

Proposed Comprehensive Development at Wo Shang Wai, Yuen Long

Monthly EM&A Report for September 2022

10 October 2022

Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 F +852 2827 1823 mottmac.hk

Profit Point Enterprises Limited

Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

10 October 2022

Document reference: 370161 | 05|01 | A

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

Pursuant to Condition 4.5 of Environmental Permit No. EP-311/2008/E, this Monthly EM&A Report for September 2022 has been reviewed, certified by Environmental Team Leader (ETL) and verified by the Independent Environmental Checker (IEC).

Certified by:

Nikita Nanwani Nanwani Environmental Team Leader (ETL) Mott MacDonald Hong Kong Ltd.

Date

13 October 2022

Verified by:

 \sim

David Yeung Independent Environmental Checker (IEC) Ramboll Hong Kong Limited

Date

13 October 2022

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

Contents

Exe	ecutive	e summary	1
1	Intro	oduction	2
	1.1	Introduction	2
	1.2	Project Organization	2
	1.3	Environmental Status in the reporting period	2
	1.4	Summary of EM&A Requirements	3
2	Imp	act Monitoring Methodology	5
	2.1	Introduction	5
	2.2	Air Quality	5
	2.3	Construction Noise	7
	2.4	Water Quality	9
	2.5	Ecology	11
	2.6	Landscape and Visual	12
3	Mor	nitoring Results	15
	3.1	Impact Monitoring Schedule	15
	3.2	Results of Impact Monitoring	15
4	Eco	logical Monitoring	22
	4.1	Monitoring of Birds	22
	4.2	Monitoring of Herpetofauna	22
	4.3	Monitoring of Dragonflies and Butterflies	22
	4.4	Monitoring of Mammals	23
	4.5	Monitoring of Water Quality	23
	4.6	Management Activities	23
	4.7	Summary	24
5	Lan	dscape and Visual	26
	5.1	Site Inspections	26
	5.2	Construction Phase Audit Summary	26
6	Env	ironmental Site Inspection and Audit	28
	6.1	Site Inspection	28
	6.2	Solid and Liquid Waste Management Status	28
	6.3	Status of Environmental Licences and Permits	28
	6.4	Recommended Mitigation Measures	28

7		rt on Non-compliance, Complaints, Notifications of Summons and essful Prosecutions	30
	7.1 7.2 7.3	Record of non-compliance of Action and Limit Levels Record on Environmental Complaints Received Record on Notifications of Summons and Successful Prosecution	30 30 30
	7.4 7.5	Review of Reasons for and Implications of Non-compliance, Complaints, Summons and Prosecutions Follow-up Actions Taken	30 31
	7.6	Cumulative Statistics for Complaints, Notifications of Summons and Successful Prosecutions	31
8	Futur	e Key Issues	32
	8.1 8.2 8.3 8.4	Site Preparatory Works and Construction Works for the Coming Month Key Issues for the Coming Months Monitoring Schedule for the Coming Month Conclusions and Recommendations	32 32 32 33
9	Refer	rences	35
	9.1	List of References	35
Figu	res		37
Appe	endice	S	39
A.	Proje	ct Organization Chart	41
B.	Tenta	tive Construction Programme (not used)	43
C.	Actio	n and Limit Levels for Construction Phase	45
D.		t and Action Plan for Air Quality, Noise, Water Quality and scape & Visual	47
E.	Calib	ration Certificates	53
F.	Grapl	nical Plots of the Monitoring Results	55
G.	Weat	her Conditions during the Monitoring Period	57
H.	Ecolo	gical Monitoring conducted	59
I.	Sumr	nary of Bird Surveys conducted	61

J.	Summary of Herpetofauna, Mammal and Insect Surveys conducted	67
K.	Summary of Water Quality Monitoring associated with Ecological Monitoring conducted	73
L.	Environmental Mitigation Measures - Implementation Status	75
M.	Landscape and Visual Audit Photos	81

Tables

Table 1.1: Summary of Impact EM&A Requirements	3
Table 1.2: Environmental Monitoring and Audit Schedule for the Reporting Month	4
Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration	5
Table 2.2: Air Monitoring Stations	5
Table 2.3: TSP Monitoring Equipment	6
Table 2.4: Noise Monitoring Parameters, Frequency and Duration	8
Table 2.5: Noise Monitoring Stations	8
Table 2.6: Noise Monitoring Equipment	8
Table 2.7: Water Quality Monitoring Parameters, Frequency and Duration	9
Table 2.8: Water Quality Monitoring Stations	9
Table 2.9: Water Quality Monitoring Equipment	10
Table 2.10: Analytical Methods applied to Water Quality Samples	10
Table 2.11: Detection Limits for Water Quality Determinants	10
Table 2.12: Summary of Construction Phase Ecological Monitoring for the Wo Shang Wai	
Wetland Restoration Area (WRA)	12
Table 2.13: Construction and Operation Phase Audit Checklist	13
Table 2.14: Proposed Construction Phase Mitigation Measures	13
Table 2.15: Proposed Operation Phase Mitigation Measures	14
Table 3.1: Summary of 1-hour TSP Monitoring Results	15
Table 3.2: Summary of 24-hour TSP Monitoring Results	16
Table 3.3: Summary of Construction Noise Monitoring Results	17
Table 3.4: Summary of Water Quality Monitoring Results	18
Table 4.1: Summary of Ecological Monitoring in WRA and Survey Area under EM&A	
Manual	24
Table 5.1: Construction and Operation Phase Audit Summary	26
Table 6.1: Summary of Site Inspections and Recommendations	28
Table 6.2: Status of Environmental Submissions, Licences and Permits	28
Table 7.1: Summary of Exceedances in Water Quality	30
Table 7.2: Statistics for Complaints, Notifications of Summons and Successful Prosecution	31
Table 8.1: Tentative Environmental Monitoring and Audit Schedule for the Next Reporting	
Month	33

Figures

- Figure 1.1 General Layout Plan of the Project Site
- Figure 2.1 Locations of Air Quality Monitoring Stations
- Figure 2.2 Locations of Noise Monitoring Stations
- Figure 2.3 Locations of Water Quality Monitoring Stations
- Figure 4.1 Survey Area and Transect Walked
- Figure 4.2 Water Quality Monitoring Locations for Ecological Monitoring

Executive summary

Mott MacDonald Hong Kong Ltd. ("MMHK") has been commissioned to undertake the Environmental Team (ET) services to carry out environmental monitoring and audit (EM&A) for both pre-construction and construction phases of the Proposed Comprehensive Development at Wo Shang Wai, Yuen Long.

This is the 149th EM&A report submitted under the Condition 4.5 of Environmental Permit No. EP-311/2008/E. This report summarises the findings on EM&A during the period from 1 to 30 September 2022.

Exceedance of Action and Limit Levels

There was no breach of Action or Limit levels for Air Quality (1-hr TSP and 24-hr TSP) and Noise level (as L_{eq}) in the reporting month.

During September 2022, one Action Level exceedance and one Limit Level exceedance were observed. One Action Level exceedance of DO was recorded at MP3 and one Limit Level exceedance of SS was recorded at MP4.

Implementation of Mitigation Measures

Site audits were carried out on 2, 6, 14, 23 and 29 September 2022 to confirm the implementation measures undertaken by the Contractor in the reporting month. The outcomes are presented in Section 6 and the status of implementation of mitigation measures in the site is shown in **Appendix L**.

Record of Complaints

There was no record of complaints received in the reporting month.

Future Key Issues

Site works scheduled to be commissioned in the coming three months include regular maintenance work for the Wetland Restoration Area including lowering of the water level and removal of unwanted species in the pond. No major construction works will be carried out. Potential environmental impacts due to the activities, including air quality, noise, water quality, ecology and landscape and visual, will be monitored.

Environmental mitigation measures will be implemented on site as recommended and weekly site audits will be carried out to ensure that the environmental conditions are acceptable.

1 Introduction

1.1 Introduction

In March 2005, the Project Proponent, Profit Point Enterprises Limited, acquired the development site at Wo Shang Wai in Yuen Long. An Environmental Impact Assessment (EIA) was then carried out and approved under the EIA Ordinance (EIAO), and the Environmental Permit (EP-311/2008) for construction of the comprehensive development in Wo Shang Wai was first granted by EPD on 9 September 2008 and has been subsequently varied, with the current version (EP-311/2008/E) issued by EPD on 19 December 2017.

The Project involves the residential development and associated infrastructure and wetland restoration area and linear landscape area. The construction works under the Environmental Permit commenced on 12 May 2010. The site formation construction works of the Wetland Restoration Area (hereafter WRA) were completed on 15 November 2010 and the WRA was established by October 2012, within 30 months from the commencement of construction as stipulated in the EP. This indicated that planting works as scheduled in the approved Wetland Restoration and Creation Scheme (WRCS; Nov 2009) were complete, except along the western and southern boundary where the planting is affected by the existing site boundary and noise barrier, and for which a Variation to Environmental Permit (EP-311/2008/C) to defer planting at the location was approved. Consequently, EP (EP-311/2008/D) including specific mitigation measures to minimise certain identified noise impacts during the operation phase was approved. The current valid EP (EP-311/2008/E) comprises varied conditions for the implementation and maintenance of visual and landscape measures, and for the implementation of noise mitigation measures.

Mott MacDonald Hong Kong Ltd. ("MMHK") has been commissioned to undertake the Environmental Team (ET) services to carry out environmental monitoring and audit (EM&A) for both pre-construction and construction phases of the Proposed Comprehensive Development at Wo Shang Wai, Yuen Long.

According to the EP Condition 4.5, the monthly EM&A Report shall be submitted to the Director within two weeks after the end of the reporting month. This report summarises the findings during the period from 1 to 30 September 2022.

1.2 Project Organization

The organisation chart and lines of communication with respect to the on-site environmental management structure together with the contact information of the key personnel are shown in **Appendix A**.

1.3 Environmental Status in the reporting period

During the reporting month, construction works of the Project undertaken include:

- General site maintenance work
- Regular maintenance work for the Wetland Restoration Area (including lowering of the water level and removal of unwanted species in the pond)

There were no major construction works carried out. The general layout plan of the Project site is shown in **Figure 1.1**.

1.4 Summary of EM&A Requirements

The EM&A programme requires environmental monitoring of air quality, noise, water quality, ecology and landscape and visual as specified in the approved EM&A Manual.

A summary of impact EM&A requirements is presented in **Table 1.1** below:

Parameters	Descriptions	Locations	Frequencies
Air Quality	24-Hour TSP	ASR1, ASR2A, ASR3, ASR4	Once every 6 days
	1-Hour TSP	ASR1, ASR2A, ASR3, ASR4	3 times every 6 days
Noise	$L_{eq(30min)}, L_{90}, L_{10}(dB(A))$	NSR1, NSR3, NSR5, NSR7	Weekly
Water Quality	Dissolved Oxygen (DO), temperature, pH, suspended solids (SS) and Biochemical Oxygen Demand (BOD)	MP1 to MP6	3 days per week
Ecology	Birds	Within the Project Area and Assessment Area of 500m	Weekly
	Dragonflies and Butterflies	Within the Project Area and Assessment Area of 500m	Once per month during Mar and Sep to Nov, and twice per month during Apr to Aug
	Herpetofauna	Within the Project Area and Assessment Area of 500m	Daytime: Once per month during Apr to Nov
			Night-time: Once per month during Mar to Aug
	Water quality of Wetland Restoration Area (WRA)	WRA	After filling of WRA with water, monthly for in situ water quality and every six months (end of wet season and end of dry season) for laboratory testing
	Site Inspections	Within the Project Area and Assessment Area of 500m	Weekly
Landscape and Visual	Auditing of protection of existing trees, the transplanting of existing trees, the creation of new wetland, the planting of new trees and shrubs and other landscape and visual mitigation measures	CM1 to CM10 and OM1 to OM7 within the Project Area	Site inspections once every two weeks during construction phase; once every two months during operational phase

Table 1.1: Summary of Impact EM&A Requirements

The Environmental Quality Performance Limits for air quality, noise and water quality are shown in **Appendix C**.

The Event and Action Plan for air quality, noise, water quality and Landscape & Visual are shown in **Appendix D**.

The monitoring schedule for the reporting month is shown in **Table 1.2** as follows.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	
					Water	
					24-hr TSP 1-hr TSP	
					1-hr TSP	
4	5	6	7	8		
	Water	Bird	Water		Water	
		Landscape .		24-hr TSP 1-hr TSP		
				Noise Monitoring		
				noise monitoring		
11	12	13	14	15	16	
		Water	0	Water		Water
	The second day	Bird		Herpetofauna		
	following		24-hr TSP	(day time)		
	Mid-Autumn Festival		1-hr TSP	Vater Quality Monitoring		
			Noise Monitoring	Monitoring		
18	19	20	21	22	23	
	Water	Bird	Water		Water	
		24-hr TSP				
		1-hr TSP		Dragonfly & Butterfly	Landscape	
		Noise Monitoring				
25	26	27	28	29	30	
20	Water	Bird	Vater 20	20	Water	
	24-hr TSP				Water Quality	
	1-hr TSP			.	Monitoring 24-hr TSP	
	Noise Monitoring				1-hr TSP	

Table 1.2: Environmental Monitoring and Audit Schedule for the Reporting Month

* Site Audit by Mott MacDonald (MM)

Ecological Surveys & Landscape Audits indicated in ${\boldsymbol{bold}}$ font

@ Report Submission (Monthly EM&A Report)

4

2 Impact Monitoring Methodology

2.1 Introduction

For air quality, construction noise and water quality, ecology, landscape and visual monitoring methodology, including the monitoring locations, monitoring equipment used, monitoring parameters, and frequency and duration, etc., are detailed in this Chapter.

2.2 Air Quality

2.2.1 Monitoring Parameters, Frequency and Duration

In accordance with the EM&A Manual, 1-hour and 24-hour TSP levels monitoring are to be conducted during the construction phase. **Table 2.1** summarizes the monitoring parameters, frequency and duration of air quality monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Frequency and Duration
ASR1, ASR2A, ASR3 & ASR4	24-hour TSP	At least once in every six-days
	1-hour TSP	3 times every six-days

2.2.2 Monitoring Locations

The four air quality monitoring stations were established in the EM&A manual and were slightly adjusted during the baseline monitoring phase. Locations of the agreed air quality monitoring stations are listed in **Table 2.2** and as shown in **Figure 2.1**.

Table 2.2: Air Monitoring Stations

Monitoring Stations	Locations
ASR1	Guard house outside House No. 1, Ventura Avenue, Royal Palms*
ASR2A	At the rooftop of refuse collection point, which is located at the southwest of the project area
ASR3	At the commercial centre at Palm Springs, which is located at the south of the project area
ASR4	Outside works site entrance*

*Note: Relocation of ASR1 and ASR4 were from 5 June 2018 as the previous locations were within the Project construction site. All monitoring data at ASR1 and ASR4 from June 2018 is measured at the new monitoring locations.

2.2.3 Monitoring Equipment

Continuous 24-hour TSP air quality monitoring is conducted using High Volume Sampler (HVS) (Model: GMWS-2310 Accu-vol). The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. **Table 2.3** summarizes the equipment used in the impact air quality monitoring.

• • •	
Equipment	Model
24-hr TSP monitoring	
High Volume Sampler	GMWS 2310 Accu-vol
Calibrator	TE-5025A
1-hr TSP monitoring	
Portable direct reading dust meter	Sibata LD-3B Laser Dust Monitor

Table 2.3: TSP Monitoring Equipment

2.2.4 Monitoring Methodology

2.2.4.1 24-hour TSP Monitoring

Installation

The HVS was installed in the vicinity of the air sensitive receiver. The following criteria were considered in the installation of the HVS.

- A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
- The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- A minimum of two metres separation from walls, parapets and penthouse was required for rooftop sampler.
- A minimum of two metres separation from any supporting structure, measured horizontally was required.
- No furnace or incinerator flues or building vent were nearby.
- Airflow around the sampler was unrestricted.
- The sampler has been more than 20 metres from any drip line.
- Permission was obtained to set up the samplers and to obtain access to the monitoring stations.
- A secured supply of electricity is needed to operate the samplers.

Preparation of Filter Papers

- Glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected.
- All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C with relative humidity (RH) < 50% and was not variable by more than ±5%. A convenient working RH was 40%.

Field Monitoring

- The power supply was checked to ensure the HVS works properly.
- The filter holder and the area surrounding the filter were cleaned.
- The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.

- The shelter lid was closed and was secured with the aluminium strip.
- The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- A new flow rate record sheet was set into the flow recorder.
- The flow rate of the HVS was checked and adjusted at around 1.1 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- The programmable timer was set for a sampling period of 24 hrs + 1 hr, and the starting time, weather condition and the filter number were recorded.
- The initial elapsed time was recorded.
- At the end of sampling, the sampled filter was removed carefully and folded in half-length so that only surfaces with collected particulate matter were in contact.
- It was then placed in a clean plastic envelope and sealed.
- All monitoring information was recorded on a standard data sheet.
- Filters were sent to a HOKLAS accredited laboratory for analysis.

Maintenance and Calibration

- The HVS and its accessories are maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVSs were calibrated at two-month intervals.
- Calibration records for HVSs are shown in Appendix E.

2.2.4.2 1-hour TSP Monitoring

Field Monitoring

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Set POWER to "ON", push BATTERY button, make sure that the meter's indicator is in the range with a red line and allow the instrument to stand for about 3 minutes (Then, the air sampling inlet has been capped).
- Push the knob at MEASURE position.
- Push "O-ADJ" button. (Then meter's indication is 0).
- Push the knob at SENSI ADJ position and set the meter's indication to S value described on the Test Report using the trimmer for SENSI ADJ.
- Pull out the knob and return it to MEASURE position.
- Push "START" button.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are shown in Appendix E.

2.3 Construction Noise

2.3.1 Monitoring Parameters, Frequency and Duration

Following the requirements in the EM&A Manual for noise, noise monitoring has to be carried out during the construction phase. Continuous noise monitoring for the A-weighted levels $L_{eq(30 min)}$, L_{10} and L_{90} is undertaken once per every week.

Table 2.4 summarizes the monitoring parameters, frequency and duration of air quality monitoring.

Table 2.4: Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Frequency and Duration
NSR1, NSR3, NSR5, NSR7	L _{eq(30min)} , L ₉₀ , L ₁₀ (dB(A))	Once every week

2.3.2 Monitoring Locations

The four noise quality monitoring stations were established in the EM&A manual and were slightly adjusted during the baseline monitoring phase. Locations of the agreed noise quality monitoring stations are listed in **Table 2.5** and as shown in **Figure 2.2**.

Monitoring Stations	Locations	Type of measurement
NSR1	Noise monitoring equipment was set up near the boundary wall at Palm Springs	Free field
NSR3	The monitoring station was located next to the guard house at Palm Spring	Façade
NSR5	Outside House No. 1, Ventura Avenue, Royal Palms*	Façade
NSR7	The monitoring station was located near the boundary wall of the house of Mai Po San Tsuen	Free field

*Note: Relocation of NSR5 was from 5 June 2018 as the previous location was within the Project construction site. All monitoring data at NSR5 from June 2018 is measured at the new monitoring location.

2.3.3 Monitoring Equipment

Integrating Sound Level Meter was used for noise monitoring. It is a Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). **Table 2.6** summarizes the noise monitoring equipment model being used.

Table 2.6: Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	Rion NL-52
Calibrator	Larson Davis CAL200

2.3.4 Monitoring Methodology

Field Monitoring

- The Sound Level Meter was set on a tripod at a height of at least 1.2 m above the ground.
- Façade and free-field measurements were made at the monitoring locations.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast

- time measurement: 30 minutes intervals (between 07:00 and 19:00)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid has to be repeated after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix E.

2.4 Water Quality

2.4.1 Monitoring Parameters, Frequency and Duration

In accordance with the requirements in the EM&A Manual for water quality, water quality parameters including Dissolved Oxygen (DO), temperature, pH, turbidity, suspended solids (SS) and Biochemical Oxygen Demand (BOD) have to be monitored at designated monitoring stations during construction of the Project. DO, temperature and pH were measured in-situ whereas SS and BOD were analysed in a laboratory. The measurements should be taken at all designated monitoring stations, three days per week. The interval between any two sets of monitoring was not less than 36 hours. **Table 2.7** summarizes the monitoring parameters, frequency and duration of water quality monitoring.

Monitoring Stations	Parameter	Frequency and Duration
MP1, MP2, MP3, MP4, MP5 & MP6	DO, temperature, pH, SS, turbidity, BOD	Three days every week

2.4.2 Monitoring Locations

The six water quality monitoring stations were established in the EM&A manual. Locations of the agreed water quality monitoring stations are listed in **Table 2.8** and as shown in **Figure 2.3**.

Table 2.8: Water Quality Monitoring Stations

Monitoring Stations	Easting	Northing
MP1*	838 730.50	822 862.25
MP2*	838 933.26	823 247.41
MP3	839 107.17	823 596.84
MP4	839 286.14	823 638.55
MP5	839 134.35	823 722.99
MP6	839 063.02	823 842.25

*Note: The water quality impact monitoring at MP1 and MP2 have been terminated since July 2012 due to withdrawal of access right from landowner.

2.4.3 Monitoring Equipment

The Water Quality Monitoring Equipment and Analytical Methods applied to Water Quality Samples are given in **Table 2.9** and **Table 2.10** respectively. Details of which are discussed as follows.

Table 2.9: Water Quality Moni	itoring Equipment
-------------------------------	-------------------

Equipment	Model	Equipment/ Serial Number
Conductivity, Dissolved oxygen, pH, Salinity and Temperature Measuring Meter, Turbidity	YSI ProDSS	17E100747
		16H104233
		21G105356
		15M10005
		16H104234
Global Positioning System (GPS)	Garmin eTrex Vista	ENO 007

Table 2.10: Analytical Methods applied to Water Quality Samples

Determinant, unit	Standard Method
Total Suspended Solids, mg/L	In house method based on APHA 2540D; ALS Method Code: EA-025
Biochemical Oxygen Demand (BOD), mg/L	In house method based on APHA 5210B; ALS Method Code: EP-030

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use.

Dissolved Oxygen (DO), Temperature, pH and Turbidity measuring equipment

A portable, weatherproof multiparameter instrument (YSL ProDSS) was used in the monitoring. It can be capable for measuring dissolved oxygen (DO), temperature, pH and turbidity simultaneously with the following limits:

- a dissolved oxygen level in the range of 0-50 mg/L and 0-500 % saturation;
- a temperature of -5 to 70 degrees Celsius;
- pH value of 0-14 with 0.1 as the base unit; and
- turbidity between 0-4000 NTU

Global Positioning System (GPS)

A hand-held GPS navigator (Garmin eTrex Vista) was used to identify the designated monitoring stations prior to water sampling.

Suspended Solids and BOD Measurements (Sample Containers and Storage)

Water samples for SS analysis were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4 °C without being frozen), delivered to the laboratory, and analysed as soon as possible after collection. Analysis was carried out in a HOKLAS accredited laboratory.

2.4.4 Detection Limit

The limits of detection for the in-situ and laboratory measurements are shown in Table 2.11.

Table 2.11: Detection Limits for Water Quality Determinants

Determinant	Limit of Detection
Dissolved Oxygen	0.1 mg/L

Determinant	Limit of Detection	
Temperature	0.1 degree Celsius	
рН	0.01 unit	
Turbidity	0.1 NTU	
Suspended Solids	2 mg/L	
BOD	2 mg/L	

2.4.5 Monitoring Methodology

In situ Measurement

All pH meters, DO/ temperature meters had been checked and calibrated prior to use. Standard buffer solution of at least two pH levels (either pH 4 and pH 7, or pH 7 and pH 10) had been used for calibration of the instrument before and after use.

DO meters had been calibrated by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three-monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes had been checked with certified standard solutions before each use. Wet bulb calibrations for all DO meters had been carried out before measurement at each monitoring location. For the on-site calibration of field equipment, BS 1427:2009, "Guide to on-site test methods for the analysis of waters" had been observed.

Measurements were taken at three water depths, namely, 1m below water surface, mid-depth and 1m above stream bed/pond bed, except where the water depth is less that 6m, the mid-depth station maybe omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored.

Replicates in-situ measurements and samples collected from each independent monitoring event are required for all parameters to ensure a robust statistically interpretable dataset.

Water Samples Preparation and Analysis

For collection of water sampling within the water courses, a 500ml clean plastic beaker was used. After collection, the water samples were stored in high-density polythene bottles. The sample container was rinsed with a portion of the water sample. The water sample was then transferred to the container, labelled with a unique sample ID and sealed with a screw cap. The water samples were stored in a cool box maintained at 4 °C. The water samples were then delivered to a local HOKLAS-accredited laboratory (ALS) on the same day for analysis.

The testing methods of testing parameters as recommended by EIA or required by EPD, with the QA/QC results are in accordance with the requirement of HOKLAS or international accredited scheme.

The calibration certificates for equipment used for in-situ monitoring of water quality are attached in **Appendix E**.

2.5 Ecology

2.5.1 Monitoring Parameters, Frequency and Duration

Target species and certain other fauna were monitored within the Project Area and Assessment Area during the wetland and residential construction phase. This is important to ensure that any unexpected events or impacts either on- or off-site are quickly identified so that remedial action can be taken. The groups monitored and frequency of monitoring are shown in **Table 2.12**.

Table 2.12: Summary of Construction Phase Ecological Monitoring for the Wo Shang Wai	
Wetland Restoration Area (WRA)	

Species / Parameter	Construction Phase Ecological Monitoring	
Birds	Weekly (including Assessment Area)	
Dragonflies and Once per month during March and September to November; and twice per month durin Butterflies April to August		
Herpetofauna	Daytime: Once per month during April to November; and Night-time: Once per month during March to August	
Water Quality	After filling of WRA with water, monthly for in situ water quality and every six months (end of the wet season and end of the dry season) for laboratory testing	
Site Inspections	Weekly	

2.5.2 Monitoring Locations and Methodology

Ecological monitoring locations during construction phase are shown in **Figure 4.1** and the methodology for ecological monitoring is detailed in **Section 4**.

2.6 Landscape and Visual

2.6.1 Monitoring Parameters, Frequency and Duration

All measures undertaken by both the Contractor and the specialist Landscape Sub-Contractor during the construction phase and first year of the operational phase shall be audited by a Registered Landscape Architect, as a member of the ET, on a regular basis to ensure compliance with the intended aims of the measures. Site inspections should be undertaken at least once every two weeks throughout the construction period and once every two months during the operational phase.

The broad scope of audit is detailed below but should also be undertaken with reference to the more specific checklist provided in **Table 2.13** below. Operational phase auditing will be restricted to the last 12 months of the establishment works of the landscaping proposals and thus only the items below concerning this period are relevant to the operational phase.

- The extent of the agreed works area should be regularly checked during the construction phase. Any trespass by the Contractor outside the limit of the works, including any damage to existing trees and woodland shall be noted;
- The progress of the engineering works should be regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken;
- All existing vegetation, streams and other features within the study area which are not directly
 affected by the works are retained and protected;
- The methods of protecting existing vegetation proposed by the Contractor are acceptable and enforced;
- Preparation, lifting transport and re-planting operations for any transplanted trees;
- The layout, design and construction of buildings conforms to requirements specified in the EIA report;
- All landscaping works are carried out in accordance with the EIA recommendations and with specifications;
- The planting of new trees, shrubs, groundcover, climbers, grasses and other plans, together with the replanting of any transplanted trees are carried out properly and within the right season;

• All necessary horticultural operations and replacement planting are undertaken throughout the Establishment Period to ensure the healthy establishment and growth of both transplanted trees and all newly establishment plants.

Area of Works	Items to be Monitored
Works Area	Check the extent of the Works to ensure that the Works Area is not exceeded the site boundaries.
Protection of all trees and woodland blocks to be retained	Identification and demarcation of trees / vegetation to be retained, erection of physical protection (e.g. fencing), monitoring against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Streams	Ensure no run-off into existing streams
Clearance of existing vegetation	Identification and demarcation of trees / vegetation to be cleared, checking of extent of works to minimize damage, monitoring of adjacent areas against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Transplanting of trees	Identification and demarcation of trees / vegetation to be transplanted, monitoring of extent of pruning / lifting works to minimize damage, timing of operations implementation of all stages of preparatory and translocation works, and maintenance of transplanted vegetation, etc.
Topsoil stripping	Ensuring existing topsoil is stripped and stored under recognized good practice and is hydroseeded and regularly turned to prevent anaerobic conditions
New buildings	Ensure that building finishes accord with mitigation proposals with regard to colour and albedo.
Boundaries	Ensuring hoarding are erected as required
Noise Barrier	Ensure noise barrier design accords with the mitigation proposals with regard to location, materials and finishes.
Night-time lighting	Ensuring night-time lighting is directional, hooded and shielded away from VSRs
Plant supply	Monitoring of operations relating to the supply of specialist plant material (including the collecting, germination and growth of plants from seed) to ensure that plants will be available in time to be used within the construction works.
Landscape and wetland treatments generally	Check that wetland, and hard / soft landscape designs conform to intent of mitigation measures and agreed designs
Soiling, planting, etc.	Monitoring of implementation and maintenance of soiling and planting works against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Establishment Works	Monitoring of implementation of maintenance operation during Establishment Period

2.6.2 Monitoring Locations

The monitoring locations should check against the mitigation measures proposed under the approved Environmental Impact Assessment, which are summarised as follows in **Table 2.14** and **Table 2.15**:

ID No.	Landscape and Visual Mitigation Measures
CM1	The construction area and contractor's temporary works areas should be minimised to avoid impacts on adjacent landscape.
CM2	Screening of construction works by hoardings/noise barriers around Works area in visually unobtrusive colours, to screen Works.
CM3	Reduction of construction period to practical minimum.
CM4	Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate.
CM5	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone).
CM6	Advance screen planting of noise barriers.

