Drainage Services Department

Contract No. CM 12/2019

Expansion of Sha Tau Kok Sewage Treatment Works

Environmental Team Services for Construction Phase (2020-2021)

Monthly EM&A Report for November 2021

[December 2021]

	Name	Signature
Prepared & Checked:	Lemon Lam	leme
Reviewed, Approved & Certified:	Y W Fung	h

Version:0

Date: 10 December 2021

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Drainage Services Department and is given for its sole benefit in relation to and pursuant to Contract No. CM 12/2019 and may not be disclosed to, quoted to or relied upon by any person other than Drainage Services Department without our prior written consent. No person (other than Drainage Services Department into whose possession a copy of this report comes may rely on this plan without our express written consent and Drainage Services Department may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 12/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Drainage Services Department 42/F, Revenue Tower 5 Gloucester Road Wan Chai Hong Kong Your reference:

Our reference:

HKDSD206/50/107694

Date: 13 I

13 December 2021

Attention: Mr Lam Tack Ho, Alex

BY EMAIL & POST (email: thlam@dsd.gov.hk)

Dear Sirs

Agreement No.: CM 14/2018 Independent Environmental Checker Services for Expansion of Sha Tau Kok Sewage Treatment Works Environmental Monitoring and Audit Monthly Report (November 2021)

We refer to email of 10 December 2021 from AECOM Asia Co. Ltd attaching the Monthly Environmental Monitoring and Audit Report (November 2021).

We have no further comment and hereby verify the captioned Report in accordance with Clause 3.4 of the Environmental Permit no. EP-517/2017/A.

Should you have any queries, please do not hesitate to contact the undersigned or our Ms Karen Po at 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

am

James Choi Independent Environmental Checker

CPSJ/LCCR/PKWK/lsmt

cc DSD – Mr Alex Leung (email: alexleung_dsd@dc1803.com.hk) Binnies – Mr Alaster Chan (email: are_em2@dc1803.com.hk) AECOM – Mr YW Fung (email: yw.fung@aecom.com) AECOM – Ms Lemon Lam (email: lemon.lam@aecom.com)

ANewR Consulting Limited Unit 517, 5/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648 Email: info@anewr.com Web: www.anewr.com

TABLE OF CONTENTS

EXE	CUTI	VE SUMMARY	2
1	INTR	ODUCTION	4
	1.1 1.2 1.3 1.4 1.5	Background Scope of Report Project Organization Construction Programme and Activities Status of Environmental Licenses, Notification and Permits	4 5 5 5 5
2	ENV	RONMENTAL MONITORING REQUIREMENTS	6
	2.1 2.2 2.3 2.4 2.5	Odour Monitoring (Operation Phase for TSTP) Noise Monitoring Water Quality Monitoring Waste Management Status Landscape and Visual	6 7 9 12 12
3	IMPL	EMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS	13
4	ENV	RONMENTAL SITE INSPECTION AND AUDIT	13
	4.1 4.2 Enga	Site Inspection Summary of Complaints, Notification of Summons, Successful Prosecutions and Public gement Activities	13 13
5	ON-S	SITE TIME FOR ET AND IEC TEAM	13
6	FUTI	JRE KEY ISSUES	14
	6.1 6.2 6.3	Construction Programme for the Coming Month Key Issues for the Coming Month Monitoring Schedule for the Coming Month	14 14 14
7	CON	CLUSIONS	14

Figures

Figure 1 General Layout Plan

- Figure 2 Locations of Odour monitoring for 1-Year Operation of TSTP
- Figure 3 Location of Noise Monitoring Stations
- Figure 4 Location of Marine Water Quality Monitoring Stations

List of Appendices

- Appendix A Project Organization Structure
- Appendix B Construction Programme
- Appendix C Calibration Certificates of Monitoring Equipment
- Appendix D EM&A Monitoring Schedules
- Appendix E Action and Limit Levels
- Appendix F Noise Monitoring Results and their Graphical Presentations
- Appendix G Water Quality Monitoring Results & their Graphical Presentations and QAQC Reports
- Appendix H Event and Action Plan
- Appendix I Waste Flow Table
- Appendix J Environmental Mitigation Implementation Schedule
- Appendix K Proactive Environmental Protection Proforma
- Appendix L Cumulative Statistics on Complaints, Notifications of Summons, Successful Prosecutions and Public Engagement Activities
- Appendix M On-site Time & duties for the Team of ET and IEC

EXECUTIVE SUMMARY

(i) Introduction

This is the 30th EM&A Report prepared by AECOM for the Expansion of Sha Tau Kok Sewage Treatment Works. This report summarized the monitoring results and audits findings of the EM&A programme under the issued EP (EP No.: EP-517/2017/A) and in accordance with the EM&A Manual during the reporting period from 01/11/2021 to 30/11/2021.

(ii) Summary of Main Works Undertaken and Key Measures Implemented

The main works undertaken during the reporting period are as follows:

- Reaming (Sea)
- Sewer laying works in Shun Hing Street and Tong To Village
- Construction of RC Structures
- Excavation

Implementation of the key mitigation measures during the reporting period are as follow:

- All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission.
- All C&D materials generated should be transported and stored at temporary storage area. Cover should be provided during transportation of dusty materials. Suitable materials should be sorted for reuse on-site. Only non-inert C&D material should be disposed off-site to NENT Landfill.
- All dump trucks should be equipped with mechanical covers to prevent the dust emission during transportation when necessary.
- Dust control measures, such as water spraying should be provided when necessary.
- Maintaining of wet surface on access road and keep slow speed in the site.
- Wastewater to be treated by wastewater treatment facilities before discharge.
- Conditions in the Environmental Permit and Discharge License should be followed.
- Fueling of equipment should be conducted carefully on-site by mobile tanker to avoid storage of fuel and oil spillage.
- Provision of drip trays for equipment/ containers likely cause spillage of chemical / fuel, and provide routine maintenance.
- Predict required quantity of concrete accurately and collect the unused fresh concrete at designated locations in the site for subsequent disposal.
- Application of silent plant. NRMM and noise labels should be displayed on the PME.
- Provision of chemical/waste management on site.
- Reuse and recycle of drill mud during HDD works.
- No discharge of wastewater/ drill fluid should be allowed.
- Bunding / sandbags should be provided at the edge of the working barges to prevent any potential surface/ mud runoff to the sea.
- Floating single silt curtain shall be deployed to fully enclose the works area at sea side.
- Provide sufficient mitigation measures/ precautionary measures as recommended in the method statement of submarine outfall construction and approved EM&A Manual requirements.

(iii) <u>Summary of Exceedances, Investigation and Follow-up</u>

No Action or Limit Level exceedance of construction noise was recorded in the reporting period. No noise complaint related to 0700 to 1900 hours on normal weekdays was received in the reporting period.

Two (2) Action Level exceedances and three (3) Limit Level exceedances of SS of marine water quality were recorded in the reporting period.

Based on the investigation findings, the exceedances of SS recorded on 5 November 2021 were similar to baseline, silt curtain was deployed and no marine construction activities was carried out on the time of monitoring period. Therefore, the exceedances were considered not related to the Project.

(iv) Complaint Handling, Prosecution and Public Engagement

No complaint related to 0700 to 1900 hours on normal weekdays, notification of summons and successful prosecution was received in the reporting period.

No public engagement activity was conducted in the reporting period.

(v) Reporting Change

There was no reporting change in the reporting period.

(vi) Future Key Issues

The main works will be anticipated in the next reporting period are as follows:

- Reaming (Sea)
- Sewer laying works in Shun Hing Street and Tong To Village
- Construction of RC Structures
- Excavation
- E&M Installations

The corresponding mitigation measures to be implemented in the next reporting period are as follow:

- All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission.
- All C&D materials generated should be transported and stored at temporary storage area. Cover should be provided during transportation of dusty materials. Suitable materials should be sorted for reuse on-site. Only non-inert C&D material should be disposed off-site to NENT Landfill.
- All dump trucks should be equipped with mechanical covers to prevent the dust emission during transportation when necessary.
- Dust control measures, such as water spraying should be provided when necessary.
- Maintaining of wet surface on access road and keep slow speed in the site.
- · Wastewater to be treated by wastewater treatment facilities before discharge.
- Conditions in the Environmental Permit and Discharge License should be followed.
- Fueling of equipment should be conducted carefully on-site by mobile tanker to avoid storage of fuel and oil spillage.
- Provision of drip trays for equipment/ containers likely cause spillage of chemical / fuel, and provide routine maintenance.
- Predict required quantity of concrete accurately and collect the unused fresh concrete at designated locations in the site for subsequent disposal.
- Application of silent plant. NRMM and noise labels should be displayed on the PME.
- Provision of chemical/waste management on site.
- Reuse and recycle of drill mud during HDD works.
- No discharge of wastewater/ drill fluid should be allowed.
- Bunding / sandbags should be provided at the edge of the working barges to prevent any potential surface/ mud runoff to the sea.
- Floating single silt curtain shall be deployed to fully enclose the works area at sea side.
- Provide sufficient mitigation measures/ precautionary measures as recommended in the method statement of submarine outfall construction and approved EM&A Manual requirements.

The following EP submission (EP No.: EP-517/2017/A) was submitted during the reporting period:

The Condition 3.4:

The 29th Monthly EM&A Report (October 2021) was submitted to EPD on 12 November 2021.

1 INTRODUCTION

1.1 Background

- 1.1.1. The Project in Sha Tau Kok mainly comprises of the following items:
 - i) Increase the treatment capacity of Sha Tau Kok Sewage Treatment Works (STKSTW) to 5,000 m³/day at Average Dry Weather Flow (ADWF) in Phase 1, with suitable allowance to cater for a further increase of treatment capacity to 10,000 m³/day at ADWF in Phase 2;
 - ii) Construct a Temporary Sewage Treatment Plant (TSTP);
 - iii) Demolish the existing Sha Tau Kok Sewage Pumping Station (STKSPS) and decommission the rising main between STKSPS and STKSTW;
 - iv) Construct a new gravity sewer; and
 - v) Decommission the existing submarine outfall and construct a new one.
- 1.1.2. The Project site will be within the existing STKSTW while the construction of the gravity sewers and demolition of STKSPS will be carried out in Sha Tau Kok Town. The proposed submarine outfall will be constructed by Horizontal Directional Drilling (HDD) method under the seabed of Starling Inlet.
- 1.1.3. The Environmental Impact Assessment (EIA) Report for Expansion of Sha Tau Kok Sewage Treatment Works (Register No: AEIAR-207/2017) was approved on 14 February 2017. A Variation of an Environmental Permit (EP) EP-517/2017/A was issued on 18 October 2019 and it is the current permit for the Project.
- 1.1.4. Fugro Technical Services Limited (FTS) has been appointed to work as the additional services for Environmental Team (ET) services at early stage of construction phase (27 May 2019 to 26 February 2020) to implement the EM&A programme for the Project.
- 1.1.5. Since 27 February 2020, AECOM Asia Co. Ltd (AECOM) has been appointed as the ET to undertake the EM&A programme during construction phase (2020 2021) of the Project.
- 1.1.6. The EM&A programme of this Project shall be implemented in accordance with the requirements and procedures set out in the EM&A Manual and the EP No. EP-517/2017/A.
- 1.1.7. A baseline noise monitoring work was conducted between 25 February 2019 and 11 March 2019 and an Environmental Monitoring Report (Noise) Report (Report No.: 0118/18/ED/0259D) had submitted to EPD on 2 April 2019 and was approved by EPD on 21 June 2019.
- 1.1.8. A baseline water quality monitoring was conducted between 26 February 2019 and 23 Mar 2019 and an Environmental Monitoring Report (Water) Report (Report No.: 0118/18/ED/0307E) had submitted to EPD on 14 Jun 2019 and comments of report were received from EPD on 21 November 2019. An updated Environmental Monitoring Report (Water) Report (Report No.: 0118/18/ED/0307F) had submitted to EPD on 6 January 2020 and the report was approved by EPD on 2 March 2020.
- 1.1.9. A pre-construction survey on night roosting site for great egret was conducted in October 2019 and a Pre-construction Survey Report (Report No.: 0118/18/ED/0382 03) had submitted to EPD on 12 December 2019 and the report was found in order by Agriculture, Fisheries and Conservation Department on 30 December 2019. A updated pre-construction survey will be conducted to reconfirm the usage of the Night Roosting Site by Great Egrets or other ardeids species before the commencement of any construction/ demolition works within 100m of the Night Roosting Site.
- 1.1.10. A proposal for changes of the environmental monitoring methodology and requirement (Operation Phase of Odour Monitoring) had submitted to EPD on 29 April 2020 and comments from EPD were received on 26 May 2020. A revised proposal was submitted on 28 May 2020 and approved by EPD on 4 June 2020.

- 1.1.11. The method statement for construction of submarine outfall and diffuser cofferdam was submitted to EPD on 1 April 2020, subsequence comments from EPD were received and the revised method statement was submitted to EPD on 13 September 2021.
- 1.1.12. The construction phase and EM&A programme of the Project commenced on 27 May 2019. The operation of TSTP was commenced on 22 July 2020.

1.2 Scope of Report

1.2.1 This is the 30th EM&A Report prepared by AECOM for the Expansion of Sha Tau Kok Sewage Treatment Works. This report summarized the monitoring results and audits findings of the EM&A programme under the issued EP (Condition 3.4 of EP No.: EP-517/2017/A) and in accordance with the EM&A Manual during the reporting period from 01/11/2021 to 30/11/2021.

1.3 **Project Organization**

1.3.1 The project organization structure is shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Party	Position	Name	Telephone
DSD Drainage Services Department	Engineer	Alex Lam	2594 7262
ER Binnies Hong Kong Limited	Resident Engineer	Kendrick Wong	2946 8708
IEC ANewR Consulting Limited	Independent Environmental Checker	James Choi	2618 2836
Contractor Build King – Kum Shing J.V.	Environmental Officer	Ping Ngan	9516 9431
ET AECOM Asia Company Limited	ET Leader	Y W Fung	3922 9393

Table 1.1 Contact Information of Key Personnel

1.4 Construction Programme and Activities

- 1.4.1 The construction phase of the Project under the EP commenced on 27 May 2019. The operation of TSTP was commenced on 22 July 2020.
- 1.4.2 Details of the construction works undertaken during the reporting period are listed below:
 - Reaming (Sea)
 - Sewer laying works in Shun Hing Street and Tong To Village
 - Construction of RC Structures
 - Excavation
- 1.4.3 The Construction Programme is shown in **Appendix B**.
- 1.4.4 The general layout plan of the Project site is shown in **Figure 1**.

1.5 Status of Environmental Licenses, Notification and Permits

1.5.1 The environmental licenses and permits for the Project and valid in the reporting period are summarized in **Table 1.2.**

Table 1.2 Summary Status of Environmental License, Notification and Permit

License/ Notification/ Permit	Reference No.	Valid	Period
License/ Notification/ Permit	Reference No.	From	То
Environmental Permit	EP-517/2017/A	18/10/2019	N/A
	WT00033567-2019	02/05/2019	31/05/2024
Wastewater Discharge License	WT00035755-2020	12/06/2020	30/06/2022
	WT00037838-2021	21/04/2021	30/04/2026
Chemical Waste Producer Registration	5213-652-B2548-01	14/12/2018	N/A

License/ Notification/ Permit	Reference No.	Valid Period	
License/ Notification/ Permit	Reference no.	From	То
Billing Account	WFG19965	02/01/2019	N/A
Construction Noise Permit	GW-RN0273-21	09/05/2021	02/11/2021
Construction Noise Fermit	GW-RN0611-21	14/09/2021	13/02/2022
	GW-RN0681-21	01/10/2021	30/03/2022
	GW-RN0790-21	03/11/2021	30/04/2022

2 ENVIRONMENTAL MONITORING REQUIREMENTS

2.1 **Odour Monitoring (Operation Phase for TSTP)**

2.1.1 In accordance with the EM&A Manual, a commissioning test for the deodorization facilities of the TSTP was performed on 12 June 2020, exhaust air flow rate, temperature of exhaust and H₂S concentration were recorded during the measurement. The measurement details were presented in the odour commissioning test report. The odour commissioning test report was submitted to EPD on 16 June and re-submitted on 30 September 2020. Further comments from EPD were received on 9 December 2020 and 25 June 2021 and the revised reports were submitted on 12 May 2021 and 27 August 2021 respectively.

Impact Monitoring Requirement

- 2.1.2 In accordance with the EM&A Manual, as there is no non-compliance was recorded during the weekly odour monitoring in the first two months (i.e. August and September 2020), monitoring frequency is recommended to reduce from weekly to monthly in the subsequent four months (i.e. October 2020 to January 2021) and further reduce to guarterly in the remaining six months (i.e. February to July 2021) of the first year of the TSTP operation if no non-compliance is found. The 1st year operation odour monitoring was completed in July 2021.
- 2.1.3 Quarterly monitoring of odour emission at the exhausts of deodorization facilities (TSTP No.1 and TSTP No.2) is recommended to continue in the 2nd year of the operation (i.e. August 2021 to July 2022). Odour monitoring will be performed at the exhaust of operating deodorization facility at TSTP. The approved alternative method for odour monitoring is presented in Table 2.1

Table 2.1 Approved Alternative Odour Monitoring Methodology			
Measurement Locations		rameter	Equipment
At the Exhaust of TSTP	•	Exhaust air flow rate	H ₂ S Analyzer
No.1 and TSTP No.2	•	Temperature of exhaust	Anemometer
	•	H ₂ S Concentration (ppm)	

Table 04 Approved Alternative Odour Monitoring Methodology

Monitoring Equipment

2.1.4 The details of monitoring equipment are presented in **Table 2.2**.

Table 2.2 **Details of Odour Monitoring Equipment**

Equipment	Equipment Model
H2S Analyzer	Jerome 631X
Air Velocity Meter	TSI TA410

Monitoring Locations

As the operation mode of the deodorization system at TSTP shall be one in operation and one 2.1.5 in standby. Odour monitoring will be undertaken at the exhaust of operating facility. The odour monitoring locations is presented in Table 2.3 and shown in Figure 2.

Table 2.3 Location of Odour Monitoring

ID	Monitoring Location	Operation mode
TSTP No.1	At the exhaust of TSTP No.1	Operation / Standby
TSTP No.2	At the exhaust of TSTP No.2	Operation / Standby

Monitoring Parameters and Frequency

2.1.6 **Table 2.4** summarizes the monitoring parameters, frequency and duration of odour monitoring.

Table 2.4Monitoring Parameters, Frequency (1st year of TSTP operation)

Measurement Parameters	Frequency
15-minute H ₂ S Measurement (every 5 minutes measure one reading)	1 st year of TSTP operation
- Average value of the three 5-minute readings will be used.	• At least once per week in the first two months. (i.e. Aug and Sep 2020)
Exhaust air flow rate, ambient temperature, temperature of exhaust, weather condition and wind speed will be recorded.	• Monthly in the subsequent four months. (i.e. Oct 2020 to Jan 2021)
	• Quarterly in the remaining six months. (i.e in between Feb to Jul 2021)
	2 nd year of TSTP operation
	Quarterly
	(i.e in between Aug 2021 to Jul 2022)

Results and Observation

2.1.7 The 1st year operation odour monitoring was completed in July 2021. The 2nd year operation quarterly monitoring of odour emission was schedule in January 2022, no odour monitoring was conducted in the reporting month.

2.2 Noise Monitoring

Monitoring Requirements

2.2.1 In accordance with the EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit levels for construction noise is provided in **Table 2.5**.

Table 2.5 Action and L	mit Levels for Construction Noise
------------------------	-----------------------------------

Station ID	Noise Sensitive Receivers	Description	Action Level [^]	Limit Level
NM1	NSR 6	Block 45, Sha Tau Kok Chuen	When one documented complaint is received from	75
NM2	NSR 8	Building along Shun Lung Street	any one of the noise sensitive receivers	dB(A)*

^ Between 07:00-19:00 hours in normal weekdays.
 *75 dB(A) for residential premises.

Monitoring Equipment

2.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 2.6**.

Table 2.6 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	B&K2250, B&K 2250-L, B&K2270
Acoustic Calibrator	B&K 4231

Monitoring Locations

2.2.3 Monitoring stations NM1 and NM2 were set up at the proposed locations in accordance with EM&A Manual. **Figure 3** shows the location of the monitoring stations. **Table 2.8** describes the details of the monitoring stations.

	Location of impact in	olac monitoring otationa	
Station ID	Noise Sensitive Receivers	Description	Type of measurement
NM1	NSR 6	Block 45, Sha Tau Kok Chuen	Free-field
NM2	NSR 8	Building along Shun Lung Street	Free-field
Natas Day Drag	field as a second secon	an af (OdD(A) abaydal ba maada ta tha maaaay	na d na a ulta

Table 2.7 Location of Impact Noise Monitoring Stations

Note: For Free-field measurement, a correction of +3dB(A) should be made to the measured results.

Monitoring Parameters and Frequency

2.2.4 **Table 2.8** summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 2.8 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leg, L10 and L90 would be recorded.	At least once per week

Monitoring Methodology

- 2.2.5 Monitoring Procedure
 - (a) Free-field measurement was made at monitoring stations NM1 and NM2. For free-field measurement, a correction factor of +3 dB (A) would be applied.
 - (b) The sound level meter was set on a tripod at a point 1m from the exterior of the façade of the sensitive receivers building and at a height of 1.2 m above the ground for free-field measurements at monitoring stations.
 - (c) The battery condition was checked to ensure the correct functioning of the meter.
 - (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during 07:00 1900 on normal weekdays
 - (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
 - (g) Noise measurement would be paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations would be recorded when intrusive noise was unavoidable.
 - (h) The wind speed at the monitoring station was checked with the portable wind speed meter. Noise monitoring would be cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.
- 2.2.6 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix C.**

Monitoring Results and Observations

2.2.7 The schedule for environmental monitoring in the reporting period is provided in **Appendix D.**

The monitoring results for construction noise are summarized in Table 2.9 and the monitoring 2.2.8 data is provided in Appendix F.

Table 2.9	Summary	of Construction	Noise Monitoring	Results in the R	eporting Period
	Gaillia		nonico mornico mg		oporting ronou

Station ID	Construction Noise Level, dB(A)*, L _{eq (30 min)}	Baseline Level, dB(A)	Limit Level, dB(A)
NM1	59.6 - 65.7	65	75
NM2	61.1 - 64.9	65	75
Note: *A correct	ion of $+3 dB(A)$ was made to the free field measur	ements.	

*A correction of +3 dB(A) was made to the free field measurements.

Leg (30min) was measured at 0700-1900 hours on normal weekdays.

- 2.2.9 No Action or Limit Level exceedance of construction noise was recorded in the reporting period. No noise complaint related to 0700 to 1900 hours on normal weekdays was received in the reporting period.
- 2.2.10 The event and action plan is annexed in Appendix H.

Other factor influencing the monitoring results

Major noise sources during noise monitoring in the reporting period were mainly road traffic 2.2.11 noise.

2.3 Water Quality Monitoring

Monitoring Requirements (Construction Phase)

- 2.3.1 In accordance with the recommendations of the EIA, water quality monitoring is required during the installation, maintenance and removal of sheetpiles and sediment removal works for construction of diffuser.
- 2.3.2 Water quality monitoring programme for marine construction works of HDD was commenced on 9 November 2020. As informed by DSD, no marine construction work was conducted and the marine water quality monitoring for marine construction works was suspended since 21 December 2020. The marine water quality monitoring was resumed on 20 January 2021.

Monitoring Requirements (1-year Operation phase for TSTP)

- 2.3.3 In accordance with the EM&A Manual, marine water quality and continuous effluent quality monitoring for first year operation of TSTP were performed and completed in July 2021.
- 2.3.4 Water quality monitoring programme for operation phase of TSTP was commenced on 22 July 2020 and was completed on 21 July 2021. No emergency discharge was happened in the reporting period.

Monitoring Equipment

2.3.5 Equipment used in the marine water quality monitoring are summarized in **Table 2.10**.

Table 2.10 Marine Water Quality & Effluent Quality Monitoring Equipment

Monitoring Equipment	Equipment Model
Multifunctional Meter (measurement of Dissolved Oxygen, pH, temperature, salinity and turbidity)	YSI 6820V2
Water Depth	Lowrance x-4
Positioning Equipment	Garmin GPS72H

Monitoring Locations

2.3.6 In accordance with the EM&A Manual, marine water quality monitoring stations are summarized in **Table 2.11** and shown in **Figure 4**.

 Table 2.11
 Location of Water Quality Monitoring Stations for 1-Year TSTP Operation and Construction Phase

Station	Description	Easting	Northing	1-Year TSTP Operation	Construction Phase
FCZ1A	Sha Tau Kok Fish Culture Zone – West	841565	844299	-	✓
FCZ1B	Sha Tau Kok Fish Culture Zone – West	841565	844299	✓	-
FCZ7*	Temporary Relocation Site for Fish Rafts of the Sha Tau Kok Fish Culture Zone	842282	844451	~	~
FCZ8*	Temporary Relocation Site for Fish Rafts of the Sha Tau Kok Fish Culture Zone	841511	843959	~	~
SGA	Seagrass Colony	841064	844580	✓	✓
M1A	Mangrove Stand	840744	844853	✓	✓
H1A	Horseshoe Crab	840645	844398	✓	✓
H4A	Horseshoe Crab	840304	843546	✓	✓
N1	Impact Station of the Expanded STKSTW (Ebb Tide)	842863	845378	~	~
N2	Impact Station of the Expanded STKSTW (Flood Tide)	842109	844631	~	~
С	Control Station	844690	845886	\checkmark	✓
Effluent	At the effluent discharge point of TSTP	-	-	✓	-

Note:

Due to accessibility and safety concern during the baseline period, alternative water quality monitoring stations of SGA, M1A, H1A and H4A were proposed and adopted.

* No sediment dredging was conducted at Sha Tau Kok Fish Culture Zone, Approach Channel, Boat Shelter, etc in the reporting period. Therefore, no relocation for FCZ1 and monitoring at FCZ7 and FCZ8 is not required.

Monitoring Parameters and Frequency

2.3.7 Table 2.12 summarizes the monitoring parameters, frequency of water quality monitoring.

Table 2.12 Marine Water and Effluent Quality Monitoring Parameters, Frequency

Monitoring Parameters, unit	Frequency
n-situ Measurement:	
 Temperature, °C 	For Marine Water Quality:
▶ pH	1-year Operation phase for TSTP
 Salinity, ppt 	Once per day for 3 days per week for 1-yea
 Dissolved Oxygen (DO), mg/L 	(the interval between two sets of monitoring
 Turbidity, NTU 	should not be less than 36 hours)
aboratory Analysis:	
 Suspended Solids (SS), mg/L 	For Continuous Effluent Quality
 Biochemical Oxygen Demand (BOD₅), mg/L 	Monitoring:
 Total Phosphorus (TP) mg/L 	Daily for 1-year
 Total Nitrogen (TN), mg/L 	
 Ammonia Nitrogen (NH₃-N), mg/L 	(water quality monitoring commenced on 2)
 Total Inorganic Nitrogen, (TIN), mg/L 	July 2020 and completed on 21 July 2021)
E.coli, cfu/100mL	
n-situ Measurement:	
 Temperature, °C 	For Marine Water Quality:
▶ pH	Construction Phase
Salinity, ppt	Both Mid-Ebb and Mid-Flood tides on the
Dissolved Oxygen (DO), mg/L	same day
Turbidity, NTU	(the interval between two sets of monitoring
_aboratory Analysis:	should not be less than 36 hours)
 Suspended Solids (SS), mg/L 	

Monitoring Methodology

2.3.8 In-situ measurement

For marine water quality monitoring

- (a) The in-situ marine water quality parameters, viz. dissolved oxygen, pH, temperature, salinity and turbidity were measured by YSI multifunctional meter.
- (b) Digital Differential Global Positioning System (DGPS) was used to ensure that the correct location was selected prior to sample collection. Portable battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored. Duplicate water samples were collected using the water sampler at the monitoring stations. Other relevant data were recorded, including monitoring location, time, water depth, tidal stages, weather conditions, sea conditions and any special phenomena or work undertaken in the field log sheet for information.
- 2.3.9 Laboratory Analysis
 - (a) The collected samples were stored in high-density polythene bottles and/or preservatives added bottles and packed in cool-boxes (cooled at 4°C without being frozen) and delivered to a HOKLAS laboratory for laboratory analysis. The analysis will be commenced in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066) within 24 hours after collection of the samples.
 - (b) The QAQC laboratory reports are attached in **Appendix G.**
- 2.3.10 Maintenance and Calibration
 - (a) Before monitoring, the dissolved oxygen probe of multifunction meter was calibrated by the wet bulb method. A zero check in distilled water was performed with the turbidity probe once per monitoring day. The probe was then calibrated with a solution of known NTU.
 - (b) The monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS before use and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. Calibration details are provided in **Appendix C.**

Monitoring Results and Observations

- 2.3.11 The schedule for environmental monitoring in the reporting period is provided in **Appendix D.**
- 2.3.12 Construction phase water quality monitoring was conducted at all designated monitoring stations in the reporting period. No emergency discharge was happened in the reporting period.
- 2.3.13 All monitoring data and graphical presentation of the monitoring results are provided in **Appendix G**.
- 2.3.14 Exceedances of marine water quality was recorded in the reporting period. Number of exceedances recorded in the reporting period at each monitoring station are summarised in **Table 2.14**.

Station	Exceedance Level	DO (S&M)	DO (Bottom)	Turbidity	SS	Total
N1	Action	0	0	0	0	0
NI	Limit	0	0	0	0	0
N2	Action	0	0	0	1	1
NZ	Limit	0	0	0	0	0

Table 2.13Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M)	DO (Bottom)	Turbidity	SS	Total
FCZ1A	Action	0	0	0	0	0
FULIA	Limit	0	0	0	0	0
H4A	Action	0	0	0	1	1
R4A	Limit	0	0	0	0	0
H1A	Action	0	0	0	0	0
ПА	Limit	0	0	0	1	1
M1A	Action	0	0	0	0	0
MIA	Limit	0	0	0	1	1
SGA	Action	0	0	0	0	0
SGA	Limit	0	0	0	1	1
Total	Action	0	0	0	2	2
Total	Limit	0	0	0	3	3

- 2.3.15 In accordance with Event and Action Plan, IEC, Contractor and ER were informed when the corresponding Action/Limit Level was triggered. Investigation on each exceedance was carried out in the reporting month.
- 2.3.16 Two (2) Action Level exceedances and three (3) Limit Level exceedances of SS of marine water quality were recorded in the reporting period.
- 2.3.17 The investigation findings on marine water quality exceedances were summarized on below:

For exceedance on 5 November 2021, Action Level exceedances (120% of Control Station) of SS at N2 and H4A and Limit Level exceedances (130% of Control Station) of SS at H1A, M1A and SGA were recorded. With reference to the baseline monitoring results, the SS values measured at N2, H4A, H1A, M1A and SGA on 5 November 2021 were within the baseline results and similar with the mean of baseline. According to the RSS's information, no marine construction activity was carried out on the time of monitoring period (i.e. 05:36 - 06:37am). Silt curtain was deployed to enclose the marine works area. No exceedance of SS was recorded at mid-ebb tide on the same day.

