

JOB NO.: TCS01196/22

WSD CONTRACT NO.: 7/WSD/21 -CONSTRUCTION OF SIU HO WAN WATER TREATMENT WORKS EXTENSION AND SIU HO WAN RAW WATER BOOSTER PUMPING STATION

BASELINE MONITORING REPORT

PREPARED FOR CHINA ROAD AND BRIDGE CORPORATION (HONG KONG)

Date	Reference No. Prepared By Fai So		Certified By Tam Tak Wing
23 May 2022	TCS01196/22/600/R0014v4	Assistant Environmental	Environmental Team

Consultant

Leader

VersionDateDescription128 April 2022First Submission23 May 2022Amended against IEC's comment36 May 2022Amended against IEC's comment423 May 2022Amended As Per EPD's comment

Our Ref. 1988/22-0011

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Water Supplies Department

New Works Branch Consultants Management Division Sha Tin Office - 6/F Sha Tin Government Offices, 1 Sheung Wo Che Road, Sha Tin, New Territories.

Attn: Ms. CHENG Kwan Yu (E/CM 14)

24 May 2022

By E-mail

Dear Madam,

RE: CONTRACT NO. 7/WSD/21 INDEPENDENT ENVIRONMENTAL CHECKER FOR ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN WATER TREATMENT WORKS EXTENSION BASELINE MONITORING REPORT

I refer to the Baseline and Impact Monitoring (Report No.: TCS01196/22/600/R0014v4) received on 23 May 2022 by the Environmental Team (ET), Action-United Environmental Services & Consulting (AUES) via email. In accordance with Condition 4.3 of Environmental Permit No.EP-207/2005/A, I hereby verify the captioned report.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Joanne NG Independent Environmental Checker

JN/tw

c.c. Action-United Environmental Services & Consulting (AUES) Attn: Mr. Ben Tam (By E-mail) Binnies Hong Kong Limited (By E-mail)

EXECUTIVE SUMMARY

- ES.01 Water Supplies Department (WSD) is the Proponent of the Works Contract 7/WSD/21 "Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station" (hereinafter named as the "Works Contract"). Under this Works Contracts, the works mainly comprise of increasing the water treatment capacity of Siu Ho Wan water treatment works (SHW WTW) from 150,000m³ per day to 300,000m³ per day within the existing water treatment works compound, by constructing new water treatment facilities and a new laboratory building and modifying the existing associated facilities; and constructing a new raw water booster pumping station at Siu Ho Wan to increase the raw water transfer capacity from Tai Lam Chung Reservoir to SHW WTW. Layout plan of the Works Contract is shown in Appendix A.
- ES.02 According to the Environmental Impact Assessment Ordinance (EIAO), the proposed Siu Ho Wan Water Treatment Works Extension is a Designated Project under Schedule 2, which shall be implemented under the Environmental Permit EP-207/2005/A (*hereinafter called the "EP"*). Besides, the works for Siu Ho Wan Raw Water Booster Pumping Station is a non-designated project which mentioned in Section 1.10 of Environmental Monitoring and Audit (EM&A) Manual.
- ES.03 On 20 March 2022, *China Road and Bridge Corporation (Hong Kong)* (hereinafter called the "Main Contractor") awarded the *Works Contracts* 7/WSD/21. According to EM&A Manual, only air quality monitoring is required to be conducted which related to the works area under *Contracts* 7/WSD/21 during construction phase of the SHW WTW Extension. Moreover, site inspection and audit is required under the EM&A program to ensure the recommended environmental mitigation measures are implemented properly and effective.
- ES.04 The Main-Contractor appointed Action-United Environmental Services & Consulting (AUES) as the Environmental Team of the Project (hereinafter referred as the "ET") to implement air quality (baseline and impact) monitoring as well as associated duties in accordance with the EM&A Manual stipulation.
- ES.05 Some design changes of the Project have been identified after the EIA stage for betterment in the design development. Some of these changes requires supplementary environmental review to address their likely environmental impacts and to identify any additional mitigation measures required for compliance with the EIAO. Supplementary environmental review has been performed for the changes and the review results are presented in the "Review Report on Environmental Impact Assessment (Review Report on EIA)" prepared under "Agreement No. CE 82/2017 (WS)". Having reviewed the Review Report on EIA, no changes to the environmental monitoring requirement in the EM&A Manual are proposed for the work of SHW WTW Extension.
- ES.06 According to the approved EM&A Manual, only air quality is required to be monitored during the construction phase of the Project. As part of the EM&A program, baseline monitoring is required to determine the ambient environmental conditions. Pursuant to the EM&A Manual, baseline environmental monitoring is required to be conducted prior to commencement of the construction works under the Project. Baseline air quality monitoring was conducted from *8 to 21 April 2022*. During the baseline monitoring period, no major construction activities under the Project was observed.
- ES.07 This report summarizes the key findings and presents the process and rationale behind determining a set of Action and Limit Levels (A/L Levels) of air quality based on the baseline data. These A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring. They are statistical in nature and derived according to the criteria set out in Approved EM&A Manual.

