CONTRACT NO: HY/2020/08

FLYOVER FROM KWAI TSING INTERCHANGE UPRAMP TO KWAI CHUNG ROAD UNDER ENVIRONMENTAL PERMIT NO. EP-541/2017/A

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

JANUARY 2023

CLIENTS: PREPARED BY:

Highways Department

Lam Environmental Services Limited

19/F Remex Centre, 42 Wong Chuk Hang Road, Hong Kong

Telephone: (852) 2882-3939
Facsimile: (852) 2882-3331
E-mail: info@lamenviro.com
Website: http://www.lamenviro.com

CERTIFIED BY:

Raymond Dai

Environmental Team Leader

DATE:

14 February 2023

NATURE & TECHNOLOGIES (HK) LIMITED

科技環保(香港)有限公司

Unit 1102, 11/F, 88 Gloucestor Road, Wan Chai, Hong Kong 香港灣仔告土打道 88 號 11 樓 1102 室 Tel 電話: (852) 2877 3122 Fax 傳真: (852) 2511 0922 Email 電郵:<u>enquiry@nt.com.hk</u> Website 網址:http://www.nt.com.hk

Date: 14th February 2023

Highways Department
Works Division
Works Section / NT
7th Floor, Trade and Industry Tower,
3 Concorde Road, Kowloon

Dear Sirs,

Contract No. HY/2020/08 Flyover From Kwai Tsing Interchange Upramp to Kwai Chung Road Independent Environmental Checker

Monthly Environmental Monitoring and Audit Report for January 2023

We refer to the Contract No. HY/2020/08 Flyover From Kwai Tsing Interchange Upramp to Kwai Chung Road under Environmental Permit No. EP-541/2017/A Monthly Environmental Monitoring and Audit Report certified by the Environmental Team. We hereby verified the Monthly Environmental Monitoring and Audit Report for January 2023 in accordance with the Condition 3.4 of EP-541/2017/A.

Should you have any query, please feel free to contact the undersigned at 6113 2368.

Yours Sincerely,

Vega Wong

Independent Environmental Checker

c.c.

WSP (Attn: Mr. Stephen Ho/Mr. Eric Hon) [by Email: Stephen.YC.Ho@wsp.com; Eric.Hon@wsp.com] Lam Environmental Services Limited (Attn: Mr. Raymond Dai) [by Email: raymonddai@lamenviro.com]

TABLE OF CONTENTS

1	INTRO	DUCTION	5
	1.1 1.2	Scope of the ReportStructure of the Report	
2	PROJE	CT BACKGROUND	7
	2.1 2.2 2.3	Background Project Organization and Contact Personnel Construction Activities	7
3	STATU	S OF REGULATORY COMPLIANCE	. 10
	3.1 3.2	Status of Environmental Licensing and Permitting under the Project Status of Submission under the EP-541/2017/A	
4	MONIT	ORING REQUIREMENTS	. 11
	4.2 4.2	Noise MonitoringAir Monitoring	
5	MONIT	ORING RESULTS	. 18
	5.1 5.2 5.3	Noise Monitoring ResultsAir Monitoring ResultsWaste Management	. 18
6	COMP	LIANCE AUDIT	. 20
	6.2 6.3 6.4 6.5	Noise Monitoring Air Quality Monitoring Review of the Reasons for and the Implications of Non-compliance Summary of action taken in the event of and follow-up on non-compliance	. 20 . 20
7	ENVIF	RONMENTAL SITE AUDIT	. 21
8.	COMP	LAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	. 22
9_	CONC	LUSION	. 23

LIST OF TABLES

Table 2.1	Contact Details of Key Personnel
Table 3.1	Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
Table 3.2	Summary of submission status under EP-541/2017/A
Table 4.1	Noise Monitoring Station
Table 4.2	Noise Monitoring Equipment
Table 4.3	Action and Limit Level for Noise Monitoring
Table 4.4	Air Monitoring Station
Table 4.5	Air Quality Monitoring Equipment
Table 4.6	Action and Limit Level for Air Quality Monitoring
Table 5.1	Summary of Quantities of Inert C&D Materials
Table 5.2	Summary of Quantities of C&D Wastes
Table 7.1	Summary of Environmental Inspections
Table 7.2	Summary of Landscape Site Inspections
Table 8.1	Cumulative Statistics on Complaints
Table 8.2	Cumulative Statistics on Successful Prosecutions
Table 9.1	Construction Activities and Recommended Mitigation Measures in Coming Reporting 3 Months

LIST OF FIGURES

Figure 1.1	Project Layout
Figure 2.1	Project Organization Chart
Figure 4.1	Locations of Noise Monitoring Stations
Figure 4.2	Locations of Air Quality Monitoring Stations

LIST OF APPENDICES

Appendix 3.1	Environmental Mitigation Implementation Schedule
Appendix 4.1	Action and Limit Level
Appendix 4.2	Copies of Calibration Certificates
Appendix 4.3	Wind data
Appendix 5.1	Monitoring Schedule for Reporting Month and Next Reporting Month
Appendix 5.2	Noise Monitoring Results and Graphical Presentations
Appendix 5.3	Air Quality Monitoring Results and Graphical Presentations
Appendix 5.4	Monthly Summary Waste Flow Table
Appendix 6.1	Event and Action Plans
Appendix 6.2	Summary of Notification of Exceedance
Appendix 8.1	Complaint Log
Appendix 9.1	Construction Programme

EP-541/2017/A

EXECUTIVE SUMMARY

- i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report January 2023 of Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road under Environmental Permit no. EP-541/2017/A (Hereafter as "the Project"). The construction works of the Project was commenced on 20 September 2021. This is the 17th EM&A report presenting the environmental monitoring findings and information recorded during the period of 01 January 2023 to 31 January 2023. The cut-off date of reporting is at the end of each reporting month.
- ii. In the reporting month, the principal work activities conducted are as follow:
 - Tree preservation works
 - Piling works for Bridge G
 - Construction of pile caps for Bridge H & G
 - Construction of lift towers, bridge deck & staircases for Footbridge

Air Quality Monitoring

- iii. 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring was conducted at three monitoring stations. 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 day in the reporting month.
- iv. No action or limit level exceedance was recorded in this reporting period.

Noise Monitoring

- v. Noise monitoring was conducted at three noise monitoring stations once per week in the reporting month.
- vi. No action or limit level exceedance was recorded in this reporting period.

Site Inspections and Audit

vii. The Environmental Team (ET) conducted weekly site inspections on 06, 12 and 17 January 2023 and biweekly landscape inspection on 06 and 12 January 2023. IEC attended the joint site inspection on 12 and 17 January 2023. Contractor was reminded to prevent lose soil blown away from the site to the road and remove the empty chemical containers on 17 January 2023, while reminders on routine environmental mitigation measures were recommended.

Complaints, Notifications of Summons and Successful Prosecutions

viii. No environmental complaint, notification of summons and successful prosecution regarding the construction works was recorded in the reporting period.

Reporting Changes

ix. There are no particular reporting changes.

Future Key Issues

x. In coming reporting 3 months, the scheduled construction activities and the recommended mitigation measures are listed as follows:

Key Construction Works	Recommended Mitigation Measures		
 Tree preservation works Piling works for Bridge G Construction of pile caps for Bridge H & G Construction of piers for Bridge H Construction of Lift tower, staircase & bridge deck for Footbridge Installation of glass panels & louvres for Lift Tower Construction of Bus Bay at Kwai Chung Road N/B near Lift Tower LT1 	 Regular maintenance and protection of all existing retained and transplanted trees Implement proper measures to prevent silt or debris being deposited or washed into existing drainage systems Implement proper noise mitigation measures to prevent potential noise nuisances to nearby sensitive receivers, with attention on restricted hour work activities Provision of protection to ensure no runoff out of site area or direct discharge into public drainage system 		

1 Introduction

1.1 Scope of the Report

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) under Environmental Permit (EP) no. EP-541/2017/A to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road (Register No.: AEIAR-190/2015).
- 1.1.2. In accordance with Clause 3.4 stated in EP-541/2017/A, 3 hard copies and 3 electronic copies of Monthly EM&A Report shall be submitted to the Director within 2 weeks after the end of each reporting month.
- 1.1.3. According to Section 10.3.1 of the Project EM&A Manual, the Monthly EM&A Report should be submitted within 10 working days of the end of each reporting month, with the first report due in the month after construction commences.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- **Section 2** *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- Section 3 Status of Regulatory Compliance summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- **Section 4** *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- **Section 6 Compliance Audit** summarizes the auditing of monitoring results, all exceedances environmental parameters.
- Section 7 Environmental Site Audit summarizes the findings of weekly site inspections

undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 8 Complaints, Notification of summons and Prosecution – summarizes the cumulative statistics on complaints, notification of summons and prosecution

Section 9 Conclusion

2 Project Background

2.1 Background

- 2.1.1. In order to cater the future traffic growth and prevent traffic congestion in the future during peak traffic flow hour at Tsuen Wan Road (TWR) near Kwai Tsing Interchange (KT I/C), an additional southbound lane (a separate viaduct) is introduced on TWR and connected to the existing lane on the west side of Kwai Chung Road (KCR). Widening of existing carriageway is also proposed to improve the road section to cope with the future traffic growth.
- 2.1.2. Based on the current design, the remaining capacity available on the two segregated KCR carriageways will be utilised for this proposed flyover. Location and layout of the proposed road works is shown in *Figure 1.1*.
- 2.1.3. The Project consists of a designated project under Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) which is Item A.8 A road or railway bridge more than 100m in length between abutments.
- 2.1.4. The major components of the Project under Environmental Permit (EP) (EP No. EP-541/2017/A) comprises: (i) an additional southbound lane from the west side of elevated Tsuen Wan Road to at-graded Kwai Chung Road; (ii) a widened section on the east side of elevated Tsuen Wan Road connecting Kwai Tsing Interchange upramp; (iii) modification of Kwai Chung Road; (iv) provision of noise mitigation measures; (v) demolition and re-provision of the existing footbridge NF303; and (vi) ancillary works including other associated road works, utilities diversion, street furniture and traffic aids, public lighting, drainage, landscaping, electrical and mechanical works.

2.2 Project Organization and Contact Personnel

- 2.2.1 Highways Department is the overall project controllers for the Project. For the construction phase of the Project, Project Engineer / Supervisor, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.2.2 The project organization and lines of communication with respect to environmental protection works are shown in <u>Figure 2.1.</u> Key personnel and contact particulars are summarized in **Table 2.1**:

Table 2.1 Contact Details of Key Personnel

Party	Role	Post	Name	Contact No.	Contact Fax
Highways Department (HyD)	Project Proponent	Chief Engineer	Vincent WONG	3903 6888	3188 3418
WSP (Asia) Limited	Supervisor's Representative	Resident Engineer	Eric HON	2320 2012	2320 2166
		Site Agent	TS LAM		
		Deputy Site Agent	SH SHEA		2398 8301
Peako Engineering Co. Limited	Contractor	Deputy Construction Manager / Environmental Officer	CY WONG	2398 8001	
Nature & Technologies (HK) Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Vega WONG	2877 3122	2511 0922
Lam Environmental Services Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Raymond DAI	2882 3939	2882 3331

2.3 Construction Activities

- 2.3.1 In the reporting month, the principal work activities conducted are as follow.
 - Tree preservation works
 - Piling works for Bridge G
 - Construction of pile caps for Bridge H & G
 - Construction of lift towers, bridge deck & staircases for Footbridge

- 2.3.2 In coming reporting 3 months, the scheduled construction activities are listed as follows:
 - Tree preservation works
 - Piling works for Bridge G
 - Construction of pile caps for Bridge H & G
 - Construction of piers for Bridge H
 - Construction of Lift tower, staircase & bridge deck for Footbridge
 - Installation of glass panels & louvres for Lift Tower
 - Construction of Bus Bay at Kwai Chung Road N/B near Lift Tower LT1

3 Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Permit. No. / Account No.	Valid From	Expiry Date	Status
Notification pursuant to Air Pollution Control (Construction Dust) Regulation	Acknowledged by EPD on 21 June 2021.			
WPCO Discharge Licence	WT00040637-2022	25 Mar 2022	N/A	Valid
Environmental Permit	EP-541/2017/A	19 Nov 2020	N/A	Valid
Billing Account for Disposal of Construction Waste	7040908	14 July 2021	End of the Project	Valid
Registration as a Chemical Waste Producer	8834-326-P3431-01	08 July 2021	N/A	Valid
Construction Noise Permit	GW-RW0528-22	19 Sept 2022	17 Dec 2022	Expired
Construction Noise Permit	GW-RW0708-22	18 Dec 2022	28 Feb 2023	Valid

3.1.2. Implementation status of the recommended mitigation measures during this report month is presented in *Appendix 3.1*.

3.2 Status of Submission under the EP-541/2017/A

3.2.1. A summary of the current status on submission under EP-541/2017/A is shown in *Table 3.2*.

Table 3.2 Summary of submission status under EP-541/2017/A

EP Condition	Submission	Date of First Submission	Date of Latest Submission
Condition 1.12	Notification of Commencement Date of Works	27 July 2021	26 August 2021
Condition 2.3	Submission of Management Organization of Main Construction Companies	2 July 2021	4 May 2022
Condition 2.4	Submission of Landscape Plan	26 July 2021	15 September 2022
Condition 2.5	Submission of Traffic Noise Mitigation Plan	26 July 2021	12 July 2022
Condition 3.3	Submission of Baseline Monitoring Report	6 September 2021	28 January 2022

4 Monitoring Requirements

4.2 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure 4.1*.
Appendix 4.1 shows the established Action/Limit Levels for environmental monitoring.

Table 4.1 Noise Monitoring Station

Monitoring Station ID	Noise Sensitive Receivers	Measurement Type	Monitoring Location
NMC01	Lai King Catholic Secondary School	Free-Field	Roof Floor
NMC02	Fung King House Free-Field		Roof Floor
NMC03	HKEAA-Lai King Assessment Centre	Free-Field	Ground Floor

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

4.1.2. For daytime construction work on normal weekdays (0700-1900 Monday to Saturday), one set of 30-min measurement shall be carried out at each NMS every week. Measurement procedures shall be referred to the Noise Control Ordinance-TM. Construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (Leq). Leq(30min) shall be used as the monitoring parameter. As supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference.

MONITORING EQUIPMENT

4.1.3. Noise monitoring was performed using sound level meter at the designated monitoring locations. The sound level meters shall comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator shall be deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in *Table 4.2*.

Table 4.2 Noise Monitoring Equipment

Equipment	Brand/Model	Series Number
Integrated Sound Level Meter	LxT1	0004796
Acoustic Calibrator	HLES-02	2016611465

4.1.4. The calibration certificates of the noise monitoring equipment are attached in *Appendix 4.2.*

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.1.5. Monitoring Procedure
 - (a) The monitoring station shall normally be at a point 1m from the exterior of the sensitive

Contract No. HY/2020/08 Flyover From Kwai Tsing Interchange Upramp to Kwai Chung Road Monthly EM&A Report (January 2023)

- receiver's building façade and be at a position 1.2m above the ground.
- (b) Façade measurements were made at the monitoring locations. For free-field measurement, a correction factor of +3 dB (A) would be applied.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
- (e) Frequency weighting: A, Time weighting: Fast, Measurement time set: continuous 5 mins
- (f) Prior and after to the noise measurement, the meter was checked using the acoustic calibrator for 94dB (A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than ±1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.

4.1.6. Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The sound level meter and calibrator were calibrated at yearly intervals.

CONSTRUCTION NOISE LEVEL

4.1.7. The construction noise level refers the corrected noise level based on the calculated difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied and the Construction Noise Level would be indicated as below baseline noise level (<BL).</p>

EVENT AND ACTION PLAN

4.1.8. Noise Standards for Daytime Construction Activities are specified under EIAO-TM. The Action and Limit levels for construction noise are defined in *Table 4.3* and *Appendix 4.1*. Should non-compliance of the criteria occurs, action in accordance with the Event and Action Plan in *Appendix 6.1* shall be carried out.

Table 4.3 Action and Limit Level for Noise Monitoring

Monitoring	Action Level	Limit Level (dB(A))		
Station		0700-1900 hrs on normal weekdays	0700-2300 hrs on holidays (including Sundays); and 1900-2300 hrs on all days ²	2300-0700 hrs of all days
NMC01	When one documented	65 / 70 ¹		45 / 50 / 55 ³
NMC02	complaint is received	75	60 / 65 / 70 ³	45 / 50 / 55 ³
NMC03		65 / 70 ¹		45 / 50 / 55 ³

Remark 1: Limit level of NMC01 and NMC03 reduce to 65 dB (A) during examination periods if any.

Remark 2: Construction noise during restricted hours is under the control of Noise Control Ordinance Limit Level to be selected based on Area Sensitivity Rating.

Remark 3: Limit Level for restricted hour monitoring shall act as reference level only. Investigation would be conducted on

CNP compliance if exceedance recorded during restricted hour noise monitoring period.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air monitoring stations for the Project are listed and shown in *Table 4.4* and *Figure 4.2*. *Appendix 4.1* shows the established Action/Limit Levels for environmental monitoring.

Table 4.4 Air Quality Monitoring Station

Monitoring Station	Air Sensitive Receivers	Monitoring Location	
AMC01	Lai King Catholic Secondary School	Roof Floor	
AMC02	Fung King House	Roof Floor	
AMC03A ¹	Ming King House	Roof Floor	

Remark 1: Due to limited location access, lack of power supply and land availability problem for setting up air quality monitoring stations at HKEAA-Lai King Assessment Centre (AMC03) under EM&A manual, alternative monitoring location at Ming King House was proposed in accordance with Section 2.5.3 of the EM&A manual and proposal for alternative monitoring location was submitted to EPD for approval.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality.
- 4.2.3. 24-hour TSP shall be sampled at least once in every 6 days, while sampling for 1-hour TSP shall be at least 3 times in every 6 days when the highest dust impact takes place.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.4. 24-hour TSP Measuring Installation (HVS)
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (b) No furnace or incinerator flues were nearby.
 - (c) Airflow around the sampler was unrestricted
 - (d) 0.6 1.7 m³ per minute adjustable flow range
 - (e) Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - (f) Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - (g) Equipped with a shelter to protect the filter and sampler;
 - (h) Capable of operating continuously for a 24-hour period.
- 4.2.5. 24-hour Measuring Procedures
 - (a) The power supply was checked to ensure the HVS works properly.
 - (b) The filter holder and the area surrounding the filter were cleaned.
 - (c) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (d) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.

