Civil Engineering and Development Department

Service Contract No. WD/04/2020 Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Environmental Permit No.: EP-477/2013/A - Development of Lok Ma Chau Loop

Monthly Environmental Monitoring and Audit Report for May 2022

(Version 1.0)

Certified By

Dr. Priscilla Choy

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

WELLAB accepts no responsibility for changes made to this report by third parties.

WELLAB LIMITED

Room 1714, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2898 7388 Fax: (852) 2898 7076 Website: www.wellab.com.hk

Our ref.: LES/J2021-04/CS/L066

Date : 14 June 2022

By Post & Email

Civil Engineering and Development Department West Development Office West Division (5) 26/F, Tsuen Wan Government Office, 38 Sai Lau Kok Road, Tsuen Wan, New Territories

Attn: Ms. JIM Wing Yan, Eva

Dear Ms. JIM,

Agreement No. WD/01/2020 Development of Lok Ma Chau Loop: Main Works Package 1 – Independent Environmental Checker

Verification of Monthly EM&A Report (May 2022)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report of certified by the Environmental Team Leader in June 2022. We hereby verify the captioned submission in accordance with Clause 3.4 of the Environmental Permit No. EP-477/2013/A for the project of Development of Lok Ma Chau Loop.

Should you have any query, please feel free to contact the undersigned.

Yours faithfully, For and On Behalf Of Lam Environmental Services Limited

Raymond Dai

Independent Environmental Checker

c.c. AECOM Mr. Eric Wong By Email

Mr. Terrant Cheung

Wellab Limited Dr. Priscilla Choy By Email

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	1
Introduction	1
Environmental Monitoring and Audit Activities	1
Breaches of Action and Limit Levels	
Land Contamination	4
Site Environmental Audit	4
Complaint Log	
Notification of Summons and Successful Prosecutions	4
Reporting Change	5
Future Key Issues	5
1 INTRODUCTION	7
Purpose of the report	
Structure of the report.	
•	
2 PROJECT INFORMATION	
Background	
Project Organisation	
Construction Programme	
Summary of Construction Works Undertaken During Reporting Month	
Status of Environmental Licences, Notifications and Permits	15
3 AIR QUALITY MONITORING	16
Monitoring Requirements	
Monitoring Location.	
Monitoring Equipment	
Monitoring Parameters and Frequencies	
Monitoring Methodology and Quality Assurance/Quality Control (QA/QC) Procedure	
Instrumentation	
HVS Installation	17
Filters Preparation	18
Operating/Analytical Procedures	18
Maintenance/Calibration	19
(AEROCET-831)	19
Maintenance/Calibration	19
Results and Observations	19
Event and Action Plan	20
4 NOISE MONITORING	21
Monitoring Requirements	
Monitoring Location.	
Monitoring Equipment	
Monitoring Parameters, Frequency and Duration	
Monitoring Methodology and QA/QC Procedures	
Maintenance and Calibration	
Results and Observations	
Event and Action Plan	
5 WATER QUALITY MONITORING	
Monitoring Requirements	
Monitoring Locations	
Monitoring Equipment	
Instrumentationi	25
1	

Monitoring Parameters and Frequency	27
Monitoring Methodology	
Operating/Analytical Procedures	
Laboratory Analytical Methods	27
QA/QC Requirements	28
Maintenance and Calibration	28
Results and Observations	
Event and Action Plan	29
6 ECOLOGICAL MONITORING	30
LMC Loop	30
Monitoring Requirements (Avifauna Monitoring – Flight Line Survey)	30
Monitoring Requirements (Mammals)	32
Western Connection Road	
Monitoring Requirements (Avifauna Monitoring – Flight Line Survey)	32
Monitoring Requirements (Avifauna Monitoring – Pond 12)	
Herpetofauna	
Aquatic Fauna	34
7 LAND CONTAMINATION	37
General	
Remediation Work Progress in the Reporting Month	
8 WASTE MANAGEMENT	
General	
Solid and Liquid Waste Management Status	
-	
9 ENVIRONMENTAL SITE INSPECTION	
Site Audits	40
10 IMPEMENTATION STATUS OF ENVIRONMENTAL MITIGATION	
MEASURES	
Ecological Mitigation Measures - Offsite Wetland Compensation Areas (OWCAs)	
Ecological Mitigation Measures – Installation of 3m-high Olive Green Fence	44
11 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	46
Summary of Exceedances	
Summary of Environmental Complaint	
Summary of Notification of Summons and Successful Prosecutions	
12 FUTURE KEY ISSUES	48
Key Issues in the Coming Months	
Monitoring Schedule for the Next Month	
Construction Programme for the Next Month	
-	
13 CONCLUSIONS AND RECOMMENDATIONS	
Recommendations	51 53

LIST OF TABLES

Summary Table for EM&A Activities in the Reporting Month
Summary Table for Environmental Exceedances in the Reporting Month
Summary Table for Site Environmental Audit in the Reporting Month
Site Layout and Scope of Works under the Project
Key Contacts of the Project
Status of Environmental Licences, Notifications and Permits
Location of Air Quality Monitoring Stations
Air Quality Monitoring Equipment
Impact Air Quality Monitoring Parameters and Frequencies
Summary Table of 1-hour TSP Monitoring Results during the Reporting Month
Summary Table of 24-hour TSP Monitoring Results during the Reporting
Observation at Air Quality Monitoring Stations
Location of Noise Monitoring Stations
Noise Monitoring Equipment
Noise Monitoring Parameters, Duration and Frequency
Summary Table of Noise Monitoring Results during the Reporting Month
Observation at Noise Monitoring Stations
Location for Water Quality Monitoring Stations
Types of Sampling Bottle and Preservation Method
Water Quality Monitoring Equipment
Water Quality Monitoring Parameters, Depths and Frequency
Laboratory Analysis Method for Water Samples
Summary of Water Quality Exceedances
Number of Birds Observed
Number of Bird-flights
Summary of Avifauna Monitoring Results at Pond 12
Detailed Contamination Information for Designated Remediation Areas
Contaminant Solidification & Stabilisation Target for Cement Solidification /
Stabilisation (CS/S)
Quantities of Waste Generated in the Reporting Month
Summary of Site Audits
Observations and Recommendations of Site Audit
Compliance status of Ecological and Noise Mitigation Measures (EP Condition
2.7 and 2.9)
Statistical Summary of Environmental Complaints
Statistical Summary of Environmental Summons
Statistical Summary of Environmental Prosecution

LIST OF FIGURES

Figure 1	Layout Plan
Figure 2	Location of Air Quality Monitoring Stations
Figure 3	Location of Noise Monitoring Stations
Figure 4	Location of Water Quality Monitoring Stations
Figure 5a	Locations of Pond 12 and Lok Ma Chau Lookout
Figure 5b	Locations of Transects for Monitoring of Chinese Bull Frog
Figure 5c	Locations of Rose Bitterling Sampling Points
Figure 6	Flight Line of All Bird Species

LIST OF APPENDICES

Appendix A	Construction Programme
Appendix B	Action and Limit Levels
Appendix C	Copies of Calibration Certificates
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results and Graphical Presentation
Appendix F	24-hour TSP Monitoring Results and Graphical Presentation
Appendix G	Noise Monitoring Results and Graphical Presentation
Appendix H	Water Quality Monitoring Results and Graphical Presentation
Appendix I	Weather Condition
Appendix J	Event Action Plans
Appendix K	Summary of Exceedance
Appendix L	Site Audit Summary
Appendix M	Environmental Mitigation Implementation Schedule
Appendix N	Temporary Noise Barriers
Appendix O	Waste Generation in the Reporting Month
Appendix P	Complaint Logs
Appendix Q	Summary of Successful Prosecution
Appendix R	Ecological Monitoring Results

EXECUTIVE SUMMARY

Introduction

- 1. This is the 41st Monthly Environmental Monitoring and Audit (EM&A) Report prepared for Environmental Permit No.: EP-477/2013/A Development of Lok Ma Chau Loop (hereinafter called "the Project"). This report documents the findings of Environmental Monitoring and Audit (EM&A) works conducted in the period from 1st to 31st May 2022 (hereinafter called "the reporting month").
- 2. During the reporting month, the following Works Contracts were undertaken for the Project:
 - Contract No. YL/2020/01 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 (hereinafter called the "Contract 1")
 - Contract No.: YL/2020/02 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1 (hereinafter called the "Contract 2")
 - Contract No.: YL/2021/01 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 3 Direct Road Link Phase 2

Environmental Monitoring and Audit Activities

3. A summary of the EM&A activities in the reporting month is listed in **Table I** below:

Table I Summary Table for EM&A Activities in the Reporting Month

Environmental Aspect Monitor		Monitoring Parameter	Date
Air Quality		1-hr Total Suspended Particulates (TSP) Monitoring	5 th , 11 th , 17 th , 23 rd and 27 th May 2022
		24-hr TSP Monitoring	4 th , 10 th , 16 th , 20 th and 26 th May 2022
Constructio	n Noise	L _{eq30mins}	5 th , 11 th , 17 th and 23 rd May 2022
Water Qual	ity	 Temperature pH Turbidity Water depth Salinity Dissolved Oxygen (DO) Suspended Solids (SS) 	3 rd , 5 th , 7 th , 10 th , 12 th , 14 th , 16 th , 18 th , 20 th , 23 rd , 25 th , 27 th and 30 th May 2022
Ecological	Lok Ma Chau (LMC) Loop	Avifauna flight line survey	20th May 2022 Temporary suspended as the connectivity between the existing reed marsh and the EA Zone has been fenced off due to other project's land occupier (i.e. emergency hospital)

Environmental Aspect		Monitoring Parameter	Date
	Western Connection Road (WCR)	Avifauna flight line survey Avifauna survey at Pond 12 Herpetofauna survey Aquatic Fauna survey Water Quality Monitoring for Aquatic Fauna	20 th May 2022 4 th , 11 th , 18 th and 25 th May 2022 13 th May 2022 24 th May 2022 LMC Meander 3 rd , 5 th , 7 th , 10 th , 12 th , 14 th , 16 th , 18 th , 20 th , 23 rd , 25 th , 27 th and 30 th May 2022 Stream and associated ponds south of Lung Hau Road 4 th , 12 th , 18 th , 24 th and 30 th May 2022
Site Environ	nmental Audit	Environmental protection and pollution control measures	Contract 1 and Contract 2 4 th , 11 th , 18 th and 25 th May 2022 Contract 3 16 th , 23 rd and 30 th May 2022

Breaches of Action and Limit Levels

4. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

 Table II
 Summary Table for Environmental Exceedances in the Reporting Month

				Event & Action		
Environmental Monitoring	Parameter	Action Level	Limit Level	Investigation Result	No. of Exceedance related to the Construction Works of the Project	Corrective Action
A in Ossalitas	1-hr TSP	0	0		0	
Air Quality	24-hr TSP	0	0		0	
Construction Noise	Daytime Leq(30min)	0	0		0	
	DO	0	0		0	
Water Quality	Turbidity	0	0		0	
	SS	0	0		0	

1-hour TSP Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

7. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality

8. All water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

LMC Loop

Avifauna (Flight Line Survey)

9. Avifauna monitoring was conducted as scheduled in the reporting month. Flight lines recorded were in general concentrated mainly on LMC Meander and adjacent areas including Ecological Area Zone (EA Zone) and along Shenzhen River. Most birds avoided using the flight line over the centre of LMC Loop which is considered due to the construction activities from other project's land occupier.

Mammals

- 10. According the Clause 11.4.1.2 of EM&A Manual, the objective of mammals monitoring is to monitor the connectivity between the existing reed marsh and the EA. In view of current site condition of Loop, the connectivity between the existing reed marsh and the EA Zone has been fenced off due to other project's land occupier.
- 11. In addition, the 12-month establishment period of EA zone has also been completed. So, the mammals monitoring in the Loop has been temporary suspended since March 2022 and will be resumed subject to the site condition.

Western Connection Road

Avifauna (Flight Line Survey)

12. Avifauna monitoring was conducted as scheduled in the reporting month. Flight lines recorded were in general concentrated mainly on LMC Meander and adjacent areas including Ecological Area Zone (EA Zone) and along Shenzhen River. Most birds avoided using the flight line over the centre of LMC Loop which is considered due to the construction activities from other project's land occupier.

Avifauna (Pond 12)

13. Avifauna survey at Pond 12 was conducted as scheduled in the reporting month. Weekly count of birds using the Pond was recorded. No significant impact of construction activities on bird use of the pond was observed.

Herptofauna

14. Herptofauna survey was conducted as scheduled in the reporting month. No significant impact of construction activities on the numbers of this species was observed.

Aquatic fauna

15. Aquatic fauna survey was conducted as scheduled in the reporting month. No significant impact of construction activities on the stream was observed.

Land Contamination

- Decontamination for five arsenic-contaminated zones (LD01 LD05) identified in LMC Loop was completed and the final Remediation Report was submitted and approved by EPD in accordance with Condition 2.16 of the EP-477/2013/A under Contract No. YL/2017/03.
- 17. No work related to land contamination was conducted in the reporting month.

Site Environmental Audit

18. In the reporting month, weekly joint site inspections to evaluate the site environmental performance had been carried out by the representatives of the Consultants, Independent Environmental Checker (IEC), Environmental Team (ET) and the Contractors. The date(s) of the weekly site environmental audit conducted under the Project are summarized in **Table III**.

Table III Summary Table for Site Environmental Audit in the Reporting Month

Contract(s)	Date(s) of Site Environmental Audit
Contract No. YL/2020/01 – Development of Lok	4 th , 11 th , 18 th and 25 th May 2022
Ma Chau Loop: Main Works Package 1 -	-
Contract 1 Site Formation and Infrastructure	
Works inside Lok Ma Chau Loop and Western	
Connection Road Phase 1	
Contract No.: YL/2020/02 – Development of Lok	4 th , 11 th , 18 th and 25 th May 2022
Ma Chau Loop: Main Works Package 1 -	•
Contract 2 Western Connection Road Phase 2,	
Connection Roads to Fanling / San Tin Highway	
and Direct Road Link Phase 1	
Contract No.: YL/2021/01 – Development of Lok	16 th , 23 rd and 30 th May 2022
Ma Chau Loop: Main Works Package 1 -	
Contract 3 Direct Road Link Phase 2	

19. No non-compliance was recorded during the site inspections.

Complaint Log

20. No environmental complaint was received in the reporting month.

Notification of Summons and Successful Prosecutions

21. No notification of summons or successful prosecution was received in the reporting month.

Reporting Change

22. This report has been prepared in compliance with the reporting requirements for the subsequent monthly EM&A Report as required by the EM&A Manual for Development of Lok Ma Chau Loop (EM&A Manual). No reporting change was made in the reporting month.

Future Key Issues

23. Major site activities for the coming reporting months will include:

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

(a) Western Connection Road (WCR) Stage 1 Construction: Demolition of Existing Structures, Excavation, DCM and Retaining Wall.

Contract No.: YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

- (a) Tree Felling / Tree Transplant.
- (b) Pre-construction Condition Survey inside MTRC tunnel.
- (c) Erection of Contractor's Site Office.
- (d) Pre-drilling and Trial Pits for Bridge ST01, CTFB and DRL.
- (e) Site clearance and GI works for Cut Slopes CS1, CS2 and Retaining wall BPW1, and associated temporary working platform.
- (f) Construction of concrete block piling platform for piling works of Retaining Wall BPW1.
- (g) Erection of Temporary Noise Barrier along the Lok Ma Chau Road.
- (h) Box Culvert Modification at Lok Ma Chau Road (Stage 1).
- (i) Demolition of Existing Structures along Lok Ma Chau Road. Structure Ref. R41, R42 & R50.
- (j) Existing Cycle Track Subway Modification.
- (k) Construction of Pai Lau.
- (l) Bored pile and socketed H-Pile for Bridge CTFB, ST01 & DRL.
- (m) Construction of Retaining walls RW 8 and RW 9.
- (n) Operation of TAR1 and TAR2.

<u>Contract No.: YL/2021/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 3 Direct Road Link Phase 2</u>

- (a) Subletting for Design Services for Temporary and Permanent Works.
- (b) Subletting for Traffic Consultancy Service.
- (c) Elevated PTI subletting for bored piling works.
- (d) Elevated PTI XP applications on footpath and carriageway.
- (e) Elevated PTI Hoarding erection.
- (f) Elevated PTI UU Diversion.

1 INTRODUCTION

1.1 Wellab Limited (WELLAB) was appointed by the Civil Engineering and Development Department (CEDD) under Service Contract No. WD/04/2020 as the Environmental Team to undertake the Environmental Monitoring and Audit (EM&A) programme for the Works Contracts under Main Works Package 1 and the remaining works under Contract No. YL/2017/03 – Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works to ensure that the environmental performance of the Works Contracts comply with the requirements specified in the Environmental Permit (EP), Environmental Monitoring & Audit (EM&A) Manual, Environmental Impact Assessment (EIA) Report of the Project and other relevant statutory requirements.

Purpose of the report

1.2 This is the 41st EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme in the period from 1st to 31st May 2022.

Structure of the report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** purpose and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the Project, site description, project organisation and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licences during the reporting month.
 - Section 3: **Air Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequencies, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequencies, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: Water Quality Monitoring summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequencies, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Ecological Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequencies, monitoring locations and monitoring results.
 - Section 7 Land Contamination summarises the remediation works progress for contamination soil and relevant submission.
 - Section 8 Waste Management summarises the implementation status of waste management.

weekly site inspections undertaken within the reporting month.

Section 10: Implementation Status of Environmental Mitigation Measures - summarises the compliance status of environmental mitigation measures.

Section 11: **Environmental Non-conformance -** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.

Section 12: **Future Key Issues** - summarises the impact forecast and monitoring schedule for the next three months.

Section 13: Conclusions and Recommendations

2 PROJECT INFORMATION

Background

- 2.1 The development at Lok Man Chau (LMC) Loop is one of the ten major infrastructure projects for economic growth of the Hong Kong Special Administrative Region (HKSAR). The HKSAR Government would work with the Shenzhen authorities to tap the land resources of the LMC Loop to meet future development needs and consolidate the strategic position of both cities in the Pan-Pearl River Delta region. The Project is to develop LMC Loop with higher education as the leading land use, complemented by high-tech research and development facilities and cultural and creative industries.
- 2.2 The planning and engineering study for the Loop development is a designated project (DP) classified under Item 1 Schedule 3 of the Environmental Impact Assessment (EIA) Ordinance (Cap. 499). In October 2013, the EIA Report (AEIAR-176/2013) of the Project was approved by the Director of Environmental Protection pursuant to the EIA Ordinance in accordance with the EIA Study Brief (No. ESB-201/2008 and ESB-238/2011) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM). The Environmental Permit (EP) (EP no.: EP-477/2013) was also granted in November 2013.
- 2.3 Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amends the Environmental Permit (No. EP-477/2013) based on the Application No. VEP- 595/2021 and the environmental Permit (Permit No. E EP-477/2013/A) was issued on 12th August 2021 for Development of Lok Ma Chau Loop.
- 2.4 The Loop development is implemented by three works packages in stages, namely: Advance Works, Main Works Package 1 (MWP1) and Main Works Package 2 (MWP2).
- 2.5 Contract No. YL/2017/03 Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works (hereinafter called the "Contract") was awarded to Sang Hing Kuly Joint Venture (hereinafter called the "Contractor 1") in June 2018 for the Advance Works. All construction works of Contract No. YL/2017/03 have been completed and the works were successfully handed over to AFCD and DSD on 30th December 2021.
- 2.6 For MWP1, there will be a total of 5 Works Contracts and the contract packaging is shown below.
 - Contract 1 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 1 – Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1
 - 2) Contract 2 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1
 - 3) Contract 3 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 3 Direct Road Link Phase 2
 - 4) Contract 4 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 4 Fresh Water Service Reservoir and Associated Waterworks
 - 5) Contract 5 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 5 Landscaping Works within Lok Ma Chau Loop

- 2.7 Contract No. YL/2020/01 Development of Lok Ma Chau Loop: Main Works Package 1
 Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 (hereinafter called the "Contract 1") was awarded to CRCC-Kwan Lee-Paul Y. JV (hereinafter called the "Contractor 2") in July 2021.
- 2.8 Contract No.: YL/2020/02 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1 (hereinafter called the "Contract 2") was awarded to China Road and Bridge Corporation (hereinafter called the "Contractor 3") in September 2021.
- 2.9 Contract No.: YL/2021/01 Development of Lok Ma Chau Loop: Main Works Package 1 Contract 3 Direct Road Link Phase 2 (hereinafter called the "Contract 3") was awarded to Paul Y.-Chun Wo-CRCC JV (hereinafter called the "Contractor 4") in February 2022.
- 2.10 During the reporting month, the following Works Contracts were undertaken for the Project:
 - Contract No. YL/2020/01 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 (Contract 1)
 - Contract No.: YL/2020/02 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1 (Contract 2)
 - Contract No.: YL/2021/01 Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 3 Direct Road Link Phase 2 (Contract 3)
- 2.11 The layout of the construction works under the Project and the scope of works under the Project are summarized in **Table 2.1**.

Table 2.1 Site Layout and Scope of Works under the Project

Contract(s)	Scope of Works	Site Layout Plan
Contract No. YL/2017/03 – Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works (Completed)	 a) Land decontamination treatment within the Loop; b) Establishment of an Ecological Area (EA) within the Loop; c) Construction of a temporary access to the Loop; d) Minor improvement works to Ha Wan Tsuen East Road and other ancillary works; e) Construction of temporary noise barriers and miscellaneous road works along Lok Ma Chau Road; 	Figure 1a
	f) Ground treatment works to the first batch of land parcels within the Loop for development of buildings and associated facilities for Phase 1 of the Hong Kong – Shenzhen Innovation and Technology Park and development of the western electricity substation; and g) Implementation of environmental mitigation measures for the works mentioned in the items (a) to (f) above.	

Contract No. YL/2020/01 — Development of Lok Ma Chau Loop: Main Works Package 1 — Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 Signature of Lok Ma Chau Loop and Western Connection Road Phase 1 Appears of the Loop; (a) Site formation of 70ha for the Loop; (b) Ground treatment by either surcharge and installation of vertical band drains or deep cement mixing method, and associated slopeworks, retaining wall, landscaping works; (c) Construction of internal roads (Road D1 and Road L1), Public Transport Interchange (PTI) and associated drainage and sewerage works, waterworks, street lighting, utilities (including interim water main), street furniture and traffic aids, etc. within the Loop; (d) Construction of bridge structure across old Shenzhen River meander; (e) Temporary haul road linking Sai Kwo Road to the Loop; (f) Ecological and environmental mitigation measures within the Loop including retention of reedbeds; (g) Ecological and environmental mitigation measures outside the Loop including fishpond, off-site wetland and woodland compensation; and (b) Construction of Western Connection Road (WCR) Phase 1 (section along existing Ha Wan Tsuen East Road) Widening of Ha Wan Tsuen East Road; Provision of cycle track and footpath; Associated site formation and ground treatment	Plan
- Associated site formation and ground freatment	
works; - Utilities; and	
- Associated noise mitigation measures.	
Contract No.: YL/2020/02 - Development of Lok Ma Chau Loop: Main Works Package 1 - Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Phase 2 Associated noise mitigation measures; Associated noise mitigation measures; Pigure 1b Figure 1b Figure 1b Figure 1b Figure 1b	
Phase 1 - Associated slope works, retaining wall and natural	
terrain mitigation works; and Associated box culverts, drainage works and water works, street furniture and traffic aids, utilities and landscape works.	
 b) LMC Road and San Tin Highway Connection Construction of bridge structure connecting LMC Road and San Tin Highway; and Junction Improvement works at Castle Peak Road 	

Contract(s)	Scope of Works	Site Layout Plan
	and LMC Road.	
	c) Construction of Direct Road Link (DRL) Phase 1 comprising a vehicular bridge structure with provision of covered pedestrian walkway linking LMC Station PT1 and Ha Wan Tsuen East Road.	
Contract No.: YL/2021/01 –	a) Construction of an elevated public transport interchange of an approximate area of 5,700	Figure 1b
Development of Lok	square metres above the exiting Lok Ma Chau	
Ma Chau Loop: Main	Spur Line Public Transport Interchange;	
Works Package 1 -	b) Construction of an approximately 90 metres long	
Contract 3 Direct	double-deck footbridge and a lift tower of	
Road Link Phase 2	approximately 21 metres in height with three lifts	
	and three escalators connecting the elevated	
	public transport interchange mentioned above to	
	the MTR Lok Ma Chau Station;	
	c) Associated modification works within the MTR	
	Lok Ma Chau Station; and	
	d) Associated roadworks, landscaping, electrical	
	and mechanical works and ancillary works.	

Project Organisation

2.12 Different parties with different levels of involvement in the Project organization. The key personnel contact names and numbers are summarised in **Table 2.2**.

Table 2.2 Key Contacts of the Project

Organization	Project Role	Contact Person	Tel No.	Fax No.	
CEDD	Project Proponent	Mr. Davy KS CHAN	2417 6370	2412 0358	
WELLAB	ET	Dr Priscilla Choy – ET Leader	2898 7388	2898 7076	
Lam Environmental Services Limited (LAM)	IEC	Mr. Raymond Dai	2839 5666	2882 3331	
Contract No. YI	Contract No. YL/2020/01				
AECOM	Consultants	Mr. Eric Wong	9861 8664	TBA	
		Site Agent – Mr. James Au	9879 8109	2774 0197	
		JV Representative – Mr. Alvin Chan	9105 6863	2774 0197	
CRCC-Kwan Lee-Paul Y. JV	Contractor	Team Leader – Mr. Jack Chu	9775 3008	2774 0197	
		Team Leader – Mr. Desmond Tang	5188 0815	2774 0197	
		Section Agent – Mr. S M Ma	6628 6221	2774 0197	

Organization	Project Role	Contact Person	Tel No.	Fax No.
		Superintendent – Mr. Y K Poon	9177 8196	2774 0197
		Superintendent – Mr. Ray Wong	9171 0919	2774 0197
		Environmental Officer – Ms. Lila Lui	5261 0378	27740197
		Environmental Supervisor- Mr. Ray Wong	9171 0919	27740197
Contract No. YI	L/2020/02			
AECOM	Consultants	Mr. Eric Wong	9861 8664	TBA
		Site Agent – Mr. Raymond Suen	9779 8871	3996 9202
		Team Leader – Mr. Jackson Chan	9254 1635	3996 9202
		Team Leader –Mr. Billy Leung	9777 0799	3996 9202
		Deputy Team Leader –Mr. Roger Poon	9503 2488	3996 9202
China Road and Bridge	Contractor	Senior Foreman – Mr. Po Hang Lam	9345 6134	3996 9202
Corporation	Corporation	Senior Foreman – Mr. Ka Kit Chan	6088 7741	3996 9202
		Foreman – Mr. Philip Tse	5128 1232	3996 9202
		Environmental Officer – Mr. Calvin So	9724 6254	3996 9202
		Environmental Supervisor- Mr. Leo Choi	9664 7880	3996 9202
Contract No. YI	L/2021/01			
AECOM	Consultants	Mr. Eric Wong	9861 8664	TBA
		Site Agent – Mr. Sam Wong	6029 9390	3015 7861
		Section Agent – Mr. Charles Choi	6350 0142	3015 7861
Paul YChun	Contractor	General Foreman – Mr. Yau Shueng Kee	9710 1663	3015 7861
Wo-CRCC JV		Environmental Officer – Ms. Lila Lui	5261 0378	3015 7861
		Environmental Supervisor – Mr. Terence Lai	9829 8605	3015 7861

Construction Programme

2.13 Copies of contractors' construction programmes are provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

2.14 The major site activities undertaken in the reporting month included:

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

- (a) All works at LMC Loop were suspended on 21st February 2022.
- (b) Areas 2, 7 and 9 Planting works.
- (c) Portion 6 WCR Site Clearance, Demolition of Existing Structures.

Contract No.: YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

- (a) Tree felling and transplantation works.
- (b) Box culvert modification, trial pits excavation and identification of existing utilities.
- (c) Pre-drilling works at ST01, CTFB and DRL.
- (d) Temporary Noise Barrier.
- (e) Monthly monitoring of the polishing function of Reedbed Cell no. 3A.
- (f) Retaining Wall BPW1 / CS1 / CS2. GI works completed.
- (g) CTFB, socketed H-pile for the staircase.
- (h) Demolition of Existing Structures.
- (i) Modified the existing boundary fencing at DRL-P09 for pre-drilling works.

Contract No.: YL/2021/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 3 Direct Road Link Phase 2

- (a) Fencing Off EEAA Zone.
- (b) Initial Survey.
- (c) UU detection.
- (d) Tree Survey.
- (e) Trial Pit Excavation.
- (f) Tree Felling.

Status of Environmental Licences, Notifications and Permits

2.15 A summary of the relevant permits, licences, and/or notifications on environmental protection for the Project is presented in **Table 2.3**.

 Table 2.3
 Status of Environmental Licences, Notifications and Permits

	Permit / License	Valid Period			
Contract No.	No.	From	То	Status	
Environmental Permit (El	P)		l	l	
Contract No. YL/2020/01 Contract No. YL/2020/02	EP-477/2013	22/11/2013	N/A	Valid	
Contract No. YL/2021/01	EP-477/2013/A	12/08/2021	N/A	Valid	
Construction Noise Permi	t (CNP)				
Contract No. YL/2020/01	GW-RN0246-22	26/03/2022	25/06/2022	Valid	
Contract No. YL/2020/02	GW-RN0099-22	11/2/2022	10/8/2022	Valid	
Notification pursuant to A	ir Pollution Contro	(Construction	Dust) Regulation		
Contract No. YL/2020/01	469726	21/07/2021	Till the Contract ends	Receipt acknowledged by EPD	
Contract No. YL/2020/02	471916	20/09/2021	Till the Contract ends	Receipt acknowledged by EPD	
Contract No. YL/2021/01	479880	17/05/2022	Till the Contract ends	Receipt acknowledged by EPD	
Billing Account for Dispos	al of Construction V	Waste			
Contract No. YL/2020/01	7041333	27/07/2021	Till the Contract ends	Valid	
Contract No. YL/2020/02	7041861	15/10/2021	Till the Contract ends	Valid	
Contract No. YL/2021/01	7043434	22/05/2022	Till the Contract ends	Valid	
Registration of Chemical	Waste Producer				
Contract No. YL/2020/01	WPN 5213-620- C4632-01	20/08/2021	Till the Contract ends	Valid	
Contract No. YL/2020/02	WPN 5213-542- C1232-24	29/11/2021	Till the Contract ends	Valid	
Contract No. YL/2021/01	WPN 5213-542- P3483-01	21/04/2022	Till the Contract ends	Valid	
Effluent Discharge Licens	Effluent Discharge License under Water Pollution Control Ordinance				
Contract No. YL/2020/01	WT00039466-2021	22/12/2021	31/12/2026	Valid	
Contract No. YL/2020/02				Pending approval (Ref. no. 473875)	
Contract No. YL/2021/01				Pending approval (Ref. no. 477720)	

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual for Development of Lok Ma Chau Loop (EM&A Manual), impact 1-hour Total Suspended Particulates (TSP) and 24-hour TSP monitoring were conducted to monitor the air quality for the Project. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring work.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 4 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 4 monitoring stations under the Project, as shown in **Figure 2**. **Table 3.1** describes the location of the air quality monitoring stations.

Table 3.1 Location of Air Quality Monitoring Stations

Monitoring Station	Location
DMS-1a (see Note 1)	Village House along Ha Wan Tsuen East Road
DMS-2A (see Note 2)	Village House along Lok Ma Chau Road
DMS-3 Village House along Old Border Road	
DMS-4A (see Note 3)	Hong Kong Police Force, Lok Ma Chau Operation Base
	at Horn Hill

Notes:

- 1. In view of the disturbance concerned by the villagers near the original air quality monitoring location DMS-1, an alternative location (DMS-1a) was proposed which was verified by IEC and agreed by EPD.
- 2. Monitoring at DMS-2 (originally proposed in the approved EM&A Manual) was denied during the baseline monitoring. An alternative location (DMS-2A) was proposed which was verified by IEC and agreed by EPD.
- 3. Proposed replacement monitoring location for Air Sensitive Receiver (ASR) MTL-20 Village house in Ma Tso Lung (DMS-4A) as no work would be conducted near ASR MTL-20 due to exclusion of the original Eastern Connection Road (ECR) which was verified by IEC and agreed by EPD.

Monitoring Equipment

Table 3.2 summarises the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix** C.

Table 3.2 Air Quality Monitoring Equipment

Monitoring Station(s)	Equipment	Model and Make	Quantity
DMS-2A DMS-3	HVS Sampler for 24-hour TSP monitoring	TISCH Model: TE-5170	3
DMS-4A	1-hour TSP Dust Meter	Met One Instruments: AEROCET-831	4
	Calibrator	TISCH Model: TE-5025A	1

Monitoring Station(s)	Equipment	Model and Make	Quantity
⁽¹⁾ DMS-1a	Dust Meter for 1- hour and 24-hour TSP monitoring	Met One Instruments: AEROCET-831	3
DMS-4A	Wind Anemometer	DAVIS Model: Vantage PRO2 6152CUK	1

Remark: (1) The power supply from the Village House at DMS-1a is not secured for operation of HVS. Therefore, dust meter for 24-hr TSP monitoring at DMS-1a is proposed to ensure the monitoring data collection.

Monitoring Parameters and Frequencies

3.5 **Table 3.3** summarises the monitoring parameters and frequencies of impact dust monitoring during the course of the Project activities. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 3.3 Impact Air Quality Monitoring Parameters and Frequencies

Parameters	Frequency
1-hr TSP	Three times in every 6 days
24-hr TSP	Once per 6 days

Monitoring Methodology and Quality Assurance/Quality Control (QA/QC) Procedure

24-hour TSP Air Quality Monitoring

Instrumentation

3.6 HVSs completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - A horizontal platform with appropriate support was provided to secure the samplers against gusty wind;
 - No two samplers were placed less than 2 metres apart;
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protruded above the sampler;
 - A minimum of 2 metres of separation from walls, parapets and penthouses was required for rooftop samples;
 - A minimum of 2 metres separation from any supporting structure, measured horizontally was required:
 - No furnaces or incineration flues were nearby;
 - Airflow around the sampler was unrestricted;
 - The samplers were more than 20 metres from the drip line;

- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring;
- Permission and access to the monitoring stations had been obtained to set up the samplers; and
- A secured supply of electricity was provided to operate the samplers.

Filters Preparation

- 3.8 Wellab Limited was the HOKLAS accredited laboratory (HOKLAS Registration No.083) and responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for the monitoring team.
- 3.9 All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.10 Wellab Limited has comprehensive QA and QC programmes.

Operating/Analytical Procedures

- 3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50:
 - The power supply was checked to ensure the sampler worked properly;
 - On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station;
 - The filter holding frame was then removed by loosening the four nuts and carefully
 a weighted and conditioned filter was centered with the stamped number upwards,
 on a supporting screen;
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges;
 - The shelter lid was closed and secured with the aluminum strip;
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper could be found out by using the filter number);
 - After sampling, the filter was removed and kept in a clean and tightly sealed plastic bag. The filter paper was then returned to the Wellab Limited for reconditioning in the humidity-controlled chamber followed by accurate weighting by an electronic balance with a readout down to 0.1mg. The elapsed time was also recorded; and
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the RH should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high-volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition; and
 - All HVSs were calibrated (five-point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

1-hour and 24-hour TSP Air Quality Monitoring

3.13 The measuring procedures of the dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

(AEROCET-831)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Press and hold the Power key momentarily to power on the unit and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 second to display the Sample Screen minutes.
- Press the START / STOP key to run the internal vacuum pump for 1 minute and ready to use.
- Use the select dial to select the PM range and press the START / STOP key to start a measurement.
- Finally, push the START/STOP key to stop the measuring after 1 hour sampling.
- For 24-hour TSP monitoring, the hold time was set for collection of 24-hour TSP samples. A separate automotive battery was used to support the dust meter for 24-hour TSP monitoring.
- Information such as sampling date, time, value and site condition were recorded during the monitoring period.
- All data were recorded in the data logger for further data processing.

Maintenance/Calibration

- 3.14 The following maintenance/calibration is required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method prior to the commencement of the baseline monitoring. Dust meter will be checked and calibrated at bi-monthly intervals throughout the air quality monitoring period, if necessary.

Results and Observations

3.15 The monitoring results for 1-hour TSP and 24-hour TSP are summarised in **Table 3.4** and **Table 3.5** respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendix E** and **Appendix F** respectively.

Table 3.4 Summary Table of 1-hour TSP Monitoring Results during the Reporting Month

Monitoring Station	Concentration (μg/m³)		Action	
Station	Average	Range	Level, μg/III	μg/m³
DMS – 1a	52.4	19.8 – 137.9	353	
DMS - 2A	82.5	27.0 - 191.0	370	500
DMS - 3	68.7	22.3 – 137.6	351	500
DMS – 4A	59.6	19.7 – 122.3	350	

Table 3.5 Summary Table of 24-hour TSP Monitoring Results during the Reporting Month

Monitoring Station		centration ug/m³)	Action Level, µg/m³	Limit Level, µg/m³
Station	Average	Range	Level, μg/III	μg/m
DMS – 1a	69.2	29.6 – 119.3	184	
DMS - 2A	56.3	25.9 – 98.6	166	260
DMS – 3	35.9	23.3 - 63.1	166	260
DMS – 4A	51.9	28.8 - 91.0	152	

- 3.16 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.17 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.18 According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are as follows:

Table 3.6 Observation at Air Quality Monitoring Stations

Monitoring Station	Major Dust Source
DMS-1a	Road traffic, exposed site area, site vehicle / equipment movement (mainly due to other project)
DMS-2A	Site vehicle / equipment movement
DMS-3	Road traffic
DMS-4A	Road traffic

- 3.19 The wind speed and wind direction were recorded by the installed Wind Anemometer set at DMS-4A. The location is shown in **Figure 2**.
- 3.20 The general weather condition and the wind data for the reporting month are summarised in **Appendix I**.

Event and Action Plan

3.21 Should any project related non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix J** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with the EM&A Manual, four noise monitoring stations, namely NMS-1, NMS-2, NMS-3 and NMS-4A were selected for impact monitoring for the Project. Impact noise monitoring was conducted for at least once per week during the construction phase of the Project. **Appendix B** shows the established Action / Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 4 monitoring stations under the Project, as shown in **Figure 3**. **Table 4.1** describes the locations of the noise monitoring stations.

Table 4.1 Location of Noise Monitoring Stations

Monitoring Station	Location	Measurement
NMS-1	Village house in Ha Wan Tsuen	Façade Measurement
NMS-2	Village house along existing Ha Wan Tsuen	Free Field
NMS-3	Village house along Old Border Road	Free Field
NMS-4A(see Note 1)	Hong Kong Police Force, Lok Ma Chau	Free Field
	Operation Base at Horn Hill	measurement

Notes:

 Proposed replacement monitoring location for Noise Sensitive Receiver (NSR) MTL-20 – Village house in Ma Tso Lung (DMS-4A) as no work would be conducted near NSR MTL-20 due to exclusion of the original ECR.

Monitoring Equipment

4.3 **Table 4.2** summarises the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model	Quantity
Integrating Sound Level Meter	BSWA 308	3
Calibrator	SVANTEK SV 30A	1

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarises the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Duration	Frequency
NMS-1 NMS-2 NMS-3 NMS-4A	L10(30 min.) dB(A) L90(30 min.) dB(A) Leq(30 min.) dB(A) (as six consecutive Leq, 5min readings)	0700-1900 hrs on normal weekdays	Once per week

Table 4.3 Noise Monitoring Parameters, Duration and Frequency

Remarks

A-weighted equivalent continuous sound pressure level (Leq). It is the constant noise level which, under a given situation and time period, contains the same acoustic energy as the actual time-varying noise level.

 L_{10} is the level exceeded for 10% of the time. For 10% of the time, the sound or noise has a sound pressure level above L_{10} .

L₉₀ is the level exceeded for 90% of the time. For 90% of the time, the noise level is above this level.

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned at 1m from the exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acted as a reflecting surface;
- The battery condition was checked to ensure the correct functioning of the meter;
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : Atime weighting : Fast

 \perp time measurement : L_{eq}(30 min.) dB(A)

(as six consecutive $L_{\text{eq,}}$ 5min readings) during non-restricted hours (i.e. 0700-1900 hrs on

normal weekdays)

- Prior to and after each noise measurement, the meter was calibrated using a
 Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before
 and after measurement was more than 1.0 dB, the measurement would be
 considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment;
- During the monitoring period, the L_{eq}, L₉₀ and L₁₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet;
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation record during measurement period should be provided; and
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed should be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.

4.7 Immediately prior to and following each noise measurement, the accuracy of the sound level meter should be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements would be accepted as valid only if the calibration levels before and after the noise measurement agreed to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarised in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendix G**.

Table 4.4 Summary Table of Noise Monitoring Results during the Reporting Month

Monitoring Station	Noise Level, Leq (30min) dB(A)		Action Level	Limit Level
Withintoning Station	Average	Range	Action Level	Limit Level
NMS-1	60.4	51.2 - 64.8	When one	
NMS-2	68.4	66.2 - 70.0	documented	75 1D(A)
NMS-3	57.7	51.8 – 61.3	complaint is	75 dB(A)
NMS-4A	55.3	49.0 - 60.2	received.	

Remark: +3dB(A) façade correction included

If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded.
- 4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations in the reporting month are as follows:

Table 4.5 Observation at Noise Monitoring Stations

Monitoring Station	Major Noise Source		
NMS-1	Excavation works, loading and unloading works, site vehicle / equipment movement (mainly due to other project)		
NMS-2	Site vehicle / equipment movement		
NMS-3	Road traffic		
NMS-4A	Road traffic		

Event and Action Plan

4.11 Should any project related non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix J** shall be carried out.

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring shall not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted at three depths (i.e. 1m below surface, mid-depth and 1m above river bed, except where the water depth was less than 6m, mid-depth station might be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) dissolved oxygen (DO) concentration, DO saturation, suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 **Appendix B** shows the established Action and Limit Levels for the water quality monitoring work.

Monitoring Locations

- 5.5 Impact water quality monitoring was conducted at 6 monitoring stations under the Project, which is summarised in **Table 5.1**. The locations of monitoring stations are shown in **Figure 4**.
- 5.6 Based on the updated construction programme under Contract No. YL/2017/03, the water-based construction works for temporary vehicular bridge was completed on 7th April 2021 which was confirmed by Engineer Representative under Contract No. YL/2017/03 via email dated 15th June 2021. The additional monitoring station, BS1 was therefore proposed to be deleted from the water quality monitoring proramme starting from 28th June 2021. Other water quality monitoring stations remain unchanged. This Proposal for Update of Water Quality Monitoring Stations was verified by IEC and agreed by EPD via email dated 22nd June 2021.

 Table 5.1
 Location for Water Quality Monitoring Stations

Monitoring Station	Location	Nature of the Location	
CS1	Control Station at Old Shenzhen River	Control Station at Meander	
IS1	Impact Station at Old Shenzhen River	Impact Station at Meander	
IS2	Impact Station at Old Shenzhen River	Impact Station at Meander	
IS4	Impact Station at Ping Hang Stream	Reference Station	
CS5	Control Station at south of Lung Hau	Control Station for IS6	
IS6	Impact Station near Lung Hau Road	Impact Station	
⁽¹⁾ BS1	Impact Station at Old Shenzhen River	Additional impact station for	
	Meander	temporary vehicular bridge	

Note:

 Terminated starting from 28th June 2021 according to Proposal for Update of Water Quality Monitoring Stations (approved by EPD on 22nd June 2021).

Monitoring Equipment

Instrumentation

5.7 A multi-parameter meters (Model YSI EXO) were used to measure DO, turbidity, salinity, pH and temperature.

DO and Temperature Measuring Equipment

- 5.8 The instrument for measuring DO and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - A DO level in the range of 0-20 mg/L and 0-200% saturation; and
 - A temperature of 0-45 degree Celsius.
- 5.9 It had a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in-situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of SS. The turbidity measurement was carried out on split water sample collected from the same depths of SS samples.

Sampler

5.13 A water sampler, consisting of a transparent Polyvinyl Chloride (PVC) of a capacity of not less than two litres which could be effectively sealed with cups at both ends was used. The water sampler had a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth. In addition, a self-made sampling bucket was also used for sampling at the monitoring station with shallow water.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

<u>pH</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

5.16 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Sample Container and Storage

- 5.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination work was started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.
- 5.18 **Table 5.2** also summarises the type of sampling bottle and preservation method for laboratory testing.

Table 5.2 Types of Sampling Bottle and Preservation Method

Parameter	Preservation Method	Type of Sample Container
Total SS	Refrigerate	1 litre plastic bottle

Calibration of In-Situ Instruments

- 5.19 All in-situ monitoring instruments were checked, calibrated and certified by Wellab Limited before use, and subsequently re-calibrated at 3-month intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.20 For the on-site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.21 Sufficient stocks of spare parts were maintained for replacement when necessary. Backup monitoring equipment was also being made available so that monitoring could proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.22 The equipment used for impact water quality monitoring is shown in **Table 5.3** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring equipment complied with the requirements set out in the EM&A Manual.

Table 5.3 Water Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Sonar Water Depth Detector	Garmin Fishfinder 140 / Garmin Striker plus 4	1
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or self-made sampling bucket	1
Multi-parameter Water Quality System	YSI EXO 1	2

Monitoring Parameters and Frequency

5.23 **Table 5.4** summarises the monitoring parameters, monitoring depths and frequency of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Monitoring **Depth** Frequency Parameter (unit) Station • 3 water depths: 1m Temperature(°C) below water surface, pH (pH unit) mid-depth and 1m above turbidity (NTU) river bed. 3 days per week water depth (m) • If the water depth was during the CS1, IS1, IS2, less than 3m, mid-depth salinity (ppt) construction period IS4, CS5, IS6 sampling only. of the Project DO (mg/L and • If water depth was less % of saturation) than 6m, mid-depth SS (mg/L)

Table 5.4 Water Quality Monitoring Parameters, Depths and Frequency

5.24 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

might be omitted.

Monitoring Methodology

Instrumentation

5.25 A multi-parameter meters (Model YSI EXO) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.26 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the values between the first and second readings of each set was more than 25% of the value of the first readings, this set of readings was discarded and further readings were taken.

Laboratory Analytical Methods

5.27 The testing of all parameters was conducted by Wellab Limited for the water samples and comprehensive QA and QC procedures were in place in order to ensure the quality and consistency of results. The testing method, reporting limit and detection limit are provided in **Table 5.5**.

Table 5.5 Laboratory Analysis Method for Water Samples

Determinant	Instrumentation	Analytical Method	Limit of Reporting	Detection Limit
SS	Weighing	APHA 17ed 2540 D	2.5 mg/L	0.5 mg/L

Remark: The limit of reporting, 2.5mg/L has been adopted during baseline water quality monitoring stage

QA/QC Requirements

Decontamination Procedures

5.28 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 5.29 All sampling bottles were labelled with the sample identity laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 5.30 The laboratory determination work was started as soon as possible after collection of the water samples.

QC Measures for Sample Testing

- 5.31 The sample testing and following QC programme were performed by Wellab Limited for every batch of 20 samples:
 - ♦ One method blank; and
 - ♦ One set of QC samples.

Maintenance and Calibration

5.32 All in-situ monitoring instruments were checked, calibrated and certified by Wellab Limited before use, and subsequently re-calibrated at 3-month intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 5.33 The monitoring results and graphical presentation of water quality at the monitoring stations are shown in **Appendix H.**
- 5.34 The summary of exceedance recorded in the reporting month is shown in **Appendix K** and summarised in the **Table 5.6**.

Station	Exceedance Level	DO	Turbidity	SS	Total Number of Non-project Related Exceedances	Total Number of project Related Exceedances
IS1	Action Level	0	0	0	0	0
	Limit Level	0	0	0	0	0
IS2	Action Level	0	0	0	0	0
	Limit Level	0	0	0	0	0
IS4	Action Level	0	0	0	0	0
	Limit Level	0	0	0	0	0
T-4-1	Action Level	0	0	0	0	0
Total	Limit Level	0	0	0	0	0

 Table 5.6
 Summary of Water Quality Exceedances

5.35 No water quality monitoring was conducted at IS6 in the reporting month since the channel was dry.

5.36 Water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Event and Action Plan

5.37 Should any project related non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix J** shall be carried out.

6 ECOLOGICAL MONITORING

LMC Loop

Monitoring Requirements (Avifauna Monitoring – Flight Line Survey)

Monitoring Requirements

- 6.1 As required under Section 11.4.1.1 of EM&A Manual, flight line corridor survey was required from the beginning of work until 12 months after the establishment of the Ecological Area or completion of work on the Western Connection Road, whichever was the later.
- 6.2 The purpose of the survey was to identify the number and species composition of birds using the flight line and monitor if there was any impact from construction works.

Monitoring Frequency

6.3 Flight line survey is required to be carried out on monthly basis.

Monitoring Location

6.4 The flight line corridor survey work should be carried out at the Lok Ma Chau Lookout, according to Section 11.4.1.1 of the EM&A Manual. The location at Lok Ma Chau Lookout is shown in **Figure 5a.**

Monitoring Methodology

- 6.5 Flight lines of birds through the area were surveyed once monthly at Lok Ma Chau Lookout, adjacent to the Loop.
- 6.6 Observations were carried out at Lok Ma Chau Lookout for two hours from 30 minutes before sunrise in the early morning.
- 6.7 During the survey, the surveyor marked on a standard map for the estimated location of the flight path used by waterbird species, birds of prey or other larger species of conservation interest passing through the area. Flights involving short hops from point to point were not recorded. The focus was on the flight line corridor over the Loop or the southwest section of old Shenzhen River meander.
- 6.8 During the survey, species generally commensal with man (e.g. Black-collared Starling), common and widespread in HK (e.g. Crested Myna) or small in size and not prone to following flight lines en masse (e.g. Barn Swallow) were ignored in order to concentrate on species of conservation interest and/or those prone to using flight lines (e.g. large waterbirds).
- 6.9 For each observation of birds in flight, the number, the species and their height above the ground were recorded. Height above the ground was estimated in relation to the level of the Loop and adjacent fish pond area, and/or the location of the observer.
- 6.10 Given the difficulty of accurately measuring height above ground from a distance, three height classes were used: 10m, 20m and 30m or above. In practice, this means birds

- were assigned to ranges of 5-15m (10m height class), 15-25m (20m height class) and 25m or above (30m height class). Approximate heights of observation points were 40m at Lok Ma Chau Lookout.
- 6.11 Flight line locations marked on the maps were then overlain with a 100m grid, each square having a unique number.
- 6.12 The number of birds of each species passing through each 100m grid (the number of "bird-flights") and their height above ground were then entered into an Excel spreadsheet. These data were then mapped, and on the figures produced a greater intensity of colour indicated a higher number of birds, as shown in **Figure 6.**

Monitoring Day

6.13 The flight line survey was carried out on 20th May 2022. Sunrise time at 5:41 am and the survey started at 5:11 am and lasted for 2 hours. The weather was fine throughout the survey.

Monitoring Result

6.14 Total number of birds observed was 321. Six species were included in the record of the flight line survey, including Little Egret, Great Egret, Chinese Pond Heron, Grey Heron, Black Kite and Collared Crow. **Table 6.1** shows the summary of the number of birds observed in this Survey.

Table 6.1 Number of Birds Observed

Species	Number of Birds	Height class 1	Height Class 2	Height Class 3
Little Egret 小白鷺	250	9	77	164
Great Egret 大白鷺	60	0	4	56
Chinese Pond Heron 池鷺	6	1	3	2
Grey Heron 蒼鷺	3	0	0	3
Black Kite 黑鳶	1	0	0	1
Collared Crow 白頸鴉	1	0	0	1
Total	321	10	84	227

6.15 The total number of bird-flights (number of birds of each species passing through each 100m square) observed across all 100m grid squares was 3,275. **Table 6.2** shows the number of bird-flights for the six species respectively.

Table 6.2 Number of Bird-flights

Species	Total number of Bird-Flights
Little Egret 小白鷺	2502
Great Egret 大白鷺	675
Chinese Pond Heron 池鷺	51
Grey Heron 蒼鷺	31
Black Kite 黑鳶	6
Collared Crow 白頸鴉	10
Total	3,275

- 6.16 The distribution of flight line usage in this survey is shown in **Figure 6**.
- 6.17 Flight lines were in general concentrated mainly on LMC Meander and adjacent areas including Ecological Area (EA) Zone and along Shenzhen River. Most birds avoided using the flight line over the centre of LMC Loop which is considered due to the construction activities from other project's land occupier.

Monitoring Requirements (Mammals)

Monitoring Requirements

- 6.18 As required under Section 11.4.1.2 of the EM&A Manual, monitoring of mammals are required for Eurasian Otter, other mammals and dogs during the site formation and establishment period of Ecological Area.
- 6.19 The purpose of the monitor is to observe the connectivity between the existing reed marsh and the Ecological Area, and if there was any sign of otter and mammals around the Ecological Area.

Monitoring Location

6.20 Three cameras should be placed where accessible, facing towards the Ecological Area and the Loop. The locations of cameras are subject to the project progress and result of the survey.

Monitoring Methodology

6.21 Monitoring of Eurasians Otter is notoriously difficult due to their secretive and nocturnal habits in Hong Kong. Therefore, remote-sensing (infra-red flash) cameras shall be used to detect any signs of Eurasian Otter and mammals.

Monitoring Results

- 6.22 In view of current site condition of Loop, the connectivity between the existing reed marsh and the EA Zone has been fenced off due to other project's land occupier. In addition, 12-month establishment period of EA zone has also been completed.
- 6.23 So, the mammals monitoring in the Loop was temporary suspended since March 2022 and will be resumed subject to the site condition.

Western Connection Road

Monitoring Requirements (Avifauna Monitoring – Flight Line Survey)

6.24 Refer to Sections 6.1 to 6.17.

Monitoring Requirements (Avifauna Monitoring – Pond 12)

Monitoring Requirements

6.25 As required under Section 11.4.2.1 of EM&A Manual, weekly counts of the number and

species of bird using Pond 12 was required from the beginning of work until 12 months after the establishment of the Ecological Area or completion of work on the Western Connection Road, whichever is the later.

