Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP)
Environmental Team for
Tseung Kwan O – Lam Tin Tunnel
Design and Construction

Monthly Environmental Monitoring and Audit Report for January 2020

(version 1.0)

Approved By

(Dr. HF Chan

Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

Civil Engineering and Development Department

New Territories East Development Office

Suite 1213, Chinachem Golden Plaza

77 Mody Road

Tsimshatsui

Kowloon

Your reference:

Our reference:

HKCEDD08/50/106301

Date:

14 February 2020

Attention: Mr Lo Sai Pak, Sunny

BY FAX & POST (Fax no.: 2739 0076)

Dear Sirs

Agreement No.: NTE 06/2016

Independent Environmental Checker for Tseung Kwan O – Lam Tin Tunnel

Monthly Environmental Monitoring and Audit Report for January 2020 (version 1.0)

We refer to emails of 11 and 13 February 2020 from Cinotech Consultants Limited attaching the Monthly Environmental Monitoring and Audit Report for January 2020 (version 1.0).

We have no further comment and hereby verify the captioned report in accordance with Clause 4.4 of the Environmental Permit no. EP-458/2013/C.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Ricky Lau on 2618 2831.

Yours faithfully

ANEWR CONSULTING LIMITED

Adi Lee

Independent Environmental Checker

LYMA/LCCR/lhmh

cc CEDD – Mr Simon Wong (email: simonwong@cedd.gov.hk)

AECOM – Mr K Y Chan (email: ky.chan@tko-ltt1-aecom.com)

AECOM – Mr Dominic Lam (email: dominic.cw.lam@tko-ltt1-aecom.com)

AECOM – Ms Mandy Fu (email: mandy.ky.fu@tko-ltt1-aecom.com)

AECOM – Mr Alex Ho (email: alex.kl.ho@tko-ltt1-aecom.com)

Cinotech – Dr H F Chan (email: hf.chan@cinotech.com.hk)

Cinotech – Mr K S Lee (email: ks.lee@cinotech.com.hk)

ANewR Consulting Limited

Unit 517, 5/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648

Email: info@anewr.com Web: www.anewr.com

TABLE OF CONTENTS

	EXECUTIVE SUMMARY Introduction	
	Environmental Monitoring Works	
	Key Information in the Reporting Month	
	Key Construction Work in the reporting month & the next reporting month	
	Future Key Issues	
1.	INTRODUCTION	9
	Purpose of the Report	
2.	PROJECT INFORMATION	11
	Background	11
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Status of Environmental Licences, Notification and Permits	
	Summary of EM&A Requirements	14
3.	AIR QUALITY	17
	Monitoring Requirements	17
	Monitoring Locations	
	Monitoring Equipment	17
	Monitoring Parameters and Frequency	
	Monitoring Methodology	
	Results and Observations	21
4.	NOISE	22
	Monitoring Requirements	22
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	24
5.	WATER QUALITY	27
	Monitoring Requirements	27
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters and Frequency	
	Monitoring Methodology	
	Laboratory Analytical Methods	
	QA/QC Requirements Decontamination Procedures	
	Sampling Management and Supervision	
	Results and Observations	
6.	ECOLOGY	35
	Post-Translocation Coral Monitoring	

7.	CULTURAL HERITAGE	36
	Monitoring Requirement	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology	
	Alert, Alarm and Action Levels	
	Results	
	Mitigation Measures for Cultural Heritage	
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	38
9.	LANDFILL GAS MONITORING	39
	Monitoring Requirement	39
	Monitoring Parameters and Frequency	
	Monitoring Locations	
	Monitoring Equipment	
	Results and Observations	40
10.	ENVIRONMENTAL AUDIT	41
	Site Audits	41
	Implementation Status of Environmental Mitigation Measures	41
11.	WASTE MANAGEMENT	42
12.	ENVIRONMENTAL NON-CONFORMANCE	43
	Summary of Exceedances	43
	Summary of Environmental Non-Compliance	
	Summary of Environmental Complaint	
	Summary of Environmental Summon and Successful Prosecution	43
13.	FUTURE KEY ISSUES	44
	Key Issues for the Coming Month	45
14.	CONCLUSIONS AND RECOMMENDATIONS	47
	Conclusions	47
	Recommendations	

LIST OF TABLES

Table I	Non-compliance (exceedance) Recorded for the Project in the Reporting Month
Table II	Key Information in the Reporting Month
Table III	Summary Table for Complaint Details in the Reporting Month
Table IV	Summary Table for Key Construction Work in the Reporting Month
Table V	Summary Table for Site Activities in the next Reporting Period
Table 2.1	Key Project Contacts
Table 2.2	Summary Table for Major Site Activities in the Reporting Month
Table 2.3	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.4	Summary of the Status of Environmental Licences, Notification and Permits
Table 3.1	Locations for Air Quality Monitoring
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Major Dust Source during Air Quality Monitoring
Table 4.1	Noise Monitoring Stations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Major Noise Source during Noise Monitoring
Table 4.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.6	Baseline Noise Level and Noise Limit Level for Monitoring Stations (Evening-time
	& Daytime (Holiday))
Table 4.7	Baseline Noise Level and Noise Limit Level for Monitoring Stations (Night-time)
Table 5.1	Not Used
Table 5.2	Marine Water Quality Monitoring Stations
Table 5.3	Water Quality Monitoring Equipment
Table 5.4	Water Quality Monitoring Parameters and Frequency
Table 5.5	Methods for Laboratory Analysis for Water Samples
Table 5.6	Summary of Groundwater Quality Monitoring Results
Table 7.1	Cultural Heritage Monitoring Equipment
Table 7.2	AAA Levels for Monitoring for Cultural Heritage
Table 9.1	Landfill Gas Monitoring Equipment
Table 13.1	Summary Table for Site Activities in the next Reporting Period

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 1a	Site Portions under Works Contract No. NE/2015/01 (Lam Tin Side)
Figure 1b	Site Portions under Works Contract No. NE/2015/01 (Tseung Kwan O Side)
Figure 1c	Site Portions under Works Contract No. NE/2015/02
Figure 1d	Site Portions under Works Contract No. NE/2015/03
Figure 1e	Site Portions under Works Contract No. NE/2017/01
Figure 1f	Site Portions under Works Contract No. NE/2017/01
Figure 1g	Site Portions under Works Contract No. NE/2017/02
Figure 1h	Site Portions under Works Contract No. NE/2017/02
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Not Used
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring
Figure 7	Location of Post-translocation Coral Monitoring
Figure 8	Location of Monitoring for Cultural Heritage
Figure 9	Not Used

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Weather Information
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentations
Appendix F	24-hour TSP Monitoring Results and Graphical Presentations
Appendix G	Noise Monitoring Results and Graphical Presentations
Appendix H	Not Used
Appendix I	Marine Water Quality Monitoring Results and Graphical Presentations
Appendix J	Not Used
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Event and Action Plans
Appendix N	Implementation Schedule And Recommended Mitigation Measures
Appendix O	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
Appendix P	Waste Generation in the Reporting Month
Appendix Q	Tentative Construction Programme
Appendix R	Record of Landfill Gas Monitoring by Contractor
Appendix S	Not Used
Appendix T	Cultural Heritage Monitoring Results
Appendix U	Piezometer Monitoring Results
Appendix V	Surface Runoff Management Plan

EXECUTIVE SUMMARY

Introduction

- 1. This is the 39th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O Lam Tin Tunnel Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in January 2020.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2015/03 Tseung Kwan O Lam Tin Tunnel Northern Footbridge;
 - Contract No. NE/2017/01 Tseung Kwan O Lam Tin Tunnel –Tseung Kwan O Interchange and Associated Works
 - Contract No. NE/2017/02 Tseung Kwan O Lam Tin Tunnel Road P2/D4 and Associated Works.
 - Contract No. NE/2017/06 Tseung Kwan O Lam Tin Tunnel Traffic Control and Surveillance System(TCSS) and Associated Works
 - Contract No. NE/2017/07 Cross Bay Link, Tseung Kwan O Main Bridge and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

Environment al Monitoring	No. of Non-compliance (Exceedance)		nt due to Construction Activities of this		due to Construction Activities of		Action Taken
	Action Level	Limit Level	Action Level	Limit Level			
Air Quality	0	0	0	0	N/A		
Noise	5	9	4	0	Refer to Appendix K & O		
Marine Water Quality	70	218	0	0	Refer to Appendix K		
Groundwater Level Monitoring (Piezometer Monitoring)	0	N/A ¹	0	N/A ¹	N/A		
Ecological	N/A	N/A	N/A	N/A	N/A		
Cultural Heritage	0	0	0	0	N/A		
Landfill Gas	0	0	0	0	N/A		

Note:(1) No Limit Level for Groundwater Level Monitoring (Piezometer Monitoring).

Air Quality Monitoring

- 5. No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 6. No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 7. Five (5) Action Level exceedances were recorded due to the documented complaints received in this reporting month. The Summary of Documented Complaints in Reporting Month is tabulated in Table III.
- 8. No Limit Level exceedance for day time and nine (9) limit level night time construction noise monitoring were recorded in the reporting month.

Water Quality Monitoring

- 9. Groundwater quality monitoring had been suspended since October 2019 upon the agreement by EPD. Further details should be founded at **Section 5.1**.
- 10. All marine water quality monitoring was conducted as scheduled in the reporting month. There were seventy (70) Action Level and two-hundred and eighteen (218) Limit Level exceedances in marine water quality monitoring. During this reporting month, no sand plume was observed during the water quality monitoring and site audits, therefore there is no direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Details of this investigation are presented in **Section 5**. Daily silt curtain inspection and weekly diving inspection have been carried out by contractor, the record, as reviewed by the site auditors, indicated that silt curtains were found in good conditions. No major deficiency of the silt curtains were also observed during site auditing.

11. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month.

Ecological Monitoring

12. Post-translation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

13. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in May 2017. No Alert Alarm and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in Section 10.

Landfill Gas Monitoring

15. Monitoring of landfill gases commenced in December 2016 and were carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

16. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. The representative of the IEC joined the site inspection for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 31, 30, 23, 23 and 23 January 2020 respectively. Details of the audit findings and implementation status are presented in **Section 10**.

Waste Management

17. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediment. Details of waste management data is presented in **Section 11** and **Appendix P**.

Key Information in the Reporting Month

18. Summary of key information in the reporting month is tabulated in **Table II**

Table II Key Information in the Reporting Month

Monthly Complaints	Event Details		A ation Taken	C4 o 4 o a	
Monthly Complaints	Number	Nature	Action Taken	Status	
January 2020	5	Noise	Details refer to App O	Draft CIRs submitted / On-going	
December 2019	5	Noise	Details refer to App O	Draft CIRs submitted / On-going	
November 2019	6	Air / Noise / Working Hours ²	Details refer to App O	Draft CIRs submitted	
October 2019	5	Noise / Working Hours ³	Details refer to App O	Closed	
September 2019	4	Air / Noise / Water	Details refer to App O	Closed	
August 2019	5	Noise / Water / Working Hours ²	Details refer to App O	Closed	
July 2019	81	Noise	Details refer to App O	Closed	
Notifications of any summons & prosecutions received	0		N/A	N/A	

^{1.} Two new complaints was received after the submission of the EMA Report (July 2019)

19. Summary of complaints received in the reporting month is tabulated in **Table III.**

Table III Summary of Complaints Details in Reporting Month

Complaint Type	Investigation Findings	Follow-up Action / Mitigation Measure
Tseung Kwan O Side		
Annoying noise emission and inefficient noise mitigation measures	The noise is believed to be coming from a breaker and deficiency was found in the arrangement of the applied noise barriers.	The Contractor is reminded to erect acoustic box or silence-up accurately to block direct-line of sight to NSR and strictly abide to the Noise Mitigation Plan.
High-frequency noise during night time	High-frequency noise generation is due to the sliding of the metal gangway against the metal barging point under wave action.	The contractor is reminded to lift up the gangway when not in use; to provide lubricants to joints of the machines and equipment if applicable; and avoid hanging loose parts of idled machine or equipment freely
Noise nuisance due to Blasting during night-time	As blasting works area has encroached into the RPZ area in TKO, the blasting works had to be conducted during night-time after the train services have closed.	Re-schedule blasting works to less sensitive hours if possible.

^{2.} Request on delaying the starting time of normal working hour.

^{3.} The validity of conducting works during Restricted Hours

Complaint Type	Investigation Findings	Follow-up Action / Mitigation Measure		
	In addition, an inspection was carried out by officers from CEDD, site agents, property management office of Ocean Shores to investigate the impact of midnight blasting on 22nd January 2020 at area of refuge of Tower 11 of Ocean Shores. It was concluded that no significant impact from the blasting was observed.			
Irritating loud noise nuisance from Portion IX (C2)	nuisance from Portion Investigation undergoing			
Lam Tin Side				
Noise nuisance from Tunnel Works	Due to scaling and muck out works in tunnel, with valid CNP, in Lam Tin Side.	Contractor is reminded to reschedule tunneling works to less sensitive hours.		

Key Construction Work in the reporting month & the next reporting month

20. Summary of key construction work in the reporting month is tabulated in **Table IV**.

Table IV Summary Table for Key Construction Work in the Reporting Month

Contract No.	Project Title	Site Activities (January 2020)	
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	1) EHC2 U-Trough 2) Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5
		Main Tunnel	3) Administration Building4) Main Tunnel Excavation5) Main Tunnel Lining Works
		TKO Interchange	6) Haul Road Construction and Site Formation & Slope Works7) Cavern Excavation8) Bridge Construction
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	CH500-C 2) Site forma CH250 – 3) Structure CH363.50 4) Construct concrete b and SR2 0 5) Site estab at CH105 6) 1st layer of CH318 7) Installation	ation works and drainage for Road P2 H650 and SR1 ation and drainage works for SR2 CH350 works for U-trough CH318 –) ion of utility trough and pre-cast parrier at P2 U-trough CH411 – CH500 CH170 – CH250 lishment for construction of underpass

Contract No.	Project Title	Site Activities (January 2020)
2 3.2.5.2 Web 1 1 101		8) Installation of de-watering system at CH105 – CH318 ELS 9) Surcharging of surcharge areas 2b1, 3, 5, 6 10) Transporting treated marine sediment from Area A to Portion IX for reclamation 11) Removal of surcharge area 4 & 6 12) Installation of socketed H-pile at S200 CH821 – P2 CH105 13) Pre-boring for sheetpile at S200 CH821 – P2 CH105 14) Bored pile wales at abutment 15) Sloping seawall construction 16) Removal of temporary cofferdam
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction works under the contract had been completed in December 2019
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works	 Construction of Temporary Platform Construction of Pile Cap Construction of Pier Construction of Pier Head Works Pre-drilling Works Bored Piling Works Segment Erection Works
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	 Inspection pit excavation and utility diversion works Road works Watermain and drainage construction works Bitumen paving Proof drilling bored piles Pile cap
NE/2017/06	Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	Nil

Future Key Issues

21. The future key environmental issues in the coming month include:

Table V Summary Table for Site Activities in the next Reporting Period

Contract No. and Site Activities (February 2020)			
Project Title	Site Activities (February 2020)		Key Environmental Issues *
	Lam Tin	1) FHC2 H Tray ob	
NE/2015/01 -		1) EHC2 U-Trough	(A)/(B)/(C)/(D)/
Tseung Kwan O – Lam Tin Tunnel –	Interchange	2) Site Formation – Area 1G1,	(E) / (G)
Main Tunnel and		Area 1G2, Area 2, Area 3, Area 4 & Area 5	
Associated Works			
Associated works	Main Transal	3) Administration Building	(D)
	Main Tunnel	4) Main Tunnel Excavation	(B)
	TVO	5) Main Tunnel Lining Works	(A) / (C) / (D) / (E) /
	TKO	6) Haul Road Construction and	(A)/(C)/(D)/(E)/
	Interchange	Site Formation & Slope Works	(F) / (I)
		7) Cavern Excavation	
NE/2015/02 -	1) Constructi	8) Bridge Construction on of pillar box and ducting system	(A) / (D) / (C) / (D) /
		1	(A)/(B)/(C)/(D)/
Tseung Kwan O – Lam Tin Tunnel –		IV adjacent to Ocean Shores EVA on of utility trough and road barriers	(E) / (G) / (I)
Road P2 and		CH411 – 500 (land section)	
Associated Works		ation at Road P2 CH500-CH650 and	
Associated Works	SR1	titoli at Road i 2 Cii300-Cii030 alid	
		us works at Road P2 CH500 – 650	
	· ·	works for U-trough CH318-CH363	
	6) Drainage		
	slip road S		
	7) Drainage		
	CH350)		
	8) Surchargin	ng at surcharge areas 3	
		n of 1 st layer strut/ 2 nd layer strut /	
	wailing at	underpass CH105 – CH318	
	10) Installation	n of dewatering system (P2 105 –	
	318)		
		ion of dewatering system (P2 105 –	
	318)		
		xcavation for underpass CH105 –	
	CH318		
		ducting and drau pit at P2 road CH650 & slip road SR1	
	14) Pre-boring	g and sheetpile installation at S200	
	CH821 – I		
	15) Installation – P2 CH1	n of socketed H-pile at S200 CH821	
	16) Removal of	of surcharge at area 3, 5	
	- P2 CH1		
		n of bored piles of abutments	
		on of 900 pipe from SMH9101 –	

Contract No. and Project Title	Site Activities (February 2020)	Key Environmental Issues *
V	20) Installation of socketed H-pile at CT01 CH213 - CH366 21) Construction of sloping seawall 22) Removal of temporary cofferdam	
NE/2015/03 - Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction works under the contract had been completed in December 2019	N/A
NE/2017/01 – Tseung Kwan O Interchange and Associated Works	 Pre-drilling Works Bored Piling Works Installation of Precast Pile Cap Shell Construction of Pile Cap Construction of Pier Construction of Pier Head Segment erection works Construction of Bridge Decks 	(A) / (B) / (E) / (F) / (G)
NE/2017/02 – Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	 Inspection pit excavation and utility diversion works Road works Watermain and drainage construction works Bitumen paving Proof drilling Bored piles Pile cap 	(A) / (B) / (E) / (F) / (G)
NE/2017/06 – Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	Nil	N/A

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 39th Monthly EM&A report summarizing the EM&A works for the Project in January 2020.

Purpose of the Report

1.2 This is the 39th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in January 2020.

Structure of the Report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 8: Landscape and Visual Monitoring Requirements summarises the requirements of landscape and visual monitoring

- Section 9: **Landfill Gas Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan
- Section 10: **Environmental Site Inspection** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
- Section 11: Waste Management summarises the waste management data in the reporting month.
- Section 12: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
- Section 13: **Future Key Issues** summarises the impact forecast and monitoring schedule for the next three months.
- Section 14: Conclusions and Recommendation

2. PROJECT INFORMATION

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**. CBL was also entrusted with part of the marine viaducts near Tseung Kwan O Interchange since the commencement of the CBL project the December 2018.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project are:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.
 - Contract No. NE/2017/02: 15 March 2018.
 - Contract No. NE/2017/01: 23 May 2018.
 - Contract No. NE/2017/06: 09 November 2018.

Project Organizations

- 2.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)

2.6 The key contacts of the Project are shown in **Table 2.1**.

Table 2.1 Key Project Contacts

Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. LO Sai Pak, Sunny	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. KY Chan	3922 9000	2759 1698
Cinotech	Environmental	Dr. HF Chan	2151 2088	3107 1388
Team	Mr. KS Lee	2151 2091	3107 1300	
AnewR	Independent Environmental Checker	Mr. Adi Lee	2618 2836	3007 8648

Construction Activities undertaken during the Reporting Month

2.7 The major site activities undertaken in the reporting month included:

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities (January 2020)		
NE/2015/01	Tseung Kwan O –	Lam 7	Гіп	1) EHC2 U-Trough
	Lam Tin Tunnel –	Interc	hange	2) Site Formation – Area 1G1,
	Main Tunnel and Associated Works			Area 1G2, Area 2, Area 3,
	Associated Works			Area 4 & Area 5
				3) Administration Building
		Main	Tunnel	4) Main Tunnel Excavation
				5) Main Tunnel Lining Works
		TKO		6) Haul Road Construction and
		Interc	hange	Site Formation & Slope
				Works
				7) Cavern Excavation
				8) Bridge Construction
NE/2015/02	Tseung Kwan O –			ation works and drainage for Road
	Lam Tin Tunnel –)-CH650 and SR1
	Road P2 and			ation and drainage works for SR2
	Associated Works		CH250 —	
			Structure CH363.50	works for U-trough CH318 –
		4) (Construct	ion of utility trough and pre-cast
		c	oncrete b	oarrier at P2 U-trough CH411 –
				nd SR2 CH170 – CH250
				lishment for construction of
			-	at CH105 – CH318
		· ·	lst layer e CH318	excavation for underpass CH105 –
				on of strut/ wailing at 1 st layer of
				CH105 – CH318 underpass
				on of de-watering system at CH105
			- CH318	<u> </u>
		9) S	Surchargi	ng of surcharge areas 3, 5
		10) F	Removal	of surcharge area 4 - 6

Monthly EM	I&A Report	for January	2020
------------	------------	-------------	------

Contract No.	Project Title	Site Activities (January 2020)
		 11) Installation of socketed H-pile at S200 CH821 – P2 CH105 12) Pre-boring for sheetpile at S200 CH821 – P2 CH105 13) Bored pile wales at abutment 14) Sloping seawall construction 15) Removal of temporary cofferdam
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction works under the contract had been completed in December 2019
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works	 Construction of Temporary Platform Construction of Pile Cap Construction of Pier Construction of Pier Head Works Pre-drilling Works Bored Piling Works Segment Erection Works
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	 Inspection pit excavation and utility diversion works Road works Watermain and drainage construction works Bitumen paving Proof drilling Pile cap
NE/2017/06	Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	Nil

2.8 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.9 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4 Summary of the Status of Environmental Licences, Notification and Permits

C 4 4 N	Downit / Lincoln No.	Valid Period		g, ,
Contract No.	Permit / License No.	From	То	Status
Environmenta	al Permit (EP)			
N/A	EP-458/2013/C	20/1/2017	N/A	Valid
Notification p	ursuant to Air Pollution Cor	ntrol (Constru	ction Dust) Regulati	on
NIE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid
NE/2015/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid
NE/2017/02	EPD Ref no.: 429867	19/01/2018	N/A	Valid
NE/2017/01	EPD Ref no.: 430070	25/01/2018	N/A	Valid
Billing Accoun	nt for Construction Waste D	isposal	•	
NE/2015/01	Account No. 7025431	11/07/2016	30/09/2020	Valid
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid
NE/2017/02	Account No. 7029651	22/12/2017	N/A	Valid
NE/2017/01	Account No. 7029994	01/02/2018	N/A	Valid
NE/2017/06	Account No. 7032520	22/11/2018	N/A	Valid
Registration o	f Chemical Waste Producer		•	
NE/2015/01	Waste Producer No. 5218- 290-L2881-02	22/08/2016	N/A	Valid
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid
NE/2015/02	Waste Producer No. 5213- 838-C4094-01	23/08/2016	N/A	Valid
NE/2015/03	Waste Producer No. 5213- 265-W3435-04	19/07/2017	N/A	Valid
NE/2017/02	Waste Producer No. 5213- 833-Z4004-04	01/02/2018	N/A	Valid
NE/2017/01	Waste Producer No. 5213- 833-C4262-01	12/02/2018	N/A	Valid
Effluent Disch	arge License under Water I	Pollution Cont	rol Ordinance	
	WT00025806-2016	18/07/2018	30/11/2021	Valid
	WT00026212-2016	16/05/2017	30/11/2021	Valid
NE/2015/01	WT00027354-2017	22/03/2017	31/03/2022	Valid
	WT00027405-2017	22/03/2017	31/03/2022	Valid
	WT00028495-2017	11/08/2017	31/08/2022	Valid

C 4 4 N	Downsid / Linguist NI-	Val	Valid Period		
Contract No.	Permit / License No.	From	To	= Status	
	WT00026386-2016	15/12/2016	31/12/2021	Valid	
NE/2015/02	WT00027226-2017	23/02/2017	28/02/2022	Valid	
	WT00030654-2018	16/04/2018	30/04/2023	Valid	
NE/2015/03	WT00027295-2017	20/03/2017	31/03/2022	Valid	
NIE/2017/01	WT00030711-2018	11/04/2018	30/04/2023	Valid	
NE/2017/01	WT00030716-2018	23/05/2018	31/05/2023	Valid	
NE/2017/02	WT00030654-2018	16/04/2018	30/04/2023	Valid	
Construction	Noise Permit (CNP)	•		•	
	GW-RE0872-19	07/11/2019	08/01/2020	Expired on 08 Jan 2020	
	GW-RE0894-19	05/11/2019	02/01/2020	Expired on 02 Jan 2020	
NE/2015/01	GW-RE0937-19	23/11/2019	22/01/2020	Expired on 22 Jan 2020	
	GW-RE0955-19	04/12/2019	03/03/2020	Valid	
	GW-RE0959-19	08/12/2019	07/03/2020	Valid	
	GW-RE0962-19	05/12/2019	05/03/2020	Valid	
	GW-RE1000-19	23/12/2019	22/06/2020	Valid	
	GW-RE1030-19	27/12/2019	16/02/2020	Valid	
	GW-RE0009-20	23/01/2020	22/03/2020	Valid	
	GW-RE0791-19	11/10/2019	10/04/2020	Valid	
	GW-RE0867-19	05/11/2019	04/01/2020	Expired on 04 Jan 2020	
NE/2015/02	GW-RE0987-19	06/12/2019	01/06/2020	Valid	
	GW-RE0995-19	15/12/2019	14/06/2020	Valid	
	GW-RE1041-19	06/01/2020	05/03/2020	Valid	
	GW-RE0034-20	17/01/2020	13/07/2020	Valid	
NE/2017/01	GW-RE0907-19	05/11/2019	04/05/2020	Valid	
NE/2017/01	GW-RE0909-19	13/11/2019	05/05/2020	Valid	
Marine Dumping Permit					
NE/2017/01	N/A	N/A	N/A	N/A	
Specified Process (SP) License					
NE/2015/01	L-11-053	09/03/2018	08/03/2021	Valid	

Summary of EM&A Requirements

- 2.10 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction

Monthly EM&A Report for January 2020

- Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 10** of this report.
- 2.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in January 2020.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 3.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
AM4(A) ^{(2) (*)}	Cha Kwo Ling Public Cargo Working Area Administrative Office	Rooftop (3/F)
$AM5(A)^{(*)}$	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) (*)	Park Central, L1/F Open Space Area	1/F

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.
- 3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

^(*) Air quality monitoring at designated station AM4(24-hr TSP), AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A) (24-hr TSP only), AM5(A) and AM6(A) respectively.

Table 3.2 Air Quality Monitoring Equipment

Equipment Model and Make		Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3B / LD-5R	6
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-831	0
1-Hour 151 Bust Weter	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	0
IIVC Complex	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
	Davis Weather Monitor II, Model no. 7440	1
Wind Anemometer	Davis Weather Stations, Vantage Pro 2, Model No. 6152CUK	0

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 days
AM1, AM2, AM3, AM4(A), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B / LD5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Remove the red rubber cap from the AEROCET-531 inlet nozzle.
- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5µm and 5µm channels will show the cumulative counts of particles larger than 0.5µm and 5µm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.

(Equipment: Hal Technology; Model no. Hal-HPC300 / Hal-HPC301)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170 and GMW Model: GS2310) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meter apart

- the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
- a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3µm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centred with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminium strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters was equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 No Action/Limit Level exceedance was recorded for both 1-hour TSP and 24-hour TSP monitoring respectively.
- 3.22 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.23 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 3.4 Major Dust Source during Air Quality Monitoring

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 9 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6(A), CM7(A), CM8(A), CM9(A)) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Table 4.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F
CM9(A) ¹	Rooftop of Capri Tower 10	Rooftop (12/F)

Remarks:

4.3 Since the population intake of Capri had commenced during the construction of the TKOLTT, the noise monitoring work in daytime period was conducted at CM9(A) – Rooftop of Capri Tower 10 on normal weekdays. The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Monitoring Equipment

4.4 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical

^{*} Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

¹ Ad-hoc noise monitoring at station CM9(A) was commenced in September 2019.

Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Quantity
Integrating Cound Level Mater	SVAN 957/ 959 / 979	4
Integrating Sound Level Meter	BSWA308 SLM	2
	SV30A	0
Calibrator	Brüel & Kjær 4231	0
	ST-120	3

4.5 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**. Additional weekly impact monitoring are carried out for evening time (1900 – 2300 hours) for monitoring stations CM1, CM2, CM3 & CM6(A) and night-time (2300 – 0700 hours) for monitoring stations CM1, CM2 & CM3.

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2				Façade
CM3	$L_{10}(30 \text{ min})$			Façade
CM4	dB(A)	0700-1900 hrs on		Façade
CM5	L ₉₀ (30 min) dB(A)	normal weekdays		Façade
CM6(A)	$L_{eq}(30 \text{ min})$ $dB(A)$			Free Field
CM7(A)			Once per	Free Field
CM8(A)			week	Façade
CM9(A)				Façade
CM1	L ₁₀ (5 min)	1000 05001		Façade
CM2	dB(A)	1900 – 0700 hrs on normal weekdays		Façade
CM3	$L_{90}(5 \text{ min})$	normar weekdays		Façade
CM6(A)	dB(A) L _{eq} (5 min) dB(A)	1900 – 2300 hrs on normal weekdays		Free Field

Monitoring Methodology and QA/QC Procedure

- 4.6 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.

- Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:
 - frequency weighting: A
 time weighting : Fast
 measurement time : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
- Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.7 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.8 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.10 Six (6) Action Level exceedances were recorded due to the documented complaints received in this reporting month. Nine (9) Limit level exceedances for night-time construction noise monitoring were recorded and no Action and Limit Level exceedance for day time was recorded in the reporting month.
- 4.11 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 4.12 The major noise source identified at the noise monitoring stations are shown in **Table** 4.4.

Table 4.4 Major Noise Source during Noise Monitoring

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza

CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo	
	1	Ling Road	
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong	
CIVIS	CCC Rei Paat Filliary School, Tau Tolig	Road	
CM6(A)	Site Boundary of Contract No.	Road Traffic at O King Road	
CMO(A)	NE/2015/02 near Tower 1, Ocean Shores	near Ocean Shores	
CM7(A)	Site Boundary of Contract No.	Road Traffic at Tong Yin	
CWI/(A)	NE/2015/02 near Tower 7, Ocean Shores	Street	
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road	
		Construction Noise from	
CM9(A)	Rooftop of Capri Tower 10	Portion V/Area A of	
` ,	2 2	NE/2015/02 site area	

4.13 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5**, **4.6** and **4.7**.

Table 4.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)
CM1	65.5	
CM2	63.6	75
CM3	65.6	73
CM4	62.0	
CM5	68.2	70*
CM6(A)	61.9	
CM7(A)	58.3	75
CM8(A)	69.1	
CM9(A)	$N/A^{(1)}$	

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

Table 4.6 Baseline Noise Level and Noise Limit Level for Monitoring Stations (Evening-time & Daytime (Holiday))

Station	Baseline Noise Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))	Noise Limit Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))	
CM1	64.4		
CM2	62.2	70	
CM3	64.7		
CM6(A)	60.2	65 ¹	
1. ASR B was adopted according to the EIA as traffic in the surrounding area has not been changed.			

⁽¹⁾ The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Table 4.7 Baseline Noise Level and Noise Limit Level for Monitoring Stations (Night-time)

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
	(Night-time (2300 – 0700 hrs)	(Night-time (2300 – 0700 hrs)
CM1	14-day baseline monitoring results for	
CM2	the time period of impact measurement	55
CM3	at each station would be adopted	

Current Tunnel Blasting Arrangement

- 4.14 The drill and blast method was evaluated as the most appropriate method and the general practice of this method was introduced during the EIA report assessment. The paragraphs 2.9.9 and 2.9.33 of the EIA Report mention that there might be one blast or multiple blasts and the maximum number of blast location per day would be determined by the Contractor to suite his method of working.
- 4.15 Notwithstanding the information provided by the Engineer at paragraphs 4.6.4 and 6.6.12 of the EIA Report, to minimize blast nuisance to the public and to respond to the community concerns, the tunnel blast should be arranged, where possible, avoiding the blast to be carried out during night time and shortening the blast duration by arranging various work fronts to be blasted at different time slots. Hence, it has become more desirable to split one tunnel blasting operation, which may consist of several blasting work fronts along the tunnels, into a total of two to three tunnel blasts per day. The tunnel blasts, which locate outside the MTR Protection Zone (RPZ) possessing insignificant risk to the MTR's structures would be carried out during day time and before 22:00. For the tunnel blasts within and in close vicinity to RPZ, Contractor's blasting assessment report revealed that those blasts have to be carried out after train service and, generally, at around 01:40.
- 4.16 Since part of the tunnelling works conducted in this reporting month has encroached on the vicinity of the RPZ, some blasting works were carried out during the mid-night.

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

5.1 The existing groundwater quality monitoring programme has been suspended as the monitoring results had been deemed non-representative of the impact from the project justified by two major factors: (1) influence on the monitoring results from non-project related factors, such as anthropogenic activities and natural phenomenon; and (2) large separation between the monitoring stations and works area. In addition, as no alternative locations for the groundwater quality monitoring were available, the groundwater quality monitoring has been suspended since October 2019 upon the agreement by EPD.

Marine Water Quality

- 5.2 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in-situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.
- 5.4 According to the Environmental Review Report (ERR) for Variations of Environmental Permit (Ref: C45-03), water quality monitoring and audit programme was implemented for monitoring of oxygen depletion (e.g. Dissolved Oxygen (DO) level) in this embayed waters during the period when the fully enclosed barrier is installed. A "Proposal for Water Quality Monitoring in Temporary Marine Embayment" has been submitted to EPD in July 2017 to propose the monitoring frequency, parameter, location, etc. EPD has no further comment on the Proposal. The marine water quality monitoring in temporary marine embayment had been suspended since January 2020 upon the approval of EPD.

Groundwater Level Monitoring (Piezometer Monitoring)

5.5 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month.

Monitoring Locations

Marine Water Quality

A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. One additional monitoring station (W1) is designated for monitoring of oxygen depletion in the embayed waters during the period when the fully enclosed barrier is installed. The locations are also summarized in **Table 5.2** and shown on **Figure 5** and **Figure 9**.

Table 5.2 Marine Quality Monitoring Stations

Monitoring	Descriptions	Coordinates	
Stations	Descriptions	Easting	Northing
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565
M2	Junk Bay Coral Site – Junk Bay	844076	817087
M3	Junk Bay Coral Site – Junk Island	844491	817890
M4	Junk Bay Coral Site - Chiu Keng Wan	843209	816416
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769
M6	Tseung Kwan O Salt Water Intake	845512	817442
C1	Control Station – Southeast	844696	814773
C2	Control Station – Northwest	842873	816014
G1	Gradient Station	844418	817560
G2	Gradient Station	844290	817384
G3	Gradient Station	844488	817735
G4	Gradient Station	844967	817551

Monitoring Equipment

5.7 For in-situ monitoring, a multi-parameter meter (Aquaread AP-2000-D) was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in-situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

<u>рН</u>

5.13 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.15 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labelled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.16 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In-Situ Instruments

- 5.17 All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.18 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.19 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of Aquaread AP-2000-D. The probe was then be calibrated with a solution of known NTU.
- 5.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.21 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
	YSI 6820-C-M	0

Multi-parameter	Aquaread AP-2000-D	0
Water Quality System	YSI EXO1 Multiparameter Sondes	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Monitoring Parameters and Frequency

5.22 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Table 5.4 Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameters, unit	Depth	Frequency
Marine Wate	er Quality		
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	In-situ: Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity Laboratory Testing: Suspended Solids (SS)	M1-M5, C1-C2, G1-G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. M6 at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid-depth level)	3 days per week 2 per monitoring day (1 for mid-ebb and 1 for mid- flood)

Monitoring Methodology

Marine Water Quality

5.23 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.

5.24 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.25 The testing of all parameters were conducted by Wellab Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Table 5.5 Methods for Laboratory Analysis for Water Samples

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L ⁽¹⁾	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	d 0.05 mg NH ₃ - N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

Note:

QA/QC Requirements

Decontamination Procedures

5.26 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.27 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.28 QA/QC procedures as attached in **Appendix J** are available for the parameters analysed in the HOKLAS-accredited laboratory, WELLAB Ltd.

¹⁾ Limit of Reporting is reported as Detection Limit for non-HOKLAS report.

²⁾ Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

Results and Observations

Groundwater Quality Monitoring

5.29 Monitoring of groundwater quality had been suspended since October 2019. (Details refer to Section 5.1)

Marine Water Quality Monitoring

- 5.30 Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.31 Calculated Action and Limit Levels for Marine Water Quality is presented in **Appendix** I. Seventy (70) Action Level and two-hundred and eighteen (218) exceedances were recorded in marine water quality monitoring.
- 5.32 Exceedances of turbidity and suspended solid were recorded on from various monitoring stations non-specifically among all stations including the control stations. Investigations over January 2020 showed that the range of SS levels recorded in January 2020 remained consistent with the records in recent months. Despite wet season had ended, the Contractor should keep checking the condition of silt curtains daily through visual inspections and weekly diver inspections. Precaution measures were also adopted by the Contractor to further enhance the mitigation measures for water quality; the deployment of local double-layered silt curtains to surround the works with potential release of muddy water, and spare silt curtains were placed near the works area to replace any damaged silt curtains. Further details of the exceedance investigation reports can be found in **Appendix K**.
- 5.33 Silt curtain inspections are carried out before the commencement of the construction works every day and diving surveys are also conducted once a week to inspect the silt curtain below the water level. The inspection report are verified by both the RE and the diving specialist and the records are reviewed weekly during the site audits.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.34 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.35 Tunnel construction activities are within +/- 50m of the piezometer gate in plan. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month. Details of the result are presented in **Appendix U**.

Mitigation Measures Adopted by Contractors for Surface runoff Prevention

5.36 During dry season, the Contractors have maintained the mitigation measures adopted on Site, in order to prevent surface run-off and muddy water from discharging to the public areas. The mitigation measures adopted by each Contract are summarised below:

NE2015/01

- 5.37 At Lam Tin Side, the Site drainage systems are divided into two parts, namely the site formation and tunnel site drainage which includes:
 - 1. Site formation drainage system collects surface run-off from open excavation areas including slope works and flows naturally to the lowest point in the Site, where they are pumped to the wetseps and sedimentation tank for treatment near LTI site entrance before they are discharged to designated discharge point.
 - 2. Tunnel drainage system collects surface run-off from the tunnel which are then pumped to the sedimentation tanks near tunnel adit, where three sets of wetseps and sedimentation tanks were set up. The treated water will be discharged to designated discharge point near the Eastern Harbour Crossing (EHC) area.
- 5.38 At Eastern Harbour Crossing (EHC), two sets of wetseps and sedimentation tanks are set up on site. The wastewater will flow to the lowest catchpit by gravity, which are then pumped to wetseps for wastewater treatment. The sandbags/bunds are also set up at the vehicle entrance to surface run-off from the Site.
- 5.39 At Tseung Kwan O (TKO), the surface run-off from the slope are directed to the lowest point at cavern via the permanent drainage, which are then pumped to the sedimentation tanks for wastewater treatment via temporary pipes. The treated water will be discharged at designated discharge points. The wetseps and sedimentation tanks are provided under the BMCPC bridge and at the two sides of marine working platform. Water from natural stream will also be diverted to existing drainage to avoid overloading the capacity of the wastewater treatment system. The reservoir on the right side of marine working platform will be enlarged to cater for higher water storage demands. During heavy rainfall, the water stored at the exit of the tunnel shall be pumped into the sedimentation tanks on the right.

NE2015/02

- 1. The exposed sloped area at Portion 9 has been covered with geotextile or tarpaulin to avoid surface run-off. Temporary peripheral open U-channel are also provided along the surcharge area within the rock mount to collect stormwater and surface run-off.
- 2. The bund wall near Area A has been extended to 300mm in depth along the drainage system at Area A, extra bund wall shall be provided at the gaps between the concrete block walls in Area A when necessary.
- 3. Soak away pit with a 600mm in diameter were bored into the ground, down to 14mPD, near the piling works area to cater for the surface runoff at portion 9. The stormwater and the water generated from the piling works are stored temporary at

- the pit around the soak away pit, which shall be pumped automatically into the soak away pit where they are soaked into the soil naturally.
- 4. The stormwater received in Portion 9 shall be directed and pumped via the flex tube and sump towards the water treatment system in Area A and Z. The peripheral open U-channel are also provided along the site boundary, which shall be directed to the storage tank and WetSep for treatment in Area A.
- 5. Regular cleaning depending on site conditions are provided for the WetSep at Area A and Z; and the storage tanks and sedimentation tanks at Area A. The water treated by the sedimentation tank and the wetsep shall be discharged towards the designated discharge point. Quality of the effluent are also monitored regularly.

NE2017/02

- 1. Existing manholes are covered with sandbags and geotextiles to avoid surface runoff from entering the channels.
- 2. Stockpiles are covered with tarpaulin to avoid surface run-off.
- 3. Concrete blocks and sandbags are placed along the periphery of the site boundary to avoid surface run-off.
- 4. Stormwater within the site enters the excavated area and flow naturally into the sump due height difference. The stormwater collected in the sump shall be pumped into the sedimentation tank where the run-off are treated before discharging into the designated discharge point.

NE2015/03

- 1. The existing manhole cover are covered with geotextile to prevent muddy water from entering the existing U-channels along the side of Po Shun Road. Manhole inspection are carried out by taking silt measurement regularly in case if silt enters the channel, and silt shall be removed from the manhole if silt were found.
- 2. Sandbags were placed at the periphery of the site along the hoarding to prevent surface runoff from escaping the site.
- 3. Exposed slopes are covered with tarpaulin to prevent surface run-off.
- 4. The surface run-off shall be pumped into the sedimentation tank where they are treated before entering the designated discharge points

NE2017/01

1. Temporary peripheral open U-channels and sumps are provided for collecting the stormwater, which are pumped and directed towards the sedimentation tank for treatment. The treated water shall be directed to the designated discharge point.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. Location of post-translocation coral monitoring is shown in **Figure 7**. The fourth post-translocation coral monitoring was carried out on 07 November 2017. No further monitoring is required.

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be applied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 May 2017.
- 7.2 As stated in the "Built Heritage Mitigation Plan" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

7.3 One vibration monitoring point and three building settlement monitoring points were proposed for monitoring of the cultural heritage. The building settlement markers were placed on the wall on three sides of the Temple, except the front, of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.4 Building settlement is measured via a settlement marker attached to the wall of Cha Kwo Ling Tin Hau Temple by adhesive tape.
- 7.5 Vibration monitoring was conducted by using vibrographs: Minimate Plus manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "Guidance Note on Vibration Monitoring" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.6 **Table 7.1** summarizes the equipment employed by the Contractor for cultural heritage monitoring. Copies of calibration certificates are attached in **Appendix B**.

Table 7.1 Cultural Heritage Monitoring Equipment

Equipment	Manufacturer and Model	Quantity
Digital Layal for tilting	Leica LS15	1
Digital Level for tilting	Serial No.: 701141	1
Digital Caliper for tilting	Mitutoyo CD-6" ASX	1
Digital Camper for thining	Serial No.: A17047921	1
iCivil-1011 Inclinometer	iCivil-1011 Inclinometer	2
for building settlement	Serial No.: HK110118 / HK110120	2
Vibrographs for vibration	MiniMate Plus / MicroMate	
monitoring	manufactured by Instantel	33
momtoring	Model No.: 716A0403 / 721A2501	

Monitoring Methodology

7.7 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.8 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

Table 7.2 AAA Levels for Monitoring for Cultural Heritage

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Markers	6mm	8mm	10mm
Building Tilting ⁽¹⁾	1:2000	1:1500	1:1000

Remarks:

Results

7.9 In the reporting month, cultural heritage monitoring was carried out by the Contractor at the aforesaid location on 26 occasions. No AAA Level exceedance was recorded in the reporting month. The monitoring results are presented in **Appendix T**.

Mitigation Measures for Cultural Heritage

- 7.10 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.11 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

⁽¹⁾ Building tilting measurement was replaced by building settlement point measurement. The tilting can be calculated by the ratio of the maximum settlement difference between 2 points and the distance between the 2 points.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for January 2020

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Implementation Schedule and Recommended Mitigation Measures" (shown in **Appendix N**). The summaries of observations and recommendations related to landscape and visual impacts, if any, are shown in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

Monitoring Parameters and Frequency

- 9.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

Monitoring Locations

9.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Excavation Locations : Portion III
 Manholes and Chambers : N/A
 Relocation of monitoring wells : N/A
 Any other Confined Spaces : N/A

Monitoring Equipment noise mitigation

9.6 **Table 9.1** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel – Design and Construction

Monthly EM&A Report for January 2020

Table 9.1 Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	ALTAIR 5X	
Portable gas detector	Multigas Detector	1
	(Serial No. 137333)	

Results and Observations

9.7 In the reporting month, landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 130 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 8, 15, 22, 31 January 2020
 - Contract No. NE/2015/02: 2, 8, 16, 23, 30 January 2020
 - Contract No. NE/2015/03: 2, 8, 17, 23, 30 January 2020
 - Contract No. NE/2017/01: 2, 8, 16, 23, 30 January 2020
 - Contract No. NE/2017/02: 2, 8, 16, 23, 30 January 2020
- 10.3 Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01, NE/2015/02, NE/2015/03, NE/2017/01 and NE/2017/02 on 31, 30, 23, 23 and 23 January 2020 respectively.

Implementation Status of Environmental Mitigation Measures

- 10.4 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.5 During site inspections in the reporting month, no non-compliance was recorded on reporting month. The observations and recommendations made during the audit sessions are summarized in **Appendix L**.

Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report for January 2020

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summitted in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 Five (5) Action Level exceedances were recorded due to the documented complaints received in the reporting month. Zero (0) and nine (9) Limit Level exceedances of construction noise monitoring were recorded for day-time and night-time respectively in the reporting month. The night time Limit Level exceedances were considered due to road traffic near the Eastern Cross Harbour Tunnel Toll Plaza, therefore non-Project related.
- 12.2 Seventy (70) Action Level and two-hundred and eighteen (218) exceedances were recorded in marine water quality monitoring.
- 12.3 Actions carried out in accordance with the Event and Action Plans in **Appendix M** are presented in **Appendix K** Summary of Exceedance.

Summary of Environmental Non-Compliance

12.4 No non-compliance was recorded on this reporting month.

Summary of Environmental Complaint

12.5 Five (5) environmental complaints were received in the reporting month. The Cumulative Complaint Log is presented in **Appendix O**. The investigation status and result is also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.6 No notification of summon or successful environmental prosecution was received in this reporting period. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Table 13.1 Summary Table for Site Activities in the next Reporting Period

Table 15.1 Summary Table for Site Activities in the next Reporting Period			
Contract No. and Project Title	Si	te Activities (February 2020)	Key Environmental Issues *
NE/2015/01 - Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 EHC2 U-Trough Site Formation – Area 1G1, Area 1G2, Area 2, Area 3, Area 4 & Area 5 Administration Building 	(A) / (B) / (C) / (D) / (E) / (G)
	Main Tunnel	Main Tunnel Excavation Main Tunnel Lining Works	(B)
	TKO Interchange	6) Haul Road Construction and Site Formation & Slope Works7) Cavern Excavation8) Bridge Construction	(A) / (C) / (D) / (E) / (F) / (I)
NE/2015/02 - Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works	7) Cavern Excavation		(A) / (B) / (C) / (D) / (E) / (G) / (I)

Contract No. and Project Title	Site Activities (February 2020)	Key Environmental Issues *
NE/2015/03 - Tseung Kwan O – Lam Tin Tunnel –	18) Installation of bored piles of abutments 19) Construction of 900 pipe from SMH9101 – SMH9103 20) Installation of socketed H-pile at CT01 CH213 – CH366 21) Construction of sloping seawall 22) Removal of temporary cofferdam6 The construction works under the contract had been completed in December 2019.	N/A
Northern Footbridge NE/2017/01 — Tseung Kwan O Interchange and Associated Works	 Pre-drilling Works Bored Pilling Works Installation of Precast Pile Cap Shell Construction of Pile Cap Construction of Pier Construction of Pier Head Works Segment erection works 	(A) / (B) / (E) / (F) / (G)
NE/2017/02 – Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	 8) Construction of Bridge Decks 1) Inspection pit excavation and utility diversion works 2) Road works 3) Watermain and drainage construction works 4) Bitumen paving 5) Proof drilling 6) Bored piles 7) Pile cap 	(A) / (B) / (E) / (F) / (G)
NE/2017/06 – Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	Nil	N/A

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and

(I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 39th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in January 2020 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 14.3 No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 14.4 Five (5) Action Level exceedances were recorded due to the documented complaints received in this reporting month.
- 14.5 No Action/Limit Level exceedances was recorded for daytime construction noise in the reporting month. Nine (9) limit level exceedances were recorded for night-time due to road traffic.

Water Quality Monitoring

- 14.6 Groundwater quality monitoring had been suspended since October 2019. Details shall be referred to **Section 5.1**.
- 14.7 Seventy (70) Action Level and two-hundred and eighteen (218) Limit Level exceedances were recorded in marine water quality monitoring.
- 14.8 Tunnel construction activities are within +/- 50m of the piezometer gate in plan. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. The daily piezometer monitoring has resumed on 19 November 2018, as the construction activity was within 50m. No Action Level exceedance was recorded in the reporting month. Details of the result are presented in **Appendix U**.

Ecological Monitoring

14.9 The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

14.10 No Alert Alarm and Action (AAA) Level exceedance of cultural heritage monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.11 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.12 Monitoring of landfill gases in the reporting month was carried out by the Contractor at excavation location, Portion III. No Limit Level exceedance was recorded.

Environmental Site Inspection

14.13 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-compliance was identified. The environmental deficiency observed during the reporting month are shown in Appendix K.

Complaint, Prosecution and Notification of Summons

14.14 Five (5) environmental complaints, no successful prosecution and notification of summon were received during the reporting period.

Recommendations

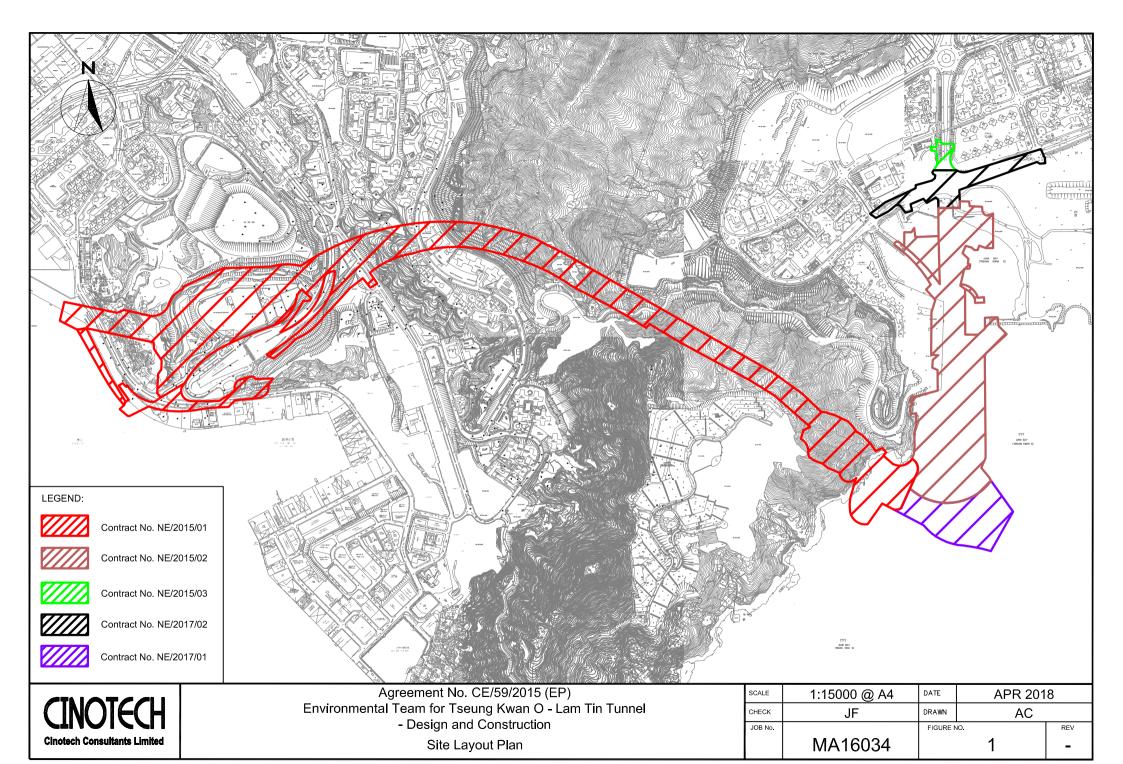
- 14.15 The following recommendations were made to the Contractor for the reporting month: *Air Quality Impact*
 - To regularly apply watering on dry surface should be applied to minimize erosion.
 - To aim the water spray at the rock breaking point for effective dust suppression.
 - To water materials before loading/unloading.
 - To turn off idle equipment.

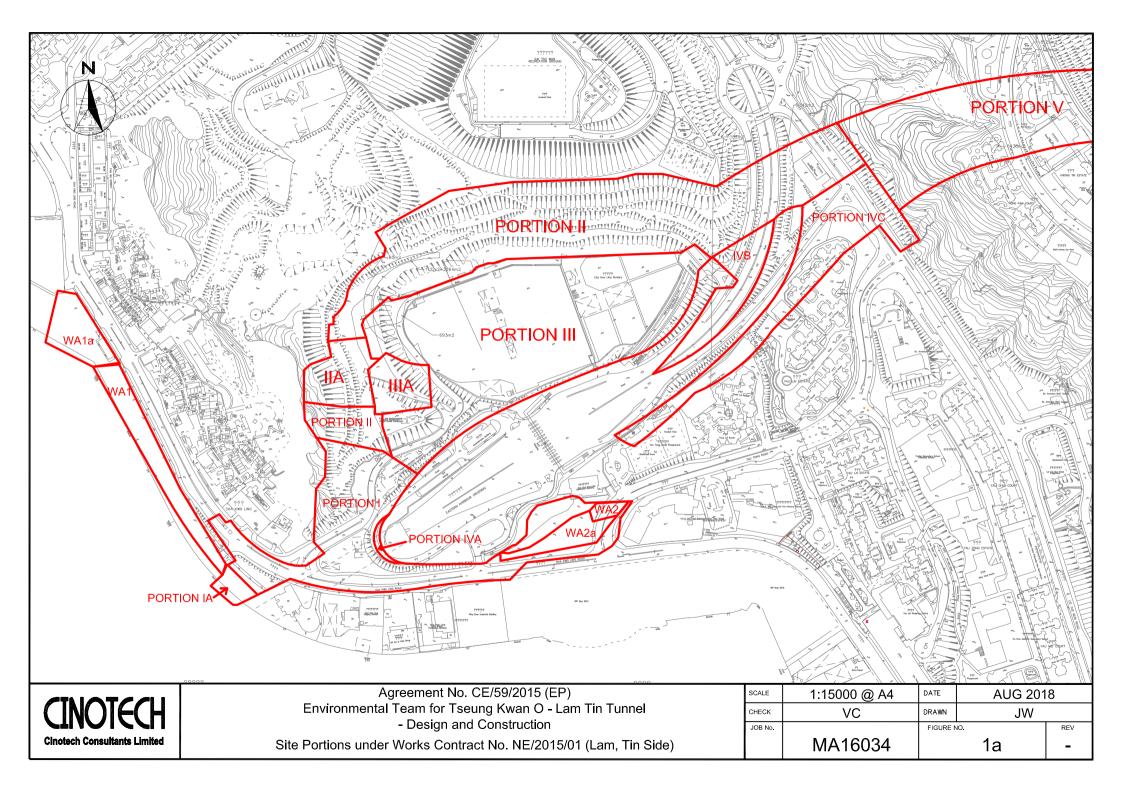
Construction Noise

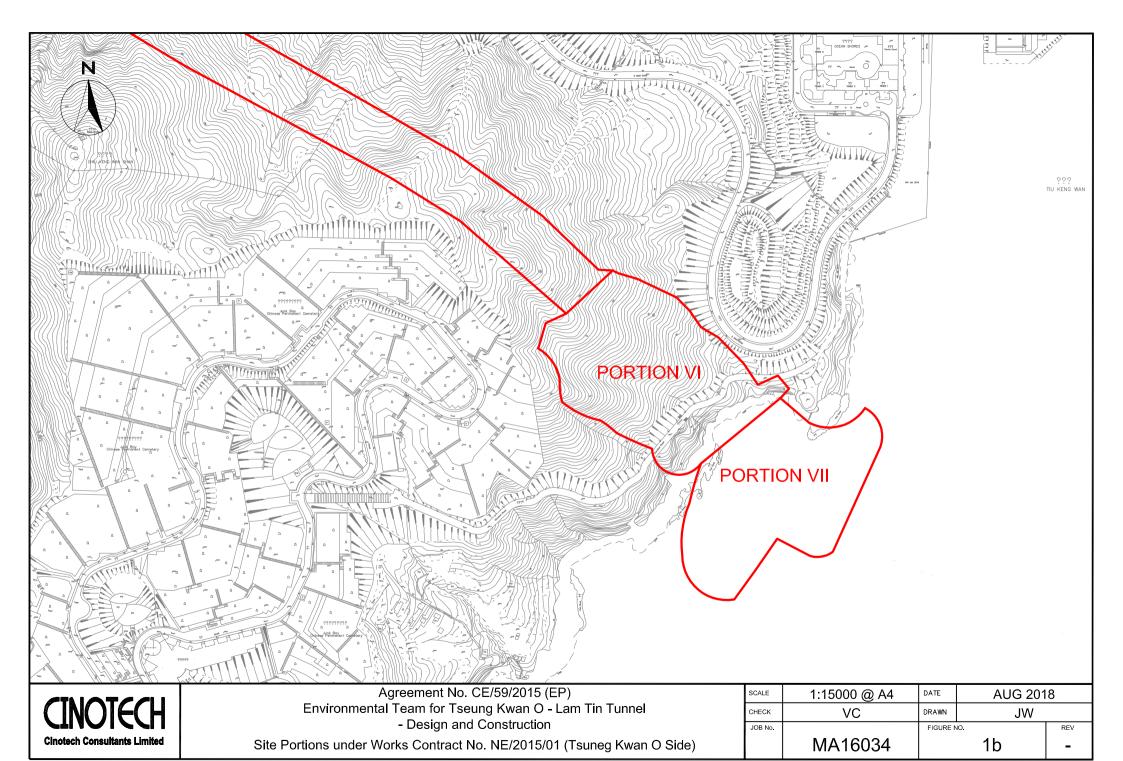
- To provide sufficient noise barriers for noisy PMEs as practically at LTI according to CNMP.
- To repair the gaps between the noise barriers.
- To place compatible noise barrier close to the breaking point for effective noise screening.
- To erect sound proof canvases on derrick lighter barge

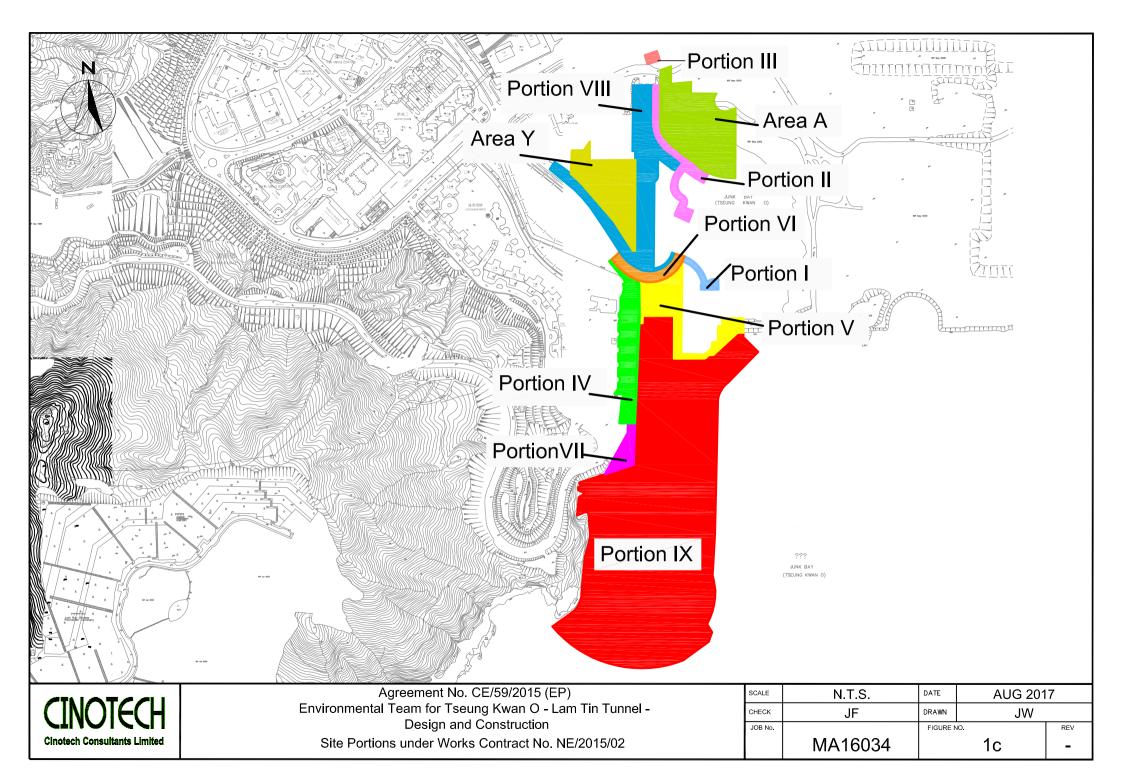
Water Quality Impact

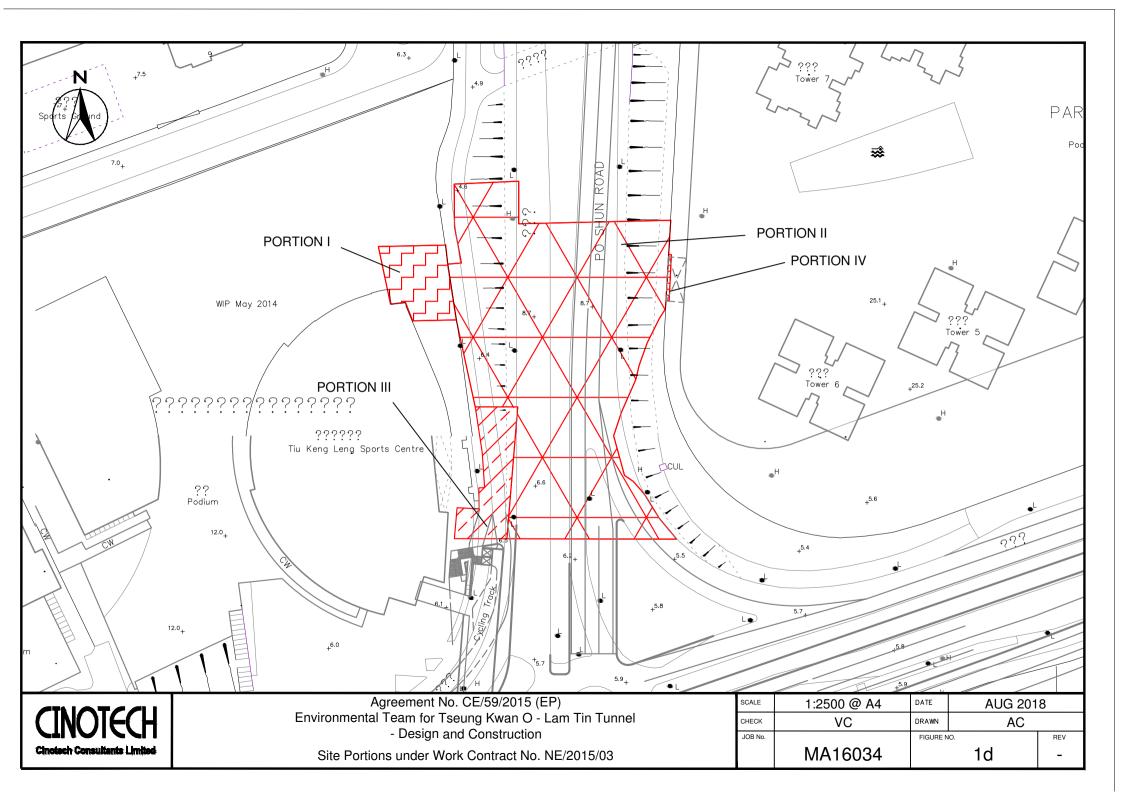
- To clear the oil slick and check for any damage of the silt curtain.
- To repair damaged or missing silt curtain
- To check whether the curtain has been set to the seabed.
- To ensure that the pumping rate of bored pile is sufficient to avoid discharging waste water into the sea.
- To clear floating refuse between the cofferdam and silt curtain.
- To clear oil slick within and outside cofferdam.
- To control the amount of loading materials in the barge to avoiding spillage.
- To cover stockpile near seafront.
- To remove wastewater and oil in drip tray.
- To remove pond/still water.

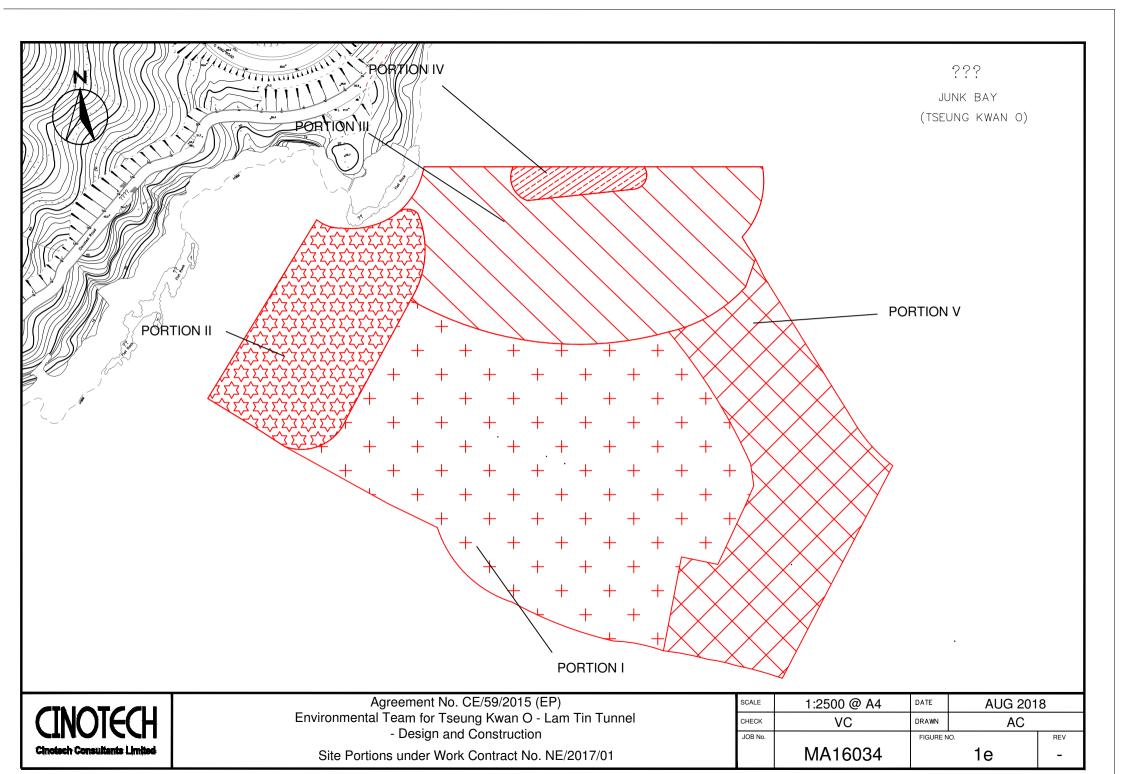

Waste/Chemical Management

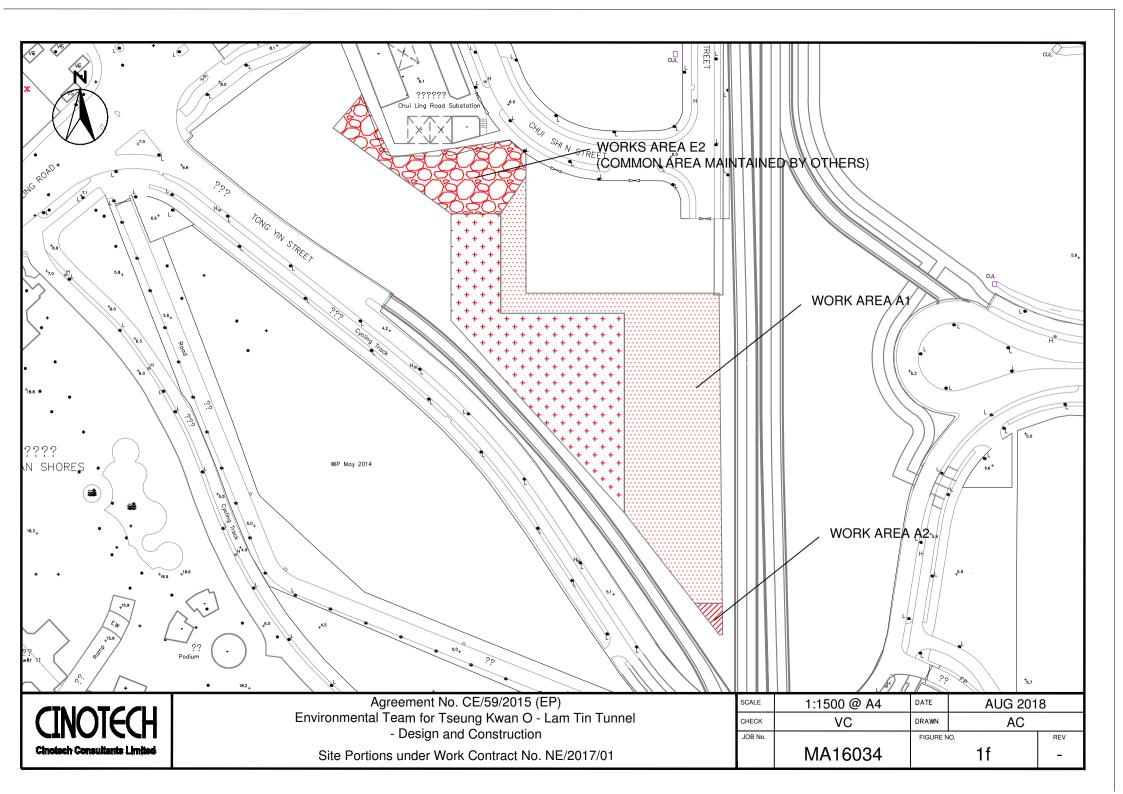

- To bund or lock the chemical storage area.
- To clear dripping oil from bored piling machine.
- To clear oil slick on seawater.
- To clear oil on the floor.

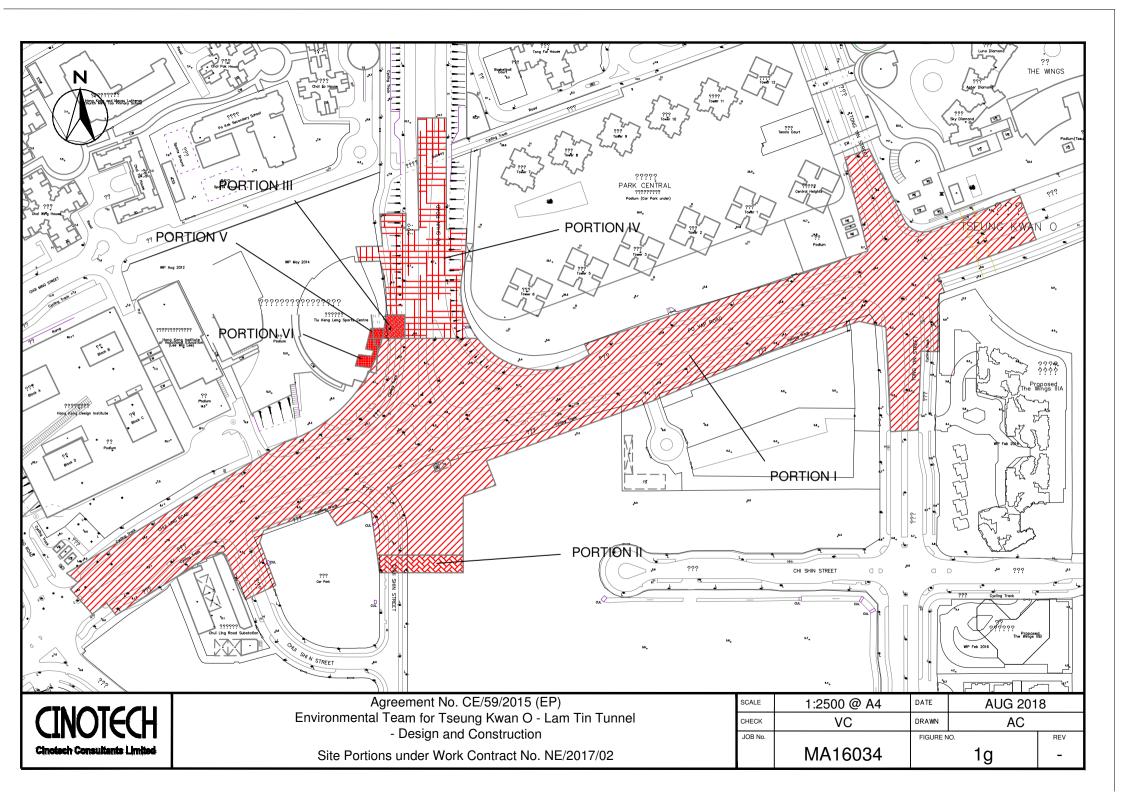

Landscape and Visual

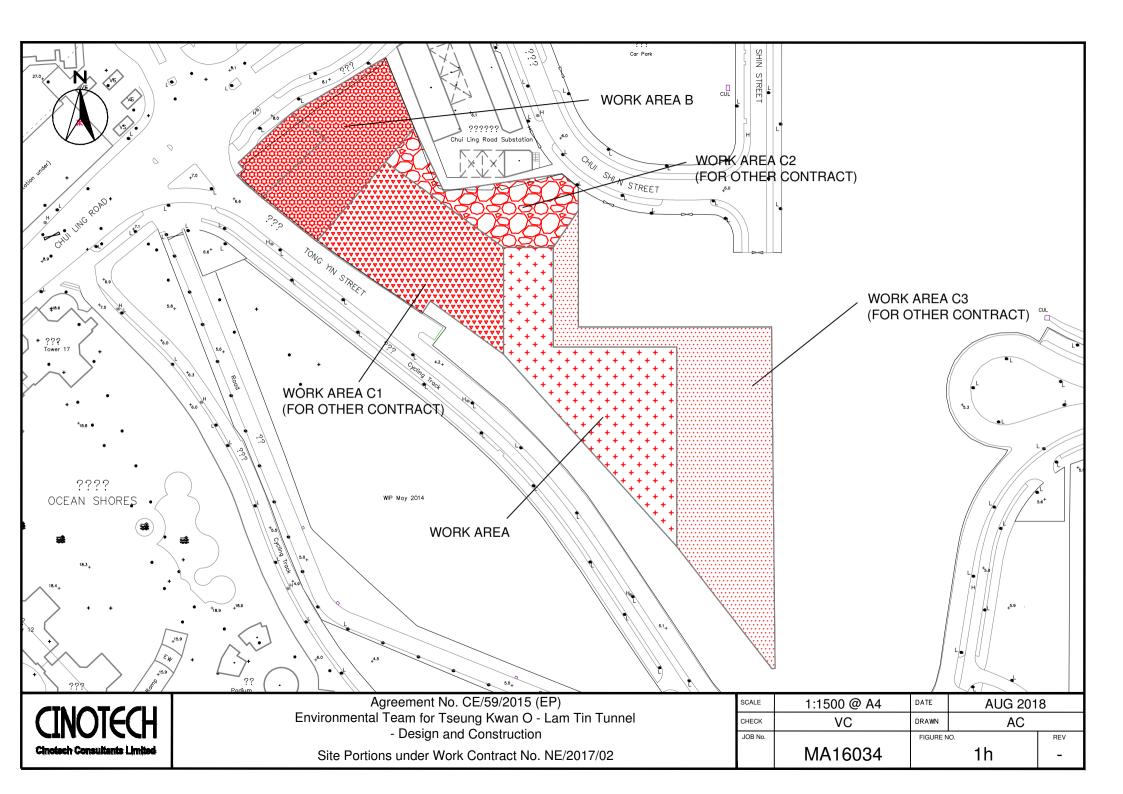

• To avoid placing any construction materials in the tree protection zone.

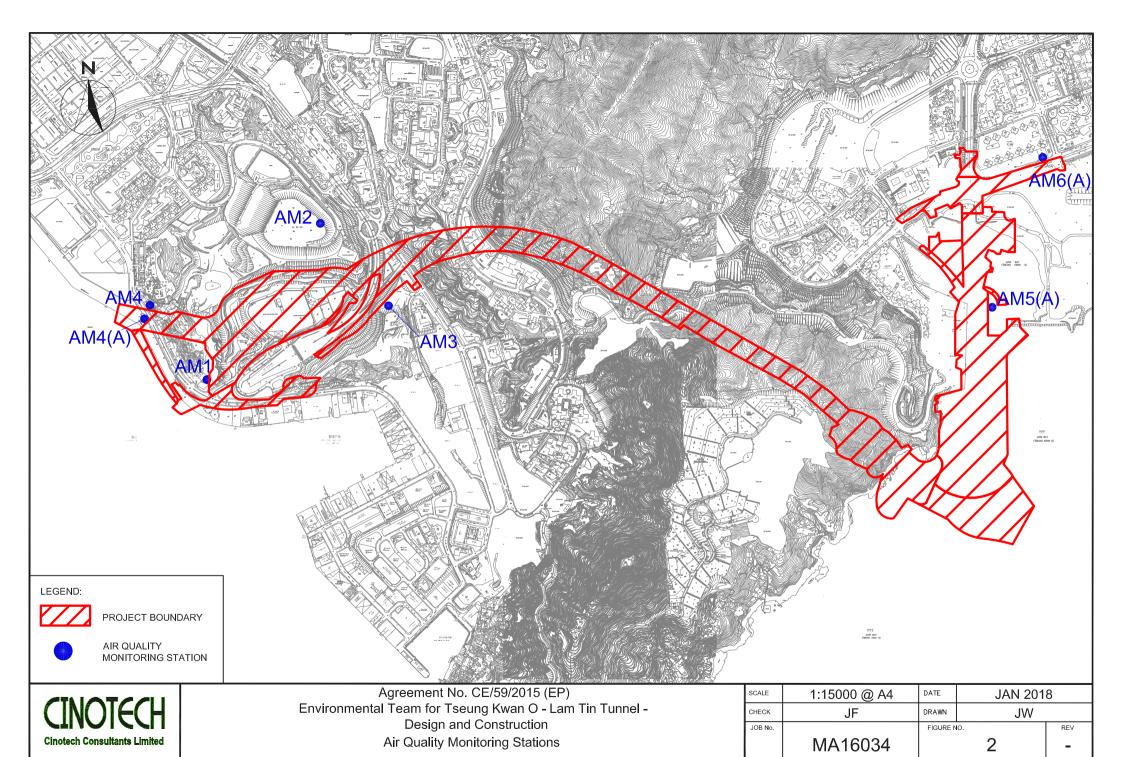

FIGURES

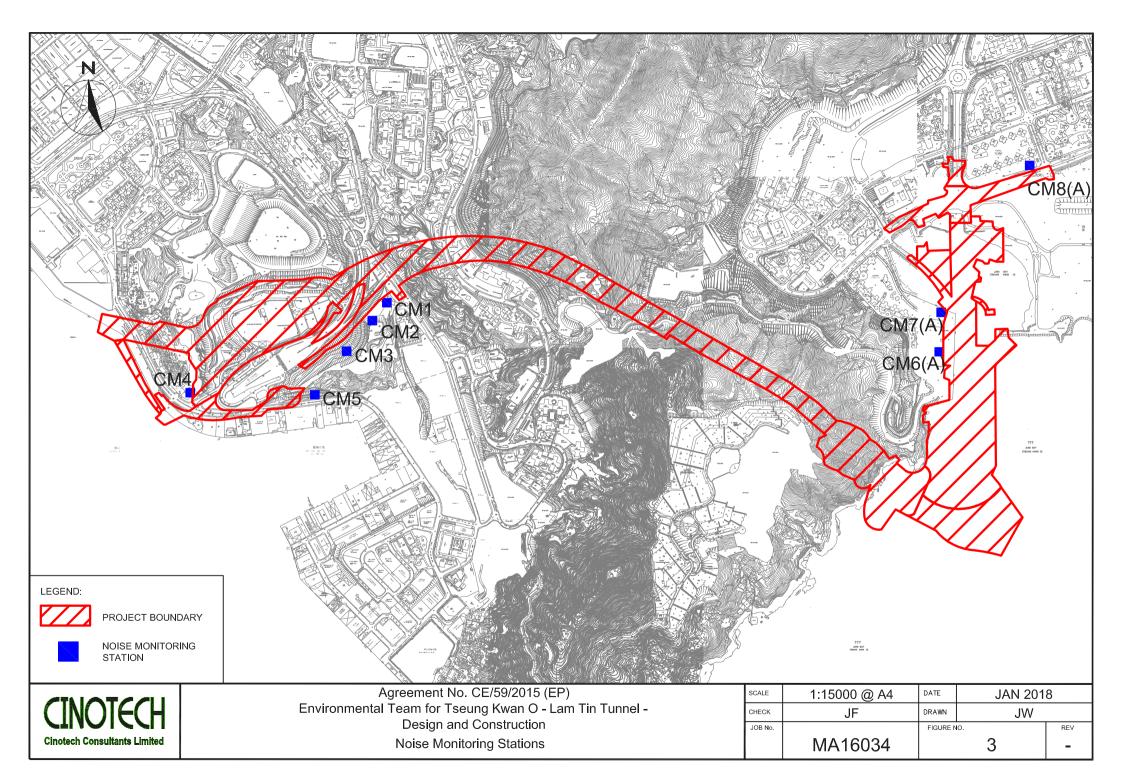


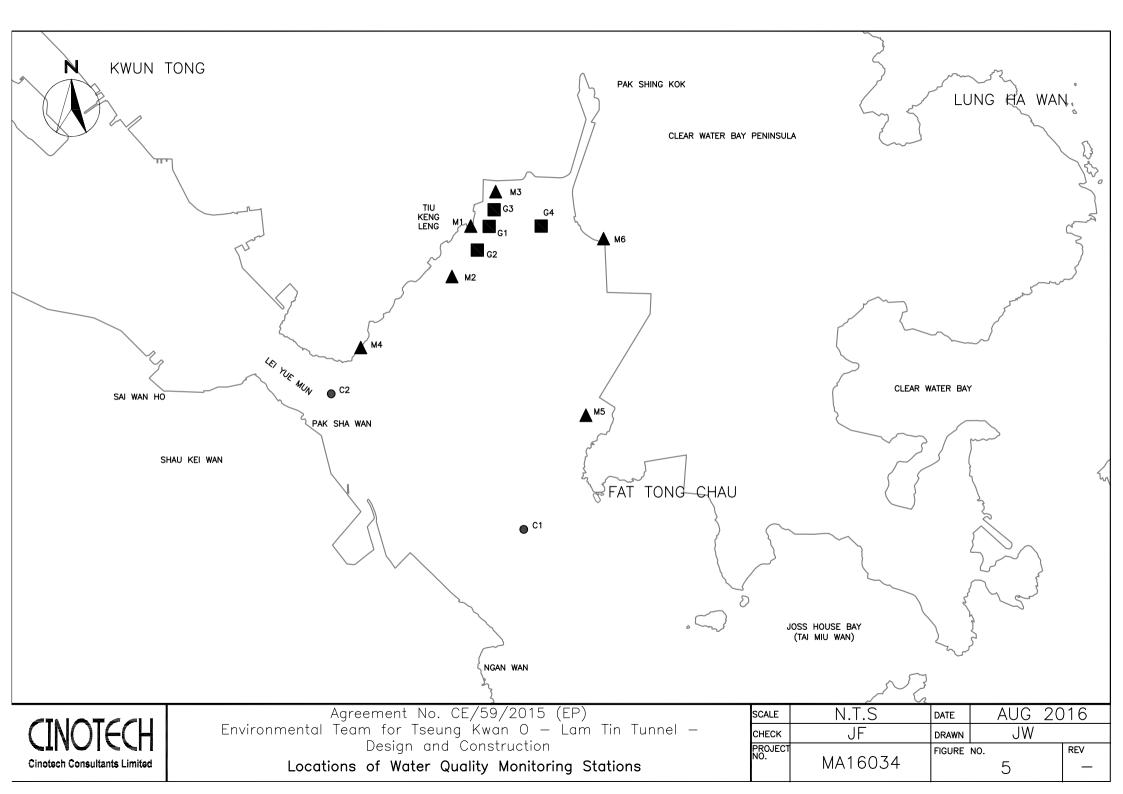


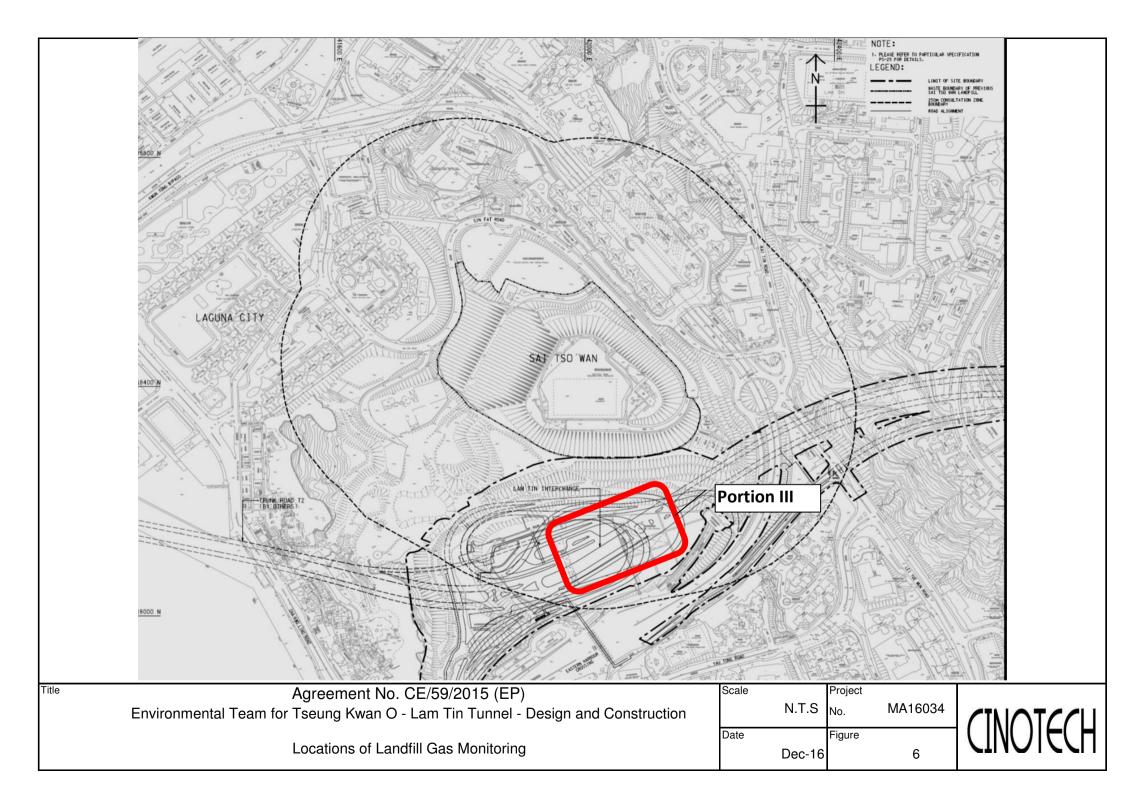


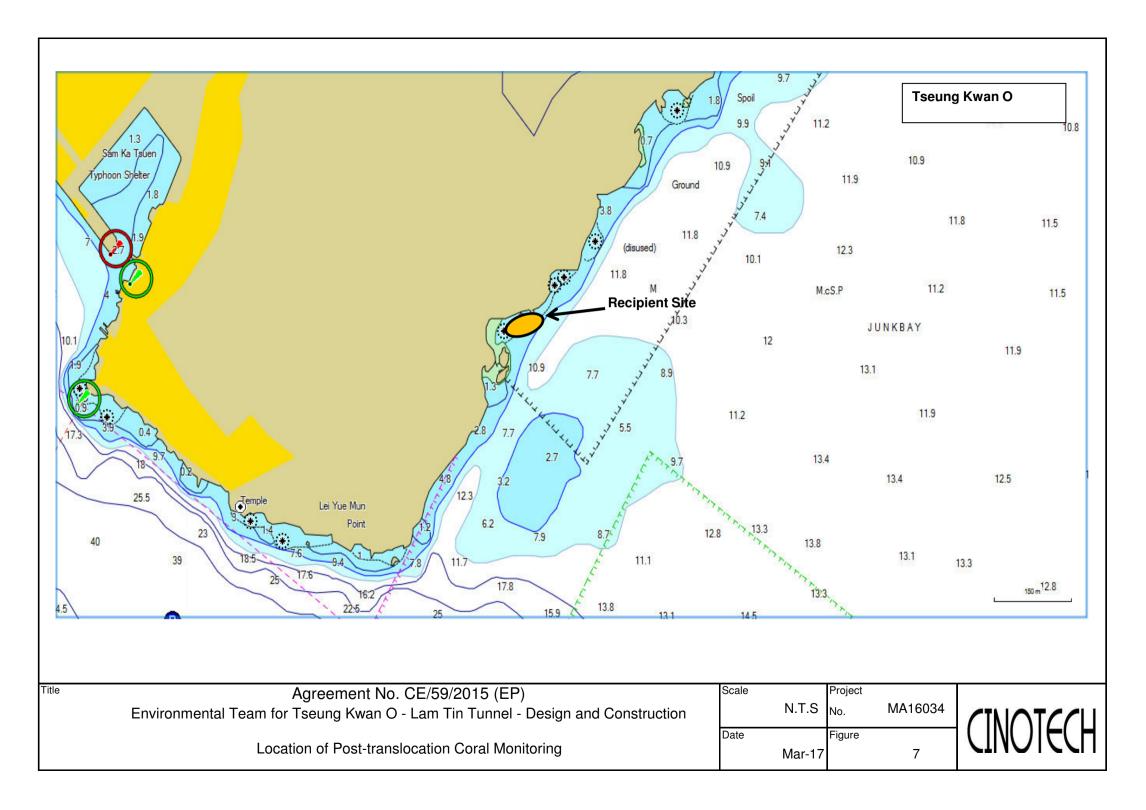


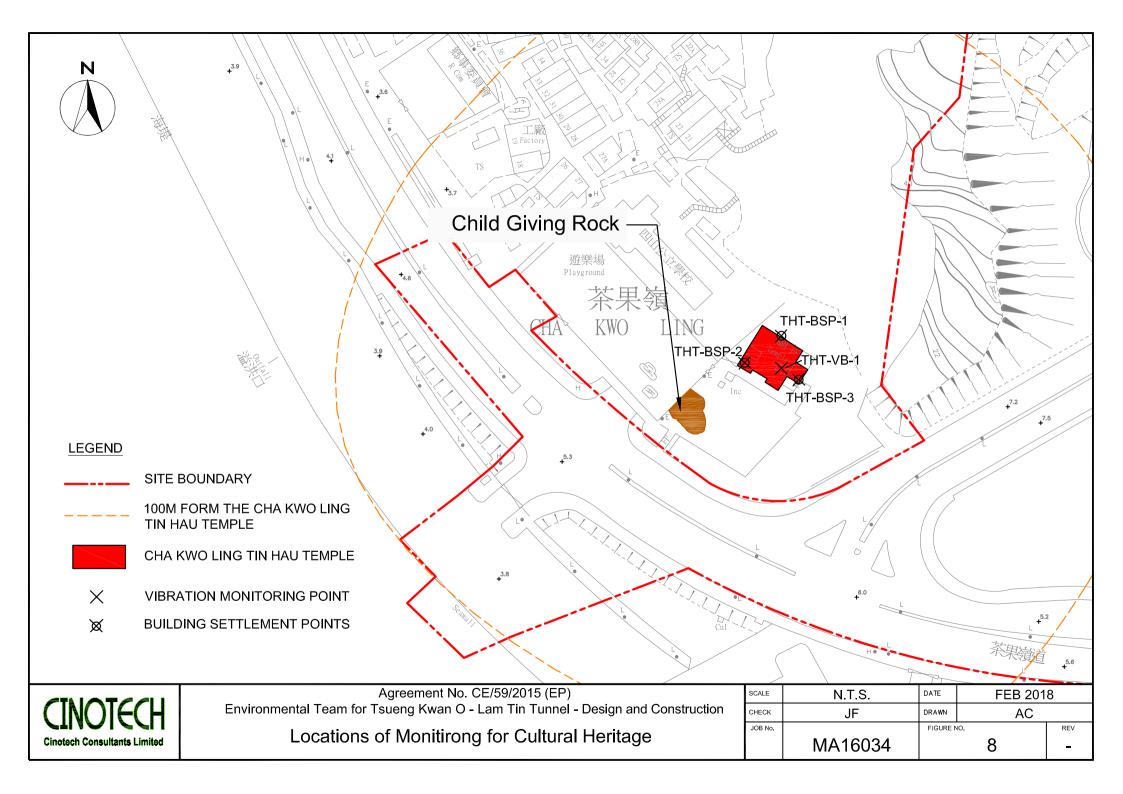












APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House	271	500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, μg/m ³	Limit Level, μg/m ³
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(A)	Cha Kwo Ling Public Cargo Working Area Administrative Office	210	260
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75 dB(A) (1)
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾

¹70 dB(A) for schools and 65 dB(A) for schools during examination period.

 ² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 3 If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit	
DO in mg L ⁻¹	7.6	7.6	
рН	6.0 - 8.9	6.0 – 9.0	
BOD ₅ in mg L ⁻¹	2.0	2.0	
TOC: 1-1	Stream 1 and Stream 2: 9	Stream 1 and Stream 2: 9	
TOC in mg L ⁻¹	Stream 3: 6	Stream 3: 6	
Total Nitrogen in mg L ⁻¹	2.0	2.1	
Ammonia-N in mg L-1	0.15	0.20	
Total Phosphate in mg L ⁻¹	0.05	0.05	
SS in mg L ⁻¹	7.6	12.1	
Turbidity in NTU	2.1	2.3	

Notes:

- 1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	Drill Hole No. 38568-LDH1	
Action Level (mPD)	+74.65	+17.59

Marine Water Quality

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	Stations G1-G4, M1-M5					
DO in mad	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	5.0 mg/L	4.7 mg/L				
	Stations G1-G4	4, M1-M5					
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day	6.9mg/L or 130% of upstream control station's SS at the same tide of the same day				
	Stations M1-M5						
SS in mg/L (See Note 2, 4 ad 5)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day				
	Stations G1-G4	4, M1-M5					
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

Notes:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.
- 5. Refer to Appendix I Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

Water Quality Monitoring in Temporary Marine Embayment

Parameter (unit)	Depth	Action Level	Limit Level
DO in mg/L	Depth Average	4.8 mg/L (4)	4 mg/L (3)
(See Note 1 and 2)	Bottom	$2.4 mg/L$ $^{(4)}$	<u>2 mg/L</u> ⁽³⁾

Notes:

- 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all sampling depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. Current Water Quality Objectives (WQOs) for marine waters of Hong Kong
- 4. As an alert for adverse water quality impact, the Action Level is set as 120% of the Current WQOs for marine waters of Hong Kong.

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition		
Mortality	If during Impact Monitoring a 15% increase			
·	in the percentage of partial mortality on hard	increase in the percentage of partial		
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the		
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring		
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,		
	Action Level is exceeded.	then the Limit Level is exceeded.		

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. > 1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

Alert, Alarm, Action Levels for Built Heritage Monitoring

Parameter	Alert Level	Alarm Level	Action Level
Vibration	ppv:4.5mm/s	ppv: 4.8mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm
Building Settlement Point	6mm	8mm	10mm
Building Tilting	1:2000	1:1500	1:1000

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

Cerificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Laser Dust Mo	nitor	Date of	of Calibration	7-Dec-19
Manufacturer:	Sibata Scientif	ic Technology LTD.	Validity of Calibra	ation Record	6-Feb-20
Model No.:	LD-3B				
Serial No.:	2Y6194				
Equipment No.:	SA-01-02		Sensitivity 0.001 mg/m3		
High Volume Sa	ampler No.:	A-01-03	Before Sensitivity Adjustment	578	
Tisch Calibratio	n Orifice No.:	3607	After Sensitivity Adjustment	578	
		Calibra	ation of 1 hr TSP		
Calibration		Laser Dust Monitor		HVS	
Point	Total Count	Count / Minute X-axis	Mass	s concentration (μ Y-axis	g/m ³)
1	3450	87.0		160.5	
2	3822	77.0		153.8	
3	3984	68.0		146.4	
Avei	rage	77.33		153.57	
Set Correlation		t* = 0.99		96.2801	
SCF = [K=Hig	n volume Samp	pler / Dust Meter, (μg/m3)			
In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler. Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)					
Calibrated by:	Wong Shi	og Kwai	Approved by:	\-lem	y Leung

Cerificate of Calibration

Description:

Digital Dust Indicator

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scientif	ic Technology LTD.	_	Validity of Calibra	ation Record	6-Feb-20	
Model No.:	LD-5R						
Serial No.:	972777						
Equipment No.:	SA-01-06		Sensitivity	0.001 mg/m3			
High Volume Sa	mpler No.:	A-01-03	Before Sensit	vity Adjustment	645		
Tisch Calibratio	n Orifice No.:	3607	After Sensitiv	ity Adjustment	645		
		Ca	libration of 1 h	r TSP			
Calibration		Laser Dust Monitor	•		HVS		
Point	Ma	ss Concentration (μg/ X-axis	/m3)	Mass	s concentration (μ Y-axis	.g/m ³)	
1		78.0			160.5		
2		73.0			153.8		
3		66.0		146.4			
Average		72.3			153.6		
By Linear Regi	ession of Y on	X					
Slope, $mw =$	1.167	4	Inter	cept, bw =	69.1225		
Correlation co	oefficient* = _	0.9977	,	-			
		Se	t Correlation I	actor			
Particaulate Con	centration by H	igh Volume Sampler	$(\mu g/m^3)$		153.6		
Particaulate Concentration by Dust Meter (μg/m³)		72.3					
Measureing time, (min)			60.0				
Set Correlation 1	Factor, SCF						
SCF = [K=Hig	h Volume Samp	pler / Dust Meter, (μ	g/m3)]	2.1			
In-house method	l in according to	the instruction manu	al:				
The Dust Monito	or was compared	d with a calibrated Hi	gh Volume Sam	pler and The result v	was used to gener	ate the Correlation	

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Very Xery
Wong Shing Kwai

Approved by: Henry Leung

Cerificate of Calibration

Description:

Digital Dust Indicator

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scientific Technology LTD.	_ Validity of Cal	ibration Record	6-Feb-20	
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity 0.001 mg/m3	<u> </u>		
High Volume Sa	ampler No.: A-01-01A	Before Sensitivity Adjustment	735 CPM		
Tisch Calibratio	n Orifice No.: <u>3607</u>	After Sensitivity Adjustment	735 CPM		
	Ca	libration of 1 hr TSP			
Calibration	Laser Dust Monitor		HVS		
Point Mass Concentration (µg/r		m3) M	Iass concentration (μg/m Y-axis	(1)	
1	75.0		160.5		
2	52.0		153.8		
3	29.0		146.4		
Average	52.0		153.6		
By Linear Regi Slope , mw = Correlation co	ression of Y on X 0.3065 oefficient* = 0.9996	Intercept, bw =	137.6275		
	Se	t Correlation Factor			
	ncentration by High Volume Sampler ($(\mu g/m^3)$	153.6		
Particaulate Cor	ncentration by Dust Meter (μg/m ³)		52.0		
Measureing time	e, (min)		60.0		
Set Correlation					
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	g/m3)]3	.0		
In-house method	l in according to the instruction manua	al:			
The Dust Monit	or was compared with a calibrated His	th Volume Sampler and The resu	ilt was used to generate	the Correlation	

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Vong Shing Kwai

Approved by: Henry Leung

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibr	6-Feb-20		
Model No.:	LD-5R	-				
Serial No.:	972779					
Equipment No.:	SA-01-08		Sensitivity	0.001 mg/m3	<u>-</u>	
High Volume Sa	mpler No.:	A-01-01A	Before Sensiti	vity Adjustment	744 CPM	
Tisch Calibration Orifice No.:3607		After Sensitiv	ity Adjustment	744 CPM		
		Ca	libration of 1 h	r TSP		
Calibration		Laser Dust Monitor	ŗ		HVS	
Point	Mass Concentration (ug/m		(m3)	Mas	ss concentration (µ Y-axis	.g/m ³)
1	74.0			160.5		
2		53.0		153.8		
3		27.0		146.4		
Average		51.3		153.6		
By Linear Regr Slope , mw = Correlation co	0.29			cept, bw =	138.1975	<u>i</u>
		Se	t Correlation F	actor		
Particaulate Con	centration by	High Volume Sampler	$(\mu g/m^3)$		153.6	
Particaulate Concentration by Dust Meter (µg/m³)			51.3			
Measureing time, (min)		60.0				
Set Correlation F	Factor, SCF					
SCF = [K=Higl	h Volume Sar	npler / Dust Meter, (μ	g/m3)]	3.0		
The Dust Monito	or was compar	to the instruction manuated with a calibrated High	gh Volume Sam	pler and The result	was used to gener	ate the Correlation

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai Approved by: Henry Leung

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibration Record 6-Feb-2		
Model No.:	LD-5R				
Serial No.:	972780				
Equipment No.:	SA-01-09	Sensitivity _	0.001 mg/m3		
High Volume Sa	mpler No.: <u>A-01-01A</u>	Before Sensitivi	ty Adjustment	739 CPM	
Tisch Calibration	n Orifice No.: <u>3607</u>	After Sensitivity	Adjustment	739 CPM	
	Ca	alibration of 1 hr	TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Consentration (us/m		Mass concentration (μg/m³) Y-axis		
1	79.0			160.5	
2	56.0		153.8		
3	29.0		146.4		
Average	54.7			153.6	
By Linear Regr Slope , mw = Correlation co	ession of Y on X 		pt, bw =	138.1631	·
	Se	et Correlation Fa	ctor		
	centration by High Volume Sampler	(μg/m ³)		153.6	
Particaulate Concentration by Dust Meter (µg/m³)			54.7		
Measureing time, (min)				60.0	
Set Correlation F SCF = [K=High	Factor , SCF h Volume Sampler / Dust Meter, (µ	.g/m3)]	2.8		
	in according to the instruction manu		er and The result	was used to gener	ate the Correlation

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Cerificate of Calibration

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Manufacturer:	Sibata Scient	Sibata Scientific Technology LTD.		Validity of Calibration Record 6-Feb-20		6-Feb-20
Model No.:	LD-5R	_				
Serial No.:	972781	_				
Equipment No.:	SA-01-10	_	Sensitivity	0.001 mg/m3	_	
High Volume Sa	mpler No.:	A-01-01A	Before Sensit	ivity Adjustment	734 CPM	
Tisch Calibration Orifice No.: 3607		After Sensitiv	rity Adjustment	734 CPM		
		Ca	libration of 1	nr TSP		
Calibration		Laser Dust Monitor	r		HVS	
Point	Mass Concentration (μg/n X-axis		/m3)	Mas	ss concentration (Y-axis	ug/m³)
1	84.0			160.5		
2		57.0		153.8		
3	31.0		146.4			
Average		57.3		153.6		
By Linear Regr Slope , mw = Correlation co	0.26			ccept, bw = -	138.320	4
		Se	et Correlation	Factor		
	•	High Volume Sampler	$(\mu g/m^3)$	153.6		
Particaulate Concentration by Dust Meter (μg/m³)			57.3			
Measureing time, (min)				60.0		
Set Correlation I	Factor, SCF					
SCF = [K=Higl	h Volume Sai	mpler / Dust Meter, (μ	ıg/m3)]	2.7		
	_	to the instruction manu		pler and The result	was used to gene	rate the Correlation

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Vong Shing Kwai

Approved by: Henry Leung

TE-5025A

RECALIBRATION **DUE DATE:**

January 8, 2020

ertificate o

Calibration Certification Information

Cal. Date: January 8, 2019 Rootsmeter S/N: 438320

Ta: 294

Pa: 748.0

Operator: Jim Tisch Calibration Model #:

Calibrator S/N: 3607

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4340	3.2	2.00
2	3	4	1	1.0190	6.3	4.00
3	5	6	1	0.9110	7.8	5.00
4	7	8	1	0.8650	8.7	5.50
5	9	10	1	0.7150	12.6	8.00

	Data Tabulation				
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9934	0.6927	1.4125	0.9957	0.6944	0.8866
0.9892	0.9708	1.9976	0.9916	0.9731	1.2538
0.9872	1.0837	2.2334	0.9896	1.0862	1.4018
0.9860	1.1399	2.3424	0.9884	1.1426	1.4703
0.9808	1.3718	2.8251	0.9832	1.3750	1.7732
	m=	2.07879		m=	1.30170
QSTD[b=	-0.02422	QA [b=	-0.01520
	r=	0.99997		r=	0.99997

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime		
	For subsequent flow rate calculations:				
Qstd=	$\mathbf{Qstd} = \frac{1}{m} \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right) \qquad \mathbf{Qa} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$				

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

RECALIBRATION **DUE DATE:**

January 17, 2021

ertificate o

Calibration Certification Information

Cal. Date: January 17, 2020

Rootsmeter S/N: 438320

Ta: 295 Pa: 744.2 °K

Operator: Jim Tisch

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3746

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4340	3.2	2.00
2	3	4	1	1.0180	6.4	4.00
3	5	6	1	0.9080	7.9	5.00
4	7	8	1	0.8700	8.7	5.50
5	9	10	1	0.7150	12.6	8.00

	Data Tabulation				
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9849	0.6868	1.4066	0.9957	0.6944	0.8904
0.9807	0.9633	1.9892	0.9914	0.9739	1.2592
0.9787	1.0779	2.2240	0.9894	1.0896	1.4078
0.9776	1.1237	2.3325	0.9883	1.1360	1.4765
0.9724	1.3601	2.8131	0.9831	1.3749	1.7808
	m=	2.09221		m=	1.31010
QSTD	b=	-0.02779	QA	b=	-0.01759
	r=	0.99994		r=	0.99994

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Qstd= Vstd/ΔTime		Va/∆Time		
For subsequent flow rate calculations:					
$\mathbf{Qstd} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right) $ $\mathbf{Qa} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

Standard Conditions				
Tstd:	298.15 °K			
Pstd:	760 mm Hg			
	Key			
ΔH: calibrator manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)				
Ta: actual absolute temperature (°K)				
Pa: actual barometric pressure (mm Hg)				
b: intercept				
m: clono				

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Cerificate of Calibration - Wind Monitoring Station

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: <u>MC01010A44</u>

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>22-Aug-2019</u>

Next Due Date <u>21-Feb-2020</u>

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V1)	D = V1 - V2
0.5	0.5	0.0
1.5	1.5	0.0
1.8	1.9	0.1
2.3	2.5	0.2

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (V1)	Marine Compass Value (V1)	D = W1 - W2
0	0	0.0
90.1	90	0.1
180	180	0.0
270.2	270	0.2

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:	[76]	Approved by:	Hongohot
	Wong Shing Kwai	_	Henry Leung

5-POINT CALIBRATION DATA SHEET

File No. MA16034/05/0021

Project No.	AM1 - Tin Hau	ı Temple					
Date:	13-Dec-19		Next Due Date: 12-Feb-20		Operator:	:SK	
Equipment No.:	A-(01-05	Model No.:	G	S2310	Serial No.	. 10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	292.1	Pressure, Pa	(mmHg)		765.5	
			rifice Transfer Star		ation		
Serial		3607	Slope, mc	0.0588	Intercept		-0.02422
Last Calibra		8-Jan-19	1	mc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$) x (298/Ta))]"2
Next Calibra	Next Calibration Date: 8-Jan-20 $ Qstd = \{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc $						
			Calibration of	TCD Commiss			
		Ο	Calibration of Trice	15F Sampier	<u> </u>	HVS	
Calibration	ΔH (orifice),			Qstd (CFM)	ΔW (HVS), in.		a/760) x (298/Ta)] ^{1/2}
Point	in. of water	[ΔH x (Pa/7)	60) x (298/Ta)] ^{1/2}	X - axis	of water	[ZW X (10	Y-axis
1	12.7		3.61	61.85	8.5		2.96
2	9.3		3.09	52.99	6.3		2.54
3	7.6		2.79	47.94	4.9		2.24
4	5.0		2.27	38.96	3.1		1.78
5	2.8		1.70	29.26	1.9		1.40
By Linear Regr Slope, mw =		X	,	Intercept, bw :	-0.064	.3	
	coefficient* =	_	.9983			<u>-</u>	-
*If Correlation C				-			
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
From the Regress	sion Equation, t	he "Y" value acc	ording to				
		mw v ($Qstd + bw = [\Delta W x]$	(Do/760) v (20	19/Ta)1 ^{1/2}		
		IIIW X C	zstu + υw – įΔw x	((T a/ / 00) X (2)	76/1a)j		
Therefore, Se	et Point; W = (n	nw x Qstd + bw	$x^2 \times (760 / Pa) \times (760 / Pa)$	Ta / 298) =	4.01		_
Remarks:							
Conducted by:	SK Wong	Signature:	<u> </u>			Date:	13 December 2019
Checked by:	Henry Leung	Signature:	- leng O	hoz		Date:	13 December 2019

5-POINT CALIBRATION DATA SHEET

File No. MA16034/08/0021

Project No.	AM2 - Sai Tso	Wan Recreation	Ground			•	
Date:	13-D	13-Dec-19 Next Due Date: 12-Feb-20		Feb-20	Operator:	SK	
Equipment No.:	A-0	1-08	Model No.:	GS	S2310	Serial No.	1287
						•	
			Ambient C	Condition			
Temperatu	re, Ta (K)	292.1	Pressure, Pa	(mmHg)		765.5	
		-					
Carial	N _o	3607	ifice Transfer Sta	0.0588		. h.	0.02422
Serial Last Calibra		8-Jan-19	Slope, mc		Intercept $c = [\Delta H \times (Pa/760)]$		-0.02422
Next Calibr		8-Jan-20			$(Pa/760) \times (298/7)$		
TVEXT CUITOT	ation Bate.			(1	(- ***		
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	(50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	12.7		3.61	61.85	8.4		2.94
2	9.7		3.16	54.10	5.9		2.46
3	8.0		2.87	49.17	5.0		2.27
4	4.8		2.22	38.18	3.1		1.78
5	2.7		1.67	28.74	1.8		1.36
Ry Linear Regr	ession of Y on Y	Z.					
Slope, mw =		•		Intercept, bw :	0.004	6	
Correlation		- 0	.9974	.		-	•
*If Correlation C	Coefficient < 0.99	90, check and rec	alibrate.	-			
			Set Point C	alculation			
	eld Calibration (_					
From the Regres	sion Equation, th	ne "Y" value acco	ording to				
		mw x Q	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}] \mathbf{x}$	x (Pa/760) x (29	$[98/Ta)]^{1/2}$		
			2				
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x ('	Ta / 298) =	3.91		-
Remarks:							
			121				10.5
Conducted by:	SK Wong	Signature:	W.			Date:	13 December 2019
Checked by: Henry Leung Signature: Date: 13 December 2019							
			1	•			

5-POINT CALIBRATION DATA SHEET

13 December 2019

13 December 2019

Date:

Date:

File No. MA16034/03/0021 Project No. AM3 - Yau Lai Estate, Bik Lai House 13-Dec-19 Next Due Date: 12-Feb-20 Operator: SK Date: Equipment No.: A-01-03 GS2310 Serial No. 10379 Model No.: **Ambient Condition** 292.1 765.5 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 2.92 1 12.5 3.58 61.36 8.3 2 9.3 3.09 52.99 6.2 2.52 7.9 2.85 48.87 5.0 2.27 3 5.1 3.3 4 2.29 39.34 1.84 5 2.7 1.67 28.74 2.0 1.43 By Linear Regression of Y on X Intercept, bw = ______ 0.0740 Slope, mw = 0.0459Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.08 Remarks:

Conducted by: SK Wong Signature:

Checked by: Henry Leung Signature:

5-POINT CALIBRATION DATA SHEET

File No. MA16034/54/0021

Project No.	AM4(A) - Cha	Kwo Ling Public	Cargo Working A	rea Administrat	tive Office		
Date:	13-Г	Dec-19	Next Due Date:	12-	Feb-20	Operator:	SK
Equipment No.:	A-()1-54	Model No.:	TE	5-5170	Serial No.	1536
			Ambient C	ondition			
Temperatu	re, Ta (K)	292.1	Pressure, Pa	(mmHg)		765.5	
		0	:fice Tuensfou Star	ndoud Inform	-4: a.u.		
Serial	No.	3607	Slope, mc	0.0588	Intercept	t. bc	-0.02422
Last Calibra		8-Jan-19			$c = [\Delta H \times (Pa/760)]$		
Next Calibra	ation Date:	8-Jan-20			(Pa/760) x (298/7		
	T		Calibration of	ΓSP Sampler			
Calibration Point	ΔH (orifice), in. of water		fice 50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	HVS [ΔW x (Pa/	760) x (298/Ta)] ^{1/2} Y-axis
1	12.7		3.61	61.85	8.4		2.94
2	9.7		3.16	54.10	6.2		2.52
3	7.5		2.78	47.62	5.1		2.29
4	5.2		2.31	39.72	3.4		1.87
5	3.0		1.76	30.27	1.9		1.40
	0.0483 coefficient* =	_	.9989	Intercept, bw =	-0.052	5	
			Set Point Ca	alculation			
		Curve, take Qstd he "Y" value acco		(Pa/760) x (29	98/Ta) ^{1/2}		
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.99		
Remarks:							
Conducted by:	SK Wong	Signature:	<u> </u>	,·		Date:	13 December 2019
Checked by:	Henry Leung	Signature:	leng	Xon		Date:	13 December 2019

5-POINT CALIBRATION DATA SHEET

13 December 2019

Date:

File No. MA16034/37/0021 AM5(A) - Tseung Kwan O DSD Desilting Compound Project No. 13-Dec-19 Next Due Date: 12-Feb-20 Operator: SK Date: Equipment No.: A-01-37 Model No.: GS2310 Serial No. 1704 **Ambient Condition** 292.1 765.5 Temperature, Ta (K) Pressure, Pa (mmHg) **Orifice Transfer Standard Information** Serial No. 3607 Slope, mc 0.0588 Intercept, bc -0.02422 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 8-Jan-19 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 8-Jan-20 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 2.97 1 12.6 3.60 61.61 8.6 2 9.8 3.17 54.38 6.3 2.54 7.8 2.83 48.56 5.1 2.29 3 5.2 2.31 3.3 4 39.72 1.84 5 3.0 1.76 30.27 2.0 1.43 By Linear Regression of Y on X Slope , mw = _____0.0488 Intercept, bw : -0.0712 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 3.99 Remarks: 13 December 2019 Conducted by: SK Wong Signature: Date:

Checked by: Henry Leung Signature:

5-POINT CALIBRATION DATA SHEET

File No. MA16034/07/0021

Project No.	AM6 - Park Ce	ntral					
Date:	te: 8-Jan-20		Next Due Date: 7-Mar-20		Operator:	SK	
Equipment No.:	A-(01-07	Model No.:	GS	S2310	Serial No.	10592
			Ambient C	ondition			
Temperatur	re, Ta (K)	294.9	Pressure, Pa			763.7	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3607	Slope, mc	0.0588	Intercept		-0.02422
Last Calibra		8-Jan-19	l r	mc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$	0) x (298/Ta)	0]1/2
Next Calibra	ation Date:	8-Jan-20		$Qstd = \{ [\Delta H \ x]$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} /	mc
	T T		Calibration of T	FSP Sampler	Г	TTT IC	
Calibration	ΔH (orifice),		fice	Qstd (CFM)	ΔW (HVS), in.	HVS	/760) x (298/Ta)] ^{1/2}
Point	in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	X - axis	of water	[Δw x (Pa	Y-axis
1	11.9		3.48	59.53	7.1		2.69
2	8.8		2.99	51.31	5.6		2.39
3	7.1		2.69	46.08	4.6		2.16
4	4.5		2.14	36.83	2.9		1.70
5	2.8		1.69	29.09	1.9		1.39
By Linear Regression of Y on X Slope , mw =							
			Set Point Ca	alculation			
From the Regres	sion Equation, t				98/Ta)] ^{1/2}		
Therefore, Se	er rome, w	IW A QSta + OW)			3,73		-
Remarks:							
Conducted by:	SK Wong	Signature:	<u> </u>			Date:	8 January 2020
Checked by: Henry Leung Signature: Date: 8 January 2020						Date:	8 January 2020

0023157

Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong	Object 1: SVAN959 SLM Serial No. /Ref. No.: 11275 / N-08-01 Object 2: Microphone Serial No. /Ref. No.: 22452
Customer Code : SVEC09005	Manufacturer: BSWAtech
Date of calibration: 08/01/2020 Date of the recommended re-calibration: 08/01/2021	Certificate No.: 0023157 Handle by: F0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	94.2dB	+0.2dB	+/- 1.5dB	1
114.0dB	113.9dB	-0.1dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

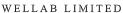
Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity


- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	within	the allowable deviation.
	AATCHITAT	

Performed by

Calibration Technician

Approved by

1 of 1

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 32151

 Date of Issue:
 2019-09-27

 Date Received:
 2019-09-26

 Date Tested:
 2019-09-26

 Date Completed:
 2019-09-27

 Next Due Date:
 2020-09-26

ATTN: Mr. Henry Leung Page:

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21455
Microphone No. : 43730
Equipment No. : N-08-07

Test conditions:

Room Temperatre : 17-22 degree Celsius

Relative Humidity : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

0023000

Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong		Object 1: SVAN957 SLM Serial No. /Ref. No.: 23852 / N-08-11 Object 2: Microphone Serial No. /Ref. No.: 35989
Customer Code: SVEC09005		Manufacturer: Svantek
Date of calibration: Date of the recommended re-calibration:	19/12/2019 19/12/2020	Certificate No.: 0023000 Handle by: E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	93.4dB	-0.6dB	+/- 1.5dB	1
114.0dB	113.4dB	-0.6dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2.The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3.The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	within	the allowable deviation
, ,	TY A CAAAAA	1

Performed by

Calibration Technician

Approved by

0022999

Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong		Object 1 : Serial No. /Ref. No. : Object 2 : Serial No. /Ref. No. :	Microphone
Customer Code : SVEC09005		Manufacturer: Svar	ntek
Date of calibration: Date of the recommended re-calibration:	19/12/2019 19/12/2020	Certificate No.: Handle by:	0022999 E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object	
94.0dB	94.0dB	0.0dB	+/- 1.5dB	1	
114.0dB	114.0dB	0.0dB	+/- 1.5dB	1	

Measuring equipment

	index	Calibrator / Master	Traceability
C Description	1	Master Sound Meter, SVAN949,sn:8571	IEC61672
	2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	within	the allowable deviation.
(-/	AA TCTTTTT	

Performed by

Calibration Technician

Approved by

0022522

Object 1: Customer: BSWA 308 SLM Serial No. /Ref. No. : Cinotech Consultants Limited 570187 / 550841 RM 1710, Technology Park, Object 2: 18 On Lai Street, Shatin, N.T. Serial No. /Ref. No. Hong Kong Customer Code: SVEC09005 Manufacturer: **BSWAtech** Date of calibration: 23/09/2019 Certificate No.: 0022522 Date of the recommended re-calibration: Handle by: 23/09/2020 E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	94.0dB	0.0dB	+/- 1.5dB	1
114.0dB	113.9dB	-0.1dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	ithin ti	he allowable	deviation.
-------------------	----------	--------------	------------

Performed by

Calibration Technician

Approved by

Equipment no.: N-12-03

Calibration Certificate

0022523

Customer:		Object 1: BSWA 308 SLM	
Cinotech Consultants Limited		Serial No. /Ref. No.: 570188 / 550850	
RM 1710, Technology Park,		Object 2:	
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No.	
Hong Kong			
Customer Code: SVEC09005		Manufacturer: BSWAtech	
Date of calibration:	23/09/2019	Certificate No.: 0022523	
Date of the recommended re-calibration:	23/09/2020	Handle by: E0002	

Measuring results

Reference value	Indication value	Deviation .	Allowed deviation	Object
94.0dB	94.0dB	0.0dB	+/- 1.5dB	1
114.0dB	114.0dB	0.0dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	within	the allowable deviation

Performed by

Calibration Technician

Approved by

0022673

Customer:		Object 1 : ST-120 sound calibrator
Cinotech Consultants Limited		Serial No. /Ref. No.: 181001608
RM 1710, Technology Park,		Object 2:
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :
Hong Kong		
Customer Code: SVEC09005		Manufacturer : Soundtek
Date of calibration:	24/10/2019	Certificate No.: 0022673
Date of the recommended re-calibration:	24/10/2020	Handle by: F0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	94.0dB	0.0dB	+/- 0.3dB	1
114.0dB	114.1dB	+0.1dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

iation.	
Approved by	
Ouglity Manager	_

Appleone Calibration Laboratory Ltd.

Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

Tel: +852 2370 4437 Fax: +852 2114 0393

0022676

Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong		Object 1: ST-120 sound calibrator Serial No. /Ref. No.: 181001636 Object 2: Serial No. /Ref. No.:
Customer Code: SVEC09005		Manufacturer: Soundtek
Date of calibration: Date of the recommended re-calibration:	24/10/2019 24/10/2020	Certificate No.: 0022676 Handle by: E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	93.7dB	-0.3dB	+/- 0.3dB	1
114.0dB	113.7dB	-0.3dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	within	the allowable deviation.
-------------------	--------	--------------------------

Performed by

Calibration Technician

Quality Manager

Approved by

Appleone Calibration Laboratory Ltd. Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

Tel: +852 2370 4437 Fax: +852 2114 0393

0022675

Customer:		Object 1: ST-120 sound calibrator
Cinotech Consultants Limited		Serial No. /Ref. No.: 181001637
RM 1710, Technology Park,		Object 2:
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :
Hong Kong		
Customer Code : SVEC09005		Manufacturer: Soundtek
Date of calibration:	24/10/2019	Certificate No.: 0022675
Date of the recommended re-calibration:	24/10/2020	Handle by: F0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	94.0dB	0.0dB	+/- 0.3dB	1
114.0dB	114.0dB	0.0dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability	
1	Master Sound Meter, SVAN949,sn:8571	IEC61672	
2	Sound Calibrator, SV30A sn:32580	IEC60942	

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source ..

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

Measured value(s)	vithin	the allowable deviation.
-------------------	--------	--------------------------

Performed by

Approved by

Calibration Technician

Quality Manager

Appleone Calibration Laboratory Ltd.

Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

Tel: +852 2370 4437 Fax: +852 2114 0393

WELLAB LIMITED Room 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

RM 1710, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: Date of Issue:

32523A 2019-11-27

Date Received:
Date Tested:

2019-11-22 2019-11-22 to

2019-11-27

Date Completed:

2019-11-27

ATTN:

Mr. Henry Leung

Page:

1 of 2

Certificate of Calibration

Item for calibrati

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-06
Manufacturer:	YSI Incorporated, a	Xylem brand
Description:	Model No.	Serial No.
- EXO1 Sonde, 100 meter Depth, 4 Sensor ports	599501-02	16J100680
- EXO Optical DO Sensor, Ti	599100-01	16H102985
- EXO conductivity/Temperature Sensor, Ti	599870	16G102307
- EXO Turbuduty Sensor, Ti	599101-01	16H102463
- EXO pH Sensor Assembly, Guarded, Ti	599701	17B103615

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

WELLAB LIMITED
Room 1701, Technology Park,
18 On Lai Street, Shatin,
N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 32340

 Date of Issue:
 2019-10-23

 Date Received:
 2019-10-23

 Date Tested:
 2019-10-23

 Date Completed:
 2019-10-23

Page:

2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
$(12890 \mu \text{S/cm})$			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.0	20.001	-0.001	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.01	4.00 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.86	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.18	9.18 <u>+</u> 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.08	<0.1mg/L	Pass

Winkler Titration value (mg/L)	Instrument Readings (mg/L)	Accetance Criteria	Comment
8.00	8.02	Difference between Titration value and instrument reading <0.2mg/L	Pass

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.06	9.0-11.0	Pass
50 NTU	50.11	45.0-55.0	Pass
100 NTU	99.4	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (m)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14849)

Model No.: 716A0403 Serial No.: BE15892

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15892)

Part Number: 714A9701
Serial No.: BG14849

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE15892)

Model No.: 714A9801 Serial No.: BH10228

Calibration Date: 18 March 2019 Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14853)

Model No.: 716A0403

Serial No.: BE17906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Isaac Au Yeung

A STATE WAS TO BE STONE OF THE

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17906)

Part Number: 714A9701 Serial No.: BG14853

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Isaac_#Au Yeung

X Patrick XXXXX Marche - 1012

Calibration Item: Linear Microphone (Calibration with main unit

BE17906)

Model No.: 714A9801

Serial No.: BH11454

Calibration Date: 22 March 2019
Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14852)

Model No.: 716A0403 Serial No.: BE15890

Calibration Date: 22 March 2019
Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by: (Isaac Au Yeung)

× 6/11分類 建存 1/21-5 1/27

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15890)

Part Number: 714A9701
Serial No.: BG14852

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by: (Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE15890)

Model No.: 714A9801

Serial No.: BH11455

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16955)

Model No.: 716A0403 Serial No.: BE16223

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Paren 24 March 2013

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16223)

Part Number:

714A9701

Serial No.:

BG16955

Calibration Date:

22 March 2019

Next Calibration Date:

22 March 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.:

B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE16223)

Model No.: 714A9801

Serial No.: BH11458

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

*References are traceable to NIST or equivalent.

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 22 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20672)

Model No .:

716A0403

Serial No.:

BE17504

Calibration Date:

15 April 2019

Next Calibration Date:

15 April 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References Model Serial No. Blastmate III 714A0801 BA15521 ISEE Triaxial Geophone 714A9701 BG14463 GLOBAL SPECIALISTS 3MHz* 2030 256812 Stanford Spectrum Analyzer SR760 41550 Aglient Multimeter* 34410A MY47011119 **HP Distortion Meter*** 339A 810699 Bruel & Kjaer Accelerometer* 4370 30323 Bruel & Kjaer Charge Amplifier* 2647 2518810 Bruel & Kjaer Conditional Amplifier* 269 2152173 LDS Air Cooled Vibrator V556 92794/1 LDS Field Power Supply FPS10L ARA 04/05 LDS Power Amplifier PA1000L ARA 07/06

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

^{*}References are traceable to NIST or equivalent.

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17504)

Part Number: 714A9701
Serial No.: BG20672

Calibration Date: 15 April 2019 Next Calibration Date: 15 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE17504)

Model No.: 714A9801 Serial No.: BH11460

Calibration Date: 15 April 2019
Next Calibration Date: 15 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16515)

Model No.: 716A0403

Serial No.: BE16354

Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Next Calibration Date: 8 April 2020
Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE16354)

Part Number: 714A9701
Serial No.: BG16515
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE16354)

Model No.: 714A9801

Serial No.: BH12477

Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG15353)

Model No.: 716A0403 Serial No.: BE15891

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15891)

Part Number: 714A9701 Serial No.: BG15353

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG15180)

Model No.: 716A0403 Serial No.: BE15894

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE15894)

Part Number: 714A9701 Serial No.: BG15180

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Linear Microphone (Calibration with main unit

BE17905)

Model No.: 714A9801
Serial No.: BH14079
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17905)

Part Number: 714A9701
Serial No.: BG16514
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16514)

 Model No.:
 716A0403

 Serial No.:
 BE17905

Calibration Date: 8 April 2019 Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG20673)

Model No.: 716A0403 Serial No.: BE13849

Calibration Date: 19 March 2019 Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13849)

Part Number:

714A9701

Serial No .:

BG20673

Calibration Date:

19 March 2019

Next Calibration Date:

19 March 2020

Method Used:

In-house Method B3-001

In-house Testing Procedure No.:

B3-001

Model	Serial No.
714A0801	BA15521
714A9701	BG14463
2030	256812
SR760	41550
34410A	MY47011119
339A	810699
4370	30323
2647	2518810
269	2152173
V556	92794/1
FPS10L	ARA 04/05
PA1000L	ARA 07/06
	714A0801 714A9701 2030 SR760 34410A 339A 4370 2647 269 V556 FPS10L

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE13849)

Model No.: 714A9801 Serial No.: BH13154

Calibration Date: 18 March 2019
Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16512)

Model No.: 716A0403 Serial No.: BE13853

Calibration Date: 28 February 2019
Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE13853)

Part Number: 714A9701 Serial No.: BG16512

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16959)

Model No.: 716A0403
Serial No.: BE17506
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 8 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17506)

Part Number: 714A9701
Serial No.: BG16959
Calibration Date: 8 April 2019
Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 8 April 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE17506)

Model No.: 714A9801

Serial No.: BH10227

Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Linear Microphone (Calibration with main unit

BE17904)

Model No.:

714A9801

Serial No.:

BH14080

Calibration Date:

8 April 2019

Next Calibration Date:

8 April 2020

Method Used:

In-house Method MM-002

In-house Testing Procedure No.: N

MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17904)

Part Number: 714A9701
Serial No.: BG14847
Calibration Date: 8 April 2019

Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG14847)

Model No.: 716A0403 Serial No.: BE17904

Calibration Date: 8 April 2019 Next Calibration Date: 8 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG16957)

Model No.: 716A0403 Serial No.: BE17505

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE17505)

Part Number: 714A9701 Serial No.: BG16957

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG19189)

Model No.: 716A0403 Serial No.: BE21658

Calibration Date: 15 April 2019 Next Calibration Date: 15 April 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit BE21658)

Part Number:

714A9701

Serial No .:

BG19189

Calibration Date:

15 April 2019

Next Calibration Date:

15 April 2020

Method Used:

Test References

ISEE Triaxial Geophone

Blastmate III

In-house Method B3-001

In-house Testing Procedure No.: B3-001

> Model Serial No. 714A0801 BA15521 714A9701 BG14463

GLOBAL SPECIALISTS 3MHz* 2030 256812 Stanford Spectrum Analyzer SR760 41550

Aglient Multimeter* 34410A MY47011119

HP Distortion Meter* 339A 810699 Bruel & Kjaer Accelerometer* 4370 30323

Bruel & Kjaer Charge Amplifier* 2647 2518810

Bruel & Kjaer Conditional Amplifier* 269 2152173

LDS Air Cooled Vibrator V556 92794/1 LDS Field Power Supply FPS10L ARA 04/05

LDS Power Amplifier PA1000L ARA 07/06

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

^{*}References are traceable to NIST or equivalent.

Calibration Item: Linear Microphone (Calibration with main unit

BE21658)

Model No.: 714A9801

Serial No.: BH12476

Calibration Date: 15 April 2019

Next Calibration Date: 15 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Calibration Item: Minimate Plus Unit (Calibration with Geophone

BG17240)

Model No.: 716A0403 Serial No.: BE20015

Calibration Date: 19 March 2019
Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit BE20015)

Part Number: 714A9701
Serial No.: BG17240

Calibration Date: 19 March 2019
Next Calibration Date: 19 March 2020

Method Used: In-house Method B3-001

In-house Testing Procedure No.: B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 19 March 2019

Calibration Item: Linear Microphone (Calibration with main unit

BE20015)

Model No.: 714A9801 Serial No.: BH12658

Calibration Date: 18 March 2019

Next Calibration Date: 18 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 18 March 2019

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit UM12902)

Part Number:

721A2901

Serial No .:

UM12902

Calibration Date:

14 May 2019

Next Calibration Date:

14 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.:

MM-001

Test References	Model	
Blastmate III	The state of the s	Serial No.
	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*		41550
HP Distortion Meter*	34410A	MY47011119
	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*	269	2518810
DS Air Cooled Vibrator		2152173
DS Field Power Supply	V556	92794/1
경험에는 내가 기뻐하다 보니 되었다면 뭐죠? (5) 이용하다는 경우시간 경기를 보았다.	FPS10L	ARA 04/05
DS Power Amplifier	PA1000L	
References		ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date:

14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12902)

 Model No.:
 721A2501

 Serial No.:
 UM12902

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12902)

Model No.: 721A0201 Serial No.: UL3397

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12904)

Model No.: 721A0201 Serial No.: UL3400

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173
kD of one		2132173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac

Calibration Item: Micromate Unit (Calibration with Geophone

UM12904)

Model No.: 721A2501 Serial No.: UM12904

Calibration Date: 14 May 2019 Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	
Blastmate III		Serial No.
ISEE Triaxial Geophone	714A0801	BA15521
	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*		41550
HP Distortion Meter*	34410A	MY47011119
	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*		2518810
LDS Air Cooled Vibrator	269	2152173
	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
DS Power Amplifier	PA1000L	
References are traceable to NIGE	=======	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12904)

Part Number: 721A2901
Serial No.: UM12904
Calibration Date: 14 May 2019

Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12905)

Model No.: 721A0201 Serial No.: UL3401

Calibration Date: 14 May 2019
Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Bate: 14-May 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12905)

Part Number:

721A2901

Serial No.:

UM12905

Calibration Date:

14 May 2019

Next Calibration Date:

14 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.: M

MM-001

Test References	Model	Sowial Na
Blastmate III	714A0801	Serial No.
ISEE Triaxial Geophone	714A9701	BA15521
GLOBAL SPECIALISTS 3MHz*	2030	BG14463
Stanford Spectrum Analyzer	SR760	256812
Aglient Multimeter*	34410A	41550
HP Distortion Meter*	339A	MY47011119
Bruel & Kjaer Accelerometer*	4370	810699
Bruel & Kjaer Charge Amplifier*	2647	30323
Bruel & Kjaer Conditional Amplifier*	269	2518810
LDS Air Cooled Vibrator	V556	2152173
LDS Field Power Supply	FPS10L	92794/1
LDS Power Amplifier	PA1000L	ARA 04/05
*D C	TATOUOL	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12905)

Model No.: 721A2501
Serial No.: UM12905
Calibration Date: 14 May 2019
Next Calibration Date: 14 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	6
Blastmate III	714A0801	Serial No.
ISEE Triaxial Geophone	714A9701	BA15521
GLOBAL SPECIALISTS 3MHz*		BG14463
Stanford Spectrum Analyzer	2030	256812
	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	
Bruel & Kjaer Conditional Amplifier*	269	2518810
LDS Air Cooled Vibrator	V556	2152173
LDS Field Power Supply		92794/1
LDS Power Amplifier	FPS10L	ARA 04/05
*Poforona *Pofor	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 14 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12906)

Model No.: 721A2501 Serial No.: UM12906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Hu

Au Yeung Hang Chuen, Isaac

Date: Warsh 2017

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12906)

Part Number: 721A2901 Serial No.: UM12906

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

Au Yeung Hang Chuen, Isaac

Date HWW. Hater X 1014

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12906)

Model No.: 721A0201 Serial No.: UL3399

Calibration Date: 22 March 2019 Next Calibration Date: 22 March 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 22 March 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12907)

Part Number: 721A2901 Serial No.: UM12907

Calibration Date: 28 February 2019
Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 28 February 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12907)

Model No.: 721A2501 Serial No.: UM12907

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Au Yeung Hang Chuen, Isaac)

Date: 28 February 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12907)

Model No.: 721A0201 Serial No.: UL3398

Calibration Date: 28 February 2019 Next Calibration Date: 28 February 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung)

Date: 28 February 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM12928)

Part Number: 721A2901
Serial No.: UM12928
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM12928)

Model No.: 721A2501

Serial No.: UM12928

Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12928)

Model No.: 721A0201
Serial No.: UL3383
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item:

TRIAXIAL GEOPHONE (Calibration with main

unit UM12929)

Part Number:

721A2901

Serial No.:

UM12929

Calibration Date:

2 May 2019

Next Calibration Date:

2 May 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.:

MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date:

2 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM12929)

Model No.: 721A2501
Serial No.: UM12929
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM12929)

Model No.: 721A0201 Serial No.: UL3384

Calibration Date: 2 May 2019 Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13698)

Part Number: 721A2901
Serial No.: UM13698
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13698)

Model No.: 721A2501

Serial No.: UM13698

Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13701)

Part Number: 721A2901
Serial No.: UM13701
Calibration Date: 7 May 2019
Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13701)

Model No.: 721A2501
Serial No.: UM13701
Calibration Date: 7 May 2019

Next Calibration Date: 7 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13695)

Part Number: 721A2901
Serial No.: UM13695
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13695)

Model No.: 721A2501
Serial No.: UM13695
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13695)

Model No.: 721A0201
Serial No.: UL3396
Calibration Date: 2 May 2019

Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13696)

Model No.: 721A0201 Serial No.: UL3394

Calibration Date: 30 April 2019
Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

No.
521
463
2
011119
9
10
73
/1
04/05
07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13696)

Part Number: 721A2901 Serial No.: UM13696

Calibration Date: 30 April 2019 **Next Calibration Date:** 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric) Date:

Calibration Item: Micromate Unit (Calibration with Geophone

UM13696)

Model No.: 721A2501
Serial No.: UM13696
Calibration Date: 30 April 2019

Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13699)

 Part Number:
 721A2901

 Serial No.:
 UM13699

Calibration Date: 30 April 2019
Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY4701111
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

nin

Date: 30 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13699)

Model No.: 721A2501 Serial No.: UM13699

Calibration Date: 30 April 2019 Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)
Date: 30 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13702)

Model No.: 721A2501
Serial No.: UM13702
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13702)

Part Number: 721A2901
Serial No.: UM13702
Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
ISEE Triaxial Geophone	714A9701	BG14463	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Accelerometer*	4370	30323	
Bruel & Kjaer Charge Amplifier*	2647	2518810	
Bruel & Kjaer Conditional Amplifier*	269	2152173	
LDS Air Cooled Vibrator	V556	92794/1	
LDS Field Power Supply	FPS10L	ARA 04/05	
LDS Power Amplifier	PA1000L	ARA 07/06	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 2 May 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13702)

 Model No.:
 721A0201

 Serial No.:
 UL3395

Calibration Date: 2 May 2019
Next Calibration Date: 2 May 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Wong, Keefe Solomon)

Date: 2 May 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13703)

Model No.: 721A2501

Serial No.: UM13703

Calibration Date: 25 April 2019

Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13703)

Part Number:

721A2901

Serial No.:

UM13703

Calibration Date:

25 April 2019

Next Calibration Date:

25 April 2020

Method Used:

In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
DS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06
		1110107700

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date:

ni

25 April 2019

Calibration Item: Micromate Unit (Calibration with Geophone

UM13704)

Model No.: 721A2501

Serial No.: UM13704

Calibration Date: 30 April 2019

Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13704)

Part Number: 721A2901 Serial No.: UM13704

Calibration Date: 30 April 2019 Next Calibration Date: 30 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Date: 30 April 2019

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13704)

 Model No.:
 721A0201

 Serial No.:
 UL3385

Calibration Date: 25 April 2019 Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.	
Blastmate III	714A0801	BA15521	
Linear Microphone	714A9801	BH11561	
GLOBAL SPECIALISTS 3MHz*	2030	256812	
Stanford Spectrum Analyzer	SR760	41550	
Aglient Multimeter*	34410A	MY47011119	
HP Distortion Meter*	339A	810699	
Bruel & Kjaer Microphone*	4193	2677340	
Low Frequency Calibrator*	42AE	105366	
Bruel & Kjaer Conditional Amplifier*	269	2152173	

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Unit (Calibration with Geophone

UM13708)

Model No.: 721A2501 Serial No.: UM13708

Calibration Date: 25 April 2019
Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
DS Air Cooled Vibrator	V556	92794/1
DS Field Power Supply	FPS10L	
LDS Power Amplifier	PA1000L	ARA 04/05 ARA 07/06
		711th U//UU

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: TRIAXIAL GEOPHONE (Calibration with main

unit UM13708)

Part Number: 721A2901 Serial No.: UM13708

Calibration Date: 25 April 2019 Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-001

In-house Testing Procedure No.: MM-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Accelerometer*	4370	30323
Bruel & Kjaer Charge Amplifier*	2647	2518810
Bruel & Kjaer Conditional Amplifier*	269	2152173
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric)

Calibration Item: Micromate Linear Microphone (Calibration with

main unit UM13708)

Model No.: 721A0201 Serial No.: UL3386

Calibration Date: 25 April 2019
Next Calibration Date: 25 April 2020

Method Used: In-house Method MM-002

In-house Testing Procedure No.: MM-002

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH11561
GLOBAL SPECIALISTS 3MHz*	2030	256812
Stanford Spectrum Analyzer	SR760	41550
Aglient Multimeter*	34410A	MY47011119
HP Distortion Meter*	339A	810699
Bruel & Kjaer Microphone*	4193	2677340
Low Frequency Calibrator*	42AE	105366
Bruel & Kjaer Conditional Amplifier*	269	2152173
		=102175

^{*}References are traceable to NIST or equivalent.

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Leung Man Hin, Eric

MSA Corporate Center • 1000 Cranberry Woods Drive • Cranberry Township, PA 16066 www.msasafety.com

Telephone: (800) MSA-2222

ALTAIR5X CERTIFICATE OF CALIBRATION

Serial Number: 152097

Part Number: A-ALT5X-A-N-K-D-1-B-0-T-0-0-0

阿

Factory Calibration Date: 03/29/19

Set Points

	METHANE 0-100.00 %LEL	O2 0-30.00 %VOL	CO 0-2000.00 PPM	H2S 0-200.00 PPM	NH3 0-100.00 PPM	CO2 0-9.99 %VOL
Ψ (Low)	10.00 %LEL	19.50 %VOL	25.00 PPM	10.00 PPM	25.00 PPM	0.50 %VOL
↑ (High)	20.00 %LEL	23.00 %VOL	100.00 PPM	15.00 PPM	50.00 PPM	1.50 %VOL
STEL			100.00 PPM	15.00 PPM	35.00 PPM	0.50 %VOL
D _{TWA}			25.00 PPM	10.00 PPM	25.00 PPM	1.50 %VOL
្រី Calibrated Value	Methane 1.460 %VOL	O2 14.99 %VOL	CO 59.90 PPM	H2S 20.13 PPM	NH3 25 PPM	CO2 2.502 %VOL
Cylinder Lot #	122- 401221543-1A	122- 401221543-1A	122- 401221543-1A	122- 401221543-1A	224895	141- 401019452- 1N461052

Calibration Certification

All applicable inspections, testing, and calibrations were performed using NIST traceable equipment, where available, in accordance with MSA's ISO 9001 Certified Quality System. Each material, component, and/or instrument must be installed, operated and maintained in strict accordance with its labels, cautions, warnings, instructions, and within the limitations stated in the supplied instruction manual. Routine calibration checks, equipment inspections, and applicable preventative maintenance measures must be performed to verify that the materials, components, and/or instruments are operating properly. Failure to perform these tasks on a routine basis, or suggested intervals, with specified equipment or methods, may result in inaccurate readings.

Conformance Statement

MSA certifies that the materials, components, and/or instruments delivered in this shipment conform to all applicable specifications. The items delivered have been processed through the appropriate approved document controlled procedures for Receiving, Manufacturing and Inspection. The materials, components, and/or instruments were inspected, tested, and calibrated, as applicable, per the associated drawings, standards requirements, and/or specifications, and were deemed acceptable by appropriate authorized personnel.

Process Certified By:

Calibrated By: T. Skal

JAM HOFFMAN OUALITY ENGINEER

APPENDIX C WEATHER INFORMATION

January 2020

		January 2020		
Day	Mean Pressure (hPa)	Air Temperature	Mean Relative Humidity (%)	Total Rainfall (mm)
		Mean (deg. C)		
1	1026.5	17.9	80	Trace
2	1025.2	18.3	78	0
3	1023	18.9	82	0
4	1020.9	19.2	83	0
5	1020.5	20	79	0
6	1019.3	21	78	0
7	1017.2	22.4	83	Trace
8	1018.5	21.9	72	0
9	1018.1	19.3	77	0
10	1016.4	19.9	82	0
11	1015.3	20.9	81	0
12	1017.1	17.9	65	0
13	1017.8	18.3	76	0
14	1019	19	76	0
15	1018.3	19.5	80	0.1
16	1017.7	19.8	84	Trace
17	1019.6	18.5	69	0
18	1019.6	18.3	73	0
19	1020.9	18.2	75	0
20	1021.9	18	75	0
21	1022.4	18.8	80	0
22	1019.1	20.5	82	Trace
23	1017.2	21.9	86	0
24	1018.1	21.5	89	Trace
25	1016.2	19.7	89	2.1
26	1014.9	16.5	86	12.3
27	1016.4	13	70	0.2
28	1018.6	13	66	0.1
29	1020.6	13.8	55	0
30	1021.5	14.7	44	0
31	1022.4	14.8	52	0

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
1-Jan-20	0:00	0.4	W
1-Jan-20	1:00	0.4	W
1-Jan-20	2:00	1.8	NNW
1-Jan-20	3:00	1.8	NNW
1-Jan-20	4:00	1.8	NNW
1-Jan-20	5:00	1.3	WNW
1-Jan-20	6:00	0.9	NNW
1-Jan-20	7:00	1.3	WNW
1-Jan-20	8:00	1.3	NW
1-Jan-20	9:00	1.3	NNW
1-Jan-20	10:00	1.3	NNW
1-Jan-20	11:00	1.8	NNW
1-Jan-20	12:00	0.9	NNW
1-Jan-20	13:00	1.3	NNW
1-Jan-20	14:00	0.9	NW
1-Jan-20	15:00	0.9	WNW
1-Jan-20	16:00	0.4	NNW
1-Jan-20	17:00	0.9	NW
1-Jan-20	18:00	0.4	ENE
1-Jan-20	19:00	0.4	NW
1-Jan-20	20:00	0.4	ESE
1-Jan-20	21:00	0	NNW
1-Jan-20	22:00	0	NW
1-Jan-20	23:00	0.4	N
2-Jan-20	0:00	0.4	N
2-Jan-20	1:00	0.9	NNW
2-Jan-20	2:00	1.3	NNW
2-Jan-20	3:00	1.3	NW
2-Jan-20	4:00	0.9	NNW
2-Jan-20	5:00	0.9	NNW
2-Jan-20	6:00	0.9	NNE
2-Jan-20	7:00	0.9	NNE
2-Jan-20	8:00	0.9	NNE
2-Jan-20	9:00	0.9	NNW
2-Jan-20	10:00	0.4	ENE
2-Jan-20	11:00	0.4	NNW
2-Jan-20	12:00	0	NNW
2-Jan-20	13:00	0.4	NNW
2-Jan-20	14:00	0	NNW
2-Jan-20	15:00	0.4	NNW
2-Jan-20	16:00	0.4	N
2-Jan-20	17:00	0	NNW
2-Jan-20	18:00	0	NNW
2-Jan-20	19:00	0.4	NE
2-Jan-20	20:00	0.4	NE
2-Jan-20	21:00	0.4	Е
2-Jan-20	22:00	0.4	N
2-Jan-20	23:00	0.9	Е

Ta	ble II: Wind	d Speed and Direction	ons
Date	Time	Wind Speed m-s	Direction
3-Jan-20	0:00	1.8	Е
3-Jan-20	1:00	2.7	ESE
3-Jan-20	2:00	3.1	ESE
3-Jan-20	3:00	1.8	SE
3-Jan-20	4:00	1.3	NW
3-Jan-20	5:00	1.8	WNW
3-Jan-20	6:00	1.8	WNW
3-Jan-20	7:00	1.3	WNW
3-Jan-20	8:00	1.8	NNW
3-Jan-20	9:00	1.3	NNW
3-Jan-20	10:00	1.3	WNW
3-Jan-20	11:00	0.9	WNW
3-Jan-20	12:00	1.3	NNW
3-Jan-20	13:00	1.8	NNW
3-Jan-20	14:00	1.8	NNW
3-Jan-20	15:00	2.2	NNW
3-Jan-20	16:00	0.9	WNW
3-Jan-20	17:00	0.9	NW
3-Jan-20	18:00	1.3	NNW
3-Jan-20	19:00	0.9	NNW
3-Jan-20	20:00	0.4	S
3-Jan-20	21:00	0.4	S
3-Jan-20	22:00	0.4	S
3-Jan-20	23:00	0.4	S
4-Jan-20	0:00	0.4	S
4-Jan-20	1:00	0.4	S
4-Jan-20	2:00	0.9	WNW
4-Jan-20	3:00	1.3	NNW
4-Jan-20	4:00	1.8	NNW
4-Jan-20	5:00	1.8	NNW
4-Jan-20	6:00	1.3	NNW
4-Jan-20	7:00	1.8	WNW
4-Jan-20	8:00	1.8	NNW
4-Jan-20	9:00	0.9	WNW
4-Jan-20	10:00	1.8	NNW
4-Jan-20	11:00	1.3	WNW
4-Jan-20	12:00	1.3	WNW
4-Jan-20	13:00	0.9	WNW
4-Jan-20	14:00	0.9	WNW
4-Jan-20	15:00	1.3	WNW
4-Jan-20	16:00	1.8	WNW
4-Jan-20	17:00	0.4	NW
4-Jan-20	18:00	0.4	WNW
4-Jan-20	19:00	0.9	NNW
4-Jan-20	20:00	0.9	NW
4-Jan-20	21:00	0.9	NW
4-Jan-20	22:00	1.3	NNW
4-Jan-20	23:00	1.8	NNW

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
5-Jan-20	0:00	1.8	NNW
5-Jan-20	1:00	2.7	NNW
5-Jan-20	2:00	2.7	NNW
5-Jan-20	3:00	2.7	NNW
5-Jan-20	4:00	2.2	NNW
5-Jan-20	5:00	2.7	NNW
5-Jan-20	6:00	2.2	NNW
5-Jan-20	7:00	2.2	NNW
5-Jan-20	8:00	2.7	NNW
5-Jan-20	9:00	1.8	NNW
5-Jan-20	10:00	1.8	NNW
5-Jan-20	11:00	1.3	NNW
5-Jan-20	12:00	0.9	NNW
5-Jan-20	13:00	0.9	NW
5-Jan-20	14:00	0.9	NW
5-Jan-20	15:00	0.4	WNW
5-Jan-20	16:00	0.9	NW
5-Jan-20	17:00	0.4	WNW
5-Jan-20	18:00	0.4	WNW
5-Jan-20	19:00	0.4	WNW
5-Jan-20	20:00	0.9	WNW
5-Jan-20	21:00	0.9	WNW
5-Jan-20	22:00	0.9	WNW
5-Jan-20	23:00	1.3	NNW
6-Jan-20	0:00	1.8	NNW
6-Jan-20	1:00	2.7	NNW
6-Jan-20	2:00	3.6	NNW
6-Jan-20	3:00	2.2	NNW
6-Jan-20	4:00	2.2	NNW
6-Jan-20	5:00	1.8	NNW
6-Jan-20	6:00	1.3	NNW
6-Jan-20	7:00	0.9	SE
6-Jan-20	8:00	0.4	SE
6-Jan-20	9:00	0.4	ESE
6-Jan-20	10:00	0.4	ESE
6-Jan-20	11:00	0.9	SE
6-Jan-20	12:00	0.9	SE
6-Jan-20	13:00	1.3	ESE
6-Jan-20	14:00	0.9	ESE
6-Jan-20	15:00	1.3	ESE
6-Jan-20	16:00	1.3	SE
6-Jan-20	17:00	0.9	ESE
6-Jan-20	18:00	1.3	ESE
6-Jan-20	19:00	1.8	ESE
6-Jan-20	20:00	1.8	ESE
6-Jan-20	21:00	1.3	ESE
6-Jan-20	22:00	2.7	SE
6-Jan-20	23:00	1.8	ESE

Date Time Wind Speed m-s Direction 7-Jan-20 0:00 1.8 ESE 7-Jan-20 1:00 2.2 ESE 7-Jan-20 2:00 1.8 ESE 7-Jan-20 3:00 2.2 SE 7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 15:00 0.4 SE 7-Jan-20 19:00 <	Table II: Wind Speed and Directions			
7-Jan-20 0:00 1.8 ESE 7-Jan-20 1:00 2.2 ESE 7-Jan-20 2:00 1.8 ESE 7-Jan-20 3:00 2.2 SE 7-Jan-20 4:00 1.3 SE 7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 15:00 0.4 SE 7-Jan-20 19:00 0.4	Date	Time	Wind Speed m-s	Direction
7-Jan-20 2:00 1.8 ESE 7-Jan-20 3:00 2.2 SE 7-Jan-20 4:00 1.3 SE 7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 10:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 11:00 0.4 SE 7-Jan-20 11:00 0.4 SE 7-Jan-20 11:00 0.4 SE 7-Jan-20 11:00 0.4 SE 7-Jan-20 11:00 0.4 E 7-Jan-20 21:00 0.4	7-Jan-20	0:00	1.8	ESE
7-Jan-20 3:00 2.2 SE 7-Jan-20 4:00 1.3 SE 7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 8:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 11:00 0.4 SE 7-Jan-20 15:00 0.4 W 7-Jan-20 17:00 0 WNW 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4	7-Jan-20	1:00	2.2	ESE
7-Jan-20 4:00 1.3 SE 7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 6:00 0.4 WNW 7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 13:00 0.4 SE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 23:00 0.9	7-Jan-20	2:00	1.8	ESE
7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 8:00 0.4 SE 7-Jan-20 9:00 0.4 NW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.9 WNW 8-Jan-20 1:00 0.9	7-Jan-20	3:00	2.2	SE
7-Jan-20 5:00 1.8 NNW 7-Jan-20 6:00 1.8 NNW 7-Jan-20 7:00 0.4 WNW 7-Jan-20 8:00 0.4 SE 7-Jan-20 9:00 0.4 NW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.9 WNW 8-Jan-20 1:00 0.9	7-Jan-20	4:00	1.3	SE
7-Jan-20 7:00 0.4 WNW 7-Jan-20 8:00 0.4 SE 7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.9 NNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 1:00 0.9	7-Jan-20	5:00	1.8	NNW
7-Jan-20 8:00 0.4 SE 7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 15:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.9 WNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 5:00 1.3	7-Jan-20	6:00	1.8	NNW
7-Jan-20 9:00 0.4 NW 7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 15:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 1.3 NNW 8-Jan-20 5:00 1.8	7-Jan-20	7:00	0.4	WNW
7-Jan-20 10:00 0.9 NNW 7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 21:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.9 NNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 1:00 0.9 WNW 8-Jan-20 1:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8	7-Jan-20	8:00	0.4	SE
7-Jan-20 11:00 0.4 WNW 7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 10:00 0.9	7-Jan-20	9:00	0.4	NW
7-Jan-20 12:00 0.4 WNW 7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 5:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 10:00 0.9	7-Jan-20	10:00	0.9	NNW
7-Jan-20 13:00 0.4 SE 7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 NNW 8-Jan-20 20:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 0.9 WNW 8-Jan-20 10:00 0.4	7-Jan-20	11:00	0.4	WNW
7-Jan-20 14:00 0.4 ESE 7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 10:00 0.4	7-Jan-20	12:00	0.4	WNW
7-Jan-20 15:00 0.4 W 7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 23:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4	7-Jan-20	13:00	0.4	SE
7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4	7-Jan-20	14:00	0.4	ESE
7-Jan-20 16:00 0.4 SE 7-Jan-20 17:00 0 WNW 7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 E 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4	7-Jan-20	15:00	0.4	W
7-Jan-20 18:00 0.9 SE 7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 SE 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 1:00 0.9 ESE 8-Jan-20 3:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 15:00 0.4		16:00	0.4	SE
7-Jan-20 19:00 0.4 SE 7-Jan-20 20:00 0.4 SSE 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4	7-Jan-20	17:00	0	WNW
7-Jan-20 20:00 0.4 SSE 7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4	7-Jan-20	18:00	0.9	SE
7-Jan-20 21:00 0.4 E 7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 NW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4	7-Jan-20	19:00	0.4	SE
7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4	7-Jan-20	20:00	0.4	SSE
7-Jan-20 22:00 0.9 E 7-Jan-20 23:00 0.9 NNW 8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 NNW 8-Jan-20 18:00 0.4	7-Jan-20	21:00	0.4	Е
8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 0.9 WNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	7-Jan-20	22:00	0.9	Е
8-Jan-20 0:00 0.9 WNW 8-Jan-20 1:00 0.9 ESE 8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 5:00 0.9 WNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	7-Jan-20	23:00	0.9	NNW
8-Jan-20 2:00 1.3 NNW 8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	0:00	0.9	
8-Jan-20 3:00 1.3 NNW 8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	1:00	0.9	ESE
8-Jan-20 4:00 1.3 NNW 8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	2:00	1.3	NNW
8-Jan-20 5:00 1.8 NNW 8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	3:00	1.3	NNW
8-Jan-20 6:00 0.9 WNW 8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	4:00	1.3	NNW
8-Jan-20 7:00 0.9 WNW 8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	5:00	1.8	NNW
8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	6:00	0.9	WNW
8-Jan-20 8:00 0.9 WNW 8-Jan-20 9:00 0.9 WNW 8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	7:00	0.9	WNW
8-Jan-20 10:00 0.4 NW 8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20			
8-Jan-20 11:00 0.4 NW 8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	9:00	0.9	WNW
8-Jan-20 12:00 0.4 WNW 8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	10:00	0.4	NW
8-Jan-20 13:00 1.3 NNW 8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	11:00	0.4	NW
8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	12:00	0.4	WNW
8-Jan-20 14:00 0.9 NNW 8-Jan-20 15:00 0.4 WNW 8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	13:00	1.3	NNW
8-Jan-20 16:00 0.4 WNW 8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	14:00	0.9	NNW
8-Jan-20 17:00 0.4 NNW 8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	15:00	0.4	WNW
8-Jan-20 18:00 0.4 WNW 8-Jan-20 19:00 0.4 WNW	8-Jan-20	16:00	0.4	WNW
8-Jan-20 19:00 0.4 WNW	8-Jan-20	17:00	0.4	NNW
	8-Jan-20	18:00	0.4	WNW
8-Jan-20 20:00 0.4 NW	8-Jan-20	19:00	0.4	WNW
	8-Jan-20	20:00	0.4	NW
8-Jan-20 21:00 0.4 NW	8-Jan-20	21:00	0.4	NW
8-Jan-20 22:00 1.8 NNW	8-Jan-20	22:00	1.8	NNW
8-Jan-20 23:00 0.9 NNW	8-Jan-20	23:00	0.9	NNW

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
9-Jan-20	0:00	0.9	WNW
9-Jan-20	1:00	0.9	WNW
9-Jan-20	2:00	1.3	NW
9-Jan-20	3:00	0.9	WNW
9-Jan-20	4:00	2.2	NNW
9-Jan-20	5:00	1.3	NW
9-Jan-20	6:00	1.3	NNW
9-Jan-20	7:00	1.8	NNW
9-Jan-20	8:00	1.8	NNW
9-Jan-20	9:00	1.3	NNW
9-Jan-20	10:00	0.9	NNW
9-Jan-20	11:00	1.3	NNW
9-Jan-20	12:00	0.4	NNW
9-Jan-20	13:00	1.3	NNW
9-Jan-20	14:00	0.9	NNW
9-Jan-20	15:00	1.3	WNW
9-Jan-20	16:00	1.8	WNW
9-Jan-20	17:00	1.8	NW
9-Jan-20	18:00	1.8	NW
9-Jan-20	19:00	1.3	NW
9-Jan-20	20:00	0.9	WNW
9-Jan-20	21:00	0.9	WNW
9-Jan-20	22:00	0.4	W
9-Jan-20	23:00	0.4	WNW
10-Jan-20	0:00	0.9	WNW
10-Jan-20	1:00	1.8	WNW
10-Jan-20	2:00	1.3	NW
10-Jan-20	3:00	2.2	NNW
10-Jan-20	4:00	1.8	WNW
10-Jan-20	5:00	1.8	NNW
10-Jan-20	6:00	1.3	NW
10-Jan-20	7:00	1.3	NNW
10-Jan-20	8:00	1.3	NNW
10-Jan-20	9:00	0.9	WNW
10-Jan-20	10:00	1.3	WNW
10-Jan-20	11:00	0.9	WNW
10-Jan-20	12:00	0.9	WNW
10-Jan-20	13:00	1.3	WNW
10-Jan-20	14:00	0	SSW
10-Jan-20	15:00	0	SSW
10-Jan-20	16:00	0	SSW
10-Jan-20	17:00	0	S
10-Jan-20	18:00	0	SSW
10-Jan-20	19:00	0	SSW
10-Jan-20	20:00	0	NW
10-Jan-20	21:00	0	WSW
10-Jan-20	22:00	0	SW
10-Jan-20	23:00	0.4	WNW

Tab	le II: Wind	Speed and Directio	ns
Date	Time	Wind Speed m-s	Direction
11-Jan-20	0:00	0	W
11-Jan-20	1:00	0.4	W
11-Jan-20	2:00	0.4	W
11-Jan-20	3:00	0.4	SW
11-Jan-20	4:00	0.9	WNW
11-Jan-20	5:00	0.9	WNW
11-Jan-20	6:00	0.9	WNW
11-Jan-20	7:00	0.9	WNW
11-Jan-20	8:00	0.4	WNW
11-Jan-20	9:00	0.9	WNW
11-Jan-20	10:00	0.9	NW
11-Jan-20	11:00	0	WNW
11-Jan-20	12:00	0	WNW
11-Jan-20	13:00	0	WNW
11-Jan-20	14:00	0	WNW
11-Jan-20	15:00	0	WNW
11-Jan-20	16:00	0	WNW
11-Jan-20	17:00	0	WSW
11-Jan-20	18:00	0	W
11-Jan-20	19:00	0	WNW
11-Jan-20	20:00	0	W
11-Jan-20	21:00	0	SSW
11-Jan-20	22:00	0	WSW
11-Jan-20	23:00	0	S
12-Jan-20	0:00	0	WSW
12-Jan-20	1:00	0	WNW
12-Jan-20	2:00	0	SSW
12-Jan-20	3:00	0	SW
12-Jan-20	4:00	0	SW
12-Jan-20	5:00	0	WSW
12-Jan-20	6:00	0	WSW
12-Jan-20	7:00	0	WNW
12-Jan-20	8:00	0	WNW
12-Jan-20	9:00	0	S
12-Jan-20	10:00	0	ESE
12-Jan-20	11:00	0	SE
12-Jan-20	12:00	0	SE
12-Jan-20	13:00	0	SSW
12-Jan-20	14:00	0	SSW
12-Jan-20	15:00	0	SSE
12-Jan-20	16:00	0	SSE
12-Jan-20	17:00	0	
12-Jan-20	18:00	0	SSE
12-Jan-20	19:00	0	SSW
12-Jan-20	20:00	0	SSW
12-Jan-20	21:00	0	SSW
12-Jan-20	22:00	0	SSW
12-Jan-20	23:00	0	SSW

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
13-Jan-20	0:00	0	WNW
13-Jan-20	1:00	0	WNW
13-Jan-20	2:00	0.4	WNW
13-Jan-20	3:00	0.9	WNW
13-Jan-20	4:00	0.4	SW
13-Jan-20	5:00	0.9	WNW
13-Jan-20	6:00	0.4	SSW
13-Jan-20	7:00	0	SSW
13-Jan-20	8:00	0	SSW
13-Jan-20	9:00	0	WSW
13-Jan-20	10:00	0	WSW
13-Jan-20	11:00	0	W
13-Jan-20	12:00	0.4	SSW
13-Jan-20	13:00	0.4	SSW
13-Jan-20	14:00	0.4	SSW
13-Jan-20	15:00	1.8	SSW
13-Jan-20	16:00	0.9	SSW
13-Jan-20	17:00	0	SW
13-Jan-20	18:00	1.3	SW
13-Jan-20	19:00	1.8	SW
13-Jan-20	20:00	0.4	NW
13-Jan-20	21:00	0.9	NW
13-Jan-20	22:00	1.3	NW
13-Jan-20	23:00	0.9	NW
14-Jan-20	0:00	0.9	NW
14-Jan-20	1:00	0.9	NW
14-Jan-20	2:00	1.3	NW
14-Jan-20	3:00	1.3	NW
14-Jan-20	4:00	2.2	WNW
14-Jan-20	5:00	1.3	NW
14-Jan-20	6:00	0.9	NW
14-Jan-20	7:00	0.4	SSW
14-Jan-20	8:00	1.3	SW
14-Jan-20	9:00	1.3	SE
14-Jan-20	10:00	1.3	SE
14-Jan-20	11:00	0.4	SE
14-Jan-20	12:00	0.4	SSE
14-Jan-20	13:00	0	SSW
14-Jan-20	14:00	0	SSW
14-Jan-20	15:00	0	SW
14-Jan-20	16:00	0	SW
14-Jan-20	17:00	0	WNW
14-Jan-20	18:00	0	WNW
14-Jan-20	19:00	0	W
14-Jan-20	20:00	0	W
14-Jan-20	21:00	0	W
14-Jan-20	22:00	0	W
14-Jan-20	23:00	0	W

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
15-Jan-20	0:00	0	W
15-Jan-20	1:00	0.4	WNW
15-Jan-20	2:00	0.4	WNW
15-Jan-20	3:00	0.4	WNW
15-Jan-20	4:00	0.4	WSW
15-Jan-20	5:00	0.9	WNW
15-Jan-20	6:00	0.9	WNW
15-Jan-20	7:00	0.4	WNW
15-Jan-20	8:00	0.4	NW
15-Jan-20	9:00	0	W
15-Jan-20	10:00	0	W
15-Jan-20	11:00	0	
15-Jan-20	12:00	0	
15-Jan-20	13:00	0	W
15-Jan-20	14:00	0	W
15-Jan-20	15:00	0	W
15-Jan-20	16:00	0	
15-Jan-20	17:00	0	
15-Jan-20	18:00	0	W
15-Jan-20	19:00	0	SW
15-Jan-20	20:00	0	SW
15-Jan-20	21:00	0	SSW
15-Jan-20	22:00	0	SSW
15-Jan-20	23:00	0	SSW
16-Jan-20	0:00	0	SW
16-Jan-20	1:00	0.4	SSW
16-Jan-20	2:00	0.4	SSW
16-Jan-20	3:00	0.4	SSW
16-Jan-20	4:00	0.4	SSW
16-Jan-20	5:00	0.4	SSW
16-Jan-20	6:00	0	SW
16-Jan-20	7:00	0.9	WNW
16-Jan-20	8:00	1.8	WNW
16-Jan-20	9:00	0.9	WNW
16-Jan-20	10:00	1.3	W
16-Jan-20	11:00	0.9	WSW
16-Jan-20	12:00	0.9	WSW
16-Jan-20	13:00	0.9	WSW
16-Jan-20	14:00	1.3	WNW
16-Jan-20	15:00	0.9	ENE
16-Jan-20	16:00	0.9	WNW
16-Jan-20	17:00	2.2	WNW
16-Jan-20	18:00	1.8	WNW
16-Jan-20	19:00	0.4	WNW
16-Jan-20	20:00	0.4	WNW
16-Jan-20	21:00	0.9	WNW
16-Jan-20	22:00	0.9	WNW
16-Jan-20	23:00	0.4	NNE

Date Time Wind Speed ms Direction 17-Jan-20 0:00 0.9 WNW 17-Jan-20 1:00 0.9 WNW 17-Jan-20 2:00 0.9 WNW 17-Jan-20 3:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 1	Table II: Wind Speed and Directions			
17-Jan-20 0:00 0.9 WNW 17-Jan-20 1:00 0.9 WNW 17-Jan-20 2:00 0.9 WNW 17-Jan-20 3:00 1.3 WNW 17-Jan-20 4:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 </th <th></th> <th></th> <th></th> <th></th>				
17-Jan-20 1:00 0.9 WNW 17-Jan-20 2:00 0.9 WNW 17-Jan-20 3:00 1.3 WNW 17-Jan-20 4:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 NW 17-Jan-20 20:00	17-Jan-20			
17-Jan-20 2:00 0.9 WNW 17-Jan-20 3:00 1.3 WNW 17-Jan-20 4:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 3:00 3.6 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 </td <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 3:00 1.3 WNW 17-Jan-20 4:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 NW 17-Jan-20 20:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 23:00 </td <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 4:00 1.3 WNW 17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 20:00 0.4 NW 18-Jan-20 0:00 <td></td> <td></td> <td></td> <td>1</td>				1
17-Jan-20 5:00 3.6 WNW 17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 NW 17-Jan-20 19:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 0:00 <td></td> <td></td> <td></td> <td>1</td>				1
17-Jan-20 6:00 3.6 WNW 17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 13:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 <td></td> <td></td> <td></td> <td>1</td>				1
17-Jan-20 7:00 3.6 WNW 17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 NW 17-Jan-20 19:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 8:00 3.6 WNW 17-Jan-20 9:00 2.2 WNW 17-Jan-20 11:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 15:00 0.4 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 5:00 </td <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 9:00 2.2 WNW 17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 10:00 1.8 WNW 17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 20:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 5:00 5.4 WNW 18-Jan-20 5:00 </td <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 11:00 1.3 WNW 17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 5:00 <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 12:00 0.9 WNW 17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 20:00 0.4 NW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 5:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 10:00 <td></td> <td></td> <td></td> <td></td>				
17-Jan-20 13:00 1.8 WNW 17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 9:00				
17-Jan-20 14:00 0.9 WNW 17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 21:00 0.4 NW 18-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 5:00 5.4 WNW 18-Jan-20 5:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00				
17-Jan-20 15:00 0.4 W 17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 23:00 0.4 NW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 5:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 12:00				1
17-Jan-20 16:00 0.9 WNW 17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.9 WSW 18-Jan-20 12:00				
17-Jan-20 17:00 0.4 WNW 17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 15:00				
17-Jan-20 18:00 0.4 WNW 17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00				
17-Jan-20 19:00 0.4 WNW 17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 15:00 0.9 W 18-Jan-20 15:00				1
17-Jan-20 20:00 0.4 NW 17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00				
17-Jan-20 21:00 0.4 ESE 17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 15:00 0.9 W 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00				
17-Jan-20 22:00 0 ESE 17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00				
17-Jan-20 23:00 0.4 NW 18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 15:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 19:00				1
18-Jan-20 0:00 1.3 WNW 18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 19:00 0 NNE				
18-Jan-20 1:00 1.3 WNW 18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 19:00 0 NNE				
18-Jan-20 2:00 2.2 WNW 18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 19:00 0 NNE				
18-Jan-20 3:00 2.7 WNW 18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE			2.2	
18-Jan-20 4:00 5.4 WNW 18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 5:00 5.8 WNW 18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 6:00 5.4 WNW 18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 15:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 7:00 4.5 WNW 18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 8:00 3.1 WNW 18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 9:00 0.9 WSW 18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 10:00 0.4 WSW 18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				1
18-Jan-20 11:00 0.9 WNW 18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				1
18-Jan-20 12:00 0.4 WNW 18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				1
18-Jan-20 13:00 1.3 WNW 18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 14:00 0.4 WSW 18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				
18-Jan-20 15:00 0.9 W 18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE	18-Jan-20			
18-Jan-20 16:00 0.4 WNW 18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE	18-Jan-20			1
18-Jan-20 17:00 0.9 W 18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				WNW
18-Jan-20 18:00 0 WNW 18-Jan-20 19:00 0 NNE				W
18-Jan-20 19:00 0 NNE	18-Jan-20			WNW
	18-Jan-20		0	1
	18-Jan-20	20:00	0.4	W
18-Jan-20 21:00 0.9 WNW	18-Jan-20	21:00	0.9	WNW
18-Jan-20 22:00 0.9 WNW	18-Jan-20		0.9	WNW
18-Jan-20 23:00 1.3 WNW	18-Jan-20	23:00	1.3	WNW

Tab	le II: Wind	Speed and Directio	ns
Date	Time	Wind Speed m-s	Direction
19-Jan-20	0:00	1.8	WNW
19-Jan-20	1:00	1.8	WNW
19-Jan-20	2:00	1.3	WNW
19-Jan-20	3:00	2.2	WNW
19-Jan-20	4:00	4	WNW
19-Jan-20	5:00	2.7	WNW
19-Jan-20	6:00	2.2	WNW
19-Jan-20	7:00	0.9	WSW
19-Jan-20	8:00	0.9	WSW
19-Jan-20	9:00	1.3	WSW
19-Jan-20	10:00	0.9	WSW
19-Jan-20	11:00	0.9	W
19-Jan-20	12:00	0.4	NE
19-Jan-20	13:00	0.4	ENE
19-Jan-20	14:00	0.4	NE
19-Jan-20	15:00	0.9	NE
19-Jan-20	16:00	0.4	WSW
19-Jan-20	17:00	0.9	W
19-Jan-20	18:00	0.9	WSW
19-Jan-20	19:00	0.4	WSW
19-Jan-20	20:00	0.9	WSW
19-Jan-20	21:00	0.9	WSW
19-Jan-20	22:00	0.9	WNW
19-Jan-20	23:00	1.3	WNW
20-Jan-20	0:00	0.4	WSW
20-Jan-20	1:00	1.8	WNW
20-Jan-20	2:00	0.9	WSW
20-Jan-20	3:00	1.3	WNW
20-Jan-20	4:00	1.8	WNW
20-Jan-20	5:00	2.2	WNW
20-Jan-20	6:00	1.8	WNW
20-Jan-20	7:00	0.9	WNW
20-Jan-20	8:00	0.9	ENE
20-Jan-20	9:00	0.9	WSW
20-Jan-20	10:00	0.9	WSW
20-Jan-20	11:00	0.4	SW
20-Jan-20	12:00	0.4	Е
20-Jan-20	13:00	0.9	ENE
20-Jan-20	14:00	1.3	ENE
20-Jan-20	15:00	0.9	ENE
20-Jan-20	16:00	1.8	Е
20-Jan-20	17:00	1.3	ENE
20-Jan-20	18:00	1.3	ENE
20-Jan-20	19:00	1.3	ENE
20-Jan-20	20:00	1.3	ENE
20-Jan-20	21:00	0.9	Е
20-Jan-20	22:00	0.9	ESE
20-Jan-20	23:00	1.3	Е

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
21-Jan-20	0:00	1.8	ENE
21-Jan-20	1:00	1.8	ESE
21-Jan-20	2:00	1.3	ENE
21-Jan-20	3:00	1.3	ESE
21-Jan-20	4:00	1.8	E
21-Jan-20	5:00	1.8	ENE
21-Jan-20	6:00	1.8	ESE
21-Jan-20	7:00	1.8	ENE
21-Jan-20	8:00	1.3	SE
21-Jan-20	9:00	1.8	ENE
21-Jan-20	10:00	1.3	ENE
21-Jan-20	11:00	0.9	ESE
21-Jan-20	12:00	0.9	Е
21-Jan-20	13:00	0.9	ENE
21-Jan-20	14:00	0.9	ENE
21-Jan-20	15:00	0.4	ESE
21-Jan-20	16:00	0.9	SE
21-Jan-20	17:00	1.3	ENE
21-Jan-20	18:00	0.9	SW
21-Jan-20	19:00	0.9	ENE
21-Jan-20	20:00	0.9	E
21-Jan-20	21:00	0.4	SW
21-Jan-20	22:00	0.9	ENE
21-Jan-20	23:00	0.9	ENE
22-Jan-20	0:00	1.8	SW
22-Jan-20	1:00	0.4	SW
22-Jan-20	2:00	0.9	SSW
22-Jan-20	3:00	0.9	SW
22-Jan-20	4:00	0.9	SW
22-Jan-20	5:00	1.8	SW
22-Jan-20	6:00	0.9	SW
22-Jan-20	7:00	0.4	SW
22-Jan-20	8:00	0	SSE
22-Jan-20	9:00	0.9	NE
22-Jan-20	10:00	0.4	NE
22-Jan-20	11:00	0.9	NE
22-Jan-20	12:00	0.9	NE
22-Jan-20	13:00	1.3	SE
22-Jan-20	14:00	2.7	ENE
22-Jan-20	15:00	2.2	ENE
22-Jan-20	16:00	2.7	ENE
22-Jan-20	17:00	3.1	ENE
22-Jan-20	18:00	2.2	ENE
22-Jan-20	19:00	1.3	ENE
22-Jan-20	20:00	2.2	ENE
22-Jan-20	21:00	1.8	ENE
22-Jan-20	22:00	2.2	ENE
22-Jan-20	23:00	3.1	ENE
20	_2.30	U.1	,,

Table II: Wind Speed and Directions			
Date	Time	Wind Speed m-s	Direction
23-Jan-20	0:00	3.1	ENE
23-Jan-20	1:00	3.6	ENE
23-Jan-20	2:00	2.7	ENE
23-Jan-20	3:00	2.2	ENE
23-Jan-20	4:00	2.2	ENE
23-Jan-20	5:00	2.2	ENE
23-Jan-20	6:00	1.3	ENE
23-Jan-20	7:00	1.3	ENE
23-Jan-20	8:00	2.2	ENE
23-Jan-20	9:00	2.7	ENE
23-Jan-20	10:00	1.3	E
23-Jan-20	11:00	1.3	ESE
23-Jan-20	12:00	1.3	ENE
23-Jan-20	13:00	1.8	ENE
23-Jan-20	14:00	1.3	ENE
23-Jan-20 23-Jan-20	15:00	1.3	SE
23-Jan-20	16:00	1.8	ESE
23-Jan-20 23-Jan-20	17:00	1.3	ESE
23-Jan-20	18:00	0.9	ESE
23-Jan-20	19:00		ESE
23-Jan-20 23-Jan-20		0.9	
	20:00	0.9	ESE
23-Jan-20	21:00	1.3	ENE
23-Jan-20	22:00	2.2	ENE
23-Jan-20	23:00	2.2	ENE
24-Jan-20	0:00	2.2	ENE
24-Jan-20	1:00	0.9	SW
24-Jan-20	2:00	1.3	SW
24-Jan-20	3:00	0.9	SW
24-Jan-20	4:00	0.9	SW
24-Jan-20	5:00	0.9	SSW
24-Jan-20	6:00	0.9	SW
24-Jan-20	7:00	0.4	ENE
24-Jan-20	8:00	0	NE
24-Jan-20	9:00	0.9	SSW
24-Jan-20	10:00	0.9	SSW
24-Jan-20	11:00	1.3	S
24-Jan-20	12:00	0.9	ENE
24-Jan-20	13:00	0.9	ENE
24-Jan-20	14:00	3.6	ENE
24-Jan-20	15:00	2.2	ENE
24-Jan-20	16:00	1.3	ENE
24-Jan-20	17:00	2.2	SW
24-Jan-20	18:00	1.8	SW
24-Jan-20	19:00	2.2	SW
24-Jan-20	20:00	2.7	SW
24-Jan-20	21:00	1.8	SW
24-Jan-20	22:00	0.9	SSW
24-Jan-20	23:00	0.9	SSW
	•		

Table II: Wind Speed and Directions					
Date	Time	Wind Speed m-s	Direction		
25-Jan-20	0:00	1.3	SW		
25-Jan-20	1:00	1.3	SW		
25-Jan-20	2:00	0.9	SW		
25-Jan-20	3:00	0.9	SW		
25-Jan-20	4:00	1.3	SW		
25-Jan-20	5:00	1.8	ENE		
25-Jan-20	6:00	0.9	ESE		
25-Jan-20	7:00	1.8	Е		
25-Jan-20	8:00	1.3	E		
25-Jan-20	9:00	1.3	ESE		
25-Jan-20	10:00	1.3	E		
25-Jan-20	11:00	1.3	E		
25-Jan-20	12:00	1.3	ENE		
25-Jan-20	13:00	0.9	ENE		
25-Jan-20	14:00	0.9	NNE		
25-Jan-20	15:00	1.8	ENE		
	16:00	1.8	ENE		
25-Jan-20 25-Jan-20	17:00	1.8	ENE		
		0.9			
25-Jan-20	18:00		ENE		
25-Jan-20	19:00	0.4	WNW		
25-Jan-20	20:00	0.4	E		
25-Jan-20	21:00	0	ENE		
25-Jan-20	22:00	0.9	Е		
25-Jan-20	23:00	1.3	E		
26-Jan-20	0:00	0.9	Е		
26-Jan-20	1:00	0.9	NW		
26-Jan-20	2:00	0.9	W		
26-Jan-20	3:00	1.3	W		
26-Jan-20	4:00	2.2	NW		
26-Jan-20	5:00	2.7	NW		
26-Jan-20	6:00	1.8	NW		
26-Jan-20	7:00	1.3	WNW		
26-Jan-20	8:00	1.3	NW		
26-Jan-20	9:00	0.4	W		
26-Jan-20	10:00	0.9	ESE		
26-Jan-20	11:00	0.4	Е		
26-Jan-20	12:00	0.4	WSW		
26-Jan-20	13:00	0.4	Е		
26-Jan-20	14:00	0.4	ESE		
26-Jan-20	15:00	0.4	W		
26-Jan-20	16:00	0.4	WSW		
26-Jan-20	17:00	0.4	W		
26-Jan-20	18:00	0.4	ESE		
26-Jan-20	19:00	0.4	ENE		
26-Jan-20	20:00	0.4	NNE		
26-Jan-20	21:00	0.4	ENE		
26-Jan-20	22:00	0.4	NNW		
26-Jan-20	23:00	0.9	W		
	_2.00	··/			

Table II: Wind Speed and Directions				
Date	Time	Wind Speed m-s	Direction	
27-Jan-20	0:00	1.3	W	
27-Jan-20	1:00	1.8	NW	
27-Jan-20	2:00	1.8	NW	
27-Jan-20	3:00	2.7	NW	
27-Jan-20	4:00	1.8	NW	
27-Jan-20	5:00	1.3	W	
27-Jan-20	6:00	1.8	NW	
27-Jan-20	7:00	1.8	NW	
27-Jan-20	8:00	1.3	W	
27-Jan-20	9:00	0.9	W	
27-Jan-20	10:00	0.9	NW	
27-Jan-20	11:00	0.9	NW	
27-Jan-20	12:00	0.4	NW	
27-Jan-20	13:00	0.4	NW	
27-Jan-20	14:00	0.9	NW	
27-Jan-20	15:00	1.3	W	
27-Jan-20	16:00	0.9	W	
27-Jan-20	17:00	0.9	W	
27-Jan-20	18:00	1.3	W	
27-Jan-20	19:00	1.3	WSW	
27-Jan-20	20:00	0.9	ESE	
27-Jan-20	21:00	0.4	W	
27-Jan-20	22:00	0.9	NE	
27-Jan-20	23:00	0.4	NW	
28-Jan-20	0:00	0.9	WNW	
28-Jan-20	1:00	0.9	W	
28-Jan-20	2:00	1.3	W	
28-Jan-20	3:00	1.3	NW	
28-Jan-20	4:00	0.9	WNW	
28-Jan-20	5:00	1.3	WNW	
28-Jan-20	6:00	1.3	NW	
28-Jan-20	7:00	1.3	W	
28-Jan-20	8:00	1.3	NW	
28-Jan-20	9:00	0.9	WNW	
28-Jan-20	10:00	0.9	WNW	
28-Jan-20	11:00	1.3	WNW	
28-Jan-20	12:00	1.3	WNW	
28-Jan-20	13:00	0.4	NE	
28-Jan-20	14:00	0.9	ENE	
28-Jan-20	15:00	0.4	ENE	
28-Jan-20	16:00	0.9	WNW	
28-Jan-20	17:00	0.9	WSW	
28-Jan-20	18:00	0.9	W	
28-Jan-20	19:00	0.4	WSW	
28-Jan-20	20:00	0.4	WNW	
28-Jan-20	21:00	1.3	WNW	
28-Jan-20	22:00	0.4	ESE	
28-Jan-20	23:00	0.4	Е	

Tab	Table II: Wind Speed and Directions					
Date	Time	Wind Speed m-s	Direction			
29-Jan-20	0:00	0.4	WNW			
29-Jan-20	1:00	1.8	NW			
29-Jan-20	2:00	0.9	W			
29-Jan-20	3:00	1.3	W			
29-Jan-20	4:00	0.9	NW			
29-Jan-20	5:00	1.3	WNW			
29-Jan-20	6:00	1.7	WNW			
29-Jan-20	7:00	0.8	WSW			
29-Jan-20	8:00	1.3	WNW			
29-Jan-20	9:00	1.7	WNW			
29-Jan-20	10:00	1.4	WNW			
29-Jan-20	11:00	1.7	WNW			
29-Jan-20	12:00	0.9	WNW			
29-Jan-20	13:00	0.8	ENE			
29-Jan-20	14:00	1.1	WSW			
29-Jan-20	15:00	0.8	WSW			
29-Jan-20	16:00	0.4	SW			
29-Jan-20	17:00	0.4	Е			
29-Jan-20	18:00	1.1	ENE			
29-Jan-20	19:00	1.2	ENE			
29-Jan-20	20:00	0.9	ENE			
29-Jan-20	21:00	1.8	E			
29-Jan-20	22:00	1.2	ENE			
29-Jan-20	23:00	1.3	ENE			
30-Jan-20	0:00	1.5	ENE			
30-Jan-20	1:00	1.2	ENE			
30-Jan-20	2:00	0.8	Е			
30-Jan-20	3:00	0.9	ESE			
30-Jan-20	4:00	1.2	E			
30-Jan-20	5:00	2	ENE			
30-Jan-20	6:00	1.7	ESE			
30-Jan-20	7:00	1.3	ENE			
30-Jan-20	8:00	1.3	ESE			
30-Jan-20	9:00	1.9	E			
30-Jan-20	10:00	1.8	ENE			
30-Jan-20	11:00	1.8	ESE			
30-Jan-20	12:00	1.7	ENE			
30-Jan-20	13:00	1.3	SE			
30-Jan-20	14:00	1.8	ENE			
30-Jan-20	15:00	1.4	ENE			
30-Jan-20	16:00	0.9	ESE			
30-Jan-20	17:00	0.9	E			
30-Jan-20	18:00	0.9	ENE			
30-Jan-20	19:00	0.8	ENE			
30-Jan-20	20:00	0.6	ESE			
30-Jan-20	21:00	0.9	SE			
30-Jan-20	22:00	1.2	ENE			
30-Jan-20	23:00	0.9	SW			
		~•/	~ ''			

Table II: Wind Speed and Directions					
Date	Time	Wind Speed m-s	Direction		
31-Jan-20	0:00	1	ENE		
31-Jan-20	1:00	0.9	Е		
31-Jan-20	2:00	0.4	SW		
31-Jan-20	3:00	1	ENE		
31-Jan-20	4:00	0.9	ENE		
31-Jan-20	5:00	1.7	SW		
31-Jan-20	6:00	0.4	SW		
31-Jan-20	7:00	0.9	SSW		
31-Jan-20	8:00	0.9	SW		
31-Jan-20	9:00	0.7	SW		
31-Jan-20	10:00	1.7	SW		
31-Jan-20	11:00	0.9	SW		
31-Jan-20	12:00	0.5	SW		
31-Jan-20	13:00	0.1	SSE		
31-Jan-20	14:00	0.9	NE		
31-Jan-20	15:00	0.4	NE		
31-Jan-20	16:00	0.9	NE		
31-Jan-20	17:00	0.8	NE		
31-Jan-20	18:00	1.3	SE		
31-Jan-20	19:00	1.7	ENE		
31-Jan-20	20:00	1.1	ENE		
31-Jan-20	21:00	1.9	ENE		
31-Jan-20	22:00	1.3	NE		
31-Jan-20	23:00	1.3	NE		

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (January 2020)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunday	Wonday	Tuesday	1-Jan	2-Jan	3-Jan	4-Jan
				24 hrs TSP	1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan	11-Jan
			24 hrs TSP	1 hr TSP X3 [AM5(A), AM5(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A))] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-23:00)] [CM6(A)]	Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan	18-Jan
		24 hrs TSP	1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A))] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-23:00)] [CM6(A)]		Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan	25-Jan
	24 hrs TSP	1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A))] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-23:00)] [CM6(A)]			Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan	1-Feb
			24 hrs TSP	1 hr TSP X3 [AM5(A), AM6(A)] [AM1, AM2, AM3, AM4] Noise [Daytime (07:00-19:00)] [CM6(A), CM7(A), CM8(A))] [CM1, CM2, CM3, CM4, CM5] Noise [Evening time (19:00-23:00)] [CM6(A)]	Noise [Evening time (19:00-23:00)] (CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] (CM1, CM2, CM3]	

Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground

AM2 - Sai Tso Wan Recreation Ground
AM3 - Yau Lai Estate Bik Lai House
AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village
AM4(A)⁽²⁾ - Cha Kwo Ling Public Cargo Working Area Administrative Office
AM5(A) - Tseung Kwan O ISSD Desiling Compound
AM6(A) - Park Central, L1/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong
CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong
CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong
CM4 - Tin Hau Temple, Cha Kwo Ling
CM5 - CCC Kei Faat Primary School, Yau Tong
CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores
CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores
CM8(A) - Park Central, L1/F Open Space Area
CM9(A) - Rooftop of Capri Tower 10

Agreement No. CE/59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule (January 2020)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jan	2-Jan	3-Jan	4-Jan
				Mid-Flood 12:24		Mid-Ebb 8:00
				Mid-Ebb 18:03		Mid-Flood 13:45
5-Jan	6-Ja	n 7-Jan	8-Jan	9-Jan	10-Jan	11-Jan
	Mid-Ebb 8:2	3	Mid-Ebb 10:24		Mid-Ebb 11:52	
	Mid-Flood 14:4		Mid-Flood 15:50		Mid-Flood 17:09	
	11.1		13.30		17.05	
12-Jan	13-Ja	n 14-Jan	15-Jan	16-Jan	17-Jan	18-Jan
	Mid-Flood 8:5	5	Mid-Flood 10:27		Mid-Flood 12:03	
	Mid-Ebb 14:1		Mid-Fibb 16:00		Mid-Ebb 18:01	
	IVIId-Lob		10.00		10.01	
19-Jan	20-Ja	n 21-Jan	22-Jan	23-Jan	24-Jan	25-Jan
	Mid-Ebb 8:4	3	Mid-Ebb 10:57		Mid-Ebb 12:26	
	Mid-Flood 14:3		Mid-Flood 16:06		Mid-Flood 17:30	
26-Jan	27-Ja	n 28-Jan	29-Jan	30-Jan	31-Jan	1-Feb
			Mid-Flood 8:52		Mid-Flood 10:55	
			Mid-Ebb 15:28		Mid-Ebb 16:55	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

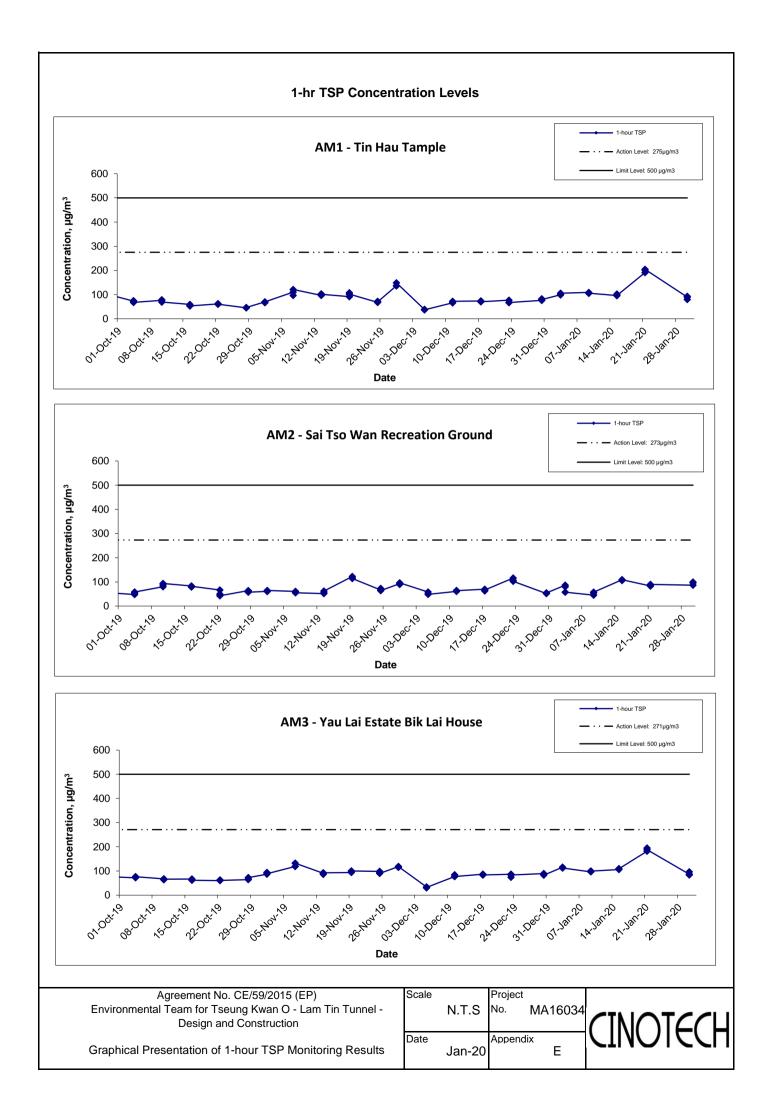
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

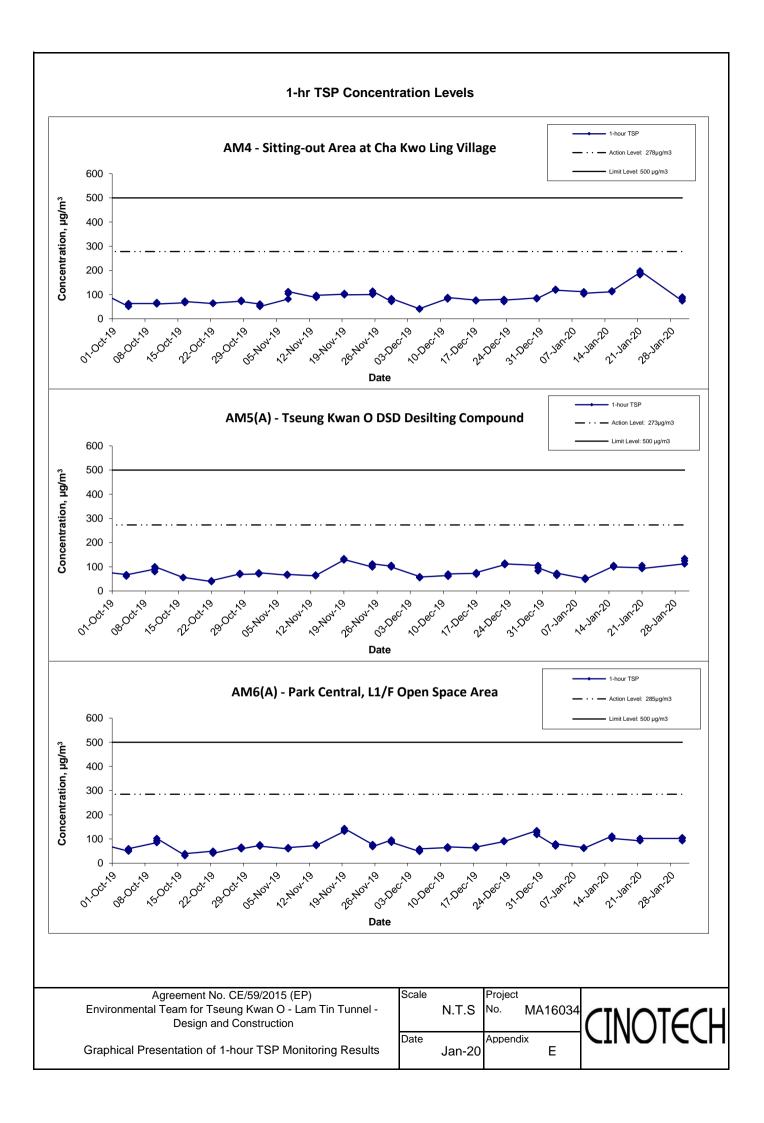
APPENDIX E - 1-HOUR TSP MONITORING RESULTS

Location AM1 - Tin Hau Temple				
Date	Time	Weather	Particulate Concentration (μg/m ³)	
3-Jan-20	9:00	Sunny	99.2	
3-Jan-20	10:00	Sunny	99.2	
3-Jan-20	11:00	Sunny	105.6	
9-Jan-20	9:00	Cloudy	108.8	
9-Jan-20	10:00	Cloudy	105.6	
9-Jan-20	11:00	Cloudy	105.6	
15-Jan-20	13:00	Sunny	96.0	
15-Jan-20	14:00	Sunny	102.4	
15-Jan-20	15:00	Sunny	96.0	
21-Jan-20	9:00	Fine	191.4	
21-Jan-20	10:00	Fine	201.3	
21-Jan-20	11:00	Fine	204.6	
30-Jan-20	9:00	Sunny	89.6	
30-Jan-20	10:00	Sunny	80.0	
30-Jan-20	11:00	Sunny	92.8	
		Average	118.5	
		Maximum	204.6	
		Minimum	80.0	

Location AM2 -	Location AM2 - Sai Tso Wan Recreation Ground				
Date	Time	Weather	Particulate Concentration (μg/m ³)		
3-Jan-20	9:00	Fine	86.4		
3-Jan-20	10:00	Fine	80.0		
3-Jan-20	11:00	Fine	57.6		
9-Jan-20	9:00	Sunny	44.8		
9-Jan-20	10:00	Sunny	54.4		
9-Jan-20	11:00	Sunny	57.6		
15-Jan-20	9:00	Fine	108.8		
15-Jan-20	10:00	Fine	105.6		
15-Jan-20	11:00	Fine	108.8		
21-Jan-20	9:00	Cloudy	83.2		
21-Jan-20	10:00	Cloudy	83.2		
21-Jan-20	11:00	Cloudy	89.6		
30-Jan-20	9:00	Sunny	86.4		
30-Jan-20	10:00	Sunny	99.2		
30-Jan-20	11:00	Sunny	96.0		
		Average	82.8		
		Maximum	108.8		
		Minimum	44.8		

APPENDIX E - 1-HOUR TSP MONITORING RESULTS


Location AM3 - Yau Lai Estate Bik Lai House				
Date	Time	Weather	Particulate Concentration (μg/m ³)	
3-Jan-20	13:00	Sunny	115.2	
3-Jan-20	14:00	Sunny	112.0	
3-Jan-20	15:00	Sunny	112.0	
9-Jan-20	16:00	Cloudy	96.0	
9-Jan-20	17:00	Cloudy	99.2	
9-Jan-20	18:00	Cloudy	99.2	
15-Jan-20	9:00	Sunny	105.6	
15-Jan-20	10:00	Sunny	108.8	
15-Jan-20	11:00	Sunny	108.8	
21-Jan-20	13:00	Fine	181.5	
21-Jan-20	14:00	Fine	194.7	
21-Jan-20	15:00	Fine	188.1	
30-Jan-20	13:00	Sunny	86.4	
30-Jan-20	14:00	Sunny	83.2	
30-Jan-20	15:00	Sunny	96.0	
		Average	119.1	
		Maximum	194.7	
		Minimum	83.2	


Location AM4 - Sitting-out Area at Cha Kwo Ling Village				
Date	Time	Weather	Particulate Concentration (μg/m ³)	
3-Jan-20	16:00	Sunny	121.6	
3-Jan-20	17:00	Sunny	121.6	
3-Jan-20	18:00	Sunny	118.4	
9-Jan-20	13:00	Cloudy	112.0	
9-Jan-20	14:00	Cloudy	102.4	
9-Jan-20	15:00	Cloudy	105.6	
15-Jan-20	16:00	Sunny	112.0	
15-Jan-20	17:00	Sunny	115.2	
15-Jan-20	18:00	Sunny	115.2	
21-Jan-20	9:00	Fine	191.4	
21-Jan-20	10:00	Fine	181.5	
21-Jan-20	11:00	FIne	198.0	
30-Jan-20	16:00	Sunny	73.6	
30-Jan-20	17:00	Sunny	83.2	
30-Jan-20	18:00	Sunny	89.6	
		Average	122.8	
		Maximum	198.0	
		Minimum	73.6	

APPENDIX E - 1-HOUR TSP MONITORING RESULTS

Location AM5(A) - Tseung Kwan O DSD Desilting Compound				
Date	Time	Weather	Particulate Concentration (µg/m ³)	
3-Jan-20	13:00	Fine	67.2	
3-Jan-20	14:00	Fine	64.0	
3-Jan-20	15:00	Fine	73.6	
9-Jan-20	13:00	Sunny	51.2	
9-Jan-20	14:00	Sunny	54.4	
9-Jan-20	15:00	Sunny	48.0	
15-Jan-20	13:00	Fine	102.4	
15-Jan-20	14:00	Fine	105.6	
15-Jan-20	15:00	Fine	99.2	
21-Jan-20	13:00	Cloudy	96.0	
21-Jan-20	14:00	Cloudy	105.6	
21-Jan-20	15:00	Cloudy	92.8	
30-Jan-20	13:00	Sunny	112.0	
30-Jan-20	14:00	Sunny	124.8	
30-Jan-20	15:00	Sunny	134.4	
		Average	88.7	
		Maximum	134.4	
		Minimum	48.0	

Location AM6(A) - Park Central, L1/F Open Space Area				
Date	Time	Weather	Particulate Concentration (µg/m³)	
3-Jan-20	16:00	Fine	70.4	
3-Jan-20	17:00	Fine	76.8	
3-Jan-20	18:00	Fine	80.0	
9-Jan-20	16:00	Sunny	64.0	
9-Jan-20	17:00	Sunny	60.8	
9-Jan-20	18:00	Sunny	60.8	
15-Jan-20	16:00	Fine	112.0	
15-Jan-20	17:00	Fine	105.6	
15-Jan-20	18:00	Fine	102.4	
21-Jan-20	16:00	Cloudy	92.8	
21-Jan-20	17:00	Cloudy	92.8	
21-Jan-20	18:00	Cloudy	102.4	
30-Jan-20	16:00	Sunny	102.4	
30-Jan-20	17:00	Sunny	105.6	
30-Jan-20	18:00	Sunny	92.8	
		Average	88.1	
		Maximum	112.0	
		Minimum	60.8	

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse Time		Sampling	Flow Rate	Flow Rate (m ³ /min.)		Total vol.	Conc.
	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
2-Jan-20	Sunny	292.1	767.5	3.4976	3.5919	0.0943	6151.3	6175.3	24.0	1.22	1.22	1.22	1754.8	53.7
8-Jan-20	Sunny	292.6	763.9	3.4848	3.6266	0.1418	6175.3	6199.3	24.0	1.22	1.21	1.21	1749.3	81.1
14-Jan-20	Sunny	291.2	764.5	3.4990	3.5942	0.0952	6199.3	6223.3	24.0	1.23	1.23	1.23	1771.2	53.7
20-Jan-20	Sunny	292.7	766.6	3.4806	3.6260	0.1454	6223.3	6247.3	24.0	1.22	1.21	1.22	1752.0	83.0
28-Jan-20	Sunny	287.3	766.8	3.4581	3.5883	0.1302	6247.3	6271.3	24.0	1.23	1.23	1.23	1768.2	73.6
													Min	53.7
													Max	131.3
													Average	79.4

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) Pa		Elapse Time		Sampling	pling Flow Rate (m³/min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
2-Jan-20	Sunny	292.1	767.5	3.4440	3.5098	0.0658	26949.6	26973.6	24.0	1.22	1.22	1.22	1755.1	37.5
8-Jan-20	Sunny	292.6	763.9	3.4658	3.5542	0.0884	26973.6	26997.6	24.0	1.22	1.21	1.21	1749.4	50.5
14-Jan-20	Sunny	291.2	764.5	3.3657	3.4522	0.0865	26997.6	27021.6	24.0	1.23	1.23	1.23	1771.2	48.8
20-Jan-20	Sunny	292.7	766.6	3.3655	3.5050	0.1395	27021.6	27045.6	24.0	1.22	1.21	1.22	1752.2	79.6
28-Jan-20	Sunny	287.3	766.8	3.4221	3.5322	0.1101	27045.6	27069.6	24.0	1.23	1.23	1.23	1768.9	62.2
•		=	-		•	-		•	-		•		Min	48.8
													Max	79.6
													Average	60.3

Location AM3 - Yau Lai Estate, Bik Lai House

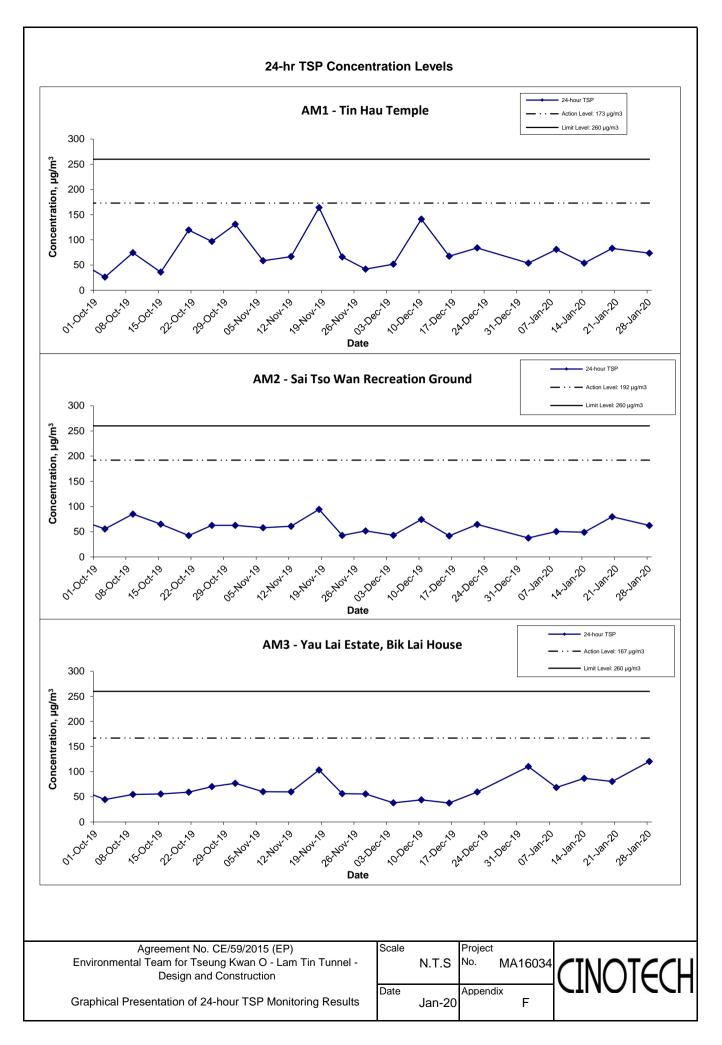
Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) Pa		Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
2-Jan-20	Sunny	292.1	767.5	3.4991	3.6927	0.1936	1257.1	1281.1	24.0	1.22	1.22	1.22	1754.7	110.3
8-Jan-20	Sunny	292.6	763.9	3.4891	3.6091	0.1200	1281.1	1305.1	24.0	1.22	1.21	1.21	1748.8	68.6
14-Jan-20	Sunny	291.2	764.5	3.5030	3.6555	0.1525	1305.1	1329.1	24.0	1.22	1.22	1.22	1754.0	86.9
20-Jan-20	Sunny	292.7	766.6	3.4903	3.6315	0.1412	1329.1	1353.1	24.0	1.22	1.21	1.22	1751.8	80.6
28-Jan-20	Sunny	287.3	766.8	3.5026	3.7156	0.2130	1353.1	1377.1	24.0	1.23	1.23	1.23	1769.1	120.4
													Min	68.6
													Max	120.4
													Average	89.1

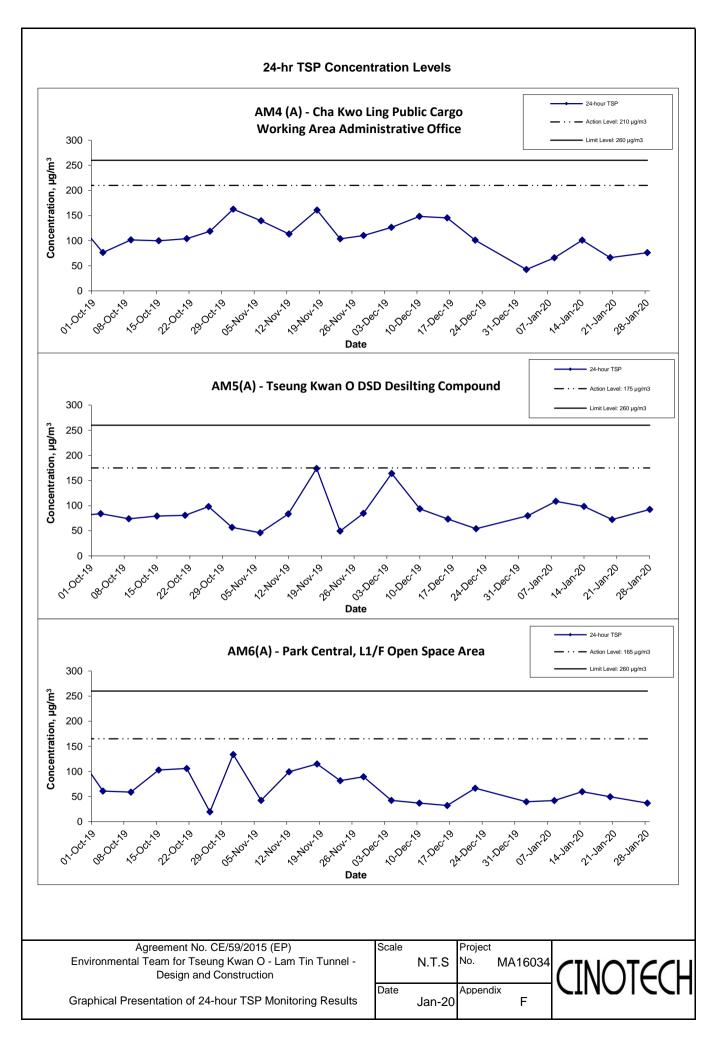
MA16034/App F - 24 hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) Pa		Elapse Time		Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
2-Jan-20	Sunny	292.1	767.5	3.5362	3.6107	0.0745	12217.3	12241.3	24.0	1.22	1.22	1.22	1755.1	42.4
8-Jan-20	Sunny	292.6	763.9	3.5388	3.6542	0.1154	12241.3	12265.3	24.0	1.22	1.21	1.21	1749.5	66.0
14-Jan-20	Sunny	291.2	764.5	3.4528	3.6297	0.1769	12265.3	12289.3	24.0	1.22	1.22	1.22	1754.4	100.8
20-Jan-20	Sunny	292.7	766.6	3.4935	3.6096	0.1161	12289.3	12313.3	24.0	1.22	1.21	1.22	1752.3	66.3
28-Jan-20	Sunny	287.3	766.8	3.5524	3.6869	0.1345	12313.3	12337.3	24.0	1.23	1.23	1.23	1768.5	76.1
													Min	66.0
													Max	100.8
													Average	77.3


Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g) Pa		Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Jan-20	Sunny	292.1	767.5	3.5110	3.6509	0.1399	28653.1	28677.1	24.0	1.22	1.22	1.22	1752.7	79.8
8-Jan-20	Sunny	292.6	763.9	3.4672	3.6566	0.1894	28677.1	28701.1	24.0	1.21	1.21	1.21	1747.2	108.4
14-Jan-20	Sunny	291.2	764.5	3.3544	3.5265	0.1721	28701.1	28725.1	24.0	1.22	1.22	1.22	1752.0	98.2
20-Jan-20	Sunny	292.7	766.6	3.4522	3.5785	0.1263	28725.1	28749.1	24.0	1.22	1.21	1.22	1750.0	72.2
28-Jan-20	Sunny	287.3	766.8	3.4799	3.6429	0.1630	28749.1	28773.1	24.0	1.23	1.23	1.23	1766.0	92.3
-		=	-		•	-		•	-		•	-	Max	108.4
													Average	92.8

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Air	Atmospheric	Filter Weight (g)		Particulate	ulate Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-Jan-20	Sunny	292.1	767.5	3.4965	3.5669	0.0704	1210.2	1234.2	24.0	1.23	1.23	1.23	1768.1	39.8
8-Jan-20	Sunny	292.6	763.9	3.4649	3.5390	0.0741	1234.2	1258.2	24.0	1.22	1.22	1.22	1762.3	42.0
14-Jan-20	Sunny	291.2	764.5	3.4423	3.5478	0.1055	1258.2	1282.2	24.0	1.23	1.23	1.23	1767.2	59.7
20-Jan-20	Sunny	292.7	766.6	3.5044	3.5918	0.0874	1282.2	1306.2	24.0	1.23	1.22	1.23	1764.9	49.5
28-Jan-20	Sunny	287.3	766.8	3.5467	3.6127	0.0660	1306.2	1330.2	24.0	1.24	1.24	1.24	1782.8	37.0
													Min	37.0
													Max	59.7
													Average	47.1

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

(0700-1900 hrs on Normal Weekdays)

Location CM1	ocation CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong											
			Unit: dB (A) (30-min)									
Date	Time	Weather	Mea	sured Noise I	_evel	Baseline Level	Construction Noise Level					
Date	Time We		L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}					
9-Jan-20	13:35	Sunny	71.0	72.3	69.4		70					
15-Jan-20	9:41	Fine	70.8	72.0	69.2	65.5	69					
21-Jan-20	14:50	Sunny	73.4	74.8	71.7	05.5	73					
30-Jan-20	9:00	Sunny	72.6	74.7	68.5		72					

Location CM2	- Bik Lai Ho	use, Yau Lai I	Estate Phase	1, Yau Ton	g					
			Unit: dB (A) (30-min)							
Date	Time	Weather	Mea	sured Noise	_evel	Baseline Level	Construction Noise Level			
Date	Tillic	Weather								
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
9-Jan-20	13:40	Sunny	71.3	73.3	68.2		70			
15-Jan-20	11:00	Sunny	71.1	72.5	69.4	63.6	70			
21-Jan-20	13:55	Sunny	72.0	74.0	69.3	03.6	71			
30-Jan-20	9:40	Sunny	71.8	73.6	68.5	1	71			

Location CM3	- Block S, Ya	au Lai Estate	Phase 5, Ya	u Tong						
			Unit: dB (A) (30-min)							
Date	Time	Weather	Mea	sured Noise I	_evel	Baseline Level	Construction Noise Level			
Date			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
9-Jan-20	11:05	Sunny	75.5	77.6	72.7		75			
15-Jan-20	10:00	Sunny	73.2	75.1	70.2	65.6	72			
21-Jan-20	13:00	Sunny	73.8	76.0	70.5	05.0	73			
30-Jan-20	10:15	Sunny	72.9	74.5	69.3		72			

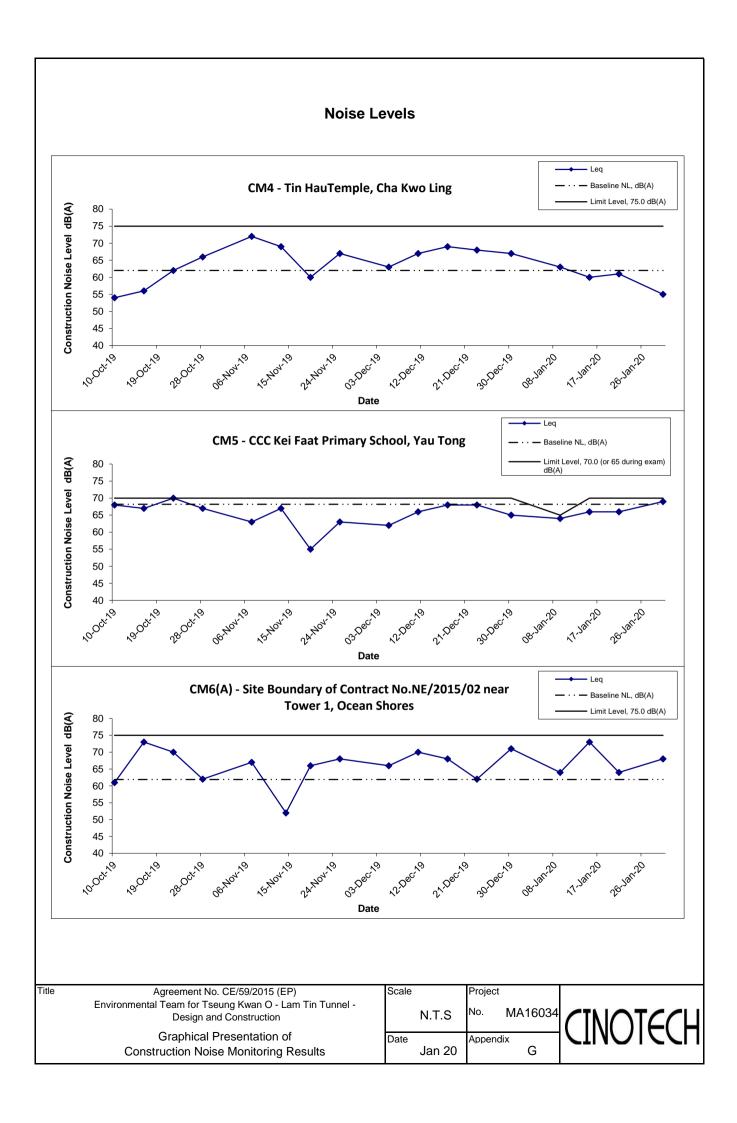
Location CM4	- Tin Hau Te	mple, Cha Kv	vo Ling							
			Unit: dB (A) (30-min)							
Date	Time	Weather	Mea	sured Noise I	Level	Baseline Level	Construction Noise Level			
Dato	Time Weather		L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
9-Jan-20	9:05	Sunny	65.4	68.6	62.3		63			
15-Jan-20	13:00	Sunny	64.3	66.3	63.1	62	60			
21-Jan-20	9:10	Sunny	64.4	66.5	61.1	02	61			
30-Jan-20	11:00	Sunny	62.8	65.5	59.1		55			

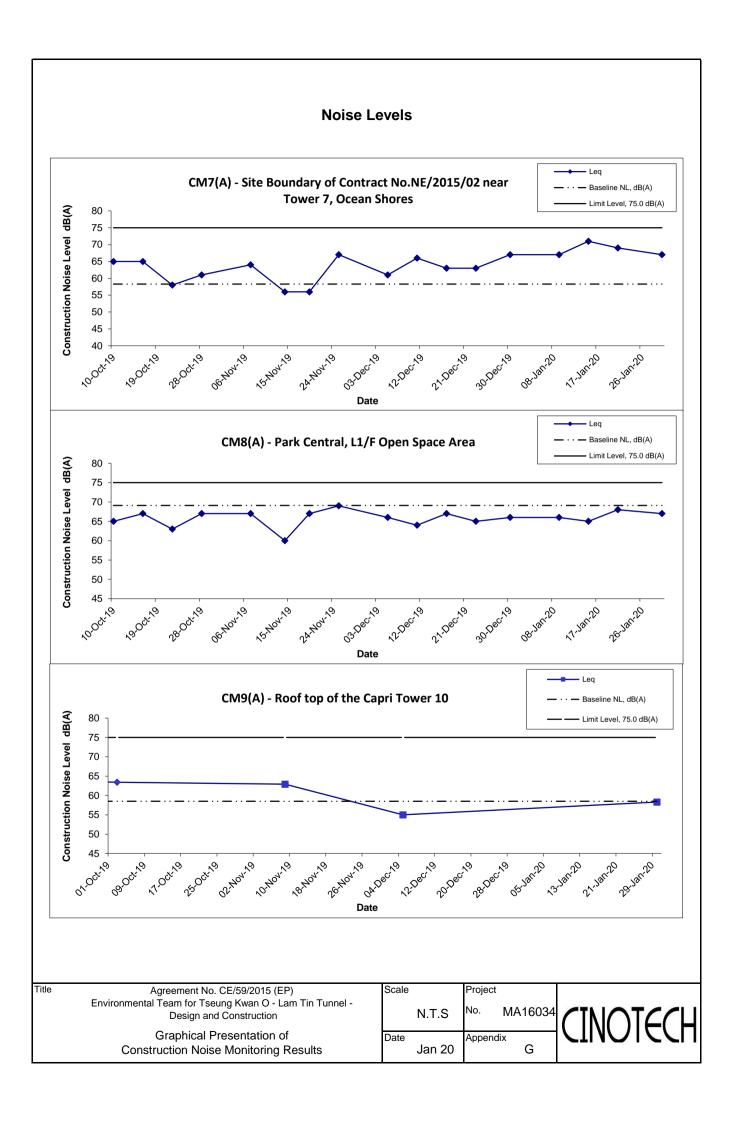
Location CM5	- CCC Kei Fa	aat Primary S	chool, Yau T	ong						
			Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	Measured Noise Level Baseline Level Construction No						
Date	111116	vveatrier								
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
9-Jan-20	10:24	Sunny	69.5	71.7	66.0		64			
15-Jan-20	9:00	Sunny	70.3	72.2	67.8	68.2	66			
21-Jan-20	11:00	Sunny	70.2	72.8	66.4	00.2	66			
30-Jan-20	13:00	Sunny	71.5							

MA16034/App G - Noise Cinotech

(0700-1900 hrs on Normal Weekdays)

Location CM6(ocation CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores											
					Unit:	dB (A) (30-min)						
Date	Time	Weather	Mea	sured Noise I	_evel	Baseline Level	Construction Noise Level					
Date	Time	Weather	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
9-Jan-20	17:06	Sunny	65.8	68.4	62.6		64					
15-Jan-20	11:00	Sunny	73.3	76.0	68.9	64.0	73					
21-Jan-20	13:00	Sunny	66.1	67.6	64.6	61.9	64					
30-Jan-20	13:00	Sunny	68.9									


Location CM7(A) - Site Bou	undary of Cor	tract No. NE	/2015/02 ne	ar Tower 7,	Ocean Shores	
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level
Date	1 11110	Weather				_	
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
9-Jan-20	16:17	Sunny	67.2	70.3	64.3		67
15-Jan-20	13:45	Sunny	71.1	73.0	68.9	58.3	71
21-Jan-20	14:00	Sunny	69.2	70.9	66.4	36.3	69
30-Jan-20	13:45	Sunny	67.8	72.4	62.5		67


Location CM8(A) - Park Ce	ntral, L1/F Op	en Space A	rea						
			Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level			
Date	Time	Weather	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}			
9-Jan-20	13:00	Sunny	65.8	68.5	62.4		66Measured ≤ Baseline			
15-Jan-20	13:00	Sunny	65.0	67.5	62.0	69.1	65Measured ≤ Baseline			
21-Jan-20	11:00	Sunny	68.3	69.9	66.3	09.1	68Measured ≦ Baseline			
30-Jan-20	15:00	Sunny	67.3	71.2	65.2		67Measured ≤ Baseline			

Location CM9(A) - Roof to	of the Capri	Location CM9(A) - Roof top of the Capri Tower 10										
			Unit: dB (A) (30-min)										
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level						
			L eq L 10 L 90 L eq L eq										
30-Jan-20	10:00	Sunny	58.3 61.1 53.6 58.5 58Measured ≤ Baselin										

MA16034/App G - Noise Cinotech

(Restricted Hours - 19:00 to 23:00 on all other days & 07:00 to 23:00 holidays)

				, JD /	A) /F:)		Deselles Level	Canatauratian Naina I arral
Date	Time	Weather		aB (A) (5-min)		Baseline Level	Construction Noise Level
Date	Tillic	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	21:45		67.2	69.5	63.5			
3-Jan-20	21:50	Fine	67.4	69.4	63.7	67.2		64
	21:55		67.1	69.4	63.5			
•	21:30		64.5	66.3	63.0			_
10-Jan-20	21:35	Fine	65.2	66.2	64.1	64.8		54
	21:40		64.7	65.9	63.4			
	20:30		64.8	67.2	62.1			
17-Jan-20	20:35	Fine	64.9	67.4	62.2	64.8	64.4	54
	20:40		64.7	67.5	62.3			
	22:10		67.2	68.9	65.1			
24-Jan-20	22:15	Rainy	67.0	68.7	65.0	67.3		64
	22:20		67.6	69.0	65.4			
	22:10		66.3	67.7	64.0			_
31-Jan-20	22:25	Fine	65.3	66.6	63.8	66.2		62
	22:30		66.8	68.9	63.9			

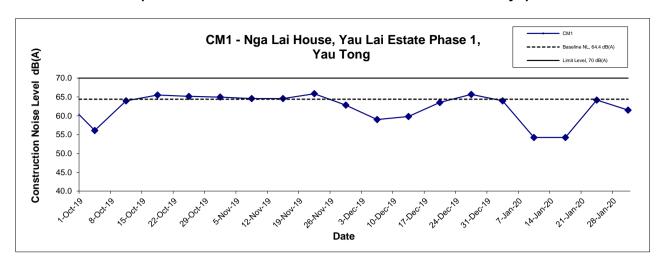
Date	Time	Weather		dB (/	A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	22:10		67.5	69.2	64.2			
3-Jan-20	22:15	Fine	67.4	69.7	64.3	67.4		66
	22:20		67.2	69.8	64.2			
	22:05		67.0	68.6	65.7			
10-Jan-20	22:10	Fine	66.7	67.6	65.9	66.7		65
	22:15		66.3	67.1	65.5			
	21:00		66.8	68.7	63.4			
17-Jan-20	21:05	Fine	66.5	68.6	63.3	66.5	62.2	64
	21:10		66.3	68.4	62.8			
	22:35		66.7	67.6	65.8			_
24-Jan-20	22:40	Rainy	67.1	67.9	66.0	66.9		65
	22:45		66.8	67.5	65.9			
-	22:40		65.6	66.9	64.2			_
31-Jan-20	22:45	Fine	66.7	67.5	63.3	65.8		63
	22:50		65.0	66.6	62.8			

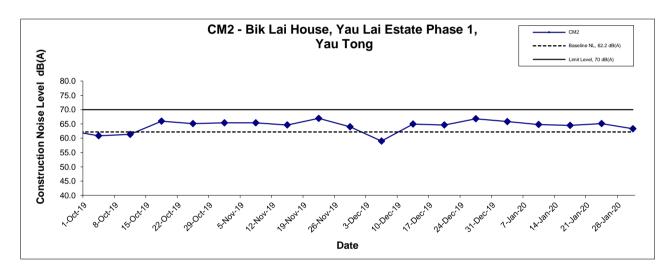
D - 1 -	т	144 11		dB (/	A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	22:30		65.7	68.9	62.2			
3-Jan-20	22:35	Fine	65.8	69.0	62.4	65.6		58
	22:40		65.4	69.9	62.5			
	22:35		67.4	68.7	65.8			
10-Jan-20	22:40	Fine	68.8	70.2	66.6	68.3		66
	22:45		68.5	69.9	66.8			
	22:00		65.3	67.1	61.8			
17-Jan-20	22:05	Fine	65.1	67.0	61.7	65.3	64.7	56
	22:10		65.4	67.7	62.4			
	21:45		65.4	66.1	63.3			
24-Jan-20	21:50	Rainy	66.7	68.0	65.0	66.0		60
	21:55		65.9	66.9	63.3			
•	22:00		63.4	64.7	61.7			
31-Jan-20	22:05	Fine	64.2	66.1	62.6	64.3		64Measured ≤ Baseline
	22:10		65.1	66.2	63.3			

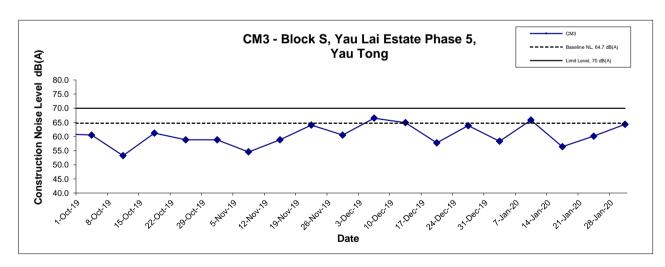
Data	T:	\\/ +		dB (/	A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	Weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	19:20		62.3	63.4	53.6					
9-Jan-20	19:25	Cloudy	62.4	63.2	53.2	62.2		58		
	19:30		62.0	63.3	53.2			64		
	19:20	Fine	65.4	66.3	56.6					
15-Jan-20	19:25	Fine	65.6	66.6	56.8	65.4		64		
	19:30		65.2	66.2	56.6		60.2	58		
	19:00		62.0	63.4	59.8		00.2			
21-Jan-20	19:05	Fine	64.8	68.0	62.6	64.1		62		
	19:10		64.8	67.9	62.8			62		
	19:00		60.8	62.8	57.3			_		
30-Jan-20		Fine	60.5	62.7	57.2	60.6		50		
	19:10		60.4	62.7	57.0					

(Restricted Hours - 2300-0700 on all days)

Doto	Time	Weather		dB (A	A) (5-min)		Baseline Level	Construction Noise Level			
Date	rime	weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}			
	23:00		61.4	64.2	56.5						
3-Jan-20	23:05	Fine	61.5	64.0	56.7	61.4	63.7	61Measured ≤ Baseline			
	23:10		61.2	64.0	56.6						
	23:15		68.4	69.6	67.1			67			
10-Jan-20	23:20	Fine	68.5	69.7	67.5	68.4	63.7	<u>67</u>			
	23:25		68.3	69.2	67.3			<u></u>			
	23:00		62.9	65.9	60.6						
17-Jan-20	23:05	Fine	62.7	65.4	60.4	62.8	63.7	63Measured ≤ Baseline			
	23:10		62.8	65.2	60.1						
	23:00		67.5	69.0	66.0						
24-Jan-20	23:05	Rainy	67.3	68.8	66.2	67.3	63.7	<u>65</u>			
	23:10		67.0	69.0	65.7			_			
	23:20		65.2	66.5	63.4						
31-Jan-20	23:25	Fine	64.1	65.5	62.8	64.7	63.7	<u>58</u>			
	23:30		64.8	68.6	63.9			<u>58</u>			

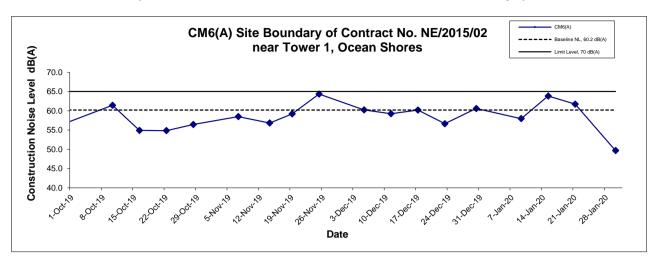

Date	Time	Weather		dB (A	A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	23:20		60.8	63.8	56.0					
3-Jan-20	23:25	Fine	60.5	63.7	55.8	60.5	61.6	61Measured ≤ Baseline		
	23:30		60.3	63.5	55.6					
	23:40		67.4	68.3	66.3			66		
10-Jan-20	23:45	Fine	67.6	68.2	66.0	67.4	60.8	<u>66</u>		
	23:50		67.1	68.8	65.5					
	23:25		61.4	64.6	59.8					
17-Jan-20	23:30	Fine	61.2	64.4	59.6	61.2	61.6	61Measured ≤ Baseline		
	23:35		60.9	64.2	59.5					
	23:25		67.7	68.9	66.1					
24-Jan-20	23:30	Rainy	66.2	67.5	65.0	66.8	61.6	<u>65</u>		
	23:35		66.5	67.7	65.3					
-	23:00		66.7	68.5	64.4		_			
31-Jan-20	23:05	Fine	65.2	67.3	62.9	66.1	61.6	<u>64</u>		
	23:10		66.4	66.7	64.2			<u>64</u>		


Location CM3	- Block S, Ya	au Lai Estate	Phase 5, Ya	u Tong				
D-4-	Т:	\A/ = =4 = = =		dB (/	A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	23:40		61.5	63.8	57.2			
3-Jan-20	23:45	Fine	61.7	63.4	57.5	61.5	62.9	62Measured ≤ Baseline
	23:50		61.2	63.7	57.6			
	0:05		64.8	66.5	60.7			
11-Jan-20	0:10	Fine	65.0	66.3	63.8	64.8	61.8	<u>62</u>
	0:15		64.7	65.9	63.5			
	23:45		61.6	65.1	59.7			
17-Jan-20	23:50	Fine	61.4	64.9	59.9	61.4	62.9	61Measured ≦ Baseline
	23:55		61.2	64.8	60.0			
	0:05		64.0	65.3	60.7			
25-Jan-20	0:10	Rainy	63.2	65.0	60.2	63.5	61.8	<u>59</u>
	0:15		63.3	65.0	60.9			
	23:40		65.2	66.5	63.4			
31-Jan-20	23:45	Fine	64.1	65.5	62.8	64.7	62.9	<u>60</u>
	23:50		64.8	66.0	63.5			


Remark: The exceedanes of night time noise limit level (55dB(A)) were not due to the Project but the road traffic near Eastern Harbour Crossing tunnel.