- (e) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- (f) Then the shelter lid was closed and was secured with the aluminum strip.
- (g) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (h) A new flowrate record sheet was set into the flow recorder.
- (i) The flow rate of the HVS was checked and adjusted at around 1.2 m³/min. The range specified in the EM&A Manual was between 0.6-1.7 m³/min.
- (j) The programmable timer was set for a sampling period of 24 hrs + 1 hr, and the starting time, weather condition and the filter number were recorded.
- (k) The initial elapsed time was recorded.
- (I) At the end of sampling, the sampled filter was removed carefully and folded in halflength so that only surfaces with collected particulate matter were in contact.
- (m) It was then placed in a clean plastic envelope and sealed.
- (n) All monitoring information was recorded on a standard data sheet.
- (o) Filters were sent to laboratory for further testing.

4.2.6. 1-hour Measuring Procedures

- (a) Check the calibration period of portable direct reading dust meter prior to monitoring (The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly, details refer to Section 2.5.4)
- (b) Record the site condition near / around the monitoring stations.
- (c) Install the portable direct reading dust meter to the monitoring location.
- (d) Slide the power switch to turn the power on.
- (e) Check of portable direct reading dust meter to ensure the equipment operation in normal condition.
- (f) Select the period of measurement to 60mins.
- (g) Check and set the correct time.
- (h) Select the appropriate unit display for the equipment.
- (i) Slide the power switch to turn the power off when the monitoring period ended (3 times 1 hour TSP monitoring per day).
- (j) Uninstall the portable direct reading dust meter
- (k) Collected the sampled data for analysis.

Remark: Procedures (c) to (h) may be different subject to the brands and models of portable direct reading dust.

LABORATORY MEASUREMENT / ANALYSIS

4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited or other internationally accredited laboratory.

- 4.2.8. Filter paper of size 8" x 10" shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.9. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.

4.2.10. Maintenance and Calibration

- (a) The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly to determine the accuracy and validity of the results measured.
- (b) Checking of direct reading dust meter will be carried out in order to determine the conversion factor between the direct reading dust meter and the standard equipment, HVS. The comparison check is to be considered valid based on correlation coefficient checked by HOKLAS laboratory
- 4.2.11. High Volume Sampler (HVS Model TE-5170) completed with the appropriate sampling inlets were installed for the 24-hour TSP sampling. 1-hour TSP air quality monitoring was performed by using portable direct reading dust meters at each designated monitoring station, which was verified by IEC and approved by the Engineer's Representative (ER) on 16 July 2021 and 22 July 2021, respectively according to Section 2.2.2 and 2.3.6 of the Project EM&A Manual. The brand and model of the equipment are given in *Table 4.5*.

Table 4.5 Air Quality Monitoring Equipment

Equipment	Brand and model	Series Number
Portable direct reading		B17940
dust meter	Met One BT-645	B17942
		W15449
		0200-0740 (HVS004)
High Volume Sampler	TE-5170	2649 (HVS014)
		2650 (HVS015)
Wind Anemometer	YiGu – YGY-FSXY1	21091630T0944

4.2.12. The calibration certificates of the air quality monitoring equipment are attached in <u>Appendix</u> <u>4.2.</u>

WIND DATA

4.2.13. Wind data monitoring equipment was set up at roof floor (about 15/F) of Fung King House for logging wind speed and wind direction such that the wind sensors were clear of obstructions or turbulence caused by building. The wind data monitoring equipment was re-calibrated at least

once every six months and the wind directions were divided into 16 sections of 22.5 degrees each. The wind data obtained from the on-site wind station during the reporting period is provided in *Appendix 4.3.*

EVENT AND ACTION PLAN

4.2.14. The Action and Limit levels for construction air quality are defined in *Table 4.6* and <u>Appendix</u>
4.1. Should non-compliance of the air quality criteria occur, action in accordance with the Event and Action Plan in <u>Appendix 6.1</u> shall be carried out.

Table 4.6 Action and Limit Level for Air Quality Monitoring

Parameter	Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
	AMC01	144.8	260.0
24-hour TSP Level	AMC02	144.3	260.0
	AMC03A	143.7	260.0
	AMC01	256.2	500.0
1-hour TSP Level	AMC02	256.7	500.0
	AMC03A	259.3	500.0

5 Monitoring Results

- 5.0.1 The environmental monitoring will be implemented based on the division of works areas of each designed projects. Overall layout showing work areas and monitoring stations is shown in *Figure 2.1* and *Figure 4.1 4.2* respectively.
- 5.0.2 The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

- 5.1.1 Noise monitoring results measured in this reporting period are reviewed and summarized.

 Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*.
- 5.1.2 No action or limit level exceedance was recorded in this reporting month.

5.2 Air Monitoring Results

- 5.2.1 Air quality monitoring results measured in this reporting period are reviewed and summarized.

 Details of air monitoring results and graphical presentation can be referred in *Appendix 5.3*.
- 5.2.2 No action or limit level exceedance was recorded in this reporting month.

5.3 Waste Management

1.1.1 The quantities of waste for disposal in the Reporting Period are summarized in *Table 5.1* and *Table 5.2*. The Monthly Summary Waste Flow Table is shown in <u>Appendix 5.4</u>. Whenever possible, materials were reused on-site as far as practicable.

Table 5.1 Summary of Quantities of Inert C&D Materials

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Hard Rock and Large Broken Concrete (Inert) (in '000m³)	0	0	0
Reused in this Contract (Inert) (in '000m³)	0	0	0

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Reused in other Projects (Inert) (in '000m³)	0	0	0
Disposal as Public Fill (Inert) (in '000m³)	0.397	5.638	6.035

Table 5.2 Summary of Quantities of C&D Wastes

Waste Type	Quantity (this month)	Quantity (Project commencement to the end of last month)	Cumulative Quantity-to-Date
Metals (in '000kg)	0	26.24	26.24
Paper / Cardboard Packing (in '000kg)	0.078	0.102	0.180
Plastics (in '000kg)	0	0	0
Chemical Wastes (in '000kg)	0	0	0
General Refuses (in '000m³)	0.01	0.290	0.300

6 Compliance Audit

- 6.1.1 The Event Action Plan for construction noise, air quality and water quality are presented in *Appendix 6.1.*
- 6.1.2 The summary of exceedance is presented in **Appendix 6.2.**

6.2 Noise Monitoring

6.2.1 No action or limit level exceedance was recorded in this reporting period.

6.3 Air Quality Monitoring

6.3.1 No action or limit level exceedance was recorded in this reporting period.

6.4 Review of the Reasons for and the Implications of Non-compliance

6.4.1 No environmental non-compliance was recorded in the reporting month.

6.5 Summary of action taken in the event of and follow-up on non-compliance

6.5.1 There was no particular action taken since no non-compliance was recorded in the reporting period.

7 Environmental Site Audit

- 7.0.1. Within this reporting month, weekly environmental site audits were conducted on 06, 12 and 17 January 2023 and biweekly landscape inspection on 06 and 12 January 2023.
- 7.0.2. Contractor was reminded to prevent lose soil blown away from the site to the road and remove the empty chemical containers on 17 January 2023, while reminders on routine environmental mitigation measures were recommended. Results and findings of these inspections in this reporting month are listed below in *Table 7.1 and Table 7.2*.

Table 7.1 Summary of Environmental Inspections

Item	Date	Reminder(s)/ Observation(s)	Action taken by Contractor	Outcome
20230106_1	06-Jan-2023	No particular finding		
20230112_1	12-Jan-2023	No particular finding		
20230114_1	17-Jan-2023	Obs. 1: Contractor was reminded to prevent lose soil blown away from the site to the road. (Near school-side bus station) Obs. 2: Empty chemical containers should be removed.	Soil covered. Containers removed.	Completed.

Table 7.2 Summary of Landscape Site Inspections

20230106_1	06-Jan-2023	No particular finding	
20230112_1	12-Jan-2023	No particular finding	

8. Complaints, Notification of Summons and Prosecution

- 8.0.1. No environmental complaint, notification of summons and successful prosecution regarding construction works was recorded in the reporting period.
- 8.0.2. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 8.1.*
- 8.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 8.1* and *Table 8.2* respectively.

Table 8.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
January 2023	0
Project commencement to the end of last reporting month	-
Total	0

Table 8.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

9. Conclusion

- 9.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 9.0.2. Mitigation measures according to the environmental mitigation implementation schedule and the EIA were generally implemented by the Contractor. Hence, the EM&A programme was considered effective and shall be maintained.
- 9.0.3. The scheduled construction activities and the recommended mitigation measures for the coming 3 months are listed in *Table 9.1*. The construction programmes of the Project are provided in *Appendix 9.1*.

Table 9.1 Construction Activities and Recommended Mitigation Measures in Coming Reporting 3 Months

Key Construction Works	Recommended Mitigation Measures
 Tree preservation works Piling works for Bridge G Construction of pile caps for Bridge H & G Construction of piers for Bridge H Construction of Lift tower, staircase & bridge deck for Footbridge Installation of glass panels & louvres for Lift Tower Construction of Bus Bay at Kwai Chung Road N/B near Lift Tower LT1 	 Regular maintenance and protection of all existing retained and transplanted trees Implement proper measures to prevent silt or debris being deposited or washed into existing drainage systems Implement proper noise mitigation measures to prevent potential noise nuisances to nearby sensitive receivers, with attention on restricted hour work activities Provision of protection to ensure no runoff out of site area or direct discharge into public drainage system

Appendix 3.1

Environmental Mitigation Implementation Schedule

Environmental Mitigation Implementation Schedule

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Air Quali	ty Monitoring			1			
S3.5.8	Dust suppression measures stipulated in the Air Pollution Control	(Construction Dust) F	Regulation and	good site pra	ictices:		
	Every temporary access road shall be paved with concrete, bituminous materials, hardcores or metal plates, and kept clear of dusty materials; or sprayed with water or a dust suppression chemical.	To minimize the dust impact	Contractor and Subcontract ors	All works sites	Construction Phase	Air Pollution Control (Construction Dust) Regulation	٨
	 Any stockpile of dusty materials shall be covered entirely by impervious sheeting, placed in an area sheltered on the top and the 3 sides, or sprayed with water or a dust suppression chemical. 					. regulation	۸
	All dusty materials shall be sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation						۸
	Vehicles used for transporting dusty materials should be covered with tarpaulin.						N/A
	Vehicle wheel washing facilities should be provided at each construction site exit.						V
	Where a vehicle leaving a construction site is carrying a load of dusty materials, the load shall be covered entirely by clean impervious sheeting.						٨

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	The speed of vehicles on unpaved road within the site should be controlled to about 10 km/hr.						۸
	Routing of vehicles and positioning of construction plants should be arranged at maximum possible distances from the sensitive receivers.						٨
	Every stock of more than 20 bags of cement and dry pulverized fuel ash (PFA) shall be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.						N/A
	Loading, unloading, transfer, handling or storage of large amount of cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with the an effective fabric filter or equivalent air pollution control system.						N/A
	Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within 6 months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.						N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirement s or standards for the measure to achieve	Status
Noise Mo	onitoring						•
S4.8.1	 Selection and optimisation of construction programmes, avoidance of parallel operation of noisy PME, and/or reduction in the proportion of usage of PME during noise sensitive periods such as school examination period; Use of "quiet" PME and working methods; 	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	٨
	Use of temporary at-source noise mitigation measures such as noise barriers, acoustic fabric, noise enclosures, noise jacket and mufflers; and						۸
	Use of good site practice to limit noise emission from construction site.						۸
S4.8.2	Selection and Programming of Construction Processes	I				-1	
	The timing and sequencing of the various construction activities shall be carefully arranged according to the actual site work situation, in order to limit the amount of concurrent activities and where applicable, to avoid parallel operation of noisy PME in order to minimize the total noise generated during construction periods.	construction noise impact	Contractor	All works sites	ks Construction Phase	EIAO-TM, NCO	٨
	Limiting the quantity of PME to be operated concurrently and also their proportion of usage were recommended in the Project and incorporated in this assessment.						۸
	 In the case during school examination when more stringent construction noise criteria should be imposed, the potentially most disruptive construction activities should be avoided, and arranged to be conducted during school holidays as far as practicable. 						۸

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirement s or standards for the measure to achieve	Status	
\$4.8.3 – 4.8.5	Use of "Quiet" Alternative Plant and Working Methods							
	The use of particular plant with equipment noise levels quieter than those specified in the GW-TM can result in reduction of noise levels generated by the plant. The level of noise reduction achieved is dependent on the Contractor's chosen methods of working. It is possible for the Contractor to achieve noise reductions from the adopted working methodologies by specifying maximum limits of sound power level for specific plant.	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	٨	
S4.8.6 -	Temporary Noise Barrier							
S4.8.9	Use of Temporary Noise Barrier/ Acoustic Fabric for breaker, mini-robot mounted; excavator/loader, wheeled/tracked; lorry; lorry with crane/grab; mobile crane; poker vibratory, hand-held (electric); road roller; hand-held chain saw; concrete pump, lorry mounted; asphalt paver; air compressor. The minimum surface density of the movable noise barrier is 10kg/m².	To reduce potential construction noise impact	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	V	
	A not less than 8m high movable barrier with skid footing and a small cantilevered upper portion to be located within a few metres of the grab and chisel piling plants.						N/A	
	When temporary noise barriers are not practicable or noise reduction achieved is insufficient, noise jacket/muffler can be applied to cover the noisy part of the engine or at the engine exhaust of particular mobile plants respectively.						N/A	

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures ?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S4.8.10	Good Site Practice:						
	Use of well-maintained and regularly-serviced plant during the works;	To reduce potential construction noise	Contractor	All works sites	Construction Phase	EIAO-TM, NCO	٨
	Plant operating on intermittent basis should be turned off or throttled down when not in active use;	impact					۸
	Plant that is known to emit noise strongly in one direction should be orientated to face away from the NSRs;						٨
	Silencers, mufflers and enclosures for plant should be used where possible and maintained adequately throughout the works;						N/A
	Where possible fixed plants should be sited away from NSRs; and						٨
	Stockpiles of excavated materials and other structures such as site buildings should be used effectively to screen noise from the works.						۸

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Water Qu	iality Control			•	'		1
\$5.9.2 \$4.8.2	In accordance with ProPECC PN 1/94, construction phase mitig	gation measures with	good manager	nent practice	s should include	the following:	
0 1.0.2	 At the establishment of works site, perimeter drains to direct off-site water around the Site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the stormwater to silt removal facilities. The design of the temporary onsite drainage system will be undertaken by the Contractor prior to the commencement of construction; Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. Silt/sediment traps should also be incorporated in the permanent drainage channels to enhance deposition rates; The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt / sand traps should be 5 minutes under maximum flow conditions. A sedimentation basin would be required when necessary. The detailed design of the silt / sand traps should be undertaken by the Contractor prior to the commencement of construction: 	To control water quality impact from construction site runoff	Contractor and Sub- contractors	All work sites	Construction Phase	Water Pollution Control Ordinance, ProPECC PN 1/94	N/A
	The construction works should be programmed to minimise surface excavation works during rainy seasons (April to September), as possible. All exposed earth areas should be						٨

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	completed and vegetated as soon as possible after the earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means;						
	The overall slope of works sites should be kept to a minimum to reduce the erosive potential of surface water flows, and all trafficked areas and access roads should be protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during the prolonged periods of inclement weather and the reduction of surface sheet flows;						N/A
	 All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure their proper and efficient operation at all times particularly following rainstorms. Deposited silts and grits should be removed regularly and disposed of by spreading evenly over stable, vegetated areas; 						٨
	 Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet season is inevitable, they should be dug and backfilled in short sections wherever practicable. The water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; 						N/A
	 All open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system; 						۸

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers;						۸
	 Precautions to be taken at any time of the year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted and during or after rainstorms, are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface run-off during storm events; 						۸
	All vehicles and plant should be cleaned before leaving the Site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities / bay should be provided at the exit of the Site where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheelwashing bay to public roads should be paved with sufficient backfall toward the wheel washing bay to prevent vehicle tracking of soil and silty water to public roads and drains;						V
	Oil interceptors should be provided in the drainage system downstream of any oil / fuel pollution sources. Oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for oil interceptors to prevent flushing during heavy rain;						N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	The construction solid waste, debris and rubbish onsite should be collected, handled and disposed of properly to avoid causing any water quality impacts; and						٨
	All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds with adequate storage capacity to prevent spilled fuel oils.						۸
S5.9.5	Control of effluent discharge						
	 A discharge licence for discharge of effluent from the construction site under the WPCO shall be applied to the EPD for. The discharge quality must meet the requirements specified in the discharge licence. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the Technical Memorandum. Minimum distances of 100m should be maintained between the discharge points of construction site effluent and the existing seawater intakes. No new effluent discharges in nearby typhoon shelters should be allowed. 	To control the effluent discharge from the Site	Contractor and Sub- contractors	All work sites	Construction Phase	Water Pollution Control Ordinance	N/A N/A
	The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., would minimize water consumption and reduce the effluent discharge volume.						N/A
S5.9.6	Sewage from Workforce						
	Portable chemical toilets and sewage holding tanks are recommended for the handling of the construction sewage generated by the workforce.	To control Sewage	Contractor and Sub- workers	All work sites	Construction Phase	Water Pollution	۸

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	A licensed Contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	generated from onsite construction				Control Ordinance and Waste Disposal Ordinance	۸
S5.9.7 – S5.9.8	Accidental Spillage of Chemicals						
	The Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities.	To control accidental spillage of chemicals	Contractor and Sub- contractors	All work sites	Construction Phase	EIAO-TM, Water Pollution Control	٨
	Any maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided.					Ordinance and Waste	٨
	Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.					Disposal (Chemical Waste) (General) Regulation	۸
S5.9.9	Provision of surface runoff collection system					,	
	All surface runoff on the road shall be direct to the system.	To control road surface runoff	Contractor and Sub-	Along Road	Design and Construction	Water Pollution	N/A
	The capacity of the system should be properly designed to cater for all surface water.		contractors	Alignment	Phases	Control Ordinance	N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Waste M	anagement						
S6.6.3	Waste Management Plan (WMP) should be prepared and submitted for approval by the Engineer prior to any construction activities. During the construction period the WMP should be used as a working document to detail the on-going management procedures and to record waste arising from construction works and import of fill throughout the Contract. The WMP shall be subject to audit under the requirements of the Environmental Monitoring and Audit (EM&A) Procedures set out in the EM&A Manual accompanying this EIA Report.	approval of WMP	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	٨
S6.6.4 and S6.6.5	The WMP shall be developed and implemented according to a best-practice philosophy of waste management. There are various waste management options, which can be categorised in terms of preference from an environmental viewpoint. The options considered to be more preferable have the least impacts and are more sustainable in a longterm context. The hierarchy is as follows: • Avoidance and minimisation, i.e. avoiding or not generating waste through changing or improving practices and design; • Reuse of materials, thus avoiding disposal (generally with only limited reprocessing); • Recovery and recycling, thus avoiding disposal (although reprocessing may be required); • Treatment and disposal, according to relevant laws, guidelines and good practice; and • The suitability (or otherwise) of material for reuse on site shall be detailed in the WMP. If, for any reason, the recommendations cannot be implemented, full justification should be given in the WMP for approval by the Engineer.	To minimise waste generation	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	^