6.26 The purpose of the survey was to identify the number and species composition of birds using Pond 12 to ensure there would be no impacts greater than predicted from construction works.

Monitoring Frequency

6.27 Pond 12 avifauna survey is required to be carried out on a weekly basis.

Monitoring Location

6.28 Monitoring of avifauna was conducted at Pond 12. Location of Pond 12 is shown in **Figure 5a**.

Monitoring Methodology

- 6.29 The species and number of birds using Pond 12 were surveyed weekly. Each weekly survey started before the commencement of works of the day, and ended 1 hour after works had begun.
- 6.30 During the survey, the surveyor would identify and count each bird using Pond 12 with a pair of binoculars and a camera. The abundance and species of the identified birds would be recorded.

Monitoring Result

6.31 Pond 12 avifauna surveys were carried out weekly in the reporting month.

Dates of pond 12 avifauna survey: 4th, 11th, 18th and 25th May 2022

- 6.32 In total, 201 individuals from 14 avifauna species were recorded at Pond 12 in the reporting month. The detailed results are shown in **Appendix R1**.
- 6.33 The monitoring results during construction works were compared against the results before the commencement of works of the day. The number of bird species and the abundance of birds recorded at Pond 12 during construction were higher than the results prior to the construction works. (Refer to **Table 6.3**).
- 6.34 The monitoring results indicated Pond 12 was utilized by waterbird and wetland-dependent species in the reporting month during the monitoring. No significant impact of construction activities on bird use of the pond was observed.

Table 6.3 Summary of Avifauna Monitoring Results at Pond 12

Manitaning Data	Number of Species		Abundance	
Monitoring Date	Before Construction	During Construction	Before Construction	During Construction
4 th May 2022	6	14	25	43

Wellab

Manitaring Data	Number of Species		Abundance	
Monitoring Date	Before Construction	During Construction	Before Construction	During Construction
11 th May 2022	6	6	18	16
18 th May 2022	8	13	14	29
25 th May 2022	7	13	14	42

Herpetofauna

Monitoring Requirements

- 6.35 Under Section 11.4.2.2 of EM&A Manual, monitoring of the only herpetofauna species of conservation interest in the area around pond 12, the Chinese Bullfrog, should be conducted before and during the whole construction period.
- 6.36 The purpose of the survey was to ensure the abundance of the Chinese Bullfrog in the area of Pond 12, LMC Tsuen, and nearby wetlands are not affected by construction works.

Monitoring Frequency

6.37 Herpetofauna monitoring was conducted once monthly during wet season (March to October), including both day-time and night-time survey.

Monitoring Location

6.38 Herpetofauna monitoring was conducted along the designated transect around Pond 12, LMC Tsuen, as well as any nearby wetlands within a 100m radius into which disturbed bull frog may move. Location of the Herpetofauna survey transect is shown in **Figure 5b** for reference.

Monitoring Methodology

6.39 Survey along the transect was conducted once during daytime, and once during night time. Surveyors would actively search for presence of tadpoles, froglets or adults in potential habitats (such as ditches, ponds, marshes and wet agricultural land) through direct observation, or identification of vocalisations.

Monitoring Result

6.40 Herpetofauna survey was carried out once in the reporting month.

Date of Herpetofauna survey:

13th May 2022 (both day-time and night-time survey)

6.41 No potential impact due to the construction activities of Western Connection Road was identified during the survey of Chinese Bullfrog in the reporting month. The detailed results are shown in **Appendix R2**.

Aquatic Fauna

Monitoring Requirements

- 6.42 Under Section 11.4.2.3 of EM&A Manual, surveys of the population of Rose Bitterling at streams and associated ponds south of Lung Hau Road and monitoring of water quality are required to identify potential impacts.
- 6.43 The purpose of the survey was to ensure the population of Rose Bitterling at the stream and associated ponds south of Lung Hau Road as well as the water quality at the area where Rose Bitterling is present are not affected by construction works.

Monitoring Frequency

- 6.44 Monitoring of Rose Bitterling population was conducted monthly during the construction period of WCR to identify potential impacts.
- 6.45 *In situ* Monitoring of water quality was conducted weekly at the stream and associated ponds south of Lung Hau Road where Rose Bitterling is present, and whole site audit was carried out at the construction site to identify potential impacts on the stream.
- 6.46 *In situ* monitoring of water quality in LMC Meander was conducted weekly during the construction phase and the first 12 months of operation.

Monitoring Location

- 6.47 Monitoring of Rose Bitterling and *in situ* monitoring of water quality were conducted at the stream and associated ponds south of Lok Ma Chau Road where Rose Bitterling is present. There are 4 sampling points along the stream, and 4 sampling points at the ponds. The sampling locations are shown in **Figure 5c**.
- 6.48 *In situ* monitoring of water quality in LMC Meander was conducted at 3 monitoring stations, including CS1, IS1 and IS2, as stated in Section 6.3 of the EM&A Manual. The monitoring stations are shown in **Figure 4**.

Monitoring Methodology

- 6.49 Monitoring of Rose Bitterling was conducted by backside observation with the aid of binoculars, for 5 minutes at each sampling point. After bankside observation, sweep netting was also be carried out at each sampling point, if feasible.
- 6.50 The number of Rose Bitterling observed on bankside and by sweep netting at each sampling location were recorded. Other human activities or change in environment that may affect the survey result will be specified, if any.
- 6.51 Measurements for *in situ* monitoring of water quality includes temperature, pH, salinity, turbidity and dissolved oxygen. Monitoring equipment for water quality monitoring are presented in Section 5.

Monitoring Result

6.52 Aquatic fauna survey was carried out once and weekly *in situ* water quality monitoring was conducted in the reporting month.

Date of Aquatic Fauna Survey: 24th May 2022

LMC Meander

 $3^{rd},\,5^{th},\,7^{th},\,10^{th},\,12^{th},\,14^{th},\,16^{th},\,18^{th},\,20^{th},$

23rd, 25th, 27th and 30th May 2022

Date of Water Quality Monitoring for Aquatic Fauna

Stream and associated ponds south of

Lung Hau Road

4th, 12th, 18th, 24th and 30th May 2022

- 6.53 No potential impact due to the runoff from the construction activities of the Western Connection Road was identified during the survey of Aquatic Fauna in the reporting month. In addition, no deterioration in the water quality due to the construction activities of the Western Connection Road was observed.
- 6.54 The detailed aquatic fauna (Rose Bitterling) results and *In situ* water quality monitoring results at the stream and associated ponds south of Lung Hau Road are shown in **Appendix R3** and **R4** respectively.
- 6.55 *In situ* water quality monitoring results in LMC Meander at 3 monitoring stations, including CS1, IS1 and IS2 are presented in Section 5 and **Appendix H**. No Action / Limit Level exceedance was recorded.

7 LAND CONTAMINATION

General

7.1 According to the EM&A Manual Section 8.2 and the details of the remediation and associated testing referred to in Chapter 8 of the EIA Report (AEIAR-176/2013), five (5) arsenic-contaminated zones were identified within the Loop. The estimated depth and volume of contaminated soil for each remediation zone are listed in **Table 7.1** below.

 Table 7.1
 Detailed Contamination Information for Designated Remediation Areas

Contamination Zone ID in EIA	Contamination Hot Spot	Estimated Vertical Extent of Contamination	Estimated Thickness (m)	Estimated Area of Contamination Zone (m²)	Volume of
A-S24	LD-001	2.5m to 4.0m below existing ground level	1.5	4001	6002
A-SG10	LD-002	4.0m to 5.5m below existing ground level	1.5	3520	5280
A-S20	LD-003	2.5m to 4.0m below existing ground level	1.5	4989	7484
A-S03	LD-004-A	2.5m to 4.0m below existing ground level	1.5	4580	6870
A-S03a1	LD-004-B	4.0m to 5.5m below existing ground level	1.5	4452	6678
A-S03c1	LD-004-C	1.0m to 2.5m below existing ground level	1.5	5601	8402
A-S01	LD-005	2.5m to 5.5m below existing ground level	3.0	5576	16728

7.2 Based on the Contract requirements, "Solidification / Stabilisation" was the recommended treatment method to remediate all contaminated soils and Portland cement was proposed to be used for the contaminated soil treatment. The target of soil remediation is listed in **Table 7.2**.

Table 7.2 Contaminant Solidification & Stabilisation Target for Cement Solidification / Stabilisation (CS/S)

Contaminant	Toxicity Characteristic Leaching Procedure (TCLP) Limit of Arsenic	Unconfined Compressive Strength (UCS)
Metal – Arsenic	≤5 mg/L	≥1 Mpa

7.3 Trial of CS/S was undertaken between April and June 2019 and the second trial was conducted in August 2019. According to trial performance results, cement / soil ratios of 10% and 7.5% could achieve the remediation target and these ratios had been adopted for the subsequent remediation work. The proposed cement/soil ratios were accepted by

relevant parties before the remediation work started. The contaminated soil excavation and remediation commenced on site in mid-July 2019.

Remediation Work Progress in the Reporting Month

- 7.4 As advised by the Contractor, Decontamination for all Hotspots (LD01 LD05) was completed and backfilling of treated soil was completed on 31 May 2021. After completion of remediation works at each hot spots, Interim Remediation Reports (IRR) would be prepared by the Land Contamination Specialist and submitted to EPD in accordance with Condition 2.16 of the EP-477/2013/A. The status of IRRs are summarised below.
 - (a) IRR for hot spot LD-001 endorsed by EPD on 6th January 2020
 - (b) IRR for hot spot LD-003 endorsed by EPD on 18th March 2020
 - (c) IRR for hot spot LD-002 commented by EPD on 3rd September 2020 and resubmitted by Contractor on 16th September 2020
 - (d) IRR for hot spot LD-005 endorsed by EPD on 23rd October 2020
 - (e) Final Remediation Report including the result of hotpsot LD-004 was submitted to EPD on 28th June 2021. The final Remediation Report was approved by EPD with minor comments in August 2021.
- 7.5 No work related to land contamination was conducted in the reporting month.

8 WASTE MANAGEMENT

General

8.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for the Project.

Solid and Liquid Waste Management Status

8.2 The amount of waste generated by the activities of the Project in the reporting month are shown **Table 8.1**.

 Table 8.1
 Quantities of Waste Generated in the Reporting Month

Contract(s)		Waste Type	Quantity this month	Disposal / Dumping Grounds
		Reused in this Contract (Inert) (in '000 m ³)	0	N/A
Contract No. YL/2020/01		Reused in other Contracts/ Projects (Inert) (in '000 m ³)	0	N/A
		Disposal as Public Fill (Inert) (in '000 m ³)	0.022	N/A
		Reused in this Contract (Inert) (in '000 m ³)	0	N/A
Contract No. YL/2020/02	Inert	Reused in other Contracts/ Projects (Inert) (in '000 m ³)	0	N/A
		Disposal as Public Fill (Inert) (in '000 m ³)	0.018	N/A
		Reused in this Contract (Inert) (in '000 m ³)	0	N/A
Contract No. YL/2021/01		Reused in other Contracts/ Projects (Inert) (in '000 m ³)	0	N/A
		Disposal as Public Fill (Inert) (in '000 m ³)	0	N/A
		Recycled Metal ('000kg)	0.900	N/A
Contract No.		Recycled Paper / Cardboard Packing ('000kg)	0	N/A
YL/2020/01		Recycled Plastic ('000kg)	10.100	N/A
		Chemical Wastes ('000kg)	0	N/A
		General Refuses ('000m ³)	0.021	NENT Landfill
		Recycled Metal ('000kg)	0	N/A
Contract No.	Non-	Recycled Paper / Cardboard Packing ('000kg)	0	N/A
YL/2020/02	inert	Recycled Plastic ('000kg)	0	N/A
		Chemical Wastes ('000kg)	0	N/A
		General Refuses ('000m ³)	0.184	NENT Landfill
		Recycled Metal ('000kg)	0	N/A
Contract No.		Recycled Paper / Cardboard Packing ('000kg)	0	N/A
YL/2021/01		Recycled Plastic ('000kg)	0	N/A
		Chemical Wastes ('000kg)	0	N/A
		General Refuses ('000m ³)	0.002	NENT Landfill

8.3 The amount of wastes generated by the construction works of the Project in Waste Flow Table during the reporting month is shown in **Appendix O**.

9 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 9.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures on the Project site. The summaries of site audits are attached in **Appendix L**.
- 9.2 Site audits were conducted by ET with the representative of the Consultants, the Contractor and IEC on 4th, 11th, 16th, 18th, 23rd, 25th and 30th May in the reporting month. Summary of site audits under the Project are presented in **Table 9.1**. The details of observations during site audit are shown in **Table 9.2**.

Table 9.1 Summary of Site Audits

Contract(s)	Date(s) of Site Environmental Audit
Contract No. YL/2020/01 – Development of Lok Ma	4th, 11th, 18th and 25th May 2022
Chau Loop: Main Works Package 1 – Contract 1 Site	
Formation and Infrastructure Works inside Lok Ma	
Chau Loop and Western Connection Road Phase 1	
Contract No.: YL/2020/02 – Development of Lok Ma	4 th , 11 th , 18 th and 25 th May 2022
Chau Loop: Main Works Package 1 – Contract 2	
Western Connection Road Phase 2, Connection	
Roads to Fanling / San Tin Highway and Direct Road	
Link Phase 1	
Contract No.: YL/2021/01 – Development of Lok Ma	16 th , 23 rd and 30 th May 2022
Chau Loop: Main Works Package 1 – Contract 3	·
Direct Road Link Phase 2	

9.3 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarised in **Table 9.2**.

Table 9.2 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Contract No. YI	/2020/01		
Water Quality / Ecology			Improvement/ Rectification was observed during follow-up audit session on 18 th May 2022.
Contract No. YI			
Water Quality		The floating rubbish at the Nullah at LCS should be cleared to avoid flooding.	_
Water Quality		Muddy surface runoff was observed discharging out from the GI works at Fu Tai Site Area. The Contractor was reminded to provide cut-off drain to direct off site water around the site.	observed during follow-up audit session on 18 th May 2022.
Landscape and Visual		Clear the construction materials within the tree protection zone and provide the fencing surrounding the retain trees at LCS.	the audit session on 1st June 2022.
Contract No. YI	L/2021/01		
No maior environ	mental defici	ency was identified during site inspect	ion

10 IMPEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

- 10.1 According to the EIA Report, EP and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the Environmental Mitigation Implementation Schedule is provided in **Appendix M**.
- 10.2 The Compliance status of Ecological and Noise Mitigation Measures related to the Project according to EP Conditions 2.7 and 2.9 respectively are summarized in **Table 10.1**.

Table 10.1 Compliance status of Ecological and Noise Mitigation Measures (EP Conditions 2.7 and 2.9)

EP Requirements	Compliance Status	Remarks				
Submission and Measures to Mitigate Ecological Impact						
EP Condition 2.7 To reduce the ecological impact during construction and operation stages of the Project, a series of ecological mitigation measures shall be implemented as conforming to the relevant information and recommendations, including those described in Section 12.7 (Ecological Mitigation Measures), contained in the EIA Report. The key ecological mitigation measures shall include:						
(a) conducting pre-construction search for any otter holts/dens and herpetofaunal species of conservation concern in construction sites, with remedial measures such as setting of no works area around otter holts/den and translocation of important species identified, if any;	Yes	Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works The pre-construction search has been carried out in November 2018 before the Advance Works commencement. No otter holts/dens and herpetofauna species of conservation concern were identified. Development of Lok Ma Chau Loop Main Works Package 1 Contract 1 - Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 The pre-construction search has been carried out at Area, 2, 7 & 9 as well as LMC Loop and WCR site areas in May / June 2021 and June / July 2021 respectively before the Works commencement. No otter holts/dens and herpetofauna species of conservation concern were identified.				
(b) creating and establishing an Ecological Area, approximately 12.78 ha. in size, containing reed marsh and marsh habitat prior to total clearance of reed marsh in the Loop, including a lowrise building buffer zone of 50m width from the Ecological Area, with appropriate screenplanting;	Yes	Ecological Area has been established under the Contract. Low-rise building buffer zone and screenplanting which will be provided under Main Works Package 1.				

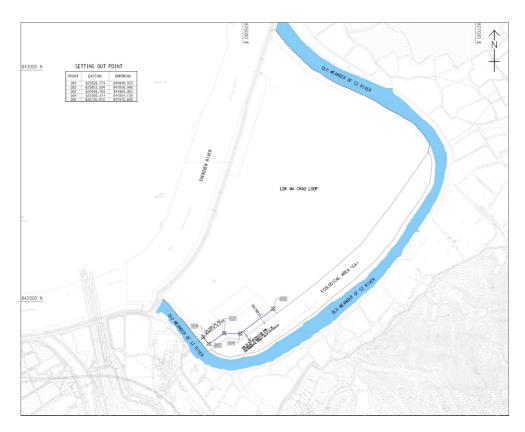
EP Requirements	Compliance	Remarks
	Status	
(c) stabilising the bank of the old Shenzhen River meander of the Loop, approximately 3.5 km long, including re-vegetation upon completion of the works and various ecological designs, such as practicability of installation of otter holts and provision of potential feeding area and spraint locations for otters in the stabilised bank;	Yes	The EA design has implemented these measures.
(d) creating a 23 m minimum width vegetated setback at the edges of the Loop along the southwestern and north-eastern sections of the meander;	N/A	Vegetated setback will be provided under Main Works Package 1
(e) installing 3m-high olive green fence around construction areas to allow or deter different animal passages where appropriate;	Yes	The Contractor was reminded to maintain and re-arrange the green fence around construction areas and ensure no disturbance to the exiting trees and reed marsh habitat.
(f) providing (i) permanent compensatory off-site wetland areas; and (ii) construction stage temporary compensatory off-site wetland areas during various construction stages of the Project, in advance of any corresponding wetland loss;	Yes	Creation of off-site wetland areas have been substantially completed.
(g) providing at least 0.4 ha woodland compensation area by planting trees and shrubs near Horn Hill, to compensate for the loss of woodland affected by the Western Connection Road (WCR) and other works of the Project;	N/A	To be implemented under Main Works Package 1
(h) carrying out outside dry-season (from November to February next year), the construction works associated with the site formation in the Ecological Area, stabilization of the bank of the old Shenzhen River meander, Western Connection Road along Ha Wan Tsuen Road, to minimise disturbances to migratory birds/water birds;	Yes	-
(i) using powered mechanical equipment for construction works only during the period 9am to 5pm at and near the old Shenzhen River meander and other identified important ecologically sensitive areas, if any;	Yes	-
(j) prohibiting use of direct lighting on the old Shenzhen River meander and controlling nighttime lighting to reduce potential ecological impact;	Yes	-
(k) implementing measures to minimise magnitude of construction runoff and to avoid/minimise the potential impact of spillage events, if any; and	Yes	-
(l) using opaque noise barriers along the proposed roads and using appropriate glass and façade treatment for buildings in the Loop to minimise the mortality of fast-moving wildlife (e.g. birds).	Yes	The works for noise barriers along Lok Ma Chau Road were completed under the Contract in October 2021. Façade treatment for buildings in the Loop will be provided under the responsible works packages.
Four hard copies and two electronic copies of an Ecological Mitigation / Habitat Creation and Management Plan shall be, at least one month before	Yes	Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

EP Requirements	Compliance	Remarks
	Status	
the commencement of corresponding parts of the works of the Project, deposited with the Director. The Plan(s) shall show the design details, locations, implementation programme, maintenance and management schedules, and drawings in the scale of 1:1,000 or other appropriate scale of the ecological mitigation measures		The HCMP has been submitted and approved under the EP condition 2.7. Development of Lok Ma Chau
of the Project. Before submission to the Director, the		Loop Main Works Package 1 -
Plan(s) shall be certified by the ET Leader and verified		Design and Construction
by the IEC as conforming to the relevant information and recommendations contained in the EIA Report. All measures recommended in the finalised submission(s) under this Condition shall be fully and properly implemented.		The HCMP has been submitted under the EP condition 2.7 and approved in December 2021.
EP Condition 2.9 To mitigate construction stage noise in implemented during the construction stage of the Project:	npact, the following	ing noise mitigation measures shall be
(a) temporary noise barriers shall be installed along the construction access roads to screen the construction traffic noise and noisy construction activities and equipment during different construction stages of the Project as described in Table 1 and Figures 2a, 2b, 3a and 3b of this Permit;	Yes	The temporary noise barriers (TNBs) along LMC Road were completed under the Contract in October 2021. (Appendix N) The TNB5 and TNB 12 to be built under the Contract 2. Due to the updated site condition, TNB5 deems to serve the function of TNB16 before the commencement of road widening works of the Western Connection Road.
(b) use of movable noise barriers, noise enclosures and quiet powered mechanical equipment for the noisy construction activities and equipment as described in Table 1 and with reference to the typical designs as shown in Figure 4 of this Permit;	Yes	-
(c) concrete lorry mixer(s) shall be operated at least 25 m away from the noise sensitive receivers (NSRs) No. HWTR-6 and HWTR-11 at the Western Connection Road as shown in Figures 2b and 3b as described in Table 1 of this Permit to avoid exceedance due to cumulative construction noise; and	Yes	-
(d) no percussive piling nor blasting by explosive shall be implemented in the Project.	Yes	-

Ecological Mitigation Measures – Offsite Wetland Compensation Areas (OWCAs)

- 10.3 According to EIA Report, habitat loss and disturbance impacts are predicted for both construction and operation phase of the development of Lok Ma Chau Loop. All these impacts are expected to be compensated both temporarily (during construction phase) and permanently (during operation phase). Among other measures identified from EIA report to avoid, minimize and compensate for identified impacts, three areas of existing fishpond habitat (Areas 2, 7 and 9) were proposed in the EIA Report to provide OWCAs.
- 10.4 These Areas are located within a Priority Site for Enhanced Conservation, namely "Deep Bay wetlands outside the Ramsar site". Many of these fishponds are currently participating in the Nature Conservation Management Agreement Scheme in the Northwest New Territories, which has the objective of restoring and enhancing the

conservation value of commercial fishponds in the area. In general, the activities involved in the establishment of OWCAs are in nature the same as those associated with commercial fishpond management currently taking place in the area. Therefore, there are no direct implications for the ecological impacts OWCAs according to Section 12.7.9 of EIA report.


- 10.5 Under Environmental Permit (EP) number EP-477/2013/A, an Ecological Mitigation/ Habitat Creation and Management Plan (HCMP) is required for all habitat compensation measures required by the Project EIA. The OWCAs are established according to the HCMP which provides a framework and specifications for development and management of the OWCAs.
- 10.6 The OWCAs (Areas 2, 7 and 9) has been substantial completed and defect rectification works were conducted in the reporting month.

Ecological Mitigation Measures – Installation of 3m-high Olive Green Fence

10.7 The green fence around the future Ribbon Park Reedbed has been removed and replaced by the hoarding due to the other project's land occupier since March 2022.

10.8 Installation of the green fence alongside the Ecological Area and the Meander was proposed and completed on 20th May 2022. The layout plan and photographic records of the green fence installation are shown below:-

10.9 The Contractor was reminded to maintain the green fence around construction areas and ensure no disturbance to the exiting trees and reed marsh habitat subject to the latest situation of LMC Loop.

11 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 11.1 Summary of exceedances is provided in **Appendix K**.
- 11.2 No Action/Limit Level exceedance was recorded for air quality, construction noise and water quality monitoring.

Summary of Environmental Complaint

11.3 There was no environmental complaint received during the report month. The statistical summary table of the environmental complaints is presented in **Table 11.1**. The Complaint Log is attached in **Appendix P**.

Table 11.1 Statistical Summary of Environmental Complaints

Reporting Period	Environmental Complaint Statistics			
	Frequency	Cumulative	Project related complaint	
Jan 2019 –April 2022	9	9	1	
May 2022	0		0	

Summary of Notification of Summons and Successful Prosecutions

11.4 There was no prosecution or notification of summons received since the commencement of the Project. The statistical summary table of the summons and prosecution are presented in **Table 11.2** and **11.3** respectively. Summary of successful prosecution as attached in **Appendix Q**.

 Table 11.2
 Statistical Summary of Environmental Summons

Reporting Period	Environmental Summons Statistics			
	Frequency	Cumulative	Project related complaint	
Jan 2019 – April 2022	0	0	0	
May 2022	0	1	0	

Table 11.3 Statistical Summary of Environmental Prosecution

Reporting Period	Environmental Prosecution Statistics		
	Frequency	Cumulative	Project related complaint
Jan 2019 – April 2022	0	0	0
May 2022	0		0

12 FUTURE KEY ISSUES

Key Issues in the Coming Months

12.1 Major site activities for the coming reporting months will include:

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

(a) Western Connection Road (WCR) Stage 1 Construction: Demolition of Existing Structures, Excavation, DCM and Retaining Wall.

Contract No.: YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

- (a) Tree Felling / Tree Transplant.
- (b) Pre-construction Condition Survey inside MTRC tunnel.
- (c) Erection of Contractor's Site Office.
- (d) Pre-drilling and Trial Pits for Bridge ST01, CTFB and DRL.
- (e) Site clearance and GI works for Cut Slopes CS1, CS2 and Retaining wall BPW1, and associated temporary working platform.
- (f) Construction of concrete block piling platform for piling works of Retaining Wall BPW1.
- (g) Erection of Temporary Noise Barrier along the Lok Ma Chau Road.
- (h) Box Culvert Modification at Lok Ma Chau Road (Stage 1).
- (i) Demolition of Existing Structures along Lok Ma Chau Road. Structure Ref. R41, R42 & R50.
- (j) Existing Cycle Track Subway Modification.
- (k) Construction of Pai Lau.
- (l) Bored pile and socketed H-Pile for Bridge CTFB, ST01 & DRL.
- (m) Construction of Retaining walls RW 8 and RW 9.
- (n) Operation of TAR1 and TAR2.

<u>Contract No.: YL/2021/01 – Development of Lok Ma Chau Loop: Main Works Package</u> 1 – Contract 3 Direct Road Link Phase 2

- (g) Fencing Off EEAA Zone.
- (h) Initial Survey.
- (i) UU detection.

- (j) Tree Survey.
- (k) Trial Pit Excavation.
- (1) Tree Felling.
- 12.2 Dust can be generated during construction works and exposed site area during the summer months. To prevent high dust concentrations during the summer months, the Contractor should pay attention on the air quality mitigation measures as far as practicable to minimise the dust impact to the villages which are located adjacent to the Project works. The Contractor was also reminded to follow the Project Implementation Schedule in approved EIA report / EM&A Manual to implement appropriate dust control measure including "watering in all works areas once per hour during working hours to control fugitive dust impact, particularly during dry weather and covering any excavated or stockpile of dusty material by impervious sheets and spraying all dusty material with water immediately prior to any loading transfer operations to keep the dusty materials wet during material handling at the stockpile areas" as well as the relevant dust control practices as stipulated in the Air Pollution Control (Construction Dust) Regulation so that no adverse dust impact arising from the Project works site.
- 12.3 Ecology is also one of the key environmental issues during construction of the Project. Noise pollution has a negative impact on wildlife species by reducing habitat quality. Therefore, noise mitigation measures such as using quiet plants and noise barriers should be in place, where applicable. In addition, the Contractor was reminded to frequently check and maintain the acoustic materials wrapped on noisy part of PME and ensure no gaps between noise barriers; proactively identify any potential construction noise impact to NSRs and provide sufficient mitigation measures if necessary. All ecological mitigation measures recommended in the Project Implementation Schedule in EP / approved EIA report / EM&A Manual should be properly implemented and maintained as far as practicable.
- 12.4 The Contractor is also recommended to arrange and maintain water quality mitigation measures during wet season (i.e. April to September). The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates. Efficient silt removal facilities shall deploy to ensure all treated effluent from wastewater treatment plant shall meet the requirements as stated in WPCO licences. The site drainage plan shall also be updated based on the site condition and construction programme.
- 12.5 Due to the site area in Loop has been handed over for the construction of emergency hospital on 21st February 2021, potential environmental impacts arising from the above construction activities are mainly associated with construction dust, noise, water quality, ecology and waste management. ET and IEC will closely review the environmental monitoring results and review the environmental situations outside the works area during the site inspection to check if significant environmental problems are identified.

Monitoring Schedule for the Next Month

12.6 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

12.7 A tentative construction programmes are provided in **Appendix A**.

13 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

13.1 The EM&A Report presents the EM&A works undertaken in May 2022 in accordance with EM&A Manual.

Air Quality

1-hour TSP Monitoring

13.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

13.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

13.4 All construction noise monitoring was conducted as scheduled in the reporting month.

No Action/Limit Level exceedance was recorded.

Water Quality

13.5 Water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Ecological Monitoring

LMC Loop

Avifauna (Flight Line Survey)

Avifauna monitoring was conducted as scheduled in the reporting month. Flight lines recorded were in general concentrated mainly on LMC Meander and adjacent areas including EA Zone and along Shenzhen River. Most birds avoided using the flight line over the centre of LMC Loop which is considered due to the construction activities from other project's land occupier.

Mammals

- 13.7 According the Clause 11.4.1.2 of EM&A Manual, the connectivity between the existing reed marsh and the EA Zone has been fenced off due to other project's land occupier.
- 13.8 In addition, 12-month establishment period of EA zone has also been completed. The mammals monitoring in the Loop was therefore temporary suspended in the reporting month and will be resumed subject to the site condition.

Western Connection Road

Avifauna (Flight Line Survey)

13.9 Avifauna monitoring was conducted as scheduled in the reporting month. Flight lines recorded were in general concentrated mainly on LMC Meander and adjacent areas including EA Zone and along Shenzhen River. Most birds avoided using the flight line over the centre of LMC Loop which is considered due to the construction activities from other project's land occupier.

Avifauna (Pond 12)

13.10 Avifauna survey at Pond 12 was conducted as scheduled in the reporting month. Weekly count of birds using the Pond was recorded. No significant impact of construction activities on bird use of the pond was observed.

Herptofauna

13.11 Herptofauna survey was conducted as scheduled in the reporting month. No significant impact of construction activities on the numbers of this species was observed.

Aquatic fauna

13.12 Aquatic fauna survey was conducted as scheduled in the reporting month. No significant impact of construction activities on the stream was observed.

Land Contamination

- 13.13 Decontamination for five arsenic-contaminated zones (LD01 LD05) identified in LMC Loop was completed and the final Remediation Report was submitted and approved by EPD in accordance with Condition 2.16 of the EP-477/2013/A under Contract No. YL/2017/03.
- 13.14 No work related to land contamination was conducted in the reporting month.

Environmental Site Inspection

13.15 Environmental site inspections were conducted on 4th, 11th, 16th, 18th, 23rd, 25th and 30th May by ET in the reporting month.

Environmental Complaints, Summons and Prosecutions

- 13.16 There was no environmental complaint, notification of summons or successful prosecution received in the reporting month.
- 13.17 The ET would keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

13.18 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To enhance the dust suppression measures such as water spraying on all haul roads and exposed work site area;
- To maintain the impervious material to cover the stockpile of dusty materials; and
- To inspect NRMM labels which should be displayed for all regulated machines.

Noise Impact

- To inspect the noise sources inside the site;
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers;
- To provide temporary noise barriers or other appropriate sound reduction measures for operations of noisy equipment near the noise sensitive receivers, if necessary.

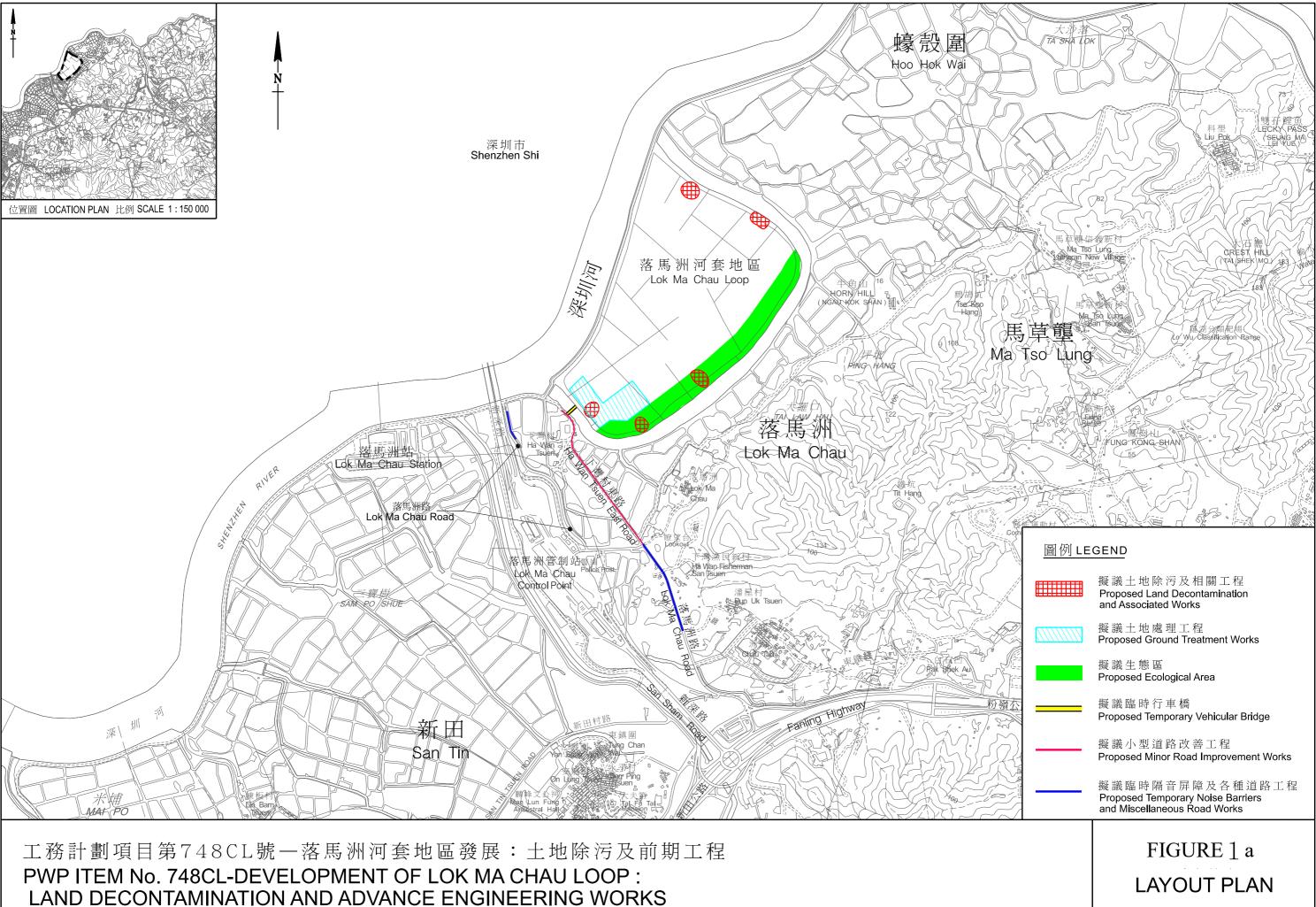
Water Impact

- To prevent any surface runoff discharge into the old Shenzhen River meander or stream;
- To review and implement temporary drainage system;
- To identify any wastewater discharges from site;
- To remove the sand, floating rubbish or dusty material away from the EA zone, old Shenzhen River meander or stream;
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge;
- To review the capacity of de-silting facilities for discharge;
- To ensure the drainage facilities would not be clogged with sediment to avoid overflow during rainy season;
- To designate the area for wheel washing and set up the associated drainage for water from a wheel wash;
- To implement the effective water quality mitigation measures according to the site drainage plan; and
- To provide the wheel washing facilities at all exit of site area.

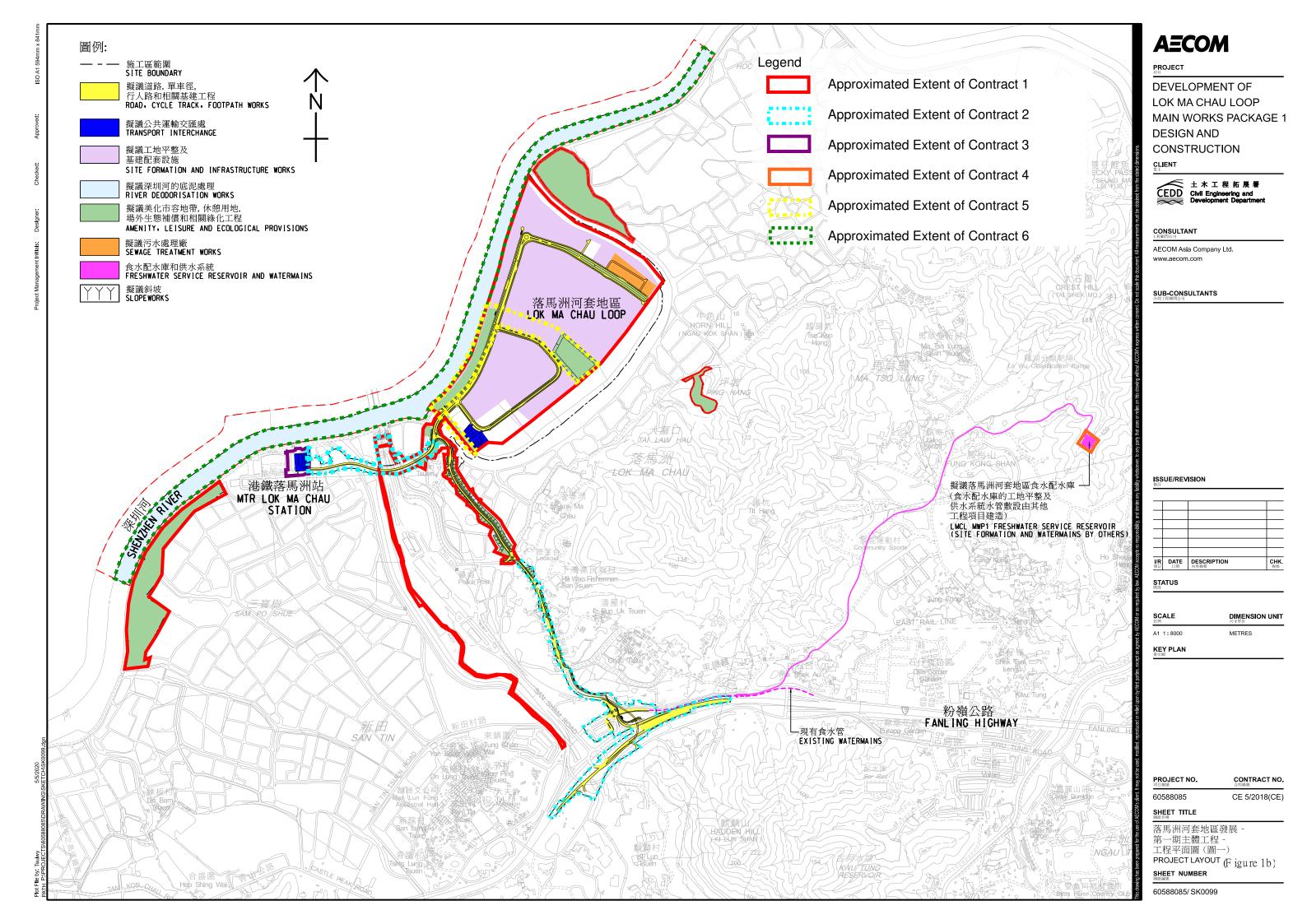
Ecology Impact

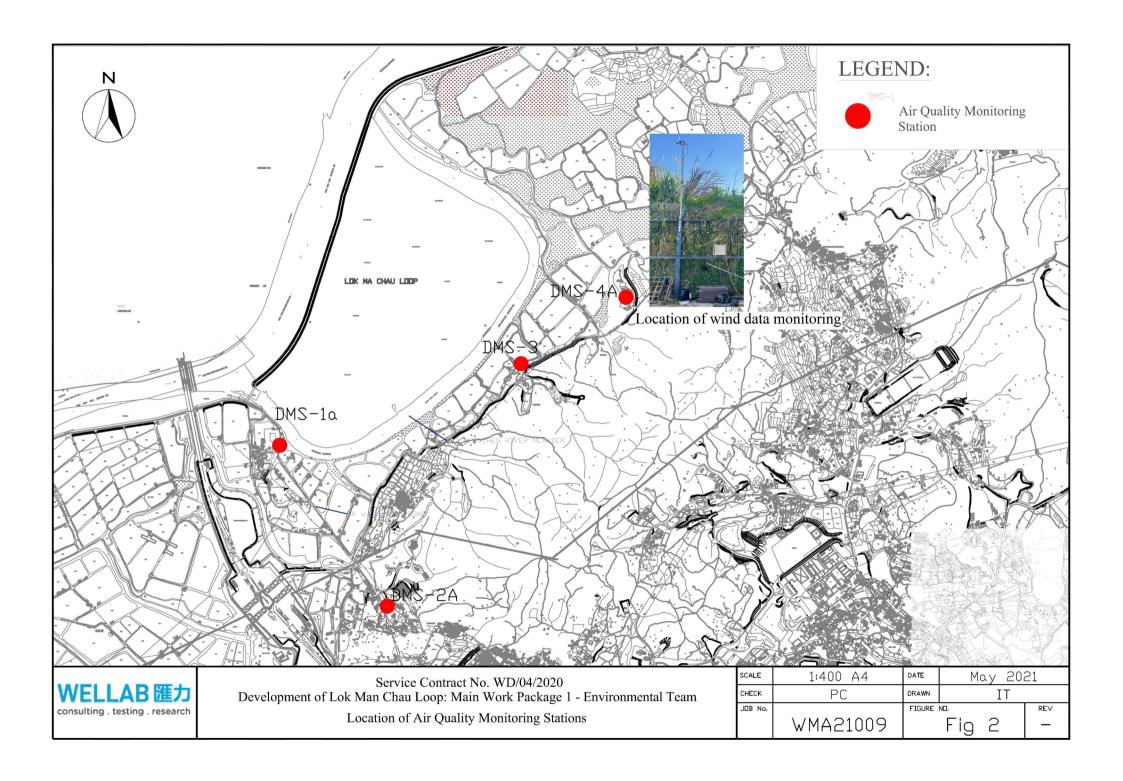
- To maintain the 3m high olive green fence around the construction site;
- To ensure the powered mechanical equipment for construction works only during the period 9am to 5pm at and near the old Shenzhen River meander and other identified important ecologically sensitive areas, if any; and
- To prevent any surface runoff discharge into the stream.

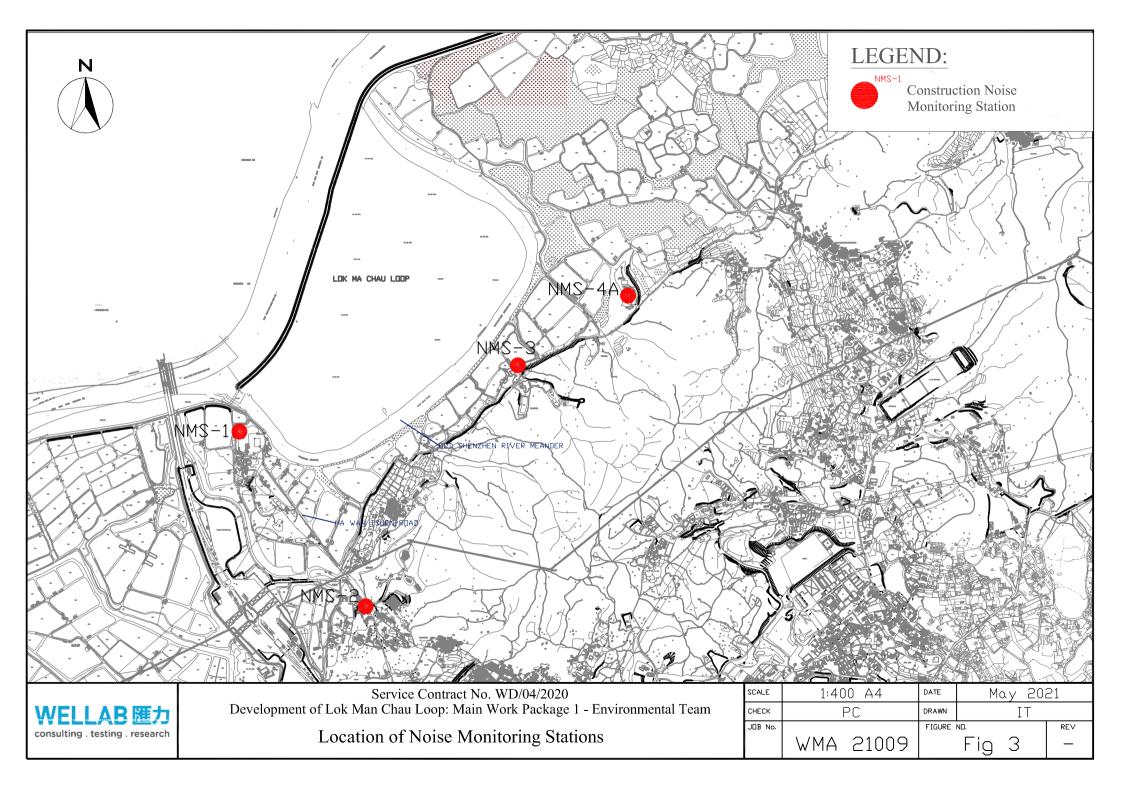
Waste/Chemical Management

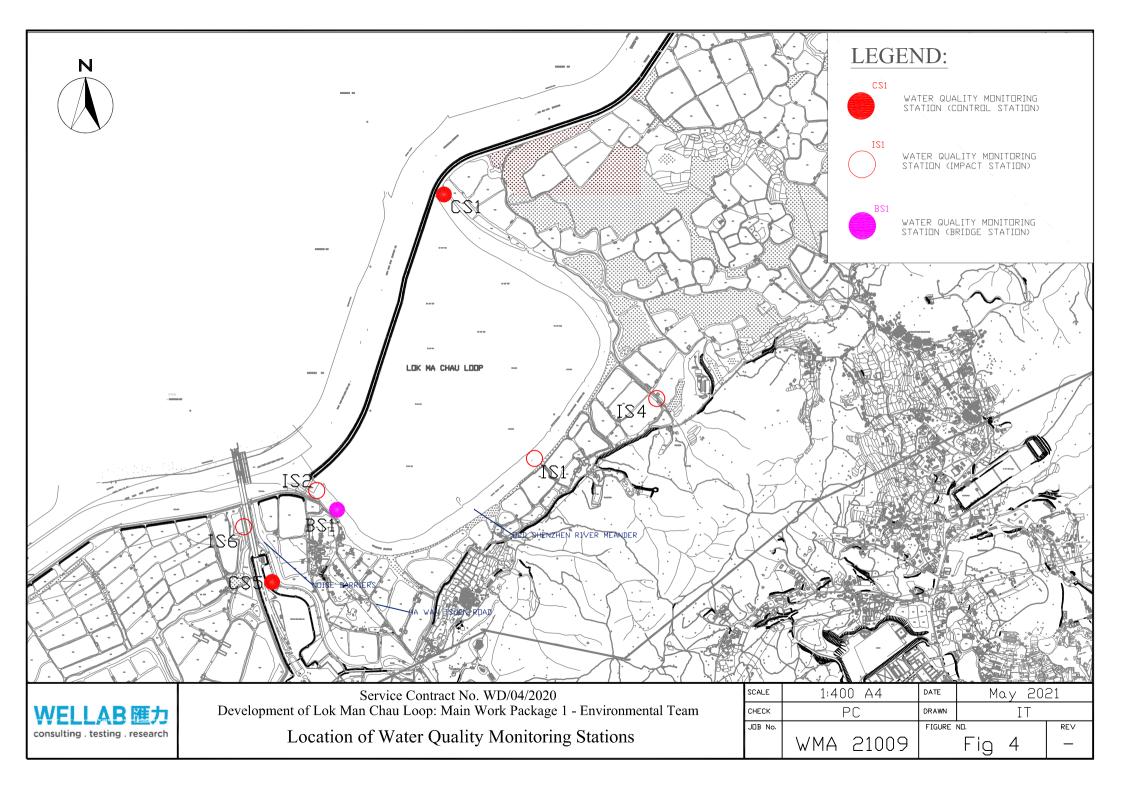

- To check for any accumulation of waste materials or rubbish on site;
- To carry out inspection of dump trucks at site exit to ensure inert and non-inert C&D materials are properly segregated before delivering off site;
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site;

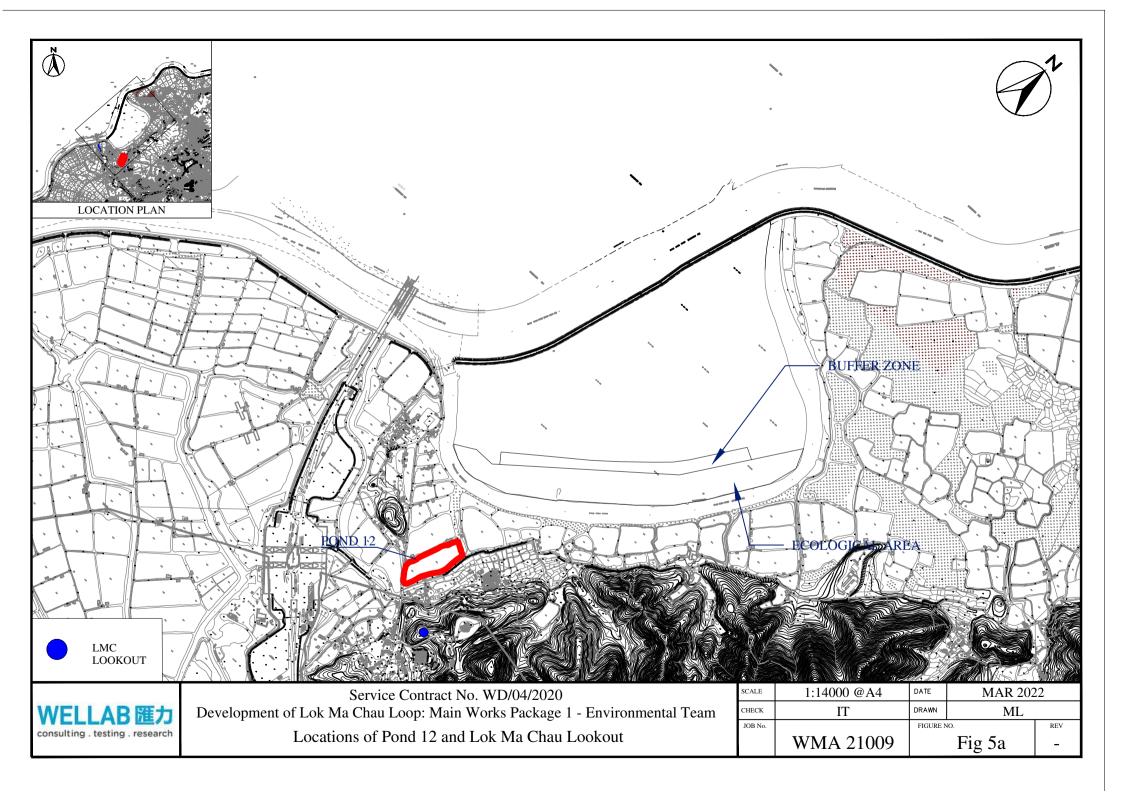
- To maintain the drip tray well to prevent oil and chemical leakage; and
- To avoid improper handling, storage and dispose of oil drums or chemical containers on site.

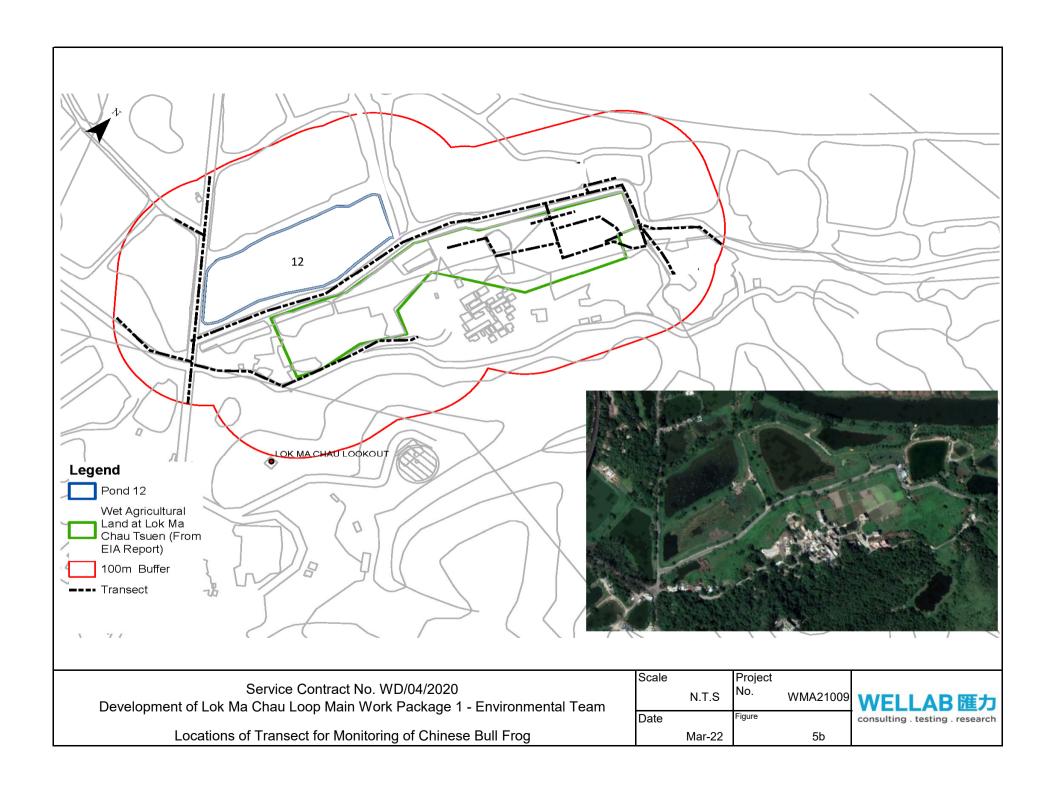

Landscape and Visual

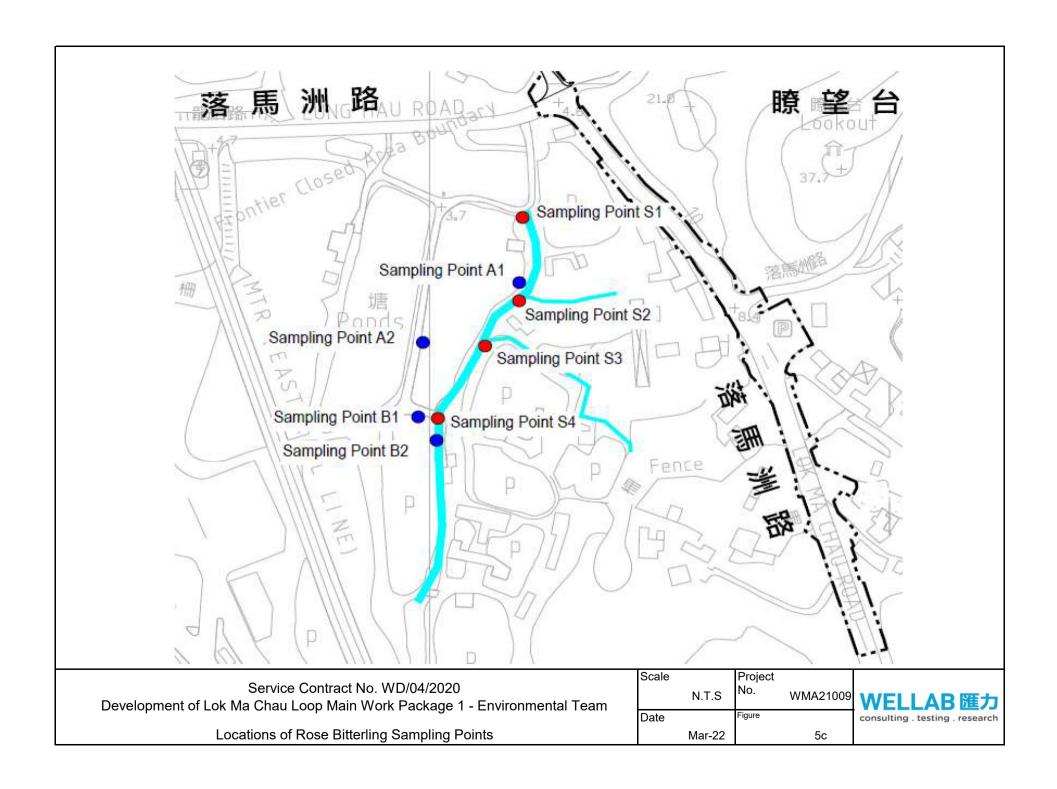

- To erect and maintain the protection fencing and tree protection zone around the preserved trees; and
- To clear the construction materials within the tree protection zone.