- 2.3.18 Based on the investigation findings, the exceedances of SS recorded on 5 November 2021 were similar to baseline, silt curtain was deployed and no marine construction activities was carried out on the time of monitoring period. Therefore, the exceedances were considered not related to the Project.
- 2.3.19 The event and action plan is annexed in **Appendix H**.

2.4 Waste Management Status

- 2.4.1 Auditing of waste management practices during regular site inspections will confirm that the waste generated during construction are properly, stored, handled and disposed of. The construction Contractor(s) will be responsible for the implementation of any mitigation measures to reduce waste or redress issues arising from the waste materials.
- 2.4.2 The C&D waste under this contract should be disposal of at North East New Territories (NENT) Landfill and Tseung Kwan O Area 137 Fill Bank (TKO137FB) and Tuen Mun Area 38 Fill Bank (TM38FB).
- 2.4.3 Monthly summary of waste flow table is detailed in **Appendix I.**

2.5 Landscape and Visual

2.5.1 Inspections of the implementation of landscape and visual mitigation measures were conducted on 3 and 24 November 2021. The observations and recommendations made during the audit sessions are summarized in **Table 4.1**. A summary of the mitigation measures implementation schedule is provided in **Appendix J**. The event and action plan is annexed in **Appendix H**.

3 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

3.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP, EM&A Manual and method statement. The implementation status of the environmental mitigation measures of the reporting period is summarized in **Appendix J.** The implementation of the key mitigation measures during the reporting period is presented in **Appendix K**.

4 ENVIRONMENTAL SITE INSPECTION AND AUDIT

4.1 Site Inspection

- 4.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J.**
- 4.1.2 In the reporting period, 4 site inspections were carried out on 3, 10, 17 and 24 November 2021. A joint site inspection with EPD and IEC was carried out on 17 November 2021. A joint site inspection with IEC was carried out on 24 November 2021. No non-compliance was recorded during the site inspections. Details of observations recorded during the site inspections are presented in **Table 4.1**.

Parameters	Date	Observations and Recommendations	Follow up
Water Quality	N/A	N/A	N/A
Air Quality	3 Nov 21	The Contractor was reminded to replace the decolored NRMM label on the idle excavator at Tung To.	The item was rectified by Contractor on 10 Nov 2021.
Noise	N/A	N/A	N/A
Waste/ Chemical Management	24 Nov 21	Oil container placed on ground without drip tray was observed at Shun Hing Street. The Contractor should store the container with drip tray to prevent potential leakage, if any.	The item was rectified by Contractor on 24 Nov 2021.
Landscape & Visual	N/A	N/A	N/A
Permits/ Licenses	N/A	N/A	N/A

 Table 4.1
 Observations and Recommendations of Site Inspection

4.2 Summary of Complaints, Notification of Summons, Successful Prosecutions and Public Engagement Activities

- 4.2.1 No noise complaint related to 0700 to 1900 hours on normal weekdays, notification of summons and successful prosecution was received in the reporting period.
- 4.2.2 No public engagement activities were conducted in the reporting period.
- 4.2.3 Statistics on complaints, notifications of summons, successful prosecutions and public engagement activities are summarized in **Appendix L**.

5 ON-SITE TIME FOR ET AND IEC TEAM

5.1.1 According to the EP Condition 2.1 and 2.4, the minimum on-site time of at least 8 hours per week during office hours were proposed by the ET and IEC and their teams respectively in order to discharge the duties of the team of ET and IEC as stipulated in the EP and EM&A requirements of the project. The on-site time & duties of ET and IEC are summarized in **Appendix M.**

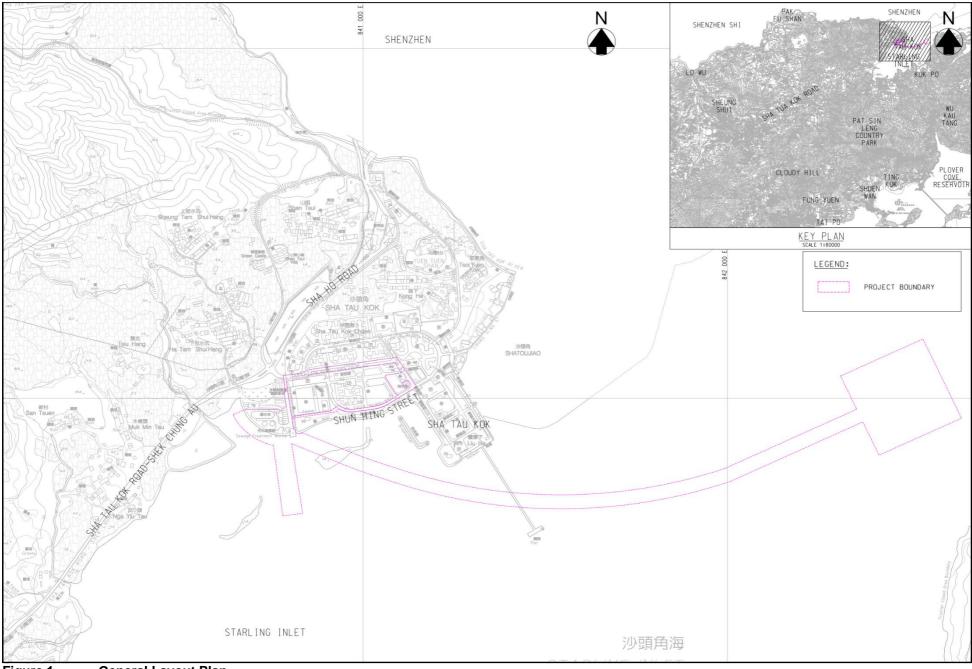
6 FUTURE KEY ISSUES

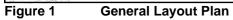
6.1 Construction Programme for the Coming Month

- 6.1.1 The major construction works for the Project in the coming month will be:
 - Reaming (Sea)
 - Sewer laying works in Shun Hing Street and Tong To Village
 - Construction of RC Structures
 - Excavation
 - E&M Installations

6.2 Key Issues for the Coming Month

- 6.2.1 Potential environmental impacts due to the construction activities, including air quality, noise, water quality, waste, landscape and visual, will be monitored or reviewed. The ET will continue to implement the environmental monitoring & audit programme in accordance with the EM&A Manual and Environmental Permit requirement. The recommended environmental mitigation measures shall be implemented on site and regular inspections as required will be carried out to ensure that the environmental conditions are acceptable.
- 6.2.2 The anticipated impact of major work activities within the site and the recommended mitigation measures are shown in **Appendix K**.


6.3 Monitoring Schedule for the Coming Month


6.3.1 The tentative schedule for environmental monitoring in December 2021 is provided in **Appendix D**.

7 CONCLUSIONS

- 7.1.1 No Action or Limit Level exceedance of construction noise was recorded in the reporting period. No noise complaint related to 0700 to 1900 hours on normal weekdays was received in the reporting period.
- 7.1.2 Two (2) Action Level exceedances and three (3) Limit Level exceedances of SS of marine water quality were recorded in the reporting period.
- 7.1.3 Based on the investigation findings, the exceedances of SS recorded on 5 November 2021 were similar to baseline, silt curtain was deployed and no marine construction activities was carried out on the time of monitoring period. Therefore, the exceedances were considered not related to the Project.
- 7.1.4 No complaints related to 0700 to 1900 hours on normal weekdays, notification of summons and successful prosecution was received in the reporting period.

FIGURES

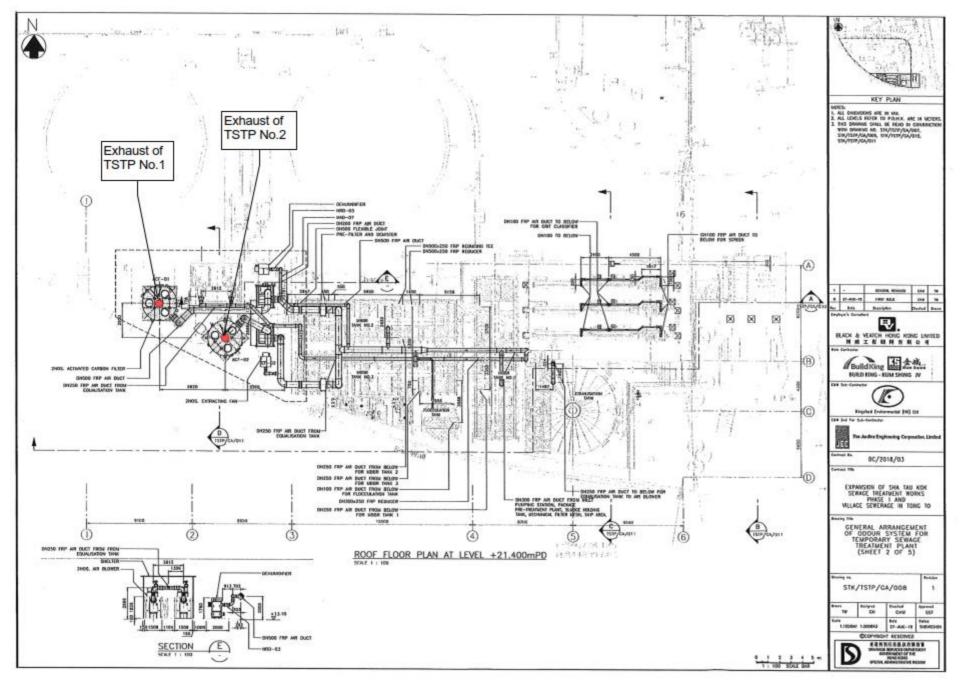


Figure 2 Locations of Odour monitoring for 1-Year Operation of TSTP

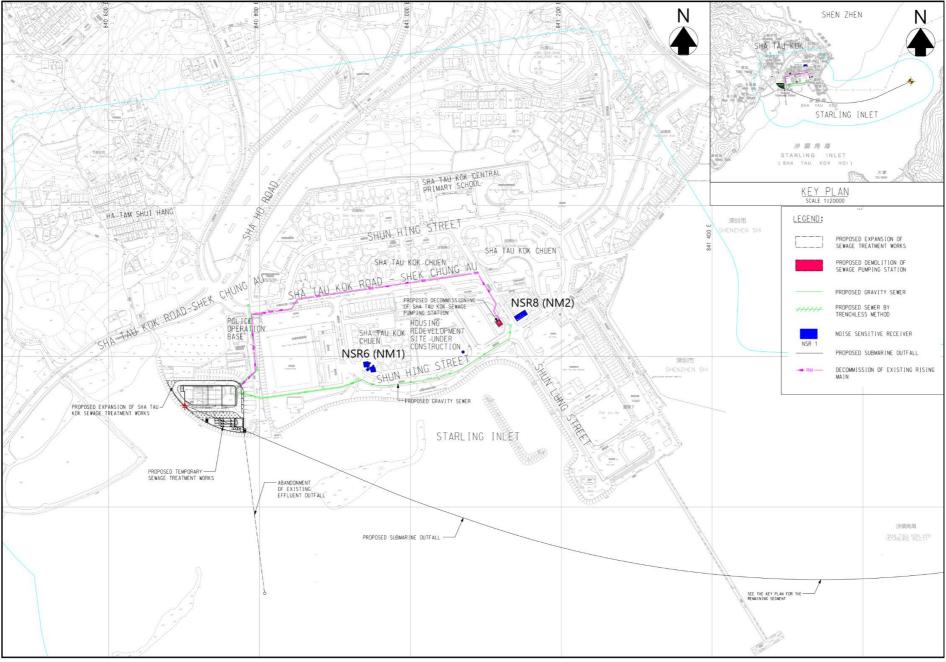


Figure 3 Location of Noise Monitoring Stations

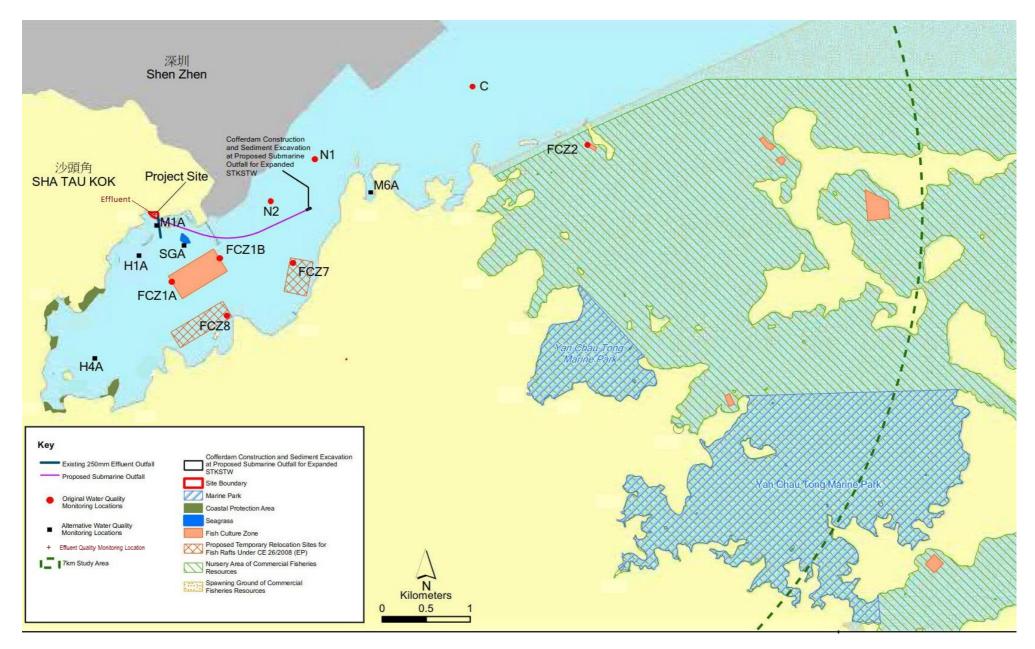
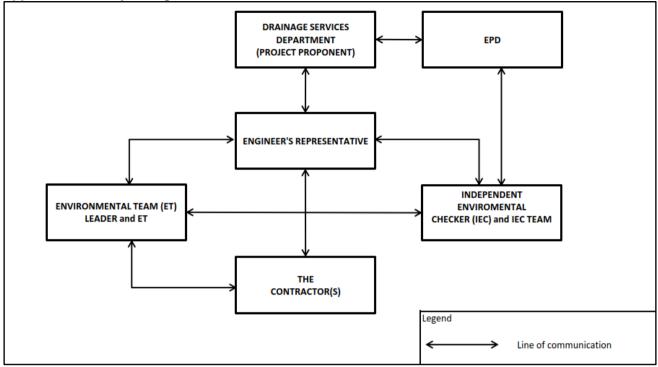



Figure 4 Location of Marine Water Quality Monitoring Stations

APPENDIX A

Project Organization Structure

Appendix A Project Organization Structure

Note: Detailed key personnel contact names and telephone numbers refer to Table 1.1.

APPENDIX B

Construction Programme

Appendix B Construction Programme

Expansion of Sha Tau Kok Sewage Treatment Works - Construction Programme

Expansion of Sha Tau Kok Sewage Treatment					2019	8								202	0								202	21								2022									2023				
STAGE Activities	Jan Fe	eb Mar	Apr M	MayJu	n Jul	Aug	Sep O	ct Nov	Dec	Jan F	Feb M	ar Apr	MayJ	un Ju	l Aug	Sep (Oct N	lov Dec	Jan	n Feb	M ar A	pr Ma	Jun Ju	ul Au	g Sep	Oct N	ov Dec	Jan	Feb N	fai Apr	MayJu	n Jul	Aug	Sep Oc	ct Nov	v Dec	Jan F	eb Mar	Apr N	/lay Jun	Jul	Aug Sep	Oct	Nov	Dec
Construction of Temporary Sewage Treatment Plant																																												1	
1 Ground Investigation																																												1	
2 Piling																																												1	
3 Construction of RC Structures																																												1	
4 E&M Installations																																												1	
5 Testing &Commissioning																																												1	
Demolition of the exisitng STKSTW																																												1	
Construction of Submarine Outfall																																												1	
1 Casing Installation (Land)																																												1	
2 Pilot Hole Drilling (Land)																																													
3 Reaming (Land)																																												1	
4 Casing Installation (Sea)																																												1	
5 Pilot Hole Drilling (Sea)																																												1	
6 Reaming (Sea)																																												1	
7 Pipe Installation																																												1	
8 Construction of Cofferdam at the location of diffuser																																												1	
9 Dredging of Marine Deposit for Diffuser																																												1	
10 Backfilling Works (up to Invert of Diffuser)																																												1	
11 Installation of Diffuser																																												1	
12 Backfilling and Removal of Sheetpiles																																												1	
Constrution of the expanded STKSTW																																												1	
1 Piling																																												1	
2 Excavation																																												1	
3 Construction of RC Structures																																													
4 E&M Installations																																												1	
45 Testing &Commissioning																																												1	
Sewer Laying																																												1	
1 Tong To Village																																													
2 Shun Hing Street																																													
Operation of TSTP																																													
Operation of STKSTW																																													
Demcommisioning of Existing STKSPS																																													

APPENDIX C

Calibration Certificates of Monitoring Equipment

余合試験有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界奏補水基路22-24號好爸爸前科大度 Good Ba Ba Hitech Building, Nos, 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smee@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

	21CA0319 01-01		Page	1 of 2	
Item tested					
Description: Manufacturer:	Sound Level Met B & K	er (Type 1)	Microphone B & K	Preamp B & K	
Type/Model No.:	2250-L		4950	ZC0032	
Serial/Equipment No.:	2681366		2665582	17190	
Adaptors used:	-		-	-	
Item submitted by					
Customer Name:	AECOM ASIA CO) LTD			
Address of Customer:					
Request No.:					
Date of receipt:	19-Mar-2021				
Date of test:	23-Mar-2021				
Reference equipment u	used in the calif	oration			
Description:	Model:	Serial No.	Expiry Date:	Traceable t	01
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2021	CIGISMEC	w.
Signal generator	DS 360	33873	19-May-2021		
orBring Rependion	00.000	33013	18-1May-2021	CEPREI	
Ambient conditions					
Temperature:	22 ± 1 °C				
Relative humidity:	55 ± 10 %				
Air pressure:	1005 ± 5 hPa				
and the lab calibration 2, The electrical tests w replaced by an equiva	n procedure SMTP(vere performed using alent capacitance w	004-CA-152. g an electrical signal su ithin a tolerance of +20	the requirements as spec ubstituted for the micropho %.	one which was re	moved and
 The acoustic calibrati between the free-field 	ion was performed u d and pressure resp	using an B&K 4226 sou onsess of the Sound L	and calibrator and correcti evel Meter.	ons was applied	for the differ
Test results					
	nd Level Meter conf	In DC 7000. D-+	1: 1007 for the coorditions	standard bits but at	
		forms to BS 7580; Part	1. 1997 for the conditions	under which the	test
vas performed.	surements are pres			under which the	test
vas performed. Details of the performed mea		sented on page 2 of this		under which the	test
was performed. Details of the performed mea		sented on page 2 of this		under which the	test SENGINESE 综合试验
was performed. Details of the performed mea Actual Measurement data are		sented on page 2 of this	s certificate.	MICE	test SENGIALESE 综合试验 有限公司
was performed. Details of the performed mea Actual Measurement data are	e documented on w	ented on page 2 of this orksheets.	s certificate.	MICE	test SENGWEEe 存限公司 SOS * OL
was performed. Details of the performed mea Actual Measurement data are Approved Signatory: - Comments: The results re	e documented on w Feng Junqi eported in the certifi	ented on page 2 of this orksheets. Date: 24-Mar icate refer to the condit	-2021 Company Ch	hop:	AS ENGWEEE 综合試驗 有限公司 5005米01
was performed. Details of the performed mea Actual Measurement data are Approved Signatory: - Comments: The results re	e documented on w Feng Junqi eported in the certifi	ented on page 2 of this orksheets. Date: 24-Mar icate refer to the condit	-2021 Company Ch	hop:	AS ENGWEEE 综合試驗 有限公司 5005米01
This is to certify that the Sour was performed. Details of the performed mea Actual Measurement data are Approved Signatory: - Comments: The results re carry no implication regarding D Solis & Materials Engineering Co., Ltd.	e documented on w Feng Junqi eported in the certifi	ented on page 2 of this orksheets. Date: 24-Mar icate refer to the condit	-2021 Company Ch ion of the instrument on the results apply to the ite	hop:	sh ENGINESE 综合試驗 有限公司 Stog # 01
was performed. Details of the performed mea Actual Measurement data are Approved Signatory: Comments: The results re carry no implication regarding	e documented on w Feng Junqi eported in the certifi	ented on page 2 of this orksheets. Date: 24-Mar icate refer to the condit	-2021 Company Ch ion of the instrument on the results apply to the ite	hop: the date of calibra em as received.	sh ENGINESE 综合試驗 有限公司 Stog # 01
was performed. Details of the performed mea Actual Measurement data are Approved Signatory: - Comments: The results re carry no implication regarding	e documented on w Feng Junqi eported in the certifi	ented on page 2 of this orksheets. Date: 24-Mar icate refer to the condit	-2021 Company Ch ion of the instrument on the results apply to the ite	hop: the date of calibra em as received.	sh ENGINESE 综合試驗 有限公司 Stog # 01

香港新界葵涌永基路22-24號好爸爸創料大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smeo@cigismec.com Website; www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:	21CA0319 01-01	Page	2	of	2	
------------------	----------------	------	---	----	---	--

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test: Subtest:		Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
-	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leg	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	// /		1 1
Calibrated by:	1~1	Checked by:	Jack
	Fung Chi Yip		Chan Yuk Yiu
Date:	23-Mar-2021	Date:	24-Mar-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

N/A

香港新昇英滴水基路 2 - 2 - 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smeo@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

				Page	1 of 2
Item	tested				
	ription:	Sound Level Meter	er (Class 1)	Microphone	Preamp
	facturer:	B & K		B & K	B&K
	Model No.:	2250		4950	ZC0032
	I/Equipment No.:	3001291		3005374	23853
Adapt	tors used:	-			-
ltem	submitted by				
	omer Name:	AECOM ASIA CO	LIMITED		
	ess of Customer:	-			
	est No.:	-			
Date	of receipt:	19-Oct-2021			
Date	of test:	21-Oct-2021			
Refe	erence equipment	used in the calib	oration		
Desc	ription:	Model:	Serial No.	Expiry Date:	Traceable to:
	unction sound calibrator	B&K 4226	2288444	23-Aug-2022	CIGISMEC
	generator	DS 360	61227	31-Dec-2021	CEPREI
Amb	ent conditions				
Temp	erature:	22 ± 1 °C			
Relati	ive humidity:	55 ± 10 %			
	ive mannany.				
	essure:	1005 ± 5 hPa			
Air pre		1005 ± 5 hPa			
Air pre	specifications		ed in accordance with	the requirements as spec	cified in BS 7580: Part 1: 199
Air pre	specifications	ter has been calibrat		the requirements as spec	cified in BS 7580: Part 1: 199
Air pre Test 1,	specifications The Sound Level Met and the lab calibratio The electrical tests w	ter has been calibrat n procedure SMTP0 ere performed using	04-CA-152. an electrical signal su	bstituted for the micropho	
Air pre Test 1, 2,	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv.	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi	04-CA-152. an electrical signal su thin a tolerance of +20	bstituted for the micropho %.	one which was removed and
Air pre Test 1, 2,	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u	04-CA-152. an electrical signal su thin a tolerance of <u>+</u> 20 sing an B&K 4226 sou	bstituted for the micropho %. nd calibrator and correcti	
Air pre Test 1, 2,	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u	04-CA-152. an electrical signal su thin a tolerance of +20	bstituted for the micropho %. nd calibrator and correcti	one which was removed and
Air pre Test 1, 2, 3,	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u	04-CA-152. an electrical signal su thin a tolerance of <u>+</u> 20 sing an B&K 4226 sou	bstituted for the micropho %. nd calibrator and correcti	one which was removed and
Air pre Test 1, 2, 3, Test This is	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Source	ter has been calibrat n procedure SMTP0 ere performed using alent capacitance wi ion was performed u d and pressure respo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou nnsess of the Sound Le	bstituted for the micropho %. nd calibrator and correcti	one which was removed and ons was applied for the differ
Air pre Test 1, 2, 3, Test This is	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results	ter has been calibrat n procedure SMTP0 ere performed using alent capacitance wi ion was performed u d and pressure respo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou nnsess of the Sound Le	bstituted for the micropho %. nd calibrator and correcti evel Meter.	one which was removed and ons was applied for the differ
Air pre Test 1, 2, 3, Test This is was p	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Source	ter has been calibrat n procedure SMTP0 ere performed using alent capacitance wi ion was performed u I and pressure respo nd Level Meter confo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou onsess of the Sound Le onsess of the Sound Le	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions	one which was removed and ons was applied for the differ
Air pre Test 1, 2, 3, Test This is was p Detail:	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Sour- erformed.	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u d and pressure respo nd Level Meter confo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou onsess of the Sound Le orms to BS 7580: Part ented on page 2 of this	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions	one which was removed and ons was applied for the differ
Air pre Test 1, 2, 3, Test This is was p Detail:	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Sounderformed. is of the performed mean	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u d and pressure respo nd Level Meter confo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou onsess of the Sound Le orms to BS 7580: Part ented on page 2 of this	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions	one which was removed and ons was applied for the differ
Air pro Test 1, 2, 3, Test This is was p Details Actual	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Sound erformed. I Measurement data are	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u d and pressure respo nd Level Meter confo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sound porsess of the Sound Le porms to BS 7580: Part ented on page 2 of this urksheets.	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions certificate.	one which was removed and ons was applied for the differ s under which the test
Air pro Test 1, 2, 3, Test This is was p Details Actual	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Sounderformed. is of the performed mean	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u d and pressure respo nd Level Meter confo isurements are prese e documented on wo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sou onsess of the Sound Le orms to BS 7580: Part ented on page 2 of this	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions certificate.	one which was removed and ons was applied for the differ s under which the test
Air pre Test 1, 2, 3, Test This is was p Detail: Actual	essure: specifications The Sound Level Met and the lab calibratio The electrical tests w replaced by an equiv. The acoustic calibrati between the free-field results s to certify that the Sound erformed. I Measurement data are	ter has been calibrat n procedure SMTPO ere performed using alent capacitance wi ion was performed u d and pressure respo nd Level Meter confo	04-CA-152. an electrical signal su thin a tolerance of ±20 sing an B&K 4226 sound porsess of the Sound Le porms to BS 7580: Part ented on page 2 of this urksheets.	bstituted for the micropho %. nd calibrator and correcti evel Meter. 1: 1997 for the conditions certificate.	one which was removed and ons was applied for the differ s under which the test

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界 葵 涌水 基路 2.2 - 2.4 號 好 爸 爸 創 科 大 廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:	21CA1019 03-01	Page	2	of	2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
A	Deee	0.2	
-			
3			
3			
	Pass	0.3	
	Pass	0.3	
Single Burst Slow	Pass	0.3	
Single 100µs rectangular pulse	Pass	0.3	
Crest factor of 3	Pass	0.3	
Single burst 5 ms at 2000 Hz	Pass	0.3	
Repeated at frequency of 100 Hz	Pass	0.3	
1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Single burst 10 ms at 4 kHz	Pass	0.4	
Single burst 10 ms at 4 kHz	Pass	0.4	
SPL	Pass	0.3	
Leq	Pass	0.4	
	A C Lin At reference range , Step 5 dB at 4 kHz Reference SPL on all other ranges 2 dB below upper limit of each range 2 dB above lower limit of each range At reference range , Step 5 dB at 4 kHz A C Lin Single Burst Fast Single Burst Fast Single Burst Slow Single 100µs rectangular pulse Crest factor of 3 Single burst 5 ms at 2000 Hz Repeated at frequency of 100 Hz 1 ms burst duty factor 1/10 ³ at 4kHz 1 ms burst duty factor 1/10 ⁴ at 4kHz Single burst 10 ms at 4 kHz Single burst 10 ms at 4 kHz SPL	APassCPassLinPassAt reference range, Step 5 dB at 4 kHzPassReference SPL on all other rangesPass2 dB below upper limit of each rangePass2 dB above lower limit of each rangePassCPassCPassCPassSingle Burst FastPassSingle Burst SlowPassSingle burst S ms at 2000 HzPassCrest factor of 3PassSingle burst 5 ms at 2000 HzPass1 ms burst duty factor 1/10 ³ at 4kHzPass1 ms burst duty factor 1/10 ⁴ at 4kHzPassSingle burst 10 ms at 4 kHzPassSingle burst 10 ms at 4 kHzPassSPLPass	APass0.3CPass0.8LinPass0.8At reference range, Step 5 dB at 4 kHzPass0.3Reference SPL on all other rangesPass0.32 dB below upper limit of each rangePass0.32 dB bove lower limit of each rangePass0.32 dB above lower limit of each rangePass0.3A treference range, Step 5 dB at 4 kHzPass0.3A reference range, Step 5 dB at 4 kHzPass0.3CPass0.3CPass0.3LinPass0.3Single Burst FastPass0.3Single Burst SlowPass0.3Single burst 5 ms at 2000 HzPass0.3Single burst 5 ms at 2000 HzPass0.3T ms burst duty factor 1/10 ³ at 4kHzPass0.31 ms burst duty factor 1/10 ⁴ at 4kHzPass0.31 ms burst duty factor 1/10 ⁴ at 4kHzPass0.4Single burst 10 ms at 4 kHzPass0.4SPLPass0.3

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	1 /
Calibrated by:	12	Checked by:	Javic
Date:	Fung Chi Yip 21-Oct-2021	Date:	Chan Yuk Yiu 22-Oct-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

