

CONTRACT NO: HY/2019/14

NEW WANG TONG RIVER BRIDGE

BASELINE MONITORING REPORT

PREPARED FOR:

Highways Department

PREPARED BY:

Lam Environmental Services Limited

19/F Remex Centre 42 Wong Chuk Hang Road Hong Kong

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: info@lamenviro.com Website: http://www.lamenviro.com

CERTIFIED BY:

Henry LAU

Environmental Team Leader

DATE:

24 May 2021

Table of Contents

Exe	ecutive Summary	4
1	Introduction	7
1.1	Background	7
1.2	Purpose of Baseline Monitoring Report	7
2	Air Quality Monitoring	8
2.1	Monitoring Requirements	8
2.2	Monitoring Equipment	8
2.3	Monitoring Locations	8
2.4	Monitoring Parameters, Frequency and Duration	9
2.5	Monitoring Methodology	9
2.6	Results and Observations	10
2.7	Action and Limit Levels	11
3	NOISE MONITORING	12
3.1	Monitoring Requirements	
3.2	Monitoring Equipment	
3.3	Monitoring Locations	
3.4	Monitoring Parameters, Frequency and Duration	
3.5	Monitoring Methodology	
3.6	O O,	
3.7		
4	WATER QUALITY MONITORING	15
4.1	Monitoring Requirements	
4.2	Monitoring Equipment	
4.3	Monitoring Locations	
4.4	Monitoring Parameters, Frequency and Duration	
4.5	Monitoring Methodology	
4.6		
4.7		
4.8		
5	LANDSCAPE AND VISUAL MONITORING	21
5.1	Objectives	21
5.2		21
5.3	···	
5.4	·	
6	Revision for inclusion into EM&A Manual	27
7	Comments Recommendations and Conclusions	28

Contract No: HY/2019/14 New Wang Tong River Bridge

LIST OF FIGURES

Figure 1.1	Location of Project Site
Figure 2.1	Location of Air Quality Monitoring Stations
Figure 2.2	Photo Records of Air Quality Monitoring Stations
Figure 3.1	Location of Noise Monitoring Stations
Figure 3.2	Photo Records of Noise Monitoring Stations
Figure 4.1	Location of Water Quality Monitoring Stations
Figure 4.2	Photo Records of Water Quality Monitoring Stations

LIST OF APPENDIXES

Appendix A	Baseline Monitoring Schedule for Air Quality, Noise and Water Quality					
	Monitoring					
Appendix B	Calibration Certificates of Monitoring Equipment					
Appendix C	Wind Data					
Appendix D	Baseline Air Quality Monitoring Data					
Appendix E	Baseline Noise Monitoring Data					
Appendix F	Baseline Water Quality Monitoring Data					
Appendix G	Tree Survey Results and Recommendations					
Appendix H	Key Plan of Project Area					
Appendix I	Key Plan of Landscape Resources and Landscape Character Areas					

Executive Summary

- This Baseline Monitoring Report is to report baseline findings for the Project of New Wang Tong River Bridge.
- ii. Baseline monitoring for existing landscape and visual condition was conducted on 5 November 2020 to reconfirm the status of Landscape Resources and Landscape Character Areas within works area.
- iii. Baseline air quality and noise monitoring were conducted at two (2) designated air quality monitoring stations and one (1) designated noise monitoring stations for consecutive 14 days in accordance with the EM&A Manual. The baseline water monitoring was be carried out at seven (7) designated monitoring stations, three days per week, for at least 4 weeks prior to the commencement of construction works. Cancellation of water quality monitoring at Station W3 was verified by the Independent Environmental Checker (IEC) on 23 November 2020 and approved by the Environmental Protection Department (EPD) on 7 December 2020.
- iv. This report presents the baseline air quality and noise monitoring findings and information record during the period from 21 December 2020 to 3 January 2021, while that for the baseline water quality monitoring were recorded during the period from 14 December 2020 to 8 January 2021. No construction activities under the Project were undertaken during the baseline monitoring period.

Landscape and Visual Condition

v. Compared to the findings in the approved EIA report and the approved TPRP, the general status of the LRs and LCAs covered in the works area of Contract HY/2019/14 remains unchanged. According to the latest available information, 17 nos. of trees will be retained and 7 nos. of trees will be felled with compensatory planting.

Air Quality Monitoring

vi. Air quality monitoring was conducted and recorded in terms of 1-hour and 24-hour Total Suspended Particulates (TSP). Average 1-hour and 24-hour TSP levels established at the two (2) air quality monitoring stations are summarized as shown in **Table I**. Action & Limit levels derived from the 1-hour and 24-hour TSP levels are summarized as shown in **Table II**.

Table I Summary of Averaged 1-hour and 24-hour TSP Levels

Monitoring		1-hour 1	SP Level	24-hour TSP Level	
Station ID	Monitoring Station	Average (µg/m³)	Range (µg/m³)	Average (µg/m³)	Range (µg/m³)
AMS1	Silvermine Beach Resort	40.7	20.0 – 75.0	70.7	37.0 – 175.7
AMS2	1 Tung Wan Tau Road	51.9	29.0 – 98.0	70.8	37.9 – 136.5

Table II Summary of Action & Limit Levels of Baseline 1-hour and 24-hour TSP Levels

Monitoring Station	1-hour T	SP Level	24-hour TSP Level		
ID	Action Level (μg/m³)	Limit Level (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)	
AMS1	276.5	500.0	176.0	260.0	
AMS2	283.7	500.0	176.0	260.0	

Contract No: HY/2019/14 New Wang Tong River Bridge

Noise Monitoring

vii. The baseline noise levels established at one (1) monitoring stations are summarized as shown in **Table III.** Action & Limit levels of baseline noise levels are summarized as shown in **Table IV.**

Table III Summary of Averaged Baseline Noise Levels

Monitoring		0700-1900 hrs on normal weekdays		
Station ID	Monitoring Station	L _{eq (30min)} , dB(A)		
Station ib		Average	Range	
NMS1	1 Tung Wan Tau Road	60.1	52.7 – 64.4	

Remark:

Each of daily 30-minute sampling period includes six consecutive Leq (5min) readings.

Due to free-field measurement, a correction factor of +3 dB(A) is adopted.

Table IV Summary of Action & Limit Levels of Baseline Noise Levels

Monitoring Station ID	Time Period	Parameter	Action Level	Limit Level dB(A)
NMS1	0700-1900 hrs on normal weekdays	L _{eq, 30min}	When one documented complaint is received	75

Water Quality Monitoring

viii. Average results and Action & Limit levels of baseline water quality level at seven (7) stations are summarized as shown in **Table V, Table VI** and **Table VII**.

Table V Summary of Baseline Water Quality Monitoring Results during Mid-ebb Tide

	DO (/!)			T ' 1'4 /AITLI\		00 (// //)	
Monitoring	DO (ı	DO (mg/L)		ty (NTU)	SS (mg/L)		
Station & Depth	Average	Range	Average	Range	Average	Range	
W1 (Middle)	9.48	7.18 - 11.82	5.87	3.65 - 13.30	5.32	2.10 - 12.10	
W2 (Middle)	7.89	3.73 - 9.88	4.41	3.45 - 5.81	3.27	2.50 - 4.25	
W4 (Middle)	8.01	6.68 - 9.67	4.79	3.62 - 6.98	4.26	2.40 - 6.75	
W5 (Middle)	8.23	6.05 - 9.68	5.07	3.29 - 6.66	4.76	2.80 - 7.52	
W6 (Middle)	7.60	6.35 - 11.78	6.88	4.36 - 9.35	9.58	3.65 - 33.90	
W7 (Middle)	7.31	5.93 - 8.10	6.43	4.16 - 9.48	6.60	3.40 - 9.35	
W8 (Surface / Middle)	6.92	5.71 - 8.20	5.83	2.88 - 8.08	6.28	2.10 - 9.65	
W8 (Bottom)	6.82	5.93 - 8.33	5.89	3.59 - 8.49	6.78	3.40 - 9.65	

Table VI Summary of Baseline Water Quality Monitoring Results during Mid-flood Tide

Monitoring	DO (ı	DO (mg/L)		ty (NTU)	SS (r	ng/L)
Station & Depth	Average	Range	Average	Range	Average	Range
W1 (Middle)	10.13	8.12 - 13.22	6.88	3.21 - 20.94	4.18	2.35 - 8.50
W2 (Middle)	8.17	5.92 – 11.00	4.59	2.80 - 7.44	3.48	2.10 - 6.25
W4 (Middle)	8.06	6.60 - 10.33	4.87	2.87 - 12.06	4.53	2.00 - 10.95
W5 (Middle)	9.19	7.31 - 14.25	4.83	2.57 - 8.28	6.73	2.10 - 21.85
W6 (Middle)	7.66	5.87 - 10.29	7.72	4.41 - 10.48	9.36	4.70 – 15.00
W7 (Middle)	6.86	5.44 - 7.87	7.82	5.14 - 10.58	9.55	3.55 - 14.80
W8 (Surface / Middle)	6.75	5.52 - 8.02	6.97	5.01 - 9.73	7.88	4.55 - 14.45
W8 (Bottom)	6.72	5.88 - 8.03	7.14	4.92 – 10.00	8.09	5.05 - 12.05

Table VII Summary of Action & Limit Level of Baseline Water Quality

Monitoring	ring DO (mg/L) +		ng/L) +	Turbidity	′ (NTU) ~	SS (m	g/L) ~
Station	Depth	Action	Limit	Action	Limit	Action	Limit Level
Station		Level	Level	Level	Level	Level	Lillin Level
W 1				7.7 NTU or 120% of upstream control station's	12.4 NTU or 130% of upstream control	8.9 mg/L or 120% of upstream control station's	11.3 mg/L or 130% of upstream control
W2	Middle	6.5	5.3	turbidity at the same tide of the same day, whichever is higher ^{\$}	station's turbidity at the same tide of the same day, whichever is	SS at the same tide of the same day,	station's SS at the same tide of the same day, whichever is higher
W4					higher \$		
W5					40.5 NTU		
W6	Middle			9.8 NTU or	10.5 NTU or 130% of	12.6 mg/L or	15.0 mg/L or
W7				120% of	upstream	120% of	130% of
W8	Surface & Middle	5.9	5.5	upstream control station's turbidity at the same tide of the same day, whichever is higher	control station's turbidity at the same tide of the same day, whichever is higher	upstream control station's SS at the same tide of the same day, whichever is higher \$	upstream control station's SS at the same tide of the same day, whichever is higher \$
	Bottom	5.9	5.5 #				

Remarks #: The calculated limit level for Station W8 at bottom level is 5.9 mg/L, which is same as the proposed action level for Station W8 at bottom level. It is likely contributed to the small sample size of water quality data collected at Station W8 at bottom level. In normal circumstances, dissolved oxygen decreases when sea depth increases. In order to reflect a representable limit level for general bottom level in Silvermine Bay, the limit level of 5.5 mg/L is alternatively adopted with reference to the limit level for Station W5 to W7.

Remarks +: For DO, non-compliance occurs when monitoring results is lower than the limits.

Remarks ~: For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits.

Remarks \$: Outlier data were excluded from determination of action and limit levels.

1 Introduction

1.1 Background

- 1.1.1. In order to relieve the overcrowding problem and the road safety concern of Wang Tong Bridge (hereafter called "Old Bridge"), two bridges (pedestrian bridge and cycle bridge) are proposed to replace the Old Bridge. The new pedestrian bridge and the new cycle bridge are also designed to align with the future amenity development on the northern side of the Old Bridge. Layout of project site is presented in Figure 1.1.
- 1.1.2. The Project mainly comprises the following works:
 - (i) Construction of a new cycle bridge next to the existing bridge
 - (ii) Demolition of the existing bridge
 - (iii) Construction of a new pedestrian bridge on the same site of the existing bridge
- 1.1.3. In accordance with Clause 3.3 stated in the Environmental Permit (no.: EP-555/2018/A), four hard copies and one electronic copy of the Baseline Monitoring Report shall be submitted to the Director at least 2 weeks before the commencement of construction of the project.
- 1.1.4. In accordance with Section 10.2.1 of the Project Environmental Monitoring and Audit (EM&A) Manual, the Baseline Environmental Monitoring Report should be prepared and submitted within 10 working days after completion of the baseline monitoring works.

1.2 Purpose of Baseline Monitoring Report

- 1.2.1. Baseline monitoring is to review baseline conditions of air quality, noise level and water quality along the Project boundary, and to establish baseline levels for air quality, noise and water quality in accordance with the EM&A Manual. These levels would be used as the basis for assessing environmental impact and compliance during construction stage of the Project. Baseline conditions of landscape resources and landscape character areas are also reviewed under this report to reconfirm the findings in the approved EIA report (AEIAR-199/2016).
- 1.2.2. This baseline monitoring report presents baseline monitoring requirements, methodologies, monitoring results and determination of action and limit levels for each monitoring parameter at two (2) designated air quality monitoring stations, one (1) designated noise monitoring stations and seven (7) designated water quality monitoring stations as described in the EM&A Manual.

2 Air Quality Monitoring

2.1 Monitoring Requirements

- 2.1.1 In accordance with the Project EM&A Manual, baseline 1-hour and 24-hour TSP levels at two (2) air quality monitoring stations should be established by conducting baseline 1-hour and 24-hour TSP monitoring for at least consecutive 14 days prior to the commencement of the construction work. At least 3 sets of 1-hour TSP data shall be collected every day.
- 2.1.2 The baseline air quality monitoring at two (2) monitoring stations were conducted during the baseline monitoring period from 21 December 2020 to 3 January 2021 and the relevant findings are summarized in this report. The baseline monitoring schedule is shown in Appendix A.

2.2 Monitoring Equipment

2.2.1 High Volume Sampler (HVS – Model TE-5170) completed with the appropriate sampling inlets were installed for the 24-hour TSP sampling. 1-hour TSP air quality monitoring was performed by using portable direct reading dust meters at each designated monitoring station, which was verified by IEC and approved by the Engineer's Representative (ER) on 4 December 2020 according to Section 3.4.5 and 3.3.2 of the Project EM&A Manual. The brand and model of the equipment are given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and model	Series Number
Portable direct reading dust meter	Met One BT- 645	X19295 X19297
High Volume Sampler	TE-5170	HVS019 HVS020

2.2.2 Calibration certificate of high-volume sampler and certificate of comparison check with High Volume Sampler of the air quality monitoring equipment listed in **Table 2.1** can refer to **Appendix B**.

2.3 Monitoring Locations

2.3.1 Given the originally proposed air quality monitoring locations were not favourable for monitoring works, fine adjusted monitoring location was therefore proposed based on liaison with lot owners. The detail and information of the monitoring stations for baseline air quality monitoring conducted are presented in Table 2.2 and shown in Figures 2.1 and Figure 2.2.

Table 2.2 Baseline Air Quality Monitoring Stations Location

Monitoring Station	Location	Level (in terms of no. of floor)
AMS1 ^A	Silvermine Beach Resort	G/F
AMS2 ^B	1 Tung Wan Tau Road	G/F

Remarks A: AMS1 recommended under EM&A manual is at the north of boundary wall of Silvermine Beach Resort. Positioning of HVS on a narrow road at the northern boundary wall would obstruct access of passengers. After liaison

with the resort owner, HVS is located near the eastern boundary wall, which is representative and suitable for air quality monitoring. Thus, fine adjustment of location at the boundary of Silvermine Beach Resort was therefore proposed.

Remarks B: As discussed with the lot owner, a fine adjustment of location at the boundary of 1 Tung Wan Tau Road was proposed, in order to prevent access obstruction and to minimize noise nuisance induced from HVS operation.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 The monitoring parameters, frequency and duration of air quality monitoring are summarized in **Table 2.3**.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Monitoring Period	Duration	Sampling Parameter	Frequency
Baseline	At least 14 consecutive days prior to the	1-hour &	3 times
Monitoring	commissioning of the construction works	24-hour TSP	per day

2.5 Monitoring Methodology

2.5.1 24-hour TSP Measuring Installation (HVS)

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
- (b) No furnace or incinerator flues were nearby.
- (c) Airflow around the sampler was unrestricted
- (d) 0.6 1.7 m³ per minute adjustable flow range
- (e) Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
- (f) Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
- (g) Equipped with a shelter to protect the filter and sampler;
- (h) Capable of operating continuously for a 24-hour period.

2.5.2 24-hour Measuring Procedures

- (a) The power supply was checked to ensure the HVS works properly.
- (b) The filter holder and the area surrounding the filter were cleaned.
- (c) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (d) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (e) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
- (f) Then the shelter lid was closed and was secured with the aluminum strip.
- (g) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (h) A new flowrate record sheet was set into the flow recorder.
- (i) The flow rate of the HVS was checked and adjusted at around 1.2 m³ /min. The range specified in the EM&A Manual was between 0.6-1.7 m³ /min.
- (j) The programmable timer was set for a sampling period of 24 hrs + 1 hr, and the starting time, weather condition and the filter number were recorded.
- (k) The initial elapsed time was recorded.

- (I) At the end of sampling, the sampled filter was removed carefully and folded in halflength so that only surfaces with collected particulate matter were in contact.
- (m) It was then placed in a clean plastic envelope and sealed.
- (n) All monitoring information was recorded on a standard data sheet.
- (o) Filters were sent to laboratory for further testing.

2.5.3 1-hour Measuring Procedures

- (a) Check the calibration period of portable direct reading dust meter prior to monitoring (The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly, details refer to Section 2.5.4)
- (b) Record the site condition near / around the monitoring stations.
- (c) Install the portable direct reading dust meter to the monitoring location.
- (d) Slide the power switch to turn the power on.
- (e) Check of portable direct reading dust meter to ensure the equipment operation in normal condition.
- (f) Select the period of measurement to 60mins.
- (g) Check and set the correct time.
- (h) Select the appropriate unit display for the equipment.
- (i) Slide the power switch to turn the power off when the monitoring period ended (3 times 1 hour TSP monitoring per day).
- (j) Uninstall the portable direct reading dust meter
- (k) Collected the sampled data for analysis.

Remark: Procedures (c) to (h) may be different subject to the brands and models of portable direct reading dust.

2.5.4 Maintenance and Calibration

- (a) The direct reading dust meter was calibrated at 2-years interval and checked with High Volume Sampler (HVS) yearly to determine the accuracy and validity of the results measured.
- (b) Checking of direct reading dust meter will be carried out in order to determine the conversion factor between the direct reading dust meter and the standard equipment, HVS. The comparison check is to be considered valid based on correlation coefficient checked by HOKLAS laboratory

2.5.5 Wind data

Hong Kong Observatory (HKO) meteorological information is widely accepted to be used in various environmental monitoring practices within HKSAR due to its professional quality and precision. Therefore, the daily wind data including Prevailing Wind Direction (degrees) and Mean Wind Speed (km/h) were obtained from Peng Chau Automatic Weather Station to serve as the representative data for meteorological condition during monitoring. The method was agreed by the IEC and approved by the ER on 4 December 2020. The representative wind data from Peng Chau Station were obtained covering the 1-hour and 24-hour TSP monitoring periods. The wind data were extracted and shown in **Appendix C**.

2.6 Results and Observations

2.6.1 Baseline 1-hour and 24-hour TSP monitoring were carried out from 21 December 2020 to 3 January 2021 for consecutive 14 days and the weather were mostly fine. Major dust source

was from wind erosion.

2.6.2 The results for 1-hour and 24-hour TSP are summarized in **Table 2.4** respectively. Detailed air quality monitoring results are presented in **Appendix D**.

Table 2.4 Summary of 1-hour TSP Baseline Monitoring Results

Parameter	Monitoring Station	Average (µg/m³)	Range (µg/m³)
24-hour TSP Level	AMS1	70.7	37.0 – 175.7
24-nour ron Level	AMS2	70.8	37.9 – 136.5
1-hour TSP Level	AMS1	40.7	20.0 – 75.0
Thou for Level	AMS2	51.9	29.0 – 98.0

2.7 Action and Limit Levels

2.7.1 Action and Limit Levels for air quality impact monitoring were based on the criteria adopted from the EM&A Manual as presented in **Table 2.5**.

Table 2.5 Derivation of Action and Limit Levels for Air Quality

	table for formal control and formal f					
Parameters Action Level		Limit Level				
24-hour TSP	For baseline level ≤ 200 µg/m³, Action level =					
Level in	Level in (baseline level * 1.3 + Limit level)/2;					
μg/m³	For baseline level > 200µg/m³, Action level = Limit level					
1-hour TSP	For baseline level ≤ 384 µg/m³, Action level =					
Level in	(baseline level * 1.3 + Limit level)/2;	500 μg/m ³				
μg/m³	For baseline level > 384µg/m³, Action level = Limit level					

2.7.2 The derived Action and Limit levels are presented in **Table 2.6.**

Table 2.6 Derived Action and Limit Levels for Air Quality

Parameter	Monitoring Station	Action Level (µg/m³)	Limit Level (µg/m³)
24-hour TSP Level	AMS1	176.0	260.0
24 Hour For Level	AMS2	176.0	260.0
1-hour TSP Level	AMS1	276.5	500.0
1 Hour For Lever	AMS2	283.7	500.0

3

3.1 Monitoring Requirements

NOISE MONITORING

- 3.1.1 In accordance with the EM&A Manual, baseline noise monitoring at one (1) monitoring stations shall be carried out daily for a period of at least two weeks.
- 3.1.2 The baseline noise monitoring at one (1) monitoring stations were conducted during the monitoring period from 21 December 2020 to 3 January 2021 and the relevant findings are summarized in this report. The baseline monitoring schedule is shown in **Appendix A**.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at the designated monitoring location. Sound level meters shall comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator shall be deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model	Series Number
Integrated Sound Level Meter	Larson Davis LxT	3737
Acoustic Calibrator	Larson Davis Cal 200	13437

3.2.2 Calibration certificates of the noise monitoring equipment are attached in Appendix B.

3.3 Monitoring Locations

3.3.1 Given the originally proposed air quality monitoring location was not favourable for monitoring works, fine adjusted monitoring location was therefore proposed based on liaison with lot owners. The noise monitoring station for baseline noise monitoring is presented in Table 3.2 and shown in Figures 3.1 and Figure 3.2.

Table 3.2 Baseline Noise Monitoring Stations

Monitoring Station ID	Monitoring Location	Measurement Type	Level (in terms of no. of floor)
NMS1 ^A	1 Tung Wan Tau Road	Free-Field	G/F

Remarks A: As discussed with the lot owner, a fine adjustment of location at the boundary of 1 Tung Wan Tau Road was proposed, in order to prevent access obstruction.

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Monitoring parameters, frequency and duration of noise monitoring are summarized in **Table 3.3.**

Table 3.3 Baseline Noise Monitoring Parameters, Frequency and Duration

Monitoring Period	Duration	Measurement Parameter	Measurement Period	Frequency
Baseline Monitoring	Consecutive days of at least 2 weeks before commencement of major construction works	A-weighted levels L _{eq} , L ₁₀ and L ₉₀ Including 30 minutes (six consecutive Leq(5min) readings)	Between 0700 and 1900 hours	Daily

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The monitoring station shall normally be at a point 1m from the exterior of the sensitive receiver's building façade and be at a position 1.2m above the ground.
- (b) Façade measurements were made at the monitoring locations. For free-field measurement, a correction factor of +3 dB (A) would be applied.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) Frequency weighting: A time weighting: Fast
 - (ii) Time measurement: Daily measurement of A-weighted levels L_{eq}, L₁₀ and L₉₀ shall be conducted for at least two weeks. Daily measurement periods should be between 0700 and 1900 hours (six consecutive L_{eq(5min)} readings).
- (e) Prior and after to the noise measurement, the meter was checked using the acoustic calibrator for 94dB (A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than ±1 dB (A), the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The sound level meter and calibrator were calibrated at yearly intervals.

3.6 Results and Observations

3.6.1 Baseline noise monitoring was carried out from 21 December 2020 to 3 January 2021 for recording over two weeks monitoring data and the weather were mostly fine. During the baseline monitoring period, no construction activities were observed. The major noise source was traffic noise and community noise near the monitoring station.

Contract No: HY/2019/14 New Wang Tong River Bridge

3.6.2 The baseline noise monitoring results are summarized in **Table 3.4** respectively. Detailed noise monitoring results are presented in **Appendix E**.

Table 3.4 Summary of Baseline Noise Monitoring Results

-	0700-1900 hrs on	normal weekdays
Monitoring Station	L _{eq (30min)} , dB(A)	
	Average	Range
NMS1	60.1	52.7 – 64.4

Remark:

Each of daily 30-minute sampling period includes six consecutive $L_{\mbox{\scriptsize eq}}$ (5min) readings.

Due to free-field measurement, a correction factor of +3 dB(A) is adopted.

3.7 Action and Limit Levels

3.7.1 Action and Limit Levels of noise monitoring have been set in accordance with the criteria specified in the EM&A Manual as shown in **Table 3.5** below.

Table 3.5 Action and Limit Levels for Construction Noise

Monitoring Station	Action Level	Limit Level
NMS1	When one documented complaint is received	75 dB(A)

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

- 4.1.1 In accordance with the Project EM&A Manual, baseline water monitoring shall be carried out at eight (8) designated monitoring stations, three days per week, at mid-flood and mid-ebb tides (within ± 1.75 hour of the predicted time), for at least 4 weeks prior to the commencement of construction works. The interval between 2 sets of monitoring should not be less than 36 hours. The monitoring period should avoid concurrent marine project in the vicinity. Replicate in-situ measures should be carried out in each sampling event. The levels of dissolved oxygen (DO), turbidity, salinity and pH shall be measured in situ while suspended solids (SS) is determined by laboratory analysis at all the designated monitoring stations. Water samples shall be extracted at 1m below surface, 1m above seabed and at the middepth level at where the water depth is at least 6m. If the water depth is less than 3m, water samples shall only be collected at the mid-depth level. For stations with depth less than 6m, the mid-depth sample can be omitted.
- 4.1.2 Due to accessibility and safety issues, cancellation of water quality monitoring at Station W3 was proposed; while Station W4 is still representable for water quality of Wang Tong River minor tributary. The proposal was verified by IEC on 23 November 2020 and approved by EPD on 7 December 2020. Hence, baseline water monitoring was conducted at seven (7) monitoring stations.
- 4.1.3 The baseline water quality monitoring was conducted during the baseline monitoring period from 14 December 2020 to 8 January 2021 and the relevant findings are summarized in this report. The baseline monitoring schedule is shown in **Appendix A**.

4.2 Monitoring Equipment

- 4.2.1 The baseline water quality monitoring was performed using Multifunctional Meter and Turbid Meter at each designated monitoring station. They are capable of measuring:
 - (a) a dissolved oxygen level in the range of 0-20mg/L and 0-200% saturation (Detection Limit: 0.01mg/L and 0.1%)
 - (b) a temperature of 0-45 degree Celsius (Detection Limit: 0.1 degree Celsius)
 - (c) turbidity level between 0-1000NTU (Detection Limit: 0.01NTU)
 - (d) salinity in the range of 0-70ppt and within the range of 0-40% (Detection Limit: 0.01ppt)
 - (e) pH value in range of 0.0 14.0 (Detection Limit: 0.01units)
- 4.2.2 Brand and model of the equipment are given in **Table 4.1**.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and model	Series Number
Multifunctional Meter	Sonde YSI Professional Plus	19H100656
Turbid meter	Xin Rui WGZ-3B	1807063

4.2.3 Calibration certificates of the water quality monitoring equipment are attached in **Appendix B**.

4.3 Monitoring Locations

4.3.1 The water quality monitoring stations for baseline water quality monitoring is presented in **Table 4.2** and shown in **Figures 4.1** and **Figure 4.2**.

Table 4.2 Details of Baseline Water Quality Monitoring Stations

Station	Description	Monitoring Period	Monitoring Station	Easting	Northing
W1	Wang Tong River	Mid-Flood	Impact	817747	814519
VVI	(Major tributary)	Mid-Ebb	Control	01//4/	014319
W2	Wang Tong River	Mid-Flood	Impact	817775	814471
VVZ	(Major tributary)	Mid-Ebb	Control	017773	014471
W3 *	Wang Tong River	Mid-Flood	Impact	817803	814537
VVS	(Minor tributary to Tai Wai Yuen)	Mid-Ebb	Control	617603	014557
W4	Wang Tong River	Mid-Flood	Impact	817825	814481
V V 4	(Minor tributary to Tai Wai Yuen)	Mid-Ebb	Control		
W5	Silvermine Bay	Mid-Flood	Control	817909	814452
VVO	(Near Silvermine Bay Beach)	Mid-Ebb	Impact		
W6	Silvermine Bay	Mid-Flood	Control	818024	814447
VVO	(Near Silvermine Bay Beach)	Mid-Ebb	Impact	010024	014441
W7	Silvermine Bay	Mid-Flood	Control	818061	814277
V V 7	(Open Water)	Mid-Ebb	Impact	010001	014277
1/1/0	Silvermine Bay	Mid-Flood	Control	010001	011111
W8	(Open Water)	Mid-Ebb	Impact	818224	814444

Remark *: Water quality monitoring at Station W3 was cancelled with verification from the IEC and approval from the FPD

4.4 Monitoring Parameters, Frequency and Duration

- 4.4.1 Monitoring parameters, frequency and duration of water quality monitoring are summarized in **Table 4.3**.
- 4.4.2 The levels of DO, turbidity, salinity and pH shall be measured in situ while SS is determined by laboratory analysis at all the designated monitoring stations.
- 4.4.3 In association with the water quality parameters, other relevant data shall also be recorded, such as monitoring location / position, time, water temperature, DO saturation, weather conditions, and any special phenomena underway near the monitoring station.

Table 4.3 Water Quality Monitoring Parameters and Frequency

Monitoring Period	Duration	Sampling Parameter	Frequency	Remarks
Baseline	at least 4 weeks prior to the commencement of construction works	DO, turbidity, SS,	three days per	Replicate in-situ
Monitoring		salinity and pH	week	measures

4.5 Monitoring Methodology

4.5.1 <u>Monitoring Procedure</u>

- (a) The condition near the monitoring stations shall be observed and recorded on the data log sheet.
- (b) Check of sensors and electrodes with certified standard solutions before each use.
- (c) Wet bulb calibration for a DO meter should be carried out before measurement.
- (d) Water depth should be recorded by detector before sampling.
- (e) Sample would be taken using water sampler at surface, middle and bottom level.
- (f) Transfer the sampled water carefully into cleaned water bottles (2x 500ml) provided by the laboratory at the spot after the collection of the water sample for the subsequent laboratory Suspended Solid testing.
- (g) Transfer the sampled water from the bucket sampler to the rinsed water container for in-situ measurement (In case of the in-situ measurement cannot be carried at spot due to safety and adverse weather condition, sampled water will be transfer to cleaned water bottles provided by laboratory. Then, In-situ measurement will be conducted at a safe location which sampled water inside cleaned water bottle will be transfer to the rinsed water container for in-situ measurement) In-situ measurement shall be measured in duplicate.
- (h) Parameters including Water Temperature (°C), pH (units), Salinity (ppt), DO (mg/L), DO saturation (%) will be measured by the Multifunctional Meter and Turbidity (NTU) will be measured by turbid meter.
- (i) Record the result on the data log sheet and record any special finding during / after in-situ measurement.
- (j) The water sample bottles will store in a cool box, which shall be delivered to HOKLAS laboratory for further testing to determine the level of SS.

4.6 QA/QC Requirements

4.6.1 Maintenance and Calibration

- (a) The responses of sensors and electrodes of the water quality monitoring equipment were cleaned and checked at regular intervals.
- (b) DO meter (Multifunctional Meter) and turbid meter was certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals.

4.6.2 <u>Decontamination Procedures</u>

Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposable equipment was discarded after sampling.

4.6.3 Laboratory measurement

Analysis of suspended solid will be conducted by a HOKLAS accredited laboratory, which is ALS Technichem (HK) Pty. Ltd.

4.6.4 Quality Control Measures for Sample Testing

Analysis of suspended solid will be conducted by a HOKLAS accredited laboratory, which is ALS Technichem (HK) Pty. Ltd. Reporting limit of suspended solid is 0.5 mg/L.

4.7 Results and Observations

- 4.7.1 The baseline water quality monitoring was carried out from 14 December 2020 to 8 January 2021 and the weather was mostly fine. During the baseline monitoring period, no construction activities were observed.
- 4.7.2 The baseline water quality monitoring results are summarized in **Table 4.4** and **Table 4.5**. Detailed water quality monitoring results are presented in **Appendix F**.

