Civil Engineering and Development Department

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

Monthly Environmental Monitoring and Audit Report for April 2023

(Version 1.0)

	\sim
Approved By	thank
	(Dr. HF Chan,
	Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties.

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

Civil Engineering and Development Department	Your reference:	
East Development Office		
8/F, South Tower, West Kowloon Government Offices	Our reference:	HKCEDD08/50/108795
11 Hoi Ting Road		
Yau Ma Tei	Date:	15 May 2023
Kowloon		

Attention: Mr Raymond Chan

BY FAX & POST (Fax no.: 2739 0076)

Dear Sirs

Agreement No.: NTE 06/2016 Independent Environmental Checker for Tseung Kwan O – Lam Tin Tunnel Monthly Environmental Monitoring and Audit Report for April 2023 (version 1.0)

We refer to the emails of 12 May 2023 from Cinotech Consultants Limited attaching the Monthly Environmental Monitoring and Audit Report for April 2023 (version 1.0).

We have no comment and hereby verify the captioned report in accordance with Clause 4.4 of the Environmental Permit no. EP-458/2013/C.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Alex Chan on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

Jame Choi Independent Environmental Checker

CPSJ/LCCR/CYCA/lsmt

 cc CEDD – Mr Raymond Chan (email: rcbchan@cedd.gov.hk) AECOM – Mr K Y Chan (email: ky.chan@tko-ltt1-aecom.com) AECOM – Ms Mandy Fu (email: mandy.ky.fu@tko-ltt1-aecom.com) AECOM – Ms Fanny Lau (email: fanny.wy.lau@tko-ltt1-aecom.com) AECOM – Mr Howard Chong (email: howard.wh.chong@tko-ltt1-aecom.com) Cinotech – Ms Betty Choi (email: betty.choi@cinotech.com.hk) Cinotech – Ms Karina Chan (email: karina.chan@cinotech.com.hk)

ANewR Consulting Limited Unit 1813, 1815-16, 18/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648 Email: info@anewr.com Web: www.anewr.com

	TABLE OF CONTENTS	
	EXECUTIVE SUMMARY	5
	Introduction	5
	Environmental Monitoring Works	
	Key Information in the Reporting Month	
	Key Construction Work in the reporting month & the next reporting month	
	Future Key Issues	11
1.	INTRODUCTION	13
	Purpose of the Report	
	Structure of the Report	13
2.	PROJECT INFORMATION	15
	Background	15
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Status of Environmental Licences, Notification and Permits	
	Summary of EM&A Requirements	
3.	AIR QUALITY	
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters and Frequency	
	Monitoring Methodology	
	Results and Observations	
4.	NOISE	
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Methodology and QA/QC Procedure	07
	Desults and Observations	
	Results and Observations	
5.	Results and Observations	
5.	WATER QUALITY	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements	
5.	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision	
	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision Results and Observations	
	WATER QUALITY Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters and Frequency Monitoring Methodology Laboratory Analytical Methods QA/QC Requirements Decontamination Procedures Sampling Management and Supervision Results and Observations ECOLOGY	
6.	WATER QUALITYMonitoring RequirementsMonitoring LocationsMonitoring EquipmentMonitoring Parameters and FrequencyMonitoring MethodologyLaboratory Analytical MethodsQA/QC RequirementsDecontamination ProceduresSampling Management and SupervisionResults and ObservationsECOLOGYPost-Translocation Coral Monitoring	

	Monitoring Equipment	
	Monitoring Methodology Alert, Alarm and Action Levels	
	Results	. 41
	Mitigation Measures for Cultural Heritage	. 41
8.	LANDSCAPE AND VISUAL IMPACT REQUIREMENTS	. 42
9.	LANDFILL GAS MONITORING	. 43
	Monitoring Requirement	. 43
	Monitoring Parameters and Frequency	
	Monitoring Locations	
	Monitoring Equipment noise mitigation Results and Observations	
10.	ENVIRONMENTAL AUDIT	
	Site Audits	. 45
	Implementation Status of Environmental Mitigation Measures	
11.	WASTE MANAGEMENT	. 46
12.	ENVIRONMENTAL NON-CONFORMANCE	. 47
	Summary of Exceedances	. 47
	Summary of Environmental Complaint	
	Summary of Environmental Summon and Successful Prosecution	
13.	FUTURE KEY ISSUES	. 48
	Key Issues for the Coming Month	. 49
14.	CONCLUSIONS AND RECOMMENDATIONS	. 50
	Conclusions Recommendations	

LIST OF TABLES

- Table I
 Non-compliance (exceedance) Recorded for the Project in the Reporting Month
- Table IIKey Information in the Reporting Month
- Table IIISummary Table for Complaint Details in the Reporting Month
- Table IV
 Summary Table for Key Construction Work in the Reporting Month
- Table V
 Summary Table for Site Activities in the next Reporting Period
- Table 2.1Key Project Contacts
- Table 2.2Summary Table for Major Site Activities in the Reporting Month
- Table 2.3Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 2.4
 Summary of the Status of Environmental Licences, Notification and Permits
- Table 3.1Locations for Air Quality Monitoring
- Table 3.2Air Quality Monitoring Equipment
- Table 3.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 3.4Major Dust Source during Air Quality Monitoring
- Table 4.1Noise Monitoring Stations
- Table 4.2Noise Monitoring Equipment
- Table 4.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 4.4Major Noise Source during Noise Monitoring
- Table 4.5Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 4.6Baseline Noise Level and Noise Limit Level for Monitoring Stations (Evening-
time & Daytime (Holiday))
- Table 4.7Baseline Noise Level and Noise Limit Level for Monitoring Stations (Night-
time)
- Table 5.1 Not Used
- Table 5.2Marine Water Quality Monitoring Stations
- Table 5.3Water Quality Monitoring Equipment
- Table 5.4Water Quality Monitoring Parameters and Frequency
- Table 5.5Methods for Laboratory Analysis for Water Samples
- Table 5.6 Not Used
- Table 7.1Cultural Heritage Monitoring Equipment
- Table 7.2
 AAA Levels for Monitoring for Cultural Heritage
- Table 9.1
 Landfill Gas Monitoring Locations in Operational Phase
- Table 9.2Landfill Gas Monitoring Equipment
- Table 13.1
 Summary Table for Site Activities in the next Reporting Period

Site Layout Plan

LIST OF FIGURES

Figure 1

Figure 1a	Site Portions under Works Contract No. NE/2015/01 (Lam Tin Side)
Figure 1b	Site Portions under Works Contract No. NE/2015/01 (Tseung Kwan O Side)
Figure 1c	Site Portions under Works Contract No. NE/2015/02
Figure 1d	Site Portions under Works Contract No. NE/2015/03
Figure 1e	Site Portions under Works Contract No. NE/2017/01
Figure 1f	Site Portions under Works Contract No. NE/2017/01
Figure 1g	Site Portions under Works Contract No. NE/2017/02
Figure 1h	Site Portions under Works Contract No. NE/2017/02
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Not Used
Figure 5	Locations of Marine Water Quality Monitoring Stations
Figure 6	Locations of Landfill Gas Monitoring
Figure 7	Location of Post-translocation Coral Monitoring
Figure 8	Location of Monitoring for Cultural Heritage
Figure 9	Location of Embayment formed by Reclamation and Monitoring Station W2

LIST OF APPENDICES

- Appendix A Action and Limit Levels
- Appendix B Copies of Calibration Certificates
- Appendix C Weather Information
- Appendix D Environmental Monitoring Schedules
- Appendix E 1-hour TSP Monitoring Results and Graphical Presentations
- Appendix F 24-hour TSP Monitoring Results and Graphical Presentations
- Appendix G Noise Monitoring Results and Graphical Presentations
- Appendix H Not Used
- Appendix I Marine Water Quality Monitoring Results and Graphical Presentations
- Appendix J Quality Control Reports for Laboratory Analysis
- Appendix K Summary of Exceedance
- Appendix L Site Audit Summary
- Appendix M Event and Action Plans
- Appendix N Implementation Schedule And Recommended Mitigation Measures
- Appendix O Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- Appendix P Waste Generation in the Reporting Month
- Appendix Q Tentative Construction Programme
- Appendix R Record of Landfill Gas Monitoring by Contractor
- Appendix S Post Ground Water Level Monitoring
- Appendix T Cultural Heritage Monitoring Results
- Appendix U Not Used
- Appendix V Surface Runoff Management Plan
- Appendix W Not Used
- Appendix X Implementation of Mitigation Measures in Operation Phase

EXECUTIVE SUMMARY

Introduction

- This is the 78th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel – Design and Construction" (hereinafter called "the Project"). This report documents the findings of EM&A Works conducted in April 2023.
- 2. During the reporting month, the following works contracts were undertaken:
 - Contract No. NE/2015/01 Tseung Kwan O Lam Tin Tunnel Main Tunnel and Associated Works;
 - Contract No. NE/2015/02 Tseung Kwan O Lam Tin Tunnel Road P2 and Associated Works;
 - Contract No. NE/2017/01 Tseung Kwan O Lam Tin Tunnel –Tseung Kwan O Interchange and Associated Works
 - Contract No. NE/2017/02 Tseung Kwan O Lam Tin Tunnel Road P2/D4 and Associated Works.
 - Contract No. NE/2017/06 Tseung Kwan O Lam Tin Tunnel Traffic Control and Surveillance System (TCSS) and Associated Works
 - Contract No. NE/2017/07 Cross Bay Link, Tseung Kwan O Main Bridge and Associated Works.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked. The implementation of mitigation measures in operation phase is presented in **Appendix X**.
- 4. Summary of the non-compliance (exceedance) in the reporting month for the Project is tabulated in **Table I**.

Environmental Monitoring	No. of Non-compliance (Exceedance)		- due to construction activities of this		Action Taken
	Action Level	Limit Level	Action Level	Limit Level	
Air Quality	1	1	0	0	Refer to Appendix K
Noise	0	0	0	0	Refer to Appendix K & O
Marine Water Quality	6	33	0	0	Refer to Appendix K
Groundwater Level Monitoring (Piezometer Monitoring)	0	N/A ¹	0	N/A^1	N/A
Ecological	N/A	N/A	N/A	N/A	N/A
Cultural Heritage	0	0	0	0	N/A
Landfill Gas	0	0	0	0	N/A

 Table I
 Non-compliance (exceedance) Record for the Project in the Reporting Month

Note:(1) No Limit Level for Groundwater Level Monitoring (Piezometer Monitoring).

Air Quality Monitoring

- 5. No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 6. One (1) Action Level exceedance for 24-hour TSP monitoring was recorded. The case is considered as non-project related.
- 7. One (1) Limit Level exceedances for 24-hour TSP monitoring was recorded. The case is considered as non-project related.

Construction Noise Monitoring

- 8. No Action Level exceedance was recorded due to documented complaints in the reporting month. The Summary of Documented Complaints in Reporting Month is tabulated in **Table III.**
- 9. No project-related Limit Level exceedance was recorded due to monitoring results in this reporting month.

Water Quality Monitoring

- 10. Groundwater quality monitoring had been suspended since October 2019 upon the agreement by EPD. Further details should be founded at **Section 5.1**.
- 11. All marine water quality monitoring was conducted as scheduled in the reporting month. There were six (6) Action Level and thirty-three (33) Limit Level exceedances recorded in Monitoring Stations (M) during marine water quality monitoring. During this reporting month, no sand plume was observed during the water quality monitoring and site audits, therefore there is no direct evidence that the recent exceedances were due to the construction works of the Project. Details of this investigation are presented in **Section 5**. Daily silt curtain inspection and weekly diving inspection have been carried out by contractor, the

record, as reviewed by the site auditors, indicated that silt curtains were found in good conditions.

- 12. Since all marine works are completed in November 2021, the post-reclamation marine water quality monitoring was initiated in December 2021. In accordance to EP condition No. 3.4, upon the completion of the year-round monitoring, the marine water quality in the embayment area shall be summarised and reported with suggestions for improvements, if applicable. The monitoring location is presented in **Figure 9** and the last monitoring was carried out in November 2022, no further monitoring is required.
- 13. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis on 3 October 2018 as the construction activity was 120m away from the piezometer gate. No monitoring was conducted in the reporting month.

Ecological Monitoring

14. Post-translation coral monitoring survey shall be conducted once every 3 months for a period of 12 months after completion of coral translocation. The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

15. Monitoring of impacts on Cultural Heritage at Cha Kwo Ling Tin Hau Temple commenced in May 2017. No Alert, Alarm, and Action (AAA) Level exceedance was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

16. The implementation of landscape and visual mitigation measures was checked during the environmental site inspections. Recommended follow-up actions have been discharged by the Contractor. Details of the audit findings and implementation status are presented in **Section 10**.

Landfill Gas Monitoring

17. Monitoring of landfill gases commenced in December 2016 and was carried out by the Contractor at excavation location, Portion III. Upon the completion of construction within the concerned area, landfill gas monitoring for operational phase is commenced from the end of December 2022. No Limit Level exceedance was recorded in the reporting period.

Environmental Site Inspection

18. Joint weekly site inspections were conducted by representatives of the Contractor, Engineer, and Environmental Team. The representative of the IEC joined the site inspection for NE2015/01 and NE/2017/07 on 19 April 2023 & NE/2015/02, NE/2017/01, NE/2017/02, and NE/2017/06 on 20 April 2023 respectively. Details of the audit findings and implementation status are presented in Section 10.

Waste Management

19. Wastes generated from this Project include inert construction and demolition (C&D) materials, non-inert C&D materials, and marine sediment. Details of waste management data are presented in **Section 11** and **Appendix P**.

Key Information in the Reporting Month

20. Summary of key information in the reporting month is tabulated in Table II

Manthle Complete to	Eve	ent Details	A atten Talaa	States-
Monthly Complaints	Number	Nature	- Action Taken	Status
April 2023	1	Noise	Details refer to App O	Draft CIR submitted
March 2023	3	Noise	Details refer to App O	Draft CIR submitted / Closed
February 2023	0		N/A	N/A
January 2023	0		N/A	N/A
December 2022	7	Air / Noise	Details refer to App O	Draft CIR submitted / Investigation undergoing / Closed
November 2022	2	Noise	Details refer to App O	Draft CIR submitted
October 2022	1	Noise	Details refer to App O	Draft CIR submitted
September 2022	2	Noise	Details refer to App O	Closed
August 2022	5	Air / Noise	Details refer to App O	Closed
July 2022	3*4	Noise / Water	Details refer to App O	Closed
June 2022	3	Noise	Details refer to App O	Closed
May 2022	7	Noise	Details refer to App O	Closed
April 2022	11*3	Air / Noise	Details refer to App O	Closed
March 2022	4*2	Noise / Water	Details refer to App O	Draft CIR submitted / Closed
February 2022	5*1	Noise	Details refer to App O	Closed
January 2022	4	Noise	Details refer to App O	Closed
Notifications of any summons & prosecutions received	0		N/A	N/A

 Table II
 Key Information in the Reporting Month

*1: 2 complaints in February 2022 were received in early March 2022.
*2: 1 complaint in March 2022 was received in April 2022 and 1 complaint was missing and found in August 2022

*3: 3 complaints in April 2022 were received in May 2022

*4: 1 complaint in June 2022 were received in July 2022

21. Summary of complaints received in the reporting month is tabulated in Table III.

Complaint No.	Complaint	Investigation Findings	Follow-up Action / Mitigation Measure		
Lam Tin Side	9				
N/A	N/A	N/A	N/A		
Tseung Kwar	Tseung Kwan O Side				
639	Construction Noise Nuisance during public holiday at Tseung Kwan O (Apr & May 2023)	The complaint case for 16 Apr 2023 is considered as non- project-related as there were no construction activities conducted during the time of complaint. The details shall be referred to CIR-N189.	Nil		

Table III Summary of Complaints Details in Reporting Month

Key Construction Work in the reporting month & the next reporting month

22. Summary of key construction work in the reporting month is tabulated in Table IV.

Contract No.	Project Title	Site Activities (April 2023)	
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Site Formation Area 1G1, 1G2, 2 & 5 Site Formation Slope Stabilization Bridge Noise Barrier/ Noise Enclosure Road S02-2a2b Noise Enclosure EHC4 Construction Semi Enclosure Structures Type 1E RC, 1D RC Structures CKLR Underground Utilities Landscape Deck LTI Drainage, Road Pavement Lei Yue Mun Road Junction Modification Works Stage 1 Commissioning Outstanding Works
		Main Tunnel TKO Interchange	13) N/A14) Miscellaneous Works15) Slope stabilization works
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	 Top soil placing and planter construction Cleaning works and defect rectification Demolition of BMCPC temporary access road E&M testing works 	
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction works under the contract had been completed i December 2019. The EM&A works were terminated in late Apr 2020.	
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works	 Demolition works of site office Defects Rectification Trimming of bottom Blisters 	
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	 Inspection pit excavation and utility diversion works Road works Construction of drainage and watermain Asphalt paving Pier, Staircase and lift shaft construction 	
NE/2017/06	Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	 Testing and Commissioning Defects Rectification 	
NE/2017/07	Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works		ndover inspection rectification works

Table IV Summary Table for Key Construction Work in the Reporting Month

Future Key Issues

23. The future key environmental issues in the coming month include:

Table V Summary Table for Site Activities in the next Reporting Period			
Contract No. and Project Title	Site Activiti	es (May 2023)	Key Environmental Issues *
NE/2015/01 - Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Site Formation Area 1G1, 1G2, 2 & 5 Site Formation Slope Stabilization Bridge Noise Barrier & Noise Enclosure Road S02-2a2a & 2a2b Noise Enclosure EHC 4 Construction Semi Enclosure Structures Type 1E RC Structures Type 1D RC Structures CKLR Underground Utilities LTI Drainage & Road Pavement Lei Yue Mun Road Junction Modification Works Stage 1 Commissioning Outstanding Works 	(A) / (B) / (C) / (D) / (E) / (G)
	Main Tunnel TKO	13) N/A 14)Miscellaneous Works	N/A (A) / (C) / (D) / (E) /
NE/2015/02 - Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	Interchange15)Slope Stabilization Works1)Top soil placing and planter construction2)Cleaning works and defect rectification3)Demolition of BMCPC temporary access road4)E&M testing works		(F) / (I) (A) / (B) / (C) / (D) / (E) / (G) / (I)
NE/2015/03 - Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction	on works under the contract had been completed 019. Materials are being removed from works	N/A
NE/2017/01 – Tseung Kwan O Interchange and Associated Works	1) Defects rectification		(A) / (B) / (E) / (F) / (G)
NE/2017/02 –Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	 Inspection pit excavation and utility diversion works Road works Construction of drainage and watermain 		(A) / (B) / (E) / (F) / (G)
NE/2017/06 – Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System (TCSS) and Associated Works	 Testing and Commissioning Defects Rectification 		(E)
NE/2017/07 - Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works		handover inspection ct rectification works	N/A

Note:

(A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;

(B) Noisy construction activity such as rock-breaking activities and piling works;

(C) Runoff from exposed slope or site area;

(D) Wastewater and runoff discharge from site;

(E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;

(F) Set up and implementation of temporary drainage system for the surface runoff;

(G) Storage of chemicals/fuel and chemical waste/waste oil on site;

(H) Accumulation and storage of general and construction waste on site; and

(I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation

1. INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) as the Environmental Team (ET) to undertake environmental monitoring and auditing services for the Works Contracts involved in the implementation of Tseung Kwan O – Lam Tin Tunnel (TKO-LTT) project to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the TKO-LTT project and other relevant statutory requirements. This is the 78th Monthly EM&A report summarizing the EM&A works for the Project in April 2023.

Purpose of the Report

1.2 This is the 78th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period in April 2023.

Structure of the Report

1.3 The structure of the report is as follows:

Section 1: **Introduction** – purpose and structure of the report.

Section 2: **Contract Information** – summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.

Section 3: **Air Quality Monitoring** – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 4: **Noise Monitoring** – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 5: Water Quality Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.

Section 6: **Ecological Monitoring** – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and Action and Limit Levels, monitoring results and Event / Action Plans.

Section 7: **Cultural Heritage** –summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.

Section 8: Landscape and Visual Monitoring Requirements – summarises the requirements of landscape and visual monitoring

Section 9: Landfill Gas Monitoring – summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, monitoring results and Limit Levels and Action Plan

Section 10: **Environmental Site Inspection** – summarises the audit findings of the weekly site inspections undertaken within the reporting month.

Section 11: Waste Management – summarises the waste management data in the reporting month.

Section 12: **Environmental Non-conformance** – summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.

Section 13: **Future Key Issues** – summarises the impact forecast and monitoring schedule for the next three months.

Section 14: Conclusions and Recommendation

2. **PROJECT INFORMATION**

Background

- 2.1 In 2002, Civil Engineering and Development Department (CEDD) commissioned an integrated planning and engineering study under Agreement No. CE 87/2001 (CE) "Further Development of Tseung Kwan O Feasibility Study" (the "TKO Study") to formulate a comprehensive plan for further development of TKO New Town. It recommended to further develop TKO to house a total population of 450,000 besides the district's continuous commercial and industrial developments.
- 2.2 At present, the Tseung Kwan O Tunnel is the main connection between Tseung Kwan O (TKO) and other areas in the territory. To cope with the anticipated transport need, the TKO Study recommended the provision of Tseung Kwan O Lam Tin Tunnel (TKO-LTT) (hereinafter referred to as "the Project") and Cross Bay Link (CBL) to meet the long-term traffic demand between TKO and the external areas. The site layout plan for the Project is shown in **Figure 1**. CBL was also entrusted with part of the marine viaducts near Tseung Kwan O Interchange since the commencement of the CBL project the December 2018.
- 2.3 The Environmental Impact Assessment (EIA) Report for the TKO-LTT project was approved under the Environmental Impact Assessment Ordinance (EIAO) in July 2013. The corresponding Environmental Permit (EP) was issued in August 2013 (EP no.: EP-458/2013). Variations to the EP was applied and the latest EP (EP no.: EP-458/2013/C) was issued by the Director of Environmental Protection (DEP) in January 2017.
- 2.4 The commencement dates of construction of this Project are:
 - Contract No. NE/2015/01 and Contract No. NE/2015/02: 7 November 2016.
 - Contract No. NE/2015/03: 29 May 2017.
 - Contract No. NE/2017/02: 15 March 2018.
 - Contract No. NE/2017/01: 23 May 2018.
 - Contract No. NE/2017/06: 09 November 2018.
 - Contract No. NE/2017/07: 22 February 2021
- 2.5 The implementation of mitigation measures in operation phase of NE/2015/02 and NE/2017/02 is presented in **Appendix X**.

Project Organizations

- 2.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD)
 - The Engineer and the Engineer's Representative (ER) AECOM
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech)
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR)

2.7 The key contacts of the Project are shown in **Table 2.1**. **Table 2.1** Key Project Contacts

able 2.1	Key Project Contacts			
Party	Role	Contact Person	Phone No.	Fax No.
CEDD	Project Proponent	Mr. LO Sai Pak, Sunny	2301 1384	2739 0076
AECOM	Engineer's Representative	Mr. Jackie CW, Ng	3910 1601	3910 1600
Cinotech	Environmentel Teem	Dr. HF Chan	2151 2088	3107 1388
Cinotech	Environmental Team	Mr. KS Lee	2151 2091	5107 1588
AnewR	Independent Environmental Checker	Mr. James Choi	2618 2836	3007 8648

Construction Activities undertaken during the Reporting Month

2.8 The major site activities undertaken in the reporting month included:

1			
Contract No.	Project Title	Site Activities	(April 2023)
NE/2015/01	Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Site Formation Area 1G1, 1G2, 2 & 5 Site Formation Slope Stabilization Bridge Noise Barrier/ Noise Enclosure Road S02-2a2b Noise Enclosure EHC4 Construction Semi Enclosure Structures Type 1E RC, 1D RC Structures CKLR Underground Utilities Landscape Deck LTI Drainage, Road Pavement Lei Yue Mun Road Junction Modification Works Stage 1 Commissioning Outstanding Works
		Main Tunnel TKO Interchange	13) N/A14) Miscellaneous Works15) Slope stabilization works
NE/2015/02	Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	1) Top soil placing and planter construction 2) Cleaning works and defect rectification 3) Demolition of BMCPC temporary access road 4) E&M testing works	
NE/2015/03	Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge		vorks under the contract had been completed in 'he EM&A works were terminated in late April
NE/2017/01	Tseung Kwan O – Lam Tin Tunnel – Tseung Kwan O Interchange and Associated Works	2) Defects Rectif	orks of site office fication bottom Blisters
NE/2017/02	Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and Associated Works	 2) Road works 3) Construction (4) Asphalt pavin 	excavation and utility diversion works of drainage and watermain g e and lift shaft construction

Table 2.2 Summary Table for Major Site Activities in the Reporting Month

Contract No.	Project Title	Site Activities (April 2023)
NE/2017/06	Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	 Testing and Commissioning Defects Rectification
NE/2017/07	Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works	 E&M Pre-handover inspection E&M defect rectification works

2.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 2.3**.

Table 2.3Construction Programme Showing the Inter-Relationship with
Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Table 2.2	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge Use of quiet plant and well-maintained construction plant Provide movable noise barrier

Status of Environmental Licences, Notification and Permits

2.10 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.4**.

Table 2.4	Summary of the Status of Environmental Licences, Notification
	and Permits

		Valid Period		
Contract No.	Permit / License No.	From	То	Status
Environmenta	Permit (EP)			
N/A	EP-458/2013/C	20/1/2017	N/A	Valid
Notification pu	rsuant to Air Pollution Co	ontrol (Constru	ction Dust) Regula	tion
NE/2015/01	EPD Ref no.: 405305	21/07/2016	N/A	Valid
NE/2015/01	EPD Ref no.: 405582	28/07/2016	N/A	Valid
NE/2015/02	EPD Ref no.: 406100	12/08/2016	N/A	Valid
NE/2015/03	EPD Ref no.: 416072	26/04/2017	N/A	Valid
NE/2017/02	EPD Ref no.: 429867	19/01/2018	N/A	Valid
NE/2017/01	EPD Ref no.: 430070	25/01/2018	N/A	Valid
NE/2017/06	EPD Ref no.: 461507	03/11/2020	N/A	Valid
Billing Accoun	t for Construction Waste I	Disposal		
NE/2015/01	Account No. 7025431	11/07/2016	N/A	Valid
NE/2015/02	Account No. 7025654	16/08/2016	N/A	Valid
NE/2015/03	Account No. 7026805	30/12/2016	N/A	Valid
NE/2017/02	Account No. 7029651	22/12/2017	N/A	Valid
NE/2017/01	Account No. 7029994	01/02/2018	N/A	Valid
NE/2017/06	Account No. 7032520	22/11/2018	N/A	Valid
NE/2017/07	Account No. 7031412	24/07/2018	N/A	Valid
Billing Accoun	t for Vessel Disposal	•		
NE/2015/01	Account No. 7027764	09/12/2022	01/06/2023	Valid
Registration of	Chemical Waste Produce	r		
NIE /2015/01	Waste Producer No. 5218-290-L2881-02	22/08/2016	N/A	Valid
NE/2015/01	Waste Producer No. 5213-833-L2532-03	22/08/2016	N/A	Valid
NE/2015/02	Waste Producer No. 5213-838-C4094-01	23/08/2016	N/A	Valid
NE/2015/03	Waste Producer No. 5213-265-W3435-04	19/07/2017	N/A	Valid
NE/2017/02	Waste Producer No. 5213-833-Z4004-04	01/02/2018	N/A	Valid
NE/2017/01	Waste Producer No. 5213-833-C4262-01	12/02/2018	N/A	Valid
NE/2017/07	Waste Producer No. 5213-839-C1232-19	28/08/2018	N/A	Valid
Effluent Discha	arge License under Water	Pollution Cont	rol Ordinance	
NE/2015/01	WT00039948-2021	28/02/2022	30/11/2026	Valid

Contro et No	Downit / Licongo No	Valid Period		<u> </u>
Contract No.	Permit / License No.	From	То	Status
	WT00040291-2022	13/01/2022	30/11/2026	Valid
	WT00041172-2022	09/06/2022	31/03/2027	Valid
	WT00041237-2022	09/06/2022	31/03/2027	Valid
	WT00041840-2022	17/08/2022	31/08/2027	Valid
NE/2015/02	WT00030654-2018	16/04/2018	30/04/2023	Valid
NE/2015/02	WT00040338-2022	28/01/2022	28/02/2027	Valid
NE/2017/01	WT00030711-2018	11/04/2018	30/04/2023	Valid
NE/2017/01	WT00030716-2018	23/05/2018	31/05/2023	Valid
NE/2017/02	WT00030654-2018	16/04/2018	30/04/2023	Valid
NE/2017/07	WT00032842-2018	01/03/2019	31/03/2024	Valid
INE/2017/07	WT00034178-2019	15/07/2019	31/07/2024	Valid
Construction N	oise Permit (CNP)			
	GW-RE0107-23	06/02/2023	02/04/2023	Valid until 02 Apr 2023
	GW-RE0128-23	09/02/2023	06/05/2023	Valid
	GW-RE0163-23	10/03/2023	09/06/2023	Valid
NE/2015/01	GW-RE0183-23	27/02/2023	23/05/2023	Valid
NE/2015/01	GW-RE0201-23	01/03/2023	26/05/2023	Valid
	GW-RE0225-23	16/03/2023	15/06/2023	Valid
	GW-RE0338-23	12/04/2023	30/06/2023	Valid
	GW-RE0420-23	09/05/2023	20/06/2023	Valid
NE/2015/02	GW-RE1364-22	21/12/2022	20/06/2023	Valid
NE/2015/02	GW-RE0210-23	07/03/2023	31/08/2023	Valid
NE/2017/01	GW-RE1254-22	16/11/2022	15/05/2023	Valid
	GW-RE1150-22	21/11/2022	20/05/2023	Valid
NE/2017/06	GW-RE1170-22	21/11/2022	20/04/2023	Valid until 20 Apr 2023
	GW-RE0317-23	20/04/2023	31/08/2023	Valid
Marine Dumpir	ng Permit			
NE/2017/01	EP/MD/21-011	N/A	N/A	N/A

Summary of EM&A Requirements

- 2.11 The EM&A programme requires construction noise monitoring, air quality monitoring, water quality monitoring, environmental site audit, etc. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the Project EIA Report.
- 2.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 10** of this report.
- 2.13 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in the reporting month.

3. AIR QUALITY

Monitoring Requirements

3.1 According to EM&A Manual of the Project, 1-hour and 24-hour TSP monitoring are required to monitor the air quality. For regular impact monitoring, a sampling frequency of at least once in every six days shall be undertaken at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for air quality monitoring programme. **Table 3.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	Location	Location of Measurement
AM1	Tin Hau Temple	Ground Level
AM2	Sai Tso Wan Recreation Ground	Ground Level
AM3	Yau Lai Estate Bik Lai House	Rooftop (41/F)
AM4 ⁽¹⁾	Sitting-out Area at Cha Kwo Ling Village	Ground Level
AM4(B) ^{(2) (*)(^)}	Flat 103 Cha Kwo Ling Village	Ground Level
AM5(A) ^(*)	Tseung Kwan O DSD Desilting Compound	Ground Level
AM6(A) ^(*)	Park Central, L1/F Open Space Area	1/F

Table 3.1Locations for Air Quality Monitoring

Remarks: (1) For 1-hour TSP monitoring; (2) For 24-hour TSP monitoring

(*) Air quality monitoring at designated station AM4(24hr TSP,)AM5 and AM6 was rejected by the premise owners. Therefore, baseline and impact air quality monitoring works were carried out at alternative air quality monitoring stations AM4(A)(24hr TSP only), AM5(A) and AM6(A) respectively.

^(*)In June 2022, the 24 TSP Monitoring at AM4(A) is suspended and under application for relocation, as the office had to be demolished. Once the proposal for relocation is approved, the monitoring at AM4(A) will be conducted at AM4(B). For the time being, as the station CKL2 for the 24 hr TSP monitoring, carried out under EM&A works for Trunk Road T2 Project (EP-451/2013), is located in close proximity to AM4(A); the results from CKL2 are adopted as reference for the 24 TSP monitoring at AM4(A), which has similar environment when compared with that for CKL2.

Monitoring Equipment

- 3.3 High Volume Samplers (HVS) were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1-hour sampling was determined periodically by HVS to check the validity and accuracy of the results measured by direct reading method.
- 3.4 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House for logging wind speed and wind direction such that the wind sensors are clear of obstructions or turbulence caused by building. The wind data monitoring equipment is re-calibrated at least once every six months and the wind directions are divided into 16 sectors of 22.5 degrees each. The location is shown in **Figure 2**.

3.5 **Table 3.2** summarizes the equipment to be used in the air quality monitoring. Copies of calibration certificates are attached in **Appendix B**.

Equipment	Model and Make	Quantity
Calibrator	TISCH Model: TE-5025A	1
	Sibata Model No.: LD-3B / LD-5R	8
1-hour TSP Dust Meter	Met One Instruments Model No.: AEROCET-831	0
	Handheld Particle Counter Hal-HPC300 / Hal-HPC301	0
UVC Complet	TISCH Model: TE-5170	1
HVS Sampler	GMW Model: GS2310	5
	Davis Weather Monitor II, Model no. 7440	1
Wind Anemometer	Davis Weather Stations, Vantage Pro 2, Model No. 6152CUK	0

Table 3.2Air Quality Monitoring Equipment

Monitoring Parameters and Frequency

3.6 **Table 3.3** summarizes the monitoring parameters, monitoring period and frequencies of air quality monitoring.

Table 3.3 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Frequency
AM1, AM2, AM3, AM4, AM5(A) and AM6(A)	1-hour TSP	3 times per 6 days
AM1, AM2, AM3, AM4(B), AM5(A) and AM6(A)	24-hour TSP	Once per 6 days

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

3.7 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(Model LD3 / LD3B / LD5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

(AEROCET-531)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Remove the red rubber cap from the AEROCET-531 inlet nozzle.
- Turn on the power switch that is located on the right side of the AEROCET-531.
- On power up the product intro screen is displayed for 3 seconds. The intro screen displays the product name and firmware version.
- Then the main counter screen will be displayed.
- Press the START button. Internal vacuum pump start running. After 1 minute the pump will stop and the 0.5µm and 5µm channels will show the cumulative counts of particles larger than 0.5µm and 5µm per cubic foot.
- The AEROCET-531 is now checked out and ready for use.
- To switch off the AEROCET-531 power to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, and display value and site condition were recorded during the monitoring period.
- •
- (Equipment: Hal Technology; Model no. Hal-HPC300 / Hal-HPC301)
- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 3.8 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

- 3.9 High volume samplers (HVS) (TISCH Model: TE-5170 and GMW Model: GS2310) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).
- 3.10 The positioning of the HVS samplers are as follows:
 - a horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
 - no two samplers shall be placed less than 2 meters apart

- the distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
- a minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- a minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- no furnace or incinerator flue is nearby;
- airflow around the sampler is unrestricted;
- the sampler is more than 20 metres from the dripline;
- any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- a secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS

- 3.11 Prior to the commencement of the dust sampling, the flow rate of the high-volume sampler was properly set (between $1.1 \text{ m}^3/\text{min.}$ and $1.4 \text{ m}^3/\text{min.}$) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 3.12 For TSP sampling, fiberglass filters with a collection efficiency of > 99% for particles of 0.3µm diameter were used.
- 3.13 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 3.14 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centred with the stamped number upwards, on a supporting screen.
- 3.15 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 3.16 The shelter lid was closed and secured with the aluminium strip.
- 3.17 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 3.18 After sampling, the filter was removed and sent to the HOKLAS laboratory (ALS Hong Kong) for weighing. The elapsed time will be also recorded.
- 3.19 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than $\pm 3^{\circ}$ C; the relative humidity (RH) should be < 50% and not vary by more than $\pm 5\%$. A convenient working RH is 40%.

Maintenance/Calibration

- 3.20 The following maintenance/calibration is required for the HVS:
 - The high-volume motors and their accessories will be properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking will be made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers will be calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 3.21 No Action/Limit Level exceedance was recorded for 1-hour TSP monitoring.
- 3.22 One (1) Action Level and One (1) Limit Level exceedance was recorded for 24-hour TSP monitoring. However, the exceedance were caused by the heavy traffic flow.
- 3.23 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer at rooftop of Yau Lai Estate Bik Lai House (41/F). The location is shown in **Figure 2**. This weather information for the reporting month is summarized in **Appendix C**.
- 3.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.
- 3.25 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM1 – Tin Hau Temple	Road Traffic at Cha Kwo Ling Road
AM2 – Sai Tso Wan Recreation Ground	N/A
AM3 – Yau Lai Estate Bik Lai House	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
AM4 - Sitting-out Area at Cha Kwo Ling Village	Road Traffic at Cha Kwo Ling Road
AM4(B) – Flat 103 Cha Kwo Ling Village*	Road Traffic at Cha Kwo Ling Road
AM5(A) - Tseung Kwan O DSD Desilting Compound	Vehicle Movement within the Desilting Compound
AM6(A) - Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

 Table 3.4
 Major Dust Source during Air Quality Monitoring

^{*} In June 2022, the 24 TSP Monitoring at AM4(A) is suspended and under application for relocation, as the office had to be demolished. Once the proposal for relocation is approved, the monitoring at AM4(A) will be conducted at AM4(B). For the time being, as the station CKL2 for the 24 hr TSP monitoring, carried out under EM&A works for Trunk Road T2 Project (EP-451/2013), is located in close proximity to AM4(A); the results from CKL2 are adopted as reference for the 24 TSP monitoring at AM4(A), which has similar environment when compared with that for CKL2.

4. NOISE

Monitoring Requirements

4.1 According to EM&A Manual of the Project, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Noise monitoring was conducted at 8 designated monitoring stations (CM1, CM2, CM3, CM4, CM5, CM6 (A), CM7 (A), and CM8 (A) in the reporting period. **Table 4.1** and **Figure 3** show the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Rooftop (41/F)
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Rooftop (40/F)
CM4	Tin Hau Temple, Cha Kwo Ling	Ground Level
CM5	CCC Kei Faat Primary School, Yau Tong	Rooftop (6/F)
CM6(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Ground Level
CM7(A)*	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Ground Level
CM8(A)*	Park Central, L1/F Open Space Area	1/F

 Table 4.1
 Noise Monitoring Stations

Remarks:

* Noise monitoring at designated station CM6, CM7 & CM8 was rejected by the premise owners. Therefore, baseline and impact noise monitoring works were carried out at alternative noise monitoring stations CM6(A), CM7(A) and CM8(A) respectively.

Monitoring Equipment

4.3 Integrating Sound Level Meter was used for impact noise monitoring. The meters are Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x) that also complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. **Table 4.2** summarizes the noise monitoring equipment being used. Copies of calibration certificates are attached in **Appendix B**.

Table 4.2	Noise Monitoring	Equipment

Equipment	Model and Make	Quantity
Integrating Sound Lovel Mater	SVAN 957/ 959 / 979	1
Integrating Sound Level Meter	BSWA308 SLM	3
	SV30A	1
Calibrator	Brüel & Kjær 4231	0
	ST-120	1

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**. Additional weekly impact monitoring are carried out for evening time (1900 – 2300 hours) for monitoring stations CM1, CM2, CM3 & CM6(A) and night-time (2300 – 0700 hours) for monitoring stations CM1, CM2 & CM3.

Monitoring Stations	Parameter	Period	Frequency	Measurement
CM1				Façade
CM2				Façade
CM3	$\begin{array}{c} L_{10}(30 \text{ min}) \\ dB(A) \\ L_{90}(30 \text{ min}) \\ dB(A) \\ L_{eq}(30 \text{ min}) \\ dB(A) \end{array}$			Façade
CM4		0700-1900 hrs on		Façade
CM5		normal weekdays	Once per week	Façade
CM6(A)		Once per week Free Fi		Free Field
CM7(A)				Free Field
CM8(A)				Façade
CM1	$\begin{array}{c} L_{10}(5 \text{ min}) \\ dB(A) \end{array}$			Façade
CM2		1900 – 0700 hrs on normal weekdays		Façade
CM3	$\begin{array}{c} L_{90}(5 \text{ min}) \\ dB(A) \end{array}$	normal weekduys]	Façade
CM6(A)	L _{eq} (5 min) dB(A)	1900 – 2300 hrs on normal weekdays		Free Field

Table 4.3 Frequency and Parameters of Noise Monitoring

Monitoring Methodology and QA/QC Procedure

- 4.5 The monitoring procedures are as follows:
 - The monitoring station was normally be at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
 - For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
 - The battery condition was checked to ensure the correct functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time was set as follows:
 - frequency weighting: A
 - time weighting : Fast
 - measurement time : 30 minutes
 - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement will be more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} was recorded. In addition, noise sources was recorded on a standard record sheet.
 - Noise monitoring will be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Supplementary monitoring was provided to ensure sufficient data would be obtained.

Maintenance and Calibration

- 4.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 4.7 The sound level meter and calibrator was checked and calibrated at yearly intervals.
- 4.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 4.9 No Action Level exceedance was recorded due to documented complaints in the reporting month. No project-related Limit Level exceedance during daytime was recorded due to monitoring results in this reporting month. No project-related Limit level exceedances for evening/night-time construction noise monitoring was recorded.
- 4.10 Noise monitoring results and graphical presentations are shown in Appendix G.
- 4.11 The major noise source identified at the noise monitoring stations are shown in **Table 4.4**.

Monitoring Stations	Locations	Major Noise Source
CM1	Nga Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM2	Bik Lai House, Yau Lai Estate Phase 1, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM3	Block S, Yau Lai Estate Phase 5, Yau Tong	Road Traffic near Eastern Cross Harbour Tunnel Toll Plaza
CM4	Tin Hau Temple, Cha Kwo Ling	Road Traffic at Cha Kwo Ling Road
CM5	CCC Kei Faat Primary School, Yau Tong	Road Traffic at Yau Tong Road
CM6(A)	Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores	Road Traffic at O King Road near Ocean Shores
CM7(A)	Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores	Road Traffic at Tong Yin Street
CM8(A)	Park Central, L1/F Open Space Area	Road Traffic at Po Yap Road

 Table 4.4
 Major Noise Source during Noise Monitoring

4.12 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured L_{eq} – Baseline L_{eq} = CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 4.5, 4.6 and 4.7**.

Station	Baseline Noise Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 – 1900 hrs on normal weekdays)	
CM1	65.5	- 75	
CM2	63.6		
CM3	65.6		
CM4	62.0		
CM5	68.2	70*	
CM6(A)	61.9	75	
CM7(A)	58.3		
CM8(A)	69.1		

C4-4 . . 1 0 • .

Baseline Noise Level and Noise Limit Level for Monitoring Stations Table 4.6 (Evening-time & Daytime (Holiday))

Station	Baseline Noise Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))	Noise Limit Level, dB (A) (Evening time on all days (1900-2300 hrs) and Holidays (including Sundays) during daytime (0700-1900 hrs))
CM1	64.4	
CM2	62.2	70
CM3	64.7	
CM6(A)	60.2	65 ¹
1. ASR B was adopted according to the EIA as traffic in the surrounding area has not been changed.		

Baseline Noise Level and Noise Limit Level for Monitoring Stations Table 4.7 (Night-time)

Station	Baseline Noise Level, dB (A) (Night-time (2300 – 0700 hrs)	Noise Limit Level, dB (A) (Night-time (2300 – 0700 hrs)	
CM1	14-day baseline monitoring results for the		
CM2	time period of impact measurement at each	55	
CM3	station would be adopted		

5. WATER QUALITY

Monitoring Requirements

Groundwater Quality

5.1 The existing groundwater quality monitoring programme has been suspended as the monitoring results had been deemed non-representative of the impact from the project justified by two major factors: (1) influence on the monitoring results from non-project related factors, such as anthropogenic activities and natural phenomenon; and (2) large separation between the monitoring stations and works area. In addition, as no alternative locations for the groundwater quality monitoring were available, the groundwater quality monitoring has been suspended since October 2019 upon the agreement by EPD.

Marine Water Quality

- 5.2 Marine water quality monitoring was conducted three times per week at the designated monitoring stations. Monitoring took place two times per monitoring day during mid ebb and mid flood tides at three depths (1 meter from surface, mid depth and 1 meter from the bottom). For Tseung Kwan O Salt Water Intake (i.e. Station M6), water sampling and in-situ measurements was taken at the vertical level where the water abstraction point of the intake is located (i.e. approximately mid-depth level). If the water depth is less than 6m, the mid-depth measurement may be omitted. If the depth is less than 3m, only the mid-depth measurements need to be taken.
- 5.3 Duplicate in-situ measurements (Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity) and water samples (suspended solids (SS)) at each depth were monitored in accordance with the requirements in the EM&A Manual. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides were not less than 0.5m.
- 5.4 According to the Environmental Review Report (ERR) for Variations of Environmental Permit (Ref: C45-03), water quality monitoring and audit programme was implemented for monitoring of oxygen depletion (e.g. Dissolved Oxygen (DO) level) in this embayed waters during the period when the fully enclosed barrier is installed. A "Proposal for Water Quality Monitoring in Temporary Marine Embayment" has been submitted to EPD in July 2017 to propose the monitoring frequency, parameter, location, etc. EPD has no further comment on the Proposal. Since January 2020, the cofferdam has been partially removed and the seawater is no longer enclosed. Therefore, no embayment water quality monitoring is required.

Groundwater Level Monitoring (Piezometer Monitoring)

5.5 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan. The monitoring commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. No monitoring was conducted in the reporting month.

- 5.6 Referring to EM&A Manual Section 4.2.5, after completion of the tunnel construction, a 1- year post-monitoring on the groundwater levels (piezometer monitoring) above the tunnel will need to be carried out by contractor responsible for tunnel construction. The frequency of groundwater level monitoring is recommended to conduct on a monthly basis by the Engineer.
- 5.7 Alternative groundwater level monitoring locations, namely TKO-LBH403(P) and TKO-LBH434(P), are proposed for the post-construction monitoring since most of the previously adopted monitoring locations became obsolete for the following reasons:
 - 1) recorded dry since baseline monitoring
 - 2) destroyed due to tunnel excavations work
 - 3) inaccessible due to obstruction by fallen trees.

The post-monitoring locations and the monitoring results are shown in Appendix S.

Monitoring Locations

Marine Water Quality

5.8 A total of twelve monitoring stations are designated for the water quality monitoring program according to EM&A Manual. One additional monitoring station (W1) is designated for monitoring of oxygen depletion in the embayed waters during the period when the fully enclosed barrier is installed. In addition, an extra monitoring station (W2) was set up in December 2021 for post-reclamation marine water monitoring. The locations are also summarized in **Table 5.2**. Their locations shown on **Figure 5** with the exception of W2, which was presented in **Figure 9**.

Monitoring	Descriptions	Coordinates	
Stations	Descriptions	Easting	Northing
M1	Junk Bay Coral Site – Junk Bay near Chiu Keng Wan	844255	817565
M2	Junk Bay Coral Site – Junk Bay	844076	817087
M3	Junk Bay Coral Site – Junk Island	844491	817890
M4	Junk Bay Coral Site – Chiu Keng Wan	843209	816416
M5	Junk Bay Coral Site – Fat Tong Chau	845463	815769
M6	Tseung Kwan O Salt Water Intake	845512	817442
C1	Control Station – Southeast	844696	814773
C2	Control Station – Northwest	842873	816014
G1	Gradient Station	844418	817560
G2	Gradient Station	844290	817384
G3	Gradient Station	844488	817735
G4	Gradient Station	844967	817551
W2	Embayed Area formed by TKO-LT Tunnel Reclamation	844313	817801

Monitoring Equipment

5.9 For in-situ monitoring, a multi-parameter meter was used to measure Dissolved oxygen (DO) concentration, DO saturation (DO %), pH, temperature and turbidity. A sampler was used to collect water samples for laboratory analysis of SS, BOD₅, TOC, Total Nitrogen, Ammonia-N and Total Phosphate.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.10 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.11 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.12 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.13 Salinity compensation was built-in in the DO equipment.

<u>Turbidity</u>

5.14 Turbidity was measured in-situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not be less than 25m in length.

<u>рН</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Water Depth Detector

5.16 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

Water Sampler

5.17 Water samples collected for laboratory analysis were stored in high density polythene bottles sample containers, with appropriate preservatives added. All sampling bottles were labelled (waterproof) with the sampling date and time, sample lot number and sampling location reference number to avoid mishandling.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles, with preservative appropriately added where necessary. They will be packed in ice (cooled to 4°C without being frozen), delivered to the laboratory and analysed as soon as possible.

Calibration of In-Situ Instruments

- 5.19 All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring.
- 5.20 For the on-site calibration of field equipment, the BS 1427:1993, "Guide to Field and on-site test methods for the analysis of waters" was observed.
- 5.21 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe. The probe was then be calibrated with a solution of known NTU.
- 5.22 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 5.23 **Table 5.3** summarizes the equipment used in the water quality monitoring program. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
	YSI 6820-C-M	0
Multi-parameter Water Quality System	Aquaread AP-2000-D	0
Quanty System	YSI EXO1 Multiparameter Sondes	1
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS-320	1
Water Depth Detector	Fishfinder 140	1

Table 5.3Water Quality Monitoring Equipment

Monitoring Parameters and Frequency

5.24 **Table 5.4** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring in the reporting period.

Monitoring Stations	Parameters, unit	Depth	Frequency			
Marine Wate	Marine Water Quality					
M1 M2 M3 M4 M5 M6 C1 C2 G1 G2 G3 G4	<u>In-situ:</u> Dissolved oxygen (DO) concentration, DO saturation, turbidity, pH, temperature and salinity <u>Laboratory Testing:</u> Suspended Solids (SS)	 M1-M5, C1-C2, G1- G4 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid- depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. <u>M6</u> at the vertical level where the water abstraction point of the intake is located(i.e. approximately mid- depth level) 	3 days per week / 2 per monitoring day (1 for mid-ebb and 1 for mid- flood)			
W2	<u>In-situ:</u> Dissolved oxygen (DO), pH, temperature and salinity	 3 water depths: 1m below water surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid- depth sampling only. If the water depth is less than 6m, omit mid-depth sampling. 	Once per month			

Table 5.4Water Quality Monitoring Parameters and Frequency

Monitoring Methodology

Marine Water Quality

- 5.25 The monitoring stations were accessed using survey boat by the guide of a hand-held Global Positioning System (GPS). The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment was lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements was carried out accordingly. The in-situ measurements at predetermined depths was carried out in duplicate. In case the difference in the duplicate in-situ measurement results was larger than 25%, the third set of in-situ measurement would be carried out for result confirmation purpose.
- 5.26 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples for SS at three depths (1 m below water surface, mid-depth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible.

Laboratory Analytical Methods

5.27 The testing of all parameters were conducted by ALS Hong Kong (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method and limit of reporting are provided in **Table 5.5**.

Parameters (Unit)	Proposed Method	Reporting Limit	Detection Limit
SS (mg/L)	APHA 2540 D	0.5 mg/L $^{(1)}$	0.5 mg/L
BOD ₅ (mg O ₂ /L)	APHA 19ed 5210B	2 mg O ₂ /L	
TOC (mg-TOC/L)	In-house method SOP020 (Wet Oxidation)	1 mg-TOC/L	
Total Nitrogen (mg/L)	In-house method SOP063 (FIA)	0.6 mg/L	
Ammonia-N (mg NH ₃ -N/L)	In-house method SOP057 (FIA)	0.05 mg NH ₃ -N/L	
Total Phosphorus (mg-P/L) ⁽²⁾	In-house method SOP055 (FIA)	0.05 mg-P/L	

 Table 5.5
 Methods for Laboratory Analysis for Water Samples

Note:

1) Limit of Reporting is reported as Detection Limit for non-HOKLAS report.

2) Parameter Total Phosphorus represents the laboratory testing for total phosphate content in water which is the sum of all three forms of phosphates in water.

QA/QC Requirements

Decontamination Procedures

5.28 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.29 Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.30 QA/QC procedures as attached in **Appendix J** are available for the parameters analysed in the HOKLAS-accredited laboratory, ALS Hong Kong.

Results and Observations

Groundwater Quality Monitoring

5.31 Monitoring of groundwater quality had been suspended since October 2019. (Details refer to Section 5.1)

Marine Water Quality Monitoring

- 5.32 Marine water monitoring results and graphical presentations are shown in **Appendix I**. Other relevant data was also recorded, such as monitoring location / position, time, sampling depth, weather conditions and any special phenomena or work underway nearby.
- 5.33 Calculated Action and Limit Levels for Marine Water Quality is presented in AppendixI. There were six (6) Action Level and thirty-three (33) Limit Level exceedances recorded in Monitoring Stations (M) during marine water quality monitoring.
- 5.34 The last post reclamation marine water quality monitoring was carried out in November 2022. No further monitoring is required.
- 5.35 Exceedances of turbidity and suspended solid were recorded on from various monitoring stations non-specifically among all stations including the control stations. Investigations over April 2023 showed that the range of SS levels recorded in April 2023 remained consistent with the records in recent months. All Contractor is reminded to strictly follow the approved drainage plan and clear drainage regularly. In particular, all drainage shall be checked and cleared after heavy rainstorm as sediments may accumulate along pipes and culverts. Further details can be found in **Appendix K**.
- 5.36 Silt curtain inspections are carried out before the commencement of the construction works every day and diving surveys are also conducted once a week to inspect the silt curtain below the water level. The inspection report are verified by both the RE and the diving specialist and the records are reviewed weekly during the site audits.

Groundwater Level Monitoring (Piezometer Monitoring)

- 5.37 Daily piezometer monitoring at any time of the day shall be carried throughout the whole period when any tunnel construction activities are carried out within +/- 50m of the piezometer gate in plan.
- 5.38 Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. As the construction activity was 120m away from the piezometer gate, no monitoring was conducted in this reporting month.
- 5.39 A 1- year post-monitoring in operational phase conducted by the Contractor was commenced in December 2022 due to the completion of the tunnel construction.

Mitigation Measures Adopted by Contractors for Surface runoff Prevention

5.40 During dry season, the Contractors have maintained the mitigation measures adopted on Site, in order to prevent surface run-off and muddy water from discharging to the public areas. The mitigation measures adopted by each Contract are summarised below:

<u>NE2015/01</u>

- 5.41 At Lam Tin Side, the Site drainage systems are divided into two parts, namely the site formation and tunnel site drainage which includes:
 - 1. Site formation drainage system collects surface run-off from open excavation areas including slope works and flows naturally to the lowest point in the Site, where they are pumped to the wetseps and sedimentation tank for treatment near LTI site entrance before they are discharged to the designated discharge point.
 - 2. Tunnel drainage system collects surface run-off from the tunnel which are then pumped to the sedimentation tanks near tunnel adit, where three sets of wetseps and sedimentation tanks were set up. The treated water will be discharged to designated discharge point near the Eastern Harbour Crossing (EHC) area.
- 5.42 At Eastern Harbour Crossing (EHC), two sets of wetseps and sedimentation tanks are set up on site. The wastewater will flow to the lowest catchpit by gravity, which are then pumped to wetseps for wastewater treatment. The sandbags/bunds are also set up at the vehicle entrance to surface run-off from the Site.
- 5.43 At Tseung Kwan O (TKO), the surface run-off from the slope are directed to the lowest point at cavern via the permanent drainage, which are then pumped to the sedimentation tanks for wastewater treatment via temporary pipes. The treated water will be discharged at designated discharge points. The wetseps and sedimentation tanks are provided under the BMCPC bridge and at the two sides of marine working platform. Water from natural stream will also be diverted to existing drainage to avoid overloading the capacity of the wastewater treatment system. The reservoir on the right side of marine working platform will be enlarged to cater for higher water storage demands. During heavy rainfall, the water stored at the exit of the tunnel shall be pumped into the sedimentation tanks on the right.

<u>NE2015/02</u>

- 5.44 The exposed sloped area at Portion 9 has been covered with geotextile or tarpaulin to avoid surface run-off. Since March 2021, the stormwater at Portion IX, VIII, VII, VI, II and I will be collected towards to the sedimentation tanks at the edge of site boundary.
- 5.45 Certain amount of stormwater received in Portion 9 will be directed and pumped via the flex tube and sump towards the water treatment system and the approved discharge points (as shown in **Appendix V**). Water generated from Portion VI and V and some water in Portion IX are treated via storage tanks and sedimentation tanks and discharged into approved discharge points (manholes of DN2100 Drain and Area Z).
- 5.46 The peripheral open U-channel are also provided along the site boundary, which shall be directed to the storage tank and WetSep for treatment in Area A.
- 5.47 Regular cleaning depending on site conditions are provided for the WetSep at Area A and Z; and the storage tanks and sedimentation tanks at Area A. The water treated by the sedimentation tank and the wetsep shall be discharged towards the designated discharge point. Quality of the effluent are also monitored regularly.

<u>NE2017/02</u>

- 5.48 Existing manholes are covered with sandbags and geotextiles to avoid surface run-off from entering the channels.
- 5.49 Stockpiles are covered with tarpaulin to avoid surface run-off.
- 5.50 Concrete blocks and sandbags are placed along the periphery of the site boundary to avoid surface run-off.
- 5.51 Stormwater within the site enters the excavated area and flow naturally into the sump due height difference. The stormwater collected in the sump shall be pumped into the sedimentation tank where the run-off is treated before discharging into the designated discharge point.

<u>NE2015/03</u>

- 5.52 The existing manhole cover are covered with geotextile to prevent muddy water from entering the existing U-channels along the side of Po Shun Road. Manhole inspection are carried out by taking silt measurement regularly in case if silt enters the channel, and silt shall be removed from the manhole if silt were found.
- 5.53 Sandbags were placed at the periphery of the site along the hoarding to prevent surface runoff from escaping the site.
- 5.54 Exposed slopes are covered with tarpaulin to prevent surface run-off.
- 5.55 The surface run-off shall be pumped into the sedimentation tank where they are treated before entering the designated discharge points.

<u>NE2017/01</u>

5.56 Temporary peripheral open U-channels and sumps are provided for collecting the stormwater, which are pumped and directed towards the sedimentation tank for treatment. The treated water shall be directed to the designated discharge point.

6. ECOLOGY

Post-Translocation Coral Monitoring

- 6.1 Post-translocation monitoring survey is recommended in the EM&A Manual to audit the success of coral translocation. Information gathered during each post-translocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey.
- 6.2 Under Contract No. NE/2015/01 and NE/2015/02, a total of 14 and 29 coral colonies were tagged and translocated respectively from the Donor Site to the Recipient Site in November 2016. Ten (10) corals at the Recipient Site were also tagged by each Contract as reference for post-translocation monitoring.
- 6.3 The post-translocation coral monitoring shall be conducted once every 3 months after completion for a period of 12 months. Location of post-translocation coral monitoring is shown in **Figure 7**. The fourth post-translocation coral monitoring was carried out on 07 November 2017. No further monitoring is required.

7. CULTURAL HERITAGE

Monitoring Requirement

- 7.1 According to the EP Conditions and EM&A Manual, monitoring of vibration impacts was conducted when the construction works are less than 100m from the Built Heritage in close proximity of the worksite, namely the Cha Kwo Ling Tin Hau temple. Tilting and settlement monitoring should be applied on the Cha Kwo Ling Tin Hau Temple. Construction works less than 100m from the Cha Kwo Ling Tin Hau temple commenced on 8 May 2017.
- 7.2 As stated in the "*Built Heritage Mitigation Plan*" for this Project, during the period of the construction works conducted within 100m from the Cha Kwo Ling Tin Hau Temple, monitoring on settlement and tilting will be conducted once a day for the Cha Kwo Ling. Monitoring of vibration will be conducted during blasting at Cha Kwo Ling area once a day. When there is no blasting to be conducted at the area, vibration monitoring at the Cha Kwo Ling Tin Hau Temple will be conducted once per day when there are piling works or rock breaking works within the 100m from the Cha Kwo Ling Tin Hau Temple.

Monitoring Locations

7.3 One vibration monitoring point and three building settlement monitoring points were proposed for monitoring of the cultural heritage. The building settlement markers were placed on the wall on three sides of the Temple, except the front, of the Cha Kwo Ling Tin Hau Temple and the vibration monitoring point is located within the Cha Kwo Ling Tin Hau Temple. Monitoring Location is shown in **Figure 8**.

Monitoring Equipment

- 7.4 Building settlement is measured via a settlement marker attached to the wall of Cha Kwo Ling Tin Hau Temple by adhesive tape.
- 7.5 Vibration monitoring was conducted by using vibrographs: MicroMate manufactured by Instantel. These vibrographs will be calibrated annually and its performance follows the requirements given in the "*Guidance Note on Vibration Monitoring*" (GN-VM) issued by the Civil Engineering and Development Department, which is based on the Performance Specification for Blasting Seismographs by International Society of Explosive Engineers (ISEE (2000)).
- 7.6 **Table 7.1** summarizes the equipment employed by the Contractor for cultural heritage monitoring. Copies of calibration certificates are attached in **Appendix B**.

Equipment	Manufacturer and Model	Quantity
Digital Level for tilting	Leica LS15 Serial No.: 701141	1
Digital Caliper for tilting	Mitutoyo CD-6" ASX Serial No.: A17047921	1
iCivil-1011 Inclinometer for building settlement	iCivil-1011 Inclinometer Serial No.: HK110118 / HK110120	2
Vibrographs for vibration monitoring	MicroMate manufactured by Instantel Model No.: 721A2501 (Main unit) Model No.: 721A2901 (Geophone) Model No.: 721A0201 (Linear microphone)	1 1 1

 Table 7.1
 Cultural Heritage Monitoring Equipment

Monitoring Methodology

7.7 Vibrograph (velocity seismograph) was deployed at each monitoring station to measure and record the PPV and amplitude of ground motion in three mutually perpendicular directions. Vibration monitoring equipment fulfils the requirements stated in the Government guidelines and is calibrated to HOKLAS standards. Each monitoring would not be more than 10 minutes. Settlement monitoring should be conducted by surveyors manually.

Alert, Alarm and Action Levels

7.8 The Alert, Alarm and Action (AAA) Levels are given in **Table 7.2**.

able 7.2 AAA Levels for Monitoring for Cultural Heritage				
Parameter	Alert Level	Alarm Level	Action Level	
Vibration	ppv: 4.5 mm/s	ppv: 4.8 mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm	
Building Settlement Markers	6mm	8mm	10mm	
Building Tilting ⁽¹⁾	1:2000	1:1500	1:1000	

 Table 7.2
 AAA Levels for Monitoring for Cultural Heritage

Remarks:

(1) Building tilting measurement was replaced by building settlement point measurement. The tilting can be calculated by the ratio of the maximum settlement difference between 2 points and the distance between the 2 points.

Results

7.9 In the reporting month, cultural heritage monitoring was carried out by the Contractor at the aforesaid location on 26 occasions. No AAA Level exceedance was recorded in the reporting month. The monitoring results are presented in **Appendix T**.

Mitigation Measures for Cultural Heritage

- 7.10 According to Condition 3.6 of the EP (EP No.: EP-458/2013/C), to prevent damage to Cha Kwo Ling Tin Hau Temple and its Fung Shui rocks (Child-given rocks) during the construction phase, a temporarily fenced-off buffer zone (Rocks buffer zone is 5 m from the edge of Rocks and 15m from the edge of Rocks alter) with allowance for public access (minimum 1 m) around the temple and the Fung Shui rocks shall be provided. The open yard in front of the temple should be kept as usual for annual Tin Hau festival.
- 7.11 As there is a large buffer distance from the current works to Cha Kwo Ling Tin Hau Temple and the Fung Shui rocks (Child-given rocks), the temporarily fenced-off rocks buffer zone and from the edge of Rocks alter is not required. The fenced-off rocks buffer zone would be implemented when there is construction activities in vicinity of the cultural heritage.

8. LANDSCAPE AND VISUAL IMPACT REQUIREMENTS

- 8.1 Landscape and visual mitigation measures during the construction phase shall be checked to ensure that they are fully realized and implemented on site.
- 8.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures listed in "Implementation Schedule and Recommended Mitigation Measures" (shown in **Appendix N**). The summaries of observations and recommendations related to landscape and visual impacts, if any, are shown in **Appendix L**.
- 8.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.

9. LANDFILL GAS MONITORING

Monitoring Requirement

- 9.1 In accordance with the EM&A Manual, monitoring of landfill gas is required for construction works within the Sai Tso Wan Landfill Consultation Zone during the construction phase & within buildings and enclosures during the operational phase. This section presents the results of landfill gas measurements performed by the Contractor. **Appendix A** shows the Limit Levels for the monitoring works.
- 9.2 The "Landfill Gas Monitoring Proposal", including the monitoring programme and detailed actions, is submitted to the EPD for approval. Details of monitoring in this Proposal is in line with the monitoring requirements stipulated in the EM&A Manual.
- 9.3 Inspection and landfill gas monitoring should be carried out at buildings and enclosures (e.g. administration building, ventilation building, workshop, tunnel, etc.) prior to the operation as preventive measures. The monitoring should be continued through the operation of the Project.
- 9.4 As the completion date of construction within the concerned areas was 11 December 2022. A prior measure was conducted on 09 December 2022. The landfill gas monitoring for operational phase would start from the end of December 2022. The landfill gas measurement was conducted on 25th April 2023 in this reporting month.

Monitoring Parameters and Frequency

- 9.5 Monitoring parameters for Landfill gas monitoring include Methane, Carbon dioxide and Oxygen.
- 9.6 According to the implementation schedule and recommended mitigation measures of the EM&A Manual, measurements of the following frequencies should be carried out:

Excavations deeper than 1m

- at the ground surface before excavation commences;
- immediately before any worker enters the excavation;
- at the beginning of each working day for the entire period the excavation remains open; and
- periodically throughout the working day whilst workers are in the excavation.

Excavations between 300mm and 1m deep

- · directly after the excavation has been completed; and
- periodically whilst the excavation remains open.

For excavations less than 300mm deep

• monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person

For tunnel, subway, buildings, enclosures and any other underground structures

• prior to the operation and monthly for the first year of operation

For any construction required for the maintenance work during operational stage

• at least daily before starting the work of the day

Monitoring Locations

9.7 Monitoring of oxygen, methane and carbon dioxide was performed for operational phase at the Administration Building, Sewage Pumping Station, Stormwater Pumping Station, West Ventilation Building and part of the tunnel area at Lam Tin within the consultation zone of Sai Tso. In this reporting month, the area required to be monitored for landfill gas are shown below and **Figure 6** shows the landfill gas monitoring locations.

Table 9.1Landfill Gas Monitoring Locations in Operational Phase

ID	Description
PT#1	ADMINSTRATION BUILDING - G/F - LOBBY (MAIN
F 1#1	ENTRANCE)
PT#2	ADMINSTRATION BUILDING - G/F - CARPENTER
11/12	WORKSHOP
PT#3	ADMINSTRATION BUILDING - G/F - E&M
	WORKSHOP
PT#4	ADMINSTRATION BUILDING - G/F - ELECTRONIC
	WORKSHOP
PT#5	ADMINSTRATION BUILDING - G/F - FIRST AID
	ROOM
PT#6	SEWAGE PUMPING STATION
PT#7	STORMWATER PUMPING STATION
PT#8	WEST VENTILATION BUILDING
PT#9	TUNNEL AREA #1
PT#10	TUNNEL AREA #2

Monitoring Equipment

9.8 **Table 9.2** summarizes the equipment employed by the Contractor for the landfill gas monitoring.

Table 9.2Landfill Gas Monitoring Equipment

Equipment	Model and Make	Quantity
	ALTAIR 5X	
Portable gas detector	Multigas Detector	1
	(Serial No. 152097)	

Results and Observations

9.9 In the reporting month, no landfill gas monitoring was carried out by the Contractor at the aforesaid locations on 130 occasions due to the completion of construction works. No Limit Level exceedance for operational phase landfill gas monitoring was recorded in the reporting month. The monitoring results are provided in **Appendix R**. Copies of calibration certificates are attached in **Appendix B**.

10. ENVIRONMENTAL AUDIT

Site Audits

- 10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix L**.
- 10.2 Joint weekly site audits by the representatives of the Engineer, Contractor and the ET were conducted in the reporting month as shown in below:
 - Contract No. NE/2015/01: 4, 12, 19, 26
 - Contract No. NE/2015/02: 4, 13, 20, 27
 - Contract No. NE/2017/01: 4, 13, 20, 27
 - Contract No. NE/2017/02: 4, 13, 20, 27
 - Contract No. NE/2017/06: 4, 13, 20, 27
 - Contract No. NE/2017/07: 4, 12, 19, 26
- 10.3 Monthly joint site inspection with the representative of IEC was conducted for NE/2015/01 and NE/2017/07 on 19 April 2023, while NE/2015/02, NE/2017/01, NE/2017/02 and NE/2017/06 were conducted on 20 April 2023.
- 10.4 The EM&A programme of Contract No. NE/2015/03 had been terminated on 21 April 2020 under the approval of EPD.

Implementation Status of Environmental Mitigation Measures

- 10.5 According to the EIA Study Report, Environmental Permit and the EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Implementation Schedule and Recommended Mitigation Measures is provided in **Appendix N**.
- 10.6 During site inspections in the reporting month, no non-compliance was recorded on reporting month. The observations and recommendations made during the audit sessions are summarized in **Appendix L**.

11. WASTE MANAGEMENT

- 11.1 Waste generated from this Project includes inert construction and demolition (C&D) materials, non-inert C&D materials and marine sediments. Inert C&D waste includes soil, broken rock, broken concrete and building debris, while non-inert C&D materials are made up of C&D waste which cannot be reused or recycled and has to be disposed of at the designated landfill sites. Marine sediment shall be expected from excavation and dredging works of this Project.
- 11.2 With reference to relevant handling records of this Project, the quantities of different types of waste generated in the reporting month are summarised and presented in **Appendix P**.
- 11.3 The Contractors are advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in the approved EM&A Manual and waste management plans shall be fully implemented. The status of implementation of waste management and reduction measures are summited in **Appendix N**.

12. ENVIRONMENTAL NON-CONFORMANCE

Summary of Exceedances

- 12.1 No project-related Limit Level exceedance of noise was recorded due to the monitoring results in the reporting month. No Action Level exceedances of construction noise were recorded in the reporting month.
- 12.2 One (1) Limit Level exceedance of air quality was recorded in the reporting month. One (1) Action Level exceedance of air quality monitoring was recorded in the reporting month.
- 12.3 Six (6) Action Level and Thirty-three (33) Limit Level exceedances were recorded in Monitoring Stations (M) during marine water quality monitoring.
- 12.4 Post-reclamation marine water quality monitoring was completed in November 2022.
- 12.5 Actions carried out in accordance with the Event and Action Plans in **Appendix M** are presented in **Appendix K** Summary of Exceedance.

Summary of Environmental Complaint

12.6 One (1) environmental complaint was received in the reporting month. The Cumulative Complaint Log is presented in **Appendix O**. The investigation status and result are also reported in **Appendix O**.

Summary of Environmental Summon and Successful Prosecution

12.7 No notification of summon or successful environmental prosecution was received in this reporting period. The Cumulative Log for environmental summon and successful prosecution since the commencement of the Project is presented in **Appendix O**.

13. FUTURE KEY ISSUES

- 13.1 Tentative construction programmes for the next three months are provided in **Appendix Q**.
- 13.2 Major site activities to be undertaken for the next reporting period are summarized in **Table 13.1**.

Contract No. and	Site Activities	s (May 2023)	Key Environmental
Project Title			Issues *
NE/2015/01 - Tseung Kwan O – Lam Tin Tunnel – Main Tunnel and Associated Works	Lam Tin Interchange	 Site Formation Area 1G1, 1G2, 2 & 5 Site Formation Slope Stabilization Bridge Noise Barrier & Noise Enclosure Road S02-2a2a & 2a2b Noise Enclosure EHC 4 Construction Semi Enclosure Structures Type 1E RC Structures Type 1D RC Structures CKLR Underground Utilities LTI Drainage & Road Pavement Lei Yue Mun Road Junction Modification Works Stage 1 Commissioning Outstanding Works 	(A) / (B) / (C) / (D) / (E) / (G)
	Main Tunnel	13)N/A	N/A
	TKO Interchange	14)Miscellaneous Works 15)Slope Stabilization Works	(A) / (C) / (D) / (E) / (F) / (I)
NE/2015/02 - Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works	2) Cleaning wo	cing and planter construction orks and defect rectification of BMCPC temporary access road g works	(A) / (B) / (C) / (D) / (E) / (G) / (I)
NE/2015/03 - Tseung Kwan O – Lam Tin Tunnel – Northern Footbridge	The construction works under the contract had been completed in December 2019. Materials are being removed from works area.		N/A
NE/2017/01 – Tseung Kwan O Interchange and Associated Works	1) Defects rect	ification	(A) / (B) / (E) / (F) / (G)
NE/2017/02 –Tseung Kwan O - Lam Tin Tunnel - Road P2/D4 and Associated Works	2) Road works	it excavation and utility diversion works	(A) / (B) / (E) / (F) / (G)
NE/2017/06 – Tseung Kwan O – Lam Tin Tunnel – Traffic Control and Surveillance System(TCSS) and Associated Works	 Testing and Defects Rec 	Commissioning tification	(E)

 Table 13.1
 Summary Table for Site Activities in the next Reporting Period

Contract No. and Project Title	Site Activities (May 2023)	Key Environmental Issues *
NE/2017/07 - Cross Bay Link, Tseung Kwan O – Main Bridge and Associated Works	 E&M Pre-handover inspection E&M defect rectification works 	N/A

Note:

- (A) Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- (B) Noisy construction activity such as rock-breaking activities and piling works;
- (C) Runoff from exposed slope or site area;
- (D) Wastewater and runoff discharge from site;
- (E) Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
- (F) Set up and implementation of temporary drainage system for the surface runoff;
- (G) Storage of chemicals/fuel and chemical waste/waste oil on site;
- (H) Accumulation and storage of general and construction waste on site; and
- (I) Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

Key Issues for the Coming Month

- 13.3 Key environmental issues in the coming month include:
 - Watering for dust generation from haul road, stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Noisy construction activity such as rock-breaking activities and piling works;
 - Runoff from exposed slope or site area;
 - Wastewater and runoff discharge from site;
 - Accumulation of silt, mud and sand along U-channels and sedimentation tanks;
 - Set up and implementation of temporary drainage system for the surface runoff;
 - Precaution measures in case of heavy rainfall brought along by typhoon;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation and storage of general and construction waste on site; and
 - Marine water quality impact and indirect impact to coral communities due to marine construction for TKO-LTT reclamation.

14. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

14.1 This is the 78th Environmental Monitoring and Audit (EM&A) Report which presents the EM&A works undertaken during the period in April 2023 in accordance with EM&A Manual and the requirement under EP.

Air Quality Monitoring

- 14.2 No Action/Limit Level exceedance for 1-hour TSP monitoring was recorded.
- 14.3 One (1) Limit Level exceedance for 24-hour TSP monitoring was recorded.
- 14.4 One (1) Action Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- 14.5 No project-related Limit Level exceedance was recorded due to the monitoring results recorded in this reporting month.
- 14.6 No Action Level exceedance was recorded for documented complaints. The details of complaint shall be referred to **Appendix O**.

Water Quality Monitoring

- 14.7 Groundwater quality monitoring had been suspended since October 2019. Details shall be referred to **Section 5.1**.
- 14.8 Six (6) Action Level and Thirty-three (33) Limit Level exceedances were recorded in Monitoring Stations (M) during marine water quality monitoring.
- 14.9 Post-reclamation marine water quality monitoring was completed in November 2022.
- 14.10 Tunnel construction activities are within +/- 50m of the piezometer gate in plan. Construction phase daily piezometer monitoring by the Contractor commenced in June 2018. It has switched to monthly basis since 3 October 2018 as the construction activity was 120m away from the piezometer gate. No monitoring was conducted in the reporting month.
- 14.11 Upon completion of the tunnel construction, a 1- year post-monitoring on the groundwater levels (piezometer monitoring) above the tunnel will need to be carried out by contractor responsible for tunnel construction.

Ecological Monitoring

14.12 The post-translocation coral monitoring surveys were completed in November 2017.

Monitoring on Cultural Heritage

14.13 No Alert Alarm and Action (AAA) Level exceedance of cultural heritage monitoring on cultural heritage was recorded in the reporting month.

Landscape and Visual Monitoring and Audit

14.14 No non-compliance of the landscape and visual impact was recorded in the reporting month.

Landfill Gas Monitoring

14.15 As the excavation works at Portion III was completed on 11 December 2022, a prior measure was conducted on 09 December 2022 and the landfill gas monitoring for operational phase was commenced from the end of December 2022. The landfill gas measurement was conducted on 25th April 2023 in this reporting month.

Environmental Site Inspection

14.16 Joint weekly site inspections were conducted by representatives of the Contractor, Engineer and Environmental Team. During site inspections in the reporting month, no non-compliance was identified. The environmental deficiency observed during the reporting month are shown in **Appendix L**.

Complaint, Prosecution and Notification of Summons

14.17 One (1) environmental complaints, no successful prosecution and notification of summon were received during the reporting period.

Recommendations

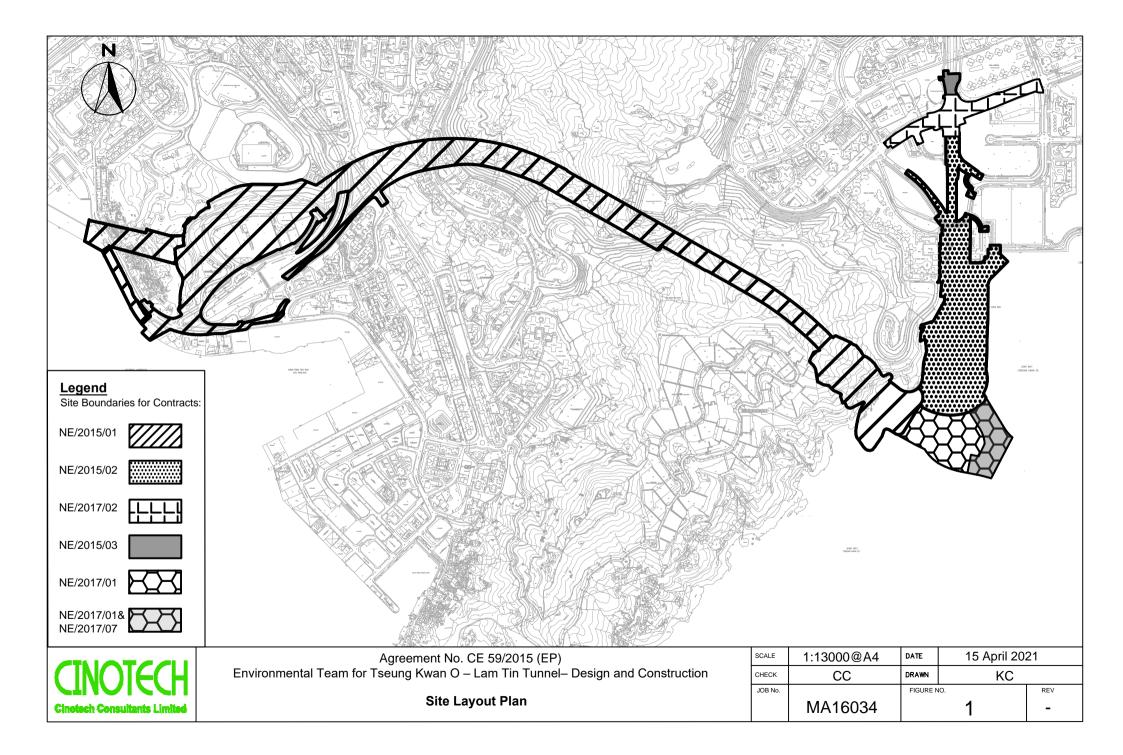
- 14.18 The following recommendations were made to the Contractor for the reporting month: *Air Quality Impact*
 - To regularly apply watering on dry surface should be applied to minimize erosion.
 - To aim the water spray at the rock breaking point for effective dust suppression.
 - To water materials before loading/unloading.
 - To turn off idle equipment.

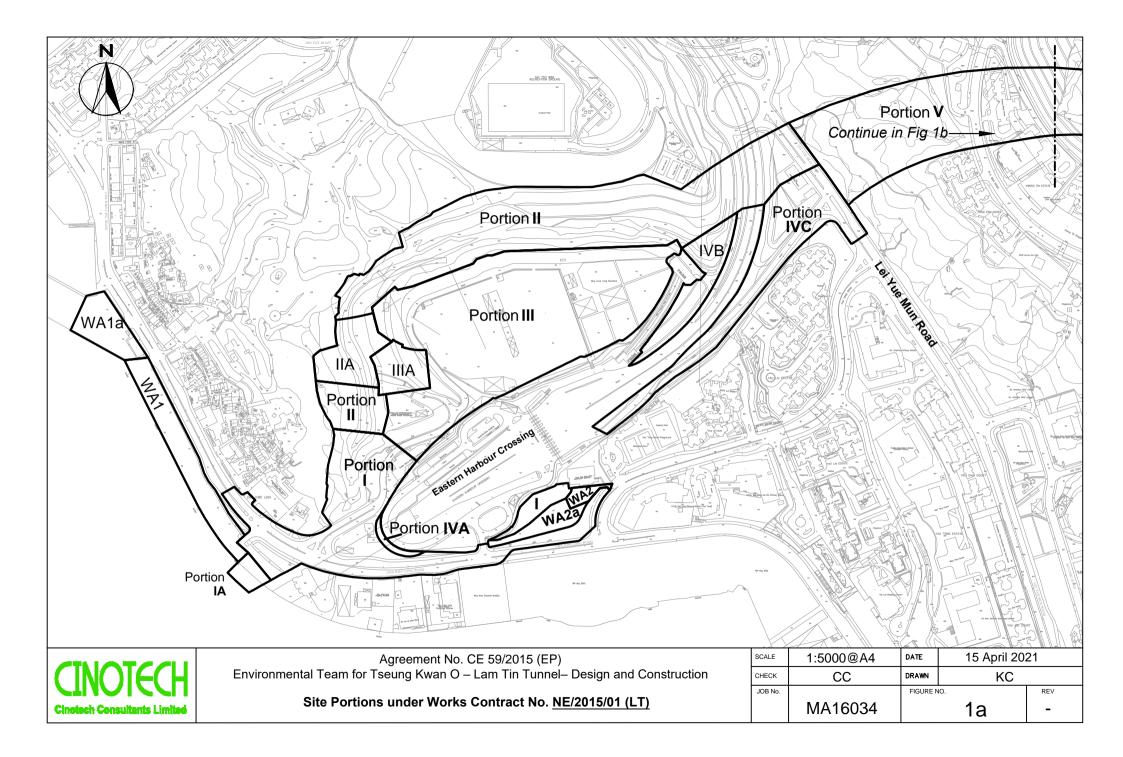
Construction Noise

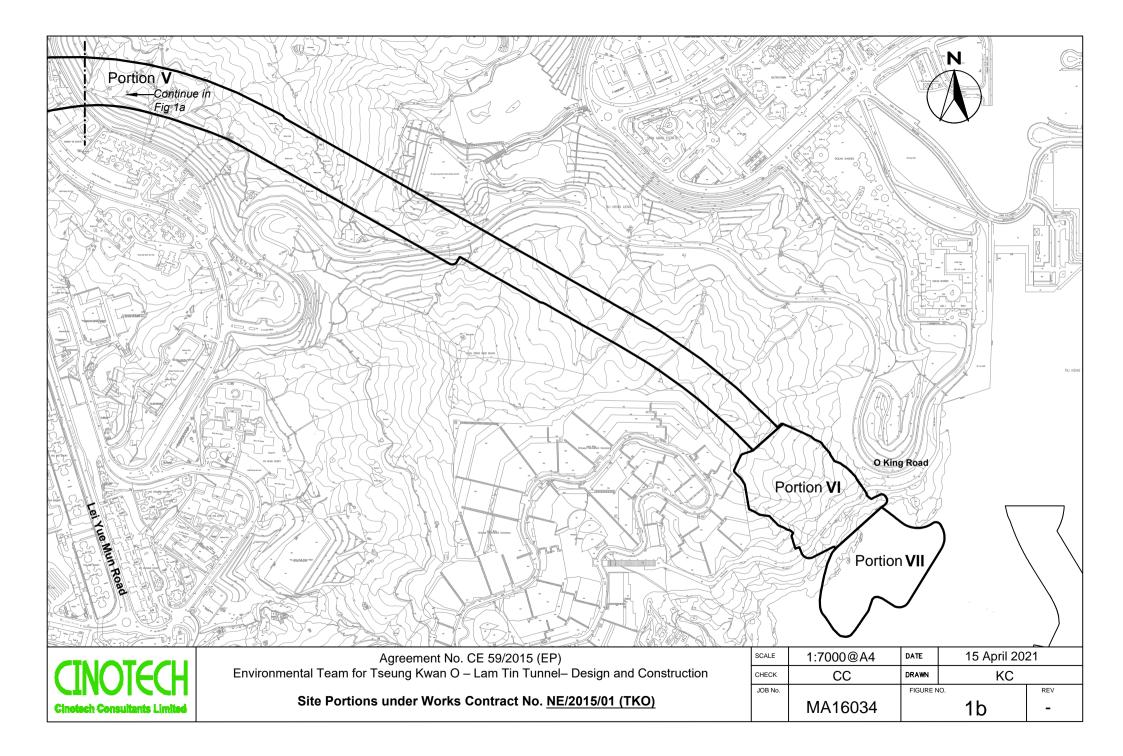
- To provide sufficient noise barriers for noisy PMEs as practically at LTI according to CNMP.
- To repair the gaps between the noise barriers.
- To place compatible noise barrier close to the breaking point for effective noise screening.
- To erect sound proof canvases on derrick lighter barge

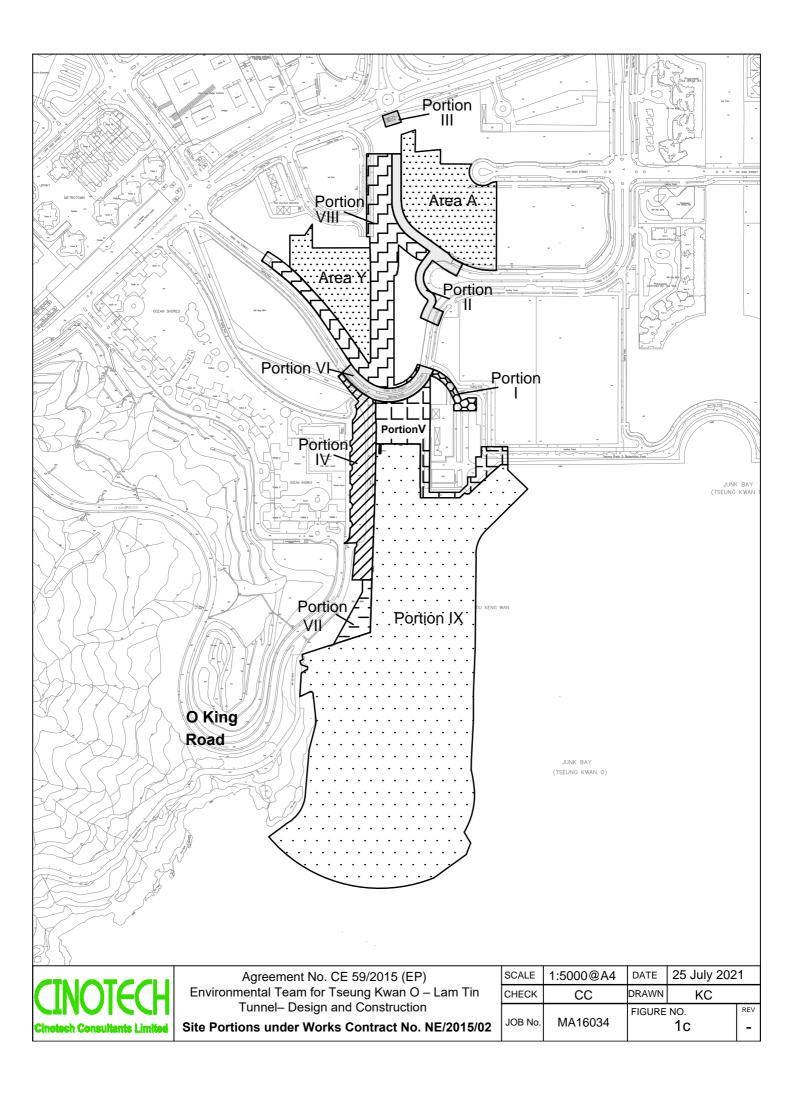
Water Quality Impact

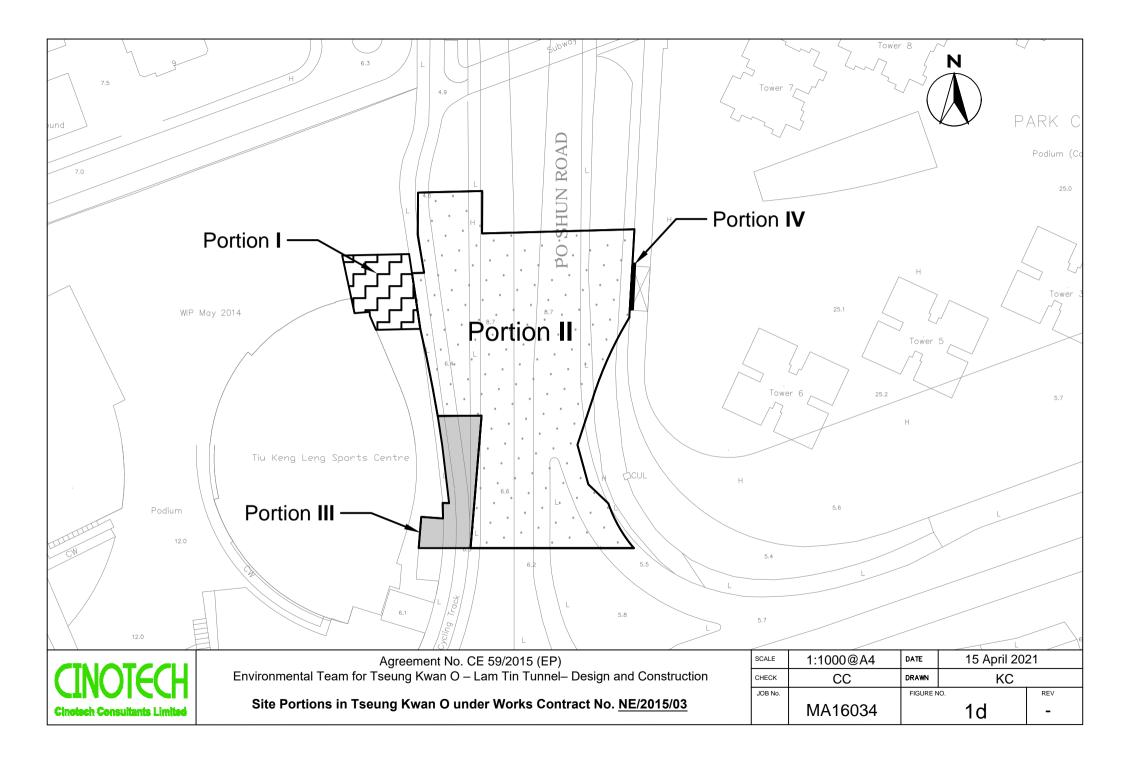
- To clear the oil slick and check for any damage of the silt curtain.
- To repair damaged or missing silt curtain
- To check whether the curtain has been set to the seabed.
- To ensure that the pumping rate of bored pile is sufficient to avoid discharging waste water into the sea.
- To clear floating refuse between the cofferdam and silt curtain.
- To clear oil slick within and outside cofferdam.
- To control the amount of loading materials in the barge to avoiding spillage.
- To cover stockpile near seafront.
- To remove wastewater and oil in drip tray.
- To remove pond/still water.

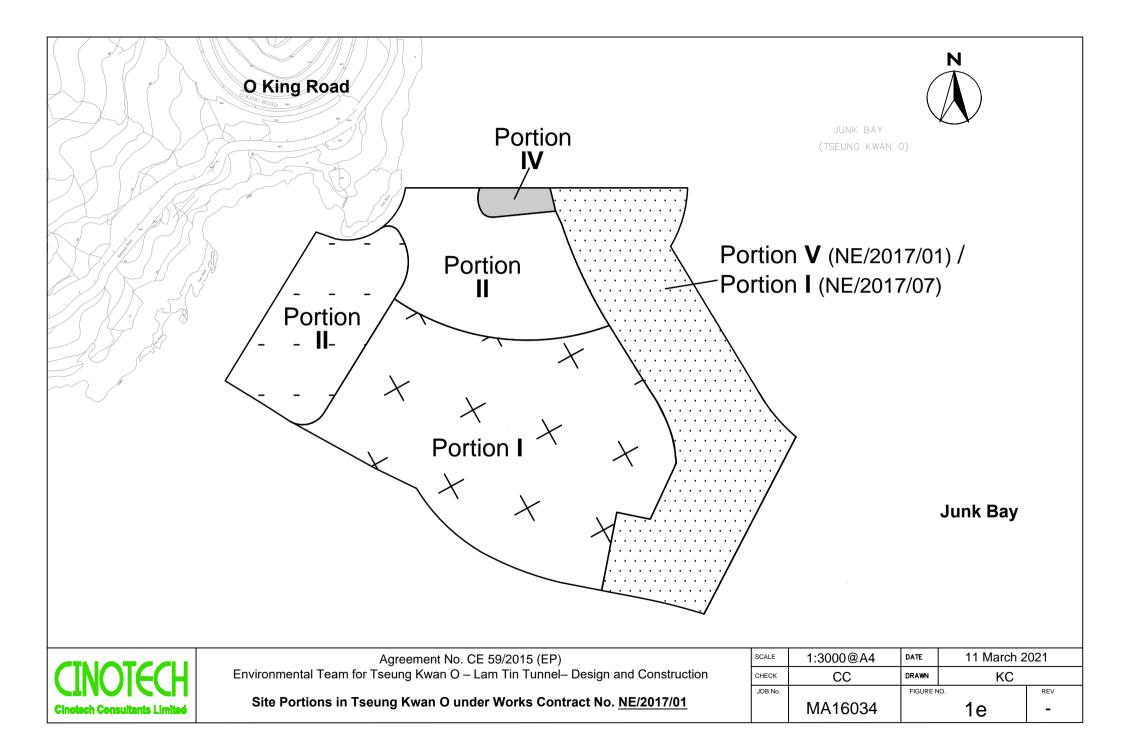

Waste/Chemical Management

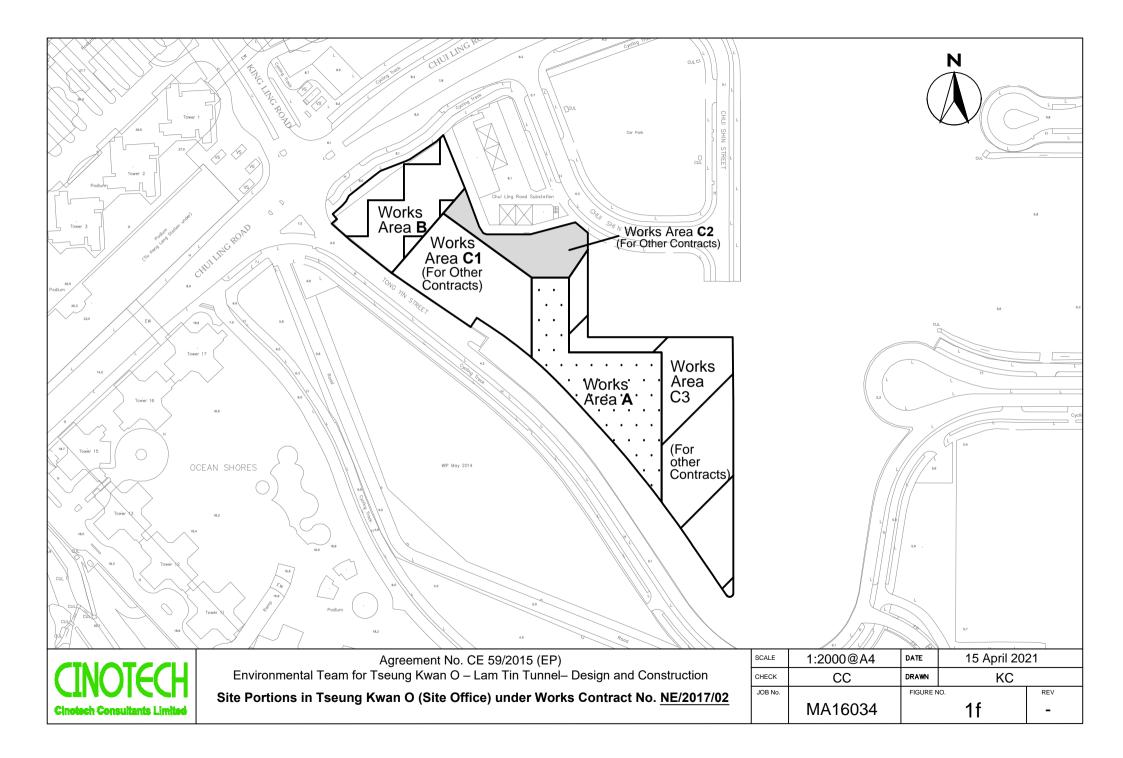

- To bund or lock the chemical storage area.
- To clear dripping oil from bored piling machine.
- To clear oil slick on seawater.
- To clear oil on the floor.

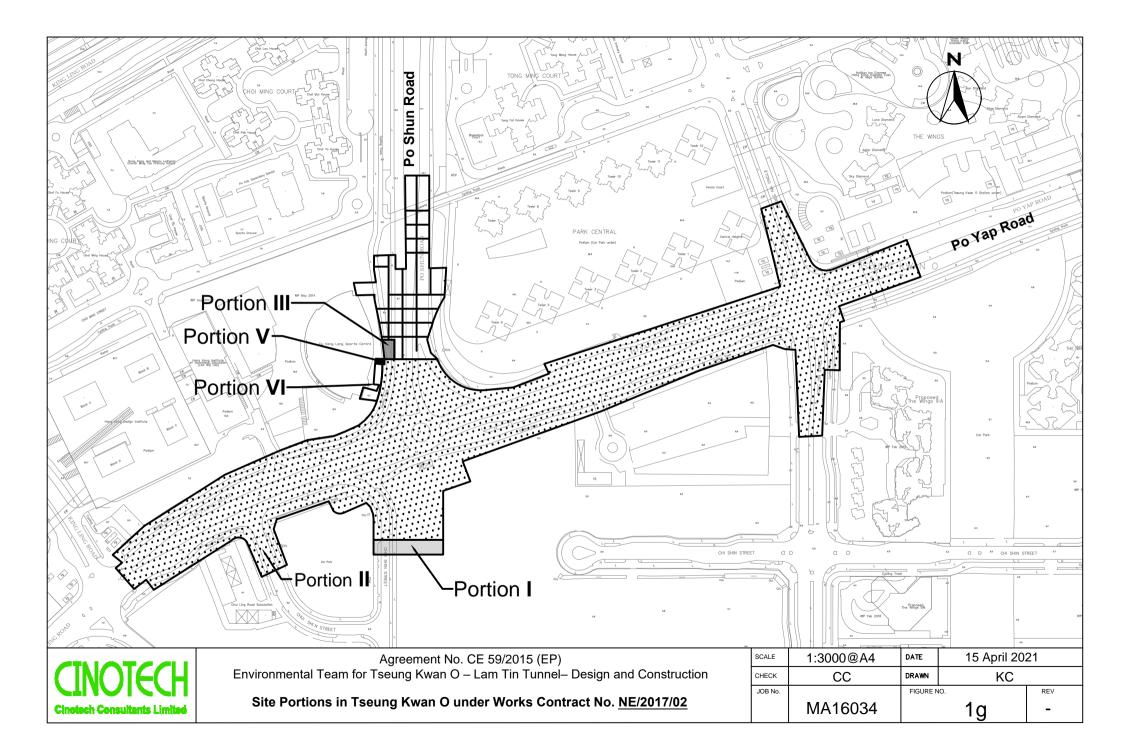

Landscape and Visual

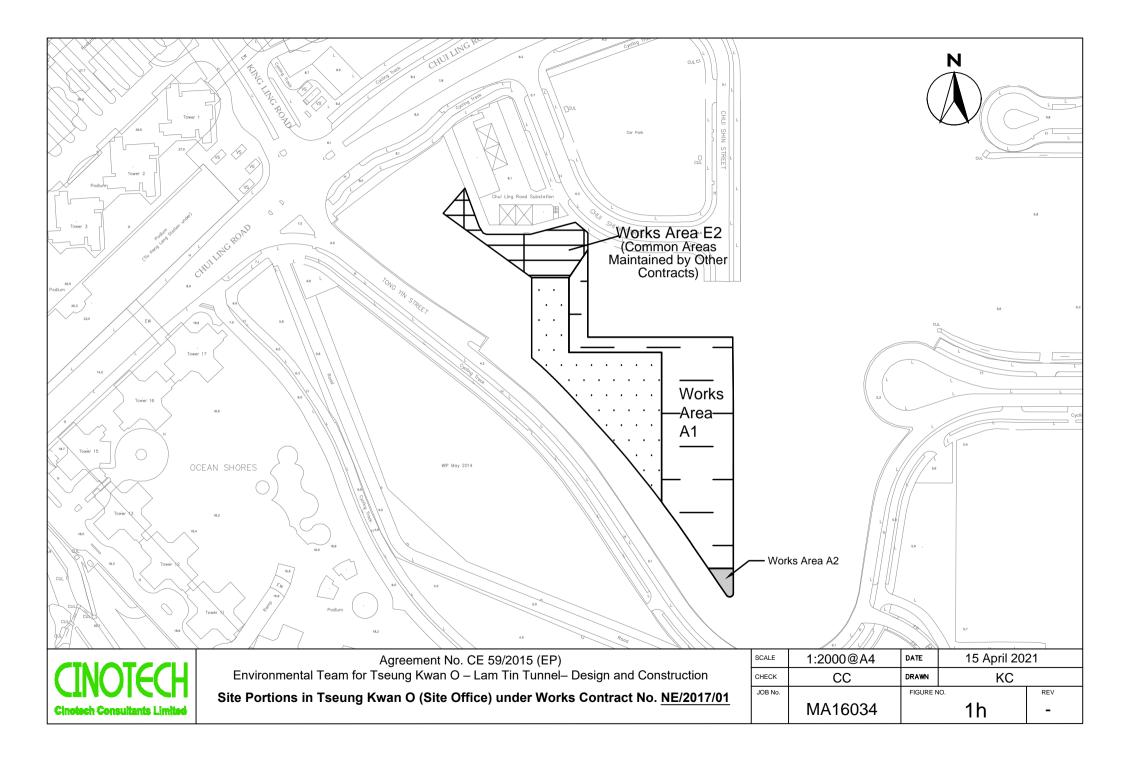

• To avoid placing any construction materials in the tree protection zone.