N/A

赤 港 新 界 葵 í 木 基 路 2 2 - 2 4 號 好 爸 谷 創 科 大 度 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Item tested						
Description:	Sound Level Mete	er (Type 1)		Microphone	Prea	m
Manufacturer:	B & K			B & K	B&F	<
Type/Model No.:	2270			4950	ZC00	32
Serial/Equipment No .:	2644597			2879980	2939	R
Adaptors used:					-	~
Item submitted by						
Customer Name:	AECOM ASIA CO	LTD				
Address of Customer:						
Request No ::						
Date of receipt:	09-Mar-2021					
Date of test:	22-Mar-2021					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial N	No. I	Expiry Date:	Trace	able to:
Multi function sound calibrator	B&K 4226	2288444	3	23-Aug-2021	CIGIS	MEC
Signal generator	DS 360	33873		9-May-2021	CEPR	
Ambient conditions						
Temperature:	22 ± 1 °C					
Relative humidity:	55 ± 10 %					
Air pressure:	1005 ± 5 hPa					
Test specifications						
 The Sound Level Me 	ter has been calibrate					
	ter more erectin combilati	ed in accorda	ince with the req	uirements as spe	ecified in BS	7580: Part 1:
and the lab calibratio	n procedure SMTP00	04-CA-152		uirements as spe		
and the lab calibratio	n procedure SMTP00	04-CA-152				
 and the lab calibratio The electrical tests w 	on procedure SMTP0(vere performed using	04-CA-152. an electrical	signal substitute			
 and the lab calibratio The electrical tests w replaced by an equiv 	in procedure SMTP00 vere performed using alent capacitance wit	04-CA-152. an electrical thin a toleran	signal substitute ce of +20%.	d for the microph	one which	was removed a
2. The electrical tests w replaced by an equiv 3. The acoustic calibrat	in procedure SMTP00 vere performed using alent capacitance wit tion was performed us	04-CA-152. an electrical thin a toleran sing an B&K	signal substitute ce of ±20%. 4226 sound calib	d for the microph	one which	was removed a
 and the lab calibratio The electrical tests w replaced by an equiv 	in procedure SMTP00 vere performed using alent capacitance wit tion was performed us	04-CA-152. an electrical thin a toleran sing an B&K	signal substitute ce of ±20%. 4226 sound calib	d for the microph	one which	was removed a
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field	in procedure SMTP00 vere performed using alent capacitance wit tion was performed us	04-CA-152. an electrical thin a toleran sing an B&K	signal substitute ce of ±20%. 4226 sound calib	d for the microph	one which	was removed a
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou	n procedure SMTP00 vere performed using alent capacitance wit ion was performed us d and pressure respo	04-CA-152. an electrical thin a toleran sing an B&K insess of the	signal substitute ce of <u>+</u> 20%. 4226 sound calit Sound Level Me	d for the microph prator and correcter.	none which tions was a	was removed a oplied for the di
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou	n procedure SMTP00 vere performed using alent capacitance wit ion was performed us d and pressure respo	04-CA-152. an electrical thin a toleran sing an B&K insess of the	signal substitute ce of <u>+</u> 20%. 4226 sound calit Sound Level Me	d for the microph prator and correcter.	none which tions was a	was removed a oplied for the di
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed.	in procedure SMTP00 vere performed using alent capacitance wit ion was performed us d and pressure respo and pressure respo	04-CA-152. an electrical thin a toleran- sing an B&K insess of the orms to BS 75	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997	of for the microphorator and correcter.	none which tions was a	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea	in procedure SMTPO(vere performed using valent capacitance wit ion was performed us d and pressure respo and Level Meter confo	04-CA-152. an electrical thin a toleran: sing an B&K insess of the orms to BS 75 anted on page	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997	of for the microphorator and correcter.	none which tions was a	was removed a oplied for the di
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea	in procedure SMTPO(vere performed using valent capacitance wit ion was performed us d and pressure respo and Level Meter confo	04-CA-152. an electrical thin a toleran: sing an B&K insess of the orms to BS 75 anted on page	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997	of for the microphorator and correcter.	none which tions was a	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an	in procedure SMTPO(vere performed using valent capacitance wit ion was performed us d and pressure respo and Level Meter confo	04-CA-152. an electrical thin a toleram sing an B&K onsess of the prime to BS 75 ented on page rksheets.	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific	d for the microph prator and correc- ter.	none which tions was ap	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an	in procedure SMTP00 vere performed using valent capacitance wit ion was performed us d and pressure respo and Level Meter confo	04-CA-152. an electrical thin a toleran: sing an B&K insess of the orms to BS 75 anted on page	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997	of for the microphorator and correcter.	none which tions was ap	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an	in procedure SMTP00 vere performed using valent capacitance wit ion was performed us d and pressure respo and Level Meter confo	04-CA-152. an electrical thin a toleram sing an B&K onsess of the prime to BS 75 ented on page rksheets.	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific	d for the microph prator and correc- ter.	none which tions was ap	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using valent capacitance with ion was performed using and pressure respo- and Level Meter confor asurements are press e documented on wo Feng Junqi	04-CA-152. an electrical thin a toleranic sing an B&K misess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 e 2 of this certific 24-Mar-2021	ed for the microph prator and correc- ter. for the condition ate. Company C	hone which tions was an	was removed a oplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using valent capacitance with ion was performed using and pressure respo- and Level Meter confor asurements are press e documented on wo Feng Junqi	04-CA-152. an electrical thin a toleranic sing an B&K misess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 e 2 of this certific 24-Mar-2021	ed for the microph prator and correc- ter. for the condition ate. Company C	hone which tions was an	was removed a oplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	ed for the microph prator and correc- ter. If for the condition ate. Company C ee instrument on	hone which tions was an	was removed a oplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	ed for the microph prator and correc- ter. If for the condition ate. Company C ee instrument on	hone which tions was an	was removed a oplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	d for the microph prator and correc- ter. ' for the condition rate. Company C te instrument on ults apply to the i	tions was a tions was a the under whi the date of tem as rece	was removed a opplied for the di ich the test
2. The electrical tests w replaced by an equiv 3. The acoustic calibrat	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	d for the microph prator and correc- ter. ' for the condition rate. Company C te instrument on ults apply to the i	tions was a tions was a the under whi the date of tem as rece	was removed a oplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv 3. The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory: Comments: The results re carry no implication regarding	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	d for the microph prator and correc- ter. ' for the condition rate. Company C te instrument on ults apply to the i	tions was a tions was a the under whi the date of tem as rece	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using alent capacitance wit ion was performed us d and pressure respo ind Level Meter confo asurements are prese e documented on wo Feng Junqi eported in this certific	04-CA-152. an electrical thin a toleranic sing an B&K insess of the orms to BS 75 ented on page rksheets. Date:	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 a 2 of this certific 24-Mar-2021 be condition of th	d for the microph prator and correc- ter. ' for the condition rate. Company C te instrument on ults apply to the i	tions was a tions was a the under whi the date of tem as rece	was removed a opplied for the di ich the test
and the lab calibratio The electrical tests w replaced by an equiv The acoustic calibrat between the free-field Test results This is to certify that the Sou was performed. Details of the performed mea Actual Measurement data an Approved Signatory:	In procedure SMTPO(vere performed using valent capacitance wit ion was performed using and Level Meter confor asurements are prese e documented on wo Feng Junqi eported in this certific g the long-term stabil	04-CA-152. an electrical thin a toleranic sing an B&K more an an B&K more an an B&K more an a	signal substitute ce of ±20%. 4226 sound calit Sound Level Me 580: Part 1: 1997 e 2 of this certific 24-Mar-2021 the condition of th rument. The rest	ed for the microph prator and correc- ter. f for the condition ate. Company C te instrument on ults apply to the in Form N	hone which tions was a tions was a s under whi hop: the date of the date of th	was removed a oplied for the di ich the test

21CA0309 02

香港新界 葵循 永 基路 2.2 - 2.4 號 好 爸 爸 創 科 大 度 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories. Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page 2 of

1, Electrical Tests

Certificate No.:

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor
Self-generated noise	А	Pass	0.3
	C	Pass	1.0 2.1
	Lin	Pass	2.0 2.2
Linearity range for Leg	At reference range , Step 5 dB at 4 kHz	Pass	0.3
	Reference SPL on all other ranges	Pass	0.3
	2 dB below upper limit of each range	Pass	0.3
	2 dB above lower limit of each range	Pass	0.3
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3
Frequency weightings	A	Pass	0.3
	С	Pass	0.3
	Lin	Pass	0.3
Time weightings	Single Burst Fast	Pass	0.3
	Single Burst Slow	Pass	0.3
Peak response	Single 100µs rectangular pulse	Pass	0.3
R.M.S. accuracy	Crest factor of 3	Pass	0.3
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3
	Repeated at frequency of 100 Hz	Pass	0.3
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4
Overload indication	SPL	Pass	0.3
1919-00 CONTRACTOR OF 1919-000 CONTRACTOR OF 1	Leg	Pass	0.4

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

End . Calibrated by: Checked by: Fung Chi Yig 22-Mar-2021 Date: 24-Mar-2021 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Solis & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

CERTIFICATE OF CALIBRATION

Certificate No.:	21CA0401 02		Page:	1 of	2
Item tested					
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Acoustical Calibrat B & K 4231 3006428 -	or (Class 1)			
Item submitted by					
Curstomer: Address of Customer: Request No.: Date of receipt:	AECOM - - 01-Apr-2021				
Date of test:	05-Apr-2021				
Reference equipment	used in the calibr	ration			
Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2412857 2743150 2346941 33873 US36087050 GB41300350 MY40003662	Expiry Date: 11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 18-May-2021 18-May-2021	Tracea SCL CEPRI CEPRI CEPRI CEPRI CEPRI CEPRI	El El El
Ambient conditions					
Temperature: Relative humidity: Air pressure:	22 ± 1 °C 55 ± 10 % 1010 ± 5 hPa				
Test specifications					
 and the lab calibratio The calibrator was te The results are round 	on procedure SMTP004 ested with its axis vertion ded to the nearest 0.01	I-CA-156. cal facing downwards dB and 0.1 Hz and h	requirements as specifi at the specific frequency ave not been corrected f	vusing insert	t voltage technique.
pressure of 1013.25 changes.	hectoPascals as the m	naker's information ind	icates that the instrumer	nt is insensit	ive to pressure
Test results					
This is to certify that the sound of test was performed. This doe	calibrator conforms to the es not imply that the so	requirements of annex B und calibrator meets I	of IEC 60942: 1997 for the EC 60942 under any oth	conditions ur	ider which the s.
Details of the performed mea	asurements are presen	ted on page 2 of this	certificate.		STALS ENGINEERIES
	alt				SIM 东合试验 COM
Approved Signatory:	Feng Junqi	Date: 07-Apr-2	2021 Company Ch	iop:	5705 × 011
Comments: The results report carry no implication regarding	orted in this certificate i g the long term stability	refer to the conditon o v of the instrument. Th	f the instrument on the d e results apply to the ite	ate of calibr m as receive	ation and ed.
© Soils & Materials Engineering Co., Ltd.			Form No	CARP156-1/Issu	e 1/Rev.D/01/03/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界赛涌永基路22-24號好爸爸創科大度 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong

21CA0401 02

2

Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page: 2 of

1, Measured Sound Pressure Level

Certificate No.:

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.23	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.016 dB
Estimated expanded uncertainty	0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 999.95 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.3 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	<u> </u>	
Calibrated by:	1	Checked by:	Jack	
Date:	Fung Chi Yip 05-Apr-2021	Date:	Chan Yuk Yiu 07-Apr-2021	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港新昇葵涌水基路22-24號好爸爸創科大度 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Descrij Manufa Type/M Serial/B Adapto	icturer:					
Manufa Type/M Serial/B Adapto	icturer:					
Manufa Type/M Serial/B Adapto	icturer:		tor (Class 1)			
Type/N Serial/f Adapto		B&K	tor (oness t)			
Serial/I Adapto	lodel No.:	4231				
Adapto	Equipment No.:	3014024 / N004.0	4			
Item s	rs used:	-	20			
	submitted by					
Cursto	ner:	AECOM ASIA CO	LIMITED			
	s of Customer:	ALCOW AGIA CO	LINNITED			
Reques		2				
	receipt:	05-Nov-2021				
Date	of test:	08-Nov-2021				
Date	of test.	08-IN0V-2021				
Refer	ence equipment	used in the calib	oration			
Descri		Model:	Serial No.	Expiry Date:	Traceab	le to:
	ndard microphone	B&K 4180	2341427	04-May-2022	SCL	
Preamp		B&K 2673	2743150	31-May-2022	CEPREI	
	ing amplifier	B&K 2610	2346941	01-Jun-2022	CEPREI	
	generator	DS 360	33873	27-May-2022	CEPREI	
	multi-meter	34401A	US36087050	27-May-2022	CEPREI	
	inalyzer	8903B	GB41300350	28-May-2022	CEPREI	
Univers	al counter	53132A	MY40003662	02-Jun-2022	CEPREI	
Ambi	ent conditions					
Tempe	rature:	22 ± 1 °C				
Relative	e humidity:	55 ± 10 %				
Air pres	isure:	1005 ± 5 hPa				
Test s	pecifications					
١,	and the lab calibratio	n procedure SMTP00	04-CA-156.	requirements as specifie		
2,	The calibrator was te	sted with its axis ver	tical facing downwards a	at the specific frequency	using insert v	oltage techniqu
3,				ave not been corrected for icates that the instrument		
lest r	esults					
				of IEC 60942: 1997 for the EC 60942 under any oth		
oot no	s performed, rins det	to not imply and the c	cond contrator meeta i	Lo obsez under any oth		
Details	of the performed mea	asurements are prese	ented on page 2 of this of	certificate.	1	SULS ENGINESE
		_ /				综合试验
	<	3IL			e	有限公司
Approv	ed Signatory:	Feng Junqi	Date: 09-Nov-2	2021 Company Ch	ob:	Doc wint 1
				f the instrument on the d e results apply to the iter		
Sois & M	Amerials Engineering Co., Ltd.			Form No.	CARP156-1/Issue	1/Rev.D/01/03/2007

21CA1105 03

春港新界葵涌永基路22-24號好爸爸劇科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Page: 2 of 2

1, Measured Sound Pressure Level

Certificate No.:

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.05	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.014 dB
Estimated expanded uncertainty	0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 1000.0 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2	

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.5 %
Estimated expanded uncertainty	0.7 %

1

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	01
Calibrated by:	1~~1	Checked by:	Jule
Date:	Fung Chi Yip 08-Nov-2021	Date:	Chan Yuk Yiu 09-Nov-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR MIKE SHEK WOR CLIENT: AECOM ASIA COMPANY LIMITED ADDRESS: 13/F, TOWER 2, GRAND CENTRAL PLAZA, SUB-138 SHATIN RURAL COMMITTEE ROAD, LABG SHATIN, HONG KONG DAT

WORK ORDER:	HK2140551
SUB- BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	07-Oct-2021
DATE OF ISSUE:	08-Oct-2021

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

 Equipment Type:
 Multifunctional Meter

 Service Nature:
 Performance Check

 Scope:
 Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

 Brand Name/ Model No.:
 [YSI]/ [6820 V2]

 Serial No./ Equipment No.:
 [00H1019]/ [W.026.09]

 Date of Calibration:
 07-October-2021

GENERAL COMMENTS

This is the Final Report and supersedes any preliminary report with this batch number.

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

ALS Technichem (HK) Pty Ltd

Page 1 of 4

Right Solutions • Right Partner | alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK2140551		ALS	
SUB- BATCH:	0			
DATE OF ISSUE: CLIENT:	08-Oct-2021 AECOM ASIA COMPANY LIMITER	D		
Equipment Type:	Multifunctional Meter			
Brand Name/ Model No.:	[YSI]/ [6820 V2]			
Serial No./ Equipment No.:	[00H1019]/ [W.026.09]			
Date of Calibration:	07-October-2021	Date of Next Calibration:	07-January-2022	
PARAMETERS:				
Conductivity	Method Ref: APHA (21st edition)), 2510B		
	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	
	146.9	153	+4.2	
	6667	6527	-2.1	
	12890	12647	-1.9	
	58670	58480	-0.3	
		Tolerance Limit (%)	±10.0	

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.30	3.35	+0.05
5.90	5.89	-0.01
7.60	7.66	+0.06
1.02000	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)		
4.0	4.14	+0.14		
7.0	6.86	-0.14		
10.0	9.99	-0.01		
100/323/30	Tolerance Limit (pH unit)	±0.20		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

5

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd

Page 2 of 4

Right Solutions • Right Partner | alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK2140551		
SUB- BATCH:	0		(ALS)
DATE OF ISSUE:	08-Oct-2021		
CLIENT:	AECOM ASIA COMPANY LIM	NITED	
Equipment Type:	Multifunctional Meter		
Brand Name/ Model No.:	[YSI]/ [6820 V2]		
Serial No./ Equipment No.:	[00H1019]/ [W.026.09]		
Date of Calibration:	07-October-2021	Date of Next Calibration:	07-January-2022

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

ļ	Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
	0	0.2	·
	4	4.0	+0.0
	10	10.2	+2.0
	20	19.6	-2.0
	50	48.0	-4.0
	100	101.4	+1.4
		Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.01	122
10	9.42	-5.8
20	19.11	-4.5
30	27.66	-7.8
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

: 5

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd

Page 3 of 4

Right Solutions · Right Partner | alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK2140551		ALS
SUB- BATCH:	0		
DATE OF ISSUE: CLIENT:	08-Oct-2021 AECOM ASIA COMPANY LIMI	ITED	
Equipment Type:	Multifunctional Meter		
Brand Name/ Model No.:	[YSI]/ [6820 V2]		
Serial No./ Equipment No.:	[00H1019]/ [W.026.09]		
Date of Calibration:	07-October-2021	Date of Next Calibration:	07-January-2022

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.76	+0.3
20.0	20.23	+0.2
39.0	38.73	-0.3
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

5

Ms. Lin Wai Yu, Iris Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd

Page 4 of 4

Right Solutions • Right Partner | alsglobal.com

APPENDIX D

EM&A Monitoring Schedules

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Nov	2-Nov	3-Nov	4-Nov		6-Nov
	Water Quality		Water Quality		Water Quality	
	Mid-Ebb 9:07		Mid-Ebb 11:01		Mid-flood 6:29	
	Mid-flood 16:09		Mid-flood 17:15		Mid-Ebb 12:29	
					Noise	
7-Nov	8-Nov	9-Nov		11-Nov		13-Nov
	Water Quality		Water Quality		Water Quality	
	Mid-flood 8:55		Mid-Ebb 4:07		Mid-Ebb 6:25	
	Mid-Ebb 14:22		Mid-flood 16:35		Mid-flood 19:00	
	Noise					
	NUISE					
14-Nov	15-Nov	16-Nov	17-Nov	18-Nov	/ 19-Nov	20-Nov
	Water Quality		Water Quality		Water Quality	
	Mid-Ebb 9:26		Mid-Ebb 11:00		Mid-flood 6:26	
	Mid-flood 16:00		Mid-flood 16:34		Mid-Ebb 12:10	
					Noise	
				0.5 M		
21-Nov	22-Nov Water Quality	23-Nov	24-Nov Water Quality	25-Nov	Water Quality	27-Nov
	Mid-flood 8:18					
	Mid-fiood 8:18 Mid-Ebb 13:14		Mid-flood 9:42 Mid-Ebb 14:10		Mid-Ebb 2:50 Mid-flood 15:14	
	IVIIQ-EDD 13.14		14.10		1000 15.14	
		Noise				
		140/30				
28-Nov	29-Nov	30-Nov				
	Water Quality					
	Mid-Ebb 7:31					
	Mid-flood 14:27					
	Noise					

Expansion of Sha Tau Kok Sewage Treatment Works Environmental Monitoring Schedule for November 2021

Expansion of Sha Tau Kok Sewage Treatment Works Tentative Environmental Monitoring Schedule for December 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Dec	2-Dec	3-Dec	4-Dec
			Water Quality		Water Quality	
			Mid-Ebb 9:33		Mid-Ebb 11:16	
			Mid-flood 16:36		Mid-flood 17:11	
5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec
5-Dec	Water Quality	7-Dec	Water Quality	9-Dec	Water Quality	TT-Dec
	Mid-flood 7:57	,	Mid-flood 9:44		Mid-flood 11:52	
	Mid-Ibbd 7.37 Mid-Ebb 13:22		Mid-fiood 9:44 Mid-Ebb 14:44		Mid-libb 17:01	
	10.22				11.01	
					Noise	
12-Dec	13-Dec	: 14-Dec	15-Dec	16-Dec	17-Dec	18-Dec
	Water Quality		Water Quality		Water Quality	
	Mid-Ebb 7:45	5	Mid-Ebb 9:38		Mid-Ebb 10:59	
	Mid-flood 14:27	,	Mid-flood 16:00		Mid-flood 16:52	
				Noise		
10 0	00 D	01.5	00 D	00.5	04.5	05 D
19-Dec	20-Dec Water Quality	21-Dec	22-Dec Water Quality	23-Dec	24-Dec Water Quality	25-Dec
	Mid-Ebb 12:24		Mid-flood 8:46		Mid-flood 10:11	
	Mid-flood 16:34		Mid-Ebb 13:33		Mid-Ebb 14:54	
	10.34	F	IVIIU-EDD 13.33		IVIIU-EDD 14.34	
					Noise	
					110100	
26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	
	Water Quality		Water Quality		Water Quality	
	Mid-flood 12:40)	Mid-Ebb 7:55		Mid-Ebb 9:58	
	Mid-Ebb 18:32	2	Mid-flood 14:12		Mid-flood 15:47	
		L				
		1		Noise		

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

APPENDIX E

Action and Limit Levels

Appendix E Action and Limit Levels

Manifaring Lagation	Manifaring Laval	DO (mg/L)		Turbid	ity (NTU)	Total Suspend	ed Solids (mg/L)
Monitoring Location	Monitoring Level	AL	LL	AL	LL	AL	LL
N1	S & M	5.36	5.34+	7.5*	13.1^	5*	8^
N I	В	5.06	5.05+	7.5	13.17	5	0
N2	S & M	5.95	5.71+	- 4.7*	5.9^	5*	6^
INZ.	В	5.56	5.53⁺		5.8	5	0
FCZ1A	S	5.10#	5.00#	8.0*	10.5^	13*	21^
FUZIA	В	5.10#	5.00#		10.5	15	21.
H4A	М	5.94	5.86+	4.7*	4.8^	8*	9^
H1A	М	6.01	5.97+	6.5*	6.6^	14*	15^
M1A	М	5.63	5.54+	5.8*	6.1^	9*	10^
SGA	М	6.00	5.90+	6.0*	6.2^	10*	11^
FCZ7	S & M	5.10#	5.00#	6.0*	6.4^	5*	5^
	В	5.10#	5.00#	0.0	0.4	J	5.
FCZ8	S	5.10#	5.00#	5.2*	9.1^	6*	7^
1020	В	5.10#	5.00#	5.2	9.17	U	1

Action and Limit Levels for Marine Water Quality Monitoring for Construction Phase

Remarks:

AL: Action Level; LL: Limit Level

According to the EM&A Manual, for FCZ: AL of DO is 5.1 mg/L or level at control station at same tide of the same day (whichever lower) and LL of DO is 5.0 mg/L or level at control station at same tide of the same day (whichever lower); * Or 120% of control station's level at the same tide of the same day;

^ Or 130% of control station's level at the same tide of the same day.

APPENDIX F

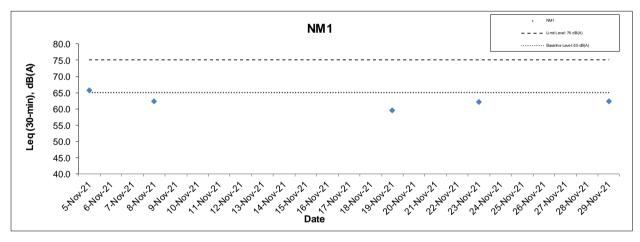
Noise Monitoring Results and their Graphical Presentations

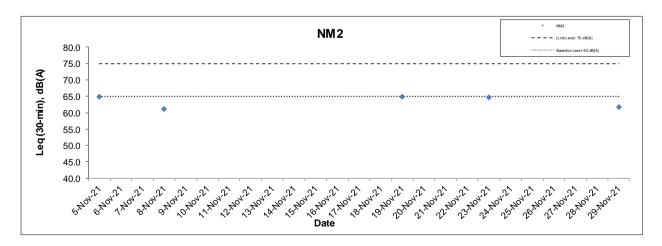
Appendix F Noise Monitoring Results and their Graphical Presentations

Construction Noise Monitoring Results

	Weather	Measur	ed Noise	Level for	30-min	Baseline	Construction	Limit	Exceedance
Date	Condition	Time	L90	L10	Leq	Noise Level [BNL].	Noise Level [CNL] [#] , dB(A)	Level, dB(A)	(Y/N)
5-Nov-21	Sunny	10:30	66.1	69.6	68.4	65	65.7	75	N
8-Nov-21	Sunny	13:05	59.5	63.0	62.3	65	62.3 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N
19-Nov-21	Sunny	13:30	64.0	67.2	66.1	65	59.6	75	N
23-Nov-21	Sunny	11:30	60.0	63.6	62.2	65	62.2 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N
29-Nov-21	Sunny	13:35	56.4	63.7	62.3	65	62.3 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N

Daytime Noise Monitoring Results at NM 1 (Block 45, Sha Tau Kok Chuen)


Daytime Noise Monitoring Results at NM 2 (Building along Shun Lung Street)


	Weather	Measur	ed Noise	Level for	30-min	Baseline	Construction	Limit	Exceedance
Date	Condition	Time	L90	L10	Leq	Noise Level [BNL].	Noise Level [CNL] [#] , dB(A)	Level, dB(A)	(Y/N)
5-Nov-21	Sunny	11:10	64.9	69.1	67.9	65	64.8	75	N
8-Nov-21	Sunny	13:40	58.0	62.0	61.1	65	61.1 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N
19-Nov-21	Sunny	14:10	63.4	66.8	64.9	65	64.9 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N
23-Nov-21	Sunny	13:00	61.1	65.3	64.6	65	64.6 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N
29-Nov-21	Sunny	14:15	57.2	63.6	61.7	65	61.7 Measured <baseline< td=""><td>75</td><td>N</td></baseline<>	75	N

*A correction of +3 dB(A) was made to the free field measurements.

 $^{\#}$ CNL = 10 log (10^{MNL/10} - 10^{BNL/10})

Graphical Presentations of Construction Noise Monitoring Results

APPENDIX G

Water Quality Monitoring Results and their Graphical Presentations and QAQC Report

Appendix G Water Quality Monitoring Results & their Graphical Presentations and QAQC Reports

1-Nov-21 at Mid-Ebb tide Marine Water Quality Monitoring Results on

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation, %	Di mg			inity, pt		idity, FU	Suspend mg	
													Value	DA	Value	DA	Value	DA	Value	DA
11/1/2021	Mid-Ebb	Fine	Moderate	С	7:46	9.6	Surface	1	1.0	26.0	7.7	84.6	5.65	5.56	30.79	33.43	2.5	2.5	1.4	1.3
11/1/2021	Mid-Ebb	Fine	Moderate	С			Surface	2	1.0	26.0	7.7	85.6	5.74	-	30.80	-	2.2	-	1.7	-
11/1/2021	Mid-Ebb	Fine	Moderate	C			Middle	1	4.8	26.6	7.7	81.2	5.43	-	34.45	-	2.4	-	1.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	С			Middle	2	4.8	26.2	7.7	80.7	5.40	-	34.76	-	2.5	-	1.4	-
11/1/2021	Mid-Ebb	Fine	Moderate	С			Bottom	1	8.6	25.9	7.6	76.4	5.21	5.18	34.82	-	2.5	-	1.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	С			Bottom	2	8.6	25.7	7.7	75.4	5.15	-	34.94	-	2.7	-	1.3	-
11/1/2021	Mid-Ebb	Fine	Moderate	N1	7:59	6.5	Surface	1	1.0	26.1	7.7	119.9	8.18	7.34	30.71	32.69	2.0	2.0	1.3	1.6
11/1/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	26.0	7.8	120.9	8.15	-	30.79	-	2.0	-	1.6	-
11/1/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.3	26.4	7.7	96.0	6.39	-	32.78	-	1.9		1.2	-
11/1/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.3	26.6	7.7	99.7	6.65	-	32.33	-	1.9	-	2.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.5	26.1	7.7	92.8	6.33	6.21	34.73	-	2.0	-	1.6	-
11/1/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.5	26.0	7.7	89.4	6.09	-	34.80	-	2.1	-	2.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	FCZ1A	8:38	3.5	Surface	1	1.0	25.9	7.9	128.3	8.76	8.74	30.86	30.91	1.9	2.0	1.0	1.2
11/1/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	25.9	7.9	127.7	8.72	-	30.83	-	2.0	-	1.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.5	25.9	7.9	128.2	8.74	8.71	31.10	-	2.0	-	1.9	-
11/1/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.5	25.9	7.9	127.1	8.68	-	30.84	-	2.1	-	1.0	-
11/1/2021	Mid-Ebb	Fine	Moderate	H4A	8:25	1.8	Middle	1	0.9	25.9	7.9	120.7	8.24	8.22	30.83	30.82	2.0	2.1	1.5	1.7
11/1/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.9	26.0	7.9	121.6	8.19	-	30.80	-	2.1	-	1.9	-
11/1/2021	Mid-Ebb	Fine	Moderate	H1A	8:52	1.4	Middle	1	0.7	26.2	7.9	123.9	8.38	8.41	31.84	31.34	2.0	2.0	2.0	1.8
11/1/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.7	25.9	7.9	123.6	8.44	-	30.83	-	2.0	-	1.5	-
11/1/2021	Mid-Ebb	Fine	Moderate	M1A	9:03	1.2	Middle	1	0.6	25.9	7.9	128.8	8.80	8.80	30.82	30.82	2.0	2.1	2.3	2.0
11/1/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.6	25.9	7.9	128.6	8.79	-	30.81	-	2.1		1.6	-
11/1/2021	Mid-Ebb	Fine	Moderate	SGA	9:16	1.0	Middle	1	0.5	25.8	7.9	128.7	8.80	8.81	30.81	30.81	2.1	2.1	1.8	1.7
11/1/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.5	25.9	7.9	128.8	8.81	-	30.81	-	2.1		1.5	-