ID No.	Landscape and Visual Mitigation Measures
CM7	Control night-time lighting and glare by hooding all lights.
CM8	Ensure no run-off into streams adjacent to Project Area.
CM9	Protection of existing trees on boundary of project area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at S16 and Tree Removal Application stage).
CM10	Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their destinations and not held in a nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme.

Table 2.15: Proposed Operation Phase Mitigation Measures

ID No.	Landscape Mitigation Measures
OM1	Compensatory Tree Planting for all felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under DEVB TC(W) 7/2015.
OM2	A continuous belt of screen planting along southern perimeter of project area with fast growing tree species. At least 450 trees capable of reaching a height > 10m within 10 years should be planted. Planting of the belt of trees shall be carried out as advance works ahead of other site formation and building works.
OM3	Maximise soft landscape and amenity water bodies in residential areas of the development. Approximately 750 trees (of Heavy Standard size) should be planted. Where space permits, roadside berms should be created. Street trees should be of species that reach a mature height of no less than 15m.
OM4	Maximise freshwater habitat wetland creation consistent with achieving other parameters. Minimum 4.74 ha to be provided. Wetlands must have natural edge profiles with >1m wide emergent zone. No access to the wetland by residents and all wetlands must be screened from residential development by a continuous tree screen at interface with residential development or earth mounding such that disturbance is minimised. Implementation of the wetland shall be carried out as advance works.
OM5	Use appropriate (visually unobtrusive and non-reflective) building materials and colours in built structures.
OM6	During detailed design, refine building layout to create a min. 10m wide gap between buildings north of Wo Shang Wai pond and also two min. 10m wide gaps in the row of buildings adjacent to Royal Palms.
OM7	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill.

3 Monitoring Results

3.1 Impact Monitoring Schedule

Impact monitoring for air quality (dust), noise and water quality due to the construction work were undertaken during the reporting month in compliance with the EM&A manual in the reporting period. Regular site inspections were carried out on 2, 6, 14, 23 and 29 September 2022 during the reporting month to assess the compliance with environmental requirements.

3.2 Results of Impact Monitoring

3.2.1 Air Quality Monitoring

3.2.1.1 1-hour TSP

Results of 1-hour TSP at the four monitoring locations are summarised in **Table 3.1**. Graphical plots of the monitoring results are shown in **Appendix F**. The weather conditions in the reporting period are provided in **Appendix G**.

Table 3.1: Summary of 1-hour TSP Monitoring Res

Monitoring	Start Time		1-hr	TSP (μg/m³)	Range	Action	Limit	
Date		1 st Result	2 nd Result	3 rd Result	(μg/m³)	Level (µg/m³)	Level (µg/m ³)	
ASR1								
02-Sep-22	8:49	25	20	22	16-58	378	500	
08-Sep-22	8:22	21	16	18				
14-Sep-22	12:56	20	21	21				
20-Sep-22	9:01	58	57	55				
26-Sep-22	8:22	32	32	35				
30-Sep-22	9:17	20	19	20				
ASR2A								
02-Sep-22	13:18	22	24	21	14-54 357	357	357	500
08-Sep-22	13:06	15	18	14				
14-Sep-22	9:24	24	27	29				
20-Sep-22	13:03	54	45	47				
26-Sep-22	13:07	30	31	31				
30-Sep-22	13:11	25	24	22				
ASR3								
02-Sep-22	13:02	19	19	17	17-52	358	500	
08-Sep-22	13:25	18	19	19				
14-Sep-22	9:10	24	28	31				
20-Sep-22	13:19	51	52	48				
26-Sep-22	13:24	29	34	30				
30-Sep-22	13:29	18	18	19				

Monitoring Date	Start Time	5 · · · · · · · · · · · · · · · · · · ·		TSP (μg/m³)	Range	Action	Limit
		1 st Result	2 nd Result	3 rd Result	(μ <mark>g/m³)</mark>	Level (µg/m³)	Level (µg/m³)
ASR4							
02-Sep-22	8:29	18	19	21	13-56	372	500
08-Sep-22	8:41	16	13	17			
14-Sep-22	13:12	26	24	28			
20-Sep-22	9:17	54	51	56			
26-Sep-22	8:40	37	38	36			
30-Sep-22	9:01	27	24	21			

3.2.1.2 24-hour TSP

Results of 24-hour TSP at the four monitoring locations are summarised in **Table 3.2**. Graphical plots of the monitoring results are shown in **Appendix F**. The weather conditions in the reporting period are provided in **Appendix G**.

Table 3.2: Summary of 24-hour TSP Monitoring Results

Monitoring Date	Monitoring Results (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
ASR1				
02-Sep-22	47	43-76	226	260
08-Sep-22	51			
14-Sep-22	76			
20-Sep-22	64			
26-Sep-22	67			
30-Sep-22	43			
ASR2A				
02-Sep-22	47	46-81	213	260
08-Sep-22	55			
14-Sep-22	81			
20-Sep-22	65			
26-Sep-22	55			
30-Sep-22	46			
ASR3				
02-Sep-22	54	48-90	205	260
08-Sep-22	62			
14-Sep-22	90			
20-Sep-22	79			
26-Sep-22	67			
30-Sep-22	48			
ASR4				
02-Sep-22	44	44-83	237	260
08-Sep-22	61			
14-Sep-22	81			
20-Sep-22	83			
26-Sep-22	65			
30-Sep-22	46			

No exceedance of 1-hour and 24-hour TSP (Action or Limit Level) was recorded in the reporting period.

3.2.2 Construction Noise Monitoring

The construction noise monitoring results are summarized in **Table 3.3**. Graphical plots of the monitoring data are shown in **Appendix F**. The weather conditions in the reporting period are provided in **Appendix G**.

Monitoring	Start	Mean and Ran	ge of Noise Lev	vels, dB(A)	Limit Level for L _{eq} (dB(A	
Date	Time	L _{eq}	L ₁₀	L ₉₀	-	
NSR1						
08-Sep-22	11:20	44	45	43	75	
14-Sep-22	15:45	49	52	38	-	
20-Sep-22	14:20	48	50	43	-	
26-Sep-22	11:18	49	51	38	-	
NSR3						
08-Sep-22	10:35	40	42	37	75	
14-Sep-22	14:56	43	44	37	-	
20-Sep-22	13:27	47	49	41	-	
26-Sep-22	10:30	42	44	37	-	
NSR5						
08-Sep-22	9:44	47	49	42	75	
14-Sep-22	14:05	45	46	41	-	
20-Sep-22	11:08	47	49	44	-	
26-Sep-22	9:37	48	50	43	-	
NSR7						
08-Sep-22	8:46	68	70	64	75	
14-Sep-22	13:17	63	65	60	-	
20-Sep-22	10:19	65	67	62	-	
26-Sep-22	8:47	66	68	64	-	

Table 3.3: Summary of Construction Noise Monitoring Results

No exceedance (Action/Limit Level) of construction noise was recorded in the reporting period.

3.2.3 Water Quality Monitoring

The water quality monitoring results are summarized in **Table 3.4**. Graphical plots of the monitoring data are shown in **Appendix F**. The weather conditions in the reporting period are provided in **Appendix G**.

Table 3.4: Summary of Water Quality Monitoring Results

Monitoring Date	Temp (ºC)	рН	Dissolved Oxygen (DO) (mg/L)	DO (%)	Turbidity (NTU)	BOD (mg/L) ⁽¹⁾	Suspended Solids (mg/L)
MP3							
02-09-22	32.8	7.4	7.0	97.9	16.1	5	16
05-09-22	33.4	7.3	6.7	98.7	14.0	6	12
07-09-22	31.7	7.5	7.3	97.9	22.0	4	21
09-09-22	33.5	7.4	7.1	103.3	19.7	4	18
13-09-22	33.2	7.2	7.3	102.0	18.7	3	16
15-09-22	33.0	7.2	7.4	103.4	17.3	2	12
17-09-22	32.7	7.3	7.3	102.4	20.9	2	16
19-09-22	32.0	7.5	7.4	101.3	17.3	6	16
21-09-22	31.9	7.4	7.5	103.2	24.1	4	23
23-09-22	31.7	7.3	7.4	100.5	19.8	5	17
26-09-22	32.1	7.4	7.5	103.0	18.2	7	14
28-09-22	32.3	7.4	7.6	105.2	17.2	5	17
30-09-22	30.1	7.5	7.4	98.5	25.5	5	22
Action Level	-	<5.5 or >7.5	<6.85	-	>64	-	>65
Limit Level	-	<4.0 or >8.0	<6.65	-	>67	-	>66
MP4							
02-09-22	32.4	7.2	4.9	65.6	41.8	4	47
05-09-22	33.0	7.2	4.9	59.9	30.1	5	35
07-09-22	31.3	7.2	4.8	61.1	19.8	3	17
09-09-22	33.1	7.2	5.4	71.7	24.6	4	26
13-09-22	33.0	7.0	5.5	76.5	21.0	3	21
15-09-22	32.9	7.0	5.6	78.0	32.1	<2	42
17-09-22	32.5	7.1	5.3	73.3	46.5	4	<u>68</u>
19-09-22	31.9	7.2	5.5	75.8	18.6	2	21
21-09-22	31.7	7.2	5.7	76.9	21.1	2	19
23-09-22	31.5	7.2	5.6	75.8	26.5	<2	24
26-09-22	32.0	7.2	5.7	77.8	49.1	<2	44
28-09-22	32.2	7.1	5.7	79.3	27.8	<2	24
30-09-22	30.0	7.3	5.5	73.7	31.0	3	27
Action Level	-	<5.5 or >7.5	<3.91	-	>60	-	>50
Limit Level	-	<4.0 or >8.0	<3.82	-	>64	-	>53
MP5							
02-09-22	33.0	7.0	4.8	66.6	43.4	4	42
05-09-22	33.6	6.9	5.0	64.9	30.9	4	29
07-09-22	31.9	6.9	5.0	65.4	21.9	3	17
09-09-22	33.7	6.9	4.9	65.5	23.5	3	24
13-09-22	33.4	7.3	5.2	73.2	21.6	<2	22
15-09-22	33.3	7.4	5.4	75.8	33.7	2	37

Monitoring Date	Temp (ºC)	рН	Dissolved Oxygen (DO) (mg/L)	DO (%)	Turbidity (NTU)	BOD (mg/L) ⁽¹⁾	Suspended Solids (mg/L)
17-09-22	32.9	7.4	5.1	70.9	38.2	2	53
19-09-22	32.2	7.1	5.2	72.2	18.8	<2	17
21-09-22	32.0	7.2	5.3	72.7	18.0	<2	15
23-09-22	31.9	7.0	5.2	71.5	23.2	<2	23
26-09-22	32.4	6.9	5.3	74.0	35.3	<2	33
28-09-22	32.5	6.9	5.5	76.0	26.1	<2	24
30-09-22	30.2	7.1	5.0	67.3	36.2	3	29
Action Level	-	<5.5 or >7.5	<4.13	-	>81	-	>66
Limit Level	-	<4.0 or >8.0	<3.87	-	>84	-	>69
MP6							
02-09-22	33.3	7.0	4.8	63.1	46.6	4	50
05-09-22	33.9	6.9	4.9	61.4	32.4	4	36
07-09-22	32.2	6.9	5.0	64.0	22.1	3	19
09-09-22	34.0	6.9	5.1	61.7	26.2	3	28
13-09-22	33.5	7.3	5.0	69.8	24.7	<2	24
15-09-22	33.4	7.4	5.2	73.0	40.1	2	46
17-09-22	33.1	7.4	5.0	69.4	36.7	2	41
19-09-22	32.4	7.0	5.0	69.5	20.3	2	20
21-09-22	32.2	7.1	5.1	70.0	21.6	<2	20
23-09-22	32.0	7.0	5.1	69.9	23.9	<2	24
26-09-22	32.5	6.9	5.2	72.4	37.1	<2	39
28-09-22	32.6	6.9	5.4	74.5	27.2	2	24
30-09-22	30.3	7.0	4.9	65.7	36.6	3	49
Action Level	-	<5.5 or >7.5	<4.61	-	>94	-	>75
Limit Level	-	<4.0 or >8.0	<4.52	-	>96	-	>75

Notes:

(1) "<2": Value is too low to indicate (<2mg/L).

(2) For the Limit Level of DO, 1-percentile of baseline data is adopted as it is greater than 2mg/L. (Refer to Baseline Monitoring Report)

(3) Values in **Bold** indicate Action Level exceedance.

(4) Values <u>Underlined and in Bold</u> indicate Limit Level exceedance.

3.2.3.1 Exceedance Investigation and Findings

During September 2022, one Action Level exceedance and one Limit Level exceedance were observed. One Action Level exceedance of DO was recorded at MP3 and one Limit Level exceedance of SS was recorded at MP4.

Exceedance of DO at MP3

Exceedance of the Action Level of DO was observed on 5 September 2022 at MP3.

As understood, the fish pond near the site (represented by MP3) is separated from the open ditch by the pond bund (since commencement of construction phase EM&A monitoring in May 2010) and from the construction site by the WRA (since it was completed in November 2010). No direct discharge from the project site to the fish pond was observed.

Mitigation measures for water quality protection, including the provision of wastewater treatment facilities (with sedimentation tank and AquaSed) and proper drainage system that separates from the WRA, have been implemented. No adverse impact on the fish pond near the site was observed, including on the day with exceedance of water quality parameters.

According to the results of the baseline water quality monitoring conducted prior to the commencement of construction works, DO levels recorded at MP3 ranged from 6.6 to 11.9 mg/L. The recorded DO exceedance level (6.7 mg/L) is therefore considered to be within the range of natural variations at this location.

It is also noted from AFCD's Environmental Management of Pond Fish Culture (EMPFC) guidelines from its Series of Good Aquaculture Practice that for good water quality, DO levels should be maintained above 4 mg/L. The exceedance level recorded at MP3 (6.7 mg/L) is well above this value. Nevertheless, aerators were observed on the day of DO exceedance (see Photo 1), which would have helped mitigate the low DO levels.

Since DO exceedance was not detected at the other locations on this day, it is possible that the DO exceedance at MP3 was due to localised natural variations.

It is concluded that the exceedance of DO at MP3 was possibly due to localised natural variations and external factors such as pond fish culture activities in the fish pond represented by MP3, which are not related to project construction activities.

Exceedance of SS at MP4

Exceedance of the Limit Level of SS was observed on 17 September 2022.

On the day of SS exceedance at MP4, a slightly muddy appearance of the water body was observed (see Photo 2). It is also noted that the measured turbidity level at MP4 was high on the day of SS exceedance, although no exceedance was recorded. It is believed that increased turbidity resulted in higher SS inside the ditch water on the day of SS exceedance.

Furthermore, it is noted that SS level recorded upstream at MP5 on the same day was also elevated but did not exceed its respective Action Level.

As presented in the weekly site inspections checklists, no observation regarding discharge of muddy water was recorded in September 2022. Hence it is believed that the SS exceedance was probably due to localised natural variations instead.

Conclusion

As a result, the abovementioned exceedances were unlikely to be due to the project construction works and therefore not considered to be related to the project.

Photo 1 Appearance of the water body at MP3 on 5 September 2022

Appearance of the water body at MP4 on 17 September 2022

4 Ecological Monitoring

4.1 Monitoring of Birds

This report documents surveys conducted in the Survey Area between 1 and 30 September 2022. The Wetland Restoration Area (WRA) is also surveyed as the area is accessible and site formation works for WRA has been completed. The updated survey transect is provided in **Figure 4.1**. Dates and ecological surveys conducted during this period are summarised in **Appendix H**.

Monitoring was undertaken following the survey methodology in the EM&A Manual. A transect was followed in the bird surveys (see **Figure 4.1**). All bird species were identified to species and all bird species of conservation importance and/or wetland dependent were enumerated and recorded to the habitats in which they were observed. Flying birds were not recorded unless they were foraging and/or associated with the habitat (such as swifts, swallows and birds of prey). Further, notable bird observations during other surveys or site inspections were also recorded.

Bird surveys were conducted on a weekly basis. A total of 48 bird species were recorded in the Survey Area (excluding the WRA), 23 of which were species of conservation importance and/or wetland-dependence. Within the WRA, 49 bird species were recorded, 25 of which were species of conservation importance and/or wetland-dependence including all three target species (Little Egret, Chinese Pond Heron and Eastern Cattle Egret).

The WRA continues to attract a number of species of conservation importance, including Little Grebe (*Tachybaptus ruficollis*), Great Cormorant (*Phalacrocorax carbo*), Grey Heron (*Ardea cinerea*), Great Egret (*Ardea alba*), Little Egret (*Egretta garzetta*), Eastern Cattle Egret (*Bubulcus coromandus*), Chinese Pond Heron (*Ardeola bacchus*), Yellow Bittern (*Ixobrychus sinensis*), Black-crowned Night Heron (*Nycticorax nycticorax*), Black Kite (*Milvus migrans*), Eurasian Hobby (*Falco Subbuteo*), Pied Kingfisher (*Ceryle rudis*), White-throated Kingfisher (*Halcyon smyrnensis*), Zitting Cisticola (*Cisticola juncidis*), White-shouldered Starling (*Sturnia sinensis*) and Collared Crow (*Corvus torquatus*). Little Grebe, Eastern Cattle Egret, Yellow Bittern, Black-crowned Night Heron, Eurasian Hobby, Pied Kingfisher, White-throated Kingfisher, Zitting Cisticola, White-shouldered Starling and Collared Crow are listed by Fellowes *et al.* as of "Local Concern" in 2002. Great Cormorant, Grey Heron, Great Egret, Little Egret and Chinese Pond Heron are listed by Fellowes *et al.* as of "Potential Regional Concern" in 2002. Black Kite is listed by Fellowes *et al.* as of "Regional Concern" in 2002.

A summary of survey data is provided in Appendix I.

4.2 Monitoring of Herpetofauna

One daytime herpetofauna survey was scheduled in the reporting month. No amphibian species nor reptile species were recorded in the Survey Area (excluding the WRA) during regular or outside regular surveys. Within the WRA, no amphibian species and two reptile species were recorded during regular surveys.

A summary of the survey findings is provided in **Appendix J**.

4.3 Monitoring of Dragonflies and Butterflies

One odonates and butterflies survey was scheduled in the reporting month. 11 odonate species and 12 butterfly species were recorded in the Survey Area (excluding the WRA) during regular surveys. Within the WRA, 12 odonate species and 17 butterfly species were recorded during

regular surveys. Whereas, Dingy Dusk-hawker (*Gynacantha subinterrupta*) and two butterfly species (Little Branded Swift *Pelopidas agna* and Small Branded Swift *Pelopidas mathias oberthueri*) were recorded outside regular survey. Therefore, a total of 13 odonate species and 19 butterfly species were recorded within the WRA. Among the odonates recorded within the WRA, Dingy Dusk-hawker (*Gynacantha subinterrupta*), Coastal Glider (*Macrodiplax cora*) and Scarlet Basker (*Urothemis signata signata*) were listed by Fellowes *et al.* as of "Local Concern" in 2002.

A summary of the survey findings is provided in **Appendix J**.

4.4 Monitoring of Mammals

Monitoring of mammals was conducted concurrently with other faunal surveys. Any mammal species encountered during site inspections or other habitat management works were recorded as 'outside survey'.

No mammal species were recorded in the Survey Area (excluding the WRA) during regular or outside regular surveys. Within the WRA, two mammal species, Pallas's Squirrel (*Callosciurus erythraeus*) and Leopard Cat (*Prionailurus bengalensis*), were recorded during regular surveys. Leopard Cat scats were recorded during the herpetofauna survey on 15 September 2022.

A summary of the survey findings is provided in **Appendix J**.

4.5 Monitoring of Water Quality

Regular water level monitoring was conducted on 15 September 2022. Additional water level monitoring was conducted on 30 September 2022, after the heavy rain during the previous week.

The water levels in the reporting month ranged between 160 and 210cm during the water level monitoring works.

The water level of the Cells allowed wetland birds to use them as foraging sites and attracted diving birds such as Little Grebe (*Tachybaptus ruficollis*) to forage. The shallower areas along the edges of ponds and islets attracted ardeids such as Great Egret (*Ardea alba*), as well as the target species Little Egret (*Egretta garzetta*) and Chinese Pond Heron (*Ardeola bacchus*). These areas were also used by other wetland-dependent birds as foraging and/or perching sites, such as the White-breasted Waterhen (*Amaurornis phoenicurus*), Pied Kingfisher (*Ceryle rudis*), White-throated Kingfisher (*Halcyon smyrnensis*) and Common Kingfisher (*Alcedo atthis*). The current water level will be kept for wetland bird usage.

In-situ water quality monitoring of all other parameters was conducted on 30 September 2022.

Monitoring data is presented in **Appendix K**. Locations for the monitoring of water quality for the ecological monitoring are shown in **Figure 4.2**.

4.6 Management Activities

4.6.1 Vegetation Management

Vegetation management activities undertaken at the site primarily involved removal of excess grass, exotic species and climbers. Climbers were cleared along the emergency vehicular access (EVA) of Cell 2 and Cell 4. The cleared climbers were left to dry along the EVA and will be subsequently removed. Weeding works were conducted along the EVA of pond bunds of Cell 1 and Cell 2, Cell 2 and Cell 3 and Cell 3 and Cell 4. Fallen leaves along the EVA of Cell 3 and

Cell 4 were swept aside and formed piles of plant materials on both sides of the EVA. These piles were used to attract herpetofauna.

National protected Water Fern (*Ceratopteris thalictroides*) were found growing in Cell 3 and Cell 4, together with other floating vegetation. The status of the Water Fern will be monitored closely before conducting any floating vegetation clearance.

Reed-dependent Yellow Bittern (*Ixobrychus sinensis*) was recorded in the reedbed of WRA during the reporting month. Previous surveys confirmed that this species used the reedbed of the WRA as breeding site. The breeding status of the species and the presence of the bird(s) will be closely monitored before conducting any management work of reeds within the WRA.

Reed-dependent Oriental Reed Warbler (*Acrocephalus orientalis*) and Black-browed Reed Warbler (*Acrocephalus bistrigiceps*) were recorded foraging in the reedbed of WRA during the reporting month. The usage of reedbed by reed-dependent birds will be closely monitored before conducting any management work of reeds within the WRA.

Wetland dependent Common Moorhen (*Gallinula chloropus*) and White-breasted Waterhen (*Amaurornis phoenicurus*) were seen foraging among the aquatic vegetation around islets and along pond bunds. These areas will be closely monitored before conducting any management work of vegetation within the WRA.

The vegetations of Cell 1 and Cell 4 provided foraging and roosting habitats for breeding and/or migratory birds, as well as nectar sources for butterflies and rooting sites of dragonflies. Pruning will be kept to a minimum as long as the branches do not block the passage.

4.6.2 Wildlife Management

Red Imported Fire Ant nests along the cell bunds and along the EVA were checked and marked. Treatments will be conducted in the coming months.

Egg masses of Apple Snails (*Pomacea canaliculate*) found along concrete structures of the WRA (e.g. sluice gates between Cells, and concrete wall of Cell 4) were cleared. Egg masses found on vegetation along the islets and Cell edges will be cleared after close monitoring of the breeding status of wetland-dependent birds, and the growth of Water Fern in the following months.

Mitigation actions have been taken in the WRA during the survey period to increase the WRA utilization by birds, including:

- 1. Controlling the vegetation at Cell 1, Cell 2, Cell 3 and Cell 4; and
- 2. Controlling the water level at Cell 1, Cell 2, Cell 3 and Cell 4.

4.7 Summary

Ecological monitoring during September 2022 was carried out according to the survey methodology and frequency outlined in the EM&A Manual.

A summary of the survey findings is listed in Table 4.1:

Table 4.1: Summary of Ecological Monitoring in WRA and Survey Area under EM&A Manual

Species	Survey Area (excluding WRA)	WRA
Birds (total)	48	49

Species	Survey Area (excluding WRA)	WRA
Birds (of conservation importance and/or wetland-dependence)	23	25
Amphibians	0	0
Reptiles	0	2
Mammals	0	2
Odonates	11	13
Butterflies	12	19

Survey findings indicate that the ponds within the Survey Area supported numbers and diversity of wetland-dependent birds typical of fishpond areas. The WRA continues to attract wetland dependent fauna and serves as a buffer between the residential portion and the fishponds in the north.

All three target species, Little Egret (*Egretta garzetta*), Chinese Pond Heron (*Ardeola bacchus*) and Eastern Cattle Egret (*Bubulcus coromandus*), were observed perching on tall trees within the WRA.

Dense and tall vegetation along the edge of the EVA attracted insectivorous birds such as Yellowbellied Prinia (*Prinia flaviventris*) and Plain Prinia (*Prinia inornata*). Passerines such as Lightvented Bulbul (*Pycnonotus sinensis*), Red-whiskered Bulbul (*Pycnonotus jocosus*), Oriental Magpie Robin (*Copsychus saularis*), Cinereous Tit (*Parus cinereus*), Swinhoe's White-eye (*Zosterops simplex*), Masked Laughingthrush (*Garrulax perspicillatus*), Common Tailorbird (*Orthotomus sutorius*), Pale-legged Leaf Warbler (*Phylloscopus tenellipes*), Asian Brown Flycatcher (*Muscicapa latirostris*) and Black-collared Starling (*Gracupica nigricollis*) were observed foraging among the vegetations. These vegetations were also used by butterflies and odonates as perching sites. Vegetation stands will be kept as long as the branches do not overgrow and obscure the EVA. During vegetation clearance, some of these environments were treated only with minimum trimming to preserve suitable habitats for the wildlife.

The reedbed of the WRA is used by prinias and reed-dependent migrant Oriental Reed Warbler (*Acrocephalus orientalis*) as foraging site. Previous data proved that the reedbed is also a potential breeding site for reed-dependent Yellow Bittern (*Ixobrychus sinensis*). The reedbed will be closely monitored before conducting any clearance work.

Fallen leaves scattered along the EVA were swept aside and formed a thicker layer of fallen plant materials. These piled-up plant materials are used to attract amphibians and reptiles within the WRA in the warmer and wetter months.

5 Landscape and Visual

5.1 Site Inspections

The EM&A programme for Landscape and Visual impact due to the construction commenced in June 2010 and continued during the reporting period. Site inspections on Landscape and Visual impact were carried out on 6 and 23 September 2022 to confirm the implementation of mitigation measures at the construction stage.

The Event and Action Plan for Landscape & Visual is shown in **Appendix D**.

5.2 Construction Phase Audit Summary

The audit was undertaken with reference to the specific checklists provided in **Table 2.13 – Table 2.15** and audit results are summarized below in **Table 5.1**. Representative photos showing the implementation of mitigation measures are presented in **Appendix M**.

Area of Works	Items of be Monitored
Works Area	The boundaries of the works area have been established on site in accordance with the contract documents and approved plans (EP), and the limit of current heavy construction activity is now confined to within the site hoardings (North side of the site / access road) and the noise barriers (other sides of the site). Minor works such as horticultural maintenance of the planting and transplanted trees, and boundary fence repair was proceeding along the Royal Palms – Palm Springs boundary. (Appendix M Photo 1 – Table 2.14 CM2 refers) No construction works were observed to have exceeded the site boundaries. No construction was carried out at the wetland restoration area after 15 November 2010.
Protection of all trees and woodland blocks to be retained	Trees retained within the site along the northeast boundary, beside wetland restoration area, have been identified and protected by temporary protective fencing.
Streams	The works site is partly encircled by a berm / perimeter channel to intercept surface water and prevent it from washing off into any of the neighbouring sites. Surface water is collected within the site in a temporary drainage channel. Gravels beds and barriers have been installed to filter site runoff, sedimentation ponds have been provided to enable primary treatment before discharge to mains drains.
Clearance of existing vegetation	Site clearance was completed prior to the commencement of construction.
Transplanting of trees	Tree transplanting has been completed, with the trees relocated to various points within the planting strip along the southern boundary of the site, outside the noise barrier. Most of the trees continue to re-establish well.
Topsoil stripping	Suitable pond bund and soil material which had been excavated and stockpiled from the original site, has now been re-used within the landscape works.
K 1 1 111	Dust suppression measures are active along all internal site access tracks.
New buildings	No new permanent buildings have yet been constructed on site.
Boundaries	Hoardings have been erected along most of the boundaries of the site. Installation of new screen fence between the future residential sites and the constructed wetland restoration areas is complete. Fence has been painted green to match with the surrounding vegetated environment. (Appendix M Photo 1 – Table 2.14 CM2 refers)
Noise Barrier	Noise barriers have been installed along the southern and western boundaries of the site in accordance with the contract requirements. Their design complies with the mitigation requirements, with upper 6 to 7m portion of the barrier being made from a translucent material with green tinted (to match with the environment). Supporting GMS structure, likewise, has been painted green. (Appendix M Photo 3 – Table 2.14 CM6 refers).
Night-time lighting	No night-time works were reported to have been carried out during the monitoring period.