"Measured
Baseline" means that the averaged measured Leq is smaller than the baseline Leq, and therefore the measured levels are not valid exceedances.

Noise Levels (Restricted Hours - 19:00 - 23:00 on normal weekdays)


Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

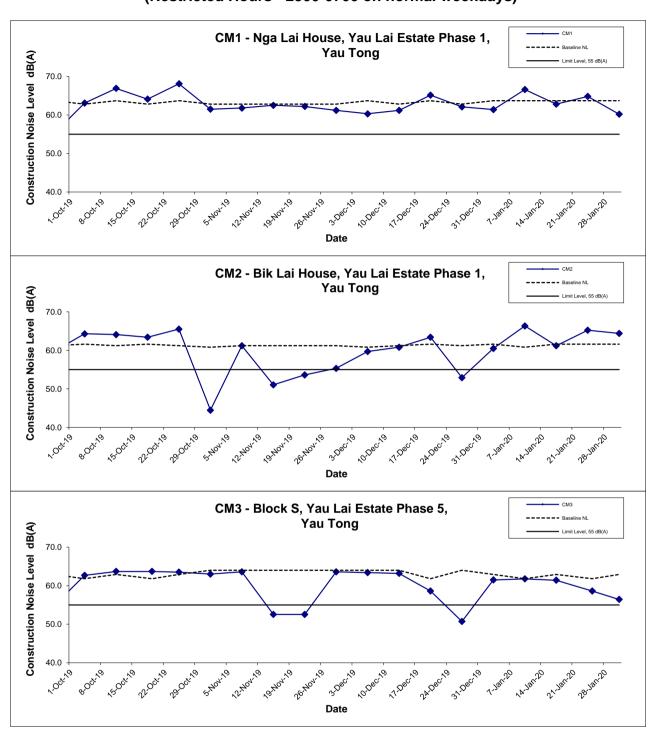
Graphical Presentation of Restricted Noise Monitoring Results

Scale Project
N.T.S No. MA16034

Date Jan 20 Appendix G

Noise Levels (Restricted Hours - 19:00 - 23:00 on normal weekdays)

Title Agreement No. CE/59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Restricted Noise Monitoring Results

Scale Project
No. MA16034

Date Jan 20

G

Title	Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction	Scale		Project No. MA16034	CINICITECH
	Graphical Presentation of Restricted Noise Monitoring Results	Date	Jan 20	Appendix G	CINOIECU

APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 January 2020

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)	_)H		ity ppt		ration (%)		ed Oxyger			urbidity(N1			ded Solid	
	Condition	Condition**	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA'
				Surface	1.0	20.0 19.9 19.8	20.0	8.4 8.4 8.4	8.4	31.7 31.9 32.5	31.8	84.0 81.0 80.8	82.5	5.5 5.3 5.3	5.4	5.3	2.3 2.7 3.4	2.5		3.5 3.7 26.1	3.6	
C1	Cloudy	Calm	18:01	Middle	8.9 17.0	19.8 19.5	19.8	8.4 8.5	8.4	32.5 33.5	32.5 34.0	80.4 81.2	80.6 81.2	5.3 5.3	5.3	F 2	3.2	3.3	3.1	26.4 26.3	26.3	19.
				Surface	1.0	19.2 20.3	20.3	8.4 8.6	8.6	34.4 30.7	30.7	81.1 84.5	83.0	5.3 5.5	5.3 5.4	5.3	3.7 2.9	3.1		28.4 9.8	9.9	
C2	Cloudy	Calm	17:05	Middle	15.9	19.7	19.7	8.6	8.6	30.8	33.0	79.8	80.2	5.4 5.2 5.3	5.2	5.3	5.6 5.3	5.4	4.7	4.8	4.8	7.
				Bottom	31.0	19.6 19.6	19.6	8.6 8.6	8.6	33.1 33.1 33.1	33.1	80.6 80.2 80.6	80.4	5.3 5.3	5.3	5.3	5.9 5.4	5.7		4.8 6.5 6.9	6.7	
				Surface	1.0	19.9 19.9	19.9	8.5 8.4	8.5	32.2 32.3	32.2	93.3 89.6	91.5	6.1 5.9	6.0	5.9	1.7	1.8		22.4 23.5	23.0	
G1	Cloudy	Calm	17:36	Middle	4.0	19.9 19.9	19.9	8.5 8.4	8.5	32.5 32.6	32.5	88.7 90.0	89.4	5.8 5.9	5.9	5.9	1.5 1.8	1.6	1.8	14.8 15.1	15.0	14
				Bottom	7.0	19.8 19.8	19.8	8.5 8.4	8.4	32.9 32.8	32.9	87.7 88.2	88.0	5.7 5.8	5.8	5.8	1.8 2.1	1.9		5.5 5.8	5.7	
				Surface	1.0	20.0 19.9	19.9	8.6 8.6	8.6	32.6 32.8	32.7	91.9 87.4	89.7	6.0 5.7	5.9	5.8	2.4 2.3	2.3		4.5 4.3	4.4	
G2	Cloudy	Calm	17:22	Middle	5.0	19.9 19.8	19.8	8.5 8.6	8.6	32.8 33.0	32.9	89.4 86.7	88.1	5.9 5.7	5.8		2.3 2.1	2.2	2.3	13.3 13.2	13.3	10
				Bottom	9.0	19.8 19.7	19.7	8.6 8.5	8.5	33.2 33.2 31.3	33.2	86.7 85.6 92.9	86.2	5.7 5.6	5.6	5.6	2.6	2.4		13.2 13.1 4.7	13.2	
				Surface	1.0	20.2 19.8 19.9	20.0	8.5 8.5 8.5	8.5	31.6 32.7	31.4	89.7 91.7	91.3	6.1 5.9 6.0	6.0	6.0	1.8 2.0 1.2	1.9		4.7 4.6 6.8	4.7	
G3	Cloudy	Calm	17:41	Middle	7.0	19.8	19.8	8.5 8.5	8.5 8.5	32.7 33.1	32.7	89.8 84.1	90.8	5.9 5.5	6.0	5.5	1.2	1.2	1.6	6.8	6.8	4
				Bottom	1.0	19.7 19.9	19.7	8.5 8.3	8.3	33.0 32.2	33.0	83.6 91.7	83.9 92.7	5.5 6.0	5.5 6.1	5.5	1.6 2.8	1.6 2.6		2.9 2.7	2.9	
G4	Cloudy	Calm	17:49	Middle	4.0	20.1 19.8	19.8	8.3 8.3	8.3	31.2 32.6	32.7	93.7 89.9	89.8	6.2 5.9	5.9	6.0	2.4	2.8	2.9	2.8 3.1	3.1	3
	,			Bottom	7.0	19.8	19.7	8.3	8.3	32.8 33.0	33.1	89.6 84.8	83.9	5.9	5.5	5.5	3.0	3.3		3.0	3.3	
				Surface	1.0	19.7 20.2 19.8	20.0	8.3 8.5 8.5	8.5	33.2 31.8 32.8	32.3	92.9 85.3	89.1	5.4 6.1 5.6	5.8		3.6 3.1 3.3	3.2		3.4 3.8 3.9	3.9	
M1	Cloudy	Calm	17:28	Middle	3.0	20.0	19.9	8.5 8.5	8.5	32.3 32.6	32.4	89.6 86.1	87.9	5.9 5.6	5.7	5.8	3.0	3.0	3.2	6.4 6.4	6.4	5
				Bottom	4.9	19.8 19.8	19.8	8.5 8.5	8.5	32.9 32.8	32.9	85.1 84.8	85.0	5.6 5.5	5.6	5.6	3.3 3.7	3.5		5.5 5.7	5.6	
				Surface	1.5	20.1 19.8	19.9	8.6 8.6	8.6	32.4 33.0	32.7	93.4 87.1	90.3	6.1 5.7	5.9	5.8	1.3 1.3	1.3		6.6 6.7	6.7	
M2	Cloudy	Calm	17:18	Middle	6.0	19.7 19.8	19.8	8.7 8.6	8.6	33.1 32.9	33.0	88.3 88.7	88.5	5.8 5.8	5.8	0.0	0.7 0.9	0.8	1.6	3.8 3.7	3.8	5
				Bottom	11.0	19.5 19.5	19.5	8.7 8.6	8.6	33.8 34.0	33.9	85.9 83.8	84.9	5.6 5.5	5.5	5.5	2.6 3.0	2.8		4.3 4.6	4.5	
				Surface	1.0	19.9 19.8 19.8	19.8	8.4 8.4 8.4	8.4	31.8 32.7 32.7	32.2	91.7 88.1 85.5	89.9	6.0 5.8 5.6	5.9	5.7	3.1 2.8 2.5	2.9	ļ	4.7 4.7 4.5	4.7	
M3	Cloudy	Calm	17:44	Middle	4.0	19.8 19.8	19.8	8.4 8.4	8.4	32.7 32.7 33.0	32.7	83.9 84.7	84.7	5.5 5.5	5.5		2.5 2.7 3.1	2.6	2.8	4.5 4.4 24.8	4.5	1
				Bottom	7.0	19.7	19.7	8.4 8.6	8.4	33.2 31.5	33.1	82.2 86.2	83.5	5.4 5.6	5.5	5.5	3.0	3.0		24.8	24.8	L
M4	Cloudy	Calm	17:10	Surface	1.0	19.9 19.8	20.0	8.6 8.6	8.6	32.0 32.2	31.7	80.4 80.8	83.3 80.7	5.3	5.5 5.3	5.4	3.7	3.8	3.8	7.0 5.3	7.2 5.4	5
IVIT	Cioudy	Cairi	17.10	Bottom	9.0	19.8 19.8	19.8	8.6 8.6	8.6	32.4 32.7	32.7	80.6 82.4	82.4	5.3 5.4	5.4	5.4	3.8 4.2	4.0	3.0	5.5 4.7	4.7	
				Surface	1.0	19.8 20.1	20.0	8.6 8.4	8.4	32.7 32.0	32.0	82.4 87.3	84.4	5.4 5.7	5.5	3.4	3.8	2.8		4.7 10.1	10.0	
M5	Cloudy	Calm	17:54	Middle	6.0	19.9	19.9	8.4	8.4	32.1 32.1	32.1	81.4 82.9	82.1	5.3 5.4	5.4	5.4	2.7	2.5	2.6	9.8	12.0	9
				Bottom	11.1	19.9 19.9 19.9	19.9	8.4 8.4 8.4	8.4	32.2 32.1 32.2	32.2	81.2 81.4 81.2	81.3	5.3 5.3 5.3	5.3	5.3	2.3 2.4 2.7	2.6	1	7.2 6.6	6.9	1
				Surface	-		-		-	-	-		-		-			-		-	-	
M6	Cloudy	Calm	17:54	Middle	2.0	20.0	19.9	8.3 8.3	8.3	31.9 32.7	32.3	93.1 89.9	91.5	6.1 5.9	6.0	6.0	1.8	1.9	1.9	4.6 4.8	4.7	4
				Bottom	_	-	-	-	-	-	_	-	-	-	_	-	-	_	1	-		

^{*}DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 2 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day
	Station M6	<u>C2: 6.8 NTU</u>	<u>C2: 7.3 NTU</u>
	Station M6 Intake Level	10 0 NTU	10 4 NTU
	Stations G1-G4	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.9 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 11.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 12.9 mg/L
	Stations G1-G4, M1-M5	· · · · · · · · · · · · · · · · · · ·	C2. 12.7 mg/L
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 8.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.7 mg/L
	Station M6	•	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 02 January 2020

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		ed Oxyge			urbidity(N			nded Solid	
Locadon	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average		Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	19.8 19.8 19.5	19.8	8.4 8.4 8.5	8.4	32.8 32.8 33.6	32.8	88.2 83.9 84.7	86.0	5.8 5.5 5.5	5.6	5.6	1.8 1.8 0.9	1.8		5.8 5.7 23.5	5.8	
C1	Cloudy	Calm	12:26	Middle	8.3	19.6 19.5	19.6	8.5 8.5	8.5	33.4 33.7	33.5	84.0 84.3	84.3	5.5 5.5	5.5		0.9	0.9	3.0	24.4	24.0	17.1
				Bottom	17.0	19.5 19.8	19.5	8.5 8.6	8.5 8.6	33.7 32.0	33.7	83.9 83.2	84.1 82.8	5.5 5.5	5.5 5.4	5.5	6.5 0.5	6.5 0.5		22.1 18.2	21.6	
C2	Cloudy	Calm	11:29	Middle	16.0	19.8 19.5	19.5	8.7 8.6	8.6	32.0 33.8	33.7	82.4 83.4	83.4	5.4 5.5	5.5	5.4	0.5 1.1	1.0	1.0	18.2 7.1	7.2	9.7
-	,			Bottom	31.0	19.5 19.5	19.5	8.6 8.6	8.6	33.6 33.6	33.8	83.5 83.4	83.3	5.5 5.5	5.4	5.4	1.0	1.5	1	7.2 3.7	3.6	
				Surface	1.1	19.4	19.8	8.6 8.6	8.6	33.9 33.0	33.0	83.2 89.8	89.0	5.4	5.8		1.5	1.6		3.5 7.5	7.5	
G1	Cloudy	Calm	11:55	Middle	3.9	19.8 19.7 19.7	19.7	8.6 8.6	8.6	33.0 33.0 33.0	33.0	88.3 88.9 88.5	88.7	5.8 5.8	5.8	5.8	1.6 1.7 1.7	1.7	1.6	7.5 5.3 5.6	5.5	5.9
				Bottom	6.9	19.7 19.7	19.7	8.6 8.6	8.6	33.1 33.1	33.1	88.0 87.7	87.8	5.8 5.7	5.8	5.8	1.4 1.8	1.6		4.7 4.8	4.8	
				Surface	1.0	19.6 19.6	19.6	8.6 8.6	8.6	33.1 33.3	33.2	94.0 86.9	90.4	6.2 5.7	5.9	5.9	2.5 2.3	2.4		7.0 7.3	7.2	
G2	Cloudy	Calm	11:46	Middle	5.1	19.7 19.6	19.6	8.7 8.6	8.6	33.2 33.2	33.2	89.4 87.6	88.5	5.9 5.7	5.8	5.5	1.5 1.5	1.5	1.8	5.1 5.0	5.1	6.1
				Bottom	9.0	19.4 19.5	19.5	8.6 8.6	8.6	34.0 33.8	33.9	85.9 85.9	85.9	5.6 5.6	5.6	5.6	1.4 1.7	1.6		6.1 6.2	6.2	
				Surface	1.1	19.7 19.7	19.7	8.5 8.5	8.5	31.9 32.7	32.3	86.9 84.7	85.8	5.7 5.5	5.6	5.6	0.7 0.6	0.6]	3.4 3.3	3.4	
G3	Cloudy	Calm	11:58	Middle	4.0	19.7 19.8 19.4	19.7	8.5 8.5 8.6	8.5	33.0 32.6 34.0	32.8	84.8 84.4 84.9	84.6	5.5 5.5	5.5		0.6 0.7 6.1	0.6	2.5	4.6 4.6 6.9	4.6	4.9
				Bottom	6.9	19.7	19.6	8.5 8.5	8.5	33.1 31.5	33.6	84.0 91.2	84.4	5.5 6.0	5.5	5.5	6.1	6.1		6.8 8.9	6.9	
0.4	Olevek	0-1	10:10	Surface	1.1	19.7	19.8	8.5 8.5	8.5	32.5 32.9	32.0	86.2 84.3	88.7	5.7 5.5	5.8	5.7	1.7	1.7	4.5	8.8	8.9	
G4	Cloudy	Calm	12:10	Middle	3.9 6.9	19.8 19.6	19.8	8.5 8.5	8.5 8.5	33.1 33.6	33.0	83.6 84.0	83.9 84.1	5.5 5.5	5.5 5.5 5.5 5.5	5.5	0.9	2.0	1.5	3.7 6.2	3.8 6.2	6.3
				Surface	1.0	19.5 19.8	19.7	8.5 8.6	8.6	33.9 32.2	32.6	84.3 89.0	88.1	5.9	5.8	3.3	2.0	2.0		6.2 3.2	3.3	
M1	Cloudy	Calm	11:50	Middle	3.1	19.7 19.7	19.7	8.6 8.6	8.6	32.9 32.6	32.7	87.2 88.0	87.4	5.7 5.8	5.7	5.8	2.0 2.1 2.1	2.1	3.0	3.3 8.4	8.4	6.4
				Bottom	5.1	19.7 19.6 19.6	19.6	8.6 8.6	8.6	32.8 33.2 33.2	33.2	86.9 87.4 87.0	87.2	5.7 5.7	5.7	5.7	4.9 5.0	4.9		7.2 7.6	7.4	1
				Surface	1.1	19.7 19.6	19.6	8.6 8.6	8.6	33.3 33.3	33.3	90.3 87.1	88.7	5.9 5.7	5.8		1.1 1.0	1.1		4.3 4.4	4.4	
M2	Cloudy	Calm	11:42	Middle	5.9	19.4 19.6	19.5	8.6 8.6	8.6	34.1 33.6	33.8	85.9 86.7	86.3	5.6 5.7	5.6	5.7	0.9	0.9	0.9	5.0 4.8	4.9	6.1
				Bottom	11.0	19.4 19.4	19.4	8.7 8.7	8.7	34.2 34.2	34.2	85.8 86.0	85.9	5.6 5.6	5.6	5.6	0.9 0.9	0.9		8.8 9.1	9.0	
				Surface	1.0	19.7 19.7	19.7	8.5 8.5	8.5	31.6 33.0	32.3	87.0 84.1	85.5	5.8 5.5	5.6	5.6	1.7 1.8	1.8		3.4 3.6	3.5	
M3	Cloudy	Calm	12:05	Middle	3.9	19.7 19.7	19.7	8.5 8.5	8.5	33.0 32.7	32.9	84.3 83.8	84.0	5.5 5.5	5.5		0.4	0.4	1.0	6.9 7.1 3.6	7.0	4.7
				Bottom	6.9	19.5 19.5 19.7	19.5	8.5 8.5 8.6	8.5	33.9 34.0 32.5	33.9	83.7 83.7 83.8	83.7	5.5 5.5 5.5	5.5	5.5	1.0 1.0 0.6	1.0		3.6 4.4	3.6	
	Olevek	0-1	44.00	Surface	1.0	19.6	19.7	8.6 8.6	8.6	33.2 33.4	32.8	84.4 84.4	84.1	5.5 5.5	5.5	5.5	0.7	0.7		4.3	4.4	
M4	Cloudy	Calm	11:36	Middle	5.0 9.0	19.6 19.5	19.6	8.6 8.6	8.6	33.3 33.5	33.4 33.6	84.2 84.4	84.3 84.7	5.5	5.5 5.5	5.5	1.2	1.2	1.1	4.9	4.9	6.8
				Surface	1.1	19.6 19.7	19.7	8.6 8.5	8.5	33.6 33.0	33.0	85.1 88.3	86.8	5.6 5.8	5.7	3.3	1.6 1.2	1.2		11.3 5.9	6.1	
M5	Cloudy	Calm	12:21	Middle	6.0	19.7	19.7	8.5 8.5	8.5	33.1 33.1	33.1	85.3 85.6	85.3	5.6 5.6	5.6	5.6	3.5	3.4	3.3	6.3	6.4	8.0
				Bottom	11.0	19.7 19.6	19.6	8.5 8.5 8.5	8.5	33.1 33.3	33.3	85.1 84.9	84.8	5.6 5.5	5.5	5.5	3.4 5.5 4.8	5.2	1	6.3 11.0 11.7	11.4	1
				Surface	-	19.6	-		-	33.2	-	84.7	-		-			-			-	
M6	Cloudy	Calm	12:14	Middle	2.1	19.8 19.7	19.7	8.5 8.5	8.5	32.4 32.4	32.4	90.6 88.9	89.7	6.0 5.8	5.9	5.9	2.3	2.3	2.3	12.0 12.8	12.4	12.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	

^{*}DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 2 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day
	Station M6	<u>C1: 7.8 NTU</u>	<u>C1: 8.4 NTU</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	<u> 19.0 NTC</u>	<u> 17.4 IVIU</u>
	Stations G1-G4	6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 6.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.5 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 6.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.5 mg/L
	Stations G1-G4, M1-M5	<u> </u>	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 25.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 28.0 mg/L
	Station M6		
	Intake Level	8.3 mg/L	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 January 2020

(Mid-Ebb Tide)

1	Weather	Sea	Sampling	_		Temner	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxyge	n (mg/L)	Т	urbidity(N1	U)	Susper	ided Solids	s (ma/L)
Location	Condition	Condition**	Time	Dept	h (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average		Value	Average			Average	DA*
				Surface	1.0	19.8	19.8	8.1	8.1	33.4	33.4	89.2	89.2	6.7	6.7		1.7	1.8		6.1	6.1	
C1	Sunny	Calm	8:57	Middle	9.0	19.8 19.6 19.6	19.6	8.1 8.4 8.4	8.4	33.4 33.5 33.5	33.5	92.0 92.1	92.1	6.7 6.9 6.9	6.9	6.8	2.3 2.3	2.3	2.4	6.1 4.4 4.4	4.4	6.8
				Bottom	17.0	19.6 19.6	19.6	8.4 8.3 8.3	8.3	33.5 33.5 33.5	33.5	92.1 92.1 92.0	92.1	6.9	6.9	6.9	3.2	3.2		9.8	10.0	
				Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.5 89.5	89.5	6.7 6.7	6.7		1.7	1.7		6.7	6.8	
C2	Sunny	Calm	8:06	Middle	16.0	19.6 19.6	19.6	8.2 8.2	8.2	33.5 33.5	33.5	91.5 91.5	91.5	6.9	6.9	6.8	2.1	2.1	2.4	28.8 28.5	28.7	20.7
				Bottom	31.0	19.6 19.6	19.6	8.3 8.3	8.3	33.5 33.5	33.5	92.1 92.1	92.1	6.9 6.9	6.9	6.9	3.4 3.3	3.4		27.3 26.1	26.7	
				Surface	1.1	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.0 88.9	89.0	6.7 6.7	6.7	6.8	1.7 1.7	1.7		4.7 4.6	4.7	
G1	Sunny	Calm	8:36	Middle	4.0	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	91.6 91.5	91.6	6.9 6.9	6.9	0.0	1.9 1.8	1.9	1.9	5.6 5.4	5.5	5.5
				Bottom	7.1	19.6 19.6	19.6	8.2 8.2	8.2	33.5 33.5	33.5	91.5 91.5	91.5	6.9 6.9	6.9	6.9	2.0 2.0	2.0		6.3 6.4	6.4	
				Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.4 89.5	89.5	6.7 6.7	6.7	6.8	1.8 1.8	1.8		5.2 5.1	5.2	
G2	Sunny	Calm	8:23	Middle	5.1	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	91.7 91.5	91.6	6.9 6.9	6.9	0.0	1.9 1.9	1.9	1.9	4.5 4.5	4.5	4.9
				Bottom	9.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	91.4 91.4	91.4	6.9 6.9	6.9	6.9	2.0 2.0	2.0		5.0 5.1	5.1	
				Surface	1.1	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.3 89.2	89.3	6.7 6.7	6.7	6.8	1.7 1.6	1.7		3.4 3.3	3.4	
G3	Sunny	Calm	8:37	Middle	4.0	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	90.7 90.7	90.7	6.8 6.8	6.8	0.0	1.7 1.7	1.7	1.8	5.7 5.5	5.6	4.6
				Bottom	7.1	19.6 19.6	19.6	8.2 8.2	8.2	33.5 33.5	33.5	91.5 91.5	91.5	6.9 6.9	6.9	6.9	1.9 2.0	1.9		4.8 4.9	4.9	
				Surface	1.1	19.8 19.9	19.9	8.0 8.0	8.0	33.3 33.3	33.3	89.0 88.9	89.0	6.7 6.7	6.7	6.8	1.6 1.5	1.6		5.6 5.7	5.7	
G4	Sunny	Calm	8:45	Middle	4.0	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	91.4 91.3	91.4	6.9 6.9	6.9	9	1.8 1.9	1.8	1.7	8.5 8.0	8.3	6.7
				Bottom	7.1	19.6 19.6	19.6	8.4 8.4	8.4	33.5 33.5	33.5	91.7 91.7	91.7	6.9 6.9	6.9	6.9	1.8	1.8		6.2 6.1	6.2	
				Surface	1.0	19.8 19.8 19.7	19.8	8.1 8.1 8.1	8.1	33.4 33.4 33.4	33.4	89.1 89.1 91.0	89.1	6.7 6.7 6.8	6.7	6.8	1.8 1.8 1.8	1.8	ļ	4.2 4.2 5.9	4.2	
M1	Sunny	Calm	8:29	Middle	3.1	19.7	19.7	8.1 8.0	8.1	33.4 33.4	33.4	90.8 89.4	90.9	6.8	6.8		1.7	1.8	1.8	6.0	6.0	5.6
				Bottom	5.0	19.7	19.7	8.1 8.1	8.0	33.4	33.4	89.6 89.1	89.5	6.7	6.7	6.7	1.8	1.8		6.8	6.8	<u> </u>
M2	Sunny	Calm	8:19	Surface	1.0	19.8	19.8	8.1	8.1	33.4 33.4	33.4	89.1 90.5	89.1	6.7	6.7	6.7	1.8	1.8	1.9	5.1	5.1	5.1
IVIZ	Suriny	Cairii	0.19	Bottom	5.3 9.0	19.8 19.6	19.8	8.0 8.2	8.0	33.4 33.5	33.4 33.5	90.4 91.9	90.5 91.8	6.8	6.9	6.9	1.8	1.8	1.9	3.2 6.8	3.3 6.9	5.1
				Surface	1.0	19.6 19.8	19.8	8.2 8.0	8.0	33.5 33.4	33.4	91.7 89.9	89.9	6.9 6.7	6.7	6.9	2.1 1.8	1.9		7.0 4.4	4.4	
МЗ	Sunny	Calm	8:40	Middle	4.0	19.8 19.8	19.8	8.0	8.0	33.4 33.4	33.4	89.8 88.4	88.5	6.7 6.6	6.6	6.7	1.9	1.7	2.2	4.4 3.1	3.1	4.5
	,			Bottom	7.1	19.8 19.6	19.6	8.0	8.3	33.4 33.5	33.5	88.5 92.1	92.1	6.6	6.9	6.9	3.0	3.1		3.1 5.9	5.9	
				Surface	1.1	19.6 19.8	19.8	8.3 8.4	8.4	33.5 33.0	33.0	92.1 90.4	90.4	6.9	6.8		1.6	1.6		5.8 7.3	7.3	
M4	Sunny	Calm	8:17	Middle	5.1	19.8 19.7	19.7	8.4 8.5 8.5	8.5	33.0 33.5	33.5	90.3 91.2 91.4	91.3	6.8	6.9	6.8	1.5	1.9	1.8	7.3	8.2	7.1
				Bottom	9.1	19.7 19.6 19.6	19.6	8.5 8.5 8.5	8.5	33.5 33.5 33.5	33.5	91.4 91.4 91.5	91.5	6.9 6.9	6.9	6.9	1.9 1.9	1.9		5.8 5.7	5.8	
				Surface	1.1	19.8 19.8	19.8	8.1 8.1	8.1	33.3 33.3	33.3	88.5 88.5	88.5	6.6 6.6	6.6		1.6 1.6	1.6		5.0 5.1	5.1	
M5	Sunny	Calm	8:47	Middle	6.1	19.7 19.7	19.7	8.1 8.1	8.1	33.5 33.5	33.5	90.6 90.8	90.7	6.8 6.8	6.8	6.7	2.0	2.0	1.9	5.0 5.3	5.2	5.7
				Bottom	11.0	19.6 19.6	19.6	8.4 8.4	8.4	33.5 33.5	33.5	91.6 91.6	91.6	6.9 6.9	6.9	6.9	2.0 2.0	2.0		7.0 7.0	7.0	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
M6	Sunny	Calm	8:46	Middle	2.1	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	90.3 88.8	89.6	6.8 6.7	6.7	0.7	1.7 1.7	1.7	1.7	5.3 5.7	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 4 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	4.2 mg/L	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 4.0 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.4 NTU
	Station M6	<u>C2. 4.0 IVI U</u>	<u>C2. 4.4 IVI U</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	<u> </u>	
		6.0 mg/L	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.8 mg/L
	Stations M1-M5		-
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.8 mg/L
	Stations G1-G4, M1-M5		<u></u>
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 32.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 34.7 mg/L
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 04 January 2020

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Don	th (m)		ature (°C)		Н		ity ppt		ration (%)		ed Oxyge			urbidity(N			nded Solid:	
LUCAUUTI	Condition	Condition**	Time	ьері	ar (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average		Value	Average	DA*	Value	Average	DA*
				Surface	1.0	19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.2 89.2	89.2	6.7 6.7	6.7		1.7 1.7	1.7		9.1 9.1	9.1	
C1	Sunny	Calm	13:31	Middle	9.1	19.6	19.6	8.4	8.4	33.5	33.5	92.1	92.1	6.9	6.9	6.8	2.1	2.1	2.4	4.7	4.7	5.9
0.	ourny	Odini	10.01			19.6 19.6		8.4 8.3	<u> </u>	33.5 33.5		92.1 92.0		6.9 6.9			2.1 3.2	<u> </u>	2	4.7		0.0
				Bottom	17.0	19.6	19.6	8.4	8.3	33.5	33.5	92.0	92.0	6.9	6.9	6.9	3.3	3.2		3.8	3.9	
				Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.3 89.2	89.3	6.7 6.7	6.7		1.7 1.8	1.7		8.1 8.1	8.1	
C2	Sunny	Calm	13:36	Middle	16.1	19.6	19.6	8.2	8.2	33.5	33.5	91.5	91.5	6.9	6.9	6.8	2.0	2.0	2.3	7.9	7.8	7.3
						19.6 19.6		8.2 8.3		33.5 33.5		91.5 92.1		6.9 6.9			2.0 3.3	1		7.7 5.7		1
				Bottom	31.0	19.6	19.6	8.3	8.3	33.5	33.5	92.1	92.1	6.9	6.9	6.9	3.3	3.3		6.1	5.9	
				Surface	1.1	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.0 89.0	89.0	6.7 6.7	6.7		1.8 1.8	1.8		3.1 3.1	3.1	
G1	Sunny	Calm	12:58	Middle	4.0	19.7	19.7	8.1	8.1	33.4	33.4	91.4	91.3	6.9	6.9	6.8	1.8	1.8	1.9	5.1	5.2	4.9
				Bottom	7.0	19.7 19.6	19.6	8.1 8.2	8.2	33.4 33.5	33.5	91.2 91.5	91.5	6.9 6.9	6.9	6.9	1.8 2.1	2.1		5.2 6.4	6.4	
				BULLOTTI	7.0	19.6	19.6	8.2	0.2	33.5	33.5	91.5	91.5	6.9	6.9	6.9	2.1	2.1		6.3	0.4	
				Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	89.5 89.5	89.5	6.7 6.7	6.7	6.8	1.8 1.8	1.8		6.5 6.6	6.6	
G2	Sunny	Calm	12:48	Middle	5.0	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	91.6 91.3	91.5	6.9 6.9	6.9	0.0	1.9 1.9	1.9	1.9	3.6 3.4	3.5	5.0
				Bottom	9.0	19.7	19.6	8.5	8.5	33.5	33.5	91.4	91.4	6.9	6.9	6.9	2.0	2.0		5.0	5.1	
				Dottom	3.0	19.6 19.8	13.0	8.5 8.1	0.0	33.5 33.4	33.3	91.4 89.1	31.4	6.9 6.7	0.5	0.5	2.0 1.6	2.0		5.1 4.7	3.1	
				Surface	1.1	19.8	19.8	8.1	8.1	33.3	33.3	89.1	89.1	6.7	6.7	6.7	1.6	1.6		4.7	4.7	
G3	Sunny	Calm	13:03	Middle	4.0	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	90.7 90.7	90.7	6.8 6.8	6.8	0.7	1.7 1.7	1.7	1.7	7.6 7.5	7.6	5.8
				Bottom	7.1	19.6	19.6	8.2	8.2	33.5	33.5	91.5	91.5	6.9	6.9	6.9	1.9	1.9		5.0	5.0	
						19.6 19.9		8.2 8.0		33.5 33.3		91.4 88.8		6.9 6.7			1.9 1.6			5.0 6.8		
				Surface	1.1	19.9	19.9	8.0	8.0	33.3	33.3	88.8	88.8	6.7	6.7	6.8	1.6	1.6		7.1	7.0	
G4	Sunny	Calm	13:11	Middle	4.0	19.7 19.7	19.7	8.0	8.0	33.4 33.4	33.4	91.3 91.2	91.3	6.9 6.9	6.9		1.9 1.8	1.9	1.7	4.8 4.9	4.9	5.9
				Bottom	7.0	19.6	19.6	8.4	8.4	33.5	33.5	91.7	91.7	6.9	6.9	6.9	1.8	1.8		5.8	6.0	
						19.6 19.8		8.4 8.1		33.5 33.4	33.4	91.7 89.1	89.1	6.9 6.7			1.8			6.1 7.2		
				Surface	1.0	19.8	19.8	8.1	8.1	33.4	33.4	89.0	09.1	6.7	6.7	6.7	1.7	1.7		7.6	7.4	ļ
M1	Sunny	Calm	12:52	Middle	3.0	19.8 19.7	19.8	8.1 8.1	8.1	33.4 33.4	33.4	90.5 90.3	90.4	6.8 6.8	6.8		1.7 1.7	1.7	1.8	3.8 3.9	3.9	6.0
				Bottom	5.1	19.7 19.7	19.7	8.1 8.1	8.1	33.4 33.4	33.4	89.7 89.9	89.8	6.7 6.8	6.7	6.7	1.8	1.8		6.4	6.6	
				Surface	1.0	19.8	19.8	8.1	8.1	33.4	33.4	89.1	89.1	6.7	6.7		1.8	1.8		3.4	3.4	
						19.8 19.8		8.1 8.0		33.4 33.4		89.1 90.3		6.7 6.8		6.7	1.8		ļ	3.4 4.8		ŀ
M2	Sunny	Calm	12:43	Middle	5.9	19.8	19.8	8.0	8.0	33.4	33.4	90.2	90.3	6.8	6.8		1.9	1.9	1.9	4.6	4.7	4.9
				Bottom	10.9	19.6 19.6	19.6	8.2 8.2	8.2	33.5 33.5	33.5	91.8 91.6	91.7	6.9 6.9	6.9	6.9	2.1	2.2		6.7 6.4	6.6	
				Surface	1.0	19.8	19.8	8.0	8.0	33.4	33.4	89.7	89.7	6.7	6.7		1.9	1.8		4.5	4.6	
M3	0	0.1	40.07			19.8 19.8	40.0	8.0		33.4 33.4	20.4	89.7 88.6		6.7 6.7		6.7	1.8			4.7 9.1		
IVI3	Sunny	Calm	13:07	Middle	4.0	19.8	19.8	8.0	8.0	33.4	33.4	88.7	88.7	6.7	6.7		1.7	1.7	2.3	9.2	9.2	6.0
				Bottom	7.0	19.6 19.6	19.6	8.3 8.3	8.3	33.5 33.5	33.5	92.1 92.1	92.1	6.9 6.9	6.9	6.9	3.2 3.4	3.3		4.5 4.2	4.4	
				Surface	1.0	19.8	19.8	8.4	8.4	33.0	33.0	90.2	90.2	6.8	6.8		1.5	1.5		6.5	6.4	
M4	Sunny	Calm	13:40	Middle	5.1	19.8 19.7	19.7	8.4 8.5	8.5	33.0 33.5	33.5	90.1	91.4	6.8	6.9	6.8	1.5	1.9	1.8	6.2 5.1	5.1	5.5
IVI	Suriny	Callii	13.40			19.7 19.6		8.5 8.5		33.5 33.5		91.5 91.5		6.9 6.9			1.9 2.0		1.0	5.1 5.4		5.5
				Bottom	9.0	19.6	19.6	8.5	8.5	33.5	33.5	91.5	91.5	6.9	6.9	6.9	1.9	1.9		4.9	5.2	
				Surface	1.1	19.8 19.8	19.8	8.1 8.1	8.1	33.4 33.4	33.4	88.5 88.6	88.6	6.6 6.6	6.6		1.6 1.6	1.6		5.9 5.9	5.9	
M5	Sunny	Calm	13:26	Middle	6.1	19.7	19.7	8.1	8.1	33.5	33.5	90.9	91.0	6.8	6.8	6.7	2.1	2.1	1.9	5.4	5.6	5.7
1110	ourny	Odini	10.20			19.7 19.6		8.1 8.4		33.5 33.5		91.0 91.6		6.8			2.1	1	1.0	5.7 5.5		0
				Bottom	11.0	19.6	19.6	8.4	8.4	33.5	33.5	91.6	91.6	6.9	6.9	6.9	2.0	2.0		5.5	5.5	
				Surface	-		-]	-	-		-	-	-	-	-		:	-		-		1
M6	Sunny	Calm	13:16	Middle	2.1	19.8	19.8	8.1	8.1	33.4	33.4	90.3	90.2	6.8	6.8	6.8	1.7	1.7	1.7	11.3	11.3	11.3
						19.8	. 3.0	8.1	J.,	33.4	-5	90.1		6.8			1.7		"	11.3		1
		l	ĺ	Bottom	-		-	1 .	l -	1 [-	1 [-	1 -	-	-	1 -	-		1 [-	ĺ

Remarks: *DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 4 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 7	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 3.8 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 4.2 NTU
	Station M6	<u>C1. 3.6 N10</u>	<u>C1. 4.2 N1U</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	171011120	17777120
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 10.9 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 11.8 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	same day	or 130% of upstream control station's SS at the same tide of the same day
	Stations C1 C4 M1 M5	<u>C1: 10.9 mg/L</u>	<u>C1: 11.8 mg/L</u>
	Stations G1-G4, M1-M5		7.0 /7
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
	Station M6	<u>C1: 4.7 mg/L</u>	<u>C1: 5.1 mg/L</u>
	Station M6	0.2 /I	0.6
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 January 2020

(Mid-Ebb Tide)

Loostia	Weather	Sea	Sampling	Danif	o (m)	Tempera	ature (°C)	p	Н	Salini	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	ided Solids	(mg/L)
Location	Condition	Condition**	Time	Бері	. ,	Value 19.7	Average	Value 8.6	Average	Value 33.6	Average	Value 100.9	Average	Value 7.6	Average	DA*	Value 1.6	Average	DA*	Value 5.0	Average	DA*
				Surface	1.0	19.8	19.7	8.6	8.6	33.6	33.6	100.8	100.9	7.6	7.6	7.6	1.5	1.5		5.0	5.0	
C1	Sunny	Calm	7:47	Middle	9.1	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	100.4 100.6	100.5	7.5 7.6	7.5		1.8 1.8	1.8	1.9	4.4 4.5	4.5	4.8
				Bottom	17.1	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	99.6 99.4	99.5	7.5 7.5	7.5	7.5	2.5 2.6	2.5		5.1 5.0	5.1	
				Surface	1.1	20.0	20.0	8.2	8.2	32.9	32.9	103.6	103.7	7.8	7.8		1.3	1.3		4.0	4.0	
00	0	Oaka	0.04			20.0		8.2 8.2		33.0 33.6		103.8 103.8		7.8 7.7		7.8	1.3		4.0	4.0 4.5		4.0
C2	Sunny	Calm	8:24	Middle	16.1	20.0	20.0	8.2	8.2	33.6 33.6	33.6	103.9 103.9	103.9	7.8 7.7	7.7		1.3	1.3	1.3	4.5 4.2	4.5	4.2
				Bottom	31.0	20.1	20.1	8.2 8.2	8.2	33.6	33.6	103.9	103.9	7.7	7.7	7.7	1.3 1.3	1.3		4.2	4.2	
				Surface	1.1	20.2 20.2	20.2	8.4 8.4	8.4	33.0 33.2	33.1	93.3 93.8	93.6	7.0 7.0	7.0	7.4	3.2 3.2	3.2		3.9 3.7	3.8	
G1	Sunny	Calm	9:10	Middle	4.1	19.8 19.8	19.8	8.4 8.4	8.4	33.4 33.4	33.4	95.4 95.6	95.5	7.2 7.2	7.2	7.1	3.8	3.8	3.9	5.2 5.2	5.2	5.1
				Bottom	7.1	19.6	19.6	8.4	8.4	33.5	33.5	96.1	96.2	7.2	7.2	7.2	4.6	4.6		6.5	6.4	
						19.6 20.0		8.5 8.2		33.5 33.0		96.2 104.3		7.2 7.8	1	7.2	1.3	<u> </u>		6.3 10.1		
				Surface	1.0	20.1	20.1	8.2	8.2	33.0	33.0	104.4	104.4	7.8	7.8	7.8	1.3	1.3		10.5	10.3	
G2	Sunny	Calm	8:55	Middle	5.1	20.0 20.0	20.0	8.2 8.2	8.2	33.6 33.6	33.6	104.2 104.3	104.3	7.8 7.8	7.8		1.2 1.3	1.3	1.3	3.3 3.2	3.3	5.9
				Bottom	9.0	20.1 20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	103.7 103.7	103.7	7.7 7.7	7.7	7.7	1.3 1.3	1.3		4.2 4.0	4.1	
				Surface	1.1	20.2	20.2	8.4	8.4	33.3	33.3	94.3	94.5	7.0	7.0		2.9	2.8		5.2	5.2	
G3	Sunny	Calm	9:17	Middle	4.0	20.2 19.8	19.8	8.4 8.4	8.4	33.3 33.4	33.4	94.6 96.0	96.0	7.1 7.2	7.2	7.1	2.7	2.5	2.9	5.1 6.2	6.1	5.2
	Guilly	Cairr	0.17			19.8 19.6		8.4 8.5		33.4 33.5		96.0 96.8		7.2 7.3		7.0	2.5 3.4		2.0	6.0 4.1		0.2
				Bottom	7.1	19.6	19.6	8.5	8.5	33.5	33.5	96.8	96.8	7.3	7.3	7.3	3.3	3.3		4.3	4.2	
				Surface	1.1	20.2 20.2	20.2	8.4 8.4	8.4	33.3 33.3	33.3	95.5 95.6	95.6	7.1 7.1	7.1	7.2	3.3 3.2	3.3		5.1 5.2	5.2	
G4	Sunny	Calm	7:30	Middle	4.0	19.8 19.8	19.8	8.4 8.4	8.4	33.4 33.4	33.4	96.1 96.1	96.1	7.2 7.2	7.2	7.2	3.2 3.4	3.3	3.5	4.6 4.4	4.5	4.9
				Bottom	7.1	19.6	19.6	8.5	8.5	33.5	33.5	96.8	96.8	7.3	7.3	7.3	4.1	4.1		4.9	4.9	
				Surface	1.0	19.6 20.0	20.0	8.5 8.3	8.3	33.5 33.4	33.4	96.8 94.9	95.0	7.3 7.1	7.1		2.1	2.1		4.9 5.7	5.5	
			0.05			20.0		8.3 8.3		33.4 33.4		95.0 94.9		7.1 7.1		7.1	2.1		0.5	5.3 4.6		4.0
M1	Sunny	Calm	9:05	Middle	3.1	20.0	20.0	8.3	8.3	33.4	33.4	94.8	94.9	7.1	7.1		2.6	2.5	2.5	4.6	4.6	4.6
				Bottom	5.0	19.8 19.8	19.8	8.3 8.3	8.3	33.5 33.5	33.5	94.2 94.1	94.2	7.1 7.1	7.1	7.1	2.9 2.9	2.9		3.6 3.6	3.6	
				Surface	1.1	20.0 20.0	20.0	8.2 8.2	8.2	33.0 33.0	33.0	104.1 104.2	104.2	7.8 7.8	7.8		1.3 1.3	1.3		3.4 3.4	3.4	
M2	Sunny	Calm	8:45	Middle	6.1	20.0	20.0	8.2	8.2	33.6	33.6	104.1	104.1	7.8	7.8	7.8	1.3	1.3	1.3	4.7	4.6	4.3
				Bottom	11.1	20.0 20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	104.1 103.7	103.7	7.8 7.7	7.7	7.7	1.3 1.3	1.3		4.5 4.8	4.9	
						20.1	<u> </u>	8.2 8.4		33.6 33.3		103.7 95.0		7.7 7.1	1	7	1.3 2.5			4.9 5.0		
				Surface	1.0	20.2	20.2	8.4	8.4	33.3	33.3	95.3	95.2	7.1	7.1	7.1	2.6	2.6		5.0	5.0	
М3	Sunny	Calm	7:23	Middle	4.0	19.8 19.8	19.8	8.4 8.4	8.4	33.4 33.4	33.4	96.1 96.1	96.1	7.2 7.2	7.2		2.3 2.4	2.3	2.7	2.8 2.8	2.8	4.0
				Bottom	7.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	96.8 96.8	96.8	7.3 7.3	7.3	7.3	3.3 3.2	3.2		4.3 4.3	4.3	
				Surface	1.1	20.0	20.0	8.2	8.2	33.0	33.0	103.9	104.0	7.8	7.8		1.3	1.3		5.6	5.6	
M4	Sunny	Calm	8:35	Middle	5.1	20.0	20.0	8.2 8.2	8.2	33.0 33.6	33.6	104.0 103.9	104.0	7.8 7.8	7.8	7.8	1.3	1.3	1.3	5.5 3.0	3.0	4.2
1014	Guilly	Cairr	0.55			20.0		8.2 8.2		33.6 33.6		104.0 103.8		7.8 7.7			1.3		1.5	3.0 4.2		7.2
				Bottom	9.1	20.1	20.1	8.2	8.2	33.6	33.6	103.8	103.8	7.7	7.7	7.7	1.3	1.3		4.1	4.2	
				Surface	1.0	19.3 19.7	19.5	8.7 8.6	8.6	33.9 33.6	33.8	100.2 101.0	100.6	7.6 7.6	7.6	7.5	2.5 2.3	2.4		5.2 5.3	5.3	
M5	Sunny	Calm	7:41	Middle	6.0	19.7 19.6	19.7	8.6 8.6	8.6	33.6 33.6	33.6	100.5 100.4	100.5	7.5 7.5	7.5	7.5	1.7 1.8	1.8	2.2	3.8 3.8	3.8	4.3
				Bottom	11.1	19.6	19.6	8.6	8.6	33.6	33.6	100.0	100.0	7.5	7.5	7.5	2.3	2.4		3.6	3.7	
		<u> </u>	<u> </u>	Surface		19.6 -	_	8.6	_	33.6	_	99.9	_	7.5 -	_		2.4	_		3.8	_	
	_				-	- 19.8		- 8.5		33.5		98.4		7.4		7.4	2.3			4.0		
M6	Sunny	Calm	7:37	Middle	2.0	19.8	19.8	8.5	8.5	33.5	33.5	98.3	98.4	7.4	7.4		2.4	2.4	2.4	3.9	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	- -	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 6 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 1.5 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 1.7 NTU
	Station M6	<u>C2. 1.3 N1U</u>	<u>C2. 1.7 N1U</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	17.01.110	17777120
		6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 4.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 4.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L
	Stations G1-G4, M1-M5		<u> </u>
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 5.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.5 mg/L
	Station M6	'	
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 06 January 2020

(Mid-Flood Tide)

	Weather	Sea	Sampling	Π		Tempera	ture (°C)	l n	Н	Salini	ty not	DO Satu	ration (%)	Dissolv	ed Oxygen	(ma/L)	Т	urbidity(NT	11)	Susper	nded Solids	(ma/L)
Location	Condition	Condition**	Time	Depth	n (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	19.7 19.7	19.7	8.6 8.6	8.6	33.6 33.6	33.6	100.8 100.8	100.8	7.6 7.6	7.6	7.6	1.5 1.5	1.5		4.6 4.7	4.7	
C1	Sunny	Calm	15:25	Middle	9.1	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	100.5 100.5	100.5	7.6 7.6	7.6	7.0	1.9 1.9	1.9	2.0	3.9 3.9	3.9	4.6
				Bottom	17.0	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	99.2 99.1	99.2	7.5 7.5	7.5	7.5	2.6 2.7	2.6		5.1 5.1	5.1	
				Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	32.9 32.9	32.9	104.4 104.4	104.4	7.8 7.8	7.8	7.0	1.3 1.4	1.4		5.2 5.3	5.3	
C2	Sunny	Calm	14:05	Middle	16.1	20.0 20.1	20.0	8.2 8.2	8.2	33.6 33.6	33.6	104.3 104.4	104.4	7.8 7.8	7.8	7.8	1.3 1.3	1.3	1.3	5.6 5.3	5.5	4.6
				Bottom	31.1	20.1 20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	103.7 103.7	103.7	7.7 7.7	7.7	7.7	1.3 1.3	1.3		3.1 3.0	3.1	
				Surface	1.1	20.2 20.2	20.2	8.4 8.4	8.4	33.1 33.3	33.2	93.6 94.0	93.8	7.0 7.0	7.0	7.1	3.0 2.9	3.0		3.7 3.9	3.8	
G1	Sunny	Calm	14:40	Middle	4.0	19.8 19.8	19.8	8.4 8.4	8.4	33.4 33.4	33.4	95.7 95.9	95.8	7.2 7.2	7.2	7.1	3.3 3.4	3.3	3.6	4.3 4.5	4.4	4.6
				Bottom	7.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	96.4 96.8	96.6	7.2 7.3	7.3	7.3	4.6 4.4	4.5		5.6 5.6	5.6	
				Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	32.9 32.9	32.9	104.1 104.0	104.1	7.8 7.8	7.8	7.8	1.5 1.5	1.5		4.3 4.4	4.4	
G2	Sunny	Calm	14:25	Middle	5.1	20.2 20.2	20.2	8.2 8.2	8.2	33.5 33.5	33.5	104.4 104.3	104.4	7.8 7.8	7.8	7.0	1.3 1.3	1.3	1.4	4.5 4.6	4.6	5.0
				Bottom	9.1	20.1 20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	103.8 103.8	103.8	7.7 7.7	7.7	7.7	1.3 1.3	1.3		6.0 6.2	6.1	
				Surface	1.0	20.2 20.2	20.2	8.4 8.4	8.4	33.3 33.3	33.3	95.6 95.5	95.6	7.1 7.1	7.1	7.2	2.5 2.3	2.4		3.9 4.1	4.0	
G3	Sunny	Calm	14:47	Middle	4.1	19.7 19.7	19.7	8.4 8.4	8.4	33.4 33.4	33.4	96.0 96.0	96.0	7.2 7.2	7.2	7 .2	2.8 2.8	2.8	3.1	4.4 4.2	4.3	4.5
				Bottom	7.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	96.8 96.8	96.8	7.3 7.3	7.3	7.3	4.2 4.1	4.1		5.2 5.3	5.3	
				Surface	1.0	20.2 20.2	20.2	8.4 8.4	8.4	33.2 33.1	33.2	95.1 95.0	95.1	7.1 7.1	7.1	7.1	2.4 2.3	2.4		4.1 4.1	4.1	
G4	Sunny	Calm	15:01	Middle	4.1	19.7 19.7	19.7	8.4 8.4	8.4	33.4 33.4	33.4	95.9 95.9	95.9	7.2 7.2	7.2		3.1 2.9	3.0	3.1	3.5 3.6	3.6	4.2
				Bottom	7.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	96.9 96.9	96.9	7.3 7.3	7.3	7.3	4.0 4.0	4.0		5.1 4.8	5.0	
				Surface	1.0	20.0 20.0	20.0	8.3 8.3	8.3	33.4 33.4	33.4	95.1 95.1	95.1	7.1 7.1	7.1	7.1	2.1 2.0	2.1		4.1 4.1	4.1	
M1	Sunny	Calm	14:32	Middle	3.1	19.9 19.9	19.9	8.3 8.3	8.3	33.4 33.4	33.4	94.7 94.6	94.7	7.1 7.1	7.1		2.6 2.6	2.6	2.5	4.9 4.8	4.9	5.1
				Bottom	5.1	19.8 19.8	19.8	8.3 8.3	8.3	33.5 33.5	33.5	94.1 94.1	94.1	7.1 7.1	7.1	7.1	2.9 3.0	2.9		6.4 6.2	6.3	
				Surface	1.0	20.1 20.2	20.2	8.2 8.2	8.2	32.9 32.9	32.9	104.3 104.3	104.3	7.8 7.8	7.8	7.8	1.4	1.4		6.1 6.7	6.4	
M2	Sunny	Calm	14:16	Middle	6.1	20.1 20.2	20.1	8.2 8.2	8.2	33.6 33.5	33.5	104.4 104.4	104.4	7.8 7.8	7.8		1.3 1.3	1.3	1.3	3.6 3.8	3.7	4.9
				Bottom	11.1	20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	103.8 103.8	103.8	7.7	7.7	7.7	1.3	1.3		4.5 4.4	4.5	
				Surface	1.0	20.2	20.2	8.4 8.4	8.4	33.2 33.2	33.2	95.4 95.3	95.4	7.1 7.1	7.1	7.2	2.3	2.2		5.4 5.3	5.4	
M3	Sunny	Calm	14:55	Middle	4.1	19.7 19.7	19.7	8.4 8.4	8.4	33.4 33.4	33.4	96.0 96.0	96.0	7.2 7.2	7.2		3.3	3.3	3.2	7.0 6.7	6.9	5.6
				Bottom	7.1	19.6 19.6	19.6	8.5 8.5	8.5	33.5 33.5	33.5	96.9 96.9	96.9	7.3 7.3	7.3	7.3	4.0	4.0		4.5 4.5	4.5	
				Surface	1.0	20.2	20.1	8.2 8.2	8.2	32.9 32.9	32.9	104.2 104.4	104.3	7.8 7.8	7.8	7.8	1.5	1.4		3.1	3.0	
M4	Sunny	Calm	14:09	Middle	5.1	20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	104.4 104.4	104.4	7.8 7.8	7.8		1.3 1.3	1.3	1.3	4.2	4.2	3.8
				Bottom	9.1	20.1	20.1	8.2 8.2	8.2	33.6 33.6	33.6	103.7 103.7	103.7	7.7 7.7	7.7	7.7	1.3 1.3	1.3		4.2 4.2	4.2	
				Surface	1.0	19.8 19.8	19.8	8.6 8.6	8.6	33.6 33.6	33.6	100.8	100.8	7.6 7.6	7.6	7.6	1.5 1.5	1.5		3.4	3.4	
M5	Sunny	Calm	15:17	Middle	6.1	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	100.6 100.6	100.6	7.6 7.6	7.6		1.8 1.8	1.8	2.0	5.3 5.4	5.4	4.9
				Bottom	11.0	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	99.3 99.2	99.3	7.5 7.5	7.5	7.5	2.6 2.7	2.6		5.9 5.8	5.9	
				Surface	-	-	-	-	-	-	-	-	-	- -	-	7.3	-	-		-	-	
M6	Sunny	Calm	15:10	Middle	2.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.2 98.1	98.2	7.4 7.3	7.3		2.5 2.5	2.5	2.5	5.1 5.0	5.1	5.1
Pomarke:	*DA: Donth-Av			Bottom	-	- -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 6 January 2020 (Mid-Flood Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 1	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day
		<u>C1: 3.2 NTU</u>	<u>C1: 3.4 NTU</u>
	Station M6	T	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	,	
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 5.6 mg/L	6.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 6.0 mg/L
	Stations M1-M5	<u>C1. 3.0 mg/L</u>	<u>C1. 0.0 mg/L</u>
	Stations WII-WIS	6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 5.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 6.0 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 6.1 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 6.6 mg/L
	Station M6	l	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 January 2020

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	h (m)		ature (°C)		Н	Salini			ration (%)		ed Oxygen			urbidity(NT			nded Solids	, , ,
	Condition	Condition**	Time	· · ·		Value 20.1	Average	Value 8.8	Average	Value 33.3	Average	Value 100.0	Average	Value 7.5	Average	DA*	Value 1.9	Average	DA*	Value 7.4	Average	DA*
				Surface	1.1	20.1	20.1	8.8	8.8	33.3	33.3	99.9	100.0	7.5	7.5	7.4	1.9	1.9		7.5	7.5	1
C1	Sunny	Calm	10:41	Middle	8.6	20.0 20.0	20.0	8.7 8.7	8.7	33.5 33.4	33.4	99.0 99.3	99.2	7.4 7.4	7.4		1.9 1.9	1.9	2.1	8.6 8.8	8.7	8.9
				Bottom	16.0	19.7 19.7	19.7	8.7 8.7	8.7	33.6 33.6	33.6	97.7 97.6	97.7	7.3 7.3	7.3	7.3	2.5 2.6	2.6		10.8 10.5	10.7	1
				Surface	1.0	26.5 26.5	26.5	8.0 8.0	8.0	33.8 33.8	33.8	100.3	100.3	8.0 8.0	8.0		1.2 1.2	1.2		7.4 7.6	7.5	
C2	Sunny	Calm	9:15	Middle	16.1	25.6	25.6	8.1	8.1	33.0	33.0	100.3 99.1	99.1	8.1	8.1	8.1	0.9	0.9	1.2	4.6	4.7	5.1
				Bottom	31.1	25.6 20.0	20.0	8.1 8.3	8.3	33.0 33.5	33.5	99.1 97.0	97.0	7.2	7.2	7.2	0.9 1.6	1.6		3.0	3.0	1
	<u> </u>	<u> </u>		Surface	1.1	20.0	20.4	8.3 8.3	8.3	33.5 33.3	33.3	97.0	100.3	7.2 7.4	7.4		1.6 1.7	1.7		3.0 8.0	7.8	
C1	Cunny	Colm	0.52			20.4		8.3 8.2		33.3 33.4		100.3 98.8		7.4 7.3		7.4	1.7 2.3		2.2	7.6 11.4		-
G1	Sunny	Calm	9:53	Middle	3.7	20.3 19.9	20.2	8.2 8.3	8.2	33.4 33.5	33.4	99.1 95.9	99.0	7.4 7.2	7.4		2.2 2.9	2.3	2.3	12.3 4.1	11.9	8.0
	<u> </u>	I		Bottom	6.6	19.9	19.9	8.3 8.1	8.3	33.5 33.4	33.5	95.7 99.0	95.8	7.2	7.2	7.2	2.9	2.9		4.3 9.4	4.2	<u> </u>
				Surface	1.0	20.2	20.2	8.1	8.1	33.5	33.4	98.4	98.7	7.3	7.3	7.3	1.9	1.9		9.7	9.6	
G2	Sunny	Calm	9:34	Middle	5.1	20.1 20.1	20.1	8.0 8.0	8.0	33.5 33.5	33.5	98.0 97.9	98.0	7.3 7.3	7.3		1.6 1.6	1.6	1.9	3.6 3.7	3.7	5.6
				Bottom	9.0	19.9 19.9	19.9	8.0 8.0	8.0	33.5 33.5	33.5	96.1 96.0	96.1	7.2 7.2	7.2	7.2	2.0 2.0	2.0		3.6 3.8	3.7	
				Surface	1.1	20.4 20.4	20.4	8.3 8.3	8.3	33.4 33.4	33.4	100.2 100.1	100.2	7.4 7.4	7.4		1.9 1.9	1.9		6.1 6.0	6.1	
G3	Sunny	Calm	10:00	Middle	3.8	20.4 20.4	20.4	8.2 8.2	8.2	33.4 33.4	33.4	100.7 100.8	100.8	7.5 7.5	7.5	7.5	1.7 1.6	1.7	1.8	7.1 7.0	7.1	5.4
				Bottom	6.5	20.2	20.2	8.2 8.2	8.2	33.4 33.4	33.4	100.0 100.0	100.1	7.4 7.4	7.4	7.4	2.0 2.1	2.0		3.0 2.9	3.0	1
				Surface	1.1	20.2	20.2	8.4	8.4	33.4	33.4	98.6	98.5	7.3	7.3		2.0	2.0		3.5	3.4	
G4	Sunny	Calm	10:15	Middle	3.7	20.2 19.9	19.9	8.4 8.4	8.4	33.4 33.5	33.5	98.4 95.6	95.8	7.3 7.1	7.2	7.2	2.0 2.6	2.6	3.1	3.3 5.8	5.7	4.4
				Bottom	6.6	20.0 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	96.0 91.4	91.3	7.2 6.8	6.8	6.8	2.6 4.8	4.8		5.6 4.2	4.2	1
						19.8 20.4		8.4 8.2	8.2	33.5 33.2	33.3	91.2 97.8	97.7	6.8 7.3		0.0	4.8 1.9	2.0		4.1 3.7		
N44		0.1	0.44	Surface	1.0	20.4 20.1	20.4	8.2 8.2		33.3 33.4		97.6 96.2		7.2 7.2	7.2	7.2	2.0 2.5		0.5	3.8 4.2	3.8	-
M1	Sunny	Calm	9:41	Middle	3.0	20.2	20.2	8.2 8.2	8.2	33.4 33.4	33.4	96.3 95.9	96.3	7.2	7.2		2.5	2.5	2.5	4.3	4.3	3.7
				Bottom	5.0	20.0	20.0	8.2	8.2	33.5	33.5	95.9	95.9	7.2	7.2	7.2	3.1	3.1		2.9	3.0	<u> </u>
				Surface	1.1	20.3 20.3	20.3	8.1 8.1	8.1	33.4 33.4	33.4	99.0 98.5	98.8	7.3 7.3	7.3	7.7	1.7 1.7	1.7		2.4 2.5	2.5	
M2	Sunny	Calm	9:28	Middle	5.2	25.9 26.0	26.0	7.6 7.6	7.6	33.8 33.4	33.6	99.7 99.7	99.7	8.1 8.1	8.1		11.7 11.7	11.7	5.0	6.1 6.0	6.1	5.7
				Bottom	9.5	19.9 19.9	19.9	8.7 8.7	8.7	33.5 33.5	33.5	95.8 96.0	95.9	7.2 7.2	7.2	7.2	1.7 1.7	1.7		8.7 8.6	8.7	
				Surface	1.1	20.5 20.5	20.5	8.3 8.3	8.3	33.2 33.2	33.2	101.6 101.7	101.7	7.5 7.5	7.5		1.5 1.5	1.5		5.3 5.1	5.2	
M3	Sunny	Calm	10:09	Middle	3.7	20.2	20.2	8.3 8.3	8.3	33.5 33.4	33.4	100.9 101.1	101.0	7.5 7.5	7.5	7.5	1.5 1.5	1.5	1.7	3.3 3.3	3.3	4.4
				Bottom	6.5	19.9	19.9	8.4	8.4	33.5	33.5	97.1	97.1	7.3	7.3	7.3	2.1	2.1		4.7	4.8	1
				Surface	1.0	19.9 20.3	20.3	8.4 8.9	8.9	33.5 33.4	33.4	97.0 98.5	98.5	7.3 7.3	7.3		2.0 1.5	1.5		4.8 8.3	8.5	
M4	Sunny	Calm	9:23	Middle	5.0	20.3	20.3	8.9 8.9	8.9	33.4 33.4	33.4	98.4 98.2	98.2	7.3 7.3	7.3	7.3	1.5 1.5	1.5	1.6	8.7 4.3	4.4	5.4
171-7	Curry	Cairii	0.20		9.0	20.3		8.9 8.8	8.8	33.4 33.4		98.2 97.8		7.3 7.3	7.3	7.2	1.5 1.6		1.0	4.5 3.3		- 0.4
	<u> </u>			Bottom		20.2	20.2	8.8 8.7		33.5 33.4	33.4	97.8 99.7	97.8	7.3 7.4		7.3	1.6 1.8	1.6		3.1 3.0	3.2	┼──
				Surface	1.0	20.2	20.2	8.7 8.7	8.7	33.4 33.5	33.4	99.6 99.0	99.7	7.4	7.4	7.4	1.8	1.8		3.0 5.2	3.0	-
M5	Sunny	Calm	10:31	Middle	5.5	19.9	19.9	8.7	8.7	33.5	33.5	99.0	99.0	7.4 7.4 7.4	7.4		2.2	2.2	2.1	5.2	5.2	4.4
				Bottom	10.1	19.8 19.8	19.8	8.7 8.7	8.7	33.6 33.6	33.6	99.0 99.0	99.0	7.4 7.4	7.4	7.4	2.2 2.2	2.2		5.1 5.1	5.1	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
ì		1	1			20.0	20.0	8.6	8.6	33.5	33.5	96.7	96.6	7.2	7.2	٠.٤	3.9	3.8	3.8	2.6	2.7	2.7
M6	Sunny	Calm	10:20	Middle	2.0	20.0	20.0	8.6	0.0	33.5	33.3	96.5	90.0	7.2	1.2		3.6	3.0	3.0	2.7	2.7	2.7

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 8 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 1.9 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 2.1 NTU
	Station M6	<u>C2. 1.5 N10</u>	<u>C2. 2.1 W10</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	<u> </u>	
		6.0 mg/L	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 9.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 9.8 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 9.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 9.8 mg/L
	Stations G1-G4, M1-M5		
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 3.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 3.9 mg/L
	Station M6	1	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 08 January 2020

(Mid-Flood Tide)

	Weather	Sea	Sampling	Γ		Tempera	ture (°C)	r	Н	Salini	ty not	DO Satu	ration (%)	Dissolv	ed Oxygen	(ma/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	n (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	20.1 20.1	20.1	8.8 8.8	8.8	33.2 33.3	33.3	100.1 100.0	100.1	7.5 7.5	7.5	7.4	1.9 1.9	1.9		8.0 7.8	7.9	
C1	Sunny	Calm	16:09	Middle	9.0	20.0 20.8	20.4	8.7 8.7	8.7	33.5 33.5	33.5	99.2 99.3	99.3	7.4 7.4	7.4	7.4	1.8 1.9	1.8	2.0	6.3 6.5	6.4	6.9
				Bottom	17.1	19.7 19.8	19.7	8.7 8.7	8.7	33.6 33.6	33.6	97.8 97.7	97.8	7.3 7.3	7.3	7.3	2.3 2.5	2.4		6.1 6.5	6.3	
				Surface	1.0	27.2 26.5	26.9	8.0 8.0	8.0	33.5 33.5	33.5	100.0 100.3	100.2	8.0 8.0	8.0		1.3 1.2	1.2		5.7 5.7	5.7	
C2	Sunny	Calm	14:25	Middle	16.6	25.7 25.7	25.7	8.1 8.1	8.1	33.0 33.0	33.0	99.1 99.1	99.1	8.1 8.1	8.1	8.1	0.9	0.9	1.3	4.5 4.5	4.5	4.6
				Bottom	32.1	19.9 19.9	19.9	8.3 8.3	8.3	33.5 33.5	33.5	96.4 96.0	96.2	7.2 7.2	7.2	7.2	1.6 1.7	1.6		3.8 3.6	3.7	
				Surface	1.1	21.0 20.5	20.8	8.3 8.3	8.3	33.3 33.3	33.3	100.2 100.2	100.2	7.4 7.4	7.4	7.4	1.7 1.7	1.7		4.8 4.7	4.8	
G1	Sunny	Calm	15:03	Middle	4.0	20.2 20.3	20.3	8.2 8.2	8.2	33.4 33.4	33.4	98.0 98.6	98.3	7.3 7.3	7.3	7.4	2.3 2.4	2.3	2.3	4.3 4.3	4.3	6.5
				Bottom	7.0	20.0 19.9	19.9	8.2 8.2	8.2	33.5 33.5	33.5	96.4 96.1	96.3	7.2 7.2	7.2	7.2	2.9 3.0	2.9		10.7 10.2	10.5	
				Surface	1.1	21.1 20.2	20.7	8.1 8.1	8.1	33.4 33.4	33.4	99.0 98.9	99.0	7.4 7.4	7.4	7.3	2.0 2.0	2.0		9.7 9.9	9.8	
G2	Sunny	Calm	14:43	Middle	5.0	20.1 20.1	20.1	8.0 8.0	8.0	33.5 33.5	33.5	97.9 97.9	97.9	7.3 7.3	7.3	7.3	1.6 1.6	1.6	1.9	5.3 5.4	5.4	7.8
				Bottom	9.0	19.9 19.9	19.9	8.0 8.0	8.0	33.5 33.5	33.5	96.3 96.2	96.3	7.2 7.2	7.2	7.2	1.9 2.0	1.9		8.2 8.4	8.3	l
				Surface	1.0	21.0 20.4	20.7	8.3 8.3	8.3	33.4 33.4	33.4	100.1 100.1	100.1	7.4 7.4	7.4	7.4	1.7 1.7	1.7		5.6 5.5	5.6	
G3	Sunny	Calm	15:11	Middle	4.1	20.4 20.4	20.4	8.2 8.2	8.2	33.4 33.4	33.4	100.8 100.8	100.8	7.5 7.5	7.5	, . 	1.6 1.6	1.6	1.9	5.3 5.0	5.2	5.7
				Bottom	7.1	20.2 20.1	20.2	8.2 8.2	8.2	33.4 33.5	33.5	99.5 99.0	99.3	7.4 7.4	7.4	7.4	2.2 2.4	2.3		6.3 6.3	6.3	
				Surface	1.0	20.8 20.2	20.5	8.4 8.4	8.4	33.4 33.5	33.4	98.2 98.1	98.2	7.3 7.3	7.3	7.3	2.0 2.1	2.1		8.4 8.3	8.4	
G4	Sunny	Calm	15:26	Middle	4.1	20.0 20.0	20.0	8.4 8.4	8.4	33.5 33.5	33.5	96.4 96.7	96.6	7.2 7.2	7.2		2.5 2.3	2.4	3.1	3.2 3.2	3.2	4.8
				Bottom	7.1	19.9 19.9	19.9	8.4 8.4	8.4	33.5 33.5	33.5	91.1 90.8	91.0	7.0 6.8	6.9	6.9	4.9 4.9	4.9		2.6 2.8	2.7	
				Surface	1.0	20.5 20.4	20.4	8.2 8.2	8.2	33.3 33.3	33.3	97.4 97.3	97.4	7.2 7.2	7.2	7.2	2.0 2.0	2.0		3.7 3.7	3.7	
M1	Sunny	Calm	14:51	Middle	3.1	20.2 20.3	20.2	8.2 8.2	8.2	33.4 33.4	33.4	96.0 96.5	96.3	7.2 7.2	7.2		2.4 2.4	2.4	2.5	2.5 2.6	2.6	3.2
				Bottom	5.1	20.0	20.0	8.2 8.2	8.2	33.5 33.5	33.5	95.8 96.0	95.9	7.0 7.1	7.1	7.1	3.1	3.1		3.2	3.2	
				Surface	1.1	20.7 20.3	20.5	8.1 8.0	8.0	33.4 33.4	33.4	98.5 98.4	98.5	7.3 7.3	7.3	7.7	1.7	1.7		4.9 4.5	4.7	
M2	Sunny	Calm	14:38	Middle	5.6	26.0 26.0	26.0	7.6 7.6	7.6	33.8 33.5	33.6	99.7 99.7	99.7	8.1 8.1	8.1		11.7	11.7	5.0	8.1 8.2	8.2	6.5
		•		Bottom	10.0	19.9 19.9	19.9	8.6 8.6	8.6	33.5 33.5	33.5	95.7 95.7	95.7	7.2 7.2	7.2	7.2	1.7	1.7		6.6 6.6	6.6	
				Surface	1.1	21.2 20.5	20.9	8.3 8.3	8.3	33.0 33.1	33.1	101.3	101.7	7.5 7.5	7.5	7.5	1.4	1.4		3.9 4.0	4.0	
М3	Sunny	Calm	15:18	Middle	4.0	20.1 20.1 19.9	20.1	8.3 8.3 8.4	8.3	33.5 33.5	33.5	100.8	100.8	7.5 7.5	7.5		1.6 1.6	1.6	1.7	6.5 6.9 5.7	6.7	5.4
				Bottom	7.0	19.9	19.9	8.4	8.4	33.5 33.5	33.5	97.6 97.0	97.3	7.0 7.3	7.1	7.1	2.0	2.0		5.5	5.6	
				Surface	1.1	20.4 20.3 20.3	20.3	8.8 8.8 8.9	8.8	33.4 33.4 33.4	33.4	98.6 98.5 98.1	98.6	7.3 7.3	7.3	7.3	1.5 1.5 1.5	1.5		7.4 7.6	7.5	
M4	Sunny	Calm	14:31	Middle	5.1	20.3 20.3	20.3	8.9 8.9	8.9	33.4 33.4 33.4	33.4	98.1 98.2 98.0	98.2	7.3 7.3 7.3	7.3		1.5 1.6 1.6	1.5	1.6	5.6 5.8 9.1	5.7	7.4
				Bottom	9.1	20.3	20.3	8.8 8.7	8.8	33.4 33.5	33.4	97.9 99.6	98.0	7.3 7.4	7.3	7.3	1.6 1.8	1.6		8.6 5.6	8.9	
				Surface	1.0	20.1	20.1	8.7 8.7	8.7	33.5	33.5	99.6 99.4 99.1	99.5	7.4	7.4	7.4	1.8	1.8		5.6 5.6 10.3	5.6	
M5	Sunny	Calm	15:57	Middle	6.0	20.0 20.3 19.8	20.1	8.7 8.7 8.7	8.7	33.5 33.5 33.6	33.5	99.1 99.1 98.9	99.1	7.4 7.4 7.4	7.4		2.2 2.1 2.2	2.1	2.1	10.3 10.2 4.5	10.3	6.8
				Bottom	11.1	19.8	19.8	8.7	8.7	33.6	33.6	99.0	99.0	7.4	7.4	7.4	2.3	2.2	<u> </u>	4.7	4.6	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	4.2	-		- 61	-	
M6	Sunny	Calm	15:39	Middle	2.2	20.1	20.1	8.6 8.6	8.6	33.5 33.5	33.5	96.8 96.7	96.8	7.2 7.2	7.2		4.2 4.1	4.2	4.2	6.1 5.9	6.0	6.0
Pomarke:	*DA: Dooth-Av			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 8 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day
	Station M6	<u>C1: 2.9 NTU</u>	<u>C1: 3.1 NTU</u>
	Intake Level	19.0 NTU	19.4 NTU
	Stations G1-G4	<u> 19.0 NTC</u>	<u> 17.4 IVIU</u>
	Stations G1-G4	6.0 mg/L	6.9 mg/L
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 9.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 10.3 mg/L
	Stations M1-M5	l	
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 9.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 10.3 mg/L
	Stations G1-G4, M1-M5		<u>017 1010 1113/12</u>
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 7.6 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 8.2 mg/L
	Station M6	1	
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 January 2020

(Mid-Ebb Tide)

Looption	Weather	Sea S	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depti	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	102.8 102.8	102.8	7.7 7.7	7.7	7.7	1.3 1.3	1.3		3.4 3.3	3.4	
C1	Sunny	Calm	12:00	Middle	9.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	102.2 102.3	102.3	7.6 7.7	7.6	7.7	1.3 1.3	1.3	1.5	2.4 2.3	2.4	4.1
				Bottom	17.0	19.8	19.8	8.5	8.5	33.6	33.6	99.4	99.4	7.4	7.4	7.4	1.8	1.8		6.5	6.7	
						19.8 19.9		8.5 8.4		33.6 33.6		99.4 103.1		7.4 7.7			1.8			6.8 4.6		
				Surface	1.1	19.9	19.9	8.4	8.4	33.6	33.6	103.1	103.1	7.7	7.7	7.6	1.3	1.2		4.4	4.5	
C2	Sunny	Calm	11:07	Middle	16.0	19.8 19.8	19.8	8.4 8.4	8.4	33.6 33.6	33.6	100.9 101.0	101.0	7.6 7.6	7.6		1.5 1.6	1.6	1.4	5.2 5.0	5.1	5.7
				Bottom	30.7	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.0 100.0	100.0	7.5 7.5	7.5	7.5	1.4 1.4	1.4		7.4 7.5	7.5	
				Surface	1.0	20.1	20.1	8.5	8.5	33.5	33.5	98.3	98.3	7.3	7.3		1.8	1.8		5.5	5.5	
G1	Sunny	Calm	11:34	Middle	4.0	20.1 19.9	19.9	8.5 8.5	8.5	33.5 33.6	33.6	98.3 97.9	97.9	7.3 7.3	7.3	7.3	1.8 1.8	1.8	2.0	5.4 11.6	11.4	7.1
	Curriy	Caim	11.54			20.0 19.8		8.5 8.5		33.6 33.6		97.9 97.1		7.3 7.3			1.8 2.5		2.0	11.1 4.5		7.1
				Bottom	7.0	19.8	19.8	8.5	8.5	33.6	33.6	97.1	97.1	7.3	7.3	7.3	2.5	2.5		4.5	4.5	
				Surface	1.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	100.7 100.7	100.7	7.5 7.5	7.5	7.5	1.8 1.8	1.8		3.6 3.6	3.6	
G2	Sunny	Calm	11:24	Middle	5.2	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.6 100.6	100.6	7.5 7.5	7.5	7.5	1.8 1.8	1.8	1.9	5.2 5.3	5.3	4.5
			,	Bottom	9.2	19.8	19.8	8.5	8.5	33.6	33.6	99.4	99.4	7.4	7.4	7.4	2.1	2.1		4.6	4.6	
						19.8 20.0		8.5 8.5		33.6 33.5		99.4 98.1		7.4 7.3			2.1 1.7	1.7		4.5 4.9		
				Surface	1.1	20.0 19.9	20.0	8.5 8.5	8.5	33.5 33.6	33.5	98.2 98.0	98.2	7.3 7.3	7.3	7.3	1.7 1.9	1.7		5.0 14.2	5.0	
G3	Sunny	Calm	11:38	Middle	4.1	19.9	19.9	8.5	8.5	33.6	33.6	98.0	98.0	7.3	7.3		1.9	1.9	1.9	13.9	14.1	7.3
				Bottom	6.9	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.0 98.0	98.0	7.3 7.3	7.3	7.3	2.0 2.0	2.0		2.9 2.7	2.8	
				Surface	1.1	20.0 20.1	20.0	8.5 8.5	8.5	33.6 33.5	33.5	98.2 98.3	98.3	7.3 7.3	7.3		1.8 1.7	1.8		4.6 4.8	4.7	
G4	Sunny	Calm	11:47	Middle	4.1	19.9	19.9	8.5	8.5	33.6	33.6	98.0	98.0	7.3	7.3	7.3	1.8	1.8	1.9	11.3	11.1	6.7
						19.9 19.8		8.5 8.5		33.6 33.6		98.0 98.0		7.3 7.3		7.0	1.8 2.0			10.9 4.2		
	1			Bottom	6.9	19.8 20.1	19.8	8.5 8.5	8.5	33.6 33.5	33.6	98.0 98.2	98.0	7.3 7.3	7.3	7.3	2.0	2.0		4.2 3.5	4.2	
				Surface	1.0	20.1	20.1	8.5	8.5	33.5	33.5	98.2	98.2	7.3	7.3	7.3	2.2	2.1		3.4	3.5	
M1	Sunny	Calm	11:29	Middle	3.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	97.7 97.8	97.8	7.3 7.3	7.3		1.9 2.0	1.9	1.9	5.9 5.9	5.9	5.2
				Bottom	5.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	97.6 97.6	97.6	7.3 7.3	7.3	7.3	1.7 1.7	1.7		6.2 6.4	6.3	
				Surface	1.1	19.8	19.8	8.5	8.5	33.6	33.6	100.4	100.5	7.5	7.5		1.8	1.8		7.2	7.1	
Mo	Cuppy	Colm	11.17			19.8 19.8		8.5 8.5		33.6 33.6		100.5 100.4		7.5 7.5		7.5	2.0		2.0	7.0 6.5		0.0
M2	Sunny	Calm	11:17	Middle	6.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.4 99.3	100.4	7.5 7.4	7.5		2.0	2.0	2.0	6.5 10.6	6.5	8.0
				Bottom	11.2	19.8	19.8	8.5	8.5	33.6	33.6	99.2	99.3	7.4	7.4	7.4	2.4	2.3		10.2	10.4	
				Surface	1.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	97.8 97.8	97.8	7.3 7.3	7.3	7.0	1.9 1.9	1.9		7.1 7.4	7.3	
M3	Sunny	Calm	11:42	Middle	4.1	20.0 20.0	20.0	8.5 8.5	8.5	33.6 33.6	33.6	98.1 98.1	98.1	7.3 7.3	7.3	7.3	1.8 1.8	1.8	1.9	7.2 7.1	7.2	6.9
				Bottom	7.0	19.8	19.8	8.5	8.5	33.6	33.6	97.5	97.5	7.3	7.3	7.3	2.1	2.1		6.1	6.3	
						19.8 19.8		8.5 8.5		33.6 33.6		97.4 100.0		7.3 7.5			2.1			6.5 8.2		
			ļ	Surface	1.0	19.8	19.8	8.5	8.5	33.6	33.6	100.1	100.1	7.5	7.5	7.5	2.0	2.0		8.4	8.3	
M4	Sunny	Calm	11:12	Middle	5.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.8 99.8	99.8	7.5 7.5	7.5		2.1 2.1	2.1	2.2	4.3 4.4	4.4	5.7
				Bottom	9.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.3 99.3	99.3	7.4 7.4	7.4	7.4	2.5 2.5	2.5		4.5 4.4	4.5	
				Surface	1.1	19.8	19.8	8.5	8.5	33.6	33.6	100.9	100.9	7.6	7.6		2.8	2.8		4.8	4.7	
M5	Sunny	Calm	11:55	Middle	6.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.9 100.2	100.2	7.6 7.5	7.5	7.5	2.8	2.0	2.5	4.6 5.3	5.2	4.8
						19.8 19.8		8.5 8.5		33.6 33.6		100.2 99.2		7.5 7.4			2.0		0	5.1 4.5		
				Bottom	11.2	19.8	19.8	8.5	8.5	33.6	33.6	99.2	99.2	7.4	7.4	7.4	2.6	2.6		4.4	4.5	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.4		-		-	-	
M6	Sunny	Calm	11:50	Middle	2.0	19.8 19.8	19.8	8.5 8.5	8.5	33.4 33.4	33.4	99.3 99.3	99.3	7.4 7.4	7.4	7.7	2.3 2.3	2.3	2.3	4.4 4.1	4.3	4.3
			ŀ	Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
Pomarke:	*DA: Depth-A					-		-		-		-		-			-			-		

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 10 January 2020 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	5	
DO: 17	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	5	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C2: 1.7 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 1.8 NTU
	Station M6	02/1//1/10	02/ 1/0 1/1 0
	Intake Level	19.0 NTU	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.4 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.9 mg/L
	Stations M1-M5		
		6.2 mg/L	7.4 mg/L
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.4 mg/L	or 130% of upstream control
	Stations G1-G4, M1-M5	5	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 0.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 0.0 mg/L
	Station M6		<u></u>
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 10 January 2020

(Mid-Flood Tide)

Lasation	Weather	Sea	Sampling	Donat	la (ma)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т Т	urbidity(NT	·U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	<u> </u>
				Surface	1.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	102.7 102.8	102.8	7.7 7.7	7.7	7.6	1.3 1.3	1.3		4.0 4.3	4.2	
C1	Sunny	Calm	16:56	Middle	9.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	100.9 101.0	101.0	7.6 7.6	7.6		1.4 1.4	1.4	1.5	3.0 3.0	3.0	3.4
				Bottom	17.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.3 99.3	99.3	7.4 7.4	7.4	7.4	1.9 1.9	1.9		3.1 3.0	3.1	
				Surface	1.1	19.9 19.9	19.9	8.4 8.4	8.4	33.6 33.6	33.6	103.1 103.1	103.1	7.7 7.7	7.7	7.6	1.2 1.2	1.2		5.9 6.0	6.0	
C2	Sunny	Calm	16:04	Middle	16.0	19.8 19.8	19.8	8.4 8.4	8.4	33.6 33.6	33.6	100.7 100.9	100.8	7.5 7.6	7.5	7.0	1.5 1.5	1.5	1.4	2.9 3.0	3.0	4.7
				Bottom	30.7	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.0 100.0	100.0	7.5 7.5	7.5	7.5	1.5 1.5	1.5		5.2 5.2	5.2	
				Surface	1.0	20.1 20.1	20.1	8.5 8.5	8.5	33.5 33.5	33.5	98.3 98.3	98.3	7.3 7.3	7.3	7.3	1.8 1.8	1.8		4.9 5.0	5.0	
G1	Sunny	Calm	16:31	Middle	4.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	97.8 97.8	97.8	7.3 7.3	7.3	7.0	1.8 1.8	1.8	2.0	7.9 8.3	8.1	7.0
				Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.2 97.1	97.2	7.3 7.3	7.3	7.3	2.3 2.4	2.4		8.0 7.8	7.9	
				Surface	1.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	100.7 100.7	100.7	7.5 7.5	7.5	7.5	1.8 1.7	1.7		5.1 5.4	5.3	
G2	Sunny	Calm	16:20	Middle	5.2	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.6 100.6	100.6	7.5 7.5	7.5	7.0	1.8 1.8	1.8	1.9	26.2 25.8	26.0	19.9
				Bottom	9.2	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.4 99.4	99.4	7.4 7.4	7.4	7.4	2.1 2.1	2.1		28.6 28.4	28.5	
				Surface	1.0	20.0 20.0	20.0	8.5 8.5	8.5	33.5 33.5	33.5	98.2 98.2	98.2	7.3 7.3	7.3	7.3	1.7 1.7	1.7		3.9 3.9	3.9	
G3	Sunny	Calm	16:35	Middle	4.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	98.0 98.0	98.0	7.3 7.3	7.3		1.9 1.9	1.9	1.9	4.5 4.2	4.4	4.3
				Bottom	6.8	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3	2.0 2.0	2.0		4.9 4.6	4.8	
				Surface	1.1	20.1 20.1	20.1	8.5 8.5	8.5	33.5 33.5	33.5	98.3 98.3	98.3	7.3 7.3	7.3	7.3	1.7 1.8	1.7		4.9 5.0	5.0	
G4	Sunny	Calm	16:43	Middle	4.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	98.0 98.0	98.0	7.3 7.3	7.3		1.8 1.8	1.8	1.9	5.2 5.3	5.3	5.0
				Bottom	6.8	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3	2.1	2.1	1	4.7	4.7	
				Surface	1.0	20.1	20.1	8.5 8.5	8.5	33.5 33.5	33.5	98.2 98.3	98.3	7.3 7.3	7.3	7.3	2.2 2.1	2.1		3.7	3.7	
M1	Sunny	Calm	16:26	Middle	3.1	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.5	33.5	97.8 97.8	97.8	7.3 7.3	7.3		2.0	2.0	2.0	7.5 7.2	7.4	6.0
				Bottom	5.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.6 97.6	97.6	7.3 7.3	7.3	7.3	1.8 1.8	1.8		6.9 7.0	7.0	
				Surface	1.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.3	100.4	7.5 7.5	7.5	7.5	1.8	1.8		7.1 7.3	7.2	
M2	Sunny	Calm	16:14	Middle	6.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.4	100.4	7.5 7.5	7.5		2.0	2.0	2.0	6.5 6.5	6.5	6.5
				Bottom	11.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.4 99.3	99.4	7.4 7.4	7.4	7.4	2.3	2.3		5.9 5.7	5.8	
				Surface	1.0	19.9 19.9	19.9	8.5 8.5	8.5	33.6 33.6	33.6	97.7 97.7	97.7	7.3 7.3	7.3	7.3	2.0	2.0		3.4	3.3	
МЗ	Sunny	Calm	16:39	Middle	4.1	20.0 20.0 19.8	20.0	8.5 8.5 8.5	8.5	33.6 33.6 33.6	33.6	98.1 98.1 97.6	98.1	7.3 7.3	7.3		1.8 1.8 2.0	1.8	1.9	3.6 3.3 4.4	3.5	3.7
			I	Bottom	7.0	19.8	19.8	8.5	8.5	33.6	33.6	97.5	97.6	7.3 7.3	7.3	7.3	2.0	2.0	1	4.4	4.4	
				Surface	1.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.1	100.2	7.5 7.5	7.5	7.5	2.0 1.9	1.9		6.9 6.6	6.8	
M4	Sunny	Calm	16:09	Middle	5.1	19.8 19.8 19.8	19.8	8.5 8.5 8.5	8.5	33.6 33.6 33.6	33.6	99.9 99.9 99.2	99.9	7.5 7.5 7.4	7.5		2.1 2.1 2.6	2.1	2.2	5.0 5.0 4.3	5.0	5.4
			I	Bottom	9.0	19.8	19.8	8.5	8.5	33.6	33.6	99.2	99.2	7.4	7.4	7.4	2.5	2.5	1	4.3	4.3	
				Surface	1.1	19.8 19.8 19.8	19.8	8.5 8.5 8.5	8.5	33.6 33.6 33.6	33.6	100.9 100.9 100.1	100.9	7.6 7.6	7.6	7.5	2.9 2.9 2.1	2.9		5.0 4.8 2.6	4.9	
M5	Sunny	Calm	16:52	Middle	6.1	19.8 19.8 19.8	19.8	8.5 8.5 8.5	8.5	33.6 33.6	33.6	100.1	100.1	7.5 7.5 7.4	7.5		2.1 2.1 2.5	2.1	2.5	2.6 2.8 0.7	2.7	2.8
1				Bottom	11.1	19.8	19.8	8.5 -	8.5	33.6	33.6	99.3	99.3	7.4	7.4	7.4	2.6	2.5		0.7	0.7	
				Surface	-	- - 19.8	-	- - Ω Ε	-	33.4	-	-	-	-	-	7.4	2.3	-		7.0	-	
M6	Sunny	Calm	16:47	Middle	2.1	19.8	19.8	8.5 8.5	8.5	33.4	33.4	99.3 99.3	99.3	7.4 7.4	7.4		2.3	2.3	2.3	6.9	7.0	7.0
		eraged		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

^{*}DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 10 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5	5								
ъо: и	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6	•								
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G4, M1-M5	5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day							
	CARACTER MIC	<u>C1: 2.2 NTU</u>	<u>C1: 2.4 NTU</u>							
	Station M6	10 0 N/TH	10 4 N/TH							
	Intake Level Stations G1-G4	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4	<u> </u>								
		6.0 mg/L	<u>6.9 mg/L</u>							
	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day							
		<u>C1: 5.0 mg/L</u>	<u>C1: 5.4 mg/L</u>							
	Stations M1-M5									
		6.2 mg/L	7.4 mg/L							
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day							
		<u>C1: 5.0 mg/L</u>	<u>C1: 5.4 mg/L</u>							
	Stations G1-G4, M1-M5									
		<u>6.9 mg/L</u>	7.9 mg/L							
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 3.7 mg/L	or 130% of upstream control station's SS at the same tide of the same day							
	Station M6	01. 3.7 mg/L	<u>C1: 4.0 mg/L</u>							
	Intake Level	8.3 mg/L	8.6 mg/L							
	IIIIake Level	0.5 mg/L	0.0 mg/L							

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 13 January 2020

(Mid-Ebb Tide)

	Weather	Sea	Sampling			Tompor	ature (°C)	r	н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	n (m)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*		Average			Average	DA*
				Surface	1.2	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.6 100.7	100.7	7.5 7.5	7.5	7.5	2.3 2.3	2.3		5.4 5.3	5.4	
C1	Sunny	Moderate	9:34	Middle	9.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.3 100.3	100.3	7.5 7.5	7.5	7.5	2.1 2.1	2.1	2.1	11.0 11.3	11.2	7.6
				Bottom	17.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.7 99.7	99.7	7.5 7.5	7.5	7.5	2.0	2.0	Ť	6.0	6.2	
				Surface	1.0	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	99.2 99.2	99.2	7.4 7.4	7.4		1.8 1.8	1.8		7.8 7.8	7.8	
C2	C2 Sunny Moderate	Moderate	8:01	Middle	16.1	19.8 19.8	19.8	8.4 8.4	8.4	33.6 33.6 33.6	33.6	98.4 98.5	98.5	7.4 7.4	7.4	7.4	1.8 1.8	1.8	1.8	10.0 10.2	10.1	8.0
				Bottom	31.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.1 98.1	98.1	7.4 7.3	7.3	7.3	1.8 1.9	1.9	-	6.3 5.9	6.1	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	99.0 99.0	99.0	7.4 7.4	7.4	7.4	1.9 1.9	1.9		6.2 6.6	6.4	
G1	Sunny	Moderate	8:42	Middle	4.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.7 98.7	98.7	7.4 7.4	7.4	7.4	1.9 1.9	1.9	2.2	4.5 4.4	4.5	5.2
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.8 97.8	97.8	7.3 7.3	7.3	7.3	2.8 2.7	2.8		4.8 4.6	4.7	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.4 98.4	98.4	7.4 7.4	7.4	7.4	1.9 1.9	1.9		7.3 7.4	7.4	-
G2	Sunny	Moderate	8:22	Middle	5.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.2 98.2	98.2	7.4 7.4	7.4	7.4	1.9 1.9	1.9	1.9	14.2 14.1	14.2	8.7
				Bottom	9.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3	1.8 1.8	1.8		4.5 4.6	4.6	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.2 98.3	98.3	7.4 7.4	7.4	7.4	2.0 2.0	2.0		7.6 7.4	7.5	
G3	Sunny	Moderate	8:50	Middle	4.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.2 98.3	98.3	7.4 7.4	7.4	7.4	2.0 2.0	2.0	2.2	9.9 10.1	10.0	8.3
				Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.8	97.9	7.3 7.3	7.3	7.3	2.7 2.7	2.7	<u> </u>	7.6 7.3	7.5	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.1 98.1	98.1	7.4 7.4	7.4	7.3	1.9 1.9	1.9		5.6 5.6	5.6	
G4	G4 Sunny Moderate	Moderate	9:04	Middle	4.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.9 97.9	97.9	7.3 7.3	7.3		2.1 2.0	2.0	2.0	7.8 7.4	7.6	8.6
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.7 97.7	97.7	7.3 7.3	7.3	7.3	2.1 2.1	2.1		12.9 12.4	12.7	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.4 33.4	33.4	99.6 99.4	99.5	7.5 7.5	7.5	7.4	2.9 3.0	2.9	_	4.2 3.9	4.1	7.1
M1	Sunny	Moderate	8:30	Middle	3.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.4 98.4	98.4	7.4 7.4	7.4		2.4 2.5	2.5	2.6	8.1 8.1	8.1	
				Bottom	5.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.4 98.4	98.4	7.4 7.4	7.4	7.4	2.3	2.2	↓	9.3 9.1	9.2	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.4 98.4	98.4	7.4 7.4	7.4	7.4	1.8	1.8		4.9 4.9	4.9	4.0
M2	Sunny	Moderate	8:15	Middle	6.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.2 98.2	98.2	7.4 7.4	7.4		1.8	1.8	1.8	3.4	3.4	
				Bottom	11.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3	1.7	1.7		3.7	3.7	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5	33.5	97.8 97.9	97.9	7.3 7.3	7.3	7.3	1.9 2.0	1.9		5.2 4.9	5.1	
M3	Sunny	Moderate	8:58	Middle	4.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.7 97.7 97.4	97.7	7.3 7.3 7.3	7.3		2.1 2.1 2.4	2.1	2.1	8.2 8.5 9.5	8.4	7.7
				Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.6 33.5	33.5	97.4	97.4	7.3	7.3	7.3	2.4	2.4		9.7	9.6	
				Surface	1.1	19.8	19.8	8.5 8.5 8.5	8.5	33.5	33.5	98.4 98.4 98.2	98.4	7.4	7.4	7.4	1.9 1.9 1.8	1.9		6.2	6.2	
M4	Sunny	Moderate	8:08	Middle	5.0	19.8 19.8 19.8	19.8	8.5 8.5 8.5	8.5	33.6 33.6 33.6	33.6	98.2 98.2 97.9	98.2	7.4 7.4 7.3	7.4		1.8 1.8 1.7	1.8	1.8	3.6 3.7 6.9	3.7	5.5
<u> </u>				Bottom	9.0	19.8	19.8	8.5 8.5	8.5	33.6 33.5	33.6	97.9 97.9 101.5	97.9	7.3 7.6	7.3	7.3	1.7	1.7		6.7	6.8	
				Surface	1.1	19.8 19.8 19.8	19.8	8.5 8.5 8.5	8.5	33.5 33.5 33.6	33.5	101.5 101.4 99.9	101.5	7.6	7.6	7.5	1.8 1.8 2.0	1.8		5.5 5.4 8.4	5.5	
M5	Sunny	Moderate	9:23	Middle	6.1	19.8 19.8 19.7	19.8	8.5 8.5 8.5	8.5	33.6 33.6	33.6	100.0 99.3	100.0	7.5 7.5 7.4	7.5		2.0 2.0 3.3	2.0	2.4	8.4 8.4 4.9	8.4	6.3
				Bottom	11.1	19.7	19.7	8.5 8.5	8.5	33.6	33.6	99.4	99.4	7.4	7.4	7.4	3.3	3.3		5.1	5.0	
				Surface	-		-	-	-		-	- 100.6	-		-	7.5	-	-			-	
M6	Sunny	Moderate	9:12	Middle	2.1	19.9 19.9	19.9	8.5 8.5	8.5	33.4 33.4	33.4	100.6 100.6	100.6	7.5 7.5	7.5		1.8	1.8	1.8	6.2 5.9	6.1	6.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

^{*}DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 13 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4, M1-M5	5										
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>									
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day									
		<u>C2: 2.2 NTU</u>	<u>C2: 2.4 NTU</u>									
	Station M6											
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4	T										
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>									
	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day									
		<u>C2: 9.4 mg/L</u>	<u>C2: 10.1 mg/L</u>									
	Stations M1-M5											
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>									
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day									
		<u>C2: 9.4 mg/L</u>	<u>C2: 10.1 mg/L</u>									
	Stations G1-G4, M1-M5	<u></u>										
		<u>6.9 mg/L</u>	7.9 mg/L									
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day									
		<u>C2: 7.3 mg/L</u>	<u>C2: 7.9 mg/L</u>									
	Station M6											
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 13 January 2020

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satur	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)		nded Solids	(mg/L)
Location	Condition	Condition**	Time	Бери	1 (111)		Average	Value	Average	Value	Average	Value	Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.5 100.6	100.6	7.5 7.5	7.5	7.5	2.2 2.2	2.2		17.6 17.8	17.7	
C1	Sunny	Moderate	15:04	Middle	9.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.2 100.2	100.2	7.5 7.5	7.5	7.5	2.0 2.0	2.0	2.1	24.1 24.6	24.4	15.9
				Bottom	17.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.8 99.8	99.8	7.5 7.5	7.5	7.5	2.1 2.1	2.1		5.8 5.6	5.7	
	C2 Sunny Moderate		Surface	1.1	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	99.2 99.1	99.2	7.4 7.4	7.4		1.8 1.8	1.8		6.4 6.7	6.6		
C2		13:31	Middle	16.1	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	98.6 98.6	98.6	7.4 7.4	7.4	1.8 1.8	1.8	1.8	5.0 5.2	5.1	5.8		
				Bottom	31.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.1 98.1	98.1	7.3 7.3	7.3	7.3	1.9 1.8	1.9		5.7 6.0	5.9	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	99.1 99.0	99.1	7.4 7.4	7.4	7.4	2.1 2.0	2.0		7.2 7.3	7.3	
G1	Sunny	Moderate	14:13	Middle	4.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.5 98.6	98.6	7.4 7.4	7.4	7.4	2.0 2.0	2.0	2.3	8.3 8.5	8.4	7.3
				Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.8	97.9	7.3 7.3	7.3	7.3	2.8 2.8	2.8		6.2 6.3	6.3	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.5 98.5	98.5	7.4 7.4	7.4	7.4	1.9 1.9	1.9		8.9 9.1	9.0	
G2	Sunny	Moderate	13:52	Middle	5.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.2 98.2	98.2	7.4 7.4	7.4	1.8 1.9	1.9	1.9	8.6 8.7	8.7	8.2	
				Bottom	9.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3 7.3	1.8 1.8	1.8		6.9 7.2	7.1	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.3 98.3	98.3	7.4 7.4	7.4	7.4	2.0 2.0	2.0		6.0 5.8	5.9	
G3	Sunny	Moderate	14:20	Middle	4.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.3 98.3	98.3	7.4 7.4	7.4		2.0 2.0	2.0	2.3	7.6 7.6	7.6	7.2
			Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.4 97.3	97.4	7.3 7.3	7.3	7.3	2.9 2.9	2.9		7.8 8.4	8.1		
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.1 98.1	98.1	7.4 7.4	7.4	7.3	1.9 1.9	1.9		3.9 3.8	3.9	
G4	G4 Sunny Moderate	Moderate	14:35	Middle	4.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.9 98.0	98.0	7.3 7.3	7.3	7.0	2.0 2.0	2.0	2.0	7.5 7.3	7.4	6.0
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.6 97.5	97.6	7.3 7.3	7.3	7.3	2.1 2.2	2.2		6.6 6.9	6.8	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.4 33.4	33.4	99.2 99.0	99.1	7.4 7.4	7.4	7.4	3.1 3.1	3.1	_	6.4 6.7	6.6	6.6 5.7 6.2 6.3
M1	Sunny	Moderate	14:00	Middle	3.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.3 98.3	98.3	7.4 7.4	7.4		2.6 2.7	2.7	2.6	5.8 5.6	5.7	
				Bottom	5.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.4 98.4	98.4	7.4 7.4	7.4	7.4 2.2 2.2	2.2	2.2		6.2 6.3	6.3	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.4 98.5	98.5	7.4 7.4	7.4 7.4	1.8 1.8	1.8		13.8 13.2	13.5	19.9	
M2	Sunny	Moderate	13:45	Middle	6.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.2 98.2	98.2	7.4 7.4		1.9 1.9	1.9	1.8	25.5 25.5	25.5		
				Bottom	11.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3		1.6	1.6		20.1 21.4	20.8	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.7 97.8	97.8	7.3 7.3	7.3	7.3	2.0	2.0		5.2 4.9	5.1	
M3	Sunny	Moderate	14:29	Middle	4.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.7 97.7	97.7	7.3 7.3	7.3		2.0	2.0	2.1	4.1 3.9	4.0	5.5
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	97.6 97.5	97.6	7.3 7.3	7.3	7.3	2.2	2.3		7.6 7.2	7.4	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	98.4 98.4	98.4	7.4 7.4	7.4	7.4	1.8	1.8		5.9 6.0	6.0	
M4	Sunny	Moderate	13:38	Middle	5.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	98.1 98.2	98.2	7.4 7.4	7.4		1.7	1.7	1.7	9.7 10.1	9.9	6.9
				Bottom	9.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	97.9 97.9	97.9	7.3 7.3	7.3	7.3	1.7	1.7		4.8 5.0	4.9	
				Surface	1.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	101.4 101.4	101.4	7.6 7.6	7.6	7.5	1.8	1.8		5.4 5.3	5.4	
M5	Sunny	Moderate	14:54	Middle	6.1	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	100.0 100.0	100.0	7.5 7.5	7.5	-	2.0 1.9	1.9	2.2	4.5 4.8	4.7	5.4
				Bottom	11.0	19.7 19.7	19.7	8.5 8.5	8.5	33.6 33.6	33.6	99.4 99.4	99.4	7.5 7.5	7.5	7.5	2.9 2.8	2.9		6.1 6.3	6.2	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Sunny	Moderate	14:43	Middle	2.1	19.9 19.9	19.9	8.5 8.5	8.5	33.4 33.4	33.4	100.6 100.6	100.6	7.5 7.5	7.5	-	1.7 1.7	1.7	1.7	7.2 7.6	7.4	7.4
			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		

Remarks:

^{**}DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 13 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4, M1-M5	5										
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>									
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5											
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.5 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.7 NTU									
	Station M6	<u>01. 2.5 W10</u>	<u>01. 2.7 WTO</u>									
	Intake Level	19.0 NTU	<u>19.4 NTU</u>									
	Stations G1-G4											
		6.0 mg/L	6.9 mg/L									
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 21.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 23.0 mg/L									
	Stations M1-M5											
		6.2 mg/L	7.4 mg/L									
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 21.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 23.0 mg/L									
	Stations G1-G4, M1-M5											
		6.9 mg/L	7.9 mg/L									
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 6.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.4 mg/L									
	Station M6	•										
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 January 2020

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depti	n (m)		ature (°C)		Н	Salini			ration (%)		ved Oxyger	 		urbidity(NT		•	nded Solids	
	Condition	Condition**	Time	<u> </u>		Value 19.6	Average	Value 8.8	Average	Value 33.6	Average	Value 101.4	Average	Value 7.6		DA*	Value 1.4	Average	DA*	Value 10.0	Average	DA*
				Surface	1.1	19.6	19.6	8.8	8.8	33.6	33.6	101.4	101.4	7.6	7.6	7.6	1.4	1.4		9.8	9.9	
C1	Cloudy	Calm	10:57	Middle	8.5	19.7 19.6	19.6	8.8 8.8	8.8	33.6 33.6	33.6	101.1 101.1	101.1	7.6 7.6	7.6		1.4 1.4	1.4	1.4	6.3 6.1	6.2	8.2
				Bottom	16.0	19.6 19.6	19.6	8.8 8.8	8.8	33.6 33.6	33.6	100.8 100.7	100.8	7.6 7.6	7.6	7.6	1.4 1.4	1.4		8.4 8.4	8.4	
				Surface	1.1	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	98.6 98.7	98.7	7.4 7.4	7.4		2.1 2.2	2.2		11.0 10.2	10.6	
C2	Cloudy	Calm	9:27	Middle	16.1	19.6	19.6	8.3	8.3	33.6	33.6	98.8	98.9	7.4	7.4	7.4	1.8	1.9	2.1	6.1	6.1	7.6
				Bottom	31.0	19.6 19.6	19.6	8.3 8.4	8.4	33.6 33.6	33.6	98.9 97.9	97.9	7.4	7.4	7.4	2.4	2.3		5.8	6.0	
				Surface	1.0	19.6 19.9	19.9	8.4 8.5	8.5	33.6 33.5	33.5	97.8	103.4	7.4 7.7	7.7		2.3 3.3	3.3		6.1	7.1	+
G1	Cloudy	Calm	10:04	Middle	3.8	19.9 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	103.4 103.0	103.1	7.7 7.7	7.7	7.7	3.3 5.0	4.8	4.0	7.3 13.8	13.2	9.0
0.	Cloudy	- Ca	10.01	Bottom	6.5	19.9 19.7	19.7	8.5 8.5	8.5	33.5 33.6	33.6	103.1 99.1	99.0	7.7 7.4	7.4	7.4	4.6 3.9	3.9		12.6 6.9	6.8	0.0
		<u> </u>			1.1	19.7 19.8	19.8	8.5 8.4	8.4	33.6 33.5	33.5	98.8 101.3	101.3	7.4 7.6	7.6	7.4	4.0 1.8	1.9		6.6 5.8	1	<u> </u>
00	Cloudy Calm 9:46	0.40	Surface		19.8 19.7		8.4 8.4		33.5 33.5		101.2 100.4		7.6 7.5		7.6	2.0		0.0	5.8 8.3	5.8		
G2	Cloudy	Calm	9:46	Middle	5.0	19.7 19.7	19.7	8.4 8.4	8.4	33.5 33.6	33.5	100.5 98.3	100.5	7.5 7.4	7.5		1.9 2.4	2.0	2.0	8.3 8.3	8.3	!
		1		Bottom	9.1	19.7 19.8	19.7	8.4 8.5	8.4	33.6 33.1	33.6	98.2	98.3	7.4	7.4	7.4	2.2	2.3		8.1 7.1	8.2	
			alm 10:12	Surface	1.0	19.8	19.8	8.5	8.5	33.3	33.2	101.0	100.9	7.6 7.6	7.6	7.6	2.1	2.1	2.1	7.3	7.2	8.2
G3	Cloudy	Calm		Middle	3.7	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	101.9 102.1	102.0	7.7	7.6		2.2	2.2		8.8 9.1	9.0	
				Bottom	6.6	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	101.1 100.7	100.9	7.6 7.6	7.6	7.6	2.1 2.2	2.1		8.5 8.4	8.5	<u> </u>
				Surface	1.0	19.9 19.9	19.9	8.6 8.6	8.6	33.5 33.5	33.5	102.4 102.7	102.6	7.7 7.7	7.7	7.7	3.0 2.9	3.0		11.1 11.1	11.1	
G4	G4 Cloudy	Calm	10:28	Middle	3.7	19.8 19.8	19.8	8.6 8.6	8.6	33.5 33.5	33.5	102.0 102.2	102.1	7.6 7.7	7.6		2.1 2.1	2.1	2.4	7.8 8.0	7.9	9.7
				Bottom	6.5	19.8 19.8	19.8	8.6 8.6	8.6	33.5 33.6	33.6	101.5 101.3	101.4	7.6 7.6	7.6	7.6	2.2 2.4	2.3		10.1 9.9	10.0	
				Surface	1.0	19.8 19.8	19.8	8.6 8.6	8.6	33.5 33.5	33.5	100.0 100.0	100.0	7.5 7.5	7.5	7.5	2.2 2.2	2.2		9.0 8.9	9.0	6 10.0
M1	Cloudy	Calm	9:52	Middle	3.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	100.0 100.0	100.0	7.5 7.5	7.5	7.5	2.1 2.1	2.1	2.1	7.8 7.4	7.6	
			Bot	Bottom	5.0	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	99.9 99.8	99.9	7.5 7.5	7.5	7.5 2.	2.1 2.2	2.1		13.4 13.2	13.3	
				Surface	1.0	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	101.2 101.3	101.3	7.6 7.6	7.6	1.8		1.7		7.9 8.5	8.2	3.2
M2	Cloudy	Calm	9:41	Middle	5.2	19.7 19.7	19.7	8.4 8.4	8.4	33.5 33.5	33.5	100.7 100.8	100.8	7.6 7.6	7.6	7.6 2.0		2.0	1.9	4.6 4.4	4.5	6.2
				Bottom	9.5	19.7	19.7	8.4	8.4	33.6	33.6	100.3	100.3	7.5	7.5	7.5	2.0	2.0		5.9	5.9	-
				Surface	1.1	19.7	19.8	8.4	8.5	33.6	33.5	100.2	102.1	7.5	7.6		2.1	2.0		5.9 8.1	7.8	
M3	Cloudy	Calm	10:21	Middle	3.7	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	102.1	101.4	7.6 7.6	7.6	7.6	2.0	2.1	2.3	7.5 8.7	8.8	8.6
				Bottom	6.5	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.6	33.6	101.4 99.5	99.4	7.6 7.5	7.4	7.4	2.1 2.8	2.8		8.9 9.1	9.2	
				Surface	1.1	19.8 19.7	19.7	8.5 8.3	8.3	33.6 33.6	33.6	99.2 98.5	98.5	7.4 7.4	7.4	7.4	2.8	2.3		9.2 7.4	7.5	
M4	Cloudy	Colm	0.22			19.7 19.7		8.3 8.3		33.6 33.6		98.5 98.5		7.4 7.4		7.4	2.3		2.1	7.5 6.6		72
IVI4	Cloudy	Calm	9:33	Middle	5.1	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	98.5 98.5	98.5	7.4 7.4	7.4	7.4	2.0 1.9	2.1	2.1	6.8 7.8	6.7	7.3
				Bottom	9.1	19.7 19.7	19.7	8.3 8.7	8.3	33.6 33.5	33.6	98.6 99.5	98.6	7.4 7.5	7.4	7.4	1.9 1.8	1.9		7.5 7.7	7.7	+-
				Surface	1.1	19.7 19.6	19.7	8.7 8.6	8.7	33.5 33.6	33.5	99.8 99.1	99.7	7.5 7.4	7.5	7.5	1.8	1.8		7.8 6.3	7.8	1
M5	Cloudy	Calm	10:47	Middle	5.5	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	99.1 99.9	99.1	7.4 7.4 7.5	7.4		2.2 2.0	2.2	2.0	6.3 6.7 8.5	6.5	7.6
				Bottom	10.1	19.6	19.6	8.6	8.6	33.6	33.6	99.8	99.9	7.5	7.5	7.5	2.1	2.0		8.6	8.6	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-]
M6	Cloudy	Calm	10:36	Middle	2.0	19.8 19.8	19.8	8.6 8.6	8.6	33.5 33.5	33.5	101.0 101.1	101.1	7.6 7.6	7.6	_	1.7 1.7	1.7	1.7	7.3 7.1	7.2	7.2
IVIO																						