DA - Depth-averaged

1-Nov-21 at Mid-Flood tide Marine Water Quality Monitoring Results on

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ⁰C	pН	DO Saturation, %	D(mg			nity, pt	Turb N		Suspend mg	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/1/2021	Mid-Flood	Sunny	Moderate	С	16:18	9.3	Surface	1	1.0	25.7	7.9	104.3	7.14	6.68	31.04	33.57	2.3	2.5	1.5	1.5
11/1/2021	Mid-Flood	Sunny	Moderate	С			Surface	2	1.0	25.8	7.9	100.8	6.89	-	31.01	-	2.4	-	1.0	-
11/1/2021	Mid-Flood	Sunny	Moderate	С			Middle	1	4.7	26.3	7.7	93.3	6.29	-	34.72	-	2.4	-	1.8	-
11/1/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.7	26.0	7.7	95.3	6.38	-	34.86	-	2.5	-	1.0	-
11/1/2021	Mid-Flood	Sunny	Moderate	с			Bottom	1	8.3	25.8	7.7	84.7	5.67	5.52	34.88	-	2.5	-	2.4	-
11/1/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.3	25.7	7.8	80.9	5.37	-	34.91	-	2.6	-	1.3	-
11/1/2021	Mid-Flood	Sunny	Moderate	N2	15:53	5.3	Surface	1	1.0	25.8	7.9	112.1	7.66	7.62	31.04	32.75	1.8	1.9	<1.0	1.2
11/1/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	25.8	7.9	111.1	7.58	-	31.10	-	1.9	-	<1.0	-
11/1/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.3	26.1	7.9	115.8	7.72	7.58	34.49	-	1.9	-	1.6	-
11/1/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.3	26.6	7.9	112.4	7.43	-	34.37	-	2.0	-	1.2	-
11/1/2021	Mid-Flood	Sunny	Moderate	FCZ1A	15:29	3.2	Surface	1	1.0	25.8	8.0	125.2	8.55	8.55	31.17	31.43	1.9	2.1	3.1	1.7
11/1/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	25.8	8.0	125.3	8.55	-	31.23	-	2.0	-	<1.0	-
11/1/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.2	25.9	7.9	125.8	8.56	8.59	31.59	-	2.2	-	1.2	-
11/1/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.2	25.9	7.9	126.7	8.61	-	31.72	-	2.1	-	1.5	-
11/1/2021	Mid-Flood	Sunny	Moderate	H4A	15:41	1.6	Middle	1	0.8	25.8	8.0	126.2	8.63	8.64	31.01	31.00	2.1	2.1	1.1	1.1
11/1/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.8	25.8	8.0	126.6	8.65	-	30.98	-	2.1	-	1.1	-
11/1/2021	Mid-Flood	Sunny	Moderate	H1A	15:15	1.6	Middle	1	0.8	25.8	8.0	126.8	8.67	8.66	31.01	31.05	2.1	2.1	1.2	1.4
11/1/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.8	25.8	8.0	126.4	8.64	-	31.08	-	2.1	-	1.6	-
11/1/2021	Mid-Flood	Sunny	Moderate	M1A	15:02	1.2	Middle	1	0.6	25.8	8.0	125.6	8.59	8.57	30.91	30.91	2.0	2.0	1.2	1.6
11/1/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.6	25.8	8.0	124.9	8.54	-	30.90	-	2.0	-	1.9	-
11/1/2021	Mid-Flood	Sunny	Moderate	SGA	14:51	1.2	Middle	1	0.6	25.8	7.9	119.4	8.16	8.03	31.07	31.06	1.9	1.9	1.4	1.5
11/1/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.6	25.8	7.9	115.5	7.90	-	31.05	-	1.8	-	1.6	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count

Action Level - Value presented in bold Limit Level - Value presented in bold and underlined

3-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation.	D(mg		Sali P		Turb N		Suspend	ded Soild,
		Condition	Condition	Station		m			Depai	-0		%	ing	p L	P	pr		0		9/ L
												/0	Value	DA	Value	DA	Value	DA	Value	DA
11/3/2021	Mid-Ebb	Sunny	Moderate	С	9:47	9.3	Surface	1	1.0	26.0	7.7	100.7	6.74	6.40	34.07	34.48	2.4	2.5	1.8	1.8
11/3/2021	Mid-Ebb	Sunny	Moderate	č			Surface	2	1.0	26.1	7.6	99.1	6.62	-	34.28	-	2.5	-	1.6	-
11/3/2021	Mid-Ebb	Sunny	Moderate	č			Middle	1	4.7	26.1	7.7	92.8	6.20	-	34.48		2.4	-	2.0	-
11/3/2021	Mid-Ebb	Sunny	Moderate	č			Middle	2	4.7	26.0	7.6	90.7	6.05	-	34.51	-	2.5	-	1.6	-
11/3/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	1	8.3	25.9	7.6	82.2	5.49	5.55	34.76	-	2.6	-	2.1	-
11/3/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	2	8.3	25.9	7.6	83.8	5.60	-	34.75	-	2.7	-	17	-
11/3/2021	Mid-Ebb	Sunny	Moderate	N1	10:11	6.3	Surface	1	1.0	25.9	7.7	111.5	7.48	6.86	33.88	34.36	2.2	2.4	1.8	1.6
11/3/2021	Mid-Ebb	Sunny	Moderate	N1		0.0	Surface	2	1.0	26.0	7.7	109.2	7.32	-	33.97	-	2.2		1.6	-
11/3/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.2	26.0	7.7	93.8	6.27	-	34.33	-	2.3	-	1.7	-
11/3/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.2	26.0	7.7	95.3	6.36	-	34.51	-	2.4	-	1.7	-
11/3/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.3	25.9	7.7	86.4	5.77	5.81	34.72	-	2.5	-	1.4	-
11/3/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.3	25.9	7.7	87.4	5.84	-	34.72	-	2.6	-	1.5	-
11/3/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	11:05	3.2	Surface	1	1.0	26.4	7.7	102.9	6.88	6.86	33.04	33.40	2.2	2.3	1.0	1.7
11/3/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Surface	2	1.0	26.5	7.7	102.4	6.84	-	33.07	-	2.3	-	1.4	-
11/3/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.2	26.4	7.7	85.3	5.69	5.61	33.42	-	2.3	-	2.0	-
11/3/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.2	26.3	7.6	83.0	5.53	-	34.05	-	2.4	-	2.4	-
11/3/2021	Mid-Ebb	Sunny	Moderate	H4A	10:54	1.6	Middle	1	0.8	26.4	7.7	103.8	6.94	6.96	33.12	33.11	2.4	2.4	1.7	1.9
11/3/2021	Mid-Ebb	Sunny	Moderate	H4A			Middle	2	0.8	26.4	7.7	104.3	6.97	-	33.09	-	2.3	-	2.0	-
11/3/2021	Mid-Ebb	Sunny	Moderate	H1A	11:18	1.2	Middle	1	0.6	26.5	7.7	106.6	7.12	7.14	33.10	33.10	2.2	2.3	2.1	2.0
11/3/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.6	26.5	7.7	107.0	7.15	-	33.09	-	2.3	-	1.8	-
11/3/2021	Mid-Ebb	Sunny	Moderate	M1A	11:29	1.2	Middle	1	0.6	26.4	7.7	105.5	7.05	7.07	33.19	33.25	2.3	2.4	2.4	2.2
11/3/2021	Mid-Ebb	Sunny	Moderate	M1A			Middle	2	0.6	26.5	7.7	106.1	7.08	-	33.31	-	2.4	-	2.0	-
11/3/2021	Mid-Ebb	Sunny	Moderate	SGA	11:41	1.0	Middle	1	0.5	26.5	7.7	108.4	7.24	7.22	33.03	33.03	2.3	2.4	2.0	2.2
11/3/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.5	26.5	7.7	107.8	7.19	-	33.03	-	2.4	-	2.4	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

3-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, °C	рН	DO Saturation, %	Di mg		Sali Pi			idity, TU	Suspend	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/3/2021	Mid-Flood	Sunny	Moderate	С	18:14	9.5	Surface	1	1.0	26.3	7.8	120.3	8.04	7.69	33.52	34.07	2.3	2.4	2.9	2.5
11/3/2021	Mid-Flood	Sunny	Moderate	С			Surface	2	1.0	26.2	7.8	121.1	8.10	-	33.55	-	2.3	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	С			Middle	1	4.8	26.0	7.7	109.3	7.32	-	34.03	-	2.4	-	2.2	-
11/3/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.8	26.0	7.7	109.1	7.31	-	34.03	-	2.3	-	2.6	-
11/3/2021	Mid-Flood	Sunny	Moderate	С			Bottom	1	8.5	26.0	7.7	84.4	5.63	5.64	34.64	-	2.5	-	2.6	-
11/3/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.5	26.0	7.7	84.7	5.65	-	34.63	-	2.5	-	2.0	-
11/3/2021	Mid-Flood	Sunny	Moderate	N2	17:38	5.5	Surface	1	1.0	26.2	7.8	120.5	8.07	8.08	33.61	33.99	2.3	2.5	2.1	2.4
11/3/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	26.1	7.8	120.7	8.08	-	33.67	-	2.4	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.5	26.1	7.7	95.6	6.37	6.36	34.38	-	2.7	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.5	26.1	7.7	95.1	6.34	-	34.31	-	2.6	-	2.5	-
11/3/2021	Mid-Flood	Sunny	Moderate	FCZ1A	17:08	3.3	Surface	1	1.0	26.4	7.8	120.8	8.06	8.07	33.39	33.48	2.4	2.5	1.9	2.2
11/3/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	26.4	7.8	120.9	8.07	-	33.42	-	2.5	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.3	26.3	7.8	117.3	7.84	7.90	33.56	-	2.6	-	2.1	-
11/3/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.3	26.3	7.8	119.2	7.96	-	33.56	-	2.5	-	2.3	-
11/3/2021	Mid-Flood	Sunny	Moderate	H4A	17:22	1.8	Middle	1	0.9	26.4	7.8	121.5	8.11	8.12	33.40	33.40	2.3	2.3	2.4	2.6
11/3/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	26.4	7.8	121.6	8.12	-	33.40	-	2.2	-	2.8	-
11/3/2021	Mid-Flood	Sunny	Moderate	H1A	16:56	1.4	Middle	1	0.7	26.4	7.8	123.0	8.21	8.21	33.44	33.46	2.7	2.7	2.1	2.3
11/3/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.7	26.3	7.8	123.0	8.21	-	33.47	-	2.7	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	M1A	16:45	1.4	Middle	1	0.7	26.3	7.8	122.2	8.17	8.16	33.49	33.50	2.5	2.5	2.0	2.2
11/3/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.7	26.3	7.8	122.0	8.15	-	33.50	-	2.5	-	2.4	-
11/3/2021	Mid-Flood	Sunny	Moderate	SGA	16:33	1.4	Middle	1	0.7	26.3	7.8	118.1	7.89	7.91	33.56	33.56	2.4	2.4	2.7	2.5
11/3/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.7	26.3	7.8	118.7	7.93	-	33.56	-	2.3	-	2.3	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count Action Level - Value presented in bold

5-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature,	pН	DO Saturation.	D(mg		Sali		Turb	dity,	Suspend	ded Soild,
		Condition	Condition	Station		m			Depui	°C		%	ing	<i>۲</i>	P	pi.	""	0		9/1
												/0	Value	DA	Value	DA	Value	DA	Value	DA
11/5/2021	Mid-Ebb	Fine	Moderate	С	12:46	9.5	Surface	1	1.0	26.3	7.6	99.4	6.62	6.57	33.90	34.43	2.6	2.9	4.3	4.5
11/5/2021	Mid-Ebb	Fine	Moderate	č		0.0	Surface	2	1.0	26.3	7.6	99.3	6.62	-	33.92	-	2.7	-	4.2	-
11/5/2021	Mid-Ebb	Fine	Moderate	č			Middle	1	4.8	25.9	7.6	97.3	6.50		34,73	-	2.8		4.1	· .
11/5/2021	Mid-Ebb	Fine	Moderate	č			Middle	2	4.8	25.9	7.6	97.9	6.53		34.72		2.8		4.3	
11/5/2021	Mid-Ebb	Fine	Moderate	č			Bottom	1	8.5	25.9	7.6	93.3	6.23	6.26	34.67		3.2		5.1	· .
11/5/2021	Mid-Ebb	Fine	Moderate	č			Bottom	2	8.5	26.0	7.6	94.0	6.28	-	34.63		3.0		4.7	
11/5/2021	Mid-Ebb	Fine	Moderate	N1	12:31	6.4	Surface	1	1.0	26.3	7.6	104.7	6.99	6.84	34.00	34.38	2.0	2.3	3.2	3.8
11/5/2021	Mid-Ebb	Fine	Moderate	N1	12.01	0.4	Surface	2	1.0	26.3	7.6	102.0	6.80	-	33.95	-	2.1	-	2.9	-
11/5/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.2	26.1	7.6	100.1	6.69		34.44	-	2.4		3.7	· .
11/5/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.2	26.1	7.6	103.0	6.88		34.51		2.3		3.4	
11/5/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.4	26.0	7.6	98.2	6.55	6.54	34.64	-	2.5		4.7	· .
11/5/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.4	25.9	7.6	98.0	6.53		34.72	-	2.6		5.0	· .
11/5/2021	Mid-Ebb	Fine	Moderate	FCZ1A	11:42	3.4	Surface	1	1.0	26.4	7.6	111.2	7.41	7.42	33.82	33.95	1.6	1.9	4.0	3.7
11/5/2021	Mid-Ebb	Fine	Moderate	FCZ1A		0.0	Surface	2	1.0	26.4	7.6	111.6	7.43		33.86	-	1.6		3.8	-
11/5/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.4	26.3	7.6	111.3	7.41	7.41	34.04	-	2.3		3.3	· .
11/5/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.4	26.3	7.6	111.3	7.41	-	34.08	-	2.1	-	3.6	-
11/5/2021	Mid-Ebb	Fine	Moderate	H4A	11:55	1.8	Middle	1	0.9	26.5	7.6	111.7	7.43	7.41	33.74	33.77	2.4	2.5	4.8	5.0
11/5/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.9	26.4	7.6	111.0	7.39		33.79	-	2.6		5.1	-
11/5/2021	Mid-Ebb	Fine	Moderate	H1A	11:30	1.6	Middle	1	0.8	26.5	7.6	112.0	7.45	7.46	33.68	33.69	2.5	2.5	5.1	5.3
11/5/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.8	26.5	7.6	112.1	7.46	-	33.69	-	2.4	-	5.4	-
11/5/2021	Mid-Ebb	Fine	Moderate	M1A	11:18	1.4	Middle	1	0.7	26.5	7.6	111.5	7.42	7.42	33.69	33.69	2.5	2.5	4.5	4.7
11/5/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.7	26.5	7.6	111.3	7.41		33.69	-	2.4	-	4.9	
11/5/2021	Mid-Ebb	Fine	Moderate	SGA	11:06	1.2	Middle	1	0.6	26.5	7.6	109.7	7.30	7.27	33.64	33.65	2.5	2.5	3.5	3.6
11/5/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	26.5	7.6	108.8	7.24	-	33.66	-	2.4	-	3.6	

DA - Depth-averaged

Marine Water Quality Monitoring Results on

5-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, °C	pН	DO Saturation, %	D(mg		Sali P	nity, pt	Turb N	idity, TU	Suspend m	led Soild, g/L
												~~	Value	DA	Value	DA	Value	DA	Value	DA
11/5/2021	Mid-Flood	Fine	Moderate	C	5:10	9.7	Surface	1	1.0	26.1	7.5	99.1	6.60	6.47	34.59	34.70	2.8	2.9	2.9	3.7
11/5/2021	Mid-Flood	Fine	Moderate	c			Surface	2	1.0	26.2	7.5	99.0	6.62		34.55		2.8		3.2	
11/5/2021	Mid-Flood	Fine	Moderate	С			Middle	1	4.9	25.9	7.5	95.2	6.34	-	34.75	-	2.8	-	3.7	-
11/5/2021	Mid-Flood	Fine	Moderate	С			Middle	2	4.9	25.9	7.5	94.7	6.33	-	34.76	-	2.8		3.9	-
11/5/2021	Mid-Flood	Fine	Moderate	с			Bottom	1	8.7	25.9	7.5	93.4	6.24	6.28	34,77	-	3.2		4.0	-
11/5/2021	Mid-Flood	Fine	Moderate	C			Bottom	2	8.7	25.9	7.5	94.6	6.32	-	34.77	-	3.0	-	4.4	
11/5/2021	Mid-Flood	Fine	Moderate	N2	5:36	5.7	Surface	1	1.0	26.1	7.5	102.5	6.83	6.90	34.60	34.66	2.0	2.3	5.2	4.8
11/5/2021	Mid-Flood	Fine	Moderate	N2			Surface	2	1.0	26.1	7.5	104.2	6.96	-	34.64	-	1.9	-	5.0	-
11/5/2021	Mid-Flood	Fine	Moderate	N2			Bottom	1	4.7	26.0	7.5	102.6	6.85	6.81	34.69	-	2.5	-	4.2	-
11/5/2021	Mid-Flood	Fine	Moderate	N2			Bottom	2	4.7	25.9	7.5	101.4	6.76	-	34.71	-	2.9	-	4.6	
11/5/2021	Mid-Flood	Fine	Moderate	FCZ1A	6:01	3.4	Surface	1	1.0	26.2	7.6	106.3	7.08	7.12	34.55	34.61	2.3	2.3	3.4	3.9
11/5/2021	Mid-Flood	Fine	Moderate	FCZ1A			Surface	2	1.0	26.2	7.6	107.3	7.15	-	34.55	-	2.2		3.1	-
11/5/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	1	2.4	26.0	7.6	107.1	7.14	7.08	34.66	-	2.1	-	4.4	-
11/5/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	2	2.4	26.0	7.6	105.2	7.02	-	34.68	-	2.4	-	4.5	-
11/5/2021	Mid-Flood	Fine	Moderate	H4A	5:48	1.6	Middle	1	0.8	26.2	7.6	107.5	7.16	7.14	34.54	34.55	2.5	2.6	4.4	4.6
11/5/2021	Mid-Flood	Fine	Moderate	H4A			Middle	2	0.8	26.2	7.6	106.9	7.12	-	34.55	-	2.7	-	4.7	-
11/5/2021	Mid-Flood	Fine	Moderate	H1A	6:13	1.4	Middle	1	0.7	26.2	7.6	108.1	7.20	7.20	34.53	34.53	2.3	2.7	6.2	6.0
11/5/2021	Mid-Flood	Fine	Moderate	H1A			Middle	2	0.7	26.2	7.6	108.3	7.20	-	34.52	-	3.1	-	5.8	
11/5/2021	Mid-Flood	Fine	Moderate	M1A	6:26	1.0	Middle	1	0.5	26.2	7.6	108.3	7.21	7.20	34.52	34.50	2.2	2.4	6.2	<u>6.1</u>
11/5/2021	Mid-Flood	Fine	Moderate	M1A			Middle	2	0.5	26.3	7.6	108.0	7.18	-	34.48	-	2.6	-	5.9	-
11/5/2021	Mid-Flood	Fine	Moderate	SGA	6:37	1.0	Middle	1	0.5	26.3	7.6	108.2	7.19	7.19	34.48	34.49	2.4	2.4	5.2	5.4
11/5/2021	Mid-Flood	Fine	Moderate	SGA			Middle	2	0.5	26.3	7.6	108.2	7.19	-	34.50	-	2.3	-	5.6	-

DA - Depth-averaged DO - Dissolved Oxygen

* denoted the estimated count

Action Level - Value presented in bold

8-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D(mg		Sali P	nity, pt	Turbi NT		Suspend mg	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/8/2021	Mid-Ebb	Sunny	Moderate	С	14:35	9.5	Surface	1	1.0	25.7	7.7	91.8	6.14	6.13	34.94	34.95	1.7	1.8	4.5	4.9
11/8/2021	Mid-Ebb	Sunny	Moderate	С			Surface	2	1.0	25.7	7.7	92.1	6.16		34,94	-	1.8	-	5.5	-
11/8/2021	Mid-Ebb	Sunny	Moderate	С			Middle	1	4.8	25.7	7.7	90.9	6.08		34.95	-	1.9	-	4.7	-
11/8/2021	Mid-Ebb	Sunny	Moderate	С			Middle	2	4.8	25.8	7.7	91.7	6.13		34.94	-	1.8	-	5.4	-
11/8/2021	Mid-Ebb	Sunny	Moderate	с			Bottom	1	8.5	25.7	7.7	91.9	6.15	6.14	34.95	-	1.8	-	5.0	-
11/8/2021	Mid-Ebb	Sunny	Moderate	c			Bottom	2	8.5	25.7	7.7	91.5	6.12	-	34.96	-	1.9	-	4.2	-
11/8/2021	Mid-Ebb	Sunny	Moderate	N1	14:23	6.6	Surface	1	1.0	25.7	7.7	95.2	6.37	6.36	34.93	34,94	1.8	1.8	4.1	4.5
11/8/2021	Mid-Ebb	Sunny	Moderate	N1			Surface	2	1.0	25.8	7.7	95.1	6.37	-	34.93	-	1.8	-	5.0	-
11/8/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.3	25.8	7.7	94.9	6.35		34.94	-	1.9	-	4.4	-
11/8/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.3	25.8	7.7	94.8	6.34		34.94	-	1.8	-	4.9	-
11/8/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.6	25.8	7.7	94.9	6.35	6.34	34.94	-	1.8	-	3.8	-
11/8/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.6	25.8	7.7	94.7	6.33		34.95	-	1.8	-	4.5	-
11/8/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	13:42	3.4	Surface	1	1.0	25.8	7.7	96.4	6.45	6.45	34.92	34.93	1.7	1.8	4.2	4.0
11/8/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Surface	2	1.0	25.7	7.7	96.3	6.44		34.93	-	1.8	-	3.4	-
11/8/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.4	25.8	7.7	96.1	6.43	6.44	34.93	-	1.8	-	4.4	-
11/8/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.4	25.8	7.7	96.2	6.44		34.93	-	1.8	-	3.9	-
11/8/2021	Mid-Ebb	Sunny	Moderate	H4A	13:55	1.6	Middle	1	0.8	25.8	7.7	96.5	6.46	6.45	34.93	34.93	1.8	1.8	4.5	4.5
11/8/2021	Mid-Ebb	Sunny	Moderate	H4A			Middle	2	0.8	25.8	7.7	96.3	6.44		34.93	-	1.7	-	4.4	-
11/8/2021	Mid-Ebb	Sunny	Moderate	H1A	13:28	1.8	Middle	1	0.9	25.8	7.7	95.8	6.41	6.42	34.93	34.93	1.9	2.0	4.3	4.1
11/8/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.9	25.8	7.7	96.0	6.42	-	34.93	-	2.0	-	3.9	-
11/8/2021	Mid-Ebb	Sunny	Moderate	M1A	13:15	1.2	Middle	1	0.6	25.7	7.7	96.8	6.47	6.48	34.92	34.92	1.7	1.7	3.7	3.4
11/8/2021	Mid-Ebb	Sunny	Moderate	M1A			Middle	2	0.6	25.8	7.7	96.9	6.48	-	34.92	-	1.7	-	3.0	-
11/8/2021	Mid-Ebb	Sunny	Moderate	SGA	13:03	1.2	Middle	1	0.6	25.7	7.7	97.9	6.55	6.59	34.92	34.92	1.8	1.8	4.5	4.4
11/8/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.6	25.8	7.7	99.0	6.63	-	34.92	-	1.8	-	4.2	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

8-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth.	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation.	Domo		Sali		Turb N	idity, FU	Suspend	led Soild, a/L
						m				, i i i i i i i i i i i i i i i i i i i		%		, 						,
													Value	DA	Value	DA	Value	DA	Value	DA
11/8/2021	Mid-Flood	Sunny	Moderate	С	7:38	9.5	Surface	1	1.0	25.9	7.7	99.9	6.68	6.38	34.82	34.82	2.5	2.7	3.8	4.8
11/8/2021	Mid-Flood	Sunny	Moderate	С			Surface	2	1.0	25.9	7.7	99.2	6.63	-	34.81	-	2.6	-	4.5	-
11/8/2021	Mid-Flood	Sunny	Moderate	С			Middle	1	4.8	25.9	7.7	93.4	6.13	-	34.81	-	2.5	-	5.0	-
11/8/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.8	25.9	7.7	92.7	6.09	-	34.82	-	2.7	-	4.4	-
11/8/2021	Mid-Flood	Sunny	Moderate	С			Bottom	1	8.5	25.8	7.7	91.3	5.93	5.91	34.83	-	2.9	-	6.0	-
11/8/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.5	25.8	7.7	90.4	5.88	-	34.82	-	3.0	-	5.3	-
11/8/2021	Mid-Flood	Sunny	Moderate	N2	8:04	5.5	Surface	1	1.0	25.9	7.7	100.6	6.72	6.71	34.82	34.82	2.3	2.3	3.8	4.5
11/8/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	25.9	7.7	100.3	6.70	-	34.82	-	2.2	-	4.0	-
11/8/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.5	25.9	7.7	100.5	6.71	6.71	34.82	-	2.3	-	5.1	-
11/8/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.5	25.9	7.7	100.3	6.70	-	34.82	-	2.3		4.9	-
11/8/2021	Mid-Flood	Sunny	Moderate	FCZ1A	8:30	3.3	Surface	1	1.0	25.9	7.7	100.7	6.73	6.72	34.82	34.82	2.1	2.2	5.0	4.8
11/8/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	25.9	7.7	100.3	6.70	-	34.82	-	2.1	-	5.8	-
11/8/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.3	25.9	7.7	100.6	6.72	6.72	34.82	-	2.2	-	4.5	-
11/8/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.3	25.9	7.7	100.4	6.71	-	34.82	-	2.2	-	4.0	-
11/8/2021	Mid-Flood	Sunny	Moderate	H4A	8:17	1.8	Middle	1	0.9	25.9	7.7	100.5	6.71	6.72	34.82	34.82	2.2	2.2	3.4	3.8
11/8/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	25.9	7.7	100.7	6.72	-	34.82	-	2.2	-	4.1	-
11/8/2021	Mid-Flood	Sunny	Moderate	H1A	8:42	1.6	Middle	1	0.8	25.9	7.7	100.6	6.72	6.72	34.82	34.82	2.0	2.2	4.5	4.4
11/8/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.8	25.9	7.7	100.5	6.72	-	34.82	-	2.3	-	4.3	-
11/8/2021	Mid-Flood	Sunny	Moderate	M1A	8:55	1.2	Middle	1	0.6	25.9	7.7	100.9	6.74	6.74	34.82	34.82	2.0	2.0	4.8	5.0
11/8/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.6	25.9	7.7	100.8	6.73	-	34.82	-	2.0	-	5.2	-
11/8/2021	Mid-Flood	Sunny	Moderate	SGA	9:07	1.0	Middle	1	0.5	25.9	7.7	100.6	6.72	6.73	34.82	34.82	1.8	1.9	4.3	4.2
11/8/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.5	25.9	7.7	100.7	6.73	-	34.82	-	1.9	-	4.0	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count

Action Level - Value presented in bold Limit Level - Value presented in bold and underlined

10-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D(mg		Sali P		Turbi NT		Suspend	led Soild, g/L
												~	Value	DA	Value	DA	Value	DA	Value	DA
11/10/2021	Mid-Ebb	Fine	Moderate	С	2:41	9.8	Surface	1	1.0	24.7	7.6	84.2	5.64	5.53	33.09	34.24	3.7	3.9	7.7	5.8
11/10/2021	Mid-Ebb	Fine	Moderate	С			Surface	2	1.0	24.7	7.6	87.2	6.00		33.08	-	3.6	-	7.4	-
11/10/2021	Mid-Ebb	Fine	Moderate	С			Middle	1	4.9	25.8	7.5	76.1	5.24		34.67	-	3.8	-	5.8	-
11/10/2021	Mid-Ebb	Fine	Moderate	С			Middle	2	4.9	25.8	7.5	78.2	5.23		34.62	-	3.9	-	5.7	-
11/10/2021	Mid-Ebb	Fine	Moderate	С			Bottom	1	8.8	25.7	7.5	73.9	5.03	5.08	34.91	-	4.2	-	4.4	-
11/10/2021	Mid-Ebb	Fine	Moderate	С			Bottom	2	8.8	25.6	7.5	74.7	5.13	-	35.04	-	4.0	-	4.0	-
11/10/2021	Mid-Ebb	Fine	Moderate	N1	2:52	6.4	Surface	1	1.0	24.8	7.7	92.5	6.36	6.24	33.07	33.63	2.7	2.8	4.4	5.0
11/10/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	24.7	7.7	93.5	6.39	-	33.08	-	2.7	-	4.3	-
11/10/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.2	25.4	7.6	87.3	6.01	-	32.89	-	2.9	-	5.5	-
11/10/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.2	24.8	7.6	89.9	6.19	-	33.20	-	3.1	-	5.4	-
11/10/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.4	25.7	7.6	85.4	5.88	5.89	34.81	-	2.7	-	5.1	-
11/10/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.4	25.7	7.6	87.8	5.89		34.73	-	2.4	-	5.0	-
11/10/2021	Mid-Ebb	Fine	Moderate	FCZ1A	3:30	3.4	Surface	1	1.0	24.7	7.7	102.8	7.07	7.03	33.08	33.10	2.7	2.7	6.4	6.7
11/10/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	24.7	7.7	101.4	6.98		33.08	-	2.7	-	6.1	-
11/10/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.4	24.7	7.7	100.5	6.91	6.97	33.10	-	2.7	-	7.0	-
11/10/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.4	24.7	7.7	102.2	7.03		33.12	-	2.7	-	7.4	-
11/10/2021	Mid-Ebb	Fine	Moderate	H4A	3:18	1.6	Middle	1	0.8	24.8	7.7	99.6	6.85	6.84	33.07	33.08	2.9	3.2	6.6	6.5
11/10/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.8	24.8	7.7	99.2	6.82		33.08	-	3.4	-	6.3	-
11/10/2021	Mid-Ebb	Fine	Moderate	H1A	3:43	1.4	Middle	1	0.7	24.8	7.7	101.3	6.96	6.95	33.07	33.07	2.6	2.7	5.0	5.2
11/10/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.7	24.8	7.7	101.0	6.94	-	33.07	-	2.8	-	5.4	-
11/10/2021	Mid-Ebb	Fine	Moderate	M1A	3:55	1.2	Middle	1	0.6	24.8	7.7	100.9	6.93	6.93	33.07	33.07	3.2	2.9	4.6	4.7
11/10/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.6	24.8	7.7	100.9	6.93	-	33.07	-	2.6	-	4.8	-
11/10/2021	Mid-Ebb	Fine	Moderate	SGA	4:10	1.2	Middle	1	0.6	24.8	7.7	101.0	6.94	6.94	33.07	33.07	3.5	3.3	6.4	6.7
11/10/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	24.8	7.7	100.9	6.93	-	33.07	-	3.1	-	7.0	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