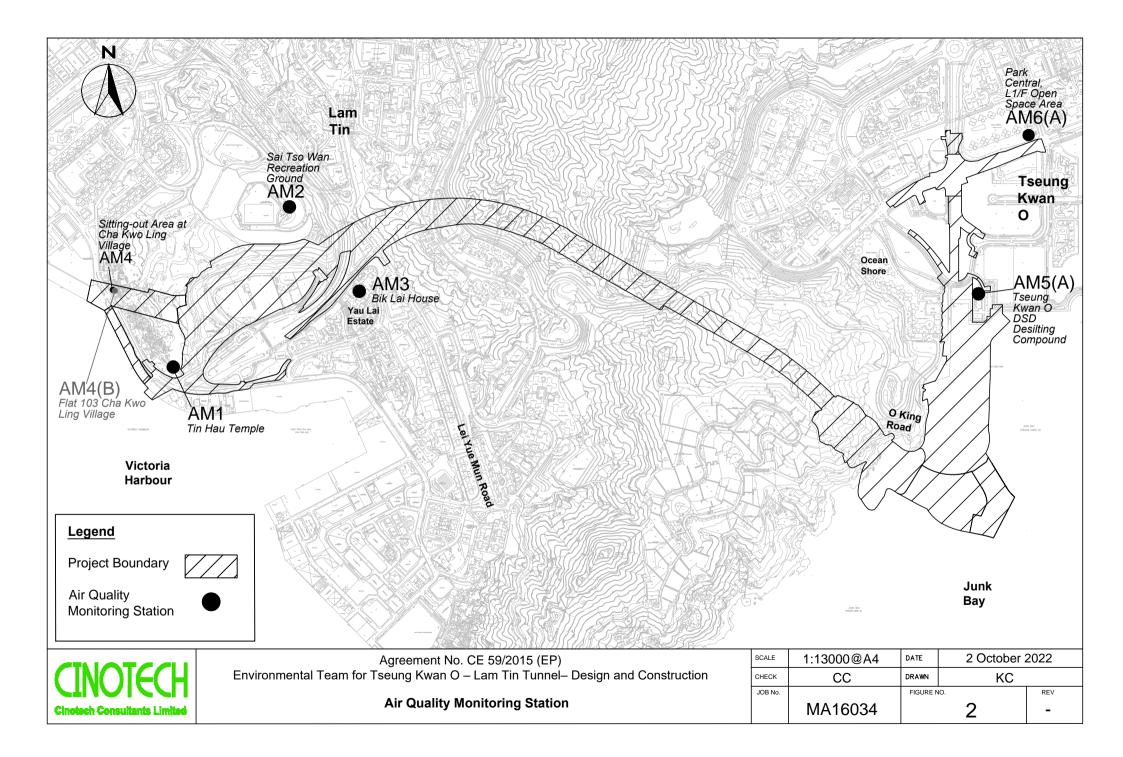

FIGURES

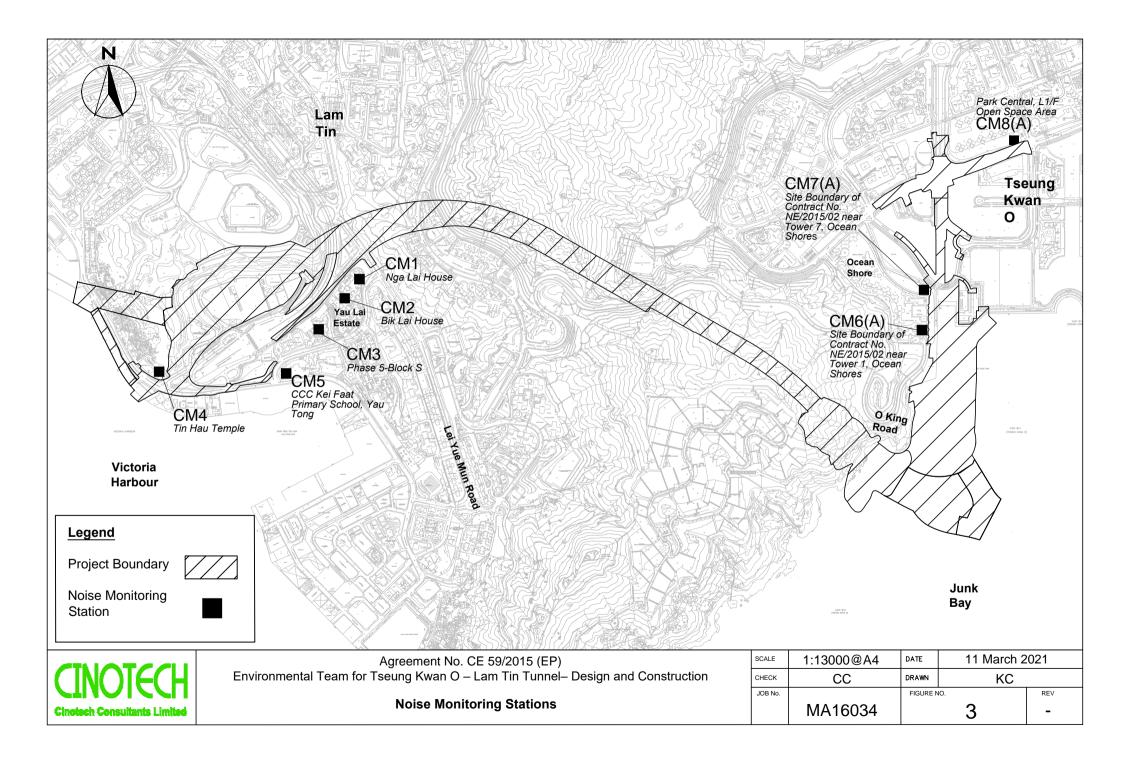


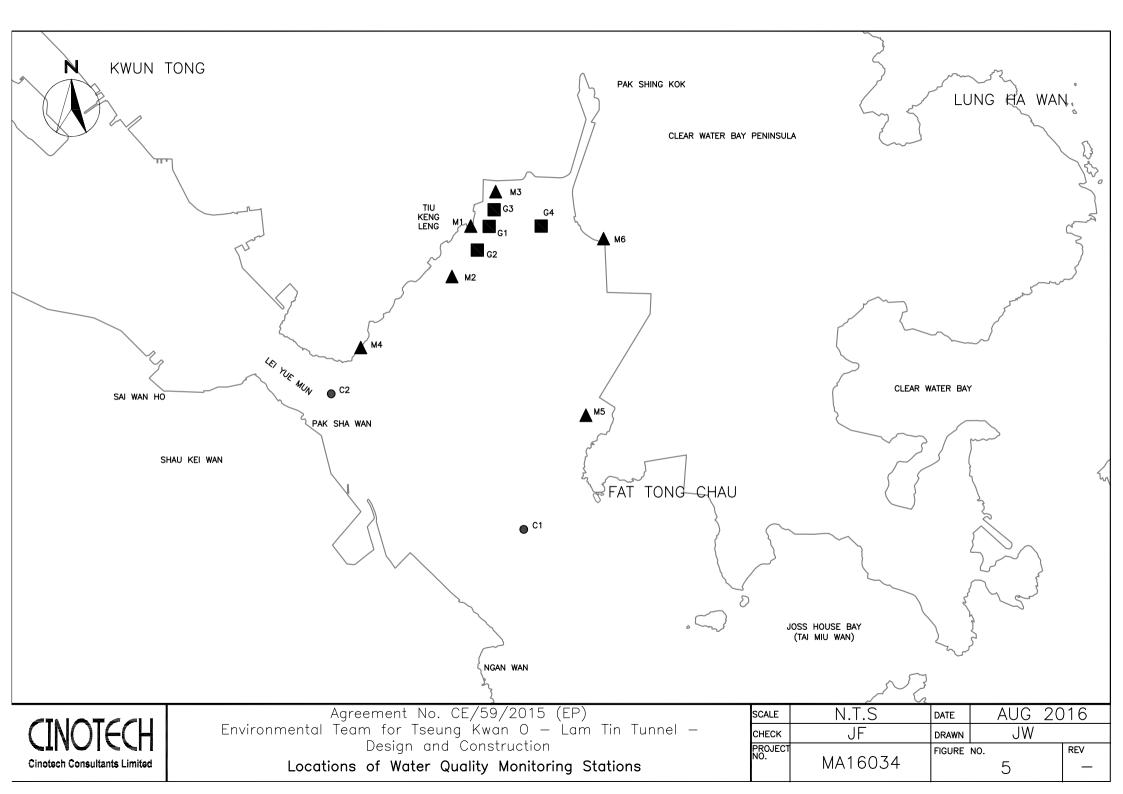


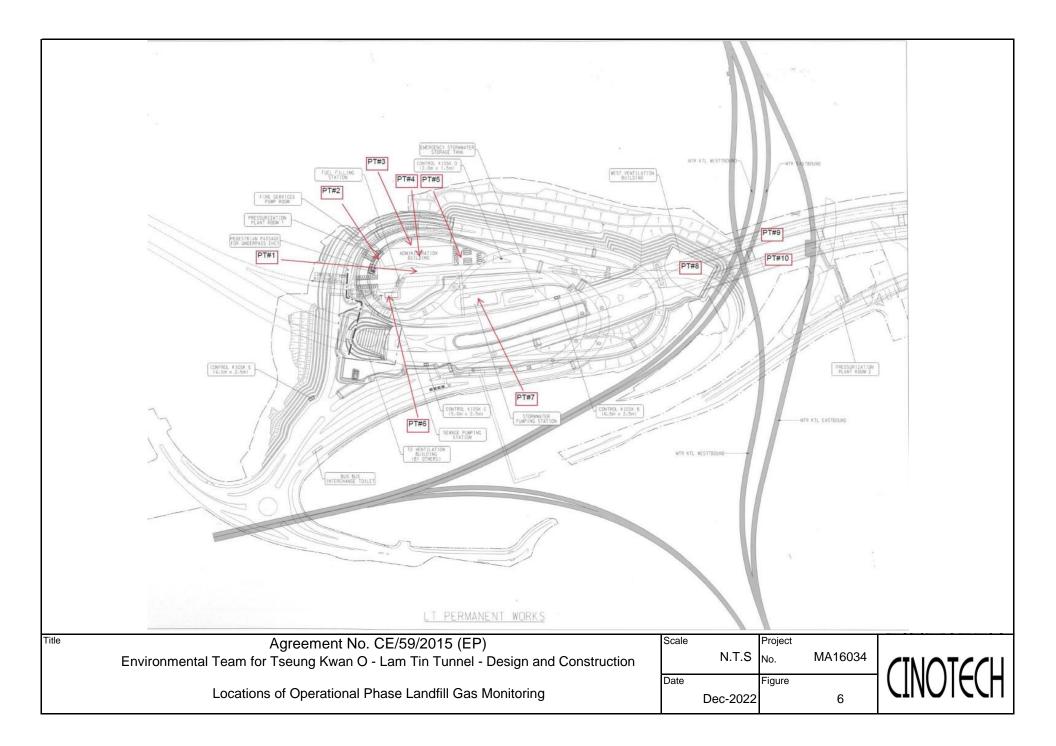


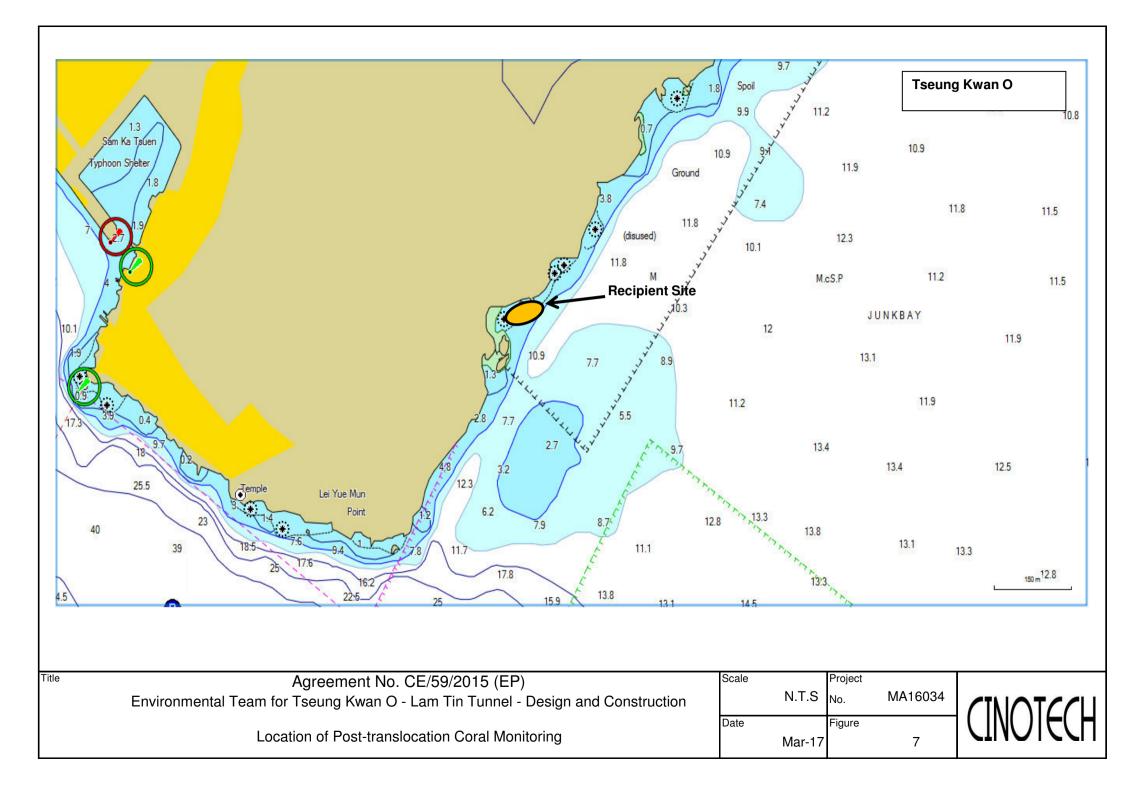


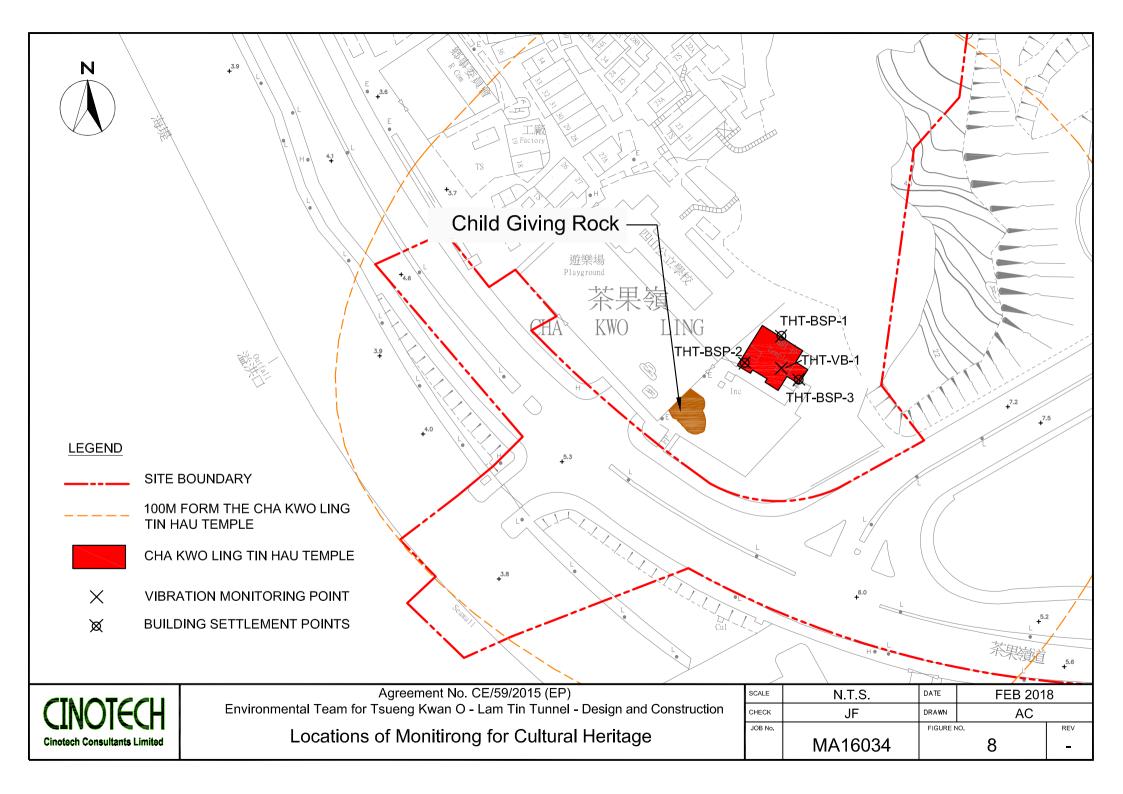












N		Legend
	KENG NG	 MARINE AREA EMBAYED BY RECLAMATION O KING ROAD LOCATION OF OUTFALL MONITORING STATION W2
CINOTECH Cinotech Consultants Limited	Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Location of Embayment formed by Reclamation and Monitoring Station W2	scale 1:4000@A4 date NOV 2019 check BC drawn KC PROJECT MA16034 FIGURE NO. REV 0. MA16034 9 -

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A – Action and Limit Levels

Air Quality

1-hr TSP

Monitoring Stations	Location	Action Level, µg/m ³	Limit Level, $\mu g/m^3$
AM1	Tin Hau Temple	275	
AM2	Sai Tso Wan Recreation Ground	273	
AM3	Yau Lai Estate Bik Lai House 271		500
AM4	Sitting-out Area at Cha Kwo Ling Village	278	500
AM5(A)	Tseung Kwan O DSD Desilting Compound	273	
AM6(A)	Park Central, L1/F Open Space Area	285	

24-hr TSP

Monitoring Stations	Location	Action Level, µg/m ³	Limit Level, $\mu g/m^3$
AM1	Tin Hau Temple	173	
AM2	Sai Tso Wan Recreation Ground	192	
AM3	Yau Lai Estate Bik Lai House	167	
AM4(B)	Flat 103 Cha Kwo Ling Village	210	260
AM5(A)	Tseung Kwan O DSD Desilting Compound	175	
AM6(A)	Park Central, L1/F Open Space Area	165	

<u>Noise</u>

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75 dB(A) ⁽¹⁾
1900-2300 on all days and 0700-2300 on general holidays (including Sundays)	When one documented complaint is received	60/65/70 dB(A) ⁽²⁾⁽³⁾
2300-0700 on all days		45/50/55 dB(A) ⁽²⁾⁽³⁾

 ¹70 dB(A) for schools and 65 dB(A) for schools during examination period.
 ² Acceptable Noise Levels for Area Sensitivity Rating of A/B/C
 ³ If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Water Quality

Groundwater

Parameters	Action	Limit	
DO in mg L ⁻¹	7.6	7.6	
рН	6.0 - 8.9	6.0 - 9.0	
BOD ₅ in mg L ⁻¹	2.0	2.0	
TOO is a Lal	Stream 1 and Stream 2: 9	Stream 1 and Stream 2:9	
TOC in mg L ⁻¹	Stream 3: 6	Stream 3: 6	
Total Nitrogen in mg L ⁻¹	2.0	2.1	
Ammonia-N in mg L ⁻¹	0.15	0.20	
Total Phosphate in mg L ⁻¹	0.05	0.05	
SS in mg L ⁻¹	7.6	12.1	
Turbidity in NTU	2.1	2.3	

Notes:

1. For pH, non-compliance of the water quality limits occurs when monitoring result is out of the range of the limits.

2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

3. For turbidity, SS, 5-day biochemical oxygen demand (BOD₅), Total organic carbon (TOC), Total Nitrogen, Ammonia-N and Total Phosphate, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

4. All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

Groundwater Level Monitoring

Drill Hole No.	38568-LDH1	TKO-LBH907		
Action Level (mPD)	+74.65	+17.59		

Marine Water Quality

<u>Parameter</u> (unit)	<u>Depth</u>	Action Level	Limit Level				
	Stations G1-G4	<u>, M1-M5</u>					
DO in mg/L (See Note 1 and 4)	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>				
	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>				
	<u>Station M6</u>						
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>				
	Stations G1-G4	<u>, M1-M5</u>					
Turbidity in NTU (See Note 2, 4 and 5)	Bottom	<u>19.3 NTU</u> or 120% of upstream control station's Turbidity at the same tide of the same day	<u>22.2 NTU</u> or 130% of upstream control station's Turbidity at the same tide of the same day				
	Station M6						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>				
	Stations G1-G4						
	Surface	<u>6.0 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	<u>6.9mg/L</u> or 130% of upstream control station's SS at the same tide of the same day				
	Stations M1-M5						
SS in mg/L (See Note 2, 4 ad 5)	Surface	<u>6.2 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	<u>7.4 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day				
	Stations G1-G4	<u>, M1-M5</u>					
	Bottom	<u>6.9 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	7.9 mg/L or 130% of upstream control station's SS at the same tide of the same day				
	<u>Station M6</u>						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>				

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

4. Action and limit values are derived based on baseline water quality monitoring results to show the actual baseline water quality condition.

5. Refer to Appendix I – Marine Water Quality Monitoring Results and Graphical Presentations for results of upstream control stations at each tide on each day.

Water Quality Monitoring in Temporary Marine Embayment

Parameter (unit)	Depth	Action Level	Limit Level
DO in mg/L	Depth Average	<u>4.8 mg/L (4)</u>	<u>4 mg/L ⁽³⁾</u>
(See Note 1 and 2)	Bottom	<u>2.4 mg/L (4)</u>	<u>2 mg/L</u> ⁽³⁾

Notes:

1. "depth-averaged" is calculated by taking the arithmetic means of reading of all sampling depths.

2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

3. Current Water Quality Objectives (WQOs) for marine waters of Hong Kong

4. As an alert for adverse water quality impact, the Action Level is set as 120% of the Current WQOs for marine waters of Hong Kong.

Ecology

Post-translocation Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition		
Mortality	0 1 0	If during the Impact Monitoring a 25%		
		increase in the percentage of partial		
	corals occurs at more than 20% of the tagged	mortality occurs at more than 20% of the		
	coral at any one Impact Monitoring Site that	tagged coral at any one Impact Monitoring		
	is not recorded at the Control Site, then the	Site that is not recorded at the Control Site,		
	Action Level is exceeded.	then the Limit Level is exceeded.		

Landfill Gas Monitoring

Parameter	Limit Level
Oxygen	<19%
	<18%
Methane	>10% LEL (i.e. > 0.5% by volume)
	>20% LEL (i.e. >1% by volume)
Carbon	>0.5%
Dioxide	>1.5%

Alert, Alarm, Action Levels for Built Heritage Monitoring

Parameter	Alert Level	Alarm Level	Action Level		
Vibration	ppv:4.5mm/s	ppv: 4.8mm/s	ppv: 5mm/s Maximum Allowable Vibration Amplitude: 0.1mm		
Building Settlement Point	6mm	8mm	10mm		
Building Tilting	1:2000	1:1500	1:1000		

APPENDIX B COPIES OF CALIBRATION CERTIFICATES

File No. MA16034/05/0040

Project No.	AM1 - Tin Hau	Temple					
Date:	9-Feb-23		Next Due Date:	12-Apr-23		Operator:	SK
Equipment No.:	A-0	01-05	Model No.:	GS	52310	Serial No.	10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	292.5	Pressure, Pa			762.3	
					•		
		Ori	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05928	Intercept		-0.03491
Last Calibra	ation Date:	16-Jan-23			$c = [\Delta H \times (Pa/760)]$		
Next Calibra	ation Date:	16-Jan-24		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/7	[a)] ^{1/2} -bc} / mo	2
			Calibration of 7	FSP Sampler	[
Calibration	AII (arifica)		fice	O d (CEM)		HVS	$(200 \text{ (T)})^{1/2}$
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x $(298/Ta)$] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis
1	13.3		3.69	62.78	10.1	3	.21
2	10.5		3.28	55.85	7.4	2	2.75
3	7.7		2.81	47.91	5.5	2	2.37
4	5.7		2.41	41.30	3.5	1	.89
5	3.4		1.86	32.03	2.0	1	.43
	0.0580 coefficient* =	_	.9982	Intercept, bw =	-0.453	5	
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, t	he "Y" value acco	ording to				
		mw x O	$\mathbf{b}\mathbf{x} = [\Delta \mathbf{W} \mathbf{x}]$	(Pa/760) x (29	$98/Ta)1^{1/2}$		
Therefore, Se	et Point; W = (n		² x (760 / Pa) x (7		4.08		
Remarks:							
Conducted by:	Wong Sl	ning Kwai	Signature:	R	A.	Date:	9-Feb-23
Checked by:	Henry	Leung	Signature:	\-lem	J Xm J	Date:	9-Feb-23

File No. MA16034/08/0040

Project No.	AM2 - Sai Tso	Wan Recreation	Ground					
Date:	9-Feb-23		Next Due Date:	12-	Apr-23	Operator:	SK	
Equipment No.:	A-	01-08	Model No.:	No.: GS2310		Serial No.	1287	
			Ambient C	ondition	1			
Temperatu	re, Ta (K)	292.5	Pressure, Pa	(mmHg)		762.3		
Orifice Transfer Standard Information								
Serial	No	3864	Slope, mc	0.05928	Intercept	t hc	-0.03491	
Last Calibra		16-Jan-23			$c = [\Delta H x (Pa/760)]$			
Next Calibra		16-Jan-24			(Pa/760) x (298/2			
		•						
	-		Calibration of '	FSP Sampler				
Calibration		Oı	fice			HVS		
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} X-axis	
1	13.6		3.73	63.48	9.7		3.15	
2	10.8		3.32	56.63	7.2		2.71	
3	8.0		2.86	48.82	5.5		2.37	
4	5.6		2.39	40.94	3.8		1.97	
5	3.4		1.86	32.03	2.3		1.53	
	0.0505 coefficient* =	_	.9986	Intercept, bw : -	-0.094	9		
			Set Point Ca	alculation				
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM					
From the Regres	sion Equation, t	the "Y" value acco	ording to					
		mw x ($\mathbf{A} = \mathbf{A} \mathbf{W} \mathbf{x}$: (Pa/760) x (29	$98/T_{a}$			
				(1 4, 7 0 0) 11 (2)	(), (, (, (, (, (, (, (, (, (, (, (, (, (,			
Therefore, Se	et Point; W = (1	mw x Qstd + bw)	² x (760 / Pa) x (7	Га / 298) =	4.22			
Remarks:								
Conducted by:	Wong S	hing Kwai	Signature:	k	X.	Date:	9-Feb-23	
-		-		1		· <u> </u>		
Checked by:	Henr	y Leung	Signature:	-lem	<u>1 X-1</u>	Date:	9-Feb-23	

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20230209_AM2_(A-01-08)

File No. MA16034/03/0040

Project No.	AM3 - Yau Lai	Estate, Bik Lai I	House				
Date:	9-Feb-23		Next Due Date:	ext Due Date: 11-Apr-2		Operator:	SK
Equipment No.:	A-0	1-03	Model No.:	GS	52310	Serial No.	10379
			Ambient C	ondition			
Temperatur	re, Ta (K)	292.5	Pressure, Pa			762.3	
			ifice Transfer Star				
Serial		3864	Slope, mc	0.05928	Intercept		-0.03491
Last Calibra		16-Jan-23			$c = [\Delta H \times (Pa/760) (Pa/760) \times (298/7)]$		
Next Calibra	ation Date:	16-Jan-24		$2sta = \{ \Delta H x \}$	(Pa/700) X (298/.	[a)] -DC}/mc	
		•	Calibration of 7	FSP Sampler			
Caliberties		O	fice			HVS	
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} axis
1	13.2		3.67	62.54	9.2	3	.07
2	10.4		3.26	55.58	6.9	2	.66
3	8.3		2.91	49.72	5.3	2	.33
4	5.3		2.33	39.85	3.3	1	.84
5	3.0		1.75	30.13	2.2	1	.50
		-					
By Linear Regr		K			0.024	10	
Slope, mw =	0.0486 coefficient* =	-	.9949	Intercept, bw =	-0.034	5	
*If Correlation C		-					
		o, check and red	lanorate.				
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	ne "Y" value acc	ording to				
			$p_{std} + bw = [\Delta W x]$	(Do /7(0) (2(1/2		
		III w X Q	$\frac{1}{2}$ stu + Dw – [Δ W x	$(\mathbf{F} \mathbf{a} / 100) \mathbf{X} (2)$	<i>o(1a)</i>]		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Га / 298) =	4.13		
Remarks:							
				,	1		
Conducted by:	Wong Sh	ing Kwai	Signature:	Ŕ	N-	Date:	9-Feb-23
Conducted by.	11 OII 5 DI		Signature.		-	Duite.	/ 100 25
Checked by:	Henry	Leung	Signature:	Flem	j Xoz	Date:	9-Feb-23

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20230209_AM3_(A-01-03)

File No. MA16034/37/0040

Project No.	AM5(A) - Tseu	ng Kwan O DSD	Desilting Compou	ınd		. –	
Date:	9-Fe	9-Feb-23 Next Due Date: 12-Apr-23		Operator:	SK		
Equipment No.:	A-0	1-37	Model No.:	G	52310	Serial No.	1704
			Ambient C	ondition			
Temperatur	re, Ta (K)	292.6	Pressure, Pa	(mmHg)		761.7	
					_		
Gardal	N		ifice Transfer Star			(1)	0.02401
Serial Last Calibra		3864	Slope, mc	0.05928	Intercep $c = [\Delta H \mathbf{x} (\mathbf{Pa}/76)]$		-0.03491
Next Calibra		16-Jan-23 16-Jan-24			$(Pa/760) \times (298)'$		
Next Calibre	ation Date.				(2 4 7 6 6) 12 (2 > 6)		
			Calibration of 7	FSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} Z -axis
1	13.3		3.68	62.74	9.8		3.16
2	10.8		3.32	56.60	7.4		2.75
3	8.4		2.93	49.98	5.8		2.43
4	5.5		2.37	40.56	3.5		1.89
5	3.0		1.75	30.11	2.0		1.43
By Linear Regr Slope , mw = Correlation of *If Correlation C	0.0529 coefficient* =	0	.9978	Intercept, bw :	-0.206	52	
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
				(D- /7(0) (2)	1/2		
		mw x Q	$\Delta std + bw = [\Delta W x]$	(Pa//60) x (2)	98/Ta)]		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.19		
Remarks:							
				<i>k</i> r	эλ		
Conducted by:	Wong Sh	1ng Kwai	Signature:	(\		Date:	9-Feb-23
Checked by:	Henry	Leung	Signature:	Hem	1 Xm	Date:	9-Feb-23

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20230209_AM5(A)_(A-01-37)

File No. MA16034/07/0040

Project No.	AM6 - Park Ce	ntral					
Date:	6-Mar-23		Next Due Date:	6-May-23		Operator:	SK
Equipment No.:	A-()1-07	Model No.:	GS	\$2310	Serial No.	10592
			Ambient C	ondition			
Temperatur	re, Ta (K)	293	Pressure, Pa	(mmHg)		766.9	
				1 17 6			
Serial	No	3864	ifice Transfer Star Slope, mc	0.05928	Intercept	t hc	-0.03491
Last Calibra		16-Jan-23			$c = [\Delta H x (Pa/760)]$		
Next Calibra		16-Jan-24			(Pa/760) x (298/1		
			I	<u> </u>			
			Calibration of '	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} -axis
1	13.0		3.65	62.21	8.8		3.01
2	9.4		3.11	52.98	6.2	<u></u>	2.52
3	7.9		2.85	48.62	4.8		2.22
4	5.0		2.27	38.80	3.1		1.78
5	3.2		1.81	31.16	2.2		1.50
	0.0488 coefficient* =	0	.9955	Intercept, bw =	-0.075	3	
*If Correlation C	coefficient < 0.9	90, check and rec	calibrate.				
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, t	he "Y" value acco	ording to				
		mw x Q	\mathbf{p} std + bw = [$\Delta \mathbf{W}$ x	: (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (n	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	3.99		
Remarks:							
Conducted by:	Wong S	hing Kwai	Signature:	Ŕ	<u>Д.</u>	Date:	6-Mar-23
Checked by:	Henry	Leung	Signature:	-lam	1 May	Date:	6-Mar-23

 $F:\Cinotech\ Solutions\ Equipment\ Calibration\ Cert\ HVS\ new\ MA16034_20230306_AM6_(A-01-07)$

File No. MA16034/05/0041

Project No.	AM1 - Tin Hau	Temple					
Date:	12-A	.pr-23	Next Due Date:	13-	Jun-23	Operator:	SK
Equipment No.:	A-0	1-05	Model No.:	GS	52310	Serial No.	10599
			Ambient C	ondition			
Temperatur	re, Ta (K)	298	Pressure, Pa			759.3	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05928	Intercept		-0.03491
Last Calibra		16-Jan-23			$c = [\Delta H \times (Pa/760)]$		
Next Calibra	tion Date:	16-Jan-24		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	(Pa/760) x (298/7	[a)] ^{1/2} -bc} / mo	c
		•					
		0	Calibration of Z	ISP Sampler		HVS	
Calibration Point	ΔH (orifice), in. of water		50) x $(298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/76	0) x (298/Ta)] ^{1/2} -axis
1	13.2		3.63	61.85	9.9	3	3.14
2	10.3		3.21	54.70	7.3	2	2.70
3	7.5		2.74	46.77	5.4	2	2.32
4	5.6		2.37	40.49	3.4	1	1.84
5	3.2		1.79	30.75	1.8	1	1.34
By Linear Regr Slope , mw =	0.0583	_		Intercept, bw =	-0.463	9	
Correlation of		-	.9982				
*If Correlation C	0 = 0.9	90, check and red	calibrate.				
			Set Point Ca	alculation			
From the TSP Fie	eld Calibration (Curve, take Qstd					
From the Regress	sion Equation, tl	ne "Y" value acc	ording to				
					a m a 1/2		
		mw x Q	$\mathbf{b}\mathbf{x} = [\Delta \mathbf{W} \mathbf{x}]$	(Pa/760) x (29	98/Ta)]"2		
Therefore, Se	t Point; W = (n	w x Qstd + bw)	² x (760 / Pa) x (1	Га / 298) =	4.18		
Remarks:							
				1	1		
Conducted by:	Wong Sł	ing Kwai	Signature:	R	火-	Date:	12-Apr-23
Checked by:	Henry	Leung	Signature:	\-lem	7 X-7	Date:	12-Apr-23

File No. MA16034/08/0041

Date: 12-Apr-23 Next Due Date: 13-Jun-23 Operator: SK Equipment No: A-01-08 Model No.: GS2310 Serial No. 1287 Ambient Condition Temperature, Ta (K) 298 Pressure, Pa (mmHg) 759.3 Orifice Transfer Standard Information Serial No. 3864 Slope, mc 0.05928 Intercept, bc -0.03491 Last Calibration Date: 16-Jan-23 mc x Qstd + bc = [AH x (Pa/760) x (298/Ta)]^{1/2} Next Calibration Date: 16-Jan-24 Qstd = {[AH x (Pa/760) x (298/Ta)]^{1/2} - Next Calibration Date: 16-Jan-24 Qstd = [AH x (Pa/760) x (298/Ta)]^{1/2} Next Calibration of TSP Sampler Calibration of TSP Sampler Calibration of TSP Sampler Calibration AH (orifice), [AH x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) AW (HVS), in: [AW x (Pa/760) x (298/Ta)]^{1/2} Qstd = {[AH x of water in the transfer Standard in the transfe	Project No.	AM2 - Sai Tso	Wan Recreation	Ground				
Ambient ConditionTemperature, Ta (K)298Pressure, Pa (mmHg)759.3Orifice Transfer Standard InformationSerial No.3864Slope, mc0.05928Intercept, bc-0.03491Last Calibration Date:16-Jan-23mc x Qstd + be = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} -0.03491Next Calibration Date:16-Jan-24Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} - bc] / mcCalibration Date:16-Jan-24Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} - bc] / mcCalibration of TSP SamplerCalibrationOrffceHVS Δ H (orifice), in of water[Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) X - axis113.53.6762.549.53.08210.63.2555.497.02.6437.82.7947.685.32.3045.42.3239.773.71.9253.21.7930.752.11.45By Linear Regression of Y on XSlope, mw =	Date:	12-4	Apr-23	Next Due Date:	13-	Jun-23	Operator:	SK
Ambient ConditionTemperature, Ta (K)298Pressure, Pa (mmHg)759.3Orifice Transfer Standard InformationSerial No.3864Slope, mc0.05928Intercept, bc-0.03491Last Calibration Date:16-Jan-23mc x Qstd + be = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} -0.03491Next Calibration Date:16-Jan-24Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} - bc] / mcCalibration Date:16-Jan-24Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} - bc] / mcCalibration of TSP SamplerCalibrationOrffceHVS Δ H (orifice), in of water[Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) X - axis113.53.6762.549.53.08210.63.2555.497.02.6437.82.7947.685.32.3045.42.3239.773.71.9253.21.7930.752.11.45By Linear Regression of Y on XSlope, mw =	Equipment No.:	A-	01-08	Model No.:	GS	52310	Serial No.	1287
Temperature, Ta (K) 298 Pressure, Pa (mmHg) 759.3 Orifice Transfer Standard Information Serial No. 3864 Slope, mc 0.05928 Intercept, bc -0.03491 Last Calibration Date: 16-Jan-23 mc x Qstd + bc = [AH x (Pa/760) x (298/Ta)]^{1/2} Ostd = {[AH x (Pa/760) x (298/Ta)]^{1/2} - bc] / mc Next Calibration Date: 16-Jan-24 Qstd = {[AH x (Pa/760) x (298/Ta)]^{1/2} - bc] / mc Calibration of TSP Sampler Calibration Orifice HVS Óftice Jast (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) ΔW (HVS), in. [AW x (Pa/760) x (298/Ta)]^{1/2} + bc] / mc 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Set Point Calculation <	• •							
Orifice Transfer Standard Information Serial No. 3864 Slope, mc 0.05928 Intercept, bc -0.03491 Last Calibration Date: 16-Jan-23 mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Next Calibration Date: 16-Jan-24 Qstd = $\{[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ - bc} / mc Calibration Date: 16-Jan-24 Qstd = $\{[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ - bc} / mc Calibration of TSP Sampler Calibration of TSP Sampler Calibration Orfice HVS ΔH (orifice), in. of water $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. of water $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ 2 10.6 3.25 55.49 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X				Ambient C	Condition			
Serial No. 3864 Slope, mc 0.05928 Intercept, bc -0.03491 Last Calibration Date: 16-Jan-23 mc x Qstd + bc = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Mc Next Calibration Date: 16-Jan-24 Qstd = [[Δ H x (Pa/760) x (298/Ta)] ^{1/2} Mc Mc Calibration Point Δ H (orifice), in. of water [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) Δ W (HVS), in. [Δ W x (Pa/760) x (298/Ta)] ^{1/2} Mc Mc 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 Set Point Calculation Calibration Coefficient < 0.990, check and recalibrate.	Temperatu	re, Ta (K)	298	Pressure, Pa	a (mmHg)		759.3	
Serial No. 3864 Slope, mc 0.05928 Intercept, bc -0.03491 Last Calibration Date: 16-Jan-23 mc x Qstd + bc = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Mc Next Calibration Date: 16-Jan-24 Qstd = [[Δ H x (Pa/760) x (298/Ta)] ^{1/2} Mc Mc Calibration Point Δ H (orifice), in. of water [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) Δ W (HVS), in. [Δ W x (Pa/760) x (298/Ta)] ^{1/2} Δ Std (CFM) Δ W (HVS), in. [Δ W x (Pa/760) x (298/Ta)] ^{1/2} 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw = 0.0502 Intercept, bw : -0.0940 Correlation Coefficient < 0.990, check and recalibrate.			0	···		4 °		
Last Calibration Date: 16-Jan-23 mc x Qstd + bc = [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 16-Jan-24 Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc Calibration Date: (Calibration of TSP Sampler Calibration Orfice HVS Orfice U HVS 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Set Point Calculation Fort Calibration Coefficient < 0.990, check and recalibrate. Set Point Calculation Fort Calibration Calibration Curve, take Qstd = 43 CFM	Serial	No					t he	-0.03/91
Next Calibration Date: 16-Jan-24 Qstd = {[Δ H x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc Calibration of TSP Sampler Calibration Orfice HVS Δ H (orifice), in. of water [Δ H x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) X - axis Δ W (HVS), in. [Δ W x (Pa/760) x (298/Ta)] ^{1/2} 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Set Point Calculation Correlation coefficient* = 0.9908 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation Frend Kalibration Curve, take Qstd = 43 CFM								
Calibration of TSP Sampler Calibration Point AH (orifice), in. of water [AH x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) ΔW (HVS), in. of water [$\Delta W x (Pa/760) x (298/Ta)$] ^{1/2} 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Stope , mw =								
Orfice HVS Calibration Point ΔH (orifice), in. of water $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of water $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =								
Cambration Point ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Stope, mw = 0.0502 Intercept, bw : -0.0940 Correlation coefficient* = 0.9988 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM				Calibration of	TSP Sampler			
Point ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ 1 13.5 3.67 62.54 9.5 3.08 2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =	Calibration		Or	fice				
2 10.6 3.25 55.49 7.0 2.64 3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =0.0502 Intercept, bw :0.0940			[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}				
3 7.8 2.79 47.68 5.3 2.30 4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =0.0502 Correlation coefficient* =0.9988 *If Correlation Coefficient < 0.990, check and recalibrate.	1	13.5		3.67	62.54	9.5		3.08
4 5.4 2.32 39.77 3.7 1.92 5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =0.0502 Intercept, bw :0.0940 Correlation coefficient* =0.9988 *If Correlation Coefficient < 0.990, check and recalibrate.	2	10.6		3.25	55.49	7.0		2.64
5 3.2 1.79 30.75 2.1 1.45 By Linear Regression of Y on X Slope , mw =0.0502 Intercept, bw :0.0940 Correlation coefficient* =0.9988	3	7.8		2.79	47.68	5.3		2.30
By Linear Regression of Y on X Slope , mw =0.0502 Intercept, bw :0.0940 Correlation coefficient* =0.9988 *If Correlation Coefficient < 0.990, check and recalibrate.	4	5.4		2.32	39.77	3.7		1.92
Slope , mw =0.0502 Intercept, bw :0.0940 Correlation coefficient* =0.9988 *If Correlation Coefficient < 0.990, check and recalibrate.	5	3.2		1.79	30.75	2.1		1.45
From the TSP Field Calibration Curve, take Qstd = 43 CFM	Slope , mw = Correlation	0.0502 coefficient* =	0	.9988	Intercept, bw = _	-0.094	10	
				Set Point C	alculation			
From the Regression Equation, the "Y" value according to	From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
	From the Regres	sion Equation, t	he "Y" value acco	ording to				
mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$			mw v (hard + har = [AW]	v (Da/760) v (20	(12) (1/2) (1/2)		
$\lim_{n \to \infty} x \operatorname{Qstu} + \operatorname{Dw} = [\Delta \operatorname{W} x (\operatorname{I} a / \operatorname{Vol}) x (230/\operatorname{I} a)]$			III w X Q	$z_{\text{stu}} + b_{\text{w}} = [\Delta w_{\text{st}}]^2$	X (1 a / 100) X (2)	70/1 a)]		
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =$ 4.27	Therefore, Se	et Point; W = (1	mw x Qstd + bw)	² x (760 / Pa) x (Ta / 298) =	4.27		
	L							
Remarks:	Domarka							
	Kemarks.							
ml		W 7		C :	Xr	24	Dite	10 4
Conducted by: Wong Shing Kwai Signature: ///// Date: 12-Apr-23	Conducted by:	wong S	mig k wai	Signature:			Date:	12-Apt-23
Checked by: Wong Shing Kwai Signature: Image: Provide Signature: Checked by: Henry Leung Signature: Lewy Marging Date: 12-Apr-23	Checked by:	Henr	y Leung	Signature:	- \-lem	1 Xon	Date:	12-Apr-23

File No. MA16034/03/0041

Project No.	AM3 - Yau Lai	Estate, Bik Lai H	House				
Date:	12-A	pr-23	Next Due Date:	12-	Jun-23	Operator:	SK
Equipment No.:	A-0	1-03	Model No.:	GS	52310	Serial No.	10379
			Ambient C	ondition			
Temperatur	re, Ta (K)	298	Pressure, Pa	(mmHg)		759.3	
		Ori	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05928	Intercept	t, bc	-0.03491
Last Calibra	ation Date:	16-Jan-23	I	nc x Qstd + bo	$c = [\Delta H x (Pa/760)]$)) x (298/Ta)] ¹	/2
Next Calibra	ation Date:	16-Jan-24		$Qstd = \{[\Delta H x]$	(Pa/760) x (298/	Ta)] ^{1/2} -bc} / n	nc
		•	Calibration of [FSP Sampler			
		Or	fice	F		HVS	
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	60) x (298/Ta)] ^{1/2} Z- axis
1	13.1		3.62	61.62	9.0		3.00
2	10.3		3.21	54.70	6.7		2.59
3	8.2		2.86	48.87	5.1		2.26
4	5.2		2.28	39.04	3.2		1.79
5	2.9		1.70	29.30	1.9		1.38
By Linear Regr Slope , mw = Correlation (*If Correlation C	0.0499 coefficient* =	0	.9973	Intercept, bw =	-0.131	1	
			Set Point Ca	alculation			
From the TSP Fi From the Regres Therefore, Se	sion Equation, tl	ne "Y" value acco mw x Q			98/Ta)] ^{1/2} 4.07		
Remarks:				1-	1		
Conducted by:	Wong Sł	ning Kwai	Signature:	X	<u>у</u> .	Date:	12-Apr-23
Checked by:	Henry	Leung	Signature:	Flem	J Xm J	Date:	12-Apr-23

File No. MA16034/37/0041

						The NO. IV	1A10034/3//0041
Project No.	AM5(A) - Tseu	ing Kwan O DSE	Desilting Compo	und			
Date:	12-A	Apr-23	Next Due Date:	13-	Jun-23	Operator:	SK
Equipment No.:	A-()1-37	Model No.:	GS	52310	Serial No.	1704
			-				
			Ambient C	ondition	1		
Temperatu	re, Ta (K)	298	Pressure, Pa	(mmHg)		759.3	
				1 17 6			
Serial	No	Or 3864	ifice Transfer Star Slope, mc	0.05928	Intercept	ha	-0.03491
Last Calibra		16-Jan-23			$c = [\Delta H x (Pa/760)]$		
Next Calibra		16-Jan-24			(Pa/760) x (298/1		
				e a		/. ,	
			Calibration of	TSP Sampler			
Calibration		Or	fice	1		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		50) x (298/Ta)] ^{1/2} 7 -axis
1	13.1		3.62	61.62	9.7		3.11
2	10.6		3.25	55.49	7.3		2.70
3	8.2		2.86	48.87	5.6		2.37
4	5.3		2.30	39.41	3.3		1.82
5	2.9		1.70	29.30	1.9		1.38
	0.0536 coefficient* =	0	.9976	Intercept, bw : -	-0.242	7	
*If Correlation C	coefficient < 0.9	90, check and rec	calibrate.				
			Set Point Ca	alculation			
		Curve, take Qstd					
From the Regres	sion Equation, t	he "Y" value acco	ording to				
		mw x Q	\mathbf{p} std + bw = [$\Delta \mathbf{W}$ x	x (Pa/760) x (29	$98/Ta)]^{1/2}$		
Therefore, Se	et Point: W = (n	nw x Ostd + bw)	² x (760 / Pa) x ('	Ta / 298) =	4.26		
,	,	、		,			
Remarks:							
				10	1		
Conducted by:	Wong S	hing Kwai	Signature:		八 -	Date:	12-Apr-23
Chaoles J have	TT	Loung	Signature:	1-P-	, Xoy	Deter	12-Apr-23
Checked by:	Henry	Leung	- Signature:	1 cem		Date:	12-Apr-23

File No. MA20003/55/018

Project No.	CKL 2 - Flat 1	03 Cha Kwo Lir	ng Village			
Date:	4-N	/lar-23	Next Due Date:	4-May-23	Operator:	SK
Equipment No.:	A-	01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Condit	ion		
Temperatu	ıre, Ta (K)	292.6	Pressure, Pa (mml	Hg)	768.4	

	Or	ifice Transfer Sta	ndard Informa	ation	
Serial No.	3864	Slope, mc	0.05928	Intercept, bc	-0.03491
Last Calibration Date:	16-Jan-23	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}
Next Calibration Date:	16-Jan-24		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc

		Calibration of	TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	13.2	3.69	62.78	10.4	3.27
2	11.0	3.37	57.36	8.4	2.94
3	8.8	3.01	51.37	6.4	2.57
4	5.4	2.36	40.37	3.2	1.82
5	3.0	1.76	30.24	1.8	1.36
Slope , mw = Correlation	coefficient* =		Intercept, bw [:] _	-0.516	2
From the TSP Fi	eld Calibration Cu	Set Point C urve, take Qstd = 43 CFM	alculation		
		"Y" value according to			
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ $\mathbf{w} \mathbf{x} \mathbf{Qstd} + \mathbf{bw}^{2} \mathbf{x} (760 / Pa) \mathbf{x} ($			
Remarks:					
Conducted by:	Wong Shi	ng Kwai Signature:	k	у́ст	Date: 4-Mar-23
Checked by:	Henry I	Leung Signature:		g Xog	Date: 4-Mar-23

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Laser Dust Mo	nitor	Date of 0	Calibration	31-Mar-23
Manufacturer:	Sibata Scientif	ic Technology LTD.	Validity of Calibration	on Record	31-May-23
Model No.:	LD-3B				
Serial No.:	2Y6194				
Equipment No.:	SA-01-02	Sensiti	ivity 0.001 mg/m3		
High Volume Sa	ampler No.:	A-01-03 Before	Sensitivity Adjustment	578	
Tisch Calibration	n Orifice No.:	<u>3864</u> After S	Sensitivity Adjustment	578	
		Calibration of 1	l hr TSP		
Calibration		Laser Dust Monitor		HVS	
Point	Total Count	Count / Minute X-axis	Mass co	oncentration () Y-axis	μg/m ³)
1	4080	72.0		137.0	
2	3600	63.0		119.0	
3	2880	52.0		98.0	
Aver	rage	62.3		118.0	
By Linear Regr Slope , mw =			Intercept, bw =	-3.4568	3
Correl	ation coefficien	.t* = 0.9999			
Set Correlation I SCF = [K=Hig		pler / Dust Meter, (μ g/m3)]	1.9		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Limited)

Calibrated by:

Approved by: _____ Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ration Record	31-May-23
Model No.:	LD-5R				
Serial No.:	8Y2374				
Equipment No.:	SA-01-04	Sensitivity	0.001 mg/m3	-	
High Volume Sa	ampler No.: A-01-03	Before Sensiti	ivity Adjustment	652	
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitiv	ity Adjustment	652	
	Cal	libration of 1 h	r TSP		

	Ca	alibration of 1 hr TSP	
Calibration	Laser Dust Monito	r	HVS
Point	Mass Concentration (µg	g/m3)	Mass concentration ($\mu g/m^3$)
Tomit	X-axis		Y-axis
1	71.0		132.0
2	64.0		119.0
3	53.0		98.0
Average	62.7		116.3
By Linear Regressi Slope , mw =	1.8907	Intercept, bw =	-2.1498
	<u>1.8907</u> icient* = <u>1.000</u>	0	-2.1498
Slope , mw = Correlation coeffi	<u>1.8907</u> icient* = <u>1.000</u> S	0 et Correlation Factor	
Slope , mw = Correlation coeffi Particaulate Concent	1.8907 icient* = 1.000 tration by High Volume Sampler	0 et Correlation Factor	116.3
Slope , mw = Correlation coeffi Particaulate Concern Particaulate Concern	$\frac{1.8907}{\text{icient*}} = \frac{1.000}{\text{S}}$ $\frac{1.000}{\text{S}}$ $\frac{1.000}{\text{S}}$ $\frac{1.000}{\text{S}}$ $\frac{1.000}{\text{S}}$	0 et Correlation Factor	
Slope , mw = Correlation coeffi Particaulate Concent	$\frac{1.8907}{\text{icient*}} = \frac{1.000}{\text{Solution}}$ tration by High Volume Sampler tration by Dust Meter (µg/m ³) min)	0 et Correlation Factor	116.3 62.7

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Approved by: Project Manager (Henry Leung)

Technical Officer (Wong Shing Kwai)

Calibrated by:

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	Validity of Calib	ration Record	31-May-23
Model No.:	LD-5R			
Serial No.:	8Y2373			
Equipment No.:	SA-01-05	Sensitivity 0.001 mg/m3	_	
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensitivity Adjustment	657	
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivity Adjustment	657	

	Calibrati	on of 1 hr TSP		
Calibration	Laser Dust Monitor		HVS	
Point	Mass Concentration (µg/m3)	М	ass concentration ($\mu g/m^3$)	
Tohit	X-axis		Y-axis	
1	72.0		133.0	
2	63.0		113.0	
3	53.0		98.0	
Average	62.7		114.7	
By Linear Regression Slope , mw = Correlation coeffic	1.8358	Intercept, bw =	-0.3764	
Slope , mw =	<u>1.8358</u> cient* = <u>0.9937</u>		-0.3764	
Slope , mw = Correlation coeffic	<u>1.8358</u> cient* =0.9937 	relation Factor		
Slope , mw = Correlation coeffic Particaulate Concent	1.8358 cient* = 0.9937 Set Corr ration by High Volume Sampler (µg/m³)	relation Factor	114.7	
Slope , mw = Correlation coeffic Particaulate Concent Particaulate Concent	1.8358 cient* = 0.9937 Set Corr ration by High Volume Sampler (μ g/m ³) ration by Dust Meter (μ g/m ³)	relation Factor		
Slope , mw = Correlation coeffic Particaulate Concent	1.8358 cient* = 0.9937 Set Corr ration by High Volume Sampler ($\mu g/m^3$) ration by Dust Meter ($\mu g/m^3$) in)	relation Factor	114.7 62.7	

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Technical Officer (Wong Shing Kwai)

Calibrated by:

Certificate of Calibration

Average

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibration Record		31-May-23
Model No.:	LD-5R				
Serial No.:	972777				
Equipment No.:	SA-01-06	Sensitivity	0.001 mg/m3	_	
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	645	
Tisch Calibration	n Orifice No.: 3864	After Sensitivi	ty Adjustment	645	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	•		HVS	
Point	Mass Concentration (µg/	entration (µg/m3)		Mass concentration ($\mu g/m^3$)	
	X-axis			Y-axis	
1	69.0			136.0	
2	62.0			118.0	
3	51.0			100.0	

	Intercept, bw =	-1.3684
0.9919		
	0.9919	•

Set Correlation Factor					
Particaulate Concentration by High Volume Sampler (µg/m ³)	118.0				
Particaulate Concentration by Dust Meter ($\mu g/m^3$)	60.7				
Measureing time, (min) 60.0					
Set Correlation Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]	1.9				

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

60.7

Calibrated by:

Approved by: Project Manager (Henry Leung)

118.0

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	31-May-23
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3	-	
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensit	ivity Adjustment	735 CPM	
Tisch Calibration	n Orifice No.: 3864	After Sensitiv	ity Adjustment	735 CPM	

	Calibration o	f 1 hr TSP
Calibration	Laser Dust Monitor	HVS
Point	Mass Concentration (µg/m3)	Mass concentration ($\mu g/m^3$)
I onne	X-axis	Y-axis
1	66.0	135.0
2	58.0	117.0
3	47.0	96.0
Average	57.0	116.0
Correlation co		
	Set Correlati	on Factor
Particaulate Con	centration by High Volume Sampler ($\mu g/m^3$)	116.0
Particaulate Con	centration by Dust Meter ($\mu g/m^3$)	57.0
Measureing time	, (min)	60.0
Set Correlation F	Factor, SCF	
SCF = [K=Higl	n Volume Sampler / Dust Meter, (µg/m3)]	2.0

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: Project Manager (Henry Leung)

<u>Certificate of Calibration</u>

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	Validity of Calibr	ation Record	31-May-23
Model No.:	LD-5R			
Serial No.:	972779			
Equipment No.:	SA-01-08	Sensitivity 0.001 mg/m3		
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensitivity Adjustment	744 CPM	
Tisch Calibration	n Orifice No.: 3864	After Sensitivity Adjustment	744 CPM	
	Ca	libration of 1 hr TSP		

Calibration	Laser Dust Monitor	HVS
Point	Mass Concentration (µg/m3)	Mass concentration ($\mu g/m^3$)
rom	X-axis	Y-axis
1	69.0	136.0
2	58.0	117.0
3	49.0	96.0
Average	58.7	116.3
Slope , mw = Correlation co		ercept, bw = -0.4153
	Defficient* =0.9963	_
Correlation co	efficient* = 0.9963 Set Correlation	n Factor
Correlation co	centration by High Volume Sampler (µg/m ³)	_
Correlation co Particaulate Con Particaulate Con	Defficient* = 0.9963 Set Correlation centration by High Volume Sampler (μg/m³) centration by Dust Meter (μg/m³)	n Factor 116.3
Correlation co	Defficient* = 0.9963 Set Correlation centration by High Volume Sampler (μg/m ³) centration by Dust Meter (μg/m ³) e, (min) (min)	n Factor 116.3 58.7

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

<u>Certificate of Calibration</u>

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	Validity of Calib	ration Record	31-May-23
Model No.:	LD-5R			
Serial No.:	972780			
Equipment No.:	SA-01-09	Sensitivity 0.001 mg/m3	-	
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensitivity Adjustment	739 CPM	
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivity Adjustment	739 CPM	

Calibration Point	Laser Dust Monitor Mass Concentration (µg/m3) X-axis	HVS Mass concentration (µg/m ³)	
Point 1			
1	X-axis		
		Y-axis	
	71.0	138.0	
2	61.0	118.0	
3	51.0	97.0	
Average	61.0	117.7	
Correlation coeffic			
	Set Correlation	n Factor	
Particaulate Concentr	ration by High Volume Sampler ($\mu g/m^3$)	117.7	
Particaulate Concentr	ration by Dust Meter ($\mu g/m^3$)	61.0	
Measureing time, (min)		60.0	
Set Correlation Factor	r , SCF		
	lume Sampler / Dust Meter, (µg/m3)]	1.9	

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

------Calibrated by:

Approved by: <u>lemy Xay</u> Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date of	of Calibration	31-Mar-23
Manufacturer:	Sibata Scientific Technology LTD.	Validity of Calibra	ation Record	31-May-23
Model No.:	LD-5R			
Serial No.:	972781			
Equipment No.:	SA-01-10	Sensitivity 0.001 mg/m3		
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensitivity Adjustment	734 CPM	
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivity Adjustment	734 CPM	

	Calibration of 1	hr TSP
Calibration	Laser Dust Monitor	HVS
Point	Mass Concentration (µg/m3)	Mass concentration ($\mu g/m^3$)
Tohit	X-axis	Y-axis
1	80.0	130.0
2	70.0	112.0
3	59.0	95.0
Average	69.7	112.3
By Linear Regressi Slope , mw = Correlation coeffi	1.6647 Inte	ercept, bw = -3.6375
Slope , mw =	<u>1.6647</u> Inter- icient* = <u>0.9990</u>	_
Slope , mw = Correlation coeff	1.6647 International icient* = 0.9990 Set Correlation	Factor
Slope , mw = Correlation coeff	1.6647 International icient* = 0.9990 Set Correlation tration by High Volume Sampler (µg/m³)	Factor 112.3
Slope , mw = Correlation coeffi Particaulate Concen Particaulate Concen	1.6647 Interview icient* = 0.9990 Set Correlation tration by High Volume Sampler ($\mu g/m^3$) tration by Dust Meter ($\mu g/m^3$)	Factor
Slope , mw = Correlation coeff	1.6647 Interpretended icient* = 0.9990 Set Correlation tration by High Volume Sampler ($\mu g/m^3$) tration by Dust Meter ($\mu g/m^3$) inin)	Factor 112.3 69.7

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Technical Officer (Wong Shing Kwai)

Calibrated by:

RECALIBRATION

DUE DATE:

January 16, 2024

Certificate of Calibration

			Calibration					014
Cal. Date:	January 16	, 2023	Roots	meter S/N:	438320	Та:	293	℃К
Operator:	Jim Tisch					Pa:	749.0	mm Hg
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3864			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4440	3.2	2.00	1
	2	3	4	1	1.0220	6.4	4.00	
	3	5	6	1	0.9100	8.0	5.00	
	4	7	8	1	0.8710	8.8	5.50	
	5	9	10	1	0.7210	12.8	8.00	
			[Data Tabula	tion]
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9981	0.6912	1.41	59	0.9957	0.6896	0.8845	
	0.9938	0.9724	2.00	24	0.9915	0.9701	1.2509	
	0.9917	1.0898	2.23	88	0.9893	1.0872	1.3985	
	0.9906	1.1373	2.34	80	0.9883	1.1346	1.4668	
	0.9853	1.3665	2.83		0.9829	1.3633	1.7690	
		m=	2.094			m=	1.31155	
	QSTD	b=	-0.034		QA	b=	-0.02182	
		r=	0.999	995		ľ=	0.99995	
				Calculatio				
)/Pstd)(Tstd/Ta	a)		∆Vol((Pa-∆	P)/Pa)	
	Qstd=	Vstd/∆Time			-	Va/∆Time		
			For subsequ	uent flow rate calculation		ons:		
	Qstd=	1/m((√∆H(Pa <u>Tstd</u> Pstd Ta	-))-ь)	Qa=	1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						
Tstd						RECA	LIBRATION	
Pstd		mm Hg			US FPA rec	ommends a	nnual recalibratio	on ner 1999
AH: calibrat		Key ter reading (i	n H2O)				Regulations Part !	
		eter reading					, Reference Meth	
		perature (°K)					ended Particulat	
		ressure (mm				•	ere, 9.2.17, page	
b: intercept						c Autospite	, J.z.z/, page	
m: slope								

CINGTECH

Certificate of Calibration - Wind Monitoring Station

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>18-Feb-2023</u>
Next Due Date	<u>18-Aug-2023</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.2	1.3	-0.1
2.5	2.5	0.0
3.8	3.9	-0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by: ______ Approved by: _______ Henry/Leung

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Issue Date : 20 Jan 2023

Report No.:00318Application No.:HP00227

Certificate of Calibration

Applicant

 Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-12

Manufacturer: : SVANTEK

Other information	:	Model No.	SVAN 957
		Serial No.	23851
		Microphone No.	22391

Date Received	20 Jan 2023	
Test Period	20 Jan 2023 to 20 Jan 2023	
Test Requested	Performance checking for Sound Level Meter	
Test Method	The Sound Level Calibrator has been calibrated in accordance v documented procedures and using standard and instrument wl recommended by the manufacturer, or equivalent.	
Test conditions	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%	
Test Result	Refer to the test result(s) on page 2.	

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 20 Jan 2023

Report No.:00318Application No.:HP00227

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	113.8	- 0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00333

Issue Date : 20 Jan 2023

 Application No.
 :
 HP00212

 Applicant
 :
 Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

 Sample Description
 :
 Submitted equipment stated to be Integrating Sound Level Meter.

 Equipment No.:
 :
 N-12-02

 Manufacturer:
 :
 BSWA Technology

Other information	:	Model No.	BSWA 308
		Serial No.	570187
		Microphone No.	590079

Date Received	:	18 Jan 2023
Test Period	:	20 Jan 2023 to 20 Jan 2023
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 20 Jan 2023

Report No.:00333Application No.:HP00212

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00288

Issue Date : 10 Nov 2022

Application No. : HP00176 **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Sound Level Calibrator. Equipment No.: : N-13-03 Manufacturer: : SOUNDTEK Other information : Model No. ST-120 Serial No. 181001637 : 10 Nov 2022 Date Received Test Period : 10 Nov 2022 to 10 Nov 2022 : Performance checking for Sound Level Calibrator **Test Requested** Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent. **Test conditions** : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 10 Nov 2022

Report No.:00288Application No.:HP00176

<u>Certificate of Calibration</u>

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01
Description	Sound Meter
Manufacturer	BSWA Technology
	DOWNTEEnnology
Model No.	BSWA 308
Model No. Serial No.	81
	BSWA 308
Serial No.	BSWA 308 570183

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 0.3
114.0	114.2	+ 0.2	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00287 Issue Date : 09 Nov 2022 Report No. Application No. : HP00168 **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Sound Level Calibrator. Equipment No.: : N-09-02 Manufacturer: : SVANTEK Other information : Model No. SV 30A Serial No. 10965 : 08 Nov 2022 Date Received Test Period : 08 Nov 2022 to 08 Nov 2022 : Performance checking for Sound Level Calibrator **Test Requested** Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent. **Test conditions** : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70% Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

 \mathcal{C}

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 09 Nov 2022

Report No.:00287Application No.:HP00168

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator	
Manufacturer	Brüel & Kjær	
Model No.	TYPE 4231	
Serial No.	2326353	
Equipment No.	N-02-01	
Description	Sound Meter	
Manufacturer	BSWA Technology	
Model No.	BSWA 308	
Serial No.	570183	
Microphone No.	570605	
inner opnonie ner		
Equipment No.	N-12-01	

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 0.3
114.0	114.1	+ 0.1	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00361

Issue Date : 30 Mar 2023

: HP00236 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-04 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 580238 Microphone No. 570605 Data Bacalyad 77 Mar 2022

Date Received :	27 Mar 2023
Test Period :	28 Mar 2023 to 28 Mar 2023
Test Requested :	Performance checking for Sound Level Meter
Test Method :	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions :	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result :	Refer to the test result(s) on page 2.

: 1. Information of the sample description provided by the Applicant. Remark

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 30 Mar 2023

Report No.:00361Application No.:HP00236

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.3	+ 0.3	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00364

Issue Date : 03 Apr 2023

: HP00240 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-05 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 580287 Microphone No. 570610 ~~~~

Date Received	13 Apr 2023	
Test Period	3 Apr 2023 to 03 Apr 2023	
Test Requested	erformance checking for Sound Level Meter	
Test Method	The Sound Level Calibrator has been calibrated in accordanc locumented procedures and using standard and instrument ecommended by the manufacturer, or equivalent.	
Test conditions	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%	
Test Result	refer to the test result(s) on page 2.	

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 03 Apr 2023

Report No.:00364Application No.:HP00240

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.

Report No. Application No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00352

: HP00228

Issue Date : 24 Feb 2023

Certificate of Calibration

Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be YSI EXO1 Multi-parameter Sonde.

Equipment No.: : SW-08-128

Manufacturer: : YSI Incorporated, a Xylem brand

Other information

Description:Serial No.- EXO Optical DO Sensor, Ti17B102215- EXO conductivity/Temperature Sensor, Ti17B100803- EXO Turbidity Sensor, Ti17B102258- EXO pH Sensor Assembly, Guarded, Ti16J101274

Date Received	: 14 Feb 2023
Test Period	: 14 Feb 2023 to 24 Feb 2023
Test Requested	: Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.) and Turbidity
Test Method	: According to manufacturer instruction manual, APHA 23rd Ed 4500-O G
Test conditions	: Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	: Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The results relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Report No.:00352Application No.:HP00228

Issue Date : 24 Feb 2023

Certificate of Calibration

Test Result : Conductivity performance checking

Expected Reading	Instrument Readings	Acceptance	Comment
(mS/cm)	(mS/cm)	Criteria	
146.9	150.1	140-154	Pass
1412	1402	1341-1483	Pass
6667	6590	6334-7000	Pass
12890	12950	12246-13535	Pass
58670	58000	55737-61604	Pass

Temperature performance checking

Expected Reading (°C)	Instrument Readings (°C)	Acceptance Criteria	Comment
10.0	10.316	10.0 ± 2.0	Pass
25.0	25.368	25.0 ± 2.0	Pass
35.0	35.327	35.0 ± 2.0	Pass

pH performance checking

Expected Reading (pH unit)	Instrument Readings (pH unit)	Acceptance Criteria	Comment
4.01	4.01	4.01 ± 0.2	Pass
7.00	7.01	7.00 ± 0.2	Pass
10.01	9.90	10.01 ± 0.2	Pass

D.O. performance checking

Expected Reading	Instrument Readings	Acceptance	Comment
	(mg/L)	Criteria	
0.00	0.74		
8.26	8.19	±0.20	Pass

Turbidity performance checking

Expected Reading(NTU)	Instrument Readings	Acceptance	Comment
	(NTU)	Criteria	
0	0.02		
5	4.90	4.5-5.5	Pass
50	49.33	45-55	Pass
100	100.13	90-110	Pass

Note : "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

- End of report -

MSA Hong Kong Ltd.

25/F Jupiter Tower, 9 Jupiter Street, Hong Kong Tel 852-22587588 Fax 25478780 Email info.hk@msasafety.com Website www.msasafety.com

Date: 19-Aug-22

Ref.2022/08/017CustomerLeighton China State Joint Venture

CERTIFICATE FOR CALIBRATION CHECK TEST

Model	Serial No.	Calibration Check Gas	Regulator	Full Scale	Response
		1.45% Methane,		100% LEL	29%LEL
		15% Oxygen	.25litre/min	30% Vol	15% O2
	152097	60ppm Carbon Monoxide		1999 ppm	60ppm CO
Altair 5X	152097	20ppm Hydrogen Sulfide		200 ppm	20ppm H2S
		2.5% Carbon Dioxide		10% Vol	2.5% CO2
		25ppm Ammonia	Demand	100 ppm	25ppm NH3

Remarks: Regular inspection completed. Calibration passed

MSA Hong Kong Ltd. certify that instrument/s listed above has/have been calibrated check tested on: 19-Aug-22

This instrument was calibrated in accordance with all requirements of the specifications of MSA.

This instrument must be calibration checked prior to use in accordance with the instruction manual.

This instrument was calibrated using NIST traceable equipment and was in accordance with all requirements of the drawings and specifications of MSA.

For and on behalf of MSA Hong Kong Ltd.

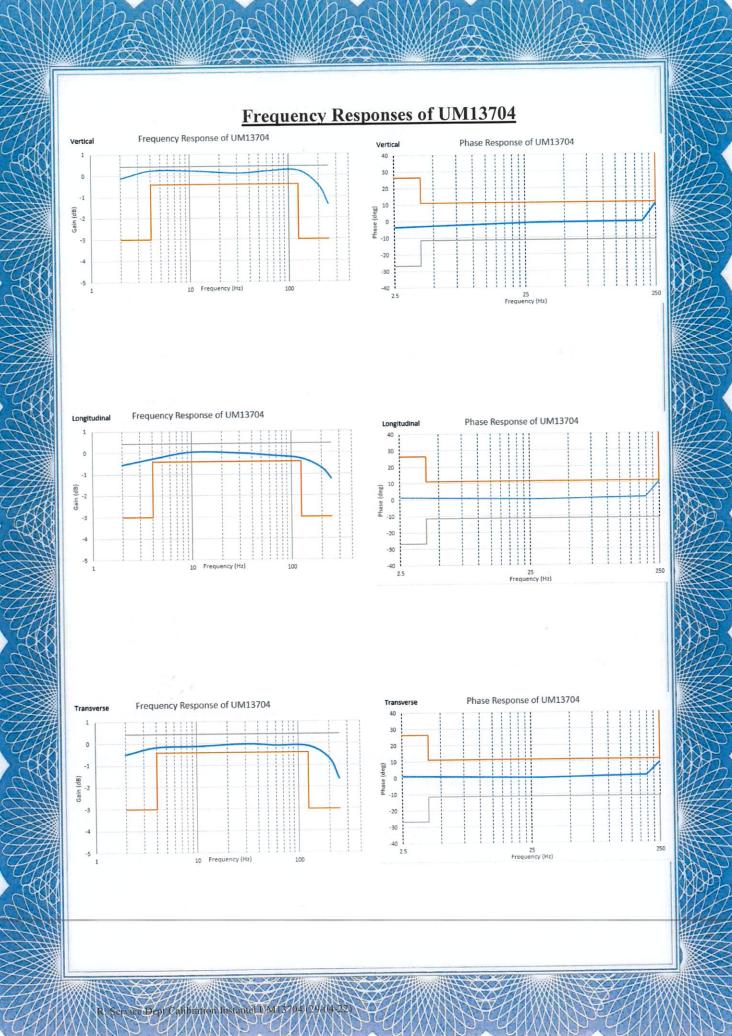
Authorised Signature

CALIBRATION CERTIFICATE

Calibration Item:		Micromate System ISEE (Calibration	
		Geophone UM13704)	
	Model No.:	721A2501	
	Serial No.:	UM13704	
	Calibration Date:	29 April, 2022	
	Next Calibration Date:	29 April 2023	
	Method Used:	In-house Method B3-001	
	In-house Testing Procedure No.:	B3-001	

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
15MHz Function Generator*	33120A	US34003309
Stanford Spectrum Analyzer	SR760	41550
Keysight Multimeter*	34470A	MY57700765
HP Distortion Meter*	339A	2025A04515
Bruel & Kjaer Accelerometer*	4370	31474
Bruel & Kjaer Charge Amplifier*	2647	2731339
Bruel & Kjaer Conditional Amplifier*	2690	2437929
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06
*D (

*References are traceable to NIST or equivalent.


ation Instantel UM

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 29 April 2022

with

CALIBRATION CERTIFICATE

TRIAXIAL GEOPHONE (Calibration with
main unit UM13704)
721A2901
UM13704
29 April 2022
29 April 2023
In-house Method B3-001
B3-001

Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
ISEE Triaxial Geophone	714A9701	BG14463
15MHz Function Generator*	33120A	US34003309
Stanford Spectrum Analyzer	SR760	41550
Keysight Multimeter*	34470A	MY57700765
HP Distortion Meter*	339A	2025A04515
Bruel & Kjaer Accelerometer*	4370	31474
Bruel & Kjaer Charge Amplifier*	2647	2731339
Bruel & Kjaer Conditional Amplifier*	2690	2437929
LDS Air Cooled Vibrator	V556	92794/1
LDS Field Power Supply	FPS10L	ARA 04/05
LDS Power Amplifier	PA1000L	ARA 07/06

*References are traceable to NIST or equivalent.

the Dept Calibration Instantel UN137

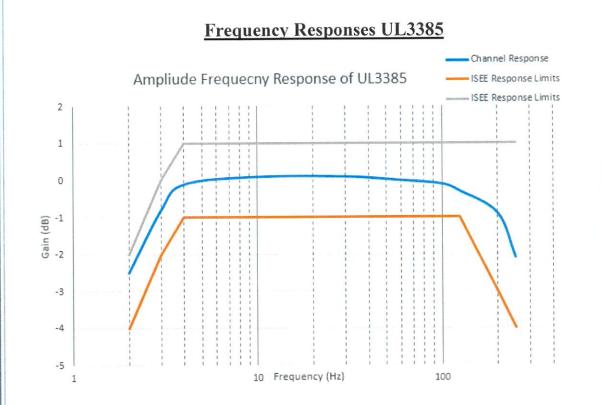
INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

(Isaac Au Yeung) Date: 29 April 2022

CALIBRATION CERTIFICATE

Calibration Item:	Linear Microphone (Calibration with main unit
	UM13704)
Model No.:	721A0201
Serial No.:	UL3385
Calibration Date:	29 April 2022
Next Calibration Date:	29 April 2023
Method Used:	In-house Method MM-002
In-house Testing Procedure No.:	MM-002


Test References	Model	Serial No.
Blastmate III	714A0801	BA15521
Linear Microphone	714A9801	BH13695
15MHz Function Generator*	33120A	US34003309
Stanford Spectrum Analyzer	SR760	41550
Keysight Multimeter*	34470A	MY57700765
HP Distortion Meter	339A	2025A04515
Bruel & Kjaer Microphone	4193	2677340
Low Frequency Calibrator	42AE	105366
Bruel & Kjaer Conditional Amplifier	269	2152173
*References are traceable to NIST or equiv	valent.	

INSTANTEL INC. hereby certifies that this unit has been calibrated and that the results are consistent with the specifications published regarding this instrument. The SENSORCHECK feature of the unit is sufficiently reliable to indicate proper operation, although it is recommended that this unit be sent to INSTANTEL or an authorized service center for regular calibration.

Authorized by:

i Instant

(Isaac Au Yeung) Date: 29 April 2022

ice Deput alibration instantel CI 3385 (29)04

APPENDIX C WEATHER INFORMATION

	ble I: Weather over the Reporting Month April 2023					
		Table I				
Day	Mean Pressure (hPa)	Air Temperature Mean (°C)	Mean Relative Humidity (%)	Total Rainfall (mm)		
1	1012.7	20.3	89.0	0.7		
2	1012.2	21.1	92.0	0.7		
3	1011.8	20.9	90.0	2.1		
4	1009.3	23.7	90.0	4.0		
5	1009.5	25.3	89.0	0.4		
6	1011.0	25.4	87.0	5.9		
7	1015.2	21.8	74.0	4.4		
8	1020.1	20.6	73.0	Trace		
9	1018.4	19.8	72.0	2.6		
10	1014.9	21.4	80.0	0.0		
11	1012.9	24.2	81.0	0.0		
12	1012.3	25.0	76.0	0.0		
13	1012.8	23.4	78.0	0.0		
14	1010.8	24.7	80.0	0.0		
15	1009.3	26.9	70.0	0.0		
16	1009.5	26.7	69.0	0.0		
17	1011.5	26.1	80.0	Trace		
18	1010.1	26.7	81.0	Trace		
19	1005.1	25.9	81.0	26.5		
20	1004.1	24.0	94.0	18.2		
21	1007.3	24.1	90.0	4.3		
22	1010.5	23.1	89.0	0.7		
23	1013.3	23.0	91.0	0.4		
24	1014.2	23.5	89.0	1.0		
25	1013.9	22.4	91.0	4.4		
26	1014.6	21.6	73.0	0.0		
27	1015.2	22.7	80.0	0.3		
28	1013.8	24.1	84.0	0.9		
29	1011.6	25.4	82.0	Trace		
30	1012.1	24.6	73.0	0.0		

Table I: Weather over the Reporting Month

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
1 Apr 2023	12:00 AM	SSW	0.1	
1 Apr 2023	1:00 AM	S	0.1	
1 Apr 2023	2:00 AM	W	0.2	
1 Apr 2023	3:00 AM	WSW	0.1	
1 Apr 2023	4:00 AM	ESE	0.1	
1 Apr 2023	5:00 AM	ESE	0.1	
1 Apr 2023	6:00 AM	WNW	0.1	
1 Apr 2023	7:00 AM	S	0.1	
1 Apr 2023	8:00 AM	W	0.1	
1 Apr 2023	9:00 AM	WSW	0.1	
1 Apr 2023	10:00 AM	ESE	0.1	
1 Apr 2023	11:00 AM	ESE	0.1	
1 Apr 2023	12:00 PM	WNW	0.2	
1 Apr 2023	1:00 PM	WNW	0.1	
1 Apr 2023	2:00 PM	NW	0.2	
1 Apr 2023	3:00 PM	SW	0.2	
1 Apr 2023	4:00 PM	SSW	0.2	
1 Apr 2023	5:00 PM	WSW	0.2	
1 Apr 2023	6:00 PM	SSW	0.2	
1 Apr 2023	7:00 PM	SSW	0.2	
1 Apr 2023	8:00 PM	SSW	0.2	
1 Apr 2023	9:00 PM	WSW	0.1	
1 Apr 2023	10:00 PM	SW	0.1	
1 Apr 2023	11:00 PM	Е	0.1	
2 Apr 2023	12:00 AM	ENE	0.1	
2 Apr 2023	1:00 AM	ENE	0.1	
2 Apr 2023	2:00 AM	Е	0.1	
2 Apr 2023	3:00 AM	Е	0.1	
2 Apr 2023	4:00 AM	Е	0.1	
2 Apr 2023	5:00 AM	NNW	0.1	
2 Apr 2023	6:00 AM	SSW	0.1	
2 Apr 2023	7:00 AM	S	0.1	
2 Apr 2023	8:00 AM	W	0.1	
2 Apr 2023	9:00 AM	WSW	0.1	
2 Apr 2023	10:00 AM	ESE	0.6	
2 Apr 2023	11:00 AM	ESE	0.8	
2 Apr 2023	12:00 PM	WNW	1.5	
2 Apr 2023	1:00 PM	S	0.6	
2 Apr 2023	2:00 PM	W	2.7	
2 Apr 2023	3:00 PM	WSW	1.1	
2 Apr 2023	4:00 PM	ESE	0.3	
2 Apr 2023	5:00 PM	ESE	0.6	
2 Apr 2023	6:00 PM	WNW	0.4	
2 Apr 2023	7:00 PM	WNW	0.1	
2 Apr 2023	8:00 PM	SSW	0.1	
2 Apr 2023	9:00 PM	SW	0.1	

April 2023 Table II: Wind Speed and Directions			
2 Apr 2023	10:00 PM	SSW	0.1
2 Apr 2023	11:00 PM	Е	0.1
3 Apr 2023	12:00 AM	NNE	0.1
3 Apr 2023	1:00 AM	WNW	0.1
3 Apr 2023	2:00 AM	W	0.1
3 Apr 2023	3:00 AM	SW	0.1
3 Apr 2023	4:00 AM	WSW	0.1
3 Apr 2023	5:00 AM	NNE	0.1
3 Apr 2023	6:00 AM	W	0.1
3 Apr 2023	7:00 AM	NE	0.1
3 Apr 2023	8:00 AM	SW	0.1
3 Apr 2023	9:00 AM	SW	0.1
3 Apr 2023	10:00 AM	WSW	0.1
3 Apr 2023	11:00 AM	WNW	0.1
3 Apr 2023	12:00 PM	SSW	1.1
3 Apr 2023	1:00 PM	W	1.2
3 Apr 2023	2:00 PM	WNW	2.2
3 Apr 2023	3:00 PM	SW	2.2
3 Apr 2023	4:00 PM	W	3.6
3 Apr 2023	5:00 PM	WNW	0.2
3 Apr 2023	6:00 PM	WNW	0.1
3 Apr 2023	7:00 PM	W	0.1
3 Apr 2023	8:00 PM	W	0.1
3 Apr 2023	9:00 PM	SW	0.1
3 Apr 2023	10:00 PM	SSW	0.1
3 Apr 2023	11:00 PM	SSW	0.1
4 Apr 2023	12:00 AM	SW	0.1
4 Apr 2023	1:00 AM	SW	0.1
4 Apr 2023	2:00 AM	SW	0.1
4 Apr 2023	3:00 AM	SW	0.1
4 Apr 2023	4:00 AM	SW	0.1
4 Apr 2023	5:00 AM	SW	0.1
4 Apr 2023	6:00 AM	WNW	0.1
4 Apr 2023	7:00 AM	NE	0.1
4 Apr 2023	8:00 AM	SSW	0.2
4 Apr 2023	9:00 AM	S	0.2
4 Apr 2023	10:00 AM	W	0.2
4 Apr 2023	11:00 AM	WSW	0.1
4 Apr 2023	12:00 PM	ESE	0.1
4 Apr 2023	1:00 PM	ESE	0.1
4 Apr 2023	2:00 PM	WNW	0.1
4 Apr 2023	3:00 PM	S	0.1
4 Apr 2023	4:00 PM	W	0.1
4 Apr 2023	5:00 PM	WSW	0.1
4 Apr 2023	6:00 PM	ESE	0.1
4 Apr 2023	7:00 PM	ESE	0.2

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
4 Apr 2023	8:00 PM	WNW	0.1	
4 Apr 2023	9:00 PM	WNW	0.1	
4 Apr 2023	10:00 PM	WNW	0.1	
4 Apr 2023	11:00 PM	ENE	0.1	
5 Apr 2023	12:00 AM	ESE	0.1	
5 Apr 2023	1:00 AM	Е	0.1	
5 Apr 2023	2:00 AM	ENE	0.1	
5 Apr 2023	3:00 AM	NE	0.1	
5 Apr 2023	4:00 AM	NE	0.1	
5 Apr 2023	5:00 AM	Е	0.2	
5 Apr 2023	6:00 AM	Е	0.1	
5 Apr 2023	7:00 AM	Е	0.2	
5 Apr 2023	8:00 AM	Е	0.2	
5 Apr 2023	9:00 AM	SE	0.2	
5 Apr 2023	10:00 AM	ESE	0.2	
5 Apr 2023	11:00 AM	Е	0.2	
5 Apr 2023	12:00 PM	Е	0.2	
5 Apr 2023	1:00 PM	SE	0.5	
5 Apr 2023	2:00 PM	ENE	0.2	
5 Apr 2023	3:00 PM	Е	0.1	
5 Apr 2023	4:00 PM	Е	0.2	
5 Apr 2023	5:00 PM	SE	0.1	
5 Apr 2023	6:00 PM	ENE	0.1	
5 Apr 2023	7:00 PM	ENE	0.1	
5 Apr 2023	8:00 PM	Е	0.1	
5 Apr 2023	9:00 PM	ESE	0.1	
5 Apr 2023	10:00 PM	NE	0.1	
5 Apr 2023	11:00 PM	Е	0.1	
6 Apr 2023	12:00 AM	ENE	0.1	
6 Apr 2023	1:00 AM	NE	0.1	
6 Apr 2023	2:00 AM	SSE	0.1	
6 Apr 2023	3:00 AM	ENE	0.1	
6 Apr 2023	4:00 AM	Е	0.1	
6 Apr 2023	5:00 AM	Е	0.1	
6 Apr 2023	6:00 AM	ENE	0.1	
6 Apr 2023	7:00 AM	ESE	0.1	
6 Apr 2023	8:00 AM	ESE	0.1	
6 Apr 2023	9:00 AM	ESE	0.1	
6 Apr 2023	10:00 AM	SSE	0.1	
6 Apr 2023	11:00 AM	ENE	0.1	
6 Apr 2023	12:00 PM	ENE	0.1	
6 Apr 2023	1:00 PM	SE	0.1	
6 Apr 2023	2:00 PM	SSW	0.1	
6 Apr 2023	3:00 PM	SSW	0.1	
6 Apr 2023	4:00 PM	S	0.1	
6 Apr 2023	5:00 PM	W	0.1	

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
6 Apr 2023	6:00 PM	WSW	0.1	
6 Apr 2023	7:00 PM	ESE	0.1	
6 Apr 2023	8:00 PM	ESE	0.1	
6 Apr 2023	9:00 PM	WNW	0.1	
6 Apr 2023	10:00 PM	S	0.2	
6 Apr 2023	11:00 PM	W	0.4	
7 Apr 2023	12:00 AM	WSW	0.2	
7 Apr 2023	1:00 AM	ESE	0.1	
7 Apr 2023	2:00 AM	ESE	0.1	
7 Apr 2023	3:00 AM	WNW	0.1	
7 Apr 2023	4:00 AM	WNW	0.1	
7 Apr 2023	5:00 AM	ENE	0.9	
7 Apr 2023	6:00 AM	SE	0.1	
7 Apr 2023	7:00 AM	Е	0.6	
7 Apr 2023	8:00 AM	Е	0.8	
7 Apr 2023	9:00 AM	ESE	0.1	
7 Apr 2023	10:00 AM	S	0.1	
7 Apr 2023	11:00 AM	SSE	0.1	
7 Apr 2023	12:00 PM	ESE	0.7	
7 Apr 2023	1:00 PM	S	0.1	
7 Apr 2023	2:00 PM	Е	0.4	
7 Apr 2023	3:00 PM	ESE	1.0	
7 Apr 2023	4:00 PM	Е	0.1	
7 Apr 2023	5:00 PM	E	0.1	
7 Apr 2023	6:00 PM	ESE	0.8	
7 Apr 2023	7:00 PM	ENE	0.1	
7 Apr 2023	8:00 PM	E	0.2	
7 Apr 2023	9:00 PM	S	0.1	
7 Apr 2023	10:00 PM	SE	0.1	
7 Apr 2023	11:00 PM	E	0.1	
8 Apr 2023	12:00 AM	E	0.1	
8 Apr 2023	1:00 AM	ESE	0.2	
8 Apr 2023	2:00 AM	E	0.1	
8 Apr 2023	3:00 AM	ESE	0.1	
8 Apr 2023	4:00 AM	NE	0.1	
8 Apr 2023	5:00 AM	ESE	0.1	
8 Apr 2023	6:00 AM	SSW	0.1	
8 Apr 2023	7:00 AM	S	0.1	
8 Apr 2023	8:00 AM	W	0.1	
8 Apr 2023	9:00 AM	WSW	0.1	
8 Apr 2023	10:00 AM	ESE	0.1	
8 Apr 2023	11:00 AM	ESE	0.1	
8 Apr 2023	12:00 PM	WNW	0.1	
8 Apr 2023	1:00 PM	S	0.4	
8 Apr 2023	2:00 PM	W	0.1	
8 Apr 2023	3:00 PM	WSW	0.1	

Appendix C - Weather Conditions during Monitoring Period

April 2023 Table II: Wind Speed and Directions			
8 Apr 2023	4:00 PM	ESE	0.2
8 Apr 2023	5:00 PM	ESE	0.1
8 Apr 2023	6:00 PM	WNW	0.4
8 Apr 2023	7:00 PM	WNW	0.1
8 Apr 2023	8:00 PM	NE	0.3
8 Apr 2023	9:00 PM	NE	0.2
8 Apr 2023	10:00 PM	NE	0.2
8 Apr 2023	11:00 PM	ENE	0.2
9 Apr 2023	12:00 AM	W	0.1
9 Apr 2023	1:00 AM	ENE	0.1
9 Apr 2023	2:00 AM	ENE	0.4
9 Apr 2023	3:00 AM	NE	0.1
9 Apr 2023	4:00 AM	ENE	0.2
9 Apr 2023	5:00 AM	ENE	0.2
9 Apr 2023	6:00 AM	SSW	0.2
9 Apr 2023	7:00 AM	S	0.2
9 Apr 2023	8:00 AM	W	0.2
9 Apr 2023	9:00 AM	WSW	0.3
9 Apr 2023	10:00 AM	ESE	0.4
9 Apr 2023	11:00 AM	ESE	1.0
9 Apr 2023	12:00 PM	WNW	0.4
9 Apr 2023	1:00 PM	S	0.4
9 Apr 2023	2:00 PM	W	0.3
9 Apr 2023	3:00 PM	WSW	0.3
9 Apr 2023	4:00 PM	ESE	0.3
9 Apr 2023	5:00 PM	ESE	0.2
9 Apr 2023	6:00 PM	WNW	0.2
9 Apr 2023	7:00 PM	WNW	0.1
9 Apr 2023	8:00 PM	Е	0.1
9 Apr 2023	9:00 PM	ESE	0.1
9 Apr 2023	10:00 PM	E	0.1
9 Apr 2023	11:00 PM	Е	0.1
10 Apr 2023	12:00 AM	ENE	0.1
10 Apr 2023	1:00 AM	E	0.1
10 Apr 2023	2:00 AM	ENE	0.1
10 Apr 2023	3:00 AM	ESE	0.1
10 Apr 2023	4:00 AM	SE	0.1
10 Apr 2023	5:00 AM	SE	0.2
10 Apr 2023	6:00 AM	E	0.1
10 Apr 2023	7:00 AM	ESE	0.1
10 Apr 2023	8:00 AM	NE	0.1
10 Apr 2023	9:00 AM	SE	0.2
10 Apr 2023	10:00 AM	SSE	0.1
10 Apr 2023	11:00 AM	SSE	0.1
10 Apr 2023	12:00 PM	S	0.1
10 Apr 2023	1:00 PM	SSE	0.1

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
10 Apr 2023	2:00 PM	SSE	0.1	
10 Apr 2023	3:00 PM	SSE	0.1	
10 Apr 2023	4:00 PM	SE	0.1	
10 Apr 2023	5:00 PM	ENE	0.1	
10 Apr 2023	6:00 PM	S	0.1	
10 Apr 2023	7:00 PM	SSW	0.2	
10 Apr 2023	8:00 PM	S	0.1	
10 Apr 2023	9:00 PM	W	0.2	
10 Apr 2023	10:00 PM	WSW	0.2	
10 Apr 2023	11:00 PM	ESE	0.2	
11 Apr 2023	12:00 AM	ESE	0.2	
11 Apr 2023	1:00 AM	WNW	0.2	
11 Apr 2023	2:00 AM	S	0.2	
11 Apr 2023	3:00 AM	W	0.1	
11 Apr 2023	4:00 AM	WSW	0.2	
11 Apr 2023	5:00 AM	ESE	0.1	
11 Apr 2023	6:00 AM	ESE	0.1	
11 Apr 2023	7:00 AM	WNW	0.1	
11 Apr 2023	8:00 AM	WNW	0.1	
11 Apr 2023	9:00 AM	Е	0.1	
11 Apr 2023	10:00 AM	Е	2.9	
11 Apr 2023	11:00 AM	ESE	0.1	
11 Apr 2023	12:00 PM	Е	0.1	
11 Apr 2023	1:00 PM	ESE	0.2	
11 Apr 2023	2:00 PM	ENE	0.1	
11 Apr 2023	3:00 PM	ENE	0.1	
11 Apr 2023	4:00 PM	Е	0.1	
11 Apr 2023	5:00 PM	ENE	0.2	
11 Apr 2023	6:00 PM	NE	0.1	
11 Apr 2023	7:00 PM	ENE	0.1	
11 Apr 2023	8:00 PM	Е	0.1	
11 Apr 2023	9:00 PM	ESE	0.1	
11 Apr 2023	10:00 PM	Е	0.1	
11 Apr 2023	11:00 PM	ENE	0.1	
12 Apr 2023	12:00 AM	NE	0.1	
12 Apr 2023	1:00 AM	Е	0.1	
12 Apr 2023	2:00 AM	NNE	0.1	
12 Apr 2023	3:00 AM	ENE	0.1	
12 Apr 2023	4:00 AM	ESE	0.1	
12 Apr 2023	5:00 AM	NNE	0.1	
12 Apr 2023	6:00 AM	NNW	0.1	
12 Apr 2023	7:00 AM	Е	0.1	
12 Apr 2023	8:00 AM	ENE	0.4	
12 Apr 2023	9:00 AM	SE	0.1	
12 Apr 2023	10:00 AM	SE	0.1	
12 Apr 2023	11:00 AM	ESE	0.2	

April 2023			
Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}
12 Apr 2023	12:00 PM	SE	0.5
12 Apr 2023	1:00 PM	Е	0.1
12 Apr 2023	2:00 PM	SSW	0.2
12 Apr 2023	3:00 PM	S	0.1
12 Apr 2023	4:00 PM	W	0.1
12 Apr 2023	5:00 PM	WSW	0.2
12 Apr 2023	6:00 PM	ESE	0.1
12 Apr 2023	7:00 PM	ESE	0.1
12 Apr 2023	8:00 PM	WNW	0.1
12 Apr 2023	9:00 PM	S	0.1
12 Apr 2023	10:00 PM	W	0.1
12 Apr 2023	11:00 PM	WSW	0.1
13 Apr 2023	12:00 AM	ESE	0.1
13 Apr 2023	1:00 AM	ESE	0.1
13 Apr 2023	2:00 AM	WNW	0.1
13 Apr 2023	3:00 AM	WNW	0.2
13 Apr 2023	4:00 AM	ENE	0.1
13 Apr 2023	5:00 AM	W	0.1
13 Apr 2023	6:00 AM	S	0.1
13 Apr 2023	7:00 AM	SW	0.1
13 Apr 2023	8:00 AM	ESE	0.1
13 Apr 2023	9:00 AM	WSW	0.1
13 Apr 2023	10:00 AM	SSE	0.1
13 Apr 2023	11:00 AM	WSW	0.1
13 Apr 2023	12:00 PM	WNW	0.1
13 Apr 2023	1:00 PM	W	0.2
13 Apr 2023	2:00 PM	NW	0.1
13 Apr 2023	3:00 PM	W	0.2
13 Apr 2023	4:00 PM	WNW	0.2
13 Apr 2023	5:00 PM	WSW	0.2
13 Apr 2023	6:00 PM	SW	0.2
13 Apr 2023	7:00 PM	WSW	0.2
13 Apr 2023	8:00 PM	ENE	0.2
13 Apr 2023	9:00 PM	ESE	0.1
13 Apr 2023	10:00 PM	WNW	0.1
13 Apr 2023	11:00 PM	WSW	0.1
14 Apr 2023	12:00 AM	SW	0.1
14 Apr 2023	1:00 AM	#N/A	0.1
14 Apr 2023	2:00 AM	E	0.1
14 Apr 2023	3:00 AM	SW	0.1
14 Apr 2023	4:00 AM	ENE	0.1
14 Apr 2023	5:00 AM	ENE	0.1
14 Apr 2023	6:00 AM	E	0.1
14 Apr 2023	7:00 AM	Ē	0.1
14 Apr 2023	8:00 AM	ENE	0.2
14 Apr 2023	9:00 AM	SE	0.1

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
14 Apr 2023	10:00 AM	SSW	0.1	
14 Apr 2023	11:00 AM	S	0.5	
14 Apr 2023	12:00 PM	W	0.1	
14 Apr 2023	1:00 PM	WSW	0.5	
14 Apr 2023	2:00 PM	ESE	0.1	
14 Apr 2023	3:00 PM	ESE	0.1	
14 Apr 2023	4:00 PM	WNW	0.2	
14 Apr 2023	5:00 PM	S	0.1	
14 Apr 2023	6:00 PM	W	0.1	
14 Apr 2023	7:00 PM	WSW	0.2	
14 Apr 2023	8:00 PM	ESE	0.1	
14 Apr 2023	9:00 PM	ESE	0.1	
14 Apr 2023	10:00 PM	WNW	0.1	
14 Apr 2023	11:00 PM	WNW	0.2	
15 Apr 2023	12:00 AM	ESE	1.0	
15 Apr 2023	1:00 AM	SSE	0.1	
15 Apr 2023	2:00 AM	ENE	0.1	
15 Apr 2023	3:00 AM	ESE	0.1	
15 Apr 2023	4:00 AM	ESE	0.6	
15 Apr 2023	5:00 AM	NE	0.1	
15 Apr 2023	6:00 AM	ENE	0.1	
15 Apr 2023	7:00 AM	ENE	0.2	
15 Apr 2023	8:00 AM	Е	0.1	
15 Apr 2023	9:00 AM	Е	0.1	
15 Apr 2023	10:00 AM	Е	0.1	
15 Apr 2023	11:00 AM	ENE	0.2	
15 Apr 2023	12:00 PM	ESE	0.1	
15 Apr 2023	1:00 PM	SSE	0.1	
15 Apr 2023	2:00 PM	ESE	0.1	
15 Apr 2023	3:00 PM	Е	0.1	
15 Apr 2023	4:00 PM	Е	0.1	
15 Apr 2023	5:00 PM	Е	0.1	
15 Apr 2023	6:00 PM	Е	0.1	
15 Apr 2023	7:00 PM	SSW	0.1	
15 Apr 2023	8:00 PM	S	0.1	
15 Apr 2023	9:00 PM	W	0.2	
15 Apr 2023	10:00 PM	WSW	0.1	
15 Apr 2023	11:00 PM	ESE	0.2	
16 Apr 2023	12:00 AM	ESE	0.2	
16 Apr 2023	1:00 AM	WNW	0.2	
16 Apr 2023	2:00 AM	S	0.2	
16 Apr 2023	3:00 AM	W	0.2	
16 Apr 2023	4:00 AM	WSW	0.2	
16 Apr 2023	5:00 AM	ESE	0.1	
16 Apr 2023	6:00 AM	ESE	0.1	
16 Apr 2023	7:00 AM	WNW	0.1	

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
16 Apr 2023	8:00 AM	WNW	0.1	
16 Apr 2023	9:00 AM	ESE	0.1	
16 Apr 2023	10:00 AM	ESE	0.1	
16 Apr 2023	11:00 AM	ESE	0.1	
16 Apr 2023	12:00 PM	Е	0.1	
16 Apr 2023	1:00 PM	SE	0.4	
16 Apr 2023	2:00 PM	SSE	0.2	
16 Apr 2023	3:00 PM	ENE	0.1	
16 Apr 2023	4:00 PM	Е	0.1	
16 Apr 2023	5:00 PM	SSW	0.3	
16 Apr 2023	6:00 PM	Е	0.1	
16 Apr 2023	7:00 PM	Е	0.1	
16 Apr 2023	8:00 PM	SE	0.1	
16 Apr 2023	9:00 PM	ENE	0.1	
16 Apr 2023	10:00 PM	ENE	0.1	
16 Apr 2023	11:00 PM	ENE	0.1	
17 Apr 2023	12:00 AM	SE	0.1	
17 Apr 2023	1:00 AM	SSW	0.1	
17 Apr 2023	2:00 AM	S	0.1	
17 Apr 2023	3:00 AM	W	0.1	
17 Apr 2023	4:00 AM	WSW	0.1	
17 Apr 2023	5:00 AM	ESE	0.1	
17 Apr 2023	6:00 AM	ESE	0.1	
17 Apr 2023	7:00 AM	WNW	0.1	
17 Apr 2023	8:00 AM	S	0.1	
17 Apr 2023	9:00 AM	W	0.1	
17 Apr 2023	10:00 AM	WSW	0.1	
17 Apr 2023	11:00 AM	ESE	0.1	
17 Apr 2023	12:00 PM	ESE	0.1	
17 Apr 2023	1:00 PM	WNW	0.1	
17 Apr 2023	2:00 PM	WNW	0.1	
17 Apr 2023	3:00 PM	SE	0.1	
17 Apr 2023	4:00 PM	ENE	0.1	
17 Apr 2023	5:00 PM	ENE	0.1	
17 Apr 2023	6:00 PM	Е	0.1	
17 Apr 2023	7:00 PM	ENE	0.1	
17 Apr 2023	8:00 PM	Е	0.1	
17 Apr 2023	9:00 PM	SSE	0.1	
17 Apr 2023	10:00 PM	ENE	0.1	
17 Apr 2023	11:00 PM	Е	0.1	
18 Apr 2023	12:00 AM	ESE	0.1	
18 Apr 2023	1:00 AM	Е	0.1	
18 Apr 2023	2:00 AM	Е	0.1	
18 Apr 2023	3:00 AM	WSW	0.1	
18 Apr 2023	4:00 AM	ESE	0.1	
18 Apr 2023	5:00 AM	Е	0.1	

April 2023				
	Table II: Wind Speed and Directions			
Date	Time	Direction	Wind Speed m ^{-s}	
18 Apr 2023	6:00 AM	Е	0.1	
18 Apr 2023	7:00 AM	NE	0.1	
18 Apr 2023	8:00 AM	ENE	0.2	
18 Apr 2023	9:00 AM	SSE	0.5	
18 Apr 2023	10:00 AM	SSE	0.6	
18 Apr 2023	11:00 AM	ESE	0.4	
18 Apr 2023	12:00 PM	SSE	0.5	
18 Apr 2023	1:00 PM	Е	0.1	
18 Apr 2023	2:00 PM	NNW	0.1	
18 Apr 2023	3:00 PM	NNE	0.4	
18 Apr 2023	4:00 PM	NNE	0.1	
18 Apr 2023	5:00 PM	ESE	0.1	
18 Apr 2023	6:00 PM	ESE	0.1	
18 Apr 2023	7:00 PM	ENE	0.1	
18 Apr 2023	8:00 PM	SE	0.1	
18 Apr 2023	9:00 PM	SSW	0.1	
18 Apr 2023	10:00 PM	S	0.5	
18 Apr 2023	11:00 PM	W	0.1	
19 Apr 2023	12:00 AM	WSW	0.1	
19 Apr 2023	1:00 AM	ESE	0.2	
19 Apr 2023	2:00 AM	ESE	0.1	
19 Apr 2023	3:00 AM	WNW	0.1	
19 Apr 2023	4:00 AM	S	0.1	
19 Apr 2023	5:00 AM	W	0.1	
19 Apr 2023	6:00 AM	WSW	0.1	
19 Apr 2023	7:00 AM	ESE	0.1	
19 Apr 2023	8:00 AM	ESE	0.1	
19 Apr 2023	9:00 AM	WNW	0.1	
19 Apr 2023	10:00 AM	WNW	0.1	
19 Apr 2023	11:00 AM	Е	0.2	
19 Apr 2023	12:00 PM	SSE	0.1	
19 Apr 2023	1:00 PM	Е	0.2	
19 Apr 2023	2:00 PM	ENE	0.2	
19 Apr 2023	3:00 PM	Е	0.2	
19 Apr 2023	4:00 PM	Е	0.2	
19 Apr 2023	5:00 PM	SE	0.2	
19 Apr 2023	6:00 PM	NW	0.2	
19 Apr 2023	7:00 PM	ESE	0.1	
19 Apr 2023	8:00 PM	E	0.7	
19 Apr 2023	9:00 PM	ENE	0.1	
19 Apr 2023	10:00 PM	ESE	0.9	
19 Apr 2023	11:00 PM	ESE	0.1	
20 Apr 2023	12:00 AM	SSW	0.1	
20 Apr 2023	1:00 AM	E	0.1	
20 Apr 2023	2:00 AM	ENE	0.1	
20 Apr 2023	3:00 AM	ENE	1.1	

April 2023							
Table II: Wind Speed and Directions							
Date	Time	Direction	Wind Speed m ^{-s}				
20 Apr 2023	4:00 AM	Е	0.1				
20 Apr 2023	5:00 AM	Е	0.1				
20 Apr 2023	6:00 AM	Е	0.1				
20 Apr 2023	7:00 AM	SE	0.2				
20 Apr 2023	8:00 AM	Е	0.1				
20 Apr 2023	9:00 AM	ESE	0.1				
20 Apr 2023	10:00 AM	Е	3.1				
20 Apr 2023	11:00 AM	ESE	0.4				
20 Apr 2023	12:00 PM	ESE	0.2				
20 Apr 2023	1:00 PM	ENE	0.2				
20 Apr 2023	2:00 PM	Е	0.5				
20 Apr 2023	3:00 PM	SSW	0.1				
20 Apr 2023	4:00 PM	S	0.1				
20 Apr 2023	5:00 PM	W	0.1				
20 Apr 2023	6:00 PM	WSW	0.1				
20 Apr 2023	7:00 PM	ESE	0.1				
20 Apr 2023	8:00 PM	ESE	0.1				
20 Apr 2023	9:00 PM	WNW	0.1				
20 Apr 2023	10:00 PM	S	0.5				
20 Apr 2023	11:00 PM	W	0.1				
21 Apr 2023	12:00 AM	WSW	0.1				
21 Apr 2023	1:00 AM	ESE	0.3				
21 Apr 2023	2:00 AM	ESE	0.1				
21 Apr 2023	3:00 AM	WNW	0.1				
21 Apr 2023	4:00 AM	WNW	0.1				
21 Apr 2023	5:00 AM	ESE	0.1				
21 Apr 2023	6:00 AM	ENE	0.1				
21 Apr 2023	7:00 AM	Е	0.1				
21 Apr 2023	8:00 AM	S	0.1				
21 Apr 2023	9:00 AM	Е	0.4				
21 Apr 2023	10:00 AM	SSE	0.3				
21 Apr 2023	11:00 AM	S	0.9				
21 Apr 2023	12:00 PM	SE	0.4				
21 Apr 2023	1:00 PM	S	0.2				
21 Apr 2023	2:00 PM	S	0.1				
21 Apr 2023	3:00 PM	SSE	0.1				
21 Apr 2023	4:00 PM	SE	0.2				
21 Apr 2023	5:00 PM	S	0.9				
21 Apr 2023	6:00 PM	Е	0.5				
21 Apr 2023	7:00 PM	ESE	0.1				
21 Apr 2023	8:00 PM	Е	0.1				
21 Apr 2023	9:00 PM	Е	0.1				
21 Apr 2023	10:00 PM	Е	0.1				
21 Apr 2023	11:00 PM	SSW	0.1				
22 Apr 2023	12:00 AM	S	0.1				
22 Apr 2023	1:00 AM	W	0.1				

April 2023							
Table II: Wind Speed and Directions							
Date	Time	Direction	Wind Speed m ^{-s}				
22 Apr 2023	2:00 AM	WSW	0.1				
22 Apr 2023	3:00 AM	ESE	0.1				
22 Apr 2023	4:00 AM	ESE	0.1				
22 Apr 2023	5:00 AM	WNW	0.1				
22 Apr 2023	6:00 AM	S	0.2				
22 Apr 2023	7:00 AM	W	0.6				
22 Apr 2023	8:00 AM	WSW	0.1				
22 Apr 2023	9:00 AM	ESE	0.1				
22 Apr 2023	10:00 AM	ESE	0.1				
22 Apr 2023	11:00 AM	WNW	0.1				
22 Apr 2023	12:00 PM	WNW	0.7				
22 Apr 2023	1:00 PM	SW	1.9				
22 Apr 2023	2:00 PM	WNW	3.1				
22 Apr 2023	3:00 PM	W	2.7				
22 Apr 2023	4:00 PM	SSW	0.3				
22 Apr 2023	5:00 PM	WNW	1.5				
22 Apr 2023	6:00 PM	W	0.4				
22 Apr 2023	7:00 PM	WSW	0.2				
22 Apr 2023	8:00 PM	SW	0.1				
22 Apr 2023	9:00 PM	W	0.1				
22 Apr 2023	10:00 PM	SSW	0.1				
22 Apr 2023	11:00 PM	W	0.1				
23 Apr 2023	12:00 AM	WSW	0.1				
23 Apr 2023	1:00 AM	SW	0.1				
23 Apr 2023	2:00 AM	SW	0.1				
23 Apr 2023	3:00 AM	SW	0.1				
23 Apr 2023	4:00 AM	WSW	0.1				
23 Apr 2023	5:00 AM	WSW	0.1				
23 Apr 2023	6:00 AM	WSW	0.1				
23 Apr 2023	7:00 AM	WSW	0.1				
23 Apr 2023	8:00 AM	WNW	0.1				
23 Apr 2023	9:00 AM	SW	0.2				
23 Apr 2023	10:00 AM	SW	0.1				
23 Apr 2023	11:00 AM	Ν	0.2				
23 Apr 2023	12:00 PM	W	2.7				
23 Apr 2023	1:00 PM	SW	1.5				
23 Apr 2023	2:00 PM	SW	0.3				
23 Apr 2023	3:00 PM	WSW	0.1				
23 Apr 2023	4:00 PM	NW	0.1				
23 Apr 2023	5:00 PM	WNW	0.1				
23 Apr 2023	6:00 PM	ESE	0.1				
23 Apr 2023	7:00 PM	Е	0.1				
23 Apr 2023	8:00 PM	Е	0.1				
23 Apr 2023	9:00 PM	Е	0.1				
23 Apr 2023	10:00 PM	ENE	0.1				
23 Apr 2023	11:00 PM	SSE	0.1				

April 2023									
	Table II: Wind Speed and Directions								
Date	Time	Direction	Wind Speed m ^{-s}						
24 Apr 2023	12:00 AM	Е	0.6						
24 Apr 2023	1:00 AM	SE	0.1						
24 Apr 2023	2:00 AM	SSE	0.1						
24 Apr 2023	3:00 AM	Е	0.1						
24 Apr 2023	4:00 AM	ENE	0.1						
24 Apr 2023	5:00 AM	Е	0.1						
24 Apr 2023	6:00 AM	ENE	0.1						
24 Apr 2023	7:00 AM	Е	0.2						
24 Apr 2023	8:00 AM	ENE	0.1						
24 Apr 2023	9:00 AM	SSW	0.2						
24 Apr 2023	10:00 AM	S	2.2						
24 Apr 2023	11:00 AM	W	0.2						
24 Apr 2023	12:00 PM	WSW	0.5						
24 Apr 2023	1:00 PM	ESE	0.1						
24 Apr 2023	2:00 PM	ESE	0.2						
24 Apr 2023	3:00 PM	WNW	0.1						
24 Apr 2023	4:00 PM	S	0.7						
24 Apr 2023	5:00 PM	W	0.7						
24 Apr 2023	6:00 PM	WSW	0.1						
24 Apr 2023	7:00 PM	ESE	0.6						
24 Apr 2023	8:00 PM	ESE	0.1						
24 Apr 2023	9:00 PM	WNW	0.1						
24 Apr 2023	10:00 PM	WNW	0.1						
24 Apr 2023	11:00 PM	Е	0.1						
25 Apr 2023	12:00 AM	ENE	0.1						
25 Apr 2023	1:00 AM	Е	0.1						
25 Apr 2023	2:00 AM	Е	0.1						
25 Apr 2023	3:00 AM	Е	0.1						
25 Apr 2023	4:00 AM	NE	0.1						
25 Apr 2023	5:00 AM	ENE	0.1						
25 Apr 2023	6:00 AM	Е	0.1						
25 Apr 2023	7:00 AM	ENE	0.1						
25 Apr 2023	8:00 AM	ESE	0.1						
25 Apr 2023	9:00 AM	Е	0.2						
25 Apr 2023	10:00 AM	S	0.3						
25 Apr 2023	11:00 AM	ESE	0.1						
25 Apr 2023	12:00 PM	ENE	0.1						
25 Apr 2023	1:00 PM	SE	0.1						
25 Apr 2023	2:00 PM	S	0.1						
25 Apr 2023	3:00 PM	ESE	0.1						
25 Apr 2023	4:00 PM	SW	0.1						
25 Apr 2023	5:00 PM	ESE	0.9						
25 Apr 2023	6:00 PM	ESE	1.2						
25 Apr 2023	7:00 PM	Е	0.3						
25 Apr 2023	8:00 PM	ESE	0.1						
25 Apr 2023	9:00 PM	NNE	0.1						

April 2023							
Table II: Wind Speed and Directions							
Date	Time	Direction	Wind Speed m ^{-s}				
25 Apr 2023	10:00 PM	SE	0.1				
25 Apr 2023	11:00 PM	NE	0.1				
26 Apr 2023	12:00 AM	ESE	0.1				
26 Apr 2023	1:00 AM	Е	0.1				
26 Apr 2023	2:00 AM	ENE	0.2				
26 Apr 2023	3:00 AM	ENE	0.2				
26 Apr 2023	4:00 AM	NE	0.2				
26 Apr 2023	5:00 AM	ESE	0.9				
26 Apr 2023	6:00 AM	ENE	0.1				
26 Apr 2023	7:00 AM	Е	0.1				
26 Apr 2023	8:00 AM	ENE	1.0				
26 Apr 2023	9:00 AM	NE	0.1				
26 Apr 2023	10:00 AM	Ν	0.1				
26 Apr 2023	11:00 AM	SE	0.2				
26 Apr 2023	12:00 PM	S	0.1				
26 Apr 2023	1:00 PM	SE	0.4				
26 Apr 2023	2:00 PM	ESE	2.2				
26 Apr 2023	3:00 PM	S	0.1				
26 Apr 2023	4:00 PM	ESE	0.2				
26 Apr 2023	5:00 PM	ENE	0.1				
26 Apr 2023	6:00 PM	ENE	0.1				
26 Apr 2023	7:00 PM	WNW	0.1				
26 Apr 2023	8:00 PM	ESE	0.1				
26 Apr 2023	9:00 PM	ESE	0.1				
26 Apr 2023	10:00 PM	SE	0.1				
26 Apr 2023	11:00 PM	ESE	0.1				
27 Apr 2023	12:00 AM	ESE	0.1				
27 Apr 2023	1:00 AM	Е	0.2				
27 Apr 2023	2:00 AM	SSW	0.1				
27 Apr 2023	3:00 AM	S	0.2				
27 Apr 2023	4:00 AM	W	0.2				
27 Apr 2023	5:00 AM	WSW	0.2				
27 Apr 2023	6:00 AM	ESE	0.3				
27 Apr 2023	7:00 AM	ESE	0.3				
27 Apr 2023	8:00 AM	WNW	0.5				
27 Apr 2023	9:00 AM	S	0.5				
27 Apr 2023	10:00 AM	W	0.4				
27 Apr 2023	11:00 AM	WSW	0.4				
27 Apr 2023	12:00 PM	ESE	0.6				
27 Apr 2023	1:00 PM	ESE	0.5				
27 Apr 2023	2:00 PM	WNW	0.6				
27 Apr 2023	3:00 PM	WNW	0.5				
27 Apr 2023	4:00 PM	NE	0.4				
27 Apr 2023	5:00 PM	ESE	0.4				
27 Apr 2023	6:00 PM	Е	0.3				
27 Apr 2023	7:00 PM	Е	0.2				

April 2023							
Table II: Wind Speed and Directions							
Date	Time	Direction	Wind Speed m ^{-s}				
27 Apr 2023	8:00 PM	NE	0.2				
27 Apr 2023	9:00 PM	SE	0.2				
27 Apr 2023	10:00 PM	SSE	0.2				
27 Apr 2023	11:00 PM	ENE	0.2				
28 Apr 2023	12:00 AM	Е	0.1				
28 Apr 2023	1:00 AM	ENE	0.2				
28 Apr 2023	2:00 AM	ENE	0.1				
28 Apr 2023	3:00 AM	ESE	0.1				
28 Apr 2023	4:00 AM	NNE	0.1				
28 Apr 2023	5:00 AM	Е	0.1				
28 Apr 2023	6:00 AM	Е	0.1				
28 Apr 2023	7:00 AM	Е	0.1				
28 Apr 2023	8:00 AM	ESE	0.1				
28 Apr 2023	9:00 AM	SSE	0.1				
28 Apr 2023	10:00 AM	SSW	0.3				
28 Apr 2023	11:00 AM	S	0.1				
28 Apr 2023	12:00 PM	W	0.6				
28 Apr 2023	1:00 PM	WSW	0.1				
28 Apr 2023	2:00 PM	ESE	0.1				
28 Apr 2023	3:00 PM	ESE	0.1				
28 Apr 2023	4:00 PM	WNW	0.1				
28 Apr 2023	5:00 PM	S	0.2				
28 Apr 2023	6:00 PM	W	0.3				
28 Apr 2023	7:00 PM	WSW	0.4				
28 Apr 2023	8:00 PM	ESE	0.4				
28 Apr 2023	9:00 PM	ESE	0.5				
28 Apr 2023	10:00 PM	WNW	0.4				
28 Apr 2023	11:00 PM	WNW	0.4				
29 Apr 2023	12:00 AM	NNE	0.7				
29 Apr 2023	1:00 AM	ESE	0.5				
29 Apr 2023	2:00 AM	SSW	0.5				
29 Apr 2023	3:00 AM	S	0.4				
29 Apr 2023	4:00 AM	W	0.4				
29 Apr 2023	5:00 AM	WSW	0.3				
29 Apr 2023	6:00 AM	ESE	0.4				
29 Apr 2023	7:00 AM	ESE	0.3				
29 Apr 2023	8:00 AM	WNW	0.4				
29 Apr 2023	9:00 AM	S	0.3				
29 Apr 2023	10:00 AM	W	0.1				
29 Apr 2023	11:00 AM	WSW	0.1				
29 Apr 2023	12:00 PM	ESE	0.2				
29 Apr 2023	1:00 PM	ESE	0.1				
29 Apr 2023	2:00 PM	WNW	0.1				
29 Apr 2023	3:00 PM	WNW	0.1				
29 Apr 2023	4:00 PM	W	0.1				
29 Apr 2023	5:00 PM	SSW	0.1				

April 2023							
	Table II: Wind S	Speed and Directions					
Date	Time	Direction	Wind Speed m ^{-s}				
29 Apr 2023	6:00 PM	SW	0.1				
29 Apr 2023	7:00 PM	WSW	0.1				
29 Apr 2023	8:00 PM	ENE	0.1				
29 Apr 2023	9:00 PM	ESE	0.1				
29 Apr 2023	10:00 PM	SE	0.2				
29 Apr 2023	11:00 PM	ENE	0.1				
30 Apr 2023	12:00 AM	E	0.2				
30 Apr 2023	1:00 AM	ESE	0.2				
30 Apr 2023	2:00 AM	ENE	0.2				
30 Apr 2023	3:00 AM	E	0.2				
30 Apr 2023	4:00 AM	W	0.2				
30 Apr 2023	5:00 AM	SSW	0.2				
30 Apr 2023	6:00 AM	S	0.1				
30 Apr 2023	7:00 AM	W	0.1				
30 Apr 2023	8:00 AM	WSW	0.1				
30 Apr 2023	9:00 AM	ESE	0.1				
30 Apr 2023	10:00 AM	ESE	0.1				
30 Apr 2023	11:00 AM	WNW	0.1				
30 Apr 2023	12:00 PM	S	1.0				
30 Apr 2023	1:00 PM	W	0.1				
30 Apr 2023	2:00 PM	WSW	1.6				
30 Apr 2023	3:00 PM	ESE	1.9				
30 Apr 2023	4:00 PM	ESE	1.3				
30 Apr 2023	5:00 PM	WNW	0.6				
30 Apr 2023	6:00 PM	WNW	0.1				
30 Apr 2023	7:00 PM	W	0.1				
30 Apr 2023	8:00 PM	WSW	0.1				
30 Apr 2023	9:00 PM	W	0.1				
30 Apr 2023	10:00 PM	WSW	0.1				
30 Apr 2023	11:00 PM	W	0.1				

Appendix C - Weather Conditions during Monitoring Period

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (April 2023)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunday	Monday	Tuesday	wednesday	Inursday	rnday	Saturday 1-Apr
						- 1 44
2-Apr	3-Apr	4-Apr	5-Apr	6-Apr	7-Apr	8-Apr
	2192	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)]	2 ' Ya	1 hr TSP X3 [AM1, AM2, AM3] [AM4, AM5(A), AM6(A)] Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]		
	24 hr TSP	[CM6(A)]		24 hr TSP		
9-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr	15-Apr
			1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))]		Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)]	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)]
					[CM1, CM2, CM3]	
		24 hr TSP	Noise [Evening time (19:00-23:00)] [CM6(A)]		24 hr TSP	
16-Apr	17-Apr	18-Apr	19-Apr	20-Apr 24 hr TSP	21-Apr 1 hr TSP X3 [AM1, AM2, AM3] [AM4, AM5(A), AM6(A)] Noise [Daytine (07:00-19:00)] [CM1, CM2, CM5, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A), CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	22-Apr
23-Apr	24-Apr	25-Apr	26-Apr	27-Apr		29-Apr
			24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]	Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
30-Apr						

Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground AM3 - Yau Lai Estate Bik Lai House AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village AM4(B)⁽³⁾ - Tata 103 Cha Kwo Ling Village AM5(A) - Tseung Kwan O DSD Desilting Compound AM6(A) - Park Central, LIP Open Space Area

Noise Monitoring Station

CMI - Nga Lai House, Yau Lai Estate Phase I, Yau Tong CM2 - Bik Lai House, Yau Lai Estate Phase I, Yau Tong CM3 - Block S, Yau Lai Estate Phase S, Yau Tong CM4 - Tin Hau Temple, Cha Kwo Ling CM5 - CCC Kei Faat Primary School, Yau Tong CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower I, Ocean Shores CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores CM8(A) - Park Central, L1/F Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Water Quality Monitoring Schedule April 2023

Sunday	Monday		Tuesday	Wednesd	ay	Thursday	Friday	Saturday
								1-Apr
					_			
2-Ap	or 3	3-Apr	4-Apr		5-Apr	6-Apr	7-Арі	8-Apr
		1:19						
	Mid-Flood 1	6:30						
9-Ap	or 1()-Apr	11-Apr		12-Apr	13-Apr	14-Api	15-Apr
					.=			·•·
				Mid-Ebb	16:30		Mid-Ebb	
				Mid-Flood	8:51		Mid-Flood 11:57	
16-Ap	or 17	7-Apr	18-Apr		19-Apr	20-Apr	21-Арі	22-Apr
		0:43		Mid-Ebb	11:56		Mid-Ebb 13:06	
	Mid-Flood 1	6:09		Mid-Flood	16:30		Mid-Flood 8:00	
			25.1			07. A		
23-Ap	or 24	1-Apr	25-Apr		26-Apr	27-Apr	28-Api	29-Apr
		5:04		Mid-Ebb	16:30		Mid-Ebb	
	Mid-Flood	8:00		Mid-Flood	10:33		Mid-Flood 11:46	
30-Ap	or.							
	"							

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (May 2023)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Suiday	1-May		3-May	4-May	5-May	6-May
			1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))]		Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
		24 hr TSP	Noise [Evening time (19:00-23:00)] [CM6(A)]			
7-May	8-May	9-May	10-May	11-May	12-May	13-May
		1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)]			Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)]
	24 hr TSP	[CM6(A)]			24 hr TSP	
14-May	15-May		17-May	18-May 24 hr TSP	19-May 1 hr TSP X3 [AM1, AM2, AM3] [AM4, AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3, CM6(A)] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	20-May
21-May	22-May	23-May	24-May	25-May	26-May	27-May
			24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3] [AM4, AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]		
20.14	20.14	20.14	21.14		2.1	2.1
28-May	29-May	30-May 24 hr TSP	31-May 1 hr TSP X3 [AM1, AM2, AM3] [AM4, AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]	1-Jun	2-Jun	3-Jun

Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground AM3 - Yau Lai Estate Bik Lai House AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village AM4(8)⁽²⁾ - Flat 103 Cha Kwo Ling Village AM5(A) - Tseung Kwan O DSD Desilting Compound AM6(A) - Park Central, LUF Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong
CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong
CM3 - Biock S, Yau Lai Estate Phase 5, Yau Tong
CM4 - Tin Hau Temple, Cha Kwo Ling
CM5 - CCC Kei Faat Primary School, Yau Tong
CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores
CM8(A) - Park Central, L/IF Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule May 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-May	/ 2-May	3-May	4-May	5-May	6-May
			Mid-Ebb 11:05 Mid-Flood 16:30		Mid-Ebb 12:05 Mid-Flood 16:30	
7-May	8-May	/ 9-May	10-May	11-May	12-May	13-May
	Mid-Ebb 13:58 Mid-Flood 8:00		Mid-Ebb 15:43 Mid-Flood 8:05		Mid-Ebb 16:30 Mid-Flood	
14-May	15-May	/ 16-May	17-May	18-May	19-May	20-May
	Mid-Ebb 9:29 Mid-Flood 14:57		Mid-Ebb 10:53 Mid-Flood 16:30		Mid-Ebb 12:09 Mid-Flood 16:30	
21-May	22-May	/ 23-May	24-May	25-May	26-May	27-May
	Mid-Ebb 14:05 Mid-Flood 8:00		Mid-Ebb 15:27 Mid-Flood			
28-May	29-May	/ 30-May	31-May			
	Mid-Ebb 8:34 Mid-Flood 13:24		Mid-Ebb 9:55 Mid-Flood 15:57			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Impact Air Quality and Noise Monitoring Schedule (June 2023)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		·	*	1-Jun	2-Jun	3-Jun
					Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun
	עם ג _י רי	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))]	/->uu	09un	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	10341
	24 hr TSP	Noise [Evening time (19:00-23:00)] [CM6(A)]		24 hr TSP		
11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun
			24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]	Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun
		24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]		Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	
25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	
	24 hr TSP	1 hr TSP X3 [AM1, AM2, AM3] [AM4,AM5(A), AM6(A)] Noise [Daytime (07:00-19:00)] [CM1, CM2, CM3, CM4, CM5] [CM6(A), CM7(A), CM8(A))] Noise [Evening time (19:00-23:00)] [CM6(A)]			Noise [Evening time (19:00-23:00)] [CM1, CM2, CM3] Noise [Night-time (23:00-07:00)] [CM1, CM2, CM3]	

Air Quality Monitoring Station

AM1 - Tin Hau Temple AM2 - Sai Tso Wan Recreation Ground AM3 - Yau Lai Estate Bik Lai House AM4⁽¹⁾ - Sitting-out Area at Cha Kwo Ling Village AM4(B)⁽²⁾ - Flat 103 Cha Kwo Ling Village AM5(A) - Tseung Kwan O DSD Desilting Compound AM6(A) - Park Central, L/F Open Space Area

Noise Monitoring Station

CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong
CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong
CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong
CM4 - Tin Hau Temple, Cha Kwo Ling
CM5 - CCC Kei Faat Primary School, Yau Tong
CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores
CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores
CM8(A) - Park Central, L/IF Open Space Area

Agreement No. CE/59/2015 (EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Tentative Impact Water Quality Monitoring Schedule June 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Jun	2-Jun	3-Jun
					Mid-Ebb 11:00 Mid-Flood 16:30	
4-Ju	n 5-Jun	6-Jun	7-Jun	8-Jun	9-Jun	10-Jun
	Mid-Ebb 13:01 Mid-Flood 8:00		Mid-Ebb 14:46 Mid-Flood 8:00		Mid-Ebb 16:30 Mid-Flood 9:15	
11-Ju	n 12-Jun	13-Jun	14-Jun	15-Jun	16-Jun	17-Jun
40 1	40 km	00.65	04 hrs	00 hrs	00 he	04 he
18-Ju						24-Jun
25-Ju	n 26-Jun	27-Jun	28-Jun	29-Jun	30-Jun	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

*The marine water monitoring shall be terminated from 9 June 2023 due to the completion of marine works.