ES.08 Results of the derived Action and Limit Levels for the air quality is given in *Tables ES-1* as follow. **Table ES-1** Action and Limit Levels of Air Quality Monitoring

Monitoring Station	Action Lev	vel (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP 24-hour TSP		1-hour TSP	24-hour TSP	
SHWAB	291	170	500	260	

ES.09 In cases where exceedance of these criteria occurs, actions should be carried out in accordance with the Event Action Plan as showed in the Approved EM&A Manual.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	BACKGROUND	1
	REPORT STRUCTURE	2
2.0	SUMMARY OF BASELINE MONITORING REQUIREMENT	3
	GENERAL	3
	Monitoring Parameters	3
	MONITORING LOCATIONS	3
	Monitoring Frequency and Period	2
	MONITORING EQUIPMENT	2
	DERIVATION OF ACTION/LIMIT (A/L) LEVELS	2
3.0	BASELINE MONITORING METHODOLOGY	5
	GENERAL	4
	MONITORING LOCATION	4
	MONITORING PROCEDURE	4
	DATA MANAGEMENT AND DATA QA/QC CONTROL	6
4.0	BASELINE MONITORING RESULTS	7
	GENERAL	7
	RESULTS OF AIR QUALITY MONITORING	7
5.0	CONCLUSIONS AND RECOMMENTATIONS	8
	Conclusions	8
	RECOMMENDATIONS	8

LIST OF TABLES

- TABLE 2-2
 DESIGNATED AIR QUALITY MONITORING LOCATION
- TABLE 2-3
 AIR QUALITY MONITORING INSTRUMENTS
- TABLE 2-4DERIVATION OF ACTION AND LIMIT LEVELS FOR AIR QUALITY
- TABLE 4-1
 Summary of 24-hour and 1-hour TSP Monitoring Results SHWAB
- TABLE 4-2
 ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING

LIST OF APPENDICES

- APPENDIX A PROJECT SITE LAYOUT PLAN
- APPENDIX B MONITORING LOCATIONS
- APPENDIX C CALIBRATION CERTIFICATES OF EQUIPMENT AND THE ACCREDITATION LABORATORY CERTIFICATE
- APPENDIX D BASELINE MONITORING SCHEDULE
- $\label{eq:appendix} Appendix \ E \qquad Database \ for \ 1-Hour \ \& \ 24-hour \ TSP \ Data \ of \ Air \ Quality$
- APPENDIX F METEOROLOGICAL DATA DURING BASELINE MONITORING PERIOD
- APPENDIX G EVENT ACTION PLAN (AIR QUALITY)