10-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation,	D(mg		Sali Pl		Turbi N1	idity, FU	Suspend m	led Soild, g/L
						m						%	Value	DA	Value	DA	Value	DA	Value	DA
11/10/2021	Mid-Flood	Sunny	Moderate	С	16:44	9.7	Surface	1	1.0	25.1	7.7	89.9	6.08	5.97	33.21	34.15	4.3	4.3	5.4	6.6
11/10/2021	Mid-Flood	Sunny	Moderate	č	10.44	5.1	Surface	1	1.0	25.1	7.7	88.7	5.93	5.57	33.19	34.15	4.3		5.4	0.0
				c				2		25.6	7.6	87.8		-	34.26	-		-		
11/10/2021	Mid-Flood	Sunny	Moderate	-			Middle	1	4.9				6.00	-		-	4.4	-	7.4	-
11/10/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.9	25.6	7.6	87.2	5.85	-	34.29	-	3.9	-	7.1	-
11/10/2021	Mid-Flood	Sunny	Moderate	С			Bottom	1	8.7	25.6	7.6	75.3	5.14	5.14	34.87	-	4.5	-	7.0	-
11/10/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.7	25.5	7.7	75.1	5.13	-	35.08	-	4.4	-	7.6	-
11/10/2021	Mid-Flood	Sunny	Moderate	N2	16:18	5.7	Surface	1	1.0	25.1	7.7	94.5	6.40	6.33	33.21	33.84	2.7	2.7	5.0	4.9
11/10/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	25.1	7.7	92.1	6.25	-	33.19	-	2.6	-	5.2	-
11/10/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.7	25.2	7.7	89.8	6.13	6.13	34.50	-	2.5	-	4.9	-
11/10/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.7	25.1	7.7	89.7	6.13	-	34.46	-	3.1	-	4.5	-
11/10/2021	Mid-Flood	Sunny	Moderate	FCZ1A	15:53	3.4	Surface	1	1.0	25.0	7.7	96.7	6.62	6.60	33.24	33.25	2.8	2.9	3.4	4.2
11/10/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	25.1	7.7	96.1	6.57	-	33.21	-	2.8	-	3.6	-
11/10/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.4	25.0	7.7	94.9	6.49	6.52	33.28	-	2.8	-	5.1	-
11/10/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.4	25.0	7.7	95.8	6.55	-	33.28	-	3.2	-	4.7	-
11/10/2021	Mid-Flood	Sunny	Moderate	H4A	16:07	1.8	Middle	1	0.9	25.1	7.7	98.4	6.72	6.72	33.20	33.20	3.8	4.0	7.0	6.8
11/10/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	25.1	7.7	98.3	6.71	-	33.20	-	4.1		6.5	
11/10/2021	Mid-Flood	Sunny	Moderate	H1A	15:40	1.4	Middle	1	0.7	25.1	7.6	105.7	7.22	7.10	33.13	33.16	2.8	3.0	7.8	7.7
11/10/2021	Mid-Flood	Sunny	Moderate	H1A	13.40	1.4	Middle	2	0.7	25.1	7.7	102.3	6.98	-	33.18	-	3.2	-	7.5	
11/10/2021	Mid-Flood	Sunny	Moderate	M1A	15:26	1.4	Middle	1	0.7	24.7	7.7	102.5	6.89	6.89	33.00	33.01	3.1	3.0	7.0	7.3
11/10/2021	Mid-Flood	Sunny	Moderate	MIA	13.20	1.4	Middle	2	0.7	24.7	7.7	100.0	6.89	-	33.01	33.01	2.9	-	7.6	-
11/10/2021	Mid-Flood	Sunny	Moderate	SGA	15:15	1.2	Middle	2	0.6	24.7	7.7	100.0	6.89	6.90	33.01	33.01	3.5	3.3	6.4	6.2
11/10/2021	Mid-Flood		Moderate	SGA	10:15	1.2	Middle		0.6	24.7	7.7	100.1	6.91	0.90	33.01	33.01	3.5	0.0	5.9	
11/10/2021	wild-r"lood	Sunny	wouerate	BGA			iviidale	2	0.0	24.1	1.1	100.5	0.91	-	33.01	-	3.0	-	5.9	-

12-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D(mg		Sali P		Turbi N1	idity, ⁻U	Suspend mg	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/12/2021	Mid-Ebb	Fine	Moderate	С	5:11	9.2	Surface	1	1.0	24.7	7.6	101.4	6.91	6.83	34.83	34.85	2.8	2.9	4.0	4.3
11/12/2021	Mid-Ebb	Fine	Moderate	С			Surface	2	1.0	24.6	7.6	101.0	6.90	-	34.83	-	2.8	-	4.1	-
11/12/2021	Mid-Ebb	Fine	Moderate	С			Middle	1	4.6	24.3	7.6	97.5	6.69	-	34.85	-	2.9	-	4.2	-
11/12/2021	Mid-Ebb	Fine	Moderate	С			Middle	2	4.6	24.3	7.6	99.7	6.83	-	34.86	-	2.9	-	4.2	-
11/12/2021	Mid-Ebb	Fine	Moderate	С			Bottom	1	8.2	24.3	7.6	96.8	6.64	6.70	34.85	-	2.9	-	4.4	-
11/12/2021	Mid-Ebb	Fine	Moderate	С			Bottom	2	8.2	24.4	7.6	98.4	6.75	-	34.88	-	2.9	-	4.6	-
11/12/2021	Mid-Ebb	Fine	Moderate	N1	5:23	6.2	Surface	1	1.0	24.4	7.6	101.3	6.95	6.88	34.86	34.84	2.5	2.5	4.0	3.5
11/12/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	24.4	7.6	100.2	6.87	-	34.85	-	2.6	-	3.9	-
11/12/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.1	24.3	7.6	100.1	6.86	-	34.82	-	2.5	-	3.6	-
11/12/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.1	24.3	7.6	99.9	6.84	-	34.81	-	2.5	-	3.6	-
11/12/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.2	24.3	7.6	99.4	6.82	6.80	34.86	-	2.6	-	3.1	-
11/12/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.2	24.3	7.6	98.8	6.78	-	34.85	-	2.5	-	3.0	-
11/12/2021	Mid-Ebb	Fine	Moderate	FCZ1A	5:55	3.3	Surface	1	1.0	24.6	7.7	106.0	7.24	7.24	34.84	34.81	2.7	2.6	6.1	4.9
11/12/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	24.7	7.7	106.1	7.24	-	34.84	-	2.5	-	5.9	-
11/12/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.3	24.5	7.7	106.0	7.25	7.24	34.79	-	2.6	-	3.9	-
11/12/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.3	24.5	7.7	105.8	7.23	-	34.78		2.5	-	3.5	-
11/12/2021	Mid-Ebb	Fine	Moderate	H4A	5:44	1.6	Middle	1	0.8	24.8	7.7	106.0	7.21	7.21	34.81	34.84	2.7	2.8	4.0	4.0
11/12/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.8	24.7	7.6	105.8	7.21	-	34.87	-	2.8	-	3.9	-
11/12/2021	Mid-Ebb	Fine	Moderate	H1A	6:06	1.4	Middle	1	0.7	24.7	7.7	106.8	7.27	7.27	34.87	34.86	2.1	2.1	3.4	3.4
11/12/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.7	24.8	7.7	106.7	7.26	-	34.85	-	2.1	-	3.3	-
11/12/2021	Mid-Ebb	Fine	Moderate	M1A	6:16	1.2	Middle	1	0.6	24.9	7.7	106.9	7.26	7.26	34.84	34.84	2.1	2.1	3.0	3.1
11/12/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.6	24.9	7.7	106.9	7.26	-	34.84	-	2.1	-	3.2	-
11/12/2021	Mid-Ebb	Fine	Moderate	SGA	6:29	1.2	Middle	1	0.6	24.8	7.7	106.8	7.27	7.27	34.85	34.86	2.5	2.6	2.2	2.2
11/12/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	24.6	7.7	106.5	7.26	-	34.86	-	2.6	-	2.2	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

12-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation.	DO		Sali	nity, ot	Turb N	idity,		led Soild, g/L
		Condition	Condition	Station		m			Depui	C		%	ing	g/L		pt				<i>y</i> c
													Value	DA	Value	DA	Value	DA	Value	DA
11/12/2021	Mid-Flood	Fine	Moderate	С	19:32	9.1	Surface	1	1.0	24.6	7.7	100.2	6.84	6.79	34.83	34.85	3.2	3.2	4.5	4.5
11/12/2021	Mid-Flood	Fine	Moderate	С			Surface	2	1.0	24.6	7.7	99.3	6.78	-	34.80	-	3.2	-	4.5	-
11/12/2021	Mid-Flood	Fine	Moderate	С			Middle	1	4.6	24.3	7.6	98.1	6.72	-	34.82	-	3.2	-	4.4	-
11/12/2021	Mid-Flood	Fine	Moderate	С			Middle	2	4.6	24.4	7.6	99.8	6.83	-	34.85	-	3.1	-	4.5	-
11/12/2021	Mid-Flood	Fine	Moderate	С			Bottom	1	8.1	24.4	7.7	97.6	6.69	6.65	34.90	-	3.1	-	4.6	-
11/12/2021	Mid-Flood	Fine	Moderate	С			Bottom	2	8.1	24.4	7.7	96.4	6.61	-	34.90	-	3.1	-	4.5	-
11/12/2021	Mid-Flood	Fine	Moderate	N2	19:11	5.5	Surface	1	1.0	24.4	7.7	102.4	7.01	7.03	34.86	34.82	2.4	2.4	2.7	2.9
11/12/2021	Mid-Flood	Fine	Moderate	N2			Surface	2	1.0	24.4	7.7	102.9	7.05	-	34.86	-	2.4	-	2.6	-
11/12/2021	Mid-Flood	Fine	Moderate	N2			Bottom	1	4.5	24.3	7.7	104.8	7.20	7.13	34.79	-	2.4	-	3.1	-
11/12/2021	Mid-Flood	Fine	Moderate	N2			Bottom	2	4.5	24.3	7.7	103.0	7.06	-	34.78	-	2.4	-	3.1	-
11/12/2021	Mid-Flood	Fine	Moderate	FCZ1A	18:46	3.2	Surface	1	1.0	24.7	7.7	107.0	7.30	7.30	34.83	34.81	2.4	2.4	3.4	3.3
11/12/2021	Mid-Flood	Fine	Moderate	FCZ1A			Surface	2	1.0	24.7	7.7	107.0	7.30	-	34.83	-	2.5	-	3.3	-
11/12/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	1	2.2	24.6	7.7	106.9	7.29	7.29	34.78	-	2.4	-	3.2	-
11/12/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	2	2.2	24.5	7.7	106.5	7.28	-	34.81	-	2.4	-	3.2	-
11/12/2021	Mid-Flood	Fine	Moderate	H4A	18:57	1.6	Middle	1	0.8	24.8	7.7	107.5	7.31	7.32	34.84	34.85	2.3	2.4	3.3	3.5
11/12/2021	Mid-Flood	Fine	Moderate	H4A			Middle	2	0.8	24.7	7.7	107.6	7.33	-	34.85	-	2.4	-	3.6	-
11/12/2021	Mid-Flood	Fine	Moderate	H1A	18:36	1.4	Middle	1	0.7	24.9	7.7	106.9	7.26	7.27	34.84	34.85	1.9	1.9	2.9	2.9
11/12/2021	Mid-Flood	Fine	Moderate	H1A			Middle	2	0.7	24.9	7.7	107.0	7.27	-	34.85	-	1.9	-	2.9	-
11/12/2021	Mid-Flood	Fine	Moderate	M1A	18:24	1.2	Middle	1	0.6	24.9	7.7	107.3	7.29	7.30	34.85	34.85	2.3	2.4	2.2	2.2
11/12/2021	Mid-Flood	Fine	Moderate	M1A			Middle	2	0.6	24.8	7.7	107.3	7.30	-	34.85	-	2.4	-	2.2	-
11/12/2021	Mid-Flood	Fine	Moderate	SGA	18:15	1.2	Middle	1	0.6	24.6	7.7	106.9	7.30	7.29	34.86	34.85	2.4	2.4	2.6	2.8
11/12/2021	Mid-Flood	Fine	Moderate	SGA			Middle	2	0.6	24.8	7.7	107.1	7.28	-	34.84	-	2.4	-	2.9	-

15-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather	Sea	Monitoring	Time	Water	Water Level	Replicate		Temperature,	pН	DO	D			nity,		idity,		led Soild,
		Condition	Condition	Station		Depth,			Depth	°C		Saturation,	mg	3/L	P	pt	I NI	U	mg	J/L
						m						%	Value	DA	Value	DA	Value	DA	Value	DA
44/45/2024	ARE THE	0	Madaaata	0	8:32	0.0	0	4	10	24.2	7.0	440.0		7.31				2.2		1.7
11/15/2021	Mid-Ebb	Sunny	Moderate	C	8:32	9.2	Surface	1	1.0	24.2	7.8	110.6	7.66		33.67	34.00	2.1		1.4	
11/15/2021	Mid-Ebb	Sunny	Moderate	C			Surface	2	1.0	24.2	7.8	110.7	7.67		33.67	-	2.0	-	1.2	-
11/15/2021	Mid-Ebb	Sunny	Moderate	С			Middle	1	4.6	24.2	7.7	100.4	6.94	-	33.78	-	2.1	-	1.8	-
11/15/2021	Mid-Ebb	Sunny	Moderate	C			Middle	2	4.6	24.2	7.8	100.6	6.96	-	33.81	-	2.2	-	1.6	-
11/15/2021	Mid-Ebb	Sunny	Moderate	C			Bottom	1	8.2	24.7	7.7	76.8	5.24	5.24	34.44	-	2.4	-	2.1	-
11/15/2021	Mid-Ebb	Sunny	Moderate	C			Bottom	2	8.2	24.7	7.7	76.7	5.23	-	34.63	-	2.3	-	2.0	-
11/15/2021	Mid-Ebb	Sunny	Moderate	N1	8:56	6.3	Surface	1	1.0	24.2	7.8	113.4	7.84	7.52	33.65	33.81	2.0	2.0	1.3	1.4
11/15/2021	Mid-Ebb	Sunny	Moderate	N1			Surface	2	1.0	24.2	7.8	114.0	7.89	-	33.66	-	2.0	-	1.3	-
11/15/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.2	24.2	7.8	103.5	7.22	-	33.72	-	2.0	-	1.3	-
11/15/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.2	24.2	7.7	102.8	7.12	-	33.73	-	2.0	-	1.6	-
11/15/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.3	24.2	7.8	84.0	5.76	5.72	33.80	-	2.1	-	1.5	-
11/15/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.3	24.6	7.7	82.9	5.67		34.31	-	2.1	-	1.5	-
11/15/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	9:52	3.2	Surface	1	1.0	24.2	7.8	118.6	8.20	8.21	33.62	33.66	2.1	2.1	1.4	1.7
11/15/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	0.02		Surface	2	1.0	24.2	7.8	118.9	8.22	-	33.62	-	2.1	-	1.4	
11/15/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.2	24.2	7.8	115.6	8.00	8.00	33.69		2.2	-	2.1	-
11/15/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.2	24.2	7.8	115.4	7.99	-	33.70		2.1	-	1.8	-
11/15/2021	Mid-Ebb	Sunny	Moderate	H4A	9:40	1.6	Middle	1	0.8	24.2	7.8	117.4	8.13	8,14	33.63	33.63	2.1	2.1	1.5	1.6
11/15/2021	Mid-Ebb	Sunny	Moderate	H4A	5.40	1.0	Middle	2	0.8	24.2	7.8	117.8	8.15	0.14	33.63	-	2.1		1.6	
11/15/2021	Mid-Ebb	Sunny	Moderate	H1A	10:05	1.2	Middle	1	0.6	24.2	7.8	121.0	8.38	8.37	33.62	33.62	2.1	2.2	1.4	1.4
11/15/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.6	24.2	7.8	120.7	8.36	-	33.62	-	2.2	-	1.4	
11/15/2021	Mid-Ebb	Sunny	Moderate	M1A	10.16	1.2	Middle	1	0.6	24.2	7.8	118.3	8.19	8,16	33.68	33.68	2.2	2.2	1.4	1.2
11/15/2021	Mid-Ebb	Sunny	Moderate	M1A	10.10	1.2	Middle	2	0.6	24.2	7.8	117.5	8 13	0.10	33.68	55.00	2.2	-	1.1	1.2
11/15/2021	Mid-Ebb	Sunny	Moderate	SGA	10:27	1.2	Middle	1	0.6	24.2	7.8	120.7	8.35	8.33	33.59	33.60	2.2	2.3	2.4	2.5
				SGA	10.27	1.2			0.6		7.8					33.00		2.5	2.4	2.5
11/15/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.6	24.2	6.1	120.0	8.30	-	33.60	-	2.3	-	2.6	

DA - Depth-averaged

Marine Water Quality Monitoring Results on

15-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, °C	рН	DO Saturation, %	D(mg		Sali P	nity, pt	Turb N	idity, TU	Suspend mg	
						m						70	Value	DA	Value	DA	Value	DA	Value	DA
11/15/2021	Mid-Flood	Sunny	Moderate	С	16:46	9.5	Surface	1	1.0	24.7	7.8	120.5	8.26	7.67	33.88	34.09	2.2	2.2	2.5	2.4
11/15/2021	Mid-Flood	Sunny	Moderate	с			Surface	2	1.0	24.7	7.8	119.8	8.21	-	33.90	-	2.2	-	2.4	-
11/15/2021	Mid-Flood	Sunny	Moderate	с			Middle	1	4.8	24.7	7.8	104.1	7.15	-	33.94	-	2.2	-	2.0	-
11/15/2021	Mid-Flood	Sunny	Moderate	с			Middle	2	4.8	24.8	7.7	103.2	7.06	-	34.03	-	2.2	-	1.9	-
11/15/2021	Mid-Flood	Sunny	Moderate	С			Bottom	1	8.5	25.1	7.7	82.8	5.62	5.54	34.38	-	2.3	-	2.6	-
11/15/2021	Mid-Flood	Sunny	Moderate	c			Bottom	2	8.5	25.1	7.7	80.3	5.45	-	34.40	-	2.3	-	2.7	-
11/15/2021	Mid-Flood	Sunny	Moderate	N2	16:06	5.5	Surface	1	1.0	24.6	7.8	118.4	8.12	8.12	33.88	34.00	2.1	2.1	3.0	2.5
11/15/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	24.6	7.8	118.4	8.12	-	33.89	-	2.0	-	2.7	-
11/15/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.5	24.9	7.7	98.8	6.74	6.75	34.10	-	2.2	-	2.0	-
11/15/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.5	24.9	7.7	98.9	6.75	-	34.13	-	2.1		2.2	-
11/15/2021	Mid-Flood	Sunny	Moderate	FCZ1A	15:29	3.3	Surface	1	1.0	24.6	7.8	117.6	8.07	8.07	33.90	34.02	2.2	2.2	1.6	1.8
11/15/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	24.6	7.8	117.5	8.06	-	33.91	-	2.2	-	1.6	-
11/15/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.3	24.8	7.8	100.6	6.87	6.93	34.13	-	2.3	-	1.8	-
11/15/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.3	24.8	7.7	102.3	6.99	-	34.13	-	2.2	-	2.0	-
11/15/2021	Mid-Flood	Sunny	Moderate	H4A	15:45	1.8	Middle	1	0.9	24.6	7.8	123.1	8.45	8.44	33.88	33.89	2.2	2.2	2.6	2.8
11/15/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	24.6	7.8	122.7	8.42	-	33.89	-	2.2	-	2.9	-
11/15/2021	Mid-Flood	Sunny	Moderate	H1A	15:16	1.2	Middle	1	0.6	24.6	7.8	119.3	8.18	8.15	33.99	34.00	2.3	2.3	1.8	1.9
11/15/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.6	24.7	7.8	118.5	8.12	-	34.00	-	2.3	-	1.9	-
11/15/2021	Mid-Flood	Sunny	Moderate	M1A	15:05	1.4	Middle	1	0.7	24.6	7.8	123.4	8.47	8.44	33.93	33.94	2.4	2.4	1.8	1.8
11/15/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.7	24.6	7.8	122.6	8.41	-	33.94	-	2.4	-	1.8	-
11/15/2021	Mid-Flood	Sunny	Moderate	SGA	14:55	1.4	Middle	1	0.7	24.7	7.8	123.0	8.43	8.44	33.88	33.88	2.3	2.3	2.3	2.2
11/15/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.7	24.7	7.8	123.2	8.44	-	33.88	-	2.3	-	2.0	-

17-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D(mg		Sali P		Turbi NT		Suspend mg	led Soild, g/L
												10	Value	DA	Value	DA	Value	DA	Value	DA
11/17/2021	Mid-Ebb	Sunny	Moderate	С	9:49	9.7	Surface	1	1.0	24.4	7.6	92.1	6.36	6.00	33.42	34.55	2.6	2.9	2.1	2.6
11/17/2021	Mid-Ebb	Sunny	Moderate	č			Surface	2	1.0	24.4	7.6	91.9	6.35		33.42	-	2.5	-	2.4	-
11/17/2021	Mid-Ebb	Sunny	Moderate	č			Middle	1	4.9	24.5	7.5	81.9	5.58	-	35.05	-	2.9	-	2.8	-
11/17/2021	Mid-Ebb	Sunny	Moderate	č			Middle	2	4.9	24.4	7.5	82.8	5.69	-	35.10	-	2.6	-	2.6	-
11/17/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	1	8.7	24.3	7.4	78.5	5.33	5.26	35.14	-	3.3	-	2.8	- 1
11/17/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	2	8.7	24.3	7.5	76.2	5.19	-	35.16	-	3.4	-	3.0	-
11/17/2021	Mid-Ebb	Sunny	Moderate	N1	10:01	6.7	Surface	1	1.0	24.5	7.6	99.0	6.83	6.76	33.40	34.43	2.2	2.3	1.5	1.8
11/17/2021	Mid-Ebb	Sunny	Moderate	N1			Surface	2	1.0	24.5	7.6	102.4	7.06	-	33.40		2.2	-	1.4	
11/17/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.4	24.7	7.5	97.7	6.67	-	34.80	-	2.3	-	1.6	-
11/17/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.4	24.7	7.5	93.7	6.46	-	34.80	-	2.2	-	1.8	-
11/17/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.7	24.4	7.5	88.7	6.07	6.08	35.13	-	2.4	-	2.3	-
11/17/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.7	24.5	7.5	88.9	6.08	-	35.05	-	2.5	-	2.1	-
11/17/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	10:40	3.4	Surface	1	1.0	24.4	7.7	132.5	9.12	9.17	33.40	33.58	1.7	1.8	2.5	2.1
11/17/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Surface	2	1.0	24.4	7.7	133.5	9.22	-	33.38	-	1.8	-	2.7	-
11/17/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.4	24.5	7.7	129.5	8.94	8.84	33.69	-	2.0	-	1.6	-
11/17/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.4	24.6	7.7	127.2	8.74	-	33.85	-	1.8	-	1.4	-
11/17/2021	Mid-Ebb	Sunny	Moderate	H4A	10:28	1.4	Middle	1	0.7	24.4	7.7	134.8	9.31	9.32	33.38	33.37	1.8	1.8	3.2	3.1
11/17/2021	Mid-Ebb	Sunny	Moderate	H4A			Middle	2	0.7	24.4	7.7	135.0	9.32	-	33.36	-	1.8	-	2.9	-
11/17/2021	Mid-Ebb	Sunny	Moderate	H1A	10:53	1.0	Middle	1	0.5	24.5	7.8	135.5	9.35	9.36	33.35	33.36	1.8	1.8	2.3	2.2
11/17/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.5	24.5	7.8	135.7	9.36	-	33.36	-	1.8	-	2.1	-
11/17/2021	Mid-Ebb	Sunny	Moderate	M1A	11:04	1.2	Middle	1	0.6	24.5	7.8	135.8	9.37	9.38	33.36	33.36	1.8	1.9	1.4	1.4
11/17/2021	Mid-Ebb	Sunny	Moderate	M1A			Middle	2	0.6	24.5	7.8	136.0	9.39	-	33.36	-	1.9	-	1.4	-
11/17/2021	Mid-Ebb	Sunny	Moderate	SGA	11:17	1.0	Middle	1	0.5	24.5	7.8	137.0	9.45	9.44	33.36	33.36	1.8	1.8	1.3	1.4
11/17/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.5	24.5	7.8	136.6	9.42	-	33.36	-	1.8	-	1.4	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

17-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation,	D(mg		Sali		Turb N	idity, TU		led Soild, g/L
						m				-		%								
													Value	DA	Value	DA	Value	DA	Value	DA
11/17/2021	Mid-Flood	Fine	Moderate	С	16:40	9.6	Surface	1	1.0	24.5	7.7	95.0	6.51	6.25	33.72	34.65	2.3	2.4	2.2	2.5
11/17/2021	Mid-Flood	Fine	Moderate	С			Surface	2	1.0	24.5	7.8	97.0	6.67	-	33.67	-	2.2	-	2.6	-
11/17/2021	Mid-Flood	Fine	Moderate	С			Middle	1	4.8	24.4	7.6	86.4	5.94	-	35.11	-	2.4	-	2.2	-
11/17/2021	Mid-Flood	Fine	Moderate	С			Middle	2	4.8	24.5	7.6	85.6	5.86	-	35.05	-	2.3	-	2.6	-
11/17/2021	Mid-Flood	Fine	Moderate	С			Bottom	1	8.6	24.3	7.7	82.2	5.62	5.64	35.16	-	2.4	-	2.8	-
11/17/2021	Mid-Flood	Fine	Moderate	С			Bottom	2	8.6	24.3	7.6	83.6	5.66	-	35.18	-	2.6	-	2.8	-
11/17/2021	Mid-Flood	Fine	Moderate	N2	16:15	5.5	Surface	1	1.0	24.5	7.8	114.7	7.89	7.78	33.73	34.19	1.9	1.9	3.4	2.8
11/17/2021	Mid-Flood	Fine	Moderate	N2			Surface	2	1.0	24.5	7.8	111.5	7.67	-	33.70	-	1.8	-	3.1	-
11/17/2021	Mid-Flood	Fine	Moderate	N2			Bottom	1	4.5	24.6	7.7	112.4	7.67	7.71	34.73	-	2.1	-	2.2	-
11/17/2021	Mid-Flood	Fine	Moderate	N2			Bottom	2	4.5	24.6	7.7	113.3	7.74	-	34.60	-	1.9	-	2.6	-
11/17/2021	Mid-Flood	Fine	Moderate	FCZ1A	15:49	3.6	Surface	1	1.0	24.5	7.8	135.0	9.28	9.13	33.62	33.87	1.7	1.9	2.4	2.5
11/17/2021	Mid-Flood	Fine	Moderate	FCZ1A			Surface	2	1.0	24.5	7.8	130.3	8.97	-	33.71	-	1.8		2.1	-
11/17/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	1	2.6	24.5	7.8	128.4	8.84	8.68	34.03	-	1.9		2.7	-
11/17/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	2	2.6	24.5	7.8	124.1	8.51	-	34.13	-	2.0	-	2.8	-
11/17/2021	Mid-Flood	Fine	Moderate	H4A	16:02	1.6	Middle	1	0.8	24.5	7.8	136.8	9.42	9.42	33.63	33.63	1.8	1.7	3.1	2.9
11/17/2021	Mid-Flood	Fine	Moderate	H4A			Middle	2	0.8	24.5	7.8	136.7	9.41	-	33.63	-	1.6	-	2.7	-
11/17/2021	Mid-Flood	Fine	Moderate	H1A	15:35	1.6	Middle	1	0.8	24.5	7.8	136.2	9.38	9.38	33.62	33.62	1.8	1.8	2.7	2.6
11/17/2021	Mid-Flood	Fine	Moderate	H1A			Middle	2	0.8	24.5	7.8	136.1	9.37	-	33.62	-	1.8	-	2.4	-
11/17/2021	Mid-Flood	Fine	Moderate	M1A	15:23	1.0	Middle	1	0.5	24.5	7.8	134.0	9.23	9.25	33.61	33.61	2.1	2.2	3.0	2.9
11/17/2021	Mid-Flood	Fine	Moderate	M1A			Middle	2	0.5	24.5	7.8	134.7	9.27	-	33.61	-	2.2	-	2.7	-
11/17/2021	Mid-Flood	Fine	Moderate	SGA	15:11	1.2	Middle	1	0.6	24.5	7.8	123.5	8.53	8.61	33.61	33.61	2.3	2.3	2.2	2.4
11/17/2021	Mid-Flood	Fine	Moderate	SGA			Middle	2	0.6	24.5	7.8	126.2	8.68	-	33.61	-	2.2	-	2.5	-

19-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, °C	pН	DO Saturation, %	D(mg		Sali P		Turbi N1		Suspend m	led Soild, g/L
						m						/0	Value	DA	Value	DA	Value	DA	Value	DA
11/19/2021	Mid-Ebb	Fine	Moderate	С	12:20	9.6	Surface	1	1.0	24.1	7.7	100.3	6.90	6.88	34.90	35.21	3.0	3.2	1.8	2.4
11/19/2021	Mid-Ebb	Fine	Moderate	č	12.20	5.0	Surface	2	1.0	24.0	7.7	100.3	6.91	-	35.08		3.1	-	2.0	-
11/19/2021	Mid-Ebb	Fine	Moderate	č			Middle	1	4.8	23.8	7.7	99.4	6.86	-	35.33		3.2	-	2.4	-
11/19/2021	Mid-Ebb	Fine	Moderate	č			Middle	2	4.8	23.8	7.7	99.2	6.84	-	35.33	-	3.3	-	2.4	-
11/19/2021	Mid-Ebb	Fine	Moderate	č			Bottom	1	8.6	23.9	7.7	97.6	6.73	6.77	35.28	-	3.5	-	2.7	-
11/19/2021	Mid-Ebb	Fine	Moderate	č			Bottom	2	8.6	23.8	7.7	98.6	6 80	-	35.34	-	3.2	-	2.9	-
11/19/2021	Mid-Ebb	Fine	Moderate	N1	12:07	6.6	Surface	1	1.0	24.0	7.7	102.5	7.07	7.11	35.05	35.20	2.6	2.6	3.4	2.2
11/19/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	24.0	7.7	105.6	7.28	-	34.95	-	2.5	-	3.7	
11/19/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.3	23.8	7.7	102.9	7.09	-	35.30	-	2.5	-	2.0	-
11/19/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.3	23.8	7.7	101.5	6.99	-	35.30	-	2.7	-	1.9	-
11/19/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.6	23.9	7.7	101.0	6.97	6.95	35.28	-	2.8	-	<1.0	-
11/19/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.6	23.8	7.7	100.5	6.93	-	35.33	-	2.7	-	<1.0	-
11/19/2021	Mid-Ebb	Fine	Moderate	FCZ1A	11:29	3.4	Surface	1	1.0	24.0	7.7	107.9	7.43	7.40	35.06	35.09	2.5	2.5	1.8	1.5
11/19/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	24.3	7.7	107.5	7.37	-	34.92	-	2.5	-	1.8	-
11/19/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.4	23.9	7.7	107.4	7.40	7.46	35.23	-	2.5	-	1.3	-
11/19/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.4	24.1	7.7	109.2	7.51	-	35.15	-	2.6	-	1.1	-
11/19/2021	Mid-Ebb	Fine	Moderate	H4A	11:43	1.8	Middle	1	0.9	24.3	7.7	109.3	7.50	7.52	34.88	34.91	2.5	2.5	1.2	1.3
11/19/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.9	24.2	7.7	109.7	7.54	-	34.93	-	2.4	-	1.3	-
11/19/2021	Mid-Ebb	Fine	Moderate	H1A	11:18	1.2	Middle	1	0.6	24.5	7.7	109.4	7.48	7.51	34.85	34.85	2.4	2.5	2.1	2.1
11/19/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.6	24.4	7.7	109.8	7.53	-	34.85	-	2.5	-	2.0	-
11/19/2021	Mid-Ebb	Fine	Moderate	M1A	11:04	1.2	Middle	1	0.6	24.7	7.7	109.6	7.47	7.48	34.83	34.83	2.3	2.3	4.1	4.0
11/19/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.6	24.8	7.7	109.9	7.48	-	34.83	-	2.3	-	3.8	-
11/19/2021	Mid-Ebb	Fine	Moderate	SGA	10:52	1.2	Middle	1	0.6	24.6	7.7	109.4	7.46	7.47	34.84	34.84	2.4	2.4	1.1	1.1
11/19/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	24.7	7.7	109.5	7.47	-	34.83	-	2.4	-	1.1	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

