

8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

China Harbour – Zhen Hua Joint Venture

Prepared by:

TANG, Chung Hang Environmental Officer

Checked by:

ĽÁU, Chi Leung

Environmental Team Leader

Issue Date: 05 August 2019

Report No.: ENA95900

This report shall not be reproduced unless with prior written approval from this laboratory.

Ref.: CEDPFRSFEM02_0_0690L.19

16 August 2019

By Email and Fax No.: 2695 3944

ETS-Testconsult Limited 8/F, Block B, Veristrong Industrial Centre 34-36 Au Pui Wan Street Fo Tan, Hong Kong

Attention: Mr. C L Lau

Dear Mr. Lau,

Re: Contract No. CV/2015/07 Handling of Surplus Public Fill (2016 – 2018)

Monthly EM&A Report (No. 27) for July 2019 for the Tuen Mun Area 38 Fill Bank

Reference is made to your submission of the draft Monthly EM&A Report for July 2019 for the TM Area 38 Fill Bank received by email on 12 August 2019 and the subsequent revision on 14 August 2019.

We are pleased to inform you that we have no further comment on the captioned report.

Thank you for your attention. Please do not hesitate to contact our Jason Lai or the undersigned should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

2 Roof

F. C. Tsang Independent Environmental Checker

c.c. CEDD Attn: Mr. T M Yeung CHZHJV Attn: Mr. S W Sung

Fax No.: 2714 0113 By Email

Q:\Projects\CEDPFRSFEM02\02 Project Management\02 Corr\CEDPFRSFEM02_0_0690L.19.doc

Contract No.: CV/2015/07 Handling of Surplus Public Fill (2016-2018) – Tuen Mun Area 38 Fill Bank ENA95900 Monthly EM&A Report No.27

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

TABLE OF CONTENTS

Page

EXECUTIVE	SUMMARY	
1.0	INTRODUCTION	1
2.0	PROJECT INFORMATION	-
	2.1 Construction Programme	1
	2.2 Project Organization and Management Structure	1
	2.3 Contact Details of Key Personnel	1
3.0	CONSTRUCTION PROGRESS IN THIS REPORTING MONTH	2
4.0	AIR QUALITY MONITORING	
	4.1 Monitoring Requirement	2
	4.2 Monitoring Equipment	2
	4.3 Monitoring Parameters, Frequency and Duration	2
	4.4 Monitoring Locations and Schedule	2
	4.5 Monitoring Methodology	3
	4.6 Action and Limit levels	4
	4.7 Event-Action Plans	4
	4.8 Results and Observations	4
5.0	MARINE WATER QUALITY MONITORING	
	5.1 Monitoring Requirements	4
	5.2 Monitoring Locations	4
	5.3 Monitoring Parameters and Frequency	4
	5.4 Monitoring Methodology and Equipment Used	5 - 6
	5.5 Action and Limit Levels	6 – 7
	5.6 Event and Action Plan	7
	5.7 Monitoring Duration and Period in this reporting month	7 7
6.0	5.8 Marine Water Monitoring Results	/
0.0	NOISE MONITORING	0
	6.1 Monitoring Requirements 6.2 Monitoring Equipment	8 8
	6.3 Monitoring Parameters, Duration and Frequency	8
	6.4 Monitoring Locations and Period	8
	6.5 Monitoring Procedures and Calibration Details	8 – 9
	6.6 Action and Limit levels	9
	6.7 Event-Action Plans	9
	6.8 Results and Observation	9
7.0	ENVIRONMENTAL AUDIT	
	7.1 Weekly Site Inspection and EPD's Site Inspection	9 – 10
	7.2 Review of Environmental Monitoring Procedures	10
	7.3 Status of Environmental Licensing and Permitting	11
	7.4 Implementation Status	11 - 12
8.0	LANDSCAPE AND VISUAL	12
9.0	WASTE MANAGEMENT	
	9.1 Summary of Waste disposed of in this month	12
	9.2 Advice on the Solid and Liquid Waste Management Status	12
10.0	ENVIRONMENATL NON-CONFORMANCE	
	10.1 Summary of air quality, noise and marine water quality	13
	10.2 Summary of Environmental Complaints	13
	10.3 Summary of Notification of Summons and Prosecution	13
11.0	CONCLUSIONS AND RECOMMENTATIONS	13 - 14
12.0	FUTURE KEY ISSUE	14

APPENDIX

А	Organization Chart and Lines of Communication
B1	Calibration Certificates for Impact Air Quality Monitoring Equipments
B2	Impact Air Quality Monitoring Results
B3	Graphical Plots of Impact Air Quality Monitoring Data
C1	Calibration Certificates for Impact Marine Water Quality Monitoring Equipments
C2	Impact Marine Water Quality Monitoring Results
C3	Graphical Plots of Impact Marine Water Quality Monitoring Data
D1	Calibration Certificates for Impact Noise Monitoring Equipments
D2	Impact Noise Monitoring Results
D3	Graphical Plots of Impact Noise Monitoring Data
E	Weather Condition
F	Event-Action Plans
G	Construction Programme
Н	Weekly ET's Site Inspection Record
I	Implementation Schedule of Mitigation Measures
J	Site General Layout Plan
К	QA/QC Results of Laboratory Analysis
L	Complaint Log

FIGURES

Figure 1	Locations of Air Quality Monitoring Stations – Tuen Mun Area 38 Fill Bank
Figure 2	Locations of Water Quality Monitoring Stations – Tuen Mun Area 38 Fill Bank
Figure 3	Locations of Noise Monitoring Stations – Tuen Mun Area 38 Fill Bank

TABLES

IADLLO	
2.1	Contact Details of Key Personnel
4.1	Air Quality Monitoring Equipment
4.2	Monitoring parameters, duration and frequency of air quality monitoring
4.3	Action and Limit levels for 24-hr TSP and 1-hr TSP
5.1	Monitoring Parameters and Frequency of the marine water
5.2	Summary of testing procedure
5.3	Details of Water Quality Monitoring Equipment (In-site measurement)
5.4	Water Quality Action and Limit Levels
5.5	Time Schedule of Water Quality Monitoring
5.6	Summary of Marine Water Quality Exceedances in this reporting month
6.1	Noise Monitoring Equipment
6.2	Duration, Frequencies and Parameters of Noise Monitoring
6.3	Action and Limit Levels for noise monitoring
7.1	Key Findings of Weekly ET Site Inspections in this reporting month
7.2	Summary of environmental licensing and permit status
7.3	Summary of Environmental Complaints and Prosecutions
9.1	Actual amounts of waste generated in this reporting month

EXECUTIVE SUMMARY

This monthly Environmental Monitoring and Audit (EM&A) report No.27 was prepared by Environmental Team (ET) of ETS-Testconsult Ltd (ETL) for the "Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) – Tuen Mun (TM) Area 38 Fill Bank" (The Project).

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at TM Area 38 in July 2019.

Site Activities

As informed by the Contractor, the site activities in this reporting period were as below:

- 1. Operation of the TM38 Fill Bank.
- 2. Delivery of public fill to Taishan;
- 3. Concrete block breaking work;
- 4. Operation of glass cullet storage compartment at TMFB;
- 5. Provision of photoelectric height limits warning system at the existing height restriction gantries;
- 6. Repair works for damaged at TMFB caused by Super Typhoon;
- 7. Installation of LED Display Board;
- 8. Construction of concrete vehicle access road (both uphill and downhill) at TMFB;
- 9. Construction of Vertical Barrier of 5m high along the west side of the internal road R4 at TMFB.

Environmental Monitoring Progress

The summary of the monitoring activities in this monitoring month is listed below:

- 24-hour TSP Monitoring: 5 Occasions at 2 designated locations
- 1-hour TSP Monitoring: 15 Occasions at 2 designated locations
- Noise, Daytime: 9 Occasions at 2 designated locations
- Marine Water Quality Monitoring: 13 Occasions at 4 designated locations
- Weekly-site inspection: 5 Occasions

Air Monitoring

No exceedance of Action and Limit level was recorded for 1-hr and 24-hr TSP monitoring in the reporting period.

Noise Monitoring

No exceedance of Action and Limit level for noise monitoring was recorded in the reporting period.

Marine Water Quality Monitoring

No exceedance of action and limit level was recorded in the reporting period.

Weekly Site Inspection

In general, performance on environmental mitigation measures implemented was found to be satisfactory in this reporting period. The major findings observed during site inspections are presented in the Section 7.0.

Environmental Complaints, Notification of summons and successful prosecutions

No complaint, notification of summon and prosecution with respect to environmental issues was received in this reporting period.

Future Key Issues

Based on the site inspections and forecast of engineering works in the coming month, key issues to be considered are as follows:

- Dust generation from activities on site, such as vehicular movements along unpaved area and rock crushing activities;
- Noise impact from operating equipment and machinery on site;
- Wastewater and surface runoff from the site discharged into nearby water body; and
- Storage and usage of chemicals / fuel and chemical waste / waste oil.

1.0 INTRODUCTION

China Harbour – Zhen Hua Joint Venture (CHZH-JV) appointed Environmental Team (ET) of ETS-Testconsult Limited (ETL) to undertake the Environmental Monitoring and Audit (EM&A) for the "Contract No: CV/2015/07 –Handling of Surplus Public Fill (2016-2018) – Tuen Mun (TM) Area 38 Fill Bank" (The Project).

In accordance with the Condition 4 of Part C of Environmental Permit (No.: EP-210/2005/C) (the EP), an EM&A programme as set out in the Project Profile should be implemented.

The EM&A programme requires environmental monitoring for air quality, water quality and environmental site inspections for air quality, water quality, landscape and visual, and waste management. The EM&A requirements for each parameter described in the following sections include:

- All monitoring parameters;
- Monitoring schedules for the reporting month and forthcoming months;
- Action and Limit levels for all environmental parameters;
- Event/Action Plans;
- Environmental mitigation measures, as recommended in the Project Profile; and
- Environmental requirements in contract documents.

Baseline monitoring was completed in May 2003 by Stanger Asia Ltd. Action and Limit Levels were established for air and water quality parameters based on the baseline monitoring results.

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at Tuen Mun Area 38 in July 2019.

2.0 PROJECT INFORMATION

2.1 Construction Programme

Details of construction programme are shown in Appendix G.

2.2 Project Organization and Management Structure

The organization chart and lines of communication with respect to the on-site environmental management and monitoring program are shown in Appendix A.

2.3 Contact Details of Key Personnel

The key personnel contact names and telephone numbers are shown in Table 2.1.

Organization	Name of Key Staff	Project Role	Tel. No.	Fax No.	
CEDD	T M Yeung, Norelle Li, May Lau, James Sze, Phoebe Tang	Engineer's Representative	2762 5555	2714 0113	
IEC (Ramboll)	F C Tsang	IEC	3465 2888	3465 2899	
Contractor (CHZH-JV)	Zhou Chang Ying	Project Director	96266299	22474108	
ET (ETL)	C. L. Lau	ET Leader	2946 7791	2695 3944	

Table 2.1 Contact Details of Key Personnel

3.0 CONSTRUCTION PROGRESS IN THIS REPORTING MONTH

As informed by the Contractor, the activities in the reporting month include:

- 1. Operation of the TM38 Fill Bank.
- 2. Delivery of public fill to Taishan;
- 3. Concrete block breaking work;
- 4. Operation of glass cullet storage compartment at TMFB;
- 5. Provision of photoelectric height limits warning system at the existing height restriction gantries;
- 6. Repair works for damaged at TMFB caused by Super Typhoon;
- 7. Installation of LED Display Board;
- 8. Construction of concrete vehicle access road (both uphill and downhill) at TMFB;
- 9. Construction of Vertical Barrier of 5m high along the west side of the internal road R4 at TMFB.

4.0 AIR QUALITY MONITORING

4.1 Monitoring Requirement

1-hr and 24-hr TSP levels were monitored in the reporting month. Table 4.3 shows the Action and Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

Both 1-hour and 24-hour TSP air quality monitoring was performed using a GMWS2310 High Volume Air Sampler (HVS) located at each of the designated monitoring station. Table 4.1 summarizes the equipment used in the air quality monitoring programme. Copies of the calibration certificates for the HVS and calibrator are attached in Appendix B1.

Table 4.1 Air Quality Monitoring Eq	uipment
-------------------------------------	---------

Equipment	Model and Make
HVS	Greasby GMWS2310
Calibrator	Tisch TE-5025A

4.3 Monitoring Parameters, Frequency and Duration

Table 4.2 summarizes the monitoring parameters, monitoring duration and frequencies of air quality monitoring.

Table 4.2	Monitoring parameters, duration, frequency of air quality monitor	rina

Parameter Duration		Frequency	
24-hr TSP	24 hr	Once per six days	
1-hr TSP	1 hr	Three times per six days	

4.4 Monitoring Locations and Schedule

In accordance with the Project Profile, two air-quality monitoring stations, namely TM-A1 and TM-A2, were selected for the 1-hr TSP and 24-hr TSP sampling.

Since the area for existing air monitoring station TM-A2 near Tipping Hall No.1 was handed over to EcoPark, air monitoring station TM-A2 was cancelled and the air monitoring was carried out at an alternative air monitoring station TM-RA2 (refer to Figure 1 attached) from 28 October 2008.

The locations of monitoring stations are shown in Figure 1.

During the reporting month, 1-hr and 24-hr TSP monitoring were carried out as the schedule. The details for 24-hr and 1-hr TSP monitoring carried out in this reporting month are summarized in Appendix B2.

4.5 Monitoring Methodology

Both 1-hr and 24-hr air quality monitoring (High Volume Sampler)

Instrumentation

High volume sampler, as HVS, (Greasby GMWS2310) complete with appropriate sampling inlets were employed for both 1-hour and 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

Installation

The installation of HVS refers to the requirement stated in Appendix D2 "General Technical Requirements of Environmental Monitoring" in the Environmental Monitoring and Audit Guidelines for Development Projects in Hong Kong published by EPD.

Operation/Analytical Procedures

Operating/analytical procedures for the operation of HVS are as below:

- Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 0.6m³/min and 1.7m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. The flow rate is indicated on the flow rate chart.
- For TSP sampling, fiberglass filters (GA-55) were used.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated 5 minutes to establish thermal equilibrium before placing any filter media at designated air monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an air-tight seal on the outer edges of the filter. Then the filter holder frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The programmable timer will be set for a sampling period of 1 hour / 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number.).
- After sampling, the filter was transferred from the filter holder of the HVS to a sealed plastic bag and sent to the laboratory for weighting. The elapsed time was also recoded.
- Before weighting, all filters were equilibrated in a 3esiccators for 24 hour with the temperature of 25°C <u>+</u> 3°C and the relative humidity (RH) <50% <u>+</u>5%.

Maintenance & Calibration

- The HVS and their accessories should be maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVS should be calibrated at bi-monthly intervals.

Wind Data Monitoring

Wind data included wind speed and wind direction were directly extracted from Tuen Mun Station of Hong Kong Observatory during this reporting month. The wind data are presented in Appendix E.

4.6 Action and Limit Levels

Table 4.3 shows the Action and Limit levels for 24-hr TSP and 1-hr TSP monitoring.

Table 4.3 Action and Limit Levels for	24-hr TSP and 1-hr TSP

Monitoring	24-hr TSP (μg/m³)		1-hr TSP (μg/m³)	
Location	Action Level	Limit Level	Action Level	Limit Level
TM-A1	192	260	344	500
TM-RA2 *	192	260	344	500

Remark (*): Since the area for existing air monitoring station TM-A2 near Tipping Hall No.1 was handed over to EcoPark, air monitoring station TM-A2 was cancelled and the air monitoring was carried out at an alternative air monitoring station TM-A2 from 28 October 2008. Since dust monitoring stations TM-A2 and TM-RA2 are located close to the major dust emission sources and no significant difference between them on the prevailing meteorological conditions, the baseline data from TM-A2 can also be valid in the case of TM-RA2.

4.7 Event-Action Plans

Please refer to Appendix F for details.

4.8 Results and Observations

All monitoring data of both 1-hr and 24-hr TSP monitoring is provided in Appendix B2. Graphical presentation of 1-hr and 24-hr TSP monitoring results for the reporting period is shown in Appendix B3. Wind data, including wind speed and wind direction, are annexed in Appendix E.

No exceedance of Action and Limit level was recorded for 1-hr and 24-hr TSP monitoring in the reporting month.

Generally, the Contractor implemented sufficient dust mitigation measures, including operation of wheel washing facilities and road dampening by water bowsers on the main haul roads and unpaved areas.

5.0 MARINE WATER QUALITY MONITORING

5.1 Monitoring Requirements

In accordance with the Project Profile, impact marine water quality monitoring was conducted three days per week. Measurements were taken at both mid-flood and mid-ebb tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed) at two control monitoring stations (TM-FC1 and TM-FC2) and two impact monitoring stations (TM-FM1and TM-FM2).

5.2 Monitoring Locations

As stipulated in the EM&A requirement, there were four monitoring stations undertaken during the impact monitoring. Figure 2 shows the locations of the marine water quality monitoring stations.

5.3 Monitoring Parameters and Frequency

Monitoring of the marine water quality parameters and frequency are listed in Table 5.1.

Monitoring Station	Parameter	Frequency	No. of Depths
	Depth (m)	3 days/week,	3 (Surface, mid-
Control Stations:	Temperature (°C)		
TM-FC1 (Mid-ebb) and TM-FC2 (Mid-flood)	Dissolved Oxygen (mg/L and % saturation)		
Impact Stations:	Turbidity (NTU)	2 tides/day	depth & bottom)
TM-FM1 and TM-FM2	Salinity (ppt)		
	Suspended solids (mg/L)		

Table 5.1 Monitoring Parameters and Frequency of the marine water

5.4 Monitoring Methodology and Equipment Used

For Location of the monitoring stations

Global Positing System (GPS)

A hand-held digital GPS was used to identify the designated monitoring stations prior to water sampling.

For Water Depth measurement

Echo Sounder

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

For In-situ Water Quality Measurement

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently recalibrated at 3 monthly intervals or sometimes longer throughout all stages of the water quality monitoring.

Dissolved Oxygen, Salinity, Turbidity and Temperature Measuring Equipment

A portable, weatherproof multiparameter water quality meter (YSI Pro DSS) which complete with cable, sensor and DC power source were used for measuring DO, turbidity, salinity, pH and temperature:

- a dissolved oxygen level in the range of 0 to 50 mg/L and 0-500 % saturation;
- a turbidity in range 0-4000 NTU;
- a salinity in range 0-70 ppt;
- a temperature of -5-70 degree Celsius

A membrane electrode with automatic temperature compensation complete with a cable was installed.

For Water Sampling and Sample Analysis

In-situ monitoring was carried out at three depths: 1 meter below water surface, at mid-depth and 1 meter above the seabed. At each sampling depth, duplicate readings of dissolved oxygen content and turbidity were taken. The probes were drop into water, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. The difference between the two readings of each set was more than 25% of the value of the first reading while a third measurement would be conducted to ensure data precision.

Water Sampler

A water sampler comprising a transparent PVC cylinder, with a capacity of not less than 2 liters, was lowered into the water body at the predetermined depth. The both opening ends of the sampler were then closed accordingly by dead weight and water samples were collected.

Water Container

The sample container, made by high-density polythene, was rinsed with a portion of the water sample. The water sample was then transferred to the container, labeled with a unique sample ID and sealed with a screw cap. The water samples were stored in a cool box maintained at 4°C. The water samples were then delivered to a local HOKLAS-accredited laboratory (Environmental Laboratory, ETS-Testconsult Ltd, HOKLAS Registration No. 022) on the same day for analysis.

The summary of testing method of testing parameter as recommended by EIA or required by EPD, with the QA/QC results in accordance with the requirement of HOKLAS or international accredited scheme is shown in Table 5.2. For the QA/QC procedures, one QC sample, one duplicate sample and one sample spike of every batch of 20 samples were analysis. The QA/QC results are summarized in Appendix K.

Table 5.2	Summary of testing procedure
10010 0.2	cannuary of tooting procours

Laboratory Analysis	Testing Procedure	Detection Limit
Total suspended solids	In house method based on APHA 19 th ed 2540D	1.0 mg/L

In-situ measurement

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use. Responses of sensors and electrodes were checked with certified standard solutions before each use. The DO sensor was calibrated by wet bulb method and a zero check in distilled water was performed with the turbidity and salinity sensor before the strat of measurement.

At each measurement/sampling depth, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. For DO, DOS, Turbidity and Salinity, measurements were conducted three days per week at both mid-ebb and mid-flood tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed). The duplicate measurements were averaged if the difference was not greater than 25%. If the difference is greater than 25%, repeat measurement will be required to be carried out.

Table 5.3 shows the equipment used for in-situ monitoring of water quality. The calibration certificates are attached in Appendix C1.

Parameter	Model	Date of Calibration	Due Date	Equipment No.
Coordinate of Monitoring stations	Garmin eTrex 10			ET/EW/005/09
Dissolved Oxygen (Saturation), Temperature, Salinity, Turbidity	YSI Pro DSS Multiparameter Water Quality Meter	04/04/19 04/07/19	03/07/19 03/10/19	ET/0510/013*
Water Depth	Speedtech SM-5			ET/EW/002/08

 Table 5.3
 Details of Marine Water Quality Monitoring Equipment (In-site measurement)

Remark: Indicates the instrument should be calibrated on site.

5.5 Action and Limit Levels

The water quality criteria, namely Action and Limit (A/L) levels are presented in the table below.

Table 5.4 Water Quality Action and Limit Levels				
Parameter	Action Level	Limit Level		
DO (mg/L)	Surface & Middle	Surface & Middle		
	<4.78 mg/L (5%-ile of baseline data)	<4.00 mg/L (1%-ile of baseline data)		
	<u>Bottom</u>	<u>Bottom</u>		
	<4.16 mg/L (5%-ile of baseline data)	<2.00 mg/L		
SS (mg/L)	>120% of the upstream control station's	>130% of the upstream control station's		
(Depth-	SS at the same tide on the same day	SS at the same tide on the same day		
averaged)				
Turbidity (NTU)	>120% of the upstream control station's	>130% of the upstream control station's		
(Depth-	turbidity at the same tide on the same	turbidity at the same tide on the same		
averaged)	day	day		

5.6 Event and Action Plan

Please refer to the Appendix F for details.

5.7 Monitoring Duration and Period in this reporting period

Table 5.5 is the time schedule for the marine water quality monitoring events that were conducted in this reporting period. Duration of marine water quality monitoring is detailed in Appendix C2.

			July 2019			
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1/7	2	3	4 ▼	5	6 ▼
7	8	9 ▼	10	11 ▼	12	13 ▼
14	15	16 ▼	17	18 ▼	19	20 ▼
21	22	23 ▼	24	25 ▼	26	27 ▼
28	29	30 ▼	31			

 Table 5.5
 Time Schedule of Marine Water Quality Monitoring

Remark (▼): Marine water quality monitoring carried out by ET.

5.8 Marine Water Quality Monitoring Results

The impact water quality measurement results are detailed in Appendix C2. Appendix C3 presents the water quality monitoring data and graphical presentations of monitoring results respectively. The summary of marine water quality exceedances is shown in Table 5.6.

Table 5.6	Summary of Marine Water Quality Exceedances in this reporting period

		Evenedence	D	0		<u> </u>	
Tide Station	Exceedance Level	Surface & Middle	Bottom	Turbidity	SS	Total	
	TM-FM1	Action	0	0	0	0	0
Mid-Ebb		Limit	0	0	0	0	0
	TM-FM2	Action	0	0	0	0	0
	TIVI-FIVIZ	Limit	0	0	0	0	0
	TM-FM1	Action	0	0	0	0	0
Mid-		Limit	0	0	0	0	0
Flood TM-FM2	Action	0	0	0	0	0	
	TIVI-FIVIZ	Limit	0	0	0	0	0
	otal	Action	0	0	0	0	0
	Jiai	Limit	0	0	0	0	0

According to the summary of marine water monitoring results, no exceedance of action and limit level was recorded in this reporting month.

6.0 Noise Monitoring

6.1 Monitoring Requirements

Noise monitoring was conducted at 2 designated monitoring stations as specified in the Sections 25.10A of the Particular Specification for good site practice.

The equipment, parameter, frequency, duration, methodology, calibration details, results and observations of the noise monitoring for the reporting month are presented in this section.

6.2 Monitoring Equipment

An Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level reading including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (Lx). It complies with International Electro Technical Commission Publications IEC 61672 Type 1 specification, and speed in m/s was used to monitor the wind speed.

Table 6.1 summarizes noise monitoring equipment model being used. A copy of the calibration certificate for noise meter and calibrator are attached in Appendix D1.

Table 6.1	Noise Monitoring	Equipment
		Lyupment

Equipment	Model
Sound Level Meter	Rion NL-31 / Rion NL-52
Calibrator	Rion NC-73 / Castle GA607

6.3 Monitoring Parameters, Duration and Frequency

Duration, frequencies and parameters of noise measurement are presented in Table 6.2.

Table 6.2 Duration, Frequencies and Parameters of Noise Monitoring

Time period	Duration/min	Parameters	Frequency
Day-time: 0700-1900 hrs on normal weekday	30	L _{eq} , L ₁₀ , L ₉₀	Twice per week

6.4 Monitoring Locations and Period

Since Lands Dept did not approve to carry out noise monitoring at their own area where the noise monitoring stations TM-N1 and TM-N2 located due to the security, noise monitoring carried out at two noise monitoring stations TM-RN1 and TM-RN2 (refer to the figure 3 attached) from 18 December 2007.

The noise monitoring locations, TM-RN1 and TM-RN2 are shown in Figure 3. The noise measurement at TM-RN1 and TM-RN2 are façade measurement.

The noise-monitoring period of monitoring stations is summarized in Appendix D2.

6.5 Monitoring Procedures and Calibration Details

Operation/Analysis Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weighting: A
 - Time weighting : Fast
 - Time measurement : 30 min
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000HZ. If the difference in the calibration level before and after measurement was more than 1dB(A), the measurement would be considered invalid and repeat measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with a portable wind meter.

- During the monitoring period, the Leq, L10 and L90 were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Free Field correction to the measurements should be made. Correction factor of +3dB(A) should be made to the free Field measurements. Noise monitoring would be cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind gusts exceeding 10m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator are cleaned with soft cloth in quarterly intervals.
- The meter is sent to the supplier or HOKLAS laboratory to check and calibrated in yearly intervals.

6.6 Action and Limit Levels

The Action and Limit levels for noise levels derived as illustrated in Table 6.3.

Table 6.3	Action and Limit Levels for noise monitoring
-----------	--

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	65 dB(A)

6.7 Event-Action Plans

Please refer to the Appendix F for details.

6.8 Results and Observation

The detail of the noise monitoring is provided in Appendix D2. Graphical presentation of the monitoring result for the reporting period is shown in Appendix D3.

Since no documented complaint on noise issue was received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time noise monitoring.

The major sources of noise pollution observed in this reporting month were noise from the traveling dump trucks and from the operation of site machines.

7.0 ENVIRONMENTAL AUDIT

7.1 Weekly ET Site Inspections and EPD's Site Inspection

7.1.1 Weekly ET Site Inspections

Weekly site inspections were carried out by ET to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In this reporting month, five weekly site inspections were conducted on 04, 11, 18, 25 and 29 July 2019. Summaries of key findings of weekly ET site inspections in this month are described in Table 7.1.

Table 7.1	Key Findings of Weekly E	T Site inspections in this	s reporting month	
Date	Key Findings	Action(s) Taken recommended by ET	Action(s) Taken by the Contractor during the site audit	Rectification Status by ET
04 July 2019	Mud was found accumulated near site exit (New Item)	To clean the accumulated mud properly.		Follow-Up
11 July 2019	Mud was found accumulated near site exit (Previous Item)	To clean the accumulated mud properly.	Accumulated mud was cleaned.	Closed
	Oil stains were observed on the ground at workshop. (New Item)	To clean the oil stains properly.		Follow-Up
18 July 2019	Oil stains were observed on the ground at workshop. (Previous Item)	To clean the oil stains properly.	Oil stains were cleaned.	Closed
25 July 2019	Overgrown grasses were observed near weight bridge. (New Item)	To clean the overgrown grasses properly.		Follow-Up
29 July 2019	Overgrown grasses were observed near weight bridge. (Previous Item)	To clean the overgrown grasses properly.	Overgrown grasses were cleaned	Closed

Table 7.1 Key Findings of Weekly ET Site Inspections in this reporting month

7.1.2 EPD's Site Inspection

EPD's site inspection was carried out at TMFB on 17 & 29 July 2019 .

7.2 Review of Environmental Monitoring Procedures

The monitoring works conducted by the ET were inspected internally on a regular basis. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded the observations around the monitoring stations within and outside of the construction site.
- The monitoring team recorded the temperature, air pressure and general weather condition on the monitoring day.

