9	7.9	7.9	31.6 31.8	31.7	92.1 89.0	90.6	6.1 5.9	6.0		1.2	1.3		2.7	2.7	
G3	Sunny	Calm	09:45	Middle	4.0	27.5 27.4	27.5	7.9 7.9	7.9	32.5 32.5	32.5	80.4 80.4	80.4	5.3 5.3	5.3	5.6	2.7	2.9	2.4	3.2	3.3	4.4
				Bottom	7.0	27.1	27.1	8.0 7.9	7.9	33.0 32.9	33.0	77.4 77.4	77.4	5.1 5.1	5.1	5.1	2.7	2.9		7.4	7.4	
				Surface	1.1	28.0	28.0	7.9	7.9	31.3 31.1	31.2	92.6	92.0	6.1	6.1		2.5	2.3		7.5	7.5	
G4	Sunny	Calm	09:52	Middle	4.0	27.6	27.6	7.9 7.9	7.9	32.2 32.2	32.2	84.3 84.1	84.2	5.6 5.5	5.5	5.8	2.7	2.6	3.4	6.4	6.6	6.3
				Bottom	7.0	27.2 27.2	27.2	7.9 7.9	7.9	32.9 32.8	32.8	74.3 74.5	74.4	4.9 4.9	4.9	4.9	5.7	5.2		4.9 5.0	5.0	1
				Surface	1.0	27.9 28.0	27.9	8.0 8.0	8.0	32.0 31.9	31.9	85.7 84.1	84.9	5.6 5.5	5.6		1.5	1.6		4.9 4.9	4.9	
M1	Sunny	Calm	09:36	Middle	3.0	27.7 27.9	27.8	8.0 8.0	8.0	32.2 32.0	32.1	80.1 83.5	81.8	5.3 5.5	5.4	5.5	2.0	1.9	1.9	6.6 6.6	6.6	7.1
				Bottom	5.0	27.5 27.4	27.4	8.0	8.0	32.5 32.7	32.6	76.4 75.8	76.1	5.0	5.0	5.0	2.2	2.2		9.8	9.9	1
				Surface	1.0	28.0 27.9	28.0	8.2 8.1	8.1	31.8 31.9	31.8	92.4 88.8	90.6	6.1 5.8	5.9		1.0	1.1		8.3 8.4	8.4	
M2	Sunny	Calm	09:27	Middle	5.3	26.9 26.7	26.8	8.2 8.1	8.1	33.4 33.5	33.4	78.5 76.3	77.4	5.2 5.1	5.1	5.5	1.0	1.0	1.8	4.5 4.6	4.6	6.0
				Bottom	9.5	26.3 26.3	26.3	8.2 8.1	8.1	34.0 34.0	34.0	70.1 70.3	70.2	4.7	4.7	4.7	3.3	3.4		5.1	5.1	
				Surface	1.1	28.0	28.0	7.9 7.9	7.9	31.3 31.3	31.3	93.0 90.4	91.7	6.1 5.9	6.0		1.1	1.2		4.4	4.5	
M3	Sunny	Calm	09:48	Middle	4.0	27.7 27.7	27.7	7.9 7.9 7.9	7.9	32.1 32.1	32.1	83.4 84.1	83.8	5.5 5.5	5.5	5.8	1.9 1.7	1.8	2.1	5.5 5.4	5.5	4.1
				Bottom	7.0	27.2 27.1	27.1	7.9 7.9	7.9	32.9 33.0	32.9	75.8 76.9	76.4	5.0 5.1	5.0	5.0	3.3	3.4		2.5	2.5	ĺ
				Surface	1.1	27.1 27.9 28.0	27.9	8.2 8.1	8.2	31.7 31.7	31.7	91.4 91.1	91.3	6.0	6.0		1.2	1.2		2.4	2.4	
M4	Sunny	Calm	09:23	Middle	5.0	27.9 27.9	27.9	8.2 8.1	8.2	31.7 31.7 31.7	31.7	90.7 91.1	90.9	6.0	6.0	6.0	1.2	1.3	1.4	1.0	1.0	1.8
				Bottom	9.0	27.7 27.7	27.7	8.1 8.1	8.1	32.2 32.2	32.2	84.3 84.7	84.5	5.5 5.6	5.6	5.6	1.9 1.6	1.7		2.0	2.1	ĺ
				Surface	1.1	27.7 27.8	27.7	7.8 7.8	7.8	31.7 31.7	31.7	83.9 83.6	83.8	5.5 5.5	5.5		2.9 2.4	2.6		1.7	1.7	
M5	Sunny	Calm	10:02	Middle	5.6	27.6 27.6	27.6	7.8 7.8	7.8	31.8 31.9	31.9	83.4 82.7	83.1	5.5 5.5 5.5	5.5	5.5	2.4 2.4 2.4	2.4	2.6	4.7 4.8	4.8	3.8
				Bottom	10.0	27.1 27.0	27.1	7.9 7.8	7.8	32.8 32.9	32.8	76.7 75.3	76.0	5.1 5.0	5.0	5.0	2.8	2.9		4.8 4.8	4.8	ĺ
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Sunny	Calm	09:57	Middle	2.3	27.6 27.6	27.6	7.9 7.9	7.9	32.0 32.0	32.0	83.5 84.5	84.0	5.5 5.6	5.5	5.5	0.7 0.6	0.6	0.6	4.1 4.1	4.1	4.1
				Bottom	-		-	- 7.9	-	-	-	-	-	-	-	-	-	-	1	-	-	
						-						-	l	-					L	-		

emarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 21 June 2019 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 1.7 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 1.9 NTU
	Station M6	<u>CI. 1.7 WI U</u>	<u>C1. 1.5 W10</u>
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 3.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 3.4 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 3.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 3.4 mg/L
	Stations G1-G4, M1-M5	5	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 5.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 5.7 mg/L
	Station M6	01. 3.2 mg/L	01. 5.7 mg/L
	Intake Level	8.3 mg/L	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 June 2019

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)	Tempera			Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			nded Solids	
	Condition	Condition*	Time	- 4/-	,	Value 27.8	Average	Value 7.9	Average	Value 29.4	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value 2.8	Average	DA*
				Surface	1.1	27.8	27.8	7.9	7.9	29.4	29.4	103.2 103.2	103.2	6.9 6.9	6.9	5.3	1.5	1.4		2.9	2.9	
C1	Sunny	Moderate	16:29	Middle	9.0	24.8 24.8	24.8	7.9 7.9	7.9	35.4 35.4 35.8	35.4	56.1 56.3	56.2	3.8	3.8		0.6 0.6	0.6	1.5	3.1 3.0 3.9	3.1	3.3
				Bottom	17.0	24.3 24.3	24.3	7.9 7.9	7.9	35.8	35.8	54.6 54.6	54.6	3.7 3.7	3.7	3.7	2.3 2.4	2.4		3.9	3.9	
				Surface	1.1	26.7 26.7	26.7	8.5 8.1	8.3	31.3 31.3	31.3	76.4 76.3	76.4	5.1 5.1	5.1	4.4	0.6 0.6	0.6		2.8 2.8	2.8	
C2	Sunny	Moderate	15:26	Middle	15.9	24.6 24.6	24.6	8.5 8.1	8.3	35.6 35.6	35.6	53.9 54.0	54.0	3.7 3.7	3.7		2.3 2.2	2.2	2.1	1.5 1.5	1.5	2.3
				Bottom	31.1	24.4 24.4	24.4	8.5 8.1	8.3	35.8 35.8	35.8	53.1 53.1	53.1	3.6 3.6	3.6	3.6	3.5 3.7	3.6		2.6 2.5	2.6	
				Surface	1.1	28.1 28.0	28.1	8.0 8.0	8.0	29.7 29.7	29.7	117.3 117.3	117.3	7.8 7.8	7.8	6.7	1.0 0.9	1.0		2.5 2.4	2.5	
G1	Sunny	Moderate	15:55	Middle	4.0	27.4 27.5	27.5	8.0 8.0	8.0	32.5 32.4	32.4	84.2 86.5	85.4	5.6 5.7	5.6		1.5 1.4	1.4	1.4	4.7 4.9	4.8	4.0
				Bottom	7.2	25.1 25.1	25.1	8.0 8.0	8.0	34.8 35.0	34.9	60.5 59.8	60.2	4.1 4.1	4.1	4.1	2.0 1.9	1.9		4.9 4.7	4.8	
				Surface	1.1	28.1 28.1	28.1	8.0 8.0	8.0	30.3 30.3	30.3	119.7 120.1	119.9	7.9 7.9	7.9	6.2	1.7 1.9	1.8		2.8 2.7	2.8	
G2	Sunny	Moderate	15:45	Middle	5.0	25.8 25.8	25.8	8.0 8.0	8.0	33.7 33.6	33.7	66.9 67.3	67.1	4.5 4.5	4.5	0.2	1.7 1.6	1.7	1.6	3.0 3.1	3.1	3.8
				Bottom	9.0	25.2 25.1	25.1	8.0 7.9	8.0	34.8 35.0	34.9	56.8 56.6	56.7	3.8 3.8	3.8	3.8	1.6 1.4	1.5		5.6 5.5	5.6	
				Surface	1.1	28.0 28.0	28.0	8.0 8.0	8.0	29.6 29.6	29.6	117.1 117.4	117.3	7.8 7.8	7.8	6.2	0.4 0.4	0.4		4.0 4.2	4.1	
G3	Sunny	Moderate	16:00	Middle	4.1	25.7 25.7	25.7	8.0 8.0	8.0	34.1 34.1	34.1	67.6 69.6	68.6	4.5 4.7	4.6	0.2	0.9 0.9	0.9	1.0	5.2 5.1	5.2	4.1
				Bottom	7.0	25.2 25.1	25.1	8.0 8.0	8.0	35.1 35.2	35.1	53.5 53.2	53.4	3.6 3.6	3.6	3.6	1.8 1.9	1.8		3.2 3.1	3.2	
				Surface	1.1	27.9 27.9	27.9	7.9 7.9	7.9	30.0 30.0	30.0	116.5 116.6	116.6	7.7 7.7	7.7	6.3	0.1 0.1	0.1		4.0 4.1	4.1	
G4	Sunny	Moderate	16:13	Middle	4.0	26.1 26.1	26.1	8.0 7.9	7.9	32.9 32.7	32.8	71.7 72.6	72.2	4.8 4.9	4.9	0.5	0.7 0.6	0.7	0.8	5.5 5.6	5.6	5.8
				Bottom	7.0	25.7 25.5	25.6	8.0 7.9	7.9	34.2 34.4	34.3	56.6 56.0	56.3	3.8 3.8	3.8	3.8	1.7 1.8	1.7		7.7 7.8	7.8	<u> </u>
				Surface	1.1	28.0 27.9	28.0	7.9 8.0	8.0	30.3 30.3	30.3	116.2 116.4	116.3	7.7 7.7	7.7	7.1	0.4 0.4	0.4		2.3 2.3	2.3	
M1	Sunny	Moderate	15:50	Middle	3.1	27.7 27.7	27.7	8.0 8.0	8.0	31.0 31.0	31.0	99.0 99.1	99.1	6.6 6.6	6.6	7	0.9 0.9	0.9	0.7	3.7 3.8	3.8	3.0
				Bottom	5.1	25.9 25.9	25.9	8.0 8.0	8.0	34.2 34.2	34.2	58.5 58.8	58.7	3.9 3.9	3.9	3.9	0.9 0.9	0.9		2.8 2.9	2.9	
				Surface	1.1	27.9 27.9	27.9	8.0 8.0	8.0	30.5 30.5	30.5	119.0 119.0	119.0	7.9 7.9	7.9	6.0	2.4 2.4	2.4		3.1 3.1	3.1	
M2	Sunny	Moderate	15:41	Middle	6.1	25.1 25.1	25.1	8.0 8.0	8.0	35.0 35.0	35.0	59.6 59.8	59.7	4.0 4.1	4.0	0.0	1.3 1.4	1.4	1.8	3.2 3.2	3.2	3.1
				Bottom	11.1	24.7 24.6	24.6	8.0 8.0	8.0	35.5 35.6	35.6	56.1 55.6	55.9	3.8 3.8	3.8	3.8	1.6 1.7	1.7		3.0 3.0	3.0	
				Surface	1.0	27.9 27.9	27.9	8.0 8.0	8.0	29.6 29.6	29.6	113.6 113.6	113.6	7.6 7.6	7.6	6.2	1.4 1.3	1.3		3.4 3.3	3.4	
МЗ	Sunny	Moderate	16:05	Middle	4.0	25.9 25.9	25.9	7.9 7.9	7.9	34.0 34.0	34.0	68.6 73.1	70.9	4.6 4.9	4.8	0.2	1.6 1.5	1.6	1.7	2.8 2.7	2.8	3.1
				Bottom	7.0	25.4 25.3	25.4	7.9 7.9	7.9	34.8 34.9	34.8	53.9 53.4	53.7	3.6 3.6	3.6	3.6	2.1 2.2	2.1		3.1 3.2	3.2	<u> </u>
				Surface	1.0	27.8 27.8	27.8	8.0 8.0	8.0	30.0 30.1	30.1	107.3 108.6	108.0	7.1 7.2	7.2	5.7	1.0 0.8	0.9		6.1 6.2	6.2	
M4	Sunny	Moderate	15:34	Middle	5.0	25.3 25.3	25.3	8.1 8.0	8.0	34.7 34.7	34.7	62.1 63.0	62.6	4.2 4.3	4.2	J.,	1.4 1.1	1.2	1.6	2.4 2.3	2.4	4.0
				Bottom	8.9	24.7 24.6	24.7	8.1 8.0	8.0	35.5 35.6	35.5	57.5 56.9	57.2	3.9 3.9	3.9	3.9	2.5 2.7	2.6		3.5 3.5	3.5	
				Surface	1.0	27.7 27.7	27.7	7.9 7.9	7.9	29.5 29.5	29.5	100.7 100.7	100.7	6.7 6.7	6.7	5.3	2.5 2.5	2.5		1.8 1.8	1.8	
M5	Sunny	Moderate	16:25	Middle	6.0	25.1 25.1	25.1	7.9 7.9	7.9	34.9 34.9	34.9	58.1 58.3	58.2	3.9 3.9	3.9	3.5	2.2 2.1	2.1	2.6	3.1 3.1	3.1	2.6
				Bottom	10.8	24.4 24.4	24.4	7.9 7.9	7.9	35.8 35.8	35.8	54.3 54.3	54.3	3.7 3.7	3.7	3.7	3.1 3.2	3.1		2.9 2.8	2.9	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Sunny	Moderate	16:17	Middle	2.0	27.9 27.9	27.9	7.9 7.9	7.9	29.9 29.9	29.9	112.5 112.6	112.6	7.5 7.5	7.5	7.5	0.9 0.8	0.8	0.8	2.9 2.9	2.9	2.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 24 June 2019 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 1	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 4.4 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.7 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L or 120% of upstream control	6.9 mg/L or 130% of upstream control
	Surface	*	station's SS at the same tide of the same day
		<u>C2: 3.4 mg/L</u>	<u>C2: 3.6 mg/L</u>
	Stations M1-M5		
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		C2: 3.4 mg/L	C2: 3.6 mg/L
	Stations G1-G4, M1-M5	<u> </u>	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C2: 3.1 mg/L</u>	<u>C2: 3.3 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 June 2019

(Mid-Flood Tide)

Leastles	Weather	Sea	Sampling		uh ()	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition		Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	27.8	26.3	7.8	7.8	29.4	29.4	103.3	103.3	6.9	6.9		1.4	1.5		2.1	2.1	
C1	Sunny	Moderate	10:28	Middle	9.0	24.8	26.1	7.8	7.8	29.4 35.5	35.5	103.2 55.8	55.9	6.9 3.8	3.8	5.3	0.7	0.6	1.4	3.0	3.1	2.2
				Bottom	17.1	24.4 24.8	24.6	7.8 7.8	7.8	35.5 35.8	35.8	56.0 54.5	54.5	3.8	3.7	3.7	0.6 2.2	2.2		3.1 1.5	1.6	
				Surface	1.1	24.3 26.7	26.7	7.8 8.4	8.3	35.8 31.2	31.3	54.5 76.6	76.6	3.7 5.1	5.1		2.2 0.6	0.6		1.6	1.9	
C2	Sunny	Moderate	09:25		ļ	26.7 24.6		8.2 8.3		31.3 35.6		76.5 53.8		5.1 3.7		4.4	0.6 2.3		2.0	1.9 1.4		2.1
02	Suriny	woderate	09.25	Middle	15.9	24.6 24.4	24.6	8.3 8.3	8.3	35.6 35.8	35.6	53.9 53.2	53.9	3.7 3.6	3.7		2.3 3.1	2.3	2.0	1.4	1.4	2.1
				Bottom	31.0	24.4 28.0	24.4	8.3 8.0	8.3	35.8 29.9	35.8	53.1 121.5	53.2	3.6 8.1	3.6	3.6	3.2 1.6	3.1		3.1 2.9	3.1	
				Surface	1.0	28.0	28.0	8.0	8.0	29.9	29.9	121.2	121.4	8.0	8.0	6.4	1.6	1.6	1	2.9	2.9	
G1	Sunny	Moderate	09:54	Middle	4.0	26.1 26.1	26.1	8.0 8.0	8.0	33.8 33.8	33.8	70.4 70.9	70.7	4.7 4.8	4.7		2.4	2.4	2.0	4.8 4.8	4.8	4.5
				Bottom	7.0	25.1 25.0	25.1	8.0 8.0	8.0	35.1 35.2	35.2	56.4 56.2	56.3	3.8 3.8	3.8	3.8	2.0 2.0	2.0		5.7 5.8	5.8	
				Surface	1.1	28.1 28.1	28.1	8.0 8.0	8.0	30.3 30.3	30.3	122.9 123.0	123.0	8.1 8.1	8.1	6.3	1.7 1.7	1.7		6.4 6.2	6.3	
G2	Sunny	Moderate	09:44	Middle	4.6	25.7 25.7	25.7	8.0 8.0	8.0	33.8 33.6	33.7	65.0 65.5	65.3	4.4 4.4	4.4		1.5 1.5	1.5	1.6	2.4 2.4	2.4	4.3
				Bottom	9.0	24.9 24.8	24.9	8.1 8.0	8.0	35.3 35.4	35.3	56.8 56.6	56.7	3.8 3.8	3.8	3.8	1.6 1.6	1.6		4.3 4.2	4.3	
				Surface	1.0	27.9 26.7	27.3	7.9 7.9	7.9	29.7 29.7	29.7	113.3 113.7	113.5	7.5 7.6	7.5		0.6 0.6	0.6		2.9	2.9	
G3	Sunny	Moderate	09:59	Middle	4.0	27.9 25.2	26.6	7.9 7.9	7.9	32.4 32.0	32.2	75.9 80.7	78.3	5.1 5.4	5.2	6.4	0.8 0.7	0.7	0.9	4.5 4.3	4.4	3.3
				Bottom	7.0	26.8 25.2	26.0	8.0 7.9	7.9	34.9 35.0	35.0	53.9 53.4	53.7	3.6	3.6	3.6	1.3	1.3		2.6	2.6	
				Surface	1.0	28.0	27.0	7.9	7.9	29.9	29.9	113.7	113.9	7.5	7.6		1.6	1.5		1.7	1.7	
G4	Sunny	Moderate	10:12	Middle	4.2	26.0 28.0	26.7	7.9	7.9	29.9 33.6	33.6	76.1	78.2	7.6 5.1	5.3	6.4	1.5	1.6	2.4	3.2	3.2	2.6
				Bottom	7.0	25.4 26.0	25.7	7.9 7.9	7.9	33.6 34.7	34.8	80.3 56.0	55.8	5.4 3.8	3.8	3.8	1.6 4.0	4.0	1	2.8	2.8	
				Surface	1.0	25.3 27.9	27.9	7.9 8.0	8.0	34.8 30.5	30.4	55.5 113.2	113.4	3.7 7.5	7.5		4.1 0.5	0.5		2.8 3.5	3.5	
M1	Sunny	Moderate	09:49	Middle	3.0	27.9 27.7	27.7	8.0 8.0	8.0	30.4 31.0	31.0	113.6 102.5	102.5	7.5 6.8	6.8	7.1	0.5	0.2	0.5	3.5 3.2	3.2	3.2
IVII	Suriny	Woderate	03.43			27.7 26.0		8.0 8.0		30.9 34.0		102.5 61.2		6.8 4.1	4.1	4.4	0.3	ļ	0.5	3.1		3.2
				Bottom	5.0	26.0 27.9	26.0	8.0 8.2	8.0	33.9 30.5	34.0	61.2 112.1	61.2	4.1 7.4		4.1	0.7 1.7	0.7		3.1 4.8	3.1	
				Surface	1.2	25.1	26.5	8.1	8.1	30.5 35.0	30.5	112.8	112.5	7.5	7.4	5.7	1.7	1.7		4.7	4.8	
M2	Sunny	Moderate	09:40	Middle	6.0	24.8 25.1	26.3	8.1 8.2	8.1	35.0 35.4	35.0	61.2 55.1	59.5	4.1 3.7	4.0		1.8	1.8	1.9	3.6	3.6	3.7
				Bottom	11.2	24.7	24.9	8.1	8.1	35.5	35.4	54.9	55.0	3.7	3.7	3.7	2.3	2.2		2.8	2.9	
				Surface	1.1	27.9 26.0	26.9	7.9 7.9	7.9	29.9 29.9	29.9	114.9 114.9	114.9	7.6 7.6	7.6	6.2	2.3	2.3		2.1	2.1	
M3	Sunny	Moderate	10:04	Middle	4.0	27.9 25.1	26.5	7.9 7.9	7.9	33.7 33.6	33.6	70.4 72.6	71.5	4.7 4.9	4.8		2.4 2.4	2.4	2.3	4.2 4.1	4.2	3.0
				Bottom	7.1	26.0 25.0	25.5	7.9 7.9	7.9	35.1 35.3	35.2	52.9 52.6	52.8	3.6 3.6	3.6	3.6	2.3 2.3	2.3		2.6 2.7	2.7	
				Surface	1.1	27.8 25.3	26.5	8.2 8.1	8.2	30.2 30.2	30.2	108.8 109.0	108.9	7.2 7.2	7.2	5.6	0.8 0.9	0.9		3.8 3.7	3.8	
M4	Sunny	Moderate	09:33	Middle	5.0	27.8 24.5	26.1	8.2 8.1	8.2	34.7 34.7	34.7	59.0 59.1	59.1	4.0 4.0	4.0	3.0	2.5 2.5	2.5	2.3	3.3 3.3	3.3	2.7
				Bottom	9.0	25.3 24.5	24.9	8.1 8.1	8.1	35.7 35.7	35.7	53.6 53.5	53.6	3.6 3.6	3.6	3.6	3.4 3.6	3.5		1.1	1.1	
				Surface	1.0	27.6 25.2	26.4	7.8	7.8	29.6 29.6	29.6	97.8 98.1	98.0	6.5 6.6	6.5		1.2	1.2		2.4	2.5	
M5	Sunny	Moderate	10:24	Middle	6.2	27.6 24.7	26.2	7.8 7.8	7.8	34.8 34.8	34.8	61.0	61.3	4.1 4.2	4.1	5.3	1.5	1.5	1.5	2.6	2.7	2.5
				Bottom	10.8	25.2	24.9	7.8 7.9 7.8	7.8	35.5	35.5	55.0 55.0	55.0	3.7	3.7	3.7	1.4	2.0	1	2.4	2.4	
				Surface	-	24.6	-	- 7.8	-	35.5	-	- 55.0	-	- 3.1	-		- 2.0	-		- 2.4	-	
M6	Sunny	Moderate	10:16	Middle	2.0	27.8	27.8	7.9	7.9	29.9	29.9	112.0	112.0	7.4	7.4	7.4	0.8	0.8	0.8	3.5	3.5	3.5
	,			Bottom		27.9		7.9		29.9		112.0		7.5		_	0.8	-	1	3.4	0	
				DULLUITI		-		-		-		-	_	-			-			-	_	

emarks: *DA: Depth-Averaged

Appendix I - Action and Limit Levels for Marine Water Quality on 24 June 2019 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.6 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.9 NTU
	Station M6	<u>C1. 2.0 IV1 C</u>	<u>C1. 2.7 111 C</u>
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	<u> </u>	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 2.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 2.7 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 2.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 2.7 mg/L
	Stations G1-G4, M1-M5	5	
		<u>6.9 mg/L</u>	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 1.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 2.0 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 June 2019

(Mid-Ebb Tide)

Part		Weather	Sea	Sampling	1		Temper	ature (°C)	l r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(ma/L)		Turbidity(NT	U)	Suspe	nded Solids	(ma/L)
Column C	Location				Dep	th (m)																	
Columb C					0	4.4	26.8						75.5										
County C					Surface	1.1		26.8		7.8		30.7		/5./		5.1	12	0.5	0.5		2.6	2.6	
March Marc	C1	Cloudy	Calm	9:07	Middle	9.0	24.6	24.6	7.8	7.8	35.4	35.4	51.9	52.1	3.5	3.5	4.3	2.8	2.8	21	6.1	6.0	3.8
Class Clas	01	Oloudy	Calli	3.07	Wildule	5.0	21.0	24.0		7.0		33.4		32.1		3.3			2.0	2.1		0.0	5.0
C2 Clusty Calm D4 Media D5 Calm D4 Media D5 Calm D5 Ca					Bottom	17.1		24.4		7.8		35.6		50.3		3.4	3.4		3.0			2.9	
Control Cont							24.4								3.4	***		0.1			2.8		
Clusty C					Surface	1.1		27.1		8.3		28.7		72.5		4.9			1.6			4.0	
Clausy Color Col																	4.2						
Mathematical Registration	C2	Cloudy	Calm	8:04	Middle	15.9		24.6		8.3		35.4		50.7		3.4			2.9	2.7		2.4	4.3
Check Chec																				-			
G1 Closey Calm Both Closey Calm Closey					Bottom	31.1		24.6		8.3		35.5	50.0	50.5	3.4	3.4	3.4		3.5		6.0	6.5	
Cloudy C									0.0		00.1		81.3		5.5			0.0			6.4		
Cloudy Calm R-27					Surface	1.1		26.7		8.0		30.7		80.5		5.4			1.3			6.3	
Cloudy Column C	٠.																5.2						
Check Chec	G1	Cloudy	Calm	8:37	Middle	4.1		26.4		8.0		32.4		73.9		5.0			1.1	1.3		4.0	4.7
Cloudy Cam 8.26 Surface 1.1 28.6 20.0 8.0					Dottom	7.1		25.7	8.0	0.0		22.7		56.0	3.9	2.0	2.0		4.4		3.7	2.7	
Cloudy Cam Rotar Cloud Cloud Cloud Cloud Cloud Clo					DOLLOTTI	7.1	25.4	25.7	8.0	0.0	34.2	33.1	56.0	30.0	3.8	3.0	3.0	1.5	1.4		3.7	3.7	
County Calm Restar Res					Surface	1.1	26.7	26.7	8.0	8.0	30.7	30.8	79.8	70.7	5.4	5.4		2.0	2.0		2.3	2.3	
Class Clas			1	1	Guilace		26.6	20.1	8.0	0.0	30.9	50.0	79.5	13.1	5.4	J. 4	4.9	2.0	2.0]	2.3	2.0	l
Couly Calm Rotton Coul	G2	Cloudy	Calm	8:26	Middle	5.1		26.1		8.0		32.9		67.1		4.5			1.2	2.1		3.0	2.3
	I	,	1			Ų				0.0		02.0		J			ļ			4		0.0	
Class					Bottom	9.0		24.7		8.0		35.4		51.5	3.5	3.5	3.5		3.3			1.7	
Clausy Calm B43 Mode A1 268 268 7.9 7.9 3.25 3.24 8.55 6.0 4.6 4.6 1.4 1.5 1.8 8.68 8.8 8.7 8.7 8.8 8.7 8.8 8.						***			0.0		00.1		0		3.5	***		U.L					
G3 Cloudy Calm 8-49 Middle 4.1 28.8 7.9 7.9 27.9 27.9 37.					Surface	1.0		26.8		7.9		30.0		78.1		5.3			1.7			3.6	
March Marc																	5.0			_			
Bellow Fig. Bellow Fig. Bellow Fig. Bellow Fig.	G3	Cloudy	Calm	8:43	Middle	4.1		26.4		7.9		32.4		69.0		4.6			1.5	1.8		8.7	5.7
Cloudy Calm Section Calm Cloudy Calm Section Calm Cloudy C																				-			
G4 Cloudy Calm 852 Middle 42 267 260 79 79 79 305 306 787 79 79 553 53 53 53 53 51 05 05 05 33 33 33 33 34 44 Cloudy Calm 852 Middle 42 267 260 79 79 79 324 323 715 717 48 48 48 48 51 01 01 01 12 37 37 37 37 44 Cloudy Calm 832 Middle 50 267 80 80 80 305 306 732 731 50 812 38 38 38 39 41 Cloudy Calm 832 Middle 50 267 80 80 80 305 306 732 731 50 812 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					Bottom	7.1		25.4		7.9		34.3		52.9	3.0	3.6	3.6		2.3			5.0	
G4 Cloudy Calm 852 Middle 4.2 26.7 26.0 7.9 7.9 30.7 30.0 79.0 79.0 1.0 1.0 1 1.2 3.7 3.7 3.7 4.4 4.4 4.4 4.4 1.5 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0							-0.1				0.110		0.2.0		5.0						0.1		
Cloudy Calm R52 Modele 42 267 268 7.9 7.9 7.9 324 32.3 71.5 71.7 4.8 4.8 4.8 0.1 0					Surface	1.1		26.6		7.9		30.6		79.0		5.3			0.5			3.3	
Math Cloudy Calm Saz Metode A.Z 25.3 26.0 7.9 7.9 3.22 32.3 71.8 71.7 4.8 4.8 4.8 0.1 0.1 1.2 3.7 3.															0.0		5.1						
Mathematical Region	G4	Cloudy	Calm	8:52	Middle	4.2		26.0		7.9		32.3		71.7		4.8			0.1	1.2		3.7	4.4
M1 Cloudy Calm					Dottom	7.0	26.4	25.0	7.9	7.0	34.4	24.4	51.6	54.0	3.5	2.5	2.5	2.9	2.0		6.1	6.1	
Miles Fig. 1.0					Bottom	7.0		25.9		7.9		34.4		51.2		3.5	3.5		2.9			6.1	
Miles Miles					Surface	1.0	26.7	26.7	8.0	9.0	30.5	20.6	73.2	72.1	5.0	4.0		1.6	1.6		2.9	2.0	
M1 Cloudy Calm 8.32 Model 3.1 26.3 26.4 8.0 8.0 32.0 32.0 31.6 66.5 68.2 4.6 4.6 4.6 1.7 1.8 1.7 1.6 3.8 3.9 3.9 4.1 26.5 26.5 26.1 26.1 8.0 8.0 32.5 32.7 66.3 65.8 4.5 4.4 4.4 4.4 1.5 1.5 1.5 5.3 5.4 5.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2					Surrace	1.0	26.7	20.7	8.0	0.0	30.6	30.0	72.9	73.1	4.9	4.5	18	1.6	1.0		3.0	3.0	
M2 Cloudy Calm Surface 1.0 26.5 6.0 8.0 32.5 32.7 66.3 65.8 4.6 4.4 4.4 4.4 4.4 1.5 1.5 5.3 5.4	M1	Cloudy	Calm	8:32	Middle	3.1	26.3	26.4	8.0	8.0	32.0	31.6	67.9	68.2	4.6	4.6	7.0	1.7	1.7	16	3.8	3.9	4.1
M2 Cloudy Calm 8.23 Surface 1.1 26.4 26.4 8.2 8.1 31.6 31.6 71.7 71.9 4.8 4.8 4.8 4.8 4.8 1.1 1.1 1.1 3.1		Oloddy	Cann	0.02	middio	0		20.1		0.0		01.0		00.2						1.0		0.0	
M2 Cloudy Calm 8-23 Surface 1.1 28.4 26.4 8.2 8.1 8.1 31.6 31.6 77.0 77.9 4.9 4.8 4.8 4.6 11 1.1 1.1 3.2					Bottom	5.0		26.1		8.0		32.7		65.8		4.4	4.4		1.5			5.4	
M2 Cloudy Calm R23 Radic R3 R									0.10		0.2.10		0.0.0								U. 1		
M2 Cloudy Calm 8:23 Middle 6.0 25.9 26.0 8.1 8.1 8.1 33.0 32.9 64.6 64.7 4.4 4.4 4.4 4.4 1.3 13 1.3 1.7 2.2 2.3 2.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7					Surface	1.1		26.4		8.1		31.6		71.9		4.8			1.1			3.2	
M3 Cloudy Calm Middle																	4.6			-			
Bottom 10.3 24.5 24.6 8.1 8.1 35.0 35.3 53.1 53.0 52.0 3.6 3.5 3.5 2.6 2.6 2.6 2.7	M2	Cloudy	Calm	8:23	Middle	6.0		26.0		8.1		32.9		64.7		4.4			1.3	1.7		2.3	2.7
M3 Cloudy Calm 8:45 Surface 1.0 26.9 26.5 7.9 7.9 29.7 29.4 81.2 81.7 5.5 5.5 5.5 5.1 1.3 1.3 5.4																				-			
M3 Cloudy Calm 8:45					Bottom	10.3		24.6		8.1		35.3		52.0		3.5	3.5		2.6			2.7	
M3 Cloudy Calm		1	1			<u> </u>							0.0.0			<u> </u>				1			
M3 Cloudy Calm 8.45 Middle 4.1 26.8 26.1 7.9 7.9 32.4 32.3 69.0 69.3 4.7 4.7 0.7 0.7 0.7 0.7 1.2 4.5 4.6 4.6 4.5 4.5 4.6 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5					Surface	1.0		26.5		7.9		29.4	-	81.7		5.5	l		1.3			5.4	
M3 Cloudy Calm 8:45 Middle 4:1 25.4 25.1 7.9 7.9 32.2 32.3 69.6 69.3 4.7 4.7 0.7 0.7 0.7 1.2 4.6 4.5		Olever	0-1	0.45	10.1.0	- 4.4		00.4		7.0		20.0		00.0		4.7	5.1		0.7	1 40		4.0	4.5
HA Cloudy Calm Model Cloudy Calm Model Cloudy Calm Model Calm Resource Color Model Calm Resource Cal	M3	Cloudy	Calm	8:45	Middle	4.1		26.1		7.9		32.3		69.3		4./	l		0.7	1.2		4.6	4.5
M4 Cloudy Calm 8:13 Surface 1.1 26.7 26.7 8.2 8.1 8.2 31.1 31.1 80.0 79.0 79.5 5.4 5.3 5.4 5.3 0.5 0.5 0.5 3.4 3.5 3.4 3.5 3.4 3.5 3.5 3.4 3.5 3.5 3.5 3.6 3.					Dottom	7.1	26.2	25.0	7.9	7.0	34.4	24.4	48.7	40.4	3.3	2.2	2.2	1.7	1.7		3.6	2.7	
M4 Cloudy Calm 8:13					DOLLOTTI	7.1	25.4	25.0	7.9	7.9	34.4	34.4	48.1	40.4	3.3	3.3	3.3	1.7	1.7		3.7	3.7	
M4 Cloudy Calm					Surface	1.1	26.7	26.7	8.2	0.2	31.1	21.1	80.0	70 F	5.4	E 4		0.5	0.5		3.5	2.5	
M4 Cloudy Calm 8.13 Middle 5.0 26.5 8.2 8.2 8.2 32.9 33.0 77.8 77.3 5.2 0.3 0.3 0.3 1.2 2.0 2.0 2.4 2.4 2.4 2.4 8 8.1 8.1 8.1 35.3 35.2 52.0 52.0 51.7 3.5 3.5 3.5 3.5 2.9 2.9 2.9 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6					Surface	1.1	26.7	20.7	8.1	0.2	31.2	31.1	79.0	15.5	5.3	3.4	5.3	0.5	0.5		3.4	3.3	
M6 Cloudy Calm 8.56 Middle 2.2 26.5 26.5 7.9 7.9 7.9 31.5 31.6 31.5 75.2 75.7 5.1 5.1 5.1 0.3 2.0 0.3	M4	Cloudy	Calm	8:13	Middle	5.0		26.5		8.2		33.0		77.3		5.2	3.5		0.3	1.2		2.0	2.4
M6 Cloudy Calm 8.56 Middle 2.2 26.5 26.5 7.9 7.9 7.9 31.5 31.5 31.5 31.6 31.7 35.7 35.1 35.0 35.3 2.9 2.9 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		Oloudy	- Cann	00	WIIGGIE	0.0		20.5		0.2		55.0		77.5		5.2			0.0	J ''		2.0	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 7.9 31.5 31.5 51.4 3.5 5 2.9 1.6 5.1 51.4 3.5 5 2.9 1.6 5.1 51.4 3.5 5 2.9 5.1 51.4 3.5 5 2.0 5.1 51.4 3.5 5 2.0 5.1 51.4 3.5				1	Bottom	9.1		24.8		8.1		35.2		51.7		3.5	3.5		2.9			1.6	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 7.9 31.5 31.6 31.5 75.2 75.7 5.1 5.1 5.1 5.1 0.5 0.9 0.8 0.8 0.8 3.7 3.7 3.7 3.7				1					0.1		- OO.L		01.1		0.0			2.0		<u> </u>	1.0		
M5 Cloudy Calm 9:02 Middle 6.1 25.0 25.0 7.8 7.8 31.0 70.9 4.8 4.2 0.5 1.8 1.6 1.4 2.6 2.7 2.7 2.6 2.6 25.0 25.0 7.8 7.8 35.0 35.0 55.7 54.3 3.8 3.7 4.2 1.8 1.6 1.4 1.6 1.4 2.6 2.7 2.7 2.6 2.7 2.7 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8					Surface	1.0		26.6		7.8		31.1		70.7		4.8	l		0.6			2.9	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 31.6 31.5 76.1 75.2 75.7 5.1 5.1 0.9 0.8 0.8 0.8 3.7 3.7 3.7		1	1	1				l									4.2			4		l	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 31.6 31.5 76.1 75.2 75.7 5.1 5.1 5.1 0.9 0.8 0.8 0.8 3.7 3.7 3.7	M5	Cloudy	Calm	9:02	Middle	6.1		25.0		7.8		35.0		54.3		3.7	l		1.6	1.4		2.7	2.6
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 7.9 31.6 31.5 76.1 75.2 75.7 5.1 5.1 5.1 0.9 0.8 0.8 0.8 3.7 3.7 3.7		1	1	1		+		 		-		+					 		+	1		 	
M6 Cloudy Calm 8:56 Surface - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					Bottom	11.1		24.6		7.8		35.6		50.2		3.4	3.4		2.1			2.4	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 31.5 31.5 75.1 75.2 75.7 5.1 5.1 5.1 0.9 0.8 0.8 3.7 3.7 3.7		1	1	1		1	24.0	<u> </u>	7.8		35.6	1	50.2	1	3.4	1	<u> </u>	2.1	1	1	2.3	<u> </u>	
M6 Cloudy Calm 8:56 Middle 2.2 26.5 26.5 7.9 7.9 31.5 31.5 75.2 75.7 5.1 5.1 0.9 0.8 0.8 3.7 3.7 3.7 3.7					Surface	-	_	-	l -	-	_	-	l -	-	_	-	l	_	-		1	-	
we cloudy call 6.56 Middle 2.2 26.5 26.5 7.9 7.9 31.6 31.5 75.2 75.7 5.1 5.1 0.8 0.8 0.8 0.5 3.7 5.7		l	l				26.5	l	7.9		31.5		76.1		5.1		5.1	0.9		1	3.7	l	
	M6	Cloudy	Calm	8:56	Middle	2.2		26.5		7.9		31.5		75.7		5.1	l		8.0	0.8		3.7	3.7
					Datter		-				-				-			-		1	-		
		<u></u>	<u></u>	<u></u>	Bottom				<u>_</u> -	_			<u></u> -				⁻						

Appendix I - Action and Limit Levels for Marine Water Quality on 26 June 2019 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 4.2 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.5 NTU
	Station M6	<u> </u>	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 4.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L
	Stations G1-G4, M1-M5	5	
		<u>6.9 mg/L</u>	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 7.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.5 mg/L
	Station M6	<u>'</u>	
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 June 2019

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dont	h (m)	Temper	ature (°C)		рН	Salin	ity ppt	DO Satu	uration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Location	Condition	Condition*	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	26.8 26.8	26.8	7.9 7.9	7.9	30.5 30.4	30.5	71.4 72.1	71.8	4.8 4.9	4.8		1.1	1.1		3.0 3.2	3.1	
C1	Cloudy	Calm	13:09	Middle	8.9	24.6	24.6	7.9 7.9	7.9	35.4 35.4	35.4	50.8 51.8	51.3	3.5	3.5	4.2	2.5	2.6	2.5	4.3	4.3	3.5
				Bottom	17.0	24.4	24.5	7.9	7.9	35.6	35.6	49.7	49.8	3.4	3.4	3.4	4.0	3.8		3.2	3.2	
	l I	 				24.5 27.2		7.9 8.5		35.6 28.3	1	49.8 71.7		3.4 4.9	<u> </u>		3.7 1.5		 	3.2 7.6	<u> </u>	
				Surface	1.1	27.1	27.2	8.1	8.3	28.5	28.4	70.4	71.1	4.8	4.8	4.1	1.4	1.4		7.5	7.6	ļ
C2	Cloudy	Calm	12:06	Middle	15.8	24.6 24.5	24.6	8.5 8.1	8.3	35.4 35.5	35.4	50.5 50.5	50.5	3.4 3.4	3.4		2.9 3.1	3.0	2.3	1.4 1.4	1.4	4.6
				Bottom	31.0	24.6 24.5	24.5	8.5 8.1	8.3	35.4 35.5	35.5	50.4 50.1	50.3	3.4 3.4	3.4	3.4	2.4 2.3	2.4		4.8 5.1	5.0	
				Surface	1.1	26.5 26.5	26.5	8.0 8.0	8.0	31.3 31.4	31.4	75.9 75.5	75.7	5.1 5.1	5.1		0.7 0.7	0.7		3.5 3.4	3.5	
G1	Cloudy	Calm	12:39	Middle	4.1	26.4 26.4	26.4	8.0 8.0	8.0	32.6 32.5	32.5	73.2	72.8	4.9 4.9	4.9	5.0	0.3	0.3	0.5	3.0	3.0	4.3
				Bottom	7.1	25.7	25.7	8.0	8.0	33.6	33.6	72.4 62.2	60.3	4.2	4.1	4.1	0.5	0.6		3.0 6.6	6.5	
				Surface	1.0	25.6 26.5	26.5	8.0	8.0	33.7 31.3	31.2	58.3 74.7	74.8	3.9 5.0	5.0		0.6 1.3	1.3		6.4 2.8	2.8	
						26.5 26.0		8.0		31.2 32.9		74.8 66.3		5.0 4.5		4.8	1.3 1.2			2.7		
G2	Cloudy	Calm	12:29	Middle	5.1	26.2 25.0	26.1	8.0	8.0	32.6 34.9	32.7	68.4 52.5	67.4	4.6 3.6	4.5		1.2	1.2	1.6	2.5 5.1	2.5	3.5
				Bottom	9.1	24.8	24.9	7.9	8.0	35.2	35.1	52.3	52.4	3.6	3.6	3.6	2.6	2.5		5.1	5.1	
				Surface	1.1	26.9 26.9	26.9	8.0 8.0	8.0	28.8 29.1	28.9	84.8 84.0	84.4	5.8 5.7	5.7	5.2	2.0 1.9	2.0		4.4 4.4	4.4	
G3	Cloudy	Calm	12:46	Middle	4.0	26.2 26.2	26.2	8.0 8.0	8.0	32.7 32.6	32.7	69.5 69.5	69.5	4.7 4.7	4.7	5.2	1.1 1.2	1.1	1.9	3.9 4.0	4.0	4.2
				Bottom	7.1	25.4	25.4	8.0	8.0	34.2	34.3	51.2 50.6	50.9	3.5	3.4	3.4	2.5	2.5		4.4	4.4	
				Surface	1.1	26.9	26.8	7.9	7.9	30.2	30.3	85.6	84.8	5.8	5.7		0.8	0.8		4.2	4.3	
G4	Cloudy	Calm	12:55	Middle	4.0	26.8 26.5	26.5	7.9 8.0	7.9	30.4	32.4	84.0 75.0	74.7	5.7 5.0	5.0	5.4	0.0	0.0	1.2	4.3 3.4	3.4	4.2
04	Cioudy	Cairii	12.55			26.4 25.4		7.9 8.0		32.5 34.3		74.3 53.7		5.0 3.6			0.0 2.7		1.2	3.4 4.9		4.2
				Bottom	7.0	25.3	25.4	7.9	7.9	34.4	34.4	51.3	52.5	3.5	3.5	3.5	2.7	2.7		5.1	5.0	
				Surface	1.1	26.7 26.7	26.7	7.9 8.0	8.0	30.2 30.4	30.3	74.8 74.2	74.5	5.1 5.0	5.0	4.9	1.4 1.4	1.4		4.6 4.5	4.6	
M1	Cloudy	Calm	12:34	Middle	3.1	26.6 26.6	26.6	8.0 8.0	8.0	31.0 30.6	30.8	69.5 70.3	69.9	4.7 4.8	4.7		1.6 1.5	1.5	1.4	3.2 3.0	3.1	4.1
				Bottom	5.1	26.2 26.2	26.2	8.0	8.0	32.4 32.5	32.5	67.6 67.0	67.3	4.6 4.5	4.5	4.5	1.4	1.4		4.7 4.7	4.7	
				Surface	1.1	26.5	26.5	8.0	8.0	31.5	31.6	75.3	75.1	5.1	5.1		0.7	0.7		4.0	4.1	
M2	Cloudy	Calm	12:25	Middle	5.6	26.5 25.6	25.7	8.0	8.0	31.6 33.7	33.4	74.9 57.9	60.6	5.0 3.9	4.1	4.6	2.1	2.1	1.8	2.4	2.4	3.9
				Bottom	10.1	25.8 25.2	24.9	8.0	8.0	33.2 34.5	35.0	63.2 51.5		4.3 3.5	3.5	3.5	2.2	2.5		2.3 5.1	5.2	
						24.6 26.7		8.0		35.5 30.1	1	50.6 76.5	51.1	3.4 5.2	<u> </u>	3.5	2.5	<u> </u>	l	5.2 6.8	<u> </u>	
				Surface	1.1	26.7	26.7	8.0	8.0	30.1	30.1	77.2	76.9	5.2	5.2	4.9	1.0	1.0		6.7	6.8	
M3	Cloudy	Calm	12:48	Middle	4.0	26.1 26.3	26.2	7.9 7.9	7.9	32.4 31.9	32.2	67.6 68.1	67.9	4.6 4.6	4.6		0.5 0.5	0.5	0.9	3.8 3.8	3.8	4.6
				Bottom	7.0	25.7 25.5	25.6	7.9 7.9	7.9	33.4 34.1	33.7	56.6 51.9	54.3	3.8 3.5	3.7	3.7	1.1 1.1	1.1		3.1 3.2	3.2	
				Surface	1.1	26.7 26.7	26.7	8.0 8.0	8.0	30.9 30.9	30.9	78.3 78.7	78.5	5.3 5.3	5.3		1.2 1.2	1.2		4.2 4.2	4.2	
M4	Cloudy	Calm	12:16	Middle	5.1	26.6	26.6	8.1	8.0	32.8	32.6	78.3	78.4	5.2	5.2	5.3	0.9	0.9	1.5	3.3	3.3	4.6
				Bottom	9.0	26.6 24.9	24.9	8.0 8.1	8.0	32.4 35.2	35.1	78.4 51.9	51.7	5.3 3.5	3.5	3.5	1.0 2.5	2.5		6.3	6.2	
		l 		Surface	1.1	24.9 26.7	26.7	8.0 7.9	7.9	35.1 30.7	30.7	51.5 75.9	75.7	3.5 5.1	<u> </u>		2.5 0.4	0.4	l 	6.1 3.8	3.9	
						26.7 25.0		7.9 7.9		30.7 34.9		75.4 53.1		5.1 3.6	5.1	4.4	0.4 1.4			3.9 4.8		1
M5	Cloudy	Calm	13:05	Middle	6.1	25.0	25.0	7.9	7.9	35.0	34.9	53.8	53.5	3.7	3.6		1.3	1.3	1.1	4.8	4.8	3.9
				Bottom	11.1	24.6 24.5	24.6	7.9 7.9	7.9	35.6 35.6	35.6	50.7 50.6	50.7	3.5 3.4	3.4	3.4	1.6 1.7	1.7		3.1 3.1	3.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-	F.0	-	-		-	-	
M6	Cloudy	Calm	12:58	Middle	2.2	26.5 26.5	26.5	7.9 7.9	7.9	31.6 31.5	31.5	74.8 74.5	74.7	5.0 5.0	5.0	5.0	0.8	0.8	0.8	6.8 6.9	6.9	6.9
				Bottom	-	- 20.0	-	7.9	-		-	- 74.5	-	-	-	-	- 0.8	-		- 6.9	-	
	l	<u> </u>				-	1	-		-		-	1	-	1		-	1	<u> </u>	-	1	<u> </u>

Appendix I - Action and Limit Levels for Marine Water Quality on 26 June 2019 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO:/I	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.6 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 5.0 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 3.7 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 4.0 mg/L
	Stations M1-M5	<u>C1. 3.7 mg/L</u>	C1. 4.0 mg/L
	Stations Wil Wil	6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C1: 4.0 mg/L
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 3.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 4.2 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 June 2019

(Mid-Ebb Tide)

	Weather	Sea	Sampling	_		Tempera	ature (°C)		Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	,	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	26.7 26.7	26.7	8.8 8.8	8.8	32.8 32.8	32.8	88.5 84.2	86.4	6.0 5.7	5.8		1.5 1.7	1.6		8.3 8.1	8.2	
C1	Cloudy	Calm	10:26	Middle	9.0	26.4 26.5	26.4	8.8 8.8	8.8	33.6 33.4	33.5	85.0 84.3	84.7	5.8 5.7	5.7	5.8	2.2	2.4	1.9	6.1	6.1	6.4
				Bottom	17.0	26.4 26.4	26.4	8.8 8.8	8.8	33.7 33.7	33.7	84.6 84.2	84.4	5.7 5.7	5.7	5.7	1.8 1.6	1.7		4.8 5.1	5.0	
				Surface	1.1	26.7 26.7	26.7	8.9 9.0	8.9	32.0 32.0	32.0	83.5 82.7	83.1	5.7 5.6	5.6		2.4 2.3	2.3		5.6 5.7	5.7	
C2	Cloudy	Calm	9:29	Middle	16.0	26.4 26.4	26.4	8.9 9.0	8.9	33.8 33.6	33.7	83.7 83.8	83.8	5.7 5.7	5.7	5.7	4.0 3.3	3.6	3.2	3.7 3.7	3.7	4.8
				Bottom	31.0	26.4 26.3	26.4	8.9 8.9	8.9	33.7 33.9	33.8	83.7 83.5	83.6	5.7 5.7	5.7	5.7	3.9 3.4	3.7		4.9 5.0	5.0	
				Surface	1.0	26.6 26.6	26.6	8.9 8.9	8.9	33.0 33.0	33.0	90.1 88.6	89.4	6.1 6.0	6.0	6.0	1.0 1.0	1.0		4.2 4.3	4.3	
G1	Cloudy	Calm	9:55	Middle	4.0	26.6 26.6	26.6	8.9 8.9	8.9	33.0 33.0	33.0	89.2 88.8	89.0	6.0 6.0	6.0	0.0	1.1 1.0	1.1	1.1	5.1 5.1	5.1	4.8
				Bottom	6.9	26.6 26.6	26.6	8.9 8.9	8.9	33.1 33.1	33.1	88.3 88.0	88.2	6.0 6.0	6.0	6.0	1.2 1.0	1.1		5.2 5.1	5.2	
				Surface	1.0	26.5 26.5	26.5	8.9 8.9	8.9	33.2 33.3	33.2	94.3 87.2	90.8	6.4 5.9	6.1	6.1	0.6 0.6	0.6		4.3 4.2	4.3	
G2	Cloudy	Calm	9:46	Middle	5.0	26.5 26.5	26.5	9.0 8.9	9.0	33.2 33.2	33.2	89.7 87.9	88.8	6.1 5.9	6.0		0.1 0.2	0.2	0.9	6.9 7.0	7.0	5.1
				Bottom	9.0	26.3 26.4	26.4	8.9 8.9	8.9	34.1 33.8	33.9	86.2 86.2	86.2	5.8 5.8	5.8	5.8	1.8 2.0	1.9		4.2 4.2	4.2	
				Surface	1.0	26.6 26.6	26.6	8.8 8.9	8.8	31.9 32.7	32.3	87.2 85.0	86.1	5.9 5.8	5.8	5.8	1.3 1.5	1.4		4.0 3.9	4.0	
G3	Cloudy	Calm	9:58	Middle	4.0	26.6 26.7	26.6	8.8 8.8	8.8	33.1 32.6	32.8	85.1 84.7	84.9	5.8 5.7	5.7		1.9 1.7	1.8	2.0	5.3 5.5	5.4	4.3
				Bottom	7.1	26.3 26.6	26.5	8.9 8.8	8.9	34.0 33.1	33.6	85.2 84.3	84.8	5.8 5.7	5.7	5.7	3.0 2.6	2.8		3.5 3.5	3.5	
				Surface	1.0	26.7 26.6	26.6	8.8 8.8	8.8	31.5 32.5	32.0	91.5 86.5	89.0	6.2 5.9	6.1	5.9	1.9 2.3	2.1		7.0 7.0	7.0	
G4	Cloudy	Calm	10:09	Middle	4.0	26.7 26.7	26.7	8.8 8.8	8.8	32.9 33.1	33.0	84.6 83.9	84.3	5.7 5.7	5.7		1.7 1.4	1.5	1.9	4.2 4.2	4.2	5.6
				Bottom	7.0	26.5 26.4	26.4	8.8 8.8	8.8	33.6 33.9	33.7	84.3 84.6	84.5	5.7 5.7	5.7	5.7	2.0	2.0		5.4 5.5	5.5	
				Surface	1.0	26.7 26.6	26.6	8.9 8.9	8.9	32.2 32.9	32.6	89.3 87.5	88.4	6.1 5.9	6.0	6.0	0.7	0.7		3.6 3.4	3.5	
M1	Cloudy	Calm	9:50	Middle	3.0	26.6 26.6	26.6	8.9 8.9	8.9	32.6 32.8	32.7	88.3 87.2	87.8	6.0 5.9	5.9		0.8	0.8	0.8	5.2 5.2	5.2	4.7
				Bottom	5.0	26.5 26.5	26.5	8.9 8.9 8.9	8.9	33.2 33.2	33.2	87.7 87.3	87.5	5.9 5.9	5.9	5.9	0.9	0.9		5.3 5.3	5.3	
				Surface	1.0	26.5 26.5	26.5	8.9	8.9	33.3 33.3	33.3	90.6 87.4	89.0	6.1 5.9	6.0	5.9	1.9	2.0		4.7 4.9 4.6	4.8	
M2	Cloudy	Calm	9:42	Middle	6.0	26.3 26.5 26.3	26.4	8.9 8.9 9.0	8.9	34.1 33.6 34.2	33.8	86.2 87.0 86.1	86.6	5.8 5.9 5.8	5.9		2.1 1.9 2.5	2.0	2.2	4.8 3.6	4.7	4.4
			<u> </u>	Bottom	11.0	26.3 26.6	26.3	9.0 9.0 8.8	9.0	34.2 34.2 31.6	34.2	86.3 87.3	86.2	5.8 6.0	5.8	5.8	2.8 2.8	2.6		3.6 4.9	3.6	
				Surface	1.0	26.6 26.6	26.6	8.8 8.8	8.8	33.0 33.0	32.3	84.4 84.6	85.9	5.7 5.7	5.8	5.8	2.2	2.0		4.9 4.8 5.5	4.9	
M3	Cloudy	Calm	10:05	Middle	4.0	26.6 26.4	26.6	8.8 8.8	8.8	32.8 33.9	32.9	84.1 84.0	84.4	5.7 5.7	5.7		2.5 2.2 3.1	2.4	2.5	5.5 5.5 4.7	5.5	5.0
				Bottom	7.0	26.4 26.6	26.4	8.8 8.9	8.8	34.0 32.5	33.9	84.0 84.1	84.0	5.7 5.7	5.7	5.7	3.3	3.2		4.5	4.6	
	Olevent	0-1	0.00	Surface	1.0	26.5 26.5	26.6	8.9 9.0	8.9	33.2 33.4	32.9	84.7 84.7	84.4	5.7 5.7	5.7	5.7	2.9	3.3		6.8	6.9	5.0
M4	Cloudy	Calm	9:36	Middle	5.0	26.5 26.4	26.5	9.0	9.0	33.3	33.4	84.5 84.7	84.6	5.7 5.7	5.7		3.1	3.3	3.3	4.1	4.1	5.2
				Bottom	8.9	26.4	26.4	8.9 8.8	8.9	33.6 33.0	33.6	85.4 88.6	85.1	5.8	5.8	5.8	3.6	3.3		4.5	4.6	
				Surface	1.1	26.6 26.5	26.6	8.8 8.8	8.8	33.0 33.1 33.1	33.0	85.6 85.9	87.1	5.8 5.8	5.9	5.8	2.0	1.9		3.3 3.2 4.0	3.3	
M5	Cloudy	Calm	10:21	Middle	6.0	26.5 26.6 26.5	26.5	8.8 8.8	8.8	33.1 33.3	33.1	85.9 85.4 85.2	85.7	5.8 5.8	5.8		1.9 1.8	2.0	2.0	4.0 4.1 6.4	4.1	4.6
				Bottom	11.0	26.5	26.5	8.8	8.8	33.3	33.3	85.0	85.1	5.8	5.8	5.8	2.3	2.0		6.3	6.4	
				Surface	-	26.6	-	8.8	-	32.4	-	90.9	-	6.2	-	6.1	1.1	-		7.8	-	
M6	Cloudy	Calm	10:14	Middle	2.0	26.6	26.6	8.8	8.8	32.4	32.4	89.2	90.1	6.1	6.1		1.0	1.0	1.0	7.7	7.8	7.8
			l	Bottom	-	[-		-	1 :	-	1 [-	1 :	-	-		-		1 [-	

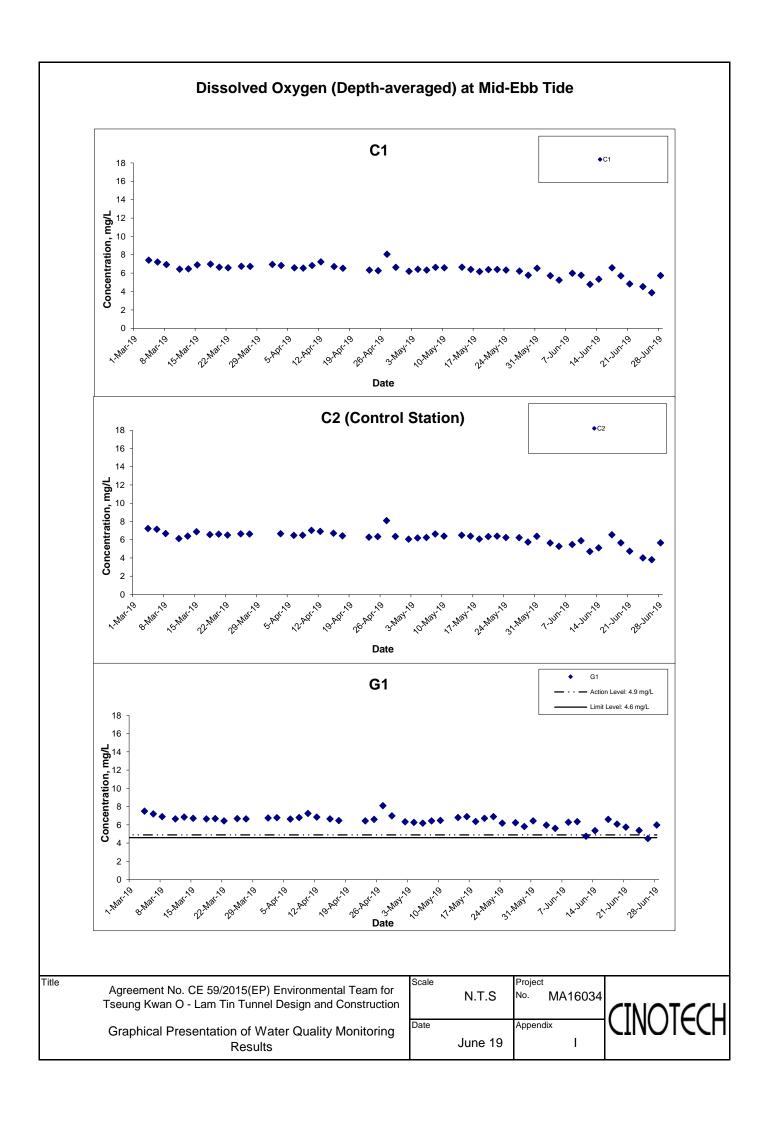
Appendix I - Action and Limit Levels for Marine Water Quality on 28 June 2019 (Mid-Ebb Tide)

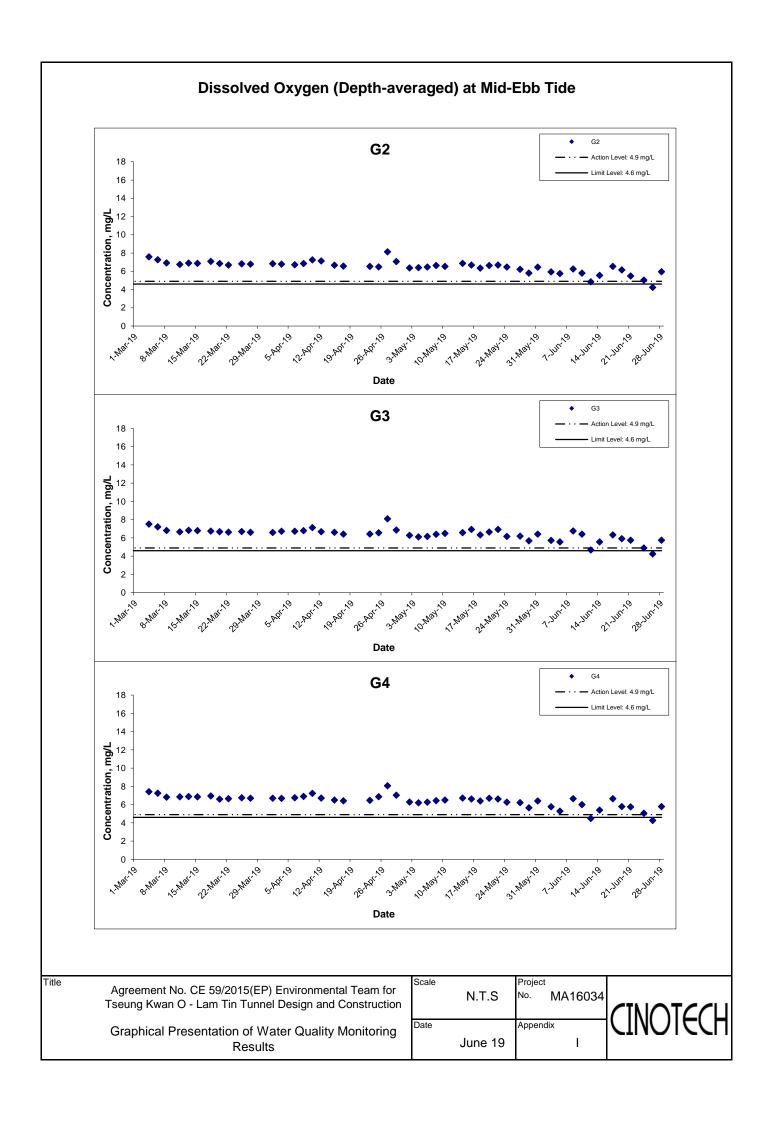
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	4.9 mg/L	4.6 mg/L
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	5.0 mg/L	4.7 mg/L
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 4.4 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.8 NTU
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		6.0 mg/L or 120% of upstream control	6.9 mg/L or 130% of upstream control
	Surface	*	station's SS at the same tide of the same day C2: 7.3 mg/L
	Stations M1-M5	<u>02. 6.0 mg/L</u>	<u>02.7.3 mg/11</u>
	Sautons III III	6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 7.3 mg/L
	Stations G1-G4, M1-M5	5	
		<u>6.9 mg/L</u>	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 5.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 6.4 mg/L
	Station M6	I	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