Table 4.4 Summary of Baseline Water Quality Monitoring Results during Mid-ebb Tide

Monitoring DO (mg/L)		Turbidity (NTU)		SS (mg/L)		
Station & Depth	Average	Range	Average	Range	Average	Range
W1 (Middle)	9.48	7.18 - 11.82	5.87	3.65 - 13.30	5.32	2.10 - 12.10
W2 (Middle)	7.89	3.73 - 9.88	4.41	3.45 - 5.81	3.27	2.50 - 4.25
W4 (Middle)	8.01	6.68 - 9.67	4.79	3.62 - 6.98	4.26	2.40 - 6.75
W5 (Middle)	8.23	6.05 - 9.68	5.07	3.29 - 6.66	4.76	2.80 - 7.52
W6 (Middle)	7.60	6.35 - 11.78	6.88	4.36 - 9.35	9.58	3.65 - 33.90
W7 (Middle)	7.31	5.93 - 8.10	6.43	4.16 - 9.48	6.60	3.40 - 9.35
W8 (Surface / Middle)	6.92	5.71 - 8.20	5.83	2.88 - 8.08	6.28	2.10 - 9.65
W8 (Bottom)	6.82	5.93 - 8.33	5.89	3.59 - 8.49	6.78	3.40 - 9.65

Table 4.5 Summary of Baseline Water Quality Monitoring Results during Mid-flood Tide

Monitoring	nitoring DO (mg/L)		Turbidity (NTU)		SS (mg/L)	
Station & Depth	Average	Range	Average	Range	Average	Range
W1 (Middle)	10.13	8.12 - 13.22	6.88	3.21 - 20.94	4.18	2.35 - 8.50
W2 (Middle)	8.17	5.92 – 11.00	4.59	2.80 - 7.44	3.48	2.10 - 6.25
W4 (Middle)	8.06	6.60 - 10.33	4.87	2.87 - 12.06	4.53	2.00 - 10.95
W5 (Middle)	9.19	7.31 - 14.25	4.83	2.57 - 8.28	6.73	2.10 - 21.85
W6 (Middle)	7.66	5.87 - 10.29	7.72	4.41 - 10.48	9.36	4.70 – 15.00
W7 (Middle)	6.86	5.44 - 7.87	7.82	5.14 - 10.58	9.55	3.55 - 14.80
W8 (Surface / Middle)	6.75	5.52 - 8.02	6.97	5.01 - 9.73	7.88	4.55 - 14.45
W8 (Bottom)	6.72	5.88 - 8.03	7.14	4.92 – 10.00	8.09	5.05 - 12.05

4.8 Action and Limit Levels

4.8.1 Action and Limit Levels of water quality monitoring have been set in accordance with the derivation criteria specified in the EM&A Manual as shown in **Table 4.6** below.

Table 4.6 Action and Limit Levels for Water Quality Monitoring

		Tatter duality memoring			
Parameters	Action Level	Limit Level			
DO in mg/L (Surface, Middle & Bottom)	Surface & Middle: 5 percentile of baseline data for surface and middle layers Bottom: 5 percentile of baseline data for bottom layer.	Surface & Middle: 4 mg/L or 1 percentile of baseline data for surface and middle layers. Bottom: 2 mg/L or 1 percentile of baseline data for bottom layer.			
SS in mg/L (Surface, Middle & Bottom)	95 percentile of baseline data or 120% of upstream control station's SS at the same tide of the same day.	99 percentile of baseline data or 130% of upstream control station's SS at the same tide of the same day.			
Turbidity in NTU (Surface, Middle & Bottom)	95 percentile of baseline data or 120% of upstream control station's turbidity at the same tide of the same day.	99 percentile of baseline or 130% of upstream control station's turbidity at the same tide of the same day			

- 4.8.2 Further review the baseline water quality monitoring data, the action and limit level will be derived with the following justification:
 - Salinity affects water clarity due to the effect of salt on the aggregation and settling velocity of suspended particles. And dissolved oxygen also decreases exponentially as salt levels increase. In order to reflect different situations associated with the salinity variation, 2 sets of action and limit levels are proposed and adopted.
 - Stations W1, W2 and W4 are at the tributaries of Wang Tong River, where share similar environs of mangrove area. The stations are considered under the same water body. Hence, the same set of action and limit level is proposed and applied for Stations W1, W2 and W4.
 - Stations W5, W6, W7 and W8 are at Silvermine Bay. Water to be collected at these stations is mostly interacted with the same system of marine environment. The stations are deemed under the same water body. Thus, the same set of action and limit level is proposed and applied for Stations W5, W6, W7 and W8.
 - Three data were found relatively outstanding compared to overall data, i.e. 21.9 mg/L of suspended solid at Station W5 during flood tide on 14 December 2020, 33.9 mg/L of suspended solid at Station W6 during ebb tide on 14 December 2020, and 20.9 NTU of turbidity at Station W1 during flood tide on 14 December 2020. The outlier data were discarded for determination of action and limit levels.
 - Some of the SS data have relatively large deviation between duplicate samples, for instance, Station W2 at 28 December 2020 during ebb tide, Station W4 at 6 January 2021 during flood tide, Station W5 at 28 December 2020 during ebb tide, Station W5 at 14 December 2020 during flood tide, and Station W6 at 14 and 16 December 2020 during ebb tide. Since the mentioned stations have shallow water depths (i.e. < 3 meters), water turbulence may easily flush the sediment deposited on the riverbed or the sea bed to affect the SS concentration within a short period of time. Thus, the SS data difference would be caused by the environmental condition itself, and the duplicate data are considered reasonable to be included.

- Contract No: HY/2019/14 New Wang Tong River Bridge
- After review, except the outstanding data, the vast majority of data collected during both ebb tide and flood tide are considered valid for inclusion of baseline data and subsequent determination of action and limit levels.
- 4.8.3 The action and limit level were derived and presented in **Table 4.7**.

Table 4.7 Derived Action and Limit levels

Station Depth Level Level Level Level Figure 1.20% of Limit Level Level To a control Level Level Level Level To a control Level Level Level Level To a control Level Level Level Level To a control Limit Level Level Level Level To a control Limit Level Level Level Level To a control Limit Level Level Level Level To a control control station's station'	Monitoring DO (mg/L) +		ng/L) ~
W1 Surface, Middle & Bottom W5 Surface, Middle W6 W7 Bottom Level Level 7.7 NTU or 12.4 NTU 120% of or 130% of upstream control station's station's station's turbidity at the same tide of the same day, whichever is higher \$ is higher \$ whichever is higher \$ is higher \$ 12.5 NTU 120% of upstream control station's 12.4 NTU 120% of upstream control station's 12.4 NTU 120% of upstream control same day, whichever is higher \$ 10.5 NTU 120% of upstream upstream upstream upstream control station's sta	_	Action	Limit Level
W1 Surface, Middle & Bottom W3 Surface, Middle & Bottom W4 M6 W7 Bottom Surface, Middle & Bottom 120% of upstream control control station's station's station's turbidity at the same tide of the same day, whichever is higher \$ is higher \$ whichever higher \$ is higher \$ 10.5 NTU or 10.5 NTU or 120% of upstream control control station's s	Station	Level	Lillill Level
W2 Middle & Bottom W4 Fig. 1.3 Surface, Middle & Bottom W4 Surface, Middle & Bottom W5 Surface, Middle W6 & Bottom W6 & Bottom Station's station's turbidity at the same tide of the same day, whichever is higher \$ is higher \$ whichever is higher \$ is higher \$ 10.5 NTU or 120% of upstream upstream control station's st	W1	8.9 mg/L or 120% of upstream control station's SS at the same tide of the same day, whichever is higher	11.3 mg/L or 130% of upstream
w4 same day, whichever is higher \$ 10.5 NTU or 120% of upstream upstream control station's station	W2		control station's SS at the same tide of the same day, whichever is higher
W6 & 120% of upstream control station's statio	W4		
W6 W7 Bottom 5.9 5.5 W120% of upstream upstream control station's stati	W5	12.6 mg/L or	15.0 mg/L
W7 Bottom 5.9 5.5 control control station's station's turbidity at turbidity at	W6	120% of upstream control station's SS at the same tide of the same day, whichever is higher \$	or 130% of upstream control station's SS at the same tide of the same day, whichever is higher \$
5.9 5.5 station's station's station's	W7		
W8 Middle the same the same tide of the same day, whichever is whichever.	W8		

Remarks #: The calculated limit level for Station W8 at bottom level is 5.9 mg/L, which is same as the proposed action level for Station W8 at bottom level. It is likely contributed to the small sample size of water quality data collected at Station W8 at bottom level. In normal circumstances, dissolved oxygen decreases when sea depth increases. In order to reflect a representable limit level for general bottom level in Silvermine Bay, the limit level of 5.5 mg/L is alternatively adopted with reference to the limit level for Station W5 to W7.

Remarks +: For DO, non-compliance occurs when monitoring results is lower than the limits.

Remarks ~: For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits.

Remarks \$: Outlier data were excluded from determination of action and limit levels.

5 LANDSCAPE AND VISUAL MONITORING

5.1 Objectives

5.1.1 In accordance with Clause 8.2.2 of EM&A Manual under the approved EIA report (register no. AEIAR-199/2016) requirement, a baseline monitoring report shall be prepared to check, record and re-confirm the status of the Landscape Resources (LR) and Landscape Character Areas (LCA) within the works area. The report shall review the proposed mitigation measures and assess their feasibility with reference to the operational requirements of the detailed project works. Any potential conflicts between proposed mitigation measures and the proposed works shall be resolved at an early stage (prior to construction) and any necessary changes to the mitigation measures shall be incorporated into the detailed design.

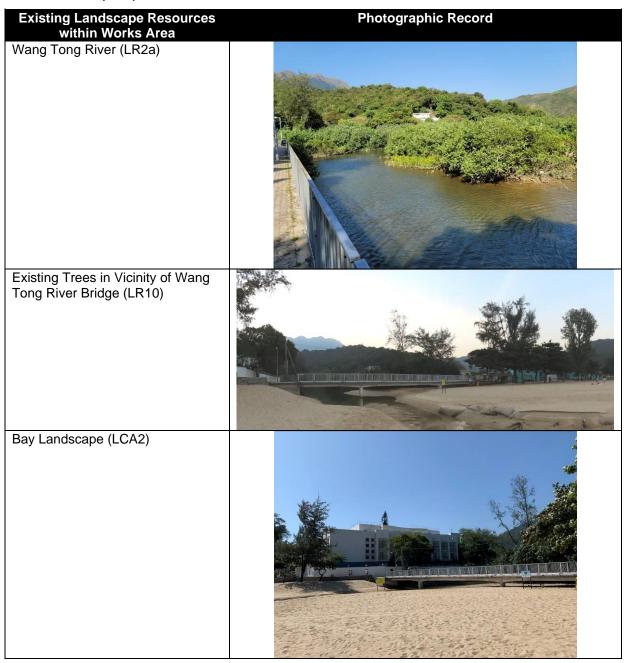
5.2 Review of the Approved EIA Report

- 5.2.1 The approval of EIA Report AEIAR-199/2016 New Wang Tong River Bridge has been reviewed to extract relevant information about the baseline conditions of the landscape resources and landscape character of the area within and immediately adjacent to, the construction and works areas during the EIA stage.
- 5.2.2 At the EIA stage, two landscape resources were identified within the Project site which was identified as Wang Tong River (LR2a) and Existing Trees in Vicinity of Wang Tong River Bridge (LR10). Two landscape character of area were identified as Bay Landscape (LCA2) and Rural Township Landscape (LCA3). Description of the baseline conditions of the above two LRs and LCAs in approved EIA report are as follows:
 - LR2a Wang Tong River: The Wang Tong River flows though the Study Area from the north west to south east, passing under the existing Wang Tong Bridge and continuing across Silver Mine Bay Beach to the sea. The River is shallow and non-navigable, and the lower reaches are tidal. Although it flows through the agricultural Wang Tong Valley, the river channel is largely natural and provides a habitat and breeding ground for avifauna and fish (refer to Ecological Assessment chapter). The approximate length within the study area is 700 m. The northern bank is lined with small trees and shrubs, primarily Hibiscus tiliaceus with smaller numbers of Ficus subpisocarpa, Litsea glutinosa, Macaranga tanarius var. tomentosa, Melia azardarach, Pandanus tectorius, Syzygium samaragense and Wedelia trilobata. Mangrove species (Aegiceras corniculatum and Acanthus ilicifolius) were also found in the River. Whilst the value of the ecological habitats within this resource have been rated as low, given that natural rivers are under threat and a disappearing resource in Hong Kong and that this resource is difficult to recreate the sensitivity is assessed as High.
 - LR10 Existing Trees in Vicinity of Wang Tong River Bridge: There are a number of existing trees in the immediate vicinity of the Wang Tong River Bridge growing either in the waterfront paved areas or Silver Mine Bay Beach. As they may be potentially impacted, a detailed tree survey has been undertaken in accordance with DEVB TC(W) 7/2015 at the approved EIA report. Surveyed trees total 19 no. and comprise the following species Casuarina equisetifolia, Celtis sinensis, Ficus microcarpa, Hibiscus tiliaceus, Macaranga tanarius, Terminalia catappa. Whilst the trees are

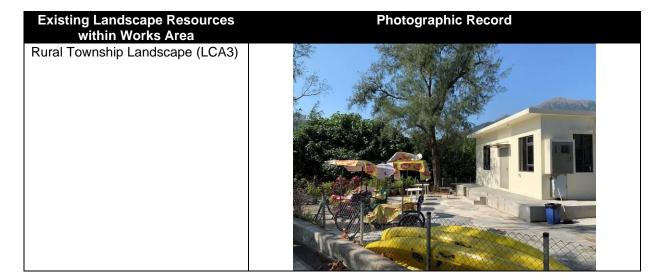
neither registered Old and Valuable Trees nor rare or precious species, the trees are mature and do contribute to the immediate setting of the bridge and provide a positive visual backdrop to the back of the beach. Their health and amenity value is generally Fair to Good and their overall sensitivity is assessed as Medium.

- LCA2 Bay Landscape: This LCA comprises part of the open water of Silver Mine Bay and the bay edge including Silver Mine Bay Beach. Its approximate area is 29.7 ha. Bay landscape is common on the south side of Lantau but is under increasing pressure from development. Its value is recognised by recent government initiatives to promote leisure and tourism on South Lantau. The waters and beach forming this LCA are relatively natural and undisturbed and of high environmental and scenic quality. The bay waters are highly frequented by leisure and fishing craft and swimmers and the beach is a popular public facility. As its landscape value lies in its intrinsic natural beauty, this LCA has a low ability to accommodate change. Given all the factors above, the sensitivity of LCA2 is assessed as High.
- LCA3 Rural Township Landscape: This LCA comprises the collection of villages and the urban areas that make up Mui Wo and is approximately 25.4 ha in area. It occupies the flat land between the wooded knoll in the south of the Study Area and Butterfly Hill in the west. The LCA also stretches along the back of Silver Mine Bay Beach and includes a strip of hotels, small shops, public beach facilities and private residences. The settlement of Mui Wo has developed relatively slowly and remained at a rural township scale due to the lack of easy access by road. The scale of the residential buildings is generally small and restricted to 3 storeys or less and there are a number of larger municipal and commercial buildings and hotels. The style and type of development is unremarkable and commonly found throughout the urban fringes of Hong Kong. Whilst the overall scene has a certain attractiveness (due largely to the natural setting), the visual and historic quality of the individual structures is generally low. This LCA has a reasonable tolerance to change as it is in a constant cycle of renewal as evidenced by recent Government improvement works. Given the above, the sensitivity of this LCA is assessed as Medium.

5.3 Review of the Tree Preservation and Removal Proposal


- 5.3.1 Tree Preservation and Removal Proposal (TPRP) for the project of New Wang Tong River Bridge was accepted by the Leisure and Cultural Services Department on 17 July 2020 and 7 September 2020 via email, and was approved by the District Land Officer in 12 October 2020 via memo. The approval TPRP has been reviewed to extract relevant information about the baseline conditions of relevant landscape resources of the area within and immediately adjacent to, the construction and works areas. Details of the trees, their locations and photographs are provided in the Tree Assessment Schedule and Tree Survey Plan in Appendix G.
 - Section 4.7 Of the 27 no. of the trees assessed, 17 nos. of trees would be retained and 7 nos. of trees would be felled with compensatory planting. 3 trees were found to have already removed on the date of tree assessment and during subsequent site inspection in March 2019.

5.4 Baseline Monitoring



- 5.4.1 Baseline monitoring for the existing landscape condition was conducted on 5th November 2020. During the baseline monitoring, LR and LCA covered in contract HY/2019/14 within works area have been conducted. Location of the Project Site is shown in **Appendix H**.
- 5.4.2 LR2a Wang Tong River: As verified in the site visit, the northern bank was observed with small trees and shrubs, primarily *Hibiscus tiliaceus* with smaller numbers of *Macaranga tanarius var. tomentosa* etc. Mangrove species (*Aegiceras corniculatum* and *Acanthus ilicifolius*) was also found in the river bank. The existing condition of LR2a is consistent with the baseline conditions described in Section 8 of the approved EIA report. Photographic view of the existing conditions of LR2a as shown in **Table 4.1**.
- 5.4.3 LR10 Existing Trees in Vicinity of Wang Tong River Bridge: Exotic tree species Casuarina equisetifolia and Terminalia catappa were observed in the immediate vicinity of the Wang Tong River Bridge. Also, native tree species like Celtis sinensis, Ficus microcarpa and Hibiscus tiliaceus were found in the waterfront paved areas or Silver Mine Bay Beach. The condition of LR10 is generally similar with the baseline conditions described in Section 8 of the approved EIA report, and the circumstances are equivalent to the findings in the approved TPRP. Photographic view of the existing conditions of LR10 as shown in **Table 4.1**.
- 5.4.4 LCA2 Bay Landscape: The bay of high environmental and scenic quality was remained natural and undisturbed during site visit, which is consistent with the baseline conditions stated in the approved EIA report. Photographic view of the existing conditions of LCA2 as shown in **Table 4.1**.
- 5.4.5 LCA3 Rural Township Landscape: As observed, the settlement remained small at a rural township scale, and natural setting also provided certain attractiveness to the overall scene. The existing condition of LCA3 is consistent with the baseline conditions described in Section 8 of the approved EIA report. Photographic view of the existing conditions of LCA3 as shown in Table 4.1.
- 5.4.6 The photographic record and monitoring results are shown in **Table 4.1**. Key plan showing the location and extent of existing landscape and visual resource is shown in **Appendix I**. Compared to the findings in the approved EIA report, the status of the LRs and LCAs covered in the Contract HY/2019/14 remains unchanged. Since there is no major change in the landscape and visual baseline conditions comparing to those of the EIA stage, additional landscape and visual mitigation measures other than those recommended in the approved EIA Report are thus not required.
- 5.4.7 Photographic record for existing Landscape was conducted on 5 November 2020 for HY/2019/14 works area prior to commencement of the Project. The approved photographic record shall be submitted to the project proponent, IEC and EPD for record.

Table 5.1 Baseline Result for Landscape Resources (LR) and Landscape Character Areas (LCA)

5.5 Tree Preservation and Removal

5.5.1 As the tree survey result in the approved TPRP was slightly different from the result assessed in the EIA report, the following table demonstrated the updated status for corresponding trees.

Table 5.2 Comparison for Tree Recommendation between 2 Submissions

Tree	Scientific Name	Chinese Name	Recommendation	Recommendation
No.			stated in EIA	stated in TPRP
			Report	
T1	Terminalia catappa	欖仁樹	Transplant	Fell
T2	Terminalia catappa	欖仁樹	Transplant	Fell
Т3	Terminalia catappa	欖仁樹	Retain	Retain
T4	Casuarina equisetifolia	木麻黄	Retain	Retain
T6	Casuarina equisetifolia	木麻黄	Fell	Fell
T7	Terminalia catappa	欖仁樹	Retain	Retain
T8	Terminalia catappa	欖仁樹	Retain	Already removed
Т9	Ficus microcarpa	榕樹/細葉榕	Retain	Retain
T22	Casuarina equisetifolia	木麻黄	-	Retain
T27	Macaranga tanarius var.	血桐	Fell	Fell
	tomentosa			
T29	Macaranga tanarius var.	血桐	Fell	Expected removed *
	tomentosa			
T30	Macaranga tanarius var.	血桐	Fell	Fell
	tomentosa			
T31	Casuarina equisetifolia	木麻黄	Retain	Fell
T32	Hibiscus tiliaceus	黄槿	Retain	Expected removed *
T33	Hibiscus tiliaceus	黄槿	Retain	Expected removed *
T34	Casuarina equisetifolia	木麻黄	Retain	Already removed
T35	Casuarina equisetifolia	木麻黄	Fell	Already removed

Contract No: HY/2019/14 New Wang Tong River Bridge

Tree	Scientific Name	Chinese Name	Recommendation	Recommendation
No.			stated in EIA	stated in TPRP
			Report	
T37	Celtis sinensis	朴樹	Retain	Retain
T38	Ficus microcarpa	榕樹	Retain	Retain
T39	Terminalia catappa	欖仁樹	Retain	Fell
T40	Casuarina equisetifolia	木麻黄	-	Retain
T46	Hibiscus tiliaceus	黄槿	-	Retain
T47	Hibiscus tiliaceus	黄槿	-	Retain
T48	Hibiscus tiliaceus	黃槿	-	Retain
T49	Hibiscus tiliaceus	黄槿	-	Retain
T50	Hibiscus tiliaceus	黄槿	-	Retain
T51	Hibiscus tiliaceus	黄槿	-	Retain
T52	Hibiscus tiliaceus	黄槿	-	Retain
T53	Hibiscus tiliaceus	黃槿	-	Retain
T54	Hibiscus tiliaceus	黄槿	-	Retain
	To be Transplanted	Tree Numbers	2	0
	To be Retained	Tree Numbers	12	17
	To be Fell	Tree Numbers	5	7
	Removed	Tree Numbers	0	6

Remark:

[&]quot;-" stands for the tree that was not identified at EIA stage.

[&]quot;*" indicates that no tree was found during site survey when TPRP was preparing, and the tree also could not be found when the project site was received by HyD in November 2020. It is believed that the tree was destroyed and removed after typhoon or other natural incidents.

6 Revision for inclusion into EM&A Manual

- 6.1.1 Water quality monitoring at Station W3 was cancelled with approval granted. Station W3 presented in Table 5.1 under the EM&A Manual was updated to be excluded.
- 6.1.2 With respect to fine adjustment of air quality and noise monitoring locations were adopted in the baseline monitoring, fine adjusted air and noise monitoring locations are suggested in the EM&A manual. It is also recommended that the air and noise monitoring station condition should be regularly reviewed and fine adjustment or relocation may be needed in order to obtain respective impact monitoring results.

7 Comments, Recommendations and Conclusions

Comments and Recommendations

Water Quality of Seasonal Changes

- 7.1.1 Baseline water quality monitoring was conducted at the dry season due to tight schedule of tentative commencement of the Project in Q1 2021. To account for more representative baseline water quality to cover the wet season and seasonal variations, it is recommended that baseline conditions should be reviewed quarterly when appropriate, through review the monitoring effectiveness and improve the EM&A programme as per Section 10.6.1(i) under the EM&A Manual for IEC verification.
- 7.1.2 For impact water quality monitoring during dry season, water quality monitoring at certain monitoring stations might not be feasible due to shallowness of Wang Tong River. In case the situation was not feasible for monitoring due to insufficient water flow, it is recommended that inspection around the monitoring station to be conducted by ET to record the stream condition.
- 7.1.3 Monitoring condition during adverse weather shall also be recorded to avoid false alarm.

Air Quality of Seasonal Changes

7.1.4 Baseline air quality monitoring was conducted at the dry season. The baseline data collected therefore represent baseline air quality of the dry season immediately prior to commencement of the Project. It is therefore recommended that interpretation of the air quality monitoring data should take into account the influence of seasonal changes, and the baseline conditions should be regularly reviewed when appropriate.

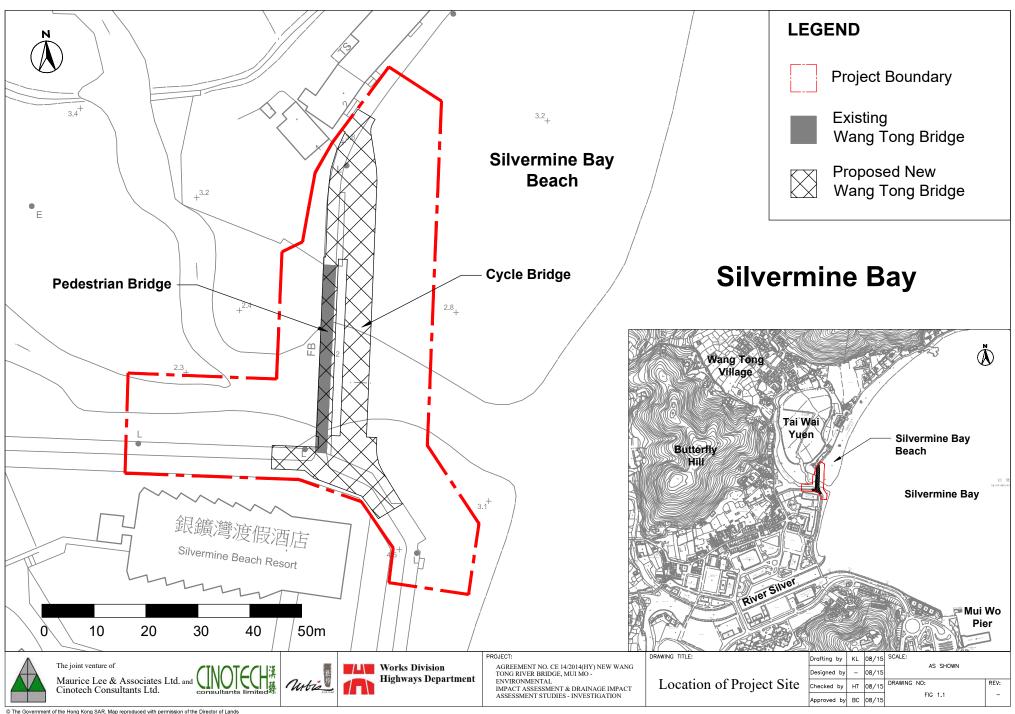
Other noise sources

7.1.5 Baseline noise monitoring was conducted prior to commencement of construction works. During baseline monitoring period, no construction activities were observed. The major noise source was traffic noise and community noise around the monitoring station. It is possible that same noise sources would be identified during impact monitoring period. It is recommended that noise monitoring station condition should be regularly reviewed when appropriate, and fine adjustment or relocation may be needed in order to obtain respective impact monitoring results.

Landscape and Visual Mitigation

- 7.1.6 According to the latest available information in the TPRP, 17 nos. of trees will be retained and 7 nos. of trees will be felled with compensatory planting.
- 7.1.7 There is no major change in the landscape baseline conditions (including LR and LCA) comparing to those presented in the EIA report, it is recommended to review landscape and visual mitigation measures regularly to ensure sufficient protection against project implementation.

Conclusion


7.1.8 In accordance with the Project EM&A Manual and EP, baseline monitoring has been undertaken prior to commencement of the construction works of the Contract for the following

baseline monitoring components: Air Quality; Noise; Water Quality and Landscape.

- 7.1.9 As highlighted under Tables 2.2 and 3.2, several fine adjustments of locations were proposed for baseline monitoring. Nevertheless, given the fine adjusted location with similar pollution sources and similar meteorological condition to the original locations recommended in the EM&A manual, it is considered to be representative for the air and noise sensitive receiver identified in EIA manual.
- 7.1.10 Baseline air quality monitoring was conducted at two (2) monitoring locations from 21 December 2020 to 3 January 2021. Overall, the baseline air quality monitoring results are considered representative to the ambient air quality conditions of the respective sensitive receivers. Action and Limit Levels for air quality of 1-hour and 24-hour TSP levels were established based on the baseline monitoring results.
- 7.1.11 Baseline noise monitoring was conducted at one (1) designated monitoring stations from 21 December 2020 to 3 January 2021. The major noise sources identified at the monitoring station are traffic noise and community noise. The baseline monitoring results are considered representative of the ambient noise level.
- 7.1.12 Baseline water quality monitoring was conducted at seven (7) monitoring stations from 14 December 2020 to 8 January 2021. No observable pollution source was recorded at the monitoring stations and the baseline monitoring results are thus considered representative of the ambient water quality levels. Action and Limit Levels were established for DO, SS and turbidity based on the baseline monitoring results.
- 7.1.13 Baseline monitoring for existing landscape and visual condition was conducted on 5 November 2020. The general status of the LRs and LCAs covered in the works area of Contract HY/2019/14 remains unchanged.