Water Quality Monitoring

- The monitoring team recorded the observations around the monitoring stations, which might affect the results; and
- Major water pollution sources were identified and recorded.

Noise Monitoring

- The monitoring team recorded the observations around the monitoring station, which might affect the results.
- Major noise sources were identified and recorded.

7.3 Status of Environmental Licensing and Permitting

All permits/licenses valid in this reporting month are summarized in Table 7.2.

Description	Permit No.	Valid	Period	Section
		From	То	
Environmental Permit	EP- 210/2005/C	06/09/18		Issued
Marine Dumping Permit	EP/MD/20- 028	01/07/19	30/09/19	Approval for dumping 2,000,000 tons (approximately equal to 1,111,111 cu.m. bulked quantity) of Public Fill (Reclamation Materials) from Tseung Kwan O Area 137 Fill Bank and Tuen Mun Area 38 Fill Bank to designated dumping area at Guanghaiwan of Taishan
Chemical Waste Producer	5296-421- C4184-01	20/04/17		Spent battery containing heavy metals and spent lubricating oil
Effluent Discharge License	WT00028701- 2017	25/09/17	30/09/22	Effluent arising from vehicle washing and dust suppression activities and contaminated surface runoff treated by screening facilities and sedimentation tanks (sedimentation and chemical precipitation).
Billing Account for Waste Disposal	7027643	22/05/17		
Notification Pursuant to Section 3(1) of the Air Pollution Control (Construction Dust)	415661	12/04/17		

Table 7.2 Summary of environmental licensing and permit status

7.4 Implementation Status

7.4.1 Implementation Status of Environmental Mitigation Measures

An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix I. Most of the necessary mitigation measures were implemented properly.

7.4.2 Implementation Status of Event and Action Plan

No exceedance of Action and Limit levels was recorded for 1-hr and 24-hr TSP monitoring in the reporting month. Apart from this, there was no exceedance on noise recorded in this month.

According to the marine water monitoring results, no action-level and limit-level exceedance was recorded in this reporting period.

Hence, no further action was required to be implemented.

7.4.3 Implementation Status of Environmental Complaint, Notification of Summon and Successful Prosecution Handling

No complaint, notification of summon and prosecution with respect to environmental issues was received in this monitoring month.

A summary of environmental complaints, notifications of summons and successful prosecutions was given in Table 7.3.

Complaints	s logged	Summon	s served	Successful Pl	rosecution
July 2019	Cumulative	July 2019	July 2019 Cumulative		Cumulative
0	3	0	0	0	0

8.0 LANDSCAPE AND VISUAL

Landscape and visual site audit was carried out on a weekly basis to monitor environmental issues in order to ensure that all mitigation measures were implemented timely and properly. The findings in this reporting period were:

- The maximum stockpiling height at the Fill Bank was limited to a maximum of +40 mPD;
- The Contractor hydroseeded the outer slopes of the Fill Bank as far as practicable;
- The Contractor removed the stockpile of public fill in a sequence to allow the outer hydroseeded to be removed later than other portions as far as practicable; and
- Lighting was set to minimize night-time glare.

9.0 WASTE MANAGEMENT

9.1 Summary of Waste disposed of in this period

The actual amounts of different types of waste disposed of by the activities of the Project in the period are shown in Table 9.1

Waste Type	Actual Amount	Disposal Locations
Public Fill ('000m ³)	25.18	Tuen Mun 38 Fill Bank
C&D Waste ('000kg)	0	WENT Landfill
Chemical Waste (kg)/(L)	0	Collected by licensed collector

 Table 9.1
 Actual amounts of Waste generated in this reporting month

9.2 Advice on the Solid and Liquid Waste Management Status

The Contractor should provide sufficient preventive measures during equipment maintenance works so as to avoid oil leakage on the ground. In the event of any oil leakage, the Contractor should clean up the polluted soil and handle all the materials used for this cleaning works as chemical waste.

The drain outlet of all the bunded areas should be plugged properly. Besides, pre-cast drip trays were provided for oil drums at several areas, such as workshop and chemical storage area. The Contractor should collect and dispose of any stagnant water accumulated in the concrete bunding and drip trays and handle them as chemical waste.

The Contractor should use suitable containers with proper labels to store chemical wastes in accordance with Code of Practice on the Packaging, Labeling and Storage of Chemical Waste. The Contractor should also advise their workers of the proper procedures in handling the chemical waste. All the trip tickets for chemical waste disposal should be properly kept in the site office.

The Contractor was reminded to increase the frequency of inspection and cleaning of the site drainage system, including permanent desilting chambers, desilting facilities, oil interceptor bypass tank and all the trapezoidal channels. Moreover, the Contractor should apply approved pesticides in the stagnant water ponds.

All the runoff from the parking area should be pumped to the desilting facilities and oil interceptors to remove suspended solids and oil & grease prior to discharge.

10.0 ENVIRONMENTAL NON-CONFORMANCE

10.1 Summary of air quality, noise and marine water quality

No exceedance of Action and Limit level was recorded for 1-hr and 24-hr TSP monitoring in the reporting period.

According to the marine water monitoring results, no action-level and limit-level exceedance was recorded in the reporting period.

The noise level measured at the monitoring station complied with the Limit Level of 65dB(A). No complaint was received regarding noise issue in this reporting period.

10.2 Summary of Environmental Complaints

No complaint was received in this reporting period.

10.3 Summary of Notification of Summons and Prosecution

There was no notification of summon and prosecution respect to environmental issues registered in this reporting period.

11.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Impact monitoring of air quality, noise and water quality were carried out at designated locations in this reporting period.

According to the summary of air monitoring results, no exceedance of Action and Limit levels was recorded for 1-hr and 24-hr TSP monitoring in the reporting period.

According to the marine water monitoring results, no action-level and limit-level exceedance was recorded in the reporting period.

The noise level measured at the monitoring station complied with the Limit Level of 65dB(A). No complaint was received regarding noise issue in this reporting period.

According to the weekly site inspections carried out in this reporting period, the Contractor generally implemented sufficient dust mitigation measures, including operation of the mist spraying systems and automatic wheel washing facilities, dampening of haul roads and stockpiling areas.

No complaint, prosecution or notification of summons was received in this reporting period.

Recommendations

According to the environmental site inspections performed in the reporting period, the following recommendations were provided:

Air Quality

- Ensure the frequency of water spraying on haul roads, unloading areas and stockpiles to be sufficient to suppress the dust sources;
- Provide proper maintenance for the powered mechanical equipment and barges to avoid emission of dark smoke;
- Provide water spraying onto the truckloads during inspection of fill material;
- Conduct road sweeping on all paved haul roads and public roads especially outside and near the site egress by the road sweeper. Undertake water spraying on stockpiling area by water bowser;

ENA95900 Monthly EM&A Report No.27

- Erect adequate speed limit signs to advise the truck drivers of the speed limit;
- Operate mist spraying systems and automatic water sprinklers in the Fill Bank;
- Implement the dust mitigation measures for the construction activities;
- Designate proper haul roads to ensure effective water spraying; and
- Ensure all vehicles to be washed before leaving the site egress by provision, operation and maintenance of automatic wheel washing facilities.

Noise

Conduct noisy activities at a farther location from the NSRs.

Water Quality

- Maintain the drainage system, including the trapezoidal channels and permanent desilting chambers regularly; and
- Remove the stagnant water or provide approved pesticides for the stagnant water in the permanent desilting chambers, if any.

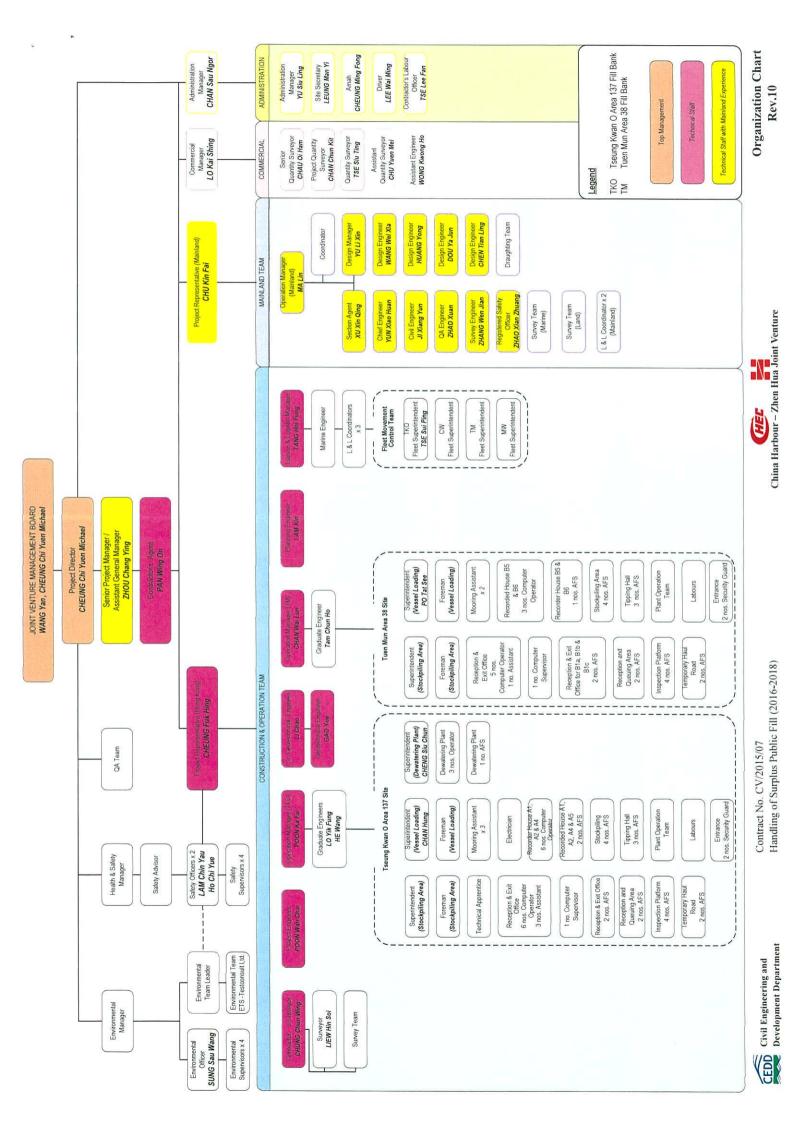
Chemical and Waste Management

- Remove waste materials from the site to avoid accumulation regularly;
- Handle and store chemical wastes properly;
- Remove unwanted material in the existing stockpiles and avoid further dumping of such material;
- Provide and maintain sufficient drip trays for diesel drums, chemical containers, chemical waste storage drums and diesel operated generator set;
- Maintain good housekeeping at the workshop area;
- Ensure sufficient tarpaulin sheets are provided to cover drip trays; and
- Avoid soil being polluted during oil filling and equipment maintenance; hence, properly remove and store the contaminated soil, if any.

Landscape and Visual

- Provide hydroseeding on the exposed slopes, on which the final profile has been formed;
- Erect all the site hoarding/chaining fences in accordance with agreed design at proper location; and
- Maintain the hydroseeded slopes properly.

12.0 FUTURE KEY ISSUES


Based on the site inspections and forecast of engineering works in the coming month, key issues to be considered are as follows:

- Dust generation from activities on site, such as vehicular movements along unpaved area and rock crushing activities;
- Noise impact from operating equipment and machinery on site and
- Wastewater and surface runoff from the site discharged into nearby water body.

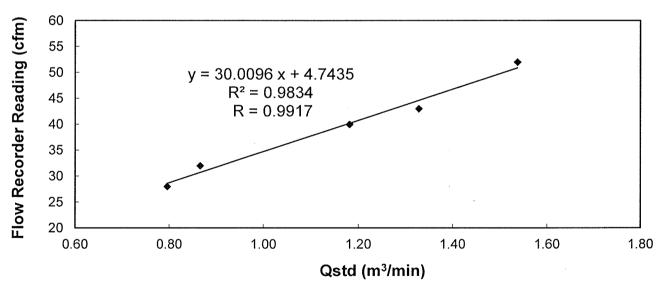
Appendix A

Project Organization Chart

Appendix B1

Calibration Certificates for Impact Air Quality Monitoring Equipments

8/F Block B Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong


T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

Calibration Report of

High Volume Air Sampler

Manufacturer	Graseby GMW	Date of Cali	bration	: <u>30 Ma</u>	30 May 2019				
Serial No.	2484 (ET / EA / 003 / 27) Calibration Due Date : 29 July 2019								
Method	Five-point calibration by using standard calibration kit Tisch TE-5025A refer to the Operations Manual								
	Flow recorder reading (cfm)	52	43	40	32	28			
	Qstd (Actual flow rate, m ³ /min)	1.54	1.33	1.18	0.87	0.80			
	Pressure : 757.56 mm H	g	Temp. :	301	K				

Sampler 2484 Calibration Curve Site: Tuen Mun 38 (TM-A1)

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable*/ unacceptable* for use.

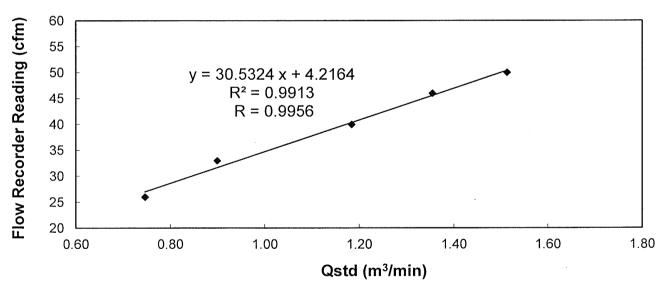
Calibrated by	: Mak Jai	War	
	MAK, Kei Wai		
		• •	

(Assistant Supervisor)

Checked by

LAU, Chi Leung

(Environmental Team Leader)


T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

Calibration Report

of High Volume Air Sampler

Manufacturer	:	Graseby GMW	Date of Cal	ibration	ration : 25 July 2019			
Serial No.	:	2484 (ET/EA/003/27)	Calibration Due Date : <u>24 September 2019</u>)19	
Method	:	Five-point calibration by using standard c Manual	alibration ki	t Tisch TE-	502	5A ref	er to the Op	perations
Results	:	Flow recorder reading (cfm)	50	46		40	33	26
		Qstd (Actual flow rate, m ³ /min)	1.51	1.35		1.18	0.90	0.75
		Pressure : 758.31 mm H	łg	Temp. :		305	K	

Sampler 2484 Calibration Curve Site: Tuen Mun 38 (TM-A1)

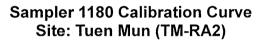
Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

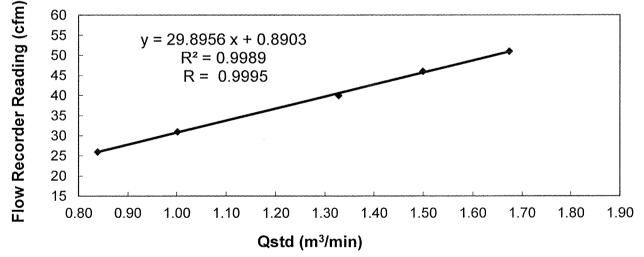
The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable*/ unacceptable* for use.

Calibrated by CHAN, Wai Man

CHAN, Wai M (Technician) Checked by

LAU, Chi Leung (Environmental Team Leader)


8/F Block B. Veristrong Industrial Centre, 34-36 Au Pui Wan Street. Fo Tan, Hong Kong


T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

Calibration Report

of **High Volume Air Sampler**

Manufacturer	:	Graseby GMW	Date of Calib	oration	:	30 May 2019					
Serial No.	:	1180 (ET / EA / 003 / 04) Calibration Due Date : 29 July 2019									
Method	:	Based on Operations Manual for the 5-per manufactured by Tisch TE-5025 A	Based on Operations Manual for the 5-point calibration using standard calibration kit manufactured by Tisch TE-5025 A								
Results	:	Flow recorder reading (cfm) Qstd (Actual flow rate, m ³ /min)	51	46		40 1.33	31 1.00	26 0.84			
		Pressure : 757.56 mm He	I	Temp. :	I	301	K	0.04			

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

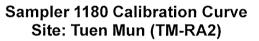
The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable* / unacceptable * for use.

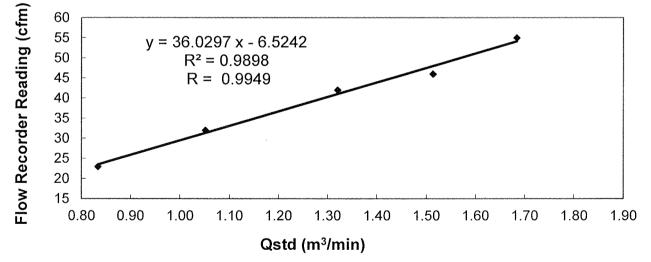
			so.,	
Calibrated by :	Mak	Ju	War	
-	MAK, K	ei Wai		
		_	-	

(Assistant Supervisor)

Checked by LAU, Chi Leung

(Environmental Team Leader)




T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

Calibration Report

of High Volume Air Sampler

Manufacturer	:	Graseby GMW Da	Date of Calibration :			25 July 2019					
Serial No.	:	<u>1180 (ET / EA / 003 / 04)</u> Ca	Calibration Due Date : 24 September 2019								
Method	:	Based on Operations Manual for the 5-point calibration using standard calibration kit manufactured by Tisch TE-5025 A									
Results	:	Flow recorder reading (cfm) Qstd (Actual flow rate, m ³ /min)	55 1.68	46 1.51		42 1.32	32 1.05	23 0.83			
		Pressure : 758.31 mm Hg		Temp. :		305	к				

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable* / unacceptable * for use.

Calibrated by :

CHAN, Wai Man (Technician)

Checked by LAU, Chi Leung

(Environmental Team Leader)

RECALIBRATION **DUE DATE:** March 15, 2020 Environmenta ertificate of alibration **Calibration Certification Information** °K Rootsmeter S/N: 438320 Ta: 293 Cal. Date: March 15, 2019 Pa: 760.7 mm Hg **Operator:** Jim Tisch Calibrator S/N: 3612 Calibration Model #: TE-5025A Vol. Final ΔVol. ΔΡ ΔН Vol. Init ∆Time (in H2O) (m3) (m3) (m3) (min) (mm Hg) Run 1.4500 3.2 2.00 1 1 2 1 4.00 2 3 4 1.0300 6.3 1 5.00 0.9220 7.8 3 5 6 1 4 7 0.8780 8.7 5.50 8 1 0.7220 12.6 8.00 5 9 10 1 **Data Tabulation** $\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)$ √∆H(Ta/Pa) Vstd Ostd Qa (x-axis) (y-axis) (x-axis) (y-axis) Va (m3) 0.9958 0.6868 0.8777 1.0138 0.6991 1.4269 2.0180 0.9917 0.9628 1.2412 1.0096 0.9802 1.0735 1.3877 0.9897 1.0076 1.0928 2.2561 1.4555 1.0064 1.1462 2.3663 0.9886 1.1259 1.7553 0.9834 1.3621 1.0012 1.3867 2.8538 1.30142 2.07834 m= m= -0.01288 OSTD b= -0.02094QA b= 0.99994 0.99994 r= r= Calculations $Va = \Delta Vol((Pa - \Delta P)/Pa)$ Vstd= $\Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$ Qstd= Vstd/∆Time **Qa=** Va/Δ Time For subsequent flow rate calculations: Pa Tstd ,/∆H(Ta/Pa Qstd = 1/m/ΔН Qa= 1/m -h Pstd Ta **Standard Conditions** 298.15 °K RECALIBRATION Tstd: 760 mm Hg Pstd: US EPA recommends annual recalibration per 1998 Key 40 Code of Federal Regulations Part 50 to 51, ΔH: calibrator manometer reading (in H2O) ΔP: rootsmeter manometer reading (mm Hg) Appendix B to Part 50, Reference Method for the Ta: actual absolute temperature (°K) **Determination of Suspended Particulate Matter in** Pa: actual barometric pressure (mm Hg) the Atmosphere, 9.2.17, page 30 b: intercept m: slope

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Appendix B2

Impact Air Quality Monitoring Results

Conc. (µg/m³)

Filter Weight (g)

Final

Initial

Summary of 24-hr TSP Monitoring Results

:

Monitoring Station : TM-A1

Start		Fir	nish	Elapse Time		Sampling	Flow Rate	e (m³/min.)	Average	
Date	Time	Date	Time	Initial	Final	Time (hrs)	Initial	Final	(m³/min.)	
03/07/2019	08:30	04/07/2019	08:30	9898.31	9922.31	24.00	0.9749	0.9749	0.9749	
09/07/2019	10:52	10/07/2019	10:52	9925.31	9949.31	24.00	1.0416	1.0416	1.0416	

03/07/2019	08:30	04/07/2019	08:30	9898.31	9922.31	24.00	0.9749	0.9749	0.9749	2.6654	2.8166	108
09/07/2019	10:52	10/07/2019	10:52	9925.31	9949.31	24.00	1.0416	1.0416	1.0416	2.6355	2.8035	112
15/07/2019	08:30	16/07/2019	08:30	9952.31	9976.31	24.00	0.9749	0.9749	0.9749	2.6156	2.7885	123
21/07/2019	08:30	22/07/2019	08:30	9979.31	10003.31	24.00	0.9749	0.9749	0.9749	2.6428	2.7948	108
27/07/2019	10:24	28/07/2019	10:24	10006.31	10030.31	24.00	1.0082	1.0082	1.0082	2.6726	2.8278	107

Monitoring Station

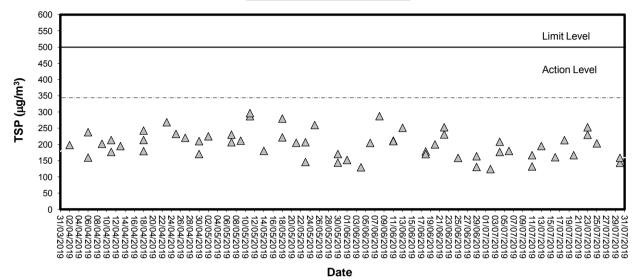
TM-RA2

Sta	ırt	Fin	ish	Elapse	e Time	Sampli1ng	Flow Rate	(m ³ /min.)	Average	Filter W	/eight (g)	$C_{aba} \left(\sqrt{\pi} \left(m^3 \right) \right)$
Date	Time	Date	Time	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	Conc. (μg/m ³)
03/07/2019	08:30	04/07/2019	08:30	25161.53	25185.53	24.00	1.1075	1.1075	1.1075	2.6089	2.7784	106
09/07/2019	11:03	10/07/2019	11:03	25188.53	25212.53	24.00	1.1410	1.1410	1.1410	2.7022	2.9380	144
15/07/2019	08:30	16/07/2019	08:30	25215.53	25239.53	24.00	1.1744	1.1744	1.1744	2.5345	2.7295	115
21/07/2019	08:30	22/07/2019	08:30	25242.53	25266.53	24.00	1.1744	1.1744	1.1744	2.6555	2.8174	96
27/07/2019	10:40	28/07/2019	10:40	25269.53	25293.53	24.00	1.3468	1.3468	1.3468	2.5898	2.7533	84

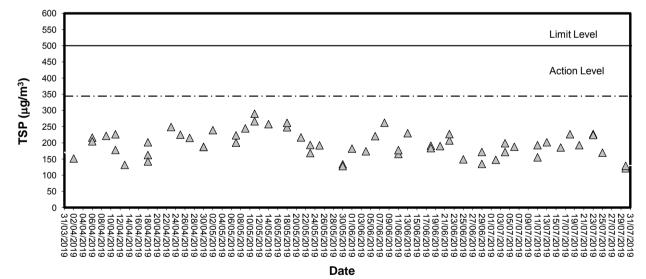
Summary of 1-hr TSP Monitoring Results

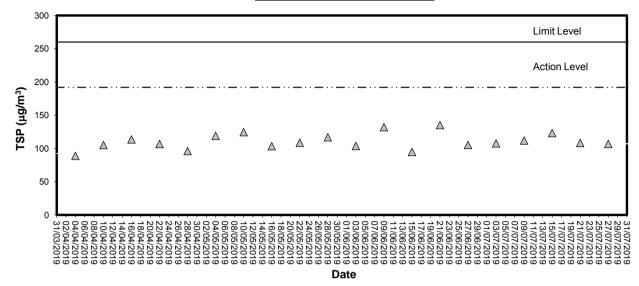
Monitoring	g Station	:	ТМ	-A1							
Date	Tir	Time		Elapse Time		Flow Rate (m ³ /min.)		Average	Filter Weight (g)		
Dale	Start	Finish	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	- Conc. (μg/m³)
02/07/2019	10:13	11:13	9897.31	9898.31	1.00	1.0082	1.0082	1.0082	2.7601	2.7676	124
04/07/2019	09:05	10:05	9922.31	9923.31	1.00	1.0082	1.0082	1.0082	2.7650	2.7757	177
04/07/2019	10:28	11:28	9923.31	9924.31	1.00	1.0082	1.0082	1.0082	2.7584	2.7710	208
06/07/2019	08:30	09:30	9924.31	9925.31	1.00	1.0082	1.0082	1.0082	2.7796	2.7905	180
11/07/2019	08:30	09:30	9949.31	9950.31	1.00	1.0082	1.0082	1.0082	2.6986	2.7066	132
11/07/2019	09:38	10:38	9950.31	9951.31	1.00	1.0082	1.0082	1.0082	2.7188	2.7289	167
13/07/2019	08:11	09:11	9951.31	9952.31	1.00	1.0082	1.0082	1.0082	2.7046	2.7164	195
16/07/2019	13:00	14:00	9976.31	9977.31	1.00	0.9749	0.9749	0.9749	2.6763	2.6857	161
18/07/2019	14:46	15:46	9977.31	9978.31	1.00	1.0082	1.0082	1.0082	2.6836	2.6965	213
20/07/2019	10:45	11:45	9978.31	9979.31	1.00	1.0082	1.0082	1.0082	2.6967	2.7068	167
23/07/2019	10:18	11:18	10003.31	10004.31	1.00	1.0082	1.0082	1.0082	2.5684	2.5823	230
23/07/2019	13:00	14:00	10004.31	10005.31	1.00	1.0082	1.0082	1.0082	2.7095	2.7248	253
25/07/2019	13:00	14:00	10005.31	10006.31	1.00	0.9755	0.9755	0.9755	2.7733	2.7852	203
30/07/2019	09:40	10:40	10030.31	10031.31	1.00	0.9755	0.9755	0.9755	2.8018	2.8102	144
30/07/2019	10:45	11:45	10031.31	10032.31	1.00	0.9755	0.9755	0.9755	2.7739	2.7832	159

Summary of 1-hr TSP Monitoring Results

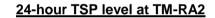

Monitoring	Station	:	TM-	RA2							
Date	Tir	ne	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Average	Filter Weight (g)		0
Date	Start	Finish	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	- Conc. (μg/m ³)
02/07/2019	10:20	11:20	25160.53	25161.53	1.00	1.1075	1.1075	1.1075	2.7407	2.7505	147
04/07/2019	09:11	10:11	25185.53	25186.53	1.00	1.1075	1.1075	1.1075	2.7472	2.7586	172
04/07/2019	10:35	11:35	25186.53	25187.53	1.00	1.1075	1.1075	1.1075	2.7465	2.7597	199
06/07/2019	08:36	09:36	25187.53	25188.53	1.00	1.0741	1.0741	1.0741	2.7680	2.7801	188
11/07/2019	08:40	09:40	25212.53	25213.53	1.00	1.1075	1.1075	1.1075	2.9883	2.9986	155
11/07/2019	09:45	10:45	25213.53	25214.53	1.00	1.1075	1.1075	1.1075	2.7135	2.7263	193
13/07/2019	08:19	09:19	25214.53	25215.53	1.00	1.1075	1.1075	1.1075	2.7124	2.7258	202
16/07/2019	13:00	14:00	25239.53	25240.53	1.00	1.1410	1.1410	1.1410	2.7162	2.7289	186
18/07/2019	15:38	16:38	25240.53	25241.53	1.00	1.1410	1.1410	1.1410	2.6843	2.6998	226
20/07/2019	10:52	11:52	25241.53	25242.53	1.00	1.1410	1.1410	1.1410	2.7086	2.7218	193
23/07/2019	10:25	11:25	25266.53	25267.53	1.00	1.1075	1.1075	1.1075	2.6309	2.6460	227
23/07/2019	13:00	14:00	25267.53	25268.53	1.00	1.1075	1.1075	1.1075	2.7069	2.7218	224
25/07/2019	13:00	14:00	25268.53	25269.53	1.00	1.3190	1.3190	1.3190	2.8123	2.8257	169
30/07/2019	09:50	10:50	25293.53	25294.53	1.00	1.3190	1.3190	1.3190	2.8288	2.8384	121
30/07/2019	10:51	11:51	25294.53	25295.53	1.00	1.3190	1.3190	1.3190	2.7594	2.7696	129