Monitoring Station:

C1, C2, G1, G2, G3, G4, M1, M2, M3, M4, M5, M6

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

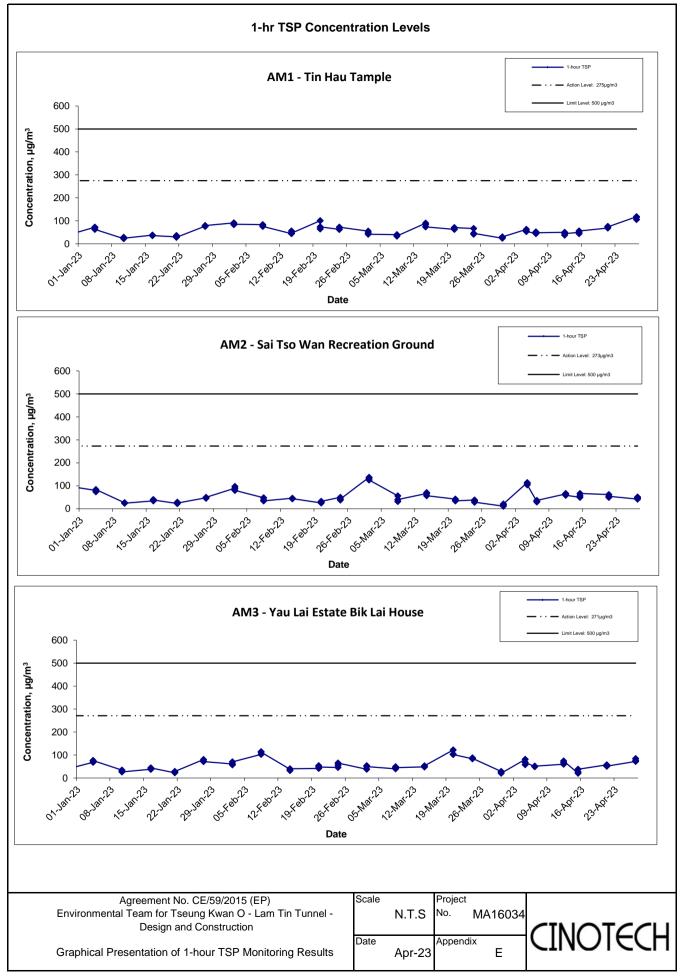
APPENDIX E - 1-HOUR TSP MONITORING RESULTS

Location AM1 - Tin Hau Temple				
Date	Time	Weather	Particulate Concentration (µg/m ³)	
4-Apr-23	9:15	Fine	63.0	
4-Apr-23	10:15	Fine	54.0	
4-Apr-23	11:15	Fine	54.0	
6-Apr-23	16:00	Sunny	44.0	
6-Apr-23	17:00	Sunny	52.0	
6-Apr-23	18:00	Sunny	48.0	
12-Apr-23	12:50	Fine	50.0	
12-Apr-23	13:50	Fine	38.0	
12-Apr-23	14:50	Fine	44.0	
15-Apr-23	9:11	Sunny	50.0	
15-Apr-23	10:11	Sunny	44.0	
15-Apr-23	11:11	Sunny	56.0	
21-Apr-23	12:10	Cloudy	68.4	
21-Apr-23	13:10	Cloudy	76.0	
21-Apr-23	14:10	Cloudy	74.1	
27-Apr-23	11:45	Cloudy	118.0	
27-Apr-23	12:45	Cloudy	116.0	
27-Apr-23	13:45	Cloudy	106.0	
		Average	64.2	
		Maximum	118.0	
		Minimum	38.0	

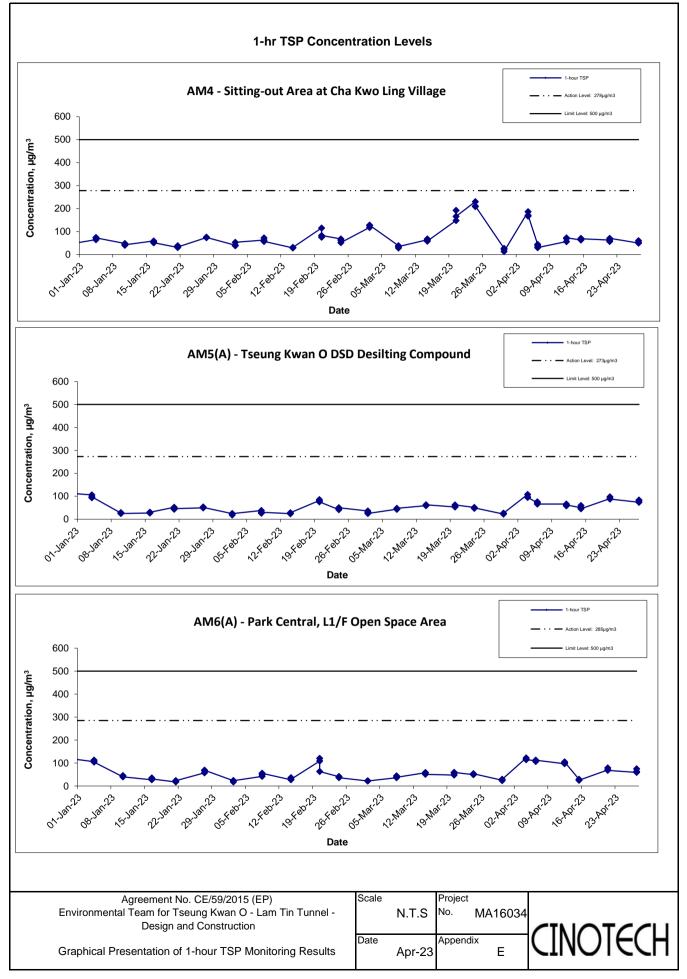
Location AM2 - Sai Tso Wan Recreation Ground				
Date	Time	Weather	Particulate Concentration (µg/m ³)	
4-Apr-23	16:00	Cloudy	114.0	
4-Apr-23	17:00	Cloudy	110.2	
4-Apr-23	18:00	Cloudy	104.5	
6-Apr-23	13:00	Fine	32.0	
6-Apr-23	14:00	Fine	30.0	
6-Apr-23	15:00	Fine	36.0	
12-Apr-23	9:00	Sunny	64.6	
12-Apr-23	10:00	Sunny	66.5	
12-Apr-23	11:00	Sunny	58.9	
15-Apr-23	10:17	Sunny	49.4	
15-Apr-23	11:17	Sunny	57.0	
15-Apr-23	12:17	Sunny	66.5	
21-Apr-23	9:00	Cloudy	62.0	
21-Apr-23	10:00	Cloudy	50.0	
21-Apr-23	11:00	Cloudy	54.0	
27-Apr-23	16:00	Fine	41.8	
27-Apr-23	17:00	Fine	47.5	
27-Apr-23	18:00	Fine	51.3	
		Average	60.9	
		Maximum	114.0	
		Minimum	30.0	

APPENDIX E - 1-HOUR TSP MONITORING RESULTS

Location AM3 - Yau Lai Estate Bik Lai House					
Date	Time	Weather	Particulate Concentration (µg/m ³)		
4-Apr-23	12:03	Fine	81.0		
4-Apr-23	13:03	Fine	57.6		
4-Apr-23	14:03	Fine	68.4		
6-Apr-23	16:00	Fine	49.4		
6-Apr-23	17:00	Fine	49.4		
6-Apr-23	18:00	Fine	51.3		
12-Apr-23	15:59	Fine	60.0		
12-Apr-23	16:59	Fine	66.0		
12-Apr-23	17:59	Fine	74.0		
15-Apr-23	12:16	Sunny	20.9		
15-Apr-23	13:16	Sunny	26.6		
15-Apr-23	14:16	Sunny	38.0		
21-Apr-23	15:30	Cloudy	57.0		
21-Apr-23	16:30	Cloudy	51.3		
21-Apr-23	17:30	Cloudy	51.3		
27-Apr-23	16:00	Cloudy	72.0		
27-Apr-23	17:00	Cloudy	76.0		
27-Apr-23	18:00	Cloudy	84.0		
		Average	57.5		
		Maximum	84.0		
		Minimum	20.9		


Location AM4 - Sitting-out Area at Cha Kwo Ling Village					
Date	Time	Weather	Particulate Concentration (μg/m ³)		
4-Apr-23	9:00	Cloudy	186.2		
4-Apr-23	10:00	Cloudy	167.2		
4-Apr-23	11:00	Cloudy	171.0		
6-Apr-23	9:00	Fine	44.0		
6-Apr-23	10:00	Fine	38.0		
6-Apr-23	11:00	Fine	30.0		
12-Apr-23	9:10	Fine	56.0		
12-Apr-23	10:10	Fine	70.0		
12-Apr-23	11:10	Fine	72.0		
15-Apr-23	15:24	Sunny	63.0		
15-Apr-23	16:24	Sunny	70.2		
15-Apr-23	17:24	Sunny	68.4		
21-Apr-23	9:00	Cloudy	62.7		
21-Apr-23	10:00	Cloudy	57.0		
21-Apr-23	11:00	Cloudy	70.3		
27-Apr-23	9:00	Cloudy	50.0		
27-Apr-23	10:00	Cloudy	52.0		
27-Apr-23	11:00	Cloudy	60.0		
		Average	77.1		
		Maximum	186.2		
		Minimum	30.0		

APPENDIX E - 1-HOUR TSP MONITORING RESULTS


Location AM5(A	A) - Tseung K	(wan O DSD Desi	Iting Compound
Date	Time	Weather	Particulate Concentration (µg/m ³)
4-Apr-23	13:00	Cloudy	108.3
4-Apr-23	14:00	Cloudy	96.9
4-Apr-23	15:00	Cloudy	95.0
6-Apr-23	13:00	Fine	72.2
6-Apr-23	14:00	Fine	76.0
6-Apr-23	15:00	Fine	66.5
12-Apr-23	16:00	Sunny	66.5
12-Apr-23	17:00	Sunny	58.9
12-Apr-23	18:00	Sunny	62.7
15-Apr-23	12:20	Sunny	50.0
15-Apr-23	13:20	Sunny	60.0
15-Apr-23	14:20	Sunny	46.0
21-Apr-23	13:00	Cloudy	90.0
21-Apr-23	14:00	Cloudy	98.0
21-Apr-23	15:00	Cloudy	88.0
27-Apr-23	13:00	Fine	74.1
27-Apr-23	14:00	Fine	83.6
27-Apr-23	15:00	Fine	81.7
		Average	76.4
		Maximum	108.3
		Minimum	46.0

Location AM6(A) - Park Cen	tral, L1/F Open S	bace Area
Date	Time	Weather	Particulate Concentration (µg/m ³)
4-Apr-23	9:00	Cloudy	121.6
4-Apr-23	10:00	Cloudy	115.9
4-Apr-23	11:00	Cloudy	114.0
6-Apr-23	9:00	Fine	110.2
6-Apr-23	10:00	Fine	106.4
6-Apr-23	11:00	Fine	112.1
12-Apr-23	13:00	Sunny	96.9
12-Apr-23	14:00	Sunny	100.7
12-Apr-23	15:00	Sunny	104.5
15-Apr-23	11:48	Sunny	28.5
15-Apr-23	12:48	Sunny	24.7
15-Apr-23	13:48	Sunny	24.7
21-Apr-23	16:00	Cloudy	70.0
21-Apr-23	17:00	Cloudy	78.0
21-Apr-23	18:00	Cloudy	68.0
27-Apr-23	9:00	Fine	58.9
27-Apr-23	10:00	Fine	62.7
27-Apr-23	11:00	Fine	74.1
		Average	81.8
		Maximum	121.6
		Minimum	24.7

APPENDIX E - 1-HOUR TSP MONITORING RESULTS

APPENDIX E - 1-HOUR TSP MONITORING RESULTS

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Appendix F - 24-hour TSP Monitoring Results

Location AM1 - Tin Hau Temple

Start Date	Weather	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Cloudy	3.3655	3.6600	0.2945	11586.6	11610.6	24.0	1.21	1.21	1.21	1743.3	168.9
6-Apr-23	Sunny	3.3871	3.5907	0.2036	11610.6	11634.6	24.0	1.21	1.21	1.21	1742.0	116.9
11-Apr-23	Cloudy	3.3781	3.6715	0.2934	11634.6	11658.6	24.0	1.21	1.21	1.21	1739.2	168.7
14-Apr-23	Rainy	3.3213	3.4275	0.1062	11658.6	11682.6	24.0	1.22	1.21	1.22	1750.1	60.7
20-Apr-23	Cloudy	3.3193	3.3703	0.0510	11682.6	11706.6	24.0	1.22	1.22	1.22	1751.2	29.1
26-Apr-23	Fine	3.3953	3.5153	0.1200	11706.6	11730.6	24.0	1.22	1.22	1.22	1762.3	68.1
											Min	29.1
											Max	168.9

Average 102.1

Location AM2 - Sai Tso Wan Recreation Ground

Start Date	Weather	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	te (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Cloudy	3.3681	3.4553	0.0872	32656.7	32680.7	24.0	1.21	1.21	1.21	1740.7	50.1
6-Apr-23	Fine	3.3564	3.4059	0.0495	32680.7	32704.7	24.0	1.20	1.21	1.21	1739.1	28.5
11-Apr-23	Cloudy	3.3495	3.3933	0.0438	32704.7	32728.7	24.0	1.21	1.20	1.21	1735.9	25.2
14-Apr-23	Rainy	3.3953	3.5371	0.1418	32728.7	32752.7	24.0	1.22	1.21	1.22	1749.9	81.0
20-Apr-23	Cloudy	3.3610	3.4073	0.0463	32752.7	32776.7	24.0	1.22	1.22	1.22	1751.2	26.4
26-Apr-23	Fine	3.3703	3.4277	0.0574	32776.7	32800.7	24.0	1.23	1.22	1.23	1764.3	32.5
											Min	25.2
											Max	81.0
											Average	40.6

Location AM3 - Yau Lai Estate, Bik Lai House

Start Date	Weather	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	te (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Cloudy	3.3391	3.3893	0.0502	6909.6	6933.6	24.0	1.21	1.20	1.21	1739.4	28.9
6-Apr-23	Fine	3.3183	3.3580	0.0397	6933.6	6957.6	24.0	1.20	1.21	1.21	1737.8	22.8
11-Apr-23	Fine	3.3181	3.3680	0.0499	6957.6	6981.6	24.0	1.21	1.20	1.20	1734.5	28.8
14-Apr-23	Rainy	3.3320	3.3759	0.0439	6981.6	7005.6	24.0	1.22	1.21	1.22	1750.9	25.1
20-Apr-23	Cloudy	3.3465	3.3770	0.0305	7005.6	7029.6	24.0	1.22	1.22	1.22	1752.1	17.4
26-Apr-23	Sunny	3.3068	3.4484	0.1416	7029.6	7053.6	24.0	1.23	1.22	1.23	1765.0	80.2
											Min	17.4
											Max	80.2

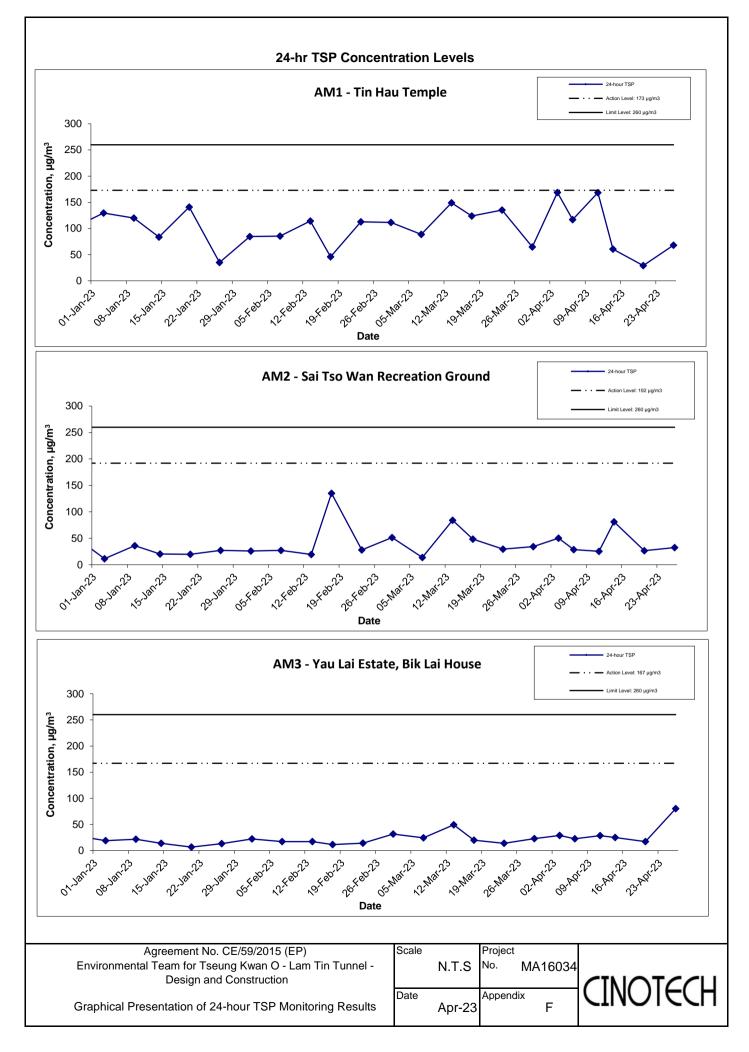
Average 33.9

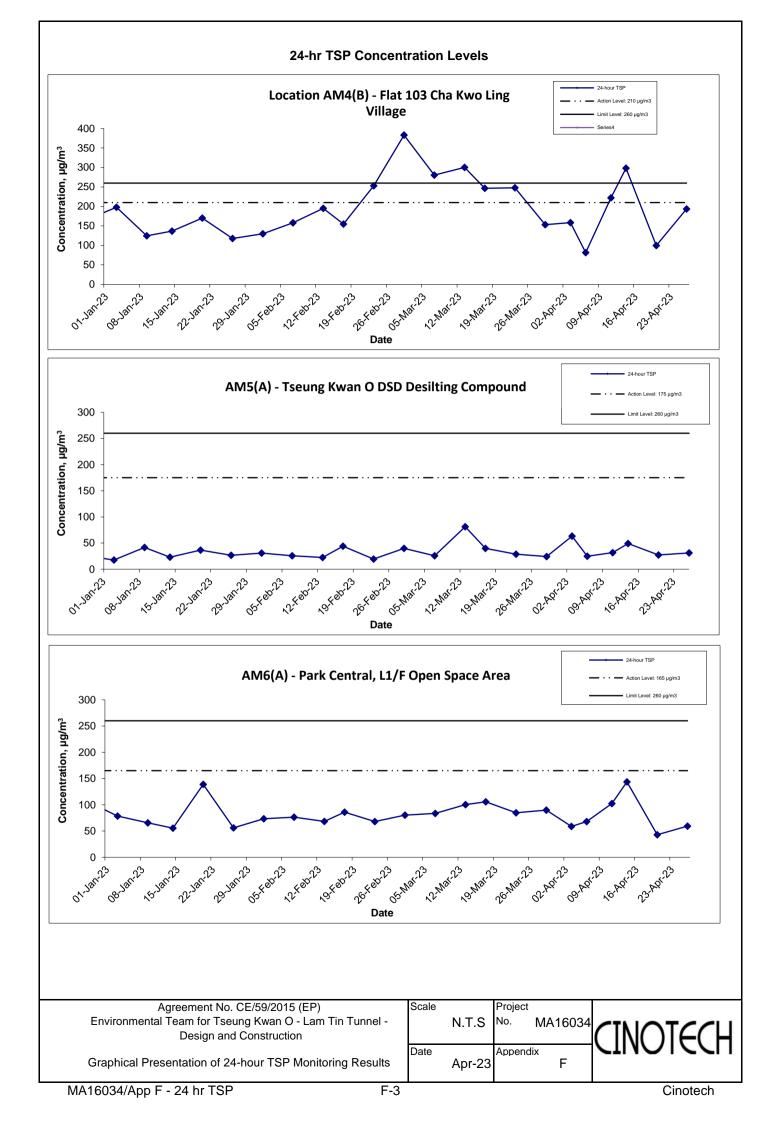
Location AM4(B) - Flat 103 Cha Kwo Ling Village

Start Date	Weather	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Fine	3.2940	3.5693	0.2753	18151.2	18175.2	24.0	1.21	1.20	1.21	1737.9	158.4
6-Apr-23	Cloudy	3.3510	3.4930	0.1420	18175.2	18199.2	24.0	1.20	1.21	1.21	1736.6	81.8
11-Apr-23	Fine	3.3488	3.7337	0.3849	18199.2	18223.2	24.0	1.20	1.20	1.20	1733.9	222.0
14-Apr-23	Rainy	3.3222	3.8378	0.5156	18247.2	18271.2	24.0	1.20	1.20	1.20	1729.4	<u>298.1</u>
20-Apr-23	Fine	3.3923	3.5650	0.1727	18295.2	18319.2	24.0	1.20	1.20	1.20	1730.5	99.8
26-Apr-23	Fine	3.3792	3.7160	0.3368	18319.2	18343.2	24.0	1.21	1.21	1.21	1741.2	193.4
											Min	81.8
											Max	298.1

Average 175.6

Location AM5(A) - Tseung Kwan O DSD Desilting Compound


Start Date	Weather	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Cloudy	3.3824	3.4925	0.1101	34246.8	34270.8	24.0	1.21	1.21	1.21	1741.8	63.2
6-Apr-23	Fine	3.3782	3.4213	0.0431	34270.8	34294.8	24.0	1.20	1.21	1.21	1740.3	24.8
11-Apr-23	Cloudy	3.3749	3.4299	0.0550	34294.8	34318.8	24.0	1.21	1.21	1.21	1737.3	31.7
14-Apr-23	Rainy	3.3730	3.4588	0.0858	34318.8	34342.8	24.0	1.22	1.21	1.22	1750.2	49.0
20-Apr-23	Cloudy	3.3834	3.4310	0.0476	34342.8	34366.8	24.0	1.22	1.22	1.22	1751.4	27.2
26-Apr-23	Fine	3.3753	3.4317	0.0564	34366.8	34390.8	24.0	1.26	1.26	1.26	1807.8	31.2
											Min	24.8
											Max	63.2


Average 37.8

Location AM6(A) - Park Central, L1/F Open Space Area

Start Date	Weather	Filter We	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rat	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Initial	Final	Weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Apr-23	Cloudy	3.3283	3.4303	0.1020	5932.9	5956.9	24.0	1.21	1.20	1.21	1737.4	58.7
6-Apr-23	Sunny	3.3743	3.4926	0.1183	5956.9	5980.9	24.0	1.20	1.21	1.21	1735.8	68.2
11-Apr-23	Cloudy	3.3217	3.4990	0.1773	5980.9	6004.9	24.0	1.20	1.20	1.20	1732.6	102.3
14-Apr-23	Rainy	3.3093	3.5577	0.2484	6004.9	6028.9	24.0	1.20	1.20	1.20	1727.1	143.8
20-Apr-23	Cloudy	3.3183	3.3926	0.0743	6028.9	6052.9	24.0	1.20	1.20	1.20	1728.4	43.0
26-Apr-23	Fine	3.3303	3.4375	0.1072	6052.9	6076.9	24.0	1.26	1.26	1.26	1808.2	59.3
											Min	43.0
											Max	143.8
											Average	79.2

MA16034/App F - 24 hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

(0700-1900 hrs on Normal Weekdays)

Location CM1 ·	Location CM1 - Nga Lai House, Yau Lai Estate Phase 1, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level						
Date	Time	Weather	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
04-Apr-23	14:20	Sunny	71.2	74.9	59.5	65.5	70						
12-Apr-23	13:05	Sunny	67.5	68.9	66.0	65.5	63						
21-Apr-23	11:37	Cloudy	71.8	74.1	68.1	65.5	71						
27-Apr-23	10:54	Cloudy	67.0 68.4 65.3 65.5 62										

Location CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong

Location CM2 -	ocation CM2 - Bik Lai House, Yau Lai Estate Phase 1, Yau Tong												
					Unit:	dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level						
Dulo	Time	Weather	L _{ea}	L ₁₀	L 90	L _{eq}	L _{ea}						
04-Apr-23	13:07	Sunny	73.8	76.6	64.6	63.6	73						
12-Apr-23	13:48	Sunny	69.1	71.2	66.5	63.6	68						
21-Apr-23	12:29	Cloudy	72.0	73.6	67.2	63.6	71						
27-Apr-23	11:38	Cloudy	68.6	70.3	66.2	63.6	67						

Location CM3 - Block S, Yau Lai Estate Phase 5, Yau Tong

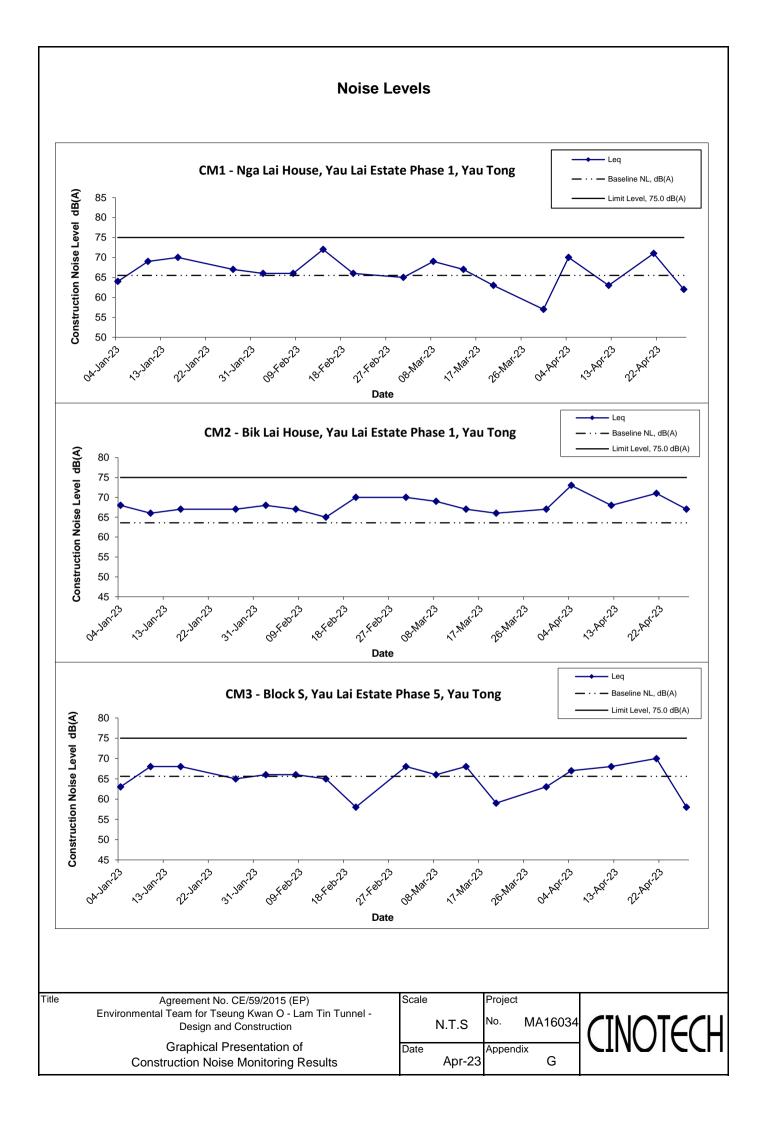
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
Duio	Time	Weather	_		-		_
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
04-Apr-23	15:07	Sunny	69.4	72.5	61.6	65.6	67
12-Apr-23	14:48	Sunny	70.0	72.4	66.6	65.6	68
21-Apr-23	13:42	Cloudy	71.1	73.4	66.5	65.6	70
27-Apr-23	12:56	Cloudy	66.3	67.6	64.8	65.6	58

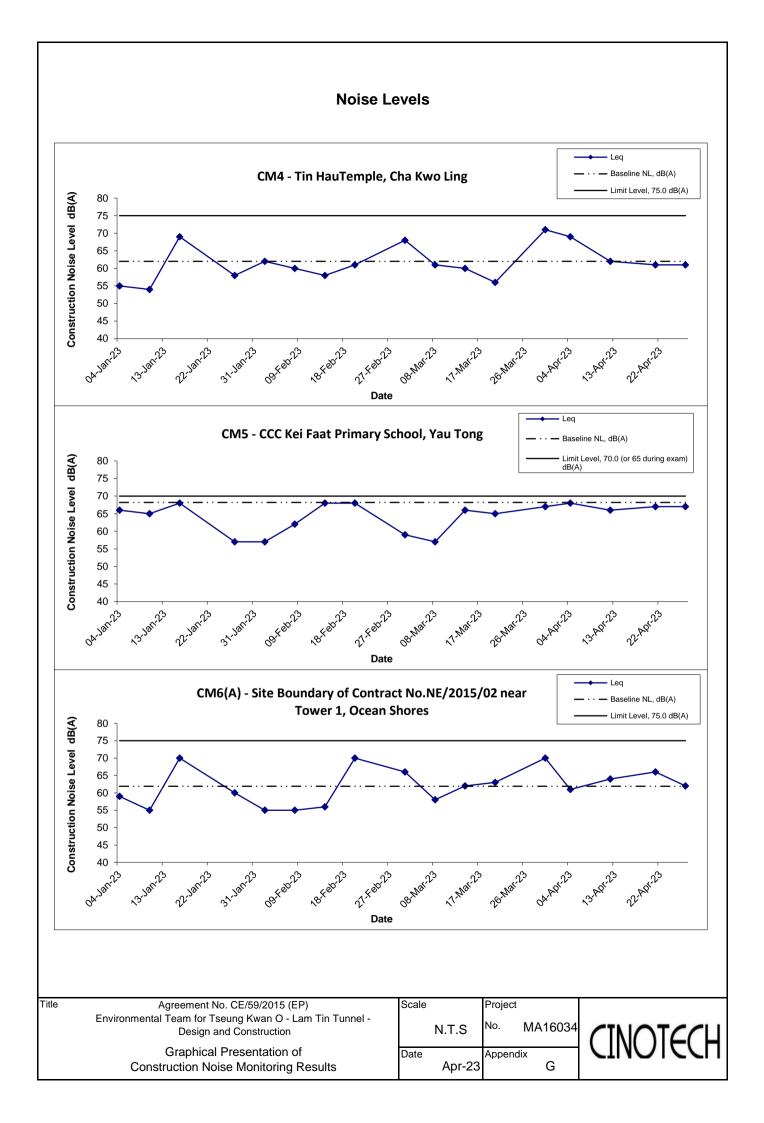
Location CM4 - Tin Hau Temple, Cha Kwo Ling

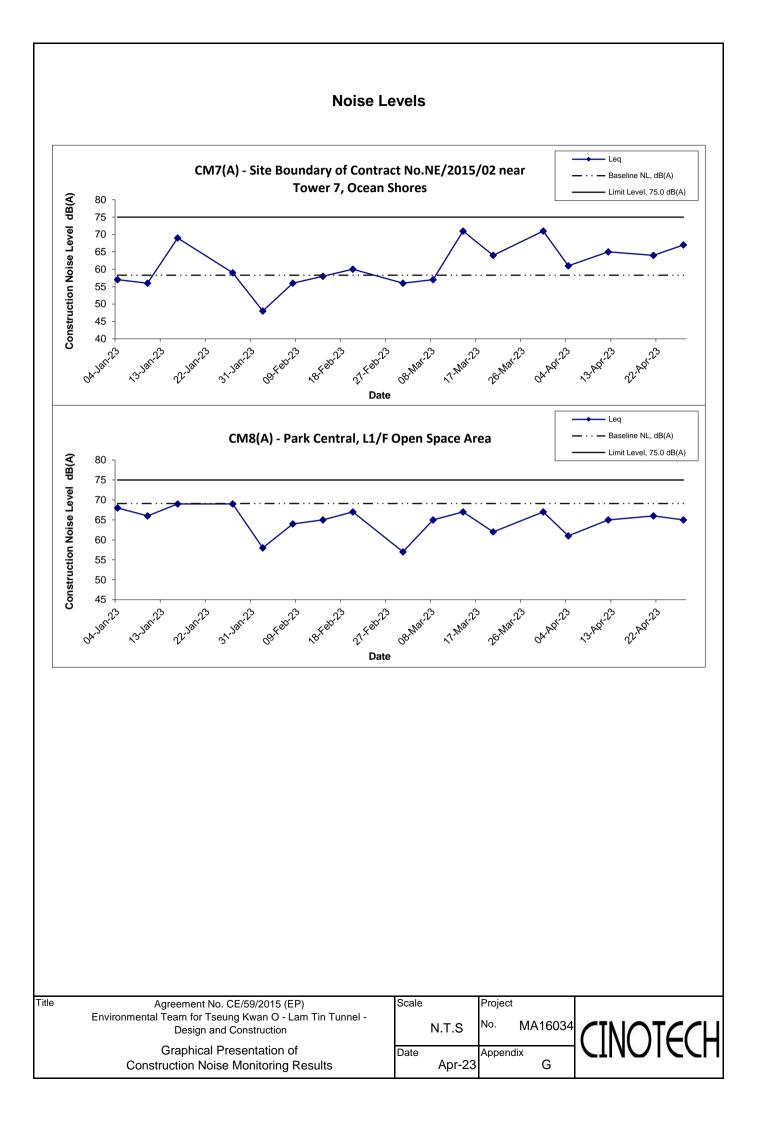
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level
Duio	Time	Weather					
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
04-Apr-23	10:41	Sunny	69.7	72.2	58.7	62.0	69
12-Apr-23	10:45	Sunny	64.8	68.7	58.0	62.0	62
21-Apr-23	15:02	Cloudy	60.8	62.9	56.1	62.0	61 Measured ≦ Baseline
27-Apr-23	10:00	Cloudy	64.6	66.6	62.0	62.0	61

Location CM5	- CCC Kei Fa	aat Primary S	chool, Yau T	ong						
					Unit:	dB (A) (30-min)				
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level			
Duto			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
04-Apr-23	15:51	Sunny	67.9	68.5	62.6	68.2	68 Measured ≦ Baseline			
12-Apr-23	11:31	Sunny	66.4	68.7	62.3	68.2	66 Measured \leq Baseline			
21-Apr-23	14:12	Cloudy	67.2	69.6	61.5	68.2	67 Measured ≦ Baseline			
27-Apr-23	13:41	Cloudy	67.4 69.4 63.2 68.2 67 Measured ≦ Baseline							

cation CM6(A) - Site Boundary of Contract No. NE/2015/02 near Tower 1, Ocean Shores													
					Unit	: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Construction Noise Level								
Duio		Weddilor	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
04-Apr-23	14:00	Sunny	64.4	67.4	58.4	61.9	61						
12-Apr-23	13:00	Sunny	66.1	67.8	60.9	61.9	64						
21-Apr-23			67.7	63.8	57.6	61.9	66						
27-Apr-23	11:30	Fine	64.8	66.7	61.5	61.9	62						


Location CM7(A) - Site Boundary of Contract No. NE/2015/02 near Tower 7, Ocean Shores


Loodinon onn (oocun onorco	
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
Date	Time	weather					
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
04-Apr-23	15:00	Sunny	63.0	66.4	55.2	58.3	61
12-Apr-23	14:00	Sunny	65.5	67.4	62.8	58.3	65
21-Apr-23	15:02	Cloudy	64.7	66.9	59.5	58.3	64
27-Apr-23	10:40	Fine	67.9	69.2	64.7	58.3	67


Location CM8(A) - Park Central, L1/F Open Space Area

					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	_evel	Baseline Level	Construction Noise Level
Date	Time	weather		-			_
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
04-Apr-23	13:00	Sunny	61.0	63.2	56.7	69.1	61 Measured ≦ Baseline
12-Apr-23	15:00	Sunny	65.4	67.3	62.4	69.1	65 Measured \leq Baseline
21-Apr-23	16:11	Cloudy	65.5	65.5 67.8		69.1	66 Measured ≦ Baseline
27-Apr-23	10:00	Fine	64.7	66.2	61.3	69.1	65 Measured \leq Baseline

T

(Restricted Hours - 19:00 to 23:00 on all other days & 07:00 to 23:00 holidays)

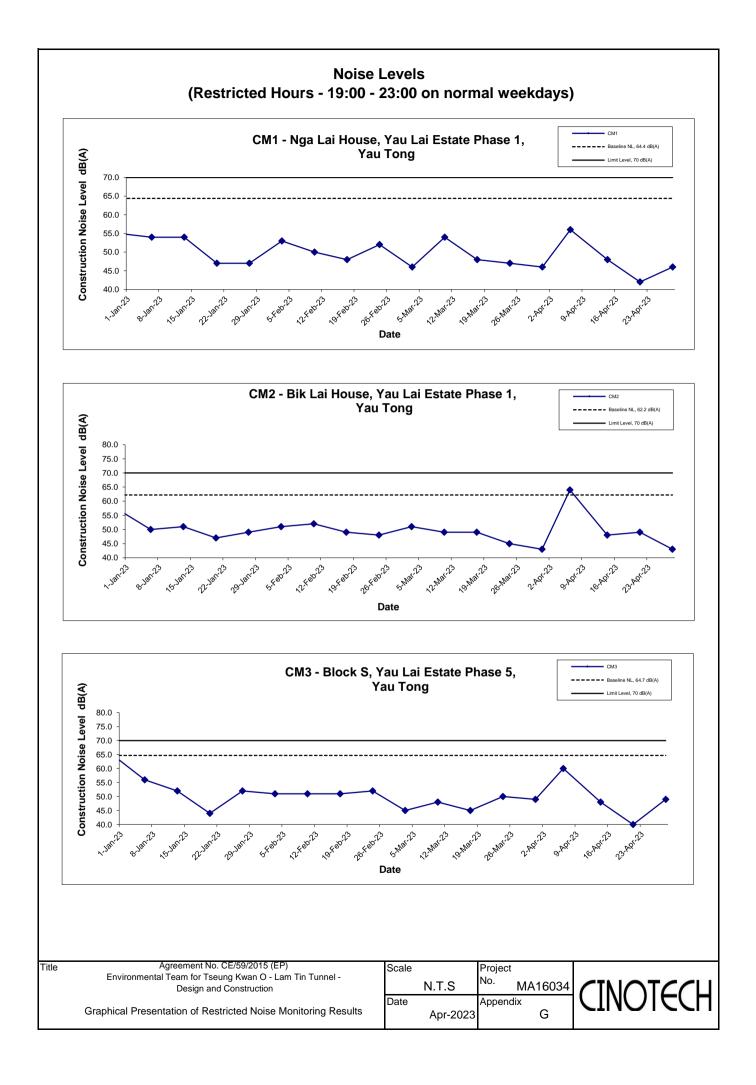
Location CM1 -	Nga Lai Hou	se, Yau Lai Est	ate Phase 1, '	Yau Tong					
Date	Time	Weather		dB (.	A) (5-min)		Baseline Level	Construction Noise Level	
Date	Time	weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}	
	21:51		64.5	66.7	62.1				
6-Apr-23	21:56	Fine	65.7	67.2	63.1	65.0		56	
	22:01		64.8	66.3	62.8				
	21:30		48.5	49.4	46.4				
14-Apr-23	21:35	Fine	47.4	48.5	46.3	47.9	47.9		48Measured \leq Baseline
	21:40		47.7 48.9 46.4		64.4				
	22:30		42.4	44.4	39.8		04.4		
21-Apr-23	22:35	Fine	41.7	43.1	39.7	41.5		42Measured \leq Baseline	
	22:40		40.2	41.7	38.5				
	22:30		47.0	48.2	44.9				
28-Apr-23	22:35	Fine	46.2	47.7	44.6	46.4		46Measured \leq Baseline	
	22:40		46.0	47.4	44.5				

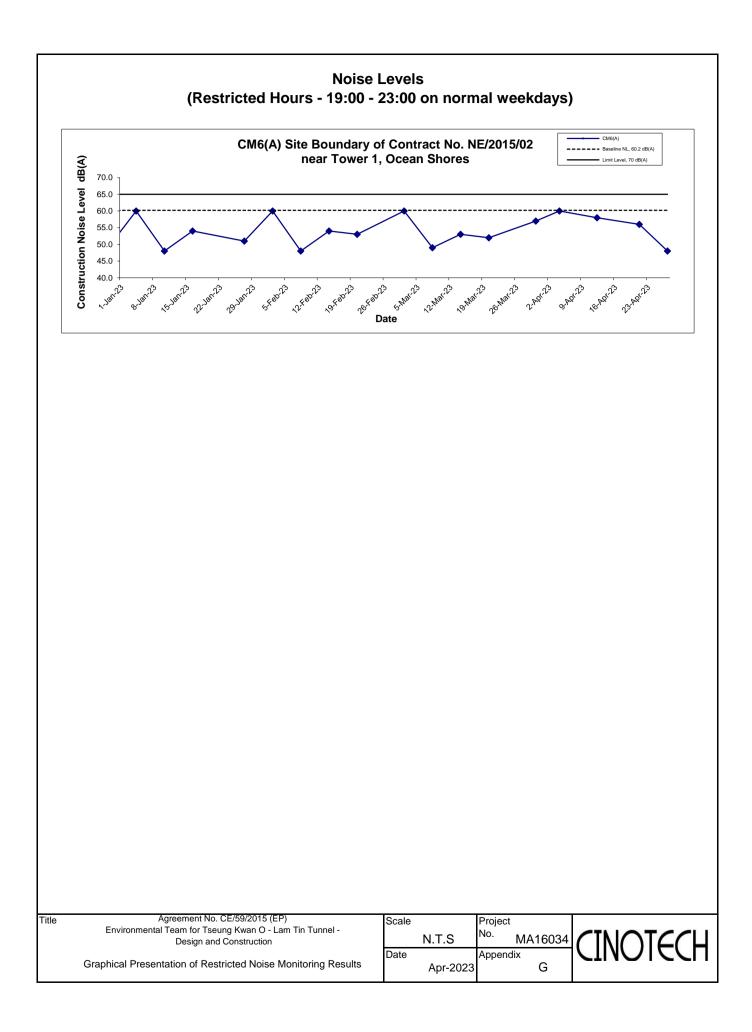
Location CM2 -	Bik Lai Hous	se, Yau Lai Est	ate Phase 1, Y	au Tong						
Date	Time	Weather		dB (.	A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	21:23		68.5	69.1	65.8					
6-Apr-23	21:28	Fine	64.6	66.2	62.8	66.4		64		
	21:33		65.0	66.8	62.4					
	22:00		48.9	50.8	47.1					
14-Apr-23	22:05	Fine	47.8	48.8	46.7	48.2		48Measured \leq Baseline		
	22:10		47.7	48.9	46.5		62.2			
	22:00		48.8	50.4	46.8		02.2			
21-Apr-23	22:05	Fine	49.1	50.7	47.1	48.7		49Measured \leq Baseline		
	22:10		48.0	48.0	46.8					
	22:00		42.9	44.1	41.9					
28-Apr-23	22:05	Fine	41.8	43.1	40.5	42.5		43Measured \leq Baseline		
	22:10		42.7	44.0	40.5					

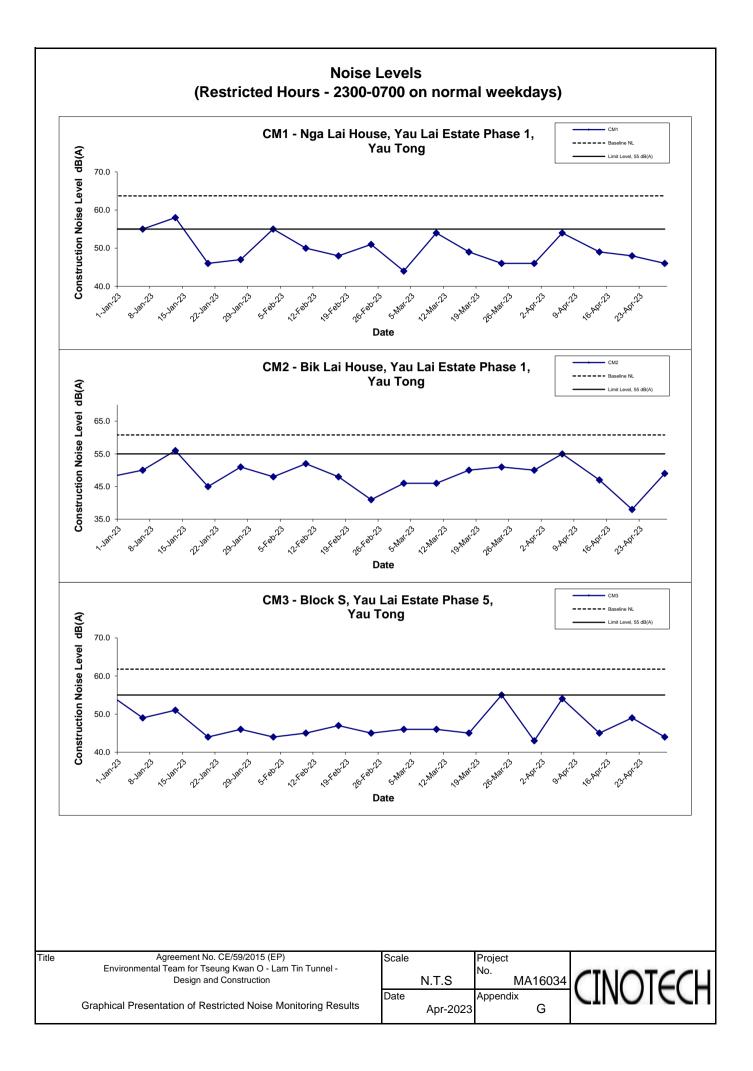
Location CM3 -	Block S, Yau	Lai Estate Pha	ise 5, Yau To	ng					
Data	Time	Weather		dB (.	A) (5-min)		Baseline Level	Construction Noise Level	
Date	Time	weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}	
	20:49		67.5	68.7	63.9				
6-Apr-23	20:54	Fine	65.2	66.9	62.9	65.9		60	
	20:59		64.4	66.2	62.0				
	22:30		49.8	51.6	47.1				
14-Apr-23	22:35	Fine	48.9	50.5	46.7	47.7	47.7		48Measured \leq Baseline
	22:40		36.0	37.1	32.3		64.7		
	21:37		40.5	39.8	32.4		04.7		
21-Apr-23	21:42	Fine	41.0	43.1	33.6	39.7		40 Measured \leq Baseline	
	21:47		36.0	37.1	32.3				
	22:30		52.6	53.7	49.7				
28-Apr-23	22:35	Fine	42.7	44.0	40.5	48.5		49Measured \leq Baseline	
	22:40		40.5	41.4	39.9				

Location CM6(A) - Site Boun	dary of Contra	ct No. NE/201	15/02 near To	wer 1, Ocean	Shores		
Date	Time	Weather		dB (.	A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	weather	L eq	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	19:00		58.9	61.3	54.7			
4-Apr-23	19:05	Fine	58.8	61.2	54.8	58.8		60 Measured \leq Baseline
	19:10		58.6	61.1	54.5			
	19:00		58.6	61.3	53.7			
12-Apr-23	19:05	Fine	58.4	61.1	53.6	58.4		58Measured \leq Baseline
	19:10		58.2	61.0	53.4		60.2	
	19:00		57.8	58.7	56.3		00.2	
21-Apr-23	19:05	Fine	56.5	57.3	56.0	56.1		56Measured \leq Baseline
	19:10		52.6	53.7	49.7			
	19:00	J	60.6	64.7	55.3			
27-Apr-23	19:05	Fine	60.5	64.7	55.2	60.5		48
	19:10		60.3	64.5	55.1			

(Restricted Hours - 2300-0700 on all days)


Location CM1 -	Nga Lai Hou	se, Yau Lai Est	ate Phase 1,	Yau Tong						
Date	Time	Weather		dB (A) (5-min)		Baseline Level	Construction Noise Level		
Date	Time	weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}		
	23:00		53.5	55.3	51.2					
6-Apr-23	23:05	Fine	Fine 54.1 56.0 52.1 54.0			54.0	63.7	54Measured \leq Baseline		
	23:10		54.4	55.5	50.9					
	23:00		47.9	49.3	46.4					
14-Apr-23	23:05	Fine	48.8	50.9	47.1	48.5	63.7	49Measured \leq Baseline		
	23:10		48.8	50.3	46.1					
	23:00		47.6	49.0	45.7					
21-Apr-23	23:05	Fine	48.6	50.5	46.1	47.9	63.7	48 Measured \leq Baseline		
	23:10		47.4	48.7	45.8					
	23:00		45.5	47.8	43.9					
28-Apr-23	28-Apr-23 23:05		46.8	48.5	45.1	46.3	63.7	46 Measured \leq Baseline		
	23:10		46.6	48.8	44.9					


Ditt	T	X <i>V</i> = (1 =)		dB (4	A) (5-min)		Baseline Level	Construction Noise Level				
Date	Time	Weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}				
	23:30		53.9	55.8	51.3							
6-Apr-23	23:35	Fine	54.4	56.8	50.8	54.5	60.8	55Measured \leq Baseline				
	23:40	T I	55.1	57.6	51.5							
	23:30		46.6	48.1	44.6							
14-Apr-23	23:35	Fine	47.0	49.0	44.8	46.6	60.8	47 Measured \leq Baseline				
	23:40	Ĩ	46.1	47.8	44.2							
	23:30		37.6	39.0	35.7							
21-Apr-23	23:35	Fine	38.6	40.5	36.1	37.9	60.8	38Measured \leq Baseline				
	23:40	T	37.4	38.7	35.8							
	23:30		48.8	50.0	46.5							
28-Apr-23 23:35	Fine	49.2	50.2	47.9	48.9	60.8	49Measured \leq Baseline					
	23:40	T I	48.7	49.9	46.9							


Location CM3 -	Block S, Yau	Lai Estate Ph	ase 5, Yau To	ng				
Date	Time	Weather		dB (A) (5-min)		Baseline Level	Construction Noise Level
Date	Time	weather	L _{eq}	L ₁₀	L 90	Average L _{eq}	L _{eq}	L _{eq}
	23:55		54.3	57.0	50.8			
6-Apr-23	0:00	Fine	53.6	55.4	51.0	53.8	61.8	54Measured \leq Baseline
	0:05	Ĩ	53.6	55.8	51.1			
	23:55		45.6	46.9	44.0			
14-Apr-23	0:00	Fine	44.5	46.1	43.0	45.0	61.8	45 Measured \leq Baseline
	0:05		44.9	46.2	43.4			
	23:55		49.2	51.2	48.5			
21-Apr-23	0:00	Fine	49.2	50.3	47.4	48.9	61.8	49Measured \leq Baseline
	0:05		48.3	49.3	46.1			
	23:55		43.9	45.0	42.5			
28-Apr-23	0:00	Fine	43.4	44.8	42.0	43.8	61.8	44Measured \leq Baseline
	0:05	T	44.0	45.4	42.1	1		

Remark:

"Measured \leq Baseline" means that the averaged measured Leq is smaller than the baseline Leq, and therefore the measured levels are not valid exceedances.

APPENDIX I MARINE WATER QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATIONS

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth (m	n)	Temperature (°C)	p	н	Salini	ity ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Turt	oidity(NTL	J)	Suspen	ded Solids	(mg/L)
Looution	Condition	Condition**	Time	Boptii (ii	,	Value Average		Average	Value	Average		Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface 1	1.1 -	<u>21.3</u> 21.3 21.3	<u>8.1</u> 8.1	8.1	33.7 33.7	33.7	92.3 92.1	92.2	6.7 6.7	6.7	0.7	1.6	1.6		1.4	1.6	
C1	Rainy	Moderate	11:55	Middle	9.1	21.4 21.4	8.1	8.1	33.9	33.9	91.4	91.4	6.6	6.6	6.7	1.6	1.6	2.1	2.3	2.2	2.1
0.	· (diriy	modorato	11.00			21.4	<u>8.1</u> 8.1		33.9 33.9		91.3 91.7		6.6 6.7			1.6 3.1			2.0 2.7		
				Bottom 1	17.1	21.4	8.1	8.1	33.9	33.9	91.7	91.7	6.7	6.7	6.7	3.1	3.1		2.5	2.6	
				Surface 1	1.1 -	<u>21.3</u> 21.3 21.3	<u>8.1</u> 8.1	8.1	33.8 33.8	33.8	90.6 90.5	90.6	6.6 6.6	6.6		2.0	1.9		2.1	2.3	
C2	Rainy	Moderate	11:12	Middle 1	16.0	21.4 21.4	8.0	8.0	33.8 33.8	33.8	90.6	90.6	6.6	6.6	6.6	1.7	1.7	1.8	1.6	1.7	1.8
	-			Bottom 3	30.9	21.4 21.4 21.4 21.4	8.0 8.1	- 8.1	33.8	33.9	90.5 90.4	90.4	6.6 6.6	6.6	6.6	1.7 1.8	1.8		1.8 1.2	1.3	
						21.4	8.1 8.1		33.9 33.6		90.4 91.7		6.6 6.7		0.0	1.8 1.4			1.4 2.5		<u> </u>
				Surface 1	1.1 -	21.3	8.1	8.1	33.7	33.6	91.3	91.5	6.7	6.7	6.6	1.4	1.4		2.8	2.7	
G1	Rainy	Moderate	11:33	Middle 4	4.1	<u>21.3</u> 21.3 21.3	<u>8.1</u> 8.1	8.1	33.8 33.8	33.8	90.5 90.6	90.6	6.6 6.6	6.6	0.0	1.4	1.4	1.4	2.2	2.2	2.1
				Bottom 7	7.1	21.3 21.3	8.1	8.1	33.8	33.8	90.0	90.0	6.6	6.5	6.5	1.5	1.5		1.6	1.5	1
						21.3	<u>8.1</u> 8.1		33.8 33.7		89.9 94.3		6.5 6.9			1.5 1.6			1.4		
				Surface 1	1.1 -	21.3 21.3	8.1	8.1	33.7	33.7	93.7	94.0	6.8	6.8	6.7	1.5	1.6		1.7	1.6	
G2	Rainy	Moderate	11:25	Middle 5	5.1 -	<u>21.3</u> 21.3 21.3	<u>8.1</u> 8.1	8.1	33.8 33.8	33.8	91.2 91.6	91.4	6.6 6.7	6.6		2.0	1.9	1.9	2.2	2.2	2.1
				Bottom 9	9.1	21.4 21.4	8.1	8.1	33.9	33.9	90.2	90.3	6.6	6.6	6.6	2.3	2.3		2.3	2.5	
				Surface 1	1.2	21.4 21.3 21.3 21.3	<u>8.1</u> 8.1	8.1	33.9 33.7	33.7	90.4 91.3	91.3	6.6 6.6	6.6		2.3 2.0	2.0		2.7	1.8	
						21.3	8.1 8.1		33.7 33.8		91.2 90.6		6.6 6.6		6.6	2.1			1.9 2.1		
G3	Rainy	Moderate	11:36	Middle 4	4.1 -	21.3	8.1	8.1	33.8	33.8	90.7	90.7	6.6	6.6		1.6	1.7	1.9	2.4 2.8	2.3	2.2
				Bottom 7	7.2	<u>21.3</u> 21.3	8.1 8.1	8.1	33.8 33.8	33.8	90.1 89.9	90.0	6.6 6.5	6.5	6.5	2.0	2.0		2.8 2.6	2.7	
				Surface 1	1.0	21.3 21.3	8.1	8.1	33.8 33.8	33.8	93.0	92.9	6.8 6.8	6.8		1.6	1.6		2.4	2.3	
G4	Deinu	Madagata	11.10			21.3 21.3 21.3	<u>8.1</u> 8.1		33.8	22.0	92.7 90.8	00.0	6.8		6.7	1.6		1.8	2.2	1.0	1.0
G4	Rainy	Moderate	11:43		4.1	21.3 21.3 21.3	8.1	8.1	33.8	33.8	91.0	90.9	6.6	6.6		1.7	1.7	1.8	1.8	1.8	1.8
				Bottom 7	7.1	<u>21.3</u> 21.3	<u>8.1</u> 8.1	8.1	33.8 33.8	33.8	90.0 89.9	90.0	<u>6.6</u> 6.5	6.5	6.5	2.0	2.1		1.3 1.4	1.4	
				Surface 1	1.0	20.9 21.1	<u>8.1</u> 8.1	8.1	33.5 33.5	33.5	93.2 92.6	92.9	6.8 6.8	6.8		1.3	1.3		1.3 1.5	1.4	
M1	Rainy	Moderate	11:30	Middle 3	3.1	21.3 21.3	8.1	8.1	33.7	33.7	90.1	90.2	6.6	6.6	6.7	1.3	1.3	1.4	1.8	1.8	1.8
	· tunity	modorato				21.3	<u>8.1</u> 8.1		33.7 33.7		90.2 90.2		6.6 6.6			1.3 1.5			1.8 2.4		
				Bottom 5	5.0	21.3	8.1	8.1	33.7	33.7	90.1	90.2	6.6	6.6	6.6	1.5	1.5		2.1	2.3	
				Surface 1	1.0	<u>21.3</u> 21.3 21.3	8.1 8.1	8.1	33.8 33.8	33.8	95.3 94.4	94.9	6.9 6.9	6.9		1.7	1.7		1.1 1.3	1.2	
M2	Rainy	Moderate	11:21	Middle 6	6.0	21.3 21.3	8.1	8.1	33.8	33.8	91.1	91.2	6.6	6.6	6.8	1.5	1.5	1.6	1.5	1.7	1.7
	-			Bottom 1	10.9	21.3 21.0 21.3 21.4	8.1 8.1	8.1	33.8 33.8	33.8	91.3 90.5	90.5	6.6 6.6	6.6	6.6	1.5 1.5	1.5		1.8 2.4	2.3	
						21.4	8.1		33.8		90.5 89.8		6.6 6.6		0.0	1.5 1.5			2.2 1.5		<u> </u>
				Surface 1	1.1 -	<u>21.3</u> 21.3 21.3	<u>8.1</u> 8.1	8.1	<u>33.3</u> 33.4	33.3	89.5	89.7	6.5	6.5	6.6	1.5	1.5		1.8	1.7	
M3	Rainy	Moderate	11:39	Middle 4	4.1	21.3 21.3 21.3	8.1 8.1	8.1	33.8 33.8	33.8	90.5 90.5	90.5	6.6 6.6	6.6	0.0	1.6 1.6	1.6	1.6	1.4 1.2	1.3	1.0
				Bottom 7	7.1	21.3 21.3	8.1	8.1	33.8	33.8	89.9	89.8	6.5	6.5	6.5	1.8	1.9		<0.1	<0.1	1
						21.3	8.1 8.1		33.8 33.8		89.6 93.2		6.5 6.8			1.9 1.8			<0.1		
				Surface 1	1.1	21.4	8.1	8.1	33.8	33.8	93.0	93.1	6.8	6.8	6.7	1.8	1.8		1.3	1.4	
M4	Rainy	Moderate	11:17	Middle 5	5.2 -	21.4 21.4	8.1 8.1	8.1	33.8 33.8	33.8	91.7 91.9	91.8	6.7 6.7	6.7		1.9 1.8	1.9	1.9	1.9 1.7	1.8	1.8
				Bottom 9	9.1	<u>21.4</u> 21.4 21.4	8.1 8.1	8.1	33.9 33.9	33.9	91.2 91.2	91.2	6.6 6.6	6.6	6.6	1.9 2.0	1.9		2.2 2.1	2.2	
				Surface 1	1.0	21.3 21.3	8.1	8.1	33.8	33.8	93.7	93.4	6.8	6.8		4.1	4.0		2.3	2.5	
						21.3	8.1 8.1		33.8 33.9		93.0 91.9		6.8 6.7		6.7	4.0		. <i>.</i>	2.6 2.9		
M5	Rainy	Moderate	11:50	Middle 6	6.0	21.4	8.1	8.1	33.9	33.9	91.6	91.8	6.7	6.7		2.3	2.3	3.1	3.1	3.0	3.0
				Bottom 1	11.1	<u>21.4</u> 21.4 21.4	8.1 8.1	8.1	33.9 33.9	33.9	91.9 91.8	91.9	6.7 6.7	6.7	6.7	2.9 2.9	2.9		3.4 3.8	3.6	
				Surface	- -		-		-	-	-	-	-	-		-	-		-	-	
M6	Poinu	Moderate	11.47		21	- 21.3 21.3	- 8.1	0.1	- 33.7	22.7	- 90.3	00.3	- 6.6	6.6	6.6	- 1.4	1 /	4 4	- 2.5	27	27
IVID	Rainy	Moderate	11:47		2.1	21.3 21.3	8.1	8.1	33.7	33.7	90.2	90.3	6.6	6.6		1.4	1.4	1.4	2.5 2.9	2.7	2.7
				Bottom	-		-		-		-	-	-	-	-	-	-		-	-	
Remarks:	*DA: Depth-Ave	hancre																	•		

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 3 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	1	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	-	-
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.1 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C2: 2.3 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	•
	Surface	<u>6.0 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>C2: 2.7 mg/L</u>	<u>6.9 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>C2: 2.9 mg/L</u>
	Stations M1-M5		
SS in mg/L	Surface	<u>6.2 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day	<u>7.4 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day
(See Note 2 and 4)		<u>C2: 2.7 mg/L</u>	<u>C2: 2.9 mg/L</u>
	Stations G1-G4, M1-M5	I	
		6.9 mg/L	7.9 mg/L
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C2: 1.6 mg/L</u>	<u>C2: 1.7 mg/L</u>
	Station M6	+	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 03 April 2023

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperat		р	н	Salini	ty ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NTU	I)	Suspend	ed Solids	(mg/L)
Location	Condition	Condition**	Time	Dehtu	(111)		Average		Average		Average		Average		Average	DA*	Value	Average	DA*		Average	DA*
				Surface	1.1	21.3	21.3	8.1	8.1	33.7	33.7	91.9	91.8	6.7	6.7		1.7	1.7		1.1	1.3	
C1	Deinu	Moderate	17:04	-		21.3 21.4	21.4	8.1 8.1	0.4	33.7 33.9	22.0	91.6 91.5	01 5	6.7 6.7	67	6.7	1.7 1.6	10	2.4	1.4 1.9	10	4.0
C1	Rainy	Moderate	17:04	Middle	9.1	21.4	21.4	8.1	8.1	33.9	33.9	91.5	91.5	6.7	6.7		1.6	1.6	2.1	1.7	1.8	1.8
				Bottom	17.2	21.4 21.4	21.4	8.1 8.1	8.1	33.9 33.9	33.9	91.6 91.5	91.6	6.7 6.6	6.6	6.6	3.2 3.1	3.1		2.2 2.5	2.4	
				Surface	1.1	21.3	21.3	8.1	8.1	33.8	33.8	90.5	90.5	6.6	6.6		1.9	1.9		2.7	2.9	
				Sunace	1.1	21.3	21.5	8.1	0.1	33.8	55.0	90.5	90.5	6.6		6.6	1.9	1.5		3.1	2.9	-
C2	Rainy	Moderate	16:22	Middle	15.9	21.4 21.4	21.4	8.1 8.0	8.0	33.8 33.8	33.8	90.6 90.6	90.6	6.6 6.6	6.6		1.6 1.6	1.6	1.8	2.2 2.6	2.4	2.2
				Bottom	31.1	21.4	21.4	8.1	8.0	<u>33.9</u> 33.7	33.8	90.4	92.7	6.6	6.7	6.7	1.8	1.8		1.6	1.4	1
						21.3 21.3		7.9 8.1		33.7 33.7		95.0 91.2		6.9	-	0.1	1.8 1.4			1.2 1.4		
				Surface	1.1	21.3	21.3	8.1	8.1	33.7	33.7	91.2	91.2	6.6 6.6	6.6	6.6	1.4	1.4		1.4	1.6	
G1	Rainy	Moderate	16:43	Middle	4.1	21.3	21.3	8.1	8.1	33.8	33.8	90.3	90.4	6.6	6.6	0.0	1.5	1.5	1.4	2.5	2.7	2.6
						21.3 21.3		8.1 8.1		33.8 33.8		90.4 89.8		6.6 6.5			1.5 1.5			2.9 3.2		-
				Bottom	7.1	21.3	21.3	8.1	8.1	33.8	33.8	89.7	89.8	6.5	6.5	6.5	1.5	1.5		3.5	3.4	
				Surface	1.1	21.3	21.3	8.1	8.1	33.7	33.7	93.3	93.1	6.8	6.8		1.5	1.5		3.1	3.3	
	. .		10.05			21.3 21.3		8.1 8.1		33.7 33.8		92.9 90.6		6.8 6.6		6.7	1.5 2.3			3.4 2.5		-
G2	Rainy	Moderate	16:35	Middle	5.1	21.3	21.3	8.1	8.1	33.8	33.8	90.9	90.8	6.6	6.6		2.2	2.2	2.0	2.2	2.4	2.3
				Bottom	9.0	21.4 21.4	21.4	8.1 8.1	8.1	33.9 33.9	33.9	90.6 90.9	90.8	6.6 6.6	6.6	6.6	2.2	2.1		1.5 1.2	1.4	
				Surface	1.2	21.4	21.3	8.1	8.1	33.7	33.7	91.0	91.0	6.6	6.6		1.5	1.5		2.2	2.4	
				Surface	1.2	21.3	21.3	8.1	8.1	33.7	33.7	91.0	91.0	6.6	0.0	6.6	1.5	1.5		2.6	2.4	-
G3	Rainy	Moderate	16:46	Middle	4.1	21.3 21.3	21.3	8.1 8.1	8.1	33.8 33.8	33.8	90.4 90.5	90.5	6.6 6.6	6.6		1.8 1.7	1.7	1.8	2.8 3.1	3.0	3.1
				Bottom	7.1	21.3	21.3	8.1	8.1	33.8	33.8	89.6	89.5	6.5	6.5	6.5	2.2	2.3		3.7	3.9	-
				Dottoin	7.1	21.3	21.5	8.1	0.1	33.8	55.0	89.3	03.5	6.5	0.5	0.5	2.3	2.0		4.1	5.5	
				Surface	1.0	21.3 21.3	21.3	8.1 8.1	8.1	33.8 33.8	33.8	92.5 92.4	92.5	6.7 6.7	6.7	0.7	1.6 1.5	1.6		1.8 1.9	1.9	
G4	Rainy	Moderate	16:53	Middle	4.1	21.3	21.3	8.1	8.1	33.8	33.8	90.5	90.6	6.6	6.6	6.7	1.8	1.7	1.8	2.3	2.4	2.4
						21.3 21.3		8.1 8.1		33.8 33.8		90.7 89.7		6.6 6.5			1.7 2.2			2.5 2.8		-
				Bottom	7.1	21.3	21.3	8.1	8.1	33.8	33.8	89.5	89.6	6.5	6.5	6.5	2.3	2.2		3.1	3.0	
				Surface	1.1	21.3 21.3	21.3	8.1	8.1	33.5 33.6	33.6	92.1	92.0	6.7	6.7		1.3 1.3	1.3		3.9	3.7	
	Delet	Madanata	10.10	M. J. H.			04.0	8.1 8.1	0.4	33.0	00.7	91.9 90.2	00.0	6.7 6.6	0.0	6.6	1.3			3.4	0.4	
M1	Rainy	Moderate	16:40	Middle	3.0	21.3 21.3	21.3	8.1	8.1	33.7 33.7	33.7	90.2	90.2	6.6	6.6		1.4	1.4	1.4	2.5 2.2	2.4	2.5
				Bottom	5.0	21.3 21.3	21.3	8.1 8.1	8.1	33.7 33.7	33.7	90.0 89.9	90.0	6.6 6.5	6.5	6.5	1.5 1.5	1.5		1.8 1.4	1.6	
				Surface	1.1	21.3	21.3	8.1	8.1	33.8	33.8	94.0	93.7	6.8	6.8		1.5	1.6		2.4	2.3	
				Sunace	1.1	21.3	21.5	8.1	0.1	33.8	55.0	93.4	55.7	6.8	0.0	6.7	1.6	1.0		2.2	2.5	_
M2	Rainy	Moderate	16:30	Middle	6.1	21.3 21.3	21.3	8.1 8.1	8.1	33.8 33.8	33.8	90.8 90.9	90.9	6.6 6.6	6.6		1.5 1.5	1.5	1.5	1.9 1.7	1.8	1.9
				Bottom	11.0	21.4	21.4	8.1	8.1	33.8	33.8	90.6	90.7	6.6	6.6	6.6	1.5	1.5		1.4	1.5	1
						21.4 21.3		8.1 8.1		33.9 33.4		90.8 89.6		6.6 6.5		0.0	1.5 1.4			1.5 1.7		
				Surface	1.1	21.3	21.3	8.1	8.1	33.6	33.5	89.8	89.7	6.5	6.5	6.6	1.4	1.4		1.8	1.8	
M3	Rainy	Moderate	16:49	Middle	4.1	21.3	21.3	8.1	8.1	33.8	33.8	90.3	90.4	6.6	6.6	0.0	1.6	1.6	1.7	2.3	2.2	2.2
	5					21.3 21.3		8.1 8.1		33.8 33.8		90.4 89.3		6.6 6.5			1.6 2.0			2.0 2.5		-
				Bottom	7.1	21.3	21.3	8.1	8.1	33.8	33.8	89.0	89.2	6.5	6.5	6.5	2.1	2.1		2.8	2.7	
				Surface	1.1	21.4 21.4	21.4	8.1 8.1	8.1	33.8 33.8	33.8	92.8 92.7	92.8	6.8 6.7	6.7		1.7	1.8		3.0	3.2	
M4	Rainy	Madavata	16:26	Middle	5.1	21.4 21.4	21.4	8.1	8.1	33.8	33.8	92.7 91.5	91.6	6.7	6.7	6.7	1.8 2.0	1.9	1.9	3.4 2.8	2.7	2.7
1014	Rainy	Moderate	16:26	winddie	D. I	21.4	21.4	8.1	8.1	33.8	33.8	91.6	91.6	6.7	0.7		1.9	1.9	1.9	2.5	2.1	2.1
				Bottom	9.2	21.4 21.4	21.4	8.1 8.1	8.1	33.9 33.9	33.9	91.1 91.1	91.1	6.6 6.6	6.6	6.6	2.0 1.9	1.9		2.3 2.3	2.3	
				Surface	1.0	21.3	21.3	8.1	8.1	33.8	33.8	92.4	92.2	6.7	6.7		3.6	3.5		2.1	2.2	
				Sunace	1.0	21.3		8.1	0.1	33.8	55.0	91.9	52.2	6.7		6.7	3.5	5.5		2.3	2.2	-
M5	Rainy	Moderate	17:00	Middle	6.0	21.4 21.4	21.4	8.1 8.1	8.1	33.9 33.9	33.9	92.1 92.0	92.1	6.7 6.7	6.7		2.5 2.4	2.4	2.9	2.7 2.5	2.6	2.6
				Bottom	11.1	21.4	21.4	8.1	8.1	33.9	33.9	91.8	91.8	6.7	6.7	6.7	2.9	2.9		2.9	3.1	1
						21.4	21.7	8.1	0.1	33.9	00.0	91.8	01.0	6.7	0.1	0.1	2.9	2.0		3.2	0.1	
				Surface	-	-	-	-	-	-	-	-	-	-	-	~ ~	-	-		-	-	
M6	Rainy	Moderate	16:57	Middle	2.1	21.3	21.3	8.1	8.1	33.7	33.7	90.2	90.2	6.6	6.6	6.6	8.0	8.0	1.3	3.2	3.1	3.1
						21.3		8.1		33.7		90.2		6.6	2.0		8.0			2.9		
MO				Bottom		-		-		-		-		-			-			-		

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 3 April 2023 (Mid-Flood Tide)

Parameter	Donth	Action Level	Limit Level
<u>(unit)</u>	<u>Depth</u>	Action Level	Linit Level
	Stations G1-G4, M1-M5	1	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 3.7 NTU</u>	<u>C1: 4.0 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 1.5 mg/L</u>	<u>C1: 1.6 mg/L</u>
	Stations M1-M5		
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of
(See Note 2 and 4)		the same day <u>C1: 1.5 mg/L</u>	the same day
	Stations G1-G4, M1-M5	<u>C1. 1.3 lllg/L</u>	<u>C1: 1.6 mg/L</u>
	<u>5 milous 61-67, 1411-1415</u>	() /T	7.0 /7
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
	D	or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day C1: 2.8 mg/L	the same day <u>C1: 3.1 mg/L</u>
	Station M6	<u>C1. 2.0 lll</u>	$\underline{C1, J.1 \text{ mg/L}}$
	Station M6	0.2 /7	0.4.17
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth ((m)	Temperatu	re (°C)	р	н	Salin	ity ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Turt	oidity(NTL	J)	Suspen	ded Solids	(mg/L)
Looution	Condition	Condition**	Time	Deptil	(,		verage		Average		Average		Average	Value	Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	22.9 22.9	22.9	8.1 8.1	8.1	33.3 33.3	33.3	92.8 92.4	92.6	6.6 6.6	6.6	0.7	1.2	1.2		5.9 6.7	6.3	
C1	Sunny	Moderate	16:55	Middle	9.0	21.9	21.9	8.1	8.1	33.7	33.7	93.7	93.7	6.8	6.8	6.7	1.0	1.0	1.4	4.1	5.0	5.5
				Bottom	17.0	21.9 21.8	21.8	<u>8.1</u> 8.1	8.1	33.7 33.9	33.9	93.6 93.9	93.9	6.8 6.8	6.8	6.8	1.0 2.0	2.0		5.9 5.9	5.2	1
						21.8 22.6		8.1 7.9		33.9 33.4		93.8 91.7		6.8 6.5		0.0	2.1 1.3			4.5 6.8		<u> </u>
				Surface	1.0	22.4	22.5	8.0	7.9	33.4	33.4	91.3	91.5	6.5	6.5	6.5	1.4	1.3		5.6	6.2	1
C2	Sunny	Moderate	16:14	Middle	16.0	21.8 21.8	21.8	8.1 8.1	8.1	33.7 33.7	33.7	90.4 90.4	90.4	6.5 6.5	6.5		1.3	1.3	1.2	7.1 5.3	6.2	5.6
				Bottom	31.1	21.8	21.8	8.1	8.1	33.7 33.7	33.7	90.4	90.5	6.5	6.5	6.5	1.0	1.1		4.7	4.3	
				Surface	1.0	21.8 22.6	22.6	8.1 8.1	8.1	33.4	33.4	90.5 93.3	93.1	6.5 6.7	6.6		1.1 0.5	0.6		3.8 4.5	4.9	<u> </u>
						22.6 22.2		<u>8.1</u> 8.1		33.4 33.5		92.9 91.9		6.6 6.6		6.6	0.6			5.2 4.0		
G1	Sunny	Moderate	16:35	Middle	4.0	22.2	22.2	8.1	8.1	33.5	33.5	91.8	91.9	6.6	6.6		1.1	1.1	1.1	3.9	4.0	4.2
				Bottom	7.0	22.0 22.0	22.0	8.1 8.1	8.1	33.5 33.5	33.5	91.4 91.4	91.4	6.6 6.6	6.6	6.6	1.5 1.5	1.5		3.7 4.1	3.9	
				Surface	1.0	22.5 21.8	22.2	8.1 8.1	8.1	33.4 33.4	33.4	92.2 91.9	92.1	6.6 6.6	6.6		<u>1.2</u> 1.2	1.2		4.0	4.4	
G2	Sunny	Moderate	16:29	Middle	5.0	21.8	21.8	8.1	8.1	33.6	33.6	89.8	89.8	6.5	6.5	6.5	1.6	1.6	2.0	4.4	4.6	4.4
02	Curry	moderate	10.20			21.8 21.8		8.1 8.1		33.6 33.7		89.7 90.3		6.5 6.5		0.5	1.6 3.1		2.0	4.7		
				Bottom	9.0	21.8	21.8	8.1	8.1	33.7	33.7	90.6	90.5	6.5	6.5	6.5	3.2	3.1		4.0	4.4	<u> </u>
				Surface	1.0	22.8 22.8	22.8	8.1 8.1	8.1	33.3 33.3	33.3	93.9 93.5	93.7	6.7 6.6	6.7	6.6	1.3 1.2	1.2		5.6 4.4	5.0]
G3	Sunny	Moderate	16:38	Middle	4.1	22.2 22.2	22.2	8.1 8.1	8.1	33.5 33.5	33.5	91.6 91.7	91.7	6.6 6.6	6.6	0.0	1.6 1.6	1.6	1.8	4.3 4.4	4.4	4.9
				Bottom	7.0	22.0	22.0	8.1	8.1	33.5 33.5 33.6	33.5	89.4	89.2	6.4	6.4	6.4	2.5	2.4		4.9	5.5	
				Surface	1.0	22.0 22.6	22.6	8.1 8.1	8.1	33.6 33.4 33.4	33.4	88.9 91.9	91.9	6.4 6.6	6.6		2.4	1.3		6.0 5.3 5.7	5.5	<u> </u>
	_					22.6 22.4		8.1 8.1		33.4 33.4		91.9 91.0		6.6 6.5		6.5	1.3			5.7 3.6		4
G4	Sunny	Moderate	16:44	Middle	4.0	22.4	22.4	8.1	8.1	33.4	33.4	91.2	91.1	6.5	6.5		1.3	1.3	1.8	4.6	4.1	4.9
				Bottom	7.0	22.1 22.1	22.1	8.1 8.1	8.1	33.5 33.5	33.5	88.4 88.2	88.3	6.4 6.3	6.3	6.3	2.8	2.8		5.7 4.2	5.0	
				Surface	1.0	22.9 22.9	22.9	8.1 8.1	8.1	33.3 33.3	33.3	94.3 94.2	94.3	6.7 6.7	6.7		1.1	1.1		4.0	4.3	
M1	Sunny	Moderate	16:33	Middle	3.0	22.5	22.5	8.1	8.1	33.4	33.4	92.7	92.7	6.6	6.6	6.6	1.1	1.1	1.3	4.3	4.7	4.6
						22.5 22.2	22.2	8.1 8.1	8.1	33.4 33.5		92.7 91.5		6.6 6.6		0.0	1.1			5.1 4.8		1
				Bottom	5.1	22.2		8.1		33.5	33.5	91.4	91.5	6.6	6.6	6.6	1.9	1.8		4.9	4.9	<u> </u>
				Surface	1.0	22.6 22.7	22.7	8.1 8.1	8.1	33.4 33.4	33.4	92.9 92.8	92.9	6.6 6.6	6.6	6.6	1.1	1.2		5.2 4.4	4.8]
M2	Sunny	Moderate	16:26	Middle	6.0	21.8 21.8	21.8	8.1 8.1	8.1	33.7 33.7	33.7	91.1 91.0	91.1	6.6 6.6	6.6	0.0	1.6 1.8	1.7	2.4	3.9 5.0	4.5	4.5
				Bottom	11.0	21.7	21.7	8.1	8.1	33.8	33.8	90.0	90.0	6.5	6.5	6.5	4.3	4.3		4.4	4.1	
				Surface	1.0	21.7 22.6 22.6	22.6	8.1 8.0	8.0	33.8 33.4 33.4	33.4	90.0 93.2 92.7	93.0	6.5 6.6	6.6		4.3	1.1		3.8 4.7	4.4	<u> </u>
	-					22.6 22.3		8.1 8.1		33.4 33.4		92.7 91.2		6.6 6.5		6.6	1.2			4.1 5.0		
M3	Sunny	Moderate	16:41	Middle	4.0	22.2	22.3	8.1	8.1	33.4	33.4	91.2	91.2	6.5	6.5		1.4	1.3	1.5	4.1	4.6	4.5
				Bottom	7.0	22.0 22.0	22.0	8.1 8.1	8.1	33.5 33.5	33.5	89.4 89.3	89.4	6.4 6.4	6.4	6.4	2.0	2.1		4.7	4.6	
				Surface	1.0	22.9 23.0	23.0	8.0 8.0	8.0	33.3 33.3	33.3	93.3 93.3	93.3	6.6 6.6	6.6		1.1	1.1		5.8 4.8	5.3	
M4	Sunny	Moderate	16:22	Middle	5.0	22.0	22.0	8.1	8.1	33.5	33.5	90.5	90.6	6.5	6.5	6.6	1.4	1.4	1.8	4.8	5.3	5.0
	Curry	moderate	10.22			22.0 21.8		8.1 8.1		33.5 33.7		90.6 90.7		6.5 6.6		<u> </u>	1.3 2.9			5.8 3.7		0.0
				Bottom	9.0	21.8 22.4	21.8	8.1	8.1	33.7 33.4	33.7	90.7	90.7	6.6	6.6	6.6	2.9	2.9		4.9	4.3	<u> </u>
				Surface	1.0	22.4	22.4	8.1 8.1	8.1	33.4	33.4	92.2 91.7	92.0	6.6 6.6	6.6	6.7	1.1 1.1	1.1		4.2	4.0]
M5	Sunny	Moderate	16:51	Middle	6.1	21.9 21.9	21.9	8.1 8.1	8.1	33.7 33.7	33.7	93.8 93.7	93.8	6.8 6.8	6.8	0.7	1.1	1.1	1.4	4.7 4.5	4.6	4.5
				Bottom	11.0	21.8	21.8	8.1	8.1	33.9	33.9	94.4	94.4	6.8	6.8	6.8	2.1	2.1		4.1	4.8	
			-	Surface	_	21.8	-	8.1 -		33.9	-	94.4	_	6.8	_		2.1	-		5.5	_	<u> </u>
	_					- 22.5		- 8.1		- 33.4		- 91.1		- 6.5		6.5	- 1.3			- 5.3		1.
M6	Sunny	Moderate	16:47	Middle	2.0	22.5	22.5	8.1	8.1	33.4	33.4	91.0	91.1	6.5	6.5		1.3	1.3	1.3	4.6	5.0	5.0
				Bottom	-	-		-		-		-	-	-		-	-	-		-	-	
Remarks:	*DA: Depth-Ave	aragod	*							•		• · · · · · · · · · · · · · · · · · · ·		:			*			*		-

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 12 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5		1
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	-	•
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
	Station MC	<u>C2: 1.3 NTU</u>	<u>C2: 1.4 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C2: 7.4 mg/L</u>	<u>C2: 8.1 mg/L</u>
	Stations M1-M5		
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of
(See Note 2 and 4)		the same day	the same day
		<u>C2: 7.4 mg/L</u>	<u>C2: 8.1 mg/L</u>
	Stations G1-G4, M1-M5		1
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C2: 5.1 mg/L</u>	<u>C2: 5.5 mg/L</u>
	Station M6	<u> </u>	<u> </u>
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 12 April 2023

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperat		р	н	Salini	ty ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NT	U)	Suspen	ded Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	(m)		Average		Average		Average		Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	22.9 22.9	22.9	8.0 8.1	8.0	33.3 33.3	33.3	96.1 93.3	94.7	6.8	6.7		1.3 1.2	1.2		5.3	5.8	
C1	Sunny	Moderate	9:31	Middle	9.0	21.9	21.9	8.1	8.1	33.7	33.7	93.5	93.0	6.6 6.7	6.7	6.7	0.9	0.9	1.3	<u>6.3</u> 5.8	6.3	5.1
U1	Sunny	Moderate	9.51	Mildule		21.9		8.1		33.7		92.4		6.7			0.9		1.5	6.7		5.1
				Bottom	17.0	21.8 21.8	21.8	8.1 8.1	8.1	33.9 33.9	33.9	93.5 93.8	93.7	6.7 6.8	6.8	6.8	1.7 1.8	1.7		3.3 3.3	3.3	
				Surface	1.1	22.4	22.5	7.8	7.9	33.4	33.4	92.1	92.0	6.6	6.6		1.2	1.2		2.8	3.1	
C2	Sunny	Modorato	8:50	Middle	16.0	22.6 21.8	21.8	7.9 8.1	8.0	33.4 33.7	33.7	91.8 90.4	90.4	6.5 6.5	6.5	6.5	1.2 1.3	1.2	1.2	3.4 3.4	3.4	3.5
62	Sunny	Moderate	8:50	winddie	16.0	21.8	21.8	8.0	8.0	33.7	33.7	90.3	90.4	6.5	6.5		1.4	1.3	1.2	3.4	3.4	3.5
				Bottom	31.1	21.8 21.8	21.8	8.1 8.1	8.1	33.7 33.7	33.7	90.3 90.4	90.4	6.5 6.5	6.5	6.5	1.1 1.1	1.1		3.6 4.4	4.0	
				Surface	1.0	22.6 22.6	22.6	8.0 8.0	8.0	33.4 33.4	33.4	95.7 93.9	94.8	6.8 6.7	6.8		0.6 0.6	0.6		4.4 4.8	4.6	
G1	Sunny	Moderate	9:11	Middle	4.0	22.2	22.2	8.1	8.1	33.5	33.5	93.9	91.6	6.6	6.6	6.7	0.8	0.8	1.0	3.3	3.6	3.9
61	Sunny	Moderate	9.11			22.2 22.1		8.1 8.1		33.5 33.5		91.5		6.6			0.8		1.0	3.8 3.7		5.9
				Bottom	7.0	22.1	22.0	8.1	8.1	33.5	33.5	91.5 91.5	91.5	6.6 6.6	6.6	6.6	1.5 1.5	1.5		3.6	3.7	
				Surface	1.0	22.8 22.5	22.6	8.0	8.0	33.3	33.4	92.7	92.5	6.6	6.6		1.1	1.2		5.2 4.0	4.6	
G2	Suppy	Modorato	0:05	Middle	5.0	22.5	21.8	8.1 8.1	8.1	33.4 33.6	22.6	92.3 89.8	00.0	6.6 6.5	6.5	6.5	1.2 1.7	17	17	4.0	5.7	54
GZ	Sunny	Moderate	9:05	Middle	5.0	21.9	21.8	8.1	8.1	33.6	33.6	90.1	90.0	6.5	0.0		1.6	1.7	1.7	6.4	5.7	5.4
				Bottom	9.0	21.8 21.8	21.8	8.1 8.1	8.1	33.7 33.7	33.7	89.8 90.1	90.0	6.5 6.5	6.5	6.5	2.3 2.2	2.3		6.0 5.8	5.9	
				Surface	1.0	22.7	22.7	8.0	8.0	33.3	33.3	96.1	95.4	6.8	6.8		1.4	1.3		4.0	4.2	
G3	Current	Madazata	9:14	Midalla	4.1	22.8 22.2	22.2	8.1 8.1	8.1	33.3 33.5	33.5	94.6 91.8	92.0	6.7 6.6	6.6	6.7	1.2 1.6	1.5	1.7	4.4 3.5	3.9	4.0
63	Sunny	Moderate	9.14	Middle		22.2		8.1		33.5		92.1		6.6			1.5		1.7	4.2		4.0
				Bottom	7.0	22.0 22.0	22.0	8.1 8.1	8.1	33.5 33.5	33.5	90.6 89.7	90.2	6.5 6.5	6.5	6.5	2.2 2.3	2.2		3.8 3.9	3.9	
				Surface	1.0	22.6	22.6	8.1	8.1	33.4	33.4	92.2	92.1	6.6	6.6		1.6	1.5		4.1	4.4	
G4	Sunny	Moderate	9:20	Middle	4.0	22.6 22.5	22.5	8.1 8.1	8.1	33.4 33.4	33.4	91.9 91.3	91.4	6.6 6.5	6.5	6.5	1.5 1.3	1.3	1.7	4.6 4.8	4.2	4.2
04	Curriy	Moderate	5.20			22.5 22.2		8.1 8.1		33.4		91.5 89.7		6.5 6.4			1.3 2.3		1.7	3.6 4.4		
				Bottom	7.0	22.1	22.1	8.1	8.1	33.5 33.5	33.5	88.6	89.2	6.4	6.4	6.4	2.4	2.4		3.6	4.0	
				Surface	1.1	23.0 23.0	23.0	8.1 8.1	8.1	33.3 33.3	33.3	94.8 94.5	94.7	6.7 6.7	6.7		0.8	0.9		2.7 3.6	3.2	
M1	Sunny	Moderate	9:09	Middle	3.0	22.6	22.6	8.1	8.1	<u>33.4</u> 33.4	33.4	92.7	93.0	6.6	6.6	6.7	1.1	1.1	1.1	4.4	4.5	4.2
	Curry	moderate	0.00			22.7 22.4		8.1 8.1		33.4 33.4		93.3 92.3		6.6 6.6			1.1 1.3		+	4.5 5.6		
				Bottom	5.0	22.3 22.7	22.3	8.1	8.1	33.5 33.4	33.4	91.7	92.0	6.6	6.6	6.6	1.3 1.2	1.3		4.2	4.9	
				Surface	1.0	22.7 22.6	22.7	8.1 8.1	8.1	33.4 33.4	33.4	94.2 93.0	93.6	6.7 6.6	6.7		1.2 1.1	1.1		3.7 2.9	3.3	
M2	Sunny	Moderate	9:02	Middle	6.0	21.8	21.8	8.1	8.1	33.7	33.6	90.9	90.8	6.6	6.5	6.6	1.8	1.8	2.4	3.6	3.8	3.9
1112	Curry	moderate	0.02			21.8 21.7		8.1 8.1		33.6 33.8		90.6 90.2		6.5 6.5			1.7 4.2		2.4	4.0		0.0
				Bottom	11.0	21.7	21.7	8.1	8.1	33.8	33.8	90.1	90.2	6.5	6.5	6.5	4.3	4.3		5.3	4.7	
				Surface	1.0	22.6 22.6	22.6	8.0 8.0	8.0	33.4 33.4	33.4	95.3 93.7	94.5	6.8 6.7	6.7		1.1 1.1	1.1		3.1 4.6	3.9	
M3	Sunny	Moderate	9:18	Middle	4.0	22.2	22.3	8.1	8.1	33.4	33.4	91.3	91.5	6.5	6.6	6.6	1.4	1.4	1.5	2.6	3.1	4.1
Mo	Curry	moderate	0.10			22.3 22.0		8.1 8.1		33.4 33.5		91.6 89.9		6.6 6.5			1.3 2.0		1.0	3.6 5.3		
				Bottom	7.0	22.0	22.0	8.1	8.1	33.5	33.5	89.5	89.7	6.4	6.5	6.5	1.9	2.0		5.4	5.4	
				Surface	1.0	22.8 22.9	22.9	8.1 8.1	8.1	33.3 33.3	33.3	93.2 93.2	93.2	6.6 6.6	6.6		1.1 1.1	1.1		5.6 4.5	5.1	
M4	Sunny	Moderate	8:57	Middle	5.1	22.0	22.3	8.1	8.1	33.5	33.5	90.6	91.3	6.5	6.5	6.6	1.3	1.2	1.8	3.0	2.9	3.7
	Curry	modorato	0.07			22.5 21.8		8.1 8.1		33.4 33.7		91.9 90.6		6.6 6.5			1.1 3.0			2.7 3.8	-	0
				Bottom	9.0	21.8	21.8	8.1	8.1	33.7	33.7	90.7	90.7	6.6	6.5	6.5	2.9	3.0		2.6	3.2	
				Surface	1.0	22.4 22.4	22.4	8.1 8.1	8.1	33.4 33.4	33.4	93.2 92.4	92.8	6.7 6.6	6.6		1.1 1.1	1.1		3.6 2.6	3.1	
M5	Sunny	Moderate	9:27	Middle	6.1	21.9	21.9	8.1	8.1	33.7	33.7	93.5	93.2	6.7	6.7	6.7	1.2	1.2	1.4	3.8	3.4	3.4
MIG	County	moderate	0.27			21.9 21.8		8.1 8.1		33.7 33.9		92.9 94.3		6.7 6.8			1.3 1.9		+	3.0 3.1		0.4
				Bottom	11.0	21.8	21.8	8.1	8.1	33.9	33.9	94.4	94.4	6.8	6.8	6.8	2.0	1.9		4.3	3.7	<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-		_
M6	Sunny	Moderate	9:24	Middle	2.0	22.5	22.5	8.1	8.1	33.4	33.4	91.2	91.2	6.5	6.5	6.5	8.0	8.0	1.3	2.8	3.3	3.3
WO	Guinty	moderate	3.27			22.5	22.0	8.1	0.1	33.4	55.4	91.1	31.2	6.5	0.0		8.0	0.0	1.5	3.7	0.0	0.0
	1			Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
lomorko:	*DA: Dooth Ave		*							*								•	•	*	*	

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 12 April 2023 (Mid-Flood Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	_	Action Level	
	Stations G1-G4, M1-M5	1	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	1	1
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	<u>Stations G1-G4, M1-M5</u>		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 2.1 NTU</u>	<u>C1: 2.3 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations M1-M5	1	l
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of
(See Note 2 and 4)		the same day	the same day
		<u>C1: 7.0 mg/L</u>	<u>C1: 7.5 mg/L</u>
	Stations G1-G4, M1-M5	1	r
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 4.0 mg/L</u>	<u>C1: 4.3 mg/L</u>
	<u>Station M6</u>	·	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 14 April 2023

(Mid-Flood Tide)

Location	Condition	Condition**	Time	Depth	· · · · · ·				-	1												
			Time				Average		Average		Average		Average		Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.1	22.7	22.7	8.1 8.1	8.1	33.5	33.5	97.3 96.2	96.8	6.9 6.8	6.9		1.1	1.2		5.6	5.5	
C1	Sunny	Moderate	11:50	Middle	9.0	22.7 22.2	22.2	8.1	8.1	33.5 33.6	33.6	95.2	95.4	6.8	6.8	6.9	<u>1.2</u> 1.1	1.1	1.7	5.3 4.0	4.3	4.5
01	Sunny	Woderate	11.50			22.2		8.1		33.6		95.5		6.8			1.2		1.7	4.5		- 4.5
				Bottom	17.0	22.1 22.1	22.1	8.1 8.1	8.1	33.8 33.8	33.8	94.5 94.3	94.4	6.8 6.8	6.8	6.8	2.8 2.7	2.7		3.5 3.8	3.7	
				Surface	1.0	22.2 22.2	22.2	7.9 8.0	8.0	33.6	33.6	93.0 93.1	93.1	6.7	6.7		1.6	1.6		4.3	4.5	
C2	Sunny	Moderate	11:11	Middle	16.0	22.2	22.1	8.0	8.1	33.6 33.8	33.8	93.1	93.0	6.7 6.7	6.7	6.7	1.7 2.0	2.1	2.5	3.9	4.1	4.1
02	Gunny	Woderate				22.1 22.1		8.1 8.1		33.8		93.0 92.4		6.7 6.6			2.1 3.8		2.5	4.2 3.6		
				Bottom	31.0	22.1	22.1	8.1	8.1	33.8 33.8	33.8	92.4	92.2	6.6	6.6	6.6	3.8	3.8		3.9	3.8	
				Surface	1.1	22.3 22.4	22.4	8.1 8.1	8.1	33.6 33.6	33.6	97.0 97.1	97.1	6.9 6.9	6.9		1.5 1.5	1.5		3.8 4.1	4.0	
G1	Sunny	Moderate	11:31	Middle	4.1	22.1	22.1	8.1	8.1	33.7	33.7	95.8	95.9	6.9	6.9	6.9	1.5	1.4	1.4	3.4	3.6	3.4
0.	Curry	modorato				22.2 22.1		8.1 8.1		33.7 33.7		96.0 95.4		6.9 6.9			1.4 1.4			3.7 2.8		-
				Bottom	7.0	22.1	22.1	8.1	8.1	33.7	33.7	95.1	95.3	6.8	6.8	6.8	1.4	1.4		2.5	2.7	
				Surface	1.1	22.3 22.3	22.3	8.1 8.1	8.1	33.5 33.6	33.5	97.8 97.8	97.8	7.0	7.0		1.4 1.3	1.3		4.2	4.4	
G2	Sunny	Moderate	11:24	Middle	5.0	22.1	22.1	8.1	8.1	33.7	33.7	95.8	96.0	6.9	6.9	6.9	1.3	1.3	1.4	3.9	3.8	3.8
	,					22.1 22.1		8.1 8.1		33.7 33.7		96.2 94.9		6.9 6.8		0.0	1.3 1.6			3.6 3.3		-
				Bottom	9.0	22.1	22.1	8.1	8.1	33.8	33.8	94.0	94.5	6.8	6.8	6.8	1.5	1.5		3.0	3.2	
				Surface	1.0	22.3 22.3	22.3	8.1 8.1	8.1	33.6 33.6	33.6	96.3 96.3	96.3	6.9 6.9	6.9	6.9	1.5 1.5	1.5		3.4 3.0	3.2	
G3	Sunny	Moderate	11:34	Middle	4.0	22.1 22.2	22.2	8.1	8.1	33.7	33.6	94.6	95.2	6.8	6.8	0.9	1.4	1.4	1.6	4.4	4.3	4.1
				Bottom	7.0	22.2	22.0	8.1 8.1	8.1	33.6 33.7	33.7	95.8 92.7	92.4	6.9 6.7	6.6	6.6	1.4 1.9	1.9		4.1 5.0	4.9	-
						22.0 22.2		8.1 8.1		33.7 33.7		92.0 96.3		6.6 6.9		0.0	1.9 3.3			4.7 6.8		
				Surface	1.1	22.3	22.2	8.1	8.1	33.6	33.6	96.3	96.3	6.9	6.9	6.9	3.2	3.3		6.3	6.6	
G4	Sunny	Moderate	11:39	Middle	4.0	22.1 22.1	22.1	8.1 8.1	8.1	33.7 33.7	33.7	95.1 95.2	95.2	6.8 6.8	6.8	0.0	3.6 3.6	3.6	3.8	5.6 5.4	5.5	5.4
				Bottom	7.1	22.1	22.1	8.1	8.1	33.7	33.7	94.6	94.5	6.8	6.8	6.8	4.4	4.4		3.8	4.0	-
						22.1 22.2		8.1 8.1		33.7		94.4 95.2		6.8 6.8		0.0	4.5 1.3			4.2 5.8		
				Surface	1.1	22.3	22.3	8.1	8.1	33.5 33.4	33.5	94.8	95.0	6.8	6.8	6.8	1.2	1.2		5.4	5.6	
M1	Sunny	Moderate	11:28	Middle	3.0	22.2 22.2	22.2	8.1 8.1	8.1	33.7 33.6	33.6	95.3 94.4	94.9	6.8 6.8	6.8		1.4 1.5	1.4	1.4	4.5 4.2	4.4	4.3
				Bottom	5.0	22.2	22.1	8.1	8.1	33.7	33.7	95.8	95.6	6.9	6.9	6.9	1.4	1.4		3.2	3.1	-
						22.1 22.4		8.1 8.1		33.7 33.6		95.3 98.3		6.8 7.0			1.5 1.0			2.9 2.8		+
				Surface	1.0	22.4	22.4	8.1	8.1	33.6	33.6	98.4	98.4	7.0	7.0	7.0	1.0	1.0		3.2	3.0	_
M2	Sunny	Moderate	11:21	Middle	6.0	22.2 22.2	22.2	8.1 8.1	8.1	33.7 33.7	33.7	96.0 97.2	96.6	6.9 7.0	6.9		1.4 1.3	1.3	1.8	4.2	4.4	4.3
				Bottom	11.1	22.1 22.0	22.0	8.1 8.1	8.1	33.8 33.8	33.8	93.9 92.6	93.3	6.7 6.7	6.7	6.7	3.2 3.1	3.2		5.1 5.7	5.4	-
				Surface	1.1	22.0	22.2	8.1	8.1	33.6	33.6	92.6	96.4	6.9	6.9		1.3	1.2		4.6	4.8	-
						22.2 22.1		8.1 8.1		33.6 33.7		96.1 95.6		6.9 6.9		6.9	1.2 1.6			5.0 4.4		-
M3	Sunny	Moderate	11:36	Middle	4.0	22.2	22.2	8.1	8.1	33.7	33.7	96.0	95.8	6.9	6.9		1.6	1.6	1.7	3.8	- 4.1	4.1
				Bottom	7.0	22.0 22.0	22.0	8.1 8.1	8.1	33.8 33.8	33.8	92.6 92.1	92.4	6.7 6.6	6.6	6.6	2.2 2.3	2.3		3.1 3.5	3.3	
				Surface	1.1	22.3	22.3	8.1	8.1	33.6	33.6	94.2	94.2	6.7	6.7		1.5	1.5		3.7	3.9	
						22.4 22.1		8.1 8.1		33.6 33.7		94.2 94.3		6.7 6.8		6.7	1.5 1.5			4.0		-
M4	Sunny	Moderate	11:17	Middle	5.1	22.1	22.1	8.1	8.1	33.7	33.7	94.0	94.2	6.7	6.8		1.5	1.5	1.4	2.8	3.0	3.1
				Bottom	9.0	22.1 22.1	22.1	8.1 8.1	8.1	33.8 33.8	33.8	94.2 94.4	94.3	6.8 6.8	6.8	6.8	1.4 1.2	1.3		2.4 2.7	2.6	
				Surface	1.0	22.2	22.3	8.1	8.1	33.6	33.6	98.0	98.0	7.0	7.0		1.1	1.1		2.7	2.5	
N/5	Summer	Moderate	11.40			22.3 22.2	22.2	8.1 8.1		33.6 33.7		98.0 97.7		7.0 7.0		7.0	1.1 1.2		10	2.3 3.6		- 40
M5	Sunny	Moderate	11:46	Middle	6.1	22.2	22.2	8.1	8.1	33.7	33.7	97.7	97.7	7.0	7.0		1.1	1.1	1.3	3.7	3.7	4.2
				Bottom	11.0	22.1 22.1	22.1	8.1 8.1	8.1	33.8 33.8	33.8	95.4 94.8	95.1	6.8 6.8	6.8	6.8	1.7 1.7	1.7		6.7 6.2	6.5	
-				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
	1		1			-		- 8.1		- 33.7		- 96.0		- 6.9		6.9	- 8.0			- 2.4		-
Me	Suppris	Moderate	11.40	Middle	24	22.2	22.2	0.1	Q 1		227			0.0								
M6	Sunny	Moderate	11:42	Middle Bottom	2.1	22.2	22.2	8.1	8.1	33.7	33.7	96.2	96.1	6.9	6.9		8.0	8.0	1.6	2.7	2.6	2.6

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 14 April 2023 (Mid-Flood Tide)