Figure

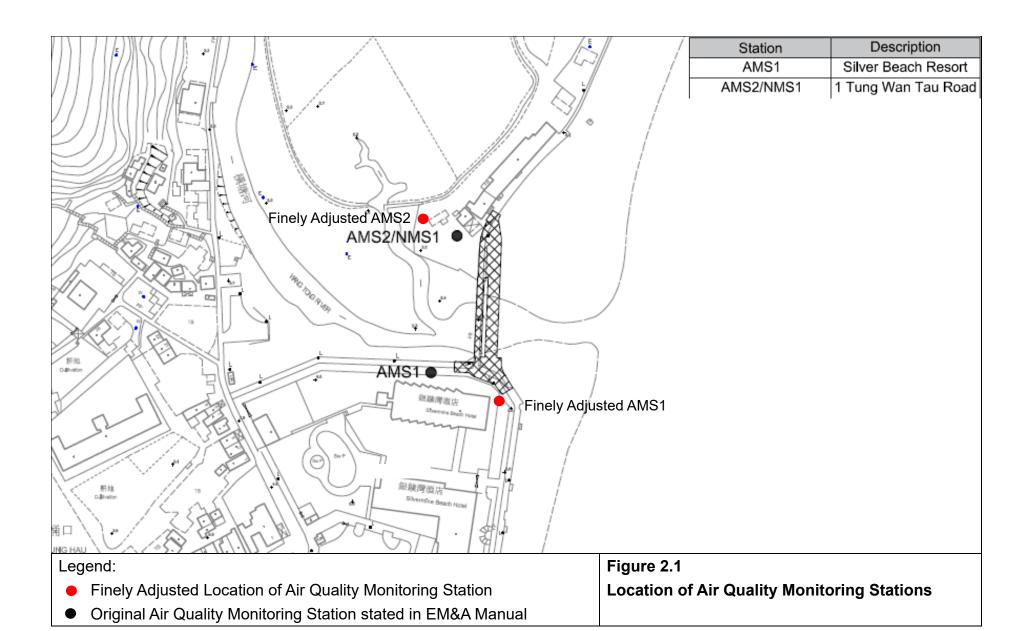


Figure 2.2 Photo Records of Air Quality Monitoring Stations

Monitoring	Photo Record
Station	
AMS1	
AMS2	

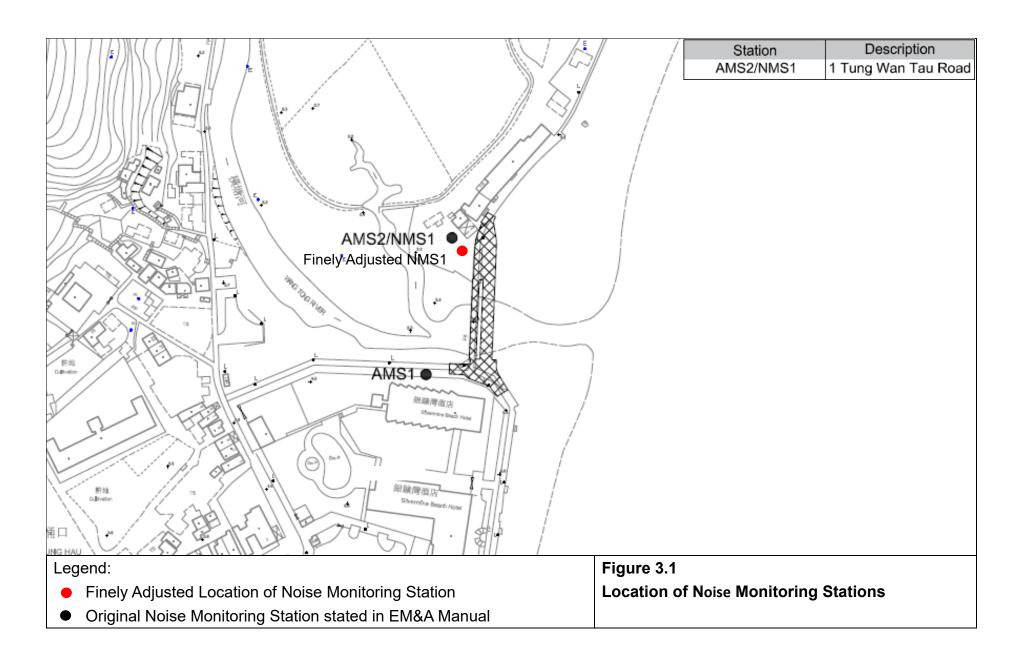
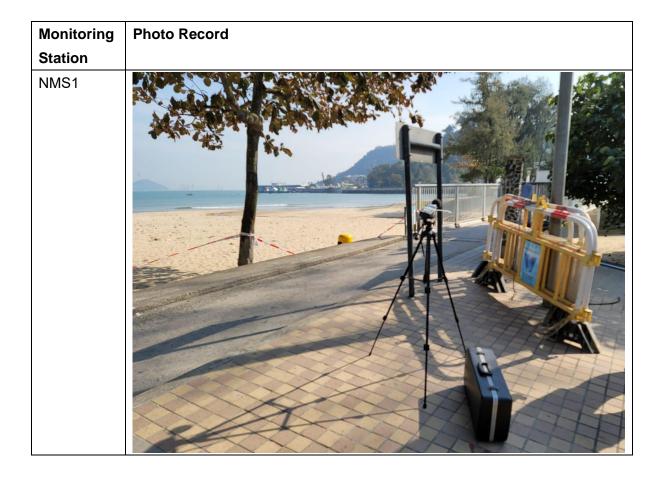
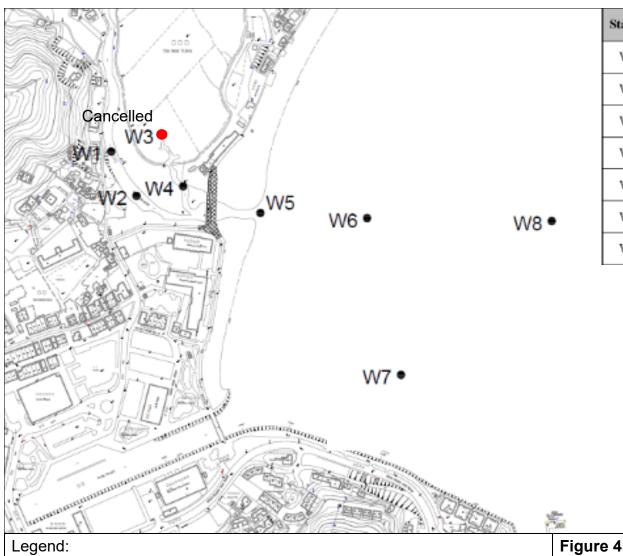




Figure 3.2 Photo Records of Noise Monitoring Stations

	Station	Description	Easting	Northing
	W1	Wang Tong River (Major tributary)	817747	814519
	W2	Wang Tong River (Major tributary)	817775	814471
	W4	Wang Tong River (Minor tributary to Tai Wai Yuen)	817825	814481
	W5	Silvermine Bay (Near Silvermine Bay Beach)	817909	814452
	W6	Silvermine Bay (Near Silvermine Bay Beach)	818024	814447
	W7	Silvermine Bay (Olen Water)	818061	814277
	W8	Silvermine Bay (Open Water)	818224	814444

- Cancelled Water Quality Monitoring Station
- Original Water Quality Monitoring Station stated in EM&A Manual

Figure 4.1 Location of Water Quality Monitoring Stations

Figure 4.2 Photo Records of Water Quality Monitoring Stations

Monitoring	Description	Monitoring Location
Monitoring Station W1	Wang Tong River (Major tributary)	Monitoring Location We have a second control of the control of th

Monitoring	Description	Monitoring Location
Station W2	Wang Tong River (Major tributary)	

Monitoring Station	Description	Monitoring Location
W4	Wang Tong River (Major tributary)	

Monitoring	Description	Monitoring Location
Station		
W5	Silvermine Bay	
	(Near Silvermine Bay	
	Beach)	

Monitoring	Description	Monitoring Location
Station		
W6	Silvermine Bay	
	(Near Silvermine Bay	
	Beach)	
		314

Monitoring	Description	Monitoring Location
Station		
W7	Silvermine Bay	
	(Open Water)	

Monitoring	Description	Monitoring Location
Station		
W8	Silvermine Bay	
	(Open Water)	
		AND THE RESIDENCE OF THE PARTY

Appendix A

Baseline Monitoring Schedule for

Air Quality, Noise and Water Quality Monitoring

Contract no. HY/2019/14 New Wang Tong River Bridge Baseline Environmental Monitoring Schedule

	Sunday	Mor	nday	Tuesday	Wedr	nesday	Т	hursday	Fri	iday	Sat	urday
	12/13/2020		12/14/2020	12/15/2020		12/16/2020		12/17/2020		12/18/2020		12/19/2020
		WQM			WQM				WQM			
		Mid-Ebb	12:04		Mid-Flood	8:16			Mid-Flood	9:59	l	
		Mid-Flood	17:25	40/00/000	Mid-Ebb	13:38			Mid-Ebb	15:05		10/00/0000
	12/20/2020	4014	12/21/2020		l	12/23/2020		12/24/2020		12/25/2020		12/26/2020
		AQM		AQM	AQM		AQM		AQM		AQM	
		NM		NM	NM		NM		NM		NM	
									WOM			
		WQM Mid-Flood	12:41		WQM Mid-Flood	13:27			WQM Mid-Ebb	8:47		
		Mid-Ebb	18:02		Mid-Ebb	19:20			Mid-Flood	15:08		
	12/27/2020	WIIG LDD	12/28/2020	12/29/2020		12/30/2020		12/31/2020		1/1/2021		1/2/2021
AQM		AQM		AQM	AQM		AQM		AQM		AQM	
NM		NM		NM	NM		NM		NM		NM	
		WQM			WQM						WQM	
		Mid-Ebb	11:04		Mid-Ebb	12:14					Mid-Flood	9:23
		Mid-Flood	16:24		Mid-Flood	17:21					Mid-Ebb	14:16
	1/3/2021		1/4/2021	1/5/2021		1/6/2021		1/7/2021		1/8/2021		1/9/2021
AQM												
NM												
		WQM			WQM				WQM			
		Mid-Flood	10:56		Mid-Flood	12:32			Mid-Flood	14:04	l	
		Mid-Ebb	16:20		Mid-Ebb	18:24			Mid-Ebb	20:49		

Appendix B Calibration Certificates of Monitoring Equipment

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		AMS1				Calbratio	on Date	:	21-Dec-20
Equipment no.	ı	HVS020				Calbratio	on Due Date	:	20-Feb-21
CALIBRATION OF CON	ITINIIOIIS	EI OW PI	ECOPDER						
CALIBRATION OF CON	111110000	JI LOW K	LOOKDER	Amalaia m 4 C	N = 4!!4! =				
				Ambient C			Ι .		
Temperature, T _a		289.	4	Kelvin	Pressure, P	a	1	022	mmHg
			Orifice Ti	ransfer Sta	ndard Infor	mation			
Equipment No.		0005		Slope, m _c	2.009	27	Intercept, bc		-0.03767
Last Calibration Date		18-Feb-2	20		(Hx	P _a / 101	3.3 x 298 /	$T_a)^{1/2}$?
Next Calibration Date		17-Feb-2	?1		=	m _c x	$Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Mar	ometer R	eading	C	std	Continu	ious Flow		IC
Point	H (i	inches of	water)	(m ³	/ min.)	Reco	rder, W	(W(P _a /10	13.3x298/T _a) ^{1/2} /35.31
	(up)	(down)	(difference)	х-	axis	(0	CFM)		Y-axis
1	1.0	1.0	2.0	0.7	7360		35		35.6684
2	2.3	2.3	4.6	1.1	1066		45		45.8593
3	3.7	3.7	7.4	1.3	3985		53		54.0121
4	4.7	4.7	9.4	1.5	5738		58		59.1076
5	5.7	5.7	11.4	1.7	7312		64		65.2222
By Linear Regression of	Y on X		•						
	Slope, m	=	29.1	614	Inte	ercept, b =	13	.7953	
Correlation Co	pefficient*	=	0.99	984					
Calibration	Accepted	=	Yes/ I	\0 **					
* if Correlation Coefficier	nt < 0.990	, check an	d recalibratio	n again.					
** Delete as appropriate									
Remarks :									
Calibrated I :	н	enry Lau				Checked	l by	:	James Chu
Calibrated by		1-Dec-20				Date	-	:	21-Dec-20
Date									

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location :	ion : AMS2				Calbrati	on Date	: 21-Dec-20		
Equipment no.	-	HVS019		Calbration Due Date :				: 20-Feb-21	
CALIBRATION OF CON	TINHOHS	S FI OW R	FCORDER						
SALIBIOTION OF CON		71201111	<u> </u>	Ambient (Condition				
Temperature, T _a		289.	4		Pressure, P	a	10	022	mmHg
			Orifice T	ransfer Sta	andard Infor	mation			
Equipment No.		0005		Slope, m _c	2.009	27	Intercept, bc	Т	-0.03767
Last Calibration Date		18-Feb-2	20		(H x	P _a / 10:	13.3 x 298 /	T_a) 1/2	
Next Calibration Date		17-Feb-2	<u>?</u> 1		=		$Q_{std} + b_c$		
				Calibratio	on of TSP				
Calibration	Mar	nometer R	eading	C	Q _{std}	Contin	uous Flow		IC
Point	Н (inches of	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013	3.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	x-	-axis	(0	CFM)	Y-axis	
1	1.3	1.3	2.6	0.8	8366		33	33.6302	
2	2.3	2.3	4.6	1.	1066		41	4	41.7830
3	3.5	3.5	7.0	1.0	3607		50	;	50.9548
4	4.5	4.5	9.0	1.5	5403		56	57.0694	
5	5.8	5.8	11.6	1.7	7462		60	(61.1458
By Linear Regression of	Y on X								
	Slope, m	=	31.3	134	Into	ercept, b =	7.6	6434	
Correlation Co	efficient*	=	0.99	964					
Calibration A	Accepted	=	Yes/ł	Ne**					
									_
* if Correlation Coefficier	nt < 0 990	check an	d recalibratio	n again					
ii Gerrelation Geometer	10.000	, orrook arr	a roodiibratic	n again.					
** Delete as appropriate.									
Remarks :									
Calibrated by	н	lenry Lau				Checke	d by	:	James Chu
Date :	2	1-Dec-20				Date		:	21-Dec-20

RECALIBRATION DUE DATE:

February 18, 2021

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 18, 2020

Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch

II IISCII

Pa: 753.1

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 0005

Run	Vol. Init (m3)	Vol. Final ΔVol. (m3)		ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)	
1	1	2	1	1.3790	3.2	2.00	
2	3	4	1	0.9840	6.4	4.00	
3	5	6	1	0.8740	7.9	5.00	
4	7	8	1	0.8350	8.8	5.50	
5	9	10	1	0.6910	12.6	8.00	

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0001	0.7253	1.4173	0.9958	0.7221	0.8836				
0.9959	1.0121	2.0044	0.9915	1.0076	1.2496				
0.9939	1.1372	2.2410	0.9895	1.1322	1.3971				
0.9927	1.1888	2.3504	0.9883	1.1836	1.4653				
0.9876	1.4293	2.8347	0.9833	1.4230	1.7672				
	m=	2.00927		m=	1.25817				
QSTD	b=	-0.03767	QA	b=	-0.02348				
	r=	0.99995		r=	0.99995				

Calculations					
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime		
	For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m· slone	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

ch Environmental, Inc.


South Miami Avenue

age of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Certificate of Calibration

BT-645

Particulate Monitor

Recommended calibration	interval	is 24	months	from	first de	ay o	f use.
-------------------------	----------	-------	--------	------	----------	------	--------

Unit Info Model:	BT-645	81865 Firmware Rev:	R1.1.0	
Serial Number:	X19297	81113	R0.2.4	
Calibrated By:	Alice M.	Cal. Date:	Jan 9, 2020	
Quality Inspector:	ATB	Date:	FEB 1 1 2020	
Calibration Hz/µg/m³:	6.60			
Final Test				
Flow (2.0 L/min):	Pass	Ambient Temp (C):	23.5	
Serial Communication:	Pass	RH (%):	31.3%	
Concentration:	401	Standard:	403	

Calibration Standards

Standards	Manufacturer	Model	SN	Cal Due
RMS Multimeter	Fluke	289 Multimeter	23740018	5/17/2020
RH &TEMPERATURE	Met One Instruments	083E-1-6	R20313	9/19/2020
Primary Flow Meter	BIOS	Defender-530+	170092	1/30/2020
Digital Dust Indicator	SIBATA	LD-3B	6X7759	12/14/2019

The standards used for this calibration have accuracy equal to or greater than the instrument tested. These standards are on record and traceable to NIST to the extent allowed by the institute's calibration facility. Unless otherwise stated, all instruments are calibrated to meet the manufacturer's published specifications. The Calibration system complies with MIL-STD-45662A.

Certificate of Calibration

BT-645

Particulate Monitor

Recommended calibration interval is 24 months from first day of use.

Unit Info Model:	BT-645	81865 Firmware Rev:	R1.1.0
Serial Number:	X19295	81113	R0.2.4
Calibrated By:	Alice M.	Cal. Date:	Jan 9, 2020
Quality Inspector:	ATB	Date:	FEB 1 1 2020
Calibration Hz/µg/m³: _	5.295		
Final Test			
Flow (2.0 L/min):	Pass	Ambient Temp (C):	23.5
Serial Communication:	Pass	RH (%): _	31.3%
Concentration:	398	Standard:	398

Calibration Standards

Standards	Manufacturer	Model	SN	Cal Due
RMS Multimeter	Fluke	289 Multimeter	23740018	5/17/2020
RH &TEMPERATURE	Met One Instruments	083E-1-6	R20313	9/19/2020
Primary Flow Meter	BIOS	Defender-530+	170092	1/30/2020
Digital Dust Indicator	SIBATA	LD-3B	6X7759	12/14/2019

The standards used for this calibration have accuracy equal to or greater than the instrument tested. These standards are on record and traceable to NIST to the extent allowed by the institute's calibration facility. Unless otherwise stated, all instruments are calibrated to meet the manufacturer's published specifications. The Calibration system complies with MIL-STD-45662A.

Lam Environmental Services Limited

Portable Dust Meter Performance Check Record

Portable Dust Meter

Type Particulare Monitor

Manufacturer MET ONE INSTRUMENTS

Model Number BT645

Serial Number X19295

Performance Check Date 17-Mar-20

Standard Equipment

High Volume Sampler Type

Manufacturer TISCH

Model Number TE-5170

Equipment Number HVS006

Last Calibration Date 07-Mar-20

Portable Dust Meter Performance Check Results

Trial no. in 1-hr period	Time	Mean Pressure (hPa)	Mean Temp (°C)	Concentration in ug/m ³ (Standard equipment) (X - Axis)	Concentration in ug/m³ (Performance Check / Calibrated equipment) (Y - Axis)
Zero Check	16/3/2020 00:00	1020	20	0	0
1	17/3/2020 08:16	1019	20	108	72
2	17/3/2020 09:17	1019	20	128	74
3	17/3/2020 10:18	1019	20	104	72

Linear Regression of Y on X

200

20

Slope (K- factor)
Correlation Coefficient
Validity of Performance Check / Calibration Record

180 Sampling measurement from performance check/calibrated 160 140 equipment (ug/m³) 08 08 v = 0.6228x + 1.5584 60

Operator:	Henry Lau	Date:	17-Mar-20	
Checked by:	James Chu	Date:	18-Mar-20	

Sampling measurement from standard equipment (ug/m³)

Lam Environmental Services Limited

Portable Dust Meter Performance Check Record

Portable Dust Meter

Type : Particulare Monitor

Manufacturer : MET ONE INSTRUMENTS

Model Number : BT645

Serial Number : X19297

Performance Check Date : 17-Mar-20

Standard Equipment

Type : High Volume Sampler

Manufacturer : TISCH

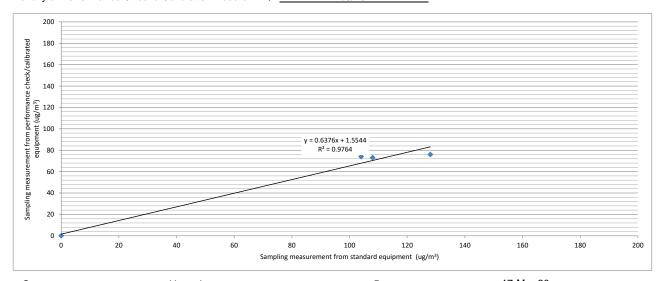
Model Number : TE-5170

Equipment Number : HVS006

Last Calibration Date : 07-Mar-20

Portable Dust Meter Performance Check Results

Trial no. in 1-hr period	Time	Mean Pressure (hPa)	Mean Temp (°C)	· ·	Concentration in ug/m ³ (Performance Check / Calibrated equipment) (Y - Axis)
				(A - AXIS)	(T - AXIS)
Zero Check	16/3/2020 00:00	1020	20	0	0
1	17/3/2020 08:16	1019	20	108	73
2	17/3/2020 09:17	1019	20	128	76
3	17/3/2020 10:18	1019	20	104	74


^{*} Filter paper weighting was conducted by HOKLAS accredited laboratory

Linear Regression of Y on X

Slope (K- factor) : 1.6000

Correlation Coefficient : 0.9881

Validity of Performance Check / Calibration Record : 17/3/2021

Operator:	Henry Lau	Date:	17-Mar-20	
Checked by:	James Chu	Date:	18-Mar-20	

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA0309 01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer:

Larson Davis

PCB

Type/Model No.: Serial/Equipment No.: LxT1

377B02

0003737

171529

Adaptors used:

Item submitted by

Customer Name:

Lam Geotechnics Ltd.

Address of Customer:

Request No.

Date of receipt:

09-Mar-2020

Date of test:

10-Mar-2020

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

23-Aug-2020

CIGISMEC

Signal generator

DS 360

33873

10-May-2020

CEPREI

Ambient conditions

Temperature: Air pressure:

21 ± 1 °C

Relative humidity:

55 ± 10 % 1005 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2. replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Feng Jungi

Approved Signatory:

Date:

10-Mar-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0309 01

Page

2

2

1. Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Calf assumeted union	Δ	Pass	0.3	
Self-generated noise	A C	Pass	0.8	2.1
	_			
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
. , , ,	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
3 . 3	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
· ·····	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
0 0	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
•	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 10-Mar-2020 End

Checked by

Date:

Shek Kwong Tat 10-Mar-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule of maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No. CARP152-2/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1119 02-01

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Larson Davis CAL200

Serial/Equipment No.:

CAL200 13437

Adaptors used:

-

Item submitted by

Curstomer:

Lam Environmental Services Limited.

Address of Customer:

_

Request No.:

Date of receipt:

19-Nov-2020

Date of test:

20-Nov-2020

Reference equipment used in the calibration

odel:	Serial No.	Expiry Date:	Traceable to:
kK 4180	2341427	11-May-2021	SCL
kK 2673	2743150	03-Jun-2021	CEPREI
kK 2610	2346941	03-Jun-2021	CEPREI
S 360	33873	19-May-2021	CEPREI
401A	US36087050	19-May-2021	CEPREI
03B	GB41300350	18-May-2021	CEPREI
132A I	MY40003662	18-May-2021	CEPREI
3	K 4180 K 2673 K 2610 3 360 401A	LK 4180 2341427 LK 2673 2743150 LK 2610 2346941 S 360 33873 401A US36087050 O3B GB41300350	48 4180 2341427 11-May-2021 48 2673 2743150 03-Jun-2021 48 2610 2346941 03-Jun-2021 401A US36087050 19-May-2021 03B GB41300350 18-May-2021

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date: 21-Nov-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS&MATERIALS ENGINEERING CO., LTD.

香港新界葵涌水基路 2 2 - 2 4 號好爸爸創科大厦 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1119 02-01

Page:

2

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa)

			(F)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	l dB
1000	94.00	93.66	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.013 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.1 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5%

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip 20-Nov-2020 Checked by:

Date:

21-Nov-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: HENRY LAU WORK ORDER: HK2044014

CLIENT: LAM ENVIRONMENTAL SERVICES LTD

ADDRESS: 19/F, REMEX CENTRE, SUB-BATCH: C

42 WONG CHUK HANG ROAD, LABORATORY: HONG KONG

HONG KONG

DATE RECEIVED: 16-Nov-2020

DATE OF ISSUE: 25-Nov-2020

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type: Multifunctional Meter Service Nature: Performance Check

Scope: Dissolved Oxygen, pH Value, Salinity and Temperature

Brand Name/ Model No.: YSI Professional Plus

Serial No./ Equipment No.: 19H100656

Date of Calibration: 24-November-2020

GENERAL COMMENTS

This is the Final Report and supersedes any preliminary report with this batch number.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

 $This\ report\ may\ not\ be\ reproduced\ except\ with\ prior\ written\ approval\ from\ ALS\ Technichem\ (HK)\ Pty\ Ltd.$

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2044014

SUB-BATCH: 0

DATE OF ISSUE: 25-Nov-2020

CLIENT: LAM ENVIRONMENTAL SERVICES LTD

Equipment Type: Multifunctional Meter Brand Name/

Model No.:

YSI Professional Plus

Serial No./ Equipment No.:

19H100656

Date of Calibration: 24-November-2020

Date of Next Calibration: 24-February-2021

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.52	2.60	+0.08
4.01	3.99	-0.02
8.21	8.18	-0.03
	Tolerance Limit (mg/L)	±0.20

pH Value Method Ref: APHA (21st edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.08	+0.08
7.0	7.09	+0.09
10.0	9.94	-0.06
	Tolerance Limit (pH unit)	±0.20

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.01	
10	9.96	-0.4
20	19.93	-0.4
30	28.31	-5.6
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2044014

SUB-BATCH: 0

DATE OF ISSUE: 25-Nov-2020

CLIENT: LAM ENVIRONMENTAL SERVICES LTD

Equipment Type: Multifunctional Meter

Brand Name/ Model No.:

YSI Professional Plus

Serial No./ Equipment No.:

19H100656

Date of Calibration: 24-November-2020 Date of Next Calibration: 24-February-2021

PARAMETERS:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.6	+0.6
21.0	20.7	-0.3
39.5	39.9	+0.4
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

16:5

Ms. Lin Wai Yu, Iris

Assistant Manager - Inorganic

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION Information supplied by customer: MR. JAMES CHU JOB REFERENCE NO.: 22777053-K29A5302 CONTACT: **CLIENT:** LAM ENVIRONMENTAL SERVICES **DATE RECEIVED: 29/10/2020 DATE OF ISSUE: 04/11/2020** 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD, ADDRESS: WANCHAI, HONG KONG **PROJECT:** METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B COMMENTS It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of FT Laboratories Ltd will be followed. Turbidity Scope of Test: Equipment Type: Turbidimeter **Brand Name:** Xin Rui WGZ-3B Model No.: 1807063 Serial No.: Equipment No.: 04/11/2020 Date of Calibration: Remarks: This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Certified By:

Ho Lai Sze Senior Chemist Issue Date: 04/11/2020

This report may not be reproduced except with prior written approval from FT Laboratories Ltd.

Form No.: HG022-002 Rev 0 20190101

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

WORK ORDER: 22777053-K29A5302

DATE OF ISSUE: 04/11/2020

CLIENT: LAM ENVIRONMENTAL SERVICES

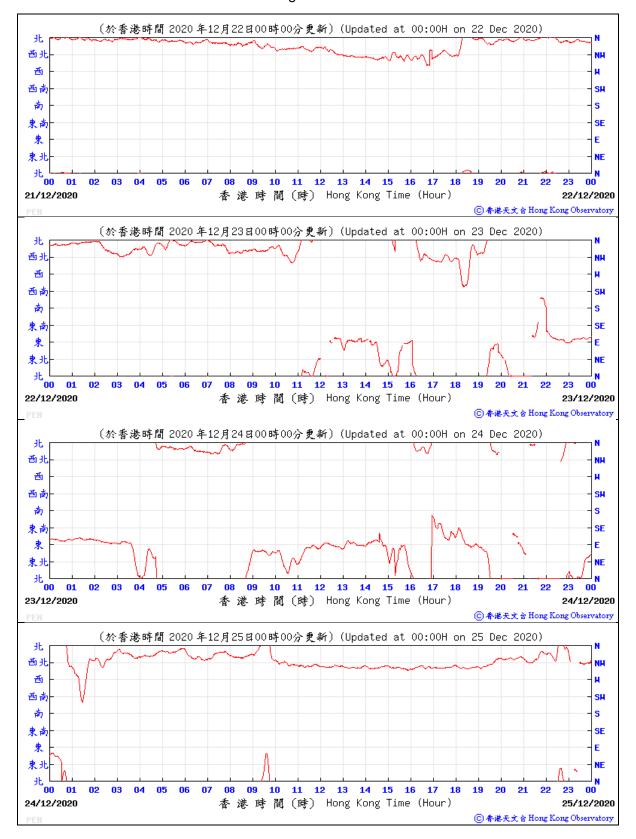
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1807063	
Equipment No.:		
Date of Calibration:	04/11/2020	
Date of next Calibation:	04/02/2021	
Lab I.D.:	H200253-02	

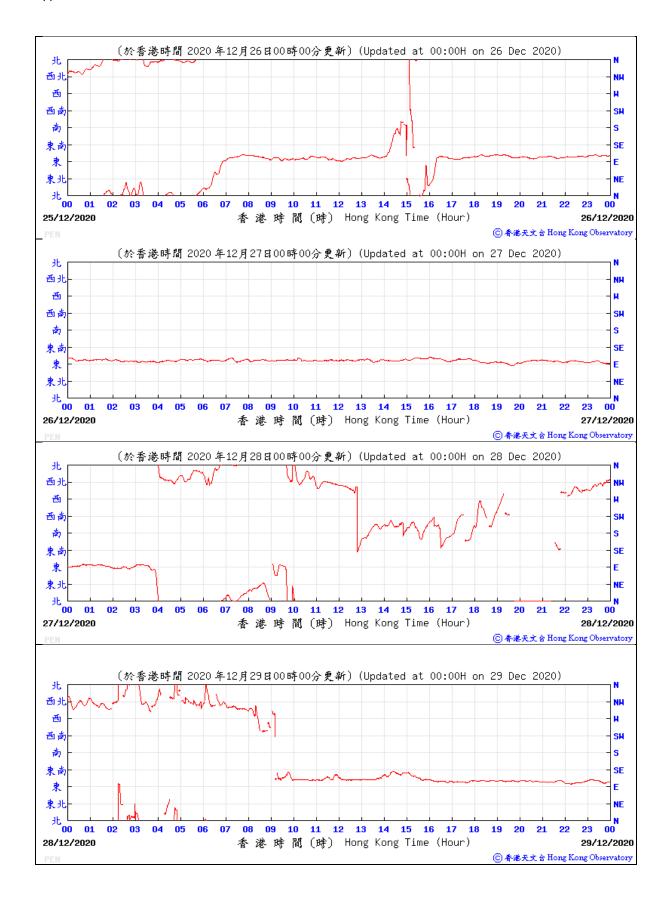
Parameters: Turbidity

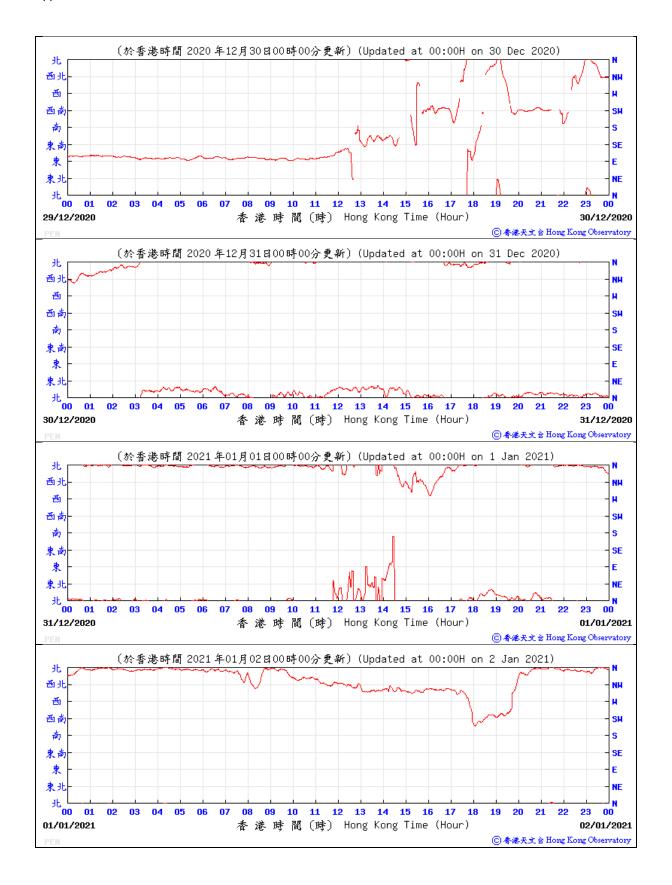
Method Ref: APHA 22nd ed. 2130B

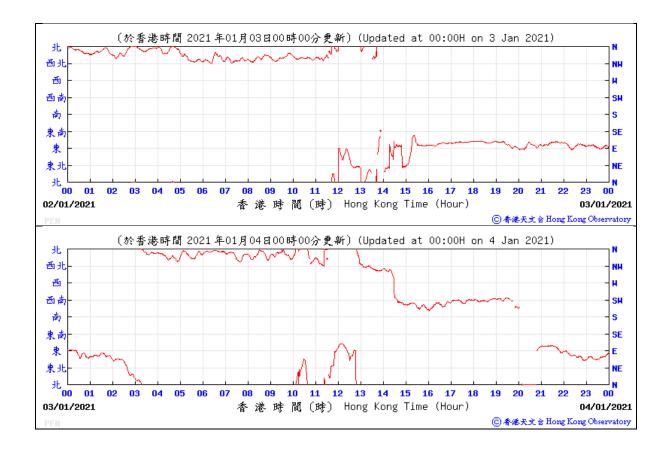
Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.99	-0.2%	
10	9.99	-0.1%	
40	39.96	-0.1%	
100	99.99	0.0%	
400	400	-0.1%	
1000	978	-2.2%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

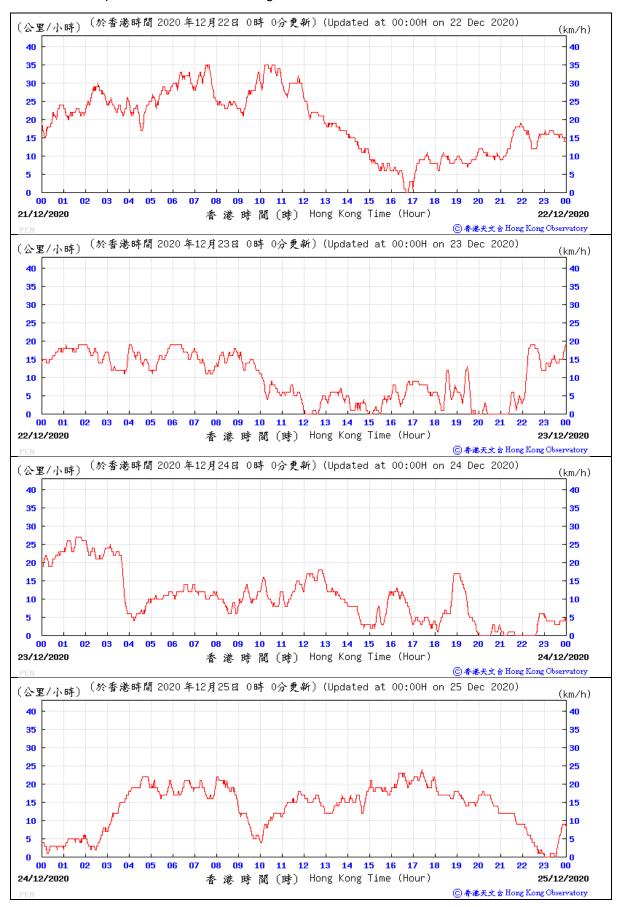

This report may not be reproduced except with prior written approval from FT Laboratories Ltd.