Area of Works	Items of be Monitored
Landscape and wetland treatments generally	Continuous belt of screen planting along the southern and western boundaries of the site has been completed. The formation, soiling and water control structures of the wetland restoration area have been completed. (Appendix M Photo 3 – Table 2.14 CM6 refers)
	The wetland areas have been established, with the ponds are being seasonally filled with rainwater. Planting of areas around the WRA cells is complete. No construction was carried out at the wetland restoration area after 15 November 2010. (Appendix M Photo 2 – Table 2.14 CM2 refers)
Soiling, etc.	The soil placement and grading for each of the wetland restoration areas has been completed. Refilling for those holes left after the whole tree removal works has been completed.
Plant supply	The plant material used in the Advance Planting Strip and in the WRA are all commonly available species and came from commercial sources. Transplanted reeds (<i>Phragmites australis</i>) at the wetland habitat came from the temporary holding nursery onsite.
Planting	The tree species are all from the approved list.
	Seedling trees and shrubs have been established at the margins of the wetland cells. Some invasive species and undesirable exotic species have been found during site inspection, removal of these species should be undertaken on a regular basis.
Establishment Works	The advance planting, the compensatory planting and transplanted trees are generally bein maintained by the landscape sub-contractor in accordance with the specification to ensure the the contract requirements are met.
	Removal of overgrown weeds, unplanned tree seedlings and invasive climbers in the spac behind screen noise barrier needs to be undertaken on a monthly basis as they may inhibit th advance planting.
	Regular removal of invasive species (i.e. apple snails, <i>Leucaena leucocephala, Mikani micrantha, Mimosa pudica, Bidens alba, Ludwigia erecta, Sesbania cannabina</i> , etc.) in WR. should be undertaken.
	Overgrown vegetation and fish-free ponds were observed within the WRA. Horticultural maintenance (grass cutting, weeding, etc.) in the shrubs and tree seedling areas around th WRA cells, access pathways and ponds should be undertaken regularly. It is recommended t trim the vegetation in the fish-free pond in line with the design of short marsh vegetation area to attract dragonflies.
	The growth of shrubs / seedlings on the north side of the WRA remains fair.

6 Environmental Site Inspection and Audit

6.1 Site Inspection

The ET had carried out construction phase weekly site inspections on 2, 6, 14, 23 and 29 September 2022. All observations have been recorded in the site inspection checklist and passed to the Contractor together with the appropriate recommended mitigation measures where necessary. The key observations from site inspections and associated recommendations are summarized in **Table 6.1**.

Table 6.1: Summary of Site Inspections and Recommendations

Key Observations	ET Recommendation	Contractor's Responses / Action(s) Undertaken	Close-out (Date)
Nil			

6.2 Solid and Liquid Waste Management Status

The Contractor has been registered as a chemical waste producer for the Project. Construction and demolition (C&D) material sorting was carried out on site. A sufficient number of receptacles were available for general refuse collection.

As advised by the Contractor, no inert C&D material (i.e. broken concrete/ big boulders) were generated on site and sent to a sorting facility for recycling into rockfill. No metals were generated and collected by registered recycling collector. No paper/cardboard packing and no plastics were generated on site and collected by registered recycling collector. No chemical waste was generated and collected by licensed chemical waste collector. No other types of wastes (e.g. general refuse) were generated on site and disposed of at public landfill facility.

The Contractor is advised to maintain on site waste sorting and recording system and maximize reuse / recycling of C&D wastes, whenever these are generated.

6.3 Status of Environmental Licences and Permits

The environmental permits, licences, and/or notifications on environmental protection for this Project which were valid during the reporting period is summarised in **Table 6.2**.

Statutory Reference	Description	Permit/Reference No.	Status
EIAO	Environmental Permit	EP-311/2008/E	Valid
APCO	Notification of Construction Work under APCO	2018-027-A-1 (20 July 2020)	Valid
WPCO	Discharge Licence	WT00037436-2021 (21 Apr 2021)	Valid
WDO	Registration as Chemical Waste Producer	WPN0000-542-H3083-04	Valid
WDO	Bill Account for Disposal	700945423	Valid

Table 6.2: Status of Environmental Submissions, Licences and Permits

Legend: EIAO – Environmental Impact Assessment Ordinance; APCO – Air Pollution Control Ordinance; WPCO – Water Pollution Control Ordinance; WDO – Waste Disposal Ordinance

6.4 Recommended Mitigation Measures

The EM&A programme followed the recommended mitigation measures in the EM&A Manual. The EM&A requirements as well as the summary of implementation status of the environmental

mitigation measures are provided in **Appendix L**. In particular, the following mitigation measures continue to be implemented at the site:

Air Quality

• Access roads should be sprayed with water or dust suppression chemical to maintain the entire road surface wet or paved.

Water Quality

- Site effluent should be discharged in accordance with the discharge licence.
- The site should be confined and properly maintained to avoid silt runoff.
- Chemicals will always be stored on drip trays or in bunded areas.

Waste Management

- The chemical waste storage area should be clearly labelled.
- General refuse should be stored in enclosed bins or compaction units separate from C&D and chemical wastes.

7 Report on Non-compliance, Complaints, Notifications of Summons and Successful Prosecutions

7.1 Record of non-compliance of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality and Noise monitoring in the reporting month.

During September 2022, one Action Level exceedance of DO was recorded at MP3 and one Limit Level exceedance of SS was recorded at MP4.

A summary is presented in **Table 7.1** below.

Table 7.1: Summary of Exceedances in Water Quality

Monitoring Date	рН	Dissolved Oxygen (DO) (mg/L)	Turbidity (NTU)	Suspended Solids (mg/L)
MP3				
05-09-22	7.3	6.7	14.0	12
Action Level	<5.5 or >7.5	<6.85	>64	>65
Limit Level	<4.0 or >8.0	<6.65	>67	>66
MP4				
17-09-22	7.1	5.3	46.5	<u>68</u>
Action Level	<5.5 or >7.5	<3.91	>60	>50
Limit Level	<4.0 or >8.0	<3.82	>64	>53

Notes:

(1) "<2": Value is too low to indicate (<2mg/L).

(2) For the Limit Level of DO, 1-percentile of baseline data is adopted as it is greater than 2mg/L. (Refer to Baseline Monitoring Report)

(3) Values in **Bold** indicate Action Level exceedance.

(4) Values <u>Underlined and in Bold</u> indicate Limit Level exceedance.

7.2 Record on Environmental Complaints Received

No environmental complaint was received during the reporting month.

7.3 Record on Notifications of Summons and Successful Prosecution

No notifications of summons or successful prosecution were received the reporting month.

7.4 Review of Reasons for and Implications of Non-compliance, Complaints, Summons and Prosecutions

Non-compliance

Investigations have been carried out to identify the causes of the water quality exceedances.

The investigation findings are presented in **Section 3.2.3.1**. It was concluded that the abovementioned exceedances were unlikely to be due to the construction works and therefore not considered to be related to the project.

Complaints, Summons and Prosecutions

Not applicable for this reporting month.

7.5 Follow-up Actions Taken

Non-compliance

The Event and Action Plan has been followed. Although it is considered that the exceedances were not related to the Project, the Contractor was reminded to implement the water quality mitigation measures in accordance with the recommendation stated in Section 5.6.1 - 5.6.4 of the EIA Report as far as practicable, regular spot checks would be conducted on the nearby discharge by the Contractor and he would inform the ET for investigation.

Complaints, Summons and Prosecutions

Not applicable for this reporting month.

7.6 Cumulative Statistics for Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics for complaints, notifications of summons and successful prosecutions for the Project account for period starting from the date of commencement of construction (i.e., 12 May 2010) to the end of the reporting month and are summarized in **Table 7.2** below.

Table 7.2: Statistics for Complaints, Notifications of Summons and Successful Prosecution

Reporting Period		Cumulative Statistic	s
	Complaints	Notifications of Summons	Successful Prosecutions
This reporting month (September 2022)	0	0	0
From 12 May 2010 to end of the reporting month (September 2022)	8	0	0

8 Future Key Issues

8.1 Site Preparatory Works and Construction Works for the Coming Month

Site works to be commissioned in the coming month include:

- Regular maintenance work for the Wetland Restoration Area (including lowering of the water level and removal of unwanted species in the pond)
- No major construction works

8.2 Key Issues for the Coming Months

Key issues to be considered in the coming three months include:

- Provision of water spraying or dust suppression chemical to prevent generation of dust from activities on-site and the haul road during dry weather conditions;
- Provision of wheel washing facilities at vehicle exit point;
- Generation and treatment of site surface runoffs and wastewater from activities on-site and during wet weather conditions;
- Sorting, recycling, storage and disposal of general refuse and construction waste from activities on-site; and
- Management of chemicals and avoidance of oil spillage on-site and to the drainage system.

8.3 Monitoring Schedule for the Coming Month

The environmental site inspection and environmental monitoring will be continued in the coming month. Impact monitoring for air, noise, water quality, ecology and landscape and visual in accordance with the approved EM&A Manual has commenced since 12 May 2010. The tentative monitoring schedule for October 2022 is shown in the **Table 8.1**.

Table 8.1: Tentative Environmental Monitoring and Audit Schedule for the Next Reporting Month

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						National Day
2	3	4	5	6	7	
	Water	Chung Yeung Festival	Water	Bird 24-hr TSP 1-hr TSP Noise Monitoring	Water Landscape	
9	10	11	12	13	14	
	Water ∀ater Quality Monitoring		Water 24-hr TSP 1-hr TSP Noise Monitoring	Bird Dragonfly & Butterfly	Water @	
16	17	18	19	20	21	
	Water	24-hr TSP 1-hr TSP Noise Monitoring	Water	Bird Herpetofauna (day time)	Water Landscape ∀ater Quality Monitoring	
23	24	25	26	27	28	
	Water 24-hr TSP 1-hr TSP Noise Monitoring		Water	Bird	Water 24-hr TSP 1-hr TSP	
30	31 Water					

* Site Audit by Mott MacDonald (MM)

Ecological Surveys & Landscape Audits indicated in **bold font**

@ Report Submission (Monthly EM&A Report)

8.4 Conclusions and Recommendations

8.4.1 Conclusions

The EM&A programme as recommended in the EM&A manual has been undertaken in the reporting month since 12 May 2010.

Monitoring of Air Quality, Noise, Water Quality, Ecology and Landscape and Visual impacts due to the Project was under way. In particular, the 1-hr TSP, 24-hr TSP, noise level (as Leq) and water quality parameters (such as pH, DO, turbidity and SS) under monitoring have been checked against established Action and Limit levels.

There was no breach of Action or Limit Levels for Air Quality and Noise monitoring in the reporting month.

During September 2022, one Action Level exceedance and one Limit Level exceedance were observed. One Action Level exceedance of DO was recorded at MP3 and one Limit Level exceedance of SS was recorded at MP4.

8.4.2 Recommendations

With considerations on the construction activities and environment, the following recommendations were provided:

Air Quality

- All stockpiles should be covered by tarpaulin or kept wet by water spraying;
- All vehicles should be washed to remove any dusty materials before leaving the construction sites;
- The portion of road leading the construction site that is within 30m of a designated vehicle entrance or exit should be kept clear of dusty materials;
- During the dry season, sufficient water spraying should be provided at haul road to reduce dust emission; and
- Ensure proper functioning of the wheel wash facility.

Noise

- Mobile plant should be sited as far away from NSRs as possible;
- Plant known to emit noise strongly in one direction should be orientated to direct noise away from the NSRs; and
- The construction activities should be better scheduled to reduce noise nuisance.

Water Quality

- Effluent should be discharged in accordance with the discharge licence conditions;
- Soil contaminated with chemicals/oils should be removed from site and the voids should be created filled with suitable materials; and
- Silt and debris should be removed from the temporary drainage channel regularly.

Waste Management

- General refuse should be stored in enclosed bins or compaction units separate from C&D and chemical wastes to minimise odour, pest and litter impacts.
- Reuse the excavated materials as far as practical to reduce the amount of waste disposal;
- C&D waste should be segregated and stored in different containers to other wastes to encourage the re-use or recycling of materials and their proper disposal;
- Ensure drip trays are provided for chemical containers to prevent leakage or soil contamination;
- All plants and vehicles should be properly maintained to prevent oil leakage; and
- Oil stains on soil should be cleared by disposal of contaminated soil.

9 References

9.1 List of References

Agriculture, Fisheries and Conservation Department. 2019. Hong Kong Biodiversity Database. <u>https://www.afcd.gov.hk/english/conservation/hkbiodiversity/database/popup_record.php?id=74</u> <u>8</u>, 2019 -07-09

BirdLife International. 2017. *Important Bird Areas factsheet: Inner Deep Bay and Shenzhen River catchment area*. <<u>http://www.birdlife.org</u>> on 06/07/2017.

Carey, G. J., Chalmers, M. L., Diskin, D. A., Kennerley, P. R., Leader, P. J., Leven, M. R., Lewthwaite, R. W., Melville, D. S., Turnbull, M., and Young, L. 2001. *The Avifauna of Hong Kong*. Hong Kong Bird Watching Society, Hong Kong.

Chan, S.K.F., K.S. Cheung, C.Y. Ho, F.N Lam & W.S. Tam, 2005. A Field Guide to the Amphibians of Hong Kong. Cosmos Books Ltd., Hong Kong.

Fellowes, J.F., M.W.N. Lau, D. Dudgeon, G.T. Reels, G.W.J. Ades, G.J. Carey, B.P.L. Chan, R.C. Kendrick, K.S. Lee, M.R. Leven, K.D.P. Wilson, Y.T. Yu, 2002. *Wild Animals to Watch: Terrestrial and Freshwater Fauna of Conservation Concern in Hong Kong*. Hong Kong.

Hong Kong Bird Watching Society 2020. List of Hong Kong Birds - 2020-03. <www.hkbws.org.hk>.

Hong Kong Observatory Climate Information Service. <<u>https://www.hko.gov.hk/en/wxinfo/pastwx/mws/mws.htm</u>>

Horiuchi, S., Odawara, T., Yonemura, S., Hayashi, Y., Kawaguchi, M., Asada, M., Kato, M. & Yasuhara, K. (2007, November). *Floating structure using waste tires for water environmental remediation. In Scrap Tire Derived Geomaterials-Opportunities and Challenges: Proceedings of the International Workshop IW-TDGM 2007.* p. 291. CRC Press.

IUCN 2016. *IUCN Red List of Threatened Species. Version 2016-3.* <<u>www.iucnredlist.org</u>>. Downloaded on **7**th **December 2016**

Karsen, S., M.W.N. Lau & A. Bogadek, 1998. *Hong Kong Amphibians and Reptiles*. Provisional Urban Council, Hong Kong.

List of National Protected Animal (updated on 5 Feb 2021) <u>http://www.gov.cn/xinwen/2021-02/09/5586227/files/e007df5cdb364bcdbcb89d169047d6c5.pdf</u>

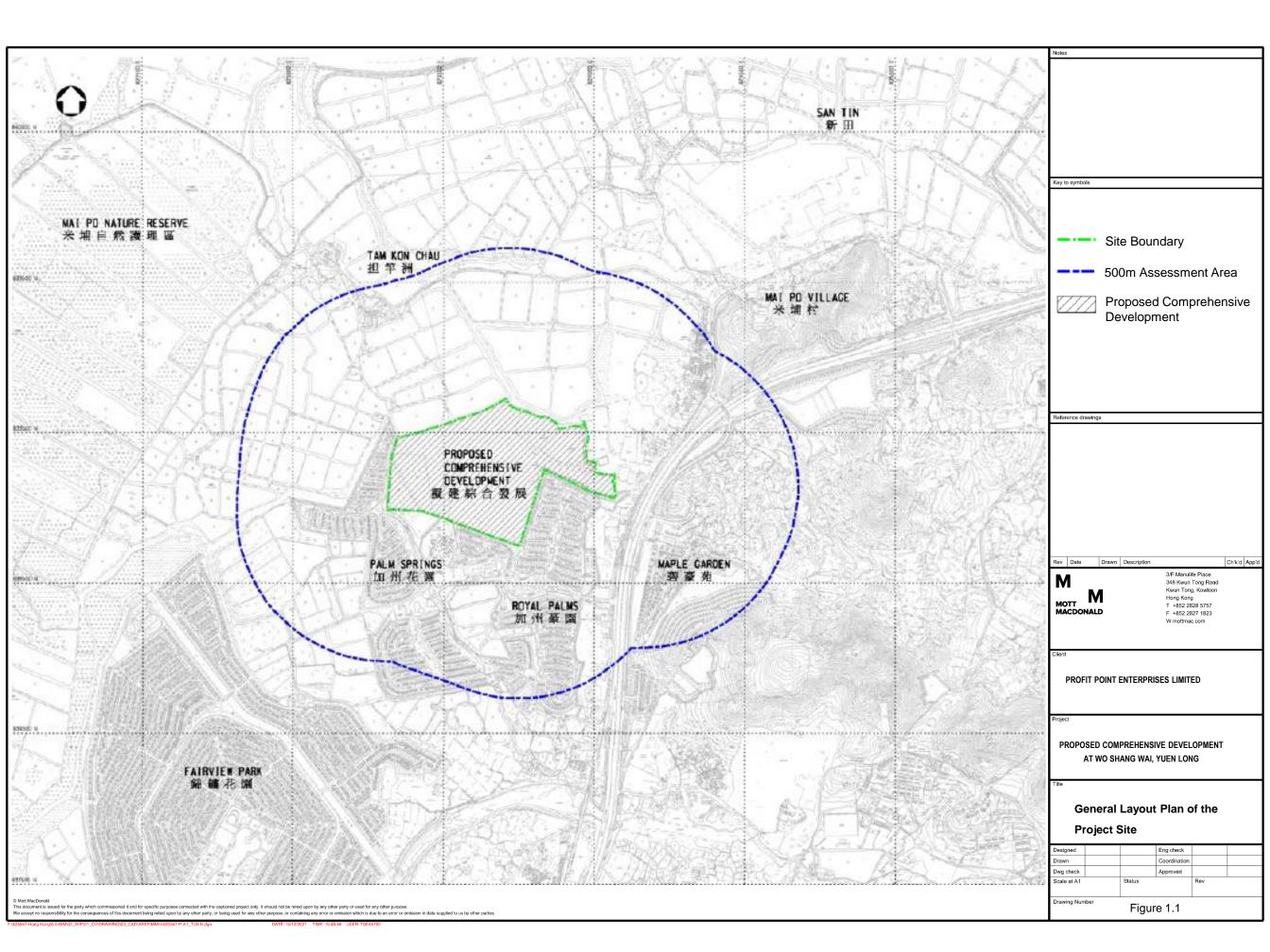
Lo, P. Y. F. and W.L. Hui, 2004. Hong Kong Butterflies. Hong Kong, Cosmos Books Ltd.

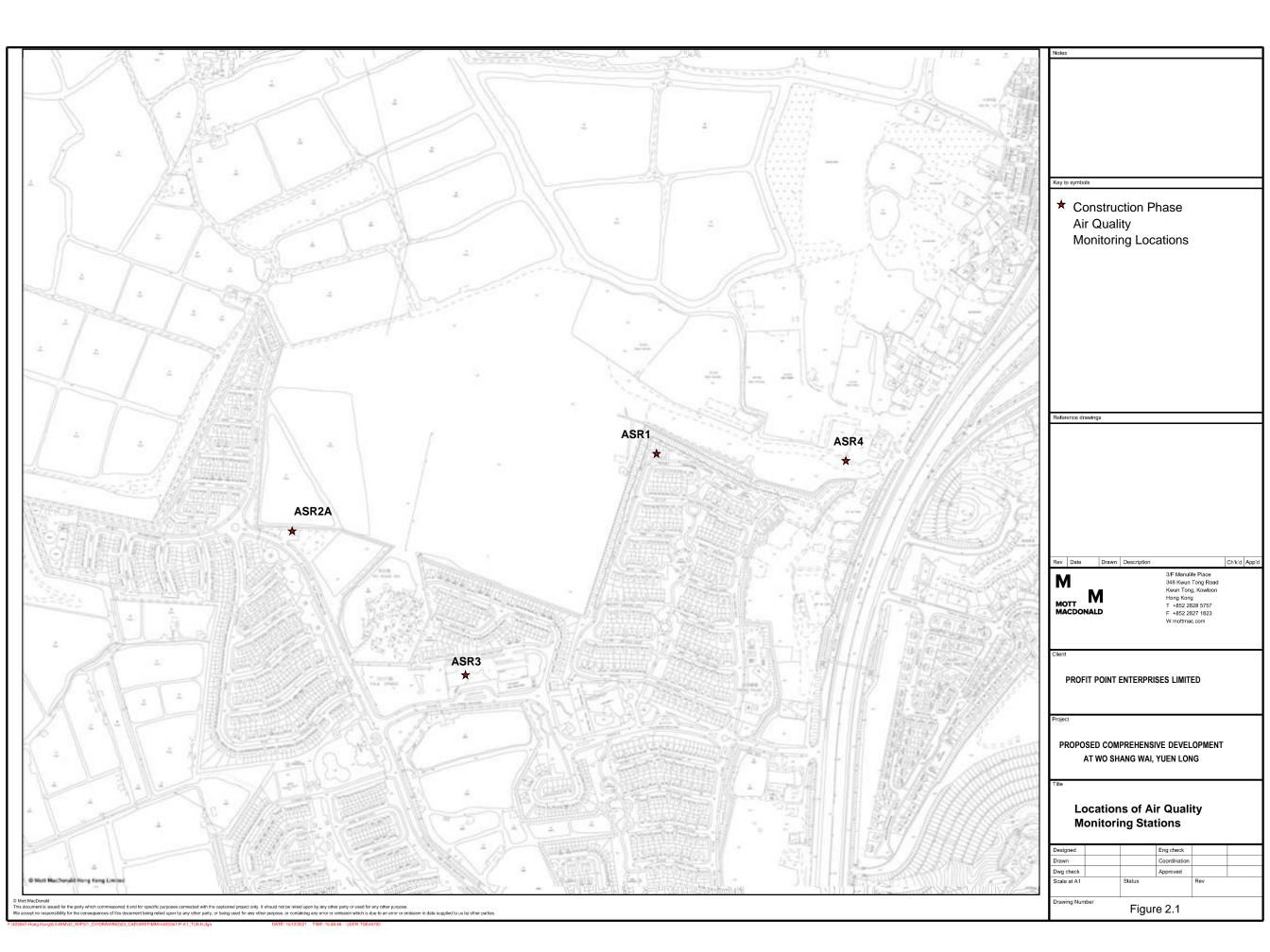
Mott, 2008. WSW Environmental Monitoring and Audit Manual (March 2008).

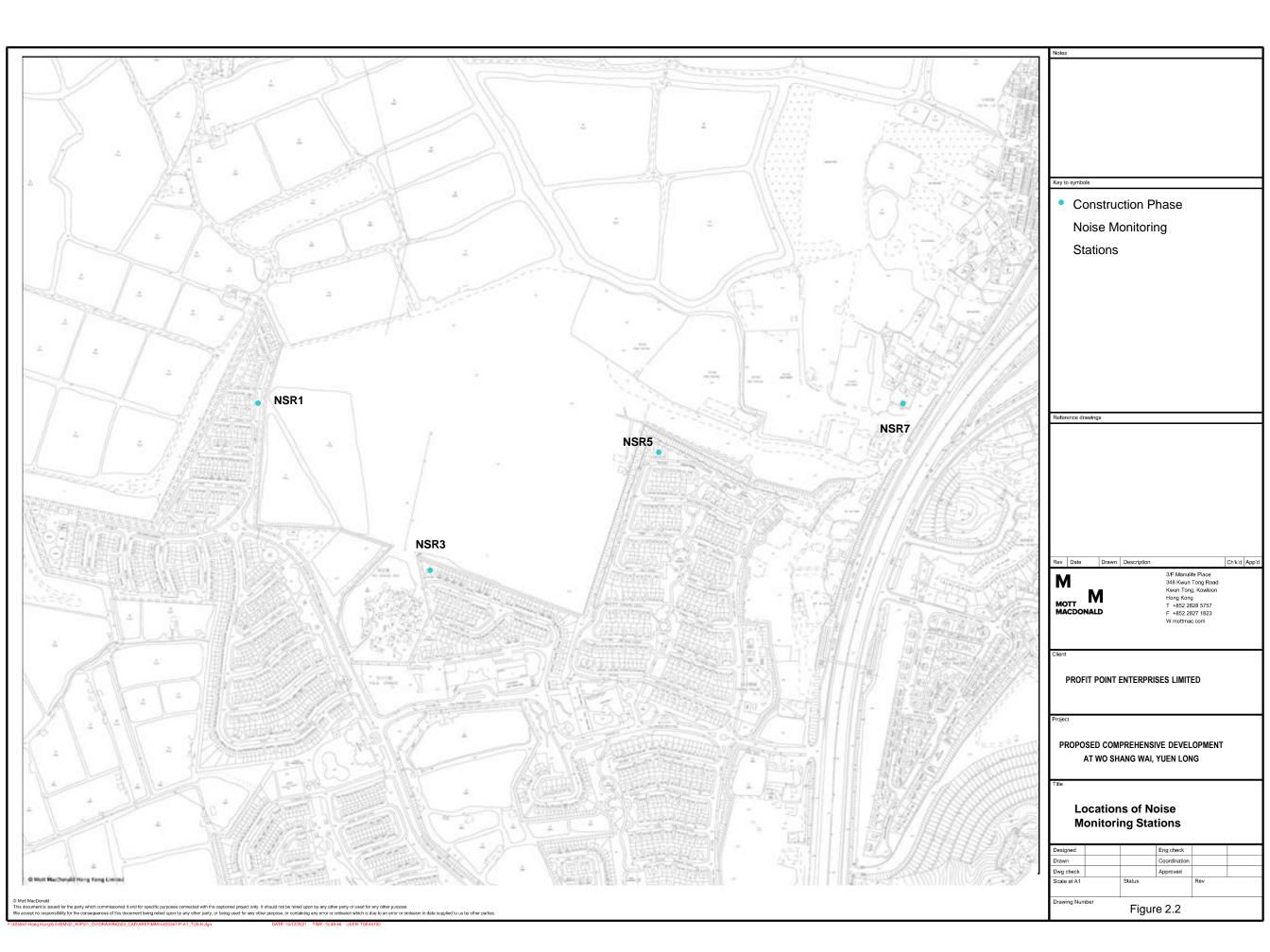
Mott, 2008. WSW Environmental Impact Assessment Report Volumes 1 to 3 (March 2008).

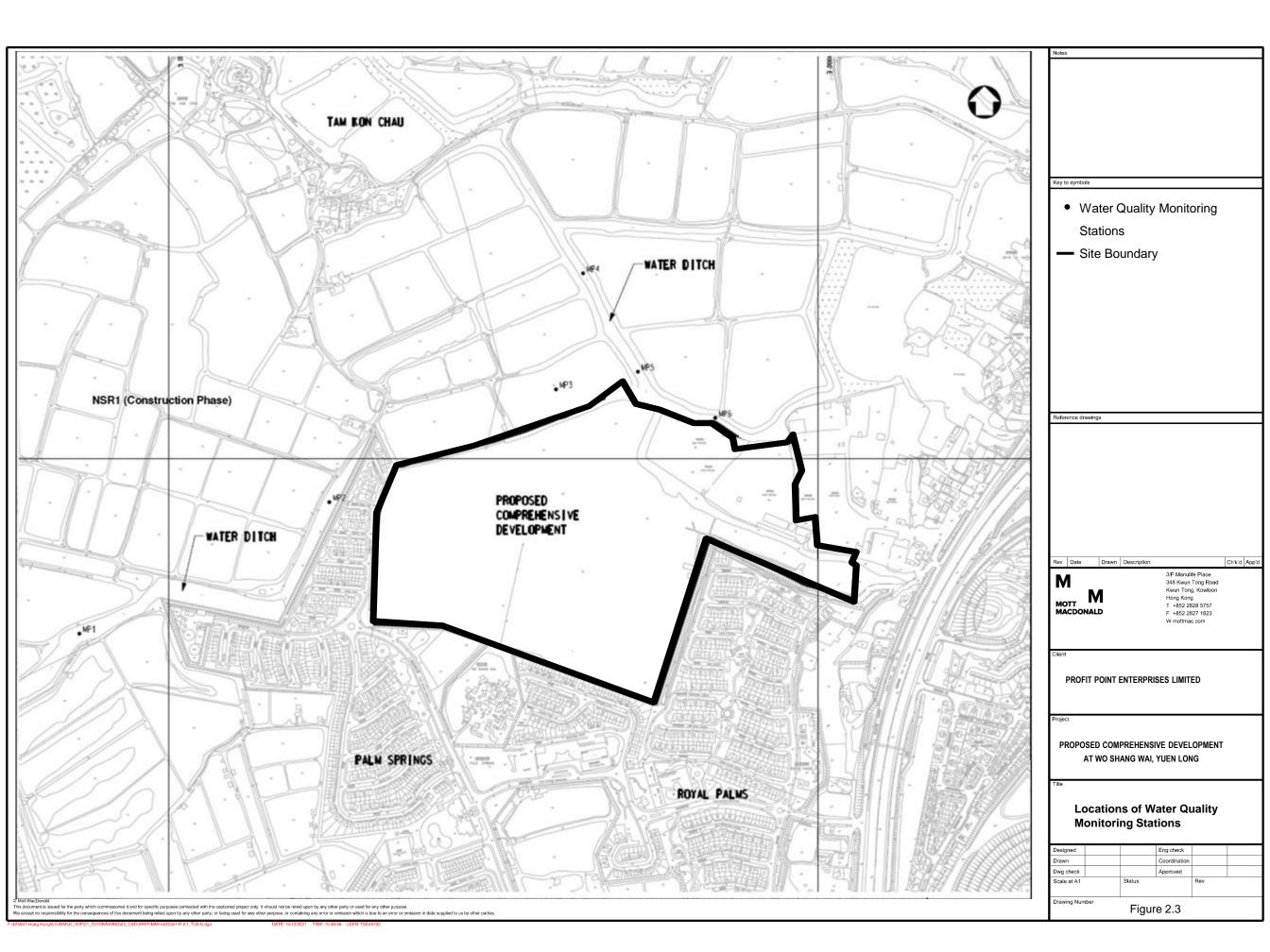
Mott, 2008. WSW Wetland Restoration Plan (March 2008).