Parameter	Donth	Action Level	Limit Level
<u>(unit)</u>	<u>Depth</u>	Action Level	
	Stations G1-G4, M1-M5	1	l
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>	1	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 3.3 NTU</u>	<u>C1: 3.6 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day C1: 6.5 mg/L	the same day
	Stations M1-M5	<u>C1: 0.3 mg/L</u>	<u>C1: 7.1 mg/L</u>
	<u>Stations M11-M15</u>	() m a/I	7.4
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
	Surface	or 120% of upstream control station's SS at the same tide of	or 130% of upstream control station's SS at the same tide of
SS in mg/L	Suitace	the same day	the same day
(See Note 2 and 4)		<u>C1: 6.5 mg/L</u>	<u>C1: 7.1 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 4.4 mg/L</u>	<u>C1: 4.7 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperate	ure (°C)	p	н	Salini	ity ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Turt	bidity(NTL	J)	Suspen	ded Solids	(mg/L)
Location	Condition	Condition**	Time	sabu	····,		Average		Average		Average		Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	23.7 23.6	23.6	8.2 8.2	8.2	33.5 33.4	33.4	111.0 118.1	114.6	7.8	8.0		1.3 1.4	1.4		3.5 3.2	3.4	
C1	Sunny	Moderate	11:47	Middle	9.0	22.8	22.8	8.2	8.2	33.6	33.6	104.4	107.0	7.4	7.6	7.8	1.6	1.7	2.0	4.0	4.2	4.5
	-			Bottom	17.0	22.8 22.7	22.7	<u>8.2</u> 8.2	8.2	33.6 33.8	33.8	109.5 99.6	99.5	7.8	7.1	7.1	1.7 3.0	3.1	t	4.4 5.8	6.0	1
						22.7 23.3		8.2 8.0		33.8 33.1		99.4 106.8		7.1 7.5		7.1	3.1 1.3		<u> </u>	6.2 7.0		<u> </u>
				Surface	1.1	23.4	23.3	8.1	8.0	33.1	33.1	107.5	107.2	7.6	7.5	7.2	1.2	1.3	1	7.4	7.2	1
C2	Sunny	Moderate	10:55	Middle	16.1	22.6 22.6	22.6	8.1 8.1	8.1	33.7 33.7	33.7	96.2 96.3	96.3	6.8 6.9	6.8		2.4 2.5	2.4	2.2	6.4 6.8	6.6	6.2
				Bottom	31.1	22.6	22.6	8.1	8.1	33.8	33.8	95.3	95.3	6.8	6.8	6.8	2.8 2.7	2.8	[4.6	4.8	
				Surface	1.0	22.6 23.7	23.7	8.1 8.3	8.3	33.8 33.4	33.4	95.2 131.9	133.5	6.8 9.2	9.3		1.8	1.7	<u> </u>	5.0 7.0	6.8	<u> </u>
						23.7 23.0		8.3 8.2		33.4 33.6		135.1 116.5		9.4 8.2		8.9	1.7 1.6		ł	6.6 5.8		
G1	Sunny	Moderate	11:26	Middle	4.0	23.1	23.1	8.2	8.2	33.5	33.5	122.0	119.3	8.6	8.4		1.6	1.6	1.7	6.1	6.0	5.8
				Bottom	7.0	22.8 22.7	22.8	8.2 8.2	8.2	33.6 33.7	33.6	106.6 104.8	105.7	7.6	7.5	7.5	1.8 1.9	1.9	1	4.3 4.9	4.6	
				Surface	1.0	23.9 23.9	23.9	8.3 8.3	8.3	33.4 33.4	33.4	134.5 136.5	135.5	9.4 9.5	9.4		1.2 1.1	1.1		4.8 5.1	5.0	
G2	Sunny	Moderate	11:16	Middle	5.0	22.9	22.9	8.2	8.2	33.6	33.6	111.9	114.0	7.9	8.1	8.8	1.8	1.8	1.7	4.1	4.1	4.2
02	Culling	moderate				23.0 22.7		8.2 8.2		33.6 33.6		116.0 101.9		8.2		7.0	1.7 2.1		+	4.1 3.2		
				Bottom	9.0	22.7	22.7	8.1	8.1	33.6	33.6	101.3	101.6	7.2	7.2	7.2	2.1	2.1	<u> </u>	3.7	3.5	<u> </u>
				Surface	1.0	23.6 23.6	23.6	<u>8.3</u> 8.3	8.3	<u>33.4</u> 33.4	33.4	129.3 130.2	129.8	<u>9.1</u> 9.1	9.1	8.8	<u>1.5</u> 1.5	1.5		7.3 7.0	7.2	
G3	Sunny	Moderate	11:31	Middle	4.0	23.0 23.2	23.1	8.2 8.2	8.2	33.5 33.5	33.5	118.0 120.9	119.5	8.3 8.5	8.4	0.0	1.3 1.3	1.3	1.6	5.0	5.3	5.3
				Bottom	7.0	22.7	22.7	8.2	8.2	33.6 33.6	33.6	103.8	102.6	7.4	7.3	7.3	1.9	1.8	I	5.5 3.4	3.6	
				Surface	1.0	22.7 23.1 23.2	23.1	8.1 8.2	8.2	33.6 33.5 33.5	33.5	101.4 114.3	114.6	7.2 8.1	8.1		1.8 1.8	1.9	<u> </u>	3.7 6.4	6.7	<u> </u>
						23.2 22.9		8.2 8.2		33.5 33.6		114.8 110.7		8.1 7.8		8.0	2.0 2.0			7.0 6.0		-
G4	Sunny	Moderate	11:38	Middle	4.1	23.0	22.9	8.2	8.2	33.5	33.5	114.1	112.4	8.1	8.0		2.0	2.0	2.3	5.6	5.8	5.4
				Bottom	7.0	22.7 22.7	22.7	<u>8.2</u> 8.1	8.1	33.7 33.7	33.7	101.4 100.6	101.0	7.2	7.2	7.2	3.1 3.1	3.1	1	4.0	3.7	
				Surface	1.1	23.6	23.6	8.3	8.3	33.5	33.4	130.2	130.7	9.1	9.2		1.1	1.1		4.3	4.2	
M1	Sunny	Moderate	11:22	Middle	3.0	23.6 23.2	23.3	8.3 8.2	8.2	33.4 33.5	33.5	131.1 122.4	123.1	9.2 8.6	8.7	8.9	1.1 1.5	1.5	1.5	4.1 3.6	3.4	3.4
1011	County	moderate	11.22			23.4 22.8		8.2 8.2		33.5 33.6		123.7 106.0		8.7 7.5			1.4 1.9		1.0	3.2 2.8		0.4
				Bottom	5.1	22.8	22.8	8.2	8.2	33.6	33.6	105.6	105.8	7.5	7.5	7.5	1.9	1.9	L	2.3	2.6	<u> </u>
				Surface	1.0	23.8 23.8	23.8	8.3 8.3	8.3	33.4 33.4	33.4	128.5 130.4	129.5	9.0 9.1	9.0	0.0	1.1	1.1	1	1.8 1.5	1.7	
M2	Sunny	Moderate	11:09	Middle	6.0	22.7 22.8	22.7	8.2 8.2	8.2	33.7 33.7	33.7	103.3 108.4	105.9	7.3	7.5	8.3	1.5 1.5	1.5	2.1	2.2 2.6	2.4	2.3
				Bottom	11.0	22.6	22.6	8.1	8.1	33.7	33.7	95.1	95.2	6.8	6.8	6.8	3.7	3.6	1	2.8	3.0	
						22.6 23.6		8.1 8.3		33.7 33.4		95.3 132.7		6.8 9.3		0.0	3.6 1.8		<u> </u>	3.1		<u> </u>
				Surface	1.0	23.6	23.6	8.2	8.2	33.4 33.4	33.4	131.1	131.9	9.3 9.2	9.2	8.8	1.8	1.8	1	1.3	1.5	
M3	Sunny	Moderate	11:34	Middle	4.0	23.0 23.3	23.2	8.2 8.2	8.2	33.5 33.5	33.5	116.6 119.8	118.2	8.3 8.4	8.3		1.4 1.5	1.5	1.7	2.6 2.2	2.4	2.3
				Bottom	7.0	22.9 22.8	22.8	8.2 8.2	8.2	33.6 33.6	33.6	105.3 104.3	104.8	7.5 7.4	7.4	7.4	1.7 1.8	1.8		3.1 2.9	3.0	
				Surface	1.0	23.2	23.2	8.2	8.2	33.6	33.6	109.7	110.4	7.7	7.8		1.6	1.6	<u> </u>	1.5	1.7	
	0		11.00			23.3 22.8		8.2 8.2		33.6 33.6		111.1 106.2		7.8		7.7	1.6 2.1			1.8 2.3		
M4	Sunny	Moderate	11:03	Middle	5.0	22.8	22.8	8.2	8.2	33.6	33.6	108.2	107.2	7.7	7.6		1.9	2.0	2.0	2.1	2.2	2.2
				Bottom	9.0	22.7 22.7	22.7	<u>8.2</u> 8.2	8.2	<u>33.7</u> 33.7	33.7	103.1 100.8	102.0	7.3	7.2	7.2	2.4 2.5	2.4		2.5 2.8	2.7	
				Surface	1.1	23.1 23.2	23.2	8.2 8.2	8.2	33.5 33.5	33.5	117.0 117.8	117.4	8.3 8.3	8.3		1.6 1.6	1.6	1	4.5	4.3	
M5	Sunny	Moderate	11:45	Middle	6.1	22.8	22.9	8.2	8.2	33.6	33.6	109.9	110.7	7.8	7.8	8.1	1.7	1.7	2.0	3.2	3.4	3.4
				Bottom	11.0	22.9 22.7	22.7	8.2 8.2	8.2	33.6 33.8	33.8	111.4 101.9	101.6	7.9 7.2	7.2	7.2	1.7 2.7	2.8	1	3.6 2.6	2.4	
					11.0	22.7		8.2		33.8		101.3		7.2		1.2	2.8		<u> </u>	2.1		<u> </u>
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-		-	-	
M6	Sunny	Moderate	11:42	Middle	2.0	23.0 23.0	23.0	8.2 8.2	8.2	33.5 33.5	33.5	109.5 109.7	109.6	7.7	7.7		1.7 1.7	1.7	1.7	1.4 1.2	1.3	1.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	[-	-	
Remarks:	*DA: Depth-Ave		L			-		-	1	-	1	-		-	I		-		I	-	I	L

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 17 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	1	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	<u>Stations G1-G4, M1-M5</u>		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.3 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.6 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u> or 120% of upstream control	<u>6.9 mg/L</u> or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C2: 8.6 mg/L</u>	<u>C2: 9.4 mg/L</u>
	Stations M1-M5	•	
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
SS in mg/L	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
(See Note 2 and 4)		<u>C2: 8.6 mg/L</u>	<u>C2: 9.4 mg/L</u>
	Stations G1-G4, M1-M5	I	
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C2: 5.8 mg/L</u>	<u>C2: 6.2 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 17 April 2023

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth (m)	Temperat	ure (°C)	pН	Salini	ty ppt	DO Satur	ation (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NTL	J)	Suspend	ed Solids	(mg/L)
Location	Condition	Condition**	Time	Debru (m)	Value	Average Valu	ue Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*		Average	DA*
				Surface 1.0	23.5	23.4 8.2		33.4	33.4	118.4	119.4	8.3	8.4		1.4	1.4		7.1	7.0	
04	0	Madaaata	10.50	Middle 0.0	23.3 22.8	22.9 8.2	2	33.5 33.6	00.0	120.3 104.0	101.0	8.5 7.4	7.4	7.9	1.4 1.8	47		6.9 4.6	4.5	
C1	Sunny	Moderate	16:50	Middle 9.0	22.8	22.0 8.2	2 0.2	33.6	33.6	104.3	104.2	7.4	7.4		1.6	1.7	2.1	4.3	4.5	5.1
				Bottom 17.0	22.7 22.7	22.7 8.2	8.2	33.8 33.8	33.8	99.4 99.5	99.5	7.1 7.1	7.1	7.1	3.2 3.0	3.1		3.6 4.0	3.8	
				Surface 1.1	23.4	23.3 8.1		33.1	33.1	107.6	107.5	7.6	7.6		1.3	1.3		5.4	5.2	
				Sunace 1.1	23.3	8.1		33.1	55.1	107.3	107.5	7.6	7.0	7.2	1.4	1.5		5.0	J.2	-
C2	Sunny	Moderate	15:57	Middle 16.0	22.6 22.6	22.6 8.1		33.7 33.7	33.7	96.3 96.2	96.3	6.8 6.8	6.8		2.6 2.5	2.5	2.3	6.4 6.7	6.6	6.4
				Bottom 31.1	22.6	22.6 8.1	1 81	33.8	33.8	95.2	95.2	6.8	6.8	6.8	2.9	3.0		7.4	7.6	1
					22.6 23.7	8.1		33.8 33.4		95.2 135.9		6.8 9.5			3.0 1.6			7.7		
				Surface 1.1	23.7	23.7 8.3		33.4	33.4	136.6	136.3	9.6	9.5	8.9	1.6	1.6		3.8	4.0	
G1	Sunny	Moderate	16:28	Middle 4.0	23.1	23.0 8.2		33.6	33.6	116.6	116.5	8.2	8.2	0.9	1.6	1.6	1.7	3.5	3.4	3.5
					23.0 22.7	20.0 8.2	2	33.6 33.7		116.4 103.9	100.0	8.2 7.4		= 0	1.6 2.0			3.2 3.0		-
				Bottom 7.0	22.7	22.7 8.1	1 0.1	33.7	33.7	102.1	103.0	7.3	7.3	7.3	1.9	2.0		3.0	3.0	
				Surface 1.0	23.9 23.9	23.9 8.3		33.4 33.4	33.4	136.6 136.3	136.5	9.5 9.5	9.5		1.1 1.1	1.1		3.1 3.3	3.2	
<u></u>	Suppy	Modoroto	16:19	Middle E 0	23.9	22.9 8.2		33.6	33.6	110.6	111.0	7.8	7.9	8.7	2.0	2.0	1.7	3.6	3.8	3.9
G2	Sunny	Moderate	10:19	Middle 5.0	22.9	8.2	2	33.6	33.0	111.3	111.0	7.9	7.9		1.9	2.0	1.7	4.0	3.8	- 3.9
				Bottom 8.0	22.7 22.7	22.7 8.1		33.6 33.7	33.6	101.2 100.9	101.1	7.2	7.2	7.2	2.1 2.1	2.1		4.8	4.6	
				Surface 1.1	23.6	23.6 8.3	3 83	33.4	33.4	130.4	131.1	9.1	9.2		1.5	1.4		2.8	2.7	
					23.6	8.3	3	33.4		131.8 114.7		9.2		8.7	1.4			2.6		-
G3	Sunny	Moderate	16:34	Middle 4.0	23.0 23.0	23.0 8.2		33.5 33.5	33.5	114.7	116.0	8.1 8.3	8.2		1.5 1.4	1.4	1.6	3.5 3.3	3.4	3.5
				Bottom 7.0	22.7	22.7 8.1		33.6	33.6	100.9	100.6	7.2	7.1	7.1	1.8	1.8		4.7	4.5	1
					22.7 23.2	8.		33.6 33.5		100.2 115.1		7.1 8.1			1.8 2.0			4.2		
				Surface 1.0	23.2	23.2 8.2		33.5	33.5	115.3	115.2	8.1	8.1	7.9	2.0	2.0		4.2	4.5	
G4	Sunny	Moderate	16:40	Middle 4.0	22.9	22.9 8.2		33.6	33.6	109.3 110.0	109.7	7.7	7.8	1.5	2.0 2.0	2.0	2.4	3.6	3.5	3.6
				Dettern 7.0	22.9 22.7	<u>8.2</u> 22.0 8.1	1	33.6 33.7	22.7	99.9	00.0	7.8 7.1	7.4	7.4	3.4	2.2		3.3 2.9	2.0	-
				Bottom 7.0	22.7	22.7 8.1	1 0.1	33.7	33.7	99.6	99.8	7.1	7.1	7.1	3.3	3.3		2.7	2.8	
				Surface 1.0	23.6 23.6	23.6 8.3		33.4 33.4	33.4	131.3 132.3	131.8	9.2 9.3	9.2		1.1 1.2	1.1		2.9 3.2	3.1	
M1	Sunny	Moderate	16:24	Middle 3.0	23.1	23.1 8.2		33.6	33.6	119.9	120.8	8.5	8.5	8.9	1.5	1.6	1.6	2.9	2.7	2.7
IVII	Gunny	Woderate	10.24	Wildule 5.0	23.1	8.2	2	33.6	55.0	121.6	120.0	8.6	0.5		1.6	1.0	1.0	2.5 2.1	2.1	2.1
				Bottom 5.0	22.8 22.8	22.8 8.2		33.6 33.6	33.6	105.2 104.8	105.0	7.5 7.4	7.4	7.4	1.9 2.0	1.9		2.1	2.2	
				Surface 1.0	23.8	23.8 8.3	3 83	33.6 33.4	33.4	130.5	130.4	9.1	9.1		2.0 1.1	1.1		2.6	2.4	
					23.8 22.7	8.3	3	33.4 33.7		130.3 102.8		9.1 7.3		8.2	1.2 1.7			2.2 3.2		-
M2	Sunny	Moderate	16:12	Middle 6.0	22.7	22.7 8.2	2 0.2	33.7	33.7	103.2	103.0	7.3	7.3		1.8	1.7	2.1	2.9	3.1	3.0
				Bottom 11.1	22.6 22.6	22.6 8.1		33.7 33.7	33.7	95.1 95.2	95.2	6.8 6.8	6.8	6.8	3.6 3.6	3.6		3.4 3.7	3.6	
				Curfeee 10	22.0	0 1	2	33.4	22.4	129.6	100.0	9.1	0.0		1.8	4.0		3.4	2.0	
				Surface 1.0	23.6	23.0 8.2	2 0.2	33.4	33.4	128.4	129.0	9.0	9.0	8.6	1.7	1.8		3.7	3.6	-
M3	Sunny	Moderate	16:37	Middle 4.0	23.0 23.0	23.0 8.2		33.5 33.5	33.5	113.4 115.5	114.5	8.0 8.2	8.1		1.4 1.4	1.4	1.7	3.2 2.9	3.1	3.0
				Bottom 7.1	22.8	22.8 8.1	1 81	33.6	33.6	103.4	102.5	7.3	7.3	7.3	2.0	1.9		2.5	2.4	1
					22.8	8.1		33.6		101.5		7.2	1.0	1.0	1.9	1.0		2.2		
				Surface 1.0	23.3 23.3	23.3 8.2		33.6 33.6	33.6	<u>111.1</u> 111.2	111.2	7.8 7.8	7.8		1.6 1.6	1.6		2.0 2.3	2.2	
M4	Sunny	Moderate	16:05	Middle 5.0	22.8	22.8 8.2	2 82	33.6	33.6	105.6	105.8	7.5	7.5	7.7	2.2	2.1	2.1	2.6	2.7	2.7
	,				22.8 22.7	22.0 8.2	2	33.6 33.7		106.0 100.1		7.5 7.1			2.1 2.7			2.8 3.1		-
				Bottom 9.0	22.6	22.6 8.1		33.8	33.8	97.6	98.9	6.9	7.0	7.0	2.7	2.7		3.4	3.3	
				Surface 1.0	23.2	23.4 8.2		33.4	33.4	118.2	118.7	8.3	8.3		1.5	1.5		2.3	2.4	
145	S	Moderate	16.47		23.5 22.8	23.4 8.2	2	33.4 33.6		119.1 108.0		8.4 7.7		8.0	1.5 1.8		2.2	2.5 1.9	1.0	4.0
M5	Sunny	Moderate	16:47	Middle 6.1	22.8	22.0 8.2	2 0.2	33.6	33.6	108.9	108.5	7.7	7.7		1.7	1.8	2.2	1.6	1.8	1.8
				Bottom 11.0	22.7 22.7	22.7 8.2		33.8 33.8	33.8	100.8 100.2	100.5	7.2	7.1	7.1	3.2 3.3	3.3		1.5 1.2	1.4	
				Surface -	-		-	-	-	-	-	-	-		-	-		-	-	1
					-	-		-		-		-		7.7	-			-	-	-
M6	Sunny	Moderate	16:44	Middle 2.0	23.0 22.9	23.0 8.2		33.5 33.5	33.5	109.7 109.0	109.4	7.8 7.7	7.7		8.0 8.0	8.0	1.7	1.9 1.7	1.8	1.8
				Bottom -	-			-	-	-	-	-	-	-	-	-		-	-	1
Pomorko:	*DA: Dooth Ave		I		-	-		-		-		-			-			-		1

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 17 April 2023 (Mid-Flood Tide)

Parameter	Denth	Action Level	Limit Level									
<u>(unit)</u>	_											
DO in mg/I	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>									
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>									
	<u>Station M6</u>	1										
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>									
	Stations G1-G4, M1-M5	•	•									
		<u>19.3 NTU</u>	<u>22.2 NTU</u>									
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day									
	Stations G1-G4, M1-M5 Depth Average 4.9 mg/L 4.6 mg/L Bottom 4.2 mg/L 3.6 mg/L Station M6	<u>C1: 4.0 NTU</u>										
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>									
	Stations G1-G4											
			<u>6.9 mg/L</u>									
		-										
	Surface											
		4.9 mg/L 4.6 mg/L 4.2 mg/L 3.6 mg/L 5.0 mg/L 4.7 mg/L 19.3 NTU 22.2 NTU or 120% of upstream control station's Turbidity at the same tide of the same day or 130% of upstream control station's Turbidity at the same tide of the same day C1: 3.7 NTU C1: 4.0 NTU 19.0 NTU 19.4 NTU 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same t										
		<u>C1: 8.4 mg/L</u>	<u>C1: 9.1 mg/L</u>									
	Stations M1-M5	1										
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>									
Image: Constraint of the second se	-	-										
SS in ma/I	Surface	4.9 mg/L 4.6 mg/L 4.2 mg/L 3.6 mg/L 5.0 mg/L 4.7 mg/L 19.3 NTU 22.2 NTU or 120% of upstream control station's Turbidity at the same tide of the same day or 130% of upstream control station's Turbidity at the same tide of the same day <u>CI: 3.7 NTU</u> <u>CI: 4.0 NTU</u> 19.0 NTU 19.4 NTU <u>6.0 mg/L</u> <u>6.9 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>CI: 8.4 mg/L</u> <u>CI: 9.1 mg/L</u>										
		the same day	4.6 mg/L 3.6 mg/L 4.7 mg/L 22.2 NTU or 130% of upstream control station's Turbidity at the same tide of the same day <u>C1: 4.0 NTU</u> <u>19.4 MTU</u> <u>19.4 MTU</u> <u>19.4 MTU</u> <u>19.4 MTU</u> <u>130% of upstream control station's SS at the same tide of the same day <u>C1: 9.1 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>C1: 9.1 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>C1: 9.1 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>C1: 4.9 mg/L</u> </u>									
	Stations G1-G4, M1-M5 Depth Average 4.9 mg/L 4.6 mg/L Bottom 4.2 mg/L 3.6 mg/L Station M6 10 atke Level 5.0 mg/L 4.7 mg/L Stations G1-G4, M1-M5 19.3 NTU 22.2 NTU Bottom or 120% of upstream control station's Turbidity at the same tide of the same day or 130% of upstream cost the same day TU Bottom or 120% of upstream control station's Turbidity at the same tide of the same day or 130% of upstream cost the same day Station M6 11 atke Level 19.0 NTU 19.4 NTU Stations G1-G4 6.0 mg/L 6.9 mg/L or 130% of upstream control station's SS at the same day Surface 19.0 NTU 19.4 NTU 19.4 NTU Stations G1-G4 6.0 mg/L or 130% of upstream control station's SS at the same day or 130% of upstream control station's SS at the same day Surface 6.2 mg/L C1: 8.4 mg/L C1: 9.1 mg/L Stations G1-G4, M1-M5 0r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same day Surface 6.2 mg/L C1: 8.4 mg/L C1: 9.1 mg/L Stations G1-G4, M1-M5 0r 120% of upstream control st	<u>C1: 9.1 mg/L</u>										
<u>(unit)</u> DO in mg/L (See Note 1 and 4)	Stations G1-G4, M1-M5											
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>									
		or 120% of upstream control	or 130% of upstream control									
	Bottom	-	-									
		the same day	the same day									
		<u>C1: 4.6 mg/L</u>	<u>C1: 4.9 mg/L</u>									
	Station M6											
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>									

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth ((m)	Temperature (°C) pH			Salin	Salinity ppt DO Saturation (%)			Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	ashru (,			ue Averag		Average		Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	23.6 23.6 2	3.6 8.1		32.8 32.8	32.8	99.2 99.2	99.2	7.0	7.0	7.0	2.1 2.0	2.1		2.2	2.3	
C1	Rainy	Moderate	12:45	Middle	9.1	23.4 2	3.4 8.1	81	33.2	33.2	100.4	100.0	7.1	7.0	7.0	2.0	2.1	2.5	2.8	3.0	3.1
	-			Bottom	17.0	23.4 23.1 2	3.1 8.1		33.2 33.5	33.6	99.6 98.2	98.0	7.0 6.9	6.9	6.9	2.1 3.4	3.5		3.2 3.7	3.9	
						23.1	8.1		33.6 32.5		97.8 95.8		6.9 6.7		0.5	3.5 1.8			4.0		<u> </u>
				Surface	1.0	23.6	3.0 8.0) 7.5	32.5	32.5	95.8	95.8	6.7	6.7	6.8	2.0	1.9		2.3	2.3	
C2	C2 Rainy Mode	Moderate	12:01	Middle	16.0	23.3 23.3 2	3.3 8.1		33.2 33.2	33.2	97.2 96.6	96.9	6.8 6.8	6.8		3.6 3.4	3.5	3.1	3.1 2.9	3.0	3.1
				Bottom	31.0	00.0	3.3 <u>8.1</u> 8.1	81	33.3 33.3	33.3	98.0 98.2	98.1	6.9 6.9	6.9	6.9	3.8 3.8	3.8		3.7 4.1	3.9	
				Surface	1.0	23.4 2	2.5 8.1	9.1	32.9	32.8	99.0	99.0	7.0	7.0		2.5	2.5		2.3	2.2	
	M - 1	40.04			23.5	8.1		32.8 33.0		98.9 98.5		7.0 6.9		7.0	2.5			2.1 2.7		0.7	
G1	Rainy	Moderate	12:21	Middle	4.1	23.5	3.4 8.1	8.1	32.9	32.9	98.4	98.5	6.9	6.9		2.6	2.7	2.6	2.9	2.8	2.7
				Bottom	7.0	23.4 23.4 2	3.4 8.1		33.0 33.1	33.1	98.5 98.6	98.6	6.9 6.9	6.9	6.9	2.8	2.7		3.1 3.3	3.2	
				Surface	1.1	23.4 2 23.4 2	3.4 8.1		33.0 33.0	33.0	100.6 100.4	100.5	7.1	7.1		2.4	2.4		2.6 2.9	2.8	
G2	G2 Rainy Moderate	Moderate	12:14	Middle	5.0	23.4 2	3.4 8.1	81	33.1	33.1	101.5	101.3	7.1	7.1	7.1	2.6	2.7	2.3	2.2	2.2	2.2
						23.4	8.1		33.1 33.4	- 33.4	101.0 103.2		7.1 7.3	7.3	7.0	2.7 1.9		-	2.1 1.9	1.8	2.2
				Bottom	9.0	23.4 2	3.4 8.1	0.1	33.4 32.8		104.1 98.9	103.7	7.3 7.0		7.3	1.9	1.9		1.7 2.2		<u> </u>
				Surface	1.0	23.5	8.1	0.1	32.8	32.8	98.8	98.9	7.0	7.0	6.9	2.6 2.6	2.6		2.1	2.2	
G3	Rainy	Moderate	12:25	Middle	4.1	23.4 23.5 2	3.5 <u>8.1</u> 8.1		32.9	32.9	98.5 98.6	98.6	6.9 6.9	6.9	0.5	2.6 2.6	2.6	2.6	2.6	2.5	2.5
			Bottom	7.0	23.4 2	3.4 8.1	81	32.9 33.1 33.1	33.1	98.7	98.9	7.0	7.0	7.0	2.6	2.5		2.4 3.0 2.8	2.9		
G4 Rainy Moderate			Surface	1.0	23.4 23.5 23.5 23.5	3.5 8.1	9.1	33.1 32.8 32.8	32.8	99.0 99.1	99.1	7.0	7.0		2.5 2.3	2.4		1.4	1.6	-	
		40.04			00.4	8.1		<u>32.8</u> 33.0		99.0 98.7		7.0 7.0		7.0	2.4		2.4	1.7 2.1		1	
	Moderate	12:34		4.0	23.4 2	3.4 8.1	8.1	33.0	33.0	98.7	98.7	7.0	7.0		2.5	2.4		2.4	2.3	2.2	
			Bottom	7.1	<u>23.4</u> 2 23.4 2	3.4 8.1		<u>33.1</u> 33.1	33.1	99.1 99.8	99.5	7.0	7.0	7.0	2.4	2.4		3.0 2.6	2.8		
				Surface	1.0	23.4 2	3.4 8.1		33.0 33.0	33.0	100.9 100.9	100.9	7.1	7.1		2.6 2.5	2.6	2.6	3.8 3.4	3.6	
M1	Rainy	Moderate	12:18	Middle	3.1	23.4 2	3.4 8.1	81	33.1	33.1	102.1	101.7	7.2	7.2	7.1	2.7	2.7		2.8	2.6	
	-		-	Bottom	5.0	23.4 -	3.4 8.1		33.1 33.1	33.1	101.3 102.5	102.6	7.1	7.2	7.2	2.7 2.5	2.5		2.4	2.2	
						23.4	8.		33.1 33.0		102.6 101.0		7.2 7.1		1.2	2.4 2.7			2.2 2.5		<u> </u>
		Moderate	e 12:10	Surface	1.0	23.4	3.4 8.1	0.1	33.0	33.0	100.5	100.8	7.1	7.1	7.1	2.6	2.6	_	2.2	2.4	3.4
M2	Rainy			Middle	6.0	23.4 23.4 2	3.4 8.1		33.2 33.1	33.2	102.1 100.7	101.4	7.2	7.1		2.0	2.0	2.3	3.8 4.0	3.9	
				Bottom	11.0	00.0	3.2 8.1	81	33.5	33.5	102.1 101.3	101.7	7.2	7.2	7.2	2.1	2.1		4.0	3.9	
				Surface	1.1	23.5 2	2.5 8.1	9.1	33.5 32.8 32.8	32.8	99.3 99.0	99.2	7.0	7.0		2.2 2.3 2.3	2.3		3.7 3.5 3.7	3.6	
	. .		10.00			23.5	8.		32.8 33.0		99.0 98.7		7.0		7.0	2.3			3.7 3.1		
M3	Rainy	Moderate	12:30	Middle	4.0 23.5	23.5	3.4 8.1	0.1	32.9	33.0	98.7	98.7	7.0	6.9		2.4	2.3	2.3	3.4	3.3	3.1
				Bottom	7.0	23.4	3.4 <u>8.1</u> 8.1	0.1	33.1 33.1	33.1	98.9 99.2	99.1	7.0	7.0	7.0	2.3 2.2	2.3		2.5 2.1	2.3	
				Surface	1.0	23.5 2 23.5 2	3.5 8.1		33.0 33.0	33.0	99.0 99.1	99.1	7.0	7.0		2.6	2.6		3.3 3.7	3.5	
M4	Rainy	Moderate	12:06	Middle	5.1	23.4 2	3.4 8.1	81	33.1	33.1	99.7	99.5	7.0	7.0	7.0	2.7	2.7	2.5	2.6	2.7	2.8
			12.00		9.0	23.4	3.4 8.1 3.4 8.1		33.0 33.3	- 33.3	99.2 101.5	102.2	7.0	7.2	7.2	2.7 2.1	2.1	-	2.8 2.5	2.3	1
				Bottom		23.4	8.1		33.3 32.8		102.8 99.0		7.2 7.0		1.2	2.1 2.3			2.1 1.4		<u> </u>
				Surface	1.0	23.5	3.5 8.1	0.1	32.8	32.8	99.1	99.1	7.0	7.0	7.0	2.3	2.3	1	1.7	1.6	
M5	Rainy	Moderate	12:41	Middle	6.0	23.4 23.4 2	3.4 8.1		33.1 33.1	33.1	99.2 99.0	99.1	7.0	7.0		2.5 2.4	2.4	2.3	2.1 2.3	2.2	2.3
				Bottom	11.0	23.3 2	33 8.1	81	33.2	33.2	100.2	100.5	7.1	7.1	7.1	2.4	2.3	İ	3.1	3.3	
				Surface	_	- 23.3			33.2	-	100.8	-	7.1	-		2.2			3.4	_	
			10.00			-	-		- 32.9		- 99.2		- 7.0		7.0	- 2.5			- 28		
M6	Rainy	Moderate	12:38	Middle	2.1	23.5	3.5 8.1	0.1	32.9	32.9	99.0	99.1	7.0	7.0		2.4	2.4	2.4	2.8 3.2	3.0	3.0
				Bottom	-	-			-	-	-	-	-	-	-	-	-		-	-	
Remarks:	*DA: Depth-Ave	hanad																			-

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 19 April 2023 (Mid-Ebb Tide)

Parameter										
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5									
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>							
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	Station M6	-								
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	<u>Stations G1-G4, M1-M5</u>									
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day							
	Station M6	4.2 mg/L 3.6 mg/L 5.0 mg/L 4.7 mg/L 19.3 NTU 22.2 NTU or 120% of upstream control station's Turbidity at the same tide of the same day or 130% of upstream control station's Turbidity at the same tide of the same day C2: 4.6 NTU C2: 5.0 NTU 19.0 NTU 19.4 NTU 19.0 NTU 19.4 NTU 19.0 NTU 19.4 NTU 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 6.2 mg/L C2: 2.9 mg/L 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day C2: 2.7 mg/L C2: 2.9 mg/L 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day C2: 2.7 mg/L C2: 2.9 mg/L 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control station's SS at the same tide of the same day 0 r 120% of upstream control station's SS at the same tide of the same day or 130% of upstream control								
		10 0 NTU	10 A NTU							
		<u>19.0 NTC</u>	<u>19.4 MTU</u>							
	Stations G1-G4	6.0 mg/I	6.0 mg/I							
	Surface	-	-							
	Surface									
			4.9 mg/L 4.6 mg/L 4.2 mg/L 3.6 mg/L 4.2 mg/L 3.6 mg/L 5.0 mg/L 4.7 mg/L 5.0 mg/L 4.7 mg/L 93 NTU 22.2 NTU 94 of upstream control arbidity at the same f the same day or 130% of upstream control station's Turbidity at the same tide of the same day 10 C2: 5.0 NTU 19.4 NTU 11 ONTU 19.4 NTU 12 ONTU 19.4 NTU 13 OW of upstream control station's SS at the same tide of the same day 12 C2: 2.9 mg/L 0 r 130% of upstream control station's SS at the same tide of the same day 12: 2.7 mg/L C2: 2.9 mg/L 13 OW of upstream control station's SS at the same tide of the same day 13 OW of upstream control station's SS at the same tide of the same day 12: 2.7 mg/L C2: 2.9 mg/L 13 OW of upstream control station's SS at the same tide of the same day 12: 2.7 mg/L C2: 2.9 mg/L 13 OW of upstream control station's SS at the same tide of the same day 12: 2.7 mg/L C2: 2.9 mg/L 13 OW of upstream control station's SS at the same tide of the same day 12: 2.7 mg/L C2: 5.1 mg/L 13 OW of upstream control station's SS at the same tide of the same da							
	(mit) Jebn Action Level Limit Level Stations G1-G4, M1-M5									
		6.2 mg/L	7.4 mg/L							
SS in mg/L	Surface	station's SS at the same tide of	station's SS at the same tide of							
(See Note 2 and 4)		C2: 2.7 mg/L	<u>C2: 2.9 mg/L</u>							
DO in mg/L (See Note 1 and 4)										
	i	<u>6.9 mg/L</u>	<u>7.9 mg/L</u>							
	Bottom	or 120% of upstream control station's SS at the same tide of	or 130% of upstream control station's SS at the same tide of							
		<u>C2: 4.7 mg/L</u>								
	Station M6									
		<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 19 April 2023

(Mid-Flood Tide)

Location Weather	Weather	Sea	Sampling	Depth	(m)	Temperature (°C)		pl	н	Salini	ty ppt	DO Saturation (%)				(mg/L)				Suspen	(mg/L)	
Location	Condition	Condition**	Time	Sehru	()		Average		Average		Average		Average		Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	23.6 23.5	23.5	8.1 8.1	8.1	32.8 32.8	32.8	99.2 99.2	99.2	7.0 7.0	7.0		2.2 2.1	2.1		2.3 2.6	2.5	
C1	Rainy	Moderate	16:50	Middle	8.0	23.4	23.4	8.1	8.1	33.2	33.2	101.1	101.0	7.1	7.1	7.0	2.1	2.1	2.5	3.0	3.1	3.0
					17.0	23.4 23.1	23.1	8.1 8.1	8.1	33.2 33.6	33.6	100.8 97.7	97.6	7.1 6.9	6.9	6.9	2.1 3.3	3.4		3.2 3.6	- 3.6	-
			Bottom	17.0	23.0 23.6		8.1 8.0		33.6 32.4		97.5 95.8	97.6	6.9 6.7		6.9	3.4 1.9			3.5 3.7	3.0		
				Surface	1.0	23.6	23.6	8.0	8.0	32.4	32.4	95.8 95.8	95.8	6.7	6.7	6.8	1.9	1.9		4.1	3.9	
C2	Rainy	Moderate	16:06	Middle	16.0	23.3 23.3	23.3	8.1 8.1	8.1	33.2 33.2	33.2	97.4 97.3	97.4	6.9 6.9	6.9	0.0	3.8 3.7	3.7	3.1	2.8 3.1	3.0	3.0
				Bottom	31.1	23.3	23.3	8.1	8.1	33.3	33.3	98.4	98.4	6.9	6.9	6.9	3.7	3.7		2.4	2.3	-
			Surface	1.0	23.3 23.6	23.6	8.1 8.1	8.1	33.3 32.7	32.7	98.4 98.8	98.8	6.9 7.0	7.0		3.7 2.4	2.5		2.1 3.0	3.1		
						23.6 23.4		8.1 8.1		32.7 33.0		98.8 98.5		7.0		6.9	2.5 2.7			3.2 2.8		
G1	Rainy	Moderate	16:26	Middle	4.0	23.4	23.4	8.1	8.1	33.0	33.0	98.5	98.5	6.9	6.9		2.7	2.7	2.6	2.6	2.7	2.7
				Bottom	7.0	23.4 23.4	23.4	8.1 8.1	8.1	33.1 33.1	33.1	98.9 99.0	99.0	7.0 7.0	7.0	7.0	2.6 2.7	2.6		2.4	2.3	
				Surface	1.0	23.4 23.4	23.4	8.1 8.1	8.1	<u>33.0</u> 33.0	33.0	100.4 100.4	100.4	7.1	7.1		2.4 2.5	2.5		3.4	3.6	
G2	Rainy	Moderate	16:18	Middle	5.0	23.4	23.4	8.1	8.1	33.1	33.1	101.6	101.6	7.2	7.1	7.1	2.3	2.3	2.2	2.8	2.6	2.6
G2 Rainy	moderate	10.10			23.4 23.3		8.1 8.1		33.1 33.4		101.5 104.3		7.1 7.3			2.3 1.8		2.2	2.4		- 2.0	
				Bottom	9.0	23.4	23.4	8.2	8.1	33.4	33.4	104.5	104.4	7.4	7.3	7.3	1.9	1.9		1.4	1.5	
G3 Rainy			Surface	1.1	23.5 23.5	23.5	8.1 8.1	8.1	32.8 32.8	32.8	98.8 98.8	98.8	7.0	7.0	6.9	2.4 2.3	2.3		3.0 3.5	3.3		
	Moderate	16:30	Middle	4.0	23.4 23.4	23.4	8.1 8.1	8.1	33.0 33.0	33.0	98.5 98.4	98.5	6.9 6.9	6.9	0.5	2.6 2.5	2.6	2.5	2.7 3.0	2.9	2.8	
			Bottom	7.0	23.4	23.4	8.1	8.1	33.1	33.1	99.5	99.6	7.0	7.0	7.0	2.5	2.5		2.1	2.2	-	
			Surface	1.0	23.4 23.5	23.5	8.1 8.1	8.1	33.1 32.8	32.8	99.6 99.0	99.0	7.0 7.0	7.0		2.5 2.4	2.4	-	2.3	1.7		
					23.5 23.4		8.1 8.1		32.8 33.0		99.0 98.8		7.0 7.0		7.0	2.4 2.3			1.7 1.4		-	
G4	Rainy	Moderate	16:39	Middle	4.0	23.4	23.4	8.1	8.1	33.0	33.0	98.8	98.8	7.0	7.0		2.3	2.3	2.4	1.5	1.5	1.0
			Bottom	7.0	23.4 23.4	23.4	8.1 8.1	8.1	<u>33.1</u> 33.1	33.1	100.1 100.3	100.2	7.1	7.1	7.1	2.4 2.3	2.3		<0.1 <0.1	<0.1		
		Moderate		Surface	1.0	23.4 23.4	23.4	8.1 8.1	8.1	33.0 33.0	33.0	100.9 100.9	100.9	7.1	7.1		2.5 2.6	2.6	2.6	1.3 1.6	1.5	
M1	Rainy		16:23	Middle	3.0	23.4	23.4	8.1	8.1	33.1	33.1	102.4	102.4	7.2	7.2	2.6	2.6	2.7		2.1	2.2	2.1
	,				5.0	23.4 23.4	23.4	8.1 8.1	8.1	33.1 33.2	33.2	102.3 102.7	102.8	7.2 7.2	7.2	7.2	2.7 2.5	2.5		2.3 2.5	2.7	-
				Bottom		23.4 23.4		8.1 8.1		33.2 33.0		102.9 100.2		7.2 7.1		1.2	2.5			2.9 2.6		
				Surface	1.0	23.4	23.4	8.1	8.1	33.0	33.0	100.1	100.2	7.1	7.1	7.1 2.7 1.8 1.9	2.7	2.7		2.3	2.5	1.9
M2	Rainy	Moderate	16:15	Middle	6.1	23.4 23.4	23.4	8.1 8.1	8.1	33.2 33.2	33.2	103.0 102.6	102.8	7.2	7.2			1.8	2.2	1.6 1.9	1.8	
				Bottom	11.0	23.2 23.2	23.2	8.1 8.1	8.1	33.5 33.5	33.5	100.8 100.6	100.7	7.1 7.1	7.1	7.1	2.1 2.1	2.1		1.3 1.5	1.4	
				Surface	1.0	23.5	23.5	8.1	8.1	32.8	32.8	99.0	99.0	7.0	7.0		2.3	2.3		1.8	- 1.8	
	. .		10.05			23.5 23.4		8.1 8.1		32.8 33.0		98.9 98.8		7.0 7.0		7.0	2.4 2.2			1.8 2.5		-
M3	Rainy	Moderate	16:35	Middle	4.0	23.4	23.4	8.1	8.1	33.0	33.0	98.7	98.8	7.0	7.0		2.2	2.2	2.2	2.1	2.3	2.3
			Bottom	7.0	23.4 23.4	23.4	8.1 8.1	8.1	<u>33.1</u> 33.1	33.1	99.5 99.6	99.6	7.0	7.0	7.0	2.1 2.2	2.2		3.0 2.7	2.9		
				Surface	1.1	23.5 23.5	23.5	8.1 8.1	8.1	33.0 33.0	33.0	99.1 99.1	99.1	7.0	7.0		2.7 2.6	2.7		1.3 1.6	1.5	
M4	Rainy	Moderate	te 16:11	Middle	5.0	23.4	23.4	8.1	8.1	33.1	33.1	100.4	100.3	7.1	7.1	7.0	2.6	2.6	2.4	2.1	2.3	2.2
			Bottom	9.0	23.4 23.4	23.4	8.1 8.1	8.1	33.1 33.3	33.3	100.1 103.4	103.6	7.0 7.3	7.3	7.3	2.6 2.0	2.0		2.4	2.8	-	
					23.4 23.5		8.1 8.1		33.3 32.8		103.8 99.1		7.3 7.0		1.5	2.0 2.3			2.9 2.7			
				Surface	1.0	23.5	23.5	8.1	8.1	32.8	32.8	99.1	99.1	7.0	7.0	7.0	2.3	2.3		3.1	2.9	_
M5	Rainy	Moderate	16:46	Middle	6.0	23.4 23.4	23.4	8.1 8.1	8.1	33.1 33.1	33.1	99.6 99.4	99.5	7.0	7.0	-	2.7 2.5	2.6	2.4	2.5 2.3	2.4	2.5
				Bottom	11.0	23.3	23.3	8.1 8.1	8.1	33.2 33.3	33.3	101.2 101.4	101.3	7.1 7.1	7.1	7.1	2.2 2.3	2.3	Ī	2.1	2.2	
				Surface	-	23.3	-	-	-	-	-	-	-	-	-		-	-		2.3	-	
I			10.10		2.0	- 23.5		- 8.1		- 32.9		- 99.0		- 7.0		7.0	- 8.0			- 1.6		
MC					20		23.5		8.1		32.9		99.0		7.0			8.0	2.3		1.5	1.5
M6	Rainy	Moderate	16:42	Middle Bottom	2.0	23.5		8.1		32.9		99.0		7.0			8.0		-	1.3		-

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 19 April 2023 (Mid-Flood Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	_	Action Level	Limit Level
	Stations G1-G4, M1-M5	1	
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>		
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	<u>Stations G1-G4, M1-M5</u>		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 4.0 NTU</u>	<u>C1: 4.4 NTU</u>
	<u>Station M6</u>	-	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 2.9 mg/L</u>	<u>C1: 3.2 mg/L</u>
	Stations M1-M5		
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
сс: л	Surface	station's SS at the same tide of	station's SS at the same tide of
SS in mg/L (See Note 2 and 4)		the same day	the same day
(<u>C1: 2.9 mg/L</u>	<u>C1: 3.2 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 4.3 mg/L</u>	<u>C1: 4.6 mg/L</u>
	<u>Station M6</u>	·	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth (m)	Temp	erature (°C)	P	н	Salini	ity ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Turt	bidity(NTL	J)	Suspend	ded Solids	(mg/L)
Location	Condition	Condition**	Time	Bob(iii)	Value	Average		Average		Average		Average	Value	Average	DA*		Average	DA*		Average	DA*
				Surface 1.	23.3	23.3	<u>8.1</u> 8.1	8.1	33.1 33.1	33.1	93.3 93.0	93.2	6.6 6.6	6.6	0.5	1.6 1.6	1.6		3.6 3.3	3.5	
C1	Cloudy	Moderate	13:59	Middle 9.0	23.1	23.1	8.1	8.1	33.4	33.4	90.4	90.4	6.4	6.4	6.5	2.8	2.8	2.6	2.6	2.8	2.9
				Bottom 17.	23.1 23.1	23.1	<u>8.1</u> 8.1	8.1	33.4 33.4	33.4	90.4 89.9	89.9	6.4 6.4	6.4	6.4	2.7 3.5	3.5		3.0 2.1	2.4	
					23.1		8.1 8.0		33.4 32.5		89.9 90.6		6.4 6.4		0.4	3.5			2.6 3.3		<u> </u>
				Surface 1.0	23.4	23.4	8.0	8.0	32.8	32.6	90.5	90.6	6.4	6.4	6.4	1.3	1.2		2.9	3.1	
C2	Cloudy	Moderate	13:14	Middle 16.	23.1	23.1	8.1 8.1	8.1	33.4 33.4	33.4	89.6 89.6	89.6	6.3 6.3	6.3		3.3 3.2	3.3	2.7	2.7 2.4	2.6	2.6
				Bottom 31.	0 23.1 23.1	23.1	<u>8.1</u> 8.1	8.1	33.4 33.4	33.4	89.2 89.2	89.2	6.3 6.3	6.3	6.3	3.8 3.7	3.7		2.1 2.3	2.2	
				Surface 1.0	23.4	23.4	8.1	8.1	32.7 32.7	32.7	93.9	93.7	6.6	6.6		1.2	1.2		2.8	2.6	
G1	Cloudy	Moderate	13:37	Middle 4.0	23.4	23.2	8.1 8.1	8.1	33.1	33.2	93.5 91.6	91.7	6.6 6.5	6.5	6.5	1.2 1.3	1.3	1.4	2.4 3.2	3.4	3.3
01	Cloudy	moderate	10.07		23.2		<u>8.1</u> 8.1		33.2 33.4		91.7 91.1		6.5 6.4			1.3 1.6			3.5 3.8		0.0
				Bottom 7.0	23.1	23.1	8.1	8.1	33.4	33.4	91.1	91.1	6.4	6.4	6.4	1.7	1.7		4.2	4.0	<u> </u>
				Surface 1.0	23.4	23.4	8.1 8.1	8.1	32.4 32.4	32.4	93.5 92.5	93.0	6.6 6.5	6.6	6.5	1.2 1.3	1.3		2.5 2.2	2.4	1
G2	Cloudy	Moderate	13:30	Middle 5.0	23.2	23.2	<u>8.1</u> 8.1	8.1	33.2 33.2	33.2	91.9 91.9	91.9	6.5 6.5	6.5	0.0	1.4	1.4	1.4	2.7 3.0	2.9	3.1
				Bottom 9.0	23.1	23.1	8.1	8.1	33.4	33.4	92.0	92.1	6.5	6.5	6.5	1.6	1.6		4.3	4.1	
				Surface 1.	23.1	23.3	<u>8.1</u> 8.1	8.1	33.4 32.9	32.9	92.1 93.7	93.7	6.5 6.6	6.6		1.6 1.3	1.3		3.9 1.9	1.8	<u> </u>
					23.3		<u>8.1</u> 8.1		32.9 33.1		93.6 92.5		6.6 6.5		6.6	1.3			1.7 1.4		
G3	Cloudy	Moderate	13:41	Middle 4.0	23.3	23.3	8.1	8.1	33.1	33.1	92.6	92.6	6.5	6.5		1.4	1.4	1.5	1.2	1.3	1.0
				Bottom 7.	23.1	23.1	8.1 8.1	8.1	33.1 33.4 33.4	33.4	91.0 90.9	91.0	6.4 6.4	6.4	6.4	1.8 1.9	1.8		<0.1 <0.1	<0.1	
				Surface 1.	23.3	23.3	<u>8.1</u> 8.1	8.1	33.0 33.0	33.0	92.6 92.5	92.6	6.5 6.5	6.5		2.9	2.8		1.2 1.4	1.3	
G4	Cloudy	Moderate	13:47	Middle 4.0	22.2	23.2	8.1	8.1	33.2	33.2	91.7	91.9	6.5	6.5	6.5	2.5	2.5	3.0	1.9	1.8	1.8
				Bottom 7.	23.2	23.1	8.1 8.1	8.1	33.2 33.4	33.4	92.0 89.2	89.2	6.5 6.3	6.3	6.3	3.6	3.6		1.6 2.1	2.2	
					23.1		<u>8.1</u> 8.1		33.4 32.6		89.2 93.0		6.3 6.6		0.0	3.6			2.3		<u> </u>
				Surface 1.0	23.3	23.3	8.1	8.1	32.6	32.6	92.6	92.8	6.5	6.6	6.5	1.2	1.2		1.4	1.3	
M1	Cloudy	Moderate	13:35	Middle 3.	23.3	23.3	<u>8.1</u> 8.1	8.1	32.9 32.9	32.9	91.4 91.5	91.5	6.5 6.5	6.5		1.4	1.4	1.5	<u>1.8</u> 1.6	1.7	1.7
				Bottom 5.0	23.2	23.2	<u>8.1</u> 8.1	8.1	33.1 33.2	33.1	89.8 89.2	89.5	6.3 6.3	6.3	6.3	2.1	2.0		2.3 2.1	2.2	
				Surface 1.0	23.4	23.4	8.1	8.1	32.9	32.9	93.8	93.8	6.6	6.6		1.4	1.3		2.2	2.3	
M2	Cloudy	Moderate	13:26	Middle 6.0	23.4	23.1	8.1 8.1	8.1	32.9 33.3	33.3	93.8 91.3	91.4	6.6 6.5	6.5	6.5	1.2 1.8	1.9	1.7	2.4 2.6	2.5	2.6
1012	Cloudy	moderate	10.20		23.1		8.1 8.1		33.3 33.4		91.4 90.5		6.5 6.4			1.9 1.9			2.4 3.3		2.0
				Bottom 11.	23.1	23.1	8.1	8.1	33.4	33.4	90.5	90.5	6.4	6.4	6.4	1.9	1.9		2.9	3.1	L
				Surface 1.0	23.4	23.4	<u>8.1</u> 8.1	8.1	32.7 32.8	32.7	93.8 93.5	93.7	6.6 6.6	6.6	6.5	1.3	1.4		<u>1.3</u> 1.7	1.5	
M3	Cloudy	Moderate	13:44	Middle 4.0	23.2	23.2	8.1 8.1	8.1	33.1 33.1	33.1	91.7 91.9	91.8	6.5 6.5	6.5	0.0	1.4 1.3	1.3	1.6	2.3 2.1	2.2	2.2
				Bottom 7.0	23.1	23.1	8.1	8.1	33.4	33.4	90.4	90.5	6.4	6.4	6.4	2.2	2.2		2.5	2.8	
				Surface 1.0	23.1	23.2	8.1 8.1	8.1	33.4 33.3	33.3	90.6 91.4	91.3	6.4 6.5	6.4		2.2 2.5	2.5		3.0 2.2	2.2	<u> </u>
					23.1		<u>8.1</u> 8.1		33.3 33.4		91.1 90.8		6.4 6.4		6.4	2.6 2.6			2.2		1
M4	Cloudy	Moderate	13:21	Middle 5.0	23.1	23.1	8.1	8.1	33.4	33.4	90.8	90.8	6.4	6.4		2.5	2.5	2.8	1.9	1.8	1.8
				Bottom 9.0	23.1	23.1	<u>8.1</u> 8.1	8.1	<u>33.4</u> 33.5	33.4	90.4 90.4	90.4	6.4 6.4	6.4	6.4	3.3	3.3		<u>1.5</u> 1.3	1.4	
				Surface 1.	23.3	23.3	8.1 8.1	8.1	33.0 33.0	33.0	93.5 93.1	93.3	6.6 6.6	6.6		1.0	1.1		2.3 2.6	2.5	
M5	Cloudy	Moderate	13:54	Middle 6.0	23.2	23.2	8.1	8.1	33.3	33.3	91.7	91.8	6.5	6.5	6.5	1.5	1.5	1.5	2.7	2.9	3.0
	-			Bottom 11.	23.2 0 23.1	23.1	8.1 8.1	8.1	33.3 33.4	33.5	91.8 91.5	91.4	6.5 6.5	6.5	6.5	1.5 1.9	1.8		3.0 3.8	3.6	
					23.1		8.1		33.5		91.3		6.5		0.0	1.8			3.4		├───
				Surface -	-		-	-	-	-	-	-	-	-	6.6	-	-		-	-	
M6	Cloudy	Moderate	13:51	Middle 2.	23.3	23.3	<u>8.1</u> 8.1	8.1	33.1 33.1	- 33.1	93.4 93.1	93.3	6.6 6.6	6.6		1.8	1.7	1.7	2.1 2.6	2.4	2.4
				Bottom -			-	-	-		-	-	-		-	-	-		-	-	
Remarks:	*DA: Depth-Ave	aragod	I	I			-	1		1				1	1	1				1	·

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 21 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	1	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>	-	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	•	
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
	Station M6	<u>C2: 4.5 NTU</u>	<u>C2: 4.8 NTU</u>
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
	~ ^	or 120% of upstream control station's SS at the same tide of	or 130% of upstream control station's SS at the same tide of
	Surface		
		the same day	the same day
		<u>C2: 3.7 mg/L</u>	<u>C2: 4.0 mg/L</u>
	Stations M1-M5		- / /-
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in ma/I	Surface	station's SS at the same tide of	station's SS at the same tide of
SS in mg/L (See Note 2 and 4)		the same day	the same day
		<u>C2: 3.7 mg/L</u>	<u>C2: 4.0 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C2: 2.6 mg/L</u>	<u>C2: 2.9 mg/L</u>
	Station M6	ļ	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 21 April 2023

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperat	ure (°C)	р	н	Salini	ty ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NTL	J)	Suspend	ed Solids	(mg/L)
Location	Condition	Condition**	Time	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	23.3	23.3	8.1	8.1	33.1	33.1	97.0	95.3	6.8	6.7		1.5	1.5		<0.1	<0.1	
						23.3 23.1		8.1 8.1	-	33.1 33.4		93.5 90.5		6.6 6.4	-	6.6	1.5 2.8	-		<0.1 1.2		
C1	Cloudy	Moderate	8:44	Middle	9.0	23.1	23.1	8.1	8.1	33.4	33.4	90.6	90.6	6.4	6.4		2.7	2.8	2.6	1.4	1.3	1.0
				Bottom	17.1	23.1	23.1	8.1	8.1	33.4	33.4	89.9	89.9	6.4	6.4	6.4	3.6	3.6		1.9	1.8	
				o (23.1 23.4		8.1 8.0		33.4 32.7		89.9 91.1		6.4 6.4			3.5 1.2			1.7		<u> </u>
				Surface	1.0	23.5	23.5	8.0	8.0	32.5	32.6	90.7	90.9	6.4	6.4	6.4	1.2	1.2		1.4	1.3	
C2	Cloudy	Moderate	7:59	Middle	16.1	23.1 23.1	23.1	8.1 8.1	8.1	33.4 33.4	33.4	89.6 89.5	89.6	6.3 6.3	6.3	0.1	3.5 3.3	3.4	2.7	1.6 1.8	1.7	1.8
				Dettern	31.0		23.1	8.1	8.1	33.5	33.4	89.3	89.3	6.3	6.3	6.3	3.4	3.4		2.1	2.3	1
				Bottom	31.0	23.1 23.1	23.1	8.1	8.1	33.5 33.4	33.4	89.2	89.3	6.3	0.3	6.3	3.4	3.4		2.4	2.3	<u> </u>
				Surface	1.0	23.3 23.4	23.3	8.1 8.1	8.1	32.8 32.7	32.7	97.4 94.5	96.0	6.9 6.7	6.8		1.2 1.2	1.2		1.3 1.6	1.5	
G1	Cloudy	Moderate	8:23	Middle	4.0	23.2	23.2	8.1	8.1	33.2	33.2	91.7	91.9	6.5	6.5	6.6	1.4	1.4	1.4	2.2	2.4	2.2
61	Cloudy	Woderate	0.23	wildule	4.0	23.2	23.2	8.1	0.1	33.2	55.2	92.0	91.9	6.5	0.5		1.4	1.4	1.4	2.5	2.4	2.2
				Bottom	7.0	23.2 23.1	23.2	8.1 8.1	8.1	33.3 33.4	33.3	91.1 91.1	91.1	6.4 6.4	6.4	6.4	1.6 1.6	1.6		2.8 3.0	2.9	
				Surface	1.0	23.4	23.4	8.1	8.1	32.7	32.6	96.3	95.0	6.8	6.7		1.2	1.2		1.4	1.6	
				Cunace	1.0	23.4 23.2		8.1 8.1		32.5 33.2		93.6 91.8	00.0	6.6 6.5		6.6	1.1			1.7		
G2	Cloudy	Moderate	8:15	Middle	5.0	23.2	23.2	8.1	8.1	33.2	33.2	91.0	91.9	6.5	6.5		1.4	1.4	1.3	2.0	2.2	2.2
				Bottom	9.0	23.2	23.2	8.1	8.1	33.3	33.4	91.6	91.8	6.5	6.5	6.5	1.4	1.4		3.0	2.9	
						23.1 23.4		8.1 8.1		33.4 32.8		91.9 96.6		6.5 6.8			1.5 1.3			2.7		<u> </u>
				Surface	1.0	23.4	23.3	8.1	8.1	32.9	32.8	93.9	95.3	6.6	6.7	6.6	1.4	1.3		1.8	1.8	
G3	Cloudy	Moderate	8:26	Middle	4.0	23.3	23.3	8.1	8.1	33.1	33.0	92.6	92.9	6.5	6.6	0.0	1.4	1.4	1.5	2.4	2.3	2.3
						23.3 23.2		8.1 8.1		33.0 33.3		93.1 91.8		6.6 6.5			1.4 1.7			2.1 2.9		1
				Bottom	7.0	23.1	23.2	8.1	8.1	33.4	33.3	91.1	91.5	6.4	6.5	6.5	1.8	1.7		2.6	2.8	
				Surface	1.0	23.3	23.3	8.1	8.1	32.9	32.9	93.5	93.2	6.6	6.6		2.8	2.8		1.4	1.6	
G4	Claudu	Madazata	0.00	Midalla	4.0	23.3 23.2	23.2	8.1 8.1	8.1	32.9 33.2	33.2	92.8 92.0	92.2	6.5 6.5	6.5	6.5	2.8 2.1	2.2	2.7	1.7 2.2	2.3	2.2
G4	Cloudy	Moderate	8:32	Middle	4.0	23.2	23.Z	8.1	8.1	33.1	33.Z	92.4	92.2	6.5	6.5		2.2	2.2	2.7	2.4	2.3	2.2
				Bottom	7.1	23.1 23.1	23.1	8.1 8.1	8.1	33.4 33.4	33.4	90.5 89.3	89.9	6.4 6.3	6.4	6.4	3.1 3.2	3.2		2.5 2.9	2.7	
				Surface	1.0	23.3 23.3	23.3	8.1	8.1	32.6 32.6	32.6	93.9	93.6	6.6	6.6		1.3 1.2	1.3		2.1	2.2	
				Ounace		23.3		8.1		32.6		93.2		6.6		6.5				2.3		
M1	Cloudy	Moderate	8:20	Middle	3.0	23.3 23.3	23.3	8.1 8.1	8.1	32.9 32.8	32.8	91.6 91.9	91.8	6.5 6.5	6.5		1.3 1.3	1.3	1.4	1.6 1.8	1.7	1.7
				Bottom	5.0	23.3	23.2	8.1	8.1	33.0	33.1	91.1	90.7	6.4	6.4	6.4	1.5	1.5		1.4	1.3	
						23.2 23.4		8.1 8.1		33.1 32.9		90.2 94.6		6.4 6.7		0.1	1.5 1.1			1.2 1.4		<u> </u>
				Surface	1.0	23.4	23.4	8.1	8.1	32.9	32.9	94.0	94.3	6.6	6.6	6.6	1.2	1.2		1.4	1.3	
M2	Cloudy	Moderate	8:11	Middle	6.0	23.1	23.2	8.1	8.1	33.3	33.3	91.4	91.9	6.5	6.5	6.6	1.6	1.6	1.4	1.9	1.8	1.8
	,					23.2 23.1		8.1 8.1		33.3 33.4		92.3 90.6		6.5 6.4			1.7 1.5			1.7 2.3		1
				Bottom	11.0	23.1	23.1	8.1	8.1	33.4	33.4	90.5	90.6	6.4	6.4	6.4	1.6	1.5		2.1	2.2	
				Surface	1.0	23.4 23.4	23.4	8.1	8.1	32.6	32.7	96.6	95.3	6.8	6.7		1.3 1.2	1.3		2.7	2.8	
	Olauda	Madaaada	0.00	M. J. H.	10	23.4	00.0	8.1 8.1	0.4	32.7 33.1	00.4	94.0 92.0	00.4	6.6 6.5	0.5	6.6	1.2	4.0		2.9	0.0	
M3	Cloudy	Moderate	8:29	Middle	4.0	23.3	23.3	8.1	8.1	33.1	33.1	92.7	92.4	6.5	6.5		1.3	1.3	1.6	2.0	2.2	2.2
				Bottom	7.1	23.2 23.1	23.1	8.1 8.1	8.1	33.3 33.4	33.4	90.7 90.3	90.5	6.4 6.4	6.4	6.4	2.2 2.3	2.3		1.7	1.5	
				Surface	1.0	23.2	23.2	8.1	8.1	33.3	33.3	91.5	91.5	6.5	6.5		2.3	2.4		2.8	2.9	<u> </u>
				Surface	1.0	23.2	23.Z	8.1	0.1	33.3	33.3	91.4	91.5	6.5	0.5	6.4	2.4	2.4		3.0	2.9	1
M4	Cloudy	Moderate	8:06	Middle	5.0	23.1 23.1	23.1	8.1 8.1	8.1	33.4 33.4	33.4	90.8 90.9	90.9	6.4 6.4	6.4		2.4 2.4	2.4	2.7	2.5 2.2	2.4	2.2
				Bottom	9.0	23.1	23.1	8.1	8.1	33.5	33.4	90.4	90.4	6.4	6.4	6.4	3.5	3.4		1.3	1.5	
					3.0	23.1		8.1	0.1	33.4	55.4	90.4	30.4	6.4	0.4	0.4	3.4	5.4		1.6	1.5	<u> </u>
				Surface	1.0	23.3 23.3	23.3	8.1 8.1	8.1	33.0 33.0	33.0	96.8 93.6	95.2	6.8 6.6	6.7		1.2	1.1		1.6 1.9	1.8	
M5	Cloudy	Moderate	8:39	Middle	6.0	23.2	23.2	8.1	8.1	33.3	33.2	91.8	92.0	6.5	6.5	6.6	1.5	1.5	1.5	2.2	2.4	2.3
	2.544,		2.00			23.2 23.1		8.1 8.1		33.2 33.4		92.1 91.5		6.5 6.5			1.4 1.9			2.6 2.7		
				Bottom	11.0	23.1	23.1	8.1	8.1	33.5	33.4	91.5	91.5	6.5	6.5	6.5	1.9	1.9		3.0	2.9	1
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
						- 23.3		- 8.1		- 33.0		- 95.7		- 6.8		6.7	- 8.0			- 2.3		1
M6	Cloudy	Moderate	8:36	Middle	2.1	23.3	23.3	8.1	8.1	33.1	33.1	93.5	94.6	6.6	6.7		8.0	8.0	1.9	2.3	2.5	2.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	1
omarka:	*DA: Dopth Ave		1			-		-		-		-		-			-			-		L

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 21 April 2023 (Mid-Flood Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	_		
	Stations G1-G4, M1-M5		
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>	1	r
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 4.3 NTU</u>	<u>C1: 4.7 NTU</u>
	<u>Station M6</u>		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day <u>C1: n.a. mg/L</u>	the same day <u>C1: n.a. mg/L</u>
	Stations M1-M5	<u>C1: n.u. mg/L</u>	<u>C1: n.u. mg/L</u>
	<u>514110115 1/11-1/15</u>	6) / I	7 1 /1
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
	Curford	or 120% of upstream control station's SS at the same tide of	or 130% of upstream control station's SS at the same tide of
SS in mg/L	Surface	the same day	the same day
(See Note 2 and 4)		<u>C1: n.a. mg/L</u>	<u>C1: n.a. mg/L</u>
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 2.2 mg/L</u>	<u>C1: 2.3 mg/L</u>
	Station M6	I	
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperat	ure (°C)	p	н	Salin	ity ppt	DO Satur	ation (%)	Dissolved	Oxygen	(mg/L)	Tur	bidity(NTU	1)	Suspen	ded Solids	(mg/L)
Location	Condition	Condition**	Time	Depti	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Average		Average		Average		Average		Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	23.4 23.3	23.4	8.1 8.1	8.1	<u>33.3</u> 33.3	33.3	95.5 95.3	95.4	7.0 7.0	7.0	= .	1.2 1.2	1.2		2.6 2.2	2.4	
C1	Cloudy	Moderate	15:46	Middle	9.0	23.0	23.0	8.1	8.1	33.5	33.5	95.1	95.1	6.9	6.9	7.0	1.9	1.8	1.9	3.0	2.9	2.8
	-			Bottom	17.1	23.0 22.9	22.9	8.1 8.1	8.1	33.5 33.6	33.6	95.0 94.9	94.9	6.9 6.9	6.9	6.9	1.8 2.6	2.6		2.8 3.1	3.2	1
						22.9 23.4		8.1 8.0		33.6 32.8		94.9 94.2		6.9 6.9		0.9	2.6 0.9			3.2 3.5		<u> </u>
				Surface	1.0	23.3	23.4	8.0	8.0	33.0	32.9	94.2	94.2	6.9	6.9	6.9	1.1	1.0		3.0	3.3	1
C2	Cloudy	Moderate	15:01	Middle	16.0	22.9 22.9	22.9	8.1 8.1	8.1	33.5 33.5	33.5	93.6 93.6	93.6	6.8 6.8	6.8		2.3 2.3	2.3	2.0	5.0 4.5	4.8	5.0
				Bottom	31.0	22.8 22.8	22.8	8.1	8.1	33.6 33.6	33.6	93.3 93.3	93.3	6.8 6.8	6.8	6.8	2.7	2.6		6.8 7.2	7.0	
				Surface	1.0	23.5	23.5	8.1 8.1	8.1	33.0	33.1	95.5	95.4	7.0	7.0		2.6 1.0	1.1		3.2	3.4	
01	Olauda	Madamata	45.05			23.5 23.1		8.1 8.1		33.1 33.4		95.2 94.6		7.0 6.9		6.9	1.1			3.5 3.6		
G1	Cloudy	Moderate	15:25	Middle	4.0	23.1	23.1	8.1	8.1	33.4	33.4	94.4	94.5	6.9	6.9		1.1	1.1	1.1	3.8	3.7	3.8
				Bottom	7.0	22.9 22.9	22.9	8.1 8.1	8.1	33.5 33.5	33.5	96.1 96.6	96.4	7.0 7.1	7.1	7.1	1.2 1.2	1.2		4.4	4.3	
				Surface	1.0	23.7 23.7	23.7	8.1 8.1	8.1	32.9 32.9	32.9	95.7 95.1	95.4	7.0 7.0	7.0		1.3 1.4	1.3		2.6 2.8	2.7	
G2	Cloudy	Moderate	15:18	Middle	5.0	23.0	23.0	8.1	8.1	33.4	33.4	95.1	95.1	7.0	7.0	7.0	1.2	1.2	1.4	2.5	2.4	2.3
				Bottom	9.0	23.1 22.9	22.9	8.1 8.1	8.1	33.4 33.5	33.5	95.1 94.6	94.6	7.0 6.9	6.9	6.9	1.2 1.7	1.7		2.2 1.9	1.8	1
						22.9 23.4		8.1 8.1		33.5 33.2		94.6 95.7		6.9 7.0		0.9	1.7 1.2			1.7 2.3		<u> </u>
				Surface	1.0	23.4	23.4	8.1	8.1	33.2	33.2	95.3	95.5	7.0	7.0	7.0	1.1	1.1		2.4	2.4	
G3	Cloudy	Moderate	15:28	Middle	4.0	23.1 23.1	23.1	8.1 8.1	8.1	33.3 33.3	33.3	96.3 95.8	96.1	7.1 7.0	7.0		0.9	0.9	1.1	2.5 2.4	2.5	2.7
				Bottom	7.0	22.9 22.9	22.9	8.1 8.1	8.1	33.5 33.5	33.5	97.0 97.0	97.0	7.1 7.1	7.1	7.1	1.2 1.3	1.3		2.9 3.5	3.2	
				Surface	1.0	23.2 23.2	23.2	8.1	8.1	33.2 33.2	33.2	95.7	95.7	7.0	7.0		2.0	2.0		3.6 3.8	3.7	
G4	Cloudy	Moderate	15:34	Middle	4.0	23.2 23.0	23.1	8.1 8.1	8.1	33.4	33.4	95.7 96.4	96.4	7.0 7.1	7.1	7.0	1.9 1.8	1.8	2.1	3.8 4.5	4.4	4.4
64	Cloudy	Woderate	13.34			23.1 22.9		8.1 8.1		33.4 33.6		96.4 95.6		7.1 7.0			1.7 2.7		2.1	4.3 4.8		4.4
				Bottom	7.1	22.9	22.9	8.1	8.1	33.6	33.6	95.9	95.8	7.0	7.0	7.0	2.7	2.7		5.2	5.0	L
				Surface	1.1	23.5 23.5	23.5	8.1 8.1	8.1	33.0 33.0	33.0	95.4 95.3	95.4	7.0 7.0	7.0	7.0	1.2 1.2	1.2		2.8 2.6	2.7	
M1	Cloudy	Moderate	15:22	Middle	3.0	23.2 23.2	23.2	8.1 8.1	8.1	33.2 33.2	33.2	95.0 94.8	94.9	7.0 6.9	6.9	7.0	1.4 1.4	1.4	1.4	2.6 2.4	2.5	2.5
				Bottom	5.0	23.0	23.0	8.1	8.1	33.4	33.4	94.3	94.1	6.9	6.9	6.9	1.8	1.7		2.4	2.3	
				Surface	1.0	23.0 23.6	23.6	8.1 8.1	8.1	33.4 33.1	33.1	93.9 96.0	95.9	6.9 7.0	7.0		1.6 1.2	1.2		2.1 2.2	2.2	<u> </u>
						23.6 22.9		8.1 8.1		33.1 33.5		95.8 94.9		7.0 7.0		7.0	1.2 1.5			2.2 2.6		
M2	Cloudy	Moderate	15:13	Middle	6.0	22.9	22.9	8.1	8.1	33.5	33.5	94.9	94.9	6.9	6.9		1.5	1.5	1.5	2.4	2.5	2.8
				Bottom	11.0	22.9 22.9	22.9	8.1 8.1	8.1	33.6 33.6	33.6	94.7 94.7	94.7	6.9 6.9	6.9	6.9	1.7 1.8	1.8		3.6 3.8	3.7	
				Surface	1.0	23.5 23.5	23.5	8.1 8.1	8.1	<u>33.1</u> 33.1	33.1	96.0 95.6	95.8	7.0 7.0	7.0		1.1 1.2	1.2		3.2 3.3	3.3	
M3	Cloudy	Moderate	15:31	Middle	4.0	23.1	23.1	8.1	8.1	33.3	33.3	97.6	97.6	7.2	7.2	7.1	1.0	1.0	1.2	3.6	3.4	3.5
	-			Bottom	7.0	23.1 23.0	23.0	8.1 8.1	8.1	33.3 33.5	33.5	97.6 97.9	98.2	7.2 7.2	7.2	7.2	0.9 1.6	1.6		3.2 4.0	3.8	
						23.0 23.2		8.1 8.1		33.5 33.4		98.4 95.2		7.2 7.0		1.2	1.5 1.9			3.6 3.5		<u> </u>
				Surface	1.0	23.2 23.0	23.2	8.1	8.1	33.5 33.5	33.5	95.1	95.2	6.9 6.9	6.9	6.9	2.0	2.0		3.1 2.5	3.3	
M4	Cloudy	Moderate	15:08	Middle	5.0	23.0	23.0	8.1 8.1	8.1	33.5	33.5	94.8 94.7	94.8	6.9	6.9		1.7 1.7	1.7	1.9	2.9	2.7	2.8
				Bottom	9.0	22.9 22.9	22.9	8.1 8.1	8.1	33.6 33.6	33.6	94.6 94.6	94.6	6.9 6.9	6.9	6.9	2.2	2.2		2.6 2.3	2.5	
				Surface	1.0	23.3	23.4	8.1 8.1	8.1	33.2	33.2	95.8	95.7	7.0	7.0		0.9	0.9		2.2	2.3	
M5	Cloudy	Moderate	15:41	Middle	6.0	23.4 23.0	23.0	8.1	8.1	33.2 33.4	33.4	95.5 95.2	95.2	7.0 7.0	7.0	7.0	1.3	1.3	1.3	2.4 2.9	2.8	2.7
	cloudy	modorato	10.11			23.0 22.9		8.1 8.1		33.5 33.6		95.2 95.7		7.0 7.0		7.0	1.3 1.8			2.6 3.1		
				Bottom	11.0	22.9	22.9	8.1	8.1	33.6	33.6	95.7	95.7	7.0	7.0	7.0	1.8	1.8		3.0	3.1	L
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-]
M6	Cloudy	Moderate	15:38	Middle	2.0	23.1 23.1	23.1	8.1 8.1	8.1	<u>33.3</u> 33.3	33.3	95.5 95.3	95.4	7.0 7.0	7.0	1.0	1.4 1.4	1.4	1.4	2.1 2.5	2.3	2.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
Remarks:	*DA: Depth-Ave		1	I		-		-			I	-		-			-			-		L

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 24 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	1	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	•	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5	-	-
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.2 NTU</u>	or 130% of upstream control station's Turbidity at the same tide of the same day <u>C2: 3.4 NTU</u>
	<u>Station M6</u>	1	
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
	Surface	<u>6.0 mg/L</u> or 120% of upstream control station's SS at the same tide of the same day <u>C2: 3.9 mg/L</u>	<u>6.9 mg/L</u> or 130% of upstream control station's SS at the same tide of the same day <u>C2: 4.2 mg/L</u>
	Stations M1-M5		
	Surf	<u>6.2 mg/L</u> or 120% of upstream control	<u>7.4 mg/L</u> or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of the same day	station's SS at the same tide of the same day
(See Note 2 and 4)		<u>C2: 3.9 mg/L</u>	<u>C2: 4.2 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C2: 8.4 mg/L</u>	<u>C2: 9.1 mg/L</u>
	Station M6	ļ	<u> </u>
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 24 April 2023

(Mid-Flood Tide)

Location Condition Time Depth (m) Properator (m) Value Average Value	Value Average 7.2 7.1 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.8 6.8 6.8 6.8	DA* Value 1.1 7.0 1.8 1.8 1.8 1.8 1.8 2.6 2.6 0.9 5.0 1.0	Average DA* 1.1 1.8 2.6 1.8	2.9 3.2	Average 3.1	DA*
C1 Cloudy Moderate 8:7 Mide 10 23.4 2.3.0 8.1 1.1 33.3 3.5.7 95.7 91.1 C1 Cloudy Moderate 8:7 Mide 0.2 23.0 8.1 8.1 8.1 33.5 33.5 95.1 95.1 C2 Cloudy Moderate 8:1 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 7.0 & \underline{1.2} \\ & \underline{1.8} \\ \hline 1.8 \\ 6.9 & \underline{2.6} \\ \hline 0.9 \\ 0.9 \\ \hline 1.0 \\ 0.9$	1.8 1.8	3.2	- 3.1	
C1 Cloudy Moderate 8:7 Middle 92.0 23.0 8:1 8:1 33.5 33.5 95.1 95.0 C1 Cloudy Moderate 8:7 Finite 8:1 8:1 8:1 8:1 33.5 33.5 95.1 94.8 94.9 C2 Cloudy Moderate 8:1 22.9 8:1 8:1 8:1 33.6 33.6 93.5 9	$\begin{array}{c c} 6.9 \\ \hline 6.8 \\ \hline 7.8 \\$	1.8 1.8 6.9 2.6 0.9 1.0		2.7		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.8 6.8 6.8 6.8 6.8 6.8	6.9 <u>2.6</u> 2.6 0.9		3.7	3.9	4.0
C2 Cloudy Moderate 8:16 Cloudy 11 C2:9 L.5 8:1 0:1 C3:0 0:40 <t< td=""><td>6.9 0.3 6.9 6.9 6.8 6.8 6.8 6.8 6.8 6.8</td><td>0.3 2.6 0.9</td><td>26</td><td>4.0</td><td></td><td>4.0</td></t<>	6.9 0.3 6.9 6.9 6.8 6.8 6.8 6.8 6.8 6.8	0.3 2.6 0.9	26	4.0		4.0
C2 Cloudy Moderate 8:12 Surface 1.1 23.4 23.4 8.0 6.1 33.6 33.6 94.3 94.2 C2 Cloudy Moderate 8:12 Middle 16.1 22.9 22.9 8.1 8.1 8.1 33.6 33.6 93.6 93.2	6.9 6.9 6.8 6.8 6.8 6.8 6.8 6.8	1.0	2.0	5.2 4.8	5.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.8 6.8 6.8 6.8		0.9	3.3	3.3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.8 0.0 6.8 6.8	6.9 1.0 2.5	2.5 2.0	3.2 3.5	3.6	3.7
G1 Cloudy Moderate 8:16 Surface 1.0 23.5 23.5 8.1 8.1 8.1 33.1 33.1 98.0 97.0 G1 Moderate 8:36 Midid 4.0 23.1 23.1 8.1 8.1 8.1 33.3 33.4 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.6 95.0 95.3 95.6 95.7		2.5		3.7 4.3		- 3.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.8 0.0	6.8 2.5	2.5	4.0	4.2	
G1 Cloudy Moderate 8:36 Middle 4.0 23.1 23.1 8.1 8.1 33.4 33.4 94.3 94.6 61 0 23.1 23.1 23.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 <td< td=""><td>7.2 7.1</td><td>1.0</td><td>1.0</td><td>2.2</td><td>2.4</td><td></td></td<>	7.2 7.1	1.0	1.0	2.2	2.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.9 6.0	7.0 1.1	1.1 1.1	2.7	2.9	2.9
G2 Cloudy Moderate 8:1 23.0 8.1 8.1 33.5 33.5 95.7 95.3 G2 Cloudy Moderate 8:29 Surface 1.0 23.6 8.1 8.1 33.0 95.7 96.4 G2 Cloudy Moderate 8:29 Middle 5.0 23.1 23.1 8.1 8.1 33.4 33.4 95.7 96.4 G3 Cloudy Moderate 8:0 23.1 23.1 8.1 8.1 8.1 33.4 33.4 95.6 94.6 95.9 95.1 95.1	6.9	1.1 7.0 1.1		3.0 3.2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.0 7.0	1.0	- 1.1	3.6	- 3.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.1 7.0	<u>1.3</u> 7.0 1.2	1.3	4.4	4.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.0 6.9	1.0	1.2 1.3	3.5	3.4	3.6
G3 Cloudy Moderate 8:4 10 22.9 22.9 8:1 6:1 33.5 35.3 94.5 94.6 G3 Cloudy Moderate 8:40 10. 23.5 23.5 8.1 8.1 8.1 33.1 33.1 96.0 97.2 G3 Cloudy Moderate 8:40 10. 23.2 23.2 8.1 8.1 8.1 33.3 95.5 95.3 G4 Cloudy Moderate 8:46 10. 23.2 23.2 8.1 8.1 8.1 33.4 33.5 96.6 96.3 G4 Cloudy Moderate 8:46 10. 23.2 23.2 8.1 8.1 8.1 33.4 33.4 96.8 96.1 M1 Cloudy Moderate 8:46 10. 23.1 23.1 8.1 8.1 81.1 33.6 33.6 95.9 95.7 M1 Cloudy Moderate 8:34 0.1	6.9 6.9 6.9 6.9	6.9 1.2 1.5	1.6	3.2	3.2	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.9 0.9	0.9 1.6	- 1.0	3.2	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.2 7.1	7.0 1.1	1.1	2.8	2.9	
G4 Cloudy Moderate 8:46 Surface 1.0 23.0 22.9 8.1 8.1 33.4 33.5 96.7 96.9 96.9 G4 Cloudy Moderate 8:46 Surface 1.0 23.2 23.2 8.1 8.1 8.1 33.2 33.2 96.6 96.3 G4 Cloudy Moderate 8:46 Middle 4.0 23.1 23.1 8.1 8.1 8.1 33.4 33.4 96.8 96.7 96.9 M1 Cloudy Moderate 8:46 Middle 4.0 23.1 23.1 8.1 8.1 8.1 33.4 33.4 96.8 96.7 M1 Cloudy Moderate 8:46 Midele 3.0 23.5 23.5 8.1 8.1 8.1 33.0 96.7 96.2 M2 Moderate 8:34 Midele 3.0 23.5 23.5 8.1 8.1 8.1 33.1 33.0 9	7.0 7.0	1.0 1.1	1.1 1.1	3.4 3.4	3.4	3.3
G4 Cloudy Moderate 8:46 Surface 1.0 22.9 8.1 8.1 33.2 33.2 97.0 G4 Cloudy Moderate 8:46 Middle 4.0 23.1 23.1 8.1 8.1 33.2 33.2 96.6 96.9 96.3 96.9 96.3 96.9 96.1 33.4 33.4 96.6 96.9 96.1 81.1 8.1 8.1 8.1 8.1 33.4 96.6 96.5 95.7 95.6 95.7 95.6 <td< td=""><td>7.1 7.1</td><td>71 1.1</td><td>1.2</td><td>3.4</td><td>3.5</td><td>1</td></td<>	7.1 7.1	71 1.1	1.2	3.4	3.5	1
G4 Cloudy Moderate 8:46 Image: Middle 4.0 23.2 2.3.2 8.1 6.1 33.2 33.4 96.3 96.5 95.0 96.3 96.3 96.3 96.3 96.3 96.4 96.3 96.3 96.4 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3	7.1	1.1 2.0		3.4		
Kinder Kinder<	7.0 7.0	7.0 2.0	2.0	2.4	2.6	
M1 Cloudy Moderate 8:34 Surface 1.0 22.9 2.9 8.1 8.1 8.1 33.6 33.6 95.5 95.7 M1 Cloudy Moderate 8:34 1.0 23.5 23.5 8.1 8.1 33.0 33.0 95.6 96.2 M1 Cloudy Moderate 8:34 1.0 23.5 23.5 8.1 8.1 33.0 33.0 95.6 96.2 M2 Cloudy Moderate 8:34 1.0 23.2 23.3 8.1 8.1 8.1 33.1 33.2 94.8 95.0 M2 Cloudy Moderate 8:34 1.0 23.6 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M2 Cloudy Moderate 8:25 Middle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 95.1 95.0 M3 Cloudy Moderate 8:43 0 <td>7.1 7.0</td> <td>1.6 1.6</td> <td>1.6 2.0</td> <td>3.2</td> <td>3.4</td> <td>3.3</td>	7.1 7.0	1.6 1.6	1.6 2.0	3.2	3.4	3.3
M1 Cloudy Moderate 8:34 Surface 1.0 22.9 8.1 8.1 33.6 39.5 96.7 96.2 M1 Cloudy Moderate 8:34 Ídidle 30.0 23.5 23.5 8.1 8.1 8.1 33.0 33.0 96.5 96.2 M1 Cloudy Moderate 8:34 Ídidle 30.0 23.2 23.3 8.1 8.1 8.1 33.1 33.2 94.8 95.0 Bottom 5.0 23.1 23.0 8.1 8.1 8.1 33.3 33.3 94.8 94.7 M2 Cloudy Moderate 8:25 Ídidle 6.0 23.0 8.1 8.1 8.1 33.1 33.1 94.8 94.7 M2 Cloudy Moderate 8:25 Ídidle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 95.1 95.0 M3 Cloudy Moderate 8:43	7.0 7.0	7.0 2.2	2.3	4.1	3.9	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.0	2.3 1.2		3.7		<u> </u>
M2 Cloudy Moderate 8:15 0 23.1 23.0 8.1 8.1 33.3 33.3 94.8 94.7 M2 Cloudy Moderate 8:25 Surface 1.0 23.6 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M2 Cloudy Moderate 8:25 Surface 1.0 23.6 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M2 Cloudy Moderate 8:25 Middle 6.0 23.0 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M3 Moderate 8:25 Middle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 95.0 95.0 95.1 95.0 95.1 95.0 95.1 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7	<u>7.1</u> 7.0 7.0	7.0 1.2	1.2	2.1	2.2	
M2 Cloudy Moderate 8:15 0 23.1 23.0 8.1 8.1 33.3 33.3 94.8 94.7 M2 Cloudy Moderate 8:25 Surface 1.0 23.6 23.6 8.1 8.1 33.3 33.3 94.8 94.7 M2 Cloudy Moderate 8:25 Surface 1.0 23.6 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M3 Moderate 8:25 Middle 6.0 23.0 23.6 8.1 8.1 33.1 33.1 94.8 94.7 M3 Moderate 8:25 Middle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 95.0 95.0 95.1 95.0 95.1 95.0 95.1 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94	<u>6.9</u> 7.0 6.9	1.0 1.3	1.3 1.3	2.6	2.8	2.8
M2 Cloudy Moderate 8:1 23.0 8:1 33.3 33.1 94.5 M2 Cloudy Moderate 8:25 1.0 23.6 23.6 8.1 8.1 33.1 33.1 96.3 96.7 M2 Cloudy Moderate 8:25 Middle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 96.7 96.3 96.7 Bottom 11.0 22.9 23.0 8.1 8.1 33.6 33.6 94.9 95.0 Bottom 11.0 22.9 22.9 8.1 8.1 33.6 33.6 94.6 94.7 94.7 M3 Cloudy Moderate 8:43 Middle 0.0 23.5 23.5 8.0 8.0 33.0 97.5 97.1 M3 Cloudy Moderate 8:43 Middle 4.0 23.1 23.2 8.1 8.1 33.3 33.0 97.5 97.0 M3	6.9 6.9	60 1.5	1.4	3.4	3.3	1
M2 Cloudy Moderate 8:25 Middle 6.0 23.6 2.00 8.1 0.1 33.1 0.0.1 96.3 0.0.7 M2 Cloudy Moderate 8:25 Middle 6.0 22.9 23.0 8.1 8.1 33.5 33.5 94.9 95.0 Bottom 11.0 22.9 22.9 8.1 8.1 8.1 33.6 33.6 94.6 94.7 94.7 M3 Cloudy Moderate 8:43 0.0 23.5 23.5 8.0 8.0 33.0 33.0 94.6 94.7 94.7 M3 Cloudy Moderate 8:43 Middle 4.0 23.5 23.5 8.0 8.0 33.0 33.0 97.5 97.1 M3 Cloudy Moderate 8:43 Middle 4.0 23.1 23.2 8.1 8.1 33.3 33.0 97.5 97.0 M3 Bottom 7.0 23.0 23.0	6.9	0.9 <u>1.4</u> 1.1		3.1 3.4		<u> </u>
M3 Cloudy Moderate 8:43 Middle 0.0 23.0 23.0 8.1 0.1 33.5 33.3 95.1 33.0 95.1 33.0 95.1 33.0 95.1 33.0 95.1 33.0 95.1 94.6 94.7 94.8 94.7	7.0 7.0	7.0 1.2	- 1.2	3.7	3.6	-
M3 Cloudy Moderate 8:43 Bottom 11.0 22.9 22.9 8.1 8.1 33.6 33.6 94.6 94.7 94.7 M3 Cloudy Moderate 8:43 0.0 23.5 23.5 8.0 8.0 33.0 33.0 94.6 94.7 94.7 M3 Cloudy Moderate 8:43 0.0 23.5 23.5 8.1 8.0 33.1 33.0 97.5 97.0 Bottom 7.0 23.0 23.0 8.1 8.1 8.1 33.5 33.5 97.3 97.5 Bottom 7.0 23.0 23.0 8.1 8.1 8.1 33.5 33.4 97.5 97.5	6.9 7.0 6.9	7.0 <u>1.3</u> 1.4	1.3 1.4	2.8	2.9	2.9
M3 Cloudy Moderate 8:43 Surface 0.0 23.5 23.5 23.5 8.1 8.0 8.1 8.0 33.0 33.1 33.0 97.9 96.3 97.1 M3 Moderate 8:43 Middle 4.0 23.1 23.3 23.2 8.1 8.1 8.1 33.3 33.3 33.3 97.9 96.5 97.0 Bottom 7.0 23.0 23.0 8.1 8.1 33.5 37.7 97.5 Surface 1.0 23.2 23.2 8.1 8.1 33.4 93.4 95.5 95.4	6.9 6.9	6.9 <u>1.6</u> 1.6	1.6	2.5 2.2	2.4	1
M3 Cloudy Moderate 8:43 Gunde 0.0 23.5 23.0 8.1 0.0 33.1 0.00 96.3 0.11 M3 Cloudy Moderate 8:43 Middle 4.0 23.1 23.2 8.1 8.1 33.3 96.3 97.1 Bottom 7.0 23.0 23.0 8.1 8.1 33.3 33.3 97.5 97.0 Surface 1.0 23.2 23.0 23.0 8.1 8.1 33.5 33.5 97.3 97.5	7.2 7.1	1.0	1.1	2.2	2.3	-
M3 Cloudy Moderate 8.43 Middle 4.0 23.3 23.2 8.1 6.1 33.3 33.3 96.5 97.0 Bottom 7.0 23.0 23.0 8.1 8.1 33.5 33.5 97.3 97.5 97.7 97.5 Surface 1.0 23.2 23.2 8.1 8.1 33.4 33.4 95.5 95.4	7.0	7.1 1.1 0.9		2.4	-	-
Dottom 7.0 23.0 25.0 8.1 0.1 33.5 35.3 97.7 97.3 Surface 1.0 23.2 23.2 8.1 8.1 33.4 33.4 95.5 95.4	7.1	0.9	0.9 1.2	3.3	3.5	3.3
Surface 1.0 23.2 23.2 8.1 8.1 33.4 33.4 95.5 95.4	7.1 7.1	7.1 1.6	1.6	3.9 4.3	4.1	
	7.0 7.0	1.9	1.9	1.9	1.8	
	7.0	6.9 <u>1.9</u> 1.6		1.6 2.5		-
Intermediate 0.20 Intermediate 0.00 23.0 20.0 8.1 0.1 33.5 94.8 34.0	6.9 0.9	1.7	1.7 2.0	2.2	2.4	2.3
Bottom 9.0 22.9 22.9 8.1 8.1 33.6 33.6 94.5 94.6	<u>6.9</u> 6.9	6.9 2.3	2.3	2.8 2.9	2.9	
Surface 1.0 23.2 23.2 8.1 8.1 33.2 23.2 98.1 07.0	7.2 7.1	1.0	0.9	3.7	3.6	
	7.0	7.0 0.9		3.4		
INIS Cloudy INIGHTALE 0.35 INIGHTALE 0.1 33.4 35.4 95.1 33.2	7.0 7.0	1.3	- 1.3 1.3	3.2	3.0	3.1
Bottom 11.0 22.9 22.9 8.1 8.1 33.6 33.6 95.3 95.5	7.0 7.0	7.0 1.7	1.7	2.5 2.7	2.6	
Surface	7.0			-		1
M6 Churdy Moderate 9:50 Middle 2.1 23.2 23.2 8.1 9.1 33.3 23.2 97.0 96.2				3.7	3.6	3.6
NO Courty Indulate 0.30 Indulate 2.1 23.2 23.2 8.1 0.1 33.3 53.3 95.6 90.3	7.0 	7.0 - 8.0		3.4	3.0	3.0
Bottom		7.0 <u>8.0</u> 8.0	8.0 1.5	-		1

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 24 April 2023 (Mid-Flood Tide)

Parameter	<u>Depth</u>	Action Level	Limit Level
<u>(unit)</u>	_		
	Stations G1-G4, M1-M5	[r
DO in mg/L	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
(See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	Station M6	1	1
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day
		<u>C1: 3.1 NTU</u>	<u>C1: 3.3 NTU</u>
	Station M6		
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4	•	
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Surface	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
	Stattan M1 M5	<u>C1: 3.7 mg/L</u>	<u>C1: 4.0 mg/L</u>
	Stations M1-M5	() (7	- / /7
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
SS in mg/L	Surface	station's SS at the same tide of the same day	station's SS at the same tide of
(See Note 2 and 4)		<u>C1: 3.7 mg/L</u>	the same day <u>C1: 4.0 mg/L</u>
	Stations C1 C4 M1 M5	<u>C1. 3.7 mg/L</u>	<u>C1. 4.0 mg/L</u>
	Stations G1-G4, M1-M5		/-
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
		or 120% of upstream control	or 130% of upstream control
	Bottom	station's SS at the same tide of	station's SS at the same tide of
		the same day	the same day
		<u>C1: 6.0 mg/L</u>	<u>C1: 6.5 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 April 2023

(Mid-Ebb Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperatu	re (°C)	р	н	Salin	ity ppt	DO Satura	ation (%)	Dissolve	d Oxygen	(mg/L)	Turt	oidity(NTL	J)	Suspen	ded Solids	(mg/L)
Location	Condition	Condition**	Time	Deptil	(111)		verage		Average		Average		Average	Value	Average	DA*		Average	DA*	Value	Average	DA*
				Surface	1.0	23.2 23.2	23.2	8.1 8.1	8.1	33.6 33.6	33.6	93.0 92.8	92.9	6.6 6.5	6.5		1.7 1.8	1.8		1.6 1.9	1.8	
C1	Sunny	Moderate	16:58	Middle	9.0	23.0	23.0	8.2	8.2	33.8	- 33.8	93.4	93.4	6.6	6.6	6.6	1.7	1.7	1.9	2.4	2.6	2.5
01	County	moderate	10.00			23.0 23.0		<u>8.2</u> 8.2		33.8 33.9		93.3 92.5		6.6 6.5			1.7 2.3		1.0	2.7 2.9		2.0
				Bottom	16.9	23.0	23.0	8.2	8.2	33.9	33.9	92.4	92.5	6.5	6.5	6.5	2.4	2.3		3.3	3.1	
				Surface	1.0	23.1 23.1	23.1	<u>8.1</u> 8.1	8.1	33.7 33.7	33.7	93.5 93.4	93.5	6.6 6.6	6.6	0.5	0.6	0.6		2.2	2.3	
C2	Sunny	Moderate	16:11	Middle	16.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	92.1 92.1	92.1	6.5 6.5	6.5	6.5	3.1 3.0	3.1	2.2	2.7 2.6	2.7	2.7
				Bottom	31.1	23.1	23.1	8.1	8.1	33.8	- 33.8	91.7	91.7	6.5	6.5	6.5	2.9	2.9		2.9	3.2	-
						23.1 23.2		8.1 8.1		33.8 33.5		91.7 91.0		6.5 6.4		0.0	3.0 1.8			3.4 2.6		
				Surface	1.1	23.3	23.2	8.1	8.1	33.5	- 33.5	90.8	90.9	6.4	6.4	6.3	1.7	1.7		2.9	2.8	-
G1	Sunny	Moderate	16:37	Middle	4.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.7	33.7	88.8 88.9	88.9	6.3 6.3	6.3		1.6 1.7	1.7	1.9	3.2 3.5	3.4	3.4
				Bottom	7.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	90.1 90.3	90.2	6.4 6.4	6.4	6.4	2.3	2.3		4.0 4.3	4.2	
				Surface	1.0	23.2	23.1	8.1	8.1	33.5	33.6	91.2	91.0	6.4	6.4		1.8	1.7		1.8	1.7	
00	0		40.00			23.1 23.1		8.1 8.1		33.6 33.8		90.8 92.1		6.4 6.5		6.5	1.7 1.8			1.6 2.4		
G2	Sunny	Moderate	16:30	Middle	5.0	23.1	23.1	8.1	8.1	33.8	33.8	92.0	92.1	6.5	6.5		1.7	1.7	1.8	2.1	2.3	2.2
				Bottom	9.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	91.9 92.1	92.0	6.5 6.5	6.5	6.5	2.0 2.0	2.0		2.6 2.9	2.8	
				Surface	1.1	23.3 23.4	23.4	8.1 8.1	8.1	33.5 33.5	33.5	91.2 91.1	91.2	6.4 6.4	6.4		1.6 1.6	1.6		2.4	2.6	
G3	Sunny	Moderate	16:40	Middle	4.0	23.1	23.1	8.1	8.1	33.7	33.7	88.7	88.8	6.3	6.3	6.3	1.8	1.8	1.9	2.1	2.2	2.1
	-				7.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.8 33.8	33.8	88.9 88.4	88.4	6.3 6.2	6.2	6.2	1.8 2.5	2.4		2.3 1.3	1.5	-
				Bottom		23.1		8.1 8.1		33.8		88.3 90.6		6.2 6.4		0.2	2.4 1.9			1.6 1.2		
				Surface	1.2	23.2 23.3	23.2	8.1	8.1	33.6 33.6	33.6	90.0	90.3	6.3	6.4	6.4	1.8	1.9		1.6	1.4	
G4	Sunny	Moderate	16:46	Middle	4.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.7	33.7	90.2 90.0	90.1	6.4 6.4	6.4	0.1	1.9	1.8	2.0	2.4	2.3	2.2
				Bottom	7.0	23.1	23.1	8.1	8.1	33.8 33.8	33.8	90.5 91.0	90.8	6.4	6.4	6.4	2.2 2.2	2.2		3.0 2.7	2.9	
				Surface	1.1	23.1 23.1	23.1	8.1 8.1	8.1	33.5	- 33.5	89.5	89.5	6.4 6.3	6.3		1.8	1.8		1.9	1.9	
						23.1 23.1		8.1 8.1		33.5 33.7		89.4 90.1		6.3 6.4		6.3	1.8 1.8			1.8 2.6		
M1	Sunny	Moderate	16:35	Middle	3.1	23.1	23.1	8.1	8.1	33.7	33.7	89.8	90.0	6.3	6.3		1.8	1.8	1.9	2.4	2.5	2.5
				Bottom	5.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	90.8 90.8	90.8	6.4 6.4	6.4	6.4	2.0 2.0	2.0		2.8 3.3	3.1	
				Surface	1.0	23.2 23.1	23.2	8.1 8.1	8.1	33.5 33.5	33.5	91.9 91.5	91.7	6.5 6.5	6.5		1.5	1.5		3.1 2.9	3.0	
M2	Sunny	Moderate	16:24	Middle	6.0	23.0	23.0	8.1	8.1	33.8	- 33.8	93.1	93.1	6.6	6.6	6.5	1.5 1.8	1.8	2.0	2.7	2.8	2.9
1112	County	moderate	10.24			23.0 23.1		8.1 8.1		33.8 33.9		93.1 92.4		6.6 6.5			1.9 2.8		2.0	2.8 2.9		2.0
				Bottom	11.0	23.1	23.1	8.1	8.1	33.9	33.9	92.4	92.4	6.5	6.5	6.5	2.7	2.7		2.8	2.9	
				Surface	1.0	23.3 23.3	23.3	<u>8.1</u> 8.1	8.1	33.5 33.5	33.5	92.5 91.2	91.9	6.5 6.4	6.5	6.3	<u>1.7</u> 1.7	1.7		2.4 2.8	2.6	
M3	Sunny	Moderate	16:42	Middle	4.0	23.2 23.2	23.2	8.1 8.1	8.1	33.7 33.7	33.7	86.3 87.0	86.7	6.1 6.1	6.1	0.5	2.5 2.5	2.5	2.1	2.4 2.1	2.3	2.3
				Bottom	7.1	23.1	23.1	8.1	8.1	33.8	33.8	89.7	90.0	6.3	6.3	6.3	2.1	2.1		2.1	2.1	-
						23.1 23.2		8.1 8.1		33.8 33.6		90.3 93.1		6.4 6.6			2.1 1.8			2.1 2.7		
				Surface	1.0	23.2 23.0	23.2	8.1	8.1	33.6 33.7	33.6	92.9 93.5	93.0	6.5	6.6	6.6	1.8 1.5	1.8		3.0 2.3	2.9	-
M4	Sunny	Moderate	16:18	Middle	5.0	23.0	23.0	8.1 8.1	8.1	33.7	33.7	93.4	93.5	6.6 6.6	6.6		1.5	1.5	1.7	2.3	2.3	2.3
				Bottom	9.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	93.1 93.0	93.1	6.6 6.6	6.6	6.6	1.8 1.9	1.8		1.7 1.5	1.6	
				Surface	1.0	23.2	23.2	8.1	8.1	33.7	33.7	91.9	91.7	6.5	6.5		2.3	2.3		1.6	1.8	
M5	Sunny	Moderate	16:53	Middle	6.0	23.2 23.0	23.0	8.1 8.1	8.1	33.7 33.7	- 33.7	91.5 92.4	92.4	6.5 6.5	6.5	6.5	2.2 1.5	1.5	2.3	1.9 2.4	2.6	2.6
GIVI	Suriny	wouerate	10.00			23.1 23.0		8.1 8.2		33.7 33.9		92.3 92.2		6.5 6.5			1.6		2.3	2.8 3.1		2.0
				Bottom	11.0	23.0	23.0	8.2	8.2	33.9	33.9	92.1	92.2	6.5	6.5	6.5	3.1 3.2	3.1		3.6	3.4	
				Surface	-	-		-		-		-	-	-			-	-		-	-	
M6	Sunny	Moderate	16:49	Middle	2.1	23.2	23.2	8.1	8.1	33.7	33.7	89.4	89.2	6.3	6.3	6.3	2.8	2.8	2.8	<u>3.2</u> 2.7	3.0	3.0
				Bottom	_	- 23.2		8.1 -		33.7		89.0 -		6.3			2.8			2.7		1
		eraged		DOLLOIN	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

*DA: Depth-Averaged **Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 26 April 2023 (Mid-Ebb Tide)

Parameter			
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level
	Stations G1-G4, M1-M5	-	
	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>
DO in mg/L (See Note 1 and 4)	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>
	<u>Station M6</u>	-	
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>
	Stations G1-G4, M1-M5		
		<u>19.3 NTU</u>	<u>22.2 NTU</u>
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day <i>C2: 3.5 NTU</i>	or 130% of upstream control station's Turbidity at the same tide of the same day
	Station M6	<u>C2: 5.5 WIU</u>	<u>C2: 3.8 NTU</u>
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>
	Stations G1-G4		
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>
		or 120% of upstream control station's SS at the same tide of	or 130% of upstream control station's SS at the same tide of
	Surface	the same day	the same day
		<u>C2: 2.8 mg/L</u>	<u>C2: 3.0 mg/L</u>
	Stations M1-M5		
	Sutions MI MC	<u>6.2 mg/L</u>	<u>7.4 mg/L</u>
SS in mg/L	Surface	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
(See Note 2 and 4)		<u>C2: 2.8 mg/L</u>	<u>C2: 3.0 mg/L</u>
	Stations G1-G4, M1-M5		
	i	<u>6.9 mg/L</u>	<u>7.9 mg/L</u>
	Bottom	or 120% of upstream control station's SS at the same tide of the same day	or 130% of upstream control station's SS at the same tide of the same day
		<u>C2: 3.8 mg/L</u>	<u>C2: 4.1 mg/L</u>
	Station M6		
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 26 April 2023

(Mid-Flood Tide)

Location	Weather	Sea	Sampling	Depth	(m)	Temperat	ure (°C)	pН		Salinit		DO Satura	ation (%)		d Oxygen	,		bidity(NTI		-	ded Solids	,
Location	Condition	Condition**	Time	Depti	(,,,,,,		Average		Average		Average		Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1.0	23.2 23.2	23.2	8.1 8.1	8.1	33.6 33.6	33.6	94.5 93.0	93.8	6.7 6.6	6.6		1.8 1.7	1.8		2.0	1.9	
C1	Sunny	Moderate	11:23	Middle	9.0	23.0	23.0	8.2	8.2	33.8	33.8	93.3	93.1	6.6	6.6	6.6	1.6	1.5	1.8	2.4	2.4	2.3
						23.0 23.0		8.2 8.2		33.8 33.9		92.8 92.7		6.6 6.5			1.4 2.2		-	2.3 2.5		
				Bottom	16.9	23.0	23.0	8.2	8.2	33.9	33.9	92.5	92.6	6.5	6.5	6.5	2.2	2.2		2.7	2.6	
				Surface	1.1	23.1 23.1	23.1	8.0 8.0	8.0	33.7 33.7	33.7	93.6 93.5	93.6	6.6 6.6	6.6	0.5	0.7	0.6		3.7 4.2	4.0	
C2	Sunny	Moderate	10:36	Middle	16.0	23.1	23.1	8.1	8.1	33.8 33.8	33.8	92.1	92.2	6.5	6.5	6.5	2.0	1.9	1.8	3.4	3.3	3.2
	,					23.1 23.1	23.1	8.1 8.1		33.8		92.3 91.8		6.5 6.5		6.5	1.8 3.0		ł	3.1 2.7	2.5	
				Bottom	31.1	23.1 23.3		8.1 8.1	8.1	33.8 33.8 33.5	33.8	91.7 93.1	91.8	6.5	6.5	6.5	2.9 1.7	3.0		2.7 2.3 2.2	2.5	
				Surface	1.1	23.2	23.2	8.1	8.1	33.5	33.5	91.2	92.2	6.6 6.4	6.5	6.4	1.8	1.7		2.5	2.4	
G1	Sunny	Moderate	11:03	Middle	4.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.7	33.7	89.0 89.6	89.3	6.3 6.3	6.3	0.4	1.6 1.6	1.6	1.8	2.7 2.8	2.8	2.8
				Bottom	7.0	23.1	23.1	8.1	8.1	33.8	33.8	89.0	89.5	6.3	6.3	6.3	1.9	1.9	ł	3.4	3.2	
						23.1 23.1		8.1 8.1		33.8 33.6		89.9 92.4		6.3 6.5		0.0	2.0 1.8			3.0 2.4		
				Surface	1.1	23.1	23.1	8.1	8.1	33.5	33.6	91.3	91.9	6.4	6.5	6.5	1.8	1.8		2.1	2.3	
G2	Sunny	Moderate	10:55	Middle	5.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	92.0 91.5	91.8	6.5 6.5	6.5		1.6 1.5	1.6	1.8	3.0 2.8	2.9	2.9
				Bottom	9.0	23.1	23.1	8.1	8.1	33.8	33.8	91.9	91.9	6.5	6.5	6.5	1.9	1.9	t	3.7	3.5	
				Surface	1.1	23.1 23.3	23.3	8.1 8.1	8.1	33.8 33.5	33.5	91.8 93.0	92.2	6.5 6.5	6.5		2.0 1.5	1.6		3.3 2.4	2.3	
						23.3 23.1		8.1 8.1		33.5 33.7		91.3 89.1		6.4 6.3		6.4	1.6 1.7		-	2.1 2.9		-
G3	Sunny	Moderate	11:06	Middle	4.1	23.2	23.2	8.1	8.1	33.6	33.7	89.9	89.5	6.3	6.3		1.6	1.7	1.9	2.6	2.8	2.8
				Bottom	7.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	88.7 88.4	88.6	6.3 6.2	6.2	6.2	2.5 2.5	2.5		3.5 3.2	3.4	
				Surface	1.1	23.2	23.2	8.1	8.1	33.6	33.6	92.7	91.8	6.5	6.5		2.0	2.0		1.7	1.6	
G4	Suppy	Moderate	11:11			23.2 23.1	23.1	8.1 8.1	8.1	33.6 33.7	33.7	90.8 89.9		6.4 6.3	6.3	6.4	1.9 1.7	1.7	1.9	1.4 2.4	2.3	
64	Sunny	Woderate	11.11	Middle	4.0	23.2		8.1		33.7		89.7	89.8	6.3			1.7		1.9	2.2		2.2
				Bottom	7.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.8	33.7	90.2 90.4	90.3	<u>6.4</u> 6.4	6.4	6.4	2.1 2.2	2.2		3.0 2.7	2.9	
				Surface	1.1	23.1 23.1	23.1	8.1 8.1	8.1	33.5 33.5	33.5	90.5 89.8	90.2	6.4 6.3	6.4		1.9 1.8	1.9		3.0 2.6	2.8	
M1	Sunny	Moderate	11:00	Middle	3.0	23.1	23.1	8.1	8.1	33.7	33.6	89.7	89.6	6.3	6.3	6.3	1.8	1.8	1.9	2.4	2.3	2.3
						23.1 23.1		8.1 8.1		33.6 33.7		89.5 90.1		6.3 6.4		<u> </u>	1.8 1.9		-	2.2		
				Bottom	5.0	23.1	23.1	8.1	8.1	33.8 33.5	33.8	90.7	90.4	6.4	6.4	6.4	1.9	1.9		1.6	1.8	
				Surface	1.1	23.1 23.2	23.2	8.1 8.1	8.1	33.5	33.5	92.6 92.0	92.3	6.5 6.5	6.5	6.5	1.6 1.5	1.5		3.2 2.9	3.1	
M2	Sunny	Moderate	10:49	Middle	6.0	23.0 23.0	23.0	8.1 8.1	8.1	33.8 33.8	33.8	93.1 92.4	92.8	6.6 6.5	6.5	0.5	1.8 1.7	1.8	2.0	2.5 2.7	2.6	2.7
				Bottom	11.0	23.1	23.1	8.1	8.1	33.8	33.8	93.0	92.7	6.6	6.5	6.5	2.6	2.6	ł	2.5	2.3	
						23.1 23.3		8.1 8.1		33.9 33.5		92.4 94.3		6.5 6.6		0.0	2.7 1.6			2.1 2.9		
				Surface	1.0	23.3	23.3	8.1	8.1	33.5	33.5	93.1	93.7	6.6	6.6	6.4	1.7	1.7		2.6	2.8	
M3	Sunny	Moderate	11:08	Middle	4.0	23.1 23.2	23.2	8.1 8.1	8.1	33.7 33.7	33.7	87.3 89.2	88.3	6.2 6.3	6.2		2.2	2.1	2.0	2.5 2.2	2.4	2.3
				Bottom	7.0	23.1	23.1	8.1	8.1	33.7	33.7	86.6	87.9	6.1	6.2	6.2	2.2	2.2	t	1.8	1.9	
						23.1 23.2	23.2	8.1 8.1	0.1	33.8 33.6		89.2 94.1		6.3 6.6			2.1 1.8	10		1.9 1.8		
				Surface	1.1	23.2		8.1	8.1	33.6	33.6	93.2	93.7	6.6	6.6	6.6	1.8	1.8	-	1.5	1.7	-
M4	Sunny	Moderate	10:43	Middle	5.0	23.0 23.1	23.1	8.1 8.1	8.1	33.7 33.7	33.7	93.3 92.9	93.1	6.6 6.6	6.6		1.5 1.6	1.6	1.6	2.2 2.5	2.4	2.3
				Bottom	9.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	93.3 93.1	93.2	6.6 6.6	6.6	6.6	1.3 1.4	1.3		3.2 2.8	3.0	
				Surface	1.0	23.1	23.1	8.1	8.1	33.6	33.7	93.6	92.8	6.6	6.5		2.1	2.2		1.9	1.8	
						23.2 23.1		8.1 8.1		33.7 33.7		91.9 92.3		6.5 6.5		6.5	2.3 1.6			1.6 2.6		
M5	Sunny	Moderate	11:19	Middle	6.0	23.1	23.1	8.1	8.1	33.7	33.7	91.5	91.9	6.5	6.5		1.7	1.6	2.3	2.3	2.5	2.5
				Bottom	11.1	23.0 23.0	23.0	8.2 8.2	8.2	33.8 33.9	33.8	92.3 92.2	92.3	6.5 6.5	6.5	6.5	3.1 3.2	3.1		3.1 3.6	3.4	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
M6	Sunny	Moderate	11:15	Middle	2.0	- 23.2	23.2	- 8.1	8.1	33.7	33.7	90.3	90.0	6.4	6.3	6.3	- 8.0	8.0	2.8	2.7	2.9	2.9
IVIO	Guinty	Moderale	11.15		2.0	23.2	20.2	8.1	0.1	33.7	55.7	89.6	30.0	6.3	0.0		8.0	0.0	2.0	3.1	2.0	2.3
			1	Bottom	-	-	-	-	-		-		-	-	-	-	-	-				1