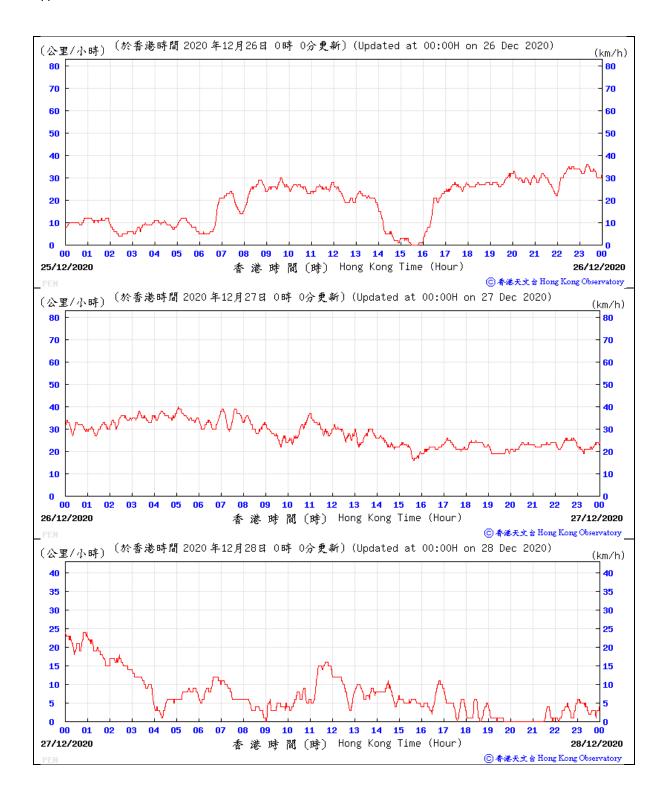

Form No.: HG022-002 Rev 0 20190101 Page 2 of 2

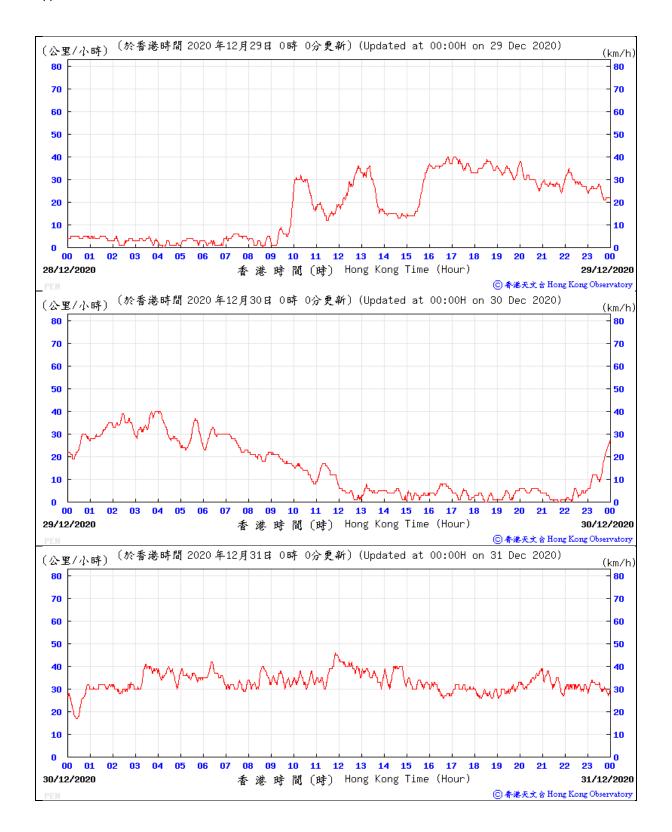


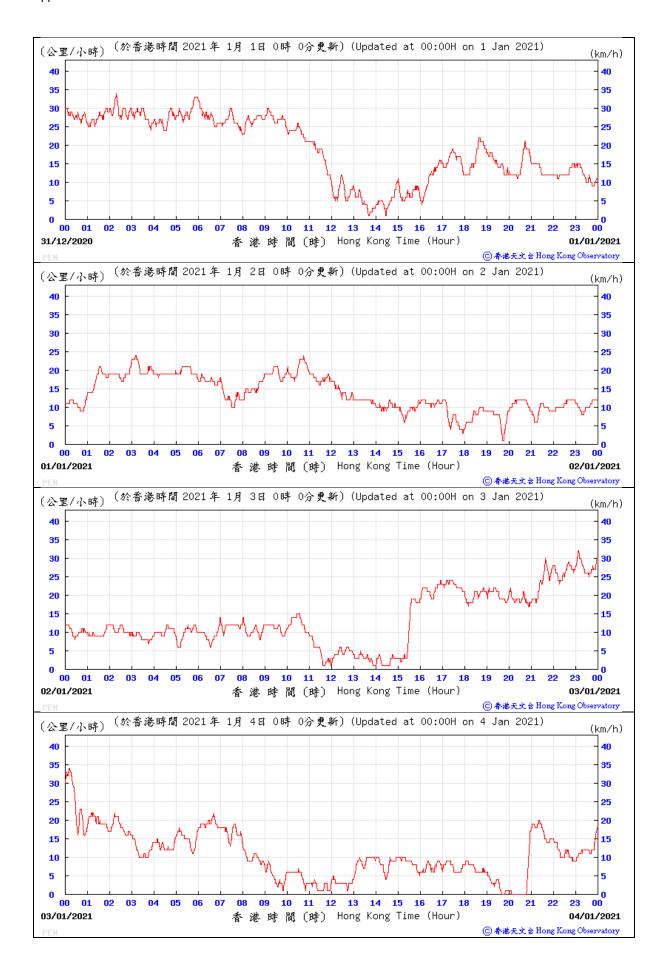

Appendix C
Wind Data

A. Wind Direction extracted from Peng Chau Automatic Weather Station









B. Wind Speed extracted from Peng Chau Automatic Weather Station

Appendix D Baseline Air Quality Monitoring Data

1hr TSP Monitoring Results at AMS1 - Silvermine Beach Resort

Day	Date	Weather	Time	Mass Conc. (ug/m³)
			14:00	75.0
1	21-Dec-20	Fine	15:00	62.0
			16:00	65.0
			12:00	40.0
2	22-Dec-20	Fine	13:00	41.0
			14:00	32.0
			09:00	48.0
3	23-Dec-20	Cloudy	10:00	41.0
			11:00	31.0
			10:00	43.0
4	24-Dec-20	Fine	11:00	53.0
			12:00	50.0
			10:00	48.0
5	25-Dec-20	Cloudy	11:00	48.0
			12:00	46.0
			10:00	31.0
6	26-Dec-20	Fine	11:00	32.0
			12:00	36.0
			09:00	28.0
7	27-Dec-20	Fine	10:00	20.0
			11:00	53.0
			10:00	24.0
8	28-Dec-20	Fine	11:00	24.0
			12:00	26.0
			10:00	50.0
9	29-Dec-20	Fine	11:00	46.0
			12:00	49.0
			10:00	48.0
10	30-Dec-20	Fine	11:00	45.0
			12:00	50.0
			11:00	62.0
11	31-Dec-20	Fine	12:00	60.0
			13:00	57.0
			09:00	20.0
12	1-Jan-21	Fine	10:00	28.0
			11:00	20.0
			12:00	32.0
13	2-Jan-21	Fine	13:00	36.0
			14:00	31.0
			10:00	26.0
14	3-Jan-21	Fine	11:00	26.0
			12:00	27.0
			Average	40.7
			Max	75.0
			Min	20.0
			Action Level	276.5
			Limit Level	500.0

1hr TCD Manitoring Populto at AMC2 1 Tung Wan Tou Pood

Day	Date	Weather	Time	Mass Conc. (ug/m³)
			14:00	75.0
1	21-Dec-20	Fine	15:00	62.0
			16:00	65.0
			12:00	40.0
2	22-Dec-20	Fine	13:00	41.0
			14:00	32.0
			09:00	48.0
3	23-Dec-20	Cloudy	10:00	41.0
			11:00	31.0
			10:00	74.0
4	24-Dec-20	Fine	11:00	82.0
			12:00	88.0
			10:00	98.0
5	25-Dec-20	Cloudy	11:00	79.0
			12:00	82.0
			10:00	50.0
6	26-Dec-20	Fine	11:00	53.0
			12:00	58.0
			09:00	60.0
7	27-Dec-20	Fine	10:00	46.0
			11:00	66.0
			10:00	43.0
8	28-Dec-20	Fine	11:00	41.0
			12:00	48.0
			11:00	76.0
9	29-Dec-20	Fine	12:00	69.0
			13:00	74.0
			10:00	32.0
10	30-Dec-20	Fine	11:00	36.0
			12:00	38.0
			11:00	45.0
11	31-Dec-20	Fine	12:00	46.0
			13:00	48.0
			09:00	31.0
12	1-Jan-21	Fine	10:00	29.0
	. • • • • • • • • • • • • • • • • • • •		11:00	29.0
			12:00	30.0
13	2-Jan-21	Fine	13:00	29.0
. •		1 1110	14:00	33.0
			10:00	47.0
14	3-Jan-21	Fine	11:00	43.0
			12:00	42.0
	1		Average	51.9
			Max	98.0
			Min	29.0
			Action Level	283.7
			Limit Level	500.0

176.0

260.0

Action Level Limit Level

24hr TSP Monitoring Results at AMS1 - Silvermine Beach Resort

Equipment No. HVS020

Data	Sampling	Weather	Filter	Filter W	/eight, g	Elapse	Time, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
Date	Time	Condition	paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	μg/m³
21-Dec-20	12:00	Fine	6873	2.7403	2.8197	845.88	869.88	24.00	1.00	0.93	0.97	1392	57.0
22-Dec-20	12:02	Fine	6860	2.6873	2.7910	869.88	893.88	24.00	1.03	0.93	0.98	1410	73.5
23-Dec-20	12:04	Cloudy	6874	2.7480	2.8176	893.88	917.88	24.00	1.03	0.92	0.98	1404	49.6
24-Dec-20	12:06	Fine	6855	2.6738	2.7928	917.88	941.88	24.00	1.06	0.93	0.99	1428	83.3
25-Dec-20	12:08	Cloudy	6876	2.7646	2.8758	941.88	965.88	24.00	1.03	0.79	0.91	1311	84.8
26-Dec-20	12:10	Fine	6878	2.6977	2.7600	965.88	989.88	24.00	1.03	0.79	0.91	1308	47.6
27-Dec-20	12:12	Fine	6813	2.6871	2.7585	989.88	1013.88	24.00	1.02	0.79	0.90	1303	54.8
28-Dec-20	12:14	Fine	6862	2.6770	2.7658	1013.88	1037.88	24.00	1.02	0.79	0.90	1302	68.2
29-Dec-20	12:16	Fine	6870	2.7301	2.8799	1037.88	1061.88	24.00	1.02	0.80	0.91	1313	114.1
30-Dec-20	12:18	Fine	6880	2.7026	2.9373	1061.88	1085.88	24.00	1.04	0.82	0.93	1336	175.7
31-Dec-20	12:20	Fine	6822	2.7287	2.7911	1085.88	1109.88	24.00	1.05	0.81	0.93	1343	46.5
1-Jan-21	12:22	Fine	6823	2.7344	2.8036	1109.88	1133.88	24.00	1.05	0.81	0.93	1336	51.8
2-Jan-21	12:24	Fine	6825	2.7597	2.8123	1133.88	1157.88	24.00	1.04	0.93	0.99	1423	37.0
3-Jan-21	12:26	Fine	6829	2.6540	2.7193	1157.88	1181.88	24.00	1.03	0.93	0.98	1415	46.2
_												Average	70.7
												Max	175.7
												Min	37.0

176.0

260.0

Action Level Limit Level

24hr TSP Monitoring Results at AMS2 - 1 Tung Wan Tau Road

Equipment No. HVS019

Date	Sampling	Weather	Filter	Filter W	/eight, g	Elapse ¹	Time, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
Date	Time	Condition	paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Qsi	Final, Qsf	Average	Volume, m ³	μg/m³
21-Dec-20	12:10	Fine	6882	2.7121	2.8064	819.88	843.88	24.00	1.07	1.06	1.07	1534	61.5
22-Dec-20	12:12	Fine	6859	2.6742	2.7804	843.88	867.88	24.00	1.03	1.03	1.03	1484	71.6
23-Dec-20	12:14	Cloudy	6875	2.7553	2.8153	867.88	891.88	24.00	1.00	0.99	1.00	1434	41.8
24-Dec-20	12:16	Fine	6803	2.6811	2.7970	891.88	915.88	24.00	1.12	1.12	1.12	1613	71.9
25-Dec-20	12:18	Cloudy	6877	2.6815	2.7847	915.88	939.88	24.00	1.12	1.12	1.12	1616	63.9
26-Dec-20	12:20	Fine	6879	2.6967	2.7934	939.88	963.88	24.00	1.12	1.12	1.12	1612	60.0
27-Dec-20	12:22	Fine	6812	2.6865	2.8069	963.88	987.88	24.00	1.12	1.12	1.12	1608	74.9
28-Dec-20	12:24	Fine	6868	2.7318	2.9296	987.88	1011.88	24.00	1.02	1.02	1.02	1473	134.3
29-Dec-20	12:26	Fine	6869	2.7283	2.9309	1011.88	1035.88	24.00	1.02	1.04	1.03	1484	136.5
30-Dec-20	12:28	Fine	6881	2.7004	2.8703	1035.88	1059.88	24.00	1.10	1.11	1.11	1595	106.5
31-Dec-20	12:30	Fine	6814	2.7015	2.7706	1059.88	1083.88	24.00	1.15	1.14	1.14	1647	41.9
1-Jan-21	12:32	Fine	6824	2.7412	2.8016	1083.88	1107.88	24.00	1.11	1.10	1.11	1595	37.9
2-Jan-21	12:34	Fine	6828	2.7745	2.8388	1107.88	1131.88	24.00	1.10	1.10	1.10	1586	40.6
3-Jan-21	12:36	Fine	6830	2.6727	2.7495	1131.88	1155.88	24.00	1.10	1.09	1.10	1578	48.7
_												Average	70.8
												Max	136.5
												Min	37.9

Appendix E Baseline Noise Monitoring Data

Monitoring Station	Time Period	Parameter	Average	Max	Min
NMS1	From 0700 to 1900 hrs	L _{eq, 30min}	57.1	61.4	49.7
INIVIOT	FIGHT 0700 to 1900 HIS	Leq, 30min with façade correction *	60.1	64.4	52.7

Remark: * Due to free-field measurement, a correction factor of +3 dB (A) is applied.

Location:NMS1 - 1 Tung Wan Tau RoadModel no.Larson Davis LxTSer. No.3737Time Period:From 07:00hr to 19:00hrModel no.Cal 200Ser. No.13437

Day	Date	Weather	Time	L _{eq (5min)}	L _{10 (5min)}	L _{90 (5min)}	L _{eq (30mi}
			14:30	60.7	64.9	44.6	
			14:35	44.3	45.8	42.3	
1	21-Dec-20	Fine	14:40	53.4	56.2	42.0	54.3
		-	14:45 14:50	46.3 46.0	48.3 48.1	41.5 41.2	-
		-	14.50	50.3	52.8	41.2	
			13:55	54.0	56.0	47.0	
			14:00	49.6	51.8	46.4	
2	22-Dec-20	Fine	14:05	52.9	4.7	47.2	56.9
_	22 200 20		14:10	52.5	53.8	46.3	_
		-	14:15	59.2 61.5	59.7	46.3	-
			14:20 09:25	56.9	62.3 58.6	47.1 48.6	
		 	09:30	57.3	61.2	48.6	
2	23-Dec-20	Cloudy	09:35	51.1	52.6	48.4	53.8
3	23-Dec-20	Cloudy	09:40	50.3	52.9	46.4	_ 55.6
		-	09:45	47.7	49.0	46.4	_
			09:50 09:35	50.3 54.0	52.4 56.1	42.7 47.2	
		-	09.33	53.6	56.0	47.2	
	0.4 5	•	09:45	50.0	53.1	46.2	
4	24-Dec-20	Fine	09:50	50.2	52.8	46.8	52.0
			09:55	51.1	53.0	47.0	
			10:00	51.4	53.2	47.2	
		-	10:00	60.5	65.0	47.4	_
			10:05	57.8	61.2	48.2	-
5	25-Dec-20	Cloudy	10:10 10:15	57.1 56.9	60.6 60.5	50.1 49.5	57.3
		}	10:15	54.0	58.2	49.5	1
			10:25	54.2	57.8	46.4	-
			09:45	57.2	61.1	50.6	
			09:50	52.7	54.3	49.4	_
6	26-Dec-20	Fine	09:55	58.2	58.3	48.8	58.4
		-	10:00	55.6	56.9	49.1	
		-	10:05 10:10	61.8 59.4	61.0 61.5	51.8 49.8	-
			09:30	47.2	48.8	43.4	
		•	09:35	48.3	50.4	42.8	-
7	27 Dag 20	- Fin o	09:40	54.2	57.8	44.8	F2.0
7	27-Dec-20	Fine -	09:45	49.9	52.1	44.9	52.0
			09:50	56.1	60.0	45.1	
			09:55	47.6	49.7	43.5	
		-	09:40 09:45	53.2 50.1	55.6 53.0	47.4 45.9	-
		-	09.45	55.6	58.0	46.3	-
8	28-Dec-20	Fine	09:55	59.1	59.6	48.4	60.1
			10:00	64.5	65.0	52.8	
			10:05	62.5	63.5	54.0	
		-	10:15	64.7	65.6	51.4	_
		-	10:20	58.6	61.4	48.5	_
9	29-Dec-20	Fine	10:25 10:30	63.2 58.5	66.5 61.5	48.8 47.8	61.4
		ŀ	10:35	59.0	62.0	46.4	
		ļ	10:40	60.1	63.1	48.0	
			09:40	58.9	60.6	45.7	
			09:45	55.2	58.0	43.7	
10	30-Dec-20	Fine	09:50	57.1	60.5	45.4	57.6
		}	09:55 10:00	53.6 53.4	54.2 56.5	43.2 41.8	-
		}	10:00	61.5	62.8	41.8	1
			11:10	55.4	56.6	45.7	1
		ļ	11:15	50.2	52.6	44.6]
11	31-Dec-20	Fine	11:20	47.9	50.1	44.5	58.2
-		· ···•	11:25	59.8	60.1	46.3	
		-	11:30	61.4	61.4	43.6	4
			11:35 09:05	60.4 65.6	61.5 67.3	46.7 47.8	+
		}	09:05	44.0	45.1	41.1	1
10	04 155 04	- :	09:15	48.8	50.4	43.3	
12	01-Jan-21	Fine	09:20	52.0	54.8	45.0	58.5
		[09:25	51.3	53.5	41.5	4
	ļ		09:30	53.4	56.3	42.7	
		}	11:55	49.6	52.7 50.1	41.5	-
		}	12:00 12:05	48.1 49.0	50.1 51.8	39.7 39.3	1
13	02-Jan-21	Fine	12:10	49.6	51.4	45.1	49.7
		ļ	12:15	50.5	51.8	45.3	1
		_	12:20	50.9	53.3	47.2	
			09:10	50.3	52.4	42.6	
			09:15	51.0	53.0	42.0	4
14	03-Jan-21	Fine	09:20	51.6	53.2	42.5	51.5
		-	09:25 09:30	53.6 50.8	56.8 52.3	43.4 41.9	-
		}	09:30	50.8	52.3	41.9	1
	_		JJ.JJ		, 55.5	1	
	<u> </u>	I					

Appendix F Baseline Water Quality Monitoring Data

Baseline Water Quality Monitoring at Station W1 (Middle) - Ebb Tide

	0		0	Water	0	Sampling	Ter	mperature		рН			Salinity		DO Saturati	on		DO		Turbidity		S	SS
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Level	Depth		°C		-			ppt		%			mg/L		NTU		mg	g/L
	Date		111110	m	Level	m	Value	e Average	Value	А	Average	Valu	e .	Average	Value	Average	Valu	e Ave	age Val	ıe	Average	Value	Average
	12/14/2020	Cloudy	11:31	0.60		0.30	21.00	21.00 21.0	8.69	8.69	8.6	2.86	2.86	2.9	121.10 113.50	115.1	10.56	9.96	3.68	3.68	- 3/	3.90	- 39
	12/14/2020	Cloudy	11:35	0.60		0.30	21.00	21.00	8.52	8.52	0.0	2.85	2.85	2.0	112.90 112.70		9.86	9.84	3.67	3.67		3.80	
	12/16/2020	Fine	13:50	0.70		0.35	17.10	17.10	8.95	8.95	8.9	3.91	3.91	3.9	127.80 126.30	- 125 6 -	12.04	11.88	7.96	7.97	→ × ()	11.60	J 121 I
	12/10/2020	1 1110	13:52	0.70		0.35	17.10	17.10	8.89	8.89	0.0	3.83	3.83	0.0	125.10 123.00		11.74	11.60	7.98	7.99		12.60	
	12/18/2020	Fine	15:15	0.80		0.40	19.70	19.70	8.75	8.75	8.7	8.18	8.18	8.1	133.40 133.30	- 13ソソ -	11.17	11.16	13.37	13.33	– 133	9.50	⊣ 93 1
	12, 16, 2626		15:17	0.80		0.40	19.60	19.60	8.73	8.73	0	8.08	8.08	0	131.50 130.70		10.97	10.98	13.25	13.25		9.10	
	12/21/2020	Fine	17:45	0.60		0.30	17.10	17.10	9.04	9.04	9.0	3.60	3.60	3.5	93.30 95.50	- 989 -	8.81	9.04	4.21	4.19	-1 42	9.50	– 93 l
			17:47	0.60		0.30	17.00	17.00	8.96	8.96		3.48	3.48		104.00 102.90		9.85	9.67	4.15	4.10		9.10	
	12/23/2020	Cloudy	18:50	0.80		0.40	19.40	19.40	8.13	8.13	8.1	2.38	2.38	2.4	86.20 84.70	- 84 6 L	7.80	7.69 7.	, 4.54	4.54	45	2.70	- 26 I
			18:52	0.80		0.40	19.30	19.30	8.14	8.14		2.38	2.38		84.10 83.50		7.64	7.58	4.54	4.54		2.50	
W1	12/25/2020	Cloudy	9:15	0.80		0.40	18.20	18.20	8.23	8.23	8.2	1.24	1.24 1.24	1.2	126.30 125.90	_ 1/// _	11.83	11.80	7 3.62	3.63	J 36	2.40	コ ソ1 1
Wang Tong River			9:17	0.80	Middle	0.40	18.10	18.10	8.22	8.22		1.24			124.50 112.70		11.66	11.60	3.66	3.67		1.80	
(Major tributary)	12/28/2020	Fine	11:05 11:07	0.80 0.80		0.40	19.90 19.90	19.90 19.90	8.52 8.49	8.52 8.49	8.5	6.38	6.38 6.33	6.4	82.30 82.00 81.60 81.40	- X1 X F	7.22 7.16	7.19 7.15	6.93	6.93 6.93	- 69	4.90 5.20	- 51
			11:25	0.80		0.40	16.60	16.60	8.41	8.41		5.04	5.04		96.70 95.90		9.11	9.08	5.09	5.07		4.60	
	12/30/2020	Fine	11:27	0.80		0.40	16.60	16.60	8.42	8.42	8.4	4.79	4.79	4.9	95.70 95.50	- 960 F	9.06	9.04	5.08	5.07	- 1 51	4.00	- 44
			13:15	0.60		0.30	18.00	18.00	8.21	8.21		9.30	9.30		93.60 94.20		8.42	8.47	4.41	4.40		3.60	
	1/2/2021	Fine	13:17	0.60		0.30	18.10	18.10	8.17	8.17	8.2	9.30	9.30	9.3	94.50 95.00	– 421 −3 –	8.49	8.53	4.39	4.38	4 4 4	3.40	- 355 I
			16:00	0.70		0.35	18.20	18 20	7.98	7.98		0.14	0.14		105.90 105.80		9.99	9 98	4 86	4.85		3.40	
	1/4/2021	Fine	16:02	0.70		0.35	18.40	18.40	7.96	7.96	8.0	0.14	0.14	0.1	105.70 105.50	105.7	9.96	9.94	4.66	4.65	- // X	3.70	」
	1/0/0001		12:10	0.70		0.35	18.70	18 70	8.69	8.69		7.32	7.32		98.70 97.40		8.82	8 69	6 44	6.43		3.10	
	1/6/2021	Fine	12:12	0.70		0.35	18.70	18.70	8.62	8.62	8.7	7.35	7.35	7.3	96.40 96.00	4 4/1 -	8.64	8.57	6.42	8.41	- 69	4.40	- 3× 1
	4/0/0004	F'	20:40	0.70		0.35	12.10	12 10	8.97	8.97	0.0	8.84	8.84	0.0	86.50 85.90		8.79	8 73	, 5.10	5.11		3.90	
	1/8/2021	Fine	20:42	0.70		0.35	12.10	12.10	8.67	8.67	8.8	8.84	8.84	8.8	85.50 85.20	85.8	8.70	8.66	5.12	5.11	5.1	4.80	4.4

Baseline Water Quality Monitoring at Station W1 (Middle) - Flood Tide

	Compuling		Compuling	Water	Compiling	Sampling	Τe	emperature			рН			Salinity		DC) Saturation	on		DO		٦	urbidity		SS	S
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°С			-			ppt			%			mg/L			NTU		mg	ي/L
	Date		Tille	m	Бериі	m	Valu	ue A	verage	Value	ļ	Average	Valu	ıe	Average	Valu	ıe	Average	Valu	ie A	verage	Value	Э	Average	Value	Average
	12/14/2020	Cloudy	16:30	1.00		0.50	19.60	19.60	19.6	8.76	8.76	8.7	3.22	3.22	3.2	116.90	114.10	113.1	10.44	10.40	10.2	20.94	20.94	20.9 *	2.80	3.3
	12/14/2020	Cloudy	16:32	1.00		0.50	19.50	19.50	10.0	8.62	8.62	0.7	3.21	3.21	0.2	111.20	110.00	110.1	10.00	9.97	10.2	20.94	20.94	20.0	3.80	0.0
	12/16/2020	Fine	8:55	0.60		0.30	15.00	15.00	14.9	8.90	8.90	8.9	3.30	3.30	3.3	121.20	120.10	119.8	12.05	11.92	11.9	3.21	3.21	3.2	2.60	2.4
	12, 10, 2020		8:57	0.60		0.30	14.80	14.80	1 1.0	8.90	8.90	0.0	3.27	3.27	0.0	119.40	118.30		11.87	11.76		3.21	3.21	0.2	2.20	
	12/18/2020	Fine	10:45	0.70		0.35	18.00	18.00	17.9	8.20	8.20	8.2	0.11	0.11	0.1	141.50	140.80	139.6	13.30	13.21	10.0	3.68	3.69	3.6	5.30	5.5
			10:47	0.70		0.35	17.80	17.80		8.24	8.24		0.11	0.11		139.00	137.20		13.13	0.55		3.68	3.50		5.70	
	12/21/2020	Fine	11:25	0.60		0.30	15.60	16.00	15.8	8.53	8.53	8.5	1.86	1.86	1.9	115.30	115.40	115.3	11.29	11.30	11.3	9.99	9.98	10.0	5.90	5.7
			11:27	0.60		0.30	15.80	15.80		8.45	8.45		1.85	1.85		115.70	114.70		11.33	11.24		9.98	9.94		5.40	
	12/23/2020	Cloudy	12:30	0.70		0.35	19.40	19.40	19.5	8.49	8.49	8.4	2.64	2.64	2.6	153.00	155.60	146.6	13.58	14.24	13.2	5.31	5.32	5.3	2.10	2.4
			12:32 15:10	0.70 0.70		0.35 0.35	19.50 21.90	19.50 21.90		8.38 8.14	8.38 8.14		2.63 1.23	1.23		138.00 118.50	139.60 118.20		12.48 10.31	12.57 10.29		5.37 6.13	5.38 6.12		2.60 4.20	
W1	12/25/2020	Cloudy	15:10	0.70		0.35	21.90	21.90	21.9	8.12	8.12	8.1	1.23	1.23	1.2	118.10	117.60	118.1	10.31	10.29	10.3	6.13	6.12	6.1	3.50	3.9
Wang Tong River			16:05	1.00	Middle	0.50	21.70	21.70		8.60	8.60		6.03	6.03		103.00	102.60		8.76	8.65		7.02	7.03		4.20	
(Major tributary)	12/28/2020	Fine	16:07	1.00		0.50	21.50	21.50	21.6	8.55	8.55	8.6	6.00	6.00	6.0	101.60	101.10	102.1	8.65	8.58	8.7	7.03	7.01	7.0	5.20	4.7
			17:10	0.70		0.35	15.40	15.40		8.21	8.21		3.08	3.08		88.50	89.00		8.68	8.73		6.35	6.34		8.40	
	12/30/2020	Fine	17:12	0.70		0.35	15.40	15.40	15.4	8.15	8.15	8.2	3.08	3.08	3.1	89.20	89.60	89.1	8.76	8.79	8.7	6.33	6.31	6.3	8.60	8.5
	4/0/0004	Ein e	9:40	0.80		0.40	13.40	13.40	40.4	8.64	8.64	0.0	12.45	12.45	40.5	90.60	80.30	87.6	8.76	8.73	0.7	3.89	3.90	2.0	4.30	
	1/2/2021	Fine	9:42	0.80		0.40	13.30	13.30	13.4	8.61	8.61	8.6	12.51	12.51	12.5	89.90	89.70	87.6	8.70	8.68	8.7	3.91	3.93	3.9	4.40	4.4
	1/4/2021	Fine	11:05	0.70		0.35	17.80	17.80	17.8	8.55	8.55	8.5	12.97	12.97	13.0	93.90	92.40	92.1	8.30	8.15	8.1	4.34	4.34	12	3.20	2.4
	1/4/2021	rine	11:07	0.70		0.35	17.70	17.70	17.0	8.49	8.49	0.0	13.00	13.00	13.0	91.30	90.70	92.1	8.05	7.99	0.1	4.34	4.34	4.5	3.60	3.4
	1/6/2021	Fine	12:10	0.70		0.35	18.70	18.70	18.7	8.69	8.69	8.7	7.32	7.32	7.3	98.70	97.40	97.1	8.82	8.69	8.7	6.44	6.43	6.4	2.90	3.3
	1/0/2021	1 1110	12:12	0.70		0.35	18.70	18.70	10.7	8.62	8.62	0.7	7.35	7.35	7.5	96.40	96.00	57.1	8.64	8.57	0.7	6.42	6.41	0.4	3.70	0.0
	1/8/2021	Fine	13:15	0.60		0.30	11.90	11.90	11.9	8.80	8.80	8.8	1.03	1.03	1.0	109.60	109.40	109.3	11.77	11.75	11.7	5.32	5.32	53	2.40	2.8
	17072021	1 1110	13:17	0.60		0.30	11.90	11.90	11.5	8.79	8.79	0.0	1.03	1.03	1.0	109.20	108.90	100.0	11.73	11.69	1 1.7	5.32	5.31	0.0	3.20	2.0

Remark: * The data is excluded from determination of action and limit levels.

General Note: Additional data of temperature, pH, salinity, DO saturation, DO and turbidty were obtained in each duplicate set for better representativeness.