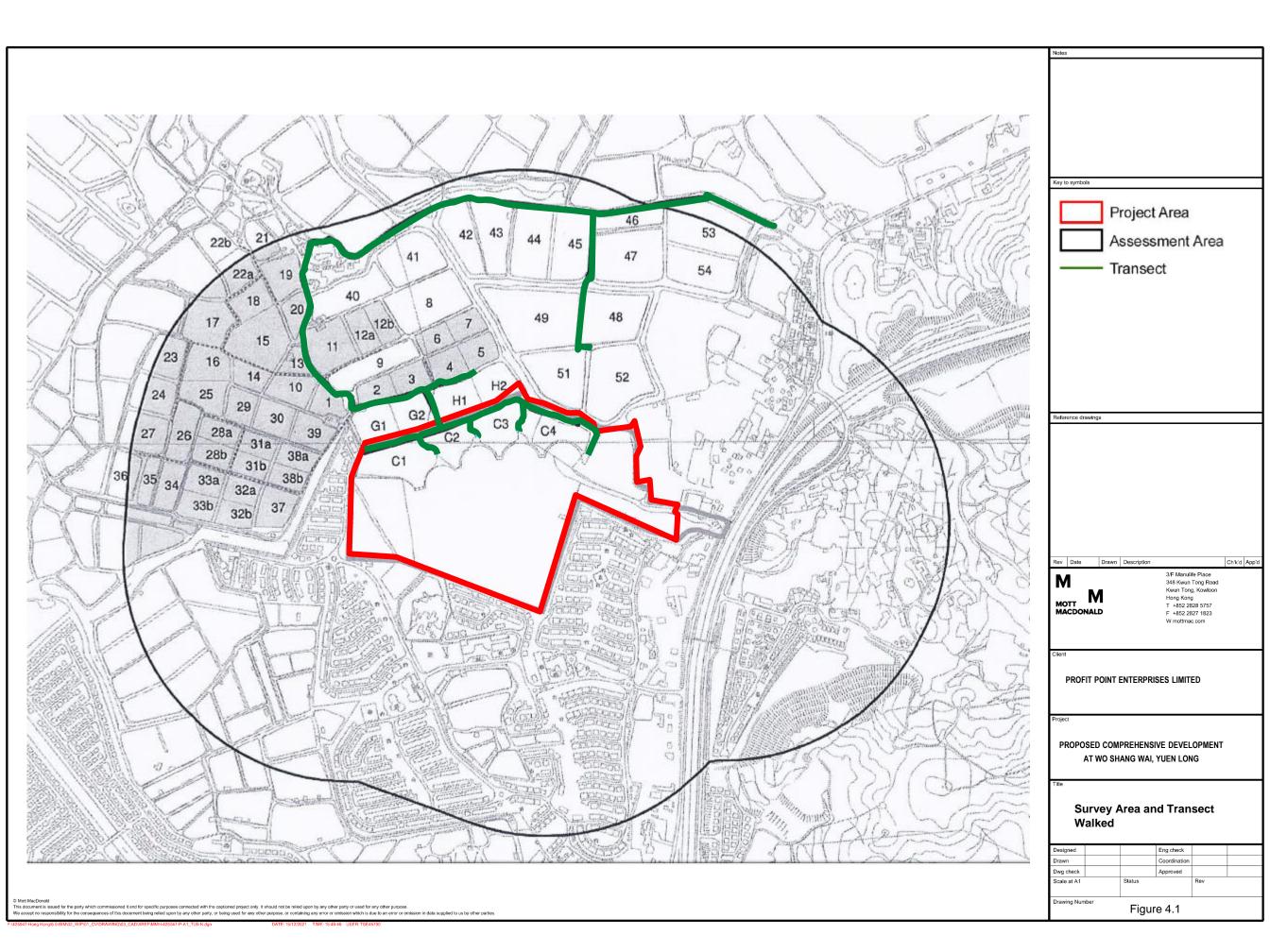
Shek, C. T. 2006. *A Field Guide to the Terrestrial Mammals of Hong Kong*. Friends of the Country Parks Cosmos Books Ltd., Hong Kong.

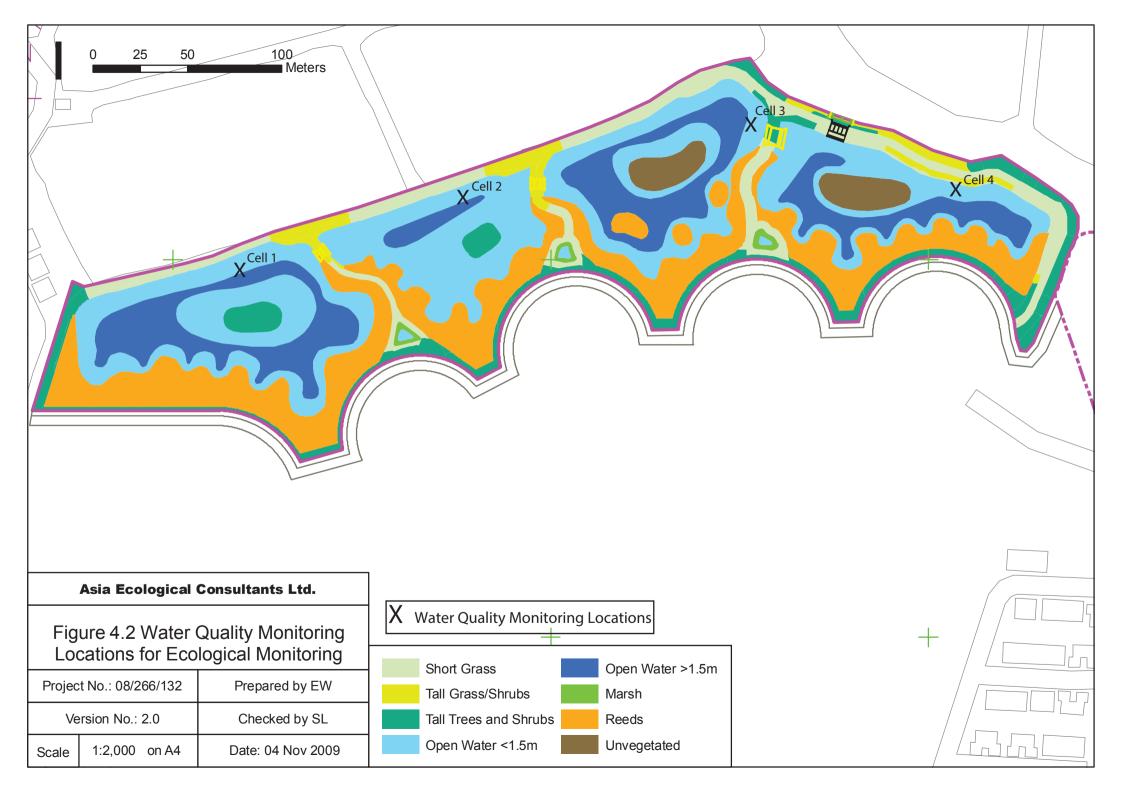

Tam, T.W., K.K. Leung, B.S.P. Kwan, K.K.Y. Wu, S.S.H. Tang, I.W.Y. So, J.C.Y. Cheng, E.F.M. Yuen, Y.M. Tsang, and W.L. Hui, 2011. *The Dragonflies of Hong Kong (1st edition).* Agriculture, Fisheries and Conservation Department, Friends of Country Parks and Cosmos Books Ltd., Hong Kong.

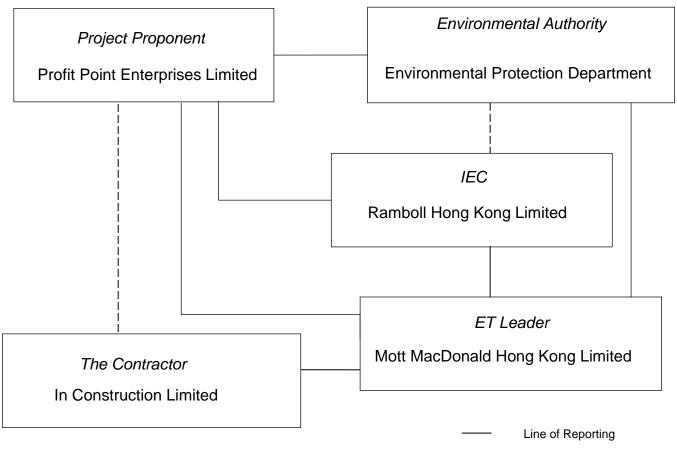

Wilson, K.D.P., Tam, T.W., Kwan, B.S.P., Wu, K.K.Y., Wong, B.S.F., Wong J.K. 2004. *Field Guide to the Dragonflies of Hong Kong*. AFCD, Friends of Country Park and Cosmos Books Ltd. Hong Kong.


Young, J.J. & Yiu, V., 2002. *Butterfly Watching in Hong Kong*. Wan Li Book Co. Ltd., Hong Kong.


Zheng Guangmei and Wang Qishan (1998) (Edited), *China Red Data Book of Endangered Animals: Aves*, Science Press, Beijing.


Figures





Appendices

Α.	Project Organization Chart	41
В.	Tentative Construction Programme (not used)	43
C.	Action and Limit Levels for Construction Phase	45
D.	Event and Action Plan for Air Quality, Noise, Water Quality and Landscape & Visual	47
E.	Calibration Certificates	53
F.	Graphical Plots of the Monitoring Results	55
G.	Weather Conditions during the Monitoring Period	57
Н.	Ecological Monitoring conducted	59
I.	Summary of Bird Surveys conducted	61
J.	Summary of Herpetofauna, Mammal and Insect Surveys conducted	67
K.	Summary of Water Quality Monitoring associated with Ecological Monitoring conducted	d 73
L.	Environmental Mitigation Measures - Implementation Status	75
М.	Landscape and Visual Audit Photos	81

A. Project Organization Chart

---- Line of Communication

Contact information:

Company	Position	Name	Telephone
Profit Point Enterprises Limited (Project Proponent)	Project Manager	Ms. Stacey Lau	2281 0112
In Construction Limited	Construction Manager	Mr. Chun Kit Tse	9400 7007
(The Main Contractor)	Site Agent	Mr. Chi Hei Leung	6775 1468
	Safety Officer	Mr. Wong Kam Leung	2710 8663
	Environment Officer	Mr. Vega T. L. Wong	6113 2368
Ramboll Hong Kong Limited (Independent Environmental Checker (IEC))	Independent Environmental Checker	Mr. David Yeung	3465 2888
Mott MacDonald Hong Kong Ltd. (Environmental Team (ET))	Environmental Team Leader	Ms. Nikita Nanwani Nanwani	2828 5960

B. Tentative Construction Programme (not used)

C. Action and Limit Levels for Construction Phase

Air Quality

Action and Limit Levels for 24-hour TSP

Monitoring Station	Action Level (μg/m ³)	Limit Level (µg/m³)
ASR1	226	260
ASR2A	213	260
ASR3	205	260
ASR4	237	260

Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level (µg/m ³)	Limit Level (µg/m³)
ASR1	378	500
ASR2A	357	500
ASR3	358	500
ASR4	372	500

Noise

Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
NSR1, NSR3, NSR5, NSR7		
0700 – 1900 hours on normal weekdays	When one documented complaint is received from any one of the sensitive receivers	75 dB(A)

Water Quality

Action and Limit Levels for Water Quality

Parameters	DO in	mg/L	Turbidit	y in NTU	SS in	mg/L	р	н
	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
MP1	1.23	1.17	173	177	231	299	< 5.5 or	< 4.0 or
MP2	1.04	0.89	132	163	170	209	> 7.5	> 8.0
MP3	6.85	6.65	64	67	65	66		
MP4	3.91	3.82	60	64	50	53		
MP5	4.13	3.87	81	84	66	69		
MP6	4.61	4.52	94	96	75	75		

D. Event and Action Plan for Air Quality, Noise, Water Quality and Landscape & Visual

Air Quality

Event	Action			
	ET Leader	IEC	ER	Contractor
Action Level				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding. Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET. Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice. Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify the source. Inform IEC and ER. Advise ER on the effectiveness of the proposed remedial measures Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with IEC and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check the Contractor's working method. Discuss with ET Leader and the Contractor on possible remedial measures. Advise ER on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

Limit Level				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check the Contractor's working method. Discuss with ET Leader and the Contractor on possible remedial measures. Advise ER on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals fo remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, EPD and the Contractor. Identify the source. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented. Arrange meeting IEC and ER to discuss the remedial actions to be taken. Assess effectiveness of the Contractor's remedial actions and keep IEC, EPD and ER informed of the results. If exceedance stops, cease additional 	 Discuss amongst ER, ET Leader and the Contractor on the potential remedial actions. Review the Contractor's remedial actions whenever necessary and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. In consultation with IEC, agree with the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant activity of works as determined by ER until the exceedanc is abated.

Construction Noise

Event	Action						
	ET Leader	IEC	ER	Contractor			
Action Level	 Notify IEC and the Contractor. Carry out investigation. Report the results of investigation to IEC and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation measures. 	 Review with analysed results submitted by ET. Review the proposed remedial measures by the Contractor and advise ER accordingly. Supervise the implement of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC. Implement noise mitigation proposals. 			
Limit Level	 Identify the source. Notify IEC, ER, EPD and the Contractor. Repeat measurement to confirm findings. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform IEC, ER, and EPD the causes & actions taken for the exceedances. Assess effectiveness of the Contractor's remedial actions and keep IEC, EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET Leader and the Contractor on the potential remedial actions. Review the Contractor's remedial actions whenever necessary to assure their effectiveness and advise ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant activity of works as determined by the ER until the exceedance is abated. 			

Water Quality

Event	Action			
	ET Leader	IEC	ER	Contractor
Action Level				
1. Exceedance for one sample	 Repeat in-situ measurement to confirm finding; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; and Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; and Make agreement on the mitigation measures to be implemented. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; and Implement the agreed mitigation measures.
2. Exceedance for two or more consecutive samples	 Repeat in-situ measurement to confirm finding; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; and Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; and Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; and Implement the agreed mitigation measures.

Limit Level				
 Exceedance for one sample 	 Repeat in-situ measurement to confirm finding; Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; and Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; and Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and ER and propose mitigation measures to IEC and ER within 3 working days; and Implement the agreed mitigation measures.
2. Exceedance for two or more consecutive samples	 Repeat in-situ measurement to confirm finding; Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; and Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; and Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; and Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; and As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities.

Landscape and Visual

Event	Action			
	ET Leader	IEC	ER	Contractor
Action Level				
Non-conformity on one occasion	 Identify Source; Inform the IEC and the ER; Discuss remedial actions with the IEC, the ER and the Contractor; and Monitor remedial actions until rectification has been completed. 	 Check report; Check the Contractor's working method; Discuss with the ES and the contractor on possible remedial measures; Advise the ER on effectiveness of proposed remedial measures; and Check implementation of remedial measures. 	 Notify Contractor; and Ensure remedial measures are properly implemented 	 Amend working methods; and Rectify damage and undertake any necessary replacement
Repeated Non- conformity	 Identify Source; Inform the Project Proponent, IEC and the ER. If serious non- compliance inform EPD; Increase monitoring frequency; Discuss remedial actions with the IEC, the ER and the Contractor; Monitor remedial actions until rectification has been completed; and If exceedance stops, cease additional monitoring. 	 Check monitoring report; Check the Contractor's working method; Discuss with the ES and the Contractor on possible remedial measures; Advise the ER on effectiveness of proposed remedial measures; and Supervise implementation of remedial measures. 	 Notify the Contractor; and Ensure remedial measures are properly implemented. 	 Amend working methods; and Rectify damage and undertake any necessary replacement.

E. Calibration Certificates

Appendix E Calibration Record (Air Quality Monitoring)

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR K.W. FAN	WORK ORDER	HK2144583
CLIENT	ENVIROTECH SERVICES CO.		
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH DATE RECEIVED DATE OF ISSUE	
PROJECT	:	NO. OF SAMPLES CLIENT ORDER	: 1

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Richard Jong.		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER : HI

: HK2144583

SUB-BATCH:CLIENT:PROJECT:----

ALS

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2144583-001	S/N: 245834	Equipments	02-Nov-2021	245834

Equipment Verification Report (TSP)

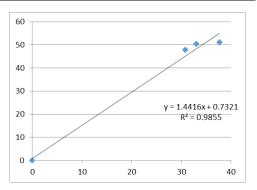
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	245834
Equipment Ref:	Nil
Job Order	HK2144583

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	5 November 2021

Equipment Verification Results:


Verification Date:

5 November 2021

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:11 ~ 11:12	25.6	1012.5	51.2	4570	37.7
2hr01min	11:15 ~ 13:16	25.6	1012.5	47.8	3735	30.8
2hr02min	13:20 ~ 15:22	25.6	1012.5	50.4	4022	33.0

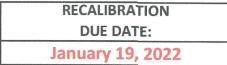
Linear Regression of Y or X

Slope (K-factor): Correlation Coefficient (R) Date of Issue <u>1.4416 (µg/m³)/CPM</u> 0.9927 8 November 2021

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor <u>1.4416 (µg/m³)/CPM</u> should be applied for TSP monitoring


*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	8 November 2021
QC Reviewer :	Ben Tam	Signature :	<u> </u>	Date :	8 November 2021

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, Ky Location ID : Calibration Room	wai Ch	ung	Date of Calibration: 5-Nov-21 Next Calibration Date: 5-Feb-22
	COND	ITIONS	
Sea Level Pressure (hPa) 1 Temperature (°C)	1012.5 25.6		Corrected Pressure (mm Hg) 759.375 Temperature (K) 299
CALI	BRATI	ON ORIFICI	Æ
	SCH 25A an-21		Qstd Slope ->2.10574Qstd Intercept ->-0.00985Expiry Date->18-Jan-22
	CALIBI	RATION	
	I nart)	IC corrected	LINEAR REGRESSION
13 5 5 10.0 1.504 4 10 3.9 3.9 7.8 1.329 4 8 2.5 2.5 5.0 1.065 3	52 48 42 36 28	51.93 47.93 41.94 35.95 27.96	Slope = 24.2092 Intercept = 10.8881 Corr. coeff. = 0.9959
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	.00 500 40. 30. 20. 10. 0.	00	FLOW RATE CHART

n m e n t a l Dertificate of Calibration

			Calibration	Certificatio	on Informat	tion		
Cal. Date:	January 19	, 2021	Roots	meter S/N:	438320	Ta:	294	°К
Operator:	Jim Tisch					Pa:	755.1	mm Hg
•	tion Model #: TE-5025A Calibrator S/N				1941			
	(
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4830	3.2	2.00	
	3	5	4	1	1.0420 0.9290	6.4 8.0	4.00	
	4	7	8	1	0.8840	8.8	5.50	
	5	9	10	1	0.7340	12.9	8.00	
				Data Tabula	tion			
			······		cion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	$\frac{1}{1}\left(\frac{\text{Tstd}}{\text{Ta}}\right)$		Qa	$\sqrt{\Delta H}$ (Ta/Pa)	
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	1.0029	0.6762	1.41		0.9958	0.6715	0.8824	
	0.9986	0.9583	2.0071 2.2440		0.9915	0.9516	1.2479	
	0.9954	1.1260	2.24		0.9894	1.0650 1.1180	1.3952 1.4633	
	0.9899	1.3487	2.83	1	0.9829	1.3391	1.7648	
		m=	2.105			m=	1.31858	
	QSTD	b=	-0.00		QA	b=	-0.00612	
		r=	0.999	992		r=	0.99992	
				Calculation	ns			
	and the second s	and whether the second state of	/Pstd)(Tstd/Ta	a)	Va= ΔVol((Pa-ΔP)/Pa)			
	Qstd=	Vstd/∆Time			Qa=			
			For subsequ	ient flow ra	te calculatio	ns:		
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$			Qa=	$1/m\left(\sqrt{\Delta H}\right)$	l(Ta/Pa))-b)		
	Standard	Conditions						I
Tstd:	298.15			[RECA	LIBRATION	
Pstd:	1	mm Hg			LIS EDA room	ammende a	nnual recalibration	n nor 1000
AH· calibrat		(ey ter reading (i	n H2O)		US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,			
		eter reading					, Reference Meth	,
Ta: actual a	bsolute tem	perature (°K)					ended Particulat	
	Contraction of the local data and the local data an	ressure (mm	Hg)				ere, 9.2.17, page	
b: intercept				l			,, , , , , , , , , , , , , , , , ,	
m: slope								

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

	-	olume TSP Sampler Calibration Record
Location Calibrated by Date	: : :	ASR1 P.F.Yeung 22/08/2022
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N0816
Calibration Orifice and Standard C Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	<u>Calibration</u> : : : :	n <u>Relationship</u> 2454 27 December 2021 2.07035 -0.003737 0.99990
<u>Standard Condition</u> Pstd (hpa) Tstd (K) <u>Calibration Condition</u> Pa (hpa)	:	1013 298.18 1005
Ta(K)	•	305

Resistance Plate		dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
					(indicated flow)	
1	18 holes	12.3	3.453	1.686	53	52.18
2	13 holes	9.4	3.019	1.476	48	47.26
3	10 holes	7.3	2.660	1.303	42	41.35
4	7 holes	4.6	2.112	1.038	34	33.48
5	5 holes	2.9	1.677	0.828	27	26.58

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>30.180</u> Intercept(b):<u>1.958</u>

Correlation Coefficient(r): 0.9987

Checked by: <u>Magnum Fan</u>

		Volume TSP Sampler t Calibration Record
Location Calibrated by Date	:	ARS2A P.F.Yeung 22/08/2022
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N0890
Calibration Orifice and Standard	Calibratic	on Relationship

Canoration Office and Standa	nu Canoran	<u>on Kelauonsinp</u>
Serial Number	:	2454
Service Date	:	27 December 2021
Slope (m)	:	2.07035
Intercept (b)	:	-0.003737
Correlation Coefficient(r)	:	0.99990
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
Pa (hpa)	:	1005
Ta(K)	:	305

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	11.0	3.265	1.595	56	55.13
2	13 holes	8.5	2.870	1.404	51	50.21
3	10 holes	6.3	2.471	1.212	44	43.32
4	7 holes	4.1	1.994	0.981	34	33.47
5	5 holes	2.7	1.618	0.799	25	24.61

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):38.645 Intercept(b):-4.959

Correlation Coefficient(r): 0.9940

Checked by: Magnum Fan

	<u>High-Volume TSP S</u> 5-Point Calibration F			
Location	:	ASR3		
Calibrated by	:	P.F.Yeung		
Date	:	22/08/2022		
Sampler				
Model	:	TE-5170		
Serial Number	:	S/N0764		
Calibration Orifice and Standard C	Calibratio	n Relationship		

G ' 1 N 1		0454
Serial Number	:	2454
Service Date	:	27 December 2021
Slope (m)	:	2.07035
Intercept (b)	:	-0.003737
Correlation Coefficient(r)	:	0.99990
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		
		1005
Pa (hpa)	•	
Ta(K)	:	305

Resi	stance Plate	dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
1	18 holes	10.5	3.190	1.559	62	61.0
2	13 holes	8.4	2.853	1.396	56	55.1
3	10 holes	6.5	2.510	1.230	50	49.2
4	7 holes	4.5	2.089	1.027	42	41.4
5	5 holes	2.9	1.677	0.828	33	32.5

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):38.781 Intercept(b):0.9974

Correlation Coefficient(r): 0.9989

Checked by: Magnum Fan

	<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>			
Location Calibrated by Date	: : :	ASR4 P.F.Yeung 22/08/2022		
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N1068		
Calibration Orfice and Standard C Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	alibration	Relationship 2454 27 December 2021 2.07035 -0.003737 0.99990		
<u>Standard Condition</u> Pstd (hpa) Tstd (K) <u>Calibration Condition</u>	:	1013 298.18		
Pa (hpa) Ta(K)	:	1005 305		

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)		
					(indicated flow)	
1	18 holes	11.8	3.382	1.652	51	50.21
2	13 holes	9.2	2.986	1.460	46	45.29
3	10 holes	7.0	2.605	1.276	41	40.37
4	7 holes	4.3	2.042	1.004	34	33.47
5	5 holes	2.8	1.647	0.814	27	26.58

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship

Slope(m):<u>27.694</u> Intercept(b): <u>4.809</u>

Correlation Coefficient(r): 0.9979

Checked by: Magnum Fan

RECALIBRATION DUE DATE: December 27, 2022

Certificate of Calibration

			Colibration	Contificati	an hifannad			
			Calibration			······		t in the state of the state.
Cal. Date:	December	27, 2021	Roots	meter S/N: 438320 T			295	°K
Operator:	Jim Tisch						740.4	mm Hg
Calibration	Model #:	TE-5025A	Calil	brator S/N:	2454			

		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH ,	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	• 1	1.4130	3.2		
	2	3	4	1	0.9970	6.4	4.00	
	3	5	6	1		7.9	5.00	
	4	7	8	1	0.8480	8.8	and the second se	
	5	9	10	1	0.7060	12.7	8.00	
		1	Ε	Data Tabula	tion			
			/ / Pa	V/Tetd)				
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9799	0.6935			0.9957	0.7047	0.8927	
	0.9756	0.9786	1.9841		0.9914	0.9943	1.2624	
	0.9736	1.0879	2.2183		0.9893	1.1054	1.4114	
	0.9724	1.1467	2.3265		0.9881	1.1652	1.4803	
	0.9673	1.3700	2.8059		0.9828	1.3921	1.7853	
		m=	2.07035			m=	1.29642	
	QSTD	b=	-0.037		QA	b=	-0.02378	
		r=	0.999	90		r=	0.99990	
			1	Calculatio	ns	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Vstd=	ΔVol((Pa-ΔP))/Pstd)(Tstd/Ta	a)	Va=	ΔVol((Pa-Δ	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow ra	te calculation	ns:		
	(interview of the second seco		Pa / Tstd	1.17	_		$\left(-\frac{1}{2}\right)$	
	Qstd=	1/m((√∆H(Pstd / Ta	1)-b)	Qa=	1/m((√∆ŀ	I(Та/Ра))-b)	ê
*****	Standard	Conditions	1					
Tstd:	000 15					RECA	LIBRATION	• 7
Pstd:	760	mm Hg						
X11 14		Key				n i cunto-cettore contractore	nnual recalibratio	A 1974 BOARD AND A DEPOSITION AND A DEPOSITICA AND A DEPO
		ter reading (i					Regulations Part !	1.0
ΔP: rootsmeter manometer reading (mm Hg)							, Reference Meth	
Ta: actual absolute temperature (°K) Pa: actual barometric pressure (mm Hg)							ended Particulat	the state state to the
	arometric n	ressure (mm					0 2 4 7	
		ressure (mm	ng)		the	e Atmosphe	ere, 9.2.17, page	30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009 Appendix E Calibration Record (Noise Monitoring)

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216287 證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC21-2155 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : NL-52 Serial No. / 編號 : Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :	Relative Humidity / 相對濕度 : (50 ± 25)%
TEST SPECIFICATIONS / 測試規範 Calibration check	
DATE OF TEST / 測試日期 : 28 October 2021	
TEST RESULTS / 測試結果 The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s). The test equipment used for calibration are traceable to National The Government of The Hong Kong Special Administrative Reference Agilent Technologies / Keysight Technologies Fluke Everett Service Center, USA Tested By : 测試 K P Cheuk Project Engineer	
Certified By 核證 K Ø Lee Engineer	Date of Issue : 2 November 2021 簽發日期

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 枝正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216287 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description '	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C210084
CL281	Multifunction Acoustic Calibrator	AV210017

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting				Applie	d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	93.8	± 1.1

6.1.2 Linearity

	UU	T Setting	Applie	UUT		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	A	Fast	94.00 104.00	1	93.8 (Ref.) 103.8
		for solution		114.00		113.8

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2

Time Weighting **UUT** Setting Applied Value UUT IEC 61672 Function Range Time Level Class 1 Spec. Frequency Freq. Reading (dB)Weighting Weighting (dB)(kHz) (dB)(dB)30 - 130 L_A 94.00 93.8 Ref. A Fast 1 Slow 93.8 ± 0.3

Website/網址: www.suncreation.com

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216287 證書編號

6.3 Frequency Weighting

C-Weighting

6.3.1 A-Weighting


	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.5	-26.2 ± 1.5
			· · ,		125 Hz	77.6	-16.1 ± 1.5
		,			250 Hz	85.1	-8.6 ± 1.4
					500 Hz	90.6	-3.2 ± 1.4
		1	an dia kao		1 kHz	93.8	Ref.
			-		2 kHz	95.0	$+1.2 \pm 1.6$
					4 kHz	94.8	$+1.0 \pm 1.6$
					8 kHz	92.8	-1.1 (+2.1 ; -3.1)
					16 kHz	85.9	-6.6 (+3.5 ; -17.0)

6.3.2

	UUT Setting				Applied Value		IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	92.9	-0.8 ± 1.5
	11-11-1				125 Hz	93.6	-0.2 ± 1.5
			2. S.		250 Hz	93.8	0.0 ± 1.4
*****				6	500 Hz	93.9	0.0 ± 1.4
	gen di nig				1 kHz	93.8	Ref.
					2 kHz	93.7	-0.2 ± 1.6
				البروبا البو	4 kHz	93.0	-0.8 ± 1.6
					8 kHz	90.9	-3.0 (+2.1 ; -3.1)
					16 kHz	83.9	-8.5 (+3.5 ; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C216287 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 16651