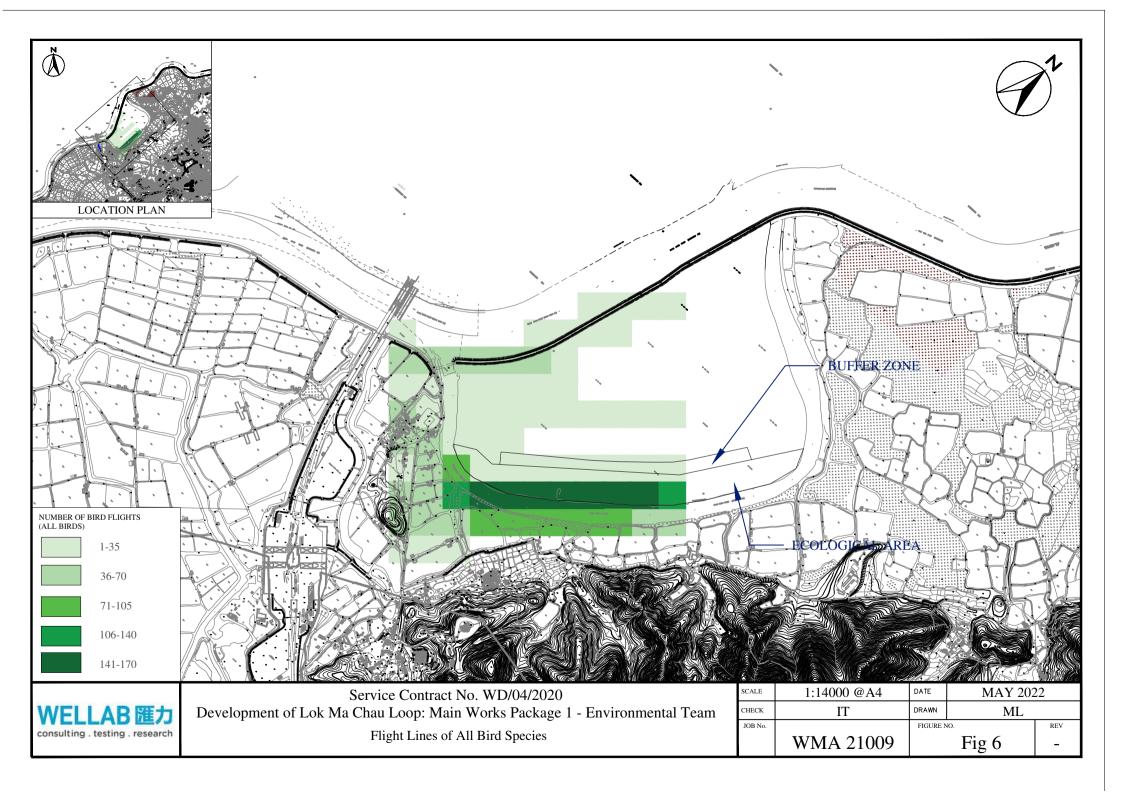

FIGURE(S)

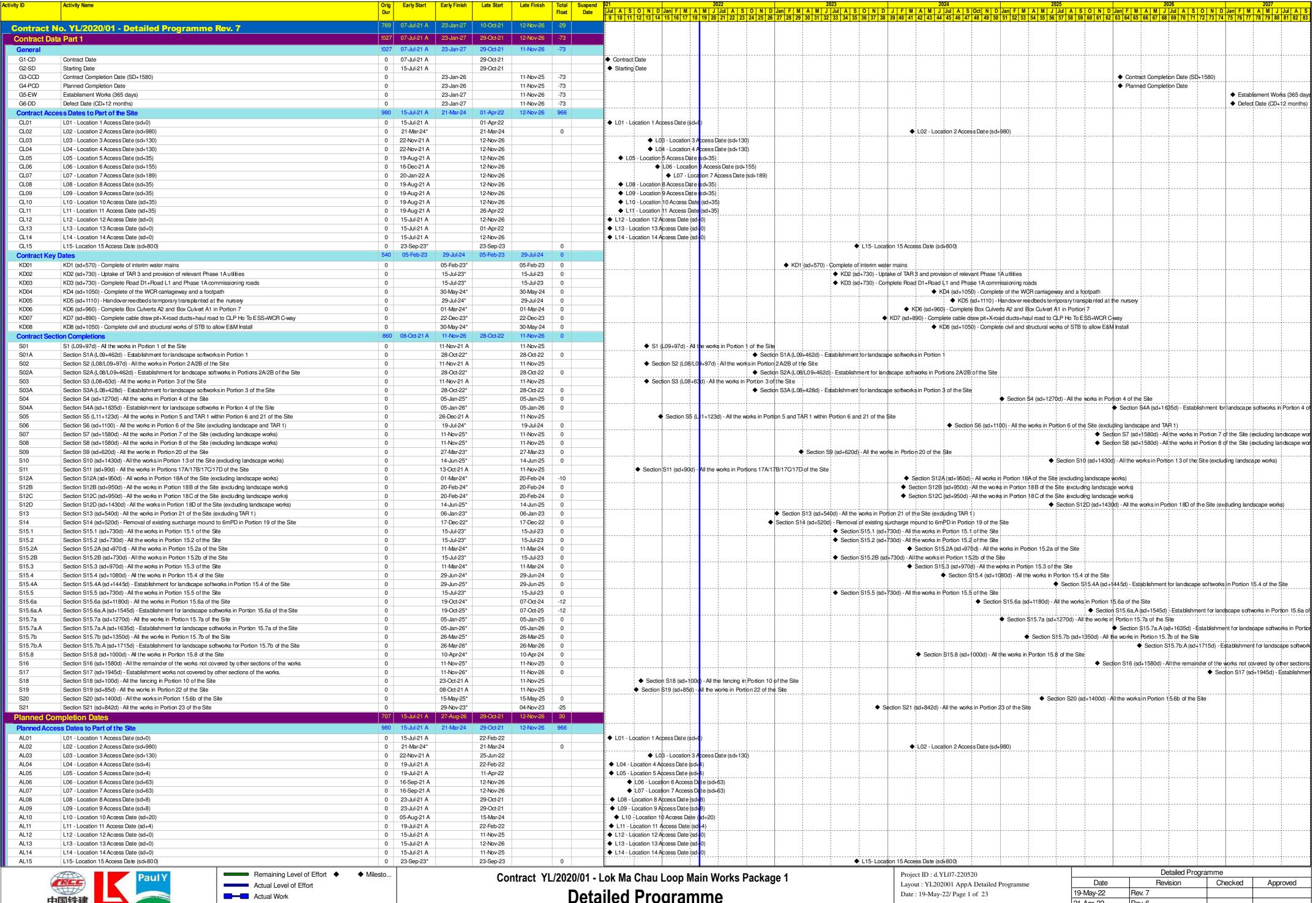



R:\Sketch-WDO\W1\W1-008\W1-008.dgn







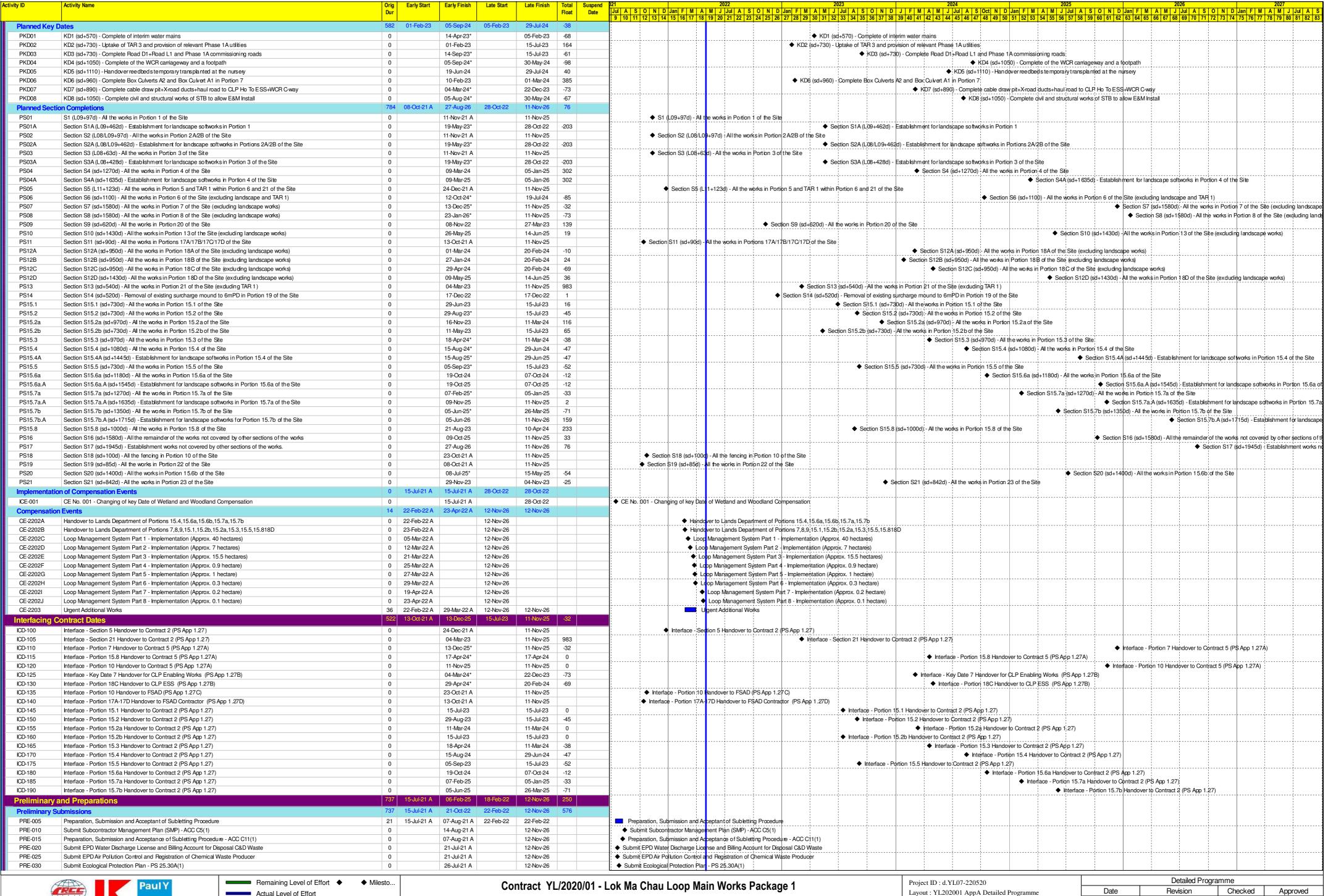

APPENDIX A CONSTRUCTION PROGRAMME

Contract No. YL/2020/01 - Development of Lok Ma Chau

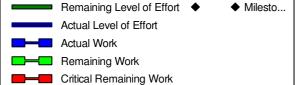
Loop: Main Works Package 1 – Contract 1 Site Formation

and Infrastructure Works inside Lok Ma Chau Loop and

Western Connection Road Phase 1

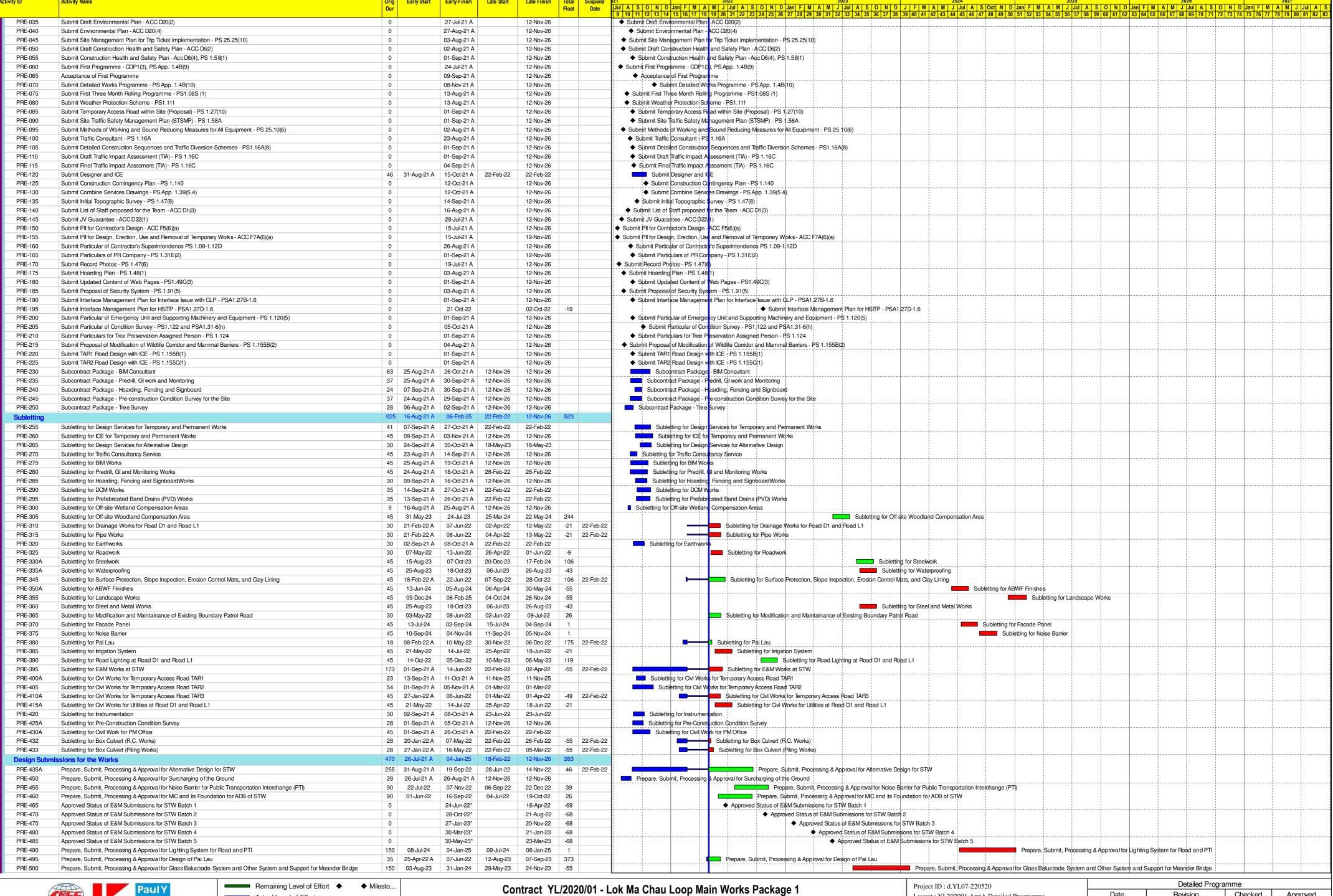


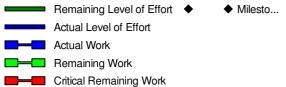
CRCC - Kwan Lee - Paul Y. J\


Remaining Work Critical Remaining Work

Detailed Programme

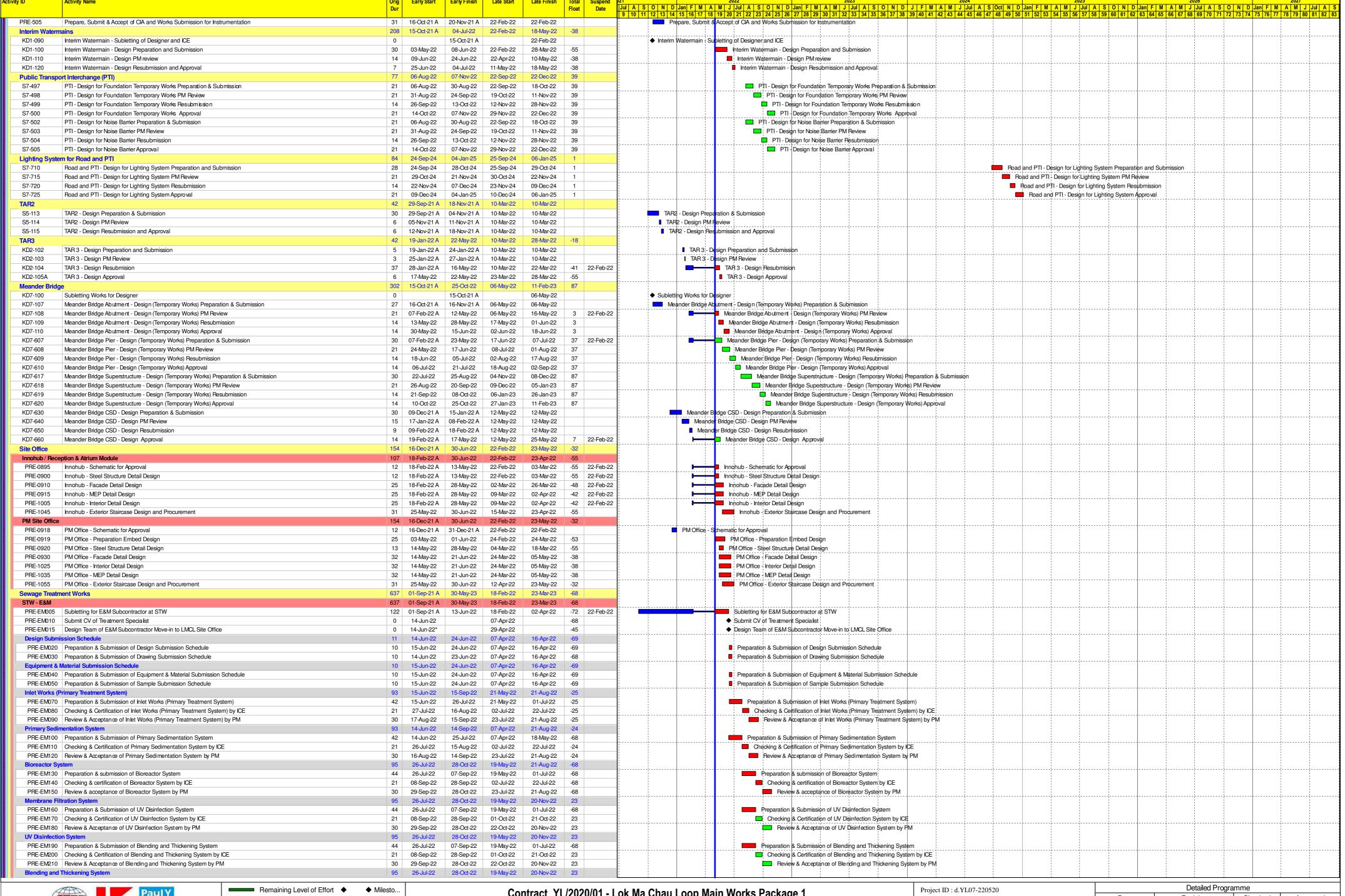
21-Apr-22 Rev. 6 18-Mar-22 Rev. 5

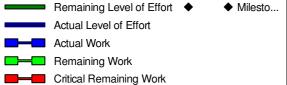




Date: 19-May-22/ Page 2 of 23

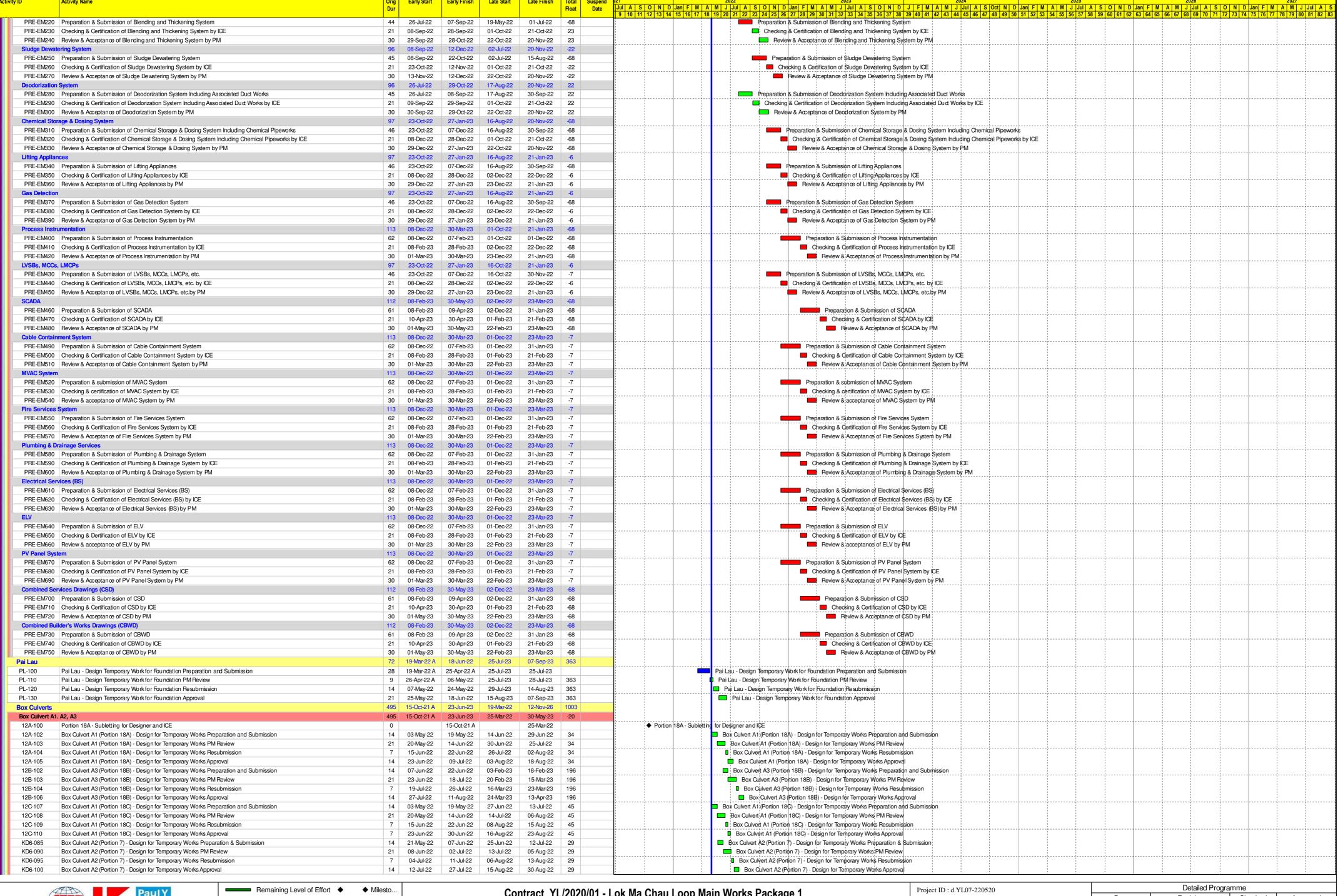
Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			



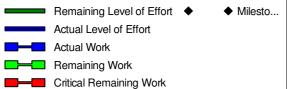


Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 3 of 23

Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			

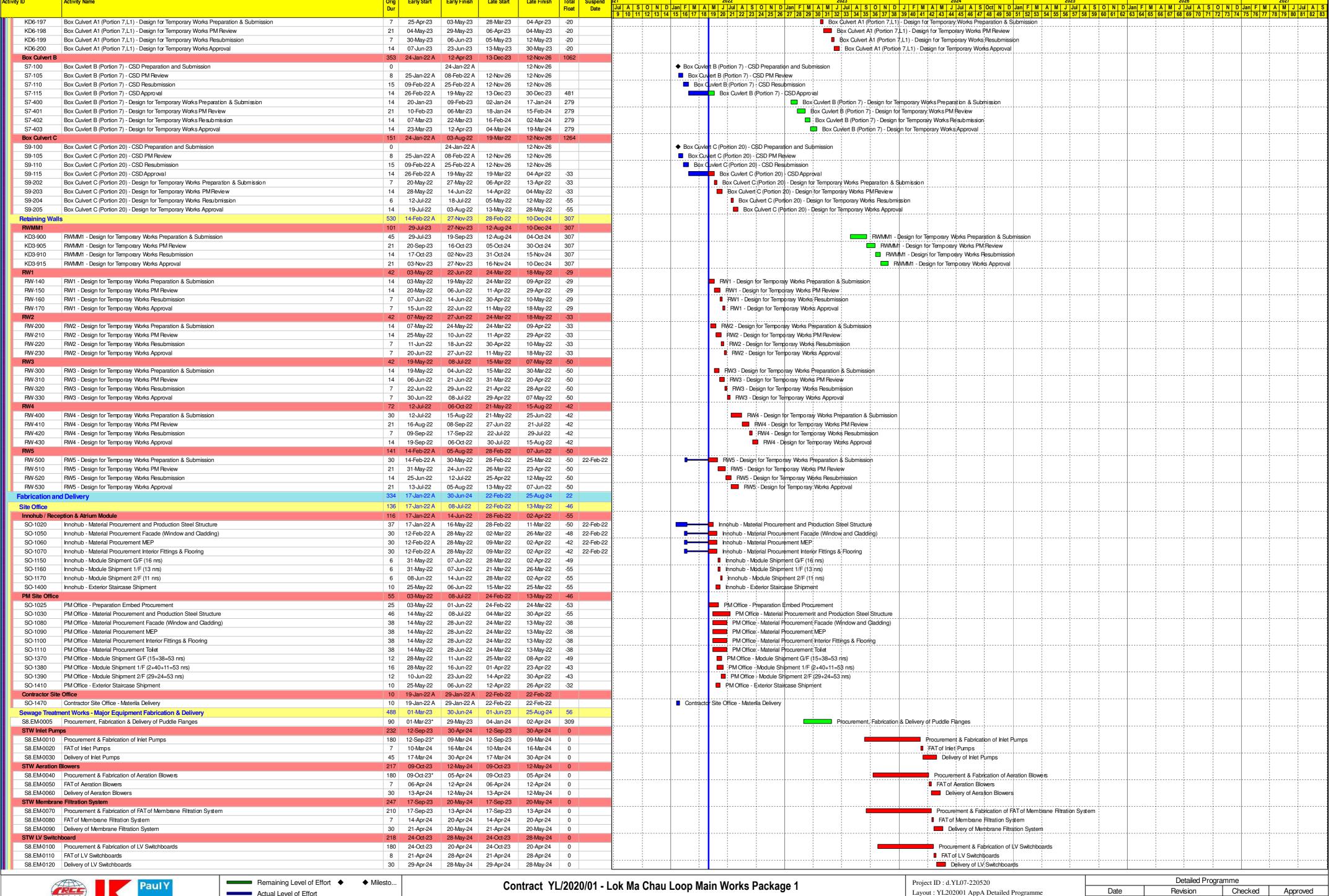


Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package 1

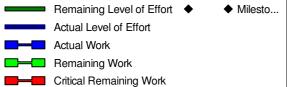

Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 4 of 23

Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			

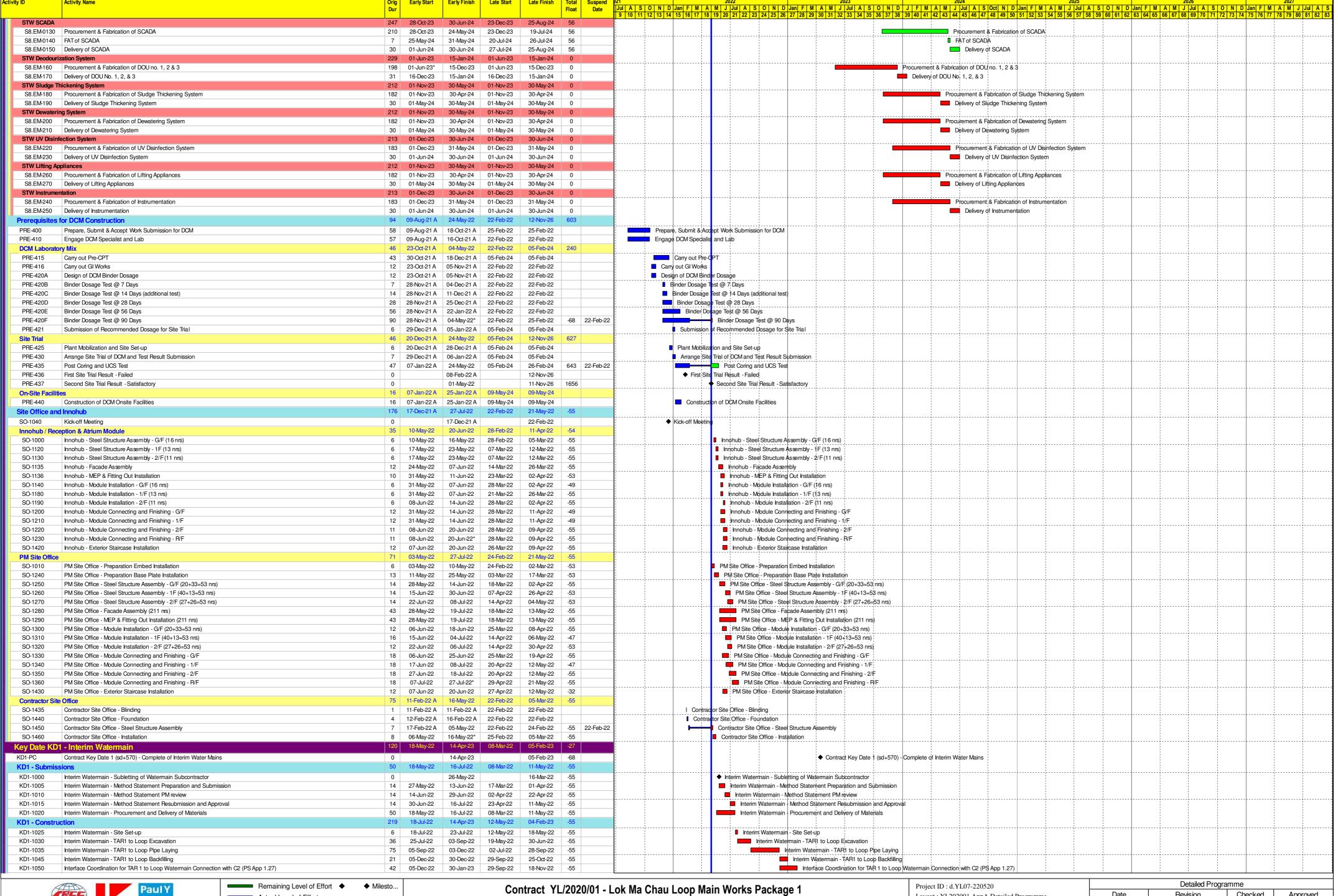


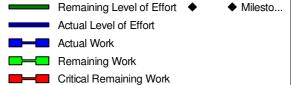
Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package 1


Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 5 of 23

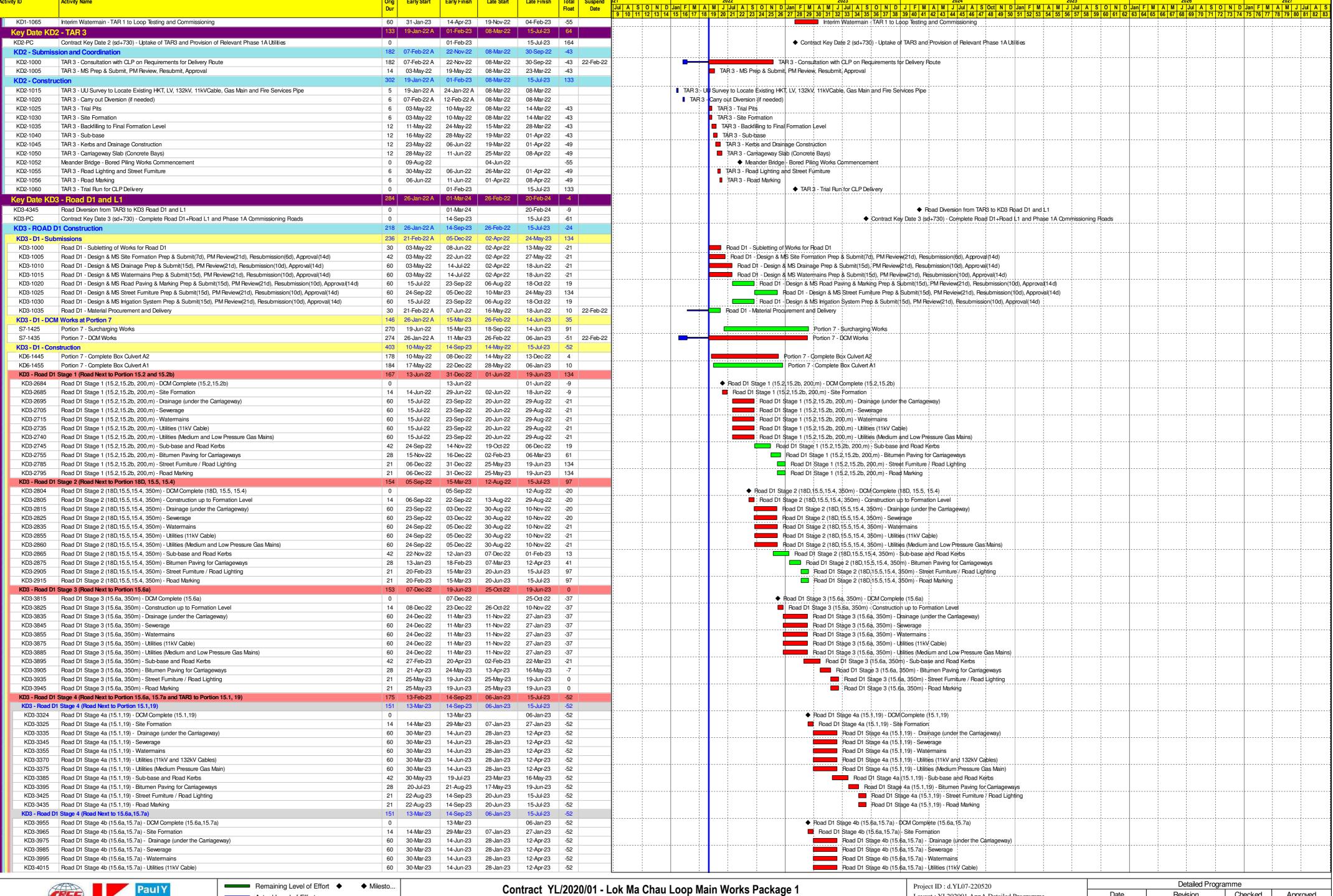
Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

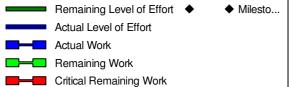




Detailed Programme Date: 19-May-22/ F

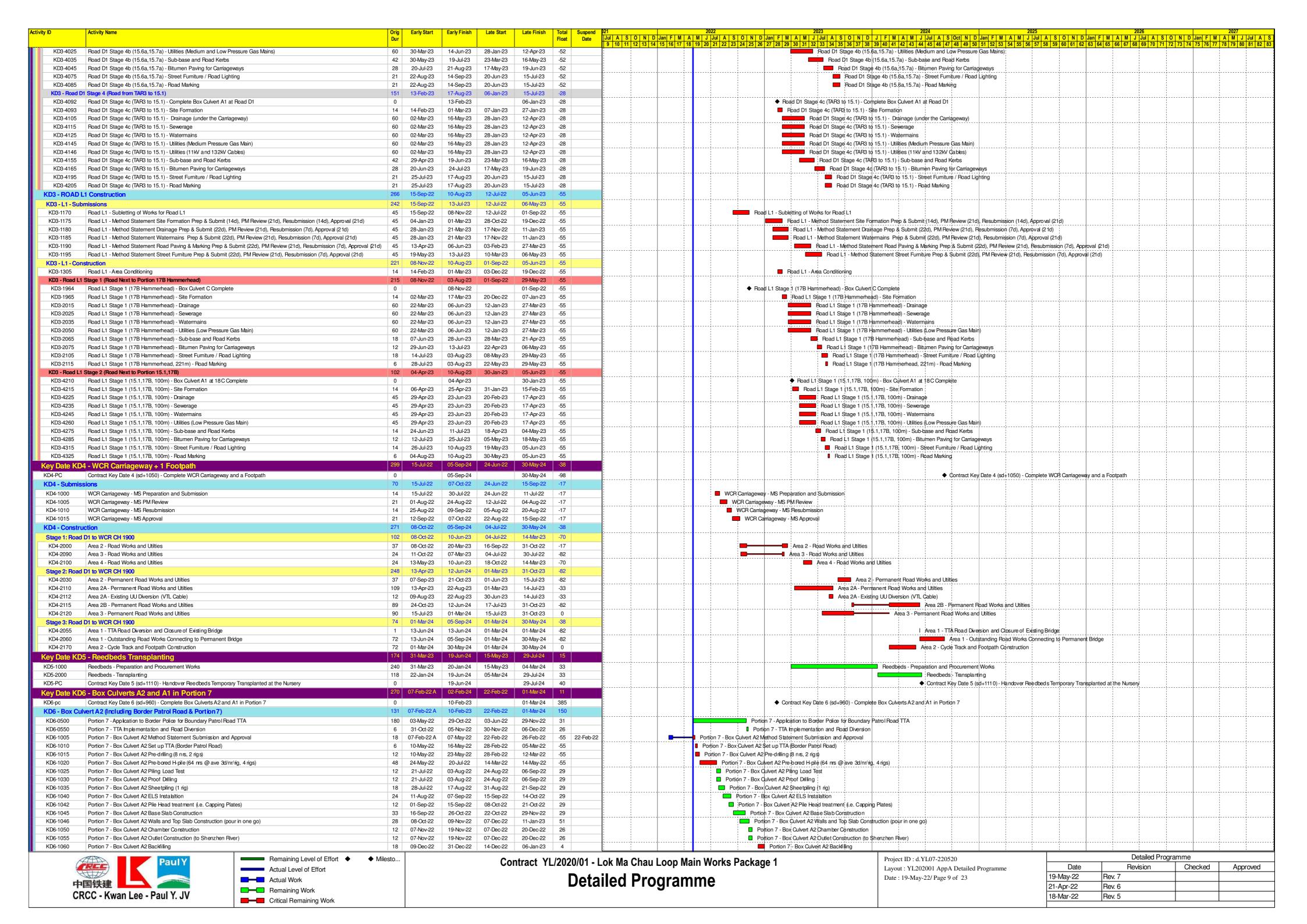
7-220520	Detailed Programme				
1 AppA Detailed Programme	Date	Revision	Checked	Approved	
Page 6 of 23	19-May-22	Rev. 7			
	21-Apr-22	Rev. 6			
	18-Mar-22	Rev. 5			

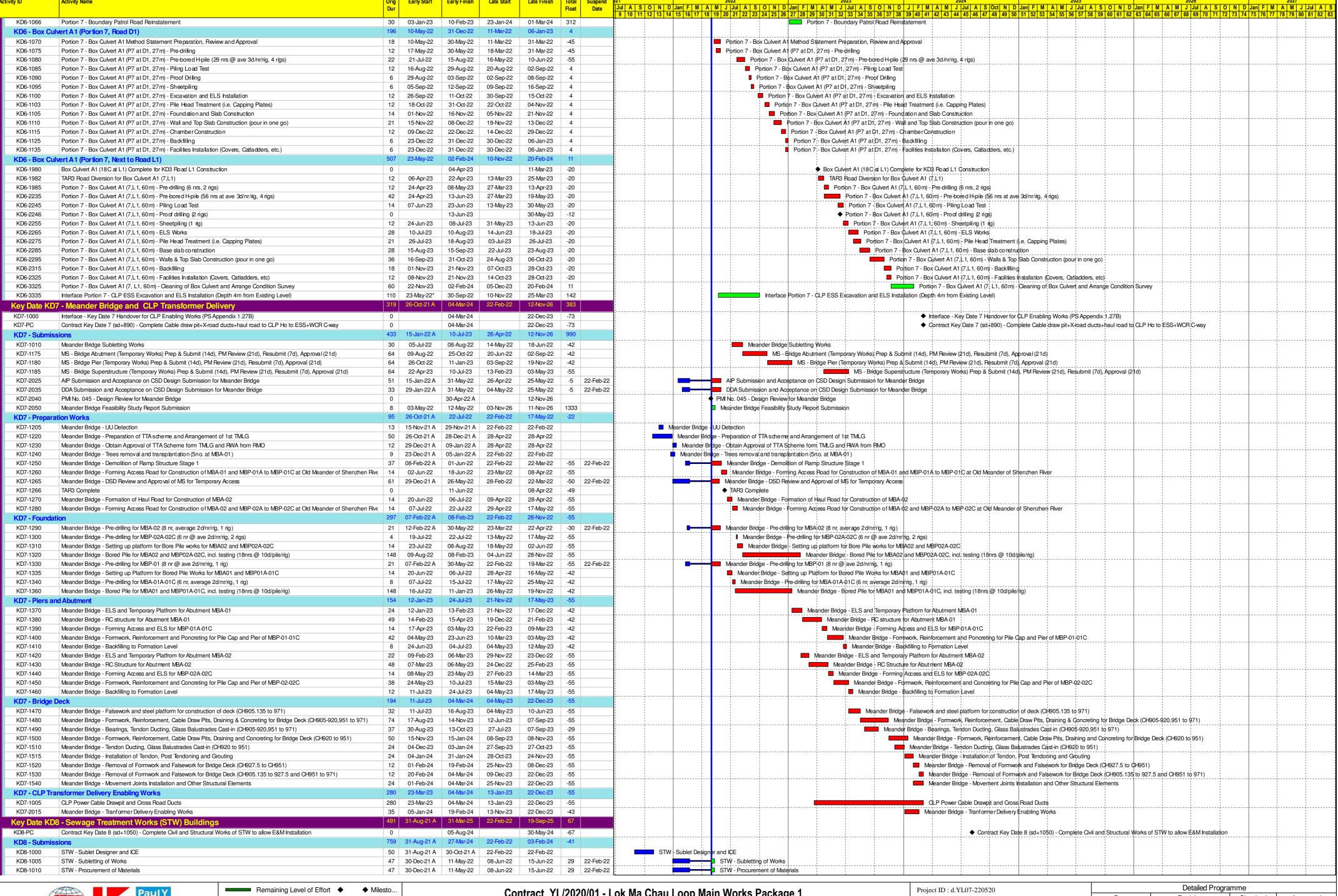


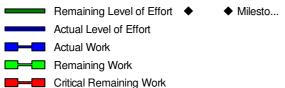


Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 7 of 23

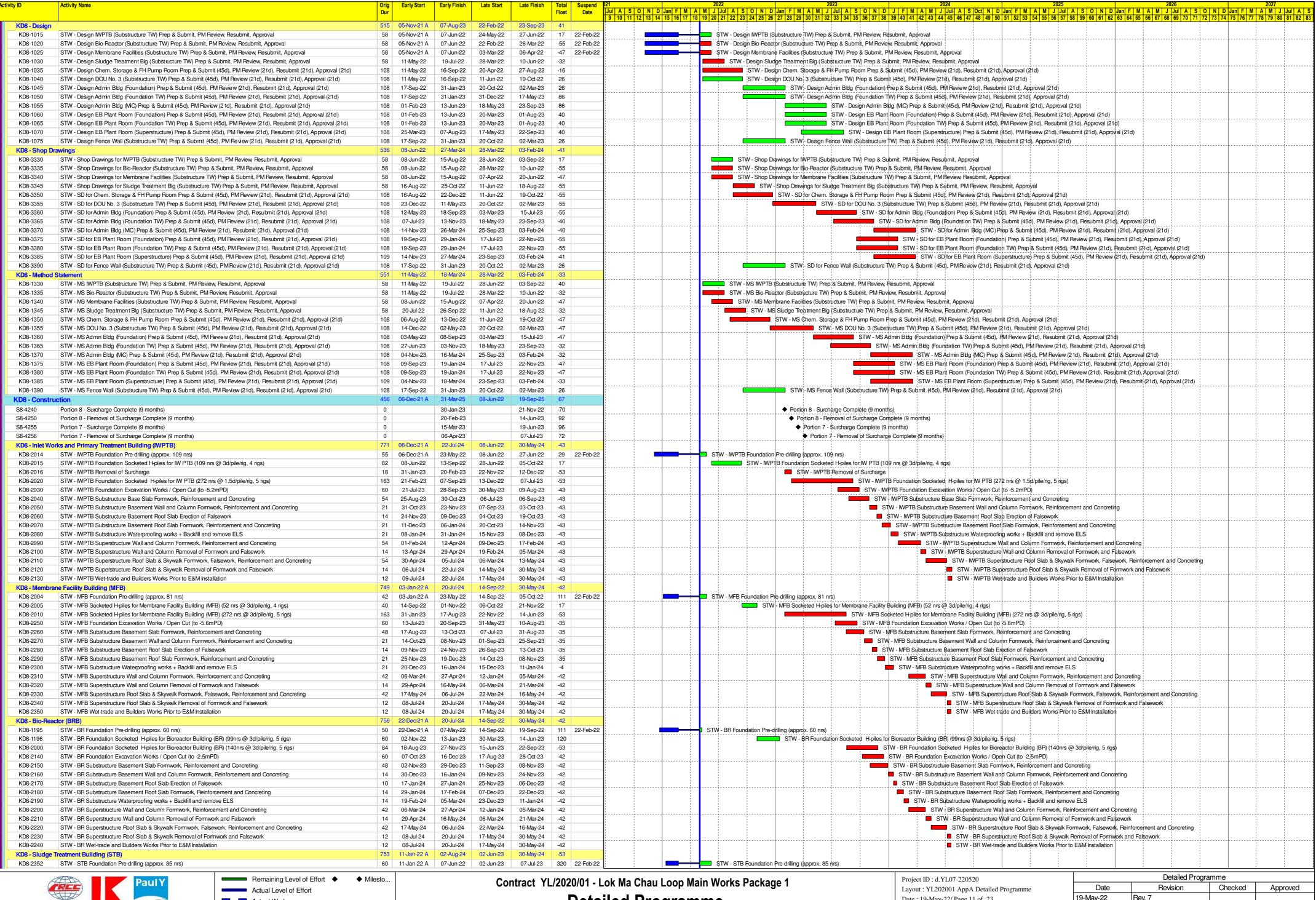
Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			






Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 8 of 23

Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			
	19-May-22 21-Apr-22	Date Revision 19-May-22 Rev. 7 21-Apr-22 Rev. 6	Date Revision Checked 19-May-22 Rev. 7 21-Apr-22 Rev. 6	

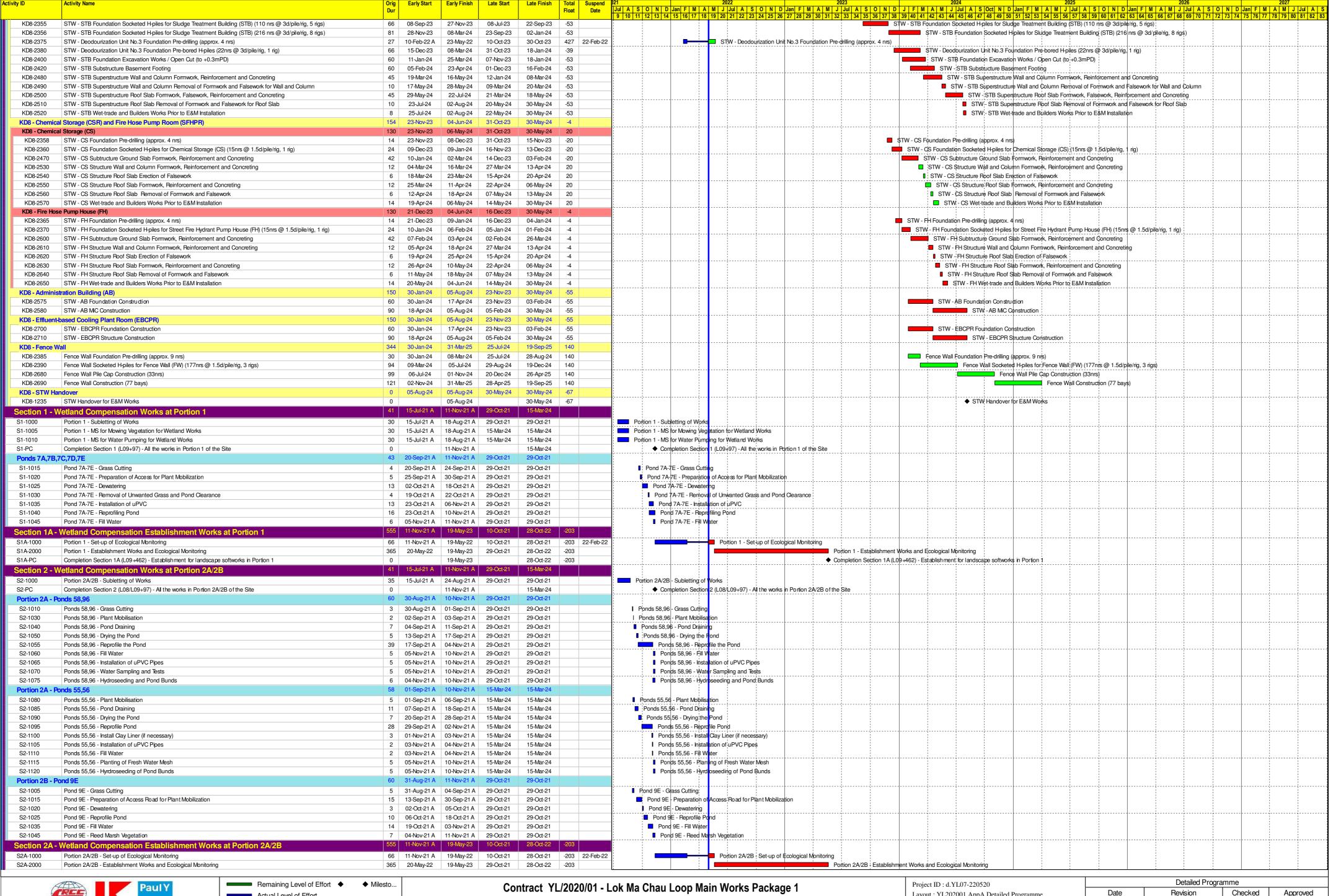


Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package 1


Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 10 of 23

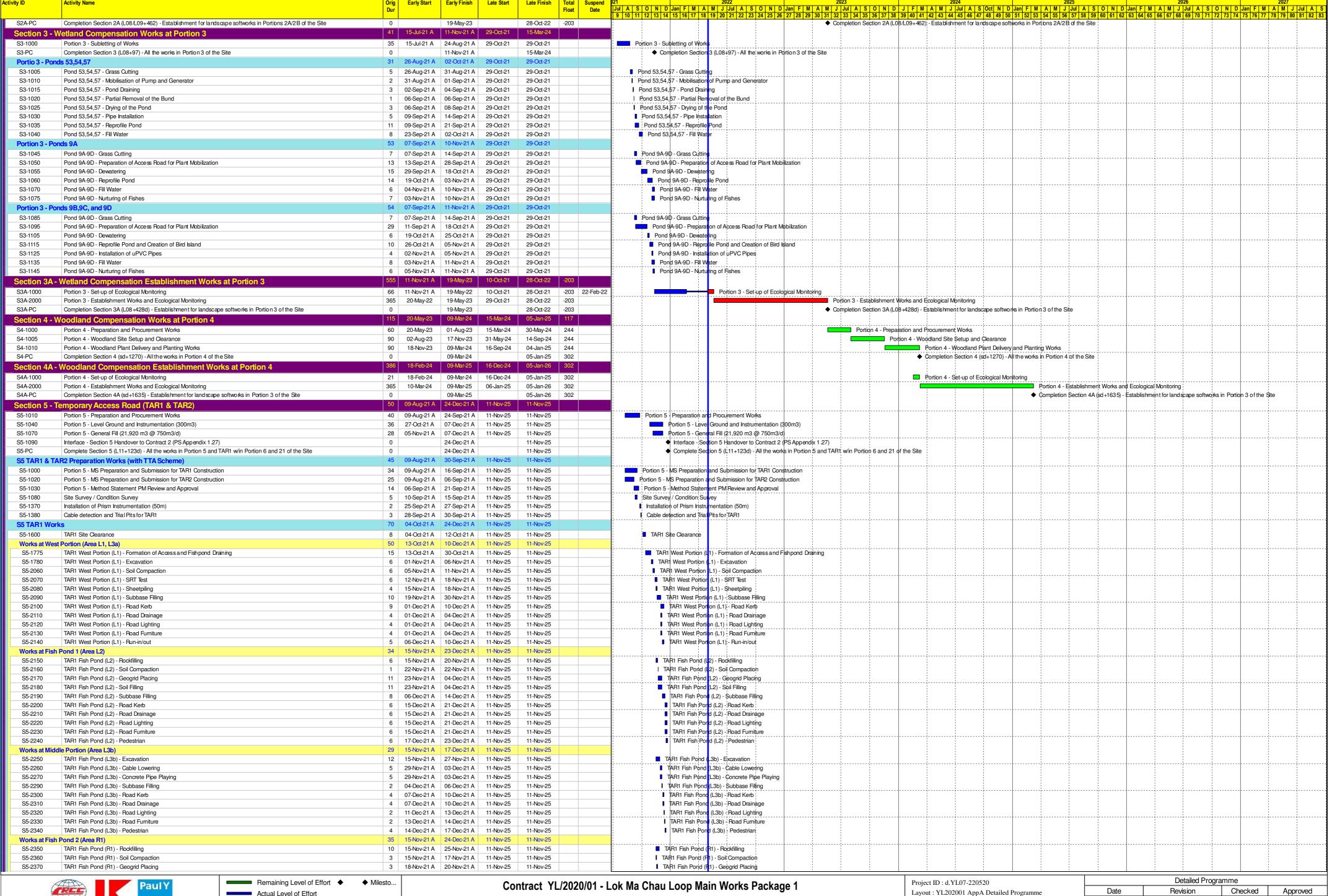
Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			