Baseline Water Quality Monitoring at Station W2 (Middle) - Ebb Tide

	On manifes as		Canan lin a	Water	Carranalina ar	Sampling	Ten	nperature		рН			Salinity		DO Satura	tion		DO		Tur	bidity		S	s
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Level	Depth		°C		-			ppt		%			mg/L		N	ITU		mg	უ/L
	Date		111110	m		m	Value	e Average	Value		Average	Valu	ue /	Average	Value	Average	Value	e A	verage	Value		Average	Value	Average
	12/14/2020	Cloudy	11:45	0.60		0.30	21.20	21.20 21.3	7.80	7.80	7.8	12.98	12.98	13.0	95.20 92.60	— 90.4 –	7.85	7.62	7.4	4.33	4.33	4.3	4.00	3.9
	12/14/2020	Cloudy	11:47	0.60		0.30	21.30	21.30	7.80	7.80	7.0	12.98	12.98	10.0	86.50 87.20		7.09	7.13	7	4.33	4.33	٦.٥	3.80	0.0
	12/16/2020	Fine	14:00	0.80		0.40	17.10	17.10	8.46	8.46	8.4	9.39	9.39	9.5	88.40 87.40	→ 8/4 ⊢	8.04	7.93	7.9	4.00	4.10	4.1	2.90	3.4
	12/10/2020	1 1110	14:02	0.80		0.40	17.10	17.10	8.35	8.35	0.1	9.63	9.63	0.0	86.80 86.90)	7.88	7.88	7.0	4.11	4.12		3.90	0.1
	12/18/2020	Fine	15:20	0.50		0.25	19.00	19.00	8.38	8.38	8.3	13.70	13.70	13.7	91.60 90.90	_ U// L	7.76	7.79	7.9	5.65	5.63	5.6	2.80	3.2
	12, 16, 2626		15:22	0.50		0.25	19.20	19.20	8.31	8.31	0.0	13.73	13.73	1011	92.30 95.00)	7.87	8.10	7.0	5.61	5.59	0.0	3.50	J
	12/21/2020	Fine	17:55	0.80		0.40	17.20	17.20	8.65	8.65	8.6	6.55	6.55	6.6	85.80 85.00	<u> </u>	7.96	7.88	7.9	3.88	3.88	3.8	2.80	3.2
			17:57	0.80		0.40	17.10	17.10	8.63	8.63		6.61	6.61		84.50 84.20)	7.84	7.82		3.85	3.78		3.50	
	12/23/2020	Cloudy	19:00	0.90		0.45	19.00	19.00	8.69	8.69	8.7	3.28	3.28	3.3	90.70 89.20	→ 885 ►	8.29	8.15	8.0	5.59	5.87	5.8	4.30	3.9
			19:02	0.90		0.45	18.90	18.90	8.71	8.71		3.29	3.29		87.90 86.00		8.00	7.65		5.88	5.90		3.50	<u> </u>
W2	12/25/2020	Cloudy	9:25	0.90		0.45	17.90	17.90	8.17	8.17 8.17	8.2	0.94	0.94 0.94	0.9	80.00 79.40	_ /uı _	7.55	7.47	7.5	4.12	4.10	4.1	2.60	2.5
Wang Tong River			9:27	0.90	Middle	0.45	17.80	17.80	8.17			0.94			78.50 78.40		7.41			4.11	4.12		2.40	
(Major tributary)	12/28/2020	Fine	11:25 11:27	0.90 0.90		0.45 0.45	19.00 19.10	19.00 19.10	8.40 8.36	8.40 8.36	8.4	5.46 5.49	5.46 5.49	5.5	73.20 72.70 71.80 71.50	→ /23 ⊢	6.53 6.45	6.48 6.42	6.5	3.76 3.76	3.77 3.76	3.8	2.20 3.00	2.6
			11:35	0.90		0.45	16.60	16.60	8.19	8.19		9.05	9.05		71.80 71.50		6.68	6.78		4.59	4.60		3.00	
	12/30/2020	Fine	11:37	0.80		0.40	16.50	16.50	8.16	8.16	8.2	9.07	9.03	9.1	74.90 76.40	→ /4 3 ⊢	6.91	7.05	6.9	4.59	4.59	4.6	2.70	2.9
			13:25	1.00		0.40	15.30	15.30	8.23	8.23		5.80	5.80		103.30 102.20)	9.98	9.88		4.77	4.78		3.90	1
	1/2/2021	Fine	13:27	1.00		0.50	15.40	15.40	8.26	8.26	8.2	5.80	5.80	5.8	101.80 101.50	→ 1022 ►	9.84	9.81	9.9	4.79	4.78	4.8	3.40	3.7
			11:15	0.70		0.35	17.50	17 50	8.57	8.57		10.26	10.26		93.90 91.20	1	8.65	8.31		3.72	4.85		3.10	
	1/4/2021	Fine	11:17	0.70		0.35	17.60	17.60	8.49	8.49	8.5	10.27	10.27	10.3	88.20 86.10	_ xaa_	7.96	7.75	3.7	3.71	3.72	4.0	2.70	2.9
	1/0/0001		12:25	0.70		0.35	18.20	18 20	8.36	8.36		6.06	6.06		87.30 86.60	1	7.94	7.88		3.44	3.45		2.80	
	1/6/2021	Fine	12:27	0.70		0.35	18.30	18.30	8.33	8.33	8.3	6.03	6.03	6.0	85.70 85.10	— 86 2 E	7.79	7.74	7.8	3.46	3.45	3.5	3.20	3.0
	4/0/0004	Fig. a	20:50	0.80		0.40	11.80	11.80	8.66	8.66	0.7	8.62	8.62	0.7	87.50 86.70	1	8.97	8.89	0.0	4.48	4.48	4.5	4.70	4.0
	1/8/2021	Fine	20:52	0.80		0.40	11.70	11.70	8.65	8.65	8.7	8.68	8.68	8.7	86.00 85.00	86.3	8.83	8.73	8.9	4.48	4.49	4.5	3.80	4.3

Baseline Water Quality Monitoring at Station W2 (Middle) - Flood Tide

	Sampling		Sampling	Water	Sampling	Sampling	Te	emperature)		рН			Salinity		DC	Saturation	on		DO		Turbidity		SS	
Station Reference	Date	Weather	Time	Depth	Depth	Depth		°C			-			ppt			%			mg/L		NTU		mg/l	<u> </u>
	Date		111110	m	Бериі	m	Valu	ıe	Average	Val	ue	Average	Val	lue	Average	Valu	е	Average	Value	Э	Average	Value	Average	Value A	Average
	12/14/2020	Cloudy	16:40	0.80		0.40	19.70	19.70	19.6	8.29	8.29	8.3	6.48	6.48	6.5	106.70	105.40	104.5	9.38	9.30	9.2	43 4.42	4.5	3.40	3.3
	12/14/2020	Oloudy	16:42	0.80		0.40	19.50	19.50	10.0	8.30	8.30	0.0	6.48	6.48	0.0	103.70	102.20	104.0	9.16	9.08	4	54 4.51		3.20	
	12/16/2020	Fine	9:05	0.80	4	0.40	17.20	17.20	16.9	8.05	8.05	8.1	20.36	20.36	20.4	89.00	87.00	87.1	7.69	7.49	7.5	84 2.79	- 281	2.20	2.3
	12/10/2020	1 1110	9:07	0.80	_	0.40	16.60	16.60	10.0	8.05	8.05	<u> </u>	20.44	20.44	20.1	86.90	85.40	07.1	7.52	7.40	2	79 2.79	2.0	2.40	
	12/18/2020	Fine	11:00	0.80		0.40	16.90	16.90	16.9	8.16	8.16	8.2	0.11	0.11	0.1	104.00	102.80	103.5	10.30	10.05	10 1	55 4.54	45	3.20	3.4
	.2, 10,2020	1 11.10	11:02	0.80		0.40	16.90	16.90		8.17	8.17		0.11	0.11	0	103.70	103.50	100.0	10.08	10.04	4	52 4.50		3.60	
	12/21/2020	Fine	11:40	0.80		0.40	14.80	14.80	14.9	7.89	7.89	7.9	7.28	7.28	7.3	116.70	114.30	112.6	11.29	11.06	11 ()	13 3.13	3.1	2.20	2.3
	, ,	6	11:42	0.80	4	0.40	14.90	14.90		7.90	7.90		7.34	7.34		112.00	107.50		10.80	10.86	3	13 3.11		2.40	
	12/23/2020	Cloudy	12:45	0.80		0.40	19.10	19.10	19.2	8.29	8.29	8.3	2.69	2.69	2.7	117.00	114.10	115.7	9.25	9.07	92	76 3.76	– 381	2.20	2.5
		313.33	12:47	0.80	-	0.40	19.20	19.20		8.24	8.24		2.69	2.69		117.20	114.30		9.27	9.08	3	76 3.83		2.70	
W2	12/25/2020	Cloudy	15:10	0.80		0.40	20.80	20.80	20.9	8.49	8.49	8.5	1.43	1.43	1.4	73.80	73.70	73.7	6.54	6.53	6.5	44 7.45	- / 4	6.20	6.3
Wang Tong River		,	15:12	0.80	→ 1\/11(1(1)(1)	0.40	20.90	20.90		8.45	8.45		1.43	1.43		73.80	73.30		6.54	6.50		43 7.42		6.30	
(Major tributary)	12/28/2020	Fine	16:20	1.00		0.50	20.50	20.50	20.6	8.54	8.54	8.5	4.75	4.75	4.8	73.60	73.40	73.2	6.44	6.42	6.4	84 5.83	– 5 8 1	3.40	4.0
			16:22	1.00	-	0.50	20.60	20.60		8.49	8.49		4.75	4.75		72.80	72.80		6.37	6.37		83 5.83		4.50	
	12/30/2020	Fine	17:20	0.70	_	0.35	17.10	17.10	17.0	8.56	8.56	8.5	10.37	10.37	10.4	83.70	83.40	83.3	7.58	7.56	/ 5 	06 6.06	- 61	4.30	4.4
			17:22	0.70	-	0.35	16.80	16.80		8.52	8.52		10.43	10.43		83.10	83.00		7.53	7.51		04 6.05		4.50	
	1/2/2021	Fine	9:50	0.70		0.35	14.10	14.10	14.2	8.28	8.28	8.3	24.70	24.70	24.7	65.80	66.80	67.2	5.80	5.89	59	59 4.60	46	5.20	5.0
			9:52	0.70	_	0.35	14.20	14.20		8.30	8.30		24.67	24.67		67.60	68.50		5.96	6.03		62 4.61		4.70	
	1/4/2021	Fine	16:10	0.70 0.70	-	0.35	18.70	18.70	18.8	8.67	8.67	8.7	8.63	8.63	8.6	91.60	91.30	90.7	8.11	8.09	81 ——	85 4.85	481	3.60	3.8
			16:12		-	0.35	18.80	18.80		8.65	8.65		8.57	8.57		90.30	89.70		8.09	7.95		66 4.65		3.90	
	1/6/2021	Fine	12:25 12:27	0.70 0.70	_	0.35 0.35	18.20 18.30	18.20 18.30	18.3	8.36 8.33	8.36 8.33	8.3	6.06 6.03	6.06 6.03	6.0	87.30 85.70	86.60 85.10	86.2	7.94 7.79	7.88 7.74	/ 8 ⊢	44 3.45 46 3.45	- 351	1.90 2.30	2.1
			13:25	0.70	_	0.35	12.00	12.00		8.33						83.70			8.77					2.30	
	1/8/2021	Fine	13:25	0.70	-	0.35	11.80	11.80	11.9	8.25	8.25 8.24	8.2	4.49 4.53	4.49 4.53	4.5	82.30	82.80 81.80	82.7	8.63	8.87 8.57	8.7	22 4.22 21 4.20	12	2.30	2.6
			13.21	0.70		0.33	11.60	11.00		0.24	0.24		4.03	4.53		02.30	01.00		0.03	0.01	4	4.20		2.30	

Baseline Water Quality Monitoring at Station W4 (Middle) - Ebb Tide

	Sampling		Sampling	Water	Sampling	Sampling	Te	emperature	рН			Salinity		DO	Saturation	n	Г	00	Turbidity		S	S
Station Reference	Date	Weather	Time	Depth	Level	Depth		°C	-			ppt			%		m	ıg/L	NTU		mg	g/L
				m		m	Valu	ue Averag	Value	Average	Val	ue	Average	Value	e .	Average	Value	Average	Value	Average	Value	Average
	12/14/2020	Cloudy	11:50	0.70		0.35	20.50	20.50	7.86 7.8	7.8	7.58	7.58	7.6	89.80	90.90	87.9	7.78	7.84 7.6	4.54 4.54	4.5	3.50	3.7
	12/14/2020	Oloudy	11:52	0.70		0.35	20.60	20.60	7.80 7.8	30 7.0	7.58	7.58	7.0	85.40	85.40	07.5	7.32	7.32	4.54 4.54	+.5	3.80	0.1
	12/16/2020	Fine	14:10	0.60		0.30	16.40	16.40	8.37 8.3	— ×× ı	8.94	8.94	9.0	80.60	85.20	82.2	7.47	7.71 7.6	4.14 4.12	4.1	5.10	4.8
	12/10/2020	1 1110	14:12	0.60		0.30	16.30	16.30	8.28 8.2	28	8.96	8.96	0.0	83.00	80.00	02.2	7.57	7.45	4.12 4.09)	4.40	4.0
	12/18/2020	Fine	15:30	2.00		1.00	17.90	17.90	8.56 8.5	8.5	6.41	6.41	6.4	96.20	98.10	98.3	8.80	9.05	4.61 4.62	4.7	6.40	6.8
	12/10/2020	1 1110	15:32	2.00		1.00	17.80	17.80	8.49 8.4	19	6.45	6.45	0.4	99.50	99.20	50.0	9.08	9.06	4.69 4.70)	7.10	0.0
	12/21/2020	Fine	18:05	0.70		0.35	16.80	16.80	8.64 8.6	- 86 1	6.10	6.10	6.1	84.10	83.80	83.9	7.88	7.86	4.83 4.97	- 1 50 1	6.40	6.8
	12/21/2020		18:07	0.70		0.35	16.70	16.70	8.64 8.6	64	6.11	6.11	0	84.00	83.70	00.0	7.87	7.85	5.04 5.08	3	7.10	0.0
	12/23/2020	Cloudy	19:15	0.80		0.40	19.30	19.30	8.33 8.3	— 83 I	5.64	5.64	5.6	75.40	75.10	74.9	6.72	6.70	7.00 6.99	-1 /()	6.80	6.4
	,,		19:17	0.80		0.40	19.30	19.30	8.31 8.3	31	5.65	5.65	0.0	74.60	74.30		6.66	6.63	6.99 6.93	3	5.90	
W4	12/25/2020	Cloudy	9:40	0.80		0.40	18.00	18.00	8.54 8.5	- н х л н	1.97	1.97	1.8	79.80	79.30	78.9	7.47	7.42	4.85 4.85	- 49 1	3.50	4.0
Wang Tong River			9:42	0.80	Middle	0.40	18.00	18.00	8.53 8.5	53	1.58	1.58		78.30	78.10		7.34	7.32	4.85 4.85	5	4.40	
(Minor tributary to Tai Wai Yuen)	12/28/2020	Fine	11:30	0.80		0.40	21.00	21.00	7.93 7.9	— / 9	18.66	18.66	18.7	88.30	88.00	87.8	6.99	6.97	6.60 6.59	- 66	3.90	3.5
vvai ruen)			11:32	0.80		0.40	21.60	21.60	7.87 7.8		18.77	18.77		87.60	87.20		6.94	6.90	6.60 6.61		3.00	
	12/30/2020	Fine	11:50	0.70		0.35	17.00	17.00	8.11 8.	— ×1 i	10.50	10.50	10.5	84.00	83.60	83.6	7.59	7.55 7.6	4.20 4.19	🗕 4)	3.70	3.6
			11:52	0.70		0.35	17.40	17.40	8.07 8.0		10.56	10.56		83.50	83.30		7.54	7.52	4.18 4.17		3.50	
	1/2/2021	Fine	13:40	0.80		0.40	15.90	15.90	7.89 7.8		14.61	14.61	14.6	107.30	107.00	106.9	9.71	9.68	4.34 4.34	-1 43 1	3.00	2.9
			13:42	0.80		0.40	15.90	15.90	7.89 7.8		14.64	14.64		106.70	106.50		9.65	9.63	4.33 4.34		2.70	
	1/4/2021	Fine	16:20	0.70		0.35	18.00	18.00	8.42 8.4	— ×	12.34	12.34	12.3	97.90	96.50	95.1	9.09	8.92	4.63 4.64	- 46 1	3.70	3.6
			16:22	0.70		0.35	18.40	18.40	8.43 8.4		12.32	12.32		93.20	92.70		8.16	8.09	4.65 4.66		3.40	
	1/6/2021	Fine	12:35	0.60		0.30	17.90	17.90	8.37 8.3	— 84	5.27	5.27	5.3	87.90	87.50	87.4	8.02	7.98	3.62 3.62	-1 36 1	3.10	3.1
			12:37	0.60		0.30	18.30	18.30	8.36 8.3		5.28	5.28		87.20	86.90		7.95	7.92	3.62 3.62	_	3.00	
	1/8/2021	Fine	21:00	0.80		0.40	9.50	9.50	8.17 8.	→ 82 1	3.52	3.52	3.5	86.80	86.70	86.5	9.68	9.65	3.99 3.99	⊣ 4()	2.20	2.4
			21:02	0.80		0.40	9.50	9.50	8.16 8.4	16	3.52	3.52		86.30	86.20		9.62	8.62	3.99 3.98	3	2.60	

Baseline Water Quality Monitoring at Station W4 (Middle) - Flood Tide

	Compilian		Compling	Water	Compuling	Sampling	Te	emperature			рН			Salinity		D	O Saturatio	n		DO		Tı	urbidity		Sf	S
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°C			-			ppt			%		m	ng/L			NTU		mg	J/L
	Date			m	Берит	m	Valı	ue	Average	Value		Average	Valu	ue	Average	Va	ue	Average	Value		Average	Value		Average	Value	Average
	12/14/2020	Cloudy	16:45	0.70		0.35	19.70	19.70	19.7	8.04	8.04	8.0	8.88	8.88	8.9	100.80	99.50	98.3	8.71	8.55	8.5	4.97	4.97	5.0	4.60	4.8
	12/14/2020	Cloudy	16:47	0.70		0.35	19.70	19.70	19.7	8.00	8.00	8.0	8.88	8.88	0.9	97.00	95.90	90.3	8.41	8.32	0.5	4.97	4.96	5.0	4.90	4.0
	12/16/2020	Fine	9:15	0.60		0.30	15.50	15.50	15.3	7.89	7.89	7.0	22.96	22.96	23.0	76.30	78.20	75.5	6.66	6.82	6.6	2.89	2.87	2.0	3.50	3.8
	12/10/2020	i iiie	9:17	0.60		0.30	15.10	15.10	13.3	7.84	7.84	7.9	22.96	22.96	23.0	74.50	73.10	7 3.3	6.50	6.40	0.0	2.87	2.85	2.3	4.00	J.0 L
	12/18/2020	Fine	11:10	0.60		0.30	17.20	17.20	17.2	8.19	8.19	8.2	0.10	0.10	0.1	104.30	104.30	104.4	10.05	10.05	10.1	3.30	3.29	3.3	4.00	3.8
	12/10/2020	i iiie	11:12	0.60		0.30	17.20	17.20	17.2	8.20	8.20	0.2	0.09	0.09	0.1	104.40	104.50	104.4	10.05	10.06	10.1	3.24	3.23	3.3	3.50	3.0
	12/21/2020	Fine	11:50	0.70		0.35	15.30	15.30	15.3	7.95	7.95	8.0	7.28	7.28	7.5	116.70	114.30	101.3	11.29	11.06	9.7	3.13	3.13	2.9	2.60	2.7
	12/21/2020	i iiie	11:52	0.70		0.35	15.20	15.20	13.3	7.95	7.95	8.0	7.74	7.74	7.5	87.30	86.70	101.5	8.32	8.27	9.1	2.69	2.68	2.5	2.70	2.1
	12/23/2020	Cloudy	12:55	1.00		0.50	19.10	19.10	19.2	8.13	8.13	8.1	3.73	3.73	3.7	83.60	85.60	83.8	7.56	7.71	7.6	4.60	4.70	4.5	3.10	3.5
	12/23/2020	Cloudy	12:57	1.00		0.50	19.30	19.30	13.2	8.11	8.11	0.1	3.75	3.75	5.7	83.10	83.00	05.0	7.55	7.54	7.0	4.37	4.36	4.5	3.80	5.5
W4	12/25/2020	Cloudy	15:35	0.70		0.35	21.10	21.10	21.1	8.22	8.22	8.2	2.81	2.81	2.8	85.20	84.90	84.8	7.46	7.44	7.4	12.06	12.05	12.1	10.50	11.0
Wang Tong River	12/23/2020	Cloudy	15:37	0.70	Middle	0.35	21.10	21.10	21.1	8.23	8.23	0.2	2.82	2.82	2.0	84.60	84.40	04.0	7.41	7.39	7.4	12.05	12.06	12.1	11.40	11.0
(Minor tributary to Tai	12/28/2020	Fine	16:30	0.80	Middle	0.40	20.80	20.80	20.8	8.22	8.22	8.2	12.07	12.07	12.1	81.20	80.90	80.6	6.78	6.75	6.7	7.09	7.10	7 1	4.10	43
Wai Yuen)	12/20/2020	TITIC	16:32	0.80		0.40	20.70	20.70	20.0	8.26	8.26	0.2	12.12	12.12	12.1	80.40	79.80	00.0	6.71	6.66	0.7	7.11	7.12	7.1	4.50	7.5
	12/30/2020	Fine	17:30	0.60		0.30	15.30	15.30	15.3	8.58	8.58	8.6	8.65	8.65	8.7	76.60	76.30	76.2	7.27	7.26	7.3	6.06	6.05	5.8	5.30	5.2
	12/30/2020	TITIC	17:32	0.60		0.30	15.20	15.20	10.0	8.56	8.56	0.0	8.67	8.67	0.7	76.10	75.90	70.2	7.25	7.22	7.5	5.58	5.59	5.0	5.10	0.2
	1/2/2021	Fine	10:00	0.70		0.35	12.30	12.30	12.4	8.40	8.40	8.4	13.67	13.67	13.7	76.90	76.80	77.1	7.57	7.50	7.6	3.49	3.49	3.5	4.80	4.8
	1/2/2021	1 1110	10:02	0.70		0.35	12.40	12.40	12.7	8.34	8.34	0.4	13.67	13.67	10.7	77.30	77.50	77.1	7.61	7.62	7.0	3.47	3.48	0.0	4.70	7.0
	1/4/2021	Fine	11:25	0.70		0.35	17.70	17.70	17.7	8.30	8.30	8.3	12.52	12.52	12.5	79.50	79.40	79.2	7.03	7.02	7.0	3.72	3.71	3.7	3.30	3.2
	1/4/2021	Tille	11:27	0.70		0.35	17.70	17.70	17.7	8.25	8.25	0.5	12.53	12.53	12.5	79.00	78.80	19.2	6.98	6.97	7.0	3.70	3.68	5.7	3.00	5.2
	1/6/2021	Fine	12:35	0.60		0.30	17.90	17.90	18.1	8.37	8.37	8.4	5.27	5.27	5.3	87.90	87.50	87.4	8.02	7.98	8.0	3.62	3.62	3.6	2.40	2.0
	1/0/2021	i iiie	12:37	0.60		0.30	18.30	18.30	10.1	8.36	8.36	0.4	5.28	5.28	5.5	87.20	86.90	07.4	7.95	7.92	0.0	3.62	3.62	5.0	1.60	2.0
	1/8/2021	Fine	13:35	0.70		0.35	10.20	10.20	10.2	8.59	8.59	8.6	1.84	1.84	1 Ω	93.70	93.10	93.0	10.40	10.34	10.3	4.12	4.12	4.1	5.20	5.6
	1/0/2021	1 IIIC	13:37	0.70		0.35	10.20	10.20	10.2	8.56	8.56	0.0	1.84	1.84	1.0	92.80	92.50	33.0	10.30	10.26	10.5	4.12	4.12	7.1	6.00	5.0

Baseline Water Quality Monitoring at Station W5 (Middle) - Ebb Tide

	Sampling		Sampling	Water	Sampling	Sampling	Te	emperature	р	Н		Salinity		DO) Saturatio	on		DO	Turbidity	′	SS	3
Station Reference	Date	Weather	Time	Depth	Level	Depth		°C				ppt			%	1	n	ng/L	NTU	•	mg.	,/L
				m		m	Valu	ue Avera	je Value	Averag	je Va	lue	Average	Valu	ıe	Average	Value	Average	Value	Average	Value	Average
	12/14/2020	Cloudy	12:10	0.50		0.25	20.20	20.20	7.84	7.84 7.8	6.44	6.44	6.4	93.20	93.40	93.2	8.14	8.16	3.33 3.33	3.3	6.20	6.7
	12/14/2020	Cloudy	12:12	0.50		0.25	20.10	20.10	7.79	7.79	6.44	6.44	0.4	93.20	92.90	56.2	8.14	8.11	3.24 3.24	1 0.0	7.10	0.7
	12/16/2020	Fine	14:20	0.50		0.25	16.20	16.20	8.12	8.12	11.47	11.47	11.5	93.30	92.00	91.4	8.52	8.42	4.48 4.53	- 45	5.00	5.0
	12/10/2020	1 1110	14:22	0.50		0.25	16.20	16.20	8.14	8.14	11.47	11.47	11.0	90.30	89.80	01.1	8.24	8.22	4.59 4.5	7	4.90	0.0
	12/18/2020	Fine	15:35	0.50		0.25	17.40	17.40	8.33	8.33	8.98	8.98	9.0	96.50	97.20	97.0	8.73	8.80	4.61 4.60	4.6	4.60	4.7
	12/10/2020	1 1110	15:37	0.50		0.25	17.60	17.60	8.28	8.28	8.97	8.97	0.0	97.40	96.90		8.81	8.80	4.59 4.59	9	4.80	
	12/21/2020	Fine	18:20	0.50		0.25	16.80	16.80	8.42	8.42	5.43	5.43	5.4	83.50	8.00	64.2	7.85	7.80 7.8	6.52 6.53	- 1 65	4.60	4.7
	12/21/2020		18:22	0.50		0.25	16.70	16.70	8.45	8.45	5.44	5.44	0	82.70	82.60	02	7.78	7.77	6.51 6.52	2 0.0	4.80	
	12/23/2020	Cloudy	19:25	0.50		0.25	18.80	18.80	8.29	8.29	6.45		6.5	75.90	75.40	75.2	6.80	6.75	6.60 6.69	- 1 6/	5.50	5.5
	12,26,2626		19:27	0.50		0.25	18.80	18.80	8.29	8.29	6.45	6.45	0.0	75.00	74.60	7 0.2	6.72	6.68	6.66 6.74	1	5.40	
W5	12/25/2020	Cloudy	9:50	0.50		0.25	19.30	19.30	8.21	8.21	7.15		7.2	68.90	68.80	68.6	6.08	6.07	5.79 5.80	- 58	4.70	4.7
Silvermine Bay	, ,		9:52	0.50	Middle	0.25	19.20	19.20	8.21	8.21	7.17	7.17		68.40	68.20	00.0	6.04	6.02	5.82 5.83	3	4.60	
(Near Silvermine Bay	12/28/2020	Fine	11:45	0.50		0.25	21.30	21.30	7.93	7.93	27.74	27.74	27.8	106.10	105.60	105.2	8.00	7.96	5.84 5.84	- 58	11.04	7.5
Beach)		_	11:47	0.50		0.25	21.30	21.30		7.99	27.79	27.79		104.70	104.30		7.90	7.86	5.83 5.84	_	4.00	
1	12/30/2020	Fine	12:05	0.50		0.25	16.70	16.70	8.07	8.07	11.11	11.11	11.1	107.00	106.50	106.4	9.73	9.69	3.99 3.99	4()	3.40	3.6
			12:07	0.50		0.25	16.70	16.70	8.09	8.09	11.16	11.16		105.90	106.30		9.63	9.66	3.99 3.99		3.70	
	1/2/2021	Fine	13:50	0.50		0.25	16.10	16.10	7.75	7.75 7.8	24.33	24.33	24.4	95.40	94.90	94.6	8.10	8.05	4.60 4.6	→ 4.6	3.60	3.6
			13:52	0.50		0.25	16.00	16.00	7.77	7.77	24.43	24.43		94.30	93.60		8.01	7.95	4.67 4.68		3.50	
	1/4/2021	Fine	16:30	0.50		0.25	18.50	18.50	8.25	8.25	12.14	12.14	12.2	101.10	107.80	104.6	8.87	8.97	5.47 5.49	- 55	3.00	2.9
			16:32	0.50		0.25	18.50	18.50	8.20	8.20	12.16	12.16		104.30	105.10		9.13	9.17	5.50 5.5		2.80	
	1/6/2021	Fine	12:50	0.50		0.25	19.30	19.30	7.82	7.82 7.8	20.76	20.76	20.8	117.20	117.00	116.6	9.56	9.53	5.32 5.32	→ 5.3	5.10	5.8
			12:52	0.50		0.25	19.30	19.30	7.85	7.85	20.78	20.78		116.40	115.70		9.49	9.43	5.31 5.30		6.40	
	1/8/2021	Fine	21:10	0.50		0.25	10.80	10.80	8.77	8.77	7.91	7.91	7.9	83.70	83.30	82.6	8.81	8.77	4.12 4.12	┥ 4.1	2.60	2.8
		-	21:12	0.50		0.25	10.70	10.70	8.76	8.76	7.92	7.92	_	82.00	81.20		8.64	8.56	4.12 4.12	2	3.00	

Baseline Water Quality Monitoring at Station W5 (Middle) - Flood Tide

	Comming		Compling	Water	Compolina	Sampling	Τe	emperature)		рН			Salinity		D(O Saturation	n		DO		Tu	urbidity		S	SS
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°С			-			ppt			%		r	mg/L			NTU		mg	უ/L
	Date			m	Берит	m	Valu	ue	Average	Value		Average	Valu	ue	Average	Val	ue	Average	Value		Average	Value		Average	Value	Average
	12/14/2020	Cloudy	16:50	0.50		0.25	18.80	18.80	18.7	8.04	8.04	8.0	8.16	8.16	8.2	116.70	113.00	112.9	10.38	10.05	10.0	4.14	4.15	4.2	31.60	21.9 *
	12/14/2020	Cloudy	16:52	0.50		0.25	18.60	18.60	10.7	8.05	8.05	0.0	8.16	8.16	0.2	111.50	110.20	112.9	9.91	9.81	10.0	4.16	4.15	4.2	12.10	21.9
	12/16/2020	Fine	9:25	0.50		0.25	15.20	15.20	15.1	7.96	7.96	8.0	17.80	17.80	17.8	79.80	80.20	80.2	7.23	7.29	7.3	3.02	3.13	3.1	4.10	4.4
	12/10/2020	Tille	9:27	0.50		0.25	14.90	14.90	10.1	7.94	7.94	0.0	17.80	17.80	17.0	80.40	80.40	00.2	7.35	7.35	7.5	3.13	3.03	5.1	4.70	7.7
	12/18/2020	Fine	11:20	0.50		0.25	17.20	17.20	17.2	8.19	8.19	8.2	0.09	0.09	0.1	104.20	104.30	104.3	10.02	10.03	10.0	3.34	3.33	3.3	10.00	9.6
	12/10/2020	Tille	11:22	0.50		0.25	17.20	17.20	17.2	8.20	8.20	0.2	0.09	0.09	0.1	104.30	104.40	104.5	10.04	10.04	10.0	3.33	3.32	5.5	9.10	9.0
	12/21/2020	Fine	12:00	0.50		0.25	15.50	15.50	15.6	7.86	7.86	7.9	11.30	11.30	11.3	91.40	91.80	92.1	8.49	8.52	8.5	2.56	2.57	2.6	2.40	2.6
	12/2 1/2020	Tille	12:02	0.50		0.25	15.60	15.60	13.0	7.87	7.87	7.9	11.33	11.33	11.5	92.40	92.60	92.1	8.58	8.60	0.5	2.57	2.57	2.0	2.70	2.0
	12/23/2020	Cloudy	13:05	0.50		0.25	19.60	19.60	19.6	7.77	7.77	7.8	11.03	11.03	11.1	92.00	91.30	91.4	7.88	7.87	7.8	5.68	5.65	5.7	6.10	6.5
	12/23/2020	Cloudy	13:07	0.50		0.25	19.60	19.60	19.0	7.83	7.83	7.0	11.19	11.19	11.1	92.00	90.40	31.4	7.80	7.74	7.0	5.64	5.63	5.7	6.90	0.5
W5	12/25/2020	Cloudy	15:45	0.50		0.25	21.00	21.00	21.0	8.16	8.16	8.2	3.47	3.47	3.5	96.80	96.50	96.2	8.46	8.44	8.4	7.94	7.95	7.9	7.90	7.7
Silvermine Bay	12/23/2020	Oloddy	15:47	0.50	Middle	0.25	21.00	21.00	21.0	8.19	8.19	0.2	3.50	3.50	0.0	95.80	95.60	30.2	8.37	8.37	0.4	7.94	7.93	7.5	7.40	/./
(Near Silvermine Bay	12/28/2020	Fine	16:35	0.50	Middle	0.25	20.70	20.70	20.7	8.21	8.21	83	21.01	21.01	21.1	112.30	111.70	111.3	8.91	8.86	8.8	8.29	8.28	8.3	6.80	6.5
Beach)	12/20/2020	1 1110	10:37	0.50		0.25	20.70	20.70	20.1	8.30	8.30	0.0	21.10	21.10	21.1	110.90	110.10	111.0	8.80	8.75	0.0	8.27	8.26	0.0	6.20	0.0
	12/30/2020	Fine	17:40	0.50		0.25	13.70	13.70	13.8	8.55	8.55	8.6	9.46	9.46	9.2	91.20	92.00	92.2	8.91	8.99	8.8	4.68	4.69	4.7	7.20	7.0
	12/00/2020	1 1110	17:42	0.50		0.25	13.80	13.80	10.0	8.55	8.55	0.0	9.46	8.46	0.2	92.40	93.00	02.2	8.09	9.08	0.0	4.70	4.69	7.7	6.80	7.0
	1/2/2021	Fine	10:10	0.50		0.25	13.20	13.20	13.4	8.25	8.25	8.2	13.85	13.85	13.9	94.40	94.80	95.4	9.06	9.09	9.1	3.76	3.75	3.7	3.90	3.7
	17272021	1 1110	10:12	0.50		0.25	13.50	13.50	10.4	8.21	8.21	0.2	13.87	13.87	10.5	95.40	96.90	30.4	9.15	9.29	0.1	3.74	3.73	0.7	3.50	0.7
	1/4/2021	Fine	11:35	0.50		0.25	18.50	18.50	18.6	8.03	8.03	8.0	24.14	24.14	24.2	94.80	94.10	93.7	7.69	7.63	7.6	5.39	5.38	5.4	5.60	5.6
	17-7/2021	TITIC	11:37	0.50		0.25	18.60	18.60	10.0	8.05	8.05	0.0	24.18	24.18	27.2	93.20	92.80	55.7	7.56	7.53	7.0	5.37	5.36	5.4	5.50	5.0
	1/6/2021	Fine	12:50	0.50		0.25	19.30	19.30	19.3	7.82	7.82	7.8	20.76	20.76	20.8	117.20	117.00	116.6	9.56	9.53	9.5	5.32	5.32	53	3.20	3.4
	17072021	1 1110	12:52	0.50		0.25	19.30	19.30	10.0	7.85	7.85	7.0	20.78	20.78	20.0	116.40	115.70	110.0	9.49	9.43	0.0	5.31	5.30	0.0	3.60	5.4
	1/8/2021	Fine	13:45	0.50		0.25	10.30	10.30	10.3	8.39	8.39	8.4	2.39	2.39	2.4	132.10	131.80	131.4	14.58	14.55	14.3	3.89	3.89	3.9	2.20	2.1
	1/0/2021	TITIC	13:47	0.50		0.25	10.30	10.30	10.5	8.40	8.40	0.4	2.38	2.38	۷.٦	131.20	130.30	101.4	14.48	13.39	17.0	3.89	3.89	0.9	2.00	۷.۱

Remark: * The data is excluded from determination of action and limit levels.