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB :	63 Hz - 125 Hz	: ± 0.35 dB
		250 Hz - 500 Hz	: ± 0.30 dB
		1 kHz	: ± 0.20 dB
		2 kHz - 4 kHz	$:\pm 0.35 \text{ dB}$
3	·	8 kHz	$\pm 0.45 \text{ dB}$
		16 kHz	$\pm 0.70 \text{ dB}$
	104 dB :	1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB :	1 kHz	: ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C216699 證書編號

ITEM TESTED / 送林	贪項目 (Job No. / 序引編號: IC21-22	Date of Receipt / L	收件日期: 4 November 2
Description / 儀器名稱			
Manufacturer / 製造商			
Model No. / 型號	: CAL200		
Serial No. / 編號	: 15678		
Supplied By / 委託者	: Envirotech Services Co.		/
	Room 113, 1/F, My Loft, 9 Hoi	Wing Road, Tuen Mun,	
240	New Territories, Hong Kong		
TEST CONDITIONS	5/測試條件		
Temperature / 溫度		Relative Humidity	/ 相對濕度 : (50±25
Line Voltage / 電壓		Relative Humany	7 伯王小孫/文 · (50 ± 25
	•	•••	
TEST SPECIFICAT	IONS / 測試規範		
Calibration check			
	~		
DATE OF TEST / 測	試日期 : 20 November 2021	-	
, TEST RESULTS / 測 The results apply to th			
, TEST RESULTS / 渕 The results apply to th The results do not exc	記結果 ne particular unit-under-test only.		
, TEST RESULTS / 渕 The results apply to th The results do not exc The results are detaile	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s).		
TEST RESULTS / 渕 The results apply to th The results do not exc The results are detaile The test equipment us	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation		' 99
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative		tion Laboratory
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies		tion Laboratory
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies		tion Laboratory
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies		tion Laboratory
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies		tion Laboratory
TEST RESULTS / 渊 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie - Fluke Everett Service	記結果 ee particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies ce Center, USA		tion Laboratory
TEST RESULTS / 渊 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Servio	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies ce Center, USA		tion Laboratory
TEST RESULTS / 渊 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Servio	iliti結果 ne particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies the Center, USA		tion Laboratory
TEST RESULTS / 渊 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologie - Fluke Everett Service	記結果 e particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies be Center, USA		tion Laboratory
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Servic	iliti結果 ne particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies the Center, USA	Region Standard & Calibra	
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Servic Tested By 測試	記結果 ne particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies ce Center, USA H T Wong Assistant Engineer	Region Standard & Calibra Date of Issue :	tion Laboratory 22 November 2021
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Service Tested By 測試	IIII 法结果 the particular unit-under-test only. teed manufacturer's specification. d in the subsequent page(s). ted for calibration are traceable to Nation The Hong Kong Special Administrative tes / Keysight Technologies tee Center, USA H T Wong Assistant Engineer K & Lee	Region Standard & Calibra	
TEST RESULTS / 測 The results apply to th The results do not exc The results are detaile The test equipment us - The Government of - Agilent Technologia - Fluke Everett Service Tested By 測試	記結果 ne particular unit-under-test only. eed manufacturer's specification. d in the subsequent page(s). ed for calibration are traceable to Nation The Hong Kong Special Administrative es / Keysight Technologies ce Center, USA H T Wong Assistant Engineer	Region Standard & Calibra Date of Issue :	

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C216699 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC213954CL281Multifunction Acoustic CalibratorAV210017TST150AMeasuring AmplifierC201309

- 4. Test procedure : MA100N.
- 5. Results :

. 1

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Appendix E Calibration Record (Water Quality Monitoring)

Test Report No. Date of Issue Page No. : R-BB060020 : 13 June 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong Attn :

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	17E100747
Date of Received :	10 June 2022
Date of Calibration :	10 June 2022
Date of Next Calibration :	09 September 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
Turbidity	APHA 21e 2130B
Dissolved oxygen	APHA 21e 4500 O
pH value	APHA 21e 4500 H+
Salinity	APHA 21e 2520B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Conductivity	APHA 21e 2510B

PART D - CALIBRATION RESULT

(1) Turbidity

EXPECTED READING (NTU)	DISPLAY READING (NTU)	TOLERANCE (%)	RESULT
0	0.03		Satisfactory
10	9.85	-1.5	Satisfactory
20	20.2	1.0	Satisfactory
100	108.4	8.4	Satisfactory
800	797	-0.4	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(2) Dissolved oxygen

EXPECTED READING (MG/L)	DISPLAY READING (MG/L)	TOLERANCE	RESULT
7.78	7.86	0.08	Satisfactory
4.72	4.91	0.19	Satisfactory
2.60	2.33	-0.27	Satisfactory
0.09	0.30	0.21	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(3) pH value

TARGET (PH UNIT) DISPLAY READI	ING (PH UNIT) TOLERANCI	E RESULT

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

Test Report No.

:R-BB060020

	Date of Issue Page No.	: 13 June 20 : 2 of 2	022
TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT
4.00	4.08	0.08	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	9.94	-0.07	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(4) Salinity

EXPECTED READING (G/L)	DISPLAY READING (G/L)	TOLERANCE (%)	RESULT
10	9.90	-1.00	Satisfactory
20	19.91	-0.45	Satisfactory
30	30.29	0.97	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

(5) Temperature

READING OF REF. THERMOMETER ($^{\circ}C$)	DISPLAY READING (°C)	TOLERANCE	RESULT
10	10	0	Satisfactory
20	20	0	Satisfactory
40	40	0	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(6) Conductivity

EXPECTED READING (MS/CM AT 25°C)	DISPLAY READING	TOLERANCE (%)	RESULT
146.9	136.7	-6.94	Satisfactory
1412	1329.7	-5.83	Satisfactory
12890	12608.3	-2.19	Satisfactory
58670	57422	-2.13	Satisfactory
111900	109847	-1.83	Satisfactory

Tolerance of Conductivity should be less than ± 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Test Report No. Date of Issue Page No. : R-BB060021 : 13 June 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong Attn :

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	16H104233
Date of Received :	10 June 2022
Date of Calibration :	10 June 2022
Date of Next Calibration :	09 September 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
Turbidity	APHA 21e 2130B
Dissolved oxygen	APHA 21e 4500 O
pH value	APHA 21e 4500 H+
Salinity	APHA 21e 2520B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Conductivity	APHA 21e 2510B

PART D - CALIBRATION RESULT

(1) Turbidity

EXPECTED READING (NTU)	DISPLAY READING (NTU)	TOLERANCE (%)	RESULT
0	0.03		Satisfactory
10	9.98	-0.2	Satisfactory
20	20.16	0.8	Satisfactory
100	107.6	7.6	Satisfactory
800	796	-0.5	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(2) Dissolved oxygen

EXPECTED READING (MG/L)	DISPLAY READING (MG/L)	TOLERANCE	RESULT
7.78	7.81	0.03	Satisfactory
4.72	4.92	0.20	Satisfactory
2.60	2.38	-0.22	Satisfactory
0.09	0.30	0.21	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(3) pH value

TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

Test Report No.

: R-BB060021

	Date of Issue Page No.	: 13 June 20 : 2 of 2	022
TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT
4.00	3.96	-0.04	Satisfactory
7.42	7.48	0.06	Satisfactory
10.01	9.95	-0.06	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(4) Salinity

EXPECTED READING (G/L)	DISPLAY READING (G/L)	TOLERANCE (%)	RESULT
10	9.92	-0.80	Satisfactory
20	20.20	1.00	Satisfactory
30	30.22	0.73	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

(5) Temperature

READING OF REF. THERMOMETER ($^{\circ}C$)	DISPLAY READING (°C)	TOLERANCE	RESULT
10	10	0	Satisfactory
20	20	0	Satisfactory
40	40	0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 (°C)

(6) Conductivity

EXPECTED READING (MS/CM AT 25°C)	DISPLAY READING	TOLERANCE (%)	RESULT
146.9	137.1	-6.67	Satisfactory
1412	1328.2	-5.93	Satisfactory
12890	12567.8	-2.50	Satisfactory
58670	57574	-1.87	Satisfactory
111900	109783	-1.89	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專業化驗有限公司 OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB070112 : 28 July 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

rs)

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter	Reference Method
pH value	APHA 21e 4500 H+
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130B
Conductivity	APHA 21e 2510B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.06	0.06	Satisfactory
7.42	7.51	0.09	Satisfactory
10.01	10.09	0.08	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
15.0	14.9	-0.1	Satisfactory
25.0	25.1	0.1	Satisfactory
40.0	40.0	0.0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.92	-0.80	Satisfactory
20	20.38	1.90	Satisfactory
30	30.61	2.03	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	:R-BB070112
Date of Issue	: 28 July 2022
Page No.	: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.36	7.56	0.20	Satisfactory
5.52	5.63	0.11	Satisfactory
2.82	3.00	0.18	Satisfactory
0.11	0.30	0.19	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \mbox{ 0.5 (mg/L)}$

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.05	5 <u>-</u>	Satisfactory
10	9.83	-1.70	Satisfactory
20	19.04	-4.80	Satisfactory
100	97.83	-2.20	Satisfactory
800	817.37	2.20	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading (µS/cm at 25°C)	Tolerance (%)	Result
146.9	151.1	2.86	Satisfactory
1412	1283	-9.14	Satisfactory
12890	12734	-1.21	Satisfactory
58670	59111	0.75	Satisfactory
111900	113325	1.27	Satisfactory

Tolerance of Conductivity should be less than ± 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB070113 : 28 July 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)	
Manufacturer :	YSI (a xylem brand)	
Serial Number :	15M10005	
Date of Received :	28 July 2022	
Date of Calibration :	28 July 2022	
Date of Next Calibration :	27 October 2022	
Request No. :	D-BB070113	

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter	Reference Method
pH value	APHA 21e 4500 H+
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130B
Conductivity	APHA 21e 2510B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.08	0.08	Satisfactory
7.42	7.53	0.11	Satisfactory
10.01	10.14	0.13	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
15.0	14.9	-0.1	Satisfactory
25.0	25.1	0.1	Satisfactory
40.0	40.0	0.0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.90	-1.00	Satisfactory
20	20.49	2.45	Satisfactory
30	30.77	2.57	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ----

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	:R-BB070113
Date of Issue	: 28 July 2022
Page No.	: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.36	7.56	0.20	Satisfactory
5.52	5.70	0.18	Satisfactory
2.82	3.00	0.18	Satisfactory
0.11	0.30	0.19	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm\,0.5$ (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.05		Satisfactory
10	9.82	-1.80	Satisfactory
20	19.17	-4.10	Satisfactory
100	97.92	-2.10	Satisfactory
800	812.44	1.60	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading (µS/cm at 25°C)	Tolerance (%)	Result
146.9	150.6	2.52	Satisfactory
1412	1291	-8.57	Satisfactory
12890	12806	-0.65	Satisfactory
58670	59168	0.85	Satisfactory
111900	114106	1.97	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專 業 化 驗 有 限 公 司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB090081 : 19 September 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

YSI ProDSS (Multi-Parameters)
YSI (a xylem brand)
16H104234
16 September 2022
16 September 2022
15 December 2022
D-BB090081

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500 H+
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130B
Conductivity	APHA 21e 2510B
Salinity Dissolved oxygen Turbidity	2008: Working Thermometer Calibration Procedure APHA 21e 2520B APHA 21e 4500 O APHA 21e 2130B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	3.97	-0.03	Satisfactory
7.42	7.38	-0.04	Satisfactory
10.01	9.92	-0.09	Satisfactory

Tolerance of pH value should be less than $\pm \mbox{ 0.2 (pH unit)}$

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
40	40.1	0.1	Satisfactory
30	30.1	0.1	Satisfactory
10	10.0	0.0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.17	1.70	Satisfactory
20	20.50	2.50	Satisfactory
30	30.31	1.03	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	:R
Date of Issue	:1
Page No.	:2

R-BB090081 19 September 2022 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.38	7.60	0.22	Satisfactory
4.70	4.85	0.15	Satisfactory
1.48	1.80	0.32	Satisfactory
0.45	0.40	-0.05	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \mbox{ 0.5 (mg/L)}$

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.10		Satisfactory
10	9.84	-1.60	Satisfactory
20	19.82	-0.90	Satisfactory
100	97.79	-2.20	Satisfactory
800	819.11	2.40	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading	Tolerance (%)	Result
146.9	137.9	-6.13	Satisfactory
1412	1380.2	-2.25	Satisfactory
12890	12637.4	-1.96	Satisfactory
58670	57116	-2.65	Satisfactory
111900	112537	0.57	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ----

專 業 化 驗 有 限 公 司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB090082 : 19 September 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	17E100747
Date of Received :	16 September 2022
Date of Calibration :	16 September 2022
Date of Next Calibration :	15 December 2022
Request No. :	D-BB090082

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500 H+
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130B
Conductivity	APHA 21e 2510B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	3.95	-0.05	Satisfactory
7.42	7.37	-0.05	Satisfactory
10.01	9.94	-0.07	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
40	40.1	0.1	Satisfactory
30	30.1	0.1	Satisfactory
10	10.0	0.0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.19	1.90	Satisfactory
20	20.43	2.15	Satisfactory
30	30.33	1.10	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	: R-1
Date of Issue	:19
Page No.	:20

: R-BB090082 : 19 September 2022 : 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.38	7.58	0.20	Satisfactory
4.70	4.86	0.16	Satisfactory
1.48	1.81	0.33	Satisfactory
0.45	0.39	-0.06	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm\,0.5$ (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.10		Satisfactory
10	9.86	-1.40	Satisfactory
20	19.85	-0.70	Satisfactory
100	98.96	-1.00	Satisfactory
800	817.32	2.20	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading	Tolerance (%)	Result
146.9	136.8	-6.88	Satisfactory
1412	1372.4	-2.8	Satisfactory
12890	12522.6	-2.85	Satisfactory
58670	56891	-3.03	Satisfactory
111900	112764	0.77	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

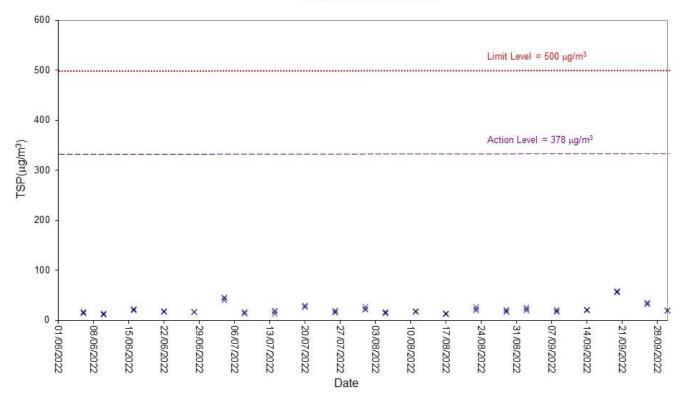
Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

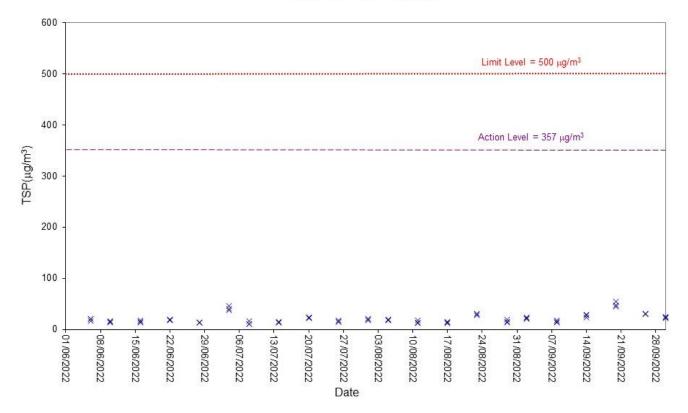
•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