Remarks: *DA: Depth-Averaged

**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 26 April 2023 (Mid-Flood Tide)

Parameter			T. 4 T 1							
<u>(unit)</u>	<u>Depth</u>	Action Level	Limit Level							
	Stations G1-G4, M1-M5									
DO in mg/L (See Note 1 and 4)	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>							
	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>							
	<u>Station M6</u>									
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>							
	Stations G1-G4, M1-M5									
		<u>19.3 NTU</u>	<u>22.2 NTU</u>							
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day							
		<u>C1: 2.6 NTU</u>	<u>C1: 2.8 NTU</u>							
	Station M6									
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>							
	Stations G1-G4									
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Surface	station's SS at the same tide of	station's SS at the same tide of							
		the same day	the same day							
		<u>C1: 2.2 mg/L</u>	<u>C1: 2.4 mg/L</u>							
	Stations M1-M5									
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Surface	station's SS at the same tide of	station's SS at the same tide of							
SS in mg/L (See Note 2 and 4)		the same day	the same day							
(See Note 2 and 4)		<u>C1: 2.2 mg/L</u>	<u>C1: 2.4 mg/L</u>							
	Stations G1-G4, M1-M5									
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>							
		or 120% of upstream control	or 130% of upstream control							
	Bottom	station's SS at the same tide of	station's SS at the same tide of							
		the same day	the same day							
		<u>C1: 3.1 mg/L</u>	<u>C1: 3.4 mg/L</u>							
	<u>Station M6</u>	·								
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>							

Notes:

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

Agreement No. CE 59/2015(EP) Environmental Team for Tseung Kwan O - Lam Tin Tunnel Design and Construction Water Quality Monitoring Results on 28 April 2023

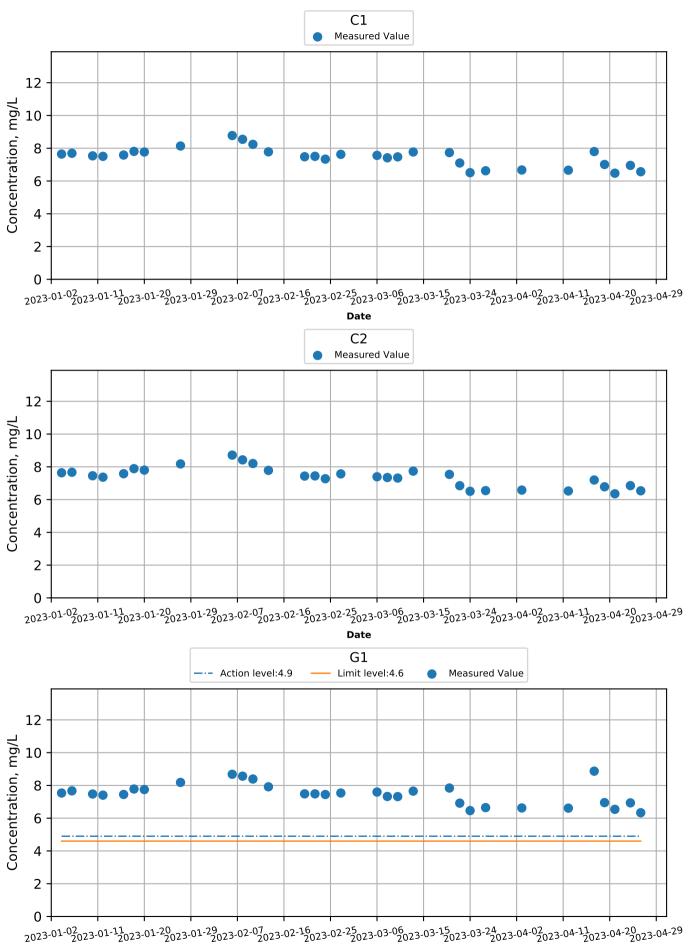
(Mid-Flood Tide)

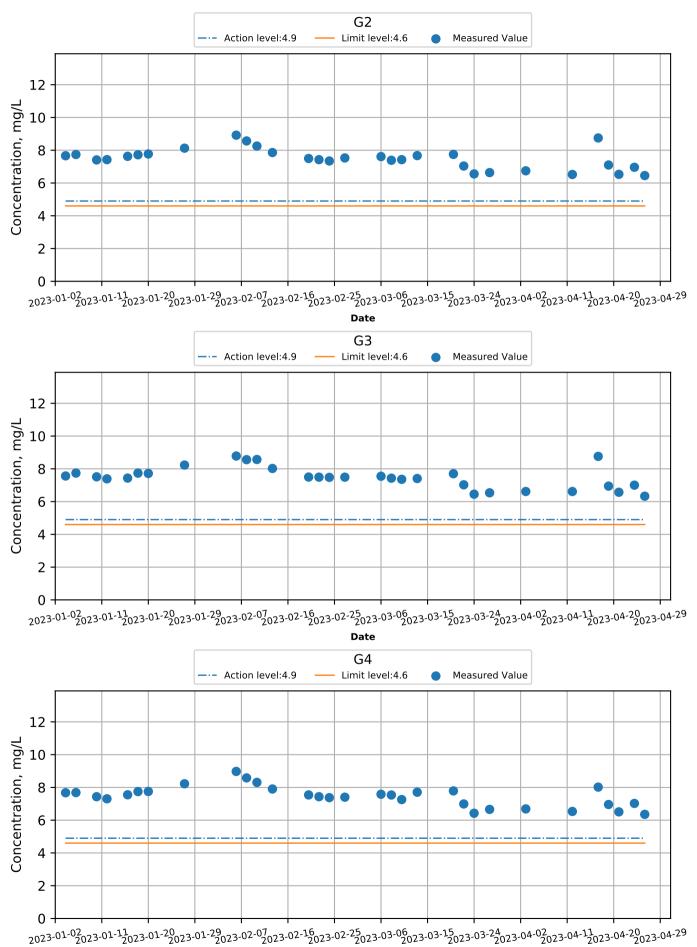
Location	Weather	Sea	Sampling	Depth	(m)	Temperat	ure (°C)	pН		Salini	ty ppt	DO Saturation (%)	Dissolved Oxygen ((mg/L)	Turbidity(NTU)		Suspended Solids (mg/L				
Location	Condition	Condition**	Time	Depth	(111)		Average		Average		Average		Average	Value	Average	DA*	Value	Average	DA*		Average	DA*
				Surface	1.1	23.6	23.5	8.1	8.1	33.8	33.8	96.6	96.5	6.8	6.8		1.5	1.5		2.8	2.9	
04			40.00			23.5 23.0		8.1 8.1	-	33.8 33.8		96.4 94.0		6.8 6.6		6.7	1.5 1.5			3.0 2.7	-	-
C1	Sunny	Moderate	12:23	Middle	9.1	23.0	23.0	8.1	8.1	33.8	33.8	94.2	94.1	6.7	6.6		1.5	1.5	1.6	2.5	2.6	2.6
				Bottom	17.0	23.0 23.0	23.0	8.1 8.1	8.1	33.8 33.8	33.8	92.7 92.7	92.7	6.5 6.5	6.5	6.5	1.7 1.8	1.7		2.3 2.5	2.4	
				Surface	1.0	23.0	23.4	7.9	8.0	33.7	33.7	92.7	97.1	6.8	6.8		1.0	1.3		2.5	2.5	
				Surface	1.0	23.4	23.4	8.0	8.0	33.7	33.7	97.1	97.1	6.8	0.8	6.7	1.4	1.3		2.3	2.5	-
C2	Sunny	Moderate	11:36	Middle	16.0	23.1 23.1	23.1	8.1 8.1	8.1	33.8 33.8	33.8	93.9 94.1	94.0	6.6 6.6	6.6		0.8	0.8	1.2	2.1 2.3	2.2	2.1
				Bottom	31.0	23.0	23.0	8.1	8.1	33.8	33.8	92.7	92.6	6.5	6.5	6.5	1.4	1.4		1.6	1.7	1
						23.0 23.5		8.1 8.1		33.8 33.7		92.4		6.5		0.0	1.4 1.2			1.8		<u> </u>
				Surface	1.0	23.5	23.5	8.1	8.1	33.7	33.7	95.8 95.5	95.7	6.7 6.7	6.7	6.6	1.2	1.2		2.3 2.1	2.2	
G1	Sunny	Moderate	11:59	Middle	4.1	23.1	23.2	8.1	8.1	33.7	33.7	92.7	93.2	6.5	6.6	0.0	1.1	1.1	1.3	2.4	2.5	2.5
	-					23.3 23.0		8.1 8.1		33.7 33.8		93.6 91.4		6.6 6.5			1.1 1.6			2.5 2.8		-
				Bottom	7.1	23.0	23.0	8.1	8.1	33.8	33.8	91.4	91.4	6.5	6.5	6.5	1.6	1.6		2.6	2.7	
				Surface	1.1	23.3 23.2	23.3	8.1 8.1	8.1	33.7 33.7	33.7	96.2 94.8	95.5	6.8 6.7	6.7		1.5 1.6	1.5		2.7 3.0	2.9	
G2	Sunny	Moderate	11:50	Middle	5.1	23.2	23.1	8.1	8.1	33.7	33.7	94.0	94.2	6.6	6.6	6.7	1.0	1.2	1.4	2.6	2.4	2.5
62	Sunny	Moderate	11.50	wildule	5.1	23.1	23.1	8.1	0.1	33.7	33.7	94.2	94.2	6.6	0.0		1.3	1.2	1.4	2.2	2.4	2.5
				Bottom	9.1	23.0 23.0	23.0	8.1 8.1	8.1	33.8 33.8	33.8	93.2 92.4	92.8	6.6 6.5	6.5	6.5	1.5 1.6	1.5		2.1 2.3	2.2	
				Surface	1.1	23.5	23.5	8.1	8.1	33.7	33.7	94.0	93.9	6.6	6.6		1.6	1.7		2.1	2.2	
				Cunace		23.5		8.1		33.7		93.8 91.4		6.6		6.5	1.7			2.2		-
G3	Sunny	Moderate	12:02	Middle	4.1	23.1 23.3	23.2	8.1 8.1	8.1	33.7 33.7	33.7	91.4	92.1	6.4 6.5	6.5		1.7 1.6	1.7	1.8	2.5 2.3	2.4	2.4
				Bottom	7.1	23.0	23.0	8.1	8.1	33.8	33.8	89.9	89.9	6.4	6.3	6.3	2.1	2.1		2.6	2.7	1
				o (23.0 23.4		8.1 8.1		33.8 33.7		89.9 93.8		6.3 6.6			2.1 1.8			2.8 3.6		
				Surface	1.1	23.4	23.4	8.1	8.1	33.7	33.7	93.8	93.8	6.6	6.6	6.6	1.8	1.8		3.1	3.4	
G4	Sunny	Moderate	12:11	Middle	4.1	23.1 23.2	23.2	8.1 8.1	8.1	33.7 33.7	33.7	92.9 93.1	93.0	6.5 6.6	6.5	0.0	1.7 1.7	1.7	1.8	2.8 2.5	2.7	2.7
				Bottom	7.1	23.0	23.0	8.1	8.1	33.8	33.8	92.2	92.1	6.5	6.5	6.5	1.8	1.8		2.3	2.2	1
				DOLLOITI	7.1	23.0	23.0	8.1	0.1	33.8	33.0	91.9	92.1	6.5	0.5	0.0	1.9	1.0		2.1	2.2	
				Surface	1.0	23.4 23.3	23.3	8.1 8.1	8.1	33.5 33.6	33.6	93.8 93.4	93.6	6.6 6.6	6.6		1.0	1.0		2.4	2.4	
M1	Sunny	Moderate	11:55	Middle	3.1	23.2	23.2	8.1	8.1	33.7	33.7	92.4	92.6	6.5	6.5	6.6	1.3	1.2	1.2	2.7	2.9	2.9
						23.2 23.1		8.1 8.1		33.6 33.7		92.7 92.0		6.5 6.5			1.2 1.5			3.1 3.3		-
				Bottom	5.0	23.1	23.1	8.1	8.1	33.7	33.7	92.1	92.1	6.5	6.5	6.5	1.5	1.5		3.5	3.4	
				Surface	1.1	23.6 23.3	23.5	8.1 8.1	8.1	33.6 33.7	33.7	96.0 95.1	95.6	6.7 6.7	6.7		1.4	1.4		2.6 2.8	2.7	
	0		11.10	M. J. H.		23.3	00.4	8.1	8.1	33.7	00.7	95.1	94.3	6.6	6.6	6.7	1.5 1.2	4.0		2.8	0.0	-
M2	Sunny	Moderate	11:46	Middle	6.0	23.1	23.1	8.1	0.1	33.7	33.7	94.5	94.3	6.7	0.0		1.2	1.2	1.6	2.2	2.3	2.4
				Bottom	11.1	23.0 23.0	23.0	8.1 8.1	8.1	33.8 33.8	33.8	93.1 93.0	93.1	6.6 6.6	6.6	6.6	2.0 2.2	2.1		2.1	2.1	
				Surface	1.0	23.4	23.3	8.1	8.1	33.6	33.6	95.6	95.1	6.7	6.7		1.7	1.7		2.6	2.7	-
				Cunace		23.3 23.1		<u>8.1</u> 8.1		33.7 33.7		94.5 92.3	00.1	6.6 6.5		6.6	1.7 1.6			2.8		-
M3	Sunny	Moderate	12:06	Middle	4.1	23.1	23.1	8.1	8.1	33.7	33.7	92.3	92.4	6.5	6.5		1.5	1.5	1.6	2.4	2.2	2.2
				Bottom	7.1	23.1	23.1	8.1	8.1	33.8	33.8	92.1	92.2	6.5	6.5	6.5	1.6	1.6		1.7	1.8	1
				o /		23.0 23.6		8.1 8.1		33.8 33.7		92.3 98.2		6.5 6.9			1.6 1.3			1.9 1.7		
				Surface	1.1	23.6	23.6	8.1	8.1	33.8	33.7	97.4	97.8	6.8	6.8	6.8	1.3	1.3		1.9	1.8	
M4	Sunny	Moderate	11:42	Middle	5.0	23.1 23.1	23.1	8.1 8.1	8.1	33.7 33.7	33.7	95.1 95.5	95.3	6.7 6.7	6.7	0.0	1.4 1.3	1.4	1.3	2.1 2.3	2.2	2.3
				Bottom	9.0	23.1	23.0	8.1	8.1	33.7	33.7	94.6	94.5	6.7	6.7	6.7	1.4	1.3		2.6	2.8	-
	+			Dottom	3.0	23.0		8.1		33.8		94.4	J-1.J	6.7		0.7	1.3			2.9	2.0	
				Surface	1.1	23.2 23.2	23.2	8.1 8.1	8.1	33.8 33.8	33.8	95.0 94.5	94.8	6.7 6.7	6.7	07	1.7 1.7	1.7		1.6 1.9	1.8	
M5	Sunny	Moderate	12:19	Middle	6.1	23.1	23.1	8.1	8.1	33.8	33.8	94.5	94.5	6.7	6.7	6.7	1.4	1.4	1.6	2.2	2.3	2.3
	2.2					23.1 23.0		8.1 8.1		33.8 33.8		94.4 94.2		6.7 6.7			1.3 1.6			2.4		
				Bottom	11.1	23.0	23.0	8.1	8.1	33.8	33.8	94.0	94.1	6.6	6.6	6.6	1.6	1.6		2.6	2.8	
				Surface	-	-	-	-	-	-	-		-	-	-		-	-			-	
MC	C.	Madaata	40.45		0.4	- 23.2	00.0	- 8.1	0.1	33.7	20.7	- 95.0	04.0	6.7	07	6.7	- 8.0	0.0	4.0	- 1.6	4.0	-
M6	Sunny	Moderate	12:15	Middle	2.1	23.2	23.2	8.1	8.1	33.7	33.7	94.6	94.8	6.7	6.7		8.0	8.0	1.6	1.9	1.8	1.8
				Bottom	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	
omorko	*DA: Dopth Ave	·	1	1	1	-		-	1					-						-		J

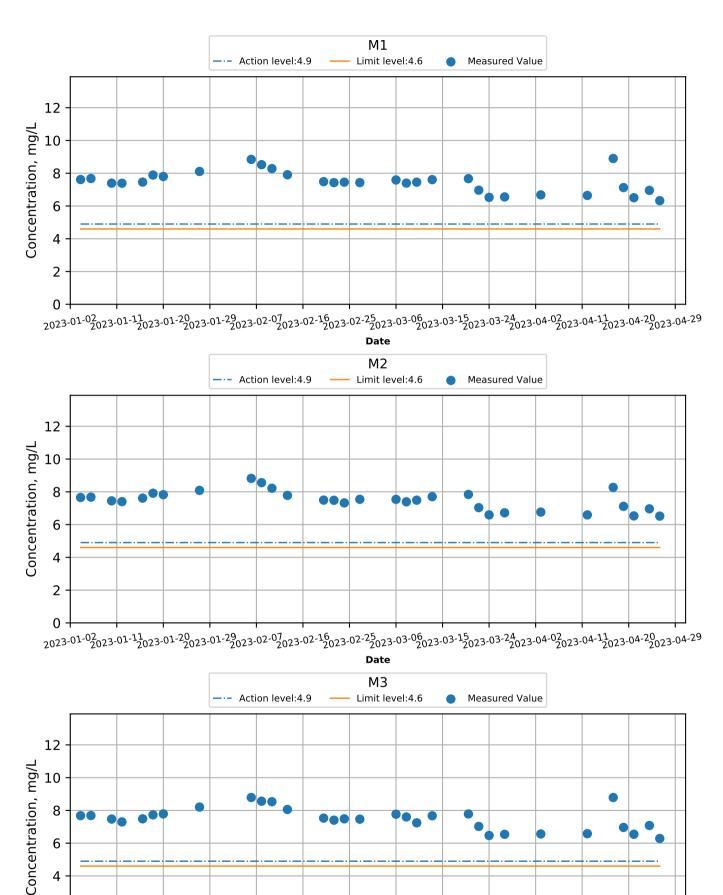
Remarks: *DA: Depth-Averaged

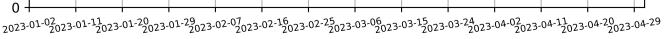
**Calm: Small or no wave; Moderate: Between calm and rough; Rough : White capped or rougher.

Action and Limit Levels for Marine Water Quality on 28 April 2023 (Mid-Flood Tide)

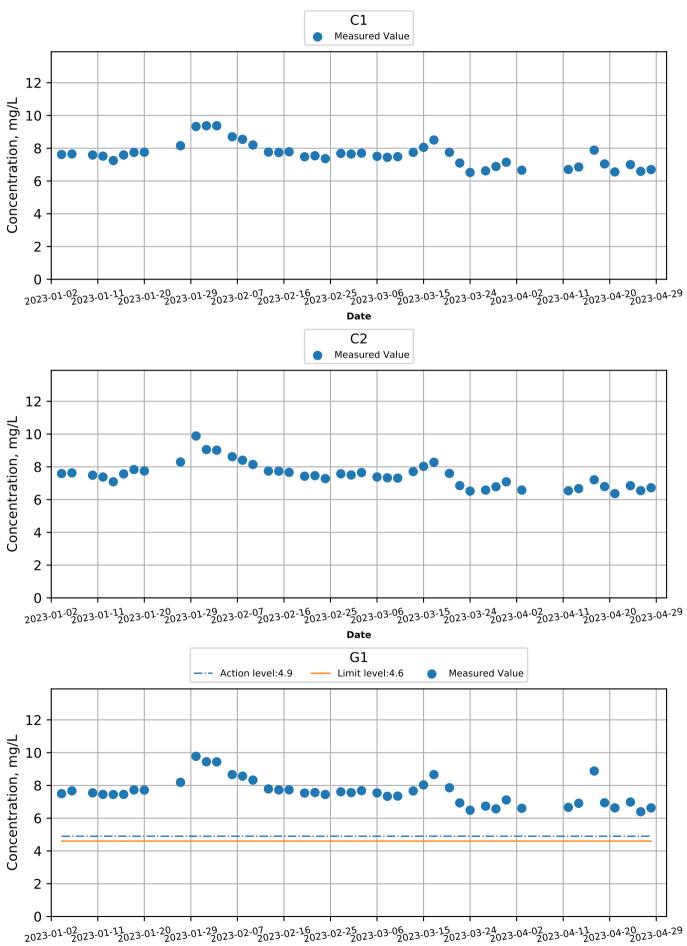

Parameter	<u>Depth</u>	Action Level	Limit Level						
<u>(unit)</u>	_	Action Level	Linit Level						
	Stations G1-G4, M1-M5								
DO in mg/L (See Note 1 and 4)	Depth Average	<u>4.9 mg/L</u>	<u>4.6 mg/L</u>						
	Bottom	<u>4.2 mg/L</u>	<u>3.6 mg/L</u>						
	<u>Station M6</u>	1							
	Intake Level	<u>5.0 mg/L</u>	<u>4.7 mg/L</u>						
	Stations G1-G4, M1-M5								
		<u>19.3 NTU</u>	<u>22.2 NTU</u>						
Turbidity in NTU (See Note 2 and 4)	Bottom	or 120% of upstream control station's Turbidity at the same tide of the same day	or 130% of upstream control station's Turbidity at the same tide of the same day						
		<u>C1: 2.1 NTU</u>	<u>C1: 2.3 NTU</u>						
	<u>Station M6</u>	1	1						
	Intake Level	<u>19.0 NTU</u>	<u>19.4 NTU</u>						
	Stations G1-G4								
		<u>6.0 mg/L</u>	<u>6.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Surface	station's SS at the same tide of	station's SS at the same tide of						
		the same day	the same day						
		<u>C1: 3.5 mg/L</u>	<u>C1: 3.8 mg/L</u>						
	Stations M1-M5								
		<u>6.2 mg/L</u>	<u>7.4 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Surface	station's SS at the same tide of	station's SS at the same tide of						
SS in mg/L (See Note 2 and 4)		the same day	the same day						
(Bee 11010 2 and 4)		<u>C1: 3.5 mg/L</u>	<u>C1: 3.8 mg/L</u>						
	Stations G1-G4, M1-M5								
		<u>6.9 mg/L</u>	<u>7.9 mg/L</u>						
		or 120% of upstream control	or 130% of upstream control						
	Bottom	station's SS at the same tide of	station's SS at the same tide of						
		the same day	the same day						
		<u>C1: 2.9 mg/L</u>	<u>C1: 3.1 mg/L</u>						
	Station M6	L	L						
	Intake Level	<u>8.3 mg/L</u>	<u>8.6 mg/L</u>						

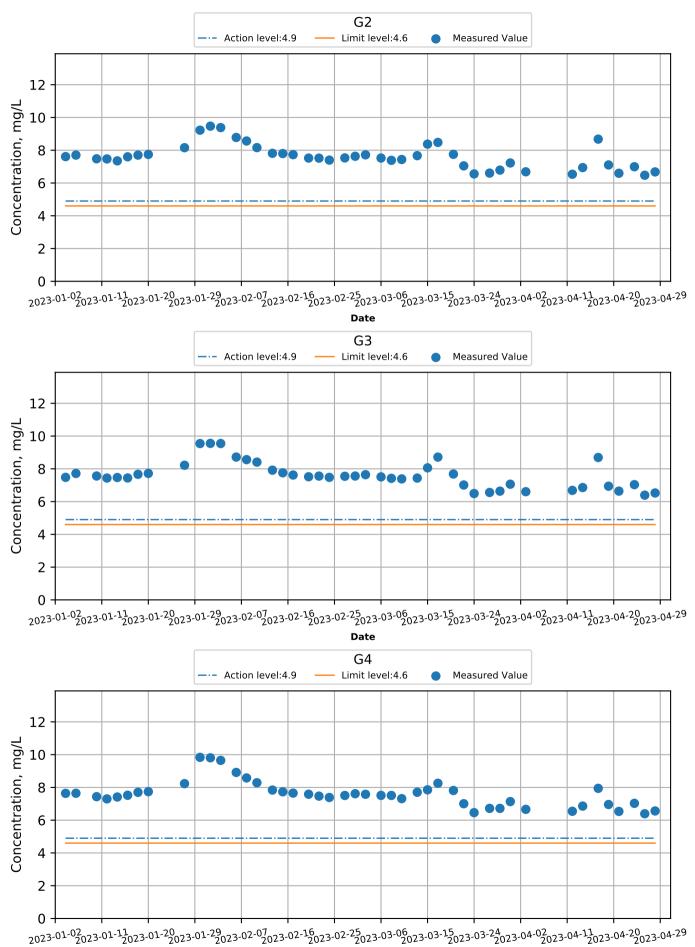

Notes:

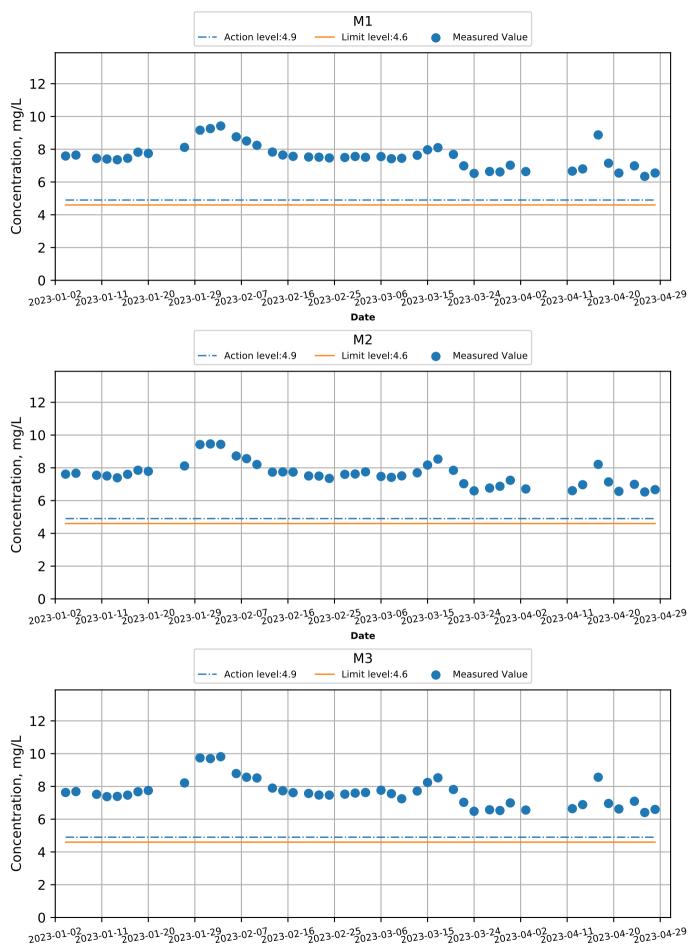

1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

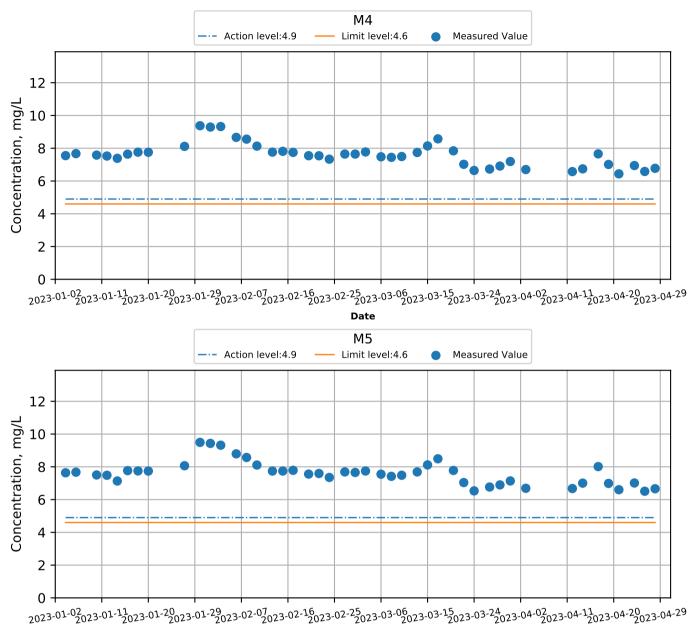

2. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

3. All the figures given in the table are used for reference only and EPD may amend the figures whenever it is considered as necessary.

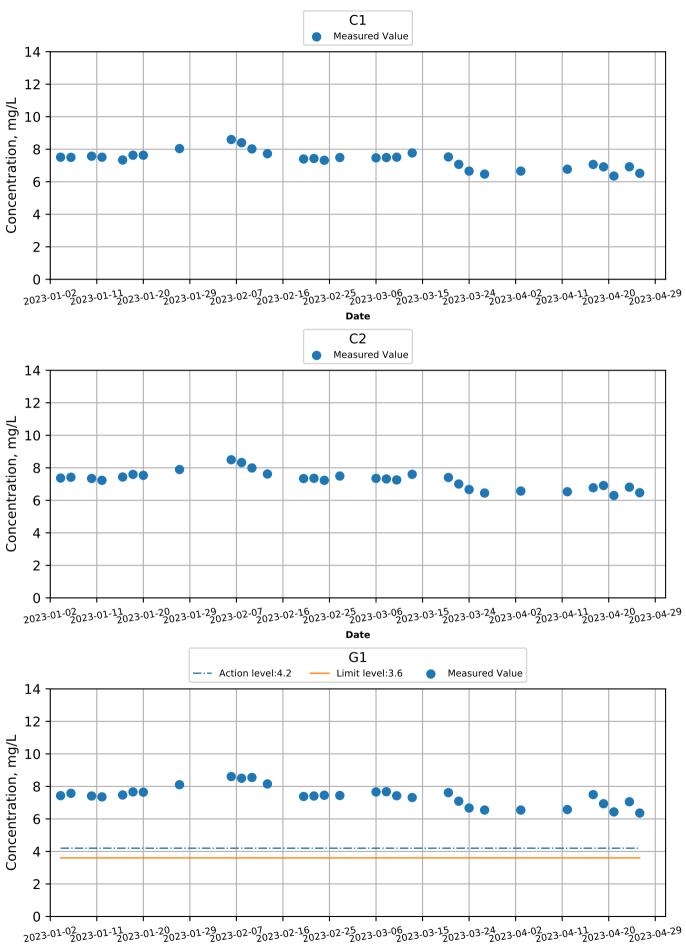


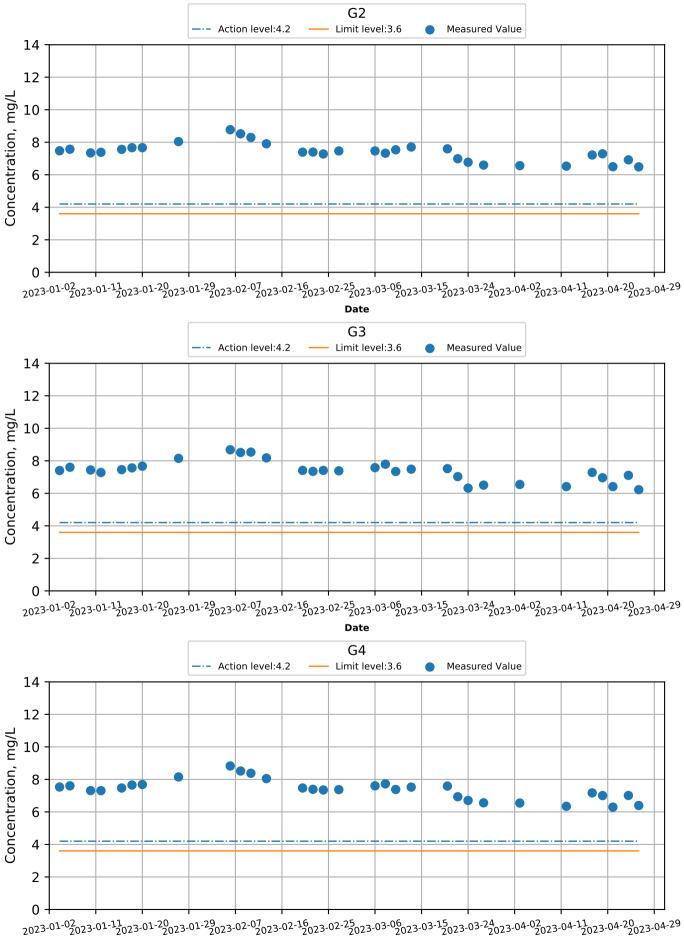


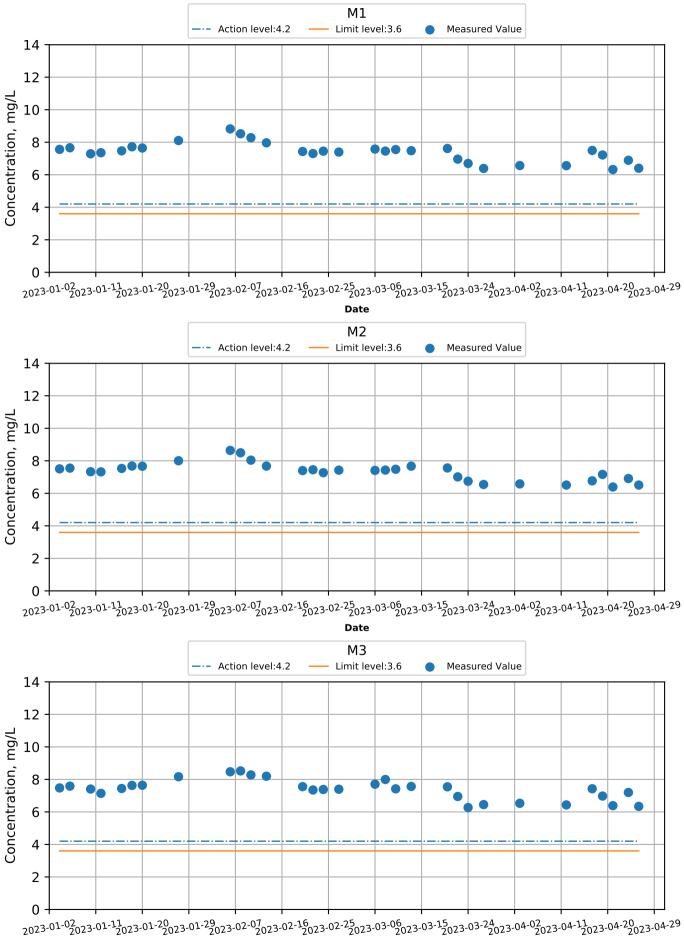

2

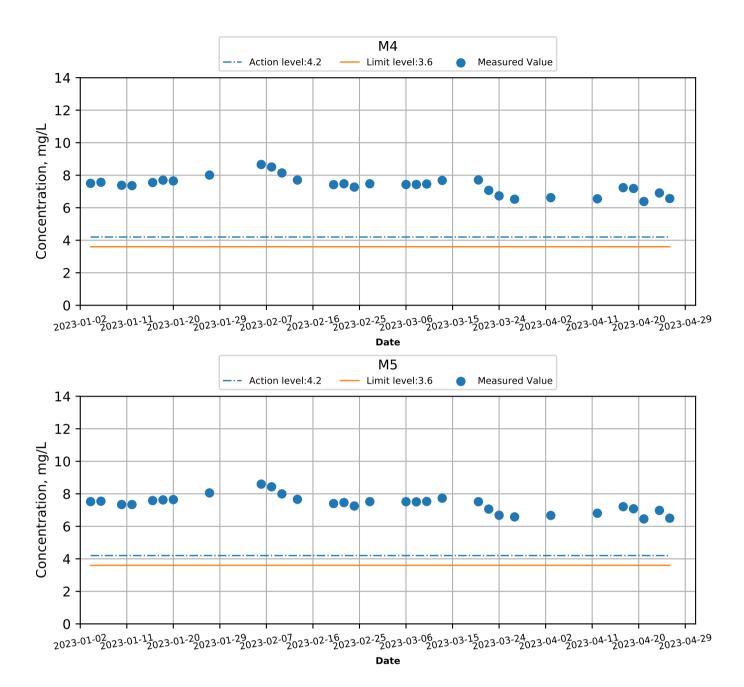


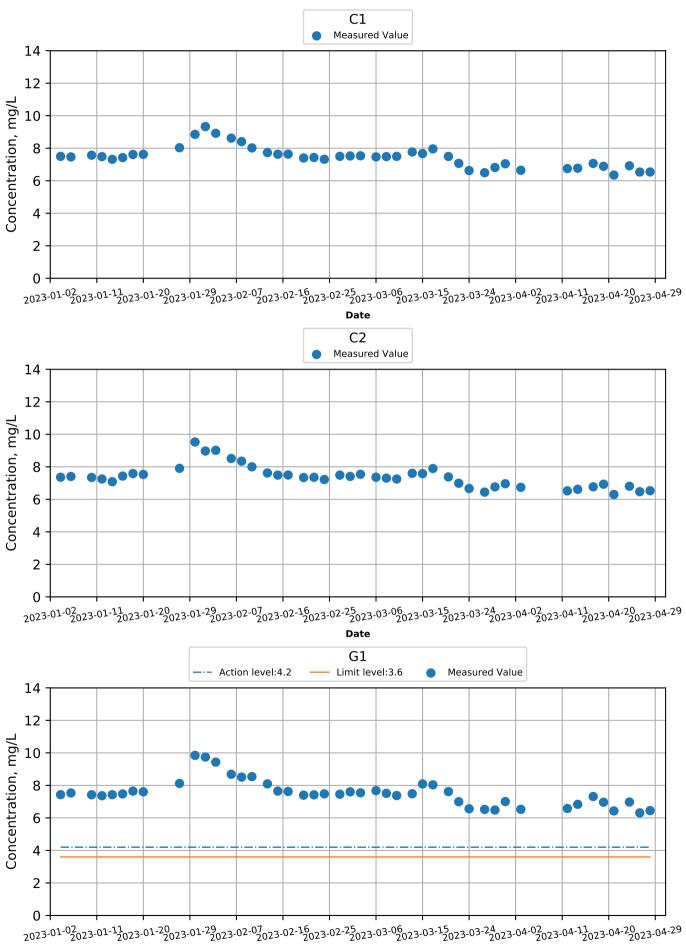
 $\begin{array}{c} _{2023-01-02} \\ _{2023-01-12} \\ _{2023-01-22} \\ _{2023-01-22} \\ _{2023-01-22} \\ _{2023-02-02} \\ _{2023-02-02} \\ _{2023-02-12} \\ _{2023-02-22} \\ _{2023-03-02} \\ _{2023-03-12} \\ _{2023-03-22} \\ _{2023-03-22} \\ _{2023-04-22} \\ _{2023-04-12} \\ _{2023-04-22} \\ _{2023-$

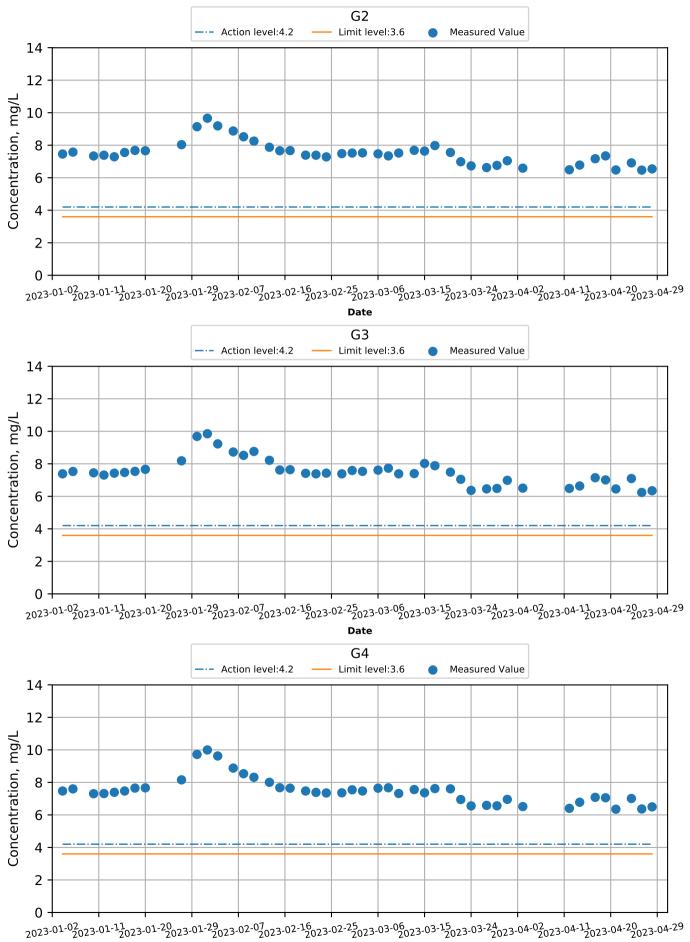


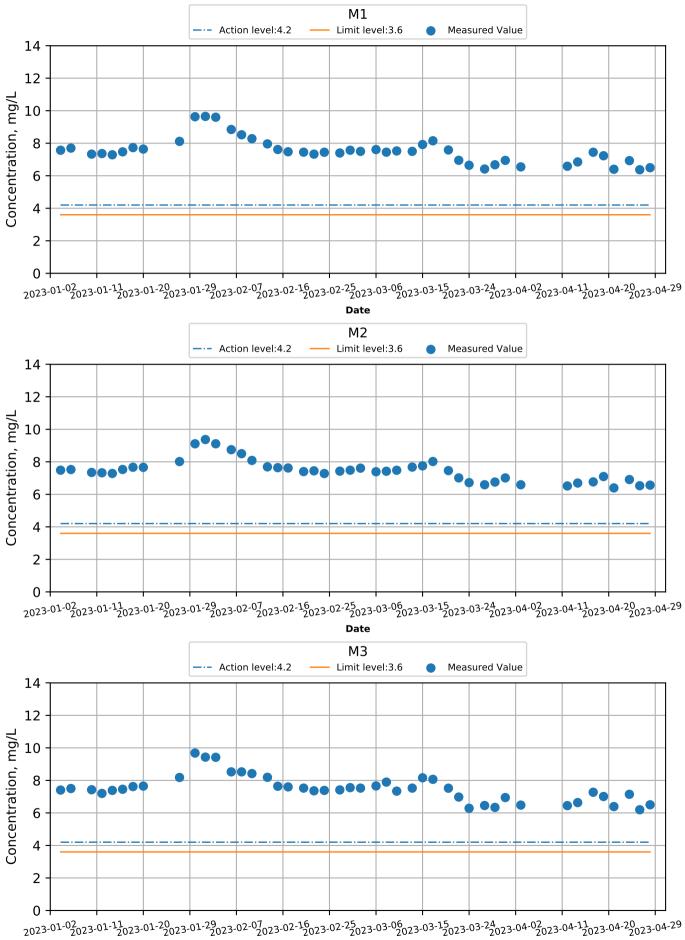


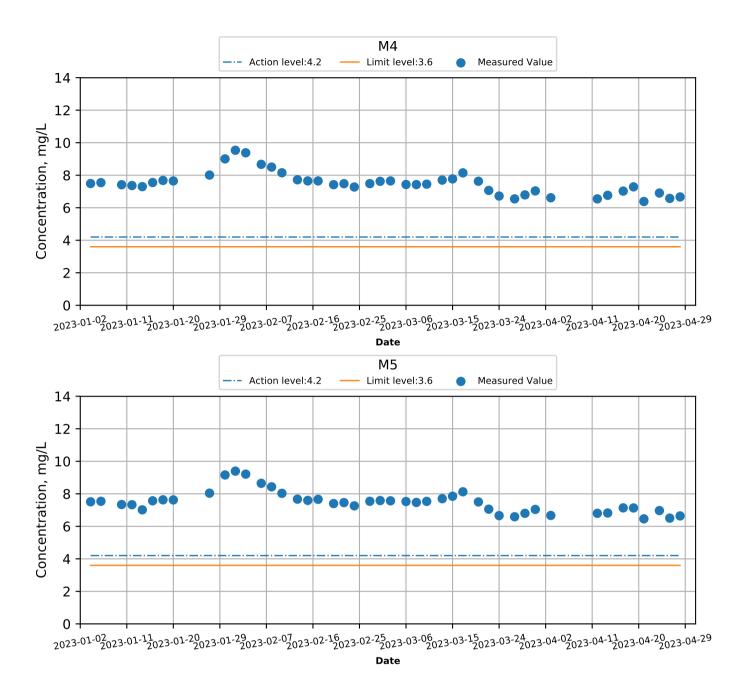


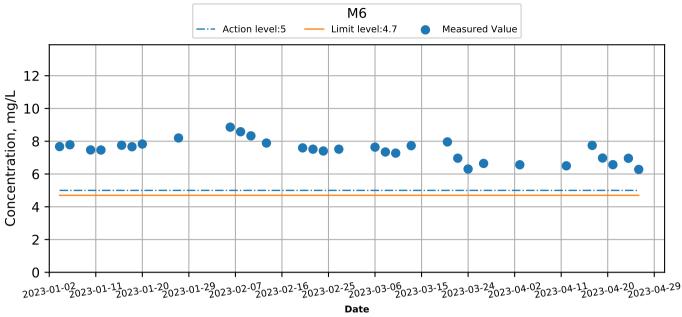


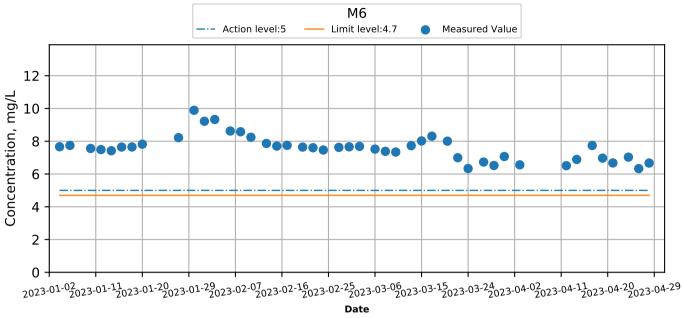

Date

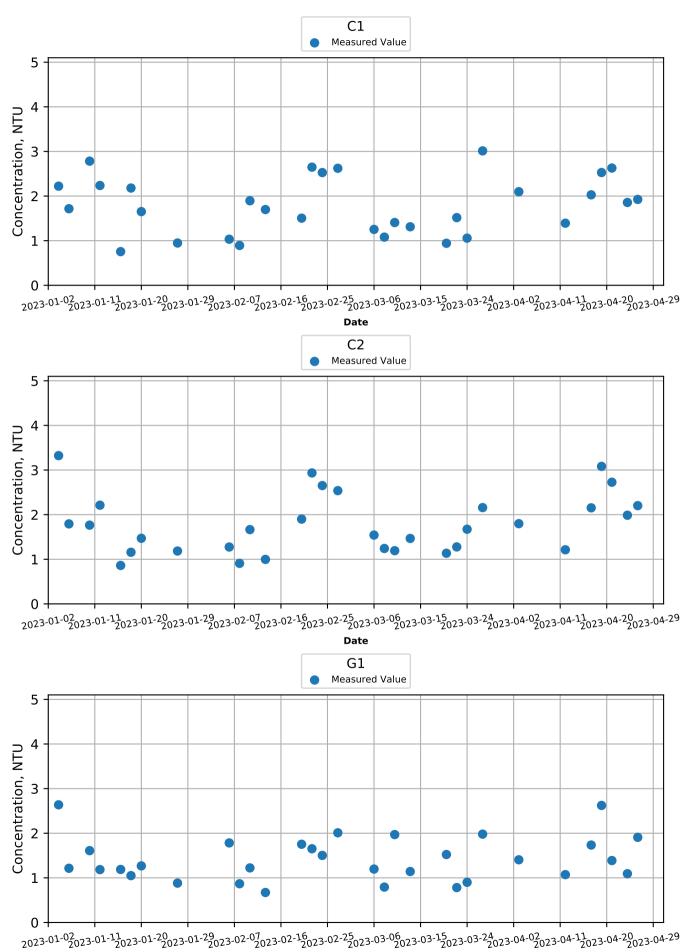


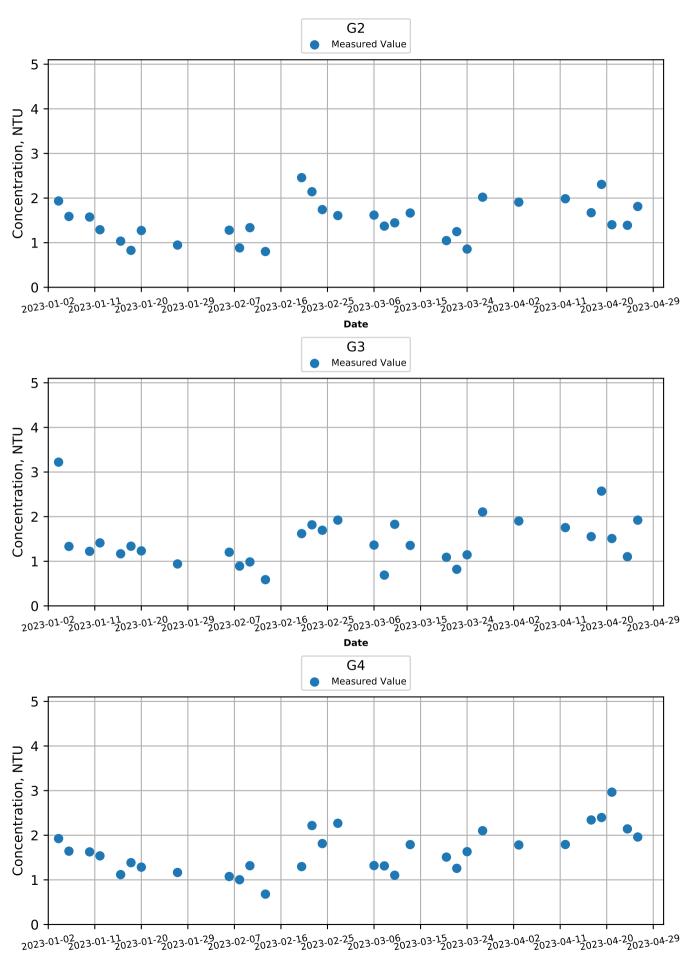


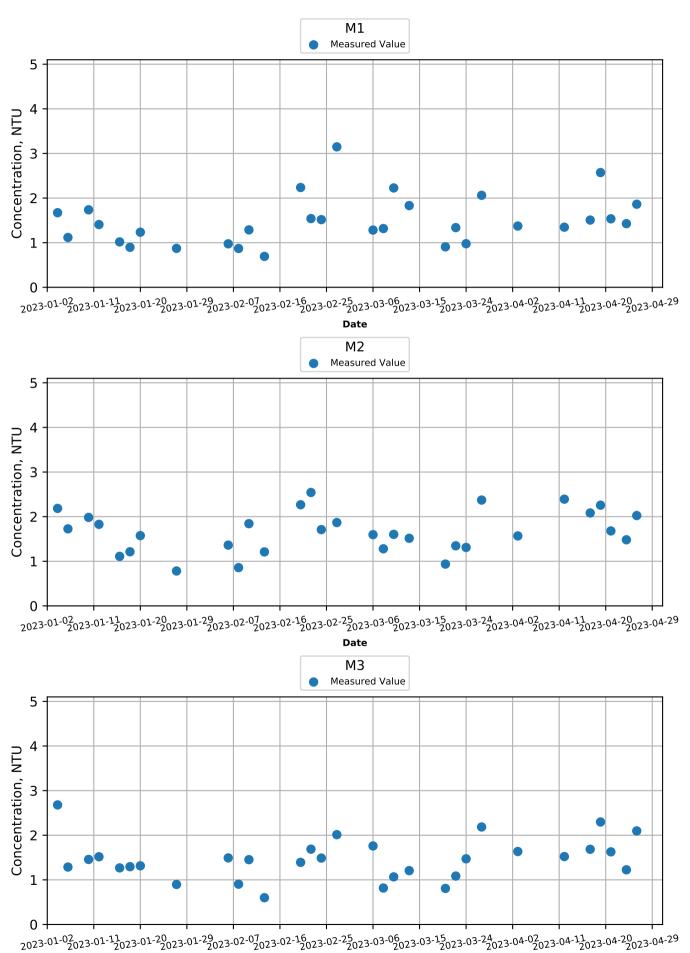


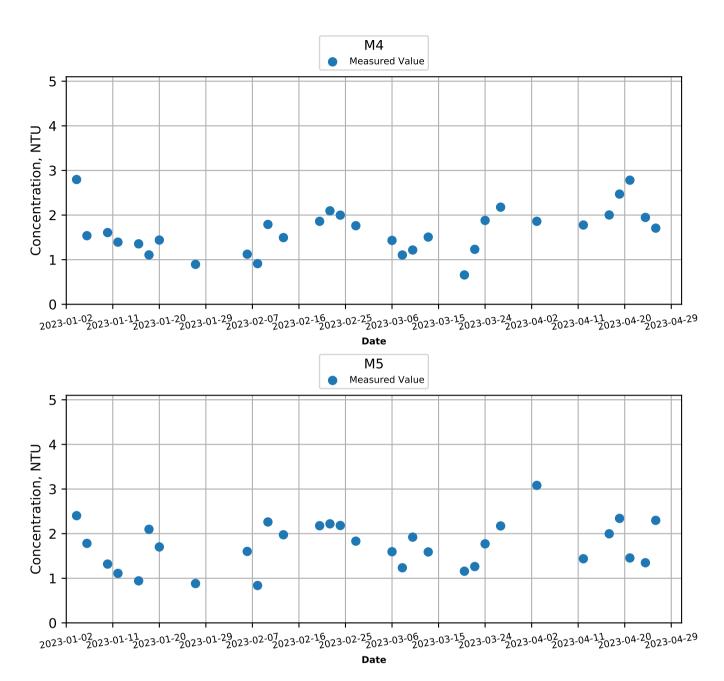


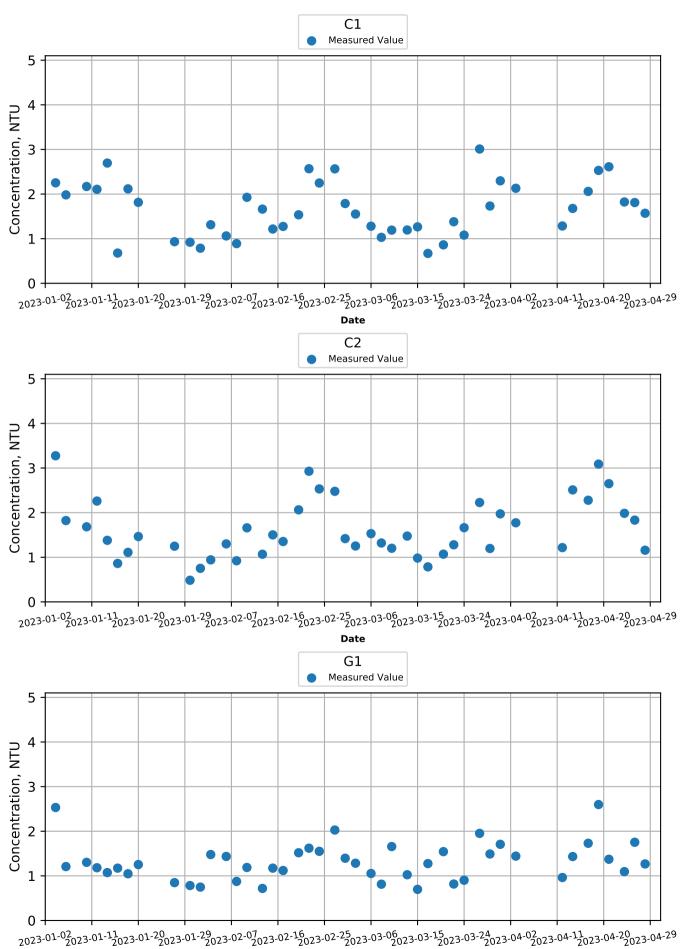


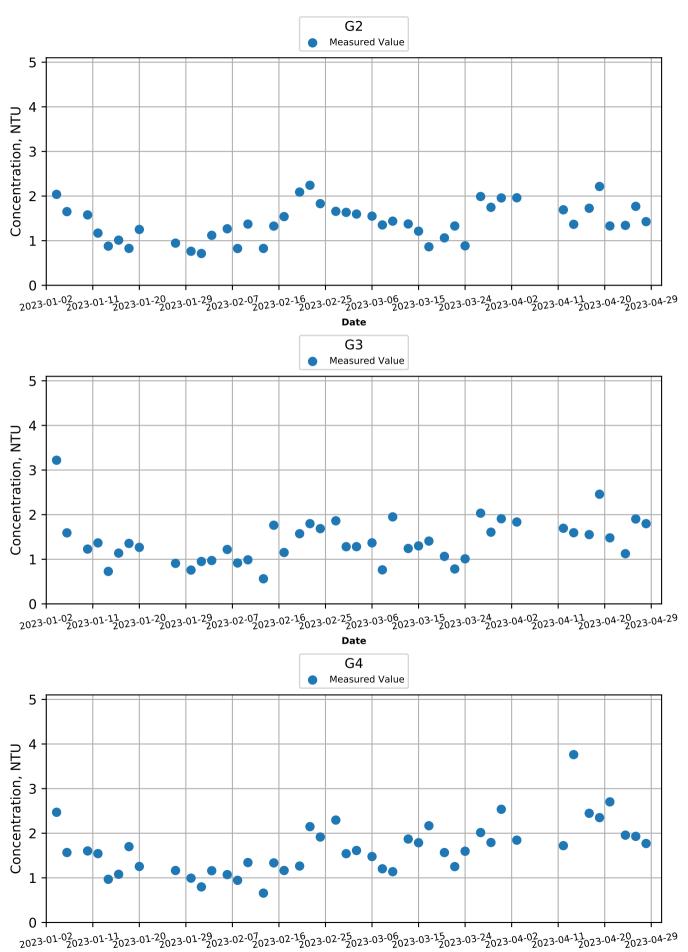


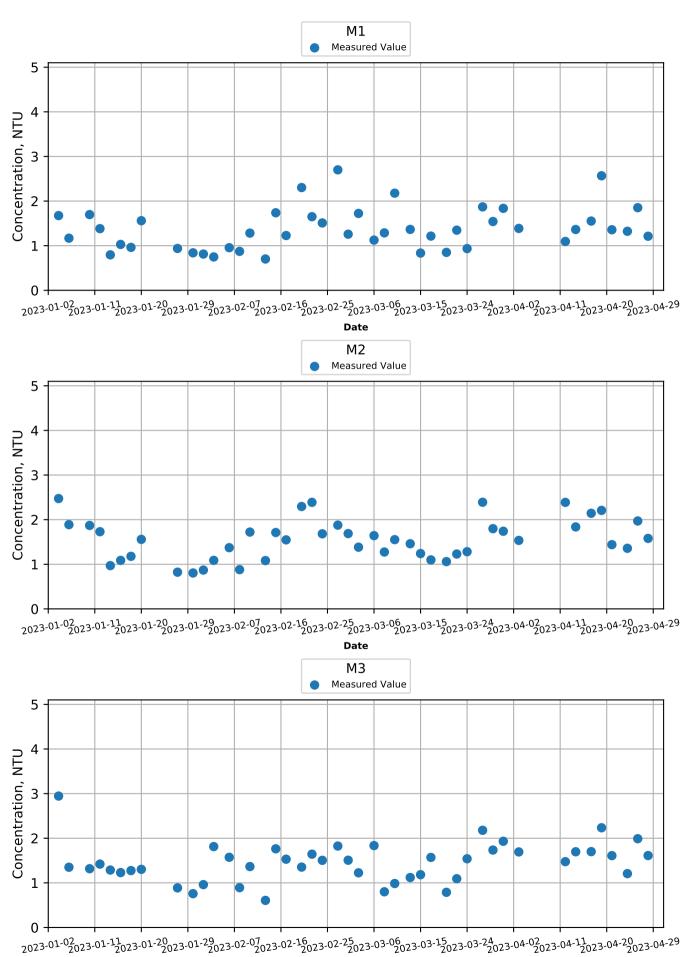




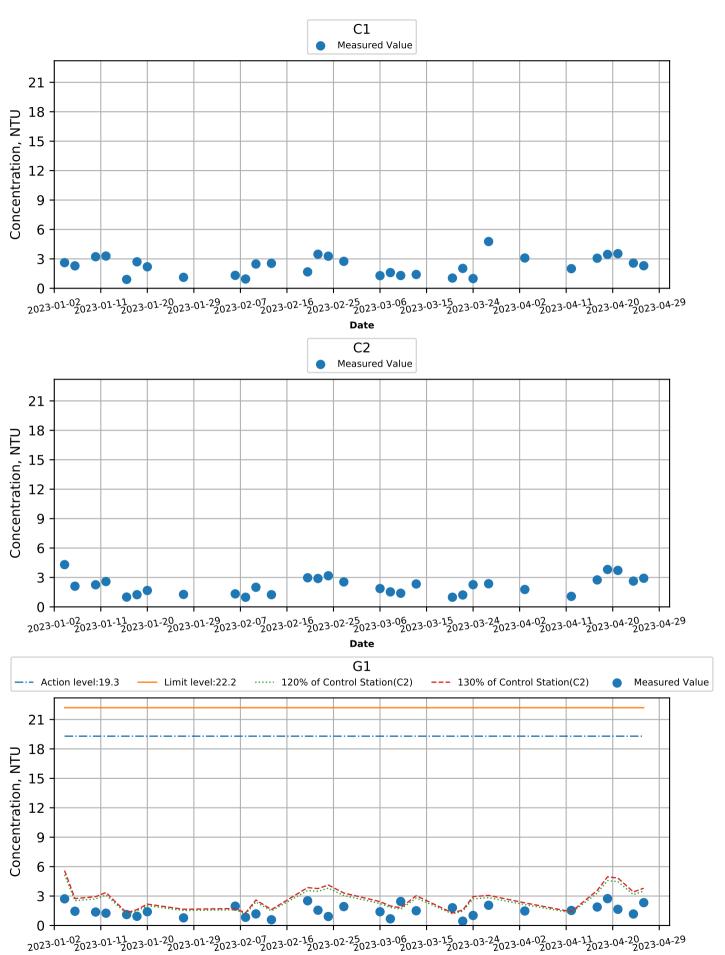


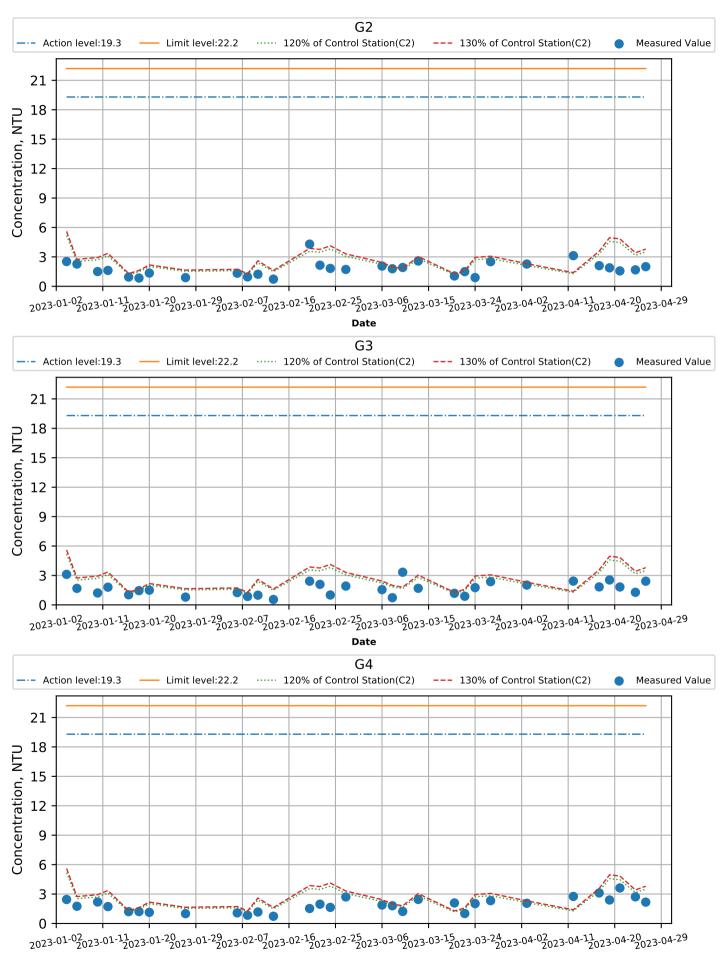


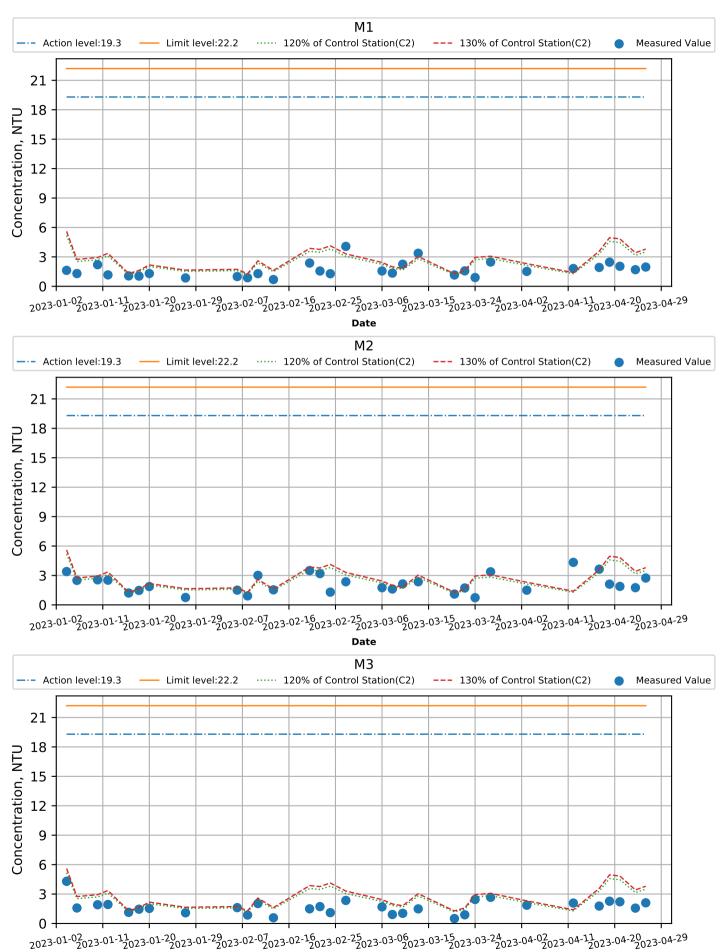


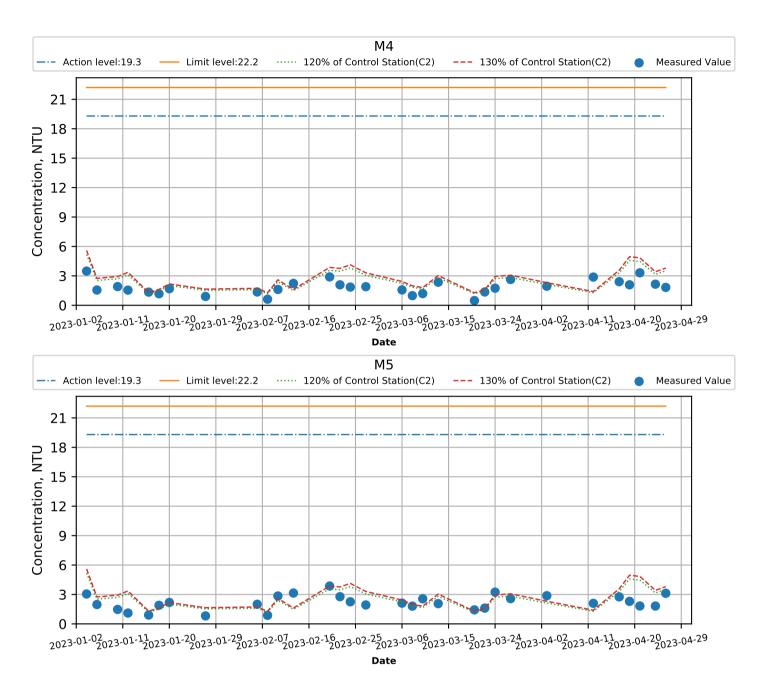


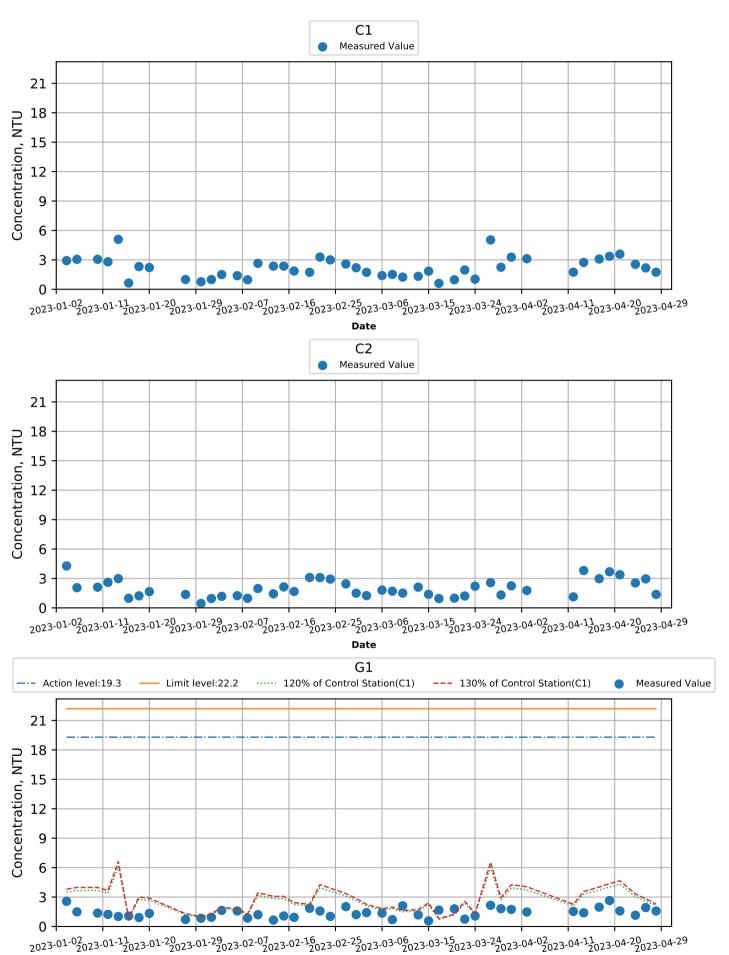


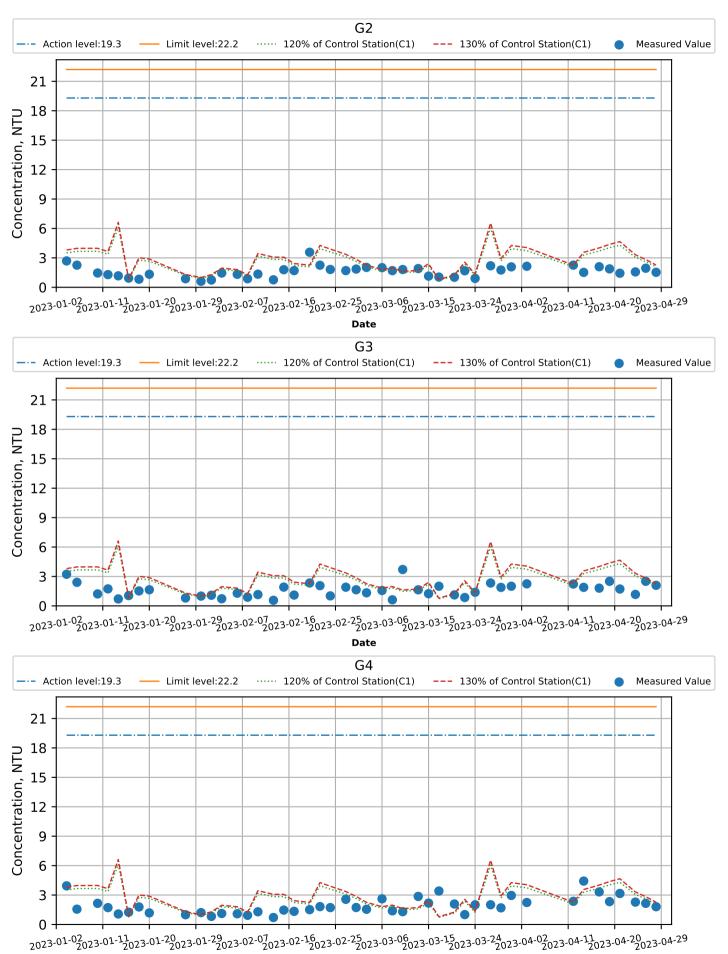


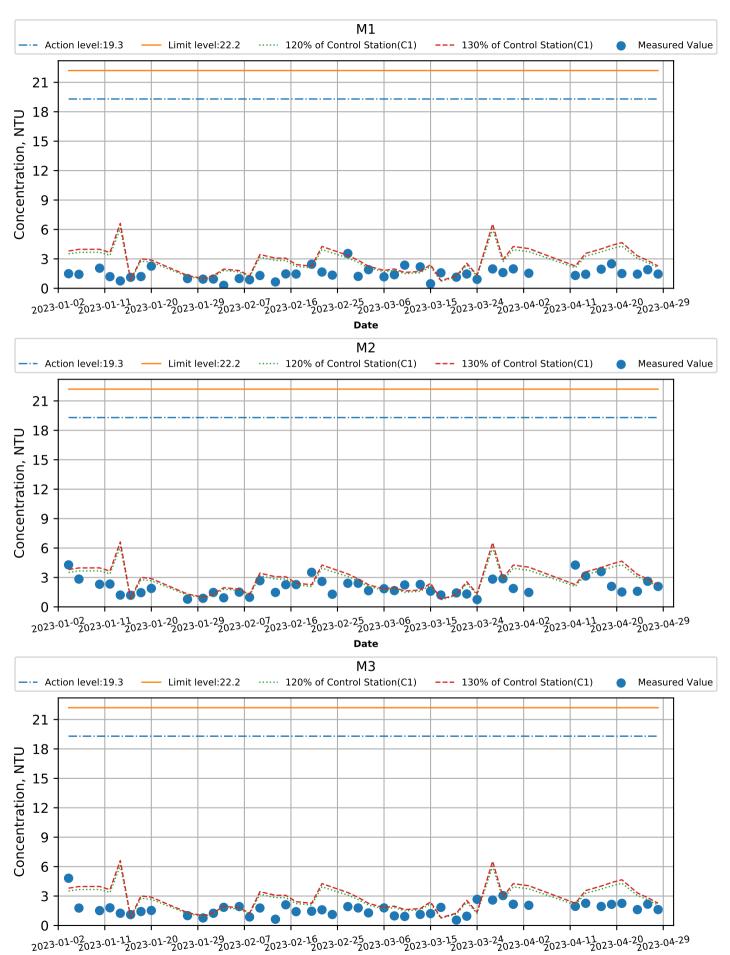


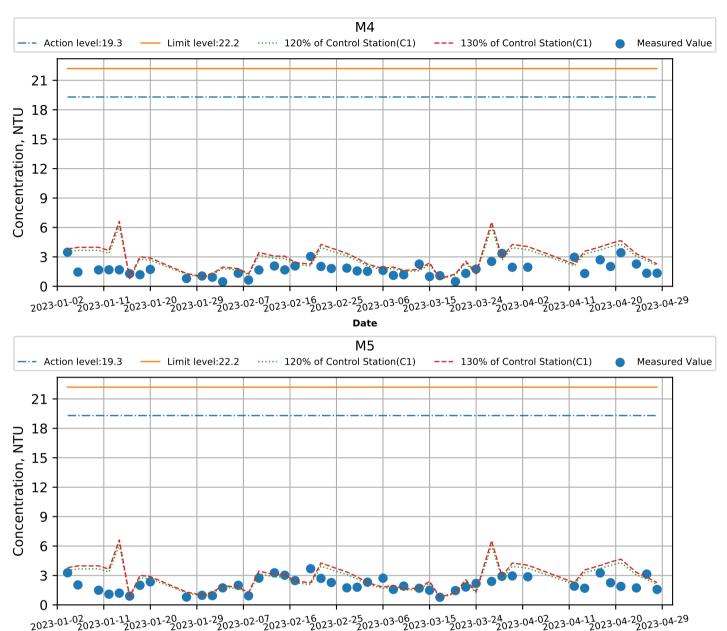


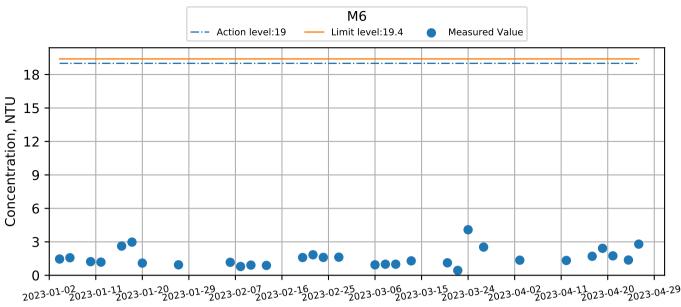


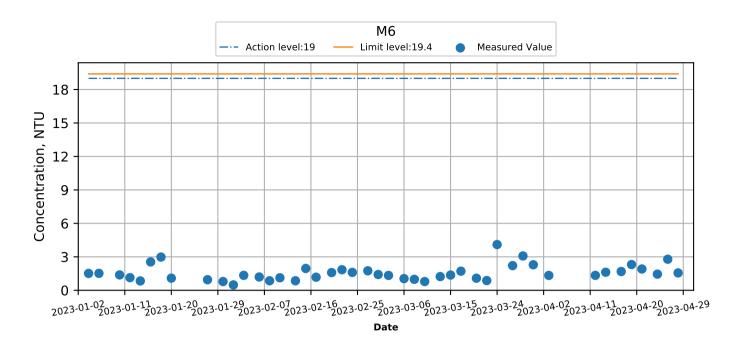

Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Turbidity (Bottom) at Monitoring Stations during Mid-Ebb