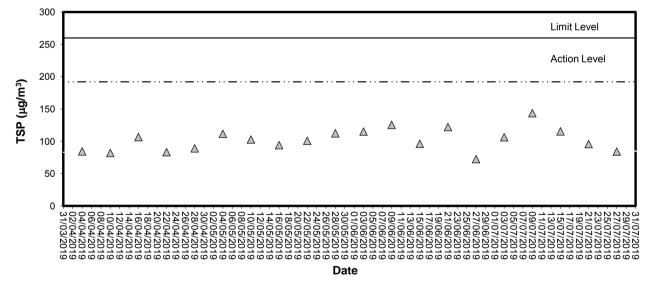
Appendix B3


Graphical Plots of Impact Air Quality Monitoring Data



1-hour TSP level at TM-A1





24-hour TSP level at TM-A1

Appendix C1

Calibration Certificates for Impact Marine Water Quality Monitoring Equipments

Performance Check / Calibration of Multiparameter Water Quality Meter Equipment Ref. No. : ET/0510/013 Manufacturer YSI : Model No. Pro DSS Serial No. 18E105421 : : Date of Calibration : 4/4/2019 Calibration Due Date 3/7/2019 :

<u>Results</u>

1. Temperature

(Method Reference: Section 6 of internation Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reading of Reference Thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
23.8	23.6	-0.2
25.0	25.1	+0.1
28.0	27.7	-0.3

Tolerance Limit (°C): ± 2.0

2. pH

(Method Reference: APHA 19ed 4500-H⁺ B)

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.00		
6.86		
9.18		

Tolerance Limit (pH unit): ± 0.10

3. Conductivity

(Method Reference: APHA 19ed 2510 B)

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)
146.9	153.1	+4.2
1412	1457	+3.2
12890	13157	+2.0
58760	60495	+3.0

Tolerance Limit (µS/cm): ± 10.0%

4. Salinity

(Method Reference: APHA 19ed 2520 B)

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
10.0	9.63	-3.7
20.0	19.57	-2.2
30.0	28.86	-3.8

Tolerance Limit (g/L): ± 10.0%

<u>Perform</u>	ance Check / Calib	oration of Multipara	<u>neter Water Q</u>	uality Meter
Equipment Ref. No. :	ET/0510/013	Manufa	cturer :	YSI
Model No. :	Pro DSS	Serial N		18E105421
Date of Calibration :	4/4/2019		ion Due Date :	
5. Dissolved Oxygen (Method Reference: AP)	· · · · · · · · · · · · · · · · · · ·			
Expected Readin	ng (mg/L)	Displayed Reading (mg/L)	To	lerance (mg/L)
2.06		2.07		+0.01
4.65		4.60		-0.05 -0.04
6.23 Tolerance Limit (mg/L):	+ 0.20	6.19		-0.04
6. Turbidity (Method Reference: AP)	· · · · · ·			
Expected Readir	ng (NTU)	Displayed Reading (NTU)	1	Solerance (%) -1.40
10		<u>9.86</u> 38.46		-3.85
100		97.37		-2.63
400		395.19		-1.2
The equipment complies	s [#] / does[*] not comply [#] with	the specified requirements and	is deemed acceptable	e [#] / unacceptable.[#] for use.
[#] Delete as appropriate				
Calibrated by :	11/19-			

÷ Å

i,

<u>Perform</u>	ance Check / Calibration of Mul	tiparameter Water	Qu	ality Meter
Equipment Ref. No. :	ET/0510/013	Manufacturer	:	YSI
Model No. :	Pro DSS	Serial No.	:	18E105421
Date of Calibration :	4/7/2019	Calibration Due Date	:	3/10/2019

<u>Results</u>

1. Temperature

(Method Reference: Section 6 of internation Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reading of Reference Thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
22.0	22.1	+0.1
25.0	25.2	+0.2
29.2	29.0	-0.2

Tolerance Limit (°C): ± 2.0

2. pH

(Method Reference: APHA 19ed $4500-H^+B$)

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.00		
6.86		
9.18		

Tolerance Limit (pH unit): ± 0.10

3. Conductivity

(Method Reference: APHA 19ed 2510 B)

2

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)		
146.9	151.2	+2.9		
1412	1489	+5.5		
12890	13657	+6.0		
58760	60188	+2.4		

Tolerance Limit (μ S/cm): ± 10.0%

4. Salinity

(Method Reference: APHA 19ed 2520 B)

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
10.0	9.87	-1.3
20.0	19.33	-3.4
30.0	27.61	-8.0

Tolerance Limit (g/L): $\pm 10.0\%$

quipment Ref. No. : ET/0510/013	Manufacturer	: <u>YSI</u>
Iodel No. : Pro DSS	Serial No.	: <u>18E105421</u>
ate of Calibration : 4/7/2019	Calibration Due	e Date : <u>3/10/2019</u>
D 10		
. Dissolved Oxygen Method Reference: APHA 19ed 4500-O	G)	
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.25	2.13	-0.12
4.16	4.20	+0.04
5.68	5.77	+0.09
olerance Limit (mg/L): ± 0.20		
. Turbidity Method Reference: APHA 19ed 2130 B)		
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
10	9.77	-2.3
40	38.65	-3.4
100	98.01	-2.0
400	394.03	-1.5
olerance Limit (NTU): ± 10.0%		
• •		
The equipment complies # / does not com	$\mathbf{p}\mathbf{l}\mathbf{y}^{\#}$ with the specified requirements and is deer	ned acceptable [#] / unacceptable [#] for use
Delete as appropriate		
^f Delete as appropriate		
Delete as appropriate		
Delete as appropriate		
		a
		a
Delete as appropriate	Approve	d by :

Appendix C2

Impact Marine Water Quality Monitoring Results

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen tion (%)	Tu	urbidity (NT	U)	Suspended Solids (mg/L)									
Duto	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average							
			Surface	1.0	28.8	19.6 19.6	19.6	6.83 6.75	6.79		98.6 97.5	98.1	3.39 3.44	3.42		10.8 10.4	10.6								
02/07/19	10:30:42	30/Fine	Middle	11.5	27.1	28.1 28.0	28.0	4.88 4.94	4.91	5.85	71.9 72.7	72.3	4.38 4.33	4.36	7.07	8.3 7.9	8.1	8.7							
			Bottom	22.1	26.2	31.3 31.3	31.3	4.90	4.96	4.96	72.2	73.1	13.41 13.48	13.45		7.6	7.4								
			Surface	1.0	28.1	19.9 19.8	19.8	5.42 5.43	5.43		77.4	77.5	4.26	4.24		6.1 6.5	6.3								
04/07/19	14:00:32	30/Cloudy	Middle	10.0	28.2	22.3	22.3	5.12 5.02	5.07	5.25	74.3	73.7	5.79 6.72	6.26	7.85	6.4 6.7	6.6	5.4							
			Bottom	19.1	27.3	26.8 26.8	26.8	5.90 5.51	5.71	5.71	86.3 80.8	83.6	13.09 13.00	13.05		3.4 3.4	3.4								
			Surface	1.0	28.5	17.7	17.7	5.45 5.48	5.47		77.4	77.6	3.89	3.95		3.6	- 3.5								
06/07/19	15:02:45	27/Cloudy	Middle	11.4	27.8	23.3 23.3	23.3	5.11 5.17	5.14	5.30	74.0 74.9	74.5	4.43	4.46	7.73	2.4 2.1	2.3	2.9							
			Bottom	21.7	27.2	27.1 27.1	27.1	5.34 5.37	5.36	5.36	78.3 78.7	78.5	15.00 14.53	14.77		3.2 2.8	3.0								
			Surface	1.0	29.2	12.1 12.1	12.1	6.34 6.26	6.30		88.4 87.3	87.9	4.43 4.50	4.47		6.0 5.7	5.9								
09/07/19	15:30:36	30/Cloudy	Middle	11.4	28.1	22.5 22.2	22.4	5.79 5.75	5.77	6.04	84.1 83.1	83.6	4.95 4.70	4.83	4.64	3.0 3.3	3.2	4.7							
			Bottom	21.8	26.2	30.5 30.5	30.5	5.44 5.41	5.43	5.43	79.7 79.7	79.7	4.60 4.64	4.62		5.3 5.0	5.2								
			Surface	1.0	29.5	9.7 11.7	10.7	6.15 6.10	6.13	5.00	85.0 85.1	85.1	5.54 4.67	5.11		4.7 4.2	4.5								
11/07/19	18:01:07	29/Cloudy	Middle	11.0	25.6	32.2 31.9	32.1	5.84 5.81	5.83	5.98	85.6 85.3	85.5	2.74 2.71	2.73	3.90	1.7 1.5	1.6	4.4							
			Bottom	21.0	25.2	33.9 33.9	33.9	5.77 5.74	5.76	5.76	84.9 84.4	84.6	3.84 3.92	3.88		7.2 6.9	7.1								
			Surface	1.0	29.3	7.8 7.9	7.8	6.63 6.51	6.57	6.40	90.5 88.7	89.6	6.17 6.19	6.18		5.7 5.5	5.6								
13/07/19	10:00:18	31/Fine	Middle	10.3	26.4	28.6 28.6	28.6	6.21 6.24	6.23	0.40	90.6 91.0	90.8	4.50 4.67	4.59	5.19	4.1 3.8	4.0	5.9							
			Bottom	19.6	25.3	32.7 32.3	32.5	5.04 5.07	5.06	5.06	73.6 74.5	74.1	4.86 4.76	4.81		8.2 8.0	8.1								
			Surface	1.0	28.8	12.7 12.8	12.7	5.32 5.28	5.30	5.22	73.9 73.4	73.7	3.48 3.54	3.51		9.4 9.1	9.3								
16/07/19	10:39:24	32/Fine	Middle	11.5	26.2	29.1 29.1	29.1	5.16 5.13	5.15	5.22	75.3 74.7	75.0	6.92 7.05	6.99	6.59	2.8 3.1	3.0	5.0							
		-			10.39.24 32/FINE					Bottom	22.1	24.8	33.3 33.3	33.3	4.97 4.99	4.98	4.98	72.4 72.5	72.4	9.31 9.23	9.27		2.9 2.5	2.7	

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)	Dissolved Oxygen Saturation (%)		Τι	irbidity (NT	U)	Suspended Solids (mg/L)		
Duie	Duration	Weather Condition	(r	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	29.1	19.1 19.1	19.1	5.82 5.78	5.80	5.72	83.4 83.1	83.3	4.31 4.36	4.34		3.8 3.9	3.9	
18/07/19	14:01:00	30/Cloudy	Middle	10.7	26.4	30.2 31.5	30.9	5.64 5.62	5.63	5.72	83.1 81.3	82.2	9.63 9.72	9.68	8.00	4.4 4.3	4.4	4.0
			Bottom	20.4	24.8	32.7 32.4	32.6	5.51 5.47	5.49	5.49	79.9 79.3	79.6	10.55 9.40	9.98		3.5 4.0	- 3.8	
			Surface	1.0	28.1	18.0	18.1	5.07 4.97	5.02		71.7	71.0	3.50 3.36	3.43		4.9	4.7	
20/07/19	14:30:22	28/Cloudy	Middle	10.8	26.0	28.4	28.2	5.21 5.24	5.23	5.12	75.4 75.8	75.6	7.30	7.29	6.87	5.7 5.6	5.7	4.7
			Bottom	20.5	25.2	31.5 31.5	31.5	5.36 5.31	5.34	5.34	77.8	77.4	9.41	9.88		3.6 3.9	- 3.8	-
			Surface	1.0	27.0	22.0 21.9	21.9	5.22	5.24		74.2	74.8	1.87	1.81		3.0 2.8	2.9	
23/07/19	16:04:10	31/Fine	Middle	10.9	25.0	31.8 31.8	31.8	5.20 5.74 5.72	5.73	5.49	83.3 82.7	83.0	3.70 3.65	3.68	3.45	2.8 2.0 2.1	- 2.1	3.7
			Bottom	20.9	24.8	32.7 32.6	32.7	5.34	5.36	5.36	77.7	77.9	4.87	4.86		6.3 6.2	6.3	-
			Surface	1.0	25.3	30.5 30.7	30.6	6.11 6.04	6.08		87.4 87.6	87.5	4.84 3.61 3.43	3.52		3.7 3.7	3.7	
25/07/19	15:33:25	30/Cloudy	Middle	10.5	25.1	30.7 31.4 31.8	31.6	5.87 5.85	5.86	5.97	85.1 84.9	85.0	3.43 3.12 3.81	3.47	4.08	3.7 3.7 4.1	3.9	4.1
			Bottom	20.0	24.6	33.2 33.0	33.1	5.64 5.60	5.62	5.62	81.8 81.4	81.6	4.96	5.26		4.1	4.7	
			Surface	1.0	27.4	23.7 23.7	23.7	6.64 6.28	6.46		95.8 90.6	93.2	4.22	4.26		5.0 5.4	- 5.2	
27/07/19	9:06:54	30/Cloudy	Middle	11.5	25.3	32.0 32.1	32.0	5.04 5.10	5.07	5.77	73.6 74.3	73.9	6.34 6.29	6.32	5.87	5.0 5.1	- 5.1	5.1
			Bottom	22.0	24.9	33.3 33.1	33.2	5.14	5.13	5.13	74.3 75.0 74.4	74.7	7.09 6.96	7.03		4.8 5.0	4.9	
			Surface	1.0	27.5	23.2 23.1	23.1	6.45 6.42	6.44		92.9 92.5	92.7	4.22 4.14	4.18		6.8 6.7	6.8	
30/07/19	10:33:34	30/Fine	Middle	11.1	25.7	30.4 31.7	31.1	5.05 4.97	5.01	5.72	92.5 73.7 72.6	73.2	4.14 4.67 4.58	4.63	4.96	4.9 5.2	- 5.1	6.2
			Bottom	21.2	25.0	31.7 32.9 32.7	32.8	4.97	4.84	4.84	72.6 70.4 70.6	70.5	4.58 5.91 6.26	6.09		6.7 6.6	6.7	

Monitoring Station :	TM-FM1
----------------------	--------

Date	Sampling	Ambient Temp (°C) /		ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxygen	(mg/L)		ed Oxygen ation (%)	Τι	ırbidity (NT	U)	Suspe	nded Solids	s (mg/L)
Duie	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	19.4 19.4	19.4	6.81 6.79	6.80	6.03	98.3 98.0	98.2	5.25 5.04	5.15		6.8 6.4	6.6	
02/07/19	10:54:26	30/Fine	Middle	9.1	27.4	26.1 26.1	26.1	5.19 5.34	5.27	0.03	75.8 78.2	77.0	6.92 7.02	6.97	5.93	5.5 5.3	- 5.4	6.4
			Bottom	17.3	26.3	30.8 30.8	30.8	5.56 5.57	5.57	5.57	81.9 82.3	82.1	5.70 5.63	5.67		7.2 6.9	7.1	
			Surface	1.0	28.0	20.0 20.0	20.0	5.28 5.33	5.31		75.5 76.1	75.8	4.30 4.32	4.31		4.0 3.9	4.0	
04/07/19	14:22:47	30/Cloudy	Middle	8.9	28.0	20.7 20.6	20.7	5.24 5.25	5.25	5.28	75.1 75.2	75.2	4.31 4.32	4.32	7.47	6.5 6.4	6.5	5.9
			Bottom	16.9	27.3	26.8 26.8	26.8	4.91 4.93	4.92	4.92	71.9 72.1	72.0	14.34 13.22	13.78		7.2 7.6	7.4	
			Surface	1.0	28.4	17.7 17.7	17.7	5.30 5.42	5.36	5.00	75.1 77.1	76.1	3.98 3.81	3.90		4.5 4.8	4.7	
06/07/19	15:27:36	27/Cloudy	Middle	9.3	28.2	19.1 19.1	19.1	5.34 5.37	5.36	5.36	76.2 76.6	76.4	4.01 4.09	4.05	5.55	1.9 1.8	1.9	3.1
			Bottom	17.7	27.3	26.6 26.5	26.5	5.13 5.10	5.12	5.12	75.1 74.7	74.9	8.78 8.60	8.69		2.8 3.0	2.9	
			Surface	1.0	29.2	12.7 13.7	13.2	6.14 5.98	6.06	5 47	85.9 84.3	85.1	5.31 5.27	5.29		3.5 3.8	3.7	
09/07/19	15:54:02	30/Cloudy	Middle	9.1	28.9	16.0 16.1	16.1	4.87 4.89	4.88	5.47	69.0 69.3	69.2	4.98 5.02	5.00	5.50	4.7 5.0	4.9	3.8
			Bottom	17.2	26.4	29.6 29.7	29.6	4.81 4.81	4.81	4.81	70.4 70.5	70.5	6.17 6.22	6.20		2.9 3.0	3.0	
			Surface	1.0	29.4	11.2 9.6	10.4	6.07 6.17	6.12	0.04	84.5 85.1	84.8	4.72 4.93	4.83		4.6 4.8	4.7	
11/07/19	18:19:06	29/Cloudy	Middle	8.6	26.9	26.4 26.3	26.3	5.88 5.90	5.89	6.01	85.3 85.7	85.5	4.29 4.43	4.36	4.01	5.6 5.5	5.6	5.0
			Bottom	16.1	25.2	33.7 33.5	33.6	5.68 5.62	5.65	5.65	83.7 82.9	83.3	2.85 2.82	2.84		4.9 4.6	4.8	
			Surface	1.0	29.2	7.3 7.3	7.3	6.51 6.42	6.47	0.00	88.5 87.3	87.9	6.55 6.65	6.60		9.4 9.2	9.3	
13/07/19	10:18:31	31/Fine	Middle	8.9	26.9	26.4 26.5	26.5	6.20 6.17	6.19	6.33	90.1 89.8	89.9	4.85 4.21	4.53	5.18	4.9 5.0	5.0	6.4
			Bottom	16.8	25.6	31.9 32.0	32.0	5.78 5.81	5.80	5.80	85.1 85.4	85.3	4.34 4.50	4.42		5.0 4.7	4.9	
			Surface	1.0	28.9	11.8 11.8	11.8	5.45 5.44	5.45	E 00	75.5 75.3	75.4	3.45 3.35	3.40		4.1 4.4	4.3	
16/07/19	10:55:02	32/Fine	Middle	8.0	26.8	26.1 25.7	25.9	5.13 5.10	5.12	5.28	74.3 73.6	74.0	5.18 5.35	5.27	4.98	5.6 5.4	5.5	5.2
			Bottom	15.0	25.2	31.8 32.1	32.0	4.98 4.95	4.97	4.97	72.7 71.9	72.3	6.38 6.18	6.28		6.1 5.8	6.0	

Monitoring Station :	TM-FM1
----------------------	--------

Date	Sampling	Ambient Temp (°C) /		ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen tion (%)	Tu	irbidity (NT	U)	Susper	nded Solids	s (mg/L)
Duic	Duration	Weather Condition	(r	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	16.1	16.0	5.24	5.44		74.2	77.0	5.14	4.91		4.2	4.5	
			ounace	1.0	20.0	15.9	10.0	5.63	3.44	5.44	79.8	11.0	4.67	4.01		4.7	4.5	
18/07/19	14:21:43	30/Cloudy	Middle	8.4	26.5	30.6	31.2	5.46	5.44	0.11	80.5	79.5	9.66	9.85	8.01	3.5	3.7	4.0
10,01,10		00,010000	inidato	0.11	20.0	31.8	01.12	5.42	0.11		78.5		10.03	0.00	0.01	3.8	0.1	
			Bottom	15.7	25.0	32.0	31.9	5.24	5.23	5.23	76.0	75.9	9.18	9.29		3.9	3.8	
						31.9		5.22			75.9		9.39			3.6		
			Surface	1.0	28.3	15.9	15.9	5.29	5.24		74.2	73.4	4.29	4.26		1.7	1.9	
						15.9		5.18		5.04	72.6		4.22			2.0		
20/07/19	14:49:24	28/Cloudy	Middle	8.7	27.7	19.7	19.6	4.81	4.85		68.2	68.7	4.03	3.72	5.10	2.5	2.6	2.2
						19.5		4.88			69.3		3.40			2.6		
			Bottom	16.4	25.6	29.7 30.0	29.9	4.96	4.97	4.97	71.9 72.1	72.0	7.07	7.34		2.1 2.3	2.2	
						30.0		4.98 5.46			72.1		3.11			2.3 6.0		
			Surface	1.0	28.2	31.3	31.2	5.40	5.47		79.4	77.3	3.07	3.09		5.6	5.8	
						31.1		5.32		5.39	79.4		3.30			1.3		
23/07/19	16:26:25	31/Fine	Middle	8.6	25.2	31.5	31.4	5.30	5.31		77.4	77.2	3.69	3.50	3.80	1.3	1.3	3.0
						32.4		5.18			75.0		4.84			1.7		
			Bottom	16.3	24.8	32.4	32.4	5.20	5.19	5.19	75.5	75.3	4.79	4.82		2.0	1.9	
			Surface	1.0	28.7	14.9	14.9	4.96	4.99		69.6	69.8	3.77	3.81		3.8	4.0	
			Sunace	1.0	20.7	14.9	14.5	5.02	4.55	4.99	69.9	09.0	3.84	5.01		4.2	4.0	
25/07/19	15:57:51	30/Cloudy	Middle	8.5	25.7	29.8	30.0	4.99	5.00	4.55	72.3	72.4	3.43	3.44	3.70	3.4	3.5	3.6
20/01/10	10.07.01	50/Cloudy	Wilduic	0.0	20.7	30.1	00.0	5.00	0.00		72.6	72.4	3.45	0.44	0.70	3.5	0.0	0.0
			Bottom	16.0	25.4	30.8	31.6	4.82	4.84	4.84	69.9	70.2	3.67	3.86		3.1	3.4	
						32.3		4.85			70.5		4.05			3.6		
			Surface	1.0	27.4	23.6	23.6	6.26	6.25		90.2	90.1	4.07	3.97		3.6	3.5	
						23.5		6.23		6.13	90.0		3.87			3.4		
27/07/19	9:20:18	30/Cloudy	Middle	8.9	27.3	25.9	25.9	6.04	6.01		88.0	87.8	4.12	4.18	4.96	5.2	5.1	4.8
						25.9		5.98			87.6		4.24			5.0		
			Bottom	16.8	25.5	31.2	31.8	5.64	5.62	5.62	82.3	82.0	6.40	6.73		5.6	5.8	
						32.3		5.60			81.7		7.06			6.0		
			Surface	1.0	27.5	23.2 23.1	23.1	6.62 6.58	6.60		95.3 95.0	95.2	4.74 4.70	4.72		7.7 7.3	7.5	
						30.1		5.23		5.91	76.3		4.72			5.0		
30/07/19	10:55:18	30/Fine	Middle	8.7	25.8	30.2	30.2	5.20	5.22		75.8	76.0	6.33	5.53	5.62	5.2	5.1	6.2
				10.5	05.0	30.0		4.91	1.00	4.00	71.5		6.62	0.00		5.9		1
			Bottom	16.5	25.8	27.4	28.7	4.93	4.92	4.92	70.7	71.1	6.58	6.60		6.1	6.0	

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxygen	(mg/L)		ed Oxygen ation (%)	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Duration	Weather Condition	(1	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	19.3 19.3	19.3	6.95 6.95	6.95		100.2 100.3	100.3	2.98 2.96	2.97		3.1 3.3	3.2	
02/07/19	11:14:38	30/Fine	Middle	8.7	27.6	25.3	24.9	5.44	5.49	6.22	79.4	80.1	8.97	8.46	5.16	3.8	3.6	4.0
			Bottom	16.4	26.3	24.4 30.9	30.8	5.54 5.52	5.48	5.48	80.8 81.4	80.8	7.94 4.12	4.06		3.4 5.0	5.3	
			Dottom	10.4	20.0	30.8 19.9	50.0	5.43 5.36	0.40	5.40	80.1 76.6	00.0	3.99 4.31	4.00		5.5 4.7	0.0	
			Surface	1.0	28.1	19.9	19.9	5.34	5.35	5.30	76.3	76.5	4.40	4.36		4.5	4.6	
04/07/19	14:47:18	30/Cloudy	Middle	8.6	28.0	20.5 20.5	20.5	5.26 5.24	5.25		75.3 75.0	75.2	4.32 4.27	4.30	7.28	5.8 5.6	5.7	4.9
			Bottom	16.1	27.3	26.7 26.7	26.7	5.01 5.08	5.05	5.05	73.3 73.5	73.4	13.14 13.21	13.18		4.5 4.1	4.3	
			Surface	1.0	28.5	17.6	17.6	5.08	5.46		73.5	77.7	3.76	3.79		3.4	3.5	
			Surface	1.0	26.0	17.6	17.0	5.48	5.40	5.42	77.9	11.1	3.81	3.79		3.6	3.5	
06/07/19	15:50:39	27/Cloudy	Middle	8.7	28.3	19.0 18.9	19.0	5.39 5.38	5.39		76.9 76.6	76.8	4.09 4.12	4.11	5.61	3.5 3.7	3.6	3.3
			Bottom	16.4	27.8	26.1 26.0	26.0	4.94 4.97	4.96	4.96	72.8 73.5	73.1	8.64 9.24	8.94		2.6 2.9	2.8	
			Surface	1.0	29.0	13.1	13.0	6.31	6.20		88.2	86.7	4.44	4.50		4.0	3.9	
00/07/10	10.10.40	20/Claudy	Middle	0.5	28.1	13.0 21.1	21.0	6.08 5.77	F 70	5.99	85.1 83.2	02.4	4.55 4.35	4.24	4.00	3.7 3.6	2.5	
09/07/19	16:12:42	30/Cloudy	Middle	8.5	20.1	20.9	21.0	5.81	5.79		83.6 81.0	83.4	4.33	4.34	4.28	3.3	3.5	4.4
			Bottom	15.9	26.7	28.3 28.7	28.5	5.54 5.51	5.53	5.53	81.0	80.9	4.15 3.85	4.00		5.6 5.9	5.8	
			Surface	1.0	29.4	10.1 10.5	10.3	6.01 6.07	6.04		83.1 84.1	83.6	4.79 5.00	4.90		3.4 3.1	3.3	
11/07/19	18:36:48	29/Cloudy	Middle	7.6	29.3	27.0 27.1	27.0	5.78 5.81	5.80	5.92	83.8 84.2	84.0	4.74 4.10	4.42	4.13	4.2 4.0	4.1	3.9
			Bottom	14.1	25.2	33.7	33.7	5.56	5.54	5.54	82.0	81.4	3.13	3.08		4.6	4.5	
			Surface	1.0	29.2	33.6 6.4	6.4	5.51 6.83	6.76		80.9 92.2	91.4	3.02 6.88	6.00		4.3 5.5	5.4	
			Surface	1.0	29.2	6.5 26.4	0.4	6.69 6.31	0.70	6.53	90.6 91.6	91.4	6.78 4.15	6.83		5.2 6.9	5.4	
13/07/19	10:34:17	31/Fine	Middle	8.5	26.8	26.2	26.3	6.27	6.29		91.0 91.1	91.4	4.13	4.23	5.17	6.8	6.9	5.8
			Bottom	16.1	25.6	31.7 31.3	31.5	6.12 6.08	6.10	6.10	89.7 88.6	89.2	4.61 4.32	4.47		5.0 5.3	5.2	
			Surface	1.0	28.7	11.8 10.7	11.2	5.13 5.43	5.28		70.7 75.0	72.9	3.40 3.63	3.52		4.1 4.4	4.3	
16/07/19	11:13:37	32/Fine	Middle	8.1	26.9	27.2	27.2	5.23	5.25	5.27	72.2	74.4	6.04	6.14	5.50	3.5	3.4	3.5
		52				27.2 29.7		5.27 5.11			76.5 75.1		6.24 6.67			3.3 2.9		
			Bottom	15.1	26.4	31.9	30.8	5.04	5.08	5.08	73.4	74.3	7.01	6.84		2.8	2.9	