General Note: Additional data of temperature, pH, salinity, DO saturation, DO and turbidty were obtained in each duplicate set for better representativeness.

Baseline Water Quality Monitoring at Station W6 (Middle) - Ebb Tide

Station Reference	Sampling	Weather	Sampling	Water Depth	Sampling	Sampling Depth	Te	emperature °C	рН			Salinity		DC) Saturatio	on		00	Turbidity	1		SS ~/l
Station Reference	Date	vveamer	Time	m	Level	m	Val		- Value	Average	\/a	ppt lue	Average	Valu	%	Average	m Value	g/L Average	NTU Value	Average	Value	g/L Average
			10:40	1.60		0.80	21.10	21 10	7.50 7.50	1	32.54	32.54	J	91.00	91.40	J	6.70	6.73	8.01 8.0	1	18.40	Ū
	12/14/2020	Cloudy	10:42	1.60		0.80	21.00	21.00 21.1	7.61 7.6	- /6	32.54	32.54	32.5	92.40	92.90	91.9	6.80	6.84	8.01 8.01	- 80	49.40	33.9 *
			13:05	1.40		0.70	18.80	18.80	7.82 7.82	2	32.46	32.46		88.70	91.60		6.86	7.03	9.38 9.39	9	10.10	
	12/16/2020	Fine	13:07	1.40		0.70	18.50	18.50	8.00 8.00	7.9	32.77	32.77	32.6	88.30	90.20	89.7	6.82	6.98	9.31 9.3	9.3	20.20	15.2
	40/40/0000	Fire	14:35	1.40		0.70	18.50	18.50	8.11 8.1 ⁻¹	1 00	32.78	32.78	20.0	156.00	158.10	4545	12.02	12.24	7.54 7.55	5 7.0	8.20	0.4
	12/18/2020	Fine	14:37	1.40		0.70	18.40	18.40	8.20 8.20	8.2	32.84	32.84	32.8	151.80	152.00	154.5	11.43	11.44 11.8	7.57 7.56	7.6	7.90	8.1
	12/21/2020	Fine	16:50	1.40		0.70	17.50	17.50	8.09 8.09	8.2	32.55	32.55	32.7	95.00	98.80	96.5	7.48	7.70 7.5	7.00 6.93	7.0	8.20	8.1
	12/21/2020	1 1116	16:52	1.40		0.70	17.40	17.40	8.22 8.22	2 0.2	32.80	32.80	32.1	96.80	95.20	90.5	7.62	7.37	6.94 6.99	9 7.0	7.90	0.1
	12/23/2020	Cloudy	18:05	1.60		0.80	18.50	18.50	8.18 8.18	→ 82	32.05	32.05	32.1	83.40	82.40	82.0	6.45	6.38	4.37 4.36	 44	3.70	3.7
	12,20,2020	Cloudy	18:07	1.60		0.80	18.50	18.50	8.24 8.24	1	32.10	32.10	02.1	81.50	80.70	02.0	6.31	6.25	4.35 4.36	6	3.60	
W6	12/25/2020	Cloudy	8:25	1.40		0.70	18.50	18.50	7.71 7.7	→ / 8	32.04	32.04	32.1	82.00	81.90	81.7	6.37	6.36	5.64 5.62	- 56	4.80	5.1
Silvermine Bay	,		8:27	1.40	Middle	0.70	18.20	18.20	7.95 7.99	5	32.10	32.10		81.50	81.40		6.33	6.32	5.60 5.62	2	5.40	
(Near Silvermine Bay Beach)	12/28/2020	Fine	10:20	1.20		0.60	20.00	20.00 20.2	7.54 7.54	- //	31.99	31.99	32.0	102.20	101.50	101.2	7.66	7.61 7.6	6.18 6.17	-1 62	5.80	5.6
Deach)			10:22	1.20		0.60	20.30	20.30	7.79 7.79		32.06	32.06		100.80	100.40		7.56	7.53	6.16 6.15	_	5.40	
	12/30/2020	Fine	12:30	1.00		0.50	19.40	19.40	8.01 8.0	- ×0 1	32.10	32.10	32.2	91.60	90.20	90.0	6.67	6.85	6.79 6.80	— იგ	8.30	8.2
			12:32 14:20	1.00		0.50 0.50	19.10 17.80	19.10	8.08 8.08 7.98 7.98		32.31	32.31		89.60	88.70		6.81	6.75	6.80 6.81		8.10	
	1/2/2021	Fine	14:22	1.00 1.00		0.50	17.70	17.80 17.70	7.98 7.98 8.09 8.09	- 80	31.95 31.96	31.95 31.96	32.0	95.60 94.00	94.90 93.30	94.5	7.51 7.38	7.45 7.32	9.23 9.23 9.22 9.22	-1 9.2	8.70 7.80	8.3
			15:15	1.40		0.70	18.60	18.60	8.20 8.20	-	31.92	31.92		102.90	102.50		7.95	7.91	6.00 6.01	_	6.80	
	1/4/2021	Fine	15:17	1.40		0.70	18.60	18.60	8.20 8.20	→ 82 1	31.97	31.97	31.9	101.70	101.30	102.1	7.86	7.83	6.05 6.03	- 1 60	6.40	6.6
			11:25	1.40		0.70	18.40	18 40	7.96 7.96	3	31.76	31.76		96.70	96.20		7.52	7 48	6.01 6.02	2	6.30	
	1/6/2021	Fine	11:27	1.40		0.70	18.40	18.40	8.03 8.03	- 80 1	31.83	31.83	31.8	95.90	95.00	96.0	7.46	7.39	6.03 6.04	→ 6.0	5.70	6.0
	4/0/0004	F.	19:30	1.60		0.80	14.60	14 60	8.40 8.40	_	31.67	31.67	04.0	99.50	99.20	00.0	8.32	8.31	6.41 6.42	2	5.90	
	1/8/2021	Fine	19:32	1.60		0.80	14.40	14.40	8.49 8.49	→ 84 1	31.87	31.87	31.8	99.30	98.90	99.2	8.32	8.29	6.43 6.44	6.4	6.80	6.4

Remark: * The data is excluded from determination of action and limit levels.

Baseline Water Quality Monitoring at Station W6 (Middle) - Flood Tide

	Comming		Compaling	Water	Compuling	Sampling	Τe	emperature)	Ĭ	рΗ			Salinity		D	O Saturatio	n	[DO		Tu	rbidity		S	SS
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°C			-			ppt			%		m	ng/L		ı	VTU		mg	უ/L
	Date			m	Берит	m	Valu	ue	Average	Value		Average	Val	ue	Average	Va	lue	Average	Value	1	Average	Value		Average	Value	Average
	12/14/2020	Cloudy	16:00	0.80		0.40	20.70	20.70	20.6	7.41	7.41	7.5	32.64	32.64	32.7	120.60	124.80	123.3	9.17	9.30	9.3	7.98	7.98	8.0	12.60	12.0
	12/14/2020	Cloudy	16:02	0.80		0.40	20.40	20.40	20.0	7.64	7.64	7.5	32.68	32.68	32.7	124.80	123.10	123.3	9.30	9.28	9.5	7.97	7.93	0.0	11.40	12.0
	12/16/2020	Fine	8:15	1.40		0.70	18.40	18.40	18.1	7.55	7.55	7.7	32.49	32.49	32.6	90.50	90.10	91.4	7.05	7.02	7.1	8.07	8.11	8.1	12.20	12.6
	12/10/2020	TITIC	8:17	1.40		0.70	17.80	17.80	10.1	7.76	7.76	7.7	32.66	32.66	32.0	92.70	92.40	31.4	7.26	7.23	7.1	8.12	8.13	0.1	13.00	12.0
	12/18/2020	Fine	9:50	1.20		0.60	18.00	18.00	17.9	7.63	7.63	7.8	32.37	32.37	32.4	131.40	134.20	132.7	10.20	10.44	10.3	10.40	10.41	10.4	12.50	12.6
	12/10/2020	1 1110	9:52	1.20		0.60	17.70	17.70	17.5	7.89	7.89	7.0	32.39	32.39	52.4	133.80	131.20	102.7	10.30	10.20	10.5	10.35	10.33	10.4	12.70	12.0
	12/21/2020	Fine	12:24	1.00		0.50	17.20	17.20	17.3	7.71	7.71	7.8	32.61	32.61	32.7	98.70	98.70	98.8	7.79	7.79	7.8	10.40	10.42	10.5	14.80	15.0
	12/21/2020	1 1110	12:27	1.00		0.50	17.30	17.30	17.5	7.85	7.85	7.0	32.69	32.69	02.7	98.60	99.30	30.0	7.78	7.82	7.0	10.53	10.55	10.5	15.20	10.0
	12/23/2020	Cloudy	13:30	1.20		0.60	18.90	18.90	18.9	7.68	7.68	7.8	32.00	32.00	32.0	83.60	83.30	80.4	6.41	6.39	6.4	4.53	4.48	4.4	4.30	4.8
	12/23/2020	Oloddy	13:32	1.20		0.60	18.90	18.90	10.5	7.82	7.82	7.0	32.04	32.04	32.0	82.60	72.00	00.4	6.35	6.30	0.4	4.41	4.22	7.7	5.20	4.0
W6	12/25/2020	Cloudy	14:10	1.20		0.60	20.10	20.10	20.1	7.84	7.84	7.9	32.17	32.17	32.2	92.50	94.10	95.1	6.95	7.07	7.2	9.06	9.05	9.1	7.90	8.4
Silvermine Bay	12,20,2020	Cloddy	14:12	1.20	Middle	0.60	20.10	20.10	20.1	7.89	7.89	7.0	32.20	32.20	02.2	96.50	97.30		7.27	7.32	,	9.11	9.12	0.1	8.90	<u> </u>
(Near Silvermine Bay	12/28/2020	Fine	15:20	1.30	madio	0.65	20.50	20.50	20.5	7.06	7.06	7.5	31.13	31.13	31.7	103.80	103.20	103.3	5.88	5.87	5.9	7.78	7.71	77	8.70	8.3
Beach)	12/20/2020		15:22	1.30		0.65	20.50	20.50	20.0	7.97	7.97	7.10	32.18	32.18	01	103.00	103.10	100.0	5.86	5.87	0.0	7.68	7.69		7.80	0.0
	12/30/2020	Fine	16:20	1.20		0.60	19.10	19.10	19.0	8.30	8.30	8.3	32.21	32.21	32.3	94.00	95.50	96.1	7.22	7.30	7.4	8.38	8.39	8.4	9.20	9.3
	. =, 0 0, = 0 = 0		16:22	1.20		0.60	18.90	18.90		8.37	8.37	0.0	32.30	32.30	02.0	97.10	97.70		7.43	7.47		8.38	8.37	U	9.40	
	1/2/2021	Fine	8:45	0.70		0.35	15.70	15.70	15.6	8.08	7.08	7.9	32.05	32.05	32.1	91.60	92.70	92.9	7.53	7.62	7.6	8.09	8.08	8.1	9.40	9.3
	., _,		8:47	0.70		0.35	15.40	15.40		8.15	8.15		32.18	32.18		92.90	94.30		7.62	7.82		8.07	8.06		9.10	
	1/4/2021	Fine	10:15	1.40		0.70	17.90	17.90	18.0	8.15	8.15	8.2	31.99	31.99	32.0	101.40	100.40	100.2	7.95	7.87	7.9	4.85	4.86	4.9	7.30	7.5
	., ., === :		10:17	1.40		0.70	18.00	18.00		8.24	8.24	5.2	32.03	32.03	02.0	99.90	99.20		7.83	7.78		4.86	4.87		7.60	
	1/6/2021	Fine	11:25	1.40		0.70	18.40	18.40	18.4	7.96	7.96	8.0	31.76	31.76	31.8	96.70	96.20	96.0	7.52	7.48	7.5	6.01	6.02	6.0	5.00	4.7
	5 5 1		11:27	1.40		0.70	18.40	18.40		8.03	8.03		31.83	31.83	55	95.90	95.00	33.0	7.46	7.39		6.03	6.04	0.0	4.40	
	1/8/2021	Fine	14:10	1.00		0.50	15.50	15.50	15.5	7.71	7.71	7.8	31.79	31.79	31.9	95.70	95.60	95.1	7.85	7.82	7.8	7.15	7.16	7.2	7.80	8.1
	1,0,2021		14:12	1.00		0.50	15.50	15.50	10.0	7.87	7.87		31.92	31.92	31.0	94.80	94.30	00.1	7.74	7.70		7.22	7.23		8.30	J. 1

Baseline Water Quality Monitoring at Station W7 (Middle) - Ebb Tide

	Commilia a		Committee or	Water	Committee	Sampling	Te	mperature		рŀ	<u> </u>		Salinity		D	O Saturatio	on		DO		-	Turbidity		٤	SS
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Level	Depth		°C		-			ppt			%			mg/L			NTU		m _f	g/L
	Buto		Tillo	m	Lovoi	m	Valu	ie Ave	erage	Value	Averag	e Valu	ie	Average	Val	lue	Average	Valu	ue A	Average	Valu	е	Average	Value	Average
	12/14/2020	Cloudy	11:10	1.40		0.70	21.20	21.20	1.2	7.98	7.98	32.81	32.81	32.8	112.40	111.10	110.5	8.24	8.15	8.1	9.50	9.47	9.5	7.40	7.7
	12/14/2020	Cloudy	11:12	1.40		0.70	21.20	21.20	1.2	8.00	3.00	32.82	32.82	32.0	109.30	109.00	110.5	8.02	7.97	0.1	9.47	9.47	9.0	7.90	/./
	12/16/2020	Fine	13:30	1.20]	0.60	18.70	18.70	8.5	8.26	8.3	32.79	32.79	32.8	86.60	86.80	86.9	6.64	6.71	7.7	9.21	9.23	9.2	9.30	9.4
	12/10/2020	1 1110	13:32	1.20		0.60	18.20	18.20	0.0	8.31	3.31	32.89	32.89	32.0	86.70	87.30	00.0	8.71	8.77		9.23	9.23	5.2	9.40	JT
	12/18/2020	Fine	15:00	1.20]	0.60	18.50	18.50	8.6	8.24	8.3	32.45	32.45	32.5	78.30	77.80	77.8	6.03	5.99	6.0	8.50	8.49	8.4	9.60	9.4
	12/10/2020	TITIC	15:02	1.20]	0.60	18.60	18.60	0.0	8.34	3.34	32.55	32.55	02.0	77.70	77.30	77.0	5.97	5.95	0.0	8.25	8.26	0.4	9.10	J
	12/21/2020	Fine	17:15	1.40]	0.70	17.20	17.20	7.1	8.38	8.4	32.12	32.12	32.2	97.00	98.30	94.5	7.71	7.67	7.4	6.21	6.19	6.2	9.60	9.4
	12/21/2020	1 1110	17:17	1.40]	0.70	16.90	16.90	, . ·		3.40	32.31	32.31	02.2	92.00	90.60	04.0	7.22	7.16	7	6.17	6.16	0.2	9.10	5.4
	12/23/2020	Cloudy	18:30	1.40]	0.70	18.80	18.80	8.8		3.39	31.66	31.66	31.7	76.90	76.70	76.7	5.94	5.93	5.9	4.33	4.31	4.3	3.20	3 5
	12/20/2020	Cloudy	18:32	1.40		0.70	18.70	18.70	0.0		3.39	31.69	31.69	01.7	76.80	76.50	7 0.7	5.93	5.91	0.0	4.30	4.26	1.0	3.70	
W7	12/25/2020	Cloudy	8:55	1.20		0.60	18.40	18.40	8.4		8.2	32.15	32.15	32.2	101.50	100.90	100.6	7.80	7.82	7.8	4.16	4.16	4.2	3.90	- 34
Silvermine Bay	12/20/2020	Cloudy	8:57	1.20	Middle	0.60	18.40	18.40	<u> </u>		3.25	32.22	32.22	02.2	100.10	99.70		7.80	7.76		4.16	4.17		2.90	<u> </u>
(Open Water)	12/28/2020	Fine	10:50	1.00	, maais	0.50	20.10	20.10	0.2		8.1	32.10	32.10	32.1	103.80	103.20	102.9	7.79	7.75	7.7	5.95	5.95	6.0	6.50	6.1
	. =, =0, =0=0		10:52	1.00		0.50	20.20	20.20			3.12	32.11	32.11	5	102.50	101.90		7.70	7.65		5.95	5.95	0.0	5.60	
	12/30/2020	Fine	12:55	0.90		0.45	19.30	19.30	9.2		8.3	32.20	32.20	32.2	99.70	98.60	98.0	7.68	7.56	7.5	6.50	6.49	6.5	7.10	6.9
			12:57	0.90		0.45	19.00	19.00			3.32	32.24	32.24		96.90	96.60		7.47	7.41		6.50	6.51		6.70	
	1/2/2021	Fine	14:45	0.90		0.45	17.80	17.80	7.8		8.4	32.04	32.04	32.1	88.40	88.10	88.0	6.94	6.91	6.9	6.01	6.02	6.0	5.60	+ 5/ L
			14:47	0.90		0.45	17.80	17.80			3.36	32.16	32.16		87.80	87.60		6.88	6.86		6.03	6.04		5.80	
	1/4/2021	Fine	15:40	1.20		0.60	18.60	18.60	8.6		8.2	31.95	31.95	32.0	100.50	100.10	99.8	7.78	7.74	7.7	6.67	6.73	6.7	7.10	7.3
			15:42	1.20		0.60	18.60	18.60			3.23	31.95	31.95		99.50	98.90		7.70	7.65		6.71	6.72		7.40	
	1/6/2021	Fine	11:50	0.80		0.40	18.30	18.30	8.3		8.3	31.71	31.71	31.7	97.60	97.40	97.0	7.64	7.61	7.6	5.14	5.13	5.1	6.80	5.9
			11:52	0.80		0.40	18.30	18.30			3.30	31.75	31.75		97.00	96.10		7.56	7.49		5.14	5.13		5.00	
	1/8/2021	Fine	20:10	1.40		0.70	14.90	14.90	4.9		8.6	31.35	31.35	31.4	88.40	87.70	87.1	7.38	7.31	7.3	5.14	5.13	5.1	4.40	4.8
		_	20:12	1.40		0.70	14.80	14.80		8.61	3.61	31.43	31.43	_	86.60	85.80	-	7.22	7.16	-	5.12	5.11		5.20	

Baseline Water Quality Monitoring at Station W7 (Middle) - Flood Tide

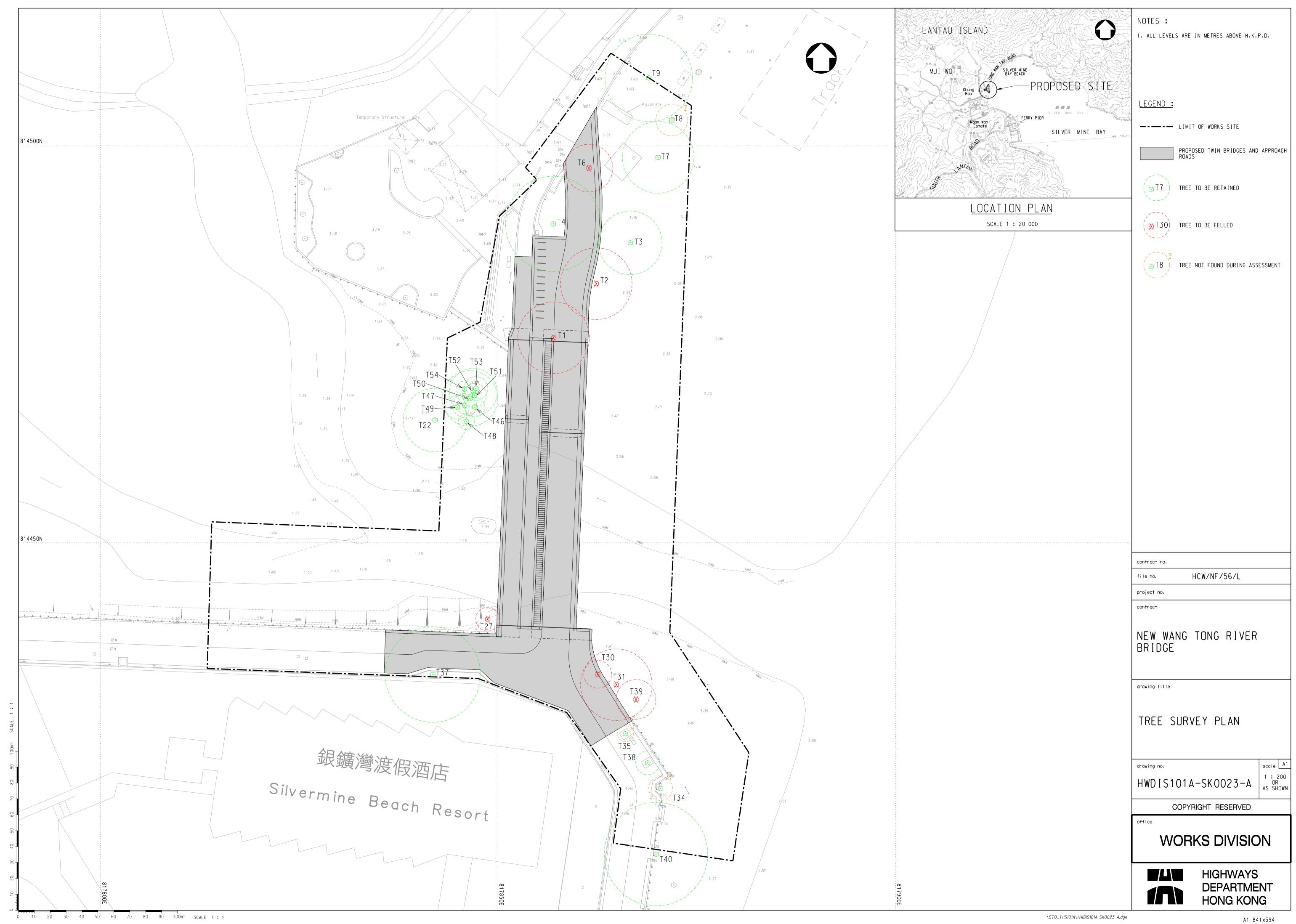
	Comming		Compling	Water	Complian	Sampling	Te	emperature)		рН			Salinity		D	O Saturatio	n		DO		Tı	urbidity		S	S
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°C			-			ppt			%		r	mg/L			NTU		mg	g/L
	Date		111116	m	Бери	m	Valu	ue	Average	Value		Average	Val	lue	Average	Va	lue	Average	Value		Average	Value		Average	Value	Average
	12/14/2020	Cloudy	16:15	1.40		0.70	20.70	20.70	20.6	8.01	8.01	8.0	32.76	32.76	32.8	86.70	87.10	86.5	6.43	6.47	6.9	9.74	9.74	9.7	11.40	11.2
	12/14/2020	Cloudy	16:17	1.40		0.70	20.40	20.40	20.0	8.00	8.00	8.0	32.80	32.80	32.0	86.40	85.80	00.5	6.42	8.34	0.9	9.73	9.72	9.1	11.00	11.2
	12/16/2020	Fine	8:40	0.80		0.40	17.90	17.90	17.9	8.14	8.14	8.1	32.79	32.79	32.8	86.50	86.60	88.6	6.70	6.71	6.9	10.10	10.16	10.2	13.40	13.6
	12/10/2020	1 1110	8:42	0.80		0.40	17.80	17.80	17.5	8.15	8.15	0.1	32.79	32.79	32.0	90.50	90.60	00.0	7.08	7.10	0.9	10.17	10.19	10.2	13.80	15.0
	12/18/2020	Fine	10:20	0.60		0.30	17.90	17.90	17.8	8.16	8.16	8.2	32.65	32.65	32.5	99.00	99.60	99.4	7.38	7.44	7.1	9.99	10.05	10.0	15.10	14.8
	12/10/2020	1 1116	10:22	0.60		0.30	17.60	17.60	17.0	8.22	8.22	0.2	32.40	32.40	32.3	99.50	99.30	33.4	7.44	7.43	7.4	10.01	10.00	10.0	14.50	14.0
	12/21/2020	Fine	12:50	1.00		0.50	17.10	17.10	17.2	8.15	8.15	8.2	32.71	32.71	32.7	80.60	80.10	79.9	6.37	6.33	6.3	10.63	10.61	10.6	12.80	12.6
	12/21/2020	1 1116	12:52	1.00		0.50	17.20	17.20	17.2	8.18	8.18	0.2	32.78	32.78	52.7	79.70	79.30	79.9	6.30	6.27	0.5	10.56	10.50	10.0	12.30	12.0
	12/23/2020	Cloudy	13:55	1.00		0.50	18.80	18.80	18.8	8.22	8.22	8.2	32.25	32.25	32.3	77.50	76.40	76.1	5.95	5.86	5.8	6.52	6.53	6.6	6.50	6.7
	12/23/2020	Cloudy	13:57	1.00		0.50	18.80	18.80	10.0	8.23	8.23	0.2	32.25	32.25	32.3	75.50	74.90	70.1	5.81	5.75	5.0	6.57	6.62	0.0	6.80	0.7
W7	12/25/2020	Cloudy	14:40	1.00		0.50	19.70	19.70	19.9	8.13	8.13	8.2	32.34	32.34	32.3	72.40	72.30	72.2	5.48	5.47	5.4	7.04	7.03	7.0	7.70	7.2
Silvermine Bay	12/20/2020	Oloudy	14;42	1.00	Middle	0.50	20.00	20.00	10.0	8.19	8.19	0.2	32.29	32.29	02.0	72.10	72.10	12.2	5.41	5.41	5.4	7.03	7.05	7.0	6.70	7.2
(Open Water)	12/28/2020	Fine	15:45	1.40	Middle	0.70	20.40	20.40	20.3	8.25	8.25	83	32.14	32.14	32.1	96.50	96.00	95.9	7.20	7.15	7 2	8.42	8.43	8.4	10.00	10.5
	12/20/2020	1 1110	15:47	1.40		0.70	20.10	20.10	20.0	8.27	8.27	0.0	32.15	32.15	02.1	95.70	95.20	30.0	7.14	7.11	1.2	8.45	8.44	0.4	10.90	10.0
	12/30/2020	Fine	16:40	1.20		0.60	18.70	18.70	18.7	8.45	8.45	8.5	32.20	32.20	32.2	103.70	102.50	102.3	7.99	7.89	7.9	6.97	6.98	7.0	10.20	10.1
	12/00/2020	1 1110	16:42	1.20		0.60	18.70	18.70	10.7	8.46	8.46	0.0	32.26	32.26	02.2	101.90	100.90	102.0	7.85	7.76	7.0	6.99	7.00	7.0	9.90	10.1
	1/2/2021	Fine	9:15	0.60		0.30	16.30	16.30	16.3	8.36	8.36	8.4	32.05	32.05	32.1	81.50	83.60	84.2	6.58	6.75	6.8	6.10	6.11	6.1	6.90	6.8
	1/2/2021	1 1110	9:17	0.60		0.30	16.30	16.30	10.0	8.36	8.36	0.4	32.05	32.05	02.1	85.10	86.60	04.2	6.86	6.99	0.0	6.10	6.09	0.1	6.60	0.0
	1/4/2021	Fine	10:40	1.20		0.60	17.90	17.90	17.9	8.38	8.38	8.4	31.95	31.95	83.9	83.90	83.70	83.5	6.58	6.56	6.5	6.27	6.28	63	8.20	8.1
	1/4/2021	TITIO	10:42	1.20		0.60	17.90	17.90	17.5	8.39	8.39	0.4	31.98	31.98	00.0	83.40	82.90	00.0	6.54	6.50	0.0	6.27	6.26	0.0	7.90	0.1
	1/6/2021	Fine	11:50	0.80		0.40	18.30	18.30	18.3	8.29	8.29	83	31.75	31.75	31.8	97.60	97.40	97.0	7.64	7.61	7.6	5.14	5.13	5.1	3.70	3.6
	1/0/2021	1 1110	11:52	0.80		0.40	18.30	18.30	10.0	8.30	8.30	0.0	31.75	31.75	31.0	97.00	96.10	37.0	7.56	7.49	7.0	5.14	5.13	5.1	3.40	5.0
	1/8/2021	Fine	14:35	1.00		0.50	15.40	15.40	15.3	8.37	8.37	8.4	32.00	32.00	32.0	92.30	91.50	91.3	7.59	7.52	7.5	6.80	6.81	6.8	9.60	9.7
	1/0/2021	1 1110	14:37	1.00		0.50	15.20	15.20	10.0	8.38	8.38	0.4	32.04	32.04	52.0	91.00	90.20	51.5	7.47	7.41	7.5	6.80	6.79	0.0	9.80	9.1