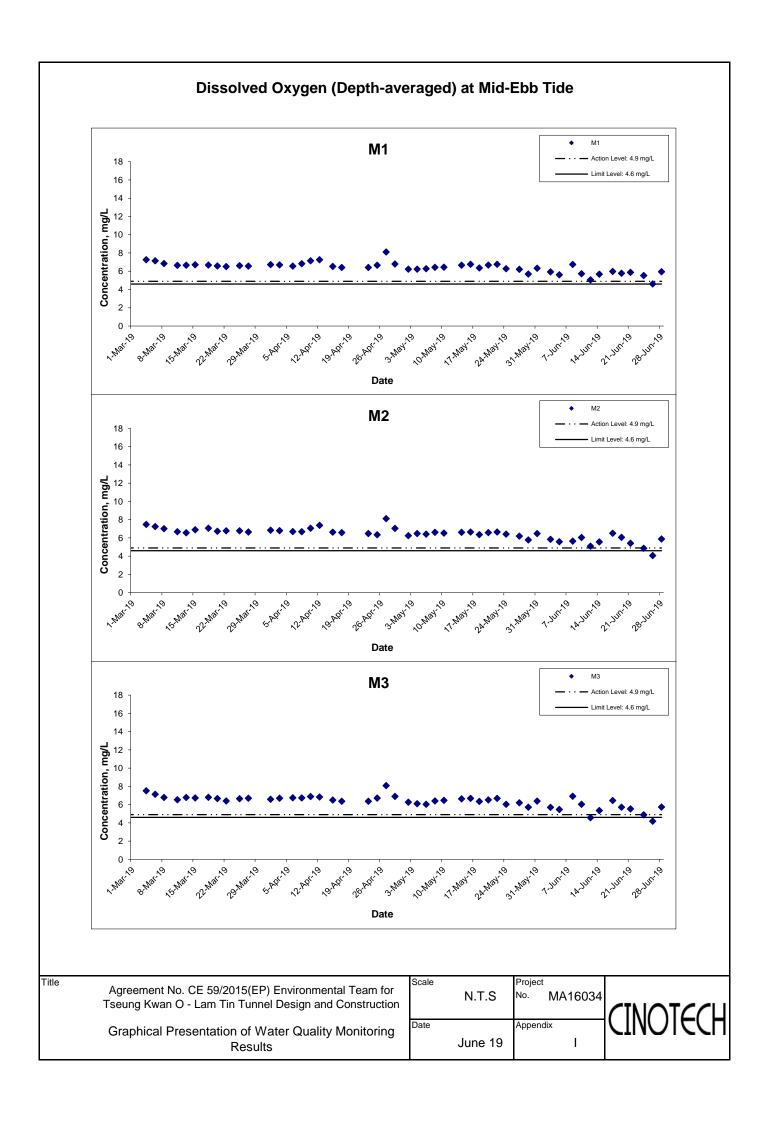
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 June 2019

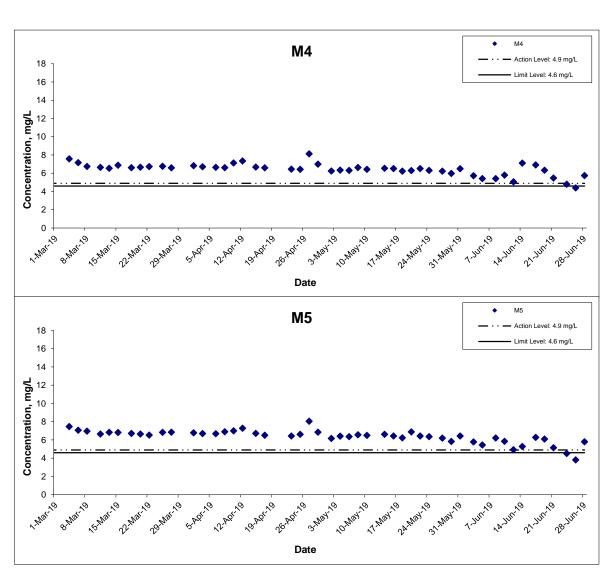
(Mid-Flood Tide)


	Weather	Sea	Sampling			Temper	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(ma/L)		Turbidity(NTU	J)	Suspe	nded Solids	(ma/L)
Location	Condition	Condition**	Time	Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	26.9	26.9	8.7	8.7	31.7	31.8	84.3	82.8	5.7	5.6		2.5	2.7		7.6	7.7	
04	Oleveti	0-1	45:04			26.8 26.7		8.7 8.8		31.9 32.5		81.3 81.1		5.5 5.5		5.6	2.9 3.6			7.8 5.8		
C1	Cloudy	Calm	15:01	Middle	9.0	26.7	26.7	8.7	8.7	32.5	32.5	80.7	80.9	5.5	5.5		3.4	3.5	3.3	5.6	5.7	6.0
				Bottom	17.0	26.4 26.1	26.3	8.8 8.8	8.8	33.5 34.4	34.0	81.5 81.4	81.5	5.5 5.5	5.5	5.5	3.5	3.7		4.6 4.7	4.7	
				Surface	1.0	27.2	27.1	8.9	8.9	30.7	30.8	84.8	83.3	5.8	5.7		3.1	3.3		5.4	5.4	
						27.1 26.6		8.9 8.9		30.8 32.9		81.8 80.1		5.6 5.4		5.6	3.5 5.8			5.4 3.8		
C2	Cloudy	Calm	14:00	Middle	15.9	26.5	26.5	8.9	8.9	33.1	33.0	80.9	80.5	5.5	5.5		5.5	5.7	4.9	3.8	3.8	4.8
				Bottom	31.0	26.5 26.5	26.5	8.9 8.9	8.9	33.1 33.1	33.1	80.5 80.9	80.7	5.5 5.5	5.5	5.5	6.1 5.6	5.9		5.1 5.1	5.1	
				Surface	1.0	26.8	26.8	8.8	8.8	32.2	32.3	93.6	91.8	6.3	6.2		1.9	2.0		4.2	4.3	
						26.8 26.8		8.8		32.4 32.5		89.9 89.0		6.1 6.0		6.1	2.1 1.7			4.4		
G1	Cloudy	Calm	14:26	Middle	4.0	26.8	26.8	8.8	8.8	32.6	32.6	90.3	89.7	6.1	6.1		2.0	1.8	2.0	4.7	4.7	5.2
				Bottom	7.0	26.7 26.7	26.7	8.8 8.7	8.8	33.0 32.8	32.9	88.0 88.5	88.3	5.9 6.0	6.0	6.0	2.0	2.1		6.5 6.5	6.5	
				Surface	1.0	26.9	26.8	8.9	8.9	32.6	32.7	92.2	90.0	6.2	6.1		2.6	2.5		9.1	9.3	
						26.8 26.8		8.9 8.9		32.8 32.8		87.7 89.7		5.9 6.1		6.0	2.5			9.5 2.8		
G2	Cloudy	Calm	14:15	Middle	5.0	26.7	26.7	8.9	8.9	33.0	32.9	87.0	88.4	5.9	6.0		2.4	2.4	2.5	2.9	2.9	4.9
				Bottom	9.0	26.6 26.6	26.6	8.9 8.8	8.8	33.2 33.2	33.2	87.0 85.9	86.5	5.9 5.8	5.8	5.8	2.8 2.5	2.6		2.5 2.5	2.5	
				Surface	1.0	27.1	26.9	8.8	8.8	31.3	31.4	93.2	91.6	6.3	6.2		2.0	2.1		4.1	4.1	
						26.7 26.7		8.8		31.6 32.7		90.0 92.0		6.1 6.2		6.2	2.3 1.4			4.1 3.2		
G3	Cloudy	Calm	14:31	Middle	4.0	26.7	26.7	8.8	8.8	32.7	32.7	90.1	91.1	6.1	6.2		1.4	1.4	1.8	3.4	3.3	3.6
				Bottom	7.0	26.6 26.6	26.6	8.8 8.8	8.8	33.1 33.0	33.0	84.4 83.9	84.2	5.7 5.7	5.7	5.7	1.9 1.8	1.8		3.2	3.3	
				Surface	1.0	26.7	26.9	8.6	8.6	32.2	31.7	92.0	93.0	6.2	6.3		3.1	2.8		3.9	3.9	
0.4	Oleveti	0-1	44:40			27.0 26.7		8.6 8.6		31.2 32.6		94.0 90.2		6.4 6.1		6.2	2.6			3.8 5.0		4.0
G4	Cloudy	Calm	14:43	Middle	4.5	26.7	26.7	8.6	8.6	32.8	32.7	89.9	90.1	6.1	6.1		3.0	3.0	3.1	4.8	4.9	4.3
				Bottom	7.0	26.6 26.6	26.6	8.6 8.6	8.6	33.1 33.2	33.1	85.1 83.3	84.2	5.8 5.6	5.7	5.7	3.3 3.8	3.5		4.1 4.1	4.1	
				Surface	1.0	27.1	26.9	8.8	8.8	31.8	32.3	93.2	89.4	6.3	6.0		3.3	3.4		4.9	4.9	
M1	Oleveti	0-1	44.04	Malala	0.0	26.7 26.9	00.0	8.8	0.0	32.8 32.3	20.4	85.6 89.9	00.0	5.8 6.1	6.0	6.0	3.5	0.0		4.9 5.5		
IVIT	Cloudy	Calm	14:21	Middle	3.0	26.8	26.8	8.8	8.8	32.6	32.4	86.4	88.2	5.8	6.0		3.2	3.2	3.4	5.5	5.5	5.7
				Bottom	4.9	26.7 26.7	26.7	8.8 8.8	8.8	32.9 32.9	32.9	85.4 85.1	85.3	5.8 5.8	5.8	5.8	3.5 3.9	3.7		6.6 6.6	6.6	
				Surface	0.9	27.0	26.8	9.0	8.9	32.4	32.7	93.7	90.6	6.3	6.1		1.6	1.5		3.7	3.8	
M2	Claudu	Colon	14:10	Malala	0.0	26.7 26.6	00.7	8.9 9.0	0.0	33.0 33.1	20.0	87.4 88.6	00.0	5.9 6.0		6.1	1.5 0.9	4.0	4.0	3.8 2.5	0.5	4.0
IVI2	Cloudy	Calm	14:10	Middle	6.0	26.7	26.7	8.9	8.9	32.9	33.0	89.0	88.8	6.0	6.0		1.1	1.0	1.8	2.5	2.5	4.0
				Bottom	11.1	26.4 26.4	26.4	9.0 8.9	8.9	33.8 34.0	33.9	86.2 84.1	85.2	5.8 5.7	5.8	5.8	2.8 3.2	3.0		5.8 5.9	5.9	
				Surface	1.0	26.8	26.7	8.7	8.7	31.8	32.2	92.0	90.2	6.3	6.1		3.3	3.1		6.7	6.8	
M3	Claudu	Calm	14:39	Middle	4.0	26.7 26.7	26.7	8.7 8.7	8.7	32.7 32.7	32.7	88.4 85.8	85.0	6.0 5.8	5.8	5.9	3.0 2.7	2.8	3.1	6.8 7.8	7.9	6.3
IVIO	Cloudy	Callii	14.39	ivildule	4.0	26.7	20.7	8.7	0.7	32.7	32.1	84.2	05.0	5.7	5.0		2.9	2.0	3.1	7.9	7.9	0.3
				Bottom	7.0	26.6 26.6	26.6	8.7 8.7	8.7	33.0 33.2	33.1	85.0 82.5	83.8	5.7 5.6	5.7	5.7	3.3 3.2	3.2		4.1 4.2	4.2	
				Surface	1.0	27.1	26.9	8.9	8.9	31.5	31.7	86.5	83.6	5.9	5.7		4.1	4.0		10.1	10.1	
M4	Cloudy	Calm	14:05	Middle	4.0	26.8 26.7	26.7	8.9 8.9	0.0	32.0 32.2	22.2	80.7 81.1	94.0	5.5 5.5	F F	5.6	3.9	2.0	4.0	10.0 5.1	F 2	6.6
IVI	Cioudy	Callii	14.03	Middle	4.9	26.7	26.7	9.0	8.9	32.4	32.3	80.9	81.0	5.5	5.5		4.0	3.8	4.0	5.2	5.2	0.0
				Bottom	9.0	26.7 26.7	26.7	8.9 8.9	8.9	32.7 32.7	32.7	82.7 82.7	82.7	5.6 5.6	5.6	5.6	4.4 4.1	4.2		4.6 4.5	4.6	
				Surface	1.0	27.0	26.9	8.7	8.7	32.0	32.0	87.6	84.7	5.9	5.7		3.2	3.1		6.4	6.4	
M5	Cloudy	Calm	14:55	Middle	6.0	26.8 26.8	26.8	8.7 8.7	8.7	32.1 32.1	32.1	81.7 83.2	82.4	5.5 5.6	5.6	5.7	2.9	2.7	2.8	6.4	6.5	6.5
CIVI	Cidudy	Callii	14.55	wildule	0.0	26.8	20.0	8.7	0.7	32.2	32.1	81.5	02.4	5.5	3.0		2.5	2.1	2.0	6.6		0.5
				Bottom	11.1	26.8 26.8	26.8	8.7 8.7	8.7	32.1 32.2	32.2	81.7 81.5	81.6	5.5 5.5	5.5	5.5	2.7	2.8		6.6 6.6	6.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Cloudy	Calm	14:49	Middle	2.0	26.9	26.8	8.6	8.6	31.9	32.3	93.4	91.8	6.3	6.2	6.2	2.0	2.1	2.1	5.0	5.0	5.0
IVIO	Cioudy	Callii	14.43			26.7		8.6	0.0	32.7	32.3	90.2		6.1	0.2		2.2	2.1	2.1	5.0	5.0	5.0
	l			Bottom	-	-	-		-	:	-		-		-	-		-	l		-	l


Remarks:

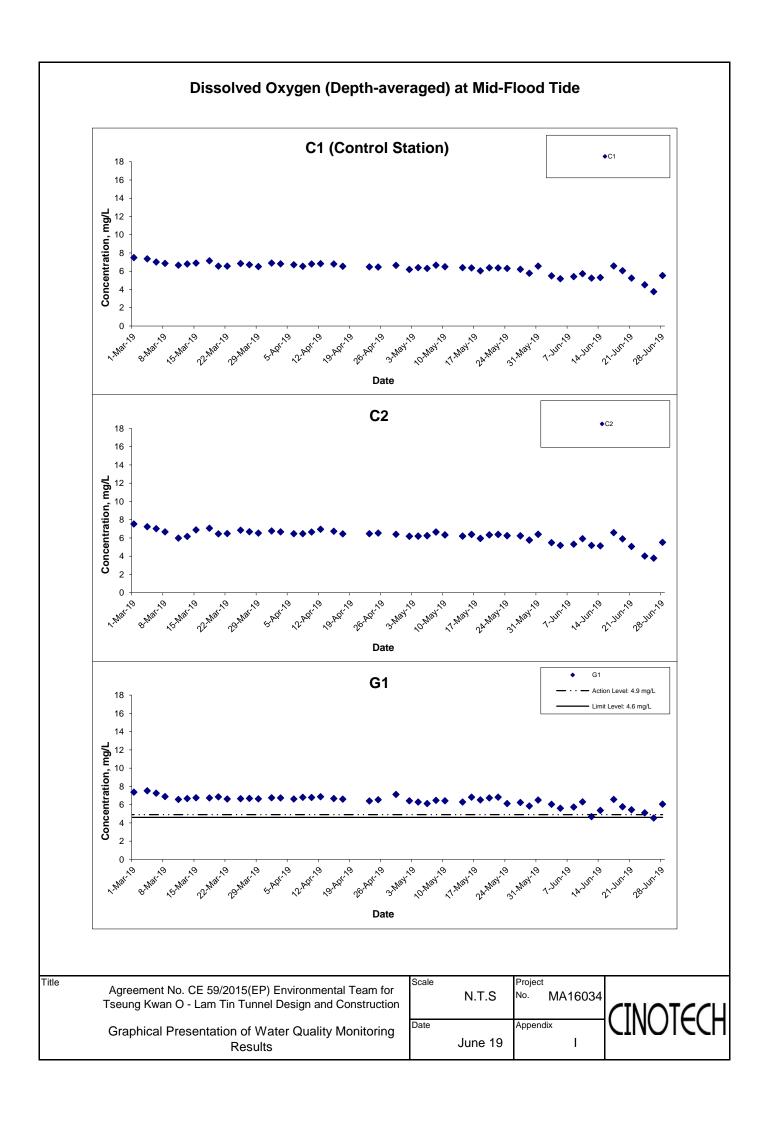

Appendix I - Action and Limit Levels for Marine Water Quality on 28 June 2019 (Mid-Flood Tide)

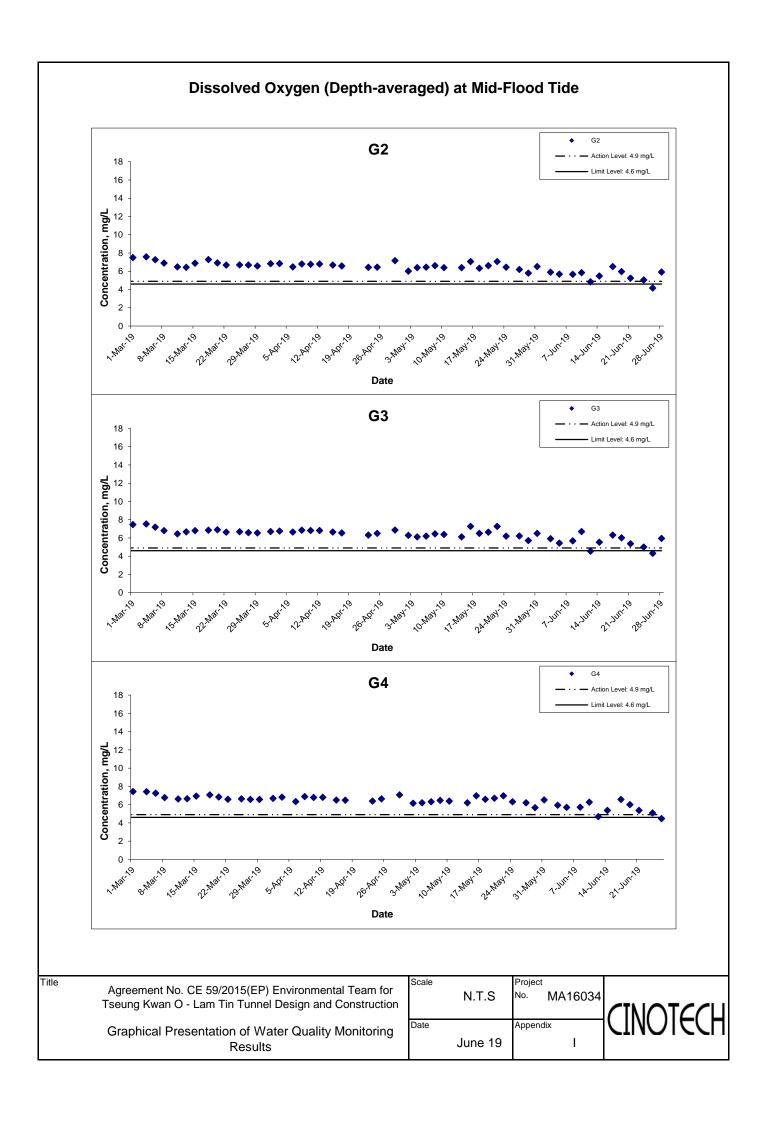
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level	
	Stations G1-G4, M1-M5	5		
DO in mg/L (See Note 1 and 4)	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>	
	Bottom	4.2 mg/L	<u>3.6 mg/L</u>	
	Station M6			
	Intake Level	5.0 mg/L	<u>4.7 mg/L</u>	
	Stations G1-G4, M1-M5			
Turbidity in NTU (See Note 2 and 4)		<u>19.3 NTU</u>	<u>22.2 NTU</u>	
	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 4.5 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 4.9 NTU	
	Station M6			
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>	
	Stations G1-G4			
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 9.2 mg/L	6.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 10.0 mg/L	
	<u>Stations M1-M5</u>			
		6.2 mg/L	7.4 mg/L	
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C1: 10.0 mg/L	
	Stations G1-G4, M1-M5			
		6.9 mg/L	7.9 mg/L	
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 5.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 6.0 mg/L	
	Station M6			
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>	

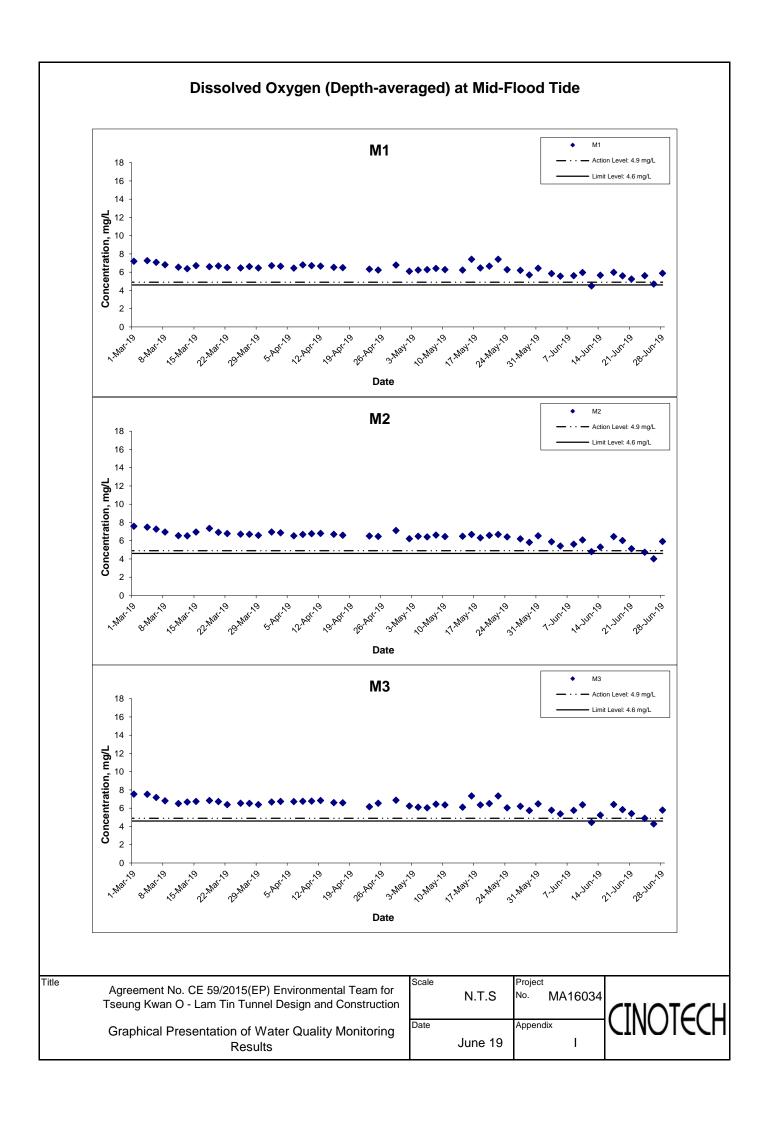

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide

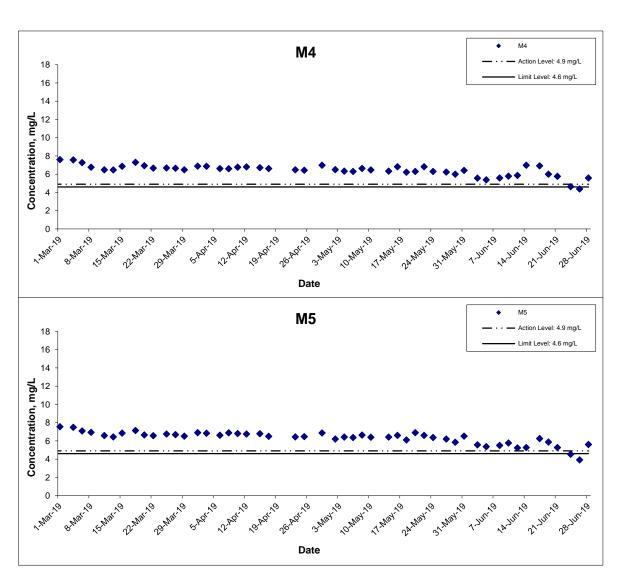
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring


Results

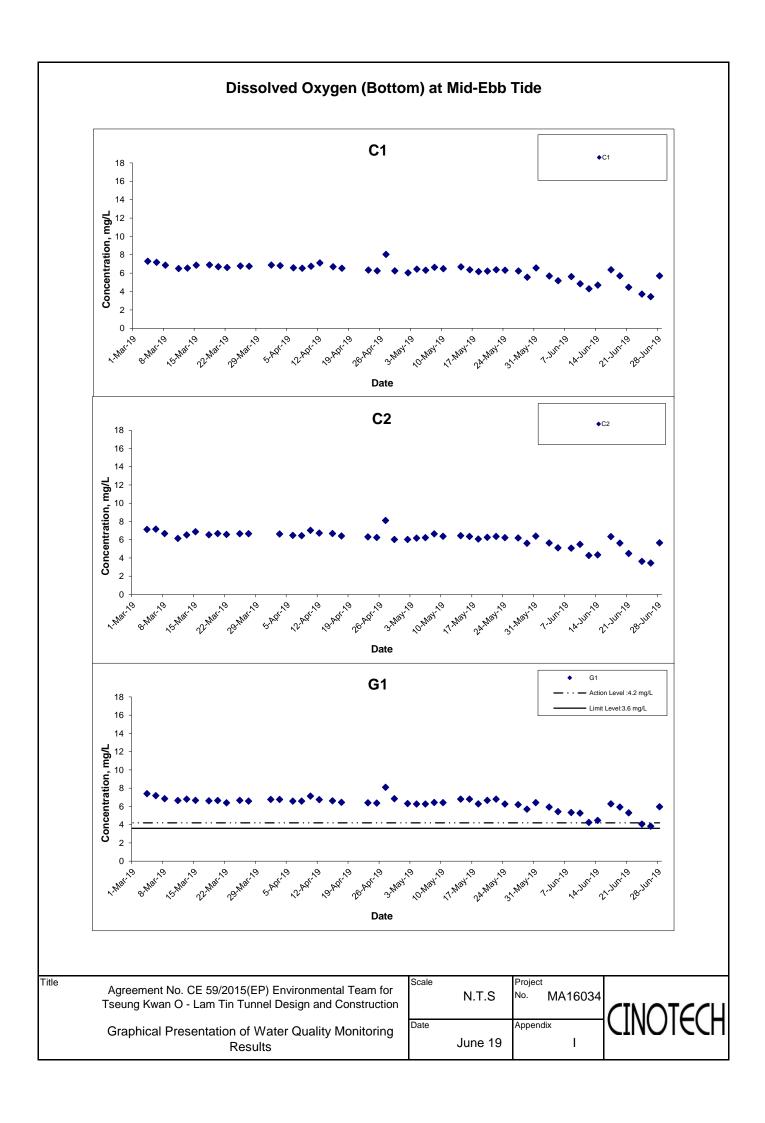

Title

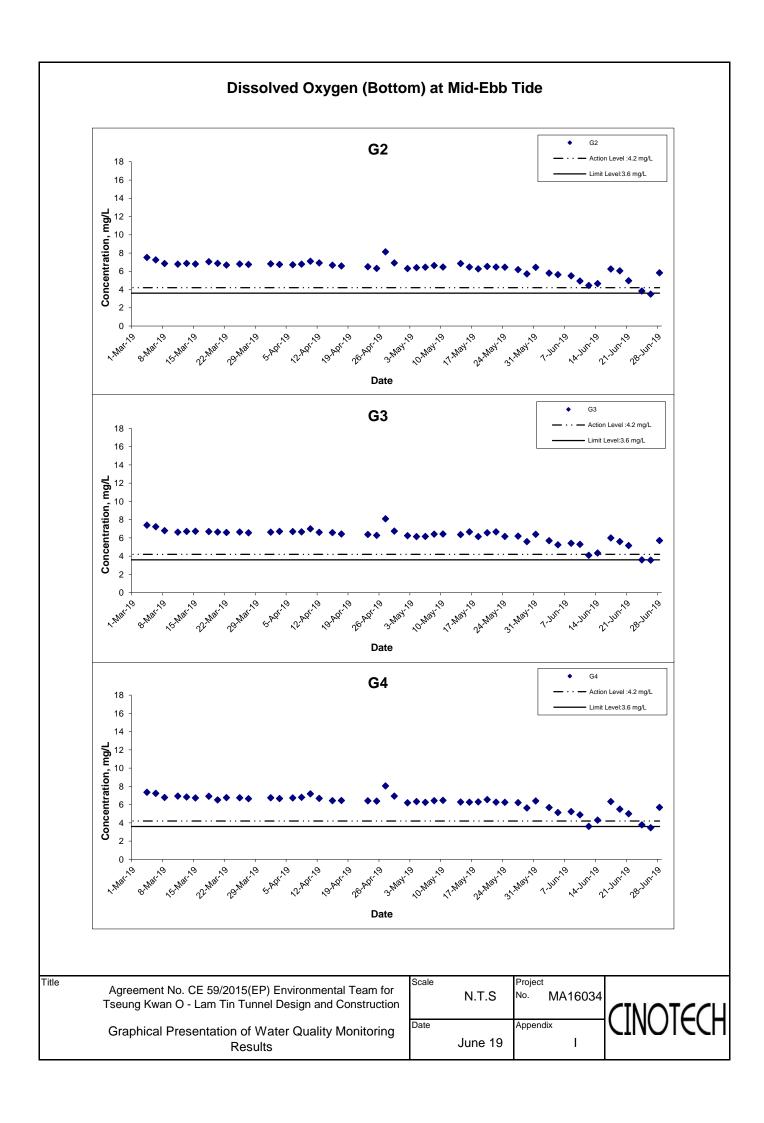

Scale Project
No. MA16034

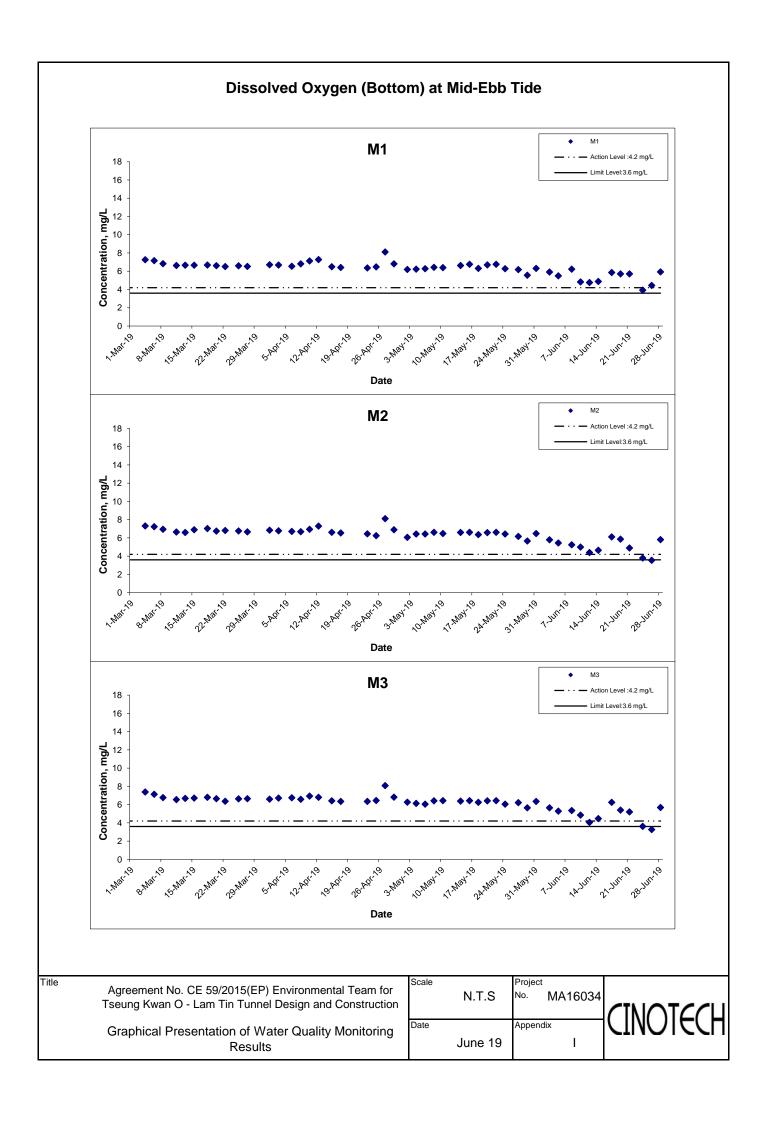
Date Appendix
June 19 I



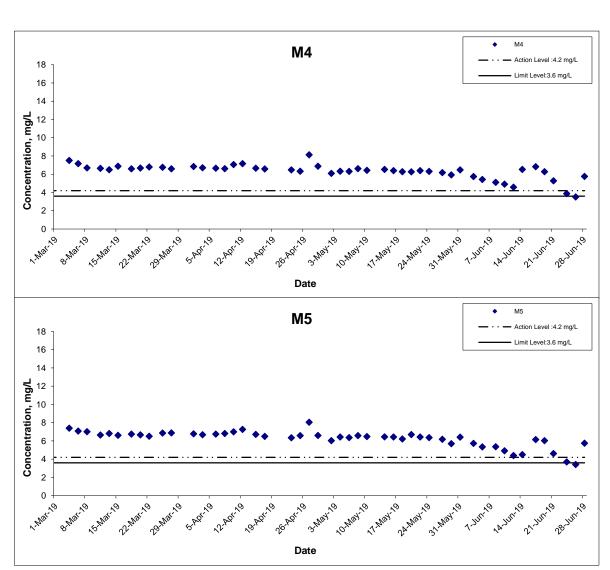
Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

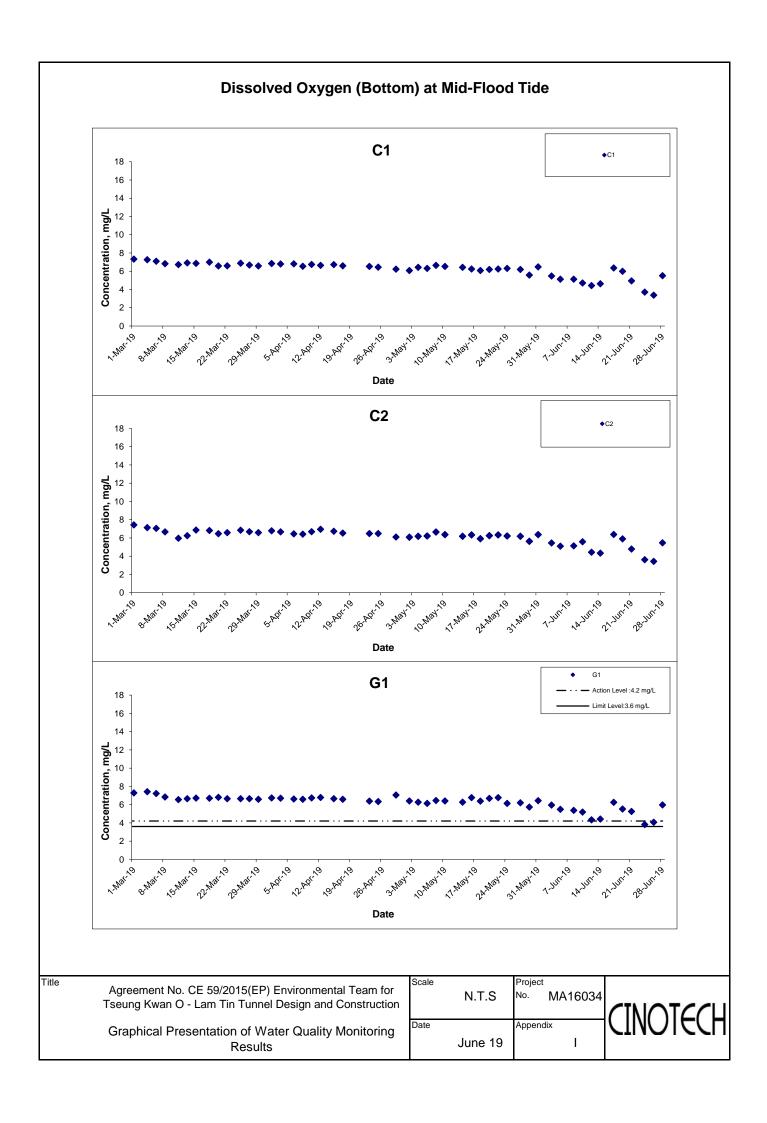

Title

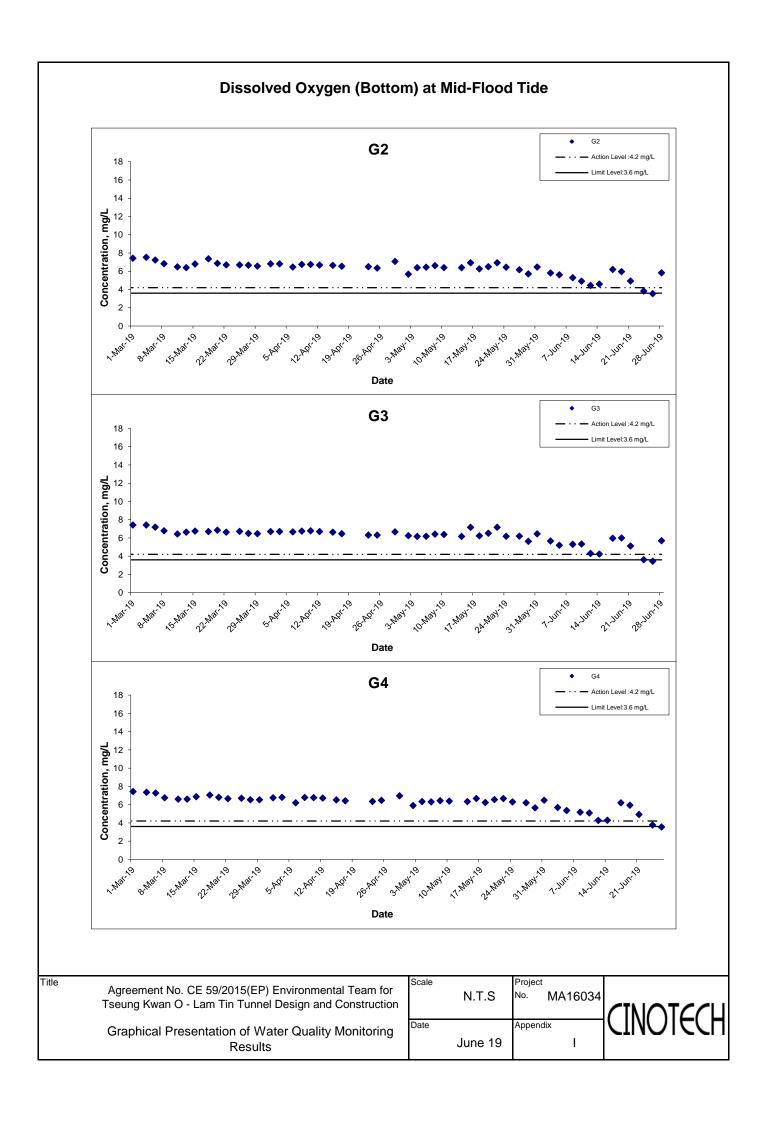
	Projec	t
N.T.S	No.	MA16034
	Apper	ndix
June 19		1
		N.T.S No.

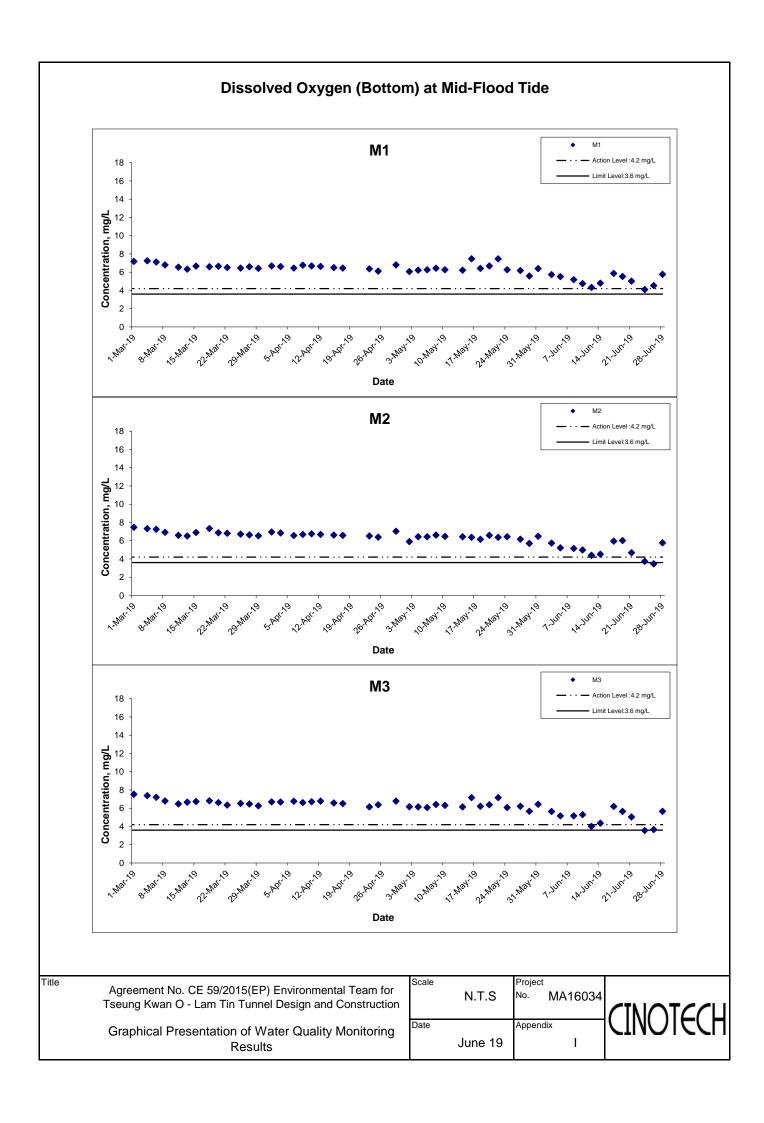


Dissolved Oxygen (Bottom) at Mid-Ebb Tide

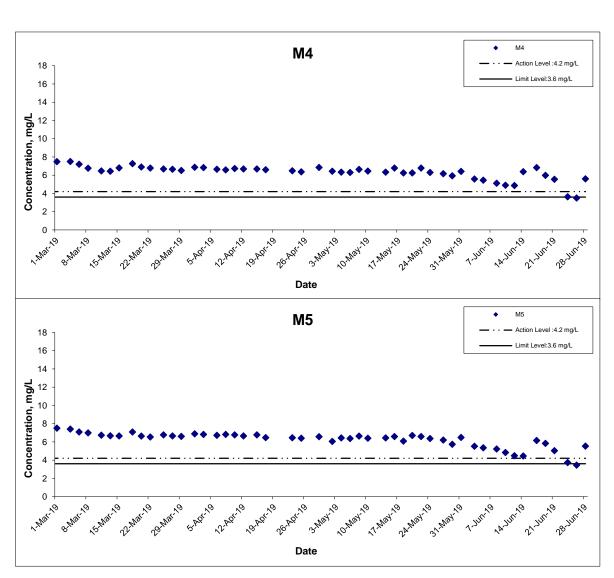
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring


Results

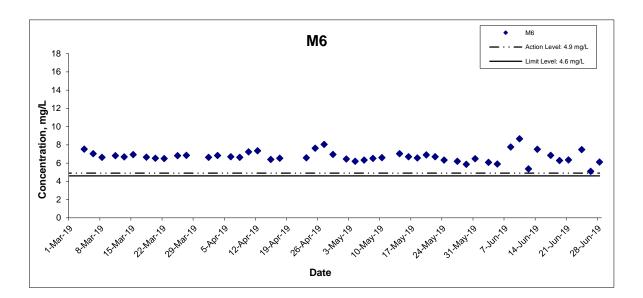

Title

	Projec	t
N.T.S	No.	MA16034
	Apper	ndix
June 19		1
		N.T.S No.



Dissolved Oxygen (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring

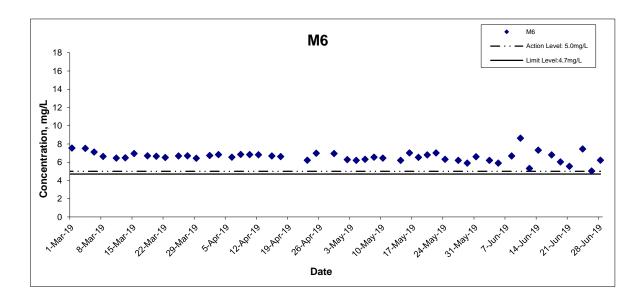

Results

Title

ct
MA16034
ndix
1

Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

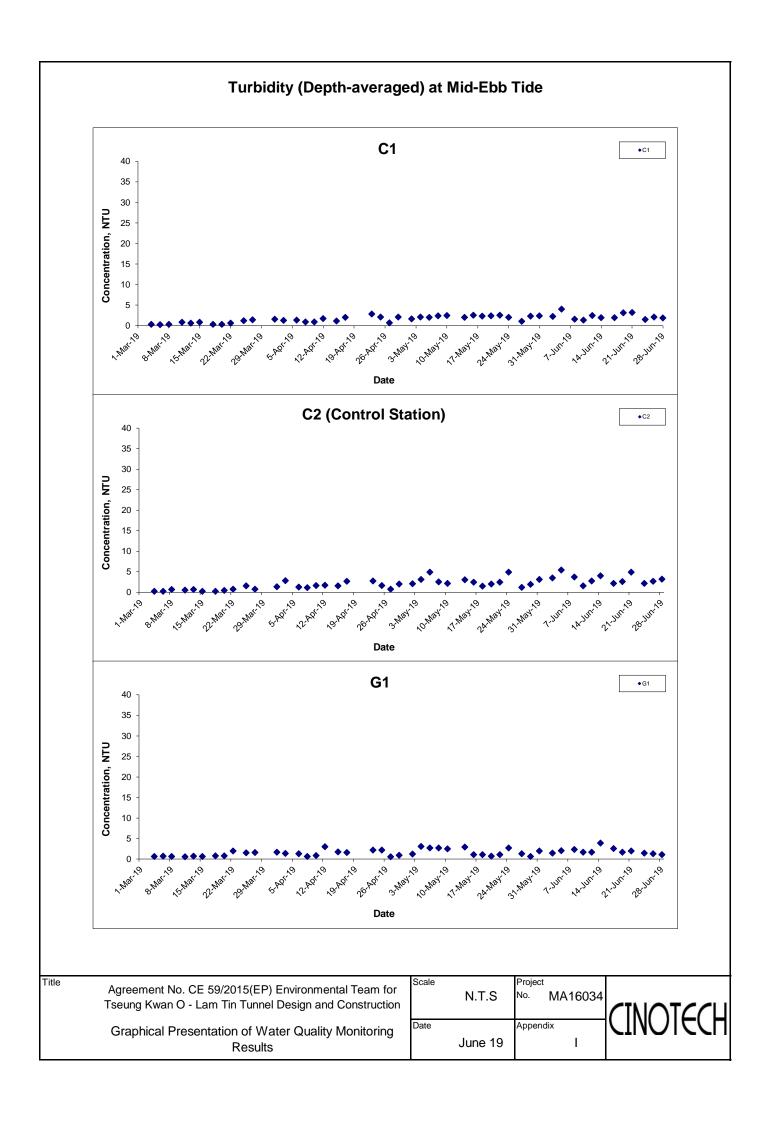
Title

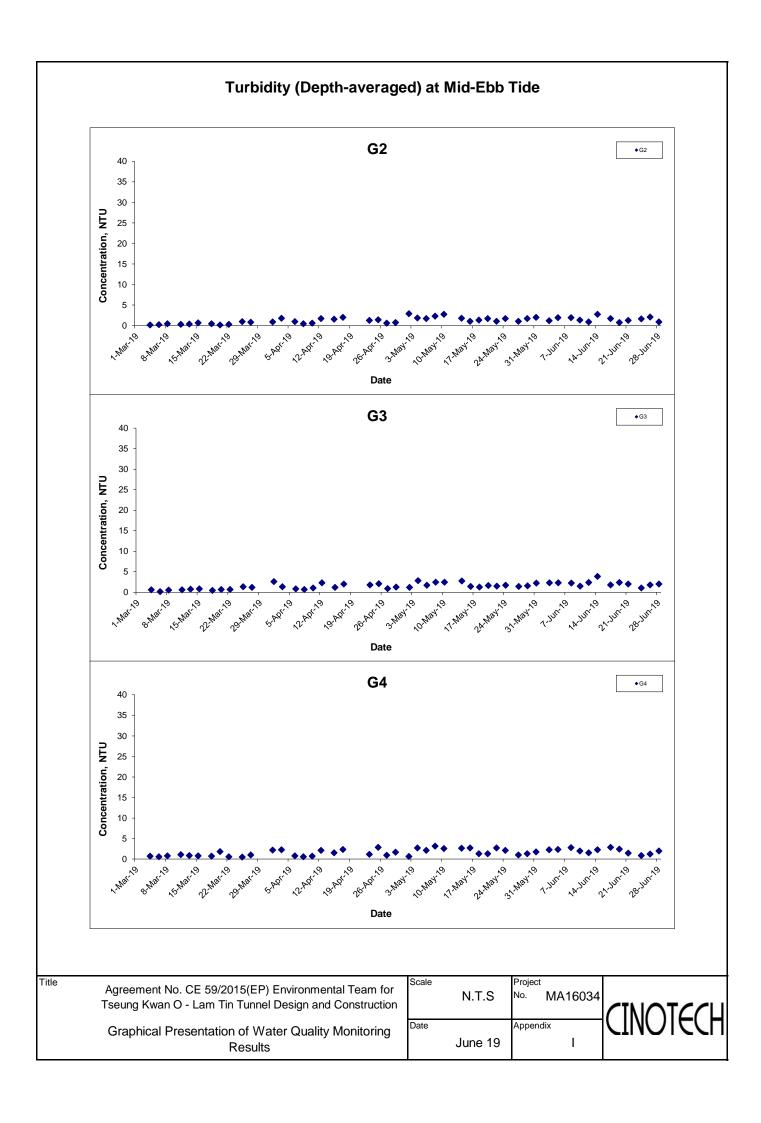

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

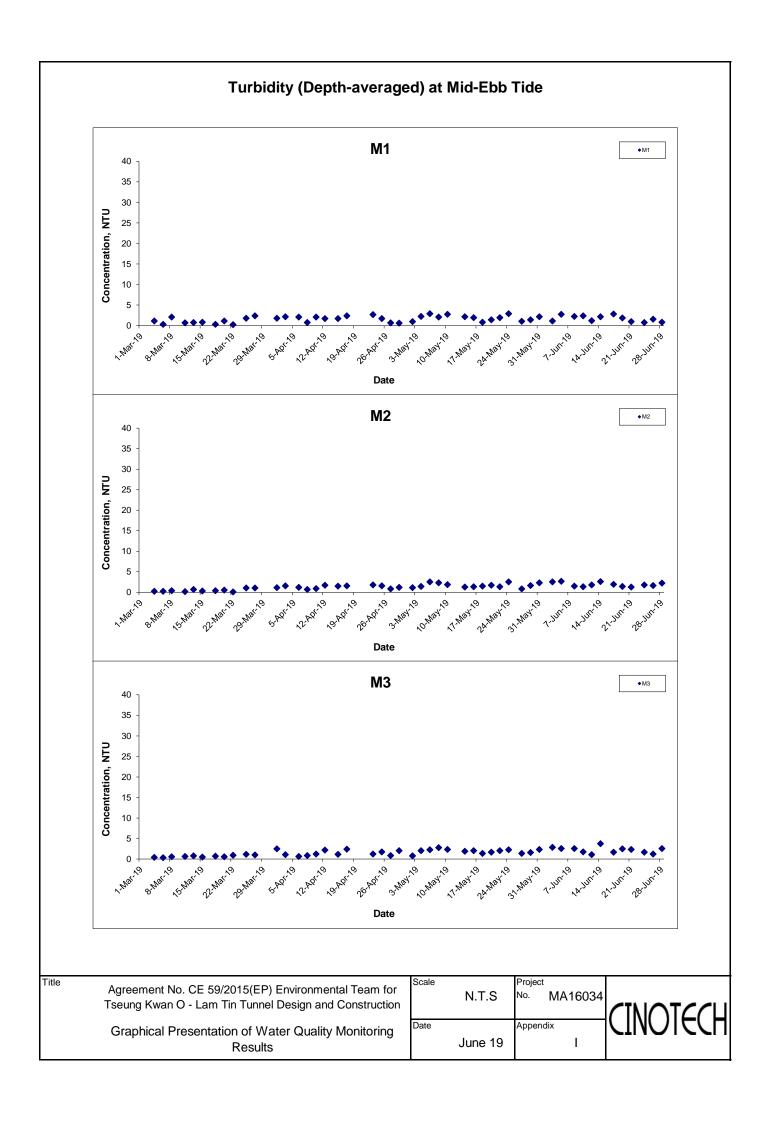
Graphical Presentation of Water Quality Monitoring Results

Scale		Project	
	N.T.S	No.	MA16034
Date		Apper	ndix
	June 19		I

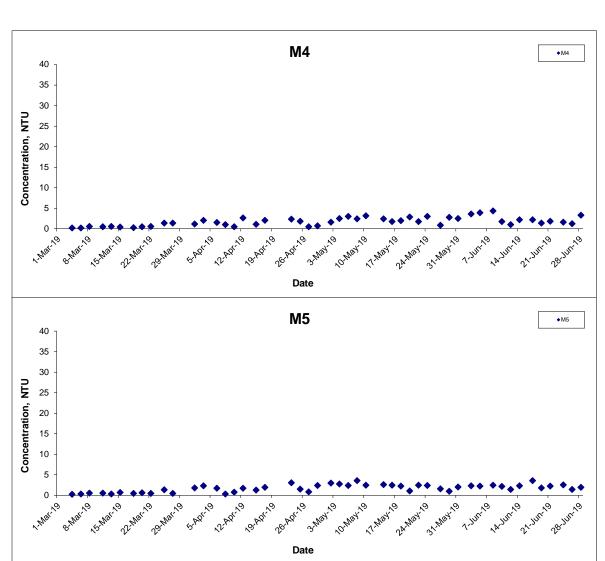
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide


Title

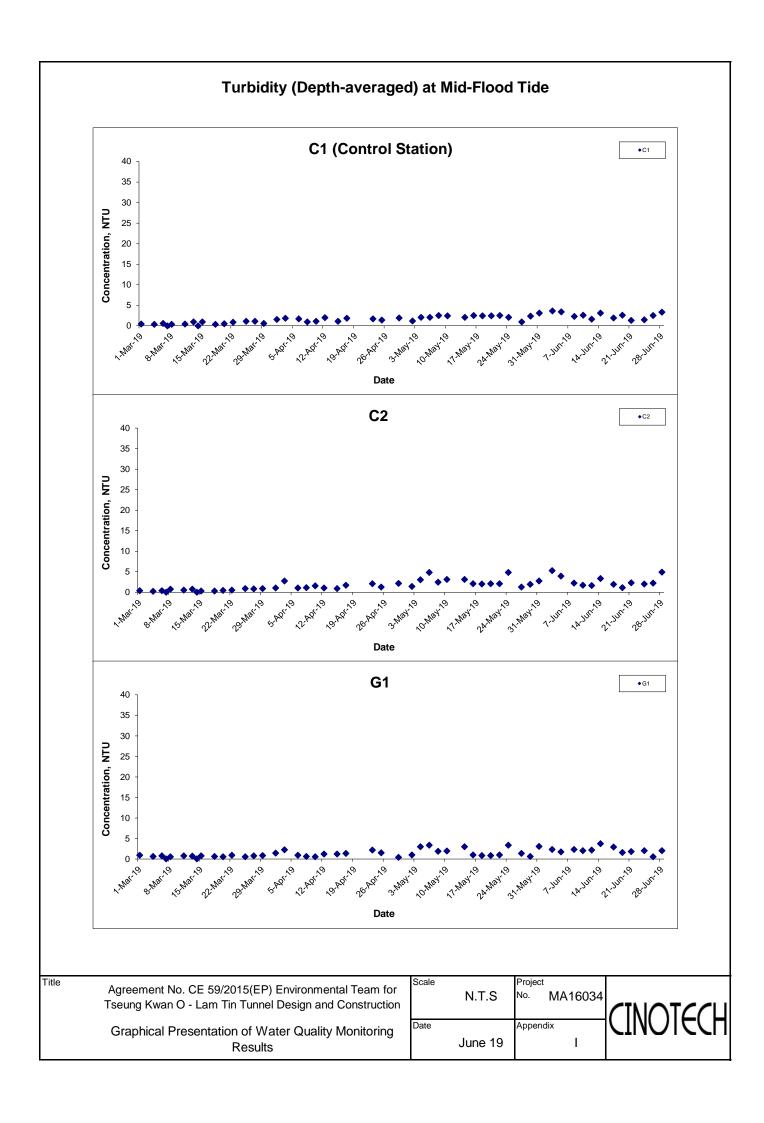

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

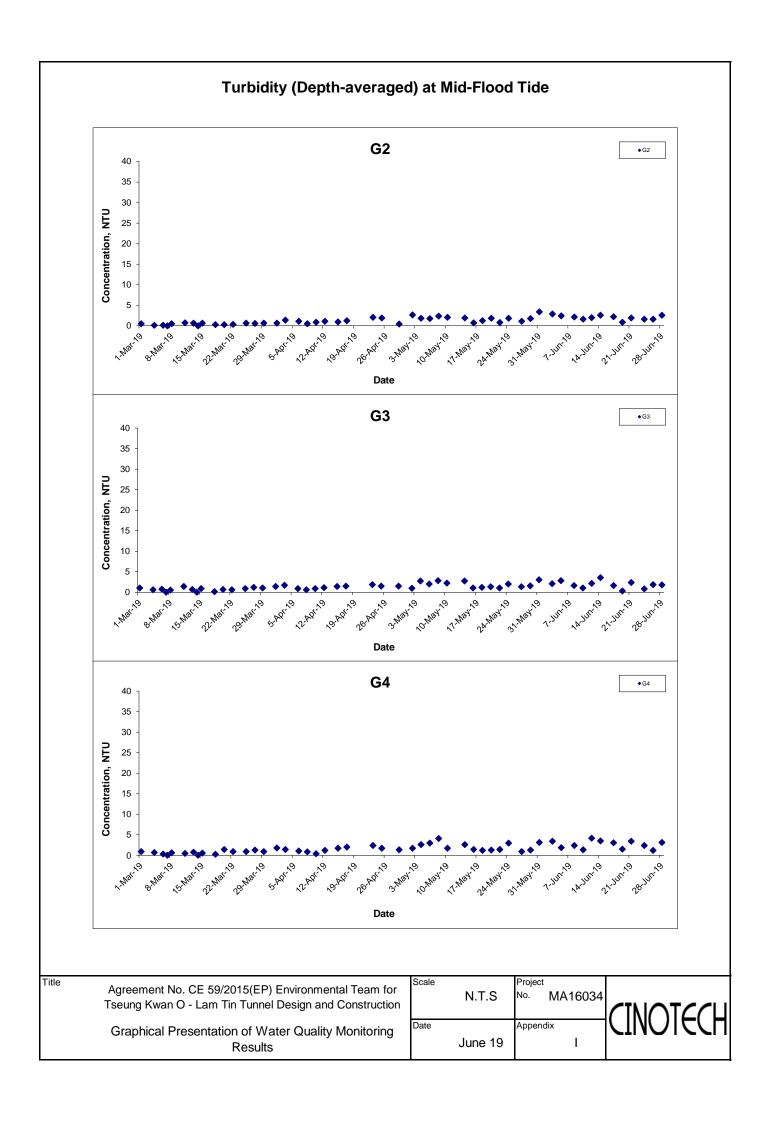

Graphical Presentation of Water Quality Monitoring Results

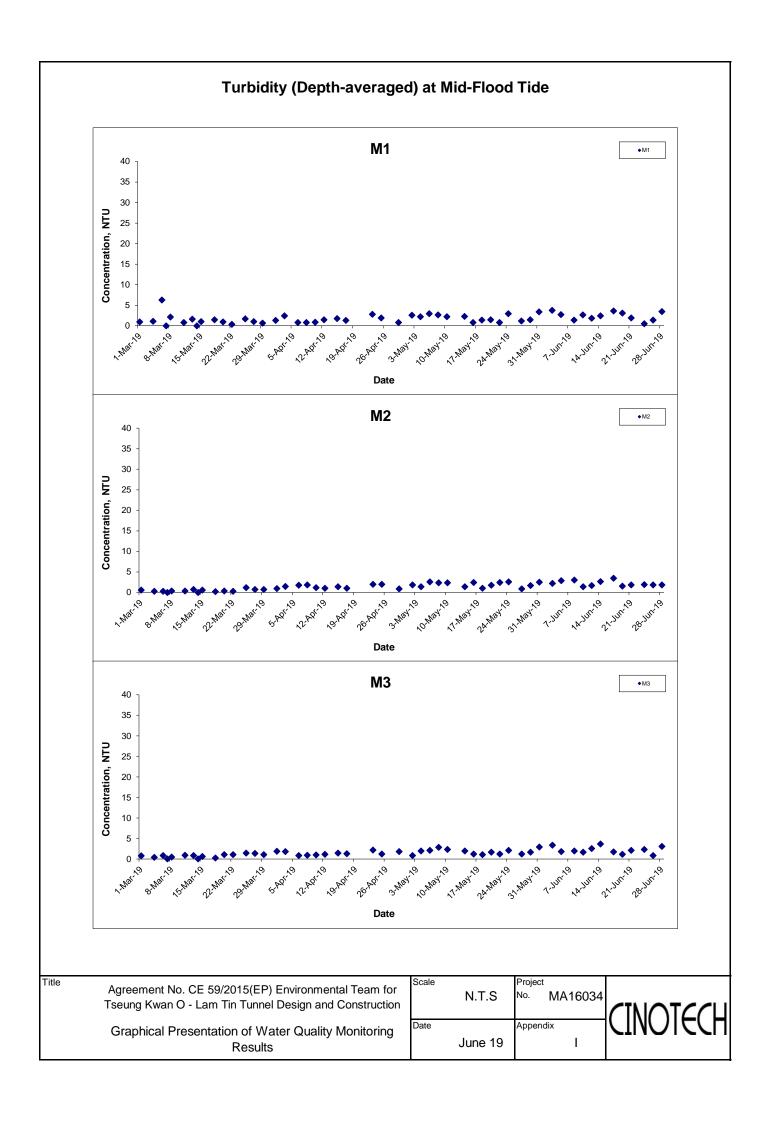
Scale	cale		Project	
	N.T.S	No.	MA16034	
Date		Apper	ndix	
	June 19		I	



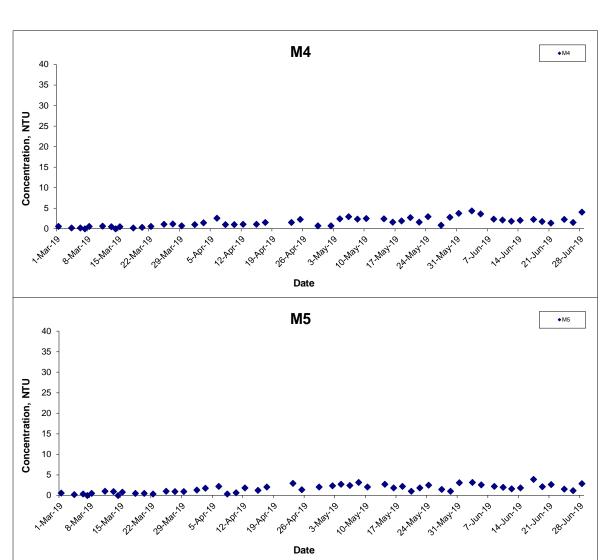
Turbidity (Depth-averaged) at Mid-Ebb Tide