Date	Sampling	Ambient Temp (°C) /	Monitori		Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen tion (%)	Tu	urbidity (NT		Suspe	nded Solids	s (mg/L)
Date	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.9	30.6 30.6	30.6	5.04 5.09	5.07	5.00	73.6 75.3	74.4	6.07 6.13	6.10		4.0 4.1	4.1	
18/07/19	14:42:29	30/Cloudy	Middle	7.9	26.7	30.3 30.5	30.4	4.98 4.95	4.97	5.02	73.6 73.1	73.4	10.21 9.96	10.09	8.54	4.7 5.0	4.9	4.5
			Bottom	14.9	25.2	31.7 31.4	31.6	4.82	4.81	4.81	70.2 69.8	70.0	9.37 9.50	9.44		4.4	4.6	
			Surface	1.0	28.2	16.1 16.4	16.3	5.17	5.13		72.6	72.0	4.17	3.97		3.2 3.0	3.1	
20/07/19	15:05:19	28/Cloudy	Middle	8.8	28.1	19.2 19.2	19.2	5.14 5.16	5.15	5.14	73.9	74.0	6.61 6.51	6.56	7.19	3.6 3.1	3.4	3.4
			Bottom	16.7	25.3	31.2 31.3	31.3	5.04	5.06	5.06	74.1 73.2 73.6	73.4	11.09	11.05		4.0 3.7	3.9	
			Surface	1.0	29.1	13.3 13.3	13.3	4.95 5.01	4.98		69.3 69.7	69.5	3.79 3.84	3.82		2.8 2.9	2.9	
23/07/19	16:48:21	31/Fine	Middle	8.8	25.3	31.1 30.9	31.0	4.96	4.97	4.98	72.1 72.2	72.2	3.91 3.34	3.63	3.82	2.9 2.0 1.7	1.9	2.3
			Bottom	16.5	25.2	31.1 32.1	31.6	5.13 5.17	5.15	5.15	74.5 75.0	74.8	3.70 4.35	4.03		2.2	2.2	
			Surface	1.0	28.6	15.3 15.4	15.3	5.23	5.25		73.5 74.0	73.8	3.39 3.43	3.41		3.0 3.5	- 3.3	
25/07/19	16:19:16	30/Cloudy	Middle	8.5	25.6	30.0 30.4	30.2	4.98	5.00	5.12	72.2	72.4	3.24 3.30	3.27	3.79	2.3 2.6	2.5	3.0
			Bottom	16.0	24.8	32.3 32.4	32.3	4.79	4.81	4.81	69.6 70.0	69.8	4.66	4.69		3.4 3.0	3.2	
			Surface	1.0	27.3	23.7 23.7	23.7	6.23 6.27	6.25		89.7 90.0	89.9	4.29	4.32		4.4	4.3	
27/07/19	9:35:14	30/Cloudy	Middle	8.5	25.5	31.0 31.2	31.1	5.06 4.98	5.02	5.64	73.6 72.5	73.1	4.63	5.63	5.44	4.2	4.4	4.7
			Bottom	15.9	25.4	31.5 32.3	31.9	4.96	4.92	4.92	72.3	71.8	6.57 6.15	6.36		5.8	5.5	
			Surface	1.0	27.5	23.1 23.1	23.1	6.58	6.60		94.8 95.0	94.9	4.79	4.82		5.7 6.0	5.9	
30/07/19	11:17:16	30/Fine	Middle	8.6	27.4	30.0 30.0	30.0	5.70 5.74	5.72	6.16	83.0 83.3	83.2	6.13 6.22	6.18	5.92	6.3 6.1	6.2	5.7
			Bottom	16.1	25.2	32.3 32.4	32.4	5.61	5.60	5.60	82.0 81.7	81.8	6.78 6.73	6.76		5.0 5.3	5.2	

東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

Mid-Ebb Tide

Date	Sampling	Ambient Temp (°C) /	Monitorii		Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen ition (%)	Τι	urbidity (NT	U)	Suspe	nded Solids	s (mg/L)
Date	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.7	19.5 19.5	19.5	6.82 6.82	6.82	6.37	98.3 98.4	98.4	3.44 3.09	3.27	Ŭ	5.4 5.5	5.5	
02/07/19	11:36:41	30/Fine	Middle	9.0	27.3	26.8 26.4	26.6	5.94 5.91	5.93	0.37	87.0 86.5	86.8	4.56 4.59	4.58	3.87	5.7 5.7	5.7	5.5
			Bottom	16.9	26.4	30.5 30.5	30.5	6.02 6.00	6.01	6.01	88.6 88.5	88.5	3.81 3.75	3.78		5.3 5.3	- 5.3	
			Surface	1.0	28.3	18.5 18.7	18.6	5.53 5.53	5.53	5.45	78.6 78.8	78.7	3.87 3.85	3.86		5.5 5.2	5.4	
04/07/19	15:20:23	30/Cloudy	Middle	9.1	28.1	20.2 20.2	20.2	5.39 5.36	5.38	0.40	77.1 76.7	76.9	4.07 4.02	4.05	4.00	4.3 4.7	4.5	5.5
			Bottom	17.1	28.1	20.3 20.3	20.3	5.43 4.98	5.21	5.21	77.5 87.3	82.4	4.19 3.97	4.08		6.9 6.2	6.6	
			Surface	1.0	28.5	17.7 17.7	17.7	5.46 5.48	5.47	5.36	77.7 77.9	77.8	3.80 3.79	3.80		4.8 4.8	4.8	
06/07/19	16:10:49	27/Cloudy	Middle	8.9	28.1	21.0 21.0	21.0	5.29 5.22	5.26	0.00	76.1 74.9	75.5	3.97 4.05	4.01	5.19	4.1 3.8	4.0	4.2
			Bottom	16.7	27.9	25.6 25.2	25.4	5.03 5.07	5.05	5.05	74.0 74.8	74.4	7.89 7.61	7.75		3.7 3.8	3.8	
			Surface	1.0	29.0	13.3 13.3	13.3	6.27 6.16	6.22	6.11	87.8 86.2	87.0	4.41 4.32	4.37		4.5 4.9	4.7	
09/07/19	16:32:29	30/Cloudy	Middle	8.1	28.3	19.2 19.7	19.5	6.03 5.97	6.00	0.11	86.0 85.4	85.7	4.48 4.47	4.48	4.33	4.6 4.2	4.4	4.3
			Bottom	15.1	26.9	27.6 28.5	28.1	5.67 5.62	5.65	5.65	83.1 82.3	82.7	4.45 3.82	4.14		3.5 3.8	3.7	
			Surface	1.0	29.4	10.3 10.2	10.2	6.03 6.10	6.07	5.93	83.5 84.5	84.0	5.23 5.29	5.26		8.4 8.4	8.4	
11/07/19	18:50:50	29/Cloudy	Middle	7.4	26.8	26.8 26.9	26.8	5.89 5.71	5.80	0.00	85.5 83.0	84.3	4.43 4.31	4.37	4.18	7.7 7.4	7.6	7.8
			Bottom	13.9	25.3	33.5 33.5	33.5	5.42 5.39	5.41	5.41	79.6 79.3	79.5	2.90 2.91	2.91		7.3 7.6	7.5	
			Surface	1.0	29.3	6.8 6.7	6.7	6.64 6.58	6.61	6.34	90.1 89.2	89.7	6.83 6.75	6.79		6.9 6.5	6.7	
13/07/19	10:52:28	31/Fine	Middle	7.8	27.1	25.5 22.6	24.0	6.04 6.08	6.06	0.04	87.4 86.9	87.1	4.61 4.63	4.62	5.25	6.5 7.0	6.8	6.7
			Bottom	14.6	25.8	31.2 31.6	31.4	5.84 5.81	5.83	5.83	85.4 85.0	85.2	4.29 4.36	4.33		6.7 6.7	6.7	
			Surface	1.0	28.9	11.7 11.7	11.7	5.36 5.38	5.37	5.29	74.2 74.5	74.4	3.25 3.24	3.25		5.2 4.8	5.0	
16/07/19	11:35:58	32/Fine	Middle	8.1	26.9	26.3 26.6	26.5	5.21 5.19	5.20	5.29	75.7 75.4	75.6	5.82 5.90	5.86	5.21	4.3 4.5	4.4	5.0
			Bottom	15.2	25.1	32.2 32.1	32.1	4.97 4.92	4.95	4.95	72.5 71.7	72.1	6.61 6.45	6.53		5.2 5.7	5.5	

東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

Mid-Ebb Tide

Date	Sampling	Ambient Temp (°C) /	Monitori		Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		ed Oxygen ation (%)	Τι	urbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Duit	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.9	16.2	16.3	5.44	5.48		77.2	77.8	5.14	5.05		4.2	4.1	
			oundoo		20.0	16.5	10.0	5.52	0.10	5.39	78.4		4.96	0.00		4.0		
18/07/19	15:00:23	30/Cloudy	Middle	8.6	26.7	29.6	29.7	5.31	5.29		78.2	78.0	8.90	9.44	7.87	4.3	4.2	4.6
		,				29.8		5.27			77.7		9.97			4.0		
			Bottom	16.1	25.0	32.3	31.6	5.11	5.13	5.13	74.1	75.0	9.01	9.13		5.8	5.6	
						30.8		5.14			75.9		9.24		-	5.3		
			Surface	1.0	28.2	16.7	16.7	5.10	5.04		71.8	70.9	3.89	3.79		3.1	3.1	
						16.7		4.98		5.09	70.0		3.68		-	3.0		
20/07/19	15:23:22	28/Cloudy	Middle	8.2	27.8	20.3	20.3	5.11	5.14		72.9	73.1	4.58	4.61	7.01	4.1	4.4	3.6
						20.4		5.16			73.3		4.64		-	4.7		
			Bottom	15.4	25.3	31.3	31.3	5.20	5.19	5.19	75.6	75.3	12.25	12.64		3.1	3.3	
						31.4		5.17			75.1		13.03			3.4		
			Surface	1.0	29.0	14.0 14.2	14.1	4.85 4.89	4.87		68.0 68.3	68.2	3.42 3.51	3.47		3.8 4.1	4.0	
						30.0		4.69 5.19		5.04	75.3		3.51		-	3.8		-
23/07/19	17:10:24	31/Fine	Middle	8.1	25.6	30.0	30.4	5.19	5.21		75.8	75.5	3.60	3.52	3.71	3.8	3.8	3.8
						31.3		5.37			75.8		3.44			3.7		
			Bottom	15.2	25.2	32.2	31.8	5.34	5.36	5.36	77.4	77.6	4.44	4.16		3.4	3.6	
			Curfooo	1.0	28.6	15.2	15.2	4.94	5.46		69.5	69.7	3.46	3.48		1.9	1.9	
			Surface	1.0	20.0	15.2	15.2	5.97	5.40	5.62	69.8	69.7	3.49	3.40		1.9	1.9	
25/07/19	16:38:36	30/Cloudy	Middle	8.6	25.5	30.4	30.8	5.88	5.78	0.0Z	85.1	83.7	3.21	3.70	4.82	4.9	5.1	3.5
25/07/19	10.30.30	30/Cloudy	Midule	0.0	20.0	31.2	30.0	5.67	5.76		82.4	03.7	4.18	3.70	4.02	5.3	5.1	3.5
			Bottom	16.2	24.8	32.4	32.3	5.63	5.61	5.61	81.9	81.5	8.08	7.29		3.6	3.4	
			Dollom	10.2	24.0	32.2	52.5	5.59	3.01	5.01	81.1	01.5	6.49	1.25		3.2	5.4	
			Surface	1.0	27.3	23.8	23.8	6.18	6.20		89.6	89.8	4.33	4.32		6.3	6.6	
			ounace	1.0	21.5	23.8	20.0	6.21	0.20	5.69	89.9	03.0	4.30	4.52		6.9	0.0	
27/07/19	9:49:12	30/Cloudy	Middle	8.5	27.1	28.4	29.2	5.25	5.18	0.00	77.4	75.8	4.31	5.06	5.30	6.2	6.2	6.5
21101113	5.45.12	Joroloudy	wilduic	0.0	27.1	30.0	23.2	5.10	0.10		74.1	75.0	5.80	5.00	5.50	6.1	0.2	0.5
			Bottom	16.1	25.7	30.6	31.4	4.98	4.97	4.97	72.5	72.4	6.41	6.52		6.5	6.8	
			Dottom	10.1	20.7	32.3	01.4	4.96	4.57	4.57	72.3	72.4	6.62	0.52		7.0	0.0	
			Surface	1.0	27.5	23.1	23.1	6.46	6.53		93.0	94.1	4.92	4.87		6.3	6.1	
			Sunace	1.0	21.5	23.1	20.1	6.60	0.00	5.86	95.1	34.1	4.81	7.07]	5.8	0.1	
30/07/19	11:40:16	30/Fine	Middle	7.5	25.9	29.9	30.0	5.25	5.20	0.00	76.5	75.7	4.85	5.68	5.73	5.5	5.7	5.7
50,01,10	11.40.10	50/1 me	maare	1.0	20.0	30.2	00.0	5.14	0.20		74.8	/0./	6.51	0.00	0.70	5.9	0.7	0.7
			Bottom	14.0	25.7	30.3	31.3	5.04	5.06	5.06	73.5	73.7	6.75	6.65		5.4	5.4	
			20110111		_0	32.3	00	5.07	0.00	0.00	73.9		6.54	0.00		5.3	Ŭ	

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxygen	(mg/L)		ed Oxygen ation (%)	Τι	urbidity (NT	U)	Suspe	nded Solids	s (mg/L)
Date	Duration	Weather Condition	1)	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	19.4 19.4	19.4	6.79 6.79	6.79		98.0 98.0	98.0	3.43 3.49	3.46		6.7 6.5	6.6	
2/7/19	17:26:43	30/Fine	Middle	11.6	26.8	29.9 29.9	29.9	6.04 6.11	6.08	6.43	89.3 90.4	89.8	4.65	4.71	6.51	5.3 5.1	5.2	4.8
			Bottom	22.3	26.2	31.3	31.3	5.79	5.77	5.77	85.3	85.0	11.57	11.35	-	2.3	2.5	
			Surface	1.0	28.4	31.3 17.6	17.6	5.75 5.43	5.43	-	84.6 77.1	77.1	11.13 3.77	3.78		2.7 5.0	- 5.3	
			Surface	1.0	-	17.6 20.6	17.0	5.43 5.28	5.45	5.34	77.0 75.6		3.79 4.21	5.76	-	5.5 2.8	5.5	
4/7/19	9:50:24	30/Cloudy	Middle	9.6	28.0	20.8	20.7	5.20	5.24		74.6	75.1	4.28	4.25	7.02	3.1	3.0	5.1
			Bottom	18.1	27.2	27.0 27.0	27.0	5.12 5.10	5.11	5.11	75.2 74.8	75.0	13.40 12.68	13.04		7.0 7.1	7.1	
			Surface	1.0	28.4	17.7 17.7	17.7	5.45 5.49	5.47		77.4 78.0	77.7	3.86 3.80	3.83		3.3 3.6	3.5	
6/7/19	10:11:45	27/Cloudy	Middle	11.6	27.8	23.5 23.6	23.5	5.44 5.42	5.43	5.45	79.0 78.6	78.8	4.77 4.87	4.82	7.36	5.0 4.6	4.8	3.4
			Bottom	22.1	27.2	27.2	27.1	6.00	6.05	6.05	88.0	88.7	13.93	13.43	-	2.2	2.1	
			Surface	1.0	29.3	27.1 11.1	11.1	6.10 6.40	6.38		89.4 89.0	88.8	12.92 7.53	7.55		1.9 3.9	3.8	
9/7/19	11:38:52	30/Cloudy	Middle	11.3	28.0	11.2 19.5	21.3	6.36 5.75	5.76	6.07	88.5 82.0	82.6	7.57 6.85	6.95	9.88	3.6 2.8	2.6	3.2
9/7/19	11.36.52	30/Cloudy				23.1 30.5		5.77 5.56			83.3 81.5		7.05 15.86		9.00	2.4 3.1		3.2
			Bottom	21.7	26.2	30.5	30.5	5.54	5.55	5.55	81.3	81.4	14.39	15.13		3.5	3.3	
			Surface	1.0	29.2	9.0 9.1	9.1	6.17 6.22	6.20	5.79	85.4 85.5	85.5	5.04 5.18	5.11		5.6 6.0	5.8	
11/7/19	15:45:34	29/Cloudy	Middle	11.2	25.6	32.2 31.7	31.9	5.37 5.39	5.38		78.9 79.1	79.0	2.77 2.59	2.68	3.88	5.2 4.9	5.1	6.0
			Bottom	21.5	25.3	33.7 33.9	33.8	5.21 5.26	5.24	5.24	76.4 77.5	76.9	3.77 3.92	3.85		7.3 6.9	7.1	
			Surface	1.0	29.2	7.3 7.3	7.3	6.33 6.36	6.35		86.1 86.5	86.3	6.52 6.53	6.53		6.2 6.5	6.4	
13/7/19	15:50:13	31/Fine	Middle	10.0	26.4	28.6	28.8	6.04	6.02	6.18	88.1	87.7	4.12	4.24	5.13	6.2	6.1	6.1
			Bottom	19.1	25.5	28.9 32.7	32.7	6.00 5.74	5.73	5.73	87.4 84.5	84.1	4.35 4.66	4.64		5.9 5.8	6.0	
				1.0	29.0	32.7 11.5	11.5	5.72 5.40	5.42	-	83.7 74.8	- 75.0	4.61 3.27	3.22		6.2 4.2	4.2	
			Surface			11.4 30.6		5.43 5.12		5.26	75.2 74.6		3.17 6.82		-	4.2 6.9		
16/7/19	17:29:55	32/Fine	Middle	11.1	25.8	29.6	30.1	5.10	5.11		74.7	74.7	7.41	7.12	5.98	7.2	7.1	5.9
			Bottom	21.2	24.8	33.1 33.4	33.3	4.94 4.90	4.92	4.92	72.0 71.2	71.6	7.50 7.69	7.60		6.3 6.3	6.3	

Date	Sampling	Ambient Temp (°C) /		ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxygen	(mg/L)		d Oxygen ition (%)	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Duration	Weather Condition	1)	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	26.0	29.1 29.1	29.1	5.10 5.14	5.12	5.00	73.5 74.4	73.9	4.88 4.98	4.93		3.0 2.8	2.9	
18/7/19	9:48:25	30/Cloudy	Middle	10.5	25.3	31.3 31.4	31.3	5.04 5.08	5.06	5.09	73.2 73.6	73.4	10.95 11.80	11.38	9.00	3.0 3.1	3.1	3.9
			Bottom	20.0	25.4	31.4 32.3	31.8	4.97 4.96	4.97	4.97	72.3 72.4	72.4	11.53 9.86	10.70		5.9 5.7	5.8	
			Surface	1.0	28.1	18.6 18.6	18.6	5.21 5.05	5.13	5.05	73.9 71.5	72.7	3.60 3.63	3.62		6.1 6.1	6.1	
20/7/19	9:23:52	28/Cloudy	Middle	11.1	26.3	30.5 30.4	30.4	4.99 4.95	4.97	5.05	73.3 72.9	73.1	15.86 15.75	15.81	9.79	2.5 2.3	2.4	3.8
			Bottom	21.2	25.1	31.6 31.7	31.7	4.82 4.80	4.81	4.81	69.9 69.8	69.8	9.86 10.05	9.96		2.7 3.1	2.9	
			Surface	1.0	29.0	12.3 12.3	12.3	5.09 5.04	5.07		70.8 70.5	70.7	4.43 4.54	4.49		2.3 2.1	2.2	
23/7/19	10:42:27	31/Fine	Middle	10.7	25.0	31.7 31.8	31.7	4.98 5.01	5.00	5.03	72.3 72.8	72.5	3.63 3.91	3.77	4.43	3.1 2.9	3.0	2.5
			Bottom	20.3	24.7	32.8 32.7	32.8	5.13 5.16	5.15	5.15	74.4 75.0	74.7	5.05 5.00	5.03		2.1 2.3	2.2	
			Surface	1.0	28.8	15.6 15.6	15.6	5.05 4.97	5.01		71.4 71.1	71.3	3.85 3.74	3.80		2.8 2.5	2.7	
25/7/19	11:41:53	30/Cloudy	Middle	11.1	25.0	31.8 31.9	31.8	5.01 5.06	5.04	5.02	72.6 73.4	73.0	3.45 3.35	3.40	4.26	2.9 3.2	3.1	3.3
			Bottom	21.1	24.6	33.3 33.2	33.2	4.98 4.95	4.97	4.97	72.4 71.9	72.2	6.04 5.14	5.59		4.1 4.4	4.3	
			Surface	1.0	25.3	31.9 31.8	31.8	6.21 6.24	6.23		90.5 90.8	90.7	5.53 5.64	5.59		8.8 8.8	8.8	
27/7/19	16:06:31	30/Cloudy	Middle	12.0	25.2	32.3 32.3	32.3	5.94 5.92	5.93	6.08	86.8 86.6	86.7	10.14 10.28	10.21	7.16	6.9 6.8	6.9	7.0
			Bottom	23.0	24.9	33.2 33.2	33.2	5.88 5.79	5.84	5.84	85.9 84.3	85.1	5.73 5.66	5.70		5.2 5.2	5.2	
			Surface	1.0	27.5	23.1 23.1	23.1	6.62 6.54	6.58		95.4 95.2	95.3	5.11 5.16	5.14		7.5 7.2	7.4	
30/7/19	17:02:14	30/Fine	Middle	11.5	25.5	31.1 31.6	31.3	6.31 6.27	6.29	6.44	91.9 91.4	91.7	7.20	7.07	6.73	6.4 6.7	6.6	6.7
			Bottom	22.0	24.9	33.1 33.1	33.1	6.33	6.27	6.27	92.2 90.4	91.3	8.21 7.79	8.00		6.2 5.9	6.1	

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxygen	(mg/L)		d Oxygen tion (%)	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Dale	Duration	Weather Condition	(1	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	27.2	19.3 19.4	19.4	6.81 6.84	6.83		98.3 98.6	98.5	3.11 3.06	3.09		4.0 3.5	3.8	
02/07/19	17:07:10	30/Fine	Middle	9.4	27.4	26.3 26.2	26.2	6.34 6.30	6.32	6.57	92.8 92.2	92.5	5.70 6.22	5.96	4.49	3.1 2.7	2.9	3.8
			Bottom	17.7	26.3	31.0	30.9	6.17	6.18	6.18	90.9	91.1	4.53	4.44		4.8	4.8	
			Surface	1.0	28.3	30.9 17.6	17.6	6.18 5.34	5.35		91.3 75.6	75.8	4.34 4.06	4.07		4.7 5.2	5.4	
04/07/19	9:29:55	30/Cloudy	Middle	9.7	28.2	17.5 18.7	18.8	5.36 5.44	5.45	5.40	75.9 77.4	77.5	4.07 3.93	3.98	7.43	5.6 7.0	6.7	5.9
04/07/19	9.29.55	30/Cloudy	wilddie	9.7	20.2	18.9	10.0	5.45	5.45		77.6	11.5	4.02	3.90	7.43	6.4	0.7	5.9
			Bottom	18.4	27.2	27.0 27.0	27.0	4.96 4.97	4.97	4.97	72.6 72.8	72.7	14.51 13.98	14.25		5.7 5.4	5.6	
			Surface	1.0	28.4	17.7 17.7	17.7	5.37 5.41	5.39		76.2 76.8	76.5	3.98 3.89	3.94		5.4 5.1	5.3	
06/07/19	9:36:32	27/Cloudy	Middle	9.0	28.0	21.2 21.2	21.2	5.23 5.21	5.22	5.31	75.1 74.8	75.0	3.90 3.84	3.87	5.59	5.2 4.8	5.0	4.3
			Bottom	17.1	28.2	26.2	26.1	5.08	5.11	5.11	75.4	75.7	8.84	8.96	-	2.5	2.7	
			Surface	1.0	29.2	26.0 12.3	12.3	5.13 6.27	6.26		76.1 87.5	87.4	9.07 5.31	5.29		2.8 3.1	3.0	
						12.2 18.2		6.25 6.03		6.15	87.2 86.0		5.27 6.00			2.9 2.5		
09/07/19	11:15:34	30/Cloudy	Middle	8.9	28.5	17.3	17.8	6.04	6.04		85.8	85.9	6.12	6.06	5.73	2.2	2.4	2.8
			Bottom	16.9	26.5	29.4 28.6	29.0	5.74 5.70	5.72	5.72	84.2 83.6	83.9	5.87 5.82	5.85		2.9 3.3	3.1	
			Surface	1.0	29.4	10.8 9.0	9.9	6.18 6.15	6.17	5.00	85.9 84.5	85.2	4.90 5.17	5.04		2.1 2.3	2.2	
11/07/19	15:24:48	29/Cloudy	Middle	7.0	27.0	25.7 28.3	27.0	5.67 5.69	5.68	5.92	82.2 83.2	82.7	4.95 3.77	4.36	3.96	7.2 7.4	7.3	5.4
			Bottom	12.9	25.5	33.0 32.9	32.9	5.40 5.42	5.41	5.41	79.4 79.6	79.5	2.61 2.38	2.50		6.4 6.9	6.7	
			Surface	1.0	29.2	7.0	6.9	6.64	6.63		90.1 89.8	90.0	6.68 6.81	6.75		6.3 5.8	6.1	
13/07/19	15:33:17	31/Fine	Middle	7.8	26.7	27.1 27.0	27.0	6.31 6.24	6.28	6.45	91.8 91.1	91.5	3.82 3.69	3.76	4.98	6.0 6.4	6.2	6.1
			Bottom	14.6	25.8	31.3 31.4	31.4	6.04 6.11	6.08	6.08	88.4 89.4	88.9	4.33	4.44		5.9 5.9	5.9	
			Surface	1.0	28.9	12.5	12.6	5.20	5.21		72.3	72.4	3.51	3.34		4.3	4.5	
16/07/19	17:10:35	32/Fine	Middle	8.3	26.7	12.8 28.3	28.2	5.21 5.11	5.08	5.14	72.4 74.9	74.3	3.16 6.06	6.47	5.41	4.6 7.0	6.9	5.3
			Bottom	15.7	25.1	28.1 32.1	32.0	5.04 4.97	4.95	4.95	73.7 72.3	72.0	6.88 6.51	6.42		6.8 4.4	4.6	
			Dottom		2011	32.0	02.0	4.92			71.7		6.32	02		4.8		

