# Civil Engineering and Development Department

# Contract No. ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron (under EP-458/2013/C)

Monthly Environmental Monitoring and Audit Report for June 2020

(version 1.0)

Approved By

(Mr. KS Lee,

Environmental Team Leader)

### REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

# CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

| Prepared by | Tim LUI    | Azl:                                      | July 14, 2020 |
|-------------|------------|-------------------------------------------|---------------|
| Checked by  | Joseph Lan | Jan San San San San San San San San San S | 16 July 2020  |



Ref.: CEDKTDT2EM00\_0\_0075L.20

15 July 2020

By Post and E-mail

Hyder-Meinhardt Joint Venture 17/F, Two Harbour Square 180 Wai Yip Street, Kwun Tong Kowloon, Hong Kong

Attention: Mr. Edwin Ching

Dear Mr. Ching,

Re: Agreement No. EDO 01/2019
Independent Environmental Checker for
Contract No. ED/2018/04 – Trunk Road T2 and Infrastructure Works for
Developments at the Former South Apron

### Monthly EM&A Report (June 2020) for EP-458/2013/C

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for June 2020 (Version 1.0) certified by the ET Leader and provided to us via email on 15 July 2020.

We are pleased to inform you that we have no adverse comments on the captioned submission. We write to verify the captioned submission in accordance with Condition 4.4 of EP-458/2013/C.

The ET Leader is reminded that it is the ET's responsibility to ensure the report be timely submitted to the Director of Environmental Protection as per Condition 4.4 of EP-458/2013/C.

Thank you for your attention. Please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,
For and on behalf of
Ramboll Hong Kong Limited

Manson Yeung

Independent Environmental Checker

Q:\Projects\CEDKTDT2EM00\02 Proj\_Mgt\02 Corr\CEDKTDT2EM00\_0\_0075L.20.doc

c.c. CEDD Attn.: Mr. Tommy Wong Fax: 2739 0076
BTP Attn.: Mr. Ivan Chau Fax: 2293 7499

Cinotech Attn.: Mr. K S Lee Fax: 3107 1388

# TABLE OF CONTENTS

|    |                                                               | Page |
|----|---------------------------------------------------------------|------|
| EX | KECUTIVE SUMMARY                                              | 1    |
|    | Introduction                                                  | 1    |
|    | Environmental Monitoring Works                                |      |
|    | Reporting Changes                                             |      |
|    | Future Key Issues                                             |      |
| 1  | INTRODUCTION                                                  | 5    |
|    | Background                                                    | 5    |
|    | Purpose of the Report                                         |      |
|    | Project Organizations                                         | 6    |
|    | Construction Activities undertaken during the Reporting Month |      |
|    | Summary of EM&A Requirements                                  |      |
|    | Status of Environmental Licensing and Permitting              | 7    |
| 2  | AIR QUALITY                                                   | 8    |
|    | Monitoring Requirement                                        | 8    |
|    | Monitoring Locations                                          |      |
|    | Monitoring Parameters and Frequency                           |      |
|    | Monitoring Equipment                                          |      |
|    | Monitoring Methodology                                        |      |
|    | Results and Observations                                      |      |
| •  | •                                                             |      |
| 3  | NOISE                                                         |      |
|    | Monitoring Requirements                                       |      |
|    | Monitoring Locations                                          |      |
|    | Monitoring Parameters, Frequency and Duration                 |      |
|    | Monitoring Equipment                                          |      |
|    | Maintenance and Calibration                                   |      |
|    | Results and Observations                                      |      |
|    | Comparison of EM&A Result with EIA Prediction                 |      |
| 4  | WATER QUALITY                                                 | 18   |
|    | Monitoring Requirement                                        | 18   |
| 5  | WASTE MANAGEMENT                                              | 18   |
| 6  | ECOLOGY                                                       | 19   |
| 7  | FISHERIES                                                     | 19   |
| 8  | CULTURAL HERITAGE                                             | 19   |
| 9  | LANDSCAPE AND VISUAL IMPACT                                   | 20   |

| 10                                                                                                                                                                | LAND                                                                                              | FILL GAS MONITORING                                                        | 20          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|
|                                                                                                                                                                   | Monito                                                                                            | oring Requirement                                                          | 20          |
|                                                                                                                                                                   |                                                                                                   | oring Parameters and Frequency                                             |             |
|                                                                                                                                                                   |                                                                                                   | oring Locations                                                            |             |
|                                                                                                                                                                   |                                                                                                   | oring Equipment noise mitigation                                           |             |
|                                                                                                                                                                   | Results                                                                                           | s and Observations                                                         | 21          |
| 11                                                                                                                                                                | HAZA                                                                                              | RD TO LIFE                                                                 | 21          |
| 12                                                                                                                                                                | ENVIR                                                                                             | RONMENTAL AUDIT                                                            | 21          |
|                                                                                                                                                                   | Site A                                                                                            | udits                                                                      | 21          |
|                                                                                                                                                                   | Implen                                                                                            | mentation Status of Environmental Mitigation Measures                      | 22          |
|                                                                                                                                                                   | Implen                                                                                            | mentation Status of Event and Action Plans                                 | 23          |
| 13                                                                                                                                                                | ENVIE                                                                                             | RONMENTAL NON-CONFORMANCE                                                  | 23          |
|                                                                                                                                                                   |                                                                                                   | ary of Complaint, Warning, Notification of any Summons and Successful Pros |             |
|                                                                                                                                                                   | Summ                                                                                              | ary of Exceedance                                                          | 23          |
| 14                                                                                                                                                                | FUTUI                                                                                             | RE KEY ISSUES                                                              | 23          |
|                                                                                                                                                                   | Monito                                                                                            | oring Schedule                                                             | 23          |
| 15                                                                                                                                                                | CONC                                                                                              | LUSIONS AND RECOMMENDATIONS                                                | 24          |
|                                                                                                                                                                   | Conclu                                                                                            | ısions                                                                     | 24          |
|                                                                                                                                                                   |                                                                                                   | nmendations                                                                |             |
| LIS                                                                                                                                                               | ST OF T                                                                                           | ABLES                                                                      |             |
| <u>Tab</u>                                                                                                                                                        | le I                                                                                              | Non-compliance (exceedance) Record for the Project in the Reporting Mon    | <u>th</u>   |
| <u>Tab</u>                                                                                                                                                        | ole II                                                                                            | Monthly Complaints, Notifications of Summons and Successful Prosecution    | ions in the |
|                                                                                                                                                                   |                                                                                                   | Reporting Month                                                            |             |
| _                                                                                                                                                                 | le III                                                                                            | Summary of Complaints Details in Reporting Month                           |             |
|                                                                                                                                                                   | le IV                                                                                             | Summary Table for Site Activities in the next Reporting Period             |             |
|                                                                                                                                                                   | <u>le 1.1</u>                                                                                     | Key Project Contacts                                                       |             |
| _                                                                                                                                                                 | <u>le 1.2</u>                                                                                     | Summary of Environmental License and Permit                                |             |
|                                                                                                                                                                   | le 2.1                                                                                            | Air Quality Monitoring Locations                                           |             |
|                                                                                                                                                                   | ole 2.2                                                                                           | Frequency and Parameters of Air Quality Monitoring                         |             |
|                                                                                                                                                                   | ole 2.3                                                                                           | Air Quality Monitoring Equipment                                           |             |
| Table 2.4 Major Dust Source during Air Quality Monitoring                                                                                                         |                                                                                                   | - · · · · · · · · · · · · · · · · · · ·                                    |             |
| Table 2.5 Comparison of 1-hr TSP Monitoring Data with Predictions in EIA Report  Table 2.6 Comparison of 24-hr TSP Monitoring Data with Predictions in EIA Report |                                                                                                   |                                                                            |             |
|                                                                                                                                                                   |                                                                                                   | Noise Monitoring Stations                                                  |             |
|                                                                                                                                                                   | <u>Table 3.1 Noise Monitoring Stations</u> Table 3.2 Frequency and Parameters of Noise Monitoring |                                                                            |             |
|                                                                                                                                                                   | ole 3.3                                                                                           | Noise Monitoring Equipment                                                 |             |
|                                                                                                                                                                   | ole 3.4                                                                                           | Other Noise Source Identified during Noise Monitoring                      |             |
|                                                                                                                                                                   | ole 3.4                                                                                           | Baseline Noise Level and Noise Limit Level for Monitoring Stations         |             |
|                                                                                                                                                                   | ole 3.6                                                                                           | Maximum Predicted Mitigated Construction Noise Levels in EIA Report        |             |
|                                                                                                                                                                   | ole 10.1                                                                                          | Landfill Gas Monitoring Equipment                                          |             |
|                                                                                                                                                                   | Table 12.1 Observations and Recommendations of Site Audit                                         |                                                                            |             |

### LIST OF FIGURES

Figure 1 Site Layout Plan

Figure 1.2 Organizational Structure for Environmental Management

Figure 2 Locations of Air Quality and Construction Noise Monitoring Stations

### LIST OF APPENDICES

Appendix A Action and Limit Levels

Appendix B Copies of Calibration Certificates

Appendix C Weather Information

Appendix D Environmental Monitoring Schedules

Appendix E 1-hour TSP Monitoring Results and Graphical Presentations
Appendix F 24-hour TSP Monitoring Results and Graphical Presentations

Appendix G Noise Monitoring Results and Graphical Presentations

Appendix H Waste Generation in the Reporting Month

Appendix I Site Audit Summary

Appendix J Environmental Mitigation Implementation Schedule (EMIS)

Appendix K Record of Landfill Gas Monitoring by Contractor

Appendix L Event and Action Plans

Appendix M Summaries of Environmental Complaint, Warning, Summon and Notification of

Successful Prosecution

Appendix N Summary of Exceedance

Appendix O Tentative Construction Programme

### **EXECUTIVE SUMMARY**

### Introduction

1. This is the 2<sup>nd</sup> Environmental Monitoring and Audit (EM&A) Report prepared by the Environmental Team (ET), Cinotech Consultants Ltd., for Contract No. ED/2018/04 "Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron". This report summarized the monitoring results and audits findings of the EM&A programme under the issued Environmental Permit (EP) No. EP-458/2013/C and in accordance with the EM&A Manual (AEIAR-173/2013) during the reporting month of June 2020.

### Summary of Main Works Undertaken and Key Measures Implemented

- 2. The main works undertaken during the reporting period are as follows:
  - East Portal Site Setup
  - East Portal Blast door (EB) installation completed.
  - Portal rock bolt installation completed.
  - Horizontal GI for EB completed.
- 3. Implementation of the key mitigation measures during the reporting period are as follows:

### Construction Noise

- Construction activities were scheduled to minimize noise nuisance to the nearby sensitive receiver.
- Use of Quality Powered Mechanical Equipment (QPME) on site.

### Air Quality

• Regularly watering on site to avoid dust generation.

### Landscape and Visual

• Tree protection zones were fenced off to protect the existing trees on site.

### **Environmental Monitoring Works**

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Table I Non-compliance (exceedance) Record for the Project in the Reporting Month

| Environment al Monitoring                            | No. of Non-o<br>(Exceed | •           | No. of Non-compliance (Exceedance)<br>due to Construction Activities of this<br>Project |             | Action Taken |  |
|------------------------------------------------------|-------------------------|-------------|-----------------------------------------------------------------------------------------|-------------|--------------|--|
|                                                      | Action Level            | Limit Level | Action Level                                                                            | Limit Level |              |  |
| Air Quality                                          | 0                       | 0           | 0                                                                                       | 0           | N/A          |  |
| Noise                                                | 0                       | 0           | 0                                                                                       | 0           | N/A          |  |
| Marine Water Quality                                 | N/A                     | N/A         | N/A                                                                                     | N/A         | N/A          |  |
| Groundwater Level Monitoring (Piezometer Monitoring) | N/A                     | N/A         | N/A                                                                                     | N/A         | N/A          |  |
| Ecological                                           | N/A                     | N/A         | N/A                                                                                     | N/A         | N/A          |  |
| Cultural<br>Heritage                                 | N/A                     | N/A         | N/A                                                                                     | N/A         | N/A          |  |
| Landfill Gas                                         | 0                       | 0           | 0                                                                                       | 0           | N/A          |  |

Air Quality Monitoring

- 6. No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 7. No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 8. No Action Level exceedance was recorded due to the documented complaints received in this reporting month. The Summary of Documented Complaints in Reporting Month is tabulated in Table III.
- 9. No Limit Level exceedance for day time construction noise monitoring were recorded in the reporting month.

Water Quality Monitoring

- 10. Groundwater quality monitoring had been suspended since October 2019 upon the agreement by EPD. Further details should be founded at **Section 4.1**.
- 11. No marine water quality monitoring is required as no marine works will be conducted at the Cha Kwo Ling and Lam Tin areas for this project.
- 12. As the construction activity is approximately 120m away from the piezometer gate, no piezometer monitoring is required.

Waste Management

13. Wastes generated from this Project include inert construction and demolition (C&D) materials, and non-inert C&D materials. Details of waste management data is presented in **Appendix H**.

Ecological Monitoring

14. No coral monitoring is required as no marine works will be conducted at the Cha Kwo Ling and Lam Tin areas for this project.

Fisheries Impact Monitoring

15. No specific fisheries monitoring programme is required during the construction phase.

Monitoring on Cultural Heritage

16. As the construction works of Cha Kwo Ling Tunnel from the end of Trunk Road T2 to the TKOLTT at the Eastern Ventilation Building are located more than 100m away from the Cha Kwo Ling Tin Hau temple, no monitoring on cultural heritage is required.

Landscape and Visual Monitoring and Audit

17. The implementation of landscape and visual mitigation measures was checked by a registered landscape architect. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in **Section 12**.

Landfill Gas Monitoring

18. Monitoring of landfill gases was commenced in December 2016. Such monitoring was conducted by the Contractor of Agreement No. CE 59/2015 (EP). No Limit Level exceedance was recorded.

Hazard to Life Monitoring

19. No environmental monitoring and audit is required as no hazard assessment was conducted.

**Environmental Site Inspection** 

19. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. Details of the audit findings and implementation status are presented in **Section 12**.

# **Key Information in the Reporting Month**

20. Summary of key information in the reporting month is tabulated in **Table II** 

Table II Summary of Complaints, Notifications of Summons and Successful Prosecutions in the Reporting Month

| Even4                                                | Event Details |        | A ation Tolon | Ctotor |  |
|------------------------------------------------------|---------------|--------|---------------|--------|--|
| Event                                                | Number        | Nature | Action Taken  | Status |  |
| Complaints Received                                  | 0             |        | N/A           | N/A    |  |
| Notifications of any summons & prosecutions received | 0             |        | N/A           | N/A    |  |

21. Summary of complaints received in the reporting month is tabulated in **Table III.** 

Table III Summary of Complaints Details in Reporting Month

| Complaint Type | Investigation Findings | Follow-up Action / Mitigation<br>Measure |
|----------------|------------------------|------------------------------------------|
|                | N/A                    | N/A                                      |

### **Future Key Issues**

22. The key works or activities will be anticipated in the next reporting period are as follows:

Table IV Summary Table for Site Activities in the next Reporting Period

|    | Site Activities (July 2020)      | Key Environmental Issues |
|----|----------------------------------|--------------------------|
| 1. | Tunnel blasting/excavation works | (A)/(B)/(C)/(D)          |

### Note:

- (A) Dust generation from haul road, stockpile of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area; and
- (D) Wastewater and runoff discharge from site.

### 1 INTRODUCTION

### **Background**

- 1.1 In 2009, Civil Engineering and Development Department (CEDD) commissioned a Kai Tak Development (KTD) Trunk Road T2 and Infrastructure at South Apron Investigation. The assignment covers the provision of the Trunk Road T2 and its connections with the Central Kowloon Route (CKR) at the north apron area and the Tseung Kwan O Lam Tin Tunnel (TKOLTT) to the south in the Cha Kwo Ling area.
- 1.2 The Trunk Road T2 Project is one of the designated Projects under Schedule 2 of the EIAO proposed in the KTD. CEDD submitted the Project Profile (No. PP-379/2009) on 24 March 2009 for application for an EIA study brief for the Trunk Road T2 Project under the EIAO. Accordingly, an EIA Study Brief (ESB-203/2009) for the Trunk Road T2 Project was issued on 30 April 2009. The Environmental Impact Assessment (EIA) Report for the Trunk Road T2 Project was approved under the Environmental Impact Assessment Ordinance (EIAO) on 19 September 2013. The corresponding Environmental Permit (EP) was issued on 19 September 2013 (EP no.: EP-451/2013).
- 1.3 The Contract No. ED/2018/04 is the main contract of Trunk Road T2 ("T2 Main Works") which comprises mainly the design and construction of a dual two-lane trunk road of approximately 3.0km long with about 2.7km of the trunk road in form of tunnel; ventilation and administration buildings, environmental protection and mitigation works and etc. The EM&A programme under this Contract is governed by the two EPs (EP-451/2013 and EP-458/2013/C) and two EM&A Manuals (AEIAR-174/2013 and AEIAR-173/2013). The work areas of the T2 Main Works are shown in **Figure 1** and the works to be executed under this Contract and corresponding EPs are summarized as follows:

| <b>Environmental Permit</b>     | Works Description                                                 |
|---------------------------------|-------------------------------------------------------------------|
| EP-451/2013 – Trunk Road T2     | Trunk Road T2                                                     |
|                                 | Construction of highway and sub-sea tunnel connecting between     |
|                                 | Central Kowloon Route and Cha Kwo Ling Tunnel                     |
|                                 | Western & Eastern Ventilation Buildings                           |
| EP-458/2013/C - Tseung Kwan O - | Cha Kwo Ling Tunnel                                               |
| Lam Tin Tunnel (TKOLTT) and     | Construction of Cha Kwo Ling Tunnel from the end of Trunk Road T2 |
| Associated Works                | to the TKOLTT at the Eastern Ventilation Building                 |

# Monitoring Works in Lam Tin under EP-458/2013/C

- 1.4 Under Agreement No. CE 59/2015 (EP) Tseung Kwan O Lam Tin Tunnel (TKOLLT) and Associated Works, the baseline monitoring works in Lam Tin under the EM&A Manual (AEIAR-173/2013) were conducted by the Environmental Team (ET) for the Agreement No. CE 59/2015 (EP) at the approved monitoring locations, namely AM1, AM2, AM3, AM4, AM4 (A) CM1, CM2, CM3, CM4 and CM5. Impact monitoring within the Lam Tin area shall be conducted by the ET of Contract No. ED/2018/04 upon cessation of Agreement No. CE 59/2015 (EP). The data obtained from the impact monitoring works completed by the ET of Agreement No. CE 59/2015 (EP) will be adopted in this report.
- 1.5 Cinotech Consultants Ltd. was designated as the Environmental Team (ET) to undertake the EM&A works for "Trunk Road T2 and Infrastructure Works for Developments at the Former

South Apron" (hereinafter called the "Project").

### **Purpose of the Report**

1.6 This is the 2<sup>nd</sup> Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in June 2020.

### **Project Organizations**

- 1.7 Different Parties with different levels of involvement in the Project organization include:
  - Permit Holder Civil Engineering and Development Department (CEDD)
  - Supervisor Representative Hyder-Meinhardt Joint Venture (HMJV)
  - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
  - Independent Environmental Checker (IEC) Ramboll Hong Kong Limited (Ramboll)
  - Contractor Bouygues Travaux Publics (BTP)
- 1.8 The key contacts of the Project are shown in **Table 1.1**.

**Table 1.1 Key Project Contacts** 

| Party    | Role                                 | Contact Person          | Phone No. |
|----------|--------------------------------------|-------------------------|-----------|
| CEDD     | Permit Holder                        | Mr. Wong Chi Wai, Tommy | 3842 7111 |
| HMJV     | Supervisor Representative            | Mr. Joe Nam             | 3742 3820 |
| Cinotech | 1 5 17                               | Mr. KS Lee (ETL)        | 2151 2091 |
| Cinotech | Environmental Team                   | Ms. Karina Chan         | 2157 3880 |
| Ramboll  | Independent<br>Environmental Checker | Mr. Manson Yeung        | 3465 2888 |
| BTP      | Contractor                           | Mr. Bryan Lee           | 5588 3891 |

1.9 The Organizational Structure for Environmental Management is shown in **Figure 1.2**.

### Construction Activities undertaken during the Reporting Month

- 1.10 The major site activities undertaken in the reporting month included:
  - East Portal Site Setup
  - East Portal Blast door (EB) installation completed.
  - Portal rock bolt installation completed.
  - Horizontal GI for EB completed.

# **Summary of EM&A Requirements**

- 1.11 The EM&A programme requires construction noise, air quality monitoring and environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
  - All monitoring parameters;
  - Action and Limit levels for all environmental parameters;

- Event Action Plans;
- Environmental mitigation measures, as recommended in the Project EIA Report.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 12** of this report.
- 1.13 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in June 2020.

# Status of Environmental Licensing and Permitting

1.14 All permits/licenses obtained for the Project are summarized in **Table 1.2**.

 Table 1.2
 Summary of Environmental License and Permit

| Damait / Licanga No                                | Valid 1         | Valid Period |        |  |
|----------------------------------------------------|-----------------|--------------|--------|--|
| Permit / License No.                               | From            | То           | Status |  |
| <b>Environmental Permit (EP)</b>                   |                 |              |        |  |
| EP-451/2013                                        | 19 Sep 2013     | N/A          | Valid  |  |
| EP-458/2013/C                                      | 20 Jan 2017     | N/A          | Valid  |  |
| Notification pursuant to Air Pollution (Const      | ruction Dust) R | Regulation   |        |  |
| Ref. No.: 451120                                   | 20 Nov 2019     | N/A          | Valid  |  |
| <b>Billing Account for Construction Waste Disp</b> | osal            |              |        |  |
| A/C No.: 7036016                                   | 09 Dec 2019     | N/A          | Valid  |  |
| <b>Construction Noise Permit</b>                   |                 |              |        |  |
| CNP No. (For Portion T1): GW-RE0401-20             | 21 May 2020     | 20 Aug 2020  | Valid  |  |
| CNP No. (For Portion Q): GW-RE0337-20              | 08 May 2020     | 07 Nov 2020  | Valid  |  |
| Wastewater Discharge License                       |                 |              |        |  |
| Nil                                                |                 |              |        |  |
| Chemical Waste Producer License                    |                 |              |        |  |
| WPN: 5213-286-B2557-03                             | 09 Mar 2020     | N/A          | Valid  |  |

# 2 AIR QUALITY

### **Monitoring Requirement**

2.1 According to Section 2.2.4 of the EM&A Manual (AEIAR-173/2013), 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring was conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 1-hour and 24-hour TSP monitoring. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

# **Monitoring Locations**

2.2 Five designated monitoring stations were selected for air quality monitoring programme. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

**Table 2.1 Air Quality Monitoring Locations** 

| <b>Monitoring Stations</b> | Location                                                     | Location of<br>Measurement |
|----------------------------|--------------------------------------------------------------|----------------------------|
| AM1                        | Tin Hau Temple                                               | Ground Level               |
| AM2                        | Sai Tso Wan Recreation Ground                                | Ground Level               |
| AM3                        | Yau Lai Estate Bik Lai House                                 | Rooftop (41/F)             |
| AM4 <sup>(1)</sup>         | Sitting-out Area at Cha Kwo Ling Village                     | Ground Level               |
| AM4(A) <sup>(2) (*)</sup>  | Cha Kwo Ling Public Cargo Working Area Administrative Office | Rooftop (3/F)              |

### Remarks:

- (1) For 1-hour TSP monitoring;
- (2) For 24-hour TSP monitoring

### **Monitoring Parameters and Frequency**

2.3 **Table 2.2** summarizes the monitoring parameters, monitoring period and frequencies of impact air quality monitoring. The monitoring schedule is shown in **Appendix D**.

**Table 2.2 Frequency and Parameters of Air Quality Monitoring** 

| <b>Monitoring Stations</b> | Parameter   | Period      | Frequency          |
|----------------------------|-------------|-------------|--------------------|
| AM1, AM2, AM3, AM4         | 1-hour TSP  | 0700 - 1900 | 3 times per 6 days |
| AM1, AM2, AM3, AM4(A)      | 24-hour TSP | 24 hours    | Once every 6 days  |

### **Monitoring Equipment**

2.4 High Volume Samplers (HVS) in compliance with the specification stipulated in the EM&A Manual (AEIAR-173/2013), Section 2.3.1, were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined by HVS to check the validity and accuracy of the results measured

<sup>(\*)</sup> Air quality monitoring at designated station AM4 (24-hr TSP) was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4 (A) (24-hr TSP only)

by direct reading method.

- 2.5 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 2.6 **Table 2.3** summarizes the equipment used for air quality monitoring by the ET for Contract No. CE 59/2015 (EP). Copies of calibration certificates are attached in **Appendix B**.

**Table 2.3** Air Quality Monitoring Equipment

| Equipment             | Model                                    | Quantity |
|-----------------------|------------------------------------------|----------|
| 1-hour TSP Dust Meter | Sibata Model No. LD-5R                   | 3        |
| 1-noul 151 Dust Meter | (Serial No.: 972778, 972779, 972780)     | 3        |
|                       | TISCH Model: TE-5170 (Serial No.: 1536)  | 1        |
| HVS Sampler           | GMW model: GS2310                        | 3        |
|                       | (Serial No.: 1287, 10379, 10599)         | 3        |
| Calibrator            | TISCH Model: TE-5025A                    | 1        |
| Cantilator            | (Serial No.: 3746)                       | 1        |
| Wind Anemometer       | Davis Weather Monitor II, Model no. 7440 | 1        |
| willd Allemometer     | (Serial No.: MC01010A44)                 | 1        |

### **Monitoring Methodology**

### 1-hour TSP Monitoring

### Measuring Procedures

2.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Sibata Model No.: LD-5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

### Maintenance/Calibration

- 2.8 The following maintenance/calibration is required for the 1-hour dust meter:
  - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

### 24-hour TSP Monitoring

### **Instrumentation**

- 2.9 High volume samplers (HVS) (TISCH Model: TE-5170 and GMW Model: GS2310) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 2.10 The positioning of the HVS samplers are as follows:
  - A horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
  - No two samplers shall be placed less than 2 meter apart;
  - The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
  - A minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
  - A minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
  - No furnace or incinerator flue is nearby;
  - Airflow around the sampler is unrestricted;
  - The sampler is more than 20 metres from the dripline;
  - Any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
  - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
  - A secured supply of electricity is needed to operate the samplers.

### Operating/analytical procedures for the operation of HVS

- 2.11 Operating/analytical procedures for the air quality monitoring are highlighted as follows:
  - Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 0.6 m³/min. and 1.7 m³/min.) in accordance with the EM&A manual (AEIAR-173/2013). The flow rate shall be indicated on the flow rate chart.
  - For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3µm diameter were used.
  - The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.

- The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

# Maintenance/Calibration

- 2.12 The following maintenance/calibration is required for the HVS:
  - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
    - High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

### **Results and Observations**

- 2.13 The impact monitoring works for air quality monitoring locations AM1, AM2, AM3, AM4 and AM4 (A) are completed by the ET of Agreement No. CE 59/2015 (EP), and the data will be adopted in this report.
- 2.14 Impact air quality monitoring was conducted at five monitoring stations as scheduled. The monitoring schedule is shown in **Appendix D**.
- 2.15 No Action/Limit Level exceedance was recorded for all 1-hour and 24-hour TSP monitoring in the reporting month.
- 2.16 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 2.17 According to field observations by ET for Agreement No. CE 59/2015 (EP) in the reporting period, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 2.4 Major Dust Source during Air Quality Monitoring

| <b>Monitoring Stations</b>                                                  | Major Dust Source                                         |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------|--|
| AM1 – Tin Hau Temple                                                        | Road Traffic at Cha Kwo Ling Road                         |  |
| AM2 – Sai Tso Wan Recreation<br>Ground                                      | N/A                                                       |  |
| AM3 – Yau Lai Estate Bik Lai House                                          | Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza |  |
| AM4 - Sitting-out Area at Cha Kwo<br>Ling Village                           | Road Traffic at Cha Kwo Ling Road                         |  |
| AM4(A) - Cha Kwo Ling Public<br>Cargo Working Area Administrative<br>Office | Road Traffic at Cha Kwo Ling Road                         |  |

# Comparison of EM&A Result with EIA Prediction

2.18 The air monitoring data was compared with the predictions (with the assessment height of 1.5 mAG) in Table 3.17 of EIA Report, AEIAR-173/2013 (as approved in 2013) as summarised in **Table 2.5** and **Table 2.6**.

 Table 2.5
 Comparison of 1-hr TSP Monitoring Data with Predictions in EIA Report

| Monitoring Stations                               | ASR ID | Predicted Maximum 1-hr TSP Concentration in EIA Report (AEIAR- 173/2013), μg/m <sup>3</sup> | Maximum 1-hr TSP<br>Concentration in the<br>Reporting Month<br>(June 2020),<br>μg/m <sup>3</sup> |
|---------------------------------------------------|--------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| AM1 – Tin Hau Temple                              | CL1    | 707                                                                                         | 89.9                                                                                             |
| AM2 – Sai Tso Wan<br>Recreation Ground            | CL6    | 266                                                                                         | 77.0                                                                                             |
| AM3 – Yau Lai Estate Bik Lai<br>House             | CL9    | 507                                                                                         | 89.9                                                                                             |
| AM4 - Sitting-out Area at Cha<br>Kwo Ling Village | CL16   | 430                                                                                         | 89.9                                                                                             |

Comparison of 24-hr TSP Monitoring Data with Predictions in EIA Report **Table 2.6** 

| Monitoring Stations                                                             | ASR ID             | Predicted Maximum<br>24-hr TSP<br>Concentration in<br>EIA Report (AEIAR-<br>173/2013), μg/m <sup>3</sup> | Maximum 24-hr TSP<br>Concentration in the<br>Reporting Month<br>(June 2020),<br>μg/m <sup>3</sup> |
|---------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| AM1 – Tin Hau Temple                                                            | CL1                | 199                                                                                                      | 76.9                                                                                              |
| AM2 – Sai Tso Wan<br>Recreation Ground                                          | CL6                | 109                                                                                                      | 29.6                                                                                              |
| AM3 – Yau Lai Estate Bik Lai<br>House                                           | CL9                | 123                                                                                                      | 59.4                                                                                              |
| AM4(A) - Cha Kwo Ling<br>Public Cargo Working Area<br>Administrative Office (*) | N/A <sup>(1)</sup> | N/A <sup>(1)</sup>                                                                                       | 59.1                                                                                              |

### Remarks:

- 2.19 In the reporting month, the 1-hour TSP concentrations at AM1, AM2, AM3 and AM4 were lower than the prediction in the EIA Report, AEIAR-173/2013 (as approved in 2013). No Action/Limit level exceedance was recorded in the reporting period.
- 2.20 In the reporting month, the 24-hour TSP concentrations at AM1, AM2, AM3 and AM4 (A) were lower than the prediction in the EIA Report, AEIAR-173/2013 (as approved in 2013). No Action/Limit level exceedance was recorded in the reporting period.

<sup>(1)</sup> No 24-hr TSP concentration was predicted in EIA Report (AEIAR-173/2013)

<sup>(\*)</sup> Air quality monitoring at designated station AM4 (24-hr TSP) was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4 (A) (24-hr TSP only)

### 3 NOISE

### **Monitoring Requirements**

3.1 According to Section 3.2.1 of the EM&A Manual (AEIAR-173/2013), construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

# **Monitoring Locations**

3.2 Noise monitoring was conducted at five designated monitoring stations, namely CM1, CM2, CM3, CM4 and CM5 in the reporting period. **Table 3.1** and **Figure 2** show the locations of these stations.

**Table 3.1 Noise Monitoring Stations** 

| Monitoring<br>Stations | Location                                        | Location of<br>Measurement |
|------------------------|-------------------------------------------------|----------------------------|
| CM1                    | Nga Lai House, Yau Lai Estate Phase 1, Yau Tong | Rooftop (41/F)             |
| CM2                    | Bik Lai House, Yau Lai Estate Phase 1, Yau Tong | Rooftop (41/F)             |
| CM3                    | Block S, Yau Lai Estate Phase 5, Yau Tong       | Rooftop (40/F)             |
| CM4                    | Tin Hau Temple, Cha Kwo Ling                    | Ground Level               |
| CM5                    | CCC Kei Faat Primary School, Yau Tong           | Rooftop (6/F)              |

### **Monitoring Parameters, Frequency and Duration**

3.3 **Table 3.2** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

**Table 3.2** Frequency and Parameters of Noise Monitoring

| Monitoring<br>Stations | Time Period                            | Duration   | Frequency     | Parameter                          | Measurement        |
|------------------------|----------------------------------------|------------|---------------|------------------------------------|--------------------|
| CM1                    |                                        |            |               | 1 (20 : )                          | Façade Measurement |
| CM2                    | 0700 1000 1                            |            |               | L <sub>10</sub> (30 min.)<br>dB(A) | Façade Measurement |
| CM3                    | 0700-1900 hrs<br>on normal<br>weekdays | 30 minutes | Once per week | L <sub>90</sub> (30 min.)<br>dB(A) | Façade Measurement |
| CM4                    | weekdays                               |            |               | L <sub>eq</sub> (30 min.)          | Façade Measurement |
| CM5                    |                                        |            |               | dB(A)                              | Façade Measurement |

# **Monitoring Equipment**

3.4 Integrating Sound Level Meter was used for impact noise monitoring. The meters were Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L<sub>eq</sub>) and percentile sound pressure level (L<sub>x</sub>) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 3.3** summarizes the noise monitoring equipment being used by the ET for Agreement No. CE 59/2015 (EP) within the reporting period. Copies of calibration certificates are attached in **Appendix B**.

**Table 3.3 Noise Monitoring Equipment** 

| Equipment                     | Model                                   | Quantity |
|-------------------------------|-----------------------------------------|----------|
|                               | SVAN 957 (Serial No.: 21455, 23852,     | 4        |
| Integrating Sound Level Meter | 23851)/ 959 (Serial No.: 11275)         |          |
|                               | BSWA 308 (Serial No.: 570187)           | 1        |
|                               | SV30A (Serial No.: 10965)               | 1        |
| Calibrator                    | Brüel & Kjær 4231 (Serial No.: 2326353) | 1        |
| Cantilator                    | ST-120 (Serial No.: 181001608,          | 2        |
|                               | 181001637)                              | <i>L</i> |

### Monitoring Methodology and QA/QC Procedure

- 3.5 The monitoring procedures are as follows:
  - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
  - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels were adjusted with a correction of +3 dB(A).
  - The battery condition was checked to ensure the correct functioning of the meter.
  - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
    - Frequency weighting: A
    - Time weighting: Fast
    - Time measurement: 30 minutes
  - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
  - The wind speed was frequently checked with the portable wind meter.
  - At the end of the monitoring period, the L<sub>eq</sub>, L<sub>90</sub> and L<sub>10</sub> were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
  - Noise monitoring would be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring would be provided to ensure sufficient data would be obtained.

### **Maintenance and Calibration**

3.6 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at

quarterly intervals.

- 3.7 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements were accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

### **Results and Observations**

- 3.9 The data obtained from the impact monitoring works completed by the ET of Agreement No. CE 59/2015 (EP) will be adopted in this report.
- 3.10 No Action Level exceedance was recorded for all construction noise monitoring as no complaints were received in the reporting month.
- 3.11 No Limit Level exceedance was recorded for all construction noise monitoring in the reporting month.
- 3.12 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.13 According to field observations by ET for Agreement No. CE 59/2015 (EP) in the reporting period, the major noise sources identified at the noise monitoring stations are shown in **Table** 3.4.

**Table 3.4** Other Noise Source Identified during Noise Monitoring

| <b>Monitoring Stations</b> | Major Noise Source                                        |  |  |
|----------------------------|-----------------------------------------------------------|--|--|
| CM1                        | Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza |  |  |
| CM2                        | Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza |  |  |
| CM3                        | Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza |  |  |
| CM4                        | Road Traffic at Cha Kwo Ling Road                         |  |  |
| CM5                        | Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza |  |  |

Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

| <b>Monitoring Stations</b> | Baseline Noise Level, dB (A)<br>(at 0700 – 1900 hrs on normal<br>weekdays) | Noise Limit Level, dB (A)<br>(at 0700 – 1900 hrs on<br>normal weekdays) |
|----------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| CM1                        | 65.5                                                                       |                                                                         |
| CM2                        | 63.6                                                                       | 75                                                                      |
| CM3                        | 65.6                                                                       | 13                                                                      |
| CM4                        | 62.0                                                                       |                                                                         |
| CM5                        | 68.2                                                                       | 70*                                                                     |

<sup>(\*)</sup> Noise Limit Level is 65 dB(A) during school examination periods.

### Comparison of EM&A Result with EIA Prediction

3.14 The noise monitoring data was compared with the predictions in Table 4.15 of EIA Report (AEIAR-173/2013) as summarised in **Table 3.6**.

Table 3.6 Maximum Predicted Mitigated Construction Noise Levels in EIA Report

| Monitoring Stations                                      | NSR ID | Maximum Predicted Mitigated Construction Noise Levels in EIA Report (AEIAR- 173/2013), dB(A) | Maximum Construction Noise Levels in the Reporting Month (June 2020), Leq (30min) dB(A) |
|----------------------------------------------------------|--------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| CM1 – Nga Lai House, Yau<br>Lai Estate Phase 1, Yau Tong | N1102  | 73                                                                                           | 73.3                                                                                    |
| CM2 – Bik Lai House, Yau<br>Lai Estate Phase 1, Yau Tong | N1204  | 75                                                                                           | 73.3                                                                                    |
| CM3 – Block S, Yau Lai<br>Estate Phase 5, Yau Tong       | N2105  | 75                                                                                           | 73.6                                                                                    |
| CM4 – Tin Hau Temple, Cha<br>Kwo Ling                    | N3101a | 73                                                                                           | 67.7                                                                                    |
| CM5 – CCC Kei Faat Primary<br>School, Yau Tong           | N4101  | 71                                                                                           | 71.6                                                                                    |

3.15 The results at CM1 and CM5 were higher than the maximum predicted mitigated construction noise level in the EIA Report, AEIAR-173/2013 (as approved in 2013), this may be due to the traffic noise near Eastern Cross Harbour Tunnel Toll Plaza. The results at CM2, CM3 and CM4 were lower than the maximum predicted noise level in the EIA Report. No Action / Limit level exceedance was recorded in the reporting period.

# 4 WATER QUALITY

# **Monitoring Requirement**

# **Groundwater Quality**

4.1 The existing groundwater quality monitoring programme has been suspended as the monitoring results had been deemed non-representative of the impact from the project justified by two major factors: (1) influence on the monitoring results from non-project related factors, such as anthropogenic activities and natural phenomenon; and (2) large separation between the monitoring stations and works area. In addition, as no alternative locations for the groundwater quality monitoring were available, the groundwater quality monitoring has been suspended since October 2019 upon the agreement by EPD.

### Marine Water Quality

4.2 According to Section 4.4.3 of EM&A Manual (AEIAR-173/2013), marine water quality impact monitoring stations is carried out during marine construction for TKOLTT reclamation. Since the construction of Cha Kwo Ling Tunnel from the end of Trunk Road T2 to the TKOLTT at the Eastern Ventilation Building does not involve reclamation, the marine water quality monitoring programme stated in Section 4.4 of the EM&A Manual (AEIAR-173/2013) is therefore not applicable to Contract No. ED/2018/04.

### Groundwater Level Monitoring (Piezometer Monitoring)

4.3 According to Section 4.1.2 of EM&A Manual (AEIAR-173/2013), daily piezometer monitoring will be carried out on a daily basis when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. As the construction works of Cha Kwo Ling Tunnel from the end of Trunk Road T2 to the TKOLTT at the Eastern Ventilation Building is approximately 120m away from the piezometer gate in plan, the piezometer monitoring programme stated in Section 4.2 of the EM&A Manual (AEIAR-173/2013) is therefore not applicable to Contract No. ED/2018/04.

### 5 WASTE MANAGEMENT

- 5.1 According to Section 5.1.2 of the EM&A Manual (AEIAR-173/2013), Waste materials generated during construction activities, such as construction and demolition (C&D) materials and general refuse, are recommended to be audited at regular intervals (at least quarterly) to ensure that proper storage, transportation and disposal practices are being implemented by the Contractor. To fulfil this requirement, site audits are carried out on a weekly basis. The summaries of site audits are attached in **Appendix I**.
- 5.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix H**.

### 6 ECOLOGY

### **Post-Translocation Coral Monitoring**

6.1 Post-translocation monitoring survey is recommended in Section 6.2.5 of the EM&A Manual (AEIAR-173/2013), to audit the success of coral translocation. Since the construction of Cha Kwo Ling Tunnel from the end of Trunk Road T2 to the TKOLTT at the Eastern Ventilation Building does not involve any marine works in the concerned area mentioned in Section 6.1.2 of the EM&A Manual (AEIAR-173/2013), the post-translocation monitoring survey stated in Section 6.2.5 of the EM&A Manual (AEIAR-173/2013) is therefore not applicable to Contract No. ED/2018/04.