Title

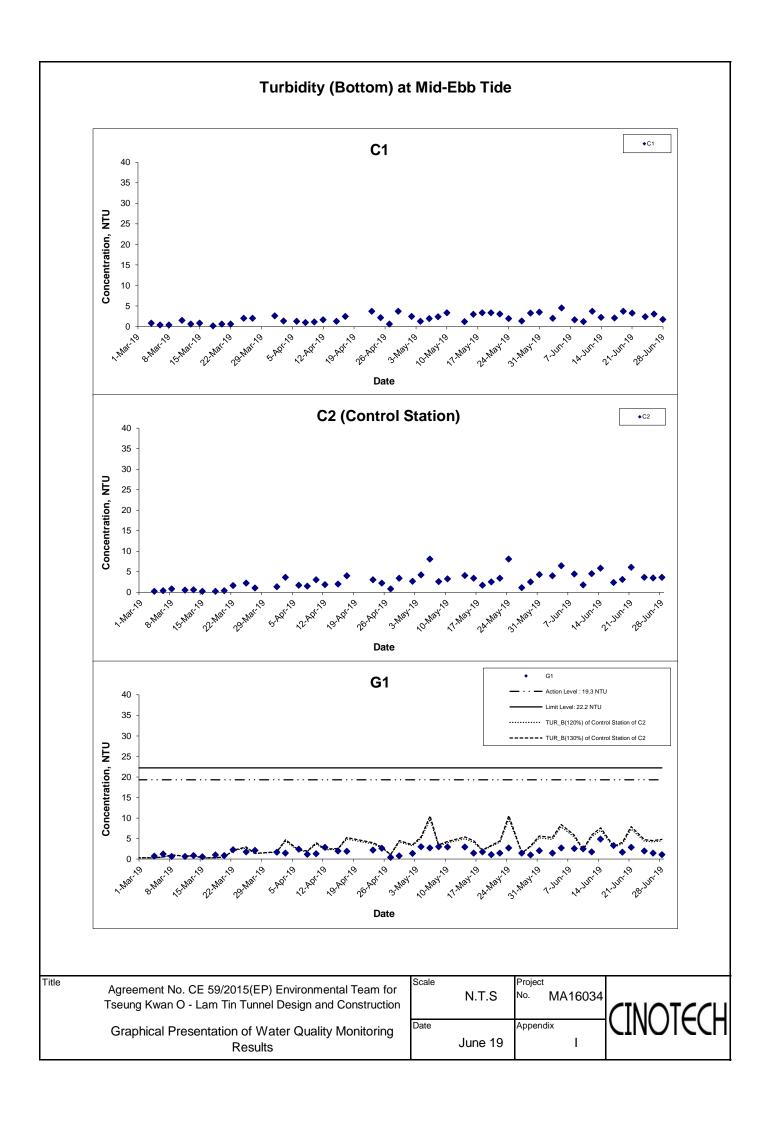

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

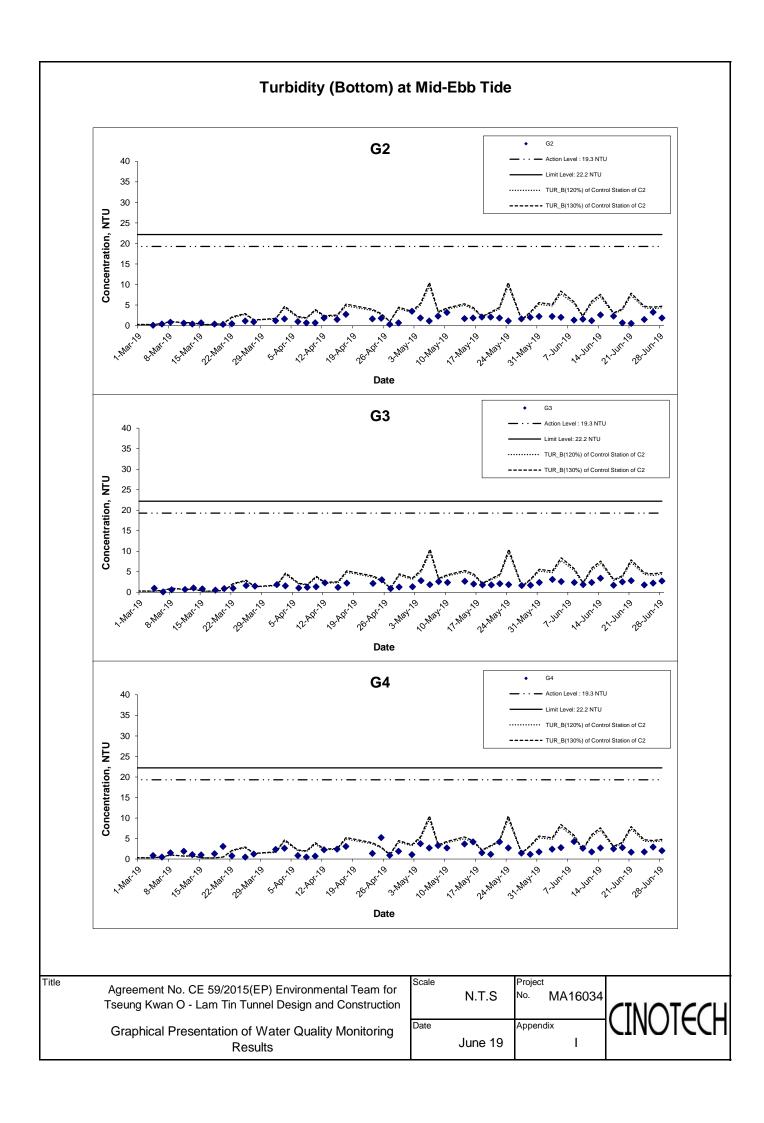

Graphical Presentation of Water Quality Monitoring Results

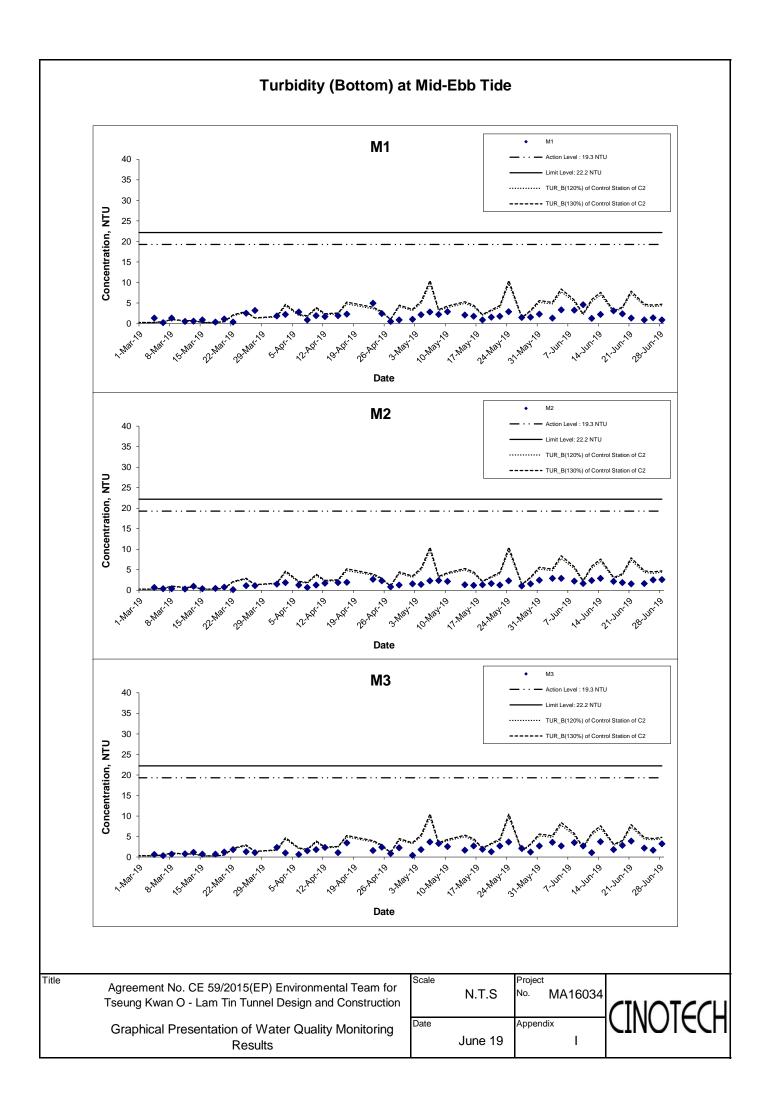
Scale		Project	
	N.T.S	No.	MA16034
Date		Appe	ndix
	June 19		I



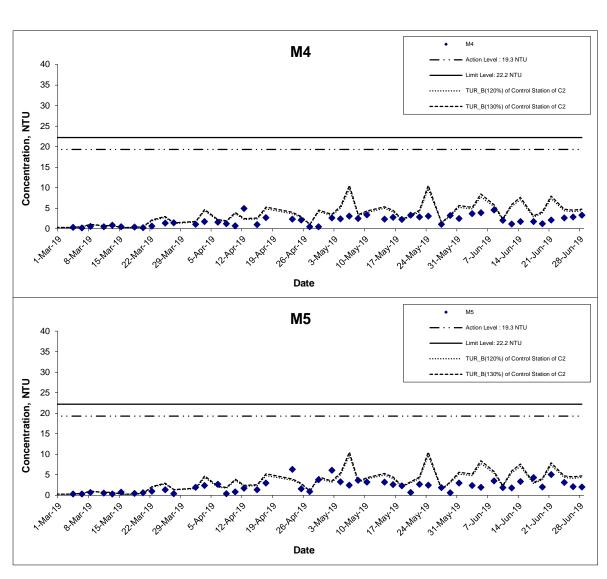
Turbidity (Depth-averaged) at Mid-Flood Tide



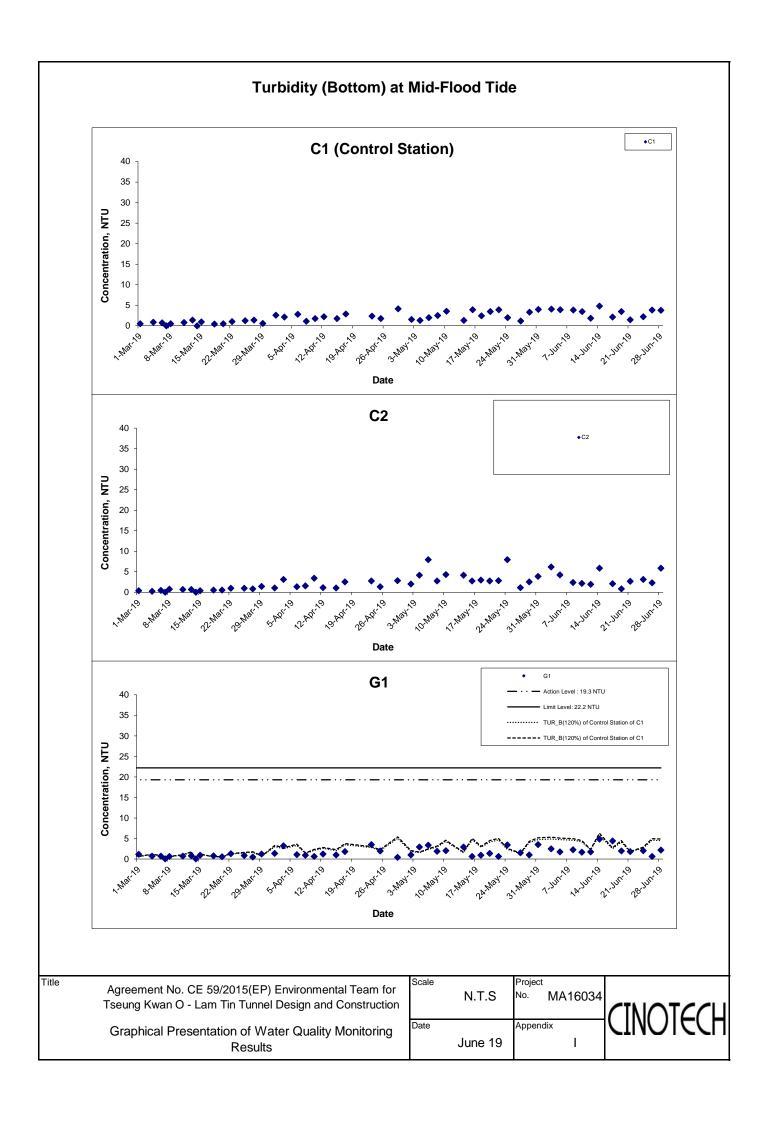

Title Agreement No. CE 59/2015(EP) Environmental Team for

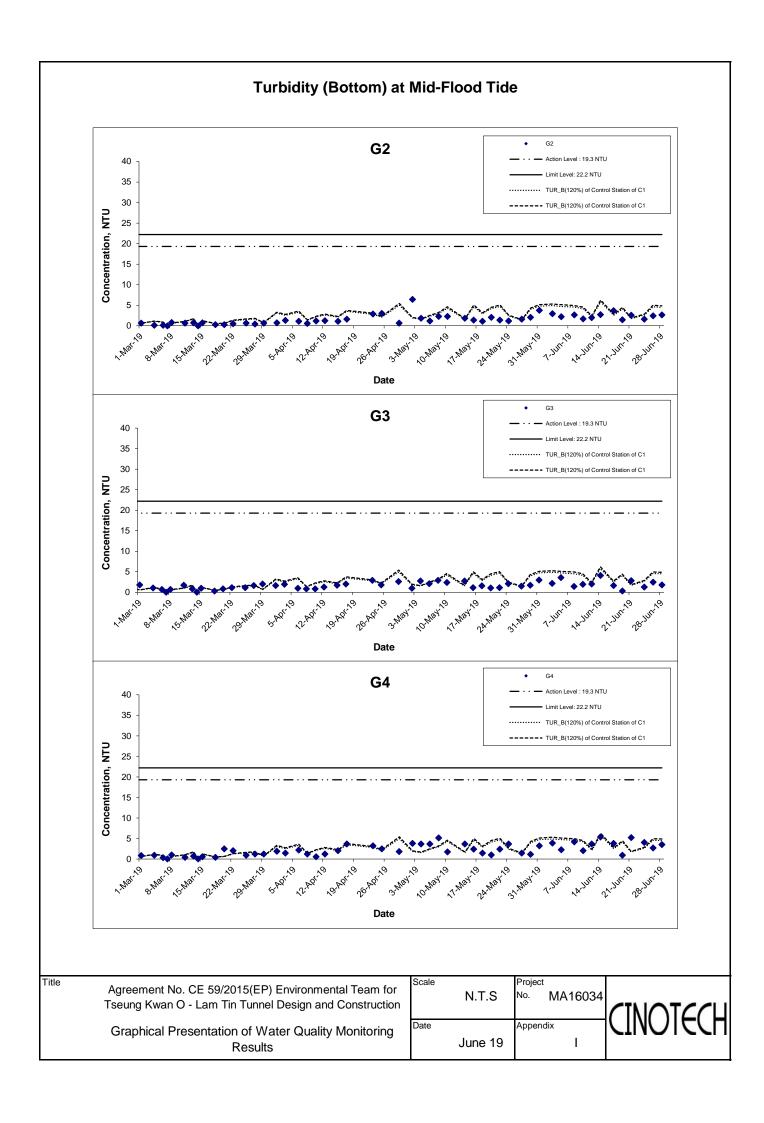

Tseung Kwan O - Lam Tin Tunnel Design and Construction

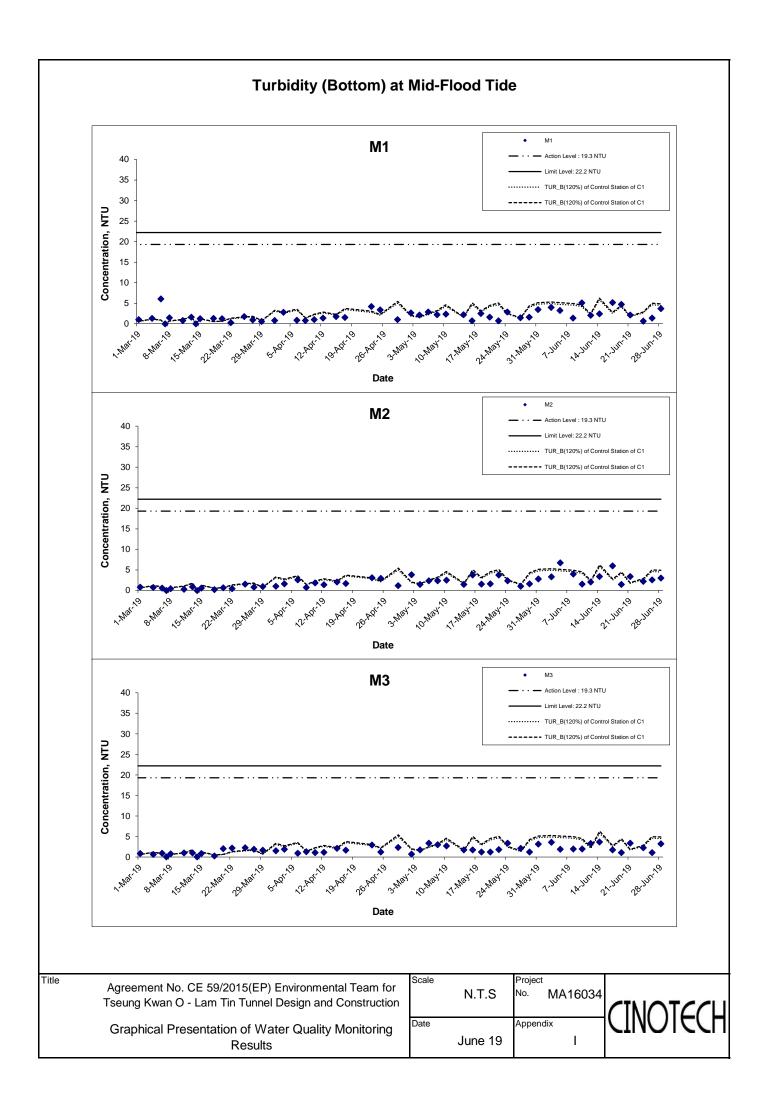
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	June 19	1



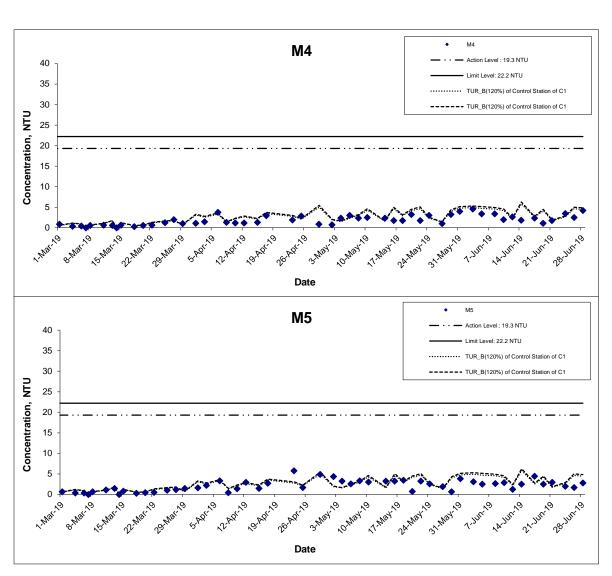
Turbidity (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

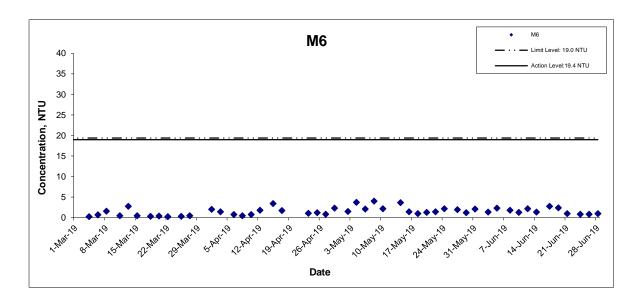

Title

Scale		Project
	N.T.S	No. MA16034
	14.1.0	1017 (1000)
Date		Appendix
	June 19	
	June 19	ļ ļ



Turbidity (Bottom) at Mid-Flood Tide

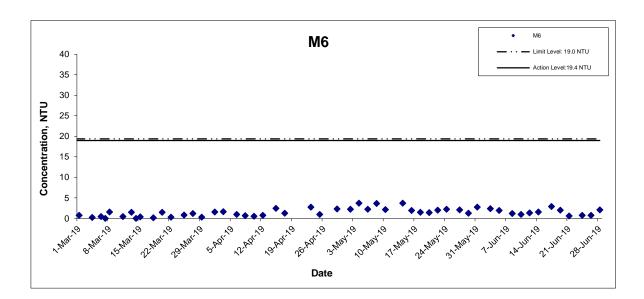
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

Title

Scale		Projec	t	
	N.T.S	No.	MA16034	
Date		Appendix		
	June 19		1	
		N.T.S	N.T.S No. Date Appen	

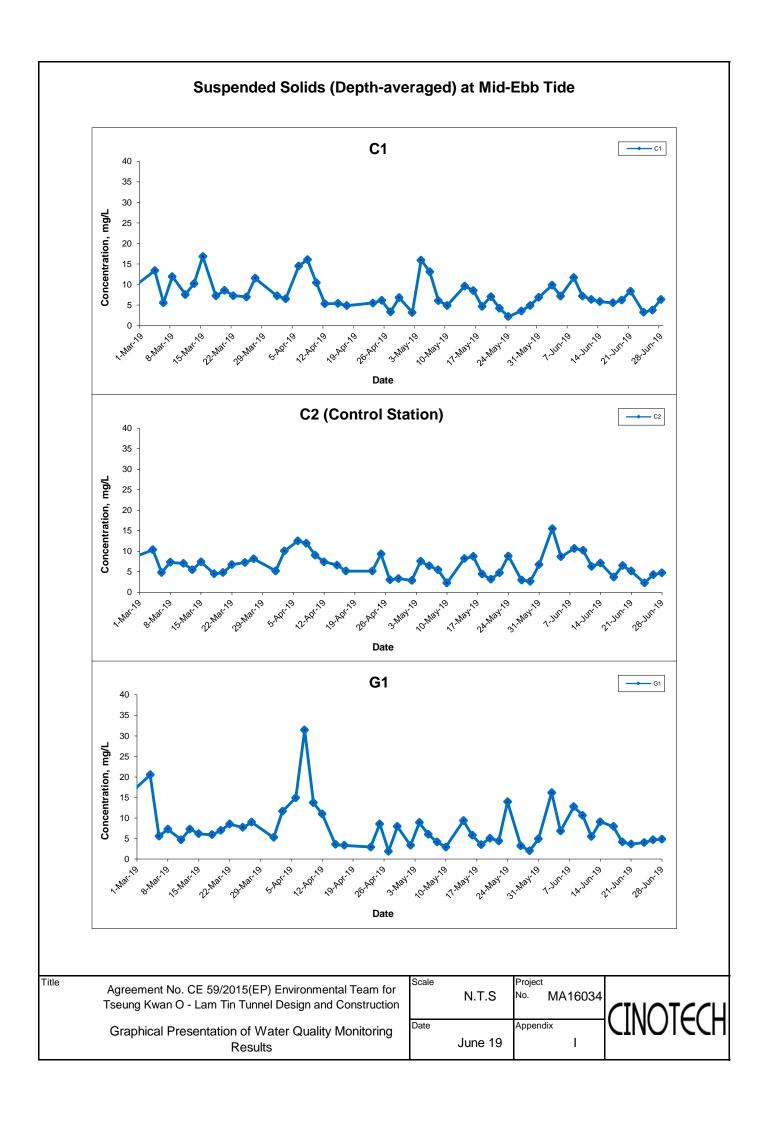
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

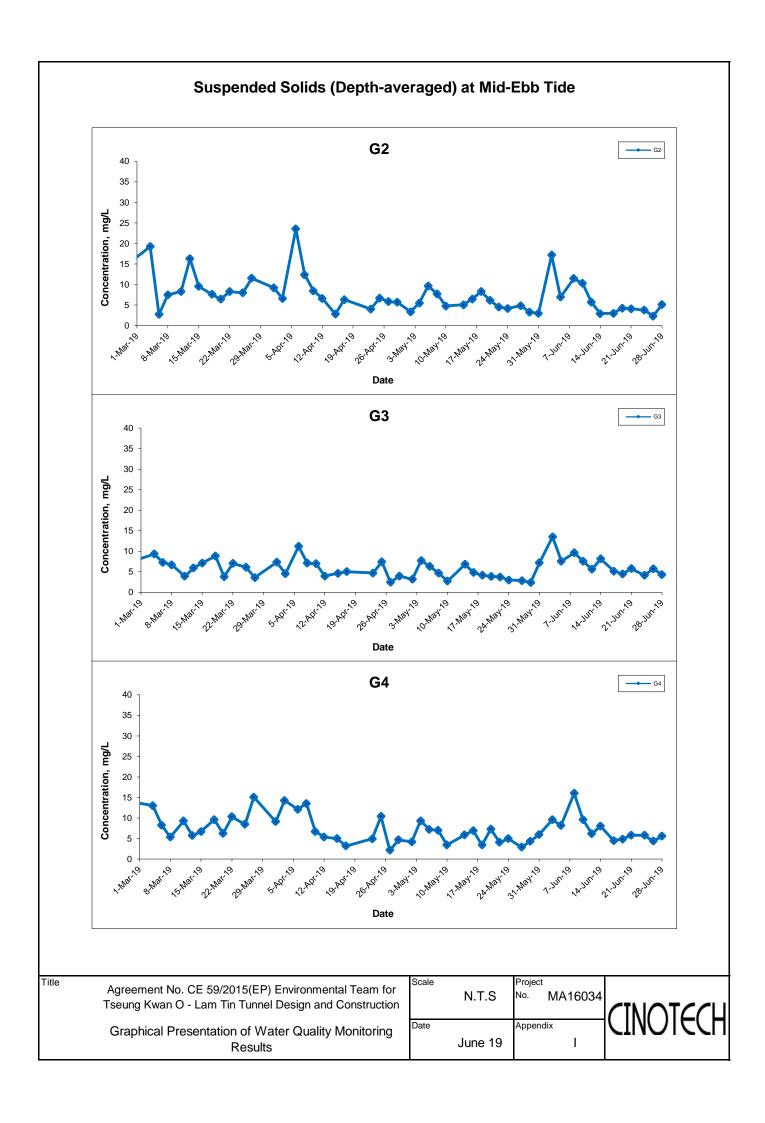

Title

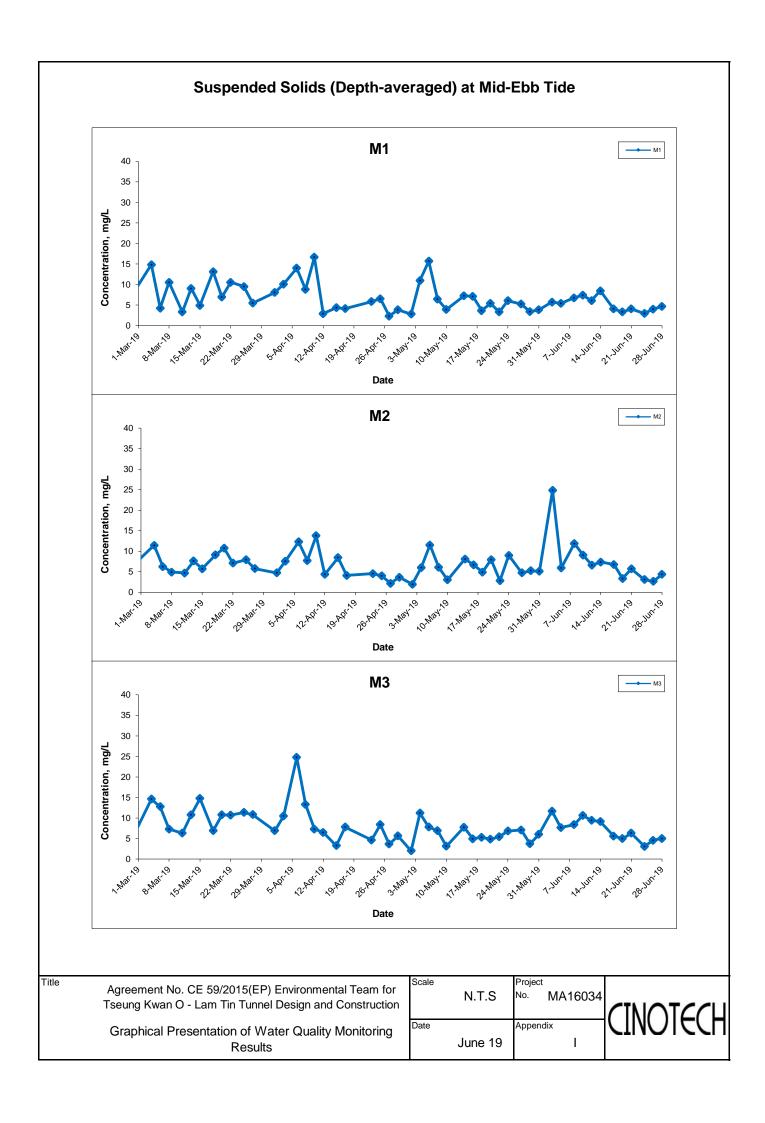
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	June 19	I

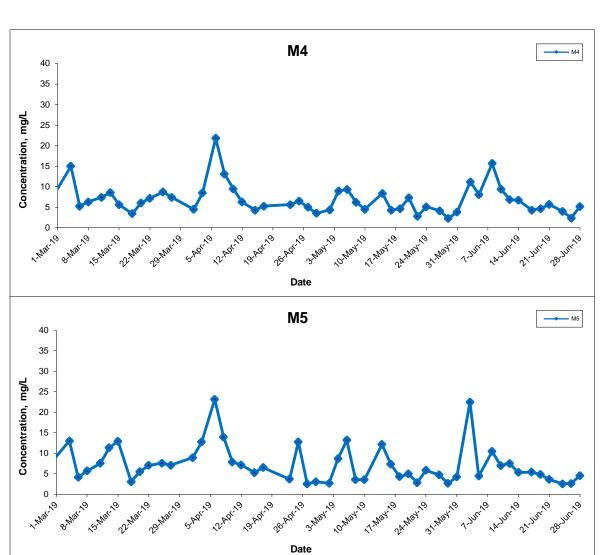
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide



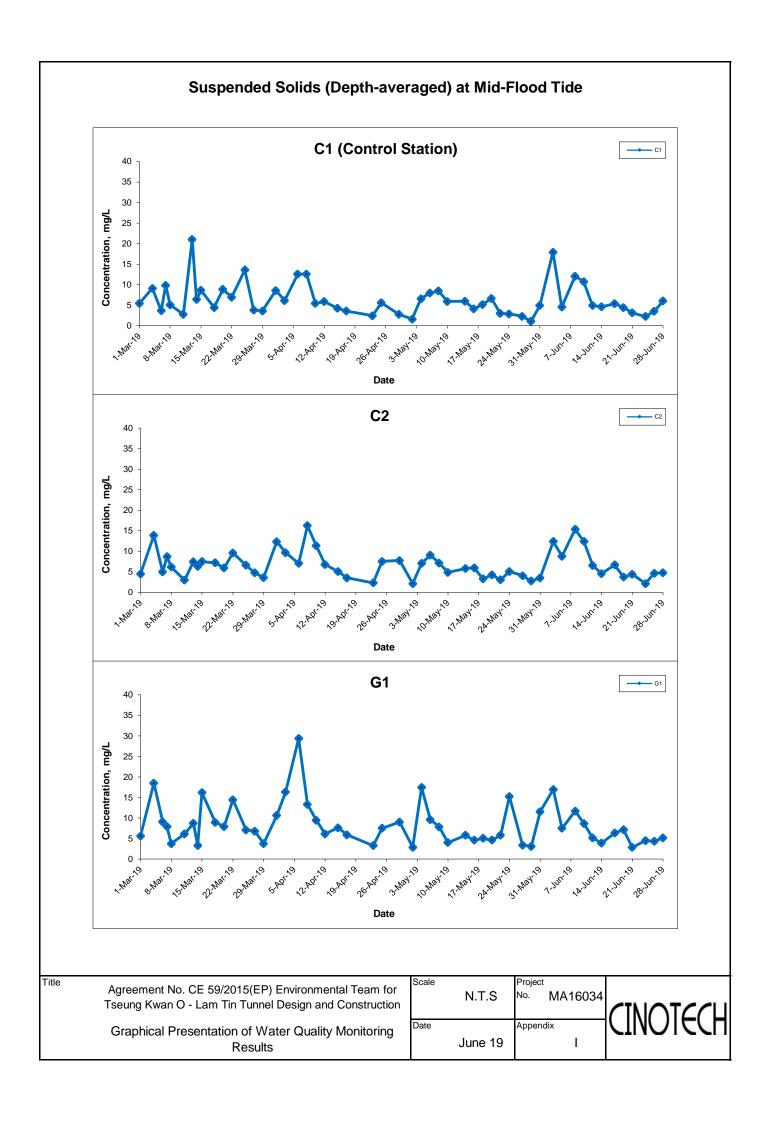

Title

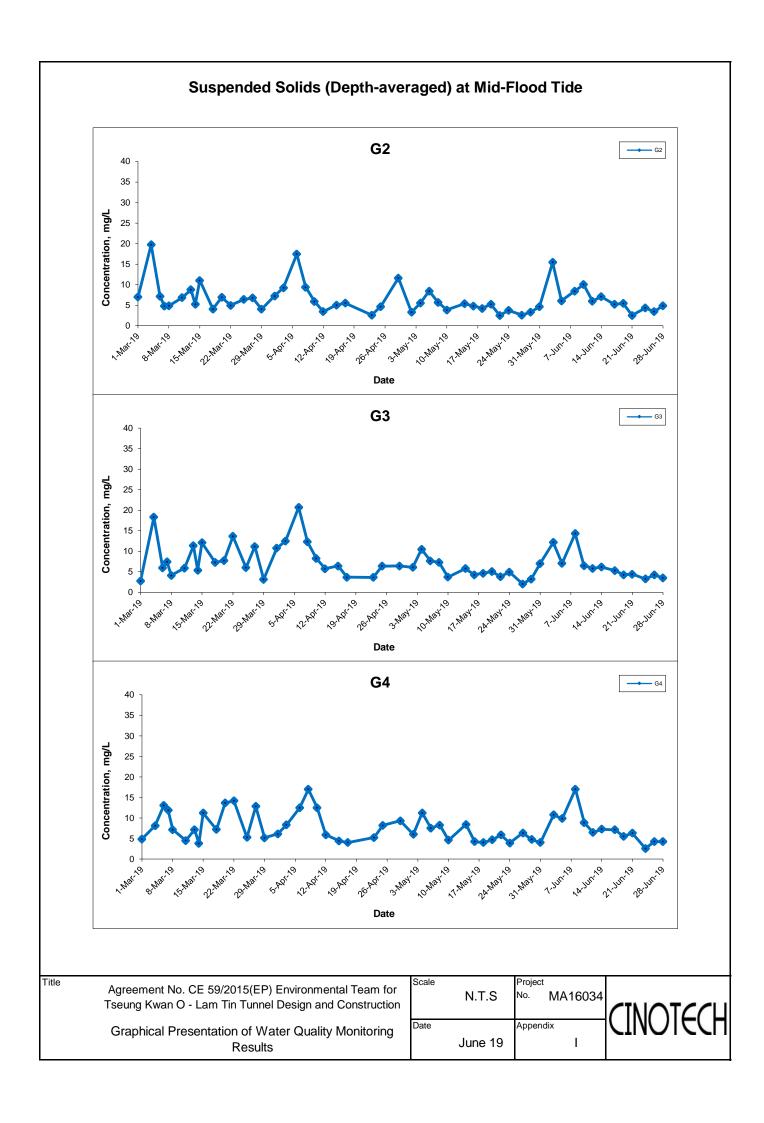

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

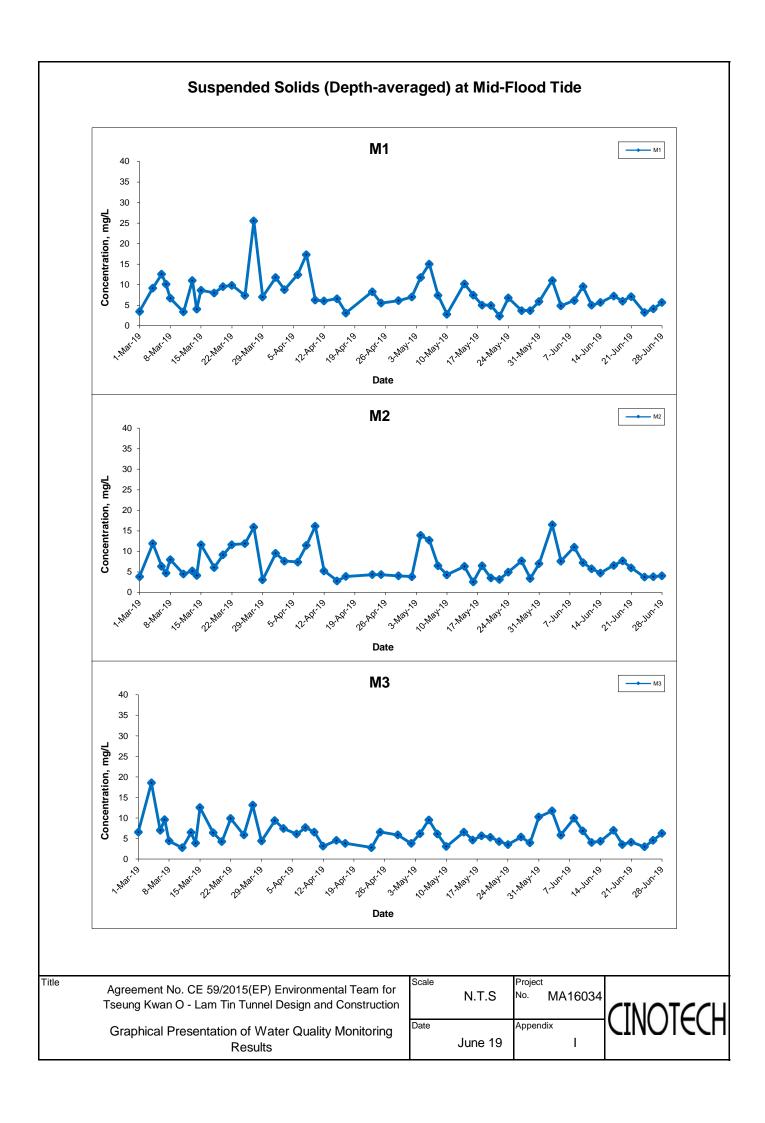
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	June 19	I



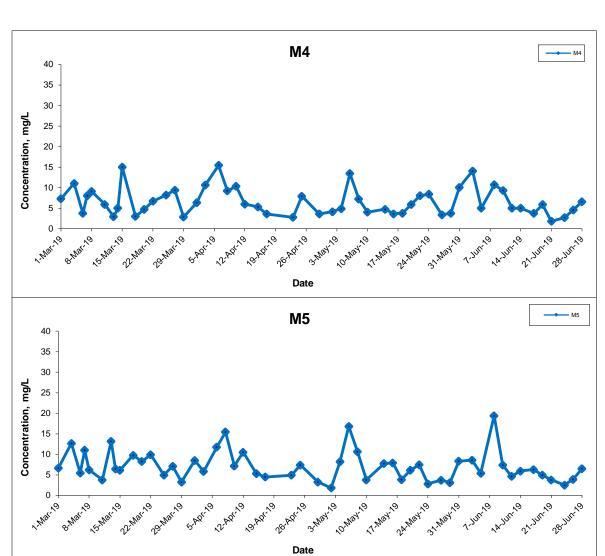
Suspended Solids (Depth-averaged) at Mid-Ebb Tide



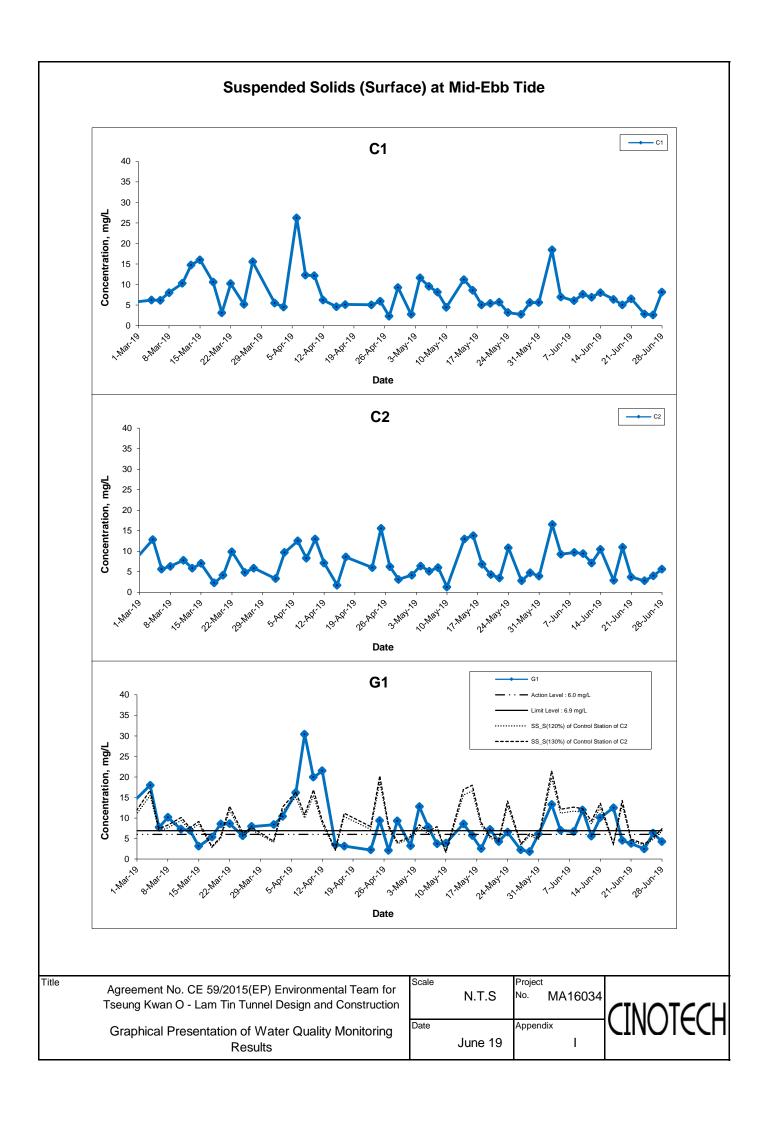

Title Agreement

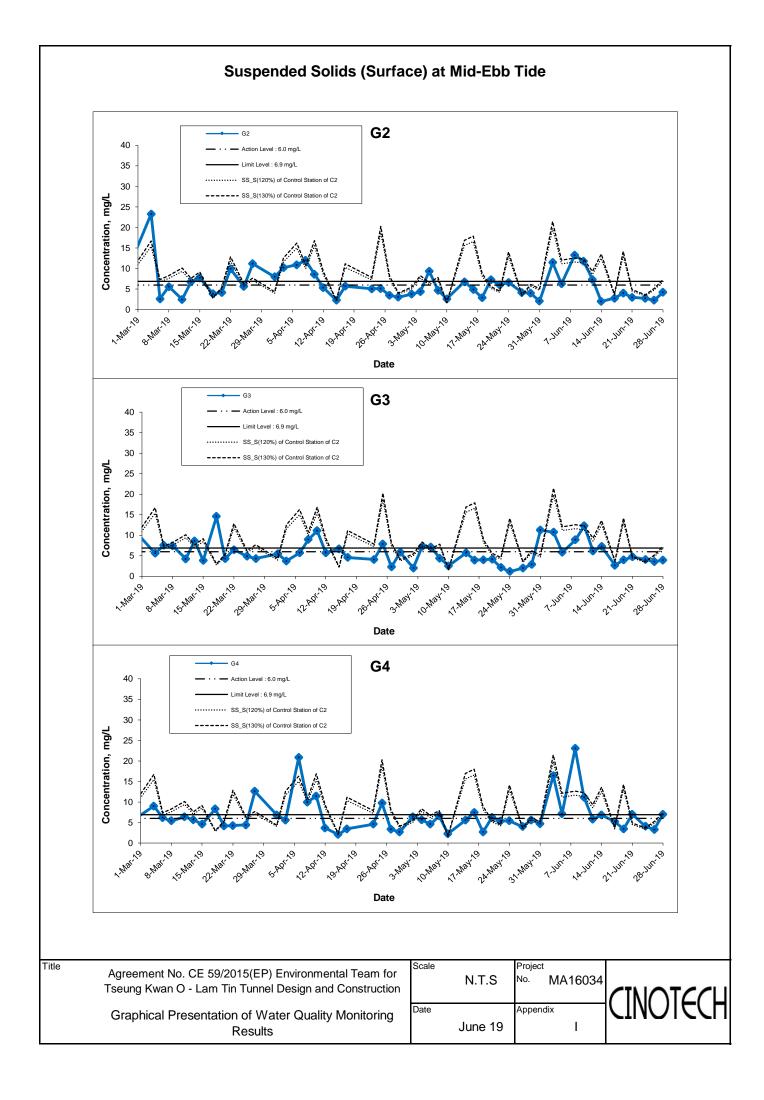

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale	N.T.S	Projecti No.	MA16034
Date		Appen	dix
	June 19		I



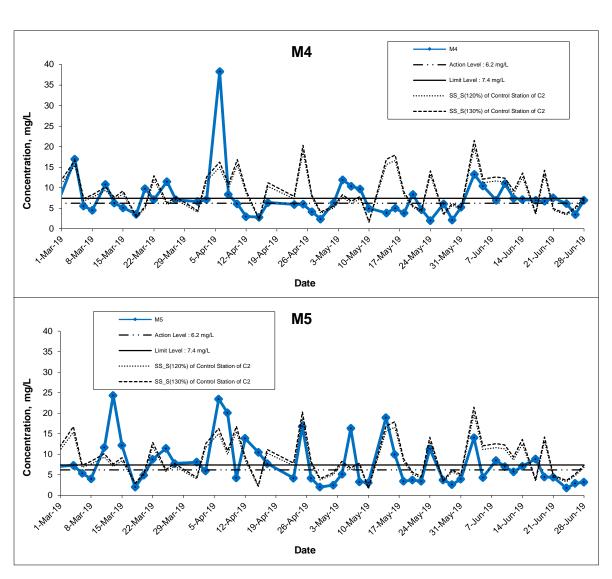
Suspended Solids (Depth-averaged) at Mid-Flood Tide




Title

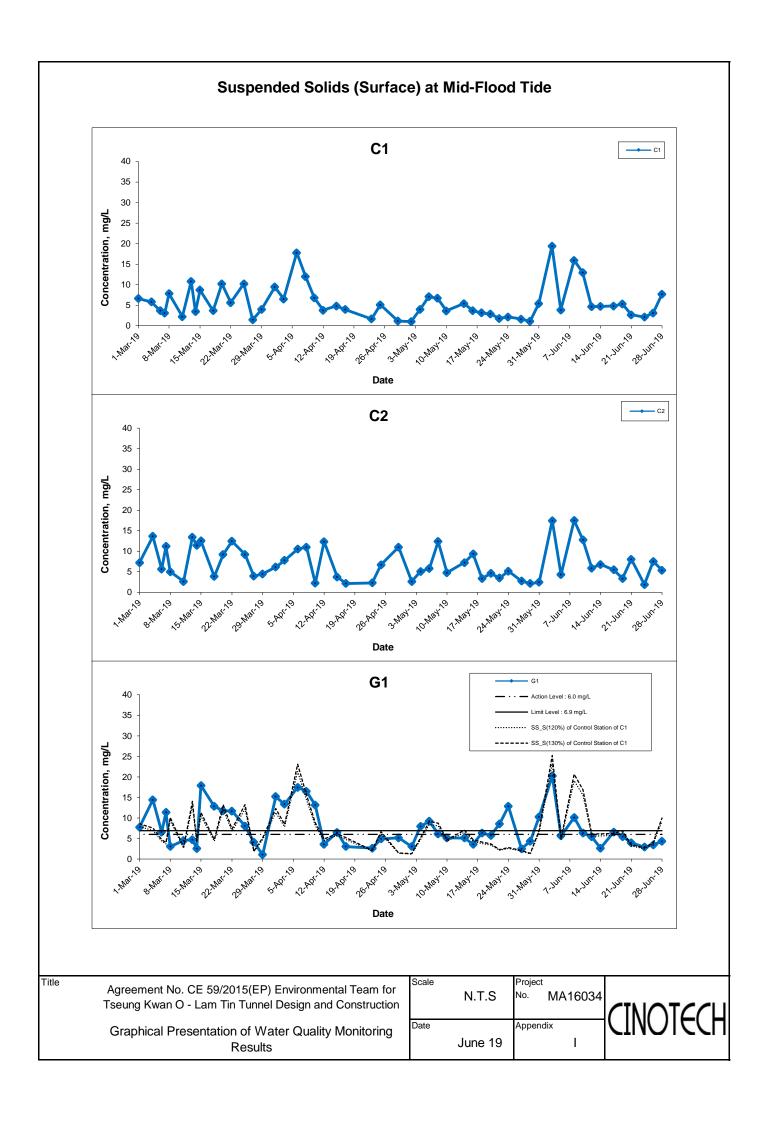
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

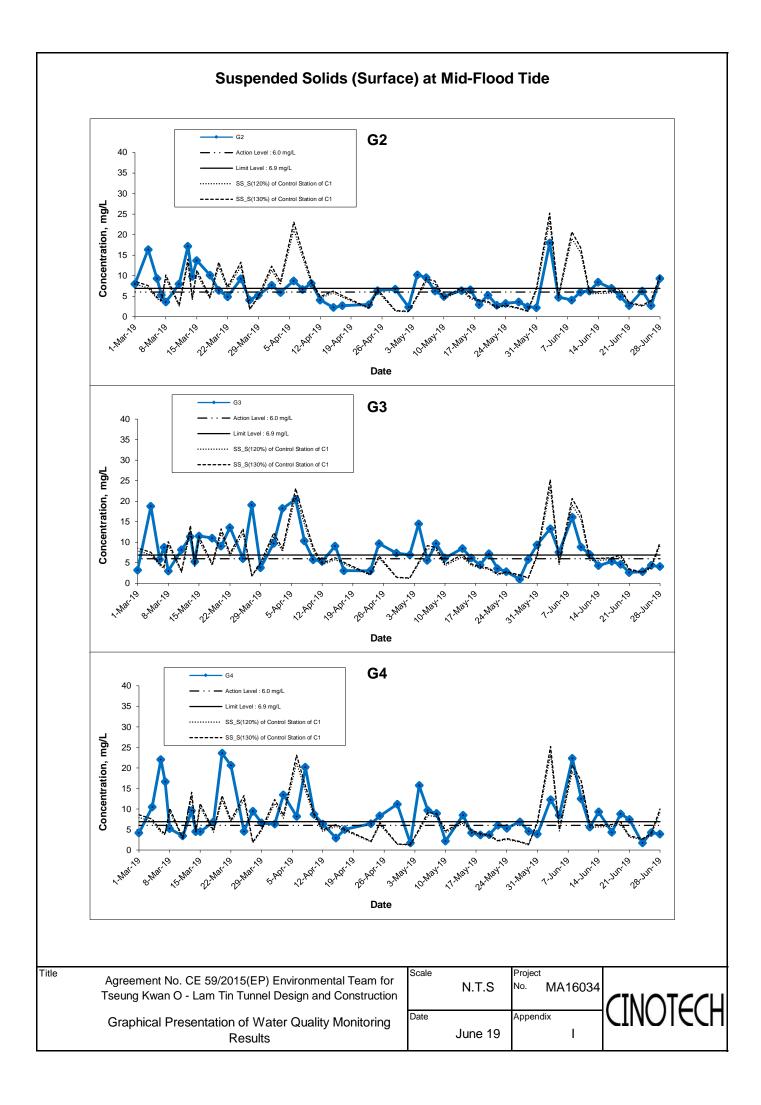
Scale		Projec	t
	N.T.S	No.	MA16034
Date		Apper	ndix
	June 19		1

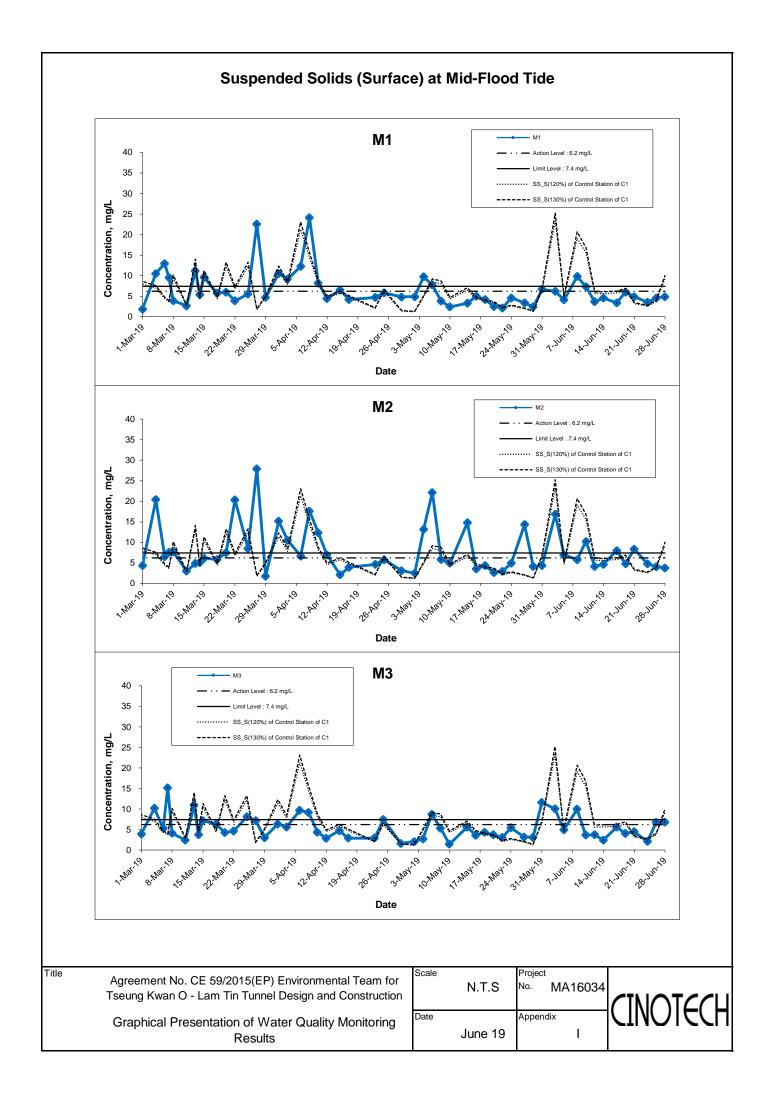


Suspended Solids (Surface) at Mid-Ebb Tide **M**1 40 35 · SS_S(120%) of Control Station of C2 30 Concentration, mg/L 25 20 15 0 Date **M2** 40 · · — Action Level : 6.2 mg/L Limit Level : 7.4 mg/L 35 ···· SS_S(120%) of Control Station of C2 30 Concentration, mg/l 25 20 15 10 0 26.Agr. 10 3,1184,10 VO'WST'S 1.Way.0 Date **M3** 40 - Action Level : 6.2 mg/L 35 · Limit Level : 7.4 mg/L · · · · SS_S(120%) of Control Station of C2 30 Concentration, mg/L 25 20 15 10 So varyo 3,484,0 1.Way 19 Title Scale Agreement No. CE 59/2015(EP) Environmental Team for MA16034 N.T.S Tseung Kwan O - Lam Tin Tunnel Design and Construction Date Appendix Graphical Presentation of Water Quality Monitoring June 19 ١ Results

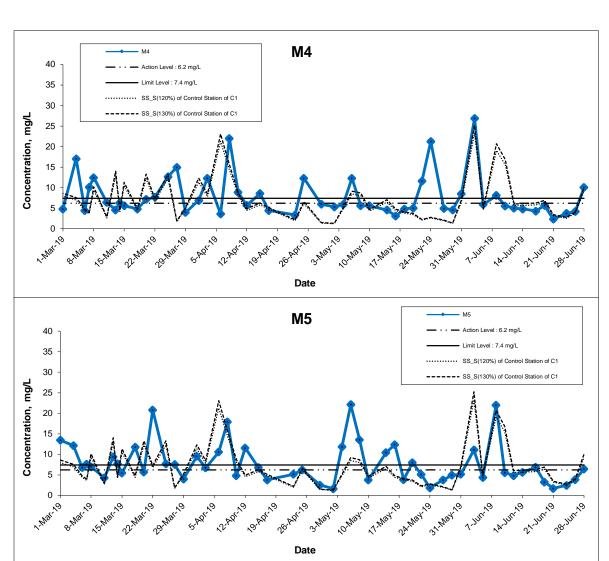
Suspended Solids (Surface) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring

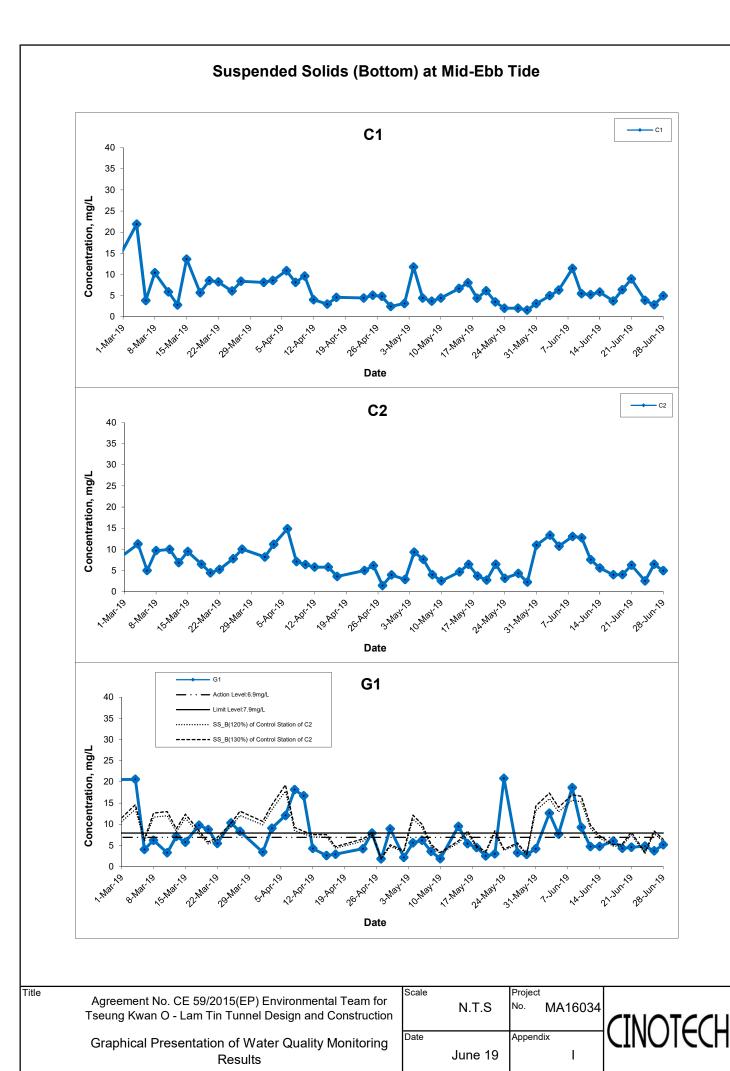

Results


Title

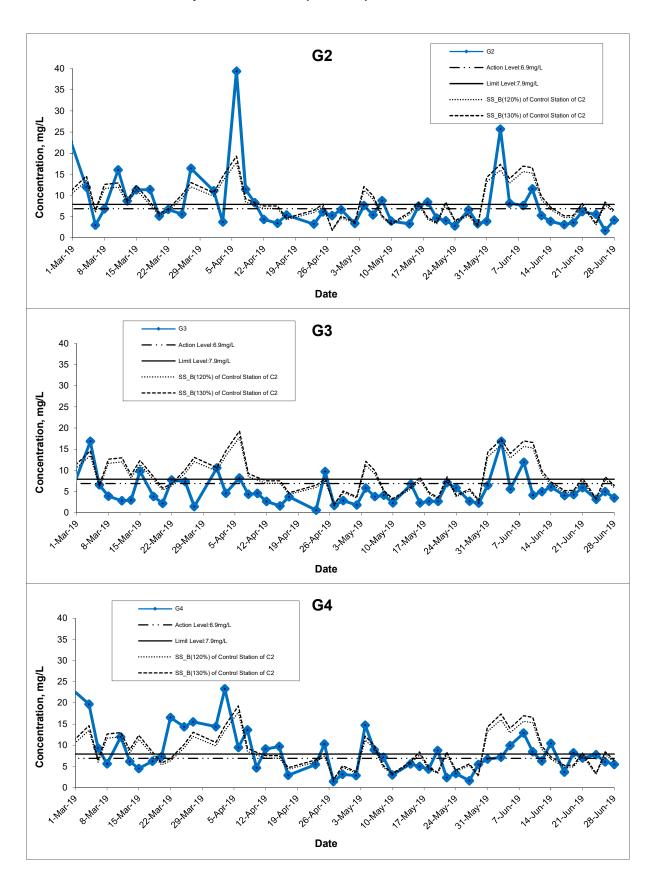
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	June 19		1



Suspended Solids (Surface) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Title

Scale		Project	
	N.T.S	No.	MA16034
	14.1.5	140.	VIA 10034
Date		Appendix	<
	luna 10		
	June 19		1

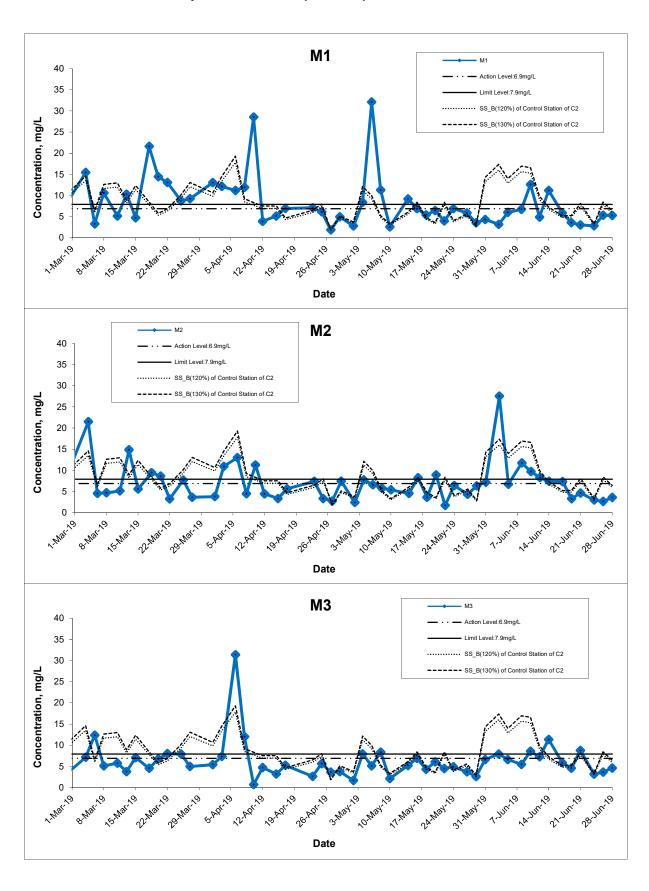
Suspended Solids (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