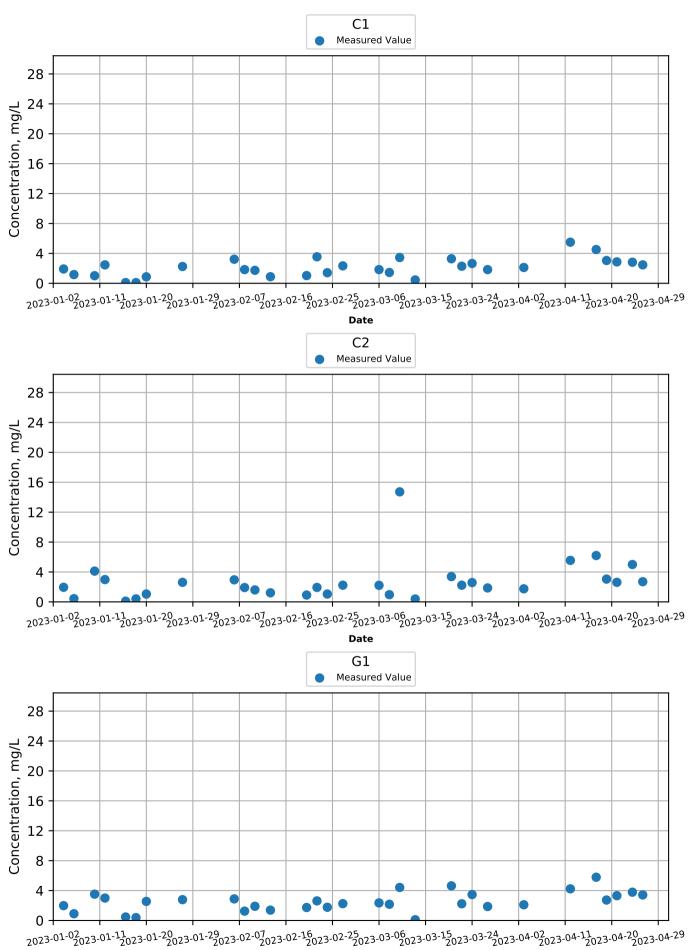


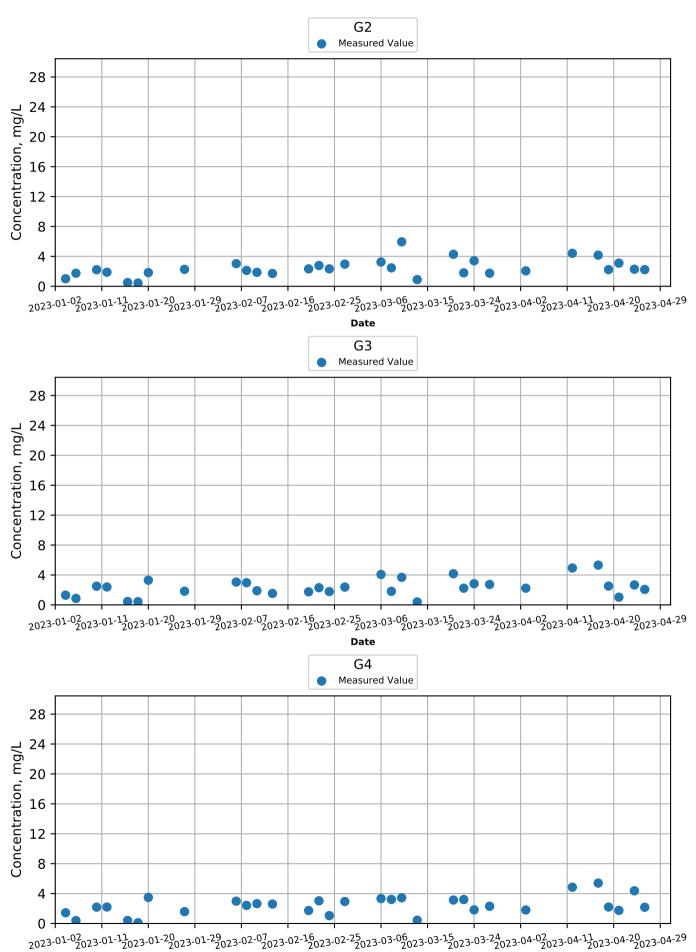


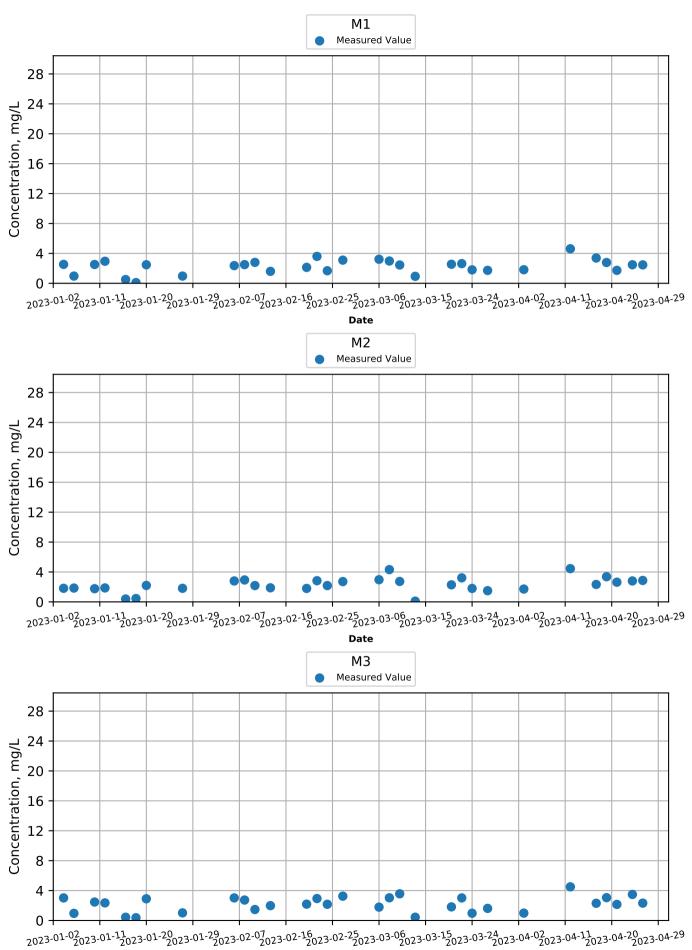


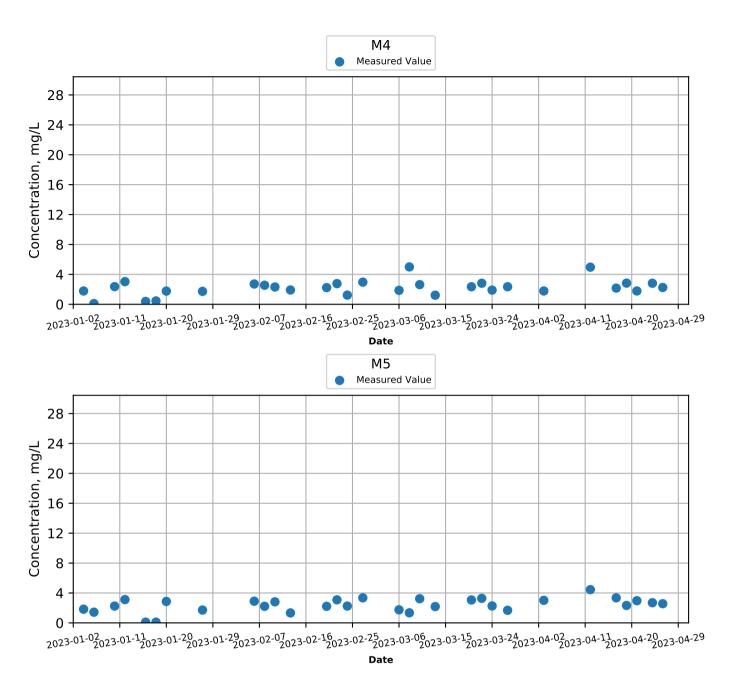


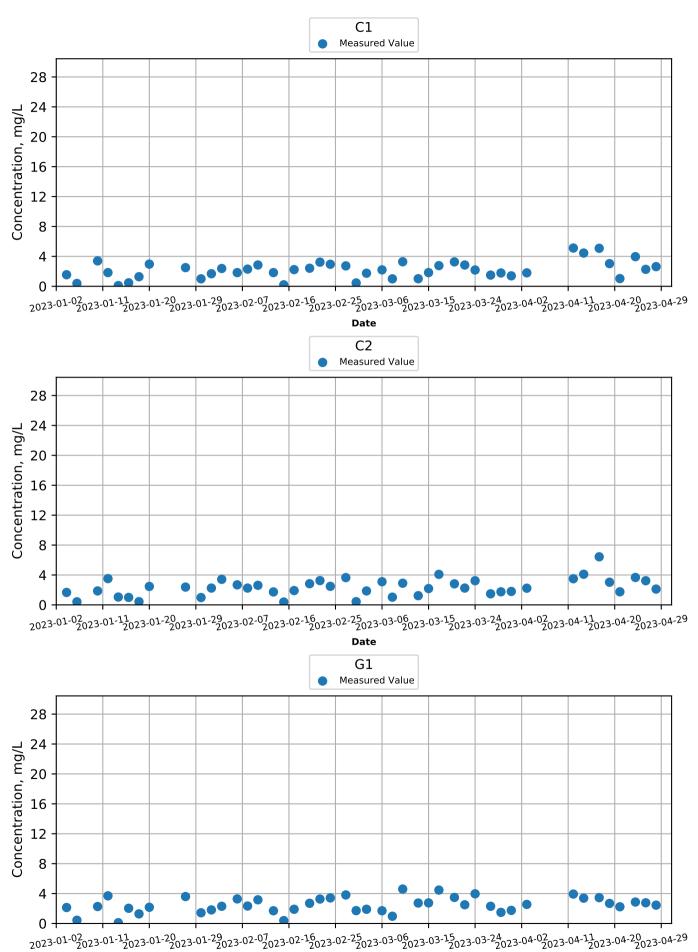


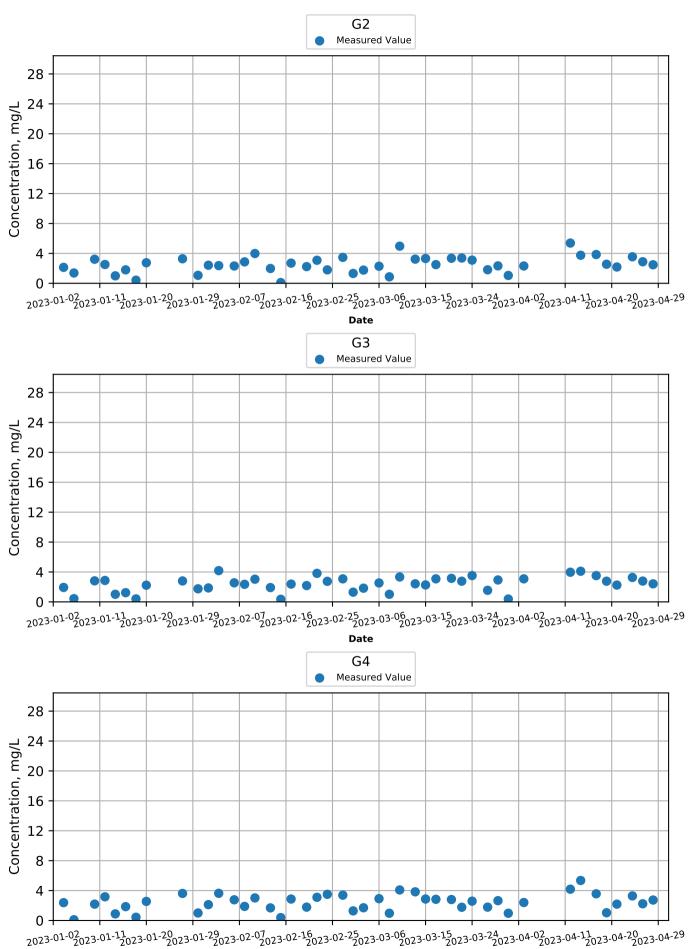


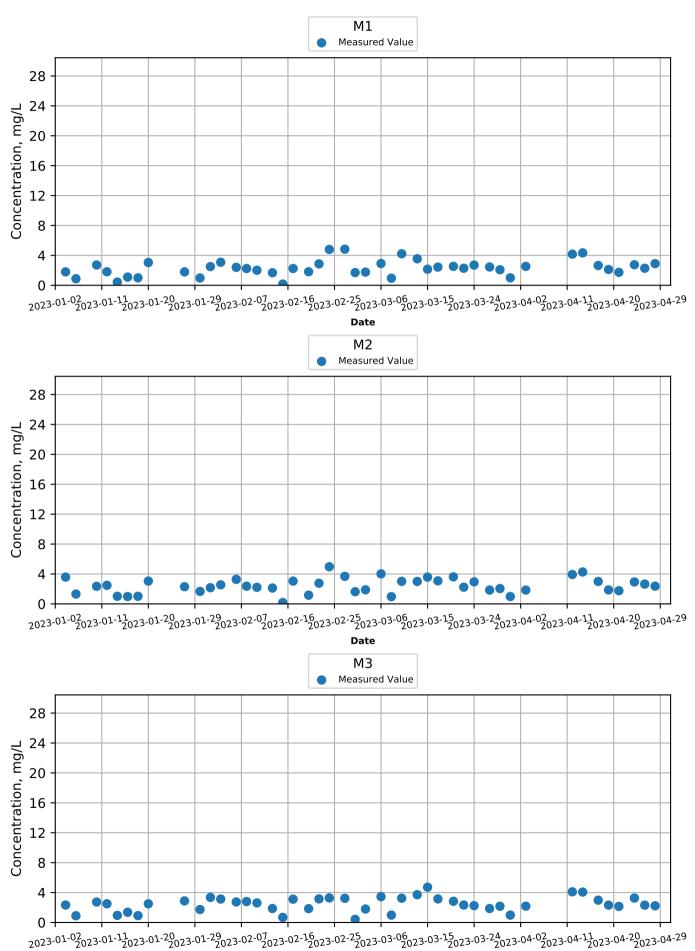

Date

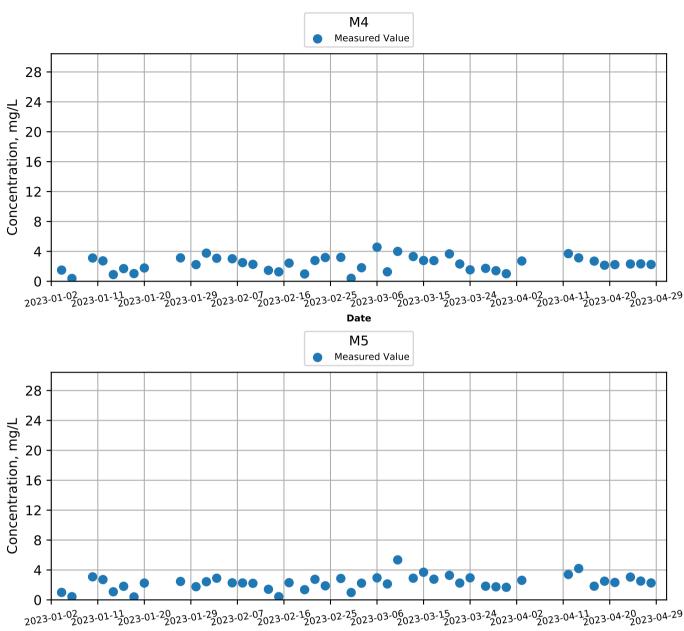


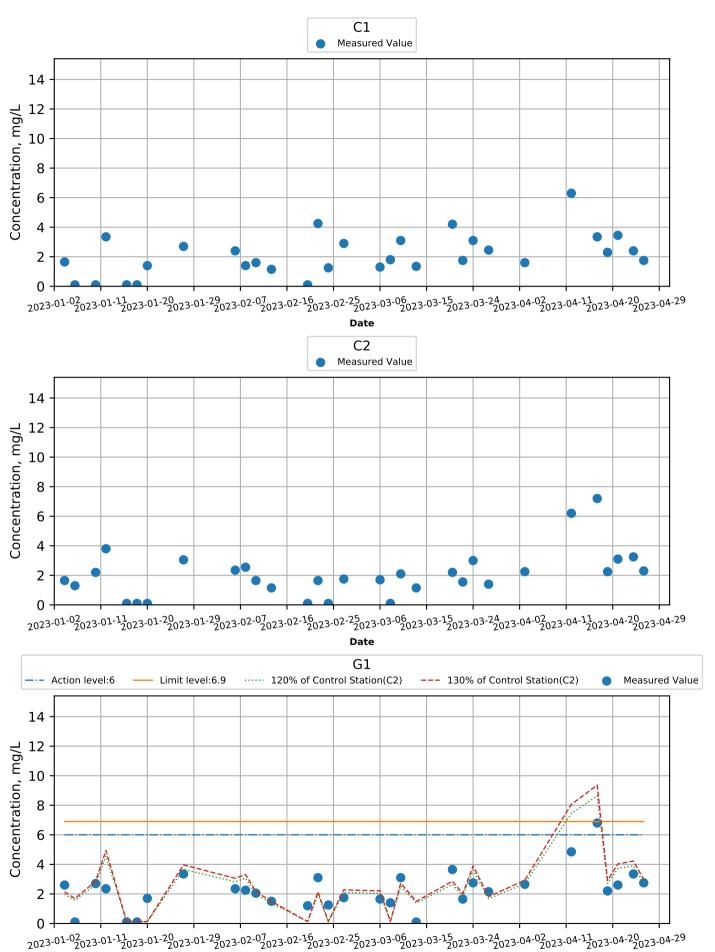


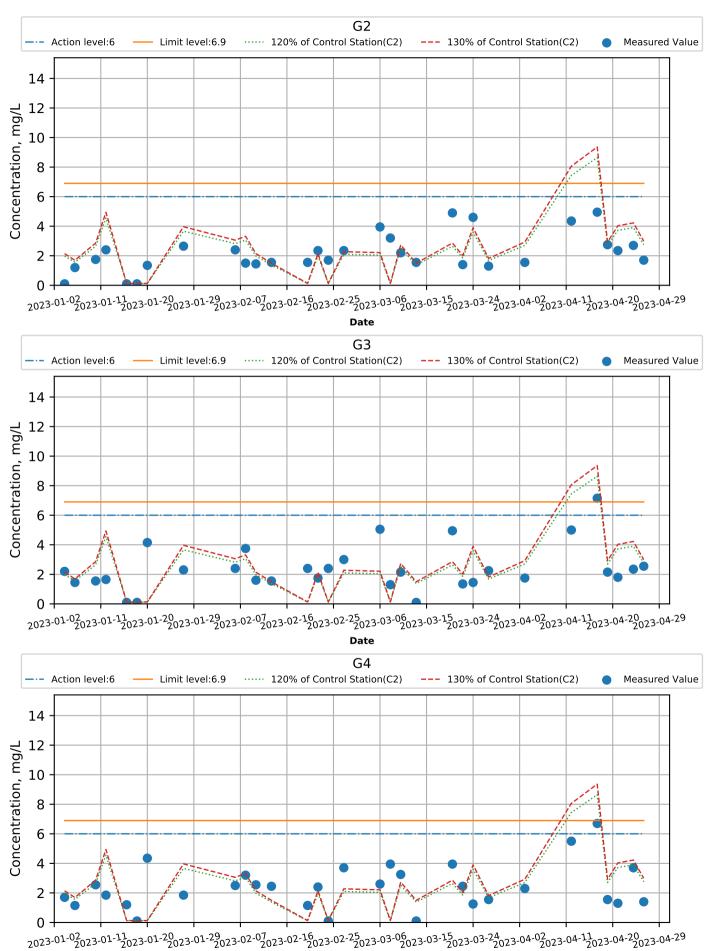


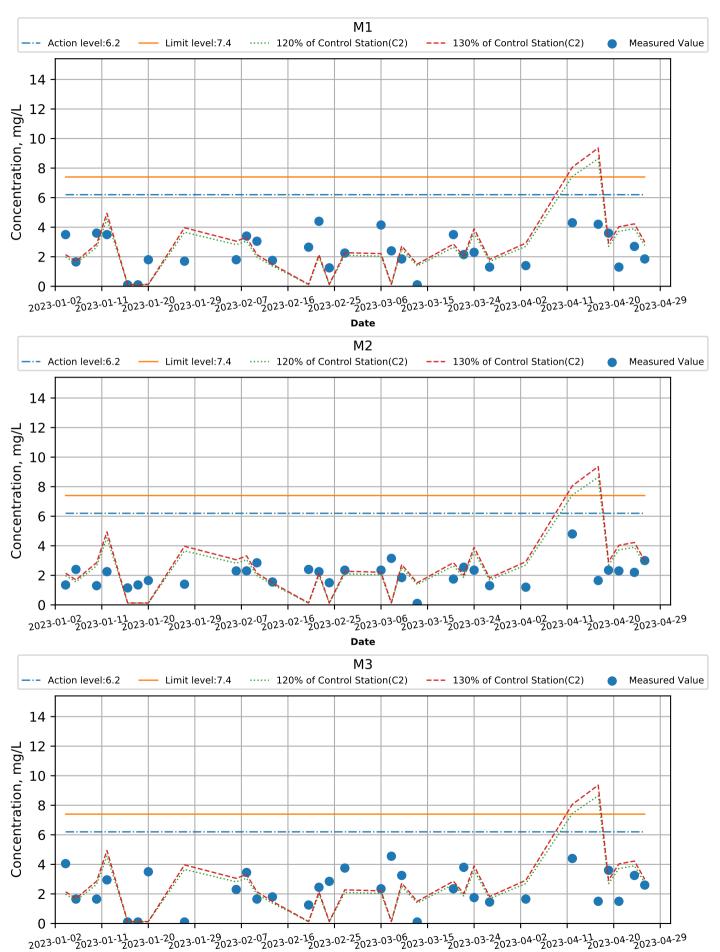


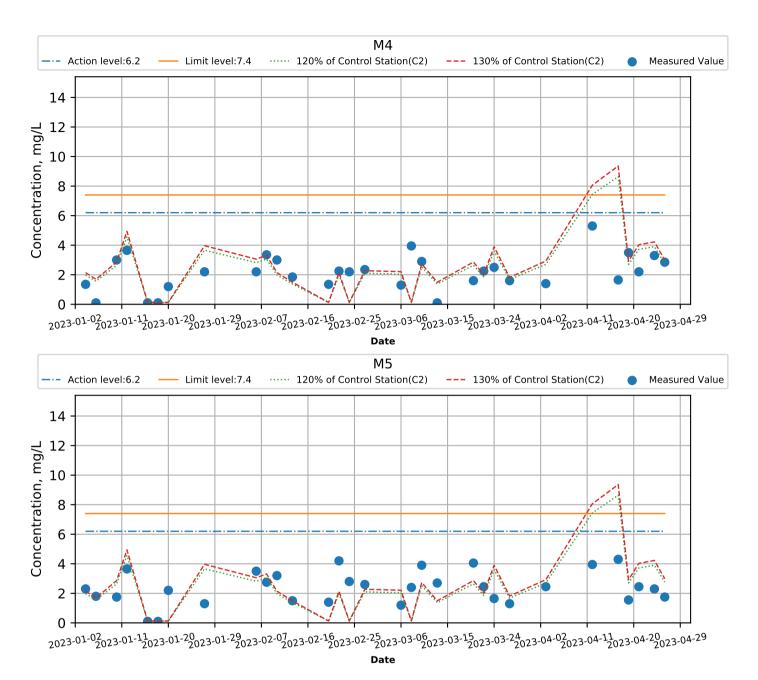


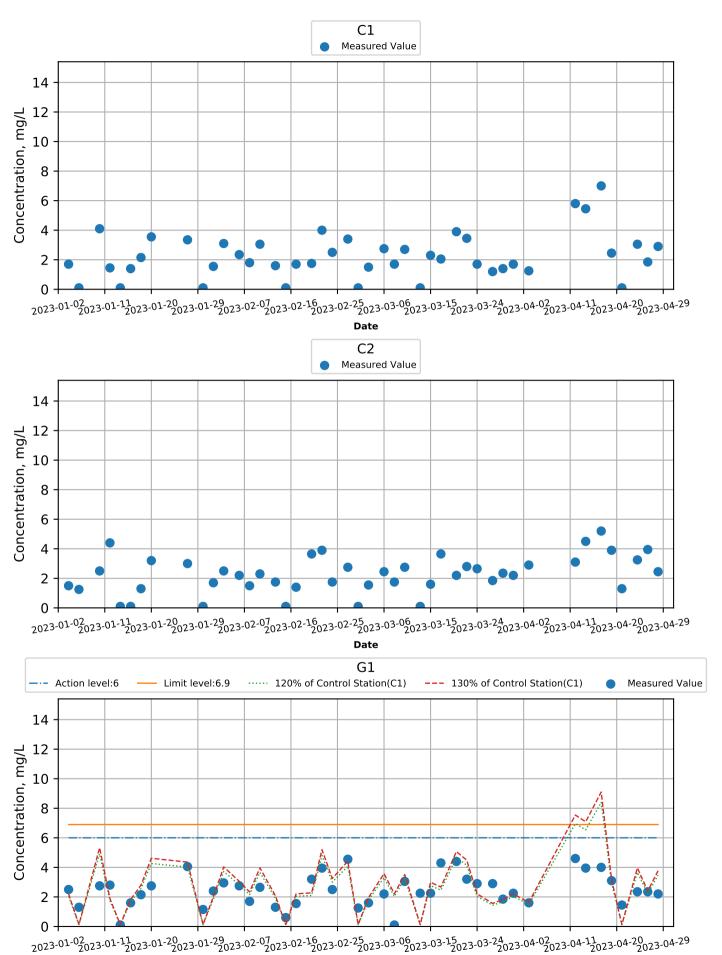


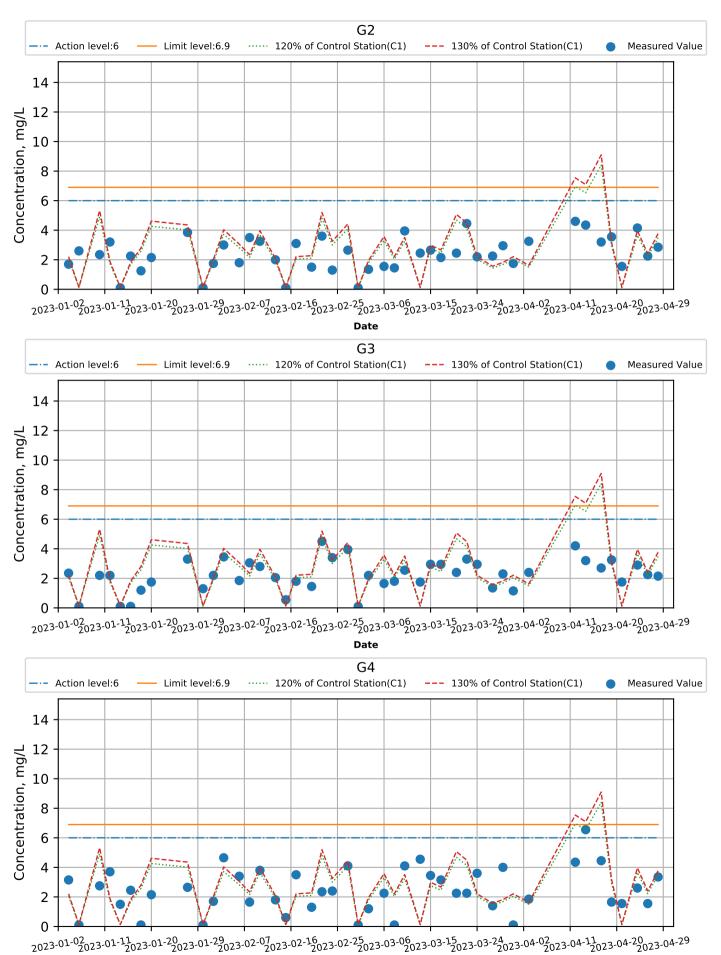


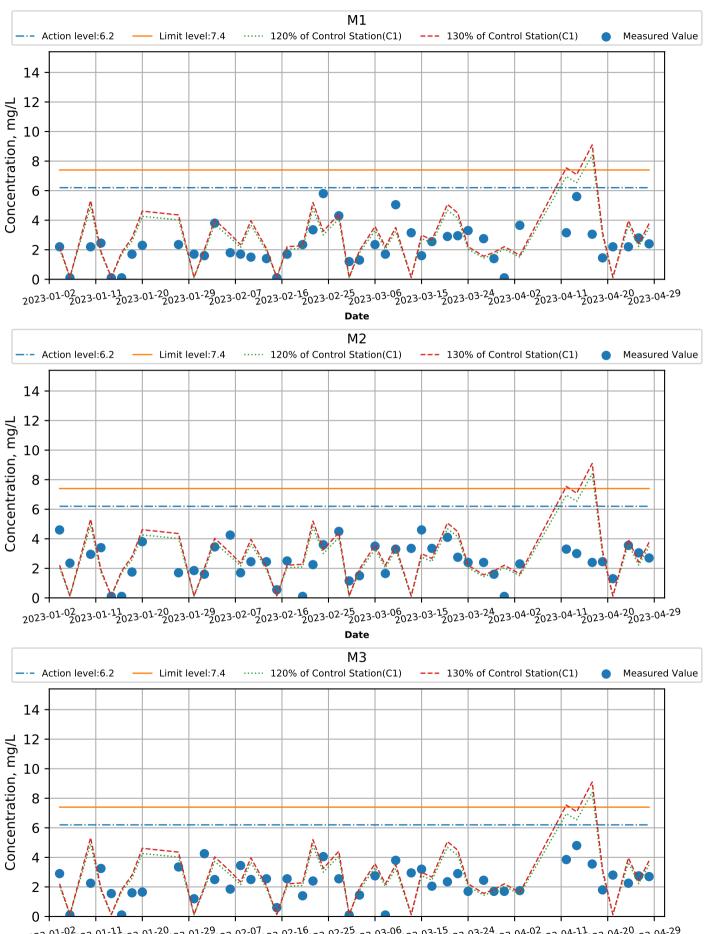


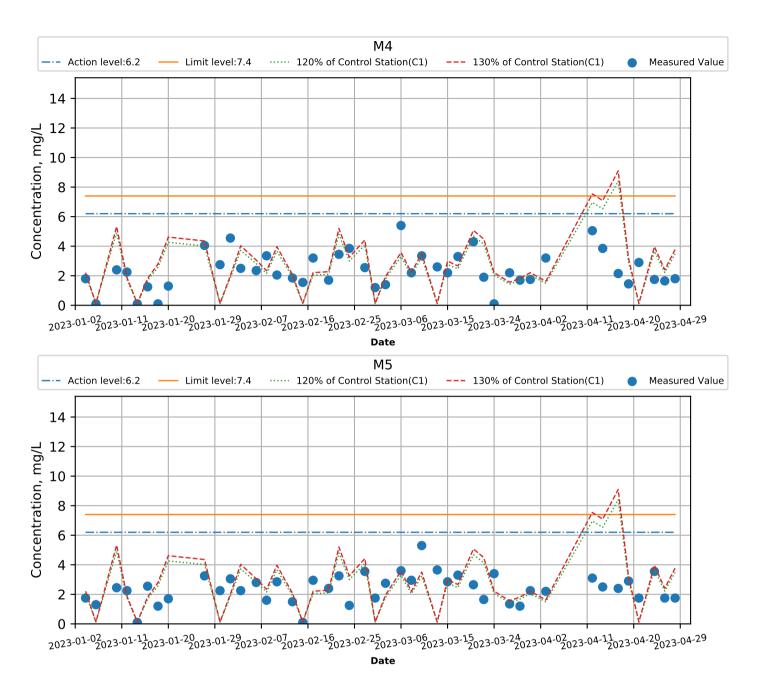


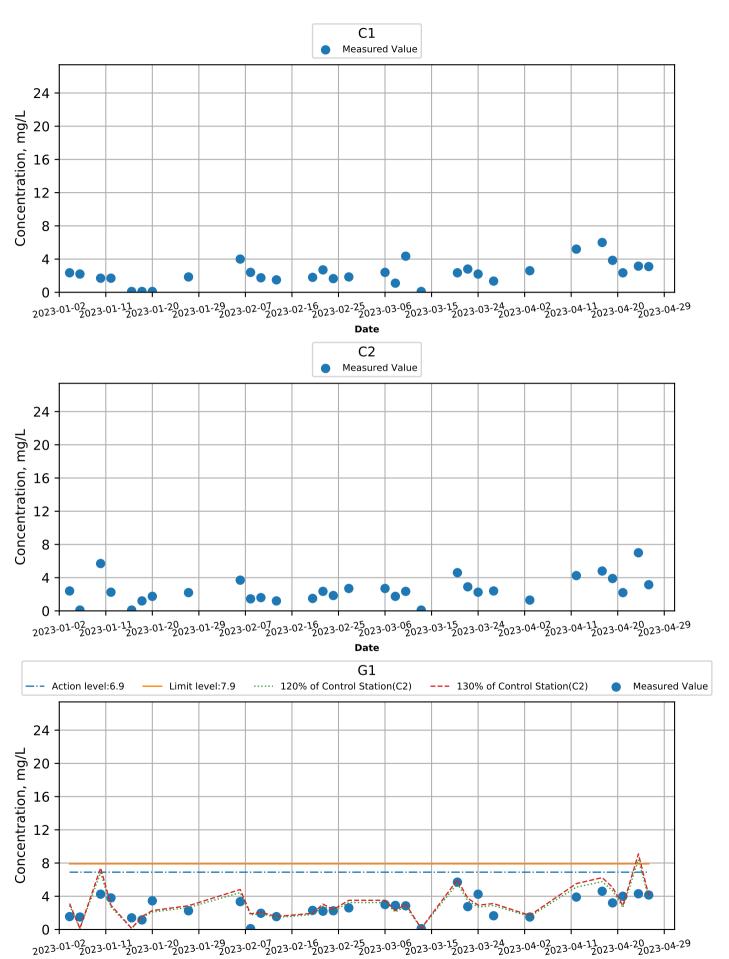


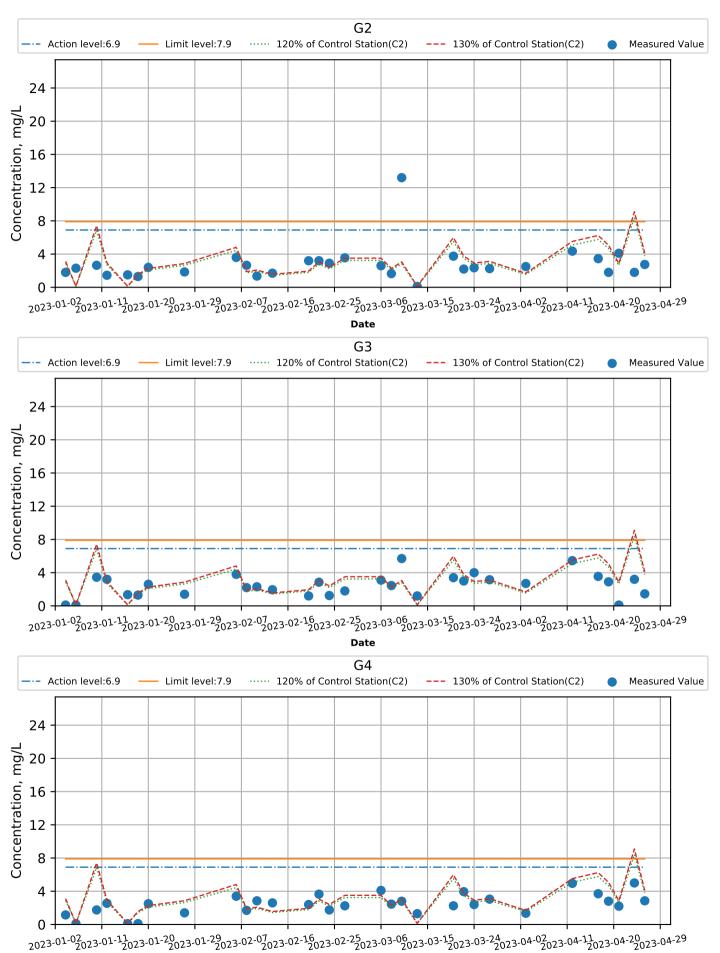

Date

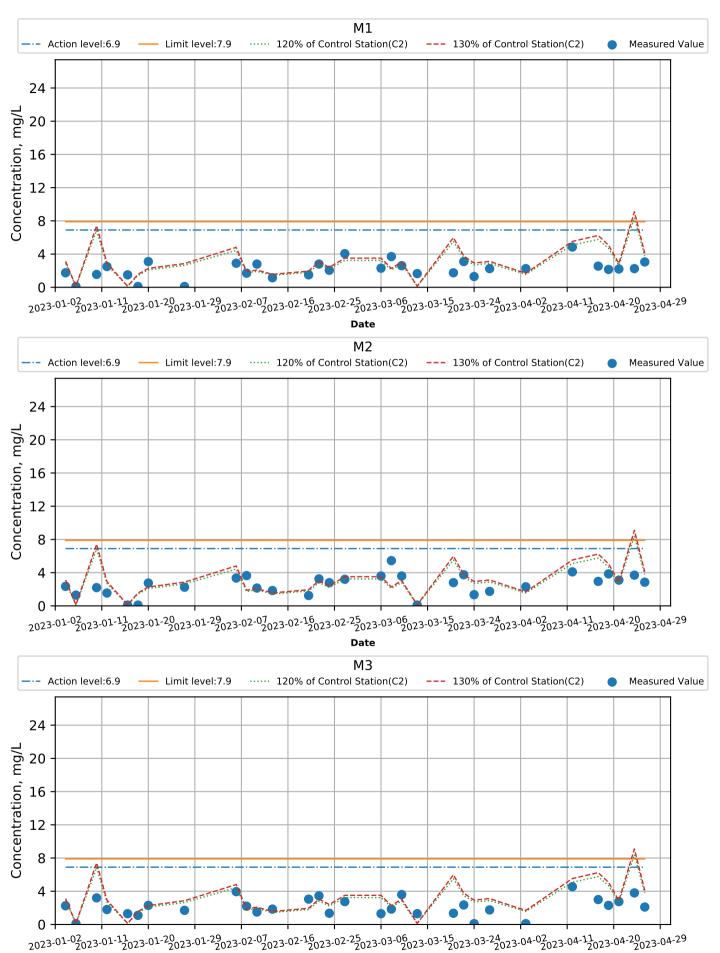


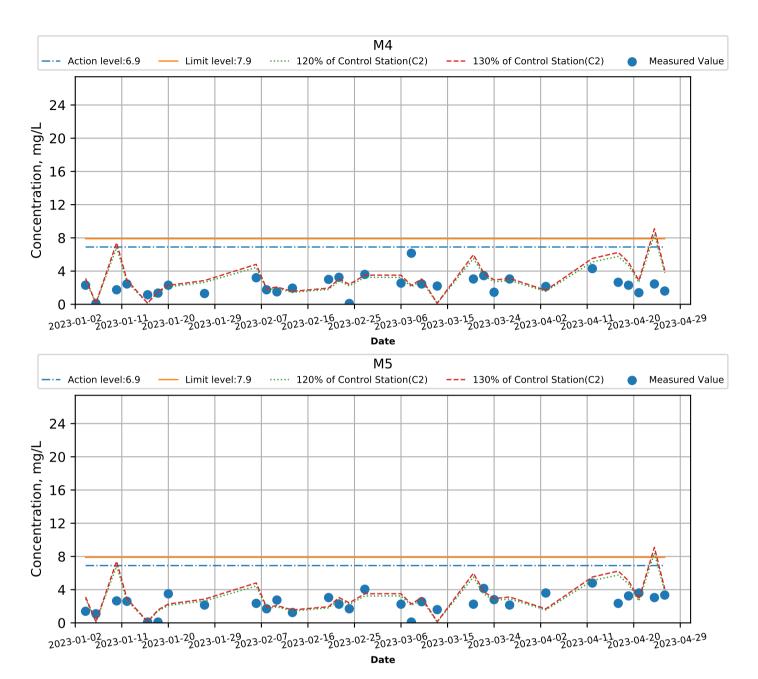


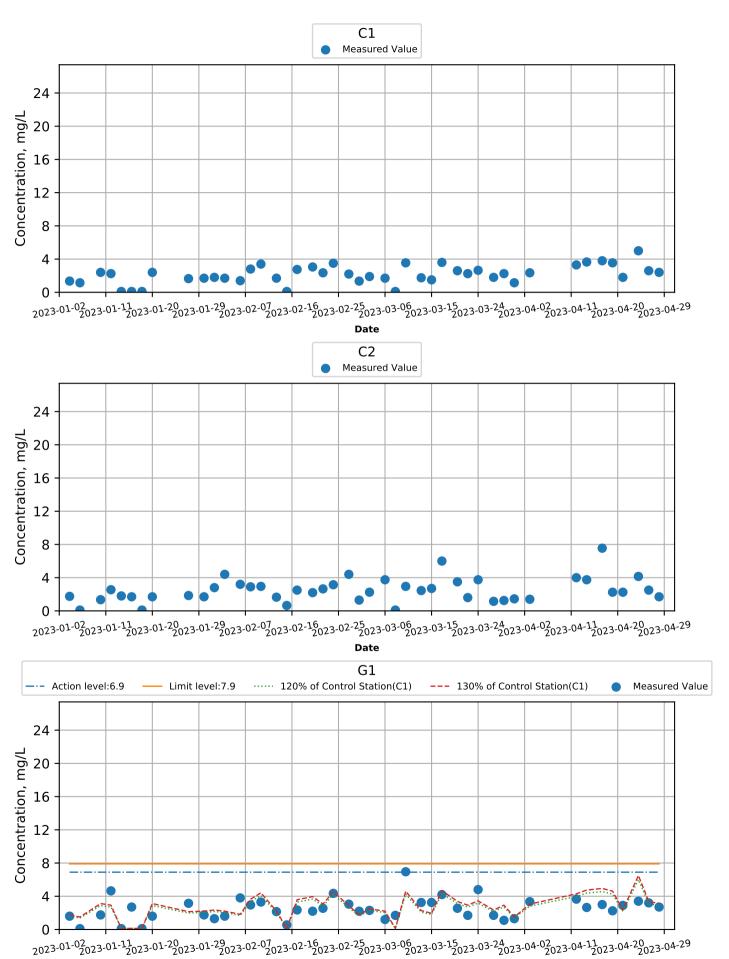


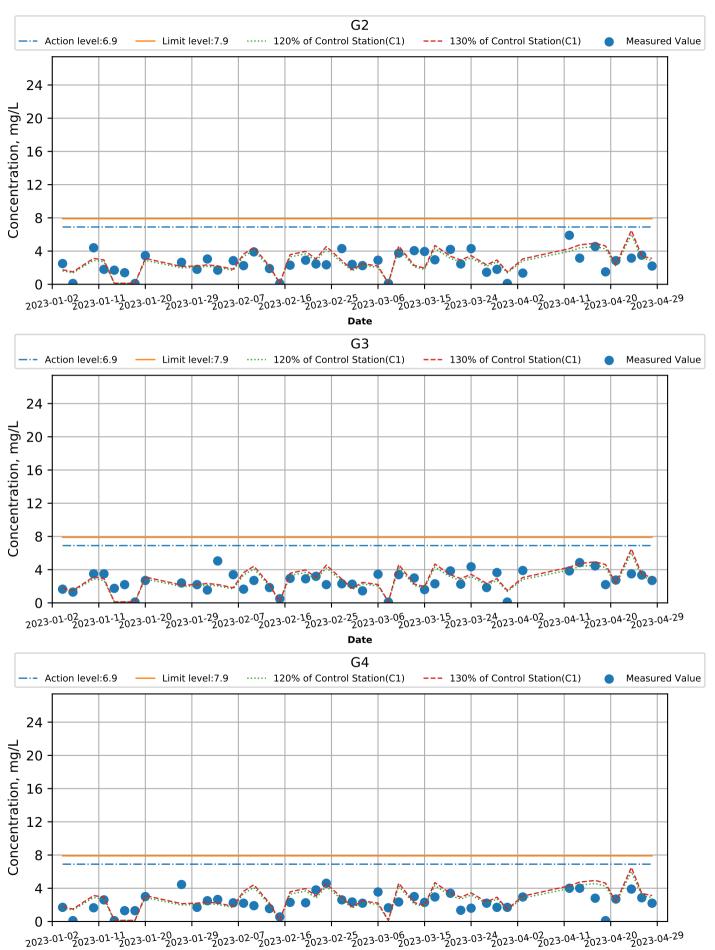


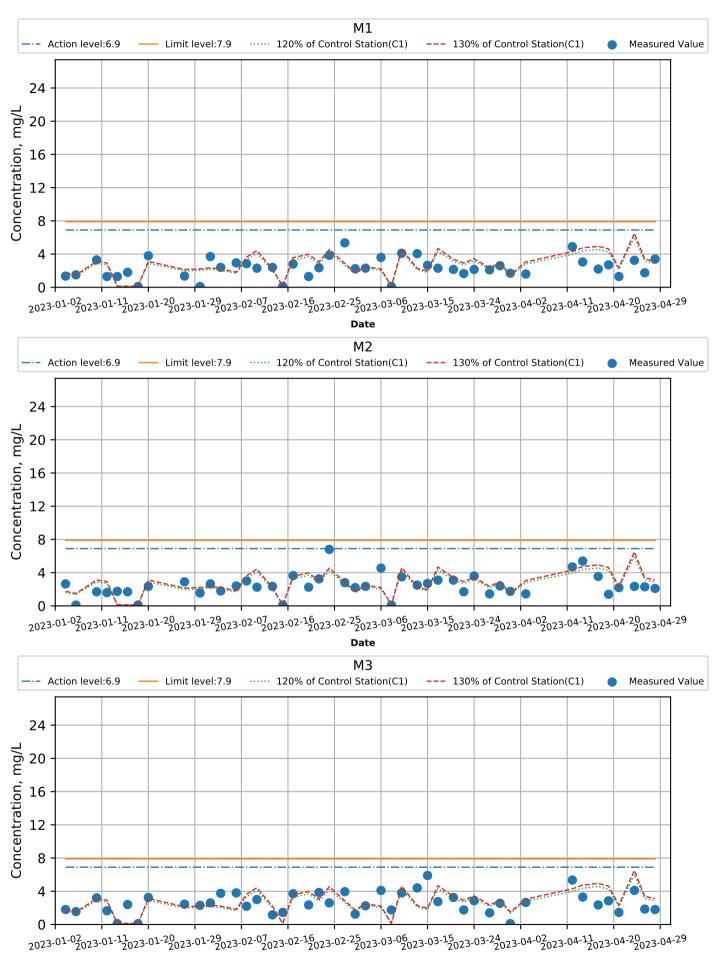


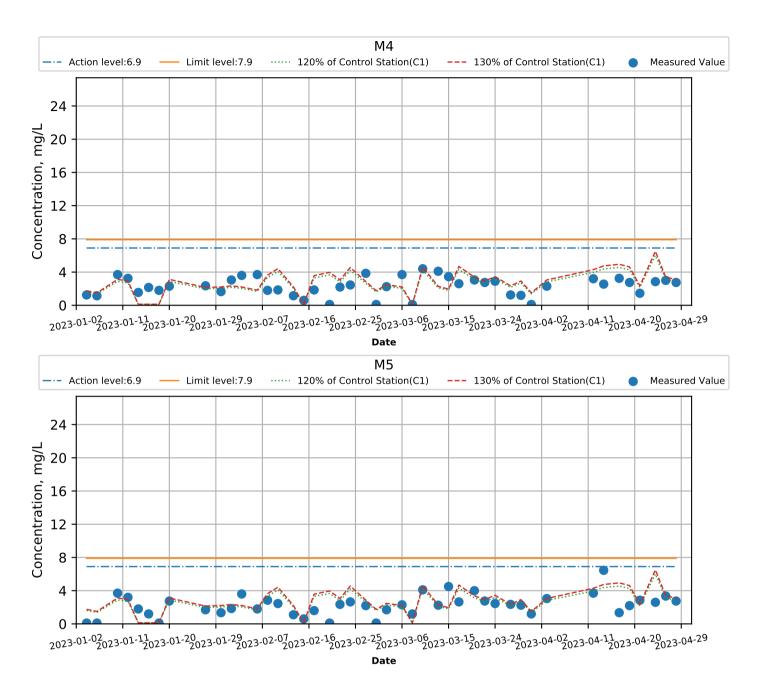


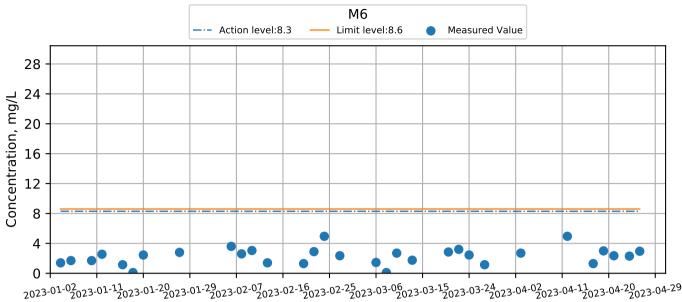

 $2023 - 01 - 02 \\ 2023 - 01 - 12 \\ 2023 - 01 - 20 \\ 2023 - 01 - 20 \\ 2023 - 02 - 20 \\ 2023 - 02 - 16 \\ 2023 - 02 - 25 \\ 2023 - 03 - 05 \\ 2023 - 03 - 15 \\ 2023 - 03 - 15 \\ 2023 - 03 - 05 \\ 2023 - 03 - 05 \\ 2023 - 03 - 05 \\ 2023 - 03 - 05 \\ 2023 - 04 - 02 \\ 2023 - 04 - 11 \\ 2023 - 04 - 11 \\ 2023 - 04 - 11 \\ 2023 - 04 - 10 \\ 2023$



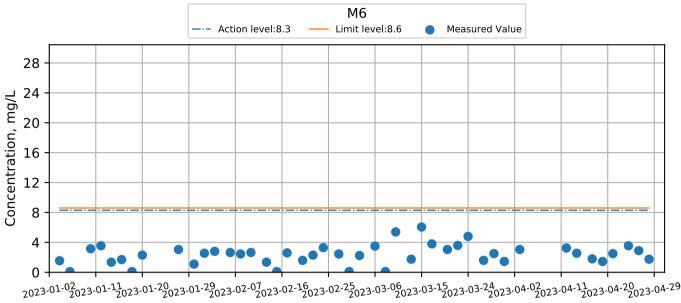





Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Suspended Solids (Bottom) at Monitoring Stations during Mid-Flood


Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Suspended Solids (Bottom) at Monitoring Stations during Mid-Flood

Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Suspended Solids (Bottom) at Monitoring Stations during Mid-Flood



Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Suspended Solids (Intake level) at Monitoring Stations during Mid-Ebb

Graphical Presentation of Water Quality Monitoring Results (Jan-2023 to Apr-2023) Suspended Solids (Intake level) at Monitoring Stations during Mid-Flood

APPENDIX J QUALITY CONTROL REPORTS FOR LABORATORY ANALYSIS

ALS Hong Kong is staffed with qualified chemists who conduct analytical testing using well documented procedures based on the universally recognised methodologies of USEPA, APHA, ASTM.

All laboratory procedures are regulated by comprehensive QA / QC programmes established to monitor and control every aspect of the operation. A minimum of 10% of all samples analysed by ALS Technichem are part of the Quality Assurance protocol.

The laboratory is HOKLAS accredited (Reg. No. 066) for a large range of chemical and biological tests covering environmental and food analyses.

Our QA/QC procedures are designed to ensure reliable analytical results to our clients.

1. INSTRUMENT CALIBRATION

All equipment and instruments meet the requirements and specifications of the documented test procedures.

1.1 Daily Performance Checks

The performance checks are carried out once in every 24 hour operating period for most capital instruments, such as:

- Liquid Chromatography Mass Spectrometry/Mass Spectrometry
- Gas Chromatography Mass Selective Detector
- Gas Chromatography Flame Ionization Detector
- Gas Chromatography Electron Capture Detector
- Inductively Coupled Plasma Mass Spectrometer
- Inductively Coupled Plasma Atomic Emission Spectrometer
- Flow Injection Mercury Analyzer
- Automatic Discret Analyzer
- Flow Injection Analyzer
- Electronic Balance

Should the instrument fail the daily check repeatedly then the appropriate maintenance is undertaken to rectify the problem prior to sample analysis.

1.2 Calibration

A minimum 5 point calibration covering the working range of the samples to be analysed is run with each group of samples. Laboratory Blanks are run at a frequency of 1 in every 20 samples or 1 between each analytical lot of samples, which ever is the more frequent. A mid-range calibration standard is analysed regularly during the operating period to ensure consistency.

1.3 Calibration Check

A calibration standard is analysed regularly during the operating period to ensure consistency.

2. QUALITY CONTROL (QC) SAMPLES

QC samples comprise those which monitor and control the laboratory performance namely Laboratory Control Sample (LCS), Duplicate Control Sample (DCS), Method Blanks and those which are used for data assessment and the evaluation of matrix effects by using Surrogates, Matrix Spike (MS), Matrix Spike Duplicate (MSD) and Sample Duplicates.

Field contamination is monitored by the analysis of Trip Blanks (VOCs) and Equipment Rinsate Samples.

The organics laboratory processes field samples in QC lots of 20 according to the analysis required. These 20 samples may consist of a number of sample batches independently submitted to the laboratory.

The inorganics laboratory lots samples in groups of 20 to 50 depending on the analyte to be determined. Quality control samples such as Laboratory Blanks and Quality Control Sample, and/or Certified Reference Materials (CRM) are run at a frequency of 1 in 20 per 'lot' of samples. Sample Duplicates and Matrix Spikes are run at a frequency of 1 in 20 or 1 per batch, whichever is more frequent.

2.1 Laboratory Control Sample (LCS) & Duplicate Control Sample (DCS) - (Organics only)

(a) Accuracy - the closeness of agreement between an observed value and a reference value.

The observed value is the average of the LCS and the DCS values. The reference value is the spike value. The accuracy is expressed as the % Recovery and is calculated as follows:

% Recovery = (Observed Value/Spiked Value) x 100

(b) Precision - the agreement among a set of replicate results.

Precision is expressed as the Relative Percent Difference (RPD) between the LCS and DCS detected levels, against the average of these levels.

The RPD is calculated as follows:

RPD = [(Results 1 - Result 2) / Average] x 100

The accuracy and precision data are evaluated against laboratory established control limits. (If laboratory control limits have not been established for a particular method, control limits as specified in USEPA SW 846 may be utilised).

QC results falling outside the control limits are automatically flagged.

The acceptance criterion used is that 80 percent of the precision and accuracy values must fall within the control limits. If this criterion is not met, corrective action must be taken. This may include repeat sample analysis.

2.2 Laboratory / Reagent Blank

For the laboratory blank to be acceptable, the concentration in the blank of any analyte of concern should not be higher than $\frac{1}{2}$ of reporting limit (LOR) for that analyte.

Blank correction may be performed if the blank result is found to be greater than LOR and it is attributed to the analytical method and/or reagents involved.

2.3 Surrogates (Organics Only)

Surrogate results are reported as percent recovery. Since surrogate spike recoveries indicate the presence of sample specific interferences, USEPA documented recovery limits are used as a guidance only.

The surrogate standards are used for semivolatile and volatile analyses. The semivolatile analysis includes SVOC, pesticide and PCB tests. The volatile analysis includes VOC and BTEX.

2.4 Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

MS and MSD results are used for data assessment and evaluation of method precision and bias in a given matrix.

2.5 Sample Duplicate

The duplicate results are used for evaluation of laboratory precision in a given matrix.

The RPD values of the duplicates are used as the rejection or acceptance criteria.

Generally, water samples are repeated if the RPD is greater than 20 percent and there is sufficient sample for reanalysis.

The RPD for soils should be within 25 percent, however, this may be dependent upon sample homogeneity.

TABLE 1: QC TERMS, DEFINITIONS, PURPOSE FOR MONITORING & FREQUENCY

QC TERM	DEFINITION	TO MONITOR	FREQUENCY
Work Order	A set of samples received from a customer for analysis.	-	-
QC Lot	A set of 20 samples analysed under the same analytical conditions. A QC Lot may consist of samples from a number of work orders.	-	-
Analytical Lot	A group of samples prepared at the same time for a given analyte.	-	-
Control Limits	Upper and lower limits based on statistical analysis of laboratory historical performance data.	Laboratory precision and bias.	-
Laboratory Quality Control Sam	ples		
Method Blank (BLK)	An analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation.	Contamination introduced in the laboratory.	1 per QC lot of 20 samples
Sample Duplicate (DUP)	An intra-laboratory split sample randomly selected from the sample batch.	Method precision in a given sample matrix.	1 per QC lot of 20 samples
Matrix Spike <i>(MS)</i>	A split sample spiked with the target analytes prior to sample preparation and analysis.	Method bias in a given sample matrix.	1 per QC lot of 20 samples
Matrix Spike Duplicate (MSD)	An split sample spiked as per the MS.	Ditto	ditto
Laboratory Control Sample (LCS)	A known, interference free matrix spiked with target analytes.	Laboratory preparation technique.	1 per QC lot of 20 samples
Duplicate Control Sample (DCS)	As per the SCS.	Preparation technique reproducibility (precision).	Ditto
Certified Reference Material (CRM)	A certified reference material containing target analytes with known concentrations and associated uncertainities and	Monitoring overall performance of each step during analysis, including sample preparation. For Inorganic analysis.	1 per QC Lot, per analytical method.
Surrogate Spike (organic testing only)	Compounds similar in composition and behaviour to the target analytes but not commonly found in samples.	Matrix interference on a per sample basis.	Surrogates are added to all samples for selected organic analyses.
Filed Quality Control Samples	·	·	·
Equipment Rinsate	A sample of reagent water used by client in field to rinse the sampling equipment between the decontamination and sampling steps	Equipment decontamination.	as directed by client.
Trip Blank (usually VOC testing)	A sample of analyte free media is taken from the laboratory to the sampling site and returned to the laboratory unopened.	Contamination from shipping and field handling. Most applicable to volatile analysis.	as directed by client.

TABLE 2: LABORATORY QUALITY CONTROL SCHEDULES

ORGANICS –

QUALITY CONTROL ITEM	QCS2	QCS3	QCS4
Laboratory Blank	\checkmark	\checkmark	\checkmark
Batch Duplicate	\checkmark	\checkmark	\checkmark
Matrix Spike (MS)	•	\checkmark	\checkmark
Single Control Sample (SCS)	\checkmark	\checkmark	\checkmark
Duplicate Control Sample (DCS)	•	٠	\checkmark
Surrogate (organics only)	\checkmark	\checkmark	\checkmark
Matrix Spike Duplicate (MSD)	•	•	

INORGANICS -

QUALITY CONTROL ITEM	QCS2	QCS3	QCS4
Laboratory Blank	\checkmark	\checkmark	\checkmark
Batch Duplicate	\checkmark	\checkmark	\checkmark
Matrix Spike (MS)	\checkmark	\checkmark	\checkmark
Single Control Sample (SCS)	\checkmark	\checkmark	\checkmark
Duplicate Control Sample (DCS)	•	•	\checkmark
Matrix Spike Duplicate (MSD)	•	•	\checkmark

 $\sqrt{}$ Analysis performed in the schedule.

• Analysis not performed in the schedule.

APPENDIX K SUMMARY OF EXCEEDANCE

Appendix K – Summary of Exceedance

Reporting Period: April 2023

(A) Exceedance Report for Air Quality

One (1) limit level exceedance for air quality monitoring of 24-hr TSP was recorded in the reporting month.

One (1) action level exceedance for air quality monitoring of 24-hr TSP was recorded in the reporting month.

No exceedance for air quality monitoring of 1-hr TSP was recorded in the reporting month.

(B) Exceedance Report for Construction Noise

Action Level for Construction Noise

No action level exceedances were recorded due to the documented complaints received in this reporting month.

Limit Level for Construction Noise

No limit level exceedance for daytime construction noise monitoring was recorded in the reporting month.

No exceedance for evening-time construction noise monitoring was recorded in the reporting month.

No exceedance for nighttime construction noise monitoring was recorded in the reporting month, none of them is considered to be project-related.

(C) Exceedance Report for Water Quality

Six (6) Action Level and thirty – three (33) Limit Level exceedances were recorded in Monitoring Stations (M) during marine water quality monitoring.

No action and limit level exceedance were recorded for post-reclamation marine water quality monitoring.

Refer to the attached notifications and investigation report for details. Since October 2019, groundwater monitoring had been suspended.

(D) Exceedance Report for Ecology

(NIL in the reporting month)

- (E) Exceedance Report for Cultural Heritage (NIL in the reporting month)
- (F) Exceedance Report for Landfill Gas

(NIL in the reporting month)

- Notification of Exceedances

NOE No. 230411_Air (AM4(B))

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Air Quality (24hr-TSP)

Station	Location	Time	Filter Weight (g) Initial	Filter Weight (g) Final	Particulate Weight (g)	Particulate Concentration (µg/m3)	Action Level: (µg/m3)	Limit Level: (µg/m3)	Level exceeded
AM4(B)	Flat 103 Cha Kwo Ling Village	0900 (11 Apr 2023) – 0900 (12 Apr 2023)	3.3488	3.7337	0.3849	222.0	210	<u>260</u>	Action

Field Observation(s) and Conclusion

(a) Statement of exceedance(s)

Air quality measured at AM4(B) exceeded the air quality action level for 24-hour TSP monitoring.

- (b) Cause of exceedance(s) / Remarks
 - According to our field observation, similar to the case on 23 Mar 2023, numerous of dump trucks, lorry, buses and minibuses were observed along Cha Kwo Ling Road. The busy transportation cause raised dust and spread to the surrounding.
 - After the completion of TKO-LTT, the traffic flow along Cha Kwo Ling Road increases. For instance, dump trucks filled with C&D materials from other sites utilized Cha Kwo Ling Road and TKO-LTT to reach the fill bank at TKO area 137.
 - No major construction activity was observed along Cha Kwo Ling Road during the environmental monitoring.

Part B – **Conclusion:** As the observed heavy vehicles did not belong to NE/2015/01 and the construction works along Cha Kwo Ling Road only include backfilling and block paving on footpath. Mitigation measures such as covering the stockpiles have been implemented therefore the exceedance is considered as **non-project related**.

Part C – Recommendation: The Contractor shall continue good site practices such as sprinkle the site frequently and cover any dusty stockpile even no PME(s) is involved to minimize the potential air quality impact.

nan ETL Signature:

Date: <u>17 April 2023</u>

- Notification of Exceedances

Supplementary Information

- Notification of Exceedances

Agreement No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel - Notification of Exceedances

- Notification of Exceedances

NOE No. 230414_Air (AM4(B))

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Air Quality (24hr-TSP)

Station	Location	Time	Filter Weight (g) Initial	Filter Weight (g) Final	Particulate Weight (g)	Particulate Concentration (µg/m3)	Action Level: (µg/m3)	Limit Level: (µg/m3)	Level exceeded
AM4(B)	Flat 103 Cha Kwo Ling Village	0900 (14 Apr 2023) – 0900 (15 Apr 2023)	3.3222	3.8378	0.5156	<u>298.1</u>	210	<u>260</u>	Limit

Field Observation(s) and Conclusion

(a) Statement of exceedance(s)

Air quality measured at AM4(B) exceeded the air quality limit level for 24-hour TSP monitoring.

- (b) Cause of exceedance(s) / Remarks
 - According to our field observation, similar to the case on 11 Apr 2023, numerous of dump trucks, lorry, buses and minibuses were observed along Cha Kwo Ling Road. The busy transportation cause raised dust and spread to the surrounding.
 - After the completion of TKO-LTT, the traffic flow along Cha Kwo Ling Road increases. For instance, dump trucks filled with C&D materials from other sites utilized Cha Kwo Ling Road and TKO-LTT to reach the fill bank at TKO area 137.
 - No major construction activity was observed along Cha Kwo Ling Road during the environmental monitoring.

Part B – **Conclusion:** As the observed heavy vehicles did not belong to NE/2015/01 and the construction works along Cha Kwo Ling Road only include block paving on footpath. Mitigation measures such as covering the stockpiles have been implemented therefore the exceedance is considered as **non-project related**.

Part C – Recommendation: The Contractor shall continue good site practices such as sprinkle the site frequently and cover any dusty stockpile even no PME(s) is involved to minimize the potential air quality impact.

ran ETL Signature:

Date: 21 April 2023

- Notification of Exceedances

Supplementary Information

- Notification of Exceedances

- Notification of Exceedances

- Notification of Exceedance

Date of Water Quality Monitoring:

03 April 2023

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	bottom	1.3	G2	11:25	6.9	7.9	1.6	1.7	2.5
Mid-Ebb	C2	bottom	1.3	G3	11:36	6.9	7.9	1.6	1.7	<u>2.7</u>
Mid-Ebb	C2	bottom	1.3	M1	11:30	6.9	7.9	1.6	1.7	<u>2.3</u>
Mid-Ebb	C2	bottom	1.3	M2	11:21	6.9	7.9	1.6	1.7	<u>2.3</u>
Mid-Ebb	C2	bottom	1.3	M4	11:17	6.9	7.9	1.6	1.7	2.2
Mid-Ebb	C2	bottom	1.3	M5	11:50	6.9	7.9	1.6	1.7	<u>3.6</u>
Mid-Flood	C1	surface	1.3	G1	16:43	6.0	6.9	1.5	1.6	1.6
Mid-Flood	C1	surface	1.3	G2	16:35	6.0	6.9	1.5	1.6	<u>3.3</u>
Mid-Flood	C1	surface	1.3	G3	16:46	6.0	6.9	1.5	1.6	<u>2.4</u>
Mid-Flood	C1	surface	1.3	G4	16:53	6.0	6.9	1.5	1.6	<u>1.9</u>
Mid-Flood	C1	surface	1.3	M1	16:40	6.2	7.4	1.5	1.6	<u>3.7</u>
Mid-Flood	C1	surface	1.3	M2	16:30	6.2	7.4	1.5	1.6	2.3
Mid-Flood	C1	surface	1.3	M3	16:49	6.2	7.4	1.5	1.6	1.8
Mid-Flood	C1	surface	1.3	M4	16:26	6.2	7.4	1.5	1.6	3.2
Mid-Flood	C1	surface	1.3	M5	17:00	6.2	7.4	1.5	1.6	2.2
Mid-Flood	C1	bottom	2.4	G1	16:43	6.9	7.9	2.8	3.1	3.4
Mid-Flood	C1	bottom	2.4	G3	16:46	6.9	7.9	2.8	3.1	3.9
Mid-Flood	C1	bottom	2.4	G4	16:53	6.9	7.9	2.8	3.1	3.0
Mid-Flood	C1	bottom	2.4	M5	17:00	6.9	7.9	2.8	3.1	3.1

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (**Italic**)

Bold with underline means Limit Level exceedance of Control (**Regular**) & Baseline (**Italic**)

Water_Daily_230403

- Notification of Exceedance

Date of Water Quality Monitoring:

03 April 2023

Part A – Exceedance Summary Tables

 Table II:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.8	G2	11:25	2.1	2.3	2.3
Bottom	19.3	22.2	Mid-Ebb	C2	1.8	M5	11:50	2.1	2.3	<u>2.9</u>

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

12 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	bottom	4.3	G3	16:38	6.9	7.9	5.1	5.5	5.5
Mid-Flood	C1	bottom	3.3	G2	9:05	6.9	7.9	4.0	4.3	<u>5.9</u>
Mid-Flood	C1	bottom	3.3	M1	9:09	6.9	7.9	4.0	4.3	<u>4.9</u>
Mid-Flood	C1	bottom	3.3	M2	9:02	6.9	7.9	4.0	4.3	<u>4.7</u>
Mid-Flood	C1	bottom	3.3	M3	9:18	6.9	7.9	4.0	4.3	<u>5.4</u>

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

12 April 2023

Part A – Exceedance Summary Tables

 Table II:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	G1	16:35	1.3	1.4	<u>1.5</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	G2	16:29	1.3	1.4	<u>3.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	G3	16:38	1.3	1.4	<u>2.4</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	G4	16:44	1.3	1.4	<u>2.8</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	M1	16:33	1.3	1.4	<u>1.8</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	M2	16:26	1.3	1.4	<u>4.3</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	M3	16:41	1.3	1.4	<u>2.1</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	M4	16:22	1.3	1.4	<u>2.9</u>
Bottom	19.3	22.2	Mid-Ebb	C2	1.1	M5	16:51	1.3	1.4	<u>2.1</u>
Bottom	19.3	22.2	Mid-flood	C1	1.7	G2	9:05	2.1	2.3	2.3
Bottom	19.3	22.2	Mid-flood	C1	1.7	G3	9:14	2.1	2.3	2.2
Bottom	19.3	22.2	Mid-flood	C1	1.7	G4	9:20	2.1	2.3	<u>2.4</u>
Bottom	19.3	22.2	Mid-flood	C1	1.7	M2	9:02	2.1	2.3	<u>4.3</u>
Bottom	19.3	22.2	Mid-flood	C1	1.7	M4	8:57	2.1	2.3	<u>3.0</u>

Note:

Bold means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

14 April 2023

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)		
Mid-Flood	C1	surface	5.5	G4	11:39	6.0	6.9	6.5	7.1	6.6		
Mid-Flood	C1	bottom	3.7	G3	11:34	6.9	7.9	4.4	4.7	<u>4.9</u>		
Mid-Flood	C1	bottom	3.7	M2	11:21	6.9	7.9	4.4	4.7	<u>5.4</u>		
Mid-Flood	C1	bottom	3.7	M5	11:46	6.9	7.9	4.4	4.7	<u>6.5</u>		
Note:												

Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)

- Notification of Exceedance

Date of Water Quality Monitoring:

14 April 2023

Part A – Exceedance Summary Tables

 Table II:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-flood	C1	2.7	G4	11:39	3.3	3.6	<u>4.4</u>

Note:Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)Bold with underlinemeans Limit Level exceedance of Control (Regular) & Baseline (Italic)

- Notification of Exceedance

Date of Water Quality Monitoring:

17 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	7.2	G1	11:26	6.0	6.9	8.6	9.4	6.8
Mid-Ebb	C2	surface	7.2	G3	11:31	6.0	6.9	8.6	9.4	<u>7.2</u>
Mid-Ebb	C2	surface	7.2	G4	11:38	6.0	6.9	8.6	9.4	6.7

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

17 April 2023

Part A – Exceedance Summary Tables

 Table II:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-Ebb	C2	2.8	M2	11:09	3.3	3.6	3.6

Note:Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)Bold with underlinemeans Limit Level exceedance of Control (Regular) & Baseline (Italic)

- Notification of Exceedance

Date of Water Quality Monitoring:

19 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	2.3	G2	12:14	6.0	6.9	2.7	2.9	2.8
Mid-Ebb	C2	surface	2.3	M1	12:18	6.2	7.4	2.7	2.9	<u>3.6</u>
Mid-Ebb	C2	surface	2.3	M3	12:30	6.2	7.4	2.7	2.9	<u>3.6</u>
Mid-Ebb	C2	surface	2.3	M4	12:06	6.2	7.4	2.7	2.9	<u>3.5</u>
Mid-Flood	C1	surface	2.5	G1	16:26	6.0	6.9	2.9	3.2	3.1
Mid-Flood	C1	surface	2.5	G2	16:18	6.0	6.9	2.9	3.2	<u>3.6</u>
Mid-Flood	C1	surface	2.5	G3	16:30	6.0	6.9	2.9	3.2	<u>3.3</u>

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

21 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	bottom	2.2	G1	13:37	6.9	7.9	2.6	2.9	<u>4.0</u>
Mid-Ebb	C2	bottom	2.2	G2	13:30	6.9	7.9	2.6	2.9	<u>4.1</u>
Mid-Ebb	C2	bottom	2.2	M2	13:26	6.9	7.9	2.6	2.9	<u>3.1</u>
Mid-Ebb	C2	bottom	2.2	M3	13:44	6.9	7.9	2.6	2.9	2.8
Mid-Ebb	C2	bottom	2.2	M5	13:54	6.9	7.9	2.6	2.9	<u>3.6</u>
Mid-Flood	C1	bottom	1.8	G1	8:23	6.9	7.9	2.2	2.3	<u>2.9</u>
Mid-Flood	C1	bottom	1.8	G2	8:15	6.9	7.9	2.2	2.3	<u>2.9</u>
Mid-Flood	C1	bottom	1.8	G3	8:26	6.9	7.9	2.2	2.3	<u>2.8</u>
Mid-Flood	C1	bottom	1.8	G4	8:32	6.9	7.9	2.2	2.3	<u>2.7</u>
Mid-Flood	C1	bottom	1.8	M5	8:39	6.9	7.9	2.2	2.3	<u>2.9</u>

Note: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (**Italic**)

- Notification of Exceedance

Date of Water Quality Monitoring:

24 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Flood	C1	surface	3.1	G2	8:29	6.0	6.9	3.7	4.0	<u>4.2</u>

Note:Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)Bold with underlinemeans Limit Level exceedance of Control (Regular) & Baseline (Italic)

- Notification of Exceedance

Date of Water Quality Monitoring:

26 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Ebb	C2	surface	2.3	M2	16:24	6.2	7.4	2.8	3.0	3.0
Mid-Ebb	C2	surface	2.3	M4	16:18	6.2	7.4	2.8	3.0	2.9
Mid-Ebb	C2	bottom	3.2	G1	16:37	6.9	7.9	3.8	4.1	<u>4.2</u>
Mid-Flood	C1	surface	1.9	G1	11:03	6.0	6.9	2.2	2.4	2.4
Mid-Flood	C1	surface	1.9	G2	10:55	6.0	6.9	2.2	2.4	2.3
Mid-Flood	C1	surface	1.9	G3	11:06	6.0	6.9	2.2	2.4	2.3
Mid-Flood	C1	surface	1.9	M1	11:00	6.2	7.4	2.2	2.4	<u>2.8</u>
Mid-Flood	C1	surface	1.9	M2	10:49	6.2	7.4	2.2	2.4	<u>3.1</u>
Mid-Flood	C1	surface	1.9	M3	11:08	6.2	7.4	2.2	2.4	<u>2.8</u>
Mid-Flood	C1	bottom	2.6	G1	11:03	6.9	7.9	3.1	3.4	3.2
Mid-Flood	C1	bottom	2.6	G2	10:55	6.9	7.9	3.1	3.4	<u>3.5</u>
Mid-Flood	C1	bottom	2.6	G3	11:06	6.9	7.9	3.1	3.4	3.4
Mid-Flood	C1	bottom	2.6	M5	11:19	6.9	7.9	3.1	3.4	3.4

Note:

: **Bold** means Action Level exceedance of Control (**Regular**) & Baseline (*Italic*)

- Notification of Exceedance

Date of Water Quality Monitoring:

26 April 2023

Part A – Exceedance Summary Tables

 Table II:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Depth	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Tide	Control Station(s)	Measured Value at Control Station (NTU)	Station(s)	Time (hrs)	120% of Control Station Action Level (NTU)	130% of Control Station Limit Level (NTU)	Measured Value (NTU)
Bottom	19.3	22.2	Mid-flood	C1	2.2	M5	11:19	2.6	2.8	<u>3.1</u>

Note:Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)Bold with underlinemeans Limit Level exceedance of Control (Regular) & Baseline (Italic)

- Notification of Exceedance

Date of Water Quality Monitoring:

28 April 2023

Part A – Exceedance Summary Tables

 Table I:
 Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

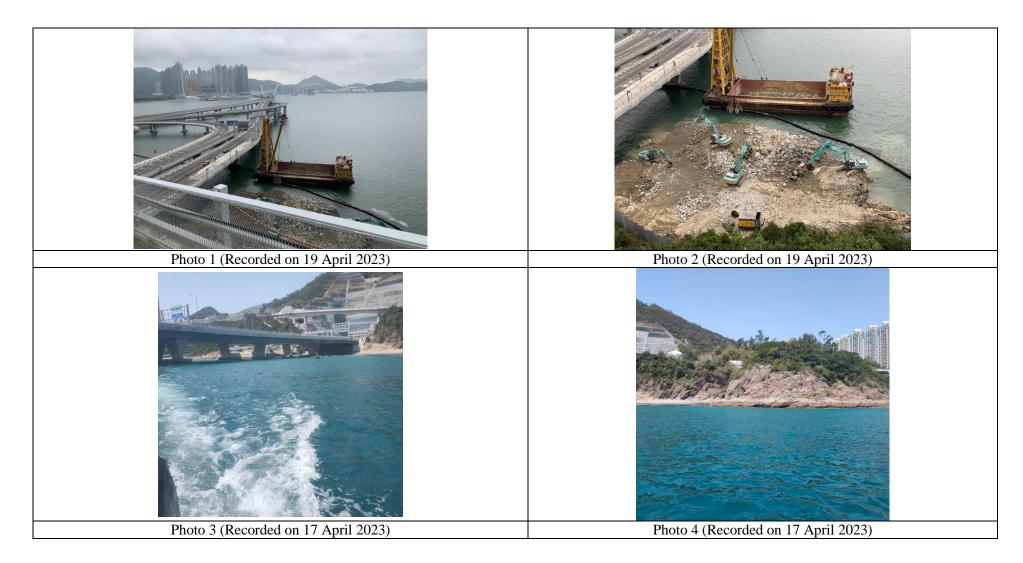
Tide	Control Station(s)	Depth	Measured Value at Control Station (mg/L)	Station(s)	Time (hrs)	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Measured Value (mg/L)
Mid-Flood	C1	bottom	2.4	M1	11:55	6.9	7.9	2.9	3.1	<u>3.4</u>

Note:Bold means Action Level exceedance of Control (Regular) & Baseline (Italic)Bold with underlinemeans Limit Level exceedance of Control (Regular) & Baseline (Italic)

- Investigation Report of Environmental Quality Limit Exceedances

Part A_Details of Investigation

For the reporting month, exceedances for suspended solids and turbidity have been recorded continuously at various monitoring stations. During the site inspection, the water outside the site boundary seemed to be clear and clean (Photos 1 & 2).


During regular water quality monitoring, the sea appears to be clear in general (Photo 3 & 4). No obvious muddy water was observed during the monitoring.

Sediment tanks were free from silt and sediments and the drainage system remained well-maintained. No sand plumes were observed during the site inspection.

No direct evidence that the recent exceedances were due to the ongoing reclamation activities of the Project. Therefore, no additional marine water quality monitoring is required.

- Investigation Report of Environmental Quality Limit Exceedances

Part B_Photo Record

Contract No. CE 59/2015 (EP) Environmental Team for Tseung Kwan O – Lam Tin Tunnel Design and Construction

- Investigation Report of Environmental Quality Limit Exceedances

Part C – Recommendations

Since it is anticipated to have downpours in the coming months, the Contractors are reminded to carry out precautionary measures such as clearing drainage system to ensure the adequate capacity of drainage and ensuring proper embankment had been placed around the site to prevent accidental discharge of muddy water.

Dive inspection shall be conducted regularly to ensure the condition of the silt curtain. Good site practices such as the provision of perimeter cut-off drain to direct off-site water, regular removal of silt and sediment from sediment tanks, and covering open stockpiles shall be conducted as far as possible. Chemicals shall be placed away from the seafront area to prevent accidental leakage.

Reviewed by:

(Environmental Team Leader:(Dr. HF Chan)

Date: 05th May 2023

APPENDIX L SITE AUDIT SUMMARY

Agreement No. CE 59/2015 (EP)

Environmental Team for Tseung Kwan O - Lam Tin Tunnel - Design and Construction Monthly EM&A Report

Appendix L - Site Audit Summary

Contract No. - NE2015/01

Tseung Kwan O - Lam Tin Tunnel — Main Tunnel and Associated Works

Items	Date	Status*	Follow up Action
Water Quality			
Ecology		•	
Noise			*
Landscape and Visual			
Air Quality			
NRMM label was missing on a crane.	29-Mar-23	√	4-Apr-23: The NRMM was placed on the crane.
NRMM was missing on a generator.	12-Apr-23	~	19-Apr-23: NRMM label was placed on the generator.
A large pile of dusty material was observed without proper coverage.	12-Apr-23	~	19-Apr-23: Stockpile was covered with tatpaulin sheeting.
A pile of cement bags and a pile of sand were observed, the Contractor is reminded to provide proper cover.	26-Apr-23	#	Follow up action will be reported in next reporting month
Waste/Chemical Management		•	
Fuel drums without drip tray was observed.	29-Mar-23	~	4-Apr-23: The fuel drums have been removed.
Oil leakage/oil stains was observed, contractor should apply oil kits to remove the stains to prevent surface runoff.	04-Apr-23	√	12-Apr-23: Oil stains have been removed.
Unlabelled chemical containers were observed without drip tray.	04-Apr-23	√	12-Apr-23: The containers have been stored inside the drip tray.
Oil stain was observed on ground, the Contractor should apply oil kit to remove it and reminded to avoid oil leakage from PMEs.	19-Apr-23	~	26-Apr-23: Oil stain has been removed by workers.
Impact on Cultural Heritage	•		
Permit/Licenses			

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

- * Non-compliance of mitigation measure
- Non-compliance but improved by the contractor

Appendix L - Site Audit Summary

Contract No. - NE2015/02

Tseung Kwan O - Lam Tin Tunnel — Road P2 and Associated Works

Items	Date	Status*	Follow up Action			
Water Quality	•	•				
Ecology						
Noise						
A part of site boundary was observed without noise enclosures or noise barriers to minimize	20-Apr-23	~	27-Apr-23: Noise barriers have been placed on the site			
potential noise nuisance.			boundary.			
Landscape and Visual						
Air Quality						
NRMM was missing on a breaker and an excavator.	30-Mar-23	√	'4-Apr-23: NRMM was placed on the PMEs.			
Waste/Chemical Management						
Impact on Cultural Heritage						
Permit/Licenses						

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

Appendix L - Site Audit Summary

Contract No. — NE2017/02

Tseung Kwan O - Lam Tin Tunnel — Road P2/D4 and Associated Works

Items	Date	Status*	Follow up Action				
Water Quality							
Ecology							
Noise							
Landscape and Visual							
Air Quality							
Waste/Chemical Management							
Impact on Cultural Heritage							
Permit/Licenses							

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

Appendix L - Site Audit Summary

Contract No. — NE2017/06

Tseung Kwan O - Lam Tin Tunnel — Traffic Control and Surveillance System (TCSS) and Associated Works

Items	Date	Status*	Follow up Action	
Water Quality	•	•		
Ecology				
Noise				
Landscape and Visual				
Air Quality				
Waste/Chemical Management				
Impact on Cultural Heritage				
Permit/Licenses				

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

Appendix L - Site Audit Summary

Contract No. - NE2017/01

Tseung Kwan O - Lam Tin Tunnel — Tseung Kwan O Interchange and Associated Works

Items	Date	Status*	Follow up Action				
Water Quality							
Ecology							
Noise							
Landscape and Visual							
Air Quality							
Waste/Chemical Management							
Impact on Cultural Heritage							
Permit/Licenses							

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

Appendix L - Site Audit Summary

Contract No. - NE2017/07

Tseung Kwan O - Lam Tin Tunnel — Cross Bay Link Main Bridge and Associated Works

Items	Date	Status*	Follow up Action					
Water Quality	Water Quality							
Ecology								
Noise								
Landscape and Visual								
Air Quality								
Waste/Chemical Management								
Impact on Cultural Heritage								
Permit/Licenses								

✓ Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

× Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit

Follow up action will be reported in next reporting month

* Non-compliance of mitigation measure

APPENDIX M EVENT AND ACTION PLANS

Event and Action Plan for Air Quality (Dust)

	ACTION								
EVENT	ET	IEC	ER	CONTRACTOR					
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 					
Action level being exceeded by two or more consecutive sampling	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 					

		ACT	ACTION					
EVENT	ET	IEC	ER	CONTRACTOR				
	8. If exceedance stops, cease additional monitoring.							
Limit level being exceeded by one sampling	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform Contractor ,IEC, ER, and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 				
Limit level being exceeded by two or more consecutive sampling	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; 				

		ACTION							
EVENT		ET	IEC		ER	CONTRACTOR			
	5.	Carry out analysis of Contractor's	3. Supervise the implementation of	4.	Ensure remedial measures	4. Resubmit proposals if problem still			
		working procedures to determine	remedial measures.		properly implemented;	not under control;			
		possible mitigation to be		5.	If exceedance continues, consider	5. Stop the relevant portion of works			
		implemented;			what portion of the work is	as determined by the ER until the			
	6.	Arrange meeting with IEC and			responsible and instruct the	exceedance is abated.			
		ER to discuss the remedial actions			Contractor to stop that portion of				
		to be taken;			work until the exceedance is				
	7.	Assess effectiveness of			abated.				
		Contractor's remedial actions and							
		keep IEC, EPD and ER informed							
		of the results;							
	8.	If exceedance stops, cease							
		additional monitoring.							

Event and Action Plan for Construction Noise

EVENT		ACT	TION	
	ЕТ	IEC	ER	CONTRACTOR
Action	1. Notify IEC and Contractor;	1. Review the analysed results	1. Confirm receipt of notification of	1. Submit noise mitigation proposals to
Level	2. Carry out investigation;	submitted by the ET;	failure in writing;	IEC;
	3. Report the results of investigation to	2. Review the proposed remedial	2. Notify Contractor;	2. Implement noise mitigation proposals.
	the IEC, ER and Contractor;	measures by the Contractor and	3. Require Contractor to propose	
	4. Discuss with the Contractor and	advise the ER accordingly;	remedial measures for the analysed	
	formulate remedial measures;	3. Supervise the implementation of	noise problem;	
	5. Increase monitoring frequency to	remedial measures.	4. Ensure remedial measures are	
	check mitigation effectiveness.		properly implemented.	
Limit	1. Identify source;	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to avoid
Level	2. Inform IEC, ER, EPD and	Contractor on the potential remedial	failure in writing;	further exceedance;
	Contractor;	actions;	2. Notify Contractor;	2. Submit proposals for remedial
	3. Repeat measurements to confirm	2. Review Contractors remedial actions	3. Require Contractor to propose	actions to IEC within 3 working
	findings;	whenever necessary to assure their	remedial measures for the analysed	days of notification;
	4. Increase monitoring frequency;	effectiveness and advise the ER	noise problem;	3. Implement the agreed proposals;
	5. Carry out analysis of Contractor's	accordingly;	4. Ensure remedial measures properly	4. Resubmit proposals if problem still
	working procedures to determine	3. Supervise the implementation of	implemented;	not under control;
	possible mitigation to be	remedial measures.	5. If exceedance continues, consider	5. Stop the relevant portion of works as
	implemented;		what portion of the work is	determined by the ER until the
	6. Inform IEC, ER and EPD the causes		responsible and instruct the	exceedance is abated.
	and actions taken for the		Contractor to stop that portion of	
	exceedances;		work until the exceedance is abated.	

EVENT	ACTION					
	ЕТ	IEC	ER	CONTRACTOR		
	7. Assess effectiveness of Contractor's					
	remedial actions and keep IEC, EPD					
	and ER informed of the results;					
	8. If exceedance stops, cease additional					
	monitoring.					

Event and Action Plan for Marine Water Quality

		Ac	tion	
Event	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day at water sensitive receiver(s)	 Identify the source(s) of impact by comparing the results with those collected at the control stations as appropriate; If exceedance is found to be caused by the reclamation activities, repeat <i>in-situ</i> measurement to confirm findings; Inform IEC and contractor; Check monitoring data, all plant, equipment and Contractor's working methods; If exceedance occurs at WSD salt water intake, inform WSD; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of 	 Discuss with ET and Contractor on the mitigation measures; Review proposal on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation proposal. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Amend working methods if appropriate; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agree mitigation measures.
	exceedance.			
Action level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IEC on the proposed	• Inform the Engineer and confirm
exceeded by two or	comparing the results with those collected at the control stations as	the mitigation measures;	mitigation measures;Make agreement on the mitigation	notification of the non-compliance in writing;
more consecutive	appropriate;		proposal;	• Rectify unacceptable practice;

	Action						
Event	ET	IEC	ER	CONTRACTOR			
sampling days at	• If exceedance is found to be caused	Review proposal on mitigation	• Assess the effectiveness of the	• Check all plant and equipment and			
water sensitive	by the reclamation activities, repeat	measures submitted by Contractor	implemented mitigation measures.	consider changes of working			
receiver(s)	in-situ measurement to confirm	and advise the ER accordingly;		methods;			
	findings;	• Assess the effectiveness of the		• Discuss with ET, IEC and ER and			
	• Inform IEC and contractor;	implemented mitigation measures.		propose mitigation measures to IEC			
	• Check monitoring data, all plant,			and ER within 3 working days;			
	equipment and Contractor's working			• Implement the agreed mitigation			
	methods;			measures.			
	• Discuss mitigation measures with						
	IEC and Contractor;						
	• Ensure mitigation measures are						
	implemented;						
	• Prepare to increase the monitoring						
	frequency to daily;						
	• If exceedance occurs at WSD salt						
	water intake, inform WSD;						
	• Repeat measurement on next day of						
	exceedance.						
Limit level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IEC, ET and	• Inform the ER and confirm			
exceeded by one	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in			
sampling day at	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;			
water sensitive	appropriate;	measures submitted by Contractor	Request Contractor to critically	• Rectify unacceptable practice;			
receiver(s)		and advise the ER accordingly;	review the working methods;				

	Action						
Event	ET	IEC	ER	CONTRACTOR			
	• If exceedance is found to be caused	• Assess the effectiveness of the	• Make agreement on the mitigation	• Check all plant and equipment and			
	by the reclamation activities,	implemented mitigation measures.	measures to be implemented;	consider changes of working			
	repeat in-situ measurement to		• Assess the effectiveness of the	methods;			
	confirm findings;		implemented mitigation measures.	• Discuss with ET, IEC and ER and			
	• Inform IEC, contractor, AFCD and			submit proposal of mitigation			
	EPD			measures to IEC and ER within 3			
	• Check monitoring data, all plant,			working days of notification;			
	equipment and Contractor's working			• Implement the agreed mitigation			
	methods;			measures.			
	• Discuss mitigation measures with						
	IEC, ER and Contractor;						
	• Ensure mitigation measures are						
	implemented;						
	• Increase the monitoring frequency						
	to daily until no exceedance of Limit						
	level;						
	• If exceedance occurs at WSD salt						
	water intake, inform WSD.						
Limit level being	• Identify the source(s) of impact by	• Discuss with ET and Contractor on	• Discuss with IC(E), ET and	• Inform the ER and confirm			
exceeded by two	comparing the results with those	the mitigation measures;	Contractor on the proposed	notification of the non-compliance in			
or more	collected at the control stations as	Review proposal on mitigation	mitigation measures;	writing;			
consecutive	appropriate;	measures submitted by Contractor	• Request Contractor to critically	• Rectify unacceptable practice;			
sampling days at		and advise the ER accordingly;	review the working methods;				

	Action					
Event	ET	IEC	ER	CONTRACTOR		
water sensitive	• If exceedance is found to be caused	Assess the effectiveness of the	• Make agreement on the mitigation	• Check all plant and equipment and		
receiver(s)	by the reclamation activities, repeat	implemented mitigation measures.	measures to be implemented;	consider changes of working		
	in-situ measurement to confirm		• Assess the effectiveness of the	methods;		
	findings;		implemented mitigation measures;	• Discuss with ET, IC(E) and ER and		
	• Inform IC(E), AFCD, contractor		• Consider and instruct, if necessary,	submit proposal of mitigation		
	and EPD;		the Contractor to slow down or to	measures to IC(E) and ER within 3		
	• Check monitoring data, all plant,		stop all or part of the marine work	working days of notification;		
	equipment and Contractor's working		until no exceedance of Limit level.	• Implement the agreed mitigation		
	methods;			measures;		
	• Discuss mitigation measures with			• As directed by the Engineer, to		
	IC(E), ER and Contractor;			slow down or to stop all or part of		
	• Ensure mitigation measures are			the construction activities.		
	implemented;					
	• Increase the monitoring frequency					
	to daily until no exceedance of Limit					
	level for two consecutive days;					
	• If exceedance occurs at WSD salt					
	water intake, inform WSD.					

Limit Levels and Action Plan for Landfill Gas

Parameter	Limit Level	Action
Oxygen	<19%	• Ventilate to restore oxygen to >19%
	<18%	Stop works
		• Evacuate personnel/prohibit entry
		• Increase ventilation to restore oxygen to >19%
Methane	>10% LEL (i.e.	Prohibit hot works
	> 0.5% by	• Ventilate to restore methane to <10% LEL
	volume)	
	>20% LEL (i.e.	Stop works
	>1% by	• Evacuate personnel / prohibit entry
	volume)	• Increase ventilation to restore methane to <10%
		LEL
Carbon	>0.5%	• Ventilate to restore carbon dioxide to < 0.5%
Dioxide	>1.5%	Stop works
		• Evacuate personnel / prohibit entry
		• Increase ventilation to restore carbon dioxide to <
		0.5%

Event	Action	Action						
	ET Leader	IEC	ER	Contractor				
Action	1. Check monitoring data;	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm				
Level		and the Contractor;	monitoring	notification of the non-compliance				
Exceedance	2. Inform the IEC, ER and		requirements and any other	in writing;				
	Contractor of the findings;	2. Review proposals for additional	measures proposed by the ET;					
		Monitoring and any other		2. Discuss with the ET and the IEC				
	3. Increase the monitoring to at	measures submitted by the	2. Make agreement on the	and propose measures to the IEC				
	least once a month to confirm	Contractor and advise the ER	measures to be implemented.	and the ER;				
	findings;	accordingly.						
				3. Implement the agreed measures.				
	4. Propose mitigation							
	measures for consideration							
Limit Level	Undertake Steps 1-4 as in the	1.Discuss monitoring with the ET	1. Discuss with the IEC additional	1. Inform the ER and confirm				
Exceedance	Action Level Exceedance. If	and the Contractor;	monitoring	notification of the non-compliance				
	further exceedance of Limit Level,		requirements and any other	in writing;				
	suspend construction works until	2. Review proposals for additional	measures proposed by the ET;					
	an effective solution is identified.	Monitoring and any other		2. Discuss with the ET and the IEC				
		measures submitted by the	2. Make agreement on the	and propose measures to the IEC				
		Contractor and advise the ER	measures to be implemented.	and the ER;				
		accordingly.	-					
				3. Implement the agreed measures.				

Event and Action Plan for Coral Post-Translocation Monitoring

Mitigation Measures for Vibration Monitoring

Level	Contingency Action
Alert Level	• The Engineer shall be informed immediately.
	• The Contractor shall submit an investigation report to describe works being undertaken. To review the instrument responses and to study the cause of undue response.
	• The Contractor shall review and increase the instrumentation monitoring and reporting frequency, if applicable.
	• The Contractor shall submit a detailed plan of action describing the measures to be taken should the concerned instrument reach the action level to the Engineer for approval.
Alarm Level	• The Engineer shall be informed immediately.
	• The active construction works may require to be suspended subject to the Engineer's review of monitoring data.
	• The Contractor shall immediately implement the measures as defined in the detailed plan of action to prevent further ground movement and groundwater drawdown etc.
	• The Contractor shall prepare a detailed investigation report to study the cause of the exceedance
	• The Contractor shall propose a contingency plan for the Engineer's approval in the event that alarm value is reached or exceeded
	• The Contractor shall develop an emergency plan for the Engineer's approval in the event the applied contingency measures cannot control the situation.
	• The Contractor shall meet the Engineer to discuss the instrument response and review the effectiveness of the implemented measures.
	• The Contractor shall carry out design review of the works

Action Level	•	Consideration shall be given to suspend all active construction works and the Engineer shall be informed immediately
	•	The Contractor shall immediately implement the measures defined in the contingency plan
	•	The Contractor shall implement the measures defined in the emergency plan in the event that the applied contingency measures are found inadequate
	•	The Contractor shall provide a complete report to examine the construction method and review the response of the instruments with full history of the monitoring data and construction activities and necessary design update
	•	To resume the suspended activities, the Contractor shall demonstrate to the Engineer's satisfaction that it is safe to do so with approval from the Engineer.

APPENDIX N ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

App N1 - IMPLEMENTATION SCHEDULE AND RECOMMANDED MITIGATION MEASURES

Table I - Recommended Mitigation Measures stipulated in EM&A Manual for the Project

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
Air Quality						
\$3.8.1	Watering eight times a day on active works areas, exposed areas and paved haul roads	To minimize the dust impact	Contractor	All Active Work Sites	Construction phase	APCO
\$3.8.1	Enclosing the unloading process at barging point by a 3-sided screen with top tipping hall / mixing area in Work Area A, provision of water spraying and flexible dust curtains	To minimize the dust impact	Contractor	Barging Points	Construction phase	АРСО
\$3.8.7	Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.					
\$3.8.7	 Use of frequent watering for particularly dusty construction areas and areas close to ASRs 					
\$3.8.7	 Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. 					
\$3.8.7	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 		Contractor	All Construction Work Sites	Construction phase	APCO and Air Pollution Control (Construction Dust) Regulation
\$3.8.7	 Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 					
\$3.8.7	 Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. 					
\$3.8.7	 Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. 	To minimize the dust impact				
\$3.8.7	 Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. 					
\$3.8.7	 Imposition of speed controls for vehicles on site haul roads. 					
\$3.8.7	 Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs 					
\$3.8.7	 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 					
S3.8.7	 Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 					
	Emission from Vehicles and Plants					
	All vehicles shall be shut down in intermittent use.					
/	 Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. 	Reduce air pollution emission from construction vehicles and plants	Contractor	All construction sites	Construction stage	APCO
	 All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 					

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
/	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	Reduce air pollution emission from construction vehicles and plants	Contractor	All construction sites	Construction stage	APCO
Noise Impact (Const	ruction Phase)					
S4.8	 Use of quiet PME. Use of movable noise barriers for Excavator, Lorry, Dump Truck, Mobile Crane, Compactor, Concrete Mixer Truck, Concrete Lorry Mixer, Breaker, Mobile Crusher, Backhoe, Vibratory Poker, Saw, Asphalt Paver, Vibratory Roller, Vibrolance, Hydraulic Vibratory Lance and Piling (Vibration Hammer). Use of full enclosure for Air Compressor, Compressor, Bar Bender, Generator, Drilling Rig, Chisel, Large Diameter Bore Piling, Grout Mixer & Pump and Concrete Pump. 	To minimize construction noise impact arising from the Project at the affected NSRs	Contractor	Work Sites	Construction phase	EIAO-TM, NCO
Noise Mitigation Plan	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan	To minimize construction noise impact arising from the Project at the affected NSRs	Contractor	Work Sites	Construction phase	EIAO-TM, NCO
\$4.9 \$4.9	Good Site Practice Only well-maintained plant should be operated on-site and plant should be serviced 					
S4.9	 regularly during the construction program Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. 	To minimize construction noise impact arising				EIAO-TM, NCO
S4.9	 Mobile plant, if any, should be sited as far away from NSRs as possible. 		Project Proponent	Work sites	Construction Period	
S4.9	 Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. 	from the Project at the affected NSRs	поресстворовени			
S4.9 S4.9	 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 					
S4.9	Scheduling of Construction Works during School Examination Period	To minimize construction noise impact arising from the Project at the affected NSRs	Contractor	Work site near school	Construction phase	EIAO-TM, NCO
Water Quality Impa	ct (Construction Phase)					
\$5.6.24	The dry density of filling material for the TKO-LT Tunnel reclamation should be 1,900kg/m ³ , with fine content of 25% or less	Control potential impacts from filling activities	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO
S5.8.1	Non-dredged method by constructing steel cellular caisson structure with stone column shall be adopted for construction of seawall foundation. During the stone column installation (also including the installation of steel cellular caisson), silt curtain shall be employed around the active stone column installation points.	Control potential impacts from filling activities	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO
\$5.8.2	Formation of seawall enclosing the reclamation for Road P2 (notwithstanding an opening of about 50m for marine access) shall be completed prior to the filling activities. The seawall opening of about 50m wide for marine access shall be selected at a location as indicatively shown in Appendix 5.10. No more than 3 filling barge trips per day shall be made with a maximum daily rate of 3,000m ³ (i.e. 1,000 m ³ per trip) for the filling operation at the reclamation area for Road P2. All filling works shall be carried out behind the seawall with the use of single silt curtain at the marine access.	Control potential impacts from filling activities	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
Silt Curtain Deployment Plan	• Silt curtains should be deployed properly to surround the works area.					
Silt Curtain Deployment Plan	Maintenance of silt curtain should be provided.	Control potential impacts from marine woroks	Contractor	NE/2015/01	Construction stage	EIAO
Silt Curtain Deployment Plan	Sufficient stock of silt curtain should be provided on site.					
\$5.8.3	Other good site practices should be undertaken during filling operations include:					
\$5.8.3	 all marine works should adopt the environmental friendly construction methods as far as practically possible including the use of cofferdams to cover the construction area to separate the construction works from the sea; 					
\$5.8.3	 floating single silt curtain shall be employed for all marine works; 					
\$5.8.3	 all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; 					
\$5.8.3	 all hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; 					
\$5.8.3	 excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved; 	Control potential impacts from filling activities and				
\$5.8.3	 adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action; 	marine-based construction	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO, Waste Disposal Ordinance (WDO)
\$5.8.3	 loading of barges and hoppers should be controlled to prevent splashing of filling material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; 					
\$5.8.3	 any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes; 					
\$5.8.3	 construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; and 					
S5.8.3	 before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain. 					
S5.8.4	Site specific mitigation plan for reclamation areas using public fill materials should be submitted for EPD agreement before commencement of construction phase with due consideration of good site practices.	Control potential impacts from filling activities and marine based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
ERR S5.6.1	To minimize water quality impact arising from the dredging and filling works for Reclamation for Road P2, the following mitigation measures shall be implemented:					
ERR S5.6.1	 Before carrying out any dredging and underwater filling works, a temporary barrier shall first be constructed to a height above the high water mark to completely enclose the works site (without any opening at the barrier wall) 					
ERR \$5.6.1	- The temporary barrier fully enclosing the dredging and underwater filling works site shall not be removed before completion of all dredging and underwater filling works.	Control potential impacts from dredging and filling works for Reclamation for Road P2	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
ERR \$5.6.1	 Water quality sampling and testing shall be carried out to demonstrate that the water quality inside the enclosed barrier is comparable to the ambient or baseline levels prior to the removal of the fully enclosed barrier. 					
ERR S5.6.1	- Silt curtains shall be deployed for the installation and removal of the temporary barrier and at the double water gates marine access opening during its operation.					
\$5.8.5	It is important that appropriate measures are implemented to control runoff and drainage and prevent high loading of SS from entering the marine environment. Proper site management is essential to minimise surface water runoff, soil erosion and sewage effluents.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.6	Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Design Stage and Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO, TM- DSS
S5.8.7	Construction site runoff and drainage should be prevented or minimised in accordance with the guidelines stipulated in the EPD's Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). Good housekeeping and stormwater best management practices, as detailed in below, should be implemented to ensure that all construction runoff complies with WPCO standards and no unacceptable impact on the WSRs arises due to construction of the TKO-LT Tunnel. All discharges from the construction site should be controlled to comply with the standards for effluents discharged into the corresponding WCZ under the TM-DSS.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO, TM- DSS
S5.8.8 S5.8.8	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps; and 	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.8	adequate maintenance of drainage systems to prevent flooding and overflow.					
S5.8.9	Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
S5.8.10	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.11	Sedimentation tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8m ³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.12	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.13	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.14	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.15	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.16	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.18	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and washwater should have sand and sit settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheelwash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
\$5.8.19	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.20	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There shall be no direct discharge of effluent from the site into the sea.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.21	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.23	Minimum distances of 100m shall be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes during construction and operational phases	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO, TMDSS
S5.8.24	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground water level in basement or foundation construction, and groundwater seepage pumped out of tunnels or caverns under construction should be discharged into storm drains after the removal of silt in silt removal facilities.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.25 - S5.8.27 & Table 5.18	Grouting would be adopted as measure to reduce the groundwater inflow into the tunnel. During the tunnel excavation, the inflow rate of groundwater into the tunnel will be measured during the excavation. The groundwater levels above the tunnel will also be monitored by piezometers. If the inflow rate exceeds the pre-determined groundwater control criteria or the groundwater drawdown exceeds the required limit, pre-excavation grouting will be required to reduce the groundwater inflow. No significant change of groundwater levels would therefore be expected. Any chemicals/ foaming agents which would be entrained to the groundwater should be biodegradable and non-toxic throughout the tunnel construction. Potential groundwater quality impact would be minimal as the used material is non-toxic and biodegradable. No adverse groundwater quality would therefore be expected. Prescriptive measures in the form of an Action Plan with pre-emptive and re-active to preserve the groundwater levels at all times during the tunnel construction are set out in Table 5.18.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO, Buildings Ordinance
\$5.8.28	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be recirculated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Design Stage and Construction Phas	ProPECC PN 1/94, EIAOTM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
S5.8.29 - S5.8.31	Wastewater generated from the washing down of mixing trucks and drum mixers and similar equipment should whenever practicable be recycled. The discharge of wastewater should be kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an online standby pump of adequate capacity and with automatic alternating devices. Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.32	All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.33	Bentonite slurries used in diaphragm wall and borepile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.34	If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.35	Water used in water testing to check leakage of structures and pipes should be reused for other purposes as far as practicable. Surplus unpolluted water could be discharged into storm drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.36	Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water should be reused wherever practicable.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Design Stage and Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.37	Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.38	Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as necessary	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.39	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
\$5.8.40	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul sewer via grease traps capable of providing at least 20 minutes retention during peak flow.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.41	Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptor with peak storm bypass.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.43	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Control potential impacts from construction site runoff and land-based construction	CEDD's Contractors	Work site	Construction Phase	ProPECC PN 1/94, EIAOTM, WPCO
S5.8.44	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Control potential impacts from accidental spillage of chemicals	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO, WDO
S5.8.45	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	Control potential impacts from accidental spillage of chemicals	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO
S5.8.46	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:					
S5.8.46	 suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport; 	Control potential impacts from accidental spillage of chemicals	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO, WDO
S5.8.46	 chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and 					
S5.8.46	 storage area should be selected at a safe location on site and adequate space should be allocated to the storage area. 					
S5.8.47	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Control potential impacts from floating refuse and debris	CEDD's Contractors	Work site	Construction Phase	EIAO-TM, WPCO,

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
Ecological Impact						
S6.8.4	Measures to Minimize Disturbance					
S6.8.4	 Use of Quiet Mechanical Plant during the construction phase should be adopted wherever possible. 					
\$6.8.4	 Hoarding or fencing should be erected around the works area boundaries during the construction phase. The hoarding would screen adjacent habitats from construction phase activities, reduce noise disturbance to these habitats and also to restrict access to habitats adjacent to works areas by site workers; 	Minimize noise, human and traffic disturbance to terrestrial habitat and wildlife; and reduce dust generation	Design Team / Contractor Land-based works	Land-based works are	re Construction Phase	N/A
\$6.8.4	 Regular spraying of haul roads to minimize impacts of dust deposition on adjacent vegetation and habitats during the construction activities 					
S6.8.5	Standard Good Site Practice					
\$6.8.5	 Placement of equipment or stockpile in designated works areas and access routes selected on existing disturbed land to minimise disturbance to natural habitats. 					
\$6.8.5	• Construction activities should be restricted to works areas that should be clearly demarcated. The works areas should be reinstated after completion of the works.	Reduce disturbance to surrounding habitats	Contractor	Land-based works are	Construction Phase	N/A
\$6.8.5	 Waste skips should be provided to collect general refuse and construction wastes. The wastes should be properly disposed off-site in a timely manner. 	Reduce disturbance to surrounding habitats	Contractor	Land-based works are	Construction 1 mase	IVA
\$6.8.5	 General drainage arrangements should include sediment and oil traps to collect and control construction site run-off. 					
S6.8.5	Open burning on works sites is illegal, and should be strictly prohibited.					
\$6.8.5	 Measures should also be put into place so that litter, fuel and solvents do not enter the nearby watercourses. 					
S6.8.6	Measure to Minimize Groundwater Inflow					
\$6.8.6	 The drained tunnel construction method with groundwater inflow control measures would generally be adopted. 	Minimize groundwater inflow	Contractor	Tunnel	Construction Phase	N/A
\$6.8.6	 During the tunnel excavation, pre-excavation grouting could be adopted to reduce the groundwater inflow and ensure that the tunnel would meet the long term water tightness requirements. 		Contractor	- unici		1971

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
S6.8.8	Measure to Minimize Impact on Corals					
S6.8.8	Coral translocation					
\$6.8.8	 It is recommended to translocate the affected coral colonies, except the locally common Oulastrea crispata, within the reclamation area and bridge footprint to the other suitable locations as far as practicable. 	ch) Minimize loss of coral Desi				
S6.8.8	• The coral translocation should be conducted during the winter months (November-March) in order to avoid disturbance during their spawning period (i.e. July to October).		Design team, contractor,			
\$6.8.8	 A detailed coral translocation plan with a description on the methodology for pretranslocation coral survey, translocation methodology, identification/proposal of coral recipient site, monitoring methodology for posttranslocation should be prepared during the detailed design stage. 			Within reclamation areas and pier footprint	Prior construction	N/A
S6.8.8	• The coral translocation plan should be subject to approval by relevant authorities (e.g. EPD and AFCD) before commencement of the coral translocation. All the translocation exercises should be conducted by experienced marine ecologist(s) who is/are approved by AFCD prior to commencement of coral translocation.		project operator			
\$6.8.8	Post translocation Monitoring					
S6.8.8	A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to the translocated coral communities					
S6.8.8	 Information gathered during each posttranslocation monitoring survey should include observations on the presence, survival, health condition and growth of the translocated coral colonies. These parameters should then be compared with the baseline results collected from the pre-translocation survey. 					
\$6.8.9 \$6.8.10	 Measure to Control Water Quality Impact Deployment of silt curtains around the active stone column installation points, opening of newly installed seawall and marine works area. 	Control water quality impact, especially on suspended solid level; minimize the contamination of wastewater discharge, accidental chemical		Marine and landbased works area	Construction phase	WQO
30.6.7 30.6.10	Diverting of the site runoff to silt trap facilities before discharging into storm drain;	spillage and construction site runoff to the receiving water bodies	Design Team, contractor			
	 Proper waste and dumping management; and Standard good-site practice for land-based construction. 	receiving water boules				
	Standard good-site practice for land-based construction. Compensation for Vegetation Loss					
\$6.8.11	 Felling of mature trees should be compensated by planting of standard or heavy standard trees within or in vicinity of the affected area as far as practicable. Such compensatory planting for trees should be provided with at least a 1:1 ratio. In addition, vegetation at the temporarily affected area should be reinstated with species similar to the existing condition. 	Compensate for the vegetation loss	Design Team, contractor	Land-based works area	Construction phase	N/A

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?		
Fisheries Impact								
\$7.7.3	Measure to Control Water Quality Impact Deployment of silt curtains around the active stone column installation points, opening of newly installed seawall and marine works area.	Control water quality impact, especially on suspended solid level	Design Team / Contractor	Marine work area	Construction phase	WQO		
Waste Management	aste Management (Construction Phase)							
	 Good Site Practices and Waste Reduction Measures Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; Training of site personnel in site cleanliness, proper waste management and chemical 					Waste Disposal Ordinance (Cap. 354)		
\$8.6.3	 handling procedures; Provision of sufficient waste disposal points and regular collection of waste; Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and Regular cleaning and maintenance programme for drainage systems, sumps and oil 	To reduce waste management impacts	Contractor	All work sites	Construction Phase	Land (Miscellaneous Provisions) Ordinance (Cap. 28)		
	interceptors. Good Site Practices and Waste Reduction Measures (con't) • Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;					Waste Disposal Ordinance (Cap. 354)		
S8.6.4	 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the workforce; Proper storage and site practices to minimize the potential for damage or contamination of construction materials; and Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste. 	To achieve waste reduction	Contractor	All work sites	Construction Phase	Land (Miscellaneous Provisions) Ordinance (Cap. 28)		
S8.6.5	Good Site Practices and Waste Reduction Measures (con't) The Contractor shall prepare and implement a WMP as part of the EMP in accordance with ETWB TCW No. 19/2005 which describes the arrangements for avoidance, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. Such a management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor should implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed regularly and updated by the Contractor.	To achieve waste reduction	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005		
S8.6.6	Good Site Practices and Waste Reduction Measures (con't) C&D materials would be reused in the project and other local concurrent projects as far as possible. 	To achieve waste reduction	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005		

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
S8.6.7 S8.6.7 S8.6.7 S8.6.7 S8.6.7 S8.6.7 S8.6.7 S8.6.7	 Storage, Collection and Transportation of Waste Should any temporary storage or stockpiling of waste is required, recommendations to minimize the impacts include: Waste, such as soil, should be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and Different locations should be designated to stockpile each material to enhance reuse. 	To minimize potential adverse environmental impacts arising from waste storage	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005
S8.6.8/ Waste Management Plan S8.6.8/ Waste Management Plan S8.6.8/ Waste Management Plan S8.6.8/ Waste Management Plan S8.6.8/ Waste Management Plan S8.6.8/ Waste Management Plan	 Storage, Collection and Transportation of Waste (con't) Remove waste in timely manner; Waste collectors should only collect wastes prescribed by their permits; Impacts during transportation, such as dust and odour, should be mitigated by the use of covered trucks or in enclosed containers; Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28); Waste should be disposed of at licensed waste disposal facilities/ alternative disposal ground approved by RE and DEP; and Maintain records of quantities of waste generated, recycled and disposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	All work sites	Construction Phase	ETWB TCW No. 19/2005
S8.6.9/ Waste Management Plan	 Storage, Collection and Transportation of Waste (con't) Implementation of trip ticket system with reference to DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials, to monitor disposal of waste and to control fly-tipping at PFRFs or landfills. A recording system for the amount of waste generated, recycled and disposed (including disposal sites) should be proposed. 	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	All work sites	Construction Phase	DEVB TCW No. 6/2010
S8.6.11 - S8.6.13/ Waste Management Plan S8.6.11 - S8.6.13/ Waste Management Plan S8.6.11 - S8.6.13/ Waste Management Plan S8.6.11 - S8.6.13/ Waste Management Plan	 Sorting of C&D Materials Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal off-site. Specific areas shall be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials. The C&D materials should at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled in the reclamation as far as practicable before delivery to PFRFs. While opportunities for reusing the non-inert portion should be investigated before disposal of at designated landfills 	To minimize potential adverse environmental	Contractor	All work sites	Construction Phase	DEVB TCW No. 6/2010 ETWB TCW No. 33/2002 ETWB TCW No. 19/2005

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
\$8.6.17 - \$8.6.20	Sediments (con't)					
\$8.6.17 - \$8.6.20	 Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be adhered to during boring, excavation, transportation and disposal of sediments or cement stabilization of sediment. 					
S8.6.17 – S8.6.20	 A treatment area should be confined for carrying out the cement stabilization mixing and temporary stockpile. The area should be designed to prevent leachate from entering the ground. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO). 					
	• In order to minimise the potential odour / dust emissions during boring, excavation and transportation of the sediment, the excavated sediments should be kept wet during	To determine the best handling and treatment of sediment	Contractor	All works areas with sediments concern	Construction Phase	ETWB TCW No. 19/2005
S8.6.17 – S8.6.20	excavation/boring and should be properly covered when placed on barges/trucks. Loading of the excavated sediment to the barge should be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water.					
S8.6.17 – S8.6.20	 In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site. 					
	Sediments (con't)					
S8.6.24 - S8.6.28/ Waste Management Plan	• The excavated sediments is expected to be loaded onto the barge and transported to the designated disposal sites allocated by the MFC. The excaveted sediment would be disposed of according to its determined disposal options and ETWB TC(W) No. 34/2002.					
	 Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to 					
S8.6.24 - S8.6.28/ Waste Management Plan	prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO).		Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance
S8.6.24 - S8.6.28/ Waste Management Plan	 In order to minimise the potential odour / dust emissions during boring and transportation of the sediment, the excavated sediments should be kept wet during excavation/boring and should be properly covered when placed on barges. Loading of the excavated sediment to the barge should be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water. 					
S8.6.24 - S8.6.28/ Waste Management Plan	 The barge transporting the sediments to the designated disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self- monitoring devices as specified by the DEP. 					

Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
• In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site.					
 Another possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. 	To ensure handling of sediments are in accordance to statutory requirements	Contractor	All works areas with sediments concern	Construction Phase	ETWB TC(W) No. 34/2002 & Dumping at Sea Ordinance
Chemical Wastes.					
 If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	To ensure proper management of chemical waste	Contractor	All works sites	Construction Phase	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes Waste Disposal (Chemical Waste) (General) Regulation
 General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material. 	To ensure proper management of general refuse	Contractor	All works sites	Construction Phase	Public Health and Municipal Services Ordinance (Cap. 132)
eritage (Construction Phase)					
Dust and visual impacts • Temporarily fenced off buffer zone with allowance for public access (minimum 1 m) should be provided; • The open yard in front of the temple should be kept as usual for annual Tin Hau festival; • Monitoring of vibration impacts should be conducted when the construction works are	To prevent dust and visual impacts	Contractors	Work areas	Construction Phase	EIAO; GCHIA; AMO
	 In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site. Another possible arrangement for Type 3 disposal is by geosynthetic containment. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containmated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal. Chemical Wastes. If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemical should be stored separately. Appropriate labels should be secured yattached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall us a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Disposal (Chemical Waste) (General) Regulation. General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site,	Recommended Miligation Measures Main Concerns to address • In order to minimise the exposure to contaminated materials, workers should, when necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site. To ensure handling of sediments are in accordance to statutory requirements for Type 3 disposal is by goosynthetic containment. A geosynthetic containment method is a method whereby the sediments are saided in geosynthetic containment and pit capping, thereby meeting the requirements for fully confined mud disposal. To ensure handling of sediments are in accordance to statutory requirements • If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Wastes Should be scored by further mud disposal. To ensure proper management of chemical wastes should be used, and incompatibit chemical should be stored eparately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical wastes. To ensure proper management of chemical waste chemical wastes. Or advaste container indicating the corresponding chemical wastes of the chemical waste container indicating the corresponding chemical wastes of the chemical waste. Store allo us a licensed colector to transport and flopses of the chemical wastes. To ensure proper management of general refuse periately. Appropriate labels should be securely attached on each chemical waste (Chemical Waste) (General) Regulation. • If chemical waste store of the method is a method wastery for CAD material. Preptrable waste container indicating the corresponding chemical wastes, to chemical waste container indicating the corre	Recommended Miligation Measures Main Concerns to address measures? • In order to minimise the exposure to contaminated materials, workers should, when necessary, were appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site. To ensure handling of sediments are in accordance to statutory requirements of the statutory requirements are in accordance to statutory requirements and its the continuers would be dropped in the designation that disposal and later by the mind pit capping, thereby meeting the requirements for fully confined muld disposal and later by the mind pit capping, thereby meeting the requirements for fully confined muld disposal and later by the mind pit capping, thereby meeting the requirements for fully confined muld disposal and later by the mind pit capping, thereby meeting the construction site, the Contractor would be requiped or the packaging. Labelling and Storage of Chemical Wastes for Code Of Practice on the Packaging Labelling and Storage of Chemical Wastes for Code of Practice and Labelling and Storage of Chemical Wastes for the code of Practice on the Packaging Labelling and Storage of Chemical Wastes for the chemical wastes stould be used code con each chemical wastes contain indicating the corresponding benical Chamical studeed on each chemical wastes container indicating the corresponding benical Chamical Bioling on Storage of Chemical Waste Proceed and the stored in enclosed bias or compaction units separate from CAD material. A reputable waste collector is transport and be enclosed by the contractor to remove general refuse should be provided to reduce the occurrence of wind blown light material. To ensure proper management of general refuse from the site, separately from CAD material. Preferably an enclosed and coverend are should be provided to reduce the cocurrence of	Recommended Miligation Measures Main Concerns to address measures? Iordation of the measures • In order to minuise the exposure to contaminated materials, workers should, when sediments. Adequate washing and cleaning ficilities should also be provided on site. To ensure hundling of sediments are in accordance to stanutory requirements Contractor All works areas with sediments. Adequate washing and cleaning ficilities should also be provided on site. To ensure hundling of sediments are in accordance to stanutory requirements Contractor All works areas with sediments contaminent method was more would be overeploted into the designated contaminated much would be vorted by further mult disposal and hare type and pit capping, thereby meeting the requirements for fully confined mult disposal. To ensure hundling of sediments are in accordance to stanutory requirements Contractor All works areas with sediments concern • If chenical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Practaging, Labeling and Stonger of Chemical Wastes. Cord quarty container compatible with the chemical wastes should be securely attached on each chemical wastes contament. Chemical Wastes (Contractor Wastes), or enhered to Practaging Labeling and Stonger of Chemical Wastes, or enhered to Practaging Labeling and Stonger of Chemical Wastes, or enhered to Practaging the companyonic quice descand failuy, in accordance with the Waste Dioposal (Chemical Waste) (General) Regulation. To ensure proper management of chemical waste contractor with the Waste Dioposal (Chemical Waste) (General) R	Recommended Miligiation MeasuresImage: Main Concerns to addressInclusion (Contractor)Location of the measures (Contractor)• In order to minimic the exposure to contaminated materials, workers should, when necessary, were approprint personal protective equipaments (PEP) when handling contaminated estiments. A chardne possible arrangement for Type 3 disposal is by gooxythetic containment. A in statutory requirementsTo ensure handling of sodiments are in accordance to statutory requirementsContractorAll works areas with sodiments concernsConstruction Phase• Construction PhaseTo ensure handling of sodiments are in accordance to statutory requirementsContractorAll works areas with sodiments concernConstruction Phase• If chenical wates are produced at the construction site, the Contractor would be expense of the index states are produced at the construction site, the Contractor would be state of the Contains wate and storage of Chenical Wates. ContractorContractorAll works areasConstruction Phase• If chenical wates are produced at the construction site, the Contractor would be expense of the index storage are produced at the construction site, the Contractor would be stored in the construction site, the Contractor would be stored segments. ContractorAll works areasAll works areasConstruction Phase• Construction PhaseContractorAll works areas with a containeer at a phase and a storage of Chenical Wates. Contractor to transport and disposition containeers and assess dould be used, and compatible and accordance.To ensure proper management of chenical wates to ensure proper management of chenical wates to ensure proper management of chenical wates. to ensure protoco

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
\$9.6.4	Indirect vibration impact • Vibration level is suggest to be controlled within a peak particle velocity (ppv) limit of Smm/s measured inside the historical buildings; • Monitoring of vibration should be carried out during construction phase. • Tilting and settlement monitoring should will be applied on the Cha Kwo Ling Tin Hau Temple as well. • A proposal with details for the mitigation measures and monitoring of impacts on built heritage shall be submitted to AMO for comments before commencement of work.	To prevent indirect vibration impact	Contractors	Work areas	Construction Phase	Vibration Limits on Heritage Buildings by CEDD; GCHIA; AMO.
Built Heritage Mitigation Plan	 Established Alert, Alarm and Action Level for the monitoring parameters. To increase the instrumentation monitoring and reporting frequency. To propose detailed action plan or contingency plan for the Engineer's approval when AAA Level is reached or exceeded. 	To prevent vibration impacts	NE/2015/01	Tin Hau Temple	Construction Phase	Vibration Limits on Heritage Buildings by CEDD; GCHIA; AMO.
Landscape and Visua	al Impact (Construction Phase)					
Table 10.8.1/ Landscape Mitigation Plan	CM1 - Construction area and contractor's temporary works areas to be minimised to avoid impacts on adjacent landscape.	Avoid impact on adjacent landscape areas	CEDD (via Contractor)	General	Construction planning and during construction period	N/A
Table 10.8.1/ Landscape Mitigation Plan	CM2 - Reduction of construction period to practical minimum.	Minimise duration of impact	CEDD (via Contractor)	N/A	Construction planning	N/A
Table 10.8.1/ Landscape Mitigation Plan	CM3 - Topsoil, where the soil material meets acceptable criteria and where practical, to be stripped and stored for re-use in the construction of the soft landscape works. The Contract Specification shall include storage and reuse of topsoil as appropriate.	To allow re-use of topsoil	CEDD (via Contractor)	General	Site clearance	As per the Particular Specification
Table 10.8.1/ Landscape Mitigation Plan	CM4 - Existing trees at boundary of site and retained trees within site boundary to be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification, under which the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage).	To minimize tree loss	CEDD (via Contractor)	As per approved Tree Removal Application(s)	Site clearance and throughout construction period	ETWB TC 3/2006 and as per tree protection measures in Particular Specification
Table 10.8.1/ Landscape Mitigation Plan	CM5 - Trees unavoidably affected by the works shall be transplanted where practicable. Where possible, trees should be transplanted direct to permanent locations rather than temporary holding nurseries. A detailed tree transplanting specification shall be provided in the Contract Specification and sufficient time for preparation shall be allowed in the construction programme.	To maximize preservation of existing trees	CEDD (via Contractor)	As per approved Tree Removal Application(s)	Site clearance	ETWB TC 3/2006 and as per tree protection measures in Particular Specification
Table 10.8.1/ Landscape Mitigation Plan	CM6 - Advance screen planting of fast growing tree and shrub species to noise barriers and hoardings. Trees shall be capable of reaching a height >10m within 10 years.	To maximize screening of the works	CEDD (via Contractor)	At Lam Tin Interchange and edge of Road P2 landscape deck, TKO	Beginning of construction period	N/A
Table 10.8.1/ Landscape Mitigation Plan	CM7 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material	To reduce visual intrusion	CEDD (via Contractor)	General	Throughout construction period	As per Particular Specification
Table 10.8.1/ Landscape Mitigation Plan	CM8 - Control of night-time lighting by hooding all lights and through minimisation of night working periods.	To reduce visual intrusion	CEDD (via Contractor)	General	Throughout construction period	N/A
Table 10.8.1/ Landscape Mitigation Plan	CM9 - Screening of works areas with hoardings with appropriate colours compatible with the surrounding area	Reduction of visual intrusion	CEDD (via Contractor)	Project site Boundary	Excretion of site hoarding	N/A

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
Table 10.8.1/ Landscape Mitigation Plan	CM10 - Avoidance of excessive height and bulk of site buildings and structure	Reduction of visual intrusion and integration with environment	CEDD (via Contractor)	Built structures	Design and construction stage	N/A
Table 10.8.1/ Landscape Mitigation Plan	CM11 - Limitation of run-off into freshwater streams, ponds and sea areas	Avoidance of contamination of water courses and water bodie	CEDD (via Contractor)	TKO reclamation, TKO tunnel portal, Cha Kwo Ling roadworks	Throughout construction period	N/A
Table 10.8.1	CM12 - Minimise area of reclamation and design the edges sensitively to tie in with adjacent coastline characte	Minimise loss of Junk Bay and integration with existing coastlin	CEDD (via Contractor)	Temporary reclamation for barging points at TKO and Lam Tin and permanent reclamation for TKO Interchange slip roads and Road P2	Construction planning and reclamation stages	N/A
andfill Gas Hazard	(Design and Construction Phase)					
S11.5.9	A Safety Officer, trained in the use of gas detection equipment and landfill gas-related hazards, should be present on site throughout the groundworks phase. The Safety Officer should be provided with an intrinsically safe portable instrument, which is appropriately calibrated and able to measure the following gases in the ranges indicated below: Methane 0-100% LEL and 0100% v/v Carbon dioxide 0-100% Oxygen 0-21%	Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note
\$11.5.10 \$11.5.25	Safety Measures					
\$11.5.10 \$11.5.25 \$11.5.10 \$11.5.25 \$11.5.10 \$11.5.25 \$11.5.10 \$11.5.25	 For staff who work in, or have responsibility for "at risk" area, such as all excavation workers, supervisors and engineers working within the Consultation Zone, should receive appropriate training on working in areas susceptible to landfill gas, fire and explosion hazards. An excavation procedure or code of practice to minimize landfill gas related risk should be devised and carried out. No worker should be allowed to work alone at any time in or near to any excavation. At least one other worker should be available to assist with a rescue if needed. Smoking, naked flames and all other sources of ignition should be prohibited within 15m of any excavation or ground-level confined space. "No smoking" and "No naked flame" notices should be posted prominently on the construction site and, if necessary, special areas should be designed for smoking. 	Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note Labour Department's Coc of Practice for Safety and Health at Work Confined Space
\$11.5.10 \$11.5.25	 Welding, flame-cutting or other hot works should be confined to open areas at least 15m from any trench or excavation. 					
\$11.5.10 \$11.5.25	 Welding, flame-cutting or other hot works may only be carried out in trenches or confined spaces when controlled by a "permit to work" procedure, properly authorized by the Safety Officer (or, in the case of small developments, other appropriately qualified person). 	Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note Labour Department's Cod of Practice for Safety and Health at Work Confined Space

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
\$11.5.10 \$11.5.25	• The permit to work procedure should set down clearly the requirements for continuous monitoring for methane, carbon dioxide and oxygen throughout the period during which the hot works are in progress. The procedure should also require the presence of an appropriately qualified person, in attendance outside the 'confined area', who should be responsible for reviewing the gas measurements as they are made, and who should have executive responsibility for suspending the work in the event of unacceptable or hazardous conditions. Only those workers who are appropriately trained and fully aware of the potentially hazardous conditions which may arise should be permitted to carry out hot works in confined areas.					
S11.5.10 S11.5.25	• Where there are any temporary site offices, or any other buildings located within the Sai Tso Wan Landfill Consultation Zone which have enclosed spaces with the capacity to accumulate landfill gas, then they should either be located in an area which has been proven to be free of landfill gas (by survey using portable gas detectors); or be raised clear of the ground by a minimum of 500mm. This aims to create a clear void under the structure which is ventilated by natural air movement such that emission of gas from the ground are mixed and diluted by air.					
S11.5.10 S11.5.25	 Any electrical equipment, such as motors and extension cords, should be intrinsically safe. During piping assembly or conduiting construction, all valves/seals should be closed immediately after installation. As construction progresses, all valves/seals should be closed to prevent the migration of gases through the pipeline/conduit. All piping /conduiting should be capped at the end of each working day. 	Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note Labour Department's Code of Practice for Safety and Health at Work in Confined Space
\$11.5.10 \$11.5.25	 During construction, adequate fire extinguishing equipment, fire-resistant clothing and breathing apparatus (BA) sets should be made available on site. 					
\$11.5.10 \$11.5.25	• Fire drills should be organized at not less than six monthly intervals.					
S11.5.10 S11.5.25	 The contractor should formulate a health and safety policy, standards and instructions for site personnel to follow. 					
\$11.5.10 \$11.5.25	 All personnel who work on the site and all visitors to the site should be made aware of the possibility of ignition of gas in the vicinity of excavations. Safety notices (in Chinese and English) should be posted at prominent position around the site warning danger of the potential hazards. 					
\$11.5.10 \$11.5.25	• Service runs within the Consultation Zone should be designated as "special routes"; utilities companies should be informed of this and precautionary measures should be implemented. Precautionary measures should include ensuring that staff members are aware of the potential hazards of working in confined spaces such as manholes and service chambers, and that appropriate monitoring procedures are in place to prevent hazards due to asphyxiating atmospheres in confined spaces. Detailed guidance on entry into confined spaces is given in Code of Practice on Safety and Health at Work in Confined Spaces (Labour Department, Hong Kong).					
S11.5.10 S11.5.25	 Periodically during ground-works construction within the 250m Consultation Zone, the works area should be monitored for methane, carbon dioxide and oxygen using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas to be monitored should be set down prior to commencement of ground-works either by the Safety Officer or an approved and appropriately qualified person. 	Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note Labour Department's Code of Practice for Safety and Health at Work in Confined Space
Ĩ	Monitoring					

EIA Ref. / EP Submission	Recommended Mitigation Measures	Objectives of the recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	When to Implement the measures?	What requirements or standards for the measures to achieve?
S11.5.26 - S11.5.31	 Routine monitoring should be carried out in all excavations, manholes, chambers, relocation of monitoring wells and any other confined spaces that may have been created. All measurements in excavations should be made with the extended monitoring tube located not more than 10 mm from the exposed ground surface. Monitoring should be performed properly to make sure that the area is free of landfill gas before any man enters into the area. 					
S11.5.26 - S11.5.31	• For excavations deeper than 1m , measurements should be carried out:					
S11.5.26 - S11.5.31	• at the ground surface before excavation commences;-					
S11.5.26 - S11.5.31	 immediately before any worker enters the excavation; 					
\$11.5.26 - \$11.5.31	 at the beginning of each working day for the entire period the excavation remains open; and 					
S11.5.26 - S11.5.31	 periodically throughout the working day whilst workers are in the excavation. 			Project sites within the Sai		
S11.5.26 - S11.5.31	• For excavations between 300mm and 1m deep, measurements should be carried out:	Protect the workers from landfill gas hazards	Contractor	Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note
S11.5.26 - S11.5.31	directly after the excavation has been completed; and			Consultation Zone		
S11.5.26 - S11.5.31	 periodically whilst the excavation remains open. 					
S11.5.26 - S11.5.31	 For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer or other appropriately qualified person. 					
S11.5.26 - S11.5.31	• Depending on the results of the measurements, actions required will vary and should be set down by the Safety Officer or other appropriately qualified person.					
S11.5.26 - S11.5.31	• The exact frequency of monitoring should be determined prior to the commencement of works, but should be at least once per day, and be carried out by a suitably qualified or qualified person before starting the work of the day. Measurements shall be recorded and kept as a record of safe working conditions with copies of the site diary and submitted to the Engineer for approval. The Contractor may elect to carry out monitoring via an automated monitoring system.					
\$11.5.32	The hazards from landfill gas during the construction stage within the Sai Tso Wan Landfill Consultation Zone should be minimized by suitable precautionary measures recommended in Chapter 8 of the Landfill Gas Hazard Assessment Guidance Note.	construction stage within the Sai Tso Wan Protect the workers from landfill gas hazards	Contractor	Project sites within the Sai Tso Wan Landfill Consultation Zone	Construction phase	EPD's Landfill Gas Hazard Assessment Guidance Note

Table II - Observation / Reminder / Non-compliance made during Site Audit

 \checkmark Observation/reminder was made during site audit but improved/rectified by the contractor in the next site audit

- X Observation/reminder was made during site audit but not yet improved/rectified by the contractor in the next site audit
- # Follow up action will be reported in next reporting month
- * Non-compliance of mitigation measure

Key:

· Non-compliance but improved by the contractor

EIA Ref	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Reminder/Observation	Recorded Date	Status
Water Quality	Impact					
Ecological Impa	uet					
Construction N	oise Impact					
Noise Mitigation Plan	Use of Temporary Noise Barriers (i.e Acoustic box, SilentUp and etc.) or Full Enclosure for PME according to the approved Noise Mitigation Plan	NE2015/02	Portion IV	A part of site boundary was observed without noise enclosures or noise barriers to minimize potential noise nuisance.	20-Apr-23	~
Landscape and	Visual Impact					
Air Quality Imp	pact					
-	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	NE2015/01	Portion III	NRMM label was missing on a crane.	29-Mar-23	~
1	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	NE2015/02	Portion IV	NRMM was missing on a breaker and an excavator.	30-Mar-23	~
-	Valid No-road Mobile Machinery (NRMM) labels should be provided to regulated machines	NE2015/01	Portion III	NRMM was missing on a generator.	12-Apr-23	V
\$3.8.7	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 	NE2015/01	Portion III	A large pile of dusty material was observed without proper coverage.	12-Apr-23	V
S3.8.7	 Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. 	NE2015/01	Portion II	A pile of cement bags and a pile of sand were observed, the Contractor is reminded to provide proper cover.	26-Apr-23	#

EIA Ref	Recommended Mitigation Measures	Contract No.	Work Sites	Details of Reminder/Observation	Recorded Date	Status
Fisheries Impa	xt			•		
Waste Manage	ment					
S8.6.8/ Waste Management Plan	· Remove waste in timely manner;	NE2015/01	Portion III	Fuel drums without drip tray was observed.	29-Mar-23	\checkmark
\$5.8.22	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters.	NE2015/01	Portion II	Oil leakage/oil stains was observed, contractor should apply oil kits to remove the stains to prevent surface runoff.	04-Apr-23	~
\$5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	NE2015/01	Portion III	Unlabelled chemical containers were observed without drip tray.	04-Apr-23	1
S5.8.17	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	NE2015/01	Portion II	Oil stain was observed on ground, the Contractor should apply oil kit to remove it and reminded to avoid oil leakage from PMEs.	19-Apr-23	~
Landfill Gas H	azards					