### 7 FISHERIES

- 7.1 According to Section 7.1.3 of EM&A Manual (AEIAR-173/2013), no specific fisheries monitoring programme is required during the construction phase.
- 7.2 The implementation of the mitigation measures stated in the Water Quality Impact Assessment (Refer to Section 5 of EIA Report (AEIAR-173/2013)) will be audited as part of the EM&A procedures during the construction period. The summaries of site audits are attached in **Appendix I**.

### 8 CULTURAL HERITAGE

- 8.1 According to Condition 3.7 of EP-458/2013/C and Section 8.2.1 of the EM&A Manual (AEIAR-173/2013), monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be applied on the Cha Kwo Ling Tin Hau Temple.
- As the construction works of Cha Kwo Ling Tunnel from the end of Trunk Road T2 to the TKOLTT at the Eastern Ventilation Building are located more than 100m away from the Cha Kwo Ling Tin Hau temple, the vibration impact monitoring stated in Section 8.3.1 of the EM&A Manual (AEIAR-173/2013) is not applicable to Contract No. ED/2018/04.

### **Mitigation Measures for Cultural Heritage**

8.3 According to Condition 3.6 of EP-458/2013/C, to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.

**Monthly EM&A Report – June 2020** 

As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

### 9 LANDSCAPE AND VISUAL IMPACT

- According to Section 9.3 of the EM&A Manual (AEIAR-173/2013), landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Environmental Mitigation Implementation Schedule (EMIS)" (shown in **Appendix J**).
- 9.3 The implementation of landscape and visual mitigation measures was checked by a registered landscape architect. No non-compliance of the landscape and visual impact was recorded in the reporting month. Details of the audit findings and implementation status are presented in Appendix I.

### 10 LANDFILL GAS MONITORING

### **Monitoring Requirement**

- 10.1 In accordance with Section 10.1.1 of the EM&A Manual (AEIAR-173/2013), monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase. This section presents the results of landfill gas measurements performed by the Contractor of Agreement No. CE 59/2015 (EP). Appendix A shows the Limit Levels for the monitoring works.
- 10.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.

### **Monitoring Parameters and Frequency**

- 10.3 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 10.4 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

### Excavations deeper than 1m

• at the ground surface before excavation commences;

- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

# Excavations between 300mm and 1m deep

- directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

# For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

# **Monitoring Locations**

10.5 Monitoring of oxygen, methane and carbon dioxide was performed for excavations at 1m depth or more within the Consultation Zone.

### **Monitoring Equipment**

10.6 **Table 10.1** summarizes the equipment employed by the Contractor of Agreement No. CE 59/2015 (EP) for the landfill gas monitoring.

Table 10.1 Landfill Gas Monitoring Equipment

| Equipment             | Model and Make      | Quantity |
|-----------------------|---------------------|----------|
|                       | ALTAIR 5X           |          |
| Portable gas detector | Multigas Detector   | 1        |
|                       | (Serial No. 152097) |          |

### **Results and Observations**

10.7 In the reporting month, landfill gas monitoring was carried out by the Contractor of Agreement No. CE 59/2015 (EP) on 125 occasions. No Limit Level exceedance for landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix K**. Copies of calibration certificates are attached in **Appendix B**.

### 11 HAZARD TO LIFE

11.1 According to Section 11.1.1 of EM&A Manual (AEIAR-173/2013), as no overnight storage of explosive on site is required for the construction of the Project, the hazard assessment is deemed not necessary. Thus, environmental monitoring and audit is not required.

### 12 ENVIRONMENTAL AUDIT

### **Site Audits**

12.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The

summaries of site audits are attached in Appendix I.

12.2 Site audits were conducted on 4, 11, 18 & 23 June 2020 in the reporting month. Site inspection of the IEC was conducted on 18 June 2020. No non-compliance was observed during the site audit.

# **Implementation Status of Environmental Mitigation Measures**

- 12.3 According to Environmental Permits, the approved EIA Reports (Register No.: AEIAR-174/2013 and AEIAR-173/2013), and the EM&A Manuals of the Project (AEIAR-174/2013 and AEIAR-173/2013), the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An Environmental Mitigation Implementation Schedule (EMIS) is provided in **Appendix J**.
- 12.4 The ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in **Table 12.1**. Refer to **Appendix I** for the site inspection summary reports in the reporting month.

**Table 12.1 Observations and Recommendations of Site Audit** 

| Parameters                        | Date         | Observations and Recommendations                                                                                   | Follow-up                                                                                                                                                                    |
|-----------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Quality                       | N/A          | There was no observation in the reporting period.                                                                  | N/A                                                                                                                                                                          |
| Noise                             | 11 June 2020 | Mitigation measure for construction noise reduction, as listed in the NMP (v.3), should be implemented on CKL site | Contractor stated that the purchasing process for the noise barriers was under taken. And, the installation of such barriers was expected to be completed in the early July. |
| Water Quality                     | N/A          | There was no observation in the reporting period.                                                                  | N/A                                                                                                                                                                          |
| Ecology                           | N/A          | There was no observation in the reporting period.                                                                  | N/A                                                                                                                                                                          |
| Landscape and<br>Visual           | 21 May 2020  | Existing tree to be retained on site should be protected carefully.                                                | It was observed that tree protection zone had fenced off to protect the existing tree on site on 4 June 2020.                                                                |
| Waste /<br>Chemical<br>Management | N/A          | There was no observation in the reporting period.                                                                  | N/A                                                                                                                                                                          |
| Permits /Licences                 | N/A          | There was no observation in the reporting period.                                                                  | N/A                                                                                                                                                                          |

### **Implementation Status of Event and Action Plans**

12.5 The Event and Action Plans for air quality and construction noise monitoring, and the Limit Levels and Action Plan for landfill gas monitoring are presented in **Appendix L**.

### Air Quality Monitoring

- No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- No Action/Limit Level exceedance for 24-hour TSP monitoring was recorded.

### Construction Noise Monitoring

- No documented complaint on construction noise was received; no Action Level exceedance for construction noise was recorded.
- No Action/Limit Level exceedance for construction noise monitoring was recorded in the reporting month.

### Landfill Gas Monitoring

No Limit Level exceedance for landfill gas monitoring was recorded.

### 13 **ENVIRONMENTAL NON-CONFORMANCE**

# Summary of Complaint, Warning, Notification of any Summons and Successful **Prosecution**

13.1 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix M**.

### **Summary of Exceedance**

13.2 The summary of exceedance record in the reporting month is shown in **Appendix N**.

### 14 **FUTURE KEY ISSUES**

- 14.1 Tentative construction programmes for the next three months are provided in **Appendix O**.
- 14.2 Major site activities undertaken for the coming months are summarized as follows:
  - Tunnel blasting/ excavation works
- 14.3 Key environmental issues in the coming months include:
  - Make sure noise mitigation measures are implemented accordingly; and
  - Make sure drainage system is adequately designed to prevent flooding during periods of heavy rain.

### **Monitoring Schedule**

14.4 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

### 15 CONCLUSIONS AND RECOMMENDATIONS

### **Conclusions**

15.1 This is the 2<sup>nd</sup> Monthly EM&A Report which presents the EM&A works undertaken during the reporting month in accordance with the EM&A Manual (AEIAR-173/2013) and the requirement under EP.

### Air Quality Monitoring

- 15.2 No Action/Limit Level exceedance was recorded for 1-hour TSP monitoring in the reporting month.
- 15.3 No Action/Limit Level exceedance was recorded for 24-hour TSP monitoring in the reporting month.

### **Construction Noise Monitoring**

15.4 No Action/Limit Level exceedance was recorded for all noise monitoring in the reporting month.

# **Landfill Gas Monitoring**

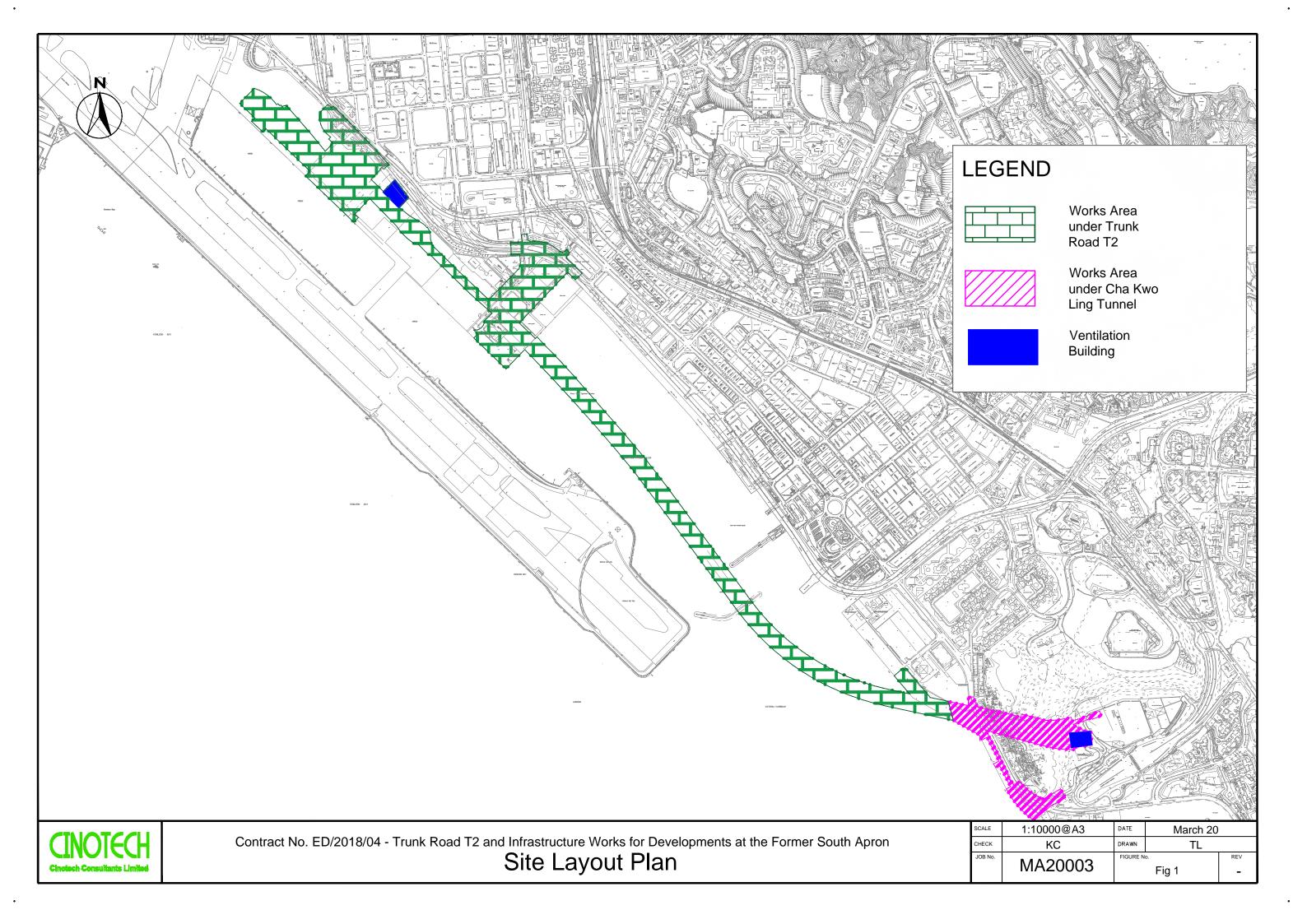
15.5 Monitoring of landfill gases in the reporting month was carried out by the Contractor of Agreement No. CE 59/2015 (EP). No Limit Level exceedance was recorded.

### Site Audit

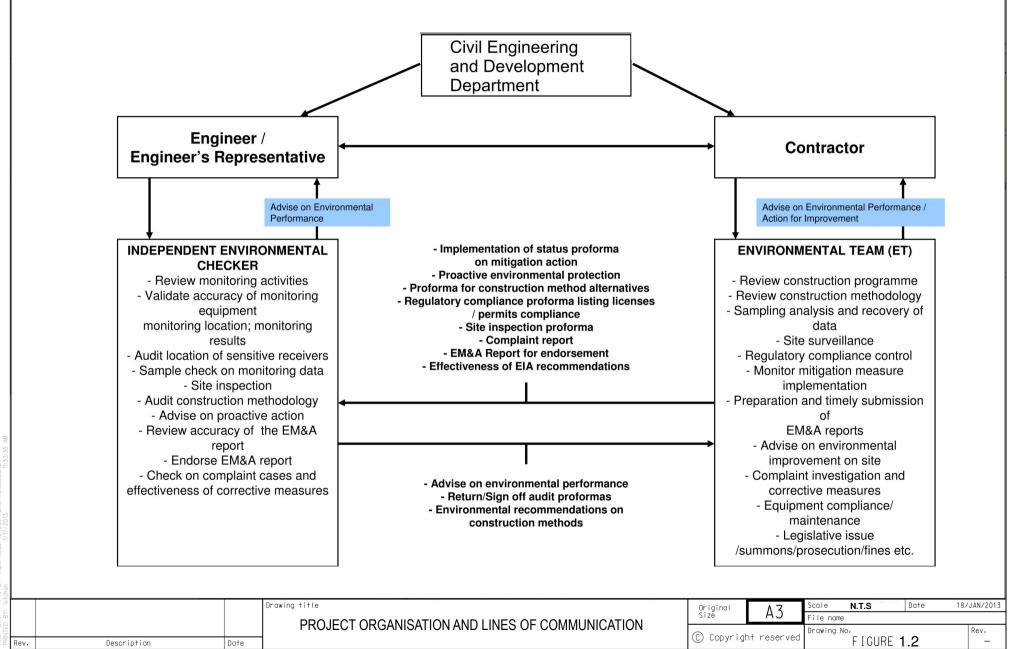
15.6 4 ET joint weekly environmental site inspections were conducted in the reporting month.

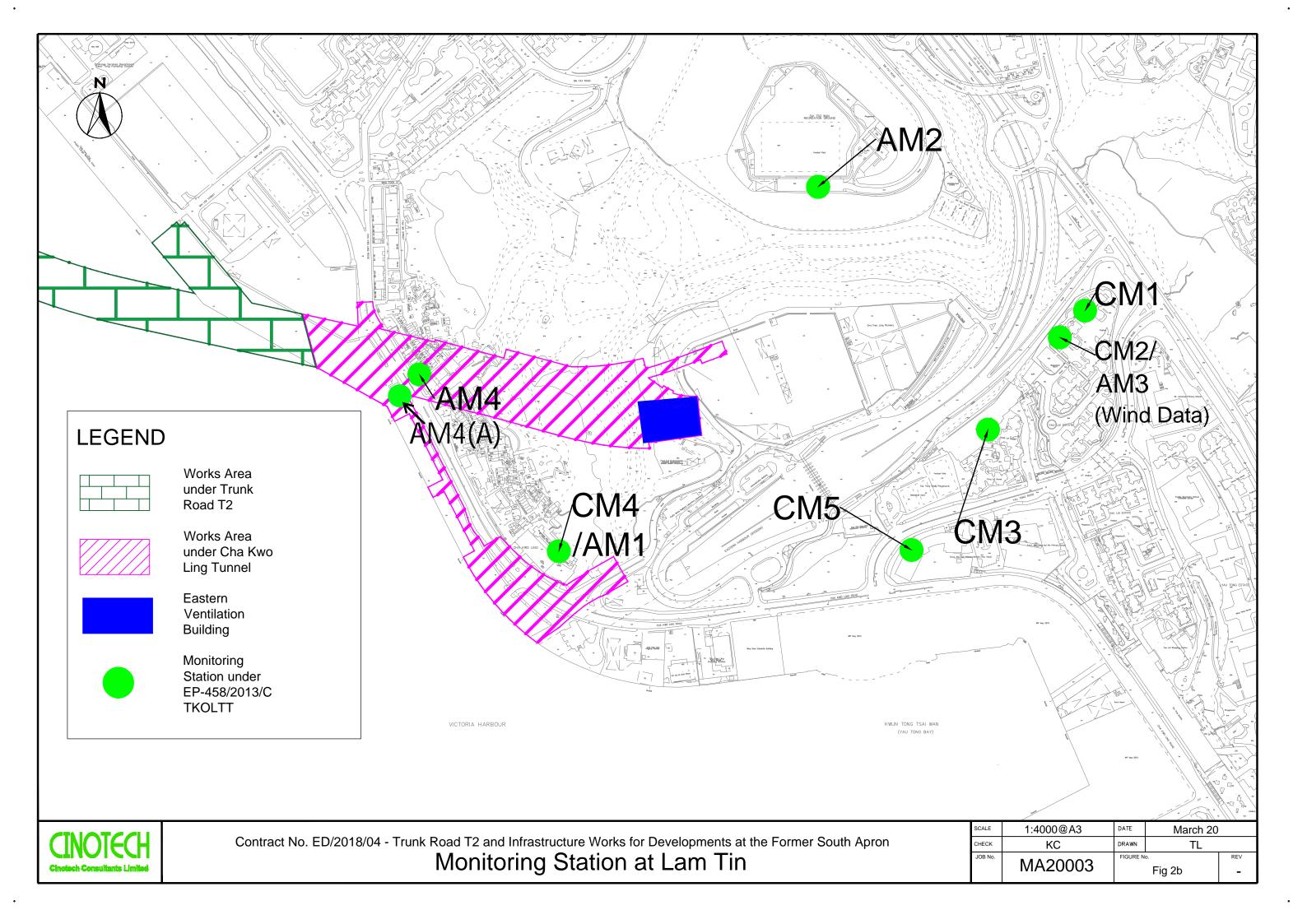
### Complaint, Notification of Summons and Successful Prosecution

15.7 No environmental complaints, notifications of summons and successful prosecutions were received in the reporting month.


### **Recommendations**

15.8 According to the environmental audit performed in the reporting month, the following recommendations were made:


### Noise


• Contractor should always implement the construction noise mitigation measures to minimize the noise nuisance generated from construction activities.

**FIGURES** 









# APPENDIX A ACTION AND LIMIT LEVELS

### **APPENDIX A – Action and Limit Levels**

### **Air Quality**

### 1-hr TSP

| Monitoring<br>Stations | Location                                 | Action Level, μg/m <sup>3</sup> | Limit Level, μg/m³ |
|------------------------|------------------------------------------|---------------------------------|--------------------|
| AM1                    | Tin Hau Temple                           | 275                             |                    |
| AM2                    | Sai Tso Wan Recreation Ground            | 273                             | 500                |
| AM3                    | Yau Lai Estate Bik Lai House             | 271                             | 500                |
| AM4                    | Sitting-out Area at Cha Kwo Ling Village | 278                             |                    |

### 24-hr TSP

| Monitoring<br>Stations | Location                                                        | Action Level, μg/m <sup>3</sup> | Limit Level, μg/m³ |
|------------------------|-----------------------------------------------------------------|---------------------------------|--------------------|
| AM1                    | Tin Hau Temple                                                  | 173                             |                    |
| AM2                    | Sai Tso Wan Recreation Ground                                   | 192                             |                    |
| AM3                    | Yau Lai Estate Bik Lai House                                    | 167                             | 260                |
| AM4(A)                 | Cha Kwo Ling Public Cargo Working Area<br>Administrative Office | 210                             |                    |

### **Noise**

| Time Period                      | Action Level                              | Limit Level             |  |
|----------------------------------|-------------------------------------------|-------------------------|--|
| 0700-1900 hrs on normal weekdays | When one documented complaint is received | 75 dB(A) <sup>(1)</sup> |  |

### **Landfill Gas Monitoring**

| Parameter | Limit Level                      |
|-----------|----------------------------------|
| Oxygen    | <19%                             |
|           | <18%                             |
| Methane   | >10% LEL (i.e. > 0.5% by volume) |
|           | >20% LEL (i.e. > 1% by volume)   |
| Carbon    | >0.5%                            |
| Dioxide   | >1.5%                            |

 <sup>&</sup>lt;sup>1</sup> 70 dB(A) for schools and 65 dB(A) for schools during examination period.
 <sup>2</sup> Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 <sup>3</sup> If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

APPENDIX B COPIES OF CALIBRATION CERTIFICATES



Date of Calibration 6-Apr-20

### **Cerificate of Calibration**

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| Manufacturer:                                    | Sibata Scienti  | fic Technology LTD.                             | _                | Validity of Calib                        | ration Record     | 6-Jun-20             |
|--------------------------------------------------|-----------------|-------------------------------------------------|------------------|------------------------------------------|-------------------|----------------------|
| Model No.:                                       | LD-5R           |                                                 |                  |                                          |                   |                      |
| Serial No.:                                      | 972778          |                                                 |                  |                                          |                   |                      |
| Equipment No.:                                   | SA-01-07        |                                                 | Sensitivity      | 0.001 mg/m3                              | _                 |                      |
| High Volume Sa                                   | mpler No.:      | A-01-01A                                        | Before Sensit    | ivity Adjustment                         | 735 CPM           |                      |
| Tisch Calibration                                | n Orifice No.:  | 3607                                            | After Sensitiv   | rity Adjustment                          | 735 CPM           |                      |
|                                                  |                 | Ca                                              | libration of 1 l | nr TSP                                   |                   |                      |
| Calibration                                      |                 | Laser Dust Monitor                              | r                |                                          | HVS               |                      |
| Point                                            | M               | ass Concentration (μg/<br><b>X-axis</b>         | /m3)             | Mass concentration (μg/m³) <b>Y-axis</b> |                   |                      |
| 1                                                |                 | 44.0                                            |                  |                                          | 84.5              |                      |
| 2                                                |                 | 34.0                                            |                  | 81.0                                     |                   |                      |
| 3                                                | 25.0            |                                                 | 76.8             |                                          |                   |                      |
| Average                                          |                 | 34.3                                            |                  |                                          | 80.8              |                      |
| By Linear Regr<br>Slope , mw =<br>Correlation co | 0.40            |                                                 |                  | ccept, bw =                              | 66.8876           |                      |
|                                                  |                 | Se                                              | t Correlation    | Factor                                   |                   |                      |
| Particaulate Con                                 | centration by I | High Volume Sampler                             | $(\mu g/m^3)$    |                                          | 80.8              |                      |
| Particaulate Con                                 | centration by I | Oust Meter (μg/m <sup>3</sup> )                 |                  |                                          | 34.3              |                      |
| Measureing time, (min)                           |                 |                                                 | 60.0             |                                          |                   |                      |
| Set Correlation I                                | Factor, SCF     |                                                 |                  |                                          |                   |                      |
| SCF = [ K=Hig                                    | h Volume Sam    | npler / Dust Meter, (μ                          | g/m3) ]          | 2.4                                      |                   |                      |
| The Dust Monito                                  | or was compare  | o the instruction manued with a calibrated High | gh Volume San    | pler and The result                      | was used to gener | rate the Correlation |

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai 



5-Jun-20

Date of Calibration

### **Cerificate of Calibration**

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| _                                                |                                                                                                                 |                                       |                                    |                        |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|------------------------|--|--|
| Manufacturer:                                    | Sibata Scientific Technology LTD                                                                                | Validit                               | y of Calibration Record _          | 5-Aug-20               |  |  |
| Model No.:                                       | LD-5R                                                                                                           |                                       |                                    |                        |  |  |
| Serial No.:                                      | 972778                                                                                                          |                                       |                                    |                        |  |  |
| Equipment No.:                                   | SA-01-07                                                                                                        | Sensitivity 0.001                     | mg/m3                              |                        |  |  |
| High Volume Sa                                   | mpler No.: <u>A-01-01A</u>                                                                                      | Before Sensitivity Adj                | ustment 735 CPM                    |                        |  |  |
| Tisch Calibration                                | n Orifice No.: 3607                                                                                             | After Sensitivity Adjus               | stment 735 CPM                     |                        |  |  |
|                                                  |                                                                                                                 | Calibration of 1 hr TSP               |                                    |                        |  |  |
| Calibration                                      | Laser Dust Monit                                                                                                | or                                    | HVS                                |                        |  |  |
| Point                                            | Mass Concentration (μ<br><b>X-axis</b>                                                                          | g/m3)                                 | Mass concentration (μg/m³)  Y-axis |                        |  |  |
| 1                                                | 47.0                                                                                                            |                                       | 100.5                              |                        |  |  |
| 2                                                | 37.0                                                                                                            |                                       | 96.5                               |                        |  |  |
| 3                                                | 26.0                                                                                                            |                                       | 91.0                               |                        |  |  |
| Average                                          | 36.7                                                                                                            |                                       | 96.0                               |                        |  |  |
| By Linear Regr<br>Slope , mw =<br>Correlation co | ession of Y on X<br>                                                                                            | Intercept, bw                         | = 79.383                           | 37                     |  |  |
|                                                  |                                                                                                                 | <u>·</u>                              |                                    |                        |  |  |
|                                                  |                                                                                                                 | Set Correlation Factor                |                                    |                        |  |  |
|                                                  | centration by High Volume Sample                                                                                | $r (\mu g/m^3)$                       | 96.0                               |                        |  |  |
| Particaulate Con                                 | centration by Dust Meter (μg/m³)                                                                                |                                       | 36.7                               |                        |  |  |
| Measureing time, (min)                           |                                                                                                                 |                                       | 60.0                               |                        |  |  |
| Set Correlation I                                | Factor, SCF                                                                                                     |                                       |                                    |                        |  |  |
| SCF = [ K=Higl                                   | h Volume Sampler / Dust Meter, (                                                                                | μg/m3) ]                              | 2.6                                |                        |  |  |
| The Dust Monito<br>Factor (CF) betw              | in according to the instruction man<br>or was compared with a calibrated F<br>ween the Dust Monitor and High Vo | ligh Volume Sampler and lume Sampler. | •                                  | nerate the Correlation |  |  |

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Wong Shing Kwai Approved by: Lemy Kenry Leung



Date of Calibration 6-Apr-20

### **Cerificate of Calibration**

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| Manufacturer:                                    | Sibata Scientific Technolo              | ogy LTD.         | Validity of Calib                        | ration Record    | 6-Jun-20             |  |
|--------------------------------------------------|-----------------------------------------|------------------|------------------------------------------|------------------|----------------------|--|
| Model No.:                                       | LD-5R                                   |                  |                                          |                  |                      |  |
| Serial No.:                                      | 972779                                  |                  |                                          |                  |                      |  |
| Equipment No.:                                   | SA-01-08                                | Sensitivity      | 0.001 mg/m3                              | -                |                      |  |
| High Volume Sa                                   | mpler No.: <u>A-01-01A</u>              | Before Sens      | itivity Adjustment                       | 744 CPM          |                      |  |
| Tisch Calibration                                | n Orifice No.: 3607                     | After Sensit     | ivity Adjustment                         | 744 CPM          |                      |  |
|                                                  |                                         | Calibration of 1 | hr TSP                                   |                  |                      |  |
| Calibration                                      | Laser Dus                               | st Monitor       |                                          | HVS              |                      |  |
| Point                                            | Mass Concent<br>X-a                     |                  | Mass concentration (μg/m³) <b>Y-axis</b> |                  |                      |  |
| 1                                                | 45                                      | 5.0              |                                          | 84.5             |                      |  |
| 2                                                | 32                                      | 2.0              |                                          | 81.0             |                      |  |
| 3                                                | 18                                      | 3.0              |                                          | 76.8             |                      |  |
| Average                                          | 31                                      | 1.7              |                                          | 80.8             |                      |  |
| By Linear Regr<br>Slope , mw =<br>Correlation co | ession of Y on X  0.2854  pefficient* = | Into<br>0.9995   | ercept, bw =<br>                         | 71.7298          | J                    |  |
|                                                  |                                         | Set Correlation  | Factor                                   |                  |                      |  |
|                                                  | centration by High Volume               | 1 10             |                                          | 80.8             |                      |  |
| Particaulate Concentration by Dust Meter (μg/m³) |                                         |                  |                                          | 31.7             |                      |  |
| Measureing time, (min)                           |                                         |                  |                                          | 60.0             |                      |  |
| Set Correlation F<br>SCF = [ K=High              | Factor, SCF  Nolume Sampler / Dust      | Meter, (μg/m3) ] | 2.6                                      | 2.6              |                      |  |
|                                                  | in according to the instruc             |                  | mpler and The result                     | was used to gene | rate the Correlation |  |

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Very Key Wong Shing Kwai

Approved by: Henry Leung



Approved by: \\_lemp \\ Henry Leung

### **Cerificate of Calibration**

Calibrated by:

Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| Description:                        | Digital Dust Indicator                                                                                                      |                                        | Date               | of Calibration             | 5-Jun-20            |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|----------------------------|---------------------|
| Manufacturer:                       | Sibata Scientific Technology L                                                                                              | TD.                                    | Validity of Calibr | ration Record              | 5-Aug-20            |
| Model No.:                          | LD-5R                                                                                                                       |                                        |                    |                            |                     |
| Serial No.:                         | 972779                                                                                                                      |                                        |                    |                            |                     |
| Equipment No.:                      | SA-01-08                                                                                                                    | Sensitivity                            | 0.001 mg/m3        |                            |                     |
| High Volume Sa                      | mpler No.: <u>A-01-01A</u>                                                                                                  | Before Sensitiv                        | rity Adjustment    | 744 CPM                    |                     |
| Tisch Calibration                   | n Orifice No.: <u>3607</u>                                                                                                  | After Sensitivit                       | y Adjustment       | 744 CPM                    |                     |
|                                     |                                                                                                                             | Calibration of 1 hi                    | · TSP              |                            |                     |
| Calibration                         | Laser Dust Mo                                                                                                               | nitor                                  |                    | HVS                        |                     |
| Point                               | Mass Concentration X-axis                                                                                                   | ι (μg/m3)                              | Mas                | ss concentration (µ Y-axis | g/m <sup>3</sup> )  |
| 1                                   | 46.0                                                                                                                        |                                        |                    | 100.5                      |                     |
| 2                                   | 33.0                                                                                                                        |                                        | 96.5               |                            |                     |
| 3                                   | 19.0                                                                                                                        |                                        |                    | 91.0                       |                     |
| Average                             | 32.7                                                                                                                        |                                        |                    | 96.0                       |                     |
| •                                   | ession of Y on X                                                                                                            |                                        |                    |                            |                     |
| Slope , mw =                        | 0.3524                                                                                                                      | Interc                                 | ept, bw =          | 84.4890                    |                     |
| Correlation co                      | pefficient* =0.                                                                                                             | .9976                                  |                    |                            |                     |
|                                     |                                                                                                                             | Set Correlation Fa                     | actor              |                            |                     |
| Particaulate Con                    | centration by High Volume Sam                                                                                               | ıpler (μg/m³)                          |                    | 96.0                       |                     |
| Particaulate Con                    | centration by Dust Meter (µg/m <sup>2</sup>                                                                                 | 3)                                     |                    | 32.7                       |                     |
| Measureing time                     | e, (min)                                                                                                                    |                                        |                    | 60.0                       |                     |
| Set Correlation I                   | Factor, SCF                                                                                                                 |                                        |                    |                            |                     |
| SCF = [ K=Higl                      | h Volume Sampler / Dust Mete                                                                                                | er, (µg/m3)]                           | 2.9                |                            |                     |
| The Dust Monito<br>Factor (CF) betw | in according to the instruction or was compared with a calibrate ween the Dust Monitor and High oers are weighted by HOKLAS | ed High Volume Samp<br>Volume Sampler. |                    | was used to gener          | ate the Correlation |



Date of Calibration 6-Apr-20

### **Cerificate of Calibration**

Description:

Digital Dust Indicator

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| Manufacturer:                                    | Sibata Scient  | ific Technology LTD.                                                     | _              | Validity of Calib   | ration Record                     | 6-Jun-20            |
|--------------------------------------------------|----------------|--------------------------------------------------------------------------|----------------|---------------------|-----------------------------------|---------------------|
| Model No.:                                       | LD-5R          | _                                                                        |                |                     |                                   |                     |
| Serial No.:                                      | 972780         | _                                                                        |                |                     |                                   |                     |
| Equipment No.:                                   | SA-01-09       |                                                                          | Sensitivity    | 0.001 mg/m3         | _                                 |                     |
| High Volume Sa                                   | impler No.:    | A-01-01A                                                                 | Before Sensit  | ivity Adjustment    | 739 CPM                           |                     |
| Tisch Calibration                                | n Orifice No.: | 3607                                                                     | After Sensitiv | rity Adjustment     | 739 CPM                           |                     |
|                                                  |                | Ca                                                                       | libration of 1 | nr TSP              |                                   |                     |
| Calibration                                      |                | Laser Dust Monitor                                                       | r              |                     | HVS                               |                     |
| Point                                            | N              | Mass Concentration (μg/<br><b>X-axis</b>                                 | /m3)           | Mas                 | ss concentration (µ <b>Y-axis</b> | .g/m <sup>3</sup> ) |
| 1                                                |                | 44.0                                                                     |                |                     | 84.5                              |                     |
| 2                                                |                | 38.0                                                                     |                | 81.0                |                                   |                     |
| 3                                                |                | 29.0                                                                     |                | 76.8                |                                   |                     |
| Average                                          |                | 37.0                                                                     |                | 80.8                |                                   |                     |
| By Linear Regr<br>Slope , mw =<br>Correlation co | 0.50           |                                                                          |                | cept, bw =          | 61.9096                           |                     |
|                                                  |                |                                                                          |                |                     |                                   |                     |
| D : 1 : G                                        |                |                                                                          | et Correlation | Factor<br>          |                                   |                     |
|                                                  |                | High Volume Sampler                                                      | (μg/m³)        |                     | 80.8                              |                     |
| Particaulate Concentration by Dust Meter (μg/m³) |                |                                                                          | 37.0           |                     |                                   |                     |
| Measureing time                                  | •              |                                                                          |                |                     | 60.0                              |                     |
| Set Correlation I SCF = [K=Hig                   | -              | mpler / Dust Meter, (μ                                                   | g/m3) ]        | 2.2                 |                                   |                     |
| The Dust Monito                                  | or was compar  | to the instruction manured with a calibrated Hi<br>Monitor and High Volu | gh Volume San  | pler and The result | was used to gener                 | ate the Correlation |

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Very Kong Shing Kwai

Approved by: Henry Leung



Date of Calibration 5-Jun-20

### **Cerificate of Calibration**

Digital Dust Indicator

Description:

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

| Manufacturer:                                    | Sibata Scientific Technology L              | ΓD. Validity of Calib                           | ration Record                      | 5-Aug-20             |  |
|--------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------|----------------------|--|
| Model No.:                                       | LD-5R                                       |                                                 |                                    |                      |  |
| Serial No.:                                      | 972780                                      |                                                 |                                    |                      |  |
| Equipment No.:                                   | SA-01-09                                    | Sensitivity 0.001 mg/m3                         | _                                  |                      |  |
| High Volume Sa                                   | mpler No.: <u>A-01-01A</u>                  | Before Sensitivity Adjustment                   | 739 CPM                            |                      |  |
| Tisch Calibration                                | n Orifice No.: 3607                         | After Sensitivity Adjustment                    | 739 CPM                            |                      |  |
|                                                  |                                             | Calibration of 1 hr TSP                         |                                    |                      |  |
| Calibration                                      | Laser Dust Mo                               | nitor                                           | HVS                                |                      |  |
| Point                                            | Mass Concentration <b>X-axis</b>            | (μg/m3) Ma                                      | Mass concentration (μg/m³)  Y-axis |                      |  |
| 1                                                | 45.0                                        |                                                 | 100.5                              |                      |  |
| 2                                                | 39.0                                        |                                                 | 96.5                               |                      |  |
| 3                                                | 30.0                                        |                                                 | 91.0                               |                      |  |
| Average                                          | 38.0                                        |                                                 | 96.0                               |                      |  |
| By Linear Regr<br>Slope , mw =<br>Correlation co | ession of Y on X                            | Intercept, bw =                                 | 72.0000                            |                      |  |
|                                                  |                                             | Set Correlation Factor                          |                                    |                      |  |
|                                                  | centration by High Volume Sam               |                                                 | 96.0                               |                      |  |
| Particaulate Con                                 | centration by Dust Meter (µg/m <sup>3</sup> | )                                               | 38.0                               |                      |  |
| Measureing time                                  |                                             |                                                 | 60.0                               |                      |  |
| Set Correlation F<br>SCF = [ K=Higl              | Factor, SCF  Nolume Sampler / Dust Mete     | r, (μg/m3) ] 2.5                                | 2.5                                |                      |  |
|                                                  | in according to the instruction n           | nanual:<br>d High Volume Sampler and The result | was used to gener                  | rate the Correlation |  |

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: Approved by: Very Kenry Leung

Wong Shing Kwai

Approved by: Henry Leung

### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/05/0023

| Project No.             | AM1 - Tin Hau              | Temple       |                                |                     |                                            |            |                                                  |
|-------------------------|----------------------------|--------------|--------------------------------|---------------------|--------------------------------------------|------------|--------------------------------------------------|
| Date:                   | 9-Apr-20                   |              | Next Due Date: 9-Ju            |                     | Jun-20                                     | Operator:  | SK                                               |
| Equipment No.:          | A-(                        | )1-05        | Model No.:                     | GS                  | S2310                                      | Serial No. | 10599                                            |
|                         |                            |              | Ambient C                      | ondition            |                                            |            |                                                  |
| Temperatur              | re, Ta (K)                 | 294.6        | Pressure, Pa                   | (mmHg)              |                                            | 762.9      |                                                  |
|                         |                            |              | =                              |                     | _                                          |            |                                                  |
| Serial                  | N.                         | 3746         | ifice Transfer Star            | 0.0592              |                                            | . h.       | -0.02740                                         |
| Last Calibra            |                            | 17-Jan-20    | Slope, mc                      |                     | Intercept $c = [\Delta H \times (Pa/760)]$ |            |                                                  |
| Next Calibra            |                            | 17-Jan-20    |                                |                     | $(Pa/760) \times (298/7)$                  |            |                                                  |
|                         |                            |              | I                              | <u> </u>            | ( ) (                                      |            |                                                  |
|                         |                            |              | Calibration of                 | ΓSP Sampler         |                                            |            |                                                  |
| Calibration             |                            | Or           | fice                           |                     |                                            | HVS        |                                                  |
| Point                   | ΔH (orifice), in. of water | [ΔH x (Pa/76 | 50) x (298/Ta)] <sup>1/2</sup> | Qstd (CFM) X - axis | ΔW (HVS), in. of water                     | [ΔW x (Pa/ | 760) x (298/Ta)] <sup>1/2</sup><br><b>Y-axis</b> |
| 1                       | 12.6                       |              | 3.58                           | 60.88               | 8.8                                        |            | 2.99                                             |
| 2                       | 9.3                        |              | 3.07                           | 52.37               | 6.3                                        |            | 2.53                                             |
| 3                       | 7.5                        |              | 2.76                           | 47.08               | 4.9                                        |            | 2.23                                             |
| 4                       | 4.7                        |              | 2.18                           | 37.36               | 3.2                                        |            | 1.80                                             |
|                         | 0.0486<br>coefficient* =   | _            | .9985                          | intercept, bw       | -0.004                                     | 9          |                                                  |
|                         |                            |              | Set Point Ca                   | lculation           |                                            |            |                                                  |
| From the Regress        | sion Equation, t           |              |                                |                     | 98/Ta)] <sup>1/2</sup>                     |            |                                                  |
| Remarks:  Conducted by: | SK Wong                    | Signature:   | - tal                          |                     | •                                          | Date:      | 09 April 2020                                    |
| Checked by:             | Henry Leung                | Signature:   | - leng 0                       | hon                 |                                            | Date:      | 09 April 2020                                    |

### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/08/0023

| Project No.                    | AM2 - Sai Tso              | Wan Recreation    | Ground                                                           |                            |                                  |                    |                                                |
|--------------------------------|----------------------------|-------------------|------------------------------------------------------------------|----------------------------|----------------------------------|--------------------|------------------------------------------------|
| Date:                          | 9-A                        | pr-20             | Next Due Date:                                                   | 9-J                        | Tun-20                           | Operator:          | SK                                             |
| Equipment No.:                 | A-(                        | 01-08             | Model No.:                                                       | GS                         | S2310                            | Serial No.         | 1287                                           |
| 1 1                            |                            |                   | •                                                                |                            |                                  |                    |                                                |
|                                |                            |                   | Ambient C                                                        | ondition                   |                                  |                    |                                                |
| Temperatur                     | re, Ta (K)                 | 294.6             | Pressure, Pa                                                     | (mmHg)                     |                                  | 762.9              |                                                |
|                                |                            |                   |                                                                  |                            |                                  |                    |                                                |
|                                |                            | Or                | fice Transfer Sta                                                | ndard Informa              | tion                             |                    |                                                |
| Serial                         | No.                        | 3746              | Slope, mc                                                        | 0.0592                     | Intercept                        |                    | -0.02740                                       |
| Last Calibra                   | ntion Date:                | 17-Jan-20         |                                                                  |                            | $c = [\Delta H \times (Pa/760)]$ |                    |                                                |
| Next Calibra                   | ation Date:                | 17-Jan-21         |                                                                  | $Qstd = \{ [\Delta H \ x]$ | (Pa/760) x (298/7                | $[a]^{1/2}$ -bc} / | mc                                             |
|                                |                            |                   |                                                                  |                            |                                  |                    |                                                |
|                                |                            |                   | Calibration of                                                   | TSP Sampler                |                                  |                    |                                                |
| Calibration                    |                            | Or                | fice                                                             | ı                          |                                  | HVS                | 1/2                                            |
| Point                          | ΔH (orifice), in. of water | [ΔH x (Pa/76      | (0) x (298/Ta)] <sup>1/2</sup>                                   | Qstd (CFM) X - axis        | ΔW (HVS), in. of water           | [ΔW x (Pa          | /760) x (298/Ta)] <sup>1/2</sup> <b>Y-axis</b> |
| 1                              | 12.7                       |                   | 3.59                                                             | 61.12                      | 8.4                              |                    | 2.92                                           |
| 2                              | 9.7                        |                   | 3.14                                                             | 53.48                      | 6.0                              |                    | 2.47                                           |
| 3                              | 7.8                        |                   | 2.81                                                             | 48.00                      | 4.8                              |                    | 2.21                                           |
| 4                              | 4.7                        |                   | 2.18                                                             | 37.36                      | 3.1                              |                    | 1.77                                           |
| 5                              | 2.6                        |                   | 1.62                                                             | 27.91                      | 1.8                              |                    | 1.35                                           |
| By Linear Regr<br>Slope , mw = |                            | X                 | ]                                                                | Intercept, bw =            | 0.041:                           | 5                  |                                                |
| Correlation                    | coefficient* =             |                   | .9973                                                            | _                          |                                  |                    |                                                |
| *If Correlation C              | Coefficient < 0.9          | 90, check and rec | alibrate.                                                        |                            |                                  |                    |                                                |
|                                |                            |                   | Set Point Ca                                                     | alculation                 |                                  |                    |                                                |
| From the TSP Fi                | eld Calibration            | Curve, take Qstd  |                                                                  |                            |                                  |                    |                                                |
| From the Regress               | sion Equation, t           | he "Y" value acco | ording to                                                        |                            |                                  |                    |                                                |
| _                              | _                          |                   | -                                                                |                            | 1/2                              |                    |                                                |
|                                |                            | mw x Q            | $\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | (Pa/760) x (29             | 08/Ta)] <sup>1/2</sup>           |                    |                                                |
| Therefore, Se                  | et Point; W = ( n          | nw x Qstd + bw )  | <sup>2</sup> x ( 760 / Pa ) x ( 7                                | Га / 298) =                | 4.04                             |                    |                                                |
|                                |                            |                   |                                                                  |                            |                                  |                    |                                                |
| Remarks:                       |                            |                   |                                                                  |                            |                                  |                    |                                                |
|                                |                            |                   |                                                                  |                            |                                  |                    |                                                |
| Can de et 11                   | SK Wona                    | Cian tan          |                                                                  | <br>Л                      |                                  | Data               | 00 April 2020                                  |
| Conducted by:                  | SK Wong                    | Signature:        |                                                                  | 1                          |                                  | Date:              | 09 April 2020                                  |
| Checked by:                    | Henry Leung                | Signature:        | \-P.                                                             | Mar                        |                                  | Date:              | 09 April 2020                                  |

### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/03/0023

| Project No.                 | AM3 - Yau Lai              | Estate, Bik Lai I | House                             |                        |                                            |            |                                                  |
|-----------------------------|----------------------------|-------------------|-----------------------------------|------------------------|--------------------------------------------|------------|--------------------------------------------------|
| Date:                       | 9-A                        | pr-20             | Next Due Date:                    | 9-J                    | Jun-20                                     | Operator:  | SK                                               |
| Equipment No.:              | A-(                        | 01-03             | Model No.:                        | GS                     | S2310                                      | Serial No. | 10379                                            |
|                             |                            |                   | Ambient C                         | ondition               |                                            |            |                                                  |
| Temperatu                   | re, Ta (K)                 | 294.6             | Pressure, Pa                      | (mmHg)                 |                                            | 762.9      |                                                  |
|                             |                            |                   |                                   |                        |                                            |            |                                                  |
| 0 : 1                       | 137                        |                   | ifice Transfer Star               |                        |                                            | . ,        | 0.02740                                          |
| Serial                      |                            | 3746              | Slope, mc                         | 0.0592                 | Intercept $c = [\Delta H \times (Pa/760)]$ |            | -0.02740                                         |
| Last Calibra                |                            | 17-Jan-20         | •                                 |                        | с — [ДН х (Га/760<br>(Ра/760) х (298/]     |            |                                                  |
| Next Calibr                 | ation Date:                | 17-Jan-21         | <u> </u>                          | Qstu – { Δπ x          | (Fa/700) X (290/                           | [a)] -bc}/ | inc .                                            |
|                             |                            | ·                 | Calibration of T                  | ΓSP Sampler            |                                            |            |                                                  |
| Colibration                 |                            | Oı                | fice                              |                        |                                            | HVS        |                                                  |
| Calibration<br>Point        | ΔH (orifice), in. of water |                   | 50) x (298/Ta)] <sup>1/2</sup>    | Qstd (CFM)<br>X - axis | ΔW (HVS), in.<br>of water                  |            | 760) x (298/Ta)] <sup>1/2</sup><br><b>Y-axis</b> |
| 1                           | 12.6                       |                   | 3.58                              | 60.88                  | 8.5                                        |            | 2.94                                             |
| 2                           | 9.3                        |                   | 3.07                              | 52.37                  | 6.5                                        |            | 2.57                                             |
| 3                           | 7.8                        |                   | 2.81                              | 48.00                  | 5.2                                        |            | 2.30                                             |
| 4                           | 5.0                        |                   | 2.25                              | 38.52                  | 3.5                                        |            | 1.89                                             |
| 5                           | 2.6                        |                   | 1.62                              | 27.91                  | 2.1                                        |            | 1.46                                             |
| Slope , mw =<br>Correlation | coefficient* =             | _                 | .9983<br>calibrate.               |                        | 0.169                                      | 2          |                                                  |
| r d Top F                   |                            | Curve, take Qstd  | Set Point Ca                      | alculation             |                                            |            |                                                  |
|                             |                            | he "Y" value acco |                                   | (Pa/760) x (29         | 98/Ta)] <sup>1/2</sup>                     |            |                                                  |
| Therefore, So               | et Point; W = ( n          | nw x Qstd + bw )  | <sup>2</sup> x ( 760 / Pa ) x ( T | Га / 298) =            | 4.41                                       |            |                                                  |
| Remarks:                    |                            |                   |                                   |                        |                                            |            |                                                  |
| Conducted by:               | SK Wong                    | Signature:        | <u> </u>                          |                        |                                            | Date:      | 09 April 2020                                    |
| Checked by:                 | Henry Leung                | Signature:        | - leng (                          | Xon_                   |                                            | Date:      | 09 April 2020                                    |

### 5-POINT CALIBRATION DATA SHEET



File No. MA16034/54/0023

| Project No.              | AM4(A) - Cha                     | Kwo Ling Public                    | Cargo Working Ar                  | rea Administrat             | tive Office                      |                            |                                                  |
|--------------------------|----------------------------------|------------------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------|--------------------------------------------------|
| Date:                    | 9-Apr-20 Next Due Date: 9-Jun-20 |                                    | Operator:                         | SK                          |                                  |                            |                                                  |
| Equipment No.:           | A-0                              | 1-54                               | Model No.:                        | TE                          | 2-5170                           | Serial No.                 | 1536                                             |
|                          |                                  |                                    | Ambient C                         | ondition                    |                                  |                            |                                                  |
| Temperatu                | re Ta (K)                        | 294.6                              | Pressure, Pa                      |                             |                                  | 762.9                      |                                                  |
| Temperatu                | 10, 14 (11)                      | 271.0                              | 11055410, 14                      | (IIIIII1g)                  |                                  | 702.9                      |                                                  |
|                          |                                  | Or                                 | ifice Transfer Star               | ndard Informa               | ation                            |                            |                                                  |
| Serial                   | No.                              | 3746                               | Slope, mc                         | 0.0592                      | Intercept                        | t, bc                      | -0.02740                                         |
| Last Calibra             | ation Date:                      | 17-Jan-20                          | r                                 | mc x Qstd + bo              | $c = [\Delta H \times (Pa/760)]$ | ) x (298/Ta)               | J <sup>1/2</sup>                                 |
| Next Calibra             | ation Date:                      | 17-Jan-21                          |                                   | $Qstd = \{ [\Delta H x] \}$ | (Pa/760) x (298/7                | Γa)] <sup>1/2</sup> -bc} / | mc                                               |
|                          |                                  | •                                  |                                   |                             |                                  |                            |                                                  |
|                          |                                  |                                    | Calibration of                    | ΓSP Sampler                 |                                  |                            |                                                  |
| Calibration              |                                  | Or                                 | fice                              |                             |                                  | HVS                        |                                                  |
| Point                    | ΔH (orifice), in. of water       | [ΔH x (Pa/76                       | 50) x (298/Ta)] <sup>1/2</sup>    | Qstd (CFM)<br>X - axis      | ΔW (HVS), in. of water           | [ΔW x (Pa/                 | 760) x (298/Ta)] <sup>1/2</sup><br><b>Y-axis</b> |
| 1                        | 12.8                             |                                    | 3.61                              | 61.36                       | 8.6                              |                            | 2.96                                             |
| 2                        | 9.8                              |                                    | 3.15                              | 53.75                       | 6.3                              |                            | 2.53                                             |
| 3                        | 7.4                              |                                    | 2.74                              | 46.77                       | 5.1                              |                            | 2.28                                             |
| 4                        | 5.2                              |                                    | 2.30                              | 39.28                       | 3.3                              |                            | 1.83                                             |
| 5                        | 2.8                              |                                    | 1.69                              | 28.95                       | 1.9                              |                            | 1.39                                             |
| Slope , mw = Correlation | coefficient* =                   | _                                  | .9981                             | Intercept, bw =             | -0.024                           | 55                         |                                                  |
|                          |                                  |                                    | Set Point Ca                      | alculation                  |                                  |                            |                                                  |
|                          |                                  | Curve, take Qstd ne "Y" value acco | = 43 CFM                          |                             | 98/Ta)] <sup>1/2</sup>           |                            |                                                  |
| Therefore, Se            | et Point; W = ( m                | nw x Qstd + bw )                   | <sup>2</sup> x ( 760 / Pa ) x ( 7 | Га / 298 ) =                | 4.14                             |                            |                                                  |
| Remarks:                 |                                  |                                    |                                   |                             |                                  |                            |                                                  |
| Conducted by:            | SK Wong                          | Signature:                         | (d)                               | <i>.</i>                    |                                  | Date:                      | 09 April 2020                                    |
| Checked by:              | Henry Leung                      | Signature:                         | -len 0                            | Log_                        |                                  | Date:                      | 09 April 2020                                    |



File No. MA16034/05/0024

| A-01-05   Model No.:   GS2310   Serial No.   10599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project No.     | AM1 - Tin Hau     | Temple           |                                                                |                                                          |                  | _                            |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------|------------------------------|-----------------------|
| A-01-05   Model No.:   GS2310   Serial No.   10599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:           |                   |                  | Next Due Date:                                                 | 9-1                                                      | Aug-20           | Operator:                    | SK                    |
| Temperature, Ta (K)   303   Pressure, Pa (mmHg)   759.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Equipment No.:  |                   |                  |                                                                |                                                          |                  |                              | 10599                 |
| Temperature, Ta (K)   303   Pressure, Pa (mmHg)   759.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                   |                  | Ambient C                                                      | ondition                                                 |                  |                              |                       |
| Serial No.   3746   Slope, me   0.0592   Intercept, be   -0.02740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temperatui      | re, Ta (K)        | 303              |                                                                |                                                          |                  | 759.1                        |                       |
| Scrial No.   3746   Slope, mc   0.0592   Intercept, bc   -0.02740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | , ()              |                  |                                                                | (8)                                                      |                  | ,,,,,,,                      |                       |
| Last Calibration Date:   17-Jan-20     me x Qstd + bc =   AH x (Pa/760) x (298/Ta) ^{1/2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                   | Or               | ifice Transfer Star                                            | ndard Informa                                            | ation            |                              |                       |
| Next Calibration Date:   17-Jan-21   Qstd = { AH x (Pa/760) x (298/Ta) ^{1/2} -bc} / mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Serial          | No.               | 3746             |                                                                |                                                          |                  |                              |                       |
| Calibration of TSP Sampler           Calibration Point         Orfice         HVS           ΔH (orifice), in. of water in. of water         [ΔH x (Pa/760) x (298/Ta)] <sup>1/2</sup> (St. dCFM) (X - axis) of water (Y-axis)         ΔW (HVS), in. of water (Y-axis) of water (Y-axis)         Y-axis           1         12.8         3.55         60.36         8.6         2.91           2         9.4         3.04         51.79         6.3         2.49           3         7.5         2.71         46.31         4.8         2.17           4         4.8         2.17         37.14         3.1         1.75           5         2.5         1.57         26.93         1.8         1.33           Stylia Linear Regression of Y on X           Slope, mw =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Last Calibra    | ntion Date:       | 17-Jan-20        |                                                                |                                                          |                  |                              |                       |
| Calibration   Point   AH (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]^{1/2}   Qstd (CFM)   X - axis   (AW x (Pa/760) x (298/Ta)]^{1/2}   Y-axis   [AW x (Pa/760) x (298/Ta)]^{1/2}   Y-axis  | Next Calibra    | ation Date:       | 17-Jan-21        |                                                                | $\mathbf{Qstd} = \{ [\Delta \mathbf{H} \ \mathbf{x}] \}$ | (Pa/760) x (298/ | Ta)] <sup>1/2</sup> -bc} / 1 | mc                    |
| Calibration   Point   AH (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]^{1/2}   Qstd (CFM)   X - axis   [AW x (Pa/760) x (298/Ta)]^{1/2}   V - axis   [A |                 |                   |                  |                                                                |                                                          |                  |                              |                       |
| Calibration   Point   AH (orifice), in. of water   [AH x (Pa/760) x (298/Ta)]^{1/2}   Qstd (CFM)   X - axis   AW (HVS), in. of water   Y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                   |                  |                                                                | <b>FSP Sampler</b>                                       | Ī                |                              |                       |
| In. of water   LATX (Fa 760) X (298/14)    X - axis   of water   Y-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calibration     | ATT ( 'C' )       | Oı               | rfice                                                          | 0 - 1 (GEN 6)                                            | · M. (M. 10) ;   |                              | - (a) (a) (b) (b) (b) |
| 2 9.4 3.04 51.79 6.3 2.49 3 7.5 2.71 46.31 4.8 2.17 4 4.8 2.17 37.14 3.1 1.75 5 2.5 1.57 26.93 1.8 1.33  By Linear Regression of Y on X Slope, mw =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Point           |                   | [ΔH x (Pa/76     | 50) x (298/Ta)] <sup>1/2</sup>                                 | ` ` /                                                    | . ,,             |                              |                       |
| 3 7.5 2.71 46.31 4.8 2.17 4 4.8 2.17 37.14 3.1 1.75 5 2.5 1.57 26.93 1.8 1.33  By Linear Regression of Y on X  Slope , mw = 0.0475 Intercept, bw = 0.0119  Correlation Coefficient < 0.990, check and recalibrate.  From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to mw x Qstd + bw = [ΔW x (Pa/760) x (298/Ta)] <sup>1/2</sup> Therefore, Set Point; W = ( mw x Qstd + bw ) <sup>2</sup> x ( 760 / Pa ) x ( Ta / 298 ) = 4.30  Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1               | 12.8              |                  | 3.55                                                           | 60.36                                                    | 8.6              |                              | 2.91                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2               | 9.4               |                  | 3.04                                                           | 51.79                                                    | 6.3              |                              | 2.49                  |
| Sy Linear Regression of Y on X Slope, mw = 0.0475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3               | 7.5               |                  | 2.71                                                           | 46.31                                                    | 4.8              |                              | 2.17                  |
| Solope, mw =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4               | 4.8               |                  | 2.17                                                           | 37.14                                                    | 3.1              |                              | 1.75                  |
| Slope, $mw = 0.0475$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5               | 2.5               |                  | 1.57                                                           | 26.93                                                    | 1.8              |                              | 1.33                  |
| Correlation coefficient* = 0.9983  Elf Correlation Coefficient < 0.990, check and recalibrate.  Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               |                   | K                | 1                                                              | Intercept, bw =                                          | 0.011            | 9                            |                       |
| Set Point Calculation  From the TSP Field Calibration Curve, take Qstd = 43 CFM  From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -               |                   | - 0              |                                                                | 1 /                                                      |                  |                              |                       |
| From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to  mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}  Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.30  Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                   |                  |                                                                | •                                                        |                  |                              |                       |
| From the Regression Equation, the "Y" value according to $\mathbf{mw} \times \mathbf{Qstd} + \mathbf{bw} = \left[\Delta \mathbf{W} \times (\mathbf{Pa}/760) \times (298/\mathbf{Ta})\right]^{1/2}$ Therefore, Set Point; W = ( mw x Qstd + bw ) <sup>2</sup> x ( 760 / Pa ) x ( Ta / 298 ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                   |                  | Set Point Ca                                                   | alculation                                               |                  |                              |                       |
| $mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = ( mw x Qstd + bw ) <sup>2</sup> x ( 760 / Pa ) x ( Ta / 298 ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | From the TSP Fi | eld Calibration ( | Curve, take Qstd | = 43 CFM                                                       |                                                          |                  |                              |                       |
| Therefore, Set Point; W = ( mw x Qstd + bw ) <sup>2</sup> x ( 760 / Pa ) x ( Ta / 298 ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | From the Regres | sion Equation, th | ne "Y" value acc | ording to                                                      |                                                          |                  |                              |                       |
| Therefore, Set Point; W = ( mw x Qstd + bw ) <sup>2</sup> x ( 760 / Pa ) x ( Ta / 298 ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                   |                  | N ( ) . 1                                                      | (D. /5(0) (2)                                            | 20/75 >11/2      |                              |                       |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                   | mw x (           | $\mathbf{ystd} + \mathbf{bw} =  \Delta \mathbf{w}  \mathbf{x}$ | (Pa//60) x (29                                           | 98/1a)j          |                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Therefore, Se   | et Point; W = ( m | w x Qstd + bw )  | o <sup>2</sup> x ( 760 / Pa ) x ( 7                            | Γa / 298 ) =                                             | 4.30             |                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   |                  |                                                                |                                                          |                  |                              |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   |                  |                                                                |                                                          |                  |                              |                       |
| Conducted by: SK Wong Signature: Date: 9 June 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remarks:        |                   |                  |                                                                |                                                          |                  |                              |                       |
| Conducted by: SK Wong Signature: Date: 9 June 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                   |                  |                                                                |                                                          |                  |                              |                       |
| Conducted by: SK Wong Signature: Date: 9 June 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •               |                   |                  | [4]                                                            |                                                          |                  |                              |                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conducted by:   | SK Wong           | Signature:       |                                                                | , c                                                      |                  | Date:                        | 9 June 2020           |
| Checked by: Henry Leung Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked by      | Henry Leuno       | Signature        | \                                                              |                                                          |                  | Date:                        | 9 June 2020           |



File No. MA16034/08/0024

| Project No.                                  | AM2 - Sai Tso     | Wan Recreation   | Ground                                                           |                               |                                  |                              |                                         |
|----------------------------------------------|-------------------|------------------|------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------------|
| Date:                                        | 9-Jı              | ın-20            | Next Due Date:                                                   | 9-4                           | Aug-20                           | Operator:                    | SK                                      |
| Equipment No.:                               | A-0               | 1-08             | Model No.:                                                       | GS                            | 52310                            | Serial No.                   | 1287                                    |
|                                              |                   |                  | Ambient C                                                        | ondition                      |                                  |                              |                                         |
| Temperatu                                    | re, Ta (K)        | 303              | Pressure, Pa                                                     |                               |                                  | 759.1                        |                                         |
| •                                            | , , , ,           |                  |                                                                  | , ,                           |                                  |                              |                                         |
|                                              |                   | Or               | ifice Transfer Star                                              | idard Informa                 | ation                            |                              |                                         |
| Serial                                       | No.               | 3746             | Slope, mc                                                        | 0.0592                        | Intercept                        |                              | -0.02740                                |
| Last Calibra                                 | tion Date:        | 17-Jan-20        |                                                                  |                               | $c = [\Delta H \times (Pa/760)]$ |                              |                                         |
| Next Calibra                                 | ation Date:       | 17-Jan-21        |                                                                  | $Qstd = \{ [\Delta H \ x] \}$ | (Pa/760) x (298/7                | Γa)] <sup>1/2</sup> -bc} / m | c                                       |
|                                              |                   |                  |                                                                  |                               |                                  |                              |                                         |
|                                              |                   |                  | Calibration of                                                   | <b>TSP Sampler</b>            |                                  |                              |                                         |
| Calibration                                  | ΔH (orifice),     |                  | fice                                                             | Oatd (CEM)                    | ΔW (HVS), in.                    | HVS                          | (200 /T )1 <sup>1/2</sup>               |
| Point                                        | in. of water      | [ΔH x (Pa/76     | $(50) \times (298/Ta)]^{1/2}$                                    | Qstd (CFM)<br>X - axis        | of water                         |                              | 50) x (298/Ta)] <sup>1/2</sup><br>-axis |
| 1                                            | 12.8              |                  | 3.55                                                             | 60.36                         | 8.4                              |                              | 2.87                                    |
| 2                                            | 9.8               | 1                | 3.10                                                             | 52.87                         | 6.1                              |                              | 2.45                                    |
| 3                                            | 7.8               |                  | 2.77                                                             | 47.22                         | 4.8                              | ,                            | 2.17                                    |
| 4                                            | 4.8               |                  | 2.17                                                             | 37.14                         | 3.0                              |                              | 1.72                                    |
| 5                                            | 2.6               |                  | 1.60                                                             | 27.46                         | 1.9                              |                              | 1.37                                    |
| By Linear Regr<br>Slope, mw =<br>Correlation |                   | _                | .9964                                                            | ntercept, bw =                | 0.063                            | 1                            |                                         |
| *If Correlation C                            | Coefficient < 0.9 | 90, check and re | calibrate.                                                       |                               |                                  |                              |                                         |
|                                              |                   |                  | Set Point Ca                                                     | lculation                     |                                  |                              |                                         |
| From the TSP Fi                              | eld Calibration   | Curve, take Qstd | = 43 CFM                                                         |                               |                                  |                              |                                         |
| From the Regres                              | sion Equation, t  | he "Y" value acc | ording to                                                        |                               |                                  |                              |                                         |
|                                              |                   | mw x Q           | $\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | (Pa/760) x (29                | 98/Ta)] <sup>1/2</sup>           |                              |                                         |
| Therefore, Se                                | et Point; W = ( n | nw x Qstd + bw ) | $x^2 \times (760 / Pa) \times (760 / Pa)$                        | Γa / 298 ) =                  | 4.17                             |                              |                                         |
|                                              |                   |                  |                                                                  |                               |                                  |                              |                                         |
| Remarks:                                     |                   |                  |                                                                  |                               |                                  |                              |                                         |
| Conducted by:                                | SK Wong           | Signature:       | <u> </u>                                                         |                               |                                  | Date:                        | 9 June 2020                             |
| Checked by:                                  |                   | Signature:       | -leng 0                                                          | 01-08).xls                    |                                  | Date:                        | 9 June 2020                             |



File No. MA16034/03/0024

| Project No.                                   | AM3 - Yau Lai              | Estate, Bik Lai l | House                                                            |                        |                                  |                   |                                      |
|-----------------------------------------------|----------------------------|-------------------|------------------------------------------------------------------|------------------------|----------------------------------|-------------------|--------------------------------------|
| Date:                                         | 9-Jı                       | ın-20             | Next Due Date:                                                   | 9-4                    | Aug-20                           | Operator:         | SK                                   |
| Equipment No.:                                | A-0                        | 01-03             | Model No.:                                                       | GS                     | 52310                            | Serial No.        | 10379                                |
|                                               |                            |                   | Ambient C                                                        | ondition               |                                  |                   |                                      |
| Temperatu                                     | re Ta(K)                   | 303               | Pressure, Pa                                                     |                        |                                  | 759.1             |                                      |
| Temperatu                                     | 10, 14 (11)                | 303               | 11055410,14                                                      | (11111115)             |                                  | 733.1             |                                      |
|                                               |                            | Or                | ifice Transfer Star                                              | ndard Informa          | ation                            |                   |                                      |
| Serial                                        | No.                        | 3746              | Slope, mc                                                        | 0.0592                 | Intercept                        | t, bc             | -0.02740                             |
| Last Calibra                                  | ntion Date:                | 17-Jan-20         | r                                                                | nc x Qstd + bo         | $c = [\Delta H \times (Pa/760)]$ | $(298/Ta)]^{1/2}$ | 2                                    |
| Next Calibra                                  | ation Date:                | 17-Jan-21         |                                                                  |                        | (Pa/760) x (298/7                |                   |                                      |
|                                               | -                          |                   | -                                                                |                        |                                  |                   |                                      |
|                                               |                            |                   | Calibration of                                                   | ΓSP Sampler            |                                  |                   |                                      |
| Calibration                                   |                            | Oı                | fice                                                             |                        |                                  | HVS               |                                      |
| Point                                         | ΔH (orifice), in. of water | [ΔH x (Pa/76      | 60) x (298/Ta)] <sup>1/2</sup>                                   | Qstd (CFM)<br>X - axis | ΔW (HVS), in. of water           |                   | 50) x (298/Ta)] <sup>1/2</sup> -axis |
| 1                                             | 12.8                       |                   | 3.55                                                             | 60.36                  | 8.5                              | 2                 | 2.89                                 |
| 2                                             | 9.3                        |                   | 3.02                                                             | 51.52                  | 6.5                              | 2                 | 2.53                                 |
| 3                                             | 7.8                        |                   | 2.77                                                             | 47.22                  | 5.1                              | 2                 | 2.24                                 |
| 4                                             | 5.2                        |                   | 2.26                                                             | 38.64                  | 3.4                              |                   | 1.83                                 |
| 5                                             | 2.6                        |                   | 1.60                                                             | 27.46                  | 2.0                              |                   | 1.40                                 |
| By Linear Regr<br>Slope , mw =<br>Correlation |                            | _                 | .9969                                                            | ntercept, bw =         | 0.095                            | 3                 |                                      |
|                                               |                            | 90, check and re  |                                                                  |                        |                                  |                   |                                      |
|                                               |                            |                   | Set Point Ca                                                     | lculation              |                                  |                   |                                      |
| From the TSP Fi                               | eld Calibration            | Curve, take Qstd  | = 43  CFM                                                        |                        |                                  |                   |                                      |
| From the Regres                               | sion Equation, t           | he "Y" value acc  | ording to                                                        |                        |                                  |                   |                                      |
|                                               |                            | mw x Q            | $\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | (Pa/760) x (29         | 98/Ta)] <sup>1/2</sup>           |                   |                                      |
| Therefore, Se                                 | et Point; W = ( n          | nw x Qstd + bw )  | <sup>2</sup> x ( 760 / Pa ) x ( 7                                | Γα / 298 ) =           | 4.41                             |                   |                                      |
|                                               |                            |                   |                                                                  |                        |                                  |                   |                                      |
| Remarks:                                      |                            |                   |                                                                  |                        |                                  |                   |                                      |
|                                               |                            |                   |                                                                  |                        |                                  |                   |                                      |
| Conducted by:                                 | SK Wong                    | Signature:        | <u> </u>                                                         |                        |                                  | Date:             | 9 June 2020                          |
| Checked by: F:\Cinotech Solution              |                            | Signature:        | Composition (A-6034 20200609 AM3 (A-                             | 01-03).xls             |                                  | Date:             | 9 June 2020                          |



File No. MA16034/54/0024

| Project No.                                  | AM4(A) - Cha               | Kwo Ling Public     | c Cargo Working A                                                | rea Administra              | tive Office                      |                              |                                           |
|----------------------------------------------|----------------------------|---------------------|------------------------------------------------------------------|-----------------------------|----------------------------------|------------------------------|-------------------------------------------|
| Date:                                        | 9-Jı                       | ın-20               | Next Due Date:                                                   | 9- <i>A</i>                 | Aug-20                           | Operator:                    | SK                                        |
| Equipment No.:                               | A-(                        | 01-54               |                                                                  |                             | E-5170                           | Serial No.                   | 1536                                      |
|                                              |                            |                     | Ambient C                                                        | ondition                    |                                  |                              |                                           |
| Temperatur                                   | re, Ta (K)                 | 303                 | Pressure, Pa                                                     |                             |                                  | 759.1                        |                                           |
|                                              |                            |                     | •                                                                | -                           |                                  |                              |                                           |
|                                              |                            | Or                  | ifice Transfer Star                                              | ndard Informa               | ation                            |                              |                                           |
| Serial                                       | No.                        | 3746                | Slope, mc                                                        | 0.0592                      | Intercept                        | t, bc                        | -0.02740                                  |
| Last Calibra                                 | tion Date:                 | 17-Jan-20           |                                                                  |                             | $c = [\Delta H \times (Pa/760]]$ |                              |                                           |
| Next Calibra                                 | ation Date:                | 17-Jan-21           |                                                                  | $Qstd = \{ [\Delta H x] \}$ | (Pa/760) x (298/7                | Γa)] <sup>1/2</sup> -bc} / n | nc                                        |
|                                              |                            |                     |                                                                  |                             |                                  |                              |                                           |
|                                              |                            |                     | Calibration of T                                                 | ΓSP Sampler                 |                                  |                              |                                           |
| Calibration                                  |                            | Oı                  | rfice                                                            |                             |                                  | HVS                          | -                                         |
| Point                                        | ΔH (orifice), in. of water | [ΔH x (Pa/76        | 60) x (298/Ta)] <sup>1/2</sup>                                   | Qstd (CFM) X - axis         | ΔW (HVS), in. of water           |                              | (60) x (298/Ta)] <sup>1/2</sup><br>Y-axis |
| 1                                            | 12.9                       |                     | 3.56                                                             | 60.59                       | 8.5                              |                              | 2.89                                      |
| 2                                            | 9.8                        |                     | 3.10                                                             | 52.87                       | 6.3                              |                              | 2.49                                      |
| 3                                            | 7.5                        |                     | 2.71                                                             | 46.31                       | 5.0                              |                              | 2.22                                      |
| 4                                            | 5.2                        |                     | 2.26                                                             | 38.64                       | 3.2                              |                              | 1.77                                      |
| 5                                            | 2.9                        |                     | 1.69                                                             | 28.97                       | 1.9                              |                              | 1.37                                      |
| By Linear Regr<br>Slope, mw =<br>Correlation |                            | _                   | .9988                                                            | Intercept, bw =             | -0.059                           | 2                            |                                           |
| *If Correlation C                            | Coefficient < 0.9          | 90, check and re    | calibrate.                                                       |                             |                                  |                              |                                           |
|                                              |                            |                     | Set Point Ca                                                     | lculation                   |                                  |                              |                                           |
| From the TSP Fi                              | eld Calibration            | Curve, take Qstd    | = 43  CFM                                                        |                             |                                  |                              |                                           |
| From the Regres                              | sion Equation, t           | he "Y" value acc    | cording to                                                       |                             |                                  |                              |                                           |
|                                              |                            | mw x Q              | $\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$ | (Pa/760) x (29              | 98/Ta)] <sup>1/2</sup>           |                              |                                           |
| Therefore, Se                                | et Point; W = ( n          | nw x Qstd + bw )    | $x^2 \times (760 / Pa) \times (78)$                              | Γa / 298 ) =                | 4.18                             |                              |                                           |
|                                              |                            |                     |                                                                  |                             |                                  |                              |                                           |
| Remarks:                                     |                            |                     |                                                                  |                             |                                  |                              |                                           |
|                                              |                            |                     | لدا                                                              |                             |                                  |                              |                                           |
| Conducted by:                                | SK Wong                    | Signature:          |                                                                  |                             |                                  | Date:                        | 9 June 2020                               |
| Checked by:                                  | Henry Leung                | Signature:          | - leng X                                                         | ~~                          |                                  | Date:                        | 9 June 2020                               |
| F:\Cinotech Solution                         | ns\Equipment\Calibrati     | on Cert\HVS\new\MA1 | 6034_20200609_AM4(A)_                                            | (A-01-54).xls               |                                  |                              |                                           |



0023002

| Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong | Object 1: SV30A sound calibrator Serial No. /Ref. No.: 10965 / N-09-02 Object 2: Serial No. /Ref. No.: |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Customer Code : SVEC09005                                                                                 | Manufacturer: Svantek                                                                                  |
| Date of calibration: 19/12/2019 Date of the recommended re-calibration: 19/12/2020                        | 002002                                                                                                 |

**Measuring results** 

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 93.9dB           | -0.1dB    | +/- 0.3dB         | 1      |
| 114.0dB         | 114.2dB          | +0.2dB    | +/- 0.3dB         | 1      |

### Measuring equipment

| index |   | Calibrator / Master                 | Traceability |
|-------|---|-------------------------------------|--------------|
|       | 1 | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |
|       | 2 | Sound Calibrator, SV30A sn:32580    | IEC60942     |

#### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

### **Uncertainty**

+/- 0.2 dB for probability not less than 95%.

#### Conformity

- 1.The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) | within | the allowable deviation |
|-------------------|--------|-------------------------|
|-------------------|--------|-------------------------|

Performed by

Calibration Technician

Approved by

**Quality Manager** 



0022522

Object 1: Customer: BSWA 308 SLM Serial No. /Ref. No. : Cinotech Consultants Limited 570187 / 550841 RM 1710, Technology Park, Object 2: 18 On Lai Street, Shatin, N.T. Serial No. /Ref. No. Hong Kong Customer Code: SVEC09005 Manufacturer: **BSWAtech** Date of calibration: 23/09/2019 Certificate No.: 0022522 Date of the recommended re-calibration: Handle by: 23/09/2020 E0002

Measuring results

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 94.0dB           | 0.0dB     | +/- 1.5dB         | 1      |
| 114.0dB         | 113.9dB          | -0.1dB    | +/- 1.5dB         | 1      |

### Measuring equipment

| index | Calibrator / Master                 | Traceability |
|-------|-------------------------------------|--------------|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |

#### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

#### Uncertainty

+/- 0.2 dB for probability not less than 95%.

### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) | ithin ti | he allowable | deviation. |
|-------------------|----------|--------------|------------|
|-------------------|----------|--------------|------------|

Performed by

Calibration Technician

Approved by

**Quality Manager** 



0022673

| Customer:                               |            | Object 1 : ST-120 sound calibrator |
|-----------------------------------------|------------|------------------------------------|
| Cinotech Consultants Limited            |            | Serial No. /Ref. No.: 181001608    |
| RM 1710, Technology Park,               |            | Object 2:                          |
| 18 On Lai Street, Shatin, N.T.          |            | Serial No. /Ref. No. :             |
| Hong Kong                               |            |                                    |
|                                         |            |                                    |
| Customer Code: SVEC09005                |            | Manufacturer : Soundtek            |
| Date of calibration:                    | 24/10/2019 | Certificate No.: 0022673           |
| Date of the recommended re-calibration: | 24/10/2020 | Handle by: F0002                   |

### Measuring results

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 94.0dB           | 0.0dB     | +/- 0.3dB         | 1      |
| 114.0dB         | 114.1dB          | +0.1dB    | +/- 0.5dB         | 1      |

### Measuring equipment

| index | Calibrator / Master                 | Traceability |
|-------|-------------------------------------|--------------|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |

### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

### **Uncertainty**

+/- 0.2 dB for probability not less than 95%.

#### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| iation.         |   |
|-----------------|---|
| Approved by     |   |
| Ouglity Manager | _ |
|                 |   |

Appleone Calibration Laboratory Ltd.

Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

Tel: +852 2370 4437 Fax: +852 2114 0393



0022675

| Customer:                               |            | Object 1: ST-120 sound calibrator |
|-----------------------------------------|------------|-----------------------------------|
| Cinotech Consultants Limited            |            | Serial No. /Ref. No.: 181001637   |
| RM 1710, Technology Park,               |            | Object 2:                         |
| 18 On Lai Street, Shatin, N.T.          |            | Serial No. /Ref. No. :            |
| Hong Kong                               |            |                                   |
| Customer Code : SVEC09005               |            | Manufacturer: Soundtek            |
| Date of calibration:                    | 24/10/2019 | Certificate No.: 0022675          |
| Date of the recommended re-calibration: | 24/10/2020 | Handle by: F0002                  |

Measuring results

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 94.0dB           | 0.0dB     | +/- 0.3dB         | 1      |
| 114.0dB         | 114.0dB          | 0.0dB     | +/- 0.5dB         | 1      |

### Measuring equipment

| index | Calibrator / Master                 | Traceability |
|-------|-------------------------------------|--------------|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |

### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source ..

### **Uncertainty**

+/- 0.2 dB for probability not less than 95%.

#### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) | vithin | the allowable deviation. |
|-------------------|--------|--------------------------|
|-------------------|--------|--------------------------|

Performed by

Approved by

Calibration Technician

Quality Manager

Appleone Calibration Laboratory Ltd.

Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

Tel: +852 2370 4437 Fax: +852 2114 0393



0023001

| Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong |                          | Object 1 : B&K4231 sound calibrator Serial No. /Ref. No. : 2326353 / N-02-01 Object 2 : Serial No. /Ref. No. : |
|-----------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Customer Code: SVEC09005                                                                                  |                          | Manufacturer: Bruel & Kjaer                                                                                    |
| Date of calibration: Date of the recommended re-calibration:                                              | 19/12/2019<br>19/12/2020 | Certificate No.: 0023001<br>Handle by: E0002                                                                   |

**Measuring results** 

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 94.2dB           | +0.2dB    | +/- 0.2dB         | 1      |
| 114.0dB         | 114.1dB          | +0.1dB    | +/- 0.2dB         | 1      |

### Measuring equipment

| index | Calibrator / Master                 | Traceability |
|-------|-------------------------------------|--------------|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |

#### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

### Uncertainty

+/- 0.2 dB for probability not less than 95%.

#### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| within the allowable devis | ation.          |
|----------------------------|-----------------|
| Performed by               | Approved by     |
|                            |                 |
| Calibration Technician     | Quality Manager |



0023157

| Customer:                                 |            | Object 1 :             | SVAN959 SLM     |
|-------------------------------------------|------------|------------------------|-----------------|
| Cinotech Consultants Limited              |            | Serial No. /Ref. No. : | 11275 / N-08-01 |
| RM 1710, Technology Park,                 |            | Object 2 :             | Microphone      |
| 18 On Lai Street, Shatin, N.T.            |            | Serial No. /Ref. No. : | 22452           |
| Hong Kong                                 |            |                        |                 |
|                                           |            |                        |                 |
| Customer Code: SVEC09005                  |            | Manufacturer: BSV      | VAtech          |
| Date of calibration:                      | 08/01/2020 | Certificate No.:       | 0023157         |
| Date of the recommended re-calibration: ( | 08/01/2021 | Handle by:             | E0002           |

#### Measuring results

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 94.2dB           | +0.2dB    | +/- 1.5dB         | 1      |
| 114.0dB         | 113.9dB          | -0.1dB    | +/- 1.5dB         | 1      |

### Measuring equipment

| index | Calibrator / Master                 | Traceability |  |
|-------|-------------------------------------|--------------|--|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |  |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |  |

### **Ambient conditions**

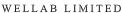
Temperature (20...26)°C

Humidity (20...60)%RH

#### Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

### **Uncertainty**


+/- 0.2 dB for probability not less than 95%.

### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) Wit | the allowable deviation. |             |   |  |
|-----------------------|--------------------------|-------------|---|--|
| Performed by          |                          | Approved by |   |  |
|                       |                          | 1           | • |  |

Calibration Technician **Quality Manager** 



1 of 1



Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

### **TEST REPORT**

**APPLICANT: Cinotech Consultants Limited** 

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 32151

 Date of Issue:
 2019-09-27

 Date Received:
 2019-09-26

 Date Tested:
 2019-09-26

 Date Completed:
 2019-09-27

 Next Due Date:
 2020-09-26

ATTN: Mr. Henry Leung Page:

### **Certificate of Calibration**

#### Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21455
Microphone No. : 43730
Equipment No. : N-08-07

**Test conditions:** 

Room Temperatre : 17-22 degree Celsius

Relative Humidity : 40-70%

### **Test Specifications:**

Performance checking at 94 and 114 dB

### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

| Reference Set Point, dB | Instrument Readings, dB |
|-------------------------|-------------------------|
| 94                      | 94.0                    |
| 114                     | 114.0                   |

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager



0023000

| Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong |                          | Object 1: SVAN957 SLM Serial No. /Ref. No.: 23852 / N-08-11 Object 2: Microphone Serial No. /Ref. No.: 35989 |
|-----------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Customer Code: SVEC09005                                                                                  |                          | Manufacturer: Svantek                                                                                        |
| Date of calibration: Date of the recommended re-calibration:                                              | 19/12/2019<br>19/12/2020 | Certificate No.: 0023000 Handle by: E0002                                                                    |

**Measuring results** 

| Reference value | Indication value | Deviation | Allowed deviation | Object |
|-----------------|------------------|-----------|-------------------|--------|
| 94.0dB          | 93.4dB           | -0.6dB    | +/- 1.5dB         | 1      |
| 114.0dB         | 113.4dB          | -0.6dB    | +/- 1.5dB         | 1      |

#### **Measuring equipment**

| index | Calibrator / Master                 | Traceability |  |
|-------|-------------------------------------|--------------|--|
| 1     | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |  |
| 2     | Sound Calibrator, SV30A sn:32580    | IEC60942     |  |

### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

#### Uncertainty

+/- 0.2 dB for probability not less than 95%.

### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2.The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3.The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) | within      | the allowable deviation |
|-------------------|-------------|-------------------------|
| , ,               | TY A CAAAAA | 1                       |

Performed by

Calibration Technician

Approved by

**Quality Manager** 



0022999

| Customer: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong |                          | Object 1 :<br>Serial No. /Ref. No. :<br>Object 2 :<br>Serial No. /Ref. No. : | Microphone       |
|-----------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|------------------|
| Customer Code : SVEC09005                                                                                 |                          | Manufacturer: Svar                                                           | ntek             |
| Date of calibration: Date of the recommended re-calibration:                                              | 19/12/2019<br>19/12/2020 | Certificate No.:<br>Handle by:                                               | 0022999<br>E0002 |

Measuring results

| Reference value | Indication value | Deviation | Allowed deviation | Object |  |
|-----------------|------------------|-----------|-------------------|--------|--|
| 94.0dB          | 94.0dB           | 0.0dB     | +/- 1.5dB         | 1      |  |
| 114.0dB         | 114.0dB          | 0.0dB     | +/- 1.5dB         | 1      |  |

### **Measuring equipment**

| index         |   | Calibrator / Master                 | Traceability |  |
|---------------|---|-------------------------------------|--------------|--|
| C Description | 1 | Master Sound Meter, SVAN949,sn:8571 | IEC61672     |  |
|               | 2 | Sound Calibrator, SV30A sn:32580    | IEC60942     |  |

### **Ambient conditions**

Temperature (20...26)°C

Humidity (20...60)%RH

### Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

#### **Uncertainty**

+/- 0.2 dB for probability not less than 95%.

### Conformity

- 1. The resulted values were those obtained at the time of test and applies only to the item calibrated.
- 2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains the uncertainty of the measuring procedure and the uncertainty of the measuring system.
- 3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.
- 4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.
- 5. The calibrations certificate may not be reproduced.

| Measured value(s) | within     | the allowable deviation. |
|-------------------|------------|--------------------------|
| (-/               | AA TCTTTTT |                          |

Performed by

Calibration Technician

Approved by

Quality Manager



### RECALIBRATION **DUE DATE:**

January 17, 2021

# ertificate o

**Calibration Certification Information** 

Cal. Date: January 17, 2020

Rootsmeter S/N: 438320

Ta: 295 Pa: 744.2 °K

Operator: Jim Tisch

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3746

| Run | Vol. Init<br>(m3) | Vol. Final<br>(m3) | ΔVol.<br>(m3) | ΔTime<br>(min) | ΔP<br>(mm Hg) | ΔH<br>(in H2O) |
|-----|-------------------|--------------------|---------------|----------------|---------------|----------------|
| 1   | 1                 | 2                  | 1             | 1.4340         | 3.2           | 2.00           |
| 2   | 3                 | 4                  | 1             | 1.0180         | 6.4           | 4.00           |
| 3   | 5                 | 6                  | 1             | 0.9080         | 7.9           | 5.00           |
| 4   | 7                 | 8                  | 1             | 0.8700         | 8.7           | 5.50           |
| 5   | 9                 | 10                 | 1             | 0.7150         | 12.6          | 8.00           |

|             | Data Tabulation |                                                                             |        |          |            |  |  |
|-------------|-----------------|-----------------------------------------------------------------------------|--------|----------|------------|--|--|
| Vstd        | Qstd            | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ |        | Qa       | √∆H(Ta/Pa) |  |  |
| (m3)        | (x-axis)        | (y-axis)                                                                    | Va     | (x-axis) | (y-axis)   |  |  |
| 0.9849      | 0.6868          | 1.4066                                                                      | 0.9957 | 0.6944   | 0.8904     |  |  |
| 0.9807      | 0.9633          | 1.9892                                                                      | 0.9914 | 0.9739   | 1.2592     |  |  |
| 0.9787      | 1.0779          | 2.2240                                                                      | 0.9894 | 1.0896   | 1.4078     |  |  |
| 0.9776      | 1.1237          | 2.3325                                                                      | 0.9883 | 1.1360   | 1.4765     |  |  |
| 0.9724      | 1.3601          | 2.8131                                                                      | 0.9831 | 1.3749   | 1.7808     |  |  |
|             | m=              | 2.09221                                                                     |        | m=       | 1.31010    |  |  |
| <b>QSTD</b> | b=              | -0.02779                                                                    | QA     | b=       | -0.01759   |  |  |
|             | r=              | 0.99994                                                                     |        | r=       | 0.99994    |  |  |

| Calculations                                       |                                                                                                          |     |                                                                    |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------|--|--|--|
| Vstd= $\Delta$ Vol((Pa- $\Delta$ P)/Pstd)(Tstd/Ta) |                                                                                                          | Va= | ΔVol((Pa-ΔP)/Pa)                                                   |  |  |  |
| Qstd=                                              | <b>Qstd=</b> Vstd/ΔTime                                                                                  |     | Va/∆Time                                                           |  |  |  |
|                                                    | For subsequent flow rate calculations:                                                                   |     |                                                                    |  |  |  |
| Qstd=                                              | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa= | $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$ |  |  |  |

| Standard Conditions                       |              |  |  |  |  |  |
|-------------------------------------------|--------------|--|--|--|--|--|
| Tstd: 298.15 ° <sub>K</sub>               |              |  |  |  |  |  |
| Pstd: 760 mm Hg                           |              |  |  |  |  |  |
| Key                                       |              |  |  |  |  |  |
| ΔH: calibrator manometer reading (in H2O) |              |  |  |  |  |  |
| ΔP: rootsmeter manometer reading (mm Hg)  |              |  |  |  |  |  |
| Ta: actual absolute temperature (°K)      |              |  |  |  |  |  |
| Pa: actual barometric pressure (mm Hg)    |              |  |  |  |  |  |
| b: intercept                              | b: intercept |  |  |  |  |  |
| m: slone                                  |              |  |  |  |  |  |

#### RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30



### **Cerificate of Calibration - Wind Monitoring Station**

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: <u>MC01010A44</u>

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>21-Feb-2020</u>

Next Due Date <u>21-Aug-2020</u>

### 1. Performance check of Wind Speed

| Wind Sp                 | peed, m/s             | Difference D (m/s) |
|-------------------------|-----------------------|--------------------|
| Wind Speed Reading (V1) | Anemometer Value (V1) | D = V1 - V2        |
| 0.0                     | 0.0                   | 0.0                |
| 1.2                     | 1.3                   | -0.1               |
| 2.0                     | 2.1                   | -0.1               |
| 3.0                     | 3.2                   | -0.2               |

### 2. Performance check of Wind Direction

| Wind Di                     | rection (°)               | Difference D (°) |
|-----------------------------|---------------------------|------------------|
| Wind Direction Reading (V1) | Marine Compass Value (V1) | D = W1 - W2      |
| 0                           | 0                         | 0.0              |
| 90                          | 90                        | 0.0              |
| 180                         | 180                       | 0.0              |
| 270                         | 270                       | 0.0              |

### **Test Specification:**

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

| Calibrated by: |                 | Approved by: | Leng Hong   |
|----------------|-----------------|--------------|-------------|
|                | Wong Shing Kwai | _            | Henry Leung |



### MSA Hong Kong Ltd.

25/F Jupiter Tower, 9 Jupiter Street, Hong Kong

Tel 852-22587588 Fax 25478780 Email info.hk@msasafety.com Website www.msasafety.com

Ref.

2020/05/008

Date: 22-May-20

Customer

Leighton China State Joint Venture

### CERTIFICATE FOR CALIBRATION CHECK TEST

| Model     | Serial No. | Calibration Check Gas  | Regulator    | Full Scale | Response  |
|-----------|------------|------------------------|--------------|------------|-----------|
|           |            | 1.45% Methane,         | 1            | 100% LEL   | 29%LEL    |
|           | -          | 15% Oxygen             |              | 30% Vol    | 15% O2    |
| Altair 5X | 152097 20  | 60ppm Carbon Monoxide  | .25litre/min | 1999 ppm   | 60ppm CO  |
| Altair 3A |            | 20ppm Hydrogen Sulfide | /            | 200 ppm    | 20ppm H2S |
|           |            | 2.5% Carbon Dioxide    |              | 10% Vol    | 2.5% CO2  |
|           |            | 25ppm Ammonia          | Demand       | 100 ppm    | 25ppm NH3 |

Remarks:

Regular inspection completed. Calibration passed

MSA Hong Kong Ltd. certify that instrument/s listed above has/have been calibrated check tested on: 22-May-20

This instrument was calibrated in accordance with all requirements of the specifications of MSA.

This instrument must be calibration checked prior to use in accordance with the instruction manual.

This instrument was calibrated using NIST traceable equipment and was in accordance with all requirements of the drawings and specifications of MSA.

For and on behalf of

MSA Hong Kong Ltd.

Authorised Signature

### APPENDIX C WEATHER INFORMATION

**Appendix C - Weather Conditions During Impact Monitoring Period** 

| Date      | Mean Air Temperature (°C) <sup>1</sup> | Mean Relative Humidity | <b>Precipitation (mm)</b> <sup>3</sup> |
|-----------|----------------------------------------|------------------------|----------------------------------------|
|           | •                                      | (%) <sup>2</sup>       | •                                      |
| 1-Jun-20  | 29.9                                   | 78                     | Trace                                  |
| 2-Jun-20  | 29.0                                   | 82                     | 6.4                                    |
| 3-Jun-20  | 29.8                                   | 76                     | Trace                                  |
| 4-Jun-20  | 30.1                                   | 75                     | Trace                                  |
| 5-Jun-20  | 30.0                                   | 78                     | 2.6                                    |
| 6-Jun-20  | 26.8                                   | 89                     | 183.8                                  |
| 7-Jun-20  | 27.7                                   | 91                     | 107.4                                  |
| 8-Jun-20  | 28.6                                   | 88                     | 40.9                                   |
| 9-Jun-20  | 29.4                                   | 83                     | 1.3                                    |
| 10-Jun-20 | 29.8                                   | 78                     | 0.2                                    |
| 11-Jun-20 | 30.2                                   | 76                     | Trace                                  |
| 12-Jun-20 | 30.4                                   | 75                     | 0.0                                    |
| 13-Jun-20 | 29.8                                   | 81                     | 11.7                                   |
| 14-Jun-20 | 28.0                                   | 84                     | 29.3                                   |
| 15-Jun-20 | 29.3                                   | 79                     | 0.2                                    |
| 16-Jun-20 | 28.6                                   | 81                     | 9.4                                    |
| 17-Jun-20 | 29.1                                   | 77                     | 0.9                                    |
| 18-Jun-20 | 29.5                                   | 77                     | 0.1                                    |
| 19-Jun-20 | 29.9                                   | 74                     | Trace                                  |
| 20-Jun-20 | 30.0                                   | 74                     | 0.0                                    |
| 21-Jun-20 | 30.2                                   | 76                     | Trace                                  |
| 22-Jun-20 | 30.4                                   | 77                     | Trace                                  |
| 23-Jun-20 | 30.3                                   | 77                     | 0.0                                    |
| 24-Jun-20 | 30.4                                   | 77                     | 0.0                                    |
| 25-Jun-20 | 30.2                                   | 76                     | 0.1                                    |
| 26-Jun-20 | 30.3                                   | 77                     | 1.3                                    |
| 27-Jun-20 | 30.2                                   | 77                     | 1.2                                    |
| 28-Jun-20 | 30.4                                   | 75                     | Trace                                  |
| 29-Jun-20 | 30.5                                   | 74                     | 0.4                                    |
| 30-Jun-20 | 30.7                                   | 74                     | Trace                                  |

(Reporting Month: June 2020)

Remarks:

Source - Hong Kong Observatory

<sup>&</sup>lt;sup>1-3</sup>Retrieved from Manned Weather Station (Hong Kong Observatory) (22°18'07" N, 114°10'27" E)

| June 2020                 |          |                |           |  |  |
|---------------------------|----------|----------------|-----------|--|--|
| Wind Speed and Directions |          |                |           |  |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |  |
| 1 Jun 2020                | 12:00 AM | 0.4            | N         |  |  |
| 1 Jun 2020                | 1:00 AM  | 0.4            | NNE       |  |  |
| 1 Jun 2020                | 2:00 AM  | 0.4            | ENE       |  |  |
| 1 Jun 2020                | 3:00 AM  | 0.4            | ENE       |  |  |
| 1 Jun 2020                | 4:00 AM  | 0.4            | ENE       |  |  |
| 1 Jun 2020                | 5:00 AM  | 0.9            | ENE       |  |  |
| 1 Jun 2020                | 6:00 AM  | 0              | W         |  |  |
| 1 Jun 2020                | 7:00 AM  | 0              | WSW       |  |  |
| 1 Jun 2020                | 8:00 AM  | 0.4            | N         |  |  |
| 1 Jun 2020                | 9:00 AM  | 1.3            | NE        |  |  |
| 1 Jun 2020                | 10:00 AM | 1.3            | ENE       |  |  |
| 1 Jun 2020                | 11:00 AM | 0.9            | ENE       |  |  |
| 1 Jun 2020                | 12:00 PM | 0.9            | ENE       |  |  |
| 1 Jun 2020                | 1:00 PM  | 0.4            | NE        |  |  |
| 1 Jun 2020                | 2:00 PM  | 0.9            | ENE       |  |  |
| 1 Jun 2020                | 3:00 PM  | 1.3            | ENE       |  |  |
| 1 Jun 2020                | 4:00 PM  | 0.9            | ENE       |  |  |
| 1 Jun 2020                | 5:00 PM  | 0.4            | NNE       |  |  |
| 1 Jun 2020                | 6:00 PM  | 0.4            | NNE       |  |  |
| 1 Jun 2020                | 7:00 PM  | 0.4            | SSE       |  |  |
| 1 Jun 2020                | 8:00 PM  | 0.4            | NNE       |  |  |
| 1 Jun 2020                | 9:00 PM  | 0.9            | NE        |  |  |
| 1 Jun 2020                | 10:00 PM | 0.4            | NE        |  |  |
| 1 Jun 2020                | 11:00 PM | 1.3            | ENE       |  |  |
| 2 Jun 2020                | 12:00 AM | 2.2            | ENE       |  |  |
| 2 Jun 2020                | 1:00 AM  | 1.8            | ENE       |  |  |
| 2 Jun 2020                | 2:00 AM  | 0.9            | NNE       |  |  |
| 2 Jun 2020                | 3:00 AM  | 0.4            | ENE       |  |  |
| 2 Jun 2020                | 4:00 AM  | 1.8            | ENE       |  |  |
| 2 Jun 2020                | 5:00 AM  | 1.3            | ENE       |  |  |
| 2 Jun 2020                | 6:00 AM  | 0.9            | ENE       |  |  |
| 2 Jun 2020                | 7:00 AM  | 1.3            | ENE       |  |  |
| 2 Jun 2020                | 8:00 AM  | 1.8            | ENE       |  |  |
| 2 Jun 2020                | 9:00 AM  | 2.2            | ENE       |  |  |
| 2 Jun 2020                | 10:00 AM | 3.1            | ENE       |  |  |
| 2 Jun 2020                | 11:00 AM | 2.7            | ENE       |  |  |
| 2 Jun 2020                | 12:00 PM | 2.7            | ENE       |  |  |
| 2 Jun 2020                | 1:00 PM  | 3.1            | ENE       |  |  |
| 2 Jun 2020                | 2:00 PM  | 3.6            | ENE       |  |  |
| 2 Jun 2020                | 3:00 PM  | 3.6            | ENE       |  |  |
| 2 Jun 2020                | 4:00 PM  | 3.1            | ENE       |  |  |
| 2 Jun 2020                | 5:00 PM  | 1.8            | ENE       |  |  |
| 2 Jun 2020                | 6:00 PM  | 2.2            | ENE       |  |  |

|                           | June     | 2020           |           |
|---------------------------|----------|----------------|-----------|
| Wind Speed and Directions |          |                |           |
| Date                      | Time     | Wind Speed m-s | Direction |
| 2 Jun 2020                | 7:00 PM  | 2.7            | ENE       |
| 2 Jun 2020                | 8:00 PM  | 1.8            | ENE       |
| 2 Jun 2020                | 9:00 PM  | 1.8            | ENE       |
| 2 Jun 2020                | 10:00 PM | 0.9            | ENE       |
| 2 Jun 2020                | 11:00 PM | 0.9            | SW        |
| 3 Jun 2020                | 12:00 AM | 0.9            | NNE       |
| 3 Jun 2020                | 1:00 AM  | 1.8            | ENE       |
| 3 Jun 2020                | 2:00 AM  | 1.8            | ENE       |
| 3 Jun 2020                | 3:00 AM  | 1.8            | ENE       |
| 3 Jun 2020                | 4:00 AM  | 3.1            | ENE       |
| 3 Jun 2020                | 5:00 AM  | 0.4            | NNE       |
| 3 Jun 2020                | 6:00 AM  | 0              | WSW       |
| 3 Jun 2020                | 7:00 AM  | 0.4            | ESE       |
| 3 Jun 2020                | 8:00 AM  | 0.9            | SW        |
| 3 Jun 2020                | 9:00 AM  | 1.3            | SW        |
| 3 Jun 2020                | 10:00 AM | 0.9            | NE        |
| 3 Jun 2020                | 11:00 AM | 1.3            | Е         |
| 3 Jun 2020                | 12:00 PM | 1.3            | ENE       |
| 3 Jun 2020                | 1:00 PM  | 1.8            | SW        |
| 3 Jun 2020                | 2:00 PM  | 1.3            | Е         |
| 3 Jun 2020                | 3:00 PM  | 1.3            | ESE       |
| 3 Jun 2020                | 4:00 PM  | 1.3            | SW        |
| 3 Jun 2020                | 5:00 PM  | 1.3            | SW        |
| 3 Jun 2020                | 6:00 PM  | 0.9            | SW        |
| 3 Jun 2020                | 7:00 PM  | 0.4            | SW        |
| 3 Jun 2020                | 8:00 PM  | 0.9            | ESE       |
| 3 Jun 2020                | 9:00 PM  | 0.9            | ESE       |
| 3 Jun 2020                | 10:00 PM | 0.9            | SW        |
| 3 Jun 2020                | 11:00 PM | 0.9            | SW        |
| 4 Jun 2020                | 12:00 AM | 0.9            | ENE       |
| 4 Jun 2020                | 1:00 AM  | 1.8            | ENE       |
| 4 Jun 2020                | 2:00 AM  | 1.8            | ENE       |
| 4 Jun 2020                | 3:00 AM  | 0.9            | Е         |
| 4 Jun 2020                | 4:00 AM  | 0.9            | ENE       |
| 4 Jun 2020                | 5:00 AM  | 1.3            | ENE       |
| 4 Jun 2020                | 6:00 AM  | 0.9            | ENE       |
| 4 Jun 2020                | 7:00 AM  | 0.4            | SE        |
| 4 Jun 2020                | 8:00 AM  | 0.9            | SW        |
| 4 Jun 2020                | 9:00 AM  | 1.3            | ENE       |
| 4 Jun 2020                | 10:00 AM | 1.3            | ESE       |
| 4 Jun 2020                | 11:00 AM | 1.3            | Е         |
| 4 Jun 2020                | 12:00 PM | 1.8            | ESE       |
| 4 Jun 2020                | 1:00 PM  | 1.3            | ESE       |

| June 2020                 |          |                |           |
|---------------------------|----------|----------------|-----------|
| Wind Speed and Directions |          |                |           |
| Date                      | Time     | Wind Speed m-s | Direction |
| 4 Jun 2020                | 2:00 PM  | 1.3            | S         |
| 4 Jun 2020                | 3:00 PM  | 1.3            | SW        |
| 4 Jun 2020                | 4:00 PM  | 0.9            | SW        |
| 4 Jun 2020                | 5:00 PM  | 1.3            | ENE       |
| 4 Jun 2020                | 6:00 PM  | 1.3            | SW        |
| 4 Jun 2020                | 7:00 PM  | 0.9            | SW        |
| 4 Jun 2020                | 8:00 PM  | 0.9            | NE        |
| 4 Jun 2020                | 9:00 PM  | 1.8            | ENE       |
| 4 Jun 2020                | 10:00 PM | 2.2            | ENE       |
| 4 Jun 2020                | 11:00 PM | 1.8            | ENE       |
| 5 Jun 2020                | 12:00 AM | 2.2            | ENE       |
| 5 Jun 2020                | 1:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 2:00 AM  | 2.7            | ENE       |
| 5 Jun 2020                | 3:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 4:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 5:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 6:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 7:00 AM  | 1.8            | ENE       |
| 5 Jun 2020                | 8:00 AM  | 1.8            | ENE       |
| 5 Jun 2020                | 9:00 AM  | 2.2            | ENE       |
| 5 Jun 2020                | 10:00 AM | 2.2            | ENE       |
| 5 Jun 2020                | 11:00 AM | 1.3            | ENE       |
| 5 Jun 2020                | 12:00 PM | 1.3            | ENE       |
| 5 Jun 2020                | 1:00 PM  | 1.3            | ESE       |
| 5 Jun 2020                | 2:00 PM  | 1.3            | ENE       |
| 5 Jun 2020                | 3:00 PM  | 1.8            | ENE       |
| 5 Jun 2020                | 4:00 PM  | 1.8            | ENE       |
| 5 Jun 2020                | 5:00 PM  | 2.2            | ENE       |
| 5 Jun 2020                | 6:00 PM  | 1.8            | ENE       |
| 5 Jun 2020                | 7:00 PM  | 1.8            | ENE       |
| 5 Jun 2020                | 8:00 PM  | 1.8            | ENE       |
| 5 Jun 2020                | 9:00 PM  | 2.2            | ENE       |
| 5 Jun 2020                | 10:00 PM | 1.8            | ENE       |
| 5 Jun 2020                | 11:00 PM | 1.8            | ENE       |
| 6 Jun 2020                | 12:00 AM | 2.7            | ENE       |
| 6 Jun 2020                | 1:00 AM  | 2.2            | ENE       |
| 6 Jun 2020                | 2:00 AM  | 2.7            | ENE       |
| 6 Jun 2020                | 3:00 AM  | 2.7            | ENE       |
| 6 Jun 2020                | 4:00 AM  | 2.7            | ENE       |
| 6 Jun 2020                | 5:00 AM  | 2.2            | ENE       |
| 6 Jun 2020                | 6:00 AM  | 1.8            | ENE       |
| 6 Jun 2020                | 7:00 AM  | 1.8            | ENE       |
| 6 Jun 2020                | 8:00 AM  | 1.8            | ENE       |

| June 2020                 |          |                |           |
|---------------------------|----------|----------------|-----------|
| Wind Speed and Directions |          |                |           |
| Date                      | Time     | Wind Speed m-s | Direction |
| 6 Jun 2020                | 9:00 AM  | 2.7            | ENE       |
| 6 Jun 2020                | 10:00 AM | 2.2            | ENE       |
| 6 Jun 2020                | 11:00 AM | 1.3            | ENE       |
| 6 Jun 2020                | 12:00 PM | 3.1            | ENE       |
| 6 Jun 2020                | 1:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 2:00 PM  | 1.3            | ENE       |
| 6 Jun 2020                | 3:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 4:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 5:00 PM  | 3.1            | ENE       |
| 6 Jun 2020                | 6:00 PM  | 1.3            | ENE       |
| 6 Jun 2020                | 7:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 8:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 9:00 PM  | 2.7            | ENE       |
| 6 Jun 2020                | 10:00 PM | 2.7            | ENE       |
| 6 Jun 2020                | 11:00 PM | 3.1            | ENE       |
| 7 Jun 2020                | 12:00 AM | 3.6            | ENE       |
| 7 Jun 2020                | 1:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 2:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 3:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 4:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 5:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 6:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 7:00 AM  | 2.7            | ENE       |
| 7 Jun 2020                | 8:00 AM  | 2.2            | ENE       |
| 7 Jun 2020                | 9:00 AM  | 1.3            | Е         |
| 7 Jun 2020                | 10:00 AM | 1.8            | ENE       |
| 7 Jun 2020                | 11:00 AM | 1.8            | ESE       |
| 7 Jun 2020                | 12:00 PM | 1.3            | ENE       |
| 7 Jun 2020                | 1:00 PM  | 1.3            | ESE       |
| 7 Jun 2020                | 2:00 PM  | 1.8            | Е         |
| 7 Jun 2020                | 3:00 PM  | 1.8            | ENE       |
| 7 Jun 2020                | 4:00 PM  | 1.8            | ESE       |
| 7 Jun 2020                | 5:00 PM  | 1.8            | ENE       |
| 7 Jun 2020                | 6:00 PM  | 1.3            | SE        |
| 7 Jun 2020                | 7:00 PM  | 1.8            | ENE       |
| 7 Jun 2020                | 8:00 PM  | 1.3            | ENE       |
| 7 Jun 2020                | 9:00 PM  | 0.9            | ESE       |
| 7 Jun 2020                | 10:00 PM | 0.9            | Е         |
| 7 Jun 2020                | 11:00 PM | 0.9            | ENE       |
| 8 Jun 2020                | 12:00 AM | 0.9            | ENE       |
| 8 Jun 2020                | 1:00 AM  | 0.4            | ESE       |
| 8 Jun 2020                | 2:00 AM  | 0.9            | SE        |
| 8 Jun 2020                | 3:00 AM  | 1.3            | ENE       |

|                           | June     | e 2020         |           |
|---------------------------|----------|----------------|-----------|
| Wind Speed and Directions |          |                |           |
| Date                      | Time     | Wind Speed m-s | Direction |
| 8 Jun 2020                | 4:00 AM  | 0.9            | SW        |
| 8 Jun 2020                | 5:00 AM  | 0.9            | ENE       |
| 8 Jun 2020                | 6:00 AM  | 0.9            | Е         |
| 8 Jun 2020                | 7:00 AM  | 0.4            | SW        |
| 8 Jun 2020                | 8:00 AM  | 0.9            | ENE       |
| 8 Jun 2020                | 9:00 AM  | 0.9            | ENE       |
| 8 Jun 2020                | 10:00 AM | 1.8            | SW        |
| 8 Jun 2020                | 11:00 AM | 0.4            | SW        |
| 8 Jun 2020                | 12:00 PM | 0.9            | SSW       |
| 8 Jun 2020                | 1:00 PM  | 0.9            | SW        |
| 8 Jun 2020                | 2:00 PM  | 0.9            | SW        |
| 8 Jun 2020                | 3:00 PM  | 1.8            | SW        |
| 8 Jun 2020                | 4:00 PM  | 0.9            | SW        |
| 8 Jun 2020                | 5:00 PM  | 0.4            | SW        |
| 8 Jun 2020                | 6:00 PM  | 0              | SSE       |
| 8 Jun 2020                | 7:00 PM  | 0.9            | NE        |
| 8 Jun 2020                | 8:00 PM  | 0.4            | NE        |
| 8 Jun 2020                | 9:00 PM  | 0.9            | NE        |
| 8 Jun 2020                | 10:00 PM | 0.9            | NE        |
| 8 Jun 2020                | 11:00 PM | 0.9            | ENE       |
| 9 Jun 2020                | 12:00 AM | 0.9            | SW        |
| 9 Jun 2020                | 1:00 AM  | 0.4            | SSW       |
| 9 Jun 2020                | 2:00 AM  | 0.9            | SW        |
| 9 Jun 2020                | 3:00 AM  | 0              | SW        |
| 9 Jun 2020                | 4:00 AM  | 0.4            | SW        |
| 9 Jun 2020                | 5:00 AM  | 0.4            | SW        |
| 9 Jun 2020                | 6:00 AM  | 0.9            | SW        |
| 9 Jun 2020                | 7:00 AM  | 0              | SSW       |
| 9 Jun 2020                | 8:00 AM  | 0              |           |
| 9 Jun 2020                | 9:00 AM  | 0.9            | NE        |
| 9 Jun 2020                | 10:00 AM | 1.3            | ENE       |
| 9 Jun 2020                | 11:00 AM | 2.2            | ENE       |
| 9 Jun 2020                | 12:00 PM | 1.8            | SW        |
| 9 Jun 2020                | 1:00 PM  | 0.9            | ENE       |
| 9 Jun 2020                | 2:00 PM  | 3.1            | ENE       |
| 9 Jun 2020                | 3:00 PM  | 2.7            | ENE       |
| 9 Jun 2020                | 4:00 PM  | 2.2            | ENE       |
| 9 Jun 2020                | 5:00 PM  | 2.2            | ENE       |
| 9 Jun 2020                | 6:00 PM  | 2.2            | ENE       |
| 9 Jun 2020                | 7:00 PM  | 0.9            | ENE       |
| 9 Jun 2020                | 8:00 PM  | 0.4            | SW        |
| 9 Jun 2020                | 9:00 PM  | 0.4            | NNE       |
| 9 Jun 2020                | 10:00 PM | 1.3            | ENE       |

| June 2020                 |          |                |           |
|---------------------------|----------|----------------|-----------|
| Wind Speed and Directions |          |                |           |
| Date                      | Time     | Wind Speed m-s | Direction |
| 9 Jun 2020                | 11:00 PM | 1.3            | ENE       |
| 10 Jun 2020               | 12:00 AM | 1.3            | ENE       |
| 10 Jun 2020               | 1:00 AM  | 1.3            | ENE       |
| 10 Jun 2020               | 2:00 AM  | 1.3            | NE        |
| 10 Jun 2020               | 3:00 AM  | 1.3            | ENE       |
| 10 Jun 2020               | 4:00 AM  | 0.9            | ENE       |
| 10 Jun 2020               | 5:00 AM  | 1.3            | ENE       |
| 10 Jun 2020               | 6:00 AM  | 1.3            | ENE       |
| 10 Jun 2020               | 7:00 AM  | 1.8            | ENE       |
| 10 Jun 2020               | 8:00 AM  | 2.7            | ENE       |
| 10 Jun 2020               | 9:00 AM  | 3.1            | ENE       |
| 10 Jun 2020               | 10:00 AM | 3.1            | ENE       |
| 10 Jun 2020               | 11:00 AM | 2.7            | ENE       |
| 10 Jun 2020               | 12:00 PM | 1.8            | ENE       |
| 10 Jun 2020               | 1:00 PM  | 1.3            | SE        |
| 10 Jun 2020               | 2:00 PM  | 2.7            | ENE       |
| 10 Jun 2020               | 3:00 PM  | 2.2            | ENE       |
| 10 Jun 2020               | 4:00 PM  | 2.7            | ENE       |
| 10 Jun 2020               | 5:00 PM  | 3.1            | ENE       |
| 10 Jun 2020               | 6:00 PM  | 2.2            | ENE       |
| 10 Jun 2020               | 7:00 PM  | 1.3            | ENE       |
| 10 Jun 2020               | 8:00 PM  | 2.2            | ENE       |
| 10 Jun 2020               | 9:00 PM  | 1.8            | ENE       |
| 10 Jun 2020               | 10:00 PM | 2.2            | ENE       |
| 10 Jun 2020               | 11:00 PM | 3.1            | ENE       |
| 11 Jun 2020               | 12:00 AM | 3.1            | ENE       |
| 11 Jun 2020               | 1:00 AM  | 3.6            | ENE       |
| 11 Jun 2020               | 2:00 AM  | 2.7            | ENE       |
| 11 Jun 2020               | 3:00 AM  | 2.2            | ENE       |
| 11 Jun 2020               | 4:00 AM  | 2.2            | ENE       |
| 11 Jun 2020               | 5:00 AM  | 2.2            | ENE       |
| 11 Jun 2020               | 6:00 AM  | 1.3            | ENE       |
| 11 Jun 2020               | 7:00 AM  | 1.3            | ENE       |
| 11 Jun 2020               | 8:00 AM  | 2.2            | ENE       |
| 11 Jun 2020               | 9:00 AM  | 2.7            | ENE       |
| 11 Jun 2020               | 10:00 AM | 1.3            | Е         |
| 11 Jun 2020               | 11:00 AM | 1.3            | ESE       |
| 11 Jun 2020               | 12:00 PM | 1.3            | ENE       |
| 11 Jun 2020               | 1:00 PM  | 1.8            | ENE       |
| 11 Jun 2020               | 2:00 PM  | 1.3            | Е         |
| 11 Jun 2020               | 3:00 PM  | 1.3            | SE        |
| 11 Jun 2020               | 4:00 PM  | 1.8            | ESE       |
| 11 Jun 2020               | 5:00 PM  | 1.3            | Е         |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 11 Jun 2020 | 6:00 PM                   | 0.9            | ESE       |  |  |
| 11 Jun 2020 | 7:00 PM                   | 0.9            | ESE       |  |  |
| 11 Jun 2020 | 8:00 PM                   | 0.9            | ESE       |  |  |
| 11 Jun 2020 | 9:00 PM                   | 1.3            | ENE       |  |  |
| 11 Jun 2020 | 10:00 PM                  | 2.2            | ENE       |  |  |
| 11 Jun 2020 | 11:00 PM                  | 2.2            | ENE       |  |  |
| 12 Jun 2020 | 12:00 AM                  | 2.2            | ENE       |  |  |
| 12 Jun 2020 | 1:00 AM                   | 2.2            | ENE       |  |  |
| 12 Jun 2020 | 2:00 AM                   | 2.7            | ENE       |  |  |
| 12 Jun 2020 | 3:00 AM                   | 2.7            | ENE       |  |  |
| 12 Jun 2020 | 4:00 AM                   | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 5:00 AM                   | 1.3            | ENE       |  |  |
| 12 Jun 2020 | 6:00 AM                   | 2.2            | ENE       |  |  |
| 12 Jun 2020 | 7:00 AM                   | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 8:00 AM                   | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 9:00 AM                   | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 10:00 AM                  | 0.9            | ENE       |  |  |
| 12 Jun 2020 | 11:00 AM                  | 1.3            | ENE       |  |  |
| 12 Jun 2020 | 12:00 PM                  | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 1:00 PM                   | 1.8            | ENE       |  |  |
| 12 Jun 2020 | 2:00 PM                   | 1.3            | Е         |  |  |
| 12 Jun 2020 | 3:00 PM                   | 1.3            | ESE       |  |  |
| 12 Jun 2020 | 4:00 PM                   | 1.3            | ENE       |  |  |
| 12 Jun 2020 | 5:00 PM                   | 1.3            | ENE       |  |  |
| 12 Jun 2020 | 6:00 PM                   | 0.9            | Е         |  |  |
| 12 Jun 2020 | 7:00 PM                   | 0.9            | Е         |  |  |
| 12 Jun 2020 | 8:00 PM                   | 0.4            | ENE       |  |  |
| 12 Jun 2020 | 9:00 PM                   | 0.9            | SW        |  |  |
| 12 Jun 2020 | 10:00 PM                  | 0.4            | SW        |  |  |
| 12 Jun 2020 | 11:00 PM                  | 1.3            | ENE       |  |  |
| 13 Jun 2020 | 12:00 AM                  | 1.3            | NNE       |  |  |
| 13 Jun 2020 | 1:00 AM                   | 0.9            | NNE       |  |  |
| 13 Jun 2020 | 2:00 AM                   | 1.3            | NE        |  |  |
| 13 Jun 2020 | 3:00 AM                   | 0.4            | NNE       |  |  |
| 13 Jun 2020 | 4:00 AM                   | 0.4            | NE        |  |  |
| 13 Jun 2020 | 5:00 AM                   | 0.4            | NE        |  |  |
| 13 Jun 2020 | 6:00 AM                   | 0.4            | NNE       |  |  |
| 13 Jun 2020 | 7:00 AM                   | 0.9            | NE        |  |  |
| 13 Jun 2020 | 8:00 AM                   | 1.8            | ENE       |  |  |
| 13 Jun 2020 | 9:00 AM                   | 1.8            | ENE       |  |  |
| 13 Jun 2020 | 10:00 AM                  | 0.9            | SW        |  |  |
| 13 Jun 2020 | 11:00 AM                  | 1.3            | ENE       |  |  |
| 13 Jun 2020 | 12:00 PM                  | 1.3            | ENE       |  |  |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 13 Jun 2020 | 1:00 PM                   | 0.9            | ENE       |  |  |
| 13 Jun 2020 | 2:00 PM                   | 1.3            | SW        |  |  |
| 13 Jun 2020 | 3:00 PM                   | 1.8            | ENE       |  |  |
| 13 Jun 2020 | 4:00 PM                   | 3.6            | ENE       |  |  |
| 13 Jun 2020 | 5:00 PM                   | 3.1            | ENE       |  |  |
| 13 Jun 2020 | 6:00 PM                   | 3.1            | ENE       |  |  |
| 13 Jun 2020 | 7:00 PM                   | 2.7            | ENE       |  |  |
| 13 Jun 2020 | 8:00 PM                   | 1.3            | ENE       |  |  |
| 13 Jun 2020 | 9:00 PM                   | 1.3            | ENE       |  |  |
| 13 Jun 2020 | 10:00 PM                  | 0.9            | ENE       |  |  |
| 13 Jun 2020 | 11:00 PM                  | 1.3            | ENE       |  |  |
| 14 Jun 2020 | 12:00 AM                  | 1.3            | ENE       |  |  |
| 14 Jun 2020 | 1:00 AM                   | 0.9            | NNE       |  |  |
| 14 Jun 2020 | 2:00 AM                   | 0.4            | SW        |  |  |
| 14 Jun 2020 | 3:00 AM                   | 1.3            | SW        |  |  |
| 14 Jun 2020 | 4:00 AM                   | 1.3            | SW        |  |  |
| 14 Jun 2020 | 5:00 AM                   | 0.9            | SW        |  |  |
| 14 Jun 2020 | 6:00 AM                   | 0.4            | Е         |  |  |
| 14 Jun 2020 | 7:00 AM                   | 0.9            | SW        |  |  |
| 14 Jun 2020 | 8:00 AM                   | 0.4            | ENE       |  |  |
| 14 Jun 2020 | 9:00 AM                   | 0.9            | SW        |  |  |
| 14 Jun 2020 | 10:00 AM                  | 1.3            | ENE       |  |  |
| 14 Jun 2020 | 11:00 AM                  | 2.2            | ENE       |  |  |
| 14 Jun 2020 | 12:00 PM                  | 1.8            | ENE       |  |  |
| 14 Jun 2020 | 1:00 PM                   | 1.8            | ENE       |  |  |
| 14 Jun 2020 | 2:00 PM                   | 1.8            | SW        |  |  |
| 14 Jun 2020 | 3:00 PM                   | 1.3            | SW        |  |  |
| 14 Jun 2020 | 4:00 PM                   | 1.8            | SW        |  |  |
| 14 Jun 2020 | 5:00 PM                   | 1.3            | ENE       |  |  |
| 14 Jun 2020 | 6:00 PM                   | 1.3            | SW        |  |  |
| 14 Jun 2020 | 7:00 PM                   | 1.3            | SW        |  |  |
| 14 Jun 2020 | 8:00 PM                   | 0.9            | SSW       |  |  |
| 14 Jun 2020 | 9:00 PM                   | 1.8            | SW        |  |  |
| 14 Jun 2020 | 10:00 PM                  | 1.3            | SW        |  |  |
| 14 Jun 2020 | 11:00 PM                  | 1.8            | SW        |  |  |
| 15 Jun 2020 | 12:00 AM                  | 0.9            | SW        |  |  |
| 15 Jun 2020 | 1:00 AM                   | 1.3            | SW        |  |  |
| 15 Jun 2020 | 2:00 AM                   | 0.9            | SW        |  |  |
| 15 Jun 2020 | 3:00 AM                   | 0.9            | SW        |  |  |
| 15 Jun 2020 | 4:00 AM                   | 0.9            | SSW       |  |  |
| 15 Jun 2020 | 5:00 AM                   | 0.9            | SW        |  |  |
| 15 Jun 2020 | 6:00 AM                   | 0.4            | ENE       |  |  |
| 15 Jun 2020 | 7:00 AM                   | 0              | NE        |  |  |