Remarks: *DA: Depth-Averaged

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 15 January 2020 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day				
	G. P. M.	<u>C2: 2.8 NTU</u>	<u>C2: 3.0 NTU</u>				
	Station M6	10.0 NWY	10.4 N/TV				
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4	Т					
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day				
		<u>C2: 12.7 mg/L</u>	<u>C2: 13.8 mg/L</u>				
	Stations M1-M5						
		6.2 mg/L	<u>7.4 mg/L</u>				
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day				
		<u>C2: 12.7 mg/L</u>	<u>C2: 13.8 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		6.9 mg/L	7.9 mg/L				
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control				
		<u>C2: 7.1 mg/L</u>	<u>C2: 7.7 mg/L</u>				
	Station M6						
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 15 January 2020

(Mid-Flood Tide)

	Weather	Sea	Sampling	<u> </u>		Tempera	ture (°C)	n	·H	Salini	ty ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(ma/L)	Т	urbidity(NT	·U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	h (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	, 	Value	Average	· <u> </u>
				Surface	1.0	19.7 19.7	19.7	8.8 8.8	8.8	33.6 33.6	33.6	101.4 101.4	101.4	7.6 7.6	7.6	7.6	1.4 1.4	1.4		4.2 4.3	4.3	
C1	Cloudy	Calm	17:00	Middle	9.1	19.7 20.3	20.0	8.8 8.8	8.8	33.6 33.6	33.6	101.1 101.1	101.1	7.6 7.6	7.6	7.0	1.3 1.3	1.3	1.4	8.7 9.1	8.9	7.0
				Bottom	17.0	19.7 19.7	19.7	8.8 8.8	8.8	33.6 33.6	33.6	101.0 100.9	101.0	7.6 7.6	7.6	7.6	1.4 1.4	1.4		8.0 7.5	7.8	
				Surface	1.0	20.2 19.7	19.9	8.3 8.3	8.3	33.6 33.6	33.6	98.7 98.6	98.7	7.4 7.4	7.4	7.4	2.2 2.3	2.2		7.0 6.7	6.9	
C2	Cloudy	Calm	15:18	Middle	16.6	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	98.9 98.9	98.9	7.4 7.4	7.4	7.4	1.9 1.9	1.9	2.2	4.6 4.4	4.5	6.2
				Bottom	32.1	19.6 19.6	19.6	8.4 8.4	8.4	33.6 33.6	33.6	97.7 97.5	97.6	7.3 7.3	7.3	7.3	2.3 2.3	2.3		6.9 7.3	7.1	
				Surface	1.0	20.3 19.9	20.1	8.5 8.5	8.5	33.5 33.5	33.5	103.2 103.3	103.3	7.7 7.7	7.7	7.7	3.4 3.4	3.4		10.5 10.9	10.7	
G1	Cloudy	Calm	15:58	Middle	4.0	19.9 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	102.5 102.7	102.6	7.7 7.7	7.7	7.7	6.0 5.4	5.7	4.9	11.7 12.3	12.0	10.1
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	101.7 101.3	101.5	7.6 7.6	7.6	7.6	5.8 5.4	5.6		7.7 7.5	7.6	
				Surface	1.1	20.7 19.8	20.2	8.4 8.4	8.4	33.5 33.5	33.5	101.4 101.3	101.4	7.6 7.6	7.6	7.6	1.8 1.8	1.8		8.5 8.7	8.6	
G2	Cloudy	Calm	15:39	Middle	5.0	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	100.4 100.4	100.4	7.5 7.5	7.5	7.0	1.8 1.9	1.8	2.0	5.9 6.2	6.1	7.3
				Bottom	9.1	19.7 19.7	19.7	8.4 8.4	8.4	33.6 33.6	33.6	98.9 98.4	98.7	7.4 7.4	7.4	7.4	2.4 2.4	2.4		7.3 7.2	7.3	
				Surface	1.0	20.2 19.9	20.0	8.5 8.5	8.5	33.3 33.3	33.3	101.1 101.2	101.2	7.6 7.6	7.6	7.6	2.1 2.1	2.1		7.5 7.4	7.5	
G3	Cloudy	Calm	16:06	Middle	4.1	19.9 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	102.2 102.3	102.3	7.7 7.7	7.7	7.0	2.1 2.0	2.1	2.2	6.4 6.1	6.3	6.9
				Bottom	7.1	19.8 19.8	19.8	8.5 8.5	8.5	33.5 33.5	33.5	100.5 100.3	100.4	7.5 7.5	7.5	7.5	2.3 2.4	2.3		7.1 6.9	7.0	
				Surface	1.0	20.5 19.9	20.2	8.6 8.6	8.6	33.5 33.5	33.5	102.9 103.1	103.0	7.7 7.7	7.7	7.7	3.0 3.0	3.0		6.7 6.9	6.8	
G4	Cloudy	Calm	16:20	Middle	4.1	19.9 19.9	19.9	8.6 8.6	8.6	33.5 33.5	33.5	102.5 102.7	102.6	7.7	7.7		2.2 2.4	2.3	2.7	6.3 6.6	6.5	7.2
				Bottom	7.1	19.8 19.8	19.8	8.6 8.6	8.6	33.6 33.6	33.6	100.9 100.5	100.7	7.6 7.5	7.5	7.5	2.6 2.8	2.7		8.1 8.6	8.4	
				Surface	1.1	20.1 19.9	20.0	8.6 8.6	8.6	33.5 33.5	33.5	100.0 100.0	100.0	7.5 7.5	7.5	7.5	2.2 2.2	2.2		10.6 10.9	10.8	
M1	Cloudy	Calm	15:45	Middle	3.1	19.9 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	100.0	100.0	7.5 7.5	7.5		2.0	2.1	2.1	5.8 5.7	5.8	7.9
				Bottom	5.1	19.8 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	99.7 99.7	99.7	7.5 7.5	7.5	7.5	2.1	2.1		7.4 7.2	7.3	
				Surface	1.0	20.0 19.8	19.9	8.4 8.4	8.4	33.5 33.5	33.5	101.3	101.4	7.6 7.6	7.6	7.6	1.7	1.7		9.0 8.6	8.8	
M2	Cloudy	Calm	15:32	Middle	5.6	19.8 19.8	19.8	8.4 8.4	8.4	33.5 33.5	33.5	101.0 101.1	101.1	7.6 7.6	7.6		2.0	2.0	2.0	9.4	9.7	8.0
				Bottom	10.0	19.7 19.7	19.7	8.4 8.4	8.4	33.6 33.6	33.6	99.7 99.3	99.5	7.5 7.5	7.5	7.5	2.2 2.3	2.2		5.4 5.7	5.6	
				Surface	1.1	20.0 19.9	20.0	8.5 8.5	8.5	33.5 33.5	33.5	101.9 101.9	101.9	7.6 7.6	7.6	7.6	2.1	2.0		7.0 7.5	7.3	
М3	Cloudy	Calm	16:12	Middle	4.1	19.9 19.9	19.9	8.5 8.5	8.5	33.5 33.5	33.5	101.5 101.4	101.5	7.6 7.6	7.6		2.1	2.1	2.2	6.8 6.4	6.6	6.8
				Bottom	7.0	19.8 19.8	19.8	8.5 8.5	8.5	33.6 33.6	33.6	99.9 99.7	99.8	7.5 7.5	7.5	7.5	2.5 2.7	2.6		6.4 6.4	6.4	
				Surface	1.0	20.1 19.7	19.9	8.3 8.3	8.3	33.6 33.6	33.6	98.6 98.6	98.6	7.4	7.4	7.4	2.3	2.3		7.3 7.5	7.4	
M4	Cloudy	Calm	15:24	Middle	5.0	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	98.4 98.4	98.4	7.4 7.4	7.4		2.1	2.1	2.1	4.8 5.1	5.0	5.6
				Bottom	9.0	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	98.4 98.5	98.5	7.4 7.4	7.4	7.4	2.0 1.9	1.9		4.6 4.5	4.6	
				Surface	1.0	19.8 19.8	19.8	8.7 8.7	8.7	33.5 33.5	33.5	100.0	100.1	7.5 7.5	7.5	7.5	1.8	1.8		5.1 4.9	5.0	
M5	Cloudy	Calm	16:48	Middle	6.1	19.7 20.4	20.0	8.6 8.6	8.6	33.6 33.6	33.6	99.3 99.5	99.4	7.5 7.5	7.5		2.2 2.1	2.2	2.0	5.9 6.2	6.1	5.9
				Bottom	11.1	19.6 19.6	19.6	8.6 8.6	8.6	33.6 33.6	33.6	99.8 99.7	99.8	7.5 7.5	7.5	7.5	2.1 2.1	2.1		6.7 6.8	6.8	
				Surface	-		-	-	-	-	-		-		-	7.6		-		-	-	
M6	Cloudy	Calm	16:31	Middle	2.2	20.0 19.8	19.9	8.6 8.6	8.6	33.4 33.5	33.5	100.7 100.9	100.8	7.6 7.6	7.6		1.7 1.8	1.7	1.7	6.9 6.4	6.7	6.7
Pomarke:	*DA: Donth-Av			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 15 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
DO: 4	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 1.6 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 1.8 NTU				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 5.1 mg/L	6.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 5.5 mg/L				
	Stations M1-M5	<u>C1. 3.1 mg/L</u>	<u>C1. 3.3 mg/L</u>				
	Stations WIT-WIS	6.2 mg/L	7.4 mg/L				
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 5.1 mg/L	or 130% of upstream control				
	Stations G1-G4, M1-M5	_	<u>C1. 3.3 mg/L</u>				
	Stations 01-04, W11-W12	6.9 mg/L	7 0 ma/I				
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 9.3 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 10.1 mg/L				
	Station M6						
	Intake Level	8.3 mg/L	<u>8.6 mg/L</u>				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 January 2020

(Mid-Ebb Tide)

Coation Weather Condition Sea Condition Condit	1.8 1.6	Value 4.2 4.0 5.8 5.7 7.2 7.0 8.1 7.5 5.1 5.1 5.8 5.8 6.7 6.2 8.3	1 Average 4.1 5.8 7.1 7.8 5.1 5.8 6.5	5.7 6.2
C1 cloudy calm	1.6	4.0 5.8 5.7 7.2 7.0 8.1 7.5 5.1 5.1 5.8 5.8 6.7 6.2 8.3	5.8 7.1 7.8 5.1 5.8	
C1 cloudy calm	1.6	5.7 7.2 7.0 8.1 7.5 5.1 5.8 5.8 6.7 6.2 8.3	7.1 7.8 5.1 5.8	
C2 cloudy calm 16:33 Bottom 17.0 19.6 19.6 19.6 8.4 8.4 8.4 33.6 33.7 100.2 100.3 7.5 7.5 7.5 7.5 7.5 7.5 1.6 1.6 1.7 1.7 1.7 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		7.2 7.0 8.1 7.5 5.1 5.1 5.8 5.8 6.7 6.2 8.3	7.8 5.1 5.8	6.2
C2 cloudy calm 16:33 Surface 1.1 20.6 19.7 19.7 8.0 8.0 8.0 33.6 33.5 101.0 101.0 7.6 7.6 7.6 7.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		8.1 7.5 5.1 5.1 5.8 5.8 6.7 6.2 8.3	7.8 5.1 5.8	6.2
C2 cloudy calm 16:33 Middle 16.6 19.7 19.7 8.0 8.0 8.0 33.6 101.0 7.6 7.6 7.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		5.1 5.8 5.8 5.8 6.7 6.2 8.3	5.1 5.8	6.2
G1 Cloudy Calm 16.5 Middle 16.6 19.7 19.7 8.0 8.0 33.6 33.6 100.7 100.7 7.6 7.6 7.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		5.1 5.8 5.8 6.7 6.2 8.3	5.8	6.2
G1	1.8	5.8 6.7 6.2 8.3		
G1 cloudy calm 17:13 Middle 4.0 19.6	1.8	6.2 8.3	6.5	
G1 cloudy calm 17:13 Middle 4.0 19.6 19.6 19.6 8.3 8.3 8.3 33.6 33.5 102.9 103.0 7.7 7.8 7.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.8	8.3		
Bottom 7.1 19.6 8.3 8.3 33.5 103.1 7.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	-		8.3	6.5
19.6 8.3 33.6 102.4 7.7 1.8		8.2 4.9	4.9	
Surface 44 19.9 40.0 8.4 04 33.6 22.6 102.3 402.2 7.7 7.7 2.0 2.0		4.9 4.1	4.9	
Surface 1.1 19.7 19.8 8.4 8.4 33.6 33.6 102.2 102.3 7.7 7.7 2.0 2.0		4.1	4.1	
G2 cloudy calm 16:53 Middle 5.1 19.7 19.7 8.3 8.3 8.3 33.6 33.6 101.4 101.5 7.6 7.6 7.6 7.6 2.1 2.0	2.4	5.5 5.7	5.6	4.6
Bottom 9.0 19.7 19.6 8.2 8.2 33.6 33.6 100.7 7.6 7.6 7.6 3.1 3.2 3.2		4.0 4.0	4.0	
Surface 11 20.5 20.1 8.5 8.4 33.5 33.5 100.5 100.6 7.6 7.6 1.9 1.9		5.5	5.6	
19.7 8.4 33.5 100.6 7.6 7.6 1.9 7.6 2.0	0.4	5.7 6.0		5.0
G3 Cloudy Caim 17.19 Middle 4.0 19.7 19.7 8.4 8.4 33.5 33.5 100.6 7.6 7.6 1.8 1.9	2.1	6.5	6.3	5.6
Bottom 7.0 19.6 19.6 8.3 8.3 33.6 33.6 99.9 99.8 7.5 7.5 7.5 2.4 2.5		4.8 4.9	4.9	
Surface 1.1 20.0 19.7 19.8 8.5 8.5 8.5 8.5 33.6 33.6 33.6 102.2 102.2 7.7 7.7 7.7 7.7 2.0 2.0 2.0 2.0		5.6 5.6	5.6	
G4 cloudy calm 17:35 Middle 4.0 19.7 8.4 8.5 8.4 33.6 33.6 102.2 101.6 7.7 7.7 2.0 2.2 2.1	2.3	6.4 6.4	6.4	5.3
Rottom 71 19.6 19.6 8.3 83 33.6 33.6 98.7 98.7 7.4 74 74 2.7 2.7	-	3.7	3.8	
19.6 8.3 33.6 98.7 7.4 2.7		3.8 5.2		
Surface 1.1 20.5 19.8 8.4 8.4 33.6 33.6 100.0 100.0 7.5 7.5 7.5 2.6 2.7 2.6 2.6 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	-	5.3 5.5	5.3	
17.00 Wilddle 3.0 19.7 8.3 8.3 33.6 99.9 99.9 7.5 7.5 2.6 2.6	2.7	5.6	5.6	6.6
Bottom 5.0 19.7 19.7 8.2 8.2 33.6 33.6 99.1 99.0 7.4 7.4 7.4 2.7 2.8 2.7		8.8 9.1	9.0	
Surface 1.1 20.4 19.7 20.0 8.2 8.2 8.2 8.2 33.5 33.5 33.5 100.9 100.8 100.9 7.6 7.6 7.6 7.6 7.6 7.6 1.8 1.8 1.8		3.9 4.0	4.0	
M2 cloudy calm 16:46 Middle 5.6 19.6 19.6 8.1 8.1 33.6 33.6 100.6 100.6 7.6 7.6 7.0 1.9 1.9	1.9	3.9	3.8	3.7
19.7 8.1 33.6 100.6 7.6 1.9	-	3.7	3.3	
19.6 8.2 33.6 100.6 7.6 1.8 10.8		3.3 2.8		
Surface 1.1 19.7 19.7 8.4 8.4 33.6 33.6 100.1 99.8 7.5 7.5 2.1 2.1	_	2.8	2.8	
M3 cloudy calm 17:27 Middle 4.0 19.8 19.8 8.3 8.3 8.3 33.6 33.6 98.9 99.0 7.4 7.4 7.4 7.4 2.2 2.1 2.2	2.2	1.4 1.3	1.4	2.7
Bottom 7.0 19.7 19.7 8.3 8.3 33.6 33.7 33.6 98.8 98.2 7.4 7.4 7.4 2.2 2.3		4.0 4.1	4.1	
Surface 1 1 19.9 19.8 8.2 8.2 33.6 33.6 101.0 7.6 7.6 2.1 2.1		5.0	5.1	
19.6 8.2 33.6 100.9 7.6 7.5 2.1 7.5 2.	2.4	5.2 3.7		4.6
10.40 Middle 5.1 19.6 19.6 8.1 33.6 33.6 99.9 7.5 7.5 2.1 2.	2.1	3.9 4.8	3.8	4.6
Bottom 9.0 19.6 19.6 8.0 8.0 33.6 99.4 99.4 7.5 7.5 7.5 2.1 2.1		4.8	4.8	
Surface 1.0 19.7 19.7 19.7 8.5 8.5 33.5 33.5 33.5 100.9 100.8 7.6 7		3.9 3.6	3.8	
M5 cloudy calm 18:06 Middle 6.0 19.6 19.8 8.4 33.6 33.5 100.7 7.5 7.5 1.6 1.9 1.8	1.9	5.0 4.6	4.8	5.3
Rottom 11.0 19.6 19.6 8.3 8.3 33.6 33.6 98.1 98.1 7.4 7.4 7.4 2.2 2.2	1	7.1	7.2	
19.6 8.3 33.6 98.0 7.4 2.2		7.3		
Surface		4.7	-	
17.47 Wildle 2.3 19.6 19.7 8.5 8.4 33.6 33.6 102.7 100.7 7.7 7.6 1.6 1.6	1.6	4.6	4.7	4.7
Bottom		-	-	

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 17 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
	Depth Average	4.9 mg/L	<u>4.6 mg/L</u>				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.1 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.3 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	Surface or 120% of upstream control station's SS at the same tide of the same day C2: 9.4 mg/L					
	Stations M1-M5	<u>C2. 7.4 mg/L</u>	<u>C2: 10.1 mg/L</u>				
SS in mg/L (See Note 2 and 4)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day C2: 9.4 mg/L	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day C2: 10.1 mg/L				
	Stations G1-G4, M1-M5	5					
	Bottom Station M6	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day C2: 7.0 mg/L	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C2: 7.5 mg/L				
	Intake Level	Q 7 ma/I	8.6 mg/L				
	make Level	<u>8.3 mg/L</u>	o.u mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 January 2020

(Mid-Flood Tide)

	Weather	Sea	Sampling	Ι		Tempera	ture (°C)	n	Н	Salini	ty not	DO Satu	ration (%)	Dissolv	ed Oxygen	(ma/L)	Т	urbidity(NT	T1)	Susper	nded Solids	(ma/L)
Location	Condition	Condition**	Time	Deptl	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	· <u> </u>
				Surface	1.1	19.6 19.6	19.6	8.5 8.5	8.5	33.6 33.6	33.6	101.5 101.4	101.5	7.6 7.6	7.6	7.6	1.9 1.9	1.9		5.1 5.3	5.2	
C1	cloudy	calm	12:35	Middle	8.6	19.6 19.6	19.6	8.4 8.5	8.5	33.6 33.6	33.6	100.5 101.2	100.9	7.6 7.6	7.6	7.0	1.8 1.8	1.8	1.8	8.2 8.7	8.5	7.6
				Bottom	16.1	19.6 19.5	19.5	8.4 8.4	8.4	33.7 33.7	33.7	100.2 100.1	100.2	7.5 7.5	7.5	7.5	1.6 1.6	1.6		9.0 9.5	9.3	
				Surface	1.1	19.7 19.7	19.7	8.1 8.1	8.1	33.5 33.5	33.5	101.0 101.0	101.0	7.6 7.6	7.6	7.0	1.5 1.6	1.5		5.3 5.3	5.3	
C2	cloudy	calm	11:04	Middle	16.0	19.6 19.6	19.6	8.0 8.0	8.0	33.6 33.6	33.6	100.7 100.7	100.7	7.6 7.6	7.6	7.6	1.6 1.6	1.6	1.6	4.1 4.3	4.2	5.0
				Bottom	31.0	19.6 19.6	19.6	8.0 8.0	8.0	33.7 33.7	33.7	100.5 100.3	100.4	7.6 7.5	7.5	7.5	1.6 1.6	1.6		5.6 5.6	5.6	
				Surface	1.0	19.6 19.6	19.6	8.4 8.4	8.4	33.4 33.4	33.4	103.4 103.4	103.4	7.8 7.8	7.8	7.8	1.8 1.8	1.8		20.7 19.4	20.1	
G1	cloudy	calm	11:43	Middle	3.8	19.6 19.6	19.6	8.4 8.4	8.4	33.5 33.5	33.5	103.1 103.1	103.1	7.8 7.8	7.8	7.0	1.8 1.8	1.8	1.8	4.8 4.9	4.9	12.3
				Bottom	6.5	19.6 19.6	19.6	8.3 8.3	8.3	33.6 33.6	33.6	102.3 102.1	102.2	7.7 7.7	7.7	7.7	1.8 1.8	1.8		11.9 12.0	12.0	
				Surface	1.1	19.6 19.6	19.6	8.4 8.4	8.4	33.6 33.6	33.6	102.1 102.0	102.1	7.7 7.7	7.7	7.6	1.9 1.9	1.9		6.4 6.9	6.7	
G2	cloudy	calm	11:27	Middle	5.1	19.6 19.6	19.6	8.3 8.3	8.3	33.6 33.6	33.6	101.6 101.6	101.6	7.6 7.6	7.6	7.0	2.0 1.9	2.0	2.4	7.1 7.6	7.4	8.1
				Bottom	9.0	19.6 19.6	19.6	8.2 8.2	8.2	33.6 33.6	33.6	100.5 100.5	100.5	7.6 7.6	7.6	7.6	3.3 3.4	3.3		10.0 10.8	10.4	
				Surface	1.1	19.6 19.7	19.6	8.3 8.5	8.4	33.6 33.4	33.5	101.8 100.6	101.2	7.7 7.6	7.6	7.6	1.8 1.9	1.9		6.0 6.3	6.2	
G3	cloudy	calm	11:51	Middle	3.8	19.6 19.6	19.6	8.3 8.3	8.3	33.6 33.6	33.6	100.6 100.6	100.6	7.6 7.6	7.6	7.0	2.0 2.0	2.0	2.0	28.2 28.3	28.3	15.3
				Bottom	6.6	19.6 19.6	19.6	8.3 8.3	8.3	33.6 33.6	33.6	100.5 100.1	100.3	7.6 7.5	7.5	7.5	2.1 2.4	2.2		11.5 11.5	11.5	
				Surface	1.0	19.7 19.7	19.7	8.3 8.5	8.4	33.7 33.5	33.6	96.7 102.2	99.5	7.3 7.7	7.5	7.5	2.5 3.0	2.7		11.9 12.6	12.3	
G4	cloudy	calm	12:06	Middle	3.7	19.6 19.6	19.6	8.3 8.4	8.3	33.6 33.6	33.6	100.6 100.8	100.7	7.6 7.6	7.6		2.2	2.2	2.5	4.1 3.9	4.0	7.8
				Bottom	6.5	19.6 19.5	19.5	8.3 8.3	8.3	33.6 33.6	33.6	100.4 98.8	99.6	7.6 7.4	7.5	7.5	2.2 2.8	2.5		7.0 7.4	7.2	
				Surface	1.0	19.7 19.7	19.7	8.4 8.4	8.4	33.6 33.6	33.6	99.9 99.9	99.9	7.5 7.5	7.5	7.5	3.7 3.1	3.4		4.0 3.8	3.9	
M1	cloudy	calm	11:32	Middle	3.1	19.7 19.7	19.7	8.3 8.3	8.3	33.6 33.6	33.6	99.6 99.7	99.7	7.5 7.5	7.5		2.6 2.6	2.6	2.9	4.7 4.7	4.7	4.3
				Bottom	5.1	19.6 19.6	19.6	8.3 8.3	8.3	33.6 33.6	33.6	99.3 99.2	99.3	7.5 7.5	7.5	7.5	2.7	2.7	1	4.4	4.4	
				Surface	1.0	19.7 19.7	19.7	8.2 8.2	8.2	33.5 33.5	33.5	100.9	100.9	7.6 7.6	7.6	7.6	1.8	1.8		3.1	3.1	
M2	cloudy	calm	11:19	Middle	5.2	19.6 19.6	19.6	8.1 8.1	8.1	33.6 33.6	33.6	100.6 100.6	100.6	7.6 7.6	7.6		1.9 1.9	1.9	1.9	3.8 3.7	3.8	5.0
				Bottom	9.5	19.6 19.6	19.6	8.2 8.2	8.2	33.6 33.6	33.6	100.6 100.6	100.6	7.6 7.6	7.6	7.6	2.0	2.0	1	8.2 8.2	8.2	
				Surface	1.0	19.7 19.7	19.7	8.4 8.4	8.4	33.6 33.6	33.6	99.9 99.7	99.8	7.5 7.5	7.5	7.5	2.1	2.0		4.3	4.2	
М3	cloudy	calm	12:00	Middle	3.8	19.7 19.7	19.7	8.3 8.4	8.3	33.6 33.6	33.6	99.2 99.6	99.4	7.4 7.5	7.5		2.1	2.1	2.2	5.1 5.3	5.2	4.8
				Bottom	6.5	19.7 19.7	19.7	8.3 8.3	8.3	33.7 33.7	33.7	97.2 96.9	97.1	7.3 7.3	7.3	7.3	2.4 2.5	2.5		5.0 4.9	5.0	
				Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	33.6 33.6	33.6	100.8	100.7	7.6 7.6	7.6	7.5	2.1	2.1		9.4	9.3	
M4	cloudy	calm	11:12	Middle	5.1	19.6 19.6	19.6	8.1 8.1	8.1	33.6 33.6	33.6	100.0	100.1	7.5 7.5	7.5		2.1	2.1	2.1	4.6 4.6	4.6	6.6
				Bottom	9.1	19.6 19.6	19.6	8.0 8.0	8.0	33.6 33.6	33.6	99.3 99.2	99.3	7.5 7.5	7.5	7.5	2.1	2.1		5.9 6.1	6.0	
				Surface	1.1	19.6 19.7	19.6	8.5 8.5	8.5	33.6 33.5	33.6	102.8 101.3	102.1	7.7 7.6	7.7	7.5	1.7	1.7		5.4 5.0	5.2	
M5	cloudy	calm	12:24	Middle	5.6	19.6 19.6	19.6	8.4 8.4	8.4	33.6 33.6	33.6	98.9 99.0	99.0	7.4 7.4	7.4		1.9 1.9	1.9	1.9	6.4	6.5	5.2
				Bottom	10.1	19.6 19.6	19.6	8.4 8.3	8.3	33.6 33.6	33.6	98.8 98.2	98.5	7.4 7.4	7.4	7.4	1.9 2.2	2.1		4.0 4.1	4.1	
				Surface	-	-	-	-	-	-	-		-	- -	-	7.7	-	-			-	
M6	cloudy	calm	12:13	Middle	2.1	19.6 19.6	19.6	8.5 8.5	8.5	33.6 33.6	33.6	102.8 102.8	102.8	7.7 7.7	7.7		1.6 1.6	1.6	1.6	7.3 6.9	7.1	7.1
Pomarke:	*DA: Donth-Av			Bottom	-	- -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 17 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 1.9 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C1: 2.0 NTU</u>				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	6.0 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 6.2 mg/L	6.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 6.8 mg/L				
	Stations M1-M5		<u></u>				
SS in mg/L (See Note 2 and 4)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 6.2 mg/L	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 6.8 mg/L				
	Stations G1-G4, M1-M5	5					
	Bottom	6.9 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 4.7 mg/L	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 5.1 mg/L				
	Station M6	T					
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 January 2020

(Mid-Ebb Tide)

Lesson:	Weather	Sea	Sampling	D : 4	h (\	Tempera	ature (°C)	r	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	ided Solids	(mg/L)
Location	Condition	Condition**	Time	Dept	h (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	20.7 20.7	20.7	8.5 8.5	8.5	32.4 32.4	32.4	95.3 95.5	95.4	7.1 7.1	7.1	7.1	2.2 2.2	2.2		7.3 6.9	7.1	
C1	sunny	moderate	9:05	Middle	9.1	20.6 20.6	20.6	8.5 8.5	8.5	32.5 32.5	32.5	93.6 93.6	93.6	7.0 7.0	7.0	7.1	2.3 2.3	2.3	2.3	3.8 3.7	3.8	6.3
				Bottom	17.1	20.6	20.6	8.5	8.5	32.5	32.5	92.2	92.2	6.9	6.9	6.9	2.3	2.3		7.9	8.0	
				Surface	1.1	20.5	20.7	8.5 8.4	8.4	32.5 32.1	31.1	92.1 95.8	95.8	6.9 7.3	7.2		2.3	2.2		8.1 4.5	4.5	
00			0.00			20.7 20.6		8.4 8.5		30.2 32.0		95.7 92.7		7.2 7.0		7.1	2.2		0.0	4.5 6.2		0.0
C2	sunny	moderate	8:08	Middle	16.1	20.6	20.6	8.5 8.5	8.5	32.0 32.1	32.0	92.7 91.9	92.7	7.0	7.0		2.3	2.3	2.3	6.3	6.3	8.0
				Bottom	31.1	20.6	20.6	8.5	8.5	32.1	32.1	91.9	91.9	6.9	6.9	6.9	2.3	2.3		13.1	13.3	
				Surface	1.1	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	95.2 95.1	95.2	7.1 7.1	7.1	7.1	3.3 3.3	3.3		7.9 8.0	8.0	
G1	sunny	moderate	8:34	Middle	4.1	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	93.8 93.9	93.9	7.0 7.0	7.0	7.1	3.2 3.3	3.3	3.3	6.3 6.1	6.2	6.7
				Bottom	7.1	20.6 20.6	20.6	8.5 8.5	8.5	32.8 32.8	32.8	93.5 93.5	93.5	7.0 7.0	7.0	7.0	3.3 3.2	3.2		6.0 6.0	6.0	
				Surface	1.1	20.6	20.6	8.5	8.5	32.7	32.7	96.9	96.8	7.2	7.2		2.4	2.4		6.0	6.2	
G2	ounny.	moderate	8:25		5.1	20.6 20.5		8.5 8.5	8.5	32.7 32.7	32.7	96.6 95.1	95.2	7.2 7.1	7.1	7.2	2.4	2.7	2.9	6.3 4.6	4.5	5 7
G2	sunny	moderate	0.25	Middle		20.6 20.4	20.6	8.5 8.5		32.7 32.7		95.3 92.4		7.1 6.9			2.7 3.7		2.9	4.3 6.6		5.7
				Bottom	9.1	20.5	20.5	8.5	8.5	32.7	32.7	92.5	92.5	6.9	6.9	6.9	3.6	3.7		6.5	6.6	
				Surface	1.1	20.5 20.5	20.5	8.5 8.5	8.5	32.6 32.6	32.6	94.1 93.9	94.0	7.0 7.0	7.0	7.0	2.8 2.8	2.8		7.2 6.8	7.0	
G3	sunny	moderate	8:37	Middle	4.0	20.5 20.5	20.5	8.5 8.5	8.5	32.7 32.7	32.7	92.7 92.9	92.8	6.9 6.9	6.9	7.0	2.5 2.4	2.4	2.9	6.7 7.1	6.9	6.2
				Bottom	7.1	20.4 20.4	20.4	8.5 8.5	8.5	32.8 32.8	32.8	92.2 92.1	92.2	6.9 6.9	6.9	6.9	3.5 3.5	3.5		4.8 4.6	4.7	
				Surface	1.1	20.7	20.7	8.6	8.6	32.8	32.8	95.1	95.1	7.1	7.1		2.6	2.6		7.2	7.1	
G4	sunny	moderate	8:49	Middle	4.2	20.7	20.6	8.6 8.6	8.6	32.8 32.8	32.8	95.0 94.0	94.2	7.1 7.0	7.0	7.1	2.6	2.6	2.8	7.0 6.7	6.7	5.9
	Garmy	moderate	0.10			20.6 20.4		8.6 8.5		32.8 32.8		94.3 92.3		7.0 6.9		6.0	2.6 3.1		2.0	6.7 3.9		0.0
				Bottom	7.2	20.4	20.4	8.5 8.5	8.5	32.8 32.7	32.8	92.2 94.7	92.3	6.9 7.1	6.9	6.9	3.2	3.1		4.0 3.6	4.0	
				Surface	1.1	20.6	20.6	8.5	8.5	32.7	32.7	94.5	94.6	7.1	7.1	7.0	3.1	3.1		3.7	3.7	
M1	sunny	moderate	8:29	Middle	3.0	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	93.1 92.9	93.0	7.0 6.9	6.9		3.5 3.6	3.5	3.3	3.4 3.4	3.4	3.4
				Bottom	5.0	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	93.5 93.3	93.4	7.0 7.0	7.0	7.0	3.3 3.3	3.3		3.2 3.2	3.2	
				Surface	1.1	20.7 20.7	20.7	8.5 8.5	8.5	32.7 32.7	32.7	98.7 98.6	98.7	7.4 7.3	7.3		2.0 2.0	2.0		5.3 5.2	5.3	
M2	sunny	moderate	8:21	Middle	6.1	20.7	20.7	8.5	8.5	32.7	32.7	96.9	96.9	7.2	7.2	7.3	2.2	2.2	2.6	4.3	4.2	5.6
				Bottom	11.0	20.7 20.5	20.5	8.5 8.5	8.5	32.7 32.7	32.7	96.9 94.7	94.6	7.2 7.1	7.1	7.1	2.2 3.4	3.4		4.0 7.1	7.3	
					<u> </u>	20.5		8.5 8.5	<u> </u>	32.7 32.5		94.5 92.5		7.1 6.9	1	7.1	3.5 2.9			7.4 4.4		
				Surface	1.1	20.6 20.5	20.6	8.5 8.5	8.5	32.6 32.7	32.5	92.5 92.1	92.5	6.9 6.9	6.9	6.9	2.9	2.9		4.4 4.5	4.4	
M3	sunny	moderate	8:44	Middle	4.1	20.5	20.5	8.5	8.5	32.7	32.7	92.0	92.1	6.9	6.9		3.1	3.1	3.3	4.5	4.5	4.5
				Bottom	7.1	20.5 20.5	20.5	8.5 8.5	8.5	32.8 32.8	32.8	91.4 91.2	91.3	6.8 6.8	6.8	6.8	3.8 3.9	3.8		4.5 4.4	4.5	
				Surface	1.0	20.6 20.6	20.6	8.5 8.5	8.5	32.6 32.6	32.6	96.9 96.9	96.9	7.2 7.2	7.2	7.0	2.2 2.2	2.2		4.9 5.0	5.0	
M4	sunny	moderate	8:15	Middle	4.9	20.6 20.6	20.6	8.5 8.5	8.5	32.6 32.6	32.6	95.6 95.6	95.6	7.1 7.1	7.1	7.2	2.5 2.5	2.5	2.5	4.3 4.3	4.3	5.2
				Bottom	9.1	20.6	20.6	8.5	8.5	32.6	32.6	95.3	95.3	7.1	7.1	7.1	2.7	2.7		6.3	6.3	
				Surface	1.0	20.6	20.7	8.5 8.5	8.5	32.6 32.3	32.3	95.3 95.7	95.7	7.1 7.1	7.1	-	2.7	2.2		6.2 5.8	5.7	
						20.7 20.6		8.5 8.5		32.3 32.3		95.6 94.6		7.1 7.1		7.1	2.1		• -	5.6 10.7		
M5	sunny	moderate	9:00	Middle	6.1	20.6	20.6	8.5	8.5	32.3	32.3	94.8	94.7	7.1	7.1		2.3	2.2	2.2	11.0	10.9	6.6
				Bottom	11.1	20.6 20.6	20.6	8.5 8.5	8.5	32.4 32.4	32.4	93.9 92.9	93.4	7.0 7.0	7.0	7.0	2.2 2.2	2.2		3.1 3.2	3.2	
				Surface	-	-	-	-	-		-	-	-		-	7.0	-	-		-	-	
M6	sunny	moderate	8:53	Middle	2.2	20.6 20.6	20.6	8.5 8.5	8.5	32.8 32.8	32.8	96.9 96.8	96.9	7.2 7.2	7.2	7.2	2.3 2.3	2.3	2.3	2.7 2.8	2.8	2.8
				Bottom	-	-	_	-	-	-	-	- 90.0	-	-	-	-	-	-		-	-	
Pamarke:	*DA: Depth_A					-		-		-		-		-			-			-		

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 20 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level						
	Stations G1-G4, M1-M5	5							
	Depth Average	4.9 mg/L	4.6 mg/L						
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>						
	Station M6								
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>						
	Stations G1-G4, M1-M5	5							
		<u>19.3 NTU</u>	<u>22.2 NTU</u>						
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.7 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 3.0 NTU						
	Station M6								
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>						
	Stations G1-G4								
		6.0 mg/L	<u>6.9 mg/L</u>						
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.4 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.9 mg/L						
	Stations M1-M5								
		6.2 mg/L	7.4 mg/L						
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.4 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.9 mg/L						
	Stations G1-G4, M1-M5								
		<u>6.9 mg/L</u>	7.9 mg/L						
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 16.0 mg/L	or 130% of upstream control						
	<u>Station M6</u>								
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>						

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 20 January 2020

(Mid-Flood Tide)

	Weather	Sea	Sampling	Π		Tompor	ature (°C)	n	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ved Oxygen	(ma/L)	Т	urbidity(NT	11)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Sampling Time	Depth	n (m)	Value	Average	Value	Average	Value	Average	+	Average	Value		DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	20.7 20.7	20.7	8.5 8.5	8.5	32.4 32.4	32.4	95.1 95.8	95.5	7.1 7.1	7.1		2.1 2.1	2.1		5.4 5.8	5.6	
C1	sunny	moderate	15:12	Middle	9.1	20.6	20.6	8.5	8.5	32.5	32.5	93.3	93.4	7.0	7.0	7.0	2.2	2.2	2.2	8.1	8.2	6.9
	,					20.6 20.5		8.5 8.5		32.5 32.5		93.4 91.5		7.0 6.8		0.0	2.2			8.2 7.0		
	1			Bottom	17.0	20.5 20.7	20.5	8.5 8.5	8.5	32.5 32.3	32.5	91.6 94.8	91.6	6.8 7.1	6.8	6.8	2.2	2.2		6.7 3.8	6.9	
				Surface	1.1	20.7	20.7	8.5	8.5	32.3	32.3	95.0	94.9	7.1	7.1	7.0	2.2	2.2		3.7	3.8	
C2	sunny	moderate	14:10	Middle	16.1	20.6 20.6	20.6	8.5 8.5	8.5	32.2 32.2	32.2	91.9 91.8	91.9	6.9 6.9	6.9	7.10	2.3 2.4	2.3	2.3	5.1 4.8	5.0	4.6
				Bottom	31.0	20.6 20.6	20.6	8.5 8.5	8.5	32.1 32.2	32.1	91.4 91.5	91.5	6.8 6.9	6.8	6.8	2.2 2.3	2.3		5.2 4.9	5.1	
				Surface	1.1	20.6	20.6	8.5	8.5	32.7	32.7	94.5	94.4	7.1	7.0		3.2	3.3		3.9	3.9	
G1	sunny	moderate	14:36	Middle	4.1	20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	94.3	93.4	7.0	7.0	7.0	3.3	3.4	3.5	3.9 6.0	6.1	5.7
				Bottom	7.2	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.8	32.8	93.4 92.9	92.9	7.0 6.9	6.9	6.9	3.4	3.7		6.1 7.6	7.3	
						20.5	<u> </u>	8.5 8.5	1	32.8 32.7		92.8 96.2		6.9 7.2		0.0	3.7 2.4	<u> </u>		6.9 3.7		
				Surface	1.1	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	96.1 95.0	96.2	7.2 7.1	7.2	7.1	2.4	2.4		3.7 7.8	3.7	
G2	sunny	moderate	14:26	Middle	5.1	20.6	20.6	8.5	8.5	32.7	32.7	95.3	95.2	7.1	7.1		2.5	2.6	2.8	7.7	7.8	6.1
				Bottom	9.1	20.5 20.5	20.5	8.5 8.5	8.5	32.7 32.7	32.7	92.6 93.0	92.8	6.9 7.0	6.9	6.9	3.3 3.3	3.3		6.9 7.0	7.0	
				Surface	1.0	20.5 20.5	20.5	8.5 8.5	8.5	32.6 32.6	32.6	93.8 93.7	93.8	7.0 7.0	7.0	0.0	3.4 3.5	3.5		4.4 4.3	4.4	
G3	sunny	moderate	14:42	Middle	4.1	20.5 20.5	20.5	8.5 8.5	8.5	32.7 32.7	32.7	91.9 92.0	92.0	6.9 6.9	6.9	6.9	3.7 3.6	3.6	3.7	7.5 7.0	7.3	6.4
				Bottom	7.1	20.5 20.5	20.5	8.5 8.5	8.5	32.8 32.8	32.8	91.9 91.8	91.9	6.9 6.9	6.9	6.9	4.1 4.0	4.0		7.4 7.7	7.6	
				Surface	1.0	20.7	20.7	8.5	8.6	32.8	32.8	94.9	94.8	7.1	7.1		2.7	2.6		6.8	6.9	
G4	sunny	moderate	14:53	Middle	4.2	20.7	20.5	8.6 8.6	8.6	32.8 32.8	32.8	94.7 93.2	93.3	7.1	7.0	7.0	2.6	2.7	2.7	6.9	6.8	6.2
			14:53	Bottom	7.1	20.5 20.4	20.4	8.6 8.6	8.5	32.8 32.8	32.8	93.3 92.1	92.1	7.0 6.9	6.9	6.9	2.6	2.8		6.8 4.9	5.0	
				Surface	1.1	20.4	20.6	8.5 8.5	8.5	32.8 32.7	32.7	92.0 94.5	94.4	6.9 7.1	7.0	0.0	3.2	3.2		5.0 5.7	5.6	
N44		man da rata	4.4.04			20.6 20.6		8.5 8.5		32.7 32.7		94.3 93.2		7.0 7.0		7.0	3.2		2.4	5.4 6.4		F 0
M1	sunny	moderate	14:31	Middle	3.0	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	92.9 93.2	93.1	6.9 7.0	6.9		3.0 3.1	3.0	3.1	5.9 4.0	6.2	5.3
	1			Bottom	5.0	20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	93.2 98.4	93.2	7.0	7.0	7.0	3.2	3.2		4.1	4.1	
				Surface	1.1	20.7	20.7	8.5	8.5	32.7	32.7	98.3	98.4	7.3	7.3	7.2	2.0	2.0		4.5	4.4	
M2	sunny	moderate	14:21	Middle	6.1	20.7 20.7	20.7	8.5 8.5	8.5	32.7 32.7	32.7	96.3 96.4	96.4	7.2 7.2	7.2		2.2 2.2	2.2	2.4	6.5 6.2	6.4	6.0
				Bottom	11.0	20.6 20.6	20.6	8.5 8.5	8.5	32.7 32.7	32.7	94.4 94.2	94.3	7.0 7.0	7.0	7.0	3.0 3.1	3.0		7.2 7.3	7.3	
				Surface	1.1	20.6 20.6	20.6	8.5 8.5	8.5	32.6 32.6	32.6	90.6 92.1	91.4	6.8 6.9	6.8		3.1 3.0	3.1		7.3 6.7	7.0	
M3	sunny	moderate	14:49	Middle	4.1	20.5 20.5	20.5	8.5 8.5	8.5	32.7 32.7	32.7	91.4 91.4	91.4	6.8 6.8	6.8	6.8	3.4 3.4	3.4	3.6	8.7 8.2	8.5	6.0
				Bottom	7.0	20.5 20.5	20.5	8.5 8.5	8.5	32.8 32.8	32.8	90.7	90.7	6.8 6.8	6.8	6.8	4.3 4.3	4.3		2.6 2.7	2.7	
				Surface	1.0	20.6	20.6	8.5	8.5	32.6	32.6	96.2	96.2	7.2	7.2		2.2	2.2		13.4	13.0	
M4	sunny	moderate	14:16	Middle	5.0	20.6 20.6	20.6	8.5 8.5	8.5	32.6 32.6	32.6	96.2 95.1	95.1	7.2 7.1	7.1	7.1	2.2	2.5	2.4	12.6 10.6	10.8	10.8
			0	Bottom	9.1	20.6 20.6	20.6	8.5 8.5	8.5	32.6 32.6	32.6	95.1 94.8	94.9	7.1 7.1	7.1	7.1	2.6 2.5	2.5		10.9 8.7	8.6	. 0.0
						20.6 20.7	<u> </u>	8.5 8.5	1	32.6 32.3	<u> </u>	94.9 96.6		7.1 7.2		7.1	2.5	<u> </u>		8.5 8.7		
				Surface	1.1	20.7	20.7	8.5 8.5	8.5	32.3 32.4	32.3	95.0 93.7	95.8	7.1	7.2	7.1	2.1	2.1		8.7 3.6	8.7	
M5	sunny	moderate	15:06	Middle	6.1	20.6	20.6	8.5	8.5	32.4	32.4	93.9	93.8	7.0	7.0		2.3	2.2	2.2	3.7	3.7	6.5
				Bottom	11.1	20.6 20.6	20.6	8.5 8.5	8.5	32.4 32.4	32.4	92.8 92.6	92.7	6.9 6.9	6.9	6.9	2.3 2.3	2.3	_	7.0 7.2	7.1	_
				Surface	-	-	-	-	-		-	-	-	1 1	-	7.2	-	-		-	-	
M6	sunny	moderate	14:59	Middle	2.2	20.6 20.7	20.6	8.5 8.5	8.5	32.8 32.8	32.8	96.2 96.2	96.2	7.2 7.2	7.2	1.2	2.4 2.4	2.4	2.4	9.1 9.4	9.3	9.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
Pomarke:	*DA: Donth Av	<u> </u>		I		<u> </u>	I	-	I	-	<u> </u>	<u> </u>		-	<u> </u>			1	<u> </u>	<u> </u>		

^{**}Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 20 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4, M1-M5	5					
	Depth Average	4.9 mg/L	4.6 mg/L				
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	Station M6						
	Intake Level	5.0 mg/L	4.7 mg/L				
	Stations G1-G4, M1-M5	5					
		<u>19.3 NTU</u>	<u>22.2 NTU</u>				
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.7 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.9 NTU				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>				
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 6.7 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.3 mg/L				
	Stations M1-M5						
		6.2 mg/L	7.4 mg/L				
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 6.7 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 7.3 mg/L				
	Stations G1-G4, M1-M5	5					
		<u>6.9 mg/L</u>	7.9 mg/L				
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 8.2 mg/L	or 130% of upstream control				
	Station M6						
	Intake Level	8.3 mg/L	8.6 mg/L				

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 22 January 2020

(Mid-Ebb Tide)

	Weather	Sea	Complia -	I		T	(°C)	-	Н	Salin	ity ppt	DO Satu	ration (%)	Discol	red Oxygen	(ma/L)	т	urbidity(NT	11/	Sugnor	nded Solids	(ma/l \
Location	Condition	Sea Condition**	Sampling Time	Depti	h (m)	Value	ature (°C) Average		Average	Value	Average	Value	Average	Value	Average	DA*		Average	DA*	Value	Average	DA*
	Condition	Condition	11110	Surface	1.0	19.8	19.7	9.2 9.2	9.2	33.9 33.9	33.9	102.7 102.8	102.8	7.7 7.7	7.7		1.6	1.6	57.	6.6	6.4	
C1	Cloudy	Calm	11:38	Middle	8.6	19.7 19.6 19.6	19.6	9.2 9.2 9.2	9.2	33.9 33.9	33.9	102.8 102.1 102.4	102.3	7.7 7.7	7.7	7.7	1.6 1.4 1.4	1.4	1.7	7.8 7.9	7.9	5.9
				Bottom	16.0	19.6 19.6	19.6	9.2 9.2	9.2	33.9 33.9	33.9	100.0 99.7	99.9	7.5 7.5	7.5	7.5	2.0	2.1		3.5 3.6	3.6	
				Surface	1.1	19.9 19.9	19.9	9.5 9.5	9.5	33.8 33.8	33.8	102.8 102.8	102.8	7.7 7.7	7.7		1.6 1.6	1.6		6.5 6.8	6.7	
C2	Cloudy	Calm	10:09	Middle	16.1	19.8 19.8	19.8	9.4 9.4	9.4	33.8 33.8	33.8	102.6 102.7	102.7	7.7	7.7	7.7	1.5	1.5	1.6	3.7 3.5	3.6	5.3
				Bottom	31.1	19.7 19.7	19.7	9.3 9.3	9.3	33.8 33.8	33.8	100.9 100.6	100.8	7.6 7.5	7.6	7.6	1.6 1.6	1.6		5.7 5.7	5.7	
				Surface	1.1	19.9 19.9	19.9	9.0 9.0	9.0	33.7 33.7	33.7	101.9 102.3	102.1	7.6 7.6	7.6	7.6	2.0 2.0	2.0		5.1 5.0	5.1	
G1	Cloudy	Calm	10:46	Middle	3.7	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.7	33.8	102.1 102.5	102.3	7.6 7.7	7.7	7.0	2.7 2.6	2.6	3.0	6.2 6.1	6.2	6.0
				Bottom	6.6	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	96.0 95.6	95.8	7.2 7.2	7.2	7.2	4.4 4.4	4.4		6.8 6.6	6.7	
				Surface	1.0	19.8 19.8	19.8	9.1 9.1	9.1	33.8 33.8	33.8	102.0 102.1	102.1	7.6 7.6	7.6	7.6	2.2 2.3	2.2		6.9 7.1	7.0	
G2	Cloudy	Calm	10:30	Middle	5.0	19.8 19.8	19.8	9.1 9.1	9.1	33.8 33.8	33.8	102.0 102.0	102.0	7.6 7.6	7.6	7.0	2.2 2.3	2.2	2.2	8.4 8.3	8.4	7.2
				Bottom	9.0	19.7 19.7	19.7	9.1 9.1	9.1	33.8 33.8	33.8	101.6 101.3	101.5	7.6 7.6	7.6	7.6	2.2 2.2	2.2		6.2 6.5	6.4	
				Surface	1.1	20.0 20.1	20.0	8.9 8.9	8.9	33.7 33.6	33.7	103.0 103.3	103.2	7.7 7.7	7.7	7.7	1.6 1.6	1.6		8.6 8.5	8.6	
G3	Cloudy	Calm	10:52	Middle	3.8	19.7 19.8	19.7	9.0 9.0	9.0	33.8 33.8	33.8	101.7 102.6	102.2	7.6 7.7	7.6		2.4 2.3	2.3	2.2	11.0 10.8	10.9	7.5
				Bottom	6.6	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	96.6 96.3	96.5	7.2 7.2	7.2	7.2	2.7 2.7	2.7		3.1 3.0	3.1	
				Surface	1.1	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	103.8 103.9	103.9	7.8 7.8	7.8	7.7	2.0 2.0	2.0		4.1 3.9	4.0	
G4	Cloudy	Calm	11:06	Middle	3.7	19.7 19.7	19.7	8.9 8.9	8.9	33.8 33.8	33.8	100.5 101.0	100.8	7.5 7.6	7.6		3.1 3.0	3.0	2.8	7.3 7.1	7.2	6.4
				Bottom	6.5	19.6 19.7	19.7	8.9 8.9	8.9	33.8 33.8	33.8	99.0 98.8	98.9	7.4 7.4	7.4	7.4	3.4 3.5	3.4		8.0 7.7	7.9	
				Surface	1.0	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	99.3 99.2	99.3	7.4 7.4	7.4	7.4	3.1	3.2		7.5 7.9	7.7	
M1	Cloudy	Calm	10:35	Middle	3.1	19.8 19.8 19.8	19.8	9.1 9.1 9.1	9.1	33.8 33.8 33.8	33.8	98.3 98.5 97.6	98.4	7.4 7.4	7.4		4.7 4.8 3.3	4.7	3.7	4.5 4.5	4.5	5.8
				Bottom	5.1	19.8	19.7	9.1	9.1	33.8 33.8	33.8	97.5 97.5	97.6	7.3 7.3 7.9	7.3	7.3	3.3 3.2	3.3		5.2 5.0 6.6	5.1	
				Surface	1.1	20.0	20.0	9.0	9.0	33.8 33.8	33.8	106.2 106.7 106.3	106.5	8.0 8.0	7.9	7.9	1.5	1.5		6.4	6.5	
M2	Cloudy	Calm	10:23	Middle	5.2	19.8	19.8	9.0	9.0	33.8	33.8	106.4 105.1	106.4	8.0 7.9	8.0		1.8	1.8	1.7	4.3	4.3	6.6
				Bottom	9.5	19.7	19.7	9.0	9.0	33.8 33.6	33.8	104.7	104.9	7.8 7.6	7.9	7.9	1.8	1.8		8.8	8.9	
	01 1	0.1	44.00	Surface	1.1	19.9	19.9	8.9 9.0	8.9	33.7 33.7	33.7	101.5	101.4	7.6	7.6	7.6	1.9	1.9		6.5	6.7	
M3	Cloudy	Calm	11:00	Middle	3.7	19.8 19.6	19.8	9.0	9.0	33.7	33.7	102.6 101.8	102.7	7.7	7.7	7.0	1.8	1.8	1.9	4.0	4.2	5.2
				Bottom	6.6	19.6	19.6	9.0	9.0	33.8	33.8	101.5	101.7	7.6	7.6	7.6	2.1	2.0		4.7	4.8	
M4	Cloudy	Calm	10:17	Surface	1.0	19.9	19.9	9.0	9.0	33.8	33.8	107.4 107.1	107.4	8.0	8.0	8.0	1.6	1.6	1.9	8.5	8.7	6.2
IVI4	Cidudy	Calli	10.17	Middle Bottom	5.1 9.0	19.9 19.8	19.9	9.0 9.0	9.0	33.8 33.8	33.8	107.2 104.1	107.2	8.0 7.8	8.0 7.8	7.8	1.6	1.7	1.9	5.5 4.0	5.8 4.1	0.2
				Surface	1.1	19.8 19.7	19.8	9.0 9.1	9.0	33.8 33.9	33.9	103.7 101.3	103.9	7.8 7.6	7.6	1.0	2.4	1.9		4.2 8.0	8.1	
M5	Cloudy	Calm	11:26	Middle	5.5	19.7 19.6	19.7	9.1 9.1	9.1	33.9 33.9	33.9	101.4 100.4	101.4	7.6 7.5	7.5	7.6	1.9 1.9	2.0	2.0	8.1 6.9	6.9	7.0
IVIO	Oloudy	Caim	11.20	Bottom	10.1	19.6 19.6	19.6	9.1 9.1	9.1	33.9 33.9	33.9	100.8 99.5	99.5	7.6 7.5	7.5	7.5	2.0	2.3	2.0	6.8 5.9	6.0	7.0
				Surface	-	19.6	19.0	9.1	-	33.9	-	99.4	-	7.5			2.3	-		6.1	-	
M6	Cloudy	Calm	11:13	Middle	2.0	19.7	19.7	9.0	9.0	33.8	33.8	101.1	101.1	7.6	7.6	7.6	3.0	3.0	3.0	6.8	6.8	6.8
	Cicacy	- Ca	5	Bottom	2.0	19.7	-	9.0	-	33.8	-	101.0	-	7.6	-	_	3.0	-	- 0.0	6.8	-	0.0
	1	1		Dottom		-		-		-		-		-			-			-		

*DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Marine water quality monitoring on flood tide was cancelled.

Appendix I - Action and Limit Levels for Marine Water Quality on 22 January 2020 (Mid-Ebb Tide)

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level									
	Stations G1-G4, M1-M5	5										
DO: 4	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>									
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>									
	Station M6											
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5	Stations G1-G4, M1-M5										
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	of the same day									
	Station MC	<u>C2: 1.9 NTU</u>	<u>C2: 2.0 NTU</u>									
	Station M6 Intake Level	10 0 NTU	10 4 NTU									
	Stations G1-G4	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4	6.0 mg/L	6.9 mg/L									
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.6 mg/L									
	Stations M1-M5											
		6.2 mg/L	7.4 mg/L									
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 8.0 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 8.6 mg/L									
	Stations G1-G4, M1-M5	5										
		6.9 mg/L	7.9 mg/L									
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 6.8 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 7.4 mg/L									
	Station M6		<u></u>									
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>									

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, \ non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 22 January 2020

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Tempera	ture (°C)	p	Н	Salin	ity ppt	DO Satur	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Берш	(111)		Average		Average	Value	Average	Value	Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.1	19.8 19.8	19.8	9.2 9.2	9.2	33.9 33.9	33.9	102.4 102.6	102.5	7.7 7.7	7.7	7.6	1.6 1.6	1.6		6.1 6.4	6.3	
C1	Cloudy	Calm	16:39	Middle	9.1	19.6 20.5	20.1	9.2 9.2	9.2	33.9 33.9	33.9	101.6 101.8	101.7	7.6 7.6	7.6	7.0	1.3 1.4	1.3	1.6	6.0 5.6	5.8	5.8
				Bottom	17.0	19.6 19.6	19.6	9.2 9.2	9.2	33.9 33.9	33.9	100.3 100.2	100.3	7.5 7.5	7.5	7.5	1.7 1.8	1.8		5.1 5.3	5.2	
				Surface	1.1	20.4 19.9	20.1	9.5 9.5	9.5	33.8 33.8	33.8	102.8 102.9	102.9	7.7 7.7	7.7	7.7	1.6 1.6	1.6		4.7 4.6	4.7	
C2	Cloudy	Calm	14:55	Middle	16.6	19.8 19.9	19.9	9.4 9.5	9.4	33.8 33.8	33.8	102.7 102.8	102.8	7.7 7.7	7.7	7.7	1.5 1.6	1.5	1.6	5.6 5.7	5.7	4.6
				Bottom	32.1	19.7 19.7	19.7	9.3 9.3	9.3	33.8 33.8	33.8	100.5 100.4	100.5	7.5 7.5	7.5	7.5	1.6 1.5	1.5	Ī	3.4 3.5	3.5	
				Surface	1.0	19.9 19.9	19.9	8.9 8.9	8.9	33.8 33.7	33.8	100.6 101.4	101.0	7.5 7.6	7.6	7.6	2.0 2.0	2.0		4.7 4.6	4.7	
G1	Cloudy	Calm	15:33	Middle	4.0	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	101.0 101.5	101.3	7.6 7.6	7.6	7.0	3.0 2.9	3.0	3.0	4.5 4.4	4.5	4.9
				Bottom	7.0	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	97.1 96.5	96.8	7.3 7.2	7.3	7.3	4.1 4.2	4.1		5.4 5.6	5.5	
				Surface	1.0	20.2 19.8	20.0	9.0 9.0	9.0	33.8 33.8	33.8	101.6 101.9	101.8	7.6 7.6	7.6	7.6	2.1 2.1	2.1		5.4 5.2	5.3	
G2	Cloudy	Calm	15:13	Middle	5.1	19.8 19.8	19.8	9.1 9.1	9.1	33.8 33.8	33.8	102.1 102.0	102.1	7.6 7.6	7.6	7.0	2.2 2.2	2.2	2.2	4.8 4.6	4.7	5.0
				Bottom	9.0	19.7 19.7	19.7	9.1 9.1	9.1	33.8 33.8	33.8	101.9 101.7	101.8	7.6 7.6	7.6	7.6	2.2 2.2	2.2		4.9 5.0	5.0	
				Surface	1.0	21.0 20.1	20.5	8.9 8.9	8.9	33.7 33.7	33.7	103.4 103.6	103.5	7.7 7.7	7.7	7.7	1.6 1.7	1.7		5.6 5.6	5.6	
G3	Cloudy	Calm	15:40	Middle	4.1	19.8 19.9	19.9	9.0 9.0	9.0	33.8 33.8	33.8	103.1 103.8	103.5	7.7 7.8	7.7	7.7	2.2 2.1	2.1	2.2	7.6 7.5	7.6	7.4
				Bottom	7.1	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	96.1 95.9	96.0	7.2 7.2	7.2	7.2	2.8 2.8	2.8		8.7 9.2	9.0	
				Surface	1.0	20.1 19.9	20.0	9.0 9.0	9.0	33.8 33.8	33.8	104.0 104.0	104.0	7.8 7.8	7.8	7.7	2.0 2.0	2.0		9.2 9.3	9.3	
G4	Cloudy	Calm	15:54	Middle	4.0	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	101.5 102.2	101.9	7.6 7.7	7.6	7.7	3.0 2.9	2.9	2.9	6.5 6.4	6.5	7.6
				Bottom	7.0	19.7 19.7	19.7	8.9 8.9	8.9	33.8 33.8	33.8	98.6 98.4	98.5	7.4 7.4	7.4	7.4	3.6 3.8	3.7		6.9 7.1	7.0	
				Surface	1.1	20.1 19.9	20.0	9.0 9.0	9.0	33.8 33.8	33.8	99.1 99.0	99.1	7.4 7.4	7.4	7.4	3.8 4.3	4.1		4.1 4.3	4.2	
M1	Cloudy	Calm	15:21	Middle	3.1	19.8 19.9	19.9	9.1 9.1	9.1	33.8 33.8	33.8	98.6 98.7	98.7	7.4 7.4	7.4		4.8 4.7	4.7	4.1	4.0 4.0	4.0	3.9
				Bottom	5.1	19.8 19.7	19.7	9.1 9.1	9.1	33.8 33.8	33.8	97.4 97.2	97.3	7.3 7.3	7.3	7.3	3.3 3.4	3.4		3.4 3.3	3.4	
				Surface	1.1	20.8 20.0	20.4	9.0 9.0	9.0	33.8 33.8	33.8	107.2 107.7	107.5	8.0 8.0	8.0	8.0	1.5 1.5	1.5		6.7 6.4	6.6	
M2	Cloudy	Calm	15:07	Middle	5.5	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	106.7 107.1	106.9	8.0 8.0	8.0		1.7 1.7	1.7	1.7	4.2 4.4	4.3	6.6
				Bottom	10.0	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	104.1 103.6	103.9	7.8 7.8	7.8	7.8	1.9 1.9	1.9		8.7 9.0	8.9	
				Surface	1.0	20.5	20.2	8.9 8.9	8.9	33.7 33.6	33.7	100.5 100.9	100.7	7.5 7.5	7.5	7.6	1.9 1.9	1.9		3.9 4.0	4.0	
M3	Cloudy	Calm	15:46	Middle	4.0	19.7 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	102.8 102.8	102.8	7.7 7.7	7.7		1.8 1.8	1.8	1.9	7.7 7.8	7.8	5.7
				Bottom	7.0	19.7 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	102.6 102.2	102.4	7.7 7.7	7.7	7.7	1.9 1.9	1.9		5.5 5.4	5.5	
				Surface	1.0	20.2 20.0	20.1	9.0 9.0	9.0	33.8 33.8	33.8	106.9 107.1	107.0	8.0 8.0	8.0	8.0	1.6 1.6	1.6		5.6 5.7	5.7	l
M4	Cloudy	Calm	15:02	Middle	5.0	19.9 19.9	19.9	9.0 9.0	9.0	33.8 33.8	33.8	106.9 107.0	107.0	8.0 8.0	8.0		1.8	1.8	2.2	4.3 4.2	4.3	5.2
				Bottom	9.1	19.8 19.8	19.8	9.0 9.0	9.0	33.8 33.8	33.8	105.2 104.6	104.9	7.9 7.8	7.8	7.8	3.1 3.2	3.2		5.8 5.6	5.7	<u> </u>
				Surface	1.0	19.8 19.7	19.8	9.1 9.1	9.1	33.9 33.9	33.9	101.4 101.5	101.5	7.6 7.6	7.6	7.6	1.9 1.9	1.9		3.5 3.4	3.5	
M5	Cloudy	Calm	16:27	Middle	6.0	19.7 20.7	20.2	9.1 9.1	9.1	33.9 33.9	33.9	100.9 101.2	101.1	7.6 7.6	7.6	-	2.0 1.9	1.9	2.1	11.7	11.5	7.1
				Bottom	11.1	19.6 19.6	19.6	9.1 9.1	9.1	33.9 33.9	33.9	99.2 98.9	99.1	7.4 7.4	7.4	7.4	2.4 2.5	2.5		6.4 6.2	6.3	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
M6	Cloudy	Calm	16:07	Middle	2.3	19.8 19.7	19.7	9.0 9.0	9.0	33.8 33.8	33.8	101.4 101.3	101.4	7.6 7.6	7.6	-	2.8 2.9	2.9	2.9	5.2 5.1	5.2	5.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	

Remarks:

^{**}DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 22 January 2020 (Mid-Flood Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5	5								
	Depth Average	4.9 mg/L	4.6 mg/L							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	4.7 mg/L							
	Stations G1-G4, M1-M5	5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 2.1 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.3 NTU							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		6.9 mg/L								
	Surface	or 120% of upstream control station's SS at the same tide of the same day C1: 7.5 mg/L	or 130% of upstream control station's SS at the same tide of the same day C1: 8.1 mg/L							
	Stations M1-M5	<u> </u>	<u>01, 012 mg, 22</u>							
		6.2 mg/L	7.4 mg/L							
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C1: 8.1 mg/L							
	Stations G1-G4, M1-M5	5								
		6.9 mg/L	7.9 mg/L							
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 6.2 mg/L	or 130% of upstream control							
	Station M6									
	Intake Level	8.3 mg/L	8.6 mg/L							

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 January 2020

(Mid-Ebb Tide)

	Weather	Sea	Sampling	Depth ((m)		ture (°C)		Н		ity ppt		ration (%)		ved Oxygen			urbidity(NT			ded Solids	
Location	Condition	Condition**	Time	Depth ((111)	Value	Average		Average	Value	Average	Value	Average	Value	Average	DA*		Average	DA*		Average	DA*
				Surface	1.2	20.2 20.0	20.1	8.3 8.3	8.3	32.6 32.5	32.5	101.5 102.7	102.1	7.5 7.7	7.6	7.5	0.8 1.0	0.9		5.2 5.7	5.5	-
C1	Fine	Calm	12:18	Middle	9.1	20.0	20.0	8.3 8.3	8.3	32.6 32.6	32.6	100.3	100.7	7.5 7.5	7.5	7.5	1.4	1.3	1.3	6.5	6.4	5.3
				Bottom	17.0	20.0 20.2	20.1	8.3 8.3	8.3	32.9 32.9	32.9	99.7 98.7	99.2	7.4 7.3	7.4	7.4	1.6 1.6	1.6	İ	4.2 4.1	4.2	
				Surface	1.0	20.0 20.0	20.0	8.2 8.3	8.3	32.5 32.5	32.5	101.6 101.7	101.7	7.5 7.6	7.5		1.2 1.2	1.2		4.3 4.4	4.4	
C2	Fine	Calm	11:03	Middle	16.1	19.9 19.9	19.9	8.3 8.3	8.3	32.8 32.8	32.8	98.9 99.8	99.4	7.4 7.4	7.4	7.5	1.4	1.4	1.5	4.8 4.8	4.8	5.6
				Bottom	31.0	18.9 18.9	18.9	8.3 8.3	8.3	32.8 32.8	32.8	99.0 99.0	99.0	7.4 7.4	7.4	7.4	1.9	1.9	Ī	7.6 7.8	7.7	
				Surface	1.1	19.9 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	100.5 101.0	100.8	7.5 7.5	7.5	7.6	1.6 1.5	1.6		4.9 5.2	5.1	
G1	Fine	Calm	11:41	Middle	4.0	20.0 20.0	20.0	8.3 8.3	8.3	32.6 32.6	32.6	102.1 102.1	102.1	7.6 7.6	7.6	7.6	1.4 1.4	1.4	1.5	5.2 5.2	5.2	5.3
				Bottom	7.0	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	101.4 101.2	101.3	7.6 7.6	7.6	7.6	1.6 1.6	1.6		5.6 5.4	5.5	
				Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	32.5 32.5	32.5	103.5 103.5	103.5	7.9 7.9	7.9	7.8	1.0 1.0	1.0		4.1 3.8	4.0	
G2	Fine	Calm	11:27	Middle	5.1	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	101.3 101.3	101.3	7.7 7.7	7.7	7.0	0.9 1.0	1.0	0.9	4.0 3.8	3.9	4.0
				Bottom	9.0	19.9 19.9	19.9	8.3 8.3	8.3	32.7 32.7	32.7	99.9 99.9	99.9	7.6 7.6	7.6	7.6	0.9 0.9	0.9		4.1 4.3	4.2	
				Surface	1.1	20.1 20.1	20.1	8.4 8.4	8.4	32.5 32.5	32.5	101.8 101.8	101.8	7.6 7.6	7.6	7.6	0.5 0.5	0.5		24.2 23.7	24.0	
G3	Fine	Calm	11:48	Middle	4.8	19.9 19.9	19.9	8.4 8.4	8.4	32.6 32.6	32.6	100.7 100.8	100.8	7.5 7.5	7.5	7.0	0.8 0.9	0.8	0.8	5.8 5.5	5.7	11.5
				Bottom	8.6	19.8 19.8	19.8	8.4 8.4	8.4	32.6 32.6	32.6	100.9 101.3	101.1	7.5 7.6	7.6	7.6	1.1 1.1	1.1		4.8 4.8	4.8	
				Surface	1.1	20.0 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	101.2 101.3	101.3	7.5 7.6	7.5	7.6	1.3 1.3	1.3		3.4 3.5	3.5	
G4	Fine	Calm	12:03	Middle	4.0	20.0 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	102.4 102.4	102.4	7.6 7.6	7.6		1.0 1.0	1.0	1.2	4.6 4.8	4.7	4.4
				Bottom	7.0	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	101.4 101.4	101.4	7.6 7.6	7.6	7.6	1.2 1.2	1.2		5.2 5.0	5.1	
				Surface	1.1	20.0 20.1	20.0	8.2 8.3	8.3	32.5 32.5	32.5	102.0 101.5	101.8	7.6 7.6	7.6	7.6	1.1 1.1	1.1		4.6 4.3	4.5	
M1	Fine	Calm	11:34	Middle	3.1	19.9 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	101.0 101.7	101.4	7.5 7.6	7.6		1.2	1.2	1.3	5.2 5.4	5.3	5.7
				Bottom	5.0	19.9 20.0	19.9	8.3 8.3	8.3	32.6 32.6	32.6	100.2 101.3	100.8	7.5 7.6	7.5	7.5	1.5 1.6	1.6		7.3 7.4	7.4	
				Surface	2.0	19.9 19.9	19.9	8.2 8.2	8.2	32.5 32.5	32.5	102.6 102.6	102.6	7.7 7.7	7.7	7.6	1.4 1.3	1.3		4.5 4.6	4.6	
M2	Fine	Calm	11:21	Middle	6.1	19.9 19.9	19.9	8.2 8.2	8.2	32.6 32.6	32.6	100.8 101.0	100.9	7.5 7.5	7.5		1.3 1.3	1.3	1.3	5.2 5.1	5.2	5.5
				Bottom	11.0	19.9 19.9	19.9	8.3 8.3	8.3	32.8 32.8	32.8	100.1 100.0	100.1	7.5 7.5	7.5	7.5	1.3 1.3	1.3		6.9 6.9	6.9	
				Surface	1.2	20.0 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	102.9 103.0	103.0	7.7 7.7	7.7	7.6	0.6 0.6	0.6		5.4 5.5	5.5	
М3	Fine	Calm	11:55	Middle	5.7	19.9 19.9	19.9	8.3 8.3	8.3	32.5 32.5	32.5	101.9 102.1	102.0	7.6 7.6	7.6		1.4 1.3	1.4	1.3	7.2 7.1	7.2	12.7
				Bottom	8.7	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	98.6 98.6	98.6	7.4 7.3	7.3	7.3	2.0 2.0	2.0		24.8 26.4	25.6	
				Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	32.5 32.5	32.5	100.4 100.4	100.4	7.5 7.5	7.5	7.4	1.2 1.1	1.2		9.5 9.3	9.4	
M4	Fine	Calm	11:13	Middle	5.1	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	99.4 99.4	99.4	7.4 7.4	7.4		1.3 1.3	1.3	1.4	5.3 5.1	5.2	7.0
				Bottom	9.0	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.7	32.6	98.1 98.1	98.1	7.3 7.3	7.3	7.3	1.7 1.8	1.7		6.3 6.2	6.3	
				Surface	1.1	20.2 20.2	20.2	8.3 8.3	8.3	32.5 32.5	32.5	101.6 101.7	101.7	7.5 7.6	7.5	7.5	0.8 0.8	0.8		7.9 8.0	8.0	
M5	Fine	Calm	12:12	Middle	6.1	19.9 19.9	19.9	8.3 8.3	8.3	32.6 32.6	32.6	98.9 99.8	99.4	7.4 7.4	7.4		2.0 1.7	1.8	1.7	18.9 18.2	18.6	11.0
				Bottom	11.0	20.0 20.0	20.0	8.3 8.3	8.3	32.7 32.7	32.7	99.0 99.0	99.0	7.4 7.4	7.4	7.4	2.5 2.5	2.5		6.3 6.4	6.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
M6	Fine	Calm	12:08	Middle	2.1	20.0 20.0	20.0	8.3 8.3	8.3	32.5 32.5	32.5	101.1 101.1	101.1	7.5 7.6	7.5		0.9 0.9	0.9	0.9	6.9 7.1	7.0	7.0
Remarks: *I	*DA: Denth-Av			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks: *DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Marine water quality monitoring on flood tide was cancelled.

Appendix I - Action and Limit Levels for Marine Water Quality on 24 January 2020 (Mid-Ebb Tide)

Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5	5								
	Depth Average	4.9 mg/L	4.6 mg/L							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G4, M1-M5	5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.3 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.5 NTU</u>							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		<u>6.0 mg/L</u>								
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.7 mg/L							
	Stations M1-M5									
		6.2 mg/L	7.4 mg/L							
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 5.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 5.7 mg/L							
	Stations G1-G4, M1-M5	5								
		<u>6.9 mg/L</u>	7.9 mg/L							
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 9.2 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 10.0 mg/L							
	Station M6	1	1							
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 31 January 2020

(Mid-Ebb Tide)

	Weather	Sea	Sampling			Tempera	ature (°C)		Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	T	urbidity(NT	TU)	Susper	nded Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	ı (m)		Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.1	21.1 21.1	21.1	8.5 8.5	8.5	32.5 32.5	32.5	102.8 102.9	102.9	7.1 7.1	7.1	7.0	1.5 1.6	1.6		10.9 10.8	10.9	
C1	Cloudy	Moderate	17:35	Middle	9.1	20.9 21.0	21.0	8.5 8.5	8.5	32.6 32.6	32.6	101.6 101.8	101.7	7.0 7.0	7.0	7.0	1.1 1.1	1.1	1.4	8.1 8.1	8.1	12.3
				Bottom	17.1	20.7 20.7	20.7	8.5 8.5	8.5	32.9 32.9	32.9	97.2 97.2	97.2	6.7 6.7	6.7	6.7	1.7 1.7	1.7		17.6 18.1	17.9	L
				Surface	1.1	21.2 21.2	21.2	8.4 8.4	8.4	32.5 32.5	32.5	104.0 104.0	104.0	7.1 7.1	7.1	7.0	0.5 0.5	0.5		11.8 12.2	12.0	
C2	Cloudy	Moderate	16:02	Middle	16.0	20.7 20.7	20.7	8.4 8.4	8.4	32.8 32.8	32.8	99.0 99.1	99.1	6.8 6.8	6.8	7.0	1.0 1.0	1.0	1.5	6.4 6.7	6.6	10.5
				Bottom	31.0	20.7 20.7	20.7	8.5 8.5	8.5	32.8 32.8	32.8	97.0 97.1	97.1	6.7 6.7	6.7	6.7	3.0 2.9	3.0		12.7 12.9	12.8	
				Surface	1.0	21.2 21.2	21.2	8.5 8.5	8.5	32.5 32.5	32.5	103.1 103.2	103.2	7.1 7.1	7.1	7.1	1.3 1.2	1.3		8.5 8.2	8.4	
G1	Cloudy	Moderate	16:43	Middle	4.0	21.1 21.1	21.1	8.5 8.5	8.5	32.6 32.6	32.6	103.0 103.0	103.0	7.1 7.1	7.1		0.9 1.0	1.0	1.0	8.3 8.2	8.3	9.2
				Bottom	7.0	21.1 21.0	21.1	8.5 8.5	8.5	32.6 32.6	32.6	102.6 102.6	102.6	7.1 7.0	7.0	7.0	0.8 0.9	0.9		11.0 11.2	11.1	
				Surface	1.1	21.2 21.2	21.2	8.5 8.5	8.5	32.5 32.5	32.5	103.3 103.3	103.3	7.1 7.1	7.1	7.1	1.7 1.7	1.7		12.1 12.3	12.2	
G2	Cloudy	Moderate	16:23	Middle	5.0	21.1 21.0	21.1	8.5 8.5	8.5	32.6 32.6	32.6	102.2 102.1	102.2	7.0 7.0	7.0		0.9 0.9	0.9	1.1	9.9 9.8	9.9	12.3
				Bottom	9.0	20.9 20.9	20.9	8.5 8.5	8.5	32.6 32.7	32.7	101.5 101.3	101.4	7.0 7.0	7.0	7.0	0.6 0.6	0.6		14.6 14.8	14.7	
				Surface	1.0	21.1 21.1	21.1	8.5 8.5	8.5	32.5 32.5	32.5	103.2 103.3	103.3	7.1 7.1	7.1	7.1	1.2 1.2	1.2		9.8 9.9	9.9	
G3	Cloudy	Moderate	16:51	Middle	4.1	21.1 21.1	21.1	8.5 8.5	8.5	32.6 32.6	32.6	103.0 103.0	103.0	7.1 7.1	7.1		0.9	0.9	1.1	6.2 6.2	6.2	9.0
				Bottom	7.1	21.1 21.1	21.1	8.5 8.5	8.5	32.6 32.6	32.6	102.5 102.5	102.5	7.0 7.0	7.0	7.0	1.1	1.2		11.0 10.7	10.9	
				Surface	1.1	21.2	21.2	8.5 8.5	8.5	32.5 32.5	32.5	103.4	103.5	7.1 7.1	7.1	7.1	1.2	1.2		7.2 7.4	7.3	
G4	Cloudy	Moderate	17:05	Middle	4.0	21.1	21.1	8.5 8.5	8.5	32.5 32.5	32.5	103.3	103.3	7.1 7.1	7.1		0.9 1.0	1.0	1.0	10.5	10.4	10.5
				Bottom	7.0	21.0 21.0 21.2	21.0	8.5 8.5 8.5	8.5	32.6 32.6 32.5	32.6	102.5 102.5 103.6	102.5	7.0 7.0 7.1	7.0	7.0	0.8 0.8 1.5	0.8		13.7 14.0 6.3	13.9	
				Surface	1.0	21.2	21.2	8.5 8.5	8.5	32.5 32.5	32.5	103.6 103.5	103.6	7.1 7.1	7.1	7.1	1.5	1.5		6.4	6.4	
M1	Cloudy	Moderate	16:31	Middle	2.9	21.2	21.2	8.5 8.5	8.5	32.5 32.6	32.5	103.5	103.5	7.1 7.1	7.1		1.3	1.3	1.1	5.3 7.5	5.4	6.4
				Bottom	5.1	21.1	21.1	8.5 8.5	8.5	32.6 32.5	32.6	103.0	103.0	7.1 7.1	7.1	7.1	0.6	0.7		7.4	7.5	
140	01 1		40.40	Surface	1.1	21.2	21.2	8.5 8.5	8.5	32.5 32.6	32.5	103.6	103.6	7.1	7.1	7.1	1.4	1.4		7.3	7.2	
M2	Cloudy	Moderate	16:16	Middle	6.1	21.0	21.0	8.5 8.5	8.5	32.6 32.8	32.6	102.5 98.9	102.5	7.0	7.0		1.5	1.5	1.5	4.8	4.8	6.2
				Bottom	11.0	20.7	20.7	8.5 8.5	8.5	32.8 32.5	32.8	98.8	98.9	6.8 7.1	6.8	6.8	1.8	1.8		6.7 5.6	6.5	
M3	Cloudy	Moderate	16:59	Surface Middle	4.1	21.1 21.1	21.1	8.5 8.5	8.5 8.5	32.5 32.5	32.5 32.5	103.0 103.1	103.0	7.1 7.1	7.1	7.1	1.5 1.2	1.5	1.2	5.4 6.9	5.5 6.8	6.4
CIVI	Cloudy	wouerate	10.09	Bottom	7.1	21.1 21.1	21.1	8.5 8.5	8.5	32.5 32.6	32.5	103.2 102.6	103.2	7.1 7.1	7.1	7.0	1.3	1.0	1.2	6.6 7.1	7.1	0.4
				Surface	1.0	21.1 21.2	21.1	8.5 8.5	8.5	32.6 32.5	32.5	102.6 103.4	102.6	7.0 7.1	7.0	7.0	0.9 1.6	1.6		7.0 9.0	9.0	
M4	Cloudy	Moderate	16:09	Middle	5.0	21.2 21.0	21.0	8.5 8.5	8.5	32.5 32.6	32.6	103.4 102.4	103.4	7.1 7.0	7.0	7.1	1.6 1.4	1.5	1.4	9.0	10.1	8.9
141-7	Oloudy	Moderate	10.03	Bottom	9.2	21.0 20.9	20.9	8.5 8.5	8.5	32.6 32.6	32.6	102.5 101.2	102.5	7.0 7.0	7.0	7.0	1.5 1.0	1.0	1.7	9.9 7.7	7.7	0.0
		1		Surface	1.0	20.9	21.1	8.5 8.5	8.5	32.6 32.5	32.5	101.0 103.2	103.3	7.0 7.1	7.1	7.0	1.0	1.5		7.7 9.6	10.0	
M5	Cloudy	Moderate	17:25	Middle	6.0	21.1 21.0	21.1	8.5 8.5	8.5	32.5 32.6	32.6	103.3 102.7	102.8	7.1 7.1	7.1	7.1	1.5 0.9	1.0	1.1	10.3 10.3	10.0	10.9
	/			Bottom	11.0	21.1	20.8	8.5 8.5	8.5	32.6 32.7	32.7	102.9 99.8	99.7	7.1 6.9	6.9	6.9	1.0	1.0	1	9.6	12.8	
				Surface	-	20.8	-	8.5	-	32.7	-	99.6	-	6.9	-		1.0	-		13.0	-	
M6	Cloudy	Moderate	17:13	Middle	2.1	21.1	21.1	8.5	8.5	32.5	32.5	103.1	103.1	7.1	7.1	7.1	1.3	1.3	1.3	10.2	10.2	10.2
				Bottom	-	21.1	-	8.5	-	32.5	-	103.1	-	7.1	-	-	1.4	-	†	10.1	-	
	1					-		-		-		-		-			-		1	<u> </u>		

^{*}DA: Depth-Averaged
**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

Appendix I - Action and Limit Levels for Marine Water Quality on 31 January 2020 (Mid-Ebb Tide)

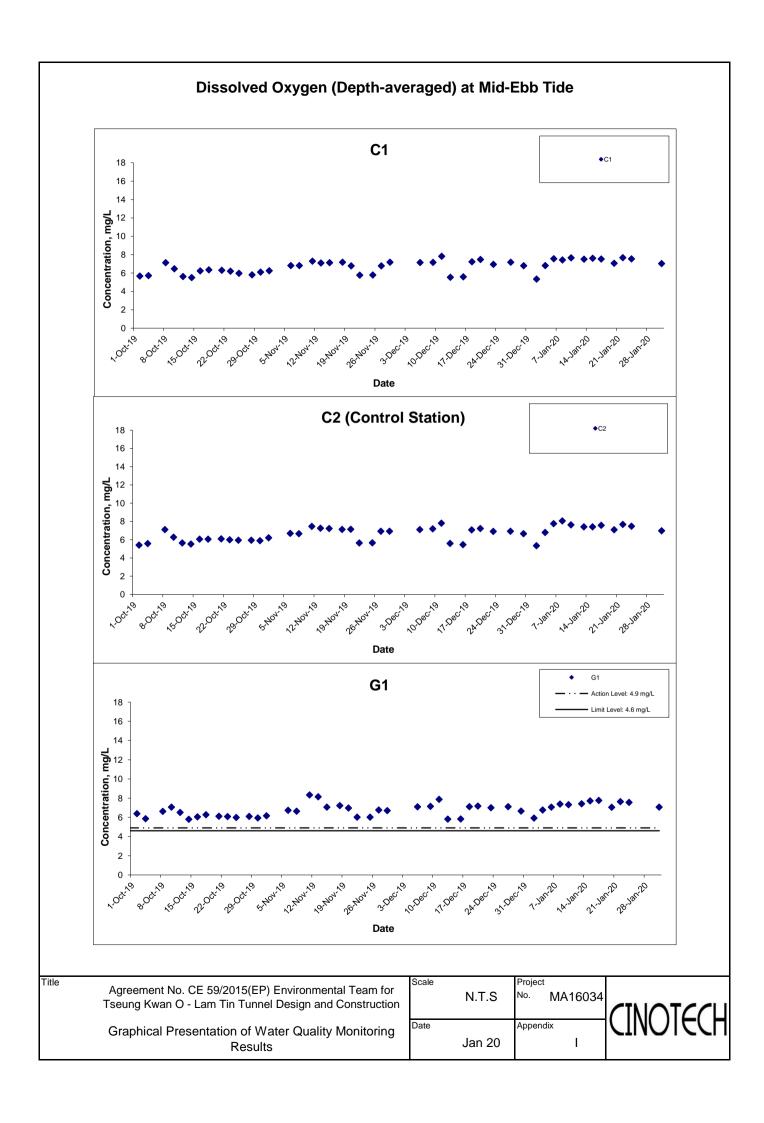
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level			
	Stations G1-G4, M1-M5	5				
	Depth Average	4.9 mg/L	4.6 mg/L			
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>			
	Station M6					
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>			
	Stations G1-G4, M1-M5	5				
		<u>19.3 NTU</u>	<u>22.2 NTU</u>			
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.6 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day C2: 3.9 NTU			
	Station M6					
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>			
	Stations G1-G4					
		6.0 mg/L				
	Surface	or 120% of upstream control station's SS at the same tide of the same day C2: 14.4 mg/L	or 130% of upstream control station's SS at the same tide of the same day C2: 15.6 mg/L			
	Stations M1-M5	<u>021 1 11 11 11 11 11 11 11 11 11 11 11 11</u>	<u>021 1010 mg/2</u>			
		6.2 mg/L	7.4 mg/L			
SS in mg/L (See Note 2 and 4)	Surface	or 120% of upstream control	or 130% of upstream control station's SS at the same tide of the same day C2: 15.6 mg/L			
	Stations G1-G4, M1-M5	5				
		6.9 mg/L	7.9 mg/L			
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C2: 15.4 mg/L	or 130% of upstream control			
	Station M6	<u> </u>	<u> </u>			
	Intake Level	8.3 mg/L	8.6 mg/L			

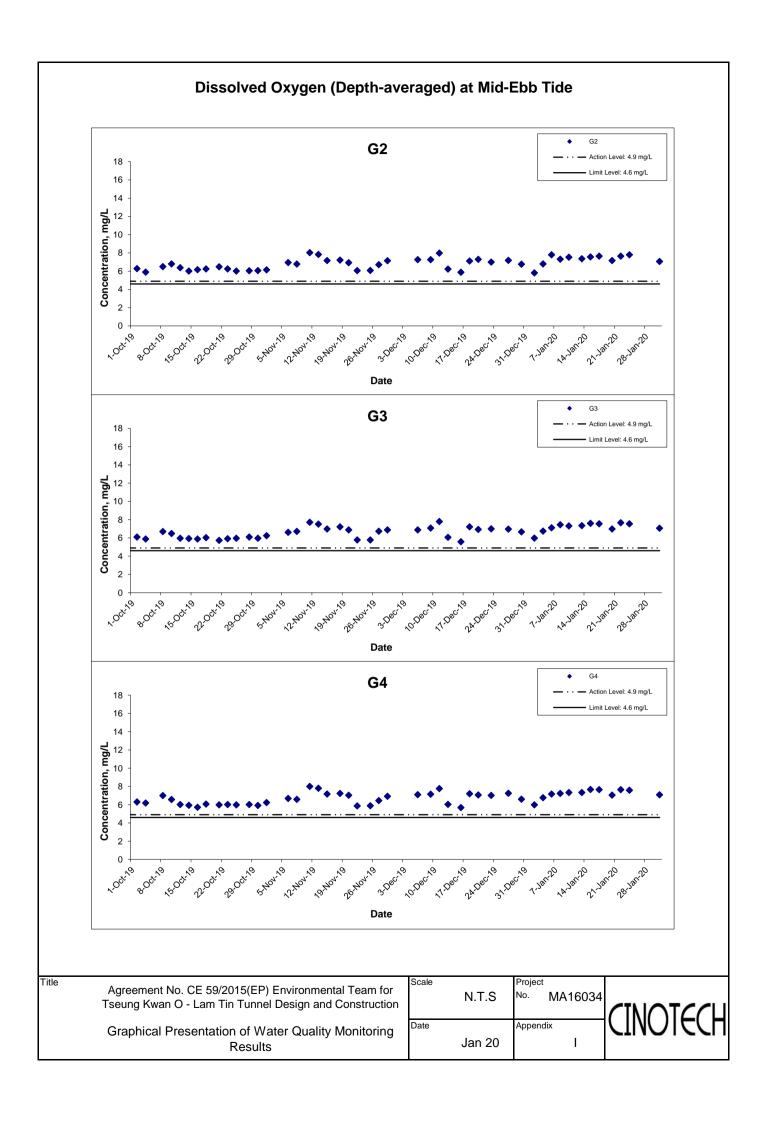
- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

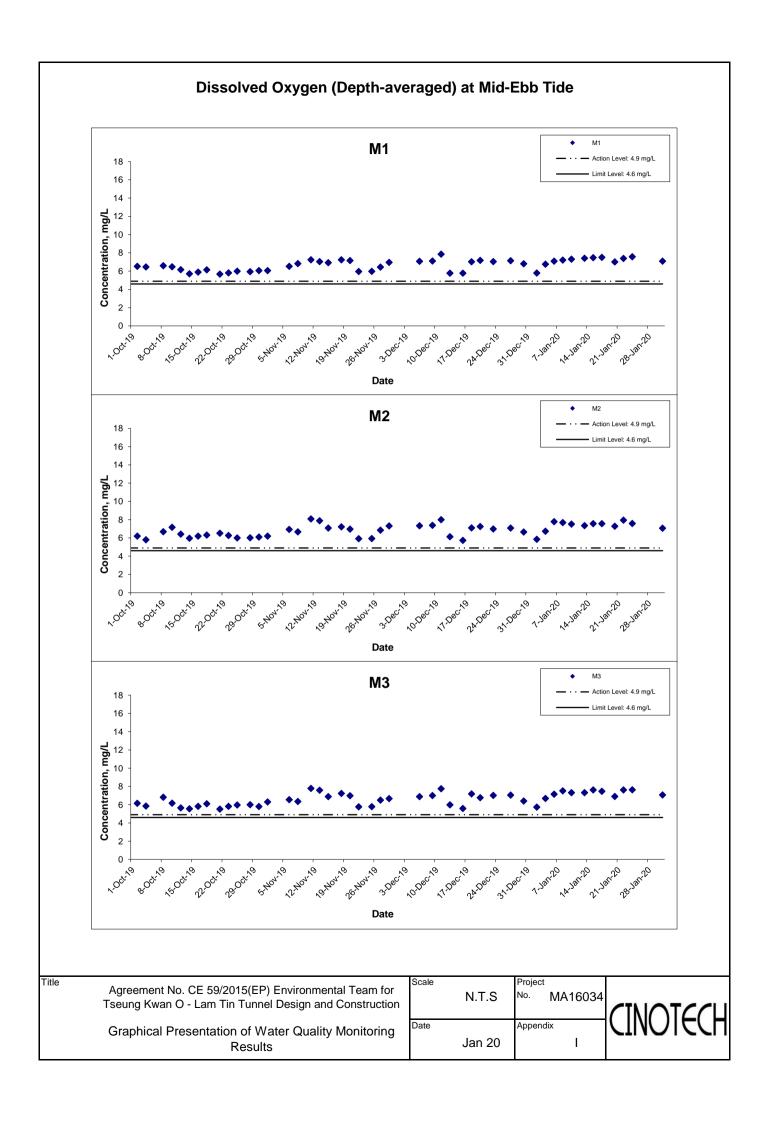
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 31 January 2020

(Mid-Flood Tide)

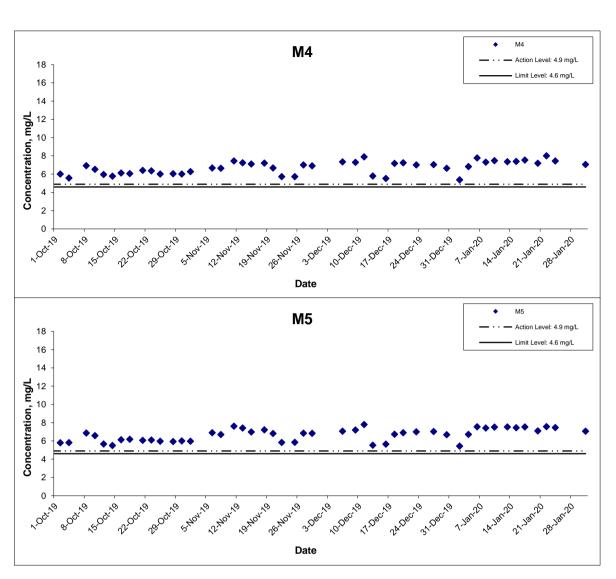
Location	Weather	Sea	Sampling	Donth	(m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satur	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	TU)	Susper	ided Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	(m)	Value	Average		Average	Value	Average	Value	Average		Average	DA*		Average	DA*		Average	DA*
				Surface	1.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.5	32.5	101.1 101.4	101.3	7.0 7.0	7.0	6.9	1.5 1.5	1.5		6.3 6.2	6.3	i
C1	Cloudy	Moderate	11:37	Middle	9.1	21.1 21.2	21.2	8.5 8.5	8.5	32.6 32.6	32.6	100.3 100.4	100.4	6.9 6.9	6.9	0.0	1.0 1.0	1.0	1.4	8.5 8.9	8.7	7.2
				Bottom	17.0	20.9 20.9	20.9	8.5 8.5	8.5	32.9 32.9	32.9	96.3 96.3	96.3	6.7 6.7	6.7	6.7	1.6 1.6	1.6		6.7 6.7	6.7	i
				Surface	1.1	21.4 21.4	21.4	8.4 8.4	8.4	32.5 32.5	32.5	103.0 103.0	103.0	7.1 7.1	7.1	6.9	0.4 0.4	0.4		8.4 8.7	8.6	
C2	Cloudy	Moderate	10:05	Middle	16.0	20.9 20.9	20.9	8.4 8.4	8.4	32.8 32.8	32.8	97.5 97.7	97.6	6.7 6.8	6.7	0.9	1.0 1.0	1.0	1.4	6.0 6.0	6.0	7.9
				Bottom	31.0	20.9 20.9	20.9	8.5 8.5	8.5	32.8 32.8	32.8	95.9 96.0	96.0	6.6 6.6	6.6	6.6	2.8 2.4	2.6		9.2 9.1	9.2	i
				Surface	1.0	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	101.8 102.0	101.9	7.0 7.0	7.0	7.0	1.3 1.3	1.3		8.1 7.9	8.0	
G1	Cloudy	Moderate	10:46	Middle	4.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.9 101.9	101.9	7.0 7.0	7.0	7.0	0.8 0.8	0.8	1.0	8.2 8.7	8.5	8.7
				Bottom	7.0	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.7 101.7	101.7	7.0 7.0	7.0	7.0	0.8 0.8	0.8		9.5 9.9	9.7	ı
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.4 102.4	102.4	7.0 7.0	7.0	7.0	1.7 1.7	1.7		8.6 8.9	8.8	
G2	Cloudy	Moderate	10:26	Middle	5.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	100.9 100.9	100.9	6.9 6.9	6.9	7.0	0.9 1.0	1.0	1.1	7.6 7.3	7.5	8.0
				Bottom	9.1	21.1 21.1	21.1	8.5 8.5	8.5	32.7 32.7	32.7	100.0 99.7	99.9	6.9 6.9	6.9	6.9	0.6 0.7	0.6		8.0 7.5	7.8	l
				Surface	1.0	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.1 102.1	102.1	7.0 7.0	7.0	7.0	1.0 1.0	1.0		11.3 11.5	11.4	
G3	Cloudy	Moderate	10:53	Middle	4.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.8 101.9	101.9	7.0 7.0	7.0	7.0	0.8 0.8	0.8	1.0	7.8 7.5	7.7	9.6
				Bottom	7.0	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.5 101.5	101.5	7.0 7.0	7.0	7.0	1.0 1.1	1.1		9.4 9.9	9.7	L
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.3 102.3	102.3	7.0 7.0	7.0	7.0	1.1 1.2	1.1		6.8 6.5	6.7	i
G4	Cloudy	Moderate	11:08	Middle	4.1	21.3 21.3	21.3	8.5 8.5	8.5	32.5 32.5	32.5	102.1 102.2	102.2	7.0 7.0	7.0	7.0	0.8 0.9	0.8	0.9	8.0 7.9	8.0	7.7
				Bottom	7.0	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.6 101.5	101.6	7.0 7.0	7.0	7.0	0.7 0.7	0.7		8.5 8.5	8.5	
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.6 102.6	102.6	7.0 7.0	7.0	7.0	1.4 1.4	1.4		9.9 10.6	10.3	ı
M1	Cloudy	Moderate	10:33	Middle	3.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.5 102.5	102.5	7.0 7.0	7.0		1.3 1.4	1.4	1.1	10.9 10.8	10.9	10.0
				Bottom	5.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.9 101.9	101.9	7.0 7.0	7.0	7.0	0.5 0.5	0.5		8.8 8.8	8.8	
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.5 102.5	102.5	7.0 7.0	7.0	7.0	1.4 1.4	1.4		9.0 8.8	8.9	ı
M2	Cloudy	Moderate	10:18	Middle	6.2	21.2 21.2	21.2	8.5 8.5	8.5	32.6 32.6	32.6	101.1 101.2	101.2	7.0 7.0	7.0		1.4 1.4	1.4	1.5	7.6 7.9	7.8	9.7
				Bottom	11.1	21.0 21.0	21.0	8.5 8.5	8.5	32.8 32.8	32.8	98.3 98.2	98.3	6.8 6.8	6.8	6.8	1.7 1.7	1.7		12.7 12.2	12.5	
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.2 102.2	102.2	7.0 7.0	7.0	7.0	1.5 1.5	1.5		4.2 4.4	4.3	ı
М3	Cloudy	Moderate	11:02	Middle	4.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.2 102.3	102.3	7.0 7.0	7.0		1.3 1.3	1.3	1.2	13.2 13.0	13.1	8.4
				Bottom	7.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.5 101.5	101.5	7.0 7.0	7.0	7.0	0.9 0.8	0.9		7.9 7.7	7.8	
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.4 102.4	102.4	7.0 7.0	7.0	7.0	1.5 1.5	1.5		9.0 8.7	8.9	ı
M4	Cloudy	Moderate	10:12	Middle	5.0	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.7 101.8	101.8	7.0 7.0	7.0		1.6 1.6	1.6	1.3	8.2 8.1	8.2	9.6
				Bottom	9.1	21.1 21.1	21.1	8.5 8.5	8.5	32.6 32.7	32.6	99.9 99.8	99.9	6.9 6.9	6.9	6.9	1.0 1.0	1.0		12.0 11.8	11.9	
				Surface	1.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.1 102.1	102.1	7.0 7.0	7.0	7.0	1.3 1.4	1.4		6.2 6.1	6.2	Ī
M5	Cloudy	Moderate	11:27	Middle	6.1	21.3 21.3	21.3	8.5 8.5	8.5	32.6 32.6	32.6	101.6 101.6	101.6	7.0 7.0	7.0	-	0.8	0.8	1.1	5.4 5.5	5.5	5.5
				Bottom	11.0	21.1 21.1	21.1	8.5 8.5	8.5	32.7 32.7	32.7	99.1 99.0	99.1	6.8 6.8	6.8	6.8	1.0 1.0	1.0		4.9 4.9	4.9	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	Ī
M6	Cloudy	Moderate	11:16	Middle	2.1	21.4 21.4	21.4	8.5 8.5	8.5	32.5 32.5	32.5	102.2 102.2	102.2	7.0 7.0	7.0		1.3 1.3	1.3	1.3	10.5 10.9	10.7	10.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	


^{*}DA: Depth-Averaged

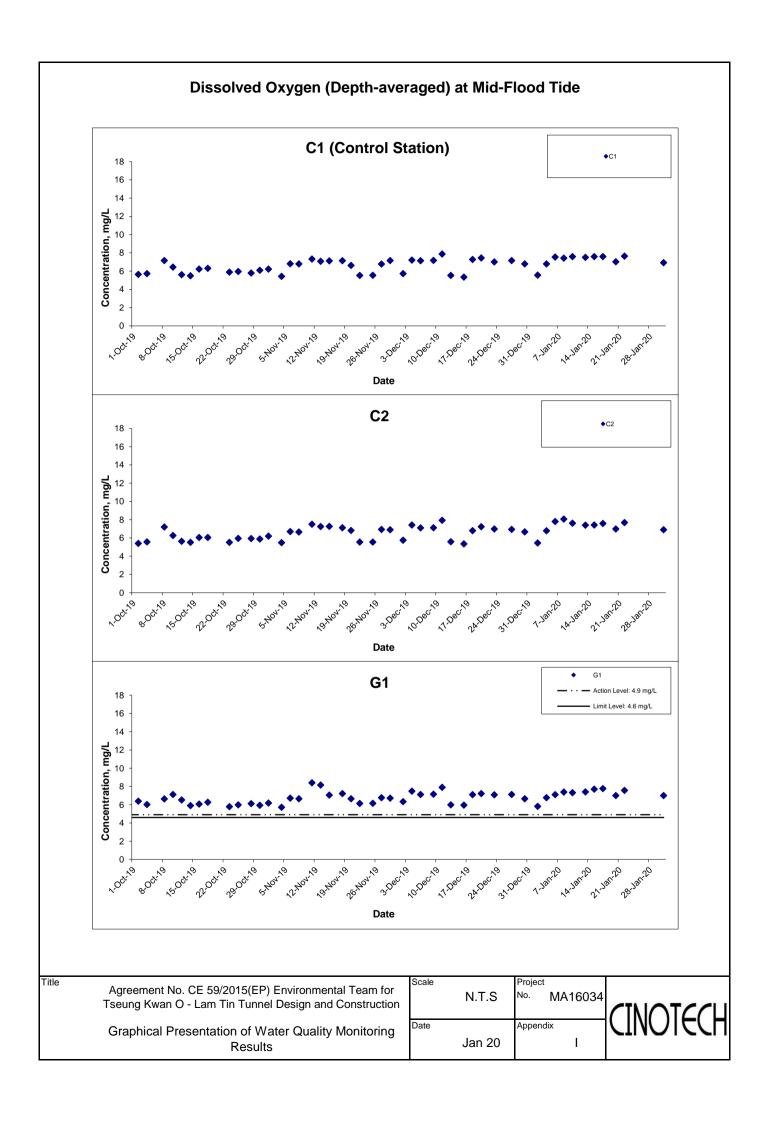

**Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher.

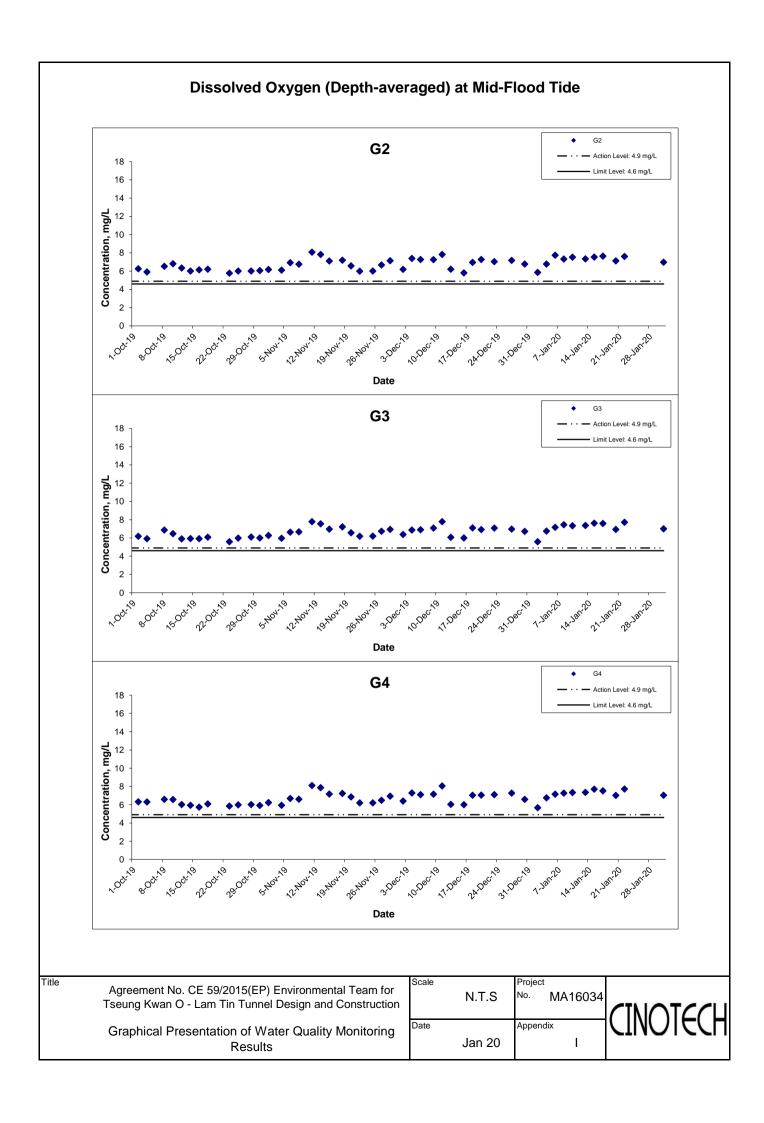

Appendix I - Action and Limit Levels for Marine Water Quality on 31 January 2020 (Mid-Flood Tide)

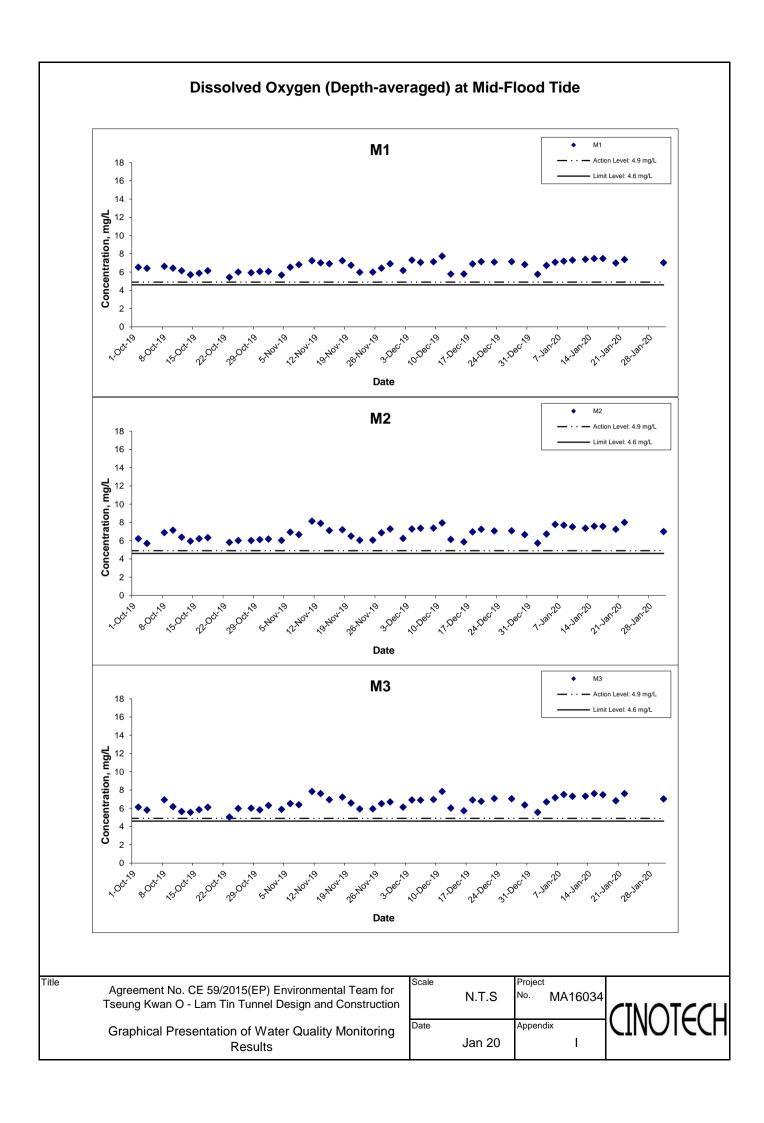
Parameter (unit)	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5	5								
	Depth Average	4.9 mg/L	4.6 mg/L							
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6									
	Intake Level	<u>5.0 mg/L</u>	4.7 mg/L							
	Stations G1-G4, M1-M5	5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day C1: 1.9 NTU	or 130% of upstream control station's Turbidity at the same tide of the same day C1: 2.1 NTU							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		6.0 mg/L								
	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day							
	Stations M1-M5	<u>C1: 7.5 mg/L</u>	<u>C1: 8.1 mg/L</u>							
	Stations WII-WIS	(2/I	7.4							
SS in mg/L (See Note 2 and 4)	Surface	6.2 mg/L or 120% of upstream control station's SS at the same tide of the same day C1: 7.5 mg/L	7.4 mg/L or 130% of upstream control station's SS at the same tide of the same day C1: 8.1 mg/L							
	Stations G1-G4, M1-M5	5								
		6.9 mg/L	7.9 mg/L							
	Bottom	or 120% of upstream control station's SS at the same tide of the same day C1: 8.0 mg/L	or 130% of upstream control							
	Station M6									
	Intake Level	<u>8.3 mg/L</u>	8.6 mg/L							


- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- $2. \ For \ turbidity, SS, non-compliance \ of \ the \ water \ quality \ limits \ occurs \ when \ monitoring \ result \ is \ higher \ than \ the \ limits.$
- 3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.
- 4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

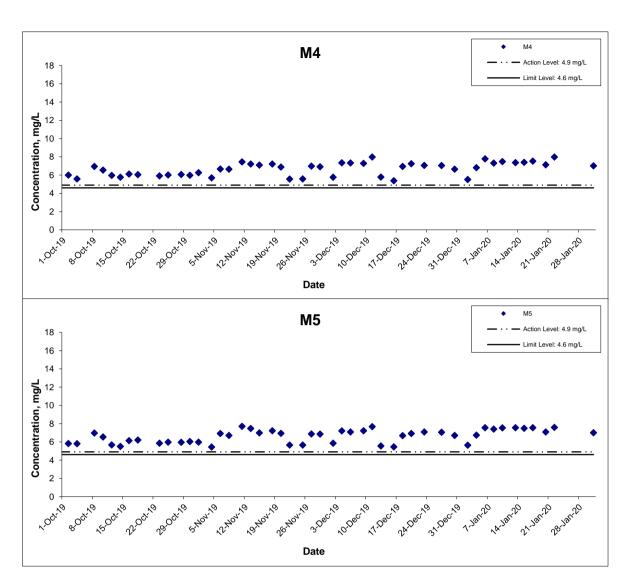
Dissolved Oxygen (Depth-averaged) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Graphical Presentation of Water Quality Monitoring