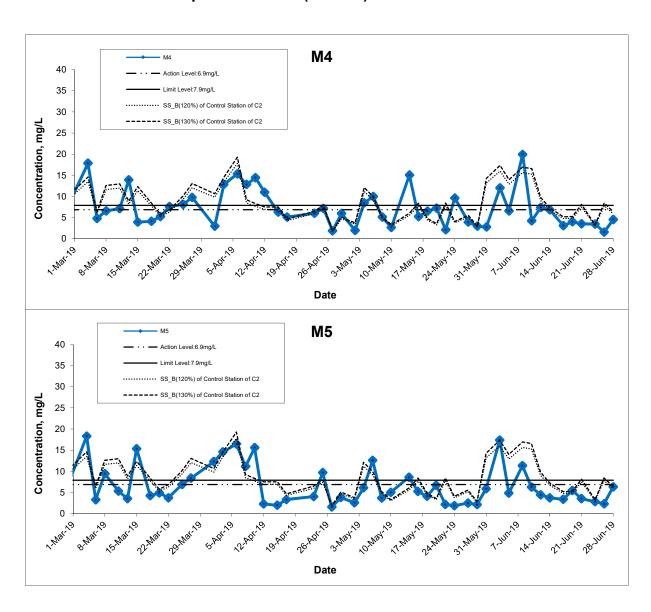
Scale

N.T.S


Project
No. MA16034

Date

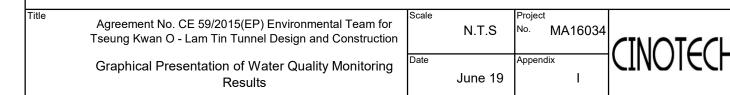
June 19


June 19

Suspended Solids (Bottom) at Mid-Ebb Tide

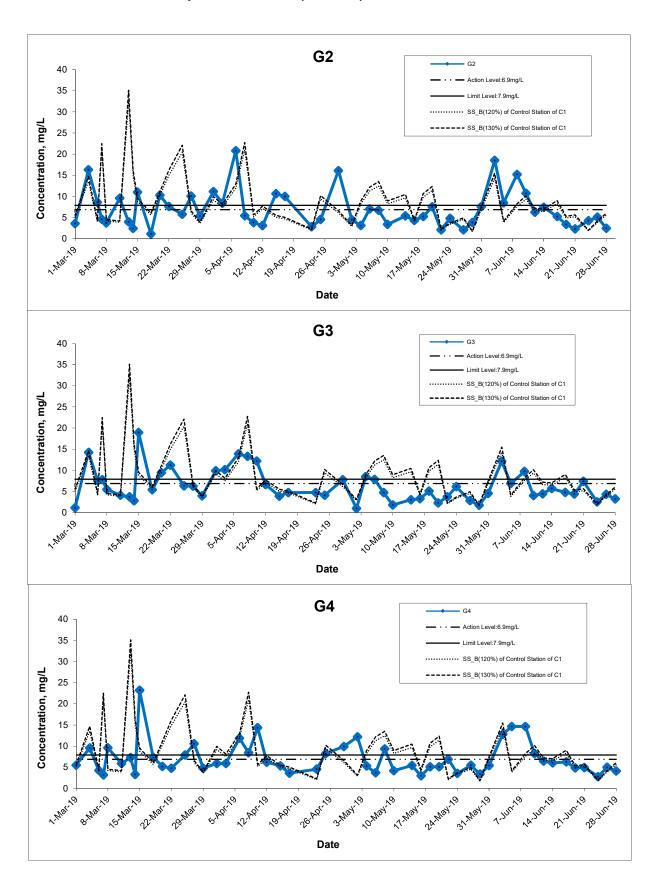
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date June 19	Appendix	CINOICCU

Suspended Solids (Bottom) at Mid-Ebb Tide

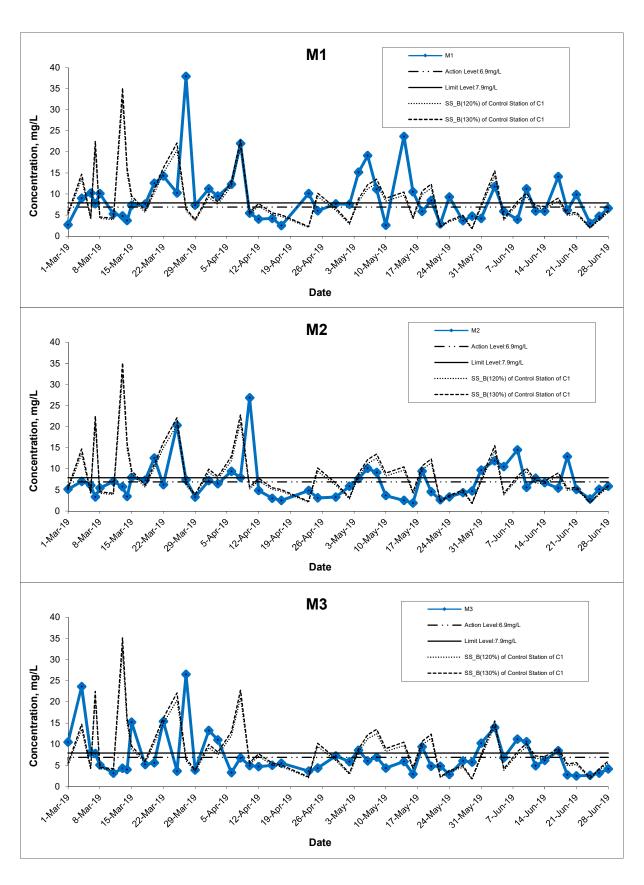

Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

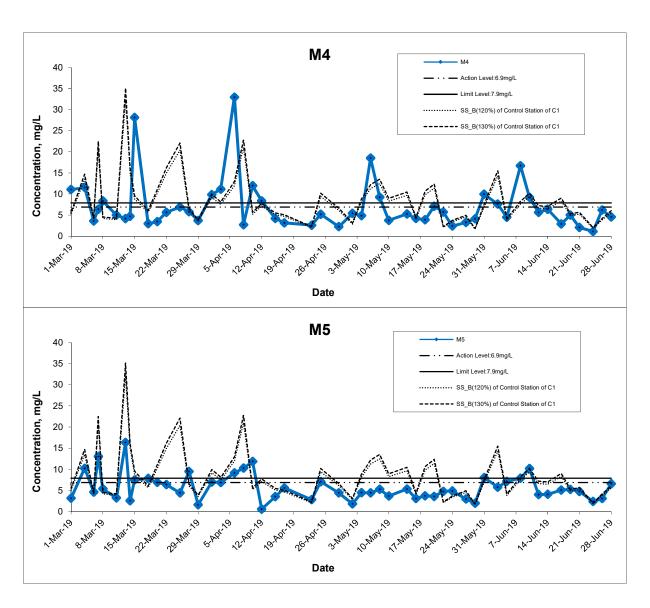
Scale		Project		Γ
	N.T.S	No. MA1603		1
Date		Appendix		١
	June 19		I	



Suspended Solids (Bottom) at Mid-Flood Tide C1 — C1 40 35 30 Concentration, mg/L 25 20 15 10 VWat Vo 22.Mar.19 12.AQ1.10 10.40r.10 26.401.10 5 Agr. 19 3,1184,19 1,484,19 24.1184.18 Date C2 40 35 30 Concentration, mg/L 25 20 15 10 0 ~War-19 Date G1 40 Action Level:6.9mg/L 35 Limit Level:7.9mg/L 30 Concentration, mg/L 25 20 15 10 0 28-Jul


Date

Suspended Solids (Bottom) at Mid-Flood Tide

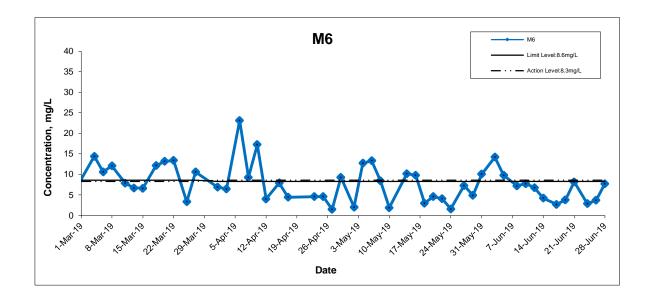

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date June 19	Appendix	CINOICCU

Suspended Solids (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECL
Graphical Presentation of Water Quality Monitoring Results	Date June 19	Appendix	CINOIECU

Suspended Solids (Bottom) at Mid-Flood Tide

Title

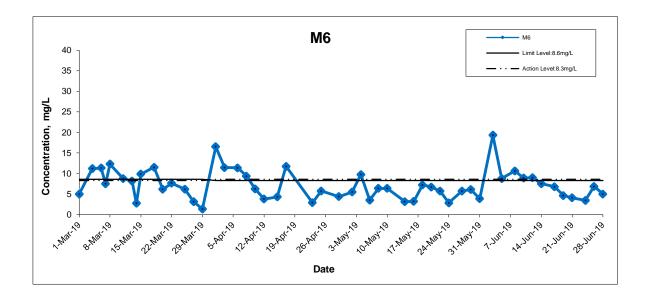

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	June 19		I

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

Title


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

_	Scale		Project	
		N.T.S	No. N	1A16034
	Date		Appendix	
		June 19		1

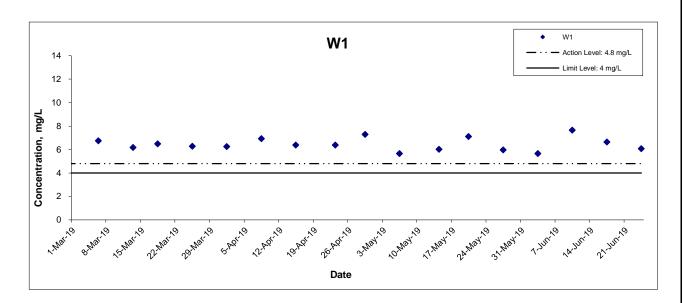
Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Title

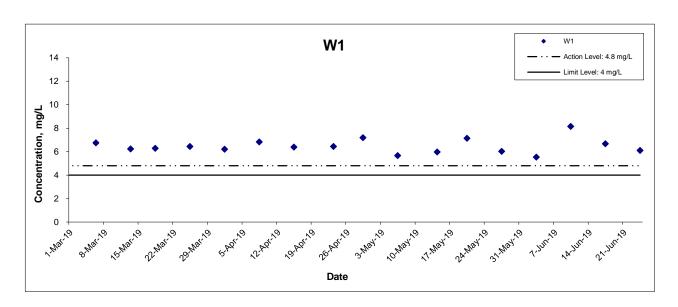
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Graphical Presentation of Water Quality Monitoring Results

Scale		Projec	t
	N.T.S	No.	MA16034
Date		Apper	ndix
	June 19		I


Water Quality Monitoring Results at W1 - Mid-Ebb Tide

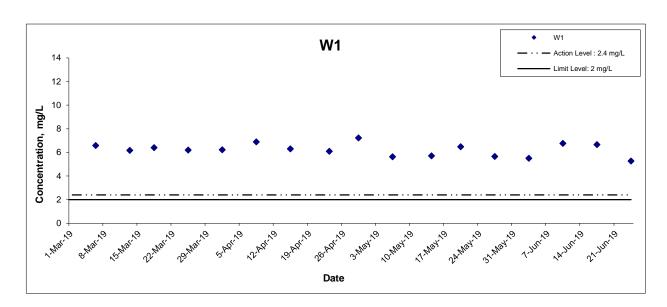
Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)
Date	Condition	Condition**	Time	Всра	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*
				Surface	1.0	26.2 26.1	26.1	8.8 8.8	8.8	32.7 32.6	32.7	86.0 82.2	84.1	5.8 5.5	5.7	5.7
3-Jun-19	Cloudy	Moderate	11:24	Middle	-	-	-	-	-	-	-	-		-	-	5.1
				Bottom	3.1	25.9 26.0	26.0	8.8 8.8	8.8	33.1 33.0	33.0	81.9 81.8	81.9	5.5 5.5	5.5	5.5
				Surface	1.0	27.2 26.9	27.1	8.7 8.7	8.7	31.5 32.5	32.0	114.3 115.9	115.1	7.6 7.7	7.7	7.7
10-Jun-19	Cloudy	Calm	18:40	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7
				Bottom	3.1	26.9 26.9	26.9	8.7 8.7	8.7	32.4 32.6	32.5	101.4 102.2	101.8	6.8 6.8	6.8	6.8
				Surface	1.0	29.3 29.2	29.2	8.8 8.8	8.8	32.1 32.2	32.1	97.4 98.7	98.1	6.6 6.7	6.6	6.6
17-Jun-19	Cloudy	Moderate	12:27	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0
				Bottom	2.9	29.1 29.2	29.2	8.8 8.8	8.8	32.2 32.3	32.2	98.5 98.4	98.5	6.7 6.7	6.7	6.7
				Surface	1.0	27.5 27.5	27.5	9.0 9.0	9.0	31.9 31.9	31.9	92.3 92.1	92.2	6.1 6.1	6.1	6.1
24-Jun-19	Fine	Moderate	15:43	Middle	-	-	-	-	-	•	-	-	-	•	-	0.1
				Bottom	2.9	27.1 27.1	27.1	9.0 9.0	9.0	32.6 32.6	32.6	79.5 79.5	79.5	5.3 5.3	5.3	5.3


Water Quality Monitoring Results at W1 - Mid-Flood Tide

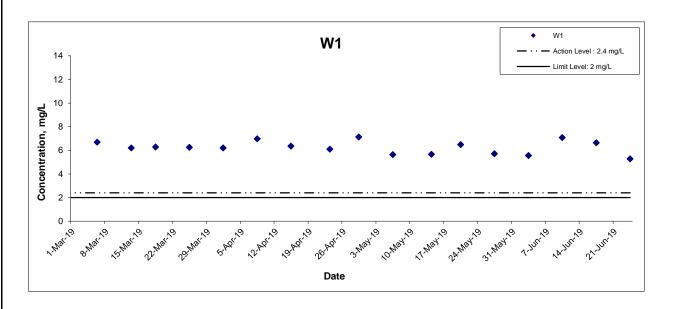
Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Saturation (%)		Dissolved Oxygen (mg.		(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*
				Surface	1.0	26.1 26.1	26.1	8.8 8.8	8.8	31.9 31.9	31.9	82.1 81.9	82.0	5.6 5.5	5.6	5.6
3-Jun-19	Cloudy	Moderate	rate 17:20	Middle	-	-	-	1	-	•	-	-	-	-	-	0.0
				Bottom	3.0	26.1 26.1	26.1	8.8 8.8	8.8	31.9 31.9	31.9	82.0 81.9	82.0	5.6 5.5	5.5	5.5
				Surface	1.2	27.2 27.2	27.2	8.7 8.7	8.7	31.7 31.8	31.7	122.7 122.9	122.8	8.2 8.2	8.2	8.2
10-Jun-19	9 Cloudy	Calm	11:25	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2
				Bottom	3.1	26.9 26.9	26.9	8.7 8.7	8.7	32.6 32.5	32.6	106.4 106.5	106.5	7.1 7.1	7.1	7.1
				Surface	1.0	27.4 27.3	27.3	8.8 8.8	8.8	32.2 32.2	32.2	97.0 96.8	96.9	6.7 6.7	6.7	6.7
17-Jun-19	Cloudy	Moderate	19:28	Middle	-	-	-	1	-	•	-	-	-	-	-	0.7
				Bottom	3.0	27.2 27.1	27.1	8.8 8.8	8.8	32.3 32.3	32.3	96.3 96.5	96.4	6.6 6.7	6.6	6.6
				Surface	1.0	27.5 27.6	27.5	9.0 9.0	9.0	31.9 31.9	31.9	92.7 92.5	92.6	6.1 6.1	6.1	6.1
24-Jun-19	Fine	Moderate	10:11	Middle	-	-	-	ı	-	•	-	-	-	-	6.1	0.1
				Bottom	3.0	27.1 27.1	27.1	9.0 9.0	9.0	32.6 32.6	32.6	79.4 79.5	79.5	5.3 5.3	5.3	5.3

Dissolved Oxygen (Depth-Averaged) at Mid-Ebb Tide

Dissolved Oxygen (Depth-Averaged) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Graphical Presentation of Additional Water Quality
Monitoring Results


Scale		Project	
	N.T.S	No. MA16034	1
Date		Appendix	١
	Jun-19	I	

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

Dissolved Oxygen (Bottom) at Mid-Flood Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Graphical Presentation of Additional Water Quality
Monitoring Results

Scale N		Project No.	MA16034	CINOTECH
Date Ju	ın-19	Append	ix I	

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Address

E-mail

Facsimile

CERTIFICATE OF ANALYSIS

: CINOTECH CONSULTANTS LIMITED : ALS Technichem (HK) Pty Ltd : 1 of 5 Client Laboratory Page

: HK1926827 : HENRY LEUNG : Richard Fung Work Order Contact Contact

> : RM 1710, TECHNOLOGY PARK, 18 ON LAI : 11/F., Chung Shun Knitting Address

> > Facsimile

STREET, SHATIN, N.T. HONG KONG Centre, 1 - 3 Wing Yip Street, HONG KONG Kwai Chung, N.T., Hong Kong

: henry.leung@cinotech.com.hk : richard.fung@alsglobal.com E-mail

: +852 2151 2083 : +852 2610 1044 Telephone Telephone : +852 3107 1388 : +852 2610 2021

: CEDD TSEUNG KWAN O-LAM TIN TUNNEL Date Samples Received : 21-Jun-2019 Project

: HKE/1722a/2019 revision 1 : 03-Jul-2019 Order number Quote number Issue Date

No. of samples received : 3 C-O-C number No. of samples analysed : 3 Site

This report may not be reproduced except with prior written approval from the testing laboratory. This document has been signed by those names that appear on this report and are the authorised signatories.

> Position Signatories Authorised results for

> > Inorganics

Fung Lim Chee, Richard General Manager Page Number : 2 of 5

Client : CINOTECH CONSULTANTS LIMITED

Work Order HK1926827

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 21-Jun-2019 to 02-Jul-2019.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1926827

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

∴ 3 of 5

Client : CINOTECH CONSULTANTS LIMITED

Work Order HK1926827

ALS

Analytical Results

Sub-Matrix: GROUNDWATER	Client sample ID			Stream 1	Stream 2	Stream 3					
	Client sampling date / time		[21-Jun-2019]	[21-Jun-2019]	[21-Jun-2019]						
Compound	CAS Number	LOR	Unit	HK1926827-001	HK1926827-002	HK1926827-003					
EA/ED: Physical and Aggregate Properties											
EA025: Suspended Solids (SS)		1.0	mg/L	<1.0	<1.0	<1.0					
ED/EK: Inorganic Nonmetallic Parameters	ED/EK: Inorganic Nonmetallic Parameters										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.04	0.03					
EK062P: Total Nitrogen as N		0.1	mg/L	0.6	0.6	0.6					
EK067P: Total Phosphorus as P		0.01	mg/L	0.02	0.02	0.02					
EP: Aggregate Organics	EP: Aggregate Organics										
EP005: Total Organic Carbon		1	mg/L	3	2	2					
EP030: Biochemical Oxygen Demand		2	mg/L	3	2	2					

4 of 5

Client

: CINOTECH CONSULTANTS LIMITED

Work Order HK1926827

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labora	atory Duplicate (DUP)	Report					
Laboratory	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)				
sample ID							Result					
EA/ED: Physical and Age	EA/ED: Physical and Aggregate Properties (QC Lot: 2432017)											
HK1926765-001	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	1.7	1.7	0.00				
HK1926906-005	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	6.4	6.2	1.59				
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot: 24223	16)										
HK1926827-003	Stream 3	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	0.00				
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot: 24234	91)										
HK1926872-004	Anonymous	EK062P: Total Nitrogen as N		0.1	mg/L	4.2	4.6	8.14				
ED/EK: Inorganic Nonme	etallic Parameters (QC Lot: 24234	92)										
HK1926872-004	Anonymous	EK067P: Total Phosphorus as P		0.01	mg/L	0.64	0.68	6.06				
EP: Aggregate Organics	EP: Aggregate Organics (QC Lot: 2434246)											
HK1926854-008	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.00				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Recovery (%)		Recove	ry Limits(%)	RPI	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC	C Lot: 2432017)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2422316)										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	93.6		88	109		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2423491)										
EK062P: Total Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	103		92	116		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2423492)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.6		90	104		
EP: Aggregate Organics (QC Lot: 2420686)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	105		84	119		
EP: Aggregate Organics (QC Lot: 2434246)											
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	104		87	114		
				<1	100 mg/L	96.8		88	109		

∴ 5 of 5

Client

: CINOTECH CONSULTANTS LIMITED

Work Order HK1926827

ALS

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report									
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD	(%)			
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control			
sample ID										Limit			
ED/EK: Inorganic Nonmetallic Parameters (QC Lot: 2422316)													
HK1926827-003	Stream 3	EK055K: Ammonia as N	7664-41-7	0.5 mg/L	111		75	125					
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 2423	491)											
HK1926872-004	Anonymous	EK062P: Total Nitrogen as N		5 mg/L	110		75	125					
ED/EK: Inorganio	c Nonmetallic Parameters (QC Lot: 2423	492)											
HK1926872-004	Anonymous	EK067P: Total Phosphorus as P		0.5 mg/L	84.0		75	125					
EP: Aggregate Organics (QC Lot: 2434246)													
HK1926854-008	Anonymous	EP005: Total Organic Carbon		5 mg/L	95.5		75	125					

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

STREET, SHATIN, N.T. HONG KONG

ANALYICAL CHEMISTRY & TESTING SERVICES

Address

E-mail

CERTIFICATE OF ANALYSIS

Centre, 1 - 3 Wing Yip Street,

Client : CINOTECH CONSULTANTS LIMITED Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 5

Contact : HENRY LEUNG Contact : Richard Fung Work Order : HK1925132

RM 1710, TECHNOLOGY PARK, 18 ON LAI Address : 11/F., Chung Shun Knitting

HONG KONG Kwai Chung, N.T., Hong Kong

Telephone : +852 2151 2083 Telephone : +852 2610 1044

Facsimile : +852 3107 1388 Facsimile : +852 2610 2021

Project : CEDD TSEUNG KWAN O-LAM TIN TUNNEL Date Samples Received : 12-Jun-2019

Order number : HKE/1722a/2019 revision 1 | Issue Date : 21-Jun-2019

C-O-C number : --
No. of samples received : 3

Site : --
No. of samples analysed : 3

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories Position Authorised results for

Inorganics

Fung Lim Chee, Richard General Manager

Page Number : 2 of 5

Client : CINOTECH CONSULTANTS LIMITED

Work Order HK1925132

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 12-Jun-2019 to 20-Jun-2019.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1925132

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

3 of 5

Client : CINOTECH CONSULTANTS LIMITED

Work Order HK1925132

ALS

Analytical Results

Sub-Matrix: GROUNDWATER	Client sample ID			Stream1	Stream2	Stream3					
	Cli	ent samplii	ng date / time	12-Jun-2019	12-Jun-2019	12-Jun-2019					
Compound	CAS Number	LOR	Unit	HK1925132-001	HK1925132-002	HK1925132-003					
EA/ED: Physical and Aggregate Properties											
EA025: Suspended Solids (SS)		1.0	mg/L	2.4	2.2	2.5					
ED/EK: Inorganic Nonmetallic Parameters	ED/EK: Inorganic Nonmetallic Parameters										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.05	0.13					
EK062P: Total Nitrogen as N		0.1	mg/L	1.2	1.2	1.2					
EK067P: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.02					
EP: Aggregate Organics	EP: Aggregate Organics										
EP005: Total Organic Carbon		1	mg/L	4	3	4					
EP030: Biochemical Oxygen Demand		2	mg/L	3	2	2					

∴ 4 of 5

Client

: CINOTECH CONSULTANTS LIMITED

Work Order HK1925132

ALS

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labora	atory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lo	t: 2408576)						
HK1925132-001	Stream1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.2	7.73
HK1925834-004	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.0	15.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot	: 2405313)						
HK1925183-010	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	6.73	7.09	5.29
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot	: 2409163)						
HK1925135-001	Anonymous	EK062P: Total Nitrogen as N		0.1	mg/L	16.1	15.3	5.10
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot	: 2409164)						
HK1925135-001	Anonymous	EK067P: Total Phosphorus as P		0.01	mg/L	3.70	3.50	5.56
EP: Aggregate Organic	s (QC Lot: 2406490)							
HK1925183-002	Anonymous	EP005: Total Organic Carbon		1	mg/L	4	3	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report				Laboratory Contro	ol Spike (LCS) and Labor	aboratory Control Spike Duplicate (DCS) Report			
					Spike	Spike Red	covery (%)	Recove	ny Limits(%)	RPL	O (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 2408576)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	100		85	115		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2405313)										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	103		88	109		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2409163)										
EK062P: Total Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	104		92	116		
ED/EK: Inorganic Nonmetallic Parameters (QC	Lot: 2409164)										
EK067P: Total Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	98.0		90	104		
EP: Aggregate Organics (QC Lot: 2403251)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	104		84	119		
EP: Aggregate Organics (QC Lot: 2406490)											
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	101		87	114		
				<1	100 mg/L	92.2		88	109		

5 of 5

Client : CINOTECH CONSULTANTS LIMITED

Work Order HK1925132

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER					Matrix Spi	ke (MS) and Matrix	x Spike Duplic	ate (MSD) Re	eport	
				Spike	Spike Re	ocovery (%)	Recovery Limits (%)		RPD (%)	
Laboratory	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 2405	313)								
HK1925183-010	Anonymous	EK055K: Ammonia as N	7664-41-7	5 mg/L	120		75	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 2409	163)								
HK1925135-001	Anonymous	EK062P: Total Nitrogen as N		5 mg/L	82.0		75	125		
ED/EK: Inorgani	ic Nonmetallic Parameters (QC Lot: 2409	1164)								
HK1925135-001	Anonymous	EK067P: Total Phosphorus as P		5 mg/L	94.0		75	125		
EP: Aggregate (Organics (QC Lot: 2406490)									
HK1925183-002	Anonymous	EP005: Total Organic Carbon		5 mg/L	115		75	125		

APPENDIX K SUMMARY OF EXCEEDANCE

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

Reporting Period: June 2019

(A) Exceedance Report for Air Quality

(NIL in the reporting month)

(B) Exceedance Report for Construction Noise

Action Level for Construction Noise

Six (6) Action Level exceedances were recorded due to the documented complaints received in this reporting month.

Limit Level for Construction Noise

No Limit Level exceedance for daytime construction noise monitoring was recorded in the reporting month.

No Limit Level exceedances for nighttime construction noise monitoring were recorded in the reporting month.

Exceedance recorded during daytime

(NIL in the reporting month)

Exceedance recorded during night-time

(NIL in the reporting month)

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Appendix K – Summary of Exceedance

(C) Exceedance Report for Water Quality

Forty-one (41) Action Level and two-hundred and twenty-four (224) Limit Level exceedances in marine water quality monitoring. Refer to the attached notifications for details. The reasons are under investigation.

Two (2) Limit Level exceedances in groundwater quality monitoring. The exceedances are considered not project-related as detailed in relevant notification of exceedance below.

(D) Exceedance Report for Ecology

(NIL in the reporting month)

(E) Exceedance Report for Cultural Heritage

(NIL in the reporting month)

(F) Exceedance Report for Landfill Gas

(NIL in the reporting month)

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 3 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	11:16					<u>13.3</u>
				G2	11:07	6.0	6.0			<u>11.5</u>
				G3	11:19	6.0	6.9			<u>10.8</u>
				G4	11:30					<u>16.4</u>
		Surface	16.5	M1	11:11			19.8	21.5	<u>8.6</u>
				M2	11:03					<u>18.7</u>
				M3	11:26	6.2	7.4			<u>18.5</u>
				M4	10:57					<u>13.3</u>
Mid-Ebb	C2			M5	11:42					<u>14.1</u>
		Intake	n.a.	M6	11:35	8.3	8.6	n.a.	n.a.	<u>14.3</u>
				G1	11:16					<u>12.6</u>
				G2	11:07					<u>25.7</u>
				G3	11:19					<u>16.9</u>
		Bottom	13.4	G4	11:30	6.9	7.9	16.0	17 4	7.2
			15.4	M2	11:03	0.9	7.5	10.0	0 17.4	<u>27.6</u>
				M3	11:26					7.9
				M4	10:57					<u>12.1</u>
				M5	11:42					<u>17.4</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	18:09					<u>20.3</u>
				G2	17:58	6.0	6.9			<u>18.0</u>
				G3	18:14	0.0	0.9			<u>13.3</u>
		Surface	19.4	G4	18:26			23.3	25.2	<u>12.3</u>
		Surface	19.4	M2	17:53			23.3	23.2	<u>16.9</u>
				M3	18:22	6.2	7.4			<u>10.1</u>
				M4	17:48	6.2	/. 4			<u>26.9</u>
3.41.1				M5	18:38					<u>11.1</u>
Mid- Flood	C1	Intake	n.a.	M6	18:32	8.3	8.6	n.a.	n.a.	<u>19.4</u>
11000				G1	18:09					<u>11.5</u>
				G2	17:58				n.a.	<u>18.6</u>
				G3	18:14					<u>12.2</u>
		Dottom	11.0	G4	18:26	6.0	7.9	14.3	15.5	<u>12.8</u>
		Bottom	11.9	M1	18:04	6.9	7.9	14.5	15.5	<u>11.8</u>
				M2	17:53					<u>11.9</u>
				M3	18:22					<u>14.0</u>
				M4	17:48					7.6

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 5 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-flood	C1	3.9	M2	12:33	4.7	5.1	<u>6.7</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	8:24					<u>7.0</u>
				G2	8:13	6.0	6.9			6.3
		Surface	9.3	G4	8:38			11.2	12.1	<u>7.1</u>
				M3	8:33	6.2	7.4			<u>8.2</u>
Mid-Ebb	C2			M4	8:06	0.2	7.4			<u>10.4</u>
		Intake	n.a.	M6	8:41	8.3	8.6	n.a.	n.a.	<u>9.8</u>
				G1	8:24					7.7
		Bottom	10.8	G2	8:13	6.9	7.9	12.9	14.0	<u>8.2</u>
				G4	8:38					<u>9.9</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	12:52					<u>5.7</u>
				G2	12:39	6.0	6.9			4.8
				G3	12:58	0.0	0.9			<u>7.6</u>
		Surface	3.9	G4	13:08			4.6	5.0	<u>8.5</u>
				M2	12:33					<u>7.0</u>
				M3	13:02	6.2	7.4			4.9
				M4	12:25					<u>5.9</u>
Mid-		Intake	n.a.	M6	13:13	8.3	8.6	n.a.	n.a.	<u>8.8</u>
Flood	C1			G1	12:52					<u>7.9</u>
				G2	12:39					<u>8.5</u>
				G3	12:58					<u>6.9</u>
				G4	13:08					<u>14.7</u>
		Bottom	3.2	M1	12:46	6.9	7.9	3.8	4.2	<u>5.9</u>
				M2	12:33					<u>10.5</u>
				M3	13:02					<u>6.8</u>
				M4	12:25					<u>4.5</u>
				M5	13:19					<u>7.2</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 8 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	16:10					6.7
				G2	16:00	6.0	6.9			<u>13.3</u>
				G3	16:15	6.0	0.9			<u>8.9</u>
		Surface	9.7	G4	16:24			11.6	12.6	<u>23.1</u>
		Surface	9.7	M1	16:05			11.0		6.3
				M3	16:18	6.2	7.4			<u>10.0</u>
				M4	15:51	0.2	/ . 4			7.0
Mid-Ebb	C2			M5	16:30					<u>8.5</u>
				G1	16:10					<u>18.7</u>
				G2	16:00					7.7
		Dottom		G3	16:15					<u>11.9</u>
		Bottom	13.1	G4	16:24	6.9	7.9	15.7	17.0	<u>12.9</u>
				M2	15:56					<u>11.8</u>
				M4	15:51					<u>20.0</u>
				M5	16:30					<u>11.4</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	9:00					<u>10.1</u>
				G3	9:04	6.0	6.9			<u>16.1</u>
				G4	9:11					<u>22.3</u>
		Surface	15.9	M1	8:55			19.1	20.7	<u>9.8</u>
				M3	9:07	6.2	7.4			<u>10.0</u>
				M4	8:41	0.2	/ . 4			<u>8.1</u>
				M5	9:22					<u>22.0</u>
Mid-	C1	Intake	n.a.	M6	9:16	8.3	8.6	n.a.	n.a.	<u>10.7</u>
Flood	CI			G1	9:00					<u>11.4</u>
				G2	8:50					<u>15.2</u>
				G3	9:04					<u>9.8</u>
		Bottom	6.4	G4	9:11	6.9	7.9	7.6	8.3	<u>14.7</u>
	В	Бонош	0.4	M2	8:46	0.9	7.9	7.0	6.3	<u>14.5</u>
				M3	9:07					<u>11.2</u>
				M4	8:41					<u>16.7</u>
				M5	9:22					7.9

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O - Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>10 June 2019</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)		Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
						G1	18:25			<u>2.5</u>
			Mid-Ebb	C2	1.8	G4	18:47	2.2	2.3	<u>2.6</u>
Bottom	19.3	22.2	MIG-EDD	C2	1.0	M1	18:17	2.2	2.3	<u>4.6</u>
Bottom	17.3	22.2				M3	18:36			<u>2.7</u>
			Mid- Flood	C1	3.5	M1	11:08	4.2	4.5	<u>5.1</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	18:25					<u>11.9</u>
				G2	18:13	6.0	6.9			<u>11.8</u>
				G3	18:29	0.0	0.9			<u>12.3</u>
		Surface	9.5	G4	18:47			11.3	12.3	<u>11.2</u>
		Surface	9.3	M2	18:09			11.5	12.3	<u>7.8</u>
				M3	18:36	6.2	7.9			<u>13.5</u>
Mid-Ebb	C2			M4	18:04	0.2	1.9			<u>11.0</u>
WIIG-EDD	C2			M5	19:02					7.0
				G1	18:25					<u>9.3</u>
				G2	18:13					<u>11.6</u>
		Bottom	12.8	G4	18:47	6.9	7.9	15.3	16.6	<u>8.5</u>
		Doutom	12.0	M1	18:17	0.9	1.9	13.3	10.0	<u>12.6</u>
				M2	18:09					<u>9.7</u>
				M3	18:36					<u>8.6</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	11:16		6.9		16.8	6.3
				G3	11:20	6.0				<u>8.9</u>
		Surface	13.0	G4	11:30			15.5		<u>12.5</u>
				M1	11:08	6.2	7.4			7.3
				M2	11:00	0.2	7.4			<u>10.2</u>
Maria		Intake	n.a.	M6	11:38	8.3	8.6	n.a.	n.a.	<u>8.9</u>
Mid- Flood	C1			G1	11:16					<u>10.5</u>
11000				G2	11:04				10.1	<u>10.8</u>
				G4	11:30					<u>8.3</u>
		Bottom	7.8	M1	11:08	6.9	7.9	9.4		<u>11.2</u>
				M3	11:22					<u>10.6</u>
				M4	10:55					<u>9.2</u>
				M5	11:42					<u>10.2</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 12 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
D 44						G4	14:36			<u>3.6</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	M3	14:32	2.2	2.4	<u>3.3</u>
						M4	14:08			<u>2.6</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G2	8:31	6.0	6.9	8.6	9.3	<u>7.4</u>
		Surface	7.2	G3	8:43	0.0				6.2
				M3	8:46	6.2	7.4			<u>11.5</u>
Mid-Ebb	C2			M4	8:22					7.4
			m 7.6	M2	8:28	6.9	7.9	9.1	9.8	<u>8.3</u>
		Bottom		M3	8:46					7.3
				M4	8:22					7.4

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)			130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
		Surface	e 4.7	G2	14:16	6.0	6.9	5.6	6.0	<u>6.3</u>
Mid-	C1			G3	14:30	0.0				<u>7.1</u>
Flood	C1	Intake	n.a.	M6	14:40	8.3	8.6	n.a.	n.a.	<u>9.0</u>
	•	Bottom	5.6	M2	14:13	6.9	7.9	6.7	7.2	<u>7.8</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 14 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	10:30		6.9		13.6	<u>10.1</u>
				G3	10:35	6.0		12.5		<u>7.3</u>
				G4	10:44					6.8
		Surface	10.5	M1	10:25	6.2	7.4			6.6
				M2	10:14					<u>7.8</u>
				M3	10:39					<u>8.1</u>
Mid-Ebb	C2			M4	10:10					7.1
				M5	10:57					7.1
				G4	10:44					<u>10.4</u>
		D 44		M1	10:25				7.3	<u>11.2</u>
		Bottom	5.6	M2	10:14	6.9	7.9	6.7		<u>7.4</u>
				M3	10:39					<u>11.4</u>
				M4	10:10					6.9

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)			130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
		C1 Surface Bottom	4.7	G2	15:47	6.0	6.9	5.6	6.1	<u>8.4</u>
Mid-	C1			G4	16:13					<u>9.3</u>
Flood	CI		Bottom 5.4	G2	15:47	6.9	7.9	6.5	7.0	<u>7.5</u>
				M2	15:43					6.7

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>17 June 2019</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
						G1	12:20		3.1	<u>3.2</u>
			Mid-Ebb	C2	2.4	M1	12:16	2.9		3.1
						M5	12:42			<u>4.4</u>
				G1 19:20			<u>4.4</u>			
Bottom	19.3	22.2				G2	19:08			<u>3.7</u>
			Mid-	C1	2.1	G4	2.5	2.7	<u>3.8</u>	
			Flood	CI	2.1	M1		2.7	<u>5.2</u>	
						M2	19:03			<u>6.0</u>
						M5	19:42			<u>4.4</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	12:20	6.0	6.9			<u>12.5</u>
				G4	12:34	0.0	0.9			<u>5.2</u>
		Surface	2.9	M2	12:03			3.5	3.8	<u>6.6</u>
		Surface	2.9	M3	12:30	6.2	7.9	3.3	3.6	<u>6.5</u>
Mid-Ebb	C2			M4	11:57	0.2	1.9			<u>6.9</u>
Wild-Loo	C2			M5	12:42					<u>8.9</u>
				G1	12:20					<u>6.0</u>
		Bottom	4.0	M1	12:16	6.9	7.9	4.8	5.2	<u>5.9</u>
		Douom	4.0	M2	12:03	0.9	1.9	4.0	3.2	<u>7.4</u>
				M3	12:30					<u>5.9</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	19:20	6.0	6.9			<u>6.6</u>
		Surface	4.8	G2	19:08	0.0	0.9	5.8	6.2	<u>6.9</u>
Mid-	C1	Surface	4.0	M2	19:03	6.2	7.4	3.6	0.2	<u>8.0</u>
Flood				M5	19:42	0.2	7.4			<u>6.9</u>
		Bottom	7.0	M1	19:16	6.9	7.9	8.3	9.0	<u>14.1</u>
		Bottom	7.0	M3	19:30	0.9	1.9	0.3	9.0	<u>8.5</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 19 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-flood	C1	3.4	M1	9:26	4.1	4.5	<u>4.7</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)		130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
		Surface	11.0	M4	13:20	6.2	7.4	13.1	14.2	6.7
Mid-Ebb	C2	Dottom	4.1	G4	13:48	6.9	7.9	4.9	5.3	<u>8.2</u>
		Bottom	4.1	M5	14:03	0.9	7.9	4.9	3.3	<u>5.5</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
		Surface	5.3	G4	9:42	6.0	6.9	6.4	6.9	<u>8.8</u>
				G1	9:31					<u>6.6</u>
Mid-	C1			M1	9:26					<u>6.2</u>
Flood	CI	Bottom	4.1	M2	9:17	6.9	7.9	4.9	5.3	<u>12.9</u>
				M4	9:13					5.0
				M5	9:54					5.3

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 21 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)		Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
						G1	9:41			1.8
						G2	9:32			<u>2.6</u>
						G3	9:45			<u>2.9</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	G4	9:52	1.7	1.9	<u>5.2</u>
Bottom	19.3	22.2	Wiid-1100d	CI	1.4	M1	9:36	1.7	1.9	<u>2.2</u>
						M2	9:27			<u>3.4</u>
						M3	9:48			<u>3.4</u>
						M5	10:02			<u>2.9</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G3	14:23					4.8
				G4	14:30	6.0	6.9			<u>7.0</u>
		Surface	3.8	M2	14:05			4.5	4.9	<u>6.7</u>
Mid-Ebb	C2			M3	14:26	6.2	7.4			4.7
				M4	14:00	0.2	7.4			<u>7.5</u>
		Bottom	6.3	G4	14:30	6.9	7.9	7.5	8.1	7.0
		DOUGHI	0.3	M3	14:26	0.9	1.9	1.3	0.1	<u>8.8</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	9:41	6.0	6.9			<u>4.0</u>
				G4	9:52	0.0	0.9			<u>7.5</u>
3.61.1		Surface	2.7	M1	9:36			3.2	3.4	<u>4.9</u>
Mid- Flood	C1			M2	9:27	6.2	7.4			<u>8.4</u>
11000				M3	9:48					<u>4.5</u>
		Bottom	4.4	G3	9:45	6.9	7.9	5.2	5.7	<u>7.4</u>
		Bottom	4.4	M1	9:36	0.9	1.9	3.2	5.1	<u>9.9</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 24 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)		Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-flood	C1	2.2	G4	10:12	2.6	2.9	<u>4.0</u>
DOLLOIII	19.3	<i>LL</i> . <i>L</i>	WHU-1100U	CI	2.2	M4	9:33	2.0	2.9	<u>3.5</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G3	16:00	6.0	6.9			<u>4.1</u>
		Surface	2.8	G4	16:13	0.0	0.9	3.4	3.6	<u>4.1</u>
				M4	15:34	6.2	7.4			<u>6.2</u>
				G1	15:55					<u>4.8</u>
Mid-Ebb	C2			G2	15:45					<u>5.6</u>
		Bottom	2.6	G3	16:00	6.9	7.9	3.1	3.3	3.2
		Dottom	2.0	G4	16:13	0.9	1.9	3.1	3.3	<u>7.8</u>
				M3	16:05					3.2
				M4	15:34					<u>3.5</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G1	9:54					<u>2.9</u>
				G2	9:44	6.0	6.9			<u>6.3</u>
		Surface	2.1	G3	9:59			2.5	2.7	<u>2.9</u>
		Surface	2.1	M1	9:49			2.3	2.7	<u>3.5</u>
				M2	9:40	6.2	7.4			<u>4.8</u>
				M4	9:33					<u>3.8</u>
Mid-	C1			G1	9:54					<u>5.8</u>
Flood				G2	9:44					<u>4.3</u>
				G3	9:59					<u>2.6</u>
		Bottom	1.6	G4	10:12	6.9	7.9	1.9	2.0	<u>2.8</u>
		Dottom	1.0	M1	9:49	0.9	1.9	1.9	2.0	<u>3.1</u>
				M2	9:40					<u>2.9</u>
				M3	10:04					<u>2.7</u>
				M5	10:24					<u>2.4</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 26 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)		130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	Surface	4.0	G1	8:37	6.0	6.9	1.9	5.2	<u>6.3</u>
WHU-EUU	C2	Surface	4.0	M3	8:45	6.2	7.4	4.8	3.2	<u>5.4</u>

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G3	12:46	6.0	6.9		4.0	<u>4.4</u>
				G4	12:55	0.0	0.7	3.7		<u>4.3</u>
				M1	12:34	6.2	7.4			<u>4.6</u>
		Surface	3.1	M2	12:25					<u>4.1</u>
				M3	12:48					<u>6.8</u>
				M4	12:16					<u>4.2</u>
Mid-	C1			M5	13:05					3.9
Flood	CI		om 3.2	G1	12:39				4.2	<u>6.5</u>
				G2	12:29					<u>5.1</u>
				G3	12:46					<u>4.4</u>
		Bottom		G4	12:55	6.9	7.9	3.8		<u>5.0</u>
				M1	12:34					<u>4.7</u>
				M2	12:25					<u>5.2</u>
				M4	12:16					<u>6.2</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 28 June 2019

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)		130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
	9	G C	5.7	G4	10:09	6.0	6.9	6.0	7.3	<u>7.0</u>
Mid-Ebb	C2	Surface	5.7	M4	9:36	6.2	7.4	6.8	7.5	6.9
		Bottom	5.0	M5	10:21	6.9	7.9	5.9	6.4	6.4

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Notification of Environmental Quality Limit Exceedances

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
				G2	14:15	6.0	6.9	9.2	10.0	<u>9.3</u>
		Surface	7.7	M3	14:39	6.2	7.4			6.8
		Surface		M4	14:05					<u>10.1</u>
Mid-	C1			M5	14:55					6.4
Flood	CI			G1	14:26	6.9	7.9	5.6	6.0	<u>6.5</u>
		Bottom	ottom 4.7	M1	14:21					<u>6.6</u>
				M2	14:10					5.9
				M5	14:55					<u>6.6</u>

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

Environmental Team for Tseung Kwan O - Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (June 2019)

Part A-Details of Investigation

The exceedance of SS has been recorded continuously in June. According to the data from Hong Kong Observatory, high rainfall was recorded in June and amber rainstorm warning signal was hoisted on 1, 4, 11, 13, 14 and 25 June which resulted in a high volume of upstream muddy water discharge into the Junk Bay, as observed during the rainstorm events (Photo 1 & 2). No sand plume within the cofferdam area and no muddy water discharge at the designated discharge point within the Site was identified during the site inspection and water quality monitoring (Photo 7, 8 and 9), and, as part of mitigation measures for marine works, silt curtains and cofferdam are deployed around the marine works area of the Project and no major deficiency of the conditions of the silt curtain and the cofferdam has been discovered.

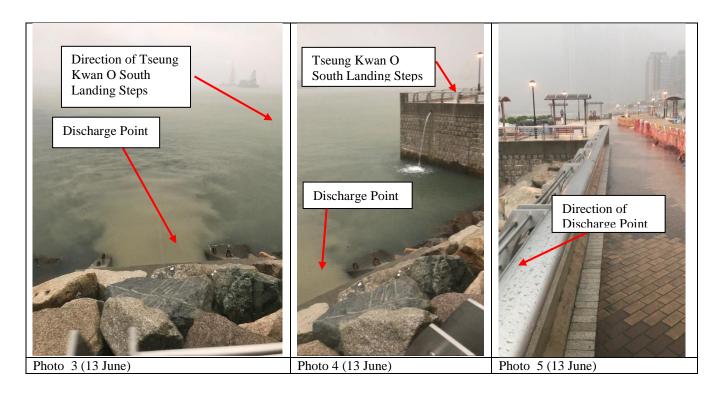
In addition, muddy water was observed during weekly site inspection at the discharge point adjoining Tseung Kwan O South Landing Steps during rainstorm (see photo 3, 4 and 5); muddy water was also found discharging from the DSD desilting compound following to a few rainstorms that took place in June 2019, but no obvious sand plume was observed inside the marine works area (see photo 6). Besides the Project, other construction activities within Junk Bay might have also lead to the on-going exceedance of SS. It was reported that discharge of muddy water was found at the seafront off the Industrial Estate and was suspected to be originated from a construction site at the Industrial Estate. The muddy water discharge would result in an increase of the overall SS concentrations in Junk Bay and hence the SS limit level exceedance was recorded.

No direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Therefore, no additional marine water quality monitoring is required.

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (June 2019)


.Part B-Photo Record

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (June 2019)

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (June 2019)

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (June 2019)

Part C – Recommendations

The contractor is reminded to cover the exposed ground with sandbags and tarpaulin and provide appropriate diversion of the received rainwater to the wastewater treatment system within the site, where sufficient storage and treatment capacity should be provided. The conditions of the cofferdam and silt curtain should be monitored and maintained at all times, weekly diver inspections should be conducted to ensure that there are no damages or leakages within the cofferdam and silt curtains.

Reviewed by:

Environmental Team Leader: Dr. HF Chan)

Date: 2 July, 2019

Agreement No. CE 59/2015 (EP) ET for Tseung Kwan O – Lam Tin Tunnel Design and Construction

- Notification and Investigation Report for Environmental Quality Action & Limit Exceedances

Monitoring Parameter: Groundwater Quality

Date of Monitoring: 12 June 2019

Part A – Summary of Exceedance Records

Date	Monitoring Parameter	O	Monitoring Results	Action Level	Limit Level	Justification*	Exceedance due to the Project
12 June 2019	Biochemical Oxygen Demand (mg O ₂ /L)	Stream 1	<u>3.0</u>	2.0	2.0	(1)	No

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) Stream 1 is at a higher ground level than the construction site, therefore construction runoff cannot reach Stream 1.
- (2) The distance between the tunnel construction activities and monitoring stations of stream 2 and 3 are about 1000 meters.

Part B - Conclusions:

- 1. Based on the justification in the above table, there is no direct evidence showing that the exceedance was due to Project. The exceedance is considered properly due to non-project related factor, such as, the degradation of naturally occurring organic matter, manmade sources or domestic sewage (as observed and reported in the EIA report).
- 2. No increase in monitoring frequency for groundwater quality monitoring and no further action are required.

Part C – Recommendations

The monitoring of stream water is considered not representative to monitor the potential impacts on groundwater due to the Project after consideration of the location & elevation of the stream(s) and the non-project related factors (e.g. human activities etc.).

Therefore, ET recommends to suspend the water quality monitoring for the streams in accordance with the EM&A Manual, Section 4. For the details, please refer to the separate proposal for suspension of stream water monitoring.

Reviewed by: Dr. HF Chan Date: 15 June, 2019

Signature:

(Environmental Team Leader)

Agreement No. CE 59/2015 (EP) ET for Tseung Kwan O – Lam Tin Tunnel Design and Construction

- Notification and Investigation Report for Environmental Quality Action & Limit Exceedances

Monitoring Parameter: Groundwater Quality

Date of Monitoring: 21 June 2019

Part A – Summary of Exceedance Records

Date	Monitoring Parameter	O	Monitoring Results	Action Level	Limit Level	Justification*	Exceedance due to the Project
21 June 2019	Biochemical Oxygen Demand (mg O ₂ /L)	Stream 1	<u>3.0</u>	2.0	2.0	(1)	No

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) Stream 1 is at a higher ground level than the construction site, therefore construction runoff cannot reach Stream 1.
- (2) The distance between the tunnel construction activities and monitoring stations of stream 2 and 3 are about 1000 meters.

Part B - Conclusions:

- 1. Based on the justification in the above table, there is no direct evidence showing that the exceedance was due to Project. The exceedance is considered properly due to non-project related factor, such as, the degradation of naturally occurring organic matter, manmade sources or domestic sewage (as observed and reported in the EIA report).
- 2. No increase in monitoring frequency for groundwater quality monitoring and no further action are required.

Part C – Recommendations

The monitoring of stream water is considered not representative to monitor the potential impacts on groundwater due to the Project after consideration of the location & elevation of the stream(s) and the non-project related factors (e.g. human activities etc.).

Therefore, ET recommends to suspend the water quality monitoring for the streams in accordance with the EM&A Manual, Section 4. For the details, please refer to the separate proposal for suspension of stream water monitoring.

Reviewed by: Dr. HF Chan Date: 24 June, 2019

(Environmental Team Leader)

Signature:

APPENDIX L SITE AUDIT SUMMARY

Appendix L - Site Audit Summary (June 2019)

Contract No. NE/2015/01

Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works

Items	Date	Status*	Follow up Action	
Water Quality	Dute	Status	1 onow up rection	
		1		
Still water was found in Portion VI and Area WA1. Contractor is reminded to pump out still water in the	20 May 2010	,	Immerced/martified on 5 June 2010	
construction site.	29 May 2019	✓	Improved/rectified on 5 June 2019.	
Parts of silt curtains for Platform 1C and 1D were				
	5 June 2019	✓	Improved/rectified on 12 June 2019.	
missing and need to be placed completely. Mud, branches and still water were found in a perimeter				
drain and a soldier pile wall near East Cross Harbour				
Tunnel, and a drain near Cha Kwo Ling Rd. They need	19 June 2019	✓	Improved/rectified on 26 June 2019.	
to be cleared to prevent overflow when raining.	19 June 2019	•	improved/rectified on 20 June 2017.	
to be created to prevent overnow when raining.				
Part of a silt curtain at the western end of TKO site was		_		
floating and it should be fixed.	19 June 2019	✓	Improved/rectified on 26 June 2019.	
Part of silt curtain was broken and stranded on shores				
near the barging point at Tseung Kwan O site. The	261 2010		Follow up action will be reported in the	
Contractor is reminded to repair and fix silt curtain	26 June 2019	#	next reporting month.	
regularly.			1 0	
Ecology				
Noise				
In Portion III, an idle excavator was found. Idle				
machines and equipment need to be turned off to	12.1 2010	,	I 1/ //C 1 10 I 2010	
minimize noise impacts to nearby NSRs.	12 June 2019	✓	Improved/rectified on 19 June 2019.	
In Portion VI, breakers were found with a broken piece				
of acoustic material. Contractor is reminded to wrap	19 June 2019	√	Improved/rectified on 26 June 2019.	
complete noise absorption materials to each breaker.	19 Julie 2019	'	improved/rectified on 20 June 2019.	
Landscape and Visual	,			
Air Quality				
In Portion III, dust was emitted during unloading of				
materials from trucks and a driller. Contractor is	12 I 2010	,	L	
reminded to provide sufficient water sprays to dust-	12 June 2019	✓	Improved/rectified on 19 June 2019.	
generating activities.				
Waste / Chemical Management				
Garbage was found in Area WA1a. Contractor is				
reminded to provide rubbish bin(s) to collect refuse	29 May 2019	✓	Improved/rectified on 5 June 2019.	
properly.				
A drip tray in Portion VI was filled with water. It is	5 June 2019	✓	Improved/rectified on 12 June 2019.	
required to pump out		•	r statement on 12 time 2019.	
Three chemical tanks in Portion WA1 were found	5 June 2019	✓	Improved/rectified on 12 June 2019.	
without a drip tray.		-	1	
Oil stain was found in the barging point at Tseung	26 June 2019	#	Follow up action will be reported in the	
Kwan O site and needs to be cleaned.			next reporting month.	

Appendix L - Site Audit Summary (June 2019)

Items	Date	Status*	Follow up Action
Impact on Cultural Heritage			
-			
Permits / Licenses			

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but improved by the contractor

Appendix L - Site Audit Summary (June 2019)

Contract No. NE/2015/02

Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
The silt curtain was floating outside the cofferdam at portion IX.	30 May 2019	✓	Improved/rectified on 6 June 2019.
Some floating refuse was observed in the water within the double water gate of the cofferdam.	20 June 2019	✓	Improved/rectified on 27 June 2019.
Noise			
Landscape and Visual			
Air Quality			
Waste / Chemical Management			
Impact on Cultural Heritage			
Permits / Licenses			

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

Appendix L - Site Audit Summary (June 2019)

Contract No. NE/2017/02

Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works

Items	Date	Status*	Follow up Action				
Water Quality							
Noise	Noise						
Landscape and Visual							
Air Quality							
Waste / Chemical Management							
Impact on Cultural Heritage							
Permits / Licenses							

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

^{*} Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

Appendix L - Site Audit Summary (June 2019)

Contract No. NE/2015/03

Tseung Kwan O - Lam Tin Tunnel - Northern Footbridge

Items	Date	Status*	Follow up Action				
Water Quality							
Noise							
Landscape and Visual							
T-							
Air Quality							
Uncovered stockpile was observed at west pier.	20 June 2019	✓	Improved/rectified on 27 June 2019.				
Waste / Chemical Management	1						
Stagnant water was observed in the drip tray for the oil drum.	20 June 2019	✓	Improved/rectified on 27 June 2019.				
Impact on Cultural Heritage							
Permits / Licenses							

[✓] Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

[#] Follow up action will be reported in next reporting month

Appendix L - Site Audit Summary (June 2019)

Contract No. NE/2017/01

Tseung Kwan O - Lam Tin Tunnel – Tsueng Kwan O Interchange and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
A small section of the silt curtain in Portion I was found without the buoys on the surface.	28 May 2019	✓	Improved/rectified on 4 June 2019.
Noise		T	
Landscape and Visual			
Air Quality			
Waste / Chemical Management			
Impact on Cultural Heritage			
Permits / Licenses		_	

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- * Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR		
	8. If exceedance stops, cease additional monitoring.					
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 		
Limit level being exceeded by two or more consecutive sampling	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; 		

	ACTION						
EVENT	ET	IEC	ER	CONTRACTOR			
	 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions 	3. Supervise the implementation of remedial measures.	 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of 	4. Resubmit proposals if problem still not under control;5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.			
	to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.		work until the exceedance is abated.				

Event and Action Plan for Construction Noise

EVENT	ACTION							
		ET		IEC		ER		CONTRACTOR
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose		
	4.	Discuss with the Contractor and		advise the ER accordingly;		remedial measures for the analysed		
		formulate remedial measures;	3.	Supervise the implementation of		noise problem;		
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are		
		check mitigation effectiveness.				properly implemented.		
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as
		implemented;				what portion of the work is		determined by the ER until the
	6.	Inform IEC, ER and EPD the causes				responsible and instruct the		exceedance is abated.
		and actions taken for the				Contractor to stop that portion of		
		exceedances;				work until the exceedance is abated.		

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
	7. Assess effectiveness of Contractor's				
	remedial actions and keep IEC, EPD				
	and ER informed of the results;				
	8. If exceedance stops, cease additional				
	monitoring.				

Event and Action Plan for Marine Water Quality

	Action			
Event	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate; If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation proposal.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agree mitigation measures.
Action level being exceeded by two	Identify the source(s) of impact by comparing the results with those	Discuss with ET and Contractor on the mitigation measures;	Discuss with IEC on the proposed mitigation measures;	Inform the Engineer and confirm notification of the non-compliance in
or more consecutive	collected at the control stations as appropriate;		Make agreement on the mitigation proposal;	writing; • Rectify unacceptable practice;

		Act	tion	
Event	ET	IEC	ER	CONTRACTOR
sampling days at	If exceedance is found to be caused	Review proposal on mitigation	Assess the effectiveness of the	Check all plant and equipment and
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;
	findings;	Assess the effectiveness of the		Discuss with ET, IEC and ER and
	Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC
	Check monitoring data, all plant,			and ER within 3 working days;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Prepare to increase the monitoring			
	frequency to daily;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Repeat measurement on next day of			
	exceedance.			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
receiver(s)		and advise the ER accordingly;	review the working methods;	

		Acı	tion	
Event	ET	IEC	ER	CONTRACTOR
	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working
	repeat in-situ measurement to		Assess the effectiveness of the	methods;
	confirm findings;		implemented mitigation measures.	Discuss with ET, IEC and ER and
	Inform IEC, contractor, AFCD and			submit proposal of mitigation
	EPD			measures to IEC and ER within 3
	Check monitoring data, all plant,			working days of notification;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC, ER and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
sampling days at		and advise the ER accordingly;	review the working methods;	

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
water sensitive	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working
	in-situ measurement to confirm		Assess the effectiveness of the	methods;
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		• Consider and instruct, if necessary,	submit proposal of mitigation
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3
	Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;
	equipment and Contractor's working		until no exceedance of Limit level.	Implement the agreed mitigation
	methods;			measures;
	Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		Increase ventilation to restore carbon dioxide to <
		0.5%

Event and Action Plan for Coral Post-Translocation Monitoring

Event	Action			
	ET Leader	IEC	ER	Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.		
				3. Implement the agreed measures.

Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	The Engineer shall be informed immediately.
	The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	The Contractor shall carry out design review of the works

Action Level

- Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
- The Contractor shall immediately implement the measures defined in the contingency plan
- The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
- The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
- To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract:NE/2015/01

Key:

- Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	^
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	^
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should	To minimize the	Contractor#	All	Construction	APCO and Air	
	be covered entirely by impervious sheeting or placed in an area sheltered on the top	dust impact		Construction	phase	Pollution Control	
	and the 3 sides.			Work Sites		(Construction	
	- Use of frequent watering for particularly dusty construction areas and areas close					Dust) Regulation	* (1)
	to ASRs						
	- Side enclosure and covering of any aggregate or dusty material storage piles to						^
	reduce emissions. Where this is not practicable owing to frequent usage,						

_								
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						^
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						٨
		site locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						^
		points of the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation						^
		measures at the loading area of barging point, and use of water sprinklers at the						
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						
		boundary where adjoins a road, streets or other accessible to the public except						^
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						^
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						
		should be covered entirely by impervious sheeting or placed in an area sheltered						^
		on the top and the 3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						^
		construction process in order to enforce controls and modify method of work if						
		dusty conditions arise.						
/	Em	nission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	•	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	•	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
		serviced regularly to avoid emission of black smoke.	construction					
	•	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^

	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Noise In	npact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	٨
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	*(2)
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		٨
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					٨
	properly maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					٨

	- Machines and plant (such as trucks) that may be in intermittent use should be						* (3)
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m³, with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt curtain	filling activities					
	shall be employed around the active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	filling activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling						
	barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³						
	per trip) for the filling operation at the reclamation area for Road P2. All filling works						
	shall be carried out behind the seawall with the use of single silt curtain at the marine						
		*	•	•		•	•

	access.						
Silt	- Silt curtains should be deployed properly to surround the works area.	Control potential	Contractor	NE/2015/01	Construction	EIAO	# (1)
Curtain	- Maintenance of silt curtain should be provided.	impacts from			stage		* (4) (5)
Deploym	- Sufficient stock of silt curtain should be provided on site.	marine woroks					٨
ent Plan							
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction methods	impacts from	Contractors		Phase	Waste Disposal	٨
	as far as practically possible including the use of cofferdams to cover the	filling activities				Ordinance (WDO)	
	construction area to separate the construction works from the sea;	and marine-					
	- floating single silt curtain shall be employed for all marine works;	based					٨
	- all vessels should be sized so that adequate clearance is maintained between	construction					٨
	vessels and the seabed in all tide conditions, to ensure that undue turbidity is not						
	generated by turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings						٨
	to prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges						٨
	before the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of						٨
	decks being washed by wave action;						
	- loading of barges and hoppers should be controlled to prevent splashing of filling						٨
	material into the surrounding water. Barges or hoppers should not be filled to a						
	level that will cause the overflow of materials or polluted water during loading or						
	transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated with						٨
	leaking pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						٨
	objectionable matter to be present on the water within the site or dumping						

	grounds; and - before commencement of the reclamation works, the holder of Environmental						N/A
	Permit has to submit plans showing the phased construction of the reclamation,						IN/A
	design and operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	filling activities				WPCO	
		and marine					
		based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	Reclamation for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary	dredging and				WPCO	N/A
	barrier shall first be constructed to a height above the high water mark to	filling works for					
	completely enclose the works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works	Road P2					N/A
	site shall not be removed before completion of all dredging and underwater						
	filling works.						N/A
	- Water quality sampling and testing shall be carried out to demonstrate that the						
	water quality inside the enclosed barrier is comparable to the ambient or						
	baseline levels prior to the removal of the fully enclosed barrier.						N/A
	- Silt curtains shall be deployed for the installation and removal of the temporary						
	barrier and at the double water gates marine access opening during its						
	operation.						
		_					

					I		
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (6)
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						
	discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	^
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					^
	L .		l	l	l		L

S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
						1	

S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	material) of more than 50m ³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	

	periods of heavy rain.	runoff and land-					
		based					
		construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	no earth, mud, debris and the like is deposited by them on roads.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					

	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (7)
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						

	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
		1	i				

	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based					
		construction					

		1	1				1
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers/drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	

1		I	ı	1	1		
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	٨
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
	1	1	1			1	<u> </u>

S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						^
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						^
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space						^
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	٨
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					
Ecologi	cal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		^
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					^
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		^

	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						٨
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						^
	and control construction site run-off.						^
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						
	the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A
	would generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A
	the groundwater inflow and ensure that the tunnel would meet the long term water						
	tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A	
	Coral translocation	coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			^
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint			
	other suitable locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-						^
	March) in order to avoid disturbance during their spawning period (i.e. July to						
	October).						^
	- A detailed coral translocation plan with a description on the methodology for						
	pretranslocation coral survey, translocation methodology, identification/proposal of						

	coral recipient site, monitoring methodology for posttranslocation should be						٨
	prepared during the detailed design stage.						
	The coral translocation plan should be subject to approval by relevant authorities						
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the						
	translocation exercises should be conducted by experienced marine ecologist(s)						
	who is/are approved by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	A coral monitoring programme is recommended to assess any adverse and						^
	unacceptable impacts to the translocated coral communities						
	Information gathered during each posttranslocation monitoring survey should						_
	include observations on the presence, survival, health condition and growth of the						
	translocated coral colonies. These parameters should then be compared with						
00.00	the baseline results collected from the pre-translocation survey.	O and and a section	Decim	Marianana	0	W00	
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	landbased	phase		N/A
	opening of newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize					^
	- Standard good-site practice for land-based construction.	the					^
		contamination of					
		wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					
		receiving water					

		bodies					
		200.00					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		^
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		^
	opening of newly installed seawall and marine works area.	especially on	Contractor				
		suspended solid					
		level					
Waste M	lanagement (Construction Phase)					I	1
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	* (8)
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	

	containers; and						^
	- Regular cleaning and maintenance programme for drainage systems, sumps and						
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	^
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	^
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	
	workforce;					Provisions)	
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^
	contamination of construction materials; and					28)	
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						

S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	^
	as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
	containment, thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					^
	- Stockpiling area should be provided with covers and water spraying system to	storage					^
	prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance						^
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		^
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					^
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						^
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^

Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	٨
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	٨
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						٨
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		٨
	relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
	disposal of sediments or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization						^
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						^
	excavation and transportation of the sediment, the excavated sediments should						
	be kept wet during excavation/boring and should be properly covered when						

	placed on barges/trucks. Loading of the excavated sediment to the barge						
	should be controlled to avoid splashing and overflowing of the sediment slurry to						
	the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	٨
Waste	transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea	
Manage	excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance	
ment	options and ETWB TC(W) No. 34/2002.	statutory					
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					^
	temporary stockpiling of contaminated sediments is necessary, the excavated						
	sediment should be covered by tarpaulin and the area should be placed within						
	earth bunds or sand bags to prevent leachate from entering the ground, nearby						
	drains and surrounding water bodies. The stockpiling areas should be completely						
	paved or covered by linings in order to avoid contamination to underlying soil or						
	groundwater. Separate and clearly defined areas should be provided for						
	stockpiling of contaminated and uncontaminated materials. Leachate, if any,						
	should be collected and discharged according to the Water Pollution Control						
	Ordinance (WPCO).						^
	- In order to minimise the potential odour / dust emissions during boring and						
	transportation of the sediment, the excavated sediments should be kept wet						
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be controlled to						
	avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be						٨
L		114.00	l	l		1	1

		equipped with tight fitting seals to prevent leakage and should not be filled to a						
		level that would cause overflow of materials or laden water during loading or						
		transportation. In addition, monitoring of the barge loading shall be conducted to						
		ensure that loss of material does not take place during transportation. Transport						
		barges or vessels shall be equipped with automatic self-monitoring devices as						
		specified by the DEP.						
	-	In order to minimise the exposure to contaminated materials, workers should,						
		when necessary, wear appropriate personal protective equipments (PPE) when						N/A
		handling contaminated sediments. Adequate washing and cleaning facilities						
		should also be provided on site.						
	-	Another possible arrangement for Type 3 disposal is by geosynthetic						
		containment. A geosynthetic containment method is a method whereby the						N/A
		sediments are sealed in geosynthetic containers and, at the disposal site, the						
		containers would be dropped into the designated contaminated mud pit where						
		they would be covered by further mud disposal and later by the mud pit capping,						
		thereby meeting the requirements for fully confined mud disposal.						
S8.6.26/	Ch	emical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	-	If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	* (9) (10)
Manage		required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	# (2)
ment		the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	
Plan		Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
		chemical wastes should be used, and incompatible chemicals should be stored						
		separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
		waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
		chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
		corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
		dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						
		at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
				•			•	

	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	٨
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Impact (on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	٨
	m) should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						٨
	festival;						٨
	- Monitoring of vibration impacts should be conducted when the construction						
	works are less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits on	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	indirect vibration			Phase	Heritage Buildings	٨
	limit of 5mm/s measured inside the historical buildings;	impact				by CEDD; GCHIA;	
	- Monitoring of vibration should be carried out during construction phase.					AMO.	٨
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin						٨
	Hau Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts on						٨
	built heritage shall be submitted to AMO for comments before commencement of						
	work.						
Built	- Established Alert, Alarm and Action Level for the monitoring parameters.	To prevent	NE/2015/01	Tin Hau	Construction	Vibration Limits on	٨
Heritage	- To increase the instrumentation monitoring and reporting frequency.	vibration impacts		Temple	Phase	Heritage Buildings	٨
Mitigation	- To propose detailed action plan or contingency plan for the Engineer's approval					by CEDD; GCHIA;	٨

Plan	when AAA Level is reached or exceeded.					AMO.	
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	^
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	^
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
ре							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	^
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	

	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	٨
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	٨
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	٨
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	٨
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		

Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/	Civito - Avoidance of excessive neight and blik of site buildings and structure	visual intrusion	Contractor)			IVA	
			Contractor)	structures	construction		
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		
ре		and water bodie		tunnel			
Mitigation				portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at	stages		
				TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			

				slip roads			
				and Road			
				P2			
Landfill	Gas Hazard (Design and Construction Phase)	1		T			
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	^
	hazards, should be present on site throughout the groundworks phase. The Safety	workers from		within the	phase	Hazard	
	Officer should be provided with an intrinsically safe portable instrument, which is	landfill gas		Sai Tso Wan		Assessment	
	appropriately calibrated and able to measure the following gases in the ranges	hazards		Landfill		Guidance Note	
	indicated below:			Consultation			
	Methane 0-100% LEL and 0100% v/v			Zone			
	Carbon dioxide 0-100%						
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	
S11.5.25	- For staff who work in, or have responsibility for "at risk" area, such as all	workers from		within the	phase	Hazard	^
	excavation workers, supervisors and engineers working within the Consultation	landfill gas		Sai Tso Wan		Assessment	
	Zone, should receive appropriate training on working in areas susceptible to	hazards		Landfill		Guidance Note	
	landfill gas, fire and explosion hazards.			Consultation		Labour	
	- An excavation procedure or code of practice to minimize landfill gas related risk			Zone		Department's	^
	should be devised and carried out.					Code of Practice	
	- No worker should be allowed to work alone at any time in or near to any					for Safety and	^
	excavation. At least one other worker should be available to assist with a					Health at Work in	
	rescue if needed.					Confined Space	
	- Smoking, naked flames and all other sources of ignition should be prohibited						٨
	within 15m of any excavation or ground-level confined space. "No smoking"						
	and "No naked flame" notices should be posted prominently on the construction						
	site and, if necessary, special areas should be designed for smoking.						

progresses, all valves/seals should be closed to prevent the migration of gases

Welding, flame-cutting or other hot works should be confined to open areas at least 15m from any trench or excavation. Welding, flame-cutting or other hot works may only be carried out in trenches or confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Officer (or, in the case of small developments, other appropriately qualified person). The permit to work procedure should set down clearly the requirements for continuous monitoring for methane, carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure should also require the presence of an appropriately qualified person, in attendance outside the 'confined area', who should be responsible for reviewing the gas measurements as they are made, and who should have executive responsibility for suspending the work in the event of unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise should be permitted to carry out hot works in confined areas. Where there are any temporary site offices, or any other buildings located within the Sai Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to accumulate landfill gas, then they should either be located in an area which has been proven to be free of landfill gas (by survey using portable gas detectors); or be raised clear of the ground by a minimum of 500mm. This aims to create a clear void under the structure which is ventilated by natural air movement such that emission of gas from the ground are mixed and diluted by air. Any electrical equipment, such as motors and extension cords, should be intrinsically safe. During piping assembly or conduiting construction, all valves/seals should be closed immediately after installation. As construction

							1	
		through the pipeline/conduit. All piping /conduiting should be capped at the end						
		of each working day.						
	-	During construction, adequate fire extinguishing equipment, fire-resistant clothing						
		and breathing apparatus (BA) sets should be made available on site.						^
	-	Fire drills should be organized at not less than six monthly intervals.						
	-	The contractor should formulate a health and safety policy, standards and						^
		instructions for site personnel to follow.						^
	-	All personnel who work on the site and all visitors to the site should be made						
		aware of the possibility of ignition of gas in the vicinity of excavations. Safety						^
		notices (in Chinese and English) should be posted at prominent position around						
		the site warning danger of the potential hazards.						
	-	Service runs within the Consultation Zone should be designated as "special						
		routes"; utilities companies should be informed of this and precautionary						^
		measures should be implemented. Precautionary measures should include						
		ensuring that staff members are aware of the potential hazards of working in						
		confined spaces such as manholes and service chambers, and that appropriate						
		monitoring procedures are in place to prevent hazards due to asphyxiating						
		atmospheres in confined spaces. Detailed guidance on entry into confined						
		spaces is given in Code of Practice on Safety and Health at Work in Confined						
		Spaces (Labour Department, Hong Kong).						
	-	Periodically during ground-works construction within the 250m Consultation						
		Zone, the works area should be monitored for methane, carbon dioxide and						^
		oxygen using appropriately calibrated portable gas detection equipment. The						
		monitoring frequency and areas to be monitored should be set down prior to						
		commencement of ground-works either by the Safety Officer or an approved and						
		appropriately qualified person.						
S11.5.26	٨	Monitoring	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	
-	•	Routine monitoring should be carried out in all excavations, manholes,	workers from		within the	phase	Hazard	^
	-						•	

S11.5.31		chambers, relocation of monitoring wells and any other confined spaces that	landfill gas		Sai Tso Wan		Assessment	
		may have been created. All measurements in excavations should be made	hazards		Landfill		Guidance Note	
		with the extended monitoring tube located not more than 10 mm from the			Consultation			
		exposed ground surface. Monitoring should be performed properly to make			Zone			
		sure that the area is free of landfill gas before any man enters into the area.						
	•	For excavations deeper than 1m, measurements should be carried out:						
		- at the ground surface before excavation commences;-						^
		- immediately before any worker enters the excavation;						
		- at the beginning of each working day for the entire period the excavation						
		remains open; and						
		- periodically throughout the working day whilst workers are in the excavation.						
	•	For excavations between 300mm and 1m deep, measurements should be						
		carried out:						
		- directly after the excavation has been completed; and						^
		- periodically whilst the excavation remains open.						
	•	For excavations less than 300mm deep, monitoring may be omitted, at the						
		discretion of the Safety Officer or other appropriately qualified person.						^
	•	Depending on the results of the measurements, actions required will vary and						
		should be set down by the Safety Officer or other appropriately qualified						^
		person.						
	•	The exact frequency of monitoring should be determined prior to the						^
		commencement of works, but should be at least once per day, and be carried						
		out by a suitably qualified or qualified person before starting the work of the						
		day. Measurements shall be recorded and kept as a record of safe working						
		conditions with copies of the site diary and submitted to the Engineer for						
		approval. The Contractor may elect to carry out monitoring via an automated						
		monitoring system.						
S11.5.32	The	hazards from landfill gas during the construction stage within the Sai Tso Wan	construction	Contractor	Project sites	Construction	EPD's Landfill Gas	N/A

Landfill Consultation Zone should be minimized by suitable precautionary measures	stage within the	within the	phase	Hazard	
recommended in Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Sai Tso Wan	Sai Tso Wan		Assessment	
	Protect the	Landfill		Guidance Note	
	workers from	Consultation			
	landfill gas	Zone			
	hazards				

Table II - Observations/reminders/non-compliance made during Site Audit

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Quality	Impact (Constru	ction Phase)			
* (1)	\$3.8.7	Every stock of more than 20 bags of cement or dry pulverised fuel ash	NE/2015/01	Construction of Lam Tin Interchange	In Portion III, dust was emitted during unloading of materials from trucks and a driller. Contractor is reminded to provide
		(PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3			sufficient water sprays to dust-generating activities.
		sides. - Use of frequent watering for			
		particularly dusty construction areas and areas close to ASRs			
		- Side enclosure and covering of any aggregate or dusty material storage			
		piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be			
		applied to aggregate fines. - Open stockpiles shall be avoided or			

		covered. Where possible, prevent placing dusty material storage piles near ASRs.				
Noise Imp	act (Construction	Phase)				
* (2)	Noise Mitigation Plan	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan	NE/2015/01	Construction of Lam Tin Interchange	•	In Portion VI, breakers were found with a broken piece of acoustic material. Contractor is reminded to wrap complete noise absorption materials to each breaker.
* (3)	S4.9	Good Site Practice - Only well-maintained plant should be operated on-site and plant should be operated on-site and plant should be serviced regularly during the construction program - Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. - Mobile plant, if any, should be sited as far away from NSRs as possible. - Machines and plant (such as trucks) that may be in intermittent use should be shut down between	NE/2015/01	Construction of Lam Tin Interchange	•	In Portion III, an idle excavator was found. Idle machines and equipment need to be turned off to minimize noise impacts to nearby NSRs.

		works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site			
		construction activities.			
Matax Core	lity Impact (Com				
	lity Impact (Cons	-			
* (4) (5)	Silt curtain	- Silt curtains should be deployed	NE/2015/01	Construction of Lam Tin	Parts of silt curtains for Platform 1C and 1D were missing and
# (1)	deployment	properly to surround the works		Interchange	need to be placed completely.
	Plan	area.			
		- Maintenance of silt curtain should be provided.	NE/2015/01	Construction of Lam Tin Interchange	Part of a silt curtain at the western end of TKO site was floating and it should be fixed.
			NE/2015/01	Construction of Lam Tin Interchange	Part of silt curtain was broken and stranded on shores near the barging point at Tseung Kwan O site. The Contractor is reminded to repair and fix silt curtain regularly.
* (6)	S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	NE/2015/01	Construction of Lam Tin Interchange	Mud, branches and still water were found in a perimeter drain and a soldier pile wall near East Cross Harbour Tunnel, and a drain near Cha Kwo Ling Rd. They need to be cleared to

		guidelines stipulated in the EPD's			prevent overflow when raining.
		Practice Note for Professional			
		Persons, Construction Site			
		Drainage (ProPECC PN 1/94).			
		Good housekeeping and			
		stormwater best management			
		practices, as detailed in below,			
		should be implemented to ensure			
		that all construction runoff complies			
		with WPCO standards and no			
		unacceptable impact on the WSRs			
		arises due to construction of the			
		TKO-LT Tunnel. All discharges			
		from the construction site should be			
		controlled to comply with the			
		standards for effluents discharged			
		into the corresponding WCZ under			
		the TM-DSS.			
* (7)	S5.8.24	Under normal circumstances,	NE/2015/01	Construction of Lam Tin	Still water was found in Portion VI and Area WA1. Contractor is
		groundwater pumped out of wells,		Interchange	reminded to pump out still water in the construction site.
		etc. for the lowering of ground			
		water level in basement or			
		foundation construction, and			
		groundwater seepage pumped out			
		of tunnels or caverns under			
		construction should be discharged			
		into storm drains after the removal			
		of silt in silt removal facilities.			

Waste/ Ch	emical Manageme	ent			
* (8)	S8.6.3	- Provision of sufficient waste disposal points and regular collection of waste	NE/2015/01	Construction of Lam Tin Interchange	Garbage was found in Area WA1a. Contractor is reminded to provide rubbish bin(s) to collect refuse properly.
* (9) (10)	S8.6.26/ Waste Management Plan	Chemical Wastes. If chemical wastes are produced at the construction site, the Contractor would be required to register with	NE/2015/01	Construction of Lam Tin Interchange	A drip tray in Portion VI was filled with water. It is required to pump out
		the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be	NE/2015/01	Construction of Lam Tin Interchange	Three chemical tanks in Portion WA1 were found without a drip tray.
# (2)		stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of	NE/2015/01	Construction of Lam Tin Interchange	Oil stain was found in the barging point at Tseung Kwan O site and needs to be cleaned.

the chemical wastes, to either the
Chemical Waste Treatment Centre
at Tsing Yi, or other licensed
facility, in accordance with the
Waste Disposal (Chemical Waste)
(General) Regulation.

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2015/02

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
Air Quality	Impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	۸
		dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall /	To minimize the	Contractor	Barging	Construction	APCO	۸
	mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	^
	Regulation and good site practices:	dust impact		Construction	phase	Pollution	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		Control	^
	unpaved roads, particularly during dry weather.					(Construction	
	- Use of frequent watering for particularly dusty construction areas and areas close to					Dust)	^
	ASRs.					Regulation	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- Side enclosure and covering of any aggregate or dusty material storage piles to reduce						^
	emissions. Where this is not practicable owing to frequent usage, watering shall be						
	applied to aggregate fines.						
	- Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty						^
	material storage piles near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between site						^
	locations.						
	- Establishment and use of vehicle wheel and body washing facilities at the exit points of						^
	the site.						
	- Provision of wind shield and dust extraction units or similar dust mitigation measures at						^
	the loading area of barging point, and use of water sprinklers at the loading area where						
	dust generation is likely during the loading process of loose material, particularly in dry						
	seasons/ periods.						
	- Provision of not less than 2.4m high hoarding from ground level along site boundary						^
	where adjoins a road, streets or other accessible to the public except for a site entrance						
	or exit.						
	- Imposition of speed controls for vehicles on site haul roads.						^
	- Where possible, routing of vehicles and positioning of construction plant should be at the						^
	maximum possible distance from ASRs						
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be						^
	covered entirely by impervious sheeting or placed in an area sheltered on the top and the						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	3 sides.						
	- Instigation of an environmental monitoring and auditing program to monitor the						^
	construction process in order to enforce controls and modify method of work if dusty						
	conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	- All vehicles shall be shut down in intermittent use.	pollution		construction	stage		۸
	- Only well-maintained plant should be operated on-site and plant should be serviced	emission from		sites			۸
	regularly to avoid emission of black smoke.	construction					
	- All diesel fuelled construction plant within the works areas shall be powered by ultra low	vehicles and					۸
	sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	^
		pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during transportation offsite.	Control	Contractor	NE/2015/02	Construction	EIAO, APCO	^
Management	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be	potential			stage		
Plan	dampened by spraying water to suppress dust generation during mixing operation	impacts from					^
	- Subject to the odour intensity and instruction by the Supervisor, odour suppressant will be	Cement s/s					^
	applied over the marine sediments via water blaster to minimize the impact.	process					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- The unloading / loading areas of the marine sediments will be barricaded with minimum						^
	3.5m high barrier facing the nearest resident to minimize the dust impact. The mixing area						
	and curing area will be enclosed with 3-sides and roof to minimize the dust impact.						
	- The mixing area will be established with retractable roof on top and with corrugated steel						
	sheet at side enclosure by 5.4m high concrete block walls to prevent spread of dust						^
	during the mixing process with cement.						
	- Handling and mixing of cement will follow the Air Pollution Control (Construction Dust)						^
	Regulation to avoid fugitive dust emissions.						^
	- The discharge of cement from silo hopper to the concrete mixer truck will be 4-side						
	enclosed by Tarpaulin to minimize the dust emission.						
	- The mixing of cement and water will be confined in the concrete mixer truck until the pre-						
	mixing completed. The hydrated cement will then be unloaded to the mixing area to mix						^
	with the sediment.						
	- Treated marine sediments in the stockpiling area shall be covered by tarpaulin sheets or						^
	similar material except the operating earthwork front.						
	- The soil filled platform is covered by a layer of sand fill material, and frequent water spray						^
	will be carried out on the sand surface for dust control.						
	- Any excessive air emissions will be inspected and recorded.						
	- Sediment height of treated marine sediment being kept 0.9 m below the top level of						^
	concrete block wall during rainy season.						^

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
Noise Impa	act (Construction Phase)						•
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck,	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile	construction			phase		
	Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance,	noise impact					
	Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air	arising from the					
	Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter	Project at the					
	Bore Piling, Grout Mixer & Pump and Concrete Pump.	affected NSRs					
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	۸
	- Only well-maintained plant should be operated on-site and plant should be serviced	construction	Proponent		Period		^
	regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be properly	arising from the					^
	maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be shut down						^
	between works periods or should be throttled down to a minimum.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Qual	ity Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m³,	Control	CEDD's	Work site	Construction	EIAO-TM,	N/A
	with fine content of 25% or less	potential	Contractors		Phase	WPCO	
		impacts from					
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall	Control	CEDD's	Work site	Construction	EIAO-TM,	N/A
	be adopted for construction of seawall foundation. During the stone column installation (also	potential	Contractors		Phase	WPCO	
	including the installation of steel cellular caisson), silt curtain shall be employed around the	impacts from					
	active stone column installation points.	filling activities					
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of	Control	CEDD's	Work site	Construction	EIAO-TM,	N/A
	about 50m for marine access) shall be completed prior to the filling activities. The seawall	potential	Contractors		Phase	WPCO	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	opening of about 50m wide for marine access shall be selected at a location as indicatively	impacts from					
	shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a	filling activities					
	maximum daily rate of $3,000 \text{m}^3$ (i.e. $1,000 \text{m}^3$ per trip) for the filling operation at the reclamation						
	area for Road P2. All filling works shall be carried out behind the seawall with the use of						
	single silt curtain at the marine access.						
Silt Curtain	- Silt curtains should be deployed properly to surround the works area.	Control	Contractor	NE/2015/02	Construction	EIAO	٨
Deployment	- Maintenance of silt curtain should be provided.	potential			stage		٨
Plan	- Sufficient stock of silt curtain should be provided on site.	impacts from					* (1)
		marine woroks					
Sediment	- Loading of barges and hoppers will be controlled to prevent splashing of dredged	Control	Contractor	NE/2015/02	Construction	EIAO, WPCO	٨
Management	materials into the surrounding water. Barges or hoppers will not be filled to a level that will	potential			stage		
Plan	cause the overflow of materials or pollute water during loading or transportation.	impacts from					
	- Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of	Cement s/s					
	material. Excess material shall be cleaned from the decks and exposed fittings of barges	process					٨
	and hopper dredgers before the vessel is moved.						
	- Monitoring of the barge loading shall be conducted to ensure that loss of material does						
	not take during transportation.						^
	- Transport barges or vessels shall be equipped with automatic self-monitoring devices.						
	- Vehicles containing any untreated / treated marine sediments will be suitably covered to						^
	limit potential dust emissions or potential contaminated wastewater run-off, and truck						
					_		۸

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	bodies and tailgates will be sealed to prevent any discharge during transport or wet						
	conditions.						
	- The leachate from the untreated marine sediment will be collected and treated in the						
	mixing pool for cement s/s treatment.						^
	- A 300mm diameter U-channel will be constructed along the perimeter of the cement s/s						
	treatment facility to collect the run-off, if any, shall be collected and discharged according						^
	to the Water Pollution Control Ordinance (WPCO). Cleaning for the u-channel and						
	desilting pits shall be conducted on weekly basic.						
	- The stockpile area of treated marine sediment will be surrounded by the perimeter						
	concrete block walls with geotextile membranes installed at the inner face of the concrete						
	block walls. The types of perimeter wall can be used interchangeably. The Structural						^
	Feasibility of the perimeter wall for the changes of height of the stockpile had been						
	checked and certified by ICE.						
	- The mixing areas will be completely paved or covered by linings in order to avoid						
	contamination to underlying soil or groundwater and will be confined by partition concrete						
	block walls for carrying out the mixing and temporary stockpile of treated sediment.						^
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control	CEDD's	Work site	Construction	EIAO-TM,	
	- all marine works should adopt the environmental friendly construction methods as far as	potential	Contractors		Phase	WPCO, Waste	^
	practically possible including the use of cofferdams to cover the construction area to	impacts from				Disposal	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	sepFarate the construction works from the sea;	filling activities				Ordinance	
	- floating single silt curtain shall be employed for all marine works;	and marine-				(WDO)	^
	- all vessels should be sized so that adequate clearance is maintained between vessels	based					^
	and the seabed in all tide conditions, to ensure that undue turbidity is not generated by	construction					
	turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings to						^
	prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges before the						^
	vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of decks being						^
	washed by wave action;						
	- loading of barges and hoppers should be controlled to prevent splashing of filling material						^
	into the surrounding water. Barges or hoppers should not be filled to a level that will						
	cause the overflow of materials or polluted water during loading or transportation;						
	- any pipe leakages shall be repaired quickly. Plant should not be operated with leaking						^
	pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other						
	objectionable matter to be present on the water within the site or dumping grounds; and						^
	- before commencement of the reclamation works, the holder of Environmental Permit has						
	to submit plans showing the phased construction of the reclamation, design and operation						N/A
	of the silt curtain.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	potential	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	impacts from				WPCO	
		filling activities					
		and marine					
		based					
		construction					
ERR S5.6.1	To minimize water quality impact arising from the dredging and filling works for Reclamation for	Control	CEDD's	Work site	Construction	ProPECC PN	
	Road P2, the following mitigation measures shall be implemented:	potential	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary barrier shall	impacts from				WPCO	٨
	first be constructed to a height above the high water mark to completely enclose the	dredging and					
	works site (without any opening at the barrier wall)	filling works for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site shall	Reclamation for					٨
	not be removed before completion of all dredging and underwater filling works.	Road P2					
	- Water quality sampling and testing shall be carried out to demonstrate that the water						
	quality inside the enclosed barrier is comparable to the ambient or baseline levels prior						N/A
	to the removal of the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier						
	and at the double water gates marine access opening during its operation.						٨

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and	Control	CEDD's	Work site	Construction	ProPECC PN	^
	prevent high loading of SS from entering the marine environment. Proper site management is	potential	Contractors		Phase	1/94, EIAOTM,	
	essential to minimise surface water runoff, soil erosion and sewage effluents.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control	CEDD's	Work site	Design Stage	ProPECC PN	^
	engineering and environmental requirements in order to ensure adequate hydraulic capacity of	potential	Contractors		and	1/94, EIAOTM,	
	all drains.	impacts from			Construction	WPCO, TM-	
		construction			Phase	DSS	
		site runoff and					
		land-based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	Control	CEDD's	Work site	Construction	ProPECC PN	^
	guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site	potential	Contractors		Phase	1/94, EIAOTM,	
	Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management	impacts from				WPCO, TM-	
	practices, as detailed in below, should be implemented to ensure that all construction runoff	construction				DSS	
	complies with WPCO standards and no unacceptable impact on the WSRs arises due to	site runoff and					
	construction of the TKO-LT Tunnel. All discharges from the construction site should be	land-based					
	controlled to comply with the standards for effluents discharged into the corresponding WCZ	construction					

June 2019

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated with the	potential	Contractors		Phase	1/94, EIAOTM,	
	above ground construction activities can be readily controlled through the use of appropriate	impacts from				WPCO	
	mitigation measures which include:	construction					
	- use of sediment traps; and	site runoff and					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	land-based					^
		construction					
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks	potential	Contractors		Phase	1/94, EIAOTM,	
	should be marked and surrounded by dykes or embankments for flood protection. Temporary	impacts from				WPCO	
	ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a	construction					
	silt retention pond. Permanent drainage channels should incorporate sediment basins or traps	site runoff and					
	and baffles to enhance deposition rates. The design of efficient silt removal facilities should be	land-based					
	based on the guidelines in Appendix A1 of ProPECC PN 1/94.	construction					
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works	Control	CEDD's	Work site	Construction	ProPECC PN	۸
	during the rainy season (April to September). All exposed earth areas should be completed as	potential	Contractors		Phase	1/94, EIAOTM,	
	soon as possible after earthworks have been completed, or alternatively, within 14 days of the	impacts from				WPCO	
	cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	construction					
	rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should	site runoff and					
	be covered by tarpaulin or other means.	land-based					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		construction					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control	CEDD's	Work site	Construction	ProPECC PN	^
	approximately 6 to 8m³ capacity, are recommended as a general mitigation measure which can	potential	Contractors		Phase	1/94, EIAOTM,	
	be used for settling surface runoff prior to disposal. The system capacity is flexible and able	impacts from				WPCO	
	to handle multiple inputs from a variety of sources and particularly suited to applications where	construction				S5	
	the influent is pumped.	site runoff and					
		land-based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or	Control	CEDD's	Work site	Construction	ProPECC PN	^
	surface protection should be carried out immediately after the final surfaces are formed to	potential	Contractors		Phase	1/94, EIAOTM,	
	prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should	impacts from				WPCO	
	be provided where necessary.	construction				S5	
		site runoff and					
		land-based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of	Control	CEDD's	Work site	Construction	ProPECC PN	^
	trenches in wet seasons is necessary, they should be dug and backfilled in short sections.	potential	Contractors		Phase	1/94, EIAOTM,	
	Rainwater pumped out from trenches or foundation excavations should be discharged into	impacts from				WPCO	
	storm drains via silt removal facilities.	construction				S5	
		site runoff and					
_		land-based	_				

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of	Control	CEDD's	Work site	Construction	ProPECC PN	^
	more than 50m³ should be covered with tarpaulin or similar fabric during rainstorms.	potential	Contractors		Phase	1/94, EIAOTM,	
	Measures should be taken to prevent the washing away of construction materials, soil, silt or	impacts from				WPCO	
	debris into any drainage system.	construction					
		site runoff and					
		land-based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and	Control	CEDD's	Work site	Construction	ProPECC PN	^
	temporarily sealed so as to prevent silt, construction materials or debris being washed into the	potential	Contractors		Phase	1/94, EIAOTM,	
	drainage system and storm runoff being directed into foul sewers. Discharge of surface run-	impacts from				WPCO	
	off into foul sewers must always be prevented in order not to unduly overload the foul	construction					
	sewerage system.	site runoff and					
		land-based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms	potential	Contractors		Phase	1/94, EIAOTM,	
	are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to	impacts from				WPCO	
	the control of silty surface runoff during storm events, especially for areas located near steep	construction					
	slopes.	site runoff and					
		land-based					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	release of oils and grease into the storm water drainage system after accidental spillages.	potential	Contractors		Phase	1/94, EIAOTM,	
	The interceptor should have a bypass to prevent flushing during periods of heavy rain.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth,	Control	CEDD's	Work site	Construction	ProPECC PN	^
	mud, debris and the like is deposited by them on roads. An adequately designed and located	potential	Contractors		Phase	1/94, EIAOTM,	
	wheel washing bay should be provided at every site exit, and washwater should have sand and	impacts from				WPCO	
	silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the	construction					
	process. The section of access road leading to, and exiting from, the wheelwash bay to the	site runoff and					
	public road should be paved with sufficient backfall toward the wheel-wash bay to prevent	land-based					
	vehicle tracking of soil and silty water to public roads and drains.	construction					
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and	Control	CEDD's	Work site	Construction	ProPECC PN	^
	grit should be removed regularly, at the onset of and after each rainstorm to ensure that these	potential	Contractors		Phase	1/94, EIAOTM,	
	facilities are functioning properly at all times.	impacts from				WPCO	
		construction					
		site runoff and					
_		land-based					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in order to	potential	Contractors		Phase	1/94, EIAOTM,	
	minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall be	impacts from				WPCO	
	no direct discharge of effluent from the site into the sea.	construction					
		site runoff and					
		land-based					
		construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge	Control	CEDD's	Work site	Construction	ProPECC PN	^
	should be adequately designed for the controlled release of storm flows. All sediment control	potential	Contractors		Phase	1/94, EIAOTM,	
	measures should be regularly inspected and maintained to ensure proper and efficient	impacts from				WPCO	
	operation at all times and particularly following rain storms. The temporarily diverted drainage	construction					
	should be reinstated to its original condition when the construction work has finished or the	site runoff and					
	temporary diversion is no longer required.	land-based					
		construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas,	Control	CEDD's	Work site	Construction	ProPECC PN	۸
	within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent	potential	Contractors		Phase	1/94, EIAOTM,	
	spilled fuel oils from reaching the coastal waters.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based	_				

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater	Control	CEDD's	Work site	Construction	EIAO-TM,	^
	discharges and the existing or planned seawater intakes during construction and operational	potential	Contractors		Phase	WPCO, TMDSS	
	phases	impacts from					
		construction					
		site runoff and					
		land-based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground	Control	CEDD's	Work site	Construction	ProPECC PN	^
	water level in basement or foundation construction, and groundwater seepage pumped out of	potential	Contractors		Phase	1/94, EIAOTM,	
	tunnels or caverns under construction should be discharged into storm drains after the removal	impacts from				WPCO	
	of silt in silt removal facilities.	construction					
		site runoff and					
		land-based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel.	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27 &	During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured	potential	Contractors		Phase	1/94, EIAOTM,	
Table 5.18	during the excavation. The groundwater levels above the tunnel will also be monitored by	impacts from				WPCO,	
	piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the	construction				Buildings	
	groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to	site runoff and				Ordinance	
	reduce the groundwater inflow. No significant change of groundwater levels would therefore	land-based					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	be expected. Any chemicals/ foaming agents which would be entrained to the groundwater	construction					
	should be biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive						
	measures in the form of an Action Plan with pre-emptive and re-active to preserve the						
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as	Control	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	far as practicable be recirculated after sedimentation. When there is a need for final disposal,	potential	Contractors		and	1/94, EIAOTM,	
	the wastewater should be discharged into storm drains via silt removal facilities.	impacts from			Construction	WPCO	
		construction			Phas		
		site runoff and					
		land-based					
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar	Control	CEDD's	Work site	Construction	ProPECC PN	^
S5.8.31	equipment should whenever practicable be recycled. The discharge of wastewater should be	potential	Contractors		Phase	1/94, EIAOTM,	
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any	impacts from				WPCO	
	water recycling system should be provided with an online standby pump of adequate capacity	construction					
	and with automatic alternating devices. Under normal circumstances, surplus wastewater may	site runoff and					
	be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to	land-based					
	within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more	construction					
	elaborate treatment.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no	Control	CEDD's	Work site	Construction	ProPECC PN	^
	earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should	potential	Contractors		Phase	1/94, EIAOTM,	
	be provided at every site exit if practicable and wash-water should have sand and silt settled	impacts from				WPCO	
	out or removed before discharging into storm drains. The section of construction road	construction					
	between the wheel washing bay and the public road should be paved with backfall to reduce	site runoff and					
	vehicle tracking of soil and to prevent site run-off from entering public road drains.	land-based					
		construction					
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	and reused wherever practicable. If the disposal of a certain residual quantity cannot be	potential	Contractors		Phase	1/94, EIAOTM,	
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a	impacts from				WPCO	
	marine dumping licence from EPD on a case-by-case basis.	construction					
		site runoff and					
		land-based					
		construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be treated to the respective effluent standards applicable to foul sewer, storm drains or	potential	Contractors		Phase	1/94, EIAOTM,	
	the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	other purposes as far as practicable. Surplus unpolluted water could be discharged into	potential	Contractors		Phase	1/94, EIAOTM,	
	storm drains.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be	Control	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	sought during the design stage of the works with regard to the disposal of the sterilizing water.	potential	Contractors		and	1/94, EIAOTM,	
	The sterilizing water should be reused wherever practicable.	impacts from			Construction	WPCO	
		construction			Phase		
		site runoff and					
		land-based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	potential	Contractors		Phase	1/94, EIAOTM,	
		impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering,	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	internal decoration, cleaning of works and similar activities should not be discharged into the	potential	Contractors		Phase	1/94, EIAOTM,	
	stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should	impacts from				WPCO	
	undergo the removal of settleable solids in a silt removal facility, and pH adjustment as	construction					
	necessary	site runoff and					
		land-based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is	potential	Contractors		Phase	1/94, EIAOTM,	
	no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for	impacts from				WPCO	
	disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving	construction					
	waters	site runoff and					
		land-based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains,	Control	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be discharged into foul sewer via grease traps capable of providing at least 20 minutes	potential	Contractors		Phase	1/94, EIAOTM,	
	retention during peak flow.	impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	interceptor with peak storm bypass.	potential	Contractors		Phase	1/94, EIAOTM,	
		impacts from				WPCO	
		construction					
		site runoff and					
		land-based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as	Control	CEDD's	Work site	Construction	ProPECC PN	٨
	possible be located within roofed areas. The drainage in these covered areas should be	potential	Contractors		Phase	1/94, EIAOTM,	
	connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained	impacts from				WPCO	
	and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal	construction					
	in accordance with the Waste Disposal Ordinance.	site runoff and					
		land-based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the	Control	CEDD's	Work site	Construction	ProPECC PN	^
	existing trunk sewer or sewage treatment facilities. The construction sewage may need to be	potential	Contractors		Phase	1/94, EIAOTM,	
	handled by portable chemical toilets prior to the commission of the on-site sewer system.	impacts from				WPCO	
	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the	construction					
	large number of construction workers over the construction site. The Contractor shall also be	site runoff and					
	responsible for waste disposal and maintenance practices.	land-based					
		construction					

June 2019

EIA Ref. / EP	Recommended Mitigation Measures	Objectives o	of Who to	Location of	When to	What	Status
Submission		the	implemen	the	Implement	requirements	
		recommende	d the	measures	the	or standards	
		Measures &	measures	?	measures?	for the	
		Main				measures to	
		Concerns to	,			achieve?	
		address					
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced	Control	CEDD's	Work site	Construction	EIAO-TM,	۸
	from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary	potential	Contractor	3	Phase	WPCO, WDO	
	regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be	impacts fro	m				
	observed and complied with for control of chemical wastes.	accidental					
		spillage	of				
		chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a	Control	CEDD's	Work site	Construction	EIAO-TM,	^
	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	potential	Contractor	s	Phase	WPCO	
	and equipment involving activities with potential for leakage and spillage should only be	impacts fro	m				
	undertaken within the areas appropriately equipped to control these discharges.	accidental					
		spillage	of				
		chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Control	CEDD's	Work site	Construction	EIAO-TM,	
	Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical	potential	Contractor	3	Phase	WPCO, WDO	
	Wastes" published under the Waste Disposal Ordinance details the requirements to deal with	impacts fro	m				
	chemical wastes. General requirements are given as follows:	accidental					
	- suitable containers should be used to hold the chemical wastes to avoid leakage or	spillage	of				
	spillage during storage, handling and transport;	chemicals					^
	- chemical waste containers should be suitably labelled, to notify and warn the personnel						
	who are handling the wastes, to avoid accidents; and						^
	- storage area should be selected at a safe location on site and adequate space should be						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	allocated to the storage area.						٨
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily	Control	CEDD's	Work site	Construction	EIAO-TM,	* (2)
	basis. The contractor should be responsible for keeping the water within the site boundary	potential	Contractors		Phase	WPCO,	
	and the neighbouring water free from rubbish.	impacts from					
		floating refuse					
		and debris					
Ecological	Impact			<u> </u>	<u> </u>	<u>I</u>	<u> </u>
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted wherever	human and	Team /	works are	Phase		^
	possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during the	disturbance to					^
	construction phase. The hoarding would screen adjacent habitats from construction	terrestrial					
	phase activities, reduce noise disturbance to these habitats and also to restrict access to	habitat and					
	habitats adjacent to works areas by site workers;	wildlife; and					
	- Regular spraying of haul roads to minimize impacts of dust deposition on adjacent	reduce dust					^
	vegetation and habitats during the construction activities	generation					
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access routes	disturbance to		works are	Phase		^
	selected on existing disturbed land to minimise disturbance to natural habitats.	surrounding					
	- Construction activities should be restricted to works areas that should be clearly	habitats					^

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes. The						^
	wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect and						^
	control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter the						^
	nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures would	groundwater			Phase		N/A
	generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce the						N/A
	groundwater inflow and ensure that the tunnel would meet the long term water tightness						
	requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss	Design	Within	Prior	N/A	
	Coral translocation	of coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally common		contractor,	areas and pier			^
	Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable		project	footprint			
	locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-March)						^
	in order to avoid disturbance during their spawning period (i.e. July to October).						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- A detailed coral translocation plan with a description on the methodology for						^
	pretranslocation coral survey, translocation methodology, identification/proposal of coral						
	recipient site, monitoring methodology for posttranslocation should be prepared during the						
	detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities (e.g. EPD						
	and AFCD) before commencement of the coral translocation. All the translocation						^
	exercises should be conducted by experienced marine ecologist(s) who is/are approved by						
	AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and unacceptable						
	impacts to the translocated coral communities						^
	- Information gathered during each posttranslocation monitoring survey should include						
	observations on the presence, survival, health condition and growth of the translocated						^
	coral colonies. These parameters should then be compared with the baseline results						
	collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	Team,	landbased	phase		N/A
	newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended					^
	- Proper waste and dumping management; and	solid level;					^
	- Standard good-site practice for land-based construction.	minimize the					^

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		contamination					^
		of wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction					
		site runoff to					
		the receiving					
		water bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy standard	for the	Team,	works area	phase		^
	trees within or in vicinity of the affected area as far as practicable. Such compensatory	vegetation loss	contractor				
	planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at						
	the temporarily affected area should be reinstated with species similar to the existing						
	condition.						
Fisheries Ir	mpact	1	T	T		т	T
\$7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	Team /	area	phase		^
	newly installed seawall and marine works area.	especially on	Contractor				
		suspended					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		solid level					
Waste Man	agement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for good	waste			Phase	Ordinance	^
	site practices, arrangements for collection and effective disposal to an appropriate facility,	management				(Cap. 354)	
	of all wastes generated at the site;	impacts					
	- Training of site personnel in site cleanliness, proper waste management and chemical					Land	^
	handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation of					Ordinance	^
	waste by either covering trucks or by transporting wastes in enclosed containers; and					(Cap. 28)	^
	- Regular cleaning and maintenance programme for drainage systems, sumps and oil						
	interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips or	waste reduction			Phase	Ordinance	^
	stockpiles to enhance reuse or recycling of materials and their proper disposal;					(Cap. 354)	
	- Encourage collection of aluminium cans by providing separate labelled bins to enable this						^
	waste to be segregated from other general refuse generated by the workforce;					Land	
	- Proper storage and site practices to minimize the potential for damage or contamination					(Miscellaneous	^
	of construction materials; and					Provisions)	
	- Plan and stock construction materials carefully to minimize amount of waste generated					Ordinance	٨

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	and avoid unnecessary generation of waste.					(Cap. 28)	
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with	waste reduction			Phase	19/2005	^
	ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery,						
	recycling, storage, collection, treatment and disposal of different categories of waste to be						
	generated from the construction activities. Such a management plan should incorporate site						
	specific factors, such as the designation of areas for segregation and temporary storage of						
	reusable and recyclable materials. The EMP should be submitted to the Engineer for approval.						
	The Contractor should implement the waste management practices in the EMP throughout the						
	construction stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects as far	waste reduction			Phase	19/2005	^
	as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential			Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure containment,	environmental					٨
	thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					٨
	- Stockpiling area should be provided with covers and water spraying system to prevent	storage					٨

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance reuse.						^
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction		
Waste	- Remove waste in timely manner;	potential			Phase		^
Management	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
Plan	- Impacts during transportation, such as dust and odour, should be mitigated by the use of	environmental					^
	covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in accordance	from waste					^
	with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of	collection and					
	Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions)	disposal					
	Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative disposal						^
	ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip	potential			Phase	6/2010	^
Management	Ticket System for Disposal of Construction & Demolition Materials, to monitor disposal of	adverse					
Plan	waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount	environmental					
	of waste generated, recycled and disposed (including disposal sites) should be proposed.	impacts arising					
		from waste			_		

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable materials	potential			Phase	6/2010	^
Waste	before disposal off-site.	adverse					
Management	- Specific areas shall be provided by the Contractors for sorting and to provide temporary	environmental				ETWB TCW No.	^
Plan	storage areas for the sorted materials.					33/2002	
	- The C&D materials should at least be segregated into inert and non-inert materials, in						^
	which the inert portion could be reused and recycled in the reclamation as far as					ETWB TCW No.	
	practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion					19/2005	
	should be investigated before disposal of at designated landfills						
S8.6.15 –	Sediments	To ensure the	NE/2015/02	All works	Construction	RBRG	
S8.6.16/	- Sediment encountered may be reused as filling material on-site after cement stabilization.	sediment to be		areas with	Phase		N/A
Waste	Cement-stabilization process is undertaken by mixing sediment and cement and will	disposed of in		sediments			
Management	convert sediment to earth filling material. The treated sediment has to comply with Risk-	an authorized		concern			
Plan	Based Remediation Goals (RBRGs) before being reused in order not to raise any land	and least					
	contamination issue. The adoption of RBRGs to assess stabilized sediment has been	impacted way					
	proposed in the current C&DMMP. MFC has no adverse comment on the current						
	C&DMMP. The sediment quality indicates that all sediments comply with most stringent						
	RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the						
	RBRG. Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	results do not indicate sediment as contaminated soil. It is anticipated that reuse of						
	sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to land						
	contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-EBH501						
	33.95m) as filling material after cement stabilization is also a suitable treatment. Sediment						N/A
	quality indicates the sediment sample (TKO-EBH501 3-3.95m) exceed RBRG for lead.						
	While cement stabilization will immobilize metal contaminants, it is capable to treat the						
	exceedance on lead. The stabilized material should comply with UTS of Lead and UCS. If						
	the treated material do not comply with UTS or UCS, re-stabilization have to be						
	undertaken to meet compliance of UTS and UCS before reusing the treated sediment as						
	filling material. However, further agreement on final disposal/treatment on sediment under						
	sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant,	the best		areas with	Phase		^
	shall be adhered to during boring, excavation, transportation and disposal of sediments or	handling and		sediments			
	cement stabilization of sediment.	treatment of		concern			
	- A treatment area should be confined for carrying out the cement stabilization mixing and	sediment					^
	temporary stockpile. The area should be designed to prevent leachate from entering the						
	ground. Leachate, if any, should be collected and discharged according to the Water						
	Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring, excavation and						^

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	transportation of the sediment, the excavated sediments should be kept wet during						
	excavation/boring and should be properly covered when placed on barges/trucks.						
	Loading of the excavated sediment to the barge should be controlled to avoid splashing						
	and overflowing of the sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should, when						N/A
	necessary, wear appropriate personal protective equipments (PPE) when handling						
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02	All works	Construction	ETWB TC(W)	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be		areas with	Phase	No. 34/2002 &	N/A
Management	requirements and procedures for excavated sediment disposal specified under ETWB	disposed of in		sediments		Dumping at Sea	
Plan	TC(W) No. 34/2002 shall be followed. MFC is responsible for the provision and	an authorized		concern		Ordinance	
	management of disposal capacity and facilities for the excavated sediment, while the	and least					
	permit of marine dumping is required under the Dumping at Sea Ordinance and is the	impacted way					
	responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine	Contractor	All works	Construction	ETWB TC(W)	
	- For allocation of sediment disposal sites and application of marine dumping permit,	the best		areas with	Phase	No. 34/2002 &	N/A
	separate SSTP has to be submitted to EPD for agreement under DASO. Additional site	handling and		sediments		Dumping at Sea	
	investigation, based on the SSTP, maybe carried out in order to confirm the disposal	disposal option		concern		Ordinance	
	arrangements for the proposed sediments removal. A Sediment Quality Report (SQR)	of sediment					
	shall then be required for EPD agreement under DASO prior to the tendering of the						

June 2019

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	construction contract, discussing in details the site investigation, testing results as well as						
	the delineation of each of the categories of excavated materials and the corresponding						
	types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W)	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and transported to the	handling of		areas with	Phase	No. 34/2002 &	٨
Waste	designated disposal sites allocated by the MFC. The excaveted sediment would be	sediments are		sediments		Dumping at Sea	
Management	disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.	in accordance		concern		Ordinance	
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If	to statutory					
	temporary stockpiling of contaminated sediments is necessary, the excavated sediment	requirements					٨
	should be covered by tarpaulin and the area should be placed within earth bunds or sand						
	bags to prevent leachate from entering the ground, nearby drains and surrounding water						
	bodies. The stockpiling areas should be completely paved or covered by linings in order						
	to avoid contamination to underlying soil or groundwater. Separate and clearly defined						
	areas should be provided for stockpiling of contaminated and uncontaminated materials.						
	Leachate, if any, should be collected and discharged according to the Water Pollution						
	Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring and transportation						
	of the sediment, the excavated sediments should be kept wet during excavation/boring						٨
	and should be properly covered when placed on barges. Loading of the excavated						
	sediment to the barge should be controlled to avoid splashing and overflowing of the						
	sediment slurry to the surrounding water.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- The barge transporting the sediments to the designated disposal sites should be						
	equipped with tight fitting seals to prevent leakage and should not be filled to a level that						
	would cause overflow of materials or laden water during loading or transportation. In						^
	addition, monitoring of the barge loading shall be conducted to ensure that loss of						
	material does not take place during transportation. Transport barges or vessels shall be						
	equipped with automatic self-monitoring devices as specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should, when						
	necessary, wear appropriate personal protective equipments (PPE) when handling						N/A
	contaminated sediments. Adequate washing and cleaning facilities should also be						
	provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic containment. A						
	geosynthetic containment method is a method whereby the sediments are sealed in						N/A
	geosynthetic containers and, at the disposal site, the containers would be dropped into						
	the designated contaminated mud pit where they would be covered by further mud						
	disposal and later by the mud pit capping, thereby meeting the requirements for fully						
	confined mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works sites	Construction	Code of	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be required	proper			Phase	Practice on the	^
Management	to register with the EPD as a Chemical Waste Producer and to follow the guidelines	management of				Packaging,	
Plan	stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical	chemical waste				Labelling and	
	Wastes. Good quality containers compatible with the chemical wastes should be used,					Storage of	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	and incompatible chemicals should be stored separately. Appropriate labels should be					Chemical	
	securely attached on each chemical waste container indicating the corresponding					Wastes	
	chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing,						
	irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to					Waste Disposal	
	transport and dispose of the chemical wastes, to either the Chemical Waste Treatment					(Chemical	
	Centre at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal					Waste)	
	(Chemical Waste) (General) Regulation.					(General)	
						Regulation	
S8.6.27/	General Refuse	To ensure	Contractor	All works sites	Construction	Public Health	
Waste	- General refuse should be stored in enclosed bins or compaction units separate from C&D	proper			Phase	and Municipal	
Management	material. A reputable waste collector should be employed by the contractor to remove	management of				Services	
Plan	general refuse from the site, separately from C&D material. Preferably an enclosed and	general refuse				Ordinance	
	covered area should be provided to reduce the occurrence of 'wind blown' light material.					(Cap. 132)	
Impact on (Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1 m)	and visual			Phase	AMO	^
	should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau festival;						٨
	- Monitoring of vibration impacts should be conducted when the construction works are less						^
	than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of	indirect			Phase	on Heritage	۸
	5mm/s measured inside the historical buildings;	vibration impact				Buildings by	
	- Monitoring of vibration should be carried out during construction phase.					CEDD; GCHIA;	^
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau					AMO.	^
	Temple as well.						
	- A proposal with details for the mitigation measures and monitoring of impacts on built						^
	heritage shall be submitted to AMO for comments before commencement of work.						
Landscape	and Visual Impact (Construction Phase)						
Table 10.8.1/	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid	Avoid impact on	CEDD (via	General	Construction	N/A	^
Landscape	impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Mitigation		landscape			during		
Plan		areas			construction		
					period		
Table 10.8.1/	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	٨
Landscape		duration of	Contractor)		planning		
Mitigation		impact					
Plan							
Table 10.8.1/	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be	To allow re-use	CEDD (via	General	Site	As per the	^
Landscape	stripped and stored for re-use in the construction of the soft landscape works. The Contract	of topsoil	Contractor)		clearance	Particular	
Mitigation	Specification shall include storage and reuse of topsoil as appropriate.					Specification	
Plan							

June 2019

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
Table 10.8.1/	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully	To minimize	CEDD (via	As per	Site	ETWB TC	^
Landscape	protected during construction. Detailed Tree Protection Specification shall be provided in the	tree loss	Contractor)	approved	clearance	3/2006 and as	
Mitigation	Contract Specification, under which the Contractor shall be required to submit, for approval, a			Tree Removal	and	per tree	
Plan	detailed working method statement for the protection of trees prior to undertaking any works			Application(s)	throughout	protection	
	adjacent to all retained trees, including trees in contractor's works areas. (Tree protection				construction	measures in	
	measures will be detailed at Tree Removal Application stage).				period	Particular	
						Specification	
Table 10.8.1/	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where	To maximize	CEDD (via	As per	Site	ETWB TC	^
Landscape	possible, trees should be transplanted direct to permanent locations rather than temporary	preservation of	Contractor)	approved	clearance	3/2006 and as	
Mitigation	holding nurseries. A detailed tree transplanting specification shall be provided in the Contract	existing trees		Tree Removal		per tree	
Plan	Specification and sufficient time for preparation shall be allowed in the construction			Application(s)		protection	
	programme.					measures in	
						Particular	
						Specification	
Table 10.8.1/	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
Landscape	hoardings. Trees shall be capable of reaching a height >10m within 10 years.	screening of	Contractor)	Interchange	construction		
Mitigation		the works		and edge of	period		
Plan				Road P2			
				landscape			
				deck, TKO			
Table 10.8.1/	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce	CEDD (via	General	Throughout	As per	N/A

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
Landscape		visual intrusion	Contractor)		construction	Particular	
Mitigation					period	Specification	
Plan							
Table 10.8.1/	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night	To reduce	CEDD (via	General	Throughout	N/A	^
Landscape	working periods.	visual intrusion	Contractor)		construction		
Mitigation					period		
Plan							
Table 10.8.1/	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
Landscape	surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Mitigation							
Plan							
Table 10.8.1/	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
Landscape		visual intrusion	Contractor)	structures	construction		
Mitigation		and integration			stage		
Plan		with					
		environment					
Table 10.8.1/	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	۸
Landscape		contamination	Contractor)	reclamation,	construction		
Mitigation		of water		TKO tunnel	period		
Plan		courses and		portal, Cha			
		water bodie		Kwo Ling			

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the	Implement	requirements	
		recommended	the	measures	the	or standards	
		Measures &	measures?		measures?	for the	
		Main				measures to	
		Concerns to				achieve?	
		address					
				roadworks			
Table 10.8.1	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent	Minimise loss	CEDD (via	Temporary	Construction	N/A	N/A
	coastline characte	of Junk Bay	Contractor)	reclamation	planning and		
		and integration		for barging	reclamation		
		with existing		points at TKO	stages		
		coastlin		and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads and			
				Road P2.			

App N2 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES Table II - Observations/reminders/non-compliance made during Site Audit

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark		•			
Water Qu	ality Impact (Construction	on Phase)			
* (1)	Silt curtain deployment	- Silt curtains should be deployed properly to surround the	NE/2015/02	Construction of Road P2	The silt curtain was floating outside the cofferdam at
	Plan	works area.			portion IX.
		- Maintenance of silt curtain should be provided.			
		- Sufficient stock of silt curtain should be provided on site.			
* (2)	S5.8.47	- Collection and removal of floating refuse should be	NE/2015/02	Construction of Road P2	Some floating refuse was observed in the water within
		performed at regular intervals on a daily basis. The			the double water gate of the cofferdam.
		contractor should be responsible for keeping the water			
		within the site boundary and the neighbouring water free			
		from rubbish.			

Table I - Recommended Mitigation Measures stipulated in EM&A Manual of the Project

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2017/02

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Air Qual	ity (Construction Phase)						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	^
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	^
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	^
	unpaved roads, particularly during dry weather.					Dust) Regulation	^
	- Use of frequent watering for particularly dusty construction areas and areas close						
	to ASRs.						^
	- Side enclosure and covering of any aggregate or dusty material storage piles to						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		reduce emissions. Where this is not practicable owing to frequent usage,						
		watering shall be applied to aggregate fines.						^
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						
		dusty material storage piles near ASRs.						^
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						
		site locations.						^
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						
		points of the site.						^
	-	Provision of wind shield and dust extraction units or similar dust mitigation						
		measures at the loading area of barging point, and use of water sprinklers at the						
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						^
		boundary where adjoins a road, streets or other accessible to the public except						
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						^
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						^
		should be covered entirely by impervious sheeting or placed in an area sheltered						
		on the top and the 3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	construction process in order to enforce controls and modify method of work if						
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during	Control potential	Contractor	NE/2015/02	Construction	EIAO, APCO	^
Manage	transportation offsite.	impacts from			stage		
ment	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be	Cement s/s					^
Plan	dampened by spraying water to suppress dust generation during mixing	process					
	operation						
	- Subject to the odour intensity and instruction by the Supervisor, odour						^
	suppressant will be applied over the marine sediments via water blaster to						
	minimize the impact.						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	The unloading / loading areas of the marine sediments will be barricaded with						
		minimum 3.5m high barrier facing the nearest resident to minimize the dust						^
		impact. The mixing area and curing area will be enclosed with 3-sides and roof to						
		minimize the dust impact.						
	-	The mixing area will be established with retractable roof on top and with						
		corrugated steel sheet at side enclosure by 5.4m high concrete block walls to						^
		prevent spread of dust during the mixing process with cement.						
	-	Handling and mixing of cement will follow the Air Pollution Control (Construction						
		Dust) Regulation to avoid fugitive dust emissions.						^
	-	The discharge of cement from silo hopper to the concrete mixer truck will be 4-						
		side enclosed by Tarpaulin to minimize the dust emission.						^
	-	The mixing of cement and water will be confined in the concrete mixer truck until						
		the pre-mixing completed. The hydrated cement will then be unloaded to the						^
		mixing area to mix with the sediment.						
	-	Treated marine sediments in the stockpiling area shall be covered by tarpaulin						
		sheets or similar material except the operating earthwork front.						
	-	The soil filled platform is covered by a layer of sand fill material, and frequent						^
		water spray will be carried out on the sand surface for dust control.						^
	-	Any excessive air emissions will be inspected and recorded.						
	-	Sediment height of treated marine sediment being kept 0.9 m below the top level						
		of concrete block wall during rainy season.						^
						_		^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Noise In	npact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	۸
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					٨
	properly maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					۸
	- Machines and plant (such as trucks) that may be in intermittent use should be						۸
	shut down between works periods or should be throttled down to a minimum.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	^
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m³, with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt curtain	filling activities					
	shall be employed around the active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	filling activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	barge trips per day shall be made with a maximum daily rate of 3,000m ³ (i.e. 1,000 m ³						
	per trip) for the filling operation at the reclamation area for Road P2. All filling works						
	shall be carried out behind the seawall with the use of single silt curtain at the marine						
	access.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	filling activities				WPCO	
		and marine					
		based					
		construction					
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						
	discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	^
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					^
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	material) of more than 50m³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	no earth, mud, debris and the like is deposited by them on roads. An adequately	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers/drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						^
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						^
	personnel who are handling the wastes, to avoid accidents; and						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- storage area should be selected at a safe location on site and adequate space						^
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		^
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					^
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		^
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						^
	demarcated. The works areas should be reinstated after completion of the works.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						^
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						^
	the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A
	would generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A
	the groundwater inflow and ensure that the tunnel would meet the long term water						
	tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A	
	Coral translocation	coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			^
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint			
	other suitable locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-						^
	March) in order to avoid disturbance during their spawning period (i.e. July to						
	October).						^
	- A detailed coral translocation plan with a description on the methodology for						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	pretranslocation coral survey, translocation methodology, identification/proposal of						
	coral recipient site, monitoring methodology for posttranslocation should be						^
	prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities						
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the						
	translocation exercises should be conducted by experienced marine ecologist(s)						
	who is/are approved by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						^
	- A coral monitoring programme is recommended to assess any adverse and						
	unacceptable impacts to the translocated coral communities						^
	- Information gathered during each posttranslocation monitoring survey should						
	include observations on the presence, survival, health condition and growth of the						
	translocated coral colonies. These parameters should then be compared with						
	the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	landbased	phase		N/A
	opening of newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize					
	- Standard good-site practice for land-based construction.	the					^
		contamination of					^
		wastewater					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		^
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		^
	opening of newly installed seawall and marine works area.	especially on	Contractor				
		suspended solid					
		level					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Waste N	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps and						^
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	^
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	^
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	
	workforce;					Provisions)	^
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	
	contamination of construction materials; and					28)	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	^
	as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
	containment, thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Stockpiling area should be provided with covers and water spraying system to	storage					^
	prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance						^
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		^
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					^
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						^
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	٨
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	٨
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						٨
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
S8.6.15 –	Sediments	To ensure the	NE/2015/02,	All works	Construction	RBRG	
S8.6.16/	- Sediment encountered may be reused as filling material on-site after cement	sediment to be	NE/2017/01	areas with	Phase		N/A
Waste	stabilization. Cement-stabilization process is undertaken by mixing sediment and	disposed of in		sediments			
Manage	cement and will convert sediment to earth filling material. The treated sediment	an authorized		concern			
ment	has to comply with Risk-Based Remediation Goals (RBRGs) before being reused	and least					
Plan	in order not to raise any land contamination issue. The adoption of RBRGs to	impacted way					
	assess stabilized sediment has been proposed in the current C&DMMP. MFC						
	has no adverse comment on the current C&DMMP. The sediment quality						
	indicates that all sediments comply with most stringent RBRGs except for one						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the RBRG.						
	Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						
	results do not indicate sediment as contaminated soil. It is anticipated that reuse						
	of sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to						
	land contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-						N/A
	EBH501 33.95m) as filling material after cement stabilization is also a suitable						
	treatment. Sediment quality indicates the sediment sample (TKO-EBH501 3-						
	3.95m) exceed RBRG for lead. While cement stabilization will immobilize metal						
	contaminants, it is capable to treat the exceedance on lead. The stabilized						
	material should comply with UTS of Lead and UCS. If the treated material do not						
	comply with UTS or UCS, re-stabilization have to be undertaken to meet						
	compliance of UTS and UCS before reusing the treated sediment as filling						
	material. However, further agreement on final disposal/treatment on sediment						
	under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		^
	relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
	disposal of sediments or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization						^
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						^
	excavation and transportation of the sediment, the excavated sediments should						
	be kept wet during excavation/boring and should be properly covered when						
	placed on barges/trucks. Loading of the excavated sediment to the barge						
	should be controlled to avoid splashing and overflowing of the sediment slurry to						
	the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02,	All works	Construction	ETWB TC(W) No.	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be	NE/2017/01	areas with	Phase	34/2002 &	N/A
Manage	requirements and procedures for excavated sediment disposal specified under	disposed of in		sediments		Dumping at Sea	
ment	ETWB TC(W) No. 34/2002 shall be followed. MFC is responsible for the	an authorized		concern		Ordinance	
Plan	provision and management of disposal capacity and facilities for the excavated	and least					
	sediment, while the permit of marine dumping is required under the Dumping at	impacted way					
	Sea Ordinance and is the responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	best handling		areas with	Phase	34/2002 &	N/A
	permit, separate SSTP has to be submitted to EPD for agreement under DASO.	and disposal		sediments		Dumping at Sea	
	Additional site investigation, based on the SSTP, maybe carried out in order to	option of		concern		Ordinance	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	confirm the disposal arrangements for the proposed sediments removal. A	sediment					
	Sediment Quality Report (SQR) shall then be required for EPD agreement under						
	DASO prior to the tendering of the construction contract, discussing in details the						
	site investigation, testing results as well as the delineation of each of the						
	categories of excavated materials and the corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	٨
Waste	transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea	
Manage	excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance	
ment	options and ETWB TC(W) No. 34/2002.	statutory					
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					^
	temporary stockpiling of contaminated sediments is necessary, the excavated						
	sediment should be covered by tarpaulin and the area should be placed within						
	earth bunds or sand bags to prevent leachate from entering the ground, nearby						
	drains and surrounding water bodies. The stockpiling areas should be completely						
	paved or covered by linings in order to avoid contamination to underlying soil or						
	groundwater. Separate and clearly defined areas should be provided for						
	stockpiling of contaminated and uncontaminated materials. Leachate, if any,						
	should be collected and discharged according to the Water Pollution Control						
	Ordinance (WPCO).						^
	- In order to minimise the potential odour / dust emissions during boring and						
	transportation of the sediment, the excavated sediments should be kept wet						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be controlled to						
	avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be						^
	equipped with tight fitting seals to prevent leakage and should not be filled to a						
	level that would cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading shall be conducted to						
	ensure that loss of material does not take place during transportation. Transport						
	barges or vessels shall be equipped with automatic self-monitoring devices as						
	specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						N/A
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						
	containment. A geosynthetic containment method is a method whereby the						N/A
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit where						
	they would be covered by further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	^
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	^
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	^
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
ре							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	^
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	
	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation			_				

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/		visual intrusion	Contractor)	structures	construction		
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		
ре		and water		tunnel			
Mitigation		bodies		portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline character	Junk Bay and	Contractor)	reclamation	planning and		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		integration with		for barging	reclamation		
		existing		points at	stages		
		coastline		TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			
				and Road			
				P2			

Table II - Observations/reminders/non-compliance made during Site Audit

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract	Work Sites	Details of
Remark			No.		Observation/Reminder
		-			

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2015/03

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	^
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	^
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	^
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close						^
	to ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles to						^
	reduce emissions. Where this is not practicable owing to frequent usage,						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						^
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						^
		site locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
		points of the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation						
		measures at the loading area of barging point, and use of water sprinklers at the						^
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						
		boundary where adjoins a road, streets or other accessible to the public except						^
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						^
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						
		should be covered entirely by impervious sheeting or placed in an area sheltered						^
		on the top and the 3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						
		construction process in order to enforce controls and modify method of work if						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
1	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Noise In	npact (Construction Phase)		T				
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		^
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					^
	properly maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be						^
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged into the corresponding WCZ under the TM-DSS.						
\$5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	^
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					^
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	* (1)
	material) of more than 50m³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	no earth, mud, debris and the like is deposited by them on roads.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers/drains.	construction site				WPCO	
		runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						^
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						^
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space						^
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		^
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					^
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		^
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						^
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						^
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	the nearby watercourses.						
S6.8.8	_						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10				landbased		WQO	^
30.6.10	, , , , , , , , , , , , , , , , , , ,	quality impact,	Team,		phase		^
	- Standard good-site practice for land-based construction.	especially on	contractor	works area			^
		suspended solid					
		level; minimize					
		the					
		contamination of					
		wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					
		receiving water					
		bodies					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		^
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						^
	- Regular cleaning and maintenance programme for drainage systems, sumps and						
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	^
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	disposal;						^
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	^
	workforce;					Provisions)	
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^
	contamination of construction materials; and					28)	
	- Plan and stock construction materials carefully to minimize amount of waste						
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	^
	as far as possible.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
	containment, thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					^
	- Stockpiling area should be provided with covers and water spraying system to	storage					^
	prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance						^
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		^
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					^
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	^
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						^
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills				_		
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
	disposal of sediments or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization						^
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						^
	excavation and transportation of the sediment, the excavated sediments should						
	be kept wet during excavation/boring and should be properly covered when						
	placed on barges/trucks. Loading of the excavated sediment to the barge						
	should be controlled to avoid splashing and overflowing of the sediment slurry to						
	the surrounding water.						N/A
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	-						
	-						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	* (2)
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	^
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Impact o	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	^
	m) should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						^
	festival;						^
	- Monitoring of vibration impacts should be conducted when the construction						

.lı	ıne	2	1	19

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	works are less than 100m from the temple.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	^
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	^
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
ре							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	^
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	
	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/		visual intrusion	Contractor)	structures	construction		
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
ре		and water bodie		tunnel			
Mitigation				portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at	stages		
				TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			
				and Road			
				P2			

App N4 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

Key:

- Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract	Work Sites	Details	s of	
Remark			No.		Observation/	/Reminde	r
Air Quality	(Construction Phase)						
*(1)	S5.8.14	- Open stockpiles of construction materials (for examples, aggregates, sand and fill	NE/2017/02	Road P2/D4	Uncovered sto	ockpile	was
		material) of more than 50m3 should be covered with tarpaulin or similar fabric		and	observed at west	t pier.	
		during rainstorms. Measures should be taken to prevent the washing away of		Associated			
		construction materials, soil, silt or debris into any drainage system.		Works			
waste/ Chen	nical Management		T	1	1		
* (2)	S8.6.26/ Waste Management Plan	Chemical Wastes.	NE/2015/03	Construction of	Stagnant	water	was
		If chemical wastes are produced at the construction site, the Contractor would be		Northern	observed in	the drip	o tray
		required to register with the EPD as a Chemical Waste Producer and to follow the		Footbridge	for the oil dr	rum.	
		guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of					
		Chemical Wastes. Good quality containers compatible with the chemical wastes					
		should be used, and incompatible chemicals should be stored separately.					
		Appropriate labels should be securely attached on each chemical waste container					
		indicating the corresponding chemical characteristics of the chemical waste, such as					
		explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor					
		shall use a licensed collector to transport and dispose of the chemical wastes, to either					

App N4 - IMPLEMENTATION SCHED	ULE AND RECOMMENDED MITIGATION MEASURES		June 2019
	the Chemical Waste Treatment Centre at Tsing Yi, or other licensed facility, in		
	accordance with the Waste Disposal (Chemical Waste) (General) Regulation.		