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.6	To facilitate adoption of the best-practice philosophy, training shall be provided to all personnel working on site. The training shall promote the concept of general site cleanliness and clearly explain the appropriate waste management procedures defined in the WMP.	workers to reduce, reuse and recycle	Contractor	All works sites	Construction Phase	EIAO-TM	٨
S6.6.7	 a. During construction, the WMP should be kept up-to-date on a monthly basis with records of the actual quantities of wastes generated, recycled and disposed of off-site. b. Quantities shall be determined by weighing each load or other methods agreed to by the Engineer's Representative. Waste shall only be disposed of at licensed sites and the WMP should include procedures to ensure that illegal disposal of wastes does not occur. c. Only waste haulers authorised to collect the specific category of waste concerned should be employed and a trip ticket system shall be implemented for offsite disposal of inert C&D material and C&D waste at public fill reception facilities and landfills. d. Appropriate measures should be employed to minimise windblown litter and dust during transportation by either covering trucks or transporting wastes in enclosed containers. 	waste generation, minimisation, reuse and disposal	Contractor	All works sites	Construction Phase	ETWB TC(W) No. 19/2005	^ ^
S6.6.8	The WMP shall include plans indicating specific areas designated for the storage of particular types of waste, reusable and recyclable materials as well as areas and management proposals for any stockpiling areas. Generally, waste storage areas should be well maintained and cleaned regularly.	a. Arrange and manage to	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	٨

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
		contamination of materials and pollution of the surrounding environment.					
S6.6.9	The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic facing should be considered to increase the potential for reuse.	To maximise reuse of inert C&D Materials	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	N/A
S6.6.10 and S6.6.11	a. Inert C&D materials should be segregated on site into different waste and material types. Where materials cannot be reused on site, opportunities for recycling materials off-site shall be explored.	To maximise reuse and facilitate recycling by segregating inert	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	٨
	b. Potential opportunities for recycling and reuse of inert C&D materials from the Project include:	C&D Materials					
	Milling wastes arising from regrading of the existing pavement could be recycled on site and reused as either road-base in the new carriageways or fill for new embankments;					N/A	
	Existing marginal roadside barriers comprise pre-cast units, it may be possible to re-use these following widening works; and						N/A
	Existing bridge parapets comprise aluminium post and railings, these have a recyclable value and could be sold on for reconditioning or reused for scrap metal.						N/A
S6.6.12	Any stockpile should be sited away from existing watercourses and suitably covered.	To prevent wind erosion and impacts on air and water quality	Contractor	All works sites	Design and Construction Phases	ETWB TC(W) No. 19/2005	N/A

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.13	C&D waste which cannot be reused or recycled should be segregated and stored in different containers or skips from the inert C&D material and should be disposed of to landfill.	disposal of C&D waste	Contractor	All works sites	Construction Phase	ETWB TC(W) No. 19/2005	٨
S6.6.14	Workers should, when necessary, wear appropriate personal protective equipment (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities should also be provided on site.	To minimise the exposure to contaminated materials	Contractor	All works sites when necessary	Construction Phase	Practice Guide, Guidance Note, Guidance Manual	N/A
S6.6.15 and S6.6.16	 a. The marine sediment should be excavated, transported and processed properly. b. Stockpiling of contaminated sediments should be avoided as far as possible. c. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. d. Leachate, if any, should be collected and discharged according to the WPCO. e. The approved Sediment Assessment Plan and Sediment 	potential adverse impacts arising from the handling, treatment and reuse of the marine sediment	Contractor	All works sites	Design and Construction Phases	Practice Guide, Guidance Note, Guidance Manual	N/A N/A N/A N/A
	Assessment Report with Remediation Plan shall be incorporated to the WMP.						

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
S6.6.17	Chemical waste should be handled in accordance with the Code of used for the storage of chemical wastes should:	of Practice on the Pac	kaging, Labelli	ng and Stora	ge of chemical W	astes as follows.	Containers
	Be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed;	environmental impacts in	Contractor	All works sites	Construction Phase	Code of Practice on the	٨
	Have a capacity of less than 450L unless the specifications have been approved by the EPD; and	packaging, handling and				Packaging, Labelling and	٨
Disp	Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulations.	storage of chemical wastes				Storage of Chemical Wastes	۸
S6.6.18	The storage area for chemical wastes should:						
	Be clearly labelled and used solely for the storage of chemical waste;	To reduce environmental impacts by managing storage area for chemical wastes	Contractor	All works sites	Construction Phase	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes	۸
	Be enclosed on at least 3 sides;						^
	Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest;						٨
	Have adequate ventilation ;						٨
	Be covered to prevent rainfall entering (water collected within the bund must be tested and disposed as chemical waste if necessary); and						٨
	Be arranged so that incompatible materials are adequately separated.						٨
S6.6.19	The Contractor shall register with EPD as a Chemical Waste Proc Waste) (General) Regulation will require disposal by appropriate r disposal:						

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
	Be via a licensed waste collector; and Be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Facility which also offers a chemical waste collection service and can supply the necessary storage containers	To reduce environmental impacts in disposing chemical wastes.	Contractor	All works sites	Design and Construction Phases	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes	^
\$6.6.20 and \$6.6.21	a. General refuse generated on-site should be stored in enclosed bins or compaction units separate from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily or every second day basis to minimise odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law.	To reduce environmental impacts in handling general refuse.	Contractor	All works sites	Construction Phase	Waste Disposal Ordinance (Cap 354)	۸
	b. General refuse is generated largely by food service activities on site, so reusable rather than disposable dishware should be used if feasible. Aluminum cans are often recovered from the waste stream by individual collectors if they are segregated or easily accessible. Therefore separate, labelled bins for their deposit should be provided if feasible.						۸
S6.6.22	Office waste can be reduced through recycling of paper if volumes are large enough to warrant collection. Opportunities for participation in a local collection scheme should be investigated.		Contractor	All works sites	Construction Phase	Waste Disposal Ordinance (Cap 354)	۸

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
Landsca	pe and Visual			1	'		1
S7.9.6	Mitigation Planting: Replanting of disturbed vegetation should be undertaken at the earliest possible stage of the construction phase of the project and this should use the recommended transplant trees identified in the Tree Removal Recommendation.	To avoid potential damage to these identified transplant trees	Contractor	Identified locations for tree planting	Construction Phase	Follow the relevant guidelines in the ETWB TC(W) 10/2013; ETWB TC(W)2/2004; ETWB TC(W)29/2004; ETWB TC(W)7/2002; Tree Planting and Maintenance in HK, HKSAR 1991 Relevant sections of the latest version of General Specifications for Civil Engineering	(Status of an unknown tree present near Lai King Catholic School EP boundary subject to ER follow-up wit relevant govt. dept. on its way forward)

EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve	Status
						Works, HKSAR	
S7.9.6	Development Site and Temporary Works Area						ı
	The construction area and Contractor's temporary works area should be minimized to avoid impacts on adjacent landscape	To minimize potential impacts on adjacent landscape and VSRs	Contractor	The project area where appropriate	Construction Phase	N/A	۸
	The landscape of these works areas will be restored following the completion of the construction phase	To minimize potential impacts on the landscape	Contractor	The project area where appropriate	Construction Phase		N/A
	Construction site controls shall be enforced, where possible, to ensure that the landscape and visual impacts arising from the construction phase activities are minimized including the storage of materials	To minimize potential visual impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		٨
	The location and appearance of site accommodation and the careful design of site lighting to prevent light spillage	To minimize potential impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		N/A
	Screen hoarding may be a practicable for this project due to the viewing distances is short in a lot of site situation	To minimize potential impacts on identified VSRs	Contractor	The project area where appropriate	Construction Phase		N/A

Remarks:

- ٧
- Implemented
 Partially implemented
 To be followed-up by Contractor
 Not Implemented
 Not Applicable N/A

Appendix 4.1

Action and Limit Level

Action and Limit Levels

Air Quality Monitoring

Monitoring	1-hour TSP Level in µg/m³		24-hour TSP Level in μg/m³		
Station	Action Level	Limit Level	Action Level	Limit Level	
AMC01	256.2	500	144.8	260	
AMC02	256.7	500	144.3	260	
AMC03A	259.3	500	143.7	260	

Noise Monitoring

Monitoring	Action Level	L	imit Level (dB(A))	
Station		0700-1900 hrs on normal weekdays	0700-2300 hrs on holidays (including Sundays); and	2300-0700 hrs of all days
			1900-2300 hrs	
			on all days²	
NMC01	When one	65 / 70 ¹		45 / 50 / 55 ³
NMC02	documented	75	60 / 65 / 70 ³	45 / 50 / 55 ³
NMC03	complaint is received	65 / 70 ¹	33. 30, . 0	45 / 50 / 55 ³

Remark 1: Limit level of NMC01 and NMC03 reduce to 65 dB (A) during examination periods if any.

Remark 2: Construction noise during restricted hours is under the control of Noise Control Ordinance Limit Level to be selected based on Area Sensitivity Rating.

Remark 3: Limit Level for restricted hour monitoring shall act as reference level only. Investigation would be conducted on CNP compliance if exceedance recorded during restricted hour noise monitoring period.

Appendix 4.2

Copies of Calibration Certificates

香港新界麥涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

22CA0329 03

Page:

1

of

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1) Honglim Co., Ltd.

Type/Model No.:

HLES-02

Serial/Equipment No.: Adaptors used:

2016611465

Item submitted by

Curstomer:

Lam Environmental Services Limited.

Address of Customer:

Justonner.

Request No.: Date of receipt:

29-Mar-2022

Date of test:

30-Mar-2022

Reference equipment used in the calibration

Description:Model:Lab standard microphoneB&K 4180PreamplifierB&K 2673Measuring amplifierB&K 2610Signal generatorDS 360Digital multi-meter34401AAudio analyzer8903BUniversal counter53132A	Serial No. 2341427 2239857 2346941 33873 US36087050 GB41300350 MY40003662	Expiry Date: 04-May-2022 31-May-2022 01-Jun-2022 27-May-2022 27-May-2022 28-May-2022 02-Jun-2022	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
---	--	---	--

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

31-Mar-2022;

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/issue 1/Rev.D/01/03/2007

香港新界葵涌水基路22-24號好爸爸創科大廈

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

22CA0329 03

Page:

2

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
1000	dB	dB	dB
1000	94.00	93.90	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.016 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1004.3 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.3 %

Estimated expanded uncertainty

0.7%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Checked by:

Chan Yuk Yiri

30-Mar-2022 Date:

Fung Chi Yij

Date:

31-Mar-2022

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港新界葵滴永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

22CA0613 03

Page

of

Item tested

Description:

Sound Level Meter (Type 1) Larson Davis

Microphone PCB Preamp PCB

Manufacturer: Type/Model No.:

LxT1

377B02 155507 PRMLxT1L

Serial/Equipment No.: Adaptors used:

0004796

13330

042621

Item submitted by

Customer Name:

Lam Environmental Services Limited.

Address of Customer:

Request No.: Date of receipt:

13-Jun-2022

Date of test:

15-Jun-2022

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

23-Aug-2022

CIGISMEC

Signal generator

DS 360

33873

21-Jan-2023

CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

16-Jun-2022

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

22CA0613 03

Page

of

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	۸	Dese	0.0	
Self-generated hoise	A C	Pass	0.3	
	-	Pass	0.8	2.1
Linearity sauce for Lan	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip Date: 15-Jun-2022

End -

Checked by:

Date:

Čhan Yuk Yiu 16-Jun-2022

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

LxT1

Serial No.

0004796

Date 15-Jun-2022

Microphone Preamp type: type: 377B02 PRMLxT1L Serial No. Serial No. 155507 042621

Report: 22CA0613 03

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

9.2

dB

Noise level in C weighting

14.3

dB

Noise level in Lin

20.7

dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	al level	Tolerance	Devia	ation
	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
115.0	115.0	115.0	0.7	0.0	0.0
116.0	116.0	116.0	0.7	0.0	0.0
117.0	117.0	117.0	0.7	0.0	0.0
118.0	118.0	118.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
120.0	120.0	120.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	73.9	73.9	0.7	-0.1	-0.1
69.0	68.9	68.9	0.7	-0.1	-0.1
64.0	63.9	63.9	0.7	-0.1	-0.1
59.0	58.9	58.9	0.7	-0.1	-0.1
54.0	53.9	53.9	0.7	-0.1	-0.1
49.0	48.9	48.9	0.7	-0.1	-0.1
44.0	43.9	43.9	0.7	-0.1	-0.1
39.0	38.9	38.9	0.7	-0.1	-0.1
34.0	33.9	33.9	0.7	-0.1	-0.1
33.0	32.9	32.9	0.7	-0.1	-0.1

(c)Soils Materials Eng. Co., Ltd.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港新界葵涌永基路22-24號好爸爸創科大廈

Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

SMECLab

Test Data for Sound Level Meter

Page 2 of 5

Sound level m	neter type:	LxT1		Serial No.	0004796	Dat	e 15-Jun-2022
Microphone Preamp	type: type:	377B02 PRMLxT1L		Serial No. Serial No.	155507 042621	Rep	oort: 22CA0613 03
32.0)	31.9	31.9	0.7		-0.1	-0.1
31.0)	30.9	30.9	0.7		-0.1	-0.1
30.0)	29.9	29.9	0.7		-0.1	-0.1

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-120	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-120	30.0	29.9	0.7	-0.1
20-120	118.0	118.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	67.7	1.5	1.5	-0.1
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.7	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	el Expected level	Actual level	Tolerance(dB)		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	93.2	1.5	1.5	0.0
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

香港新界葵滴永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab**

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	eter type:	LxT1		Serial No.	000	4796	Date 1	5-Jun-2022
Microphone Preamp	type: type:	377E PRM	302 ILxT1L	Serial No. Serial No.	155 042	507 621	Report: 2	2CA0613 03
1995.0	94.0		93.8	93.8	1.0	1.0	0.0	
3981.0	94.0		93.2	93.2	1.0	1.0	0.0	
7943.0	94.0		91.0	91.0	1.5	3.0	0.0	
12590.0	94.0		87.8	87.8	3.0	6.0	0.0	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	93.9	1.5	1.5	-0.1
63.1	94.0	94.0	93.9	1.5	1.5	-0.1
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.0	1.5	3.0	0.0
12590.0	94.0	94.0	94.0	3.0	6.0	0.0

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	- 1	dB
116.0	115.0	114.9	1.0	1.0	-0.1

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities: (Weighting Z, set the generator signal to single, Lzpea	(Weighting Z, set the generator signal to single, Lzpe	eak)
--	--	------

Ref. level	ef. level Response to 10 ms		Tolerance	Deviation	
dB	dB	dB	+/- dB	dB	
119.0	119.0	118.7	2.0	-0.3	

(c)Soils Materials Eng. Co., Ltd.

港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com **SMECLab**

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

LxT1

Serial No.

0004796

Date 15-Jun-2022

Microphone Preamp

type: type: 377B02 PRMLxT1L Serial No. Serial No.

155507 042621

Report: 22CA0613 03

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	118.7	2.0	-0.3

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

11 cycles of a sine wave of frequency 2000 Hz

Tone burst signal:		11 cycles of a sine	e wave of frequency 2	000 Hz. (Set	to INT)
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	114.0+6.6	114.0	113.9	0.5	-0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	+/- dB	dB	
1000	90.0	90.0	89.9	1.0	-0.1	60s integ.
10000	80.0	80.0	79.9	1.0	-0.1	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

LxT1

Serial No.

0004796

Date 15-Jun-2022

Microphone Preamp

type: type: 377B02 PRMLxT1L

Serial No. Serial No. 155507 042621 100 PROMISSION FOR

Report: 22CA0613 03

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation	
msec	tone burst (dB)	dB	dB	+/- dB	dB	
10	90.0	60.0	60.0	1.7	0.0	

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation	
msec	tone burst (dB)	dB	dB	+/- dB	dB	
10.0	90.0	70.0	70.0	1.7	0.0	

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level			educed by Further reduced Difference Toleran		Deviation
at overload (dB)			dB	dB	dB
113.1	112.1	109.1	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
119.8	118.8	78.8	78.8	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	ed level Actual level		nce (dB)	Deviation
Hz	dB	Measured (dB)	+	- 1	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	93.8	1.5	3.0	0.9

-----END-----

(c)Soils Materials Eng. Co., Ltd.