Sampling	Ambient Temp (°C) /			Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)			Tu	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		Surface	1.0	29.1	14.9 14.8	14.9	5.75 5.71	5.73		81.2 81.0	81.1	4.52 4.47	4.50		4.0 3.7	3.9	
9:27:31	30/Cloudy	Middle	8.1	26.0	28.6 28.5	28.6	5.44 5.42	5.43	5.58	78.8 78.6	78.7	5.16 5.02	5.09	7.03	4.4	4.6	4.5
		Bottom	15.2	25.0	32.1	32.1	5.22	5.24	5.24	75.7	76.1	11.41	11.50		5.2	5.1	
		Surface	1.0	28.1	17.9	17.9	5.05	5.01		71.4	70.8	3.45	3.42		5.1	5.1	
9:05:22	28/Cloudy	Middle	8.3	27.6	24.5	24.5	4.95	4.93	4.97	71.9	71.7	6.63	6.47	6.05	2.9	3.1	4.0
		Bottom	15.6	25.4	30.6	30.8	4.86	4.91	4.91	70.6	71.2	7.86	8.26		4.1	4.0	
		Surface	1.0	28.9	13.5	13.5	4.87	4.97		68.2	69.6	4.15	4.27		3.0	2.9	
10:18:34	31/Fine	Middle	8.7	25.2	31.2	31.3	5.11	5.23	5.10	74.2	75.8	3.14	3.38	4.38	2.5	2.7	2.4
		Bottom	16.4	24.8	32.4	32.3	5.30	5.36	5.36	77.0	77.8	5.69	5.50		1.8	1.8	
		Surface	1.0	28.8	14.3	14.3	4.85	4.87		68.0	68.2	3.79	3.82		2.5	2.7	
11:19:51	30/Cloudy	Middle	8.7	25.7	29.7	30.1	4.99	5.00	4.94	72.3	72.5	3.64	3.53	3.82	3.1	3.0	2.8
		Bottom	16.4	25.3	31.1	31.7	5.16	5.15	5.15	75.1	74.7	3.71	4.12		2.4	2.6	
		Surface	1.0	27.4	23.6	23.6	6.34	6.32		91.1	91.0	3.94	3.92		8.6	8.8	
15:39:15	30/Cloudy	Middle	7.0	27.4	29.3	29.3	5.91	5.90	6.11	85.4	85.5	3.60	3.66	4.10	4.6	4.7	5.8
		Bottom	13.1	25.7	30.4	31.3	5.64	5.64	5.64	82.2	82.2	4.36	4.74		4.1	4.0	
		Surface	1.0	27.5	23.1	23.1	6.58	6.63		94.7	95.5	4.96	4.97		5.9	6.0	
16:41:14	30/Fine	Middle	8.0	25.7	30.3	30.1	4.88	4.86	5.74	71.0	70.6	5.48	6.20	6.09	5.4	5.2	5.9
		Bottom	15.0	25.7	30.4 32.5	31.4	4.94	4.95	4.95	72.1	72.3	6.84 7.35	7.10		6.4 6.8	6.6	
	Duration 9:27:31 9:05:22 10:18:34 11:19:51 15:39:15	Sampling Duration Temp (°C) / Weather Condition 9:27:31 30/Cloudy 9:05:22 28/Cloudy 10:18:34 31/Fine 11:19:51 30/Cloudy 15:39:15 30/Cloudy	Sampling Duration Temp (°C) / Weather Condition Monitoring (r 9:27:31 30/Cloudy Surface 9:27:31 30/Cloudy Middle 9:05:22 28/Cloudy Middle 9:05:22 28/Cloudy Middle 10:18:34 31/Fine Middle 11:19:51 30/Cloudy Middle 11:19:51 30/Cloudy Middle 15:39:15 30/Cloudy Middle 15:39:15 30/Cloudy Middle 16:41:14 30/Fine Middle	Sampling DurationTemp (°C) Weather ConditionMonitorig Depth (middle9:27:3130/CloudySurface1.09:27:3130/CloudyMiddle8.19:27:3130/CloudyMiddle8.19:05:2228/CloudyMiddle8.39:05:2228/CloudyMiddle8.310:18:3431/FineSurface1.010:18:3431/FineMiddle8.711:19:5130/CloudyMiddle8.711:19:5130/CloudyMiddle8.715:39:1530/CloudyMiddle10.115:39:1530/CloudyMiddle7.016:41:1430/FineSurface1.0	$ \begin{array}{c c c c c c } & \begin{tabular}{ c c } & tabu$	Sampling DurationTemp (°C) Weather ConditionMonitoring Depth (°C)Temp (°C)Sampling (°C)9:27:31Surface1.029.114.930/CloudyMiddle8.126.028.630/CloudyMiddle8.126.028.5Bottom15.225.032.19:05:2228/CloudyMiddle8.327.632.19:05:2228/CloudyMiddle8.327.624.580rface1.028.430.630.910:18:34915.625.430.69:05:2231/FineMiddle8.725.231.510:18:3431/FineMiddle8.725.231.511:19:5130/CloudyMiddle8.725.730.511:19:5130/CloudyMiddle8.725.730.515:39:1530/CloudyMiddle7.027.423.630/CloudyMiddle7.027.423.615:39:1530/CloudyMiddle7.027.423.615:39:1530/CloudyMiddle7.027.423.615:39:1530/CloudyMiddle7.027.423.616:41:1430/Fine6.1027.723.123.116:41:1430/Fine6.1025.730.530.416:41:1430/Fine30.630.930.630.916:41:1430/Fine6.1025.730.516:41:	Sampling Duration Temp (°C) (°C) Monitoring Depth (°C) Temp (°C) Sainity (pp) 9:27:31 Auge (°C) Condition Surface 1.0 29.1 14.9 14.9 30/Cloudy Middle 8.1 26.0 28.6 28.6 28.6 30/Cloudy Middle 8.1 26.0 32.1 32.1 30/Cloudy Middle 8.1 26.0 32.1 32.1 9:05:22 28/Cloudy Middle 8.3 27.6 24.5 24.5 80tform 15.6 25.4 30.6 30.8 30.8 10:18:34 Auge (P) Middle 8.7 25.7 31.2 31.3 11:19:51 Middle 8.7 25.7 31.2 31.3 11:19:51 So/Cloudy Middle 8.7 25.7 30.6 30.1 11:19:51 So/Cloudy Middle 8.7 25.7 30.1 31.7 15:39:15 Middle 8.0 27.4 29.3	Sampling Duration Duration DurationTemp (°C)Sainity (pp)Disson Disson9:27:31Surface 2000000000000000000000000000000000000	Sampling Duration Temp (°C) Weather Monitoring Depth (°C) Temp (°C) Salinity (pp) Dissolve Oxygen 9:27:31 Surface 1.0 29.1 14.9 14.9 5.73 5.73 9:27:31 30/Cloudy Middle 8.1 26.0 28.6 28.6 5.44 5.43 9:27:31 30/Cloudy Middle 8.1 26.0 28.6 28.6 5.22 5.24 9:05:22 28/Cloudy Middle 8.1 27.6 24.4 24.5 4.95 4.93 9:05:22 28/Cloudy Middle 8.3 27.6 24.4 24.5 4.95 4.93 9:05:22 28/Cloudy Middle 8.3 27.6 24.4 24.5 4.93 4.93 10:18:34 A 15.6 13.5 13.5 5.01 4.93 10:18:34 31/Fine Middle 8.7 25.2 31.5 31.6 5.34 10:18:34 31/Fine Middle 8.7 2	Sampling Duration Temp (°C) / Weather Condition Monitoring Depth (°C) Temp (°C) Saminy (ph) Dissolved Oxygen (mg). Depth- average 9:27:31 Monitoring Depth (°C) 1.0 29.1 14.9 14.9 5.75 5.73 Depth- average 9:27:31 Middle 8.1 29.1 14.9 14.9 5.75 5.73 5.73 Depth- average 9:27:31 Middle 8.1 20.0 28.6 28.6 5.44 5.43 5.74 Depth- average 9:27:31 Middle 8.1 26.0 28.6 28.6 5.44 5.43 5.74 5.74 9:27:31 Middle 8.1 28.0 32.1 32.1 5.26 5.24 5.24 9:27:31 Middle 8.3 27.6 24.4 24.5 4.95 4.91 4.91 4.91 9:05:22 Bottom 15.6 25.4 31.5 15.5 5.10 5.10 5.10 5.11 5.11 5.11 5.11 5.11<	Sampling Duration Temp (C) Weather Monitoring Depth (m) Temp (°C) Salima (µp) Dissource (x) (µp) Solice (x) (µp) Salimation (µp) Salimation (µp) Salimation (µp) Salimation (µp) Salimation (µp) Salimation (µp) Subsource (x) (µp) Salimation (µp) Subsource (x) (µp) Subsource (x	Saming Duration WeatherMonitoring Depth (m)Temp (°C)Satinty (pr)Usione Oxyet (right) ValueSatinty (pr)Satinty (pr)Satint	Sampler Duration PursionTemp (C), Weather (WTemp (C), (°C)Salimity (P)Discusse UNPER (MP) Discusse UNPER (MP)Saturation (%) PursionSaturation (%) ValueValue ValueAverage ValueValue ValueAverage ValueContine ValueAverage ValueContine ValueContine ValueAverage ValueContine ValueContine ValueContine ValueAverage ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue ValueValue 	Sampling 	Sampling 	Sampling Duration Temp (C) (m) Monitoring Depth (m) Temp (C) (m) Monitoring Depth (m)	Sample Duration burnering to the parameter of the p

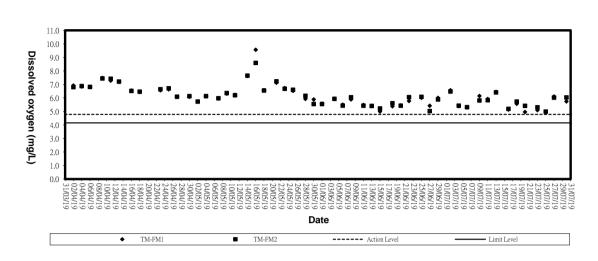
東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

Mid-Flood Tide

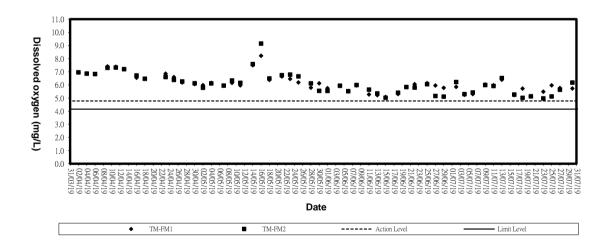
Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		ed Oxygen ation (%)	Τι	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Duration	Weather Condition	(1	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	19.6 19.6	19.6	6.78 6.75	6.77		97.9 97.4	97.7	3.21 3.19	3.20		4.9 5.2	5.1	
02/07/19	16:49:42	30/Fine	Middle	9.5	27.2	27.3	27.3	6.21	6.19	6.48	91.1	90.9	6.73	6.47	4.86	1.8	1.7	4.2
			Bottom	17.9	26.4	27.3 30.8	30.7	6.17 6.13	6.04	6.04	90.6 90.4	89.1	6.20 5.02	4.92		1.5 5.7	5.9	
					-	30.7 17.8		5.94 5.48		0.04	87.8 77.9		4.82 3.66			6.0 5.1		
			Surface	1.0	28.4	17.8	17.8	5.49	5.49	5.43	77.9	77.9	3.68	3.67		4.9	5.0	
04/07/19	9:07:33	30/Cloudy	Middle	9.1	28.1	19.9 20.0	19.9	5.39 5.35	5.37		77.0 76.4	76.7	4.12 4.20	4.16	7.25	4.0 3.9	4.0	4.9
			Bottom	17.2	27.2	27.0 27.0	27.0	4.87 4.89	4.88	4.88	71.4	71.6	14.33 13.49	13.91		5.9 5.6	5.8	
			Surface	1.0	28.4	17.7	17.7	5.44	5.45		77.2	77.4	3.86	3.84		4.2	4.2	
06/07/19	9:12:37	27/Cloudy	Middle	9.6	27.9	17.6 21.4	21.4	5.46 5.21	5.19	5.32	77.5 75.0	74.6	3.81 3.89	3.89	5.72	4.1 4.5	4.3	4.3
00/01/10	9.12.57	27/0100009				21.4 26.7		5.16 4.93			74.2 72.5		3.88 9.67		5.72	4.0 4.5		4.5
			Bottom	18.2	27.5	26.7	26.7	5.08	5.01	5.01	74.9	73.7	9.19	9.43		4.2	4.4	
			Surface	1.0	29.1	13.2 13.0	13.1	5.89 5.93	5.91	5.82	82.5 83.0	82.8	6.03 6.07	6.05		2.6 2.8	2.7	
09/07/19	10:53:37	30/Cloudy	Middle	9.3	28.5	17.7 17.5	17.6	5.74 5.70	5.72	5.62	81.7 81.1	81.4	5.49 5.52	5.51	5.91	2.1 2.5	2.3	4.2
			Bottom	17.7	26.4	29.9 29.9	29.9	5.34 5.37	5.36	5.36	78.2 78.7	78.4	6.11 6.24	6.18		7.3 7.7	7.5	
			Surface	1.0	29.4	10.5	9.8	5.86	5.95		81.5	82.4	5.43	5.54		4.6	4.5	
11/07/19	15:03:51	29/Cloudy	Middle	6.8	26.9	9.2 26.2	25.9	6.03 5.74	5.73	5.84	83.2 83.2	83.0	5.65 3.97	4.01	4.03	4.3 2.5	2.5	4.1
11/07/10	15.05.51	29/010000				25.6 32.8		5.71 5.60			82.7 82.5		4.05 2.51		4.00	2.5 5.6		7.1
			Bottom	12.5	25.5	32.4	32.6	5.62	5.61	5.61	82.4	82.5	2.54	2.53		5.3	5.5	
			Surface	1.0	29.3	6.7 6.7	6.7	6.60 6.58	6.59	6.41	89.6 89.2	89.4	6.88 6.88	6.88		4.8 4.9	4.9	
13/07/19	15:17:35	31/Fine	Middle	8.3	27.1	25.2 25.1	25.1	6.21 6.26	6.24	0.41	89.9 91.5	90.7	4.31 4.27	4.29	5.24	3.7 4.1	3.9	4.9
			Bottom	15.5	25.7	31.4 31.5	31.4	6.03 6.06	6.05	6.05	88.4 88.7	88.6	4.43 4.67	4.55		5.7 6.1	5.9	
			Surface	1.0	28.9	11.5	11.5	5.27	5.32		72.9	73.6	3.24	3.30		9.2	9.4	
16/07/10	10:10:17	00/Eine				11.5 26.4		5.36 5.10		5.19	74.2 74.3		3.36 5.89		E 20	9.5 3.2		5 7
16/07/19	16:49:47	32/Fine	Middle	7.6	27.1	25.9 32.1	26.1	5.04 4.82	5.07		73.5 70.0	73.9	6.14 6.26	6.02	5.20	3.2 4.6	3.2	5.7
			Bottom	14.2	25.1	32.1	32.0	4.82 4.89	4.86	4.86	70.0	70.6	6.31	6.29		4.6	4.6	

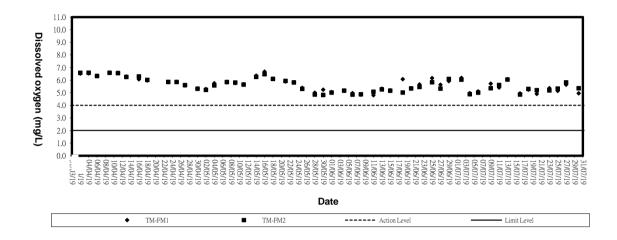
Date	Sampling	Ambient Temp (°C) /	Monitori		Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen tion (%)	Τι	ırbidity (NT		Suspe	nded Solids	s (mg/L)
Date	Duration	Weather Condition	(r	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	29.0	23.4 23.4	23.4	5.87 5.85	5.86	5 70	83.7 84.1	83.9	4.65 4.78	4.72		5.0 4.7	4.9	
18/07/19	9:09:39	30/Cloudy	Middle	8.3	25.9	29.6 30.2	29.9	5.62 5.59	5.61	5.73	81.6 81.1	81.3	7.88 9.84	8.86	8.68	4.6 4.7	4.7	4.3
			Bottom	15.6	25.1	31.9 31.7	31.8	5.33 5.27	5.30	5.30	77.4 76.4	76.9	12.29 12.62	12.46		3.5 3.1	3.3	
			Surface	1.0	28.5	14.4	14.4	5.51 5.45	5.48		76.9 76.1	76.5	4.41	4.41		3.9 3.5	3.7	
20/07/19	8:48:19	28/Cloudy	Middle	8.8	27.9	19.5	20.2	5.37	5.36	5.42	76.2	76.3	4.09	3.93	6.33	3.1 2.9	3.0	4.3
			Bottom	16.6	25.3	31.1 31.2	31.2	5.22	5.20	5.20	75.7	75.5	10.68	10.67		6.0 6.4	6.2	
			Surface	1.0	29.1	12.6	12.6	5.27	5.26		73.3 73.0	73.2	4.70	4.66		1.2	1.3	
23/07/19	10:00:13	31/Fine	Middle	8.9	25.4	30.2 31.4	30.8	5.37 5.35	5.36	5.31	77.6 77.5	77.6	4.41 3.36	3.89	4.76	1.9 2.1	2.0	2.2
			Bottom	16.9	24.8	32.4 32.3	32.3	5.20 5.17	5.19	5.19	75.3 75.0	75.2	5.97 5.48	5.73		3.1 3.3	3.2	
			Surface	1.0	28.8	14.7 14.7	14.7	4.87	4.85		68.3 68.0	68.2	3.69 3.57	3.63		2.1	2.2	
25/07/19	10:58:39	30/Cloudy	Middle	9.3	25.5	30.6 30.7	30.7	5.14 5.12	5.13	4.99	74.6 74.3	74.5	3.42 3.55	3.49	4.37	2.2	2.2	2.4
			Bottom	17.6	24.8	32.4 32.4	32.4	5.34 5.31	5.33	5.33	77.5 77.3	77.4	5.92 6.09	6.01		2.8 3.0	2.9	
			Surface	1.0	27.4	23.6 23.6	23.6	6.14 6.11	6.13		88.5 88.2	88.4	4.01 4.34	4.18		4.4 4.7	4.6	
27/07/19	15:21:08	30/Cloudy	Middle	7.9	25.7	30.3 30.4	30.3	5.94 5.91	5.93	6.03	86.4 85.5	86.0	5.80 5.74	5.77	5.21	4.6 4.5	4.6	4.9
			Bottom	14.7	25.7	30.6 32.2	31.4	5.83 5.80	5.82	5.82	85.0 84.7	84.9	5.58 5.78	5.68		5.6 5.3	5.5	
			Surface	1.0	27.5	23.1 25.8	24.5	6.74 5.86	6.30	0.04	97.1 85.5	91.3	4.78 4.98	4.88		6.9 6.7	6.8	
30/07/19	16:20:25	30/Fine	Middle	9.0	25.8	30.2 30.7	30.5	5.75 5.80	5.78	6.04	83.6 84.4	84.0	6.76 6.70	6.73	6.41	6.4 6.2	6.3	6.4
			Bottom	17.0	25.2	32.3 32.3	32.3	5.34 5.37	5.36	5.36	78.0 78.8	78.4	7.44 7.78	7.61		6.0 6.3	6.2	

Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		ed Oxygen ition (%)	Τι	urbidity (NT	U)	Suspe	nded Solids	s (mg/L)
Date	Duration	Weather	(1	m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	28.8	19.5 19.5	19.5	6.65 6.64	6.65		96.0 95.8	95.9	3.17 3.14	3.16		8.5 8.8	8.7	
02/07/19	16:30:57	30/Fine	Middle	9.2	27.7	24.8 24.9	24.8	4.97 5.01	4.99	5.82	72.5 73.1	72.8	15.48 15.22	15.35	7.52	6.8 6.4	6.6	6.0
			Bottom	17.3	26.4	30.6	30.6	5.22	5.23	5.23	76.9	77.1	3.99	4.06		2.4	2.6	
			Surface	1.0	28.4	30.6 17.9	17.8	5.24 5.51	5.51		77.3 78.2	78.2	4.12 3.66	3.69		2.8 5.0	4.9	
04/07/19	8:50:30	30/Cloudy	Middle	9.3	28.0	17.8 20.3	20.2	5.50 5.34	- 5.33	5.42	78.1 76.3	76.2	3.71 4.24	4.17	7.45	4.8 6.7	6.7	6.3
04/07/19	0.50.50	Jorcioudy				20.2 26.9		5.32 4.99			76.1 73.2		4.10 13.78		7.45	6.6 7.7	-	0.5
			Bottom	17.6	27.3	27.1	27.0	5.13 5.47	5.06	5.06	75.2	74.2	15.19	14.49		7.1 2.0	7.4	
			Surface	1.0	28.3	18.1 18.1	18.1	5.52	5.50	5.33	78.0 78.3	78.2	4.12 4.03	4.08		1.9	2.0	
06/07/19	8:49:35	27/Cloudy	Middle	9.2	27.9	21.7 21.7	21.7	5.21 5.12	5.17		75.0 73.7	74.4	4.09 3.88	3.99	5.37	4.4 4.6	4.5	3.9
			Bottom	17.5	27.6	26.3 26.2	26.2	5.36 5.39	5.38	5.38	78.8 79.2	79.0	8.29 7.78	8.04		5.2 5.5	5.4	
			Surface	1.0	29.0	13.1 13.4	13.3	6.29 6.16	6.23		88.0 86.3	87.2	6.03 5.90	5.97		6.2 5.8	6.0	
09/07/19	10:30:35	30/Cloudy	Middle	8.6	28.2	18.5	19.3	5.77 5.75	5.76	5.99	82.5 82.5	82.5	5.65 6.13	5.89	5.69	4.5	4.4	4.3
			Bottom	16.3	26.6	28.7	28.5	5.43	5.39	5.39	79.4	78.7	5.27	5.20		2.7	2.6	
			Surface	1.0	29.4	28.4 10.6	10.3	5.34 6.25	6.24		77.9 86.7	86.4	5.13 4.88	5.13		2.4 6.7	6.4	
					-	10.1 26.5		6.22 5.99		6.10	86.1 86.8		5.37 4.35			6.0 4.4		
11/07/19	14:46:31	29/Cloudy	Middle	7.1	26.8	26.8 32.9	26.6	5.94 5.54	5.97		86.3 81.5	86.6	4.18 2.90	4.27	4.10	4.2 4.4	4.3	5.0
			Bottom	13.2	25.4	32.9	32.9	5.52	5.53	5.53	81.0	81.2	2.93	2.92		4.0	4.2	
			Surface	1.0	29.3	6.9 7.5	7.2	6.68 6.51	6.60	6.36	90.7 88.6	89.7	6.67 6.54	6.61		5.6 5.1	5.4	
13/07/19	15:00:17	31/Fine	Middle	8.2	26.8	26.7 26.7	26.7	6.14 6.10	6.12	0.00	89.4 88.6	89.0	4.07 3.42	3.75	4.81	5.3 5.2	5.3	5.8
			Bottom	15.4	25.7	31.6 31.2	31.4	5.89 5.84	5.87	5.87	86.6 85.4	86.0	4.29 3.87	4.08		7.0 6.8	6.9	
			Surface	1.0	28.9	11.6 11.6	11.6	5.40 5.43	5.42		74.8 75.2	75.0	3.60 3.48	3.54		5.3 5.5	5.4	
16/07/19	16:31:16	32/Fine	Middle	7.4	26.5	28.6	28.9	5.31	5.29	5.35	77.6	77.3	6.84	6.91	5.62	6.6	6.9	7.1
			Bottom	13.8	25.1	29.2 32.2	32.2	5.27 5.13	5.12	5.12	77.0 74.5	74.5	6.97 6.33	6.42		7.1 9.0	9.2	
			DOLIOIII	15.0	20.1	32.1	52.2	5.11	J. 12	J.12	74.5	74.5	6.51	0.42		9.3	3.2	


Date	Sampling	Ambient Temp (°C) /	Monitori	ng Depth	Temp	Salini	ty (ppt)	Dissol	ved Oxygen	(mg/L)		d Oxygen tion (%)	Tu	ırbidity (NT	U)	Susper	nded Solids	s (mg/L)	
Dale	Duration	Weather	(1	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average	
			Surface	1.0	29.2	13.7 13.5	13.6	6.48 6.47	6.48	6.35	91.2 91.1	91.2	4.98 5.01	5.00		4.3 4.3	4.3		
18/07/19	8:49:41	30/Cloudy	Middle	8.1	25.3	31.1 31.3	31.2	6.21 6.25	6.23	6.35	90.0 90.7	90.4	11.96 12.44	12.20	9.87	3.9 4.2	4.1	4.1	
			Bottom	15.2	25.0	32.3 32.1	32.2	6.04 6.01	6.03	6.03	87.9 87.4	87.7	12.54 12.26	12.40		4.0	3.8		
			Surface	1.0	28.3	15.5 15.6	15.6	5.45 5.22	5.34		76.3 73.0	74.7	4.88	4.75		4.4	4.3		
20/07/19	8:30:19	28/Cloudy	Middle	8.3	27.9	23.6 21.5	22.6	5.22 5.10 5.07	5.09	5.21	74.3 72.8	73.5	7.67 7.86	7.77	8.91	4.1 3.8 3.6	3.7	3.6	
			Bottom	15.6	25.2	31.4	31.4	4.79	4.81	4.81	69.6	69.8	14.31	14.23		3.2	3.0		
			Surface	1.0	29.6	31.4 10.8	11.7	4.82 5.94	5.69		70.0 82.9	79.4	14.14 5.21	4.98		2.7 2.0	2.1		
23/07/19	9:39:45	31/Fine	Middle	8.3	25.2	12.5 31.0	31.0	5.43 5.31	5.29	5.49	75.9 77.0	76.7	4.75 3.77	3.72	4.63	2.2 2.6	2.7	2.1	
				Bottom	15.6	24.9	30.9 32.2	32.2	5.26 5.24	5.17	5.17	76.4 76.1	75.0	3.67 5.54	5.20		2.8 1.6	1.5	
						32.2 14.2		5.10 5.07		5.17	73.9 71.2		4.85 3.83			1.3 2.2			
			Surface	1.0	28.9	14.2 29.7	14.2	5.10 5.33	5.09	5.20	71.5 77.3	71.4	3.94 3.61	3.89		1.9 2.7	2.1		
25/07/19	10:41:42	30/Cloudy	Middle	7.1	25.6	30.6	30.1	5.31	5.32		77.0	77.2	3.44	3.53	3.83	2.6	2.7	2.6	
			Bottom	13.1	25.2	31.3 32.2	31.7	5.22 5.18	5.20	5.20	75.7 75.1	75.4	3.86 4.32	4.09		3.3 2.9	3.1		
			Surface	1.0	27.4	23.6 25.4	24.5	6.45 6.23	6.34	6.05	93.1 89.9	91.5	3.79 3.89	3.84		5.9 6.1	6.0		
27/07/19	15:00:09	30/Cloudy	Middle	9.2	25.9	29.7 30.6	30.2	5.74 5.77	5.76	0.00	83.5 84.0	83.8	5.16 5.85	5.51	5.41	5.5 5.0	5.3	5.7	
			Bottom	17.4	25.2	32.3 32.2	32.3	5.59 5.57	5.58	5.58	81.5 81.2	81.3	6.92 6.82	6.87		5.5 5.9	5.7		
			Surface	1.0	27.5	23.1 23.2	23.2	6.61 6.64	6.63		95.2 95.5	95.4	4.80 4.75	4.78		7.0 7.1	7.1		
30/07/19	16:02:34	30/Fine	Middle	8.1	25.8	30.5 30.5	30.5	4.98 4.93	4.96	5.79	72.3 71.8	72.1	6.82 6.95	6.89	6.15	7.3 6.9	7.1	6.9	
			Bottom	15.2	25.6	30.7 32.4	31.5	4.91	4.90	4.90	71.4	71.3	6.54 7.03	6.79		6.7 6.2	6.5		
	1		l			32.4		4.00			/ 1. 1		1.05			0.2			

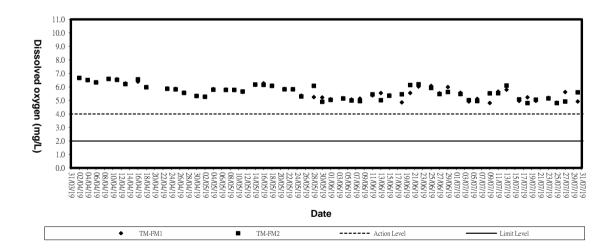
Appendix C3

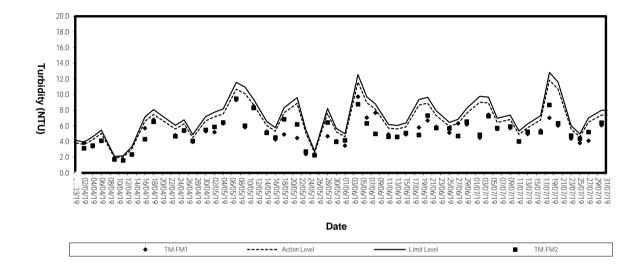

Graphical Plots of Impact Marine Water Quality Monitoring Data



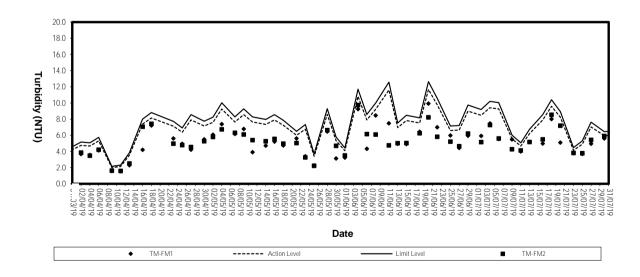
Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

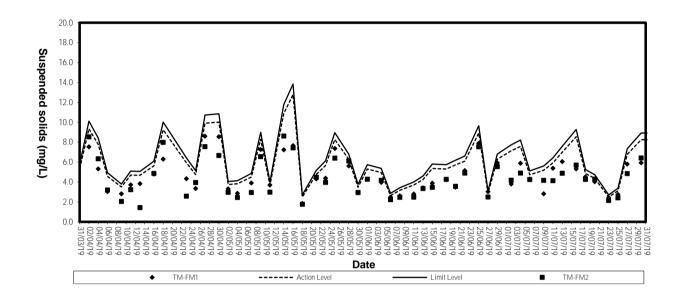
Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide



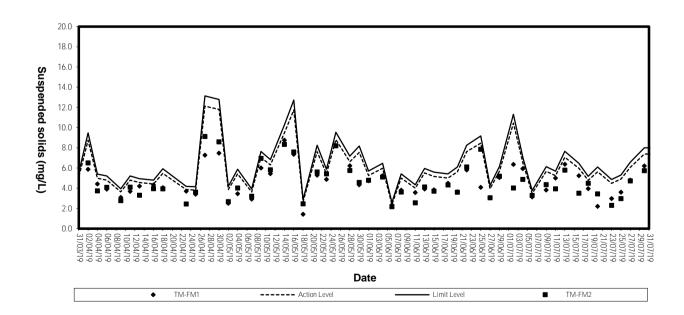

Dissolved Oxygen (Bottom) at Mid-Flood Tide

Dissolved Oxygen (Bottom) at Mid-Ebb Tide




Turbidity (Depth-average) at Mid-Flood Tide

Turbidity (Depth-average) at Mid-Ebb Tide



Suspended solids (Depth-average) at Mid-Flood Tide

Suspended Solids (Depth-average) at Mid-Ebb Tide

Appendix D1

Calibration Certificates for Impact Noise Monitoring Equipments

Calibration Certificate

Certificate No.	810241		Page	1 of 2	Pages
Customer :	ETS-Testconsult Limited				
Address :	8/F., Block B, Veristrong Indu	ustrial Centre, 34-36 Au	u Pui Wan St., Fo	otan, Hong K	ong.
Order No. :	Q84111		Date of receip	t :	15-Oct-18
Item Tested			<u></u>		
Description :	Sound Level Calibrator				
Manufacturer :	Rion		I.D.	: ET/EN	/002/01
Model :	NC-73	·····	Serial No.	: 10196	943
Test Conditi	ons				
Date of Test :	23-Oct-18		Supply Voltag	e :	
Ambient Temp	erature : (23 ± 3)°C		Relative Humi	dity: (50 ± 2	25) %
Test Specifi	cations				
Calibration chec	ck.				
Ref. Document/	Procedure : F21, Z02.				
Test Results	<u></u>				
restresuite	•				
	within the manufacturer's spe				
The results are	shown in the attached page(s	\$).			
Main Test equip	oment used:				
Equipment No.	Description	<u>Cert. No.</u>		Traceable I	<u>.o</u>
S014	Spectrum Analyzer	805025			& SCL-HKSAR
S240	Sound Level Calibrator	803357			& SCL-HKSAR
S041	Universal Counter	802061		SCL-HKSA	
S206	Sound Level Meter	805027		SCL-HKSA	R
will not include allow overloading, mis-ha	this Calibration Certificate only relat wance for the equipment long term d andling, or the capability of any other age resulting from the use of the equ	rift, variations with environme laboratory to repeat the mea	ental changes, vibrat	tion and shock d	luring transportation,
	used for calibration are traceable to bly to the above Unit-Under-Test only		s (SI), or by reference	ce to a natural co	onstant.
NO					SALEN YOU THE THE SECOND S
A H H H	X H	A	wavad bu	(hA)	
Calibrated by	Elva Chong	Ар	proved by :	Kin Wong	
This Certificate is issued I	by:	Date	e: 23-Oct-18		
Hong Kong Calibration Lt	a				

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 810241

Page 2 of 2 Pages

Results :

1. Level Accuracy (at 1 kHz)

UUT Nomin	nal Value	Measured Value	Mfr's Spec.
94	1B	94.2 dB	$\pm 1 \text{ dB}$

Uncertainty : $\pm 0.2 \text{ dB}$

2. Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's Spec.
1 kHz	1.017 kHz	± 2 %

Uncertainty : ± 0.1 %

- **3.** Level Stability : 0.0 dB Uncertainty : ± 0.01 dB
- 4. Total Harmonic Distortion : < 0.3 % Mfr's Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remarks: 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 018 hPa

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Hong Kong Calibration Ltd. 香港校正_{有限公司}

Calibration Certificate

Certificate No.	812030		Page	1 of 3	Pages
Customer :	ETS-Testconsult Limited				
Address :	8/F., Block B, Veristrong Industr	ial Centre, 34-36 Au	Pui Wan St., Fo	otan, Hong Ko	ng.
Order No. :	Q84795		Date of receipt	t :	4-Dec-18
Item Tested					
Description :	Sound Level Meter				
Manufacturer :	Rion		I.D.	: ET/EN/	003/14
Model :	NL-52		Serial No.	: Faded	
Test Conditi	ons				
Date of Test :	11-Dec-18		Supply Voltage	e :	
Ambient Temp	erature : (23 ± 3)°C		Relative Humic	dity:(50 ± 25	i) %
Test Specifi	cations				
Calibration chec	ck.				
Ref. Document/	Procedure : Z01, IEC 61672.				
Test Results	3				14440-1-1-1-1
The results are	shown in the attached page(s).				
Main Test equip	oment used:				
Equipment No.	Description	<u>Cert. No.</u>		Traceable to	
S017	Multi-Function Generator	C170120		SCL-HKSAR	
S240	Sound Level Calibrator	803357		NIM-PRC &	SCL-HKSAR
	this Calibration Certificate only relate to t vance for the equipment long term drift, v				

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

			/	
Calibrated by :	Appro	oved by :	Qu	
Elva Chong			Kin Wong	
This Certificate is issued by:	Date:	11-Dec-18		
Hong Kong Calibration Ltd.				
Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Ho	ing Kong.			
Tel: 2425 8801 Fax: 2425 8646				

overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable

for any loss or damage resulting from the use of the equipment.