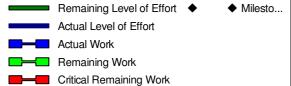




Date: 19-May-22/ Page 11 of 23

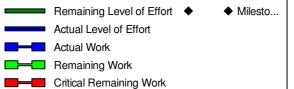
Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			





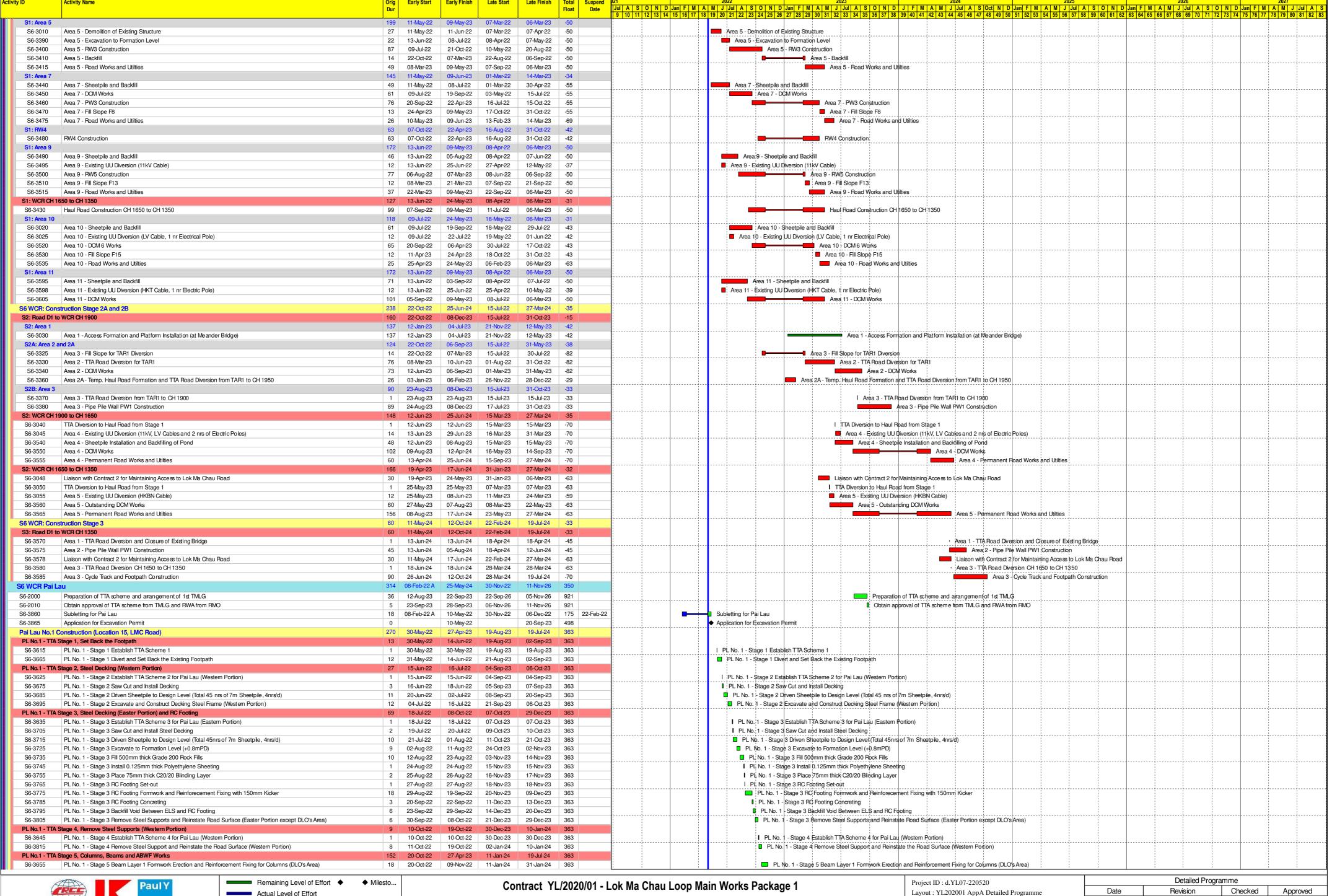
Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 12 of 23

Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			

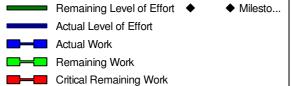


Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 13 of 23

Detailed Programme				
Date	Revision	Checked	Approved	
19-May-22	Rev. 7			
21-Apr-22	Rev. 6			
18-Mar-22	Rev. 5			

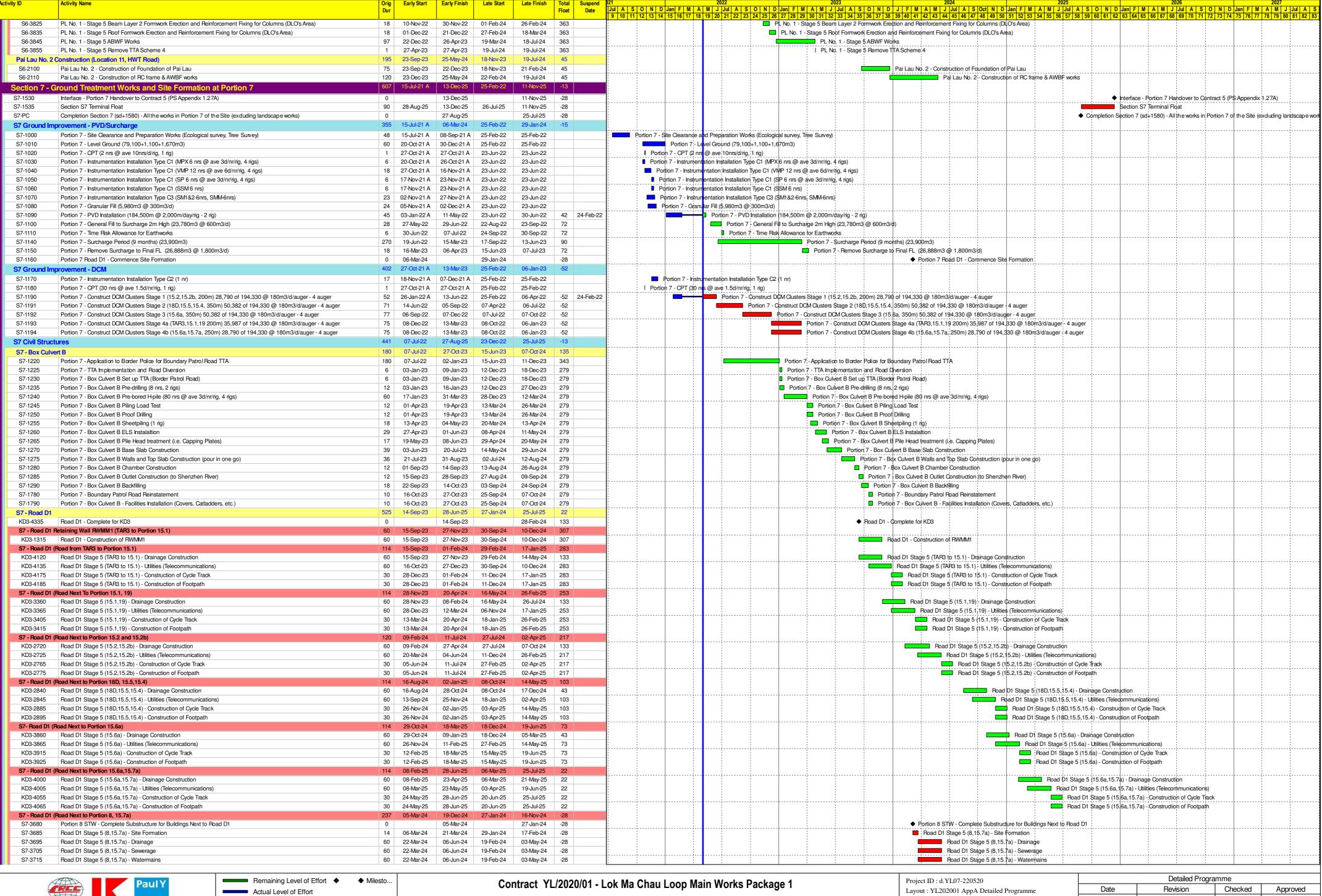


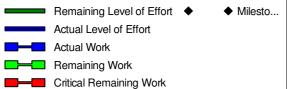
Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package 1


Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 14 of 23

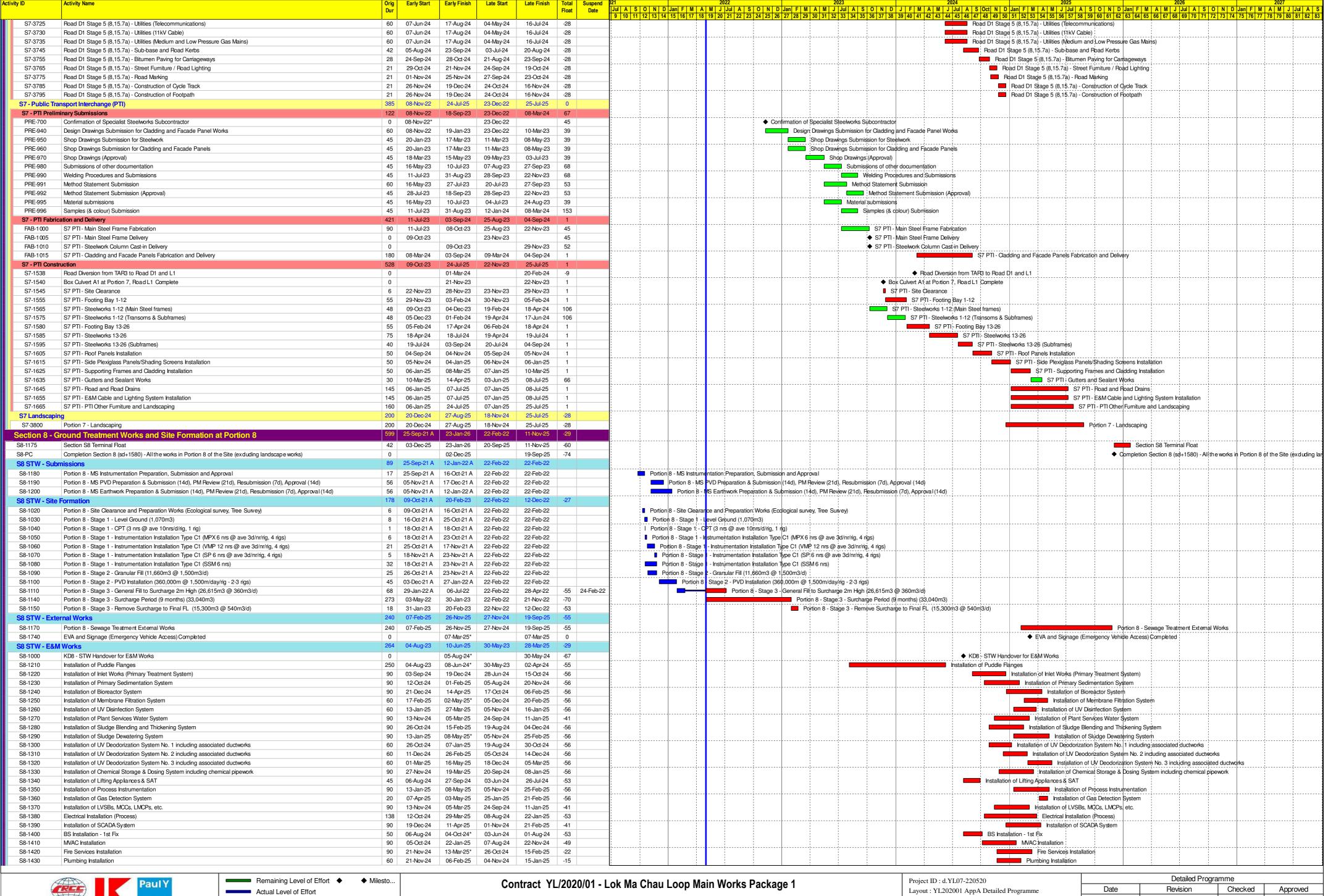
	Detailed Programme				
Date	Revision	Checked	Approved		
19-May-22	Rev. 7				
21-Apr-22	Rev. 6				
18-Mar-22	Rev. 5				

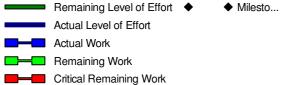




Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 15 of 23

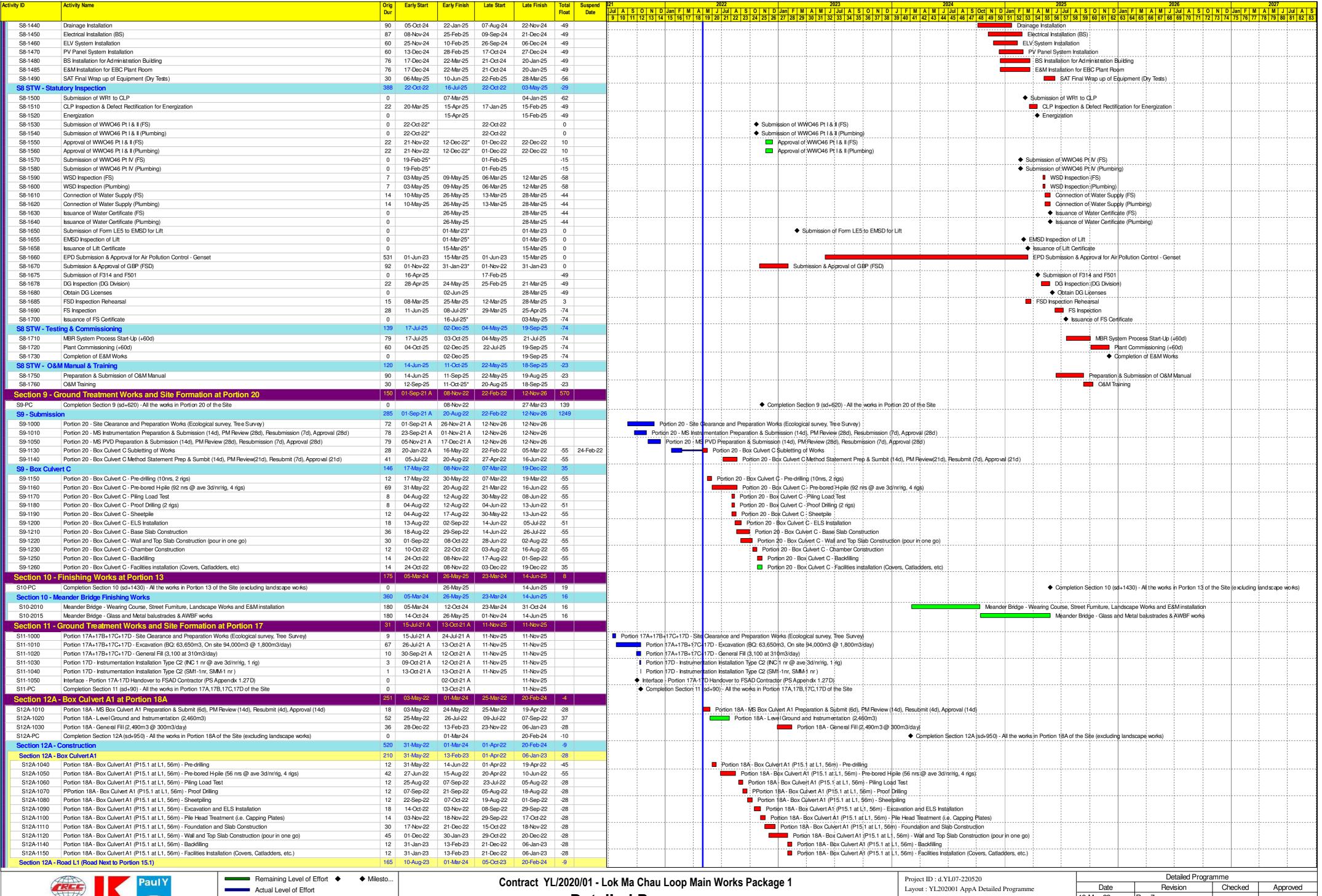
Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

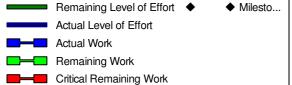




Date: 19-May-22/ Page 16 of 23

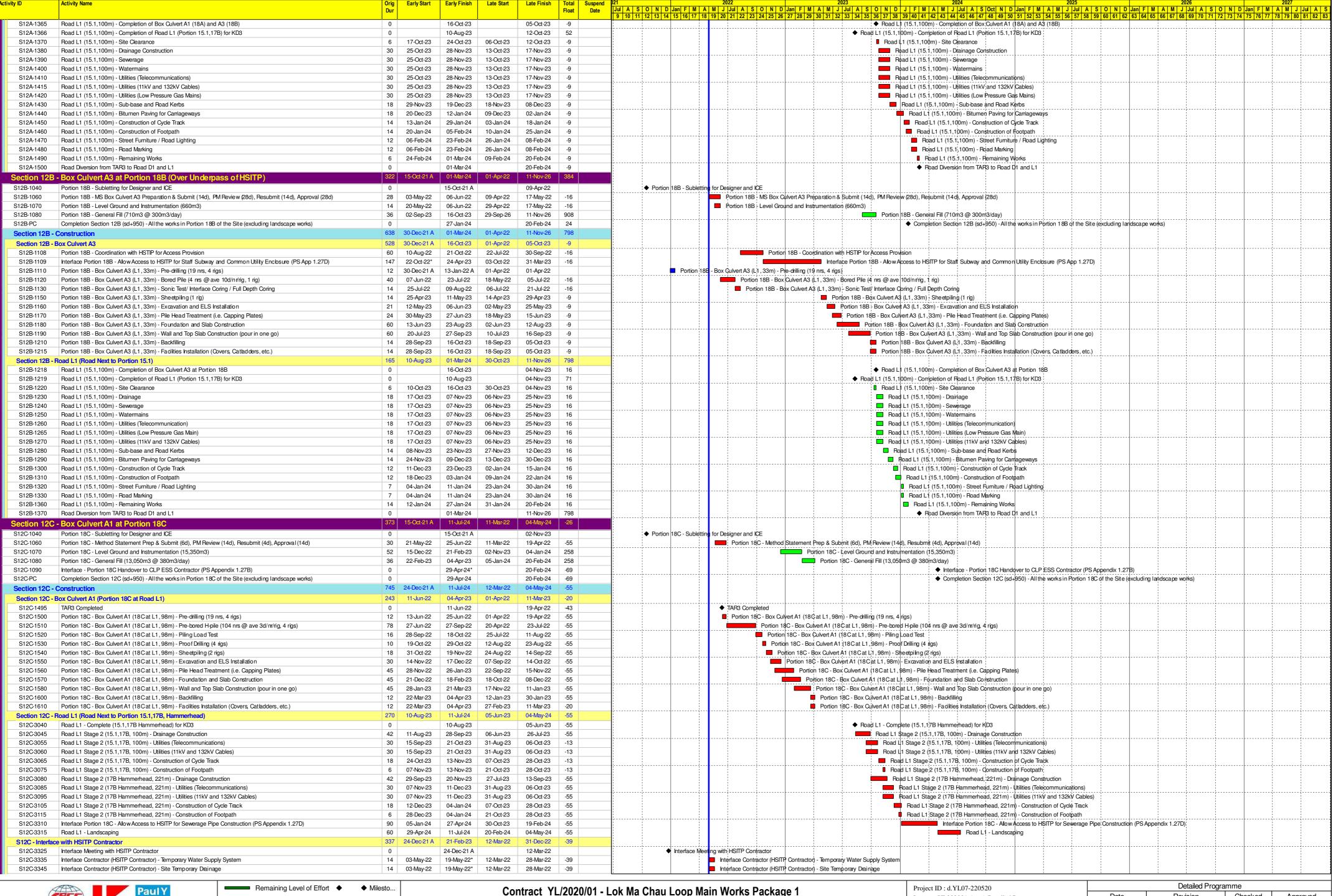
Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

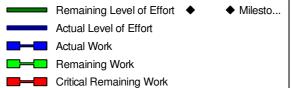




Date: 19-May-22/ Page 17 of 23

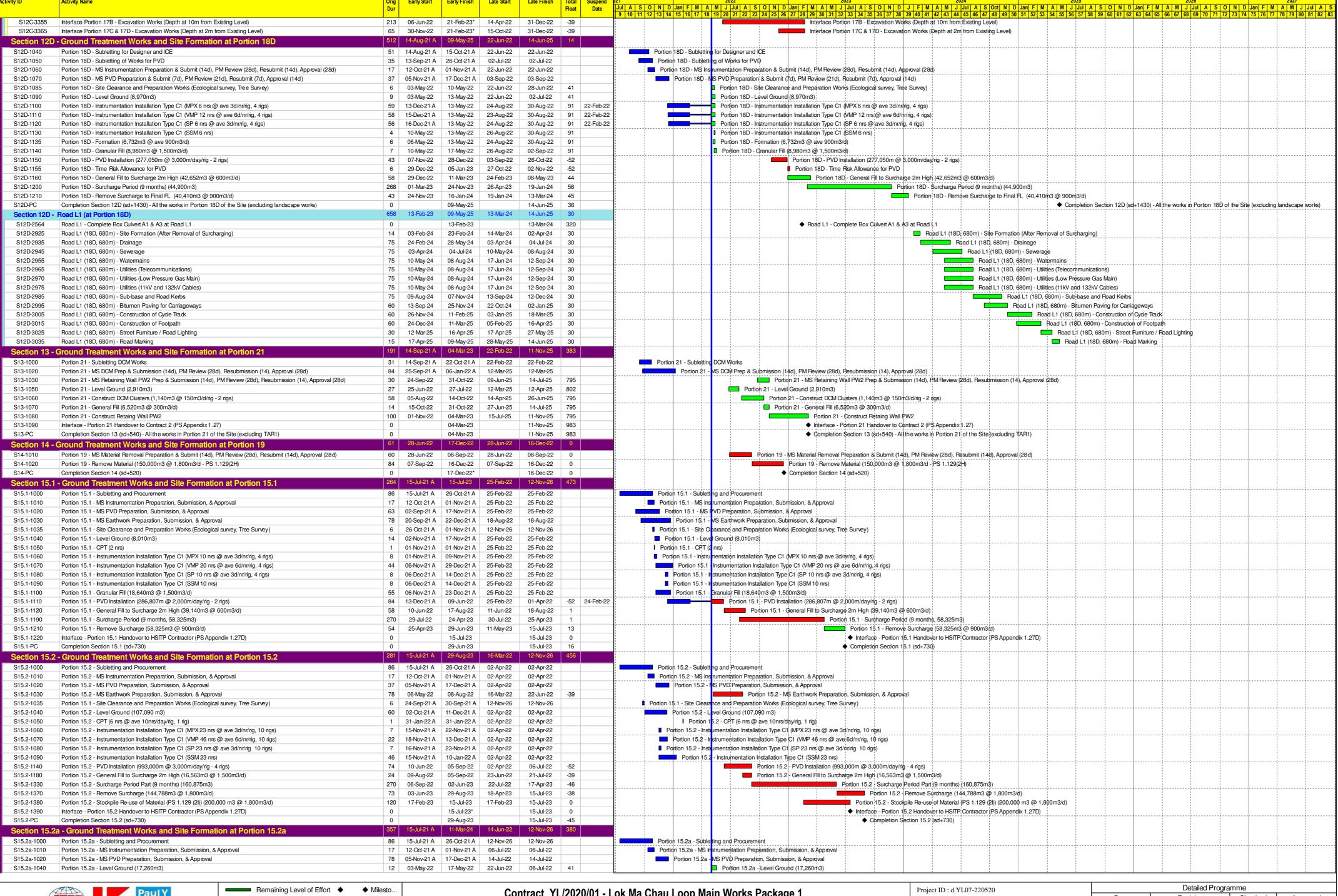
Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		



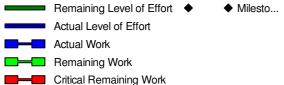


Date: 19-May-22/ Page 18 of 23

Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

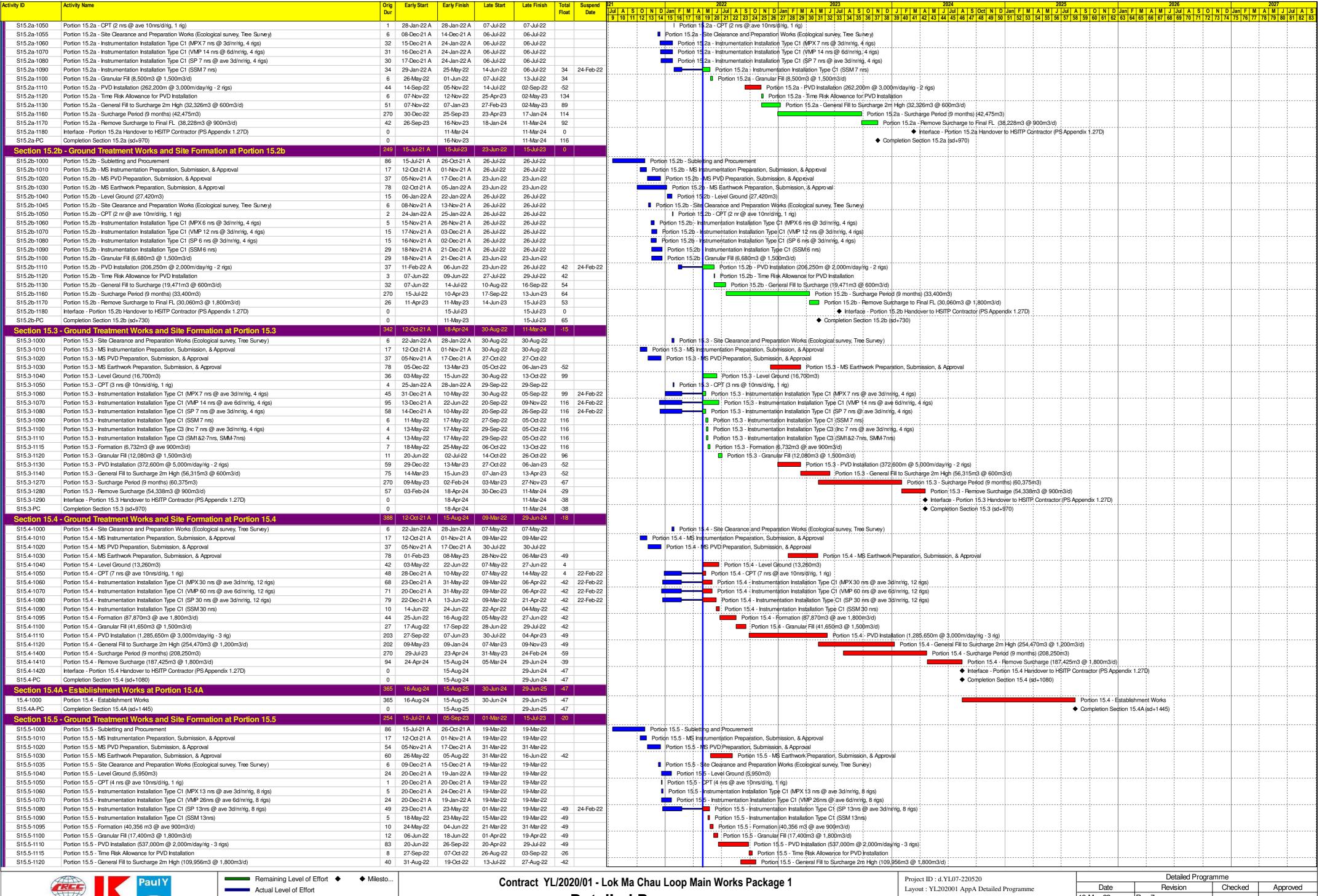


Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package 1

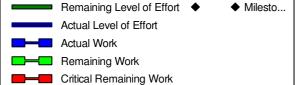

Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 19 of 23

Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

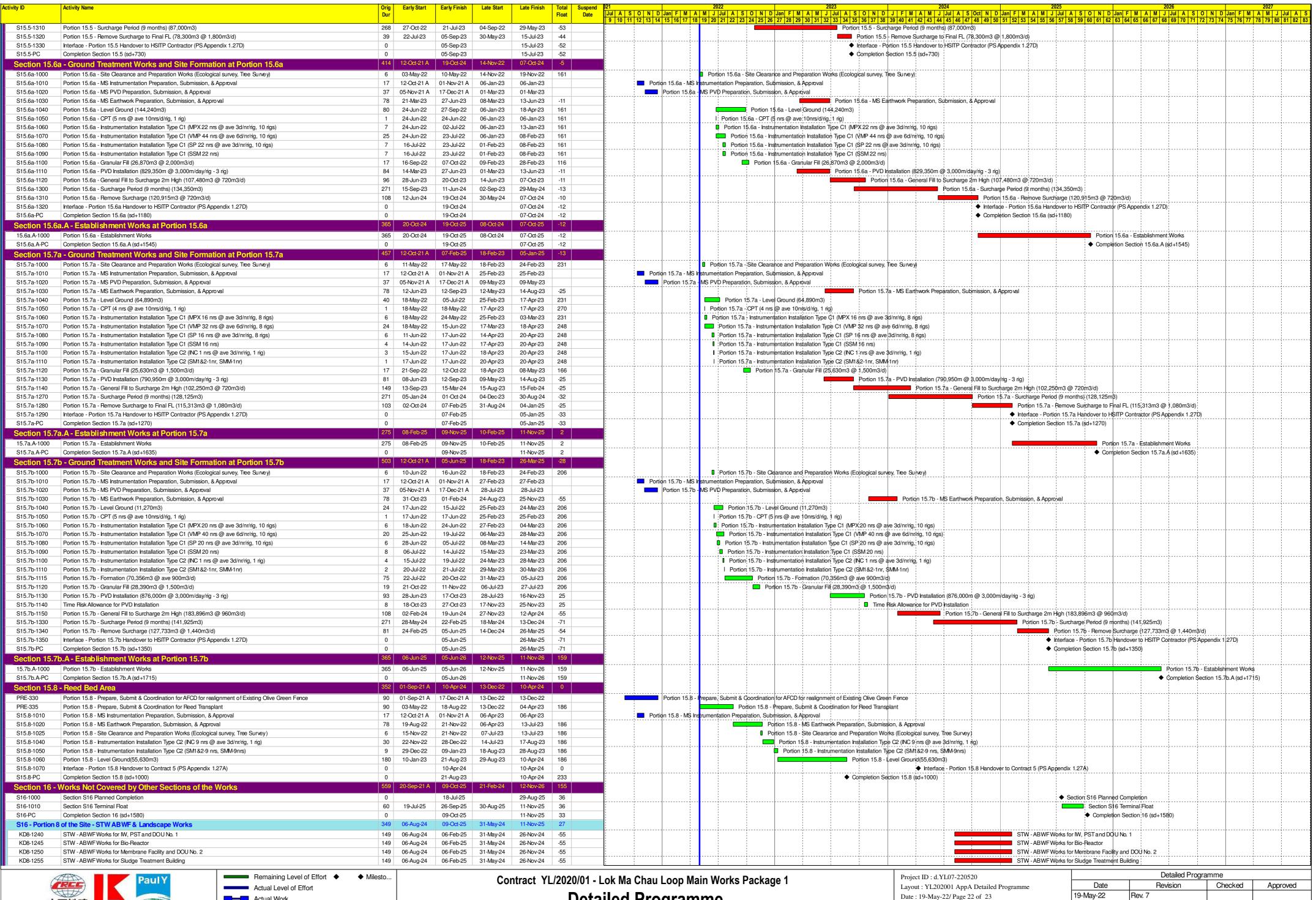


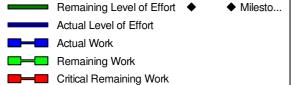
Contract YL/2020/01 - Lok Ma Chau Loop Main Works Package '


Detailed Programme

Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 20 of 23

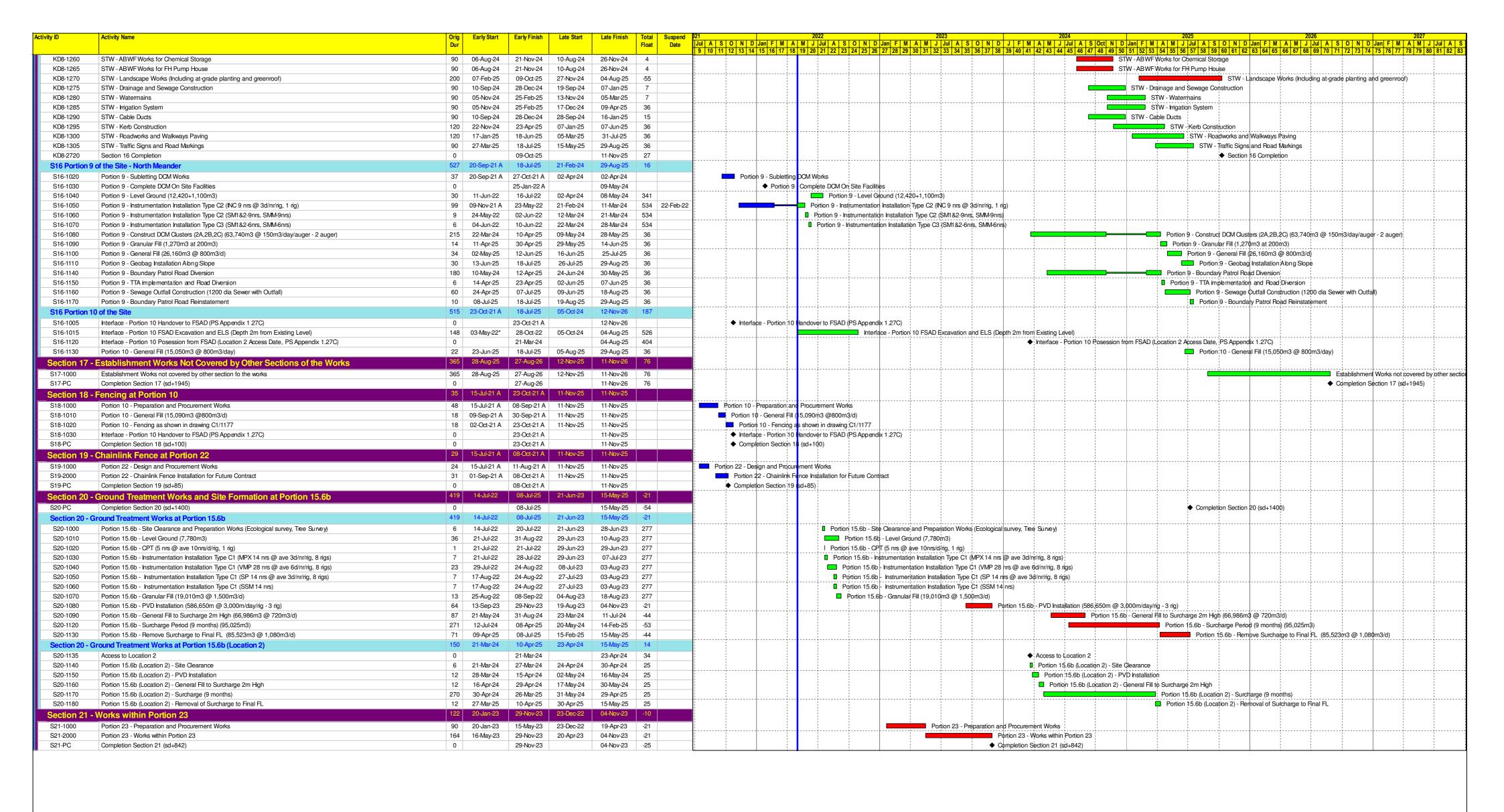
roved	
	roved

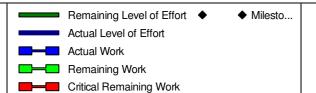




Date: 19-May-22/ Page 21 of 23

Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		





Date: 19-May-22/ Page 22 of 23

Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

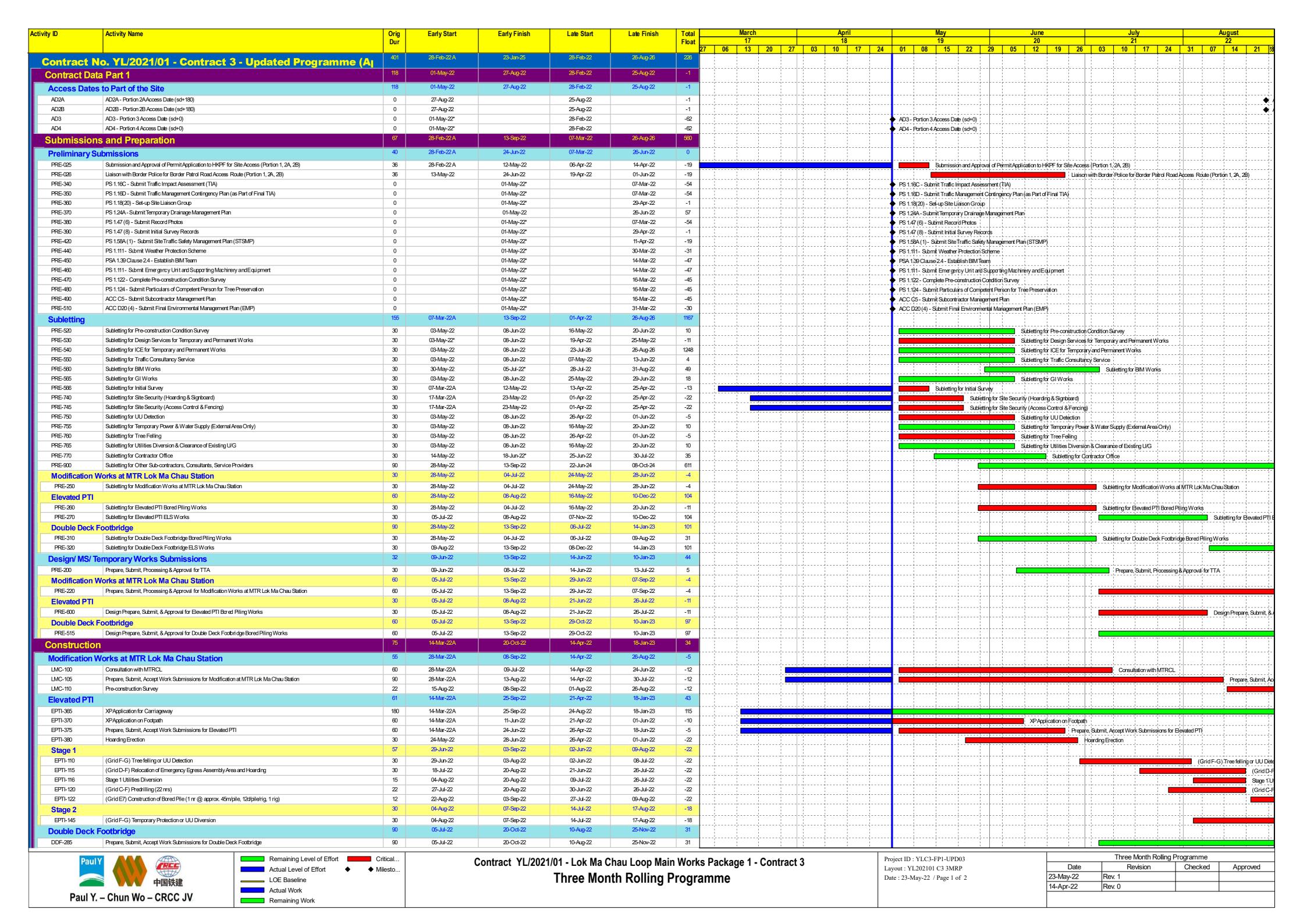
Project ID: d.YL07-220520 Layout: YL202001 AppA Detailed Programme Date: 19-May-22/ Page 23 of 23

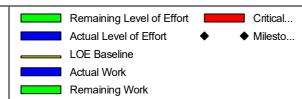
Detailed Programme			
Date	Revision	Checked	Approved
19-May-22	Rev. 7		
21-Apr-22	Rev. 6		
18-Mar-22	Rev. 5		

Contract No. YL/2020/02 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 2 Western
Connection Road Phase 2, Connection Roads to Fanling /
San Tin Highway and Direct Road Link Phase 1

Contract No. YL/2020/02 Western Connection Road Phase 2, Connection Roads to Fanling/San Tin Highway and DRL Phase 1 Western Connection Road Phase 2, Connection Roads to Fanling/San Tin Highway and DRL Phase 1 0 0 28-Jul-22 28-Jul-22 2 Key Date and Section of the Works 0 0 28-Jul-22 28-Jul-22 Planned Achievement of Key Dates KD 4 -Complete the construction of temporary noise barrier in Portion 1,2A,2B,5,7,8,9 and 10 KD 4 -Complete the construct 235 200 15-Sep-21 A 23-Nov-22 156 General Submission, Preliminaries, Contractor's Design, Method Statement Submission and Approval 30 15-Sep-21 A 11-Jun-22 Prepare and submit construction impact assessment (PS1.121) GSS1150 Prepare and submit risk management plan 20 15-Sen-21 A 31-May-22 Prepare and submit risk management plan Particular Submission of Key People and Specially Particular of Public Relation Officer (PS 1 310 30 15-Sep-21 A 06-Jup-22 Particular of Public Relation Officer (PS 1 31C) Contractor's Design Submission and Approval 171 20.0rt.21 A 23.Nov.22 171 29.Oct.21 A 23.Nov.22 MPW1010 Design for noise barriers at Western Connection Road 30 29-Oct-21 A 11-Jun-22 Design for noise barriers at Western Connection Road MPW1015 Design for security fences 32 14-Dec-21 A 14-Jun-22 Design for security fences MPW1020 Design for covered walkways at Cycle Track cum Footbridge with staircases 26 19-Jan-22 A 07-Jun-22 Design for covered walkways at Cycle Track cum Footbridge with staircase. 111 28-Apr-22 A 14-Sep-22 MPW1025 Design for irrigation system MPW1030 Aesthetic design of Pai Lau 65 04-Apr-22 A 22-Jul-22 MPW1035 Design for road lighting system 11 24-Nov-21 A 20-May-22 ELS design for construction of noise barrier along Lok Ma Chau Road ELS design for construction of noise barrier along Lok Ma Chau Road 8 24-Nov-21 A 17-May-22 Steel mould design for precast segments MTW1055 Steel mould design for precast segments 11 04-Jan-22 A 20-May-22 MTW1080 ELS design for construction of pilecap for bridge DRLST-01 and CTFB 8 28-Dec-21 A 17-May-22 ELS design for construction of pilecap for bridge DRL,ST-01 and CTFB MTW1100 ELS design for modification of existing subways 10 12-Feh-22 A 19-May-22 ELS design for modification of existing subways Fabrication and transportation of precast segments 25 14-Dec-21 A 06-Jun-22 Fabrication and transportation of precast segments MTW3240 R.C structure for pilecap, pier and in-situ deck 5 30-Dec-21 A 13-May-22 R.C structure for pilecap, pier and in-situ deck MTW3280 Waterwork 23 28-Feb-22 A 03-Jun-22 MTW3300 Erection of precast segment 10 09-Feb-22 A 19-May-22 Erection of precast segment Predressing, bearing and movement joints MTW3320 Predressing bearing and movement joints 44 20-Apr-22 A 28-Jun-22 Design, supply and installation of glass balustrades 30 29-Jun-22 02-Aug-22 Design, suppl MTW3340 Method Statement Submission and Approval for Major Construction Works 10 15-Sep-21 A 19-May-22 Method statement submission and approval for installation of bored piles Method statement submission and approval for construction of pile caps MSS1060 Method statement submission and approval for construction of pile caps 18 24-Nov-21 A 28-May-22 Method statement submission and approval for fabrication of precast segments Method statement submission and approval for fabrication of precast segments MSS1070 Method statement submission and approval for construction of piers 11 17-Dec-21 A 20-May-22 Mathod statement submission and approval for construction of piers MSS1090 Method statement submission and approval for modification of existing subwa 10 01-Apr-22 A 19-May-22 - Mathod statement submission and antimust for modification of existing subways MSS2010 Method statement submission and approval for erection of precst segments for ST01 70 20-May-22 09-Aug-22 44 24-Sep-21 A 20-Jun-22 PRF 1000 Initial survey and topographic survey (Zone 4, 5, 7) 1 24-Sep-21 A 10-May-22 ■ Initial survey and topographic survey (Zone 4, 5, 7) PRF1004 Initial survey and tonographic survey (Zone 11, 12, 13) 4 09-Nov-21 A 13-May-22 Initial survey and topographic survey (Zone 11, 12, 13) PRF1006 Initial survey and topographic survey (Zone 8, 9, 10) 4 09-Nov-21 A 13-May-22 Initial survey and topographic survey (Zone 8, 9, 10) PRE1010 Tree survey and tree assessment (Zone 1 to 7) 1 27-Sep-21 A 10-May-22 ■ Tree survey and tree assessment (Zone 1 to 7) Tree survey and tree assessment (Zone 8 to 12) PRE1012 Tree survey and tree assessment (Zone 8 to 12) 2 18-Oct-21 A 09-May-22 PRE1020 Preparation and approval of TTA scheme and traffic impact assessment 25 03-Nov-21 A 01-Jun-22 Installation of instrumentation and monitoring points PRE1040 Installation of instrumentation and monitoring points 35 29-Dec-21 A 20-Jun-22 Establishment of wheel washing system Establishment of wheel washing system 28 10-May-22 11-Jun-22 PRE1060 Erection of contractor's site accommodation 19 03-Nov-21 A 31-May-22 Interface Management Plan Submission and approval of interface management plan(PS1.114) Submission and approval of interface management plan(PS1.114) 25 15-Sep-21 A 08-Jun-22 Prefabrication of Precast Units Section 1 of the Works- Completion of the Works within Portion 1,2A,2B,3,5,7,8,9&10 of the Site 87 766 18-Jan-22 A 03-Dec-24 104 Taxi Holding Area Implementation of TTA and modification of temporary taxi holding area Implementation of TTA and modification of temporary taxi holding area 61 19 21-Feb-22 A 01-Jun-22 S010300 Staircase for CTFB Piling Works Existing Cycle Track Subway Modification Preparation and Implementation of TTA S011035-1 2 16-May-22 17-May-22 Implementation of TTA \$011035.2 Demolition of cover of existing cycle track ramp (BayST12 to BayST14) 14 18-May-22 02-Jun-22 Demolition of cover of existing cycle track ramp (BayST12 to BayST14) S011035-3 Installation of FLS part 1 14 04-Jun-22 20-Jun-22 Installation of ELS part 1 Installation of ELS part 2 S011040 Installation of ELS part 2 14 21-lun-22 07-lul-22 S011040-1 Excavation 14 08-Jul-22 23-Jul-22 14 25-Jul-22 09-Aug-22 S011040-2 Formwork and rebar fixing (Base slab) Retaining Walls Preparation and implementation of TTA S011060 Preparation and implementation of TTA 3 22-Mar-22 A 12-May-22 S011060-1 UU detection and trial pit UU detection and trial pit Installation of sheetpile part 10 17-May-22 27-May-22 S011060-3 10 28-May-22 09-Jun-22 Installation of sheetpile part 2 S011060-5 Construction of Retaining Wall RW9/bay 1 of 16 bays 10 22-Jun-22 04-Jul-22 Construction of Retaining Wall RW9(bay 1 of 16 bays) S011060-6 Construction of Retaining Wall RW9(bay 2 of 16 bays) 10 05-Jul-22 15-Jul-22 Construction of Retaining Wall RW9(bay 2 of 16 bays) S011060-7 Construction of Retaining Wall RW9(bay 3 of 16 bays 10 16-Jul-22 27-Jul-22 Construction of Retaining Wall RV S011060-8 Construction of Retaining Wall RW9/bay 4 of 16 bays 10 28-Jul-22 08-Aug-22 Section 2A of the Works-Completion of the Works at Lok Ma Chau Road within Portion 1,5 and 8 121 82 06-Dec-21 A 15-Aug-22 Demolition of Existing Structure Date Revision Checked Approved Actual Work Three Month Rolling Programme (Data Date: 08-May-22) 中國路橋工程有阻責任公司 14-May-22 LDS Page: 1 of 2 Critical Remaining Work CHINA ROAD AND BRIDGE CORPORATION Milestone

Contract No. YL/2020/02 Western Connection Road Phase 2, Connection Roads to Fanling/San Tin Highway and DRL Phase 1 121 19 06-Dec-21 A 31-May-22 S02A100 Demolition of pillar box, shelter, domestic structure, etc (26 nos Demolition of nillar how shalter domestic structure atc /26me Retaining Walls Temporary cutting of the slope and preparation of the working platform (Additional GI) 12 N9-Feb-22 A 23-May-22 Temporary cutting of the slope and preparation of the working platform (Additional GI) 9024725 Preparation works for installation of bored piles 14 24-May-22 09-Jun-22 Preparation works for installation of bored piles Plant mobilization and set up(2 sets of rigs) S02A725-1 14 10-Jun-22 25-Jun-22 Plant mobilization and set up (2 sets of rigs) S02A725-2 Installation of bored piles (2 nos) 14 27-lun-22 13-lul-22 Installation of bored piles (2 nos) S02A725-3 Installation of bored piles (2 nos) 14 14-Jul-22 29-Jul-22 Installation of bored piles (2 14 30-Jul-22 15-Aug-22 S02A725-4 Installation of bored piles (2 nos) **Noise Barriers** Temporary Noise Barrier 67 10-May-22 28-Jul-22 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) Installation of temporary noise barrier along the Lok Ma Chau Road (60m) 11 10-May-22 21-May-22 S02A680-1 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) 14 23-May-22 08-Jun-22 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) Installation of temporary noise barrier along the Lok Ma Chau Road (60m) S02A680-3 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) 14 09-Jun-22 24-Jun-22 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) 14 25-Jun-22 12-Jul-22 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) S02A680-5 Installation of temporary noise barrier along the Lok Ma Chau Road (60m) 14 13-Jul-22 28-Jul-22 Installation of temporary nois S02A690 Planned completion Key Date KD-4 of the works 28-Jul-22 Planned completion Key Date I Section 2B of the Works-Completion of the Works at Junction of Castle Peak Road and Lok Ma Chau Road 84 11-May-22 18-Aug-22 Box Culvert Modification Works within Portion 10 Installation of ELS part 1 Installation of ELS part 2 S02B110-3 14 14-Jun-22 29-Jun-22 14 30-Jun-22 16-Jul-22 Behar fixing and formwork installation (base slab S02B110.5 Construction of box culvert from CHA 0 to CHA26 base slab 14 18-Jul-22 02-Aug-22 S02B110-6 Rehar fixing and formwork installation (side wall and top slab) 14 03-Aug-22 18-Aug-22 Section 2C of the Works- Completion of Substructure and Piling Works of ST01 and CTFB 133 116 22-Nov-21 A 24-Sep-22 Substructure and Piling Works for Bridge ST01 Site clearance and tree felling works (outside MTR protection Zone) 12 22-Nov-21 A 24-May-22 Site clearance and tree felling works (outside MTR protection Zone) S02C105 Site clearance and tree felling works (inside MTR protection Zone) 16 29-Jan-22 A 27-May-22 Site clearance and tree felling works (inside MTR protection Zone) S02C115 Modification of existing channel to facilitate ST01-B01 piling works 16 10-May-22 27-May-22 Modification of existing channel to facilitate ST01-B01 piling works G.I and Pre-drilling 20 24-Nov-21 A 01-Jun-22 Ground investigation and pre-drilling works for Abutment ST01-B01(4nos), Pier DK-01(2nos) (MTR) S02C107 Ground investigation and pre-drilling works for Abutment ST01-B01(4nos), Pier DK-01(2nos) (MTR) 15 16-May-22 01-Jun-22 Ground investigation and pre-drilling works for Pier ST01-P01 to ST01-P04 (4nos) S02C120 Ground investigation and pre-drilling works for Pier ST01-P01 to ST01-P04 (4nos) 20 24-Nov-21 A 01-Jun-22 58 02-Jun-22 10-Aun-22 Piling Works Preparation of erection of temporary working platform at Pier ST01-P01 and Abutment ST01-B01 Preparation of erection of temporary working platform at Pier ST01-P01 and Abutment ST01-B01 S02C140 7 02-Jun-22 10-Jun-22 14 11-Jun-22 27-Jun-22 Erection of temporary working platform at Pier ST01-P01 S02C140-1 Erection of temporary working platform at Pier ST01-P01 S02C140-2 Erection of temporary working platform at Abutment ST01-B0 14 28-Jun-22 14-Jul-22 Installation of bored piles for Abutment ST01-B01 (1 Nos, Total 4nos) 12 15-Jul-22 28-Jul-22 Installation of bored piles for S02C160-1 Installation of bored piles for Abutment ST01-B01 (1 Nos, Total 4nos) 11 29-Jul-22 10-Aug-22 Substructure and Piling Works for CTFB 116 22-Nov-21 A 24-Sep-22 S020640 40 22-Nov-21 A 27- lun-22 Site clearance and tree felling works. S020645 Ground investigation and pre-drilling works (4nos) (Pier FBA02, FBP05, FBP06) 10 24-Nov-21 A 20-May-22 Ground investigation and pre-drilling works (4nos) (Pier FBA02, FBP05, FBP06) S020650 Ground investigation and pre-drilling works (7nos) (MTR) 75 27-Jan-22 A 24-Sen-22 Section 3 of the Works- Completion of the works of Direct Road Link within Portion 1,2A,2B, 5 and 9 167 403 22-Nov-21 A 14-Jun-23 Tree felling works (outside MTR Protection Zone) 10 22-Nov-21 A 17-May-22 Tree felling works (outside MTR Protection Zone) Ground investigation and pre-drilling works for Pier DRL-P06 to DRL-P04 (8nos) (early start of P06) 7 24-Nov-21 A 17-May-22 Ground investigation and pre-drilling works for Pier DRL-P06 to DRL-P04 (8nos) (early start of P06) S033150 Ground investigation and pre-drilling works for Pier DRL-P7 to DRL-P10(in MTR protection zone)upon implementation of TTA 30 18-May-22 22-Jun-22 Ground investigation and pre-drilling works for Pier DRL-P7 to DRL-P10(in MTR protection zone)upon implementation of TTA S033160 Ground investigation and pre-drilling works for Pier DRL-P02 to DRL-P03 in Portion 9 (MTR) 28 10-May-22 11-Jun-22 Ground investigation and pre-drilling works for Pier DRL-P02 to DRL-P03 in Portion 9 (MTR) S033180 Ground investigation and pre-drilling works for Abutment DRL-A01 and Approach ramp AP04 in Portion 2A 40 07-Jan-22 A 14-Jun-23 S033200 Plant mobilization and setup for piling works 30 23-Jun-22 28-Jul-22 Plant mobilization and setup S033220 Installation of bored piles for Pier DRL-P13(1nos, total 2nos) 10 29-Jul-22 09-Aug-22 Section 5 of the Works- Completion of the works within Portion 6 of the Site 0 185 23-Jul-22 06-Mar-23 0 185 23-Jul-22 06-Mar-23


	Actual Work
	Remaining Work
	Critical Remaining Work
•	◆ Milestone


Three Month Rolling Programme (Data Date : 08-May-22)	
Page: 2 of 2	

Date	Revision	Checked	Approved
14-May-22	0	LDS	RS

Contract No. YL/2021/01 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 3 Direct Road
Link Phase 2

Activity ID	Activity Name	Orig	Early Start	Early Finish	Late Start	Late Finish	Total		March			April			May			June			July			August	
,	Politicy familie	Dur			Law Grant	Lub I IIIIoii	Float	17			18			19			20				21			22	
								7 06	13 20	27	03	10	17 24	01 0	8 15	22	29 05	12 1	19 26	03	10 17	24	31 07	<i>1</i> 14 2	
DDF-290	Coordination with MTR for Works within Railway Protection Zone	90	05-Jul-22	20-Oct-22	10-Aug-22	25-Nov-22	31	i		i 1	1 1	-		1	i		1 1		:						
Portion 3		90	28-May-22	13-Sep-22	07-Dec-24	29-Mar-25	751								į						! !				
P3-105	Design, Submission and Approval	90	28-May-22	13-Sep-22	07-Dec-24	29-Mar-25	751	1		1	1 1		1	1						-					
Portion 4		810	03-May-22	23-Jan-25	01-Mar-22	23-Nov-24	-49	-		-		1			1										
P4-105	Preparation Works	30	03-May-22	08-Jun-22	01-Mar-22	04-Apr-22	-49											Preparation Worl	rks	1 1	;	1 1			
P4-110	Upkeeping and Maintenance of Completed Works at Portion 4	780	09-Jun-22	23-Jan-25	06-Apr-22	23-Nov-24	-49													·;;					
Executive	Summary	848	14-Mar-22A	23-Jan-25	01-Mar-22	26-Aug-25	172																		
Modification	n Works at LMC Station	204	15-Aug-22	25-Apr-23	01-Aug-22	11-Apr-23	-12								1						1				
ES.LMC-100	Relocation at L1/L2 and Installation of Temporary System	204	15-Aug-22	25-Apr-23	01-Aug-22	11-Apr-23	-12	1			1 1	1	1	1	1	1 1	1	1 1	1	1 1	1	1 1	1		
Elevated P1	п	737	14-Mar-22A	09-Sep-24	21-Apr-22	14-Aug-24	-22		1 1						1						1				
ES.EPTI-100	XPApplication	131	14-Mar-22A	24-Sep-22	21-Apr-22	18-Jan-23	94	1											,						
ES.EPTI-200	Bored Pile and Foundation Construction	629	27-Jul-22	09-Sep-24	30-Jun-22	14-Aug-24	-22	1	,		1		1	- 1	1	: :	1 :	1		: :	1				
ES.EPTI-400	Grid F-G, Line 8-10 Construction for Key Date 1	489	29-Jun-22	22-Feb-24	02-Jun-22	23-Jan-24	-22	1	,		1 1		1	1	1	1 1	1	1	🚃	-1					
Portion 3		210	28-May-22	10-Feb-23	07-Dec-24	26-Aug-25	751													·					
ES.P3-100	Portion 3 Works	210	28-May-22	10-Feb-23	07-Dec-24	26-Aug-25	751		,				1		i										
Portion 4		810	03-May-22	23-Jan-25	01-Mar-22	23-Nov-24	-49		i i			i			1				1		1 1 1	1 1			
ES.P4-100	Portion 4 Works	810	03-May-22	23-Jan-25	01-Mar-22	23-Nov-24	-49	i		i	i i	i	i					-r		.					