RECALIBRATION DUE DATE:

June 28, 2023

Certificate of Calibration

Calibration Certification Information

Cal. Date: June 28, 2022

Rootsmeter S/N: 438320

Ta: 296

°K

Operator: Jim Tisch

Pa: 755.1

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3880

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4500	3.2	2.00
2	3	4	1	1.0240	6.4	4.00
3	5	6	1	0.9130	7.9	5.00
4	7	8	1	0.8690	8.8	5.50
5	9	10	1	0.7180	12.8	8.00

	Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
0.9961	0.6870	1.4144	0.9958	0.6867	0.8854			
0.9918	0.9686	2.0003	0.9915	0.9683	1.2522			
0.9899	1.0842	2.2364	0.9895	1.0838	1.4000			
0.9887	1.1377	2.3456	0.9883	1.1373	1.4683			
0.9834	1.3696	2.8289	0.9830	1.3691	1.7708			
	m=	2.07013		m=	1.29628			
QSTD	b=	-0.00727	QA	b=	-0.00455			
	r=	0.99999		r=	0.99999			

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions						
Tstd:	Tstd: 298.15 °K						
Pstd:	760 mm Hg						
	Key						
ΔH: calibrate	ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsme	ter manometer reading (mm Hg)						
Ta: actual ab	solute temperature (°K)						
Pa: actual barometric pressure (mm Hg)							
b: intercept							
m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		AMC01				Calbratio	on Date	:	10-Dec-22
Equipment no.	HVS00	04 (0200-0	740)			Calbratio	on Due Date	:	9-Feb-23
CALIBRATION OF CON	ITINUOUS	S FLOW R	ECORDER						
				Ambient (Condition				
Temperature, T _a		291.	4	Kelvin	Pressure, P	a	1	1016	mmHg
			Orifice Tr	ansfer Sta	andard Inforr	mation			
Equipment No.		3880		Slope, m _c	1.29628		Intercept, bc	Т.	0.00455
Last Calibration Date		28-Jun-2	22		(Hx	P _a / 101	3.3 x 298 /	T _a)	1/2
Next Calibration Date		28-Jun-2	23		=		$Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Mar	nometer R	eading	C) _{std}	Continu	ious Flow		IC
Point	H (i	inches of	water)	(m ³	/ min.)	Reco	rder, W	(W(P _a /	/1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(C	CFM)		Y-axis
1	1.4	1.4	2.8	1.3	3103		32		32.3955
2	2.5	2.5	5.0	1.	7498		38		38.4696
3	3.6	3.6	7.2	2.0	0991		44		44.5438
4	4.8	4.8	9.6	2.4	4233		50		50.6179
5	5.8	5.8	11.6	2.0	6634		55		55.6797
By Linear Regression of	Y on X								
	Slope, m	=	17.23	316	Inte	ercept, b =	9.	.0306	
Correlation Co	oefficient*	=	0.99	169					
Calibration	Accepted	=	Yes/	\0 **					
* if Correlation Coefficier	nt < 0 990	check and	l recalibration	n again					
		0.10011 0.110		. aga					
** Delete as appropriate.									
Remarks :									
Calibrated by	ŀ	Harry Po				Checked	l by	:	Alan Ng
Date	1	0-Dec-22				Date		:	10-Dec-22

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		AMC02				Calbration	on Date	: 10-	-Dec-22
Equipment no. :	HVS	S015 (2650))			Calbrati	on Due Date	: 9-	Feb-23
CALIBRATION OF CON	ITINUOUS	FLOW R	ECORDER						
				Ambient C	ondition				
Temperature, T _a		291.	4	Kelvin	Pressure, P	a	1	016	mmHg
			Orifice Tr	ansfer Sta	ndard Inform	mation			
Equipment No.		3880		Slope, m _c	1.29628		Intercept, bc	-0.0045	5
Last Calibration Date		28-Jun-2	22	I	(H x	P _a / 101	13.3 x 298 /	$T_a)^{1/2}$	
Next Calibration Date		28-Jun-2	23		=		$Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Mar	nometer R	eading	Q	std	Continu	uous Flow	ı	С
Point	H (i	inches of	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x	298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	Х-	axis	(0	CFM)	Y-8	axis
1	1.4	1.4	2.8	1.3	3103		30	30.3	3708
2	2.6	2.6	5.2	1.7	7844		38	38.4	4696
3	3.5	3.5	7.0	2.0)698		42	42.	5191
4	4.6	4.6	9.2	2.3	3723		48	48.5	5932
5	5.8	5.8	11.6	2.6	6634		54	54.0	6674
By Linear Regression of	Y on X								
	Slope, m	=	17.7	562	Inte	ercept, b =	6.	7007	
Correlation Co	oefficient*	=	0.99	78					
Calibration	Accepted	=	Yes/ I	\0 **					
* if Correlation Coefficier	nt < 0.990.	check and	l recalibration	n again.					
				J					
** Delete as appropriate.									
Remarks :									
Calibrated by	H	Harry Po				Checked	d by	: A	lan Ng
Date :	1	0-Dec-22				Date		: 10-	Dec-22

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		АМСЗА				Calbratio	on Date	:	10-Dec-22
Equipment no.	HVS	6014 (2649))			Calbratio	on Due Date	:	9-Feb-23
CALIBRATION OF CON	TINUOUS	S FI OW RI	CORDER						
CALIBRATION OF CON	11110000	T E O W TO		Ambient (Condition				
Temperature, T _a		291.			Pressure, P			016	mmHg
Temperature, Ta		201.	7	TCIVIII	11000010,17	a		010	
					indard Inforr	nation			
Equipment No.		3880		Slope, m _c	1.29628		Intercept, bc		0.00455
Last Calibration Date		28-Jun-2	2		(Hx	P _a / 101	3.3 x 298 /	T_a	1/2
Next Calibration Date		28-Jun-2	3		=	$m_c x$	$Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Mar	ometer R	eading	C	l _{std}	Continu	ious Flow		IC
Point	Н (і	inches of	water)	(m ³	/ min.)	Reco	rder, W	(W(P _a /	1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(C	FM)		Y-axis
1	1.2	1.2	2.4	1.1	2134		32		32.3955
2	2.4	2.4	4.8	1.	7145		40		40.4943
3	3.6	3.6	7.2	2.0	0991		46		46.5685
4	4.6	4.6	9.2	2.3	3723		49		49.6056
5	5.4	5.4	10.8	2.	5700		54		54.6674
By Linear Regression of	Y on X								
	Slope, m	=	15.82	288	Inte	ercept, b =	13	.1857	
Correlation Co	pefficient*	=	0.99	67					
Calibration	Accepted	=	Yes/P	10 **					
* if Correlation Coefficien	nt < 0.990,	check and	l recalibration	again.					
** Delete as appropriate.									
Remarks :									
	ŀ	Harry Po				Checked	by	:	Alan Ng
Calibrated by		0-Dec-22				Date	-	: -	10-Dec-22

Portable Dust Meter Performance Check Record

Portable Dust Meter

Type : Particulare Monitor

Manufacturer : MET ONE INSTRUMENTS

Model Number : BT-645

Serial Number : B17940

Performance Check Date : 29-Nov-22

Standard Equipment

Type : High Volume Sampler

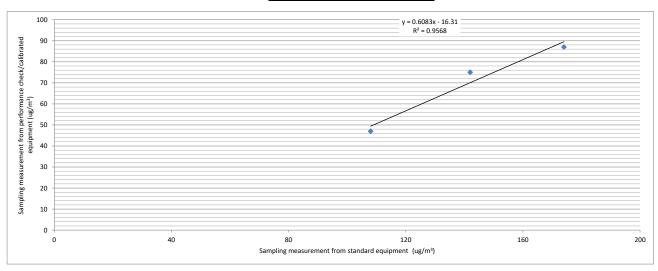
Manufacturer : _____ TISCH

Model Number : ______ TE-5170

Equipment Number : HVS002

Last Calibration Date : 1-Nov-22

Portable Dust Meter Performance Check Results


Trial no. in 1-hr period	Time	Mean Pressure (hPa)		Concentration in ug/m ³ (Standard equipment) (X - Axis)	Concentration in ug/m ³ (Performance Check / Calibrated equipment) (Y - Axis)
1	29/11/22 09:55	1014	26	174	87
2	29/11/22 10:55	1014	26	142	75
3	29/11/22 13:00	1014	26	108	47

^{*} Filter paper weighting was conducted by HOKLAS accredited laboratory.

Linear Regression of Y on X

Slope (K- factor)
Correlation Coefficient
Validity of Performance Check / Calibration Record

1.6000 0.9781 29/11/2022

Operator:	Alan Ng	Date:	29-Nov-22	
Checked by:	Derek Lo	Date:	4-Dec-22	

Portable Dust Meter Performance Check Record

Portable Dust Meter

Type : Particulare Monitor

Manufacturer : MET ONE INSTRUMENTS

Model Number : BT-645

Serial Number : B17942

Performance Check Date : 29-Nov-22

Standard Equipment

Type : High Volume Sampler

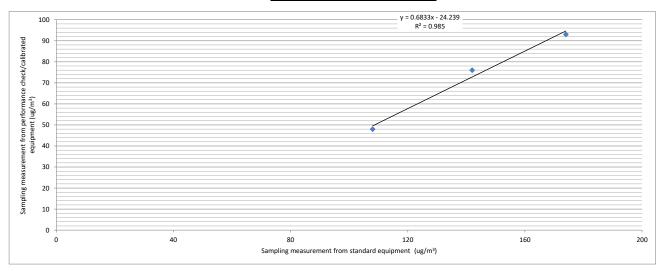
Manufacturer : _____ TISCH

Model Number : ______ TE-5170

Equipment Number : HVS002

Last Calibration Date : 1-Nov-22

Portable Dust Meter Performance Check Results


Trial no. in 1-hr period	Time	Mean Pressure (hPa)		Concentration in ug/m ³ (Standard equipment) (X - Axis)	Concentration in ug/m ³ (Performance Check / Calibrated equipment) (Y - Axis)
1	29/11/22 09:55	1014	26	174	93
2	29/11/22 10:55	1014	26	142	76
3	29/11/22 13:00	1014	26	108	48

^{*} Filter paper weighting was conducted by HOKLAS accredited laboratory.

Linear Regression of Y on X

Slope (K- factor)
Correlation Coefficient
Validity of Performance Check / Calibration Record

1.5000 0.9925 29/11/2022

Operator:	Alan Ng	Date:	29-Nov-22	
	_			
Checked by:	Derek Lo	Date:	4-Dec-22	

Calibration Certificate

Certificate No. 211035

Page 1 of 2 Pages

Customer: Lam Environmental Services Limited

 $(23 \pm 3)^{\circ}C$

Address: 19/F, Remex Centre, 42 Wong Chuk Hang Road, Hong Kong

Order No.: Q24331

Date of receipt

24-Nov-22

Item Tested

Description : Aerosol Mass Monitor

Manufacturer: Met One

I.D.

Model

: Aerocet 831

Serial No.

: W15449

Test Conditions

Date of Test: 13-Dec-22

Supply Voltage : --

Relative Humidity: (50 ± 25) %

Ambient Temperature: Test Specifications

Calibration check.

Calibration procedure :

Manufacturer recommended method (gravimetric), Z28.

Test Results

All results were within the tolerance(s).

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S136B	Stop Watch	201879	SCL-HKSAR
S238	Micro Balance	108228	NIM-PRC
S201	Std. Test Dust	61291	NIST
S207B	Std. Flowmeter	LL-2104002489	NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Approved by :

Steve Kwan

This Certificate is issued by

Hong Kong Calibration Ltd.

13-Dec-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 211035

Page 2 of 2 Pages

Results:

1. General

Internal Filters: checked and found clean.

2. Flow Meter

UUT Nominal	Measured Value	Tolerance	
Value (LPM)	(LPM)	(LPM)	Uncertainty
2.83	2.80	± 0.15	± 0.05

3. Timer

Reference Value	UUT Reading	Tolerance	Uncertainty
10′ 00″ 18	10′ 00″ 18 10 min		\pm 0.5 sec/hr

4. Dust Particle (PM10)

Applied Value (μg/m³)	UUT Reading (μg/m³) K Factor : 0.62	Tolerance	Uncertainty
280	254	± 20 %	± 10 %

Remark: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. ISO 12103-1 A1 respirable standard test dust was used for the calibration.
- 4. The K Factor had been adjusted from 1.00 to 0.62.

 END	

Wind Station Performance Check Record

Type : Weather Station

Manufacturer : 武汉辰云科技有限公司

Model Number : YGY-FSXY12

Serial Number : 21091630T0944

Performance Check Date : 29-Nov-2022

Performance Check Results

Wind Speed Range (m/s)	Reading Value (V1, m/s)	Anemometer Value (V2, m/s)	Difference (V1 - V2, m/s)
Zero Check	0.0	0.0	0.0
1 - 2	1.5	1.9	-0.4
3 - 5	4.8	5.3	-0.5
6 - 7	6.4	6.5	-0.1
8 - 9	8.1	8.1	0.0

Wind Direction (°)	Reading Value (W1, °)	Compass Value (W2, °)	Difference (W1 - W2, °)
0	0	0	0
90	89	90	-1
180	181	180	1
270	270	270	0

Test Reference:

- 1. Wind Speed Check Speed reading checked on-site against anemometer logged value.
- 2. Wind Direction Check Direction reading checked on on-site against logged value.