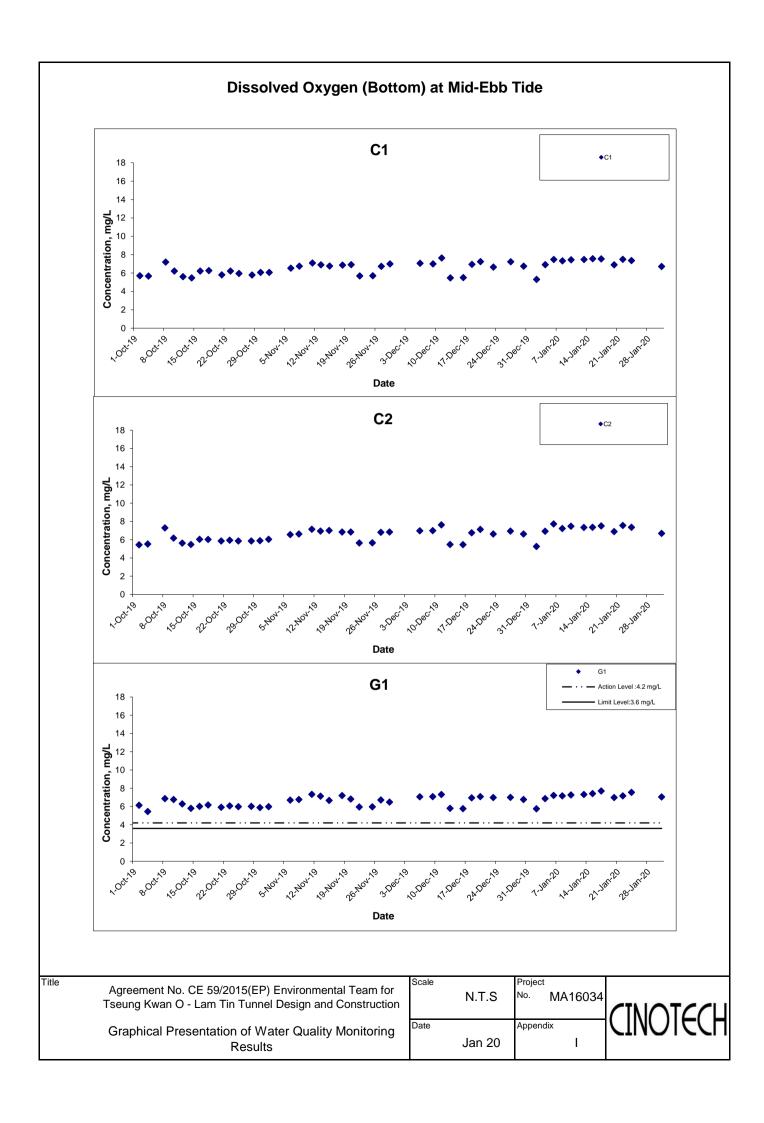

Results

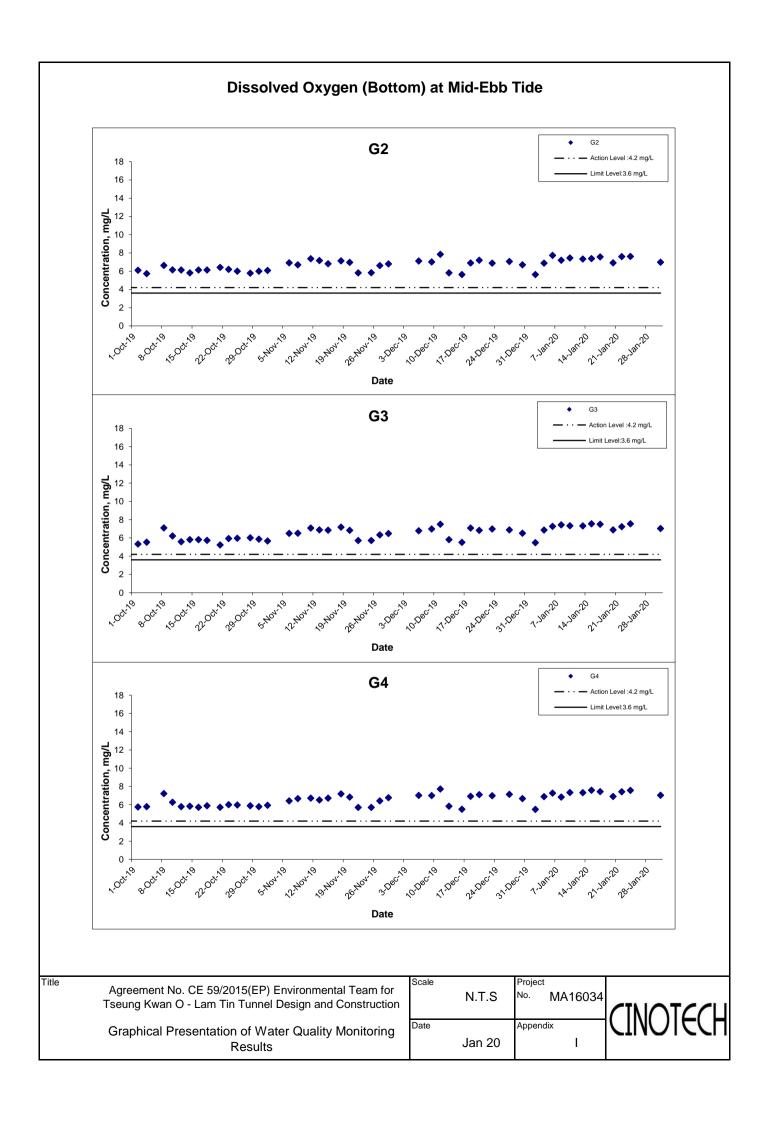

Title

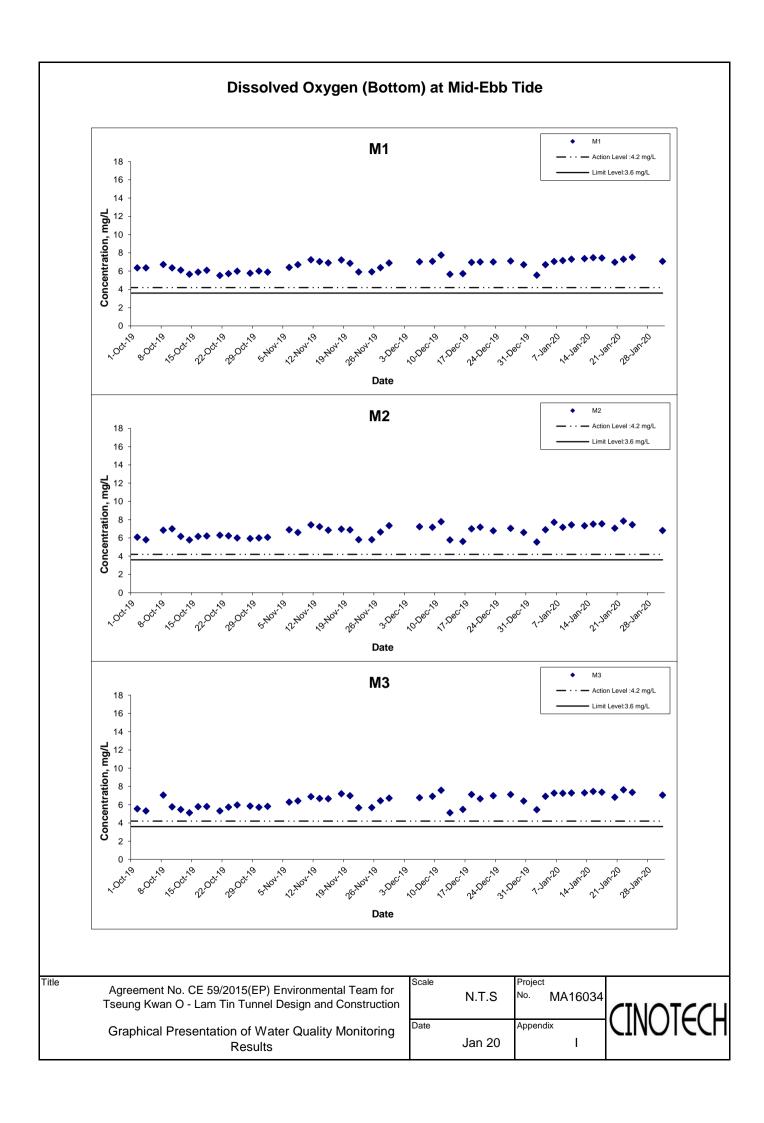
Scale		Projec	t
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		1



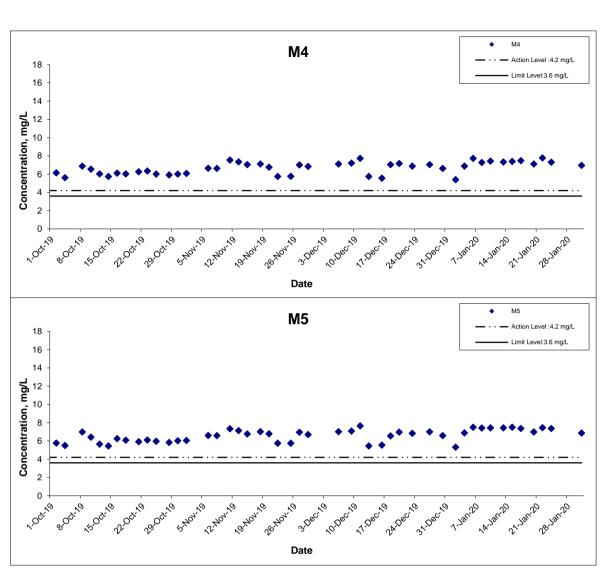
Dissolved Oxygen (Depth-averaged) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

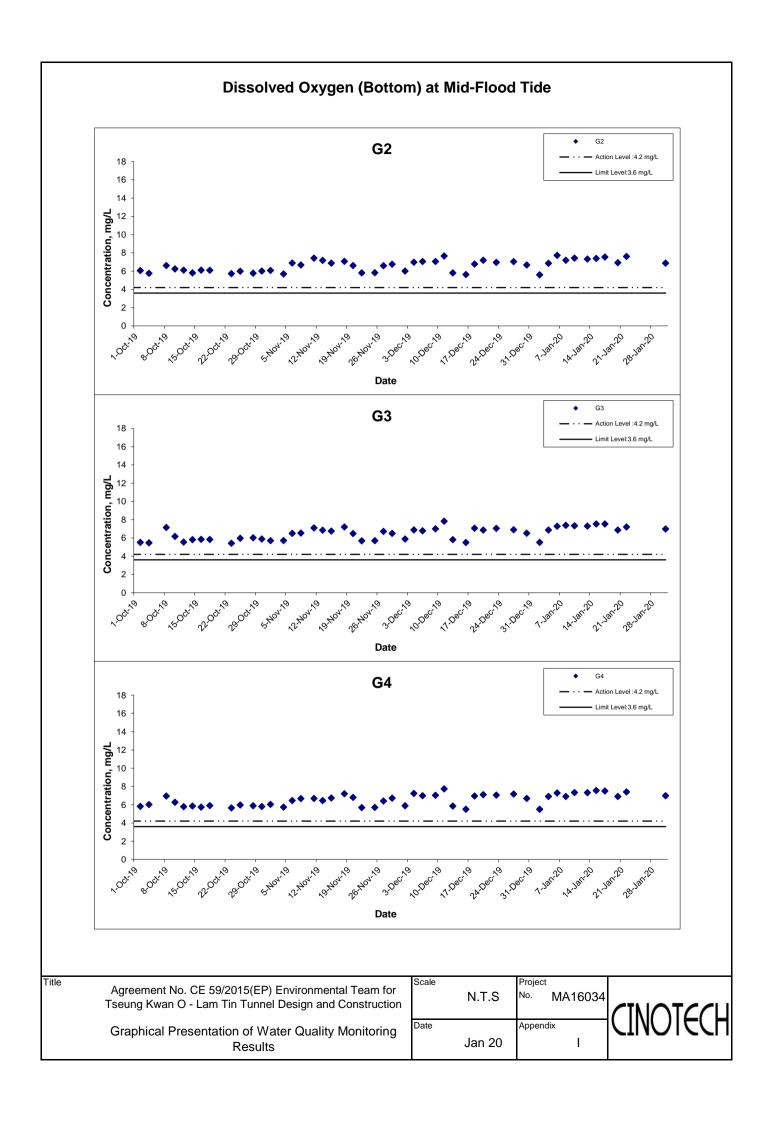

Title

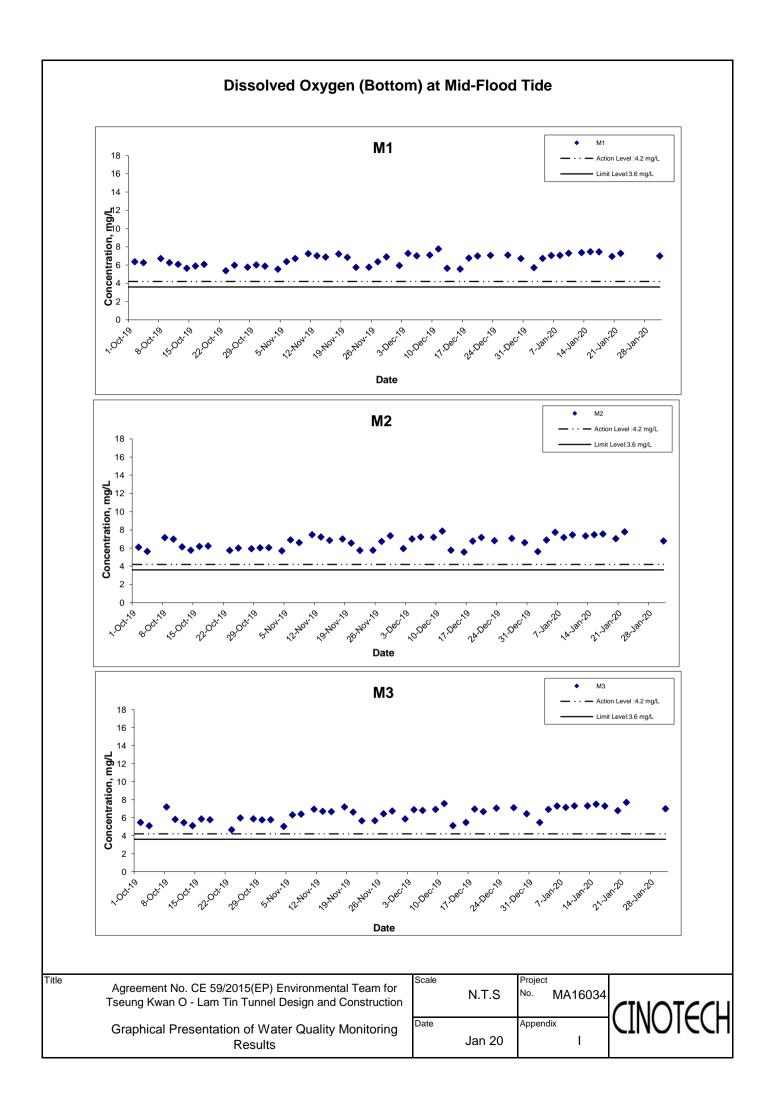
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		1



Dissolved Oxygen (Bottom) at Mid-Ebb Tide

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction
Graphical Presentation of Water Quality Monitoring


Results

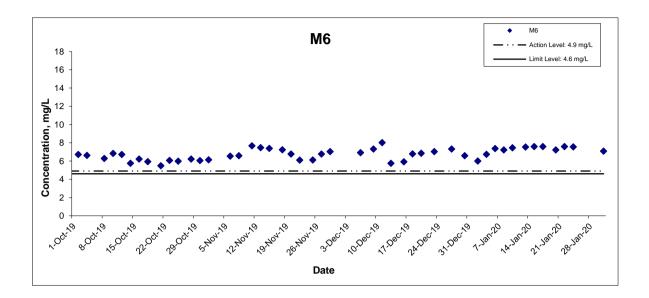

Title

Scale		Proje	ct
	N.T.S	No.	MA16034
Date		Appe	ndix
	Jan 20		I



Dissolved Oxygen (Bottom) at Mid-Flood Tide

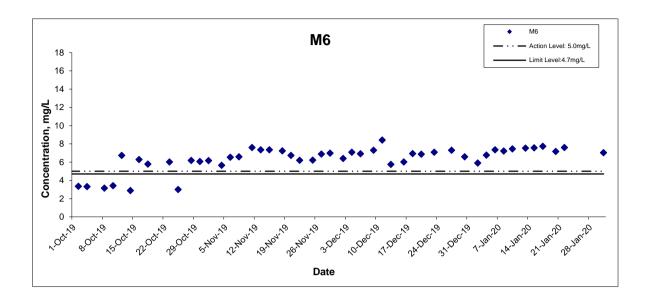
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

Title

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	I

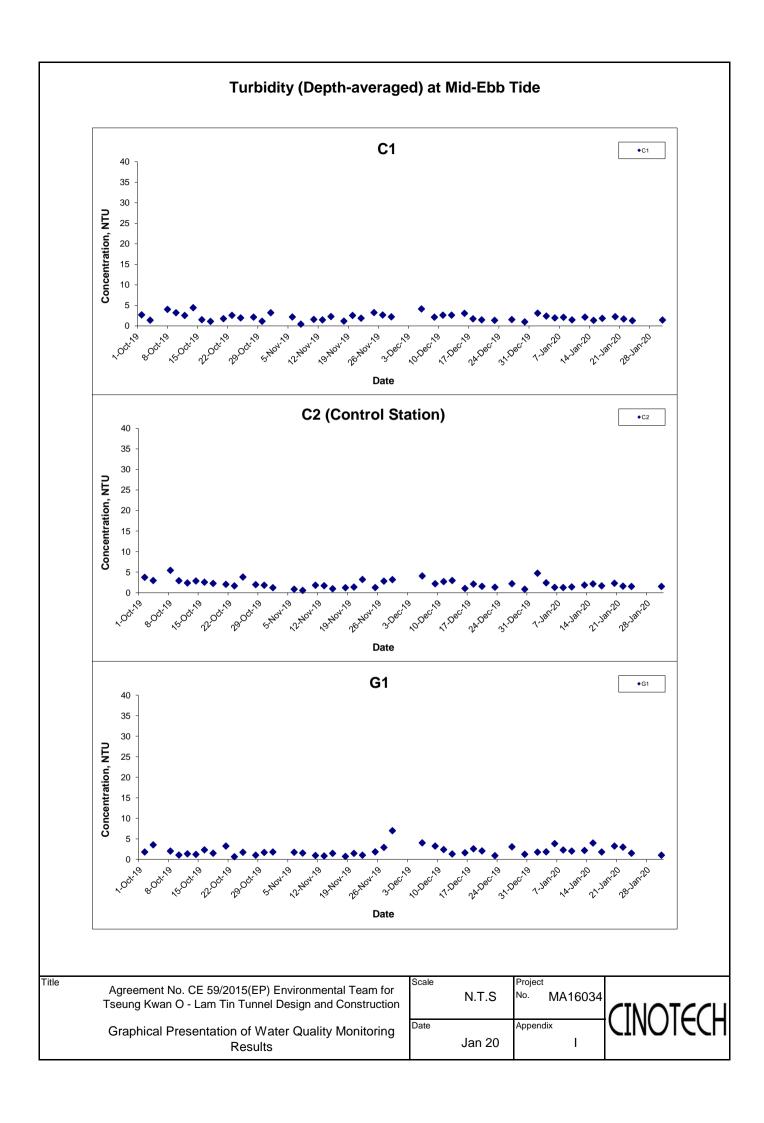
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

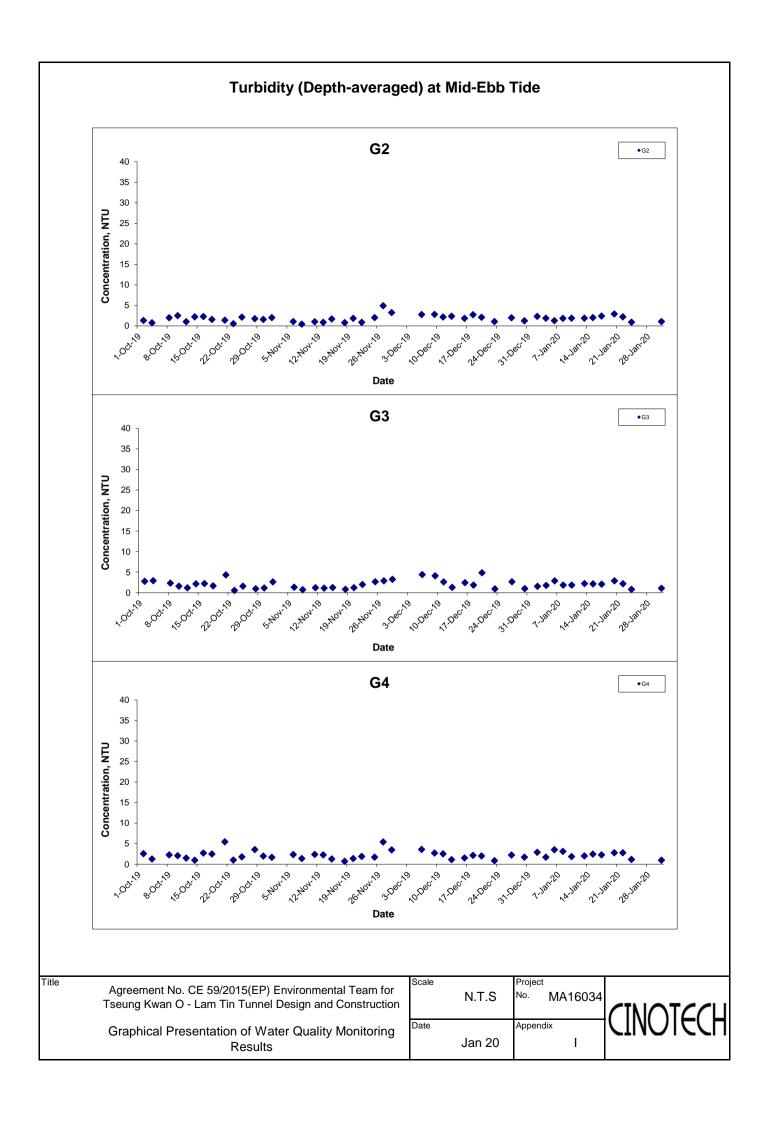

Title Aa

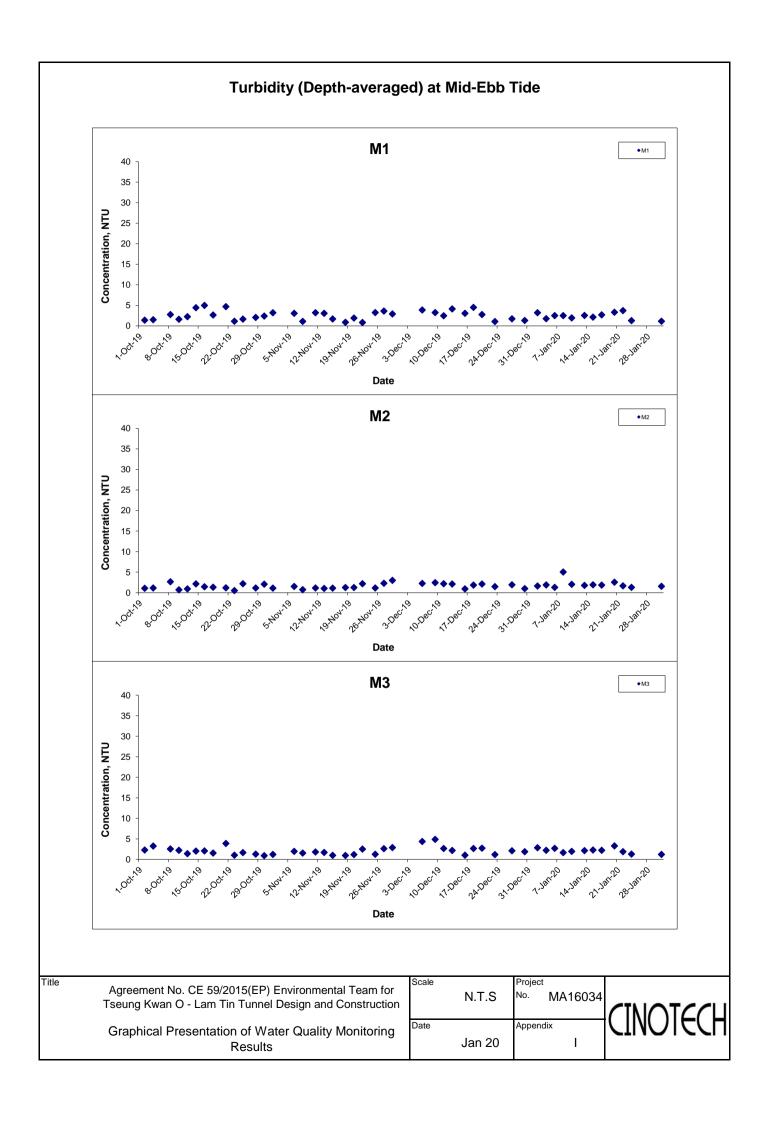
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	1

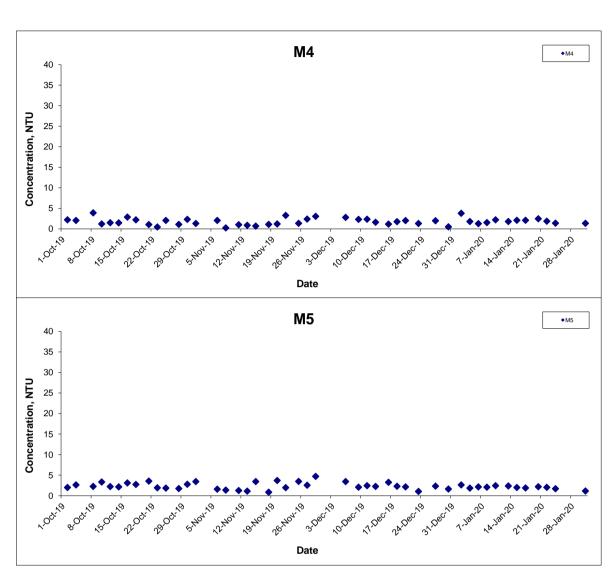
Dissolved Oxygen (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide



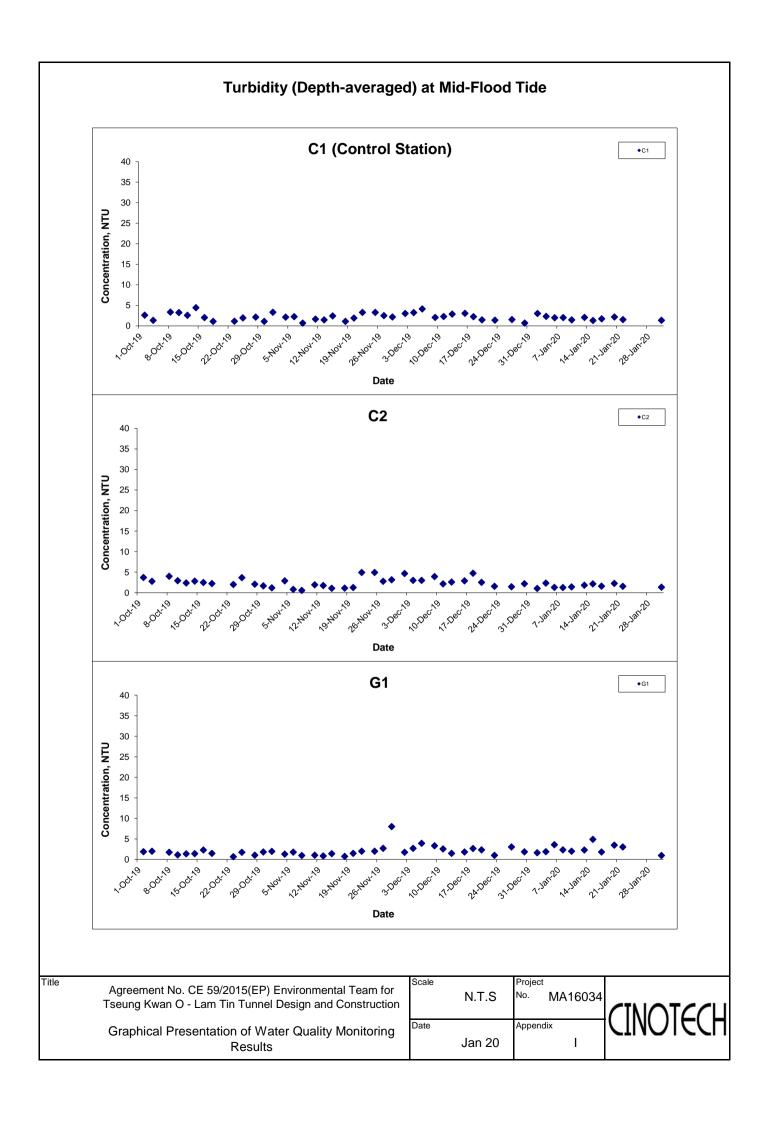

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

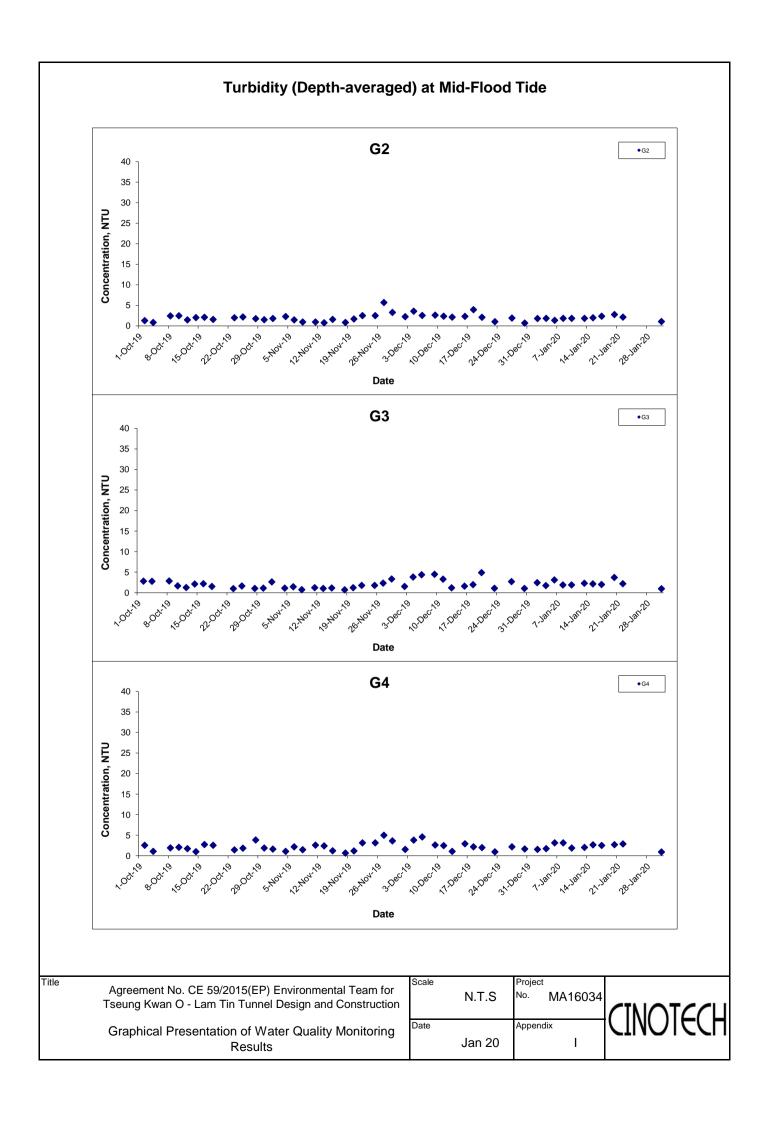

Title

Scale		Proje	ct
	N.T.S	No.	MA16034
Date		Appe	ndix
	Jan 20		I



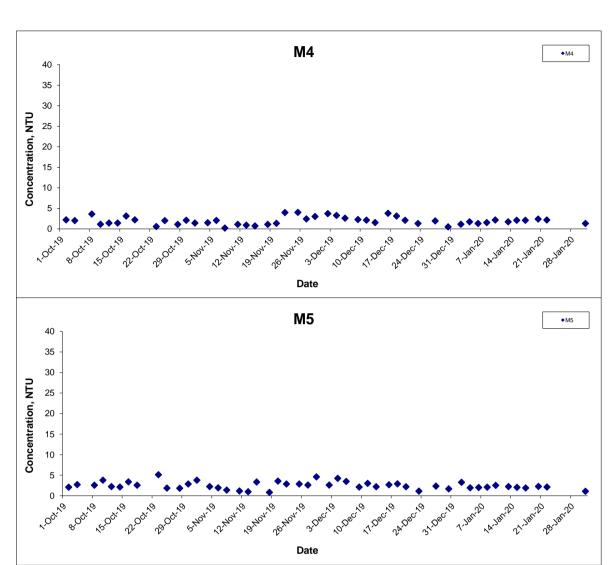
Turbidity (Depth-averaged) at Mid-Ebb Tide



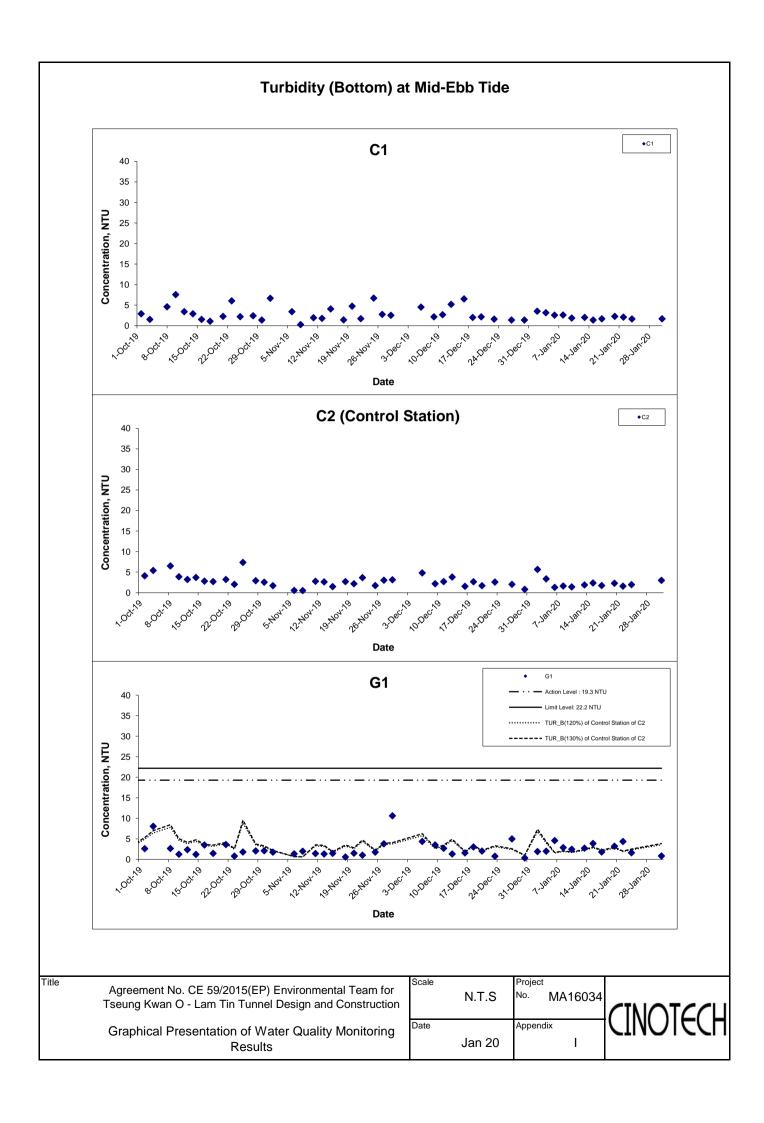

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

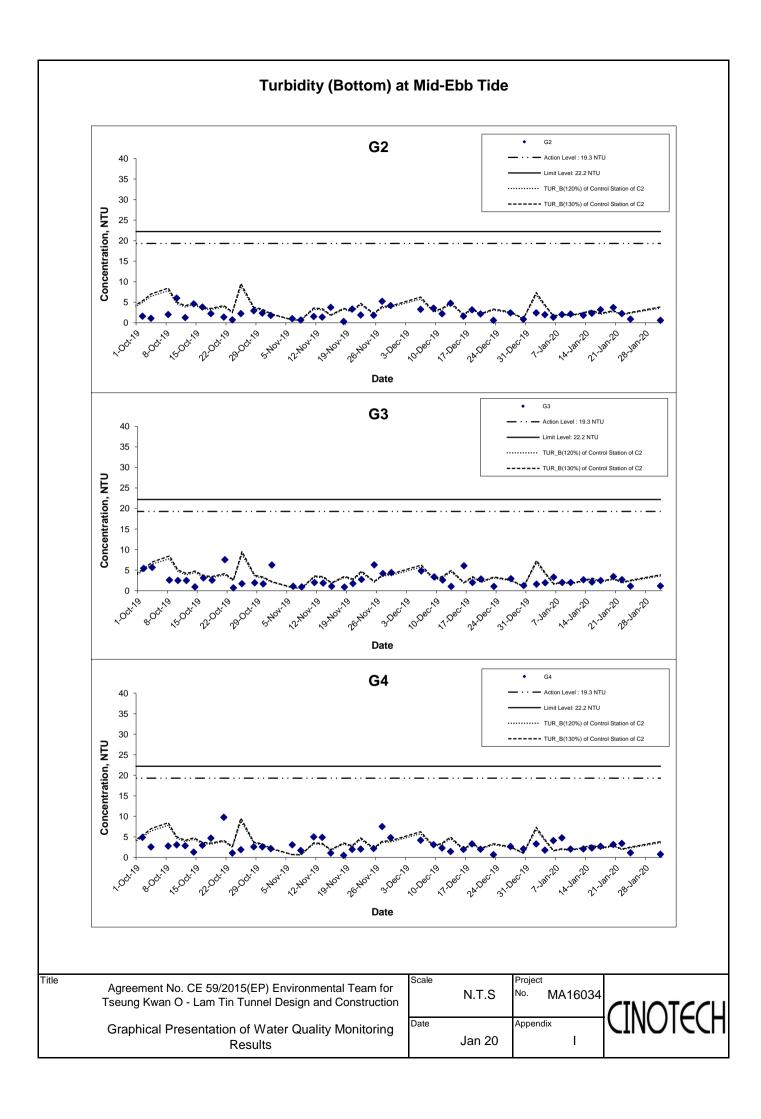

Title

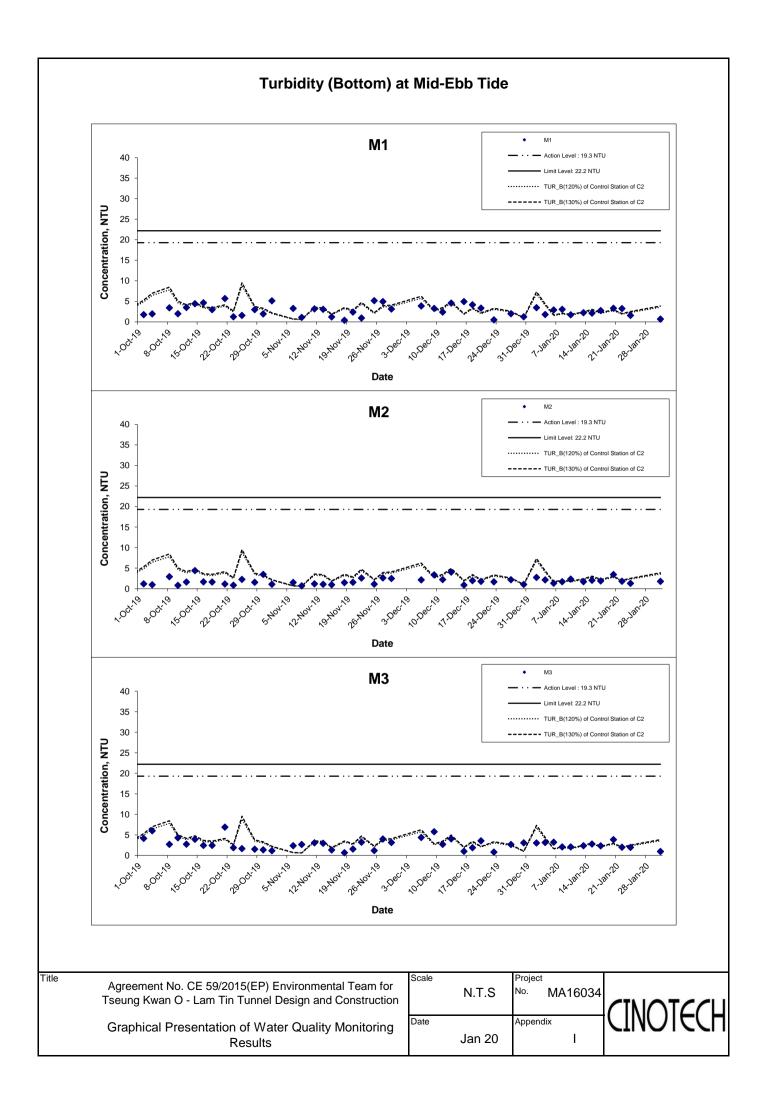
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	1



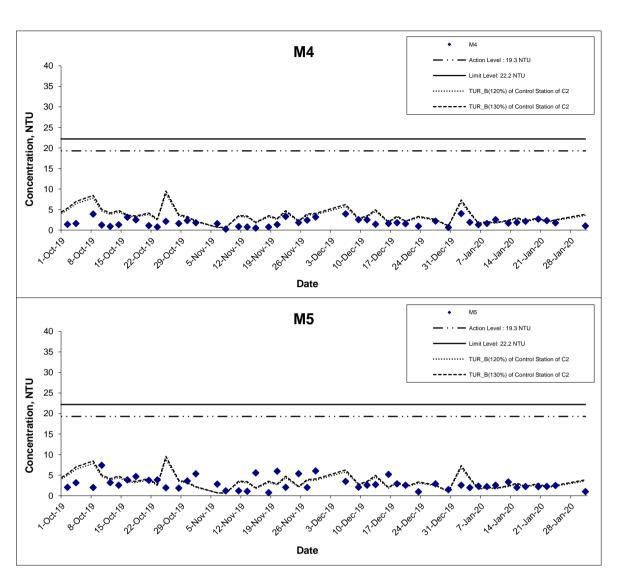
Turbidity (Depth-averaged) at Mid-Flood Tide



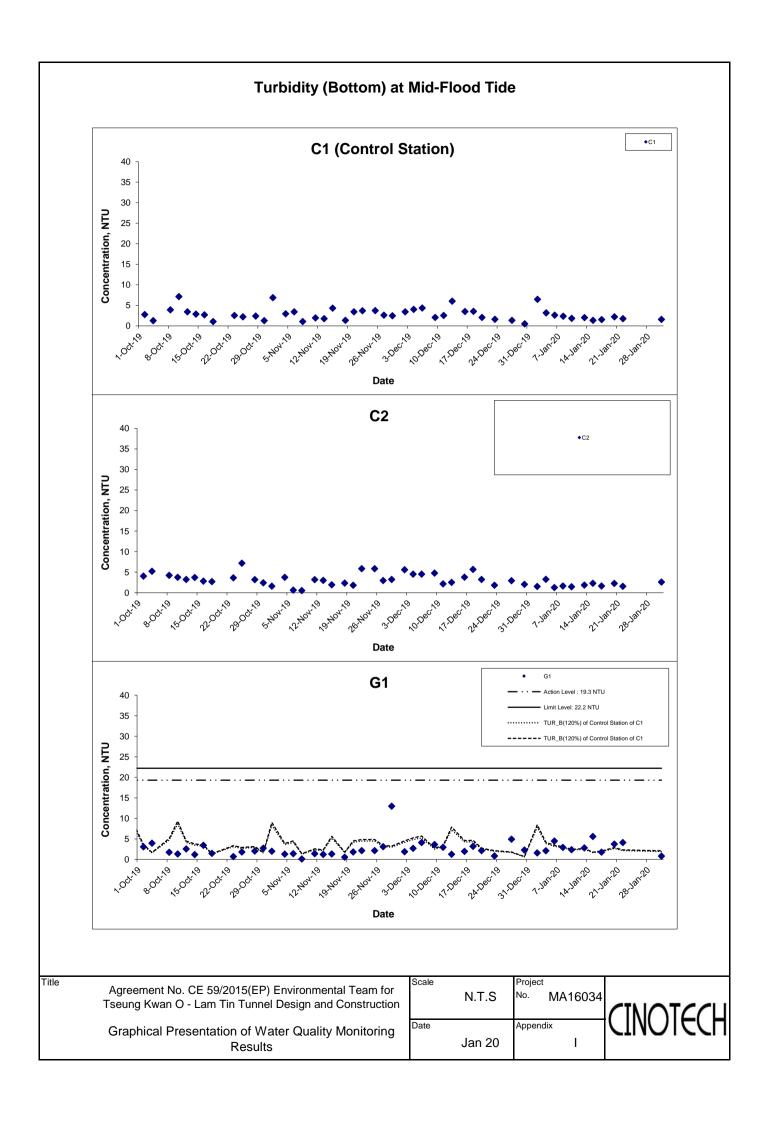

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

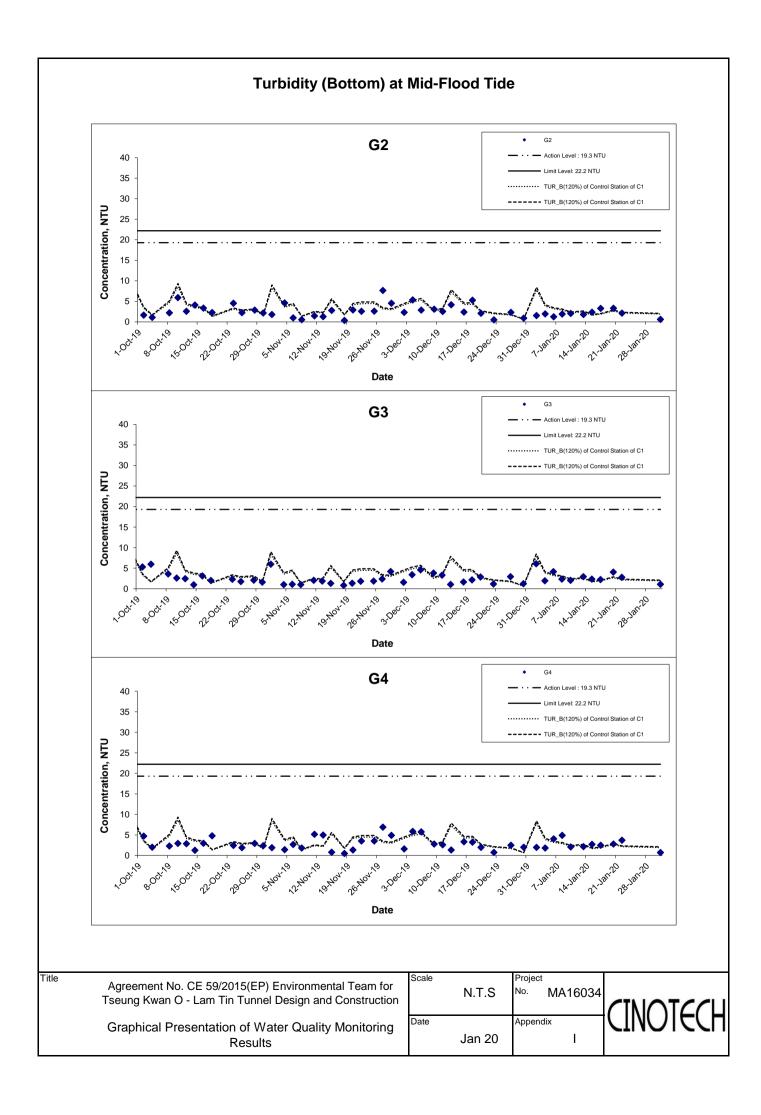

Title

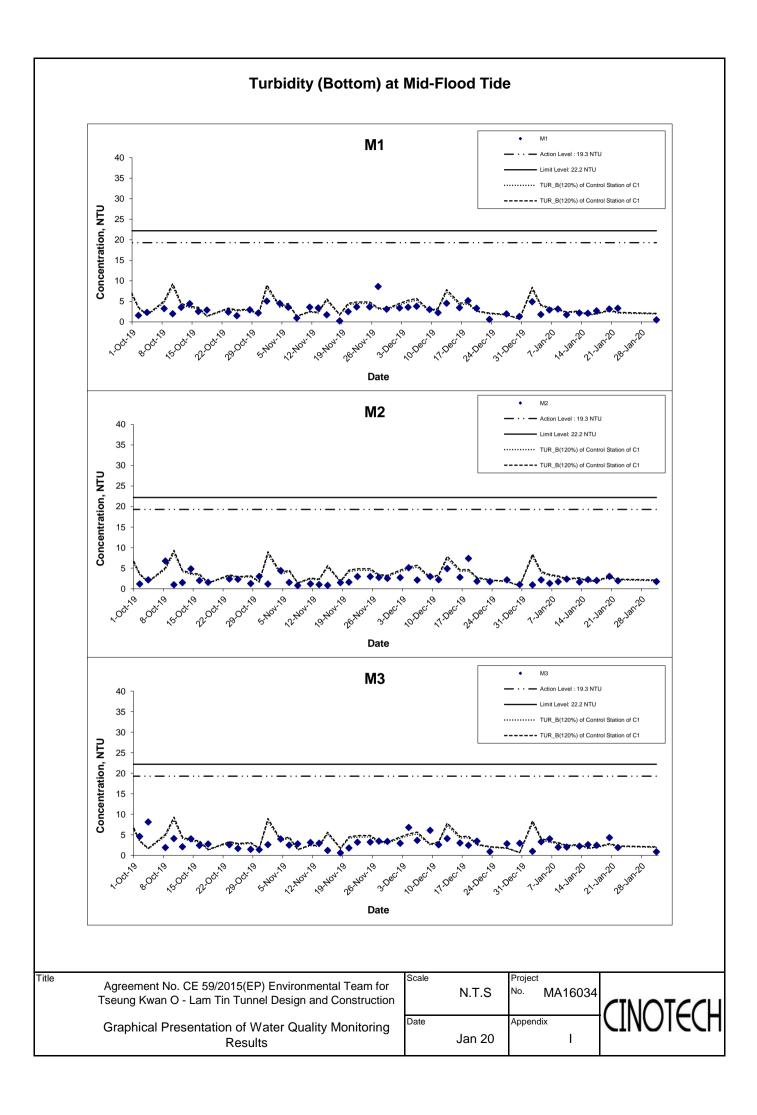
	Project
N.T.S	No. MA16034
	Appendix
Jan 20	1



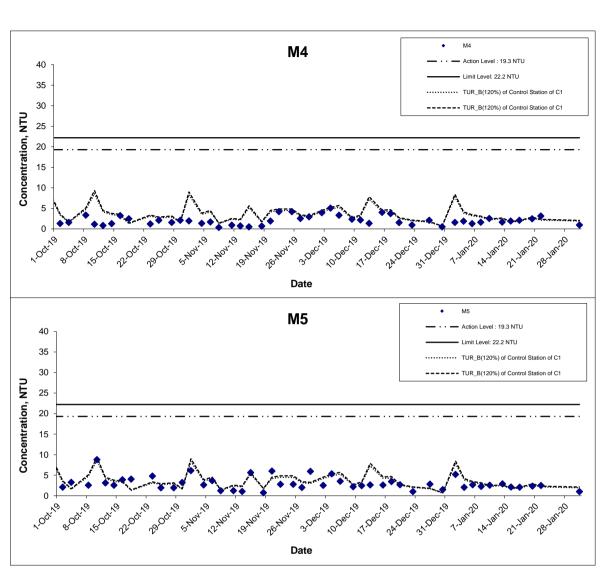
Turbidity (Bottom) at Mid-Ebb Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

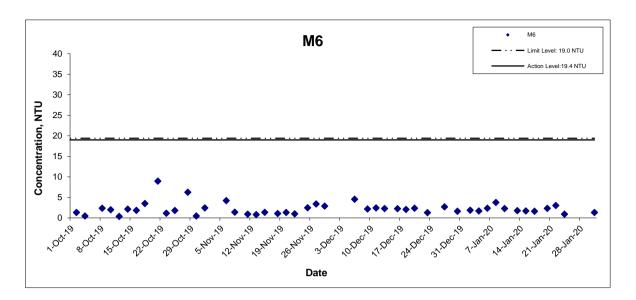

Title

Scale		Project		Project	
	N.T.S	No.	MA16034		
Date		Apper	ndix		
	Jan 20		1		



Turbidity (Bottom) at Mid-Flood Tide

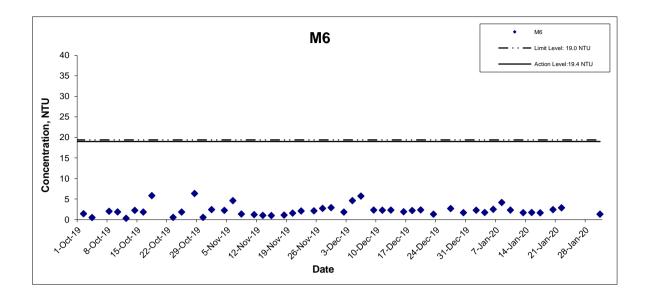
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Graphical Presentation of Water Quality Monitoring Results

Title

Scale		Project	
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		1

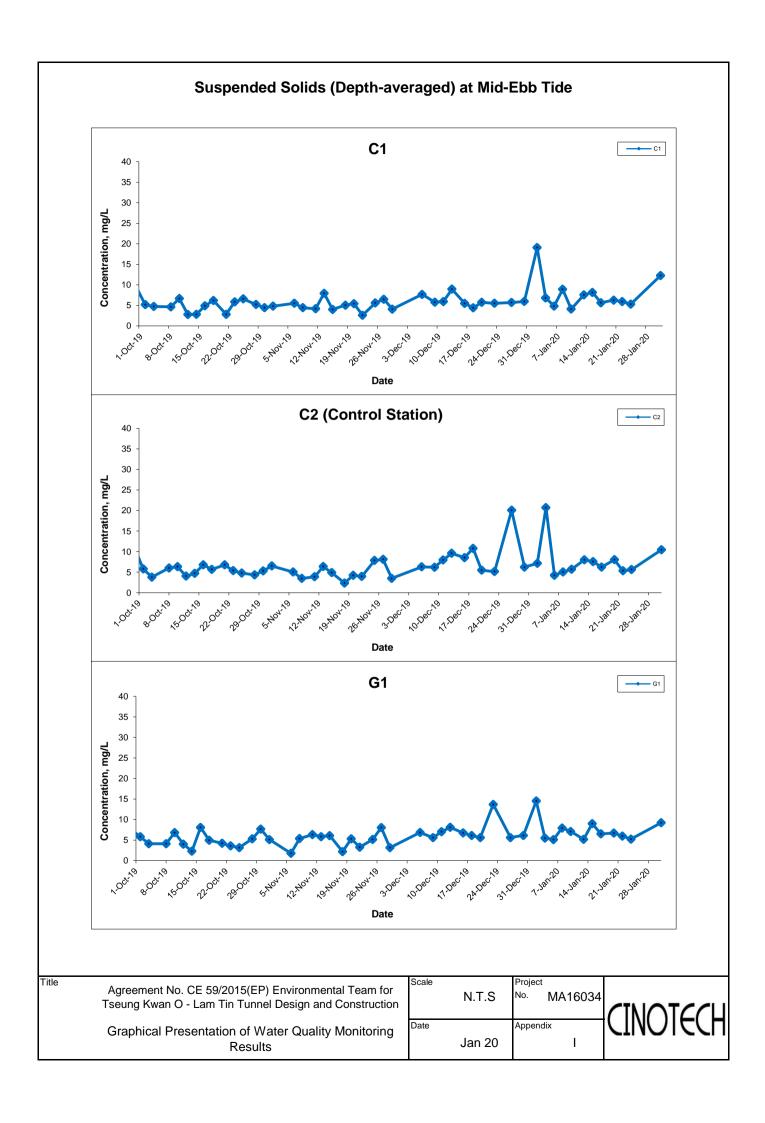
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide

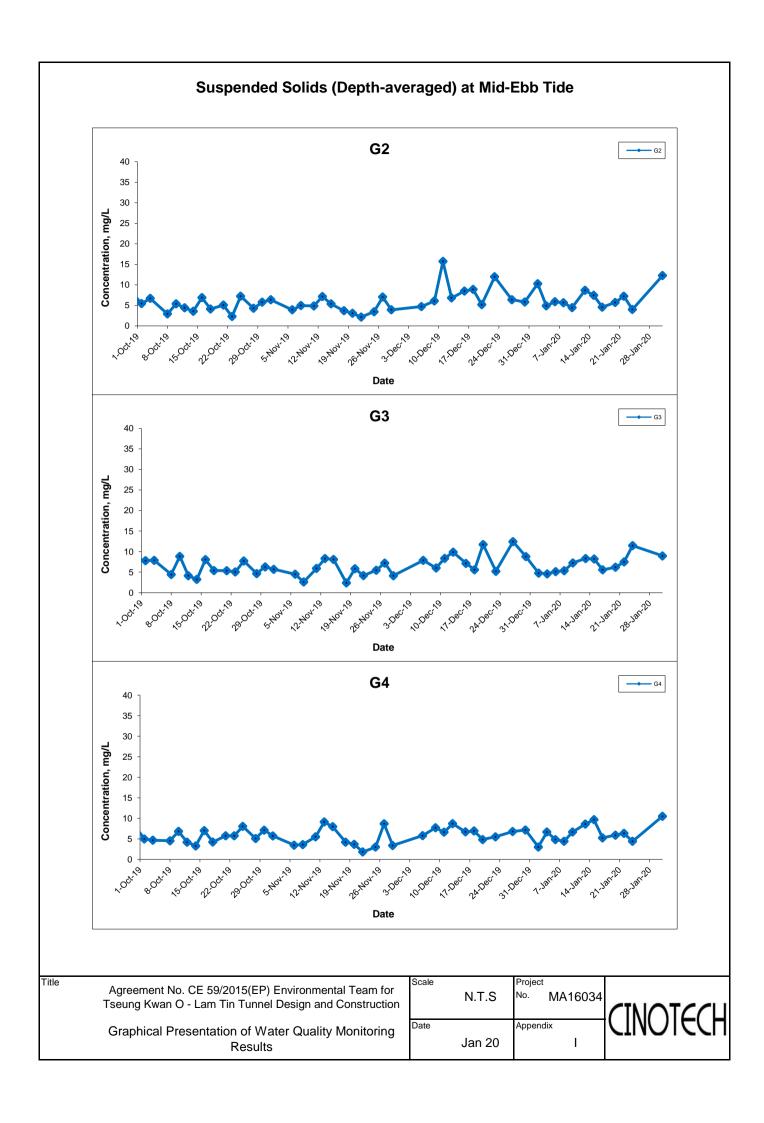

Title

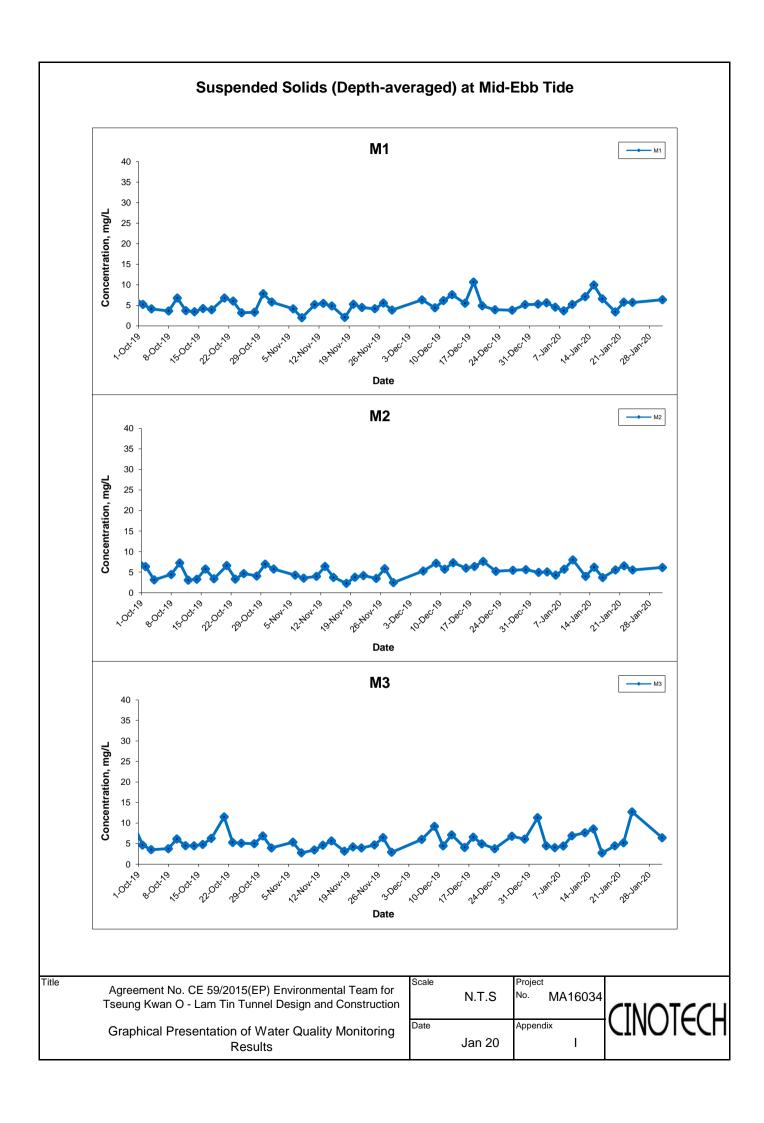
Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	Jan 20		I

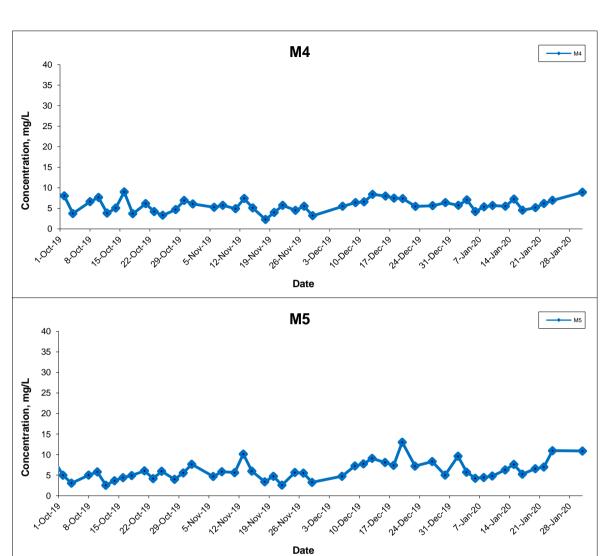
Turbidity (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide



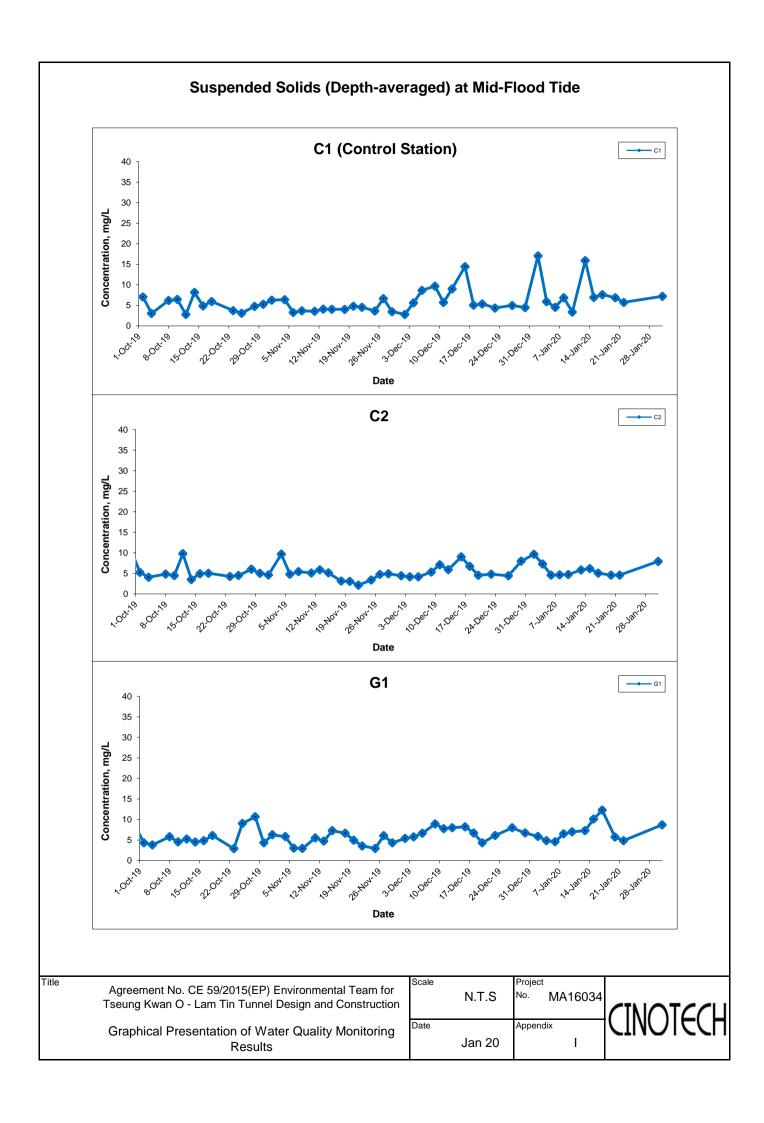

Title Agreen

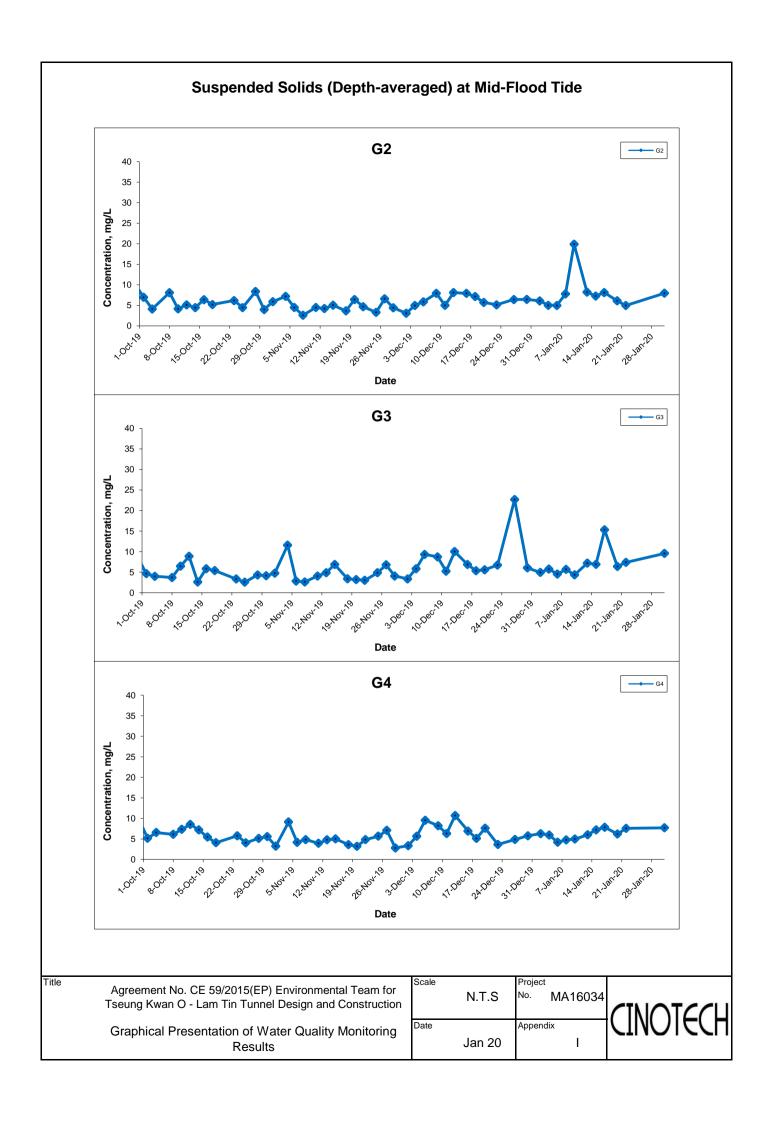

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

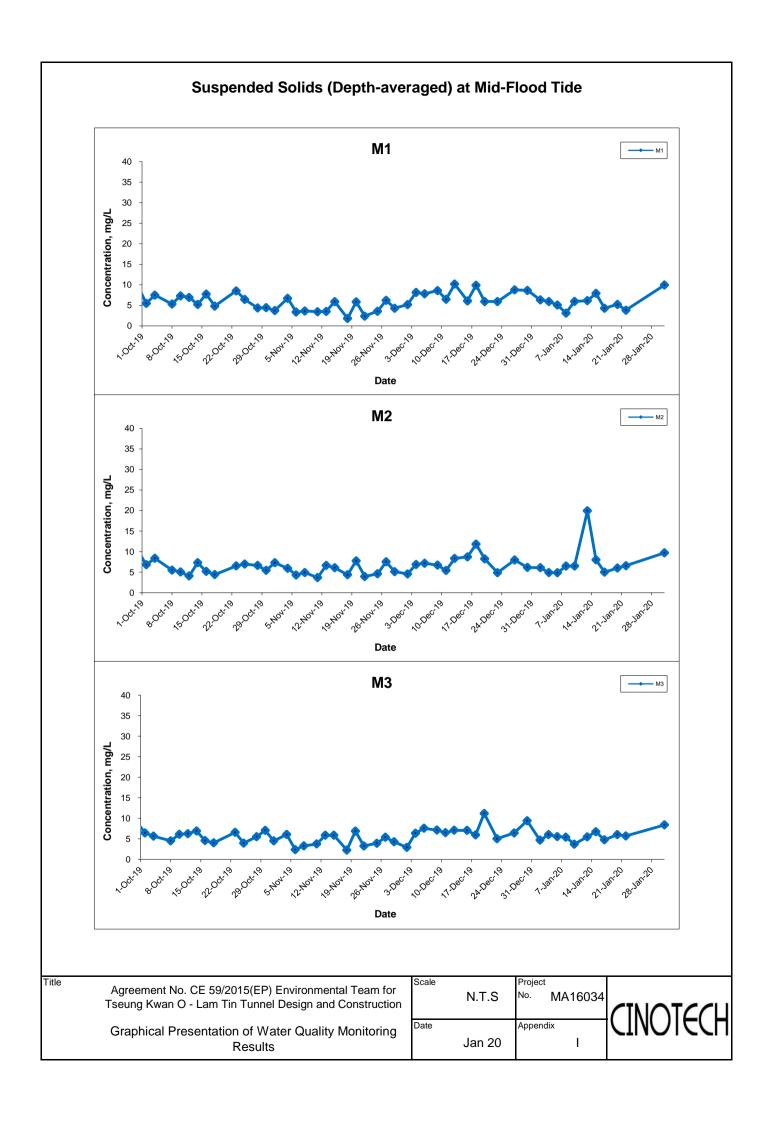
Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Appei	ndix
	Jan 20		1



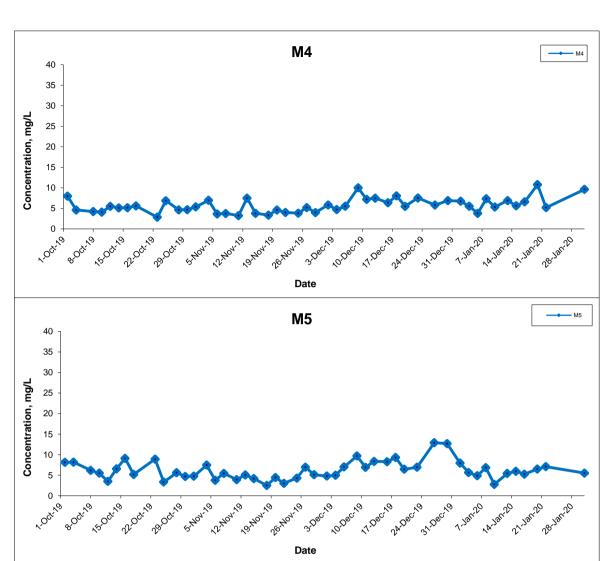
Suspended Solids (Depth-averaged) at Mid-Ebb Tide



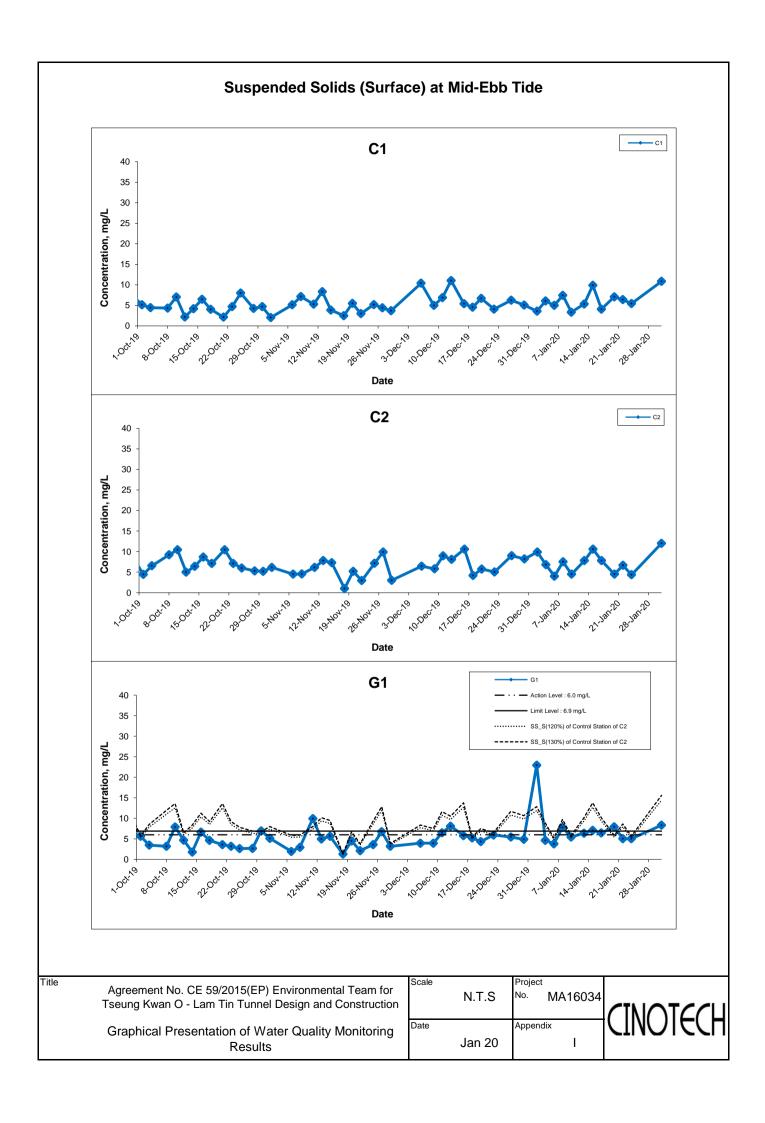

Title
Agreement No. CE 59/2015(EP) Environmental Team for
Tseung Kwan O - Lam Tin Tunnel Design and Construction


Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		1



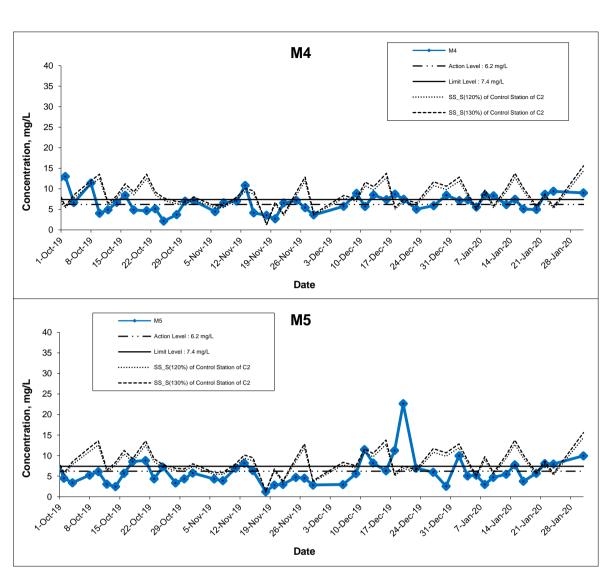
Suspended Solids (Depth-averaged) at Mid-Flood Tide



Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		I

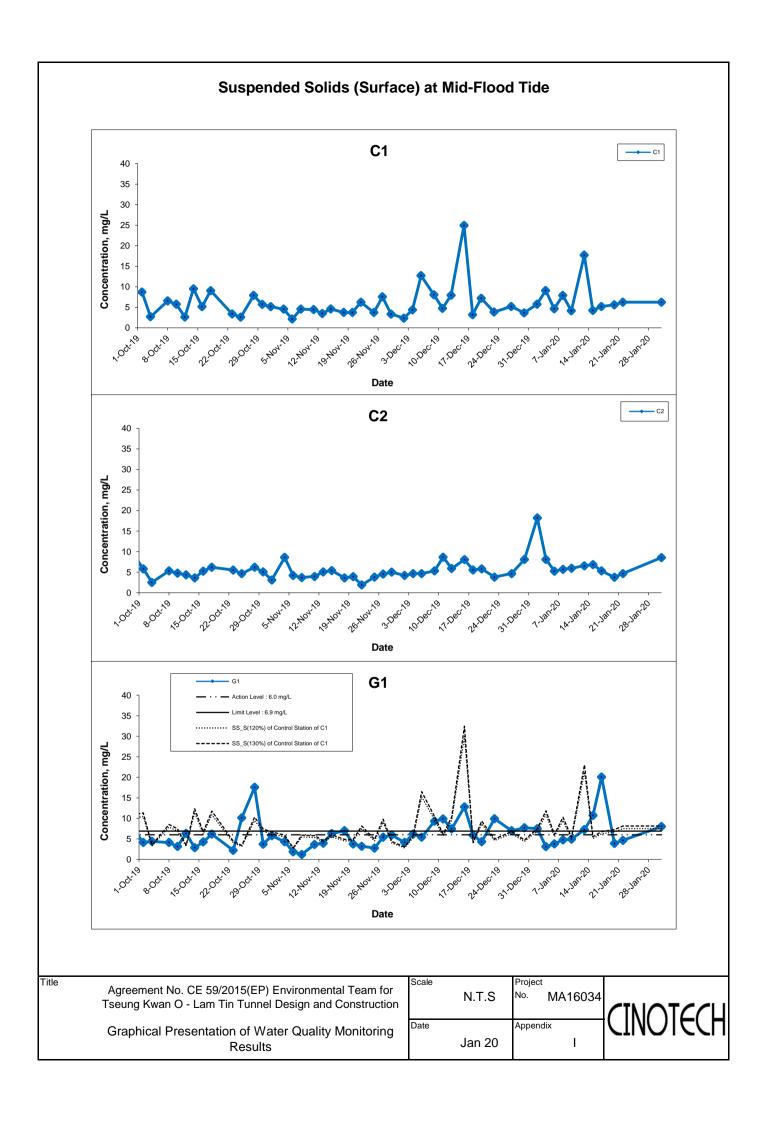

Suspended Solids (Surface) at Mid-Ebb Tide G2 40 - - Action Level : 6.0 mg/L 35 · Limit Level : 6.9 mg/L SS_S(120%) of Control Station of C2 30 ---- SS_S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 5 0 10 HO1 O 7.00tr/9 Date G3 40 Limit Level : 6.9 mg/L 35 ···· SS_S(120%) of Control Station of C2 30 ---- SS S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 0 31Decryo 24.Dec. 19 10.H01.0 50 KOV 19 Norder 19 170ec, 0 3.Dec. 19 Date G4 40 35 SS_S(120%) of Control Station of C2 30 --- SS_S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 22.00t/9 Prono 15.40x.10 18,404,19 2ª Dec 19 31 Decro 3Decryo Norther 19 71,Dec. 19 1,00t,09 Date

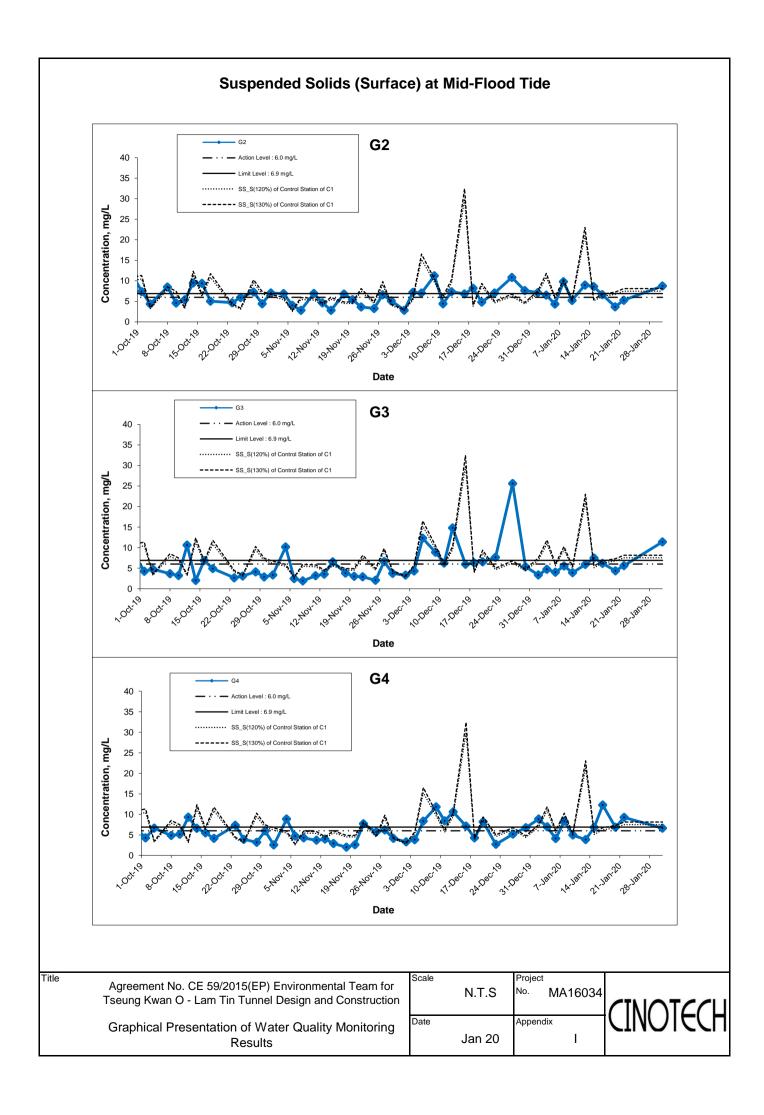
Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Jan 20	Appendix	CINOICCU

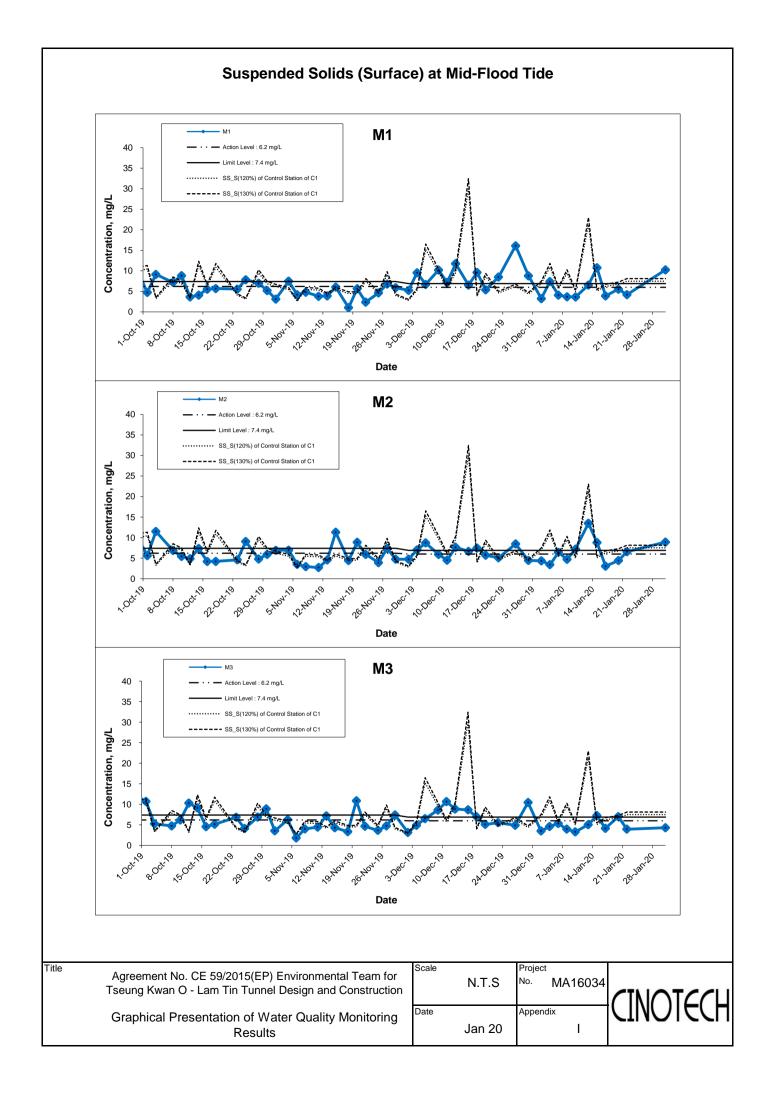
Suspended Solids (Surface) at Mid-Ebb Tide — M1 **M**1 40 35 SS_S(120%) of Control Station of C2 30 --- SS_S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 5 Vo Hon'yo , octro Date - M2 **M2** 40 Action Level : 6.2 mg/L 35 SS_S(120%) of Control Station of C2 30 ---- SS_S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 0 50 MON. 10 Date **M3** 40 - · · - Action Level : 6.2 mg/L 35 Limit Level : 7.4 mg/L · · · · · SS_S(120%) of Control Station of C2 30 ---- SS_S(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 5 3/Dec. 0 /'Oct./g Norther No VI Decryo 3Decryo Date

Title Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction	Scale N.T.S	Project No. MA16034	CINOTECH
Graphical Presentation of Water Quality Monitoring Results	Date Jan 20	Appendix	CINOICCU

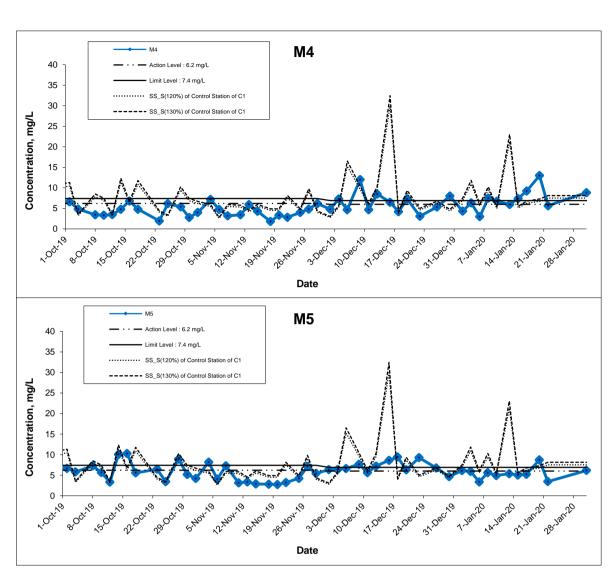
Suspended Solids (Surface) at Mid-Ebb Tide



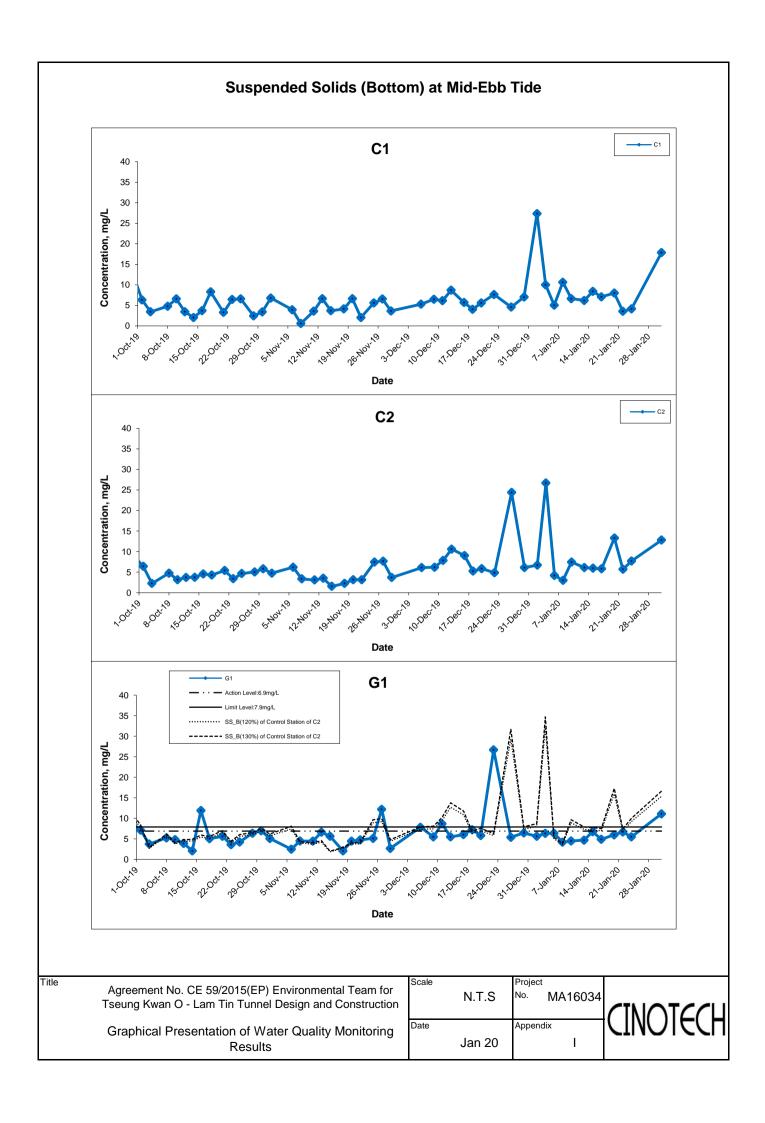

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction


Title

Scale	cale		Project		
	N.T.S	No.	MA16034		
Date		Appendix			
	Jan 20		I		



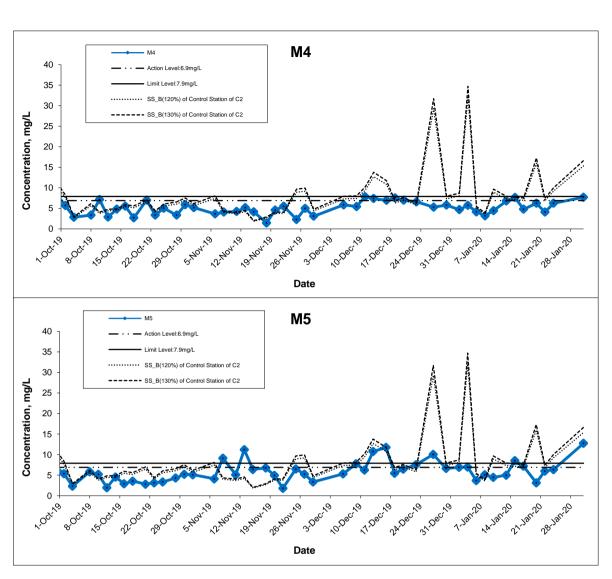
Suspended Solids (Surface) at Mid-Flood Tide



Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Title

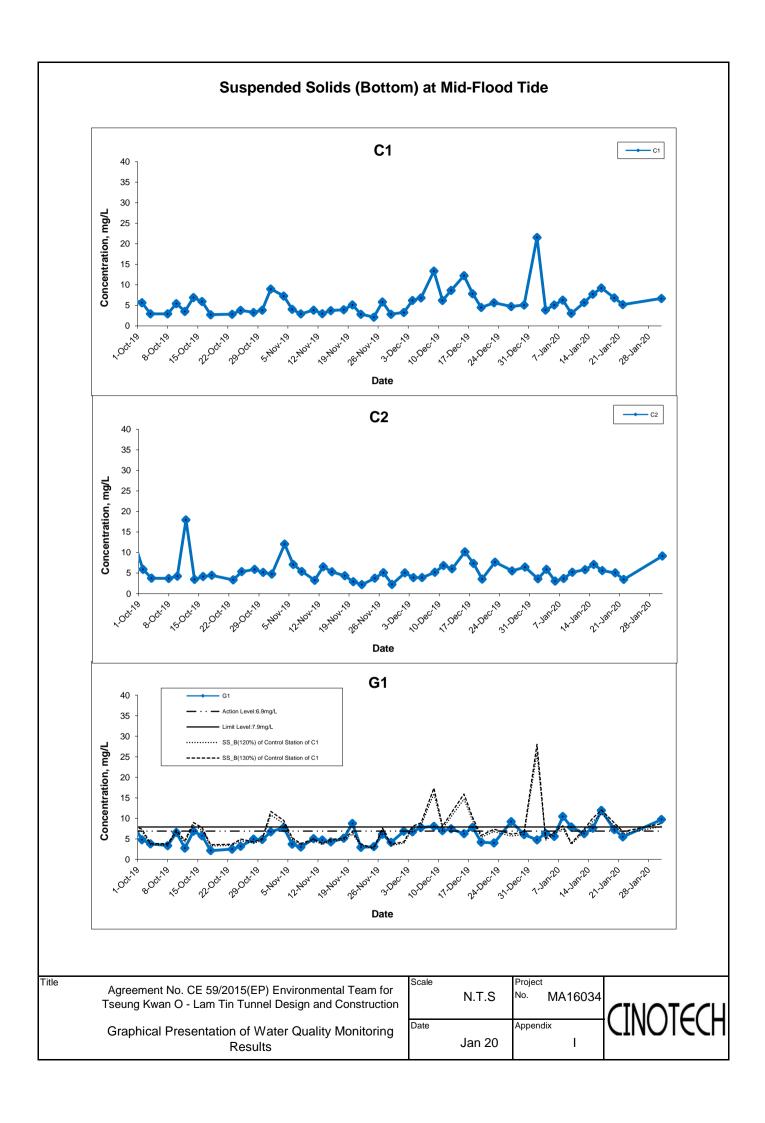
Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	1

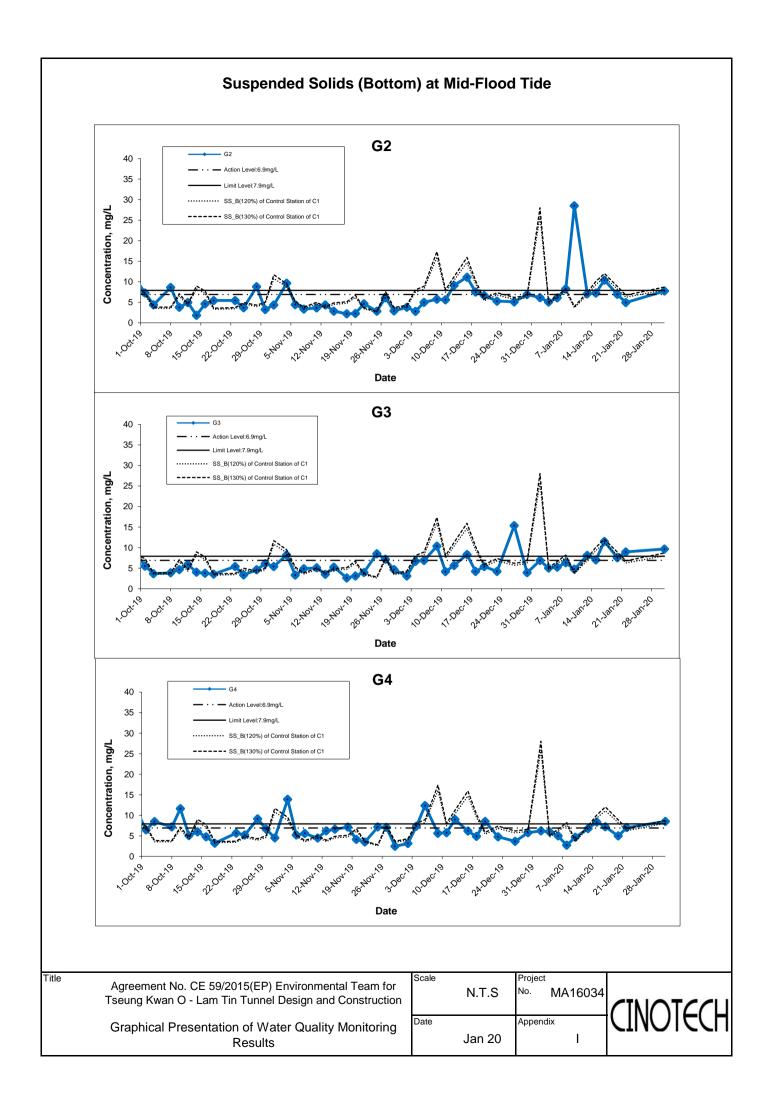


Suspended Solids (Bottom) at Mid-Ebb Tide G2 40 G2 35 30 ····· SS_B(120%) of Control Station of C2 Concentration, mg/L 25 20 15 0 10 HO1/0 20.40v,0 Date G3 G3 40 Action Level:6.9mg/L 35 · · SS_B(120%) of Control Station of C2 30 -- SS_B(130%) of Control Station of C2 Concentration, mg/l 25 20 15 10 0 1.0ct./9 Date G4 40 Action Level:6.9mg/L 35 Limit Level:7.9mg/L SS_B(120%) of Control Station of C2 30 Concentration, mg/L 25 20 15 10 31.Dec. 09 3Decryo Northern 9 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for N.T.S No. MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Date Appendix Graphical Presentation of Water Quality Monitoring Jan 20 I Results

Suspended Solids (Bottom) at Mid-Ebb Tide **M1** 40 35 Limit Level:7.9mg/L 30 · · · · · SS B(120%) of Control Station of C2 Concentration, mg/L 25 SS B(130%) of Control Station of C2 20 15 10 5 0 VOCK S 10.HOV. 0 Date **M2** 40 35 30 SS_B(120%) of Control Station of C2 Concentration, mg/l -- SS_B(130%) of Control Station of C2 25 20 15 10 0 3/Usc. 201404.70 3.Decr,0 Date **M3** МЗ 40 - Action Level:6.9mg/L 35 ····· SS_B(120%) of Control Station of C2 30 -- SS_B(130%) of Control Station of C2 Concentration, mg/L 25 20 15 10 5 0 31.Dec. 19 3.Dec. 19 Northern 9 1,00t,09 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for N.T.S No. MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Date Appendix Graphical Presentation of Water Quality Monitoring Jan 20 I Results

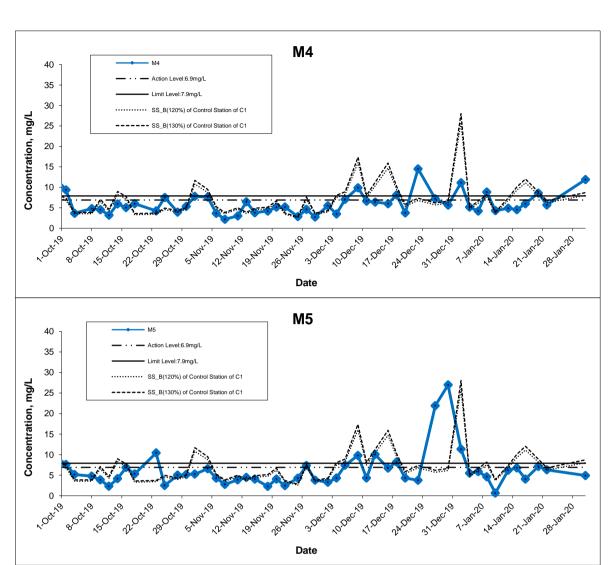
Suspended Solids (Bottom) at Mid-Ebb Tide




Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

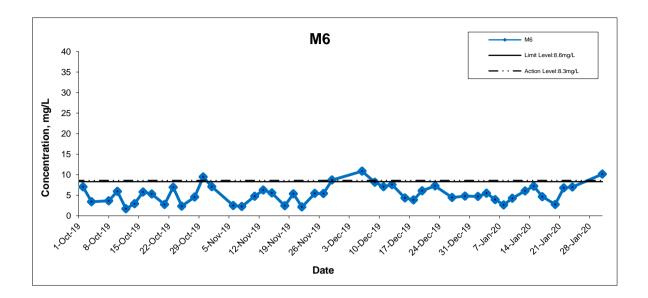
Title

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	1



Suspended Solids (Bottom) at Mid-Flood Tide **M1** M1 40 · · - Action Level:6.9mg/l 35 Limit Level:7.9mg/L 30 SS_B(120%) of Control Station of C1 Concentration, mg/L ---- SS_B(130%) of Control Station of C1 25 20 15 10 5 0 1,00t, 09 Date **M2** M2 40 - Action Level:6.9mg/L 35 Limit Level:7.9mg/L 30 SS_B(120%) of Control Station of C1 Concentration, mg/l ---- SS_B(130%) of Control Station of C1 25 20 15 10 5 0 20ec. 10 Date **M3** 40 МЗ Action Level:6.9mg/L 35 Limit Level:7.9mg/L 30 ····· SS_B(120%) of Control Station of C1 Concentration, mg/L 25 ----- SS_B(130%) of Control Station of C1 20 15 10 5 0 31.Dec. 19 3Decryo Northern 9 ~,Ogr, 09 Date Title Scale Project Agreement No. CE 59/2015(EP) Environmental Team for N.T.S No. MA16034 Tseung Kwan O - Lam Tin Tunnel Design and Construction Date Appendix Graphical Presentation of Water Quality Monitoring Jan 20 I Results

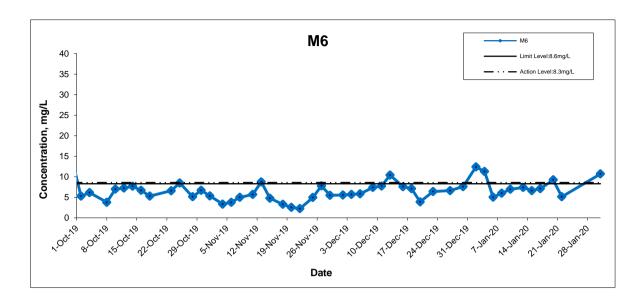
Suspended Solids (Bottom) at Mid-Flood Tide


Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Title

Scale		Project
	N.T.S	No. MA16034
Date		Appendix
	Jan 20	I

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Ebb Tide


Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Projec	ct
	N.T.S	No.	MA16034
Date		Apper	ndix
	Jan 20		1
		N.T.S	N.T.S No. Date Apper

Suspended Solids (Intake Level of WSD Salt Water Intake) at Mid-Flood Tide

Title

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction

Scale		Proje	ct
	N.T.S	No.	MA16034
Date		Appe	ndix
	Jan 20		I

APPENDIX K SUMMARY OF EXCEEDANCE

Appendix K – Summary of Exceedance

Reporting Period: January 2020

(A) Exceedance Report for Air Quality

(NIL in the reporting month)

(B) Exceedance Report for Construction Noise

Action Level for Construction Noise

Five (5) Action Level exceedances were recorded due to the documented complaints received in this reporting month.

Limit Level for Construction Noise

No exceedance for daytime and evening-time construction noise monitoring was recorded in the reporting month.

Nine (9) limit level exceedances for nighttime construction noise monitoring was recorded in the reporting month.

Exceedance recorded during daytime

(NIL in the reporting month)

Exceedance recorded during night-time

Date	Monitoring Location			Construction Noise Level (L _{eq} dB(A))	Limit Level
	CM1	68.4	63.7	<u>67</u>	
10-11 January 2020	CM2	67.4	61.8	<u>66</u>	
	CM3	64.8	61.8	<u>62</u>]
	CM1	68.4	63.7	<u>65</u>	
24-25 January 2020	CM2	66.8	61.6	<u>65</u>	55
	CM3	63.5	61.8	<u>59</u>	
	CM1	64.7	63.7	<u>58</u>	
31 January 2020	CM2	66.1	61.6	<u>64</u>	
	CM3	64.7	62.9	<u>60</u>	

Appendix K – Summary of Exceedance

(C) Exceedance Report for Water Quality

Seventy (70) Action Level and two-hundred and eighteen (218) Limit Level exceedances in marine water quality monitoring. Refer to the attached notifications for details. The reasons are under investigation.

Since October 2019, groundwater monitoring had been suspended.

(D) Exceedance Report for Ecology

(NIL in the reporting month)

(E) Exceedance Report for Cultural Heritage

(NIL in the reporting month)

(F) Exceedance Report for Landfill Gas

(NIL in the reporting month)

- Notification of Exceedances

NOE No. 200110_noise (CM1-3) **Exceedance Level**: Limit

Time of Measurement: 23:15-00:20

Date of Noise Monitoring: <u>10-11 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Construction Noise

Station	Location	Time	Measured Level (L _{eq} dB(A))	Baseline Noise Level (L _{eq} dB(A))	$\begin{array}{c} \text{Construction Noise} \\ \text{Level} \\ (L_{eq} \text{ dB(A)}) \end{array}$	Action Level	Limit Level (L _{eq} dB(A))	Level exceeded
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	23:15-23:30	68.4	63.7	<u>67</u>	When one documented complaint is received.	55	Limit
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	23:40-23:55	67.4	60.8	<u>66</u>	When one documented complaint is received.	55	Limit
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	00:05-00:20	64.8	61.8	<u>62</u>	When one documented complaint is received.	55	Limit

Field Observation(s) and Conclusion

(a) Statement of exceedance(s)

Construction noise measured at CM1-3 exceeded the construction noise (night time) limit level.

(b) Cause of exceedance(s)

The exceedance was not considered related to the Project works:

- According to our field observation, road traffic noise was identified as the dominant noise source. No noticeable noise from the tunneling works was identified.
- No construction activity was observed in Lam Tin Interchange during monitoring.

Part B – Conclusion: The exceedances of night time noise limit levels were not due to the Project, the road traffic noise was identified as the dominant noise source.

Part C – Recommendation: No further action is required.

ETL Signature:

Date: 13 January, 2020

- Notification of Exceedances

NOE No. 200124_noise (CM1-3) **Exceedance Level**: Limit

Time of Measurement: 23:00-00:20

Date of Noise Monitoring: 24-25 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Construction Noise

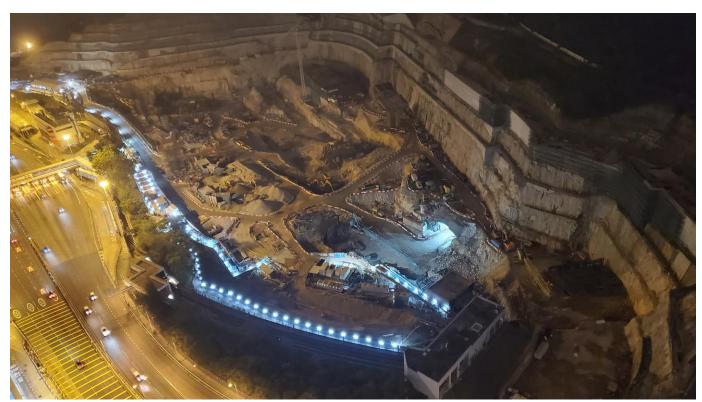
Station	Location	Time	Measured Level (L _{eq} dB(A))	Baseline Noise Level (L _{eq} dB(A))	Construction Noise Level (L _{eq} dB(A))	Action Level	Limit Level (L _{eq} dB(A))	Level exceeded
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	23:00-23:15	68.4	63.7	<u>65</u>	When one documented complaint is received.	55	Limit
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	23:25-23:40	66.8	61.6	<u>65</u>	When one documented complaint is received.	55	Limit
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	00:05-00:20	63.5	61.8	<u>59</u>	When one documented complaint is received.	55	Limit

Field Observation(s) and Conclusion

(a) Statement of exceedance(s)

Construction noise measured at CM1-3 exceeded the construction noise (night time) limit level.

(b) Cause of exceedance(s)


The exceedance was not considered related to the Project works:

• According to our field observation, road traffic noise was identified as the dominant noise source, as shown in the photo below. No noticeable noise from the tunneling works was identified.

1

• No construction activity was observed in Lam Tin Interchange during monitoring.

- Notification of Exceedances

The photo was taken at 11:35pm on 24th January 2020. Main noise source was from road traffic (cars, buses and motorcycles, etc.). No noticeable noise from the tunneling works was identified.

Part B – Conclusion: The exceedances of night time noise limit levels were not due to the Project, the road traffic noise was identified as the dominant noise source.

Part C – Recommendation: No further action is required.

ETL Signature:

Date: 29 January, 2020

- Notification of Exceedances

NOE No. 200131_noise (CM1-3) **Exceedance Level**: Limit

Time of Measurement: 23:00-23:55

Date of Noise Monitoring: 31 January 2020

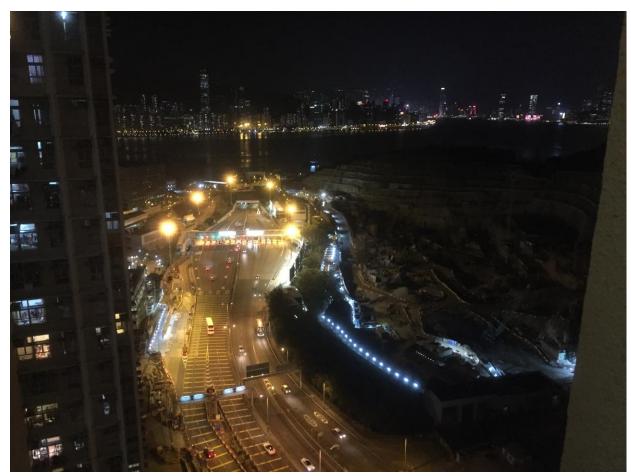
Part A – Exceedance Summary Tables

Table I: Parameter(s) – Construction Noise

Station	Location	Time	Measured Level (L _{eq} dB(A))	Baseline Noise Level (L _{eq} dB(A))	Construction Noise Level (L _{eq} dB(A))	Action Level	Limit Level (L _{eq} dB(A))	Level exceeded
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	23:20-23:35	64.7	63.7	<u>58</u>	When one documented complaint is received.	55	Limit
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	23:00-23:15	66.1	61.6	<u>64</u>	When one documented complaint is received.	55	Limit
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	23:45-23:55	64.7	62.9	<u>60</u>	When one documented complaint is received.	55	Limit

Field Observation(s) and Conclusion

(a) Statement of exceedance(s)


Construction noise measured at CM1-3 exceeded the construction noise (night time) limit level.

(b) Cause of exceedance(s)

The exceedance was not considered related to the Project works:

- According to our field observation, road traffic noise was identified as the dominant noise source, as shown in the photo below. No noticeable noise from the tunneling works was identified.
- No construction activity was observed in Lam Tin Interchange during monitoring, and thus no noticeable noise outside the tunnel was identified.

- Notification of Exceedances

The photo was taken at 11:00pm on 31th January 2020. Main noise source was from road traffic (cars, buses and motorcycles, etc.). No noticeable noise from the tunneling works and outside the tunnel was identified.

Part B – Conclusion: The exceedances of night time noise limit levels were not due to the Project, the road traffic noise was identified as the dominant noise source.

Part C – Recommendation: No further action is required.