Three Month Rolling Programme Date Revision Checked Approved								
23-May-22	Rev. 1							
14-Apr-22	Rev. 0							

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Table B-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
DMS – 1a	353	
DMS – 2A	370	500
DMS – 3	351	500
DMS – 4A	350	

Table B-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
DMS - 1	184	
DMS – 2A	166	260
DMS - 3	166	260
DMS – 4A	152	

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

^(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-4 Action and Limit Levels for Water Quality

Parameter (unit)	Water Depth	Action Level	Limit Level		
		IS1: 7.0 / NA ⁽⁴⁾	IS1: <u>6.8 or 4⁽⁴⁾</u>		
		IS2: <u>5.3 / NA⁽⁴⁾</u>	IS2: <u>5.2 or 4⁽⁴⁾</u>		
DO (mg/L)	Depth average	IS4: <u>4.1 / NA⁽⁴⁾</u>	IS4: $3.8 \text{ or } 4^{(4)}$		
		IS6: <u>5.9</u>	IS6: <u>5.8</u>		
		BS1: <u>3.9 / NA⁽⁴⁾</u>	BS1: <u>3.7 or 4⁽⁴⁾</u>		
		IS1: <u>27.7</u>	IS1: <u>29.9</u>		
	Depth average	IS2: <u>35.5</u>	IS2: <u>38.1</u>		
Turkidita (NTII)		IS4: <u>70.9</u>	IS4: <u>74.6</u>		
Turbidity (NTU)		BS1: <u>29.9</u>	BS1: <u>32.6</u>		
		IS6: 120% of upstream	IS6: 130% of upstream		
		control station (CS5)	control station (CS5)		
		IS1: <u>28.0</u>	IS1: <u>28.8</u>		
		IS2: <u>39.8</u>	IS2: <u>41.2</u>		
SS	Donth arrange	IS4: <u>155</u>	IS4: <u>175</u>		
(mg/L)	Depth average	BS1: <u>36.5</u>	BS1: <u>36.9</u>		
		IS6: 120% of upstream	IS6: 130% of upstream		
		control station (CS5)	control station (CS5)		

Note:

- (1) Depth-averaged was calculated by taking the arithmetic means of reading of all three depths
- (2) For DO, non-compliance of the water quality limit would occur when monitoring result at impact stations was lower that the limit.
- (3) For SS & turbidity, non-compliance of the water quality limits would occur when monitoring result at impact stations was higher than the limits.
- (4) The proposal of adopting 4 mg/L as the Limit Level of DO for the period from April to September due to seasonal change of DO was accepted by EPD via email on 10 Dec 2019.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	WMA21009/04/0006	
Station						Operator:	СН	
Date:	21-Mar-22				Next	Due Date:	20-May-22	
Equipment No.:	: WA-12-04		•			Serial No	1659	
			Ambient (Condition				
Tempera	ture, Ta (K)	298.5	Pressure, Pa		<u> </u>	761	.5	
			Orifice Transfer Sta	ndard Informat	ion			
Ser	ial No.	2896	Slope, mc	0.0588	Intercept,		-0.01030	
Last Calil	bration Date:	20-Jan-22		mc x Qstd +	$bc = [\Delta H \times (Pa/76)]$	60) x (298/Ta	1)] ^{1/2}	
Next Cali	bration Date:	20-Jan-23		Qstd = {[ΔH	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ me	
			Calibration of	TSP Sampler				
Calibration		Orf	ice			HV	S	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2} Y$		
1	12.9		3.59	61.32	7.7		2.78	
2	11.0		3.32	56.64	6.7		2.59	
3	8.1		2.85	48.62	5.1		2.26	
4	5.9		2.43	41.52	3.8		1.95	
5	3.8		1.95	33.36	2.4	<u></u>	1.55	
Slope, mw=	ression of Y on X 0.0436 coefficient* =	- 0.4	9991	Intercept, bw	0.1178	<u> </u>		
	Coefficient < 0.990,							
			Set Point C	'algulation				
From the TSP F	Field Calibration Cur	ve. take Ostd = 43 C		alculation		411.000.000.000		
	ession Equation, the "							
1.0m and regio	on a partition into	_						
		mw 2	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (298	3/Ta)] ^{1/2}			
Theref	fore, Set Point; W = ($mw \times Qstd + bw)^2$	x (760 / Pa) x (Ta	/ 298) =	3.97			
Remarks:				^				
)				
Conducted by:	Un la dun	Signature:	X	<u>l</u>	_	Date:	41 3/ NOW	
Checked by	: The MAN HEV	Signature:		hes	_	Date:	21/3/2022	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	WMA21009/04/	0007	
Station	DMS-2A - Village Ho	ouse along Lok Ma Cha	u Road			Operator:	СН		
Date:	17-May-22				Next	Due Date:	16-Jul-22		
Equipment No.:						Serial No	1659		
			Ambient (Condition					
Temperar	ture, Ta (K)	296.9	Pressure, Pa			763	3.4		
	<u> </u>			***************************************					
		Contraction C	rifice Transfer Sta	ndard Informati	OB				
Seri	ial No.	2896	Slope, mc	0.0588	Intercept,		-0.01030		
Last Calil	bration Date:	20-Jan-22			$bc = [\Delta H \times (Pa/7)]$				
Next Calibration Date:		20-Jan-23		$Qstd = \{[\Delta H$	x (Pa/760) x (298	3/Ta)] ^{1/2} -bc]	} / me		
		•							
			Calibration of	TSP Sampler					
Calibration		Orfi	ce			HV	HVS		
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)]		Y-axis	
. 1	12.4		3.54	60.36	8.0		2.84		
2	10.7		3.28	56.08	6.8		2.62		
3	8.3		2.89	49.41	5.2	2.29			
4	6.0		2.46	42.04	3.9		1.98		
5	3.7		1.93	33.05	2.4	<u> </u>	1.56		
	ression of Y on X								
-	0.0466	_		Intercept, bw	0.0142	<u> </u>			
	coefficient* =		995						
*If Correlation (Coefficient < 0.990,	check and recalibrate).						
			Set Point C	Calculation					
From the TSP F	ield Calibration Cur	ve, take Ostd = 43 C							
	ssion Equation, the "								
		_			- 4				
		mw x	$Qstd + bw = [\Delta W]$	x (Pa/760) x (298	/Ta)] ^{1/2}				
Thoras	Fore, Set Point; W = (my v Oatd ± hw \2	v (760 / Do.) v (To.	/208)	4.02				
1 116161	ore, set Funit, w - (IIIw X Qsid + Uw)	x(100/1a)x(1a)	290) —	4.03				
							Market and the second s		
Remarks:									
			_						
	ti f A			1			2.21		
Conducted by:	to tach	Signature:	(X)			Date:	() K/2020		
Checked by	: LEE MAN HER	Signature:		hi		Date:	17/5/2020		

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	WMA21009/24/	0006
Station	DMS-3 - Village Hou	se along Old Border Ro	oad			Operator:	СН	
Date:	21-Mar-22			•	Next:	Due Date:	ator: CH Date: 20-May-22 I No. 10576 762.6 -0.01030 (298/Ta) ^{1/2}	
Equipment No.:	WA-12-24					Serial No	10576	
			Ambient (Condition				
Temperat	ure, Ta (K)	297.9	Pressure, Pa			762	.6	
		C	rifice Transfer Sta	ndard Informat				
Seria	al No.	2896	Slope, mc	0.0588	Intercept,			
Last Calib	Last Calibration Date: 20				oc = [ΔH x (Pa/76			
Next Calib	oration Date:	20-Jan-23		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ me	
Akjig tid medelen			Calibration of	TSP Sampler		and the second		
Calibration	ΔH (orifice),	Orfi		Qstd (CFM)	ΔW (HVS), in.			
Point	in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	X - axis	of water	1 1 / W/ V (P9/ / NULY 1 / 9/		Y-axi
1	12.7		3.57	60.95	7.7	2,53 2.35		
2	10.2		3.20	54.64	6.4			
3	8.8		2.97	50.76	5.5			
4	6.1		2.47	42,29	3.9	1.98		
5	4.2		2.05	35.12	2.7	1.65		
•	ression of Y on X							
Slope, mw =		-		Intercept, bw	0.1048			
	coefficient* =		9996					
*If Correlation (Coefficient < 0.990,	check and recalibrate	2 .					
			5 i p : 10					
Enom the TCD E	iold Calibration Cur	ve, take Qstd = 43 C	Set Point C	Calculation				<u></u>
		Y" value according						
From the Regres	ssion Equation, the	Yarue according	.0					
		mw x	$Qstd + bw = [\Delta W]$	x (Pa/760) x (298	3/Ta)] ^{1/2}			
GEN A	C.D. A.	() () () () () () () () () ()	(760 (D-) (T-	/200 \ _	4.00			
I hereto	ore, Set Point; W = ($(mw \times Qstd + bw)^2$	X (/60 / Pa) X (1a	7 298) =	4.00			
Remarks:								
				\				
			1.)				
Conducted by:	(1, la de	Signature:		l~,	_	Date:	21/3/22	
Checked by	: LET MAN LIET	Signature:		hei		Date:	21/3/2.	rv -

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	WMA21009/24	70007
Station	DMS-3 - Village Hou	se along Old Border I	Road			Operator:	СН	
Date:	17-May-22		_		Next	Due Date:	16-Jul-22	
Equipment No.	: WA-12-24		-			Serial No	10576	
			Ambient (Tandition 1				1
Tempara	ture, Ta (K)	297.9	Pressure, Pa			7/		
1 cmpcra	iture, Ta(K)	291.9	Pressure, Pa	(mmrig)		763	3.2	
			Orifice Transfer Sta	ndard Informat	ion			
Ser	ial No.	2896	Slope, mc	0.0588	Intercept,	bc	-0.01030	
Last Cali	bration Date:	20-Jan-22		mc x Qstd +	$bc = [\Delta H \times (Pa/76)]$	50) x (298/T	a)] ^{1/2}	
Next Cali	bration Date:	20-Jan-23		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	[/Ta)] ^{1/2} -bc	/ mc	
		•						
			Calibration of	TSP Sampler				Fillian.
Calibration		Ort	fice			H	'S	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	760) x (298/Ta)] ^{1/2}	Y-axis
1	12.6		3.56	60.73	7.9		2.82	
2	10.8		3.29	56.24	6.8		2.61	
3	8.4		2.90	49.62	5.4		2.33	
4	6.3		2.52	42.99	4.2		2.05	
. 5	4.5		2.13	36.36	2.8		1.68	
Slope, mw =	ression of Y on X 0.0459 coefficient* =	. 0,	9982	Intercept, bw	0.0419			
*If Correlation	Coefficient < 0.990, o	check and recalibrat	e.					
			Set Point C	alculation				Djirensi.
From the TSP F	ield Calibration Curv	ve, take Qstd = 43 C	CFM					
From the Regre	ssion Equation, the "	Y" value according	to					
		mw :	$x \cdot Qstd + bw = [\Delta W]$	(Pa/760) x (298	/Ta) ^{1/2}			
Though	one Set Deints W — (_					
i nerei	ore, set Point; w = (mw x Qsta + bw)	x (760/Pa) x (Ta/	298) ==	4.04			
Remarks;		W-30040000000000000000000000000000000000						
Conducted by:	Un lea chi	Signature:	<i>\\</i>	<u>/</u>		Date:	(7 (5 /20W	312

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	WMA21009/07/	0006
Station	DMS-4A - Hong Kon	g Police Force, Lok Ma	a Chau Operation Base	at Horn Hill		Operator:	СН	
Date:	21-Mar-22				Next	Due Date:	20-May-22	
Equipment No.:	WA-12-07					Serial No.	1801	
			Ambient (landition				
Temperat	ure, Ta (K)	296.4	Pressure, Pa		· · · · · · · · · · · · · · · · · · ·	762	. 8	
A Office of the		2/0				,		
			Prifice Transfer Sta	ndard Informati	ion			
Seri	al No.	2896	Slope, mc	0.0588	Intercept,		-0.01030	
Last Calib	oration Date:	20-Jan-22		mc x Qstd + l	$bc = [\Delta H \times (Pa/76)]$	60) x (298/T	a)] ^{1/2}	
Next Calib	oration Date:	20-Jan-23		$\mathbf{Qstd} = \{ [\Delta \mathbf{H}$	x (Pa/760) x (298	3/Ta)] ^{1/2} -bc}	/ me	
			Calibration of	TSP Sampler				No Berry
Calibration		Orfi	ice			HV	'S	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	760) x (298/Ta)] ^{1/2}	Y-axis
1	12.9		3.61	61.59	7.9		2.82	
2	10.3		3.22	55.05	6.4		2.54	
3	8.4		2.91	49.73	5.3		2.31	
4	6.2		2.50	42.75	4.1		2.03	
5	3.7		1.93	33.06	2.3		1.52	
By Linear Regi	ression of Y on X 0.0451			Intercept, bw:	0.0642			
Correlation	coefficient* ==	0.9	984					
*If Correlation (Coefficient < 0.990,	check and recalibrate	e.					
			Set Point C	alculation				9.H.(4)
From the TSP F	ield Calibration Cur	ve, take Qstd = 43 C	FM					
From the Regres	ssion Equation, the "	Y" value according	to					
		mw x	$Qstd + bw = [\Delta W]$	x (Pa/760) x (298	3/Ta)] ^{1/2}			
		2						
Therefo	ore, Set Point; W = (mw x Qstd + bw) ²	x (760 / Pa) x (Ta	(298)=	3.97			

Remarks:								
				<u> </u>				
Conducted by:	Go Ka chin	Signature:	<i>\</i>	le		Date:	21(31)	
	: Use MA HEZ	Signature:		hei		Date:	21/3/20	ンレ

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

a	D) (0 11 11 11					rue No.	WMA21009/07/0007
Station		ng Police Force, Lok M	a Chau Operation Base	at Horn Hill	-	Operator:	СН
Date:	17-May-22		•		Next	Due Date:	16-Jul-22
Equipment No.:	WA-12-07					Serial No	1801
Temperat	ture, Ta (K)	299.3	Ambient (540	
rempera	idio, Ta(K)	299.3	Pressure, Pa	i (mmHg)		762	2.6
			Orifice Transfer Sta	indard Informat	ion		
Seri	al No.	2896	Slope, mc	0.0588	Intercept,	hc	-0.01030
	oration Date:	20-Jan-22	3.39.3,		$bc = [\Delta H \times (Pa/7)]$		
	oration Date:	20-Jan-23			x (Pa/760) x (298		
		•					
			Calibration of	TSP Sampler			
Calibration		Orf	ice			HV	'S
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	760) x (298/Ta)] ^{1/2} Y-axis
1	12.2		3.49	59.60	7,9		2.81
2	10.3		3.21	54.78	6.2		2.49
3	8.9		2.98	50.93	5.6		2.37
4	6.4		2.53	43.21	4.1		2.02
5	3.2		1.79	30.61	2.1		1.45
Slope, mw =	ession of Y on X 0.0456			Intercept, bw	0.0466		
	coefficient* =		976				
*If Correlation C	Coefficient < 0.990, o	check and recalibrate	e.				
Otel. In Section 5.	in the state of the second state of the interest of the second state of the second sta				The second secon	. A.,	· · · · · · · · · · · · · · · · · · ·
P 4 TOD P	and Catherine C		Set Point C	alculation			
	eld Calibration Curv						
From the Regres	sion Equation, the "	Y" value according t	0				
		mw x	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	(Pa/760) x (298	/Ta) ^{1/2}		
Therefo	re, Set Point; W = ($mw \times Qstd + bw)^2$	x(760/Pa)x(Ta/	298)=	4.03		
Remarks:							
icomarks.							
)			
Conducted by:	in lea du	Signature:	(V			Date:	IVI CI DOM
• .	LET MAN HER			hei			17/5/2022
Oncorou by.	This making 110 o	orgnature.		w.		Date:	11/10/2000

RECALIBRATION **DUE DATE:**

January 20, 2023

ertificate o

Calibration Certification Information

Cal. Date: January 20, 2022 Rootsmeter S/N: 438320

Ta: 293

Pa: 759.7

Operator: Jim Tisch

Calibrator S/N: 2896

mm Hg

Calibration Model #:

TE-5025A

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4610	3.2	2.00
2	3	4	1	1.0360	6.4	4.00
3	5	6	1	0.9190	7.9	5.00
4	7	8	1	0.8780	8.8	5.50
5	g	10	1	0.7250	12.7	8.00

	Data Tabulation				
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0124	0.6929	1.4260	0.9958	0.6816	0.8783
1.0081	0.9731	2.0166	0.9916	0.9571	1.2420
1.0061	1.0948	2.2546	0.9896	1.0768	1.3887
1.0049	1.1445	2.3647	0.9884	1.1258	1.4564
0.9997	1.3789	2.8519	0.9833	1.3563	1.7565
	m=	2.07510		m=	1.29939
QSTD[b=	-0.01030	QA	b=	-0.00634
	r=	0.99995	- 4	r=	0.99995

Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa=	Va/∆Time	
	For subsequent flow rate calculations:			
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$	

	Standard Conditions		
Tstd:	298.15 °K		
Pstd:	760 mm Hg		
	Key		
ΔH: calibrato	r manometer reading (in H2O)		
ΔP: rootsmeter manometer reading (mm Hg)			
Ta: actual absolute temperature (°K)			
Pa: actual barometric pressure (mm Hg)			
b: intercept			
m: slope			

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36645

Date of Issue: 2022-05-10

Date Received: 2022-05-06 Date Tested: 2022-05-06

Date Completed: 2022-05-10

Next Due Date: 2022-07-09

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-831

Serial No.

: X23807

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 1 minute

Equipment No.

: WA-01-01

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.065

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36404B
Date of Issue: 2022-03-07
Date Received: 2022-03-04
Date Tested: 2022-03-04

Date Completed: 2022-03-07 Next Due Date: 2022-05-06

Page:

: Dust Monitor

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

Manufacturer : Met One Instruments

Model No. : AEROCET-831

Serial No. : X23809 Flow rate : 0.1 cfm

Zero Count Test : 0 count per 1 minute

Equipment No. : WA-01-03

Test Conditions:

Room Temperature : 17-22 degree Celsius

Relative Humidity : 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.108

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36404C Date of Issue: 2022-03-07 Date Received: 2022-03-04 Date Tested: 2022-03-04

Date Completed: 2022-03-07 Next Due Date: 2022-05-06

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

: Met One Instruments Manufacturer : AEROCET-831 Model No.

Serial No. : X23810

: 0.1 cfm Flow rate

: 0 count per 1 minute Zero Count Test

: WA-01-04 Equipment No.

Test Conditions:

: 17-22 degree Celsius Room Temperature

Relative Humidity : 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

1.139 Correlation Factor (CF)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	36645C
Date of Issue:	2022-05-10
Date Received:	2022-05-06
Date Tested:	2022-05-06
Date Completed:	2022-05-10
Next Due Date:	2022-07-09

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-831

Serial No.

: X23810

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 1 minute

Equipment No.

: WA-01-04

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.056 *********************************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	36644A
Date of Issue:	2022-04-25
Date Received:	2022-04-23
Date Tested:	2022-04-23
Date Completed:	2022-04-25
Next Due Date:	2022-06-24

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-831

Serial No.

: X24477

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 1 minute

Equipment No.

: WA-01-06

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.134

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	36644C
Date of Issue:	2022-04-25
Date Received:	2022-04-23
Date Tested:	2022-04-23
Date Completed:	2022-04-25
Next Due Date:	2022-06-24

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-831

Serial No.

: X23811

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 1 minute

Equipment No.

: WA-01-09

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.173

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36644D
Date of Issue: 2022-04-25
Date Received: 2022-04-23
Date Tested: 2022-04-23
Date Completed: 2022-04-25
Next Due Date: 2022-06-24

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-831

Serial No.

: X24478

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 1 minute

Equipment No.

: WA-01-10

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.145

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: W

Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36405 Date of Issue: 2022-03-07

Date Received: 2022-03-04

Date Tested: 2022-03-04 Date Completed: 2022-03-07

Next Due Date: 2023-03-06

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for calibration:

Description

: Sound Level Meter

Manufacturer

: BSWA

Model No.

: BSWA 308

Serial No.

: 570271

Equipment No.

: WN-01-01

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36481A Date of Issue: 2022-03-14 Date Received: 2022-03-11

Date Tested: 2022-03-11

Date Completed: 2022-03-14 Next Due Date: 2023-03-13

Page: 1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for calibration:

Description

: Sound Level Meter

Manufacturer

: BSWA

Model No. Serial No.

: BSWA 308 : 580013

Equipment No.

: WN-01-09

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 36481B

 Date of Issue:
 2022-03-14

 Date Received:
 2022-03-11

 Date Tested:
 2022-03-11

 Date Completed:
 2022-03-14

Page:

Next Due Date:

1 of 1

2023-03-13

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for calibration:

Description

: Sound Level Meter

Manufacturer

: BSWA : BSWA 308

Model No. Serial No.

: 580017

Equipment No.

: WN-01-10

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1701, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 35909A
Date of Issue: 2021-10-04
Date Received: 2021-10-02
Date Tested: 2021-10-02
Date Completed: 2021-10-04
Next Due Date: 2022-10-03

Page:

1 of 1

ATTN:

Ms. Meiling Tang

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A : 24780

Serial No. Equipment No.

: N-09-05

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSEGeneral Manager

consulting . testing . research

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Wellab Limited

(EM&A Department)

Room 1808, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 36235 Date of Issue:

2022-02-28 Date Received: 2022-02-25

Date Tested: 2022-02-25

Date Completed: 2022-02-28 Next Due Date: 2022-08-27

ATTN: 1 of 2 Ms. Meiling Tang Page:

Certificate of Calibration

Item for calibration:

Description

: Weather Stations, Vantage Pro2

Manufacturer

: Davis Instruments

Model No.

: 6152CUK

Serial No.

: AK130520007

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

 Test Report No.:
 36235

 Date of Issue:
 2022-02-28

 Date Received:
 2022-02-25

 Date Tested:
 2022-02-25

 Date Completed:
 2022-02-28

 Next Due Date:
 2022-08-27

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1) Reference Value (V1)		D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	Difference D (°)	
Instrument Reading (W1) Reference Value (W2)		D = W1 - W2
0	0	0
45	45	0
90	90	0
135.1	135	0.1
180	180	0
225	225	0
270.3	270	0.3
315	315	0
360	360	0

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Wellab Limited (EM&A)

RM 1808, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 36607
Date of Issue: 2022-03-25
Date Received: 2022-03-24
Date Tested: 2022-03-24 to 2022-03-25

Date Completed:

2022-03-25

ATTN: Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-21
Manufacturer:	YSI Incorporated, a	Xylem brand
Description:	Model No.	Serial No.
- EXO1 Sonde, 100 meter Depth, 4 Sensor ports	599502-24	16J100882
- EXO Optical DO Sensor, Ti	599100-01	17B102223
- EXO conductivity/Temperature Sensor, Ti	599870	17B100812
- EXO Turbidity Sensor, Ti	599101-01	20J103607
- EXO pH Sensor Assembly, Guarded, Ti	599701	17B103628

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
General Manager

WELLAB LIMITED
Room 1714, Technology Park
18 On Lai Street, Shatin,
N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 36607

 Date of Issue:
 2022-03-25

 Date Received:
 2022-03-24

 Date Tested:
 2022-03-24 to 2022-03-25

 Date Completed:
 2022-03-25

Page: 2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13000	12246-13534	Pass
(12890 μS/cm)			
Tomporature performance	o chooking		

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)	_		
20.0	20.001	-0.001	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	4.04	4.00 ± 0.10	Pass
pH QC buffer 6.86	6.86	6.86 <u>+</u> 0.10	Pass
pH QC buffer 9.18	9.16	9.18 <u>+</u> 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.08	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.02	7.89	Difference between	Pass
		Titration value and	
		instrument reading	
		<0.2mg/L	

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.01	9.0-11.0	Pass
50 NTU	50.31	45.0-55.0	Pass
100 NTU	101.0	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (m)	Accetance Criteria	Comment
0.5 meter	0.50	0.45-0.55	Pass

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Wellab Limited (EM&A)

RM 1808, Technology Park,

18 On Lai Street,

Shatin, N.T., Hong Kong

Test Report No.: 36607C

Date of Issue: 2022-03-25

Date Received: 2022-03-24

Date Tested: 2022-03-24 to 2022-03-25

Date Completed: 2022-03-25

ATTN: Miss Mei Ling Tang Page: 1 of 2

Certificate of Calibration

Item for calibration:

YSI EXO1 Multiparameter Sondes	Equipment No.:	SW-08-89
Manufacturer:	YSI Incorporated, a	Xylem brand
Description:	Model No.	Serial No.
- EXO1 Sonde, 100 meter Depth, 4 Sensor ports	599502-24	17B100184
- EXO Optical DO Sensor, Ti	599100-01	17A105013
- EXO conductivity/Temperature Sensor, Ti	599870	17A105107
- EXO Turbidity Sensor, Ti	599101-01	17A104096
- EXO pH Sensor Assembly, Guarded, Ti	599701	16J100704

Test conditions:

Room Temperature : 17-22 degree Celsius

Relative Humidity : 40-70%

Test Specifications:

Performance checking for Conductivity, Temperature, pH, Dissolved oxygen (D.O.)

and Turbidity

Methodology:

According to manufacturer instruction manual, APHA 20e 4500-O C

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Test Report No.: 36607C
Date of Issue: 2022-03-25
Date Received: 2022-03-24
Date Tested: 2022-03-24 to 2022-03-25
Date Completed: 2022-03-25

Page: 2 of 2

Certificate of Calibration

Results:

Conductivity performance checking

	Instrument Readings (µS/cm)	Accetance Criteria	Comment
KCl stock solution	13100	12246-13534	Pass
(12890 μS/cm)			

Temperature performance checking

Reference thermometer-	Instrument Readings (°C)	Correction (°C)	Comment
E431 Readings (°C)			
20.0	20.002	-0.002	N/A

pH performance checking

	Instrument Readings	Accetance Criteria	Comment
	(pH unit)		
pH QC buffer 4.00	3.99	4.00 <u>+</u> 0.10	Pass
pH QC buffer 6.86	6.84	6.86 ± 0.10	Pass
pH QC buffer 9.18	9.20	9.18 ± 0.10	Pass

D.O. performance checking

	Instrument Readings (mg/L)	Accetance Criteria	Comment
Zero DO soultion	0.08	<0.1mg/L	Pass

Winkler Titration value	Instrument Readings (mg/L)	Accetance Criteria	Comment
(mg/L)			
8.02	8.10	Difference between	Pass
		Titration value and	
		instrument reading	
		<0.2mg/L	

Turbidity performance checking

Turbidity stock solution	Instrument Readings (NTU)	Accetance Criteria	Comment
10 NTU	10.06	9.0-11.0	Pass
50 NTU	50.12	45.0-55.0	Pass
100 NTU	101.7	90.0-110.0	Pass

Depth performance checking

Water Depth	Instrument Readings (m)	ent Readings (m) Accetance Criteria	
0.5 meter	0.50	0.45-0.55	Pass

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Service Contract No. WD/04/2020 Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team **Impact Monitoring Schedule (May 2022)**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-May	2-May	3-May	4-May	5-May	6-May	7-May
			Aquatic Fauna Survey (Water			
			Quality Monitoring only)	1hr TSP X 3		
				Noise		
			24hr TSP			
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
			Avifauna Survey (Pond 12)			
8-May	9-May	10-May	11-May	-	13-May	14-May
				Aquatic Fauna Survey (Water		
			1hr TSP X 3	Quality Monitoring only)		
			Noise			
		24hr TSP				
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
			Avifauna Survey (Pond 12)		Herpetofauna Survey	
15-May	16-May	17-May	18-May	19-May	20-May	21-May
			Aquatic Fauna Survey (Water			
		1hr TSP X 3	Quality Monitoring only)			
	au man	Noise			241 - TOP	
	24hr TSP		W. 6 P. M. 1		24hr TSP	
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
22.75	22.16	24.14	Avifauna Survey (Pond 12)	2634	Avifauna flight line survey	20.16
22-May	23-May	24-May	25-May	26-May	27-May	28-May
	1hr TSP X 3				1hr TSP X 3	
	Noise				1nr 15P X 3	
	Noise			24hr TSP		
	Water Quality Monitoring		Water Quality Monitoring	24nr 15P	Water Quality Monitoring	
	water Quality Monitoring	Aquatic Fauna Survey	Avifauna Survey (Pond 12)		water Quanty Monitoring	
29-May	30-May	31-May	Aviiaulia Survey (Polid 12)			
23-Way	Aquatic Fauna Survey (Water	31-May				
	Quality Monitoring only)					
	Quanty Womtoring only)					
	Water Quality Monitoring					
	a.c.i Quanty Monitoring					
				l l		

Air Quality Monitoring Station

DMS-1a - Village House along Ha Wan Tsuen East Road DMS-2A - Village house along Lok Ma Chau Road

DMS-3 - Village house along Old Border Road

DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Noise Monitoring Station

NMS-1 - Village House in Ha Wan Tsuen

NMS-2 - Village house along existing Ha Wan Tsuen East Road

NMS-3 - Village house along Old Border Road

NMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Water Quality Monitoring Station

CS1 - Control Station at Old Shenzhen River Meander

IS1 - Impact Station at Old Shenzhen River Meander

IS2 - Impact Station at Old Shenzhen River Meander

IS4 - Impact Station for at Ping Hang Stream

CS5 - Control Station at channel at south of Lung Hau Road

IS6 - Impact Station next to Lung Hau Road

BS1 - Impact Station at Old Shenzhen River Meander (Terminated starting from 28 June 2021- approved by EPD

via email dated 22 June 2021)

Service Contract No. WD/04/2020 Tentative Impact Monitoring Schedule (June 2022)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Jun	2-Jun	3-Jun	4-Jun
				1hr TSP X 3 Noise		
			24hr TSP Water Quality Monitoring Avifauna Survey (Pond 12)			Water Quality Monitoring
5-Jun	6-Jun	7-Jun	8-Jun	9-Jun		11-Jun
			1hr TSP X 3 Noise		Aquatic Fauna Survey (Water Quality Monitoring only)	
	Water Quality Monitoring	24hr TSP	Water Quality Monitoring Avifauna Survey (Pond 12)	Herpetofauna Survey	Water Quality Monitoring	
12-Jun	13-Jun	14-Jun		16-Jun	17-Jun	18-Jun
	24hr TSP	1hr TSP X 3 Noise	Aquatic Fauna Survey		24hr TSP	
	Water Quality Monitoring		Water Quality Monitoring Avifauna Survey (Pond 12)		Water Quality Monitoring Avifauna flight line survey	
19-Jun	20-Jun	21-Jun	22-Jun	23-Jun	24-Jun	25-Jun
	1hr TSP X 3		Aquatic Fauna Survey (Water Quality Monitoring only)	au Tan	1hr TSP X 3 Noise	
	Water Quality Monitoring		Water Quality Monitoring Avifauna Survey (Pond 12)	24hr TSP	Water Quality Monitoring	
26-Jun	27-Jun	28-Jun	29-Jun	30-Jun		
	Aquatic Fauna Survey (Water Quality Monitoring only)			1hr TSP X 3 Noise		
	Water Quality Monitoring		24hr TSP Water Quality Monitoring Avifauna Survey (Pond 12)			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

DMS-1a - Village House along Ha Wan Tsuen East Road DMS-2A - Village house along Lok Ma Chau Road DMS-3 - Village house along Old Border Road

DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Noise Monitoring Station

NMS-1 - Village House in Ha Wan Tsuen

NMS-2 - Village house along existing Ha Wan Tsuen East Road

NMS-3 - Village house along Old Border Road

NMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Water Quality Monitoring Station

CS1 - Control Station at Old Shenzhen River Meander

IS1 - Impact Station at Old Shenzhen River Meander

IS2 - Impact Station at Old Shenzhen River Meander

IS4 - Impact Station for at Ping Hang Stream

CS5 - Control Station at channel at south of Lung Hau Road

IS6 - Impact Station next to Lung Hau Road

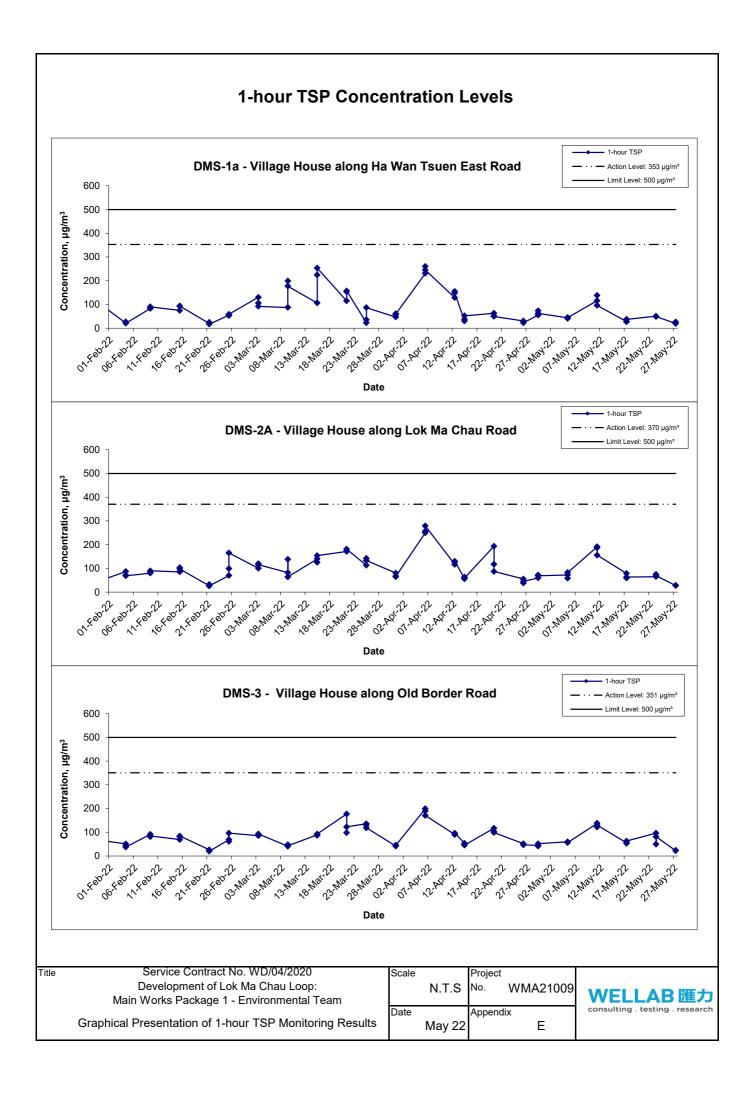
BS1 - Impact Station at Old Shenzhen River Meander (Terminated starting from 28 June 2021- approved by EPD via email dated 22 June 2021)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

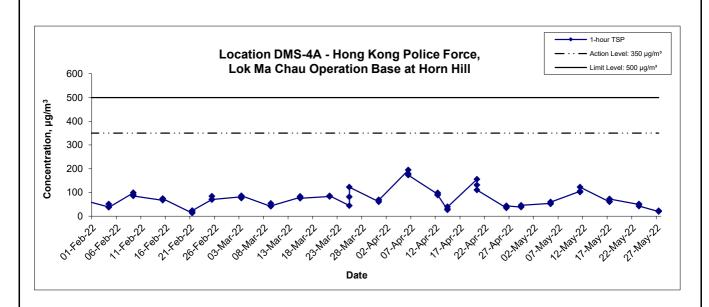
Appendix E - 1-hour TSP Monitoring Results

Location DMS-	1a - Village H	louse along Ha War	n Tsuen East Road
Date	Time	Weather	Particulate Concentration (μg/m³)
5-May-22	8:00	Sunny	44.3
5-May-22	9:00	Sunny	41.1
5-May-22	10:00	Sunny	44.7
11-May-22	8:30	Windy	116.0
11-May-22	9:30	Windy	137.9
11-May-22	10:30	Windy	96.0
17-May-22	9:00	Fine	27.9
17-May-22	10:00	Fine	26.4
17-May-22	11:00	Fine	37.1
23-May-22	13:00	Cloudy	50.5
23-May-22	14:00	Cloudy	49.0
23-May-22	15:00	Cloudy	49.4
27-May-22	8:30	Rainy	19.8
27-May-22	9:30	Rainy	19.9
27-May-22	10:30	Rainy	26.0
•		Minimum	19.8
		Maximum	137.9
		Average	52.4

ocation DMS-2	2A - Village H	ouse along Lok Ma	Chau Road
Date	Time	Weather	Particulate Concentration (μg/m³)
5-May-22	13:00	Sunny	72.4
5-May-22	14:00	Sunny	58.6
5-May-22	15:00	Sunny	82.4
11-May-22	13:00	Windy	191.0
11-May-22	14:00	Windy	186.3
11-May-22	15:00	Windy	155.8
17-May-22	13:05	Fine	78.4
17-May-22	14:05	Fine	59.3
17-May-22	15:05	Fine	63.1
23-May-22	13:30	Cloudy	64.9
23-May-22	14:30	Cloudy	74.2
23-May-22	15:30	Cloudy	68.4
27-May-22	13:15	Windy	27.8
27-May-22	14:15	Windy	27.0
27-May-22	15:15	Windy	27.7
		Minimum	27.0
		Maximum	191.0
		Average	82.5


WMA21009\1-hr TSP Results Wellab

Appendix E - 1-hour TSP Monitoring Results


Location DMS-	3 - Village H	ouse along Old Boı	rder Road
Date	Time	Weather	Particulate Concentration (μg/m³)
5-May-22	13:00	Sunny	59.8
5-May-22	14:00	Sunny	57.6
5-May-22	15:00	Sunny	56.6
11-May-22	8:55	Cloudy	137.6
11-May-22	9:55	Cloudy	122.0
11-May-22	10:55	Cloudy	129.6
17-May-22	8:50	Fine	55.3
17-May-22	9:50	Fine	53.1
17-May-22	10:50	Fine	63.0
23-May-22	8:55	Cloudy	96.1
23-May-22	9:55	Cloudy	49.8
23-May-22	10:55	Cloudy	81.2
27-May-22	8:50	Rainy	22.3
27-May-22	9:50	Rainy	22.3
27-May-22	10:50	Rainy	23.9
		Minimum	22.3
		Maximum	137.6
		Average	68.7

Location DMS-	4A - Hong Ko	ong Police Force, I	Lok Ma Chau Operation Base at Horn Hill
Date	Time	Weather	Particulate Concentration (μg/m³)
5-May-22	13:00	Sunny	54.0
5-May-22	14:00	Sunny	51.9
5-May-22	15:00	Sunny	59.6
11-May-22	8:00	Windy	105.2
11-May-22	9:00	Windy	101.6
11-May-22	10:00	Windy	122.3
17-May-22	8:30	Fine	60.3
17-May-22	9:30	Fine	61.7
17-May-22	10:30	Fine	72.4
23-May-22	9:00	Cloudy	49.6
23-May-22	10:00	Cloudy	50.7
23-May-22	11:00	Cloudy	42.3
27-May-22	8:35	Rainy	19.7
27-May-22	9:35	Rainy	22.5
27-May-22	10:35	Rainy	20.7
		Minimum	19.7
		Maximum	122.3
		Average	59.6

WMA21009\1-hr TSP Results Wellab

1-hour TSP Concentration Levels

Service Contract No. WD/04/2020
Development of Lok Ma Chau Loop:
Main Works Package 1 - Environmental Team
Graphical Presentation of 1-hour TSP Monitoring Results

Title

Scale
N.T.S
Project
No. WMA21009

Date
Appendix
May 22
E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

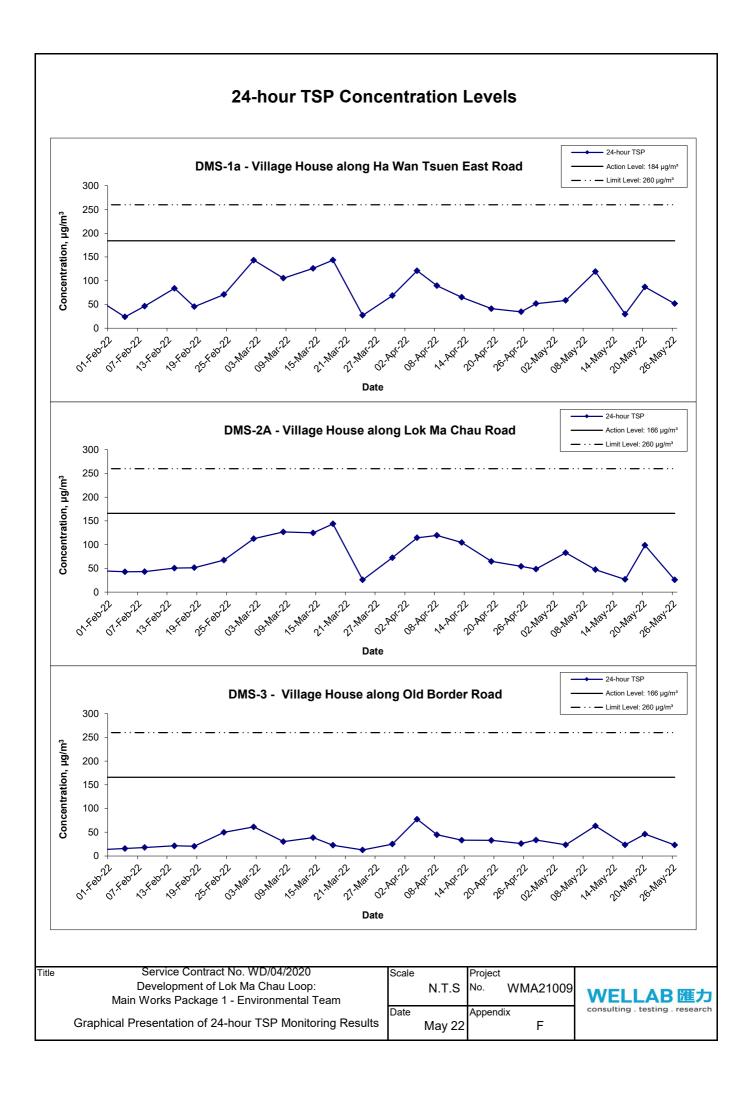
Location DMS-	Location DMS-1a - Village House along Ha Wan Tsuen East Road									
Date	Time	Weather	Particulate Concentration (µg/m³)							
4-May-22	8:00	Sunny	58.5							
10-May-22	9:00	Windy	119.3							
16-May-22	9:00	Fine	29.6							
20-May-22	8:00	Sunny	86.9							
26-May-22	8:30	Windy	51.8							
		Minimum	29.6							
		Maximum	119.3							
		Average	69.2							

WMA21009\1-hr TSP Results Wellab

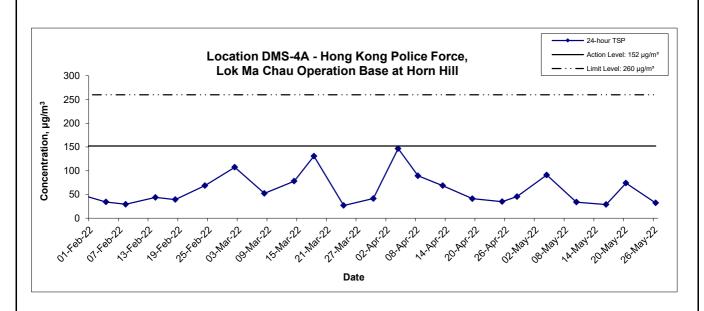
Appendix F - 24-hour TSP Monitoring Results

Location DMS-2A - Village House along Lok Ma Chau Road

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-May-22	Sunny	295.5	763.5	3.5121	3.6588	0.1467	1431.2	1455.2	24.0	1.232	1.228	1.230	1771.4	82.8
10-May-22	Windy	298.1	760.0	3.5006	3.5838	0.0832	1455.2	1479.2	24.0	1.223	1.220	1.221	1758.9	47.3
16-May-22	Cloudy	292.9	762.2	3.5115	3.5590	0.0475	1479.2	1503.2	24.0	1.235	1.235	1.235	1778.3	26.7
20-May-22	Sunny	298.1	759.9	3.5347	3.7059	0.1712	1503.2	1527.2	24.0	1.207	1.205	1.206	1736.3	98.6
26-May-22	Rainy	298.7	756.8	3.2735	3.3184	0.0449	1527.2	1551.2	24.0	1.202	1.202	1.202	1731.0	25.9
													Min	25.9
													Max	98.6
													Average	56.3


Location DMS-3 - Village House along Old Border Road

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
4-May-22	Sunny	295.5	763.5	3.5288	3.5701	0.0413	2360.5	2384.5	24.0	1.224	1.220	1.222	1759.3	23.5
10-May-22	Windy	298.1	760.0	3.5145	3.6248	0.1103	2384.5	2408.5	24.0	1.214	1.212	1.213	1747.0	63.1
16-May-22	Cloudy	292.9	762.2	3.5202	3.5616	0.0414	2408.5	2432.5	24.0	1.226	1.227	1.226	1766.1	23.4
20-May-22	Sunny	298.1	759.9	3.5410	3.6213	0.0803	2432.5	2456.5	24.0	1.208	1.206	1.207	1738.2	46.2
26-May-22	Rainy	298.7	756.8	3.2521	3.2924	0.0403	2456.5	2480.5	24.0	1.204	1.203	1.203	1732.8	23.3
													Min	23.3
													Max	63.1
													Average	35.9


Location DMS-4A - Hong Kong Police Force, Lok Ma Chau Operation Base at Horn Hill

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
4-May-22	Sunny	295.5	763.5	3.5588	3.7191	0.1603	31921.4	31945.4	24.0	1.225	1.221	1.223	1760.9	91.0
10-May-22	Windy	298.1	760.0	3.5065	3.5656	0.0591	31945.4	31969.4	24.0	1.216	1.213	1.214	1748.9	33.8
16-May-22	Cloudy	292.9	762.2	3.5342	3.5851	0.0509	31969.4	31993.4	24.0	1.227	1.228	1.227	1767.6	28.8
20-May-22	Sunny	298.1	759.9	3.5349	3.6639	0.1290	31993.4	32017.4	24.0	1.213	1.211	1.212	1745.4	73.9
26-May-22	Rainy	298.7	756.8	3.2880	3.3438	0.0558	32017.4	32041.4	24.0	1.209	1.208	1.208	1740.0	32.1
_			-			-			-			-	Min	28.8
													Max	91.0
													Average	51.9

WMA21009\24-hr TSP Results Wellab

24-hour TSP Concentration Levels

Service Contract No. WD/04/2020
Development of Lok Ma Chau Loop:
Main Works Package 1 - Environmental Team
Graphical Presentation of 24-hour TSP Monitoring Results

Title

Scale		Project	
	N.T.S	No.	WMA21009
Date		Append	ix
	May 22		F

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location NMS-	1 -Village ho	use in Ha Wa	ın Tsuen							
Data	\\/aathar	Time	Un	it: dB (A) (5-n	nin)	Average	Baseline Level			
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L_{eq}	L _{eq}			
		10:25	64.5	65.1	63.9					
		10:30	64.8	65.4	64.2					
5-May-22	Sunny	10:35	65.6	66.2	64.9	64.8				
5-1VIAy-22	Guilly	10:40	65.4	66.0	64.4	04.0				
		10:45	64.2	64.7	63.5					
		10:50	64.3	64.8	63.8					
		16:30	58.2	59.5	55.3					
		16:35	55.8	57.8	53.7	58.8				
11-May-22	Cloudy	16:40	57.7	59.4	55.8					
1 1-Way-22		16:45	58.4	60.1	56.6					
		16:50	60.1	62.5	57.7					
		16:55	60.9	63.0	58.8		47.0			
		14:10	51.3	54.4	49.7		47.3			
		14:15	51.1	53.5	47.6					
17-May-22	Sunny	14:20	50.0	52.5	46.5	51.2				
17-IVIAY-ZZ	Suring	14:25	51.0	54.2	47.1	51.2				
		14:30	51.9	54.7	47.8					
		14:35	51.9	55.2	47.4					
		10:10	56.7	59.2	53.1					
		10:15	57.4	59.6	54.7					
23-May-22	Cloudy	10:20	56.7	58.7	54.1	56.8				
20-iviay-22	Cloudy	10:25	57.1	59.2	54.1	50.6				
		10:30	56.8	59.5	53.5					
		10:35	55.6	57.4	52.4					