·"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

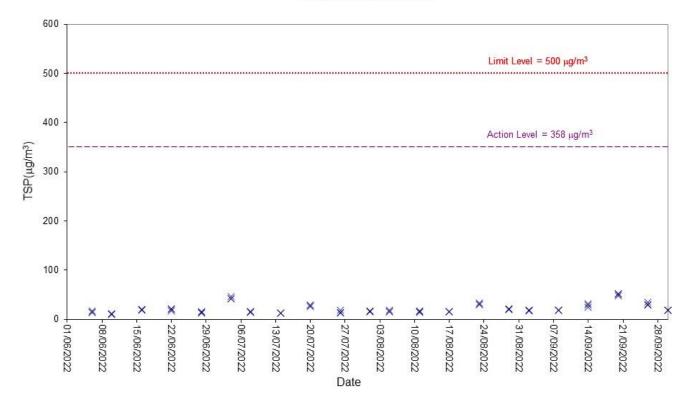

---- END OF REPORT ----

F. Graphical Plots of the Monitoring Results

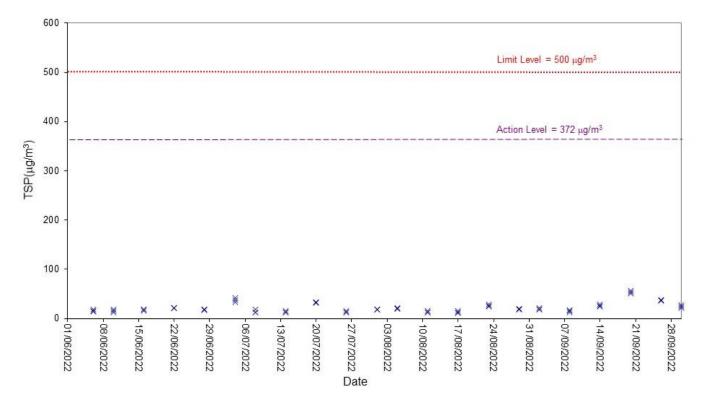

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

Air Quality

1-hour TSP Level at ASR1

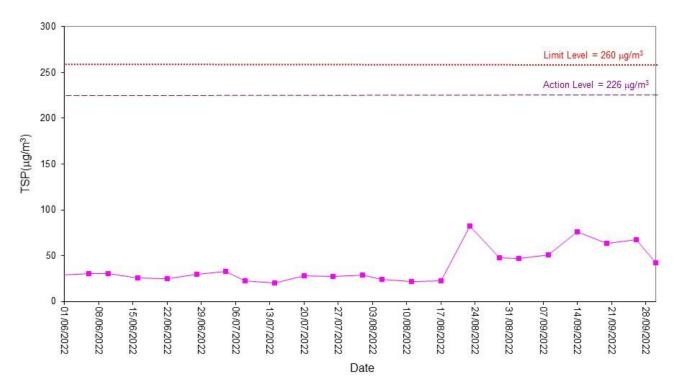


1-hour TSP Level at ASR2A

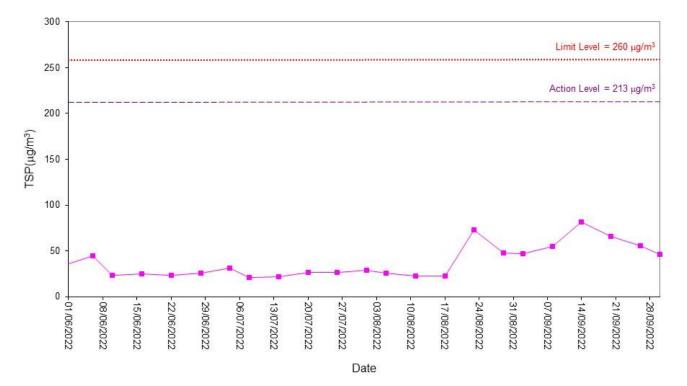


Air Quality

1-hour TSP Level at ASR3

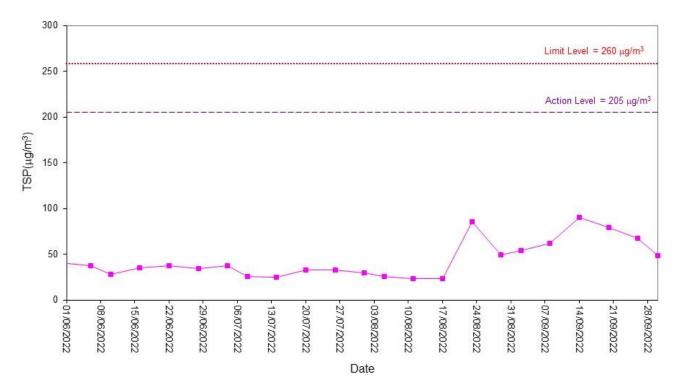


1-hour TSP Level at ASR4

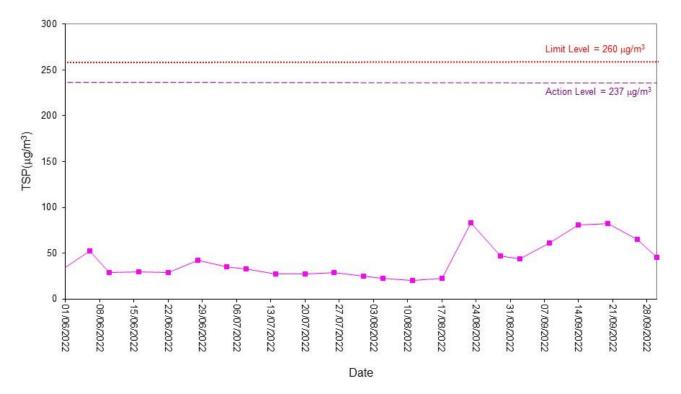


Air Quality

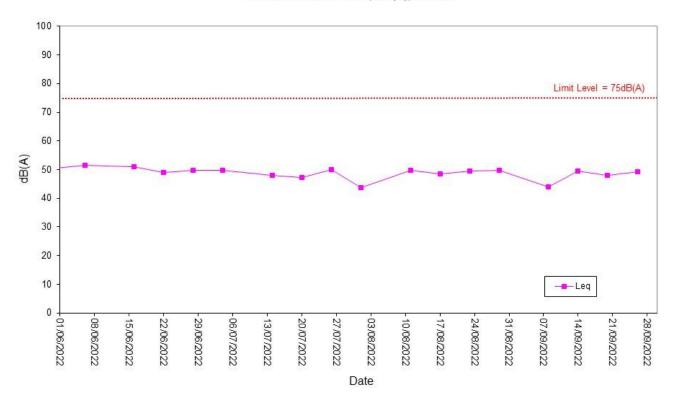


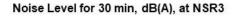


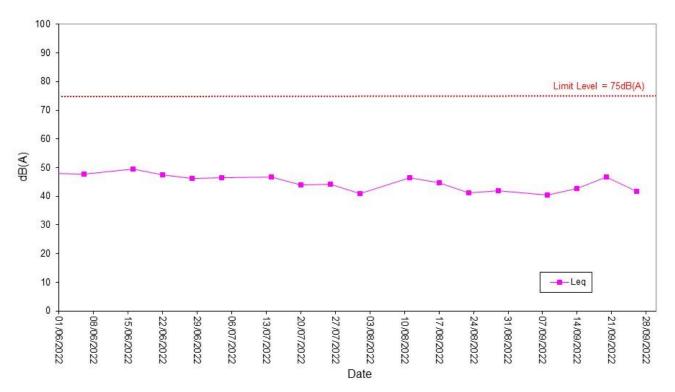
24-hour TSP Level at ASR2A



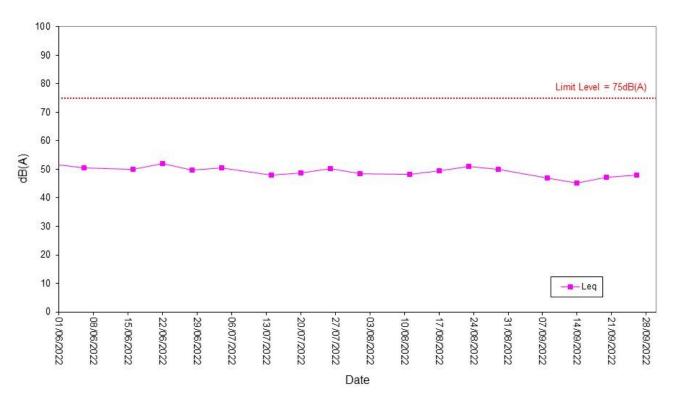
Air Quality



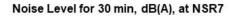


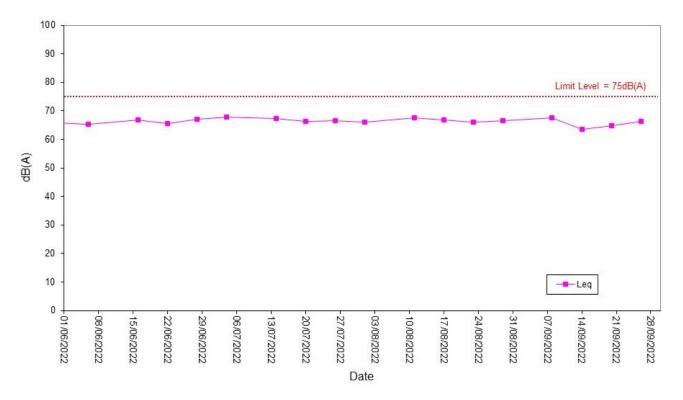


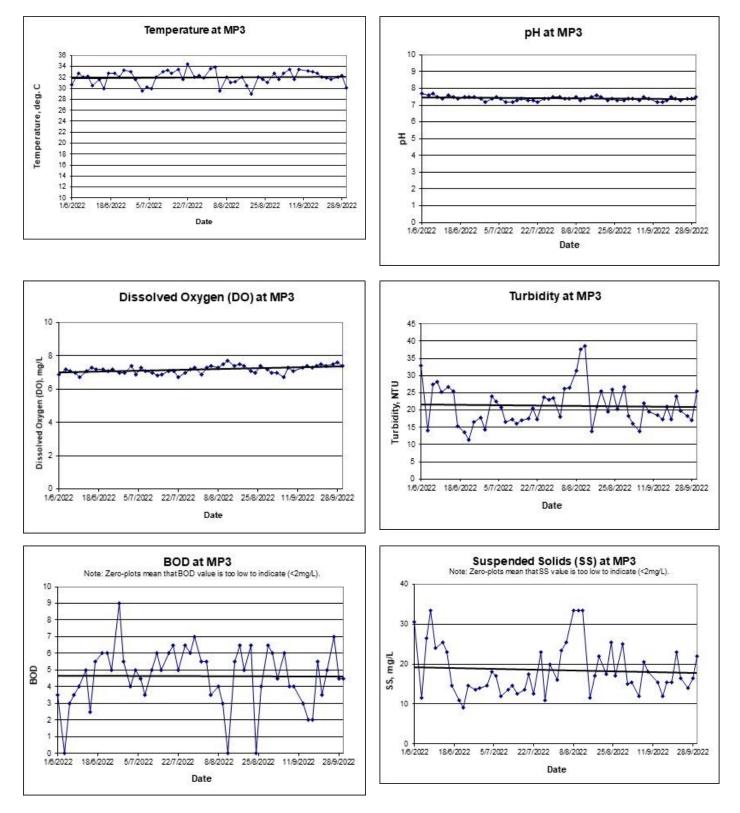
Noise

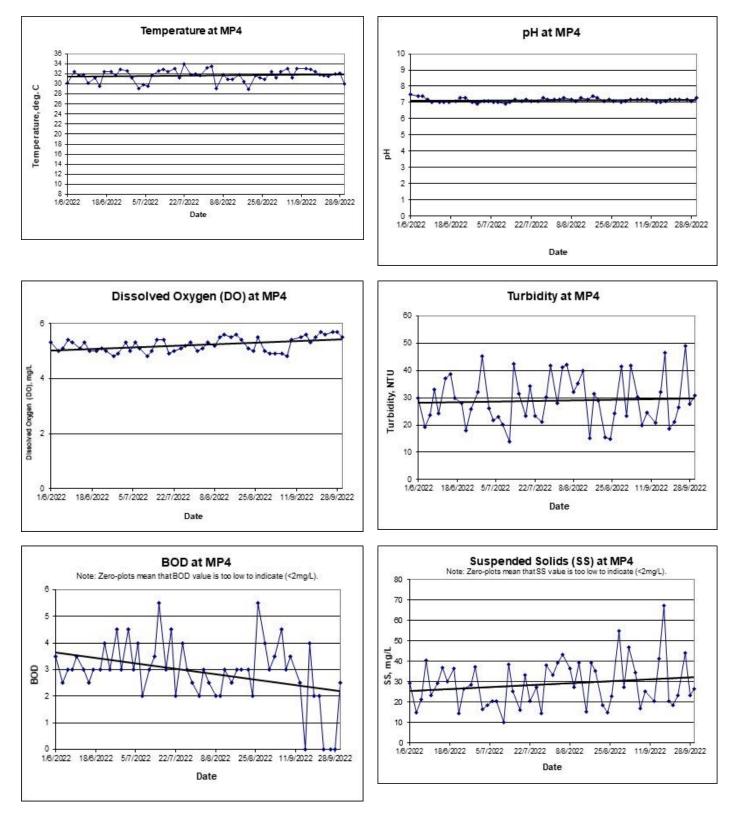


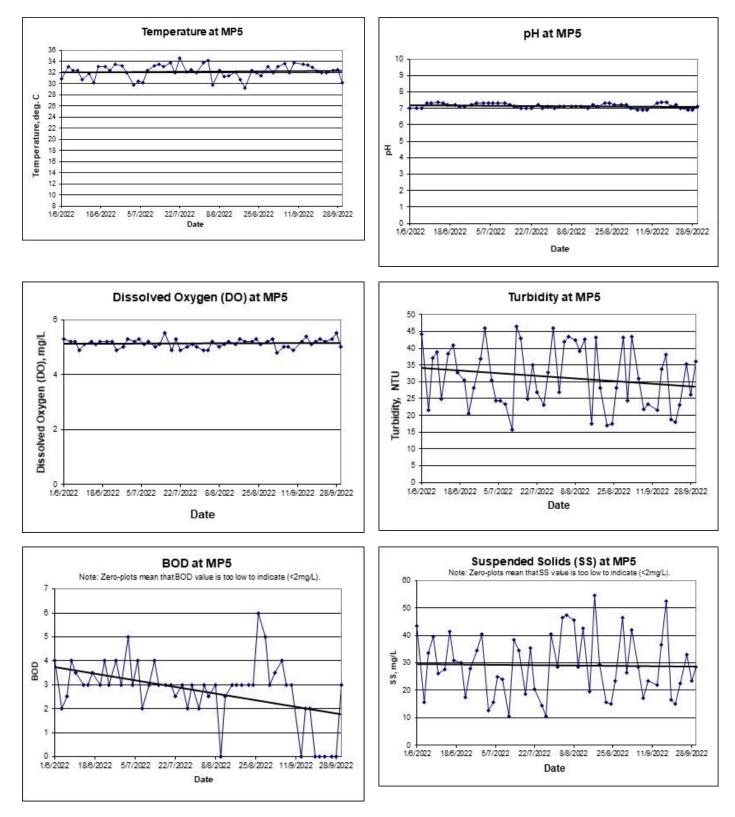
Noise Level for 30 min, dB(A), at NSR1

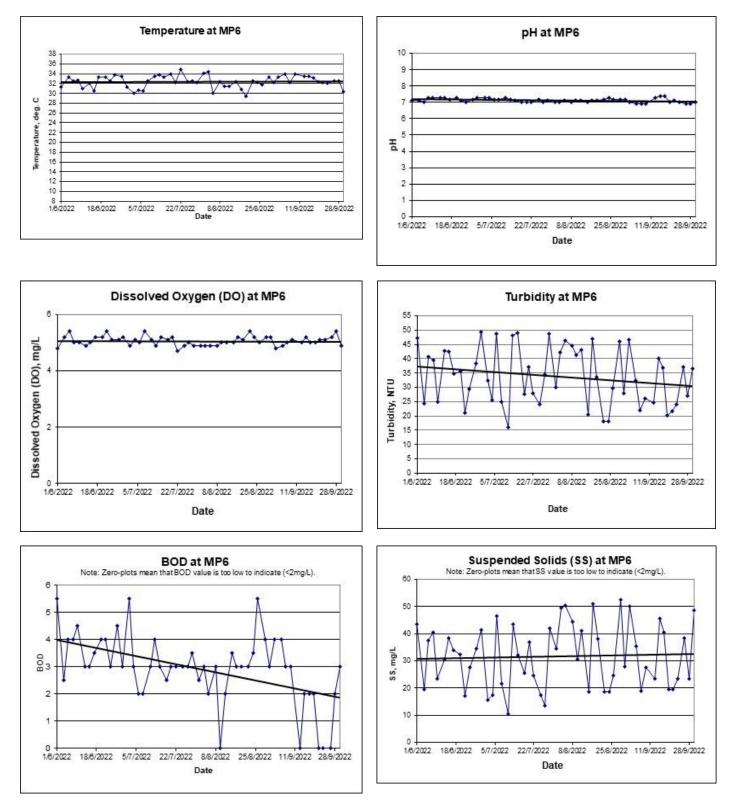





Noise




Noise Level for 30 min, dB(A), at NSR5



ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234365 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 02-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 08-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 02-Sep-2022 to 07-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234365 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	02-Sep-2022	HK2234365-001	15	5	 	
MP3-2	02-Sep-2022	HK2234365-002	16	4	 	
MP4-1	02-Sep-2022	HK2234365-003	48	3	 	
MP4-2	02-Sep-2022	HK2234365-004	46	4	 	
MP5-1	02-Sep-2022	HK2234365-005	42	3	 	
MP5-2	02-Sep-2022	HK2234365-006	42	4	 	
MP6-1	02-Sep-2022	HK2234365-007	50	4	 	
MP6-2	02-Sep-2022	HK2234365-008	50	4	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4562072)								
HK2234365-004	MP4-2	EA025: Suspended Solids (SS)		2	mg/L	46	46	0.0		
HK2234365-008	MP6-2	EA025: Suspended Solids (SS)		2	mg/L	50	51	2.4		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (i	DCS) Report	
					Spike Spike Reco		overy (%)	Recovery	Limits (%)	RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4562072)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	98.0		77.8	119		
EP: Aggregate Organics (QCLot: 4557951)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.4		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234370 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 05-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received : 13-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 05-Sep-2022 to 10-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234370 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	05-Sep-2022	HK2234370-001	12	6	 	
MP3-2	05-Sep-2022	HK2234370-002	12	6	 	
MP4-1	05-Sep-2022	HK2234370-003	34	4	 	
MP4-2	05-Sep-2022	HK2234370-004	35	5	 	
MP5-1	05-Sep-2022	HK2234370-005	28	4	 	
MP5-2	05-Sep-2022	HK2234370-006	29	4	 	
MP6-1	05-Sep-2022	HK2234370-007	35	4	 	
MP6-2	05-Sep-2022	HK2234370-008	36	4	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	Duplicate Result RPD (%)		
sample ID										
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4564965)								
HK2234370-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	12	13	0.0		
HK2234563-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	31	30	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (i	DCS) Report	
					Spike	Spike Spike Recov		Recovery	Limits (%)	RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4564965)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	90.0		77.8	119		
EP: Aggregate Organics (QCLot: 4560773)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	95.3		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234372 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 07-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received : 14-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Analysed : -

This report may not be reproduced except with prior written approval from the testing laboratory.

Site

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Signatory Richard formy

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 07-Sep-2022 to 13-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234372 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	07-Sep-2022	HK2234372-001	21	4	 	
MP3-2	07-Sep-2022	HK2234372-002	20	4	 	
MP4-1	07-Sep-2022	HK2234372-003	19	3	 	
MP4-2	07-Sep-2022	HK2234372-004	15	3	 	
MP5-1	07-Sep-2022	HK2234372-005	18	3	 	
MP5-2	07-Sep-2022	HK2234372-006	16	3	 	
MP6-1	07-Sep-2022	HK2234372-007	20	3	 	
MP6-2	07-Sep-2022	HK2234372-008	18	3	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical a	nd Aggregate Properties (QC	: Lot: 4570576)								
HK2234372-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	21	21	0.0		
HK2234372-005	MP5-1	EA025: Suspended Solids (SS)		2	mg/L	18	17	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (M	B) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (I	DCS) Report	
			Spike	Spike Rec	Spike Recovery (%)		Limits (%)	RPDs (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4570576)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	119		77.8	119		
EP: Aggregate Organics (QCLot: 4566329)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.3		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234376 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 09-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received : 15-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 09-Sep-2022 to 15-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234376 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	09-Sep-2022	HK2234376-001	18	4	 	
MP3-2	09-Sep-2022	HK2234376-002	18	4	 	
MP4-1	09-Sep-2022	HK2234376-003	26	3	 	
MP4-2	09-Sep-2022	HK2234376-004	25	4	 	
MP5-1	09-Sep-2022	HK2234376-005	24	3	 	
MP5-2	09-Sep-2022	HK2234376-006	23	3	 	
MP6-1	09-Sep-2022	HK2234376-007	28	3	 	
MP6-2	09-Sep-2022	HK2234376-008	27	3	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4579085)								
HK2234376-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	18	18	0.0		
HK2235369-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	2460	2510	2.1		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (i	DCS) Report	
					Spike	Spike Spike Reco		Recovery	Limits (%)	RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4579085)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	106		77.8	119		
EP: Aggregate Organics (QCLot: 4571597)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	94.7		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234380 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile · 13-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received · 19-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 13-Sep-2022 to 19-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234380 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	13-Sep-2022	HK2234380-001	15	3	 	
MP3-2	13-Sep-2022	HK2234380-002	16	3	 	
MP4-1	13-Sep-2022	HK2234380-003	20	2	 	
MP4-2	13-Sep-2022	HK2234380-004	21	3	 	
MP5-1	13-Sep-2022	HK2234380-005	22	<2	 	
MP5-2	13-Sep-2022	HK2234380-006	22	<2	 	
MP6-1	13-Sep-2022	HK2234380-007	23	<2	 	
MP6-2	13-Sep-2022	HK2234380-008	24	<2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID Method: Compound		CAS Number	CAS Number LOR		Original Result	Duplicate Result	RPD (%)	
sample ID									
EA/ED: Physical ar	d Aggregate Properties (QC	Lot: 4583456)							
HK2234380-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	15	16	0.0	
HK2234826-003	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	3	4	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
			-			Spike Spike Reco		Recovery	overy Limits (%)		RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QC	Lot: 4583456)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	99.0		77.8	119			
EP: Aggregate Organics (QCLot: 4579691)	EP: Aggregate Organics (QCLot: 4579691)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.5		78.6	118			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234384 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile · 15-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 22-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 15-Sep-2022 to 22-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234384 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	15-Sep-2022	HK2234384-001	12	2	 	
MP3-2	15-Sep-2022	HK2234384-002	12	2	 	
MP4-1	15-Sep-2022	HK2234384-003	41	<2	 	
MP4-2	15-Sep-2022	HK2234384-004	42	<2	 	
MP5-1	15-Sep-2022	HK2234384-005	36	2	 	
MP5-2	15-Sep-2022	HK2234384-006	37	2	 	
MP6-1	15-Sep-2022	HK2234384-007	46	2	 	
MP6-2	15-Sep-2022	HK2234384-008	45	2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
sample ID									
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4593303)							
HK2236464-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	267	260	2.8	
HK2236464-003	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	890	883	0.8	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Spike Reco		Recovery	overy Limits (%) R		s (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QC	Lot: 4593303)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	92.0		77.8	119			
EP: Aggregate Organics (QCLot: 4582911)												
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	93.2		78.6	118			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234388 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile · 19-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 24-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 19-Sep-2022 to 24-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234388 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	17-Sep-2022	HK2234388-001	15	2	 	
MP3-2	17-Sep-2022	HK2234388-002	16	2	 	
MP4-1	17-Sep-2022	HK2234388-003	68	4	 	
MP4-2	17-Sep-2022	HK2234388-004	67	4	 	
MP5-1	17-Sep-2022	HK2234388-005	52	2	 	
MP5-2	17-Sep-2022	HK2234388-006	53	2	 	
MP6-1	17-Sep-2022	HK2234388-007	40	2	 	
MP6-2	17-Sep-2022	HK2234388-008	41	2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID Method: Compound		CAS Number	CAS Number LOR		Original Result	Duplicate Result	RPD (%)	
sample ID									
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4595269)							
HK2234388-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	15	16	0.0	
HK2234390-004	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	20	21	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Spike Recove		Recovery Limits (%)		RPDs (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QC	Lot: 4595269)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	102		77.8	119			
EP: Aggregate Organics (QCLot: 4588982)	EP: Aggregate Organics (QCLot: 4588982)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	96.5		78.6	118			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234390 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile · 19-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 24-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 19-Sep-2022 to 24-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234390 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	19-Sep-2022	HK2234390-001	16	5	 	
MP3-2	19-Sep-2022	HK2234390-002	15	6	 	
MP4-1	19-Sep-2022	HK2234390-003	21	2	 	
MP4-2	19-Sep-2022	HK2234390-004	20	2	 	
MP5-1	19-Sep-2022	HK2234390-005	17	<2	 	
MP5-2	19-Sep-2022	HK2234390-006	16	<2	 	
MP6-1	19-Sep-2022	HK2234390-007	20	2	 	
MP6-2	19-Sep-2022	HK2234390-008	19	2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical ar	d Aggregate Properties (QC	Lot: 4595269)								
HK2234388-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	15	16	0.0		
HK2234390-004	MP4-2	EA025: Suspended Solids (SS)		2	mg/L	20	21	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (I	DCS) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCI	_ot: 4595269)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	102		77.8	119		
EP: Aggregate Organics (QCLot: 4588982)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	96.5		78.6	118		
EP: Aggregate Organics (QCLot: 4589038)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	91.5		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234397 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 21-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 27-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 21-Sep-2022 to 27-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234397 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	21-Sep-2022	HK2234397-001	23	4	 	
MP3-2	21-Sep-2022	HK2234397-002	23	3	 	
MP4-1	21-Sep-2022	HK2234397-003	19	2	 	
MP4-2	21-Sep-2022	HK2234397-004	18	2	 	
MP5-1	21-Sep-2022	HK2234397-005	15	<2	 	
MP5-2	21-Sep-2022	HK2234397-006	15	<2	 	
MP6-1	21-Sep-2022	HK2234397-007	20	<2	 	
MP6-2	21-Sep-2022	HK2234397-008	19	<2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical an	d Aggregate Properties (QC I	Lot: 4599947)								
HK2234397-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	23	22	0.0		
HK2237367-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	21	20	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborato	ny Control Sp	ike Duplicate (i	DCS) Report	
			Spike Spike Recovery (%)		overy (%)	Recovery Limits (%)		RPDs (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4599947)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	96.5		77.8	119		
EP: Aggregate Organics (QCLot: 4595546)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.4		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234399 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 23-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 29-Sep-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 23-Sep-2022 to 28-Sep-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234399 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	23-Sep-2022	HK2234399-001	17	5	 	
MP3-2	23-Sep-2022	HK2234399-002	16	5	 	
MP4-1	23-Sep-2022	HK2234399-003	24	<2	 	
MP4-2	23-Sep-2022	HK2234399-004	23	<2	 	
MP5-1	23-Sep-2022	HK2234399-005	22	<2	 	
MP5-2	23-Sep-2022	HK2234399-006	23	<2	 	
MP6-1	23-Sep-2022	HK2234399-007	24	<2	 	
MP6-2	23-Sep-2022	HK2234399-008	23	<2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical an	d Aggregate Properties (QC	Lot: 4602349)								
HK2237142-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	23	24	0.0		
HK2237522-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	33	34	3.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (i	DCS) Report	
					Spike	ike Spike Recovery (%)		Recovery	Limits (%)	RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4602349)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	101		77.8	119		
EP: Aggregate Organics (QCLot: 4597285)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	92.1		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234403 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 26-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 03-Oct-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 26-Sep-2022 to 03-Oct-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234403 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	26-Sep-2022	HK2234403-001	14	7	 	
MP3-2	26-Sep-2022	HK2234403-002	14	7	 	
MP4-1	26-Sep-2022	HK2234403-003	45	<2	 	
MP4-2	26-Sep-2022	HK2234403-004	43	<2	 	
MP5-1	26-Sep-2022	HK2234403-005	32	<2	 	
MP5-2	26-Sep-2022	HK2234403-006	34	<2	 	
MP6-1	26-Sep-2022	HK2234403-007	38	<2	 	
MP6-2	26-Sep-2022	HK2234403-008	39	<2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical a	nd Aggregate Properties (QC	Lot: 4605020)								
HK2234403-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	14	14	0.0		
HK2234403-008	MP6-2	EA025: Suspended Solids (SS)		2	mg/L	39	40	3.4		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ory Control Sp	ike Duplicate (i	DCS) Report	
					Spike	Spike Recovery (%)		Recovery	Limits (%)	RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4605020)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	95.5		77.8	119		
EP: Aggregate Organics (QCLot: 4600428)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	97.3		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234420 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 28-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 06-Oct-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 28-Sep-2022 to 06-Oct-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234420 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	28-Sep-2022	HK2234420-001	16	4	 	
MP3-2	28-Sep-2022	HK2234420-002	17	5	 	
MP4-1	28-Sep-2022	HK2234420-003	24	<2	 	
MP4-2	28-Sep-2022	HK2234420-004	23	<2	 	
MP5-1	28-Sep-2022	HK2234420-005	24	<2	 	
MP5-2	28-Sep-2022	HK2234420-006	23	<2	 	
MP6-1	28-Sep-2022	HK2234420-007	23	2	 	
MP6-2	28-Sep-2022	HK2234420-008	24	2	 	

Laboratory Duplicate (DUP) Report

Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
sample ID											
EA/ED: Physical and Aggregate Properties (QC Lot: 4610726)											
HK2234420-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	16	16	0.0			
HK2238088-004	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	375	379	1.1			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Red	Spike Recovery (%)		Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4610726)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	100		77.8	119		
EP: Aggregate Organics (QCLot: 4605755)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	89.7		78.6	118		
EP: Aggregate Organics (QCLot: 4606727)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	89.5		78.6	118		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS · 1 of 4 Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD Laboratory Page : ALS Technichem (HK) Pty Ltd HK2234422 Work Order Contact MR THOMAS WONG Contact ; Richard Fung 11/F., Chung Shun Knitting Centre, 1 - 3 : FLAT 2207, YU FUN HSE, YU CHUI COURT, SHATIN, Address Address Wing Yip Street, Kwai Chung, N.T., N.T. HONG KONG Hong Kong Kwai Tsing Hong Kong : thomas.wong@eno.com.hk richard.fung@alsglobal.com E-mail E-mail +852 2610 1044 Telephone : ----Telephone +852 2610 2021 Facsimile : ----Facsimile 30-Sep-2022 Project : PROPOSED COMPREHENSIVE DEVELOPMENT AT WO SHANG WAI YUEN LONG Date received 06-Oct-2022 Quote number Order number : HKE/3067/2021 Date of issue :----8 C-O-C number Received : :----No. of samples <u>:</u> 8 Site Analysed :-----

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Position

Richard formy

Signatory

Fung Lim Chee, Richard

Managing Director

Inorganics, Kwai Tsing

Authorised results for:

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 30-Sep-2022 to 06-Oct-2022. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order HK2234422 :

Samples(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

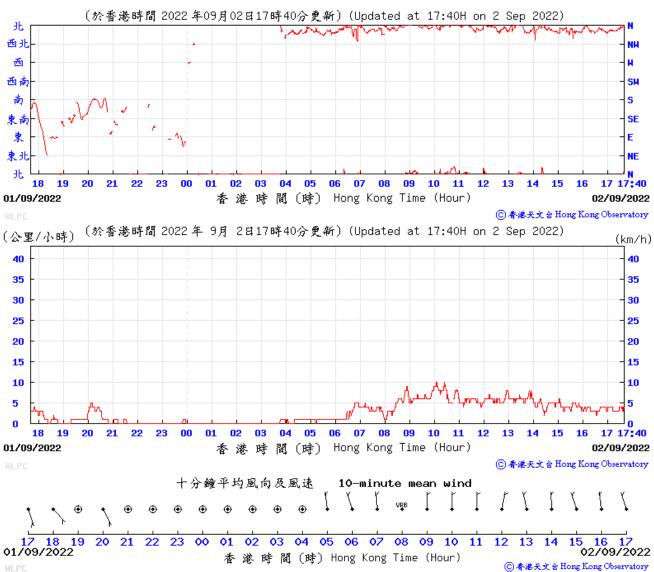
Analytical Results

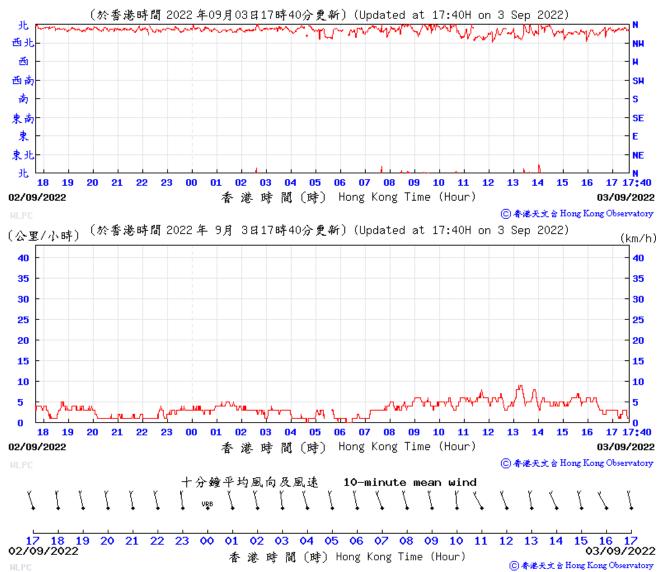
Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)	EP030: Biochemical Oxygen Demand	 	
		LOR Unit	2 mg/L	2 mg/L	 	
Sample ID	Sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties	EP: Aggregate Organics	 	
MP3-1	30-Sep-2022	HK2234422-001	22	5	 	
MP3-2	30-Sep-2022	HK2234422-002	22	4	 	
MP4-1	30-Sep-2022	HK2234422-003	26	2	 	
MP4-2	30-Sep-2022	HK2234422-004	27	3	 	
MP5-1	30-Sep-2022	HK2234422-005	28	3	 	
MP5-2	30-Sep-2022	HK2234422-006	29	3	 	
MP6-1	30-Sep-2022	HK2234422-007	48	3	 	
MP6-2	30-Sep-2022	HK2234422-008	49	3	 	

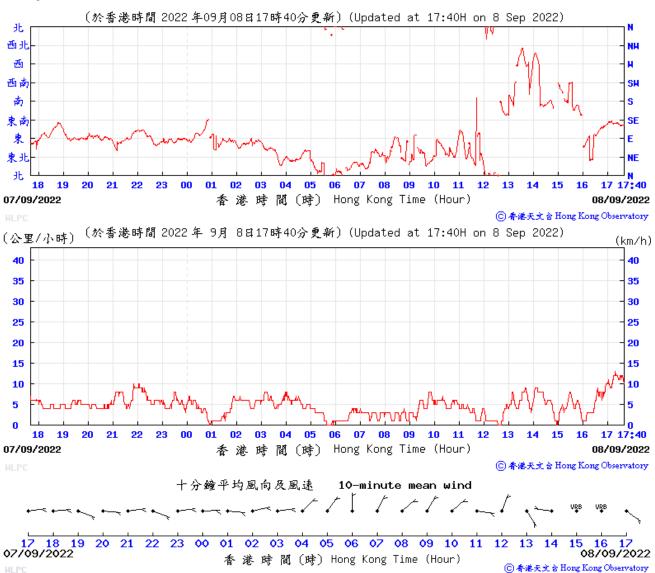
Laboratory Duplicate (DUP) Report

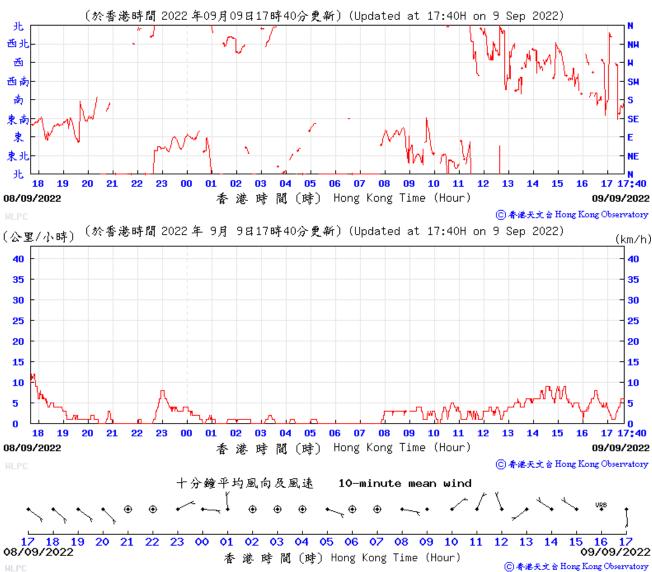
Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical and Aggregate Properties (QC Lot: 4618226)										
HK2234422-001	MP3-1	EA025: Suspended Solids (SS)		2	mg/L	22	23	0.0		
HK2238483-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	9	10	0.0		

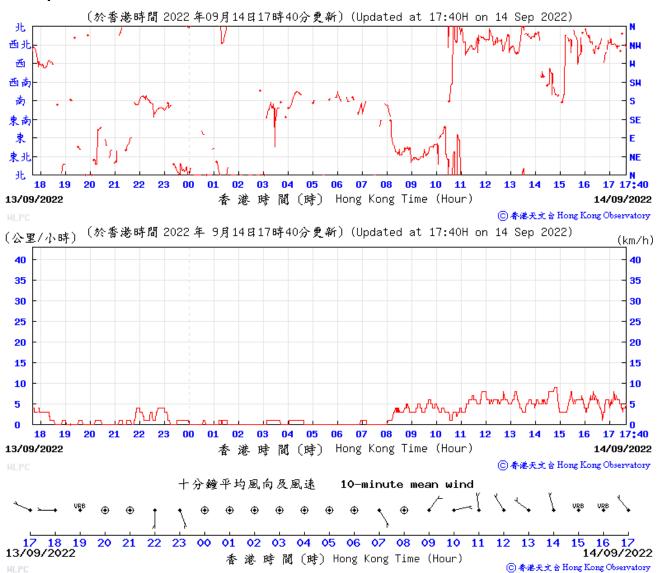
Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

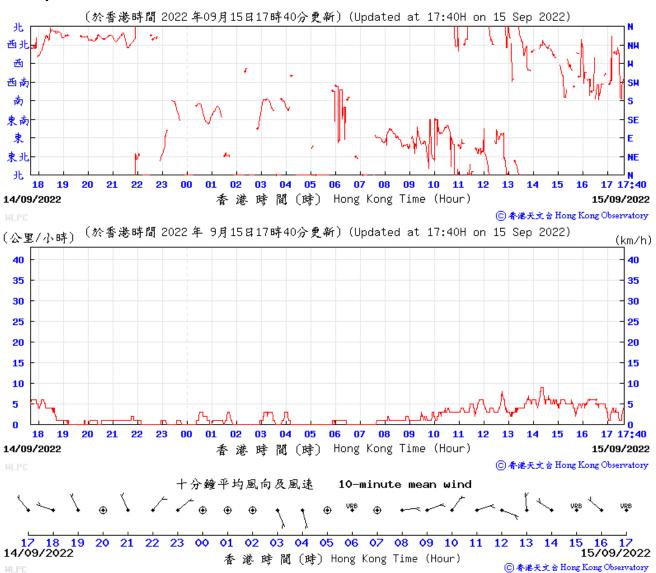

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Spike Reco		Recovery Limits (%)		RPDs (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 4618226)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	90.5		77.8	119		
EP: Aggregate Organics (QCLot: 4612038)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	98.2		78.6	118		