1.0 INTRODUCTION

BACKGROUND

- 1.01 Water Supplies Department (WSD) is the Proponent of the Works Contract 7/WSD/21 "Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station" (hereinafter named as the "Works Contract"). Under this Works Contracts, the works mainly comprise of increasing the water treatment capacity of Siu Ho Wan water treatment works (SHW WTW) from 150,000m³ per day to 300,000m³ per day within the existing water treatment works compound, by constructing new water treatment facilities and a new laboratory building and modifying the existing associated facilities; and constructing a new raw water booster pumping station at Siu Ho Wan to increase the raw water transfer capacity from Tai Lam Chung Reservoir to SHW WTW. Layout plan of the Works Contract is shown in Appendix A.
- 1.02 According to the Environmental Impact Assessment Ordinance (EIAO), the proposed Siu Ho Wan Water Treatment Works Extension is a Designated Project under Schedule 2, which shall be implemented under the Environmental Permit EP-207/2005/A (*hereinafter called the "EP"*). Besides, the works for Siu Ho Wan Raw Water Booster Pumping Station is a non-designated project which mentioned in Section 1.10 of Environmental Monitoring and Audit (EM&A) Manual.
- 1.03 On 20 March 2022, *China Road and Bridge Corporation (Hong Kong)* (hereinafter called the "Main Contractor") awarded the *Works Contract 7/WSD/21*. According to EM&A Manual, only air quality monitoring is required to be conducted which related to the works area under *Contract 7/WSD/21* during construction phase of the SHW WTW Extension. Moreover, site inspection and audit is required under the EM&A program to ensure the recommended environmental mitigation measures are implemented properly and effective.
- 1.04 The Main-Contractor appointed Action-United Environmental Services & Consulting (AUES) as the Environmental Team of the Project (hereinafter referred as the "ET") to implement air quality (baseline and impact) monitoring as well as associated duties in accordance with the EM&A Manual stipulation.
- 1.05 Some design changes of the Project have been identified after the EIA stage for betterment in the design development. Some of these changes require supplementary environmental review to address their likely environmental impacts and to identify any additional mitigation measures required for compliance with the EIAO. Supplementary environmental review has been performed for the changes and the review results are presented in the "Review Report on Environmental Impact Assessment (Review Report on EIA)" prepared under "Agreement No. CE 82/2017 (WS)". Having reviewed the Review Report on EIA, no changes to the environmental monitoring requirement in the EM&A Manual are proposed for the work of SHW WTW Extension.
- 1.06 According to the Approved EM&A Manual, only air quality is required to be monitored during the construction phase of the Project. As part of the EM&A program, baseline monitoring is required to determine the ambient environmental conditions. Pursuant to the EM&A Manual, baseline environmental monitoring is required to be conducted prior to commencement of the construction works under the Project. Baseline air quality monitoring was conducted from 8 to 21 April 2022. During the baseline monitoring period, no major construction activities under the Project was observed.
- 1.07 Action-United Environmental Services & Consulting (hereinafter referred as "AUES") has been commissioned as an Environmental Team (hereinafter referred as "the ET") to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties.
- 1.08 This Baseline Monitoring Report presents the details of the baseline study including project background, monitoring methodology, monitoring results, summary of findings, and Action/Limit (A/L) Levels established for subsequent use in the Project construction phase EM&A program.

REPORT STRUCTURE

- 1.09 This Baseline Monitoring Report summarizes the key findings and presents the process and rationale behind determining a set of Action and Limit Levels (A/L Levels) of air quality based on the baseline data. These A/L Levels will serve as the yardsticks for assessing the acceptability of the environmental impact during construction phase of the Project Works impact monitoring. The Baseline Monitoring Report is structured into the following sections:-
 - *Section 1* Introduction
 - *Section 2* Summaries of Baseline Monitoring Requirement.
 - Section 3 Baseline Monitoring Methodology
 - Section 4 Baseline Monitoring Results
 - *Section 5* Conclusion and Recommendation

2.0 SUMMARY OF BASELINE MONITORING REQUIREMENT

GENERAL

- 2.01 Only air quality monitoring is required to carry out related to *Works contracts 7/WSD/21* during the construction phase to ensure the dust mitigation measures and performance properly implementation. Also, baseline monitoring is required to conduct before the construction of SHW WTW Extension commencement. The purpose of baseline monitoring is to collect the ambient environmental condition to establish the environmental quality performance criteria i.e. Action and Limit Levels, (hereinafter referred as "the A/L Levels") for subsequent impact monitoring under the SHW WTW Extension Works Contract.
- 2.02 The other environmental monitoring for Works Area of Pui O was related to other Works Contracts and will be implemented by other appointed ET.
- 2.03 According to the Review Report on EIA, no changes to the environmental monitoring requirement in the EM&A Manual are proposed for the work of SHW WTW Extension. Air quality monitoring work will be implemented according to the EM&A Manual.
- 2.04 This report presents the results obtained during the baseline monitoring program of air quality from *8 to 21 April 2022*. A summary of the baseline EM&A requirements for air monitoring is presented in the sub-sections below.