19-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation, %	D(mg		Sali Pi			idity, TU	Suspend	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/19/2021	Mid-Flood	Fine	Moderate	С	5:06	9.6	Surface	1	1.0	23.9	7.6	103.2	7.11	7.11	35.18	35.22	2.4	2.5	1.5	3.8
11/19/2021	Mid-Flood	Fine	Moderate	С			Surface	2	1.0	24.0	7.6	103.9	7.15	-	35.16	-	2.5	-	1.7	-
11/19/2021	Mid-Flood	Fine	Moderate	С			Middle	1	4.8	23.8	7.6	103.0	7.12	-	35.23	-	2.4	-	2.6	-
11/19/2021	Mid-Flood	Fine	Moderate	С			Middle	2	4.8	23.8	7.6	102.0	7.05	-	35.24	-	2.4	-	2.7	-
11/19/2021	Mid-Flood	Fine	Moderate	С			Bottom	1	8.6	23.7	7.6	100.5	6.95	6.95	35.27	-	2.6	-	7.2	-
11/19/2021	Mid-Flood	Fine	Moderate	С			Bottom	2	8.6	23.7	7.6	100.5	6.94	-	35.25	-	2.5	-	7.3	-
11/19/2021	Mid-Flood	Fine	Moderate	N2	5:30	5.3	Surface	1	1.0	23.9	7.7	107.8	7.43	7.40	35.17	35.18	1.4	1.5	1.0	2.0
11/19/2021	Mid-Flood	Fine	Moderate	N2			Surface	2	1.0	24.0	7.7	107.1	7.37	-	35.15	-	1.3	-	1.2	-
11/19/2021	Mid-Flood	Fine	Moderate	N2			Bottom	1	4.3	23.8	7.7	107.7	7.43	7.41	35.20	-	1.5	-	3.0	-
11/19/2021	Mid-Flood	Fine	Moderate	N2			Bottom	2	4.3	23.8	7.6	107.0	7.39	-	35.20	-	1.6	-	2.7	-
11/19/2021	Mid-Flood	Fine	Moderate	FCZ1A	5:56	3.4	Surface	1	1.0	24.0	7.7	106.8	7.35	7.31	35.18	35.15	1.4	1.5	1.1	1.4
11/19/2021	Mid-Flood	Fine	Moderate	FCZ1A			Surface	2	1.0	24.3	7.7	106.1	7.27	-	35.13	-	1.3	-	1.1	-
11/19/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	1	2.4	24.1	7.7	105.7	7.27	7.29	35.12	-	1.5	-	1.6	-
11/19/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	2	2.4	23.9	7.7	106.0	7.31	-	35.17	-	1.7	-	1.7	-
11/19/2021	Mid-Flood	Fine	Moderate	H4A	5:43	1.8	Middle	1	0.9	24.1	7.7	107.5	7.39	7.39	35.13	35.18	1.3	1.4	1.4	1.4
11/19/2021	Mid-Flood	Fine	Moderate	H4A			Middle	2	0.9	24.0	7.7	107.3	7.38	-	35.22	-	1.4	-	1.4	-
11/19/2021	Mid-Flood	Fine	Moderate	H1A	6:08	1.6	Middle	1	0.8	24.2	7.7	105.8	7.27	7.30	35.18	35.20	1.4	1.4	1.8	1.8
11/19/2021	Mid-Flood	Fine	Moderate	H1A			Middle	2	0.8	24.1	7.7	106.8	7.33	-	35.22	-	1.3	-	1.8	-
11/19/2021	Mid-Flood	Fine	Moderate	M1A	6:20	1.2	Middle	1	0.6	24.1	7.7	105.4	7.24	7.23	35.18	35.15	1.3	1.3	2.4	2.4
11/19/2021	Mid-Flood	Fine	Moderate	M1A			Middle	2	0.6	24.3	7.7	105.3	7.21	-	35.12	-	1.3	-	2.4	-
11/19/2021	Mid-Flood	Fine	Moderate	SGA	6:34	1.0	Middle	1	0.5	24.2	7.7	105.7	7.25	7.27	35.18	35.20	1.3	1.3	2.0	2.1
11/19/2021	Mid-Flood	Fine	Moderate	SGA			Middle	2	0.5	24.0	7.7	105.8	7.28	-	35.21	-	1.3	-	2.2	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count Action Level - Value presented in bold

22-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth,	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation,	D(mg		Sali	nity, pt	Turbi NT	idity, 'U	Suspend mg	led Soild, a/L
						m				Ŭ		%								·
													Value	DA	Value	DA	Value	DA	Value	DA
11/22/2021	Mid-Ebb	Fine	Moderate	С	13:21	9.8	Surface	1	1.0	24.2	7.7	84.8	5.85	5.71	34.35	34.77	2.7	3.0	2.1	1.7
11/22/2021	Mid-Ebb	Fine	Moderate	С			Surface	2	1.0	24.2	7.7	85.4	5.87	-	34.37	-	2.8	-	1.8	-
11/22/2021	Mid-Ebb	Fine	Moderate	С			Middle	1	4.9	24.3	7.6	80.5	5.53	-	34.87	-	3.1	-	1.2	-
11/22/2021	Mid-Ebb	Fine	Moderate	С			Middle	2	4.9	24.3	7.6	81.2	5.59	-	34.83	-	3.0	-	1.8	-
11/22/2021	Mid-Ebb	Fine	Moderate	С			Bottom	1	8.8	24.1	7.6	77.5	5.31	5.35	35.14	-	3.1	-	1.4	-
11/22/2021	Mid-Ebb	Fine	Moderate	С			Bottom	2	8.8	24.2	7.7	78.2	5.38	-	35.03	-	3.2	-	1.7	-
11/22/2021	Mid-Ebb	Fine	Moderate	N1	13:06	6.5	Surface	1	1.0	24.1	7.7	88.1	6.06	5.95	34.41	34.60	1.8	2.1	1.0	1.5
11/22/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	24.1	7.7	86.8	5.97	-	34.41	-	2.0	-	1.4	-
11/22/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.3	24.2	7.7	84.0	5.80	-	34.57	-	2.0	-	1.0	-
11/22/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.3	24.2	7.7	86.6	5.97	-	34.61	-	2.4	-	1.7	-
11/22/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.5	24.2	7.7	83.9	5.77	5.71	34.82	-	2.3	-	2.0	-
11/22/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.5	24.2	7.7	82.1	5.65	-	34.78	-	2.2	-	1.6	-
11/22/2021	Mid-Ebb	Fine	Moderate	FCZ1A	12:30	3.2	Surface	1	1.0	24.1	7.7	93.1	6.41	6.38	34.42	34.47	1.8	1.8	2.4	2.0
11/22/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	24.1	7.7	91.9	6.34	-	34.41	-	1.7	-	2.1	-
11/22/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.2	24.1	7.7	92.0	6.34	6.35	34.50	-	1.8	-	2.0	-
11/22/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.2	24.2	7.7	92.1	6.36	-	34.53	-	2.0	-	1.4	-
11/22/2021	Mid-Ebb	Fine	Moderate	H4A	12:42	1.8	Middle	1	0.9	24.1	7.7	92.0	6.35	6.37	34.41	34.41	1.7	1.7	1.6	1.7
11/22/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.9	24.1	7.7	92.5	6.39	-	34.40	-	1.7	-	1.7	-
11/22/2021	Mid-Ebb	Fine	Moderate	H1A	12:17	1.6	Middle	1	0.8	24.1	7.8	94.0	6.48	6.52	34.42	34.42	2.1	2.2	1.6	1.7
11/22/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.8	24.1	7.8	95.1	6.56	-	34.42		2.3	-	1.7	-
11/22/2021	Mid-Ebb	Fine	Moderate	M1A	12:03	1.2	Middle	1	0.6	24.1	7.8	100.5	6.94	6.90	34.37	34.38	1.6	1.6	2.0	1.9
11/22/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.6	24.1	7.8	99.3	6.85	-	34.39	-	1.6	-	1.7	-
11/22/2021	Mid-Ebb	Fine	Moderate	SGA	11:51	1.2	Middle	1	0.6	24.0	7.8	107.3	7.42	7.37	34.35	34.35	1.6	1.6	1.3	1.4
11/22/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	24.1	7.8	105.9	7.32	-	34.35	-	1.6	-	1.5	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

22-Nov-21 at Mid-Flood tide

Date	Tidal	Weather	Sea	Monitoring	Time	Water	Water Level	Replicate		Temperature,	pН	DO	D		Sali	nity,		idity,		ded Soild,
		Condition	Condition	Station		Depth,			Depth	°C		Saturation,	mg	J/L	P	pt	N	ΓU	mį	g/L
						m						%	Value	DA	Value	DA	Value	DA	Value	DA
11/22/2021	Mid-Flood	Fine	Moderate	С	7:07	9.3	Surface	1	1.0	24.1	7.7	92.2	6.33	6.37	34.03	34.60	Value 1.8	2.2	2.6	2.0
11/22/2021	Mid-Flood	Fine	Moderate	c	1.01	5.5	Surface	2	1.0	24.1	7.8	94.3	6.43	0.57	34.03	34.00	2.0	2.2	2.6	
11/22/2021	Mid-Flood Mid-Flood	Fine	Moderate	c			Middle	2	4.7	24.1	7.7	92.0	6.43		34.03	-			2.4	-
								1						-		-	2.2			-
11/22/2021	Mid-Flood	Fine	Moderate	С			Middle	2	4.7	24.3	7.7	91.6	6.34	-	34.56		2.3	1.1	1.4	-
11/22/2021	Mid-Flood	Fine	Moderate	С			Bottom	1	8.3	24.2	7.7	86.5	5.93	5.84	35.22	-	2.3		2.0	-
11/22/2021	Mid-Flood	Fine	Moderate	С			Bottom	2	8.3	24.2	7.7	83.7	5.75	-	35.27	-	2.4		1.5	-
11/22/2021	Mid-Flood	Fine	Moderate	N2	7:33	5.6	Surface	1	1.0	24.0	7.8	101.2	7.01	6.98	33.99	34.21	1.5	1.5	2.3	2.4
11/22/2021	Mid-Flood	Fine	Moderate	N2			Surface	2	1.0	24.1	7.7	100.3	6.94	-	34.02	-	1.5		3.0	-
11/22/2021	Mid-Flood	Fine	Moderate	N2			Bottom	1	4.6	24.3	7.7	101.4	6.97	6.96	34.37	-	1.4	-	2.4	-
11/22/2021	Mid-Flood	Fine	Moderate	N2			Bottom	2	4.6	24.4	7.7	101.2	6.95	-	34.44	-	1.4	-	1.9	-
11/22/2021	Mid-Flood	Fine	Moderate	FCZ1A	7:57	3.4	Surface	1	1.0	24.0	7.7	105.2	7.30	7.30	33.97	33.98	1.5	1.5	1.5	1.8
11/22/2021	Mid-Flood	Fine	Moderate	FCZ1A			Surface	2	1.0	24.0	7.7	105.1	7.29	-	33.97	-	1.4	-	1.8	-
11/22/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	1	2.4	24.0	7.7	105.1	7.28	7.29	33.98	-	1.5	-	2.0	-
11/22/2021	Mid-Flood	Fine	Moderate	FCZ1A			Bottom	2	2.4	24.0	7.7	105.1	7.29	-	33.98	-	1.4	-	1.8	-
11/22/2021	Mid-Flood	Fine	Moderate	H4A	7:45	1.8	Middle	1	0.9	24.0	7.8	104.9	7.27	7.28	33,98	33,98	1.5	1.5	2.3	2.1
11/22/2021	Mid-Flood	Fine	Moderate	H4A			Middle	2	0.9	24.0	7.8	105.2	7.29	-	33,98	-	1.5	-	1.8	-
11/22/2021	Mid-Flood	Fine	Moderate	H1A	8.11	1.2	Middle	1	0.6	23.9	7.7	105.6	7.32	7.32	33.97	33.97	1.4	1.5	2.1	1.8
11/22/2021	Mid-Flood	Fine	Moderate	H1A			Middle	2	0.6	23.9	7.8	105.5	7.32	-	33.97	-	1.5	-	1.5	-
11/22/2021	Mid-Flood	Fine	Moderate	M1A	8:22	1.2	Middle	1	0.6	24.0	7.8	105.6	7.33	7.32	33.97	33.98	1.4	1.4	1.0	1.2
11/22/2021	Mid-Flood	Fine	Moderate	M1A			Middle	2	0.6	24.0	7.8	105.4	7.31	-	33.98	-	1.4	-	1.4	-
11/22/2021	Mid-Flood	Fine	Moderate	SGA	8:34	1.2	Middle	1	0.6	23.9	7.8	105.8	7.34	7.34	33.97	33.98	1.4	1.4	1.7	2.0
11/22/2021	Mid-Flood	Fine	Moderate	SGA			Middle	2	0.6	23.9	7.8	105.8	7.34	-	33.98	-	1.4	-	2.3	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count Action Level - Value presented in bold

24-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, °C	рН	DO Saturation, %	D(mg		Sali P		Turbi NT		Suspend mg	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/24/2021	Mid-Ebb	Sunny	Moderate	С	14:16	9.2	Surface	1	1.0	23.0	7.6	84.3	5.93	5.94	34.32	34.52	1.8	1.8	1.4	1.7
11/24/2021	Mid-Ebb	Sunny	Moderate	С			Surface	2	1.0	23.0	7.6	87.3	6.12	-	34.35	-	1.7	-	1.8	-
11/24/2021	Mid-Ebb	Sunny	Moderate	С			Middle	1	4.6	23.1	7.5	84.2	5.90	-	34.54	-	1.9	-	1.3	-
11/24/2021	Mid-Ebb	Sunny	Moderate	С			Middle	2	4.6	23.1	7.5	83.0	5.82	-	34.55	-	1.9	-	1.8	-
11/24/2021	Mid-Ebb	Sunny	Moderate	С			Bottom	1	8.2	23.1	7.6	82.2	5.78	5.71	34.64	-	1.9	-	2.0	-
11/24/2021	Mid-Ebb	Sunny	Moderate	С			Bottom	2	8.2	23.1	7.6	80.1	5.63	-	34.70	-	1.8	-	1.6	-
11/24/2021	Mid-Ebb	Sunny	Moderate	N1	14:02	6.3	Surface	1	1.0	23.0	7.6	86.1	6.05	6.09	34.32	34.43	1.8	1.8	1.6	1.5
11/24/2021	Mid-Ebb	Sunny	Moderate	N1			Surface	2	1.0	23.0	7.6	88.4	6.21	-	34.31	-	1.8	-	1.7	-
11/24/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.2	23.0	7.5	85.7	6.03	-	34.47	-	1.7	-	1.1	-
11/24/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.2	23.0	7.5	86.0	6.05	-	34.44	-	1.8	-	1.6	-
11/24/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.3	23.0	7.6	84.1	5.92	5.84	34.52	-	1.7	-	1.6	-
11/24/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.3	23.0	7.6	81.7	5.75	-	34.54	-	1.7	-	1.3	-
11/24/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	13:32	3.3	Surface	1	1.0	22.9	7.6	89.1	6.28	6.41	34.36	34.36	1.5	1.5	1.6	2.0
11/24/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Surface	2	1.0	22.9	7.6	92.6	6.53	-	34.34	-	1.4	-	2.6	-
11/24/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.3	22.9	7.6	89.5	6.31	6.27	34.36	-	1.5	-	2.1	-
11/24/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.3	22.9	7.6	88.2	6.22	-	34.37	-	1.5	-	1.8	-
11/24/2021	Mid-Ebb	Sunny	Moderate	H4A	13:43	1.4	Middle	1	0.7	23.0	7.6	91.1	6.42	6.46	34.31	34.31	1.5	1.6	1.4	1.3
11/24/2021	Mid-Ebb	Sunny	Moderate	H4A			Middle	2	0.7	23.0	7.6	92.4	6.50	-	34.30	-	1.6	-	1.2	-
11/24/2021	Mid-Ebb	Sunny	Moderate	H1A	13:22	1.4	Middle	1	0.7	23.0	7.6	92.3	6.50	6.49	34.30	34.32	1.7	1.8	2.4	1.8
11/24/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.7	22.9	7.6	91.8	6.47	-	34.33	-	1.8	-	1.1	-
11/24/2021	Mid-Ebb	Sunny	Moderate	M1A	13:10	1.2	Middle	1	0.6	23.0	7.6	94.0	6.61	6.61	34.30	34.30	1.7	1.7	1.3	1.6
11/24/2021	Mid-Ebb	Sunny	Moderate	M1A			Middle	2	0.6	23.0	7.6	93.8	6.60	-	34.30	-	1.7	-	1.8	-
11/24/2021	Mid-Ebb	Sunny	Moderate	SGA	13:01	1.2	Middle	1	0.6	23.0	7.6	93.6	6.58	6.58	34.30	34.31	1.6	1.6	1.6	1.4
11/24/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.6	23.0	7.6	93.5	6.58	-	34.31	-	1.6	-	1.1	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

24-Nov-21 at Mid-Flood tide

Date	Tidal	Weather	Sea	Monitoring	Time	Water	Water Level	Replicate	Sampling	Temperature,	pН	DO	D	Э,	Sali	nity,	Turb	idity,	Suspend	led Soild,
		Condition	Condition	Station		Depth,			Depth	°C		Saturation,	mg	J/L	p	pt	N1	ſU	mg	g/L
						m						%								
44/24/2024	ACT D				0.00	0.4	0.(4.0	22.0	7.4	00.0	Value	DA	Value	DA	Value	DA	Value	DA
11/24/2021	Mid-Flood	Sunny	Moderate	С	8:32	9.1	Surface	1	1.0	22.8	7.4	80.8	5.71	5.66	34.31	34.59	1.5	1.6	1.8	2.2
11/24/2021	Mid-Flood	Sunny	Moderate	C			Surface	2	1.0	22.9	7.5	81.1	5.71	-	34.32	-	1.5		2.1	-
11/24/2021	Mid-Flood	Sunny	Moderate	С			Middle	1	4.6	23.0	7.4	80.5	5.63	-	34.57	-	1.6		1.6	-
11/24/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.6	23.1	7.4	80.0	5.57	-	34.59	-	1.6	1.1	1.8	-
11/24/2021	Mid-Flood	Sunny	Moderate	C			Bottom	1	8.1	23.2	7.4	74.0	5.20	5.23	34.72	-	1.6		3.4	-
11/24/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.1	23.4	7.4	74.8	5.25	-	35.03		1.7		2.4	-
11/24/2021	Mid-Flood	Sunny	Moderate	N2	8:44	5.2	Surface	1	1.0	23.0	7.5	84.7	5.98	5.96	34.32	34.40	1.4	1.4	2.2	2.0
11/24/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	23.0	7.5	84.4	5.94	-	34.34	-	1.4	-	1.5	-
11/24/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.2	22.9	7.5	83.0	5.84	5.83	34.46	-	1.4	-	1.6	-
11/24/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.2	22.9	7.5	82.6	5.82	-	34.48	-	1.4	-	2.5	-
11/24/2021	Mid-Flood	Sunny	Moderate	FCZ1A	9:16	3.2	Surface	1	1.0	23.0	7.6	87.0	6.12	6.22	34.31	34.36	1.4	1.5	1.7	1.8
11/24/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	22.9	7.5	89.6	6.31	-	34.33	-	1.5	-	2.1	-
11/24/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.2	22.9	7.5	91.8	6.47	6.26	34.38	-	1.5	-	1.4	-
11/24/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.2	22.9	7.5	85.8	6.05	-	34.40	-	1.4	-	1.9	-
11/24/2021	Mid-Flood	Sunny	Moderate	H4A	9:05	1.6	Middle	1	0.8	23.0	7.6	93.0	6.54	6.52	34.29	34.29	1.3	1.3	1.5	2.2
11/24/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.8	23.0	7.6	92.3	6.50	-	34.29		1.3		2.8	
11/24/2021	Mid-Flood	Sunny	Moderate	H1A	9:25	1.4	Middle	1	0.7	23.0	7.6	92.4	6.50	6.47	34.30	34.31	1.3	1.3	2.4	2.3
11/24/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.7	23.0	7.6	91.5	6.44	-	34.31	-	1.3	-	2.1	-
11/24/2021	Mid-Flood	Sunny	Moderate	M1A	9:36	1.2	Middle	1	0.6	23.0	7.6	93.9	6.61	6.60	34.30	34.30	1.4	1.5	2.1	1.8
11/24/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.6	23.0	7.6	93.7	6.59	-	34.30	-	1.5	-	1.5	-
11/24/2021	Mid-Flood	Sunny	Moderate	SGA	9:46	1.0	Middle	1	0.5	23.0	7.6	94.2	6.63	6.62	34.30	34.30	1.3	1.3	1.5	1.4
11/24/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.5	23.0	7.6	94.0	6.61	-	34.30	-	1.3	-	1.2	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count Action Level - Value presented in bold

26-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	pН	DO Saturation, %	DC mg		Sali P		Turbi N1	idity, "U	Suspend	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/26/2021	Mid-Ebb	Fine	Moderate	С	1:36	9.4	Surface	1	1.0	23.0	7.4	83.3	5.81	5.73	34.42	35.08	2.5	2.5	4.6	4.0
11/26/2021	Mid-Ebb	Fine	Moderate	С			Surface	2	1.0	23.0	7.4	81.9	5.77	-	34.44	-	2.3	-	3.8	-
11/26/2021	Mid-Ebb	Fine	Moderate	С			Middle	1	4.7	23.2	7.4	80.1	5.63	-	35.38	-	2.6	-	3.8	-
11/26/2021	Mid-Ebb	Fine	Moderate	С			Middle	2	4.7	23.1	7.4	81.5	5.69	-	35.40	-	2.4	-	4.3	-
11/26/2021	Mid-Ebb	Fine	Moderate	С			Bottom	1	8.4	23.1	7.4	79.7	5.56	5.55	35.45	-	2.6	-	3.6	-
11/26/2021	Mid-Ebb	Fine	Moderate	С			Bottom	2	8.4	23.2	7.4	79.2	5.53	-	35.41	-	2.7	-	3.7	-
11/26/2021	Mid-Ebb	Fine	Moderate	N1	1:49	6.4	Surface	1	1.0	23.0	7.5	86.8	6.06	5.95	34.41	34.75	2.0	2.2	2.0	2.5
11/26/2021	Mid-Ebb	Fine	Moderate	N1			Surface	2	1.0	23.1	7.5	85.4	6.01	-	34.38	-	2.0	-	1.6	-
11/26/2021	Mid-Ebb	Fine	Moderate	N1			Middle	1	3.2	22.9	7.5	83.8	5.89	-	34.41	-	2.2	-	2.7	-
11/26/2021	Mid-Ebb	Fine	Moderate	N1			Middle	2	3.2	23.0	7.5	83.8	5.85	-	34.38	-	2.2	-	2.4	-
11/26/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	1	5.4	23.1	7.5	81.7	5.76	5.79	35.42	-	2.4	-	2.9	-
11/26/2021	Mid-Ebb	Fine	Moderate	N1			Bottom	2	5.4	23.1	7.4	82.5	5.81	-	35.47	-	2.3	-	3.4	-
11/26/2021	Mid-Ebb	Fine	Moderate	FCZ1A	2:26	3.4	Surface	1	1.0	23.0	7.5	87.9	6.18	6.14	34.40	34.42	1.9	1.9	5.8	4.5
11/26/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Surface	2	1.0	23.0	7.5	86.7	6.09	-	34.42	-	1.9	-	5.6	-
11/26/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	1	2.4	23.1	7.5	86.0	6.04	6.09	34.42	-	1.9	-	3.0	-
11/26/2021	Mid-Ebb	Fine	Moderate	FCZ1A			Bottom	2	2.4	23.0	7.5	87.4	6.14	-	34.43	-	1.8	-	3.4	-
11/26/2021	Mid-Ebb	Fine	Moderate	H4A	2:13	1.8	Middle	1	0.9	23.1	7.5	86.8	6.10	6.09	34.41	34.41	2.0	2.0	2.8	2.9
11/26/2021	Mid-Ebb	Fine	Moderate	H4A			Middle	2	0.9	23.1	7.5	86.6	6.08	-	34.40	-	2.0	-	2.9	-
11/26/2021	Mid-Ebb	Fine	Moderate	H1A	2:40	1.4	Middle	1	0.7	23.1	7.5	86.1	6.06	6.12	34.36	34.38	2.0	2.0	2.9	2.6
11/26/2021	Mid-Ebb	Fine	Moderate	H1A			Middle	2	0.7	23.0	7.5	87.7	6.17	-	34.39	-	1.9	-	2.3	-
11/26/2021	Mid-Ebb	Fine	Moderate	M1A	2:53	1.0	Middle	1	0.5	23.1	7.5	83.7	5.88	5.90	34.36	34.37	2.1	2.1	1.7	1.7
11/26/2021	Mid-Ebb	Fine	Moderate	M1A			Middle	2	0.5	23.0	7.5	86.0	5.91	-	34.37	-	2.0		1.6	-
11/26/2021	Mid-Ebb	Fine	Moderate	SGA	3:06	1.2	Middle	1	0.6	23.1	7.5	86.4	6.05	6.02	34.32	34.34	2.2	2.2	2.4	2.2
11/26/2021	Mid-Ebb	Fine	Moderate	SGA			Middle	2	0.6	23.0	7.5	85.5	5.98	-	34.36	-	2.2	-	2.0	-

DA - Depth-averaged

Marine Water Quality Monitoring Results on

26-Nov-21 at Mid-Flood tide

Date	Tidal	Weather	Sea	Monitoring	Time	Water	Water Level	Replicate		Temperature,	pН	DO	D			nity,		idity,	Suspend	
		Condition	Condition	Station		Depth,			Depth	°C		Saturation, %	mg	µ∕L	P	pt	N	ΓU	m	J/L
						m						70	Value	DA	Value	DA	Value	DA	Value	DA
11/26/2021	Mid-Flood	Sunny	Moderate	С	15:20	9.8	Surface	1	1.0	23.2	7.5	83.8	5.86	5.88	34.65	35.03	2.8	2.8	4.5	3.4
11/26/2021	Mid-Flood	Sunny	Moderate	č	13.20	5.0	Surface	2	1.0	23.2	7.5	85.6	5.98	-	34.58	55.05	2.6	2.0	4.1	5.4
11/26/2021	Mid-Flood	Sunny	Moderate	č			Middle	1	4.9	23.2	7.5	83.3	5.84	-	35.17		2.7	-	3.3	
11/26/2021	Mid-Flood	Sunny	Moderate	č			Middle	2	4.9	23.1	7.5	83.0	5.82		35.23		2.8	-	3.3	
11/26/2021	Mid-Flood	Sunny	Moderate	c			Bottom	2	8.8	23.1	7.5	82.3	5.75	5.77	35.23		2.0		3.0	
11/26/2021	Mid-Flood	Sunny	Moderate	c			Bottom	2	8.8	23.1	7.5	82.7	5.75	5.77	35.24	-	2.5		2.3	
11/26/2021	Mid-Flood		Moderate	N2	14:55	5.7	Surface	2	0.0	23.1	7.5	85.7	6.00	6.02	35.33	34.82	1.7	- 1.8	2.3	2.8
11/26/2021	Mid-Flood	Sunny		N2 N2	14.55	5.7		1	1.0	23.2	7.5	86.2	6.00		34.70	34.02			3.2	2.0
		Sunny	Moderate				Surface	2						-		-	1.9	-		-
11/26/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.7	23.2	7.5	88.3	6.16	6.10	35.06	-	1.7	-	2.8	-
11/26/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.7	23.2	7.5	86.2	6.03	-	34.93	-	1.7	-	2.3	-
11/26/2021	Mid-Flood	Sunny	Moderate	FCZ1A	14:29	3.6	Surface	1	1.0	23.1	7.5	87.6	6.14	6.16	34.59	34.65	1.9	1.9	4.0	3.4
11/26/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	23.1	7.5	88.2	6.18	-	34.61	-	1.9	-	4.2	-
11/26/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	2.6	23.1	7.5	88.0	6.16	6.13	34.69	-	1.9	-	3.0	-
11/26/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	2.6	23.1	7.5	87.1	6.10	-	34.72	-	1.8	-	2.4	-
11/26/2021	Mid-Flood	Sunny	Moderate	H4A	14:41	1.8	Middle	1	0.9	23.1	7.6	89.8	6.29	6.30	34.58	34.56	2.0	2.0	2.6	2.3
11/26/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	23.2	7.6	89.9	6.30	-	34.54	-	2.0	-	2.0	-
11/26/2021	Mid-Flood	Sunny	Moderate	H1A	14:15	1.6	Middle	1	0.8	23.2	7.5	87.6	6.13	6.13	34.48	34.49	2.0	2.0	1.8	1.8
11/26/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.8	23.2	7.5	87.3	6.12	-	34.50	-	2.0	-	1.7	-
11/26/2021	Mid-Flood	Sunny	Moderate	M1A	14:03	1.2	Middle	1	0.6	23.2	7.5	90.1	6.31	6.26	34.42	34.42	2.1	2.1	2.2	1.9
11/26/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.6	23.2	7.5	88.6	6.21	-	34.42	-	2.1	-	1.6	-
11/26/2021	Mid-Flood	Sunny	Moderate	SGA	13:50	1.0	Middle	1	0.5	23.3	7.5	96.4	6.75	6.90	34.39	34.43	2.4	2.4	2.0	1.7
11/26/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.5	23.1	7.5	100.4	7.04	-	34.46	-	2.4	-	1.3	-

DA - Depth-averaged DO - Dissolved Oxygen * denoted the estimated count Action Level - Value presented in bold