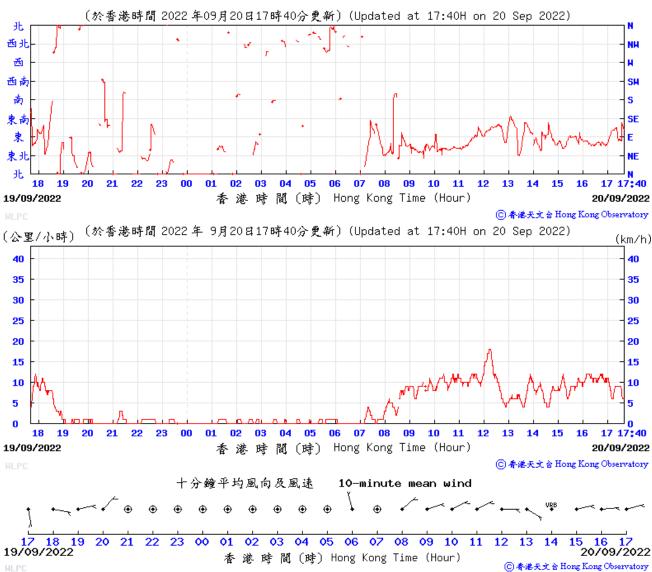

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

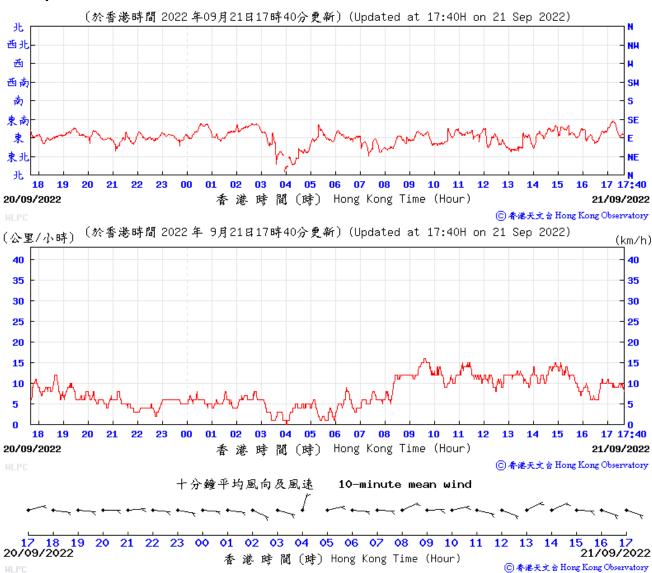

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

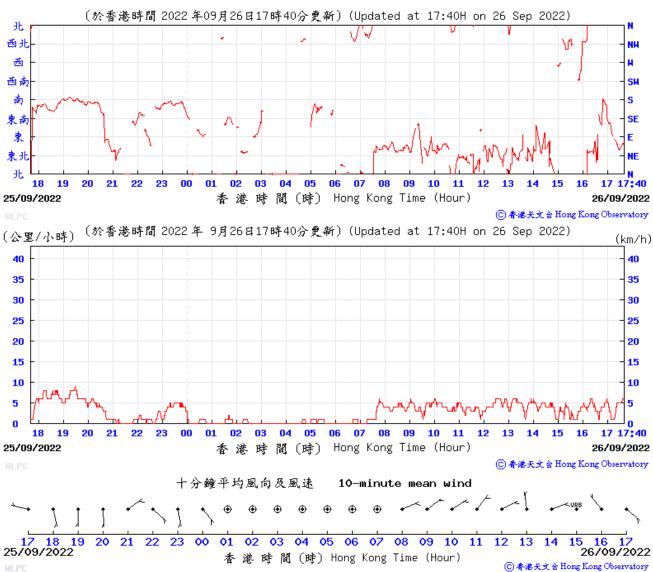

G. Weather Conditions during the Monitoring Period

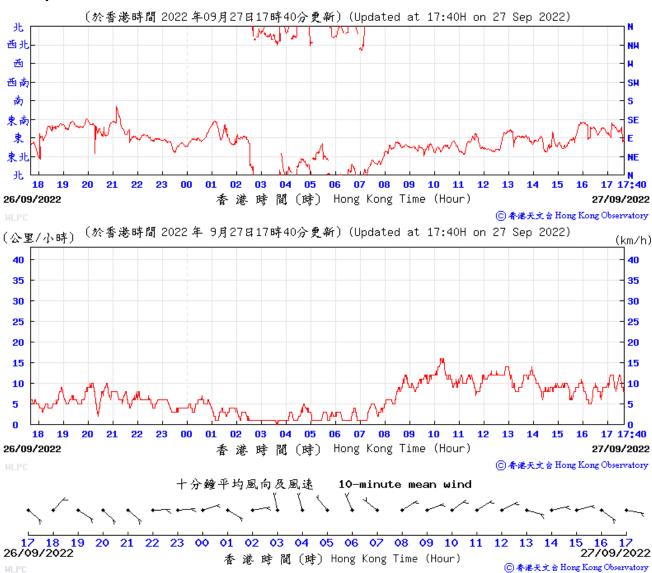

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

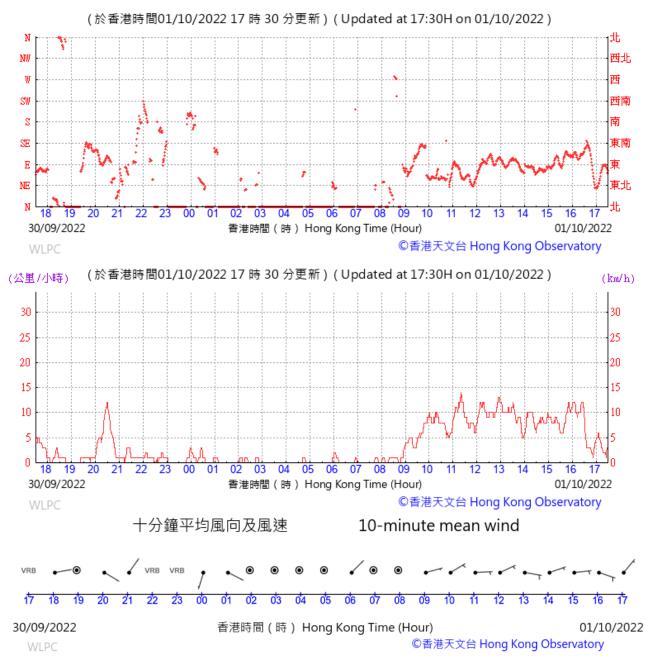


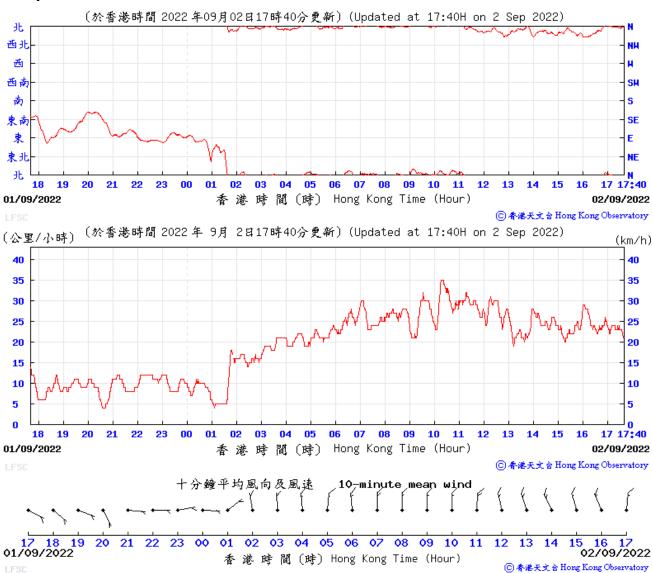


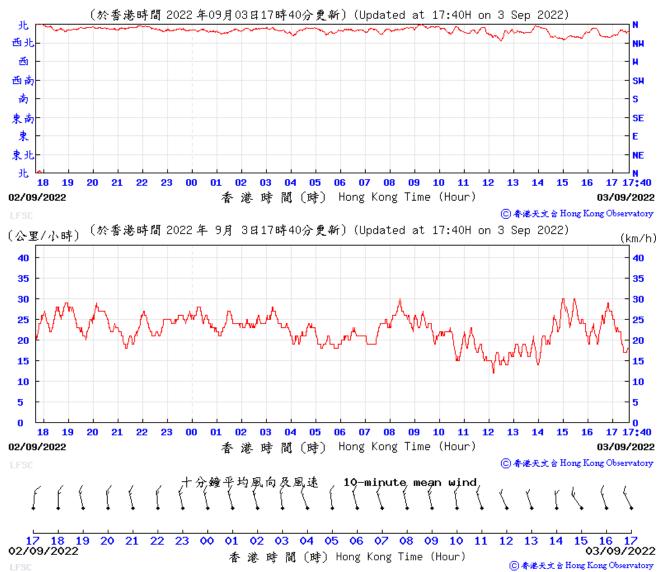


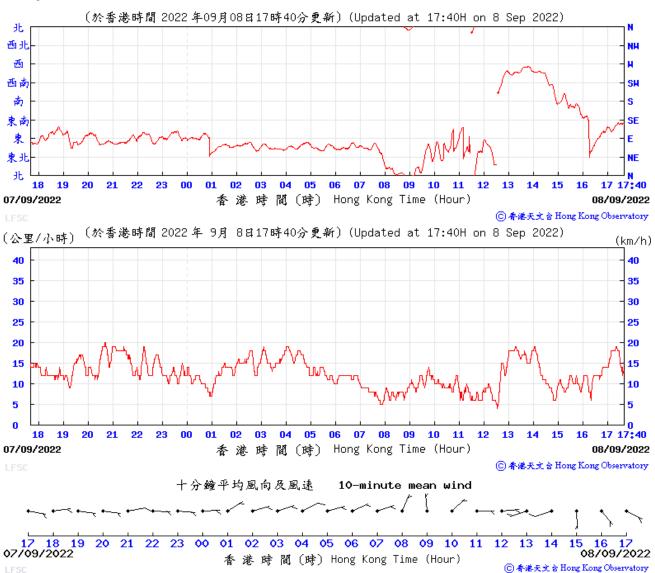


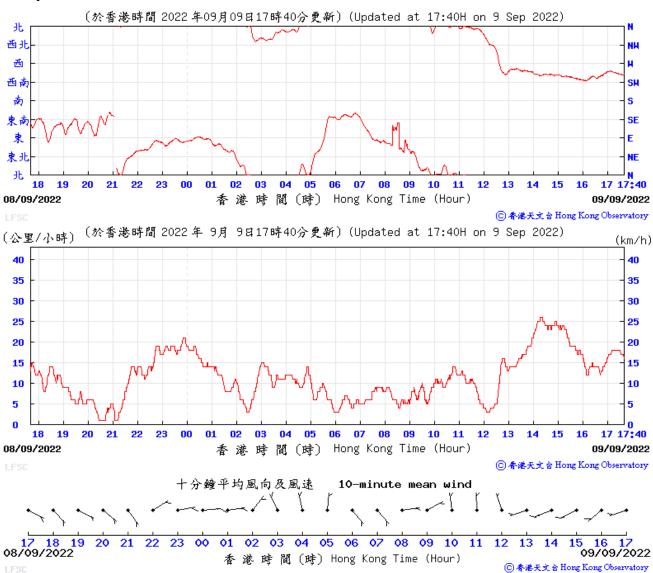


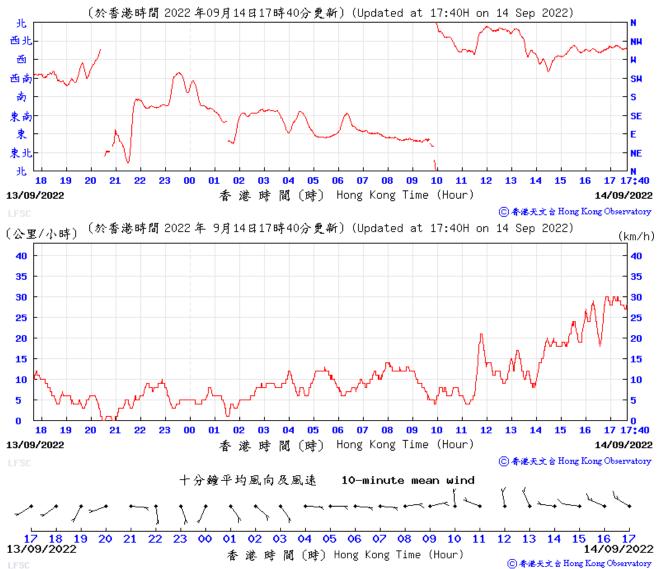


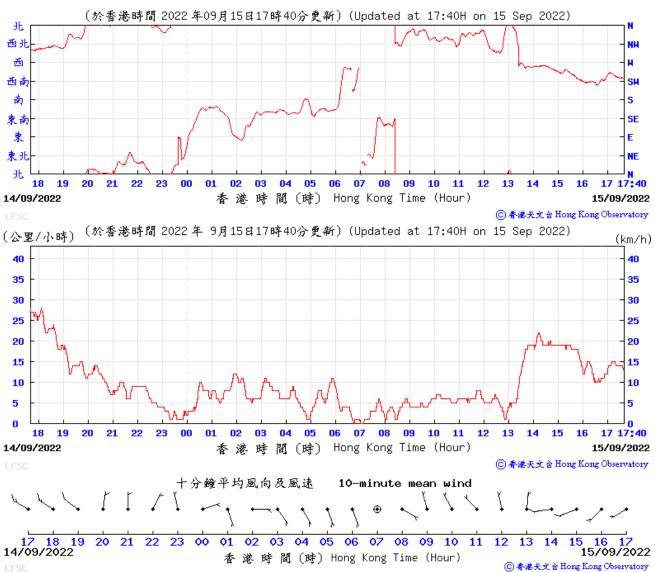

Wind Data for Wetland Park

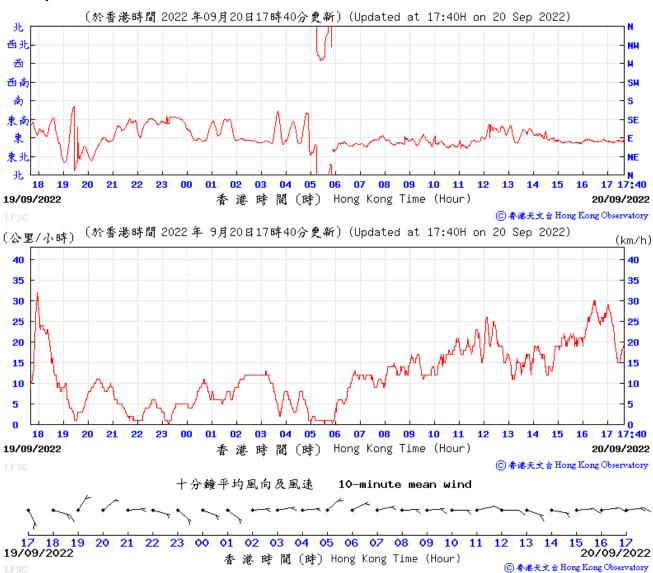


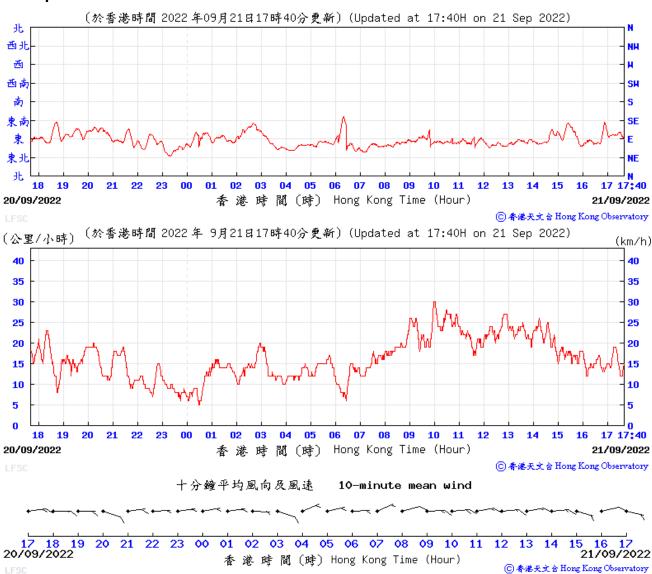

Wind Data for Wetland Park

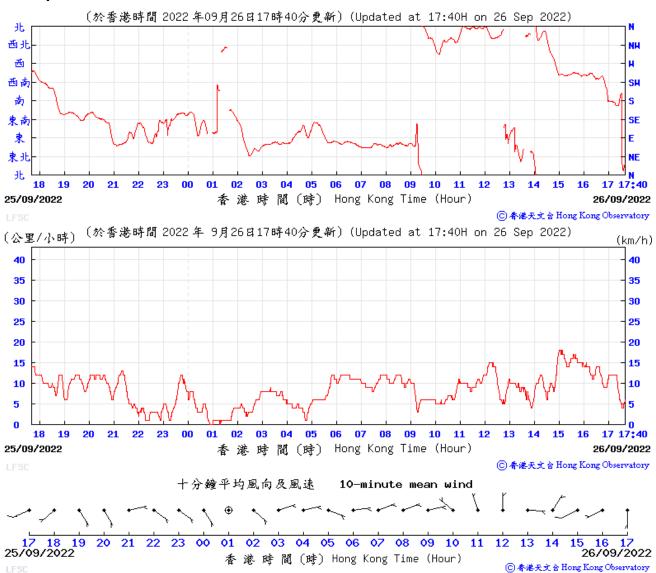

1 October 2022

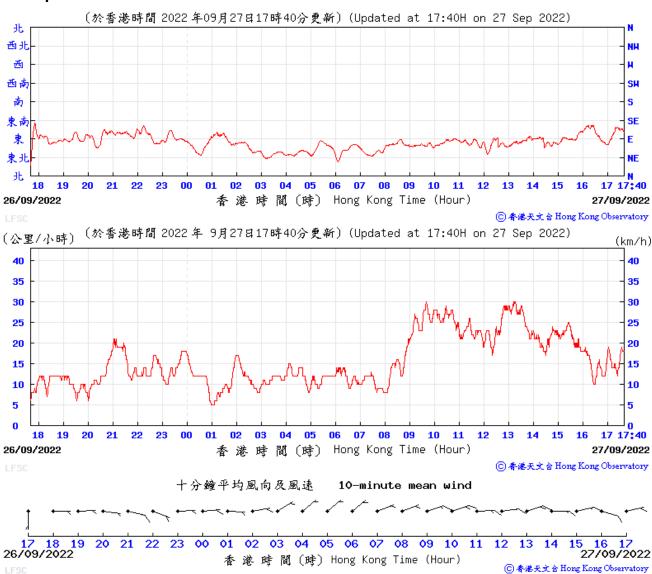


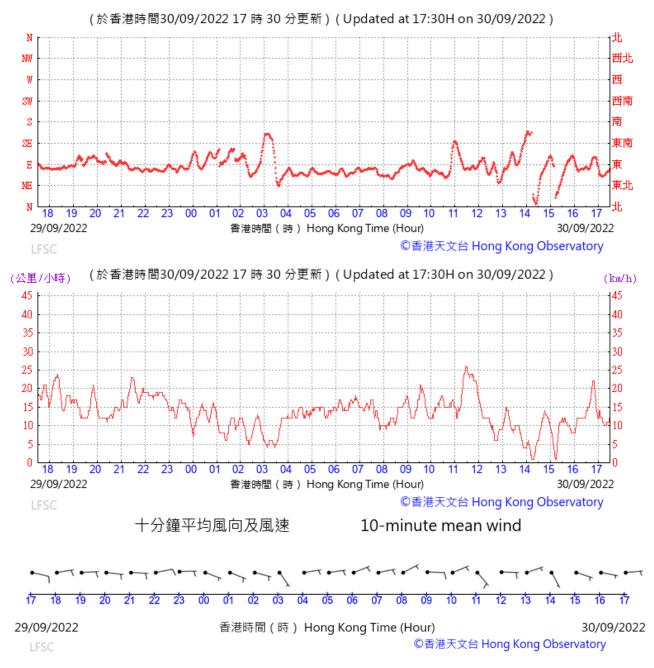


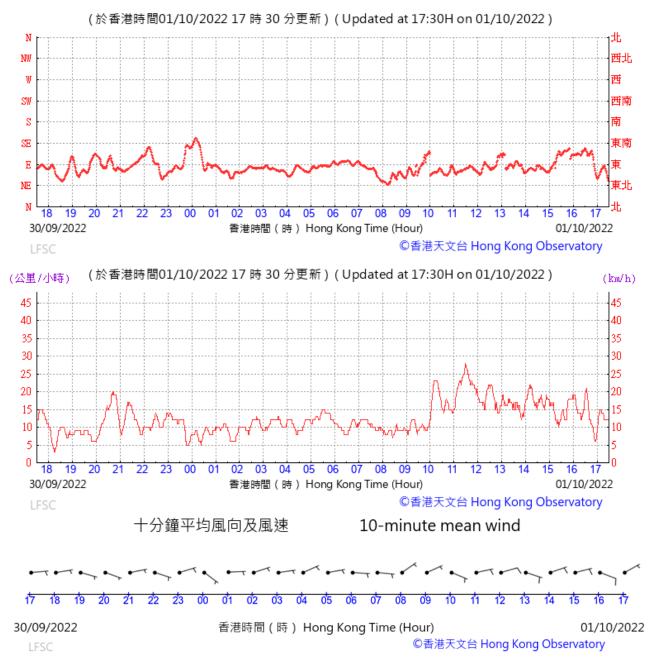












1 October 2022

> Climate > Climate Information Service > Daily Extract

Daily Extract

	1			Back Year	2022 🗸 🖌	Month 9 🗸	Go				
			ŀ	long Kong C	bservato	ory			King's Park	Waglan Is	sla
		Air	Tempera	ture	Mean		Mean				
Day	Mean Pressure (hPa)	Absolute Daily Max (deg. C)	Mean (deg. C)	Absolute Daily Min (deg. C)	Dew Point (deg. C)	Mean Relative Humidity (%)	Amount of Cloud (%)	Total Rainfall (mm)	Total Bright Sunshine (hours)	Prevailing Wind Direction (degrees)	
01	1007.9	32.9	29.4	26.9	25.0	78	71	2.8	7.2	***	
02	1005.9	32.3	29.5	27.3	21.6	63	78	0.0	8.0	***	
03	1002.8	33.9	30.0	26.9	19.5	54	30	0.0	11.1	***	
04	1002.9	34.7	30.8	27.7	20.6	55	26	0.0	11.0	***	
05	1004.4	35.3	31.1	28.8	20.1	52	38	0.0	10.2	***	
06	1008.2	34.5	30.8	28.4	22.3	61	51	0.0	8.9	***	
07	1013.3	29.6	28.4	26.7	24.7	81	86	8.6	0.5	***	
08	1014.2	32.8	29.5	27.8	23.3	70	66	Trace	10.3	***	
09	1013.1	33.3	29.6	27.5	19.4	55	44	0.0	11.0	***	
10	1011.4	31.4	28.9	27.6	24.2	76	59	Trace	4.7	***	
11	1009.1	32.1	29.4	27.4	25.0	78	43	0.0	8.6	***	
12	1007.4	33.7	30.8	28.2	23.1	66	23	0.0	10.3	***	
13	1007.3	35.9	31.7	28.8	21.2	56	5	0.0	11.0	***	
14	1007.0	35.5	31.7	29.6	18.6	46	16	0.0	10.5	***	
15	1005.9	34.5	31.3	28.7	19.9	52	10	0.0	11.0	***	
16	1005.1	33.8	30.8	28.6	22.9	63	36	Trace	8.9	***	
17	1006.0	33.9	31.1	29.1	24.4	69	23	Trace	10.5	***	
18	1005.7	34.0	30.1	27.4	25.4	77	53	20.3	6.9	***	
19	1005.9	32.3	28.8	25.9	24.4	77	79	3.3	5.7	***	
20	1008.2	30.7	28.9	26.2	24.8	79	78	3.5	3.1	***	
21	1010.7	30.4	28.1	25.8	22.6	72	71	8.5	9.8	***	

22	1011.1	31.2	28.5	26.9	23.2	73	52	0.0	9.5	***	**
23	1010.8	32.1	28.5	25.6	24.0	77	53	13.4	5.7	***	**
24	1011.2	31.0	28.3	25.8	22.5	71	75	0.0	9.3	***	**
25	1010.4	32.7	28.8	26.9	22.8	71	39	0.0	9.6	***	**
26	1009.1	33.7	29.4	27.2	23.2	70	62	0.0	10.4	***	**
27	1007.7	32.3	29.2	28.1	23.6	72	86	Trace	4.0	***	**
28	1008.0	31.2	28.8	27.7	23.5	73	81	0.0	6.7	***	**
29	1010.1	29.7	28.0	25.0	24.4	81	84	8.1	2.9	***	**
30	1012.3	28.3	26.4	24.8	24.8	91	88	102.7	0.1	***	**
Mean/Total	1008.4	32.7	29.6	27.3	22.8	69	54	171.2	237.4	***	**
Climatological Normal [?]	1008.8	30.5	27.9	26.1	23.6	78	66	321.4	174.4	080	21.
•											•

*** unavailable

^ Information of wind direction and wind speed for Waglan Island are based on automatic weather station data since August 1989

Trace means rainfall less than 0.05 mm

? 1991-2020 Climatological Normal, unless otherwise specified

H. Ecological Monitoring conducted

September 2022	1	2	3	4	5	6	7	8	9	10	11	12	: 1:	3	14	15
Mammals						\checkmark							~	/		\checkmark
Birds						\checkmark							~	·		
Herpetofauna																√(d)
Dragonflies & butterflies																
Water Quality																+
Inspection Visits			✓			✓										✓
Vegetation and Exotic Species Control			~													~
September 2022	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
Mammals					✓		\checkmark					\checkmark				
Birds					✓							✓				
Herpetofauna																
Dragonflies & butterflies							~									
Water Quality															√+	-
Inspection Visits							√								~	
Vegetation and Exotic Species Control															~	

Notes:

Light grey cells indicate public holidays, Saturdays or Sundays "d" and "n" indicate daytime and night-time herpetofauna surveys respectively

+ indicates water level monitoring

indicates additional pH level monitoring

@ indicates extra water quality monitoring (ex-situ)

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

I. Summary of Bird Surveys conducted

Table I1: Summary of bird species of conservation importance and/or wetlanddependence recorded in the Survey Area (excluding the WRA)

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾	Sep 2022 Occurrence ⁽³⁾	Sep 2022 Mean ⁽⁴⁾	Records outside surveys ⁽⁵⁾
Little Grebe	Tachybaptus ruficollis	Y	LC	4	8.0	0
Great Cormorant	Phalacrocorax carbo	Y	PRC	3	1.5	0
Grey Heron	Ardea cinerea	Y	PRC	4	7.0	0
Great Egret	Ardea alba	Y	PRC, (RC)	4	17.0	0
Intermediate Egret	Egretta intermedia	Y	RC	1	0.3	0
Little Egret	Egretta garzetta	Y	PRC, (RC)	4	22.8	0
Eastern Cattle Egret	Bubulcus coromandus	Y	(LC)	3	12.8	0
Chinese Pond Heron	Ardeola bacchus	Y	PRC, (RC)	4	24.8	0
Yellow Bittern	Ixobrychus sinensis	Y	(LC)	2	1.0	0
Black-crowned Night Heron	Nycticorax nycticorax	Y	(LC)	4	4.8	0
Black Kite#	Milvus migrans	Y	Class II, (RC)	4	2.5	0
White-breasted Waterhen	Amaurornis phoenicurus	Y	-	3	3.3	0
Common Moorhen	Gallinula chloropus	Y	-	1	0.5	0
Common Sandpipe	r Actitis hypoleucos	Y	-	4	3.3	0
Pied Kingfisher	Ceryle rudis	Y	(LC)	1	0.3	0
White-throated Kingfisher#	Halcyon smyrnensis	Y	Class II, (LC)	2	0.5	0
Common Kingfishe	r Alcedo atthis	Y	-	4	2.3	0
Eastern Yellow Wagtail	Motacilla tschutschensis	Y	-	1	0.3	0
White Wagtail	Motacilla alba	Y	-	4	6.8	0
Oriental Reed Warbler	Acrocephalus orientalis	Y	-	1	0.3	0
Zitting Cisticola	Cisticola juncidis	Y	LC	1	0.5	0
White-shouldered Starling	Sturnia sinensis	Y	(LC)	1	3.8	0
Collared Crow	Corvus torquatus	Y	LC, NT	2	1.0	0
			No. of species recorded:	23		

Note:

(1) Follows HK bird list (dated 2020-03).

(2) Conservation status follows that of Fellowes *et al.* (2002) and BirdLife International listing (2017). Letters in parentheses indicate that the assessment is on the basis of restrictedness in breeding and/or roosting sites rather than in general occurrence. (Fellowes *et al.* 2002)

(3) Indicates number of surveys recorded within the reporting period.

(4) Refers to the mean number of individuals recorded in the reporting period (excluding the WRA).

(5) Includes observations during other surveys and/or site visits.

(6) Four regular surveys and two outside surveys were conducted.

Birds tagged with '#' are Category II protected under terrestrial wildlife state protection

- ## Birds tagged with '##" are Category I protected under terrestrial wildlife state protection
- V Indicates the species is recorded outside regular surveys

Table I2: Summary of bird species of conservation importance and/or wetlanddependence recorded in the WRA

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾	Sep 2022 Occurrence ⁽³⁾	Sep 2022 Mean ⁽⁴⁾	Records outside surveys ⁽⁵⁾
Little Grebe	Tachybaptus ruficollis	Y	LC	2	0.8	0
Great Cormorant	Phalacrocorax carbo	Y	PRC	1	0.3	0
Grey Heron	Ardea cinerea	Y	PRC	3	0.8	0
Great Egret	Ardea alba	Y	PRC, (RC)	3	2.0	0
Little Egret	Egretta garzetta	Y	PRC, (RC)	2	2.3	0
Eastern Cattle Egret	Bubulcus coromandus	Y	(LC)	1	0.5	0
Chinese Pond Heron	Ardeola bacchus	Y	PRC, (RC)	4	2.5	0
Yellow Bittern	Ixobrychus sinensis	Y	(LC)	3	1.5	0
Black-crowned Night Heron	Nycticorax nycticorax	Y	(LC)	3	4.3	0
Black Kite#	Milvus migrans	Y	Class II, (RC)	3	0.8	0
Eurasian Hobby#	Falco subbuteo	Y	Class II, (LC)	1	0.3	0
White-breasted Waterhen	Amaurornis phoenicurus	Y	-	3	1.5	0
Common Moorhen	Gallinula chloropus	Y	-	2	0.8	0
Common Sandpiper	Actitis hypoleucos	Y	-	2	0.8	0
Common Snipe	Gallinago gallinago	Y	-	-	-	V
Pied Kingfisher	Ceryle rudis	Y	(LC)	1	0.5	0
White-throated Kingfisher#	Halcyon smyrnensis	Y	Class II, (LC)	1	0.3	0
Common Kingfisher	Alcedo atthis	Y	-	4	1.0	0
Eastern Yellow Wagtail	Motacilla tschutschensis	Y	-	1	0.3	0
White Wagtail	Motacilla alba	Y	-	4	2.3	0
Oriental Reed Warbler	Acrocephalus orientalis	Y	-	2	0.5	0
Black-browed Reed Warbler	Acrocephalus bistrigiceps	Y	-	1	0.3	0
Zitting Cisticola	Cisticola juncidis	Y	LC	1	0.3	0
White- shouldered Starling	Sturnia sinensis	Y	(LC)	1	0.5	0
Collared Crow	Corvus torquatus	Y	LC, NT	1	0.3	0
			No. of species recorded:	25		

Note: (1) Follows HK bird list (dated 2020-03).