MONITORING PARAMETERS

- 2.05 The baseline monitoring programme covers the following environmental aspects:Air Quality
- 2.06 A summary of baseline monitoring parameters is presented in *Table 2-1*:

Table 2-1Summary of Baseline Monitoring Parameters

Environmental Issue	Parameters			
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and 24-hour TSP by High Volume Air Sampler. 			

MONITORING LOCATIONS

Air Quality

2.07 According to the Review Report on EIA, air quality monitoring work should be implemented according to the EM&A Manual. As stated in *Section 4* of EM&A Manual, there was only one air quality monitoring station designated under SHW WTW Extension. The air quality monitoring locations is listed in *Table 2-2*.

Table 2-2Designated Air Quality Monitoring Station

0		
Monitoring Station Identification No	Location	
SHWAB	Siu Ho Wan WTW Administration Building	

- 2.08 As shown in the monitoring location plan of EM&A Manual, the indicative location of air quality monitoring station SHWAB was located on an access road outside the Administration Building. Joint site visit among the representative of the Contractor, ET and the operator of SHW Water Treatment Plant was conducted on 28 March 2022, the operator of the WTP raised safety concern on setting up monitoring station on the access road. To minimise the disturbance to the access road user and occupants, it is proposed to shift the monitoring station SHWAB to an open area outside the Administration Building, which just few meters away from the indicative location. The proposed location was chosen based on the criteria as stipulated in S2.13 of the EM&A manual with rationales as followings:-
 - (a) The proposed location is still at the same sensitive receiver (i.e. the Administration Building), which just few meters away from the indicative location in the EM&A manual, it is close to

major site activates and likely to have air quality impacts;

- (b) The proposed location is at the sensitive receiver and most suitable to set up air monitoring station;
- (c) The proposed location causes fewer disturbances to the occupants during monitoring.
- 2.09 The location SHWAB for baseline monitoring agreed by IEC and EPD is illustrated in *Appendix* **B**.

MONITORING FREQUENCY AND PERIOD

2.10 The baseline monitoring will be conducted immediately prior to commencement of the construction work under the Project. No construction activities are allowed to be undertaken during the baseline monitoring period.

<u>Air Quality</u>

Frequency:	• Daily for 24-hour TSP
	• Three times a day for 1-hour TSP
Duration:	14 consecutive days

MONITORING EQUIPMENT

2.11 Air quality monitoring equipment to be used in the baseline air quality monitoring are listed in *Table 2-3*, whereas calibration certificates of the monitoring equipment are shown in *Appendix C*.

Table 2-3 Air Quality Monitoring Instruments

Equipment	Model		
24- Hour TSP			
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170		
Calibration Kit	TISCH Model TE-5025		
1-Hour TSP			
Portable Dust Meter for 1-hour TSP	Sibata LD-3B Laser Dust Meter		

DERIVATION OF ACTION/LIMIT (A/L) LEVELS

2.12 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. A summary of derivation of Action/Limit (A/L) Levels for air quality, construction noise and water quality are shown in *Table 2-4* and *2-5* respectively.

Table 2-4Derivation of Action and Limit Levels for Air Quality

Parameter	Action Level	Limit Level	
24 hour TSD	For baseline level $\leq 200 \ \mu g/m^3$: Action level = (Baseline × 1.3 + Limit level)/2	260 μg/m ³	
24-hour TSP	For baseline level > 200 µg/m ³ : Action level = Limit level		
1 hour TSD	For baseline level $\leq 384 \ \mu g/m^3$: Action level = (Baseline $\times 1.3 + \text{Limit level})/2$	$500 m m^{3}$	
1-hour TSP	For baseline level > 384 µg/m ³ : Action level = Limit level	500 μg/m ³	

3.0 BASELINE MONITORING METHODOLOGY

GENERAL

3.01 The baseline monitoring of air quality was conducted from *8 to 21 April 2022*. During the baseline monitoring period, no construction activities were carried out under the Project.

MONITORING LOCATION

The detailed information of monitoring station referred to *Tables 2-2* and illustrated in *Appendix B*.