APPENDIX O SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Table O1 - Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
639	3-May-23	16-Apr & 1-May-23 / Costal areas outside Tiu Keng Leng	Anonymous	Noise	Construction Noise Nuisance on public holiday at Tseung Kwan O (Apr & May 2023)	Y	The complaint case for 16 Apr 2023 is considered as non project-related as there were no construction activities conducted during the time of complaint. The details shall be referred to CIR-N189.	Draft CIR submitted
638	29-Mar-23	26-Mar-23 / Non-specific	Residents of Yau Lai Estate	Noise	Construction Noise Nuisance during public holiday at Yau Tong (Mar 2023)	Y	The complaint is considered as project-related as there were construction activities conducted during the time of complaint. The details shall be referred to CIR-N188.	Draft CIR submitted
637	27-Mar-23	26-Mar-23 / near the entrance of TKO-LTT	Residents of Yau Lai Estate	Noise	Construction Noise Nuisance during public holiday at Yau Tong (Mar 2023)	Y	The complaint is considered as project-related as there were construction activities conducted during the time of complaint. The details shall be referred to CIR-N188.	Draft CIR submitted
636	16-Mar-23	16-Mar-23 / Non-specific	Residents of Yau Lai Estate	Noise	Construction Noise Nuisance during nighttime at Yau Tong (Mar 2023)	Y	The complaint is considered as non project-related as there were no construction activities conducted during the time of complaint. The details shall be referred to CIR-N187.	Closed
635	14-Dec-22	8-Dec-22 / along Yau Tong Road	Anonymous	Air	Dust Nuisance near Yau Tong Road	Ν	The complaint is considered as non project-related as there were no construction activities conducted during the time of complaint. The details shall be referred to CIR-A24.	Closed
634	14-Dec-22	9-Dec-22 / near Ocean Shores	Anonymous	Noise	Construction Noise Nuisance during nighttime at Tseung Kwan O (Dec 2022)	Y	The complaint is considered non-project-related as no construction works was undergoing during the time of complaint. The details shall be referred to CIR-N186.	Closed
633	12-Dec-22	11-Dec-22 / S100 of NE/2015/02	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Dec 2022)	Y	The investigation is undergoing as the requested information still not provided by ER yet. The details shall be referred to CIR-N185.	Investigation undergoing
632	12-Dec-22	9-Dec-22 / Portion IX of NE/2015/02	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Dec 2022)	Y	The complaint is considered as project-related as there were general site works conducted without PME(s) during the time of complaint. The details shall be referred to CIR-N185.	Draft CIR submitted
631	9-Dec-22	9-Dec-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Dec 2022)	Y	The complaint is considered non-project-related as no construction works was undergoing during the time of complaint. The details shall be referred to CIR-N184.	Closed
630	9-Dec-22	4-Dec-22 / Portion IV & VII of NE/2015/02	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Dec 2022)	Y	The complaint is considered as project-related as there were various construction activities conducted during the time of complaint. The details shall be referred to CIR-N184.	Closed
629	6-Dec-22	4-Dec-22 / Non-specific	Residents of Yau Tong	Noise	Construction Noise Nuisance during nighttime at Yau Tong (Dec 2022)	Y	The complaint is considered non-project-related as no construction works was undergoing during the time of complaint. The details shall be referred to CIR-N183.	Closed
628	18-Nov-22	16-Nov-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Nov 2022)	Y	The complaint is considered non-project-related as no construction works was undergoing during the time of complaint. The details shall be referred to CIR-N182.	Draft CIR submitted
627	18-Nov-22	13-Nov-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Nov 2022)	Y	The complaint is considered as project-related as construction works had been carried out on Sunday. The Contractor had followed the instruction of the approve CNP. The details shall be referred to CIR-N182.	Draft CIR submitted
626	4-Nov-22	29-Oct-22 / Portion IV	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Oct 2022)	Y	The complaint is temporary considered as project-related as there were various PME(s) operating during the time of complaint but further information still not provided by ER yet. The details shall be referred to CIR- N181.	Draft CIR submitted
625	7-Sep-22	7-Sep-22 / Portion IVC	Residents of Yau Lai Estate	Noise	Construction Noise Nuisance during restricted hours at Yau Tong (Sep 2022)	Y	The complaint is considered as project-related as construction works had been carried out at the public holidays. The Contractor had followed the instruction of the approve CNP. The details shall be referred to CIR-N180.	Closed
624	5-Sep-22	4-Sep-2022 / Portion VIII & IX of NE/2015/02	Anonymous	Noise	Construction Noise Nuisance during restricted hours at Tseung Kwan O (Sep 2022)	Y	The complaint is considered as project-related as there were various construction activities conducted during the time of complaint. The details shall be referred to CIR-N179.	Closed
623	18-Aug-22	17-Aug-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance during daytime	Y	The complaint is considered as project-related as there were various construction activities conducted during the time of complaint. The details shall be referred to CIR-N178.	Closed
622	26-Aug-22	18-Aug-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance at early monoring	Y	See Complaint #621	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
621	17-Aug-22	14-Aug-22 / Non-specific	Anonymous	Noise	Construction Noise Nuisance on Sunday	Y	The complaint is considered non-project-related as no construction works was undergoing during the time of complaint. The details shall be referred to CIR-N177.	Closed
620	11-Aug-22	9-Aug-22 / Lam Tin Ambulance Depot	Anonymous	Air	Dust Nuisance near Lam Tin Ambulance Depot	Ν	The complaint is considered as project-related as there were various construction activities conducted during the time of complaint. The details shall be referred to CIR-A23.	Draft CIR submitted
619	01-Aug-22	1-Aug-22 / Portion IX	Resident of Ocean Shores	Noise	Construction Noise Nuisance from an Excavator in the Morning (Aug 22)	Y	The complaint is considered as project-related as there is excavator working on-site during the time of the complaint. The details shall be referred to CIR-N176.	Closed
618	21-Jul-22	21-Jul-22 / Junk Bay	Non-specific	Water	Suspected water pollution at Junk Bay (July 2022)	Ν	The complaint is considered non-project-related as the phenomenon is due to the algae blooming in Hong Kong waters during summer monsoon season.	Closed
617	13-Jul-22	10-Jul-22 / Non-specific	Resident of Yau Lai Estate	Noise	Construction Noise Nuisance during Nighttime (July 2022)	Y	The complaint is considered non-project-related as no construction works was undergoing uring the time of complaint. The details shall be referred to CIR-N175.	Closed
616	12-Jul-22	12-Jul-22 / Portion IX	Resident of Ocean Shores	Noise	Construction Noise from a Yellow Excavator	Y	The complaint is considered as project-related. The Contractor had conducted maintanance on the excavator after receiving the complaint. The detials shall be referred to CIR-N173.	Closed
615	07-Jul-22	9-June-22 / Junk Bay	Anonymous	Water	Suspected Muddy Water Discharge near Ocean Shores (Jun 2022)	Ν	The complaint is considered as non-project related. There was no direct evidence showing the muddy water was produced and discharged by contracts under the Project. The details shall be referred to the CIR-W20.	Closed
614	13-May-22	12-May-2022 / Portion III & IVC	Resident of Yau Lai Estate	Noise	Construction noise during restricted hours near Yau Lai Estate	Y	The complaint is believed to be project-related as construction works had been carried out at the public holidays. The Contractor had followed the instruction of the approve CNP. The details shall be referred to CIR-N174.	Closed
613	10-Jun-22	9-Jun-22 / Portion IX	Resident of Ocean Shores	Noise	Construction Noise from a Yellow Excavator	Y	See Complaint #612	Closed
612	8-Jun-22	4-Jun-22 / Portion IX	Resident of Ocean Shores	Noise	Construction Noise from a Yellow Excavator	Y	The complaints are believed to be project-related as there is a yellow excavator working on-site during the time of the complaint. The details shall be referred to CIR-N173.	Closed
611	30-May-22	9-May-2022 / Portion IX	Anonymous	Noise	Construction Noise during Holiday (C2)	Y	The contracts located near Tseung Kwan O Bay Area were investigated. Construction works had been conducted for NE2015/02. However, the Contractor of NE2015/02 held a valid CNP and no non-compliance was recorded. No conclusion has been made as not all information had been collected. The details shall be referred to CIR-N172.	Closed
610	23-May-22	30-Apr-2022 / Non- specific	Anonymous	Noise	Construction Noise Nuisance at Night time April 2022 (C1)	Y	The complaint is considered non-project-related as no construction is undergoing during the time of the complaint. The details shall be referred to CIR-N171.	Closed
609	23-May-22	Apr & May-22 / Non- specific	Resident of Yau Lai Estate	Air & Noise	Deteriation of Indoor Air Quality and Noise Nuisance	Y	The complaint is believed to be project-related as construction works had been conducted during the time of the complaint. No non-compliance was recorded for this particular event. However, 1 Limit level exceedance of daytime construction noise was recorded at AM1 on 10 May 2022, while no limit level exceedance of dust nuisance was recorded between April 2022 and May 2022. The details shall be referred to CIR-C41.	Closed
608	12-May-22	2-May-22 / Portion I of NE2017/07	Anonymous	Noise	Construction Noise during Holiday (CBL-C1)	Y	The complaint is considered project-related as construction is udergoing during the time of the complaint. However, the contractor held a valid CNP and no non-compliance was recorded for this particular event. The details shall be referred to CIR-N171.	Closed
607	11-May-22	2-May-22 / Cha Kwo Ling Road	Anonymous	Noise	Construction Noise Nuisance at May 2022 (C1)	Y	See Complaint #597	Closed
606	5-May-22	29-Apr-22 / C3	Anonymous	Noise	Construction Noise Nuisance in Apr 2022 (C3)	Ν	The complaint is considerd as project-related. The braking works had completed at the concerned location. The details can be referred to CIR-N170	Closed
605	4-May-22	4-May-22 / Portion III	Anonymous	Noise	Construction Noise Nuisance at May 2022 (C1)	Y	See Complaint #597	Closed
604	3-May-22	2-May-22 / Portion III	Resident of Yau Lai Estate	Noise	Construction Noise Nuisance at May 2022 (C1)	Y	See Complaint #597	Closed
603	29-Apr-22	29-Apr-22 / Portion III	Resident of Yau Lai Estate	Air & Noise	Deteriation of Indoor Air Quality and Noise Nuisance	Y	See Complaint #597	Closed
602	30-Apr-22	17-Mar-22 & 15-Apr-22 / Junk Bay	Anonymous	Noise	Construction noise at night-time during a holiday	Y	The complaint is considered non-project-related as no works invovling barge were conducted during the time of the complaint. The details shall be referred to CIR-N168.	Closed
601	25-Apr-22	24-Apr-22 / Portion IX	Anonymous	Noise	Construction noise nuisance during Easter holiday	Y	See Complaint #600	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
600	25-Apr-22	16-Apr-22 / Portion IX	Anonymous	Noise	Construction noise nuisance during Easter holiday	Y	The complaint is considered project-related as construction was undergoing during the time of complaint. The Contractor held a valid CNP and no non-complaince was found. The details can be referred to CIR- N167.	Closed
599	26-Apr-22	25-Apr-22 / Portion III and IVC	Resident of Yau Lai Estate	Noise	Construction Noise Nuisance on Weekaday during daytime (Lam Tin side)	Y	See Complaint #597	Closed
598	19-Apr-22	10-Apr-22 / Marine Works Area	Anonymous	Noise	Construction Noise Nuisance from Marine Works Area	Y	The complaint is considered project-related as construction was undergoing during the time of complaint. The Contractor held a valid CNP and no non-complaince was found. The details can be referred to CIR- N166.	Closed
597	11-Apr-22	11-Apr-22 / Portion III and IVC	Resident of Yau Lai Estate	Noise	Construction Noise Nuisance on Weekaday during daytime (Lam Tin side)	Y	The complaint is considered as project-related. Various construction activities were conducted during the time of complaint. The details shall be referred to CIR-N169.	Closed
596	11-Apr-22	11-Apr-22 / Portion VIII and IX	Resident of Ocean Shores	Noise	Construction Noise Nuisance on Weekday morning (TKO side)	Y	The complaint is considered project-related as construction was undergoing during the time of complaint. The Contractor held a valid CNP and no non-complaince was found. The details can be referred to CIR- N164.	Closed
595A	22-Mar-22	20-Mar-22 / Non-specific	Resident of Yau Lai Estate	Noise	Construction noise during restricted hours near Yau Lai Estate	Y	See Complaint #597	Closed
595	14-Mar-22	27-Feb-22 / Marine Works Area	Anonymous	Noise	Construction noise nuisance on Sunday morning (Tseung Kwan O side)	Y	See Complaint #594	Closed
594	14-Mar-22	13-Mar-22 / Marine Works Area	Anonymous	Noise	Construction noise nuisance on Sunday morning (Tseung Kwan O side)	Y	The investigation result showed that the complaint should be considered as project-related in terms of construction noise. The details shall be referred to CIR-N163.	Closed
593	14-Mar-22	14-Mar-22 / Marine Works Area	Anonymous	Water	Suspecteed water pollution at Tseung Kwan O Bay	Ν	The complaint is considered non-project-related. The so-called "pollutant" was in fact natural occuring algal bloom. The details shall be referred to CIR-W19.	Closed
592	1-Mar-22	19-Feb-22 / Marine Works Area	Anonymous	Noise	Construction noise at night-time during a weekday	Y	See Complaint #590.	Closed
591	28-Feb-22	26-Feb-22 / Portion VII or IX	Resident of Ocean Shores	Noise	Noise nuisance by excavator during daytime	Y	No clear judgement has been made as it is difficult to identify which excavator the complainant is referring to. The details shall be referred to CIR-N162.	Closed
590	22-Feb-22	17-Feb-22 / Marine Works Area	Anonymous	Noise	Construction noise at night-time during a weekday	Y	The investigation results show that no construction works was carried out during the time period of complaint. The complaint is considered as non-project-related. The details shall be referred to CIR-N160.	Closed
589	14-Feb-22	11-Feb-22 / Portion III	Resident of Yau Lai Estate	Noise	Construction noise nuisance at normal hours (Yau Tong side, Feb 2021)	Y	The complaint is considered to be project-related as PME was operated during the time of complaint and no other nearby know noise source. The details shall be referred to CIR-N161.	Closed
588	31-Jan-22	30-Jan-22 / Along Tong Yin Street between the Capri and the Ocean Shores	Anonymous	Noise	Construction Noise at morning during holiday (Tseung Kwan O side)	Y	See Complaint #587	Closed
587	28-Jan-22	23-Jan-22 / Portion III	Anonymous	Noise	Construction Noise at morning during holiday (Tseung Kwan O side)	Y	The investigation results reveals the complaint is project-related. However, no PME was used on Sunday morning. The Contractor is reminded to follow valid CNP and the details can be referred to CIR-N159	Closed
586	6-Jan-22	6-Jan-2021 / Non-specific	Anonymous	Noise	Construction noise nuisance at normal hours (Yau Tong side, Jan 2021)	Y	See Complanint #577	Closed
585	2-Jan-22	2-Jan-2021 / Non-specific	Resident of Yau Lai Estate	Noise	Construction Noise at morning during holiday (Yau Tong side)	Y	See Complaint #584	Closed
584	30-Dec-21	30-Dec-21 / Portion III of NE2015/01	Resident of Yau Lai Estate	Noise	Construction Noise at morning during holiday (Yau Tong side)	Y	The complaint is considered as project-related. The monitoring result has been reviewed and no exceedance was recorded. The details shall be referred to CIR-N158.	Closed
583	28-Dec-21	18-Dec-21 / Portion I of NE2017/07	Anonymous	Noise	Construction noise nuisance near Ocean Shores (Dec 2021)	Y	The complaint is considered as project-related. The barges were used for installing pair segment between 1900 and 2000. Afterwards, only the lights were turned on forsafeguarding throughout the rest of the night. The details shall be referred to CIR-N157	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
582	22-Dec-21	22-Dec-21 / Portion IVC	Resident of Yau Lai Estate	Noise	Construction noise nuisance at normal hours (Yau Tong side, Dec 2021)	Y	See Complanint #577	Closed
581	22-Dec-21	15-Dec-21 / Portion IX of NE2015/02	Anonymous	Noise	Construction noise nuisance near Ocean Shores (Dec 2021)	Y	See Complaint #578	Closed
580	17-Dec-21	15-Dec-21 / non-specific (Yau Tong side)	Anonymous	Noise	Construction noise nuisance at normal hours (Yau Tong side, Dec 2021)	Y	See Complanint #577	Closed
579	17-Dec-21	17-Dec-21 / Portion IX of NE2015/02	Resident of Ocean Shores	Noise	Construction noise nuisance near Ocean Shores (Dec 2021)	Y	The complaint is considred as project-related. Various construction activities were conducted during the time of complaint. Acoustic box was used for the breaker. No non-compliance was found. The details shall be referred to CIR-N157.	Closed
578	16-Dec-21	15-Dec-21 / Marine Works Area	Resident of Ocean Shores	Noise	Construction noise nuisance near Ocean Shores (Dec 2021)	Y	The complaint is considred as project-related. Amour rocking unloading was conducted during the time of complaint. No non-compliance was found. The details shall be referred to CIR-N157.	Closed
577	10-Dec-21	10-Dec-21 / Cha Kwo Ling Road	Resident of Yau Lai Estate	Noise	Construction noise nuisance at normal hours (Yau Tong side, Dec 2021)	Y	The complaint is considered as project-related. Construction works such as formwork erection, backfilling and concreting were undergoing during the time of complaint. The details shall be referred to CIR-N156.	Closed
576	16-Nov-21	15-Nov-21 / Portion IX of C2	Resident of Ocean Shores	Noise	High frequency noise nuisance during evening-time	Ν	It is believed that the complianant confused high- and low-frequency in the original complaint. See complaint #574 for more details.	Closed
575	17-Nov-21	Sep-21 / Cha Kwo Ling Road	Anonymous	Noise	Noise nuisance during Restricted Hours (September 2021)	Y	The complaint is considered as project-related as construction was undergoing at the time of complaint. The Contractor held a valid CNP and no non-compliance was found. Other potential noise source also exists and details shall be referred to CIR-N155	Closed
574	9-Nov-21	8-Nov-21 / Portion IX of C2	Resident of Ocean Shores	Noise	Low frequency noise nuisance during evening-time	Ν	The complaint is considered as non-project related as other potential low-frequency noise source exists. The details shall be referred to CIR-N154.	Closed
573C	16-Nov-21	7-Nov-2021 / Works Area of C1 (Cha Kwo Ling Road)	Resident living near Cha Kwo Ling Road	Noise	Noise nuisance between late October to early Novemer 2021	Y	See Complaint #573A	Closed
573B	5-Nov-21	31-Oct-21 / Works Area of C1 (Cha Kwo Ling Road)	Resident living near Cha Kwo Ling Road	Noise	Noise nuisance between late October to early Novemer 2021	Y	See Complaint #573A	Closed
573A	5-Nov-21	17-Oct-21 / Works Area of C1 (Cha Kwo Ling Road)	Resident living near Cha Kwo Ling Road	Noise	Noise nuisance between late October to early Novemer 2021	Y	The complaint is considered project-related as construction was undergoing during the time of complaint. The Contractor held a valid CNP and no non-complaince was found. The details can be referred to CIR- N153.	Closed
572	5-Nov-21	4-Nov-21 / Non-specific	Resident of Ocean Shores	Noise	Noise nuisance near Ocean Shores	Ν	See Complaint #571	Closed
571	26-Oct-21	25-Oct-21 / Non-specific	Resident of Ocean Shores	Noise	Noise nuisance near Ocean Shores	N	Preliminary results from noise monitoring showed no limit level of exceedance and no non-compliance regarding construction schedule was found. The details shall be referred to CIR-N152.	Closed
570	18-Oct-21	18-Oct-21 / Non-specific	Anonymous	Noise	Noise nuisance on holiday during daytime	Y	No clear judgement was made as other potential noise source existed. Nonetheless, the Contractor held a valid CNP and no non-compliance was found. The details shall be referred to CIR-N151.	Closed
569	8-Oct-21	8-Oct-21 / Tsueng Kwan O Bay	DSD	Water	Deteriation of Marine Water Quality in Tsueng Kwan O Bay under Adverse Weather	Ν	The complaint is considered as non-project related as the general condition of the sea is muddy during the date of incident. The details can be referred to CIR-W18.	Closed
568A	7-Oct-21	3-Oct-21 / Portion III	Resident of Yau Lai Estate	Air & Noise	Resident of Yau Lai Estate	Y	The complaint is considered as project-related. Monitoring data for air quality and construction noise has been reviewed. No limit level exceedance is recorded for construction noise and no action and limit level is record for air quality in the time of the complaint.	Closed
568	4-Oct-21	29-Sep-21 / Marine Works Area	Pedestrian	Odour / Water	Odour Nuisance near Tsueng Kwan O Bay (Sep 2021)	Ν	The complaint is considered as non-project-related. Measures such as adopting low-sulphur content diseil as far as possible is recommended. The details can be referred to CIR-O9.	Closed
567	29-Sep-21	14-Sep-2021 / Marine Works Area (C6)	Anonymous	Noise	Construction Works during Restricted Hours (Sep 2021)	Y	The complaint is considered as project-related and no non-complaince was recorded. The monitoring result of evening noise at Tsueng Kwan O throughout September 2021 was reviewed and no limit level exceedance was found. The details shall be referred to CIR-N150.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
566	17-Sep-21	16-Sep-21 / Portion IVC (C1)	Resident of Yau Lai Estate	Noise	Construction Noise nuisance from Portion IVC of NE/2015/01	Y	See Complaint #563	Closed
565	10-Sep-21	9-Sep-21 / Portion III	EPD	Air	Air pollution from construction dust	Ν	See complaint #564	Closed
564	10-Sep-21	6-Sep-21 / Portion I	Anonymous	Air	Air pollution from construction dust	N	Exceedance of 24hr TSP were recorded and evidence of air-quality-related environmental deficiencies were identified during site inspections. The complaint is considered project-related and details shall be referred to CIR-A22.	Closed
563	2-Sep-21	2-Sep-21 / Portion III	Resident living in Cha Kwo Ling	Noise	Construction noise during evening time (Sep 2021)	Y	The complaint is considered as project-related. Monitoring results indicate the construction noise are close to the limit level. The details shall be referred to CIR-N149.	Closed
562	19-Aug-21	15-Aug-21 / Lei Yu Mun Road	Anonymous	Noise	Construction noise nuisance near Lei Yu Mun Road on Sunday	Y	The complaint is considere as project-related as the construction works were carried out during the time of complaint. No monitoring was conducted on Public Holiday. The details shall be referred to CIR-N148.	Closed
561	6-Aug-21	6-Aug-2021 / Non- specific	Resident living in Tiu Keng Ling	Noise	Construction Noise Nuisance on Weekday during Daytime (Aug 2021)	Y	The complaint was considered as project-related. No non-compliance and limit level of daytime construction noise was recorded during late July 2021 and early August 2021. The details of complaint shall be referred to CIR-N147.	Closed
560	31-Jul-21	31-Jul-2021 / Portion VIII	Resident from Ocean Shores	Noise	Construction Noise Nuisance on Saturnday near Ocean Shores (Jul 2021)	Y	The complaint is considered as project-related. Results of construction noise is reviewed and no limit level exceedance was recorded. No non-compliance was found. The details shall be referred to CIR-N146.	Closed
559	3-Aug-21	Jan 2021 - Jun 2021 / Marine Works Area	Resident from Ocean Shores	Noise	Noise Nuisance near Ocean Shores (Jan - Jun 2021)	Y	The complaint included a long-period of time and the current noise mitigation measures were reviewed. No limit level of construction noise was recorded throughout Jan 21 - Jun 21, Despite the complaint is considered as project-related, no non-compliance was recorded. The details shall be referred to the CIR-N145.	Closed
558	11-Jul-21	11-Jul-2021 / Marine Works Area	Anonymous	Working Hours	Operation of Marine Construction Works during Restricted Hours (Jul - 2021)	N	The barge shown in the photo provided by the Complainant was not belong to the Project. The compliant was non-valid and thus the complaint is considered as non-project-related. The details shall be referred to CIR-O8.	Closed
557A	14-Jul-21	14-Jul-21 / Portion III	Resident of Yau Lai Estate	Noise	Noise Nuisance from Construction Works (C1 - Jul)	Y	The complaint is considered as project-related. Construction works were undergoing at the time of complaint and PMEs were operating. No non-compliance was recorded.	Closed
557	20-Jul-21	19-Jul-2021 / Eastern Harbour Crossing	Resident from Bik Lai Estate	Noise	Noise Nuisance from Construction Works (C1 - Jul)	Y	The complaint is considered as project-related. Construction works were undergoing at the time of complaint and PMEs were operating. No non-compliance was recorded. The details shall be referred to CIR-N144.	Closed
556	27-Jun-21	27-Jun-2021 / Marine Works Area	Anonymous	Working Hours	Operation of Marine Construction Works during Restricted Hours	Y	Tug boat and crane barge were used for relocating barge and airlifting materials. The Contractors held valid and approved CNP. No non-compliance was recorded. The details shall referred to CIR-N143.	Closed
555	29-Jun-21	29-Jun-21 / Marine Works Area	Anonymous	Water	Suspected Muddy Water at the Marine Works Area	Ν	No ddirect evidewnce point towards C2 was the source of muddy water. The details of complaint shall be referred to CIR-W17.	Closed
554	29-Jun-21	25-Jun-21 / Marine Works Area	Anonymous	Light / Working Hours	Construction works during restricted hours and light nuisance	Ν	No construction was undergoing during the time of complaint. The light shown in photo was used as safeguarding purpose. Details shall be referred to CIR-O7.	Closed
553	27-May-21	26-May-21 / C3	Anonymous	Air	Air quality impact nuisance nearby Po Yap Road (C3 - Apr & May 2021)	N	See Complaint #551	Closed
552	18-May-21	17-May-21 / C1	Anonymous	Noise	Noise Nusiance from Construction Works (C1 - May)	Y	The complaint is considered as project-related. Construction activities were undergoing during the time of complaint and deficiencies of noise mitigation measures can be observed. The details shall be referred to CIR- N142.	Closed
551	21-May-21	23-Apr-21 / C3	Resident from Ocean Shores	Air	Air quality impact nuisance nearby Po Yap Road (C3 - Apr & May 2021)	Ν	The contractor had applied mitigation measures such as regular watering and covering stockpile of dusty materials. The complaint is considered as project-related and details shall be referred to CIR-A21	Closed
550	21-May-21	4-May-21 / C2 & C3	Resident from Ocean Shores	Noise	Noise nuisance at early morning (C2&C3 May 2021)	Ν	The complaint is considered as non-project-related as both contractor and RE confirmed that no construction was carried out on or before 8 a.m. on the date of incident. The details shall be referred to CIR-N139	Closed
549	26-Apr-21	21-Apr-21 / C1	Mr. Chan from Hong Nga Court	Noise	Noise nuisance at morning (C1-Late Apr)	Y	See Compliant #547	Closed
548	26-Apr-21	23-Apr-21 / C1	Mrs. Ho from Lung pak House	Noise	Noise nuisance at morning (C1-Late Apr)	Y	See Compliant #547	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
547	26-Apr-21	25-Apr-21 / C1	Mr. Lau from Yung Lai House	Noise	Noise nuisance at morning (C1-Late Apr)	Y	The complaint is considered as project-related. Construction works were undergoing at the time of complaint and PMEs were operating. No non-compliance was recorded. The details shall be referred to CIR-N141.	Closed
546	19-Apr-21	4&11-Mar-21 / Marine Works Area	Anonymous	Noise	Noise nuisance on holiday mornings (C6 - Apr)	Y	The complaint is considered as project-related and rebar fixing and framework erection was undergoing. No PME was operating during the time of complaint. A valid CNP is held by the Contractor and no non-compliance was identified. The details shall be referred to CIR-N140.	Closed
545	19-Apr-21	22-Mar-21 / Portion IX	Mr. Lai (Sai Kung District Council Member)	Noise	Noise nuisance on holiday mornings (C2 - Mar)	N	See Complaint #538	Closed
544	19-Apr-21	11-Mar-21 / Portion III	Resident of Yau Lai Estate	Noise	Noise Nusiance from Construction Works (C1 - Mar)	Y	See Complaint #521	Closed
543	19-Apr-21	3-Apr-21 / Portion III	Resident of Yau Lai Estate	Noise	Noise Nusiance from Construction Works (C1 - Apr)	Y	See Complaint #534	Closed
542	19-Apr-21	3-Apr-21 / Portion III	Resident of Yau Lai Estate	Noise	Noise Nusiance from Construction Works (C1 - Apr)	Y	See Complaint #534	Closed
541	19-Apr-21	7-Apr-21 / Portion III	Resident of Ping Tin Estate	Noise	Noise Nusiance from Construction Works (C1 - Apr)	Y	See Complaint #534	Closed
540	19-Apr-21	14-Apr-21 / Portion III	Mr. Wang (Kwun Tong District Council Member)	Noise	Noise Nusiance from Construction Works (C1 - Apr)	Y	See Complaint #534	Closed
539	16-Apr-21	22-Mar-21 / Portion IX	Residentof Ocean Shores	Noise	Suspected Construction Works during evening-time (C2 - Mar)	Ν	See Complaint #534	Closed
538	16-Apr-21	Non-specific / Works area near Ocean Shores	Residentof Ocean Shores	Noise	Noise nuisance on holiday mornings (C2 - Mar)	N	No works was conducted during the time of complaint. The complaint is considered as non-project- related.Details shall be referred to CIR-N138.	Closed
537	15-Apr-21	14/4/2021 / Works area near Park Central	Resident of Park Central	Noise	Noise Nusiance due to Breaking Works (C3- Apr)	Y	Breaking works was conduced during the time of complaint. No limit level for noise monitoring was triggered. The complaint is considerd as project-related. Details shall be referred to CIR-N137.	Closed
536	14-Apr-21	7/4/2021 / Portion IX	Resident of Ocean Shores	Noise	Suspected low-frequency noise nuisance at Portion IX (Apr 2021)	N	The complaint is considered as non-project-related as no PME was turned on during the time of complaint. Details shall be referred to CIR-N136.	Closed
535	14-Apr-21	7/4/2021 / C1	Resident of Lam Tin Districct	Noise	Noise nuisance during nighttime (C1 - Apr 2021)	Y	See Complaint #534	Closed
534	8-Apr-21	3/4/2021 / C1	Resident of Yau Lai Estate	Noise	Noise nuisance during nighttime (C1 - Apr 2021)	Y	The complaint is considered as project-related as there was construction works conducted at Kwun Tong Bypass. The details shall be referred to CIR-N135.	Closed
533	26-Mar-21	15-Mar-2021 / Portion IVC or III	Resident of Yau Lai Estate	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	See Complaint #521	Closed
533A	2-Mar-21	2-Mar-2021 / Portion IVC or III	Anonymous	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	See Complaint #521	Closed
532	16-Mar-21	10-Mar-2021 / Zone C	Mr. Lui (Sai Kong District Council Member)	Noise	Noise nuisance during daytime (C3 - Mar 2021)	Y	See Complaint #529	Closed
531	10-Mar-21	10-Mar-2021 / Zone C	Resident of Park Central	Noise	Noise nuisance during daytime (C3 - Mar 2021)	Y	See Complaint #529	Closed
530	10-Mar-21	10-Mar-2021 / Zone C	Resident of Park Central	Noise	Noise nuisance during daytime (C3 - Mar 2021)	Y	See Complaint #529	Closed
529	10-Mar-21	10-Mar-2021 / Zone C	Resident of Park Central	Noise	Noise nuisance during daytime (C3 - Mar 2021)	Y	The complaint is considered as project-related and no non-compliance was found. The noise origin was believed to be the breaking works conducting at Po Yap Road. The concerned breaking works was completed on 13 Mar 2021. The details shall be referred to CIR-N134.	Closed
528	10-Mar-21	10-Mar-2021 / Portion IVC or III	Resident of Yau Lai Estate	Noise	Percussive Noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed
527	10-Mar-21	10-Mar-2021 / Portion IVC or III	Resident of Yau Lai Estate	Noise	Percussive Noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
526	10-Mar-21	10-Mar-2021 / Portion IVC or III	Resident of Yau Lai Estate	Noise	Percussive noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed
525	9-Mar-21	5-Mar-2021 / Portion IX	Anonymous	Noise	Noise nuisance during daytime (C2 - Mar 2021)	Y	See Complaint #522	Closed
524	9-Mar-21	9-Mar-2021 / Portion IVC or III	Mr. Wong from District Councilers	Noise	Percussive noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed
523	9-Mar-21	9-Mar-2021 / Portion IVC or III	Resident of Yau Lai Estate	Noise	Percussive noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed
523A	5-Mar-21	5-Mar-2021 / Portion III or IVC	Anonymous	Noise	Percussive noise nuisance at morning (C1 - Mar 2021)	Y	See Complaint #521	Closed
522	4-Mar-21	3-Mar-2021 / Portion IX	Resident of Ocean Shore	Noise	Noise nuisance during daytime (C2 - Mar 2021)	Y	The complaint case was considered as project-related. The Contractor is reminded to close the gap of noise barrier and repair damaged noise barriers. The details shall be referred to CIR-N132.	Closed
521	4-Mar-21	3-Mar-2021 / Portion IVC or III	Resident of Yau Lei Estate	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	The complaint is considered as project-related. No limit level of construction noise was recorede during March 2021 and the details shall be referred to CIR-N133.	Closed
521A	1-Mar-21	2-Mar-2021 / Portion IVC or III	Resident of Ping Tin Estate	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	See Complaint #521	Closed
520	1-Mar-21	1-Mar-2021 / Portion IVC or III	Resident of Yau Lei Estate	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	See Complaint #518	Closed
520A	1-Mar-21	Non-specific	Resident of Yau Lei Estate	Noise	Noise nuisance during daytime (C1 - Mar 2021)	Y	See Complaint #521	Closed
519	24-Feb-21	21-Feb-2021 / Non- specific	Resident of Ocean Shores	Noise	Noise nuisance on morning (Feb 2021)	Ν	No PME was operating on-site at the time of compliant and the complaint is considered as non-project- related. The details shall be referred to CIR-N131	Closed
518	19-Feb-21	12-13 & 18 Feb 2021 / Non-specific	Resident of Yau Lei Estate & Hong Pak Court	Noise	Percussive noise nuisance at morning (C1)	Y	Incestigation result shows that the percussive noise nuisance was generated from Portion IVC. The construction work started after 0700 and no limit level of daytime noise exceedance was recorded. The details shall be referred to CIR-N130	Closed
518A	1-Mar-20	27 Feb 2021 / Non- specific	Non-specific	Noise	Percussive noise nuisance at morning (C1)	Y	See complaint #518	Closed
518B	1-Mar-20	25 feb 2021 / Non- specific	Resident of Hong Pak Court	Noise	Percussive noise nuisance at morning (C1)	Y	See complaint #518	
517	8-Feb-21	8/2/2021 / Non-specific	Resident of Ocean Shores	Noise	Noise Nuisance from Excavator	Y	No clear judgement was made as the complainant's information is too vague and it is hard to pinpoint the excavator mentioned in the complaint was in fact the one located at the project site. The details shall be referred to CIR-N129.	Closed
516	26-Jan-21	21-Feb-2021 / Non- specific	Resident of Ocean Shores	Noise / Operating Hours		N	No PME was operating on-site on the date of complaint. The details shall be referred to CIR-N128	Closed
515	23-Jan-21	12-13 & 18 Feb 2021 / Non-specific	Resident of Yau Lei Estate & Hong Pak Court	Noise	Continous Noise Nuisance during Nighttime (Jan 2021)	N	See complaint #504	Closed
514	22-Jan-21	8/2/2021 / Non-specific	Resident of Ocean Shores	Noise		Y	See complaint #511	Closed
513	22-Jan-21	15-Jan-2021 / Zone D	Resident of Ocean	A.'	Air quality impact due to open	N		
512	22-Jan-21	20-Jan-2021 / Zone D	Shores	Air	stockpile	N	See Complaint #508	Closed
511	20-Jan-21	6/1/2021 & 15/1/2021 / Portion IX of C2	Resident of Ocean Shores	Noise		Y	The complaint is considered as project-related as barge was operating in during time of complaint. The details shall be referred to CIR-N128	Closed
510	19-Jan-21	Non-specific / Portion IX of C2	Resident of Ocean Shores	Noise	Continous Noise Nuisance during Nighttime (Jan 2021)	Ν	See complaint #505	Closed
509	15-Jan-21	15/1/2021 / Portion IX of C2	Resident of Ocean Shores	Noise		Ν	See complaint #505	Closed
508	13-Jan-21	5/1/2020 / Storage Area of C3	Resident of Ocean Shores	Air	Air quality impact due to open stockpile	Ν	The Complaint was found project-related. The dust origin was from the stockpile at Zone A of C3. The Contractor had sprayed water regularly to suppress the dust emission and improvement had been observed over Jan 2021. Details shall be referred to CIR-A20.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
507	13-Jan-21	5/1/2020 / Storage Area of C3	Resident of Ocean Shores	Air	Air quality impact due to open stockpile	Ν	The Complaint was found project-related. The dust origin was from the stockpile at Zone A of C3. The Contractor had sprayed water regularly to suppress the dust emission and improvement had been observed over Jan 2021. Details shall be referred to CIR-A20.	Closed
506	7-Jan-21	6-Jan-2020 / Portion IX	Resident of Ocean Shores	Noise	Continous Noise Nuisance during	Y	See Complaint #500	Closed
505	4-Jan-21	22-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise	Nighttime (Jan 2021)	Ν	No clear judgement was made. Other than the construction site, other source for low-frequncy noise was also identified. Details shall be referred to CIR-N128	Closed
504	4-Jan-21	1-Jan-2020/C1	Resident of Yau Lai Est.	Noise	Suspected noise nuisance from work site	Ν	The complaint was considered non-project-related as there was no PME working on site. The details shall be referred to CIR-N127.	Closed
503	30-Dec-20	21-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise		Y		Closed
502	28-Dec-20	22&23-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise		Y	See complaint #500	Closed
501B	23-Dec-20	22-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise		Y		Closed
501A	23-Dec-20	22-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise	Noise nuisance at nighttime on a weekday	Ν	No direct evidence show that the Contractor operated barges at the time of complaint. Therefore the complaint was considered as non-project-related. The details shall be referred to CIR-N126.	Closed
501	23-Dec-20	22-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise		Y	The Contractor operated PME(s) at evening-/night- time without an approved valid CNP. The complaint is	Closed
500	22-Dec-20	22-Dec-2020 / Portion IX	Resident of Ocean Shores	Noise		Y	considered as project-related.The details shall be referred to CIR-N126.	Closed
499	21-Dec-20	20/12/2020 / marine works area	Resident of Ocean Shores	Operating hours / Noise	Horning noise nuisance on Sunday	Ν	The complaint is considered as non-project-related as no barge was working under the TKOLTT project at the time of complaint. The details shall be referred to CIR-O6.	Closed
498	18-Dec-20	17-Dec-2020 / Marine Works Area	Resident of Ocean Shores	Noise	Low frequency noise & occasional piling noise nuisance during night- time	Y	The complaint is considered as project-related as the noise nuisance was coming from water pumps that working 24/7. Details shall be referring to CIR-N125.	Closed
497	9-Dec-20	Days on/before 9/12/2020 / Portion IVC	Resident of Yau Lai Estate	Air & Noise	Dust & Noise Nuisance near Lam Tin Interchange (December)	Y	See Complaint #494	Closed
496	3-Dec-20	Days before 3-Dec-20 / Lam Tin Tunnel	Resident of Hong Pak Court	Noise	Dust & Noise Nuisance near Lam Tin Interchange (December)	Y	See Complaint #494	Closed
495	16-Dec-20	12-Dec-2020 / Po Yap Road	Resident of Park Central	Noise	Night time machenical noise nuisance	Y	The complaint is considered as project-related as the noise nuisance was coming from water pumps that working 24/7. Details shall be referring to N124.	Closed
494	5-Dec-20	Early Dec 2020 / Portion III	Resident of Lung Pak House / Staff from Elderly Hoouse nearby	Noise	Noise Nuisance near Lam Tin Interchange (December)	Y	The complaint is considered as project-related and no non-compliance in CNMP had been recorded. The contractor is reminded to ensure the effectiveness of noise mitigation measures by various measures including repairing damaged noise barrier. The details shall be referred to CIR-C40.	Closed
493	8-Dec-20	25-Nov-2020 & 2-Dec- 2020 / Works area nearby Park Central	Resident of Park Central	Noise	Percussive noise nuisance from at early morning	Ν	The complaint is considered as non-project-related. No operating PME(s) under TKO-LTT project at the time of complaint was known to emit percussive noise at the time of complaint. The details shall be referred to CIR-N123.	Closed
492	18-Nov-20	18-Nov-2020 / Portion VIII (C2)	Resident of Ocean Shores	Noise	Construction Noise nuisance at Morning	Y	Prelimary result reveals that pre-boring and breaking works had been conducted at the time of complaint. The details shall be referred to CIR-N122.	Closed
491	18-Nov-20	16-Nov-2020 / C1	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Restricted Hour)	Y	See Complaint #490.	Closed
490	13 & 16 Nov 20	5-12 & 14-Nov-2020 / C1	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Restricted Hour)	Y	The complaint is considered as project-related. The origin of noise nuisance was believed to be construction works at Tunnel S1 and S2. No non-compliance was found and the details shall be referred to CIR-N121	Closed
489	13-Nov-20	13-Nov-2020 / C1	Resident of Yau Lai Estate	Air & Noise	Dust and Noise Nuisance in Portion IVC	Y	The complaint was found project-related. The contractor had adpoted various noise mitigation measures suc as rock splitting method and erection of semi-enclosure to further reduce the noise impact to its surrounding. The details shall be referred to CIR-C39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
488	13-Nov-20	10-Nov-2020 / C2	Resident of Ocean Shores	Air	Dust emission from construction works	Ν	The complaint was found project-related. The Contractor is recommended to spray water more requently to suppress the dust nuisance. The details shall be referred to CIR-A19.	Closed
487	11-Nov-20	5-Nov-2020 / Portion IVC	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Late September to November)	Y	See Compliant #468	Closed
486	11-Nov-20	6-Nov-2020 / Portion IVC	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Late September to November)	Y	See Compliant #468	Closed
485	7-Nov-20	7-Nov-20	Resident of Park Central	Noise	Precussive noise nearby Park Central	Y	The complaint is considered non-project-related as no PME that know to emit percussive noise was operating during the time of complaint. The details shall be referred to CIR-N120.	Closed
484	7-Nov-20	7-Nov-20 / Portion IV	Resident of Ocean Shores	Noise	Noise Nuisance from Excavation Works	Y	See complaint #481	Closed
483	6-Nov-20	6-Nov-20	Resident of Ocean Shores	Noise	Low-frequency noise at night (Oct&Nov 2020)	Ν	The low-frequency noise was found coming from the water pumps that works 24/7 and other source may also contribute to the noise nuisace. The Contractor had followed the approved CNP. The complaint is considered project-related and shall be referred to CIR-N119	Closed
482	30-Oct-20	29-Oct-2020 / C2	Non-specific	Air	Dust emission from construction works	Ν	Despite the contractor had sprinkle water regularly, the haul road was found dry during site audit session. The Contractor is reminded to sprinkle water more frequently and cover stockpiles of dusty material to reduce dust emission. The details shall be referred to CIR-A19	Closed
481	3-Nov-20	2-Nov-2020 /Portion IV	Resident of Ocean Shores	Noise	Noise Nuisance from Excavation Works	Y	The complaint is considered project-related as no other possible noise origin is know to emit such kind of noise at the surrounding. The Contractor had been reminded to applied lubricants and tighten the screws to reduce noise level. The details shall be referred to CIR-N118	Closed
480	3-Nov-20	3-Nov-2020 / Portion IVC	Resident of Yau Lai Est	Noise	Noise Nuisance near Lam Tin Interchange (Late September to November)	Y	See Complaint #469	Closed
479	3-Nov-20	2-Nov-2020 / Portion IVC	Resident of Yau Lai Est	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	See Complaint #469	Closed
478	3-Nov-20	30-Oct-2020 / Portion IVC	Mr. Wong from District Councilers	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	See Complaint #469	Closed
477	30-Oct-20	15-Oct-2020 / Portion IVC	Non-specific	Air	Air & Noise Nuisance near Lam Tin Interchange (October)	Ν	See Complaint #469	Closed
476	29-Oct-20	29-Oct-2020 / Portion IVC	Resident of Yau Lai Est	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	See Compliant #468	Closed
475	28-Oct-20	Not specific / Lam Tin interchange	Non-specified (near Yau Lai Estate)	Noise	Air & Noise Nuisance near Lam Tin Interchange (October)	Y	See Complaint #469	Closed
474	23-Oct-20	23-Oct-20 / Portion IX	Resident from Ocean Shores	Noise	Low-frequency noise at night (Oct- Nov 2020)	Ν	The low-frequency noise was found coming from the water pumps that works 24/7 and other source may also contribute to the noise nuisace. The Contractor had followed the approved CNP. The complaint is considered project-related and shall be referred to CIR-N119	Closed
473	21-Oct-20	19-Oct-20 / Portion IX	Resident from Ocean Shores	Noise	Noise Nuisance near Portion IX	Y	See complaint #459	Closed
472	20-Oct-20	20-Oct-20 / Portion IV	Resident from Ocean Shores	Noise	Noise Nuisance from Excavation Works	Y	Preliminary results show the noise source was from the backhoe at Portion IV. The Contractor had applied mitigation measures such as adding lubricant to mounting parts to alleviate the problem. The details shall be referred to CIR-N118	Closed
471	6-Oct-20	6-Oct-20 / Portion IX	Resident from Ocean Shores	Noise	Noise nuisance at morning (Oct 2020)	Y	See complaint #459	Closed
					· · · · · · · · · · · · · · · · · · ·			

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
470	10-Oct-20	3-10 Oct 20 / Portion IVC	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	See Compliant #468	Closed
469	10-Oct-20	9-10 Oct 20 / Lam Tin Interchange	DC Member (Mr. Wang)	Noise	Air & Noise Nuisance near Lam Tin Interchange (October)	Y	The complaint is considered as project-related and no non-compliance in CNMP had been recorded. The contractor had adopted mitigation measures such as deploying noise absorbing materials among construction site and spraying water near dust generating activities. The details shall be referred to CIR-C38.	Closed
468	5-Oct-20	Mondays - Saturdays / Portion IVC	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	See complaint #468A	Closed
468A	5-Oct-20	Mondays - Saturdays / Portion IVC	Resident of Yau Lai Estate	Noise	Noise Nuisance near Lam Tin Interchange (Late September to Early November)	Y	The complaint was considered project-related. Mitigation measures such as deploying noise barrier and attempts on blocking direct line of sight from NSR was observed. The details shall be referred to CIR-N117.	Closed
467	23-Sep-20	19-Sep-2020 / Portion IX		Noise	Daytime noise nuisance (mid- September)	Y	See complaint #459	Closed
466	22-Sep-20	20-Sep-2020 / Portion IX	Resident of Ocean Shores	Noise / Working	Noise nuisance on Sunday	Y	Investigation result shows none of the contract under TKOLTT conducted works on Sunday. The details	Closed
465	20-Sep-20	20-Sep2020 / Portion IX		Hours	Noise nuisance on Sunday	Y	shall be referred to CIR-O5	Closed
464	17-Sep-20	August 2020 / Portion IX	Resident of Ocean Shores	Noise	Continuous Noise Nuisance over Aug 2020	Y	The investigation shows no non-compliance and action level for noise is triggered. The details shall be referred to CIR-N113	Closed
463	15-Sep-20	15-Sep-2020 / Non- specific	Anonymous	Noise	Percussive noise nuisance at early morning	Y	See complaint #462.	Closed
462	8-Sep-20	10-Sep-2020 / Potion IX	Anonymous	Noise	Suspected muddy water discharge	Ν	The complaint is considered non-project-related. The investigation pointed out the Contractor had maintain wastewater treatment facilities properly and no action or limit level of surface SS was triggerred after the incident. The muddy water was coming from DSD desilting compound. Details shall be referred to CIR-W16	Closed
461	5-Sep-20	5-Sep-2020 / Portion IX	Resident of Ocean Shores	Noise	Squeaky noise on a Saturnday Morning	Y	The squeaky noise believed was coming from operating barges at C6. No non compliance was found. Details shall be referred to CIR-N115	Closed
460	8-Sep-20	8-Sep-2020 / Portion IVC	Resident of Yau Lai Estate	Noise	Noise nuisance near East Habour Cross Tunnel	Y	See complaint #456	Closed
459	4-Sep-20	1-Sep-2020 / Portion IX	Resident of Ocean Shores	Noise	Noise nuisance at morning (Early Sep 2020)	Y	The complainant had repeatedly complaint about the continuous noise nuisace from September to October 2020. The complaint is considered as project-related. The result of noise monitoring had been reviewed and no limit level of exceedance was found. The details of complaint shall be referred to CIR-N114.	Closed
458	28-Aug-20	Early August 20 / Lam Tin Tunnel	Resident from Yau Lai Estate	Noise	Long-term noise nuisance since early August	Y	See complaint #456	Closed
457	27-Aug-20	24&25-Aug-20 / Portion IX	Rersident from Ocean Shores	Noise	Noise nuisance at morning (Late August 2020)	Y	See complaint #456	Closed
456	18-Aug-20	18-Aug-20 / Portion IVC	Resident from Yau Lai Estate	Noise	Noise nuisance near East Habour Cross Tunnel	Y	Investigation showed the nuisance was generated by breaking works. The contractor had promised to complete the semi-enclosure by October 2020. The details shall be referred to CIR-N112	Closed
455	18-Aug-20	Dates on/before 1-Aug-20 / Lam Tin Tunnel	Resident from Yau Lai Estate	Noise	Noise nuisance from tunnel works	Y	Breaking had been conducted during the time of complaint. The details shall be referred to CIR-N111	Closed
454	11-Aug-20	2-Aug-20 / Sea outside Ocean Shores	Resident from Ocean Shores	Operation Hours	Working on restricted hours and public holiday	Ν	The working barge was believed to be working under the Cross Bay Link project. None of the barges working on the time of complaint belongs to TKOLTT project. Despite works had been conducted, no PME was turned on during the time of complaint. The details shall be referred to CIR-O4.	Closed
453	3-Aug-20	3-Aug-20 / Western Marine Works Area	Resident from Ocean Shores	Water	Suspected muddy water and worn out silt curtain	Ν	The suspected muddy water was due to the strong tidal movement under typhoon influence. The silt curtain was not deployed properly when the typhoon was landed. Details shall be referred to CIR-W15	Closed
452	1-Aug-20	31-Jul-20 / Marine Works Area	Resident from Ocean Shores	Noise	Squeaky noise during nighttime	Y	The noise was originated from the wires that used for tightening the barge. The Contractor had not fasten the wire completely as strong wave and wind actionmay tear up the wire and made the barge stranded. The details shall be referred to CIR-N110.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
451	28-Jul-20	28-Jul-20 / Portion IX	Resident from Ocean Shores	Noise	Breaking noise on the morning	Y	Breaking had been conducted during the time of complaint. The details shall be referred to CIR-N109	Closed
450	23-Jul-20 24-Jul-20	23&24-Jul-20 / Works area nearby Ocean Shores	Residents from Ocean Shores	Noise	Noise nuisance on weekdays	Y	The noise nuisance was originated from high-noise level works such as breaking and drilling. The details shall be referred to CIR-N108	Closed
449	16-Jul-20	12-Jul-20 / Lam Tin Tunnel	Resident of Hong Pak Court	Noise	Noise Nuisance Suspected from Tunnel (C1)	Y	Breaking work was conducted near the underground of Hong Pak Court. No non-conformance of CNP was identified, contractor is reminded to strictly follow the conditions of CNP and the time period of CNP. The details shall be referred to CIR-N110.	Closed
448	4-Jul-20	4-Jul-20 noon / Marine works area nearby Ocean Shores	Resident of Ocean Shores	Air	Dark Smoke Emission from Barge	N	The dark smoke was originated from the barge. It is common that dark smoke will be released when the barge's engine was starting. The details shall be referred to CIR-A18.	Closed
447C	10-Jul-20	28-Jun-2020 / TKO South open sea		Water	Suspected oil leakage at the TKO south open sea	N	See complaint #447A.	Closed
447B	10-Jul-20	29-Jun-2020 / TKO south open sea & flyover towards TKO Chinese Permanent Cemetery	Anonymous	Water / Noise	Suspected muddy water spillage and noise nuisance due to speeding	N	See complaint #447A.	Closed
447A	10-Jul-20	24-Jun-2020 / Non- specific		Noise	Long-term noise nuisance and insufficient noise mitigation measures	Y	The suspected oil leakage was believed to be an algae bloom over the whole bay area. The noise nuisance from speeding was considered not project related. The details shall be referred to CIR-C37	Closed
446	12-Jun-20	31-May-2020 / Area nearby Yau Lai Est	Resident of Yau Lai Estate	Noise	Noise nuisance at Morning nearby East Habour Crossing	Y	See complaint #442.	Closed
445	11-Jun-20	11-Jun-20 / Park Central	Resident of Park Central	Air	Pungent smell suspected coming from the work sites	Ν	See complaint #443B.	Closed
444	6-Jun-20	6-Jun-20 / Portion IX	Residents of Ocean Shores	Water	Flooding within work site and suspected muddy water spillage after downpour	Ν	The flooding is a normal phenonmenon as the site boundary have been embarked. The suspected muddy water is wide-spread among the open sea at TKO south and no exceedance of SS were recordede after the incident. The complaint is considered non-project-related and details shall be referred to CIR-W14.	Closed
443B	CN 20	N		A* AT *	Odour nuisance nearby TKO MTR Station	Ν	The preliminary result showed no direct relationship between the nuisance and the construction works. The details shall be referred to CIR-A17.	Closed
443A	6-May-20	Non-specific	Anonymous	Air/Noise	Noise nuisance at Night and Air Quality Impact from Works	Y	The complaint is considered non-project-related. There is no direct evidence showing the project site is the origin of the nuisance. The details shall be refered to CIR-C36	Closed
442	22-May-20	22-May-20 / LT Tunnel	Resident from Hong Pak Court	Noise	Noise nuisance from Tunnel Works	Y	The noise is believed to be breakin inside the tunnel. The CNP was compiled with and contractor is reminded to review breaking schedule to less sensitive hour. The details shall refer to CIR-N105.	Closed
441	8&9-Apr-20	9-Apr-20 / TKO surcharge area	Residents of Ocean Shores	Air/Noise	Noise Nuisance on early morning and Air Quality Works from Excavation Works	Y	The work schedule of C2 had been reviewed. The "beeping" noise is originated from C2 due to safety issue (for mobilization of materials with crane). The noise nuisance is believed to be coming from the vibration hammer. The Contractor had water the exposed area regular to reduce dust impact to the surrounding. The details shall be referred to CIR-C35	Closed
440	13&17-May-20	13-May-2020/Surcharge Area of TKO	Residents of Ocean Shores	Noise	Noise generation in early mornings of early May	Y	The work schedule of C2. C3 & C6 had been reviewed. The noise source is believed to be generated from C2 due to sheet-piling. The details shall be referred to CIR-N104.	Closed
439	7-Apr-20 & 24- Apr-20	April 2020 / Works area near Park Central (non- specific)	Residents of Park Central	Odour	Continuous diesel fuel odour nuisance near Park Central	N	No direct evidence proved that the odour source was originated from the work sites of TKOLTT. The details shall be referred to CIR-A16.	Closed
438	18-Apr-20	18-Apr-20 / Marine Works Area at TKO	Residents of Ocean Shores	Noise/ Light	Blasting, High Frequency Noise and Light in Tseung Kwan O	Y	The complaint was valid in regard of noise. Blasting had been carried out during the midnight and the Contractor is reminded to strictl follow requirements of CNP. The light source was originated from the construction vessels due to safety reason and guard watching. Details shall be referred to CIR-C34.	Closed
437	27-Mar-20	27-Mar-2020 / Surcharge Area (C2)	Resident of Ocean Shores	Noise	Low Frequency Noise during Midnight	Y	The noise source was the malfunctioned dewatering pumps. The details shall be referred to CIR-N103	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
436	26-Mar-20	26-Mar-20/ Portion IVC	District Council Member (Mr. Wong)	Noise	Noise nuisance, vibration and spectedly insufficient mitigation measures in Lam Tin	Y	See complaint #431	Closed
435	23-Mar-20	23-Mar-20/ Lam Tin Tunnel	Resident of Cha Kwo Ling Village	Noise	Groundborne Noise from Blasting in the Evening	Y	Blasting was conducted at the time of complaint. The vibration monitoring conducted near Tin Hau Temple was considered the vibration level was acceptable. The details shall be referred to CIR-N102.	Closed
434	23-Mar-20	20-Mar-20/ Lam Tin	District Council Member (Mr. Wong)	Noise	Noise nuisance from Construction Works during Holiday	Y	See compliant #427.	Closed
433	20-Mar-20	20-Mar-20/ Lam Tin	Resident of Hong Pak Court	Noise	Noise nuisance, vibration and suspectedly insufficient mitigation measures in Lam Tin	Y	See complaint #431	Closed
432	18-Mar-20	18-Mar-20 / Portion IVC	Resident of Yau Lai Estate	Noise	Noise nuisance, vibration and suspectedly insufficient mitigation measures in Lam Tin	Y	See complaint #431	Closed
431	14-Mar-20	14-Mar-20 / Portion IVC	Residents of Yau Lai Estate	Noise	Noise nuisance, vibration and suspectedly insufficient mitigation measures in Lam Tin	Y	The time period and PMEs of major works conducted during daytime of the complaints, no non-compliance in CNMP and during site audits has been recorded. The Contractor is recommended to provide alternative noise mitigation measures such as acoustic box for noisy PMEs and regularly repair materials of the noise mitigation measures. Details shall be referred to CIR-N101.	Closed
430	17-Mar-20	17-Mar-20 / Surcharge Area / C2	Anonymous	Water	Muddy Water at the Surcharge Area	N	The "muddy water" was created by the tug boat's screw propeller. The Contractor claimed the propeller stirred up seedbed sediment and generated "muddy water". The details shall be referred to CIR-W13.	Closed
429	10-Mar-20	10-Mar-20 / Site Nearby Park Central	Resident of Park Central	Noise	Noise nuisance in early morning (Mar 2020)	Y	No construction works had been conducted at the time of complaint for C3 and the major works area in C2 was at least 300m away from the complainant. It is believed that the major noise source was coming from ASD's work site. The details shall be referred to CIR-N100	Closed
428	4-Mar-20	Not Specified / Tseung Kwan O	Mr. Lui, Sai Kung District Council	Odour / Noise	Odour and low frequency noise nuisance from construction site	Y	Only minor works had been conducted at the time of complaint. No direct evidence showed that the odour source was originated from C3. The suspected nuisance source is believed to be ASD's works area. The details shall be referred to CIR-C33	Closed
427	1-Mar-20	1-Mar-20 / Portion IVC	Resident of Yung Kai House	Noise	Noise nuisance from Construction Works during Holiday	Y	No construction works were conducted at the concerned locations and no direct evidence showing the complaint is project-related. The details shall be referred to CIR-N99	Closed
426	19-Feb-20	11-Feb-20 / Works area outside TKL Sports Centre	Anonymous		Noise nuisance from breaking works	Y	Refer to complaint #423 and #424.	Closed
425	18-Feb-20	29-Jan-2020 / Marine works Area	Mr. Chan from Ocean Shore		Noise nuisance from barge in morning	Y	No works had been conducted in the time period of complaint. The noise is believed to be non-project- related. The details shall be referred to CIR-N95.	Closed
424	11-Feb-20	8 and 11-Feb-2020 / Site near TKL Station	Resident of Park	Noise	ž	Y	The complaint was valid and the contractor had been operating only 1 breaker at a time. The contractor is	
423	3-Feb-20	03-Feb-2020 / Site Near TKL Station	Central		Noise nuisance from breaking works	Y	suggested to further increase the mitigation measures to reduce impact to the surrounding neighborhood. The details shall be referred to CIR-N97	Closed
422	3-Feb-20	2-Feb-20 / Lam Tin Interchange	Resident of Cheuk Lai House, Yau Lai Estate		Noise nuisance suspected to be related to works involving metal hammering on Site near EHC	Y	No construction activities were conducted at the concerned locations during the period of complaint. The Contractor is reminded to keep conducting good site practice and strictly follows the requirements of approved CNP. The details shall be referred to CIR-N98	Closed
421	21-Jan-20	21-Jan-20 / Portion IX	Ocean Shores Residents		Noise nuisance due to Blasting at midnight	Y	Blasting was conducted around 1:30am due to the vicinity of the Railway protection zone of MTR. The Contractor is reminded to keep the blast door closed during blasting to minimize noise impacts and re-schedule blasting to less sensitive hours as far as practicable. The details shall be referred to CIR-N96.	Closed
420	7-Jan-20	7-Jan-20 / Portion IX	Ocean Shores Residents		Irritating loud noise nuisance from Portion IX (C2)	Y	See complaint #417	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
419	7-Jan-20	Sundays before 7-Jan-20 / Tunnel Works	Resident of Hong Pak Court	Noise	Noise nuisance from Tunnel Works	Y	See Complaint #416.	Closed
418	7-Jan-20	5-6-Jan-20 / C1 Marine Works Area	Ocean Shores Residents		High-frequency noise during night- time	Y	The high frequency noise was believe to be noise emitted from the marine works area of C1. The details shall be referred to CIR-N94.	Closed
417	3-Jan-20	2-Jan-20 / Portion IX	Former District Member (Mr. Chan)		Annoying noise emission and inefficient noise mitigation measures	Y	The noise source is believed to come from a breaker and mitigation was insufficient. The Contractor was requested to strictly follow the Noise Mitigation Plan. The details shall be referred to CIR-N93.	Closed
416	29-Dec-19	29-Dec-19 / Non-specific	Resident of Hong Pak Court	Noise	Groundborne Noise from Works area	Y	Project-related with valid CNP. Contractor is reminded to reduce noise emission and prevent breaking and noisy activities during restricted hours. The details shall be referred to CIR-N92.	Closed
415	27-Dec-19	25-Dec-19 / Lam Tin Interchange (Portion IVC)	Resident of Yau Estate	Noise	Noise nuisance from Portion IVC	Y	Non project-related due to maintenance works of East Cross-harbor Tunnel. The details shall be referred to CIR-N91.	Closed
414	24-Dec-19	22-Dec-19 / Lam Tin Interchange (Portion IVC)	Resident of Yau Estate	Noise	Piling noise nuisance near Lam Tin Interchange	Y	Project-related with valid CNP. Contractor is reminded to reduce noise emission and prevent breaking and noisy activities during restricted hours. The details shall be referred to CIR-N91.	Closed
413	24-Dec-19	24-Dec-19 / Portion IX of Contract 2	Resident of Capri & Ocean Shores	Noise	Loud and continuous noise emission from Portion IX	Y	No breaking activity was conducted by the C3. It was believed that C2 was the major noise source and the mitigation measures were insufficient. The details shall be referred to CIR-C32.	Closed
412	19-Dec-19	14-Dec-19 / marine works area	Resident of Ocean Shores	Noise	Noise nuisance from the marine works area	Y	The major construction work was driven by pin piles. The noise emitted due to the construction activities is considered to be reduced to an acceptable level as no NSR falls under the ambit of 300m study area of the work site. Details should be referred to CIR-N90.	Closed
411	2-Dec-19	30-Nov-19 / Construction Sites Outside TKL Sports Center	Resident of Park Central	Air / Noise	Non-effective noise mitigation measures and related dust and noise nuisance	Y	The construction noise created by breaking works are considered non-project related due to the large separation distance between noise source and the Complainant's Location. Major dust emission from the works area next to C3 was recorded. The Contractor is reminded to provide regular watering to dusty works. Details should be referred to CIR-C31.	Closed
410	28-Nov-19	25-Nov-19 / Portion 4C	Anonymous	Noise	Noise nuisance from Lam Tin Works Area and operation hours	Y	Refer to Complaint #408	Closed
409	27-Nov-19	20&27-Nov-19 / Construction Sites near Po Yap Road & Chui Ling Road	Resident of Park Central	Air / Noise	Dust emission due to excavation works and noise nuisance from Piling works	Y	Although noise barrier had been erected and around the breakers, the direct line of sight to the NSRs at Park Central could not be totally blocked. The Contractor is recommended to provide cantilevered noise barrier with noise absorbing materials to minimise noise impact as far as practicable. Details should be referred to CIR-C31.	Closed
408	25-Nov-19	Non-specific (Nov-19) / Portion 4C	Resident of Yau Lai Estate	Noise	Serious Noise Nuisance from Lam Tin Works Area	Y	Despite the Contractor had applied different noise mitigation measures (e.g. semi enclosure and noise barrier). Environmental deficiency was observed during site audit session. The Contractor is recommended to apply alternative noise mitigation measures to improve the situation. The details shall be refer to CIR-N89.	Closed
407	12-Nov-19	Non-specific (Nov-19) / LT Construction Site	Non- specified(Complainan t has previously made complaints on LTI)	Operation Hours	Inquiries on operating hours & Noise Nuisance	Ν	The time of complaint falls under day-time. According to the Contractor and RE, the general starting time of construction works are 08:15 on normal week days. The Contractor had avoid conduct noisy works on morning to minimize noise impacts for the nearby residents. The details shall be refer to CIR-O3	Closed
406	5-Nov-19	5-Nov-19 / Tunnel near TKO	District Council Member (Mr. Chan)	Noise	Noise nuisance from Blasting activities during night-time	Y	No blasting was carried out on that night. The construction activities were conducted inside the tunnel with the blast door closed. The CNP that the Contractor held remained valid during the time of complaint. The details shall be refer to CIR-N88	Closed
405	29-Oct-19	17-Oct-2019 / Marine Works area near Ocean Shore	District Council Member (Mr. Chan)	Noise	Daytime times noise nuisance	Y	The complaint details does not tally up with the information provided with the Contractor and RE. Referring to the Contractor, there was construction works was starting at 09:00. Noise mitigation measures, such as acoustic mats, were applied to minimize noise impact. The details shall be refer to CIR-N87	Closed
404	15-Oct-19	12-Oct-19 / Marine Works area near Ocean Shore	Residents of Ocean Shores	Noise / Working Hours	Noise nuisance due to operation of barge on Saturday early morning	Y	The time of complaint falls within daytime and the major works conducted are dredging and reclamation. The contractor did not require any extra mitigation measures. The contractor had applied sound-proofing mat on the engine floor of the barges and is recommended to strictly follow the requirements of noise mitigation plan. The details shall be refer to CIR-N86	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
403	15-Oct-19	Oct-19 (Not Specified) / C2 Construction Site	Residents of Ocean Shores	Noise / Working Hours	Operation of marine construction works during late hours	Y	The major construction works is trimming works for the rock mount during the time period of complaint. Mitigation measures provided by the Contractor included provision of noise insulating mats to the engine floor of the barges and shorten the work hours by ending construction works on or before 21:00 since early Oct 2019. Details shall be referred to CIR-N85.	Closed
402	10-Oct-19	09-Oct-2019/ Site near TKO CPC	Residents of Ocean Shores	Noise	Noise nuisance of construction works at marine work area during early morning	Y	No construction activity at both the Cavern near the BCMCP Bridge and Platform 1B, including the barge, in particular during the complaint period between 2am and 3am on 9 Oct 2019. Since no works had conducted during the time of complaint, no mitigation measures are required. The details shall be referred to CIR-N84.	Closed
401	5-Oct-19	05-Oct-2019 / C2 Portion IX	District Council Member (Mr. Chan)	Noise	High noise level from works area during daytime	Y	The time period of complaint falls under day-time and therefore the Contractor is required to carry out mitigation measures according to the latest CNMP only. The construction activities had been reviewed and no non-compliance was identified. No Limit Level of Exceedance at daytime was recorded during October 2019. For mitigation measures, the Contractor had set up sound-proofing mats and SlientUp to reduce noise impact. The details shall be refer to CIR-N83.	Closed
400	16-Sep-19	10-Sep-19 / TKO Marine Works Area	District Council Member (Mr. Chan)	Water	Muddy water discharge and deficiency in water quality mitigation measures	N	With accordance to the Contractor and RE, the silt curtains were deployed regarding to SCDP ver. 8 since 10- Sep-19, site inspection on 12-Sep-19 also showed the silt curtains were deployed properly. Despite there are chances of accidental muddy water discharge due to the removal of cofferdam on 13-Sep-19, local silt curtain had been place in order to minimize the unavoidable impact by related loading and unloading of fill materials. No muddy water had been observed outside the silt curtain area. Nevertheless, the Contractor is recommend to expand the coverage of the local silt curtain in order to well-confine the muddy water released from the grab. On top of that, the Contractor shall always follow the SCDP to ensure the minimization of impacts. Details should be referred to CIR-C30.	Closed
399	16-Sep-19	16-Sep-19 (Not Specified) / LT Interchange Potion III	Resident of Bik Lai House, Yau Lai Estate	Noise	Noise emission from the tunnel entrance (Potion III)	Y	No construction works was carried out during the time of complaint. Details should be referred to CIR-N82.	Closed
398	16-Sep-19	13-Sep-19 / Works Area of LT-TKO Tunnel outside Tiu King Leng MTR Station	Anonymous	Air / Water	Dark smoke emission and muddy water discharge from the marine work vessels near shore	N	No dark smoke emission was observed during the site inspection conducted in the week of the complaint. The Contractor has applied an air filtering tank to clean the exhaust from the barge before emission. Details should be referred to CIR-C30.	Closed
397	6-Sep-19	30 Aug-19 / Works area near Ocean Shores	Resident of Ocean Shores	Noise / Working hours	Noise emitted from Barge during Evening times	Y	The unloading works had been reviewed and no limit level of exceedance were recorded during August to early September. Since the period of complaint falls under evening times, no mitigation measures were required by the CNP. Details should be referred to CIR-N81.	Closed
396	6-Sep-19	30 Aug-19 / Works area near Ocean Shores	Resident	Noise	Noise nuisance from LT-TKO Tunnel	Y	The main works conducted wars chostomics, muching out maintaining, drilling and unloading. No limit	Closed
395	6-Sep-19	31 Aug-19 / Works area near Ocean Shores	District Council Member (Mr. Chan)	Noise	Noise Nuisance during evening and night times	Y	The major works conducted were shortcreting, mucking out, maintaining, drilling and unloading. No limit level of exceedance in the restricted hours (19:00-23:00) between late August and early September were recorded. The Contractor is recommended to keep following noise mitigation plan to minimize noise mitigation plan to minimize to CID NO0.	Closed
394	6-Sep-19	Not specified (Sep-19) / Works area near Ocean Shores	Anonymous	Noise / Operating Hours	Noise nuisance during Evening & occasionally in Night time	Y	nuisance. Details should be referred to CIR-N80.	Closed
393	30-Aug-19	30 Aug-19 / Marine works Area	District Council Member (Mr. Chan)	Water	Alleged muddy water discharge	N	High rainfall was recorded during period of complaint, therefore muddy water discharge at outfall from upstream and some surface runoff within the site is expected. However, no major silt curtain deficiency was observed during on-site observation and no leakage of muddy water from the marine works area was observed. Details should be referred to CIR-W12.	Closed
392	29-Aug-19	20-27 Aug-19/ Portion 4C	Resident of Bik Lai House, Yau Lai Estate	Noise	Noise nuisance from the operation of heavy machineries and missing of noise mitigation measures at Portion 4C	Y	A noise insulating cover was erected before the period of complaint, however, due to restricted site condition in the relocated breaking works area, the erection of the cover could not be carried out. Nevertheless, movable noise barriers and local semi-enclosure was adopted for breaking works. Details should be referred to CIR-N79.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
391	26-Aug-19	10-Jul-19 / Construction site near Ocean shore	District Council Member (Mr. Chan)	Noise	Operation of construction works during late hours	Y	l derrick barge was operated during the period of complaint with valid CNP. Regular maintenance and checking should be conducted for all operating barges. Details should be referred to CIR-N78.	Closed
390	26-Aug-19	31-Jul-19 / Construction site near Ocean shore	District Council Member (Mr. Chan)	Noise	Intermittent noise emitted from collision during night-time	Y	The noise source is suspected to be the collision between cofferdam and its broken part as the cofferdam was found damaged next morning. No construction was conducted at night time of 31 July. The contractor is recommended to maintain and check cofferdam regularly. Details should be referred to CIR-N77.	Closed
389	29-Jul-19	17 to 24-Jul-19 / Marine Construction Site near O King Road	Resident of Ocean Shore	Noise	Noise nuisance from the barge operating in reclamation works area near O King Road during evening times.	Y	1 derrick barge was operated during the period of complaint with valid CNP. Regular maintenance should be provided for all operating barges. Details shall refer to CIR-N76.	Closed
388	12-Jul-19	8-Jul-19 / Construction Site near Ocean Shores	District Council Member (Mr. Chan)	Noise	Noise nuisance and inadequate noise barrier at the construction site near Ocean shore	Y	Although Contractor has adopted a noise mitigation measure of drill rigs at Portion IV near Ocean Shore such as noise barrier with sound insulating fabric, the existing noise barrier in Portion IX and some in Portion IV are not adequate in screening the direct line of sight to Ocean Shore. Details should be referred to CIR-N75.	Closed
387	12-Jul-19	8 to 12-Jul-19 / Portion 4C of C1 Construction Site	Resident of Bik Lai House	Noise	Breaking noise emitted from the operation of 2 PMEs at Portion 4C during weekday daytime.	Y	Two breakers were operated intermittently at the Portion 4C of C1 construction site during the period of complaint between 07:00 to 19:00. As observed during the site inspection/noise monitoring, movable noise barrier could not completely screen off the direct line-of-sight from PMEs to Yau Lai Estate. Contractor has adopted mitigation measure to minimize the noise impact from breakers including using a noise barrier with noise insulating fabric, adopted a less noisy hydraulic spiting method for breaking works and has been developing a semi-enclosure noise barrier to replace the existing movable noise barrier. Details should be referred to CIR-N74.	Closed
386	10-Jul-19	9 to 10-Jul-19 / Not Specific	District Council Member (Mr. Chan)	Noise	Noise nuisance and disturbance from the TKOLT tunnel construction site involves intermittent noise emitted from collision during night-time.	Y	No construction works was carried out during the time of complaint. Details should be referred to CIR-N73.	Closed
385	4-Jul-19	Late Jun-19 to 4-Jul-19 / Reclamation Area	Resident of Ocean Shore	Noise	The reclamation works continued into the evening during weekdays and works were also operated on Sunday.	Y	See Complaint no 384.	Closed
384	3-Jul-19	3-Jul-19 / Near Ocean Shore	District Council	Noise	The construction site was constantly emitting metallic percussion noise in the early morning.	Y	The concerned metallic percussion noise source was suspected from the collision between the detached sheet pile and the adjacent sheet pile of the broken cofferdam. The detached sheet pile was fixed by re-sealing it to the adjacent sheet pile. Details should be referred to CIR-N72.	Closed
383	29-Jun-19	Jun-19 / Lam Tin Interchange	Resident of Yau Lai Estate, Yung Lai House	Noise	Noise nuisance from construction works during weekday daytime and evening times. Noise barriers was found missing in certain parts of the construction areas.	Y	Some noise mitigation measures were observed during the site inspection including idle equipment were turned off and noise barrier has been erected close to noisy PMEs in the right direction facing Yau Lai Estate. However, the above mitigation measures were not applied to whole construction site such as noise barriers were not placed close enough to the noisy PMEs due to the uneven surface and other inconvenience. Details should be referred to CIR-N71.	Closed
382 (N08/RE/000110 19-19)	17-Jun-19	6-Jun-19 / Cofferdam area	District Council	Air	Dark smoke nuisance from the tug boat inside the cofferdam area.	Ν	During site audit, no violation of the Air Pollution Control (Smoke) Regulation from the construction site was observed by the ET. Air filter has been replaced on derrick barge to reduce the dark smoke emission upon the receipt of the complaint. The Contractor is recommended to replace the air filters regularly. Details should be referred to CIR-A15.	Closed
381 (N08/RE/000150 98-19)	11-Jun-19	1-Jun-19 / Near confferdam	District Council	Water	Muddy water discharge from construction site near the cofferdam area on 4 June 19	N	High volume of upstream muddy water was collected due high rainfall according to reports and observation. As a result, the muddy water from upstream was discharged into the Junk Bay via various outfalls in Junk Bay, as observed during the rainstorm events. No sand plume within the cofferdam area and no muddy water discharge at the designated discharge point within the Site was identified during the site inspection and water quality monitoring. Details should be referred to CIR-W11.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
380	11-Jun-19	6-Jun-19 / Near Tong Yin Street	Resident of Ocean Shore	Air	Odour nuisance from construction site near Tong Yin Street	Ν	No oil leakage from mobile crane was observed during the site inspection in June 2019. According to the testing reports, all ULSD fuel applied in the PMEs during the construction period contains sulphur content lower than 0.005% by weight, which complied with the Air Pollution Control (Fuel Restriction) Regulations. Details should be referred to CIR-A14.	Closed
379	11-Jun-19	4-Jun-19 / Near cofferdam area	General Public	Water	Discharge of mud water into Junk Bay from TKOLT construction site	Ν	See Complaint no 381.	Closed
378	11-Jun-19	13-Apr-19 / Near cofferdam area	General Public	Air	Dark smoke nuisance from construction site involves derrick barge operation near cofferdam area (daytime)	N	No violation of the Air Pollution Control (Smoke) Regulation was recorded from the construction site was observed. The contractor was recommended to install carbon filter at smoke exhaust of the barge as a more effective mitigation measures. Details should be referred to CIR-C27.	Closed
377	11-Jun-19	2-Jun-19 / Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	Only drilling works inside the tunnel was conducted during daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to reschedule the drilling works inside the tunnel to less sensitive hours. Details should be referred to CIR-N70.	Closed
376	11-Jun-19	9-Jun-19 / Near Yau Lai Estate	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance near Yau Lai Estate involves vehicle movement (roller) during morning to 15:00 in holiday.	Y	No works involving roller was involved. Only drilling works inside the tunnel and ddismantling of crusher shelter was conducted during Sunday daytime under valid CNP. Groundborne noise is considered as the major factor contributing to the noise nuisance, the Contractor are recommended to re-schedule the drilling works inside the tunnel to less sensitive hours. Details should be referred to CIR-N70.	Closed
375	11-Jun-19	9-Jun-19 / Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance from Lam Tin Interchange construction site in daytime holiday.	Y	See Complaint no. 376.	Closed
374	4-Jun-19	3-Jun-19 / Near Ping Tin Estate	Resident of Ping Sin House in Ping Tin Estate	Noise	Vibration from the construction of Lam Tin Interchange in evening time at around 20:00	Y	Groundborne noise is considered as the major factor contributing to the noise nuisance. The reverse circulation drilling works may have emitted groundborne noise, however, only 1 unit was used in Portion II. Therefore, blasting is considered as the major cause for the vibration. Details should be referred to CIR-N69.	Closed
373	4-Jun-19	2-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the construction site near Ocean Shore and the construction site operation in day time holiday.	Y	No construction activity was conducted at the time of complaint as confirmed by Engineer. Therefore, the noise nuisance was not due to the construction site. Details should be referred to CIR-N68.	Closed
372	4-Jun-19	1-Jun-19 / Near ocean Shore	Resident of Ocean Shore	Others	Complaint about the construction site operation in the early morning on Saturday.	N	See Complaint no. 373.	Closed
371	30-May-19	30-May-19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance from construction site near Ocean Shore during night time.	Y	See Complaint no. 373.	Closed
370 (N08/RE/000150 98-19)	29-May-19	19 & 26-May-19 / Near Ocean Shore	Resident of Ocean Shore	Noise	Noise nuisance about dredging mud and loudspeaker in the construction site near Ocean Shore during daytime holiday.	Y	Noise barriers/ Noise absorptive materials have been used to mitigate the noise generated from the construction works. Only walkie-talkies were used for communication in the construction site. Details should be referred to CIR-N67.	Closed
369	13-May-19	Not specific / Lam Tin interchange	Resident of Yau Lai Estate	Noise	Noise nuisance from the blasting work inside tunnel which involves explosion noise impact during midnight	Y	Contractor has adopted a mitigation measure for reduce the blasting noise impact from the tunnel such as blasting doors and did not conduct blasting works during mid-night blasting since mid-May 2019. Details should be referred to CIR-N66.	Closed
368	19-May-19	19-May-19 / Near cofferdam area	General Public	Noise	Noise nuisance from barge with in cofferdam area in daytime holiday	Y	See Investigation / Mitigation Action for complaint no. 361.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
367	5-May-19	5-May-19 / Lam Tin Tunnel - TKO entrance	Resident near Lam Tin Tunnel - TKO entrance	Noise & Air	Noise and air nuisance from construction near Lam Tin Tunnel - TKO entrance	Y	The major works during the period of complaint is scaling by breaker on day time holiday (Sunday). The works is compiled with CNP and no air quality action and noise limit level exceedance during the monitoring. Regarding the existing air quality mitigation measures, the water spray for the breaker was insufficient and the dust emission during unloading of dusty materials was observed. As the review of exiting noise mitigation measure, a broken noise SilentMat was found on the hammer of breaker. According to the above observation, Contractor has adopted serval improvement such as conduct a sufficient water spray during breaking and unloading materials, replaced the noise SilentMat of the breaker and placed the noise barrier between PME and NSRs. Details should be referred to CIR-C29.	Closed
366	4-May-19	4-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y	Regarding the observation during site inspection, the hammer of the breaker was surrounded by a broken noise absorption material and a noise barrier of a driller was placed in the incorrect direction of NSRs. Contractor has improved the above mitigation measures including replaced the noise absorption materials and relocated the noise barrier to facing the NSRs. Details should be referred to CIR-N65.	Closed
365	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime.	Y	See investigation / mitigation actions for Complaint No.366	Closed
364	1-May-19	1-May-19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime	Y	See investigation / mitigation actions for Complaint No.366	Closed
363	30-Apr-19	6th – 22th April -19 / Lam Tin Interchange	Resident of Ping Tin Estate	Noise	Noise nuisance from construction of Lam Tin Interchange in daytime and evening time	Y	See investigation / mitigation actions for Complaint No.366	Closed
362 (N08/RE/000133 96-19)	8-May-19	7-May-2019 / Junk Bay	District Council	Noise	Noise nuisance from marine works in the Junk Bay in the night-time (06:45)	Y	No marine works in the Junk Bay was conducted as confirmed by RE. No CCTV footage was recorded during the time of complaint. It was suggested that Contractor should conduct 24 hours CCTV monitoring. Details should be referred to CIR-N64.	Closed
361	7-May-19	28 Apr 2019 / Cofferdam Area	General Public	Noise	Noise nuisance from construction site at cofferdam area in holiday	Y	The reclamation works involves barges during the time of complaints has been compiled with the CNP. As review of existing mitigation measure, the sound proofing canvases for the barges were hanged up. Details should be referred to CIR-N63.	Closed
360	2-May-19	27-04-2019/ Construction in Tong Tin Street	General Public	Noise	The complaint about the noise nuisance from cofferdam area during daytime and evening-time.	Y	The light source was found from the lighting of derrick barge within the cofferdam area and the noise source was found from the barge during filling works. Contractor has adopted The sound proofing canvases for the derrick barge was hanged up but no light mitigation measure. Details should be referred to CIR-C28.	Closed
359	30-Apr-19	30-04-2019/ Near Ocean Shore	Resident of Ocean Shore	Noise	The complaint about the noise nuisance involve percussion noise near Ocean Shore during daytime.	Y	See compliant #355.	Closed
358	30-Apr-19	27-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance during evening time.	Y	See compliant #355.	Closed
357	23-Apr-19	20-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during daytime.	Y	See compliant #355.	Closed
356	23-Apr-19	19-04-2019/ Near cofferdam area	General Public	Noise	The complaint about the noise nuisance near cofferdam area during holiday.	Y	See compliant #355.	Closed
355	17-Apr-19	17-04-2019/ Near cofferdam area	General Public	Noise & light	The complaint about the noise nuisance and light pollution near cofferdam area during evening-time.	Y	The light source was found from the lighting of derrick barge within the cofferdam area and the noise source was found from the barge during filling works. Contractor has adopted The sound proofing canvases for the derrick barge was hanged up but no light mitigation measure. Details should be referred to CIR-C28.	Closed
		20 Apr 2019 / Cofferdam Area						

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
354	30-Apr-19	19 Apr 2019 / Cofferdam Area 15 Apr 2019 / Cofferdam Area 07 Apr 2019 / Cofferdam Area 31 Mar 2019 / Cofferdam Area	Resident of Ocean Shore (Mr. Chan)	Others	The construction site near O King Road is operated in holiday during day-time and weekday during night- time.	Ν	The marine reclamation works at the Portion IX in C2 construction site was the major construction activity during the period of complaints. The concerned reclamation works is compiled with the relevant CNP. Details should be referred to CIR-O2.	Closed
353	13-Apr-19	13-04-2019/Cofferdam Area	Resident of Ocean Shore (Mr. Chan)	Air	According to the complainant, large amount of smoke and exhaust was seen emitting from barges working within the cofferdam	N	See Investigation / Mitigation Action for complaint no. 329.	Closed
352	13-Apr-19	13-04-2019/Cofferdam Area	Resident of Ocean Shore	Noise	The complainant complained about the noise nuisance from the cofferdam area in Tiu Keng Leng during day-time.	Y	The major works during the time of complaints was a crawler crane unloading H piles to the Portion V of C2 construction site. Noise barriers were erected between the crane and NSRs to reduce noise impact. Details	Closed
351	13-Apr-19	13-04-2019/Cofferdam Area	Resident of Ocean Shore	Noise	The complainant complained the noise nuisance from the cofferdam area in Tiu Keng Leng during day- time.	Y	should be referred to CIR-N62.	Closed
350	8-Apr-19	07 Apr 2019 / Cofferdam Area in TKO	-	Air & Others	The complainant complained the dark smoke generation and the construction works from the cofferdam area in Tiu Keng Leng during holiday.	N		Closed
349	7-Apr-19	07-04-2019/Cofferdam Area	Resident of Ocean Shore	Air	Dark smoke generation from the cofferdam area in Tiu Keng Leng during day-time.	N	See Investigation / Mitigation Action for complaint no. 329.	Closed
348	2-Apr-19	02 Apr 2019 / LTT-TKO	-	Others	The complainant complained the LTT construction site was working during holiday.	N		Closed
347	1-Apr-19	01 Apr 2019 / Cofferdam Area	Resident of Ocean Shore	Noise	Percussive noise from the cofferdam area in Tiu Keng Leng during day- time.	Y		Closed
346	31-Mar-19	31st March 2019 / Construction of Road P2	District Council	Others	Complaint about the construction site operation of Road P2 in day time holiday	Ν	A tug boat and a derrick barge were operated for the marine reclamation work within the cofferdam area during the time of complaint. As the review of relevant CNP, no violation was observed. Details should be referred to CIR-O1.	Closed
345	26-Mar-19	26th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
344	28-Mar-19	26th March 2019 / Construction of Road P2	District Council	Noise	Complaint letter received regarding noise nuisance and dark smoke generation from the marine barges	Y	See Investigation / Mitigation Action for complaint no. 378.	Closed
343	25-Mar-19	25th March 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the noise nuisance sound like a breaking works in day time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
342	25-Mar-19	24th March 2019 / Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction of Lam Tin Interchange in day time hoilday (Sunday). The noise monitoring was conducted in Hong Nga Court by staff after the complaint and the noise level is result in acceptable level, but the complainant replied that the noise monitoring is meaningless and the noise nuisance is not acceptable for her.	Y	See Investigation / Mitigation Action for complaint no. 330.	Closed
341	24-Mar-19	24th March 2019 / Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complaint about the noise nuisance from Lam Tin Tunnel construction works in day time.	Y	See Investigation / Mitigation Action for complaint no. 330.	Closed
340	24-Mar-19	24th March 2019 / Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance from the construction site day time holiday (Sunday).	Y	See Investigation / Mitigation Action for complaint no. 330.	Closed
339	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the construction noise nuisance involving percussive noise in early morning (07:00)	Y	See Investigation / Mitigation Action for complaint no. 330.	Closed
338	21-Mar-19	21st March 2019 / Construction of Lam Tin Interchange	Resident of Ocean Shore	Noise	Construction noise	Y	See Investigation / Mitigation Action for complaint no. 323.	Closed
337	20-Mar-19	19th March 2019 / Construction of Road D4 and Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance from the construction vehicle near Park Central in night time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
336	20-Mar-19	20th March 2019 / Construction of Road P2	Resident of Park Central	Noise & Pest	Complaint about the noise and pest nuisance from the construction site near Park Central in evening time.	Y	See Investigation / Mitigation Action for complaint no. 329.	Closed
335	19-Mar-19	19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from reclamation works near the TKO- LTT reclamation site during the evening time (19:00-23:00).	Y	See Complaint #323.	Closed
334	19-Mar-19	19th March 2019 / Construction of Road P2	District Council	Noise	Construction noise nuisance from the TKO-LTT reclamation site during evening time (after 19:00).	Y	See Complaint #323.	Closed
333	19-Mar-19	18th - 19th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Construction noise nuisance from construction noise in evening time (around 20:30).	Y	See Complaint #323.	Closed
332	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complaint about the noise nuisance during day time, evening time and night time.	Y	The construction estivities in the complete dates are complied with CND. No point functional second second	Closed
331	18-Mar-19	18th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance in night time and the past few days. (Before 07:00)	Y	The construction activities in the complaint dates are complied with CNP. No noise limited level exceedance was recorded. During the site inspection, no noise barriers were erected between noisy PMEs and NSRs at LTI. Regarding the observation in the inspection, Contractor has adopted an improvement such as placed the noise barriers between the PMEs and NSPs to reduce noise nuisance. Details should be referred to CIR-N61	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
330	17-Mar-19	17th March 2019 / Construction of Lam Tin Interchange	General Public	Noise	Complaint about the noise nuisance from in night time holiday.	Y		Closed
329	15-Mar-19	15th March 2019 / Construction of Road D4	Resident of Park Central	Noise & Air	Complaint about the noise from the construction works and the odour nuisance involves engine oil from construction machine	Y	The construction activities in the complaint dates are compiled with the CNMP. No noise and air quality limit level exceedance were recorded. Contractor had implemented the mitigation measures for the noise and odour nuisances including acoustic mat was erected between the PME and NSR, ultra-low sulphur diesel was applied as fuel oil in PME and general refuses were disposed properly. Details should be referred to CIR- C26.	Closed
328	14-Mar-19	9th March 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Complaint about the noise nuisance involve drilling work in the day time (08:00).	Y	A formation works was conducted in 7 am to 7pm on 9 Mar 2019. No noise limit level exceedance was recorded in the nearest noise monitoring result. However, there was no any adoption of mitigation measure to minimize the noise nuisance from the site. As response the received complaint, the contractor should place the noise barrier between the PMEs and NSR. Details should be referred to CIR-NS8.	Closed
327	13-Mar-19	13th March 2019 / Construction of Lam Tin Interchange	Resident of Bik Lai House	Noise	Noise nuisance suspected from the construction works involving chiseling during evening time (22:07).	Y	A handing processed rock at Lam Tin Interchange was conducted on the complaint date in 7 pm to 11 pm involving dump truck and excavator which construction activities was compiled with the CNP. No noise limit level exceedance was record in the evening time monitoring. However, the noise barrier was not placed in the direction of the Yau Lai Estate during breaking works, the contractor had implemented a mitigation measure such as placed the noise barrier to reduce noise level from the breaker but the noise barrier was far from the concerned breaker. Details should be referred to CIR-N59.	Closed
326	13-Mar-19	13th March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time (16:30)	Y	See Investigation / Mitigation Action for complaint no. 322.	Closed
325	9-Mar-19	9th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involve machine and percussive noise in night time (02:00 -03:00).	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Closed
324	7-Mar-19	7th March 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving chiseling noise from the construction site near Hong Pak Court during day time and evening time in the past few months.	Y	Only drilling works were conducted inside the tunnel in early morning and daytime under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N56.	Closed
323 (EPD- N08/RE/000065 23-19)	4-Mar-19	4th March 2019/ Cofferdam Area	Resident of Ocean Shore	Noise	Construction noise (Evening time)	Y	Only 1 derrick barge and a tug boat was used in the evening time under valid CNP. No Limit Level Exceedances were recorded at Station CM6(A) during evening time. Acoustic mat should be used to screen the engine of the barge to reduce the noise nuisance from the reclamation works. Lubricants should be applied to the barge to reduce the noise emission during barge movement.	Closed
322	13-Mar-19	1st March 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Noise nuisance suspected from a yellow excavator near Ocean Shores in day time (15:44).	Y	No noise limit level exceedance was recorded and the number of operating PMEs complied with the CNMP. The sound proofing canvases were not always adopted as a mitigation measure to screen the noise emitted from the engine of the barge. Contractor should adopt the aforementioned mitigation measures as far as practicable. The contractor was also be recommended to enhance the mitigation measure including frequently checking the noise barriers/sound proofing canvases, frequent checking and repair the gaps or broken acoustic sheets and continue to strictly follow the requirements in the approved CNMP.	Closed
321	28-Feb-19	28th February 2019 / Construction of Lam Tin Interchange	Management Section of Yau Lai Estate	Noise	Construction noise (Night time)	Y	Only drilling works were conducted inside the tunnel in early morning under valid CNP. Groundborne noise is considered as the factor that contributes to the noise nuisance. The Contractor is recommended to reschedule drilling works to less sensitive hours. Details should be referred to CIR-N55.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
320	22-Feb-19	22nd February 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complaint about the noise nuisance involving percussive noise in early morning (Day time). Complainant said the construction should be operated after 08:00.	Y	See Investigation / Mitigation Action for complaint no. 313.	Closed
319	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise in night time	Y	See Investigation / Mitigation Action for complaint no. 313.	Closed
318	21-Feb-19	21st February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complaint about the noise nuisance involving percussive noise from the construction in night time	Y	See Investigation / Mitigation Action for complaint no. 313.	Closed
317	25-Feb-19	23th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complained about the odour nuisance of petroleum smell	Ν	See Investigation/ Mitigation Action on Complaint no.294. Details should be referred to CIR-A12.	Closed
316	18-Feb-19	18th February 2019 / Construction of Road P2	Resident in O King Road	Air	Complaint about the dark smoke and odour nuisances	Ν	See Investigation/ Mitigation Action on Complaint no.294. Details should be referred to CIR-A12.	Closed
315	17-Feb-19	15th February 2019 / Construction of Lam Tin Interchange, Road P2 and Tseung Kwan O Interchange	General Public	Noise	Complained about construction noise (Daytime)	Y	The metal wire used for anchoring the barge inside the cofferdam area are the source for the noise nuisance. Ropes were used to replace metal wire to reduce noise nuisance from metal collision while mooring boats. Details should be referred to CIR-N54.	Closed
314	17-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Air	Dust nuisance suspected from the construction works and absence of water spraying near Lam Tin Interchange in daytime.	N	No Air Quality action level or limit level exceedance during the monitoring conducted by ETL. Contractor had implemented mitigation measure to reduce and prevent dust emission including conducted water sprays and covered the cement bags. Details should be referred to CIR-A13.	Closed
313	17-Feb-19	17th February 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Construction noise nuisance from the drilling and breaking works at Branch Tunnel in the morning (Day time)	Y	Breaking and drilling works were conducted during the time of complaint. The breakers were often seen wrapped with acoustic mat, however, they are easily damaged during the breaking works. Noise barrier are more effective in reducing the noise nuisance than the acoustic mat, but the erection of noise barrier are not often adopted properly to screen the noise from the NSR due to the additional works involved and the landform on site. Groundborne noise could also be a factor contributing to noise nuisance. Details should be referred to CIR-N53.	Closed
312	16-Feb-19	16th February 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the explosion noise (Daytime)	Y	No exceedances were recorded and recommendation were made to further enhance the mitigation measures, such as regularly and reviewing the noise control activities that are being carried out on site regularly to ensure compliance with statutory requirement, provide training for the workers to prevent unnecessary noise disturbance and frequently check and maintain the absorptive lining adhered on blasting doors on a regular basis.	Closed
311	15-Feb-19	15th February 2019 / Construction of Lam Tin Interchange	Public	Noise	Complained about the explosion noise (Daytime)	Y	See Investigation / Mitigation Action for complaint no. 312.	Closed
310	14-Feb-19	14th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (Daytime)	Y	Dump truck and excavator was used to transfer crushed rocks from the crusher with valid CNP. Additional noise barrier was added at the site boundary near Shun Lai house, Yau Lai Estate to reduce the direct-line of	Closed
309	13-Feb-19	13th February 2019 / Construction of Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Construction noise nuisance about the rock handling work at LTI (evening time)	Y	sight from the NSRs to the site. Details should be referred to the CIR-N51.	Closed
308	13-Feb-19	1th - 13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Management Section of Kwong Tin Estate	Noise	Complaint about construction noise (Night time)	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
307	13-Feb-19	13th February 2019 / Construction at Tsueng Kwan O (C1)	Resident of Ocean Shore	Noise	The complaint about the noise nuisance in day time	Y	Noise nuisance was originated from the beeping noise emitted during vehicle reversing of the loader. The total length of beeping noise should be less than 5 mins. The reverse alarm system is a necessary safety measure that cannot be revoked. Details should be referred to CIR-N50.	Closed
306	13-Feb-19	13th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed
305	12-Feb-19	12th February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise in night time.	Y	See Investigation/ Mitigation Action on Complaint no.302. Details should be referred to CIR-N48.	Closed
304	8-Feb-19	8th February 2019 / Construction of Road P2 and Associated Works	Resident of Ocean Shore	Noise	Noise nuisance suspected from marine works near Ocean Shores in the day time	Y	There were two construction activities in the site including dredging and trimming in day time on 8 Feb 2019. Details should be referred to CIR-N49.	Closed
303	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Ping Tin Estate	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time, evening time and night time.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively;	Closed
302	2-Feb-19	27th January - 2nd February 2019 / Construction of works at the TKO-Lam Tin tunnel	Resident of Hong Pak Court	Noise	Noise nuisance suspected from the construction works involving chiseling noise during day time	Y	 The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers; To continue to strictly follow the requirements in the approved CNMP; To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP. 	Closed
301	31 Jan 2019	27th - 31th January 2019 / Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Noise nuisance suspected from the	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed
300	30 Jan 2019	30th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
299	30 Jan 2019	27th - 29th January 2019 / Construction Site of Footbridge between Tiu Keng Leng Sport Centre and Park Central	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the construction works involving mobile crane and also suspected from elevation platform	Y	See investigation / Mitigation Action for complaint no. 296. Details should be referred to CIR-N47.	Closed
298	30 Jan 2019	Not specific / Near Po Shun Road	Resident of Park Central	Noise & Air Quality	The dust generation and noise nuisance from the construction site near Po Shun Road	Y	There were several construction activities in the site including the removal of steel mould & scaffolding of bridge deck, erection of scaffolding for staircase and construction of Pour 1 of main deck (GL4-5) during time of complaint. Details should be referred to CIR-C25.	Closed
297	30 Jan 2019	27 th - 30th January 2019 / Construction works at TKO-Lam Tin tunnel	Resident of Hong Nga Court	Noise	Noise nuisance suspected from the construction involving chiselling works	Y	See Investigation/ Mitigation Action on Complaint no.290. Details should be referred to CIR-N45.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
296	29 Jan 2019	27th - 29th January 2019 / Construction Site of Footbridge near Tiu Keng Leng Sport Centre.	Resident of Park Central	Noise	Beeping Noise nuisance suspected from the mobile crane at the Footbridge near Park Central Block 6	Y	Project-related. The following recommendations were made to further enhance the mitigation measures: To arrange a signalman instead of mobile crane reversing signal for minimize the beeping noise disturbance; Frequent checking and repair the operating PME; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers; To continue to strictly follow the requirements in the approved CNMP; To ensure noise barrier and sound proofing canvases wrapped on PME are intact and in good condition.	Closed
295	29 Jan 2019	29th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complaint about the noise nuisance from the steel cable wire for anchoring between barge and pier	Y	There was a salvage works for the sunken barge (CS306) in a whole day on 27 Jan, 12 am to 3 pm on 28 Jan and 11:40 am on 29 Jan 2019. Details should be referred to CIR-N46.	Closed
294	29 Jan 2019	29th January 2019 / Construction of Road P2	Resident in O King Road	Air Quality	Complaint about the dark smoke and odour nuisances from barge.	Y	The sulphur content percentage of the adopted diesel fuel was lower than 0.05% which is compiled with the Hong Kong Air Pollution Control (Marine Light Diesel) Regulation, therefore the odour problem should be minimised. Smoke filtering tanks were adopted on deck level of derrick barges to reduce emission of dark smoke and exhaust smell. The situation has improved after the filter has been replaced. Details should be referred to CIR-A12.	Closed
293 (EPD- K15/RE/000032 91-19)	29 Jan 2019	29th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night time)	Y	See investigation / Mitigation Action for complaint no. 270. Details should be referred to CIR-C29.	Closed
292	29 Jan 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from breaking work.	Y	Project-related. The following recommendations were made to further enhance the mitigation measures:	Closed
291	29 Jan 2019	29th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from breaking work.	Y	 To arrange a signalman instead of mobile crane reversing signal for minimize the beeping noise disturbance; Frequent checking and repair the operating PME; The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receivers; 	Closed
290	29 Jan 2019	29th January 2019 / Construction of Lam Tin Interchange	District Council	Noise	Complained about the construction noise from Tunnel Works	Y	 The deployment of calmitor index barrel anothe solice interine of sight non-solicity follow the requirements in the approved CNMP; To ensure noise barrier and sound proofing canvases wrapped on PME are intact and in good condition. 	Closed
289 (EPD- N08/RE/000008 59-19)	24 Jan 2019	Early December 2018 -24- Jan-2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from Tunnel Works	Y	See Investigation/ Mitigation Action on Complaint no.288. Details should be referred to CIR-N44.	Closed
288	18 Jan 2019	18th January 2019 (Non- specific)/ Construction of Road P2	Public	Noise	Complained about the construction noise from Tunnel Works	Y	No major construction works at the concerned night time. There was only salvage operation carried out in 11 pm to 12 pm on 17 Jan 2019. No violation of CNP nor Noise Control Ordinance is found in this regard. Details should be referred to CIR-N44.	Closed
287	17 Jan 2019	17th January 2019 / Construction of Lam Tin Interchange	Resident of Yung Lai House	Noise	Complained about the construction noise from Kam Tin Interchange.	Y	Project-related. The following recommendations are made to further enhance the mitigation measures: To regularly check and review the noise control activities that are being carried out on site to ensure compliance with statutory requirement. Machines may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. To provide training for the workers to prevent unnecessary noise disturbance. To provide cantilever barrier to screen the construction noise from the NSRs	Closed
286	17 Jan 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near the Park Central in day time	N	See Investigation/ Mitigation Action on Complaint no. 285. The concerned air compressor has been removed on 16 th Jan 2019. Details should be referred to CIR-N41.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
285	17 Jan 2019	17th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air blower/fan with generator near Tiu Keng Leng Sport Centre and Park Central.	N	The concerned air compressor was removed from the construction site since 16 January 2019 afternoon, but the high frequency noise nuisance complaints were received on 17 January 2019. According to the CM8(A) noise monitoring record by environmental team, the other noise source from construction site are beeping noise of the reverse alarm system of the plant. Therefore, the high frequency noise nuisance is considered project related after 16 January 2019. Details should be referred to CIR-N41.	Closed
284	16 Jan 2019	16th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
283	15 Jan 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
282	15 Jan 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from an air compressor near Tiu Keng Leng Sport Centre and Park Central.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
281	15 Jan 2019	15th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Additional noise barrier was erected around the said air compressor. Details should be referred to CIR-N41.	Closed
280	14 Jan 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Chui Ling Road roundabout and Tiu Keng Leng Sport Centre in day time.	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed
279	14 Jan 2019	14th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site near Tiu Keng Leng Sport Centre in day time Saturday and Holiday (Sunday).	N	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed
278	12 Jan 2019	12th January 2019 / Construction of Road D4	Resident of Park Central	Noise	High frequency machine noise nuisance involving air compressor from the construction site between Tiu Keng Leng Sport Centre and Park Central in day time	Y	See Investigation/ Mitigation Action on Complaint no. 272. Details should be referred to CIR-N41.	Closed
277	12 Jan 2019	12th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the noise from breaking activities.	N	See investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
276	11 - 12 January 2019	11th - 12th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP. Details can be referred to CIR-N40.	Closed
275	11 Jan 2019	11th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the construction noise from a crane near footbridge between Tiu Keng Leng Sport Centre and Park Central	Y	See Investigation/ Mitigation Action on Complaint no. 272.	Closed
274 (EPD- N08/RE/000012 34-19)	11 Jan 2019	11th January 2019 / Construction of Road D4	Public	Noise	Complaint about the high frequency machine noise nuisance from the construction site of footbridge between Tiu Keng Leng Sport Centre and park Central.	Y	No high-frequency noise was detected near the complaint location, however, the noise similar to description was detected within the renovation works inside Park Central. Details should be referred to complaint no. 272 and CIR-N41.	Closed
273	10 Jan 2019	10th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed
272	8 Jan 2019	8th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complaint about the high frequency machine noise nuisance from the construction site near Park Central in day time.	Y	High frequency noise emitted from an air compressor was suspected. Noise barrier was seen erected. Noise barrier using material with higher absorption coefficient such as mineral wool is recommended. Details should be referred to CIR-N41.	Closed
271	8 Jan 2019	8th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The complaints are considered as project-related. The following recommendations were made to further enhance the mitigation measures: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken SilentMat for wrapping the breaker head; To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively; The deployment of Cantilever noise barrier To continue to strictly follow the requirements in the relevant CNP. To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer Engineer should monitor the plant and machine to ensure construction activities are in compliance of CNP.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
270 (EPD- K15/RE/000006 91-19)	7 Jan 2019	7th January 2019 / Construction of Lam Tin Interchange	Cha Kwo Ling Tsuen	Noise & Air Quality	Complained about construction noise & dust (Day & Night-time)	Y	Regular noise monitoring results for day time and night time show full compliance of the noise criteria. Air quality monitoring result in all stations show that no adverse air quality impact has been brought about to the nearby sensitive receivers during the time of complain. During Site audit, damaged acoustic material on the breaker was observed. Watering was provided at during rock breaking to avoid dust generation. The Contractor was reminded to deploy noise barrier to screen the line-of-sight from sensitive receiver.	Closed
269	7 Jan 2019	7th January 2019 / Construction of Road D4	Resident of Park Central	Noise	Complained about the night time construction noise near Park Central.	Y	No noticeable high frequency noise was detected from the air compressor and noise barrier was seen erected in the line-of-sight from the NSR to the Air compressor. Refer to CIR-41 for details.	Closed
							No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure:	
							Frequent checking and repair the gaps or broken acoustic sheets;	
							Replace any broken Silent Mat for wrapping the breaker head;	
							To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively;	
268	7 Jan 2019	7th January 2019 / Construction of Lam Tin	Resident of Yau Lai Estate	Noise	Complained about the construction noise at Lam Tin Interchange.	Y	The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver;	Closed
		Interchange	Louite		noise at Lain 111 Interenange.		To continue to strictly follow the requirements in the relevant CNP;	
							To conduct an ad hoc ground-borne noise monitoring with the coordination of the	
							Engineer; and	
						Engineer should monitor the plant and machine to ensure construction activities are in		
							compliance of CNP.	
267	7 Jan 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	Refer to Investigation/ Mitigation Action on Complaint no. 264. Details should be referred to N39.	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
							No exceedances were recorded at the nearest monitoring station, however, the approved location for noise monitoring was located at the podium of Ocean Shores. Due to inaccessibility to private unit, it is not possible to perform monitoring at higher floor. ET will keep approaching Ocean Shore Management Office for impact noise monitoring at higher floor. The recommendations for Contractor is as follows:	
266	7 Jan 2019	7th January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	 only well-maintained plant on-site and plant should be serviced regularly during the construction program; 	Closed
							• Plants known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers;	
							Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum.	
							No exceedances were record at the nearest monitoring station. The following recommendation were made to further enhance the mitigation measure:	
							Frequent checking and repair the gaps or broken acoustic sheets;	
1							Replace any broken Silent Mat for wrapping the breaker head;	
							To adopt Cantilever noise barriers at Lam Tin Interchange to screen noise effectively;	
265	7 Jan 2019	7th January 2019 / Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	The deployment of Cantilever noise barrier should screen the line-of-sight from sensitive receiver;	Closed
							To continue to strictly follow the requirements in the relevant CNP;	
							Provel Investigation/Mitigation Action eedance No exceedances were recorded at the nearest monitoring station, however, the approved location for nois monitoring was located at the podium of Ocean Shores. Due to inaccessibility to private unit, it is not possible to perform monitoring at higher floor. The recommendations for Contractor is as follows: only well-maintained plant on-site and plant should be serviced regularly during the construction program; Plants known to emit noise strongly in one direction should, wherever possible, be orientated so the the noise is directed away from the nearby noise sensitive receivers; Machines and plants that may be in intermittent use should be shut down between works periods or shoul be throttled down to minimum. No exceedances were record at the nearest monitoring station. The following recommendation were madfurther enhance the mitigation measure: Frequent checking and repair the gaps or broken acoustic sheets; Replace any broken Silent Mat for wrapping the breaker head; To adopt Cantilever noise barrier should screen the line-of-sight from sensitive receiver; To conduct an ad hoc ground-borne noise monitoring with the coordination of the Engineer; and Engineer should monitor the plant and machine to ensure construction activities are in contractor has applied lubricants to the joint of the excavators to dampen the noise emitted from the PME The contractor is recommended to use noise barriers to screen the PMEs from the NSRs as per the Noise mitigation plan. No isela intil level exceedance was recorded at the noise monitoring stations near ocean shores. The contractor has applied lubricants to the joint of the excavators to dampen the n	
							Engineer; and	
							Engineer should monitor the plant and machine to ensure construction activities are in	
							compliance of CNP.	
264	2nd January 2019	2nd January 2019 / Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking activities.	Y	contractor has applied lubricants to the joint of the excavators to dampen the noise emitted from the PMEs. The contractor is recommended to use noise barriers to screen the PMEs from the NSRs as per the Noise	Closed
263 (EPD-)	1st January 2019	31st December 2018 / Coastal near TKO cemetery	General Public	Water	Complained concerning oil leakage/ on the sea surface near the sunken barge at C2 site.	N	Oil leakage happened due to the derrick lighter was submerged to the sea within the cofferdam. As the oil leakage was found outside the cofferdam during site inspection, there was a gap in the cofferdam. The oil leakage was cleaned up and the floating oil absorber has been used to surround the cofferdam by Contractor. The Contractor are reminded to1) regular check if the site vessels and cofferdam are in good-condition; 2) To regular monitor the operation of any activities in the cofferdam area; 3) To implement the proposed site vessels safety and the emergency responses including clearance measures. Details of the investigation should be referred to CIR-W10.	Closed
262	30 Dec 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Pak Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
261	26 Dec 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise from tunnel works of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
260	26 Dec 2018	26 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed
259	26 Dec 2018	26 th December 2018/ Construction of Lam Tin Interchange	Management Section of Hong Nga Court	Noise	Complained about the construction noise of Lam Tin Interchange.	Y	Refer to investigation for complaint no. 254	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
258							There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The complaint is considered project related.	
258 258							Mitigation measures:	
258	18 Dec 2018	18 th December 2018/ Construction of Lam Tin Interchange	Engineering Section of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	Cable wire for anchoring between barge and pier has been replaced by rope between 27 Dec and 2 Jan to reduce noise impact. In addition, other good site practices recommended in the "Implementation Schedule of Proposed Mitigation Measures" of EM&A Manual and the approved CNMP of this Contract had been implemented by the Contractor, including the following:	Closed
258							Ŷ Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program;	
258							Ŷ Plants hown to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby noise sensitive receivers;	
258							\hat{Y} Machines and plants that may be in intermittent use should be shut down between works periods or should be throttled down to minimum.	
257	18 Dec 2018	18 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from the marine works.	Y	There was no major construction works at the concerned area during the time of complaint and confirmed by the Resident Engineer. Steel cable wire for anchoring between barge and pier is considered as a possible noise source. The Contractor has replaced the cable wire for anchoring between barge and pier with ropes between 27 Dec and 2 Jan to reduce noise impact.	Closed
							No exceedance was recorded in the noise monitoring result. The number of PME operated in LTI was consistent with the proposed Construction Noise mitigation Plan (CNMP)	
							The following recommendations were made for the Contractor to enhance the mitigation measures:	
256	17 Dec 2018	15 th December 2018/ Construction of Road P2	Resident of Ocean Shore	Noise	Complained about the construction noise from breaking and piling	Ν	Ÿ To frequently check and repair operating PME if any loosen or worn parts of the equipment to reduce excessive noise disturbance:	Closed
					activities		Ŷ Noise barriers should be designed and erected around the noise sources to block the direct line-of-sight from the NSR as per the CNMP;	
							To ensure all erected noise barriers and sound proofing canvases wrapped on PME are intact and in good condition.	
254	16 Dec 2018	16 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	Ŷ The night-time works were only conducted inside the tunnels with valid CNP. The noise nuisances are not considered as air-borne in nature, but ground-borne noise. 2.17 In order to confirm the possible ground-borne nature of the noise nuisances for complaints summarized in this report, CEDD has engaged the environmental team to conduct ad hoc ground-borne noise monitoring with the coordination of the Engineer. The findings will be provided in a separate report for the ad hoc monitoring.	Closed
253	15 Dec 2018	15 th December 2018/ Construction of Lam Tin Interchange	Resident of Hong Nga Court	Noise	Complained about the construction noise from Tunnel Works	Y	Refer to the investigation for complaint no. 254	Closed

Complaint No.	Received Date	Date/Location of Complaint	Complainant	Nature	Details of Complaint	Noise Action Level Exceedance	Investigation/ Mitigation Action	Status
							The number of PMEs operated on site and on-time percentage from 19 to 30 November complied with the CNMP, thus, no violation was identified.	
					Complained about the construction		Based on the noise and air monitoring results in November 2018, no Limit Level Exceedance was recorded.	
252	30 Nov 2018	30 th November 2018/ Construction of Road D4	Resident of Park Central	Noise & Air	noise and dust resuspension in Road	Y	Mitigation Measures	Closed
		Construction of Hour D 1			D4.		Ÿ A more effective acoustic barrier was erected between the drill rig and Park Central.	
							Ÿ Frequent water spraying along the Po Yap Road for eight times a day,	
							Stockpile are covered with impervious material to avoid dust resuspension	
251							The complaint lodged on 25 th November 2018 is considered as non-project related, as no works was conducted on that day.	
251	28 Nov 2018	27 th November 2018/ Construction of TKO portal	Public	Noise	Complained about the construction noise from the marine works.	Y	The complaint on 27th November 2018 is considered project related. The contractor is reminded to 1) frequently check and repair operating PME if any loosen or worn parts of the	Closed
251							equipment to reduce excessive noise disturbance; 2) Ensure no further use of PA system for marine works.	
250	26 Nov 2018	26 th November 2018/ Public sea in TKO	Resident of Ocean Shore	Noise	Complained about the noise nuisance from the operation of derrick barge on Sunday.	Y	Refer to the investigation for complaint no. 251	Closed
249	25 Nov 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from the Excavators in LTI on Sunday morning.	Y	Refer to the investigation for complaint no. 251	Closed
248	20 Nov 2018	20 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance during transfer of material in evening time at LTI	Y	Regular noise monitoring results for restricted and non-restricted hours show full compliance of the noise criteria (night-time noise exceedance is considered non-project related). The contractor is reminded to adopt cantilever noise barriers at Lam Tin Interchange to screen noise effectively by screening the line-of-sight from sensitive receivers	Closed
247	20 Nov 2018	19 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the noise nuisance from rock dropping during evening time	Y	Refer to the investigation for complaint no. 248	Closed
246	19 Nov 2018	19 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from dump truck in evening time	Y	Refer to the investigation for complaint no. 248	Closed
245	8 Nov 2018	8 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about construction noise during night time from LTI	Y	Refer to the investigation for complaint no. 248	Closed
243	8 Nov 2018	8 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the construction noise during evening time from LTI.	Y	Refer to the investigation for complaint no. 248	Closed
242	7 Nov 2018	7 th November 2018/ Lam Tin Interchange	Public	Noise	Complained about the construction noise and dust nuisance.	Y	Refer to the investigation for complaint no. 248	
241	6 Nov 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	
240	6 Nov 2018	6 th November 2018/ Lam Tin Interchange	Resident of Yau Lai Estate	Noise	Complained about the noise nuisance from LTI during evening time	Y	Refer to the investigation for complaint no. 248	Closed

Reporting Month/Year	Number of Complaints in Reporting Month	Number of Summons in Reporting Month	Number of Prosecutions in Reporting Month
2016	11	0	0
2017	99	1	0
2018	150	0	1
2019	156	0	0
2020	88	0	0
2021	87	0	0
Jan-22	4	0	0
Feb-22	5	0	0
Mar-22	4	0	0
Apr-22	11	0	0
May-22	7	0	0
Jun-22	3	0	0
Jul-22	3	0	0
Aug-22	5	0	0
Sep-22	2	0	0
Oct-22	1	0	0
Nov-22	2	0	0
Dec-22	7	0	0
Jan-23	0	0	0
Feb-23	0	0	0
Mar-23	3	0	0
Apr-23	1	0	0
Total	649	1	1

Appendix O - Cumulative Log for Complaints, Notifications of Summons and Successful Prosecutions Table O2 - Summary of Cumulative Complaint Log for Tseung Kwan O - Lam Tin Tunnel

Table O3 - Cumulative Log for Notifications of Summons

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this Reporting Month	Total no. Received since project commencement
NE/2015/01						
NE/2015/02	KTS24138/2017	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	The Summon was issued on 22 Dec 2017 First hearing on 29/3/2018	1	1
NE/2015/03						
NE/2017/01						
NE/2017/02						
NE/2017/06						
NE/2017/07						

Table O4 - Cumulative Log for Successful Prosecutions

Contract No.	Log Ref.	Date/Location	Subject	Status	Total no. Received in this reporting month	Total no. Received since project commencement
NE/2015/01					-	
NE/2015/02	KTS24138/2017	25 June 2017/ Marine construction site at Junk Bay	Contrary to: Sections 6 (1) (b) and 6 (5), Noise Control Ordinance, Cap.400	Successful prosecution to the subcontractor on 27 June 2018		1
NE/2015/03						
NE/2017/01						
NE/2017/02						
NE/2017/06						
NE/2017/07						

APPENDIX P WASTE GENERATION IN THE REPORTING MONTH Name of Department: Civil Engineering Development Department

Monthly Summary Waste Flow Table for April 2023

	Actua	al Quantities	of Inert C&D	Materials G	enerated Mo	nthly	Actual	Quantities of	C&D Wastes	s Generated I	Monthly
Month	a.Total Quantity Generated (see Note 8)	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill	f. Imported Fill	g. Metals (see Note 5)	h. Paper / Cardboard Packaging (see Note 5)	(See Note 3)	j. Chemical Waste	k. Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
January	11.454	7.566	0.000	0.000	11.454	0.000	0.000	0.000	0.000	0.000	0.264
February	6.984	4.190	0.000	0.000	6.984	0.000	0.000	0.000	0.000	0.000	0.294
March	1461.682	6.025	0.000	1451.64	10.042	0.000	0.000	0.000	0.000	0.000	0.321
April	6.290	4.766	0.000	4.766	1.524	0.000	0.000	0.000	0.000	0.000	0.197
May	0.000										
June	0.000										
Sub-total	1486.410	22.548	0.000	1456.406	30.004	0.000	0.000	0.000	0.000	0.000	1.076
July	0.000										
August	0.000										
September	0.000										
October	0.000										
November	0.000										
December	0.000										
Total	1486.410	22.548	0.000	1456.406	30.004	0.000	0.000	0.000	0.000	0.000	1.076

Total inert C&D waste generated = c+d+e

Total inert C&D waste recycled = c+d

% of recycled inert C&D waste = Total C&D waste recycled / Total C&D waste generated

Name of Department: Civil Engineering Development Department

Notes: (1) The performance target are given in PS Clause 6(14)

- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the amount of C&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000m3. (PS Clause 1.105(4) refers)
- (5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
- (6) Conversion factors for reporting purpose:

in-situ: rock = 2.5 tonnes/m³; soil = 2.0 tonnes/m³

- (7) excavated: rock = 2.0 tonnes/m³; soil = 1.8 tonnes/m³; broken concrete and bitumen = 2.4 tonnes/m³, soil and rock = 1.9 tonnes/m³
- (8) C&D Waste = 0.9 tonnes/m^3 ; bentonite slurry = 2.8 tonnes/m^3

Diesel density: 0.8kg/l

Numbers are rounded off to the nearest three decimal places

The "Total Quantity Generated" equals to the sum of "Reuse in the Contract", "Reuse in Other Projects" and "Disposed as Public Fill"

		Actual Qua	ntities of Inert C&I	Materials Generat	ed Monthly			Actual Quantities	of C&D Wastes Ge	enerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Borken Concrete	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (See note 3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
Jan	0.70303	0.00000	0.00000	0.00000	0.05637	0.64666	3.90000	0.00000	0.00000	0.00000	0.09250
Feb	1.17340	0.00000	0.00000	0.00000	0.34522	0.82818	22.85000	0.00000	0.00000	0.00000	0.07278
Mar	0.65082	0.00000	0.00000	0.00000	0.65082	0.00000	36.38000	0.00000	0.00000	0.00000	0.11868
Apr	2.08163	0.00000	0.00000	0.00000	0.47140	1.61023	0.00000	0.00000	0.00000	0.00000	0.08940
May	0.00000										
June	0.00000										
SUB- TOTAL	4.60887	0.00000	0.00000	0.00000	1.52380	3.08507	63.13000	0.00000	0.00000	0.00000	0.37336
Jul	0.00000										
Aug	0.00000										
Sep	0.00000										
Oct	0.00000										
Nov	0.00000										
Dec	0.00000										
TOTAL	4.60887	0.00000	0.00000	0.00000	1.52380	3.08507	63.13000	0.00000	0.00000	0.00000	0.37336

Note: Conversion to 1000m³ for general refuse is weight in 1000kg multiply by 0.002

Conversion to 1000m³ for Inert C&D is weight in 1000kg multiply by 0.0005 Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

Monthly Summary of Waste Flow Table for 2023

Name of Person completing the Record: <u>Steve Wong</u>

	Actual Q	uantities of Ine	ert C&D Mater	rials Generate	ed Monthly	Actual Qua	intities of Non	-inert C&D Wa	astes Generat	ted Monthly
Month	Total Quantity	Broken Concrete	Reused in the Contract	Reused in other	Disposed as Public Fill	Metals	Paper/ cardboard	Plastics	Chemical Waste	Others, e.g. general
	Generated	(see Note 1)		Projects			packaging	(see Note 2)		refuse
	(in '000m ³)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000 Kg)	(in '000m ³)				
Jan	0.0588	0	0	0	0.056	0	0	0	0	0.0028
Feb	0.0813	0	0	0	0.0813	0	0	0	0	0.00155
Mar	0.0000	0	0	0	0.0000	0	0	0	0	0.00103
Apr	0.0000	0	0	0	0.0000	0	0	0	0	0.00245
May	0.0000	0	0	0	0.0000	0	0	0	0	0
Jun	0.0000	0	0	0	0.0000	0	0	0	0	0
Sub-total	0.1401	0	0	0	0.1373	0	0	0	0	0.0078
Jul	0.0000	0	0	0	0.0000	0	0	0	0	0
Aug	0.0000	0	0	0	0.0000	0	0	0	0	0
Sep	0.0000	0	0	0	0.0000	0	0	0	0	0
Oct	0.0000	0	0	0	0.0000	0	0	0	0	0
Nov	0.0000	0	0	0	0.0000	0	0	0	0	0
Dec	0.0000	0	0	0	0.0000	0	0	0	0	0
Total	0.1401	0	0	0	0.1373	0	0	0	0	0.0078

Notes:

(1) Broken concrete for recycling into aggregates.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(3) Use the conversion factor: 1 full load of 24t / 30t dumping truck being equivalent to 6.5m3 / 8.125 m3 by volume.