(2) Conservation status follows that of Fellowes *et al.* (2002) and BirdLife International listing (2017). Letters in parentheses indicate that the assessment is on the basis of restrictedness in breeding and/or roosting sites rather than in general occurrence. (Fellowes *et al.* 2002)

- (3) Indicates number of surveys recorded within the reporting period.
- (4) Refers to the mean number of individuals recorded in the reporting period in the WRA.
 (5) Includes observations during other surveys and/or site visits.
- (6) Four regular surveys and seven outside surveys were conducted
- # Birds tagged with '#' are Category II protected under terrestrial wildlife state protection
 ## Birds tagged with '##" are Category I protected under terrestrial wildlife state protection

V Indicates the species is recorded outside regular surveys

Table I3: Summary of bird species recorded in the Survey Area (excluding the WRA) during the reporting month

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾
Little Grebe	Tachybaptus ruficollis	Υ	LC
Great Cormorant	Phalacrocorax carbo	Y	PRC
Grey Heron	Ardea cinerea	Y	PRC
Great Egret	Ardea alba	Y	PRC, (RC)
Intermediate Egret	Egretta intermedia	Y	RC
Little Egret	Egretta garzetta	Y	PRC, (RC)
Eastern Cattle Egret	Bubulcus coromandus	Y	(LC)
Chinese Pond Heron	Ardeola bacchus	Y	PRC, (RC)
Yellow Bittern	Ixobrychus sinensis	Y	(LC)
Black-crowned Night Heron	Nycticorax nycticorax	Y	(LC)
Black Kite#	Milvus migrans	Y	Class II, (RC)
White-breasted Waterhen	Amaurornis phoenicurus	Y	-
Common Moorhen	Gallinula chloropus	Y	-
Common Sandpiper	Actitis hypoleucos	Y	-
Spotted Dove	Spilopelia chinensis	Ν	-
Eurasian Collared Dove	Streptopelia decaocto	Ν	-
Asian Koel	Eudynamys scolopaceus	Ν	-
House Swift	Apus nipalensis	Ν	-
Pied Kingfisher	Ceryle rudis	Y	(LC)
White-throated Kingfisher#	Halcyon smyrnensis	Y	Class II, (LC)
Common Kingfisher	Alcedo atthis	Y	-
Barn Swallow	Hirundo rustica	Ν	-
Eastern Yellow Wagtail	Motacilla tschutschensis	Y	-
White Wagtail	Motacilla alba	Y	-
Red-whiskered Bulbul	Pycnonotus jocosus	Ν	-
Light-vented Bulbul	Pycnonotus sinensis	Ν	-
Long-tailed Shrike	Lanius schach	N	-
Oriental Magpie Robin	Copsychus saularis	N	-
Chinese Blackbird	Turdus mandarinus	N	-
Masked Laughingthrush	Garrulax perspicillatus	N	<u>-</u>
Oriental Reed Warbler	Acrocephalus orientalis	Y	-
Common Tailorbird	Orthotomus sutorius	N	-
Zitting Cisticola	Cisticola juncidis	Y	LC
Yellow-bellied Prinia	Prinia flaviventris	N	-
Plain Prinia	Prinia inornata	N	-
Cinereous Tit	Parus cinereus	N	-
Swinhoe's White-eye	Zosterops simplex	N	-
Scaly-breasted Munia	Lonchura punctulata	N	-
Eurasian Tree Sparrow	Passer montanus	N	

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾
Black-collared Starling	Gracupica nigricollis	Ν	-
White-shouldered Starling	Nhite-shouldered Starling Sturnia sinensis		(LC)
Common Myna Acridotheres tristis		Ν	-
Crested Myna Acridotheres cristatellus		Ν	-
Black Drongo	Dicrurus macrocercus	Ν	-
Azure-winged Magpie	Cyanopica cyanus	Ν	-
Oriental Magpie	Pica serica	Ν	-
Red-billed Blue Magpie	Urocissa erythrorhyncha	Ν	-
Collared Crow	Corvus torquatus	Y	LC, NT
	No. of species recorded:	48	

Note:

(1) Follows HK bird list (dated 2020-03)

(2) Conservation status follows that of Fellowes et al. (2002) and BirdLife International listing (2017). Letters in

parentheses indicate that the assessment is on the basis of restrictedness in breeding and/or roosting sites rather than in general occurrence. (Fellowes *et al.* 2002)

(3) Four regular surveys and two outside surveys were conducted

Greater Coucal is listed as vulnerable (VU) in China Red Data Book and it is protected under terrestrial wildlife state protection (category II)

Other birds tagged with '#' are Category II protected under terrestrial wildlife state protection

Birds tagged with '##" are Category I protected under terrestrial wildlife state protection

Table I4: Summary of bird species recorded in the WRA during the reporting month

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾
Little Grebe	Tachybaptus ruficollis	Y	LC
Great Cormorant	Phalacrocorax carbo	Y	PRC
Grey Heron	Ardea cinerea	Y	PRC
Great Egret	Ardea alba	Y	PRC, (RC)
Little Egret	Egretta garzetta	Y	PRC, (RC)
Eastern Cattle Egret	Bubulcus coromandus	Y	(LC)
Chinese Pond Heron	Ardeola bacchus	Y	PRC, (RC)
Yellow Bittern	Ixobrychus sinensis	Y	(LC)
Black-crowned Night Heron	Nycticorax nycticorax	Y	(LC)
Black Kite#	Milvus migrans	Y	Class II, (RC)
Eurasian Hobby#	Falco subbuteo	Y	Class II, (LC)
White-breasted Waterhen	Amaurornis phoenicurus	Y	-
Common Moorhen	Gallinula chloropus	Y	-
Common Sandpiper	Actitis hypoleucos	Y	-
Common Snipe	Gallinago gallinago	Y	-
Spotted Dove	Spilopelia chinensis	Ν	-
Eurasian Collared Dove	Streptopelia decaocto	Ν	-
House Swift	Apus nipalensis	Ν	-
Pied Kingfisher	Ceryle rudis	Y	(LC)
White-throated Kingfisher#	Halcyon smyrnensis	Y	Class II, (LC)
Common Kingfisher	Alcedo atthis	Y	-
Barn Swallow	Hirundo rustica	Ν	-
Eastern Yellow Wagtail	Motacilla tschutschensis	Y	-
White Wagtail	Motacilla alba	Y	-
Red-whiskered Bulbul	Pycnonotus jocosus	Ν	-
Light-vented Bulbul	Pycnonotus sinensis	Ν	-

Species Name ⁽¹⁾	Scientific Name ⁽¹⁾	Wetland Dependence	Conservation Status ⁽²⁾	
Brown Shrike	Lanius cristatus	Ν	-	
Long-tailed Shrike	Lanius schach	Ν	-	
Oriental Magpie Robin	Copsychus saularis	Ν	-	
Chinese Blackbird	Turdus mandarinus	Ν	-	
Masked Laughingthrush	Garrulax perspicillatus	Ν	-	
Oriental Reed Warbler	Acrocephalus orientalis	Y	-	
Black-browed Reed Warbler	Acrocephalus bistrigiceps	Y	-	
Common Tailorbird	Orthotomus sutorius	Ν	-	
Pale-legged Leaf Warbler	e-legged Leaf Warbler Phylloscopus tenellipes		-	
Zitting Cisticola	Cisticola juncidis	Y	LC	
Yellow-bellied Prinia	Prinia flaviventris	Ν	-	
Plain Prinia	Prinia inornata	Ν	-	
Asian Brown Flycatcher	Muscicapa latirostris	Ν	-	
Cinereous Tit	Parus cinereus	Ν	-	
Swinhoe's White-eye	Zosterops simplex	Ν	-	
Scaly-breasted Munia	Lonchura punctulata	Ν	-	
Yellow-fronted Canary	Crithagra mozambica	Ν	-	
Black-collared Starling	Gracupica nigricollis	Ν	-	
White-shouldered Starling	Sturnia sinensis	Y	(LC)	
Crested Myna	Acridotheres cristatellus	Ν	-	
Black Drongo	Dicrurus macrocercus	Ν	-	
Red-billed Blue Magpie	Urocissa erythrorhyncha	Ν	-	
Collared Crow	Corvus torquatus	Y	LC, NT	
	No. of species recorded:	49		

Note: (1) Follows HK bird list (dated 2020-03)

(2) Conservation status follows that of Fellowes et al. (2002) and BirdLife International listing (2017). Letters in parentheses indicate that the assessment is on the basis of restrictedness in breeding and/or roosting sites rather than in general occurrence. (Fellowes et al. 2002)

 (3) Four regular surveys and seven outside surveys were conducted
 # Greater Coucal is listed as vulnerable (VU) in China Red Data Book and it is protected under terrestrial wildlife state protection (category II)

Other birds tagged with '#' are Category II protected under terrestrial wildlife state protection

Birds tagged with '##" are Category I protected under terrestrial wildlife state protection

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

J. Summary of Herpetofauna, Mammal and Insect Surveys conducted

Table J1: Summary of herpetofauna monitoring in the Survey Area (excluding the WRA)

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Amphibian	No. of species recorded:	0			
No records					
Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Reptile	No. of species recorded:	0			
No records					
Note:					

(1) Conservation status follows that of Fellowes et al. (2002), Chan et al. (2005) and Karsen et al. (1998).

(2) Indicates number of surveys recorded within the reporting period.

(3) Refers to the mean number of individuals recorded in the reporting period (excluding the WRA).

(4) Includes observations during other surveys and/or site visits.

(5) One regular survey and five outside surveys were conducted.

V Indicates the species is recorded outside regular surveys

Table J2: Summary of herpetofauna monitoring in the WRA

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Amphibian	No. of species recorded:	0			
No records					
Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Reptile	No. of species recorded:	2			
Bowring's Gecko	Hemidactylus bowringii	-	1	2.0	0
Long-tailed Skink	Eutropis longicaudata	-	1	1.0	0

Note:

(1) Conservation status follows that of Fellowes et al. (2002), Chan et al. (2005) and Karsen et al. (1998).

(2) Indicates number of surveys recorded within the reporting period.

(3) Refers to the mean number of individuals recorded in the reporting period in the WRA.

(4) Includes observations during other surveys and/or site visits.

(5) One regular survey and ten outside surveys were conducted.

V Indicates the species is recorded outside regular surveys

67

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Max ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Mammal	No. of species recorded:	0			
No records					

Table J3: Summary of mammal monitoring in the Survey Area (excluding the WRA)

Note:

(1) Conservation status follows that of Fellowes et al. (2002) and Shek (2006).

(2) Indicates number of surveys recorded within the reporting period.

(3) Refers to the maximum number of individuals recorded in the reporting period (excluding the WRA).

(4) Includes observations during other surveys and/or site visits.

(5) Six regular surveys were conducted.

V Indicates the species is recorded outside regular surveys

Table J4: Summary of mammal monitoring in the WRA

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Max ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Mammal	No. of species recorded:	2			
Leopard Cat#*	Prionailurus bengalensis	Class II	1	1	0
Pallas's Squirrel	Callosciurus erythraeus	-	1	1	0

Note:

(1) Conservation status follows that of Fellowes et al. (2002) and Shek (2006).

(2) Indicates number of surveys recorded within the reporting period.

(3) Refers to the maximum number of individuals recorded in the reporting period in the WRA.

(4) Includes observations during other surveys and/or site visits.

(5) Six regular surveys and five outside surveys were conducted

Leopard Cat is listed on CITES Appendix II and vulnerable (VU) in China Red Data Book and it is protected under

the Wild Animals Protection Ordinance (Cap. 170)

V Indicates the species is recorded outside regular surveys

* Leopard Cat scat were recorded

Table J5: Summary of dragonflies (odonata) and butterfly monitoring in the Survey Area (excluding the WRA)

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Odonata	No. of species recorded:	11			
Common Bluetail	lschnura senegalensis	-	1	1.0	0
Common Flangetail	lctinogomphus pertinax	-	1	3.0	0
Regal Pond Cruiser	Epophthalmia elegans	-	1	1.0	0
Asian Amberwing	Brachythemis contaminata	-	1	3.0	0
Crimson Darter	Crocothemis servilia servilia	-	1	3.0	0
Coastal Glider	Macrodiplax cora	LC	1	2.0	0

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Green Skimmer	Orthetrum sabina sab ina	-	1	7.0	0
Wandering Glider	Pantala flavescens	-	1	8.0	0
Variegated Flutterer	Rhyothemis variegata arria	-	1	7.0	0
Saddlebag Glider	Tramea virginia	-	1	1.0	0
Scarlet Basker	Urothemis signata signata	LC	1	6.0	0
Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Butterflies	No. of species recorded:	12			
Plain Tiger	Danaus chrysippus	-	1	1.0	0
Common Tiger	Danaus genutia	-	1	1.0	0
Great Egg-fly	Hypolimnas bolina kezia	-	1	2.0	0
Common Palmfly	Elymnias hypermnestra hainana	-	1	1.0	0
Dark Brand Bush Brown	Mycalesis mineus mineus	-	1	2.0	0
Pale Grass Blue	Pseudozizeeria maha serica	-	1	3.0	0
Red-base Jezebel	Delias pasithoe pasithoe	-	1	1.0	0
Lemon Emigrant	Catopsilia pomona pomona	-	1	7.0	0
Common Bluebottle	Graphium sarpedon sarpedon	-	1	1.0	0
Common Mime	Chilasa clytia clytia	-	1	2.0	0
Common Mormon	Papilio polytes polytes	-	1	8.0	0
Spangle	Papilio protenor	-	1	3.0	0

Note:

Conservation status follows that of Fellowes *et al.* (2002), Lo & Hui (2004), Tam *et al.* (2011) and Young & Yiu (2002).
 Indicates number of surveys recorded within the reporting period.
 Refers to the mean number of individuals recorded in the reporting period (excluding the WRA).

(4) Includes observations during other surveys and/or site visits.

(5) One regular surveys and five outside surveys were conducted
 V Indicates the species is recorded outside regular surveys

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²)	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Odonata	No. of species recorded:	13			
Dingy Dusk-hawker	Gynacantha subinterrupta	LC	-	-	V
Regal Pond Cruiser	Epophthalmia elegans	-	1	3.0	0
Blue Dasher	Brachydiplax chalyb ea flavovittata	-	1	12.0	0
Asian Amberwing	Brachythemis contaminata	-	1	3.0	0
Crimson Darter	Crocothemis servilia servilia	-	1	4.0	0
Coastal Glider	Macrodiplax cora	LC	1	1.0	0
Pied Percher	Neurothemis tullia tullia	-	1	9.0	0
Green Skimmer	Orthetrum sabina s abina	-	1	8.0	0
Wandering Glider	Pantala flavescens	-	1	4.0	0
Variegated Flutterer	Rhyothemis variega ta arria	-	1	16.0	0
Evening Skimmer	Tholymis tillarga	-	1	3.0	0
Saddlebag Glider	Tramea virginia	-	1	4.0	0
Scarlet Basker	Urothemis signata signata	LC	1	4.0	0
Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside

Table J6: Summary of dragonflies (odonata) and butterfly monitoring in the WRA

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Butterflies	No. of species recorded:	19			
Blue-spotted Crow	Euploea midamus midamus	-	1	1.0	0
Great Egg-fly	Hypolimnas bolina kezia	-	1	5.0	0
Common Sailor	Neptis hylas hylas	-	1	1.0	0
Dark Brand Bush Brown	Mycalesis mineus mineus	-	1	4.0	0
South China Bush Brown	Mycalesis zonata	-	1	2.0	0
Chocolate Royal	Remelana jangala mudra	-	1	2.0	0
Pale Grass Blue	Pseudozizeeria maha serica	-	1	5.0	0
Tiny Grass Blue	Zizula hylax	-	1	7.0	0
Tailless Line Blue	Prosotas dubiosa	-	1	4.0	0
Red-base Jezebel	Delias pasithoe pasithoe	-	1	1.0	0
Lemon Emigrant	Catopsilia pomona pomona	-	1	1.0	0

Species Name	Scientific Name	Conservation Status ⁽¹⁾	Sep 2022 Occurrence ⁽²⁾	Sep 2022 Mean ⁽³⁾	Records Outside Surveys ⁽⁴⁾
Three-spot Grass Yellow	Eurema blanda hylama	-	1	3.0	0
Common Jay	Graphium doson axion	-	1	1.0	0
Common Mime	Chilasa clytia clytia	-	1	6.0	0
Common Mormon	Papilio polytes polytes	-	1	2.0	0
Little Branded Swift	Pelopidas agna	-	-	-	V
Small Branded Swift	Pelopidas mathias oberthueri	-	-	-	V
Colon Swift	Caltoris bromus	-	1	1.0	0
Dark Swift	Caltoris cahira	-	1	1.0	0

Note:

(1) Conservation status follows that of Fellowes et al. (2002), Lo & Hui (2004), Tam et al. (2011) and Young & Yiu (2002).

(2) Indicates number of surveys recorded within the reporting period.
 (3) Refers to the mean number of individuals recorded in the reporting period in the WRA.

(4) Includes observations during other surveys and/or site visits.

(5) One regular survey and ten outside surveys were conducted
 V Indicates the species is recorded outside regular surveys

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

K. Summary of Water Quality Monitoring associated with Ecological Monitoring conducted

Cell	Temp.	рН	Salinity	Turbidity	DO	Water Level M	Ionitoring (cm)
No.	(°C)		(ppt)	(NTU)	(mg/L)	(15 September 2022)	(30 September 2022)
1	28.6	6.8	0.2	13.5	4.1	200	195
2	28.6	6.9	0.2	13.9	4.8	170	160
3	28.7	7.0	0.2	12.4	3.1	210	205
4	29.0	7.2	0.2	7.4	3.8	205	200
Action Level	-	<6.5 or >8.0	>2	-	<2	<150 c	or >250
Limit Level	-	<6.0 or >8.5	>5	-	<1		-

Table K1. Water quality at WRA during the reporting month

Notes:

1. Values highlighted in **bold** indicate that action level is reached; whereas values in <u>bold and underlined</u> indicate that limit level is reached.

2. Water level monitoring was conducted on 15 and 30 September 2022.

3. Monitoring of all other parameters was conducted on 30 September 2022.

Mott MacDonald | Proposed Comprehensive Development at Wo Shang Wai, Yuen Long Monthly EM&A Report for September 2022

L. Environmental Mitigation Measures -Implementation Status

Air Quality – Recommended Mitigation Measures

Air Quality Mitigation Measures during construction	Implementation Status
 access roads should be sprayed with water or dust suppression chemical to maintain the entire road surface wet or paved; 	\checkmark
 every stock of more than 20 bags of cement or dry PFA should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides; 	N/A
 de-bagging, batching or mixing process should be carried out in sheltered areas during the use of bagged cement; 	N/A
 use of effective dust screens, sheeting or netting to be provided to enclose dry scaffolding which may be provided from the ground floor level of the building or if a canopy is provided at the first- floor level, from the first floor level, up to the highest level (maximum four floors for this Project) of the scaffolding where scaffolding is erected around the perimeter of a building under construction; 	N/A
 dump trucks for material transport should be totally enclosed using impervious sheeting; 	\checkmark
 any excavated dusty materials or stockpile of dusty materials should be covered entirely by impervious sheeting or sprayed with water so as to maintain the entire surface wet, and recovered or backfilled or reinstated within 24 hours of the excavation or unloading; 	\checkmark
 dusty materials remaining after a stockpile is removed should be wetted with water; 	\checkmark
 the area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with e.g. concrete, bituminous materials or hardcore or similar; 	\checkmark
 the portion of road leading only to a construction site that is within 30m of a designated vehicle entrance or exit should be kept clear of dusty materials; 	\checkmark
 stockpile of dusty materials to be either covered entirely by impervious sheeting, placed in an area sheltered on the top and the 3 sides; or sprayed with water so as to maintain the entire surface wet; 	\checkmark
 all dusty materials to be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty material wet; 	✓
 vehicle speed to be limited to 10 kph except on completed access roads; 	\checkmark
 every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites; 	\checkmark
 the load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle; and 	\checkmark
 the working area of excavation should be sprayed with water immediately before, during and immediately after (as necessary) the operations so as to maintain the entire surface wet. 	✓
Dour mitigation measures	
 all malodorous excavated material should be placed as far as possible from any ASRs; 	N/A
 the stockpiled malodorous material should be removed from site as soon as possible; and 	N/A
• the stockpiled malodorous material should be covered entirely by plastic tarpaulin sheets.	N/A

Noise – Recommended Mitigation Measures

Noise Mitigation Measures during construction	Implementation Status
 only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction works; 	\checkmark
 machines and plant that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 	\checkmark
 plant known to emit noise strongly in one direction should, where possible, be orientated to direct noise away from the NSRs; 	✓
 silencers or mufflers on construction equipment should be utilised and should be properly maintained during the construction period; 	\checkmark
 mobile plant should be sited as far away from NSRs as possible; 	\checkmark
 material stockpiles and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities; and 	✓
 air compressor and hand-held breaker should be fitted with valid noise emission labels during operation; and 	N/A
• The Contractor shall at all times comply with all current statutory environmental legislation.	✓
Selection of quieter plant and working methods	\checkmark
The Contractor shall obtain particular models of plant that are quieter than standards given in GW- TM. The list of assumed quieter plants can be found in the Table 4–14 of the EIA report. The Contractor shall select from the available models achieving the assumed sound levels while making reference to the GW-TM, BS 5228-1:2009+A1:2014 and BS 5228-2:2009+A1:2014	
Use of Noise Barriers	Р
Noise barriers are proposed along the site boundary to block the direct line of sight from the most affected NSRs to the major noise contribution construction phases. The height of the noise barriers ranged from 9-10m. The noise barriers shall be built before the commencement of construction works in order to ensure protection to nearby NSRs. The noise barrier should have a surface density of at least 10kg/m ² or material providing equivalent transmission loss. The noise barriers and hoardings should have no gaps and openings to avoid noise leakage.	

Water Quality – Recommended Mitigation Measures

Water Quality Mitigation Measures during construction	Implementation Status
 The site should be confined to avoid silt runoff to the site. 	\checkmark
 No discharge of silty water into the storm drain and drainage channel within and the vicinity of the site. 	✓
 Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials. 	\checkmark
 Stockpiles to be covered by tarpaulin to avoid spreading of materials during rainstorms; 	N/A
 Suitable containers shall be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport; 	\checkmark
 Chemical waste containers shall be labelled with appropriate warning signs in English and Chinese to avoid accidents. there shall also be clear instructions showing what action to take in the event of an accidental; 	✓
 Storage areas shall be selected at safe locations on site and adequate space shall be allocated to the storage area; 	\checkmark
 Any construction plant which causes pollution to the water system due to leakage of oil or fuel shall be removed off-site immediately; 	N/A
 Spillage or leakage of chemical waste to be controlled by using suitable absorbent materials; 	N/A
 Chemicals will always be stored on drip trays or in bunded areas where the volume is 110% of the stored volume; 	Р

Water Quality Mitigation Measures during construction	Implementation Status
 Regular clearance of domestic waste generated in the temporary sanitary facilities to avoid wastewater spillage. 	\checkmark
 Temporary sanitary facilities to be provided for on-site workers during construction. 	\checkmark
 Temporary drainage channel and associated facilities will be provided to collect the surface runoff generated within the Project Area during the construction phase. 	\checkmark
 Sandbags or silt traps will need to be placed to avoid silt runoff to the drainage channel draining the water in the northern ditch. Draining of the ditches should avoid rainy weather. 	\checkmark
 Excavated soil which needs to be temporarily stockpiled should be stored in a specially designated area and provided with a tarpaulin cover to avoid runoff into the drainage channels. 	\checkmark

Waste Management – Recommended Mitigation Measures

Waste Management Mitigation Measures during construction	Implementation Status
Site Clearance Waste	✓
 The major construction works of Wo Shang Wai is in the development of residential buildings and other associated facilities (club house, tennis courts, etc.). The amount of site clearance works will be limited with the exception of the excavated materials. The thin layer of vegetation removed can be stored and reused for landscaping. 	
Excavated Materials	\checkmark
The intention is to maximize the reuse of the excavated materials on-site as fill materials.	
mported Filling Material	\checkmark
The excavated/imported filling material may have to be temporarily stockpiled on-site for the construction of road embankment and foundation of viaduct substructure. Control measures should be taken at the stockpiling area to prevent the generation of dust and pollution of stormwater channels. However, to eliminate the risk of blocking drains in the wet season, it is recommended that stockpiling of excavated materials at during wet season should be avoided as far as practicable.	
Construction and Demolition Materials	\checkmark
Careful design, planning and good site management can minimise over-ordering and generation of waste materials such as concrete, mortars and cement grouts. The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork of plastic facing should be considered to increase the potential for reuse.	
The Contractor should reuse any C&D material on-site. C&D waste should be segregated and stored in different containers to other wastes to encourage the re-use or recycling of materials and their proper disposal.	✓
Chemical Waste	N/A
For those processes which generate chemical waste, it may be possible to find alternatives which generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	
Containers used for the storage of chemical wastes should:	
 be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed: 	\checkmark
 have a capacity of less than 450 litres unless the specification has been approved by the EPD; and 	✓
 display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations, 	\checkmark
The storage area for chemical wastes should:	
 be clearly labelled and used solely for the storage of chemical waste; 	✓
 be enclosed on at least 3 sides; 	✓

Waste Management Mitigation Measures during construction	Implementation Status
 have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area whichever is the greatest; 	~
have adequate ventilation;	\checkmark
 be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste if necessary); and 	\checkmark
 be arranged so that incompatible materials are adequately separated. 	\checkmark
Disposal of chemical waste should:	
 be via a licensed waste collector; and 	N/A
 be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Facility which also offers a chemical waste collection service and can supply the necessary storage containers, or 	N/A
 to be a re-user of the waste, under approval from the EPD. 	N/A
General Refuse	Р
Should be stored in enclosed bins or compaction units separate from C&D and chemical wastes. The Contractor should employ a reputable waste collector to remove general refuse from the site, separate from C&D and chemical wastes, on a regular basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law.	
Disposal of Excavated Sediment at Sea	
The requirements and procedures for excavated sediment disposal are specified under the ETWB TC(W) No. 34/2002 and PNAP 252 (ADV-21). The management of the excavation, use and disposal of sediment is monitored by Fill Management Committee, whilst the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).	N/A
The excavated sediment would be loaded onto barges or other appropriate vessel and transported to the designated marine disposal site. Category L sediment and Category M sediment passing the biological test would be suitable for disposal at a gazetted open sea disposal ground. Category M sediment failing the biological test and Category H sediment passing the biological test would require confined marine disposal.	N/A
During transportation and disposal of the dredged sediment, the following measures should be taken to minimize potential impacts on water quality: -	N/A
 Bottom opening transport vessels should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of vessels before the vessel is moved. 	N/A
Monitoring of the barge loading should be conducted to ensure that loss of material does not take	N/A

Ecology – Recommended Mitigation Measures

Ecology Mitigation Measures during construction	Implementation Status
Clear Definition of Site Limit	
Clear definition of the site limit should be provided in order to minimize and confine the disturbance during the construction period, especially the northern limit of the Site which is adjacent to fishponds within the Conservation Area (CA) zone and are considered to be ecological sensitive receivers.	✓
During wetland construction stage the WRA boundary will be delineated using a temporary hoarding in order to reduce disturbance to off-site habitats and wildlife. During the establishment phase this	N/A (WRA construction completed)

Ecology Mitigation Measures during construction	Implementation Status
Dust and Noise Suppression and Avoidance of Water Pollution	
Good site practices of dust and noise suppression should be strictly implemented to ensure that disturbance is minimized to acceptable levels. Mitigation measures for the off-site disturbance impacts on the fishponds in the CA include hoarding at the northern site boundary during construction of the WRA to reduce noise and dust impacts to the adjacent habitats. Through the use of quieter plant and temporary/movable noise barriers, the noise level would be reduced significantly to an acceptable level. Hoarding at the northern boundary should be replaced with a 1 m high chain-link fence following construction and the WRA will then act as a buffer between the existing wetland areas and the residential part of the site until construction is completed. Hoarding will be retained between the WRA and ongoing construction work to avoid visual disturbance and reduce noise and dust emissions. Pollution of water courses and sedimentary runoff will be minimized by good site practice, especially the containment of water and sediment within the site for removal. These standard noise and air and water quality site practices are considered to be effective measures for minimizing the disturbance impact during the construction period.	~
Planning of Construction Schedule	
The construction of the proposed project should be scheduled in phases. Because mitigation is preferably carried out in advance of the main works rather than after the completion of works, the construction of the WRA will commence at the start of the project. Construction work within the WRA is scheduled to take place in a single wet season, followed by 1.5 years of wetland establishment. During the wetland establishment period no noisy work will be undertaken within the WRA to minimize the disturbance to off-site habitats and wildlife.	N/A (WRA construction completed)
Reusing Onsite Materials	
Soil and plants on-site should be reused (e.g. used as fill material) as far as practical. Stockpiles of these reusable materials should be stored in an appropriate area on-site. In particular, the re-use of the wetland soils and topsoil should be considered.	✓
Construction of the Wetland Restoration Area	\checkmark
The WRA will be operational within 2.5 yrs from the commencement of construction (1 year for site formation and 1.5 years for establishment) and will compensate for the predicted ecological impacts of the proposed development.	

Landscape and Visual – Recommended Mitigation Measures

Landscape and Visual Mitigation Measures during construction	Implementatior Status
CM1 - The construction area and contractor's temporary works areas should be minimised to avoid impacts on adjacent landscape.	\checkmark
CM2 - Screening of construction works by hoarding / noise barriers.	✓ (see Appendix M Photo 1 & 3 *)
CM3 - Reduction of construction period to practical minimum.	✓
CM4 - Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where the soil material meets acceptable criteria and where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate.	~
CM5 - Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone).	✓
CM6 - Advance screen planting of noise barriers	\checkmark
	(see Appendix M Photo 3 *)
CM7 - Control night-time lighting and glare by hooding all lights.	N/A
CM8 - Ensure no run-off into streams adjacent to the Project Area.	\checkmark
CM9 - Protection of existing trees on boundary of site shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained	4

Landscape and Visual Mitigation Measures during construction	Implementation Status
trees, including trees in contractor's works areas. (Tree protection measures will be detailed at S16 and Tree Removal Application stage).	
CM10 - Trees unavoidably affected by the works shall be transplanted where practical. Trees should be transplanted straight to their destinations and not held in a nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme.	✓
egend: / Implemented	

Not implemented Partially implemented

× P N/A

Not applicable Representative photos showing the implementation of mitigation measures are presented in **Appendix M**

M. Landscape and Visual Audit Photos