D. 1	\A/	T :	Uni	it: dB (A) (5-n	nin)	Average	Baseline Level	
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	
		13:00	66.2	69.0	51.0			
		13:05	68.5	70.6	49.4			
5 May 22	Cuppy	13:10	67.7	68.6	49.1	68.5		
5-May-22	Sunny	13:15	65.3	68.6	45.4	00.5		
		13:20	65.2	66.6	43.9			
		13:25	72.8	74.4	53.3			
		13:20	68.4	70.3	60.0			
		13:25	68.0	71.9	60.6		00.4	
11 May 22	Cloudy	13:30	69.3	72.9	59.8	68.2		
11-May-22		13:35	69.5	74.2	60.8	00.2		
		13:40	67.3	71.7	58.3			
		13:45	65.8	69.1	58.6			
		13:15	66.2	70.9	48.1		68.4	
		13:20	65.0	67.9	47.4			
17 May 22	Cuppy	13:25	64.7	68.7	50.5	66.2		
17-May-22	Sunny	13:30	68.6	70.3	47.4	00.2		
		13:35	67.3	71.0	47.6			
		13:40	63.6	64.1	53.0			
		13:00	67.6	70.7	49.9		1	
		13:05	65.9	68.1	49.9			
00.1400	Claudy	13:10	71.4	72.9	50.8	70.0		
23-May-22	Cloudy	13:15	71.2	73.6	57.5	70.0		
		13:20	71.0	72.7	52.6			
		13:25	70.4	73.3	54.4			

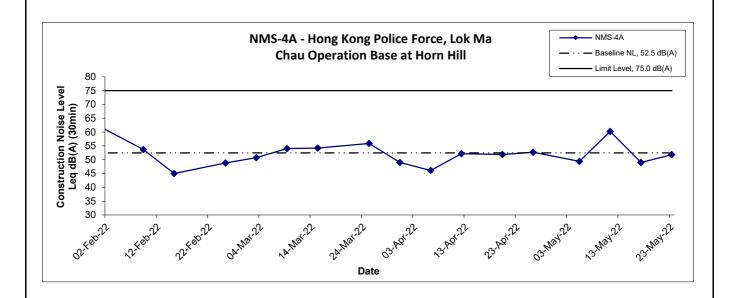
WMA21009/Noise Results Wellab

Appendix G - Noise Monitoring Results

Location NMS-	3 - Village ho	use along O	ld Border Ro	oad					
Dete	\\/4	Т:	Un	it: dB (A) (5-n	nin)	Average	Baseline Level		
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}		
		13:50	56.0	56.8	53.0				
		13:55	54.5	55.6	53.3				
5-May-22	Sunny	14:00	55.0	56.9	52.8	55.3			
J-IVIAY-ZZ	Suring	14:05	56.2	57.3	53.5	33.3			
		14:10	55.0	56.1	53.7				
		14:15	54.8	55.7	53.8				
		10:30	59.9	60.7	58.9				
		10:35	60.6	61.9	58.3				
11-May-22	Cloudy	10:40	60.0	61.8	58.3	61.3			
1 1-IVIAY-ZZ	Cloudy	10:45	62.0	63.2	60.4	01.3			
		10:50	62.8	64.9	60.7				
		10:55	61.9	64.1	59.9		56.0		
		09:55	57.5	58.1	55.5		56.2		
		10:00	57.4	58.3	56.1				
17 May 22	Cuppy	10:05	56.9	57.7	57.0	57.2			
17-May-22	Sunny	10:10	57.4	58.2	56.0	37.2			
		10:15	56.8	57.5	56.1				
		10:20	57.2	58.0	56.2		_		
		09:00	51.8	53.4	43.2		1		
	2 Cloudy	09:05	52.7	54.1	43.3				
22 May 22		Cloudy –	Ola wales	09:10	51.4	53.6	44.0	E1 0	
23-May-22			09:15	51.8	53.7	43.3	51.8		
		09:20	51.4	53.2	43.0				
i		09:25	51.6	54.1	43.3				

Location NMS-	4A - Hong Ko	ong Police Fo	rce, Lok Ma	Chau Opera	tion Base at	: Horn Hill	
Dete	\\/4h	T:	Un	it: dB (A) (5-n	nin)	Average	Baseline Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
		13:00	48.0	49.1	44.2		
		13:05	49.0	50.5	45.0		
5-May-22	Sunny	13:10	52.4	55.4	45.3	49.4	
5-May-22	Suring	13:15	48.3	49.1	45.3	43.4	
		13:20	48.6	51.0	44.6		
		13:25	47.8	51.1	44.4		
		08:30	61.7	62.7	60.2		
		08:35	61.3	62.1	60.5		
11-May-22	Cloudy	08:40	61.2	61.9	60.6	60.2	
1 1-101ay-22	Cloudy	08:45	59.9	61.0	58.7	00.2	
		08:50	58.2	58.9	57.1		
		08:55	56.6	57.2	56.0		E0 E
		08:55	50.3	52.3	47.3		52.5
		09:00	48.6	50.8	45.9		
17 May 22	Claudy	09:05	49.1	50.7	46.5	49.0	
17-May-22	Cloudy	09:10	49.0	50.9	46.6	49.0	
		09:15	47.4	49.1	45.4		
		09:20	49.1	51.9	46.4		
		09:05	53.5	58.2	45.4		
		09:10	50.3	52.6	46.0		
22 May 22	y-22 Cloudy	09:15	49.9	52.6	45.5	E1 0	
23-May-22		Cloudy	Cloudy	47.0	51.8		
		09:25	53.1	55.2	47.3		
		09:30	52.3	53.3	46.2		

WMA21009/Noise Results Wellab


Noise Levels NMS-1 NMS-1 -Village house in Ha Wan Tsuen Baseline NL, 47.3dB(A) Limit Level, 75.0 dB(A) 80 75 Construction Noise Level Leq dB(A) (30min) 70 65 60 55 50 45 40 35 30 12. Kep 22 02.K80.22 OA-Mar.22 03.201.72 Date NMS-2 NMS-2 - Village house along existing Ha Wan Tsuen East Baseline NL, 68.4 dB(A) Road Limit Level, 75.0 dB(A) 80 75 Construction Noise Level Leq dB(A) (30min) 70 65 60 55 50 45 40 35 30 05. KSD 155 12. Kep 22 03-A91.22 13.Way 22 Date NMS-3 NMS-3 - Village house along Old Border Road Baseline NL, 56.2 dB(A) Limit Level, 75.0 dB(A) 80 75 Construction Noise Level Leq dB(A) (30min) 70 65 60 55 50 45 40 35 30 12 F80 22 03-AQ1.72 Date Title Service Contract No. WD/04/2020 Scale Project No. WMA21009 N.T.S Development of Lok Ma Chau Loop: Main Works Package 1 - Environmental Team **WELLAB** 匯力 consulting . testing . research Date Appendix **Graphical Presentation of Construction Noise Monitoring**

May 22

Results

G

Noise Levels

Title Service Contract No. WD/04/2020 Scale Development of Lok Ma Chau Loop: N.T.S Main Works Package 1 - Environmental Team Date **Graphical Presentation of Construction Noise Monitoring** May 22 Results

Project No. WMA21009 Appendix G

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

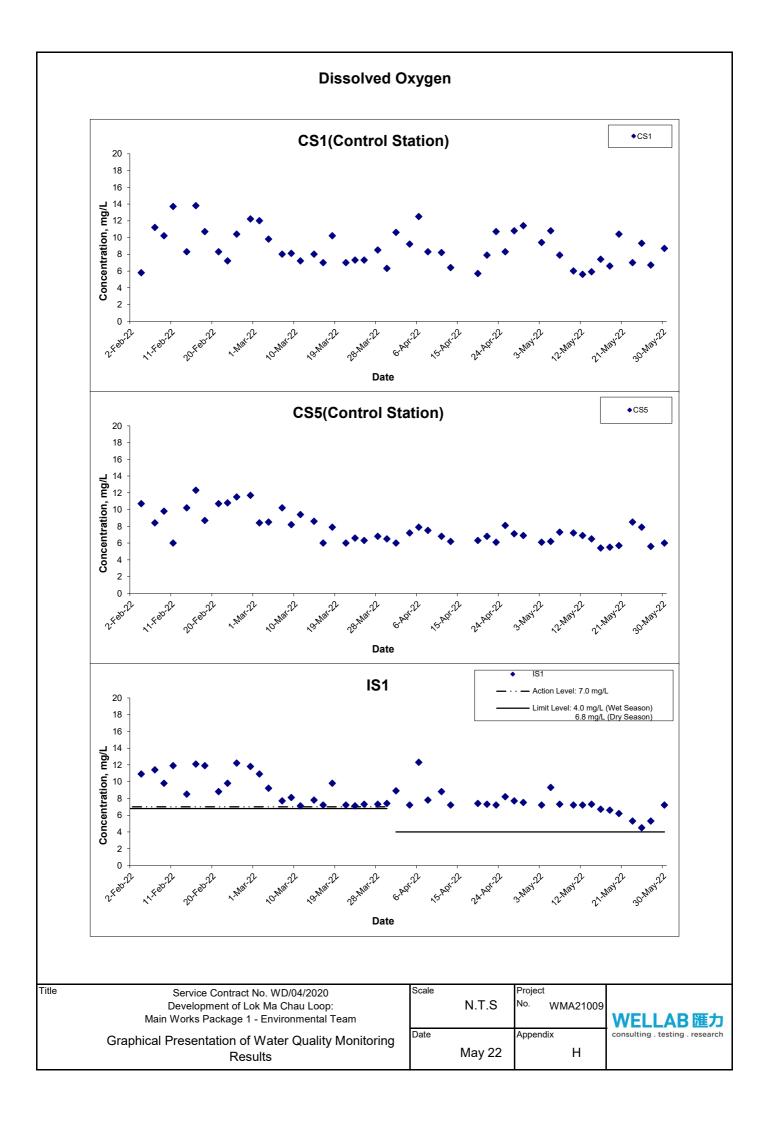
Water Quality Monitoring Results at CS1

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbid	ity(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-May-22	Sunny	Calm	12:26	Middle	0.5	24.9 25.0	25.0	8.8 8.8	8.8	2.0 2.0	2.0	114.3 114.5	114.4	9.4 9.4	9.4	15.8 15.8	15.8	29 25	27.0
5-May-22	Sunny	Calm	12:48	Middle	0.5	29.1 29.1	29.1	9.8 9.9	9.9	3.3 3.3	3.3	142.0 142.5	142.3	10.7 10.8	10.8	24.1 24.0	24.1	51 46	48.5
7-May-22	Sunny	Calm	10:34	Middle	0.5	30.2 30.2	30.2	9.6 9.6	9.6	0.1 0.1	0.1	105.0 105.1	105.1	7.9 7.9	7.9	17.6 17.5	17.6	30 28	29.0
10-May-22	Cloudy	Calm	10:58	Middle	0.5	28.1 28.1	28.1	8.8 8.8	8.8	3.1 3.1	3.1	78.2 78.2	78.2	6.0 6.0	6.0	16.2 16.2	16.2	26 27	26.5
12-May-22	Rainy	Calm	11:40	Middle	0.7	25.2 25.1	25.2	7.9 7.9	7.9	0.3 0.3	0.3	67.5 67.5	67.5	5.6 5.6	5.6	34.6 34.5	34.6	26 26	26.0
14-May-22	Rainy	Calm	10:50	Middle	0.8	25.5 25.5	25.5	7.8 7.8	7.8	0.4 0.4	0.4	72.4 71.8	72.1	5.9 5.9	5.9	21.2 21.1	21.2	5 6	5.5
16-May-22	Rainy	Calm	12:30	Middle	0.5	21.3 21.3	21.3	7.2 7.2	7.2	0.7 0.7	0.7	84.0 84.0	84.0	7.4 7.4	7.4	5.5 5.4	5.5	15 14	14.5
18-May-22	Sunny	Calm	11:20	Middle	0.5	26.3 26.3	26.3	10.1 10.1	10.1	1.0 1.0	1.0	82.4 82.1	82.3	6.6 6.6	6.6	6.7 6.7	6.7	8 9	8.5
20-May-22	Sunny	Calm	10:32	Middle	0.5	29.2 29.2	29.2	8.3 8.3	8.3	1.0 1.0	1.0	136.0 136.1	136.1	10.4 10.4	10.4	10.5 10.5	10.5	15 16	15.5
23-May-22	Sunny	Calm	11:47	Middle	0.5	26.9 26.9	26.9	8.0 8.0	8.0	0.1 0.1	0.1	87.7 87.5	87.6	7.0 7.0	7.0	11.7 11.7	11.7	21 19	20.0
25-May-22	Rainy	Calm	16:16	Middle	0.5	28.8 28.8	28.8	8.1 8.1	8.1	1.2 1.2	1.2	120.8 121.2	121.0	9.3 9.3	9.3	11.8 11.9	11.9	25 27	26.0
27-May-22	Rainy	Calm	11:56	Middle	0.5	27.2 27.2	27.2	7.6 7.6	7.6	0.6 0.6	0.6	84.3 84.0	84.2	6.7 6.7	6.7	16.2 16.2	16.2	36 45	40.5
30-May-22	Cloudy	Calm	11:31	Middle	0.5	30.4 30.4	30.4	8.2 8.2	8.2	1.5 1.5	1.5	117.2 117.2	117.2	8.7 8.7	8.7	16.8 17.0	16.9	34 29	31.5

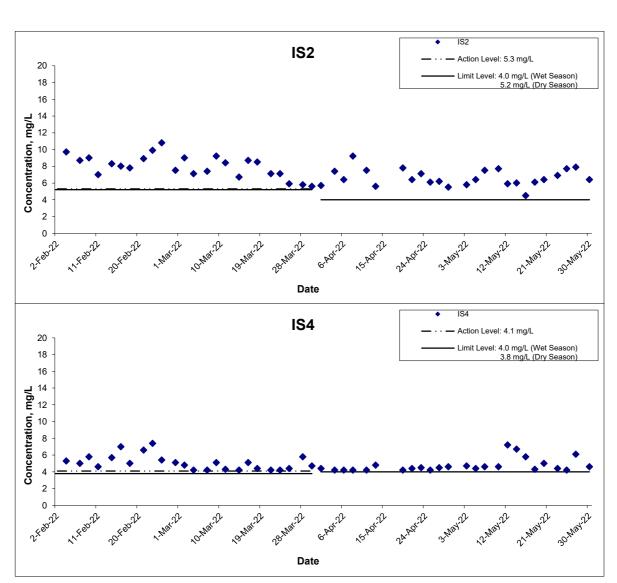
Water Quality Monitoring Results at CS5

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved C	xygen (mg/L)	Turbid	ity(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-May-22	Sunny	Calm	11:00	Middle	0.2	21.5 21.5	21.5	7.6 7.6	7.6	0.3 0.3	0.3	69.0 68.8	68.9	6.1 6.1	6.1	23.5 23.6	23.6	34 33	33.5
5-May-22	Sunny	Calm	11:29	Middle	0.2	25.2 25.2	25.2	9.1 9.1	9.1	0.6 0.6	0.6	75.4 75.1	75.3	6.2 6.2	6.2	35.5 35.2	35.4	42 39	40.5
7-May-22	Sunny	Calm	09:34	Middle	0.2	27.2 27.2	27.2	9.3 9.3	9.3	0.3 0.3	0.3	91.6 91.5	91.6	7.3 7.3	7.3	3.8 3.9	3.9	9 11	10.0
10-May-22	Cloudy	Calm	10:00	Middle	0.1	27.1 27.1	27.1	9.2 9.2	9.2	0.4 0.4	0.4	90.0 90.0	90.0	7.2 7.2	7.2	14.1 14.0	14.1	15 13	14.0
12-May-22	Rainy	Calm	10:28	Middle	0.2	24.9 24.9	24.9	8.8 8.8	8.8	0.4 0.4	0.4	83.7 83.6	83.7	6.9 6.9	6.9	17.8 18.0	17.9	19 20	19.5
14-May-22	Rainy	Calm	09:48	Middle	0.3	25.0 25.0	25.0	8.3 8.3	8.3	0.2 0.2	0.2	78.2 78.2	78.2	6.5 6.5	6.5	10.9 10.9	10.9	15 18	16.5
16-May-22	Rainy	Calm	11:14	Middle	0.2	22.7 22.7	22.7	7.3 7.3	7.3	0.3 0.3	0.3	62.5 62.2	62.4	5.4 5.4	5.4	15.6 15.7	15.7	18 19	18.5
18-May-22	Sunny	Calm	10:07	Middle	0.3	26.0 26.1	26.1	9.8 9.8	9.8	0.4 0.4	0.4	68.3 68.0	68.2	5.5 5.5	5.5	16.7 16.6	16.7	22 22	22.0
20-May-22	Sunny	Calm	09:27	Middle	0.2	27.1 27.1	27.1	9.0 9.0	9.0	0.5 0.5	0.5	71.9 71.8	71.9	5.7 5.7	5.7	16.9 16.6	16.8	19 16	17.5
23-May-22	Sunny	Calm	10:49	Middle	0.2	26.4 26.4	26.4	8.9 8.9	8.9	0.3 0.3	0.3	105.6 105.6	105.6	8.5 8.5	8.5	6.6 6.7	6.7	4	4.0
25-May-22	Rainy	Calm	15:12	Middle	0.1	29.6 29.6	29.6	9.3 9.3	9.3	0.3 0.3	0.3	104.4 104.4	104.4	7.9 7.9	7.9	6.1 5.9	6.0	10 8	9.0
27-May-22	Rainy	Calm	10:48	Middle	0.2	26.7 26.7	26.7	9.0 9.0	9.0	0.4 0.4	0.4	70.2 70.0	70.1	5.6 5.6	5.6	11.2 11.1	11.2	13 13	13.0
30-May-22	Cloudy	Calm	10:44	Middle	0.2	28.8 28.8	28.8	8.2 8.2	8.2	0.3 0.3	0.3	77.5 77.6	77.6	6.0 6.0	6.0	18.4 18.2	18.3	24 22	23.0

Water Quality Monitoring Results at IS1


Date	Weather	Sea	Sampling	Deni	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ity(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ar (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-May-22	Sunny	Calm	11:44	Middle	0.2	23.9 23.9	23.9	7.3 7.3	7.3	2.4 2.4	2.4	86.1 86.0	86.1	7.2 7.2	7.2	12.9 12.9	12.9	20 19	19.5
5-May-22	Sunny	Calm	12:22	Middle	0.5	27.3 27.3	27.3	8.4 8.4	8.4	3.0 3.0	3.0	119.1 119.3	119.2	9.3 9.3	9.3	20.1 19.7	19.9	23 28	25.5
7-May-22	Sunny	Calm	10:13	Middle	0.5	27.4 27.4	27.4	8.1 8.1	8.1	2.8 2.8	2.8	93.7 92.8	93.3	7.3 7.2	7.3	25.6 25.7	25.7	24 23	23.5
10-May-22	Cloudy	Calm	10:37	Middle	0.5	26.7 26.8	26.8	8.3 8.3	8.3	2.9 2.9	2.9	91.8 91.7	91.8	7.2 7.2	7.2	21.6 21.5	21.6	23 22	22.5
12-May-22	Rainy	Calm	11:07	Middle	0.6	23.5 23.5	23.5	8.0 8.0	8.0	0.1 0.1	0.1	83.9 84.7	84.3	7.1 7.2	7.2	18.5 18.2	18.4	23 20	21.5
14-May-22	Rainy	Calm	10:27	Middle	0.6	23.6 23.5	23.6	8.0 8.0	8.0	0.04 0.04	0.04	86.5 86.2	86.4	7.3 7.3	7.3	6.2 6.4	6.3	3	3.0
16-May-22	Rainy	Calm	11:28	Middle	0.5	21.3 21.3	21.3	6.8 6.8	6.8	0.2 0.2	0.2	75.5 75.3	75.4	6.7 6.7	6.7	6.0 6.0	6.0	3 4	3.5
18-May-22	Sunny	Calm	10:45	Middle	0.5	24.2 24.2	24.2	9.1 9.1	9.1	0.1 0.1	0.1	78.2 77.7	78.0	6.6 6.5	6.6	6.9 6.1	6.5	7 7	7.0
20-May-22	Sunny	Calm	10:10	Middle	0.5	24.9 24.9	24.9	8.7 8.7	8.7	0.1 0.1	0.1	74.6 74.2	74.4	6.2 6.1	6.2	2.7 2.8	2.8	3 4	3.5
23-May-22	Sunny	Calm	11:24	Middle	0.5	24.6 24.6	24.6	8.4 8.4	8.4	0.1 0.1	0.1	63.3 63.3	63.3	5.3 5.3	5.3	5.2 5.3	5.3	6 5	5.5
25-May-22	Rainy	Calm	15:51	Middle	0.5	25.8 25.8	25.8	8.0 8.0	8.0	0.1 0.1	0.1	55.4 55.4	55.4	4.5 4.5	4.5	4.4 4.3	4.4	21 24	22.5
27-May-22	Rainy	Calm	11:23	Middle	0.5	25.1 25.1	25.1	8.3 8.3	8.3	0.1 0.1	0.1	64.4 63.7	64.1	5.3 5.3	5.3	22.0 22.0	22.0	20 25	22.5
30-May-22	Cloudy	Calm	11:56	Middle	0.5	27.8 27.8	27.8	8.0 8.0	8.0	0.1 0.1	0.1	90.7 91.6	91.2	7.1 7.2	7.2	12.6 12.8	12.7	17 19	18.0

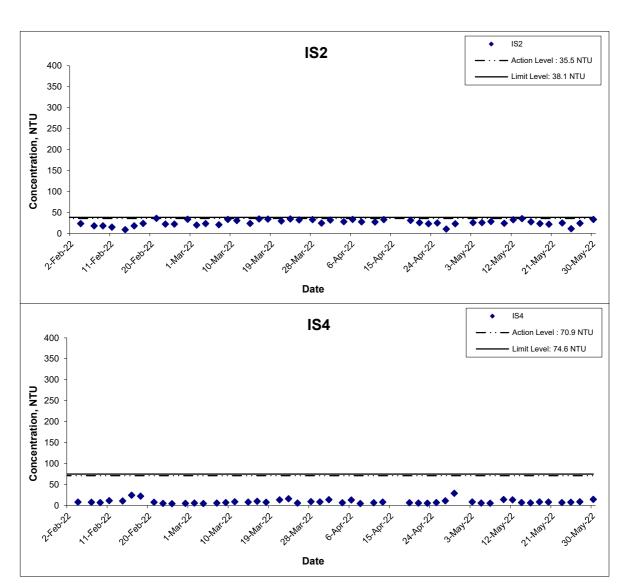
Water Quality Monitoring Results at IS2


Date	Weather	Sea	Sampling	Deni	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved C	xygen (mg/L)	Turbid	ity(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-May-22	Sunny	Calm	11:15	Middle	0.1	22.0 22.0	22.0	7.4 7.4	7.4	1.7 1.7	1.7	66.7 66.7	66.7	5.8 5.8	5.8	25.1 25.3	25.2	20 21	20.5
5-May-22	Sunny	Calm	11:06	Middle	0.1	27.1 27.0	27.1	9.1 9.1	9.1	2.6 2.6	2.6	81.5 81.5	81.5	6.4 6.4	6.4	24.6 25.5	25.1	25 26	25.5
7-May-22	Sunny	Calm	09:14	Middle	0.1	28.5 28.5	28.5	8.8 8.8	8.8	0.3 0.3	0.3	96.2 96.4	96.3	7.5 7.5	7.5	27.9 27.7	27.8	25 23	24.0
10-May-22	Cloudy	Calm	09:35	Middle	0.1	26.9 26.9	26.9	8.8 8.8	8.8	1.7 1.7	1.7	97.5 97.7	97.6	7.7 7.7	7.7	23.8 23.7	23.8	36 31	33.5
12-May-22	Rainy	Calm	10:03	Middle	0.2	25.1 25.1	25.1	8.7 8.7	8.7	0.6 0.6	0.6	71.9 70.6	71.3	5.9 5.8	5.9	32.1 32.2	32.2	25 25	25.0
14-May-22	Rainy	Calm	09:29	Middle	0.2	24.7 24.7	24.7	8.4 8.4	8.4	0.1 0.1	0.1	72.7 72.4	72.6	6.0 6.0	6.0	34.9 34.9	34.9	35 30	32.5
16-May-22	Rainy	Calm	11:01	Middle	0.1	22.6 22.6	22.6	7.1 7.1	7.1	0.4 0.4	0.4	51.6 51.3	51.5	4.5 4.4	4.5	26.8 27.1	27.0	26 28	27.0
18-May-22	Sunny	Calm	09:47	Middle	0.2	26.1 26.2	26.2	8.8 8.8	8.8	0.7 0.7	0.7	75.9 75.8	75.9	6.1 6.1	6.1	22.6 22.9	22.8	29 32	30.5
20-May-22	Sunny	Calm	09:09	Middle	0.1	27.1 27.1	27.1	8.3 8.3	8.3	0.02 0.02	0.02	80.5 80.3	80.4	6.4 6.4	6.4	21.8 20.9	21.4	24 24	24.0
23-May-22	Sunny	Calm	10:12	Middle	0.1	25.6 25.6	25.6	8.8 8.7	8.8	0.4 0.4	0.4	84.9 84.5	84.7	6.9 6.9	6.9	24.2 24.9	24.6	32 32	32.0
25-May-22	Rainy	Calm	14:52	Middle	0.1	28.4 28.4	28.4	9.0 9.0	9.0	0.01 0.01	0.01	99.4 99.5	99.5	7.7 7.7	7.7	10.8 10.8	10.8	24 22	23.0
27-May-22	Rainy	Calm	10:22	Middle	0.1	26.7 26.7	26.7	8.7 8.8	8.8	0.9 0.9	0.9	98.5 98.5	98.5	7.9 7.9	7.9	23.8 23.6	23.7	39 33	36.0
30-May-22	Cloudy	Calm	10:25	Middle	0.1	29.4 29.4	29.4	8.0 8.0	8.0	1.6 1.6	1.6	84.4 84.1	84.3	6.4 6.4	6.4	32.9 32.8	32.9	25 24	24.5

Water Quality Monitoring Results at IS4

Date	Weather	Sea	Sampling	Deni	th (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бер	ar (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
3-May-22	Sunny	Calm	11:55	Middle	0.2	22.5 22.5	22.5	7.2 7.2	7.2	0.1 0.1	0.1	53.9 53.7	53.8	4.7 4.6	4.7	8.2 8.1	8.2	14 15	14.5
5-May-22	Sunny	Calm	12:00	Middle	0.1	24.1 24.1	24.1	8.9 8.9	8.9	0.2 0.2	0.2	52.5 52.3	52.4	4.4 4.4	4.4	5.2 5.3	5.3	8 7	7.5
7-May-22	Sunny	Calm	09:53	Middle	0.1	24.0 24.0	24.0	9.2 9.2	9.2	0.1 0.1	0.1	54.9 54.7	54.8	4.6 4.6	4.6	5.1 5.0	5.1	4 5	4.5
10-May-22	Cloudy	Calm	10:18	Middle	0.1	25.8 25.8	25.8	8.9 8.9	8.9	0.3 0.3	0.3	57.1 57.0	57.1	4.6 4.6	4.6	13.8 13.9	13.9	8 8	8.0
12-May-22	Rainy	Calm	10:47	Middle	0.3	23.7 23.7	23.7	9.2 9.2	9.2	0.1 0.1	0.1	84.8 84.5	84.7	7.2 7.2	7.2	12.7 13.0	12.9	40 42	41.0
14-May-22	Rainy	Calm	10:05	Middle	0.3	24.0 24.0	24.0	8.5 8.5	8.5	0.04 0.04	0.04	79.0 79.1	79.1	6.7 6.7	6.7	6.4 6.4	6.4	5 6	5.5
16-May-22	Rainy	Calm	12:03	Middle	0.2	21.7 21.7	21.7	6.6 6.6	6.6	0.04 0.04	0.04	65.4 65.2	65.3	5.8 5.7	5.8	5.7 5.8	5.8	7 7	7.0
18-May-22	Sunny	Calm	10:24	Middle	0.2	23.3 23.3	23.3	9.7 9.7	9.7	0.1 0.1	0.1	50.7 50.3	50.5	4.3 4.3	4.3	8.0 8.1	8.1	4 5	4.5
20-May-22	Sunny	Calm	09:45	Middle	0.2	25.4 25.4	25.4	8.8 8.8	8.8	0.1 0.1	0.1	60.4 60.4	60.4	5.0 5.0	5.0	7.7 7.6	7.7	6 7	6.5
23-May-22	Sunny	Calm	11:05	Middle	0.2	24.1 24.2	24.2	8.8 8.8	8.8	0.1 0.1	0.1	52.8 52.2	52.5	4.4 4.4	4.4	6.8 6.4	6.6	10 9	9.5
25-May-22	Rainy	Calm	15:28	Middle	0.2	25.2 25.2	25.2	9.2 9.2	9.2	0.1 0.1	0.1	51.0 50.8	50.9	4.2 4.2	4.2	7.2 7.2	7.2	10 9	9.5
27-May-22	Rainy	Calm	11:05	Middle	0.2	24.8 24.8	24.8	8.9 8.9	8.9	0.1 0.1	0.1	73.7 73.4	73.6	6.1 6.1	6.1	8.6 8.5	8.6	8 10	9.0
30-May-22	Cloudy	Calm	11:02	Middle	0.2	26.4 26.4	26.4	7.8 7.8	7.8	0.1 0.1	0.1	57.1 57.1	57.1	4.6 4.6	4.6	14.3 14.2	14.3	19 16	17.5


Dissolved Oxygen


riue	Service Contract No. WD/04/2020
	Development of Lok Ma Chau Loop:
	Main Works Package 1 - Environmental Team
	Graphical Presentation of Water Quality Monitoring
	Results

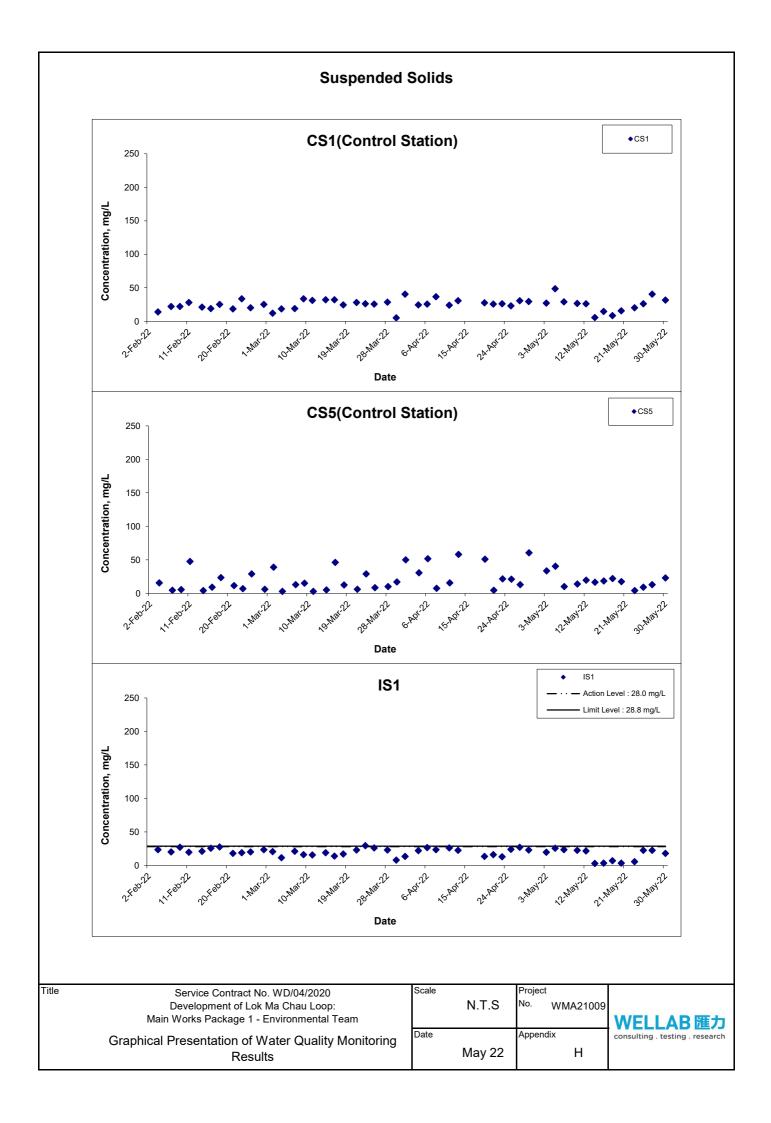
Scale	N.T.S	Project No. WMA21009
	14.1.5	VVIVIAZ 1003
Date		Appendix
	May 22	Н

Turbidity

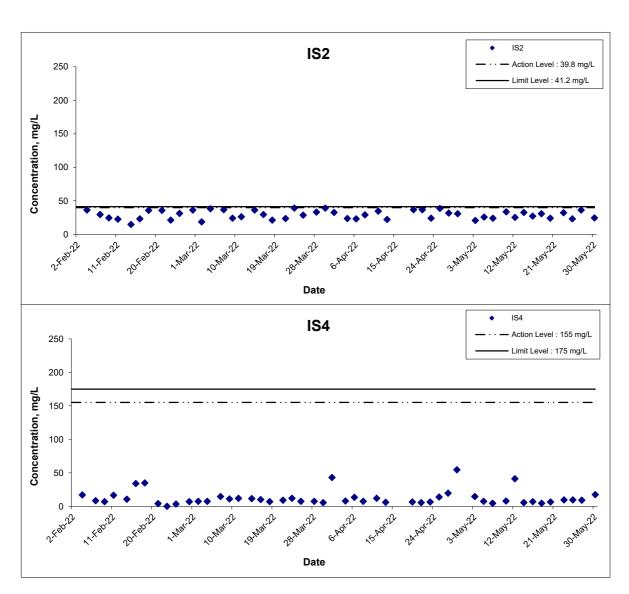
Title Service Contract No. WD/04/2020
Development of Lok Ma Chau Loop:
Main Works Package 1 - Environmental Team
Graphical Presentation of Water Quality Monitoring
Results

Scale

N.T.S


Project
No. WMA21009

Date


Appendix

H

Suspended Solids

Remark: The graphical point at zero concentration is presented as <2.5 mg/L

Title Service Contract No. WD/04/2020
Development of Lok Ma Chau Loop:
Main Works Package 1 - Environmental Team
Graphical Presentation of Water Quality Monitoring
Results

Scale		Project	
	N.T.S	No. WMA2100	9
Date		Appendix	
	May 22	Н	

APPENDIX I WEATHER CONDITION

APPENDIX I – GENERAL WEATHER CONDITIONS DURING THE MONITORING PERIOD

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 May 2022	20.7	89	32.4
2 May 2022	18.5	84	23.4
3 May 2022	22.3	62	-
4 May 2022	24.6	63	-
5 May 2022	25.2	73	-
6 May 2022	25.5	76	-
7 May 2022	25.4	77	0.8
8 May 2022	25	70	Trace
9 May 2022	25.6	75	Trace
10 May 2022	25.7	88	1.4
11 May 2022	25	95	61.4
12 May 2022	25.8	91	123.5
13 May 2022	25.5	92	107.1
14 May 2022	24.6	93	5
15 May 2022	22.6	91	26.2
16 May 2022	20	85	4.7

Development of Lok Ma Chau Loop Monthly EM&A Report –May 2022

Date	Mean Air Temperature (°C)	Mean Relative	Precipitation
		Humidity (%)	(mm)
17 May 2022	22.4	72	-
18 May 2022	23.9	52	-
19 May 2022	25.8	64	-
20 May 2022	26.9	76	-
21 May 2022	26.9	78	-
22 May 2022	25	83	0.6
23 May 2022	24	90	11.2
24 May 2022	24.4	93	10.3
25 May 2022	25.3	91	1.3
26 May 2022	26.7	88	2.4
27 May 2022	27.4	89	24.7
28 May 2022	28.7	81	Trace
29 May 2022	29.1	79	Trace
30 May 2022	29.2	78	Trace
31 May 2022	28.2	82	0.1

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-May-2022	00:00	1.3	SSW
1-May-2022	01:00	0.9	SSW
1-May-2022	02:00	0.4	SSW
1-May-2022	03:00	0.4	WSW
1-May-2022	04:00	0.9	SW
1-May-2022	05:00	1.3	SW
1-May-2022	06:00	0.9	SSW
1-May-2022	07:00	0.4	SSW
1-May-2022	08:00	0.9	SSW
1-May-2022	09:00	0.9	SSW
1-May-2022	10:00	0.9	SSW
1-May-2022	11:00	0.4	SSW
1-May-2022	12:00	0.9	SSW
1-May-2022	13:00	0.9	SSW
1-May-2022	14:00	0.4	SSW
1-May-2022	15:00	0.4	SSW
1-May-2022	16:00	0.4	SSW
1-May-2022	17:00	0.4	SSE
1-May-2022	18:00	0.4	SW
1-May-2022	19:00	0.4	SSW
1-May-2022	20:00	0.9	SSW
1-May-2022	21:00	0.4	SSW
1-May-2022	22:00	0.4	SSW
1-May-2022	23:00	0.0	SSE
2-May-2022	00:00	0.4	SSW
2-May-2022	01:00	0.0	SW
2-May-2022	02:00	0.0	SSW
2-May-2022	03:00	0.0	SSE
2-May-2022	04:00	0.0	SW
2-May-2022	05:00	0.0	SSE
2-May-2022	06:00	0.0	SSE
2-May-2022	07:00	0.0	SW
2-May-2022	08:00	0.0	SSW
2-May-2022	09:00	0.0	SW
2-May-2022	10:00	0.0	SSE
2-May-2022	11:00	0.4	SSW
2-May-2022	12:00	0.9	SSW
2-May-2022	13:00	0.9	SSW
2-May-2022	14:00	0.4	SSE
2-May-2022 2-May-2022	15:00	0.4	SSW
2-May-2022	16:00	0.4	SSW
2-May-2022 2-May-2022	17:00	0.4	SSW
2-May-2022 2-May-2022	18:00	0.4	SSW
2-May-2022 2-May-2022	19:00	0.4	SSW
2-May-2022 2-May-2022	20:00	0.4	SSW
2-May-2022 2-May-2022	21:00	0.4	SSW
2-May-2022 2-May-2022	22:00	0.4	SSW
2-May-2022 2-May-2022	23:00	0.0	SSW
3-May-2022	00:00	0.0	SSW
3-May-2022 3-May-2022	01:00	0.0	SW
3-May-2022 3-May-2022	02:00	0.0	SW
3-May-2022 3-May-2022	03:00	0.0	WSW
3-May-2022 3-May-2022	03.00	0.0	SSW
3-May-2022 3-May-2022			SSW
3-IVIAY-2U22	05:00	0.0	3311

Date	Time	Wind Speed m/s	Direction
3-May-2022	06:00	0.0	WSW
3-May-2022	07:00	0.0	SSW
3-May-2022	08:00	0.0	SSW
3-May-2022	09:00	0.4	SSW
3-May-2022	10:00	0.9	SSW
3-May-2022	11:00	0.4	SSW
3-May-2022	12:00	0.4	SSE
3-May-2022	13:00	0.4	SSE
3-May-2022	14:00	0.0	SSE
3-May-2022	15:00	0.0	SSE
3-May-2022	16:00	0.0	SSE
3-May-2022	17:00	0.0	S
3-May-2022	18:00	0.0	SW
3-May-2022	19:00	0.0	WSW
3-May-2022	20:00	0.9	SW
3-May-2022	21:00	0.4	SW
3-May-2022	22:00	0.0	SSW
3-May-2022	23:00	0.0	W
4-May-2022	00:00	0.4	SSW
4-May-2022	01:00	0.0	SW
4-May-2022	02:00	0.4	SW
4-May-2022	03:00	0.4	SW
4-May-2022	04:00	0.0	SW
4-May-2022	05:00	0.0	SSW
4-May-2022	06:00	0.0	WSW
4-May-2022	07:00	0.0	SSW
4-May-2022	08:00	0.0	
4-May-2022	09:00	0.0	SW
4-May-2022	10:00	0.0	SSW
4-May-2022	11:00	0.0	SSE
4-May-2022	12:00	0.4	SSE
4-May-2022	13:00	0.9	WSW
4-May-2022	14:00	0.9	WSW
4-May-2022	15:00	0.4	W
4-May-2022	16:00	0.4	WNW
4-May-2022	17:00	0.4	WNW
4-May-2022	18:00	1.3	NE NE
4-May-2022	19:00	0.4	NE NE
4-May-2022	20:00	0.0	W
<u> </u>	21:00	0.0	W
4-May-2022 4-May-2022	22:00	0.0	WSW
4-May-2022 4-May-2022	23:00	0.0	WSW
•	00:00	0.0	SSW
5-May-2022 5-May-2022			SSW
5-May-2022	01:00	0.0	SSW
5-May-2022	02:00		
5-May-2022	03:00	0.0	
5-May-2022	04:00	0.0	
5-May-2022	05:00	0.0	SSW
5-May-2022	06:00	0.0	SSW
5-May-2022	07:00	0.0	SSW
5-May-2022	08:00	0.0	SSW
5-May-2022	09:00	0.9	SSW
5-May-2022	10:00	0.9	SW
5-May-2022	11:00	0.9	SW

Date	Time	Wind Speed m/s	Direction
5-May-2022	12:00	0.9	WSW
5-May-2022	13:00	0.9	WNW
5-May-2022	14:00	0.4	WNW
5-May-2022	15:00	0.4	WNW
5-May-2022	16:00	0.0	WSW
5-May-2022	17:00	0.4	WNW
5-May-2022	18:00	0.9	W
5-May-2022	19:00	0.9	WNW
5-May-2022	20:00	0.4	WSW
5-May-2022	21:00	0.0	WSW
5-May-2022	22:00	0.0	SSW
5-May-2022 5-May-2022	23:00	0.0	SSW
6-May-2022	00:00	0.0	WSW
6-May-2022	01:00	0.0	SW
6-May-2022	02:00	0.0	311
	03:00		
6-May-2022		0.0	 C\//
6-May-2022	04:00	0.0	SW SW
6-May-2022	05:00	0.0	
6-May-2022	06:00	0.0	SW
6-May-2022	07:00	0.0	WSW
6-May-2022	08:00	0.0	SSW
6-May-2022	09:00	0.9	SSW
6-May-2022	10:00	0.9	SSW
6-May-2022	11:00	0.4	SSW
6-May-2022	12:00	0.4	SSW
6-May-2022	13:00	0.4	WSW
6-May-2022	14:00	0.4	WSW
6-May-2022	15:00	0.4	WSW
6-May-2022	16:00	0.9	NE
6-May-2022	17:00	0.4	NE
6-May-2022	18:00	0.0	SSW
6-May-2022	19:00	0.9	SW
6-May-2022	20:00	0.0	WSW
6-May-2022	21:00	0.4	SW
6-May-2022	22:00	0.0	SW
6-May-2022	23:00	0.0	SW
7-May-2022	00:00	0.0	SSW
7-May-2022	01:00	0.0	SSW
7-May-2022	02:00	0.0	SW
7-May-2022	03:00	0.4	SSW
7-May-2022	04:00	0.0	SW
7-May-2022	05:00	0.0	SSW
7-May-2022	06:00	0.0	SSW
7-May-2022	07:00	0.0	WSW
7-May-2022	08:00	0.4	WSW
7-May-2022	09:00	0.0	SW
7-May-2022	10:00	0.0	SSW
7-May-2022	11:00	0.0	SSW
7-May-2022	12:00	0.0	SSE
7-May-2022	13:00	0.0	SSW
7-May-2022 7-May-2022	14:00	0.4	SSE
7-May-2022 7-May-2022	15:00	0.4	NE
7-May-2022 7-May-2022	16:00	0.4	NE
7-May-2022	17:00	0.0	NE

Date	Time	Wind Speed m/s	Direction
7-May-2022	18:00	0.0	NNE
7-May-2022	19:00	0.0	WSW
7-May-2022	20:00	0.0	SW
7-May-2022	21:00	0.0	SSW
7-May-2022	22:00	0.0	SW
7-May-2022	23:00	0.0	WSW
8-May-2022	00:00	0.0	SW
8-May-2022	01:00	0.0	WSW
8-May-2022	02:00	0.0	SW
8-May-2022	03:00	0.4	SW
8-May-2022	04:00	0.4	SW
8-May-2022	05:00	0.4	SSW
8-May-2022	06:00	0.0	SW
8-May-2022	07:00	0.4	SSW
8-May-2022	08:00	0.0	WSW
8-May-2022	09:00	0.4	WSW
8-May-2022	10:00	0.0	SSW
8-May-2022	11:00	0.4	SSW
8-May-2022	12:00	0.4	SSW
8-May-2022	13:00	0.9	SSW
8-May-2022	14:00	0.9	SSW
	15:00	0.9	SSW
8-May-2022	16:00		SSW
8-May-2022		0.0	
8-May-2022	17:00	0.4	SSW SSW
8-May-2022	18:00	0.0	
8-May-2022	19:00	0.0	SW
8-May-2022	20:00	0.0	WSW
8-May-2022	21:00	0.0	WNW
8-May-2022	22:00	0.0	WSW
8-May-2022	23:00	0.0	SSW
9-May-2022	00:00	0.0	SSW
9-May-2022	01:00	0.0	SSW
9-May-2022	02:00	0.0	SW
9-May-2022	03:00	0.0	SSW
9-May-2022	04:00	0.0	SW
9-May-2022	05:00	0.0	SSW
9-May-2022	06:00	0.0	SSW
9-May-2022	07:00	0.0	SSW
9-May-2022	08:00	0.0	WSW
9-May-2022	09:00	0.0	SSW
9-May-2022	10:00	0.0	SSW
9-May-2022	11:00	0.0	SSW
9-May-2022	12:00	0.4	SSW
9-May-2022	13:00	0.9	WSW
9-May-2022	14:00	0.4	WNW
9-May-2022	15:00	0.4	SSW
9-May-2022	16:00	0.4	WSW
9-May-2022	17:00	0.9	SW
9-May-2022	18:00	0.9	WNW
9-May-2022	19:00	0.9	SW
9-May-2022	20:00	0.4	WSW
9-May-2022	21:00	0.4	WSW
9-May-2022	22:00	0.4	SSW
9-May-2022	23:00	0.4	SW

Date	Time	Wind Speed m/s	Direction
10-May-2022	00:00	0.4	SSW
10-May-2022	01:00	0.9	SSW
10-May-2022	02:00	0.9	SW
10-May-2022	03:00	0.0	SW
10-May-2022	04:00	0.0	SSW
10-May-2022	05:00	0.0	WSW
10-May-2022	06:00	0.0	SW
10-May-2022	07:00	0.0	SSW
10-May-2022	08:00	0.0	SSW
10-May-2022	09:00	0.0	SSW
10-May-2022	10:00	0.4	SSW
10-May-2022	11:00	0.4	SSW
10-May-2022	12:00	0.9	SW
10-May-2022	13:00	0.9	SSW
10-May-2022	14:00	0.4	SSW
10-May-2022	15:00	0.9	WSW
10-May-2022	16:00	0.9	WNW
10-May-2022	17:00	0.9	WSW
10-May-2022	18:00	0.9	WNW
10-May-2022	19:00	0.4	WNW
10-May-2022	20:00	0.4	W
10-May-2022	21:00	0.0	W
10-May-2022	22:00	0.0	WSW
10-May-2022	23:00	0.0	W
11-May-2022	00:00	0.0	WSW
11-May-2022	01:00	0.0	WSW
11-May-2022	02:00	0.0	WSW
11-May-2022	03:00	0.0	WSW
11-May-2022	04:00	0.0	W
11-May-2022	05:00	0.0	WSW
11-May-2022	06:00	0.0	W
11-May-2022	07:00	0.4	WSW
11-May-2022	08:00	0.4	WSW
11-May-2022	09:00	0.0	SW
11-May-2022	10:00	0.0	SW
11-May-2022	11:00	0.0	SW
11-May-2022	12:00	0.0	WSW
11-May-2022	13:00	0.0	SSW
11-May-2022	14:00	0.0	WSW
11-May-2022	15:00	0.0	NE
11-May-2022	16:00	0.0	NNE
11-May-2022	17:00	0.0	NE
11-May-2022	18:00	0.0	NE
11-May-2022	19:00	0.0	NW
11-May-2022	20:00	0.0	W
11-May-2022	21:00	0.4	W
11-May-2022	22:00	0.0	
11-May-2022	23:00	0.0	WSW
12-May-2022	00:00	0.0	
12-May-2022	01:00	0.0	
12-May-2022	02:00	0.0	
12-May-2022	03:00	0.4	W
12-May-2022 12-May-2022	04:00	0.0	SSW
12-May-2022	05:00	0.0	SW

Date	Time	Wind Speed m/s	Direction
12-May-2022	06:00	0.0	SW
12-May-2022	07:00	0.4	WSW
12-May-2022	08:00	0.0	NE
12-May-2022	09:00	0.0	WNW
12-May-2022	10:00	0.0	
12-May-2022	11:00	0.0	
12-May-2022	12:00	0.0	W
12-May-2022	13:00	0.0	WSW
12-May-2022	14:00	0.0	WSW
12-May-2022	15:00	0.0	WSW
12-May-2022	16:00	0.0	W
12-May-2022	17:00	0.4	NE
12-May-2022	18:00	0.0	NE
12-May-2022	19:00	0.4	NE
12-May-2022	20:00	0.0	NE
12-May-2022	21:00	0.0	
12-May-2022	22:00	0.0	
12-May-2022	23:00	0.0	
13-May-2022	00:00	0.0	NNW
13-May-2022	01:00	0.0	
13-May-2022	02:00	0.0	
13-May-2022	03:00	0.0	NNW
13-May-2022	04:00	0.0	
13-May-2022	05:00	0.0	
13-May-2022	06:00	0.0	NW
13-May-2022	07:00	0.0	
13-May-2022	08:00	0.0	NE
13-May-2022	09:00	0.0	SW
			SSW
13-May-2022	10:00 11:00	0.9	SSW
13-May-2022			
13-May-2022	12:00	0.4	SSW
13-May-2022	13:00	0.0	SSW
13-May-2022	14:00	0.4	SSW
13-May-2022	15:00	0.9	SSW
13-May-2022	16:00	0.9	SSW
13-May-2022	17:00	0.9	SSW
13-May-2022	18:00	0.4	SSW
13-May-2022	19:00	0.9	SW
13-May-2022	20:00	0.4	SW
13-May-2022	21:00	0.9	SSW
13-May-2022	22:00	0.9	SW
13-May-2022	23:00	0.4	WSW
14-May-2022	00:00	1.3	SSW
14-May-2022	01:00	1.3	SSW
14-May-2022	02:00	1.3	SSW
14-May-2022	03:00	0.4	SW
14-May-2022	04:00	0.0	WSW
14-May-2022	05:00	0.4	WSW
14-May-2022	06:00	0.9	SSW
14-May-2022	07:00	0.9	SSW
14-May-2022	08:00	0.9	SSW
14-May-2022	09:00	0.4	SSW
14-May-2022	10:00	0.0	SSW
14-May-2022	11:00	0.4	SSW

Date	Time	Wind Speed m/s	Direction
14-May-2022	12:00	0.0	SSW
14-May-2022	13:00	0.0	SW
14-May-2022	14:00	0.0	SW
14-May-2022	15:00	0.0	SSW
14-May-2022	16:00	0.4	SSW
14-May-2022	17:00	0.4	SSW
14-May-2022	18:00	0.9	SSW
14-May-2022	19:00	1.3	SSW
14-May-2022	20:00	0.9	SSW
14-May-2022	21:00	0.4	SSW
14-May-2022	22:00	0.4	SSW
14-May-2022	23:00	1.3	SSW
15-May-2022	00:00	0.4	SSW
15-May-2022	01:00	0.0	SSW
15-May-2022	02:00	0.4	SSW
15-May-2022	03:00	0.4	SSW
15-May-2022	04:00	0.0	SSW
15-May-2022	05:00	0.0	SSW
15-May-2022	06:00	0.0	SSE
15-May-2022	07:00	0.0	SSW
15-May-2022	08:00	0.0	SSW
15-May-2022 15-May-2022	09:00	0.0	SSW
15-May-2022	10:00	0.0	SSW
15-May-2022	11:00	0.0	SSW
15-May-2022 15-May-2022	12:00	0.4	SSW
15-May-2022 15-May-2022	13:00	0.4	SSW
15-May-2022 15-May-2022	14:00	0.0	SSW
15-May-2022	15:00	0.4	SSW
15-May-2022 15-May-2022	16:00	0.4	SSW
15-May-2022 15-May-2022	17:00	0.4	SSW
15-May-2022 15-May-2022	18:00	0.0	SSW
15-May-2022 15-May-2022	19:00	0.0	SSW
	20:00	0.0	SSW
15-May-2022 15-May-2022	21:00	0.0	SSW
15-May-2022 15-May-2022	22:00	0.4	SSW
15-May-2022	23:00	0.0	SSW
, ,			
16-May-2022	00:00	0.0	SSW
16-May-2022	01:00	0.4	SSW
16-May-2022	02:00	0.4	SSW
16-May-2022	03:00	0.4	SSW
16-May-2022	04:00	0.4	SSW
16-May-2022	05:00	0.0	SSW
16-May-2022	06:00	0.4	SSW
16-May-2022	07:00	0.0	SSE
16-May-2022	08:00	0.0	WSW
16-May-2022	09:00	0.0	SSE
16-May-2022	10:00	0.9	NE NE
16-May-2022	11:00	0.4	NE NE
16-May-2022	12:00	0.0	WSW
16-May-2022	13:00	0.0	WNW
16-May-2022	14:00	0.0	SW
16-May-2022	15:00	0.0	SSW
16-May-2022	16:00	0.0	SSW
16-May-2022	17:00	0.4	SSW