ETL Signature:

Date: <u>3 February, 2020</u>

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>02 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	9.9	G1	17:36	6.0	6.9	11.9	12.9	<u>23.0</u>
Mid-Ebb	C2	surface	9.9	M2	17:18	6.2	7.4	11.9	12.9	6.7
Mid-Ebb	C2	surface	9.9	M4	17:10	6.2	7.4	11.9	12.9	7.2
Mid-Ebb	C2	surface	9.9	M5	17:54	6.2	7.4	11.9	12.9	<u>10.0</u>
Mid-Ebb	C2	bottom	6.7	G2	17:22	6.9	7.9	8.0	8.7	<u>13.2</u>
Mid-Ebb	C2	bottom	6.7	M3	17:44	6.9	7.9	8.0	8.7	<u>24.8</u>
Mid-Flood	C1	surface	5.8	G1	11:55	6.0	6.9	6.9	7.5	<u>7.5</u>
Mid-Flood	C1	surface	5.8	G2	11:46	6.0	6.9	6.9	7.5	<u>7.2</u>
Mid-Flood	C1	surface	5.8	G4	12:10	6.0	6.9	6.9	7.5	<u>8.9</u>
Mid-Flood	C1	intake	n.a.	M6	12:14	8.3	8.6	n.a.	n.a.	<u>12.4</u>
Mid-Flood	C1	bottom	21.6	M1	11:50	6.9	7.9	25.9	28.0	7.4
Mid-Flood	C1	bottom	21.6	M2	11:42	6.9	7.9	25.9	28.0	<u>9.0</u>
Mid-Flood	C1	bottom	21.55	M4	11:36	6.9	7.9	25.9	28.0	<u>11.1</u>
Mid-Flood	C1	bottom	21.6	M5	12:21	6.9	7.9	25.9	28.0	<u>11.4</u>

Note: **Bold Italic** means Action Level exceedance

Contract No. CE 59/2015 (EP)
Environmental Team for Tseung Kwan O – Lam Tin Tunnel
Design and Construction
- Notification of Environmental Quality Limit Exceedances

Part A – Exceedance Summary Tables

Date of Water Quality Monitoring:

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

04 January 2020

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	6.8	M4	8:17	6.2	7.4	8.2	8.8	7.3
Mid-Ebb	C2	bottom	26.7	M5	8:47	6.9	7.9	32.0	34.7	7.0
Mid-Flood	C1	surface	9.1	G2	12:48	6.0	6.9	10.9	11.8	6.6
Mid-Flood	C1	surface	9.1	G4	13:11	6.0	6.9	10.9	11.8	<u>7.0</u>
Mid-Flood	C1	surface	9.1	M1	12:52	6.2	7.4	10.9	11.8	7.4
Mid-Flood	C1	surface	9.1	M4	13:40	6.2	7.4	10.9	11.8	6.4
Mid-Flood	C1	intake	n.a.	M6	13:16	8.3	8.6	n.a.	n.a.	<u>11.3</u>
Mid-Flood	C1	bottom	3.9	G1	12:58	6.9	7.9	4.7	5.1	<u>6.4</u>
Mid-Flood	C1	bottom	3.9	G2	12:48	6.9	7.9	4.7	5.1	5.1
Mid-Flood	C1	bottom	3.9	G3	13:03	6.9	7.9	4.7	5.1	5.0
Mid-Flood	C1	bottom	3.9	G4	13:11	6.9	7.9	4.7	5.1	<u>6.0</u>
Mid-Flood	C1	bottom	3.9	M1	12:52	6.9	7.9	4.7	5.1	<u>6.6</u>
Mid-Flood	C1	bottom	3.9	M2	12:43	6.9	7.9	4.7	5.1	<u>6.6</u>
Mid-Flood	C1	bottom	3.9	M4	13:40	6.9	7.9	4.7	5.1	<u>5.2</u>
Mid-Flood	C1	bottom	3.9	M5	13:26	6.9	7.9	4.7	5.1	<u>5.5</u>

Note: **Bold Italic** means Action Level exceedance

 $\underline{\textit{Bold Italic with underline}}$ means Limit Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>06 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	4.0	G2	8:55	6.0	6.9	4.8	5.2	<u>10.3</u>
Mid-Ebb	C2	surface	4.0	G3	9:17	6.0	6.9	4.8	5.2	5.2
Mid-Ebb	C2	surface	4.0	G4	7:30	6.0	6.9	4.8	5.2	5.2
Mid-Ebb	C2	surface	4.0	M1	9:05	6.2	7.4	4.8	5.2	<u>5.5</u>
Mid-Ebb	C2	surface	4.0	M3	7:23	6.2	7.4	4.8	5.2	5.0
Mid-Ebb	C2	surface	4.0	M4	8:35	6.2	7.4	4.8	5.2	<u>5.6</u>
Mid-Ebb	C2	surface	4.0	M5	7:41	6.2	7.4	4.8	5.2	<u>5.3</u>
Mid-Ebb	C2	bottom	4.2	G1	9:10	6.9	7.9	5.0	5.5	<u>6.4</u>
Mid-Flood	C1	surface	4.7	M2	14:16	6.2	7.4	5.6	6.0	<u>6.4</u>
Mid-Flood	C1	bottom	5.1	M1	14:32	6.9	7.9	6.1	6.6	6.3

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>06 January 2020</u>

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	G1	9:10	1.5	1.7	<u>4.6</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	G3	9:17	1.5	1.7	<u>3.3</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	G4	7:30	1.5	1.7	<u>4.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	M1	9:05	1.5	1.7	<u>2.9</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	M3	7:23	1.5	1.7	3.2
Bottom	19.3	22.2	Mid-Ebb	C2	1.3	M5	7:41	1.5	1.7	<u>2.4</u>
Bottom	19.3	22.2	Mid-flood	C1	2.6	G1	14:40	3.2	3.4	<u>4.5</u>
Bottom	19.3	22.2	Mid-flood	C1	2.6	G3	14:47	3.2	3.4	<u>4.1</u>
Bottom	19.3	22.2	Mid-flood	C1	2.6	G4	15:01	3.2	3.4	<u>4.0</u>
Bottom	19.3	22.2	Mid-flood	C1	2.6	M3	14:55	3.2	3.4	4.0

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>08 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	7.5	G1	9:53	6.0	6.9	9.0	9.8	<u>7.8</u>
Mid-Ebb	C2	surface	7.5	G2	9:34	6.0	6.9	9.0	9.8	<u>9.6</u>
Mid-Ebb	C2	surface	7.5	G3	10:00	6.0	6.9	9.0	9.8	6.1
Mid-Ebb	C2	surface	7.5	M4	9:23	6.2	7.4	9.0	9.8	<u>8.5</u>
Mid-Ebb	C2	bottom	3	G1	9:53	6.9	7.9	3.6	3.9	<u>4.2</u>
Mid-Ebb	C2	bottom	3	G2	9:34	6.9	7.9	3.6	3.9	3.7
Mid-Ebb	C2	bottom	3.0	G4	10:15	6.9	7.9	3.6	3.9	<u>4.2</u>
Mid-Ebb	C2	bottom	3	M2	9:28	6.9	7.9	3.6	3.9	<u>8.7</u>
Mid-Ebb	C2	bottom	3	M3	10:09	6.9	7.9	3.6	3.9	<u>4.8</u>
Mid-Ebb	C2	bottom	3.0	M5	10:31	6.9	7.9	3.6	3.9	<u>5.1</u>
Mid-Flood	C1	surface	7.9	G2	14:43	6.0	6.9	9.5	10.3	<u>9.8</u>
Mid-Flood	C1	surface	7.9	G4	15:26	6.0	6.9	9.5	10.3	<u>8.4</u>
Mid-Flood	C1	surface	7.9	M4	14:31	6.2	7.4	9.5	10.3	<u>7.5</u>
Mid-Flood	C1	bottom	6.3	G1	15:03	6.9	7.9	7.6	8.2	<u>10.5</u>
Mid-Flood	C1	bottom	6.3	G2	14:43	6.9	7.9	7.6	8.2	<u>8.3</u>
Mid-Flood	C1	bottom	6.3	M4	14:31	6.9	7.9	7.6	8.2	<u>8.9</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>08 January 2020</u>

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G1	9:53	1.9	2.1	2.9
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G2	9:34	1.9	2.1	2.0
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G3	10:00	1.9	2.1	2.0
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G4	10:15	1.9	2.1	<u>4.8</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M1	9:41	1.9	2.1	3.1
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M3	10:09	1.9	2.1	2.1
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M5	10:31	1.9	2.1	<u>2.2</u>
Bottom	19.3	22.2	Mid-flood	C1	2.4	G4	15:26	2.9	3.1	<u>4.9</u>
Bottom	19.3	22.2	Mid-flood	C1	2.4	M1	14:51	2.9	3.1	3.1

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 10 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	4.5	G1	11:34	6.0	6.9	5.4	5.9	5.5
Mid-Ebb	C2	surface	4.5	M2	11:17	6.2	7.4	5.4	5.9	<u>7.1</u>
Mid-Ebb	C2	surface	4.5	M3	11:42	6.2	7.4	5.4	5.9	<u>7.3</u>
Mid-Ebb	C2	surface	4.5	M4	11:12	6.2	7.4	5.4	5.9	<u>8.3</u>
Mid-Ebb	C2	bottom	7.45	M2	11:17	6.9	7.9	8.9	9.7	<u>10.4</u>
Mid-Flood	C1	surface	4.2	G2	16:20	6.0	6.9	5.0	5.4	5.3
Mid-Flood	C1	surface	4.2	M2	16:14	6.2	7.4	5.0	5.4	<u>7.2</u>
Mid-Flood	C1	surface	4.2	M4	16:09	6.2	7.4	5.0	5.4	<u>6.8</u>
Mid-Flood	C1	bottom	3.05	G1	16:31	6.9	7.9	3.7	4.0	<u>7.9</u>
Mid-Flood	C1	bottom	3.05	G2	16:20	6.9	7.9	3.7	4.0	<u>28.5</u>
Mid-Flood	C1	bottom	3.1	G3	16:35	6.9	7.9	3.7	4.0	<u>4.8</u>
Mid-Flood	C1	bottom	3.1	G4	16:43	6.9	7.9	3.7	4.0	<u>4.7</u>
Mid-Flood	C1	bottom	3.1	M1	16:26	6.9	7.9	3.7	4.0	<u>7.0</u>
Mid-Flood	C1	bottom	3.1	M2	16:14	6.9	7.9	3.7	4.0	<u>5.8</u>
Mid-Flood	C1	bottom	3.1	M3	16:39	6.9	7.9	3.7	4.0	<u>4.4</u>
Mid-Flood	C1	bottom	3.05	M4	16:09	6.9	7.9	3.7	4.0	<u>4.3</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 10 January 2020

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	G1	11:34	1.7	1.8	2.5
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	G2	11:24	1.7	1.8	<u>2.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	G3	11:38	1.7	1.8	<u>2.0</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	G4	11:47	1.7	1.8	<u>2.0</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	M2	11:17	1.7	n.a.	2.3
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	M3	11:42	1.7	1.8	<u>2.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	M4	11:12	1.7	1.8	<u>2.5</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.4	M5	11:55	1.7	1.8	<u>2.6</u>
Bottom	19.3	22.2	Mid-flood	C1	1.9	G1	16:31	2.2	2.4	2.4
Bottom	19.3	22.2	Mid-flood	C1	1.9	M2	16:14	2.2	2.4	2.3
Bottom	19.3	22.2	Mid-flood	C1	1.9	M4	16:09	2.2	2.4	<u>2.5</u>
Bottom	19.3	22.2	Mid-flood	C1	1.9	M5	16:52	2.2	2.4	<u>2.5</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 13 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	7.8	G1	8:42	6.0	6.9	9.4	10.1	6.4
Mid-Ebb	C2	surface	7.8	G2	8:22	6.0	6.9	9.4	10.1	<u>7.4</u>
Mid-Ebb	C2	surface	7.8	G3	8:50	6.0	6.9	9.4	10.1	<u>7.5</u>
Mid-Ebb	C2	bottom	6.1	G3	8:50	6.9	7.9	7.3	7.9	7.5
Mid-Ebb	C2	bottom	6.1	G4	9:04	6.9	7.9	7.3	7.9	<u>12.7</u>
Mid-Ebb	C2	bottom	6.1	M1	8:30	6.9	7.9	7.3	7.9	<u>9.2</u>
Mid-Ebb	C2	bottom	6.1	M3	8:58	6.9	7.9	7.3	7.9	<u>9.6</u>
Mid-Flood	C1	surface	17.7	G1	14:13	6.0	6.9	21.2	23.0	<u>7.3</u>
Mid-Flood	C1	surface	17.7	G2	13:52	6.0	6.9	21.2	23.0	<u>9.0</u>
Mid-Flood	C1	surface	17.7	M1	14:00	6.2	7.4	21.2	23.0	6.6
Mid-Flood	C1	surface	17.7	M2	13:45	6.2	7.4	21.2	23.0	<u>13.5</u>
Mid-Flood	C1	bottom	5.7	G2	13:52	6.9	7.9	6.8	7.4	7.1
Mid-Flood	C1	bottom	5.7	G3	14:20	6.9	7.9	6.8	7.4	<u>8.1</u>
Mid-Flood	C1	bottom	5.7	M2	13:45	6.9	7.9	6.8	7.4	<u>20.8</u>
Mid-Flood	C1	bottom	5.7	M3	14:29	6.9	7.9	6.8	7.4	7.4

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 13 January 2020

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.9	G1	8:42	2.2	2.4	2.8
Bottom	19.3	22.2	Mid-Ebb	C2	1.9	G3	8:50	2.2	2.4	<u>2.7</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.9	M3	8:58	2.2	2.4	2.4
Bottom	19.3	22.2	Mid-Ebb	C2	1.9	M5	9:23	2.2	2.4	3.3
Bottom	19.3	22.2	Mid-flood	C1	2.1	G1	14:13	2.5	2.7	<u>2.8</u>
Bottom	19.3	22.2	Mid-flood	C1	2.1	G3	14:20	2.5	2.7	<u>2.9</u>
Bottom	19.3	22.2	Mid-flood	C1	2.1	M5	14:54	2.5	2.7	2.9

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>15 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	10.6	G1	10:04	6.0	6.9	12.7	13.8	<u>7.1</u>
Mid-Ebb	C2	surface	10.6	G3	10:12	6.0	6.9	12.7	13.8	<u>7.2</u>
Mid-Ebb	C2	surface	10.6	G4	10:28	6.0	6.9	12.7	13.8	<u>11.1</u>
Mid-Ebb	C2	surface	10.6	M1	9:52	6.2	7.4	12.7	13.8	<u>9.0</u>
Mid-Ebb	C2	surface	10.6	M2	9:41	6.2	7.4	12.7	13.8	<u>8.2</u>
Mid-Ebb	C2	surface	10.6	M3	10:21	6.2	7.4	12.7	13.8	<u>7.8</u>
Mid-Ebb	C2	surface	10.6	M4	9:33	6.2	7.4	12.7	13.8	<u>7.5</u>
Mid-Ebb	C2	surface	10.6	M5	10:47	6.2	7.4	12.7	13.8	<u>7.8</u>
Mid-Ebb	C2	bottom	5.95	G2	9:46	6.9	7.9	7.1	7.7	<u>8.2</u>
Mid-Ebb	C2	bottom	5.95	G3	10:12	6.9	7.9	7.1	7.7	<u>8.5</u>
Mid-Ebb	C2	bottom	6.0	G4	10:28	6.9	7.9	7.1	7.7	<u>10.0</u>
Mid-Ebb	C2	bottom	6.0	M1	9:52	6.9	7.9	7.1	7.7	<u>13.3</u>
Mid-Ebb	C2	bottom	5.95	M3	10:21	6.9	7.9	7.1	7.7	<u>9.2</u>
Mid-Ebb	C2	bottom	6.0	M5	10:47	6.9	7.9	7.1	7.7	<u>8.6</u>
Mid-Flood	C1	surface	4.3	G1	15:58	6.0	6.9	5.1	5.5	<u>10.7</u>
Mid-Flood	C1	surface	4.3	G2	15:39	6.0	6.9	5.1	5.5	<u>8.6</u>
Mid-Flood	C1	surface	4.3	G3	16:06	6.0	6.9	5.1	5.5	<u>7.5</u>
Mid-Flood	C1	surface	4.3	G4	16:20	6.0	6.9	5.1	5.5	<u>6.8</u>
Mid-Flood	C1	surface	4.3	M1	15:45	6.2	7.4	5.1	5.5	<u>10.8</u>
Mid-Flood	C1	surface	4.3	M2	15:32	6.2	7.4	5.1	5.5	<u>8.8</u>
Mid-Flood	C1	surface	4.3	M3	16:12	6.2	7.4	5.1	5.5	<u>7.3</u>
Mid-Flood	C1	surface	4.3	M4	15:24	6.2	7.4	5.1	5.5	<u>7.4</u>

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 15 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Flood	C1	bottom	7.75	G1	15:58	6.9	7.9	9.3	10.1	7.6
Mid-Flood	C1	bottom	7.75	G2	15:39	6.9	7.9	9.3	10.1	7.3
Mid-Flood	C1	bottom	7.8	G3	16:06	6.9	7.9	9.3	10.1	7.0
Mid-Flood	C1	bottom	7.8	G4	16:20	6.9	7.9	9.3	10.1	<u>8.4</u>
Mid-Flood	C1	bottom	7.8	M1	15:45	6.9	7.9	9.3	10.1	7.3

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>15 January 2020</u>

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	G1	10:04	2.8	3.0	3.9
Bottom	19.3	22.2	Mid-flood	C1	1.4	G1	15:58	1.6	1.8	<u>5.6</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	G2	15:39	1.6	1.8	<u>2.4</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	G3	16:06	1.6	1.8	<u>2.3</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	G4	16:20	1.6	1.8	<u>2.7</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	M1	15:45	1.6	1.8	<u>2.1</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	M2	15:32	1.6	1.8	2.2
Bottom	19.3	22.2	Mid-flood	C1	1.4	M3	16:12	1.6	1.8	<u>2.6</u>
Bottom	19.3	22.2	Mid-flood	C1	1.4	M4	15:24	1.6	1.8	1.9
Bottom	19.3	22.2	Mid-flood	C1	1.4	M5	16:48	1.6	1.8	<u>2.1</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>17 January 2020</u>

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	7.8	G1	17:13	6.0	6.9	9.4	10.1	6.5
Mid-Ebb	C2	bottom	5.8	M1	17:00	6.9	7.9	7.0	7.5	<u>9.0</u>
Mid-Ebb	C2	bottom	5.8	M5	18:06	6.9	7.9	7.0	7.5	7.2
Mid-Flood	C1	surface	5.2	G1	11:43	6.0	6.9	6.2	6.8	<u>20.1</u>
Mid-Flood	C1	surface	5.2	G2	11:27	6.0	6.9	6.2	6.8	6.7
Mid-Flood	C1	surface	5.2	G3	11:51	6.0	6.9	6.2	6.8	6.2
Mid-Flood	C1	surface	5.2	G4	12:06	6.0	6.9	6.2	6.8	<u>12.3</u>
Mid-Flood	C1	surface	5.2	M4	11:12	6.2	7.4	6.2	6.8	<u>9.3</u>
Mid-Flood	C1	bottom	9.25	G1	11:43	6.9	7.9	11.1	12.0	<u>12.0</u>
Mid-Flood	C1	bottom	9.25	G2	11:27	6.9	7.9	11.1	12.0	<u>10.4</u>
Mid-Flood	C1	bottom	9.3	G3	11:51	6.9	7.9	11.1	12.0	<u>11.5</u>
Mid-Flood	C1	bottom	9.3	G4	12:06	6.9	7.9	11.1	12.0	7.2
Mid-Flood	C1	bottom	9.3	M2	11:19	6.9	7.9	11.1	12.0	<u>8.2</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: <u>17 January 2020</u>

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	G2	16:53	2.1	2.3	3.2
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	G3	17:19	2.1	2.3	<u>2.5</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	G4	17:35	2.1	2.3	<u>2.7</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	M1	17:00	2.1	2.3	<u>2.7</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	M3	17:27	2.1	2.3	2.3
Bottom	19.3	22.2	Mid-Ebb	C2	1.7	M5	18:06	2.1	2.3	2.2
Bottom	19.3	22.2	Mid-flood	C1	1.6	G2	11:27	1.9	2.0	<u>3.3</u>
Bottom	19.3	22.2	Mid-flood	C1	1.6	G3	11:51	1.9	2.0	<u>2.2</u>
Bottom	19.3	22.2	Mid-flood	C1	1.6	G4	12:06	1.9	2.0	<u>2.5</u>
Bottom	19.3	22.2	Mid-flood	C1	1.6	M1	11:32	1.9	2.0	2.7
Bottom	19.3	22.2	Mid-flood	C1	1.6	M2	11:19	1.9	2.0	2.0
Bottom	19.3	22.2	Mid-flood	C1	1.6	M3	12:00	1.9	2.0	<u>2.5</u>
Bottom	19.3	22.2	Mid-flood	C1	1.6	M4	11:12	1.9	2.0	2.1
Bottom	19.3	22.2	Mid-flood	C1	1.6	M5	12:24	1.9	2.0	<u>2.1</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 20 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	4.5	G1	8:34	6.0	6.9	5.4	5.9	<u>8.0</u>
Mid-Ebb	C2	surface	4.5	G2	8:25	6.0	6.9	5.4	5.9	<u>6.2</u>
Mid-Ebb	C2	surface	4.5	G3	8:37	6.0	6.9	5.4	5.9	<u>7.0</u>
Mid-Ebb	C2	surface	4.5	G4	8:49	6.0	6.9	5.4	5.9	<u>7.1</u>
Mid-Ebb	C2	surface	4.5	M5	9:00	6.2	7.4	5.4	5.9	5.7
Mid-Ebb	C2	bottom	13.3	M2	8:21	6.9	7.9	16.0	17.3	7.3
Mid-Flood	C1	surface	5.6	G4	14:53	6.0	6.9	6.7	7.3	6.9
Mid-Flood	C1	surface	5.6	M3	14:49	6.2	7.4	6.7	7.3	7.0
Mid-Flood	C1	surface	5.6	M4	14:16	6.2	7.4	6.7	7.3	<u>13.0</u>
Mid-Flood	C1	surface	5.6	M5	15:06	6.2	7.4	6.7	7.3	<u>8.7</u>
Mid-Flood	C1	intake	n.a.	M6	14:59	8.3	8.6	n.a.	n.a.	<u>9.3</u>
Mid-Flood	C1	bottom	6.85	G1	14:36	6.9	7.9	8.2	8.9	7.3
Mid-Flood	C1	bottom	6.85	G2	14:26	6.9	7.9	8.2	8.9	7.0
Mid-Flood	C1	bottom	6.9	G3	14:42	6.9	7.9	8.2	8.9	7.6
Mid-Flood	C1	bottom	6.9	M2	14:21	6.9	7.9	8.2	8.9	7.3
Mid-Flood	C1	bottom	6.85	M4	14:16	6.9	7.9	8.2	8.9	<u>8.6</u>
Mid-Flood	C1	bottom	6.9	M5	15:06	6.9	7.9	8.2	8.9	7.1

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 20 January 2020

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	G1	8:34	2.7	3.0	3.2
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	G2	8:25	2.7	3.0	<u>3.7</u>
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	G3	8:37	2.7	3.0	<u>3.5</u>
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	G4	8:49	2.7	3.0	<u>3.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	M1	8:29	2.7	3.0	3.3
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	M2	8:21	2.7	n.a.	3.4
Bottom	19.3	22.2	Mid-Ebb	C2	2.3	M3	8:44	2.7	3.0	<u>3.8</u>
Bottom	19.3	22.2	Mid-flood	C1	2.2	G1	14:36	2.7	2.9	<u>3.7</u>
Bottom	19.3	22.2	Mid-flood	C1	2.2	G2	14:26	2.7	2.9	<u>3.3</u>
Bottom	19.3	22.2	Mid-flood	C1	2.2	G3	14:42	2.7	2.9	4.0
Bottom	19.3	22.2	Mid-flood	C1	2.2	G4	14:53	2.7	2.9	2.8
Bottom	19.3	22.2	Mid-flood	C1	2.2	M1	14:31	2.7	2.9	<u>3.2</u>
Bottom	19.3	22.2	Mid-flood	C1	2.2	M2	14:21	2.7	2.9	3.0
Bottom	19.3	22.2	Mid-flood	C1	2.2	M3	14:49	2.7	2.9	<u>4.3</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 22 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	6.7	G2	10:30	6.0	6.9	8.0	8.6	<u>7.0</u>
Mid-Ebb	C2	surface	6.7	G3	10:52	6.0	6.9	8.0	8.6	<u>8.6</u>
Mid-Ebb	C2	surface	6.7	M1	10:35	6.2	7.4	8.0	8.6	<u>7.7</u>
Mid-Ebb	C2	surface	6.65	M2	10:23	6.2	7.4	8.0	8.6	6.5
Mid-Ebb	C2	surface	6.7	M3	11:00	6.2	7.4	8.0	8.6	6.7
Mid-Ebb	C2	surface	6.7	M4	10:17	6.2	7.4	8.0	8.6	<u>8.7</u>
Mid-Ebb	C2	surface	6.7	M5	11:26	6.2	7.4	8.0	8.6	<u>8.1</u>
Mid-Ebb	C2	bottom	5.7	G4	11:06	6.9	7.9	6.8	7.4	<u>7.9</u>
Mid-Ebb	C2	bottom	5.7	M2	10:23	6.9	7.9	6.8	7.4	<u>8.9</u>
Mid-Flood	C1	surface	6.3	G4	15:54	6.0	6.9	7.5	8.1	<u>9.3</u>
Mid-Flood	C1	surface	6.3	M2	15:07	6.2	7.4	7.5	8.1	6.6
Mid-Flood	C1	bottom	5.2	G3	15:40	6.9	7.9	6.2	6.8	<u>9.0</u>
Mid-Flood	C1	bottom	5.2	G4	15:54	6.9	7.9	6.2	6.8	<u>7.0</u>
Mid-Flood	C1	bottom	5.2	M2	15:07	6.9	7.9	6.2	6.8	<u>8.9</u>
Mid-Flood	C1	bottom	5.2	M5	16:27	6.9	7.9	6.2	6.8	6.3

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 22 January 2020

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G1	10:46	1.9	2.0	<u>4.4</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G2	10:30	1.9	2.0	<u>2.2</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G3	10:52	1.9	2.0	<u>2.7</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	G4	11:06	1.9	2.0	<u>3.4</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M1	10:35	1.9	2.0	<u>3.3</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M3	11:00	1.9	2.0	2.0
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M4	10:17	1.9	2.0	<u>2.3</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.6	M5	11:26	1.9	2.0	<u>2.3</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	G1	15:33	2.1	2.3	<u>4.1</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	G2	15:13	2.1	2.3	2.2
Bottom	19.3	22.2	Mid-flood	C1	1.8	G3	15:40	2.1	2.3	<u>2.8</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	G4	15:54	2.1	2.3	<u>3.7</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	M1	15:21	2.1	2.3	<u>3.4</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	M4	15:02	2.1	2.3	<u>3.2</u>
Bottom	19.3	22.2	Mid-flood	C1	1.8	M5	16:27	2.1	2.3	<u>2.5</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 24 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	4.4	G3	11:48	6.0	6.9	5.2	5.7	<u>24.0</u>
Mid-Ebb	C2	surface	4.4	M3	11:55	6.2	7.4	5.2	5.7	5.5
Mid-Ebb	C2	surface	4.4	M4	11:13	6.2	7.4	5.2	5.7	<u>9.4</u>
Mid-Ebb	C2	surface	4.4	M5	12:12	6.2	7.4	5.2	5.7	<u>8.0</u>
Mid-Ebb	C2	bottom	7.7	M1	11:34	6.9	7.9	9.2	10.0	7.4
Mid-Ebb	C2	bottom	7.7	M3	11:55	6.9	7.9	9.2	10.0	<u>25.6</u>

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 24 January 2020

Part A – Exceedance Summary Tables

Table II: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.9	M5	12:12	2.3	2.5	2.5

Note: **Bold Italic** means Action Level exceedance

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 31 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	12	G1	16:43	6.0	6.9	14.4	15.6	<u>8.4</u>
Mid-Ebb	C2	surface	12.0	G2	16:23	6.0	6.9	14.4	15.6	<u>12.2</u>
Mid-Ebb	C2	surface	12.0	G3	16:51	6.0	6.9	14.4	15.6	<u>9.9</u>
Mid-Ebb	C2	surface	12.0	G4	17:05	6.0	6.9	14.4	15.6	<u>7.3</u>
Mid-Ebb	C2	surface	12.0	M1	16:31	6.2	7.4	14.4	15.6	6.4
Mid-Ebb	C2	surface	12	M2	16:16	6.2	7.4	14.4	15.6	7.2
Mid-Ebb	C2	surface	12.0	M4	16:09	6.2	7.4	14.4	15.6	<u>9.0</u>
Mid-Ebb	C2	surface	12.0	M5	17:25	6.2	7.4	14.4	15.6	<u>10.0</u>
Mid-Ebb	C2	intake	n.a.	M6	17:13	8.3	8.6	n.a.	n.a.	<u>10.2</u>
Mid-Ebb	C2	bottom	12.8	G1	16:43	6.9	7.9	15.4	16.6	<u>11.1</u>
Mid-Ebb	C2	bottom	12.8	G2	16:23	6.9	7.9	15.4	16.6	<u>14.7</u>
Mid-Ebb	C2	bottom	12.8	G3	16:51	6.9	7.9	15.4	16.6	<u>10.9</u>
Mid-Ebb	C2	bottom	12.8	G4	17:05	6.9	7.9	15.4	16.6	<u>13.9</u>
Mid-Ebb	C2	bottom	12.8	M1	16:31	6.9	7.9	15.4	16.6	7.5
Mid-Ebb	C2	bottom	12.8	M3	16:59	6.9	7.9	15.4	16.6	7.1
Mid-Ebb	C2	bottom	12.8	M5	17:25	6.9	7.9	15.4	16.6	<u>12.8</u>
Mid-Flood	C1	surface	6.3	G1	10:46	6.0	6.9	7.5	8.1	<u>8.0</u>
Mid-Flood	C1	surface	6.3	G2	10:26	6.0	6.9	7.5	8.1	<u>8.8</u>
Mid-Flood	C1	surface	6.3	G3	10:53	6.0	6.9	7.5	8.1	<u>11.4</u>
Mid-Flood	C1	surface	6.3	G4	11:08	6.0	6.9	7.5	8.1	6.7

Water_Daily_200131 1

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 31 January 2020

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Flood	C1	surface	6.3	M1	10:33	6.2	7.4	7.5	8.1	<u>10.3</u>
Mid-Flood	C1	surface	6.3	M2	10:18	6.2	7.4	7.5	8.1	<u>8.9</u>
Mid-Flood	C1	surface	6.3	M4	10:12	6.2	7.4	7.5	8.1	<u>8.9</u>
Mid-Flood	C1	intake	n.a.	M6	11:16	8.3	8.6	n.a.	n.a.	<u>10.7</u>
Mid-Flood	C1	bottom	6.7	G1	10:46	6.9	7.9	8.0	8.7	<u>9.7</u>
Mid-Flood	C1	bottom	6.7	G2	10:26	6.9	7.9	8.0	8.7	7.8
Mid-Flood	C1	bottom	6.7	G3	10:53	6.9	7.9	8.0	8.7	<u>9.7</u>
Mid-Flood	C1	bottom	6.7	G4	11:08	6.9	7.9	8.0	8.7	<u>8.5</u>
Mid-Flood	C1	bottom	6.7	M1	10:33	6.9	7.9	8.0	8.7	<u>8.8</u>
Mid-Flood	C1	bottom	6.7	M2	10:18	6.9	7.9	8.0	8.7	<u>12.5</u>
Mid-Flood	C1	bottom	6.7	M3	11:02	6.9	7.9	8.0	8.7	7.8
Mid-Flood	C1	bottom	6.7	M4	10:12	6.9	7.9	8.0	8.7	<u>11.9</u>

Note: **Bold Italic** means Action Level exceedance

Contract No. CE 59/2015 (EP)

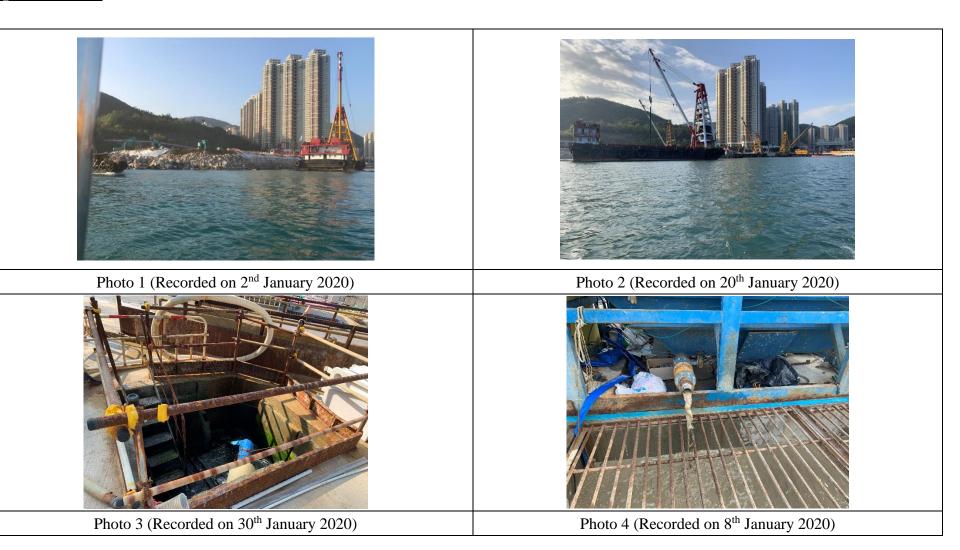
Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (Jan 2020)

Part A_Details of Investigation

For January 2020, exceedances for suspended solids and turbidity have been recorded continuously at various monitoring stations. During marine water quality monitoring, the water outside the site boundary seemed to be clear and clean (Photo 1 and 2)

During site inspections, the water appears to be clear in the discharge point (Photo 3). The sediment tank was free from silt and sediments and the drainage system remained well-maintained. No sand plumes were observed during the site inspection. The sea at the Eastern side enclosed by the double water gate and silt curtain looks similar to the open ocean in colour (Photo 4).


No direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Therefore, no additional marine water quality monitoring is required.

Contract No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (Jan 2020)

Part B-Photo Record

Contract No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O – Lam Tin Tunnel

Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances (Jan 2020)

Part C - Recommendations

Despite the wet season has ended, heavy rainfall bring along by monsoon wind is highly anticipated. Contractor is reminded to provide sufficient drainage channels and keep sediment tanks free from mud and silt. In addition, the exposed of ground shall be covered tarpaulin fabric to reduce runoff. Local silt curtains' condition shall be checked before operation of construction plants.

Appropriate diversion of received rainwater to the wastewater treatment system within the site should be provided to minimise the chance of accidental runoff. Cofferdam and silt curtain should be checked and maintained regularly; diver inspection for checking damage and leakage should be conducted weekly to ensure the functionality of cofferdam and silt curtains.

Reviewed by:

(Environmental Team Leader:(Dr. HF Chan)

Date: 7 Feb 2020

APPENDIX L SITE AUDIT SUMMARY

Appendix L - Site Audit Summary (January 2020)

<u>Contract No. NE/2015/01</u>
Tseung Kwan O - Lam Tin Tunnel - Main Tunnel and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			-
Silt curtain was floating and needs to be anchored to seabed.	31 Dec 19	√	08 Jan 20 No floating of silt curtain was observed and contractor confirmed that the silt curtain was anchored to seabed.
Muddy water was observed at edges of the barge and sandbags were insufficient to block mud water spillage. For mitigation, the Contractor had agreed to apply impervious materials in long term. More sandbags will be place to reduce such impact in short term.	08 Jan 20	✓	15 Jan 20 Silt sock has been installed to prevent mud spillage.
Surface was dry and dust kept emitting from loading and unloading of excavated materials in Portion III.	22 Jan 20	√	31 Jan 20 Water sprays were applied during loading and nloading materials in Portion III.
Ecology		_	
Noise An acoustic sheet for a breaker was broken. It should be maintained to minimize the noise impact.	24 Dec 19	✓	08 Jan 20 The breaker was wrapped with a new acoustic sheet.
Landscape and Visual			
Air Quality			
Pale black smoke was emitting from a generator in Portion III. Contractor is reminded to check and repair machines regularly to reduce dust emission.	31 Dec 19	√	08 Jan 20 A new filter was replaced and no black smoke was observed.
Stockpiles of more than 20 bags should be covered by tarpaulin (impervious fabric) / be removed. Waste / Chemical Management	08 Jan 20	✓	15 Jan 20 The stockpiles had been removed.
Caps should be provided for the excavators in Portion VA and Portion IVC to prevent oil leakage.		✓	22 Jan 20 Caps were installed to prevent oil leakage.
The barrels containing chemicals should have clear labels to show related information.		✓	
Leakage of chemicals are observed around the storage area. The drip tray of the chemical storage area should be replaced or place tarpaulin fabric under the current drip tray as a temporary mitigation measures. The Contractor should also clean up the spilled chemicals	15 Jan 20	√	31 Jan 20 Chemical tanks had labels and chemicals were cleaned
The drip tray should not have any holes. The Contractor suggested that they will seal the hole.		✓	22 Jan 20 The drip tray was removed and no tanks were placed.
Rubbish and C&D materials should be cleaned regularly and be sorted and covered with lids to avoid accumulation and enhance tidiness.	31 Jan 20	#	

Appendix L - Site Audit Summary (January 2020)

Items	Date	Status*	Follow up Action				
Impact on Cultural Heritage							
Permits / Licenses							

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but improved by the contractor

Appendix L - Site Audit Summary (January 2020)

Contract No. NE/2015/02

Tseung Kwan O - Lam Tin Tunnel - Road P2 and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
Noise			
The breaker in portion IX should put the head to the acoustic box as close as possible to reduce noise impact.	08 Jan 20	✓	15 Jan 20 The breaker in Portion IX was removed.
The location of silence-up next to drill-rig in surcharge area should be re-adjusted to block the direct sight from nearby NSR.	30 Jan 20	#	
Landscape and Visual			
Air Quality			
The open stockpile in Portion IX shall be covered with impervious fabric.	30 Jan 20	✓	30 Jan 20 The stockpiles had been covered with impervious material.
Waste / Chemical Management			
The Contractor is reminded to remove the polystyrene lunch boxes near the entrance of Area Z.	23 Dec 19	✓	2 Jan 20 The lunch boxes had been removed.
Impact on Cultural Heritage			
Permits / Licenses			

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Appendix L - Site Audit Summary (January 2020)

Contract No. NE/2017/02

Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works

Items	Date	Status *	Follow up Action					
Water Quality								
Noise								
Landscape and Visual								
Air Quality								
Waste / Chemical Management								
Impact on Cultural Heritage								
Permits / Licenses								

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Appendix L - Site Audit Summary (January 2020)

Contract No. NE/2015/03

Tseung Kwan O - Lam Tin Tunnel - Northern Footbridge

Items	Date	Status *	Follow up Action					
Water Quality								
Noise								
1								
Landscape and Visual								
Air Quality								
Waste / Chemical Management		•						
Impact on Cultural Heritage								
Permits / Licenses								

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Appendix L - Site Audit Summary (January 2020)

Contract No. NE/2017/01

Tseung Kwan O - Lam Tin Tunnel – Tsueng Kwan O Interchange and Associated Works

Items	Date	Status*	Follow up Action						
Water Quality									
The silt curtain is not properly deployed around the platform 4J. According to the approved SCDP, working area should be fully enclosed by silt curtain.	16 Jan 20	√	23 Jan 20 The silt curtain is properly deployed.						
Noise									
									
Landscape and Visual									
Air Quality									
Waste / Chemical Management									
Impact on Cultural Heritage									
Permits / Licenses									

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

		ACT	TION	
EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

ENZENIE.		ACTION						
EVENT	ET	IEC	ER	CONTRACTOR				
	8. If exceedance stops, cease additional monitoring.							
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit level being exceeded by two or more consecutive sampling	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; 				

	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR		
	 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions 	3. Supervise the implementation of remedial measures.	 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of 	4. Resubmit proposals if problem still not under control;5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.		
	 to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. 		work until the exceedance is abated.			

Event and Action Plan for Construction Noise

EVENT				ACT	ION			
		ET		IEC		ER		CONTRACTOR
Action	1.	Notify IEC and Contractor;	1.	Review the analysed results	1.	Confirm receipt of notification of	1.	Submit noise mitigation proposals to
Level	2.	Carry out investigation;		submitted by the ET;		failure in writing;		IEC;
	3.	Report the results of investigation to	2.	Review the proposed remedial	2.	Notify Contractor;	2.	Implement noise mitigation proposals.
		the IEC, ER and Contractor;		measures by the Contractor and	3.	Require Contractor to propose		
	4.	Discuss with the Contractor and		advise the ER accordingly;		remedial measures for the analysed		
		formulate remedial measures;	3.	Supervise the implementation of		noise problem;		
	5.	Increase monitoring frequency to		remedial measures.	4.	Ensure remedial measures are		
		check mitigation effectiveness.				properly implemented.		
Limit	1.	Identify source;	1.	Discuss amongst ER, ET, and	1.	Confirm receipt of notification of	1.	Take immediate action to avoid
Level	2.	Inform IEC, ER, EPD and		Contractor on the potential remedial		failure in writing;		further exceedance;
		Contractor;		actions;	2.	Notify Contractor;	2.	Submit proposals for remedial
	3.	Repeat measurements to confirm	2.	Review Contractors remedial actions	3.	Require Contractor to propose		actions to IEC within 3 working
		findings;		whenever necessary to assure their		remedial measures for the analysed		days of notification;
	4.	Increase monitoring frequency;		effectiveness and advise the ER		noise problem;	3.	Implement the agreed proposals;
	5.	Carry out analysis of Contractor's		accordingly;	4.	Ensure remedial measures properly	4.	Resubmit proposals if problem still
		working procedures to determine	3.	Supervise the implementation of		implemented;		not under control;
		possible mitigation to be		remedial measures.	5.	If exceedance continues, consider	5.	Stop the relevant portion of works as
		implemented;				what portion of the work is		determined by the ER until the
	6.	Inform IEC, ER and EPD the causes				responsible and instruct the		exceedance is abated.
		and actions taken for the				Contractor to stop that portion of		
		exceedances;				work until the exceedance is abated.		

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
	7. Assess effectiveness of Contractor's			
	remedial actions and keep IEC, EPD			
	and ER informed of the results;			
	8. If exceedance stops, cease additional			
	monitoring.			

Event and Action Plan for Marine Water Quality

	Action			
Event	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate; If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation proposal.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agree mitigation measures.
Action level being exceeded by two	Identify the source(s) of impact by comparing the results with those	Discuss with ET and Contractor on the mitigation measures;	Discuss with IEC on the proposed mitigation measures;	Inform the Engineer and confirm notification of the non-compliance in
or more consecutive	collected at the control stations as appropriate;		Make agreement on the mitigation proposal;	writing; • Rectify unacceptable practice;

	Action			
Event	ET	IEC	ER	CONTRACTOR
sampling days at	If exceedance is found to be caused	Review proposal on mitigation	Assess the effectiveness of the	Check all plant and equipment and
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;
	findings;	Assess the effectiveness of the		Discuss with ET, IEC and ER and
	Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC
	Check monitoring data, all plant,			and ER within 3 working days;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Prepare to increase the monitoring			
	frequency to daily;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD;			
	Repeat measurement on next day of			
	exceedance.			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IEC, ET and	Inform the ER and confirm
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
receiver(s)		and advise the ER accordingly;	review the working methods;	

		Acı	tion	
Event	ET	IEC	ER	CONTRACTOR
	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working
	repeat in-situ measurement to		Assess the effectiveness of the	methods;
	confirm findings;		implemented mitigation measures.	Discuss with ET, IEC and ER and
	Inform IEC, contractor, AFCD and			submit proposal of mitigation
	EPD			measures to IEC and ER within 3
	Check monitoring data, all plant,			working days of notification;
	equipment and Contractor's working			Implement the agreed mitigation
	methods;			measures.
	Discuss mitigation measures with			
	IEC, ER and Contractor;			
	Ensure mitigation measures are			
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			
Limit level being	Identify the source(s) of impact by	Discuss with ET and Contractor on	Discuss with IC(E), ET and	Inform the ER and confirm
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;
consecutive	appropriate;	measures submitted by Contractor	Request Contractor to critically	Rectify unacceptable practice;
sampling days at		and advise the ER accordingly;	review the working methods;	

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
water sensitive	If exceedance is found to be caused	Assess the effectiveness of the	Make agreement on the mitigation	Check all plant and equipment and
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working
	in-situ measurement to confirm		Assess the effectiveness of the	methods;
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and
	• Inform IC(E), AFCD, contractor		• Consider and instruct, if necessary,	submit proposal of mitigation
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3
	Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;
	equipment and Contractor's working		until no exceedance of Limit level.	Implement the agreed mitigation
	methods;			measures;
	Discuss mitigation measures with			As directed by the Engineer, to
	IC(E), ER and Contractor;			slow down or to stop all or part of
	Ensure mitigation measures are			the construction activities.
	implemented;			
	Increase the monitoring frequency			
	to daily until no exceedance of Limit			
	level for two consecutive days;			
	If exceedance occurs at WSD salt			
	water intake, inform WSD.			

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	Ventilate to restore oxygen to >19%
	<18%	Stop works
		Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	> 1% by	Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		Evacuate personnel / prohibit entry
		• Increase ventilation to restore carbon dioxide to <
		0.5%

Event and Action Plan for Coral Post-Translocation Monitoring

Event	Action			
	ET Leader	IEC	ER	Contractor
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Level		and the Contractor;	monitoring	notification of the non-compliance
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;	
		Monitoring and any other		2. Discuss with the ET and the IEC
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;
	findings;	accordingly.		
				3. Implement the agreed measures.
	4. Propose mitigation			
	measures for consideration			
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance
	further exceedance of Limit Level,		requirements and any other	in writing;
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;	
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC
		Contractor and advise the ER	measures to be implemented.	and the ER;
		accordingly.		
				3. Implement the agreed measures.

Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	The Engineer shall be informed immediately.
	The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	The Contractor shall carry out design review of the works

Action Level

- Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
- The Contractor shall immediately implement the measures defined in the contingency plan
- The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
- The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
- To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract:NE/2015/01

Key:

- Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref. /	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What requirements	Status
EP		recommended	implement	the measures	Implement the	or standards for	
Submissi		Measures &	the		measures?	the measures to	
on		Main Concerns	measures?			achieve?	
		to address					
Air Quali	ty impact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	^
		dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall /	To minimize the	Contractor	Barging	Construction	APCO	^
	mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be	To minimize the	Contractor#	All	Construction	APCO and Air	
	covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3	dust impact		Construction	phase	Pollution Control	
	sides.			Work Sites		(Construction Dust)	
	Use of frequent watering for particularly dusty construction areas and areas close to					Regulation	^
	ASRs						
	Side enclosure and covering of any aggregate or dusty material storage piles to reduce						^
	emissions. Where this is not practicable owing to frequent usage, watering shall be						

			,					,
		applied to aggregate fines.						
	•	Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty						^
		material storage piles near ASRs.						
	•	Tarpaulin covering of all dusty vehicle loads transported to, from and between site						^
		locations.						
	•	Establishment and use of vehicle wheel and body washing facilities at the exit points of						^
		the site.						
	•	Provision of wind shield and dust extraction units or similar dust mitigation measures at						*(2)
		the loading area of barging point, and use of water sprinklers at the loading area where						
		dust generation is likely during the loading process of loose material, particularly in dry						
		seasons/ periods.						
	•	Provision of not less than 2.4m high hoarding from ground level along site boundary						
		where adjoins a road, streets or other accessible to the public except for a site entrance or						^
		exit.						
	•	Imposition of speed controls for vehicles on site haul roads.						
	•	Where possible, routing of vehicles and positioning of construction plant should be at the						^
		maximum possible distance from ASRs						^
	•	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be						
		covered entirely by impervious sheeting or placed in an area sheltered on the top and the						*(1)
		3 sides.						
	•	Instigation of an environmental monitoring and auditing program to monitor the						^
		construction process in order to enforce controls and modify method of work if dusty						
		conditions arise.						
/	Em	ission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	•	All vehicles shall be shut down in intermittent use.	pollution emission		construction	stage		^
	•	Only well-maintained plant should be operated on-site and plant should be serviced	from construction		sites			^
		regularly to avoid emission of black smoke.	vehicles and					
	•	All diesel fuelled construction plant within the works areas shall be powered by ultra	plants					^
			114.0					

	low sulphur diesel fuel (ULSD)						
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	^
		pollution emission		construction	stage		
		from construction		sites			
		vehicles and					
		plants					
Noise Imp	pact (Construction Phase)						
S4.8	Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck,	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker,	construction noise			phase		
	Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller,	impact arising					
	Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full	from the Project at					
	enclosure for Air Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel,	the affected NSRs					
	Large Diameter Bore Piling, Grout Mixer & Pump and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	PME according to the approved Noise Mitigation Plan	construction noise			phase		
Plan		impact arising					
		from the Project at					
		the affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	Only well-maintained plant should be operated on-site and plant should be serviced	construction noise	Proponent		Period		^
	regularly during the construction program	impact arising					
	Silencers or mufflers on construction equipment should be utilized and should be	from the Project at					^
	properly maintained during the construction program.	the affected NSRs					
	Mobile plant, if any, should be sited as far away from NSRs as possible.						^
	Machines and plant (such as trucks) that may be in intermittent use should be shut down						^
	between works periods or should be throttled down to a minimum.						
	Plant known to emit noise strongly in one direction should, wherever possible, be						^

	orientated so that the noise is directed away from the nearby NSRs.						
	Material stockpiles and other structures should be effectively utilized, wherever						۸
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction noise		near school	phase		
		impact arising					
		from the Project at					
		the affected NSRs					
Water Qu	ality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m³,	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	be adopted for construction of seawall foundation. During the stone column installation (also	impacts from	Contractors		Phase		
	including the installation of steel cellular caisson), silt curtain shall be employed around the	filling activities					
	active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	about 50m for marine access) shall be completed prior to the filling activities. The seawall	impacts from	Contractors		Phase		
	opening of about 50m wide for marine access shall be selected at a location as indicatively	filling activities					
	shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a						
	maximum daily rate of 3,000m³ (i.e. 1,000 m³ per trip) for the filling operation at the						
	reclamation area for Road P2. All filling works shall be carried out behind the seawall with						
	the use of single silt curtain at the marine access.						
Silt	Silt curtains should be deployed properly to surround the works area.	Control potential	Contractor	NE/2015/01	Construction	EIAO	
Curtain	Maintenance of silt curtain should be provided.	impacts from			stage		
Deployme	Sufficient stock of silt curtain should be provided on site.	marine woroks					
nt Plan							

S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	all marine works should adopt the environmental friendly construction methods as far as	impacts from	Contractors		Phase	Waste Disposal	٨
	practically possible including the use of cofferdams to cover the construction area to	filling activities				Ordinance (WDO)	
	separate the construction works from the sea;	and marine-based					
	• floating single silt curtain shall be employed for all marine works;	construction					٨
	all vessels should be sized so that adequate clearance is maintained between vessels and						٨
	the seabed in all tide conditions, to ensure that undue turbidity is not generated by						
	turbulence from vessel movement or propeller wash;						
	all hopper barges should be fitted with tight fitting seals to their bottom openings to						٨
	prevent leakage of material;						
	excess material shall be cleaned from the decks and exposed fittings of barges before the						٨
	vessel is moved;						
	adequate freeboard shall be maintained on barges to reduce the likelihood of decks being						۸
	washed by wave action;						
	loading of barges and hoppers should be controlled to prevent splashing of filling						^
	material into the surrounding water. Barges or hoppers should not be filled to a level						
	that will cause the overflow of materials or polluted water during loading or						
	transportation;						
	• any pipe leakages shall be repaired quickly. Plant should not be operated with leaking						۸
	pipes;						
	• construction activities should not cause foam, oil, grease, scum, litter or other						۸
	objectionable matter to be present on the water within the site or dumping grounds; and						
	• before commencement of the reclamation works, the holder of Environmental Permit has						
	to submit plans showing the phased construction of the reclamation, design and operation						N/A
	of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	EIAOTM, WPCO	
	consideration of good site practices.	filling activities					

		and marine based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for Reclamation	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	
S5.6.1	for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	EIAOTM, WPCO	
	- Before carrying out any dredging and underwater filling works, a temporary barrier	dredging and					N/A
	shall first be constructed to a height above the high water mark to completely enclose	filling works for					
	the works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site	Road P2					N/A
	shall not be removed before completion of all dredging and underwater filling works.						
	- Water quality sampling and testing shall be carried out to demonstrate that the water						N/A
	quality inside the enclosed barrier is comparable to the ambient or baseline levels prior						
	to the removal of the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier						N/A
	and at the double water gates marine access opening during its operation.						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	prevent high loading of SS from entering the marine environment. Proper site management is	impacts from	Contractors		Phase	EIAOTM, WPCO	
	essential to minimise surface water runoff, soil erosion and sewage effluents.	construction site					
		runoff and land-					
		based construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	^
	engineering and environmental requirements in order to ensure adequate hydraulic capacity of	impacts from	Contractors		and	EIAOTM, WPCO,	
	all drains.	construction site			Construction	TM-DSS	
		runoff and land-			Phase		
		based construction					

					I		
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	*(3)
	guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site	impacts from	Contractors		Phase	EIAOTM, WPCO,	
	Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices,	construction site				TM-DSS	
	as detailed in below, should be implemented to ensure that all construction runoff complies with	runoff and land-					
	WPCO standards and no unacceptable impact on the WSRs arises due to construction of the	based construction					
	TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with						
	the standards for effluents discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	
	contamination of runoff, and erosion. Construction runoff related impacts associated with the	impacts from	Contractors		Phase	EIAOTM, WPCO	^
	above ground construction activities can be readily controlled through the use of appropriate	construction site					
	mitigation measures which include:	runoff and land-					
	use of sediment traps; and	based construction					N/A
	adequate maintenance of drainage systems to prevent flooding and overflow.						٨
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks	impacts from	Contractors		Phase	EIAOTM, WPCO	
	should be marked and surrounded by dykes or embankments for flood protection. Temporary	construction site					
	ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a	runoff and land-					
	silt retention pond. Permanent drainage channels should incorporate sediment basins or traps	based construction					
	and baffles to enhance deposition rates. The design of efficient silt removal facilities should						
	be based on the guidelines in Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	during the rainy season (April to September). All exposed earth areas should be completed as	impacts from	Contractors		Phase	EIAOTM, WPCO	
	soon as possible after earthworks have been completed, or alternatively, within 14 days of the	construction site					
	cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	runoff and land-					
	rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should	based construction					
	be covered by tarpaulin or other means.						
	l .				1		

S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	approximately 6 to 8m³ capacity, are recommended as a general mitigation measure which can	impacts from	Contractors		Phase	EIAOTM, WPCO	
	be used for settling surface runoff prior to disposal. The system capacity is flexible and able	construction site				S5	
	to handle multiple inputs from a variety of sources and particularly suited to applications	runoff and land-					
	where the influent is pumped.	based construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	surface protection should be carried out immediately after the final surfaces are formed to	impacts from	Contractors		Phase	EIAOTM, WPCO	
	prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should	construction site				S5	
	be provided where necessary.	runoff and land-					
		based construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	trenches in wet seasons is necessary, they should be dug and backfilled in short sections.	impacts from	Contractors		Phase	EIAOTM, WPCO	
	Rainwater pumped out from trenches or foundation excavations should be discharged into	construction site				S5	
	storm drains via silt removal facilities.	runoff and land-					
		based construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	more than 50m ³ should be covered with tarpaulin or similar fabric during rainstorms.	impacts from	Contractors		Phase	EIAOTM, WPCO	
	Measures should be taken to prevent the washing away of construction materials, soil, silt or	construction site					
	debris into any drainage system.	runoff and land-					
		based construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	temporarily sealed so as to prevent silt, construction materials or debris being washed into the	impacts from	Contractors		Phase	EIAOTM, WPCO	
	drainage system and storm runoff being directed into foul sewers. Discharge of surface run-	construction site					
	off into foul sewers must always be prevented in order not to unduly overload the foul	runoff and land-					
	sewerage system.	based construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are	impacts from	Contractors		Phase	EIAOTM, WPCO	

	summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the	construction site					
	control of silty surface runoff during storm events, especially for areas located near steep	runoff and land-					
	slopes.	based construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	release of oils and grease into the storm water drainage system after accidental spillages.	impacts from	Contractors		Phase	EIAOTM, WPCO	
	interceptor should have a bypass to prevent flushing during periods of heavy rain.	construction site					
		runoff and land-					
		based construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth,	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	mud, debris and the like is deposited by them on roads. An adequately designed and located	impacts from	Contractors		Phase	EIAOTM, WPCO	
	wheel washing bay should be provided at every site exit, and washwater should have sand and	construction site					
	silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the	runoff and land-					
	process. The section of access road leading to, and exiting from, the wheelwash bay to the	based construction					
	public road should be paved with sufficient backfall toward the wheel-wash bay to prevent						
	vehicle tracking of soil and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	grit should be removed regularly, at the onset of and after each rainstorm to ensure that these	impacts from	Contractors		Phase	EIAOTM, WPCO	
	facilities are functioning properly at all times.	construction site					
		runoff and land-					
		based construction					
\$5.8.20	It is recommended that on-site drainage system should be installed prior to the commencement	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	of other construction activities. Sediment traps should be installed in order to minimise the	impacts from	Contractors		Phase	EIAOTM, WPCO	
	sediment loading of the effluent prior to discharge into foul sewers. There shall be no direct	construction site					
	discharge of effluent from the site into the sea.	runoff and land-					
		based construction					
\$5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	EIAOTM, WPCO	
		1			I	1	1

						1	,
	sediment control measures should be regularly inspected and maintained to ensure proper and	construction site					
	efficient operation at all times and particularly following rain storms. The temporarily diverted	runoff and land-					
	drainage should be reinstated to its original condition when the construction work has finished	based construction					
	or the temporary diversion is no longer required.						
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas,	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent	impacts from	Contractors		Phase	EIAOTM, WPCO	
	spilled fuel oils from reaching the coastal waters.	construction site					
		runoff and land-					
		based construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	discharges and the existing or planned seawater intakes during construction and operational	impacts from	Contractors		Phase	TMDSS	
	phases	construction site					
		runoff and land-					
		based construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	ground water level in basement or foundation construction, and groundwater seepage pumped	impacts from	Contractors		Phase	EIAOTM, WPCO	
	out of tunnels or caverns under construction should be discharged into storm drains after the	construction site					
	removal of silt in silt removal facilities.	runoff and land-					
		based construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel.	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
S5.8.27 &	During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured	impacts from	Contractors		Phase	EIAOTM, WPCO,	
Table 5.18	during the excavation. The groundwater levels above the tunnel will also be monitored by	construction site				Buildings Ordinance	
	piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the	runoff and land-					
	groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to	based construction					
	reduce the groundwater inflow. No significant change of groundwater levels would therefore						
	be expected. Any chemicals/ foaming agents which would be entrained to the groundwater						
	should be biodegradable and non-toxic throughout the tunnel construction. Potential						

	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive						
	measures in the form of an Action Plan with pre-emptive and re-active to preserve the						
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	as far as practicable be recirculated after sedimentation. When there is a need for final	impacts from	Contractors		and	EIAOTM, WPCO	
	disposal, the wastewater should be discharged into storm drains via silt removal facilities.	construction site			Construction		
		runoff and land-			Phas		
		based construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	٨
S5.8.31	equipment should whenever practicable be recycled. The discharge of wastewater should be	impacts from	Contractors		Phase	EIAOTM, WPCO	
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any	construction site					
	water recycling system should be provided with an online standby pump of adequate capacity	runoff and land-					
	and with automatic alternating devices. Under normal circumstances, surplus wastewater may	based construction					
	be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to						
	within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more						
	elaborate treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	۸
	earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should	impacts from	Contractors		Phase	EIAOTM, WPCO	
	be provided at every site exit if practicable and wash-water should have sand and silt settled	construction site					
	out or removed before discharging into storm drains. The section of construction road	runoff and land-					
	between the wheel washing bay and the public road should be paved with backfall to reduce	based construction					
	vehicle tracking of soil and to prevent site run-off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	and reused wherever practicable. If the disposal of a certain residual quantity cannot be	impacts from	Contractors		Phase	EIAOTM, WPCO	
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a	construction site					
	marine dumping licence from EPD on a case-by-case basis.	runoff and land-					
	1	i .				1	1

							T
		based construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	should be treated to the respective effluent standards applicable to foul sewer, storm drains or	impacts from	Contractors		Phase	EIAOTM, WPCO	
	the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	construction site					
		runoff and land-					
		based construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	other purposes as far as practicable. Surplus unpolluted water could be discharged into storm	impacts from	Contractors		Phase	EIAOTM, WPCO	
	drains.	construction site					
		runoff and land-					
		based construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should	Control potential	CEDD's	Work site	Design Stage	ProPECC PN 1/94,	N/A
	be sought during the design stage of the works with regard to the disposal of the sterilizing	impacts from	Contractors		and	EIAOTM, WPCO	
	water. The sterilizing water should be reused wherever practicable.	construction site			Construction		
		runoff and land-			Phase		
		based construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	impacts from	Contractors		Phase	EIAOTM, WPCO	
		construction site					
		runoff and land-					
		based construction					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering,	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	internal decoration, cleaning of works and similar activities should not be discharged into the	impacts from	Contractors		Phase	EIAOTM, WPCO	
	stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should	construction site					
	undergo the removal of settleable solids in a silt removal facility, and pH adjustment as	runoff and land-					
	necessary	based construction					
		1					i

						1	
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there	impacts from	Contractors		Phase	EIAOTM, WPCO	
	is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for	construction site					
	disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving	runoff and land-					
	waters	based construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains,	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	N/A
	should be discharged into foul sewer via grease traps capable of providing at least 20 minutes	impacts from	Contractors		Phase	EIAOTM, WPCO	
	retention during peak flow.	construction site					
		runoff and land-					
		based construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	interceptor with peak storm bypass.	impacts from	Contractors		Phase	EIAOTM, WPCO	
		construction site					
		runoff and land-					
		based construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	possible be located within roofed areas. The drainage in these covered areas should be	impacts from	Contractors		Phase	EIAOTM, WPCO	
	connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained	construction site					
	and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal	runoff and land-					
	in accordance with the Waste Disposal Ordinance.	based construction					
\$5.8.43	Construction work force sewage discharges on site are expected to be connected to the existing	Control potential	CEDD's	Work site	Construction	ProPECC PN 1/94,	^
	trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by	impacts from	Contractors		Phase	EIAOTM, WPCO	
	portable chemical toilets prior to the commission of the on-site sewer system. Appropriate	construction site					
	numbers of portable toilets shall be provided by a licensed contractor to serve the large number	runoff and land-					
	of construction workers over the construction site. The Contractor shall also be responsible for	based construction					
	waste disposal and maintenance practices.						

S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary	impacts from	Contractors		Phase	WDO	
	regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be	accidental spillage					
	observed and complied with for control of chemical wastes.	of chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	۸
	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	impacts from	Contractors		Phase		
	and equipment involving activities with potential for leakage and spillage should only be	accidental spillage					
	undertaken within the areas appropriately equipped to control these discharges.	of chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	*(4)
	Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical	impacts from	Contractors		Phase	WDO	
	Wastes" published under the Waste Disposal Ordinance details the requirements to deal with	accidental spillage					
	chemical wastes. General requirements are given as follows:	of chemicals					
	suitable containers should be used to hold the chemical wastes to avoid leakage or						
	spillage during storage, handling and transport;						
	chemical waste containers should be suitably labelled, to notify and warn the personnel						
	who are handling the wastes, to avoid accidents; and						
	storage area should be selected at a safe location on site and adequate space should be						
	allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	۸
	basis. The contractor should be responsible for keeping the water within the site boundary	impacts from	Contractors		Phase		
	and the neighbouring water free from rubbish.	floating refuse and					
		debris					
Ecologica	al Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team	Land-based	Construction	N/A	
	Use of Quiet Mechanical Plant during the construction phase should be adopted wherever	human and traffic	/ Contractor	works are	Phase		٨
	possible.	disturbance to					
	Hoarding or fencing should be erected around the works area boundaries during the	terrestrial habitat					٨
	<u> </u>						

	construction phase. The hoarding would screen adjacent habitats from construction phase	and wildlife; and					
	activities, reduce noise disturbance to these habitats and also to restrict access to habitats	reduce dust					
	adjacent to works areas by site workers;	generation					
	Regular spraying of haul roads to minimize impacts of dust deposition on adjacent						٨
	vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	Placement of equipment or stockpile in designated works areas and access routes selected	disturbance to		works are	Phase		^
	on existing disturbed land to minimise disturbance to natural habitats.	surrounding					
	Construction activities should be restricted to works areas that should be clearly	habitats					
	demarcated. The works areas should be reinstated after completion of the works.						٨
	Waste skips should be provided to collect general refuse and construction wastes. The						
	wastes should be properly disposed off-site in a timely manner.						٨
	General drainage arrangements should include sediment and oil traps to collect and control						
	construction site run-off.						٨
	Open burning on works sites is illegal, and should be strictly prohibited.						٨
	Measures should also be put into place so that litter, fuel and solvents do not enter the						٨
	nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	The drained tunnel construction method with groundwater inflow control measures would	groundwater			Phase		N/A
	generally be adopted.	inflow					
	During the tunnel excavation, pre-excavation grouting could be adopted to reduce the						N/A
	groundwater inflow and ensure that the tunnel would meet the long term water tightness						
	requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design team,	Within	Prior	N/A	
	Coral translocation	coral	contractor,	reclamation	construction		
	It is recommended to translocate the affected coral colonies, except the locally common		project	areas and pier			۸
	Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable		operator	footprint			
-		•			•	•	

	locations as far as practicable.						
	The coral translocation should be conducted during the winter months (November-March)						^
	in order to avoid disturbance during their spawning period (i.e. July to October).						
	A detailed coral translocation plan with a description on the methodology for						^
	pretranslocation coral survey, translocation methodology, identification/proposal of coral						
	recipient site, monitoring methodology for posttranslocation should be prepared during the						
	detailed design stage.						^
	The coral translocation plan should be subject to approval by relevant authorities (e.g.						
	EPD and AFCD) before commencement of the coral translocation. All the translocation						
	exercises should be conducted by experienced marine ecologist(s) who is/are approved by						
	AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	A coral monitoring programme is recommended to assess any adverse and unacceptable						
	impacts to the translocated coral communities						^
	Information gathered during each posttranslocation monitoring survey should include						
	observations on the presence, survival, health condition and growth of the translocated						^
	coral colonies. These parameters should then be compared with the baseline results						
	collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design Team,	Marine and	Construction	WQO	
S6.8.10	Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	contractor	landbased	phase		N/A
	newly installed seawall and marine works area.	especially on		works area			
	Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	Proper waste and dumping management; and	level; minimize					^
	Standard good-site practice for land-based construction.	the contamination					^
		of wastewater					
		discharge,					
		accidental					
		chemical spillage					

					ı		T
		and construction					
		site runoff to the					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design Team,	Land-based	Construction	N/A	
	Felling of mature trees should be compensated by planting of standard or heavy standard	the vegetation loss	contractor	works area	phase		^
	trees within or in vicinity of the affected area as far as practicable. Such compensatory						
	planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at						
	the temporarily affected area should be reinstated with species similar to the existing						
	condition.						
Fisheries	Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design Team	Marine work	Construction	WQO	
	Deployment of silt curtains around the active stone column installation points, opening of	quality impact,	/ Contractor	area	phase		^
	newly installed seawall and marine works area.	especially on					
		suspended solid					
		level					
Waste Ma	nagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	Nomination of an approved person, such as a site manager, to be responsible for good	management			Phase	Ordinance (Cap.	^
	site practices, arrangements for collection and effective disposal to an appropriate	impacts				354)	
	facility, of all wastes generated at the site;						
	Training of site personnel in site cleanliness, proper waste management and chemical					Land	^
	handling procedures;					(Miscellaneous	
	Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
						0 1: (0 20)	^
	Appropriate measures to minimize windblown litter and dust during transportation of					Ordinance (Cap. 28)	^

	Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.						٨
S8.6.4	 Good Site Practices and Waste Reduction Measures (con't) Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the workforce; 	To achieve waste reduction	Contractor	All work sites	Construction Phase	Waste Disposal Ordinance (Cap. 354) Land	^
	 Proper storage and site practices to minimize the potential for damage or contamination of construction materials; and Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste. 					(Miscellaneous Provisions) Ordinance (Cap. 28)	^
S8.6.5	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor should implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed regularly and updated by the Contractor.	To achieve waste reduction	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005	^
S8.6.6	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in the project and other local concurrent projects as far as possible.	To achieve waste reduction	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005	^
S8.6.7	Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to	To minimize potential adverse	Contractor	All work sites	Construction Phase	-	

	minimize the impacts include:		environmental					
	• Waste, such as soil, should be handled and stored v	well to ensure secure containment, thus	impacts arising					٨
	minimizing the potential of pollution;		from waste					
	Maintain and clean storage areas routinely;		storage					۸
	Stockpiling area should be provided with covers are	nd water spraying system to prevent						۸
	materials from wind-blown or being washed away:	and						
	Different locations should be designated to stockpit	le each material to enhance reuse.						٨
S8.6.8/	Storage, Collection and Transportation of Waste (con'	1)	To minimize	Contractor	All work sites	Construction		
Waste	• Remove waste in timely manner;		potential adverse			Phase		٨
Managem	Waste collectors should only collect wastes prescr	ibed by their permits;	environmental					٨
ent Plan	Impacts during transportation, such as dust and ode	our, should be mitigated by the use of	impacts arising					٨
	covered trucks or in enclosed containers;		from waste					
	Obtain relevant waste disposal permits from the ap	propriate authorities, in accordance	collection and					٨
	with the Waste Disposal Ordinance (Cap. 354), Wa	aste Disposal (Charges for Disposal of	disposal					
	Construction Waste) Regulation (Cap. 345) and the	e Land (Miscellaneous Provisions)						
	Ordinance (Cap. 28);							
	Waste should be disposed of at licensed waste disp	osal facilities/ alternative disposal						٨
	ground approved by RE and DEP; and							۸
	Maintain records of quantities of waste generated,	recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con'	1)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
Waste	• Implementation of trip ticket system with reference	e to DEVB TC(W) No. 6/2010, Trip	potential adverse			Phase	6/2010	۸
Managem	Ticket System for Disposal of Construction & Den	nolition Materials, to monitor disposal	environmental					
ent Plan	of waste and to control fly-tipping at PFRFs or land	dfills. A recording system for the	impacts arising					
	amount of waste generated, recycled and disposed	(including disposal sites) should be	from waste					
	proposed.		collection and					
			disposal					
S8.6.11 -	Sorting of C&D Materials		To minimize	Contractor	All work sites	Construction	DEVB TCW No.	

S8.6.13/	•	Sorting to be performed to recover the inert materials, reusable and recyclable materials	potential adverse			Phase	6/2010	۸
Waste		before disposal off-site.	environmental					
Managem	•	Specific areas shall be provided by the Contractors for sorting and to provide temporary					ETWB TCW No.	^
ent Plan		storage areas for the sorted materials.					33/2002	
	•	The C&D materials should at least be segregated into inert and non-inert materials, in						^
		which the inert portion could be reused and recycled in the reclamation as far as					ETWB TCW No.	
		practicable before delivery to PFRFs. While opportunities for reusing the non-inert					19/2005	
		portion should be investigated before disposal of at designated landfills						
S8.6.17 –	Sea	liments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	•	Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling and		areas with	Phase		^
		relevant, shall be adhered to during boring, excavation, transportation and disposal of	treatment of		sediments			
		sediments or cement stabilization of sediment.	sediment		concern			
	•	A treatment area should be confined for carrying out the cement stabilization mixing and						^
		temporary stockpile. The area should be designed to prevent leachate from entering the						
		ground. Leachate, if any, should be collected and discharged according to the Water						
		Pollution Control Ordinance (WPCO).						
	•	In order to minimise the potential odour / dust emissions during boring, excavation and						^
		transportation of the sediment, the excavated sediments should be kept wet during						
		excavation/boring and should be properly covered when placed on barges/trucks.						
		Loading of the excavated sediment to the barge should be controlled to avoid splashing						
		and overflowing of the sediment slurry to the surrounding water.						
	•	In order to minimise the exposure to contaminated materials, workers should, when						
		necessary, wear appropriate personal protective equipments (PPE) when handling						N/A
		contaminated sediments. Adequate washing and cleaning facilities should also be						
		provided on site.						
S8.6.24 -	Sea	liments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	•	The excavated sediments is expected to be loaded onto the barge and transported to the	handling of		areas with	Phase	34/2002 & Dumping	^

Waste		designated disposal sites allocated by the MFC. The excaveted sediment would be	sediments are in	sediments	at Sea Ordinance	
Managem		disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.	accordance to	concern		
ent Plan	•	Stockpiling of contaminated sediments should be avoided as far as possible. If	statutory			
		temporary stockpiling of contaminated sediments is necessary, the excavated sediment	requirements			^
		should be covered by tarpaulin and the area should be placed within earth bunds or sand				
		bags to prevent leachate from entering the ground, nearby drains and surrounding water				
		bodies. The stockpiling areas should be completely paved or covered by linings in order				
		to avoid contamination to underlying soil or groundwater. Separate and clearly defined				
		areas should be provided for stockpiling of contaminated and uncontaminated materials.				
		Leachate, if any, should be collected and discharged according to the Water Pollution				
		Control Ordinance (WPCO).				
	•	In order to minimise the potential odour / dust emissions during boring and transportation				
		of the sediment, the excavated sediments should be kept wet during excavation/boring				^
		and should be properly covered when placed on barges. Loading of the excavated				
		sediment to the barge should be controlled to avoid splashing and overflowing of the				
		sediment slurry to the surrounding water.				
	•	The barge transporting the sediments to the designated disposal sites should be equipped				
		with tight fitting seals to prevent leakage and should not be filled to a level that would				
		cause overflow of materials or laden water during loading or transportation. In addition,				^
		monitoring of the barge loading shall be conducted to ensure that loss of material does				
		not take place during transportation. Transport barges or vessels shall be equipped with				
		automatic self-monitoring devices as specified by the DEP.				
	•	In order to minimise the exposure to contaminated materials, workers should, when				
		necessary, wear appropriate personal protective equipments (PPE) when handling				
		contaminated sediments. Adequate washing and cleaning facilities should also be				
		provided on site.				
	•	Another possible arrangement for Type 3 disposal is by geosynthetic containment. A				N/A
		geosynthetic containment method is a method whereby the sediments are sealed in				

	geosynthetic containers and, at the disposal site, the containers would be dropped into the						
	designated contaminated mud pit where they would be covered by further mud disposal						
	and later by the mud pit capping, thereby meeting the requirements for fully confined						N/A
	mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure proper	Contractor	All works	Construction	Code of Practice on	
Waste	If chemical wastes are produced at the construction site, the Contractor would be	management of		sites	Phase	the Packaging,	^
Managem	required to register with the EPD as a Chemical Waste Producer and to follow the	chemical waste				Labelling and	
ent Plan	guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of					Storage of Chemical	
	Chemical Wastes. Good quality containers compatible with the chemical wastes should					Wastes	
	be used, and incompatible chemicals should be stored separately. Appropriate labels						
	should be securely attached on each chemical waste container indicating the					Waste Disposal	
	corresponding chemical characteristics of the chemical waste, such as explosive,					(Chemical Waste)	
	flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a					(General)	
	licensed collector to transport and dispose of the chemical wastes, to either the Chemical					Regulation	
	Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the						
	Waste Disposal (Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure proper	Contractor	All works	Construction	Public Health and	#(5)
Waste	General refuse should be stored in enclosed bins or compaction units separate from C&D	management of		sites	Phase	Municipal Services	
Managem	material. A reputable waste collector should be employed by the contractor to remove	general refuse				Ordinance (Cap.	
ent Plan	general refuse from the site, separately from C&D material. Preferably an enclosed and					132)	
	covered area should be provided to reduce the occurrence of 'wind blown' light material.						
Impact on	a Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	Temporarily fenced off buffer zone with allowance for public access (minimum 1 m)	and visual impacts			Phase	AMO	^
	should be provided;						
	The open yard in front of the temple should be kept as usual for annual Tin Hau festival;						^
	Monitoring of vibration impacts should be conducted when the construction works are						^
		I				1	1

	less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits on	
	Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of	indirect vibration			Phase	Heritage Buildings	۸
	5mm/s measured inside the historical buildings;	impact				by CEDD; GCHIA;	
	Monitoring of vibration should be carried out during construction phase.					AMO.	^
	Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau						^
	Temple as well.						
	A proposal with details for the mitigation measures and monitoring of impacts on built						^
	heritage shall be submitted to AMO for comments before commencement of work.						
Built	Established Alert, Alarm and Action Level for the monitoring parameters.	To prevent	NE/2015/01	Tin Hau	Construction	Vibration Limits on	٨
Heritage	To increase the instrumentation monitoring and reporting frequency.	vibration impacts		Temple	Phase	Heritage Buildings	^
Mitigation	To propose detailed action plan or contingency plan for the Engineer's approval when					by CEDD; GCHIA;	^
Plan	AAA Level is reached or exceeded.					AMO.	
Landscap	e and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid	Avoid impact on	CEDD (via	General	Construction	N/A	^
10.8.1/	impacts on adjacent landscape.	adjacent landscape	Contractor)		planning and		
Landscape		areas			during		
Mitigation					construction		
Plan					period		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise duration	CEDD (via	N/A	Construction	N/A	^
10.8.1/		of impact	Contractor)		planning		
Landscape							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be	To allow re-use of	CEDD (via	General	Site clearance	As per the Particular	۸

Landscape	Specification shall include storage and reuse of topsoil as appropriate.						
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	protected during construction. Detailed Tree Protection Specification shall be provided in the	loss	Contractor)	approved	and throughout	and as per tree	
Landscape	Contract Specification, under which the Contractor shall be required to submit, for approval, a			Tree Removal	construction	protection measures	
Mitigation	detailed working method statement for the protection of trees prior to undertaking any works			Application(s	period	in Particular	
Plan	adjacent to all retained trees, including trees in contractor's works areas. (Tree protection)		Specification	
	measures will be detailed at Tree Removal Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	possible, trees should be transplanted direct to permanent locations rather than temporary	preservation of	Contractor)	approved		and as per tree	
Landscape	holding nurseries. A detailed tree transplanting specification shall be provided in the Contract	existing trees		Tree Removal		protection measures	
Mitigation	Specification and sufficient time for preparation shall be allowed in the construction			Application(s		in Particular	
Plan	programme.)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1/	hoardings. Trees shall be capable of reaching a height >10m within 10 years.	screening of the	Contractor)	Interchange	construction		
Landscape		works		and edge of	period		
Mitigation				Road P2			
Plan				landscape			
				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landscape					period		
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1/	working periods.	intrusion	Contractor)		construction		

			I .				
Landscape					period		
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of	CEDD (via	Project site	Excretion of site	N/A	^
10.8.1/	surrounding area	visual intrusion	Contractor)	Boundary	hoarding		
Landscape							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/		visual intrusion	Contractor)	structures	construction		
Landscape		and integration			stage		
Mitigation		with environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landscape		water courses and		TKO tunnel	period		
Mitigation		water bodie		portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at TKO	stages		
				and Lam Tin			
				and			
				permanent			
				reclamation			

				for TKO			
				Interchange			
				slip roads and			
				Road P2			
Landfill (Gas Hazard (Design and Construction Phase)						
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related hazards,	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	^
	should be present on site throughout the groundworks phase. The Safety Officer should be	workers from		within the Sai	phase	Hazard Assessment	
	provided with an intrinsically safe portable instrument, which is appropriately calibrated and	landfill gas		Tso Wan		Guidance Note	
	able to measure the following gases in the ranges indicated below:	hazards		Landfill			
	Methane 0-100% LEL and 0100% v/v			Consultation			
	Carbon dioxide 0-100%			Zone			
	Oxygen 0-21%						
S11.5.10	Safety Measures	Protect the	Contractor	Project sites	Construction	EPD's Landfill Gas	
S11.5.25	For staff who work in, or have responsibility for "at risk" area, such as all excavation	workers from		within the Sai	phase	Hazard Assessment	٨
	workers, supervisors and engineers working within the Consultation Zone, should receive	landfill gas		Tso Wan		Guidance Note	
	appropriate training on working in areas susceptible to landfill gas, fire and explosion	hazards		Landfill		Labour	
	hazards.			Consultation		Department's Code	
	An excavation procedure or code of practice to minimize landfill gas related risk should			Zone		of Practice for	۸
	be devised and carried out.					Safety and Health at	
	No worker should be allowed to work alone at any time in or near to any excavation.					Work in Confined	۸
	At least one other worker should be available to assist with a rescue if needed.					Space	
	Smoking, naked flames and all other sources of ignition should be prohibited within 15m						
	of any excavation or ground-level confined space. "No smoking" and "No naked						٨
	flame" notices should be posted prominently on the construction site and, if necessary,						
	special areas should be designed for smoking.						
	Welding, flame-cutting or other hot works should be confined to open areas at least 15m						

	from any trench or excavation.
•	Welding, flame-cutting or other hot works may only be carried out in trenches or
	confined spaces when controlled by a "permit to work" procedure, properly authorized
	by the Safety Officer (or, in the case of small developments, other appropriately qualified
	person).
•	The permit to work procedure should set down clearly the requirements for continuous
	monitoring for methane, carbon dioxide and oxygen throughout the period during which
	the hot works are in progress. The procedure should also require the presence of an
	appropriately qualified person, in attendance outside the 'confined area', who should be
	responsible for reviewing the gas measurements as they are made, and who should have
	executive responsibility for suspending the work in the event of unacceptable or
	hazardous conditions. Only those workers who are appropriately trained and fully
	aware of the potentially hazardous conditions which may arise should be permitted to
	carry out hot works in confined areas.
•	Where there are any temporary site offices, or any other buildings located within the Sai
	Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to
	accumulate landfill gas, then they should either be located in an area which has been
	proven to be free of landfill gas (by survey using portable gas detectors); or be raised
	clear of the ground by a minimum of 500mm. This aims to create a clear void under the
	structure which is ventilated by natural air movement such that emission of gas from the
	ground are mixed and diluted by air.
•	Any electrical equipment, such as motors and extension cords, should be intrinsically
	safe. During piping assembly or conduiting construction, all valves/seals should be
	closed immediately after installation. As construction progresses, all valves/seals
	should be closed to prevent the migration of gases through the pipeline/conduit. All
	piping /conduiting should be capped at the end of each working day.
•	During construction, adequate fire extinguishing equipment, fire-resistant clothing and
	breathing apparatus (BA) sets should be made available on site.

	gas before any man enters into the area.						
	• For excavations deeper than 1m , measurements should be carried out:						
	• at the ground surface before excavation commences;-						^
	• immediately before any worker enters the excavation;						
	• at the beginning of each working day for the entire period the excavation remains						
	open; and						
	• periodically throughout the working day whilst workers are in the excavation.						
	• For excavations between 300mm and 1m deep , measurements should be carried out:						
	 directly after the excavation has been completed; and 						
	• periodically whilst the excavation remains open.						^
	• For excavations less than 300mm deep, monitoring may be omitted, at the discretion of						
	the Safety Officer or other appropriately qualified person.						
	• Depending on the results of the measurements, actions required will vary and should be						^
	set down by the Safety Officer or other appropriately qualified person.						
	• The exact frequency of monitoring should be determined prior to the commencement of						^
	works, but should be at least once per day, and be carried out by a suitably qualified or						
	qualified person before starting the work of the day. Measurements shall be recorded						^
	and kept as a record of safe working conditions with copies of the site diary and						
	submitted to the Engineer for approval. The Contractor may elect to carry out						
	monitoring via an automated monitoring system.						
S11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill	construction stage	Contractor	Project sites	Construction	EPD's Landfill Gas	N/A
	Consultation Zone should be minimized by suitable precautionary measures recommended in	within the Sai Tso		within the Sai	phase	Hazard Assessment	
	Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	Wan		Tso Wan		Guidance Note	
		Protect the		Landfill			
		workers from		Consultation			
		landfill gas		Zone			
		hazards					

<u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

(P)	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an			Stockpiles of more than 20 bags should be covered by tarpaulin (impervious fabric) / be removed.
*(1) S.3.8.7 • Ev cer (P) im	cement or dry pulverised fuel ash (PFA) should be covered entirely by			
cei (Pi im	cement or dry pulverised fuel ash (PFA) should be covered entirely by			
*(2) • Protection of expendence of the control of	area sheltered on the top and the 3 sides. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods.	NE/2015/01	Construction of Lam Tin Interchange	Surface was dry and dust kept emitting from loading and unloading of excavated materials in Portion III.

		arises due to construction of the TKO- LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-			
Waste / Cl	hemical Manage	DSS.			
*(4)	S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to	NE/2015/01	Portion V A and IVC	 The cap of excavator shall be provided to prevent accidental oil leakage. The drip tray of chemical storage area shall be replace; related labels shall be provided and updated The drip tray under idled excavator should have its holes filled up to prevent oil leakage

		T T	
		deal with chemical wastes. General	Rubbish and C&D materials should be cleaned regularly and be sorted
		requirements are given as follows:	and covered with lids to avoid accumulation and enhance cleanliness.
		- suitable containers should be used to	
		hold the chemical wastes to avoid	
		leakage or spillage during storage,	
		handling and transport;	
		- chemical waste containers should be	
		suitably labelled, to notify and warn	
		the personnel who are handling the	
		wastes, to avoid accidents; and	
		- storage area should be selected at a	
		safe location on site and adequate	
		space should be allocated to the storage	
		area.	
#(5)	S8.6.27	General refuse should be stored in	
		enclosed bins or compaction units	
		separate from C&D material. A	
		reputable waste collector should be	
		employed by the contractor to remove	
		general refuse from the site, separately	
		from C&D material. Preferably an	
		enclosed and covered area should be	
		provided to reduce the occurrence of	
		'wind blown' light material.	

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2015/02

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
Air Quality I	mpact						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the	Contractor	All Active	Construction	APCO	^
		dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall / mixing area	To minimize the	Contractor	Barging Points	Construction	APCO	^
	in Work Area A, provision of water spraying and flexible dust curtains	dust impact			phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and	To minimize the	Contractor	All	Construction	APCO and Air	^
	good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads,			Work Sites		(Construction	^
	particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close to ASRs.						^
	- Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions.						
	Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.						^

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material						
	storage piles near ASRs.						
	- Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.						^
	- Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.						
	- Provision of wind shield and dust extraction units or similar dust mitigation measures at the						^
	loading area of barging point, and use of water sprinklers at the loading area where dust generation						
	is likely during the loading process of loose material, particularly in dry seasons/ periods.						۸
	- Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins						
	a road, streets or other accessible to the public except for a site entrance or exit.						*(1)
	- Imposition of speed controls for vehicles on site haul roads.						
	- Where possible, routing of vehicles and positioning of construction plant should be at the						
	maximum possible distance from ASRs						
	- Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered						^
	entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.						
	- Instigation of an environmental monitoring and auditing program to monitor the construction						
	process in order to enforce controls and modify method of work if dusty conditions arise.						^
							^
							^
							۸

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	- All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	- Only well-maintained plant should be operated on-site and plant should be serviced regularly to	emission from		sites			^
	avoid emission of black smoke.	construction					
	- All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur	vehicles and					^
	diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air	Contractor	All	Construction	• APCO	٨
		pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during transportation offsite.	Control potential	Contractor	NE/2015/02	Construction	EIAO, APCO	^
Management	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be dampened by	impacts from			stage		
Plan	spraying water to suppress dust generation during mixing operation	Cement s/s					^
	- Subject to the odour intensity and instruction by the <i>Supervisor</i> , odour suppressant will be applied	process					^
	over the marine sediments via water blaster to minimize the impact.						
	- The unloading / loading areas of the marine sediments will be barricaded with minimum $3.5m\ high$						^
	barrier facing the nearest resident to minimize the dust impact. The mixing area and curing area						
	will be enclosed with 3-sides and roof to minimize the dust impact.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- The mixing area will be established with retractable roof on top and with corrugated steel sheet at						^
	side enclosure by 5.4m high concrete block walls to prevent spread of dust during the mixing						
	process with cement.						^
	- Handling and mixing of cement will follow the Air Pollution Control (Construction Dust)						^
	Regulation to avoid fugitive dust emissions.						
	- The discharge of cement from silo hopper to the concrete mixer truck will be 4-side enclosed by						
	Tarpaulin to minimize the dust emission.						
	- The mixing of cement and water will be confined in the concrete mixer truck until the pre-mixing						^
	completed. The hydrated cement will then be unloaded to the mixing area to mix with the						
	sediment.						^
	- Treated marine sediments in the stockpiling area shall be covered by tarpaulin sheets or similar						
	material except the operating earthwork front.						^
	- The soil filled platform is covered by a layer of sand fill material, and frequent water spray will be						
	carried out on the sand surface for dust control.						
	- Any excessive air emissions will be inspected and recorded.						^
	- Sediment height of treated marine sediment being kept 0.9 m below the top level of concrete block						^
	wall during rainy season.						
Noise Impact	t (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck, Mobile	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile Crusher,	construction			phase		
	Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance, Hydraulic Vibratory	noise impact					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	Lance and Piling (Vibration Hammer). Use of full enclosure for Air Compressor, Compressor, Bar	arising from the					
	Bender, Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump and	Project at the					
	Concrete Pump.	affected NSRs					
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	*(2)
Mitigation	according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	^
	- Only well-maintained plant should be operated on-site and plant should be serviced regularly	construction	Proponent		Period		^
	during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be properly	arising from the					^
	maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be shut down between						^
	works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that						٨
	the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever practicable, in						٨
	screening noise from on-site construction activities.						

Deployment

Maintenance of silt curtain should be provided.

App N2 - IN	IPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION N	MEASURES				Janı	ıary 2020
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site near	Construction	EIAO-TM, NCO	N/A
		construction		school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Qualit	ty Impact (Construction Phase)	1	1		•		
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m³, with fine	Control potential	CEDD's	Work site	Construction	EIAO-TM,	N/A
	content of 25% or less	impacts from	Contractors		Phase	WPCO	
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted	Control potential	CEDD's	Work site	Construction	EIAO-TM,	N/A
	for construction of seawall foundation. During the stone column installation (also including the	impacts from	Contractors		Phase	WPCO	
	installation of steel cellular caisson), silt curtain shall be employed around the active stone column	filling activities					
	installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m	Control potential	CEDD's	Work site	Construction	EIAO-TM,	N/A
	for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m	impacts from	Contractors		Phase	WPCO	
	wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more	filling activities					
	than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³ per						
	trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out						
	behind the seawall with the use of single silt curtain at the marine access.						
Silt Curtain	- Silt curtains should be deployed properly to surround the works area.	Control potential	Contractor	NE/2015/02	Construction	EIAO	^

impacts from

stage

lanuary	2020
January	ZUZU

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
Plan	- Sufficient stock of silt curtain should be provided on site.	marine woroks					۸
Sediment	- Loading of barges and hoppers will be controlled to prevent splashing of dredged materials into the	Control potential	Contractor	NE/2015/02	Construction	EIAO, WPCO	^
Management	surrounding water. Barges or hoppers will not be filled to a level that will cause the overflow of	impacts from			stage		
Plan	materials or pollute water during loading or transportation.	Cement s/s					
	- Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material.	process					
	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper						٨
	dredgers before the vessel is moved.						
	- Monitoring of the barge loading shall be conducted to ensure that loss of material does not take						
	during transportation.						٨
	- Transport barges or vessels shall be equipped with automatic self-monitoring devices.						
	- Vehicles containing any untreated / treated marine sediments will be suitably covered to limit						٨
	potential dust emissions or potential contaminated wastewater run-off, and truck bodies and						
	tailgates will be sealed to prevent any discharge during transport or wet conditions.						٨
	- The leachate from the untreated marine sediment will be collected and treated in the mixing pool						
	for cement s/s treatment.						
	- A 300mm diameter U-channel will be constructed along the perimeter of the cement s/s treatment						
	facility to collect the run-off, if any, shall be collected and discharged according to the Water						٨
	Pollution Control Ordinance (WPCO). Cleaning for the u-channel and desilting pits shall be						
	conducted on weekly basic.						٨
	- The stockpile area of treated marine sediment will be surrounded by the perimeter concrete block						
	walls with geotextile membranes installed at the inner face of the concrete block walls. The types						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	of perimeter wall can be used interchangeably. The Structural Feasibility of the perimeter wall for						
	the changes of height of the stockpile had been checked and certified by ICE.						
	- The mixing areas will be completely paved or covered by linings in order to avoid contamination						^
	to underlying soil or groundwater and will be confined by partition concrete block walls for						
	carrying out the mixing and temporary stockpile of treated sediment.						
							^
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control potential	CEDD's	Work site	Construction	EIAO-TM,	
	- all marine works should adopt the environmental friendly construction methods as far as	impacts from	Contractors		Phase	WPCO, Waste	^
	practically possible including the use of cofferdams to cover the construction area to sepFarate the	filling activities				Disposal	
	construction works from the sea;	and marine-				Ordinance	^
	- floating single silt curtain shall be employed for all marine works;	based				(WDO)	^
	- all vessels should be sized so that adequate clearance is maintained between vessels and the seabed	construction					
	in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel						
	movement or propeller wash;						^
	- all hopper barges should be fitted with tight fitting seals to their bottom openings to prevent						
	leakage of material;						^
	- excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is						
	moved;						٨

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed						
	by wave action;						^
	- loading of barges and hoppers should be controlled to prevent splashing of filling material into the						
	surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow						
	of materials or polluted water during loading or transportation;						^
	- any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes;						
	- construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter						
	to be present on the water within the site or dumping grounds; and						^
	- before commencement of the reclamation works, the holder of Environmental Permit has to submit						
	plans showing the phased construction of the reclamation, design and operation of the silt curtain.						N/A
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be submitted for	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	EPD agreement before commencement of construction phase with due consideration of good site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	practices.	filling activities				WPCO	
		and marine based					
		construction					
ERR S5.6.1	To minimize water quality impact arising from the dredging and filling works for Reclamation for Road	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary barrier shall first be	dredging and				WPCO	^
	constructed to a height above the high water mark to completely enclose the works site (without	filling works for					
	any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works site shall not be	Road P2					^
	removed before completion of all dredging and underwater filling works.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Water quality sampling and testing shall be carried out to demonstrate that the water quality						
	inside the enclosed barrier is comparable to the ambient or baseline levels prior to the removal of						N/A
	the fully enclosed barrier.						
	- Silt curtains shall be deployed for the installation and removal of the temporary barrier and at the						
	double water gates marine access opening during its operation.						^
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and prevent high	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	loading of SS from entering the marine environment. Proper site management is essential to minimise	impacts from	Contractors		Phase	1/94, EIAOTM,	
	surface water runoff, soil erosion and sewage effluents.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	٨
	engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	impacts from	Contractors		and	1/94, EIAOTM,	
		construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN	impacts from	Contractors		Phase	1/94, EIAOTM,	
	1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be	construction site				WPCO, TM-DSS	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable	runoff and land-					
	impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	based					
	construction site should be controlled to comply with the standards for effluents discharged into the	construction					
	corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	runoff, and erosion. Construction runoff related impacts associated with the above ground construction	impacts from	Contractors		Phase	1/94, EIAOTM,	
	activities can be readily controlled through the use of appropriate mitigation measures which include:	construction site				WPCO	
	- use of sediment traps; and	runoff and land-					
	- adequate maintenance of drainage systems to prevent flooding and overflow.	based					N/A
		construction					٨
S5.8.9	Construction site should be provided with adequately designed perimeter channel and pretreatment	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and	impacts from	Contractors		Phase	1/94, EIAOTM,	
	surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to	construction site				WPCO	
	facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent	runoff and land-					
	drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates.	based					
	The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of	construction					
	ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works during the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	rainy season (April to September). All exposed earth areas should be completed as soon as possible after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where	construction site				WPCO	
	practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year	runoff and land-					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	based					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
		construction					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	approximately 6 to 8m³ capacity, are recommended as a general mitigation measure which can be used	impacts from	Contractors		Phase	1/94, EIAOTM,	
	for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple	construction site				WPCO	
	inputs from a variety of sources and particularly suited to applications where the influent is pumped.	runoff and land-				S5	
		based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	protection should be carried out immediately after the final surfaces are formed to prevent erosion	impacts from	Contractors		Phase	1/94, EIAOTM,	
	caused by rainstorms. Appropriate drainage like intercepting channels should be provided where	construction site				WPCO	
	necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out	impacts from	Contractors		Phase	1/94, EIAOTM,	
	from trenches or foundation excavations should be discharged into storm drains via silt removal	construction site				WPCO	
	facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	50m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken	impacts from	Contractors		Phase	1/94, EIAOTM,	
	to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	construction site				WPCO	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
		runoff and land-					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and temporarily	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	sealed so as to prevent silt, construction materials or debris being washed into the drainage system and	impacts from	Contractors		Phase	1/94, EIAOTM,	
	storm runoff being directed into foul sewers. Discharge of surface run-off into foul sewers must always	construction site				WPCO	
	be prevented in order not to unduly overload the foul sewerage system.	runoff and land-					
		based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(5)
	rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface	construction site				WPCO	
	runoff during storm events, especially for areas located near steep slopes.	runoff and land-					
		based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	of oils and grease into the storm water drainage system after accidental spillages. The interceptor	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should have a bypass to prevent flushing during periods of heavy rain.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

be regularly inspected and maintained to ensure proper and efficient operation at all times and

App N2 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES January 2020 EIA Ref. / EP Objectives of Who to Location of What Status **Recommended Mitigation Measures** When to Submission the implement the measures **Implement** requirements or recommended the the measures? standards for Measures & measures? the measures to **Main Concerns** achieve? to address S5.8.18 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, CEDD's Work site Construction ProPECC PN Control potential 1/94. EIAOTM. debris and the like is deposited by them on roads. An adequately designed and located wheel washing impacts from Contractors Phase WPCO bay should be provided at every site exit, and washwater should have sand and silt settled out and construction site runoff and landremoved at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheelwash bay to the public road should be paved with based sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to construction public roads and drains. S5.8.19 CEDD's Work site ProPECC PN Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit Control potential Construction should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are Phase 1/94, EIAOTM, impacts from Contractors WPCO functioning properly at all times. construction site runoff and landbased construction S5.8.20 CEDD's ProPECC PN Work site It is recommended that on-site drainage system should be installed prior to the commencement of other Control potential Construction construction activities. Sediment traps should be installed in order to minimise the sediment loading of Contractors Phase 1/94, EIAOTM, impacts from the effluent prior to discharge into foul sewers. There shall be no direct discharge of effluent from the WPCO construction site site into the sea. runoff and landbased construction S5.8.21 All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should Control potential CEDD's Work site Construction ProPECC PN be adequately designed for the controlled release of storm flows. All sediment control measures should Contractors Phase 1/94, EIAOTM, impacts from

construction site

WPCO

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	particularly following rain storms. The temporarily diverted drainage should be reinstated to its original	runoff and land-					
	condition when the construction work has finished or the temporary diversion is no longer required.	based					
		construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from	impacts from	Contractors		Phase	1/94, EIAOTM,	
	reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater discharges	Control potential	CEDD's	Work site	Construction	EIAO-TM,	^
	and the existing or planned seawater intakes during construction and operational phases	impacts from	Contractors		Phase	WPCO, TMDSS	
		construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground water	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	level in basement or foundation construction, and groundwater seepage pumped out of tunnels or	impacts from	Contractors		Phase	1/94, EIAOTM,	
	caverns under construction should be discharged into storm drains after the removal of silt in silt	construction site				WPCO	
	removal facilities.	runoff and land-					
		based					
		construction					

App N2 - IN	IPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION N	IEASURES				January 2020		
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	
Submission		the	implement	the measures	Implement	requirements or		
		recommended	the		the measures?	standards for		
		Measures &	measures?			the measures to		
		Main Concerns				achieve?		
		to address						
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel. During the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A	
S5.8.27 &	tunnel excavation, the inflow rate of groundwater into the tunnel will be measured during the	impacts from	Contractors		Phase	1/94, EIAOTM,		
Table 5.18	excavation. The groundwater levels above the tunnel will also be monitored by piezometers. If the	construction site				WPCO, Buildings		
	inflow rate exceeds the pre-determined groundwater control criteria or the groundwater drawdown	runoff and land-				Ordinance		
	exceeds the required limit, pre-excavation grouting will be required to reduce the groundwater inflow.	based						
	No significant change of groundwater levels would therefore be expected. Any chemicals/ foaming	construction						
	agents which would be entrained to the groundwater should be biodegradable and non-toxic throughout							
	the tunnel construction. Potential groundwater quality impact would be minimal as the used material is							
	non-toxic and biodegradable. No adverse groundwater quality would therefore be expected.							
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to preserve the							
	groundwater levels at all times during the tunnel construction are set out in Table 5.18.							
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A	
	practicable be recirculated after sedimentation. When there is a need for final disposal, the wastewater	impacts from	Contractors		and	1/94, EIAOTM,		
	should be discharged into storm drains via silt removal facilities.	construction site			Construction	WPCO		
		runoff and land-			Phas			
		based						
		construction						
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and similar equipment	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨	
S5.8.31	should whenever practicable be recycled. The discharge of wastewater should be kept to a minimum.	impacts from	Contractors		Phase	1/94, EIAOTM,		
	To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be	construction site				WPCO		
	provided with an online standby pump of adequate capacity and with automatic alternating devices.	runoff and land-						
	Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in	based						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater	construction					
	into storm drains will require more elaborate treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	debris and the like is deposited by them on roads. A wheel washing bay should be provided at every	impacts from	Contractors		Phase	1/94, EIAOTM,	
	site exit if practicable and wash-water should have sand and silt settled out or removed before	construction site				WPCO	
	discharging into storm drains. The section of construction road between the wheel washing bay and the	runoff and land-					
	public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off	based					
	from entering public road drains.	construction					
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned and reused	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry	impacts from	Contractors		Phase	1/94, EIAOTM,	
	may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD	construction site				WPCO	
	on a case-by-case basis.	runoff and land-					
		based					
		construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters	impacts from	Contractors		Phase	1/94, EIAOTM,	
	as set out in the WPCO Technical Memorandum on Effluent Standards.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for other	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	purposes as far as practicable. Surplus unpolluted water could be discharged into storm drains.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
\$5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing	impacts from	Contractors		and	1/94, EIAOTM,	
	water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should be sealed to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent building debris, soil, sand etc. from entering public sewers/drains.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting, plastering, internal	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	decoration, cleaning of works and similar activities should not be discharged into the stormwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal	construction site				WPCO	
	of settleable solids in a silt removal facility, and pH adjustment as necessary	runoff and land-					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul	construction site				WPCO	
	sewers or treated to a standard acceptable to storm drains and the receiving waters	runoff and land-					
		based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be discharged into foul sewer via grease traps capable of providing at least 20 minutes retention during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptor	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	located within roofed areas. The drainage in these covered areas should be connected to foul sewers via	impacts from	Contractors		Phase	1/94, EIAOTM,	
	a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil	construction site				WPCO	
	should be collected and stored for recycling or disposal in accordance with the Waste Disposal	runoff and land-					
	Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the existing trunk	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	sewer or sewage treatment facilities. The construction sewage may need to be handled by portable	impacts from	Contractors		Phase	1/94, EIAOTM,	
	chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable	construction site				WPCO	
	toilets shall be provided by a licensed contractor to serve the large number of construction workers over	runoff and land-					
	the construction site. The Contractor shall also be responsible for waste disposal and maintenance	based					
	practices.	construction					
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced from the	Control potential	CEDD's	Work site	Construction	EIAO-TM,	۸
	construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in	impacts from	Contractors		Phase	WPCO, WDO	
	particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied	accidental					
	with for control of chemical wastes.	spillage of					
		chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a bunded area,	Control potential	CEDD's	Work site	Construction	EIAO-TM,	۸
	and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving	impacts from	Contractors		Phase	WPCO	
	activities with potential for leakage and spillage should only be undertaken within the areas	accidental					
	appropriately equipped to control these discharges.	spillage of					
		chemicals					

App N2 - IN	IPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION N	IEASURES			ı	Janu	ary 2020
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance.	Control potential	CEDD's	Work site	Construction	EIAO-TM,	
	The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under	impacts from	Contractors		Phase	WPCO, WDO	
	the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General	accidental					
	requirements are given as follows:	spillage of					
	- suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during	chemicals					
	storage, handling and transport;						^
	- chemical waste containers should be suitably labelled, to notify and warn the personnel who are						
	handling the wastes, to avoid accidents; and						^
	- storage area should be selected at a safe location on site and adequate space should be allocated to						
	the storage area.						٨
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily basis.	Control potential	CEDD's	Work site	Construction	EIAO-TM,	٨
	The contractor should be responsible for keeping the water within the site boundary and the	impacts from	Contractors		Phase	WPCO,	
	neighbouring water free from rubbish.	floating refuse					
		and debris					
Ecological In	npact	•	1	•	1		ı
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design Team	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted wherever possible.	human and traffic	/ Contractor	works are	Phase		^
	- Hoarding or fencing should be erected around the works area boundaries during the construction	disturbance to					
	phase. The hoarding would screen adjacent habitats from construction phase activities, reduce	terrestrial habitat					٨
	noise disturbance to these habitats and also to restrict access to habitats adjacent to works areas by	and wildlife; and					
	site workers;	reduce dust					

Janu	ary	2020

III	II LEMENTATION SCHEDOLL AND RECOMMENDED MITTOATION W					Jane	lary 2020
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Regular spraying of haul roads to minimize impacts of dust deposition on adjacent vegetation and	generation					
	habitats during the construction activities						^
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
30.6.3		disturbance to	Contractor	works are	Phase	IN/A	^
	- Placement of equipment or stockpile in designated works areas and access routes selected on			works are	Phase		
	existing disturbed land to minimise disturbance to natural habitats.	surrounding					^
	- Construction activities should be restricted to works areas that should be clearly demarcated. The	habitats					^
	works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes. The wastes should						^
	be properly disposed off-site in a timely manner.						
	General drainage arrangements should include sediment and oil traps to collect and control						^
	construction site run-off.						
	Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter the nearby						^
	watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures would generally	groundwater			Phase		N/A
	be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce the groundwater						N/A
	inflow and ensure that the tunnel would meet the long term water tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design team,	Within	Prior	N/A	

January	202	0
---------	-----	---

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	Coral translocation	coral	contractor,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally common <i>Oulastrea</i>		project	areas and pier			^
	crispata, within the reclamation area and bridge footprint to the other suitable locations as far as		operator	footprint			
	practicable.						
	- The coral translocation should be conducted during the winter months (November-March) in order						^
	to avoid disturbance during their spawning period (i.e. July to October).						
	- A detailed coral translocation plan with a description on the methodology for pretranslocation coral						۸
	survey, translocation methodology, identification/proposal of coral recipient site, monitoring						
	methodology for posttranslocation should be prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities (e.g. EPD and						
	AFCD) before commencement of the coral translocation. All the translocation exercises should be						
	conducted by experienced marine ecologist(s) who is/are approved by AFCD prior to						^
	commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to						
	the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should include observations						۸
	on the presence, survival, health condition and growth of the translocated coral colonies. These						
	parameters should then be compared with the baseline results collected from the pre-translocation						۸
	survey.						

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
S6.8.9 S6.8.10	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	wqo	
	- Deployment of silt curtains around the active stone column installation points, opening of newly	quality impact,	Team,	landbased	phase		N/A
	installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize					^
	- Standard good-site practice for land-based construction.	the					^
		contamination of					^
		wastewater					
		discharge,					
		accidental					
		chemical spillage					
		and construction					
		site runoff to the					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy standard trees	the vegetation	Team,	works area	phase		^
	within or in vicinity of the affected area as far as practicable. Such compensatory planting for	loss	contractor				
	trees should be provided with at least a 1:1 ratio. In addition, vegetation at the temporarily						
	affected area should be reinstated with species similar to the existing condition.						
Fisheries Im	pact	<u> </u>	,		,		
S7.7.3	Measure to Control Water Quality Impact	Control water	Design Team	Marine work	Construction	wqo	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Deployment of silt curtains around the active stone column installation points, opening of newly	quality impact,	/ Contractor	area	phase		^
	installed seawall and marine works area.	especially on					
		suspended solid					
		level					
Waste Manag	gement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work sites	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for good site	management			Phase	Ordinance (Cap.	^
	practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes	impacts				354)	
	generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and chemical handling					Land	^
	procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation of waste by					Ordinance (Cap.	^
	either covering trucks or by transporting wastes in enclosed containers; and					28)	
	- Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.						^
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips or stockpiles to	reduction			Phase	Ordinance (Cap.	^
	enhance reuse or recycling of materials and their proper disposal;					354)	
	- Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to						^
	be segregated from other general refuse generated by the workforce;					Land	
	- Proper storage and site practices to minimize the potential for damage or contamination of					(Miscellaneous	^
	construction materials; and					Provisions)	

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Plan and stock construction materials carefully to minimize amount of waste generated and avoid					Ordinance (Cap.	^
	unnecessary generation of waste.					28)	
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB	reduction			Phase	19/2005	^
	TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage,						
	collection, treatment and disposal of different categories of waste to be generated from the construction						
	activities. Such a management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be						
	submitted to the Engineer for approval. The Contractor should implement the waste management						
	practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed						
	regularly and updated by the Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve waste	Contractor	All work sites	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects as far as	reduction			Phase	19/2005	^
	possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work sites	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to minimize the	potential adverse			Phase		
	impacts include:	environmental					
	- Waste, such as soil, should be handled and stored well to ensure secure containment, thus	impacts arising					^
	minimizing the potential of pollution;	from waste					
	- Maintain and clean storage areas routinely;	storage					٨
	- Stockpiling area should be provided with covers and water spraying system to prevent materials						^
	from wind-blown or being washed away; and		_				

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Different locations should be designated to stockpile each material to enhance reuse.						^
S8.6.8/ Waste	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction		
Management	- Remove waste in timely manner;	potential adverse			Phase		^
Plan	- Waste collectors should only collect wastes prescribed by their permits;	environmental					^
	- Impacts during transportation, such as dust and odour, should be mitigated by the use of covered	impacts arising					^
	trucks or in enclosed containers;	from waste					
	- Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the	collection and					^
	Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction	disposal					
	Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative disposal ground						
	approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						^
S8.6.9/ Waste	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
Management	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip Ticket	potential adverse			Phase	6/2010	^
Plan	System for Disposal of Construction & Demolition Materials, to monitor disposal of waste and to	environmental					
	control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated,	impacts arising					
	recycled and disposed (including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work sites	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable materials before	potential adverse			Phase	6/2010	^

immobilize metal contaminants, it is capable to treat the exceedance on lead. The stabilized

EIA Ref. / EP		EMENTATION SCHEDULE AND RECOMMENDED MITIGATION N Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		Accommended Mangadori Medicales	the	implement	the measures	Implement	requirements or	Status
Submission			recommended	the	the measures	the measures?	standards for	
			Measures &	measures?		the measures.	the measures to	
			Main Concerns	measures.			achieve?	
			to address				acmeve:	
Waste		disposal off-site.	environmental					
	_	•	Chvironmentar				ETWB TCW No.	
Management	-	Specific areas shall be provided by the Contractors for sorting and to provide temporary storage						
Plan		areas for the sorted materials.					33/2002	
	-	The C&D materials should at least be segregated into inert and non-inert materials, in which the						^
		inert portion could be reused and recycled in the reclamation as far as practicable before delivery					ETWB TCW No.	
		to PFRFs. While opportunities for reusing the non-inert portion should be investigated before					19/2005	
		disposal of at designated landfills						
S8.6.15 –	Sea	liments	To ensure the	NE/2015/02	All works areas	Construction	RBRG	
S8.6.16/	-	Sediment encountered may be reused as filling material on-site after cement stabilization. Cement-	sediment to be		with sediments	Phase		N/A
Waste		stabilization process is undertaken by mixing sediment and cement and will convert sediment to	disposed of in an		concern			
Management		earth filling material. The treated sediment has to comply with Risk-Based Remediation Goals	authorized and					
Plan		(RBRGs) before being reused in order not to raise any land contamination issue. The adoption of	least impacted					
		RBRGs to assess stabilized sediment has been proposed in the current C&DMMP. MFC has no	way					
		adverse comment on the current C&DMMP. The sediment quality indicates that all sediments						
		comply with most stringent RBRGs except for one sediment sample (TKO-EBH501 3-3.95m) with						
		lead exceeding the RBRG. Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical						
		screening results do not indicate sediment as contaminated soil. It is anticipated that reuse of						
		sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to land contamination.						
	-	Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-EBH501 33.95m) as						
		filling material after cement stabilization is also a suitable treatment. Sediment quality indicates the						
		sediment sample (TKO-EBH501 3-3.95m) exceed RBRG for lead. While cement stabilization will						

N/A

January	2020

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	material should comply with UTS of Lead and UCS. If the treated material do not comply with						
	UTS or UCS, re-stabilization have to be undertaken to meet compliance of UTS and UCS before						
	reusing the treated sediment as filling material. However, further agreement on final						
	disposal/treatment on sediment under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works areas	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be	best handling and		with sediments	Phase		٨
	adhered to during boring, excavation, transportation and disposal of sediments or cement	treatment of		concern			
	stabilization of sediment.	sediment					
	- A treatment area should be confined for carrying out the cement stabilization mixing and						٨
	temporary stockpile. The area should be designed to prevent leachate from entering the ground.						
	Leachate, if any, should be collected and discharged according to the Water Pollution Control						
	Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring, excavation and						^
	transportation of the sediment, the excavated sediments should be kept wet during						
	excavation/boring and should be properly covered when placed on barges/trucks. Loading of the						
	excavated sediment to the barge should be controlled to avoid splashing and overflowing of the						N/A
	sediment slurry to the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should, when necessary,						N/A
	wear appropriate personal protective equipments (PPE) when handling contaminated sediments.						
	Adequate washing and cleaning facilities should also be provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02	All works areas	Construction	ETWB TC(W)	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic requirements and	sediment to be		with sediments	Phase	No. 34/2002 &	N/A

groundwater. Separate and clearly defined areas should be provided for stockpiling of

App N2 - IN	IPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION M	IEASURES				Janu	ary 2020
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
Management	procedures for excavated sediment disposal specified under ETWB TC(W) No. 34/2002 shall be	disposed of in an		concern		Dumping at Sea	
Plan	followed. MFC is responsible for the provision and management of disposal capacity and facilities	authorized and				Ordinance	
	for the excavated sediment, while the permit of marine dumping is required under the Dumping at	least impacted					
	Sea Ordinance and is the responsibility of the DEP.	way					
S8.6.23	Sediments (con't)	To determine the	Contractor	All works areas	Construction	ETWB TC(W)	
	- For allocation of sediment disposal sites and application of marine dumping permit, separate SSTP	best handling and		with sediments	Phase	No. 34/2002 &	N/A
	has to be submitted to EPD for agreement under DASO. Additional site investigation, based on the	disposal option		concern		Dumping at Sea	
	SSTP, maybe carried out in order to confirm the disposal arrangements for the proposed sediments	of sediment				Ordinance	
	removal. A Sediment Quality Report (SQR) shall then be required for EPD agreement under						
	DASO prior to the tendering of the construction contract, discussing in details the site						
	investigation, testing results as well as the delineation of each of the categories of excavated						
	materials and the corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works areas	Construction	ETWB TC(W)	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and transported to the designated	handling of		with sediments	Phase	No. 34/2002 &	۸
Waste	disposal sites allocated by the MFC. The excaveted sediment would be disposed of according to its	sediments are in		concern		Dumping at Sea	
Management	determined disposal options and ETWB TC(W) No. 34/2002.	accordance to				Ordinance	
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If temporary	statutory					
	stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by	requirements					٨
	tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from						
	entering the ground, nearby drains and surrounding water bodies. The stockpiling areas should be						
	completely paved or covered by linings in order to avoid contamination to underlying soil or						

January	2020

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged						
	according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring and transportation of the						
	sediment, the excavated sediments should be kept wet during excavation/boring and should be						
	properly covered when placed on barges. Loading of the excavated sediment to the barge should						٨
	be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be equipped with tight						
	fitting seals to prevent leakage and should not be filled to a level that would cause overflow of						
	materials or laden water during loading or transportation. In addition, monitoring of the barge						
	loading shall be conducted to ensure that loss of material does not take place during transportation.						
	Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified						٨
	by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should, when necessary,						
	wear appropriate personal protective equipments (PPE) when handling contaminated sediments.						
	Adequate washing and cleaning facilities should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic						N/A
	containment method is a method whereby the sediments are sealed in geosynthetic containers and,						
	at the disposal site, the containers would be dropped into the designated contaminated mud pit						
	where they would be covered by further mud disposal and later by the mud pit capping, thereby						
	meeting the requirements for fully confined mud disposal.						N/A
S8.6.26/	Chemical Wastes.	To ensure proper	Contractor	All works sites	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be required to	management of			Phase	on the Packaging,	٨

S9.6.4

Indirect vibration impact

App N2 - IN	IPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION N	IEASURES	1		January 2020			
EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status	
Submission		the	implement	the measures	Implement	requirements or		
		recommended	the		the measures?	standards for		
		Measures &	measures?			the measures to		
		Main Concerns				achieve?		
		to address						
Management	register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the	chemical waste				Labelling and		
Plan	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality					Storage of		
	containers compatible with the chemical wastes should be used, and incompatible chemicals					Chemical Wastes		
	should be stored separately. Appropriate labels should be securely attached on each chemical							
	waste container indicating the corresponding chemical characteristics of the chemical waste, such					Waste Disposal		
	as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall					(Chemical Waste)		
	use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical					(General)		
	Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the Waste					Regulation		
	Disposal (Chemical Waste) (General) Regulation.							
S8.6.27/	General Refuse	To ensure proper	Contractor	All works sites	Construction	Public Health and		
Waste	- General refuse should be stored in enclosed bins or compaction units separate from C&D material.	management of			Phase	Municipal		
Management	A reputable waste collector should be employed by the contractor to remove general refuse from	general refuse				Services		
Plan	the site, separately from C&D material. Preferably an enclosed and covered area should be					Ordinance (Cap.		
	provided to reduce the occurrence of 'wind blown' light material.					132)		
Impact on C	ultural Heritage (Construction Phase)	•						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;		
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1 m) should be	and visual			Phase	AMO	^	
	provided;	impacts						
	- The open yard in front of the temple should be kept as usual for annual Tin Hau festival;						٨	
	- Monitoring of vibration impacts should be conducted when the construction works are less than						٨	
	100m from the temple.							

To prevent

Contractors

Work areas

Vibration Limits

Construction

CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully protected

Table 10.8.1/

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of 5mm/s	indirect vibration			Phase	on Heritage	^
	measured inside the historical buildings;	impact				Buildings by	
	- Monitoring of vibration should be carried out during construction phase.					CEDD; GCHIA;	^
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau Temple as					AMO.	^
	well.						
	- A proposal with details for the mitigation measures and monitoring of impacts on built heritage						٨
	shall be submitted to AMO for comments before commencement of work.						
Landscape a	nd Visual Impact (Construction Phase)						
Table 10.8.1/	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid impacts on	Avoid impact on	CEDD (via	General	Construction	N/A	۸
Landscape	adjacent landscape.	adjacent	Contractor)		planning and		
Mitigation		landscape areas			during		
Plan					construction		
					period		
Table 10.8.1/	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	۸
Landscape		duration of	Contractor)		planning		
Mitigation		impact					
Plan			_				
Table 10.8.1/	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be stripped and	To allow re-use	CEDD (via	General	Site clearance	As per the	٨
Landscape	stored for re-use in the construction of the soft landscape works. The Contract Specification shall	of topsoil	Contractor)			Particular	
Mitigation	include storage and reuse of topsoil as appropriate.					Specification	
Plan							

To minimize tree

CEDD (via

As per

ETWB TC

Site clearance

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
Landscape	during construction. Detailed Tree Protection Specification shall be provided in the Contract	loss	Contractor)	approved Tree	and	3/2006 and as per	
Mitigation	Specification, under which the Contractor shall be required to submit, for approval, a detailed working			Removal	throughout	tree protection	
Plan	method statement for the protection of trees prior to undertaking any works adjacent to all retained trees,			Application(s)	construction	measures in	
	including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal				period	Particular	
	Application stage).					Specification	
Table 10.8.1/	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where possible,	To maximize	CEDD (via	As per	Site clearance	ETWB TC	۸
Landscape	trees should be transplanted direct to permanent locations rather than temporary holding nurseries. A	preservation of	Contractor)	approved Tree		3/2006 and as per	
Mitigation	detailed tree transplanting specification shall be provided in the Contract Specification and sufficient	existing trees		Removal		tree protection	
Plan	time for preparation shall be allowed in the construction programme.			Application(s)		measures in	
						Particular	
						Specification	
Table 10.8.1/	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and hoardings.	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	۸
Landscape	Trees shall be capable of reaching a height >10m within 10 years.	screening of the	Contractor)	Interchange and	construction		
Mitigation		works		edge of Road	period		
Plan				P2 landscape			
				deck, TKO			
Table 10.8.1/	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
Landscape		intrusion	Contractor)		construction	Specification	
Mitigation					period		
Plan							
Table 10.8.1/	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night working	To reduce visual	CEDD (via	General	Throughout	N/A	۸
Landscape	periods.	intrusion	Contractor)		construction		

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
Mitigation					period		
Plan							
Table 10.8.1/	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
Landscape	surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Mitigation							
Plan							
Table 10.8.1/	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built structures	Design and	N/A	^
Landscape		visual intrusion	Contractor)		construction		
Mitigation		and integration			stage		
Plan		with environment					
Table 10.8.1/	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
Landscape		contamination of	Contractor)	reclamation,	construction		
Mitigation		water courses		TKO tunnel	period		
Plan		and water bodie		portal, Cha			
				Kwo Ling			
				roadworks			
Table 10.8.1	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent coastline	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
	characte	Junk Bay and	Contractor)	reclamation for	planning and		
		integration with		barging points	reclamation		
		existing coastlin		at TKO and	stages		
				permanent			
				reclamation for			

EIA Ref. / EP	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
Submission		the	implement	the measures	Implement	requirements or	
		recommended	the		the measures?	standards for	
		Measures &	measures?			the measures to	
		Main Concerns				achieve?	
		to address					
				TKO			
				Interchange slip			
				roads and Road			
				P2.			