Baseline Water Quality Monitoring at Station W8 (Surface) - Ebb Tide

	Sampling		Sampling	Water	Sampling	Sampling	Tei	mperature	рН		Salinity	1	DO S	aturation		DO	Turbidit	у	SS	3
Station Reference	Date	Weather	Time	Depth	Level	Depth		°C	-		ppt			%		mg/L	NTU		mg/	/L
	Baio		11110	m	20101	m	Value	e Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
	12/14/2020	Cloudy	10:50	3.70		1.00	21.10	21.10 21.1	7.76 7.7	76 7.8	32.82 32.8	2 32.8	94.40	94.90	6.92	6.96	4.71 4.7	8 7.1	5.80	5.5
	12/14/2020	Cloudy	10:52	3.70		1.00	21.10	21.10	7.83 7.8	33 7.0	32.85 32.8	5 32.0	109.30	109.00	8.02	7.97	9.47 9.4	4	5.20	5.5
	12/16/2020	Fine	13:10	4.00		1.00	18.90	18.90	8.10 8.1	8.2	32.50 32.5	0 32.6	87.40	88.70	6.69	6.81	7.43 7.4	2 7.4	7.10	7.4
	12/10/2020	1 1116	13:32	4.00		1.00	18.60	18.60	8.15 8.5	50	32.79 32.7	9 32.0	84.90	85.50	6.51	6.58	7.43 7.4	4	7.60	7.4
	12/18/2020	Fine	14:45	3.80		1.00	18.20	18.20	8.21 8.2	8.2	32.65 32.6	5 32.7	82.50	81.50	6.39	6.30	8.13 8.0	9 8.1	9.40	9.7
	12/10/2020	1 1110	14:47	3.80		1.00	18.20	18.20	8.28 8.2	28	32.83 32.8	3	80.40	79.70	6.23	6.18	8.04 8.0	5	9.90	
	12/21/2020	Fine	17:00	4.20		1.00	17.40	17.40	8.27 8.2	8.3	32.58 32.5	- 32 /	96.20	94.80	7.58	7.24 7.0	5.20 5.2	0 5.2	9.40	9.7
	12/21/2020	1 1110	17:02	4.20		1.00	17.30	17.30	8.32 8.3	32	32.77 32.7	7	85.70	83.70	6.75	6.53	5.27 5.2	9	9.90	0.7
	12/23/2020	Cloudy	18:15	3.80		1.00	18.60	18.60	8.32 8.3	— 83	32.21 32.2	- 32.2	82.20	80.90	6.34	6.22	2.95 2.9	<u> </u>	2.00	2.1
	12/20/2020	Cloudy	18:17	3.80		1.00	18.60	18.60	8.33 8.3	33	32.22 32.2	2	79.60	78.90	6.15	6.09	2.83 2.8	2 2.0	2.20	
W8	12/25/2020	Cloudy	8:35	3.80		1.00	18.40	18.40	8.11 8.1	→ 81	32.18 32.1	- 322	81.20	80.10	6.28	6.21	5.09 5.0	— 51 I	4.00	3.8
Silvermine Bay	, ,		8:37	3.80	Surface	1.00	18.40	18.40	8.14 8.1	14	32.24 32.2	4	79.90	79.10	6.19	6.15	5.09 5.0	9	3.60	
(Open Water)	12/28/2020	Fine	10:30	3.80		1.00	19.90	19.90 20.0	7.95 7.9	— 80	32.14 32.1	- 32.2	89.80	89.40	6.77	6.74	5.09 5.0	- 1 51 1	6.00	7.0
			10:32	3.80		1.00	20.00	20.00	7.99 7.9	99	32.18 32.1	8	89.30	89.10	6.73	6.71	5.09 5.0	9	7.90	
	12/30/2020	Fine	12:40	3.80		1.00	19.50	19.50	8.22 8.2	— 82	32.06 32.0	- 322	75.20	75.00 75.0	5.72	5.71	7.33 7.3	⊣ /3	7.70	7.6
			12:42	3.80		1.00	19.10	19.10	8.23 8.2	23	32.33 32.3	3	75.10	74.80	5.72	5.70	7.31 7.2	9	7.50	
	1/2/2021	Fine	14:30	3.60		1.00	17.20	17.20	8.22 8.2	— 82	32.08 32.0	─ 32.1	93.80	94.10 94.2	7.44	7.48 7.5	4.65 4.6	— 46 1	5.20	5.2
			14:32	3.60		1.00	17.20	17.20	8.26 8.2		32.13 32.1		94.40	94.50	7.48	7.50	4.63 4.6		5.20	
	1/4/2021	Fine	15:25	2.00		1.00	18.20	18.20	8.37 8.3	— × 4	32.07 32.0	─ 32.1		105.70	8.28	8.23	5.32 5.3	— 53 I	6.10	6.1
			15:27	2.00		1.00	18.20	18.20	8.40 8.4		32.04 32.0			104.10	8.16	8.11	5.36 5.3		6.10	
	1/6/2021	Fine	11:35	3.50		1.00	18.10	18.10	8.18 8.1	─ 8.2	31.86 31.8	→ 31.9	96.70	96.10 96.0	7.55	7.50 7.5	5.42 5.4	- 54	3.80	3.8
			11:37	3.50		1.00	18.10	18.10	8.23 8.2		31.95 31.9	_	95.70	95.40	7.47	7.45	5.44 5.4	+	3.80	
	1/8/2021	Fine	19:55	3.70		1.00	15.30	15.30	8.52 8.5		31.41 31.4	→ 31.4	92.00	91.60 91.5	7.61	7.57 7.6	6.37 6.3	- 64 1	7.30	7.7
			19:57	3.70		1.00	15.20	15.20	8.53 8.5	53	31.43 31.4	3	91.30	90.90	7.56	7.52	6.35 6.3	4	8.00	

Baseline Water Quality Monitoring at Station W8 (Surface & Middle) - Flood Tide

	Committee o		Committee at	Water	Carrantin a	Sampling	Temper	ature		рН			Salinity		DO Satur	ation		DO			Turbidity		SS	;
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth	°C			-			ppt		%			mg/L			NTU		mg/l	/L
	Bato		Time	m	Бори	m	Value	Averag	ge Val	ue	Average	Valu	ue	Average	Value	Average	Valu	ue	Average	Val	ue	Average	Value	Average
	12/14/2020	Cloudy	16:05	4.00	Surface	1.00	20.70 20	.70	7.81	7.81	7.8	32.73	32.73	32.7	95.50 95.	95.1	7.07	7.08	7.0	5.03	5.03	5.0	5.40	5.2
	12/14/2020	Cloudy	16:07	4.00	Surface	1.00	20.50 20	.50	7.86	7.86	7.0	32.75	32.75	52.7	95.00 94.	20	7.05	6.99	7.0	5.00	4.99	5.0	5.00	5.2
	12/16/2020	Fine	8:25	0.60	Middle	0.30	18.60 18	.60	7.94	7.94	8.0	32.65	32.65	32.7	86.60 87.	20 87.7	6.74	6.77	6.8	5.59	5.71	5.6	14.00	14.5
	12/10/2020	1 1116	8:27	0.60	Middle	0.30	18.10 18	.10	8.00	8.00	0.0	32.65	32.65	52.7	88.40 88.	40	6.89	6.89	0.0	5.62	5.64	3.0	14.90	14.5
	12/18/2020	Fine	10:00	3.40		1.00	18.20 18	.20	8.07	8.07	8.1	32.63	32.63	32.7	89.60 93.	90.6	6.93	7.16	6.9	8.27	8.26	8.3	9.80	10.0
	12/10/2020	1 1110	10:02	3.40		1.00	18.30 18	.30	8.11	8.11	0.1	32.75	32.75	02.7	89.10 90.	10	6.67	6.98	0.5	8.25	8.22	0.0	10.20	10.0
	12/21/2020	Fine	12:30	3.60	-1	1.00		17	7.2	8.01	8.0	32.72	32.72	32.8	78.10 78.	─ /81 ⊢	6.16	6.15	6.2	9.72	9.71	9.7	11.30	11.0
	12/21/2020	1 1110	12:32	3.60	-	1.00		7.20	8.04	8.04	0.0	32.90	32.90	02.0	78.10 78.	10	6.16	6.16	0.2	9.73	9.74	0.7	10.70	
	12/23/2020	Cloudy	13:40	3.60		1.00		18	3.6	7.97	8.0	32.39	32.39	32.4	80.80 80.	— /99⊢	6.22	6.20	6.2	6.19	9.20	6.9	5.70	5.4
		2.2.2.3	13:42	3.60	4	1.00		.60	8.05	8.05		32.36	32.36		80.30 77.	90	6.18	6.17		6.20	6.20		5.10	
W8	12/25/2020	Cloudy	14:20	3.80	4	1.00		.50	9.6	8.04	8.1	32.33	32.33	32.3	77.70 77.	 /58⊢	5.62	5.62	5.6	7.19	7.19	7.2	4.50	4.6
Silvermine Bay			14:22	3.80	-	1.00		.60	8.10	8.10		32.29	32.29		74.20 73.	90	5.62	5.61		7.22	7.23		4.60	
(Open Water)	12/28/2020	Fine	15:30	4.00	-	1.00		.20	0.3	8.19	8.2	32.13	32.13	32.2	73.40 73.	 /38⊢	5.49	5.50	5.5	6.67	6.68	6.7	9.10	8.7
			15:32	4.00	Surface	1.00		.40	8.23	8.23		32.19	32.19		74.10 74.	30	5.54	5.55		6.79	6.80		8.30	
	12/30/2020	Fine	16:30	4.00	-	1.00		18	8.42	8.42	8.4	32.10	32.10	32.2	84.40 84.		6.49	6.47	6.4	8.13	8.13	8.1	8.10	8.3
,			16:32	4.00	4	1.00		.70	8.43	8.43		32.22	32.22		83.20 82.		6.39	6.38		8.11	8.13		8.40	
	1/2/2021	Fine	8:55	3.40	-	1.00		16	8.26	8.26	8.3	32.11	32.11	32.2	88.00 87.	— ×/2⊢	7.10	7.06	7.0	7.54	7.54	7.5	7.50	7.7
			8:57	3.40	-	1.00		.30	8.29	8.29		32.21	32.21		86.60 86.		6.99	6.97		7.54	7.55		7.90	
	1/4/2021	Fine	10:25	3.50	-	1.00		18	8.28	8.28	8.3	31.89	31.89	31.9	99.80 99.		7.85	7.80	7.7	6.44	6.42	6.5	6.20	6.3
			11:37	3.50		1.00		.00	8.32	8.32		31.94	31.94		98.40 97.		7.70	7.59		6.64	6.42		6.30	
	1/6/2021	Fine	11:35	3.50	4	1.00		18	8.18	8.18	8.2	31.86	31.83	31.9	96.70 96.	— 96 0 ⊢	7.55	7.50	7.5	5.42	5.43	5.4	4.60	4.6
			11:37	3.50	-	1.00		.10	8.23	8.23		31.95	31.95		95.70 95.		7.47	7.45		5.44	5.45		4.60	
	1/8/2021	Fine	19:55	4.00	-	1.00		15	5.2	8.12	8.1	31.57	31.57	31.6	95.20 95.		8.21	8.20	8.0	6.49	6.50	6.5	8.40	8.4
			19:57	4.00		1.00	15.00	.00	8.17	8.17		31.58	31.58		94.50 94.	10	7.88	7.79		6.48	6.49		8.40	


Baseline Water Quality Monitoring at Station W8 (Bottom) - Ebb Tide

	Sampling		Sampling	Water	Sampling	Sampling	Ten	nperatur	е		рН			Salinity		DO Saturat	ion		DO			ırbidity			S
Station Reference	Date	Weather	Time	Depth	Level	Depth		°C	1		-			ppt		%	I		mg/L			NTU		mg	<u>ا/ل</u>
				m		m	Value)	Average	Valu	е	Average	Valu	ie Ave	rage	Value	Average	Value	е	Average	Value		Average	Value	Average
	12/14/2020	Cloudy	11:00	3.70		2.70	21.10	21.10	21.1	7.91	7.91	7.9	32.81	32.81	2.8	92.40 92.90	→ 93.1 ⊢	6.79	6.83	6.8	3.90	3.99	3.9	6.80	6.5
	12/11/2020	Cloudy	11:02	3.70		2.70	21.10	21.10	2	7.93	7.93	7.0	32.83	32.83	2.0	93.20 93.70)	6.85	6.92	0.0	3.92	3.94	0.0	6.20	<u> </u>
	12/16/2020	Fine	13:15	4.00		3.00	18.60	18.60	18.5	8.19	8.19	8.2	32.39	32.39	2.6	89.20 86.60	86.9	6.89	6.61	6.7	8.44	8.47	8.5	9.30	9.7
	12, 10,2020		13:17	4.00		3.00	18.30	18.30	10.0	8.26	8.26	0.2	32.84	32.84		85.10 86.80) 00.0	6.64	6.53	0.7	8.49	8.54	0.0	10.00	<u> </u>
	12/18/2020	Fine	14:50	3.80		2.80	18.30	18.30	18.3	8.24	8.24	8.3	32.71	32.71	2.8	78.40 77.30	77.0	6.05	5.97	6.0	7.54	7.53	7.5	8.10	8.3
	12/10/2020	1 1110	14:52	3.80		2.80	18.30	18.30	10.0	8.32	8.32	0.0	32.83	32.83	2.0	76.30 76.00)	5.91	5.88	0.0	7.54	7.55	7.0	8.50	0.0
	12/21/2020	Fine	17:10	4.20		3.20	17.20	17.20	17.2	8.34	8.34	8.3	32.68	32.68	2.7	79.70 79.00	78.8	6.28	6.24	6.2	7.27	7.27	7.2	8.10	8.3
	12/21/2020		17:12	4.20		3.20	17.20	17.20	17.2	8.35	8.35	0.0	32.73	32.73	,	78.40 77.90) 70.0	6.20	6.15	0.2	7.15	7.15		8.50	<u> </u>
	12/23/2020	Cloudy	18:20	3.80		2.80	18.60	18.60	18.6	8.36	8.36	8.4	32.24	32.24	2.3	87.00 88.40	- 85 B -	6.77	6.79	6.6	3.62	3.62	3.6	3.20	3.4
	12,20,2020	Cloudy	18:22	3.80		2.80	18.50	18.50	10.0	8.37	8.37	0.1	32.27	32.27		84.50 83.20)	6.54	6.38	0.0	3.53	3.57	0.0	3.60	<u> </u>
W8	12/25/2020	Cloudy	8:45	3.80		2.80	18.30	18.30	18.3	8.21	8.21	8.2	32.22	32.22	2.2	84.10 84.00	- X4 X F	6.52	6.51	6.3	5.60	5.61	5.6	4.30	3.9
Silvermine Bav	12/20/2020		8:47	3.80	Bottom	2.80	18.30	18.30	10.0	8.21	8.21	0.2	32.19	32.19		85.10 86.00)	6.59	5.69	0.0	5.62	5.64	0.0	3.50	
(Open Water)	12/28/2020	Fine	10:40	3.80	20110	2.80	19.90	19.90	20.0	8.07	8.07	8.1	32.17	32.17	2.2	78.70 78.20	-1 /82 ⊢	6.93	6.90	6.9	5.32	5.31	5.3	7.90	7.5
, , ,	. =, = 0, = 0 = 0		10:42	3.80		2.80	20.00	20.00		8.09	8.09	0	32.18	32.18		78.00 77.90)	6.88	6.87	0.0	5.33	5.32		7.00	
	12/30/2020	Fine	12:50	3.80		2.80	19.30	19.30	19.2	8.29	8.29	8.3	32.11	32.11	2.2	77.80 77.50	⊣ //ソ ⊢	5.96	5.93	5.9	7.58	7.57	7.6	8.40	8.3
	, 0 0, _ 0 _ 0		12:52	3.80		2.80	19.00	19.00		8.30	8.30	0.0	32.20	32.20		77.00 76.50)	5.96	5.85		7.56	7.55		8.20	
	1/2/2021	Fine	14:35	3.60		2.60	17.30	17.30	17.3	8.32	8.32	8.3	32.08	32.08	2.1	88.10 88.50	− 888 ⊢	6.97	7.01	7.0	5.15	5.14	5.1	7.80	7.6
	.,		14:37	3.60		2.60	17.30	17.30		8.34	8.34		32.17	32.17		89.00 89.50)	7.05	7.09		5.13	5.12		7.40	
	1/4/2021	Fine	15:30	3.50		2.50	18.20	18.20	18.2	8.43	8.43	8.4	32.10	32.10	2.1	106.40 106.90	- 106 / F	8.34	8.35	8.3	5.09	5.09	5.1	4.60	4.4
			15:32	3.50		2.50	18.20	18.20		8.45	8.45		32.06	32.06		106.80 106.50)	8.33	8.30		5.02	5.01		4.20	
	1/6/2021	Fine	11:40	3.50		2.50	18.30	18.30	18.3	8.26	8.26	8.3	31.98	31.98	2.0	98.80 98.50	→ 983 ⊢	7.68	7.66	7.6	5.62	5.61	5.6	8.40	8.2
	., .,		11:42	3.50		2.50	18.30	18.30		8.27	8.27		31.98	31.98	-	98.00 97.70)	7.62	7.50		5.60	5.59		8.00	
	1/8/2021	Fine	20:00	3.70		2.70	15.00	15.00	15.0	8.54	8.54	8.5	31.33	31.33	1.4	89.50 89.80	– 896 –	7.45	7.47	7.5	5.69	5.68	5.7	5.60	5.4
	=		20:02	3.70		2.70	14.90	14.90	1010	8.55	8.55		31.48	31.48	-	89.70 89.30)	7.47	7.44		5.66	5.65		5.10	

Baseline Water Quality Monitoring at Station W8 (Bottom) - Flood Tide

	Committee		Carrantin a	Sampling	0	Sampling	Τe	emperature		рН			Salinity		D	O Saturatio	on		DO	Ti	urbidity		SS	S
Station Reference	Sampling Date	Weather	Sampling Time	Depth	Sampling Depth	Depth		°C		-			ppt			%		n	ng/L		NTU		mg.	J/L
	Date			m	Бери	m	Valu	ie A	Average	Value	Average	Val	lue	Average	Val	ue	Average	Value	Avera	e Value		Average	Value	Average
	12/14/2020	Cloudy	16:10	4.00	Bottom	3.00	20.30	20.30	20.6	7.93 7.9	8.0	32.76	32.76	32.8	93.80	94.50	94.0	6.95	7.00 7.0	4.86	4.87	4.9	5.80	5.8
	12/14/2020	Cloudy	16:12	4.00	Dottom	3.00	20.80	20.80	20.0	7.97 7.9	97	32.78	32.78	32.0	93.80	93.70	34.0	6.95	6.95	4.99	4.94	4.5	5.70	5.0
	12/16/2020	Fine									Only	water samp	oles in midd	lle layer were	e collected.									
	12/18/2020	Fine	10:10	3.40		2.40	18.30	18.30	18.4	8.15 8.	5 8.2	32.71	32.71	32.7	87.50	84.30	83.2	6.71	6.40	8.97	8.98	9.0	11.00	11.4
	12/10/2020	i iiie	10:12	3.40		2.40	18.40	18.40	10.4	8.17 8.	7	32.74	32.74	32.7	81.30	79.60	05.2	6.28	6.15	9.00	8.98	9.0	11.70	11.4
	12/21/2020	Fine	12:40	3.60		2.60	17.10	17.10	17.2	8.09 8.0	8.1	32.67	32.67	32.7	80.10	80.20	80.3	6.34	6.35	10.01	10.00	10.0	11.90	12.1
	12/21/2020	i ilie	12:42	3.60		2.60	17.20	17.20	17.2	8.13 8.	3	32.80	32.80	52.7	80.50	80.50	00.5	6.37	6.37	10.00	10.00	10.0	12.20	12.1
	12/23/2020	Cloudy	13:50	3.60		2.60	18.50	18.50	18.5	8.12 8.	8.1	32.40	32.40	32.4	80.30	79.40	79.3	6.20	6.13	5.04	5.03	5.1	5.40	5.1
	12/23/2020	Cloddy	13:52	3.60		2.60	18.50	18.50	10.0	8.15 8.	5	32.38	32.38	0Z.4	79.10	78.50	7 5.5	6.11	6.06	5.07	5.09	0.1	4.70	0.1
W8	12/25/2020	Cloudy	14:30	3.80		2.80	19.30	19.30	19.4	8.14 8.	8.1	32.32	32.32	32.3	77.70	77.40	77.3	5.91	5.88	6.03	6.04	6.0	6.40	6.0
Silvermine Bay	12/20/2020	Cloudy	14:32	3.80		2.80	19.40	19.40	10.4	8.15 8.	5	32.28	32.28	02.0	77.00	76.90	77.0	5.86	5.86	5.95	5.83	0.0	5.50	0.0
(Open Water)	12/28/2020	Fine	15:35	4.00		3.00	20.30	20.30	20.3	8.25 8.2	— × ×	32.12	32.12	32.1	82.00	81.80	81.7	6.14	6.12	8.01	8.00	8.0	8.40	8.6
	. 2, 20, 2020		15:37	4.00	Bottom	3.00	20.30	20.30	20.0	8.25 8.2	25	32.12	32.12	02.1	81.60	81.40	0	6.10	6.09	7.98	7.96	0.0	8.80	0.0
	12/30/2020	Fine	16:35	4.00	Bottom	3.00	19.00	19.00	18.9	8.44 8.4	→ 84	32.06	32.06	32.1	81.50	81.10	81.0	6.25	6.22	7.81	7.80	7.8	9.10	9.0
	. =, 00, =0=0		16:37	4.00		3.00	18.80	18.80		8.44 8.4	14	32.20	32.20	<u> </u>	80.90	80.40	00	6.20	6.16	7.79	7.77		8.80	
	1/2/2021	Fine	9:05	3.40		2.40	16.50	16.50	16.5	8.34 8.3		32.07	32.07	32.1	83.00	84.30	85.8	6.58	6.78	8.62	8.59	8.6	9.00	9.1
			9:07	3.40		2.40	16.50	16.50		8.35 8.3	35	32.17	32.17		86.10	89.60		6.93	7.21	8.58	8.59		9.20	
	1/4/2021	Fine	10:35	3.50		2.50	17.90	17.90	17.9	8.36 8.3	— 84	32.01	32.01	32.0	95.10	94.80	94.1	7.45	7.42	6.55	6.54	6.6	8.30	8.2
	,,,		10:37	3.50		2.50	17.90	17.90		8.37 8.3		32.00	32.00		93.50	93.10		7.32	7.29	6.55	6.56		8.10	
	1/6/2021	Fine	11:40	3.50		2.50	18.30	18.30	18.3	8.26 8.3	— 83	31.98	31.98	32.0	98.80	98.50	98.3	7.68	7.65 7.6	5.62	5.61	5.6	5.50	5.5
			11:42	3.50		2.50	18.30	18.30		8.27 8.3	27	31.98	31.98		98.00	97.70		7.62	7.50	5.60	5.69		5.50	
	1/8/2021	Fine	14:25	4.00		3.00	15.90	15.90	15.7	8.27 8.3		31.58	31.58	32.1	100.00	99.60	99.0	8.07	8.05	7.09	7.10	7.1	8.00	8.5
			14:27	4.00		3.00	15.50	15.50	-	8.30 8.3	80	32.65	32.65		98.60	97.90		8.03	7.98	7.11	7.12		8.90	

Appendix G Tree Survey Results and Recommendations

Tree Assessment Schedule

Project Title: New Wang Tong River Bridge, Mui Wo

Date of Tree Assessment: 5.12.2018 & 6.12.2018

Note: To be read in conjunction with Tree Survey Plan (Drawing no. HWDIS101A-SK0023A) from the project office and Tree Inspection Report prepared by the SFdO team of LandscapeD, HyD.

	Species	ausu Hillian (1 Sugal (7 Bes	М	easurem	ents	Amenity value	Form	Health condition	Structural condition		Suitability for transplanting	100 E	Recommendation	Department	
Tree No.	Scientific name	Chinese name	Height (m)	DBH (mm)	Crown spread (m)		(<u>G</u> ood	/ <u>F</u> air/ <u>P</u> oor)		(<u>H</u> igh/ <u>M</u> edium/ <u>L</u> ow)	Remarks	Conservation Status	(Retain/ Transplant/ Fell)	to provide expert advice to LandsD	Additional Remarks
TI	Terminalia catappa	欖仁樹	8.0	268	9.0	Fair	Fair	Fair	Fair	Low	Co-dominant leaders / wounds found at leader and branch	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works. Transplantation to nearby beach location is not feasible. If transplanting to recipient locations off-site, heavy pruning would be involved due to large size and limitation of vehicle size, which will lower the feasibility of successful transplantation.
T2	Terminalia catappa	欖仁樹	9.0	303	9.0	Fair	Fair	Fair	Fair	Low	co-dominant leaders / broken branches at the tree top	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works. Transplantation to nearby beach location is not feasible. If transplanting to recipient locations off-site, heavy pruning would be involved due to large size and limitation of vehicle size, which will lower the feasibility of successful transplantation.
Т3	Terminalia catappa	欖仁樹	8.0	312	8.0	Fair	Fair	Fair	Fair	Medium	multiple leaders.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works.
T4	Casuarina equisetifolia	木麻黄	18.0	761	12.0	Fair	Fair	Fair	Fair	Low	Many branches facing the sea found broken or trimmed / a few branches at the tree top found broken or trimmed.	N/A	Retain	LCSD	Mature tree in overall fair condition. Crown cleaning to remove broken twigs required.
Т6	Casuarina equisetifolia	木麻黄	10.0	411	6.0	Fair	Poor	Fair	Poor	Low	Poor taper and imbalanced tree crown / Main leader broken at tree top with few broken branches/ many bulges along the trunk.	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works. / Poor tree structure and form. Epicormic development from bulges. The species of low survival rate of transplantation.
T7	Terminalia catappa	欖仁樹	9.0	255	9.0	Fair	Poor	Fair	Fair	Low	Leaning form / some wounds found at branches.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works.
Т8	Terminalia catappa	欖仁樹		-	2000	90000		, 		-	T8 was found already removed.	N/A	Already removed	LCSD	-
Т9	Ficus microcarpa	細葉榕	5.0	376	11.0	Fair	Poor	Fair	Poor	Low	leaning form / broken wound at the co-dominant leader / trunk cavity.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works.
T22	Casuarina equisetifolia	木麻黄	12.0	360	8.0	Fair	Fair	Fair	Fair	Low	the foliage relatively sparse.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works. / The species of low survival rate of transplantation.
T27	Macaranga tanarius	血桐	3.0	180	3.0	Fair	Poor	Fair	Poor	Low	leaning form / Root growing beneath granite revetment	N/A	Fell	LCSD	Location of tree is in conflict with proposed works. Poor tree form, impractical to transplant due to root environment beneath granite revetment
T30	Macaranga tanarius	血桐	3.5	235	3.5	Fair	Poor	Fair	Poor	Low	co-dominant stems / 2 spots of decay at the crotch / basal decay / one stem with cavity & mud tube.	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works.
T31	Casuarina equisetifolia	木麻黄	16.0	411	9.0	Fair	Poor	Fair	Poor	Low	Poor taper and imbalanced tree crown, branches with lions' tailing, '2 of the 3 main branches found broken / a wound on the trunk.	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works. / Poor tree form and structure. The species of low survival rate of transplantation.
T34	Casuarina equisetifolia	木麻黄	-		-	-	-	- <u>-</u>		-	T34 was found already removed.	N/A	Already removed	LCSD	
T35	Casuarina equisetifolia	木麻黄	-	-	*	_	-	(= = ; ;	-		T35 was found already removed.	N/A	Already removed	LCSD	- 177
T37	Celtis sinensis	朴樹	10.0	520	12.0	Fair	Fair	Fair	Fair	Low	Hanger resting at the crown / crossed branches / restricted root growth.	N/A	Retain	LCSD	Location of tree is-in direct conflict with proposed works./Mature tree with good amenity value. Probably unbalanced root plate due to restricted area. Crown cleaning, thinning, remedial stablizing measure required.
T38	Ficus microcarpa	細葉榕	4.0	232	3.0	Poor	Poor	Fair	Poor	Low	Unbalanced tree form / topped / set on the dwarf wall.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works.
T39	Terminalia catappa	欖仁樹	8.0	156	5.0	Fair	Poor	Fair	Fair	Medium	2 wounds found on lower trunk.	N/A	Fell	LCSD	Location of tree is in direct conflict with proposed works, inbalanced form and wound at lower trunk.
T40	Casuarina equisetifolia	木麻黄	15.0	550	13.0	Fair	Fair	Fair	Fair	Low	Co-dominant leaders / wounds along main branches / wounds at the root collar / a broken branch .	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works. / The species of low survival rate of transplantation. Crown cleaning, thinning, and remedial stablizing measures required.

	Species		M	leasuren	nents	Amenity value	Form	Health condition	Structural condition		Suitability for transplanting		Recommendation	Department	Strand materials
Tree No.	Scientific name	Chinese name	Height (m)	DBH (mm)	Crown spread (m)		(<u>G</u> 000	d/ <u>F</u> air/ <u>P</u> oor)		(<u>H</u> igh/ <u>M</u> edium/ <u>L</u> ow)	Remarks	Conservation Status	(Retain/ Transplant/ Fell)	to provide expert advice to LandsD	Additional Remarks
T46	Hibiscus tiliaceus	黄槿	4.5	130	2.5	Poor	Poor	Fair	Fair	Low	the tree in leaning form / wound at the trunk.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T47	Hibiscus tiliaceus	黄槿	3.0	121	3.0	Poor	Poor	Fair	Poor	Low	the tree in poor form / the leader cracked / wound at the trunk.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T48	Hibiscus tiliaceus	黄槿	3.0	135	2.0	Poor	Poor	Fair	Poor	Low	Multiple attachements - one stem found broken and the other 2 in leaning form.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T49	Hibiscus tiliaceus	黃槿	4.0	105	3.0	Poor	Poor	Fair	Fair	Low	the tree in leaning form / wound at trunk	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T50	Hibiscus tiliaceus	黃槿	2.0	146	7.0	Poor	Poor	Fair	Poor	Low	co-dominant stems in leaning form / wound at one stem / sign of root plate tilting.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T51	Hibiscus tiliaceus	黄槿	4.0	102	3.0	Poor	Poor	Fair	Fair	Low	Tree in leaning form / a hanger.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T52	Hibiscus tiliaceus	黄槿	3.0	141	6.0	Poor	Poor	Fair	Poor	Low	co-dominant stems in leaning form / a stem was distorted with cracks.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T53	Hibiscus tiliaceus	黄槿	5.0	150	3.0	Poor	Poor	Fair	Poor	Low	tree in leaning form / crack at the trunk.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.
T54	Hibiscus tiliaceus	黄槿	2.0	111	2.0	Poor	Poor	Fair	Poor	Low	tree in leaning form / distorted trunk with cracks.	N/A	Retain	LCSD	Location of tree is NOT in direct conflict with proposed works / The tree has a certain visual impact due to poor form.

Assessed by: (C.S. CHEUNG)

Checked by: (Michael LEE)

SFdO (Ag)

Revision: 5 (Date: 24.10.2019)

Memo ref.: (GGUB) in HyD LSC/14-4/30

24/10/2019

24/10/2019

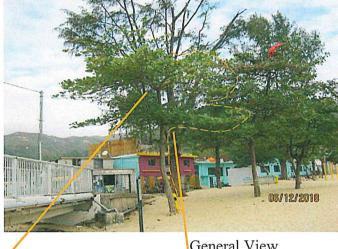
Revision Notes:

Summary: 17 trees recommended for Retaining
0 tree recommended for Transplanting
7 trees recommended for Felling
3 trees already removed

Total: 27 trees

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T1 - Terminalia catappa 欖仁樹

Observations & Remarks:

co-dominant leaders / wounds found at the branches and leader.