29-Nov-21 at Mid-Ebb tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D(mg		Sali P		Turbi NT		Suspend	led Soild, g/L
												10	Value	DA	Value	DA	Value	DA	Value	DA
11/29/2021	Mid-Ebb	Sunny	Moderate	С	6:13	9.3	Surface	1	1.0	23.5	7.4	132.3	9.23	8,94	34.49	34.69	2.5	2.6	3.2	4.5
11/29/2021	Mid-Ebb	Sunny	Moderate	č	0.10		Surface	2	1.0	23.5	7.3	132.0	9.21		34.48	-	2.5	-	3.0	-
11/29/2021	Mid-Ebb	Sunny	Moderate	č			Middle	1	4.7	23.1	7.3	123.2	8.64	-	34.52		2.5	-	4.4	-
11/29/2021	Mid-Ebb	Sunny	Moderate	č			Middle	2	4.7	23.2	7.3	124.1	8.69	-	34.47	-	2.6	-	4.4	-
11/29/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	1	8.3	23.3	7.2	79.6	5.55	5.53	35.09	-	2.6	-	5.6	-
11/29/2021	Mid-Ebb	Sunny	Moderate	č			Bottom	2	8.3	23.3	7.2	79.0	5.51		35.07	-	2.6	-	6.1	-
11/29/2021	Mid-Ebb	Sunny	Moderate	N1	6.41	6.5	Surface	1	1.0	23.6	7.4	135.7	9.44	8.94	34.50	34 71	2.4	2.4	4.9	4.9
11/29/2021	Mid-Ebb	Sunny	Moderate	N1			Surface	2	1.0	23.6	7.4	135.5	9.44	-	34.49		2.3	-	4.8	-
11/29/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	1	3.3	23.1	7.3	120.0	8.43	-	34,53	-	2.4	-	4.1	-
11/29/2021	Mid-Ebb	Sunny	Moderate	N1			Middle	2	3.3	23.1	7.3	120.3	8.44	-	34.53	-	2.5	-	4.4	-
11/29/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	1	5.5	23.4	7.2	82.4	5.73	5.73	35.15	-	2.4	-	5.3	-
11/29/2021	Mid-Ebb	Sunny	Moderate	N1			Bottom	2	5.5	23.3	7.2	82.1	5.72	-	35.08	-	2.5	-	5.6	-
11/29/2021	Mid-Ebb	Sunny	Moderate	FCZ1A	7:46	3.0	Surface	1	1.0	24.1	7.4	133.5	9.21	9.21	34.54	34.55	2.4	2.5	4.4	4.3
11/29/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Surface	2	1.0	23.9	7.4	133.1	9.21	-	34.52	-	2.4	-	4.4	-
11/29/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	1	2.0	23.1	7.3	122.1	8.56	8.55	34.57	-	2.5	-	4.1	-
11/29/2021	Mid-Ebb	Sunny	Moderate	FCZ1A			Bottom	2	2.0	23.1	7.3	121.7	8.54	-	34.56	-	2.5	-	4.3	-
11/29/2021	Mid-Ebb	Sunny	Moderate	H4A	7:35	1.4	Middle	1	0.7	24.1	7.4	134.3	9.26	9.26	34.54	34.54	2.6	2.6	6.4	6.3
11/29/2021	Mid-Ebb	Sunny	Moderate	H4A			Middle	2	0.7	24.1	7.4	134.3	9.26	-	34.54	-	2.5	-	6.1	-
11/29/2021	Mid-Ebb	Sunny	Moderate	H1A	8:00	1.4	Middle	1	0.7	23.5	7.4	133.9	9.33	9.35	34.47	34.48	2.5	2.6	4.6	4.7
11/29/2021	Mid-Ebb	Sunny	Moderate	H1A			Middle	2	0.7	23.5	7.4	134.3	9.36	-	34.48	-	2.6	-	4.8	-
11/29/2021	Mid-Ebb	Sunny	Moderate	M1A	8:10	1.2	Middle	1	0.6	23.8	7.4	136.0	9.42	9.43	34.51	34.52	2.6	2.6	4.5	4.5
11/29/2021	Mid-Ebb	Sunny	Moderate	M1A			Middle	2	0.6	23.9	7.4	136.1	9.43	-	34.52	-	2.6	-	4.4	-
11/29/2021	Mid-Ebb	Sunny	Moderate	SGA	8:22	1.2	Middle	1	0.6	24.2	7.4	134.9	9.29	9.30	34.54	34.55	2.4	2.4	3.9	4.0
11/29/2021	Mid-Ebb	Sunny	Moderate	SGA			Middle	2	0.6	24.2	7.4	135.1	9.30	-	34.55	-	2.4	-	4.1	-

DA - Depth-averaged Marine Water Quality Monitoring Results on

29-Nov-21 at Mid-Flood tide

Date	Tidal	Weather Condition	Sea Condition	Monitoring Station	Time	Water Depth, m	Water Level	Replicate	Sampling Depth	Temperature, ℃	рН	DO Saturation, %	D) mç		Sali P		Turb N	idity, FU	Suspend m	led Soild, g/L
													Value	DA	Value	DA	Value	DA	Value	DA
11/29/2021	Mid-Flood	Sunny	Moderate	С	14:50	9.5	Surface	1	1.0	23.5	7.4	132.0	9.21	8.83	34.42	34.57	2.7	2.7	3.5	4.9
11/29/2021	Mid-Flood	Sunny	Moderate	С			Surface	2	1.0	23.5	7.4	130.1	9.06	-	34.44	-	2.6	-	3.8	-
11/29/2021	Mid-Flood	Sunny	Moderate	С			Middle	1	4.8	22.9	7.4	121.3	8.54	-	34.44	-	2.7	-	4.9	-
11/29/2021	Mid-Flood	Sunny	Moderate	С			Middle	2	4.8	23.1	7.4	121.3	8.51	-	34.46	-	2.6	-	4.8	-
11/29/2021	Mid-Flood	Sunny	Moderate	С			Bottom	1	8.5	23.2	7.3	99.2	6.95	6.94	34.76	-	2.7	-	6.0	-
11/29/2021	Mid-Flood	Sunny	Moderate	С			Bottom	2	8.5	23.2	7.3	99.1	6.92	-	34.87	-	2.8	-	6.2	-
11/29/2021	Mid-Flood	Sunny	Moderate	N2	14:01	5.5	Surface	1	1.0	23.8	7.4	133.2	9.25	9.23	34.36	34.42	2.6	2.6	4.3	4.4
11/29/2021	Mid-Flood	Sunny	Moderate	N2			Surface	2	1.0	23.8	7.4	132.6	9.21	-	34.36	-	2.5	-	4.0	-
11/29/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	1	4.5	23.0	7.3	125.5	8.81	8.81	34.52	-	2.6	-	4.5	-
11/29/2021	Mid-Flood	Sunny	Moderate	N2			Bottom	2	4.5	23.0	7.4	125.2	8.81	-	34.45	-	2.6	-	4.8	-
11/29/2021	Mid-Flood	Sunny	Moderate	FCZ1A	13:24	4.3	Surface	1	1.0	23.8	7.4	135.2	9.38	9.36	34.37	34.44	2.4	2.5	5.1	5.5
11/29/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Surface	2	1.0	23.7	7.4	134.3	9.33	-	34.42	-	2.5		5.2	-
11/29/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	1	3.3	23.0	7.4	130.3	9.16	9.11	34.47	-	2.5		5.7	-
11/29/2021	Mid-Flood	Sunny	Moderate	FCZ1A			Bottom	2	3.3	23.0	7.4	128.9	9.06	-	34.48	-	2.5	-	6.1	-
11/29/2021	Mid-Flood	Sunny	Moderate	H4A	13:40	1.8	Middle	1	0.9	23.8	7.4	135.6	9.41	9.41	34.33	34.34	2.5	2.5	3.4	3.4
11/29/2021	Mid-Flood	Sunny	Moderate	H4A			Middle	2	0.9	23.8	7.4	135.6	9.41	-	34.34	-	2.5	-	3.4	-
11/29/2021	Mid-Flood	Sunny	Moderate	H1A	13:15	1.2	Middle	1	0.6	23.9	7.4	135.0	9.36	9.36	34.33	34.33	2.6	2.6	3.6	3.8
11/29/2021	Mid-Flood	Sunny	Moderate	H1A			Middle	2	0.6	23.9	7.4	134.9	9.35	-	34.33	-	2.6	-	4.0	-
11/29/2021	Mid-Flood	Sunny	Moderate	M1A	13:04	1.4	Middle	1	0.7	23.7	7.4	135.6	9.42	9.43	34.40	34.40	2.6	2.6	4.9	5.1
11/29/2021	Mid-Flood	Sunny	Moderate	M1A			Middle	2	0.7	23.7	7.4	135.8	9.43	-	34.40	-	2.5	-	5.3	-
11/29/2021	Mid-Flood	Sunny	Moderate	SGA	12:53	1.2	Middle	1	0.6	23.6	7.4	132.1	9.19	9.21	34.44	34.44	2.6	2.6	4.8	5.2
11/29/2021	Mid-Flood	Sunny	Moderate	SGA			Middle	2	0.6	23.6	7.4	132.5	9.22	-	34.44	-	2.6	-	5.6	-

DA - Depth-averaged

DO - Dissolved Oxygen

* denoted the estimated count

Action Level - Value presented in bold

25-Nov-21

25-Nov-21

23-Nov-21

27-Nov-21

29-Nov-21

29-Nov-21

27-Nov-21

Marine Water Quality Monitoring for Marine Construction Works

0

10.0 8.0

> 4.0 2.0 0.0

01-Nov-21

03-Nov-21

Concentration, mg/L 6.0 01-Nov-21

03-Nov-21

05-Nov-21

→C

05-Nov-21

07-Nov-21

09-Nov-21

11-Nov-21

13-Nov-21

15-Nov-21

17-Nov-21

07-Nov-21

09-Nov-21

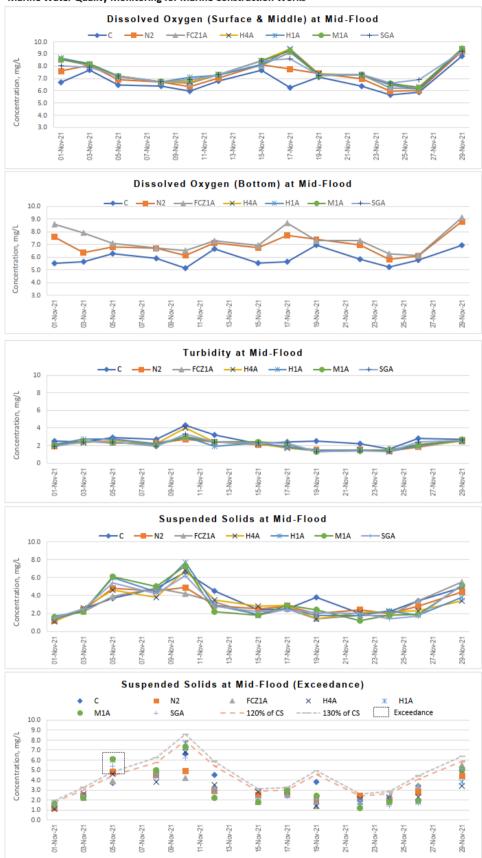
11-Nov-21

13-Nov-21

Suspended Solids at Mid-Ebb

15-Nov-21

17-Nov-21


19-Nov-21

19-Nov-21

21-Nov-21

21-Nov-21

23-Nov-21

Marine Water Quality Monitoring for Marine Construction Works

QAQC Reports

1 November 2021

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EA/ED: Physical and A	ggregate Properties (QC Lot:	3990707)						
HK2143164-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.0	1.2	13.6
HK2143164-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.5	1.3	10.7
EA/ED: Physical and A	ggregate Properties (QC Lot:	3990708)						
HK2143164-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.0	1.0	0.0
HK2143164-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.2	1.4	13.3
EA/ED: Physical and A	ggregate Properties (QC Lot:	3990709)						
HK2143164-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	<1.0	<1.0	0.0
HK2143164-055	FCZ1C_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	2.1	6,1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB	9) Report		Laboratory Cont	rol Spike (LCS) and Labo	oratory Control S	pike Duplicate (DCS) Report	
					Spike	Spike Re	acovary (%)	Recove	ary Limits(%)	RPI	7 (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties	(QC Lot: 3990707)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117		
EA/ED: Physical and Aggregate Properties	(QC Lot: 3990708)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	96.5		85.9	117		
EA/ED: Physical and Aggregate Properties	(QC Lot: 3990709)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

3 November 2021

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
	ggregate Properties (QC Lot:	3996925)					10001	
HK2143165-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.0	1.2	13.6
HK2143165-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.7	1.8	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	3996926)						
HK2143165-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	1.8	10.7
HK2143165-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.1	2.4	11.1
EA/ED: Physical and A	ggregate Properties (QC Lot:	3996927)						
HK2143165-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.1	1.9	11.3
HK2143165-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.7	2.8	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB	3) Report		Laboratory Contr	rol Spike (LCS) and Lab	oratory Control S	pike Duplicate (l	DCS) Report	
					Spike	Spike Re	covery (%)	Recove	ry Limits(%)	RP	7 (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC	: Lot: 3996925)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QC	Lot: 3996926)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QC	Lot: 3996927)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	101		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EA/ED: Physical and A	ggregate Properties (QC Lot:	3999385)						
HK2143166-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	4.3	6.6
HK2143166-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.8	4.4	7.7
EA/ED: Physical and A	ggregate Properties (QC Lot:	3999386)						
HK2143166-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.1	4.3	4.8
HK2143166-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.6	5.6
EA/ED: Physical and A	ggregate Properties (QC Lot:	3999387)						
HK2143166-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	5.5	6.1
HK2143166-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.0	5.3	4.9

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	rol Spike (LCS) and Labo	ratory Control S	pike Duplicate	DCS) Report	
					Spike	Spike Re	covery (%)	Recove	vy Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (Q	C Lot: 3999385)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 3999386)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85.9	117		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 3999387)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	96.5		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

8 November 2021

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labora	atory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	4004749)						
HK2144618-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	3.8	10.1
HK2144618-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.5	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	4004750)						
HK2144618-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.7	5.2	10.5
HK2144618-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.6	2.2
EA/ED: Physical and A	ggregate Properties (QC Lot:	4004751)						
HK2144618-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	3.8	4.2	9.9
HK2144618-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.3	4.6

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Re	acovary (%)	Recove	ary Limits(%)	RPI	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties (QC Lot: 4004749)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117			
EA/ED: Physical and Aggregate Properties (QC Lot: 4004750)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	110		85.9	117			
EA/ED: Physical and Aggregate Properties (QC Lot: 4004751)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
	ggregate Properties (QC Lot:	4010043)					1000	
HK2144619-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	6.4	6.6	3.1
HK2144619-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	6.6	6.8	3.7
EA/ED: Physical and A	ggregate Properties (QC Lot:	4010044)						
HK2144619-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.0	3.4
HK2144619-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.1	5.1	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	4010045)						
HK2144619-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.0	5.2	4.9
HK2144619-055	FCZ1C_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	7.4	7.3	1.2

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Re	ecovery (%)	Recove	ry Limits(%)	RPD	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties (C	C Lot: 4010043)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	110		85.9	117			
EA/ED: Physical and Aggregate Properties (C	C Lot: 4010044)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117			
EA/ED: Physical and Aggregate Properties (C	C Lot: 4010045)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

12 November 2021

Laboratory Duplicate (DUP) Report

latrix: WATER	Sample ID Method: Compound Omega D Physical and Aggregate Properties (QC Lot: 4015463) 4620-001 FC21A_S Ebb EA025: Suspended Solids (SS) 4620-011 H4A_M Ebb EA025: Suspended Solids (SS) 4620-01 Physical and Aggregate Properties (QC Lot: 4015464) EA025: Suspended Solids (SS) 4620-01				Laboratory Duplicate (DUP) Report						
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)			
sample ID							Result				
EA/ED: Physical and A	ggregate Properties (QC Lot:	4015463)									
HK2144620-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	6.1	6.2	0.0			
HK2144620-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	4.1	2.5			
EA/ED: Physical and A	ggregate Properties (QC Lot:	4015464)									
HK2144620-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	4.4	3.5			
HK2144620-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.2	0.0			
EA/ED: Physical and A	gregate Properties (QC Lot:	4015465)									
HK2144620-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.7	2.8	4.6			
HK2144620-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.4	6.1			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Concentration	Spike Re	covery (%)	Recove	ary Limits(%)	RF	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties (QC Lot	: 4015463)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	100		85.9	117			
EA/ED: Physical and Aggregate Properties (QC Lot	: 4015464)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QC Lot	: 4015465)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and A	gregate Properties (QC Lot: 401	8366)						
HK2145665-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.4	1.4	0.0
HK2145665-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.5	1.5	0.0
EA/ED: Physical and A	gregate Properties (QC Lot: 401	8367)						
HK2145665-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.8	1.8	0.0
HK2145665-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.8	1.8	0.0
EA/ED: Physical and A	gregate Properties (QC Lot: 401	8368)						
HK2145665-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	3.1	3.3
HK2145665-055	FCZ1C_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.8	1.9	6.7

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Concentration	Spike Re	acovary (%)	Recove	ary Limits(%)	RF	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control	
											Limit	
EA/ED: Physical and Aggregate Properties	QC Lot: 4018366)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	103		85.9	117			
EA/ED: Physical and Aggregate Properties	QC Lot: 4018367)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117			
EA/ED: Physical and Aggregate Properties	QC Lot: 4018368)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94,5		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

17 November 2021

Laboratory Duplicate (DUP) Report

latrix: WATER	symple ID Method: Compound D Physical and Aggregate Properties (QC Lot: 4023964) 5667-001 FC21A_S Ebb EA025: Suspended Solids (SS) 5667-011 H4A_M Ebb EA025: Suspended Solids (SS) Physical and Aggregate Properties (QC Lot: 4023955) EA025: Suspended Solids (SS)				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
A/ED: Physical and A	gregate Properties (QC Lot: 40	23964)									
HK2145667-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.5	2.2	11.8			
HK2145667-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	2.9	9.9			
A/ED: Physical and A	gregate Properties (QC Lot: 40	23965)									
HK2145667-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.4	12.6			
HK2145667-034	FCZ1A_B_Dup Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.6	5.6			
A/ED: Physical and A	gregate Properties (QC Lot: 40	23966)									
HK2145667-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.1	9.2			
HK2145667-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.3	1.5	16.2			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report				DCS) Report					
					Spike Concentration	Spike Re	covery (%)	Recove	ny Limits(%)	RF	(%) C
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC I	.ot: 4023964)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	98.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QC L	ot: 4023965)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	97.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QC I	ot: 4023966)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	103		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labor	atory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EA/ED: Physical and A	ggregate Properties (QC Lot:	4026506)						
HK2145670-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.8	1.7	0.0
HK2145670-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.2	1.3	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	4026507)						
HK2145670-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.5	0.0
HK2145670-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.6	1.6	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	4026508)						
HK2145670-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.0	1.1	0.0
HK2145670-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.6	1.6	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Concentration	Spike Re	acovary (%)	Recove	ny Limits(%)	RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties	QC Lot: 4026506)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	107		85.9	117			
EA/ED: Physical and Aggregate Properties	QC Lot: 4026507)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	98.0		85.9	117			
EA/ED: Physical and Aggregate Properties	QC Lot: 4026508)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	105		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

22 November 2021

Matrix: WATER					Labo	ratory Duplicate (DUP)	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)
sample ID							Result	
EA/ED: Physical and A	ggregate Properties (QC Lot:	4032343)						
HK2147299-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.7	10.7
HK2147299-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.6	1.5	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	4032344)						
HK2147299-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.2	1.4	11.5
HK2147299-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	1.7	13.7
EA/ED: Physical and A	ggregate Properties (QC Lot:	4032345)						
HK2147299-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.5	7.3
HK2147299-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.7	1.5	10.9

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					DCS) Report	aport	
					Spike Spike Reco Concentration	covery (%)	Recovery Limits(%)		RPD (%)			
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties	A/ED: Physical and Aggregate Properties (QC Lot: 4032343)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.9	117			
EA/ED: Physical and Aggregate Properties	(QC Lot: 4032344)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	109		85.9	117			
A/ED: Physical and Aggregate Properties (QC Lot: 4032345)												
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	110		85.9	117			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
EA/ED: Physical and A	ggregate Properties (QC Lot:	4038100)								
HK2147300-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.6	1.8	10.4		
HK2147300-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.4	1.1	24.5		
EA/ED: Physical and A	ggregate Properties (QC Lot:	4038101)								
HK2147300-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	1.3	1.6	20.3		
HK2147300-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.4	2.0	36.0		
EA/ED: Physical and A	ggregate Properties (QC Lot:	4038102)								
HK2147300-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.7	21.5		
HK2147300-055	FCZ1C_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.1	4.6		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	1	LCS	DCS	Low	High	Value	Control
											Limit
EA/ED: Physical and Aggregate Properties (QC Lct: 4038100)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	97.0		85.9	117		
EA/ED: Physical and Aggregate Properties (0	QC Lot: 4038101)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	106		85.9	117		
A/ED: Physical and Aggregate Properties (QC Lct: 4038102)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	92.5		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

26 November 2021

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
EA/ED: Physical and A	gregate Properties (QC Lot:	4044032)								
HK2147301-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	6.4	9.9		
HK2147301-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.1	28.6		
EA/ED: Physical and A	gregate Properties (QC Lot:	4044033)								
HK2147301-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	3.8	3.8	0.0		
HK2147301-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.7	7.9		
EA/ED: Physical and A	gregate Properties (QC Lot:	4044034)								
HK2147301-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.9	0.0		
HK2147301-055	FCZ1C S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	1.2	1.9	47.2		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB	Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (L					DCS) Report		
					Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC Lot: 4044032)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	108		85.9	117		
EA/ED: Physical and Aggregate Properties (Q	C Lot: 4044033)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	110		85.9	117		
EA/ED: Physical and Aggregate Properties (QC Lot: 4044034)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	104		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)		
sample ID							Result			
EA/ED: Physical and A	ggregate Properties (QC Lot:	4046828)								
HK2148260-001	FCZ1A_S Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.4	2.3		
HK2148260-011	H4A_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	6.4	6.3	0.0		
EA/ED: Physical and A	ggregate Properties (QC Lot:	4046829)								
HK2148260-021	C_M Ebb	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.4	0.0		
HK2148260-033	FCZ1A_B Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	5.8	1.7		
EA/ED: Physical and A	ggregate Properties (QC Lot:	4046830)								
HK2148260-043	N2_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.2	2.9		
HK2148260-055	FCZ1C_S Flood	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	5.6	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC Lot: 4046828)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85.9	117		
EA/ED: Physical and Aggregate Properties	(QC Lot: 4046829)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	97.5		85.9	117		
XAED: Physical and Aggregate Properties (QC Lot: 4046830)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93,5		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

APPENDIX H

Event and Action Plan

Appendix H Event and Action Plan

EVENT		ACTI		
	ET	IEC	ER	Contractor
Construction N Action Level	 Voise Carry out investigation to identify the source and cause of the complaint/ exceedance(s) Notify IEC, ER, and Contractor and report the results of investigation to the Contractor, ER and the IEC Discuss with the Contractor and IEC for remedial measures required If the complaint is related to the Project, conduct additional monitoring for checking mitigation effectiveness and report the findings and results to the IEC, ER and the Contractor 	 Review the analyzed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of Exceedance in writing. Require Contractor to propose remedial measures for the analyzed noise problem. Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals, if required, to the IEC and ER Implement noise mitigation proposals
Limit Level	 Carry out investigation to identify the source and cause of the exceedance Notify IEC, ER, Project Proponent, EPD and Contractor Repeat measurements to confirm findings Provide investigation report to IEC, ER, EPD and Contractor of the exceedances If the exceedance is related to the Project, assess effectiveness by additional monitoring. Report the remedial action implemented and the additional monitoring results to IEC, EPD, ER and Contractor If exceedance stops, cease additional monitoring 	 Review the analyzed results submitted by the ET Discuss the potential remedial measures with ER, ET Leader and Contractor Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of Exceedance in writing. Require the Contractor to propose remedial measures for the analyzed noise problem. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor, in agreement with the Project Proponent, to stop that activity of work until the exceedance is abated. 	exceedance is abated.
Landscape and Non- conformity on one occasion		 Check inspection report Check Contractor's working method Discuss with ET, ER and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures 	 Confirm receipt of notification of non- conformity in writing Review and agree on the remedial measures proposed by the Contractor Supervise implementation of remedial measures 	 Identify source and investigate the non- conformity Implement remedial measures Amend working methods agreed with ER as appropriate Rectify damage and undertake any necessary replacement
Repeated Non- conformity	 Identify source(s) Inform the Contractor, IEC and ER; Discuss inspection frequency Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring 	 Check inspection report Check Contractor's working method Discuss with ET, ER and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures 	 Notify the Contractor In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise implementation of remedial measures 	 Identify source and investigate the non-conformity Implement remedial measures Amend working methods agreed with ER as appropriate Rectify damage and undertake any necessary replacement. Stop relevant portion of works as determined by ER until the non-conformity is abated.

EVENT			TION			
	ET	IEC	ER	Contractor		
Water Quality Action Level being exceeded by one sampling day	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER. 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice 	 Confirm receipt of notification of exceedance in writing. 		
Action Level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Consider changes of working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. 		
Limit Level being exceeded by one sampling day	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. Request Contractor(s) to critically review the working methods. 		
Limit Level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. Request Contractor(s) to critically review the working methods. 		

Notes: ET – Environmental Team, IEC – Independent Environmental Checker; ER = Engineering Representatives

APPENDIX I

Waste Flow Table

Appendix I Waste Flow Table

Monthly Summary Waste Flow Table for <u>2021</u> (year)

Name of Person completing the record: Tim Tan (Assistant S & E Officer)

Project : Exp	pansion of 5	ha Tau Ko	k Sewage	Ireatment	Works Ph	ase I and V	fillage Sev	verage in 10	ong Io	Contract No	.: DC/2018/03
	Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of Non Generated M									Wastes	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	1.739	0.000	0.000	0.000	1.739	0.000	0.000	0.000	0.000	0.000	0.020
Feb	0.972	0.000	0.000	0.000	0.972	0.000	0.000	0.000	0.000	0.000	0.009
Mar	1.141	0.000	0.000	0.000	1.141	0.000	0.000	0.000	0.000	0.000	0.018
Apr	1.478	0.000	0.000	0.000	1.478	0.000	0.000	0.000	0.000	0.000	0.008
May	1.784	0.000	0.000	0.000	1.784	0.000	0.000	0.000	0.000	0.000	0.020
Jun	0.469	0.000	0.000	0.000	0.469	0.000	0.000	0.000	0.000	0.000	0.007
Sub-total	7.583	0.000	0.000	0.000	7.583	0.000	0.000	0.000	0.000	0.000	0.082
Jul	0.138	0.000	0.000	0.000	0.138	0.000	0.000	0.000	0.000	0.000	0.014
Aug	0.666	0.000	0.000	0.000	0.666	0.000	0.000	0.000	0.000	0.000	0.034
Sep	2.284	0.000	0.000	0.000	2.284	0.000	0.000	0.000	0.000	0.000	0.015
Oct	1.810	0.000	0.000	0.000	1.810	0.000	0.000	0.000	0.000	0.000	0.022
Nov	1.815	0.000	0.000	0.000	1.815	0.000	0.000	0.000	0.000	0.000	0.011
Dec	-	-	-	-	-	-	-	-	-	-	-
Total	14.296	0.000	0.000	0.000	14.296	0.000	0.000	0.000	0.000	0.000	0.178
2019	1.787	0.005	0.000	0.000	1.787	0.000	0.000	0.000	0.000	0.000	0.137
2020	3.316	0.000	0.000	0.000	3.321	0.000	0.000	0.000	0.000	0.000	0.703
Cumulative	19.399	0.005	0.000	0.000	19.404	0.000	0.000	0.000	0.000	0.000	1.018

Project : Expansion of Sha Tau Kok Sewage Treatment Works Phase 1 and Village Sewerage in Tong To Contract No.: DC/2018/03

Notes:

The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

APPENDIX J

Implementation Schedule of Environmental Mitigation Measures

Appendix J Environmental Mitigation Implementation Schedule

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
			Air Quality	
			 Dust control measures stipulated in the Air Pollution Control (Construction Dust) Regulation shall be implemented during the construction of the Project to control potential fugitive dust emissions. 	٨
			- Regular water spraying on exposed area.	^
			- Vehicle wheel-washing and body washing facilities shall be provided at the site entrance.	۸
S3.7.1			 Shielding or covering with impervious sheet of stockpiled materials or exposed area when it is not used to reduce dust nuisance 	٨
	Land site/ During	с	 Site practices such as regular maintenance and checking of the diesel-driven PMEs should be adopted to avoid any black smoke emissions and to reduce gaseous emissions 	^
	Construction		 Open trench construction of the gravity sewers, each work front should be around 20m to 30m in length to control potential dust emission. 	^
S3.6.1			 The existing sewage pumping station and rising mains should be cleaned and flushed out properly to clear away any remaining potential sources of odour emission, such as sewage sludge from the facilities. The decommissioning including removal of the pumping station and rising mains should take place after the cleaning and flushing out. 	N.O.
S3.9.1			 Regular site inspections on a weekly basis shall be carried out in order to confirm that the mitigation and control measures are properly implemented and are working effectively to ensure proper control of construction dust and gaseous emissions. 	
	During	0	 To minimize odour problem, the sludge tankers for disposal of sludge shall be fully enclosed 	۸
	During operation	0	 Sludge produced will be thickened and dewatered to 30% dry solids prior to disposal at the landfill. 	N.O.
S3.7.2	(Odour: for	D/O	 Deodourizing facility using activated carbon filters and/or bio-trickling filters were equipped for both TSTP. 	۸
00.7.2	operation of TSTP)	D/O	 The deodorization system would undergo maintenance annually or when the average odour removal efficiency of deodorization facility is smaller than the required odour removal efficiency. 	N.A.
	1311)	D/O	 Ventilation system was provided inside the TSTP to ensure adequate air change within the plant. 	^
		0	 A commissioning test is recommended to be performed for the operation phase to ascertain the effectiveness of the deodorization systems at the TSTP. Exhaust air flow rate, temperature of exhaust, odour concentrations at the outlet of the deodorization systems should be monitored during the commissioning test. 	۸
	During	0	 Weekly monitoring of odour emission at the exhausts at TSTP by taking odour samples is recommended to be conducted in the first two months of the first year of the operation. (i.e. August to September 2020) 	٨
S3.9.2	operation (Odour: for operation of TSTP)	0	Provided that the monitoring results show no non-compliance on a weekly basis during the first two months, it is recommended to reduce the frequency to monthly in the subsequent four months (i.e. October 2020 to January 2021) and further reduce to quarterly in the remaining six months (i.e. February 2021 to July 2021) of the first year if no non-compliance is found. If there is any non-compliance, the operator should inspect the deodorization unit. Frequency of odour monitoring should not be reduced unless no non-compliance is found. Quarterly odour monitoring is also recommended to continue in the second year of the operation (i.e. August 2021 to July 2022). If compliance can be achieved consistently throughout the first two years of operation, the Project Proponent may propose and seek approval with EPD to reduce monitoring frequency to every six month or yearly basis for subsequent years of operation.	۸
S3.9.2	During operation (Odour: for operation of TSTP)	о	 Odour patrol is proposed during the period of maintenance or cleaning of the deodorization system for TSTP. It is generally defined as Level 0 to Level 4 in which Level 0 means no odour and Level 4 means unacceptable odour. If Level 3 – 4 is reported and the source of odour is confirmed to be originated from the exhaust of TSTP, the operator should be notified immediately and should investigate and rectify the problem of the cleaning or maintenance works within 24 hours in order to restore the level to below Level 2. 	N.A.