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2017/01

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Air Qual	ity Impact (Construction Phase)						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	N/A
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	N/A
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	N/A
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close						N/A
	to ASRs.						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Side enclosure and covering of any aggregate or dusty material storage piles to						N/A
		reduce emissions. Where this is not practicable owing to frequent usage,						
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						N/A
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						N/A
		site locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
		points of the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation						N/A
		measures at the loading area of barging point, and use of water sprinklers at the						
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						N/A
		boundary where adjoins a road, streets or other accessible to the public except						
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						N/A
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						N/A
		should be covered entirely by impervious sheeting or placed in an area sheltered						
		on the top and the 3 sides.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Instigation of an environmental monitoring and auditing program to monitor the						N/A
	construction process in order to enforce controls and modify method of work if						
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	•APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during	Control potential	Contractor	NE/2015/02	Construction	EIAO, APCO	N/A
Manage	transportation offsite.	impacts from			stage		
ment	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be	Cement s/s					N/A
Plan	dampened by spraying water to suppress dust generation during mixing	process					
	operation						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Subject to the odour intensity and instruction by the Supervisor, odour						N/A
		suppressant will be applied over the marine sediments via water blaster to						
		minimize the impact.						
	-	The unloading / loading areas of the marine sediments will be barricaded with						N/A
		minimum 3.5m high barrier facing the nearest resident to minimize the dust						
		impact. The mixing area and curing area will be enclosed with 3-sides and roof to						
		minimize the dust impact.						
	-	The mixing area will be established with retractable roof on top and with						N/A
		corrugated steel sheet at side enclosure by 5.4m high concrete block walls to						
		prevent spread of dust during the mixing process with cement.						
	-	Handling and mixing of cement will follow the Air Pollution Control (Construction						N/A
		Dust) Regulation to avoid fugitive dust emissions.						
	-	The discharge of cement from silo hopper to the concrete mixer truck will be 4-						^
		side enclosed by Tarpaulin to minimize the dust emission.						
	-	The mixing of cement and water will be confined in the concrete mixer truck until						N/A
		the pre-mixing completed. The hydrated cement will then be unloaded to the						
		mixing area to mix with the sediment.						
	-	Treated marine sediments in the stockpiling area shall be covered by tarpaulin						N/A
		sheets or similar material except the operating earthwork front.						
	-	The soil filled platform is covered by a layer of sand fill material, and frequent						N/A
		water spray will be carried out on the sand surface for dust control.						
	-	Any excessive air emissions will be inspected and recorded.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Sediment height of treated marine sediment being kept 0.9 m below the top level						N/A
	of concrete block wall during rainy season.						
Noise Im	npact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	۸
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		^
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					^
	properly maintained during the construction program.	Project at the					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be						^
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m³, with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt curtain	filling activities					
	shall be employed around the active stone column installation points.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	filling activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling						
	barge trips per day shall be made with a maximum daily rate of $3,000\mathrm{m}^3$ (i.e. $1,000\mathrm{m}^3$						
	per trip) for the filling operation at the reclamation area for Road P2. All filling works						
	shall be carried out behind the seawall with the use of single silt curtain at the marine						
	access.						
Silt	- Silt curtains should be deployed properly to surround the works area.	Control potential	Contractor	NE/2015/01,	Construction	EIAO	^
Curtain	- Maintenance of silt curtain should be provided.	impacts from		NE/2015/02,	stage		^
Deploym	- Sufficient stock of silt curtain should be provided on site.	marine woroks		NE/2017/01			*(1)
ent Plan							
Sediment	- Loading of barges and hoppers will be controlled to prevent splashing of dredged	Control potential	Contractor	NE/2015/02	Construction	EIAO, WPCO	N/A
Manage	materials into the surrounding water. Barges or hoppers will not be filled to a	impacts from			stage		
ment	level that will cause the overflow of materials or pollute water during loading or	Cement s/s					
Plan	transportation.	process					
	- Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage						N/A
	of material. Excess material shall be cleaned from the decks and exposed fittings						
	of barges and hopper dredgers before the vessel is moved.						
	- Monitoring of the barge loading shall be conducted to ensure that loss of material						N/A
	does not take during transportation.						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Transport barges or vessels shall be equipped with automatic self-monitoring						N/A
		devices.						
	-	Vehicles containing any untreated / treated marine sediments will be suitably						N/A
		covered to limit potential dust emissions or potential contaminated wastewater						
		run-off, and truck bodies and tailgates will be sealed to prevent any discharge						N/A
		during transport or wet conditions.						
	-	The leachate from the untreated marine sediment will be collected and treated in						N/A
		the mixing pool for cement s/s treatment.						
	-	A 300mm diameter U-channel will be constructed along the perimeter of the						N/A
		cement s/s treatment facility to collect the run-off, if any, shall be collected and						
		discharged according to the Water Pollution Control Ordinance (WPCO).						
		Cleaning for the u-channel and desilting pits shall be conducted on weekly basic.						
	-	The stockpile area of treated marine sediment will be surrounded by the						
		perimeter concrete block walls with geotextile membranes installed at the inner						N/A
		face of the concrete block walls. The types of perimeter wall can be used						
		interchangeably. The Structural Feasibility of the perimeter wall for the changes						
		of height of the stockpile had been checked and certified by ICE.						
	-	The mixing areas will be completely paved or covered by linings in order to avoid						
		contamination to underlying soil or groundwater and will be confined by partition						N/A
		concrete block walls for carrying out the mixing and temporary stockpile of						
		treated sediment.						

EIA Ref.	Recommended Mitigation Measures	Objectives o	f Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommende	d the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerr	ıs			achieve?	
		to address					
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potent	ial CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction methods	impacts fro	m Contractors		Phase	Waste Disposal	^
	as far as practically possible including the use of cofferdams to cover the	filling activiti	es			Ordinance (WDO)	
	construction area to separate the construction works from the sea;	and marin	e-				
	- floating single silt curtain shall be employed for all marine works;	based					^
	- all vessels should be sized so that adequate clearance is maintained between	construction					^
	vessels and the seabed in all tide conditions, to ensure that undue turbidity is not						
	generated by turbulence from vessel movement or propeller wash;						
	- all hopper barges should be fitted with tight fitting seals to their bottom openings						^
	to prevent leakage of material;						
	- excess material shall be cleaned from the decks and exposed fittings of barges						^
	before the vessel is moved;						
	- adequate freeboard shall be maintained on barges to reduce the likelihood of						^
	decks being washed by wave action;						
	- loading of barges and hoppers should be controlled to prevent splashing of filling						N/A
	material into the surrounding water. Barges or hoppers should not be filled to a						
	level that will cause the overflow of materials or polluted water during loading or						
	transportation;						^
	- any pipe leakages shall be repaired quickly. Plant should not be operated with						
	leaking pipes;						^
	- construction activities should not cause foam, oil, grease, scum, litter or other						
	objectionable matter to be present on the water within the site or dumping						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
1	grounds; and						
	- before commencement of the reclamation works, the holder of Environmental						N/A
	Permit has to submit plans showing the phased construction of the reclamation,						
	design and operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	filling activities				WPCO	
		and marine					
		based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	Reclamation for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary	dredging and				WPCO	N/A
	barrier shall first be constructed to a height above the high water mark to	filling works for					
	completely enclose the works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works	Road P2					N/A
	site shall not be removed before completion of all dredging and underwater						
	filling works.						N/A
	- Water quality sampling and testing shall be carried out to demonstrate that the						
	water quality inside the enclosed barrier is comparable to the ambient or						
	baseline levels prior to the removal of the fully enclosed barrier.						N/A
	- Silt curtains shall be deployed for the installation and removal of the temporary						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	barrier and at the double water gates marine access opening during its						
	operation.						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	N/A
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					N/A
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	material) of more than 50m³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	no earth, mud, debris and the like is deposited by them on roads.	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	N/A
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					

ION MEASURES June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers/drains.	construction site				WPCO	
		runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	^
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					^
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					^
	- suitable containers should be used to hold the chemical wastes to avoid leakage						
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space						
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Ecologic	cal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		٨
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					N/A
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					N/A
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		N/A
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						٨
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes.						٨
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						N/A
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						٨
	- Measures should also be put into place so that litter, fuel and solvents do not enter						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A
	would generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A
	the groundwater inflow and ensure that the tunnel would meet the long term water						
	tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A	
	Coral translocation	coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			N/A
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint			
	other suitable locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-						N/A
	March) in order to avoid disturbance during their spawning period (i.e. July to						
	October).						N/A
	- A detailed coral translocation plan with a description on the methodology for						
	pretranslocation coral survey, translocation methodology, identification/proposal of						
	coral recipient site, monitoring methodology for posttranslocation should be						
	prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities						N/A
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the						
	translocation exercises should be conducted by experienced marine ecologist(s)						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	who is/are approved by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and						N/A
	unacceptable impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should						N/A
	include observations on the presence, survival, health condition and growth of the						
	translocated coral colonies. These parameters should then be compared with						
	the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	land based	phase		N/A
	opening of newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize					^
	- Standard good-site practice for land-based construction.	the					N/A
		contamination of					
		wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		N/A
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		^
	opening of newly installed seawall and marine works area.	especially on	Contractor				
		suspended solid					
		level					
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps and						N/A
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	^
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	N/A
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	
	workforce;					Provisions)	
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^
	contamination of construction materials; and					28)	
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	N/A
	as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
	containment, thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					^
	- Stockpiling area should be provided with covers and water spraying system to	storage					N/A
	prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance						^
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		^
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					٨
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						^
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	٨
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
S8.6.15 –	Sediments	To ensure the	NE/2015/02,	All works	Construction	RBRG	
S8.6.16/	- Sediment encountered may be reused as filling material on-site after cement	sediment to be	NE/2017/01	areas with	Phase		N/A
Waste	stabilization. Cement-stabilization process is undertaken by mixing sediment and	disposed of in		sediments			
Manage	cement and will convert sediment to earth filling material. The treated sediment	an authorized		concern			
ment	has to comply with Risk-Based Remediation Goals (RBRGs) before being reused	and least					
Plan	in order not to raise any land contamination issue. The adoption of RBRGs to	impacted way					
	assess stabilized sediment has been proposed in the current C&DMMP. MFC						
	has no adverse comment on the current C&DMMP. The sediment quality						
	indicates that all sediments comply with most stringent RBRGs except for one						
	sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the RBRG.						
	Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						
	results do not indicate sediment as contaminated soil. It is anticipated that reuse						
	of sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to						
	land contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-						N/A
	EBH501 33.95m) as filling material after cement stabilization is also a suitable						
	treatment. Sediment quality indicates the sediment sample (TKO-EBH501 3-						
	3.95m) exceed RBRG for lead. While cement stabilization will immobilize metal	_					

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		contaminants, it is capable to treat the exceedance on lead. The stabilized						
		material should comply with UTS of Lead and UCS. If the treated material do not						
		comply with UTS or UCS, re-stabilization have to be undertaken to meet						
		compliance of UTS and UCS before reusing the treated sediment as filling						
		material. However, further agreement on final disposal/treatment on sediment						
		under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Se	ediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	-	Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		٨
		relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
		disposal of sediments or cement stabilization of sediment.	sediment		concern			
	-	A treatment area should be confined for carrying out the cement stabilization						^
		mixing and temporary stockpile. The area should be designed to prevent						
		leachate from entering the ground. Leachate, if any, should be collected and						
		discharged according to the Water Pollution Control Ordinance (WPCO).						
	-	In order to minimise the potential odour / dust emissions during boring,						^
		excavation and transportation of the sediment, the excavated sediments should						
		be kept wet during excavation/boring and should be properly covered when						
		placed on barges/trucks. Loading of the excavated sediment to the barge						
		should be controlled to avoid splashing and overflowing of the sediment slurry to						
		the surrounding water.						N/A
	-	In order to minimise the exposure to contaminated materials, workers should,						
		when necessary, wear appropriate personal protective equipments (PPE) when						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02,	All works	Construction	ETWB TC(W) No.	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be	NE/2017/01	areas with	Phase	34/2002 &	^
Manage	requirements and procedures for excavated sediment disposal specified under	disposed of in		sediments		Dumping at Sea	
ment	ETWB TC(W) No. 34/2002 shall be followed. MFC is responsible for the	an authorized		concern		Ordinance	
Plan	provision and management of disposal capacity and facilities for the excavated	and least					
	sediment, while the permit of marine dumping is required under the Dumping at	impacted way					
	Sea Ordinance and is the responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	best handling		areas with	Phase	34/2002 &	^
	permit, separate SSTP has to be submitted to EPD for agreement under DASO.	and disposal		sediments		Dumping at Sea	
	Additional site investigation, based on the SSTP, maybe carried out in order to	option of		concern		Ordinance	
	confirm the disposal arrangements for the proposed sediments removal. A	sediment					
	Sediment Quality Report (SQR) shall then be required for EPD agreement under						
	DASO prior to the tendering of the construction contract, discussing in details the						
	site investigation, testing results as well as the delineation of each of the						
	categories of excavated materials and the corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	^
Waste	transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea	
Manage	excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
ment	options and ETWB TC(W) No. 34/2002.	statutory					
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					^
	temporary stockpiling of contaminated sediments is necessary, the excavated						
	sediment should be covered by tarpaulin and the area should be placed within						
	earth bunds or sand bags to prevent leachate from entering the ground, nearby						
	drains and surrounding water bodies. The stockpiling areas should be completely						
	paved or covered by linings in order to avoid contamination to underlying soil or						
	groundwater. Separate and clearly defined areas should be provided for						
	stockpiling of contaminated and uncontaminated materials. Leachate, if any,						
	should be collected and discharged according to the Water Pollution Control						
	Ordinance (WPCO).						^
	- In order to minimise the potential odour / dust emissions during boring and						
	transportation of the sediment, the excavated sediments should be kept wet						
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be controlled to						
	avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be						^
	equipped with tight fitting seals to prevent leakage and should not be filled to a						
	level that would cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading shall be conducted to						
	ensure that loss of material does not take place during transportation. Transport						
	barges or vessels shall be equipped with automatic self-monitoring devices as						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						N/A
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						
	containment. A geosynthetic containment method is a method whereby the						N/A
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit where						
	they would be covered by further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	^
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Impact o	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	N/A
	m) should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						N/A
	festival;						
	- Monitoring of vibration impacts should be conducted when the construction						N/A
	works are less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits on	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	indirect vibration			Phase	Heritage Buildings	N/A
	limit of 5mm/s measured inside the historical buildings;	impact				by CEDD; GCHIA;	N/A
	- Monitoring of vibration should be carried out during construction phase.					AMO.	N/A
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin						
	Hau Temple as well.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP	_	the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- A proposal with details for the mitigation measures and monitoring of impacts on						N/A
	built heritage shall be submitted to AMO for comments before commencement of						
	work.						
Built	- Established Alert, Alarm and Action Level for the monitoring parameters.	To prevent	NE/2015/01	Tin Hau	Construction	Vibration Limits on	N/A
Heritage	- To increase the instrumentation monitoring and reporting frequency.	vibration impacts		Temple	Phase	Heritage Buildings	N/A
Mitigation	- To propose detailed action plan or contingency plan for the Engineer's approval					by CEDD; GCHIA;	N/A
Plan	when AAA Level is reached or exceeded.					AMO.	
Landsca	ppe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	N/A
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	N/A
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
ре							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	N/A

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	N/A
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	
	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	N/A
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	N/A
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
pe							
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	N/A
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	N/A
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	N/A
10.8.1/		visual intrusion	Contractor)	structures	construction		

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	N/A
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		
ре		and water bodie		tunnel			
Mitigation				portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at	stages		
				TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			

June 2019

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
				and Road			
				P2			

Table II - Observations/reminders/non-compliance made during Site Audit

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Water Quality I	mpact (Construction	Phase)			
* (1)	Silt Curtain	- Sufficient stock of silt curtain	NE/2017/01	Construction of TKO	The silt curtain was not completed.
	Deployment Plan	should be provided on site.		Interchange	

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
383	29-Jun-19	Jun-19/Lam Tin Interchange	Resident of Yau Lai Estate, Yung Lai House	Noise	Noise nuisance from construction works during weekday daytime and evening times. Noise barriers was found missing in certain parts of the construction areas.	Y	Under Investigation.	On-going
382 (N08/RE/000 11019-19)	17-Jun-19	6-Jun-19 / Cofferdam area	District Council	Air	Dark smoke nuisance from the tug boat inside the cofferdam area.	N	During site audit, no violation of the Air Pollution Control (Smoke) Regulation from the construction site was observed by the ET. Air filter has been replaced on derrick barge to reduce the dark smoke emission upon the receipt of the complaint. The Contractor is recommended to replace the air filters regularly. Details should be referred to CIR-A15.	Draft CIR submitted
381 (N08/RE/000 15098-19)	11-Jun-19	1-Jun-19 / Near confferdam	District Council	Water	Muddy water discharge from construction site near the cofferdam area on 4 June 19	N	High volume of upstream muddy water was collected due high rainfall according to reports and observation. As a result, the muddy water from upstream was discharged into the Junk Bay via various outfalls in Junk Bay, as observed during the rainstorm events. No sand plume within the cofferdam area and no muddy water discharge at the designated discharge point within the Site was identified during the site inspection and water quality monitoring.	Draft CIR submitted
380	11-Jun-19	6-Jun-19 / Near Tong Yin Street	Resident of Ocean Shore	Air	Odour nuisance from construction site near Tong Yin Street	N	No oil leakage from mobile crane was observed during the site inspection in June 2019. According to the testing reports, all ULSD fuel applied in the PMEs during the construction period contains sulphur content lower than 0.005% by weight, which complied with the Air Pollution Control (Fuel Restriction) Regulations.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
379	11-Jun-19	4-Jun-19 / Near cofferdam area	General Public	Water	Discharge of mud water into Junk Bay from TKOLT construction site	N	See Complaint no 381.	Draft CIR submitted
378	11-Jun-19	13-Apr-19 / Near cofferdam area	General Public	Air	Dark smoke nuisance from construction site involves derrick barge operation near cofferdam area (daytime)	N	No violation of the Air Pollution Control (Smoke) Regulation was recorded from the construction site was observed. The contractor was recommended to install carbon filter at smoke exhaust of the barge as a more effective mitigation measures.	Draft CIR submitted.
377	11-Jun-19	2-Jun-19 / Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	Only drilling works inside the tunnel was conducted during daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to reschedule the drilling works inside the tunnel to less sensitive hours.	Draft CIR submitted.
376	11-Jun-19	9-Jun-19 / Near Yau Lai Estate	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance near Yau Lai Estate involves vehicle movement (roller) during morning to 15:00 in holiday.	Y	No works involving roller was involved. Only drilling works inside the tunnel and ddismantling of crusher shelter was conducted during Sunday daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to re-schedule the drilling works inside the tunnel to less sensitive hours.	Draft CIR submitted.
375	11-Jun-19	9-Jun-19 / Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	See Complaint no. 376.	Draft CIR submitted.
374	4-Jun-19	3-Jun-19 / Near Ping Tin Estate	Resident of Ping Sin House in Ping Tin Estate	Noise	Vibration from the construction of Lam Tin Interchange in evening time at around 20:00	Y	Groundborne noise is considered as the major factor contributing to the noise nuisance. The reverse circulation drilling works may have emitted groundborne noise, however, only 1 unit was used in Portion II. Therefore, blasting is considered as the major cause for the vibration.	Draft CIR submitted.

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
373	4-Jun-19	2-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the construction site near Ocean Shore and the construction site operation in day time holiday.	Y	No construction activity was conducted at the time of complaint as confirmed by Engineer. Therefore, the noise nuisance was not due to the construction site.	Draft CIR submitted.
372	4-Jun-19	1-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Others	Complaint about the construction site operation in the early morning on Saturday.	N	See Complaint no. 373.	Draft CIR submitted.
371	30-May-19	30-May-19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance from construction site near Ocean Shore during night time.	Y	See Complaint no. 373.	Draft CIR submitted
370 (N08/RE/000 15098-19)	29-May-19	19 & 26-May- 19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance about dredging mud and loudspeaker in the construction site near Ocean Shore during daytime holiday.	Y	Noise barriers/ Noise absorptive materials have been used to mitigate the noise generated from the construction works. Only walkie-talkies were used for communication in the construction site.	Draft CIR submitted
369	13-May-19	Not specific / Lam Tin interchange	Resident of Yau Lai Estate	Noise	Noise nuisance from the blasting work inside tunnel which involves explosion noise impact during midnight	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-N66	Draft CIR submitted
368	19-May-19	19-May-19 / Near cofferdam area	General Public	Noise	Noise nuisance from barge with in cofferdam area in daytime holiday	Y	See Investigation / Mitigation Action for complaint no. 354.	Draft CIR submitted
367	5-May-19	5-May-19 / Lam Tin Tunnel - TKO entrance	Resident near Lam Tin Tunnel - TKO entrance	Noise & Air Quality	Noise and air nuisance from construction near Lam Tin Tunnel - TKO entrance	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-C29.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
366	4-May-19	4-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y		Draft CIR submitted
365	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y	Toward and have been accordant allow with he	Draft CIR submitted
364	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-N65.	Draft CIR submitted
363	30-Apr-19	6th – 22th April -19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime and evening time	Y		Draft CIR submitted
362 (N08/RE/000 13396-19)	8-May-19	7-May-2019 / Junk Bay	District Council	Noise	Noise nuisance from marine works in the Junk Bay in the night- time (06:45)	Y	No marine works in the Junk Bay was conducted as confirmed by RE. No CCTV footage was recorded during the time of complaint. It was suggested that Contractor should conduct 24 hours CCTV monitoring. Details should be referred to CIR-N64.	Draft CIR submitted
361	7-May-19	28 Apr 2019 / Cofferdam Area	General Public	Noise	Noise nuisance from construction site at cofferdam area in holiday	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-N63.	Draft CIR submitted
360	2-May-19	27-04-2019/ Construction in Tong Tin Street	General Public	Noise	The complaint about the noise nuisance from cofferdam area during daytime and evening-time.	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-C28.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
359	30-Apr-19	30-04-2019/ Near Ocean Shore	Resident of Ocean Shore	Noise	The complaint about the noise nuisance involve percussion noise near Ocean Shore during daytime.	Y		Draft CIR submitted.
358	30-Apr-19	27-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance during evening time.	Y		Draft CIR submitted.
357	23-Apr-19	20-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during daytime.	Y		Draft CIR submitted.
356	23-Apr-19	19-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during holiday.	Y		Draft CIR submitted.
355	17-Apr-19	17-04-2019/ Near cofferdam area	General Public	Noise & light nuisanc e	The complaint about the noise nuisance and light pollution near cofferdam area during evening-time.	Y		Draft CIR submitted.
354	30-Apr-19	20 Apr 2019 / Cofferdam Area 19 Apr 2019 / Cofferdam Area 15 Apr 2019 / Cofferdam Area 07 Apr 2019 / Cofferdam Area	Resident of Ocean Shore (Mr. Chan)	Others	The construction site near O King Road is operated in holiday during day-time and weekday during night-time.	N	Investigation has been completed but yet to be finalised. Details should be referred to CIR-O2.	Draft CIR submitted.

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
		31 Mar 2019 / Cofferdam Area						
353	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore (Mr. Chan)	Air Quality	According to the complainant, large amount of smoke and exhaust was seen emitting from barges working within the cofferdam	N	See Investigation / Mitigation Action for complaint no. 329.	Draft CIR submitted.
352	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore	Noise	The complainant complained about the noise nuisance from the cofferdam area in Tiu Keng Leng during day-time.	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-N62.	Draft CIR submitted.
351	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore	Noise	The complainant complained the noise nuisance from the cofferdam area in Tiu Keng Leng during day-time.	Y	finalised. Details should be referred to CIR-N62.	Draft CIR submitted.
350	8-Apr-19	07 Apr 2019 / Cofferdam Area in TKO	-	Air Quality & Others	The complainant complained the dark smoke generation and the construction works from the cofferdam area in Tiu Keng Leng during holiday.	N	See Investigation / Mitigation Action for complaint no. 329.	Draft CIR submitted.
349	7-Apr-19	07-04- 2019/Cofferda m Area	Resident of Ocean Shore	Air	Dark smoke generation from the cofferdam area in Tiu Keng Leng during day-time.	N		Draft CIR submitted.

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
348	2-Apr-19	02 Apr 2019 / LTT-TKO	-	Others	The complainant complained the LTT construction site was working during holiday.	N		Draft CIR submitted.
347	1-Apr-19	01 Apr 2019 / Cofferdam Area	Resident of Ocean Shore	Noise	Percussive noise from the cofferdam area in Tiu Keng Leng during day-time.	Y		Draft CIR submitted.
346	31-Mar-19	31st March 2019 / Construction of Road P2	District Council	Others	Complaint about the construction site operation of Road P2 in day time holiday	N	Investigation has been completed but yet to be finalised. Details should be referred to CIR-O1.	Draft CIR submitted
345	26-Mar-19	26th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Draft CIR submitted
344	28-Mar-19	26th March 2019 / Construction of Road P2	District Council	Noise	Complaint letter received regarding noise nuisance and dark smoke generation from the marine barges	Y	See Investigation / Mitigation Action for complaint no. 378.	Draft CIR submitted
343	25-Mar-19	25th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance sound like a breaking works in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
342	25-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction of Lam Tin Interchange in day time hoilday (Sunday). The noise monitoring was conducted in Hong Nga Court by staff after the complaint and the noise level is result in acceptable level, but the complainant replied that the noise monitoring is meaningless and the noise nuisance is not acceptable for her.	Y	See Investigation / Mitigation Action for complaint no. 330.	Draft CIR submitted
341	24-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complaint about the noise nuisance from Lam Tin Tunnel construction works in day time.	Y		Draft CIR submitted
340	24-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction site day time holiday (Sunday).	Y		Draft CIR submitted
339	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the construction noise nuisance involving percussive noise in early morning (07:00)	Y		Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
338	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Ocean Shore	Noise	Construction noise nuisance in night time (03:00 – 04:00)	Y	See Investigation / Mitigation Action for complaint no. 323.	Draft CIR submitted
337	20-Mar-19	19th March 2019 / Construction of Road D4 and Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance from the construction vehicle near Park Central in night time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Draft CIR submitted
336	20-Mar-19	20th March 2019 / Construction of Road	Resident of Park Central	Noise & Pest	Complaint about the noise and pest nuisance from the construction site near Park Central in evening time.	Y		Draft CIR submitted
335	19-Mar-19	19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from reclamation works near the TKO-LTT reclamation site during the evening time (19:00-23:00).	Y	See Investigation / Mitigation Action for complaint no.	Draft CIR submitted
334	19-Mar-19	19th March 2019 / Construction of Road P2	District Council	Noise	Construction noise nuisance from the TKO-LTT reclamation site during evening time (after 19:00).	Y	323.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
333	19-Mar-19	18th - 19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from construction noise in evening time (around 20:30).	Y		Draft CIR submitted
332	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance during day time, evening time and night time.	Y		Draft CIR submitted
331	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance in night time and the past few days. (Before 07:00)	Y	Investigation has been completed but yet to be finalised. Details should be referred to CIR-N61.	Draft CIR submitted
330	17-Mar-19	17th March 2019 / Construction of Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from in night time holiday.	Y		Draft CIR submitted
329	15-Mar-19	15th March 2019 / Construction of Road D4	Resident of Park Central	Noise & Air	Complaint about the noise from the construction works and the odour nuisance involves engine oil from construction machine	Y	The construction activities in the complaint dates are compiled with the CNMP. No noise and air quality limit level exceedance were recorded. Contractor had implemented the mitigation measures for the noise and odour nuisances including acoustic mat was erected between the PME and NSR, ultra-low sulphur diesel was applied as fuel oil in PME and general refuses were disposed properly. Details should be referred to CIR-C26.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
328	14-Mar-19	9th March 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance involve drilling work in the day time (08:00).	Y	A formation works was conducted in 7 am to 7pm on 9 Mar 2019. No noise limit level exceedance was recorded in the nearest noise monitoring result. However, there was no any adoption of mitigation measure to minimize the noise nuisance from the site. As response the received complaint, the contractor should place the noise barrier between the PMEs and NSR. Details should be referred to CIR-N58.	Draft CIR submitted
327	13-Mar-19	13th March 2019 / Construction of Lam Tin Interchange	Resident of Bik Lai House	Noise	Noise nuisance suspected from the construction works involving chiseling during evening time (22:07).	Y	A handing processed rock at Lam Tin Interchange was conducted on the complaint date in 7 pm to 11 pm involving dump truck and excavator which construction activities was compiled with the CNP. No noise limit level exceedance was record in the evening time monitoring. However, the noise barrier was not placed in the direction of the Yau Lai Estate during breaking works, the contractor had implemented a mitigation measure such as placed the noise barrier to reduce noise level from the breaker but the noise barrier was far from the concerned breaker. Details should be referred to CIR-N59.	Draft CIR submitted
326	13-Mar-19	13th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time (16:30)	Y	See Investigation / Mitigation Action for complaint no. 322.	Closed
325	9-Mar-19	9th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involve machine and percussive noise in night time (02:00 - 03:00).	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
324	7-Mar-19	7th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving chiseling noise from the construction site near Hong Pak Court during day time and evening time in the past few months.	Y	Only drilling works were conducted inside the tunnel in early morning and daytime under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Draft CIR submitted
323 (EPD- N08/RE/0000 6523-19)	4-Mar-19	4th March 2019/ Cofferdam Area	Resident of Ocean Shore	Noise	Construction noise (Evening time)	Y	Only 1 derrick barge and a tug boat was used in the evening time under valid CNP. No Limit Level Exceedances were recorded at Station CM6(A) during evening time. Acoustic mat should be used to screen the engine of the barge to reduce the noise nuisance from the reclamation works. Lubricants should be applied to the barge to reduce the noise emission during barge movement.	Draft CIR submitted
322	13-Mar-19	1st March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from a yellow excavator near Ocean Shores in day time (15:44).	Y	No noise limit level exceedance was recorded and the number of operating PMEs complied with the CNMP. The sound proofing canvases were not always adopted as a mitigation measure to screen the noise emitted from the engine of the barge. Contractor should adopt the aforementioned mitigation measures as far as practicable. The contractor was also be recommended to enhance the mitigation measure including frequently checking the noise barriers/sound proofing canvases, frequent checking and repair the gaps or broken acoustic sheets and continue to strictly follow the requirements in the approved CNMP.	Closed
321	28-Feb-19	28th February 2019 / Construction of Lam Tin Interchange	Management Section of Yau Lai Estate	Noise	Construction noise (Night time)	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N55.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
320	22-Feb-19	22nd February 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving percussive noise in early morning (Day time). Complainant said the construction should be operated after 08:00.	Y		Draft CIR submitted
319	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise in night time	Y	See Investigation / Mitigation Action for complaint no. 313.	Draft CIR submitted
318	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise from the construction in night time	Y		Draft CIR submitted
317	25-Feb-19	23th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complained about the odour nuisance of petroleum smell	N	See Investigation/ Mitigation Action on Complaint	Draft CIR submitted
316	18-Feb-19	18th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complaint about the dark smoke and odour nuisances	N	no.294. Details should be referred to CIR-A12.	Draft CIR submitted
315	17-Feb-19	15th February 2019 / Construction of Lam Tin Interchange, Road P2 and Tseung Kwan O Interchange	General Public	Noise	Complained about construction noise (Daytime)	Y	The metal wire used for anchoring the barge inside the cofferdam area are the source for the noise nuisance. Ropes were used to replace metal wire to reduce noise nuisance from metal collision while mooring boats. Details should be referred to CIR-N54.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
314	17-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air	Dust nuisance suspected from the construction works and absence of water spraying near Lam Tin Interchange in daytime.	N	No Air Quality action level or limit level exceedance during the monitoring conducted by ETL. Contractor had implemented mitigation measure to reduce and prevent dust emission including conducted water sprays and covered the cement bags. Details should be referred to CIR-A13.	Draft CIR submitted
313	17-Feb-19	17th February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Construction noise nuisance from the drilling and breaking works at Branch Tunnel in the morning (Day time)	Y	Breaking and drilling works were conducted during the time of complaint. The breakers were often seen wrapped with acoustic mat, however, they are easily damaged during the breaking works. Noise barrier are more effective in reducing the noise nuisance than the acoustic mat, but the erection of noise barrier are not often adopted properly to screen the noise from the NSR due to the additional works involved and the landform on site. Groundborne noise could also be a factor contributing to noise nuisance. Details should be referred to CIR-N53.	Draft CIR submitted
312	16-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the explosion noise (Daytime)	Y	No exceedances were recorded and recommendation were made to further enhance the mitigation measures, such as regularly and reviewing the noise control activities that are being carried out on site regularly to ensure compliance with statutory requirement, provide training for the workers to prevent unnecessary noise disturbance and frequently check and maintain the absorptive lining adhered on blasting doors on a regular basis.	Closed
311	15-Feb-19	15th February 2019 / Construction of Lam Tin Interchange	Public	Noise	Complained about the explosion noise (Daytime)	Y	See Investigation / Mitigation Action for complaint no. 312.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
310	14-Feb-19	14th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (Daytime)	Y	Dump truck and excavator was used to transfer crushed rocks from the crusher with valid CNP. Additional noise barrier was added at the site boundary near Shun	Closed
309	13-Feb-19	13th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (evening time)	Y	Lai house, Yau Lai Estate to reduce the direct-line of sight from the NSRs to the site. Details should be referred to the CIR-N51.	Closed
308	13-Feb-19	1th - 13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Management Section of Kwong Tin Estate	Noise	Complaint about construction noise (Night time)	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed
307	13-Feb-19	13th February 2019 / Construction at Tsueng Kwan O (C1)	Resident of Ocean Shore	Noise	The complaint about the noise nuisance in day time	Y	Noise nuisance was originated from the beeping noise emitted during vehicle reversing of the loader. The total length of beeping noise should be less than 5 mins. The reverse alarm system is a necessary safety measure that cannot be revoked. Details should be referred to CIR-N50.	Draft CIR submitted
306	13-Feb-19	13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time	Y	See Investigation/ Mitigation Action on Complaint	Closed
305	12-Feb-19	12th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time.	Y	no.302. Details should be referred to CIR-N48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
304	8-Feb-19	8th February 2019 / Construction of Road P2 and Associated Works	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time	Y	There were two construction activities in the site including dredging and trimming in day time on 8 Feb 2019. Details should be referred to CIR-N49.	Draft CIR submitted
303	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Ping Tin Estate	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time, evening time and night time.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head;	Closed
302	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Pak Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time	Y	To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers To continue to strictly follow the requirements in the approved CNMP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
301	31th January 2019	27th - 31th January 2019 / Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Noise nuisance suspected from the construction involving chiselling works	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
300	30th January 2019	30th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
299	30th January 2019	27th - 29th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane and also suspected from elevation platform	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
298	30th January 2019	Not specific / Near Po Shun Road	Resident of Park Central	Noise & Air Quality	The dust generation and noise nuisance from the construction site near Po Shun Road	Y	There were several construction activities in the site including the removal of steel mould & scaffolding of bridge deck, erection of scaffolding for staircase and construction of Pour 1 of main deck (GL4-5) during time of complaint. Details should be referred to CIR-C25.	Draft CIR submitted
297	30th January 2019	27 th - 30th January 2019 / Construction works at TKO- Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction involving chiselling works	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
296	29th January 2019	27th - 29th January 2019 / Construction Site of Footbridge near Tiu Keng Leng Sport Centre.	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the mobile crane at the Footbridge near Park Central Block 6	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: To arrange a signalman instead of mobile crane reversing signal for minimize the beeping noise disturbance; Frequent checking and repair the operating PME; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers To continue to strictly follow the requirements in the approved CNMP; To ensure noise barrier and sound proofing canvases wrapped on PME are intact and in good condition.	Closed
295	29th January 2019	29th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the steel cable wire for anchoring between barge and pier	Y	There was a salvage works for the sunken barge (CS306) in a whole day on 27 Jan, 12 am to 3 pm on 28 Jan and 11:40 am on 29 Jan 2019. Details should be referred to CIR-N46.	Draft CIR submitted
294	29th January 2019	29th January 2019 / Construction of Road P2	Resident in O King Road	Air Quality	Complaint about the dark smoke and odour nuisances from barge.	Y	The sulphur content percentage of the adopted diesel fuel was lower than 0.05% which is compiled with the Hong Kong Air Pollution Control (Marine Light Diesel) Regulation, therefore the odour problem should be minimised. Smoke filtering tanks were adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell. The situation has improved after the filter has been replaced. Details should be referred to CIR-A12.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
293 (EPD- K15/RE/0000 3291-19)	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night time)	Y	See investigation / Mitigation Action for complaint no. 270. Details should be referred to CIR-C29.	Draft CIR submitted
292	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from breaking work.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping	Closed
291	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from breaking work.	Y	the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers	Closed
290	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the construction noise from Tunnel Works	Y	To continue to strictly follow the requirements in the approved CNMP. RE/RSS should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
289 (EPD- N08/RE/0000 0859-19)	24th January 2019	Early December 2018 -24-Jan- 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from Tunnel Works	Y	See Investigation/ Mitigation Action on Complaint no.288. Details should be referred to CIR-N44.	Draft CIR submitted
288	18th January 2019	18th January 2019 (Unknown)/ Construction of Road P2	Public	Noise	Complained about the construction noise from Tunnel Works	Y	No major construction works at the concerned night time. There was only salvage operation carried out in 11 pm to 12 pm on 17 Jan 2019. No violation of CNP nor Noise Control Ordinance is found in this regard. Details should be referred to CIR-N44.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
287	17th January 2019	17th January 2019 / Construction of Lam Tin Interchange	Resident of Yung Lai House	Noise	Complained about the construction noise from Kam Tin Interchange.	Y	Project-related. The following recommendations are made to further enhance the mitigation measures: To regularly check and review the noise control activities that are being carried out on site to ensure compliance with statutory requirement. Machines may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. To provide training for the workers to prevent unnecessary noise disturbance. To provide cantilever barrier to screen the construction noise from the NSRs	Closed
286	17th January 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near the Park Central in day time	N	See Investigation/ Mitigation Action on Complaint no. 285. The concerned air compressor has been removed on 16th Jan 2019. Details should be referred to CIR-N41.	Draft CIR submitted
285	17th January 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air blower/fan with generator near Tiu Keng Leng Sport Centre and Park Central.	N	The concerned air compressor was removed from the construction site since 16 January 2019 afternoon, but the high frequency noise nuisance complaints were received on 17 January 2019. According to the CM8(A) noise monitoring record by environmental team, the other noise source from construction site are beeping noise of the reverse alarm system of the plant. Therefore, the high frequency noise nuisance is considered project related after 16 January 2019. Details should be referred to CIR-N41.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
284	16th January 2019	16th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Draft CIR submitted
283	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Draft CIR submitted
282	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Draft CIR submitted
281	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
280	14th January 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Draft CIR submitted
279	14th January 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Tiu Keng Leng Sport Centre in day time Saturday and Holiday (Sunday).	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Draft CIR submitted
278	12th January 2019	12th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site between Tiu Keng Leng Sport Centre and Park Central in day time	Y	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Draft CIR submitted
277	12th January 2019	12th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the noise from breaking activities.	N	See investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
276	11th - 12th January 2019	11th - 12th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP. Details refer to CIR-N40.	Closed
275	11th January 2019	11th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from a crane near footbridge between Tiu Keng Leng Sport Centre and Park Central	Y	See Investigation/ Mitigation Action on Complaint no. 272.	Draft CIR submitted
274 (EPD- N08/RE/0000 1234-19)	11th January 2019	11th January 2019 / Construction of Road D4	Public	Noise	Complaint about the high frequency machine noise nuisance from the construction site of footbridge between Tiu Keng Leng Sport Centre and park Central.	Y	No high-frequency noise was detected near the complaint location, however, the noise similar to description was detected within the renovation works inside Park Central. Details should be referred to complaint no. 272 and CIR-N41.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
273	10th January 2019	10th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
272	8th January 2019	8th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the high frequency machine noise nuisance from the construction site near Park Central in day time.	Y	High frequency noise emitted from an air compressor was suspected. Noise barrier was seen erected. Noise barrier using material with higher absorption coefficient such as mineral wool is recommended. Details should be referred to CIR-N41.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
271	8th January 2019	8th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
270 (EPD- K15/RE/0000 0691-19)	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night- time)	Y	Regular noise monitoring results for day time and night time show full compliance of the noise criteria. Air quality monitoring result in all stations show that no adverse air quality impact has been brought about to the nearby sensitive receivers during the time of complain. During Site audit, damaged acoustic material on the breaker was observed. Watering was provided at during rock breaking to avoid dust generation. The Contractor was reminded to deploy noise barrier to screen the line-of-sight from sensitive receiver; during breaking works.	Draft CIR submitted
269	7th January 2019	7th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the night time construction noise near Park Central.	Y	No noticeable high frequency noise was detected from the air compressor and noise barrier was seen erected in the line-of-sight from the NSR to the Air compressor. Refer to CIR-41 for details.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
268	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the construction noise at Lam Tin Interchange.	Y	No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure: • Frequent checking and repair the gaps or broken acoustic sheets; • Replace any broken Silent Mat for wrapping the breaker head; • To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; • The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver; • To continue to strictly follow the requirements in the relevant CNP; • To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and • Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
267	7th January 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	Refer to Investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
266	7th January 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	No exceedances were recorded at the nearest monitoring station, however, the approved location for noise monitoring was located at the podium of Ocean Shores. Due to inaccessibility to private unit, it is not possible to perform monitoring at higher floor. ET will keep approaching Ocean Shore Management Office for impact noise monitoring at higher floor. The recommendations for Contractor is as follows: • only well-maintained plant on-site and plant should be serviced regularly during the construction program; • Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers; Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
265	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure: • Frequent checking and repair the gaps or broken acoustic sheets; • Replace any broken Silent Mat for wrapping the breaker head; • To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; • The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver; • To continue to strictly follow the requirements in the relevant CNP; • To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and • Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
264	2nd January 2019	2nd January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	No noise limit level exceedance was recorded at the noise monitoring stations near ocean shores. The contractor has applied lubricants to the joint of the excavators to dampen the noise emitted from the PMEs. The contractor is recommended to use noise barriers to screen the PMEs from the NSRs as per the Noise mitigation plan.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
263 (EPD-)	1st January 2019	31st December 2018 / Coastal near TKO cemetery	General Public	Water	Complained concerning oil leakage/ on the sea surface near the sunken barge at C2 site.	N	Oil leakage happened due to the derrick lighter was submerged to the sea within the cofferdam. As the oil leakage was found outside the cofferdam during site inspection, there was a gap in the cofferdam. The oil leakage was cleaned up and the floating oil absorber has been used to surround the cofferdam by Contractor. The Contractor are reminded to1) regular check if the site vessels and cofferdam are in good-condition; 2) To regular monitor the operation of any activities in the cofferdam area; 3) To implement the proposed site vessels safety and the emergency responses including clearance measures Details of the investigation should be referred to CIR-W10	Draft CIR submitted
262	30 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
261	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
260	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
259	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed

Complaint F. No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
258 De	8 th December 2018	18 th December 2018/ Construction of Lam Tin Interchange	Engineering Section of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The complaint is considered project related. Mitigation measures: Cable wire for anchoring between barge and pier has been replaced by rope between 27 Dec and 2 Jan to reduce noise impact. In addition, other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved CNMP of this Contract had been implemented by the Contractor, including the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers; Machines and plants that may be in intermittent use should be shut down between works periods	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
257	18 th December 2018	18 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The Contractor has replaced the cable wire for anchoring between barge and pier with ropes between 27 Dec and 2 Jan to reduce noise impact.	Closed
256	17 th December 2018	15 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking and piling activities	N	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) The following recommendations were made for the Contractor to enhance the mitigation measures: To frequently check and repair operating PME if any loosen or worn parts of the equipment to reduce excessive noise disturbance; Noise barriers should be designed and erected around the noise sources to block the direct line-of-sight from the NSR as per the CNMP; To ensure all erected noise barriers and sound proofing canvases wrapped on PME are intact and in good condition.	Closed
254	16 th December 2018	16 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	• The night-time works were only conducted inside the tunnels with valid CNP. The noise nuisances are not considered as air-borne in nature, but ground-borne noise. 2.17 In order to confirm the possible ground-borne nature of the noise nuisances for complaints summarized in this report, CEDD has engaged the environmental team to conduct ad hoc ground-borne noise monitoring with the coordination of the Engineer. The findings will be provided in a separate report for the ad hoc monitoring.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
253	15 th December 2018	15 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	Refer to the investigation for complaint no. 254	Closed
252	30 th November 2018	30 th November 2018/ Construction of Road D4	Resident of Park Central	Noise & Air	Complained about the construction noise and dust resuspension in Road D4.	Y	The number of PMEs operated on site and on-time percentage from 19 to 30 November complied with the CNMP, thus, no violation was identified. Based on the noise and air monitoring results in November 2018, no Limit Level Exceedance was recorded. Mitigation Measures A more effective acoustic barrier was erected between the drill rig and Park Central. Frequent water spraying along the Po Yap Road for eight times a day, Stockpile are covered with impervious material to avoid dust resuspension	Closed
251	28 th November 2018	27 th November 2018/ Construction of TKO portal	Public	Noise	Complained about the construction noise from the marine works.	Y	The complaint lodged on 25 th November 2018 is considered as non-project related, as no works was conducted on that day. The complaint on 27th November 2018 is considered project related. The contractor is reminded to 1) frequently check and repair operating PME if any loosen or worn parts of the equipment to reduce excessive noise disturbance; 2) Ensure no further use of PA system for marine works.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
250	26 th November 2018	26 th November 2018/ Public sea in TKO	Resident of Ocean Shore	Noise	Complained about the noise nuisance from the operation of derrick barge on Sunday.	Y	Refer to the investigation for complaint no. 251	Closed
249	25 th November 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from the Excavators in LTI on Sunday morning.	Y	Refer to the investigation for complaint no. 251	Closed
248	20 th November 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance during transfer of material in evening time at LTI	Y	Regular noise monitoring results for restricted and non- restricted hours show full compliance of the noise criteria (night-time noise exceedance is considered non-project related). The contractor is reminded to adopt cantilever noise barriers at Lam Tin Interchange to screen noise effectively by screening the line-of- sight from sensitive receivers	Closed
247	20 th November 2018	19 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the noise nuisance from rock dropping during evening time	Y	Refer to the investigation for complaint no. 248	Closed
246	19 th November 2018	19 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from dump truck in evening time	Y	Refer to the investigation for complaint no. 248	Closed
245	8 th November 2018	8 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about construction noise during night time from LTI	Y	Refer to the investigation for complaint no. 248	Closed
243	8 th November 2018	8 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the construction noise during evening time from LTI.	Y	Refer to the investigation for complaint no. 248	Closed
242	7 th November 2018	7 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the construction noise and dust nuisance.	Y	Refer to the investigation for complaint no. 248	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
241	6 th November 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	Closed
240	6 th November 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	Closed
239	25 th October 2018	25 th October 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about daytime construction noise near Ocean Shore.	Y	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) Additional mitigation measures adopted by Contractor upon receipt of complaint: A more effective acoustic barrier was erected that covered the direct line of sight from the entire Ocean Shore during piling works. Existing Mitigation Measures adopted by Contractor Silent up barrier was provided for drill rig/vibration hammer. Acoustic barriers was erected along site boundary); Maintenance for acoustic barriers along the site boundary to ensure the integrity effectiveness of sound barrier; Metal chain attached on the vibration hammer was wrapped with rubbery material to reduce the excessive noise produced during piling works.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
238	23 rd October 2018	23 rd October 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the noise created by an excavator during morning	Y	See Investigation / Mitigation Measures for Complaint No. 239	Closed
237	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about construction noise at LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
236	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Cha Kwo Ling Village	Noise	Complained about the vibration and noise near	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
235	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI and Portion 4C	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
234	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the Excavator in LTI was not properly wrapped and produce noise nuisance from LTI.	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
233	15 th October 2018	15 th October 2018/ Lam Tin Interchange	DC member	Noise	Complained about the noise and dust nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
232	14 th October 2018	14 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during night time	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
231	12 th October 2018	12 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
230	11 th October 2018	11 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise from rocks unloading in LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
229	9 th October 2018	9 th October 2018/ Lam Tin Interchange	Resident of Bik Lai House, Yau Lai Estate	Noise	Complained about the noise nuisance from LTI, and lack of effective noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
228	9 th October 2018	9 th October 2018/ Lam Tin Interchange	Public	Noise	Complained about the noise nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
227	3 rd October 2018	3 rd October 2018/ Lam Tin Interchange	Resident of Yung Lai House, Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during night time	Y	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) and approved Construction Noise Permit (CNP). Mitigation Measures adopted by Contractor Noise: Noise barriers were repaired to reduce noise nuisance at Portion 4C; Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C; Powered mechanical equipment (PME) for breaker was equipped with noise barriers at Portion 4C.	Closed
226	28 th September 2018	28 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about noise nuisance from portion IV	Y	See Investigation / Mitigation Measures for Complaint No. 222	Closed
225	26 th September 2018	26 th September 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise from rocks unloading in LTI	Y	See Investigation / Mitigation Measures for Complaint No. 218	Closed
224	18 th September 2018	18 th September 2018/ Construction of Road P2	Public	Noise	Complained about noise nuisance from derrick barge	Y	See Investigation / Mitigation Measures for Complaint No. 219	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
223	13 th September 2018	9th September 2018/Construct ion of Portion VII on TKO side	Resident of Ocean Shores	Noise	Complained about noise nuisance from derrick barges	Y	See Investigation / Mitigation Measures for Complaint No. 218	Closed
222	12 th September 2018	12 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about the noise nuisance from piling works	Y	 Mitigation Measures adopted by the Contractor Acoustics barriers were provided to the vibration hammer for piling works. Maintenance for acoustic barriers on the PME and along the site boundary to ensure the integrity and effectiveness of sound barriers. Regular site checking would be performed to ensure the type and quantity of powered mechanical equipment are in order with the updated Construction Noise Assessment. Acoustics mats were provided to cover the noise source from vibration hammer. The metal chain on vibration hammer was wrapped with rubbery material to minimize sound impact. The schedule for piling works was set with a 5 minutes interval to reduce the accumulated noise level. 	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
221	11 th September 2018	9 th September 2018/ Construction of Portion VII on TKO side	Public	Noise	Complained about the noise from broadcasting at barging point	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Walkie-talkie was used instead of broadcasting to reduce the noise nuisance.	Closed
220	11 th September 2018	26 th September 2018/ Lam Tin Interchange	Public	Noise	Complained about the construction noise	Y	See Investigation / Mitigation Measures for Complaint No. 218	Closed
219	7 th September 2018	7 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about the noise from sheet piling	Y	 Mitigation Measures adopted by the Contractor Silent up barrier was provided for piling works in between vibration hammer and Ocean Shores. Acoustic barriers was erected along site boundary Noise barrier surround the engine of the derrick barge Acoustic material wrapped on vibration hammer for sheet piling works 	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
218	6 th September 2018	6 th September 2018/ Construction in LTI	Public	Noise	Complained about noise nuisance in LTI	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C; Powered mechanical equipment (PME) for breaker was equipped with noise barriers at Portion 4C.	Closed
217	5 th September 2018	5 th September 2018/ Construction of Road P2	Public	Air Quality	Complained about dark smoke emission from derrick barges.	N	The Contractors has adopted the following environmental mitigation measures to reduce dark smoke nuisance from construction barges since June for dark smoke complaints: > Smoke filtering tanks were adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell; > New engine has been installed on derrick barge to reduce the dark smoke emission.	Closed
216	5 th September 2018	5 th September 2018/ Construction of Road P2	Public	Air Quality	Complained about dark smoke emission from derrick barges.	N	See Investigation / Mitigation Measures for Complaint No. 217	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
215	5 th September 2018	5th September 2018/ Construction of Road P2	Public	Water Quality	Complained about the oil leakage within the cofferdam	N	The Contractors had taken measures to clean up and prevent any further oil spillage for marine works in the future: Oil was absorbed and cleared with sorbents Wire was applied with suitable amount of oil to prevent further oil spill Training was provided for frontline staff on applying lubricant oil on wire rope of derrick barge. The Contractor had implemented environmental measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: Construction activities should not cause foam, oil, grease, scum, little or other objectionable matter to be present on the water within the site. Standard good-site practice is adopted to prevent any fuels and solvent entering the nearby watercourses.	Closed
214	4 th September 2018	4 th September 2018/ Construction of Road P2	Ocean Shores Management Office	Air Quality	Follow up complaint on 21 and 22 August, regarding dark smoke emission from derrick barges.	N	See Investigation / Mitigation Measures for Complaint No. 217	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
213	31st August 2018	31st August 2018/ Construction of Lam Tin Interchange	Public	Air Quality	The complainant complained about the dust nuisance at LTI.	N	See Investigation / Mitigation Measures for Complaint No. 207	Closed
212	27 th August 2018	27 th August 2018/ Construction of Road P2	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from breaker and excavator in LTI.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed
211	22 nd August 2018	22 nd August 2018/ Construction of Road P2	Public	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores.	N	See Investigation / Mitigation Measures for Complaint No. 209	Closed
210	21st August 2018	21 st August 2018/ Construction of Road P2	Public	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores.	N	See Investigation / Mitigation Measures for Complaint No. 209	Closed
209	21st August 2018	20 th & 21 st August 2018/ Construction of Road P2	DC Member	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores on 20 and 21 of August.	N	The Contractors had implemented environmental mitigation measures to reduce dark smoke nuisance from construction barges to the nearby sensitive receivers as follows: Additional water filter tank was adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell There were five derrick barges operating on 20 & 22 of August and four of them had water filter installed. The one without water filter was demobilized away from the site on 22 August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
208	20 th August 2018	17 th August/ Construction of Road P2	DC Member	Water Quality	The complainant complained that muddy water was discharged from the construction site.	N	Based on the information gathered in the investigation. As the location of muddy discharge was appeared adjoining the Tseung Kwan O DSD Desilting Compound, a high volume of upstream discharge collected from rain events is a possible cause of such muddy discharge event. There are no direct evidence that the muddy discharge near the outfall of DSD Desilting Compound was due to the Project. Measure Taken by the Contractor The Contractors had taken initiatives to ensure the quality of wastewater discharge from land-based works and to enhance mitigation measure to prevent silt from marine works from entering surrounding waters: Additional geotextile was installed between steel tanks to prevent migration of filling materials outside the cofferdam Cofferdams in form of steel tanks filled with aggregated material were covered with geotextile to prevent spillage of silty materials into nearby waters	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
207	18 th August 2018	18 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air Quality	The complainant complained about dust nuisance from surface blasting.	N	According to the EM&A Manual of this Project, regular air quality monitoring has been carried out at following Stations. AM2 – Sai Tso Wan Recreation Ground; AM3 Yau Lai Estate, Bik Lai House. No exceedance was recorded in the above station during August. Mitigation Measures and Follow up Actions by Contractor The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Air Quality: Blasting cage were surrounded with impervious material during surface blasting Water spraying was provided at the blasting cage and stone crusher to enhance dust suppression	Closed
206	13 th August 2018	13 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from the breaker at LTI and complained lack of noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
205	10 th August 2018	10 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance of construction work starting from 7 am and lack of noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed
204	9 th August 2018	9 th August 2018/ Construction of Lam Tin Interchange	Resident of Tak Tin Estate	Noise	The complainant complained about noise nuisance and vibration from blasting activity	Y	According to the EM&A Manual of this Project, weekly noise monitoring in Cha Kwo Ling and Lam Tin during s been carried out at the following Stations. CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station; CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong; CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. There was no exceedance recorded in the above station during daytime in August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
203	9 th August 2018	9 th August 2018/ Construction of Lam Tin Interchange	Property Management of Tak Tin Estate	Noise	The complainant complained about the noise nuisance during 8pm	Y	Mitigation Measures and Follow up Actions by Contractor The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C Powered mechanical equipment (PME) for rock breaking were equipped with noise barriers at Portion 4C According to the EM&A Manual of this Project, weekly noise monitoring in Cha Kwo Ling and Lam Tin during s been carried out at the following Stations. CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station; CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong; CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. There was no exceedance recorded in the above station during daytime in August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
202	1 st August 2018	1st August 2018/ Construction of Lam Tin Interchange	Resident of Yeung Mei House	Noise	The complainant complained about the construction noise during night-time.	Y	A valid Construction Noise Permit (CNP) (No. GW-RE0421-18) was granted to the Contractor for the construction site at Lam Tin Interchange The number of excavators that were used on 01 August was covered by the CNP. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed
201	26 th July 2018	26 th July 2018 / Construction of P2/D4	Public	Water quality	The complainant complained about the polluted effluent at the nearby surface drain near the construction of elevator.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Sandbags barrier was placed along the working area to prevent direct discharge	Closed
200	26 th July 2018	26 th July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on 24 th July 2018, the situation has yet been addressed.	Y	See Investigation / Mitigation Measures for Complaint No. 197	Closed
199	24 th July 2018	23 rd July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about a yellow breaker working without noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 197	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	25 th July 2018	25 th July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained about the noise from piling works at Portion IV.	Y	See Investigation / Mitigation Measures for Complaint No. 198	Closed
198	21 st July 2018	21st July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained about the noise from metal occasionally in the marine works area.	Y	Based on the noise monitoring results in July 2018, no Limit Level Exceedance was recorded at Station CM6(A) and CM7(A). It is considered that no adverse construction noise impact was brought to the nearby sensitive receivers during the construction. The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: Noise: Acoustic box was utilized for breaking works to minimize noise nuisance Acoustic barriers were provided for pre-boring works Regular site checking would be performed to ensure the type and quantity of PME are in order with the updated Construction Noise Assessment. Additional acoustic materials were wrapped around the vibration hammer Quieter plant, i.e. quality powered mechanical equipment was used as far as practicable to minimize noise impact from PME	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
197	21 st July 2018	21st July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from breaker.	Y	According to the EM&A Manual of this Project, additional weekly noise monitoring in Cha Kwo Ling and Lam Tin during night-time has been carried out at Station CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong, CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. no Limit Level Exceedance was recorded at Station CM1, CM2 and CM3. The summary of daytime and evening time noise monitoring results which conducted by ET in July and early August 2018 at Station CM1, CM2 and CM3 The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed
196	20 th July 2018	Not specified / Construction of Lam Tin Interchange	Property Management Office of Hong Pak Court	Air Quality	The complainant complained about the dust problem after blasting work in the afternoon.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Blasting cage were surrounded with impervious material during surface blasting > Water spraying was provided at the blasting cage to enhance dust suppression	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
195	17 th July 2018	16 th July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained the noise from works area near Ocean Shores	Y	See Investigation / Mitigation Measures for Complaint No. 198	Closed
194	12 th July 2018	12 th July 2018/ Construction of Road P2/ D4 and Northern Footbridge	Residents of Metrotown	Air Quality	The complainant complained the dusty problem next to Chui Ling Road Substation.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Water spraying was provided at least 8 times a day. > Access road was paved to minimize dust emission from truck traffic.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
193	12 th July 2018	12 th July 2018 / Construction of Road P2	Residents of Metrotown	Air Quality	The complainant complained the dust problem from the partially covered stockpile in Work Area A.	N	According to the information provided and confirmed by the Engineer, loading and unloading of treated sediment was conducted in Work Area A. According to the EM&A Manual of this Project, regular air quality monitoring has been carried out at Station AM5(A) – Tseung Kwan O DSD Desilting Compound and AM6(A) – Park Central, L1/F Open Space Area. no Action or Limit Level Exceedance was recorded at Station AM5(A) and AM6(A) from 3 to 12 July 2018. It is considered that no adverse air quality impact was brought to the nearby sensitive receivers during the construction period The Contractors had implemented environmental mitigation measures to reduce dust nuisance from construction activities to the nearby sensitive receivers as follows: Covered the stockpile of treated marine sediment with tarpaulin sheets	Closed
192	23 rd July 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June, 2 nd and 3 rd July 2018, the complainant complained that the situation has not yet been addressed.	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Replaced and fixed the uneven metal plate on Lei Yue Mun Road near ambulance depot	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	3 rd July 2018	3 rd July 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June, 2 nd July 2018, the complainant complained that the situation has not yet been addressed.	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Replaced and fixed the uneven metal plate on Lei Yue Mun Road near ambulance depot	Closed
	2 nd July 2018	2 nd July 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June 2018, the complainant complained that the situation has not yet been addressed.	Y	According to the information provided and confirmed by the Engineer, dredging and welding works are conducted on 23 June 2018 during the time of complaint.	Closed
191	27 th June 2018	26 th and 27 th June 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the construction noise at Lam Tin Interchange during night-time.	Y	The Contractors had implemented environmental mitigation measures to reduce odour nuisance from construction activities to the nearby sensitive receivers as follows:	Closed
	25 th June 2018	23 rd June 2018/ Construction of Road P2	Public	Air Quality	The complainant complained the dark smoke emission from construction barge and the smell from welding works.	N	 Air blowers were provided at the location where welding works to be carried out to dilute the smell Additional water filter tank was adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell 	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
190	22 nd June 2018	Not Specific/ Construction of Lam Tin Interchange	Public	Waste Manage ment	The complainant complaint about the housekeeping of the construction site.	N	From the Daily Record Summary provided by the Contractor and confirmation by the RE, there was no irregularity, and together with the site inspection conducted by the environmental team in June, construction waste on pavement was not observed. Despite, the Contractor was reminded to follow the relevant mitigation measures related to waste management: Ensure trucks have enclosed the containers before leaving the site to reduce the impact during transportation (Photo 3); Training of site personnel in proper waste management and chemical handling procedures to ensure proper disposal of construction waste; Proper storage and site practices to minimize the potential for damage or contamination of construction materials	Closed
189	20 th June 2018	28 th May 2018/ Construction of Road P2	SKDC member	Air Quality	The complainant complained the dark smoke emission from the same construction vessel.	N	See Investigation / Mitigation Measures for Complaint No. 181.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
188	20 th June 2018	20 th June 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about construction noise starting from 6 am.	Y	The construction activities in Lam Tin Interchange (Work site No.101) on 20th of June possessed of 6 no. of excavators between 7-8 am, 6 no. of breakers, excavator mounted between 8-10 am. The quantity of excavators and breakers were consistent with the Construction Noise Mitigation Plan (Construction Activity Group 1.1) The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
187	7 th June 2018	7 th June 2018/ Construction of Road P2	Resident of Ocean Shores	Air Quality	The complainant complained about the smell of machinery exhaust affecting the podium of Ocean Shores (swimming pool). The complainant suspected the exhaust was originated from the nearby barges.	N	According to the information provided and confirmed by the Engineer, dredging works and placing rock fill were conducted during the time of complaint. Dredger, derrick barge, tug boat and hopper barge were being operated for the mentioned works. According to the site inspections conducted by ET and IEC in May and June 2018, no exhausted smell from construction vessel was identified in Portion IV, VII and IX. The Contractors had implemented environmental mitigation measures to minimize the air nuisance to the nearby sensitive receivers as follows: Odour Emission from Exhausted Gas: Additional water filter tank was adopted on the deck level of derrick barges to reduce emission of dark smoke and exhaust smell	Closed
186	6 th June 2018	6 th June 2018/ Construction of Lam Tin Interchange	Resident of Chung Pak House, Hong Pak Court	Noise	The complainant complained about the construction noise at Lam Tin Interchange.	Y	A valid Construction Noise Permit (CNP) (No. GW-RE0278-18) was granted to the Contractor for the construction site at Lam Tin Interchange. The number of excavator and dump trucks that were used on 6 June were covered by the CNP.	Closed
185	6 th June 2018	30 th May and 30 th September 2017/ Construction of Road P2	SKDC member	Noise	The complainant complained about the noise affecting nearby resident in early morning near Ocean Shores.	Y	See Investigation / Mitigation Measures for Complaint No. 50 and 81.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
184	6 th June 2018	Not specified / Construction of Road P2	SKDC member	Landsca pe	The complainant complained about excessive tree felling near Ocean Shores.	N	According to the information provided and confirmed by the Engineer, tree removal application for the concerned area has granted approval from District Lands Office (DLO) on 1 August 2017 and 18 April 2018 together with the tree compensatory plans. The felling of a total of 85 trees at the concerned area were in accordance with the approved tree removal application by the DLO. None of them are registered Old and Valuable Tree and neither of them are rare nor endangered species. The number of retained trees at the concerned location complies with the latest tree removal application. The Contractor had taken initiatives to minimize nuisance from construction works to the nearby sensitive receivers as follows: Tree protection zones were established and surrounded by fences to protect retained trees adjacent to the construction area. Tree protection zone were free of machinery and material that are likely to be injurious to the tree. Regular tree assessments were conducted by qualified Arborist to monitor the condition of retained trees.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
183	4 th June 2018	4 th June 2018/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	N/A	The complainant complained about the blasting works during night-time.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" Ensured blasting doors were closed while blasting associated works was undertaken in the tunnel Installed steel-type blasting door mounted with sound absorptive lining to absorb construction noise in the tunnel	Closed
182	1 st June 2018	Not specified/ Construction of Lam Tin Interchange	Sin Fat Road Tennis Court	Air Quality	The complainant complained about the dust	N	The Contractor had taken initiatives to minimize nuisance from construction works to the nearby sensitive receivers as follows: Frequent water spraying along the slope area at LTI. Tarpaulin sheets were provided along the slope adjacent to the tennis court during preparation of surface blasting.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
181	29 th May 2018	Not specified/ Construction of Road P2	Public	Air Quality	The complainant complained about the black smoke emission from the construction vessel.	N	According to the information provided and confirmed by the Engineer, dredging and placing rock fill material were conducted during the time of complaint. The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: Air Quality: As confirmed by the Engineer, the concerned s removed off site for further maintenance; Additional water filter tank was adopted to mission of dark smoke and exhaust. The Engineer and the Environmental Team have reminded the Contractor to properly implement mitigation measures to effectively minimize construction nuisance caused by the construction works to the nearby residents.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
180	25 th May 2018	24 th May 2018/ Construction of Road P2	SKDC member Mr. Cheung Chin Pang	Odour	The complainant complained about smell of exhaust gas affecting high level residents (60/F and above) of Metrotown Tower 10.	N	According to the information provided and confirmed by the Engineer, modification of temporary marine platform and welding works were conducted during the time of complaint. The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: Air Quality: Additional water filter tank was adopted to mission of dark smoke and exhaust. The Engineer and the Environmental Team have reminded the Contractor to properly implement mitigation measures to effectively minimize construction nuisance caused by the construction works to the nearby residents.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
179	24 th May 2018	24 th May 2018/ Construction of Northern footbridge, Road P2/D4 and Road P2	Public	Air Quality	The complainant complained construction dust generated from the CEDD construction works site between Tong Yin Street and Tiu Keng Leng Sport Centre (Po Yap Road) as a result of insufficient dust suppression measures	N	According to the information provided and confirmed by the Engineer, construction works including steel bar fixing, scaffolding, trimming formation level, compaction, removal of road marking and handling of treated sediment were conducted during the time of complaint. As shown in the Air Quality Monitoring Results, no Action/ Limit Level Exceedance was recorded at Station AM5(A) and AM6(A) in May 2018. It is considered that no adverse construction dust impact was brought to the nearby sensitive receivers during the construction period of this Project The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: raying was provided at least 8 times a day; lear public access was hard paved; in Work Area A was covered except the operating area The Engineer and the Environmental Team have reminded the Contractor to properly implement mitigation measures to effectively minimize construction nuisance caused by the construction works to the nearby residents.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
178	23 rd May 2018	22 nd May 2018/ Construction of TKO Portal	Public	N/A	The complainant complained construction works was carried out on 22 May (which was a public holiday) around 1500 hour at the sea area near Ocean shore Block 2.		According to the information provided and confirmed by the Engineer, modification of temporary marine platform and welding works were conducted during the time of complaint. One valid Construction Nosie Permit (CNP) (No. GE-RE0309-18) was granted to the Contractor (Leighton – China State Joint Venture) (Contract No. NE/2015/01) for the marine construction site near Ocean Shores. According to the CNP, Group O to T of the PME listed in condition 3.a. are allowed to operate during general holiday (including Sunday) from 0900 – 2300 hours. As confirmed by the Engineer, only a group of PME (listed in Group Q) was operated during the time of complaint. No welding machine was operated in Zone A. No derrick barge and flat top barge were operated beyond Zone C. The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: Noise: Preinstalled speaker was used on derrick barge ize the noise disturbance from on-site communication. The Engineer and the Environmental Team inded the Contractor to properly implement mitigation to effectively minimize construction nuisance caused instruction works to the nearby residents.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
177	22 nd May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air Quality & Noise	The complainant complained about the dust nuisance and construction noise at Lam Tin Interchange	Y	According to the Engineer's Site Diaries, the major construction activities performed in May 2018 included rock breaking, drilling and excavation at Lam Tin Interchange. Construction works for night-time included blasting and excavation. According to the EM&A Manual of this Project, regular air quality monitoring has been carried out at Station AM2 – Sai Tso Wan Recreation Ground and AM3 – Yau Lai Estate, Bik Lai House. Based on the Air Quality Monitoring Results which conducted by ET, no Action or Limit Level Exceedance was recorded at Station AM2 and AM3. It is considered that no adverse air quality impact was brought to the nearby sensitive receivers during the time of complaint. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Air Quality: water spraying on unpaved area and haul roads at Lam change Noise: Pensured blasting doors were closed while blasting associated works was undertaken in the tunnel Installed steel-type blasting door mounted with sound absorptive lining to absorb construction noise in the tunnel Perected movable cantilever noise barriers and the breaker head was wrapped with Silent Mat and TMD;	Closed