Conducted by:	William Cheung	Checked by:	Raymond Dai

Appendix 4.3

Wind Data

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.1	193(SSW)
	1:00	0.0	322(NW)
	2:00	1.5	127(SE)
	3:00	1.1	212(SSW)
	4:00	1.3	264(W)
	5:00	2.1	256(WSW)
	6:00	0.7	287(WNW)
	7:00	0.9	164(SSE)
	8:00	1.3	269(W)
	9:00	1.3	267(W)
	10:00	0.5	38(NE)
1-Jan-23	11:00	1.1	154(SSE)
1-Jan-25	12:00	2.7	73(ENE)
	13:00	0.7	80(E)
	14:00	1.5	149(SSE)
	15:00	1.7	182(S)
	16:00	0.0	302(WNW)
	17:00	1.9	293(WNW)
	18:00	1.5	248(WSW)
	19:00	2.9	277(W)
	20:00	1.9	120(ESE)
	21:00	1.9	288(WNW)
	22:00	0.0	267(W)
	23:00	0.0	243(WSW)
	0:00	0.0	358(N)
	1:00	0.0	270(W)
	2:00	0.0	245(WSW)
	3:00	0.0	303(WNW)
	4:00	0.0	345(NNW)
	5:00	0.0	344(NNW)
	6:00	0.0	224(SW)
	7:00	0.0	245(WSW)
	8:00	3.3	244(WSW)
	9:00	4.5	235(SW)
	10:00	3.3	257(WSW)
2-Jan-23	11:00	3.7	250(WSW)
2-Jan-23	12:00	2.7	241(WSW)
	13:00	2.7	219(SW)
	14:00	2.3	253(WSW)
	15:00	2.5	234(SW)
	16:00	2.9	277(W)
	17:00	2.5	267(W)
	18:00	2.1	257(WSW)
	19:00	0.9	260(W)
	20:00	0.0	265(W)
	21:00	2.5	262(W)
	22:00	2.5	284(WNW)
	23:00	3.5	251(WSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.5	246(WSW)
	1:00	1.1	249(WSW)
	2:00	2.1	249(WSW)
	3:00	1.9	218(SW)
	4:00	1.7	237(WSW)
	5:00	1.7	307(NW)
	6:00	1.7	272(W)
	7:00	0.9	221(SW)
	8:00	1.3	238(WSW)
	9:00	4.1	210(SSW)
	10:00	1.9	191(S)
3-Jan-23	11:00	1.1	244(WSW)
3-Jan-23	12:00	1.3	81(E)
	13:00	1.7	306(NW)
	14:00	2.1	260(W)
	15:00	1.3	297(WNW)
	16:00	1.3	274(W)
	17:00	1.9	271(W)
	18:00	1.7	326(NW)
	19:00	2.3	92(E)
	20:00	1.5	193(SSW)
	21:00	1.9	309(NW)
	22:00	1.5	294(WNW)
	23:00	0.7	243(WSW)
	0:00	4.9	112(ESE)
	1:00	2.1	271(W)
	2:00	1.7	277(W)
	3:00	1.3	233(SW)
	4:00	1.7	158(SSE)
	5:00	2.1	270(W)
	6:00	1.9	272(W)
	7:00	0.0	312(NW)
	8:00	1.3	71(ENE)
	9:00	2.1	272(W)
	10:00	3.7	283(WNW)
4 lon 22	11:00	2.5	280(W)
4-Jan-23	12:00	3.5	228(SW)
	13:00	2.9	237(WSW)
	14:00	3.1	305(NW)
	15:00	1.3	71(ENE)
	16:00	1.5	215(SW)
	17:00	2.1	269(W)
	18:00	1.7	285(WNW)
	19:00	2.9	301(WNW)
	20:00	2.5	264(W)
	21:00	0.9	315(NW)
	22:00	1.1	282(WNW)
	23:00	0.9	214(SW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0	283(WNW)
	1:00	1.3	279(W)
	2:00	0.9	293(WNW)
	3:00	1.3	246(WSW)
	4:00	4.1	137(SE)
	5:00	2.1	247(WSW)
	6:00	1.7	155(SSE)
	7:00	0.7	280(W)
	8:00	1.5	251(WSW)
	9:00	1.7	297(WNW)
	10:00	1.1	153(SSE)
5-Jan-23	11:00	0.7	221(SW)
5-Jan-25	12:00	1.5	266(W)
	13:00	1.1	225(SW)
	14:00	1.5	282(WNW)
	15:00	1.1	245(WSW)
	16:00	0.5	208(SSW)
	17:00	1.3	276(W)
	18:00	1.7	263(W)
	19:00	1.3	264(W)
	20:00	1.9	264(W)
	21:00	2.5	134(SE)
	22:00	1.3	295(WNW)
	23:00	1.5	241(WSW)
	0:00	0.7	303(WNW)
	1:00	1.5	251(WSW)
	2:00	1.7	219(SW)
	3:00	1.5	239(WSW)
	4:00	2.7	236(SW)
	5:00	1.3	268(W)
	6:00	1.5	217(SW)
	7:00	2.3	242(WSW)
	8:00	1.9	236(SW)
	9:00	1.1	234(SW)
	10:00	2.9	235(SW)
0 1 00	11:00	2.3	195(SSW)
6-Jan-23	12:00	1.1	268(W)
	13:00	1.1	257(WSW)
	14:00	1.5	268(W)
	15:00	2.1	244(WSW)
	16:00	1.1	185(S)
	17:00	1.9	284(WNW)
	18:00	0.9	245(WSW)
	19:00	1.5	263(W)
	20:00	1.1	260(W)
	21:00	0.5	290(WNW)
	22:00	1.1	234(SW)
	23:00	0.5	280(W)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.3	248(WSW)
	1:00	1.9	253(WSW)
	2:00	3.1	254(WSW)
	3:00	1.7	118(ESE)
	4:00	1.3	265(W)
	5:00	1.1	282(WNW)
	6:00	1.5	252(WSW)
	7:00	1.5	253(WSW)
	8:00	0.9	269(W)
	9:00	1.9	269(W)
	10:00	2.3	246(WSW)
7-Jan-23	11:00	1.5	271(W)
7-Jan-23	12:00	2.1	267(W)
	13:00	2.7	279(W)
	14:00	3.1	293(WNW)
	15:00	2.1	251(WSW)
	16:00	2.9	277(W)
	17:00	1.5	274(W)
	18:00	0.5	108(ESE)
	19:00	1.3	290(WNW)
	20:00	1.9	273(W)
	21:00	2.3	260(W)
	22:00	2.3	255(WSW)
	23:00	2.9	162(SSE)
	0:00	4.3	283(WNW)
	1:00	3.3	214(SW)
	2:00	3.3	280(W)
	3:00	1.1	227(SW)
	4:00	0.7	160(SSE)
	5:00	2.5	266(W)
	6:00	3.1	246(WSW)
	7:00	3.5	94(E)
	8:00	4.1	282(WNW)
	9:00	1.9	326(NW)
	10:00	2.3	303(WNW)
0 100 00	11:00	1.1	56(NE)
8-Jan-23	12:00	1.3	288(WNW)
	13:00	2.9	260(W)
	14:00	2.3	341(NNW)
	15:00	1.3	278(W)
	16:00	2.1	298(WNW)
	17:00	2.7	307(NW)
	18:00	1.7	254(WSW)
	19:00	2.3	158(SSE)
	20:00	2.7	265(W)
	21:00	1.1	46(NE)
	22:00	1.7	107(ESE)
	23:00	1.7	22(NNE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.1	8(N)
	1:00	0.9	225(SW)
	2:00	0.0	312(NW)
	3:00	1.1	343(NNW)
	4:00	2.3	262(W)
	5:00	1.7	317(NW)
	6:00	0.7	298(WNW)
	7:00	0.9	310(NW)
	8:00	0.0	275(W)
	9:00	1.1	302(WNW)
	10:00	0.5	127(SE)
0 1 00	11:00	1.5	19(NNE)
9-Jan-23	12:00	1.1	222(SW)
	13:00	1.1	278(W)
	14:00	1.3	347(NNW)
	15:00	0.9	246(WSW)
	16:00	0.5	242(WSW)
	17:00	1.5	310(NW)
	18:00	1.3	246(WSW)
	19:00	1.5	180(S)
	20:00	0.0	313(NW)
	21:00	0.0	144(SE)
	22:00	3.1	50(NE)
	23:00	1.7	64(ENE)
	0:00	1.3	336(NNW)
	1:00	0.9	258(WSW)
	2:00	0.0	267(W)
	3:00	0.0	291(WNW)
	4:00	0.7	267(W)
	5:00	1.1	283(WNW)
	6:00	1.3	261(W)
	7:00	0.0	300(WNW)
	8:00	0.9	298(WNW)
	9:00	0.0	352(N)
	10:00	0.0	168(SSE)
	11:00	2.5	109(ESE)
10-Jan-23	12:00	2.1	124(SE)
	13:00	1.5	31(NNE)
	14:00	1.3	91(E)
	15:00	1.9	90(E)
	16:00	1.5	316(NW)
	17:00	0.9	323(NW)
	18:00	0.9	115(ESE)
	19:00	1.3	272(W)
	20:00	0.7	307(NW)
	21:00	0.0	312(NW)
	22:00	0.7	270(W)
	23:00	0.0	333(NNW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.3	305(NW)
	1:00	0.5	318(NW)
	2:00	0.0	289(WNW)
	3:00	0.0	297(WNW)
	4:00	0.7	66(ENE)
	5:00	1.5	261(W)
	6:00	3.1	202(SSW)
	7:00	4.7	183(S)
	8:00	2.9	225(SW)
	9:00	1.9	225(SW)
	10:00	1.9	233(SW)
11-Jan-23	11:00	5.1	277(W)
11-Jan-23	12:00	4.7	260(W)
	13:00	5.9	230(SW)
	14:00	3.9	198(SSW)
	15:00	3.7	277(W)
	16:00	6.3	249(WSW)
	17:00	5.1	175(S)
	18:00	3.5	224(SW)
	19:00	3.7	237(WSW)
	20:00	3.3	283(WNW)
	21:00	7.1	229(SW)
	22:00	3.9	223(SW)
	23:00	5.3	241(WSW)
	0:00	5.3	262(W)
	1:00	2.9	244(WSW)
	2:00	2.5	167(SSE)
	3:00	7.9	222(SW)
	4:00	3.1	285(WNW)
	5:00	1.7	233(SW)
	6:00	5.1	245(WSW)
	7:00	3.1	262(W)
	8:00	2.7	186(S)
	9:00	2.7	319(NW)
	10:00	3.3	204(SSW)
10 lan 00	11:00	2.1	267(W)
12-Jan-23	12:00	2.9	168(SSE)
	13:00	2.5	211(SSW)
	14:00	2.5	202(SSW)
	15:00	3.1	255(WSW)
	16:00	2.9	206(SSW)
	17:00	2.9	293(WNW)
	18:00	2.7	256(WSW)
	19:00	2.3	235(SW)
	20:00	1.3	348(NNW)
	21:00	3.9	281(W)
	22:00	1.7	203(SSW)
	23:00	5.9	251(WSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	3.5	232(SW)
	1:00	1.1	205(SSW)
	2:00	2.9	245(WSW)
	3:00	4.3	233(SW)
	4:00	2.1	253(WSW)
	5:00	2.9	240(WSW)
	6:00	1.9	243(WSW)
	7:00	1.7	225(SW)
	8:00	2.3	203(SSW)
	9:00	2.3	201(SSW)
	10:00	2.3	267(W)
13-Jan-23	11:00	1.7	212(SSW)
13-3411-23	12:00	1.7	244(WSW)
	13:00	1.5	117(ESE)
	14:00	0.9	151(SSE)
	15:00	1.7	185(S)
	16:00	2.1	164(SSE)
	17:00	0.9	286(WNW)
	18:00	0.7	345(NNW)
	19:00	1.3	227(SW)
	20:00	0.9	60(ENE)
	21:00	1.3	288(WNW)
	22:00	1.9	248(WSW)
	23:00	1.5	248(WSW)
	0:00	1.5	210(SSW)
	1:00	2.7	239(WSW)
	2:00	2.5	240(WSW)
	3:00	2.9	221(SW)
	4:00	3.1	267(W)
	5:00	1.1	224(SW)
	6:00	4.3	244(WSW)
	7:00	2.3	192(SSW)
	8:00	2.7	218(SW)
	9:00	2.7	199(SSW)
	10:00	3.9	214(SW)
14 lon 22	11:00	2.5	211(SSW)
14-Jan-23	12:00	2.3	181(S)
	13:00	1.3	220(SW)
	14:00	2.7	229(SW)
	15:00	1.7	286(WNW)
	16:00	1.5	173(S)
	17:00	0.7	291(WNW)
	18:00	0.5	284(WNW)
	19:00	1.1	109(ESE)
	20:00	0.9	116(ESE)
	21:00	1.3	119(ESE)
	22:00	1.1	242(WSW)
	23:00	0.5	126(SE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.5	314(NW)
	1:00	1.1	238(WSW)
	2:00	0.5	300(WNW)
	3:00	0.5	288(WNW)
	4:00	0.7	280(W)
	5:00	0.9	265(W)
	6:00	0.0	168(SSE)
	7:00	1.1	103(ESE)
	8:00	1.1	262(W)
	9:00	1.1	238(WSW)
	10:00	0.7	185(S)
15-Jan-23	11:00	0.7	276(W)
13-3411-23	12:00	1.5	113(ESE)
	13:00	2.1	98(E)
	14:00	2.1	171(S)
	15:00	1.1	175(S)
	16:00	1.3	210(SSW)
	17:00	0.5	168(SSE)
	18:00	0.7	35(NE)
	19:00	0.9	242(WSW)
	20:00	0.7	296(WNW)
	21:00	0.5	96(E)
	22:00	0.0	347(NNW)
	23:00	1.3	232(SW)
	0:00	0.9	270(W)
	1:00	0.0	310(NW)
	2:00	0.7	298(WNW)
	3:00	1.7	219(SW)
	4:00	1.7	187(S)
	5:00	1.7	278(W)
	6:00	2.9	196(SSW)
	7:00	2.1	198(SSW)
	8:00	2.3	108(ESE)
	9:00	2.5	272(W)
	10:00	1.3	237(WSW)
16-Jan-23	11:00	1.1	131(SE)
10-Jan-23	12:00	2.3	319(NW)
	13:00	1.3	172(S)
	14:00	1.3	209(SSW)
	15:00	2.3	198(SSW)
	16:00	1.1	222(SW)
	17:00	0.7	20(NNE)
	18:00	0.0	310(NW)
	19:00	0.0	287(WNW)
	20:00	0.5	297(WNW)
	21:00	0.0	328(NNW)
	22:00	0.9	259(W)
	23:00	1.7	276(W)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.7	333(NNW)
	1:00	1.1	269(W)
	2:00	1.5	301(WNW)
	3:00	1.5	284(WNW)
	4:00	1.3	273(W)
	5:00	1.3	277(W)
	6:00	1.7	289(WNW)
	7:00	1.1	176(S)
	8:00	1.7	282(WNW)
	9:00	1.1	244(WSW)
	10:00	2.7	134(SE)
17-Jan-23	11:00	2.7	143(SE)
17-Jan-25	12:00	1.1	136(SE)
	13:00	1.1	177(S)
	14:00	1.5	113(ESE)
	15:00	1.9	109(ESE)
	16:00	1.3	145(SE)
	17:00	1.5	268(W)
	18:00	0.7	271(W)
	19:00	2.3	134(SE)
	20:00	2.3	111(ESE)
	21:00	1.3	225(SW)
	22:00	1.5	78(ENE)
	23:00	1.3	149(SSE)
	0:00	0.9	132(SE)
	1:00	1.7	126(SE)
	2:00	1.1	122(ESE)
	3:00	1.1	121(ESE)
	4:00	0.9	138(SE)
	5:00	0.9	158(SSE)
	6:00	0.9	149(SSE)
	7:00	1.3	98(E)
	8:00	1.3	75(ENE)
	9:00	0.7	215(SW)
	10:00	1.3	79(E)
10 lon 00	11:00	3.1	157(SSE)
18-Jan-23	12:00	1.1	120(ESE)
	13:00	2.3	96(E)
	14:00	1.3	224(SW)
	15:00	1.1	85(E)
	16:00	1.5	110(ESE)
	17:00	1.5	172(S)
	18:00	1.5	94(E)
	19:00	2.7	111(ESE)
	20:00	1.3	124(SE)
	21:00	1.7	94(E)
	22:00	1.1	98(E)
	23:00	1.7	116(ESE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.0	134(SE)
	1:00	0.0	268(W)
	2:00	0.0	285(WNW)
	3:00	0.0	286(WNW)
	4:00	0.0	302(WNW)
	5:00	0.0	141(SE)
	6:00	0.0	274(W)
	7:00	0.0	346(NNW)
	8:00	0.0	285(WNW)
	9:00	1.3	133(SE)
	10:00	1.7	287(WNW)
19-Jan-23	11:00	2.7	79(E)
19-3411-23	12:00	1.3	270(W)
	13:00	3.9	121(ESE)
	14:00	1.7	315(NW)
	15:00	1.5	274(W)
	16:00	2.3	92(E)
	17:00	1.1	80(E)
	18:00	0.0	280(W)
	19:00	2.3	111(ESE)
	20:00	1.1	111(ESE)
	21:00	1.1	189(S)
	22:00	1.3	105(ESE)
	23:00	0.9	147(SSE)
	0:00	2.3	92(E)
	1:00	1.7	54(NE)
	2:00	3.1	109(ESE)
	3:00	2.7	278(W)
	4:00	2.7	108(ESE)
	5:00	2.1	173(S)
	6:00	1.9	218(SW)
	7:00	3.3	299(WNW)
	8:00	5.1	91(E)
	9:00	3.7	70(ENE)
	10:00	3.9	68(ENE)
20 Jan 22	11:00	3.3	79(E)
20-Jan-23	12:00	4.1	149(SSE)
	13:00	6.1	96(E)
	14:00	4.3	90(E)
	15:00	3.9	57(ENE)
	16:00	2.5	82(E)
	17:00	5.9	85(E)
	18:00	3.3	121(ESE)
	19:00	1.7	78(ENE)
	20:00	1.3	93(E)
	21:00	2.1	66(ENE)
	22:00	2.3	120(ESE)
	23:00	1.5	164(SSE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	4.7	82(E)
	1:00	4.7	70(ENE)
	2:00	6.1	116(ESE)
	3:00	6.1	86(E)
	4:00	5.5	65(ENE)
	5:00	1.7	98(E)
	6:00	5.3	70(ENE)
	7:00	3.5	42(NE)
	8:00	2.9	88(E)
	9:00	1.9	15(NNE)
	10:00	1.7	34(NE)
21-Jan-23	11:00	1.9	52(NE)
21-3411-23	12:00	3.3	111(ESE)
	13:00	0.7	239(WSW)
	14:00	0.9	72(ENE)
	15:00	1.3	125(SE)
	16:00	1.3	144(SE)
	17:00	2.1	73(ENE)
	18:00	1.5	81(E)
	19:00	0.9	140(SE)
	20:00	0.9	112(ESE)
	21:00	1.5	94(E)
	22:00	0.0	324(NW)
	23:00	1.3	86(E)
	0:00	2.1	115(ESE)
	1:00	1.3	81(E)
	2:00	0.9	135(SE)
	3:00	0.9	191(S)
	4:00	1.5	243(WSW)
	5:00	1.1	109(ESE)
	6:00	0.9	110(ESE)
	7:00	1.3	98(E)
	8:00	0.0	192(SSW)
	9:00	1.7	126(SE)
	10:00	0.9	265(W)
00 lan 00	11:00	1.7	70(ENE)
22-Jan-23	12:00	1.7	132(SE)
	13:00	4.5	91(E)
	14:00	2.9	87(E)
	15:00	1.7	90(E)
	16:00	1.3	84(E)
	17:00	1.1	100(E)
	18:00	1.3	69(ENE)
	19:00	0.5	182(S)
	20:00	1.1	93(E)
	21:00	1.1	169(S)
	22:00	0.5	129(SE)
	23:00	1.1	140(SE)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	0.7	163(SSE)
	1:00	0.0	188(S)
	2:00	1.3	271(W)
	3:00	3.3	104(ESE)
	4:00	2.7	68(ENE)
	5:00	2.5	80(E)
	6:00	2.5	90(E)
	7:00	4.1	108(ESE)
	8:00	6.5	102(ESE)
	9:00	4.3	89(E)
	10:00	3.3	36(NE)
00 1 00	11:00	2.1	71(ENÉ)
23-Jan-23	12:00	2.5	100(E)
	13:00	3.1	109(ESE)
	14:00	3.1	16(NNE)
	15:00	2.5	82(E)
	16:00	1.7	217(SW)
	17:00	3.1	75(ENE)
	18:00	1.1	267(W)
	19:00	4.3	100(E)
	20:00	1.5	80(E)
	21:00	3.5	75(ENE)
	22:00	1.5	123(ESE)
	23:00	4.1	76(ENE)
	0:00	1.7	132(SE)
	1:00	2.7	158(SSE)
	2:00	2.7	107(ESE)
	3:00	1.7	182(S)
	4:00	0.7	144(SE)
	5:00	3.5	97(E)
	6:00	4.9	115(ESE)
	7:00		132(SE)
	8:00	3.1 4.1	
	9:00	2.1	48(NE)
	10:00	5.9	154(SSE) 82(E)
	11:00	1.5	135(SE)
24-Jan-23	12:00		
	13:00	2.7	99(E)
	14:00	1.5 2.1	52(NE)
			29(NNE)
	15:00	1.9	173(S)
	16:00	2.3	55(NE)
	17:00	1.5	68(ENE)
	18:00	0.9	120(ESE)
	19:00	0.0	314(NW)
	20:00	0.0	260(W)
	21:00	1.3	217(SW)
	22:00	0.0	318(NW)
	23:00	1.9	94(E)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)	
	0:00	2.5	58(ENE)	
	1:00	1.5	86(E)	
	2:00	0.9	271(W)	
	3:00	2.5	139(SE)	
	4:00	1.5	124(SE)	
	5:00	2.1	146(SE)	
	6:00	3.9	87(E)	
	7:00	1.3	67(ENE)	
	8:00	1.3	220(SW)	
	9:00	1.5	57(ENE)	
	10:00	1.5	170(S)	
25-Jan-23	11:00	1.1	150(SSE)	
20-Jan-23	12:00	2.1	106(ESE)	
	13:00	1.9	295(WNW)	
	14:00	2.1	167(SSE)	
	15:00	1.5	104(ESE)	
	16:00	2.5	89(E)	
	17:00	0.0	224(SW)	
	18:00	0.0	286(WNW)	
	19:00	0.0	328(NNW)	
	20:00	0.0	102(ESE)	
	21:00	0.0	88(E)	
	22:00	0.0	310(NW)	
	23:00	0.0	139(SE)	
	0:00	0.0	130(SE)	
	1:00	0.0	196(SSW)	
	2:00	1.1	100(E)	
	3:00	0.0	143(SE)	
	4:00	0.0	201(SSW)	
	5:00	0.0	306(NW)	
	6:00	0.0	162(SSE)	
	7:00	0.0	257(WSW)	
	8:00	0.0	298(WNW)	
	9:00	1.5	54(NE)	
	10:00	1.5	136(SE)	
00 lan 00	11:00	2.3	98(E)	
26-Jan-23	12:00	1.1	46(NE)	
	13:00	1.5	189(S)	
	14:00	4.1	138(SE)	
	15:00	1.1	261(W)	
	16:00	1.9	278(W)	
	17:00	0.0	257(WSW)	
	18:00	0.0	212(SSW)	
	19:00	1.3	94(E)	
	20:00	0.0	295(WNW)	
	21:00	0.0	181(S)	
	22:00	0.7	201(SSW)	
	23:00	0.0	160(SSE)	