MONITORING PROCEDURE

3.02 The procedures to conduct air quality monitoring is summarized in following sub-sections.

Air Quality

<u>1-hour TSP</u>

- 3.03 Operation of the 1-hour TSP meter will follow manufacturer's Operation and Service Manual.
- 3.04 The 1-hour TSP monitor, brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90^o light scattering. The 1-hour TSP monitor consists of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.05 The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Span check and BG of the instrument will be performed before each monitoring event. A valid calibration certificate is attached in *Appendix C*.

24-hour TSP

- 3.06 The equipment used for 24-hour TSP measurement is the High Volume Sampler (hereinafter the "HVS") brand named TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The HVS consists of the following:
 - a. An anodized aluminum shelter;
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 Hz
- 3.07 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal Regulation, Appendix B to Part 50*. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
 - Installed with elapsed-time meter with ± 2 minutes accuracy for 24 hours operation;
 - Equipped with a timing/control device with \pm 5 minutes accuracy for 24 hours operation;
 - With flow control accuracy for $\pm 2.5\%$ deviation over 24-hour sampling period;

- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.08 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.09 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min. Motor brushes of HVS will be regularly replaced of about five hundred hours per time. Valid certificates of the calibration kit and HVS are attached in *Appendix C*.

Meteorological Information

3.10 The meteorological information including wind direction, wind speed, humidity, rainfall, air pressure and temperature etc. during baseline monitoring is extracted from the closest Hong Kong Observatory Station. Meteorological data are attached in *Appendix F*.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.11 The baseline monitoring data were handled by the ET's in-house data recording and management system.
- 3.12 The monitoring data recorded in the equipment were downloaded directly from the equipment at each monitoring day or after completion of baseline measurement. The downloaded monitoring data were input into a computerized database properly maintained by the ET. The laboratory results were input directly into the computerized database and checked by personnel other than those who input the data.
- 3.13 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4.0 BASELINE MONITORING RESULTS

GENERAL

4.01 The baseline monitoring schedules are presented in *Appendix D* and the monitoring results are detailed in the following sub-sections.

RESULTS OF AIR QUALITY MONITORING

4.02 Baseline 1-hour TSP and 24-hour TSP monitoring were carried out from 8 to 21 April 2022. The results for 1-hour and 24-hour TSP are summarized in *Tables 4-1*. The 1-hour and 24-hour TSP data are shown in *Appendix E*.

24-hour T	SP (µg/m ³)	1-hour TSP (µg/m³)					
Date	Meas. Result	Date	Start Time	End Time	1 st Meas.	2 nd Meas.	3 rd Meas.
08-Apr-22	66	08-Apr-22	13:07	16:07	88	83	74
09-Apr-22	100	09-Apr-22	16:00	19:00	96	107	87
10-Apr-22	54	10-Apr-22	12:27	15:27	54	48	46
11-Apr-22	34	11-Apr-22	15:43	18:43	42	48	74
12-Apr-22	35	12-Apr-22	15:50	18:50	57	48	39
13-Apr-22	44	13-Apr-22	15:55	18:55	66	54	49
14-Apr-22	95	14-Apr-22	15:05	18:05	88	79	73
15-Apr-22	91	15-Apr-22	15:59	18:59	94	86	58
16-Apr-22	66	16-Apr-22	15:04	18:04	71	78	71
17-Apr-22	61	17-Apr-22	15:05	18:05	59	48	43
18-Apr-22	46	18-Apr-22	15:55	18:55	54	39	41
19-Apr-22	53	19-Apr-22	15:06	18:06	66	53	50
20-Apr-22	63	20-Apr-22	15:56	18:56	60	54	44
21-Apr-22	42	21-Apr-22	15:32	18:32	84	54	49
Average (Range)	61 (34 – 100)		verage ange)		63 (39 – 107)		

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results –SHWAB

Action/Limit Levels

4.03 Following the criteria shown in *Table 2-3* of this report, the proposed Action and Limit Levels for 24-hour and 1-hour TSP are listed in *Table 4-2*. Event Action Plan is attached in *Appendix G*.