| June 2020                 |          |                |           |  |
|---------------------------|----------|----------------|-----------|--|
| Wind Speed and Directions |          |                |           |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |
| 15 Jun 2020               | 8:00 AM  | 0.9            | SSW       |  |
| 15 Jun 2020               | 9:00 AM  | 0.9            | SSW       |  |
| 15 Jun 2020               | 10:00 AM | 1.3            | S         |  |
| 15 Jun 2020               | 11:00 AM | 0.9            | ENE       |  |
| 15 Jun 2020               | 12:00 PM | 0.9            | ENE       |  |
| 15 Jun 2020               | 1:00 PM  | 3.6            | ENE       |  |
| 15 Jun 2020               | 2:00 PM  | 2.2            | ENE       |  |
| 15 Jun 2020               | 3:00 PM  | 1.3            | ENE       |  |
| 15 Jun 2020               | 4:00 PM  | 2.2            | SW        |  |
| 15 Jun 2020               | 5:00 PM  | 1.8            | SW        |  |
| 15 Jun 2020               | 6:00 PM  | 2.2            | SW        |  |
| 15 Jun 2020               | 7:00 PM  | 2.7            | SW        |  |
| 15 Jun 2020               | 8:00 PM  | 1.8            | SW        |  |
| 15 Jun 2020               | 9:00 PM  | 0.9            | SSW       |  |
| 15 Jun 2020               | 10:00 PM | 0.9            | SSW       |  |
| 15 Jun 2020               | 11:00 PM | 1.3            | SW        |  |
| 16 Jun 2020               | 12:00 AM | 1.3            | SW        |  |
| 16 Jun 2020               | 1:00 AM  | 0.9            | SW        |  |
| 16 Jun 2020               | 2:00 AM  | 0.9            | SW        |  |
| 16 Jun 2020               | 3:00 AM  | 1.3            | SW        |  |
| 16 Jun 2020               | 4:00 AM  | 0.4            | WSW       |  |
| 16 Jun 2020               | 5:00 AM  | 0.9            | ENE       |  |
| 16 Jun 2020               | 6:00 AM  | 0.4            | SSE       |  |
| 16 Jun 2020               | 7:00 AM  | 0.9            | ENE       |  |
| 16 Jun 2020               | 8:00 AM  | 0.9            | ENE       |  |
| 16 Jun 2020               | 9:00 AM  | 0.9            | ENE       |  |
| 16 Jun 2020               | 10:00 AM | 2.2            | ENE       |  |
| 16 Jun 2020               | 11:00 AM | 4              | ENE       |  |
| 16 Jun 2020               | 12:00 PM | 4.5            | ENE       |  |
| 16 Jun 2020               | 1:00 PM  | 4              | ENE       |  |
| 16 Jun 2020               | 2:00 PM  | 3.6            | ENE       |  |
| 16 Jun 2020               | 3:00 PM  | 2.7            | ENE       |  |
| 16 Jun 2020               | 4:00 PM  | 1.3            | ENE       |  |
| 16 Jun 2020               | 5:00 PM  | 2.2            | SW        |  |
| 16 Jun 2020               | 6:00 PM  | 3.6            | SW        |  |
| 16 Jun 2020               | 7:00 PM  | 1.3            | SW        |  |
| 16 Jun 2020               | 8:00 PM  | 0.9            | SW        |  |
| 16 Jun 2020               | 9:00 PM  | 0.4            | SW        |  |
| 16 Jun 2020               | 10:00 PM | 0.4            | SW        |  |
| 16 Jun 2020               | 11:00 PM | 0.4            | SW        |  |
| 17 Jun 2020               | 12:00 AM | 1.8            | SW        |  |
| 17 Jun 2020               | 1:00 AM  | 0.9            | SW        |  |
| 17 Jun 2020               | 2:00 AM  | 0              | SW        |  |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 17 Jun 2020 | 3:00 AM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 4:00 AM                   | 1.8            | SW        |  |  |
| 17 Jun 2020 | 5:00 AM                   | 0.4            | SW        |  |  |
| 17 Jun 2020 | 6:00 AM                   | 0.9            | SW        |  |  |
| 17 Jun 2020 | 7:00 AM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 8:00 AM                   | 0.9            | SW        |  |  |
| 17 Jun 2020 | 9:00 AM                   | 0.9            | SW        |  |  |
| 17 Jun 2020 | 10:00 AM                  | 0.9            | SW        |  |  |
| 17 Jun 2020 | 11:00 AM                  | 1.3            | SW        |  |  |
| 17 Jun 2020 | 12:00 PM                  | 1.3            | SW        |  |  |
| 17 Jun 2020 | 1:00 PM                   | 2.2            | SW        |  |  |
| 17 Jun 2020 | 2:00 PM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 3:00 PM                   | 0.9            | NE        |  |  |
| 17 Jun 2020 | 4:00 PM                   | 0.4            | SW        |  |  |
| 17 Jun 2020 | 5:00 PM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 6:00 PM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 7:00 PM                   | 1.3            | SW        |  |  |
| 17 Jun 2020 | 8:00 PM                   | 0.4            | NNE       |  |  |
| 17 Jun 2020 | 9:00 PM                   | 0.4            | NNE       |  |  |
| 17 Jun 2020 | 10:00 PM                  | 0.4            | SW        |  |  |
| 17 Jun 2020 | 11:00 PM                  | 0.9            | SW        |  |  |
| 18 Jun 2020 | 12:00 AM                  | 0.4            | SW        |  |  |
| 18 Jun 2020 | 1:00 AM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 2:00 AM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 3:00 AM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 4:00 AM                   | 0.4            | SSW       |  |  |
| 18 Jun 2020 | 5:00 AM                   | 0.4            | SW        |  |  |
| 18 Jun 2020 | 6:00 AM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 7:00 AM                   | 0.9            | Е         |  |  |
| 18 Jun 2020 | 8:00 AM                   | 0.4            | SW        |  |  |
| 18 Jun 2020 | 9:00 AM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 10:00 AM                  | 1.3            | SW        |  |  |
| 18 Jun 2020 | 11:00 AM                  | 0.9            | SW        |  |  |
| 18 Jun 2020 | 12:00 PM                  | 1.3            | SW        |  |  |
| 18 Jun 2020 | 1:00 PM                   | 1.8            | SW        |  |  |
| 18 Jun 2020 | 2:00 PM                   | 0.9            | ENE       |  |  |
| 18 Jun 2020 | 3:00 PM                   | 0.4            | ENE       |  |  |
| 18 Jun 2020 | 4:00 PM                   | 0.4            | SW        |  |  |
| 18 Jun 2020 | 5:00 PM                   | 0.9            | SW        |  |  |
| 18 Jun 2020 | 6:00 PM                   | 1.3            | ENE       |  |  |
| 18 Jun 2020 | 7:00 PM                   | 0.4            | ENE       |  |  |
| 18 Jun 2020 | 8:00 PM                   | 1.3            | ENE       |  |  |
| 18 Jun 2020 | 9:00 PM                   | 0.9            | SW        |  |  |

| June 2020                 |          |                |           |  |
|---------------------------|----------|----------------|-----------|--|
| Wind Speed and Directions |          |                |           |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |
| 18 Jun 2020               | 10:00 PM | 0.4            | SW        |  |
| 18 Jun 2020               | 11:00 PM | 0.4            | SW        |  |
| 19 Jun 2020               | 12:00 AM | 0.4            | SW        |  |
| 19 Jun 2020               | 1:00 AM  | 0.9            | SW        |  |
| 19 Jun 2020               | 2:00 AM  | 0              | SW        |  |
| 19 Jun 2020               | 3:00 AM  | 0.3            | ENE       |  |
| 19 Jun 2020               | 4:00 AM  | 0.8            | ENE       |  |
| 19 Jun 2020               | 5:00 AM  | 0.2            | ENE       |  |
| 19 Jun 2020               | 6:00 AM  | 0              | NE        |  |
| 19 Jun 2020               | 7:00 AM  | 0.9            | ENE       |  |
| 19 Jun 2020               | 8:00 AM  | 0.4            | NNE       |  |
| 19 Jun 2020               | 9:00 AM  | 0.9            | SW        |  |
| 19 Jun 2020               | 10:00 AM | 1.3            | SW        |  |
| 19 Jun 2020               | 11:00 AM | 0.4            | NNE       |  |
| 19 Jun 2020               | 12:00 PM | 0.9            | ENE       |  |
| 19 Jun 2020               | 1:00 PM  | 1.8            | SW        |  |
| 19 Jun 2020               | 2:00 PM  | 2.2            | SW        |  |
| 19 Jun 2020               | 3:00 PM  | 2.2            | SW        |  |
| 19 Jun 2020               | 4:00 PM  | 2.2            | SW        |  |
| 19 Jun 2020               | 5:00 PM  | 1.8            | SW        |  |
| 19 Jun 2020               | 6:00 PM  | 1.8            | SW        |  |
| 19 Jun 2020               | 7:00 PM  | 0.9            | SW        |  |
| 19 Jun 2020               | 8:00 PM  | 1.3            | SW        |  |
| 19 Jun 2020               | 9:00 PM  | 1.8            | SW        |  |
| 19 Jun 2020               | 10:00 PM | 0.9            | SW        |  |
| 19 Jun 2020               | 11:00 PM | 0.9            | SW        |  |
| 20 Jun 2020               | 12:00 AM | 0.4            | NNE       |  |
| 20 Jun 2020               | 1:00 AM  | 0              | ENE       |  |
| 20 Jun 2020               | 2:00 AM  | 0.4            | NNE       |  |
| 20 Jun 2020               | 3:00 AM  | 0.4            | NE        |  |
| 20 Jun 2020               | 4:00 AM  | 0.4            | N         |  |
| 20 Jun 2020               | 5:00 AM  | 0.9            | SW        |  |
| 20 Jun 2020               | 6:00 AM  | 1.3            | SW        |  |
| 20 Jun 2020               | 7:00 AM  | 0.9            | SW        |  |
| 20 Jun 2020               | 8:00 AM  | 1.3            | SW        |  |
| 20 Jun 2020               | 9:00 AM  | 0.9            | SW        |  |
| 20 Jun 2020               | 10:00 AM | 1.3            | ENE       |  |
| 20 Jun 2020               | 11:00 AM | 1.3            | ENE       |  |
| 20 Jun 2020               | 12:00 PM | 0.9            | ENE       |  |
| 20 Jun 2020               | 1:00 PM  | 1.3            | SW        |  |
| 20 Jun 2020               | 2:00 PM  | 1.8            | ENE       |  |
| 20 Jun 2020               | 3:00 PM  | 2.2            | ENE       |  |
| 20 Jun 2020               | 4:00 PM  | 3.1            | ENE       |  |

| June 2020                 |          |                |           |  |
|---------------------------|----------|----------------|-----------|--|
| Wind Speed and Directions |          |                |           |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |
| 20 Jun 2020               | 5:00 PM  | 3.1            | ENE       |  |
| 20 Jun 2020               | 6:00 PM  | PM 3.1         |           |  |
| 20 Jun 2020               | 7:00 PM  | 2.7            | ENE       |  |
| 20 Jun 2020               | 8:00 PM  | 0.9            | ENE       |  |
| 20 Jun 2020               | 9:00 PM  | 1.8            | SW        |  |
| 20 Jun 2020               | 10:00 PM | 0.9            | ENE       |  |
| 20 Jun 2020               | 11:00 PM | 0.4            | NNE       |  |
| 21 Jun 2020               | 12:00 AM | 0.4            | ENE       |  |
| 21 Jun 2020               | 1:00 AM  | 0.4            | ENE       |  |
| 21 Jun 2020               | 2:00 AM  | 0.4            | ENE       |  |
| 21 Jun 2020               | 3:00 AM  | 0.4            | SE        |  |
| 21 Jun 2020               | 4:00 AM  | 0.9            | ENE       |  |
| 21 Jun 2020               | 5:00 AM  | 1.3            | ENE       |  |
| 21 Jun 2020               | 6:00 AM  | 1.3            | ENE       |  |
| 21 Jun 2020               | 7:00 AM  | 0.9            | ENE       |  |
| 21 Jun 2020               | 8:00 AM  | 1.3            | ENE       |  |
| 21 Jun 2020               | 9:00 AM  | 1.3            | ENE       |  |
| 21 Jun 2020               | 10:00 AM | 1.8            | ENE       |  |
| 21 Jun 2020               | 11:00 AM | 2.2            | ENE       |  |
| 21 Jun 2020               | 12:00 PM | 3.1            | ENE       |  |
| 21 Jun 2020               | 1:00 PM  | 2.7            | ENE       |  |
| 21 Jun 2020               | 2:00 PM  | 3.1            | ENE       |  |
| 21 Jun 2020               | 3:00 PM  | 4.5            | ENE       |  |
| 21 Jun 2020               | 4:00 PM  | 4              | ENE       |  |
| 21 Jun 2020               | 5:00 PM  | 4              | ENE       |  |
| 21 Jun 2020               | 6:00 PM  | 4              | ENE       |  |
| 21 Jun 2020               | 7:00 PM  | 2.7            | ENE       |  |
| 21 Jun 2020               | 8:00 PM  | 2.7            | ENE       |  |
| 21 Jun 2020               | 9:00 PM  | 2.7            | ENE       |  |
| 21 Jun 2020               | 10:00 PM | 1.8            | ENE       |  |
| 21 Jun 2020               | 11:00 PM | 1.3            | ENE       |  |
| 22 Jun 2020               | 12:00 AM | 1.8            | ENE       |  |
| 22 Jun 2020               | 1:00 AM  | 1.3            | ENE       |  |
| 22 Jun 2020               | 2:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 3:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 4:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 5:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 6:00 AM  | 0.4            | ENE       |  |
| 22 Jun 2020               | 7:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 8:00 AM  | 0.9            | ENE       |  |
| 22 Jun 2020               | 9:00 AM  | 2.2            | ENE       |  |
| 22 Jun 2020               | 10:00 AM | 3.1            | ENE       |  |
| 22 Jun 2020               | 11:00 AM | 1.3            | NE        |  |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 22 Jun 2020 | 12:00 PM                  | 2.7            | ENE       |  |  |
| 22 Jun 2020 | 1:00 PM                   | 3.1            | ENE       |  |  |
| 22 Jun 2020 | 2:00 PM                   | 3.1            | ENE       |  |  |
| 22 Jun 2020 | 3:00 PM                   | 2.7            | ENE       |  |  |
| 22 Jun 2020 | 4:00 PM                   | 2.2            | ENE       |  |  |
| 22 Jun 2020 | 5:00 PM                   | 2.7            | ENE       |  |  |
| 22 Jun 2020 | 6:00 PM                   | 1.8            | ENE       |  |  |
| 22 Jun 2020 | 7:00 PM                   | 1.8            | ENE       |  |  |
| 22 Jun 2020 | 8:00 PM                   | 2.2            | ENE       |  |  |
| 22 Jun 2020 | 9:00 PM                   | 1.3            | ENE       |  |  |
| 22 Jun 2020 | 10:00 PM                  | 1.3            | ENE       |  |  |
| 22 Jun 2020 | 11:00 PM                  | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 12:00 AM                  | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 1:00 AM                   | 0.9            | NE        |  |  |
| 23 Jun 2020 | 2:00 AM                   | 0.9            | ENE       |  |  |
| 23 Jun 2020 | 3:00 AM                   | 0.9            | ENE       |  |  |
| 23 Jun 2020 | 4:00 AM                   | 0.9            | ENE       |  |  |
| 23 Jun 2020 | 5:00 AM                   | 0.4            | ENE       |  |  |
| 23 Jun 2020 | 6:00 AM                   | 0.4            | NNE       |  |  |
| 23 Jun 2020 | 7:00 AM                   | 0.4            | NE        |  |  |
| 23 Jun 2020 | 8:00 AM                   | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 9:00 AM                   | 1.3            | NE        |  |  |
| 23 Jun 2020 | 10:00 AM                  | 0.9            | NNE       |  |  |
| 23 Jun 2020 | 11:00 AM                  | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 12:00 PM                  | 0.9            | SW        |  |  |
| 23 Jun 2020 | 1:00 PM                   | 0.9            | ENE       |  |  |
| 23 Jun 2020 | 2:00 PM                   | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 3:00 PM                   | 1.3            | ESE       |  |  |
| 23 Jun 2020 | 4:00 PM                   | 1.3            | Е         |  |  |
| 23 Jun 2020 | 5:00 PM                   | 0.9            | Е         |  |  |
| 23 Jun 2020 | 6:00 PM                   | 1.3            | SW        |  |  |
| 23 Jun 2020 | 7:00 PM                   | 0.9            | SW        |  |  |
| 23 Jun 2020 | 8:00 PM                   | 0.9            | Е         |  |  |
| 23 Jun 2020 | 9:00 PM                   | 0.4            | ENE       |  |  |
| 23 Jun 2020 | 10:00 PM                  | 1.3            | ENE       |  |  |
| 23 Jun 2020 | 11:00 PM                  | 1.8            | ENE       |  |  |
| 24 Jun 2020 | 12:00 AM                  | 0.9            | ENE       |  |  |
| 24 Jun 2020 | 1:00 AM                   | 0.9            | SW        |  |  |
| 24 Jun 2020 | 2:00 AM                   | 0.9            | SW        |  |  |
| 24 Jun 2020 | 3:00 AM                   | 0.4            | SW        |  |  |
| 24 Jun 2020 | 4:00 AM                   | 0.4            | SW        |  |  |
| 24 Jun 2020 | 5:00 AM                   | 0.9            | SW        |  |  |
| 24 Jun 2020 | 6:00 AM                   | 1.3            | SW        |  |  |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 24 Jun 2020 | 7:00 AM                   | 1.3            | SW        |  |  |
| 24 Jun 2020 | 8:00 AM                   | 1.3            | SW        |  |  |
| 24 Jun 2020 | 9:00 AM                   | 0.9            | SW        |  |  |
| 24 Jun 2020 | 10:00 AM                  | 1.3            | SW        |  |  |
| 24 Jun 2020 | 11:00 AM                  | 3.1            | SW        |  |  |
| 24 Jun 2020 | 12:00 PM                  | 2.7            | SW        |  |  |
| 24 Jun 2020 | 1:00 PM                   | 3.1            | SW        |  |  |
| 24 Jun 2020 | 2:00 PM                   | 2.2            | SW        |  |  |
| 24 Jun 2020 | 3:00 PM                   | 2.7            | SW        |  |  |
| 24 Jun 2020 | 4:00 PM                   | 2.2            | SW        |  |  |
| 24 Jun 2020 | 5:00 PM                   | 2.2            | SW        |  |  |
| 24 Jun 2020 | 6:00 PM                   | 2.7            | SW        |  |  |
| 24 Jun 2020 | 7:00 PM                   | 0.9            | SW        |  |  |
| 24 Jun 2020 | 8:00 PM                   | 1.3            | ENE       |  |  |
| 24 Jun 2020 | 9:00 PM                   | 1.3            | ENE       |  |  |
| 24 Jun 2020 | 10:00 PM                  | 0.9            | ENE       |  |  |
| 24 Jun 2020 | 11:00 PM                  | 0.9            | SW        |  |  |
| 25 Jun 2020 | 12:00 AM                  | 1.8            | SW        |  |  |
| 25 Jun 2020 | 1:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 2:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 3:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 4:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 5:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 6:00 AM                   | 0.9            | SW        |  |  |
| 25 Jun 2020 | 7:00 AM                   | 1.8            | SW        |  |  |
| 25 Jun 2020 | 8:00 AM                   | 1.8            | SW        |  |  |
| 25 Jun 2020 | 9:00 AM                   | 1.8            | SW        |  |  |
| 25 Jun 2020 | 10:00 AM                  | 2.2            | SW        |  |  |
| 25 Jun 2020 | 11:00 AM                  | 0.9            | ESE       |  |  |
| 25 Jun 2020 | 12:00 PM                  | 1.3            | ESE       |  |  |
| 25 Jun 2020 | 1:00 PM                   | 1.3            | ESE       |  |  |
| 25 Jun 2020 | 2:00 PM                   | 1.8            | SW        |  |  |
| 25 Jun 2020 | 3:00 PM                   | 2.2            | SW        |  |  |
| 25 Jun 2020 | 4:00 PM                   | 2.7            | SW        |  |  |
| 25 Jun 2020 | 5:00 PM                   | 2.7            | SW        |  |  |
| 25 Jun 2020 | 6:00 PM                   | 3.1            | SW        |  |  |
| 25 Jun 2020 | 7:00 PM                   | 2.7            | SW        |  |  |
| 25 Jun 2020 | 8:00 PM                   | 0.9            | ENE       |  |  |
| 25 Jun 2020 | 9:00 PM                   | 0.9            | ENE       |  |  |
| 25 Jun 2020 | 10:00 PM                  | 1.3            | ENE       |  |  |
| 25 Jun 2020 | 11:00 PM                  | 0.9            | ENE       |  |  |
| 26 Jun 2020 | 12:00 AM                  | 1.3            | NE        |  |  |
| 26 Jun 2020 | 1:00 AM                   | 0.4            | ENE       |  |  |

| June 2020                 |          |                |           |  |
|---------------------------|----------|----------------|-----------|--|
| Wind Speed and Directions |          |                |           |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |
| 26 Jun 2020               | 2:00 AM  | 0.9            | NNE       |  |
| 26 Jun 2020               | 3:00 AM  | 0.9            | ENE       |  |
| 26 Jun 2020               | 4:00 AM  | 0.4            | ESE       |  |
| 26 Jun 2020               | 5:00 AM  | 1.3            | SW        |  |
| 26 Jun 2020               | 6:00 AM  | 0.9            | SW        |  |
| 26 Jun 2020               | 7:00 AM  | 0.9            | NE        |  |
| 26 Jun 2020               | 8:00 AM  | 1.3            | NE        |  |
| 26 Jun 2020               | 9:00 AM  | 2.2            | SW        |  |
| 26 Jun 2020               | 10:00 AM | 0.4            | ENE       |  |
| 26 Jun 2020               | 11:00 AM | 0.4            | NE        |  |
| 26 Jun 2020               | 12:00 PM | 0.4            | ENE       |  |
| 26 Jun 2020               | 1:00 PM  | 0.9            | ENE       |  |
| 26 Jun 2020               | 2:00 PM  | 1.8            | ENE       |  |
| 26 Jun 2020               | 3:00 PM  | 0.9            | SW        |  |
| 26 Jun 2020               | 4:00 PM  | 0.4            | Е         |  |
| 26 Jun 2020               | 5:00 PM  | 0.9            | ENE       |  |
| 26 Jun 2020               | 6:00 PM  | 2.7            | ENE       |  |
| 26 Jun 2020               | 7:00 PM  | 1.3            | ENE       |  |
| 26 Jun 2020               | 8:00 PM  | 1.3            | ENE       |  |
| 26 Jun 2020               | 9:00 PM  | 0.9            | ENE       |  |
| 26 Jun 2020               | 10:00 PM | 0.9            | SSW       |  |
| 26 Jun 2020               | 11:00 PM | 1.3            | NNE       |  |
| 27 Jun 2020               | 12:00 AM | 1.3            | NNE       |  |
| 27 Jun 2020               | 1:00 AM  | 1.3            | NNE       |  |
| 27 Jun 2020               | 2:00 AM  | 1.8            | NNE       |  |
| 27 Jun 2020               | 3:00 AM  | 1.8            | NNE       |  |
| 27 Jun 2020               | 4:00 AM  | 1.3            | NNE       |  |
| 27 Jun 2020               | 5:00 AM  | 1.8            | NE        |  |
| 27 Jun 2020               | 6:00 AM  | 1.8            | NNE       |  |
| 27 Jun 2020               | 7:00 AM  | 1.8            | NNE       |  |
| 27 Jun 2020               | 8:00 AM  | 2.2            | NNE       |  |
| 27 Jun 2020               | 9:00 AM  | 2.2            | NNE       |  |
| 27 Jun 2020               | 10:00 AM | 2.2            | NNE       |  |
| 27 Jun 2020               | 11:00 AM | 1.8            | NNE       |  |
| 27 Jun 2020               | 12:00 PM | 2.2            | NNE       |  |
| 27 Jun 2020               | 1:00 PM  | 1.8            | NE        |  |
| 27 Jun 2020               | 2:00 PM  | 1.8            | NNE       |  |
| 27 Jun 2020               | 3:00 PM  | 2.2            | NNE       |  |
| 27 Jun 2020               | 4:00 PM  | 2.2            | NNE       |  |
| 27 Jun 2020               | 5:00 PM  | 2.7            | NNE       |  |
| 27 Jun 2020               | 6:00 PM  | 2.7            | NE        |  |
| 27 Jun 2020               | 7:00 PM  | 2.7            | NE        |  |
| 27 Jun 2020               | 8:00 PM  | 2.2            | NNE       |  |

| June 2020                 |          |                |           |  |
|---------------------------|----------|----------------|-----------|--|
| Wind Speed and Directions |          |                |           |  |
| Date                      | Time     | Wind Speed m-s | Direction |  |
| 27 Jun 2020               | 9:00 PM  | 2.7            | NNE       |  |
| 27 Jun 2020               | 10:00 PM | 00 PM 2.7      |           |  |
| 27 Jun 2020               | 11:00 PM | 2.2            | NNE       |  |
| 28 Jun 2020               | 12:00 AM | 1.8            | NE        |  |
| 28 Jun 2020               | 1:00 AM  | 1.3            | NNE       |  |
| 28 Jun 2020               | 2:00 AM  | 1.8            | NNE       |  |
| 28 Jun 2020               | 3:00 AM  | 1.3            | SSE       |  |
| 28 Jun 2020               | 4:00 AM  | 2.2            | NNE       |  |
| 28 Jun 2020               | 5:00 AM  | 2.2            | NNE       |  |
| 28 Jun 2020               | 6:00 AM  | 2.2            | NNE       |  |
| 28 Jun 2020               | 7:00 AM  | 2.2            | NNE       |  |
| 28 Jun 2020               | 8:00 AM  | 1.8            | NE        |  |
| 28 Jun 2020               | 9:00 AM  | 1.8            | SSW       |  |
| 28 Jun 2020               | 10:00 AM | 2.7            | NNE       |  |
| 28 Jun 2020               | 11:00 AM | 2.2            | SW        |  |
| 28 Jun 2020               | 12:00 PM | 2.2            | W         |  |
| 28 Jun 2020               | 1:00 PM  | 2.7            | W         |  |
| 28 Jun 2020               | 2:00 PM  | 3.1            | W         |  |
| 28 Jun 2020               | 3:00 PM  | 3.1            | W         |  |
| 28 Jun 2020               | 4:00 PM  | 3.6            | W         |  |
| 28 Jun 2020               | 5:00 PM  | 2.2            | WNW       |  |
| 28 Jun 2020               | 6:00 PM  | 3.1            | W         |  |
| 28 Jun 2020               | 7:00 PM  | 2.7            | W         |  |
| 28 Jun 2020               | 8:00 PM  | 2.7            | W         |  |
| 28 Jun 2020               | 9:00 PM  | 2.2            | W         |  |
| 28 Jun 2020               | 10:00 PM | 2.7            | WNW       |  |
| 28 Jun 2020               | 11:00 PM | 2.2            | W         |  |
| 29 Jun 2020               | 12:00 AM | 2.2            | W         |  |
| 29 Jun 2020               | 1:00 AM  | 1.8            | W         |  |
| 29 Jun 2020               | 2:00 AM  | 1.8            | WNW       |  |
| 29 Jun 2020               | 3:00 AM  | 2.2            | W         |  |
| 29 Jun 2020               | 4:00 AM  | 2.7            | WNW       |  |
| 29 Jun 2020               | 5:00 AM  | 2.2            | W         |  |
| 29 Jun 2020               | 6:00 AM  | 2.7            | W         |  |
| 29 Jun 2020               | 7:00 AM  | 2.7            | W         |  |
| 29 Jun 2020               | 8:00 AM  | 3.6            | NW        |  |
| 29 Jun 2020               | 9:00 AM  | 2.2            | WNW       |  |
| 29 Jun 2020               | 10:00 AM | 2.2            | W         |  |
| 29 Jun 2020               | 11:00 AM | 2.7            | W         |  |
| 29 Jun 2020               | 12:00 PM | 2.2            | WNW       |  |
| 29 Jun 2020               | 1:00 PM  | 0              |           |  |
| 29 Jun 2020               | 2:00 PM  | 1.8            | ENE       |  |
| 29 Jun 2020               | 3:00 PM  | 1.8            | NE        |  |

| June 2020   |                           |                |           |  |  |
|-------------|---------------------------|----------------|-----------|--|--|
|             | Wind Speed and Directions |                |           |  |  |
| Date        | Time                      | Wind Speed m-s | Direction |  |  |
| 29 Jun 2020 | 4:00 PM                   | 2.2            | NE        |  |  |
| 29 Jun 2020 | 5:00 PM                   | 2.2            | NE        |  |  |
| 29 Jun 2020 | 6:00 PM                   | 2.7            | NNE       |  |  |
| 29 Jun 2020 | 7:00 PM                   | 2.7            | N         |  |  |
| 29 Jun 2020 | 8:00 PM                   | 2.7            | NNE       |  |  |
| 29 Jun 2020 | 9:00 PM                   | 2.2            | NNE       |  |  |
| 29 Jun 2020 | 10:00 PM                  | 2.7            | NNE       |  |  |
| 29 Jun 2020 | 11:00 PM                  | 2.7            | NNE       |  |  |
| 30 Jun 2020 | 12:00 AM                  | 2.2            | NNE       |  |  |
| 30 Jun 2020 | 1:00 AM                   | 1.8            | NNE       |  |  |
| 30 Jun 2020 | 2:00 AM                   | 1.3            | NNE       |  |  |
| 30 Jun 2020 | 3:00 AM                   | 1.8            | N         |  |  |
| 30 Jun 2020 | 4:00 AM                   | 1.3            | NNE       |  |  |
| 30 Jun 2020 | 5:00 AM                   | 2.2            | NNE       |  |  |
| 30 Jun 2020 | 6:00 AM                   | 2.2            | NE        |  |  |
| 30 Jun 2020 | 7:00 AM                   | 2.2            | ENE       |  |  |
| 30 Jun 2020 | 8:00 AM                   | 2.2            | NE        |  |  |
| 30 Jun 2020 | 9:00 AM                   | 1.8            | NNE       |  |  |
| 30 Jun 2020 | 10:00 AM                  | 1.8            | NNE       |  |  |
| 30 Jun 2020 | 11:00 AM                  | 2.7            | NE        |  |  |
| 30 Jun 2020 | 12:00 PM                  | 2.2            | WNW       |  |  |
| 30 Jun 2020 | 1:00 PM                   | 2.2            | NE        |  |  |
| 30 Jun 2020 | 2:00 PM                   | 0.4            | NE        |  |  |
| 30 Jun 2020 | 3:00 PM                   | 0.9            | NE        |  |  |
| 30 Jun 2020 | 4:00 PM                   | 0.4            | NE        |  |  |
| 30 Jun 2020 | 5:00 PM                   | 0.4            | NNE       |  |  |
| 30 Jun 2020 | 6:00 PM                   | 0.4            | NNE       |  |  |
| 30 Jun 2020 | 7:00 PM                   | 0.4            | NNE       |  |  |
| 30 Jun 2020 | 8:00 PM                   | 0.4            | NE        |  |  |
| 30 Jun 2020 | 9:00 PM                   | 0              | ENE       |  |  |
| 30 Jun 2020 | 10:00 PM                  | 0.4            | NNE       |  |  |
| 30 Jun 2020 | 11:00 PM                  | 0              | ENE       |  |  |

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

### Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Impact Air and Noise Monitoring Schedule (June 2020)

| Sunday | Monday               | Tuesday              | Wednesday            | Thursday             | Friday      | Saturday   |
|--------|----------------------|----------------------|----------------------|----------------------|-------------|------------|
|        | 1-Jun                | 2-Jun                | 3-Jun                | 4-Jun                | 5-Jun       | 6-Jun      |
|        |                      |                      |                      | 1-hr TSP X3<br>Noise |             |            |
|        |                      |                      | 24-hrs TSP           |                      |             |            |
| 7-Jun  | 8-Jun                | 9-Jun                | 10-Jun               | 11-Jun               | 12-Jun      | 13-Jun     |
|        |                      |                      | 1-hr TSP X3<br>Noise |                      |             |            |
|        |                      | 24-hrs TSP           |                      |                      |             |            |
| 14-Jun | 15-Jun               | 16-Jun               | 17-Jun               | 18-Jun               | 19-Jun      | 20-Jun     |
|        |                      | 1-hr TSP X3<br>Noise |                      |                      |             |            |
|        | 24-hrs TSP           |                      |                      |                      |             | 24-hrs TSP |
| 21-Jun | 22-Jun               | 23-Jun               | 24-Jun               | 25-Jun               | 26-Jun      | 27-Jun     |
|        | 1-hr TSP X3<br>Noise |                      |                      |                      | 1-hr TSP X3 |            |
|        |                      |                      | 24-hrs TSP           |                      |             |            |
| 28-Jun | 29-Jun               | 30-Jun               |                      |                      |             |            |
|        |                      |                      |                      |                      |             |            |
|        |                      | 24-hrs TSP           |                      |                      |             |            |

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)

### Air Quality Monitoring Station

1-hr TSP / 24-hrs TSP

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4<sup>(1)</sup> - Sitting-out Area at Cha Kwo Ling Village

AM4(A)<sup>(2)</sup> - Cha Kwo Ling Public Cargo Working Area Administrative Office

#### Noise Monitoring Station

Daytime noise measurement(07:00-19:00)

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

Notes: (1) For 1-hour TSP monitoring; (2) For 24-hours TSP monitoring

# Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Tentative Impact Air and Noise Monitoring Schedule (July 2020)

| Sunday | Monday               | Tuesday              | Wednesday            | Thursday             | Friday      | Saturday   |
|--------|----------------------|----------------------|----------------------|----------------------|-------------|------------|
|        |                      |                      | 1-Jul                | 2-Jul                | 3-Jul       | 4-Jul      |
|        |                      |                      |                      | 1-hr TSP X3<br>Noise |             |            |
| 5-Jul  | 6-Jul                | 7-Jul                | 8-Jul                | 9-Jul                | 10-Jul      | 11-Jul     |
|        |                      |                      | 1-hr TSP X3<br>Noise |                      |             |            |
|        | 24-hrs TSP           |                      |                      |                      |             | 24-hrs TSP |
| 12-Jul | 13-Jul               | 14-Jul               | 15-Jul               | 16-Jul               | 17-Jul      | 18-Jul     |
|        |                      | 1-hr TSP X3<br>Noise |                      |                      |             |            |
|        |                      |                      |                      |                      | 24-hrs TSP  |            |
| 19-Jul | 20-Jul               | 21-Jul               | 22-Jul               | 23-Jul               | 24-Jul      | 25-Jul     |
|        | 1-hr TSP X3<br>Noise |                      |                      |                      | 1-hr TSP X3 |            |
|        |                      |                      |                      | 24-hrs TSP           |             |            |
| 26-Jul | 27-Jul               | ` 28-Jul             | 29-Jul               | 30-Jul               | 31-Jul      |            |
|        |                      |                      |                      | 1-hr TSP X3<br>Noise |             |            |
|        |                      |                      | 24-hrs TSP           |                      |             |            |

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)

#### Air Quality Monitoring Station

1-hr TSP / 24-hrs TSP

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4<sup>(1)</sup> - Sitting-out Area at Cha Kwo Ling Village

AM4(A)<sup>(2)</sup> - Cha Kwo Ling Public Cargo Working Area Administrative Office

#### Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

Notes: (1) For 1-hour TSP monitoring; (2) For 24-hours TSP monitoring

### Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Tentative Impact Air and Noise Monitoring Schedule (August 2020)

| Sunday | Monday               | Tuesday              | Wednesday            | Thursday    | Friday      | Saturday   |
|--------|----------------------|----------------------|----------------------|-------------|-------------|------------|
| v      | •                    | •                    | ·                    | •           | Ž           | 1-Aug      |
|        |                      |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
| 2-Aug  | 3-Aug                | 4-Aug                | 5-Aug                | 6-Aug       | 7-Aug       | 8-Aug      |
|        |                      | 1-hr TSP X3<br>Noise |                      |             |             |            |
|        | 24-hrs TSP           |                      |                      |             |             | 24-hrs TSP |
| 9-Aug  | 10-Aug               | 11-Aug               | 12-Aug               | 13-Aug      | 14-Aug      | 15-Aug     |
|        | 1.1 TOD V2           |                      |                      |             | 1.1 TCD V2  |            |
|        | 1-hr TSP X3<br>Noise |                      |                      |             | 1-hr TSP X3 |            |
|        | Noise                |                      |                      |             |             |            |
|        |                      |                      |                      |             | 24-hrs TSP  |            |
|        |                      |                      |                      |             |             |            |
| 16-Aug | 17-Aug               | 18-Aug               | 19-Aug               | 20-Aug      | 21-Aug      | 22-Aug     |
|        |                      |                      |                      | 1-hr TSP X3 |             |            |
|        |                      |                      |                      | Noise       |             |            |
|        |                      |                      |                      |             |             |            |
|        |                      |                      | 24-hrs TSP           |             |             |            |
| 23-Aug | 24-Aug               | 25-Aug               | 26-Aug               | 27-Aug      | 28-Aug      | 29-Aug     |
| 25-Aug | 24-Aug               | 25-Aug               | 20-Aug               | 21-Aug      | Zo-Aug      | 29-Aug     |
|        |                      |                      | 1-hr TSP X3<br>Noise |             |             |            |
|        |                      | 24-hrs TSP           |                      |             |             |            |
|        |                      | 24-1118 131          |                      |             |             |            |
| 30-Aug | 31-Aug               |                      |                      |             |             |            |
|        | S                    |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |
|        | 24-hrs TSP           |                      |                      |             |             |            |
|        |                      |                      |                      |             |             |            |

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)

#### Air Quality Monitoring Station

1-hr TSP / 24-hrs TSP

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4<sup>(1)</sup> - Sitting-out Area at Cha Kwo Ling Village

AM4(A)(2) - Cha Kwo Ling Public Cargo Working Area Administrative Office

#### Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

# Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Tentative Impact Air and Noise Monitoring Schedule (September 2020)

| Sunday | Monday               | Tuesday              | Wednesday            | Thursday             | Friday      | Saturday |
|--------|----------------------|----------------------|----------------------|----------------------|-------------|----------|
|        |                      | 1-Sep                | 2-Sep                | 3-Sep                | 4-Sep       | 5-Sep    |
|        |                      | 1-hr TSP X3<br>Noise |                      |                      |             |          |
|        |                      |                      |                      |                      | 24-hrs TSP  |          |
| 6-Sep  | 7-Sep                | 8-Sep                | 9-Sep                | 10-Sep               | 11-Sep      | 12-Sep   |
|        | 1-hr TSP X3<br>Noise |                      |                      |                      | 1-hr TSP X3 |          |
|        |                      |                      |                      | 24-hrs TSP           |             |          |
| 13-Sep | 14-Sep               | 15-Sep               | 16-Sep               | 17-Sep               | 18-Sep      | 19-Sep   |
|        |                      |                      |                      | 1-hr TSP X3<br>Noise |             |          |
|        |                      |                      | 24-hrs TSP           |                      |             |          |
| 20-Sep | 21-Sep               | 22-Sep               | 23-Sep               | 24-Sep               | 25-Sep      | 26-Sep   |
|        |                      |                      | 1-hr TSP X3<br>Noise |                      |             |          |
|        |                      | 24-hrs TSP           |                      |                      |             |          |
| 27-Sep | 28-Sep               | 29-Sep               | 30-Sep               |                      |             |          |
|        |                      | 1-hr TSP X3<br>Noise |                      |                      |             |          |
|        | 24-hrs TSP           |                      |                      |                      |             |          |

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)

#### Air Quality Monitoring Station

1-hr TSP / 24-hrs TSP

AM1 - Tin Hau Temple

AM2 - Sai Tso Wan Recreation Ground

AM3 - Yau Lai Estate Bik Lai House

AM4<sup>(1)</sup> - Sitting-out Area at Cha Kwo Ling Village

AM4(A)<sup>(2)</sup> - Cha Kwo Ling Public Cargo Working Area Administrative Office

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong

CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

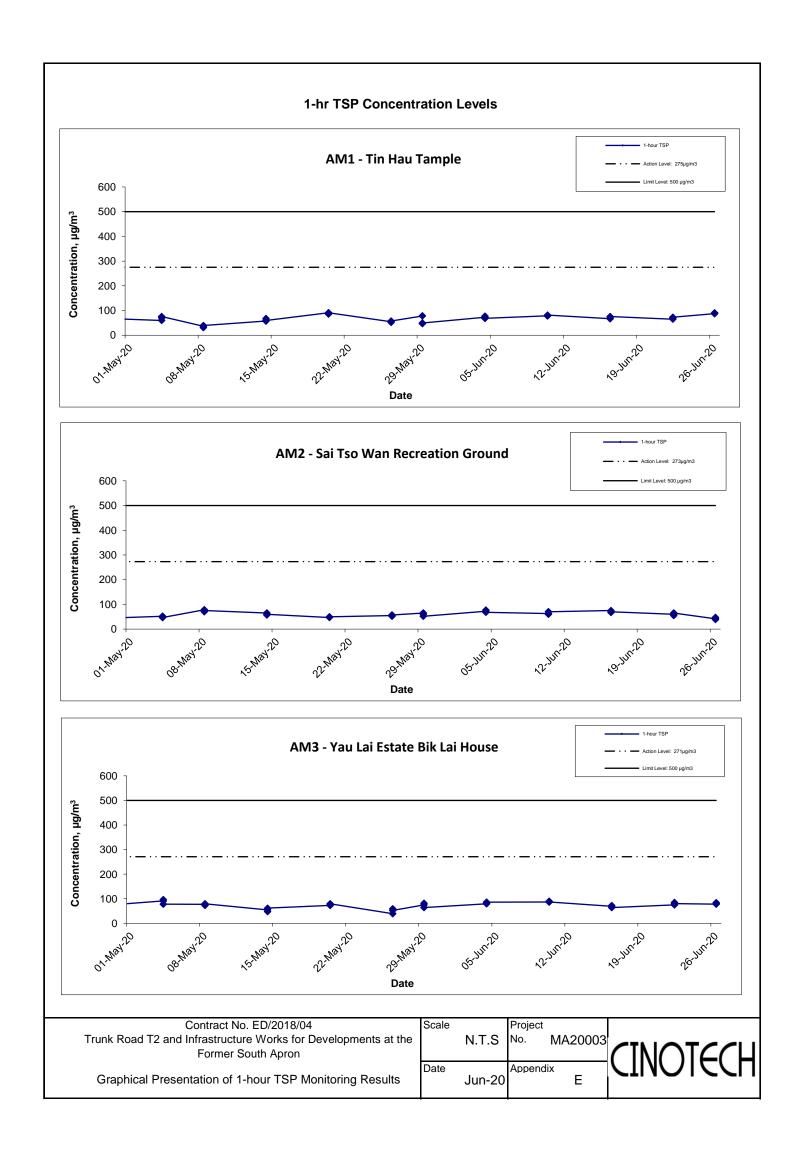
CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