Monthly EM&A Report (June 2019)

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
							Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	
							Drill rig was covered with Silent Mat and TMR	
							The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
176	21 st May 2018	21st May 2018/ Construction of Road P2	Public	Air Quality	The complainant complained about dust/dirt being brought onto Tong Yin Street by the vehicles travelling to and from TKO-LTT construction site, causing dust problem and air nuisance.	N	According to the information confirmed by the Engineer, all dump trucks were covered and wheel washed before leaving the works site on 21 May 2018. As shown in the Air Quality Monitoring Results, no Action/ Limit Level Exceedance was recorded at Station AM5(A) and AM6(A) in May 2018. It is considered that no adverse construction dust impact was brought to the nearby sensitive receivers during the construction period of this Project The Contractors had implemented environmental mitigation measures to minimize the noise nuisance to the nearby noise sensitive receivers as follows: Water spraying was provided at least 8 times a day. Street washing truck would be provided once a week to clean the dust on the public street. Additional notice would be set up to remind the truck driver to perform wheel-washing properly before leaving site. Deployed staff at the access to check the dump trucks to ensure the dump truck are properly covered and wheel-washed before leaving site. The Engineer and the Environmental Team have reminded the Contractor to properly implement mitigation measures to effectively minimize construction nuisance caused by the construction works to the nearby residents.	Closed
175	19 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange during nighttime.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
174	19 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange during nighttime.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed
173	16 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Nga Court,	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange during night-time.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed
172	15 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed
171	15 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate, Bik Lai Estate	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed
170	15 th May 2018	Not specified/ Construction site near Cha Kwo Ling Tsuen	Anonymous	Noise	The complainant complained the noise nuisance due to the construction work near Cha Kwo Ling Tsuen during night-time.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
169	14 th May 2018	Not specified/ Construction of Lam Tin Interchange	Kowloon East District Council Member Mr. Tam Man Ho	Noise	The complainant complained the noise nuisance due to the construction work and night time blasting works at the Lam Tin Interchange.	Y	According to the latest CNMP of this Contract, the subgroups of work activities undertaken near noise sensitive receivers in the reporting period: The construction activities of Lam Tin Interchange (Work site No.101) on 14th of May 2018 possessed of 6 no. of breakers, excavator mounted which were consistent with the quantities of breaker in the Construction Noise Mitigation Plan (Construction Activity Group1.1) Noise: Installed steel-type blasting door mounted with sound absorptive lining to absorb construction noise in the tunnel; Erected movable cantilever noise barriers and the breaker head was wrapped with Silent Mat and TMD; Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat; As shown by the Noise Monitoring Results conducted by ET, no Limit Level Exceedance was recorded at Station CM1, CM2, CM3 and CM4. The summary of noise monitoring results which conducted by ETL in May 2018 at Station CM1, CM2, CM3 and CM4. The environmental conditions of the site and the control of works will be continuously reviewed and monitored by the Engineer and the Environmental Team.	Closed
168	14 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate, Yung Lai House	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange during night-time.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
167	13 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Nga Court, Chung Pak House	Noise	The complainant complained the noise nuisance due to the construction work on Sunday morning and night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed
166	13 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Noise nuisance due to the construction work at around 5:00 am and night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 165.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
165	13 th May 2018	13 th May 2018/ Construction of Lam Tin Interchange	Property Management Office of Hong Nga Court	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange on 13th May 2018 (Sunday morning).	Y	A valid Construction Noise Permit (CNP) (No. GW-RE0278-18) was granted to the Contractor for the construction site at Lam Tin Interchange (location of construction site is shown in Figure 1). According to the conditions in the CNP, only one group among Group A to R of the powered mechanical equipment is allowed to be operated during 0800-2300 hours on general holidays (including Sundays); and 1900-2300 hours on any day not being a general holiday. The number of excavators, dump trucks, craned lorry and breakers that were used on 13th, 14th, 15th & 22nd of May were covered by the CNP. Other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the Noise Mitigation Plan of this Contract had been implemented by the Contractor, including the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; Mobile plant, if any, should be sited as far away from NSRs as possible; Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs As shown by the Noise Monitoring Results conducted by ET, no Limit Level Exceedance was recorded at Station CM1, CM2, CM3 and CM4. The summary of noise monitoring results which conducted by ETL in May 2018 at Station CM1, CM2, CM3 and CM4.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
164	12 th May 2018	12 th May 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed
163	12 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the noise nuisance due to the construction work at Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed
162	11 th May 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Lung Pak House	Noise	The complainant complained the noise nuisance during night time blasting works at the Lam Tin Interchange.	Y	See Investigation / Mitigation Measures for Complaint No. 160.	Closed

Monthly EM&A Report (June 2019)

Cumulative Complaint Log since commencement of Project

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
June 2017	8	0	0
July 2017	3	0	0
August 2017	8	0	0
September 2017	14	0	0
October 2017	8	0	0
November 2017	12	0	0
December 2017	10	1	0
January 2018	11	0	0
February 2018	6	0	0
March 2018	17	0	0
April 2018	15	0	0
May 2018	22	0	0
June 2018	11	0	1
July 2018	9	0	0
August 2018	12	0	0
September 2018	11	0	0
October 2018	13	0	0
November 2018	13	0	0

Monthly EM&A Report (June 2019)

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
December 2018	10	0	0
January 2019	39	0	0
February 2019	20	0	0
March 2019	25	0	0
April 2019	171	0	0
May 2019	11	0	0
June 2019	11	0	0
Total	383	1	1

^{1.} Complaint No. 378, 363, 362 were received after the submission of EMA Monthly Report (April 2019)

Cumulative Log for Notifications of Summons

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS24 138/20 17	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	The Summon was issued on 22 Dec 2017 First hearing on 29 Mar 2018	0	1
NE/2015/03						
NE/2017/01						
NE/2017/02			Ŧ			

Cumulative Log for Successful Prosecutions

Contract No.	Log Ref.	Date/Location	Subject Status Total no. Received in this reporting month		Total no. Received since project commencement	
NE/2015/01						
NE/2015/02	KTS24 138/20 17	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	Successful prosecution to the subcontractor on 27 June 2018	1	1
NE/2015/03						
NE/2017/01						
NE/2017/02						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Monthly Summary Waste Flow Table for 2019

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	II - II - II -		f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	131.655	73.591	0.000	103.085	28.570	0.000	0.000	0.421	0.000	2.400	0.140
February	105.752	52.675	0.000	55.650	50.103	0.000	0.000	0.333	0.000	0.000	0.088
March	147.872	85.219	0.000	85.219	62.653	0.000	0.000	0.654	0.000	0.000	0.102
April	86.872	63.871	0.000	65.710	21.162	0.000	0.000	0.000	0.000	0.000	0.101
May	88.182	56.127	0.000	56.5945	31.587	0.000	0.000	0.410	0.000	3.200	0.126
June	103.458	59.644	0.000	59.644	43.814	0.000	0.000	0.000	0.000	1.120	0.102
Sub-total	663.791	391.127	0.000	425.903	237.888	0.000	0.000	1.818	0.000	6.720	0.658
July											
August											
September											
October											
November											
December											
Total	663.791	391.127	0.000	425.903	237.888	0.000	0.000	1.818	0.000	6.720	0.658

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

Notes: (1) The performance target are given in PS Clause 6(14)

- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the amount of C&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m3. (PS Clause 1.105(4) refers)
- (5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
- (6) Conversion factors for reporting purpose:

in-situ: rock = 2.5 tonnes/m³; soil = 2.0 tonnes/m³

- (7) excavated: $rock = 2.0 \text{ tonnes/m}^3$; $soil = 1.8 \text{ tonnes/m}^3$; broken concrete and bitumen = 2.4 tonnes/m³, $soil and rock = 1.9 \text{ tonnes/m}^3$
- (8) C&D Waste = 0.9 tonnes/m³; bentonite slurry = 2.8 tonnes/m³

Diesel density: 0.8kg/l

Numbers are rounded off to the nearest three decimal places

The "Total Quantity Generated" equals to the sum of "Reuse in the Contract", "Reuse in Other Projects" and "Disposed as Public Fill"

NE/2015/02-Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works

Monthly Summary Waste Flow Table for 2019 Year

		Actual Quant	tities of Inert C&I	O Materials Genera	ted Monthly			Actual Quantities	of C&D Wastes C	Generated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	39.06133	0.00000	1.09752	0.00000	2.94501	35.01880	140.97000	0.00000	0.00000	4.11000	0.07932
Feb	27.16095	0.00000	0.73212	0.00000	1.09407	25.33476	0.00000	0.00000	0.00000	0.72000	0.01610
Mar	48.33586	0.00000	0.00000	0.00000	3.29905	45.03681	18.33000	0.00000	0.00000	0.00000	0.04866
Apr	103.60117	0.00000	0.00000	0.00000	2.04236	101.55882	0.00000	0.00000	0.00000	0.00000	0.03052
May	179.02844	0.00000	7.33100	0.00000	4.51844	167.17900	0.00000	0.00000	0.00000	0.00000	0.07562
June	119.80242	0.00000	30.10000	0.00000	2.16472	87.53770	95.27000	0.00000	0.00000	0.00000	0.03852
SUB- TOTAL	516.99016	0.00000	39.26064	0.00000	16.06364	461.66589	254.57000	0.00000	0.00000	4.83000	0.28874
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
TOTAL	516.99016	0.00000	39.26064	0.00000	16.06364	461.66589	254.57000	0.00000	0.00000	4.83000	0.28874

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Monthly Summary of Waste Flow Table for 2019

Name of Person completing the Record: Martin Yiu

	Actual Qu	antities of Ine	ert C&D Mater	ials Generate	d Monthly	Actual Quantities of Non-inert C&D Wastes Generated Monthly							
Month	Total Quantity	Broken Concrete	Reused in the Contract	Reused in other	Disposed as Public Fill	Metals	Paper/ cardboard	Plastics	Chemical Waste	Others, e.g. general			
	Generated	(see Note 1)	the Contract	Projects	I abile i iii		packaging	(see Note 2)	Wasio	refuse			
	(in '000m ³)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000m ³)							
Jan	0.3363	0	0	0	0.3363	0	0	0	0	0.0065			
Feb	0.0650	0	0	0	0.0650	0	0	0	0	0.0065			
Mar	0.2925	0	0	0	0.2925	0	0	0	0	0.0065			
Apr	0.3331	0	0	0	0.3331	0	0	0	0	0.0065			
May	0.4330	0	0	0	0.4330	0	0	0	0	0.0065			
Jun	0.8912	0	0	0	0.8912	0	0	0	0	0.0065			
Sub-total	2.3511	0	0	0	2.3511	0	0	0	0	0.0390			
Jul	0	0	0	0	0	0	0	0	0	0			
Aug	0	0	0	0	0	0	0	0	0	0			
Sept	0	0	0	0	0	0	0	0	0	0			
Oct	0	0	0	0	0	0	0	0	0	0			
Nov	0	0	0	0	0	0	0	0	0	0			
Dec	0	0	0	0	0	0	0	0	0	0			
Total	2.3511	0	0	0	2.3511	0	0	0	0	0.0390			

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Use the conversion factor: 1 full load of 24t / 30t dumping truck being equivalent to 6.5m3 / 8.125 m3 by volume.

Name of Department: Civil Engineering & Development Department Contract No.: NE/2017/06

Monthly Summary Waste Flow Table For 2019

	1	Actual Quantitie	es of Inert C&I	Materials Gen	nerated Monthl	y	Actu	ıal Quantities o	f C&D Wastes	Generated Mo	Actual Quantities of C&D Wastes Generated Monthly						
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. General Refuse						
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)						
Jan	0	0	0	0	0	0	0	0	0	0	0						
Feb	0	0	0	0	0	0	0	0	0	0	0.018						
Mar	0	0	0	0	0	0	0	0	0	0	0						
Apr	0	0	0	0	0	0	0	0	0	0	0						
May	0	0	0	0	0	0	0	0	0	0	0						
Jun	0	0	0	0	0	0	0	0	0	0	0						
Sub-total	0	0	0	0	0	0	0	0	0	0	0.018						
Jul																	
Aug																	
Sep																	
Oct																	
Nov																	
Dec																	
Total	0	0	0	0	0	0	0	0	0	0	0.018						

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.
- (3) Each dump truck carries 6m³ of general refuse.
- (4) The commencement date of the Contract is 9 November 2018. The current reporting period is from 1 June 2019 to 30 June 2019.

Monthly Summary Waste Flow Table for 2019 Year

		Actual Quant	ities of Inert C&I	O Materials Genera	ated Monthly		1	Actual Quantities	of C&D Wastes C	Generated Monthly	7
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Accumuated from 2018	1.23	0.00	0.18	0.43	0.60	0.03	0.00	0.00	0.00	0.00	0.04
Jan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Feb	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mar	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Apr	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
May	0.55	0.00	0.00	0.00	0.55	0.00	0.00	0.00	0.00	0.00	0.00
June	0.48	0.00	0.00	0.00	0.48	0.00	0.00	0.00	0.00	0.00	0.01
SUB-TOTAL	1.05	0.00	0.00	0.00	1.05	0.00	0.00	0.00	0.00	0.00	0.01
Jul											
Aug											
Sep											
Oct					<u>-</u>						
Nov					<u>-</u>		·				
Dec											
TOTAL	2.29	0.00	0.18	0.43	1.65	0.03	0.00	0.00	0.00	0.00	0.05

Note:

- 1. Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002
- 2. Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005
 3. Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material
- 4. The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the works is equal to or exceeding 50,000m3

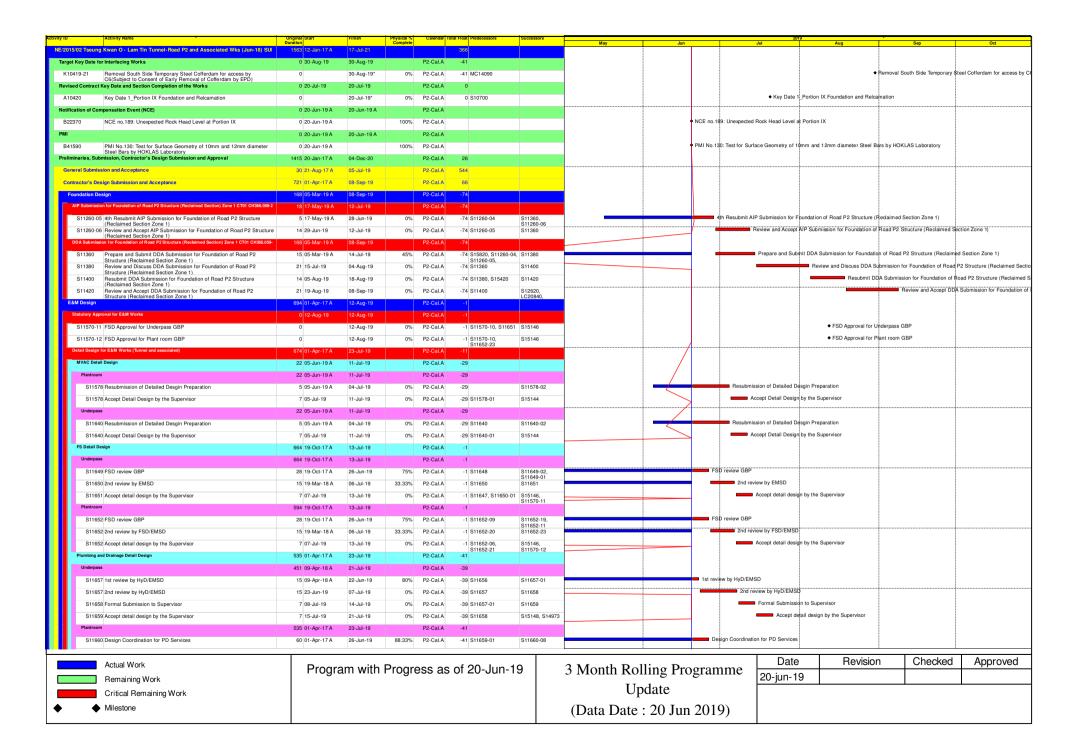
Monthly Summary Waste Flow Table for 2019

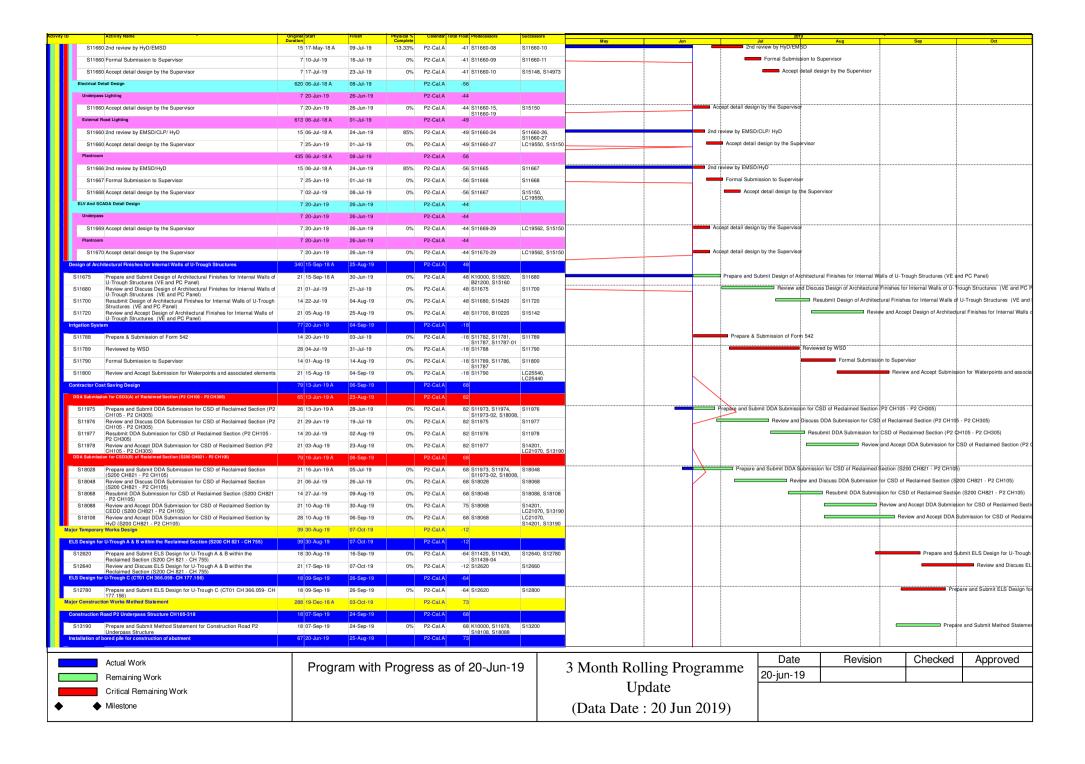
Contract No.: NE/2017/01

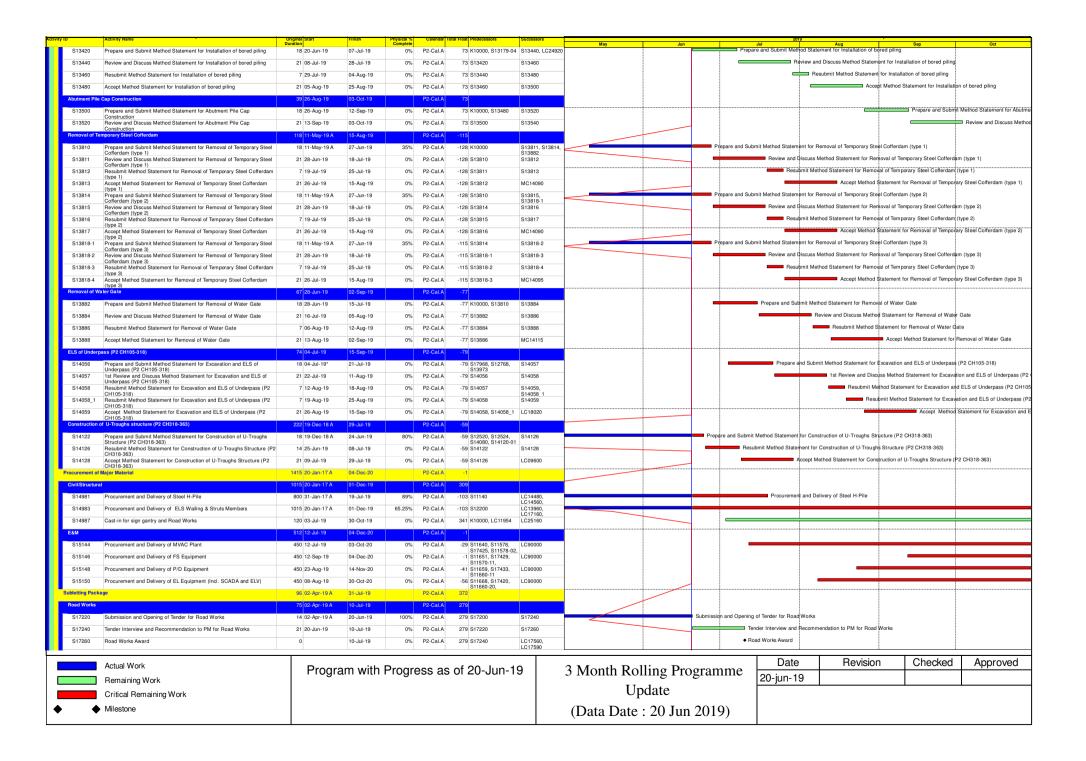
Name of Department: Civil Engineering and Development Department

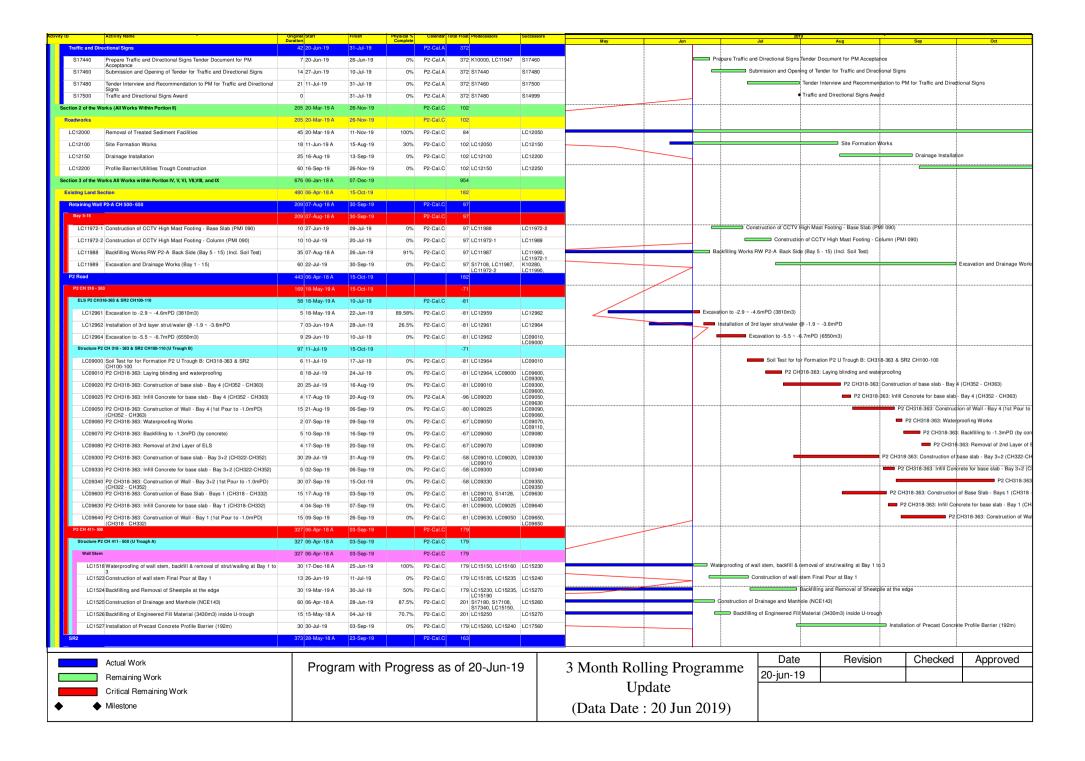
	Actu	al Quantities	of Inert C&D) Materials G	enerated Mor	nthly	Actual	Quantities of	f C&D Wastes	Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0.0400	0.0000	0.0000	0.0400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0015
Feb	0.0400	0.0000	0.0000	0.0400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0017
Mar	0.0400	0.0000	0.0000	0.0400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006
Apr	0.0420	0.0000	0.0000	0.0000	0.0420	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012
May	0.0608	0.0000	0.0000	0.0000	0.0608	0.0000	0.0148	0.0000	0.0080	0.0000	0.0010
Jun	0.1055	0.0000	0.0000	0.0400	0.0655	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040
Sub-total	0.3283	0.0000	0.0000	0.1600	0.1683	0.0000	0.0148	0.0000	0.0080	0.0000	0.0100
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0.3283	0.0000	0.0000	0.1600	0.1683	0.0000	0.0148	0.0000	0.0080	0.0000	0.0100

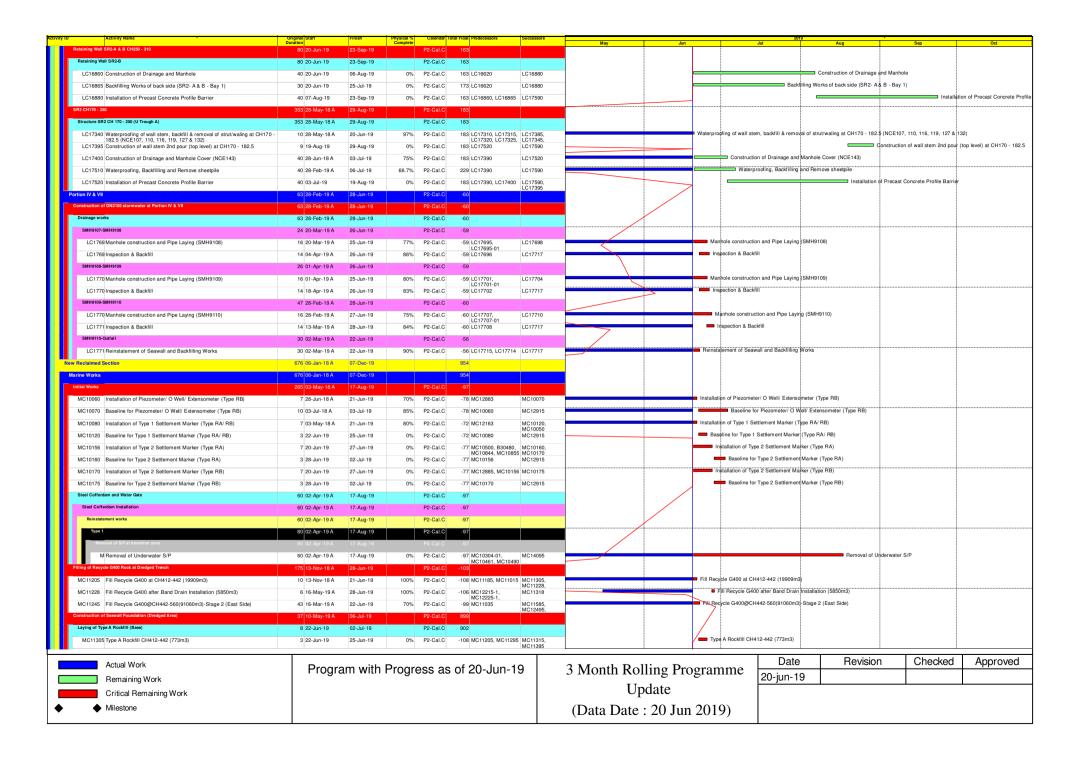
Notes:

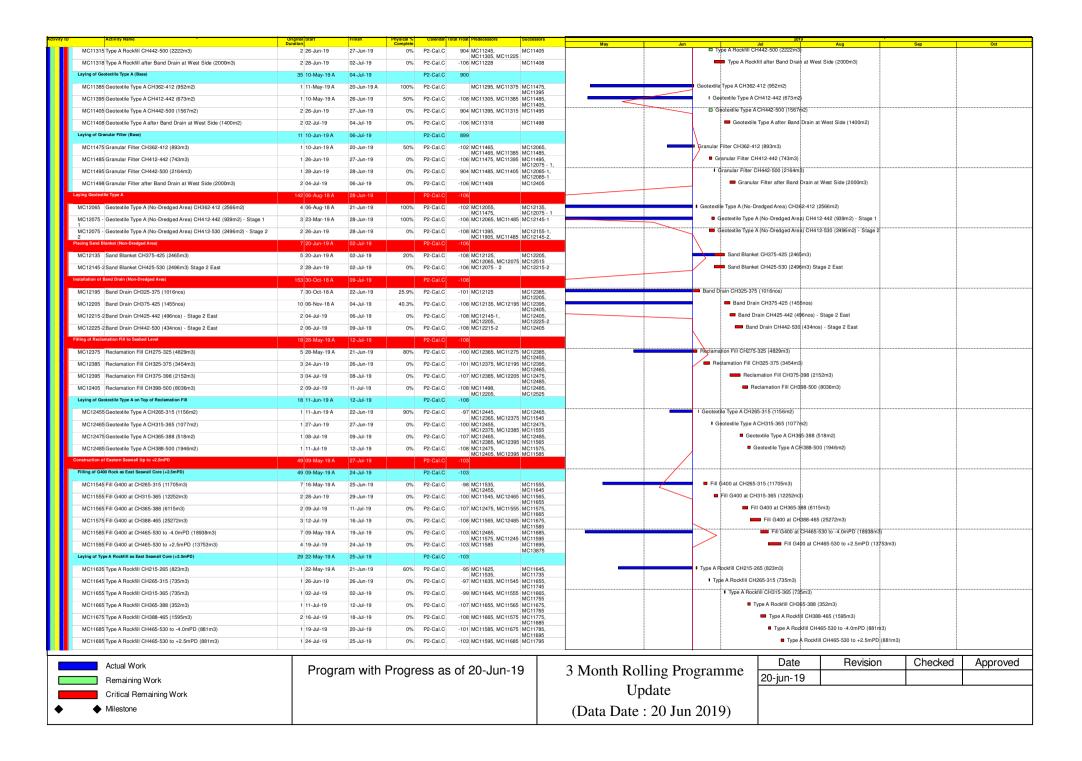

- 1. Assume the density of soil fill is 2 ton/m³.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m³.
- 3. Assume the density of mixed rock and soil is 1.9 ton/m³.
- 4. Assume the density of slurry and bentonite is 2.8 ton/m³.
- 5. The slurry and bentonite are disposed at Tseung Kwan O Area 137 Fill Bank.
- 6. Assume the density of C&D waste is 0.9 ton/m³.
- 7. The non-inert C&D wastes are disposed at NENT.

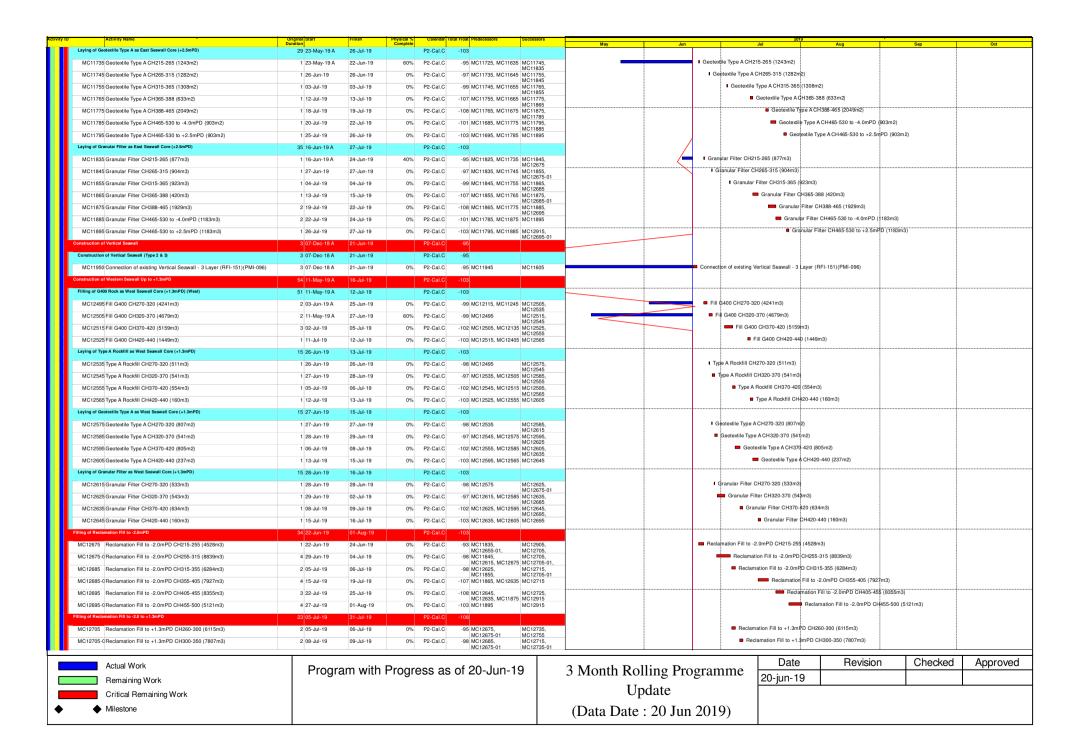

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

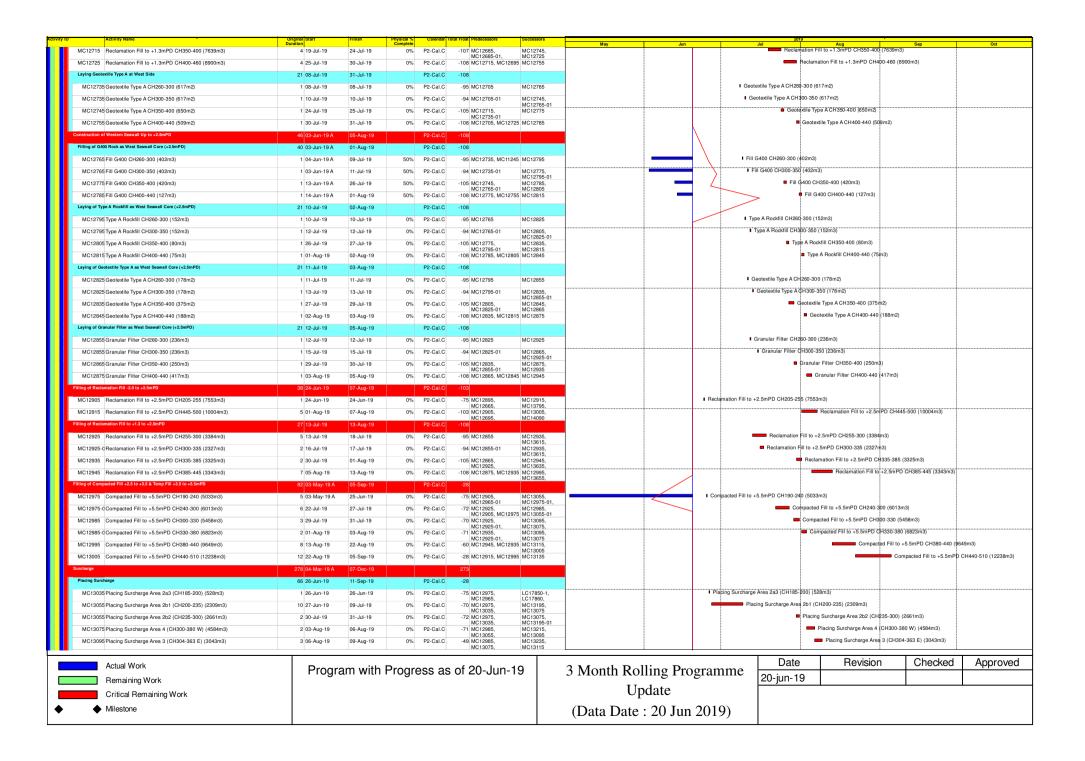

High Level 3 Months Look Ahead Programme

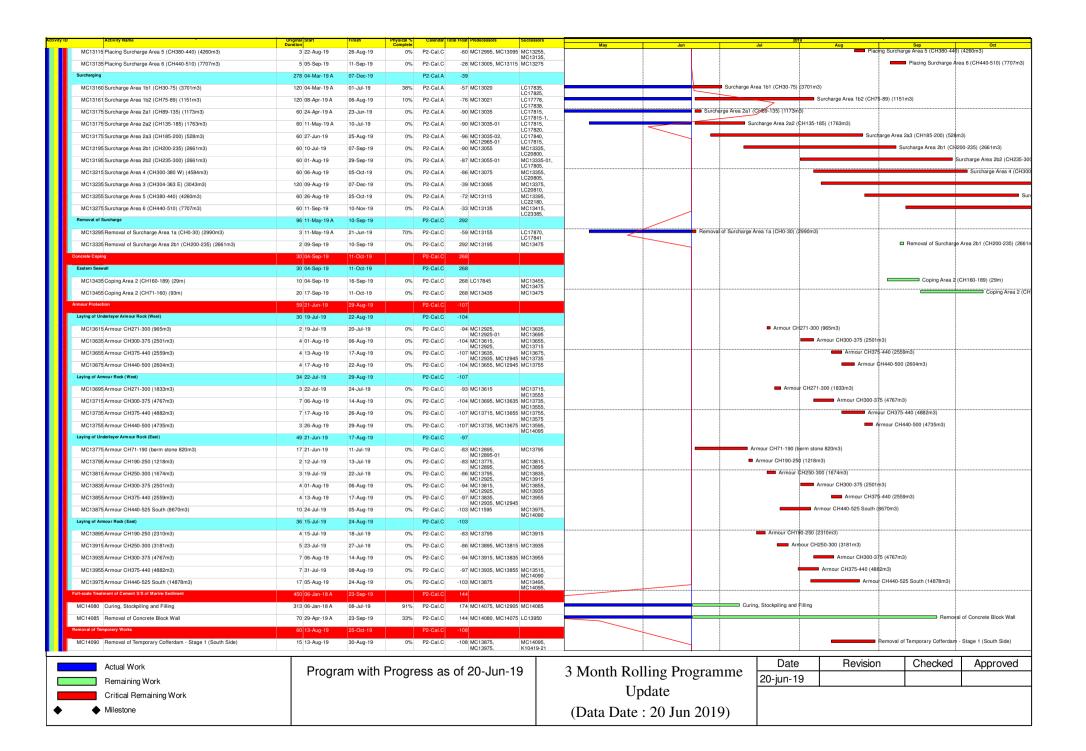

Activities	Jul-19	Aug-19	Sep-19
Lam Tin Interchange			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2 &5			
Site Formation - Area 2			
Site Formation - Area 3			
Site Formation - Area 4			
Administration Building			
Main Tunnel			
MT Excavation			
MT Lining Works			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Steel Platform for Bridge Construction			
Cavern Excavation			
East Ventilation Building Advance Works			

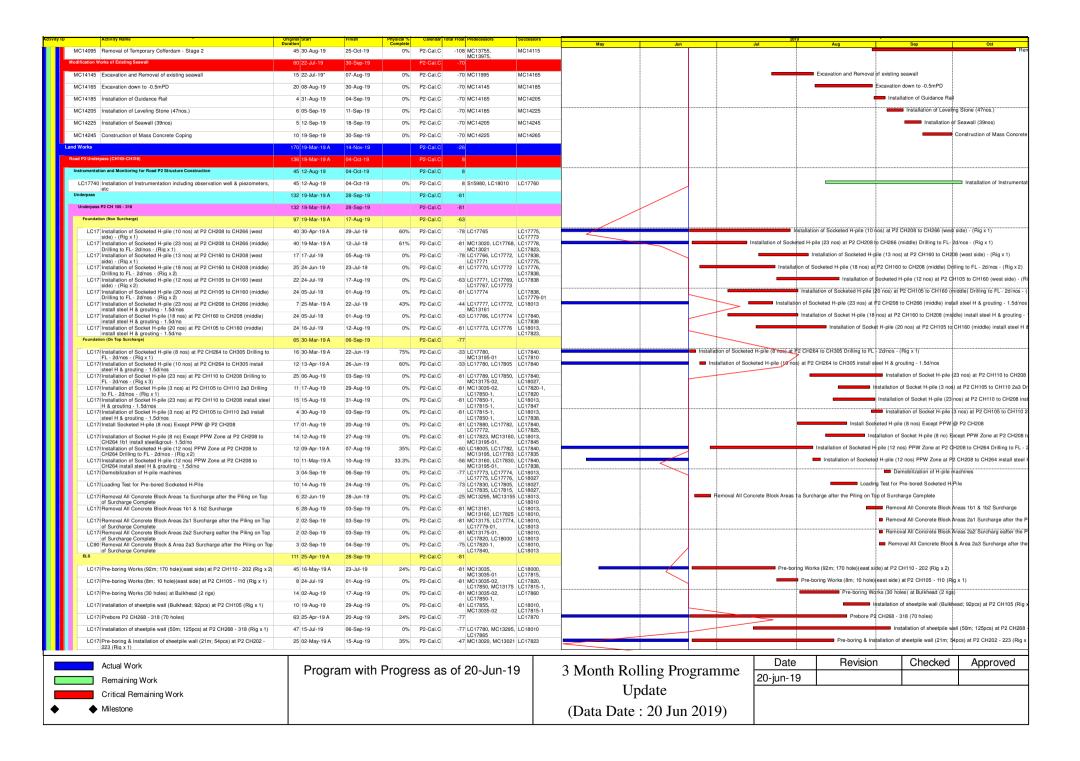

NE/2015/01 27/06/2019











9	Activity Name	Original Start Duration	Finish	Physical % Complete	Calendar To	tal Float Predecessors	Successors	May	Jun		Jul 2	Aug Aug	Sep	Oct
	LC18 Installation of sheetpile wall (92m; 240pcs)(east side) at P2 CH110 - 202		19-Aug-19	0%	P2-Cal.C	-81 LC17850, LC18005		may	Jun		Jui		n of sheetpile wall (92m; 240pcs)(
	(Rig x 1) LC18 Installation of sheetpile wall 2a3 (8m; 13pcs)(east side) at P2 CH105 -	9 22-Aug-19	31-Aug-19	0%	P2-Cal.C	MC13175, -81 LC17850-1,	LC17847 LC17846,						Installation of sheetpile wall 2a	(8m; 13pcs)(east side) at
	110 (Rig x 1) LC18(Installation of pipe pile wall (108nos. @1.5 nos/d) (Rig x 2)	35 14-May-19 A	01-Aug-19	50%	P2-Cal.C	LC18000, -70 MC13020, MC1302	LC90120					Installation of pipe pile wall (1		
-	LC18(Installation of dewatering system and king post (Drilling Only)	23 12-Aug-19	06-Sep-19	0%	P2-Cal.C	-77 LC17860. LC17870	LC17830,		(Installation of dewatering	nd evetem and king noet (D
		_				LC17845, LC90120), LC17740,		1					1
	LC18 Advance Excavation from +3.5mPD to +2.5mPD (8226m3) (1200m3/day; plant x 3)	7 04-Sep-19	11-Sep-19	0%	P2-Cal.C	-81 LC17838, LC17845 LC17840, LC18010							Advance Excavation	1
	LC18(Excavation to +0.5mPD (16454m3) (1200m3/day; plant x 3)	14 12-Sep-19	28-Sep-19	0%	P2-Cal.C	-81 S14059, LC18013								Excavation to +0.5mPD (
U-Trou	ugh A and B	108 15-Jun-19 A	14-Nov-19		P2-Cal.C	-75								
"U-1	Trough A Type 3 and U-Trough B Type 4" from S200 CH821 to P2 CH105	108 15-Jun-19 A	14-Nov-19		P2-Cal.C	-75								
Gi	round Investigation	60 15-Jun-19 A	03-Sep-19		P2-Cal.C	-16								
	LC2080 Pre-drilling works ("S200 CH905 to P2 CH105")(24 nos)(Area 2b)(3	60 15-Jun-19 A	28-Aug-19	2%	P2-Cal.C	-66 MC12905,	LC20830,		_				Pre-drilling works ("S200 CH905 t	o P2 CH105")(24 nos)(A
	Rigs) LC2080 Pre-drilling works ("S200 CH821 - 905")(6 nos)(Area 4)(3 Rigs)	14 06-Aug-19	22-Aug-19	0%	P2-Cal.C	MC12925, -48 MC13215	LC20820 LC23385,					Pre-dri	ling works ("S200 CH821 - 905")	6 nos)(Area 4)(3 Rigs)
Н	LC2081 Pre-drilling works ("S200 CH821 - 905")(4 nos)(Area 3)(2 Rigs)	10 22-Aug-19	03-Sep-19	0%	P2-Cal.C	-16 MC13235, LC2080	LC20840, 5 LC20850						Pre-drilling works ("S200 C	H821 - 905")(4 nos)(Are
Fo	oundation	77 14-Aug-19	14-Nov-19		P2-Cal.C	-75								
г	LC2082 Plant mobilization and set up for piling works	10 14-Aug-19	24-Aug-19	0%	P2-Cal.C	-75 S16384, LC20800,	LC20830					Plan	t mobilization and set up for piling	works
Н	LC2083 Installation of Pre-bored socketed H-Pile("S200 CH905 to P2	67 26-Aug-19	14-Nov-19	0%	P2-Cal.C	MC13195-01, -75 LC20820, LC20800	LC20860,					_		
"U-1	CH105")(53 nos)(Area 2b)(4 Rigs) Trough A Type 1 & 2" from S200 CH674 - CH821, S100/CH280, S300/CH403.5 & S400/CH158.1	34 26-Aug-19	08-Oct-19		P2-Cal.C	-53	LC21000,							
Gi	round Investigation	34 26-Aug-19	08-Oct-19		P2-Cal.C	-53								
	LC2214 Pre-drilling works (S200 CH674 - CH821, S100/CH280, S300/CH403.5 8	34 26-Aug-19	08-Oct-19	0%	P2-Cal.C	-53 MC13115	LC22160,					_		Pre-drilling v
J-Trou	S400/CH158.1)(27 nos)(Area 5)(4 Rigs) ugh C Structures	40 26-Aug-19	15-Oct-19		P2-Cal.C	-33	LC22150							
"U-1	Trough C Type 1, 2, 3 & 4" from CT01 CH117.156 - CH366	40 26-Aug-19	15-Oct-19		P2-Cal.C	-33								
Gi	iround Investigation	40 26-Aug-19	15-Oct-19		P2-Cal.C	-33								
	LC2338 Pre-drilling works (20 nos)(Area 5)(2 Rigs)	40 26-Aug-19	15-Oct-19	0%	P2-Cal.C	-33 LC12859, MC1325						_		Pre-d
H	LC2338 Pre-drilling works (10 nos)(Area 6)(3 Rigs)	16 17-Sep-19	08-Oct-19	0%	P2-Cal.C	-27 LC20805. MC1327	LC20860 5 LC23400.							Pre-drilling w
	3ridge Abutment	26 11-Sep-19	15-Oct-19		P2-Cal.C	-7	LC20860							
	24900 Pre-drilling Works (10 nos)			0%		-7 MC13275	LC24920							Pre-c
		26 11-Sep-19	15-Oct-19	0%			LG24920							116-0
on 4 o	of the Works - Preservation and Protection of Existing Trees	1563 12-Jan-17 A	17-Jul-21		P2-Cal.A	-89								
25260	Preservation and Protection of Existing Trees	1451 12-Jan-17 A	17-Jul-21	42.18%	P2-Cal.A	-89 K10000, S10960, S15660, S10970	K10360, K10680							
25280	Nursery Transplanted Trees at the Contractor's holding nursery	1177 28-Apr-17 A	17-Jul-21	28.72%	P2-Cal.A	-89 S10220, S10720, LC25340, S15660	K10360, K10680		-	_			:	;

Actual Work	Program with Progress as of 20-Jun-19	3 Month Rolling Programme	Date	Revision	Checked	Approved
Remaining Work	1 Togram with 1 Togress as of 20-3un-19	6 6	20-jun-19			
Critical Remaining Work		Update				
◆ Milestone		(Data Date : 20 Jun 2019)				

NE2017/02 (C3)

High Level 3 Months Look Ahead Prog	ramme		
Activities	Jul-19	Aug-19	Sep-19
Trial pit			
Underground utilities detection			
Temporary traffic arrangement Setup			
Predrilling			
Construction of Temporary cycle track			
Construction of drainage and watermain			
Bored Piles			
Pile Cap construction			
Pre-bored Socket-H Pile			

ask No.	Task Name	Duration	Start	Finish	Actual Finish	Predecessors	Successors	Jun	2019	Jul		Aug	1	Sep	
1	Contract Award	0 days	Mon 29 Oct '18	Mon 29 Oct '18	NA			Juli		Jui		Aug		Sep	
2	Letter of Acceptance	0 days	Mon 29 Oct '18	Mon 29 Oct '18	NA		6,20,10,9,8								
3	Commencement of the Works	0 days	Fri 9 Nov '18	Fri 9 Nov '18	NA		18,14,11,12,13,1		 						
4									 						
5	Design Stage	373 days?	Mon 29 Oct '18	Tue 5 Nov '19	NA		_								
6	Prepare and Submit Initial Works Programme	5 days	Mon 29 Oct '18	Fri 2 Nov '18	Fri 2 Nov '18	2									
7	Submit Staffing Proposal	7 days	Fri 9 Nov '18	Thu 15 Nov '18	Thu 15 Nov '18	3			 						
8	Submit Quality Plan	17 days	Mon 29 Oct '18	Wed 14 Nov '18	Wed 14 Nov '18	2			 						
9	Submit Draft Safety Plan	12 days	Mon 29 Oct '18	Fri 9 Nov '18	Fri 9 Nov '18	2			 						
10	Submit Safety Plan	46 days	Mon 29 Oct '18	Thu 13 Dec '18	Thu 13 Dec '18	2			 						
11	Submit Draft Environmental Management Plan	6 days	Fri 9 Nov '18	Wed 14 Nov '18	Wed 14 Nov '18	3			 						
12	Submit Environmental Management Plan	53 days	Fri 9 Nov '18	Mon 31 Dec '18	Mon 31 Dec '18	3									
13	Submit Site Management Plan for Trip Ticket System	36 days	Fri 9 Nov '18	Fri 14 Dec '18	Fri 14 Dec '18	3			 						
14	Submit Sub-contractor Management Plan	17 days	Mon 29 Oct '18	Wed 14 Nov '18	Wed 14 Nov '18	3			 						
15									 						
16	Submit Software Quality Plan	57 days	Mon 29 Oct '18	Mon 24 Dec '18	Mon 24 Dec '18	3			 						
17	Submit Software Configuration Management Plan	60 days	Mon 29 Oct '18	Thu 27 Dec '18	Thu 27 Dec '18	3			 						
18	Submit Software Vertification & Validation Plan	60 days	Mon 29 Oct '18	Thu 27 Dec '18	Thu 27 Dec '18	3									
19									 						
20	Prepare / Submission of PSP for TKO-LTT TCSS and CBL TCSS	373 days?	Mon 29 Oct '18	Tue 5 Nov '19	NA	2									
21	Submission of PSP - Central System Software	56 days	Fri 9 Nov '18	Thu 3 Jan '19	Thu 3 Jan '19		22		 						
22	Review and Comment the PSP	54 days	Thu 3 Jan '19	Tue 26 Feb '19	Tue 26 Feb '19	21	23		 						
23	Resubmission of the PSP	31 days	Tue 26 Feb '19	Fri 29 Mar '19	Fri 29 Mar '19	22	24		 						
	Task Project Summa	arv	Inact	ive Summary		Manual Sumr	narv	-	External Mi	lestone					
	Split External Tasks	-		ial Task	\$	Start-only	······································		Progress				_		
	Milestone ◆ External Milest	one •	Durat	tion-only			-		Deadline		†				
	Summary Inactive Milest	one	Manu	ıal Summary Rollup	•	External Task	s 🔷								

Issue Date: 4 July 2019

ask No.	Task Name	Duration	Start	Finish	Actual Finish Predecessors	Successors	2019 Jun Jul Aug	<u>Se</u> r
24	Review and Approval of the PSP	82 days	Fri 29 Mar '19	Wed 19 Jun '19	Wed 19 Jun '19 23	102	Jun Jul Aug	Seţ
25								
26	Submission of PSP - Central System Hardware	53 days?	Fri 9 Nov '18	Mon 31 Dec '18	Mon 31 Dec '18	27		
27	Review and Comment the PSP	73 days	Mon 31 Dec '18	Thu 14 Mar '19	Thu 14 Mar '19 26	28		
28	Resubmission of the PSP	67 days	Thu 14 Mar '19	Mon 20 May '19	Mon 20 May '19 27	29		
29	Review and Approval of the PSP	11 days	Mon 20 May '19	Fri 31 May '19	Fri 31 May '19 28	107		
30								
31	Submission of PSP - Traffic Control Devices	53 days?	Fri 9 Nov '18	Mon 31 Dec '18	Mon 31 Dec '18	32		
32	Review and Comment the PSP	87 days	Mon 31 Dec '18	Thu 28 Mar '19	Thu 28 Mar '19 31	33		
33	Resubmission of the PSP	85 days	Thu 28 Mar '19	Fri 21 Jun '19	Fri 21 Jun '19 32	34		
34	Review and Approval of the PSP	28 days	Fri 21 Jun '19	Fri 19 Jul '19	NA 33	112		
35								
36	Submission of PSP - Communication System	57 days?	Fri 9 Nov '18	Fri 4 Jan '19	Fri 4 Jan '19	37		
37	Review and Comment the PSP	53 days	Fri 4 Jan '19	Tue 26 Feb '19	Tue 26 Feb '19 36	38		
38	Resubmission of the PSP	35 days	Tue 26 Feb '19	Tue 2 Apr '19	Tue 2 Apr '19 37	39		
39	Review and Approval of the PSP	30 days	Tue 2 Apr '19	Thu 2 May '19	Thu 2 May '19 38	117		
40								
41	Submission of PSP - Closed Circuit Television System	49 days?	Fri 9 Nov '18	Thu 27 Dec '18	Thu 27 Dec '18	42		
42	Review and Comment the PSP	62 days	Thu 27 Dec '18	Wed 27 Feb '19	Wed 27 Feb '19 41	43		
43	Resubmission of the PSP	85 days	Wed 27 Feb '19	Thu 23 May '19	Thu 23 May '19 42	44		
44	Review and Approval of the PSP	20 days	Thu 23 May '19	Wed 12 Jun '19	Wed 12 Jun '19 43	122		
45								
46	Submission of PSP - Building PABX System	50 days?	Fri 9 Nov '18	Fri 28 Dec '18	Fri 28 Dec '18	47		
47	Review and Comment the PSP	77 days	Fri 28 Dec '18	Fri 15 Mar '19	Fri 15 Mar '19 46	48		
	Task Project Summ	any .	Inactiv	re Summary	Manual Sum	mary	External Milestone	
	Split External Tasks	•	Inactiv	•	Manual Sum ⇒ Start-only	y ▼	Progress	
	Milestone • External Milest							
		OHE -	1 11 11 11 11) -() V	Finish-only		■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	