Table 4-2Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action Lev	vel ($\mu g / m^3$)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP 24-hour TSP		1-hour TSP	24-hour TSP	
SHWAB	291	170	500	260	

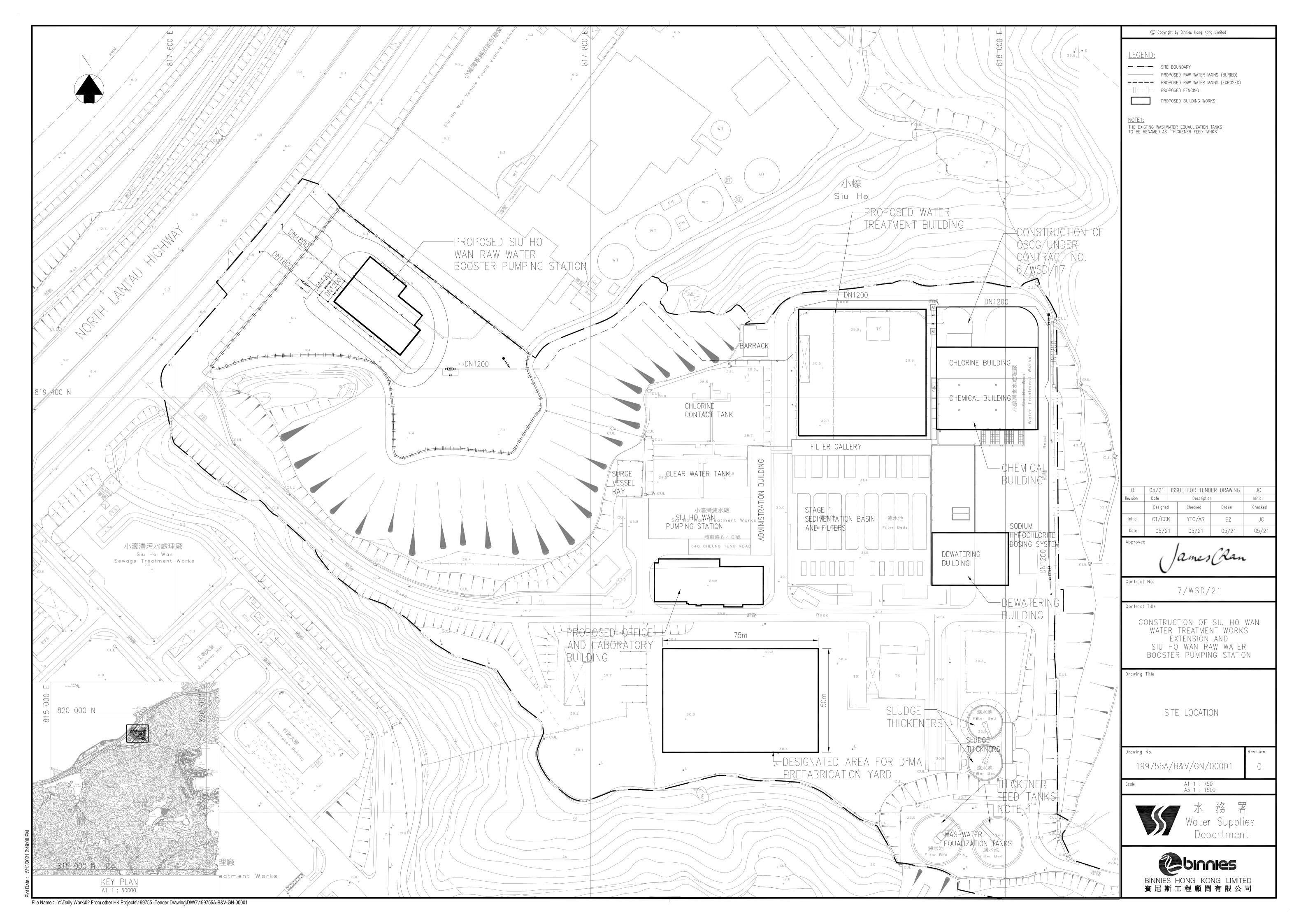
Note: 1-hour & 24-hour TSP Action Level = $(Average Baseline Result \times 1.3 + Limit level)/2$