Date	Time	Wind Speed m/s	Direction
16-May-2022	18:00	0.4	SSW
16-May-2022	19:00	0.4	SW
16-May-2022	20:00	0.4	SSW
16-May-2022	21:00	0.4	SW
16-May-2022	22:00	0.4	SW
16-May-2022	23:00	0.4	WSW
17-May-2022	00:00	0.0	SW
17-May-2022	01:00	0.0	SSW
17-May-2022	02:00	0.9	SSW
17-May-2022	03:00	1.3	SSW
17-May-2022	04:00	1.8	SSW
17-May-2022	05:00	1.8	SSW
17-May-2022	06:00	1.3	SSW
17-May-2022	07:00	1.3	SSW
17-May-2022	08:00	0.4	SSW
17-May-2022	09:00	0.4	WSW
17-May-2022	10:00	0.4	W
17-May-2022	11:00	0.4	SSW
17-May-2022	12:00	0.9	SW
17-May-2022	13:00	0.9	SW
17-May-2022	14:00	0.0	SSW
17-May-2022	15:00	0.9	SSW
17-May-2022	16:00	0.4	SW
17-May-2022	17:00	0.0	SW
17-May-2022	18:00	0.0	WSW
17-May-2022	19:00	0.0	SW
17-May-2022	20:00	0.0	SW
17-May-2022	21:00	0.0	SW
17-May-2022	22:00	0.0	SSW
17-May-2022	23:00	0.0	WSW
18-May-2022	00:00	0.0	
18-May-2022	01:00	0.0	
18-May-2022	02:00	0.0	WSW
18-May-2022	03:00	0.0	WSW
18-May-2022	04:00	0.0	WSW
18-May-2022	05:00	0.0	SSW
18-May-2022	06:00	0.4	SW
18-May-2022	07:00	0.0	SSE
18-May-2022	08:00	0.0	SSE
18-May-2022	09:00	0.9	NE NE
18-May-2022	10:00	0.9	NE NE
18-May-2022	11:00	0.4	NE NE
18-May-2022	12:00	0.0	NNE
18-May-2022	13:00	0.0	W
18-May-2022	14:00	0.0	SSW
18-May-2022	15:00	0.0	W
18-May-2022	16:00	0.0	SSW
18-May-2022	17:00	0.0	SSW
18-May-2022	18:00	0.0	SSW
18-May-2022	19:00	0.0	
18-May-2022	20:00	0.0	SSW
18-May-2022	21:00	0.0	WSW
18-May-2022	22:00	0.0	SSW
IU-IVIAV-ZUZZ	22.00	0.0	3377

Date	Time	Wind Speed m/s	Direction
19-May-2022	00:00	0.0	SSW
19-May-2022	01:00	0.0	SSW
19-May-2022	02:00	0.4	SSW
19-May-2022	03:00	0.0	SW
19-May-2022	04:00	0.0	NE
19-May-2022	05:00	0.4	NE
19-May-2022	06:00	1.3	NE
19-May-2022	07:00	0.9	NE
19-May-2022	08:00	0.9	NE
19-May-2022	09:00	1.3	NE
19-May-2022	10:00	0.9	NE
19-May-2022	11:00	0.4	NE
19-May-2022	12:00	0.4	WSW
19-May-2022	13:00	0.4	W
19-May-2022	14:00	0.0	W
19-May-2022	15:00	0.0	
19-May-2022	16:00	0.0	
19-May-2022	17:00	0.0	
19-May-2022	18:00	0.0	
19-May-2022	19:00	0.0	
19-May-2022	20:00	0.0	
19-May-2022	21:00	0.0	
19-May-2022	22:00	0.0	
19-May-2022	23:00	0.0	
20-May-2022	00:00	0.0	W
20-May-2022 20-May-2022	01:00	0.0	W
20-May-2022 20-May-2022	02:00	0.0	VV
20-May-2022 20-May-2022	03:00	0.0	NE
20-May-2022 20-May-2022	04:00	0.0	NE NE
20-May-2022 20-May-2022	05:00	0.0	NE NE
20-May-2022 20-May-2022	06:00	0.0	NE NE
20-May-2022 20-May-2022	07:00	0.0	WSW
20-May-2022 20-May-2022	08:00	0.0	WNW
20-May-2022 20-May-2022	09:00	0.4	WSW
20-May-2022 20-May-2022	10:00	0.4	SW
20-May-2022	11:00	0.4	SSW
20-May-2022 20-May-2022	12:00	0.4	SW
20-May-2022 20-May-2022	13:00	0.4	SSW
20-May-2022 20-May-2022	14:00	0.4	SSW
	15:00	0.4	SW
20-May-2022		0.4	SSW
20-May-2022	16:00 17:00	0.4	SSW
20-May-2022		_	
20-May-2022	18:00	0.4	SSW
20-May-2022	19:00	0.9	SW
20-May-2022	20:00	0.4	SW
20-May-2022	21:00	1.8	SSW
20-May-2022	22:00	0.9	SW
20-May-2022	23:00	0.4	SW
21-May-2022	00:00	0.9	SSW
21-May-2022	01:00	0.9	SW
21-May-2022	02:00	1.3	SW
21-May-2022	03:00	0.9	SW
21-May-2022	04:00	0.9	SW
21-May-2022	05:00	0.9	SW

Date	Time	Wind Speed m/s	Direction
21-May-2022	06:00	0.9	WSW
21-May-2022	07:00	0.9	SSW
21-May-2022	08:00	0.9	SSW
21-May-2022	09:00	1.3	SW
21-May-2022	10:00	0.9	WNW
21-May-2022	11:00	1.3	SW
21-May-2022	12:00	1.3	SSW
21-May-2022	13:00	0.9	SW
21-May-2022	14:00	0.9	SSW
21-May-2022	15:00	0.9	SW
21-May-2022	16:00	1.8	SSW
21-May-2022	17:00	1.3	SW
21-May-2022	18:00	0.9	SSW
21-May-2022	19:00	1.8	SSW
21-May-2022	20:00	1.3	SW
21-May-2022	21:00	0.9	SW
21-May-2022	22:00	0.4	SW
21-May-2022	23:00	0.4	SSW
22-May-2022	00:00	0.4	SSW
22-May-2022	01:00	0.9	SSW
22-May-2022	02:00	0.9	SSW
22-May-2022	03:00	0.9	SW
22-May-2022	04:00	1.3	WSW
22-May-2022	05:00	1.3	SW
22-May-2022	06:00	1.3	SW
22-May-2022	07:00	0.9	SW
22-May-2022	08:00	0.4	SW
22-May-2022	09:00	0.9	SW
22-May-2022	10:00	0.4	SW
22-May-2022	11:00	0.4	WSW
22-May-2022	12:00	0.4	SW
22-May-2022	13:00	0.9	SW
22-May-2022	14:00	1.3	SSW
22-May-2022	15:00	0.9	SSW
22-May-2022	16:00	0.4	SSW
22-May-2022	17:00	0.4	SSW
22-May-2022	18:00	0.4	SSW
22-May-2022	19:00	0.9	SSW
22-May-2022 22-May-2022	20:00	0.9	SSW
22-May-2022 22-May-2022	21:00	0.9	SSW
22-May-2022	22:00	0.9	SW
22-May-2022 22-May-2022	23:00	0.4	SSW
23-May-2022	00:00	0.0	SSW
23-May-2022	01:00	0.4	SW
23-May-2022	02:00	1.3	SSW
23-May-2022	03:00	0.9	SW
23-May-2022	03:00	1.3	SW
23-May-2022	05:00	0.9	SSW
23-May-2022	06:00	1.3	SW
23-May-2022	07:00	1.3	SSW
23-May-2022 23-May-2022	08:00	0.9	SSW
23-May-2022 23-May-2022	09:00	0.9	SSW
•	10:00	0.4	WSW
23-May-2022			

Date	Time	Wind Speed m/s	Direction
23-May-2022	12:00	0.4	SW
23-May-2022	13:00	0.4	SSW
23-May-2022	14:00	0.0	SSW
23-May-2022	15:00	0.0	SSW
23-May-2022	16:00	0.0	SSW
23-May-2022	17:00	0.0	WSW
23-May-2022	18:00	0.4	SSW
23-May-2022	19:00	0.0	SSW
23-May-2022	20:00	0.0	SSW
23-May-2022	21:00	0.0	SSW
23-May-2022	22:00	0.0	SSW
23-May-2022	23:00	0.0	SSW
24-May-2022	00:00	0.0	
24-May-2022	01:00	0.0	W
24-May-2022	02:00	0.0	SSW
24-May-2022	03:00	0.0	SW
24-May-2022	04:00	0.0	SSW
24-May-2022	05:00	0.4	SSW
24-May-2022	06:00	0.0	SW
24-May-2022	07:00	0.0	SW
24-May-2022	08:00	0.0	SSE
24-May-2022	09:00	0.4	WNW
24-May-2022	10:00	0.4	WNW
24-May-2022	11:00	0.0	SW
24-May-2022	12:00	0.4	SSW
24-May-2022	13:00	0.0	SW
24-May-2022	14:00	0.0	W
24-May-2022	15:00	0.0	WSW
24-May-2022	16:00	0.0	SW
24-May-2022	17:00	0.0	SSW
24-May-2022	18:00	0.0	SW
24-May-2022	19:00	0.0	
24-May-2022	20:00	0.0	SW
24-May-2022	21:00	0.0	
24-May-2022	22:00	0.0	
24-May-2022	23:00	0.0	
25-May-2022	00:00	0.0	W
25-May-2022	01:00	0.0	SSW
25-May-2022 25-May-2022	02:00	0.0	SW
25-May-2022 25-May-2022	03:00	0.0	SSW
25-May-2022	04:00	0.0	SW
25-May-2022 25-May-2022	05:00	0.0	SW
25-May-2022 25-May-2022		0.9	W
25-May-2022 25-May-2022	06:00 07:00	0.4	SSW
25-May-2022 25-May-2022	08:00	0.4	WNW
25-May-2022 25-May-2022	09:00	0.9	W
-		0.4	WNW
25-May-2022	10:00		SSW
25-May-2022	11:00	0.0	
25-May-2022	12:00	0.0	SSW
25-May-2022	13:00	0.0	SW
25-May-2022	14:00	0.0	W
25-May-2022	15:00	0.0	W
25-May-2022	16:00	0.0	WSW
25-May-2022	17:00	0.0	WSW

Date	Time	Wind Speed m/s	Direction
25-May-2022	18:00	0.0	
25-May-2022	19:00	0.0	
25-May-2022	20:00	0.0	
25-May-2022	21:00	0.4	W
25-May-2022	22:00	0.0	W
25-May-2022	23:00	0.9	W
26-May-2022	00:00	0.4	W
26-May-2022	01:00	0.9	W
26-May-2022	02:00	0.0	WSW
26-May-2022	03:00	0.0	WSW
26-May-2022	04:00	0.0	NNE
26-May-2022	05:00	0.0	NNE
26-May-2022	06:00	0.0	SSW
26-May-2022	07:00	0.0	W
26-May-2022	08:00	0.0	W
26-May-2022	09:00	0.4	W
26-May-2022	10:00	0.0	
26-May-2022	11:00	0.0	SSW
26-May-2022	12:00	0.0	
26-May-2022	13:00	0.0	
26-May-2022	14:00	0.0	SSW
26-May-2022	15:00	0.0	W
26-May-2022	16:00	0.0	W
26-May-2022	17:00	0.0	WSW
26-May-2022	18:00	0.0	WSW
26-May-2022	19:00	0.0	W
26-May-2022	20:00	0.0	
26-May-2022	21:00	0.0	NW
26-May-2022	22:00	0.0	NNE
26-May-2022	23:00	0.0	NNE
27-May-2022	00:00	0.0	NNE
27-May-2022	01:00	0.0	NNE
27-May-2022	02:00	0.0	NNE
27-May-2022	03:00	0.0	NNE
27-May-2022	04:00	0.4	NNE
27-May-2022	05:00	0.9	NNE
27-May-2022	06:00	0.9	NNE
27-May-2022	07:00	0.9	NNE
27-May-2022 27-May-2022	08:00	0.9	NNE
27-May-2022 27-May-2022	09:00	0.9	NNE
27-May-2022	10:00	0.9	NNE
27-May-2022 27-May-2022	11:00	0.9	NNE
27-May-2022	12:00	0.9	NNE
27-May-2022	13:00	0.0	N N
27-May-2022	14:00	0.0	NNW
27-May-2022	15:00	0.0	NNW
27-May-2022	16:00	0.0	WNW
	17:00		
27-May-2022		0.0	WNW
27-May-2022	18:00	0.0	
27-May-2022	19:00	0.0	WNW
27-May-2022	20:00	0.0	NE NNE
27-May-2022	21:00	0.0	NNE
27-May-2022	22:00	0.0	NNE
27-May-2022 27-May-2022	23:00	0.0	NNE

Date	Time	Wind Speed m/s	Direction
28-May-2022	00:00	0.0	NNE
28-May-2022	01:00	0.0	NW
28-May-2022	02:00	0.0	W
28-May-2022	03:00	0.4	NNE
28-May-2022	04:00	1.3	NE
28-May-2022	05:00	0.4	NNE
28-May-2022	06:00	0.9	NE
28-May-2022	07:00	0.4	NNE
28-May-2022	08:00	0.4	NE
28-May-2022	09:00	0.9	NE
28-May-2022	10:00	0.4	NE
28-May-2022	11:00	0.4	NE
28-May-2022	12:00	0.0	NE
28-May-2022	13:00	0.0	WNW
28-May-2022	14:00	0.0	W
28-May-2022	15:00	0.0	WSW
28-May-2022	16:00	0.0	SW
28-May-2022	17:00	0.0	WSW
28-May-2022	18:00	0.0	
28-May-2022	19:00	0.0	
28-May-2022	20:00	0.0	WSW
28-May-2022	21:00	0.0	
28-May-2022	22:00	0.0	W
28-May-2022	23:00	0.0	W
29-May-2022	00:00	0.0	W
29-May-2022	01:00	0.0	SSW
29-May-2022	02:00	0.0	SSW
29-May-2022	03:00	0.0	NE NE
29-May-2022	04:00	0.0	
29-May-2022	05:00	0.0	ESE
29-May-2022	06:00	0.0	SSW
29-May-2022	07:00	0.0	WSW
29-May-2022	08:00	0.4	SW
29-May-2022	09:00	0.4	WSW
29-May-2022	10:00	0.0	WSW
29-May-2022	11:00	0.0	WSW
29-May-2022	12:00	0.0	SW
29-May-2022	13:00	0.0	SW
29-May-2022	14:00	0.0	SW
29-May-2022	15:00	0.0	WSW
29-May-2022	16:00	0.0	
29-May-2022 29-May-2022	17:00	0.0	
29-May-2022	18:00	0.0	W
29-May-2022 29-May-2022	19:00	0.0	W
29-May-2022 29-May-2022	20:00	0.0	W
29-May-2022	21:00	0.0	W
29-May-2022 29-May-2022	22:00	0.0	
29-May-2022	23:00	0.0	
30-May-2022	00:00	0.0	W
30-May-2022 30-May-2022	01:00	0.9	W
30-May-2022	02:00	0.9	WSW
30-May-2022 30-May-2022	03:00	0.0	SSW
30-May-2022	04:00	0.0	SSW
30-May-2022			NE
30-iviay-2022	05:00	0.9	INC

Date	Time	Wind Speed m/s	Direction
30-May-2022	06:00	1.8	NE
30-May-2022	07:00	0.4	NE
30-May-2022	08:00	0.4	NE
30-May-2022	09:00	0.0	NNE
30-May-2022	10:00	0.0	NE
30-May-2022	11:00	0.0	NE
30-May-2022	12:00	0.0	N
30-May-2022	13:00	0.0	WNW
30-May-2022	14:00	0.0	
30-May-2022	15:00	0.0	WNW
30-May-2022	16:00	0.0	W
30-May-2022	17:00	0.4	W
30-May-2022	18:00	0.4	W
30-May-2022	19:00	0.0	
30-May-2022	20:00	0.0	WSW
30-May-2022	21:00	0.0	
30-May-2022	22:00	0.4	W
30-May-2022	23:00	0.9	W
31-May-2022	00:00	0.0	W
31-May-2022	01:00	0.0	W
31-May-2022	02:00	0.0	WSW
31-May-2022	03:00	0.4	NE
31-May-2022	04:00	0.4	NNE
31-May-2022	05:00	0.9	NE
31-May-2022	06:00	0.9	NNE
31-May-2022	07:00	0.4	NNE
31-May-2022	08:00	0.0	NE
31-May-2022	09:00	0.0	NNE
31-May-2022	10:00	0.0	NNE
31-May-2022	11:00	0.0	NW
31-May-2022	12:00	0.0	NE
31-May-2022	13:00	0.0	NNE
31-May-2022	14:00	0.0	NNE
31-May-2022	15:00	0.0	
31-May-2022	16:00	0.0	
31-May-2022	17:00	0.0	N
31-May-2022	18:00	0.0	NW
31-May-2022	19:00	0.0	
31-May-2022	20:00	0.0	NE
31-May-2022	21:00	0.0	WNW
31-May-2022	22:00	0.0	WNW
31-May-2022	23:00	0.0	

APPENDIX J EVENT ACTION PLANS

Appendix J Event / Action Plan for Air Quality

	ACTION				
EVENT	ET	IEC	ER	CONTRACTOR	
ACTION LEVEL					
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC,ER and Contractor; Repeat measurement to confirm finding; and Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	1. Notify Contractor.	 Identify source, investigate the causes of exceedance and propose remedial measures Rectify any unacceptable practice and implement remedial measures; and Amend working methods agreed with ER if appropriate. 	
2. Exceedance for two or more consecutive samples	Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform IEC,ER and Contractor; 3. Advise the ER and Contractor on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC, ER and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and ER; and 8. If exceedance stops, cease additional monitoring.	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET and ER on the effectiveness of the proposed remedial measures; and Supervise Implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; and 3. Supervise and ensure remedial measures properly implemented.	 Identify source, investigate the causes of exceedance and propose remedial measures Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate. 	

LIMIT LEVEL				
1.Exceedance for one sample	Identify source, investigate the causes of exceedanceand propose remedial measures; 2. Inform ER, Contractor, IEC and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measures; Advise the ER and ET on the effectiveness of the proposed 	Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented.	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Take immediate action to avoid further exceedance; 3. Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification;
		remedial measures; 5. Supervise implementation of remedial measures.		4. Implement the agreed proposals;and5. Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise and ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until

Event / Action Plan for Construction Noise

EVENT	T ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level	Notify IEC, ER and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the Contractor and formulate remedial measures; 5. Increase monitoring frequency to check mitigation effectiveness.	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

			Action	
Event	ET	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss remedial measures with IEC and Contractor and ER. 	Discuss with ET, ER and Contractor on the implemented mitigation measures; Review proposals on remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	 Discuss with IEC, ET and Contractor on the implemented mitigation measures; Make agreement on the remedial measures to be implemented; Supervise the implementation of agreed remedial measures. 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and Implement the agreed mitigation measures.
Action level being exceeded by two or more consecutive sampling days	Repeat in-situ measurement on next day of exceedance to confirm findings; 2. Inform IEC, contractor and ER; 3. Check monitoring data, all plant, equipment and Contractor's working methods; 4. Discuss remedial measures with IEC, contractor and ER 5. Ensure remedial measures are implemented	Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	Discuss with ET, IEC and Contractor on the proposed mitigation measures; Make agreement on the remedial measures to be implemented; and Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures.	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and Implement the agreed mitigation measures.
Limit level being exceeded by one	Repeat measurement on next day of exceedance to confirm findings;	Discuss with ET, Contractor and ER on the implemented mitigation	Discuss with ET, IEC and Contractor on the implemented remedial	I. Identify source(s) of impact; Inform the ER and confirm notification of

			Action	
Event	ET	IEC	ER	Contractor
sampling day	2. Inform IEC, contractor and ER;	measures;	measures;	the non-compliance in writing;
	 Rectify unacceptable practice; Check monitoring data, all plant, equipment and Contractor's working methods; Consider changes of working methods; Discuss mitigation measures with IEC, ER and Contractor; and Ensure the agreed remedial measures 	2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	 Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; and Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	 3. Rectify unacceptable practice; 4. Check all plant and equipment and consider changes of working methods; 5. Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and 6. Implement the agreed remedial measures.
Limit level being exceeded by two or more consecutive sampling days	are implemented Inform IEC, contractor and ER; 2. Check monitoring data, all plant, equipment and Contractor's working methods; 3. Discuss mitigation measures with IEC, ER and Contractor; and 4. Ensure mitigation measures are implemented; and 5. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days	1. Discuss with ET, Contractor and ER on the implemented mitigation measures; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and 3. Review and advise the ET and ER on the effectiveness of the implemented mitigation measures.	measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the remedial measures to be implemented; 4. Discuss with ET and IEC on the effectiveness of the implemented mitigation measures; and	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and Implement the agreed remedial measures. As directed by the ER, to slow down or stop all or part of the dredging activities until no exceedance of Limit level.

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, ER – Engineer's Representative

Each step of actions required shall be implemented within 1 working day unless otherwise specified or agreed with EPD.

APPENDIX K SUMMARY OF EXCEEDANCE

Appendix K Exceedance Report

(A) Exceedance Report for Air Quality

Environmental Monitoring	Parameter	No. of non-project related Exceedance Active Action Limit Action		No. of Exc related Constru Activitie Proj	to the uction s of the
				Action Level	Limit Level
Air Quality	1-hr TSP	0	0	0	0
	24-hr TSP	0	0	0	0

(B) Exceedance Report for Construction Noise

Environmental Monitoring	Parameter		n-project xceedance	No. of Exc related Constr Activitie Proj	to the uction s of the
		Action Level	Limit Level	Action Level	Limit Level
Noise	L _{eq} (30 min.) dB(A)	0	0	0	0

(C) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of non-project related Exceedance		No. of Exceedance related to the Construction Activities of the Project	
		Action Level	Limit Level	Action Level	Limit Level
	Dissolved Oxygen (DO)	0	0	0	0
Water Quality	Turbidity	0	0	0	0
	Suspended Solids (SS)	0	0	0	0

APPENDIX L SITE AUDIT SUMMARY

Contract No. YL/2020/01 - Development of Lok Ma Chau

Loop: Main Works Package 1 – Contract 1 Site Formation

and Infrastructure Works inside Lok Ma Chau Loop and

Western Connection Road Phase 1

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220504
Date	4 May 2022 (Wednesday)
Time	14:00 – 14:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	
Ref. No.	Remarks/Observations	Related Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220427), no major environmental deficiency were identified during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tun	4 May 2022
Checked by	Dr. Priscilla Choy	WF	4 May 2022
		,	

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220511
Date	11 May 2022 (Wednesday)
Time	9:30 – 10:15

	Related
Non-Compliance	Item No.
None identified	-
	Related
	Item No.
No environmental deficiency was identified during site inspection.	
C. Noise	
No environmental deficiency was identified during site inspection.	
D. Water Quality	
Provide sand bag bund to protect the nullah at TAR1.	D4
F Wasto / Chomical Management	
No environmental deficiency was identified during site inspection.	
1 to the months deficiency was investigated and map of the map of	
F. Land Contamination	
No environmental deficiency was identified during site inspection.	
G. Landscape and Visual	
No environmental deficiency was identified during site inspection.	
H. Ecology	
Provide sand bag bund to protect the nullah at TAR1.	H14
I. Fisheries	
No environmental deficiency was identified during site inspection.	
J. Permits/Licences	
No environmental deficiency was identified during site inspection.	
K. Others	
• Follow-up on previous audit section (Ref. No.: 220504), no major environmental deficiency were identified during the site inspection	
	Remarks/Observations B. Air Quality No environmental deficiency was identified during site inspection. C. Noise No environmental deficiency was identified during site inspection. D. Water Quality Provide sand bag bund to protect the nullah at TAR1. E. Waste / Chemical Management No environmental deficiency was identified during site inspection. F. Land Contamination No environmental deficiency was identified during site inspection. G. Landscape and Visual No environmental deficiency was identified during site inspection. H. Ecology Provide sand bag bund to protect the nullah at TAR1. I. Fisheries No environmental deficiency was identified during site inspection. J. Permits/Licences No environmental deficiency was identified during site inspection.

	Name	Signature	Date
Recorded by	Ivy Tam	Lun	11 May 2022
Checked by	Dr. Priscilla Choy	WF	11 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220518
Date	18 May 2022 (Wednesday)
Time	9:00 – 9:45

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. W. L. O. P.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	1 1/0 chanding deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	• 140 charlonnental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220511), all environmental deficiencies were	
	rectified by the contractor.	

	Name	Signature	Date
Recorded by	Ivy Tam	Luy	18 May 2022
Checked by	Dr. Priscilla Choy	WIT	18 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220525
Date	25 May 2022 (Wednesday)
Time	14:00 – 14:50

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220518), no major environmental deficiency was identified during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Lin	25 May 2022
Checked by	Dr. Priscilla Choy	WF	25 May 2022

Contract No. YL/2020/02 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 2 Western
Connection Road Phase 2, Connection Roads to Fanling /
San Tin Highway and Direct Road Link Phase 1

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220504
Date	4 May 2022 (Wednesday)
Time	9:15 – 11:30

Ref. No.	Non Compliance	Related Item No.
Kei. No.	Non-Compliance None identified	item No.
-	None identified	Related
Ref. No.	Remarks/Observations	Item No.
ICI. IVO.	B. Air Quality	Item 10.
	No environmental deficiency was identified during site inspection.	
	1 To environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
220504-R01	The floating rubbish at the Nullah at LCS should be cleared to avoid flooding.	D8
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220427), all environmental deficiencies	
	were rectified/ improved by the contractor.	

	Name	Signature	Date
Recorded by	Ivy Tam	TNY	4 May 2022
Checked by	Dr. Priscilla Choy	WF	4 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 - Environmental Team

Contract No. YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220511
Date	11 May 2022 (Wednesday)
Time	14:00 – 15:00

D.C.N.	No. Complement	Related
Ref. No.	Non-Compliance None identified	Item No.
-	None identified	Related
Ref. No.	Remarks/Observations	Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
220511-O01	• Muddy surface runoff was observed discharging out from the GI works at Fu Tai Site Area. The Contractor was reminded to provide cut-off drain to direct off site water around the site.	D2, 4, 5
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220504), all environmental deficiencies were rectified/ improved by the contractor.	

	Name	Signature	Date
Recorded by	Ivy Tam	Ly	11 May 2022
Checked by	Dr. Priscilla Choy	WF	11 May 2022
		1	

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220518
Date	18 May 2022 (Wednesday)
Time	10:00 – 11:20

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220511), all environmental deficiencies were rectified/ improved by the contractor.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tun	18 May 2022
Checked by	Dr. Priscilla Choy	WX	18 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

Weekly Site Inspection Record Summary

Checklist Reference Number	220525
Date	25 May 2022 (Wednesday)
Time	9:30 – 11:25

D 4.11		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
220525-R01	• Clear the construction materials within the tree protection zone and provide the fencing surrounding the retain trees at LCS.	G1
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220518), no major environmental deficiency was identified during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Ly	25 May 2022
Checked by	Dr. Priscilla Choy	WF	25 May 2022

Contract No. YL/2021/01 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 3 Direct Road
Link Phase 2

Development of Lok Ma Chau Loop: Main Works Package 1 - Environmental Team

Contract No. YL/2021/01 - Direct Road Link Phase 2

Weekly Site Inspection Record Summary

Checklist Reference Number	220516	
Date	16 May 2022 (Monday)	
Time	14:00 – 14:45	

D. C.N.	N. G. V.	Related
Ref. No.	Non-Compliance None identified	Item No
-	None Identified	
Dof No	Remarks/Observations	Related
Ref. No.		Item No
	B. Air Quality No environmental deficiency was identified during site inspection.	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• N/A	

	Name	Signature	Date
Recorded by	Adrian Lam	1	18 May 2022
Checked by	Dr. Priscilla Choy	LI	18 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team

Contract No. YL/2021/01 – Direct Road Link Phase 2

Weekly Site Inspection Record Summary

Checklist Reference Number	220523
Date	23 May 2022 (Monday)
Time	14:00 – 14:35

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Water Quality	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Land Contamination	
	No environmental deficiency was identified during site inspection.	
	G. Landscape and Visual	
	No environmental deficiency was identified during site inspection.	
	H. Ecology	
	No environmental deficiency was identified during site inspection.	
	I. Fisheries	
	No environmental deficiency was identified during site inspection.	
	J. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	K. Others	
	• Follow-up on previous audit section (Ref. No.: 220516), no major environmental	
	deficiency was identif	

	Name	Signature	Date
Recorded by	Ivy Tam	Lvy	23 May 2022
Checked by	Dr. Priscilla Choy	WT	23 May 2022

Development of Lok Ma Chau Loop: Main Works Package 1 - Environmental Team

Contract No. YL/2021/01 – Direct Road Link Phase 2

Weekly Site Inspection Record Summary

Checklist Reference Number	220530
Date	30 May 2022 (Monday)
Time	14:00 – 14:35

D-C N-	Non-Connellino	Related		
Ref. No.	Non-Compliance None identified	Item No		
-	None identified	Doloto		
Ref. No.	Remarks/Observations	Relate Item N		
Kel. No.	B. Air Quality	Item N		
	No environmental deficiency was identified during site inspection.			
	No environmental deficiency was identified during site hispection.			
	C. Noise			
	No environmental deficiency was identified during site inspection.			
	D. Water Quality			
	No environmental deficiency was identified during site inspection.			
	E. Waste / Chemical Management			
	No environmental deficiency was identified during site inspection.			
	• No chynolinicital deficiency was identified during site hispection.			
	F. Land Contamination			
	No environmental deficiency was identified during site inspection.			
	G. Landscape and Visual			
	No environmental deficiency was identified during site inspection.			
	H. Ecology			
	No environmental deficiency was identified during site inspection.			
	I. Fisheries			
	No environmental deficiency was identified during site inspection.			
	J. Permits/Licences			
	No environmental deficiency was identified during site inspection.			
	K. Others			
7000	• Follow-up on previous audit section (Ref. No.: 220523), no major environmental			
	deficiency was identified during site inspection.			

	Name	Signature	Date
Recorded by	Adrian Lam		1 June 2022
Checked by	Dr. Priscilla Choy	WZ	1 June 2022

APPENDIX M ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
Construct	ion Dust li	npact					
S3.8	D1-	Mitigation measures in form of regular watering under a good site	Minimize dust impact at	Contractor	All construction	Construction	۸
	DP1/D	practice should be adopted. Watering once per hour on exposed worksites and haul road is proposed to achieve dust removal	the nearby sensitive		sites	stage	
	P2	efficiency of 92.1%. While the above watering frequencies are to	receivers				
		be followed, the extent of watering may vary depending on actual					
		site conditions but should be sufficient to maintain an equivalent intensity of no less than 1.6 L/m2 to achieve the respective dust					
		removal efficiencies					
S3.8	D2-	The contractor shall follow the procedures and requirements	Reduce air pollution	Contractor	All construction	Construction	
	DP1/D	given in the Air Pollution Control (Construction Dust) Regulation	emission from		sites	stage	
	P2	All vehicles shall be shut down in intermittent use	construction vehicles and				۸
		· Only well-maintained plant should be operated on-site to	plants				۸
		avoid emission of dark smoke					
		Valid No-Road Mobile Machinery (NRMM) labels should be					۸
		provided to regulated machines					
S3.8	D2-	Following dust suppression measures should also be	Minimize dust impact at	Contractor	All construction	Construction	۸
	DP1/D	incorporated by the Contractor to control the dust nuisance throughout the construction Phase	the nearby sensitive		sites	stage	
	P2	Any excavated or stockpile of dusty material should be	receivers				۸
		covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed					
		or backfilled or reinstated where practicable within 24 hours					
		of the excavation or unloading;					^
		 Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface 					
		of roads;					
		A stockpile of dusty material should not be extend beyond					۸
		the pedestrian barriers, fencing or traffic cones; The load of dusty materials on a vehicle leaving a					
		construction site should be covered entirely by impervious					۸
		sheeting to ensure that the dusty material do not leak from					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		the vehicle; Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials; Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; Any skip hoist for material transport should be totally enclosed by impervious sheeting;	Concerns to address	measures?			^ ^
		 Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by 					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		 impervious sheeting or placed in an area sheltered on the top and the 3 sides; Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked 					N/A
		 with the material filling line and no overfilling is allowed; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air 					N/A
		 pollution control system; and Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies. 					۸
S3.8	D4-	Implement regular dust monitoring under EM&A programme	Monitoring of dust impact	Contractor	Selected	Construction	۸
	DP1/D	during the construction stage.			representative	stage	
	P2				dust		
					monitoring		
					station		
Construct	tion Noise	Impact					
S4.8	N-CP1-	Implement the following good site management practices:	Control construction	Contractor	All construction	Construction	
	DP1/D	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction	airborne		sites	stage	۸
	P2	 programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 	noise				۸
		 Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction 					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		 equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 					۸
S4.8	N-CP2-	Install temporary site hoarding (approx 2.4m high) located on the site boundaries between noisy construction activities and NSRs.	Reduce the construction	Contractor	All construction	Construction	۸
	DP1/D	The conditions of the hoardings shall be properly maintained	noise levels at low-level		sites where	phase	
	P2	throughout the construction period.	zone of NSRs through		practicable		
			partial screening.				
S4.8	N-CP3-	Install movable noise barriers and full enclosure, screen the noisy	Screen the noisy plant	Contractor	All construction	Construction	۸
	DP1/D	plants including air compressor and generator.	items to be used at all		sites where	phase	
	P2		construction sites		practicable		
S4.8	N-CP4-	Use of "Quiet" Plant and Working Methods	Reduce the noise levels	Contractor	All construction	Construction	۸
	DP1/D		of plant items		sites where	phase	
	P2				practicable		
S4.8	N-CP5-	Sequencing operation of construction plants where practicable.	Operate sequentially	Contractor	All construction	Construction	۸
	DP1/D		within the same work site		sites where	phase	
	P2		to reduce the		practicable		
			construction airborne				
			noise				
S4.8	N-CP6-	Setting the concrete lorry mixer at around 25m away from the	Reduce the noise levels	Contractor	Sections with	Construction	N/A
	DP2	existing NSRs along Ha Wan Tsuen Road and Lok Ma Chau Road	from concrete lorry mixer		NSRs along Ha	phase	
					Wan Tsuen		
					Road and Lok		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
					Ma Chau Road		
S4.8	N-CP8-	Provide temporary noise barrier during construction phase.	Control airborne noise	Contractor	Refer to Figure	Construction	۸
	DP2		from construction access		4-8 of the EIA	phase	
			road traffic		report		
S4.8	N-CP7-	Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	۸
	DP2/N-		noise levels at the		representative	phase	
	CP6-		selected representative		noise monitoring		
	DP1		locations		station		
Water Qua	ality Impac	t (Construction Phase)					
S5.7	W1- CP- DP1/D P2	Construction Runoff and Site Drainage In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), construction phase mitigation measures, where appropriate, should include the following: • Update and implementation of Stormwater Pollution Control Plan • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction. • Diversion of natural stormwater should be provided as far	Minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where practicable	Construction phase	*

Ref as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a sit/sediment trap. The sit/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient sit removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.	EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.		Log		recommended	implement	measures	Implement the	Status
as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.		Ref		Measures & Main	the		measures?	
as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.				Concerns to address	measures?			
should prevent runoff going through site surface, construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silf/sediment trap. The silf/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			as possible. The design of temporary on site drainage		model of t			
construction machinery and equipments in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silf/sediment trap. The silf/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a sit/sediment trap. The sit/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient sit removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/sit traps should be undertaken by the contractor prior to the commencement of construction.			-					
are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
multiple inputs from a variety of sources and suited to applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
applications where the influent is pumped. The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			The system capacity shall be flexible and able to handle					
The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			multiple inputs from a variety of sources and suited to					
implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			applications where the influent is pumped.					
Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			The dikes or embankments for flood protection should be					
runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			implemented around the boundaries of earthwork areas.					^
a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			Temporary ditches should be provided to facilitate the					
incorporated in the permanent drainage channels to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			runoff discharge into an appropriate watercourse, through					
enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			a silt/sediment trap. The silt/sediment traps should be					
The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.								
based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			·					
1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.			_					*
undertaken by the contractor prior to the commencement of construction.			1					
of construction.								
One-tweeting consider the cold by an experience of the cold incidence								
Construction works should be programmed to minimize writing the rainy account (April)			·					
surface excavation works during the rainy seasons (April								۸
to September). All exposed earth areas should be completed and vegetated as soon as possible after								
earthworks have been completed. If excavation of soil								
cannot be avoided during the rainy season, or at			·					
any time of year when rainstorms are likely, exposed slope								
surfaces should be covered by tarpaulin or other means.								

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		All drainage facilities and erosion and sediment control					
		structures should be regularly inspected and maintained to					
		ensure proper and efficient operation at all times and					
		particularly following rainstorms. Deposited silt and grit					*
		should be removed regularly and disposed of by spreading					
		evenly over stable, vegetated areas.					
		Measures should be taken to minimise the ingress of site					
		drainage into excavations. If the excavation of trenches in					
		wet periods is necessary, it should be dug and backfilled					*
		in short sections wherever practicable. Water pumped out					
		from trenches or foundation excavations should be					
		discharged into storm drains via silt removal facilities.					
		All open stockpiles of construction materials (for example,					
		aggregates, sand and fill material) of should be covered					*
		with tarpaulin or similar fabric during rainstorms. Measures					
		should be taken to prevent the washing away of					
		construction materials, soil, silt or debris into any drainage					
		system.					
		Manholes (including newly constructed ones) should					
		always be adequately covered and temporarily sealed so					٨
		as to prevent silt, construction materials or debris being					
		washed into the drainage system and storm runoff being directed into foul sewers.					
		Precautions to be taken at any time of year when					
		rainstorms are likely, actions to be taken when a rainstorm					
		is imminent or forecasted, and actions to be taken during					*
		or after rainstorms are summarized in Appendix A2 of					
		ProPECC PN 1/94. Particular attention should be paid to					
		the control of silty surface runoff during storm events.					
		All vehicles and plant should be cleaned before leaving a					
		construction site to ensure no earth, mud, debris and the					٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheelwash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain. Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the meander, wetlands and fish ponds.					^

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
S5.7	W3-	Groundwater from Contaminated Area	Minimize groundwater	Contractor	Areas where	Construction	
	CP-	No mitigation measure is required for groundwater	quality impact from		contamination is	phase	
	DP1/D P2	 treatment in LMC Loop. Additional investigation is required to identify if contaminated groundwater is found. 	contaminated area		found.		N/A
		If the investigation results indicated that the groundwater					N/A
		to be generated from construction works would be contaminated, the contaminated groundwater should be					N/A
		either discharged into recharged wells, or properly treated in compliance with the requirements of Technical					14/71
		Memorandum on Standards for Effluents Discharged into Drainage on Sewerage Systems, Inland and Coastal Waters.					
		If recharged well method were used, the groundwater guality in the repharged well should not be effected by					N/A
		quality in the recharged well should not be affected by recharging operation, i.e. the pollution levels of the recharged groundwater should not be higher than that in					
		the recharging wells. • If treatment and discharge method were used, the design					
		of wastewater treatment facilities, such as active carbon					N/A
		and petrol interceptor, should be submitted to the EPD and					
		a discharge license should be obtained under the WPCO through the Regional Offices of EPD.					
S5.7	W3-	Sewage from Workforce	Minimize water quality	Contractor	All construction	Construction	
	CP-	Portable chemical toilets and sewage holding tanks should	from sewage effluent		sites where	phase	۸
	DP1/D	be provided for handling the construction sewage	· ·		practicable		
	P2	generated by the workforce. A licensed contractor should			F		
		be employed to provide appropriate and adequate portable					
		toilets to cater 0.15m3/day/employed populations and be responsible for appropriate disposal and maintenance.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		 Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. Regular environmental audit on the construction site should be conducted in order to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site. 					^
S5.7	W4- CP- DP1	In order to prevent sediment transport during riverbank works, deployment of silt curtain should be implemented, especially when construction works encroach or occur in close distance to water body. It is recommended to carry out all the riverbank works within a cofferdam or diaphragm wall. Water quality of the Shenzhen River and the meander would be monitored to ensure effectiveness of the implemented mitigation measures.	Minimize water quality impact from riverbank works	Contractor	Riverbank works	Construction Phase	^
S5.7	W1- CP-BR	Bio-remediation in Shenzhen River Water quality monitoring and audit is recommended to ensure that the proposed bio-remediation operation would not result in adverse water quality impact. Details of the water quality monitoring programme are presented in the EM&A Manual. If unacceptable water quality impact in the receiving water is recorded, additional measures such as slowing down, or rescheduling of works should be implemented as necessary.	Minimize water quality impact from bio- remediation of Shenzhen River	Contractor	Shenzhen River where practicable	Construction phase	N/A
S5.7	W5-	Construction of Bridge Crossing Good site management as stipulated in ProPECC PN1/94	Minimize water quality	Contractor	Construction	Construction	N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
	CP- DP2	 should be fully implemented to avoid polluted liquid or solid wastes from falling into the WSRs. All the fishponds will be drained and no fishpond will be affected by bridge crossing. In the meander, cofferdam or diaphragm walls should be deployed for protecting fish ponds or nearby rivers during bridge pier construction and or road widening work at fishponds. For the low level viaducts crossing the small streams at Ma Tso Lung, Ping Hang and channel near Lung Hau Road, precast structures will be used such that there will be no construction work in the water streams, and thus, to avoid direct water quality impacts. 	impact from construction of bridge crossing		sites for bridge crossing where practicable	phase	N/A N/A
	nagement	(Construction Waste)					I
S7.6	WM1- DP1/D P2	Waste Reduction Measures Waste reduction is best achieved at the planning and design phase, as well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve reduction:	Reduce waste generation	Contractor	All construction sites where practicable	Construction phase	
		 Segregate and store different types of waste in different containers, skip or stockpiles to enhance reuse or recycling of materials and their proper disposal; 					۸
		 proper storage and site practices to minimize the potential for damage and contamination of construction materials; plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; 					^
		sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		 (i.e. soil, broken concrete, metal etc.); provide training to workers on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling. 					۸
S7.6	WM2-	Prepare Waste Management Plan and submit to the Engineer for approval	Minimize waste	Contractor	All construction	Construction	۸
	DP1/D	арргочаг	generation during		sites	phase	
	P2		construction				
S7.6	WM2-	Good Site Practice	Minimize waste	Contractor	All construction	Construction	
	DP1/D P2	The following good site practices are recommended throughout the construction activities: Nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated	generation during construction		sites	phase	۸
		 at the site; Training of site personnel in site cleanliness, appropriate waste management procedures and concepts of waste reduction, reuse and recycling; Provision of sufficient waste disposal points and regular collection for disposal; 					٨
		 Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; 					^
S7.6	WM4-	Storage of Waste	Minimize waste	Contractor	All construction	Construction	
	DP1/D P2	The following recommendation should be implemented to minimize the impacts: • Waste such as soil should be handled and stored well to	generation during construction		sites	phase	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		 ensuresecure containment; Stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; Different locations should be designated to stockpile each material to enhance reuse; 					٨
S7.6	WM5-	Collection and Transportation of Waste	Minimize waste impact	Contractor	All construction	Construction	
	DP1/D P2	The following recommendation should be implemented to minimize the	from storage		sites	phase	
		impacts:Remove waste in timely manner;					٨
		Employ the trucks with cover or enclosed containers for waste transportation;					۸
		 Obtain relevant waste disposal permits from the appropriate authorities; and Disposal of waste should be done at licensed waste 					^
		disposal facilities.					^
S7.6	WM6-	Excavated and C&D Material	Minimize waste impacts	Contractor	All construction	Construction	
	DP1/D P2	Wherever practicable, C&D materials should be segregated from other wastes to avoid contamination and ensure acceptability at Public Fill Reception Facilities areas or reclamation sites. The following mitigation measures should be implemented in handling	from excavated and C&D material		sites	phase	
		the excavated and C&D materials: • Maintain temporary stockpiles and reuse excavated fill material for backfilling;					۸
		Carry out on-site sorting;					۸
		Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; and					^
		Implement a trip-ticket system for each works contract to					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		ensure that the disposal of C&D materials are properly documented and verified. The recommended C&D materials handling should include:					
		On-site Sorting of C&D Materials					^
		Reuse of C&D Materials					^
		Use of Standard Formwork and Planning of Construction					^
		Materials Purchasing					
		Provision of Wheel Wash Facilities					^
		Details refer to Section 7.6.1.4 of the EIA report.					
S7.6	WM7-	Contaminated Soil	Remediate contaminated	Contractor	All construction	Construction	
	DP1/D P2	As a precaution, it is recommended that standard good site practice should be implemented during the construction phase to minimize any potential exposure to contaminated soils or groundwater. The details of mitigation measures to minimize the potential environmental implications arising from the handling of contaminated materials refer to Land Contamination Section.	soil		sites where applicable	phase	N/A
S7.6	WM8-	Chemical Waste	Control the chemical	Contractor	All construction	Construction	
	DP1/D	If chemical wastes are produced at the construction site, the	waste and ensure proper		sites	phase	۸
	P2	Contractors should register with EPD as chemical waste	storage, handling and				
		producers. Chemical wastes should be stored in	disposal				
		appropriate containers and collected by a licensed chemical					
		waste contractor. Chemical wastes (e.g. spent lubricant oil)					
		should be recycled at an appropriate facility as far as					
		possible, while the chemical waste that cannot be recycled					
		should be disposed of at either the Chemical Waste					
		Treatment Centre, or another licensed facility, in					

EIA Ref.	EM&A Log	Recommended Mitigation Measures	Objectives of the recommended	Who to	Location of the measures	When to	Implementation Status
	Ref		Measures & Main	implement the	measures	Implement the measures?	Status
	Kei					illeasures?	
		'' '' W (B: 100 : 1 W ()	Concerns to address	measures?			
		accordance with the Waste Disposal (Chemical Waste)					
		(General) Regulation.					
S7.6	WM9-	General Waste	Minimize production of	Contractor	All construction	Construction	
	DP1/D	General refuse should be stored in enclosed bins	the general refuse and		sites	phase	^
	P2	separately from construction and chemical wastes.	avoid odour, pest and				
		Recycling bins should also be placed to encourage	litter impacts				
		recycling.					۸
		Preferably enclosed and covered areas should be provided					
		for general refuse collection and routine cleaning for these					
		areas should also be implemented to keep areas clean.					۸
		A reputable waste collector should be employed to remove					
		general refuse on a daily basis.					
S7.6	WM10-	<u>Sewage</u>	Minimize production of	Contractor	All construction	Construction	
	DP1/D	The WMP should document the locations and number of	sewage impacts		sites	phase	۸
	P2	portable chemical toilets depending on the number of					
		workers, land availability, site condition and activities.					
		Regularly collection by licensed collectors should be					۸
		arranged to minimize potential environmental impacts.					
S7.6	WM11-	<u>Sediment</u>	Minimize waste impacts	Contractor	All construction	Construction	
	DP2	The following mitigation measures are recommended during	from sediment		sites	phase	
		transportation and stockpiling:					
		stockpiling area(s) must be properly designed and closed to					N/A
		the dredging locations as far as possible;					
		Stockpiling area(s) should be lined with impermeable					N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		sheeting and bunded;					
		stockpiles should be properly covered by impermeable					N/A
		sheeting;					
		vehicles delivering the sediments should be covered, and					N/A
		truck bodies and tailgates should be sealed to prevent any					
		discharge during transportation;					
		bulk earth moving equipments should be utilized as much					N/A
		as possible to minimize workers' handling and contact of the					
		excavated materials; and					
		personal protective clothing should be provided to site					N/A
		workers.					
		In case contamination of excavated materials is confirmed after					
		testing, the mitigation measures described in Land Contamination					
		Impacts section should also be implemented to minimize potential					
		environmental impacts.					
Land Con	tamination	1					
S8.7	LC1-	Remediation of arsenic-contaminated soil	To remediate arsenic-	Project	LMC Loop,	Prior to	
	DP2	"Solidification/Stabilization" (S/S) treatment method was	contaminated soil	Proponent/	contaminated	commencement	N/A
		proposed for the remediation of arsenic-contaminated soil.		Contractor	area	of construction	
		Toxicity Characteristic Leaching Procedure (TCLP) test				works within the	
		should be undertaken after S/S in order to ensure that the				contaminated	
		contaminant will not leach to the environment. Unconfined				area	
		Compressive Strength (UCS) test should be conducted,					
		and not less than 1MPa should be met prior to the backfilling					

EM&A Log	Recommended Mitigation Measures	Objectives of the recommended	Who to implement	Location of the measures	When to	Implementation Status
Ref					measures?	
		Concerns to address	measures?			
	·					
	Excavation and Transportation	·	Contractor	Contaminated		
DP1/D	Excavation profiles must be properly designed and	environmental impacts		area		N/A
P2	executed with attention to the relevant requirements for	arising from the handling				
	environment, health and safety;	of				
	In case the soil to be excavated is situated beneath the	contaminated materials				
	groundwater table, it may be necessary to lower the					N/A
	groundwater table by installing well points or similar means;					
	Excavation should be carried out during dry season as far					
	as possible to minimise contaminated runoff from					N/A
	contaminated soils;					
	Stockpiling site(s) should be lined with impermeable					N/A
	sheeting and bunded. Stockpiles should be properly					
	covered by impermeable sheeting to reduce dust emission					
	during dry season or contaminated run-off during rainy					
	season. Watering should be avoided on stockpiles of					
	contaminated soil to minimize contaminated runoff;					
	Supply of suitable clean backfill material after excavation, if					N/A
	required;					
	Vehicles containing any excavated materials should be					N/A
	, ,					
	-					
	Log Ref	Ref or stockpiled for future reuse within the study area. Off-site disposal or reuse of the solidified material is not allowed. LC1- Excavation and Transportation • Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; • In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; • Excavation should be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; • Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season or contaminated run-off during rainy season. Watering should be avoided on stockpiles of contaminated soil to minimize contaminated runoff; • Supply of suitable clean backfill material after excavation, if required;	Ref or stockpiled for future reuse within the study area. Off-site disposal or reuse of the solidified material is not allowed. LC1- DP1/D Excavation and Transportation Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; Excavation should be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season or contaminated runoff; Supply of suitable clean backfill material after excavation, if required; Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated run-off, and truck bodies and tailgates should	Log Ref or stockpiled for future reuse within the study area. Off-site disposal or reuse of the solidified material is not allowed. LC1- DP1/D Excavation and Transportation P2 Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; Excavation should be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils; Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season or contaminated run-off during rainy season. Watering should be avoided on stockpiles of contaminated soil to minimize contaminated runoff; Supply of suitable clean backfill material after excavation, if required; Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated run-off, and truck bodies and tailgates should	LC1- DP1/D 1. Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety; 1. In case the soil to be excavated is situated beneath the groundwater table by installing well points or similar means; 2. Excavation should be carried out during dry season as far as possible to minimise contaminated run-off from contaminated soils; 3. Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season. Watering should be avoided on stockpiles of contaminated soils to Supply of suitable clean backfill material after excavation, if required; 3. Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated run-off, and truck bodies and tailgates should	LC1- DP1/D P1 in case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; Excavation should be carried out during dry season or contaminated run-off during rainy season. Watering and bunded. Stockpiles should be avoided on stockpiles of contaminated soil to minimize contaminated run-off; Supply of suitable clean backfill material after excavation, if required; Vehicles contaminated run-off, and truck bodies and tailgates should