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	1.5	90(E)
	1:00	0.7	124(SE)
	2:00	0.0	266(W)
	3:00	1.5	91(E)
	4:00	1.7	93(E)
	5:00	1.3	279(W)
	6:00	0.9	82(E)
	7:00	1.7	110(ESE)
	8:00	1.7	80(E)
	9:00	2.9	149(SSE)
	10:00	2.7	117(ESE)
27-Jan-23	11:00	1.3	287(WNW)
21-Jan-25	12:00	1.9	241(WSW)
	13:00	2.1	97(E)
	14:00	1.3	134(SE)
	15:00	2.9	69(ENE)
	16:00	1.9	158(SSE)
	17:00	1.5	114(ESE)
	18:00	0.9	213(SSW)
	19:00	2.3	316(NW)
	20:00	0.0	264(W)
	21:00	0.9	268(W)
	22:00	2.1	163(SSE)
	23:00	0.7	302(WNW)
	0:00	0.7	236(SW)
	1:00	3.7	271(W)
	2:00	2.9	236(SW)
	3:00	2.7	95(E)
	4:00	0.9	284(WNW)
	5:00	1.3	276(W)
	6:00	0.7	25(NNE)
	7:00	0.0	305(NW)
	8:00	1.1	335(NNW)
	9:00	1.5	205(SSW)
	10:00	2.1	261(W)
28-Jan-23	11:00	1.7	223(SW)
20-Jan-25	12:00	1.5	238(WSW)
	13:00	1.9	275(W)
	14:00	2.3	233(SW)
	15:00	3.1	183(S)
	16:00	1.7	295(WNW)
	17:00	1.5	218(SW)
	18:00	0.0	254(WSW)
	19:00	2.3	155(SSE)
	20:00	2.5	104(ESE)
	21:00	0.0	296(WNW)
	22:00	0.0	257(WSW)
	23:00	0.0	276(W)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	0:00	2.5	221(SW)
	1:00	0.0	220(SW)
	2:00	3.1	218(SW)
	3:00	1.1	277(W)
	4:00	2.1	263(W)
	5:00	4.1	247(WSW)
	6:00	2.7	215(SW)
	7:00	1.1	177(S)
	8:00	0.9	148(SSE)
	9:00	2.7	200(SSW)
	10:00	2.7	166(SSE)
20 Jan 22	11:00	1.7	207(SSW)
29-Jan-23	12:00	2.3	196(SSW)
	13:00	1.9	238(WSW)
	14:00	1.3	207(SSW)
	15:00	1.7	313(NW)
	16:00	2.5	255(WSW)
	17:00	0.9	286(WNW)
	18:00	1.9	96(E)
	19:00	1.3	244(WSW)
	20:00	1.1	241(WSW)
	21:00	1.3	230(SW)
	22:00	2.1	215(SW)
	23:00	3.3	240(WSW)
	0:00	1.5	237(WSW)
	1:00	1.3	165(SSE)
	2:00	1.7	207(SSW)
	3:00	3.9	237(WSW)
	4:00	2.1	195(SSW)
	5:00	1.5	266(W)
	6:00	1.9	315(NW)
	7:00	1.5	130(SE)
	8:00	2.1	146(SE)
	9:00	2.1	318(NW)
	10:00	1.9	277(W)
00 lan 00	11:00	1.9	284(WNW)
30-Jan-23	12:00	4.9	252(WSW)
	13:00	1.5	273(W)
	14:00	2.1	240(WSW)
	15:00	0.9	83(E)
	16:00	2.1	254(WSW)
	17:00	3.3	273(W)
	18:00	1.5	268(W)
	19:00	2.9	199(SSW)
	20:00	1.5	216(SW)
	21:00	1.5	184(S)
	22:00	2.3	271(W)
	23:00	2.7	208(SSW)
	0:00	5.3	194(SSW)
	1:00	3.5	219(SW)
	2:00	2.1	258(WSW)

Date	Time	Wind Speed (m/s)	Wind Direction (degree)
	3:00	1.1	158(SSE)
	4:00	1.3	237(WSW)
	5:00	2.3	231(SW)
	6:00	2.1	264(W)
	7:00	2.5	170(S)
	8:00	4.5	247(WSW)
	9:00	1.3	269(W)
	10:00	1.9	268(W)
31-Jan-23	11:00	4.9	101(E)
31-Jan-23	12:00	2.5	217(SW)
	13:00	1.7	303(WNW)
	14:00	1.5	163(SSE)
	15:00	0.7	292(WNW)
	16:00	1.3	194(SSW)
	17:00	1.1	277(W)
	18:00	0.7	208(SSW)
	19:00	0.9	261(W)
	20:00	0.0	248(WSW)
	21:00	0.9	289(WNW)
	22:00	1.9	211(SSW)
	23:00	1.1	324(NW)

Appendix 5.1

Monitoring Schedule for Reporting Month and Next Reporting Month

Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Tentative Environmental Impact Monitoring Schedule January 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan		3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
		Kwai Chung 24hr	Kwai Chung 1hr			
			Noise			
8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan
	Kwai Chung 24hr	Kwai Chung 1hr				Kwai Chung 24hr
		Noise				
15-Jan		17-Jan	18-Jan	19-Jan	20-Jan	21-Jan
	Kwai Chung 1hr				Kwai Chung 24hr	Kwai Chung 1hr
	Noise					,
22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan
				Kwai Chung 24hr	Kwai Chung 1hr	
					Noise	
29-Jan	30-Jan	31-Jan	1-Feb	2-Feb	3-Feb	4-Feb
		Kwai Chung 24hr	Kwai Chung 1hr			
			Noise			
	l					

Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Tentative Environmental Impact Monitoring Schedule February 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
29-Jan	30-Jan	31-Jan	1-Feb Kwai Chung 1hr Noise	2-Feb	3-Feb	4-Feb
5-Feb	Kwai Chung 24hr	7-Feb Kwai Chung 1hr Noise	8-Feb	9-Feb	10-Feb	11-Feb Kwai Chung 24hr
12-Feb	13-Feb Kwai Chung 1hr Noise	14-Feb	15-Feb	16-Feb	Kwai Chung 24hr	18-Feb Kwai Chung 1hr Noise
19-Feb	20-Feb	21-Feb	22-Feb	23-Feb Kwai Chung 24hr	24-Feb <mark>Kwai Chung 1hr</mark> Noise	25-Feb
26-Feb	27-Feb	28-Feb	1-Mar	2-Mar	3-Mar	4-Mar

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: NMC-01 - R/F, Lai King Catholic Secondary School

			Measur	ement Noi	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq
			Unit:	dB(A), (5	-min)		Unit	: dB(A), (30-min)	
		9:35	68.9	69.8	66.9				
		9:40	69.2	70.3	66.9				
5 Jan 2023	Cummi	9:45	69.5	70.1	67.2	69.4	74.5	<baseline level<="" td=""><td>65</td></baseline>	65
5 Jan 2023	Sunny	9:50	68.9	69.9	67.1	69.4	74.5	 	00
		9:55	69.7	70.8	67.6				
		10:00	69.9	70.1	67.9				
		9:40	69.0	70.1	67.5				
		9:45	69.2	70.3	67.6				
10 Jan 2023	Cloudy	9:50	69.4	70.4	67.8	69.2	74.5	<baseline level<="" td=""><td>65</td></baseline>	65
10 Jan 2023 Cloud	Cloudy	9:55	69.0	70.2	67.6	09.2	74.5	CDaSellile Level	03
		10:00	69.3	70.3	67.8				
		10:05	69.5	70.4	67.9				
		9:30	68.6	70.9	65.8				
		9:35	68.8	71.0	65.9				
16 Jan 2023	Sunny	9:40	68.7	70.9	65.8	68.8	74.5	<baseline level<="" td=""><td>65</td></baseline>	65
10 0411 2020	Curry	9:45	68.9	70.1	65.9	00.0	7-1.0	VDGOOMIO EOVOI	00
		9:50	69.1	70.2	66.1				
		9:55	68.8	71.1	66.0				
		9:40	69.2	70.3	66.9				
		9:45	68.9	69.8	66.9				
27 Jan 2023	Cloudy	9:50	69.5	70.7	67.2	69.4	74.5	<baseline level<="" td=""><td>70</td></baseline>	70
27 Jan 2023 Clo	2.200)	9:55	68.9	69.9	67.1				
		10:00	69.7	70.8	67.6				
		10:05	69.9	70.1	67.9				

Remark(s)

i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied.

ii. Limit level of noise monitoring station NMC-01 would be adjusted to 65dB(A) during examination period.

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: NMC-02 - R/F, Fung King House

			Measur	ement Noi	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq
			Unit: dB(A), (5-min)				Unit		
		8:45	70.3	69.5	67.0				
		8:50	70.6	69.8	67.1				
5 Jan 2023	Sunny	8:55	70.9	70.0	67.2	71.0	67.6	60	75
5 Jan 2025	Suriny	9:00	71.3	70.6	67.4	71.0	67.0	00	75
		9:05	71.0	70.4	67.2				
		9:10 71.6 71.1 67.5							
		8:45	69.3	70.2	68.2				
		8:50	8:50 69.0 70.1 68.1						
10 Jan 2023 Cloudy	Cloudy	8:55	68.9	69.9	67.5	69.0	67.6	64	75
	Cloudy	9:00	68.4	70.0	67.6		07.0	04	73
		9:05	69.0	69.9	67.7				
		9:10	69.5	70.4	68.3				
		8:50	73.5	75.0	72.2				
		8:55	73.3	74.2	72.1				
16 Jan 2023	Sunny	9:00	72.9	73.8	71.9	73.2	67.6	72	75
10 0411 2020	Curry	9:05	73.2	74.2	72.0	70.2	07.0		70
		9:10	73.0	74.0	71.8				
		9:15	73.1	74.1	72.0				
		8:45	71.5	70.1	67.5				
		8:50	70.0	70.6	67.2				
27 Jan 2023	Cloudy	8:55	71.0	70.5	67.4	70.7	67.6	68	75
27 Jan 2023 C	J.Judy	9:00	70.9	70.0	67.2	70.7	30		10
		9:05	70.6	69.8	67.1				
		9:10	70.3	69.5	67.0				

Remark(s):

i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied.

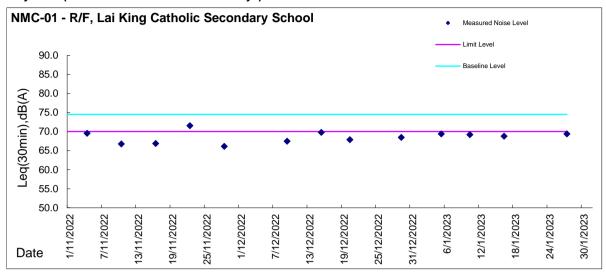
Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

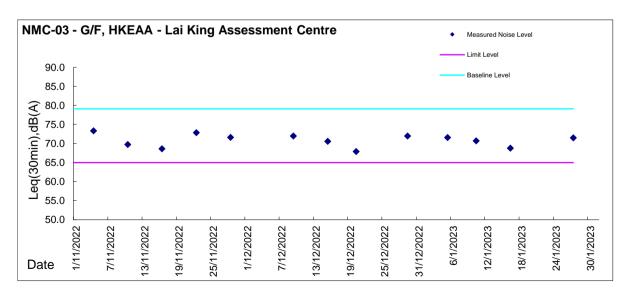
Location: NMC-03 - G/F, HKEAA - Lai King Assessment Centre

			Measure	ement Noi	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Weather	Time	Leq	L10	L90	Leq	Leq	Leq	Leq
			Unit:	dB(A), (5	-min)		Unit	: dB(A), (30-min)	
		8:00	71.5	72.5	68.5				
		8:05	70.9	71.8	67.6				
5 In- 2022	Cummi	8:10	71.5	72.4	67.9	71.6	79.1	<baseline level<="" td=""><td>65</td></baseline>	65
5 Jan 2023	Sunny	8:15	71.7	72.6	68.1	71.0	79.1	 	00
		8:20	72.0	73.1	69.1				
		8:25	71.8	72.9	68.9				
		8:02	69.7	70.3	68.8				
		8:07	70.1	70.6	69.4				
10 Jan 2023	Cloudy	8:12	70.5	70.7	69.5	70.7	79.1	<baseline level<="" td=""><td>70</td></baseline>	70
10 Jan 2023	Cloudy	8:17	71.0	72.0	69.7	70.7	79.1	<daseille level<="" p=""></daseille>	70
		8:22	71.4	72.4	69.1				
		8:27	71.1	72.7	69.6				
		8:04	72.8	73.5	71.9				
		8:09	72.5	73.1	71.6				
16 Jan 2023	Sunny	8:14	72.6	73.1	71.6	68.8	79.1	<baseline level<="" td=""><td>70</td></baseline>	70
10 0411 2020	Curry	8:19	72.9	73.5	71.9	00.0	70.1	ADDOOM TO LOVE	70
		8:24	72.9	74.1	71.9				
		8:29	73.1	70.1	72.0				
		8:02	71.8	72.3	68.2	_			
		8:07	70.7	71.6	67.4				
27 Jan 2023	Cloudy	8:12	71.3	72.2	67.6	71.5	79.1	<baseline level<="" td=""><td>70</td></baseline>	70
27 Jan 2023 Clo	0.000	8:17	71.8	73.0	67.9			124000 20.01	
		8:22	71.7	72.6	68.0				
		8:27	71.6	72.7	68.1				

Remark(s):


i. The Construction Noise Level refers to the corrected noise level based on the difference between SPL of the Measured Noise Level and the SPL of the Baseline Noise Level. In the event of the Baseline Noise Level exceeds the Measured Noise Level, no correction would be applied.

ii. As the baseline level of NMC-03 is higher than the measured average noise levels on 5,10,27 January 2023 the noise monitoring results are not considered as noise exceedances.


iii. Limit level of noise monitoring station NMC-03 would be adjusted to 65dB(A) during examination period.

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations

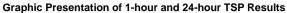
Report on 1-hour TSP monitoring at AMC01- Lai King Catholic Secondary School Action Level ($\mu g/m^3$) - 256.2 Limit Level ($\mu g/m^3$) - 500.0

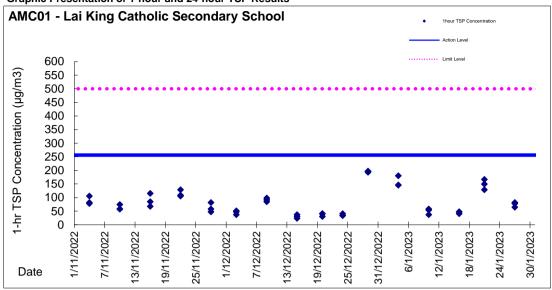
Date	Weather Condition	Time	TSP Level (µg/m³)
4-Jan-23	Sunny	9:00	146.2
4-Jan-23	Sunny	10:00	180.2
4-Jan-23	Sunny	11:00	146.2
10-Jan-23	Cloudy	9:00	37.4
10-Jan-23	Cloudy	10:00	57.8
10-Jan-23	Cloudy	11:00	54.4
16-Jan-23	Cloudy	9:00	40.8
16-Jan-23	Cloudy	10:00	47.6
16-Jan-23	Cloudy	11:00	47.6
21-Jan-23	Cloudy	9:00	166.6
21-Jan-23	Cloudy	10:00	149.6
21-Jan-23	Cloudy	11:00	129.2
27-Jan-23	Cloudy	9:00	64.6
27-Jan-23	Cloudy	10:00	78.2
27-Jan-23	Cloudy	11:00	81.6

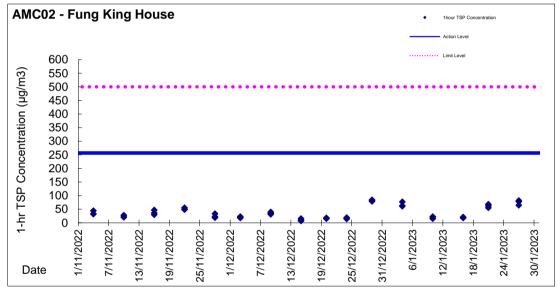
Report on 1-hour TSP monitoring at AMC02 - Fung King House Action Level ($\mu g/m^3$) - 256.7 Limit Level ($\mu g/m^3$) - 500.0

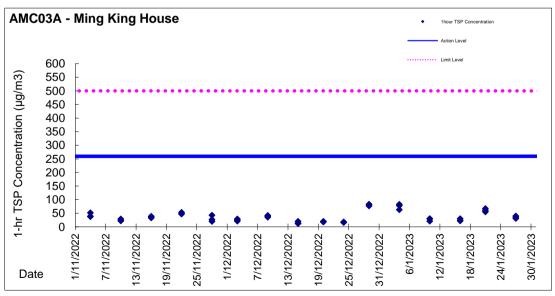
Date	Weather Condition	Time	TSP Level (µg/m³)
4-Jan-23	Sunny	9:00	62.4
4-Jan-23	Sunny	10:00	76.8
4-Jan-23	Sunny	11:00	61.2
10-Jan-23	Cloudy	9:00	15.6
10-Jan-23	Cloudy	10:00	21.6
10-Jan-23	Cloudy	11:00	22.8
16-Jan-23	Cloudy	9:00	18.0
16-Jan-23	Cloudy	10:00	20.4
16-Jan-23	Cloudy	11:00	20.4
21-Jan-23	Cloudy	9:00	68.4
21-Jan-23	Cloudy	10:00	62.4
21-Jan-23	Cloudy	11:00	55.2
27-Jan-23	Cloudy	9:00	64.6
27-Jan-23	Cloudy	10:00	78.2
27-Jan-23	Cloudy	11:00	81.6

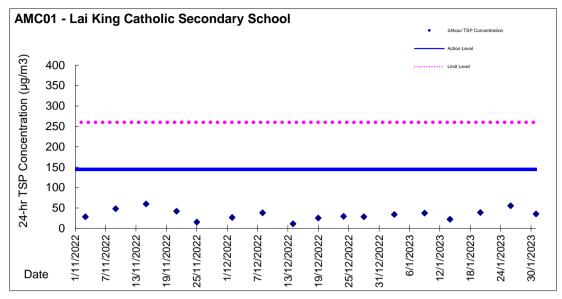
Report on 1-hour TSP monitoring at AMC03A - Ming King House Action Level ($\mu g/m^3$) - 259.3 Limit Level ($\mu g/m^3$) - 500.0