Table II - Observations/reminders/non-compliance made during Site Audit

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder					
	EIA KII.	Recommended Wildgatton Weasures	Contract 140.	Work Sites	Details of Observation/Reminder					
Remark										
Air Qua	Air Quality Impact									
*(1)	S3.8.7	 Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 	NE/2015/02	Portion IX	The open stockpile in Portion IX shall be covered with impervious materials to prevent air quality impact.					
Noise I	mpact									
*(2)	Noise Mitigation Plan	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan	NE/2015/02	Area IX	 The breaker in Portion IX should put the head to the acoustic box as close as possible to reduce noise impact. The silence-up next to the drill-rig in surcharge area shall re-adjust its position to block the direct sight from nearby NSR 					

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2017/02

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Air Qual	lity (Construction Phase)						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	^
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	^
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices: x	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	^
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close						^
	to ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles to						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		reduce emissions. Where this is not practicable owing to frequent usage,						^
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						*(1)
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						
		site locations.						^
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						
		points of the site.						^
	-	Provision of wind shield and dust extraction units or similar dust mitigation						
		measures at the loading area of barging point, and use of water sprinklers at the						
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						^
		boundary where adjoins a road, streets or other accessible to the public except						
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						^
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						^
		should be covered entirely by impervious sheeting or placed in an area sheltered						
		on the top and the 3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	construction process in order to enforce controls and modify method of work if						
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during	Control potential	Contractor	NE/2015/02	Construction	EIAO, APCO	^
Manage	transportation offsite.	impacts from			stage		
ment	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be	Cement s/s					^
Plan	dampened by spraying water to suppress dust generation during mixing	process					
	operation						
	- Subject to the odour intensity and instruction by the Supervisor, odour						^
	suppressant will be applied over the marine sediments via water blaster to						
	minimize the impact.						

January	2020

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	The unloading / loading areas of the marine sediments will be barricaded with						
		minimum 3.5m high barrier facing the nearest resident to minimize the dust						^
		impact. The mixing area and curing area will be enclosed with 3-sides and roof to						
		minimize the dust impact.						
	-	The mixing area will be established with retractable roof on top and with						
		corrugated steel sheet at side enclosure by 5.4m high concrete block walls to						^
		prevent spread of dust during the mixing process with cement.						
	-	Handling and mixing of cement will follow the Air Pollution Control (Construction						
		Dust) Regulation to avoid fugitive dust emissions.						^
	-	The discharge of cement from silo hopper to the concrete mixer truck will be 4-						
		side enclosed by Tarpaulin to minimize the dust emission.						^
	-	The mixing of cement and water will be confined in the concrete mixer truck until						
		the pre-mixing completed. The hydrated cement will then be unloaded to the						^
		mixing area to mix with the sediment.						
	-	Treated marine sediments in the stockpiling area shall be covered by tarpaulin						
		sheets or similar material except the operating earthwork front.						
	-	The soil filled platform is covered by a layer of sand fill material, and frequent						^
		water spray will be carried out on the sand surface for dust control.						^
	-	Any excessive air emissions will be inspected and recorded.						
	-	Sediment height of treated marine sediment being kept 0.9 m below the top level						
		of concrete block wall during rainy season.						^
								^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Noise In	npact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	۸
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					٨
	properly maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					٨
	- Machines and plant (such as trucks) that may be in intermittent use should be						٨
	shut down between works periods or should be throttled down to a minimum.						

la	nı	ıa	rv/	20)20
Ja		Ja	ıv	~~	L

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	^
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m ³ , with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt curtain	filling activities					
	shall be employed around the active stone column installation points.						
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	filling activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³						
	per trip) for the filling operation at the reclamation area for Road P2. All filling works						
	shall be carried out behind the seawall with the use of single silt curtain at the marine						
	access.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	filling activities				WPCO	
		and marine					
		based					
		construction					
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					

January 20	JZU
------------	-----

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						
	discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	^
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					^
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	material) of more than 50m ³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(2)
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	*(2)
	no earth, mud, debris and the like is deposited by them on roads. An adequately	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	٨
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						

App N3 -	IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIG	ATION MEAS	JRES				January 2020
EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
			1	1			

runoff and land-

Phase

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers/drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						^
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						^
	personnel who are handling the wastes, to avoid accidents; and						

January	2020	
Januai v	ZUZU	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- storage area should be selected at a safe location on site and adequate space						^
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					
Ecologic	eal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		^
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					^
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		۸
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						^
	demarcated. The works areas should be reinstated after completion of the works.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						^
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						^
	the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A
	would generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A
	the groundwater inflow and ensure that the tunnel would meet the long term water						
	tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A	
	Coral translocation	coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			^
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint			
	other suitable locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-						^
	March) in order to avoid disturbance during their spawning period (i.e. July to						
	October).						^
	- A detailed coral translocation plan with a description on the methodology for						

Jan	uary	2020

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	pretranslocation coral survey, translocation methodology, identification/proposal of						
	coral recipient site, monitoring methodology for posttranslocation should be						^
	prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities						
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the						
	translocation exercises should be conducted by experienced marine ecologist(s)						
	who is/are approved by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						^
	- A coral monitoring programme is recommended to assess any adverse and						
	unacceptable impacts to the translocated coral communities						^
	- Information gathered during each posttranslocation monitoring survey should						
	include observations on the presence, survival, health condition and growth of the						
	translocated coral colonies. These parameters should then be compared with						
	the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	landbased	phase		N/A
	opening of newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					^
	- Proper waste and dumping management; and	level; minimize					
	- Standard good-site practice for land-based construction.	the					^
		contamination of					^
		wastewater					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		^
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		^
	opening of newly installed seawall and marine works area.	especially on	Contractor				
		suspended solid					
		level					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	٨
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	٨
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	٨
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	٨
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps and						٨
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	٨
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	٨
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	
	workforce;					Provisions)	٨
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	
	contamination of construction materials; and					28)	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	^
	as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					٨
	containment, thus minimizing the potential of pollution;	impacts arising					٨
	- Maintain and clean storage areas routinely;	from waste					٨

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Stockpiling area should be provided with covers and water spraying system to	storage					
	prevent materials from wind-blown or being washed away; and						^
	- Different locations should be designated to stockpile each material to enhance						
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		^
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					^
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						^
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	^
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						^
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
S8.6.15 –	Sediments	To ensure the	NE/2015/02,	All works	Construction	RBRG	
S8.6.16/	- Sediment encountered may be reused as filling material on-site after cement	sediment to be	NE/2017/01	areas with	Phase		N/A
Waste	stabilization. Cement-stabilization process is undertaken by mixing sediment and	disposed of in		sediments			
Manage	cement and will convert sediment to earth filling material. The treated sediment	an authorized		concern			
ment	has to comply with Risk-Based Remediation Goals (RBRGs) before being reused	and least					
Plan	in order not to raise any land contamination issue. The adoption of RBRGs to	impacted way					
	assess stabilized sediment has been proposed in the current C&DMMP. MFC						
	has no adverse comment on the current C&DMMP. The sediment quality						
	indicates that all sediments comply with most stringent RBRGs except for one						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	sediment	t sample (TKO-EBH501 3-3.95m) with lead exceeding the RBRG.						
	Except fo	or the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						
	results do	o not indicate sediment as contaminated soil. It is anticipated that reuse						
	of sedime	ent except sediment sample (TKO-EBH501 3-3.95m) will not lead to						
	land cont	tamination.						
	- Despite	exceedance of RBRG, onsite reuse of sediment under sample (TKO-						N/A
	EBH501	33.95m) as filling material after cement stabilization is also a suitable						
	treatmen	t. Sediment quality indicates the sediment sample (TKO-EBH501 3-						
	3.95m) e	exceed RBRG for lead. While cement stabilization will immobilize metal						
	contamin	nants, it is capable to treat the exceedance on lead. The stabilized						
	material	should comply with UTS of Lead and UCS. If the treated material do not						
	comply w	with UTS or UCS, re-stabilization have to be undertaken to meet						
	complian	nce of UTS and UCS before reusing the treated sediment as filling						
	material.	However, further agreement on final disposal/treatment on sediment						
	under sa	mple (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Sediments (c	con't)	To determine the	Contractor	All works	Construction		
\$8.6.20	- Requiren	nents of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		^
	relevant,	shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
	disposal	of sediments or cement stabilization of sediment.	sediment		concern			
	- A treatme	ent area should be confined for carrying out the cement stabilization						^
	mixing ar	nd temporary stockpile. The area should be designed to prevent						
	leachate	from entering the ground. Leachate, if any, should be collected and						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						^
	excavation and transportation of the sediment, the excavated sediments should						
	be kept wet during excavation/boring and should be properly covered when						
	placed on barges/trucks. Loading of the excavated sediment to the barge						
	should be controlled to avoid splashing and overflowing of the sediment slurry to						
	the surrounding water.						
	- In order to minimise the exposure to contaminated materials, workers should,						N/A
	when necessary, wear appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02,	All works	Construction	ETWB TC(W) No.	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be	NE/2017/01	areas with	Phase	34/2002 &	N/A
Manage	requirements and procedures for excavated sediment disposal specified under	disposed of in		sediments		Dumping at Sea	
ment	ETWB TC(W) No. 34/2002 shall be followed. MFC is responsible for the	an authorized		concern		Ordinance	
Plan	provision and management of disposal capacity and facilities for the excavated	and least					
	sediment, while the permit of marine dumping is required under the Dumping at	impacted way					
	Sea Ordinance and is the responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	best handling		areas with	Phase	34/2002 &	N/A
	permit, separate SSTP has to be submitted to EPD for agreement under DASO.	and disposal		sediments		Dumping at Sea	
	Additional site investigation, based on the SSTP, maybe carried out in order to	option of		concern		Ordinance	

transportation of the sediment, the excavated sediments should be kept wet

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		confirm the disposal arrangements for the proposed sediments removal. A	sediment					
		Sediment Quality Report (SQR) shall then be required for EPD agreement under						
		DASO prior to the tendering of the construction contract, discussing in details the						
		site investigation, testing results as well as the delineation of each of the						
		categories of excavated materials and the corresponding types of disposal.						
S8.6.24 -	Se	diments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	-	The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	٨
Waste		transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea	
Manage		excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance	
ment		options and ETWB TC(W) No. 34/2002.	statutory					
Plan	-	Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					٨
		temporary stockpiling of contaminated sediments is necessary, the excavated						
		sediment should be covered by tarpaulin and the area should be placed within						
		earth bunds or sand bags to prevent leachate from entering the ground, nearby						
		drains and surrounding water bodies. The stockpiling areas should be completely						
		paved or covered by linings in order to avoid contamination to underlying soil or						
		groundwater. Separate and clearly defined areas should be provided for						
		stockpiling of contaminated and uncontaminated materials. Leachate, if any,						
		should be collected and discharged according to the Water Pollution Control						
		Ordinance (WPCO).						٨
	-	In order to minimise the potential odour / dust emissions during boring and						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be controlled to						
	avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be						^
	equipped with tight fitting seals to prevent leakage and should not be filled to a						
	level that would cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading shall be conducted to						
	ensure that loss of material does not take place during transportation. Transport						
	barges or vessels shall be equipped with automatic self-monitoring devices as						
	specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						N/A
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						
	containment. A geosynthetic containment method is a method whereby the						N/A
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit where						
	they would be covered by further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	^
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	۸
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	^
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
pe							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	^
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	
	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/		visual intrusion	Contractor)	structures	construction		
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		
ре		and water		tunnel			
Mitigation		bodies		portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline character	Junk Bay and	Contractor)	reclamation	planning and		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		integration with		for barging	reclamation		
		existing		points at	stages		
		coastline		TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			
				and Road			
<u> </u>				P2			

Table II - Observations/reminders/non-compliance made during Site Audit

NIL IN THE REPORTING MONTH

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

<u>Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project</u>

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2015/03

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	^
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	^
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	^
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close						^
	to ASRs.						
	- Side enclosure and covering of any aggregate or dusty material storage piles to						^
	reduce emissions. Where this is not practicable owing to frequent usage,						

Ja	nı	12	r\/	2	വാ	n
Ja	114	Ja	ΙV	~	υz	.v

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						۸
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						۸
		site locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
		points of the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation						
		measures at the loading area of barging point, and use of water sprinklers at the						*(1)
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						
		boundary where adjoins a road, streets or other accessible to the public except						٨
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						
	-	Where possible, routing of vehicles and positioning of construction plant should						^
		be at the maximum possible distance from ASRs						٨
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						
		should be covered entirely by impervious sheeting or placed in an area sheltered						٨
		on the top and the 3 sides.						
	-	Instigation of an environmental monitoring and auditing program to monitor the						
		construction process in order to enforce controls and modify method of work if						۸

January	2020
oullual v	LULU

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Noise In	npact (Construction Phase)		T				
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	^
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		^
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					^
	properly maintained during the construction program.	Project at the					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be						^
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	^
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged into the corresponding WCZ under the TM-DSS.						
S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	^
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					^
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	material) of more than 50m ³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					

January 2020	Ja	nua	rv 2	2020
--------------	----	-----	------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	۸
	no earth, mud, debris and the like is deposited by them on roads. An adequately	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					

January 2020 Status

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					

App N4 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES January 2020 EIA Ref. **Recommended Mitigation Measures** Objectives of Who to Location of When to What **Status** / EP the implement the Implement requirements or **Submiss** recommended the measures the standards for the Measures & measures? ion measures? measures to **Main Concerns** achieve? to address CEDD's ProPECC PN N/A S5.8.34 If the used bentonite slurry is intended to be disposed of through the public drainage Control potential Work site Construction 1/94, EIAOTM, system, it should be treated to the respective effluent standards applicable to foul impacts from Contractors Phase **WPCO** sewer, storm drains or the receiving waters as set out in the WPCO Technical construction site Memorandum on Effluent Standards. runoff and landbased construction CEDD's ProPECC PN N/A S5.8.35 Water used in water testing to check leakage of structures and pipes should be Control potential Work site Construction 1/94. EIAOTM. reused for other purposes as far as practicable. Surplus unpolluted water could be Contractors Phase impacts from WPCO discharged into storm drains. construction site runoff and landbased construction S5.8.36 Sterilization is commonly accomplished by chlorination. Specific advice from EPD Control potential CEDD's Work site Design Stage ProPECC PN N/A should be sought during the design stage of the works with regard to the disposal of Contractors 1/94, EIAOTM, impacts and from Construction **WPCO** the sterilizing water. The sterilizing water should be reused wherever practicable. construction site runoff and land-Phase based construction CEDD's ProPECC PN N/A S5.8.37 Before commencing any demolition works, all sewer and drainage connections should Control potential Work site Construction 1/94, EIAOTM, be sealed to prevent building debris, soil, sand etc. from entering public impacts from Contractors Phase **WPCO** sewers/drains. construction site

runoff and land-

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						^
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						^
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space						^
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					

January	2020

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Ecologic	cal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		^
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					^
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					^
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		^
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						^
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						^
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	the nearby watercourses.						
S6.8.8	_						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Proper waste and dumping management; and	quality impact,	Team,	landbased	phase		^
	Standard good-site practice for land-based construction.	especially on	contractor	works area	·		^
		suspended solid					
		level; minimize					
		the					
		contamination of					
		wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					
		runoff to the					
		receiving water					
		bodies					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		^
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Waste M	anagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposal points and regular collection of waste;					Provisions)	^
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						^
	- Regular cleaning and maintenance programme for drainage systems, sumps and						
	oil interceptors.				_		
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	^
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	disposal;						^
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	^
	workforce;					Provisions)	
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^
	contamination of construction materials; and					28)	
	- Plan and stock construction materials carefully to minimize amount of waste						
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	^
	as far as possible.						

disposal ground approved by RE and DEP; and

Maintain records of quantities of waste generated, recycled and disposed.

EIA Ref.		PLEMENTATION SCHEDULE AND RECOMMENDED MITIG Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	January 202 Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
S8.6.7	Sto	orage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Sho	ould any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	mir	nimize the impacts include:	adverse					
	-	Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
		containment, thus minimizing the potential of pollution;	impacts arising					
	-	Maintain and clean storage areas routinely;	from waste					^
	-	Stockpiling area should be provided with covers and water spraying system to	storage					^
		prevent materials from wind-blown or being washed away; and						
	-	Different locations should be designated to stockpile each material to enhance						۸
		reuse.						
S8.6.8/	Sto	orage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	-	Remove waste in timely manner;	potential		sites	Phase		^
Manage	-	Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	-	Impacts during transportation, such as dust and odour, should be mitigated by	environmental					^
Plan		the use of covered trucks or in enclosed containers;	impacts arising					
	-	Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					
		accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					۸
		(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
		Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
i	ĺ	Waste should be disposed of at licensed waste disposal facilities/ alternative					1	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	^
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						^
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
	-						
S8.6.17 –	Sediments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	- Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
	disposal of sediments or cement stabilization of sediment.	sediment		concern			
	- A treatment area should be confined for carrying out the cement stabilization						^
	mixing and temporary stockpile. The area should be designed to prevent						
	leachate from entering the ground. Leachate, if any, should be collected and						
	discharged according to the Water Pollution Control Ordinance (WPCO).						
	- In order to minimise the potential odour / dust emissions during boring,						^
	excavation and transportation of the sediment, the excavated sediments should						
	be kept wet during excavation/boring and should be properly covered when						
	placed on barges/trucks. Loading of the excavated sediment to the barge						
	should be controlled to avoid splashing and overflowing of the sediment slurry to						
	the surrounding water.						N/A
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	-						
	-						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	

Monitoring of vibration impacts should be conducted when the construction

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	٨
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Impact c	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	۸
	m) should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						٨
	festival;						٨

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	works are less than 100m from the temple.						
Landsca	pe and Visual Impact (Construction Phase)						
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	^
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		
Mitigation					period		
Plan							
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	^
10.8.1/		duration of	Contractor)		planning		
Landsca		impact					
ре							
Mitigation							
Plan							
Table	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,	To allow re-use	CEDD (via	General	Site clearance	As per the	^
10.8.1/	to be stripped and stored for re-use in the construction of the soft landscape works.	of topsoil	Contractor)			Particular	
Landsca	The Contract Specification shall include storage and reuse of topsoil as appropriate.					Specification	
ре							
Mitigation							
Plan							
Table	CM4 - Existing trees at boundary of site and retained trees within site boundary to be	To minimize tree	CEDD (via	As per	Site clearance	ETWB TC 3/2006	۸
10.8.1/	carefully protected during construction. Detailed Tree Protection Specification shall be	loss	Contractor)	approved	and	and as per tree	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Landsca	provided in the Contract Specification, under which the Contractor shall be required to			Tree	throughout	protection	
ре	submit, for approval, a detailed working method statement for the protection of trees			Removal	construction	measures in	
Mitigation	prior to undertaking any works adjacent to all retained trees, including trees in			Application(s	period	Particular	
Plan	contractor's works areas. (Tree protection measures will be detailed at Tree Removal)		Specification	
	Application stage).						
Table	CM5 - Trees unavoidably affected by the works shall be transplanted where	To maximize	CEDD (via	As per	Site clearance	ETWB TC 3/2006	^
10.8.1/	practicable. Where possible, trees should be transplanted direct to permanent	preservation of	Contractor)	approved		and as per tree	
Landsca	locations rather than temporary holding nurseries. A detailed tree transplanting	existing trees		Tree		protection	
ре	specification shall be provided in the Contract Specification and sufficient time for			Removal		measures in	
Mitigation	preparation shall be allowed in the construction programme.			Application(s		Particular	
Plan)		Specification	
Table	CM6 - Advance screen planting of fast growing tree and shrub species to noise	To maximize	CEDD (via	At Lam Tin	Beginning of	N/A	^
10.8.1/	barriers and hoardings. Trees shall be capable of reaching a height >10m within 10	screening of the	Contractor)	Interchange	construction		
Landsca	years.	works		and edge of	period		
ре				Road P2			
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	^
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	^
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	^
10.8.1/		visual intrusion	Contractor)	structures	construction		
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	^
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		ТКО	period		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
ре		and water bodie		tunnel			
Mitigation				portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at	stages		
				TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			
				and Road			
				P2			

App N4 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES <u>Table II - Observations/reminders/non-compliance made during Site Audit</u>

NIL IN THE REPORTING MONTH

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

Table I – Recommended Mitigation Measures stipulated in EM&A Manual of the Project

(Further information on observations/reminders/non-compliance made during site audit should refer to Table II)

Contract: NE/2017/01

Key:

- ^ Mitigation measure was fully implemented.
- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

N/A Not Applicable

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Air Qual	ity Impact (Construction Phase)						
S3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul	To minimize the	Contractor	All Active	Construction	APCO	N/A
	roads	dust impact		Work Sites	phase		
S3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping	To minimize the	Contractor	Barging	Construction	APCO	N/A
	hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	dust impact		Points	phase		
S3.8.7	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust)	To minimize the	Contractor	All	Construction	APCO and Air	
	Regulation and good site practices:	dust impact		Construction	phase	Pollution Control	
	- Use of regular watering to reduce dust emissions from exposed site surfaces and			Work Sites		(Construction	N/A
	unpaved roads, particularly during dry weather.					Dust) Regulation	
	- Use of frequent watering for particularly dusty construction areas and areas close						N/A
	to ASRs.						

January 2020

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Side enclosure and covering of any aggregate or dusty material storage piles to						N/A
		reduce emissions. Where this is not practicable owing to frequent usage,						
		watering shall be applied to aggregate fines.						
	-	Open stockpiles shall be avoided or covered. Where possible, prevent placing						N/A
		dusty material storage piles near ASRs.						
	-	Tarpaulin covering of all dusty vehicle loads transported to, from and between						N/A
		site locations.						
	-	Establishment and use of vehicle wheel and body washing facilities at the exit						N/A
		points of the site.						
	-	Provision of wind shield and dust extraction units or similar dust mitigation						N/A
		measures at the loading area of barging point, and use of water sprinklers at the						
		loading area where dust generation is likely during the loading process of loose						
		material, particularly in dry seasons/ periods.						
	-	Provision of not less than 2.4m high hoarding from ground level along site						N/A
		boundary where adjoins a road, streets or other accessible to the public except						
		for a site entrance or exit.						
	-	Imposition of speed controls for vehicles on site haul roads.						N/A
	-	Where possible, routing of vehicles and positioning of construction plant should						٨
		be at the maximum possible distance from ASRs						
	-	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA)						N/A
		should be covered entirely by impervious sheeting or placed in an area sheltered						
		on the top and the 3 sides.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Instigation of an environmental monitoring and auditing program to monitor the						N/A
	construction process in order to enforce controls and modify method of work if						
	dusty conditions arise.						
/	Emission from Vehicles and Plants	Reduce air	Contractor	All	Construction	• APCO	
	All vehicles shall be shut down in intermittent use.	pollution		construction	stage		^
	Only well-maintained plant should be operated on-site and plant should be	emission from		sites			^
	serviced regularly to avoid emission of black smoke.	construction					
	All diesel fuelled construction plant within the works areas shall be powered by	vehicles and					^
	ultra low sulphur diesel fuel (ULSD)	plants					
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated	Reduce air	Contractor	All	Construction	• APCO	^
	machines	pollution		construction	stage		
		emission from		sites			
		construction					
		vehicles and					
		plants					
Sediment	- Tarpaulin sheets will be provided to cover dredged materials during	Control potential	Contractor	NE/2015/02	Construction	EIAO, APCO	N/A
Manage	transportation offsite.	impacts from			stage		
ment	- Water Sprinklers will be installed along outer steel frame. Dusty materials will be	Cement s/s					N/A
Plan	dampened by spraying water to suppress dust generation during mixing	process					
	operation						

January 2020

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Subject to the odour intensity and instruction by the Supervisor, odour						N/A
		suppressant will be applied over the marine sediments via water blaster to						
		minimize the impact.						
	-	The unloading / loading areas of the marine sediments will be barricaded with						N/A
		minimum 3.5m high barrier facing the nearest resident to minimize the dust						
		impact. The mixing area and curing area will be enclosed with 3-sides and roof to						
		minimize the dust impact.						
	-	The mixing area will be established with retractable roof on top and with						N/A
		corrugated steel sheet at side enclosure by 5.4m high concrete block walls to						
		prevent spread of dust during the mixing process with cement.						
	-	Handling and mixing of cement will follow the Air Pollution Control (Construction						N/A
		Dust) Regulation to avoid fugitive dust emissions.						
	-	The discharge of cement from silo hopper to the concrete mixer truck will be 4-						^
		side enclosed by Tarpaulin to minimize the dust emission.						
	-	The mixing of cement and water will be confined in the concrete mixer truck until						N/A
		the pre-mixing completed. The hydrated cement will then be unloaded to the						
		mixing area to mix with the sediment.						
	-	Treated marine sediments in the stockpiling area shall be covered by tarpaulin						N/A
		sheets or similar material except the operating earthwork front.						
	-	The soil filled platform is covered by a layer of sand fill material, and frequent						N/A
		water spray will be carried out on the sand surface for dust control.						
	_	Any excessive air emissions will be inspected and recorded.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Sediment height of treated marine sediment being kept 0.9 m below the top level						N/A
	of concrete block wall during rainy season.						
Noise Im	npact (Construction Phase)						
S4.8	- Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	٨
	Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer,	construction			phase		
	Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver,	noise impact					
	Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration	arising from the					
	Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender,	Project at the					
	Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump	affected NSRs					
	and Concrete Pump.						
Noise	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full	To minimize	Contractor	Work Sites	Construction	EIAO-TM, NCO	٨
Mitigation	Enclosure for PME according to the approved Noise Mitigation Plan	construction			phase		
Plan		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
S4.9	Good Site Practice	To minimize	Project	Work sites	Construction	EIAO-TM, NCO	
	- Only well-maintained plant should be operated on-site and plant should be	construction	Proponent		Period		٨
	serviced regularly during the construction program	noise impact					
	- Silencers or mufflers on construction equipment should be utilized and should be	arising from the					٨
	properly maintained during the construction program.	Project at the					

January	2020

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Mobile plant, if any, should be sited as far away from NSRs as possible.	affected NSRs					^
	- Machines and plant (such as trucks) that may be in intermittent use should be						^
	shut down between works periods or should be throttled down to a minimum.						
	- Plant known to emit noise strongly in one direction should, wherever possible, be						^
	orientated so that the noise is directed away from the nearby NSRs.						
	- Material stockpiles and other structures should be effectively utilized, wherever						^
	practicable, in screening noise from on-site construction activities.						
S4.9	Scheduling of Construction Works during School Examination Period	To minimize	Contractor	Work site	Construction	EIAO-TM, NCO	N/A
		construction		near school	phase		
		noise impact					
		arising from the					
		Project at the					
		affected NSRs					
Water Q	uality Impact (Construction Phase)						
S5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	1,900kg/m ³ , with fine content of 25% or less	impacts from	Contractors		Phase		
		filling activities					
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	column shall be adopted for construction of seawall foundation. During the stone	impacts from	Contractors		Phase		
	column installation (also including the installation of steel cellular caisson), silt curtain	filling activities					
	shall be employed around the active stone column installation points.						

Ja	nı	12	r\/	2	വാ	n
Ja		ıа	ıv	~	uz	v

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	N/A
	opening of about 50m for marine access) shall be completed prior to the filling	impacts from	Contractors		Phase		
	activities. The seawall opening of about 50m wide for marine access shall be	filling activities					
	selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling						
	barge trips per day shall be made with a maximum daily rate of 3,000m³ (i.e. 1,000 m³						
	per trip) for the filling operation at the reclamation area for Road P2. All filling works						
	shall be carried out behind the seawall with the use of single silt curtain at the marine						
	access.						
Silt	- Silt curtains should be deployed properly to surround the works area.	Control potential	Contractor	NE/2015/01,	Construction	EIAO	*(1)
Curtain	- Maintenance of silt curtain should be provided.	impacts from		NE/2015/02,	stage		^
Deploym	- Sufficient stock of silt curtain should be provided on site.	marine woroks		NE/2017/01			^
ent Plan							
Sediment	- Loading of barges and hoppers will be controlled to prevent splashing of dredged	Control potential	Contractor	NE/2015/02	Construction	EIAO, WPCO	N/A
Manage	materials into the surrounding water. Barges or hoppers will not be filled to a	impacts from			stage		
ment	level that will cause the overflow of materials or pollute water during loading or	Cement s/s					
Plan	transportation.	process					
	- Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage						N/A
	of material. Excess material shall be cleaned from the decks and exposed fittings						
	of barges and hopper dredgers before the vessel is moved.						
	- Monitoring of the barge loading shall be conducted to ensure that loss of material						N/A
	does not take during transportation.						

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
	-	Transport barges or vessels shall be equipped with automatic self-monitoring						N/A
		devices.						
	-	Vehicles containing any untreated / treated marine sediments will be suitably						N/A
		covered to limit potential dust emissions or potential contaminated wastewater						
		run-off, and truck bodies and tailgates will be sealed to prevent any discharge						N/A
		during transport or wet conditions.						
	-	The leachate from the untreated marine sediment will be collected and treated in						N/A
		the mixing pool for cement s/s treatment.						
	-	A 300mm diameter U-channel will be constructed along the perimeter of the						N/A
		cement s/s treatment facility to collect the run-off, if any, shall be collected and						
		discharged according to the Water Pollution Control Ordinance (WPCO).						
		Cleaning for the u-channel and desilting pits shall be conducted on weekly basic.						
	-	The stockpile area of treated marine sediment will be surrounded by the						
		perimeter concrete block walls with geotextile membranes installed at the inner						N/A
		face of the concrete block walls. The types of perimeter wall can be used						
		interchangeably. The Structural Feasibility of the perimeter wall for the changes						
		of height of the stockpile had been checked and certified by ICE.						
	-	The mixing areas will be completely paved or covered by linings in order to avoid						
		contamination to underlying soil or groundwater and will be confined by partition						N/A
		concrete block walls for carrying out the mixing and temporary stockpile of						
		treated sediment.						

EIA Ref.	Recommended Mitigation Measures	Objectives	s of	Who to	Location of	When to	What	Status
/ EP		the		implement	the	Implement	requirements or	
Submiss		recommend	ded	the	measures	the	standards for the	
ion		Measures	s &	measures?		measures?	measures to	
		Main Conce	erns				achieve?	
		to addres	ss					
S5.8.3	Other good site practices should be undertaken during filling operations include:	Control pote	ential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	
	- all marine works should adopt the environmental friendly construction methods	impacts	from	Contractors		Phase	Waste Disposal	^
	as far as practically possible including the use of cofferdams to cover the	filling activ	vities				Ordinance (WDO)	
	construction area to separate the construction works from the sea;	and mar	rine-					
	- floating single silt curtain shall be employed for all marine works;	based						^
	- all vessels should be sized so that adequate clearance is maintained between	construction	ı					^
	vessels and the seabed in all tide conditions, to ensure that undue turbidity is not							
	generated by turbulence from vessel movement or propeller wash;							
	- all hopper barges should be fitted with tight fitting seals to their bottom openings							^
	to prevent leakage of material;							
	- excess material shall be cleaned from the decks and exposed fittings of barges							^
	before the vessel is moved;							
	- adequate freeboard shall be maintained on barges to reduce the likelihood of							^
	decks being washed by wave action;							
	- loading of barges and hoppers should be controlled to prevent splashing of filling							N/A
	material into the surrounding water. Barges or hoppers should not be filled to a							
	level that will cause the overflow of materials or polluted water during loading or							
	transportation;							^
	- any pipe leakages shall be repaired quickly. Plant should not be operated with							
	leaking pipes;							^
	- construction activities should not cause foam, oil, grease, scum, litter or other							
	objectionable matter to be present on the water within the site or dumping							^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	grounds; and						
	- before commencement of the reclamation works, the holder of Environmental						N/A
	Permit has to submit plans showing the phased construction of the reclamation,						
	design and operation of the silt curtain.						
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	submitted for EPD agreement before commencement of construction phase with due	impacts from	Contractors		Phase	1/94, EIAOTM,	
	consideration of good site practices.	filling activities				WPCO	
		and marine					
		based					
		construction					
ERR	To minimize water quality impact arising from the dredging and filling works for	Control potential	CEDD's	Work site	Construction	ProPECC PN	
S5.6.1	Reclamation for Road P2, the following mitigation measures shall be implemented:	impacts from	Contractors		Phase	1/94, EIAOTM,	
	- Before carrying out any dredging and underwater filling works, a temporary	dredging and				WPCO	N/A
	barrier shall first be constructed to a height above the high water mark to	filling works for					
	completely enclose the works site (without any opening at the barrier wall)	Reclamation for					
	- The temporary barrier fully enclosing the dredging and underwater filling works	Road P2					N/A
	site shall not be removed before completion of all dredging and underwater						
	filling works.						N/A
	- Water quality sampling and testing shall be carried out to demonstrate that the						
	water quality inside the enclosed barrier is comparable to the ambient or						
	baseline levels prior to the removal of the fully enclosed barrier.						N/A
	- Silt curtains shall be deployed for the installation and removal of the temporary						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	barrier and at the double water gates marine access opening during its						
	operation.						
S5.8.5	It is important that appropriate measures are implemented to control runoff and drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and prevent high loading of SS from entering the marine environment. Proper site	impacts from	Contractors		Phase	1/94, EIAOTM,	
	management is essential to minimise surface water runoff, soil erosion and sewage	construction site				WPCO	
	effluents.	runoff and land-					
		based					
		construction					
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	both engineering and environmental requirements in order to ensure adequate	impacts from	Contractors		and	1/94, EIAOTM,	
	hydraulic capacity of all drains.	construction site			Construction	WPCO, TM-DSS	
		runoff and land-			Phase		
		based					
		construction					
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	with the guidelines stipulated in the EPD's Practice Note for Professional Persons,	impacts from	Contractors		Phase	1/94, EIAOTM,	
	Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater	construction site				WPCO, TM-DSS	
	best management practices, as detailed in below, should be implemented to ensure that	runoff and land-					
	all construction runoff complies with WPCO standards and no unacceptable impact on	based					
	the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the	construction					
	construction site should be controlled to comply with the standards for effluents						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	discharged into the corresponding WCZ under the TM-DSS.						
\$5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation,	Control potential	CEDD's	Work site	Construction	ProPECC PN	
	contamination of runoff, and erosion. Construction runoff related impacts associated	impacts from	Contractors		Phase	1/94, EIAOTM,	N/A
	with the above ground construction activities can be readily controlled through the use	construction site				WPCO	
	of appropriate mitigation measures which include:	runoff and land-					
	- use of sediment traps; and	based					N/A
	- adequate maintenance of drainage systems to prevent flooding and overflow.	construction					N/A
S5.8.9	Construction site should be provided with adequately designed perimeter channel and	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	pretreatment facilities and proper maintenance. The boundaries of critical areas of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	earthworks should be marked and surrounded by dykes or embankments for flood	construction site				WPCO	
	protection. Temporary ditches should be provided to facilitate runoff discharge into the	runoff and land-					
	appropriate watercourses, via a silt retention pond. Permanent drainage channels	based					
	should incorporate sediment basins or traps and baffles to enhance deposition rates.	construction					
	The design of efficient silt removal facilities should be based on the guidelines in						
	Appendix A1 of ProPECC PN 1/94.						
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	works during the rainy season (April to September). All exposed earth areas should be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	completed as soon as possible after earthworks have been completed, or	construction site				WPCO	
	alternatively, within 14 days of the cessation of earthworks where practicable. If	runoff and land-					
	excavation of soil cannot be avoided during the rainy season, or at any time of year	based					
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or	construction					
	other means.						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	of approximately 6 to 8m³ capacity, are recommended as a general mitigation	impacts from	Contractors		Phase	1/94, EIAOTM,	
	measure which can be used for settling surface runoff prior to disposal. The system	construction site				WPCO	
	capacity is flexible and able to handle multiple inputs from a variety of sources and	runoff and land-				S5	
	particularly suited to applications where the influent is pumped.	based					
		construction					
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	work or surface protection should be carried out immediately after the final surfaces	impacts from	Contractors		Phase	1/94, EIAOTM,	
	are formed to prevent erosion caused by rainstorms. Appropriate drainage like	construction site				WPCO	
	intercepting channels should be provided where necessary.	runoff and land-				S5	
		based					
		construction					
S5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	excavation of trenches in wet seasons is necessary, they should be dug and backfilled	impacts from	Contractors		Phase	1/94, EIAOTM,	
	in short sections. Rainwater pumped out from trenches or foundation excavations	construction site				WPCO	
	should be discharged into storm drains via silt removal facilities.	runoff and land-				S5	
		based					
		construction					
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	material) of more than 50m³ should be covered with tarpaulin or similar fabric during	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms. Measures should be taken to prevent the washing away of construction	construction site				WPCO	
	materials, soil, silt or debris into any drainage system.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	and temporarily sealed so as to prevent silt, construction materials or debris being	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washed into the drainage system and storm runoff being directed into foul sewers.	construction site				WPCO	
	Discharge of surface run-off into foul sewers must always be prevented in order not to	runoff and land-					
	unduly overload the foul sewerage system.	based					
		construction					
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	taken when a rainstorm is imminent or forecast, and actions to be taken during or after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular	construction site				WPCO	
	attention should be paid to the control of silty surface runoff during storm events,	runoff and land-					
	especially for areas located near steep slopes.	based					
		construction					
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	prevent the release of oils and grease into the storm water drainage system after	impacts from	Contractors		Phase	1/94, EIAOTM,	
	accidental spillages. The interceptor should have a bypass to prevent flushing during	construction site				WPCO	
	periods of heavy rain.	runoff and land-					
		based					
		construction					

January 202	J	an	uarv	202	0
-------------	---	----	------	-----	---

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	no earth, mud, debris and the like is deposited by them on roads. An adequately	impacts from	Contractors		Phase	1/94, EIAOTM,	
	designed and located wheel washing bay should be provided at every site exit, and	construction site				WPCO	
	washwater should have sand and silt settled out and removed at least on a weekly	runoff and land-					
	basis to ensure the continued efficiency of the process. The section of access road	based					
	leading to, and exiting from, the wheelwash bay to the public road should be paved	construction					
	with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil						
	and silty water to public roads and drains.						
S5.8.19	Silt removal facilities, channels and manholes should be maintained and the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	deposited silt and grit should be removed regularly, at the onset of and after each	impacts from	Contractors		Phase	1/94, EIAOTM,	
	rainstorm to ensure that these facilities are functioning properly at all times.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.20	It is recommended that on-site drainage system should be installed prior to the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	commencement of other construction activities. Sediment traps should be installed in	impacts from	Contractors		Phase	1/94, EIAOTM,	
	order to minimise the sediment loading of the effluent prior to discharge into foul	construction site				WPCO	
	sewers. There shall be no direct discharge of effluent from the site into the sea.	runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	discharge should be adequately designed for the controlled release of storm flows. All	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sediment control measures should be regularly inspected and maintained to ensure	construction site				WPCO	
	proper and efficient operation at all times and particularly following rain storms. The	runoff and land-					
	temporarily diverted drainage should be reinstated to its original condition when the	based					
	construction work has finished or the temporary diversion is no longer required.	construction					
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	areas, within bunds of a capacity equal to 110% of the storage capacity of the largest	impacts from	Contractors		Phase	1/94, EIAOTM,	
	tank, to prevent spilled fuel oils from reaching the coastal waters.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.23	Minimum distances of 100m shall be maintained between the existing or planned	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	N/A
	stormwater discharges and the existing or planned seawater intakes during	impacts from	Contractors		Phase	TMDSS	
	construction and operational phases	construction site					
		runoff and land-					
		based					
		construction					
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	of ground water level in basement or foundation construction, and groundwater	impacts from	Contractors		Phase	1/94, EIAOTM,	
	seepage pumped out of tunnels or caverns under construction should be discharged	construction site				WPCO	
	into storm drains after the removal of silt in silt removal facilities.	runoff and land-					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.25 -	Grouting would be adopted as measure to reduce the groundwater inflow into the	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.27	tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will	impacts from	Contractors		Phase	1/94, EIAOTM,	
& Table	be measured during the excavation. The groundwater levels above the tunnel will	construction site				WPCO, Buildings	
5.18	also be monitored by piezometers. If the inflow rate exceeds the pre-determined	runoff and land-				Ordinance	
	groundwater control criteria or the groundwater drawdown exceeds the required limit,	based					
	pre-excavation grouting will be required to reduce the groundwater inflow. No	construction					
	significant change of groundwater levels would therefore be expected. Any chemicals/						
	foaming agents which would be entrained to the groundwater should be						
	biodegradable and non-toxic throughout the tunnel construction. Potential						
	groundwater quality impact would be minimal as the used material is non-toxic and						
	biodegradable. No adverse groundwater quality would therefore be expected.						
	Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to						
	preserve the groundwater levels at all times during the tunnel construction are set out						
	in Table 5.18.						
S5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should as far as practicable be recirculated after sedimentation. When there is a	impacts from	Contractors		and	1/94, EIAOTM,	
	need for final disposal, the wastewater should be discharged into storm drains via silt	construction site			Construction	WPCO	
	removal facilities.	runoff and land-			Phas		
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.29 -	Wastewater generated from the washing down of mixing trucks and drum mixers and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
S5.8.31	similar equipment should whenever practicable be recycled. The discharge of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	wastewater should be kept to a minimum. To prevent pollution from wastewater	construction site				WPCO	
	overflow, the pump sump of any water recycling system should be provided with an	runoff and land-					
	online standby pump of adequate capacity and with automatic alternating devices.	based					
	Under normal circumstances, surplus wastewater may be discharged into foul sewers	construction					
	after treatment in silt removal and pH adjustment facilities (to within the pH range of 6						
	to 10). Disposal of wastewater into storm drains will require more elaborate						
	treatment.						
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	ensure no earth, mud, debris and the like is deposited by them on roads. A wheel	impacts from	Contractors		Phase	1/94, EIAOTM,	
	washing bay should be provided at every site exit if practicable and wash-water	construction site				WPCO	
	should have sand and silt settled out or removed before discharging into storm drains.	runoff and land-					
	The section of construction road between the wheel washing bay and the public road	based					
	should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-	construction					
	off from entering public road drains.						
S5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reconditioned and reused wherever practicable. If the disposal of a certain residual	impacts from	Contractors		Phase	1/94, EIAOTM,	
	quantity cannot be avoided, the used slurry may be disposed of at the marine spoil	construction site				WPCO	
	grounds subject to obtaining a marine dumping licence from EPD on a case-by-case	runoff and land-					
	basis.	based					
		construction					

sewers/drains.

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	system, it should be treated to the respective effluent standards applicable to foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewer, storm drains or the receiving waters as set out in the WPCO Technical	construction site				WPCO	
	Memorandum on Effluent Standards.	runoff and land-					
		based					
		construction					
S5.8.35	Water used in water testing to check leakage of structures and pipes should be	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	reused for other purposes as far as practicable. Surplus unpolluted water could be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into storm drains.	construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD	Control potential	CEDD's	Work site	Design Stage	ProPECC PN	N/A
	should be sought during the design stage of the works with regard to the disposal of	impacts from	Contractors		and	1/94, EIAOTM,	
	the sterilizing water. The sterilizing water should be reused wherever practicable.	construction site			Construction	WPCO	
		runoff and land-			Phase		
		based					
		construction					
S5.8.37	Before commencing any demolition works, all sewer and drainage connections should	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	be sealed to prevent building debris, soil, sand etc. from entering public	impacts from	Contractors		Phase	1/94, EIAOTM,	

construction site runoff and landWPCO

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		based					
		construction					
S5.8.38	Wastewater generated from building construction activities including concreting,	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	plastering, internal decoration, cleaning of works and similar activities should not be	impacts from	Contractors		Phase	1/94, EIAOTM,	
	discharged into the stormwater drainage system. If the wastewater is to be	construction site				WPCO	
	discharged into foul sewers, it should undergo the removal of settleable solids in a silt	runoff and land-					
	removal facility, and pH adjustment as necessary	based					
		construction					
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	should be neutralized to within the pH range of 6 to 10 before discharging into foul	impacts from	Contractors		Phase	1/94, EIAOTM,	
	sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater	construction site				WPCO	
	should be tinkered off site for disposal into foul sewers or treated to a standard	runoff and land-					
	acceptable to storm drains and the receiving waters	based					
		construction					
S5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	floor drains, should be discharged into foul sewer via grease traps capable of	impacts from	Contractors		Phase	1/94, EIAOTM,	
	providing at least 20 minutes retention during peak flow.	construction site				WPCO	
		runoff and land-					
		based					
		construction					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	petrol interceptor with peak storm bypass.	impacts from	Contractors		Phase	1/94, EIAOTM,	
		construction site				WPCO	
		runoff and land-					
		based					
		construction					
S5.8.42	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as	Control potential	CEDD's	Work site	Construction	ProPECC PN	N/A
	far as possible be located within roofed areas. The drainage in these covered areas	impacts from	Contractors		Phase	1/94, EIAOTM,	
	should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage	construction site				WPCO	
	should be contained and cleaned up immediately. Waste oil should be collected and	runoff and land-					
	stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	based					
		construction					
S5.8.43	Construction work force sewage discharges on site are expected to be connected to	Control potential	CEDD's	Work site	Construction	ProPECC PN	^
	the existing trunk sewer or sewage treatment facilities. The construction sewage may	impacts from	Contractors		Phase	1/94, EIAOTM,	
	need to be handled by portable chemical toilets prior to the commission of the on-site	construction site				WPCO	
	sewer system. Appropriate numbers of portable toilets shall be provided by a licensed	runoff and land-					
	contractor to serve the large number of construction workers over the construction	based					
	site. The Contractor shall also be responsible for waste disposal and maintenance	construction					
	practices.						
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	produced from the construction activities. The Waste Disposal Ordinance (Cap 354)	impacts from	Contractors		Phase	WDO	
	and its subsidiary regulations in particular the Waste Disposal (Chemical Waste)	accidental					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	(General) Regulation should be observed and complied with for control of chemical	spillage of					
	wastes.	chemicals					
S5.8.45	Any service shop and maintenance facilities should be located on hard standings	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO	^
	within a bunded area, and sumps and oil interceptors should be provided.	impacts from	Contractors		Phase		
	Maintenance of vehicles and equipment involving activities with potential for leakage	accidental					
	and spillage should only be undertaken within the areas appropriately equipped to	spillage of					
	control these discharges.	chemicals					
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	* (1)
	Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage	impacts from	Contractors		Phase	WDO	
	of Chemical Wastes" published under the Waste Disposal Ordinance details the	accidental					^
	requirements to deal with chemical wastes. General requirements are given as	spillage of					
	follows:	chemicals					
	- suitable containers should be used to hold the chemical wastes to avoid leakage						
	or spillage during storage, handling and transport;						
	- chemical waste containers should be suitably labelled, to notify and warn the						
	personnel who are handling the wastes, to avoid accidents; and						
	- storage area should be selected at a safe location on site and adequate space						
	should be allocated to the storage area.						
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a	Control potential	CEDD's	Work site	Construction	EIAO-TM, WPCO,	^
	daily basis. The contractor should be responsible for keeping the water within the	impacts from	Contractors		Phase		
	site boundary and the neighbouring water free from rubbish.	floating refuse					
		and debris					

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Ecologic	cal Impact						
S6.8.4	Measures to Minimize Disturbance	Minimize noise,	Design	Land-based	Construction	N/A	
	- Use of Quiet Mechanical Plant during the construction phase should be adopted	human and	Team /	works are	Phase		٨
	wherever possible.	traffic	Contractor				
	- Hoarding or fencing should be erected around the works area boundaries during	disturbance to					N/A
	the construction phase. The hoarding would screen adjacent habitats from	terrestrial habitat					
	construction phase activities, reduce noise disturbance to these habitats and also	and wildlife; and					
	to restrict access to habitats adjacent to works areas by site workers;	reduce dust					
	- Regular spraying of haul roads to minimize impacts of dust deposition on	generation					N/A
	adjacent vegetation and habitats during the construction activities						
S6.8.5	Standard Good Site Practice	Reduce	Contractor	Land-based	Construction	N/A	
	- Placement of equipment or stockpile in designated works areas and access	disturbance to		works are	Phase		N/A
	routes selected on existing disturbed land to minimise disturbance to natural	surrounding					
	habitats.	habitats					
	- Construction activities should be restricted to works areas that should be clearly						^
	demarcated. The works areas should be reinstated after completion of the works.						
	- Waste skips should be provided to collect general refuse and construction wastes.						^
	The wastes should be properly disposed off-site in a timely manner.						
	- General drainage arrangements should include sediment and oil traps to collect						N/A
	and control construction site run-off.						
	- Open burning on works sites is illegal, and should be strictly prohibited.						^
	- Measures should also be put into place so that litter, fuel and solvents do not enter						^

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	the nearby watercourses.						
S6.8.6	Measure to Minimize Groundwater Inflow	Minimize	Contractor	Tunnel	Construction	N/A	
	- The drained tunnel construction method with groundwater inflow control measures	groundwater			Phase		N/A
	would generally be adopted.	inflow					
	- During the tunnel excavation, pre-excavation grouting could be adopted to reduce						N/A
	the groundwater inflow and ensure that the tunnel would meet the long term water						
	tightness requirements.						
S6.8.8	Measure to Minimize Impact on Corals	Minimize loss of	Design	Within	Prior	N/A	
	Coral translocation	coral	team,	reclamation	construction		
	- It is recommended to translocate the affected coral colonies, except the locally		contractor,	areas and			N/A
	common Oulastrea crispata, within the reclamation area and bridge footprint to the		project	pier footprint			
	other suitable locations as far as practicable.		operator				
	- The coral translocation should be conducted during the winter months (November-						N/A
	March) in order to avoid disturbance during their spawning period (i.e. July to						
	October).						N/A
	- A detailed coral translocation plan with a description on the methodology for						
	pretranslocation coral survey, translocation methodology, identification/proposal of						
	coral recipient site, monitoring methodology for posttranslocation should be						
	prepared during the detailed design stage.						
	- The coral translocation plan should be subject to approval by relevant authorities						N/A
	(e.g. EPD and AFCD) before commencement of the coral translocation. All the						
	translocation exercises should be conducted by experienced marine ecologist(s)						

EIA Ref.	IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIG Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	January 20 Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	who is/are approved by AFCD prior to commencement of coral translocation.						
	Post translocation Monitoring						
	- A coral monitoring programme is recommended to assess any adverse and						N/A
	unacceptable impacts to the translocated coral communities						
	- Information gathered during each posttranslocation monitoring survey should						N/A
	include observations on the presence, survival, health condition and growth of the						
	translocated coral colonies. These parameters should then be compared with						
	the baseline results collected from the pre-translocation survey.						
S6.8.9	Measure to Control Water Quality Impact	Control water	Design	Marine and	Construction	WQO	
S6.8.10	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team,	land based	phase		N/A
	opening of newly installed seawall and marine works area.	especially on	contractor	works area			
	- Diverting of the site runoff to silt trap facilities before discharging into storm drain;	suspended solid					٨
	- Proper waste and dumping management; and	level; minimize					٨
	- Standard good-site practice for land-based construction.	the					N/A
		contamination of					
		wastewater					
		discharge,					
		accidental					
		chemical					
		spillage and					
		construction site					

runoff to the

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
		receiving water					
		bodies					
S6.8.11	Compensation for Vegetation Loss	Compensate for	Design	Land-based	Construction	N/A	
	- Felling of mature trees should be compensated by planting of standard or heavy	the vegetation	Team,	works area	phase		N/A
	standard trees within or in vicinity of the affected area as far as practicable.	loss	contractor				
	Such compensatory planting for trees should be provided with at least a 1:1 ratio.						
	In addition, vegetation at the temporarily affected area should be reinstated with						
	species similar to the existing condition.						
Fisherie	s Impact						
S7.7.3	Measure to Control Water Quality Impact	Control water	Design	Marine work	Construction	WQO	
	- Deployment of silt curtains around the active stone column installation points,	quality impact,	Team /	area	phase		^
	opening of newly installed seawall and marine works area.	especially on	Contractor				
		suspended solid					
		level					
Waste M	lanagement (Construction Phase)						
S8.6.3	Good Site Practices and Waste Reduction Measures	To reduce waste	Contractor	All work	Construction	Waste Disposal	
	- Nomination of an approved person, such as a site manager, to be responsible for	management		sites	Phase	Ordinance (Cap.	^
	good site practices, arrangements for collection and effective disposal to an	impacts				354)	
	appropriate facility, of all wastes generated at the site;						
	- Training of site personnel in site cleanliness, proper waste management and					Land	^
	chemical handling procedures;					(Miscellaneous	
	- Provision of sufficient waste disposdral points and regular collection of waste;					Provisions)	۸

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	- Appropriate measures to minimize windblown litter and dust during transportation					Ordinance (Cap.	^
	of waste by either covering trucks or by transporting wastes in enclosed					28)	
	containers; and						
	- Regular cleaning and maintenance programme for drainage systems, sumps and						N/A
	oil interceptors.						
S8.6.4	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	Waste Disposal	
	- Segregation and storage of different types of waste in different containers, skips	waste reduction		sites	Phase	Ordinance (Cap.	^
	or stockpiles to enhance reuse or recycling of materials and their proper					354)	
	disposal;						
	- Encourage collection of aluminium cans by providing separate labelled bins to					Land	N/A
	enable this waste to be segregated from other general refuse generated by the					(Miscellaneous	
	workforce;					Provisions)	
	- Proper storage and site practices to minimize the potential for damage or					Ordinance (Cap.	^
	contamination of construction materials; and					28)	
	- Plan and stock construction materials carefully to minimize amount of waste						^
	generated and avoid unnecessary generation of waste.						
S8.6.5	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	The Contractor shall prepare and implement a WMP as part of the EMP in	waste reduction		sites	Phase	19/2005	^
	accordance with ETWB TCW No. 19/2005 which describes the arrangements for						
	avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of						
	different categories of waste to be generated from the construction activities. Such a						
	management plan should incorporate site specific factors, such as the designation of						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	areas for segregation and temporary storage of reusable and recyclable materials.						
	The EMP should be submitted to the Engineer for approval. The Contractor should						
	implement the waste management practices in the EMP throughout the construction						
	stage of the Project. The EMP should be reviewed regularly and updated by the						
	Contractor.						
S8.6.6	Good Site Practices and Waste Reduction Measures (con't)	To achieve	Contractor	All work	Construction	ETWB TCW No.	
	- C&D materials would be reused in the project and other local concurrent projects	waste reduction		sites	Phase	19/2005	N/A
	as far as possible.						
S8.6.7	Storage, Collection and Transportation of Waste	To minimize	Contractor	All work	Construction	-	
	Should any temporary storage or stockpiling of waste is required, recommendations to	potential		sites	Phase		
	minimize the impacts include:	adverse					
	- Waste, such as soil, should be handled and stored well to ensure secure	environmental					^
	containment, thus minimizing the potential of pollution;	impacts arising					
	- Maintain and clean storage areas routinely;	from waste					^
	- Stockpiling area should be provided with covers and water spraying system to	storage					N/A
	prevent materials from wind-blown or being washed away; and						
	- Different locations should be designated to stockpile each material to enhance						^
	reuse.						
S8.6.8/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction		
Waste	- Remove waste in timely manner;	potential		sites	Phase		٨
Manage	- Waste collectors should only collect wastes prescribed by their permits;	adverse					^
ment	- Impacts during transportation, such as dust and odour, should be mitigated by	environmental					٨

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Plan	the use of covered trucks or in enclosed containers;	impacts arising					
	- Obtain relevant waste disposal permits from the appropriate authorities, in	from waste					^
	accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal	collection and					
	(Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the	disposal					
	Land (Miscellaneous Provisions) Ordinance (Cap. 28);						
	- Waste should be disposed of at licensed waste disposal facilities/ alternative						^
	disposal ground approved by RE and DEP; and						^
	- Maintain records of quantities of waste generated, recycled and disposed.						
S8.6.9/	Storage, Collection and Transportation of Waste (con't)	To minimize	Contractor	All work	Construction	DEVB TCW No.	
Waste	- Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010,	potential		sites	Phase	6/2010	^
Manage	Trip Ticket System for Disposal of Construction & Demolition Materials, to	adverse					
ment	monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A	environmental					
Plan	recording system for the amount of waste generated, recycled and disposed	impacts arising					
	(including disposal sites) should be proposed.	from waste					
		collection and					
		disposal					
S8.6.11 -	Sorting of C&D Materials	To minimize	Contractor	All work	Construction	DEVB TCW No.	
S8.6.13/	- Sorting to be performed to recover the inert materials, reusable and recyclable	potential		sites	Phase	6/2010	^
Waste	materials before disposal off-site.	adverse					
Manage	- Specific areas shall be provided by the Contractors for sorting and to provide	environmental				ETWB TCW No.	^
ment	temporary storage areas for the sorted materials.					33/2002	
Plan	- The C&D materials should at least be segregated into inert and non-inert						^

	January	2020
--	---------	------

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	materials, in which the inert portion could be reused and recycled in the					ETWB TCW No.	
	reclamation as far as practicable before delivery to PFRFs. While opportunities					19/2005	
	for reusing the non-inert portion should be investigated before disposal of at						
	designated landfills						
S8.6.15 –	Sediments	To ensure the	NE/2015/02,	All works	Construction	RBRG	
S8.6.16/	- Sediment encountered may be reused as filling material on-site after cement	sediment to be	NE/2017/01	areas with	Phase		N/A
Waste	stabilization. Cement-stabilization process is undertaken by mixing sediment and	disposed of in		sediments			
Manage	cement and will convert sediment to earth filling material. The treated sediment	an authorized		concern			
ment	has to comply with Risk-Based Remediation Goals (RBRGs) before being reused	and least					
Plan	in order not to raise any land contamination issue. The adoption of RBRGs to	impacted way					
	assess stabilized sediment has been proposed in the current C&DMMP. MFC						
	has no adverse comment on the current C&DMMP. The sediment quality						
	indicates that all sediments comply with most stringent RBRGs except for one						
	sediment sample (TKO-EBH501 3-3.95m) with lead exceeding the RBRG.						
	Except for the sediment sample (TKO-EBH501 3-3.95m), the chemical screening						
	results do not indicate sediment as contaminated soil. It is anticipated that reuse						
	of sediment except sediment sample (TKO-EBH501 3-3.95m) will not lead to						
	land contamination.						
	- Despite exceedance of RBRG, onsite reuse of sediment under sample (TKO-						N/A
	EBH501 33.95m) as filling material after cement stabilization is also a suitable						
	treatment. Sediment quality indicates the sediment sample (TKO-EBH501 3-						
	3.95m) exceed RBRG for lead. While cement stabilization will immobilize metal						

January 2	20	20
-----------	----	----

EIA Ref.		Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP			the	implement	the	Implement	requirements or	
Submiss			recommended	the	measures	the	standards for the	
ion			Measures &	measures?		measures?	measures to	
			Main Concerns				achieve?	
			to address					
		contaminants, it is capable to treat the exceedance on lead. The stabilized						
		material should comply with UTS of Lead and UCS. If the treated material do not						
		comply with UTS or UCS, re-stabilization have to be undertaken to meet						
		compliance of UTS and UCS before reusing the treated sediment as filling						
		material. However, further agreement on final disposal/treatment on sediment						
		under sample (TKO-EBH501 3-3.95m) has to be sought from DEP						
S8.6.17 –	Se	diments (con't)	To determine the	Contractor	All works	Construction		
S8.6.20	-	Requirements of the Air Pollution Control (Construction Dust) Regulation, where	best handling		areas with	Phase		^
		relevant, shall be adhered to during boring, excavation, transportation and	and treatment of		sediments			
		disposal of sediments or cement stabilization of sediment.	sediment		concern			
	-	A treatment area should be confined for carrying out the cement stabilization						^
		mixing and temporary stockpile. The area should be designed to prevent						
		leachate from entering the ground. Leachate, if any, should be collected and						
		discharged according to the Water Pollution Control Ordinance (WPCO).						
	-	In order to minimise the potential odour / dust emissions during boring,						^
		excavation and transportation of the sediment, the excavated sediments should						
		be kept wet during excavation/boring and should be properly covered when						
		placed on barges/trucks. Loading of the excavated sediment to the barge						
		should be controlled to avoid splashing and overflowing of the sediment slurry to						
		the surrounding water.						N/A
	-	In order to minimise the exposure to contaminated materials, workers should,						
		when necessary, wear appropriate personal protective equipments (PPE) when						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
S8.6.21/	Sediments (con't)	To ensure the	NE/2015/02,	All works	Construction	ETWB TC(W) No.	
Waste	- Alternatively, excavated sediment can be treated with marine disposal. The basic	sediment to be	NE/2017/01	areas with	Phase	34/2002 &	^
Manage	requirements and procedures for excavated sediment disposal specified under	disposed of in		sediments		Dumping at Sea	
ment	ETWB TC(W) No. 34/2002 shall be followed. MFC is responsible for the	an authorized		concern		Ordinance	
Plan	provision and management of disposal capacity and facilities for the excavated	and least					
	sediment, while the permit of marine dumping is required under the Dumping at	impacted way					
	Sea Ordinance and is the responsibility of the DEP.						
S8.6.23	Sediments (con't)	To determine the	Contractor	All works	Construction	ETWB TC(W) No.	
	- For allocation of sediment disposal sites and application of marine dumping	best handling		areas with	Phase	34/2002 &	^
	permit, separate SSTP has to be submitted to EPD for agreement under DASO.	and disposal		sediments		Dumping at Sea	
	Additional site investigation, based on the SSTP, maybe carried out in order to	option of		concern		Ordinance	
	confirm the disposal arrangements for the proposed sediments removal. A	sediment					
	Sediment Quality Report (SQR) shall then be required for EPD agreement under						
	DASO prior to the tendering of the construction contract, discussing in details the						
	site investigation, testing results as well as the delineation of each of the						
	categories of excavated materials and the corresponding types of disposal.						
S8.6.24 -	Sediments (con't)	To ensure	Contractor	All works	Construction	ETWB TC(W) No.	
S8.6.28/	- The excavated sediments is expected to be loaded onto the barge and	handling of		areas with	Phase	34/2002 &	^
Waste	transported to the designated disposal sites allocated by the MFC. The	sediments are in		sediments		Dumping at Sea	
Manage	excaveted sediment would be disposed of according to its determined disposal	accordance to		concern		Ordinance	

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
ment	options and ETWB TC(W) No. 34/2002.	statutory					
Plan	- Stockpiling of contaminated sediments should be avoided as far as possible. If	requirements					^
	temporary stockpiling of contaminated sediments is necessary, the excavated						
	sediment should be covered by tarpaulin and the area should be placed within						
	earth bunds or sand bags to prevent leachate from entering the ground, nearby						
	drains and surrounding water bodies. The stockpiling areas should be completely						
	paved or covered by linings in order to avoid contamination to underlying soil or						
	groundwater. Separate and clearly defined areas should be provided for						
	stockpiling of contaminated and uncontaminated materials. Leachate, if any,						
	should be collected and discharged according to the Water Pollution Control						
	Ordinance (WPCO).						^
	- In order to minimise the potential odour / dust emissions during boring and						
	transportation of the sediment, the excavated sediments should be kept wet						
	during excavation/boring and should be properly covered when placed on						
	barges. Loading of the excavated sediment to the barge should be controlled to						
	avoid splashing and overflowing of the sediment slurry to the surrounding water.						
	- The barge transporting the sediments to the designated disposal sites should be						^
	equipped with tight fitting seals to prevent leakage and should not be filled to a						
	level that would cause overflow of materials or laden water during loading or						
	transportation. In addition, monitoring of the barge loading shall be conducted to						
	ensure that loss of material does not take place during transportation. Transport						
	barges or vessels shall be equipped with automatic self-monitoring devices as						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	specified by the DEP.						
	- In order to minimise the exposure to contaminated materials, workers should,						
	when necessary, wear appropriate personal protective equipments (PPE) when						N/A
	handling contaminated sediments. Adequate washing and cleaning facilities						
	should also be provided on site.						
	- Another possible arrangement for Type 3 disposal is by geosynthetic						
	containment. A geosynthetic containment method is a method whereby the						N/A
	sediments are sealed in geosynthetic containers and, at the disposal site, the						
	containers would be dropped into the designated contaminated mud pit where						
	they would be covered by further mud disposal and later by the mud pit capping,						
	thereby meeting the requirements for fully confined mud disposal.						
S8.6.26/	Chemical Wastes.	To ensure	Contractor	All works	Construction	Code of Practice	
Waste	- If chemical wastes are produced at the construction site, the Contractor would be	proper		sites	Phase	on the Packaging,	^
Manage	required to register with the EPD as a Chemical Waste Producer and to follow	management of				Labelling and	
ment	the guidelines stated in the Code of Practice on the Packaging, Labelling and	chemical waste				Storage of	
Plan	Storage of Chemical Wastes. Good quality containers compatible with the					Chemical Wastes	
	chemical wastes should be used, and incompatible chemicals should be stored						
	separately. Appropriate labels should be securely attached on each chemical					Waste Disposal	
	waste container indicating the corresponding chemical characteristics of the					(Chemical Waste)	
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful,					(General)	
	corrosive, etc. The Contractor shall use a licensed collector to transport and					Regulation	
	dispose of the chemical wastes, to either the Chemical Waste Treatment Centre						

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
	at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal						
	(Chemical Waste) (General) Regulation.						
S8.6.27/	General Refuse	To ensure	Contractor	All works	Construction	Public Health and	٨
Waste	- General refuse should be stored in enclosed bins or compaction units separate	proper		sites	Phase	Municipal Services	
Manage	from C&D material. A reputable waste collector should be employed by the	management of				Ordinance (Cap.	
ment	contractor to remove general refuse from the site, separately from C&D material.	general refuse				132)	
Plan	Preferably an enclosed and covered area should be provided to reduce the						
	occurrence of 'wind blown' light material.						
Impact o	on Cultural Heritage (Construction Phase)						
S9.6.4	Dust and visual impacts	To prevent dust	Contractors	Work areas	Construction	EIAO; GCHIA;	
	- Temporarily fenced off buffer zone with allowance for public access (minimum 1	and visual			Phase	AMO	N/A
	m) should be provided;	impacts					
	- The open yard in front of the temple should be kept as usual for annual Tin Hau						N/A
	festival;						
	- Monitoring of vibration impacts should be conducted when the construction						N/A
	works are less than 100m from the temple.						
S9.6.4	Indirect vibration impact	To prevent	Contractors	Work areas	Construction	Vibration Limits on	
	- Vibration level is suggest to be controlled within a peak particle velocity (ppv)	indirect vibration			Phase	Heritage Buildings	N/A
	limit of 5mm/s measured inside the historical buildings;	impact				by CEDD; GCHIA;	N/A
	- Monitoring of vibration should be carried out during construction phase.					AMO.	N/A
	- Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin						
	Hau Temple as well.						

CM3 - Topsoil, where the soil material meets acceptable criteria and where practical,

Table

EIA Ref.	IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIG Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	January 202
/ EP	•	the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?	measures	measures?	measures to	
1011		Main Concerns	ilicusures:		ilicusures:	achieve?	
		to address				acilieve:	
		to address					N/A
	- A proposal with details for the mitigation measures and monitoring of impacts on						N/A
	built heritage shall be submitted to AMO for comments before commencement of						
	work.						
Built	- Established Alert, Alarm and Action Level for the monitoring parameters.	To prevent	NE/2015/01	Tin Hau	Construction	Vibration Limits on	N/A
Heritage	- To increase the instrumentation monitoring and reporting frequency.	vibration impacts		Temple	Phase	Heritage Buildings	N/A
Mitigation	- To propose detailed action plan or contingency plan for the Engineer's approval					by CEDD; GCHIA;	N/A
Plan	when AAA Level is reached or exceeded.					AMO.	
Landsca	pe and Visual Impact (Construction Phase)		I	l .			l
Table	CM1 - Construction area and contractor's temporary works areas to be minimised to	Avoid impact on	CEDD (via	General	Construction	N/A	N/A
10.8.1/	avoid impacts on adjacent landscape.	adjacent	Contractor)		planning and		
Landsca		landscape areas			during		
ре					construction		
Mitigation					period		
Plan					, · · · · ·		
Table	CM2 - Reduction of construction period to practical minimum.	Minimise	CEDD (via	N/A	Construction	N/A	N/A
10.8.1/		duration of	Contractor)		planning		
Landsca			Jonitacion)		Pianing		
		impact					
ре							
Mitigation							
Plan							

To allow re-use

CEDD (via

General

Site clearance As per the

N/A

ре

App N5 - IMPLEMENTATION SCHEDULE AND RECOMMENDED MITIGATION MEASURES January 2020 EIA Ref. **Recommended Mitigation Measures** Objectives of Who to Location of When to What **Status** /EP the implement the Implement requirements or **Submiss** recommended the measures the standards for the Measures & measures? ion measures? measures to **Main Concerns** achieve? to address 10.8.1/ of topsoil to be stripped and stored for re-use in the construction of the soft landscape works. Contractor) Particular Landsca The Contract Specification shall include storage and reuse of topsoil as appropriate. Specification ре Mitigation Plan ETWB TC 3/2006 N/A Table CM4 - Existing trees at boundary of site and retained trees within site boundary to be To minimize tree CEDD (via As per Site clearance Contractor) 10.8.1/ carefully protected during construction. Detailed Tree Protection Specification shall be approved and as per tree and Landsca provided in the Contract Specification, under which the Contractor shall be required to Tree protection throughout submit, for approval, a detailed working method statement for the protection of trees Removal construction measures in pe Mitigation prior to undertaking any works adjacent to all retained trees, including trees in Application(s period Particular Plan contractor's works areas. (Tree protection measures will be detailed at Tree Removal Specification Application stage). Table CM5 - Trees unavoidably affected by the works shall be transplanted where To maximize CEDD (via Site clearance ETWB TC 3/2006 N/A As per 10.8.1/ practicable. Where possible, trees should be transplanted direct to permanent preservation of Contractor) and as per tree approved Landsca locations rather than temporary holding nurseries. A detailed tree transplanting existing trees Tree protection specification shall be provided in the Contract Specification and sufficient time for Removal measures in pe Particular Mitigation preparation shall be allowed in the construction programme. Application(s Plan Specification CEDD (via N/A N/A Table CM6 - Advance screen planting of fast growing tree and shrub species to noise To maximize At Lam Tin Beginning of 10.8.1/ barriers and hoardings. Trees shall be capable of reaching a height >10m within 10 screening of the Contractor) Interchange construction Landsca years. works and edge of period

Road P2

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Mitigation				landscape			
Plan				deck, TKO			
Table	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual	CEDD (via	General	Throughout	As per Particular	N/A
10.8.1/		intrusion	Contractor)		construction	Specification	
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM8 - Control of night-time lighting by hooding all lights and through minimisation of	To reduce visual	CEDD (via	General	Throughout	N/A	N/A
10.8.1/	night working periods.	intrusion	Contractor)		construction		
Landsca					period		
ре							
Mitigation							
Plan							
Table	CM9 - Screening of works areas with hoardings with appropriate colours compatible	Reduction of	CEDD (via	Project site	Excretion of	N/A	N/A
10.8.1/	with the surrounding area	visual intrusion	Contractor)	Boundary	site hoarding		
Landsca							
ре							
Mitigation							
Plan							
Table	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of	CEDD (via	Built	Design and	N/A	N/A
10.8.1/		visual intrusion	Contractor)	structures	construction		

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
Landsca		and integration			stage		
ре		with					
Mitigation		environment					
Plan							
Table	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of	CEDD (via	TKO	Throughout	N/A	N/A
10.8.1/		contamination of	Contractor)	reclamation,	construction		
Landsca		water courses		TKO	period		
ре		and water bodie		tunnel			
Mitigation				portal, Cha			
Plan				Kwo Ling			
				roadworks			
Table	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with	Minimise loss of	CEDD (via	Temporary	Construction	N/A	N/A
10.8.1	adjacent coastline characte	Junk Bay and	Contractor)	reclamation	planning and		
		integration with		for barging	reclamation		
		existing coastlin		points at	stages		
				TKO and			
				Lam Tin and			
				permanent			
				reclamation			
				for TKO			
				Interchange			
				slip roads			

EIA Ref.	Recommended Mitigation Measures	Objectives of	Who to	Location of	When to	What	Status
/ EP		the	implement	the	Implement	requirements or	
Submiss		recommended	the	measures	the	standards for the	
ion		Measures &	measures?		measures?	measures to	
		Main Concerns				achieve?	
		to address					
				and Road			
				P2			

Table II - Observations/reminders/non-compliance made during Site Audit

Status /	EIA Ref.	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Observation/Reminder
Remark					
Air Quality	y Impact				
*(1)	SCDP	- Silt curtains should be deployed properly to surround the works area.	NE/2017/01	Platform 4J in Marine Work area at TKO	It is observed that the silt curtain is not properly deployed around the platform 4J.

Key:

- * Observation/reminder was made during site audit but improved/rectified by the contractor.
- # Observation/reminder was made during site audit but not yet improved/rectified by the contractor.
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
421	21-Jan-19	21-Jan-20 / Portion IX	Ocean Shores Residents		Noise nuisance due to Blasting at midnight	Y	The noise is believed to be coming from a breaker and deficiency was found in the arrangement of the applied noise barriers. The Contractor is reminded to erect acoustic box or silence-up accurately to block direct-line of sight to NSR and strictly abide to the Noise Mitigation Plan. The details shall be referred to CIR-N96.	On-going
420	7-Jan-19	7-Jan-20 / Portion IX	Ocean Shores Residents	Noise	Irritating loud noise nuisance from Portion IX (C2)	Y	Investigation undergoing	On-going
419	7-Jan-19	Sundays before 7-Jan-20 / Tunnel Works	Resident of Hong Pak Court	1,0180	Noise nuisance from Tunnel Works	Y	See Complaint #416.	Draft CIR submitted
418	7-Jan-19	5-6-Jan-20 / C1 Marine Works Area	Ocean Shores Residents		High-frequency noise during night-time	Y	The high frequency noise was believe to be noise emitted from the marine works area of C1. The details shall be referred to CIR-N94.	Draft CIR submitted
417	3-Jan-19	2-Jan-20 / Portion IX	Former District Member (Mr. Chan)		Annoying noise emission and inefficient noise mitigation measures	Y	The noise source is believed to come from a breaker and mitigation was insufficient. The Contractor was requested to strictly follow the Noise Mitigation Plan. The details shall be referred to CIR-N93.	Draft CIR submitted
416	29-Dec-19	29-Dec-19 / Non-specific	Resident of Hong Pak Court	Noise	Groundborne Noise from Works area	Y	Project-related with valid CNP. Contractor is reminded to reduce noise emission and prevent breaking and noisy activities during restricted hours. The details shall be referred to CIR-N92.	Draft CIR submitted
415	27-Dec-19	25-Dec-19 / Lam Tin Interchange (Portion IVC)	Resident of Yau Estate	Noise	Noise nuisance from Portion IVC	Y	Non project-related due to maintenance works of East Cross-harbor Tunnel. The details shall be referred to CIR-N91.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
414	24-Dec-19	22-Dec-19 / Lam Tin Interchange (Portion IVC)	Resident of Yau Estate	Noise	Piling noise nuisance near Lam Tin Interchange	Y	Project-related with valid CNP. Contractor is reminded to reduce noise emission and prevent breaking and noisy activities during restricted hours. The details shall be referred to CIR-N91.	Draft CIR submitted
413	24-Dec-19	24-Dec-19 / Portion IX of Contract 2	Resident of Capri & Ocean Shores	Noise	Loud and continuous noise emission from Portion IX	Y	No breaking activity was conducted by the C3. It was believed that C2 was the major noise source and the mitigation measures were insufficient. The details shall be referred to CIR-C32.	Draft CIR submitted
412	19-Dec-19	14-Dec-19 / marine works area	Resident of Ocean Shores	Noise	Noise nuisance from the marine works area	Y	The major construction work was driven by pin piles. The noise emitted due to the construction activities is considered to be reduced to an acceptable level as no NSR falls under the ambit of 300m study area of the work site. Details should be referred to CIR-N90.	Draft CIR submitted
411	2-Dec-19	30-Nov-19 / Construction Sites Outside TKL Sports Center	Resident of Park Central	Air / Noise	Non-effective noise mitigation measures and related dust and noise nuisance	Y	The construction noise created by breaking works are considered non-project related due to the large separation distance between noise source and the Complainant's Location. Major dust emission from the works area next to C3 was recorded. The Contractor is reminded to provide regular watering to dusty works. Details should be referred to CIR-C31.	Draft CIR submitted
410	28-Nov-19	25-Nov-19 / Portion 4C	Anonymous	Noise	Noise nuisance from Lam Tin Works Area and operation hours	Y	Refer to Complaint #408	Draft CIR submitted
409	27-Nov-19	20-Nov-19 27-Nov-19 / Construction Sites near Po Yap Road & Chui Ling Road	Resident of Park Central	Air / Noise	Dust emission due to excavation works and noise nuisance from Piling works	Y	Although noise barrier had been erected and around the breakers, the direct line of sight to the NSRs at Park Central could not be totally blocked. The Contractor is recommended to provide cantilevered noise barrier with noise absorbing materials to minimise noise impact as far as practicable. Details should be referred to CIR-C31.	Draft CIR submitted

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
408	25-Nov-19	Non-specific (Nov-19) / Portion 4C	Resident of Yau Lai Estate	Noise	Serious Noise Nuisance from Lam Tin Works Area	Y	Despite the Contractor had applied different noise mitigation measures (e.g. semi enclosure and noise barrier). Environmental deficiency was observed during site audit session. The Contractor is recommended to apply alternative noise mitigation measures to improve the situation. The details shall be refer to CIR-N89.	Draft CIR submitted
407	12-Nov-19	Non-specific (Nov-19) / LT Construction Site	Non- specified(Co mplainant has previously made complaints on LTI)	Operation Hours	Inquiries on operating hours & Noise Nuisance	N	The time of complaint falls under day-time. According to the Contractor and RE, the general starting time of construction works are 08:15 on normal week days. The Contractor had avoid conduct noisy works on morning to minimize noise impacts for the nearby residents. The details shall be refer to CIR-O3	Closed
406	5-Nov-19	5-Nov-19 / Tunnel near TKO	District Council Member (Mr. Chan)	Noise	Noise nuisance from Blasting activities during night- time	Y	No blasting was carried out on that night. The construction activities were conducted inside the tunnel with the blast door closed. The CNP that the Contractor held remained valid during the time of complaint. The details shall be refer to CIR-N88	Closed
405	29-Oct-19	17-Oct-2019 / Marine Works area near Ocean Shore	District Council Member (Mr. Chan)	Noise	Daytime times noise nuisance	Y	The complaint details does not tally up with the information provided with the Contractor and RE. Referring to the Contractor, there was construction works was starting at 09:00. Noise mitigation measures, such as acoustic mats, were applied to minimize noise impact. The details shall be refer to CIR-N87	Closed
404	15-Oct-19	12-Oct-19 / Marine Works area near Ocean Shore	Residents of Ocean Shores	Noise / Working Hours	Noise nuisance due to operation of barge on Saturday early morning	Y	The time of complaint falls within daytime and the major works conducted are dredging and reclamation. The contractor did not require any extra mitigation measures. The contractor had applied sound-proofing mat on the engine floor of the barges and is recommended to strictly follow the requirements of noise mitigation plan. The details shall be refer to CIR-N86	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
403	15-Oct-19	Oct-19 (Not Specified) / C2 Construction Site	Residents of Ocean Shores	Noise / Working Hours	Operation of marine construction works during late hours	Y	The major construction works is trimming works for the rock mount during the time period of complaint. Mitigation measures provided by the Contractor included provision of noise insulating mats to the engine floor of the barges and shorten the work hours by ending construction works on or before 21:00 since early Oct 2019. Details shall be referred to CIR-N85.	Closed
402	10-Oct-19	09-Oct-2019/ Site near TKO CPC	Residents of Ocean Shores	Noise	Noise nuisance of construction works at marine work area during early morning	Y	No construction activity at both the Cavern near the BCMCP Bridge and Platform 1B, including the barge, in particular during the complaint period between 2am and 3am on 9 Oct 2019. Since no works had conducted during the time of complaint, no mitigation measures are required. The details shall be referred to CIR-N84.	Closed
401	5-Oct-19	05-Oct-2019 / C2 Portion IX	District Council Member (Mr. Chan)	Noise	High noise level from works area during daytime	Y	The time period of complaint falls under day- time and therefore the Contractor is required to carry out mitigation measures according to the latest CNMP only. The construction activities had been reviewed and no non-compliance was identified. No Limit Level of Exceedance at daytime was recorded during October 2019. For mitigation measures, the Contractor had set up sound-proofing mats and SlientUp to reduce noise impact. The details shall be refer to CIR- N83.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
400	16-Sep-19	10-Sep-19 / TKO Marine Works Area	District Council Member (Mr. Chan)	Water	Muddy water discharge and deficiency in water quality mitigation measures	N	With accordance to the Contractor and RE, the silt curtains were deployed regarding to SCDP ver. 8 since 10-Sep-19, site inspection on 12-Sep-19 also showed the silt curtains were deployed properly. Despite there are chances of accidental muddy water discharge due to the removal of cofferdam on 13-Sep-19, local silt curtain had been place in order to minimize the unavoidable impact by related loading and unloading of fill materials. No muddy water had been observed outside the silt curtain area. Nevertheless, the Contractor is recommend to expand the coverage of the local silt curtain in order to well-confine the muddy water released from the grab. On top of that, the Contractor shall always follow the SCDP to ensure the minimization of impacts. Details should be referred to CIR-C30.	Closed
399	16-Sep-19	16-Sep-19 (Not Specified) / LT Interchange Potion III	Resident of Bik Lai House, Yau Lai Estate	Noise	Noise emission from the tunnel entrance (Potion III)	Y	No construction works was carried out during the time of complaint. Details should be referred to CIR-N82.	Closed
398	16-Sep-19	13-Sep-19 / Works Area of LT-TKO Tunnel outside Tiu King Leng MTR Station	Anonymous	Air / Water	Dark smoke emission and muddy water discharge from the marine work vessels near shore	N	No dark smoke emission was observed during the site inspection conducted in the week of the complaint. The Contractor has applied an air filtering tank to clean the exhaust from the barge before emission. Details should be referred to CIR-C30.	Closed
397	6-Sep-19	30 Aug-19 / Works area near Ocean Shores	Resident of Ocean Shores	Noise / Working hours	Noise emitted from Barge during Evening times	Y	The unloading works had been reviewed and no limit level of exceedance were recorded during August to early September. Since the period of complaint falls under evening times, no mitigation measures were required by the CNP. Details should be referred to CIR-N81.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
396	6-Sep-19	30 Aug-19 / Works area near Ocean Shores	Resident	Noise	Noise nuisance from LT-TKO Tunnel	Y	The major works conducted were shortcreting, mucking out, maintaining, drilling and	Closed
395	6-Sep-19	31 Aug-19 / Works area near Ocean Shores	District Council Member (Mr. Chan)	Noise	Noise Nuisance during evening and night times	Y	unloading. No limit level of exceedance in the restricted hours (19:00-23:00) between late August and early September were recorded. The Contractor is recommended to keep following	Closed
394	6-Sep-19	Not specified (Sep-19) / Works area near Ocean Shores	Anonymous	Noise / Operating Hours	Noise nuisance during Evening & occasionally in Night time	Y	noise mitigation plan to minimize noise nuisance. Details should be referred to CIR-N80.	Closed
393	30-Aug-19	30 Aug-19 / Marine works Area	District Council Member (Mr. Chan)	Water	Alleged muddy water discharge	N	High rainfall was recorded during period of complaint, therefore muddy water discharge at outfall from upstream and some surface runoff within the site is expected. However, no major silt curtain deficiency was observed during onsite observation and no leakage of muddy water from the marine works area was observed. Details should be referred to CIR-W12.	Closed
392	29-Aug-19	20-27 Aug-19/ Portion 4C	Resident of Bik Lai House, Yau Lai Estate	Noise	Noise nuisance from the operation of heavy machineries and missing of noise mitigation measures at Portion 4C	Y	A noise insulating cover was erected before the period of complaint, however, due to restricted site condition in the relocated breaking works area, the erection of the cover could not be carried out. Nevertheless, movable noise barriers and local semi-enclosure was adopted for breaking works. Details should be referred to CIR-N79.	Closed
391	26-Aug-19	10-Jul-19 / Construction site near Ocean shore	District Council Member (Mr. Chan)	Noise	Operation of construction works during late hours	Y	1 derrick barge was operated during the period of complaint with valid CNP. Regular maintenance and checking should be conducted for all operating barges. Details should be referred to CIR-N78.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
390	26-Aug-19	31-Jul-19 / Construction site near Ocean shore	District Council Member (Mr. Chan)	Noise	Intermittent noise emitted from collision during night- time	Y	The noise source is suspected to be the collision between cofferdam and its broken part as the cofferdam was found damaged next morning. No construction was conducted at night time of 31 July. The contractor is recommended to maintain and check cofferdam regularly. Details should be referred to CIR-N77.	Closed
389	29-Jul-19	17 to 24-Jul-19 / Marine Construction Site near O King Road	Resident of Ocean Shore	Noise	Noise nuisance from the barge operating in reclamation works area near O King Road during evening times.	Y	1 derrick barge was operated during the period of complaint with valid CNP. Regular maintenance should be provided for all operating barges. Details shall refer to CIR-N76.	Closed
388	12-Jul-19	8-Jul-19 / Construction Site near Ocean Shores	District Council Member (Mr. Chan)	Noise	Noise nuisance and inadequate noise barrier at the construction site near Ocean shore	Y	Although Contractor has adopted a noise mitigation measure of drill rigs at Portion IV near Ocean Shore such as noise barrier with sound insulating fabric, the existing noise barrier in Portion IX and some in Portion IV are not adequate in screening the direct line of sight to Ocean Shore. Details should be referred to CIR-N75.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
387	12-Jul-19	8 to 12-Jul-19 / Portion 4C of C1 Construction Site	Resident of Bik Lai House	Noise	Breaking noise emitted from the operation of 2 PMEs at Portion 4C during weekday daytime.	Y	Two breakers were operated intermittently at the Portion 4C of C1 construction site during the period of complaint between 07:00 to 19:00. As observed during the site inspection/noise monitoring, movable noise barrier could not completely screen off the direct line-of-sight from PMEs to Yau Lai Estate. Contractor has adopted mitigation measure to minimize the noise impact from breakers including using a noise barrier with noise insulating fabric, adopted a less noisy hydraulic spiting method for breaking works and has been developing a semi-enclosure noise barrier to replace the existing movable noise barrier. Details should be referred to CIR-N74.	Closed
386	10-Jul-19	9 to 10-Jul-19 / Not Specific	District Council Member (Mr. Chan)	Noise	Noise nuisance and disturbance from the TKOLT tunnel construction site involves intermittent noise emitted from collision during night-time.	Y	No construction works was carried out during the time of complaint. Details should be referred to CIR-N73.	Closed
385	4-Jul-19	Late Jun-19 to 4-Jul-19 / Reclamation Area	Resident of Ocean Shore	Noise	The reclamation works continued into the evening during weekdays and works were also operated on Sunday.	Y	See Complaint no 384.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
384	3-Jul-19	3-Jul-19 / Near Ocean Shore	District Council	Noise	The construction site was constantly emitting metallic percussion noise in the early morning.	Y	The concerned metallic percussion noise source was suspected from the collision between the detached sheet pile and the adjacent sheet pile of the broken cofferdam. The detached sheet pile was fixed by re-sealing it to the adjacent sheet pile. Details should be referred to CIR-N72.	Closed
383	29-Jun-19	Jun-19 / Lam Tin Interchange	Resident of Yau Lai Estate, Yung Lai House	Noise	Noise nuisance from construction works during weekday daytime and evening times. Noise barriers was found missing in certain parts of the construction areas.	Y	Some noise mitigation measures were observed during the site inspection including idle equipment were turned off and noise barrier has been erected close to noisy PMEs in the right direction facing Yau Lai Estate. However, the above mitigation measures were not applied to whole construction site such as noise barriers were not placed close enough to the noisy PMEs due to the uneven surface and other inconvenience. Details should be referred to CIR-N71.	Closed
382 (N08/RE/00 011019-19)	17-Jun-19	6-Jun-19 / Cofferdam area	District Council	Air	Dark smoke nuisance from the tug boat inside the cofferdam area.	N	During site audit, no violation of the Air Pollution Control (Smoke) Regulation from the construction site was observed by the ET. Air filter has been replaced on derrick barge to reduce the dark smoke emission upon the receipt of the complaint. The Contractor is recommended to replace the air filters regularly. Details should be referred to CIR-A15.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
381 (N08/RE/00 015098-19)	11-Jun-19	1-Jun-19 / Near confferdam	District Council	Water	Muddy water discharge from construction site near the cofferdam area on 4 June 19	N	High volume of upstream muddy water was collected due high rainfall according to reports and observation. As a result, the muddy water from upstream was discharged into the Junk Bay via various outfalls in Junk Bay, as observed during the rainstorm events. No sand plume within the cofferdam area and no muddy water discharge at the designated discharge point within the Site was identified during the site inspection and water quality monitoring. Details should be referred to CIR-W11.	Closed
380	11-Jun-19	6-Jun-19 / Near Tong Yin Street	Resident of Ocean Shore	Air	Odour nuisance from construction site near Tong Yin Street	N	No oil leakage from mobile crane was observed during the site inspection in June 2019. According to the testing reports, all ULSD fuel applied in the PMEs during the construction period contains sulphur content lower than 0.005% by weight, which complied with the Air Pollution Control (Fuel Restriction) Regulations. Details should be referred to CIR-A14.	Closed
379	11-Jun-19	4-Jun-19 / Near cofferdam area	General Public	Water	Discharge of mud water into Junk Bay from TKOLT construction site	N	See Complaint no 381.	Closed
378	11-Jun-19	13-Apr-19 / Near cofferdam area	General Public	Air	Dark smoke nuisance from construction site involves derrick barge operation near cofferdam area (daytime)	N	No violation of the Air Pollution Control (Smoke) Regulation was recorded from the construction site was observed. The contractor was recommended to install carbon filter at smoke exhaust of the barge as a more effective mitigation measures. Details should be referred to CIR-C27.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
377	11-Jun-19	2-Jun-19 / Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	Only drilling works inside the tunnel was conducted during daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to re-schedule the drilling works inside the tunnel to less sensitive hours. Details should be referred to CIR-N70.	Closed
376	11-Jun-19	9-Jun-19 / Near Yau Lai Estate	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance near Yau Lai Estate involves vehicle movement (roller) during morning to 15:00 in holiday.	Y	No works involving roller was involved. Only drilling works inside the tunnel and ddismantling of crusher shelter was conducted during Sunday daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to re-schedule the drilling works inside the tunnel to less sensitive hours. Details should be referred to CIR-N70.	Closed
375	11-Jun-19	9-Jun-19 / Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	See Complaint no. 376.	Closed
374	4-Jun-19	3-Jun-19 / Near Ping Tin Estate	Resident of Ping Sin House in Ping Tin Estate	Noise	Vibration from the construction of Lam Tin Interchange in evening time at around 20:00	Y	Groundborne noise is considered as the major factor contributing to the noise nuisance. The reverse circulation drilling works may have emitted groundborne noise, however, only 1 unit was used in Portion II. Therefore, blasting is considered as the major cause for the vibration. Details should be referred to CIR-N69.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
373	4-Jun-19	2-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the construction site near Ocean Shore and the construction site operation in day time holiday.	Y	No construction activity was conducted at the time of complaint as confirmed by Engineer. Therefore, the noise nuisance was not due to the construction site. Details should be referred to CIR-N68.	Closed
372	4-Jun-19	1-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Others	Complaint about the construction site operation in the early morning on Saturday.	N	See Complaint no. 373.	Closed
371	30-May-19	30-May-19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance from construction site near Ocean Shore during night time.	Y	See Complaint no. 373.	Closed
370 (N08/RE/00 015098-19)	29-May-19	19 & 26-May- 19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance about dredging mud and loudspeaker in the construction site near Ocean Shore during daytime holiday.	Y	Noise barriers/ Noise absorptive materials have been used to mitigate the noise generated from the construction works. Only walkie-talkies were used for communication in the construction site. Details should be referred to CIR-N67.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
369	13-May-19	Not specific / Lam Tin interchange	Resident of Yau Lai Estate	Noise	Noise nuisance from the blasting work inside tunnel which involves explosion noise impact during midnight	Y	Contractor has adopted a mitigation measure for reduce the blasting noise impact from the tunnel such as blasting doors and did not conduct blasting works during mid-night blasting since mid-May 2019. Details should be referred to CIR-N66.	Closed
368	19-May-19	19-May-19 / Near cofferdam area	General Public	Noise	Noise nuisance from barge with in cofferdam area in daytime holiday	Y	See Investigation / Mitigation Action for complaint no. 361.	Closed
367	5-May-19	5-May-19 / Lam Tin Tunnel - TKO entrance	Resident near Lam Tin Tunnel - TKO entrance	Noise & Air	Noise and air nuisance from construction near Lam Tin Tunnel - TKO entrance	Y	The major works during the period of complaint is scaling by breaker on day time holiday (Sunday). The works is compiled with CNP and no air quality action and noise limit level exceedance during the monitoring. Regarding the existing air quality mitigation measures, the water spray for the breaker was insufficient and the dust emission during unloading of dusty materials was observed. As the review of exiting noise mitigation measure, a broken noise SilentMat was found on the hammer of breaker. According to the above observation, Contractor has adopted serval improvement such as conduct a sufficient water spray during breaking and unloading materials, replaced the noise SilentMat of the breaker and placed the noise barrier between PME and NSRs. Details should be referred to CIR-C29.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
366	4-May-19	4-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y	Regarding the observation during site inspection, the hammer of the breaker was surrounded by a broken noise absorption material and a noise barrier of a driller was placed in the incorrect direction of NSRs. Contractor has improved the above mitigation measures including replaced the noise absorption materials and relocated the noise barrier to facing the NSRs. Details should be referred to CIR-N65.	Closed
365	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y	See investigation / mitigation actions for Complaint No.366	Closed
364	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime	Y	See investigation / mitigation actions for Complaint No.366	Closed
363	30-Apr-19	6th – 22th April -19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime and evening time	Y	See investigation / mitigation actions for Complaint No.366	Closed
362 (N08/RE/00 013396-19)	8-May-19	7-May-2019 / Junk Bay	District Council	Noise	Noise nuisance from marine works in the Junk Bay in the night-time (06:45)	Y	No marine works in the Junk Bay was conducted as confirmed by RE. No CCTV footage was recorded during the time of complaint. It was suggested that Contractor should conduct 24 hours CCTV monitoring. Details should be referred to CIR-N64.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
361	7-May-19	28 Apr 2019 / Cofferdam Area	General Public	Noise	Noise nuisance from construction site at cofferdam area in holiday	Y	The reclamation works involves barges during the time of complaints has been compiled with the CNP. As review of existing mitigation measure, the sound proofing canvases for the barges were hanged up. Details should be referred to CIR-N63.	Closed
360	2-May-19	27-04-2019/ Construction in Tong Tin Street	General Public	Noise	The complaint about the noise nuisance from cofferdam area during daytime and evening-time.	Y		Closed
359	30-Apr-19	30-04-2019/ Near Ocean Shore	Resident of Ocean Shore	Noise	The complaint about the noise nuisance involve percussion noise near Ocean Shore during daytime.	Y	The light source was found from the lighting of derrick barge within the cofferdam area and the noise source was found from the barge during filling works. Contractor has adopted The sound	Closed
358	30-Apr-19	27-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance during evening time.	Y	proofing canvases for the derrick barge was hanged up but no light mitigation measure. Details should be referred to CIR-C28.	Closed
357	23-Apr-19	20-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during daytime.	Y		Closed
356	23-Apr-19	19-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during holiday.	Y		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
355	17-Apr-19	17-04-2019/ Near cofferdam area	General Public	Noise & light	The complaint about the noise nuisance and light pollution near cofferdam area during evening-time.	Y		Closed
354	30-Apr-19	20 Apr 2019 / Cofferdam Area 19 Apr 2019 / Cofferdam Area 15 Apr 2019 / Cofferdam Area 07 Apr 2019 / Cofferdam Area 31 Mar 2019 / Cofferdam Area	Resident of Ocean Shore (Mr. Chan)	Others	The construction site near O King Road is operated in holiday during day-time and weekday during night-time.	N	The marine reclamation works at the Portion IX in C2 construction site was the major construction activity during the period of complaints. The concerned reclamation works is compiled with the relevant CNP. Details should be referred to CIR-O2.	Closed
353	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore (Mr. Chan)	Air	According to the complainant, large amount of smoke and exhaust was seen emitting from barges working within the cofferdam	N	See Investigation / Mitigation Action for complaint no. 329.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
352	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore	Noise	The complainant complained about the noise nuisance from the cofferdam area in Tiu Keng Leng during daytime.	Y	The major works during the time of complaints was a crawler crane unloading H piles to the Portion V of C2 construction site. Noise barriers were erected between the crane and NSRs to	Closed
351	13-Apr-19	13-04- 2019/Cofferda m Area	Resident of Ocean Shore	Noise	The complainant complained the noise nuisance from the cofferdam area in Tiu Keng Leng during day-time.	Y	reduce noise impact. Details should be referred to CIR-N62.	
350	8-Apr-19	07 Apr 2019 / Cofferdam Area in TKO	-	Air & Others	The complainant complained the dark smoke generation and the construction works from the cofferdam area in Tiu Keng Leng during holiday.	N	See Investigation / Mitigation Action for complaint no. 329.	Closed
349	7-Apr-19	07-04- 2019/Cofferda m Area	Resident of Ocean Shore	Air	Dark smoke generation from the cofferdam area in Tiu Keng Leng during day- time.	N		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
348	2-Apr-19	02 Apr 2019 / LTT-TKO	-	Others	The complainant complained the LTT construction site was working during holiday.	N		Closed
347	1-Apr-19	01 Apr 2019 / Cofferdam Area	Resident of Ocean Shore	Noise	Percussive noise from the cofferdam area in Tiu Keng Leng during day-time.	Y		Closed
346	31-Mar-19	31st March 2019 / Construction of Road P2	District Council	Others	Complaint about the construction site operation of Road P2 in day time holiday	N	A tug boat and a derrick barge were operated for the marine reclamation work within the cofferdam area during the time of complaint. As the review of relevant CNP, no violation was observed. Details should be referred to CIR-O1.	Closed
345	26-Mar-19	26th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
344	28-Mar-19	26th March 2019 / Construction of Road P2	District Council	Noise	Complaint letter received regarding noise nuisance and dark smoke generation from the marine barges	Y	See Investigation / Mitigation Action for complaint no. 378.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
343	25-Mar-19	25th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance sound like a breaking works in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
342	25-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction of Lam Tin Interchange in day time hoilday (Sunday). The noise monitoring was conducted in Hong Nga Court by staff after the complaint and the noise level is result in acceptable level, but the complainant replied that the noise monitoring is meaningless and the noise nuisance is not acceptable for her.	Y	See Investigation / Mitigation Action for complaint no. 330.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
341	24-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complaint about the noise nuisance from Lam Tin Tunnel construction works in day time.	Y		Closed
340	24-Mar-19	24th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction site day time holiday (Sunday).	Y		Closed
339	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the construction noise nuisance involving percussive noise in early morning (07:00)	Y		Closed
338	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Ocean Shore	Noise	Construction noise nuisance in night time (03:00 – 04:00)	Y	See Investigation / Mitigation Action for complaint no. 323.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
337	20-Mar-19	19th March 2019 / Construction of Road D4 and Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance from the construction vehicle near Park Central in night time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
336	20-Mar-19	20th March 2019 / Construction of Road	Resident of Park Central	Noise & Pest	Complaint about the noise and pest nuisance from the construction site near Park Central in evening time.	Y		Closed
335	19-Mar-19	19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from reclamation works near the TKO-LTT reclamation site during the evening time (19:00-23:00).	Y	See Investigation / Mitigation Action for complaint no. 323.	Closed
334	19-Mar-19	19th March 2019 / Construction of Road P2	District Council	Noise	Construction noise nuisance from the TKO- LTT reclamation site during evening time (after 19:00).	Y		Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
333	19-Mar-19	18th - 19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from construction noise in evening time (around 20:30).	Y		Closed
332	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance during day time, evening time and night time.	Y	The construction activities in the complaint dates are complied with CNP. No noise limited level exceedance was recorded. During the site	Closed
331	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance in night time and the past few days. (Before 07:00)	Y	inspection, no noise barriers were erected between noisy PMEs and NSRs at LTI. Regarding the observation in the inspection, Contractor has adopted an improvement such as placed the noise barriers between the PMEs and NSPs to reduce noise nuisance. Details should be referred to CIR-N61.	Closed
330	17-Mar-19	17th March 2019 / Construction of Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from in night time holiday.	Y	be referred to Cir-No1.	Closed
329	15-Mar-19	15th March 2019 / Construction of Road D4	Resident of Park Central	Noise & Air	Complaint about the noise from the construction works and the odour nuisance involves engine oil from construction machine	Y	The construction activities in the complaint dates are compiled with the CNMP. No noise and air quality limit level exceedance were recorded. Contractor had implemented the mitigation measures for the noise and odour nuisances including acoustic mat was erected between the PME and NSR, ultra-low sulphur diesel was applied as fuel oil in PME and general refuses were disposed properly. Details should be referred to CIR-C26.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
328	14-Mar-19	9th March 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance involve drilling work in the day time (08:00).	Y	A formation works was conducted in 7 am to 7pm on 9 Mar 2019. No noise limit level exceedance was recorded in the nearest noise monitoring result. However, there was no any adoption of mitigation measure to minimize the noise nuisance from the site. As response the received complaint, the contractor should place the noise barrier between the PMEs and NSR. Details should be referred to CIR-N58.	Closed
327	13-Mar-19	13th March 2019 / Construction of Lam Tin Interchange	Resident of Bik Lai House	Noise	Noise nuisance suspected from the construction works involving chiseling during evening time (22:07).	Y	A handing processed rock at Lam Tin Interchange was conducted on the complaint date in 7 pm to 11 pm involving dump truck and excavator which construction activities was compiled with the CNP. No noise limit level exceedance was record in the evening time monitoring. However, the noise barrier was not placed in the direction of the Yau Lai Estate during breaking works, the contractor had implemented a mitigation measure such as placed the noise barrier to reduce noise level from the breaker but the noise barrier was far from the concerned breaker. Details should be referred to CIR-N59.	Closed
326	13-Mar-19	13th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time (16:30)	Y	See Investigation / Mitigation Action for complaint no. 322.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
325	9-Mar-19	9th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involve machine and percussive noise in night time (02:00 - 03:00).	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Closed
324	7-Mar-19	7th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving chiseling noise from the construction site near Hong Pak Court during day time and evening time in the past few months.	Y	Only drilling works were conducted inside the tunnel in early morning and daytime under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Closed
323 (EPD- N08/RE/000 06523-19)	4-Mar-19	4th March 2019/ Cofferdam Area	Resident of Ocean Shore	Noise	Construction noise (Evening time)	Y	Only 1 derrick barge and a tug boat was used in the evening time under valid CNP. No Limit Level Exceedances were recorded at Station CM6(A) during evening time. Acoustic mat should be used to screen the engine of the barge to reduce the noise nuisance from the reclamation works. Lubricants should be applied to the barge to reduce the noise emission during barge movement.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
322	13-Mar-19	1st March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from a yellow excavator near Ocean Shores in day time (15:44).	Y	No noise limit level exceedance was recorded and the number of operating PMEs complied with the CNMP. The sound proofing canvases were not always adopted as a mitigation measure to screen the noise emitted from the engine of the barge. Contractor should adopt the aforementioned mitigation measures as far as practicable. The contractor was also be recommended to enhance the mitigation measure including frequently checking the noise barriers/sound proofing canvases, frequent checking and repair the gaps or broken acoustic sheets and continue to strictly follow the requirements in the approved CNMP.	Closed
321	28-Feb-19	28th February 2019 / Construction of Lam Tin Interchange	Management Section of Yau Lai Estate	Noise	Construction noise (Night time)	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N55.	Closed
320	22-Feb-19	22nd February 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving percussive noise in early morning (Day time). Complainant said the construction should be operated after 08:00.	Y	See Investigation / Mitigation Action for complaint no. 313.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
319	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise in night time	Y		Closed
318	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise from the construction in night time	Y		Closed
317	25-Feb-19	23th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complained about the odour nuisance of petroleum smell	N	See Investigation/ Mitigation Action on Complaint no.294. Details should be referred to	Closed
316	18-Feb-19	18th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complaint about the dark smoke and odour nuisances	N	CIR-A12.	Closed
315	17-Feb-19	15th February 2019 / Construction of Lam Tin Interchange, Road P2 and Tseung Kwan O Interchange	General Public	Noise	Complained about construction noise (Daytime)	Y	The metal wire used for anchoring the barge inside the cofferdam area are the source for the noise nuisance. Ropes were used to replace metal wire to reduce noise nuisance from metal collision while mooring boats. Details should be referred to CIR-N54.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
314	17-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air	Dust nuisance suspected from the construction works and absence of water spraying near Lam Tin Interchange in daytime.	N	No Air Quality action level or limit level exceedance during the monitoring conducted by ETL. Contractor had implemented mitigation measure to reduce and prevent dust emission including conducted water sprays and covered the cement bags. Details should be referred to CIR-A13.	Closed
313	17-Feb-19	17th February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Construction noise nuisance from the drilling and breaking works at Branch Tunnel in the morning (Day time)	Y	Breaking and drilling works were conducted during the time of complaint. The breakers were often seen wrapped with acoustic mat, however, they are easily damaged during the breaking works. Noise barrier are more effective in reducing the noise nuisance than the acoustic mat, but the erection of noise barrier are not often adopted properly to screen the noise from the NSR due to the additional works involved and the landform on site. Groundborne noise could also be a factor contributing to noise nuisance. Details should be referred to CIR-N53.	Closed
312	16-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the explosion noise (Daytime)	Y	No exceedances were recorded and recommendation were made to further enhance the mitigation measures, such as regularly and reviewing the noise control activities that are being carried out on site regularly to ensure compliance with statutory requirement, provide training for the workers to prevent unnecessary noise disturbance and frequently check and maintain the absorptive lining adhered on blasting doors on a regular basis.	Closed
311	15-Feb-19	15th February 2019 / Construction of Lam Tin Interchange	Public	Noise	Complained about the explosion noise (Daytime)	Y	See Investigation / Mitigation Action for complaint no. 312.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
310	14-Feb-19	14th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (Daytime)	Y	Dump truck and excavator was used to transfer crushed rocks from the crusher with valid CNP. Additional noise barrier was added at the site	Closed
309	13-Feb-19	13th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (evening time)	Y	boundary near Shun Lai house, Yau Lai Estate to reduce the direct-line of sight from the NSRs to the site. Details should be referred to the CIR-N51.	Closed
308	13-Feb-19	1th - 13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Management Section of Kwong Tin Estate	Noise	Complaint about construction noise (Night time)	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed
307	13-Feb-19	13th February 2019 / Construction at Tsueng Kwan O (C1)	Resident of Ocean Shore	Noise	The complaint about the noise nuisance in day time	Y	Noise nuisance was originated from the beeping noise emitted during vehicle reversing of the loader. The total length of beeping noise should be less than 5 mins. The reverse alarm system is a necessary safety measure that cannot be revoked. Details should be referred to CIR-N50.	Closed
306	13-Feb-19	13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
305	12-Feb-19	12th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time.	Y		Closed
304	8-Feb-19	8th February 2019 / Construction of Road P2 and Associated Works	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time	Y	There were two construction activities in the site including dredging and trimming in day time on 8 Feb 2019. Details should be referred to CIR-N49.	Closed
303	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Ping Tin Estate	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time, evening time and night time.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: □ Frequent checking and repair the gaps or broken acoustic sheets; □ Replace any broken SilentMat for wrapping the breaker head; □ To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; □ The deployment of Cantilever noise barrier should screen the line-of-sight from	Closed
302	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Pak Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time	Y	sensitive receivers To continue to strictly follow the requirements in the approved CNMP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
301	31th January 2019	27th - 31th January 2019 / Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Noise nuisance suspected from the construction involving chiselling works	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed
300	30th January 2019	30th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
299	30th January 2019	27th - 29th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane and also suspected from elevation platform	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
298	30th January 2019	Not specific / Near Po Shun Road	Resident of Park Central	Noise & Air Quality	The dust generation and noise nuisance from the construction site near Po Shun Road	Y	There were several construction activities in the site including the removal of steel mould & scaffolding of bridge deck, erection of scaffolding for staircase and construction of Pour 1 of main deck (GL4-5) during time of complaint. Details should be referred to CIR-C25.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
297	30th January 2019	27 th - 30th January 2019 / Construction works at TKO- Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction involving chiselling works	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed
296	29th January 2019	27th - 29th January 2019 / Construction Site of Footbridge near Tiu Keng Leng Sport Centre.	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the mobile crane at the Footbridge near Park Central Block 6	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: To arrange a signalman instead of mobile crane reversing signal for minimize the beeping noise disturbance; Frequent checking and repair the operating PME; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers To continue to strictly follow the requirements in the approved CNMP; To ensure noise barrier and sound proofing canvases wrapped on PME are intact and in good condition.	Closed
295	29th January 2019	29th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the steel cable wire for anchoring between barge and pier	Y	There was a salvage works for the sunken barge (CS306) in a whole day on 27 Jan, 12 am to 3 pm on 28 Jan and 11:40 am on 29 Jan 2019. Details should be referred to CIR-N46.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
294	29th January 2019	29th January 2019 / Construction of Road P2	Resident in O King Road	Air Quality	Complaint about the dark smoke and odour nuisances from barge.	Y	The sulphur content percentage of the adopted diesel fuel was lower than 0.05% which is compiled with the Hong Kong Air Pollution Control (Marine Light Diesel) Regulation, therefore the odour problem should be minimised. Smoke filtering tanks were adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell. The situation has improved after the filter has been replaced. Details should be referred to CIR-A12.	Closed
293 (EPD- K15/RE/000 03291-19)	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night time)	Y	See investigation / Mitigation Action for complaint no. 270. Details should be referred to CIR-C29.	Closed
292	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from breaking work.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for	Closed
291	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from breaking work.	Y	wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise	Closed
290	29th January 2019	29th January 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the construction noise from Tunnel Works	Y	barrier should screen the line-of-sight from sensitive receivers To continue to strictly follow the requirements in the approved CNMP. RE/RSS should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
289 (EPD- N08/RE/000 00859-19)	24th January 2019	Early December 2018 -24-Jan-2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from Tunnel Works	Y	See Investigation/ Mitigation Action on Complaint no.288. Details should be referred to CIR-N44.	Closed
288	18th January 2019	18th January 2019 (Unknown)/ Construction of Road P2	Public	Noise	Complained about the construction noise from Tunnel Works	Y	No major construction works at the concerned night time. There was only salvage operation carried out in 11 pm to 12 pm on 17 Jan 2019. No violation of CNP nor Noise Control Ordinance is found in this regard. Details should be referred to CIR-N44.	Closed
287	17th January 2019	17th January 2019 / Construction of Lam Tin Interchange	Resident of Yung Lai House	Noise	Complained about the construction noise from Kam Tin Interchange.	Y	Project-related. The following recommendations are made to further enhance the mitigation measures: To regularly check and review the noise control activities that are being carried out on site to ensure compliance with statutory requirement. Machines may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. To provide training for the workers to prevent unnecessary noise disturbance. To provide cantilever barrier to screen the construction noise from the NSRs	Closed
286	17th January 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near the Park Central in day time	N	See Investigation/ Mitigation Action on Complaint no. 285. The concerned air compressor has been removed on 16 th Jan 2019. Details should be referred to CIR-N41.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
285	17th January 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air blower/fan with generator near Tiu Keng Leng Sport Centre and Park Central.	N	The concerned air compressor was removed from the construction site since 16 January 2019 afternoon, but the high frequency noise nuisance complaints were received on 17 January 2019. According to the CM8(A) noise monitoring record by environmental team, the other noise source from construction site are beeping noise of the reverse alarm system of the plant. Therefore, the high frequency noise nuisance is considered project related after 16 January 2019. Details should be referred to CIR-N41.	Closed
284	16th January 2019	16th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
283	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
282	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
281	15th January 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
280	14th January 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
279	14th January 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Tiu Keng Leng Sport Centre in day time Saturday and Holiday (Sunday).	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed
278	12th January 2019	12th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site between Tiu Keng Leng Sport Centre and Park Central in day time	Y	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed
277	12th January 2019	12th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the noise from breaking activities.	N	See investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
276	11th - 12th January 2019	11th - 12th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP. Details refer to CIR-N40.	Closed
275	11th January 2019	11th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from a crane near footbridge between Tiu Keng Leng Sport Centre and Park Central	Y	See Investigation/ Mitigation Action on Complaint no. 272.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
274 (EPD- N08/RE/000 01234-19)	11th January 2019	11th January 2019 / Construction of Road D4	Public	Noise	Complaint about the high frequency machine noise nuisance from the construction site of footbridge between Tiu Keng Leng Sport Centre and park Central.	Y	No high-frequency noise was detected near the complaint location, however, the noise similar to description was detected within the renovation works inside Park Central. Details should be referred to complaint no. 272 and CIR-N41.	Closed
273	10th January 2019	10th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
272	8th January 2019	8th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the high frequency machine noise nuisance from the construction site near Park Central in day time.	Y	High frequency noise emitted from an air compressor was suspected. Noise barrier was seen erected. Noise barrier using material with higher absorption coefficient such as mineral wool is recommended. Details should be referred to CIR-N41.	Closed
271	8th January 2019	8th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer. Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
270 (EPD- K15/RE/000 00691-19)	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night- time)	Y	Regular noise monitoring results for day time and night time show full compliance of the noise criteria. Air quality monitoring result in all stations show that no adverse air quality impact has been brought about to the nearby sensitive receivers during the time of complain. During Site audit, damaged acoustic material on the breaker was observed. Watering was provided at during rock breaking to avoid dust generation. The Contractor was reminded to deploy noise barrier to screen the line-of-sight from sensitive receiver; during breaking works.	Closed
269	7th January 2019	7th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the night time construction noise near Park Central.	Y	No noticeable high frequency noise was detected from the air compressor and noise barrier was seen erected in the line-of-sight from the NSR to the Air compressor. Refer to CIR-41 for details.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
268	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the construction noise at Lam Tin Interchange.	Y	No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure: • Frequent checking and repair the gaps or broken acoustic sheets; • Replace any broken Silent Mat for wrapping the breaker head; • To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; • The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver; • To continue to strictly follow the requirements in the relevant CNP; • To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and • Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
267	7th January 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	Refer to Investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
266	7th January 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	No exceedances were recorded at the nearest monitoring station, however, the approved location for noise monitoring was located at the podium of Ocean Shores. Due to inaccessibility to private unit, it is not possible to perform monitoring at higher floor. ET will keep approaching Ocean Shore Management Office for impact noise monitoring at higher floor. The recommendations for Contractor is as follows: • only well-maintained plant on-site and plant should be serviced regularly during the construction program; • Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers; Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
265	7th January 2019	7th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure: • Frequent checking and repair the gaps or broken acoustic sheets; • Replace any broken Silent Mat for wrapping the breaker head; • To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; • The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver; • To continue to strictly follow the requirements in the relevant CNP; • To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and • Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
264	2nd January 2019	2nd January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	No noise limit level exceedance was recorded at the noise monitoring stations near ocean shores. The contractor has applied lubricants to the joint of the excavators to dampen the noise emitted from the PMEs. The contractor is recommended to use noise barriers to screen the PMEs from the NSRs as per the Noise mitigation plan.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
263 (EPD-)	1st January 2019	31st December 2018 / Coastal near TKO cemetery	General Public	Water	Complained concerning oil leakage/ on the sea surface near the sunken barge at C2 site.	N	Oil leakage happened due to the derrick lighter was submerged to the sea within the cofferdam. As the oil leakage was found outside the cofferdam during site inspection, there was a gap in the cofferdam. The oil leakage was cleaned up and the floating oil absorber has been used to surround the cofferdam by Contractor. The Contractor are reminded to1) regular check if the site vessels and cofferdam are in good-condition; 2) To regular monitor the operation of any activities in the cofferdam area; 3) To implement the proposed site vessels safety and the emergency responses including clearance measures Details of the investigation should be referred to CIR-W10	Closed
262	30 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
261	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
260	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
259	26 th December 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
258	18 th December 2018	18 th December 2018/ Construction of Lam Tin Interchange	Engineering Section of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The complaint is considered project related. Mitigation measures: Cable wire for anchoring between barge and pier has been replaced by rope between 27 Dec and 2 Jan to reduce noise impact. In addition, other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved CNMP of this Contract had been implemented by the Contractor, including the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers; Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
257	18 th December 2018	18 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The Contractor has replaced the cable wire for anchoring between barge and pier with ropes between 27 Dec and 2 Jan to reduce noise impact.	Closed
256	17 th December 2018	15 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking and piling activities	N	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) The following recommendations were made for the Contractor to enhance the mitigation measures: To frequently check and repair operating PME if any loosen or worn parts of the equipment to reduce excessive noise disturbance; Noise barriers should be designed and erected around the noise sources to block the direct line-of-sight from the NSR as per the CNMP; To ensure all erected noise barriers and sound proofing canvases wrapped on PME are intact and in good condition.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
254	16 th December 2018	16 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	• The night-time works were only conducted inside the tunnels with valid CNP. The noise nuisances are not considered as air-borne in nature, but ground-borne noise. 2.17 In order to confirm the possible ground-borne nature of the noise nuisances for complaints summarized in this report, CEDD has engaged the environmental team to conduct ad hoc ground-borne noise monitoring with the coordination of the Engineer. The findings will be provided in a separate report for the ad hoc monitoring.	Closed
253	15 th December 2018	15 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	Refer to the investigation for complaint no. 254	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
252	30 th November 2018	30 th November 2018/ Construction of Road D4	Resident of Park Central	Noise & Air	Complained about the construction noise and dust resuspension in Road D4.	Y	The number of PMEs operated on site and ontime percentage from 19 to 30 November complied with the CNMP, thus, no violation was identified. Based on the noise and air monitoring results in November 2018, no Limit Level Exceedance was recorded. Mitigation Measures A more effective acoustic barrier was erected between the drill rig and Park Central. Frequent water spraying along the Po Yap Road for eight times a day, Stockpile are covered with impervious material to avoid dust resuspension	Closed
251	28 th November 2018	27 th November 2018/ Construction of TKO portal	Public	Noise	Complained about the construction noise from the marine works.	Y	The complaint lodged on 25 th November 2018 is considered as non-project related, as no works was conducted on that day. The complaint on 27th November 2018 is considered project related. The contractor is reminded to 1) frequently check and repair operating PME if any loosen or worn parts of the equipment to reduce excessive noise disturbance; 2) Ensure no further use of PA system for marine works.	Closed
250	26 th November 2018	26 th November 2018/ Public sea in TKO	Resident of Ocean Shore	Noise	Complained about the noise nuisance from the operation of derrick barge on Sunday.	Y	Refer to the investigation for complaint no. 251	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
249	25 th November 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from the Excavators in LTI on Sunday morning.	Y	Refer to the investigation for complaint no. 251	Closed
248	20 th November 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance during transfer of material in evening time at LTI	Y	Regular noise monitoring results for restricted and non-restricted hours show full compliance of the noise criteria (night-time noise exceedance is considered non-project related). The contractor is reminded to adopt cantilever noise barriers at Lam Tin Interchange to screen noise effectively by screening the line-of-sight from sensitive receivers	Closed
247	20 th November 2018	19 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the noise nuisance from rock dropping during evening time	Y	Refer to the investigation for complaint no. 248	Closed
246	19 th November 2018	19 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from dump truck in evening time	Y	Refer to the investigation for complaint no. 248	Closed
245	8 th November 2018	8 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about construction noise during night time from LTI	Y	Refer to the investigation for complaint no. 248	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
243	8 th November 2018	8 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the construction noise during evening time from LTI.	Y	Refer to the investigation for complaint no. 248	Closed
242	7 th November 2018	7 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the construction noise and dust nuisance.	Y	Refer to the investigation for complaint no. 248	Closed
241	6 th November 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	Closed
240	6 th November 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
239	25 th October 2018	25 th October 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about daytime construction noise near Ocean Shore.	Y	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) Additional mitigation measures adopted by Contractor upon receipt of complaint: A more effective acoustic barrier was erected that covered the direct line of sight from the entire Ocean Shore during piling works. Existing Mitigation Measures adopted by Contractor Silent up barrier was provided for drill rig/vibration hammer. Acoustic barriers was erected along site boundary); Maintenance for acoustic barriers along the site boundary to ensure the integrity effectiveness of sound barrier; Metal chain attached on the vibration hammer was wrapped with rubbery material to reduce the excessive noise produced during piling works.	Closed
238	23 rd October 2018	23 rd October 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the noise created by an excavator during morning	Y	See Investigation / Mitigation Measures for Complaint No. 239	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
237	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about construction noise at LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
236	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Cha Kwo Ling Village	Noise	Complained about the vibration and noise near	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
235	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI and Portion 4C	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
234	18 th October 2018	18 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the Excavator in LTI was not properly wrapped and produce noise nuisance from LTI.	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
233	15 th October 2018	15 th October 2018/ Lam Tin Interchange	DC member	Noise	Complained about the noise and dust nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
232	14 th October 2018	14 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during night time	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
231	12 th October 2018	12 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
230	11 th October 2018	11 th October 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise from rocks unloading in LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
229	9 th October 2018	9 th October 2018/ Lam Tin Interchange	Resident of Bik Lai House, Yau Lai Estate	Noise	Complained about the noise nuisance from LTI, and lack of effective noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
228	9 th October 2018	9 th October 2018/ Lam Tin Interchange	Public	Noise	Complained about the noise nuisance from LTI	Y	See Investigation / Mitigation Measures for Complaint No. 227	Closed
227	3 rd October 2018	3 rd October 2018/ Lam Tin Interchange	Resident of Yung Lai House, Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during night time	Y	No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP) and approved Construction Noise Permit (CNP). Mitigation Measures adopted by Contractor Noise: Noise barriers were repaired to reduce noise nuisance at Portion 4C; Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C; Powered mechanical equipment (PME) for breaker was equipped with noise barriers at Portion 4C.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
226	28 th September 2018	28 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about noise nuisance from portion IV	Y	 See Investigation / Mitigation Measures for Complaint No. 222 	Closed
225	26 th September 2018	26 th September 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise from rocks unloading in LTI	Y	See Investigation / Mitigation Measures for Complaint No. 218	Closed
224	18 th September 2018	18 th September 2018/ Construction of Road P2	Public	Noise	Complained about noise nuisance from derrick barge	Y	See Investigation / Mitigation Measures for Complaint No. 219	Closed
223	13 th September 2018	9th September 2018/Constructi on of Portion VII on TKO side	Resident of Ocean Shores	Noise	Complained about noise nuisance from derrick barges	Y	See Investigation / Mitigation Measures for Complaint No. 218	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
222	12 th September 2018	12 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about the noise nuisance from piling works	Y	Mitigation Measures adopted by the Contractor Acoustics barriers were provided to the vibration hammer for piling works. Maintenance for acoustic barriers on the PME and along the site boundary to ensure the integrity and effectiveness of sound barriers. Regular site checking would be performed to ensure the type and quantity of powered mechanical equipment are in order with the updated Construction Noise Assessment. Acoustics mats were provided to cover the noise source from vibration hammer. The metal chain on vibration hammer was wrapped with rubbery material to minimize sound impact. The schedule for piling works was set with a 5 minutes interval to reduce the accumulated noise level.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
221	11 th September 2018	9 th September 2018/ Construction of Portion VII on TKO side	Public	Noise	Complained about the noise from broadcasting at barging point	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Walkie-talkie was used instead of broadcasting to reduce the noise nuisance.	Closed
220	11 th September 2018	26 th September 2018/ Lam Tin Interchange	Public	Noise	Complained about the construction noise	Y	 See Investigation / Mitigation Measures for Complaint No. 218 	Closed
219	7 th September 2018	7 th September 2018/ Construction of Road P2	Resident of Ocean Shores	Noise	Complained about the noise from sheet piling	Y	Mitigation Measures adopted by the Contractor Silent up barrier was provided for piling works in between vibration hammer and Ocean Shores. Acoustic barriers was erected along site boundary Noise barrier surround the engine of the derrick barge Acoustic material wrapped on vibration hammer for sheet piling works	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
218	6 th September 2018	6 th September 2018/ Construction in LTI	Public	Noise	Complained about noise nuisance in LTI	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C; Powered mechanical equipment (PME) for breaker was equipped with noise barriers at Portion 4C.	Closed
217	5 th September 2018	5 th September 2018/ Construction of Road P2	Public	Air Quality	Complained about dark smoke emission from derrick barges.	N	The Contractors has adopted the following environmental mitigation measures to reduce dark smoke nuisance from construction barges since June for dark smoke complaints: Smoke filtering tanks were adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell; New engine has been installed on derrick barge to reduce the dark smoke emission.	Closed
216	5 th September 2018	5 th September 2018/ Construction of Road P2	Public	Air Quality	Complained about dark smoke emission from derrick barges.	N	See Investigation / Mitigation Measures for Complaint No. 217	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
215	5 th September 2018	5 th September 2018/ Construction of Road P2	Public	Water Quality	Complained about the oil leakage within the cofferdam	N	The Contractors had taken measures to clean up and prevent any further oil spillage for marine works in the future: Dil was absorbed and cleared with sorbents Wire was applied with suitable amount of oil to prevent further oil spill Training was provided for frontline staff on applying lubricant oil on wire rope of derrick barge. The Contractor had implemented environmental measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as below: Construction activities should not cause foam, oil, grease, scum, little or other objectionable matter to be present on the water within the site. Standard good-site practice is adopted to prevent any fuels and solvent entering the nearby watercourses.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
214	4 th September 2018	4 th September 2018/ Construction of Road P2	Ocean Shores Management Office	Air Quality	Follow up complaint on 21 and 22 August, regarding dark smoke emission from derrick barges.	N	 See Investigation / Mitigation Measures for Complaint No. 217 	Closed
213	31 st August 2018	31st August 2018/ Construction of Lam Tin Interchange	Public	Air Quality	The complainant complained about the dust nuisance at LTI.	N	See Investigation / Mitigation Measures for Complaint No. 207	Closed
212	27 th August 2018	27 th August 2018/ Construction of Road P2	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from breaker and excavator in LTI.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed
211	22 nd August 2018	22 nd August 2018/ Construction of Road P2	Public	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores.	N	See Investigation / Mitigation Measures for Complaint No. 209	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
210	21 st August 2018	21st August 2018/ Construction of Road P2	Public	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores.	N	See Investigation / Mitigation Measures for Complaint No. 209	Closed
209	21 st August 2018	20 th & 21 st August 2018/ Construction of Road P2	DC Member	Air Quality	The complainant complained about the dark smoke emitted from derrick barge outside Ocean Shores on 20 and 21 of August.	N	The Contractors had implemented environmental mitigation measures to reduce dark smoke nuisance from construction barges to the nearby sensitive receivers as follows: Additional water filter tank was adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell There were five derrick barges operating on 20 & 22 of August and four of them had water filter installed. The one without water filter was demobilized away from the site on 22 August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
208	20 th August 2018	17 th August/ Construction of Road P2	DC Member	Water Quality	The complainant complained that muddy water was discharged from the construction site.	N	Based on the information gathered in the investigation. As the location of muddy discharge was appeared adjoining the Tseung Kwan O DSD Desilting Compound, a high volume of upstream discharge collected from rain events is a possible cause of such muddy discharge event. There are no direct evidence that the muddy discharge near the outfall of DSD Desilting Compound was due to the Project. Measure Taken by the Contractor The Contractors had taken initiatives to ensure the quality of wastewater discharge from landbased works and to enhance mitigation measure to prevent silt from marine works from entering surrounding waters: Additional geotextile was installed between steel tanks to prevent migration of filling materials outside the cofferdam Cofferdams in form of steel tanks filled with aggregated material were covered with geotextile to prevent spillage of silty materials into nearby waters	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
207	18 th August 2018	18 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air Quality	The complainant complained about dust nuisance from surface blasting.	N	According to the EM&A Manual of this Project, regular air quality monitoring has been carried out at following Stations. AM2 – Sai Tso Wan Recreation Ground; AM3 Yau Lai Estate, Bik Lai House. No exceedance was recorded in the above station during August. Mitigation Measures and Follow up Actions by Contractor The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Air Quality: Blasting cage were surrounded with impervious material during surface blasting Water spraying was provided at the blasting cage and stone crusher to enhance dust suppression	Closed
206	13 th August 2018	13 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from the breaker at LTI and complained lack of noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
205	10 th August 2018	10 th August 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance of construction work starting from 7 am and lack of noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 203	Closed
204	9 th August 2018	9 th August 2018/ Construction of Lam Tin Interchange	Resident of Tak Tin Estate	Noise	The complainant complained about noise nuisance and vibration from blasting activity	Y	According to the EM&A Manual of this Project, weekly noise monitoring in Cha Kwo Ling and Lam Tin during s been carried out at the following Stations. CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station; CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong; CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. There was no exceedance recorded in the above station during daytime in August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
203	9 th August 2018	9 th August 2018/ Construction of Lam Tin Interchange	Property Management of Tak Tin Estate	Noise	The complainant complained about the noise nuisance during 8pm	Y	Mitigation Measures and Follow up Actions by Contractor The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance at Portion 4C Powered mechanical equipment (PME) for rock breaking were equipped with noise barriers at Portion 4C According to the EM&A Manual of this Project, weekly noise monitoring in Cha Kwo Ling and Lam Tin during s been carried out at the following Stations. CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station; CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong; CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. There was no exceedance recorded in the above station during daytime in August.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
202	1 st August 2018	1 st August 2018/ Construction of Lam Tin Interchange	Resident of Yeung Mei House	Noise	The complainant complained about the construction noise during night-time.	Y	A valid Construction Noise Permit (CNP) (No. GW-RE0421-18) was granted to the Contractor for the construction site at Lam Tin Interchange The number of excavators that were used on 01 August was covered by the CNP. The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed
201	26 th July 2018	26 th July 2018 / Construction of P2/D4	Public	Water quality	The complainant complained about the polluted effluent at the nearby surface drain near the construction of elevator.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Sandbags barrier was placed along the working area to prevent direct discharge	Closed
200	26 th July 2018	26 th July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on 24 th July 2018, the situation has yet been addressed.	Y	See Investigation / Mitigation Measures for Complaint No. 197	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
199	24 th July 2018	23 rd July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about a yellow breaker working without noise barrier.	Y	See Investigation / Mitigation Measures for Complaint No. 197	Closed
199	25 th July 2018	25 th July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained about the noise from piling works at Portion IV.	Y	See Investigation / Mitigation Measures for Complaint No. 198	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
198	21st July 2018	21st July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained about the noise from metal occasionally in the marine works area.	Y	Based on the noise monitoring results in July 2018, no Limit Level Exceedance was recorded at Station CM6(A) and CM7(A). It is considered that no adverse construction noise impact was brought to the nearby sensitive receivers during the construction. The Contractors had implemented environmental mitigation measures to reduce construction nuisance from construction activities to the nearby sensitive receivers as follows: Noise: Acoustic box was utilized for breaking works to minimize noise nuisance Acoustic barriers were provided for pre-boring works Regular site checking would be performed to ensure the type and quantity of PME are in order with the updated Construction Noise Assessment. Additional acoustic materials were wrapped around the vibration hammer Quieter plant, i.e. quality powered mechanical equipment was used as far as practicable to minimize noise impact from PME	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
197	21 st July 2018	21st July 2018 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about the noise nuisance from breaker.	Y	According to the EM&A Manual of this Project, additional weekly noise monitoring in Cha Kwo Ling and Lam Tin during night-time has been carried out at Station CM1 – Nga Lai House, Yau Lai Estate Phase 1, Yau Tong, Station CM2 – Bik Lai House, Yau Lai Estate Phase 1, Yau Tong, CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong. no Limit Level Exceedance was recorded at Station CM1, CM2 and CM3. The summary of daytime and evening time noise monitoring results which conducted by ET in July and early August 2018 at Station CM1, CM2 and CM3 The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Noise barriers were erected between the PMEs and NSR to reduce noise nuisance Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
196	20 th July 2018	Not specified / Construction of Lam Tin Interchange	Property Management Office of Hong Pak Court	Air Quality	The complainant complained about the dust problem after blasting work in the afternoon.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Blasting cage were surrounded with impervious material during surface blasting > Water spraying was provided at the blasting cage to enhance dust suppression	Closed
195	17 th July 2018	16 th July 2018 / Construction of Road P2	SKDC member	Noise	The complainant complained the noise from works area near Ocean Shores	Y	See Investigation / Mitigation Measures for Complaint No. 198	Closed
194	12 th July 2018	12 th July 2018/ Construction of Road P2/ D4 and Northern Footbridge	Residents of Metrotown	Air Quality	The complainant complained the dusty problem next to Chui Ling Road Substation.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Water spraying was provided at least 8 times a day. > Access road was paved to minimize dust emission from truck traffic.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
193	12 th July 2018	12 th July 2018 / Construction of Road P2	Residents of Metrotown	Air Quality	The complainant complained the dust problem from the partially covered stockpile in Work Area A.	N	According to the information provided and confirmed by the Engineer, loading and unloading of treated sediment was conducted in Work Area A. According to the EM&A Manual of this Project, regular air quality monitoring has been carried out at Station AM5(A) – Tseung Kwan O DSD Desilting Compound and AM6(A) – Park Central, L1/F Open Space Area. no Action or Limit Level Exceedance was recorded at Station AM5(A) and AM6(A) from 3 to 12 July 2018. It is considered that no adverse air quality impact was brought to the nearby sensitive receivers during the construction period The Contractors had implemented environmental mitigation measures to reduce dust nuisance from construction activities to the nearby sensitive receivers as follows: Covered the stockpile of treated marine sediment with tarpaulin sheets	Closed
192	23 rd July 2018	Not specified/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June, 2 nd and 3 rd July 2018, the complainant complained that the situation has not yet been addressed.	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: > Replaced and fixed the uneven metal plate on Lei Yue Mun Road near ambulance depot	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
	3 rd July 2018	3 rd July 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June, 2 nd July 2018, the complainant complained that the situation has not yet been addressed.	Y	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows:	Closed
191	2 nd July 2018	2 nd July 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Follow up on the complaint on 27 th June 2018, the complainant complained that the situation has not yet been addressed.	Y	Replaced and fixed the uneven metal plate on Lei Yue Mun Road near ambulance depot According to the information provided and confirmed by the Engineer, dredging and welding works are conducted on 23 June 2018 during the time of complaint. The Contractors had implemented	Closed
191	27 th June 2018	26 th and 27 th June 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained the construction noise at Lam Tin Interchange during night-time.	Y	environmental mitigation measures to reduce odour nuisance from construction activities to the nearby sensitive receivers as follows: Air blowers were provided at the location where welding works to be carried out to dilute the smell	Closed
	25 th June 2018	23 rd June 2018/ Construction of Road P2	Public	Air Quality	The complainant complained the dark smoke emission from construction barge and the smell from welding works.	N	Additional water filter tank was adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
190	22 nd June 2018	Not Specific/ Construction of Lam Tin Interchange	Public	Waste Managem ent	The complainant complaint about the housekeeping of the construction site.	N	From the Daily Record Summary provided by the Contractor and confirmation by the RE, there was no irregularity, and together with the site inspection conducted by the environmental team in June, construction waste on pavement was not observed. Despite, the Contractor was reminded to follow the relevant mitigation measures related to waste management: Ensure trucks have enclosed the containers before leaving the site to reduce the impact during transportation (Photo 3); Training of site personnel in proper waste management and chemical handling procedures to ensure proper disposal of construction waste; Proper storage and site practices to minimize the potential for damage or contamination of construction materials	Closed
189	20 th June 2018	28 th May 2018/ Construction of Road P2	SKDC member	Air Quality	The complainant complained the dark smoke emission from the same construction vessel.	N	See Investigation / Mitigation Measures for Complaint No. 181.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
188	20 th June 2018	20 th June 2018/ Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	The complainant complained about construction noise starting from 6 am.	Y	The construction activities in Lam Tin Interchange (Work site No.101) on 20th of June possessed of 6 no. of excavators between 7-8 am, 6 no. of breakers, excavator mounted between 8-10 am. The quantity of excavators and breakers were consistent with the Construction Noise Mitigation Plan (Construction Activity Group 1.1) The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual as follows: Powered mechanical equipment (PME) for rock breaking were equipped with TMD and SilentMat	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
187	7 th June 2018	7 th June 2018/ Construction of Road P2	Resident of Ocean Shores	Air Quality	The complainant complained about the smell of machinery exhaust affecting the podium of Ocean Shores (swimming pool). The complainant suspected the exhaust was originated from the nearby barges.	N	According to the information provided and confirmed by the Engineer, dredging works and placing rock fill were conducted during the time of complaint. Dredger, derrick barge, tug boat and hopper barge were being operated for the mentioned works. According to the site inspections conducted by ET and IEC in May and June 2018, no exhausted smell from construction vessel was identified in Portion IV, VII and IX. The Contractors had implemented environmental mitigation measures to minimize the air nuisance to the nearby sensitive receivers as follows: Odour Emission from Exhausted Gas: Additional water filter tank was adopted on the deck level of derrick barges to reduce emission of dark smoke and exhaust smell	Closed
186	6 th June 2018	6 th June 2018/ Construction of Lam Tin Interchange	Resident of Chung Pak House, Hong Pak Court	Noise	The complainant complained about the construction noise at Lam Tin Interchange.	Y	A valid Construction Noise Permit (CNP) (No. GW-RE0278-18) was granted to the Contractor for the construction site at Lam Tin Interchange. The number of excavator and dump trucks that were used on 6 June were covered by the CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
185	6 th June 2018	30 th May and 30 th September 2017/ Construction of Road P2	SKDC member	Noise	The complainant complained about the noise affecting nearby resident in early morning near Ocean Shores.	Y	See Investigation / Mitigation Measures for Complaint No. 50 and 81.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
184	6 th June 2018	Not specified / Construction of Road P2	SKDC member	Landscape	The complainant complained about excessive tree felling near Ocean Shores.	N	According to the information provided and confirmed by the Engineer, tree removal application for the concerned area has granted approval from District Lands Office (DLO) on 1 August 2017 and 18 April 2018 together with the tree compensatory plans. The felling of a total of 85 trees at the concerned area were in accordance with the approved tree removal application by the DLO. None of them are registered Old and Valuable Tree and neither of them are rare nor endangered species. The number of retained trees at the concerned location complies with the latest tree removal application. The Contractor had taken initiatives to minimize nuisance from construction works to the nearby sensitive receivers as follows: Tree protection zones were established and surrounded by fences to protect retained trees adjacent to the construction area. Tree protection zone were free of machinery and material that are likely to be injurious to the tree. Regular tree assessments were conducted by qualified Arborist to monitor the condition of retained trees.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance (Y/N)	Investigation/ Mitigation Action	File Closed
183	4 th June 2018	4 th June 2018/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	N/A	The complainant complained about the blasting works during night-time.	N	The Contractor had implemented environmental mitigation measures in accordance with the "Implementation Schedule of Proposed Mitigation Measures" Ensured blasting doors were closed while blasting associated works was undertaken in the tunnel Installed steel-type blasting door mounted with sound absorptive lining to absorb construction noise in the tunnel	Closed
182	1 st June 2018	Not specified/ Construction of Lam Tin Interchange	Sin Fat Road Tennis Court	Air Quality	The complainant complained about the dust	N	The Contractor had taken initiatives to minimize nuisance from construction works to the nearby sensitive receivers as follows: Frequent water spraying along the slope area at LTI. Tarpaulin sheets were provided along the slope adjacent to the tennis court during preparation of surface blasting.	Closed