Name of Department: Civil Engineering & Development Department

Contract No.: NE/2017/06

Monthly Summary Waste Flow Table For 2023

	I	Actual Quantitie	es of Inert C&E	Materials Ger	nerated Monthl	у	Actu	al Quantities o	f C&D Wastes	Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. General Refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0.006
Feb	0	0	0	0	0	0	0	0	0	0	0.006
Mar	0	0	0	0	0	0	0	0	0	0	0.006
Apr	0	0	0	0	0	0	0	0	0	0	0
May											
Jun											
Sub-total	0	0	0	0	0	0	0	0	0	0	0.018
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0	0	0	0	0	0	0	0	0	0	0.018

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.

(3) Each dump truck carries $6m^3$ of general refuse when full-load.

(4) The commencement date of the Contract is 9 November 2018. The current reporting period is from 1 April 2023 to 30 April 2023.

Monthly Summary Waste Flow Table for 2023

Name of Department: Civil Engineering and Development Department

Contract No.: NE/2017/01

	Actu	al Quantities	of Inert C&I) Materials G	enerated Mor	nthly	Actual	Quantities of	f C&D Wastes	Generated M	Ionthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	orner	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	18.1700	0.0000	0.0000	0.0000	0.0139
Feb	0.1052	0.0000	0.0000	0.0000	0.1052	0.0000	0.0000	0.0000	0.0000	0.6000	0.0000
Mar	0.06536	0.0000	0.0000	0.0000	0.06536	0.0000	0.0000	0.0000	0.0000	0.0000	0.0044
Apr											
May											
Jun											
Sub-total	0.17056	0.0000	0.0000	0.0000	0.17056	0.0000	18.1700	0.0000	0.0000	0.6000	0.0183
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	0.17056	0.0000	0.0000	0.0000	0.17056	0.0000	18.1700	0.0000	0.0000	0.6000	0.0183

Notes: 1. Assume the density of soil fill is 2 ton/m^3 .

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume the density of mixed rock and soil is 1.9 ton/m^3 .

4. Assume the density of slurry and bentonite is 2.8 ton/m^3 .

5. The slurry and bentonite are disposed at Tseung Kwan O Area 137 Fill Bank.

6. Assume the density of C&D waste is 0.9 ton/m^3 .

7. The non-inert C&D wastes are disposed at NENT.

Monthly Summary Waste Flow Table for <u>2023</u> (year)

Name of Person completing the record: Sedo Sze (EO)

Project : Cross Bay Link, TKO, Main Bridge and Associated Works

			2		nerated Monthly		Ac	tual Quantities	of C&D Wastes	s Generated Mo	onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	0.018	0.000	0.000	0.000	0.018	0.000	0.000	0.160	0.000	0.000	0.148
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.210	0.000	0.000	0.052
Mar	0.006	0.000	0.000	0.000	0.006	0.000	0.000	0.215	0.000	0.000	0.243
Apr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.192	0.000	0.000	0.063
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sub-total	0.024	0.000	0.000	0.000	0.024	0.000	0.000	0.777	0.000	0.000	0.505
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.024	0.000	0.000	0.000	0.024	0.000	0.000	0.777	0.000	0.000	0.505

Contract No.: NE/2017/07

Note:

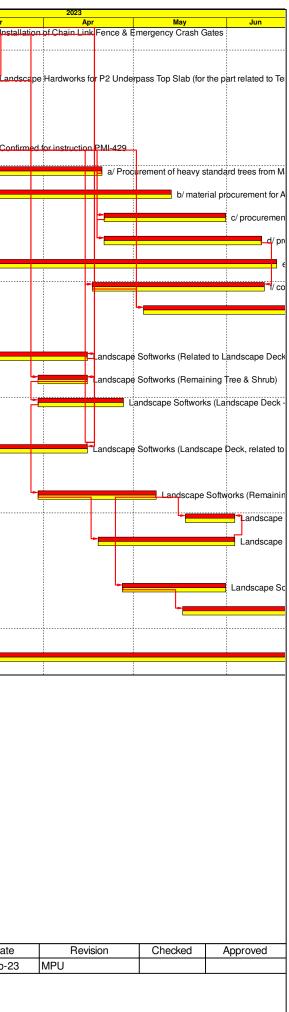
1. For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.

2. For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.

3. All values are round off to the third decimal places.

APPENDIX Q TENTATIVE CONSTRUCTION PROGRAMME

High Level 3 Months Look Ahead Programme


Activities	Mar-23	Apr-23
Lam Tin Interchange		
Site Formation - Area 1G1 & 1G2 &5		
Site Formation - Area 2		
Site Formation - Slope Stabilisation		
Bridge Noise Barrier / Noise Enclosure		
Road S02_2a2a Noise Enclosure		
Road S02_2a2b Noise Enclosure		
EHC4 Construction (Type 20)		
Semi Enclosure Structures		
Type 1E RC Structures		
Type 1D RC Structures		
CKLR Underground Utilities		
Landscape Deck		
LTI Drainage		
LTI Road Pavement		
Lei Yue Mun Road Junction Modification Works		
Stage 1 Commissioning Outstanding Works		
TKO Interchange		
TKO - Miscellaneous works		
TKO - Slope Stabilisation Works		

May-23

ctivity ID Activity Name	Calendar	Original R Duration	emaining Start Dur	Finish	Total Float	Activity % Complete	Feb		Mar	2023 Apr	May	Jun
NE/2015/02 Tseung Kwan O - Lam Tin Tunnel-Road P2 and Associated Works (Mar to Mar		363.0	322.0 03-Jan-23 A	29-Feb-24	-199.0	Comprete			mai	Ahi	May	<u> </u>
Target Key Date and Section Completion of the Works (Revised Contract Key Date)	P2-Cal.A	351.0	351.0 15-Mar-23	29-Feb-24	-604.0							
A10520 Section 2_All Works within Portion II	P2-Cal.A	0.0	0.0	15-Mar-23*	-571.0	0%			Section 2_	All Works within Portio	on II	
A10540 Section 3_All Works within Portion IV, V, VI, VII, VIII and IX	P2-Cal.A	0.0	0.0	15-Mar-23	-571.0	0%			Section 3_	All Works within Portion	on IV, V, VI, VII, VIII and	IX
A10560 Section 4_All Works Comprising the Preservation and Protection of Existing Trees	P2-Cal.A	0.0	0.0	15-Mar-23*	-618.0	0%			Section 4_	All Works Comprising	the Preservation and I	Protection of Ex
A10580 Section 5_All Works Comprising the Landscape Softworks	P2-Cal.A	0.0	0.0	15-Mar-23	-618.0	0%			Section 5_	All Works Comprising	the Landscape Softwo	rks
A10600 Section 6_All Works Comprising the Estabilishment Works	P2-Cal.A	0.0	0.0	29-Feb-24*	-604.0	0%						
Possible Key Date and Section Completion of the Works (Landscape Deck - Proposed	P2-Cal.A	0.0	0.0 15-Mar-23	15-Mar-23	-571.0							
A10930 Section 2_All Works within Portion II	P2-Cal.A	0.0	0.0	15-Mar-23	-571.0	0%			Section 2_	All Works within Portion	on II	
A10940 Section 3_All Works within Portion IV, V, VI, VII, VIII and IX	P2-Cal.A	0.0	0.0	15-Mar-23	-571.0	0%			Section 3_	All Works within Portion	on IV, V, VI, VII, VIII and	их
Target Key Date and Section Completion of the Works (Possible Contract Key Date)	P2-Cal.A	15.0	15.0 28-Feb-23	15-Mar-23	-571.0							
A10820 Section 2_All Works within Portion II	P2-Cal.A	0.0	0.0	15-Mar-23	-571.0	0%			Section 2_	All Works within Portion	on II	
A10830 Section 3_All Works within Portion IV, V, VI, VII, VIII and IX	P2-Cal.A	0.0	0.0	15-Mar-23	-571.0	0%			Section 3_	All Works within Portion	on IV, V, VI, VII, VIII and	нх
A10850 Section 5_All Works Comprising the Landscape Softworks	P2-Cal.A	0.0	0.0	28-Feb-23	-603.0	0%		Section	5_All Works C	omprising the Landsc	ape Softworks	
Section 3 of the Works All Works within Portion IV, V, VI, VII, VIII, and IX	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
New Reclaimed Section	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
Land Works	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
Road P2 Underpass (CH105-CH318)	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
Underpass	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
Underpass P2 CH 105 - 318	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
Remaining Works - SMH9103 to 9 Related	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0							
LC28820 SMH9103 - wall construction and precast slab panel installation	P2-Cal.C	23.0	21.0 17-Feb-23 A	15-Mar-23	-467.0	8.7%	r		SMH9103	-wall construction and	precast slab panel ins	stallation
LC28830 SMH9104 - installation of Precast slab panel	P2-Cal.C	36.0	21.0 02-Feb-23 A	15-Mar-23	-467.0	41.67%				- installation of Precas	t slab panel	
LC28840 SMH9105 - installation of Precast slab panel	P2-Cal.C	36.0	21.0 02-Feb-23 A	15-Mar-23	-467.0	41.67%			500 SMH9105	- installation of Precas	t slab panel	
LC28850 SMH9106 - wall construction and precast slab panel installation	P2-Cal.C	51.0	21.0 16-Jan-23 A	15-Mar-23	-467.0	58.82%			SMH9106	- wall construction and	precast slab panel ins	stallation
LC28900 Prepration of Change over BMCPC haul road	P2-Cal.C	30.0	8.0 25-Jan-23 A	28-Feb-23	-496.0	73.33%		Preprati	on of Change (over BMCPC haul road	1	
Existing Land Section	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
SR2	P2-Cal.C	20.0	19.0 18-Feb-23 A	13-Mar-23	-467.0							
Road and Drainage & Utilities Works (P2 CH318 - 650 & SR2 CH100 - 310)	P2-Cal.C	20.0	19.0 18-Feb-23 A	13-Mar-23	-467.0							
LC17590R Remaining Road Works (SR2 CH100 - 250)	P2-Cal.C	20.0	19.0 18-Feb-23 A	13-Mar-23	-467.0	5%				Road Works (SR2 CH	00 - 250)	
Portion IV & VII	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
Construction of DN2100 stormwater at Portion IV & VII	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
Drainage works, after FSD	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
SMH9108-SMH9108A	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0							
LC90623 Manhole construction (SMH9108A) (Delay due to C1 Access)	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-467.0	66.13%			Manhole c	onstruction (SMH9108	A) (Delay due to C1 Ad	ccess)
LC90626 Inspection & Backfill	P2-Cal.C	15.0	15.0 27-Feb-23	15-Mar-23	-467.0	0%			Inspection	& Backfill		
Section 5 of the Works - Landscaping Works	P2-Cal.C	164.0	123.0 03-Jan-23 A	12-Jul-23	0.0							
Landscape Hardwork	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-480.0							
Chain Link Fence next to Plant Rooms	P2-Cal.C	44.0	21.0 24-Jan-23 A	15-Mar-23	-480.0							
Actual Work	n Tin Tunnel - F	Road	3 M	Ionthly Rollin	ng Progra	nme Updat	e		Date	Revision	Checked	Approved
Remaining Work \diamond \diamond Last Month Milestone P2 and Associated W				(Data Dat	e : 20 Feb	2023)		20-	Feb-23	MPU		
Critical Remaining Work Last Month Baseline				Pag	ge : 1 of 2							

vity ID	Activity Name	Calendar	Duration	Remaining Start Dur	Finish	Total Float	Activity % Complete	Feb	Mar
LC25790	Installation of Chain Link Fence & Emergency Crash Gates	P2-Cal.C	44.0	21.0 24-Jan-23 A	15-Mar-23	-480.0	52.27%		n
Landscape	Hardwork Summary	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-508.0			
LC90790	Landscape Hardworks for P2 Underpass Top Slab (for the part related to Temporary Artificial Lawn)	P2-Cal.C	62.0	21.0 03-Jan-23 A	15-Mar-23	-508.0	66.13%		
Landscap	be Softwork	P2-Cal.C	127.0	116.0 15-Feb-23 A	12-Jul-23	0.0			
LC25601	PMI-429 issued	P2-Cal.C	0.0	0.0 15-Feb-23 A	.		100%	<mark>≵ РIИІ-4</mark> 29 issued	í .
LC25602	Final Detail Confirmed for instruction PMI-429	P2-Cal.C	0.0	0.0 28-Feb-23*		0.0	0%	🎝 Fina I	Detail C
LC25610	a/ Procurement of heavy standard trees from Mainland	P2-Cal.C	45.0	45.0 28-Feb-23	20-Apr-23	0.0	0%		_
LC25620	b/ material procurement for Arbot and Proprietary Bench SSK0804	P2-Cal.C	65.0	65.0 28-Feb-23	13-May-23	0.0	0%		_
LC25630	c/ procurement for Gate 01,02 SSK0805, SSK0806	P2-Cal.C	35.0	35.0 21-Apr-23	31-May-23	0.0	0%		
LC25760	d/ procurement for Fence Wall 01 SSK0807	P2-Cal.C	45.0	45.0 21-Apr-23	12-Jun-23	0.0	0%		
LC25870	e/ procurement for Proprietary bottle filling fountain SSK0791	P2-Cal.C	80.0	80.0 17-Mar-23	17-Jun-23	0.0	0%		╘╴┏
LC25890	f/ construction of warehouse SSK0788, SSK0789	P2-Cal.C	50.0	50.0 17-Apr-23	13-Jun-23	0.0	0%		
LC25900	g/ kerb, planter wall, footpath	P2-Cal.C	60.0	60.0 04-May-23	12-Jul-23	0.0	0%		
Landscape	e Softwork (Stage 1)	P2-Cal.C	50.0	50.0 01-Mar-23	27-Apr-23	0.0			
LC25421	Landscape Softworks (Related to Landscape Deck - Chain Link Fence)	P2-Cal.C	40.0	40.0 01-Mar-23	15-Apr-23	0.0	0%		
LC25650	Landscape Softworks (Remaining Tree & Shrub)	P2-Cal.C	15.0	15.0 30-Mar-23	15-Apr-23	0.0	0%		
LC25670	Landscape Softworks (Landscape Deck - Remaining Shrub Planting)	P2-Cal.C	25.0	25.0 30-Mar-23	27-Apr-23	0.0	0%		
Arrangeme	ent of Landscaped Deck	P2-Cal.C	32.0	32.0 10-Mar-23	15-Apr-23	0.0			
LC90780	Landscape Softworks (Landscape Deck, related to Temporary Artificial Lawn)	P2-Cal.C	32.0	32.0 10-Mar-23	15-Apr-23	0.0	0%	L.	-
Landscape	e Softwork (Stage 2)	P2-Cal.C	57.0	57.0 30-Mar-23	03-Jun-23	0.0			
LC90810	Landscape Softworks (Remaining Area)	P2-Cal.C	34.0	34.0 30-Mar-23	08-May-23	0.0	0%		
LC90920	Landscape Softworks (Remaining Tree & Shrub)	P2-Cal.C	15.0	15.0 18-May-23	03-Jun-23	0.0	0%		
LC90940	Landscape Softworks (Related to Landscape Deck - Chain Link Fence)	P2-Cal.C	40.0	40.0 19-Apr-23	03-Jun-23	0.0	0%		
Landscape	e Softwork (Stage 3)	P2-Cal.C	57.0	57.0 27-Apr-23	01-Jul-23	1.0			
LC90950	Landscape Softworks (Remaining Area)	P2-Cal.C	30.0	30.0 27-Apr-23	31-May-23	1.0	0%		
LC90980	Landscape Softworks (Related to Landscape Deck - Chain Link Fence)	P2-Cal.C	40.0	40.0 17-May-23	01-Jul-23	1.0	0%		
Section 6	6 of the Works - Establishment Works	P2-Cal.A	366.0	366.0 01-Mar-23	29-Feb-24	-604.0			
LC25540	Establishment Works	P2-Cal.A	366.0	366.0 01-Mar-23	29-Feb-24	-604.0	0%		

Actual Work	•	♦ Milestone	NE/201E/02 Teaung Kwan O Lam Tin Tunnal Dead	3 Monthly Rolling Programme Update	Date
	<u>`</u>	 Last Month Milestone 	NE/2015/02 Tseung Kwan O - Lam Tin Tunnel - Road	2	20-Feb-23
Remaining Work	`		P2 and Associated Works	(Data Date : 20 Feb 2023)	
Critical Remaining Work		Last Month Baseline		Page : 2 of 2	

NE2017/02

NE2011/02			
High Level 3 Months Lo	ok Ahead Progi	ramme	
Activities	May -23	June -23	July-23
Trial pit			
Underground utilities detection			
Temporary traffic arrangement Setup			
Road construction			
Asphalt Paving			
Pier, Staircase and lift shaft construction			
Bridge Construction			

NE/2017/06 TKO-LTT TCSS_3MRP ctivity ID Activity Name	Planned Duration	Remaining	g Schedule % Start	Finish	Classic S Total F	ichedule Layout		Qtr 3, 2022			Qtr 4, 2022		Qtr 1, 2023	3		Qtr 2, 2023		Qtr 3,	2023
	r annos Durauoli	Duration	n Complete		Total P	Jun	Jul	Aug	Sep	Oct	Nov E	ec Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
E NE/2017/06-2 NE/2017/06 TKO-LTT TCSS_3MRP	80	106	6 0% 01-Oc	22 A 30-Dec-22		317													
NE/2017/06-2.CW Contract Award / Commencement of Works	0	(0%			0													
NE/2017/06-2.AD Access Date	3	(0 0% 03-Oct	22 A 06-Oct-22 A															
NE/2017/06-2.KD Key Date and Stages / Sections of the Achievement	30	30	0 0% 30-No	-22 30-Dec-22		-58													
NE/2017/06-2.KD.000 General	30	30	0 0% 30-No	-22 30-Dec-22		<mark>-58</mark>													
NE/2017/06-2.KD.000.03 Key Date and Stages / Sections of the Achievement	30	30				-58													;
DWP8190 KD10 - Section 1A DWP8200 KD11 - Section 2A	0	(30-Nov-22* 11-Dec-22*		405													
DWP8200 KD12 - Section 1B	0	(30-Dec-22*		405													
NE/2017/06-2.MD Cost Centre Milestone Dates	76	76	6 0% 03-Oct			317													
E/2017/06-2.MD.1 General	76	76	6 0% 03-Oc	22 30-Dec-22		317				+									
NE/2017/06-2.MD.1.1 CC B - Central System - TKOLTT	60	60	0 0% 31-Oc	22 30-Dec-22		405													
DWP8870 Acceptance of Site Acceptance Test of all equipment for Works	0	(31-Oct-22		375													
DWP8880 Issue of certificate of competion of Section 1B of the Works NE/2017/06-2.MD.1.2 CC B1 - Central System - CBL	0	(0 0% 0 0% 04-Der	30-Dec-22 -22 04-Dec-22		405													
DWP8930 Acceptance of Site Acceptance Test of all equipment for Works	0	(04-Dec-22		-32			1	+	†						+		
NE/2017/06-2.MD.1.3 CC C - Traffic Control Devices - TKOLTT	74	74				405													
DWP8990 Acceptance of Site Acceptance Test of all equipment for Works	0	(17-Oct-22		361													
DWP9000 Issue of certificate of competion of Section 1B of the Works	0		D 0%	30-Dec-22		405													
NE/2017/06-2.MD.1.4 CC C1 - Traffic Control Devices - CBL DWP9050 Acceptance of Site Acceptance Test of all equipment for Works	0	(22 10-Nov-22 10-Nov-22		-8													
NE/2017/06-2.MD.1.5 CC D - Communication System - TKOLTT	88	88	B 0% 03-Oct			405													
DWP9170 Acceptance of Site Acceptance Test of all equipment for Works	0	(03-Oct-22		347				1									
DWP9180 Issue of certificate of competion of Section 1B of the Works	0	(30-Dec-22		405													
NE/2017/06-2.MD.1.6 CC D1 - Communication System - CBL DWP9110 Acceptance of Site Acceptance Test of all equipment for Works	0	(0 0% 20-Oct	22 20-Oct-22 20-Oct-22		13				+	·								
NE/2017/06-2.MD.1.7 CC E - CCTV System - TKOLTT	81					405													
DWP9230 Acceptance of Site Acceptance Test of all equipment for Works	0	(10-Oct-22		354													
DWP9240 Issue of certificate of competion of Section 1B of the Works	0	(D 0%	30-Dec-22	-	405													
NE/2017/06-2.MD.1.8 CC E1 - CCTV System - CBL	0	(0% 10-No	-22 10-Nov-22		-8													
DWP9290 Acceptance of Site Acceptance Test of all equipment for Works NE/2017/06-2.MD.1.9 CC F - Building PABX System - TKOLTT	0 74	74		10-Nov-22 22 30-Dec-22		-8 405													
DWP9350 Acceptance of Site Acceptance Test of all equipment for Works	0	(17-Oct-22		361													
DWP9360 Issue of certificate of competion of Section 1B of the Works	0	(D 0%	30-Dec-22		405													
NE/2017/06-2.MD.1.11 CC G - ET System - TKOLTT	74	74	4 0% 17-Oc			405				ļ									;
DWP9470 Acceptance of Site Acceptance Test of all equipment for Works	0	(17-Oct-22		361													
DWP9480 Issue of certificate of competion of Section 1B of the Works NE/2017/06-2.MD.1.10 CC H - PA System - TKOLTT	81	81	D 0%	30-Dec-22 22 30-Dec-22		405 405													
DWP9410 Acceptance of Site Acceptance Test of all equipment for Works	0	(10-Oct-22		354													
DWP9420 Issue of certificate of competion of Section 1B of the Works	0	(D 0%	30-Dec-22		405													
NE/2017/06-2.MD.1.12 CC I - Radio System - TKOLTT	88					405													:
DWP9530 Acceptance of Site Acceptance Test of all equipment for Works DWP0540 Issue of partificate of comparison of Section 18 of the Works	0	(03-Oct-22		347 405													
DWP9540 Issue of certificate of competion of Section 1B of the Works NE/2017/06-2.MD.1.13 CC J - Detection System - TKOLTT	0	(0 0% 0 0% 30-Dei	30-Dec-22 22 30-Dec-22		405													
DWP9600 Issue of certificate of competion of Section 1B of the Works	0	(30-Dec-22		405													
NE/2017/06-2.MD.1.15 CC J1 - Detection System - CBL	0	(0% 21-No	-22 21-Nov-22		-19													:
DWP9710 Acceptance of Site Acceptance Test of all equipment for Works	0	(21-Nov-22		-19													
NE/2017/06-2.MD.1.14 CC K - Manual Fallback System - TKOLTT DWP9650 Acceptance of Site Acceptance Test of all equipment for Works	30	30		22 30-Dec-22 30-Nov-22		405 405													
DWP9660 Issue of certificate of competion of Section 1B of the Works	0	(30-Dec-22		405													
NE/2017/06-2.MD.1.16 CC L - Operation Facilities - TKOLTT	0	(0 0% 30-Dei	-22 30-Dec-22		405													:
DWP9780 Issue of certificate of competion of Section 1B of the Works	0		D 0%	30-Dec-22		405													
NE/2017/06-2.MD.1.17 CC M - Power Distribution System - TKOLTT DWP9840 Issue of certificate of competion of Section 1B of the Works	0	(0 0% 30-De 0 0%	22 30-Dec-22 30-Dec-22		405 405													
NE/2017/06-2.MD.1.18 CC M1 - Power Distribution System - CBL	0	(0%	30-Dec-22		405													
NE/2017/06-2.MD.1.19 CC N - Speed Enforcement System - TKOLTT	0	(· · · · · · · · · · · · · · · · · · ·	-22 30-Dec-22		405			1	<u>}</u>									·
DWP9960 Issue of certificate of competion of Section 1B of the Works	0	(30-Dec-22		405													
NE/2017/06-2.MD.1.20 CC N1 - Speed Enforcement System - CBL	0	(0 0% 05-Oct	22 05-Oct-22 05-Oct-22		28													
DWP10436 Submit and approval of Expert Report DWP10438 Complete Reliability Test	0	(05-Oct-22		28													
NE/2017/06-2.MD.1.21 CC 0 - Government Optical Fibre System - TKOLTT	0	(0% 30-De	-22 30-Dec-22		405													
DWP10080 Issue of certificate of competion of Section 1B of the Works	0	(D 0%	30-Dec-22		405													
NE/2017/06-2.MD.1.22 CC O1 - Government Optical Fibre System - CBL	0	(D 0%			0													
ME/2017/06-2.MD.1.23 CC P - Training and Documentation - TKOLTT DWP10230 Completion of Operation Training	48	48	B 0% 13-Oct	22 30-Nov-22 17-Nov-22		400 392													
DWP10250 Acceptance of all test reports	0	(D 0%	30-Nov-22		375			·····	÷							·		
DWP10450 Acceptance of Operation and Maintenance Manuals	0		D 0%	13-Oct-22		448													
NE/2017/06-2.MD.1.24 CC P1 - Training and Documentation - CBL	26	26				372				1						1			
DWP10160 Acceptance of all Training Manuals	0		D 0%	03-Dec-22		-30													
DWP10170 Completion of Operation Training DWP10100 Accentance of all test reports	0	(D 0%	11-Dec-22		-39				+	<u> </u>								
DWP10190 Acceptance of all test reports DWP10460 Acceptance of Operation and Maintenance Manuals	0		D 0%	04-Dec-22 28-Dec-22		372													
NE/2017/06-2.MD.1.25 CC Q - Comprehensive Maintenance Services and DLP - TKOLTT	0	(D 0%	20-060-22		0													
NE/2017/06-2.MD.1.26 CC Q1 - Comprehensive Maintenance Services and DLP - CBL	0	(D 0%			0													
The NE/2017/06-2.1 Preliminary	0	(0 0%			0													
NE/2017/06-2.DS Design Stage	77	(0 0% 06-Oct	22 A 30-Nov-22 A	N														
ME/2017/06-2.EMT Equipment Manufacturing and FAT Stage for TKO-LTT TCSS	0	(D 0%			0				1						1			
			· · ·		,														•
Actual Level of Effort Remaining Work					Pa	ge 1 of 2					TASK filter: 3M.								
Actual Work Critical Remaining Work						-					-							© Oracle	e Corporati
		1																	

E/2017/06 TKO-LTT TCS	SS_3MRP					Classic Sche	dule Layout														
vity ID	Activity Name	Planned Duration	Remaining		Finish	Total Float			Qtr 3, 2022			Qtr 4, 2022			Qtr 1, 2023			Qtr 2, 2023		Qtr 3,	2023
			Duration				Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
https://www.selfactore.com/selfactor	CST Construction Stage for TKO-LTT TCSS	51	0	0% 01-Oct-22 A	18-Dec-22 A																
HE/2017/06-2	SATT SAT for TKO-LTT TCSS	55	93	0% 01-Nov-22 A	30-Nov-22	-405															
DWP6280	TCSS System SAT	14	14	0% 28-Nov-22 A	31-Oct-22	-405						TCSS Syst	em SAT								
DWP6290	Traffic Control Devices SAT	14	14	0% 24-Nov-22 A	17-Oct-22	-405		1	1	1	Τ 💻	raffic Control Dev	ices SAT	1	1			1			
DWP6300	Communication System SAT	14	14	0% 21-Nov-22 A	03-Oct-22	-405					Commu	nication System	SÁT								
DWP6320	Building PABX SAT	14	14	0% 24-Nov-22 A	17-Oct-22	-405					в	uilding PABX SA	т								
DWP6330	ET System SAT	14	14	0% 24-Nov-22 A	17-Oct-22	-405		1			E E	T System SAT						1			
DWP6340	PA System SAT	7	7	0% 24-Nov-22 A	10-Oct-22	-398					📕 PA S	ystem SAT									
DWP6350	Radio System SAT	35	35	0% 21-Nov-22 A	03-Oct-22	-347					Radio S	ysteim SAT			1						
DWP6360	Detection System SAT	14	14	0% 21-Nov-22 A	12-Sep-22	-370				Dete	ction System S	SAT						1			
DWP6380	MFCS SAT	30	30	0% 21-Nov-22 A	30-Nov-22	-405							MFCS SAT								
DWP6390	Operation Facilities SAT	14	14	0% 21-Nov-22 A	12-Sep-22	-370				Ope	ration Facilities	SAT									
DWP6400	Power Distribution System SAT	7	7	0% 21-Nov-22 A	05-Sep-22	-405				Power D	Distribution Syst	tem SAT									
DWP6410	SEC SAT	14	14	0% 21-Nov-22 A	12-Sep-22	-326		1		SEC	SAT			1	1						
DWP6420	Optical Fibre System SAT	14	14	0% 28-Nov-22 A	19-Sep-22	-405		1			Optical Fibre Sy	stem SAT									
DWP6425	FSD's Inspection under Interfacing Contractso of C1 and C2	14	14	0% 01-Nov-22	14-Nov-22							FSE	s Inspection un	nder Interfacing (Contractso of C	and C2					
https://www.secondright.com/se	OPTT Operability Period Test for the TKO-LTT TCSS	30	30	0% 01-Dec-22	30-Dec-22	-405		1								1					
DWP6440	Operability Period test for the TKO-LTT TCSS	30	30	0% 01-Dec-22	30-Dec-22	-405								Operability P	Period test for the	he TKO-LTT TCS	6				
NE/2017/06-2	DLPT DLP for the TKO-LTT TCSS	0	0	0%		0		1		1	1			1							
NE/2017/06-2.0		0	0	0%		0															
	.DOC1 Documentation Submission for TKO-LTT TCSS	0	0	0%		0	(
		55	55		08-Dec-22	202															
	TRT Training for TKO-LTT TCSS					393															
DWP6490	TCSS Central System Administration	35	35		17-Nov-22	-392				Ļ				tem Administrati	oņ						
DWP6500	TCSS Control Kiosk Operation	3	3		21-Oct-22	-364					•	TCSS Control Ki									
DWP6530	TCSS Sub-systems Administration	20	20		08-Dec-22	393						_	TCSS S	ub-systems Adn	nihistration						
	EMC Equipment Manufacturing and Delivery for CBL TCSS	0	0	0,0		0															
	EMC.1 Sub-systems Equipment Manufacturing And Delivery	0	0	0.00		0												1			
	EMC.2 Assembly of Equipment in Control Cabinet	0	0	0%		0															
늘 NE/2017/06-2	CSC1 Construction Stage for CBL TCSS	51	0	0% 01-Oct-22 A	29-Nov-22 A																
NE/2017/06-2	SATC SAT for CBL TCSS	63	63	0% 21-Oct-22 A	22-Dec-22	-32			1				1	1				1			
DWP7340	TCSS System SAT	24	24	0% 28-Nov-22 A	21-Dec-22	-32							і т	CSS System SA	AT, TCSS Syste	m SAT					
DWP7350	Traffic Control Devices SAT	21	21	0% 24-Nov-22 A	14-Dec-22	-32							Traffi	ic Control Device	es SAT, Traffic	Opntrol Devices S	AT				
DWP7370	OCTV SAT	21	21	0% 21-Oct-22	10-Nov-22	-32		1				ссти	SAT								
DWP7380	Detection System SAT	32	32	0% 21-Nov-22 A	22-Dec-22	-19		1		1	1	-		Detection Syster	m SAT, Detecti	n System SAT					
ME/2017/06-2	OPTC Operability Period Test For the CBL TCSS	0	0	0%		0															
	DLPC DLP for the CBL TCSS	0	0	0%		0															
	DOC Documentation Submission for CBL TCSS	45	45	0% 14-Nov-22	28-Dec-22	372		1													
						403		1		1			System Desc		1			1			
DWP7470	System Description Operation Manual	6	6	010 EE HOT EE	27-Nov-22 28-Nov-22		ļ			+											
DWP7480		11	11	0% 22-Nov-22	28-Nov-22 03-Dec-22	-26	-						Operation Ma	anuai Iminstration Mar							
DWP7490 DWP7500	System Administration Manual	11	11			-30	-	1		1			Training M		liyal			1			
DWP7500	Training Material Equipment Mainterance Manual	45	45		03-Dec-22 28-Dec-22	-30	-							Equipment M	antomnoo M-	rtual					
		45	45	· · · ·	28-Dec-22	3/2							1	Equipment M	aunterarroe Ma	nuai					
	TRC Training for CBL TCSS					-39	ļ	ļ		ļ											
DWP7550	TCSS Central System Administrarion	50	50		11-Dec-22	-39						_		Central System	Administration						
DWP7560	TCSS Control Kiosk Operation	3	3	0% 23-Oct-22	26-Oct-22	8		1				†CSS Control	Kiosk Operation	n							

俊	 ・ /ul>			<u>NE/2017/01 ⁻</u>	<u> Tseung Kwan O -</u>	Lam Tin Tunnel- Tseung Kwan (4-months Rolling program		nge and Associated Works		
Activity ID	Activity Name		Original Duration	Start	Finish				2023	
			Duration			Jan		Feb		Mar
Tseung Kwan O In	nterchange and Associated Works 202212-en	v								
Construction Work										
Outstandarding Work	ks									
CON-16100	Demolish site accommodation & reinstatement works		144	28-Dec-22 A	21-May-23		:		:	
					,					

	Page 1 of 1	
	Apr	May
<u> </u>		<u> </u>

Contract No. NE/2017/07 Cross Bay Link, Tseng Kwan O - Main Bridge and Associated Works

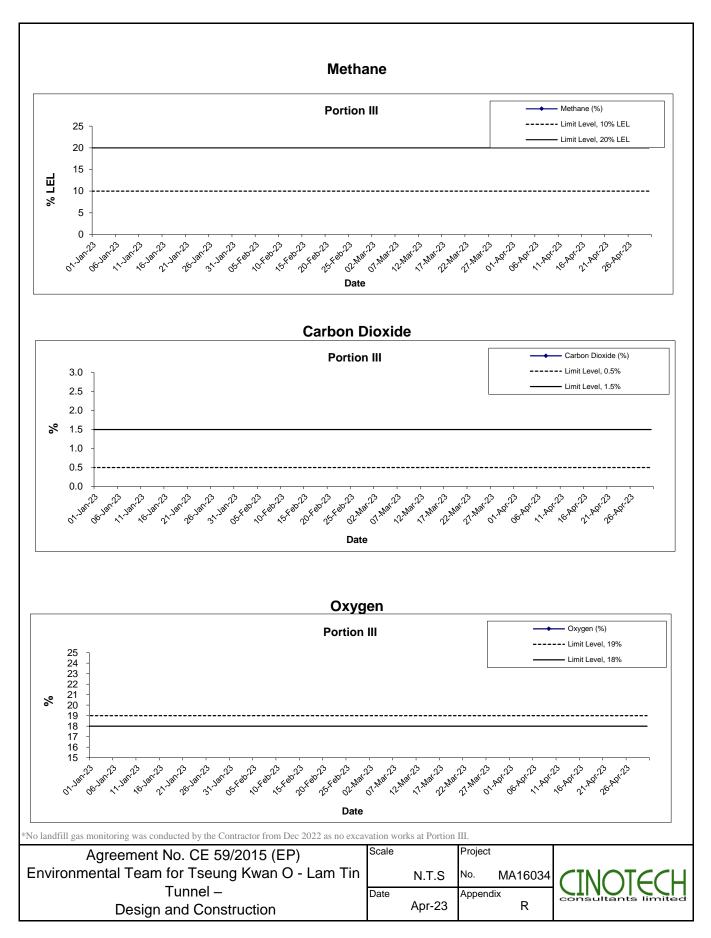
Activity I	D	Activity Name	Original Duration	Remaining	Start	Finish	Physical %			February 2023			March 2023
				Duration			Complete 22	29	0		26	05	12
C	Cross Bay Link,Tseu	ing Kwan O Main Bridge and Associated Works	369	17	08-Jan-22 08:00 A	25-Feb-23 18:00				• (Cross Bay L	.ink,Tseung Kv	wan O Main Bridg
	Section 2 of Works-	All Works within Portion II,III,IV and VI	369	17	08-Jan-22 08:00 A	25-Feb-23 18:00	_				Section 2 of	Works-All Wo	orks within Portion
	CBL Main Bridge a	nd Marine Viaduct	214	15	08-Jan-22 08:00 A	25-Feb-23 18:00	_			7 (CBL Main B	Bridge and Ma	rine Viaduct
	Steel Bridge		214	15	08-Jan-22 08:00 A	25-Feb-23 18:00	_				Steel Bridge	;	
	Welding & Painting) Works	214	15	08-Jan-22 08:00 A	25-Feb-23 18:00				· · · · · · · · · · · · · · · · · · ·	Welding & P	Painting Works	J.
	Painting of the Ri	ng Weld	214	15	08-Jan-22 08:00 A	25-Feb-23 18:00		:		[*	Painting of th	he Ring Weld	
	S2-SB2072	Top coating of the steel deck (east span) (NCE No.181)	75	1	08-Jan-22 08:00 A	09-Feb-23 18:00	90%			Top coating of the steel deck (eas	st span) (NCl	E No.181)	
	S2-SB2076	Top coating of the steel deck (west span) (NCE No.181)	75	6	08-Jan-22 08:00 A	15-Feb-23 18:00	90%			Top coating of the sto	eel deck (we	est span) (NCE	No.181)
	S2-SB2080	Top coating of the steel deck (main span) (NCE No.181)	98	15	08-Jan-22 08:00 A	25-Feb-23 18:00	80%				Top coating of	of the steel dec	ek (main span) (NG
	S2-SB2105	Painting repair of the arch rib (External) (south rib)	25	0	06-Sep-22 08:00 A	07-Feb-23 18:00 A	100%			Painting repair of the arch rib (Extern	nal) (south ri	ib)	
	S2-SB2300	Painting repair of the arch rib (External) (north rib)	20	0	02-Aug-22 08:00 A	07-Feb-23 18:00 A	100%			Painting repair of the arch rib (Extern	nal) (north ril	ib)	
	E&M Works		156	1	03-Oct-22 08:00 A	09-Feb-23 18:00				 E&M Works 			
	E&M Works in Porti	ion II,III & IV	156	1	03-Oct-22 08:00 A	09-Feb-23 18:00				 E&M Works in Portion II,III & I 	V		
	Pier Head Lighting	Installation at Piers W5-EA	30		03-Oct-22 08:00 A	09-Feb-23 18:00				 Pier Head Lighting Installation at 	Piers W5-E	EA	
	S2-EM3040	Pier Head Lighting Installation at Piers W2-W5 (potiential PMI)	30	1	03-Oct-22 08:00 A	09-Feb-23 18:00	0%			Pier Head Lighting Installation at	Piers W2-W	W5 (potiential I	'MI)
	S2-EM3060	Pier Head Lighting Installation at Piers E2-EA (potiential PMI)	30	1	03-Oct-22 08:00 A	09-Feb-23 18:00	0%			Pier Head Lighting Installation at	Piers E2-EA	A (potiential PM	/II)
	S2-EM3080	Pier Head Lighting Installation at Piers W1-E1 (potiential PMI)	30	1	03-Oct-22 08:00 A	09-Feb-23 18:00	0%			Pier Head Lighting Installation at	Piers W1-E	E1 (potiential P	MI)
	Fixed Red Lighting	Installation at Piers W1-E1	156	0	03-Oct-22 08:00 A	07-Feb-23 18:00 A				Fixed Red Lighting Installation at Pie	rs W1-E1		
	S2-EM3100	Installation of Pier Head Lighting	30	0	03-Oct-22 08:00 A	06-Feb-23 18:00 A	100%		In	stallation of Pier Head Lighting			
	S2-EM3120	Testing & Commissioning	1	0	07-Feb-23 08:00 A	07-Feb-23 18:00 A	100%		•	Testing & Commissioning			
					1						:		

Actual Work

Remaining Work

♦ Milestone

Summary


19 26 e and Associated Work	02	April 2 09	16	23	30	May 2023	7
e and Associated Work II,III,IV and VI	8						
11,111,1 v alici v i							
E No.181)							
Date	Re RP (Apr 2:	evision		ecked		Арргом	ed

APPENDIX R RECORD OF LANDFILL GAS MONITORING BY CONTRACTOR

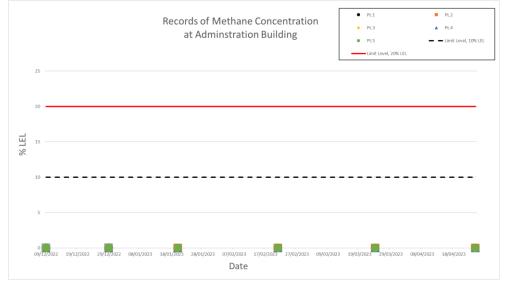
APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

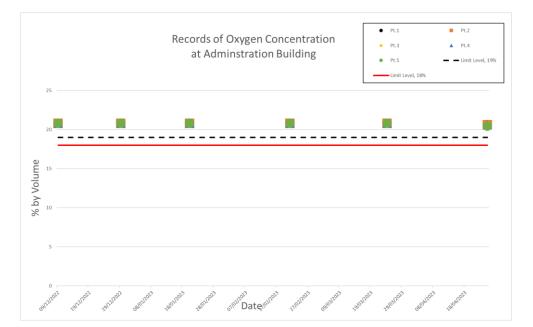
Location	Date of Measurement	Sampling time	Weather Condition	Temperature (°C)	Methane (%)	Carbon dioxide (%)	Oxygen (%)
Portion III	1-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	2-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	3-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	4-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	5-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	6-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	7-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	8-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	9-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	10-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	11-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	12-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	13-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	14-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	15-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	16-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	17-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	18-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	19-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	20-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	21-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	22-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	23-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	24-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	25-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	26-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	27-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	28-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	29-Apr-23	N/A	N/A	N/A		No Excavation Works	
Portion III	30-Apr-23	N/A	N/A	N/A		No Excavation Works	

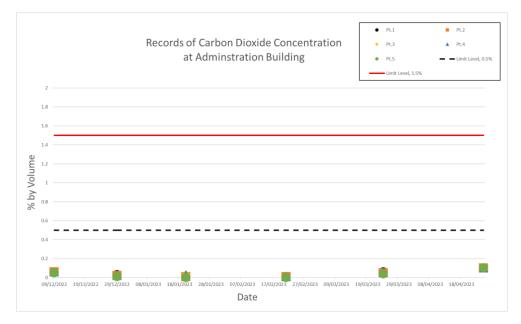
APPENDIX R - RECORD OF LANDFILL GAS MONITORING BY THE CONTRACTOR

Monitoring Result

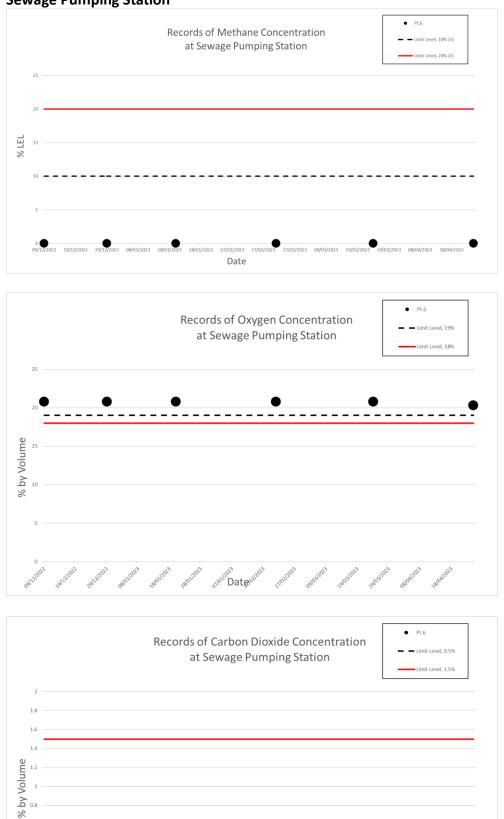
The commencement date of monthly landfill gas monitoring was 29th December 2022. For this reporting month, the landfill gas monitoring was conducted on 25th April 2023. The measurement results are presented in **Table.4**. The accumulative tendency of the monitoring result is provided in **Appendix D**.

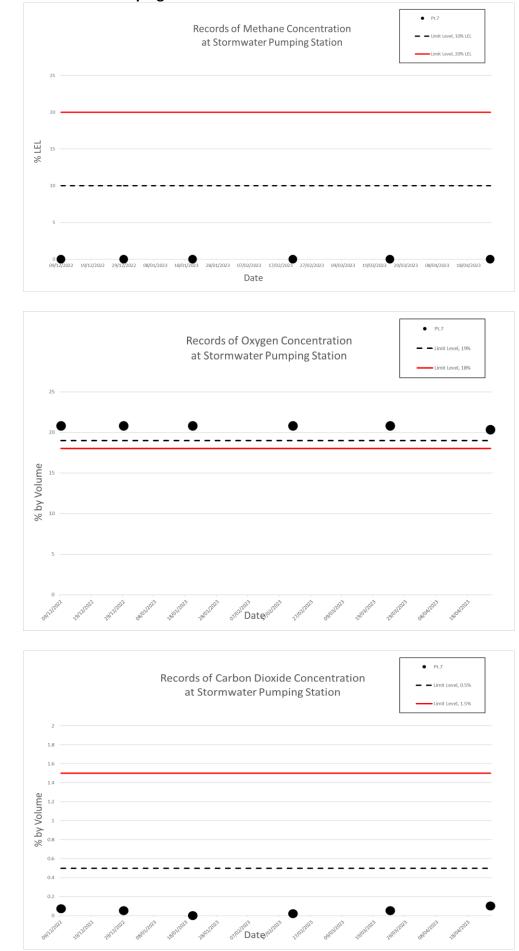

ID	Methane (% LEL)	Oxygen (%)	Carbon dioxide (%)	Compliance (Y/N)
1	0	20.6	0.10	Y
2	0	20.6	0.10	Y
3	0	20.6	0.10	Y
4	0	20.6	0.10	Y
5	0	20.4	0.10	Y
6	0	20.3	0.10	Y
7	0	20.3	0.10	Y
8	0	20.4	0.10	Y
9	0	20.4	0.10	Y
10	0	20.4	0.10	Y


Table.4. Measurement Result on 25th Apr 2023

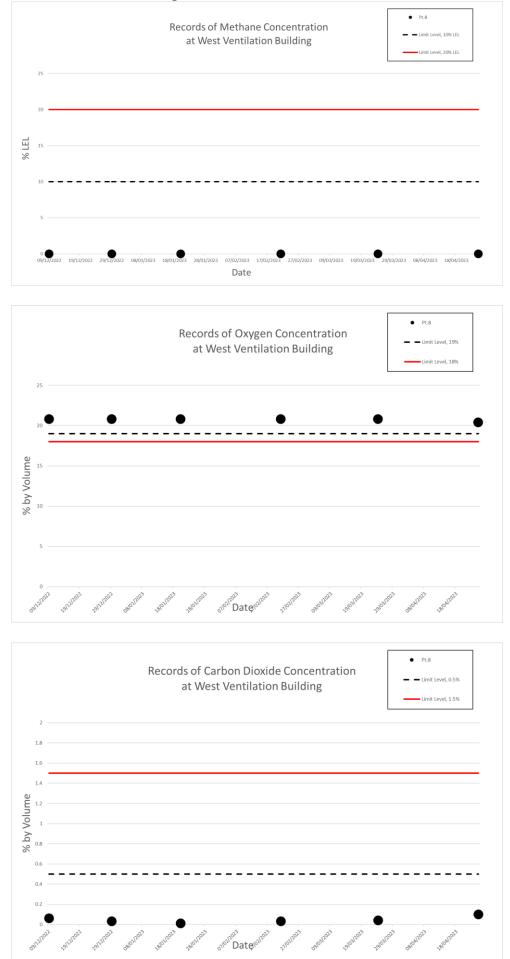

Conclusion

The landfill gas measurement was conducted on 25th April 2023. No exceedance of limit level was observed in the Administration Building, Sewage Pumping Station, Stormwater Pumping Station, West Ventilation Building and the tunnel area at Lam Tin. The overall condition was in compliance during the reporting month.


i. Administration Building

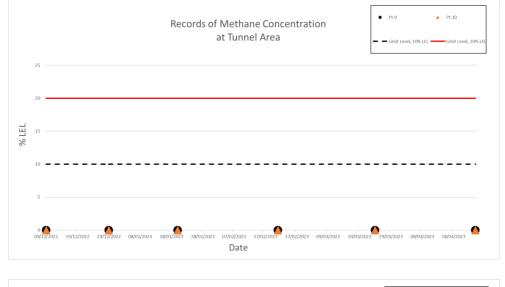


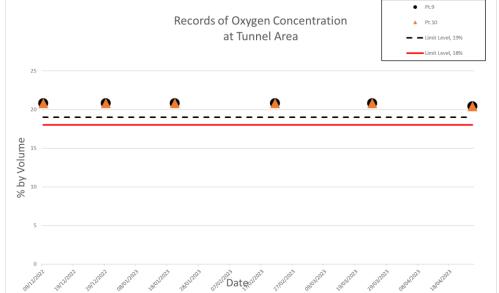
ii. Sewage Pumping Station

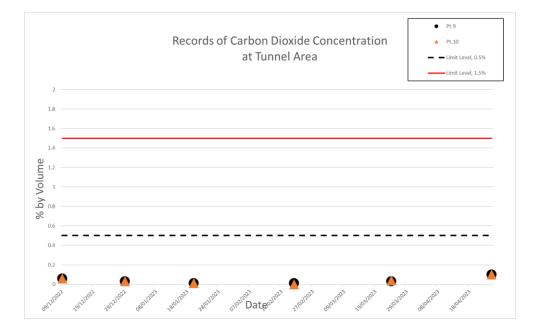


ontoine areanon another and an another another and an another another and an another another and an another
0.6

iii. Stormwater Pumping Station




iv. West Ventilation Building



Acumen Environmental Engineering and Technologies Co. Ltd.

v. Tunnel Area at Lam Tin

APPENDIX S POST GROUND WATER LEVEL MONITORING

Standpipe / Piezometer	TKO-LBH403(P)	TKO-LBH434(P)		
Instrument ref. no. on layout plan (Code) A - Instruments under Contract Requirement				
B - Instruments required by other government departments or authorities such as BD, MTRC etc.		38 (A)		
C - Instruments instructed by the Engineer (VO, Instruction of Provisional Items etc.)	20 (A)			
D - Additional instruments proposed by the Contractor for their own reference				
Type of Instrument	Piezometer	Piezometer 1		
Existing GL (mPD)	50.96	100.02		
Pipe Tip Level (mPD)	-15.54	80.52		
Response Test Date	25-Nov-16	21-Jun-18		
Pre-Tender Lowest Record (mPD)	15.93	95.44		
Baseline Before Work	-15.58	97.58		
Value adopted for Baseline (mPD) (#1)	-15.58	95.44		
Rockhead level (mPD)	47.26	98.52		
Date	Water Level (mPD)	Water Level (mPD)		
23-Dec-22		89.47		
28-Dec-22	-14.69			
19-Jan-23		Obstructed		
28-Jan-23	-14.65			
18-Feb-23	-14.62	88.91		
17-Mar-23	-15.38			
23-Mar-23		85.26		
14-Apr-23	-14.93	87.5		

APPENDIX T CULTURAL HERITAGE MONITORING RESULTS

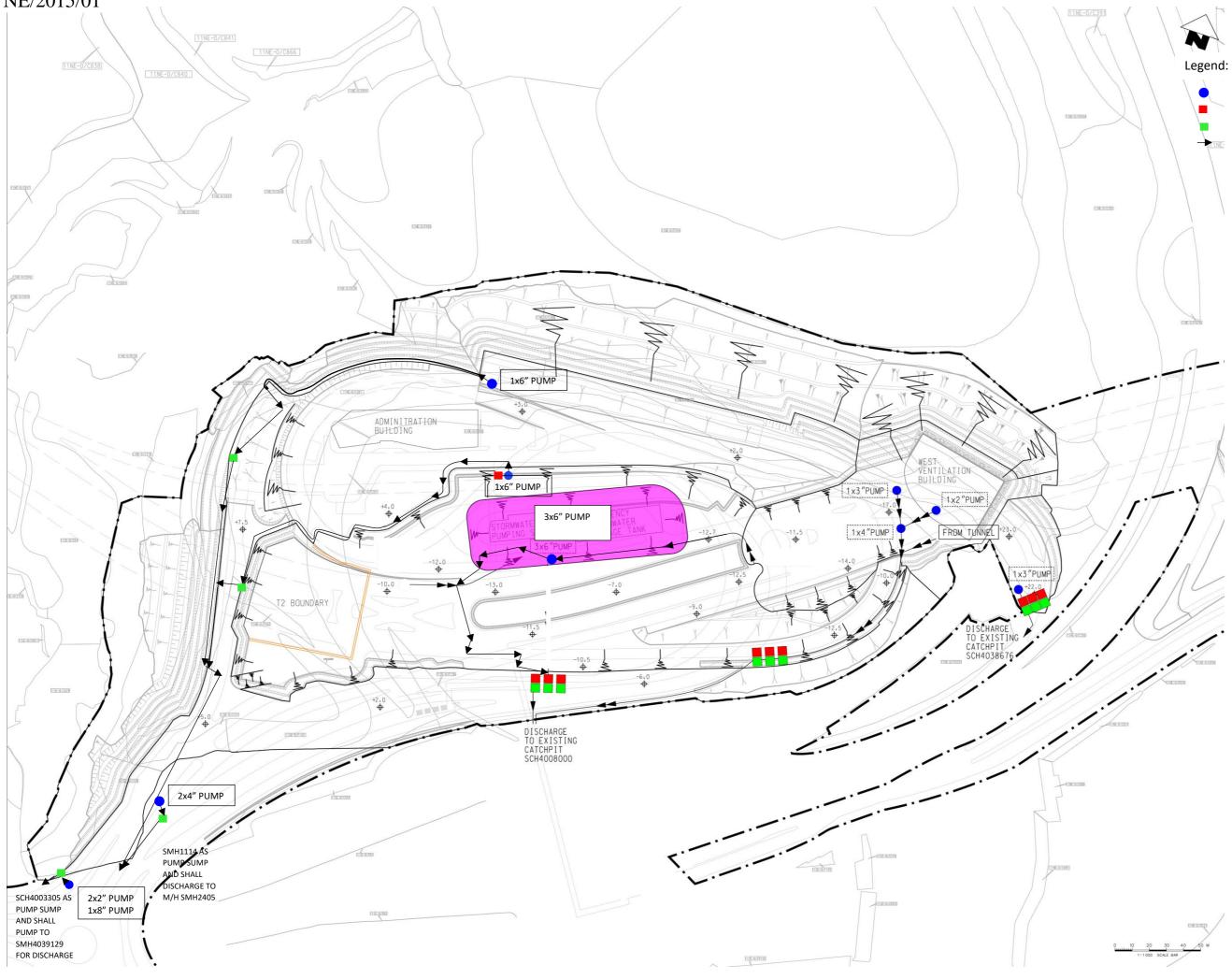
Appendix T – Cultural Heritage Monitoring Results

		Til	ting		Settlement (mm)			Vibration (mm/s)		
Date		THT-TM-	THT-TM-	THT-TM-04A	THT-BSP- 1A THT	THT-BSP-2	THT-BSP-3	Measurement Direction		
		02A	03A	1111-111-04A		1111-DSF-2	1111-051-5	Tran	Vertical	Longitudinal
1-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
3-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
4-Apr-23	1 : 22958	Obstructed	-1 : 64285	Obstructed by work from stakeholder			Stop Monitoring			
6-Apr-23				Obstructed by work from stakeholder			Stop Monitoring	0.142	0.181	0.158
11-Apr-23	1 : 13235	Obstructed	-1 : 34615	Obstructed by work from stakeholder			Stop Monitoring			
12-Apr-23				Obstructed by work from stakeholder	+0	+1	Stop Monitoring			
13-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
14-Apr-23				Obstructed by work from stakeholder			Stop Monitoring	0.205	0.386	0.229
15-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			

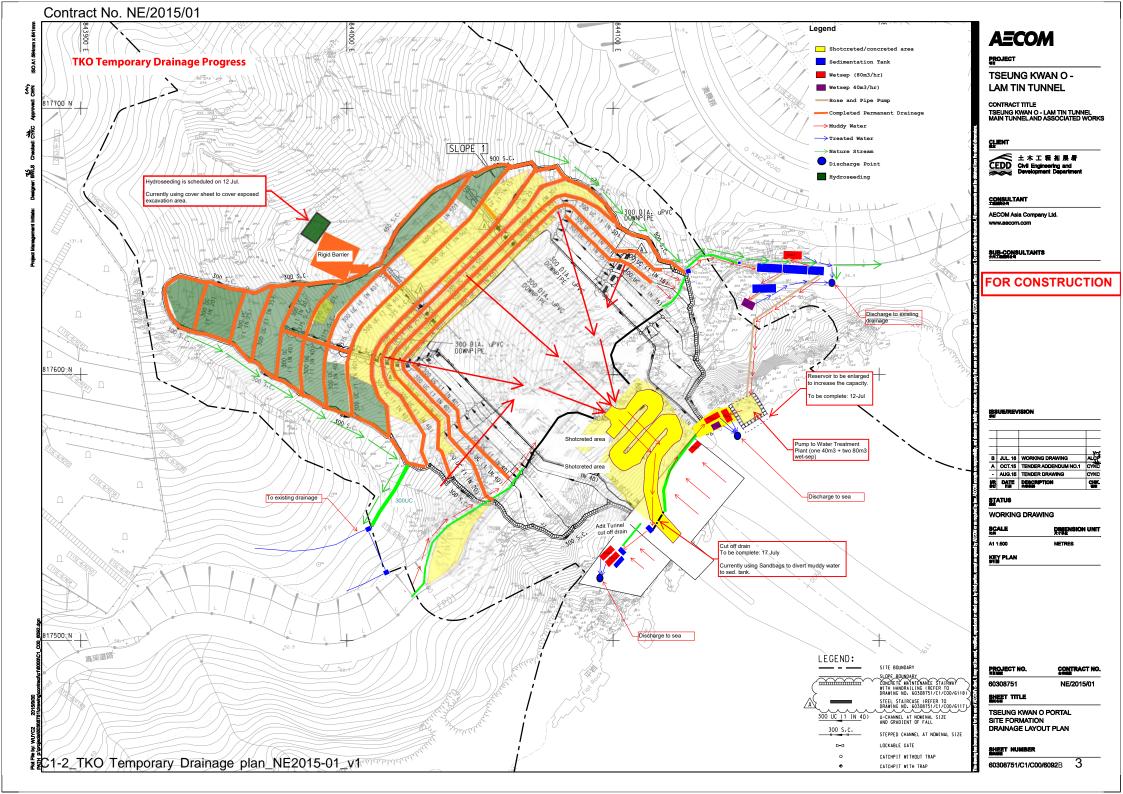
Appendix T – Cultural Heritage Monitoring Results

		Til	ting		Settlement (mm)			Vibration (mm/s)		
Date	THT-TM-	THT-TM-		THT-TM-04A	THT-BSP-	THT-BSP-2	THT-BSP-3	Measurement Direction		
	01A	02A	03A		1A	1111-051-2	1111-051-5	Tran	Vertical	Longitudinal
17-Apr-23				Obstructed by work from stakeholder	+0	+0	Stop Monitoring			
18-Apr-23	1 : 8181	Obstructed	-1 : 14516	Obstructed by work from stakeholder			Stop Monitoring			
19-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
20-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
21-Apr-23				Obstructed by work from stakeholder			Stop Monitoring	0.118	0.126	0.126
22-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
24-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
25-Apr-23	1 : 16071	Obstructed	-1 : 7377	Obstructed by work from stakeholder			Stop Monitoring			
26-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			

Appendix T – Cultural Heritage Monitoring Results

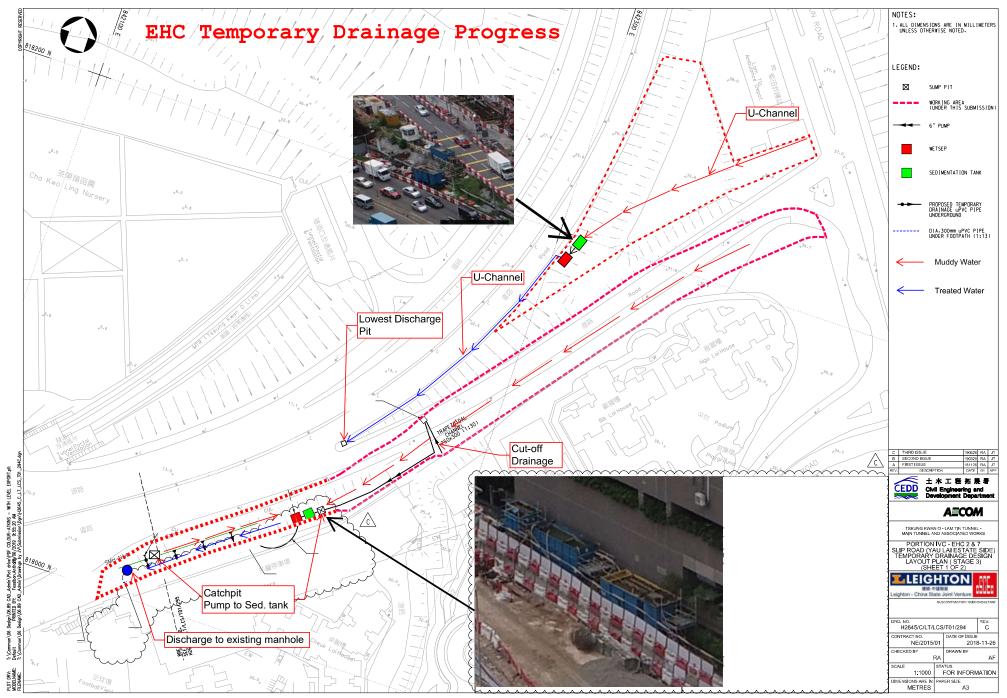

	Tilting					Settlement (mr	n)	Vibration (mm/s)		
Date	THT-TM- 01A	THT-TM-	THT-TM-	THT-TM-04A	THT-BSP-	THT-BSP-2	THT-BSP-3	Measurement Direction		
		02A	03A		1A	1111-051-2	1111-051-5	Tran	Vertical	Longitudinal
27-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
28-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
29-Apr-23				Obstructed by work from stakeholder			Stop Monitoring			
Alert Level	1:2000			6			4.5			
Alarm Level	1:1500			8			4.8			
Action Level	1:1000			10			5			

Note:


Bold means Alert Level exceedance Bold Italic means Alarm Level exceedance Bold Italic with underline means Action Level exceedance

APPENDIX V SURFACE RUNOFF MANAGEMENT PLAN

Contract No. NE/2015/01


Pump Sedimentation Tank Wastewater Treatment Plant Flow Path

Contract No. NE/2015/01

Contract No. NE/2015/01

Our Ref.:JV/TKO-P2/NE201502/19.00.00.00/017621/L Your Ref.: TLT/(NE/2015/02)/C30/650/(0205)

29 March 2021

AECOM Asia Company Limited 8/F, Tower 2, Grand Central Plaza 138 Shatin Rural Committee Road Shatin, Hong Kong By Hand

Attn.: Mr C. W. Lam, Dominic (CRE)

Dear Sir,

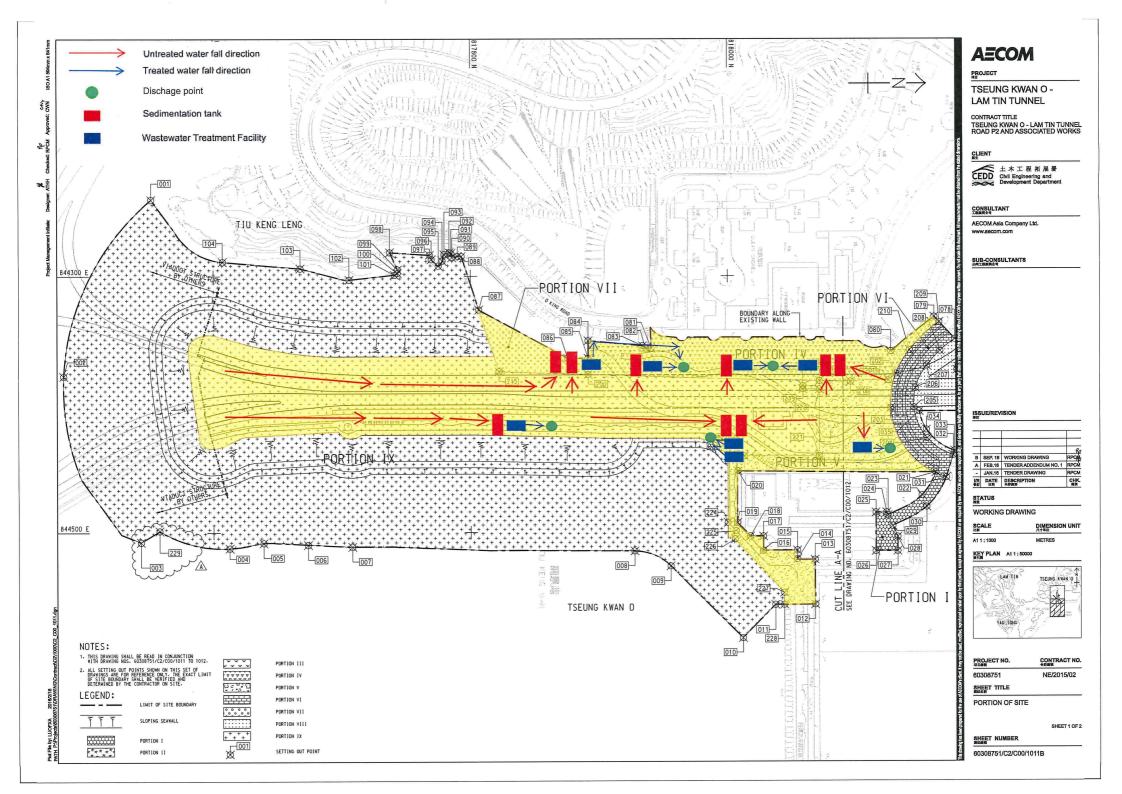
Contract No.: NE/2015/02 Tseung Kwan O – Lam Tin Tunnel – Road P2 and Associated Works <u>Submission of Layout Plan for Site Surface Run-off Control</u>

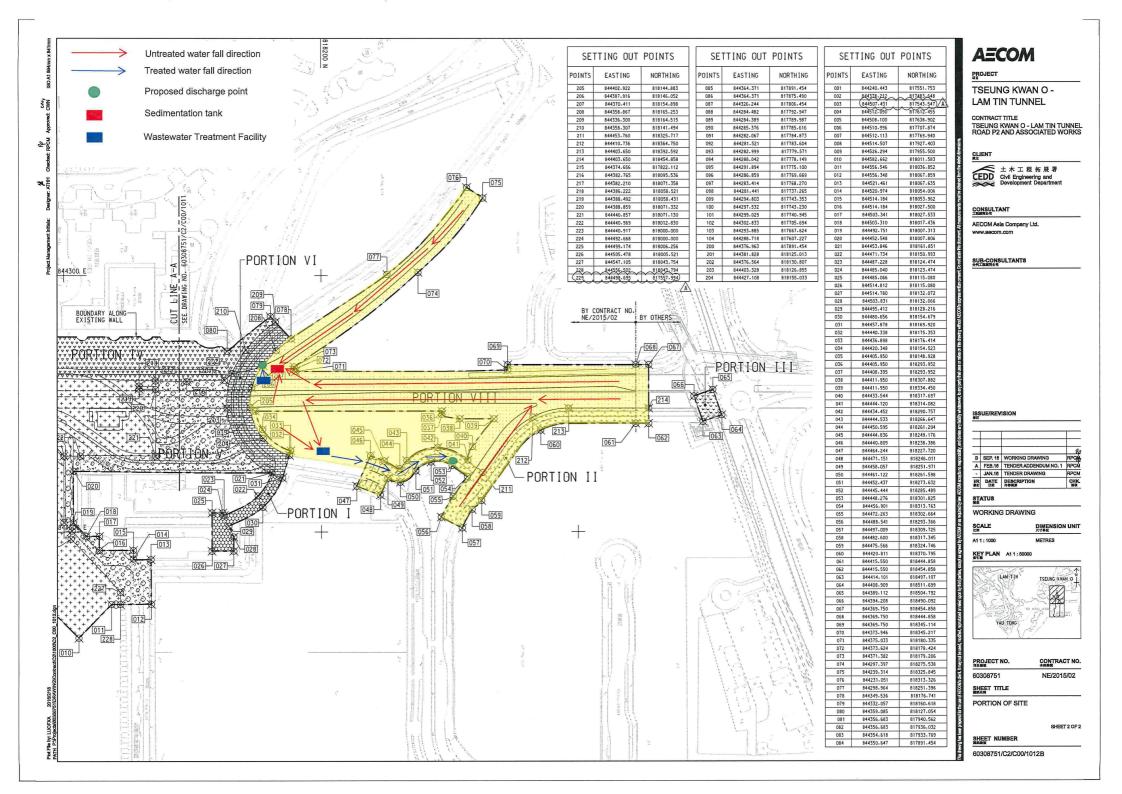
We would like to submit herewith a Layout Plan for Site Surface Run-off Control so as to illustrate our site preparedness for the coming typhoon and wet season as per PS Clause 25.08.

Yours faithfully, For and on behalf of CRBC-Build King Joint Venture

YU Man Kit, And

Site Agent

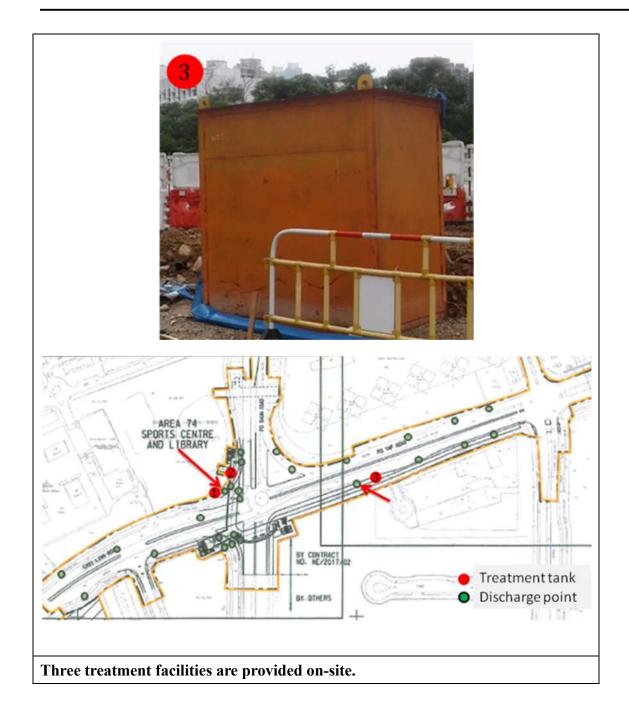

Encl.


c.c.:

The Project Manager for the contract, (CE/E1, CEDD) – Attn.: Mr. Sunny SP LO The Project Manager's Delegate, AECOM (HO) - Attn: Mr. Ivan Tsang Fax: 2739 0076 Fax: 3922 9797

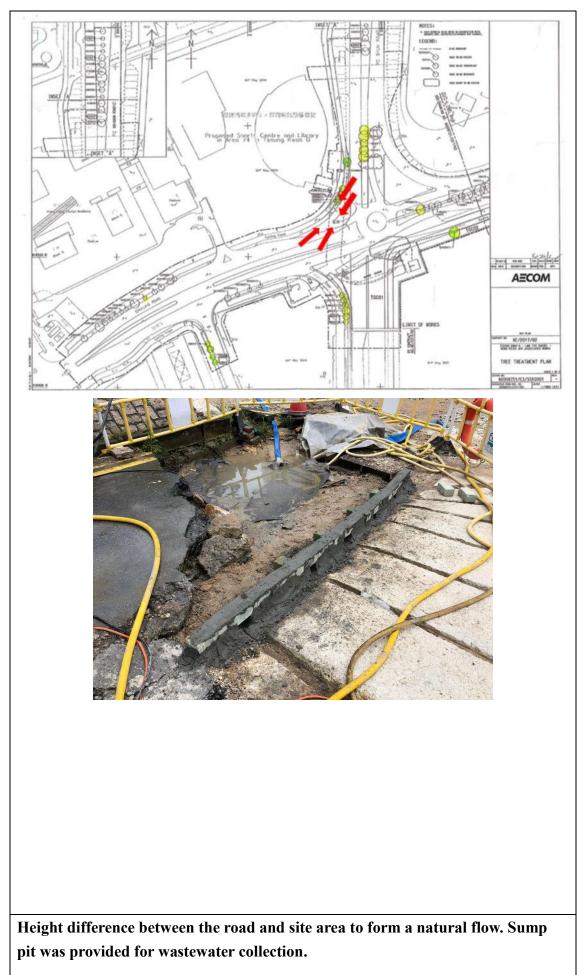
AY/GN/WW/RP/KC

Page 1 of 1

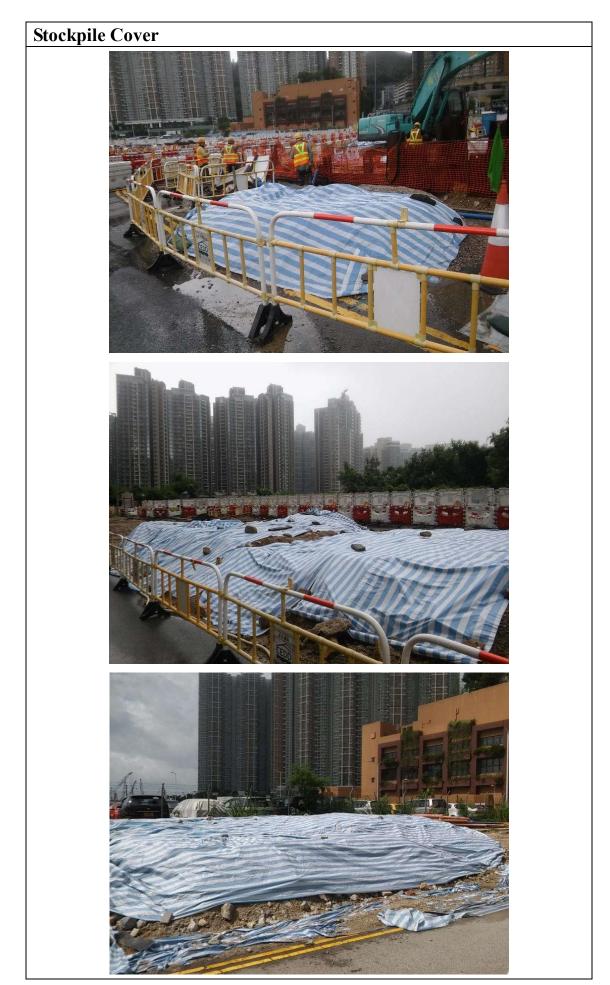


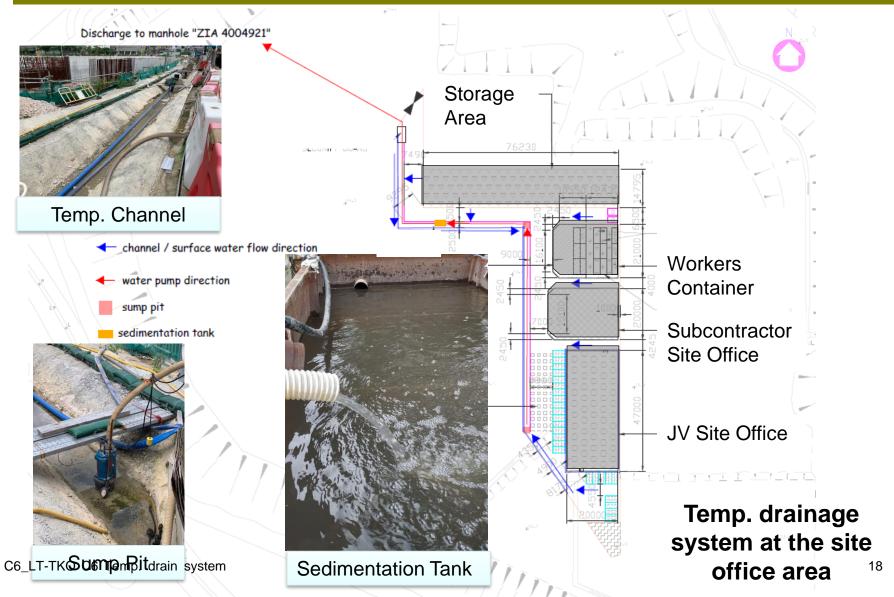
Contract No.: <u>NE/2017/02</u> Contract Title: <u>Tseung Kwan O – Lam Tin Tunnel – Road P2/D4 and</u> <u>Associated Works</u>

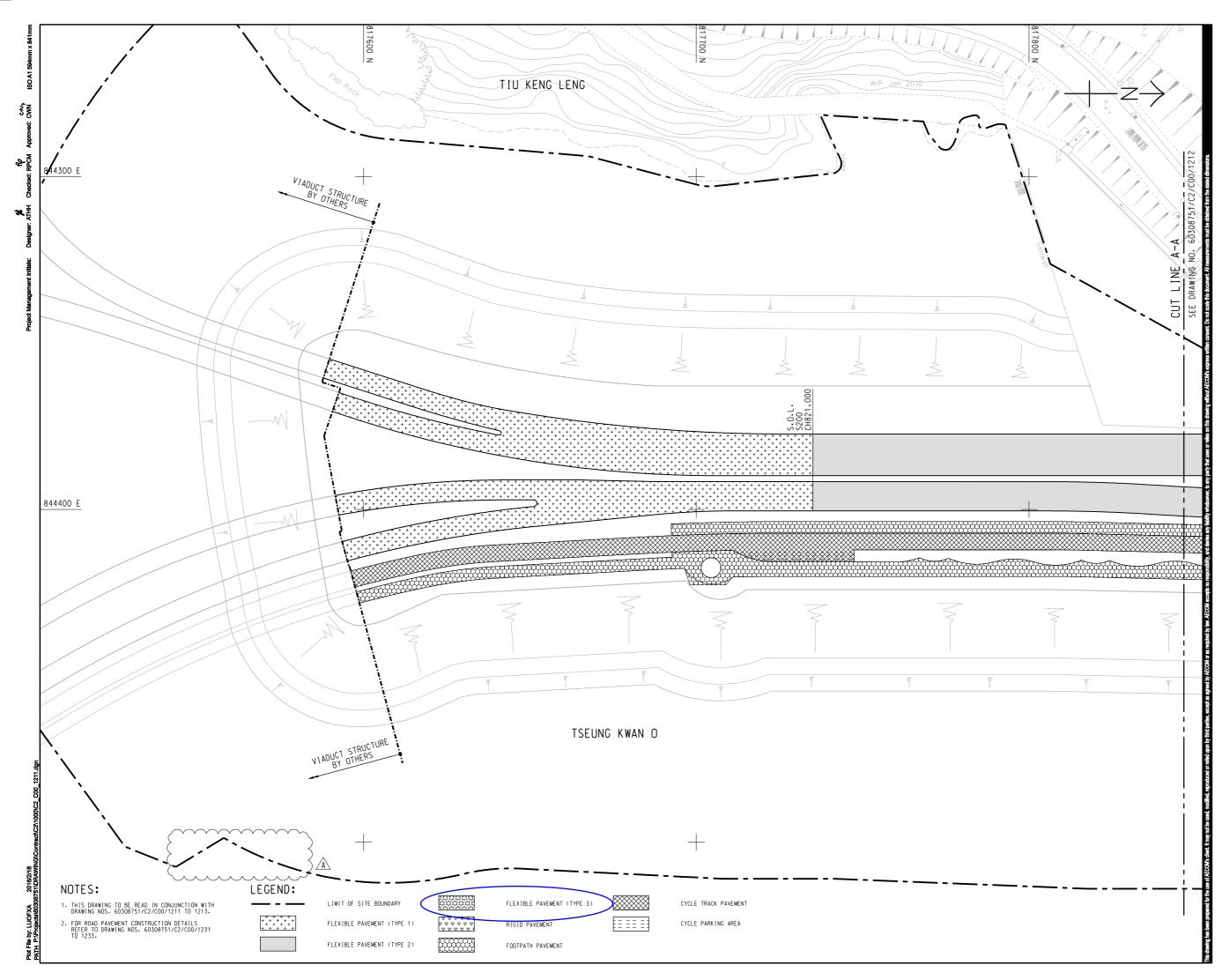
Flooding Mitigation Plan



Surface runoff collection






Stockpile Should be proper cover with tarpaulin.

NE/2017/01 Site Surface Runoff Measures^{後和-上隧-中冶聨營} CW-STEC-CMGC JV

APPENDIX X IMPLEMENTATION OF MITIGATION MEASURES IN OPERATION PHASE

AECOM

PROJECT

TSEUNG KWAN O -LAM TIN TUNNEL

CONTRACT TITLE TSEUNG KWAN O - LAM TIN TUNNEL ROAD P2 AND ASSOCIATED WORKS

CLIENT

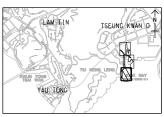
CEDD 土木工程拓展署 Civil Engineering and Development Department

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分列工程期間公司

ISSUE/REVISION

VR	DATE	DESCRIPTION	CHK.
-	JAN.16	TENDER DRAWING	RPCM
A	FEB.16	TENDER ADDENDUM NO. 1	RPCM
в	SEP. 16	WORKING DRAWING	RPC
			Ro


STATUS

WORKING DRAWING

METRES

SCALE A11:500

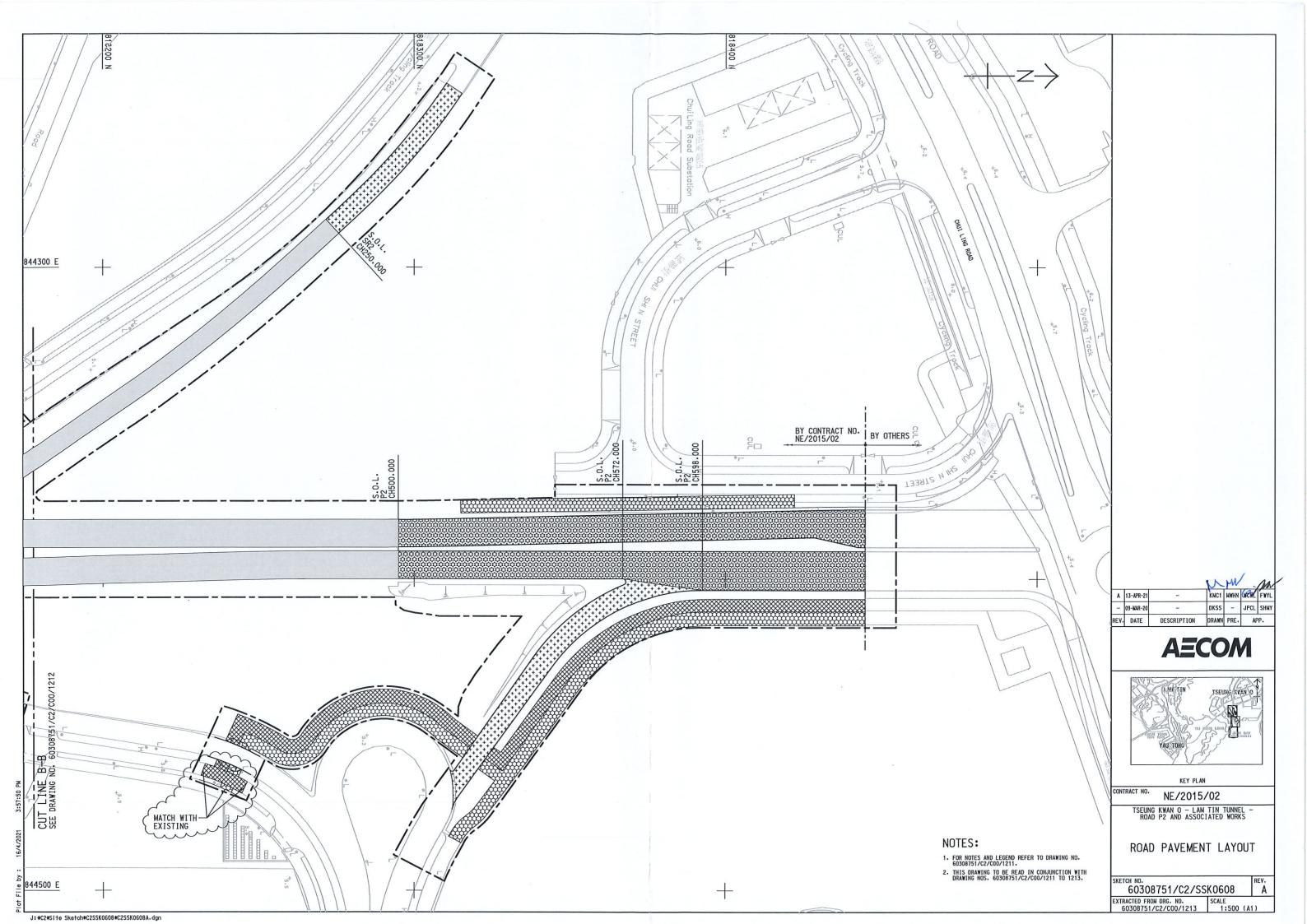
KEY PLAN A1 1:50000 余列目

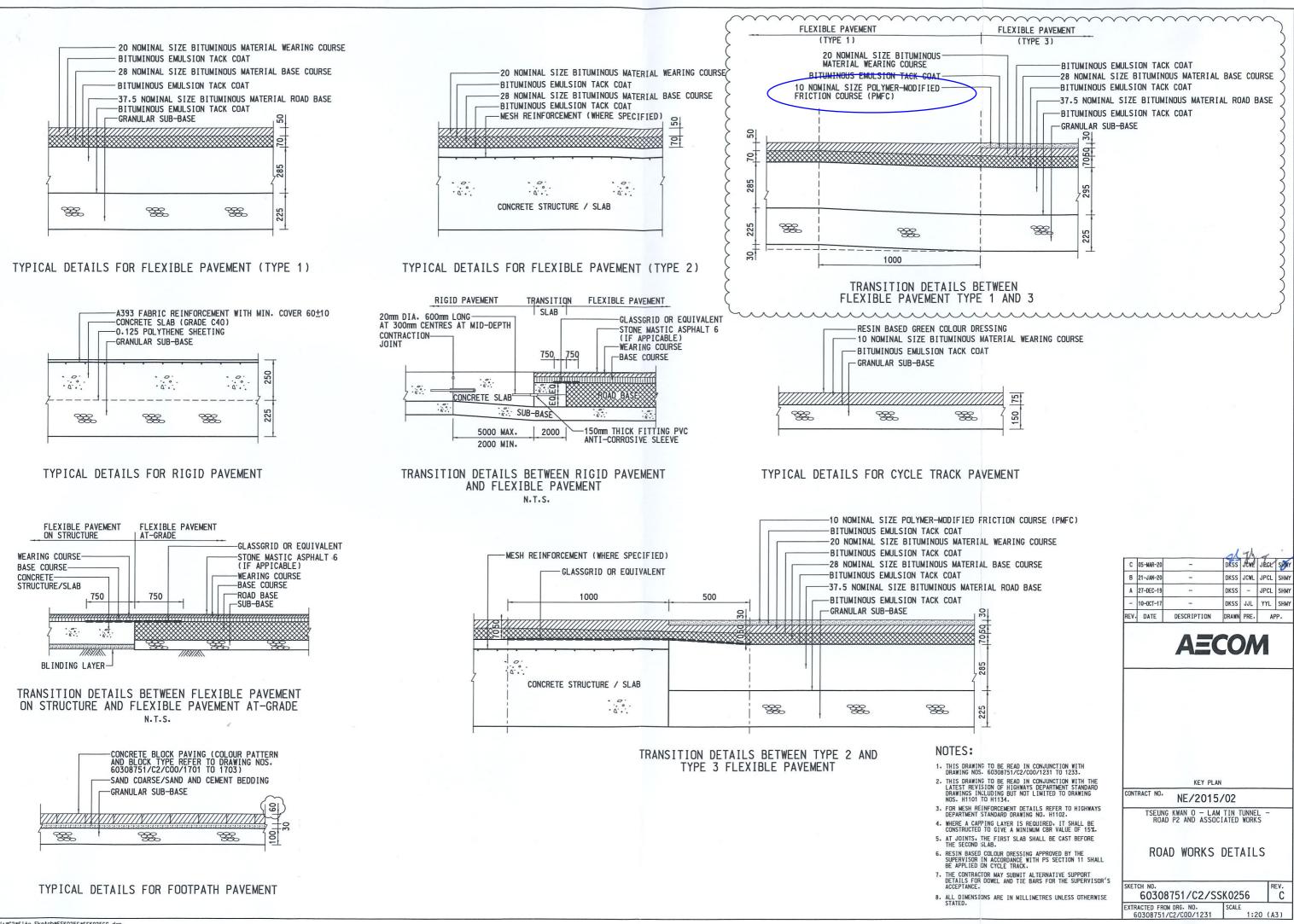
PROJECT NO. 개日崩敗

60308751

CONTRACT NO.

SHEET TITLE 副紙名稱

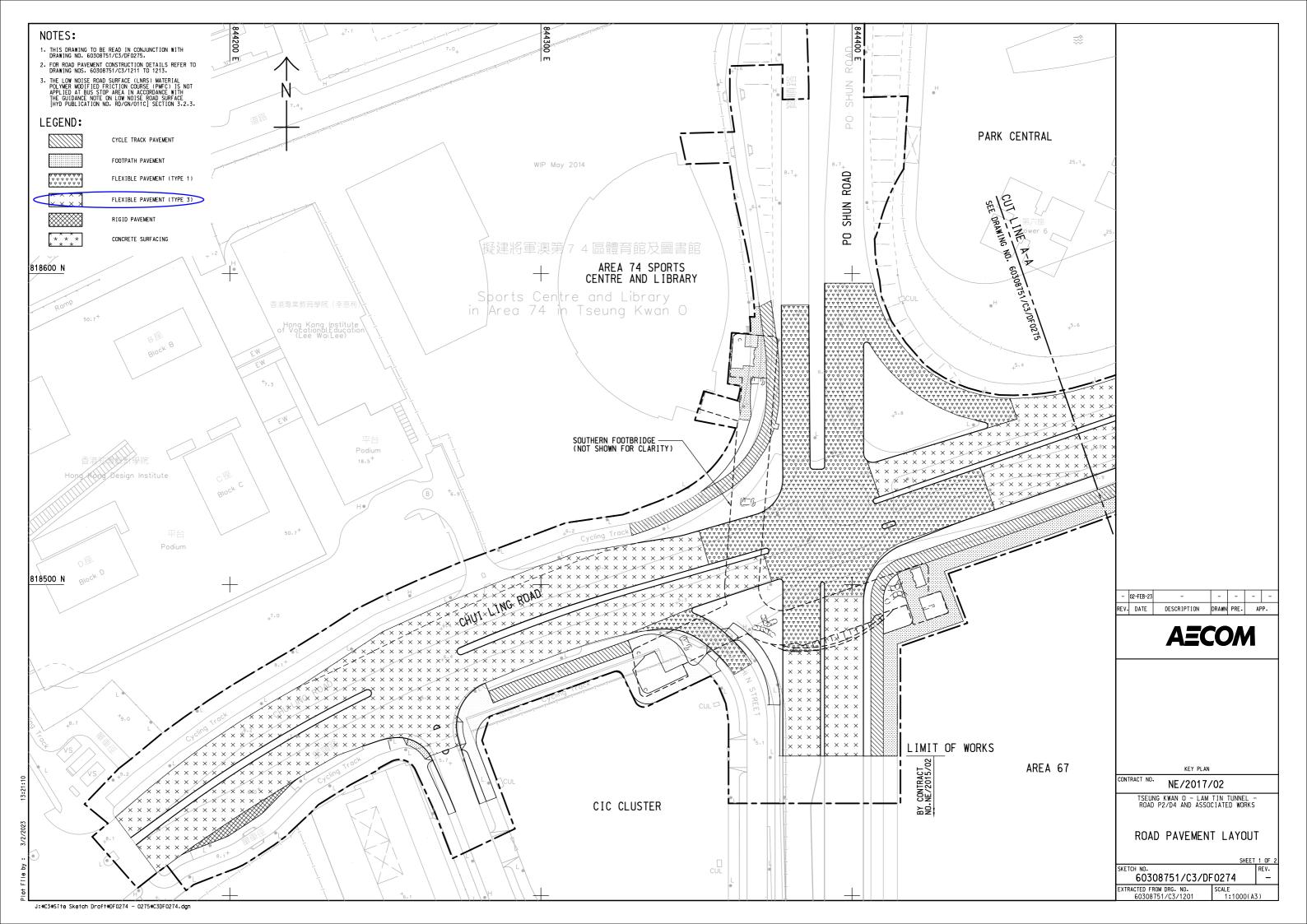

ROAD PAVEMENT LAYOUT

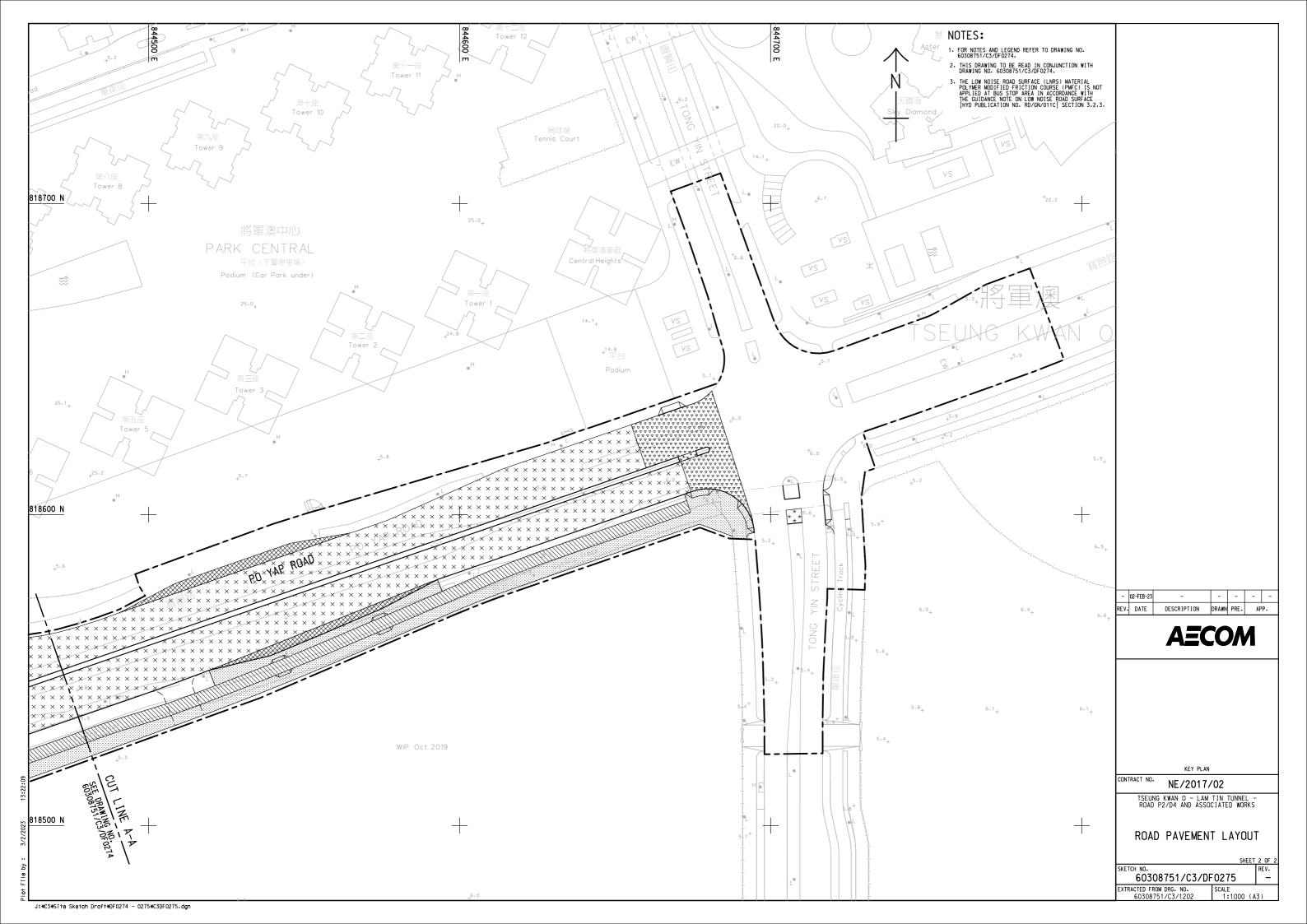

SHEET NUMBER

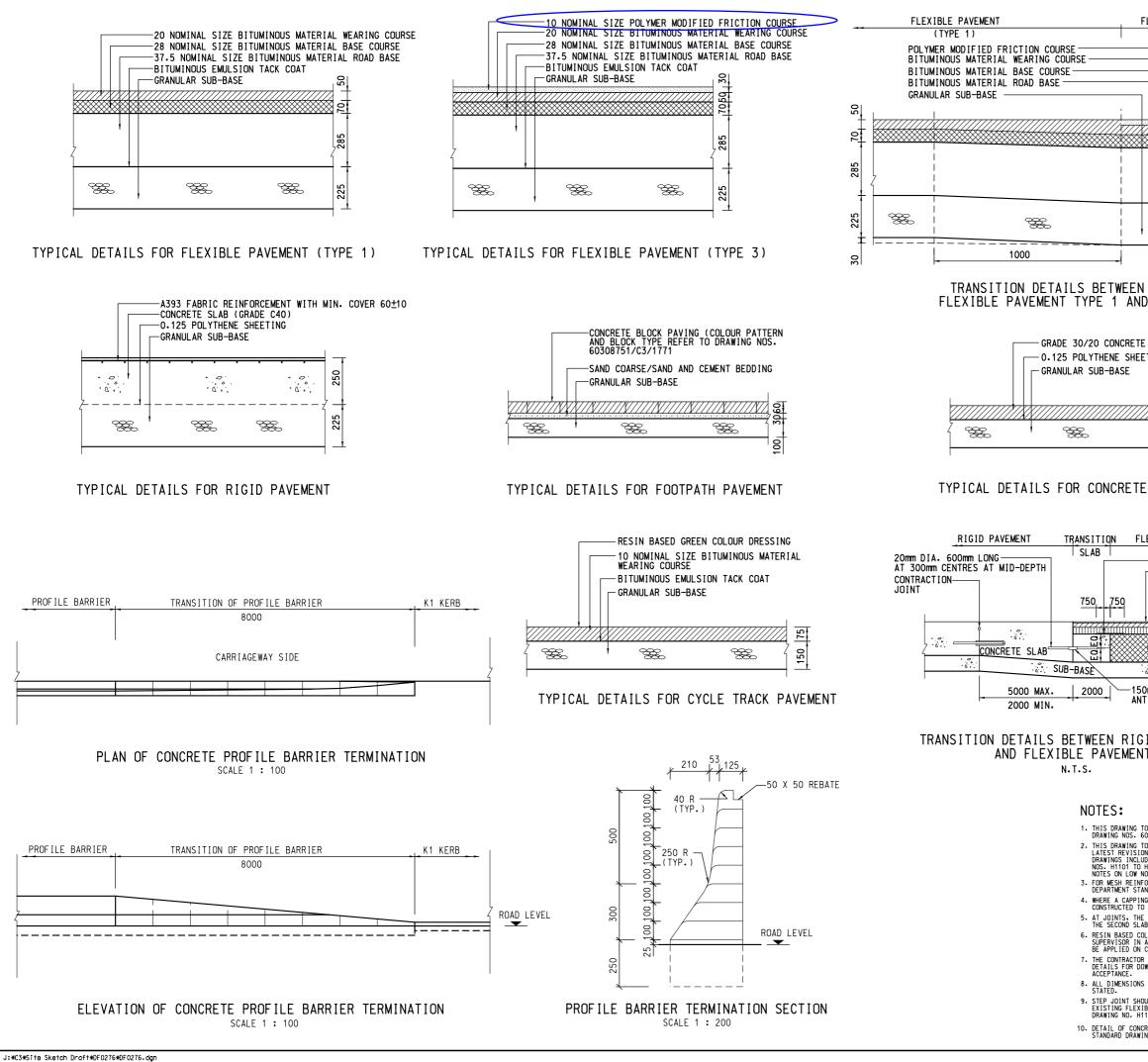
60308751/C2/C00/1211B

NE/2015/02

SHEET 1 OF 3




J:*C2*Site Sketch*SSK0256*SSK0256C.dgn


-
-
8
-
TO BE READ IN CONJUNCTION WITH 50308751/C2/C00/1231 TO 1233.
TO BE READ IN CONJUNCTION WITH THE
ON OF HIGHWAYS DEPARTMENT STANDARD
JDING BUT NOT LIMITED TO DRAWING
H1134.
ORCEMENT DETAILS REFER TO HIGHWAYS
NG LAYER IS REQUIRED. IT SHALL BE D GIVE A MINIMUM CBR VALUE OF 15%.
FIRST SLAB SHALL BE CAST BEFORE
DLOUR DRESSING APPROVED BY THE ACCORDANCE WITH PS SECTION 11 SHALL CYCLE TRACK.
R MAY SUBMIT ALTERNATIVE SUPPORT WEL AND TIE BARS FOR THE SUPERVISOR'S
ARE IN MILLIMETRES UNLESS OTHERWISE

			21	-1/4	4	
C	05-MAR-20	-	DKSS	JEWE	JECK	SHINY
В	21-JAN-20	-	DKSS	JCWL	JPCL	SHMY
A	27-DEC-19	-	DKSS	-	JPCL	SHMY
1	10-0CT-17	-	DKSS	JJL	YYL	SHMY
REV.	DATE	DESCRIPTION	DRAWN	PRE.	AF	Ρ.
		AE			1	
		KEY PLA	N			
NE/2015/02						
TSEUNG KWAN O - LAM TIN TUNNEL - ROAD P2 AND ASSOCIATED WORKS						

sketch no. 60308751/C2/Si	SK0256	REV.
EXTRACTED FROM DRG. NO. 60308751/C2/C00/1231	SCALE 1:20	(A3)

_ >

	1
CLEXIBLE PAVEMENT (TYPE 3)	
D 3	
SURFACING	
EXIBLE PAVEMENT GLASGRID OR EQUIVALENT POLYMER MODIFIED FRICTION COURSE WEARING COURSE BASE COURSE ROAD BASE	
ID PAVEMENT	- 02-FEB-23 REV. DATE DESCRIPTION DRAWN PRE. APP.
O BE READ IN CONJUNCTION WITH 0308751/C3/1212 AND 1213. O BE READ IN CONJUNCTION WITH THE N OF HIGHWAYS DEPARTMENT STANDARD DING BUT NOT LIMITED TO DRAWING H134 AND RD/GW/01L IN GUIDANCE 0ISE ROAD SURFACING. ORCEMENT DETAILS REFER TO HIGHWAYS NDARD DRAWING NO. H1102. G LAYER IS REGUIRED. IT SHALL BE GIVE A MINIMM CRR VALUE OF 15%. FIRST SLAB SHALL BE CAST BEFORE B. LOUR DRESSING APPROVED BY THE ACCORDANCE WITH PS SECTION 11 SHALL CYCLE TRACK. MAY SUBMIT ALTERNATIVE SUPPORT WEL AND TIE BARS FOR THE SUPERVISOR'S ARE IN MILLIMETRES UNLESS OTHERWISE	KEY PLAN CONTRACT NO. NE/2017/02 TSEUNG KWAN O - LAM TIN TUNNEL - ROAD P2/D4 AND ASSOCIATED WORKS ROAD WORKS DETAILS
ULD BE PROVIDED AT THE TRANSITION WITH BLE PAVEMENT ACCORDING TO HYD STANDARD 101 AT THE LATEST VERSION. RETE PROFILE BARRIER REFER HyD NG NO. H2101 TO H2105.	SHEET 1 OF 3 SKETCH NO. REV. 60308751/C3/DF0276 - EXTRACTED FROM DRG. NO. SCALE CC0700756 (2014) SCALE