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log			recommended	implement	measures	Implement the	Status
	Ref			Measures & Main	the		measures?	
				Concerns to address	measures?			
			during wet season;					
		•	Speed control for the trucks carrying contaminated					N/A
			materials should be enforced; and					
			Vehicle wheel washing facilities at the site's exit points					N/A
			should be established and used.					
S8.7	LC3-	Soli	dification/Stabilization	To minimize the potential	Contractor	Contaminated	The course of	
	DP1/D		The loading, unloading, handling, transfer or storage of	environmental impacts		area	remediation	N/A
	P2		cement should be carried out in an enclosed system;	arising from the handling				
			Mixing process and other associated material handling	of contaminated				N/A
			activities should be properly scheduled to minimise	materials				
			potential noise impact and dust emission;					
			The mixing facilities should be sited as far apart as					N/A
			practicable from the nearby noise sensitive receivers;					
			Mixing of contaminated soil and cement / water / other					N/A
			additive(s) should be undertaken at a solidification plant to					
			minimise the potential for leaching;					
			Runoff from the solidification / stabilization area should be					N/A
			prevented by constructing a concrete bund along the					
			perimeter of the solidification / stabilization area;					
			The run-off contained in the concrete bund area along the					N/A
			perimeter of the paved solidification / stabilization area, if					
			any, will be collected, stored and used for the mixing					
			process of cement / contaminated soil;					
			If stockpile of treated soil is required, the stockpiling site(s)					N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		should be lined with impermeable sheeting and bunded.					
		Stockpiles should be properly covered by impermeable					N/A
		sheeting to reduce dust emission during dry season or site					
		run-off during rainy season; and If necessary, there should					
		be clear and separated areas for stockpiling of untreated					
		and treated materials.					
Landscape	e and Visu	al Impact (Construction Phase)					
S11.5.4	L-CP1-	Preservation and Protection of Existing Trees (Good Site Practice)	Avoid disturbance and	Detailed	Within project	Detailed design	
Table11.5	DP1	The proposed works should avoid disturbance to the	protection of existing	design	site	and construction	
.9		existing trees within and close to the works areas. The tree	trees	consultant/		phase	*
		preservation proposals shall be coordinated with the layout		Contractor			
		and design of the engineering and architectural works at					
		detailed design phase for further retention of individual					
		trees.					
		It is recommended that a full detailed tree survey and felling					۸
		application will be undertaken and submitted for approval					
		by the relevant government departments in accordance with					
		ETWB TCW No. 3/2006, 'Tree Preservation'. This will be					
		conducted during the detailed design phase of the project					
		and submitted to DLO for approval. The methodology and					
		scope including the programme for the tree survey and					
		felling application are also subject to the approval of the					
		relevant authorities.					
		Trees which are not in conflict with the proposals would be					٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		retained and shall be protected by means of fencing during					
		construction phase to prevent damage to tree canopies and					
		root zones from vehicles and storage of materials.					
		Specifications for the protection of existing trees will be					۸
		provided during the preparation of the detailed tree survey					
		by Detailed Design consultants at detailed design and					
		construction phase.					
S11.5.4	L-CP2-	Works Area and Temporary Works Areas (Good Site Practice)	Minimize landscape	Contractor	The whole	Construction	
Table	DP1/D	The construction sequence and construction programme	impacts		project area	phase	۸
11.5.9	P2	shall be optimized in order to minimize the duration of			where		
		impact.			applicable		
		Construction site controls shall be enforced including the					۸
		storage of materials, the location and appearance of site					
		accommodation and site storage; and the careful design of					
		site lighting to prevent light spillage.					
		The temporary works areas shall be restored to its original					۸
		condition or enhanced through the introduction of new					
		amenity areas or planting areas following the completion of					
		the construction phase.					
	L-CP3-	Advance Implementation of Mitigation Planting	Minimize landscape	Contractor	The whole	Construction	
	DP1/D	Replanting of existing / disturbed vegetation shall be	impacts		project area	phase	^
	P2	undertaken at the earliest possible stage of the construction			where		
		phase of the project using predominantly native plant			applicable		
		species although ornamental species may be used for					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		roadside planting and amenity areas.					
	L-CP4-	<u>Transplantation of Existing Trees</u>	Minimize landscape	Contractor	The whole	Construction	
	DP1/D	Some specimens have relatively higher amenity value	impacts		project area	phase	۸
	P2	which are in conflict with the proposals shall be considered			where		
		for transplantation. For trees affected by the proposed			applicable		
		infrastructure works the final receptor sites shall be					
		preferably adjacent to their current locations alongside of					
		the alignment to retain their contribution to the local					
		landscape context. For the LMC Loop the receptor locations					
		will be selected to allow the trees to be moved directly to					
		their final locations in accordance with the detailed					
		landscape proposals.					^
		The transplanting proposals are subject to review at the					
		detailed design phase and to agreement-in-principle with					
		the relevant management and maintenance agents and/or					
		government departments. The implementation programme					
		for the proposed works shall reserve sufficient time for the					
		advanced tree transplanting preparation works to enhance					
		the survival of the transplanted trees.					
		The transplanting proposals will be subject to the findings					۸
		of the detailed tree survey and felling application to be					
		undertaken by the detailed design consultants and following					
		approval by the relevant departments.					
	L-CP6-	Creation of Wetland and Landscape Buffer	Compensation of the loss	Project	The whole	Detailed design,	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
	DP1/D	The existing reedbed acquired for development areas for	of landscape resources	Proponent/	project area	construction and	۸
	P2	the project will be reinstated as part of the Ecological Area.		Detailed	where	operational	
		The reinstatement shall be undertaken at the earliest		design	applicable	phases	
		possible stage during the construction phase of the project.		consultant/			
		Creation of 12.78ha of Ecological Area (EA) containing reed		Contractor/			
		marsh and marsh will be created at the southern portion of		Operator			۸
		the LMC Loop, and a 50m width landscape buffer area will					
		be set up in between the EA and the development area.					
		Wetland creation concepts please refer to Figure 11.9zf and					
		Chapter 12 Ecology Impact Assessment of this EIA.					
		Native tree and shrub mix will be utilised for the creation of					
		landscape buffer along northern edge of EA to support the					۸
		creation of avifauna habitat from ecologist perspectives as					
		well as enhance the aesthetic and landscape diversity					
		within the LMC Loop Development.					
		Creation of minimum 11.72 Ha. of permanent compensatory					N/A
		off-site wetland areas at Sam Po Shue and Hoo Hok Wai.					
		For the potential locations for off-site wetlands please refer					
		to Figure 11.9zf and 11.9zh, Chapter 2 Project Description					
		and Chapter 12 Ecology Impact Assessment of this EIA.					
	V-CP5-	Coordination with Concurrent Projects	Minimize landscape	Contractor	The whole	Construction	
	DP1/D	Coordinated implementation programme with concurrent	impacts		project area	phase	^
	P2	projects to minimise impacts and where possible reduce the			where		
		period of disturbance.			applicable		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
Ecology (Constructi	on Phase)					
S12.7	E1-DP1	Disturbance to Fish Ponds at HHW	On the disturbance to fish	Detailed	Fish ponds at	Detailed design,	
		Development set back a minimum of 23m from the edge	ponds at HHW	design	HHW and LMC	construction	N/A
		Meander.		consultant/		phase	
		Management of fish pond habitat to enhance ecological		Contractor			N/A
		value to twice existing value, in order to compensate for					
		disturbance to large waterbirds.					
		Creation and establishment will occur prior to					
		commencement of substantive works associated with any					N/A
		element of the project for which fish pond compensation is					
		required.					
		Construction phase					
		Erection of a 3m high, dull green site boundary fence to					۸
		minimise disturbance to wetland habitats caused by human					
		activity in LMC Loop.					
S12.7	E2-DP1	Construction run-off	Minimise the indirect	Contractor	Seawall,	During	
		Temporary sewerage and drainage will be designed and	impact from the			construction	۸
		installed to collect wastewater and prevent it from entering	increasing suspended				
		nearby water bodies;	solids and pollutants in				
		Proper locations well away from nearby water bodies will be	LMC Meander				۸
		used for temporary storage of materials (i.e. equipment,					
		filling materials, chemicals and fuel) and temporary					
		stockpile of construction debris and spoil, and these will be					
		identified before commencement of works;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		To prevent muddy water entering nearby water bodies, work					*
		sites close to nearby water bodies will be isolated, using					
		such items as sandbags or silt curtains with lead edge at					
		bottom and properly supported props. Other protective					
		measures will also be taken to ensure that no pollution or					
		siltation occurs to the water gathering grounds of the work					
		site;					۸
		If temporary access along a riverbed is unavoidable, this will					
		be kept to the minimum in width and length. Temporary river					
		crossings will be supported on stilts above the river bed;					۸
		Stockpiling of construction materials, if necessary, will be					
		properly covered and located away from nearby water					
		bodies;					
		Construction debris and spoil will be covered and/or					٨
		properly disposed of as soon as possible to avoid being					
		washed into nearby water bodies;					
		Construction effluent, site run-off and sewage will be					
		properly collected and/or treated. Wastewater from any					۸
		construction site will be minimised via the following in					
		descending order: reuse, recycling and treatment;					
		Proper locations for discharge outlets of wastewater					۸
		treatment facilities well away from sensitive receivers will be					
		identified (i.e. treated wastewater will not be discharged into					
		LMC Meander, natural streams, marsh, reedbed, active or					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		abandoned fish ponds);					
		Adequate lateral support will be erected where necessary					۸
		in order to prevent soil/mud from slipping into the Ecological					
		Area or LMC Meander;					
		Site boundary will be clearly marked and any works beyond					۸
		the boundary strictly prohibited;					
		Regular water monitoring and site audit will be carried out					۸
		at adequate points along LMC Meander, and at the outfalls					
		of the natural streams around LMC Loop. If the monitoring					
		and audit results show that pollution occurs, adequate					
		measures including temporarily cessation of works will be					
		considered.					
S12.7	E3-	Pollutant Runoff to Downstream areas from Accidental Spillage	Minimize indirect impact	Contractor/	Area within	Construction	۸
	DP1/D	Prepare an emergency contingency plan The plan will	from pollutant runoff to	Operator	project site near	phase and	
	P2	include, but not be limited to, the following:	downstream areas from		streams	operation phase	
		- Potential emergency situations;	accidental spillage				
		- Chemicals or hazardous materials used on-site (and					
		their location);					
		- Emergency response team;					
		- Emergency response procedures;					
		 List of emergency telephone hotlines; 					
		- Locations and types of emergency response					
		equipment;					
		- Training plan and testing for effectiveness.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
S12.7	E4-	Use opaque, non-transparent, non-reflective noise barriers	Minimize the mortality	Developer /	Area within	Detailed design,	۸
	DP1/D	for all developments associated with the Project.	impacts on birds	Detailed	project site	construction and	
	P2	Design of buildings should not incorporate use of night-time		design		operation	۸
		lighting at or near top of buildings, highly reflective materials		consultant/		phases	
		should not be used where vegetation is adjacent and glass		contractor/			
		surfaces should not be angled upwards in a way that		operator			
		reflects the sky. Unnecessary lighting should be eliminated.					
		Appropriate glass and façade treatments should be used					
		where required to minimise impact. Unnecessary lighting					
		should be avoided.					
		These include the following:					
		Fritting, or the placement of ceramic lines or dots on glass,					۸
		has little effect on the human-perceived transparency of the					
		window but creates a visual barrier to birds outside. This					
		treatment also has the advantage of reducing air					
		conditioning loads by lowering heat gain, while still allowing					
		light transmission for interior spaces. It is most successful					
		when the frits are applied on the outside surface. Frosted					
		glass has similar effects.					
		Angled glass may be used only for smaller panes in					۸
		buildings with a limited amount of glass.					
		The use of glass that reflects UV light (primarily visible to					٨
		birds, but not to humans) acts to reduce collision.					
		Film and art treatment allow glass surfaces to be used a					٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		medium of expression, often related to the nature and use					
		of the building, as well indicating to birds their					
		impenetrability.					۸
		Lightweight external screens can be added to windows or					
		become a façade element of larger buildings, and are					
		suitable where non-operable windows are prevalent, which					
		is often the case in modern buildings in HK.					
		In terms of reducing night-time mortality impacts, eliminating					
		unnecessary lighting is one of the easiest methods, and has the					
		added advantage of saving energy and expense. Potential					
		impacts of nocturnal avian collision with buildings should be					
		minimised by not creating sky glow from the use of night-time lighting at or near the top of buildings or other structures. In					
		addition to avoiding uplighting, light spillage should be minimised,					
		while green and blue lights should be used where possible. As far					
		as possible, lights should be controlled by motion sensors, and					
		building operations should be managed in such a way as reduce					
		or eliminate night lighting near windows. The potential advantages					
		of removing unnecessary lighting in terms of reducing the carbon					
		footprint of the LMC Loop development are obvious.					
S12.7	E5-	Minimize loss of natural vegetation along LMC Meander,	Minimize impacts on	Detailed	Construction	Detailed design,	۸
	DP1/D	and suitable replacement planting with possible installation	Eurasian Otter	design	site within the	construction	
	P2	of otter holts and the provision of potential feeding area and		consultant/	project	phase	
		spraint locations for otters in the stabilized bank subject to		Contractor			
		detailed design.					
		No significant change to velocity of water flow, water level					٨
		or water quality.					

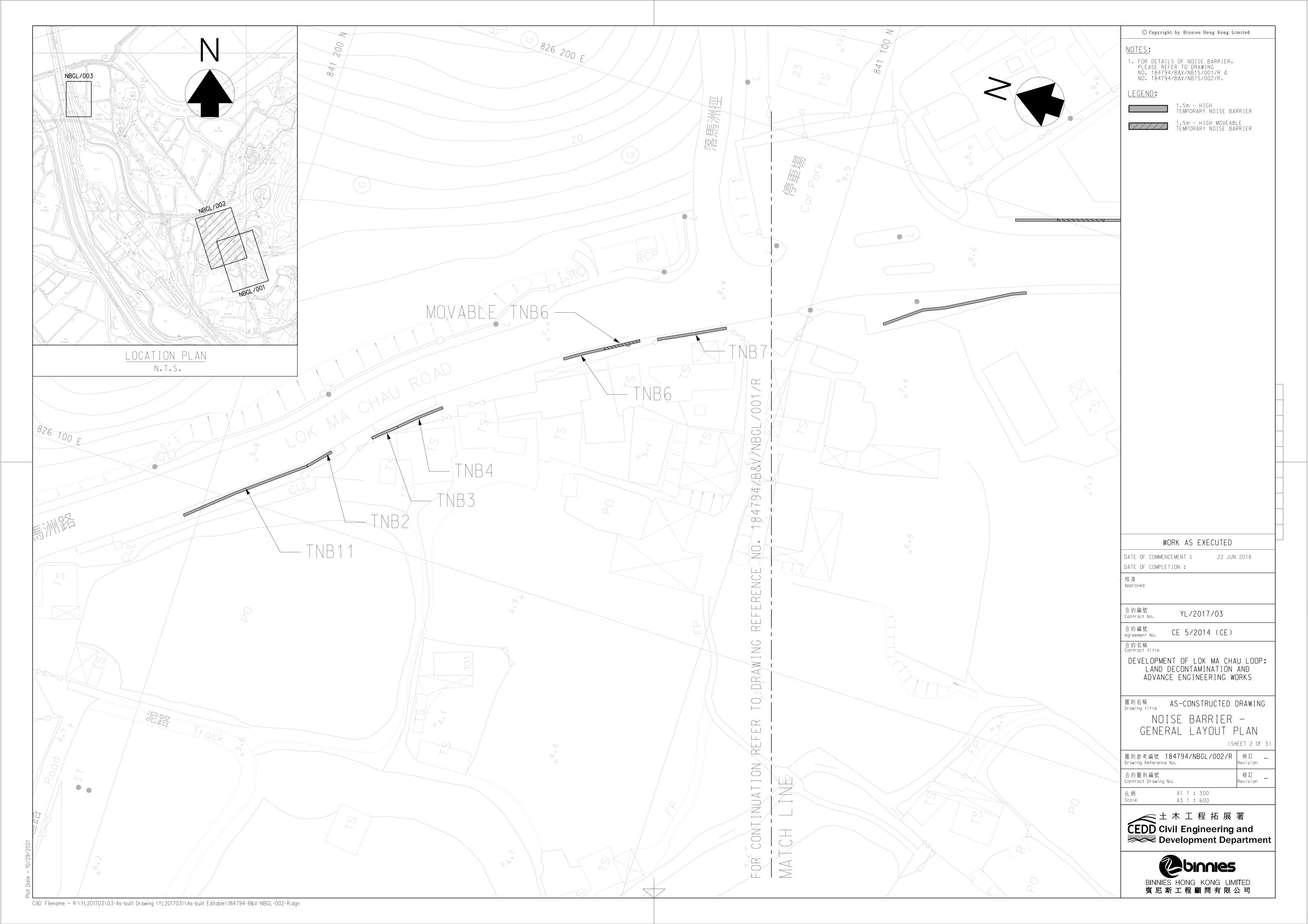
EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log			recommended	implement	measures	Implement the	Status
	Ref			Measures & Main	the		measures?	
				Concerns to address	measures?			
		•	No direct lighting on Meander.					۸
		•	3m high, dull green site boundary fence for all					^
			developments associated with the project.					
			Pre-construction surveys for otter holts or natal dens will be					۸
			conducted in LMC Loop before the commencement of					
			construction works. Work in the area of any otter holt found					
			to cease pending examination by experienced Ecologist. If					
			in use for breeding, works in the area will temporarily stop					
			until end of breeding activity.					
			No construction activities within 100m of LMC Meander					۸
			between one hour prior to sunset and one hour after					
			sunrise.					۸
		•	Provision of compensatory reed marsh in the Ecological					
			Area in LMC Loop, including open water channels and					
			islands within the reed marsh, both of which features are					
			considered to be used by the species.					
S12.7	E8-DP2		Refer to E2 and E3	Prevent impacts on Rose	Contractor	Within project	Construction	N/A
				Bitterling, small		site	phase	
				snakehead and				
				Somanniathelphus				
				zanklon				
S12.7	E10-	•	Preserve undisturbed, semi-natural habitat conditions of	Minimize impacts on	Developer /	Within project	Detailed design,	۸
	DP1		LMC Meander and adjacent areas of LMC Loop up to	flight line corridor from	Detailed	site	construction and	
			approximately 150m in width in order to avoid disturbance	LMC Loop development	design		operation	

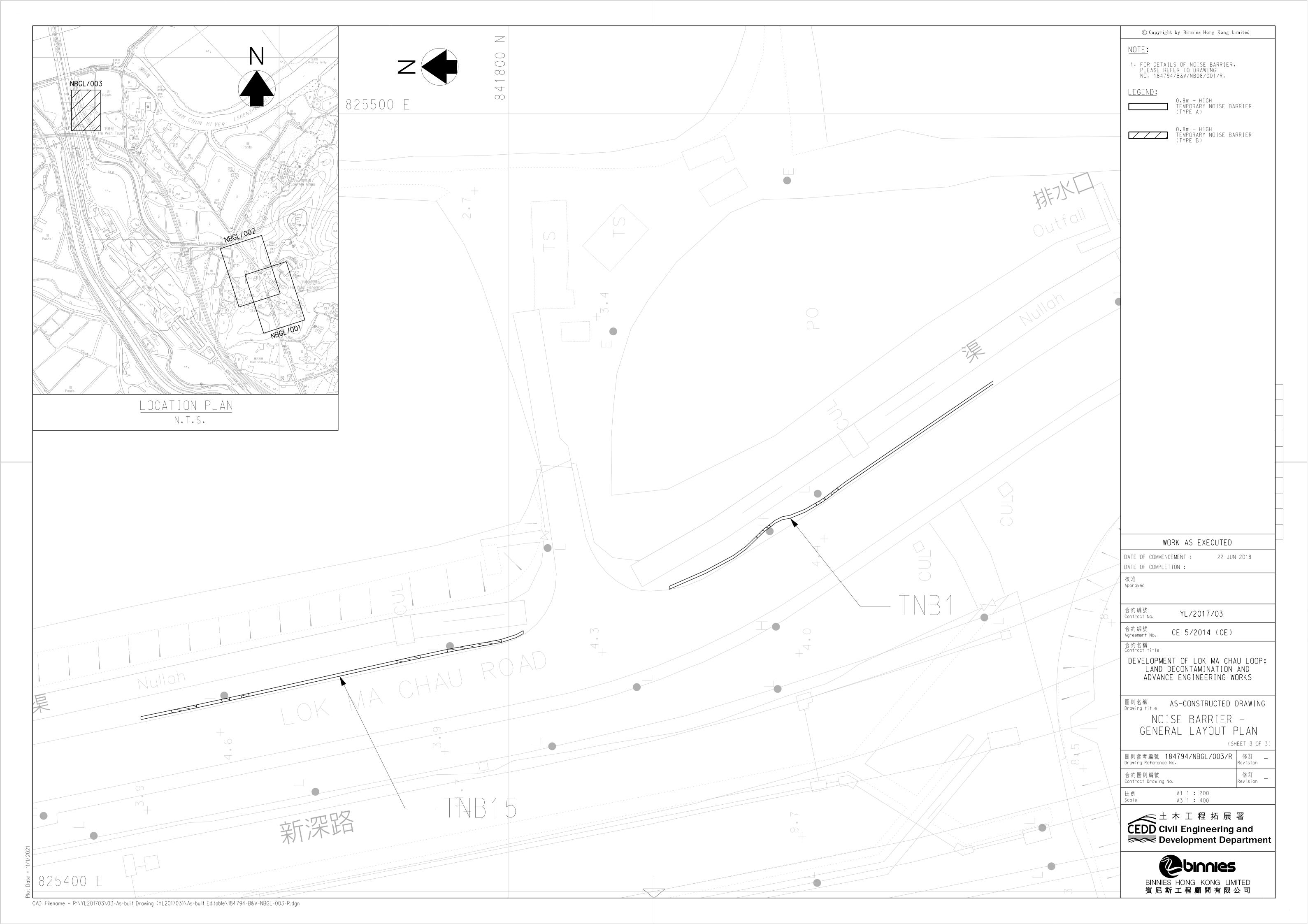
EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		to core part of flight line corridor.		consultant/		phases	
		This area to comprise an Ecological Area largely		Contractor/			۸
		constituting reed marsh and a 50m wide buffer zone		Operator			
		densely planted with shrubs and trees. Small number of low					
		buildings (max 14mPD high, except the building height of					
		on-site STW is 15mPD high) allowed in inner 25m of this					
		area at a plot ratio of 0.1.					
		At Ha Wan Tsuen entry point for many birds to LMC Loop					N/A
		area provide a wider Ecological Area to minimize					
		disturbance from nearby buildings.					
		Further minimisation of impact by maintaining a lower					N/A
		building height in areas adjacent to the buffer zone for the					
		EA. In addition, the sewage treatment works, which is					
		located near the point where many birds cross from the					
		Meander to HHW, should not exceed 15mPD.					
S12.7	E11-	Employ site boundary fence as long as possible. Use of	Minimize disturbance	Contractor	Within project	Construction	۸
	DP1	movable barrier for more intense site formation activity.	impacts of mitigation		site	phase	
		Provision of fencing with 30cm gap between the existing	provisions				
		reed marsh and LMC Meander during the establishment					
		period of Ecological Area and the gap will be closed once					
		established.					
		Restrict work to period from 0900h to 1700h. All major					۸
		works along the edge of LMC Meander and in the Ecological					
		Area will be conducted in the wet season.					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log			recommended	implement	measures	Implement the	Status
	Ref			Measures & Main	the		measures?	
				Concerns to address	measures?			
S12.7	E12-	•	Minimal night-time lighting	Minimize impacts on	Contractor/	All	Construction and	۸
	DP1/D	•	No direct light on Meander	LMC Meander	Operator		operation	۸
	P2						phases	
S12.7	E13-	•	Construction limited to wet season between the hours of	Minimize impacts from	Contractor/	Pond habitat	Construction and	۸
	DP2		9am and 5pm.	the construction and	Operator	along alignment	operation	
		•	Use of opaque visual/noise barriers and planting of trees	operation disturbance		(mainly Ha Wan	phases	^
			shrubs along length of road adjacent to fish ponds.	impacts		Tsuen Road)		
		•	Compensatory habitat management elsewhere to mitigate					^
			wetland loss.					
S12.7	E16-	•	Provision of compensatory reed marsh in the Ecological	Protect Odonata	Project	Ecological area	EA established	۸
	DP1		Area will provide habitat suitable for Common Evening		Proponent/		prior to	
			Hawker.		Detailed		construction and	^
		•	Measures designed to protect other fauna and water quality		design		manage at all	
			will generally benefit odonata.		consultant/		phases	
					Contractor			
					Operator			
S12.7	E14-	•	Replacement planting of native tree species relevant to	Minimize the ecological	Contractor	Woodland and	Construction	۸
	DP2		Deep Bay area and the area impacted. Planting to occur in	impacts		shrubland	phase	
			tandem with that required for woodland loss arising			habitat along Ha		
						Wan Tsuen		
						Road		
S12.7	E15-	•	Use noise/visual barriers to minimise disturbance.	Minimize impacts on	Contractor	Construction	Construction	۸
	DP2	•	Construction activities should not be carried out before	flight line corridor from		site from	phase	^
			0900h or after 1700h in order to minimise disturbance to the	Western Connection		Western		

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log		recommended	implement	measures	Implement the	Status
	Ref		Measures & Main	the		measures?	
			Concerns to address	measures?			
		flight line corridor (and to mammals).	Road		Connection		
					Road		
S12.7	E16-	Use of opaque visual/noise barriers and roadside planting	Minimize impacts on	Project	Construction	Detailed design,	۸
	DP2	of trees and shrubs to minimize disturbance impacts.	flight line corridor from	Proponent/	site from	construction and	
			Western Connection	Detailed	Western	operation	
			Road	design	Connection	phases	
				consultant/	Road		
				Contractor			
				Operator			
Fisheries	(Construc	tion Phase)					
S13.7	F4-	Reprovision of replacement Artificial Reefs(of the same	Mitigate water quality	Project	To be	Construction	N/A
		volume as the existing ARs inside Marine Exclusion Zone)	impacts on the existing	proponent	determined	phase or	
			ARs			operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall	During	N/A
		Limit dredging and works fronts.	quality impacts			construction	N/A
		Good site practices					N/A
		Strict enforcement of no marine dumping					N/A
		Spill response plan					N/A

Remarks: ^ Compliance of mitigation measure


* Recommendation was made during site audit but improved/rectified by the contractor


Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage as no such site activities were conducted in the reporting period (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX N TEMPORARY NOISE BARRIERS

YL/2017/03 Development of Lok Ma Chau Loop – Land Decontamination and Advance Engineering Works Record Photographs for Temporary Noise Barriers at Lok Ma Chau Road

TNB ID	Photo
TNB1	TNB1
TNB2	TAB II
TNB11	19/07/2021
TNB3	TNB4
TNB4	

YL/2017/03 Development of Lok Ma Chau Loop – Land Decontamination and Advance Engineering Works Record Photographs for Temporary Noise Barriers at Lok Ma Chau Road

TNB ID	Photo
TNB6	TNB6
TNB7	
TNB8	29/07/2021

YL/2017/03

Development of Lok Ma Chau Loop – Land Decontamination and Advance Engineering Works
Record Photographs for Temporary Noise Barriers at Lok Ma Chau Road

TNB ID	Photo
TNB9	TNBS
TNB10	29/4/2021
TNB13	29/4/2021

YL/2017/03

Development of Lok Ma Chau Loop – Land Decontamination and Advance Engineering Works
Record Photographs for Temporary Noise Barriers at Lok Ma Chau Road

APPENDIX O WASTE GENERATION IN THE REPORTING MONTH

Contract No. YL/2020/01 - Development of Lok Ma Chau

Loop: Main Works Package 1 – Contract 1 Site Formation

and Infrastructure Works inside Lok Ma Chau Loop and

Western Connection Road Phase 1

Monthly Summary Waste Flow Table for 2022 (year)

Name of Person completing the record: Lila Lui (EO)

Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection

·		Actual Quantit	ies of Inert C&D	Materials Gene	erated Monthly			Actual Qu	antities of C&D	Wastes Genera	ated Monthly	
Month	Total Quantity Generated (a)= (b)+(c)+(d)+(e)	Hard Rock and Large Broken Concrete (b)	*Reused in the Contract (c)	Reused in other Projects (d)	Disposed as Public Fill (e)	Imported Fill	Metals	Paper/ cardboard packaging/	Plastics	Yard Waste	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
Jan-22	1.485	0.000	1.472	0.000	0.013	0.000	0.000	0.000	0.000	76.140	0.000	1.730
Feb-22	0.242	0.000	0.000	0.000	0.242	0.000	9.150	0.000	0.000	24.170	0.000	0.426
Mar-22	0.120	0.000	0.000	0.000	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.143
Apr-22	0.058	0.000	0.000	0.000	0.058	0.000	0.000	0.000	0.000	0.000	0.000	0.068
May-22	0.022	0.000	0.000	0.000	0.022	0.000	0.900	0.000	10.100	13.630	0.000	0.021
Jun-22												
Sub-total	1.927	0.000	1.472	0.000	0.455	0.000	10.050	0.000	10.100	113.940	0.000	2.388
Jul-22												
Aug-22												
Sep-22												
Oct-22		-			·							
Nov-22												
Dec-22		•										
Total	1.927	0.000	1.472	0.000	0.455	0.000	10.050	0.000	10.100	113.940	0.000	2.388

Contract No.: YL/2020/01

Remarks:

- 1.Assume the density of soil fill=2.0 tonnes/m3
- 2.Assume the density of rock and broken concrete=2.5 tonnes/m3
- 3.Assume the density of refuse = 1.5 tonnes/m3
- 4. The inert C&D material except slurry and bentonite are disposed at Tuen Mun 38
- 5. The slurry and bentonite are disposed at Tseung Kuwn O 137.
- 6.The non-inert C&D wastes, including general refuse are disposed at NENT

Contract No. YL/2020/02 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 2 Western
Connection Road Phase 2, Connection Roads to Fanling /
San Tin Highway and Direct Road Link Phase 1

Monthly Summary Waste Flow Table for 2022 (year)

Name of Person completing the record: Calvin So (EO)

Project: Development of Lok Ma Chau Loop: Main Works Package 1- Contract 2, Western Connection Road Phase 2,

	Connection Roa	ads in Fanling /	San Tin Highw	ay and Direct R	oad Link Phase	1				Contract No.: YL/	/2020/02
		Actual Quantit	ies of Inert C&l	D Materials Ger	nerated Monthly		Act	tual Quantities	of C&D Wastes	s Generated Mo	onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	0.000	0.000	0.000	0.000	0.000	0.458	0.000	0.000	0.000	0.000	0.131
Feb	0.000	0.000	0.000	0.000	0.000	0.045	0.000	0.000	0.000	0.000	0.121
Mar	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.040
Apr	0.000	0.000	0.000	0.000	0.063	0.000	0.000	0.000	0.000	0.000	0.121
May	0.000	0.000	0.000	0.000	0.018	0.000	0.000	0.000	0.000	0.000	0.184
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sub-total	0.000	0.000	0.000	0.000	0.081	0.503	0.000	0.000	0.000	0.000	0.597
Jul	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Oct	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nov	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dec	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	0.000	0.000	0.000	0.081	0.503	0.000	0.000	0.000	0.000	0.597

Note:

- For non-inert portion of C&D material, assume the density of 1 m³ general refuse is equal to 200 kg.
- For inert portion of C&D material, assume 6 m³ per each full-filled dump truck.
- 3. All values are round off to the third decimal places.

Contract No. YL/2021/01 – Development of Lok Ma Chau
Loop: Main Works Package 1 – Contract 3 Direct Road
Link Phase 2

Monthly Summary Waste Flow Table for 2022 (year)

Name of Person completing the record:

Development of Lok Ma Chau Loop : Main Works Package 1 – Contract 3 Contract No.: YL/2021/01

·		Actual Quantiti	es of Inert C&D	Materials Gene	erated Monthly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated (a)= (b)+(c)+(d)+(e)	Hard Rock and Large Broken Concrete (b)	*Reused in the Contract (c)	Reused in other Projects (d)	Disposed as Public Fill (e)	Imported Fill	Metals	Paper/ cardboard packaging/	Plastics (see Note 3)	Yard Waste	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
Jan-22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr-22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
Jun-22												
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
Jul-22												
Aug-22												
Sep-22												
Oct-22		·			·							
Nov-22												
Dec-22		·										
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002

Remarks:

- 1.Assume the density of soil fill=2.0 tonnes/m3
- 2.Assume the density of rock and broken concrete=2.5 tonnes/m3
- 3.Assume the density of refuse = 1.5 tonnes/m3
- 4. The inert C&D material except slurry and bentonite are disposed at Tuen Mun 38
- 5. The slurry and bentonite are disposed at Tseung Kuwn O 137.
- 6.The non-inert C&D wastes, including general refuse are disposed at NENT

APPENDIX P COMPLAINT LOGS

Appendix P - Complaint Log

Contract No. YL/2017/03 - Development of Lok Ma Chau Loop: Land Decontamination and Advance Engineering Works

Log Ref.	Date of Complaint	Complaint Route	Reference No.	Complaint Nature	Investigation Fining	Status
1	9-Sep-19	EPD	EPD Ref: 25222-19	Water quality and air quality	Non-project related	Interim report was submitted to EPD on 23 Sep 2019
2	11-Oct-19	EPD	EPD Ref: 28550-19	Air quality	Non-project related	Interim report was submitted to EPD on 6 Nov 2019
3	30-Oct-19	EPD	EPD Ref: 30478-19	Air quality	Non-project related	Interim report was submitted to EPD 14 Nov 2019
4	10-Dec-19	1823 (CEDD)	1823 Case no: 2-6145710343	Noise and air quality	Non-project related	Final reply to 1823 on 24 Dec 2019. IR prepared by Contractor was agreed by IEC and ET
5	5-Mar-21	1823	1823 Case no: 3-6641544979	Air quality	Non-project related	Final reply to 1823 on 11 Mar 2021. IR prepared by Contractor was agreed by IEC and ET

Contract No. YL/2020/01 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 1 – Site Formation and Infrastructure Works inside Lok Ma Chau Loop and Western Connection Road Phase 1 / Contract No.: YL/2020/02 – Development of Lok Ma Chau Loop: Main Works Package 1 – Contract 2 Western Connection Road Phase 2, Connection Roads to Fanling / San Tin Highway and Direct Road Link Phase 1

Log Ref.	Date of Complaint	Complaint Route	Reference No.	Details of Complaint	Investigation Fining	Status
COM- 2021- 10-01	11 October 2021	EPD	EPD File Ref.: N07/RN/00 024120-21	EPD received a public complaint on 11 October 2021. The complainant alleged the following: (a) Discharge of muddy water from construction sites of "Development of Lok Ma Chau Loop" project to Shenzhen River in the morning of 8 October 2021; and, (b) Use of powered mechanical equipment (including excavators and dump trucks) in the construction sites of "Development of Lok Ma Chau Loop" project on Sunday.	Non-project related According to the interim report, wastewater treatment facilities and relevant mitigation measures were properly implemented and there is no direct evidence to demonstrate the muddy discharge was inducted by the Contract. Further preventive measures, such as increasing the height of the temporary drainage by using sandbag and providing the earth bund with geo-textile along the site boundary, were implemented on 12 October 2021 in order to avoid muddy water from leaking into Shen Zhen River. (b) Noise Project related	Interim report was submitted to EPD on 29 Oct 2021

Log Ref. (Date of Complaint	Complaint Route	Reference No.	Details of Complaint	Investigation Fining	Status
					plan according to the construction programme and closely check the effectiveness of the implemented mitigation measures on site so that the EP, EIA and EM&A manual recommendation and requirements are complied with. In addition, the Contractor was also reminded to prepare a contingency plan for emergency environmental incidents.	
	ovember 021	EPD	EPD File Ref.: N06/RN/00 027302-21	EPD received a public complaint on 15 November 2021. The complainant concerned about the dust nuisance in the construction sites of "Development of Lok Ma Chau Loop" project.	 According to the interim report, dust mitigation measures have been properly implemented on site: Haul road of the main site have been paved with concrete and the speed of the vehicle has been restricted to below 8kmper hour within the construction area to minimize fugitive dust emission. Wheel washing fallibilities have been established at the location where the vehicles into the haul road in order to keep clear of any loose surface material. Mist spray and water trucks have been provided to water the paved haul road regularly and at least once per hour on exposed work site. Water spray has been provided during the handling of the fill material at the site and all the dusty loads transported to, from and between site location have been covered. Induction training and tool box talk have been provided to the site staff and workers regarding the dust suppression measure. Temporary covers have been provided to stockpile of the dusty materials and the exposed slope. 	Interim report was submitted to EPD on 25 Nov 2021

Log Ref.	Date of Complaint	Complaint Route	Reference No.	Details of Complaint	Investigation Fining	Status
					Further preventive measures, establishment of the automatic water spray system along the haul road and increasing the amount of the mist spray machine to enhance the efficiency of the dust suppression measures will also be provided.	
	2 January 2022	EPD	EPD File Ref.: N06/RN/00 000184-22	EPD received a public complaint by phone in Jan 2022 regarding noise from general construction work associated with the Lok Ma Chau Loop Development Project being carried out on 2.1.2022 at around 15:30 hours (i.e. within the restricted hours on Sunday).	According to the location under complaint, the work was likely carried out within the work site of "Direct Road Link to MTR Lok Ma Chau Station" and/or "Western Connection Road". Therefore, interim reports were submitted by Contract No.: YL/2020/01 and YL/2020/02 respectively:- Contract No.: YL/2020/01 According to the site diary, no construction work was carried out during restricted hours at the location under complaint for YL/2020/01 on 2 January 2022. For prevention measure, Permit –to –Work system has been implemented for all the construction works being conducted in the restricted hours to enhance site control. All the construction works need to inform JV at least one day in advance. In addition, all staff and workers involved in the site operation during the restricted hours have to obtain a valid site pass and display to the security guards when entering site area for the enhancement of the site security system. Based on the above information and investigation findings, the noise complaint is not related to the	Interim report was submitted to EPD on 14 Feb 2022

Log Ref.	Date of Complaint	Complaint Route	Reference No.	Details of Complaint	Investigation Fining	Status
COM- 2022- 04-01	4 April 2022	1823	1823 Case no: 3- 715542674 8	The complainant concerned about the muddy surface runoff arising from the construction works of "Development of Lok Ma Chau Loop" project. at Lok Ma Chau Road near Ha Wan Tsuen Road.	Contract No.: YL/2020/02 According to the site diary, no construction work was carried out during restricted hours at the location under complaint on 2 January 2022 for YL/2020/02. Nevertheless, construction team was reminded to strictly follow the requirement stated in the issued construction noise permit when construction work is required during restricted hours. Based on the above information and investigation findings, the noise complaint is not related to the construction works of the Contract YL/2020/02. According to the interim report, no construction works was carried out at the location of complaint which is outside the site boundary of the Project from 1st April to 4th April 2022. Appropriate water quality mitigation measures have been properly implemented on site and there is no direct evidence to demonstrate the muddy discharge was inducted by the Project. Further preventive measures, such as set up a monitoring point at the exit of the site to check the wheels of the vehicles are clean enough so that no mud and grit adhered to the wheels of the trucks when leaving the site. In addition, sprinkler truck will be only operated at appropriate location within the project site to avoid nuisance to the public road user.	Final reply to 1823 on 12 April 2022. Interim report prepared by Contractor was agreed by IEC and ET

APPENDIX Q SUMMARY OF SUCCESSFUL PROSECUTION

Appendix Q - Summary of Successful Prosecution

Date of Successful Prosecution	Details of the Successful Prosecution	Status	Follow Up

APPENDIX R ECOLOGICAL MONITORING RESULTS

Appendix R1 – Avifauna Monitoring Results (Pond 12)

					Date	4 th May 2022
					Weather Condition	Sunny
		Chinese Name	Hong	Conservation Status	Abund	
Common Name	Species Name		Kong		Maximum count of b	ird species recorded
			Status		(Point Count – 1	5 mins interval)
					Before Construction	During Construction
Barn Swallow	Hirundo rustica	家燕	PM, Sv		3	1
Black Drongo	Dicrurus macrocercus	黑卷尾	Sv			1
Cinnamon Bittern	Ixobrychus cinnamomeus	栗葦鳽	M, Sv, WV	LC		1
Chinese Bulbul	Pycnonotus sinensis	白頭鵯	R		2	3
Chinese Pond Heron	Ardeola bacchus	池鷺	R	PRC(RC)		1
Crested Myna	Acridotheres cristatellus	八哥	R			1
Great Egret	Ardea alba	大白鷺	R, WV	PRC(RC)		1
Little Egret	Egretta garzetta	小白鷺	R	PRC(RC)	1	2
Long-tailed Shrike	Lanius schach	棕背伯勞	R			1
Red-whiskered Bulbul	Pycnonotus jocosus	紅耳鵯	R			3
Spotted Dove	Streptopelia chinensis	珠頸斑鳩	R			2
Scaly-breasted Munia	Lonchura punctulata	斑文鳥	R		11	12
White-shouldered Starling	Sturnia sinensis	灰背椋鳥	M, WV, Sv	LC	3	5
Yellow-bellied Prinia	Prinia flaviventris	黄腹鷦鶯	R		5	9
	Total No. of Spec	eies			6	14

				Compoundian	Date	4 th May 2022		
Common Name					Weather Condition	Sunny		
		Chinasa	Hong		Abundance			
	Species Name	Chinese Name	Kong Status	Conservation Status	Maximum count of b (Point Count – 1	•		
					Before Construction	During Construction		
	No. of Birds R	25	43					

					Date	11 th May 2022		
					Weather Condition	Rain		
		Chinese Name	Kong		Abui	ndance		
Common Name	Species Name			Conservation Status	Maximum count of bird species recorded (Point Count – 15 mins interval)			
					Before Construction	During Construction		
Black Drongo	Dicrurus macrocercus	黑卷尾	Sv			1		
Chinese Bulbul	Pycnonotus sinensis	白頭鵯	R		3	2		
Crested Myna	Acridotheres cristatellus	八哥	R		1			
Great Egret	Ardea alba	大白鷺	R, WV	PRC(RC)	1			
Plain Prinia	Prinia inornata	純色鷦鶯	R			1		
Scaly-breasted Munia	Lonchura punctulata	斑文鳥	R		6	8		
White-shouldered Starling	Sturnia sinensis	灰背椋鳥	M, WV, Sv	LC	5	3		
Yellow-bellied Prinia	黄腹鷦鶯	鶯 R		2	1			
	Total No. of Speci		6	6				
	No. of Birds Recor	18	16					

					Date	18 th May 2022	
					Weather Condition	Sunny	
		Chinese Name	Hong	Conservation Status	Abunc	lance	
Common Name	Species Name		Kong Status		Maximum count of bird species recorded (Point Count – 15 mins interval)		
					Before Construction	During Construction	
Barn Swallow	Hirundo rustica	家燕	PM, Sv			1	
Black-collared Starling	Gracupica nigricollis	黑領椋鳥	R		2	2	
Black Kite	Milvus migrans	黑鳶	R, WV			1	
Chinese Bulbul	Pycnonotus sinensis	白頭鵯	R		3	3	
Crested Myna	Acridotheres cristatellus	八哥	R			3	
Greater Coucal	Centropus sinensis	褐翅鴉鵑	R	(VU)	1	1	
Great Egret	Ardea alba	大白鷺	R, WV	PRC(RC)		1	
Jungle Crow	Corvus macrorhynchus	大嘴烏鴉	R			1	
Little Egret	Egretta garzetta	小白鷺	R	PRC(RC)	1		
Masked Laughingthrush	Pterorhinus perspicillatus	黑臉噪鶥	R		1		
Pied Kingfisher	Ceryle rudis	斑魚狗	UR	(LC)		1	
Plain Prinia	Prinia inornata	純色鷦鶯	R			1	
Scaly-breasted Munia	Lonchura punctulata	斑文鳥	R			4	
White-shouldered Starling	Sturnia sinensis	灰背椋鳥	M, WV, Sv	LC	3	5	
Yellow Bittern	Ixobrychus sinensis	黃葦鳽	USV, UPM	(LC)	1		
Yellow-bellied Prinia	Prinia flaviventris	黃腹鷦鶯	R		2	5	

		Chinese Name	Kong	Conservation Status	Date	18 th May 2022		
	Species Name				Weather Condition	Sunny		
Common Name					Abundance			
					Maximum count of bird species recorded			
					(Point Count – 15 mins interval)			
					Before Construction	During Construction		
	Total No. of Spec	8	13					
	No. of Birds Recor	14	29					

					Date	25 th May 2022
					Weather Condition	Drizzle
		Chinese	Hong	Conservation Status	Abun	dance
Common Name	Species Name		Kong		Maximum count of l	pird species recorded
			Status		(Point Count – 1	15 mins interval)
					Before Construction	During Construction
Barn Swallow	Hirundo rustica	家燕	PM, Sv			4
Black-collared Starling	Gracupica nigricollis	黑領椋鳥	R		1	3
Black Kite	Milvus migrans	黑鳶	R, WV			1
Chinese Bulbul	Pycnonotus sinensis	白頭鵯	R			2
Crested Myna	Acridotheres cristatellus	八哥	R		2	5
Chinese Pond Heron	Ardeola bacchus	池鷺	R	PRC(RC)	1	1
Greater Coucal	Centropus sinensis	褐翅鴉鵑	R	(VU)		1
Great Egret	Ardea alba	大白鷺	R, WV	PRC(RC)	4	3
Oriental Magpie-Robin	Copsychus saularis	鵲鴝	R		1	1
Red-whiskered Bulbul	Pycnonotus jocosus	紅耳鵯	R			4
Scaly-breasted Munia	Lonchura punctulata	斑文鳥	R			8
White-shouldered Starling	Sturnia sinensis	灰背椋鳥	M, WV, Sv	LC	4	5
Yellow-bellied Prinia	Prinia flaviventris	黄腹鷦鶯	R		1	4
	Total No. of Spe	cies			7	13
	No. of Birds Reco	14	42			

Note:

R – Resident; WV – Winter visitor; PM – Passage migrant; CPM - Common Passage Migrant; UPM – Uncommon passage migrant; CaM - Common autumn migrant; USV - Uncommon Summer visitor; SpM – Spring migrant; Sv – Summer Visitor; UR – Uncommon resident; SWV – Scarce winter visitor; CWV -

Common Winter Visitor; M - Spring and Autumn Migrant; OV - Occasional visitor

Status was decided according to AFCD biodiversity website (www.hkbiodiversity.net)

Cap. 170: All bird species are under protection of Wild Animals Protection Ordinance

Cap.586: Endangered Species of Animals and Plants Ordinance (Cap.586)

CR: Rare in China Red Data Book Status

VU: Vulnerable in IUCN Red List Status

(VU): Vulnerable in China Red Data Book Status

EN: Endangered in IUCN Red List Status

(EN): Endangered in China Red Data Book Status

NT: Near Threatened in IUCN Red List Status

CR: Critically Endangered in IUCN Red List Status

RC=Regional Concern; LC=Local Concern; PRC=Potential Regional Concern; GC=Global Concern; PGC=Potential Global Concern. Letters in parentheses indicate that the assessment is on the basis of restrictedness in breeding and/or roosting sites rather than in general occurrence (Fellowes et al. (2002)

Appendix R2 – Herptofauna (Chinese Bullfrog) Survey Results

Common Name	Species Name	Chinese Name	Date: 13 M	ay, 2022					
			Weather Co	ondition: Sto	rm				
			Counts						
			Transect Walk						
				Day Transect	t	N	light Transec	et	
			WAL AFP Others WAL AFP Others						
Chinese Bullfrog	Hoplobatrachus rugulosus	虎紋蛙	0 0 0 3* 0 0						

WAL – Wet Agricultural Land, AFP – Abandoned Fishpond

^{*} Vocal calls heard

Appendix R3 – Aquatic Fauna (Rose Bitterling) Survey Results

Common Name	Species Name	Chinese Name	Date: 24 May, 2022							
			Weather Condition: Fine							
			Counts							
			Location(s)							
			S1	S2	S3	S4	A1	A2	B1	B2
Rose Bitterling	Rhodeus ocellatus	高體鰟鮍	Direct	Observa	ation:					
			0	0	0	0	4	3	0	0
			Sweep Netting:							
			0	0	0	0	0	0	0	0

Service Contract No. WD/04/2020

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team Water Quality Monitoring Results on 04-May-22

Location	Weather	Start	Tempera	nture (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ity(NTU)
Location	Condition	Time	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
A1	Sunny	10:14	24.7 24.7	24.7	8.2 8.2	8.2	0.1 0.1	0.1	46.0 45.2	45.6	3.8 3.8	3.8	6.0 6.6	6.3
A2	Sunny	09:57	24.8 24.9	24.9	8.4 8.4	8.4	0.1 0.1	0.1	27.6 26.9	27.3	2.3 2.2	2.3	8.4 8.1	8.3
B1	Sunny	09:47	24.2 24.1	24.2	8.9 8.9	8.9	0.1 0.1	0.1	123.3 123.6	123.5	10.3 10.4	10.4	19.7 19.3	19.5
B2	Sunny	09:35	24.1 24.1	24.1	8.7 8.7	8.7	0.1 0.1	0.1	116.5 115.8	116.2	9.8 9.7	9.8	20.9 20.5	20.7
S1	Sunny	10:19	23.5 23.5	23.5	8.4 8.4	8.4	0.1 0.1	0.1	97.6 97.5	97.6	8.3 8.3	8.3	19.7 19.5	19.6
S2	Sunny	10:13	24.1 24.1	24.1	8.2 8.2	8.2	0.2 0.2	0.2	31.1 30.0	30.6	2.6 2.5	2.6	13.9 13.5	13.7
S3	Sunny	09:08	23.2 23.2	23.2	9.0 8.9	9.0	0.2 0.2	0.2	29.5 28.9	29.2	2.5 2.5	2.5	3.7 3.8	3.8
S4	Sunny	09:26	23.6 23.6	23.6	8.6 8.6	8.6	0.2 0.2	0.2	34.3 33.8	34.1	2.9 2.9	2.9	6.8 7.3	7.1

Service Contract No. WD/04/2020

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team Water Quality Monitoring Results on 12-May-22

Location	Weather	Start	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ity(NTU)
Location	Condition	Time	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
A1	Rainy	13:57	26.1 26.1	26.1	8.2 8.2	8.2	0.1 0.1	0.1	57.5 56.9	57.2	4.7 4.6	4.7	4.8 4.7	4.8
A2	Rainy	13:38	26.1 26.1	26.1	8.3 8.3	8.3	0.1 0.1	0.1	55.5 55.2	55.4	4.5 4.5	4.5	4.0 4.0	4.0
B1	Rainy	13:30	25.8 25.8	25.8	8.3 8.3	8.3	0.1 0.1	0.1	71.8 71.5	71.7	5.9 5.8	5.9	22.2 21.6	21.9
B2	Rainy	13:21	25.7 25.7	25.7	8.1 8.1	8.1	0.1 0.1	0.1	78.7 78.3	78.5	6.4 6.4	6.4	20.5 20.5	20.5
S1	Rainy	14:09	25.5 25.5	25.5	8.4 8.4	8.4	0.1 0.1	0.1	90.0 89.5	89.8	7.4 7.3	7.4	50.2 49.4	49.8
S2	Rainy	13:50	24.9 24.9	24.9	8.3 8.3	8.3	0.1 0.1	0.1	56.4 55.9	56.2	4.7 4.6	4.7	11.1 13.2	12.2
S3	Rainy	13:06	24.5 24.5	24.5	7.7 7.7	7.7	0.1 0.1	0.1	81.8 81.7	81.8	6.8 6.8	6.8	43.2 48.2	45.7
S4	Rainy	13:14	24.5 24.5	24.5	8.0 8.0	8.0	0.1 0.1	0.1	77.7 77.2	77.5	6.5 6.4	6.5	39.7 39.9	39.8

Service Contract No. WD/04/2020

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team Water Quality Monitoring Results on 18-May-22

Location	Weather	Start	Tempera	nture (°C)	p	Н	Salin	ity ppt	DO Satu	ıration (%)	Dissolved O	xygen (mg/L)	Turbidi	ity(NTU)
Location	Condition	Time	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
A1	Sunny	12:35	25.7 25.7	25.7	8.7 8.7	8.7	0.1 0.1	0.1	71.4 70.5	71.0	5.8 5.8	5.8	2.9 2.9	2.9
A2	Sunny	12:18	25.7 25.7	25.7	9.0 9.0	9.0	0.1 0.1	0.1	58.3 57.1	57.7	4.8 4.7	4.8	3.1 2.9	3.0
B1	Sunny	12:12	26.3 26.3	26.3	9.5 9.5	9.5	0.1 0.1	0.1	147.9 148.5	148.2	11.9 12.0	12.0	10.7 10.9	10.8
B2	Sunny	12:01	26.6 26.5	26.6	9.0 9.1	9.1	0.1 0.1	0.1	148.8 151.3	150.1	12.0 12.2	12.1	13.9 14.6	14.3
S1	Sunny	12:37	26.0 26.0	26.0	8.5 8.5	8.5	0.1 0.1	0.1	85.0 84.8	84.9	6.9 6.9	6.9	42.3 41.8	42.1
S2	Sunny	12:29	25.1 25.1	25.1	8.7 8.6	8.7	0.1 0.1	0.1	58.6 56.2	57.4	4.8 4.6	4.7	5.9 6.0	6.0
S3	Sunny	11:39	24.8 24.8	24.8	9.9 9.9	9.9	0.2 0.2	0.2	51.5 50.7	51.1	4.3 4.2	4.3	5.5 5.2	5.4
S4	Sunny	11:48	25.1 25.1	25.1	8.9 8.8	8.9	0.1 0.1	0.1	42.5 42.1	42.3	3.5 3.5	3.5	4.1 4.2	4.2

Service Contract No. WD/04/2020 Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team Water Quality Monitoring Results on 24-May-22

Location	Weather	Start	Temperature (°C)		рН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Location	Condition	Time	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
A1	Sunny	10:28	27.0 27.0	27.0	9.0 9.0	9.0	0.1 0.1	0.1	48.5 47.8	48.2	3.9 3.8	3.9	2.9 2.8	2.9
A2	Sunny	09:29	27.2 27.2	27.2	8.9 8.9	8.9	0.1 0.1	0.1	56.5 55.8	56.2	4.5 4.4	4.5	3.4 3.4	3.4
B1	Sunny	09:15	27.1 27.1	27.1	9.0 9.0	9.0	0.1 0.1	0.1	122.7 123.3	123.0	9.8 9.8	9.8	13.9 14.3	14.1
B2	Sunny	09:02	27.1 27.1	27.1	9.0 9.0	9.0	0.1 0.1	0.1	125.5 125.5	125.5	10.0 10.0	10.0	15.1 15.0	15.1
S1	Sunny	10:40	26.7 26.7	26.7	8.7 8.7	8.7	0.1 0.1	0.1	59.1 58.5	58.8	4.7 4.7	4.7	18.2 18.2	18.2
S2	Sunny	10:16	26.5 26.7	26.6	9.1 9.0	9.1	0.1 0.1	0.1	68.2 68.4	68.3	5.5 5.5	5.5	3.7 3.2	3.5
S3	Sunny	08:37	25.7 25.7	25.7	9.1 9.1	9.1	0.1 0.1	0.1	52.6 52.0	52.3	4.3 4.2	4.3	3.9 3.9	3.9
S4	Sunny	08:50	25.7 25.6	25.7	8.9 8.9	8.9	0.1 0.1	0.1	48.2 46.9	47.6	3.9 3.8	3.9	9.3 9.1	9.2

Service Contract No. WD/04/2020

Development of Lok Ma Chau Loop: Main Works Package 1 – Environmental Team Water Quality Monitoring Results on 30-May-22

Location	Weather	Start	Temperature (°C)		рН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)		Turbidity(NTU)	
Location	Condition	Time	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
A1	Rainy	10:24	29.7 29.7	29.7	8.8 8.8	8.8	0.1 0.1	0.1	68.9 66.5	67.7	5.2 5.1	5.2	2.3 2.3	2.3
A2	Rainy	10:06	29.9 29.9	29.9	8.9 8.9	8.9	0.1 0.1	0.1	52.0 50.6	51.3	3.9 3.8	3.9	2.8 2.7	2.8
B1	Rainy	09:58	29.6 29.6	29.6	8.9 8.9	8.9	0.1 0.1	0.1	122.2 122.2	122.2	9.3 9.3	9.3	14.3 14.3	14.3
B2	Rainy	09:51	29.6 29.6	29.6	8.8 8.7	8.8	0.1 0.1	0.1	122.8 123.4	123.1	9.4 9.4	9.4	15.2 15.2	15.2
S1	Rainy	10:32	28.7 28.7	28.7	8.9 8.9	8.9	0.1 0.1	0.1	78.3 77.2	77.8	6.1 6.0	6.1	13.9 14.4	14.2
S2	Rainy	10:16	27.2 27.2	27.2	9.0 9.0	9.0	0.1 0.1	0.1	48.2 47.5	47.9	3.8 3.8	3.8	5.0 5.1	5.1
S3	Rainy	09:36	27.2 27.2	27.2	8.9 8.9	8.9	0.1 0.1	0.1	53.2 52.6	52.9	4.2 4.2	4.2	9.4 9.6	9.5
S4	Rainy	09:44	27.5 27.5	27.5	8.8 8.7	8.8	0.1 0.1	0.1	51.4 50.9	51.2	4.1 4.0	4.1	8.4 8.4	8.4