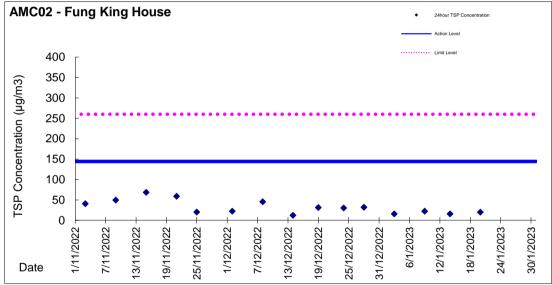

Date	Weather Condition	Time	TSP Level (µg/m³)
4-Jan-23	Sunny	9:00	82.5
4-Jan-23	Sunny	10:00	78.1
4-Jan-23	Sunny	11:00	62.7
10-Jan-23	Cloudy	9:00	20.9
10-Jan-23	Cloudy	10:00	29.7
10-Jan-23	Cloudy	11:00	29.7
16-Jan-23	Cloudy	9:00	22.0
16-Jan-23	Cloudy	10:00	29.7
16-Jan-23	Cloudy	11:00	23.1
21-Jan-23	Cloudy	9:00	67.1
21-Jan-23	Cloudy	10:00	60.5
21-Jan-23	Cloudy	11:00	55.0
27-Jan-23	Cloudy	9:00	30.8
27-Jan-23	Cloudy	10:00	35.2
27-Jan-23	Cloudy	11:00	39.6

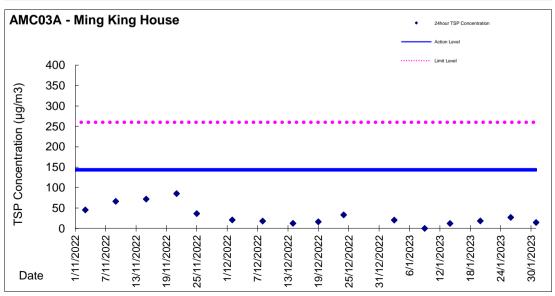



	Date	Sampling	Weather	Filter nanor no	Filter W	eight, g	Elapse 1	Time, hr	Sampling	Flo	ow Rate, m ³ /n	nin	Total	TSP Level,
	Date	Time	Condition	Filter paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	μg/m³
	3/1/2023	8:00	Cloudy	KC_AM1_24hr_007874	2.6808	2.7878	32801.09	32825.09	24.0	2.19	2.19	2.19	3151	34.0
	9/1/2023	8:00	Cloudy	KC_AM1_24hr_007877	2.6796	2.7849	32801.09	32825.09	24.0	1.95	1.96	1.95	2814	37.4
AMC01	14/1/2023	8:00	Cloudy	KC_AM1_24hr_007880	2.6744	2.7366	32849.13	32873.13	24.0	1.92	1.94	1.93	2785	22.3
AWCUT	20/1/2023	8:00	Cloudy	KC_AM1_24hr_011250	2.7375	2.8412	32873.13	32897.13	24.0	1.84	1.85	1.84	2656	39.0
	26/1/2023	8:00	Sunny	KC_AM1_24hr_011298	2.7610	2.9091	32887.13	32911.13	24.0	1.85	1.86	1.85	2667	55.5
	31/1/2023	8:00	Sunny	KC_AM1_24hr_011252	2.7497	2.8378	32921.13	32945.13	24.0	1.74	1.71	1.73	2485	35.4
	3/1/2023	8:00	Cloudy	KC_AM2_24hr_007875	2.6738	2.7225	11433.12	11457.12	24.0	2.15	2.14	2.14	3089	15.8
	9/1/2023	8:00	Cloudy	KC_AM2_24hr_007878	2.6924	2.7575	11433.12	11457.12	24.0	2.02	2.03	2.03	2920	22.3
AMC02	14/1/2023	8:00	Cloudy	KC_AM2_24hr_007881	2.6866	2.7321	11481.13	11505.13	24.0	2.00	2.02	2.01	2891	15.7
AIVICUZ	20/1/2023	8:00	Cloudy	KC_AM2_24hr_007883	2.6898	2.7505	11505.13	11529.13	24.0	2.14	2.14	2.14	3081	19.7
	26/1/2023	8:00	Sunny	KC_AM2_24hr_011299	2.7658	2.9006	11529.14	11553.14	24.0	1.71	1.71	1.71	2461	54.8
	31/1/2023	8:00	Sunny	KC_AM2_24hr_010499	2.7749	2.8891	11553.14	11577.14	24.0	1.93	1.90	1.92	2758	41.4
	3/1/2023	8:00	Cloudy	KC_AM3_24hr_007876	2.6517	2.7146	11399.31	11423.31	24.0	2.12	2.12	2.12	3052	20.6
	9/1/2023	8:00	Cloudy	KC_AM3_24hr_007879	2.6729	2.7919	11399.31	11423.31	24.0	1.98	1.99	1.99	2862	41.6
AMC03a	14/1/2023	8:00	Cloudy	KC_AM3_24hr_007882	2.6748	2.7089	11447.31	11471.31	24.0	1.95	1.97	1.96	2829	12.1
AIVICUSA	20/1/2023	8:00	Cloudy	KC_AM3_24hr_007884	2.7018	2.7514	11471.31	11495.31	24.0	1.86	1.87	1.87	2690	18.4
	26/1/2023	8:00	Sunny	KC_AM3_24hr_011300	2.7633	2.8361	11495.32	11519.32	24.0	1.87	1.88	1.88	2702	26.9
	31/1/2023	8:00	Sunny	KC_AM3_24hr_011251	2.7459	2.7873	11519.32	11543.32	24.0	2.00	1.97	1.98	2857	14.5


Remark(s): (i) The TSP monitoring at AMC03a was rescheduled to 03 Jan 2023 as power interruption was experienced from 31 December 2022 to 02 January 2023.







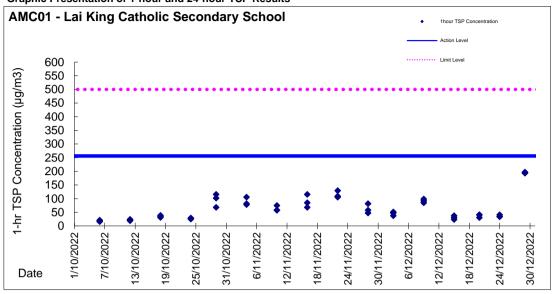
Graphic Presentation of 1-hour and 24-hour TSP Results

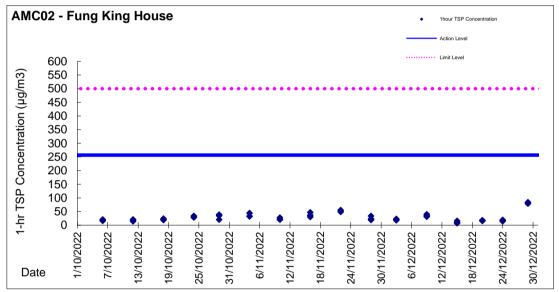
Report on 1-hour TSP monitoring at AMC02 - Fung King House Action Level ($\mu g/m^3$) - 256.7 Limit Level ($\mu g/m^3$) - 500.0

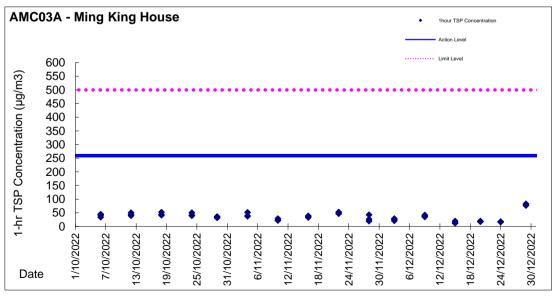
Date	Weather Condition	Time	TSP Level (µg/m³)
4-Jan-23	Sunny	9:00	62.4
4-Jan-23	Sunny	10:00	76.8
4-Jan-23	Sunny	11:00	61.2
10-Jan-23	Cloudy	9:00	15.6
10-Jan-23	Cloudy	10:00	21.6
10-Jan-23	Cloudy	11:00	22.8
16-Jan-23	Cloudy	9:00	18.0
16-Jan-23	Cloudy	10:00	20.4
16-Jan-23	Cloudy	11:00	20.4
21-Jan-23	Cloudy	9:00	68.4
21-Jan-23	Cloudy	10:00	62.4
21-Jan-23	Cloudy	11:00	55.2
27-Jan-23	Cloudy	9:00	64.6
27-Jan-23	Cloudy	10:00	78.2
27-Jan-23	Cloudy	11:00	81.6

Report on 1-hour TSP monitoring at AMC03A - Ming King House Action Level ($\mu g/m^3$) - 259.3 Limit Level ($\mu g/m^3$) - 500.0

Date	Weather Condition	Time	TSP Level (µg/m³)
4-Jan-23	Sunny	9:00	82.5
4-Jan-23	Sunny	10:00	78.1
4-Jan-23	Sunny	11:00	62.7
10-Jan-23	Cloudy	9:00	20.9
10-Jan-23	Cloudy	10:00	29.7
10-Jan-23	Cloudy	11:00	29.7
16-Jan-23	Cloudy	9:00	22.0
16-Jan-23	Cloudy	10:00	29.7
16-Jan-23	Cloudy	11:00	23.1
21-Jan-23	Cloudy	9:00	67.1
21-Jan-23	Cloudy	10:00	60.5
21-Jan-23	Cloudy	11:00	55.0
27-Jan-23	Cloudy	9:00	30.8
27-Jan-23	Cloudy	10:00	35.2
27-Jan-23	Cloudy	11:00	39.6




	Date	Sampling	Weather	Filter nemer ne	Filter W	/eight, g	Elapse Time, hr		Sampling	Flow Rate, m ³ /min			Total	TSP Level,
	Date	Time	Condition	Filter paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	μg/m³
	3/1/2023	8:00	Cloudy	KC_AM1_24hr_007874	2.6808	2.7878	32801.09	32825.09	24.0	2.19	2.19	2.19	3151	34.0
	9/1/2023	8:00	Cloudy	KC_AM1_24hr_007877	2.6796	2.7849	32801.09	32825.09	24.0	1.95	1.96	1.95	2814	37.4
AMC01	14/1/2023	8:00	Cloudy	KC_AM1_24hr_007880	2.6744	2.7366	32849.13	32873.13	24.0	1.92	1.94	1.93	2785	22.3
AWICOT	20/1/2023	8:00	Cloudy	KC_AM1_24hr_011250	2.7375	2.8412	32873.13	32897.13	24.0	1.84	1.85	1.84	2656	39.0
	26/1/2023	8:00	Sunny	KC_AM1_24hr_011298	2.7610	2.9091	32887.13	32911.13	24.0	1.85	1.86	1.85	2667	55.5
	31/1/2023	8:00	Sunny	KC_AM1_24hr_011252	2.7497	2.8378	32921.13	32945.13	24.0	1.74	1.71	1.73	2485	35.4
	3/1/2023	8:00	Cloudy	KC_AM2_24hr_007875	2.6738	2.7225	11433.12	11457.12	24.0	2.15	2.14	2.14	3089	15.8
	9/1/2023	8:00	Cloudy	KC_AM2_24hr_007878	2.6924	2.7575	11433.12	11457.12	24.0	2.02	2.03	2.03	2920	22.3
AMC02	14/1/2023	8:00	Cloudy	KC_AM2_24hr_007881	2.6866	2.7321	11481.13	11505.13	24.0	2.00	2.02	2.01	2891	15.7
AIVICUZ	20/1/2023	8:00	Cloudy	KC_AM2_24hr_007883	2.6898	2.7505	11505.13	11529.13	24.0	2.14	2.14	2.14	3081	19.7
	26/1/2023	8:00	Sunny	KC_AM2_24hr_011299	2.7658	2.9006	11529.14	11553.14	24.0	1.71	1.71	1.71	2461	54.8
	31/1/2023	8:00	Sunny	KC_AM2_24hr_010499	2.7749	2.8891	11553.14	11577.14	24.0	1.93	1.90	1.92	2758	41.4
	3/1/2023	8:00	Cloudy	KC_AM3_24hr_007876	2.6517	2.7146	11399.31	11423.31	24.0	2.12	2.12	2.12	3052	20.6
	9/1/2023	8:00	Cloudy	KC_AM3_24hr_007879	2.6729	2.7919	11399.31	11423.31	24.0	1.98	1.99	1.99	2862	41.6
AMC03a	14/1/2023	8:00	Cloudy	KC_AM3_24hr_007882	2.6748	2.7089	11447.31	11471.31	24.0	1.95	1.97	1.96	2829	12.1
AiviCU3a	20/1/2023	8:00	Cloudy	KC_AM3_24hr_007884	2.7018	2.7514	11471.31	11495.31	24.0	1.86	1.87	1.87	2690	18.4
	26/1/2023	8:00	Sunny	KC_AM3_24hr_011300	2.7633	2.8361	11495.32	11519.32	24.0	1.87	1.88	1.88	2702	26.9
	31/1/2023	8:00	Sunny	KC_AM3_24hr_011251	2.7459	2.7873	11519.32	11543.32	24.0	2.00	1.97	1.98	2857	14.5


Remark(s): (i) The TSP monitoring at AMC03a was rescheduled to 03 Jan 2023 as power interruption was experienced from 31 December 2022 to 02 January 2023.

Graphic Presentation of 1-hour and 24-hour TSP Results

Appendix 5.4

Monthly Summary Waste Flow Table

Department: HyD

Contract: HY/2020/08 - Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Monthly Summary Waste Flow Table for Year 2023

			Q	uantities	of Inert	C&D M	Iaterials (Generate	ed Month	ıly					Quanti	ties of C	&D Wa	stes Gen	erated M	Ionthly		
Month		Quantity erated	Concret	ken e (see e 2)	l	l in the tract	Reused Prog	in other jects	Dispo Publi	sed as	Import	ted Fill	Me	tals		oer / board aging		stics Jote 3)	Cher Wa	nical aste	Other general	s, e.g. I refuse
	(in '0	$00m^{3}$)	(in '0	$00m^3$)	(in '0	00m³)	(in '0	$00m^3$)	(in '0	$00m^3$)	(in '0	$00m^3$)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '00	$00m^3$)
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.
Jan	0.065	0.397	0		0.03		0		0.035	0.397	0		0		0.005	0.078	0		0		0.025	0.01
Feb	0.055	0	0		0.02		0		0.035		0		0		0.005		0		0		0.025	
Mar	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Apr	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
May	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Jun	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Sub-total	0.34	0.397	0	0	0.13	0	0	0	0.21	0.397	0	0	0.008	0	0.026	0.078	0	0	0	0	0.15	0.01
Jul	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Aug	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Sep	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Oct	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Nov	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0		0		0.025	
Dec	0.055	0	0		0.02		0		0.035		0		0.002		0.004		0.01		0.01		0.025	
Total	0.670	0.397	0	0	0.25	0	0	0	0.42	0.397	0	0	0.02	0	0.05	0.078	0.01	0	0.01	0	0.300	0.010

Forecast of Total Quantities of C&D Materials to be Generated from the Contract										
Total Quantity Generated	Broken Concrete (see Note 2)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
2.1	0	0.53	0	1.55	0	0.1	0.3	0.06	0.06	1.03

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the contract to be imported for use at the Site.
- (2) Broken concrete for recycling into aggregates.
- (3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.

Appendix 6.1

Event and Action Plans

Event and Action Plan

Event and Action Plan for Construction Noise

L Vent and	Event and Action Plan for Construction Noise						
Event	Action						
Event	ET	IEC	ER	Contractor			
Action Level exceeded	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitor frequency to check mitigation effectiveness;	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	Submit noise mitigation proposals to ET Leader / ER; Implement noise mitigation proposals.			
Limit Level exceeded	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. 			

Lam Environmental Services Limited

Event and Action Plan for Construction Dust Monitoring

Frant	Action Plan for Construction Dust Monitoring Action							
Event	ET	IEC	ER	Contractor				
Action Level								
1. Exceedance for one sample	Identify sources, investigate the causes of complaint and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding. Increase monitoring	 Check monitoring data submitted by the ET. Check the Contractor's working methods. 	Notify the Contractor.	 Rectify any unacceptable practices. Amend working methods agreed with the ER as appropriate. 				
2. Exceedance for two or more consecutive samples	1. Identify sources. 2. Inform the IEC and ER. 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings. 5. Increase monitoring frequency to daily. 6. Discuss with the IEC, ER and Contractor on remedial action required. 7. If exceedance continues, arrange meeting with the IEC, Contractor and ER. 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by the ET. 2. Check the Contractor's working methods. 3. Discuss with the ET, ER and Contractor on possible remedial measures if required. 4. Advise the ER on the effectiveness o proposed remedial measures if required.		perly working days of				
Limit Level	The meaning.							
1. Exceedance for one sample	1. Identify sources, investigate causes of exceedance and proposed remedial measures. 2. Inform the IEC, ER, and Contractor. 3. Repeat measurement to confirm finding. 4. Increase monitoring frequency to daily. 5. Assess effectiveness of the Contractor's remedial action and keep the IEC and ER informed of the results.	1. Check monitoring data submitted by the ET. 2. Check the Contractor's working methods. 3. Discuss with the ET, ER and Contractor on possible remedial measures. 4. Advise the ER and ET on the effectiveness of the proposed remedial measures.	9	n of action to avoid further exceedance. 2. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working				

Lam Environmental Services Limited

Frant	Action							
Event	ET	IEC	ER	Contractor				
2. Exceedance	Notify the IEC,	5. Supervise the implementation or remedial measured. 1. Discuss amongs	es.	pt 1. Take immediate				
2. Exceedance for two or more consecutive samples	 Notify the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented. Arrange meeting with the IEC and ER to discuss the remedial action to be taken. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	1. Discuss amongs the ER, ET and Contractor on the potential remedia action. 2. Review the Contractor's remedial action whenever necessary to assure their effectiveness an advise the ER are ET accordingly. 3. Supervise the implementation or remedial measure.	of the notifical exceedance is writing. 2. Notify the Contractor. 3. In consultation the IEC and Exagree with the Contractor or remedial mean to be implemented of the implemented.	action to avoid further exceedance. 2. Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification. 3. Implement the agreed proposals. 4. Resubmit proposals if problems still not under control. 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.				