CM4 - Tin Hau Temple, Cha Kwo Ling

CM5 - CCC Kei Faat Primary School, Yau Tong

Notes: (1) For 1-hour TSP monitoring; (2) For 24-hours TSP monitoring

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS


| Location AM1 - | Tin Hau Ter | nple    |                                    |
|----------------|-------------|---------|------------------------------------|
| Date           | Time        | Weather | Particulate Concentration ( µg/m³) |
| 4-Jun-20       | 9:00        | Sunny   | 72.6                               |
| 4-Jun-20       | 10:00       | Sunny   | 77.0                               |
| 4-Jun-20       | 11:00       | Sunny   | 68.2                               |
| 10-Jun-20      | 9:00        | Sunny   | 78.3                               |
| 10-Jun-20      | 10:00       | Sunny   | 78.3                               |
| 10-Jun-20      | 11:00       | Sunny   | 81.2                               |
| 16-Jun-20      | 16:00       | Sunny   | 66.7                               |
| 16-Jun-20      | 17:00       | Sunny   | 69.6                               |
| 16-Jun-20      | 18:00       | Sunny   | 75.4                               |
| 22-Jun-20      | 9:00        | Sunny   | 65.0                               |
| 22-Jun-20      | 10:00       | Sunny   | 70.0                               |
| 22-Jun-20      | 11:00       | Sunny   | 72.5                               |
| 26-Jun-20      | 9:00        | Sunny   | 87.0                               |
| 26-Jun-20      | 10:00       | Sunny   | 89.9                               |
| 26-Jun-20      | 11:00       | Sunny   | 89.9                               |
|                | _           | Average | 76.1                               |
|                |             | Maximum | 89.9                               |
|                |             | Minimum | 65.0                               |

| Date      | Time  | Weather | Particulate Concentration ( μg/m <sup>3</sup> ) |
|-----------|-------|---------|-------------------------------------------------|
| 4-Jun-20  | 13:00 | Sunny   | 72.6                                            |
| 4-Jun-20  | 14:00 | Sunny   | 77.0                                            |
| 4-Jun-20  | 15:00 | Sunny   | 68.2                                            |
| 10-Jun-20 | 9:00  | Sunny   | 62.5                                            |
| 10-Jun-20 | 10:00 | Sunny   | 60.0                                            |
| 10-Jun-20 | 11:00 | Sunny   | 70.0                                            |
| 16-Jun-20 | 9:00  | Sunny   | 75.0                                            |
| 16-Jun-20 | 10:00 | Sunny   | 67.5                                            |
| 16-Jun-20 | 11:00 | Sunny   | 70.0                                            |
| 22-Jun-20 | 16:00 | Sunny   | 60.0                                            |
| 22-Jun-20 | 17:00 | Sunny   | 55.0                                            |
| 22-Jun-20 | 18:00 | Sunny   | 65.0                                            |
| 26-Jun-20 | 9:00  | Sunny   | 41.6                                            |
| 26-Jun-20 | 10:00 | Sunny   | 39.0                                            |
| 26-Jun-20 | 11:00 | Sunny   | 46.8                                            |
|           |       | Average | 62.0                                            |
|           |       | Maximum | 77.0                                            |
|           |       | Minimum | 39.0                                            |

| Date      | Time  | Weather | Particulate Concentration ( μg/m <sup>3</sup> ) |
|-----------|-------|---------|-------------------------------------------------|
| 4-Jun-20  | 16:00 | Sunny   | 79.2                                            |
| 4-Jun-20  | 17:00 | Sunny   | 81.4                                            |
| 4-Jun-20  | 18:00 | Sunny   | 85.8                                            |
| 10-Jun-20 | 16:00 | Sunny   | 87.0                                            |
| 10-Jun-20 | 17:00 | Sunny   | 89.9                                            |
| 10-Jun-20 | 18:00 | Sunny   | 87.0                                            |
| 16-Jun-20 | 9:00  | Sunny   | 69.6                                            |
| 16-Jun-20 | 10:00 | Sunny   | 72.5                                            |
| 16-Jun-20 | 11:00 | Sunny   | 63.8                                            |
| 22-Jun-20 | 13:00 | Sunny   | 75.0                                            |
| 22-Jun-20 | 14:00 | Sunny   | 85.0                                            |
| 22-Jun-20 | 15:00 | Sunny   | 80.0                                            |
| 26-Jun-20 | 16:00 | Sunny   | 78.3                                            |
| 26-Jun-20 | 17:00 | Sunny   | 81.2                                            |
| 26-Jun-20 | 18:00 | Sunny   | 84.1                                            |
|           |       | Average | 80.0                                            |
|           |       | Maximum | 89.9                                            |
|           |       | Minimum | 63.8                                            |

| Date      | Time  | Weather | Particulate Concentration ( μg/m <sup>3</sup> ) |
|-----------|-------|---------|-------------------------------------------------|
| 4-Jun-20  | 13:00 | Sunny   | 55.0                                            |
| 4-Jun-20  | 14:00 | Sunny   | 50.6                                            |
| 4-Jun-20  | 15:00 | Sunny   | 57.2                                            |
| 10-Jun-20 | 9:00  | Sunny   | 66.7                                            |
| 10-Jun-20 | 10:00 | Sunny   | 75.4                                            |
| 10-Jun-20 | 11:00 | Sunny   | 78.3                                            |
| 16-Jun-20 | 13:00 | Sunny   | 78.3                                            |
| 16-Jun-20 | 14:00 | Sunny   | 81.2                                            |
| 16-Jun-20 | 15:00 | Sunny   | 78.3                                            |
| 22-Jun-20 | 16:00 | Sunny   | 67.6                                            |
| 22-Jun-20 | 17:00 | Sunny   | 78.0                                            |
| 22-Jun-20 | 18:00 | Sunny   | 75.4                                            |
| 26-Jun-20 | 13:00 | Sunny   | 81.2                                            |
| 26-Jun-20 | 14:00 | Sunny   | 84.1                                            |
| 26-Jun-20 | 15:00 | Sunny   | 89.9                                            |
|           |       | Average | 73.1                                            |
|           |       | Maximum | 89.9                                            |
|           |       | Minimum | 50.6                                            |

MA16034/App E - 1hr TSP



### 1-hr TSP Concentration Levels



### Notes:

- 1. The major activitie(s) being carried out on site during the reporting period is/are presented in Section 1.10
- 2. The weather conditions during the reporting month are presented in Appendix C.
- 3. Other factors which might affect the monitoring results are presented in Section 2.17.

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

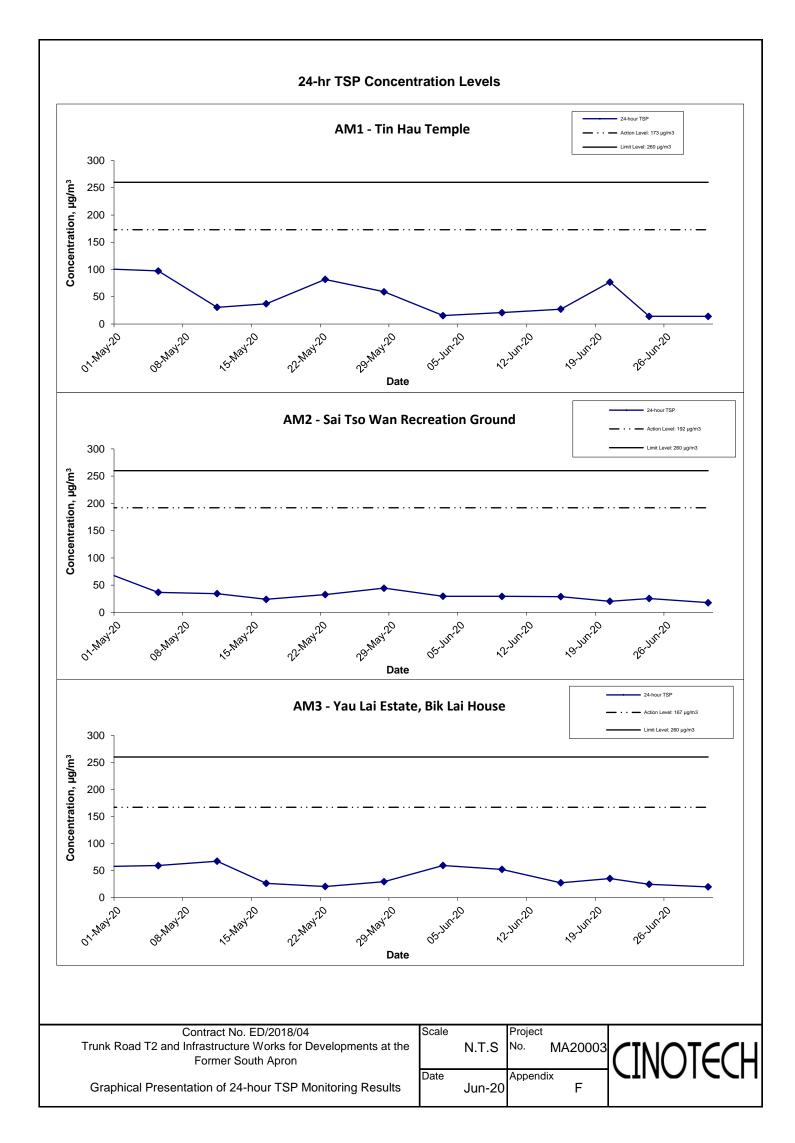
# **Appendix F - 24-hour TSP Monitoring Results**

# Location AM1 - Tin Hau Temple

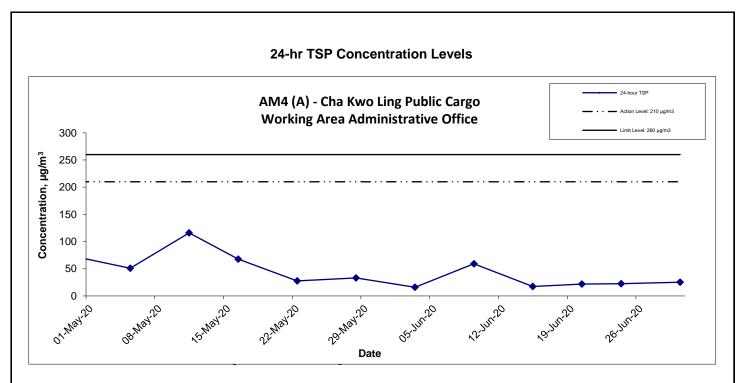
| Start Date | Weather   | Air       | Atmospheric         | Filter W | eight (g) | Particulate | Elapse  | e Time | Sampling   | Flow Rate | e (m³/min.) | Av. flow              | Total vol.        | Conc.                |
|------------|-----------|-----------|---------------------|----------|-----------|-------------|---------|--------|------------|-----------|-------------|-----------------------|-------------------|----------------------|
| Start Date | Condition | Temp. (K) | Pressure, Pa (mmHg) | Initial  | Final     | Weight (g)  | Initial | Final  | Time(hrs.) | Initial   | Final       | (m <sup>3</sup> /min) | (m <sup>3</sup> ) | (µg/m <sup>3</sup> ) |
| 3-Jun-20   | Sunny     | 303.0     | 757.2               | 3.5019   | 3.5284    | 0.0265      | 6918.6  | 6942.6 | 24.0       | 1.19      | 1.19        | 1.19                  | 1719.5            | 15.4                 |
| 9-Jun-20   | Sunny     | 302.6     | 757.4               | 3.4946   | 3.5305    | 0.0359      | 6942.6  | 6966.6 | 24.0       | 1.20      | 1.19        | 1.19                  | 1720.6            | 20.9                 |
| 15-Jun-20  | Sunny     | 302.0     | 758.8               | 3.5283   | 3.5761    | 0.0478      | 6966.6  | 6990.6 | 24.0       | 1.22      | 1.22        | 1.22                  | 1755.8            | 27.2                 |
| 20-Jun-20  | Sunny     | 302.7     | 757.6               | 3.4866   | 3.6214    | 0.1348      | 6990.6  | 7014.6 | 24.0       | 1.22      | 1.22        | 1.22                  | 1752.2            | 76.9                 |
| 24-Jun-20  | Sunny     | 303.3     | 755.8               | 3.4760   | 3.5007    | 0.0247      | 7014.6  | 7038.6 | 24.0       | 1.21      | 1.21        | 1.21                  | 1748.4            | 14.1                 |
| 30-Jun-20  | Sunny     | 303.3     | 756.5               | 3.5346   | 3.5592    | 0.0246      | 7038.6  | 7062.6 | 24.0       | 1.21      | 1.22        | 1.21                  | 1749.2            | 14.1                 |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Min               | 14.1                 |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Max               | 76.9                 |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Average           | 28.1                 |

### Location AM2 - Sai Tso Wan Recreation Ground

| Start Date | Weather   | Air       | Atmospheric         | Filter W | eight (g) | Particulate | Elapse  | e Time  | Sampling   | Flow Rate | e (m³/min.) | Av. flow              | Total vol. | Conc.                |
|------------|-----------|-----------|---------------------|----------|-----------|-------------|---------|---------|------------|-----------|-------------|-----------------------|------------|----------------------|
| Start Date | Condition | Temp. (K) | Pressure, Pa (mmHg) | Initial  | Final     | Weight (g)  | Initial | Final   | Time(hrs.) | Initial   | Final       | (m <sup>3</sup> /min) | $(m^3)$    | (µg/m <sup>3</sup> ) |
| 3-Jun-20   | Sunny     | 303.0     | 757.2               | 3.5428   | 3.5937    | 0.0509      | 28024.8 | 28048.8 | 24.0       | 1.20      | 1.20        | 1.20                  | 1722.3     | 29.6                 |
| 9-Jun-20   | Sunny     | 302.6     | 757.4               | 3.5482   | 3.5989    | 0.0507      | 28048.8 | 28072.8 | 24.0       | 1.20      | 1.20        | 1.20                  | 1723.5     | 29.4                 |
| 15-Jun-20  | Sunny     | 302.0     | 758.8               | 3.4984   | 3.5491    | 0.0507      | 28072.8 | 28096.8 | 24.0       | 1.22      | 1.22        | 1.22                  | 1755.2     | 28.9                 |
| 20-Jun-20  | Sunny     | 302.7     | 757.6               | 3.4946   | 3.5303    | 0.0357      | 28096.8 | 28120.8 | 24.0       | 1.22      | 1.22        | 1.22                  | 1751.5     | 20.4                 |
| 24-Jun-20  | Sunny     | 303.3     | 755.8               | 3.4077   | 3.4524    | 0.0447      | 28120.8 | 28144.8 | 24.0       | 1.21      | 1.21        | 1.21                  | 1747.6     | 25.6                 |
| 30-Jun-20  | Sunny     | 303.3     | 756.5               | 3.5108   | 3.5420    | 0.0312      | 28144.8 | 28168.8 | 24.0       | 1.21      | 1.22        | 1.21                  | 1748.4     | 17.8                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Min        | 20.4                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Max        | 29.6                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Average    | 26.8                 |


# Location AM3 - Yau Lai Estate, Bik Lai House

| Start Date | Weather   | Air       | Atmospheric         | Filter W | eight (g) | Particulate | Elapse  | e Time | Sampling   | Flow Rate | e (m³/min.) | Av. flow              | Total vol.        | Conc.   |
|------------|-----------|-----------|---------------------|----------|-----------|-------------|---------|--------|------------|-----------|-------------|-----------------------|-------------------|---------|
| Start Date | Condition | Temp. (K) | Pressure, Pa (mmHg) | Initial  | Final     | Weight (g)  | Initial | Final  | Time(hrs.) | Initial   | Final       | (m <sup>3</sup> /min) | (m <sup>3</sup> ) | (µg/m³) |
| 3-Jun-20   | Sunny     | 303.0     | 757.2               | 3.5258   | 3.6278    | 0.1020      | 1972.3  | 1996.3 | 24.0       | 1.19      | 1.19        | 1.19                  | 1718.0            | 59.4    |
| 9-Jun-20   | Sunny     | 302.6     | 757.4               | 3.5243   | 3.6142    | 0.0899      | 1996.3  | 2020.3 | 24.0       | 1.19      | 1.19        | 1.19                  | 1719.3            | 52.3    |
| 15-Jun-20  | Sunny     | 302.0     | 758.8               | 3.4980   | 3.5460    | 0.0480      | 2020.3  | 2044.3 | 24.0       | 1.22      | 1.22        | 1.22                  | 1754.7            | 27.4    |
| 20-Jun-20  | Sunny     | 302.7     | 757.6               | 3.5117   | 3.5737    | 0.0620      | 2044.3  | 2068.3 | 24.0       | 1.22      | 1.22        | 1.22                  | 1751.0            | 35.4    |
| 24-Jun-20  | Sunny     | 303.3     | 755.8               | 3.5369   | 3.5800    | 0.0431      | 2068.3  | 2092.3 | 24.0       | 1.21      | 1.21        | 1.21                  | 1747.0            | 24.7    |
| 30-Jun-20  | Sunny     | 303.3     | 756.5               | 3.4931   | 3.5278    | 0.0347      | 2092.3  | 2116.3 | 24.0       | 1.21      | 1.22        | 1.21                  | 1747.9            | 19.9    |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Min               | 24.7    |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Max               | 59.4    |
|            |           |           |                     |          |           |             |         |        |            |           |             |                       | Average           | 39.8    |


# Location AM4(A) - Cha Kwo Ling Public Cargo Working Area Administrative Office

| Ctart Data | Weather   | Air       | Atmospheric         | Filter W | eight (g) | Particulate | Elapse  | Time    | Sampling   | Flow Rate | e (m³/min.) | Av. flow              | Total vol.        | Conc.                |
|------------|-----------|-----------|---------------------|----------|-----------|-------------|---------|---------|------------|-----------|-------------|-----------------------|-------------------|----------------------|
| Start Date | Condition | Temp. (K) | Pressure, Pa (mmHg) | Initial  | Final     | Weight (g)  | Initial | Final   | Time(hrs.) | Initial   | Final       | (m <sup>3</sup> /min) | (m <sup>3</sup> ) | (µg/m <sup>3</sup> ) |
| 3-Jun-20   | Sunny     | 303.0     | 757.2               | 3.5496   | 3.5771    | 0.0275      | 13249.2 | 13273.2 | 24.0       | 1.20      | 1.20        | 1.20                  | 1723.8            | 16.0                 |
| 9-Jun-20   | Sunny     | 302.6     | 757.4               | 3.5258   | 3.6278    | 0.1020      | 13273.2 | 13297.2 | 24.0       | 1.20      | 1.20        | 1.20                  | 1724.9            | 59.1                 |
| 15-Jun-20  | Sunny     | 302.0     | 758.8               | 3.4963   | 3.5271    | 0.0308      | 13297.2 | 13321.2 | 24.0       | 1.22      | 1.22        | 1.22                  | 1755.0            | 17.5                 |
| 20-Jun-20  | Sunny     | 302.7     | 757.6               | 3.5231   | 3.5616    | 0.0385      | 13321.2 | 13345.2 | 24.0       | 1.22      | 1.22        | 1.22                  | 1751.6            | 22.0                 |
| 24-Jun-20  | Sunny     | 303.3     | 755.8               | 3.4716   | 3.5109    | 0.0393      | 13345.2 | 13369.2 | 24.0       | 1.21      | 1.21        | 1.21                  | 1747.9            | 22.5                 |
| 30-Jun-20  | Sunny     | 303.3     | 756.5               | 3.4391   | 3.4834    | 0.0443      | 13369.2 | 13393.2 | 24.0       | 1.21      | 1.22        | 1.21                  | 1748.7            | 25.3                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Min               | 16.0                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Max               | 59.1                 |
|            |           |           |                     |          |           |             |         |         |            |           |             |                       | Average           | 27.4                 |

MA16034/App F - 24 hr TSP Cinotech



MA16034/App F - 24 hr TSP Cinotech



### Notes:

- 1. The major activitie(s) being carried out on site during the reporting period is/are presented in Section 1.10
- 2. The weather conditions during the reporting month are presented in Appendix C.
- 3. Other factors which might affect the monitoring results are presented in Section 2.17.

Contract No. ED/2018/04

Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron

Graphical Presentation of 24-hour TSP Monitoring Results

Scale

N.T.S

Project
No. MA20003

Date
Jun-20

Appendix
F

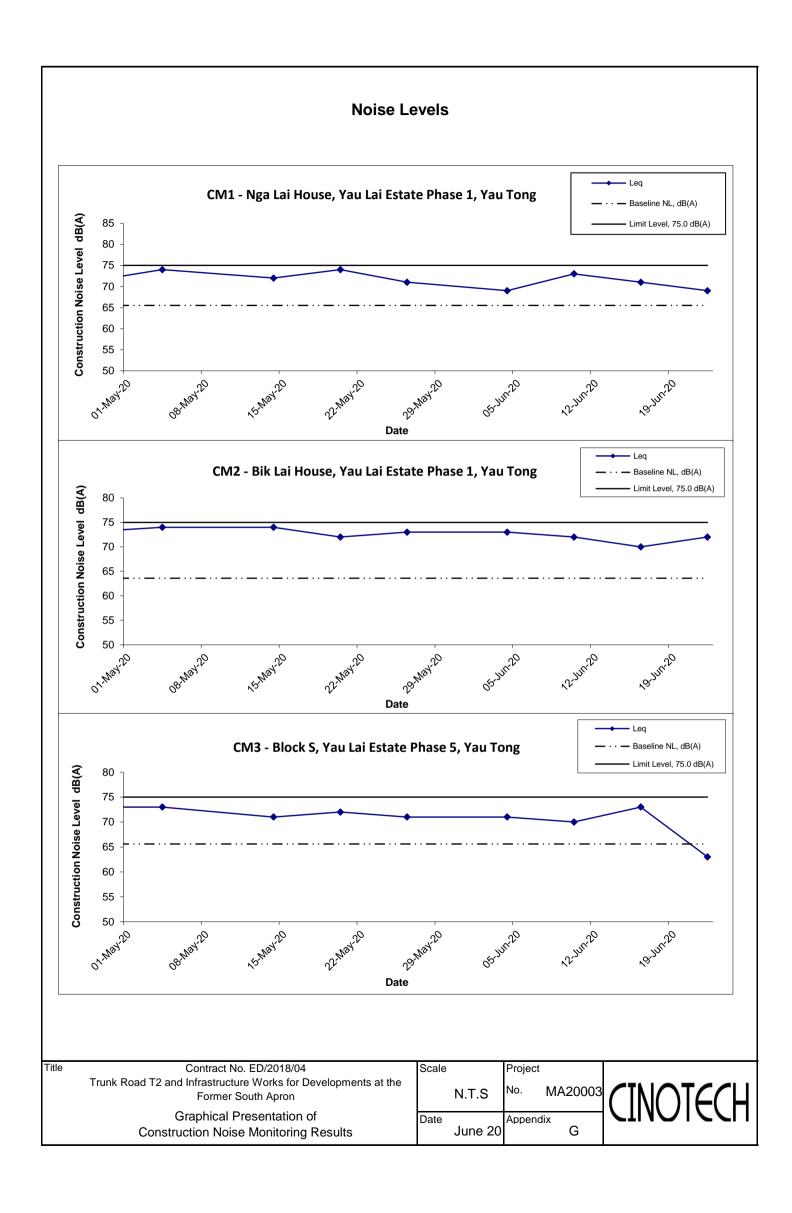
MA16034/App F - 24 hr TSP Cinotech

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

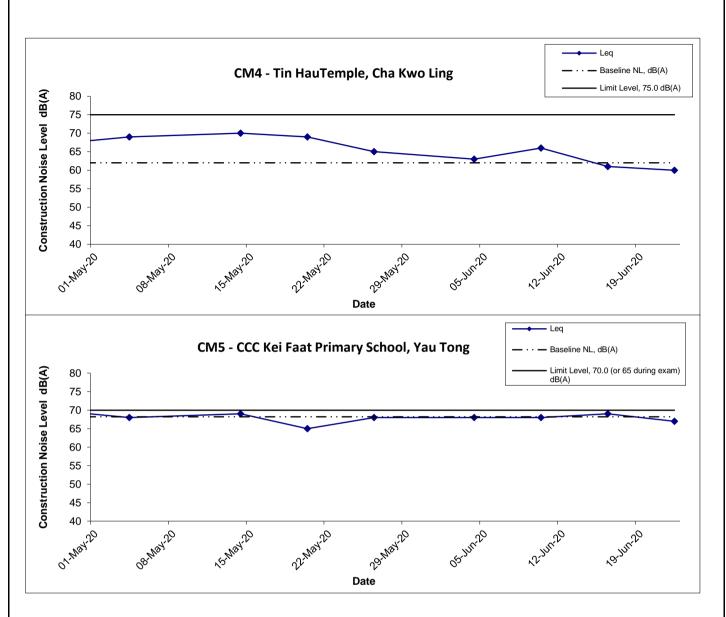
# **Appendix G - Noise Monitoring Results**

# (0700-1900 hrs on Normal Weekdays)

| ocation CM1 - | · Nya Lai ⊓o | use, rau Lai E | State Filase    | i, rau rong     |      | dB (A) (30-min) |                          |
|---------------|--------------|----------------|-----------------|-----------------|------|-----------------|--------------------------|
| Date          | Time         | Weather        | Mea             | sured Noise I   |      | Baseline Level  | Construction Noise Level |
| Date          | 11110        | VVCatrici      | L <sub>eq</sub> | L <sub>10</sub> | L 90 | L <sub>eq</sub> | L <sub>eq</sub>          |
| 4-Jun-20      | 15:30        | Sunny          | 70.3            | 71.7            | 68.6 |                 | 69                       |
| 10-Jun-20     | 15:05        | Sunny          | 73.3            | 75.7            | 69.9 | CE E            | 73                       |
| 16-Jun-20     | 9:40         | Sunny          | 72.3            | 74.4            | 68.9 | 65.5            | 71                       |
| 22-Jun-20     | 14:30        | Sunny          | 70.3            | 72.5            | 67.7 |                 | 69                       |


| ocation CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong |       |         |                      |                       |                 |                 |                          |  |  |
|---------------------------------------------------------------|-------|---------|----------------------|-----------------------|-----------------|-----------------|--------------------------|--|--|
|                                                               |       |         |                      | Unit: dB (A) (30-min) |                 |                 |                          |  |  |
| Date                                                          | Time  | Weather | Measured Noise Level |                       |                 | Baseline Level  | Construction Noise Level |  |  |
|                                                               |       | Weather | L <sub>eq</sub>      | L <sub>10</sub>       | L <sub>90</sub> | L <sub>eq</sub> | L <sub>eq</sub>          |  |  |
| 4-Jun-20                                                      | 14:30 | Sunny   | 73.3                 | 74.8                  | 71.2            |                 | 73                       |  |  |
| 10-Jun-20                                                     | 16:00 | Sunny   | 72.4                 | 74.4                  | 68.3            | 62.6            | 72                       |  |  |
| 16-Jun-20                                                     | 9:00  | Sunny   | 71.2                 | 73.6                  | 67.9            | 63.6            | 70                       |  |  |
| 22-Jun-20                                                     | 15:05 | Sunny   | 72.7                 | 74.4                  | 70.5            |                 | 72                       |  |  |

| ocation CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong |        |            |                      |                 |                 |                 |                          |  |  |
|---------------------------------------------------------|--------|------------|----------------------|-----------------|-----------------|-----------------|--------------------------|--|--|
|                                                         |        |            |                      |                 | Unit:           | dB (A) (30-min) |                          |  |  |
| Date                                                    | Time   | ne Weather | Measured Noise Level |                 |                 | Baseline Level  | Construction Noise Level |  |  |
| Date                                                    | Tillie |            | L <sub>eq</sub>      | L <sub>10</sub> | L <sub>90</sub> | L <sub>eq</sub> | L <sub>eq</sub>          |  |  |
| 4-Jun-20                                                | 14:00  | Sunny      | 72.4                 | 74.4            | 68.8            |                 | 71                       |  |  |
| 10-Jun-20                                               | 14:30  | Sunny      | 71.3                 | 73.4            | 67.8            | GE G            | 70                       |  |  |
| 16-Jun-20                                               | 10:30  | Sunny      | 73.6                 | 75.5            | 70.4            | 65.6            | 73                       |  |  |
| 22-Jun-20                                               | 15:56  | Sunny      | 67.4                 | 69.2            | 65.3            |                 | 63                       |  |  |


| Location CM4 - | ∟ocation CM4 - Tin Hau Temple, Cha Kwo Ling |           |                       |                 |                 |                 |                          |  |  |  |  |
|----------------|---------------------------------------------|-----------|-----------------------|-----------------|-----------------|-----------------|--------------------------|--|--|--|--|
|                |                                             |           | Unit: dB (A) (30-min) |                 |                 |                 |                          |  |  |  |  |
| Date           | Time                                        | Weather   | Measured Noise Level  |                 |                 | Baseline Level  | Construction Noise Level |  |  |  |  |
| Date           | Time                                        | vveatrier | L <sub>eq</sub>       | L <sub>10</sub> | L <sub>90</sub> | L <sub>eq</sub> | L <sub>eq</sub>          |  |  |  |  |
| 4-Jun-20       | 11:00                                       | Sunny     | 65.6                  | 67.2            | 63.1            |                 | 63                       |  |  |  |  |
| 10-Jun-20      | 13:00                                       | Sunny     | 67.7                  | 69.8            | 65.1            | 62.0            | 66                       |  |  |  |  |
| 16-Jun-20      | 16:00                                       | Sunny     | 64.7                  | 66.8            | 61.7            | 62.0            | 61                       |  |  |  |  |
| 22-Jun-20      | 10:00                                       | Sunny     | 60.4                  | 63.2            | 57.2            |                 | 60Measured ≦ Baseline    |  |  |  |  |

| Location CM5 - CCC Kei Faat Primary School, Yau Tong |       |           |                      |                       |                 |                 |                          |  |  |  |
|------------------------------------------------------|-------|-----------|----------------------|-----------------------|-----------------|-----------------|--------------------------|--|--|--|
|                                                      |       | e Weather |                      | Unit: dB (A) (30-min) |                 |                 |                          |  |  |  |
| Date                                                 | Time  |           | Measured Noise Level |                       |                 | Baseline Level  | Construction Noise Level |  |  |  |
| Date                                                 | Time  |           | L <sub>eq</sub>      | L <sub>10</sub>       | L <sub>90</sub> | L <sub>eq</sub> | L <sub>eq</sub>          |  |  |  |
| 4-Jun-20                                             | 10:00 | Sunny     | 70.9                 | 72.5                  | 69.3            |                 | 68                       |  |  |  |
| 10-Jun-20                                            | 10:20 | Sunny     | 71.3                 | 74.2                  | 65.8            | 68.2            | 68                       |  |  |  |
| 16-Jun-20                                            | 14:15 | Sunny     | 71.6                 | 73.8                  | 67.7            | 00.2            | 69                       |  |  |  |
| 22-Jun-20                                            | 11:00 | Sunny     | 70.5                 | 73.6                  | 68.3            |                 | 67                       |  |  |  |

MA16034/App G - Noise Cinotech



### **Noise Levels**



### Notes:

- 1. The major activitie(s) being carried out on site during the reporting period is/are presented in Section 1.10
- 2. The weather conditions during the reporting month are presented in Appendix C.
- 3. Other factors which might affect the monitoring results are presented in Section 3.13.

| Title | Contract No. ED/2018/04                                                           | Scale |         | Project |          |           |
|-------|-----------------------------------------------------------------------------------|-------|---------|---------|----------|-----------|
|       | Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron |       | N.T.S   | No.     | MA20003  | CINOTECH  |
|       | Graphical Presentation of<br>Construction Noise Monitoring Results                | Date  | June 20 | Append  | lix<br>G | CINOICCII |

APPENDIX H
WASTE GENERATION IN THE
REPORTING MONTH



Name of Department: CEDD

Monthly Summary Waste Flow Table for 2020 (CKL)

Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Contract No. ED/2018/04

|           | Actu                                                | al Quantities                                      | of Inert C&D                    | Materials G                          | enerated Moi                     | nthly                    | Actual Quantities of C&D Wastes Generated Monthly |                                      |             |                      |                                         |
|-----------|-----------------------------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------|----------------------------------|--------------------------|---------------------------------------------------|--------------------------------------|-------------|----------------------|-----------------------------------------|
| Month     | a.Total<br>Quantity<br>Generated<br>(a=b+c+d+e<br>) | b. Hard<br>Rock<br>and Large<br>Broken<br>Concrete | c. Reused<br>in the<br>Contract | d. Reused<br>in<br>Other<br>Projects | e. Disposed<br>as Public<br>Fill | f. Imported<br>Fill      | g. Metals                                         | h. Paper /<br>Cardboard<br>Packaging |             | j. Chemical<br>Waste | k. Others,<br>e.g.<br>general<br>refuse |
|           | (in '000m <sup>3</sup> )                            | (in '000m <sup>3</sup> )                           | (in '000m <sup>3</sup> )        | (in '000m <sup>3</sup> )             | (in '000m <sup>3</sup> )         | (in '000m <sup>3</sup> ) | (in '000kg)                                       | (in '000kg)                          | (in '000kg) | (in '000kg)          | (in '000m <sup>3</sup> )                |
| January   |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| February  |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| March     |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| April     |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| May       | 0.000                                               | 0.000                                              | 0.000                           | 0.000                                | 0.000                            | 0.000                    | 0.000                                             | 0.000                                | 0.000       | 0.000                | 0.009                                   |
| June      | 0.002                                               | 0.000                                              | 0.000                           | 0.000                                | 0.002                            | 0.000                    | 0.000                                             | 0.000                                | 0.000       | 0.000                | 0.005                                   |
| Sub-total | 0.002                                               | 0.000                                              | 0.000                           | 0.000                                | 0.002                            | 0.000                    | 0.000                                             | 0.000                                | 0.000       | 0.000                | 0.014                                   |
| July      |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| August    |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| September |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| October   |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| November  |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| December  |                                                     |                                                    |                                 |                                      |                                  |                          |                                                   |                                      |             |                      |                                         |
| Total     | 0.002                                               | 0.000                                              | 0.000                           | 0.000                                | 0.002                            | 0.000                    | 0.000                                             | 0.000                                | 0.000       | 0.000                | 0.014                                   |

Total C&D waste generated = a+b+f+g+h+i+j+k

Total C&D waste generated (excluded excavated material) = g+h+i+j+k

Total C&D waste recycled = c+d+g+h+i

Monthly Summary Waste Flow Table

page 1

### APPENDIX I SITE AUDIT SUMMARY

## Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

# Weekly Site Inspection Record Summary Inspection Information

| Checklist Reference Number | 200604                  |
|----------------------------|-------------------------|
| Date                       | 04 June 2020 (Thursday) |
| Time                       | 13:30 – 16:00           |

| Ref. No. | Non-Compliance  | Related<br>Item No. |
|----------|-----------------|---------------------|
| -        | None identified | -                   |

| Ref. No. | Remarks/Observations                                                                         | Related<br>Item No. |
|----------|----------------------------------------------------------------------------------------------|---------------------|
|          | B. Water Quality                                                                             |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | C. Air Quality                                                                               |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | D. Construction Noise Impact                                                                 |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | E. Waste/Chemical Management                                                                 |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | F. Visual and Landscape                                                                      |                     |
|          | • No environmental deficiency was identified during site inspection.                         |                     |
|          | G. Permits/Licences                                                                          |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | H. Marine Ecology                                                                            |                     |
|          | No environmental deficiency was identified during site inspection.                           |                     |
|          | I. Others                                                                                    |                     |
|          | • Follow-up on previous audit session (Ref No.:200528), item 200521 – R2 has been rectified. |                     |

|             | Name        | Signature | Date         |
|-------------|-------------|-----------|--------------|
| Recorded by | Tim Lui     | Cyli      | 05 June 2020 |
| Checked by  | Karina Chan | Zalle     | 05 June 2020 |

## Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

# Weekly Site Inspection Record Summary Inspection Information

| Checklist Reference Number | 200611                  |
|----------------------------|-------------------------|
| Date                       | 11 June 2020 (Thursday) |
| Time                       | 09:30 – 12:00           |

| Ref. No. | Non-Compliance  | Related<br>Item No. |
|----------|-----------------|---------------------|
| -        | None identified | -                   |

| Ref. No.                   | Remarks/Observations                                                                                                                                                                              | Related<br>Item No. |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                            | B. Water Quality     No environmental deficiency was identified during site inspection.                                                                                                           |                     |
|                            | <ul> <li>C. Air Quality</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                    |                     |
| 200611 – R3                | <ul> <li>D. Construction Noise Impact</li> <li>Mitigation measure for noise reducing should be implemented on CKL site.</li> </ul>                                                                | D5, D7              |
| 200611 – R2<br>200611 – R1 | <ul> <li>E. Waste/Chemical Management</li> <li>Construction waste within the skip should be sorted before disposed.</li> <li>Accumulation of waster within the drip tray was observed.</li> </ul> | E4ii<br>E9          |
|                            | <ul> <li>F. Visual and Landscape</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                           |                     |
|                            | <ul> <li>G. Permits/Licences</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                               |                     |
|                            | <ul> <li>H. Marine Ecology</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                 |                     |
|                            | <ul> <li>I. Others</li> <li>Follow-up on previous audit session (Ref No.:200604), no major environmental deficiency was identified during previous audit session (Ref No.:200604).</li> </ul>     |                     |

|                     | Name        | Signature | Date         |
|---------------------|-------------|-----------|--------------|
| Recorded by Tim Lui |             | Cyli      | 12 June 2020 |
| Checked by          | Karina Chan | Zalle     | 12 June 2020 |

## Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

# Weekly Site Inspection Record Summary Inspection Information

| Checklist Reference Number | 200618                  |
|----------------------------|-------------------------|
| Date                       | 18 June 2020 (Thursday) |
| Time                       | 09:30 – 12:00           |

| Ref. No. | Non-Compliance  | Related<br>Item No. |
|----------|-----------------|---------------------|
| -        | None identified | -                   |

| Ref. No. | Remarks/Observations                                                                                                                                                                                                                                             | Related<br>Item No. |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|          | <ul> <li>B. Water Quality</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                                 |                     |
|          | <ul><li>C. Air Quality</li><li>No environmental deficiency was identified during site inspection.</li></ul>                                                                                                                                                      |                     |
|          | <ul> <li>D. Construction Noise Impact</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                     |                     |
|          | <ul> <li>E. Waste/Chemical Management</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                     |                     |
|          | <ul> <li>F. Visual and Landscape</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                          |                     |
|          | <ul> <li>G. Permits/Licences</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                              |                     |
|          | <ul> <li>H. Marine Ecology</li> <li>No environmental deficiency was identified during site inspection.</li> </ul>                                                                                                                                                |                     |
|          | <ul> <li>I. Others</li> <li>Follow-up on previous audit session (Ref No.:200611), items 200611 – R1 and 200611 – R2 has been rectified, and the item 200611 – R3 needs to be followed on the next session, as CKL's site wasn't inspected this times.</li> </ul> |                     |

|                     | Name        | Signature | Date         |
|---------------------|-------------|-----------|--------------|
| Recorded by Tim Lui |             | Cyli      | 19 June 2020 |
| Checked by          | Karina Chan | Zalle     | 19 June 2020 |

## Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

# Weekly Site Inspection Record Summary Inspection Information

| Checklist Reference Number | 200623                 |
|----------------------------|------------------------|
| Date                       | 23 June 2020 (Tuesday) |
| Time                       | 09:30 – 12:00          |

| Ref. No. | Non-Compliance  | Related<br>Item No. |
|----------|-----------------|---------------------|
| -        | None identified | -                   |

| Ref. No.    | Remarks/Observations                                                                                       | Related<br>Item No. |
|-------------|------------------------------------------------------------------------------------------------------------|---------------------|
|             | B. Water Quality                                                                                           |                     |
| 200623 - R1 | Bund wall should be provided to surround the water discharge point at Depressed Road's portion.            | B3ii                |
| 200623 – R2 | Still water and accumulation of muddy water were observed at storage area and Depressed Road respectively. | В9                  |
|             | C. Air Quality                                                                                             |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | D. Construction Noise Impact                                                                               |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | E. Waste/Chemical Management                                                                               |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | F. Visual and Landscape                                                                                    |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | G. Permits/Licences                                                                                        |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | H. Marine Ecology                                                                                          |                     |
|             | No environmental deficiency was identified during site inspection.                                         |                     |
|             | I. Others                                                                                                  |                     |
|             | • Follow-up on previous audit session (Ref No.:200618), item 200611 – R3 has been rectified.               |                     |

|                     | Name        | Signature | Date         |
|---------------------|-------------|-----------|--------------|
| Recorded by Tim Lui |             | Cyli      | 24 June 2020 |
| Checked by          | Karina Chan | Zalle     | 24 June 2020 |

APPENDIX J ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

# App J - ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Table I - Recommended Mitigation Measures stipulated in EM&A Manual for the Project

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Objectives of the recommended Measures &<br>Main Concerns to address | Who to implement the measures? | Location of the measures       | When to Implement the measures? | What requirements or standards for the measures to achieve?      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------|------------------------------------------------------------------|
| Air Quality              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                |                                |                                 |                                                                  |
| S3.8.1                   | Watering eight times a day on active works areas, exposed areas and paved haul roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To minimize the dust impact                                          | Contractor                     | All Active Work Sites          | Construction phase              | APCO                                                             |
| S3.8.1                   | Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | To minimize the dust impact                                          | Contractor                     | Barging Points                 | Construction phase              | APCO                                                             |
| S3.8.7                   | Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.  • Use of frequent watering for particularly dusty construction areas and areas close to ASRs  • Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.  • Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs.  • Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.  • Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.  • Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods.  • Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit.  • Imposition of speed controls for vehicles on site haul roads.  • Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs  • Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.  • Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. | To minimize the dust impact                                          | Contractor                     | All Construction Work<br>Sites | Construction phase              | APCO and Air Pollution Control<br>(Construction Dust) Regulation |
| /                        | Emission from Vehicles and Plants  • All vehicles shall be shut down in intermittent use.  • Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke.  • All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reduce air pollution emission from construction vehicles and plants  | Contractor                     | All construction sites         | Construction stage              | APCO                                                             |

| EIA Ref. / EP Submission        | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Objectives of the recommended Measures &<br>Main Concerns to address                | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
| /                               | Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduce air pollution emission from construction vehicles and plants                 | Contractor                     | All construction sites   | Construction stage              | APCO                                                        |
| Noise Impact (Const             | ruction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                                |                          |                                 |                                                             |
| S4.8                            | <ul> <li>Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer &amp; Pump and Concrete Pump.</li> </ul>                                                                                                                                                                                                                                                                                                    | To minimize construction noise impact arising from the Project at the affected NSRs | Contractor                     | Work Sites               | Construction phase              | EIAO-TM, NCO                                                |
| Noise Mitigation Plan           | Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To minimize construction noise impact arising from the Project at the affected NSRs | Contractor                     | Work Sites               | Construction phase              | EIAO-TM, NCO                                                |
| S4.9                            | Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.  Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.  Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.  Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. | To minimize construction noise impact arising from the Project at the affected NSRs | Project Proponent              | Work sites               | Construction Period             | EIAO-TM, NCO                                                |
| \$4.9                           | Scheduling of Construction Works during School Examination Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To minimize construction noise impact arising from the Project at the affected NSRs | Contractor                     | Work site near school    | Construction phase              | EIAO-TM, NCO                                                |
| Water Quality Impac             | ct (Construction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                |                          |                                 |                                                             |
| S5.6.24                         | The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m <sup>3</sup> , with fine content of 25% or less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control potential impacts from filling activities                                   | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO                                               |
| S5.8.1                          | Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Control potential impacts from filling activities                                   | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO                                               |
| S5.8.2                          | Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m <sup>3</sup> (i.e. 1,000 m <sup>3</sup> per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.                                                                                                                                                                         | Control potential impacts from filling activities                                   | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO                                               |
| Silt Curtain Deployment<br>Plan | <ul> <li>Silt curtains should be deployed properly to surround the works area.</li> <li>Maintenance of silt curtain should be provided.</li> <li>Sufficient stock of silt curtain should be provided on site.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control potential impacts from marine woroks                                        | Contractor                     | NE/2015/01               | Construction stage              | EIAO                                                        |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Objectives of the recommended Measures &<br>Main Concerns to address                  | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
| S5.8.3                   | Other good site practices should be undertaken during filling operations include:  • all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the construction area to separate the construction works from the sea;  • floating single silt curtain shall be employed for all marine works;  • all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;  • all hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;  • excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved;  • adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;  • loading of barges and hoppers should be controlled to prevent splashing of filling material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation;  • any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes;  • construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; and  • before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain. | Control potential impacts from filling activities and marine-based construction       | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO, Waste Disposal<br>Ordinance (WDO)            |
| S5.8.4                   | Site specific mitigation plan for reclamation areas using public fill materials should be submitted for EPD agreement before commencement of construction phase with due consideration of good site practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control potential impacts from filling activities and marine based construction       | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| ERR S5.6.1               | To minimize water quality impact arising from the dredging and filling works for Reclamation for Road P2, the following mitigation measures shall be implemented:  - Before carrying out any dredging and underwater filling works, a temporary barrier shall first be constructed to a height above the high water mark to completely enclose the works site (without any opening at the barrier wall)  - The temporary barrier fully enclosing the dredging and underwater filling works site shall not be removed before completion of all dredging and underwater filling works.  - Water quality sampling and testing shall be carried out to demonstrate that the water quality inside the enclosed barrier is comparable to the ambient or baseline levels prior to the removal of the fully enclosed barrier.  - Silt curtains shall be deployed for the installation and removal of the temporary barrier and at the double water gates marine access opening during its operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control potential impacts from dredging and filling works for Reclamation for Road P2 | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.5                   | It is important that appropriate measures are implemented to control runoff and drainage and prevent<br>high loading of SS from entering the marine environment. Proper site management is essential to<br>minimise surface water runoff, soil erosion and sewage effluents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control potential impacts from construction site runoff and land-based construction   | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Objectives of the recommended Measures &<br>Main Concerns to address                | Who to implement the measures? | Location of the measures | When to Implement the measures?        | What requirements or standards for the measures to achieve? |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|--------------------------|----------------------------------------|-------------------------------------------------------------|
| S5.8.6                   | Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Design Stage and<br>Construction Phase | ProPECC PN 1/94, EIAOTM, WPCO, TM-<br>DSS                   |
| S5.8.7                   | Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-DSS. | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO, TM-<br>DSS                   |
| S5.8.8<br>S5.8.8         | Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include:  • use of sediment traps; and                                                                                                                                                                                                                                                                                                         | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.8                   | adequate maintenance of drainage systems to prevent flooding and overflow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                |                          |                                        |                                                             |
| S5.8.9                   | Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix AI of ProPECC PN 1/94.                     | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.10                 | Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.                                                                                                                                       | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.11                 | Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.                                                                                                                                                                                                                                             | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.12                  | Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.                                                                                                                                                                                                                                                                                                                                                | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.13                 | Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.                                                                                                                                                                                                                                                                                                                                    | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Objectives of the recommended Measures &<br>Main Concerns to address                   | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
| S5.8.14                  | Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50m <sup>3</sup> should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.                                                                                                                                                                                                                                                                                                                    | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.15                  | Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.                                                                                                                                                                                                                                                            | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.16                  | Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.                                                                                                                                                                                                                                                         | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.17                  | Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.                                                                                                                                                                                                                                                                                                                                                                 | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.18                 | All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and washwater should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheelwash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. | Control potential impacts from construction site<br>runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.19                  | Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.                                                                                                                                                                                                                                                                                                                                                                                                   | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.20                  | It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall be no direct discharge of effluent from the site into the sea.                                                                                                                                                                                                                                                                                                        | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.21                 | All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.                                                                                                                       | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.22                  | All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters.                                                                                                                                                                                                                                                                                                                                                                                                | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.23                  | Minimum distances of 100m shall be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes during construction and operational phases                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO, TMDSS                                        |
| S5.8.24                  | Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground water level in basement or foundation construction, and groundwater seepage pumped out of tunnels or caverns under construction should be discharged into storm drains after the removal of silt in silt removal facilities.                                                                                                                                                                                                                                                                                                                          | Control potential impacts from construction site runoff and land-based construction    | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |

| EIA Ref. / EP Submission       | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Objectives of the recommended Measures &<br>Main Concerns to address                | Who to implement the measures? | Location of the measures | When to Implement the measures?        | What requirements or standards for the measures to achieve? |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|--------------------------|----------------------------------------|-------------------------------------------------------------|
| S5.8.25 - S5.8.27 & Table 5.18 | Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured during the excavation. The groundwater levels above the tunnel will also be monitored by piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to reduce the groundwater inflow. No significant change of groundwater levels would therefore be expected. Any chemicals/ foaming agents which would be entrained to the groundwater should be biodegradable and non-toxic throughout the tunnel construction. Potential groundwater quality impact would be minimal as the used material is non-toxic and biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to preserve the groundwater levels at all times during the tunnel construction are set out in Table 5.18. | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO,<br>Buildings Ordinance       |
| S5.8.28                        | Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be recirculated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Design Stage and<br>Construction Phas  | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.29 - S5.8.31              | Wastewater generated from the washing down of mixing trucks and drum mixers and similar equipment should whenever practicable be recycled. The discharge of wastewater should be kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an online standby pump of adequate capacity and with automatic alternating devices. Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment.                                                                                                                                                                                                                                                                                                                                                                                                                            | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.32                        | All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.33                        | Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.34                        | If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.35                       | Water used in water testing to check leakage of structures and pipes should be reused for other purposes as far as practicable. Surplus unpolluted water could be discharged into storm drains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase                     | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.36                       | Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water should be reused wherever practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Design Stage and<br>Construction Phase | ProPECC PN 1/94, EIAOTM, WPCO                               |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Objectives of the recommended Measures &<br>Main Concerns to address                | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
| \$5.8.37                 | Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.                                                                                                                                                                                                                                                                                                                                                         | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.38                 | Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as necessary                                                                                                                                      | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.39                 | Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters                                                                                                                           | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.40                  | Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul sewer via grease traps capable of providing at least 20 minutes retention during peak flow.                                                                                                                                                                                                                                                                                                          | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.41                  | Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptor with peak storm bypass.                                                                                                                                                                                                                                                                                                                                                                                                     | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.42                  | Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.                                                                                                    | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| S5.8.43                  | Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices. | Control potential impacts from construction site runoff and land-based construction | CEDD's Contractors             | Work site                | Construction Phase              | ProPECC PN 1/94, EIAOTM, WPCO                               |
| \$5.8.44                 | Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.                                                                                                                                                                                      | Control potential impacts from accidental spillage of chemicals                     | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO, WDO                                          |
| \$5.8.45                 | Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.                                                                                                                                                                          | Control potential impacts from accidental spillage of chemicals                     | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO                                               |
| \$5.8.46                 | Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:  • suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport;                                                          | Control potential impacts from accidental spillage<br>of chemicals                  | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO, WDO                                          |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Objectives of the recommended Measures &<br>Main Concerns to address                                          | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
|                          | <ul> <li>chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and</li> <li>storage area should be selected at a safe location on site and adequate space should be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |                                |                          |                                 |                                                             |
| \$5.8.47                 | allocated to the storage area.  Collection and removal of floating refuse should be performed at regular intervals on a daily basis.  The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control potential impacts from floating refuse and debris                                                     | CEDD's Contractors             | Work site                | Construction Phase              | EIAO-TM, WPCO,                                              |
| Ecological Impact        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                |                          |                                 |                                                             |
| S6.8.4                   | Measures to Minimize Disturbance     Use of Quiet Mechanical Plant during the construction phase should be adopted wherever possible.     Hoarding or fencing should be erected around the works area boundaries during the construction phase. The hoarding would screen adjacent habitats from construction phase activities, reduce noise disturbance to these habitats and also to restrict access to habitats adjacent to works areas by site workers;     Regular spraying of haul roads to minimize impacts of dust deposition on adjacent vegetation and habitats during the construction activities                                                                                                                                                                                                                                | Minimize noise, human and traffic disturbance to terrestrial habitat and wildlife; and reduce dust generation | Design Team / Contractor       | Land-based works are     | Construction Phase              | N/A                                                         |
| S6.8.5                   | Standard Good Site Practice  Placement of equipment or stockpile in designated works areas and access routes selected on existing disturbed land to minimise disturbance to natural habitats.  Construction activities should be restricted to works areas that should be clearly demarcated. The works areas should be reinstated after completion of the works.  Waste skips should be provided to collect general refuse and construction wastes. The wastes should be properly disposed off-site in a timely manner.  General drainage arrangements should include sediment and oil traps to collect and control construction site run-off.  Open burning on works sites is illegal, and should be strictly prohibited.  Measures should also be put into place so that litter, fuel and solvents do not enter the nearby watercourses. | Reduce disturbance to surrounding habitats                                                                    | Contractor                     | Land-based works are     | Construction Phase              | N/A                                                         |
| S6.8.6                   | Measure to Minimize Groundwater Inflow  The drained tunnel construction method with groundwater inflow control measures would generally be adopted.  During the tunnel excavation, pre-excavation grouting could be adopted to reduce the groundwater inflow and ensure that the tunnel would meet the long term water tightness requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimize groundwater inflow                                                                                   | Contractor                     | Tunnel                   | Construction Phase              | N/A                                                         |
|                          | Measure to Minimize Impact on Corals  Coral translocation  It is recommended to translocate the affected coral colonies, except the locally common Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable locations as far as practicable.  The coral translocation should be conducted during the winter months (November-March) in order to avoid disturbance during their spawning period (i.e. July to October).                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                |                          |                                 |                                                             |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Objectives of the recommended Measures &<br>Main Concerns to address                                                                                                                                           | Who to implement the measures?               | Location of the measures                    | When to Implement the measures? | What requirements or standards for the measures to achieve?                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|
| S6.8.8                   | A detailed coral translocation plan with a description on the methodology for pretranslocation coral survey, translocation methodology, identification/proposal of coral recipient site, monitoring methodology for posttranslocation should be prepared during the detailed design stage.  The coral translocation plan should be subject to approval by relevant authorities (e.g. EPD and AFCD) before commencement of the coral translocation. All the translocation exercises should be conducted by experienced marine ecologist(s) who is/are approved by AFCD prior to commencement of coral translocation.                           | Minimize loss of coral                                                                                                                                                                                         | Design team, contractor,<br>project operator | Within reclamation areas and pier footprint | Prior construction              | N/A                                                                                       |
|                          | A coral monitoring     A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to the translocated coral communities     Information gathered during each posttranslocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.                                                                                                                                                                       |                                                                                                                                                                                                                |                                              |                                             |                                 |                                                                                           |
| S6.8.9 S6.8.10           | Deployment of silt curtains around the active stone column installation points, opening of newly installed seawall and marine works area.     Diverting of the site runoff to silt trap facilities before discharging into storm drain;     Proper waste and dumping management; and     Standard good-site practice for land-based construction.                                                                                                                                                                                                                                                                                             | Control water quality impact, especially on suspended solid level; minimize the contamination of wastewater discharge, accidental chemical spillage and construction site runoff to the receiving water bodies | Design Team, contractor                      | Marine and landbased<br>works area          | Construction phase              | WQO                                                                                       |
| S6.8.11                  | Felling of mature trees should be compensated by planting of standard or heavy standard trees within or in vicinity of the affected area as far as practicable. Such compensatory planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at the temporarily affected area should be reinstated with species similar to the existing condition.                                                                                                                                                                                                                                                              | Compensate for the vegetation loss                                                                                                                                                                             | Design Team, contractor                      | Land-based works area                       | Construction phase              | N/A                                                                                       |
| Fisheries Impact         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                |                                              |                                             |                                 |                                                                                           |
| S7.7.3                   | Measure to Control Water Quality Impact     Deployment of silt curtains around the active stone column installation points, opening of newly installed seawall and marine works area.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control water quality impact, especially on<br>suspended solid level                                                                                                                                           | Design Team / Contractor                     | Marine work area                            | Construction phase              | WQO                                                                                       |
| Waste Management (       | Construction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                              |                                             |                                 |                                                                                           |
| S8.6.3                   | Ond Site Practices and Waste Reduction Measures  Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; Training of site personnel in site cleanliness, proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection of waste;  Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and | To reduce waste management impacts                                                                                                                                                                             | Contractor                                   | All work sites                              | Construction Phase              | Waste Disposal Ordinance (Cap. 354)  Land (Miscellaneous Provisions)  Ordinance (Cap. 28) |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives of the recommended Measures &<br>Main Concerns to address           | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|-------------------------------------------------------------|
|                          | <ul> <li>Regular cleaning and maintenance programme for drainage systems, sumps and oil<br/>interceptors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |                                |                          |                                 |                                                             |
|                          | Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |                                |                          |                                 | Waste Disposal Ordinance (Cap. 354)                         |
| S8.6.4                   | <ul> <li>Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the workforce;</li> <li>Proper storage and site practices to minimize the potential for damage or contamination of construction materials; and</li> <li>Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste.</li> </ul>                                                                                                                                                                                                                                                                                                                                                     | To achieve waste reduction                                                     | Contractor                     | All work sites           | Construction Phase              | Land (Miscellaneous Provisions)<br>Ordinance (Cap. 28)      |
| S8.6.5                   | Good Site Practices and Waste Reduction Measures (con't)  The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor should implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed regularly and updated by the Contractor. | To achieve waste reduction                                                     | Contractor                     | All work sites           | Construction Phase              | ETWB TCW No. 19/2005                                        |
| S8.6.6                   | Good Site Practices and Waste Reduction Measures (con't)  C&D materials would be reused in the project and other local concurrent projects as far as possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To achieve waste reduction                                                     | Contractor                     | All work sites           | Construction Phase              | ETWB TCW No. 19/2005                                        |
| \$8.6.7                  | Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include:  • Waste, such as soil, should be handled and stored well to ensure secure containment, thus minimizing the potential of pollution;  • Maintain and clean storage areas routinely;  • Stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and  • Different locations should be designated to stockpile each material to enhance reuse.                                                                                                                                                                                                                               | To minimize potential adverse environmental impacts arising from waste storage | Contractor                     | All work sites           | Construction Phase              | ETWB TCW No. 19/2005                                        |
|                          | Storage, Collection and Transportation of Waste (con't)  Remove waste in timely manner;  Waste collectors should only collect wastes prescribed by their permits;  Impacts during transportation, such as dust and odour, should be mitigated by the use of covered trucks or in enclosed containers;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                |                          |                                 |                                                             |

| EIA Ref. / EP Submission                    | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Objectives of the recommended Measures &<br>Main Concerns to address                           | Who to implement the measures? | Location of the measures               | When to Implement the measures? | What requirements or standards for the measures to achieve?     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|---------------------------------|-----------------------------------------------------------------|
| S8.6.8/ Waste Management<br>Plan            | <ul> <li>Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28);</li> <li>Waste should be disposed of at licensed waste disposal facilities/ alternative disposal ground approved by RE and DEP; and</li> <li>Maintain records of quantities of waste generated, recycled and disposed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | To minimize potential adverse environmental impacts arising from waste collection and disposal | Contractor                     | All work sites                         | Construction Phase              | ETWB TCW No. 19/2005                                            |
|                                             | Storage, Collection and Transportation of Waste (con't)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                |                                        |                                 |                                                                 |
| S8.6.9/ Waste Management<br>Plan            | <ul> <li>Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction &amp; Demolition Materials, to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) should be proposed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To minimize potential adverse environmental impacts arising from waste collection and disposal | Contractor                     | All work sites                         | Construction Phase              | DEVB TCW No. 6/2010                                             |
|                                             | Sorting of C&D Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |                                |                                        |                                 |                                                                 |
| S8.6.11 - S8.6.13/ Waste<br>Management Plan | <ul> <li>Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site.</li> <li>Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials.</li> <li>The C&amp;D materials should at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled in the reclamation as far as practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion should be investigated before disposal of at designated landfills</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To minimize potential adverse environmental                                                    | Contractor                     | All work sites                         | Construction Phase              | DEVB TCW No. 6/2010  ETWB TCW No. 33/2002  ETWB TCW No. 19/2005 |
| S8.6.17 – S8.6.20                           | Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be adhered to during boring, excavation, transportation and disposal of sediments or cement stabilization of sediment.  A treatment area should be confined for carrying out the cement stabilization mixing and temporary stockpile. The area should be designed to prevent leachate from entering the ground. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO).  In order to minimise the potential odour / dust emissions during boring, excavation and transportation of the sediment, the excavated sediments should be kept wet during excavation/boring and should be properly covered when placed on barges/trucks. Loading of the excavated sediment to the barge should be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water.  In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site. | To determine the best handling and treatment of sediment                                       | Contractor                     | All works areas with sediments concern | Construction Phase              | ETWB TCW No. 19/2005                                            |
|                                             | The excavated sediments is expected to be loaded onto the barge and transported to the designated disposal sites allocated by the MFC. The excaveted sediment would be disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                |                                        |                                 |                                                                 |

| EIA Ref. / EP Submission                    | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives of the recommended Measures &<br>Main Concerns to address        | Who to implement the measures? | Location of the measures               | When to Implement the measures? | What requirements or standards for the measures to achieve?                                                                               |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| S8.6.24 - S8.6.28/ Waste<br>Management Plan | <ul> <li>Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO).</li> <li>In order to minimise the potential odour / dust emissions during boring and transportation of the sediment, the excavated sediments should be kept wet during excavation/boring and should be properly covered when placed on barges. Loading of the excavated sediment to the barge should be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water.</li> <li>The barge transporting the sediments to the designated disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP.</li> <li>In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site.</li> <li>Another possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the se</li></ul> | To ensure handling of sediments are in accordance to statutory requirements | Contractor                     | All works areas with sediments concern | Construction Phase              | ETWB TC(W) No. 34/2002 & Dumping at<br>Sea Ordinance                                                                                      |
| S8.6.26/ Waste<br>Management Plan           | If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.  General Refuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | To ensure proper management of chemical waste                               | Contractor                     | All works sites                        | Construction Phase              | Code of Practice on the Packaging,<br>Labelling and Storage of Chemical Wastes<br>Waste Disposal (Chemical Waste)<br>(General) Regulation |

| EIA Ref. / EP Submission          | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Objectives of the recommended Measures &<br>Main Concerns to address | Who to implement the measures? | Location of the measures | When to Implement the measures? | What requirements or standards for the measures to achieve?    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|----------------------------------------------------------------|
| S8.6.27/ Waste<br>Management Plan | <ul> <li>General refuse should be stored in enclosed bins or compaction units separate from<br/>C&amp;D material. A reputable waste collector should be employed by the contractor to remove<br/>general refuse from the site, separately from C&amp;D material. Preferably an enclosed and<br/>covered area should be provided to reduce the occurrence of 'wind blown' light material.</li> </ul>                                                                                                                        | To ensure proper management of general refuse                        | Contractor                     | All works sites          | Construction Phase              | Public Health and Municipal Services<br>Ordinance (Cap. 132)   |
| Impact on Cultural Ho             | eritage (Construction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                |                          |                                 |                                                                |
| S9.6.4                            | Dust and visual impacts  Temporarily fenced off buffer zone with allowance for public access (minimum 1 m) should be provided;  The open yard in front of the temple should be kept as usual for annual Tin Hau festival;  Monitoring of vibration impacts should be conducted when the construction works are less than 100m from the temple.                                                                                                                                                                             | To prevent dust and visual impacts                                   | Contractors                    | Work areas               | Construction Phase              | EIAO; GCHIA; AMO                                               |
| S9.6.4                            | Indirect vibration impact  Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of 5mm/s measured inside the historical buildings;  Monitoring of vibration should be carried out during construction phase.  Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau Temple as well.  A proposal with details for the mitigation measures and monitoring of impacts on built heritage shall be submitted to AMO for comments before commencement of work. | To prevent indirect vibration impact                                 | Contractors                    | Work areas               | Construction Phase              | Vibration Limits on Heritage Buildings by<br>CEDD; GCHIA; AMO. |
| Built Heritage Mitigation<br>Plan | <ul> <li>Established Alert, Alarm and Action Level for the monitoring parameters.</li> <li>To increase the instrumentation monitoring and reporting frequency.</li> <li>To propose detailed action plan or contingency plan for the Engineer's approval when AAA Level is reached or exceeded.</li> </ul>                                                                                                                                                                                                                  | To prevent vibration impacts                                         | NE/2015/01                     | Tin Hau Temple           | Construction Phase              | Vibration Limits on Heritage Buildings by<br>CEDD; GCHIA; AMO. |

| EIA Ref. / EP Submission                   | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives of the recommended Measures &<br>Main Concerns to address | Who to implement the measures? | Location of the measures                                             | When to Implement the measures?                         | What requirements or standards for the measures to achieve?                    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|
| Landscape and Visua                        | al Impact (Construction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                |                                                                      |                                                         |                                                                                |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM1 - Construction area and contractor's temporary works areas to be minimised to avoid impacts on adjacent landscape.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avoid impact on adjacent landscape areas                             | CEDD (via Contractor)          | General                                                              | Construction planning and during construction period    | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM2 - Reduction of construction period to practical minimum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimise duration of impact                                          | CEDD (via Contractor)          | N/A                                                                  | Construction planning                                   | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be stripped and stored for re-use in the construction of the soft landscape works. The Contract Specification shall include storage and reuse of topsoil as appropriate.                                                                                                                                                                                                                                                                                        | To allow re-use of topsoil                                           | CEDD (via Contractor)          | General                                                              | Site clearance                                          | As per the Particular Specification                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification, under which the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage). | To minimize tree loss                                                | CEDD (via Contractor)          | As per approved Tree<br>Removal Application(s)                       | Site clearance and<br>throughout construction<br>period | ETWB TC 3/2006 and as per tree protection measures in Particular Specification |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where possible, trees should be transplanted direct to permanent locations rather than temporary holding nurseries. A detailed tree transplanting specification shall be provided in the Contract Specification and sufficient time for preparation shall be allowed in the construction programme.                                                                                                                                                               | To maximize preservation of existing trees                           | CEDD (via Contractor)          | As per approved Tree<br>Removal Application(s)                       | Site clearance                                          | ETWB TC 3/2006 and as per tree protection measures in Particular Specification |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and hoardings. Trees shall be capable of reaching a height >10m within 10 years.                                                                                                                                                                                                                                                                                                                                                                                  | To maximize screening of the works                                   | CEDD (via Contractor)          | At Lam Tin Interchange<br>and edge of Road P2<br>landscape deck, TKO | Beginning of construction period                        | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reduce visual intrusion                                           | CEDD (via Contractor)          | General                                                              | Throughout construction period                          | As per Particular Specification                                                |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM8 - Control of night-time lighting by hooding all lights and through minimisation of night working periods.                                                                                                                                                                                                                                                                                                                                                                                                                                            | To reduce visual intrusion                                           | CEDD (via Contractor)          | General                                                              | Throughout construction period                          | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM9 - Screening of works areas with hoardings with appropriate colours compatible with the surrounding area                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reduction of visual intrusion                                        | CEDD (via Contractor)          | Project site Boundary                                                | Excretion of site hoarding                              | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM10 - Avoidance of excessive height and bulk of site buildings and structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reduction of visual intrusion and integration with environment       | CEDD (via Contractor)          | Built structures                                                     | Design and construction stage                           | N/A                                                                            |
| Table 10.8.1/ Landscape<br>Mitigation Plan | CM11 - Limitation of run-off into freshwater streams, ponds and sea areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avoidance of contamination of water courses and water bodie          | CEDD (via Contractor)          | TKO reclamation, TKO<br>tunnel portal, Cha Kwo<br>Ling roadworks     | Throughout construction period                          | N/A                                                                            |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives of the recommended Measures &<br>Main Concerns to address | Who to implement the measures? | Location of the measures                                                                                                                        | When to Implement the measures?              | What requirements or standards for the measures to achieve? |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| Table 10.8.1             | CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent coastline characte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimise loss of Junk Bay and integration with existing coastlin     | CEDD (via Contractor)          | Temporary reclamation for<br>barging points at TKO and<br>Lam Tin and permanent<br>reclamation for TKO<br>Interchange slip roads and<br>Road P2 | Construction planning and reclamation stages | N/A                                                         |
| Landfill Gas Hazard      | (Design and Construction Phase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                |                                                                                                                                                 |                                              |                                                             |
| S11.5.9                  | A Safety Officer, trained in the use of gas detection equipment and landfill gas-related hazards, should be present on site throughout the groundworks phase. The Safety Officer should be provided with an intrinsically safe portable instrument, which is appropriately calibrated and able to measure the following gases in the ranges indicated below:  Methane 0-100% LEL and 0100% v/v  Carbon dioxide 0-100%  Oxygen 0-21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protect the workers from landfill gas hazards                        | Contractor                     | Project sites within the Sai<br>Tso Wan Landfill<br>Consultation Zone                                                                           | Construction phase                           | EPD's Landfill Gas Hazard Assessment<br>Guidance Note       |
|                          | Safety Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                |                                                                                                                                                 |                                              |                                                             |
|                          | <ul> <li>For staff who work in, or have responsibility for "at risk" area, such as all excavation workers, supervisors and engineers working within the Consultation Zone, should receive appropriate training on working in areas susceptible to landfill gas, fire and explosion hazards.</li> <li>An excavation procedure or code of practice to minimize landfill gas related risk should be devised and carried out.</li> <li>No worker should be allowed to work alone at any time in or near to any excavation. At least one other worker should be available to assist with a rescue if needed.</li> <li>Smoking, naked flames and all other sources of ignition should be prohibited within 15m of any excavation or ground-level confined space. "No smoking" and "No naked flame" notices should be posted prominently on the construction site and, if necessary, special areas should be designed for smoking.</li> <li>Welding, flame-cutting or other hot works should be confined to open areas at least 15m from any trench or excavation.</li> <li>Welding, flame-cutting or other hot works may only be carried out in trenches or confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Officer (or, in the case of small developments, other appropriately qualified person).</li> <li>The permit to work procedure should set down clearly the requirements for continuous monitoring for methane, carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure should also require the presence of an appropriately qualified person, in attendance outside the 'confined area', who should be responsible for reviewing the gas measurements as they are made, and who should be responsible for reviewing the gas measurements as they are made, and who should be responsible for reviewing the gas measurements as they are made, and who should be responsible for reviewing the gas measurements as they are made, and who should be responsible for reviewing the gas measurements as they are made, a</li></ul> |                                                                      |                                |                                                                                                                                                 |                                              |                                                             |

| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Objectives of the recommended Measures &<br>Main Concerns to address | Who to implement the measures? | Location of the measures                                              | When to Implement the measures? | What requirements or standards for the measures to achieve?                                                                                      |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| \$11.5.10 \$11.5.25      | • Where there are any temporary site offices, or any other buildings located within the Sai Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to accumulate landfill gas, then they should either be located in an area which has been proven to be free of landfill gas (by survey using portable gas detectors); or be raised clear of the ground by a minimum of 500mm. This aims to create a clear void under the structure which is ventilated by natural air movement such that emission of gas from the ground are mixed and diluted by air.                                                                                              | Protect the workers from landfill gas hazards                        | Contractor                     | Project sites within the Sai<br>Tso Wan Landfill<br>Consultation Zone | Construction phase              | EPD's Landfill Gas Hazard Assessment<br>Guidance Note Labour Department's Code<br>of Practice for Safety and Health at Work in<br>Confined Space |
|                          | <ul> <li>Any electrical equipment, such as motors and extension cords, should be intrinsically safe. During piping assembly or conduiting construction, all valves/seals should be closed immediately after installation. As construction progresses, all valves/seals should be closed to prevent the migration of gases through the pipeline/conduit. All piping /conduiting should be capped at the end of each working day.</li> </ul>                                                                                                                                                                                                                                     |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |
|                          | During construction, adequate fire extinguishing equipment, fire-resistant clothing and breathing apparatus (BA) sets should be made available on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |
|                          | <ul> <li>Fire drills should be organized at not less than six monthly intervals.</li> <li>The contractor should formulate a health and safety policy, standards and instructions for site personnel to follow.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |
|                          | <ul> <li>All personnel who work on the site and all visitors to the site should be made aware of the possibility of ignition of gas in the vicinity of excavations. Safety notices (in Chinese and English) should be posted at prominent position around the site warning danger of the potential hazards.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |
|                          | <ul> <li>Service runs within the Consultation Zone should be designated as "special routes"; utilities companies should be informed of this and precautionary measures should be implemented. Precautionary measures should include ensuring that staff members are aware of the potential hazards of working in confined spaces such as manholes and service chambers, and that appropriate monitoring procedures are in place to prevent hazards due to asphyxiating atmospheres in confined spaces. Detailed guidance on entry into confined spaces is given in Code of Practice on Safety and Health at Work in Confined Spaces (Labour Department, Hong Kong).</li> </ul> |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |
|                          | <ul> <li>Periodically during ground-works construction within the 250m Consultation Zone, the works area should be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas to be monitored should be set down prior to commencement of ground-works either by the Safety Officer or an approved and appropriately qualified person.</li> </ul>                                                                                                                                                                                                                                    |                                                                      |                                |                                                                       |                                 |                                                                                                                                                  |

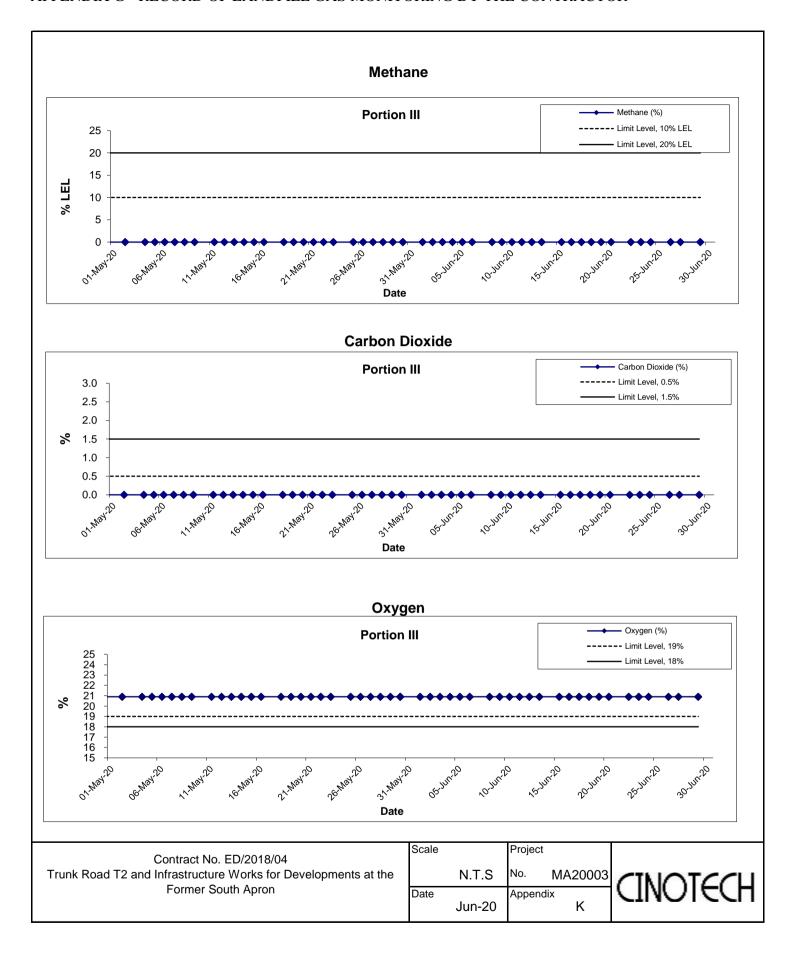
| EIA Ref. / EP Submission | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Objectives of the recommended Measures &<br>Main Concerns to address                     | Who to implement the measures? | Location of the measures                                              | When to Implement the measures? | What requirements or standards for the measures to achieve? |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|
| S11.5.26 - S11.5.31      | <ul> <li>Monitoring</li> <li>Routine monitoring should be carried out in all excavations, manholes, chambers, relocation of monitoring wells and any other confined spaces that may have been created. All measurements in excavations should be made with the extended monitoring tube located not more than 10 mm from the exposed ground surface. Monitoring should be performed properly to make sure that the area is free of landfill gas before any man enters into the area.</li> <li>For excavations deeper than 1m, measurements should be carried out:         <ul> <li>at the ground surface before excavation commences;</li> <li>immediately before any worker enters the excavation;</li> <li>at the beginning of each working day for the entire period the excavation remains open; and</li> <li>periodically throughout the working day whilst workers are in the excavation.</li> </ul> </li> <li>For excavations between 300mm and 1m deep, measurements should be carried out:         <ul> <li>directly after the excavation has been completed; and</li> <li>periodically whilst the excavation remains open.</li> <li>For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person.</li> <li>Depending on the results of the measurements, actions required will vary and should be set down by the Safety Officer or other appropriately qualified person.</li> <li>The exact frequency of monitoring should be determined prior to the commencement of works, but should be at least once per day, and be carried out by a suitably qualified or qualified person before starting the work of the day. Measurements shall be recorded and kept as a record of safe working conditions with copies of the site diary and submitted to the Engineer for approval. The Contractor may elect to carry out monitoring via an automated monitoring system.</li> </ul></li></ul> | Protect the workers from landfill gas hazards                                            | Contractor                     | Project sites within the Sai<br>Tso Wan Landfill<br>Consultation Zone | Construction phase              | EPD's Landfill Gas Hazard Assessment<br>Guidance Note       |
| S11.5.32                 | The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill Consultation Zone should be minimized by suitable precautionary measures recommended in Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | construction stage within the Sai Tso Wan  Protect the workers from landfill gas hazards | Contractor                     | Project sites within the Sai<br>Tso Wan Landfill<br>Consultation Zone | Construction phase              | EPD's Landfill Gas Hazard Assessment<br>Guidance Note       |

# Table II - Observation / Reminder / Non-compliance made during Site Audit

Key:

- ✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit
- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- \* Non-compliance of mitigation measure
- · Non-compliance but improved by the contractor

| EIA Ref                     | Recommended Mitigation Measures                                                                                                                 | Details of Reminder/Observation                                                                                    | Recorded Date | Status |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|--------|
| Air Quality                 |                                                                                                                                                 |                                                                                                                    |               |        |
| #N/A                        | #N/A                                                                                                                                            |                                                                                                                    |               |        |
| <b>Construction</b>         | Noise Impact                                                                                                                                    |                                                                                                                    |               |        |
| Noise<br>Mitigation<br>Plan | Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan | Mitigation measure for construction noise reduction, as listed in the NMP (v.3), should be implemented on CKL site | 11 Jun 2020   | #      |
| Water Quality               | Impact                                                                                                                                          |                                                                                                                    |               | 1      |
| #N/A                        | #N/A                                                                                                                                            |                                                                                                                    |               |        |
| Ecological Imp              | pact                                                                                                                                            |                                                                                                                    |               |        |
|                             |                                                                                                                                                 |                                                                                                                    |               |        |
| Fisheries Impa              | act                                                                                                                                             |                                                                                                                    |               |        |
|                             |                                                                                                                                                 |                                                                                                                    |               |        |
| Waste Manag                 | ement                                                                                                                                           |                                                                                                                    |               |        |
|                             | <u> </u>                                                                                                                                        |                                                                                                                    |               |        |
| Landscape an                | d Visual Impact                                                                                                                                 |                                                                                                                    |               |        |


| EIA Ref               | Recommended Mitigation Measures | Details of Reminder/Observation | Recorded Date | Status   |
|-----------------------|---------------------------------|---------------------------------|---------------|----------|
| Table 10.8.1/         | ^                               |                                 | 21 May 2020   | <b>√</b> |
| <b>Landfill Gas H</b> | <b>Lazards</b>                  |                                 |               |          |
|                       |                                 |                                 |               |          |

| Location | Date of Measurement | Sampling time | Weather Condition | Temperature (°C) | Methane (%) | Carbon dioxide (%) | Oxygen (%) |
|----------|---------------------|---------------|-------------------|------------------|-------------|--------------------|------------|
|          | 1-Jun-20            | 8:27          | Sunny             | 26               | 0           | 0                  | 20.9       |
|          | 1-Jun-20            | 13:15         | Sunny             | 30               | 0           | 0                  | 20.9       |
|          | 1-Jun-20            | 15:00         | Sunny             | 28               | 0           | 0                  | 20.9       |
|          | 1-Jun-20            | 15:10         | Sunny             | 28               | 0           | 0                  | 20.9       |
|          | 1-Jun-20            | 15:21         | Sunny             | 28               | 0           | 0                  | 20.9       |
|          | 2-Jun-20            | 8:30          | Cloudy            | 27               | 0           | 0                  | 20.9       |
|          | 2-Jun-20            | 13:11         | Sunny             | 29               | 0           | 0                  | 20.9       |
|          | 2-Jun-20            | 14:49         | Cloudy            | 28               | 0           | 0                  | 20.9       |
|          | 2-Jun-20            | 14:57         | Cloudy            | 28               | 0           | 0                  | 20.9       |
|          | 2-Jun-20            | 15:08         | Cloudy            | 28               | 0           | 0                  | 20.9       |
|          | 3-Jun-20            | 8:26          | Cloudy            | 26               | 0           | 0                  | 20.9       |
|          | 3-Jun-20            | 13:15         | Sunny             | 32               | 0           | 0                  | 20.9       |
|          | 3-Jun-20            | 15:27         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|          | 3-Jun-20            | 15:39         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|          | 3-Jun-20            | 15:53         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|          | 4-Jun-20            | 8:30          | Rainy             | 28               | 0           | 0                  | 20.9       |
|          | 4-Jun-20            | 13:02         | Cloudy            | 32               | 0           | 0                  | 20.9       |
|          | 4-Jun-20            | 16:10         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 4-Jun-20            | 16:21         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 4-Jun-20            | 16:33         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 5-Jun-20            | 8:29          | Sunny             | 28               | 0           | 0                  | 20.9       |
|          | 5-Jun-20            | 13:14         | Cloudy            | 32               | 0           | 0                  | 20.9       |
|          | 5-Jun-20            | 14:55         | Sunny             | 30               | 0           | 0                  | 20.9       |
|          | 5-Jun-20            | 15:07         | Sunny             | 30               | 0           | 0                  | 20.9       |
|          | 5-Jun-20            | 15:19         | Sunny             | 30               | 0           | 0                  | 20.9       |
|          | 6-Jun-20            | 8:30          | Sunny             | 26               | 0           | 0                  | 20.9       |
|          | 6-Jun-20            | 13:07         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|          | 6-Jun-20            | 15:38         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 6-Jun-20            | 15:47         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 6-Jun-20            | 15:57         | Rainy             | 30               | 0           | 0                  | 20.9       |
|          | 8-Jun-20            | 8:28          | Cloudy            | 29               | 0           | 0                  | 20.9       |
|          | 8-Jun-20            | 13:05         | Cloudy            | 33               | 0           | 0                  | 20.9       |
|          | 8-Jun-20            | 15:20         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|          | 8-Jun-20            | 15:32         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|          | 8-Jun-20            | 15:44         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|          | 9-Jun-20            | 8:29          | Cloudy            | 28               | 0           | 0                  | 20.9       |
|          | 9-Jun-20            | 13:10         | Cloudy            | 33               | 0           | 0                  | 20.9       |
|          | 9-Jun-20            | 15:00         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|          | 9-Jun-20            | 15:11         | Cloudy            | 31               | 0           | 0                  | 20.9       |

| Location    | Date of Measurement | Sampling time | Weather Condition | Temperature (°C) | Methane (%) | Carbon dioxide (%) | Oxygen (%) |
|-------------|---------------------|---------------|-------------------|------------------|-------------|--------------------|------------|
|             | 9-Jun-20            | 15:23         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|             | 10-Jun-20           | 8:29          | Cloudy            | 27               | 0           | 0                  | 20.9       |
|             | 10-Jun-20           | 13:14         | Sunny             | 31               | 0           | 0                  | 20.9       |
|             | 10-Jun-20           | 15:14         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 10-Jun-20           | 15:23         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 10-Jun-20           | 15:37         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 11-Jun-20           | 8:30          | Cloudy            | 27               | 0           | 0                  | 20.9       |
|             | 11-Jun-20           | 13:15         | Cloudy            | 33               | 0           | 0                  | 20.9       |
|             | 11-Jun-20           | 15:17         | Rainy             | 31               | 0           | 0                  | 20.9       |
|             | 11-Jun-20           | 15:28         | Rainy             | 31               | 0           | 0                  | 20.9       |
|             | 11-Jun-20           | 15:39         | Rainy             | 31               | 0           | 0                  | 20.9       |
|             | 12-Jun-20           | 8:20          | Sunny             | 26               | 0           | 0                  | 20.9       |
|             | 12-Jun-20           | 13:21         | Sunny             | 30               | 0           | 0                  | 20.9       |
|             | 12-Jun-20           | 15:48         | Sunny             | 28               | 0           | 0                  | 20.9       |
|             | 12-Jun-20           | 16:00         | Sunny             | 28               | 0           | 0                  | 20.9       |
|             | 12-Jun-20           | 16:10         | Sunny             | 28               | 0           | 0                  | 20.9       |
|             | 13-Jun-20           | 8:29          | Cloudy            | 25               | 0           | 0                  | 20.9       |
|             | 13-Jun-20           | 13:05         | Cloudy            | 31               | 0           | 0                  | 20.9       |
|             | 13-Jun-20           | 15:00         | Cloudy            | 29               | 0           | 0                  | 20.9       |
| Dest'es III | 13-Jun-20           | 15:12         | Cloudy            | 29               | 0           | 0                  | 20.9       |
| Portion III | 13-Jun-20           | 15:23         | Cloudy            | 29               | 0           | 0                  | 20.9       |
|             | 15-Jun-20           |               | Cloudy            | 27               | 0           | 0                  | 20.9       |
|             | 15-Jun-20           | 13:07         | Cloudy            | 32               | 0           | 0                  | 20.9       |
|             | 15-Jun-20           | 15:27         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 15-Jun-20           | 15:38         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 15-Jun-20           | 15:50         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 16-Jun-20           |               | Cloudy            | 26               | 0           | 0                  |            |
|             | 16-Jun-20           |               | Sunny             | 32               | 0           | 0                  | 20.9       |
|             | 16-Jun-20           | 15:20         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 16-Jun-20           | 15:31         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 16-Jun-20           | 15:43         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 17-Jun-20           | 8:28          | Sunny             | 26               | 0           | 0                  | 20.9       |
|             | 17-Jun-20           |               | Cloudy            | 32               | 0           | 0                  | 20.9       |
|             | 17-Jun-20           |               | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 17-Jun-20           |               | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 17-Jun-20           |               | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 18-Jun-20           |               | Cloudy            | 28               | 0           | 0                  | 20.9       |
|             | 18-Jun-20           |               | Sunny             | 32               | 0           | 0                  | 20.9       |
|             | 18-Jun-20           |               | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 18-Jun-20           |               | Cloudy            | 30               | 0           | 0                  | 20.9       |

| Location    | Date of Measurement | Sampling time | <b>Weather Condition</b> | Temperature (°C) | Methane (%) | Carbon dioxide (%) | Oxygen (%) |
|-------------|---------------------|---------------|--------------------------|------------------|-------------|--------------------|------------|
|             | 18-Jun-20           | 15:40         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 19-Jun-20           | 8:30          | Cloudy                   | 27               | 0           | 0                  | 20.9       |
|             | 19-Jun-20           | 13:15         | Rainy                    | 32               | 0           | 0                  | 20.9       |
|             | 19-Jun-20           | 16:16         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 19-Jun-20           | 16:23         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 19-Jun-20           | 16:37         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 20-Jun-20           | 8:30          | Cloudy                   | 28               | 0           | 0                  | 20.9       |
|             | 20-Jun-20           | 13:05         | Rainy                    | 33               | 0           | 0                  | 20.9       |
|             | 20-Jun-20           | 15:21         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 20-Jun-20           | 15:33         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 20-Jun-20           | 15:45         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 22-Jun-20           | 8:28          | Sunny                    | 28               | 0           | 0                  | 20.9       |
|             | 22-Jun-20           | 13:13         | Cloudy                   | 32               | 0           | 0                  | 20.9       |
|             | 22-Jun-20           | 15:45         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 22-Jun-20           | 15:57         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 22-Jun-20           | 16:08         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 23-Jun-20           | 8:30          | Sunny                    | 28               | 0           | 0                  | 20.9       |
|             | 23-Jun-20           | 13:10         | Sunny                    | 33               | 0           | 0                  | 20.9       |
|             | 23-Jun-20           | 16:18         | Sunny                    | 31               | 0           | 0                  | 20.9       |
|             | 23-Jun-20           | 16:30         | Sunny                    | 31               | 0           | 0                  | 20.9       |
| Portion III | 23-Jun-20           | 16:41         | Sunny                    | 31               | 0           | 0                  | 20.9       |
|             | 24-Jun-20           | 8:27          | Cloudy                   | 29               | 0           | 0                  | 20.9       |
|             | 24-Jun-20           | 13:10         | Cloudy                   | 33               | 0           | 0                  | 20.9       |
|             | 24-Jun-20           | 15:10         | Cloudy                   | 31               | 0           | 0                  | 20.9       |
|             | 24-Jun-20           | 15:22         | Cloudy                   | 31               | 0           | 0                  | 20.9       |
|             | 24-Jun-20           | 15:34         | Cloudy                   | 31               | 0           | 0                  | 20.9       |
|             | 26-Jun-20           | 8:30          | Cloudy                   | 27               | 0           | 0                  | 20.9       |
|             | 26-Jun-20           | 13:10         | Sunny                    | 32               | 0           | 0                  | 20.9       |
|             | 26-Jun-20           | 14:50         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 26-Jun-20           | 15:02         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 26-Jun-20           | 15:13         | Cloudy                   | 30               | 0           | 0                  | 20.9       |
|             | 27-Jun-20           | 8:30          | Sunny                    | 30               | 0           | 0                  | 20.9       |
|             | 27-Jun-20           | 13:02         | Sunny                    | 35               | 0           | 0                  | 20.9       |
|             | 27-Jun-20           | 15:37         | Sunny                    | 33               | 0           | 0                  | 20.9       |
|             | 27-Jun-20           | 15:48         | Sunny                    | 33               | 0           | 0                  | 20.9       |
|             | 27-Jun-20           | 16:00         | Sunny                    | 33               | 0           | 0                  | 20.9       |
|             | 29-Jun-20           |               | Cloudy                   | 27               | 0           | 0                  | 20.9       |
|             | 29-Jun-20           |               | Cloudy                   | 31               | 0           | 0                  | 20.9       |
|             | 29-Jun-20           |               | Cloudy                   | 29               | 0           | 0                  | 20.9       |
|             | 29-Jun-20           |               | Cloudy                   | 29               | 0           | 0                  | 20.9       |
|             | 29-Jun-20           |               | Cloudy                   | 29               | 0           | 0                  | 20.9       |

| Location    | Date of Measurement | Sampling time | Weather Condition | Temperature (°C) | Methane (%) | Carbon dioxide (%) | Oxygen (%) |
|-------------|---------------------|---------------|-------------------|------------------|-------------|--------------------|------------|
|             | 30-Jun-20           | 8:30          | Cloudy            | 28               | 0           | 0                  | 20.9       |
|             | 30-Jun-20           | 13:20         | Cloudy            | 32               | 0           | 0                  | 20.9       |
| Portion III | 30-Jun-20           | 14:44         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 30-Jun-20           | 14:56         | Cloudy            | 30               | 0           | 0                  | 20.9       |
|             | 30-Jun-20           | 15:08         | Cloudy            | 30               | 0           | 0                  | 20.9       |



## APPENDIX L EVENT AND ACTION PLANS

# **Event and Action Plan for Air Quality (Dust)**

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                              | ACT                                                                                                                                                                                                                                                                                                                  | TION                                                                                                                                                              |                                                                                                                                                                                              |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EVENT                                                           | ET                                                                                                                                                                                                                                                                                                                                                                                           | IEC                                                                                                                                                                                                                                                                                                                  | ER                                                                                                                                                                | CONTRACTOR                                                                                                                                                                                   |  |
| Action level being exceeded by one sampling                     | <ol> <li>Identify source, investigate the causes of complaint and propose remedial measures;</li> <li>Inform IEC and ER;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily.</li> </ol>                                                                                                                                                         | <ol> <li>Check monitoring data submitted<br/>by ET;</li> <li>Check Contractor's working<br/>method.</li> </ol>                                                                                                                                                                                                       | 1. Notify Contractor.                                                                                                                                             | <ol> <li>Rectify any unacceptable practice;</li> <li>Amend working methods if appropriate.</li> </ol>                                                                                        |  |
| Action level being exceeded by two or more consecutive sampling | <ol> <li>Identify source;</li> <li>Inform IEC and ER;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>Repeat measurements to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> <li>Discuss with IEC and Contractor on remedial actions required;</li> <li>If exceedance continues, arrange meeting with IEC and ER;</li> </ol> | <ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ET on the effectiveness of the proposed remedial measures;</li> <li>Supervise Implementation of remedial measures.</li> </ol> | <ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol> | <ol> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol> |  |

| EVENT                                                          | ACTION                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EVENI                                                          | ET                                                                                                                                                                                                                                                                                                                                                                       | IEC                                                                                                                                                                                                                                                                                                                  | ER                                                                                                                                                                                                                      | CONTRACTOR                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                | 8. If exceedance stops, cease additional monitoring.                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Limit level being exceeded by one sampling                     | <ol> <li>Identify source, investigate the causes of exceedance and propose remedial measures;</li> <li>Inform Contractor ,IEC, ER, and EPD;</li> <li>Repeat measurement to confirm finding;</li> <li>Increase monitoring frequency to daily;</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.</li> </ol> | <ol> <li>Check monitoring data submitted by ET;</li> <li>Check Contractor's working method;</li> <li>Discuss with ET and Contractor on possible remedial measures;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>Supervise implementation of remedial measures.</li> </ol> | <ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial measures properly implemented.</li> </ol>                                                       | <ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Amend proposal if appropriate.</li> </ol> |  |  |  |  |  |
| Limit level being exceeded by two or more consecutive sampling | <ol> <li>Notify IEC, ER, Contractor and EPD;</li> <li>Identify source;</li> <li>Repeat measurement to confirm findings;</li> <li>Increase monitoring frequency to daily;</li> </ol>                                                                                                                                                                                      | <ol> <li>Discuss amongst ER, ET, and         Contractor on the potential         remedial actions;</li> <li>Review Contractor's remedial         actions whenever necessary to         assure their effectiveness and         advise the ER accordingly;</li> </ol>                                                  | <ol> <li>Confirm receipt of notification of exceedance in writing;</li> <li>Notify Contractor;</li> <li>In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;</li> </ol> | <ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within three working days of notification;</li> <li>Implement the agreed proposals;</li> </ol>                                         |  |  |  |  |  |

| EVENT | ACTION |                                    |    |                                 |    |                                    |    |                                     |  |
|-------|--------|------------------------------------|----|---------------------------------|----|------------------------------------|----|-------------------------------------|--|
| EVENI | ET     |                                    |    | IEC                             |    | ER                                 |    | CONTRACTOR                          |  |
|       | 5.     | Carry out analysis of Contractor's | 3. | Supervise the implementation of | 4. | Ensure remedial measures           | 4. | Resubmit proposals if problem still |  |
|       |        | working procedures to determine    |    | remedial measures.              |    | properly implemented;              |    | not under control;                  |  |
|       |        | possible mitigation to be          |    |                                 | 5. | If exceedance continues, consider  | 5. | Stop the relevant portion of works  |  |
|       |        | implemented;                       |    |                                 |    | what portion of the work is        |    | as determined by the ER until the   |  |
|       | 6.     | Arrange meeting with IEC and       |    |                                 |    | responsible and instruct the       |    | exceedance is abated.               |  |
|       |        | ER to discuss the remedial actions |    |                                 |    | Contractor to stop that portion of |    |                                     |  |
|       |        | to be taken;                       |    |                                 |    | work until the exceedance is       |    |                                     |  |
|       | 7.     | Assess effectiveness of            |    |                                 |    | abated.                            |    |                                     |  |
|       |        | Contractor's remedial actions and  |    |                                 |    |                                    |    |                                     |  |
|       |        | keep IEC, EPD and ER informed      |    |                                 |    |                                    |    |                                     |  |
|       |        | of the results;                    |    |                                 |    |                                    |    |                                     |  |
|       | 8.     | If exceedance stops, cease         |    |                                 |    |                                    |    |                                     |  |
|       |        | additional monitoring.             |    |                                 |    |                                    |    |                                     |  |

## **Event and Action Plan for Construction Noise**

| EVENT        | ACTION |                                                    |     |                                                    |    |                                                      |    |                                                  |  |
|--------------|--------|----------------------------------------------------|-----|----------------------------------------------------|----|------------------------------------------------------|----|--------------------------------------------------|--|
|              | ET     |                                                    | IEC |                                                    |    | ER                                                   |    | CONTRACTOR                                       |  |
| Action Level | 1.     | Notify IEC and Contractor;                         | 1.  | Review the analysed results submitted by the ET;   | 1. | Confirm receipt of notification of failure in        | 1. | Submit noise mitigation proposals to IEC;        |  |
|              | 2.     | Carry out investigation;                           | 2.  | Review the proposed remedial measures by the       |    | writing;                                             | 2. | Implement noise mitigation proposals.            |  |
|              | 3.     | Report the results of investigation to the IEC, ER |     | Contractor and advise the ER accordingly;          | 2. | Notify Contractor;                                   |    |                                                  |  |
|              |        | and Contractor;                                    | 3.  | Supervise the implementation of remedial           | 3. | Require Contractor to propose remedial measures      |    |                                                  |  |
|              | 4.     | Discuss with the Contractor and formulate          |     | measures.                                          |    | for the analysed noise problem;                      |    |                                                  |  |
|              |        | remedial measures;                                 |     |                                                    | 4. | Ensure remedial measures are properly                |    |                                                  |  |
|              | 5.     | Increase monitoring frequency to check mitigation  |     |                                                    |    | implemented.                                         |    |                                                  |  |
|              |        | effectiveness.                                     |     |                                                    |    |                                                      |    |                                                  |  |
| Limit Level  | 1.     | Identify source;                                   | 1.  | Discuss amongst ER, ET, and Contractor on the      | 1. | Confirm receipt of notification of failure in        | 1. | Take immediate action to avoid further           |  |
|              | 2.     | Inform IEC, ER, EPD and Contractor;                |     | potential remedial actions;                        |    | writing;                                             |    | exceedance;                                      |  |
|              | 3.     | Repeat measurements to confirm findings;           | 2.  | Review Contractors remedial actions whenever       | 2. | Notify Contractor;                                   | 2. | Submit proposals for remedial actions            |  |
|              | 4.     | Increase monitoring frequency;                     |     | necessary to assure their effectiveness and advise | 3. | Require Contractor to propose remedial measures      |    | to IEC within 3 working days of notification;    |  |
|              | 5.     | Carry out analysis of Contractor's working         |     | the ER accordingly;                                |    | for the analysed noise problem;                      | 3. | Implement the agreed proposals;                  |  |
|              |        | procedures to determine possible mitigation to be  | 3.  | Supervise the implementation of remedial           | 4. | Ensure remedial measures properly implemented;       | 4. | Resubmit proposals if problem still not under    |  |
|              |        | implemented;                                       |     | measures.                                          | 5. | If exceedance continues, consider what portion of    |    | control;                                         |  |
|              | 6.     | Inform IEC, ER and EPD the causes and actions      |     |                                                    |    | the work is responsible and instruct the Contractor  | 5. | Stop the relevant portion of works as determined |  |
|              |        | taken for the exceedances;                         |     |                                                    |    | to stop that portion of work until the exceedance is |    | by the ER until the exceedance is abated.        |  |
|              | 7.     | Assess effectiveness of Contractor's remedial      |     |                                                    |    | abated.                                              |    |                                                  |  |
|              |        | actions and keep IEC, EPD and ER informed of       |     |                                                    |    |                                                      |    |                                                  |  |
|              |        | the results;                                       |     |                                                    |    |                                                      |    |                                                  |  |
|              | 8.     | If exceedance stops, cease additional monitoring.  |     |                                                    |    |                                                      |    |                                                  |  |

## **Limit Levels and Action Plan for Landfill Gas**

| Parameter | Limit Level                         | Action                                                    |  |  |  |  |
|-----------|-------------------------------------|-----------------------------------------------------------|--|--|--|--|
|           | <19%                                | • Ventilate to restore oxygen to >19%                     |  |  |  |  |
| Ovven     |                                     | • Stop works                                              |  |  |  |  |
| Oxygen    | <18%                                | • Evacuate personnel/prohibit entry                       |  |  |  |  |
|           |                                     | • Increase ventilation to restore oxygen to >19%          |  |  |  |  |
|           | > 100/ LEL (i.e. > 0.50/ by yelume) | Prohibit hot works                                        |  |  |  |  |
|           | >10% LEL (i.e. > 0.5% by volume)    | • Ventilate to restore methane to <10% LEL                |  |  |  |  |
| Methane   |                                     | • Stop works                                              |  |  |  |  |
|           | >20% LEL (i.e. > 1% by volume)      | • Evacuate personnel / prohibit entry                     |  |  |  |  |
|           |                                     | • Increase ventilation to restore methane to <10% LEL     |  |  |  |  |
|           | >0.5%                               | • Ventilate to restore carbon dioxide to < 0.5%           |  |  |  |  |
| Carbon    |                                     | • Stop works                                              |  |  |  |  |
| Dioxide   | >1.5%                               | • Evacuate personnel / prohibit entry                     |  |  |  |  |
|           |                                     | • Increase ventilation to restore carbon dioxide to <0.5% |  |  |  |  |

APPENDIX M SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

# Contract No. ED/2018/04

# Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron

 $\label{eq:lemma:equation} \textbf{Appendix} \ \textbf{M} - \textbf{Summary} \ \textbf{of} \ \textbf{environmental} \ \textbf{complaint}, \ \textbf{warning}, \ \textbf{summon} \ \textbf{and} \ \textbf{notification} \ \textbf{of} \ \textbf{successful} \ \textbf{prosecution}$ 

**Reporting Month:** June 2020

| Log<br>Ref. | Location | Received<br>Date | Details of<br>Complaint/warning/summon<br>and prosecution | Investigation/Mitigation<br>Action | Status |
|-------------|----------|------------------|-----------------------------------------------------------|------------------------------------|--------|
| N/A         | N/A      | N/A              | N/A                                                       | N/A                                | N/A    |

**Remarks**: No environmental complaint/warning/summon and prosecution were received in the reporting period.

## APPENDIX N SUMMARY OF EXCEEDANCE

## Contract No. ED/2018/04

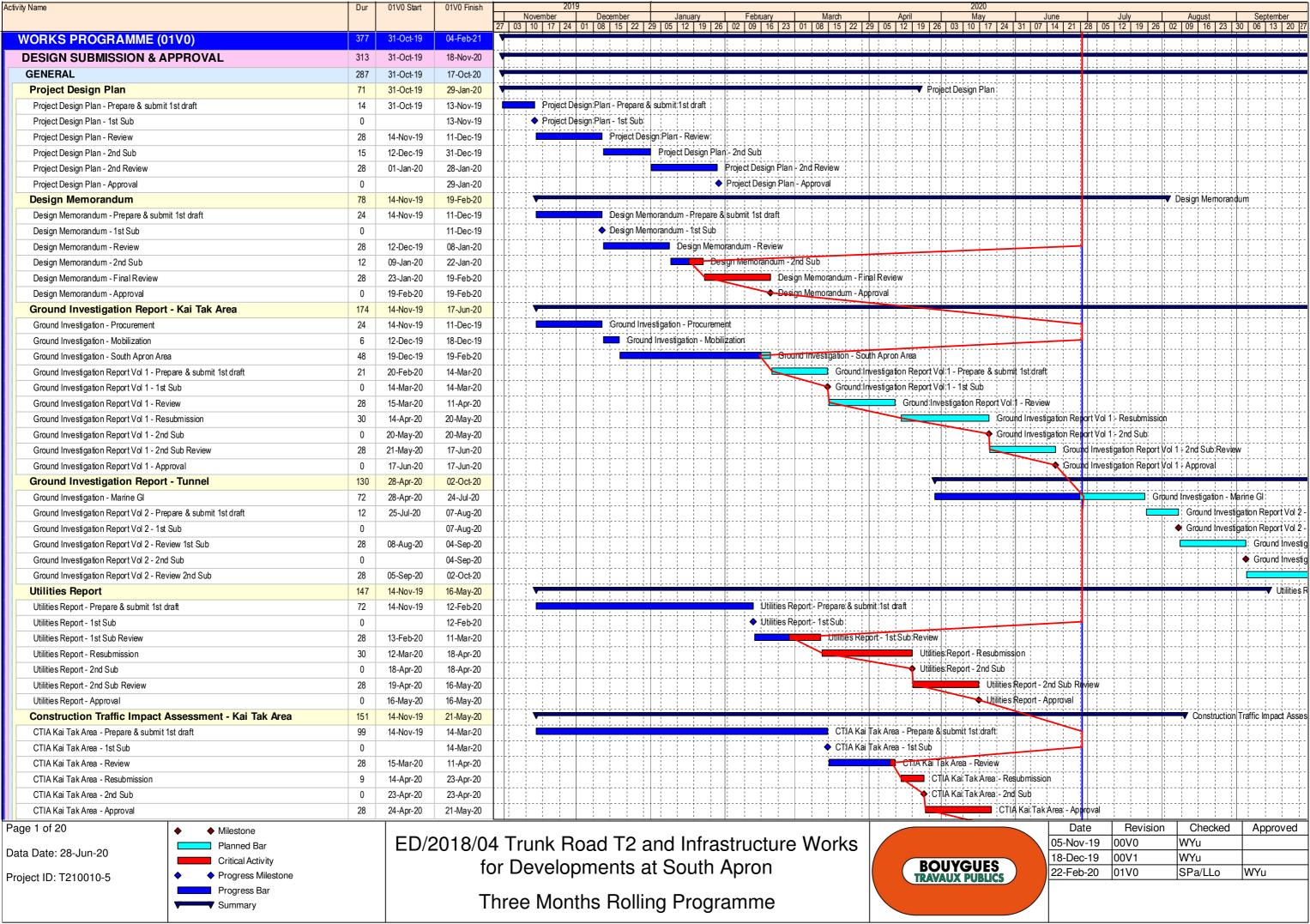
# Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron

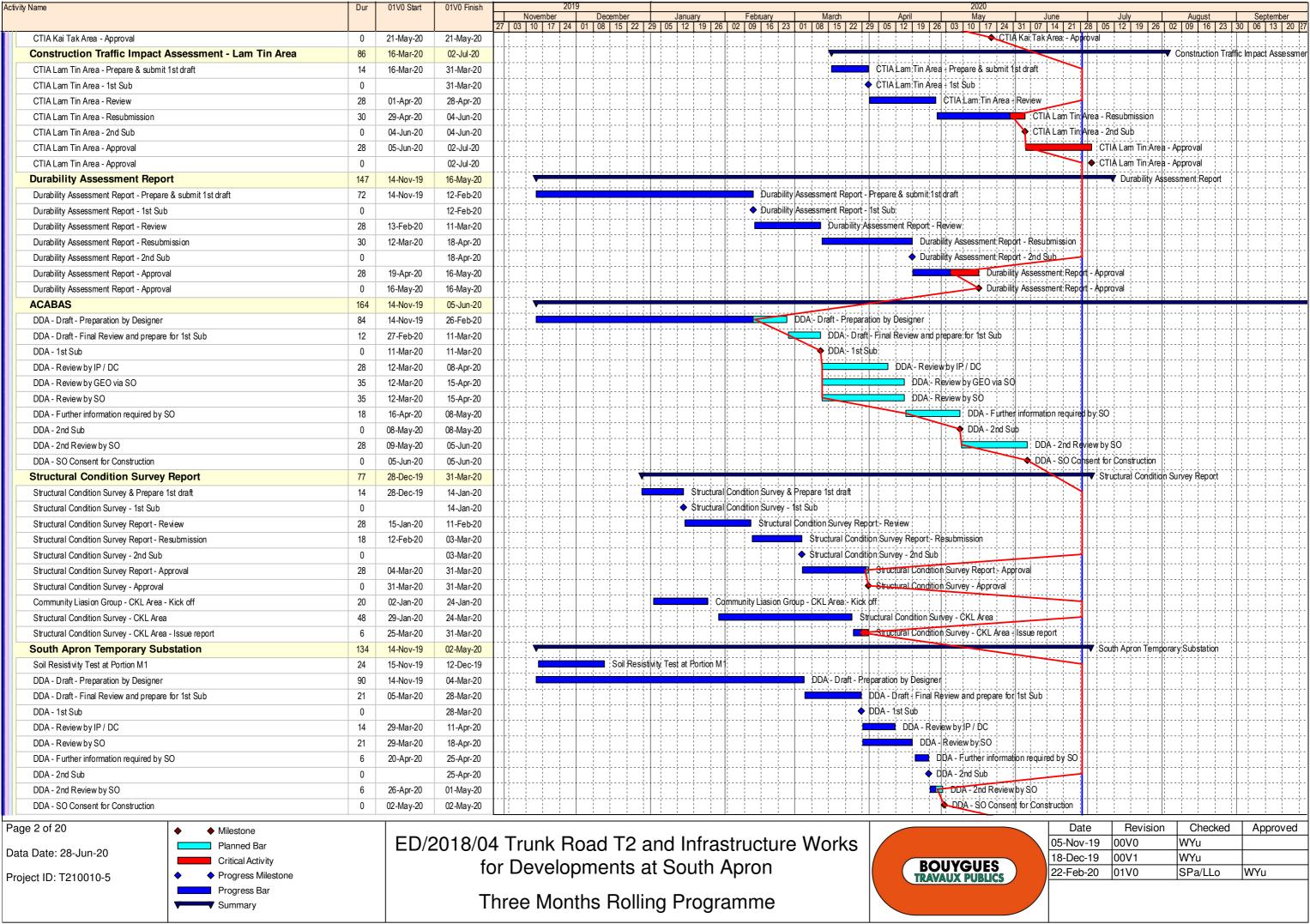
# Appendix N – Summary of Exceedance

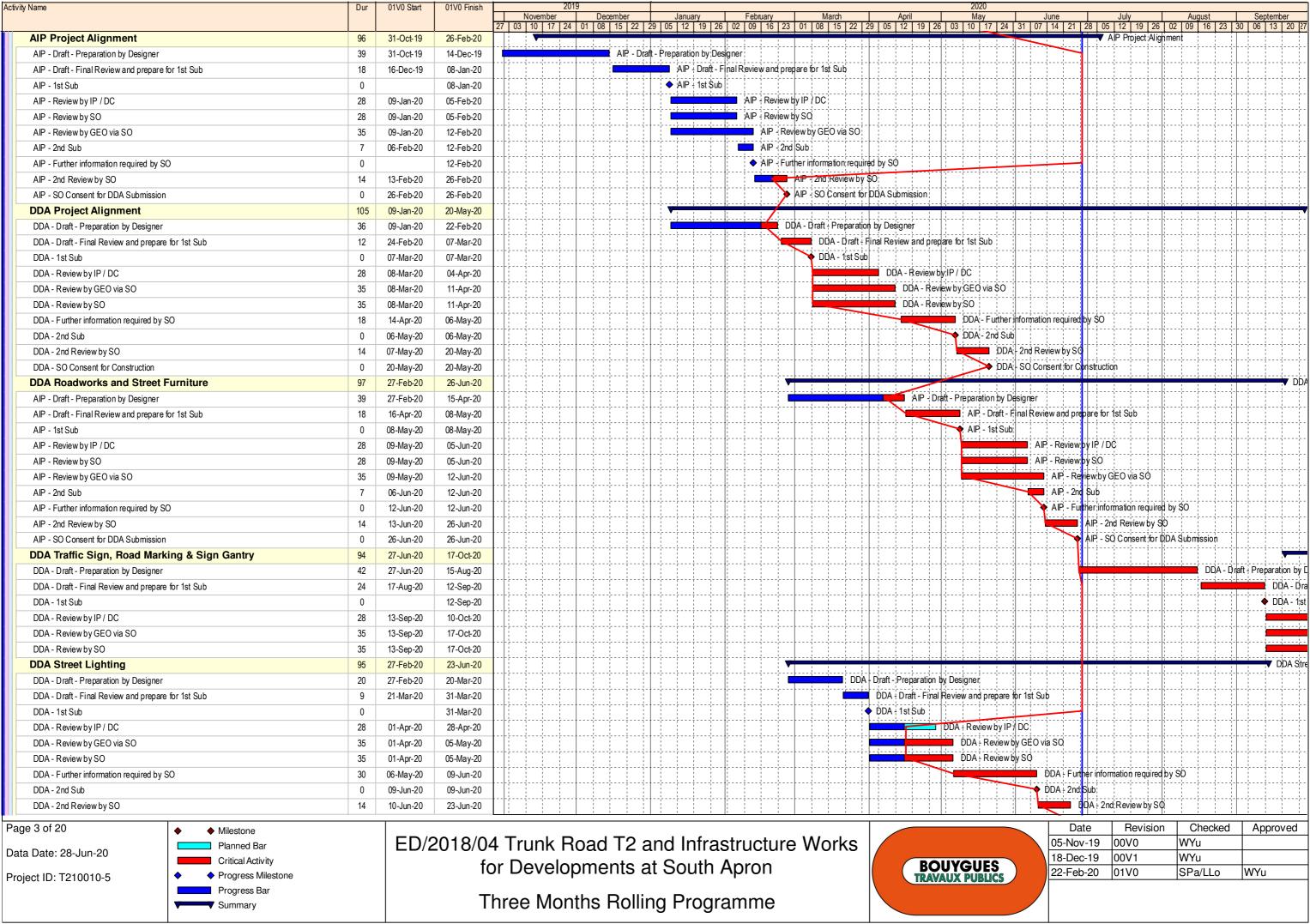
**Reporting Period: June 2020** 

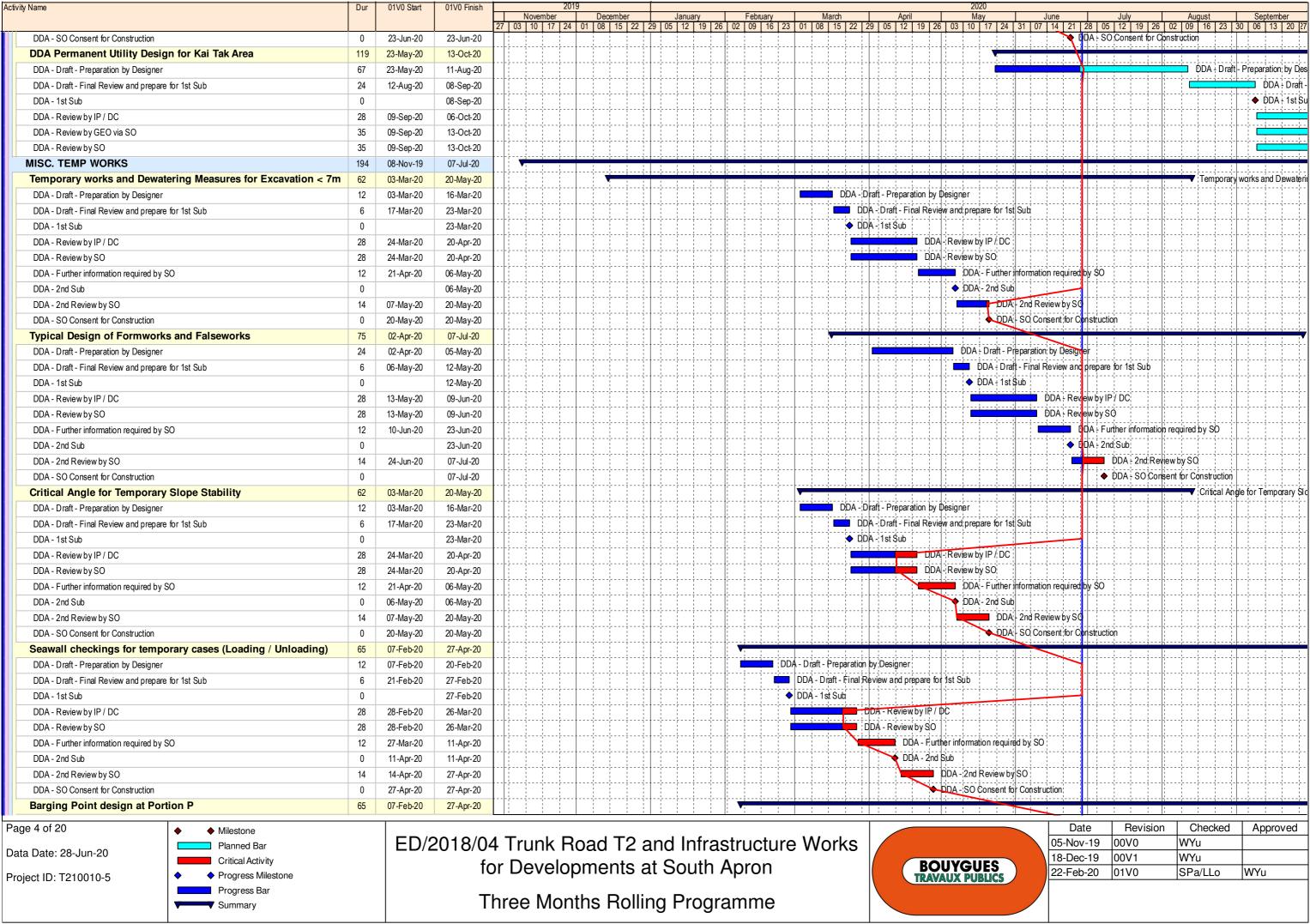
## (A) Exceedance Report for Air Quality

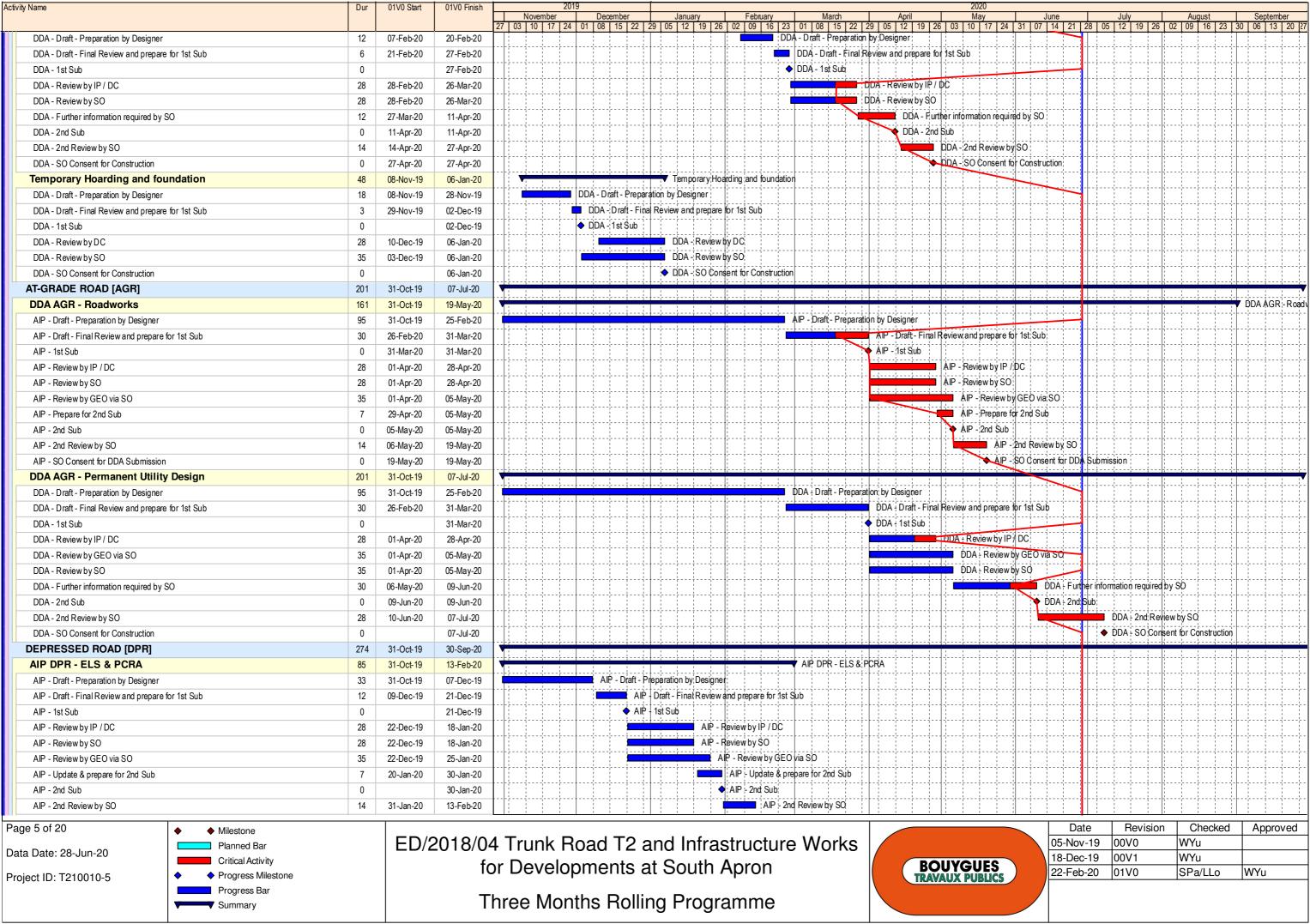
(NIL in the reporting month)


#### (B) Exceedance Report for Construction Noise


(NIL in the reporting month)


#### (C) Exceedance Report for Landfill Gas


(NIL in the reporting month)


#### APPENDIX O TENTATIVE CONSTRUCTION PROGRAMME