Calibration Certificate

Certificate No. 812030

Page 2 of 3 Pages

Results :

1. Self-generated noise: 17.8 dBA

2. Acoustical signal test

	UUT S	Setting			
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
30-130	A	F	OFF	94.0	92.0
		S	OFF		92.0
	С	F	OFF		92.0
	Z	F	OFF		92.0
	A	F	OFF	114.0	112.0
		S	OFF		112.0
	С	F	OFF		112.0
	Z	F	OFF		112.0

IEC 61672 Type 1 Spec. : \pm 1.1 dB Uncertainty : \pm 0.1 dB

3. Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.7	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	- 16.1 dB, \pm 1.5 dB
250 Hz	-8.7	- $8.6 \text{ dB}, \pm 1 \text{ dB}$
500 Hz	-3.2	- 3.2 dB, ± 1.4 dB
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1.1 \text{ dB}$
2 kHz	+1.0	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+0.7	$+$ 1.0 dB, \pm 1.6 dB
8 kHz	-1.2	- 1.1 dB, +2.1 dB \sim -3.1 dB
16 kHz	-8.6	- 6.6 dB, + 3.5 dB ~ - 17.0 dB

Uncertainty : $\pm 0.1 \text{ dB}$

Calibration Certificate

Certificate No. 812030

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure : 1 007 hPa.

4. Preamplifier model : NH-25, S/N : 10653

5. Firmware Version: 1.2

6. Power Supply Check: OK

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Calibration Certificate

Certificate No.	903391		Page	1 of 3 Pages				
Customer :	ETS-Testconsult Limited							
Address : 8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan St., Fotan, Hong Kong.								
Order No. :	Q91324		Date of receipt	: 4-Apr-19				
Item Tested								
Description :	Sound Level Meter							
Manufacturer :	Rion		I.D.					
Model :	NL-52		Serial No.	: 00264519				
Test Conditi	ons							
Date of Test :	11-Apr-19		Supply Voltage	:				
Ambient Temp	erature: (23 ± 3)°C		Relative Humid	ity: (50 ± 25) %				
Test Specific	cations							
Calibration chec	k.							
Ref. Document/	Procedure: Z01, IEC 61672.							
				an a				
Test Results	i							
All results were	within the IEC 61672 Type 1 or m	anufacturer's speci	fication.					
The results are	shown in the attached page(s).							
Main Test equip	ment used:							
Equipment No.	Description	<u>Cert. No.</u>		Traceable to				
S017	Multi-Function Generator	C190926		SCL-HKSAR				
S240	Sound Level Calibrator	803357		NIM-PRC & SCL-HKSAR				

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

			and the second se	
Calibrated by :	Appro	ved by :		001003999
Elva Chong			Kin Wong	
This Certificate is issued by: Hong Kong Calibration Ltd.	Date:	11-Apr-19		
Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chun Tel: 2425 8801 . Fax: 2425 8646	g, NT,Hong Kong.			

Calibration Certificate

Certificate No. 903391

Page 2 of 3 Pages

Results :

Acoustical signal test

1. Self-generated noise: 16.7 dBA (Mfr's Spec \leq 17 dBA)

2. Reference Sound Pressure Level

UUT Setting					
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
20~130	A	F	OFF	94.0	94.1
		S	OFF		94.0
	C	F	OFF		94.0
	Z	F	OFF		94.0
	A	F	OFF	114.0	114.1
		S	OFF		114.0
	С	F	OFF		114.0
	Z	F	OFF		114.1

IEC 61672 Type 1 Spec. : \pm 1.1 dB Uncertainty : \pm 0.1 dB

Electrical signal tests

3. Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.7	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.1	- 16.1 dB, \pm 1.5 dB
250 Hz	-8.6	- $8.6 \text{ dB}, \pm 1 \text{ dB}$
500 Hz	-3.2	- $3.2 \text{ dB}, \pm 1.4 \text{ dB}$
1 kHz	0.0 (Ref)	$0 \mathrm{dB}, \pm 1.1 \mathrm{dB}$
2 kHz	+1.2	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+1.0	$+$ 1.0 dB, \pm 1.6 dB
8 kHz	-1.0	- $1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-8.0	- $6.6 \text{ dB}, + 3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty : $\pm 0.1 \text{ dB}$

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Calibration Certificate

Certificate No. 903391

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		\pm 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 995 hPa.
- 4. Microphone model: UC-59, S/N: 03558
- 5. Preamplifier model : NH-25, S/N : 64644
- 6. Firmware Version: 1.7
- 7. Power Supply Check: OK
- 8. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Calibration Certificate

Certificate No.	901292		Page	1 of	3 Pages
Customer :	ETS-Testconsult Limited				
Address :	8/F., Block B, Veristrong Industria	al Centre, 34-36 Au	Pui Wan St., Fot	tan, Hong	Kong.
Order No. :	Q90546		Date of receipt	:	14-Feb-19
Item Tested				•	
Description :	Sound Level Meter				
Manufacturer :	Rion		I.D.	: ET/E	E N /003/18
Model :	NL-52		Serial No.	: 0026	64520
Test Conditi	ons				
Date of Test :	27-Feb-19		Supply Voltage	:	
Ambient Temp	erature: (23 ± 3)°C		Relative Humid	lity:(50:	± 25) %
Test Specific	cations				
Calibration chec Ref. Document/	k. Procedure: Z01, IEC 61672.				
Test Results	;				
All results were	within the IEC 61672 Type 1 or m	anufacturer's speci	fication.		
	shown in the attached page(s).				
Main Test equip	ment used:				
Equipment No.	Description	<u>Cert. No.</u>		Traceabl	<u>e to</u>
S017	Multi-Function Generator	C190926		SCL-HK	SAR
S240	Sound Level Calibrator	803357		NIM-PR	C & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Elva Chong

Approved by : Kin Wong

Date: 27-Feb-19

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Calibration Certificate

Certificate No. 901292

Page 2 of 3 Pages

Results :

Acoustical signal test

1. Self-generated noise: 15.9 dBA (Mfr's Spec \leq 17 dBA)

2. Reference Sound Pressure Level

UUT Setting					
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
20~130	A	F	OFF	94.0	94.0
		S	OFF		94.0
	С	F	OFF		94.0
	Z	F	OFF		94.0
	A	F	OFF	114.0	114.0
		S	OFF		114.0
	С	F	OFF		114.0
	Z	F	OFF]	114.0

IEC 61672 Type 1 Spec. : \pm 1.1 dB Uncertainty : \pm 0.1 Db

Electrical signal tests

3. Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.6	- 39.4 dB, ± 2 dB
63 Hz	-26.3	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	- 16.1 dB, \pm 1.5 dB
250 Hz	-8.7	- $8.6 \text{ dB}, \pm 1 \text{ dB}$
500 Hz	-3.3	- $3.2 \text{ dB}, \pm 1.4 \text{ dB}$
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1.1 \text{ dB}$
2 kHz	+1.2	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+1.0	$+ 1.0 \text{ dB}, \pm 1.6 \text{ dB}$
8 kHz	-1.1	- 1.1 dB, +2.1 dB ~ -3.1 dB
16 kHz	-8.0	- $6.6 \text{ dB}, + 3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty : $\pm 0.1 \text{ dB}$

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Hong Kong Calibration Ltd.

香港校正有限公司

Calibration Certificate

Certificate No. 901292

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

112 11110 11 0.0	(1	
UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure : 1 001 hPa.

- 4. Preamplifier model : NH-25, S/N : 64645
- 5. Firmware Version: 1.7

6. Power Supply Check: OK

7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Hong Kong Calibration Ltd. 香港校正有限公司

Calibration Certificate

Certificate No. 902820	Page	1 of 3 Pages
Customer: ETS-Testconsult Limited		
Address : 8/F., Block B, Veristrong Industrial 0	Centre, 34-36 Au Pui Wan St., Fot	an, Hong Kong.
Order No. : Q91096	Date of receipt	: 19-Mar-19
Item Tested		
Description : Sound Level Meter		
Manufacturer : Rion	I.D.	: ET/EN/003/19
Model : NL-52	Serial No.	: 00264521
Test Conditions		
Date of Test: 26-Mar-19	Supply Voltage	;
Ambient Temperature : $(23 \pm 3)^{\circ}$ C	Relative Humic	lity: (50 ± 25) %
Test Specifications		
Calibration check. Ref. Document/Procedure: Z01, IEC 61672.		
Test Results		
All results were within the IEC 61672 Type 1 or mar The results are shown in the attached page(s).	nufacturer's specification.	
Main Test equipment used:	X 1 A1	Tracable to
Equipmonente. <u>Bootenparen</u>	<u>Cert. No.</u>	<u>Traceable to</u> SCL-HKSAR
	2190926	NIM-PRC & SCL-HKSAR
S240 Sound Level Calibrator 8	303357	

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :	Appro	oved by :	Kin Wong	
Elva Chong This Certificate is issued by:	Date:	26-Mar-19	, and to only	
Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Tel: 2425 8801 Fax: 2425 8646	Kong.			

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Hong Kong Calibration Ltd. 香港校正有限公司

Calibration Certificate

Certificate No. 902820

Page 2 of 3 Pages

Results :

Acoustical signal test

1. Self-generated noise: 16.4dBA (Mfr's Spec \leq 17 dBA)

2. Reference Sound Pressure Level

	UUT S	etting			
- (10)	Frequency	Time	Octave Filter	Applied Value (dB)	UUT Reading (dB)
Range (dB) 20 ~ 130	Weighting A	Weighting F	OFF	94.0	94.0
20~150		S	OFF		94.0
	С	F	OFF		94.1
	Z	F	OFF		94.1
	А	<u> </u>	OFF	114.0	114.1
		S	OFF	_	114.1
	С	F	OFF	_	114.1
	Z	F	OFF		114.1

IEC 61672 Type 1 Spec. : \pm 1.1 dB Uncertainty : \pm 0.1 Db

Electrical signal tests

3. Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.6	- 39.4 dB, ± 2 dB
63 Hz	-26.3	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	- 16.1 dB, ± 1.5 dB
	-8.7	$- 8.6 \text{ dB}, \pm 1 \text{ dB}$
250 Hz	-3.3	$- 3.2 \text{ dB}, \pm 1.4 \text{ dB}$
500 Hz		$0 \text{ dB}, \pm 1.1 \text{ dB}$
1 kHz		· ····
2 kHz	+1.2	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+1.0	$+ 1.0 \text{ dB}, \pm 1.6 \text{ dB}$
8 kHz	-1.1	- $1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-8.0	- 6.6 dB, + 3.5 dB ~ - 17.0 dB

Uncertainty : $\pm 0.1 \text{ dB}$

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Hong Kong Calibration Ltd. 香港校正 有限公司

Calibration Certificate

Certificate No. 902820

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		$\pm 0.4 \text{ dB}$
C	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		$\pm 0.3 \text{ dB}$
Slow	94.0	94.0	0.0	-
Time-averaging	94.0	94.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 008 hPa.
- 4. Preamplifier model : NH-25, S/N : 64646
- 5. Firmware Version: 1.7
- 6. Power Supply Check: OK
- 7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Appendix D2

Impact Noise Monitoring Results

Day-time Noise Monitoring`

Monitoring Location: TM-RN1 *

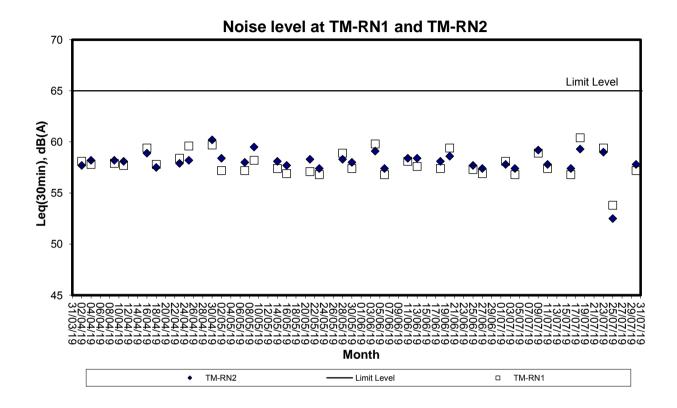
Date	Start Sampling Time (hh:mm)	Noi	se Level dB	(A)	Wind Speed (m/s)	Weather Condition
		L _{eq(30min)}	L ₁₀	L ₉₀		
2/7/2019	11:11	58.1	60.3	55.8	0.1	Cloudy
4/7/2019	8:55	56.8	58.2	52.0	0.2	Cloudy
9/7/2019	11:11	58.9	60.3	55.6	0.2	Cloudy
11/7/2019	8:55	57.4	58.8	52.9	0.2	Cloudy
16/7/2019	10:55	56.8	58.2	51.9	0.2	Fine
18/7/2019	15:43	60.4	62.5	57.2	0.1	Cloudy
23/7/2019	11:00	59.4	61.2	55.6	0.1	Cloudy
25/7/2019	10:37	53.8	54.6	52.9	0.2	Fine
30/7/2019	11:00	57.2	58.8	53.6	0.2	Cloudy

Remark: Since Lands Department did not approve us to enter their own area where the noise monitoring stations TM-N1 located due to the security, noise monitoring was carried out at noise monitoring stations TM-RN1 (refer to the figure 3 attached) in this reporting month.

Monitoring Location: TM-RN2 *

Date	Start Sampling Time (hh:mm)	No	Noise Level dB (A) Wind Speed (r			Weather Condition
		L _{eq(30min)}	L ₁₀	L ₉₀		
2/7/2019	11:13	57.8	60.0	54.5	0.2	Cloudy
4/7/2019	9:00	57.4	58.8	52.5	0.2	Cloudy
9/7/2019	11:13	59.2	61.4	56.7	0.2	Cloudy
11/7/2019	9:00	57.8	59.0	52.5	0.3	Cloudy
16/7/2019	11:00	57.4	58.9	52.3	0.2	Fine
18/7/2019	15:45	59.3	61.1	55.8	0.1	Cloudy
23/7/2019	10:05	59.0	61.3	56.2	0.1	Cloudy
25/7/2019	10:33	52.5	53.4	51.7	0.3	Fine
30/7/2019	11:05	57.8	59.3	53.9	0.3	Cloudy

Remark: Since Lands Department did not approve us to enter their own area where the noise monitoring stations TM-N2 located due to the security, noise monitoring was carried out at noise monitoring stations TM-RN2 (refer to the figure 3 attached) in this reporting month.



Appendix D3

Graphical Plots of Impact Noise Monitoring Data

Noise Monitoring (Day-time)

Appendix E

Weather Condition

	Mean				Mean	Mean	Total	Prevailing	Mean
	Pressure	Air	Temperat	ure	Dew	Relative	Rainfall	Wind	Wind
	(hPa)				Point	Humidit	(mm)	Direction	Speed
Day		Absolute	Mean	Absolute	(deg. C)	(%)		(degrees)	(km/h)
		Daily	(deg.	Daily					
		Max	C)	Min					
		(deg. C)		(deg. C)					
1	***	32.6	29.9	27.5	26.1	81	1.5	120	7.3
2	***	32.6	29.5	25.6	25.5	80	14	30	7.9
3	***	29.1	26.7	24.7	25.9	96	70.5	150#	9.0#
4	***	31.7	28.7	25.7	26	86	5.5	150#	14.4#
5	***	31.8	29.1	26.6	25.8	83	6	150	10.3
6	***	32	29.7	27.2	26.3	82	0.5	200	9.9
7	***	31.8	29.6	27.7	26.2	82	3	150	10.3
8	***	32.2	30.2	28.4	26	79	0	160	11
9	***	31.6	30	29	26.1	80	0	190	12.3
10	***	30.1	28.1	25.9	26.5	91	6	210	8
11	***	31.7#	28.5	26.6#	26.5	89	0.5	150	7.5
12	***	33.4#	30.1	28.0#	26	79	0	150	11.3
13	***	32.3#	30.2	28.9#	25.8	78	0	210	12.4
14	***	32.5#	30	28.8#	26.3	81	0	220	10.8
15	***	33.1#	30.2	27.9#	26.3	80	0	150	11.3
16	***	34.2#	30.3	27.5#	25.7	78	0	150	6.5
17	***	35.1	31	27.5	26.6	79	0	300	6.4
18	***	36.0#	31.1	27.5#	26.6	78	2.5	300	6.4
19	***	34.4	29	26	26.9	89	44	160#	3.0#
20	***	31.7#	27.5	25.4#	26.5	94	9	140#	5.8#
21	***	32.2#	28.7	26.0#	26.4	88	0	150	4.8
22	***	30.7	28.3	26.1	26.2	88	0.5	150	6.3
23	***	32.4#	29	26.1#	25.8	84	0	160	8.7
24	***	32.6#	29.7	27.3#	26.3	82	0	160	13.2
25	***	32.6#	30.1	27.9#	26.3	81	0	140	8.3
26	***	33.0#	30.4	28.3#	26.2	79	0	240	6.5
27	***	33.7	30.6	28.7	26.1	78	0	220	8
28	***	32.4	28.9	25.6	25.8	83	3.5	140	6.1
29	***	31.3#	28.9	27.0#	25.1	80	0	20	6.5
30	***	32.6#	29.8	27.6#	24.8	75	3	20	7.5
31	***	28.4	26.4	24.5	24.6	90	110	20	6.6

Daily Extract of Meteorological Observations , July 2019 - Tuen Mun

*** unavailable

data incomplete

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

Appendix F

Event-Action Plans

	Contractor		 Recity any unacceptatue practise appropriate appropriate 	 Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate 		 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IC(E) within 3 working days of notification proposals Amend proposal if appropriate.
TY EXCEEDANCE	ER		. Notify Contractor	 Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures properly implemented 		 Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures properly implemented
EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE ACTION	IC(E)	ACTION LEVEL	 Check monitoring data submitted by the ET Check contractor's working method 	 Check monitoring data submitted by the ET Leader Check the Contractor's working method Check the Contractor's working method Discuss with ET and Contractor on possible remedial measures Advice the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures 		 Check monitoring data submitted by the ET Leader Check Contractor's working method Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures
Ш	FT Leader		 Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, IC(E) and Contractor Transcrease Information Repeat measurement to confirm finding Increase monitoring frequency to daily 	 Identify source, investigate the causes of exceedance and propose remedial measures Inform IC(E) and Contractor Repeat measurements to confirm finding Income to confirm Repeat measurements to confirm Repeat measurements to confirm Repeat measurements to confirm Repeat measurements to confirm Repeat measurements Inform Inform Inform Inform Inform Inform Inform Repeat measurements Inform Inform<td>monitoring</td><td> Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, Contractor and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily Assess the effectiveness of Contractor's remedial actions and keep (CIC). EPD and ER informed of the results </td>	monitoring	 Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, Contractor and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily Assess the effectiveness of Contractor's remedial actions and keep (CIC). EPD and ER informed of the results
EVENT			1. Exceedance for one sample	2. Exceedance for two or more consecutive samples		1. Exceedance for one sample

	Contractor	 Take Immediate action to avoid furthe exceedances Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem atil not under control Stop the relevant activity of works as determined by the ER until the exceedance is abated.
TY EXCEEDANCE	æ	 Confirm receipt of notification of failure in writing Notify Contractor In consultation with the LC(E), are eventation with the LC(E), the remedial measures to be implemented Ensure remedial measures Ensure remedial measures Ensure remedial measures Consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated
ALL		- v.v. 4 v.
EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE ACTION	IC(E)	 Discuss amongst ER, ET and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures
	ET Leader	 Identify source, investigate the causes of exceedance and propose remedial measures Notify IC(E), ER, EPD and Contractor Repeat measurement to confirm finding Increase monitoring frequency to daily Carry out analysis of contractor's working procedures to determine possible mitigation to be implemented discuss the remedial actions to be taken Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results If a finding
	1	
EVENT		2. Exceedance for two or more consecutive samples

: ; . . . 1 . [] \Box]] 3 :] : : :-: , • • : ` ----...

.

.

· ·

.

.

.

EVENT Action 1. Notify Level 2. Carry 3. Repo. 4. Discu 6. Increa	ET Leader Notify the IC(E) and the Contractor. 1 Carry out investigation. Report the results of investigation to the IC(E) and the Contractor. Discuss with the Contractor and Dimulate remedial measures. Increase monitoring frequency to check mitigation effectiveness Notify the IC(E), the ER, the EPD	ACTION IC(E) 1. Review the analysed results submitted by the ET. 2. Review the proposed remedial measures by the Contractor and advise the ER contractor and 3. Supervise the implementation of remedial measures.	N + ci ei	ER Confirm receipt of notification of		Contractor Submit noise mitigation	
	D 0 10		નં રાંજ	ER Confirm receipt of notification of		Contractor Submit noise mitigation	
	0		ન ડાલ	Confirm receipt of notification of		Submit noise mitigation	
12 1.9 -34	ify the IC(E), the ER, the EPD	· · ····	4	failure in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented.	÷ ~	proposals to IC(E). Implement noise mitigation proposals.	
	fy the IC(E), the ER, the EPD	The state of the second st	_		ŀ	Training and sector sector sector.	
1. Notify		1. Discuss amongsi une EK, me EI	. <u>-</u>	Contiting receipt of nounceation of	2	lake innineulate action to avoid further exceedance	
	drig ure contractor.	notantial remedial actions.	2	Notify the Contractor.	2	Submit proposals for remedial	
3. Repe	ement to confirm	2. Review the Contractor's remedial	લં	Require the Contractor to propose		actions to IC(E) within 3	
findings.	ings.	actions whenever necessary to		remedial measures for the		working days of notification.	
4. Increa	Increase monitoring frequency.	assure their effectiveness and		analysed noise problem.	ri	Implement the agreed	
	Carry out analysis of Contractor's	3. Supervise the implementation of		property implemented.	4.	Resubmit proposals if problem	-
bossi	ion to be		ະດີ	If exceedances continue, consider		still not under control.	
imple	implemented.			what activity of the work is	ຜ່	Stop the relevant activity of	
6. Infor	Ê			responsible and instruct the		works as determined by the ER	
EPD	EPD the causes & actions taken for			Contractor to stop that activity of		until the exceedances is	
-	he exceedances.			work until the exceedances is		abated.	_
7. Asse				abated.			
Contr							
keep						•	
	ER informed of the results						-
8. IT exc	It exceedance one to the						
const	construction works stops, cease						

		t 1. Check monitoring data ing submitted by ET > Confirm ET assessment if		3. Discuss with E1, EX and Contractor on the miligation		4	whenever necessary to ansure their effectiveness		ۍ ۲		. sances					•
EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE ACTION		 Notify EPD and other relevant governmental agencies in writing autor of house of house 	identification of the exceedance Discuss with IEC, ET and	Ū	3. Require contractor to propose	remedial measures for the analysed problem if related to the		4. Ensure renieura measures a property implemented	Assess the effectiveness of the militration measure							
OR WA		riting tion of	ice; lent	to IEC	ays of	5	ue to	ER and	tres to	e is oue	ion of	notion	ole time			
AND ACTION PLAN F	Contractor	Notify the ER and IEC in writing within 24 hours of identification of	exceedance Rectify unacceptable practice; Chock all blant and equinment:		and ER within 3 working days of the identification of an			 the construction works Discuss with ET, IEC and ER and 		IEC and EK it exceedance is one to the construction works within 4	working days of identification of		 Implement the agreed hingdaton measures within reasonable time 	scale		
NT A	-	<u>+-</u>	~~~~	5 4			сі — с	و. ور		9	Ę			ay		Г
EVE	ET cader	Let Identify sourc Reneat in-sit		24 hours of identification of the		working methods;	. Carry out investigation Report the results of investigation		exceedance and advise	contractor if exceedance is due to	Contractor's construction works	-	to the construction works within 4	8. Repeat measurement on next day		due to the construction works
ļ		<u>+- ^</u>			4		ഗ്യ				7			00)	_
Event		Action level boing exceeded	by one sampling day									-1.4 <i>84</i>		01.0		

:` ~~. ; ; i Ì .]] ··· . .: :---. ;___ ~ **)** . لـ. : • :. . • ---..... ••••

.

.