ısk No.	Task Name	Duration	Start	Finish	Actual Finish	Predecessors	Successors		2019		1	I
48	Resubmission of the PSP	46 days	Fri 15 Mar '19	Tue 30 Apr '19	Tue 30 Apr '19	947	49	Jur		Jul	Aug	Sep
49	Review and Approval of the PSP	28 days	Tue 30 Apr '19	Tue 28 May '19	NA	48	127					
50												
F1	Culturalization of DCD. Emergency Telephone Cyptom	F7 days2	Fri O Nov 110	Fr: 4 lon !10	Fri: 4 Jan !10	Λ	F2		 			
51	Submission of PSP - Emergency Telephone System	57 days?	Fri 9 Nov '18	Fri 4 Jan '19	Fri 4 Jan '19	,	52		 			
52	Review and Comment the PSP	87 days	Fri 4 Jan '19	Mon 1 Apr '19	Mon 1 Apr '19	51	53		 			
53	Resubmission of the PSP	37 days	Mon 1 Apr '19	Wed 8 May '19	Wed 8 May '19	52	54		 			
54	Review and Approval of the PSP	28 days	Wed 8 May '19	Wed 5 Jun '19	NA	53	132					
55									 			
56	Submission of PSP - Public Address System	71 days	Mon 29 Oct '18	Mon 7 Jan '19	Mon 7 Jan '19)	57		 			
		·										
57	Review and Comment the PSP	86 days	Mon 7 Jan '19	Wed 3 Apr '19	Wed 3 Apr '19	56	58		 			
58	Resubmission of the PSP	76 days	Wed 3 Apr '19	Tue 18 Jun '19	Tue 18 Jun '19	57	59					
59	Review and Approval of the PSP	28 days	Tue 18 Jun '19	Tue 16 Jul '19	NA	ΣQ	137					
39	Review and Approval of the FSF	20 days	Tue 16 Juli 19	rue 10 Jul 19	INA	136	137					
60									 			
61	Submission of PSP - Radio System	71 days	Mon 29 Oct '18	Mon 7 Jan '19	Mon 7 Jan '19)	62					
62	Review and Comment the PSP	50 days	Mon 7 Jan '19	Tue 26 Feb '19	Tue 26 Feb '19	061	63		 			
63	Resubmission of the PSP	59 days	Tue 26 Feb '19	Fri 26 Apr '19	Fri 26 Apr '19	62	64					
64	Review and Approval of the PSP	11 days	Fri 26 Apr '19	Tue 7 May '19	Tue 7 May '19	63	142		; 			
	Tenen and Approval of the Lor	II days	111 20 7 (5) 13	rue / riu/ 15	14071147 13		- '-		 			
65												
66	Submission of PSP - Detection System	53 days	Fri 9 Nov '18	Mon 31 Dec '18	Mon 31 Dec '18	3	67		 			
67	Daview and Comment the DCD	126 days	Mon 31 Dec '18	Mon 6 May '19	Mon 6 May '19	0.66	60		 			
67	Review and Comment the PSP	126 days	Mon 31 Dec 18	Mon 6 May 19	Mon 6 May 19	000	68		 			
68	Resubmission of the PSP	10 days	Mon 6 May '19	Thu 16 May '19	NA	67	69					
69	Review and Approval of the PSP	28 days	Thu 16 May '19	Thu 13 Jun '19	NA	\ 68	147		 			
		, .	, .						 			
70									 			
71	Submission of PSP - Manual Fallback System	46 days	Fri 9 Nov '18	Mon 24 Dec '18	Mon 24 Dec '18	3	72		 			
	Task Project Sum	•					mary •		External Mile	stone		
	Split External Ta:				\Diamond	Start-only	_		Progress			
	Milestone ◆ External Mil	lestone •	Durati	ion-only		Finish-only			Deadline		↑	

Issue Date: 4 July 2019

ask No.	Task Name	Duration	Start	Finish	Actual Finish	Predecessors	Successors	_	2019	l -	ı	-
72	Review and Comment the PSP	63 day	rs Mon 24 Dec '18	Mon 25 Feb '19	Mon 25 Feb '19	71	73	Jun	Jul	Aug		Sep
73	Resubmission of the PSP	32 day	s Mon 25 Feb '19	Fri 29 Mar '19	Fri 29 Mar '19	172	74	_				
/5									 			
74	Review and Approval of the PSP	28 day	rs Fri 29 Mar '19	Fri 26 Apr '19	NA	73	152					
75								_	 			
76	Submission of PSP - Operation Facilities	57 day	rs Fri 9 Nov '18	Fri 4 Jan '19	Fri 4 Jan '19		77	_				
77	Review and Comment the PSP	53 day	rs Fri 4 Jan '19	Tue 26 Feb '19	Tue 26 Feb '19	76	78	_	 			
								_	 			
78	Resubmission of the PSP	28 day	rs Tue 26 Feb '19	Tue 26 Mar '19	Tue 26 Mar '19	77	79					
79	Review and Approval of the PSP	29 day	rs Tue 26 Mar '19	Wed 24 Apr '19	Wed 24 Apr '19	78	157		 			
80								_	 			
81	Submission of PSP - Power Distribution System	57 da	rs Fri 9 Nov '18	Fri 4 Jan '19	Fri 4 Jan '19		82	_				
82	Review and Comment the PSP	55 da	rs Fri 4 Jan '19	Thu 28 Feb '19	Thu 28 Feb '19	81	83	_	 			
								-	 			
83	Resubmission of the PSP	61 day	rs Thu 28 Feb '19	Tue 30 Apr '19	Tue 30 Apr '19	82	84		 			
84	Review and Approval of the PSP	49 day	rs Tue 30 Apr '19	Tue 18 Jun '19	Tue 18 Jun '19	83	162		 			
85								_	 			
86	Submission of PSP - Enforcement System	68 da	s Mon 29 Oct '18	Fri 4 Jan '19	Fri 4 Jan '19		87					
87	Review and Comment the PSP	159 da	rc Fri 4 lan '10	Wed 12 Jun '19	Wed 12 Jun '10	86	88	-				
88	Resubmission of the PSP	10 day	s Wed 12 Jun '19	Sat 22 Jun '19	NA	.87	89		 			
89	Review and Approval of the PSP	28 day	s Sat 22 Jun '19	Sat 20 Jul '19	NA	88	167					
90								_				
91	Submission of PSP - Government Optical Fibre System	60 day	rs Fri 9 Nov '18	Mon 7 Jan '19	Mon 7 Jan '19		92	_	 			
	· · · · ·							_	 			
92	Review and Comment the PSP	50 day	s Mon 7 Jan '19	Tue 26 Feb '19	Tue 26 Feb '19	91	93		 			
93	Resubmission of the PSP	28 day	rs Tue 26 Feb '19	Tue 26 Mar '19	Tue 26 Mar '19	92	94					
94	Review and Approval of the PSP	23 day	rs Tue 26 Mar '19	Thu 18 Apr '19	Thu 18 Apr '19	93	172		 			
95									1			
		roject Summary		ve Summary			nary		ternal Milestone			
	·	kternal Tasks kternal Milestone		al Task ion-only	♦	Start-only Finish-only			ogress eadline	+		
		active Milestone		al Summary Rollup		External Task	s 🔷	▼ DE	adille	•		

ask No.	Task Name	Duration	Start	Finish	Actual Finish	Predecessors	Successors		2019			
								Jun	Jul	Aı	ıg	Sep
96	Submission of PSP - Overview	60 days	Fri 9 Nov '18	Mon 7 Jan '19	Mon 7 Jan '19		97		 			
97	Review and Comment the PSP	120 days	Mon 7 Jan '19	Tue 7 May '19	Tue 7 May '19	96	98		 			
98	Resubmission of the PSP	10 days	Tue 7 May '19	Fri 17 May '19	NA	97	99					
99	Review and Approval of the PSP	28 days	Fri 17 May '19	Fri 14 Jun '19	NA	98						
100												
101	Prepare / Submission of FSP for TKO-LTT TCSS and CBL TCSS	201 days	Thu 18 Apr '19	Tue 5 Nov '19	NA							
102	Submission of FSP - Central System Software	42 days	Wed 19 Jun '19	Wed 31 Jul '19	NA	24	103					
103	Review and Comment the FSP	28 days	Wed 31 Jul '19	Wed 28 Aug '19	NA	102	104					
104	Resubmission of the FSP	10 days	Wed 28 Aug '19	Sat 7 Sep '19	NA	103	105					
105	Review and Approval of the FSP	28 days	Sat 7 Sep '19	Sat 5 Oct '19	NA	104						
106												
107	Submission of FSP- Central System Hardware	42 days	Fri 31 May '19	Fri 12 Jul '19	NA	29	108					
108	Review and Comment the FSP	28 days	Fri 12 Jul '19	Fri 9 Aug '19	NA	107	109					
109	Resubmission of the FSP	10 days	Fri 9 Aug '19	Mon 19 Aug '19	NA	108	110					
110	Review and Approval of the FSP	28 days	Mon 19 Aug '19	Mon 16 Sep '19	NA	109						
111												
112	Submission of FSP - Trafffic Control Devices	42 days	Fri 19 Jul '19	Fri 30 Aug '19	NA	34	113					
113	Review and Comment the FSP	28 days	Fri 30 Aug '19	Fri 27 Sep '19	NA	112	114					
114	Resubmission of the FSP	10 days	Fri 27 Sep '19	Mon 7 Oct '19	NA	113	115	_				
115	Review and Approval of the FSP	28 days	Mon 7 Oct '19	Mon 4 Nov '19	NA	114						
116												
117	Submission of FSP - Communication System	55 days	Thu 2 May '19	Wed 26 Jun '19	Wed 26 Jun '19	39	118					
118	Review and Comment the FSP	28 days	Wed 26 Jun '19	Wed 24 Jul '19	NA	117	119					
119	Resubmission of the FSP	10 days	Wed 24 Jul '19	Sat 3 Aug '19	NA	118	120	_				
	Task Project Summ	ary	Inacti	ve Summary		Manual Sumn	nary •	E	xternal Milestone			
	Split External Tasks		Manua	al Task	\Diamond	Start-only		P	rogress			
	Milestone • External Milest	one 🔷	Durat	ion-only		Finish-only		—	eadline			
	Summary Inactive Milest			al Summary Rollup		External Task	\$					

Aug S												1
	Jul	JU	Jun		9	NA 11	Sat 31 Aug '19	Sat 3 Aug '19	28 days		Review and Approval of the FSP	120
		 										.21
				123		NA 44	Wed 24 Jul '19	Wed 12 Jun '19	42 days	it Television System	Submission of FSP - Closed Circuit Televis	22
		 		124	2	NA 12	Wed 21 Aug '19	Wed 24 Jul '19	28 days		Review and Comment the FSP	23
		 		125	3	NA 12	Sat 31 Aug '19	Wed 21 Aug '19	10 days		Resubmission of the FSP	24
		 			4	NA 12	Sat 28 Sep '19	Sat 31 Aug '19	28 days		Review and Approval of the FSP	5
		 										16
				128		NA 49	Tue 9 Jul '19	Tue 28 May '19	42 days	X System	Submission of FSP - Building PABX System	.7
			-	129	7	NA 12	Tue 6 Aug '19	Tue 9 Jul '19	28 days		Review and Comment the FSP	8
		 	_	130	8	NA 12	Fri 16 Aug '19	Tue 6 Aug '19	10 days		Resubmission of the FSP	.9
		 			9	NA 12	Fri 13 Sep '19	Fri 16 Aug '19	28 days		Review and Approval of the FSP	30
		 										31
				133		NA 54	Wed 17 Jul '19	Wed 5 Jun '19	42 days	Telephone System	Submission of FSP - Emergency Telephon	32
		 		134	2	NA 13	Wed 14 Aug '19	Wed 17 Jul '19	28 days		Review and Comment the FSP	33
		 		135	3	NA 13	Sat 24 Aug '19	Wed 14 Aug '19	10 days		Resubmission of the FSP	34
		 			4	NA 13	Sat 21 Sep '19	Sat 24 Aug '19	28 days		Review and Approval of the FSP	35
		 										36
				138		NA 59	Tue 27 Aug '19	Tue 16 Jul '19	42 days	ss System	Submission of FSP - Public Address Syster	37
		 		139	7	NA 13	Tue 24 Sep '19	Tue 27 Aug '19	28 days		Review and Comment the FSP	88
		 	-	140	8	NA 13	Fri 4 Oct '19	Tue 24 Sep '19	10 days		Resubmission of the FSP	39
		 	-		9	NA 13	Fri 1 Nov '19	Fri 4 Oct '19	28 days		Review and Approval of the FSP	10
		 										41
		 		143		NA 64	Tue 18 Jun '19	Tue 7 May '19	42 days	n	Submission of FSP - Radio System	12
				144	2	NA 14	Tue 16 Jul '19	Tue 18 Jun '19	28 days		Review and Comment the FSP	13
	stone	External Mileston		mary •	Manual Summ		e Summary	Inactiv		Project Summary	Task	
		Progress			Start-only			Manua		External Tasks	Split	
	↑	Deadline		•	Finish-only		-	Duratio	♦	 External Milestone 	Milestone	
	+			√ ⟨S ♦	•			Duratio	♦		·	

Issue Date: 4 July 2019

isk No.	Task Name	Duration	Start	Finish	Actual Finish Predeces	essors Successors	2019	
144	Resubmission of the FSP	10 days	Tue 16 Jul '19	Fri 26 Jul '19	NA 143	145	Jun Jul	Aug Ser
45	Review and Approval of the FSP	28 days	Fri 26 Jul '19	Fri 23 Aug '19	NA 144			
46								
47	Submission of FSP - Detection System	42 days	Thu 13 Jun '19	Thu 25 Jul '19	NA 69	148		
48	Review and Comment the FSP	28 days	Thu 25 Jul '19	Thu 22 Aug '19	NA 147	149		
49	Resubmission of the FSP	10 days	Thu 22 Aug '19	Sun 1 Sep '19	NA 148	150		
50	Review and Approval of the FSP	28 days	Sun 1 Sep '19	Sun 29 Sep '19	NA 149			
51								
52	Submission of FSP - Manual Fallback System	42 days	Fri 26 Apr '19	Fri 7 Jun '19	NA 74	153		
53	Review and Comment the FSP	28 days	Fri 7 Jun '19	Fri 5 Jul '19	NA 152	154		
54	Resubmission of the FSP	10 days	Fri 5 Jul '19	Mon 15 Jul '19	NA 153	155		
55	Review and Approval of the FSP	28 days	Mon 15 Jul '19	Mon 12 Aug '19	NA 154			
.56								
157	Submission of FSP - Operation Facilities	42 days	Wed 24 Apr '19	Wed 5 Jun '19	NA 79	158		
158	Review and Comment the FSP	28 days	Wed 5 Jun '19	Wed 3 Jul '19	NA 157	159		
159	Resubmission of the FSP	10 days	Wed 3 Jul '19	Sat 13 Jul '19	NA 158	160		
160	Review and Approval of the FSP	28 days	Sat 13 Jul '19	Sat 10 Aug '19	NA 159			
161								
162	Submission of FSP - Power Distribution System	42 days	Tue 18 Jun '19	Tue 30 Jul '19	NA 84	163		
163	Review and Comment the FSP	28 days	Tue 30 Jul '19	Tue 27 Aug '19	NA 162	164		
164	Resubmission of the FSP	10 days	Tue 27 Aug '19	Fri 6 Sep '19	NA 163	165		
165	Review and Approval of the FSP	28 days	Fri 6 Sep '19	Fri 4 Oct '19	NA 164			
166								
167	Submission of FSP - Enforcement System	42 days	Sat 20 Jul '19	Sat 31 Aug '19	NA 89	168		
	Task Project Summary		Inacti	ve Summary	Manual	l Summary •	External Milestone	
	Split External Tasks		Manua	al Task	♦ Start-o	only <u> </u>	Progress	
	Milestone • External Milestone	*	Durati	on-only	Finish-c	only	Deadline	↑
	Summary Inactive Milestone		Manus	al Summary Rollup	Externa	al Tasks 🔷		

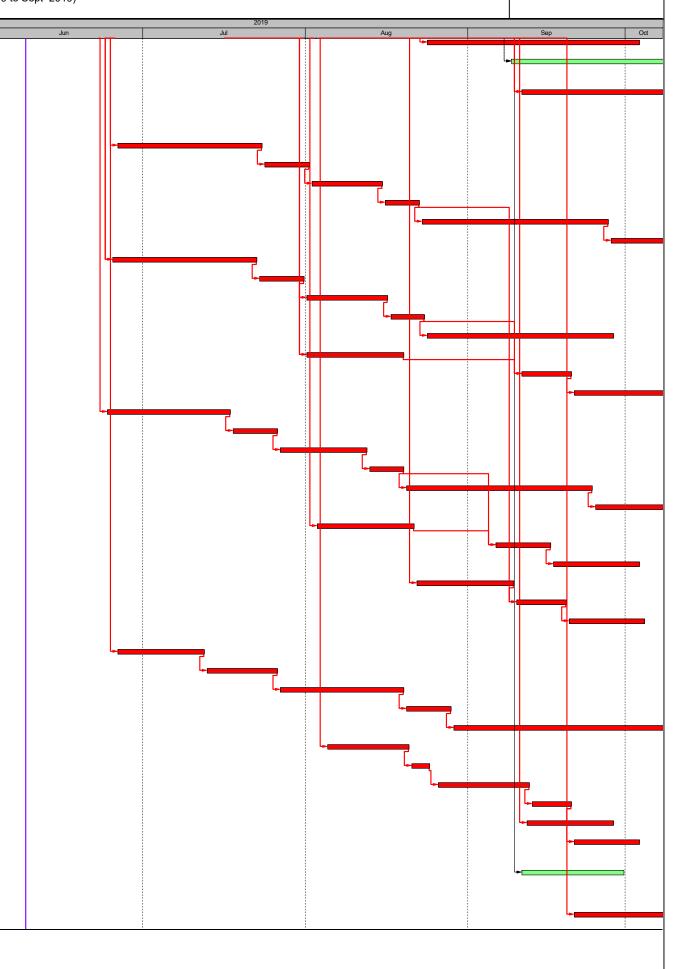
Issue Date: 4 July 2019

TSEUNG KWAN O – LAM TIN TUNNEL

TRAFFIC CONTROL SURVEILLANCE SYSTEM (TCSS) AND ASSOCIATED WORKS 3-MONTH ROLLING PROGRAMME

ask No.	Task Name	Duration	Start	Finish	Actual Finish	Predecessors	Successors		2019			
								Jun		Jul	Aug	Sep
168	Review and Comment the FSP	28 days	Sat 31 Aug '19	Sat 28 Sep '19	NA	167	169					
169	Resubmission of the FSP	10 days	Sat 28 Sep '19	Tue 8 Oct '19	NA	168	170		 			
170	Review and Approval of the FSP	28 days	Tue 8 Oct '19	Tue 5 Nov '19	NA	169			 			
171									 			
172	Submission of FSP - Government Optical Fibre System	42 days	Thu 18 Apr '19	Thu 30 May '19	NA	94	173		 			
173	Review and Comment the FSP	28 days	Thu 30 May '19	Thu 27 Jun '19	NA	172	174					
174	Resubmission of the FSP	10 days	Thu 27 Jun '19	Sun 7 Jul '19	NA	173	175					
175	Review and Approval of the FSP	28 days	Sun 7 Jul '19	Sun 4 Aug '19	NA	174						

Contract No. NE 2015/03 (C5)


Subject: 3 Months Look Ahead Programme

Activities	Jul, 2019	Aug, 2019	Sep, 2019
Installation of false ceiling & lighting			
Planter and irrigation system			
Floor finishing & M.J installation			

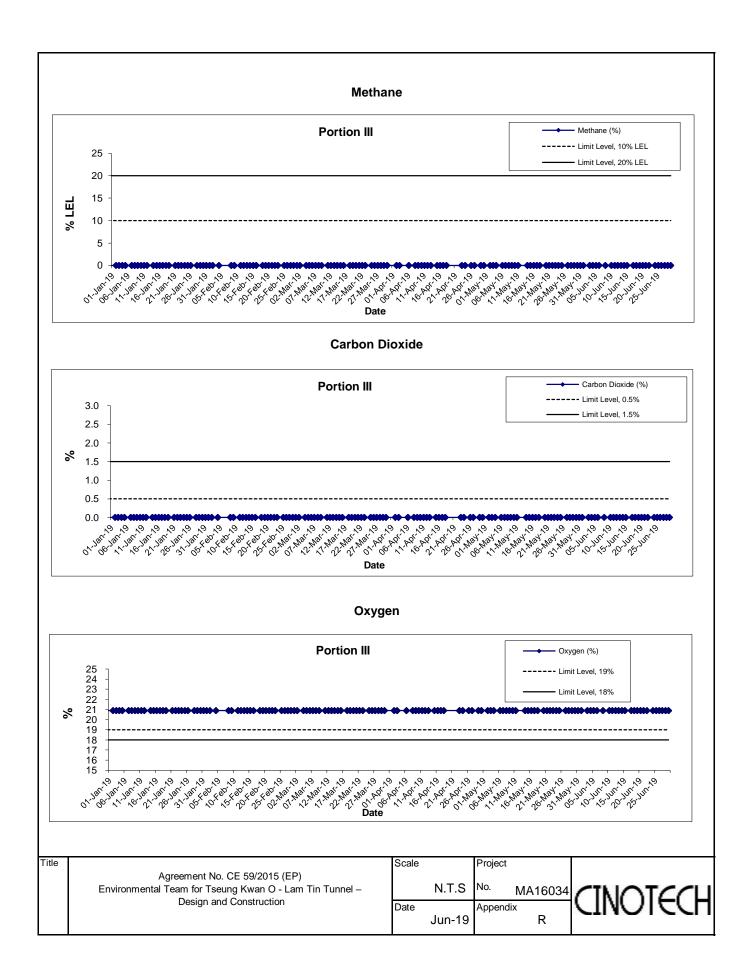
Subject: Construction Programme (Jun, 2019)

Activities	Week 1	Week 2	Week 3	Week 4
Installation of kalzip roofing systems on main deck				
E&M inside Pillar box				

CON-12350 Pile Cap Rebar Erection, Concreting and Curing for Pier 2G (1 nos.Pile Cap/Team 3) 24-Aug-19 03-Oct-19 CON-12370 Pile Cap Rebar Erection, Concreting and Curing for Pier 2J (1 nos.Pile Cap/Team 4) 33 09-Sep-19 19-Oct-19 CON-12380 Pile Cap Rebar Erection, Concreting and Curing for Pier 3B (1 nos.Pile Cap/Team 2) 11-Sep-19 22-Oct-19 33 Construction Pier Elem Construction of Pie 24-Jun-19 12-Oct-19 CON-12420 Construction of Pier 1G, Type 4M (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) - 1st Pour 23 26-Jun-19 23-Jul-19 CON-12421 Construction of Pier 1G, Type 4M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1)- 1st Pour 24-Jul-19 01-Aug-19 CON-12422 Construction of Pier 1G, Type 4M (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) - 2nd Pour 12 02-Aug-19 15-Aug-19 CON-12423 Construction of Pier 1G, Type 4M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1)- 2nd Pour 16-Aug-19 22-Aug-19 CON-12424 Construction of Pier 1G, Type 4M (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) - 3rd Pour 23-Aug-19 27-Sep-19 CON-12425 Construction of Pier 1G, Type 4M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1)- 3rd Pour 28-Sep-19 09-Oct-19 CON-12430 Construction of Pier 1F, Type 3 (3 Pours) Erection of Platform & Rebar (1 nos, Pier /Team 2)-1st Pour 23 22-Jul-19 25-Jun-19 CON-12431 Construction of Pier 1F, Type 3 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 2) -1st Pour 23-Jul-19 31-Jul-19 CON-12432 14 Construction of Pier 1F, Type 3 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 2)-2nd Pour 01-Aug-19 16-Aug-19 CON-12433 6 Construction of Pier 1F, Type 3 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 2) -2nd Pour 17-Aug-19 23-Aug-19 CON-12434 Construction of Pier 1F, Type 3 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 2)-3rd Pour 30 24-Aug-19 28-Sep-19 CON-12440 Construction of Pier 1E, Type 3 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 2) - 1st Pour 16 01-Aug-19 19-Aug-19 CON-12441 Construction of Pier 1E, Type 3 (3 Pours)Falsework, Formwork and Concreting (1 nos.Pier /Team 2) - 1st Pour 11-Sep-19 20-Sep-19 CON-12442 Construction of Pier 1E, Type 3 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 2) - 2nd Pour 14 21-Sep-19 09-Oct-19 CON-12450 20 Construction of Pier 1H, Type 4 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 5) - 1st Pour 24-Jun-19 17-Jul-19 CON-12451 Construction of Pier 1H, Type 4 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 5) - 1st Pour 18-Jul-19 26-Jul-19 CON-12452 14 Construction of Pier 1H, Type 4 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 5) - 2nd Pour 27-Jul-19 12-Aug-19 CON-12453 13-Aug-19 Construction of Pier 1H, Type 4 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 5) - 2nd Pour 19-Aug-19 CON-12454 Construction of Pier 1H, Type 4 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 5) - 3rd Pour 30 20-Aug-19 24-Sep-19 CON-12455 10 Construction of Pier 1H. Type 4 (3 Pours) Falsework Formwork and Concreting (1 nos Pier /Team 5) - 3rd Pour 25-Sep-19 08-Oct-19 16 CON-12460 Construction of Pier 1J ,Type 4 (3 Pours)Erection of Platform & Rebar (1 nos.Pier /Team 5) - 1st Pour 03-Aug-19 21-Aug-19 CON-12461 Construction of Pier 1J ,Type 4 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 5) - 1st Pour 8 06-Sep-19 16-Sep-19 CON-12462 Construction of Pier 1J, Type 4 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 5)- 2nd Pour 14 17-Sep-19 03-Oct-19 CON-12470 Construction of Pier 1K , Type 4M (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -1st Pour 16 22-Aug-19 09-Sep-19 CON-12471 Construction of Pier 1K, Type 4M (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1) - 1st Pour 10-Sep-19 19-Sep-19 CON-12472 Construction of Pier 1K, Type 4M (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -2nd Pour 12 20-Sep-19 04-Oct-19 CON-12480 Construction of Pier 4A, type 1M (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 3) - 1st Pour 12-Jul-19 CON-12481 12 Construction of Pier 4A, type 1M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3) - 1st Pour 13-Jul-19 26-Jul-19 CON-12482 Construction of Pier 4A, type 1M (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 3) - 2nd Pour 20 27-Jul-19 19-Aug-19 CON-12483 Construction of Pier 4A, type 1M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3) - 2nd Pour 20-Aug-19 28-Aug-19 CON-12484 Construction of Pier 4A, type 1M (3 Pours) Erection of Platform & Rebar (1 nos, Pier /Team 3) - 3rd Pour 36 29-Aug-19 12-Oct-19 CON-12490 14 Construction of Pier 4E, type 1 (2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4) - 1st Pour 05-Aug-19 20-Aug-19 CON-12491 Construction of Pier 4E, type 1 (2 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4) - 1st Pour 4 21-Aug-19 24-Aug-19 CON-12494 Construction of Pier 4E, type 1 (2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4)- 2nd Pour 16 26-Aug-19 12-Sep-19 CON-12495 Construction of Pier 4E, type 1 (2 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4)- 2nd Pour 13-Sep-19 20-Sep-19 CON-12500 Construction of Pier 4D, type 1 (2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 7) - 1st Pour 14 12-Sep-19 28-Sep-19 CON-12510 Construction of Pier 4C, type 1(2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4) -1st Pour 10 21-Sep-19 03-Oct-19 Construction of Pier 2F, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6) -1st Pour CON-12770 Concrete Curing and Removal Temp. Work of Pier 4E 21-Sep-19 14-Oct-19

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR


Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
Portion III	1-Jun-19	8:10	Cloudy	27	0	0	20.9
	1-Jun-19	13:30	Cloudy	27	0	0	20.9
	1-Jun-19	14:30	Cloudy	28	0	0	20.9
	1-Jun-19	14:35	Cloudy	28	0	0	20.9
	1-Jun-19	14:45	Cloudy	28	0	0	20.9
	3-Jun-19	8:15	Sunny	27	0	0	20.9
	3-Jun-19	13:20	Sunny	28	0	0	20.
	3-Jun-19	14:30	Sunny	28	0	0	20.
	3-Jun-19	14:40	Sunny	28	0	0	20.
	3-Jun-19	14:50	Sunny	28	0	0	20.
	4-Jun-19	8:20	Cloudy	28	0	0	20.
	4-Jun-19	13:30	Cloudy	29	0	0	20.
	4-Jun-19	14:45	Cloudy	29	0	0	20.
	4-Jun-19	14:55	Cloudy	29	0	0	20.
	4-Jun-19	15:05	Cloudy	29	0	0	20.
	5-Jun-19	8:10	Sunny	28	0	0	20.
	5-Jun-19	13:05	Sunny	30	0	0	20.
	5-Jun-19	14:10	Sunny	30	0	0	20.
	5-Jun-19	14:20	Sunny	30	0	0	20.
	5-Jun-19	14:30	Sunny	30	0	0	20.
	6-Jun-19	8:15	Sunny	28	0	0	20.
	6-Jun-19		Sunny	30	0	0	20.
	6-Jun-19	14:15	Sunny	30	0	0	20.
	6-Jun-19		Sunny	30	0	0	20.
	6-Jun-19		Sunny	30	0	0	20.
	8-Jun-19	8:05	Sunny	30	0	0	20.
	8-Jun-19		Sunny	31	0	0	20.
	8-Jun-19		Sunny	32	0	0	20.
	8-Jun-19	14:40	Sunny	32	0	0	20.
	8-Jun-19		Sunny	32	0	0	20.
	10-Jun-19		Cloudy	26	0	0	20.
	10-Jun-19		Cloudy	27	0	0	20.
	10-Jun-19		Cloudy	27	0	0	20.
	10-Jun-19	14:50	Cloudy	27	0	0	20.
	10-Jun-19		Cloudy	27	0	0	20.
	11-Jun-19		Cloudy	26	0	0	20.
	11-Jun-19		Rainy	27	0	0	20.
	11-Jun-19		Rainy	27	0	0	20.
	11-Jun-19		Rainy	27	0	0	20.
	11-Jun-19		Rainy	27	0	0	20.
	12-Jun-19		Cloudy	26	0	0	20.
	12-Jun-19		Rainy	26	0	0	20.

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	12-Jun-19	14:20	Rainy	26	0	0	20.9
	12-Jun-19	14:30	Rainy	26	0	0	20.9
	12-Jun-19	14:40	Rainy	26	0	0	20.9
	13-Jun-19	8:20	Cloudy	27	0	0	20.9
	13-Jun-19	13:05	Rainy	28	0	0	20.9
	13-Jun-19	14:30	Rainy	28	0	0	20.9
	13-Jun-19	14:40	Rainy	28	0	0	20.9
	13-Jun-19	14:50	Rainy	28	0	0	20.9
	14-Jun-19	8:00	Rainy	27	0	0	20.9
	14-Jun-19	13:05	Cloudy	28	0	0	20.9
	14-Jun-19	14:45	Sunny	28	0	0	20.9
	14-Jun-19	15:55	Sunny	26	0	0	20.9
	14-Jun-19	15:05	Sunny	28	0	0	20.9
	15-Jun-19	8:00	Sunny	26	0	0	20.9
	15-Jun-19	13:20	Sunny	26	0	0	20.9
	15-Jun-19	15:00	Sunny	28	0	0	20.9
	15-Jun-19	15:10	Sunny	28	0	0	20.9
	15-Jun-19	15:20	Sunny	28	0	0	
	17-Jun-19	8:20	Cloudy	25	0	0	20.9
	17-Jun-19	13:20	Cloudy	27	0	0	20.9
	17-Jun-19	15:00	Cloudy	27	0	0	20.9
	17-Jun-19	15:10	Cloudy	27	0	0	20.9
	17-Jun-19	15:20	Cloudy	27	0	0	20.9
	18-Jun-19	8:20	Cloudy	24	0	0	20.9
	18-Jun-19	13:30	Cloudy	26	0	0	20.9
	18-Jun-19	14:20	Cloudy	26	0	0	20.9
	18-Jun-19	14:30	Cloudy	26	0	0	20.9
	18-Jun-19	14:40	Cloudy	26	0	0	20.9
	19-Jun-19	8:20	Cloudy	27	0	0	20.9
	19-Jun-19	13:30	Cloudy	28	0	0	20.9
	19-Jun-19	14:40	Sunny	28	0	0	
	19-Jun-19	14:50	Sunny	28	0	0	2017
	19-Jun-19	15:00	Sunny	29	0	0	20.9
	20-Jun-19	8:15	Sunny	29	0	0	
	20-Jun-19	13:20	Sunny	30		0	
	20-Jun-19	15:00	Sunny	30	0	0	20.9

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	20-Jun-19	15:10	Sunny	30	0	0	20.9
	20-Jun-19	15:20	Sunny	30	0	0	20.9
	21-Jun-19	8:05	Sunny	29	0	0	20.9
	21-Jun-19	13:00	Sunny	29	0	0	20.9
	21-Jun-19	14:30	Sunny	30	0	0	20.9
	21-Jun-19	14:40	Sunny	30	0	0	20.9
	21-Jun-19	14:50	Sunny	30	0	0	20.9
	22-Jun-19	8:20	Sunny	29	0	0	20.9
	22-Jun-19	13:30	Sunny	32	0	0	20.9
	22-Jun-19	14:50	Sunny	32	0	0	20.9
	22-Jun-19	15:00	Sunny	32	0	0	20.9
	22-Jun-19	15:10	Sunny	32	0	0	20.9
	24-Jun-19	8:20	Cloudy	26	0	0	20.9
	24-Jun-19	13:30	Cloudy	27	0	0	20.9
	24-Jun-19	14:20	Cloudy	27	0	0	20.9
	24-Jun-19	14:30	Cloudy	27	0	0	20.9
	24-Jun-19	14:40	Cloudy	27	0	0	20.9
	25-Jun-19	8:15	Cloudy	25	0	0	20.9
	25-Jun-19	13:30	Cloudy	26	0	0	20.9
	25-Jun-19	14:45	Cloudy	25	0	0	20.9
	25-Jun-19	14:55	Rainy	25	0	0	20.9
	25-Jun-19	15:05	Rainy	25	0	0	20.9
	26-Jun-19	8:00	Cloudy	28	0	0	20.9
	26-Jun-19	13:10	Cloudy	28	0	0	20.9
	26-Jun-19	14:20	Cloudy	29	0	0	20.9
	26-Jun-19	14:40	Cloudy	29	0	0	20.9
	26-Jun-19	14:50	Sunny	29	0	0	20.9
	27-Jun-19	8:00	Cloudy	27	0	0	20.9
	27-Jun-19	13:30	Sunny	28	0	0	20.9
	27-Jun-19	14:50	Sunny	29	0	0	20.9
	27-Jun-19	15:00	Sunny	29	0	0	20.9
	27-Jun-19	15:10	Sunny	29	0	0	20.9
	28-Jun-19	8:00	Sunny	29	0	0	20.9
	28-Jun-19	13:05	Sunny	30	0	0	20.9
	28-Jun-19	14:50	Sunny	31	0	0	20.9
	28-Jun-19	15:00	Sunny	31	0	0	20.9
	28-Jun-19		Sunny	31	0	0	20.9
	29-Jun-19	8:00	Cloudy	30	0	0	20.9
	29-Jun-19		Cloudy	31	0	0	20.9
	29-Jun-19		Sunny	32	0	0	20.9
	29-Jun-19		Sunny	32	0	0	20.9
	29-Jun-19		Sunny	32	0	0	20.9

APPENDIX T CULTURAL HERITAGE MONITORING RESULTS

Appendix T – Cultural Heritage Monitoring Results

	Tilting					Settlement (mm)			Vibration (mm/s)		
Date	THT-TM-01	THT-TM-02	THT-TM-03		THT DCD 1	THT-BSP-2	THT-BSP-3	Measurement Direction			
	111-111-01	111-111-02	1H1-1M1-03	THT-TM-04	THT-BSP-1			Tran	Vertical	Longitudinal	
1-Jun-19	1 : 40906	-1 : 11842	1 : 5422	1 : 23684	+2	Stop monitoring	Stop monitoring	0.134	0.110	0.087	
3-Jun-19	-1 : 449967	-1 : 9574	1 : 6618	1 : 18000	Bad weather	Stop monitoring	Stop monitoring	0.134	0.126	0.110	
4-Jun-19	1 : 89993	-1 : 14062	1 : 7627	1 : 28125	Bad weather	Stop monitoring	Stop monitoring	0.134	0.118	0.126	
5-Jun-19	1 : 32140	-1 : 19564	1 : 9000	1 : 449996	+3	Stop monitoring	Stop monitoring	0.118	0.110	0.102	
6-Jun-19	-1 : 44997	-1 : 14062	1 : 5232	-1 : 40909	+3	Stop monitoring	Stop monitoring	0.142	0.118	0.087	
8-Jun-19	1 : 56246	-1 : 10975	1 : 3879	1 : 14516	+3	Stop monitoring	Stop monitoring	0.118	0.189	0.102	
10-Jun-19	1 : 89993	-1 : 22499	1 : 4737	1 : 18000	+3	Stop monitoring	Stop monitoring	0.126	0.126	0.110	
11-Jun-19	-1 : 11249	-1 : 12857	1 : 4592	1 : 13235	+2	Stop monitoring	Stop monitoring	0.134	0.110	0.095	
12-Jun-19	-1 : 8653	1 : 64283	1 : 3214	1 : 9783	+2	Stop monitoring	Stop monitoring	0.126	0.166	0.087	
13-Jun-19	-1 : 14515	1 : 34614	1 : 4327	1 : 14516	Bad weather	Stop monitoring	Stop monitoring	0.118	0.118	0.102	
14-Jun-19	-1 : 28123	1 : 6716	1 : 6338	1 : 6716	+3	Stop monitoring	Stop monitoring	0.126	0.142	0.095	
15-Jun-19	-1 : 10464	1 : 6164	1 : 5422	1 : 8182	+2	Stop monitoring	Stop monitoring	0.150	0.118	0.142	
17-Jun-19	-1 : 6716	1 : 3383	1 : 6923	1 : 13235	+1	Stop monitoring	Stop monitoring	0.118	0.110	0.095	
18-Jun-19	-1 : 9183	1 : 3813	1 : 4891	1 : 5696	+3	Stop monitoring	Stop monitoring	0.126	0.118	0.102	
19-Jun-19	-1 : 12161	1 : 5294	1 : 3688	1 : 5114	+1	Stop monitoring	Stop monitoring	0.126	0.118	0.110	
20-Jun-19	-1 : 17999	1 : 5696	1 : 3879	1 : 10465	+2	Stop monitoring	Stop monitoring	0.118	0.118	0.142	

	Tilting					Settlement (mm)			Vibration (mm/s)		
Date	THT-TM-01	THT-TM-02	THT-TM-03		THT-BSP-1	THT-BSP-2	SP-2 THT-BSP-3	Measurement Direction			
	1111-11VI-U1	1111-111-02	1H1-1M1-03	THT-TM-04	1111-051-1	1H1-D5F-2		Tran	Vertical	Longitudinal	
21-Jun-19	1 : 40906	1 : 7031	1 : 3285	1 : 9184	+2	Stop monitoring	Stop monitoring	0.126	0.110	0.102	
22-Jun-19	-1 : 34613	1 : 4787	1 : 3600	1 : 6429	+1	Stop monitoring	Stop monitoring	0.118	0.150	0.102	
24-Jun-19	1 : 26469	1 : 3913	1 : 4206	1 : 8654	+1	Stop monitoring	Stop monitoring	0.126	0.118	0.087	
25-Jun-19	1 : 17306	1 : 3719	1 : 6618	1 : 8182	+2	Stop monitoring	Stop monitoring	0.126	0.599	0.363	
26-Jun-19	1 : 56246	1 : 4369	1 : 5232	1 : 7031	+3	Stop monitoring	Stop monitoring	0.118	0.118	0.087	
27-Jun-19	1 : 11841	1 : 4945	1 : 4455	1 : 6429	+3	Stop monitoring	Stop monitoring	0.166	0.126	0.102	
28-Jun-19	1 : 10227	1 : 8181	1 : 3781	1 : 8182	Bad weather	Stop monitoring	Stop monitoring	0.110	0.110	0.087	
29-Jun-19	1 : 15516	1 : 23683	1 : 4327	1 : 14516	+3	Stop monitoring	Stop monitoring	0.126	0.158	0.095	
Alert Level	1:2000				6			4.5			
Alarm Level	1:1500				8			4.8			
Action Level	1:1000				10			5			

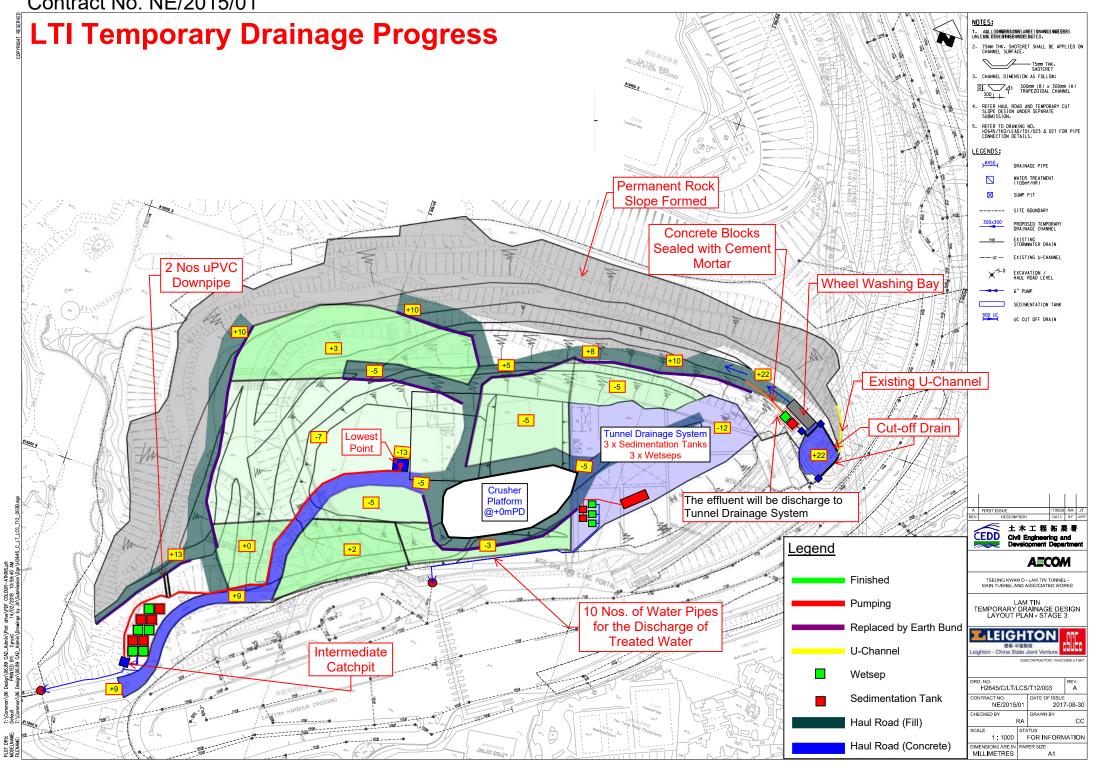
Note:

Bold means Alert Level exceedance **Bold Italic** means Alarm Level exceedance

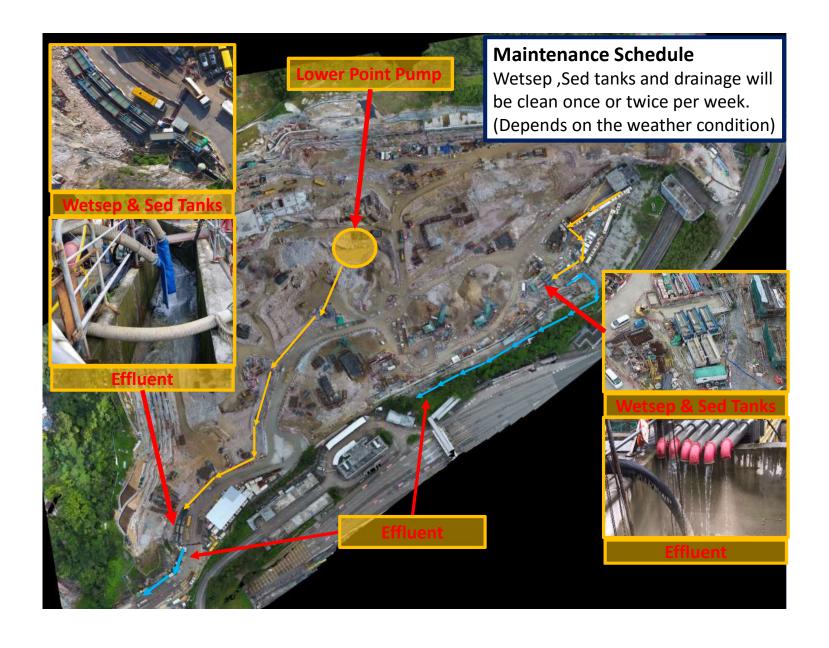
Bold Italic with underline means Action Level exceedance

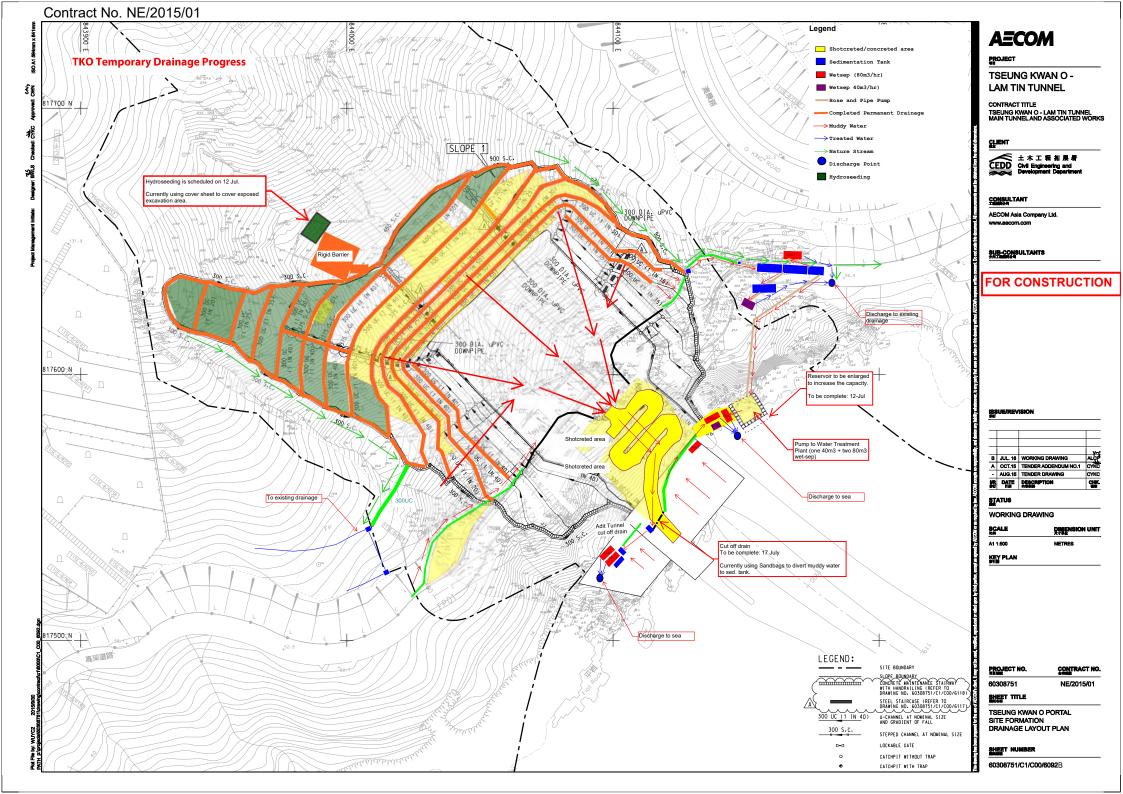
APPENDIX U PIEZOMETER MONITORING RESULTS

Appendix U – Construction Phase Daily Piezometer Monitoring Results


	Daily Piezometer Monitoring						
Date	38568-LDH1 (P)						
31-May-19	87.65						
1-Jun-19	n.a.						
3-Jun-19	n.a.						
4-Jun-19	n.a.						
5-Jun-19	n.a.						
6-Jun-19	87.65						
8-Jun-19	n.a.						
10-Jun-19	n.a.						
11-Jun-19	n.a.						
12-Jun-19	n.a.						
13-Jun-19	n.a.						
14-Jun-19	87.65	TKO-LBH907					
15-Jun-19	n.a.						
17-Jun-19	n.a.						
18-Jun-19	n.a.						
19-Jun-19	n.a.						
20-Jun-19	n.a.						
21-Jun-19	87.65						
22-Jun-19	n.a.						
24-Jun-19	n.a.						
25-Jun-19	n.a.						
26-Jun-19	n.a.						
27-Jun-19	n.a.						
28-Jun-19	n.a.						
29-Jun-19	n.a.						
Action Level (mPD)	+74.65	+17.59					

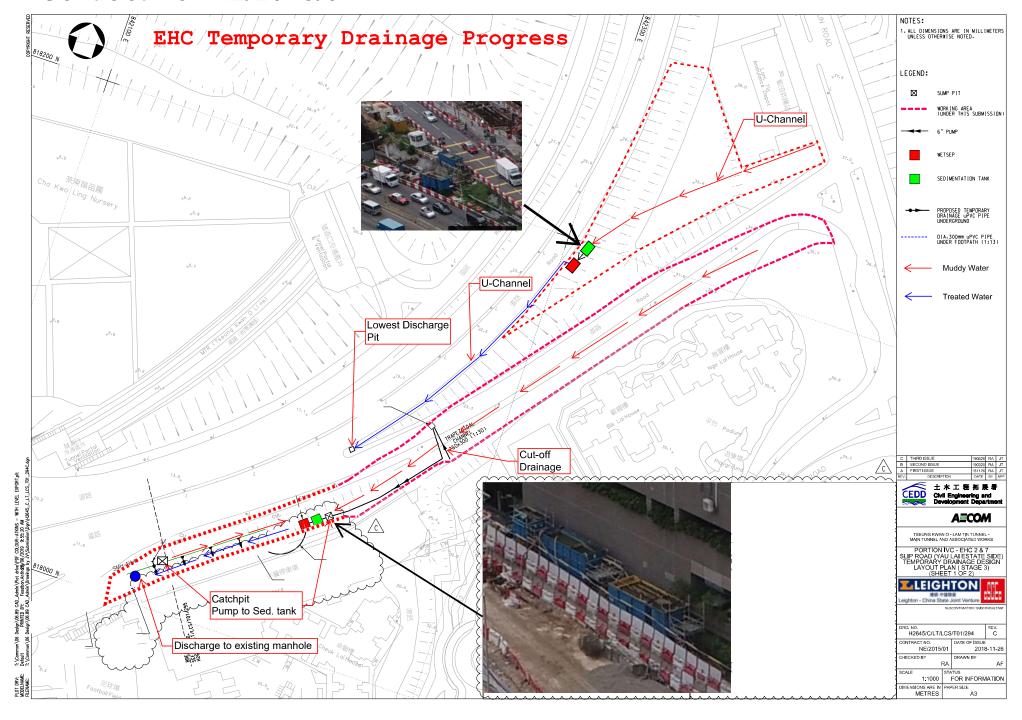
Note:

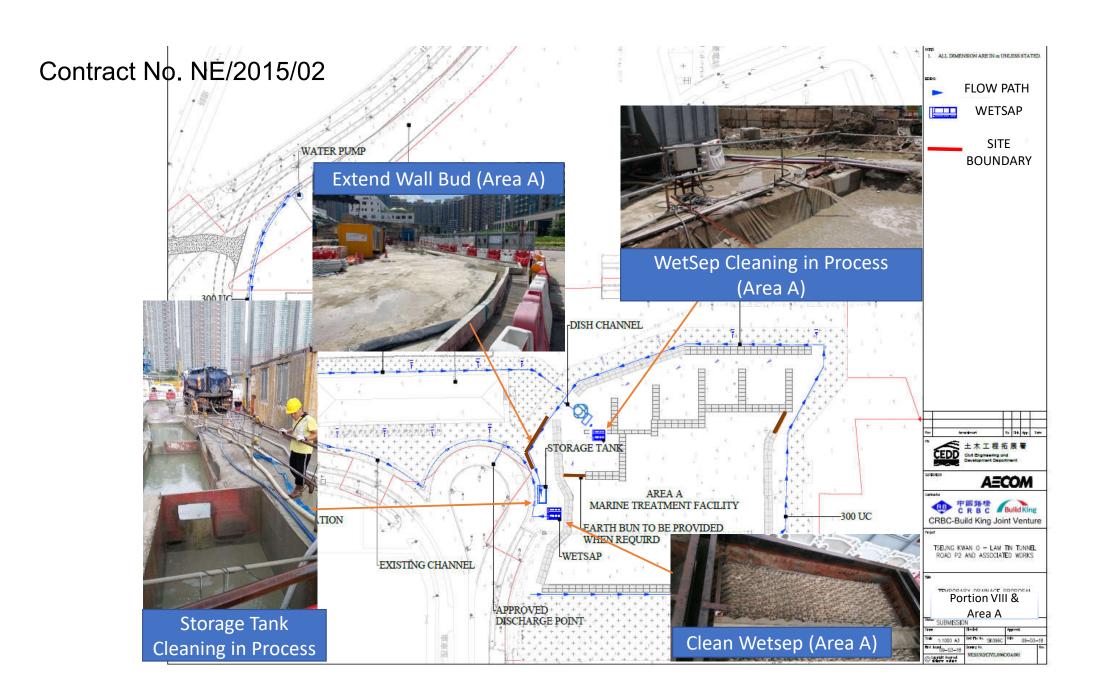

Bold Italic with underline means Action Level exceedance

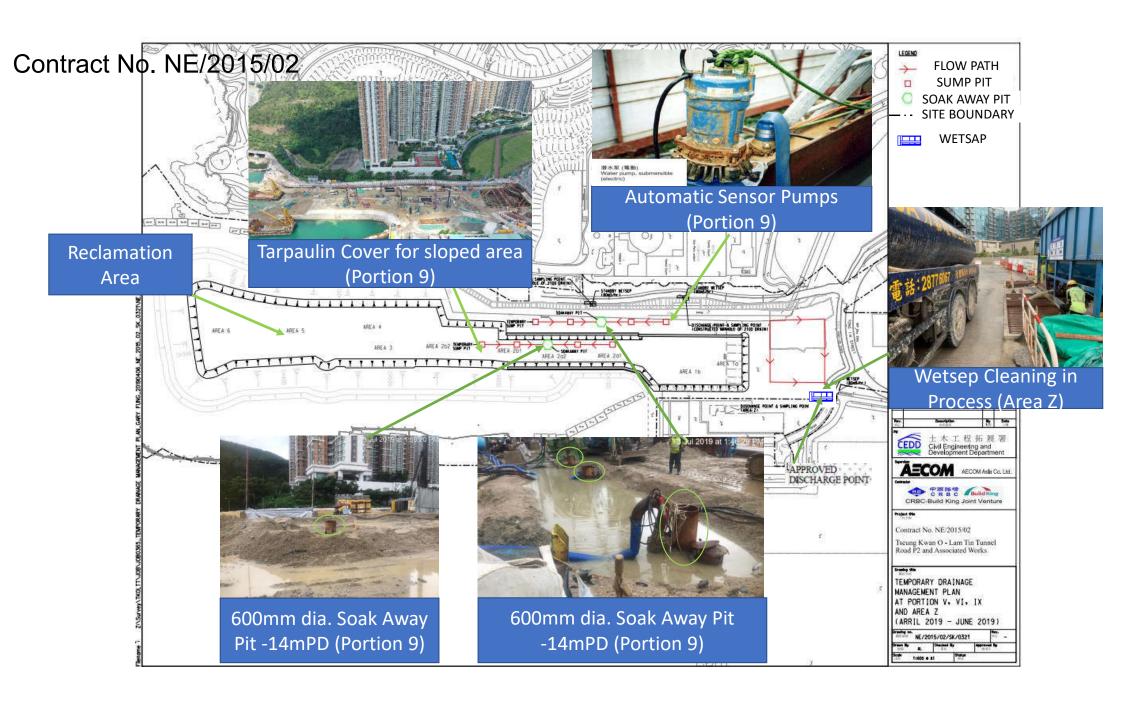

 $\overline{\text{n.a} - \text{The daily ground water level monitoring was not required as the tunnel construction activities were conducted out of <math>\pm$ 50m of the piezometer gate.

APPENDIX V SURFACE RUNOFF MANAGEMENT PLAN

Contract No. NE/2015/01





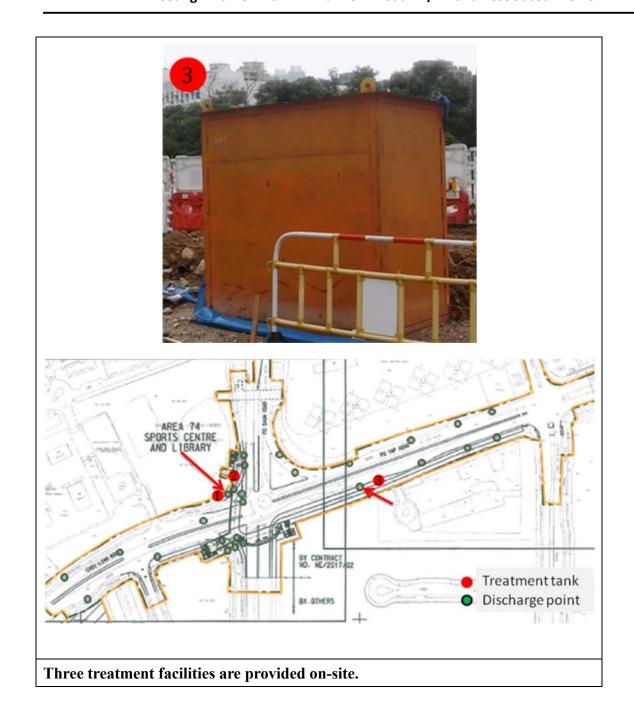

Contract No. NE/2015/01

Contract No. NE/2015/01

Contract No.: <u>NE/2017/02</u>

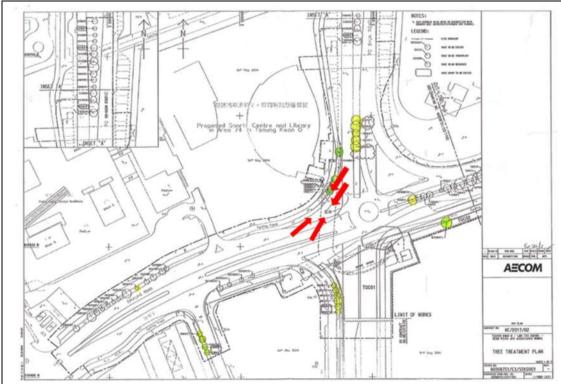
Contract Title: <u>Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and</u> <u>Associated Works</u>

Flooding Mitigation Plan


Treatment facility

Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works

Bunding


Bunding is provided to prevent the surface runoff.

Surface runoff collection

Height difference between the road and site area to form a natural flow. Sump pit was provided for wastewater collection.

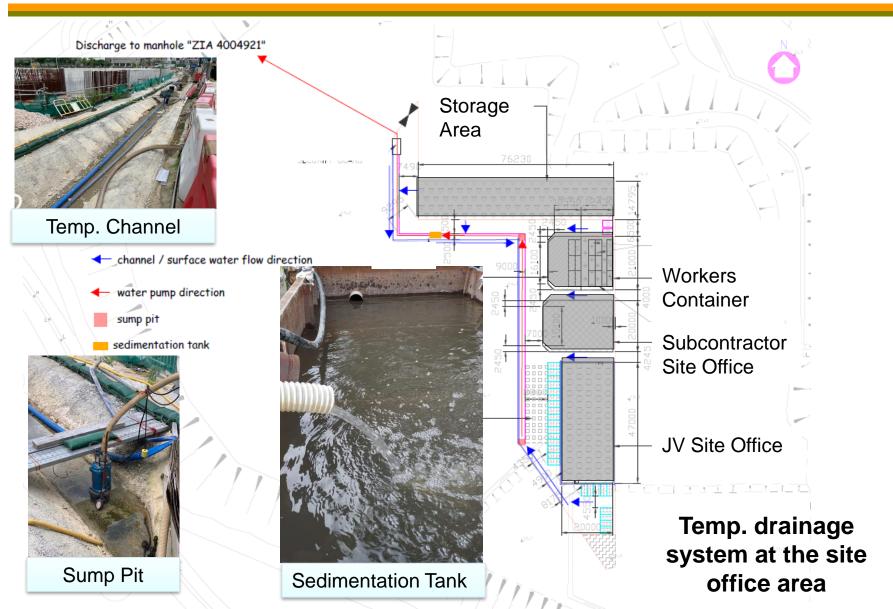
Gully Protection

Gully were protected and covered by geotextile.

Stockpile Cover

Contract No. NE/2017/02

Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works


Stockpile Should be proper cover with tarpaulin.

Contract Number NE/2015/03 CATCHPIT SCHEDULE AECOM → Water Flow U/S 1D D/S 1D U/S C.L. D/S C.L. LENGTH GRADIENT U/S 1.L. D/S 1.L. UC SIZE U/S 1D UC MATERIAL BEDDIN CP01 CP02 6.50 6.50 6.50 6 100 6.275 6.279 225 CAIDENI CROCKET B MATERIAL BEDDING Precautionary measures Silt Measurement TSEUNG KWAN O -LAM TIN TUNNEL 37 Sedimentation tank CONTRACT TITLE
TSEUNG KWAN O - LAM TIN TUNNEL
NORTHERN FOOTBRIDGE Sampling Point Geotextiles are on the top of gully cover along the site as a filter to avoid any muddy water discharge directly into the drainage system. 土木工程拓展导 Civil Engineering and Development Departm Works Area B Sedimentation tank AECOM Asia Company Ltd. www.aecom.com Sampling & Discharge Point CONNECTED FROM LIFT SHAFT-DRAINAGE SYSTEM (DRAWING NO. 60308751/C5/M00/8101 AND 8120 REFER) Sedimentation tank Exposed slope is covered 818650 N by taupaulin DOWN PIPE FROM DE AREA 74 SPORTS CENTRE AND LIBRARY DOWN PIPE FROM DECK CONNECTS TO EXISTING 10 PARK CENTRAL Discharge Point DOWN PIPE FROM DECK FOR CLARITY ISSUE/REVISION SHUN ROAD Sandbag is placed along the water UR DATE DESCRIPTION barrier boundary to avoid the surface tunoff. Manhole Inspection for Silt DIMENSION UNIT measurement,we have regular cleaning the channel weekly or in an emergency METRES KEY PLAN 818600 N Manhole Inspection for Silt measurement, we have regular cleaning the channel weekly or _6.6 in an emergency - DOWN PIPE CONTRACT NO. PROJECT NO. NE/2015/03 SHEET TITLE DRAINAGE LAYOUT DETAILS CONNECTION OF DOWNPIPE TO U-CHANNEL WITH GRATING 6.2 SHEET NUMBER WIP May

60308751/C5/C00/1301

Site Surface Runoff Measures 他和-上陸-中治聯營 cw-stec-cmgc jv