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
			Noise	
		-	- Use of quiet PME / quiet construction method.	^
		-	 Movable noise barriers of 3m in height with skid footing should be used and located within a few metres of stationary plant and mobile plant such that the line of sight to the NSR is blocked by the barriers. The length of the barrier should be at least five times greater than its height. The noise barrier material should have a superficial surface density of at least 7 kg m² and have no openings or gaps. 	۸
		-	- Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction phase.	۸
		-	- Silencers or mufflers on construction equipment should be utilised and properly maintained during the construction phase.	۸
	Noise Control	-	 Mobile plant, if any, should be sited as far away from NSRs as possible. 	^
	/ During construction	C -	 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 	۸
S4.8		-	 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. 	۸
		-	 Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	N.O.
		-	 The construction activities should be planned and carried out in sequence rather than simultaneously at each location. Therefore, only one unit of each type of equipment should be operated at any one time. 	۸
		-	 Open trench construction of the gravity sewers, each work front should be around 20m to 30m in length. 	N.O.
	During operation	0	 Include noise levels specification when ordering new equipment items 	۸
	During operation	0	 Develop and implement a regularly scheduled equipment maintenance programme so that equipment items are properly operated and serviced. The programme should be implemented by properly trained personnel. 	N.A.
S4.11	During construction	С -	- Designated monitoring stations as defined in EM&A Manual/During construction phase.	٨
			Water Quality	
S5.9.3	Marine Dredging/ During construction	c	 A number of standard measures and good site practices should be implemented to avoid / minimize the potential impacts from marine construction. These measures include: All vessels should be well maintained and inspected before use to limit any potential discharges to the marine environment; All vessels must have a clean ballast system; No soil waste is allowed to be disposed overboard. 	۸
S5.9.3	Marine Dredging/ During construction	С	 No discharge of sewage/grey wastewater should be allowed. Wastewater from potentially contaminated area on working vessels should be minimized and collected. These kinds of wastewater should be brought back to port and discharged at appropriate collection and treatment system. 	۸
	Marine		 The submarine outfall in Starling Inlet shall be constructed by trenchless method such as Horizontal Directional Drilling or equivalent such that the seabed (except at the diffuser location) will not be disturbed. 	٨
EP Clause 2.11	Dredging/ During	C -	 Mitigation/ precaution measures recommended in the method statement of submarine outfall construction should be implemented. 	٨
	construction	-	 Cofferdam shall be installed at the receiving pit of the diffuser of submarine outfall. Excavation of sediment and construction of the diffuser shall be conducted in dry condition within the fully-drained cofferdam. 	N.A.
S5.9.4		С	General Construction Activities	٨

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
			 Standard site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to reduce surface runoff, minimize erosion, and also to retain and reduce any SS prior to discharge. 	
			 Silt removal facilities such as silt traps or sedimentation facilities should be provided to remove silt particles from runoff to meet the requirements of the TM standard under the WPCO. The design of silt removal facilities should be based on the guidelines provided in ProPECC PN 1/94. 	٨
	Land site & drainage/		 All drainage facilities and erosion and sediment control structures should be inspected on a regular basis and maintained to confirm proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be removed regularly. 	٨
	During construction		 Earthworks to form the final surfaces should be followed up with surface protection and drainage works to prevent erosion caused by rainstorms. 	٨
			- Appropriate surface drainage should be designed and provided where necessary.	٨
			 The precautions to be taken at any time of year when rainstorms are likely together with the actions to be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. 	۸
			 Oil interceptors should be provided in the drainage system where necessary and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages. 	٨
S5.9.4	Land site & drainage/ During construction	С	 Temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge, if any, should be adequately designed for the controlled release of storm flows. The temporary diverted drainage, if any, should be reinstated to the original condition when the construction work has finished or when the temporary diversion is no longer required. 	۸
S5.9.5	Land site & drainage/ During construction	С	 Appropriate infiltration control, such as cofferdam wall, should be adopted to limit groundwater inflow to the excavation works areas in the Project site. Groundwater pumped out from excavation area should be discharged into the storm system via silt removal facilities. 	N.O.
S5.9.6	Land site &	С	 If needed, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. 	٨
S5.9.7	drainage/ During construction	U	 Spillage of Chemicals Site drainage should be well maintained and good construction practices should be observed to ensure that oil, fuels, solvents and other chemicals are managed, stored and handled properly and do not enter the nearby streams or marine water. 	٨
S5.9.9	During operation	0	 The following design measures are also provided in the TSTP and the expanded STKSTW to avoid the risk of emergency discharge: Provision of dual power supply and backup generator to eliminate the risk of power failure; Provision of standby equipment (online and on-shelf) for all treatment units; Operation of STKSTW is under 24-hour monitoring by Shift Team of Sha Tau Kok (for new STKSTW) and/or Shek Wu Hui STW in order to allow inspection and any necessary repair works by DSD at the earliest possible time; A remote control and monitoring system (SCADA) will also be installed to allow off-site DSD staff (Shift Team) to monitor the operation of STKSTW; and Provision of on-site storage of raw sewage up to 6 hours for the TSTP and STKSTW 	۸
S5.9.10	During operation	0	 Additional measures provided to avoid plant failure associated fine screen include: 2 duties + 1 standby fine screens would be provided; Uninstalled spare parts would be provided; Monitoring equipment of fine screens would be installed; Routine inspection and scheduled maintenance works would be strengthened and carried out regularly; and 	N.A.

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
			•Equipment and necessary measures such as lifting opening would be provided to shorten the time required for replacement of screen.	
S5.9.12	During operation	о	- To avoid cross-connection of the reclaimed water supply to the potable water supply, the pipes for the reclaimed water will be specially arranged to differentiate them from that of the potable water pipe, e.g. clearly labelled with warning signs and notices, colour-coded, and/or using different pipe size.	N.A.
	operation		- Caution would also be taken to avoid the use of high pressure jet in cleansing and landscape irrigation to minimize aerosol formation from the reclaimed effluent	N.A.
S5.12.1	Marine Dredging/ During construction	с	 Marine water quality monitoring at selected WSRs is recommended for installation, maintenance and removal of sheetpile and sediment removal works under this Project. Site audit would also be conducted throughout the marine and land-based construction under this Project. Details environmental monitoring procedures and audit requirements are provided in the standalone EM&A manual. 	۸
S5.12.2	During operation	ο	 Marine water quality monitoring at selected WSRs is recommended for the first year of (1) interim operation of the TSTP, (2) operation of phase 1 and (3) phase 2 expansion of the STKSTW. Follow-up water quality monitoring should be commenced within 24 hours after an emergency discharge event and continue until the recovery of water quality. Monitoring of effluent quality would also be required for WPCO permit requirement. Detailed environmental monitoring procedures are provided in the standalone EM&A manual. 	٨
			Waste Management & Land Contamination	
S6.6.1	During construction	с	 An Environmental Management Plan (EMP) in accordance with ETWB TCW No. 19/2005 – "Environmental Management on Construction Sites" should be prepared by the main Contractor of each construction contract upon appointment. The EMP should describe the arrangements for avoidance, reduction, reuse, recovery, recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the construction activities. 	۸
S6.6.3	During construction	с	 An appropriate person, such as site agent or environmental officer should be nominated, to be responsible for good site practices, arrangement for collection and effective disposal of all wastes generated at the site to an approved facility. Training of construction staff should be undertaken by the Contractor about the concept of site cleanliness and appropriate waste management procedures. Requirements for staff training should be included in the EMP. 	۸
S6.6.4	During construction	С	- Good planning and site management practices should be employed to eliminate over ordering or mixing of construction materials to reduce wastage. Regular cleaning and maintenance of the waste storage area should be provided.	٨
S6.6.5	During construction	С	 A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be implemented in accordance with DEVB TCW No. 6/2010. In order to monitor the disposal of C&D materials and solid wastes at public fill reception facilities and landfills and to control fly-tipping, a trip-ticket system should be included. 	^
S6.6.6	During construction	С	 Imported soft fill and rocks, if required, should be sourced from CEDD's fill bank, other projects or other approved sources instead of using new materials. Approval from the Engineer and all other relevant parties should be obtained by the Contractor before importation of the fill materials. 	N.O.
S6.6.7	During construction	С	 All waste materials should be segregated into categories covering: inert C&D materials suitable for public filling facilities; recyclable materials / waste; remaining non-inert C&D materials for landfill; spent bentonite for public filling facilities; chemical waste; and general refuse for landfill 	۸
S6.6.9	During construction	С	 Proper segregation and disposal of construction waste should be implemented. Separate containers should be provided for inert and non-inert wastes. 	۸

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
S6.6.11	During construction	С	- The reuse of inert C&D materials such as soil, rock and broken concrete should be maximised. Waste should be separated into fine, soft and hard materials.	N.A.
S6.6.12	During construction	С	 Prior to export of material from the site, the potential for it to be reused should be assessed. Most C&D materials can easily be reused with minimum processing. Waste separation methods should be followed to ensure that C&D waste is separated at source. Suitable soft materials should be used for landscaping and grading of embankments. Fine material should be separated out and used as topsoil. 	N.A.
S6.6.13	During construction	D&C	- Use of recycled aggregates whenever possible.	N.A.
S6.6.14, S6.6.30	During construction	С	 All C&D materials should be sorted on-site into inert and non-inert components by the Contractor. Non-inert C&D materials (C&D waste) such as wood, glass and plastic should be reused and recycled before disposal to a designated landfill as a last resort. Inert C&D materials (public fill) should be reused onsite or in other projects approved by relevant parties before disposed of at public fill reception facilities. Steel and other metals if any should be recovered from C&D materials and recycled. 	۸
S6.6.15	During construction	С	 Good quality reusable topsoil should be stockpiled for later landscaping works. Stockpiles should be less than 2m in height, formed to a safe angle of repose and hydroseeded or covered with tarpaulin to prevent erosion during the rainy season and to minimise dust generation. 	۸
S6.6.16	During construction	С	 Control measures for temporary stockpiles on-site should be taken in order to minimize the noise, generation of dust, pollution of water and visual impact. 	٨
S6.6.17	During construction	С	 The public fill to be disposed to public fill reception facilities must consist entirely of inert construction materials. Disposal of C&D waste to landfill must not have more than 50% by weight of inert material. The C&D waste delivered for landfill disposal should contain no free water and the liquid content should not exceed 70% by weight. 	۸
S6.6.18	During construction	С	 In order to avoid dust or odour impacts, any vehicles leaving a works area carrying C&D waste or public fill should have their load covered up before leaving the construction site. 	٨
S6.6.20	During construction	С	With reference to the Sediment Quality Report in the EIA, only Category L sediment was identified. In accordance with ETWB TCW No. 34/2002, Type 1 – Open Sea Disposal should be adopted for the disposal of 3,040 m ³ excavated sediment during construction of the proposed outfall diffuser. The location of marine disposal site should be sought with MFC/CEDD. The Contractor shall obtain a Marine Dumping Permit in accordance with the Dumping at Sea Ordinance. The Contractor should provide separate submissions (e.g. Sediment Sampling and Testing Plan / Sediment Quality Report) to EPD / DASO authority when applying for the marine dumping permit under the Dumping at Sea Ordinance.	N.A.
S6.6.21	During construction	С	 Bentonite slurry used in the drilling works should be treated and recycled at the works area in STKSTW. Any bentonite that is not suitable for recycling should be suitably dewatered before disposed of at public fill reception facilities. 	٨
S6.6.22 & S6.6.37	During construction and operation	C & O	 Where the construction/ operation processes produce chemical waste, the Contractor must register with EPD as a chemical waste producer. Wastes classified as chemical wastes are listed in the Waste Disposal (Chemical Waste) (General) Regulation. These wastes are subject to stringent disposal routes. EPD requires information on the particulars of the waste generation processes including the types of waste produced, their location, quantities and generation rates. A nominated contact person must be registered with EPD. 	۸
\$6.6.23 & \$6.6.37	During construction	C & O	 Storage, handling, transport and disposal of chemical waste should be arranged in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published by EPD, and should be collected by a licensed chemical waste collector. 	٨
S6.6.24 & S6.6.37	During construction	C & O	 Suitable containers should be used for specific types of chemical wastes, containers should be properly labelled (English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations), resistance to corrosion, safely stored and securely closed. Stored volume should not be kept more than 450 liters unless the specification has been approved by the EPD. Storage area should be enclosed by three sides by a wall, partition of fence that is at least 2 m height or height of tallest container with adequate ventilation and space. 	۸

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
S6.6.25 & S6.6.37	During construction	C & O	- Hard standing, impermeable surfaces draining via oil interceptors should be provided in works area compounds. Interceptors should be regularly emptied to prevent release of oils and grease into the surface water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. Oil and fuel bunkers should be bunded and/or enclosed on three sides to prevent discharge due to accidental spillages or breaches of tanks. Bunding should be of sufficient capacity to accommodate 110% of the volume of the largest container or 20% of the total volume of waste, whichever is largest. Waste collected from any grease traps should be collected and disposed of by a licensed contractor.	۸
S6.6.26 & S6.6.37	During construction	C & O	 Lubricants, waste oils and other chemical wastes are likely to be generated during the maintenance of vehicles and mechanical equipment. Used lubricants should be collected and stored in individual containers which are fully labelled in English and Chinese and stored in a designated secure place. If possible, such waste should be sent to oil recycling companies, and the empty oil drums collected by appropriate companies for reuse or refill. 	۸
S6.6.27	During construction	С	 The registered chemical waste producer (i.e. the Contractor) has to arrange for the chemical waste to be collected by licensed collectors. The licensed collector should regularly take chemical waste to a licensed chemical waste treatment facility (such as the Chemical Waste Treatment Centre in Tsing Yi). A trip ticket system operates to control the movement of chemical wastes. 	۸
S6.6.28	During construction	С	 No lubricants, oils, solvents or paint products should be allowed to discharge into water courses, either by direct discharge, or as contaminants carried in surface water runoff from the construction site. 	٨
S6.6.29	During construction	С	 All wooden materials used on-site should be kept separate from other wastes to avoid damage and to facilitate reuse. Timber which cannot be reused should be sorted out from other waste and stored separately from all inert waste before being disposed of to landfill. 	۸
S6.6.32	During construction	с	 General refuse generated on-site should be stored in enclosed bins or skips and collected separately from other construction and chemical wastes and disposed of at designated landfill. A temporary refuse collection point should be set up by the Contractor at the works area to facilitate the collection of refuse by licensed waste collector. The removal of waste from the site should be arranged on a daily or at least on every second day by the Contractor to minimise any potential odour impacts, minimise the presence of pests, vermin and other scavengers and prevent unsightly accumulation of waste. 	۸
S6.6.33	During construction	с	- The recyclable component of the municipal waste generated by the workforce, such as aluminum cans, paper and cleansed plastic containers should be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste should be set up by the Contractor. The Contractor should also be responsible for arranging recycling companies to collect these materials.	۸
S6.6.35	During operation	0	 Dewatered sludge should be delivered by sealed sludge tanker for treatment at the Sludge Treatment Facility in Tuen Mun. 	N.A.
S6.6.36	During operation	0	 Screenings should be collected and stored in covered containers before disposed of at landfill. Likewise, worn membrane filters and general refuse should be properly stored and disposed of at landfill. 	N.A.
S7.7.3	All area / During construction	С	 Ecology Erect fences along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas. Regularly check the work site boundaries to ensure that they are not breached and that damage does not occur to surrounding areas. Avoid any damage and disturbance, particularly those caused by filling and illegal dumping, to the surrounding habitats through proper management of waste disposal. To avoid/ minimise the potential disturbance on the Night Roosting Site for Great Egret if confirmed to be continuing their usage 	Λ Λ Λ
			before the construction activities, major noisy works such as concrete breaking should not be undertaken within an area of 100m from the Night Roosting Site after 16:00 under normal working hours. (i.e. 16:00 to 07:00 of the following day).	N.A.

EIA Ref	Objective & Address	Stage^ (D/C/O)	Recommended Environmental Protection Measures/ Mitigation Measures	Implementation Status in Construction Phase
			- Strong artificial lighting should not be used in the area at night to avoid disturbance to the roosting ardeids.	N.O.
	I	1	Landscape & Visual	r
Table 9.6of EM&A	To protect existing landscape resources during construction stage	С	 Preservation of Existing Vegetation: Existing trees designated to be retained in-situ should be properly protected. Tree protection measures to be undertaken shall be in accordance with DEVB TC(W) 7/2015 on "Tree Preservation" and Guidelines on Tree Preservation during Development" by DEVB. This may include the clear demarcation and fencing-off of tree protection zones, tight site supervision and monitoring to prevent tree damage by construction activities, and periodic arboricultural inspection and maintenance to uphold tree health. A total of around 108 nos. of trees should be retained in-situ within the tree survey area. Under current proposal, no tree is recommended to be transplanted since the trees in conflict with the proposed works are not suitable to be transplanted. However, should transplantation be proposed in the detailed design stage after an update tree survey, the recommended final recipient sites should be adjacent to their current locations. Enough time should be reserved for tree transplantation works to increase the survival rate of the transplanting trees. To ensure the survival of transplanted trees, protection work should be considered. The tree transplantation proposal shall be submitted to relevant authorities for approval together with the formal tree removal application. Tree transplanting works shall be undertaken in accordance with Guidelines on Tree Transplanting by DEVB. 	^
Manual	To reduce construction disturbance during construction stage	С	 Control of Site Construction Activities: Construction site controls shall be enforced, where possible, to ensure that the landscape and visual impacts arising from the construction phase activities are minimised. These construction site controls should include but not limited to the following: Storage of materials should be carefully arranged to minimise potential landscape and visual impact. The location and appearance of site accommodation should be carefully designed to minimize potential landscape and visual impact. Site lighting should be carefully designed to prevent light spillage. Extent of the works area and construction period should be minimised as far as practicable. Screen hoarding with compatible design to blend into the surrounding natural environmental should be considered (Screen hoarding may not be practicable for works of upgrading existing rising mains due to the spatial constraints of the works area along the Shun Hing Street). Temporary works areas should be reinstated at the earliest possible opportunity. 	۸
Table 9.7of EM&A Manual	To reduce landscape and visual impact during construction	D&C	 Suitable design of the proposed TSTP: Colour of natural tones and non-reflective building materials shall be used for any outward facing building facades to avoid visual and glare disturbance. Responsive lighting design Directional and full cut off lighting is recommended within the boundaries of STKSTW to minimise light spillage to the surroundings; Minimise geographical spread of lighting, only applying for safety at the key access points of the STKSTW; and Limited lighting intensity to meet the minimum safety and operation requirement. 	۸
			Cultural Heritage	
S10.3.50			- Undertake trenchless excavation in the vicinity of the Tin Hau Temple and provide a buffer zone of 10m between the works	N.O.
S10.3.51	During construction	С	 area for the open cut section and the Tin Hau Temple. A condition survey and vibration impact assessment should be undertaken and if construction vibration monitoring and structural strengthening measures are required. 	N.A.
S10.3.52	CONSTRUCTION		 Vibration and settlement monitoring should also be undertaken during the construction works to ensure that safe levels of vibration are not exceeded, if it is recommended in the condition survey report. 	N.A.

EIA Ref	Objective & Address	Stage^ (D/C/O)	Performended Environmental Protection Measures/Mitigation Measures	Implementation Status in Construction Phase
S10.3.53			 If the maximum level is exceeded all works must stop and the structure must be examined to determine if it has been damaged. The contractor must also take measures, such as using smaller pneumatic drills to ensure that the levels are reduced to acceptable limits. 	N.A.
S10.3.54			 If at any time during the construction period the foundation of the structure is affected by the works; the works shall be immediately suspended and the AMO notified. If the works cause any damage to the structures, the proponent should be responsible for the restoration and repair at their own cost. A method statement should be submitted to AMO for comment and the works should be under AMO's supervision. 	NO
S10.3.55			 Protective covering should be provided as an additional mitigation measure to the Tin Hau Temple. 	N.O.

Remarks: ^

- . Х.А
- Compliance of mitigation measure Non-compliance of mitigation measure Not Applicable at this stage as no such site activities were conducted in the reporting period
- N.O Not Observed during site inspection in the reporting period.

APPENDIX K

Proactive Environmental Protection Proforma

Appendix K Proactive Environmental Protection Proforma

Reporting Period	01/11/2021 – 30/11/2021
Construction Works	 Reaming (Sea) Sewer laying works in Shun Hing Street and Tong To Village Construction of RC Structures Excavation
Anticipated Impacts	Dust, Noise and water quality impact.
Corresponding Mitigation Measures	 All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission. All C&D materials generated should be transported and stored at temporary storage area. Cover should be provided during transportation of dusty materials. Suitable materials should be sorted for reuse on-site. Only non-inert C&D material should be disposed off-site to NENT Landfill. All dump trucks should be equipped with mechanical covers to prevent the dust emission during transportation when necessary. Dust control measures, such as water spraying should be provided when necessary. Maintaining of wet surface on access road and keep slow speed in the site. Wastewater to be treated by wastewater treatment facilities before discharge. Conditions in the Environmental Permit and Discharge License should be followed. Fueling of equipment should be conducted carefully on-site by mobile tanker to avoid storage of fuel and oil spillage. Provision of drip trays for equipment/ containers likely cause spillage of chemical / fuel, and provide routine maintenance. Predict required quantity of concrete accurately and collect the unused fresh concrete at designated locations in the site for subsequent disposal. Application of silent plant. NRMM and noise labels should be displayed on the PME. Provision of chemical/waste management on site. Reuse and recycle of drill mud during HDD work. No discharge of wastewater/ drill fluid should be allowed. Bunding / sandbags should be provided at the edge of the working barges to prevent any potential surface/ mud runoff to the sea. Frovide sufficient mitigation measures/ precautionary measures as recommended in the method statement of submarine outfall construction and approved EM&A Manual requirements.

Coming Month	01/12/2021 – 31/12/2021
Construction Works	 Reaming (Sea) Sewer laying works in Shun Hing Street and Tong To Village Construction of RC Structures Excavation E&M Installations
Anticipated Impacts	Dust, Noise and water quality impact.
Corresponding Mitigation Measures	 All construction plants / machineries should be checked / serviced on a regular basis during the courses of construction to minimize the emission of noise generation and eliminate dark smoke emission. All C&D materials generated should be transported and stored at temporary storage area. Cover should be provided during transportation of dusty materials. Suitable materials should be sorted for reuse on-site. Only non-inert C&D material should be disposed off-site to NENT Landfill. All dump trucks should be equipped with mechanical covers to prevent the dust emission during transportation when necessary. Dust control measures, such as water spraying should be provided when necessary. Maintaining of wet surface on access road and keep slow speed in the site. Wastewater to be treated by wastewater treatment facilities before discharge. Conditions in the Environmental Permit and Discharge License should be followed. Fueling of equipment should be conducted carefully on-site by mobile tanker to avoid storage of fuel and oil spillage. Provision of drip trays for equipment/ containers likely cause spillage of chemical / fuel, and provide routine maintenance. Predict required quantity of concrete accurately and collect the unused fresh concrete at designated locations in the site for subsequent disposal. Application of silent plant. NRMM and noise labels should be displayed on the PME. Provision of chemical/waste management on site. Reuse and recycle of drill mud during HDD works. No discharge of wastewater/ drill fluid should be allowed. Bunding / sandbags should be provided at the edge of the working barges to prevent any potential surface/ mud runoff to the sea. Floating single silt curtain shall be deployed to fully enclose the works area at sea side. Provide sufficient mitigation measures/ precautionary measures as recommended in the method statement of submarine o

APPENDIX L

Cumulative Statistics on Complaints, Notification of Summons, Successful Prosecutions and Public Engagement Activities

Appendix L Cumulative Statistics on Complaints, Notifications of Summons, Successful Prosecutions and Public Engagement Activities

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From	Received By	Nature of Complaint	Investigation/ Mitigation Action	Status
-	-	-	-	-	-	-

Remark:

* No Complaints related to 0700 to 1900 on normal weekdays, Notifications of Summons or Successful Prosecutions was received in the reporting period.

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions and Public Engagement Activities

Reporting Period	Complaints	Notifications of Summons and Prosecutions	Public Engagement Activities
This Month	0	0	0
Cumulative Project-to-Date	0	0	0

APPENDIX M

On-site Time Duties for the Team of ET and IEC

Appendix M On-site Time & duties for the Team of ET and IEC

On-site Time & Duties for the Team	of EI during the reporting month	
Works to be carried on-site	Purposes	Actual Man-hour per week
Environmental site inspection	 To audit and assess the effectiveness of the Contractor's site practice and work methodologies regarding on environmental and landscape & visual mitigation measures as stipulated in the EM&A Manual. To take pro-active actions to pre-empt environmental problems. To audit compliance with the intended aims of the measures implemented by the Contractor. The findings will notify to the Contractor at the time of inspection to enable the rapid resolution of identified non-conformities. To carry out the follow-up actions if non-conformities identified during the site inspection. 	3 hours per week
Keeping and logging records in the log-book	• To keep a contemporaneous log-book of any such instance or circumstance or change of circumstances.	1 hour per week
Impact noise monitoring	 To carry out impact noise monitoring at each station at 0700-1900 hours on normal weekdays; per week when construction activities are underway. To check the performance of monitoring and to track the varying environmental impact. To carry out remedial actions described in the Event/Action Plans of the EM&A Manual in accordance with the time frame set out in the Event/ Action Plans in case where specified criteria in the EM&A Manual are exceeded. 	2 hours per week
Meeting with the ER, IEC, and contractor.	 To discuss with ER, IEC and Contractor any observations that improvement works is required to enhance the overall environmental performance; liaise with Contractor on any environmental non-compliance identified and follow up actions taken. To liaise with the Project Proponent, IEC, RSS and other individuals or parties concerning other environmental issues deemed to be relevant to the construction/ operation process. 	2 hours per week
Additional Monitoring for Critical work activities (recommended)	Purposes	Additional minimum on-site
Construction Phase		
Monitoring of decommission of existing rising main and demolition of sewage pumping station inside the close area of Sha Tau Kok Chuen	 To audit the Contractor's site practice and work methodologies regarding environmental mitigation measures contained in the EM&A Manual. To check any non-compliance with the construction methodology, mitigation measures and environmental monitoring and audit requirements recommended in the approved Method Statement submitted by the Contractor. To take pro-active actions to pre-empt environmental problems. 	Such work has not yet commenced.
Monitoring for Marine construction works including construction of cofferdam at the location of diffuser and construction of Submarine Outfall, etc.	 To audit the Contractor's site practice and work methodologies regarding environmental mitigation measures contained in the EM&A Manual. To check any non-compliance with the construction methodology, mitigation measures and environmental monitoring and audit requirements recommended in the approved Method Statement submitted by the Contractor. To take pro-active actions to pre-empt environmental problems. 	2 hours per week
Marine Water quality monitoring during marine construction activities	 To obtain water samples from the Water Quality Monitoring Stations as stipulated in the Table 5.3 of EM&A Manual. To check the monitoring parameter against the Action and Limit Levels stipulated in the Table 4.2 of Baseline Environmental Monitoring Report (Water). 	3 days per week x 8 hours = 24 hours per week
Operation Phase		
Marine Water quality monitoring during the first year of the TSTP	 To obtain water samples from the Water Quality Monitoring Stations as stipulated in the Table 5.3 of EM&A Manual. To check the monitoring parameter against the Action and Limit Levels stipulated in the Table 4.3 of Baseline Environmental Monitoring Report (Water). 	Completed.

Additional Monitoring for Critical work activities (recommended)	Purposes	Additional minimum on-site time
Continuous monitoring of treated sewage effluent from the TSTP	To obtain 24-hour flow-weighted composite effluent sample for subsequent chemical analysis and testing	Completed.
	• To check the monitoring parameter against the Action and Limit Levels stipulated in the Table 5.4 of EM&A Manual.	
	• To notify the plant operator for the non-compliance and to identify the cause for the non-compliance if any non-compliance.	
Testing & Commissioning for the TSTP	• To ascertain the effectiveness of the deodorization systems as required in the EM&A at the TSTP and STKSTW during the operation phase.	Completed.
Monitoring of odour emission at the exhausts at TSTP	To check any non-compliance with the monitoring parameter as stipulated in the EM&A Manual.	1 hour per quarter
Odour patrol during the period of maintenance of the deodorization	To patrol and sniff along an odour patrol route at the existing STKSTW site boundary.	No maintenance of
system for TSTP	• To carry out the follow-up actions if any exceedance of the Action or Limit Level occurs actions in accordance with the Event/Action Plan presented in Table 3.5 of EM&A Manual should be carried out.	deodorization system for TSTP in the reporting month.

On-site Time & Duties for the Team	of IEC during the reporting month	
Works to be carried on-site	Purposes	Actual Man-hour per week
General site inspection or Monthly site	To ensure the EIA recommendations and EP requirements are complied with	2 x 2 hours general site inspection or 1 x 4 hours monthly site inspection
inspection	• To review the effectiveness of environmental mitigation measures and environmental mitigation measures and environmental performance of the Project	
	To identify any environmental deficiency needs to be improved.	
	To identify in any environmental non-compliance	
Inspection of on-site ET Logbook	To inspect and audit the on-site logbook kept by the ET	1 hour per week
Audit of Monitoring Works by the ET	 To check, audit and verify the environmental monitoring equipment, procedures, data and results of the environmental monitoring works carried out by the ET 	1.5 hours per week
Meeting with the ER, ET and contractor.	• To discuss with ER, ET and Contractor any observations that improvement works is required to enhance the overall environmental performance	1.5 hours per week
	• To discuss with ET, ET and Contractor any environmental non-compliance identified and follow up actions required	
Additional Monitoring for Critical work activities (recommended)	Purposes	Additional minimum on-site time
Construction Phase	•	
Construction of submarine outfall in	To ensure the EIA recommendations and EP requirements are complied with	4 hours per week
Starling Inlet by Horizontal Directional Drilling	• To review the effectiveness of environmental mitigation measures and environmental mitigation measures and environmental performance of the Project	
	To identify any environmental deficiency needs to be improved.	
	To identify in any environmental non-compliance	