• • • • • • •

	IEC	 Check monitoring data submitted by ET Confirm ET assessment if exceedance is due / not due to the works Discuss with ET, ER and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures
EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEUANCE ACTION	ER	 Notify EPD and other relevant governmental agencies in writing within 24 hours of identification of exceedance Discuss with IEC, ET and Contractor on the proposed miligation measures; Request Contractor to critically review the working methods; Ensure remedial measures are property implemented Assess the effectiveness of the implemented miligation measures.
r and action plan for wa Action	Contractor	in writing; he practice; of working of the bys of the ation and ER ays of the eed eed eed cale
EVEN	TT I andre	 ET Leader Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Notify Contractor in writing within 24 hours of identification of the exceedance Check monitoring data, all plant, equipment and Contractor's working methods; Carry out investigation Report the results of investigation to the Contractor within 3 working days of identification of exceedance and advise contractor if exceedance is due to contractor's construction Discuss mitigation measures within 4 working of identification of an exceedance Bensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level.
Event		Limit level being exceeded by one sampling day

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

> ----

7

]

]

Ŋ

۱ ۱

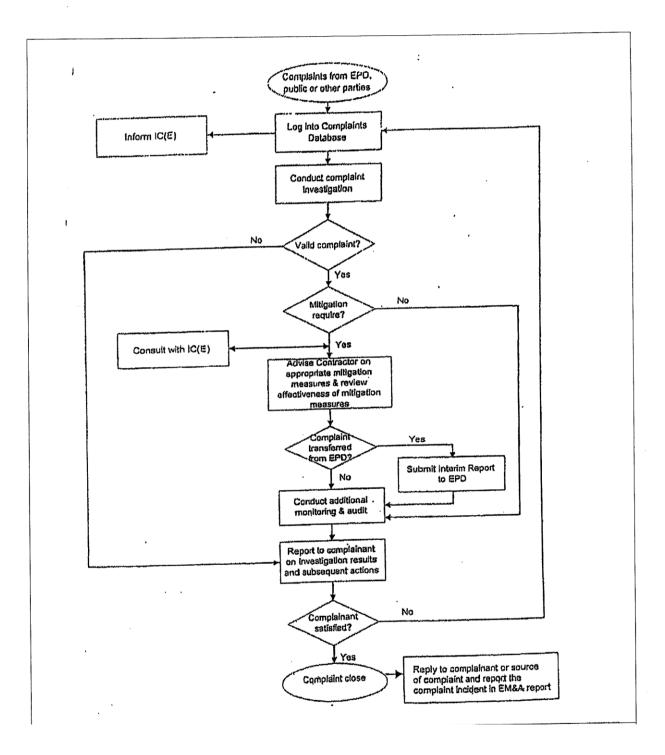
.۔.: نہ

: ; . . ;

 \square

...

.....


.....

• •

.

Appendix G

Construction Programme

Three Months Rolling Programme (1-June-2019 to 31-August-2019)

						T
Item	Description	From	То	Jun-19	Jul-19	
1	Section 1A	1-Jun-19	10-Jul-19	i - 3 6 i 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 2
1.1	Operation of Fill Bank, surveillance system and tipping halls	1-Jun-19	10-Jul-19			
	Operation of crushing plants	1-Jun-19	10-Jul-19			
	Operation of the existing and expanded dewatering plants	1-Jun-19	10-Jul-19			
	Collection and delivery of Public Fill from CWPFBP and MWPFRF to TKOFB	1-Jun-19	10-Jul-19			
1.5	Breaking up the incoming precast concrete units	1-Jun-19	10-Jul-19			
1.6	Carry out repair works for damages caused by Super Typhoon	1-Jun-19	10-Jul-19			
1.7	Carry out preliminary sorting on Public Fill for Three Runway System (3RS) project	1-Jun-19	10-Jul-19			
2	Section 2A	1-Jun-19	10-Jul-19			
2.1	Operation of Fill Bank, surveillance system and tipping halls	1-Jun-19	10-Jul-19			
2.2	Breaking up the incoming precast concrete units	1-Jun-19	10-Jul-19			
2.3	Operation of glass cullet storage compartment at Portion B7	1-Jun-19	10-Jul-19			
2.4	Construction of transformer room and meter room	1-Jun-19	10-Jul-19			
2.5	Carry out preliminary sorting on Public Fill for Three Runway System (3RS) project	1-Jun-19	10-Jul-19			
	Section 3	1-Jun-19	30-Jun-19			
3.1	Design and construction of of seawalls at Zone B (approx. 900m)	1-Jun-19	30-Jun-19			
4	Section 3A	1-Jun-19	30-Jun-19			
	Design, construction and operation of new berthing facilities at Zone B	1-Jun-19	30-Jun-19			
4.2	Design, construction and operation of new navigation channel and turning basin inassociated with the berthing facilities at Zone B	1-Jun-19	30-Jun-19			
4.3	Design and construction of seawalls at Zone B (approx. 1500m)	1-Jun-19	30-Jun-19			-
5	Section 4	1-Jun-19	31-Aug-19			1派を-
	Collection and delivery of Public Fill to the Designated Reclamation Sites in the Mainland	1-Jun-19	31-Aug-19			
6	Section 6	1-Jun-19	31-Aug-19			
6.1	Removal of existing stockpiled Public Fill at Portion A5b down to +5.2mPD	1-Jun-19	31-Aug-19			
	Section 7	1-Jun-19	20-Jun-19			
	Removal of existing stockpiled Public Fill at Portion A5c down to +5.2mPD and +5.2mPd/+6.0mPD	1-Jun-19	20-Jun-19			-

Aug-19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

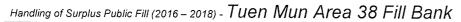
Appendix H

Weekly ET's Site Inspection Record

Inspection Date	:	417/19
Time	:	15:00
Weather	:	Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy
Wind	:	Calm /(Light)/ Breeze / Strong
Temperature	:	30°C

Humidity : High (Moderate / Low

Inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:			
		A	Mak
Name:	on M- CHEM	5 mm	Mak Kei Wai
Title	run/2n	Tr	E,T



	Environmental Checklist		ment tages		Remark	
		Yes	No	N/A		
•	e Dust Emission					
• Du	st control / mitigation measures shall be provided to prevent dust nuisance.		√		Item 1	
• Wa	ter sprays shall be provided and used to dampen materials.	\checkmark				
 All 	stockpile of aggregate or spoil should be enclosed or covered and water applied in dry or windy condition.	√				
an	y vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side I tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be vered by a clean tarpaulin.	V				
• Un	paved areas should be watered regularly to avoid dust generation.	1				
• Th	e designated site main haul road shall be paved or regular watering.	V				
• Th	e haul road inside the site and public road around the site entrance should be kept clean and free from dust.	V				
	neel washing facilities including high-pressure water jet shall be provided at the entrance of work site.	V				
	ery vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	√				
• Th	e temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	V				
• Ve	nicle and equipment should be switched off while not in use.	√				
 All 	plant and equipment should be well maintained e.g. without black smoke emission.	√				
• Op	en burning should be prohibited.	\checkmark				
roa	proval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- d vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO p.311).	V				
Noise lı	npact					
	e approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be apted.	V				
• Th	e constructions works should be scheduled to minimize noise nuisance.	\checkmark				
	ly well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.	V				
	wered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.	V				
	compressors and hand held breakers should have noise labels.	V				
	mpressors and generators should operate with door closed.	V				
	chines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.	V				
 No 	sy equipment and mobile plant shall always be site away from NSRs.	\checkmark				

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

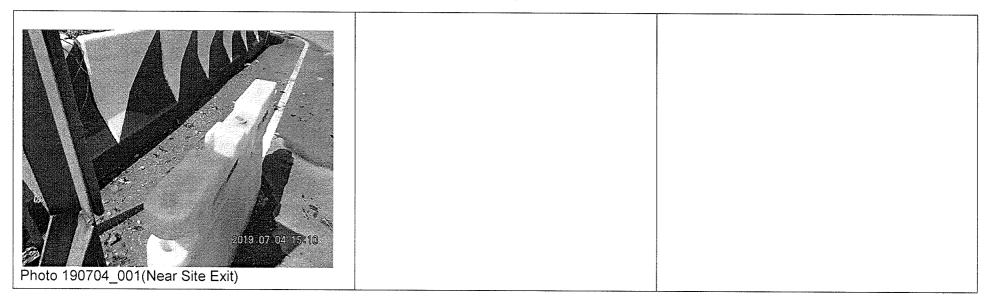
Environmental Checklist		tages	*	Remark
	Yes	No	N/A	
Water Quality				
 Drainage system and the sand / silt removal facilities should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	V			
 The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. 	√			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	V			
The material shall be properly covered to prevent washed away especially before rainstorm.	1			
The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	\checkmark			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	V			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	V			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	V			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. 	1			
 The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	V			
Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.	√			
 The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. 	V			
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	V			
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	V			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 	√			
 The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. 	V			
 A waste collection vessel shall be deployed to remove floating debris. 	√			
Landscape and Visual				
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD. 	V			
Surface of outer slopes of the Fill Bank shall preferably be hydroseeded.	√			
Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable.	1			
 Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at bleast 3m above soil level. 	V			
Lighting shall be set to minimise night-time glare.	1			

	Environmental Checklist	Implementation Stages* Yes No N/A		*	Remark
Wa	nste Management			••••	
Со	nstruction Waste Management				
•	Relevant licence / permits for disposal of construction waste or excavated materials available for inspection.	. 🗸			
=	Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal.				
-	Mud and debris should be removed from waterworks access roads and associated drainage systems.	\checkmark			
•	Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures should be employed to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	V			
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	V			
•	Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fill to minimise the quantity of waste to be disposed of to landfill.	V	-		
	In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket system should be included as one of the contractual requirements.	V			
•	Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials.	V			
Ch	emical Waste Management				
	It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	V			
•	After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.	V			
*	Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licensed facility in accordance with the Chemical Waste (General) Regulation.	V			
*	Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility.	\checkmark			
•	Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area.	V			
•	The designated chemical waste storage area should only be used for storing chemical wastes.	\checkmark			
•	The set-up of chemical waste storage area should				
	Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition.	V			
	Be enclosed on at least 3 sides and securely closed.	V			
- 12	 Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest. 	V			
	Have adequate ventilation.	\checkmark			
	Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary).	V			
	Be arranged so that incompatible materials are adequately separated.	V			

	Environmental Checklist		menta tages		Remark
		Yes		N/A	
•	Warning panels should be displayed at the waste storage area.				
•	Waste storage area should be cleaned and maintained regularly.	\checkmark			
•	Chemical waste should be transported regularly by a registered chemical waste collector to a facility licensed to receive chemical waste.	V			
	All generators, fuel and oil storage should be within bundle areas.	1			
•	Oil leakage from machinery, vehicle and plant should be prevented.	1			
•	In the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage Response Plan should be followed.	V			
	The dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.	V			о <mark>ла сположи со </mark>
Go	Good Site Practices				
	Nomination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	V			
	Training of site personnel in proper waste management and chemical handling procedures should be provided.				
•	Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.	V			
•	Proper storage and site practices to minimise the potential for damage or contamination of construction materials.	V			
•	The Environmental Permit should be displaced conspicuously on site.	\checkmark			
•	Construction noise permits should be posted at site entrance or available for site inspection.	V			
	Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	V			
	Chemical storage area provided with lock and located on sealed areas.				
1	All chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank).	\checkmark			
8	Any unused chemicals or those with remaining functional capacity should be recycled.	\checkmark			
3	Regular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors.	\checkmark			
•	To encourage collection of aluminium cans by individual collectors.	V			
•	Separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce.	V			
•	A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. trip ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	V			
•	A collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material. If an open area is unavoidable for the storage or loading/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should be diverted into wastewater treatment system.	V			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Target Completion Date
1	Mud was found accumulated near site exit.	To clean the accumulated mud properly.	190704_001	Yes	11/07/19


Remark

Title	Signature	Date
ET Representative		04 July 2019
		ET Representative

<u>Photo</u>

CEDD Contract No.: CV/2015/07

•

Handling of Surplus Public Fill (2016-2018) - Tuen Mun Area 38 Fill Bank

Inspection Date	:	1117/19
Time	:	15=00
Weather	:	Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy
Wind	:	Calm (Light)/ Breeze / Strong
Temperature	:	30°C
Humidity	:	High / Moderate (Low)

Inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:	A		
		And	Kak
Name:	C.H. CHN	S.L. Sun	Male Vei Wai
Title	Alow	- Cu	E,T

Environmental Checklist	•	ementa		Remark
	Yes		N/A	
Fugitive Dust Emission				
Dust control / mitigation measures shall be provided to prevent dust nuisance.	V			
 Water sprays shall be provided and used to dampen materials. 	√			· · · · · · · · · · · · · · · · · · ·
 All stockpile of aggregate or spoil should be enclosed or covered and water applied in dry or windy condition. 	1			
 Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. 	V			
 Unpaved areas should be watered regularly to avoid dust generation. 	V			
The designated site main haul road shall be paved or regular watering.	\checkmark			
 The haul road inside the site and public road around the site entrance should be kept clean and free from dust. 	V			
 Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. 	V			
 Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. 	1	1		
The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	√			
 Vehicle and equipment should be switched off while not in use. 				
 All plant and equipment should be well maintained e.g. without black smoke emission. 	V			· · · · · · · · · · · · · · · · · · ·
Open burning should be prohibited.	\checkmark		1	· · · · · · · · · · · · · · · · · · ·
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	√			
Noise Impact				
• The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	V			
 The constructions works should be scheduled to minimize noise nuisance. 	V			
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	V			
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	V			
 Air compressors and hand held breakers should have noise labels. 	V			
Compressors and generators should operate with door closed.	V			
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 	V			
 Noisy equipment and mobile plant shall always be site away from NSRs. 	1			

	Environmental Checklist				Remark
		Yes	tages No	N/A	
Wa	ater Quality				
•	Drainage system and the sand / silt removal facilities should be adequate and well maintained to prevent flooding and overflow, especially after rain storms.	V			
	The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.	\checkmark			
æ	Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding.	√			
a	The material shall be properly covered to prevent washed away especially before rainstorm.	\checkmark			
	The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	\checkmark			
	Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.	V			
5	Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	√			
5	A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains.	1			
8	The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	√			
a	Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided.	\bigvee			
8	The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities.	√			
8	Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.	\checkmark			
	The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	V			
	All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport.	V			
G	Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal.	V			
8	Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.	\checkmark			
8	The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	V			
	A waste collection vessel shall be deployed to remove floating debris.	√			
La	Landscape and Visual				
	The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD.				
8	Surface of outer slopes of the Fill Bank shall preferably be hydroseeded.	\checkmark			
e	Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable.	1			
8	Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at bleast 3m above soil level.	√			
•	Lighting shall be set to minimise night-time glare.	\checkmark			

Environmental Checklist	Implementation Stages*		on Remark
	Yes		
Waste Management			
Construction Waste Management			
 Relevant licence / permits for disposal of construction waste or excavated materials available for inspection. 	V		
 Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal. 	V		
 Mud and debris should be removed from waterworks access roads and associated drainage systems. 	V		
 Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures should be employed to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. 	1		
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. 	V		
 Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fill to minimise the quantity of waste to be disposed of to landfill. 	V		
 In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket system should be included as one of the contractual requirements. 	V		
 Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials. 	V		
Chemical Waste Management			
 It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. 	V		
 After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. 	V		
 Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licensed facility in accordance with the Chemical Waste (General) Regulation. 	V		
Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility.	\checkmark		
Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area.	\checkmark		
 The designated chemical waste storage area should only be used for storing chemical wastes. 	\checkmark		
The set-up of chemical waste storage area should		an a	
 Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition. 	V		
Be enclosed on at least 3 sides and securely closed.	\checkmark		
 Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest. 	√		
 Have adequate ventilation. 	\checkmark		
Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary).	\checkmark		
 Be arranged so that incompatible materials are adequately separated. 			

CEDD Contract No.: CV/2015/07 Handling of Surplus Public Fill (2016 – 2018) - **Tuen Mun Area 38 Fill Bank**

Environmental Checklist	Imple S	menta tages		Remark
	Yes		N/A	
Warning panels should be displayed at the waste storage area.	\checkmark			
Waste storage area should be cleaned and maintained regularly.				
Chemical waste should be transported regularly by a registered chemical waste collector to a facility licensed to receive chemical waste.	\checkmark			
All generators, fuel and oil storage should be within bundle areas.	\checkmark			
Oil leakage from machinery, vehicle and plant should be prevented.		\checkmark		Item 2
In the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage Response Plan should be followed.	1			
The dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.	\checkmark			
Good Site Practices				
 Nomination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site. 	V			
Training of site personnel in proper waste management and chemical handling procedures should be provided.				
Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.	1	-		
 Proper storage and site practices to minimise the potential for damage or contamination of construction materials. 	√			· · · ·
The Environmental Permit should be displaced conspicuously on site.	\checkmark	-		
Construction noise permits should be posted at site entrance or available for site inspection.				
Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	V			
Chemical storage area provided with lock and located on sealed areas.			1	
All chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank).				
Any unused chemicals or those with remaining functional capacity should be recycled.	√			
Regular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors.	V			· · ·
 To encourage collection of aluminium cans by individual collectors. 	V			
• Separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce.	V			
A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. trip ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	V			
 A collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered area is preferred to reduce the occurrence of wind blown' light material. If an open area is unavoidable for the storage or loading/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should be diverted into wastewater treatment system. 	1			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Target Completion Date
1	Follow up action to item no.1, accumulated mud was cleaned.		190711_001	No	
2	Oil stains were observed on the ground at workshop.	To clean the oil stains properly.	190711_002	Yes	18/07/19

Remark

Kentark		

	Name	Title	Signature	Date
Checked by	Frankie Tang	ET Representative	: Ale	11 July 2019

<u>Photo</u>

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016-2018) - Tuen Mun Area 38 Fill Bank

Inspection Date	:	18/07/2019
Time	:	15207
Weather	:	Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy
Wind	:	Calm / Light / Breeze / Strong
Temperature	:	33

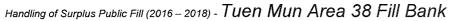
Humidity

:

Inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:	A	And	Mac
Name:	C. D. (4)	Silah	Clasterde
Title	Acon	~~··	6.1

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank


	Environmental Checklist		Implementation Stages*				Remark
				N/A	-		
Fug	itive Dust Emission						
8	Dust control / mitigation measures shall be provided to prevent dust nuisance.	1					
8	Water sprays shall be provided and used to dampen materials.	1	1				
8	All stockpile of aggregate or spoil should be enclosed or covered and water applied in dry or windy condition.	1					
	Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	√					
	Unpaved areas should be watered regularly to avoid dust generation.	1					
20	The designated site main haul road shall be paved or regular watering.	\checkmark					
a	The haul road inside the site and public road around the site entrance should be kept clean and free from dust.	1	-				
8	Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.						
a	Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	\checkmark					
	The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.				-		
3	Vehicle and equipment should be switched off while not in use.	√					
10	All plant and equipment should be well maintained e.g. without black smoke emission.						
2	Open burning should be prohibited.	√					
2	Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311).	1					
No	se Impact						
	The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	V					
8	The constructions works should be scheduled to minimize noise nuisance.	1			-		
8	Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.	V					
8	Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.	1					
50	Air compressors and hand held breakers should have noise labels.	1					
53	Compressors and generators should operate with door closed.	1	1				
2	Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.	√					
8	Noisy equipment and mobile plant shall always be site away from NSRs.	1	1				

	Environmental Checklist		ment	Remark
		Yes	No	
Wa	nter Quality			
2	Drainage system and the sand / silt removal facilities should be adequate and well maintained to prevent flooding and overflow, especially after rain storms.	V		
æ	The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.	\checkmark		
	Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding.	1		
8	The material shall be properly covered to prevent washed away especially before rainstorm.	1		
	The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	1		
8	Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.	√		
	Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	√		
8	A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains.	1		
9	The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	1		
	Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided.	\checkmark		
8	The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities.	V		
	Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.	\checkmark		
8	The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	1		
8	All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport.	√		
8	Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal.	V		
2	Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.	$$		
	The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	√		
a	A waste collection vessel shall be deployed to remove floating debris.	\checkmark		
La	ndscape and Visual			
	The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD.	\checkmark		
	Surface of outer slopes of the Fill Bank shall preferably be hydroseeded.	\checkmark		
	Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable.	\checkmark		
8	Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at bleast 3m above soil level.	1		
	Lighting shall be set to minimise night-time glare.	\checkmark		

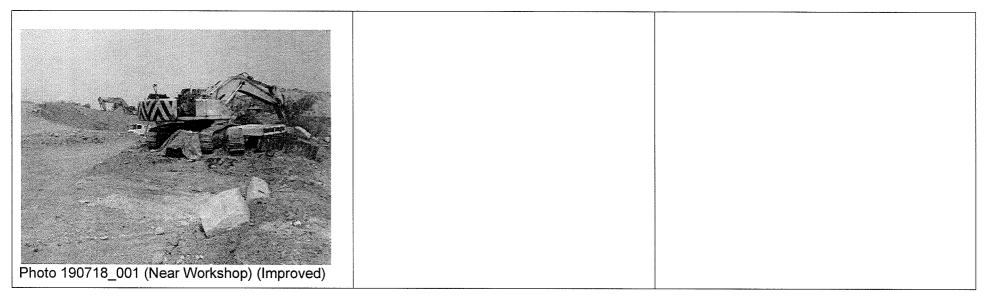
CEDD Contract No.: CV/2015/07

Environmental Obserblist		Implementation		Remark
Environmental Checklist		stages		
	Yes	No	N/A	
Waste Management				
Construction Waste Management				
 Relevant licence / permits for disposal of construction waste or excavated materials available for inspection. 	√			
Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal.	1			
 Mud and debris should be removed from waterworks access roads and associated drainage systems. 	1			
 Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures should be employed to minimise windblo litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. 	wn 🗸			
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and the proper disposal. 	eir √			
 Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fil minimise the quantity of waste to be disposed of to landfill. 	to √			
 In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket syste should be included as one of the contractual requirements. 	em √			
Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials.	1			
Chemical Waste Management				
 It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Dispo Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. 				
 After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on Packaging, Labelling and Storage of Chemical Wastes. 	he √			
 Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licens facility in accordance with the Chemical Waste (General) Regulation. 	ed √			
 Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility. 	√			
Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area.	1			
The designated chemical waste storage area should only be used for storing chemical wastes.	√			
 The set-up of chemical waste storage area should 				
 Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition. 	V			
 Be enclosed on at least 3 sides and securely closed. 	1			
 Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of chemical waste stored in that area, whichever is the greatest. 	he √			
 Have adequate ventilation. 	V			
 Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary). 	√			
 Be arranged so that incompatible materials are adequately separated. 	V			

	Environmental Checklist		Stages*		Remark
		Yes	No	N/A	
5	Warning panels should be displayed at the waste storage area.	\checkmark			
	Waste storage area should be cleaned and maintained regularly.	\checkmark			
5	Chemical waste should be transported regularly by a registered chemical waste collector to a facility licensed to receive chemical waste.	V			
a	All generators, fuel and oil storage should be within bundle areas.	V			
8	Oil leakage from machinery, vehicle and plant should be prevented.	V			
C	In the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage Response Plan should be followed.	V			
	The dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.				
Go	od Site Practices				
8	Nomination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	V			
8	Training of site personnel in proper waste management and chemical handling procedures should be provided.	V			
8	Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.	1			
•	Proper storage and site practices to minimise the potential for damage or contamination of construction materials.	\checkmark			
•	The Environmental Permit should be displaced conspicuously on site.	V			
8	Construction noise permits should be posted at site entrance or available for site inspection.	V			
8	Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	V			
8	Chemical storage area provided with lock and located on sealed areas.	V			
3	All chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank).	V			
	Any unused chemicals or those with remaining functional capacity should be recycled.	√			
8	Regular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors.	V			
2	To encourage collection of aluminium cans by individual collectors.	V			
8	Separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce.	V			
	A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. trip ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	\checkmark			
	A collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material. If an open area is unavoidable for the storage or loading/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should be diverted into wastewater treatment system.	V			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Target Completion Date
1	Follow up action to item no.2 on 11/07/19, oil stains were cleaned.		190718_001	No	


Remark

	1
	1
	- 1
	1
	- 8

	Name	Title	Signature	Date	<u> </u>
Checked by	Frankie Tang	ET Representative	Alexand	18 July 2019	
					······

<u>Photo</u>

NI N

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Inspection Date	: 25/07/2019
Time	: (5:00
Weather Wind	: Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy : Calm Light / Breeze / Strong
Temperature	: 33°C
Humidity	: High / Moderate (Low)

Inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:		Acc	A
Name:	CILL CLAN	Shruka	Chan Wai Man
Title	Ala	T.	E-7

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016 - 2018) - Tuen Mun Area 38 Fill Bank

Environmental Checklist		menta tages	*	Remark	
		No	N/A		
Fugitive Dust Emission					
 Dust control / mitigation measures shall be provided to prevent dust nuisance. 	\checkmark				
 Water sprays shall be provided and used to dampen materials. 	V				
 All stockpile of aggregate or spoil should be enclosed or covered and water applied in dry or windy condition. 	V				
 Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. 	V				
 Unpaved areas should be watered regularly to avoid dust generation. 	1				
 The designated site main haul road shall be paved or regular watering. 	\checkmark				
 The haul road inside the site and public road around the site entrance should be kept clean and free from dust. 	V				
 Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. 	V				
 Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. 	V				
 The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water. 	1				
 Vehicle and equipment should be switched off while not in use. 	1				
 All plant and equipment should be well maintained e.g. without black smoke emission. 	1				
 Open burning should be prohibited. 	√				
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	V				
Noise Impact					
The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	√				
 The constructions works should be scheduled to minimize noise nuisance. 	V				
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	V				
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	V				
 Air compressors and hand held breakers should have noise labels. 	1				
Compressors and generators should operate with door closed.	V				
Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.	V				
 Noisy equipment and mobile plant shall always be site away from NSRs. 	V				

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

Environmental Checklist			ation *	Remark
				1
Nater Quality				
 Drainage system and the sand / silt removal facilities should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	√			
The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.	V			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	\checkmark			
The material shall be properly covered to prevent washed away especially before rainstorm.	1			
 The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water. 	V			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	V			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	√			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	√			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. 	\checkmark			
 The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	1			
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 	\checkmark			
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	√			
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	√			
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	√			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 	√			
The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	√			
A waste collection vessel shall be deployed to remove floating debris.	V			
Landscape and Visual				
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD. 	V		_	
 Surface of outer slopes of the Fill Bank shall preferably be hydroseeded. 	√			
 Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable. 	\checkmark			
 Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at bleast 3m above soil level. 	√			
 Lighting shall be set to minimise night-time glare. 	√			

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Environmental Checklist			*	Remark
	Yes	No	N/A	
Waste Management		-		
Construction Waste Management				
 Relevant licence / permits for disposal of construction waste or excavated materials available for inspection. 	V			
 Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal. 	V			
 Mud and debris should be removed from waterworks access roads and associated drainage systems. 	V			
 Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures should be employed to minimise windblow litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. 	ע ו			
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and the proper disposal. 	r V			
Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fill t minimise the quantity of waste to be disposed of to landfill.	⊳ √			
In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket system should be included as one of the contractual requirements.	ע ו			
 Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials. 				
Chemical Waste Management				
 It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Dispose Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observe and complied with for control of chemical wastes. 	√ li I			
 After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on th Packaging, Labelling and Storage of Chemical Wastes. 	e √			
 Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other license facility in accordance with the Chemical Waste (General) Regulation. 	V t			
 Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility. 	\checkmark			
Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area.	V			
 The designated chemical waste storage area should only be used for storing chemical wastes. 	\checkmark			
The set-up of chemical waste storage area should				
Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition.	\checkmark			
 Be enclosed on at least 3 sides and securely closed. 	V			
 Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest. 				
 Have adequate ventilation. 	\checkmark			
 Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary). 	1			
 Be arranged so that incompatible materials are adequately separated. 	√			

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

CEDD Contract No.; CV/2015/07

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

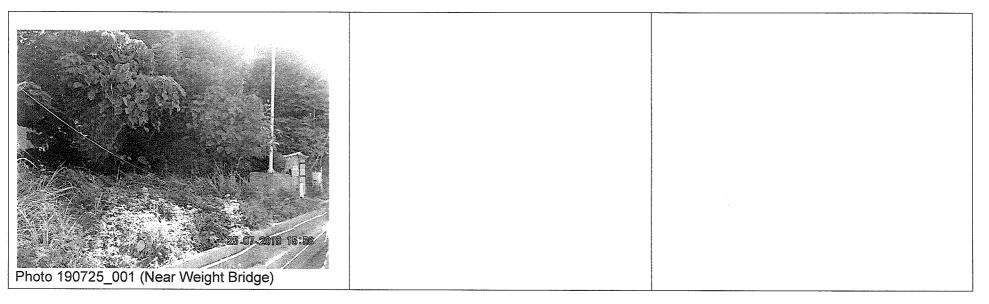
Environmental Checklist		menta tages		Remark
	Yes	No	N/A	
 Warning panels should be displayed at the waste storage area. 	\checkmark			
 Waste storage area should be cleaned and maintained regularly. 	\checkmark			
 Chemical waste should be transported regularly by a registered chemical waste collector to a facility licensed to receive chemical waste. 	\checkmark			
 All generators, fuel and oil storage should be within bundle areas. 	\checkmark			
 Oil leakage from machinery, vehicle and plant should be prevented. 				
In the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage Response Plan should be followed.	1			
The dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.	√			
Good Site Practices				
 Nomination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site. 	V			
Training of site personnel in proper waste management and chemical handling procedures should be provided.				
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	V			
Proper storage and site practices to minimise the potential for damage or contamination of construction materials.	√			
The Environmental Permit should be displaced conspicuously on site.	√			
Construction noise permits should be posted at site entrance or available for site inspection.	√			
Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	\checkmark			
 Chemical storage area provided with lock and located on sealed areas. 				
 All chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank). 	√			
 Any unused chemicals or those with remaining functional capacity should be recycled. 	\checkmark			
 Regular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors. 	\checkmark			
 To encourage collection of aluminium cans by individual collectors. 	V			
 Separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	1			
A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. trip ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	1			
A collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material. If an open area is unavoidable for the storage or loading/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should be diverted into wastewater treatment system.	V			