Appendix 6.2

Summary of Notification of Exceedance

Lam Environmental Services Limited

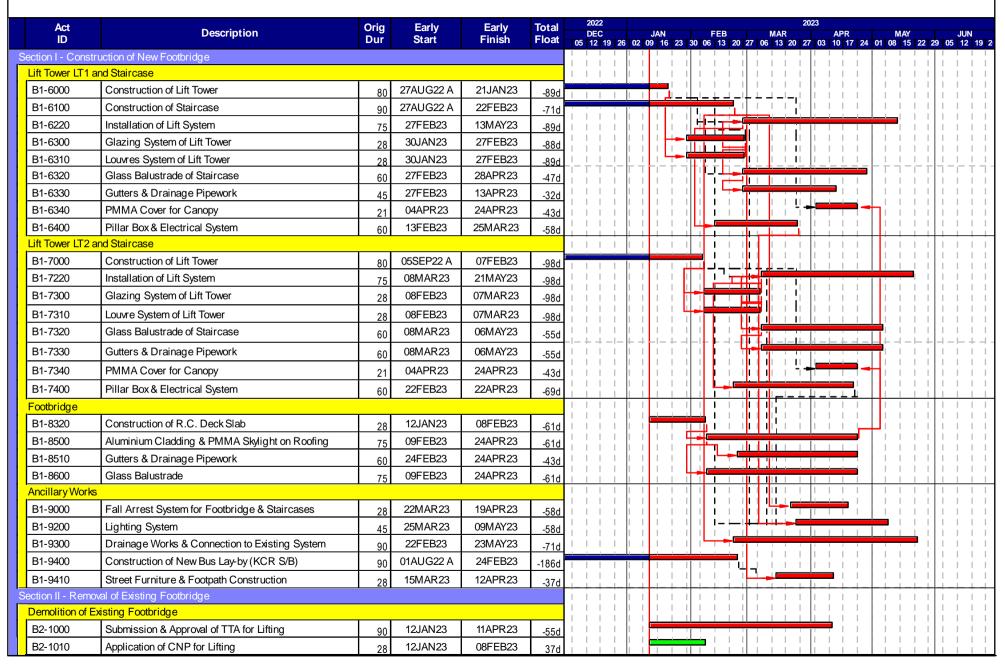
Summary for Notification of Exceedance

Ref No.	Date	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up Action
-	-	-	-	-	-	-	-

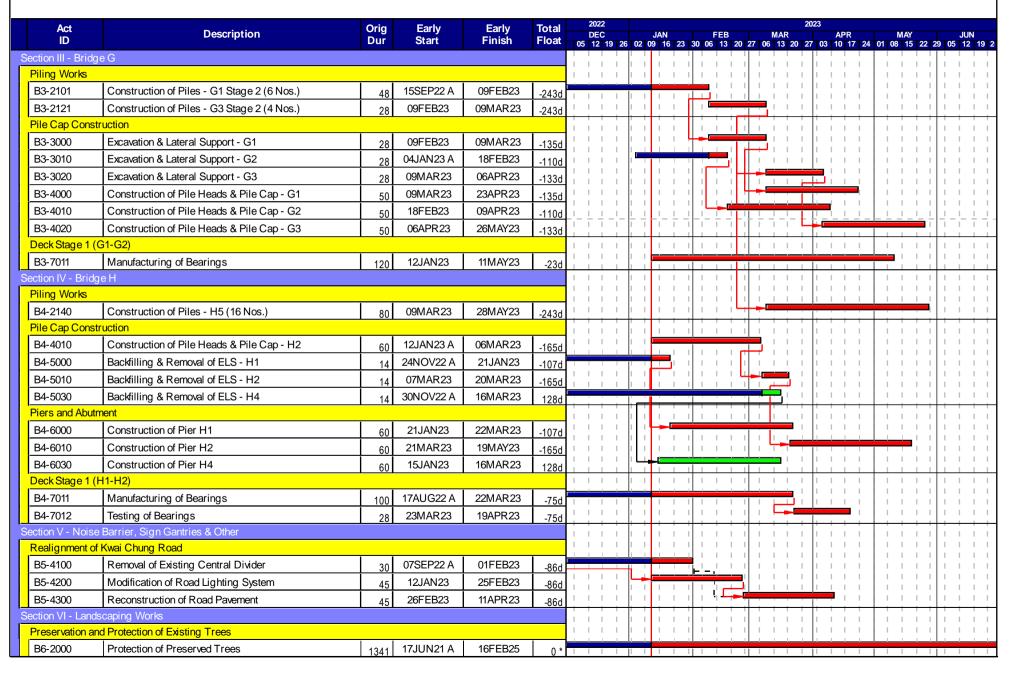
Ref. No.	Date	Time	Location	Construction Noise Level	Parameter	Action Level	Limit Level	Follow-up action
-	-	-	-	-	-	-	-	-

Appendix 8.1

Complaint Log


Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
-		=	-	-	-	=


Appendix 9.1

Construction Programme

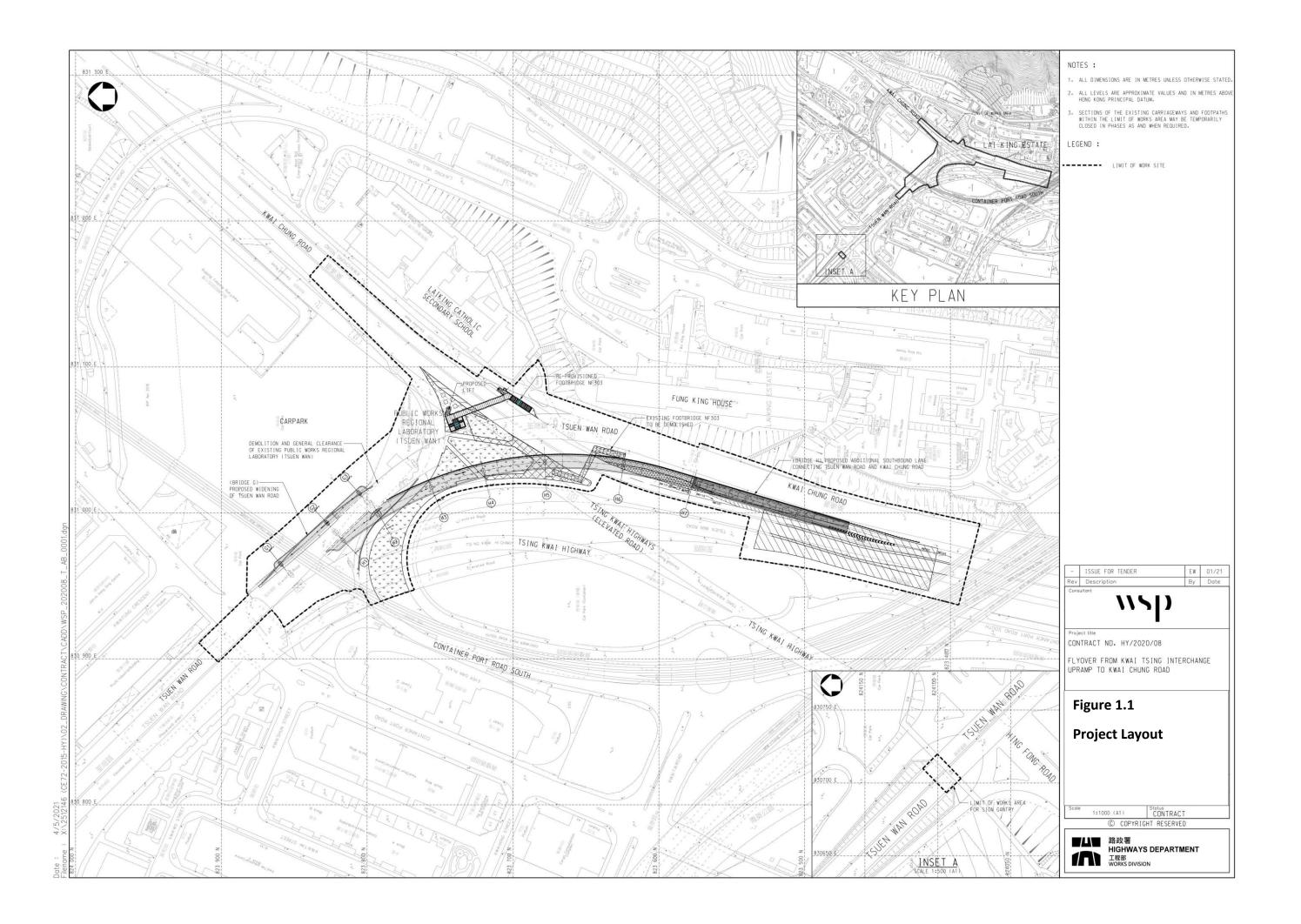
HyD Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

HyD Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

HyD Contract No. HY/2020/08 Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road

Act		Orig Dur			Total	2022	2023					
ID	Description				Float	DEC 05 12 19	JAN 6 02 09 16 23	FEB 30 06 13 20	MAR 27 06 13 20 27	APR 7 03 10 17 24	MAY 01 08 15 22 2	JUN 29 05 12 19 2
B6-2100	Updated Photo Records of Preserved Trees	1341	17JUN21 A	16FEB25 *	0 *							

Start date	07JUN21
Must finish date	16FEB26
c Primavera Sy	stems, Inc.


3-MONTH ROLLING PROGRAMME

	Early bar
	Progress bar
	Critical bar
\rightarrow	Start milestone point
\Q	Finish milestone point

Date	Revision	Checked	Approved
12JAN23		CYW	AY

Figure 1.1

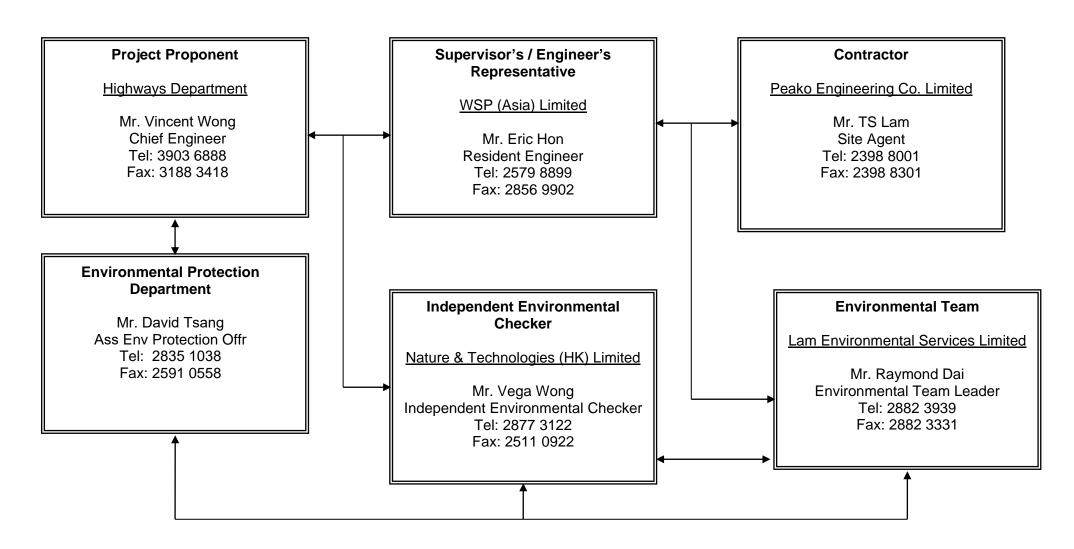
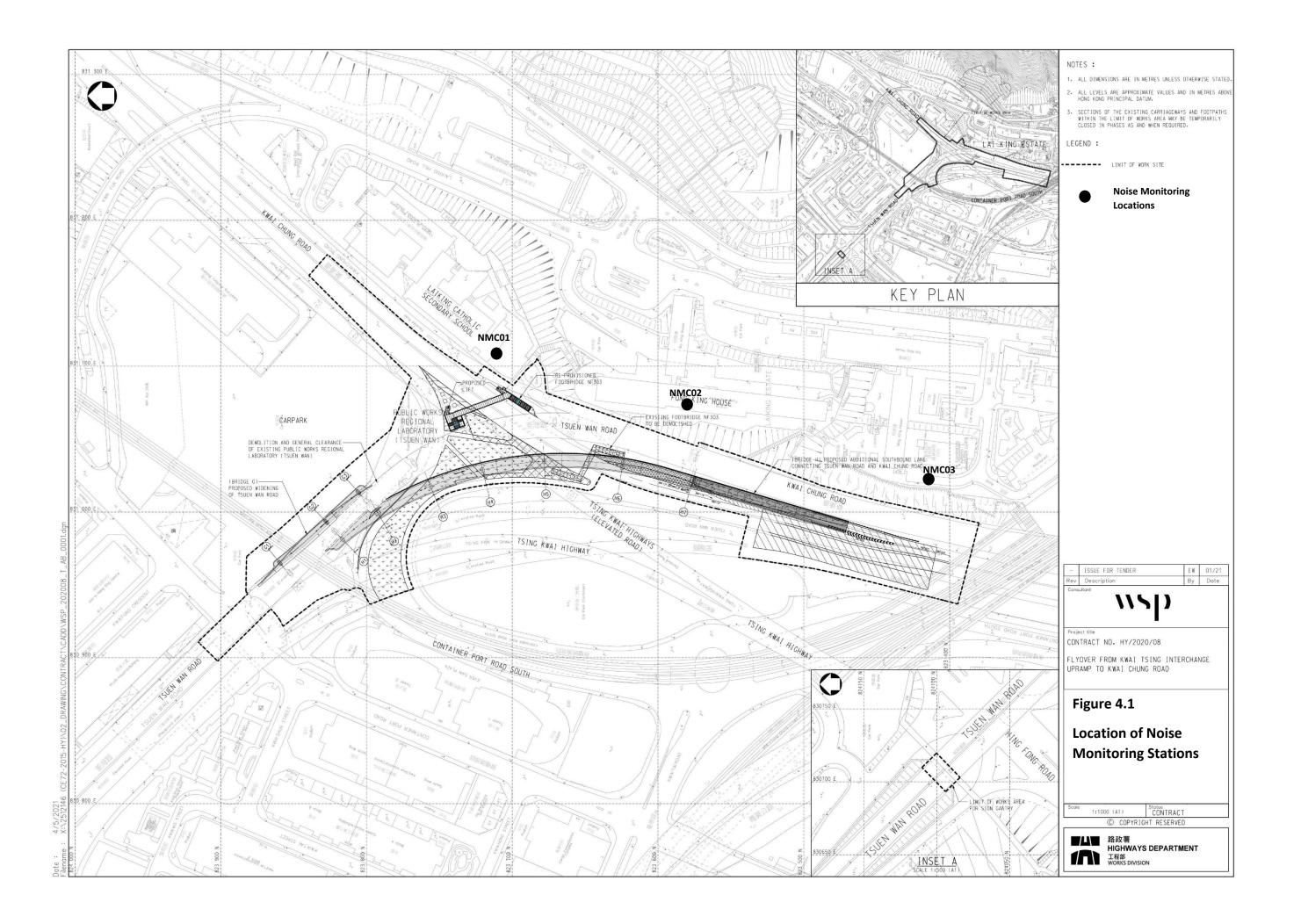
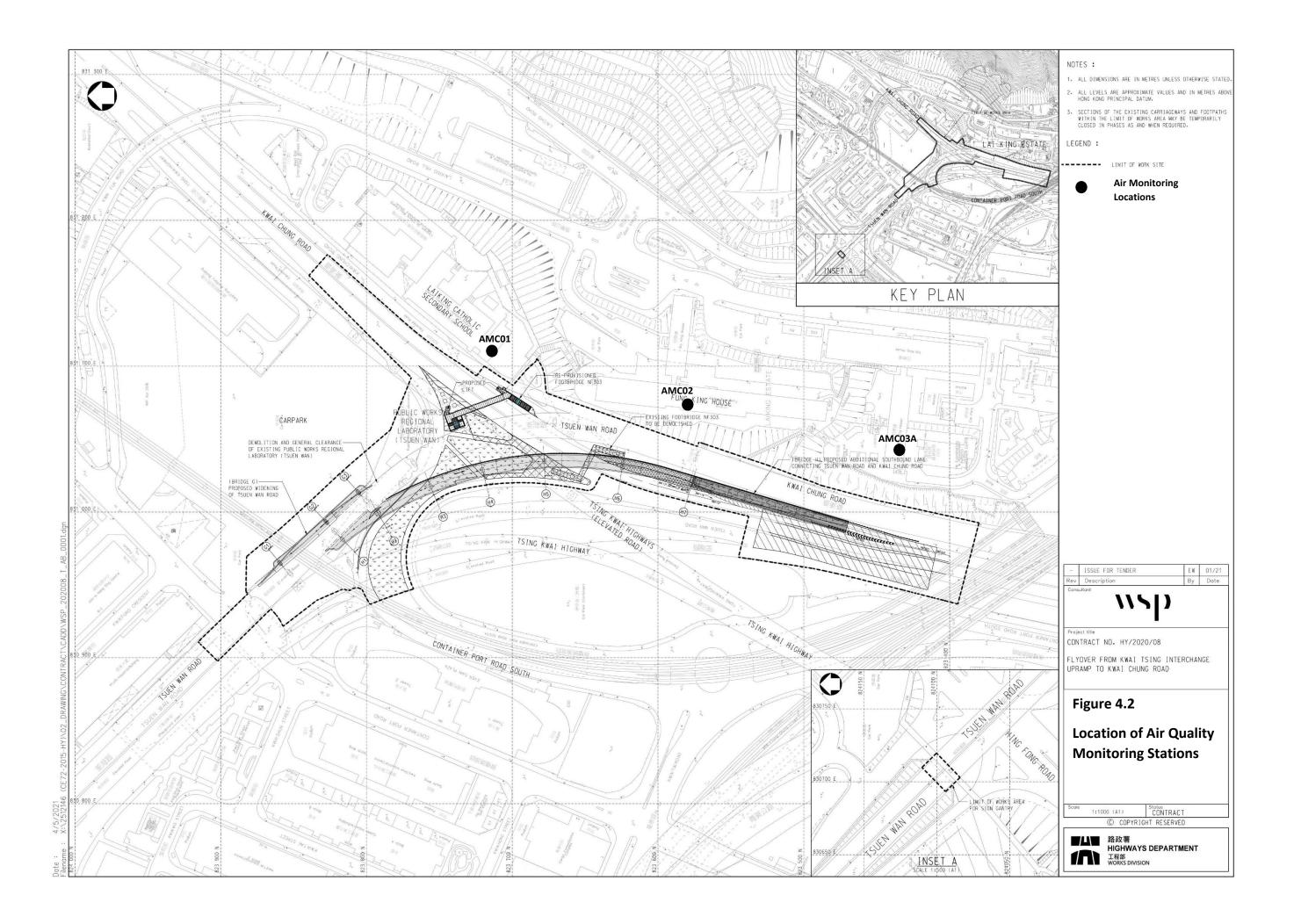

Project Layout

Figure 2.1


Project Organization Chart

Project Organization Chart


Figure 4.1

Location of Noise Monitoring Stations

Figure 4.2

Location of Air Quality Monitoring Stations