Cumulative Complaint Log since commencement of Project

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
November 2016	0	0	0
December 2016	11	0	0
January 2017	15	0	0
February 2017	4	0	0
March 2017	6	0	0
April 2017	1	0	0
May 2017	10	0	0
June 2017	8	0	0
July 2017	3	0	0
August 2017	8	0	0
September 2017	14	0	0
October 2017	8	0	0
November 2017	12	0	0
December 2017	10	1	0
January 2018	11	0	0
February 2018	6	0	0
March 2018	17	0	0
April 2018	15	0	0
May 2018	22	0	0
June 2018	11	0	1
July 2018	9	0	0
August 2018	12	0	0
September 2018	11	0	0
October 2018	13	0	0
November 2018	13	0	0

Reporting Month	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
December 2018	10	0	0
January 2019	39	0	0
February 2019	20	0	0
March 2019	25	0	0
April 2019	17 ¹	0	0
May 2019	11	0	0
June 2019	11	0	0
July 2019	82	0	0
August 2019	5	0	0
September 2019	4	0	0
October 2019	5	0	0
November 2019	6	0	0
December 2019	5	0	0
January 2020	5	0	0
Total	421	1	1

^{1.} Complaint No. 378, 363, 362 were received after the submission of EMA Monthly Report (April 2019)

^{2.} Two new complaints was received after the submission of the EMA Report (July 2019)

Cumulative Log for Notifications of Summons

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS24 138/20 17	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	The Summon was issued on 22 Dec 2017 First hearing on 29 Mar 2018	0	1
NE/2015/03			+			
NE/2017/01			+			
NE/2017/02			F			

Cumulative Log for Successful Prosecutions

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS24 138/20 17	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	Successful prosecution to the subcontractor on 27 June 2018	1	1
NE/2015/03						
NE/2017/01						
NE/2017/02						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH

Contract No.: NE/2015/01 LEIGHTON ART-中国等 Leighton - China State Joint Venture

Monthly Summary Waste Flow Table for Jan 2020

	Actu	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual (Quantities of	C&D Wastes	Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed f. Imported sa Public Fill		g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	i. Plastics (see Note 3) (see Note 5)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	131.325	42.581	0.000	42.581	88.744	0.000	0.000	0.000	0.000	3.040	0.360
February											
March											
April											
May											
June											
Sub-total	131.325	42.581	0.000	42.581	88.744	0.000	0.000	0.000	0.000	3.040	0.360
July											
August											
September											
October											
November											
December											
Total											

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

Notes: (1) The performance target are given in PS Clause 6(14)

- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the amount of C&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m3. (PS Clause 1.105(4) refers)
- (5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
- (6) Conversion factors for reporting purpose:

in-situ: rock = 2.5 tonnes/m³; soil = 2.0 tonnes/m³

- (7) excavated: $rock = 2.0 \text{ tonnes/m}^3$; $soil = 1.8 \text{ tonnes/m}^3$; broken concrete and bitumen = 2.4 tonnes/m³, $soil and rock = 1.9 \text{ tonnes/m}^3$
- (8) C&D Waste = 0.9 tonnes/m³; bentonite slurry = 2.8 tonnes/m³

Diesel density: 0.8kg/l

Numbers are rounded off to the nearest three decimal places

The "Total Quantity Generated" equals to the sum of "Reuse in the Contract", "Reuse in Other Projects" and "Disposed as Public Fill"

Monthly Summary of Waste Flow Table for 2019

Name of Person completing the Record: Martin Yiu

	Actual Qu	uantities of Inc	ert C&D Mate	rials Generate	ed Monthly	Actual Quantities of Non-inert C&D Wastes Generated Monthly						
Month	Total Quantity	Broken Concrete	Reused in the Contract	Reused in other	Disposed as Public Fill	Metals	Paper/ cardboard	Plastics	Chemical Waste	Others, e.g. general		
	Generated	(see Note 1)		Projects			packaging	(see Note 2)	Wadio	refuse		
	(in '000m ³)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000m ³)						
Jan	0.4469	0	0	0	0.4469	0	0	0	0	0.0195		
Feb	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Mar	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Apr	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
May	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Jun	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Sub-total	0.4469	0	0	0	0.4469	0	0	0	0	0.0195		
Jul	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Aug	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Sep	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Oct	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Nov	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Dec	0.0000	0	0	0	0.0000	0	0	0	0	0.0000		
Total	0.4469	0	0	0	0.4469	0	0	0	0	0.0195		

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Use the conversion factor: 1 full load of 24t / 30t dumping truck being equivalent to 6.5m3 / 8.125 m3 by volume.

Name of Department: Civil Engineering & Development Department Contract No.: NE/2017/06

Monthly Summary Waste Flow Table For 2020

		Actual Quantitie	es of Inert C&I	Materials Ger	erated Monthl	у	Actu	ıal Quantities o	f C&D Wastes	Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. General Refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0	0	0	0	0	0	0	0	0	0	0
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0	0	0	0	0	0	0	0	0	0	0

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.
- (3) Each dump truck carries 6m³ of general refuse.
- (4) The commencement date of the Contract is 9 November 2018. The current reporting period is from 1 January 2020 to 31 January 2020.

	Rev. No.	Draft
NE/2015/03 - Environmental Management Plan	Iggue Dote	16 Dec 2016
Appendices - Appendix 13	Issue Date	10 Dec 2010

Name of Department : <u>CEDD</u> Contract No. : <u>NE/2015/03</u>

Monthly Summary Waste Flow Table for January 2020 (year)

		Actual Quantiti	es of Inert C&D	Materials Genera	ited Monthly		A	ctual Quantities	of C&D Wastes (Generated Mont	hly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Accumulated From 2019	2.47194	0	0.175365	0.427405	1.83421	0.03056	0	0	0	0	0.22676
Jan	0	0	0	0	0	0	0	0	0	0	0.0118
Feb											
Mar											
Apr											
May											
June											
Sub-total											
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	2.47194	0	0.17365	0.427405	1.83421	0.03056	0	0	0	0	0.23856

- (1) The performance targets are given in PS Clause 6.14.
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
- (4) The *Contractor* shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the *works*, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the *works* is equal to or exceeding 50,000 m₃.

Monthly Summary Waste Flow Table for 2020

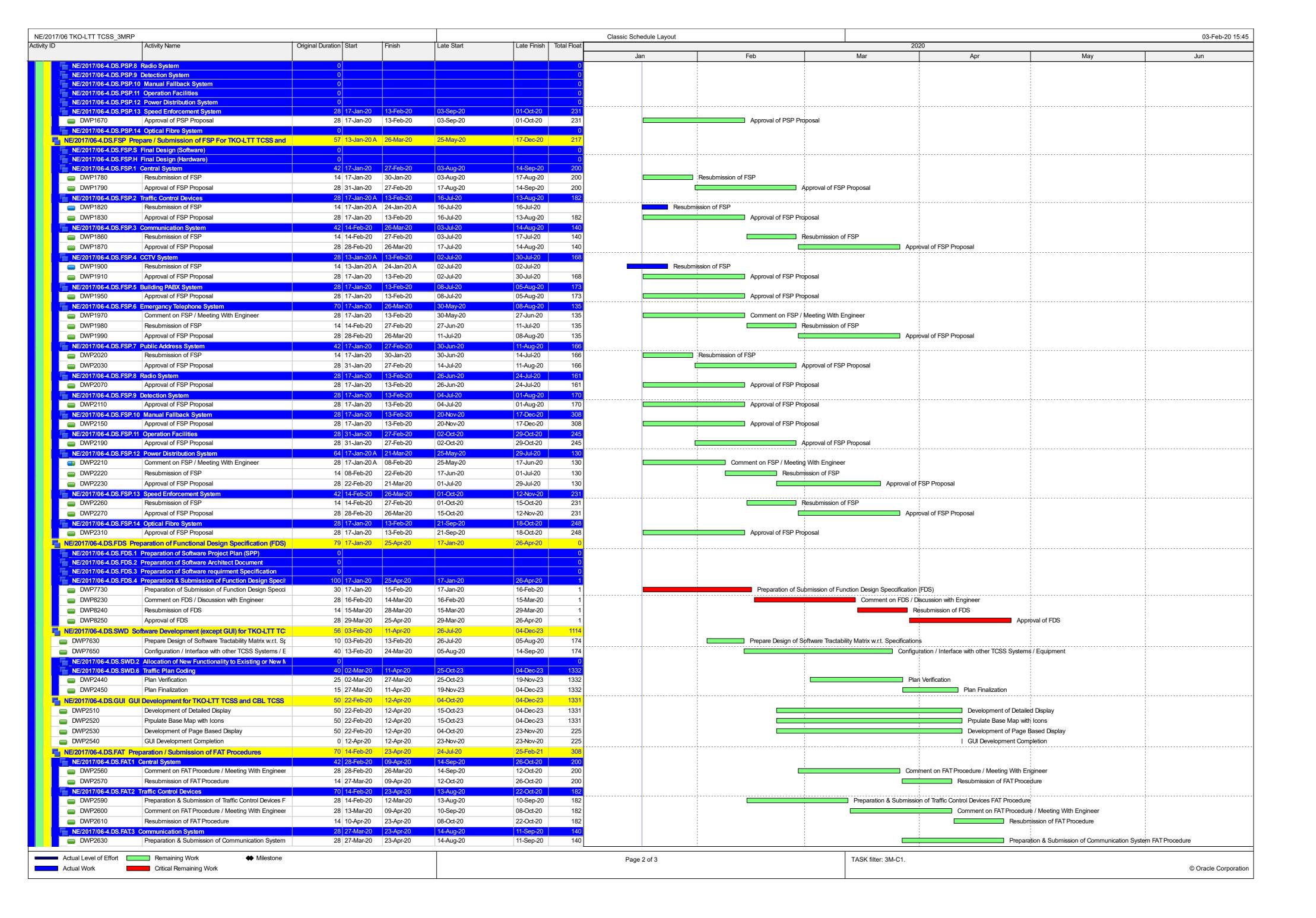
Contract No.: NE/2017/01

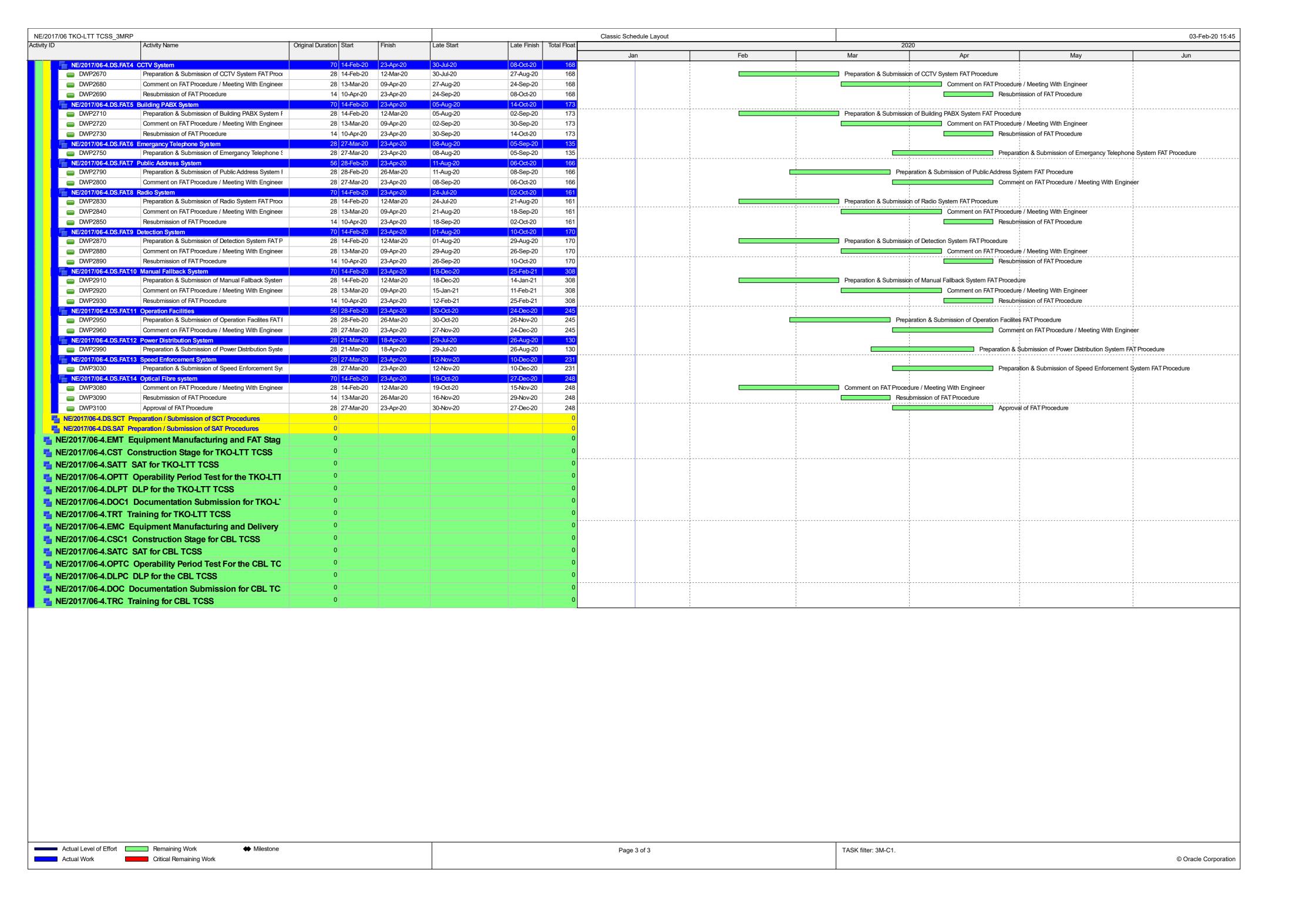
Name of Department: Civil Engineering and Development Department

	Actu	al Quantities	of Inert C&D) Materials G	enerated Mo	nthly	Actual	Quantities of	f C&D Wastes	Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0.0400	0.0000	0.0000	0.0000	0.0163	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	0.0400	0.0000	0.0000	0.0000	0.0163	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0.0400	0.0000	0.0000	0.0000	0.0163	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033

- 1. Assume the density of soil fill is 2 ton/m³.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m³.
- 3. Assume the density of mixed rock and soil is 1.9 ton/m³.
- 4. Assume the density of slurry and bentonite is 2.8 ton/m³.
- 5. The slurry and bentonite are disposed at Tseung Kwan O Area 137 Fill Bank.
- 6. Assume the density of C&D waste is 0.9 ton/m³.
- 7. The non-inert C&D wastes are disposed at NENT.

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

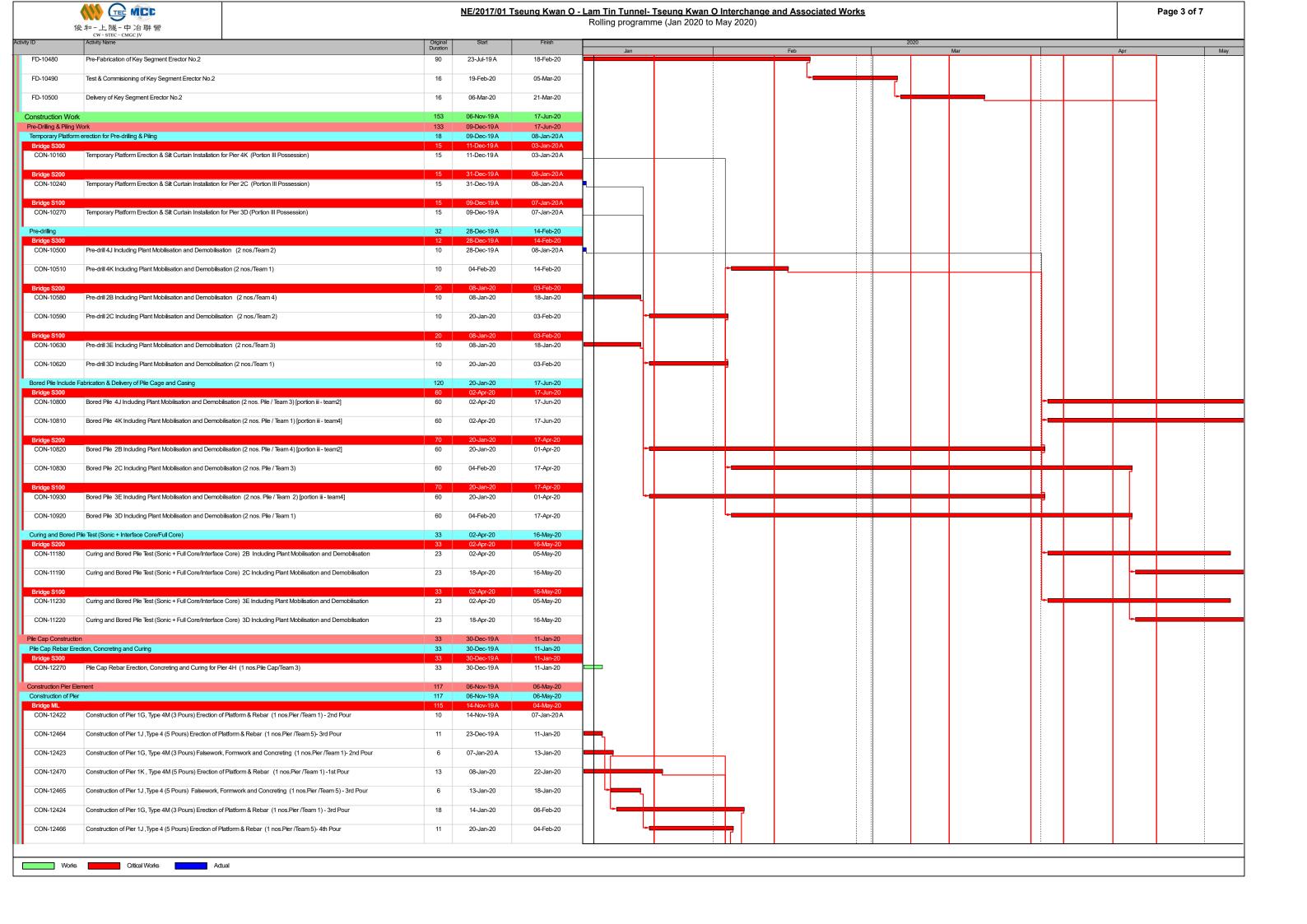

High Level 3 Months Look Ahead Programme


Activities	Feb-20	Mar-20	Apr-20
Lam Tin Interchange			
EHC2 U-Trough			
Site Formation - Area 1G1 & 1G2 &5			
Site Formation - Area 2			
Site Formation - Area 3 and 4 Slope stabilisation			
Administration Building			
Bridge Construction			
Main Tunnel			
MT Excavation			
MT Lining Works			
TKO Interchange			
Haul Road Construction, Site Formation & Slope Works			
Bridge Construction			
Cavern Excavation			
East Ventilation Building			

NE/2015/01

High Level 3 Months Look Ahead Prog	ramme			
Activities	Feb-20	Feb-20 Mar-20		
Trial pit				
Underground utilities detection				
Temporary traffic arrangement Setup				
Construction of drainage and watermain				
Bored Piles				
Pile Cap construction				
Pre-bored Socket-H Pile				

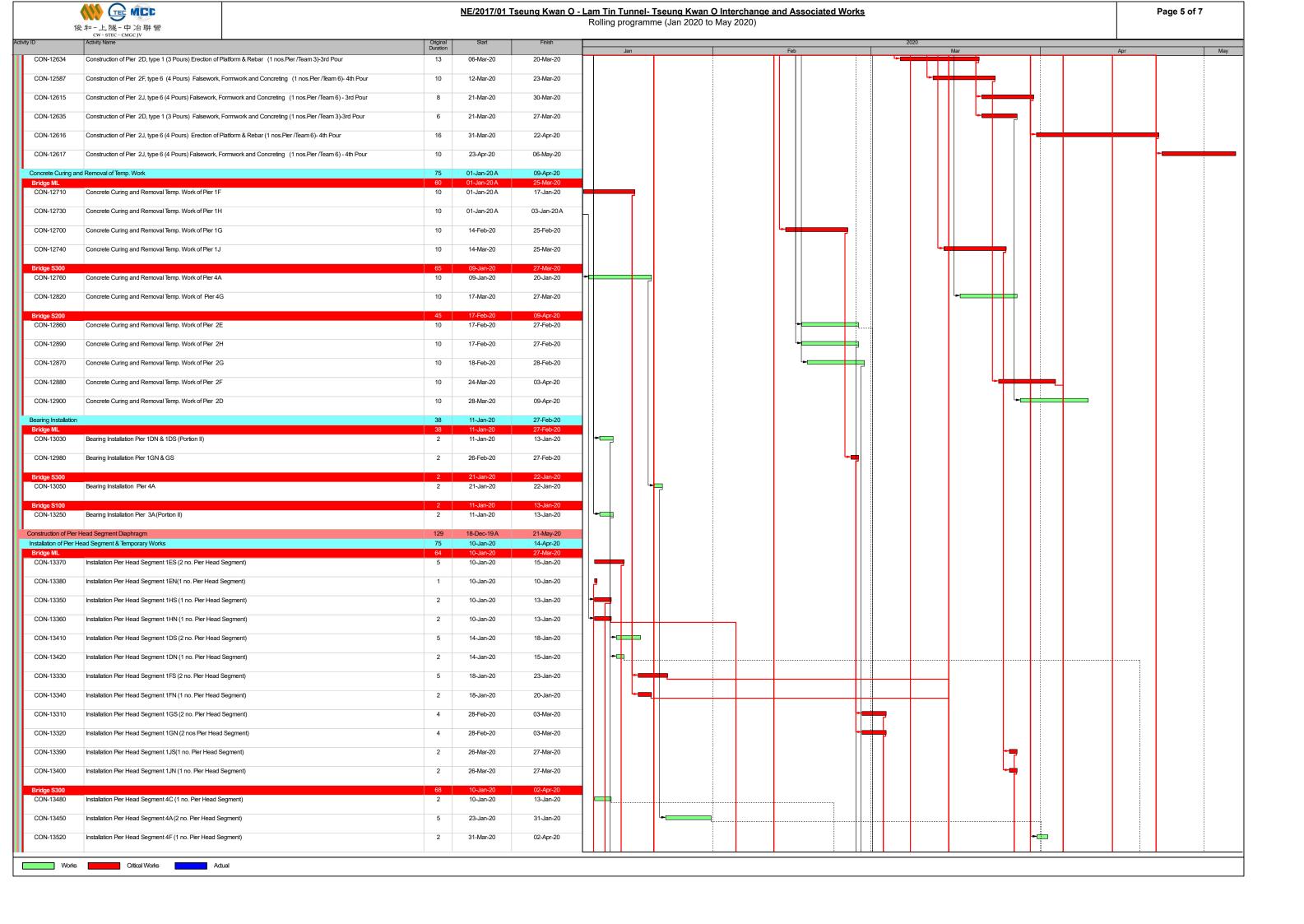
NE/2017/06 TKO-LTT TCSS_3N			+				Classic Schedule Layout			03-Feb-20 15:45
Activity ID	Activity Name	Original Duration Start	Finish	Late Start	Late Finish	Total Float	Jan Feb	2020 Mar Apr	May	Jun
► NE/2017/06-4 NE/2	017/06 TKO-LTT TCSS_3MRP	79 13-Jan-20 A	25-Apr-20	17-Jan-20	04-Dec-23	1103	Gail 105	7,01	May	oun
	Contract Award / Commencement of Wor	0				0				
NE/2017/06-4.AD		0				0				
NE/2017/06-4.KD	Key Date and Stages / Sections of the Ach	0				0				
➡ NE/2017/06-4.MD	Cost Centre Milestone Dates	36 13-Feb-20	26-Mar-20	27-Jun-21	02-Sep-22	734				
NE/2017/06-4.MD.1			26-Mar-20	27-Jun-21	02-Sep-22	734				
NE/2017/06-4.MD. ² DWP8840	1.1 CC B - Central System - TKOLTT Acceptance of Final System Proposal for Works	0 27-Feb-20 0	27-Feb-20 27-Feb-20	27-Jun-21	27-Jun-21 27-Jun-21	486 486	◆ Accept	ance of Final System Proposal for Works,		
	1.2 CC B1 - Central System - CBL	0 27-Feb-20	27-Feb-20	02-Sep-22	02-Sep-22	918				
DWP8900	Acceptance of Final System Proposal for Works 1.3 CC C - Traffic Control Devices - TKOLTT	0 42 5-6 20	27-Feb-20	97. hvs 94	02-Sep-22	918	◆ Accept	ance of Final System Proposal for Works,		
DWP8960	Acceptance of Final System Proposal for Works	0 13-Feb-20 0	13-Feb-20 13-Feb-20	27-Jun-21	27-Jun-21 27-Jun-21	500	◆ Acceptance of Final System	n Proposal for Works,		
	1.4 CC C1 - Traffic Control Devices - CBL	0 13-Feb-20	13-Feb-20	02-Sep-22	02-Sep-22	932				
DWP9020	Acceptance of Final System Proposal for Works 1.5 CC D - Communication System - TKOLTT	0 26-Mar-20	13-Feb-20 26-Mar-20	27-Jun-21	02-Sep-22 27-Jun-21	932 458	◆ Acceptance of Final System	n Proposal for Works,		
DWP9140	Acceptance of Final System Proposal for Works	0	26-Mar-20	27-5017-21	27-Jun-21	458		♦ Acceptance of Final System Proposal for Works,		
 	1.6 CC D1 - Communication System - CBL	0 26-Mar-20	26-Mar-20	02-Sep-22	02-Sep-22	890		6 5 10 10 5 16 W.		
DWP9080	Acceptance of Final System Proposal for Works 1.7 CC E - CCTV System - TKOLTT	0 13-Feb-20	26-Mar-20 13-Feb-20	27-Jun-21	02-Sep-22 27-Jun-21	890 500		◆ Acceptance of Final System Proposal for Works,		
■ DWP9200	Acceptance of Final System Proposal for Works	0	13-Feb-20		27-Jun-21	500	◆ Acceptance of Final System	n Proposal for Works,		
NE/2017/06-4.MD.	1.8 CC E1 - CCTV System - CBL Acceptance of Final System Proposal for Works	0 13-Feb-20	13-Feb-20 13-Feb-20	02-Sep-22	02-Sep-22 02-Sep-22	932 932	◆ Acceptance of Final Syste	n Pronosal for Works		
	1.9 CC F - Building PABX System - TKOLTT	0 13-Feb-20	13-Feb-20 13-Feb-20	27-Jun-21	02-Sep-22 27-Jun-21	500	▼ Acceptance of Final System	in reposal for trolles,		
■ DWP9320	Acceptance of Final System Proposal for Works	0	13-Feb-20		27-Jun-21	500	◆ Acceptance of Final System	n Proposal for Works,		
NE/2017/06-4.MD.*	1.11 CC G - ET System - TKOLTT Acceptance of Final System Proposal for Works	0 26-Mar-20 0	26-Mar-20 26-Mar-20	27-Jun-21	27-Jun-21 27-Jun-21	458 458		◆ Acceptance of Final System Proposal for Works,		
NE/2017/06-4.MD. ²	1.10 CC H - PA System - TKOLTT	0 27-Feb-20	27-Feb-20	27-Jun-21	27-Jun-21	486				
DWP9380	Acceptance of Final System Proposal for Works 1.12 CC I - Radio System - TKOLTT	0 13-Feb-20	27-Feb-20 13-Feb-20	27-Jun-21	27-Jun-21	486	◆ Accept	ance of Final System Proposal for Works,		
DWP9500	Acceptance of Final System Proposal for Works	0 13-Feb-20 0	13-Feb-20 13-Feb-20	27-Jun-21	27-Jun-21 27-Jun-21	500	◆ Acceptance of Final System	n Proposal for Works,		
	1.13 CC J - Detection System - TKOLTT	0 13-Feb-20	13-Feb-20	27-Jun-21	27-Jun-21	500				
DWP9560	Acceptance of Final System Proposal for Works 1.15 CC J1 - Detection System - CBL	0 13-Feb-20	13-Feb-20	02-Sep-22	27-Jun-21 02-Sep-22	500	◆ Acceptance of Final System	n Proposal for Works,		
DWP9680	Acceptance of Final System Proposal for Works	0 13-1 eb-20	13-Feb-20	υ2-36μ-22	02-Sep-22	932	◆ Acceptance of Final System	n Proposal for Works,		
	1.14 CC K - Manual Fallback System - TKOLTT	0 13-Feb-20	13-Feb-20	27-Jun-21	27-Jun-21	500				
DWP9620	Acceptance of Final System Proposal for Works 1.16 CC L - Operation Facilities - TKOLTT	0 27-Feb-20	13-Feb-20 27-Feb-20	27-Jun-21	27-Jun-21 27-Jun-21	500 486	◆ Acceptance of Final System	n Proposal for Works,		
■ DWP9740	Acceptance of Final System Proposal for Works	0	27-Feb-20		27-Jun-21	486	◆ Accept	ance of Final System Proposal for Works,		
NE/2017/06-4.MD.*	1.17 CC M - Power Distribution System - TKOLTT Acceptance of Final System Proposal for Works	0 21-Mar-20	21-Mar-20 21-Mar-20	27-Jun-21	27-Jun-21 27-Jun-21	464 464		◆ Acceptance of Final System Proposal for Works,		
	1.18 CC M1 - Power Distribution System - CBL	0 21-Mar-20	21-Mar-20	02-Sep-22	02-Sep-22	896		▼ Acceptance of Final Gystern Fisposario Works,		
■ DWP9860	Acceptance of Final System Proposal for Works	0	21-Mar-20		02-Sep-22	896		◆ Acceptance of Final System Proposal for Works,		
NE/2017/06-4.MD. ² DWP9910	1.19 CC N - Speed Enforcement System - TKOLTT Acceptance of Preliminary System Proposal for Works	42 13-Feb-20 0	26-Mar-20 13-Feb-20	27-Jun-21	27-Jun-21 27-Jun-21	458 500	◆ Acceptance of Preliminary	System Proposal for Works.		
■ DWP9920	Acceptance of Final System Proposal for Works	0	26-Mar-20		27-Jun-21	458	,	◆ Acceptance of Final System Proposal for Works,		
NE/2017/06-4.MD.	1.20 CC N1 - Speed Enforcement System - CBL Acceptance of Preliminary System Proposal for Works	42 13-Feb-20	26-Mar-20	02-Sep-22	02-Sep-22	890	Accordance of Desliminary	Contain Dranged for Wedge		
DWP10400	Acceptance of Final System Proposal for Works Acceptance of Final System Proposal for Works	0	13-Feb-20 26-Mar-20		02-Sep-22 02-Sep-22	932 890	◆ Acceptance of Preliminary	◆ Acceptance of Final System Proposal for Works,		
NE/2017/06-4.MD.	1.21 CC O - Government Optical Fibre System - TKOLTT	0 13-Feb-20	13-Feb-20	27-Jun-21	27-Jun-21	500				
DWP10040	Acceptance of Final System Proposal for Works 1.22 CC O1 - Government Optical Fibre System - CBL	0 13-Feb-20	13-Feb-20	02-Sep-22	27-Jun-21 02-Sep-22	500	◆ Acceptance of Final System	n Proposal for Works,		
DWP10100	Acceptance of Final System Proposal for Works	0 13-1 eb-20	13-Feb-20	υ2-36μ-22	02-Sep-22	932	◆ Acceptance of Final System	n Proposal for Works,		
	1.23 CC P - Training and Documentation - TKOLTT	0				0				
	1.24 CC P1 - Training and Documentation - CBL 1.25 CC Q - Comprehensive Maintenance Services and DL	0				0				
NE/2017/06-4.MD.	1.26 CC Q1 - Comprehensive Maintenance Services and D	0	02 5 4 02	47.11	010	0				
NE/2017/06-4.1 P		11 17-Jan-20 11 17-Jan-20		17-Nov-23	04-Dec-23	1171				
NE/2017/06-4.1.A0 F		0	00-1 60-20	17-1407-23	04-De0-23	0				
NE/2017/06-4.1.A0	.3 Management System	11 17-Jan-20	03-Feb-20	17-Nov-23	04-Dec-23	1171				
	.A0.3.0QP Quality Management Plan .A0.3.2 Safety Management	0 17 17-Jan-20	03-Feb-20	17-Nov-23	04-Dec-23	0 1400				
■ GEN.0.05C	Prepare and submit the Materials - Personal Protectiv	12 17-Jan-20	29-Jan-20	22-Nov-23	04-Dec-23	1405	Prepare and submit the Materials - Personal Pro			
GEN.0.05D	Prepare and submit the Site Traffic Safety Manageme A0.3.1 Environmenta; Management Plan	17 17-Jan-20	03-Feb-20	17-Nov-23	04-Dec-23	1400	Prepare and submit the Site Traffic Safety	Management Plan		
NE/2017/06-4.1	.A0.3.3 Sub-Contract Management	0				0				
	.A0.3.4 Risk Management .A0.3.5 Software Management	0				0				
	Au.s.s Software Management A0.3.6 Interface Management	0				0				
NE/2017/06-4.DS	Design Stage	79 13-Jan-20 A		17-Jan-20	04-Dec-23	1103				
	P Prepare / Submission of PSP for TKO-LTT TCSS and	21 17-Jan-20	13-Feb-20	03-Sep-20	01-Oct-20	189				
	PSP.S Preliminary Design (Software) PSP.H Preliminary Design (Hardware)	0				0				
NE/2017/06-4.DS.F	PSP.1 Central System	0				0				
<u> </u>	PSP.2 Traffic Control Devices PSP.3 Communication System	0				0				
NE/2017/06-4.DS.F	PSP.4 CCTV System	0				0				
	PSP.5 Building PABX System PSP.6 Emergancy Telephone System	0				0				
· <u></u>	PSP.7 Public Address System	0				0				
Actual Level of Effort	Remaining Work						Page 1 of 3	TASK filter: 3M-C1.		
Actual Work	Critical Remaining Work									© Oracle Corporation


Critical Works

Works

03-Jul-20 10-Jan-18 A Tseung Kwan O Interchange and Associated Works 202001 _200114 Contract Key Date & Milest 10-Jan-20 17-Apr-20 17-Apr-20 Major Design Work 10-Jan-20 Bridge S200 Acceptance of Detail Design of Bridge S200 (Pier and Deck) CD-10330 10-Jan-20 Major Safety/ Environment Element Completion of 4th Independent Safety Audit 22-Jan-20* Completion of 2nd Safety Bulletin Board 22-Jan-20* CD-10480 Completion of Construction Video Film for Release II 10-Jan-20* 03-Feb-20 Major Construction Work 17-Apr-20 CD-10590 Completion of Pre-drilling Bridge S300 14-Feb-20 0 CD-10680 Completion of Pre-drilling Bridge S200 03-Feb-20 CD-10690 Completion of Bored Pile (Construction) Bridge S200 0 17-Apr-20 CD-10770 Completion of Pre-drilling Bridge S100 03-Feb-20 CD-10780 0 Completion of Bored Pile (Construction) Bridge S100 17-Apr-20 10-Jan-18 A Initial Document Submission 749 10-Jan-18 A 21-Jan-20 Prepare, Submit and Acceptance of Professional Indemnity Insurance for the Work in Respect of the Designer 60 10-Jan-18 A 08-Jan-20 BIM & Simulation of Construction Method 10-Jul-19 A 21-Jan-20 Prepare and Submit the Construction Method Simulation - Span Segment Erection 120 10-Jul-19 A 21-Jan-20 29-Dec-19 A 13-Jan-20 Prepare and Submit Report for Condition Survey (Portion II) 29-Dec-19 A 10-Jan-20 PRE-11934 Project Manager to acknowledge the Report Submission of Condition Survey (Portion II) PRE-11953 Prepare and Submit Report for Initial Survey (Portion II) 29-Dec-19 A 10-Jan-20 PRE-11954 3 Project Manager to acknowledge the Report Submission of Initial Survey (Portion II) 11-Jan-20 13-Jan-20 Document Submission (Design, Drawing , Method Statement, Application etc) 06-Jul-19 A 01-May-20 Contractor's Alternative Design (AD) & Contractor's Design 10-Jan-20 PRE-15620 Project Manager to Review & Approve the Detail Design of Bridge S200 (Deck) 21 06-Jul-19 A 10-Jan-20 Bridge Strands 17-Dec-19 A 07-Jan-20 A PRE-13330 Result Submission and Review & Acceptance by the Project Manager 21 17-Dec-19 A 07-Jan-20 A Major Method State 16-Aug-19 A 01-May-20 Contractor's Review with Project Manager, Revised Method Statement Construction of Span Segment Erection 21 16-Aug-19 A PRE-14100 21 28-Dec-19 A Project Manager to review and approve Method Statement Construction of Span Segment Erection 18-Jan-20 PRE-14090 06-Jan-20 A 08-Jan-20 A ICE Certification & Submit Revised Method Statement for Construction of Span Segment Erection Contractor's Review with Project Manager, Revised Method Statement for Bridge Stressing (Internal & External) PRE-14130 13-Sep-19 A 17-Jan-20 PRE-14150 ICE Certification & Submit Revised Method Statement for Bridge Stressing (Internal & External) 18-Jan-20 18-Jan-20 PRE-14160 Project Manager to review and approve Method Statement Bridge Stressing (Internal & External) 19-Jan-20 19-Jan-20 03-Apr-20 Prepare 1st Submission of Method Statement Construction of Key Segment Erection PRE-14170 28 18-Jan-20 14-Feb-20

Page 2 of 7



Works

Critical Works

CON-12471 Construction of Pier 1K, Type 4M (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1) - 1st Pour 04-Feb-20 12-Feb-20 CON-12467 6 Construction of Pier 1J, Type 4 (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 5) - 4th Pour 05-Feb-20 11-Feb-20 CON-12425 Construction of Pier 1G, Type 4M (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1)- 3rd Pour 07-Feb-20 13-Feb-20 CON-12468 Construction of Pier 1J ,Type 4 (5 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 5)- 5th Pour 17 12-Feb-20 02-Mar-20 CON-12472 Construction of Pier 1K, Type 4M (5 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -2nd Pour 10 13-Feb-20 24-Feb-20 CON-12473 Construction of Pier 1K, Type 4M (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1) -2nd Pour 25-Feb-20 02-Mar-20 CON-12474 Construction of Pier 1K, Type 4M (5 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -3rd Pour 10 03-Mar-20 13-Mar-20 CON-12469 Construction of Pier 1J .Type 4 (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 5) - 5th Pour 10 03-Mar-20 13-Mar-20 CON-12475 Construction of Pier 1K, Type 4M (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1) - 3rd Pour 14-Mar-20 20-Mar-20 CON-12476 Construction of Pier 1K, Type 4M (5 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -4th Pour 10 21-Mar-20 01-Apr-20 CON-12477 09-Apr-20 Construction of Pier 1K, Type 4M (5 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 1) - 4th Pour CON-12478 Construction of Pier 1K, Type 4M (5 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 1) -5th Pour 14-Apr-20 04-May-20 CON-12483 Construction of Pier 4A, type 1M (2 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3) - 2nd Pour 08-Jan-20 18-Dec-19 A CON-12540 Construction of Pier 4G, type 1 (2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4) - 1st Pour 8 07-Jan-20 A 18-Feb-20 CON-12541 Construction of Pier 4G, type 1 (2 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4)- 1st Pour 19-Feb-20 22-Feb-20 CON-12542 Construction of Pier 4G, type 1 (2 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4)- 2nd Pour 13 24-Feb-20 09-Mar-20 CON-12543 Construction of Pier 4G, type 1 (2 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4)- 2nd Pour 10-Mar-20 16-Mar-20 CON-12582 Construction of Pier 2F, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6) -2nd Pour 06-Nov-19 A 17-Jan-20 CON-12594 Construction of Pier 2G, type 1 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 3) -3rd Pour 16-Nov-19 A 17-Jan-20 Construction of Pier 2D, type 1 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 3) -1st Pour CON-12630 30-Dec-19 A 06-Jan-20 A CON-12631 Construction of Pier 2D, type 1 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3) -1st Pour 07-Jan-20 A 20-Feb-20 CON-12604 Construction of Pier 2E, type 1 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4)- 3rd Pour 08-Jan-20 16-Jan-20 CON-12624 Construction of Pier 2H, type 1 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 7)- 3rd Pour 08-Jan-20 16-Jan-20 CON-12605 Construction of Pier 2E, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4)- 3rd Pour 17-Jan-20 21-Jan-20 CON-12625 Construction of Pier 2H, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 7)- 3rd Pour 17-Jan-20 21-Jan-20 CON-12583 Construction of Pier 2F, type 6 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 6) -2nd Pour 18-Jan-20 24-Jan-20 CON-12595 Construction of Pier 2G, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3)-3rd Pour 18-Jan-20 22-Jan-20 CON-12606 Construction of Pier 2E, type 1 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 4)- 4th Pour 13 22-Jan-20 08-Feb-20 CON-12626 Construction of Pier 2H, type 1 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 7)-4th Pour 13 22-Jan-20 CON-12596 Construction of Pier 2G, type 1 (4 Pours) Including Erection of Formwork & Temp. Work (1 nos.Pier /Team 3) -4th Pour 13 23-Jan-20 10-Feb-20 CON-12584 Construction of Pier 2F, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6)-3rd Pour 13 12-Feb-20 29-Jan-20 CON-12607 10-Feb-20 15-Feb-20 Construction of Pier 2E, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 4)- 4th Pour CON-12627 Construction of Pier 2H, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 7)- 4th Pour 10-Feb-20 15-Feb-20 CON-12597 Construction of Pier 2G, type 1 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3) -4th Pour 11-Feb-20 17-Feb-20 CON-12585 Construction of Pier 2F, type 6 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 6)-3rd Pour 13-Feb-20 21-Feb-20 CON-12612 Construction of Pier 2J, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6)- 2nd Pour 15-Feb-20 27-Feb-20 CON-12632 Construction of Pier 2D, type 1 (3 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 3)-2nd Pour 21-Feb-20 29-Feb-20 CON-12586 Construction of Pier 2F, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6)-4th Pour 22-Feb-20 11-Mar-20 CON-12613 Construction of Pier 2J, type 6 (4 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 6)-2rd pour 28-Feb-20 05-Mar-20 CON-12633 Construction of Pier 2D, type 1 (3 Pours) Falsework, Formwork and Concreting (1 nos.Pier /Team 3)-2nd Pour 02-Mar-20 05-Mar-20 CON-12614 Construction of Pier 2J, type 6 (4 Pours) Erection of Platform & Rebar (1 nos.Pier /Team 6)- 3rd Pour 13 06-Mar-20 20-Mar-20

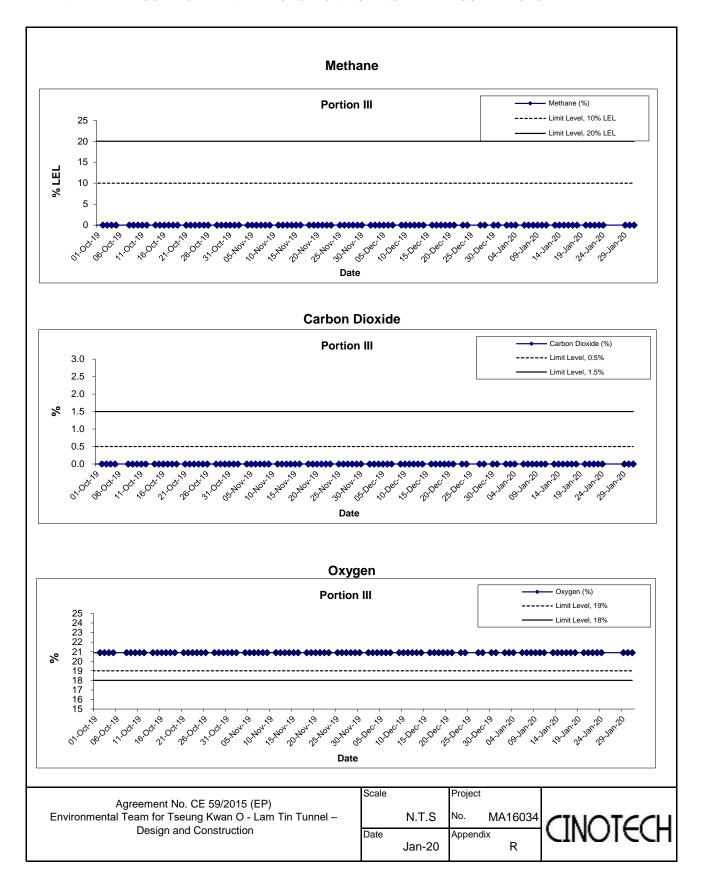
NE/2017/01 Tseung Kwan O - Lam Tin Tunnel- Tseung Kwan O Interchange and Associated Works Rolling programme (Jan 2020 to May 2020)

Page 7 of 7

Activity ID	y realite	Duration	Start	FILISH		1 10
CON-14260 Concr	proto Curing & Formwork Domoval for Dior Hood Sogmant Diophragm 4F (4 pp.)		10. log 20	21 Jan 20	Jan Feb Mar Apr	Ma
CON-14200 Concr	crete Curing & Formwork Removal for Pier Head Segment Diaphragm 4E (1 no.)	10	10-Jan-20	21-Jan-20		
CON 44000	costs Costing & Formand Demonstration Discalled Community Co. 1 40 (4)	40	24 1- 22	44 5-1 00		
CON-14290 Concr	crete Curing & Formwork Removal for Pier Head Segment Diaphragm 4D (1 no.)	10	31-Jan-20	11-Feb-20		
001144070	10:15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	40	40.14 00	00.14 00		
CON-14270 Concr	crete Curing & Formwork Removal for Pier Head Segment Diaphragm 4C (1 no.)	10	12-Mar-20	23-Mar-20		
Bridge S100		17	18-Feb-20	07-Mar-20		
CON-14470 Concr	crete Curing & Formwork Removal for Pier Head Segment Diaphragm 3C (1 no.)	10	18-Feb-20	28-Feb-20		
CON-14460 Concr	crete Curing & Formwork Removal for Pier Head Segment Diaphragm 3B (1 no.)	9	27-Feb-20	07-Mar-20		
Span Segment Erection		88	22-Jan-20	13-May-20		
Span Segment Erection (Inc	cluding Plant Mobilisation, Erection & removal of Temp. Work)	88	22-Jan-20	13-May-20		
Bridge ML		72	13-Feb-20	13-May-20		
Span Segment ML-2N		72	13-Feb-20	13-May-20		
	-1] Erection of Span Segment@Bridge ML- 2N - Span 1E-N (14 nos./ 7 Pairs - LF)	21	13-Feb-20	07-Mar-20		
, i						
CON-14520 [HB1-	-1a] Erection of Span Segment@Bridge ML- 2N - Span 1G-N (7 nos HB 1)	22	16-Mar-20	14-Apr-20		
F.= .						
CON-14510 [LF1-4	-4] Erection of Span Segment@Bridge ML- 2N - Span 1F-N (12 nos / 6 Pairs - LF)	16	23-Apr-20	13-May-20		-
0014 14010 [21 14	4] Elouidi di opan deginentegango ME 214 opan in 14 (12 hou) di and El)	10	20 / (p) 20	10 Way 20		
Span Segment ML-2S(N)	1	19	15-Apr-20	08-May-20		
			•			
CON-14560 [HB1-:	-2a] Erection of Span Segment@Bridge ML-2S(N) - Span 1G-S (7 nos HB1)	19	15-Apr-20	08-May-20		1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00	40.14 00	44.4 00		
Span Segment ML-3N		22	16-Mar-20	14-Apr-20		
CON-14620 [HB1-	-1b] Erection of Span Segment@Bridge ML- 3N- Span 1G-N (7 nos HB 1)	22	16-Mar-20	14-Apr-20		
Span Segment ML-3S		19	15-Apr-20	08-May-20		
CON-14670 [HB1-	-2b] Erection of Span Segment@Bridge ML-3S - Span 1G-S (7 nos HB 1)	19	15-Apr-20	08-May-20	taran da la companya	
Bridge S300		46	22-Jan-20	18-Mar-20		
Span Segment S300-1		46	22-Jan-20	18-Mar-20		
CON-14700 [HB2-	-1a] Erection of Span Segment@Bridge S300-1 - Span 4E (6nos HB 2)	23	22-Jan-20	20-Feb-20		
CON-14720 [HB2-	-2] Erection of Span Segment@Bridge S300-1 - Span 4D (14 nos./ 7 Pairs- HB2)	23	21-Feb-20	18-Mar-20		
Span Segment S300-2		23	22-Jan-20	20-Feb-20		
	-1b] Erection of Span Segment@Bridge S300-2- Span 4E (6 nos - HB 2)	23	22-Jan-20	20-Feb-20	l-	
,						
Bridge S100		35	09-Mar-20	22-Apr-20		
Span Segment S100		35	09-Mar-20	22-Apr-20		
	-2] Erection of Span Segment@Bridge S100 - Span 3B (12 nos./ D-7 nos, U - 5 nos LF)	19	09-Mar-20	30-Mar-20	L	
	, , , , , , , , , , , , , , , , , , , ,					
CON-14940 [LF1-3	-3] Erection of Span Segment@Bridge S100 - Span 3C (10 nos./ 5 Pairs- LF)	16	31-Mar-20	22-Apr-20	<u></u>	
COIN-14840 [LF1-3	oj Erecion or opan pagrifantigabilitya o 100 - opan po (10 110s./ 3 Palis- LP)	10	J I-IVIdI-ZU	22-MPI-20		
Mary Commont Frontier (Inc.)		40	00 4 00	00 M 00		
	Iding Plant Setting of Segment Erector, Segment Erection and Stitch Joint)	19	06-Apr-20	02-May-20		
Bridge S300		7	06-Apr-20	16-Apr-20		
CON-15130 Erect	t Key Segment, Stitching & Mid -Span Stressing @S300 4D - 4E (1 no Key Segment)	7	06-Apr-20	16-Apr-20		
Bridge S100		7	23-Apr-20	02-May-20		
CON-15310 Erect	t Key Segment, Stitching & Mid -Span Stressing @S100 3B-3C (1 noKey Segment)	7	23-Apr-20	02-May-20	uniterated by the state of the	-

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR


Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	2-Jan-20	8:15	Sunny	18	0	0	20.9
	2-Jan-20	13:12	Sunny	18	0	0	20.9
	2-Jan-20	13:28	Sunny	18	0	0	20.9
	2-Jan-20	13:43	Sunny	18	0	0	20.9
	2-Jan-20	14:07	Sunny	18	0	0	20.9
	3-Jan-20	8:25	Sunny	19	0	0	20.9
	3-Jan-20	12:19	Sunny	19	0	0	20.9
	3-Jan-20	13:15	Sunny	19	0	0	20.9
	3-Jan-20	13:28	Sunny	19	0	0	20.9
	3-Jan-20	13:47	Sunny	19	0	0	20.9
	4-Jan-20	8:15	Sunny	19	0	0	20.9
	4-Jan-20	13:17	Sunny	19	0	0	20.9
	4-Jan-20	13:29	Sunny	19	0	0	20.9
	4-Jan-20	13:40	Sunny	19	0	0	20.9
	4-Jan-20	14:03	Sunny	19	0	0	20.9
	6-Jan-20	8:25	Sunny	21	0	0	20.9
	6-Jan-20	13:08	Sunny	21	0	0	20.9
	6-Jan-20	14:19	Sunny	21	0	0	20.9
	6-Jan-20	14:38	Sunny	21	0	0	20.9
Portion III	6-Jan-20	14:50	Sunny	21	0	0	20.9
Portion III	7-Jan-20	7:25	Rainy	22	0	0	20.9
	7-Jan-20	13:15	Rainy	22	0	0	20.9
	7-Jan-20	13:28	Rainy	22	0	0	20.9
	7-Jan-20	13:41	Rainy	22	0	0	20.9
	7-Jan-20	14:10	Rainy	22	0	0	20.9
	8-Jan-20	7:20	Sunny	22	0	0	20.9
	8-Jan-20	13:25	Sunny	22	0	0	20.9
	8-Jan-20	13:41	Sunny	22	0	0	20.9
	8-Jan-20	14:08	Sunny	22	0	0	20.9
	8-Jan-20	14:20	Sunny	22	0	0	20.9
	9-Jan-20	8:12	Sunny	19	0	0	20.9
	9-Jan-20	13:01	Sunny	19	0	0	20.9
	9-Jan-20	13:18	Sunny	19	0	0	20.9
	9-Jan-20	13:29	Sunny	19	0	0	20.9
	9-Jan-20	13:53	Sunny	19	0	0	20.9
	10-Jan-20	8:14	Sunny	20	0	0	20.9
	10-Jan-20	13:08	Sunny	20	0	0	20.9
	10-Jan-20	13:19	Sunny	20	0	0	20.9
	10-Jan-20	13:32	Sunny	20	0	0	20.9
	10-Jan-20	13:49	Sunny	20	0	0	20.9

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	11-Jan-20	8:15	Sunny	21	0	0	20.9
	11-Jan-20	13:25	Sunny	21	0	0	20.9
	11-Jan-20	13:39	Sunny	21	0	0	20.9
	11-Jan-20	13:52	Sunny	21	0	0	20.9
	11-Jan-20	14:13	Sunny	21	0	0	20.9
	13-Jan-20	8:08	Sunny	18	0	0	20.9
	13-Jan-20	13:21	Sunny	18	0	0	20.9
	13-Jan-20	13:43	Sunny	18	0	0	20.9
	13-Jan-20	13:59	Sunny	18	0	0	20.9
	13-Jan-20	14:08	Sunny	18	0	0	20.9
	14-Jan-20	8:18	Sunny	19	0	0	20.9
	14-Jan-20	13:03	Sunny	19	0	0	20.9
	14-Jan-20	13:28	Sunny	19	0	0	20.9
	14-Jan-20	13:40	Sunny	19	0	0	20.9
	14-Jan-20	13:59	Sunny	19	0	0	20.9
	15-Jan-20	8:20	Sunny	20	0	0	20.9
	15-Jan-20	13:32	Sunny	20	0	0	20.9
	15-Jan-20	13:55	Sunny	20	0	0	20.9
	15-Jan-20	14:08	Sunny	20	0	0	20.9
Portion III	15-Jan-20	14:21	Sunny	20	0	0	20.9
Portion III	16-Jan-20	8:17	Sunny	20	0	0	20.9
	16-Jan-20	13:08	Sunny	20	0	0	20.9
	16-Jan-20	13:23	Sunny	20	0	0	20.9
	16-Jan-20	13:42	Sunny	20	0	0	20.9
	16-Jan-20	14:03	Sunny	20	0	0	20.9
	17-Jan-20	8:25	Sunny	19	0	0	20.9
	17-Jan-20	13:12	Sunny	19	0	0	20.9
	17-Jan-20	13:28	Sunny	19	0	0	20.9
	17-Jan-20	13:42	Sunny	19	0	0	20.9
	17-Jan-20	14:02	Sunny	19	0	0	20.9
	18-Jan-20	8:15	Sunny	18	0	0	20.9
	18-Jan-20	13:22	Sunny	18	0	0	20.9
	18-Jan-20	13:42	Sunny	18	0	0	20.9
	18-Jan-20	14:03	Sunny	18	0	0	20.9
	18-Jan-20	14:19	Sunny	18	0	0	20.9
	20-Jan-20	8:28	Sunny	18	0	0	20.9
	20-Jan-20	13:15	Sunny	18	0	0	20.9
	20-Jan-20	13:29	Sunny	18	0	0	20.9
	20-Jan-20	13:41	Sunny	18	0	0	20.9
	20-Jan-20	13:59	Sunny	18	0	0	20.9

APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
	21-Jan-20	8:01	Sunny	19	0	0	20.9
	21-Jan-20	14:08	Sunny	19	0	0	20.9
	21-Jan-20	14:19	Sunny	19	0	0	20.9
	21-Jan-20	14:37	Sunny	19	0	0	20.9
	21-Jan-20	14:53	Sunny	19	0	0	20.9
	22-Jan-20	7:38	Sunny	21	0	0	20.9
	22-Jan-20	12:53	Sunny	21	0	0	20.9
	22-Jan-20	13:12	Sunny	21	0	0	20.9
	22-Jan-20	13:30	Sunny	21	0	0	20.9
	22-Jan-20	13:49	Sunny	21	0	0	20.9
	23-Jan-20	8:08	Sunny	22	0	0	20.9
	23-Jan-20	13:13	Sunny	22	0	0	20.9
	23-Jan-20	13:29	Sunny	22	0	0	20.9
	23-Jan-20	13:40	Sunny	22	0	0	20.9
	23-Jan-20	14:05	Sunny	22	0	0	20.9
	24-Jan-20	8:05	Sunny	22	0	0	20.9
	24-Jan-20	13:03	Sunny	22	0	0	20.9
Portion III	24-Jan-20	13:21	Sunny	22	0	0	20.9
	24-Jan-20	13:39	Sunny	22	0	0	20.9
	24-Jan-20	13:52	Sunny	22	0	0	20.9
	29-Jan-20	8:00	Sunny	14	0	0	20.9
	29-Jan-20	13:02	Sunny	14	0	0	20.9
	29-Jan-20	13:18	Sunny	14	0	0	20.9
	29-Jan-20	13:30	Sunny	14	0	0	20.9
	29-Jan-20	13:53	Sunny	14	0	0	20.9
	30-Jan-20	8:16	Sunny	15	0	0	20.9
	30-Jan-20	13:21	Sunny	15	0	0	20.9
	30-Jan-20	13:39	Sunny	15	0	0	20.9
	30-Jan-20	13:42	Sunny	15	0	0	20.9
	30-Jan-20	13:58	Sunny	15	0	0	20.9
	31-Jan-20	8:01	Sunny	15	0	0	20.9
	31-Jan-20	13:30	Sunny	15	0	0	20.9
	31-Jan-20	13:45	Sunny	15	0	0	20.9
	31-Jan-20	13:59	Sunny	15	0	0	20.9
	31-Jan-20	14:10	Sunny	15	0	0	20.9

APPENDIX T CULTURAL HERITAGE MONITORING RESULTS

Appendix T – Cultural Heritage Monitoring Results

	Tilting				Settlement (mm)			Vibration (mm/s)		
Date	THT-TM-01	THT-TM-02	THT-TM-03	THT-TM-04	THT-BSP-1	THT-BSP-2	THT-BSP-3	Measurement Direction		
	111-111-01	1H1-1W1-02	111-111-03	1H1-1M-04				Tran	Vertical	Longitudinal
2-Jan-20	1 : 15516	1 : 28124	1 : 3435	1 : 34615	+6	Stop monitoring	Stop monitoring	0.158	0.197	0.118
3-Jan-20	1 : 14061	1 : 20454	1 : 4091	1 : 18000	+5	Stop monitoring	Stop monitoring	0.158	0.252	0.158
4-Jan-20	1 : 26469	1 : 8181	1 : 3435	1 : 12162	+6	Stop monitoring	Stop monitoring	0.173	0.181	0.142
6-Jan-20	1 : 11841	1 : 12162	1 : 3214	1 : 11250	+6	Stop monitoring	Stop monitoring	0.142	0.158	0.102
7-Jan-20	1 : 17306	1 : 13235	1 : 4455	1 : 28125	+6	Stop monitoring	Stop monitoring	0.134	0.158	0.102
8-Jan-20	1 : 15516	1 : 28124	1 : 4592	1 : 28125	+5	Stop monitoring	Stop monitoring	0.142	0.166	0.102
9-Jan-20	1 : 10975	1 : 64283	1 : 3600	1 : 45000	+5	Stop monitoring	Stop monitoring	0.158	0.158	0.102
10-Jan-20	1 : 8035	1 : 449981	1 : 4327	1 : 34615	+6	Stop monitoring	Stop monitoring	0.150	0.158	0.102
11-Jan-20	1 : 8490	-1 : 89996	1 : 3781	1 : 13235	+5	Stop monitoring	Stop monitoring	0.142	0.173	0.102
13-Jan-20	1 : 10227	1 : 64283	1 : 4206	1 : 11250	+5	Stop monitoring	Stop monitoring	0.126	0.134	0.102
14-Jan-20	1 : 8490	1 : 112495	1 : 3879	1 : 13235	+6	Stop monitoring	Stop monitoring	0.142	0.150	0.102
15-Jan-20	1 : 9574	1 : 44998	1 : 3600	1 : 10465	+6	Stop monitoring	Stop monitoring	0.142	0.197	0.118
16-Jan-20	1 : 7627	1 : 20454	1 : 4737	1 : 28125	+5	Stop monitoring	Stop monitoring	0.134	0.181	0.197
17-Jan-20	1 : 10975	1 : 14516	1 : 4091	1 : 45000	+6	Stop monitoring	Stop monitoring	0.126	0.229	0.110
18-Jan-20	1 : 10975	1 : 11250	1 : 3781	1 : 449996	+6	Stop monitoring	Stop monitoring	0.126	0.126	0.102
20-Jan-20	1 : 8999	1 : 13235	1 : 3688	1 : 13235	+5	Stop monitoring	Stop monitoring	0.134	0.197	0.110
21-Jan-20	1 : 10227	1 : 12162	1 : 3879	1 : 14516	+5	Stop monitoring	Stop monitoring	0.221	0.205	0.158

Agreement No. CE 59/2015 (EP)
Environmental Team for Tseung Kwan O - Lam Tin Tunnel –
Design and Construction
Monthly EM&A Report (January 2020)

	Tilting				Settlement (mm)			Vibration (mm/s)		
Date	THT-TM-01	THT-TM-02	THT-TM-03	THT-TM-04	THT-BSP-1	THT-BSP-2	THT-BSP-3	Measurement Direction		
	1111-1141-01	1111-1141-02	1111-1WI-03	1111-1101-04	1111-051-1	1H1-BSF-2		Tran	Vertical	Longitudinal
22-Jan-20	1 : 7627	1 : 16071	1 : 3982	1 : 16071	+5	Stop monitoring	Stop monitoring	0.173	0.158	0.110
23-Jan-20	1 : 9574	-1 : 56248	1 : 3516	1 : 18000	+5	Stop monitoring	Stop monitoring	0.197	0.386	0.126
24-Jan-20	1 : 8035	1 : 34614	1 : 3688	1 : 20454	+4	Stop monitoring	Stop monitoring	0.142	0.134	0.102
29-Jan-20	1 : 7627	1 : 112495	1 : 3688	1 : 28125	No Data	Stop monitoring	Stop monitoring	0.126	0.213	0.102
30-Jan-20	1 : 19564	1 : 64283	1 : 3600	1 : 23684	+4	Stop monitoring	Stop monitoring	0.126	0.158	0.134
31-Jan-20	1 : 15516	1 : 112495	1 : 3781	1 : 20454	+5	Stop monitoring	Stop monitoring	0.134	0.142	0.126
Alert Level	1:2000			6			4.5			
Alarm Level	1:1500			8			4.8			
Action Level	1:1000			10			5			

Note:

Bold means Alert Level exceedance

Bold Italic means Alarm Level exceedance

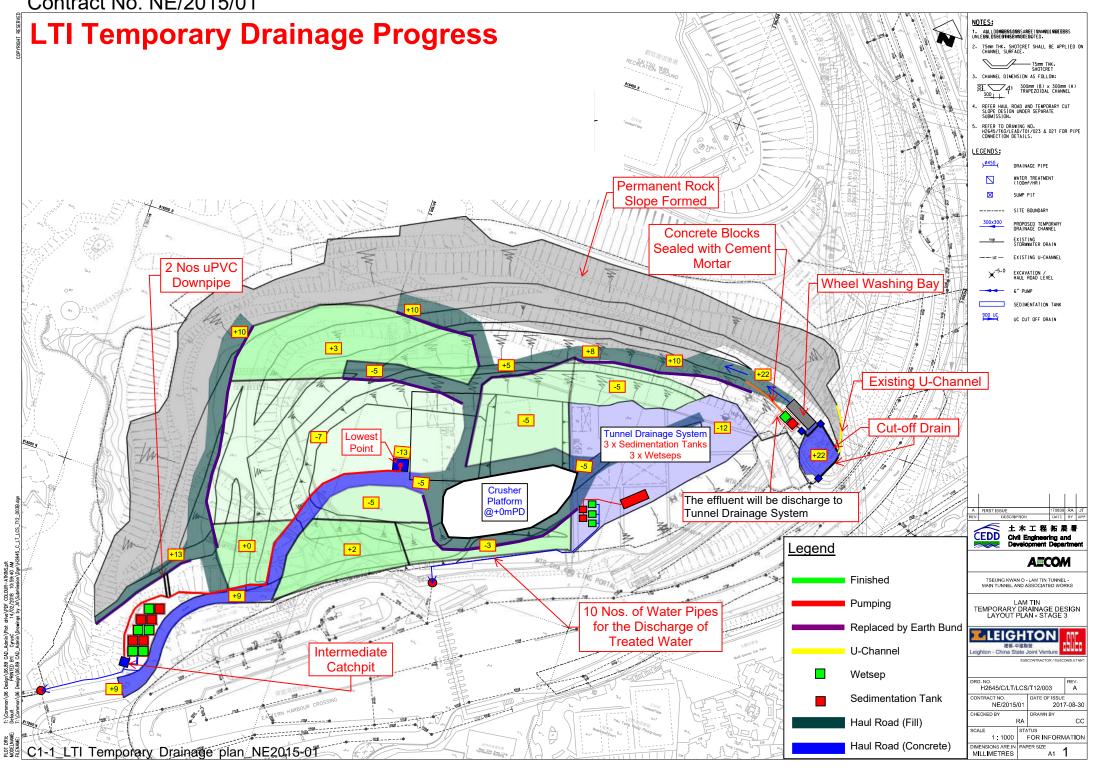
Bold Italic with underline means Action Level exceedance

APPENDIX U PIEZOMETER MONITORING RESULTS

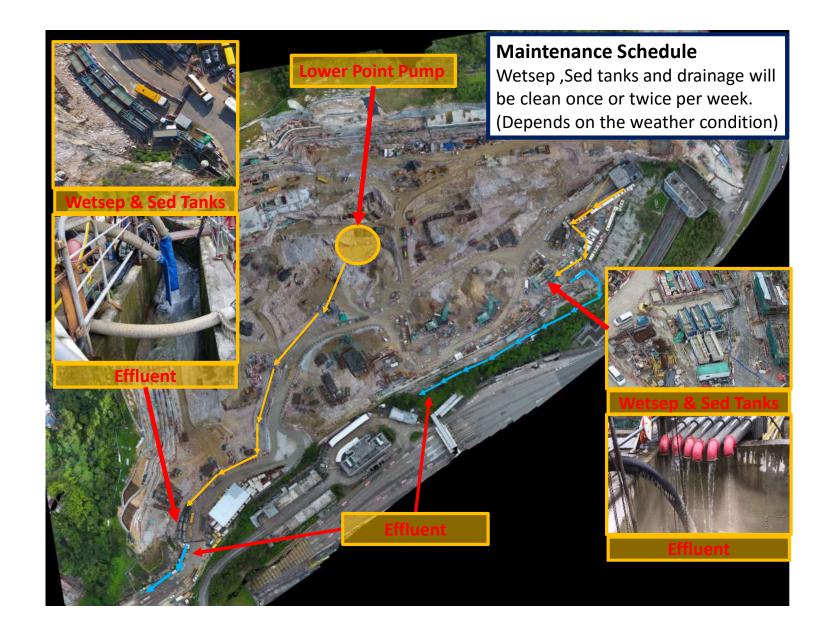
Construction Phase Daily Piezometer Monitoring Results in January 2020

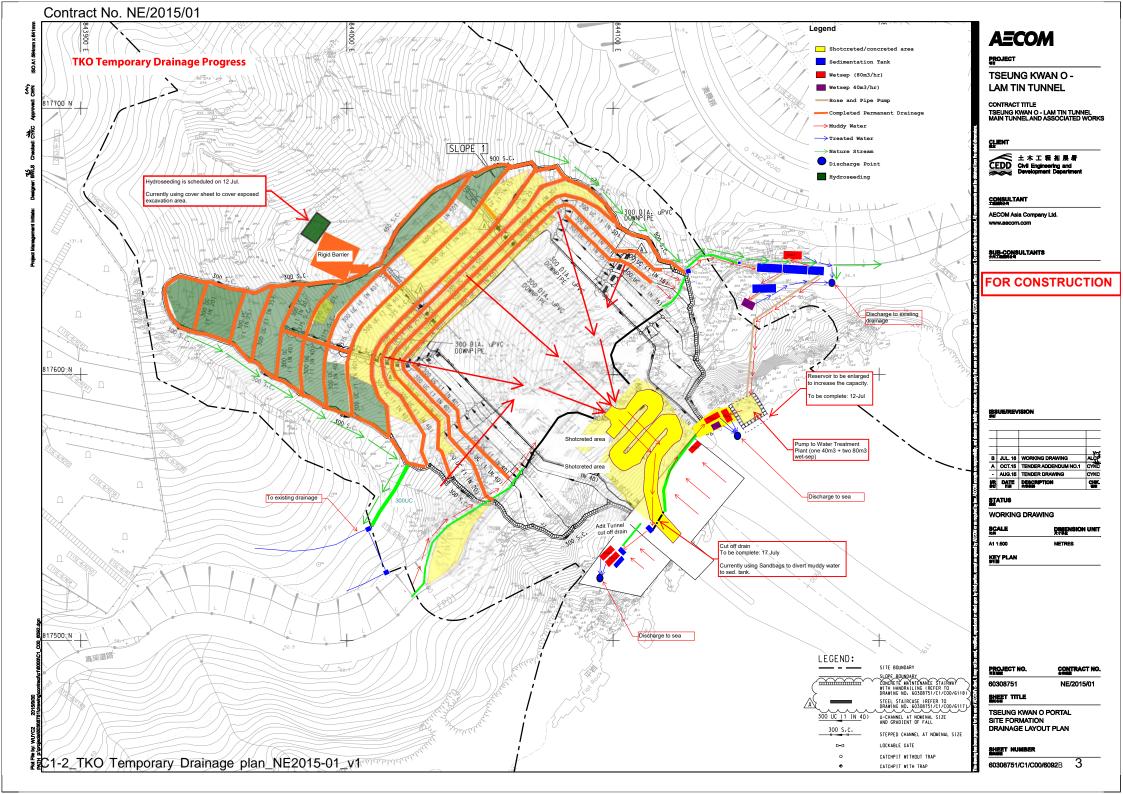
_	Daily Piezometer Monitoring						
Date	38568-LDH1 (P)	TKO-LBH907					
2-Jan-20	n.a.	17.59					
3-Jan-20	n.ā.	17.59					
4-Jan-20	n.a.	17.59					
6-Jan-20	n.a.	17.59					
7-Jan-20	n.a.	17.59					
8-Jan-20	n.a.	17.59					
9-Jan-20	n.a.	Measured dry					
10-Jan-20	n.a.	Measured dry					
11-Jan-20	87.65	Measured dry					
13-Jan-20	n.a.	Measured dry					
14-Jan-20	n.a.	Measured dry					
15-Jan-20	n.a.	Measured dry					
16-Jan-20	n.a.	Measured dry					
17-Jan-20	n.a.	Measured dry					
18-Jan-20	n.a.	Measured dry					
20-Jan-20	n.a.	Measured dry					
21-Jan-20	n.a.	Measured dry					
22-Jan-20	n.a.	Measured dry					
23-Jan-20	n.a.	Measured dry					
24-Jan-20	n.a.	Measured dry					
29-Jan-20	n.a.	Measured dry					
30-Jan-20	n.a.	Measured dry					
31-Jan-20	n.a.	Measured dry					
Action Level (mPD)	+74.65	+17.59					

Note:


Bold Italic with underline means Action Level exceedance

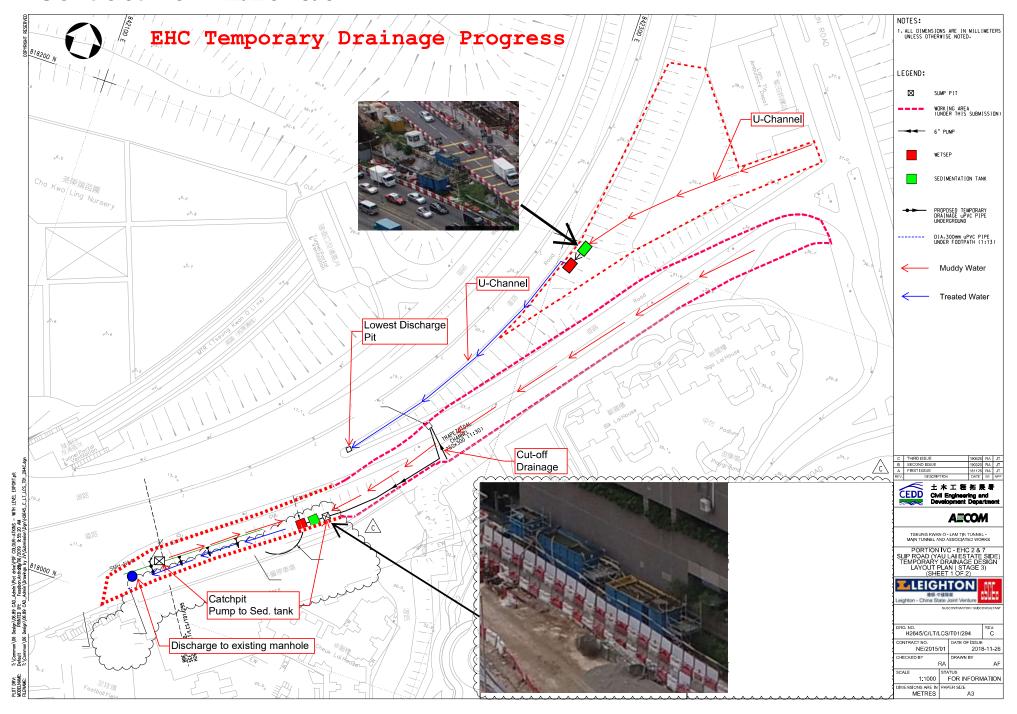
n.a – The daily ground water level monitoring was not required as the tunnel construction activities were conducted out of +/- 50m of the piezometer gate.

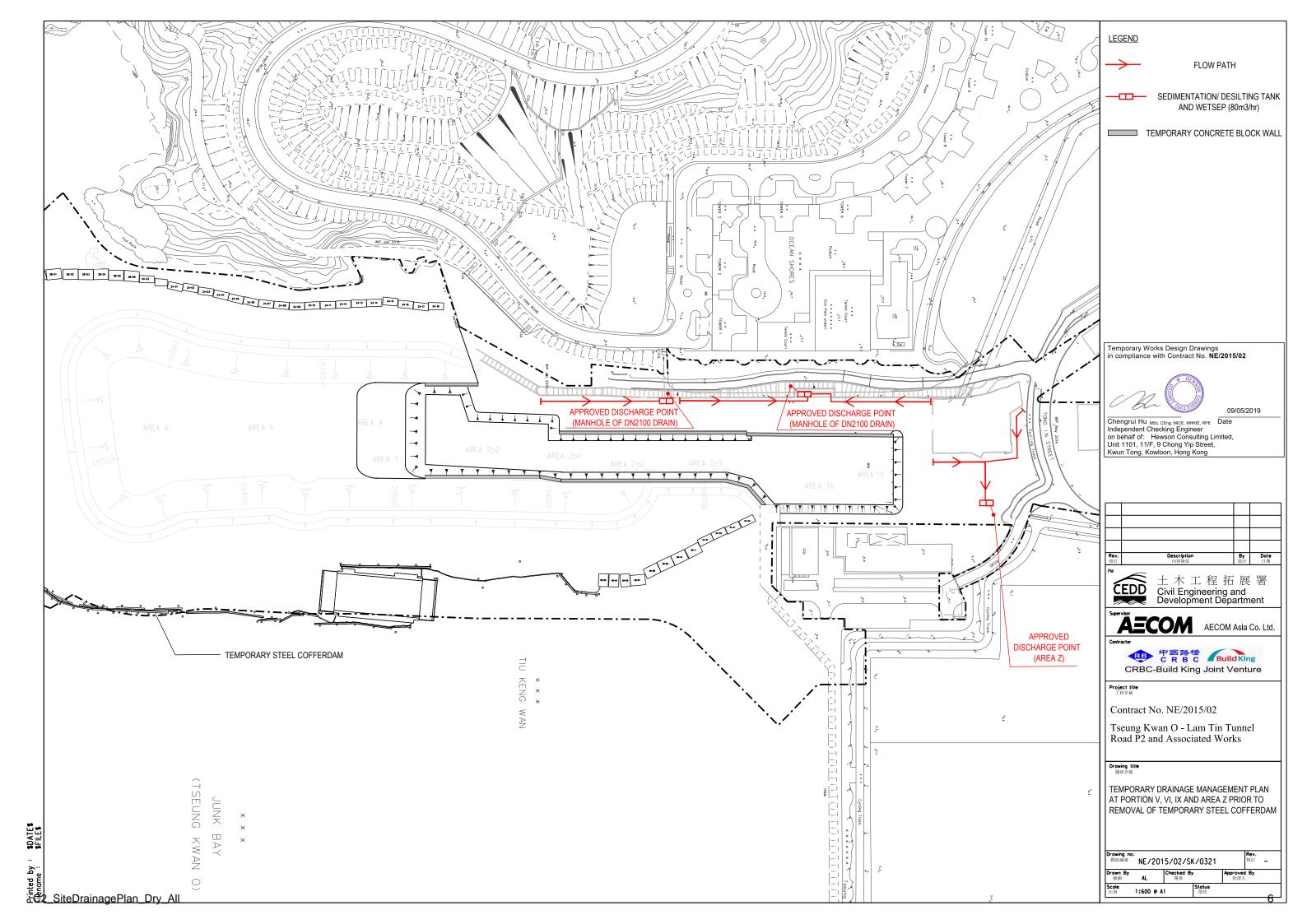

Remark:

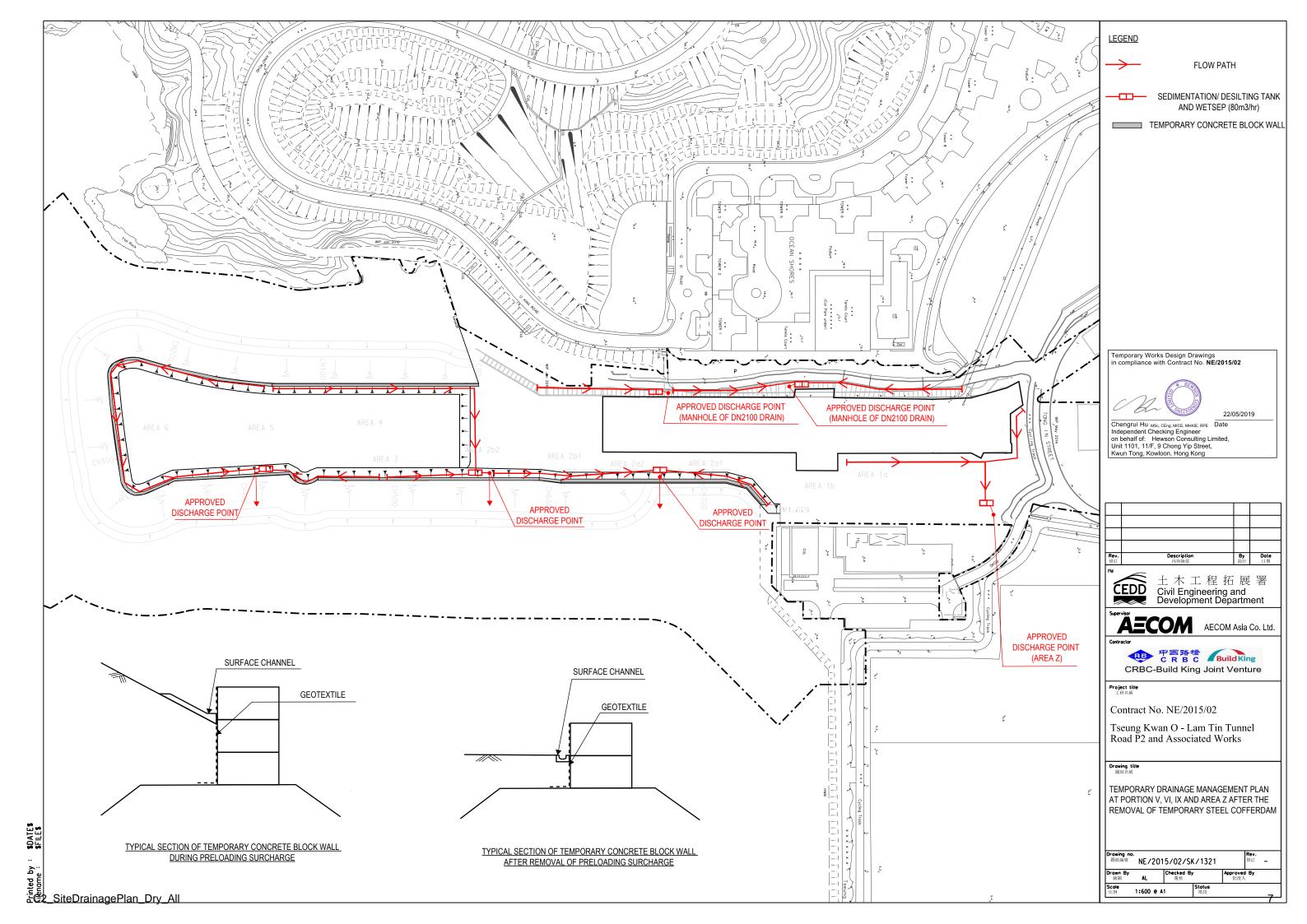

The piezometer gate TKO-LBH907 (P) had been found dry since 6 November 2019. According to the Construction Impact Assessment (CIA), TKO-LBH907 (P) was classified as Category 2, for which monitoring was no longer required when measured dry. Therefore, no further monitoring was required for this instrument and hence this instrument could be abandoned.

APPENDIX V SURFACE RUNOFF MANAGEMENT PLAN

Contract No. NE/2015/01






Contract No. NE/2015/01

Contract No. NE/2015/01

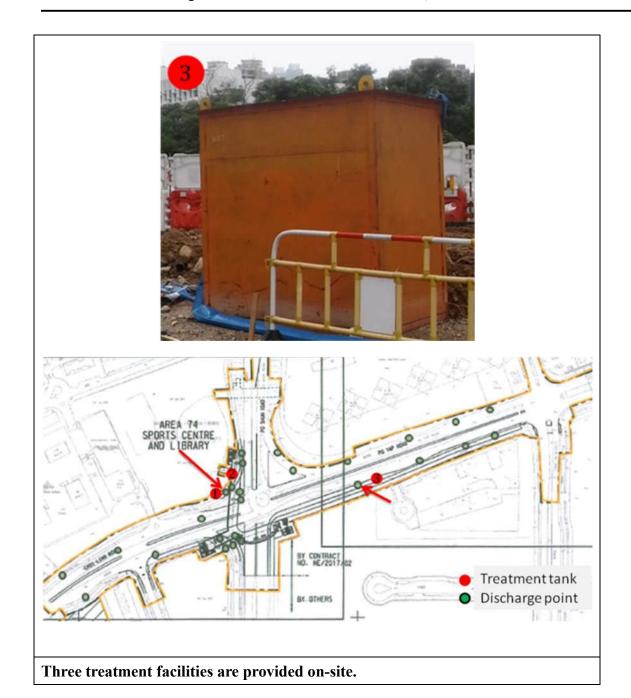
Surface Runoff Assessment for Portion IX (inc. surcharge area) for Dry season				
Portion IX Surface area :		19683.57 m²		
Design rainfall				
Assuming 1 hour of heavy rainfall has occurred:		70 mm/h		
Design flow Rate (Qp):	Qp=	CiA		
	=	0.18 x 70 x 19683.5		
	=	248	m³/h	
Water Treatment Facility				
Capacity of water treatment plan	=	80	m³/h	
Number of water treatment plant*	=	248 /80		
	=	3		

Thus, 3 nos of water treatment plant are required. In addition, 2 others are provided on site for emergency use *Treatment of stormwater within the worst affected hour is assumed

C2_SiteDrainagePlan_Dry_All

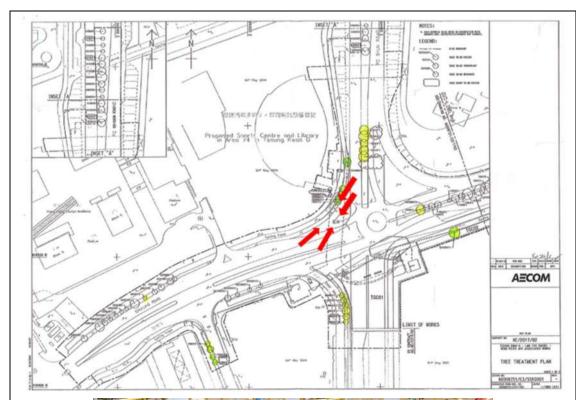
Contract No.: NE/2017/02

Contract Title: <u>Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and</u> <u>Associated Works</u>


Flooding Mitigation Plan

Treatment facility

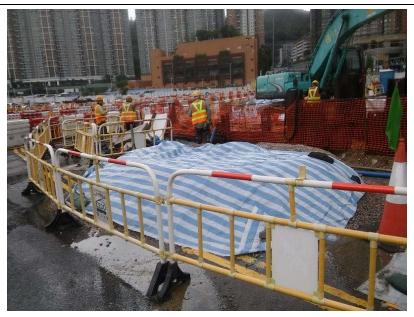
Bunding



Surface runoff collection

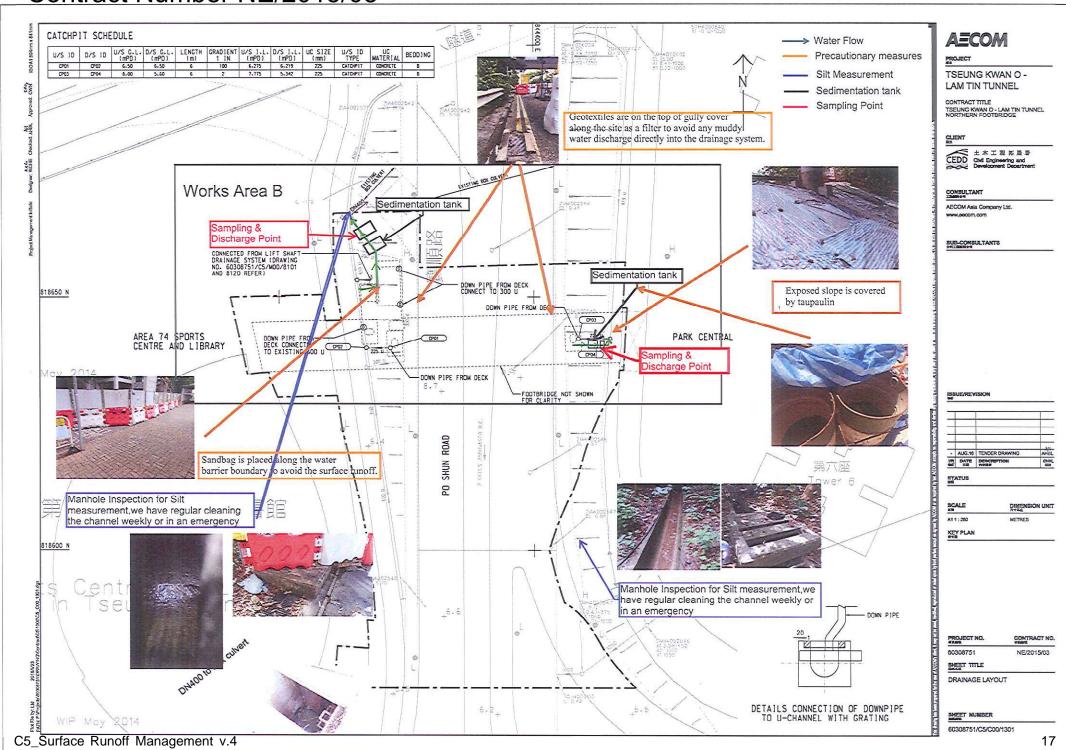
Height difference between the road and site area to form a natural flow. Sump pit was provided for wastewater collection.

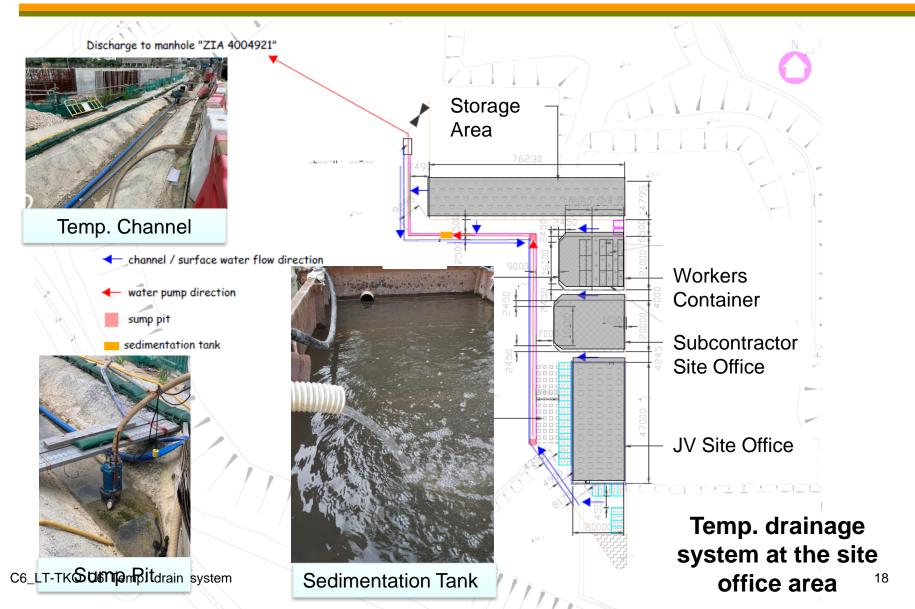
Gully Protection



Gully were protected and covered by geotextile.

Stockpile Cover




Stockpile Should be proper cover with tarpaulin.

Contract Number NE/2015/03

Site Surface Runoff Measures 他和-上陸-中治聯營 cw-stec-cmgc jv