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Target Completion Date
1	Overgrown grasses were observed near weight bridge.	To clean the overgrown grasses properly.	190725_001	Yes	01/08/19

Remark

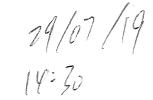

	Name	Title	Signature	Date
Checked by	Frankie Tang	ET Representative		25 July 2019
		•		

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

<u>Photo</u>


CEDD Contract No.: CV/2015/07

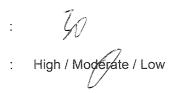
Handling of Surplus Public Fill (2016-2018) - Tuen Mun Area 38 Fill Bank

Inspection Date

Time

:

:


Weather : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy

Wind

: Calm / Light / Breeze / Strong

Temperature

Humidity

Inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:	- 2 2	A	NOL
Name:	O.W. CHEAN	Shiz	Ciaohncheo
Title	102 /TM	Te 2	ET

. . • C A

Environmental Checklist	Imple S	menta tages		Remark
	Yes	No	N/A	
Fugitive Dust Emission				
 Dust control / mitigation measures shall be provided to prevent dust nuisance. 	√			
 Water sprays shall be provided and used to dampen materials. 	1			
 All stockpile of aggregate or spoil should be enclosed or covered and water applied in dry or windy condition. 	V			
Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting s and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall covered by a clean tarpaulin.				
 Unpaved areas should be watered regularly to avoid dust generation. 	1			
 The designated site main haul road shall be paved or regular watering. 	1			
The haul road inside the site and public road around the site entrance should be kept clean and free from dust.	7		1	
 Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. 	1			
Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	√			
The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	√			
 Vehicle and equipment should be switched off while not in use. 	√			
 All plant and equipment should be well maintained e.g. without black smoke emission. 	√			
Open burning should be prohibited.	1			
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and r road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (AF Cap.311). 				
Noise Impact				
The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall adapted.	lbe √			
 The constructions works should be scheduled to minimize noise nuisance. 	1			
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	√			
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	7			
 Air compressors and hand held breakers should have noise labels. 	√			
Compressors and generators should operate with door closed.	√			
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minim 	ium. √			
 Noisy equipment and mobile plant shall always be site away from NSRs. 	1			

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

Environmental Checklist			k	Remark	
	Yes	No	N/A		
Vater Quality					
 Drainage system and the sand / silt removal facilities should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	\checkmark				
The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.	\checkmark				
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	\checkmark				
 The material shall be properly covered to prevent washed away especially before rainstorm. 	√				
The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	√				
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V				
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	1				
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	V				
The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	√				
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. 	1				
 The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	V				
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 	V				
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	V				
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	V				
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	N				
Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.	\checkmark				
The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	V				
 A waste collection vessel shall be deployed to remove floating debris. 	\checkmark				
Landscape and Visual					
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD. 	√				
 Surface of outer slopes of the Fill Bank shall preferably be hydroseeded. 	\checkmark				
Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable.	√				
 Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at bleast 3m above soil level. 	√				
 Lighting shall be set to minimise night-time glare. 	\checkmark				

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

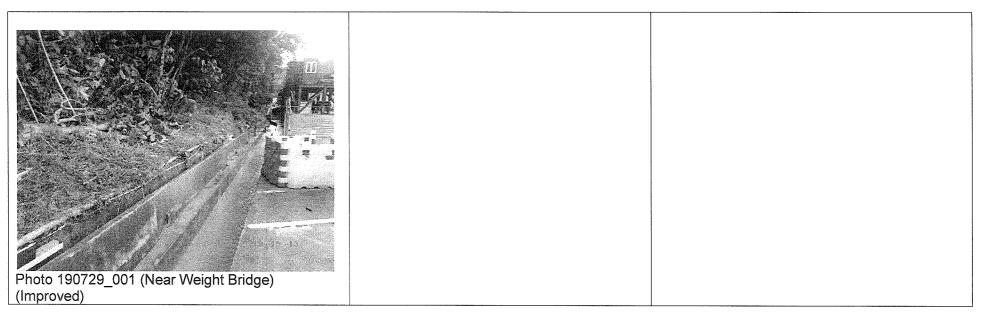
Environmental Checklist		tages	*	Remark	
	Yes	No	N/A		
Vaste Management					
Construction Waste Management					
 Relevant licence / permits for disposal of construction waste or excavated materials available for inspection. 	\checkmark				
 Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal. 	V				
 Mud and debris should be removed from waterworks access roads and associated drainage systems. 	1				
 Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures should be employed to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. 	V				
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. 	V				
 Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fill to minimise the quantity of waste to be disposed of to landfill. 	V				
In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket system should be included as one of the contractual requirements.	V				
 Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials. 	\checkmark				
Chemical Waste Management					
 It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. 	V				
 After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. 	V				
Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licensed facility in accordance with the Chemical Waste (General) Regulation.	V		-		
 Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility. 	\checkmark				
 Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area. 	\checkmark				
 The designated chemical waste storage area should only be used for storing chemical wastes. 	\checkmark				
The set-up of chemical waste storage area should					
 Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition. 	\checkmark				
 Be enclosed on at least 3 sides and securely closed. 	√				
 Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest. 	V				
 Have adequate ventilation. 	V				
Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary).	\checkmark				
 Be arranged so that incompatible materials are adequately separated. 	\checkmark				

Environmental Checklist			ation *	Remark
			N/A	-
 Warning panels should be displayed at the waste storage area. 	V			
 Waste storage area should be cleaned and maintained regularly. 	\checkmark			· · · · · · · · · · · · · · · · · · ·
 Chemical waste should be transported regularly by a registered chemical waste collector to a facility licensed to receive chemical waste. 	\checkmark			
 All generators, fuel and oil storage should be within bundle areas. 	\checkmark			
Oil leakage from machinery, vehicle and plant should be prevented.	\checkmark			
 In the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage Response Plan should be followed. 	V			
The dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.	\checkmark			
Good Site Practices				
 Nomination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site. 	V			
Training of site personnel in proper waste management and chemical handling procedures should be provided.	V			
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	1			
Proper storage and site practices to minimise the potential for damage or contamination of construction materials.	√			
The Environmental Permit should be displaced conspicuously on site.	V			
Construction noise permits should be posted at site entrance or available for site inspection.	1			
Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.		1		
 Chemical storage area provided with lock and located on sealed areas. 	$\overline{\mathbf{v}}$	1	1	
All chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank).	√			
 Any unused chemicals or those with remaining functional capacity should be recycled. 	√			
 Regular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors. 	1			
 To encourage collection of aluminium cans by individual collectors. 	1			
 Separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	√			
A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. trip ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	V			
A collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material. If an open area is unavoidable for the storage or loading/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should be diverted into wastewater treatment system.	V			

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Target Completion Date
1	Follow up action to item no.1 on 25/07/19, Overgrown grasses were cleaned.		190729_001	No	

Remark



	Name	Title	Signature	Date
Checked by	Frankie Tang	ET Representative	- Marine	29 July 2019

Handling of Surplus Public Fill (2016 – 2018) - Tuen Mun Area 38 Fill Bank

<u>Photo</u>

Appendix I

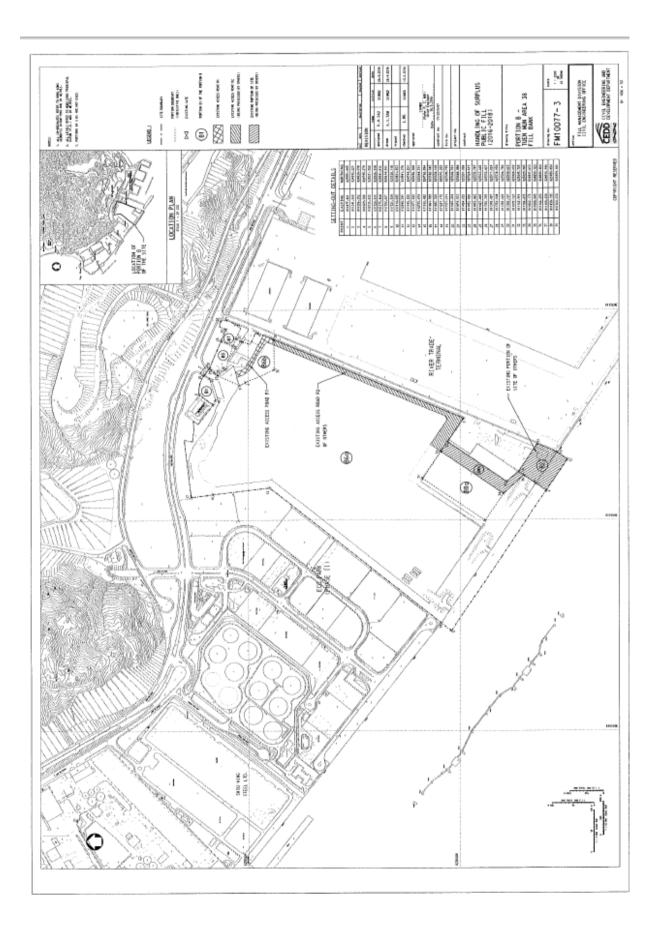
Implementation Schedule of Mitigation Measures

Environmental Mitigation Implementation Schedule

	Location	Implementation Status				
Environmental Protection Measures		Implemented	Partially implemented	Not implemented	Not Applicable	
Air Quality						
Dust control / mitigation measures shall be provided to prevent dust nuisance.	All areas					
 Water sprays shall be provided and used to dampen materials. 	All areas					
 All stockpile of aggregate or soil should be enclosed or covered and water applied in dry or windy condition. 	All areas					
 Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. 	All areas	\checkmark				
 Unpaved areas should be watered regularly to avoid dust generation. 	Site Egress					
The designated site main haul road shall be paved or regular watering.	All haul roads					
The public road around the site entrance should be kept clean and free from dust.	All areas					
 Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	Site Egress	\checkmark				
 Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. 	Site Egress					
The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water.	All areas					
 Vehicle and equipment should be switched off while not in use. 	All areas					
 All plant and equipment should be well maintained e.g. without black smoke emission. 	All areas					
Open burning should be prohibited.	All areas	\checkmark				
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	All areas	\checkmark				
Noise Impact						
 The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. 	All areas	\checkmark				
Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.	All areas	\checkmark				
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	All areas					
Air compressors and hand held breakers should have noise labels.	All areas					
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 	All areas	\checkmark				
 Noisy equipment and mobile plant shall always be site away from NSRs. 	All areas	\checkmark				

	Location	Implementation Status				
Environmental Protection Measures		Implemented	Partially implemented	Not implemented	Not Applicable	
Water Quality						
 The existing / realigned intercepting channels and the sand / silt removal facilities shall be used and maintained. 	All areas	\checkmark				
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	All areas	\checkmark				
 The storm water intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. 	All areas	\checkmark				
 The material shall be properly covered to prevent washed away especially before rainstorm. 	All areas	\checkmark				
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	All areas	\checkmark				
 The temporary slope surfaces shall be covered with impermeable sheet or sprayed with water. 	Temporary Slopes	\checkmark				
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	All areas	\checkmark				
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	Wheel Washing facility	\checkmark				
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	Site Egress	\checkmark				
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. 	Site Office	\checkmark				
 The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	All areas	\checkmark				
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 	All areas	\checkmark				
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 	Along the seafront	\checkmark				
 A waste collection vessel shall be deployed to remove floating debris. 	Along the seafront	\checkmark				
Landscape and Visual						
The maximum stockpiling height at the fill bank shall be limited to a maximum of +40mPD.	All areas	\checkmark				
Surface of outer slopes of the Fill Bank shall preferably be hydroseeded.	Completed slopes	\checkmark				
• Stockpile of public fill shall be removed in a sequence to allow the outer hydrseeded to be removed later than other portions as far as practicable.	Completed slopes	\checkmark				
• Casuarina equisetifolia were planted as buffer tree along the northern perimeter of the Site. The height of Casuarina equisetifolia was maintained at least 3m above soil level.	Site boundary	\checkmark				
Lighting shall be set to minimise night-time glare.	All areas	\checkmark				
Waste Management						
Construction Waste Management						
Relevant licence / permits for disposal of construction waste or excavated materials available for inspection.	All areas	\checkmark				

		Location	Implementation Status				
	Environmental Protection Measures		Implemented	Partially implemented	Not implemented	Not Applicable	
•	Excavated material to be generated from construction works to be re-used on-site as far as practicable to reduce off-site disposal.	All areas	\checkmark				
٠	Mud and debris should be removed from waterworks access roads and associated drainage systems.	All areas					
•	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	All areas	V				
•	Prior to disposal of C&D waste, recyclable materials should be salvaged for reuse (such as wood and metal) and inert waste utilised as public fill to minimise the quantity of waste to be disposed of to landfill.	All areas					
•	In order to monitor the disposal of C&D material and solid wastes at public filling areas and landfills, and to control fly-tipping, a trip-ticket system should be included as one of the contractual requirements.	All areas	\checkmark				
•	Any soil contaminated with chemicals/oils shall be removed from site and the void created shall be filled with suitable materials.	All areas					
С	hemical Waste Management						
•	It is required to register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Waste Storage Area	\checkmark				
•	After use, chemical wastes (e.g. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.	Waste Storage Area	\checkmark				
•	Spent chemicals should be stored and collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licensed facility in accordance with the Chemical Waste (General) Regulation.	Waste Storage Area					
•	Chemical wastes should be separated for special handling and appropriate treatment at the Chemical Waste Treatment Facility.	Waste Storage Area	\checkmark				
•	Chemical wastes including waste oil should be stored properly in designated areas, e.g. chemical waste storage area.	Waste Storage Area	\checkmark				
•	The designated chemical waste storage area should only be used for storing chemical wastes.	Waste Storage Area	\checkmark				
TI	ne set-up of chemical waste storage area should						
•	Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition.	Waste Storage Area	\checkmark				
•	Be enclosed on at least 3 sides and securely closed.	Waste Storage Area	\checkmark				
•	Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest.	Waste Storage Area	\checkmark				
•	Have adequate ventilation.	Waste Storage Area	\checkmark				
•	Be covered to prevent rainfall entering (water collected within the bund must be tested and disposal as chemical waste if necessary).	Waste Storage Area	\checkmark				
•	Be arranged so that incompatible materials are adequately separated.	Waste Storage Area	\checkmark				
•	Warning panels should be displayed at the waste storage area.	Waste Storage Area	\checkmark				


		Location	Implementation Status				
	Environmental Protection Measures		Implemented	Partially implemented	Not implemented	Not Applicable	
• Wa	aste storage area should be cleaned and maintained regularly.	Waste Storage Area				••	
• Ch	emical waste should be transported by a registered chemical waste collector to a facility licensed to receive chemical waste.	All areas	\checkmark				
• All	generators, fuel and oil storage should be within bundle areas.	All areas					
• Oil	leakage from machinery, vehicle and plant should be prevented.	All areas		\checkmark			
	the event of chemical waste / dangerous goods / chemicals spillage or leakage, the procedures as outlined in the Spillage sponse Plan should be followed.	All areas	V				
• Th	e dangerous goods / chemical spillage or leakage procedures (including equipments) should be in place.	All areas					
Good	Site Practices						
	mination of approved personnel, such as site manager, to be responsible for good site practices, arrangements for collection d effective disposal to an appropriate facility, of all wastes generated at the site.	All areas	V				
• Tra	aining of site personnel in proper waste management and chemical handling procedures should be provided.	All areas					
	bod site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from opping into the nearby environment.	All areas					
• Pro	oper storage and site practices to minimise the potential for damage or contamination of construction materials.	All areas					
• Th	e Environmental Permit should be displaced conspicuously on site.	Site Entrance					
• Co	instruction noise permits should be posted at site entrance or available for site inspection.	Site Entrance				\checkmark	
	an and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of aste.	All areas	\checkmark				
	emical storage area provided with lock and located on sealed areas.	Chemical Storage Area					
	chemicals should be placed at the banded area with adequate band capacity (>110% of largest tank).	Chemical Storage Area	ν				
• An	y unused chemicals or those with remaining functional capacity should be recycled.	All areas					
• Re	gular cleaning and maintenance programme for waste storage area, drainage systems, silt traps, sumps and oil interceptors.	All areas					
• To wa	encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this ste from other general refuse generated by the workforce.	All areas	\checkmark				
A r trip	ecording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be used, e.g. ticket system for chemical waste disposal. Quantities could be determined by weighing each load or other suitable methods.	All areas					
are loa	collection area should be provided where waste can be stored and loaded prior to removal from site. An enclosed and covered a is preferred to reduce the occurrence of 'wind blown' light material. If an open area is unavoidable for the storage or iding/unloading of wastes, then the area should be bunded and all the polluted surface run-off collected within this area should diverted into wastewater treatment system.	All areas	V				
• Re	move wastes in a timely manner.	All areas					

Appendix J

Site General Layout plan

Appendix K

QA/QC Results of Laboratory Analysis

QA/QC Results of Laboratory Analysis of Total Suspended Solids

	QC Sample Analysis	Sample I	Duplicate	Samp	le Spike
Sampling Date	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery [@]
	104.6	FC1-S	7.75	FM2-M	104.5
	103.6	FM2-B	0.00	EM1-S	101.6
2019/7/2	103.8	EM1-M	5.61	EC2-B	96.4
	101.3	FC1-S	5.83	FM2-M	96.3
	100.7	FM2-B	1.68	EM1-S	101.9
2019/7/4	101.2	EM1-M	3.13	EC2-B	101.5
	101.0	FC1-S	8.70	FM2-M	101.7
	104.3	FM2-B	4.51	EM1-S	99.1
2019/7/6	102.9	EM1-M	0.00	EC2-B	98.4
	102.7	FC1-S	2.60	FM2-M	94.6
	100.5	FM2-B	4.20	EM1-S	101.5
2019/7/9	102.4	EM1-M	4.35	EC2-B	94.0
	99.1	FC1-S	3.64	FM2-M	85.1
	99.8	FM2-B	1.80	EM1-S	91.5
2019/7/11	99.8	EM1-M	1.77	EC2-B	96.4
	99.6	FC1-S	6.67	FM2-M	96.6
	102.9	FM2-B	2.94	EM1-S	109.3
2019/7/13	102.0	EM1-M	4.17	EC2-B	95.4
	102.5	FC1-S	4.88	FM2-M	105.4
	102.6	FM2-B	2.15	EM1-S	90.1
2019/7/16	101.6	EM1-M	3.51	EC2-B	85.3
	102.4	FC1-S	6.45	FM2-M	96.2
	100.8	FM2-B	5.88	EM1-S	97.0
2019/7/18	101.9	EM1-M	2.82	EC2-B	99.1
	103.3	FC1-S	3.23	FM2-M	100.3
	103.3	FM2-B	4.88	EM1-S	99.1
2019/7/20	103.4	EM1-M	8.33	EC2-B	101.5
	98.9	FC1-S	4.44	FM2-M	104.8
	98.8	FM2-B	0.00	EM1-S	92.0
2019/7/23	97.2	EM1-M	7.41	EC2-B	92.0
	101.4	FC1-S	7.41	FM2-M	105.4
	100.3	FM2-B	6.90	EM1-S	95.0
2019/7/25	99.9	EM1-M	5.71	EC2-B	92.2
	102.4	FC1-S	1.14	FM2-M	97.6
	100.9	FM2-B	5.50	EM1-S	96.0
2019/7/27	100.2	EM1-M	5.61	EC2-B	96.3
	96.8	FC1-S	2.63	FM2-M	98.4
	103.9	FM2-B	6.45	EM1-S	97.4
2019/7/30	102.3	EM1-M	2.02	EC2-B	98.6

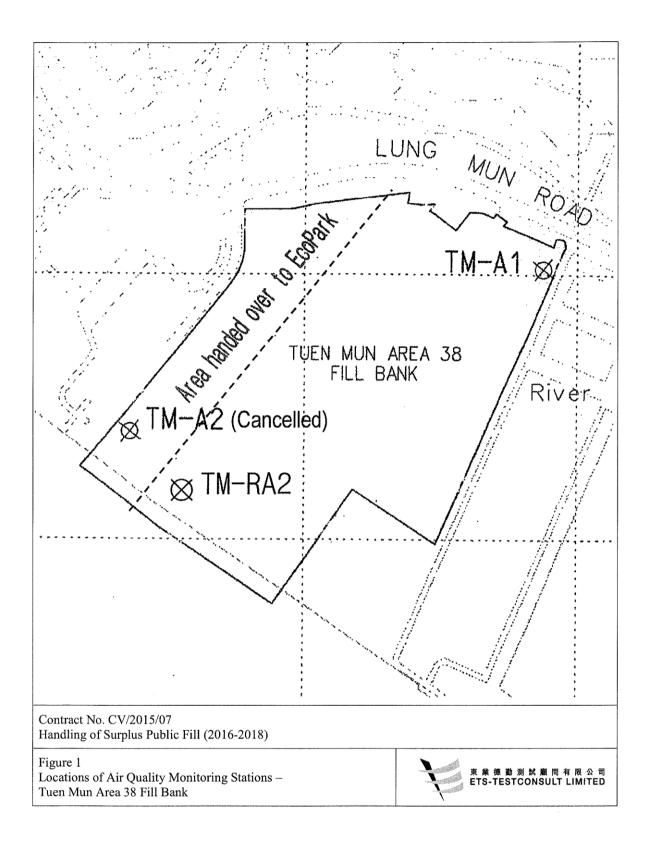
Note:(*)% Recovery of QC sample should be between 80% to 120%. ([#])% Error of Sample Duplicate should be between -10% to 10%. ([®])% Recovery of Sample Spike should be between 80% to 120%.

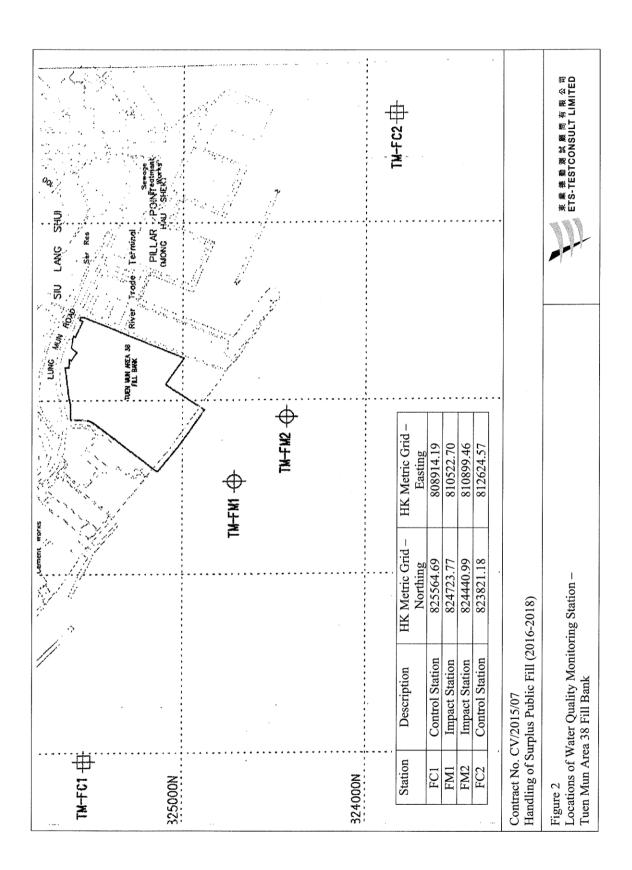
Appendix L

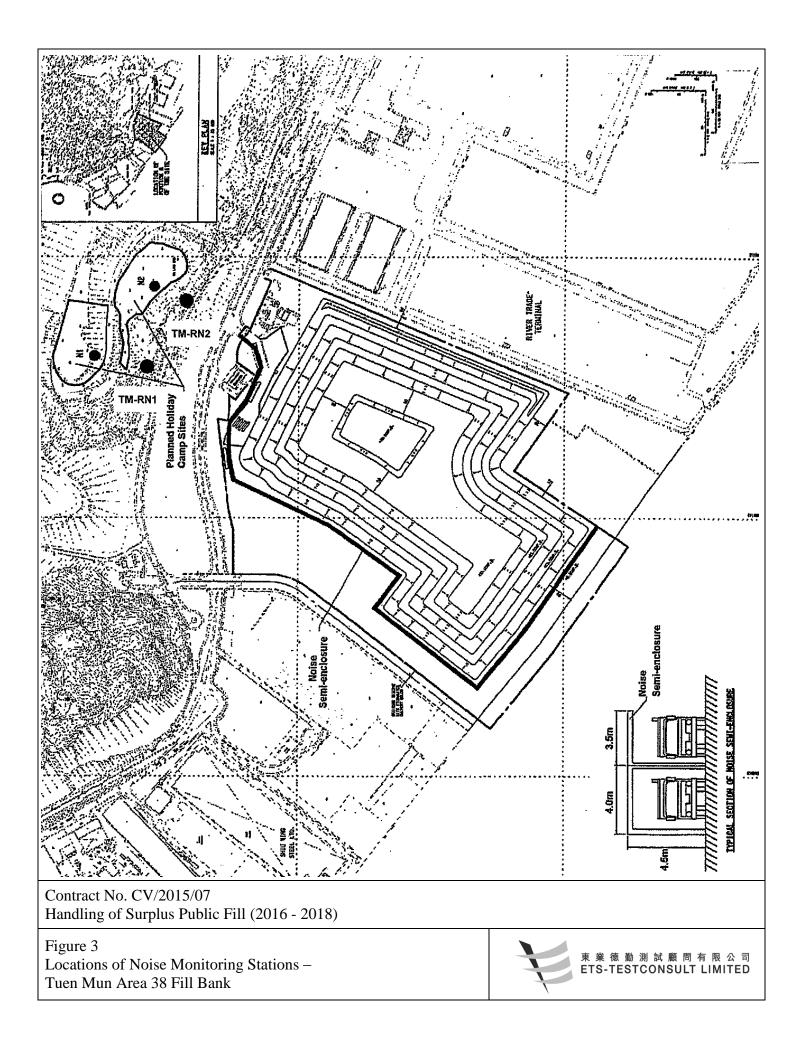
Complaint Log

Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation / Mitigation Action	Status
001	Lung Mun Road near Tuen Mun Area 38 Fill Bank	24 May 2017	One complaint received on 24 May 2017, which was forwarded to ET on 03 June 2017, from public against the rocks and debris deposited on the road surface along Lung Mun Road near Tuen Mun Area 38 Fill Bank. The complainant complained that waste generated caused an environmental nuisance.	 Refer to the ET site investigation on 06 June 2017, the condition of Lung Mun Road near Tuen Mun Area 38 Fill Bank was found satisfactory. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for road cleaning at Lung Mun Road; Regular cleaning on Lung Mun Road and the access road at the site exit by road sweeper to remove mud and gravel is arranged four times on each working day; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; Site vehicle for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission. 	Closed


東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.


002	Lung Mun Road near Tuen Mun Area 38 Fill Bank	16 April 2018	One complaint received on 16 April 2018 from public and forwarded to ET by email at 10:51 on 25 May 2018. The complaint detail was"來往屯門第 38 區填料庫的龍門路沿路有很多泥頭車出入,泥頭會從車上掉至路面上,要求部門跟進及回覆。"	 Refer to the ET site investigation on 26 May 2018, the condition of Lung Mun Road near Tuen Mun Area 38 Fill Bank was found satisfactory. Details of Action(s) Taken by the Contactor: Regular cleaning on Lung Mun Road and the access road at the site exit by road sweeper to remove mud and gravel is arranged four times on each working day; Regular water spraying by water lorries is provided for road cleaning at Lung Mun Road; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; 	Closed
				 5. Regular cleaning at the site haul road is provided. 	
003	Lung Mun Road near Tuen Mun Area 38 Fill Bank	26 June 2018	One complaint received on 26 June 2018 from public and forwarded to ET by email at 13:58 on 03 July 2018. The complaint detail was" 當天水車於 6 時出動洗街,導致交通阻塞."	 Refer to the ET site investigation on 07 July 2018, the condition of Lung Mun Road near Tuen Mun Area 38 Fill Bank was found satisfactory. Details of Action(s) Taken by the Contactor: Improve the road washing plan to avoid washing in traffic peak peroid Revised the road washing schedule as soon as possible once there is traffic jam 	Closed


Figures