General View

General View

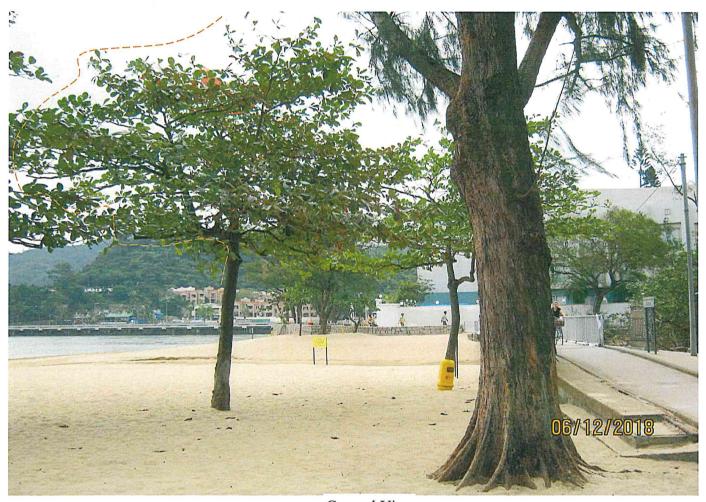
wound at a branch

wound at leader

General View of the basal part

co-dominant leaders

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH


Inspected by: FdO(3)
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T2 - Terminalia catappa 欖仁樹

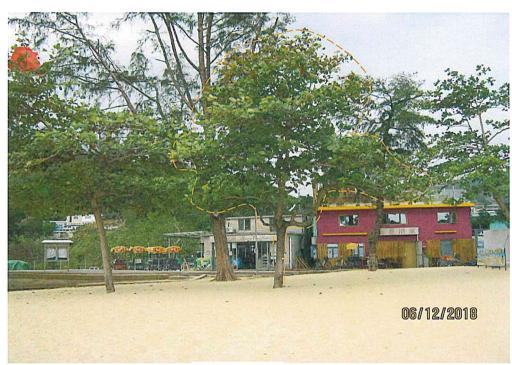
Observations & Remarks:

co-dominant leaders / broken branches at the tree top.

General View

General View (Co-dominant leaders)

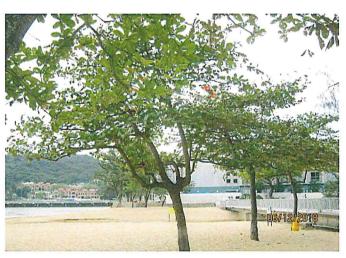
broken branches at tree top


Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH Inspected by: FdO(3) Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T3 - Terminalia catappa 欖仁樹

Observations & Remarks:

multiple leaders.



General View

multiple leaders

General View

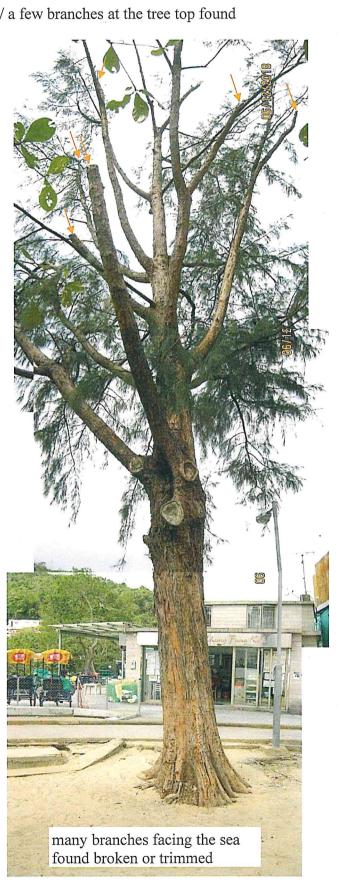
Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

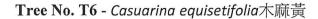
Tree No. T4 - Casuarina equisetifolia木麻黃

Observations & Remarks:

Many branches facing the sea found broken or trimmed / a few branches at the tree top found


broken or trimmed.

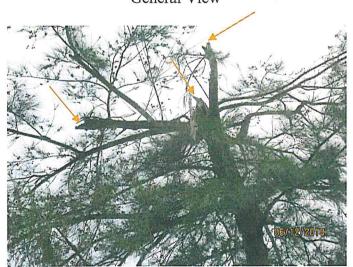
General View


the branches at the tree top found broken or trimmed

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH

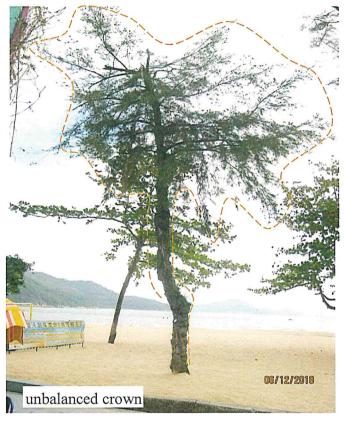
Project No.: 6850TH Inspected by: FdO(3)

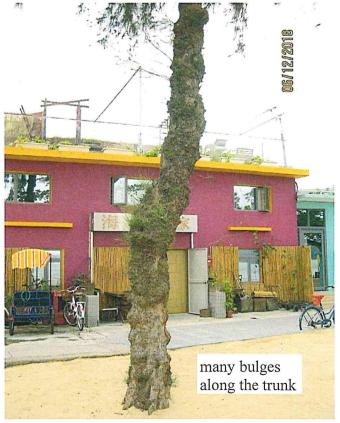
Date of Site Inspection: 05.12.2018 & 06.12.2018



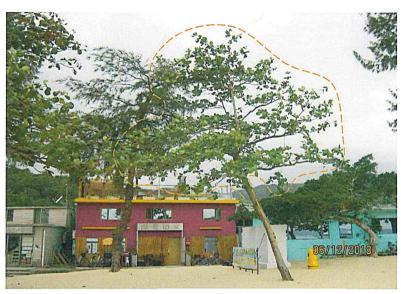
Observations & Remarks:

Unbalanced crown / a few broken branches at the tree top / many bulges along the trunk.




General View

broken branches at the tree top


Project No.: 6850TH

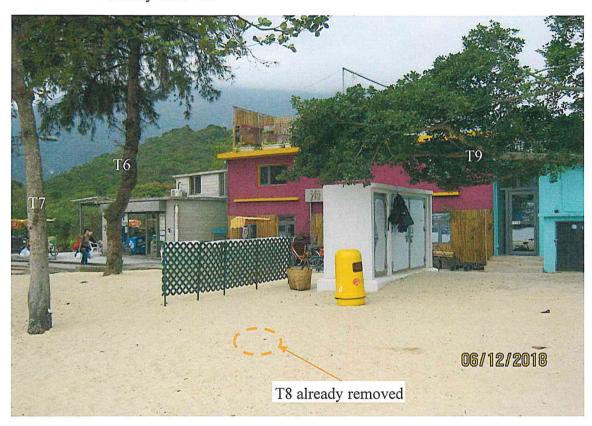
Inspected by: FdO(3)
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T7 - Terminalia catappa 欖仁樹

Observations & Remarks:

Leaning form / some wounds found at branches.

General View (leaning form)


Project No.: 6850TH Inspected by: FdO(3)

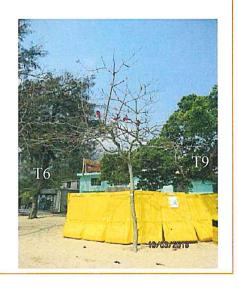
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T8 - Unknowned species (Removed)

Observations & Remarks:

T8 was found already removed.

Project Title: New Wang Tong River Bridge


Project No.: Surveyed by: 6850TH K.P. NG Survey Job No.: WU/0035/18

Date: 16/03/2018 Date: 11/04/2018

Checked by: K.L. CHAN
Title: Tree survey at V

Tree survey at Wang Tong River Bridge

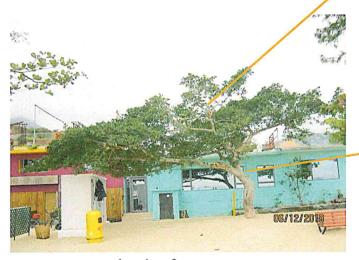
Original view of T8

Project No.: 6850TH

Inspected by: FdO(3)
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T9 - Ficus microcarpa細葉榕

Observations & Remarks:


Leaning form / broken wound at the co-dominant leader / trunk cavity.

General View

broken wound

leaning form

broken wound at the co-dominant leader

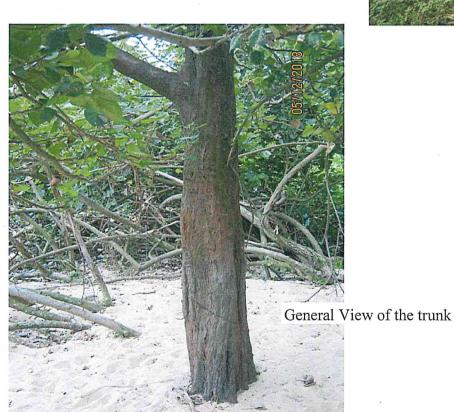
trunk cavity

General view of basal part

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH

Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T22 - Casuarina equisetifolia木麻黄

Observations & Remarks:

the foliage relatively sparse.

General View

the foliage relatively sparse

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH

Inspected by: FdO(3)
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T27 - Macaranga tanarius 血桐

Observations & Remarks:

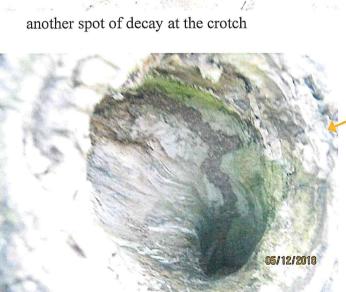
leaning form / footing at the gabion wall.

footing at the gabion wall

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T30 - Macaranga tanarius 血桐


Observations & Remarks:

co-dominant stems / 2 spots of decay at the crotch / basal decay / one stem with cavity & mud tube.

General View (co-dominant stems)

mud tube inside the cavity

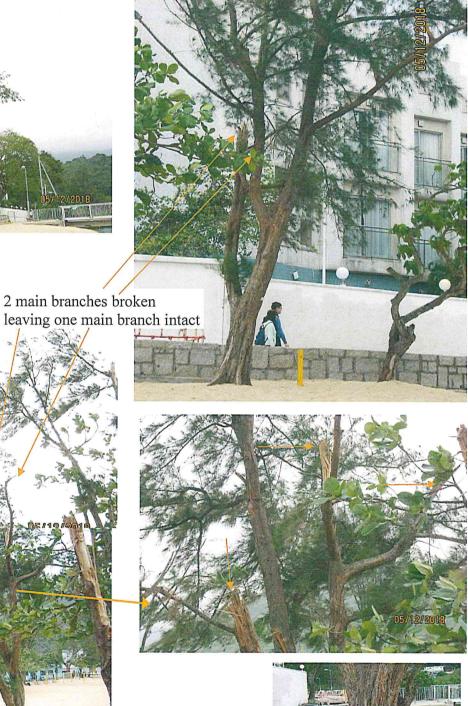
a spot of decay at the crotch & basal part

trunk cavity

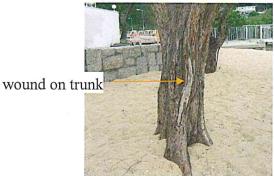
Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T31 - Casuarina equisetifolia木麻黃


Observations & Remarks:

2 of the 3 main branches found broken / a wound on the trunk.

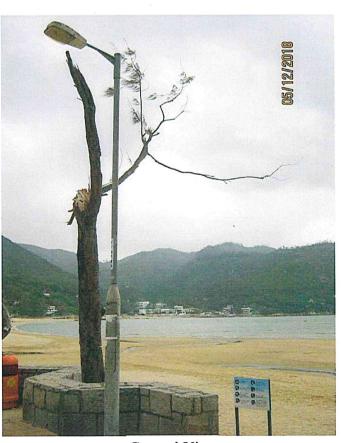


Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T34 - Casuarina equisetifolia木麻黄

Observations & Remarks:


The main branches found broken and the remaining branch attaching to the broken wound.

General View

The main branches found broken and the remaining branch attaching to the broken wound

General View

Based on site inspection dated 8.3.2019, the tree was found removed. Please refer to next page for site photos.

Project No.: 6850TH

Inspected by: Landscape Division/HyD Date of Site Inspection: 08.03.2019

Tree No. T34 - Casuarina equisetifolia木麻黃

Observations & Remarks

The tree was found removed.

T34 already removed

General View

General View

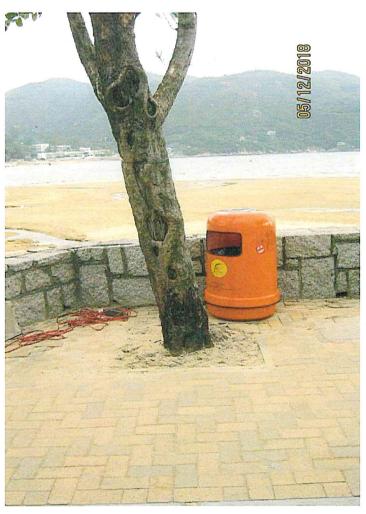
Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T35 - Casuarina equisetifolia木麻黄

Observations & Remarks:

leader broken / one branch with crack on bark / a broken branch.


Based on site inspection dated 8.3.2019, the tree was found removed. Please refer to next page for site photos.

General View

General View

some wounds on trunk

Project No.: 6850TH

Inspected by: Landscape Division/HyD Date of Site Inspection: 08.03.2019

Tree No. T35 - Casuarina equisetifolia木麻黄

Observations & Remarks:

The tree was found removed.

General View

T35 already removed

General View

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

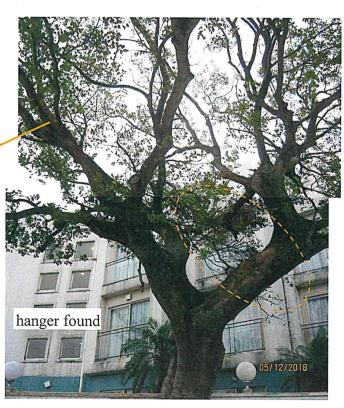
Tree No. T37 - Celtis sinensis 朴樹

Observations & Remarks:

Hanger resting at the crown / crossed branches / restricted root growth.

General View

Restricted root growth



crossed branches

General View of the trunk

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH

Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T38 - Ficus microcarpa細葉榕


Observations & Remarks:

Unbalanced tree form / topped / set on the dwarf wall.

General View

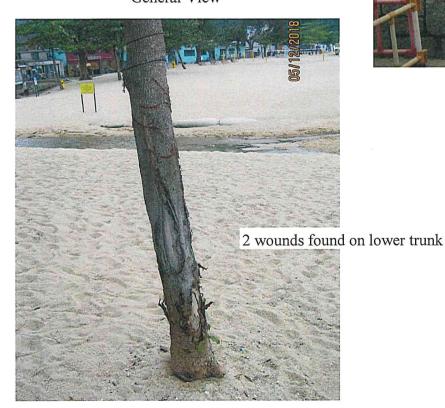
Unbalanced form

Topped

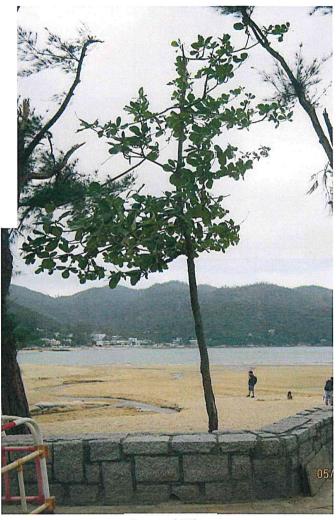
The tree set on the dwarf wall

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T39 - Terminalia catappa 欖仁樹

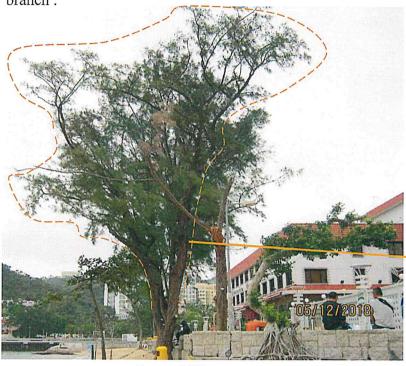
Observations & Remarks:


2 wounds found on lower trunk.

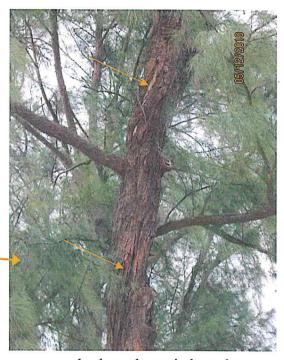
General View

General View

Project No.: 6850TH Inspected by: FdO(3)


Date of Site Inspection: 05.12.2018 & 06.12.2018

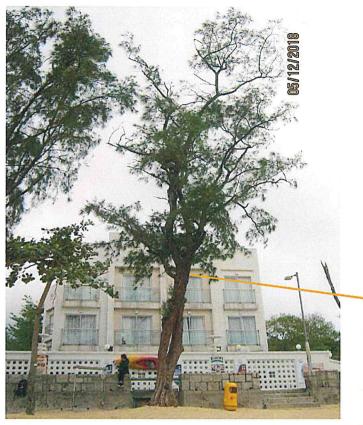
Tree No. T40 - Casuarina equisetifolia木麻黄


Observations & Remarks:

Co-dominant leaders / wounds along main branches / wounds at the root collar / a broken

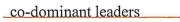
branch.

General View



wounds along the main branch

wounds at the root collar



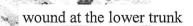
General View

wounds along the main branches

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH Inspected by: FdO(3)

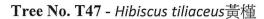
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T46 - Hibiscus tiliaceus 黃槿


Observations & Remarks:

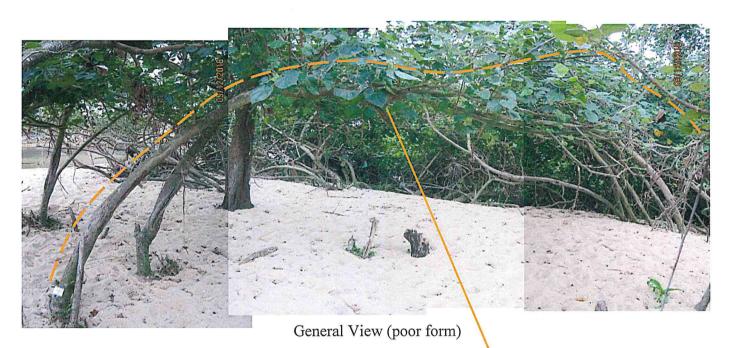
the tree in leaning form / wound at the trunk.

(leaning form)



General view of the group of Hibiscus tiliaceus黃槿 (T46-T54)

Project No.: 6850TH Inspected by: FdO(3)


Date of Site Inspection: 05.12.2018 & 06.12.2018

Observations & Remarks:

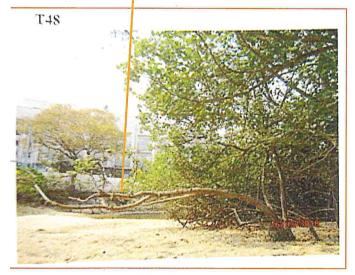
the tree in poor form / the leader cracked / wound at the trunk.

wound at the trunk

leader cracked

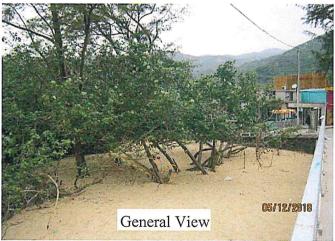
Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T48 - Hibiscus tiliaceus 黃槿

Observations & Remarks:

Multiple attachements - one stem found broken and the other 2 in leaning form.



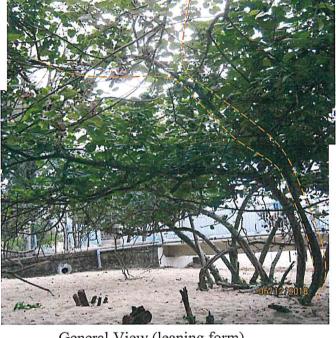
General View (one of the multiple attachements was broken)

Original view of tree

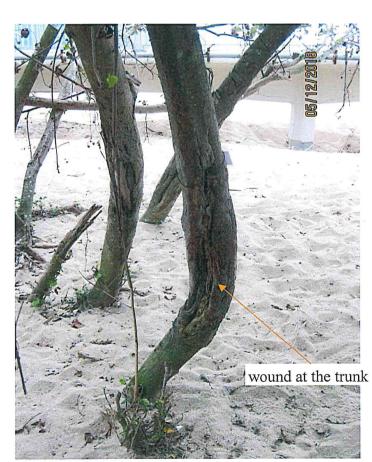
Project No.: 6850TH

Inspected by: FdO(3)
Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T49 - Hibiscus tiliaceus 黃槿


Observations & Remarks:

the tree in leaning form / wound at trunk.



General View (leaning form)

General View (leaning form)

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T50 - Hibiscus tiliaceus 黃槿

Observations & Remarks:

co-dominant stems in leaning form / wound at one stem / sign of root plate tilting.

General View (co-dominant stem in leaning form)

sign of root plate tilting

wound on one stem

Tree Survey at Wang Tong River Bridge, Mui Wo Project No.: 6850TH

Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018

Tree No. T51 - Hibiscus tiliaceus 黃槿

Observations & Remarks:

Tree in leaning form / a hanger.

General View (leaning form)

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T52 - Hibiscus tiliaceus 黃槿

Observations & Remarks:

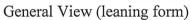
co-dominant stems in leaning form / a stem was distorted with cracks.

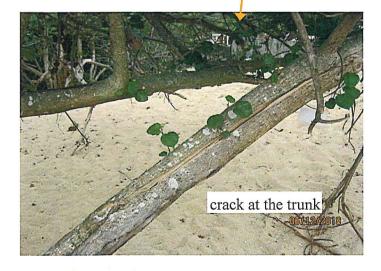
General View (Co-dominant stems in leaning form)

One of the stem distorted with cracks

Project No.: 6850TH Inspected by: FdO(3)

Date of Site Inspection: 05.12.2018 & 06.12.2018


Tree No. T53 - Hibiscus tiliaceus 黃槿


Observations & Remarks:

tree in leaning form / crack at the trunk.

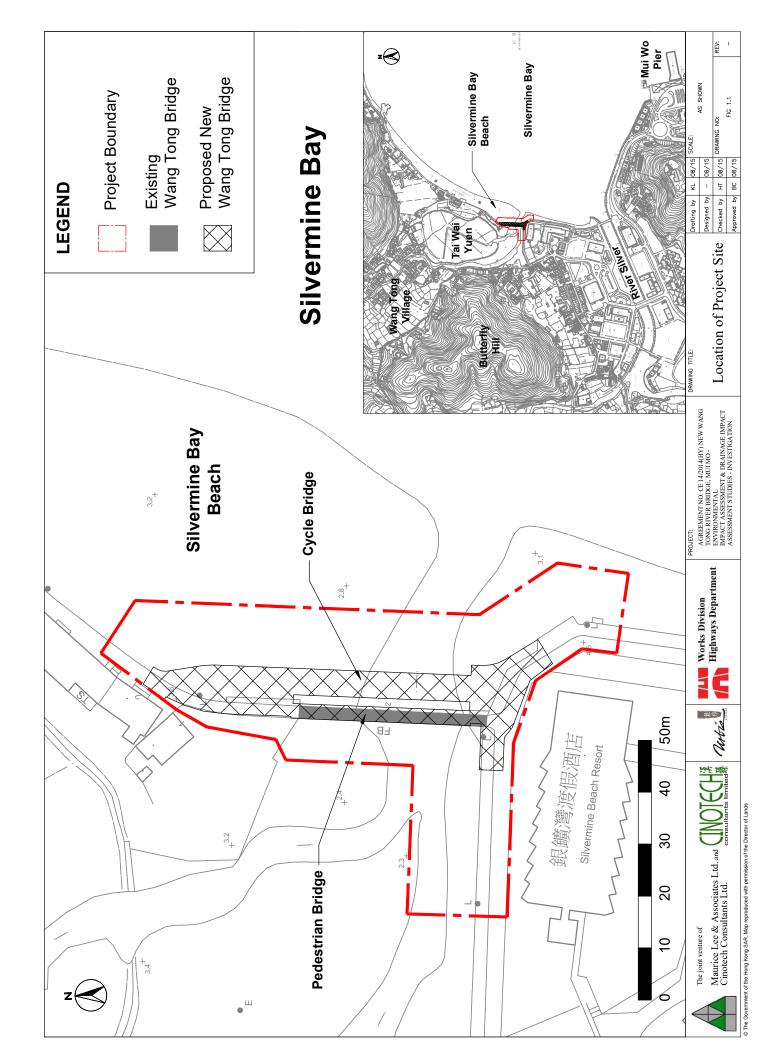
Project No.: 6850TH Inspected by: FdO(3)

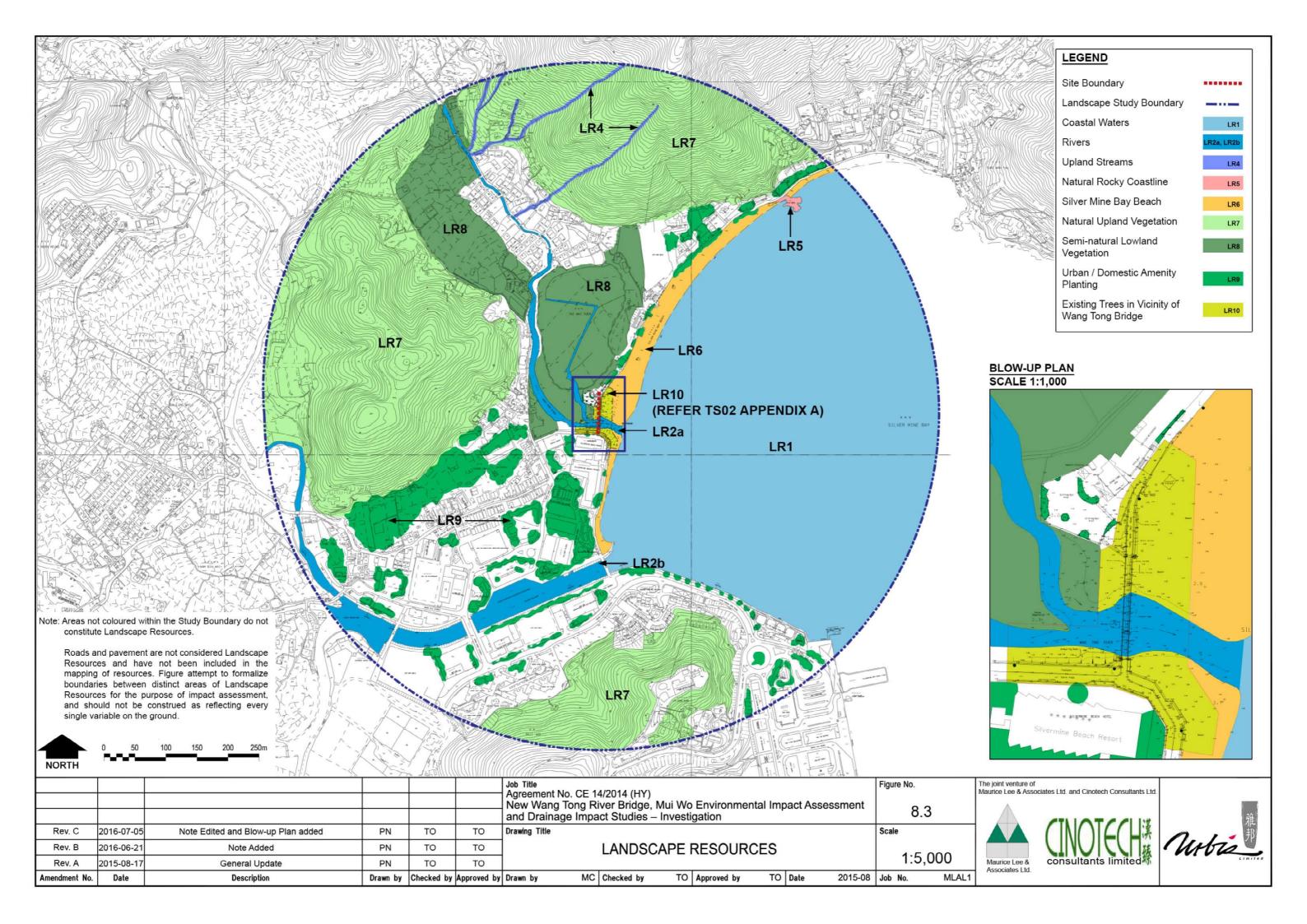
Date of Site Inspection: 05.12.2018 & 06.12.2018

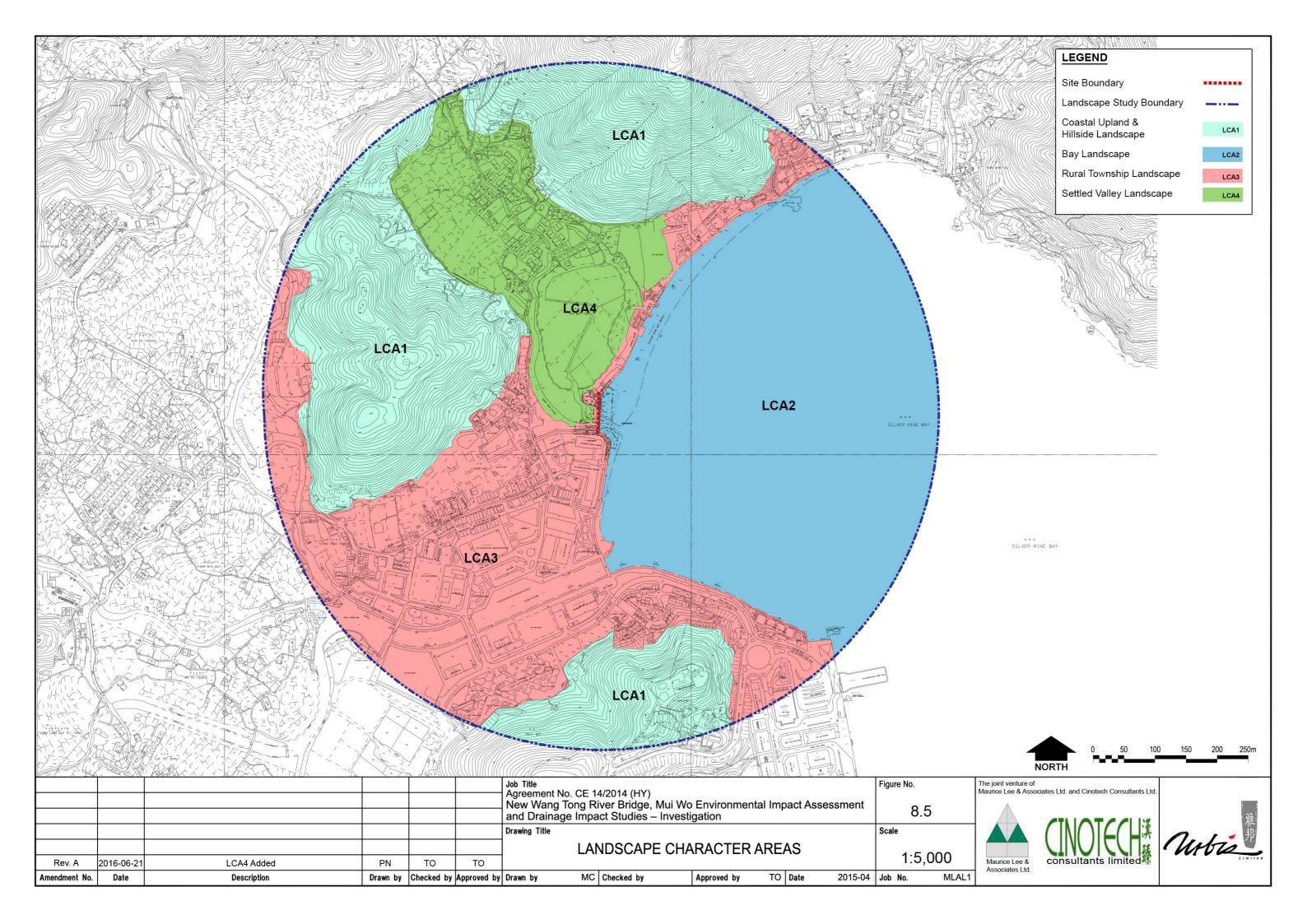
Tree No. T54 - Hibiscus tiliaceus 黃槿

Observations & Remarks:

tree in leaning form / distorted trunk with cracks.


General View (leaning form)


distorted trunk with cracks



Appendix H
Key Plan of Project Area

Appendix I Key Plan of Landscape Resources and Landscape Character Areas