5.0 CONCLUSIONS AND RECOMMENTATIONS

CONCLUSIONS

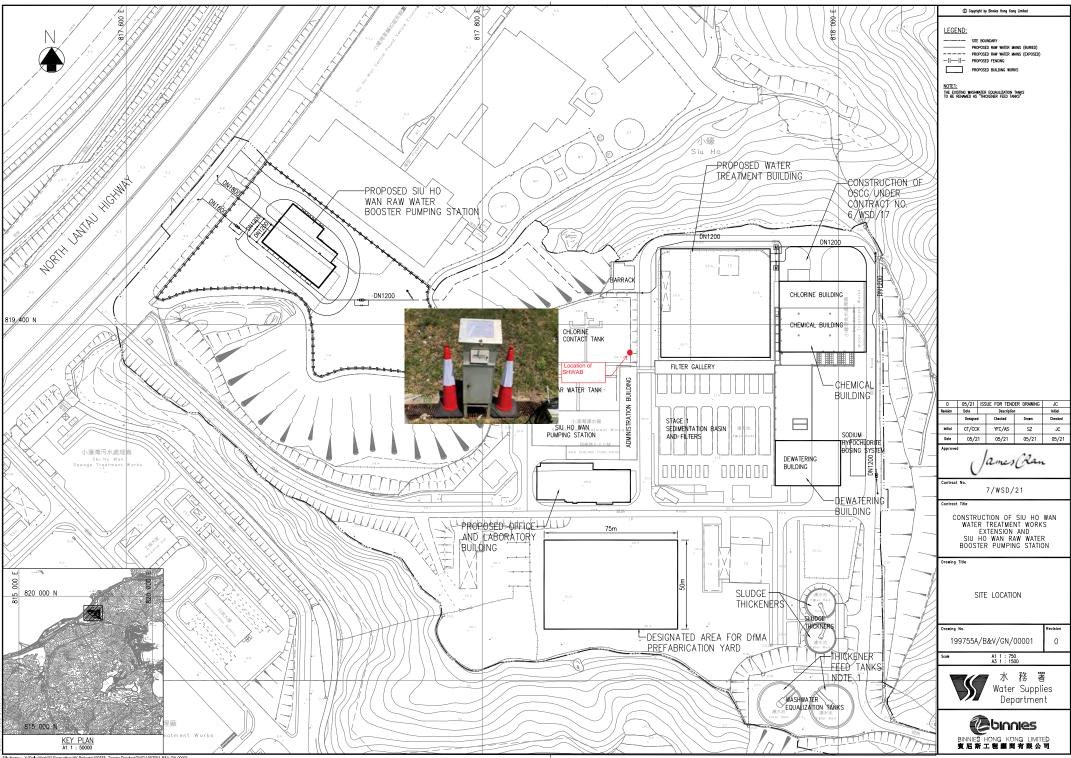
- 5.01 The baseline monitoring program was carried out during the period from *8 to 21 April 2022* at the designated monitoring location according to the Approved EM&A Manual. During the baseline monitoring, there were no construction activities undertaken under this Project.
- 5.02 Based on the baseline monitoring results, the recommended environmental performance criteria for air quality is summarized as follows:

Recommended Action & Limit Levels of Air Quality							
	Action Lev	vel (µg /m ³)	Limit Level (µg/m ³)				
Monitoring Station	1-hour TSP 24-hour TSP		1-hour TSP	24-hour TSP			
SHWAB	291	170	500	260			


RECOMMENDATIONS

5.03 The baseline monitoring of air quality was conducted within wet season typical (April to October) in Hong Kong. It is important to note that influence of seasonal changes should be taken into account when interpreting monitoring data obtained during dry season. Review of the baseline conditions may need to be conducted regularly, in particular during seasonal changes. If the changes in baseline conditions are evident, the environmental performance criteria should be re-established by agreement of the ER and submitted for EPD endorsement.

Appendix A


Project Site Layout Plan

Appendix B

Monitoring Locations

File Name : Y:IDaily Work/02 From other HK Projects/199755 - Tender Drawing/DWG/199755A-B&V-GN-00001

Appendix C

Calibration Certificates of Equipment and the Accreditation Laboratory Certificate

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	: MR BEN TAM	WORK ORDER HK2210526
CLIENT	ACTION-UNITED ENVIRONMENTAL	
	SERVICES & CONSULTING	
ADDRESS	: RM A 20/F., GOLD KING IND BLDG, NO. 35-41	SUB-BATCH : 1
	TAI LIN PAI ROAD, KWAI CHUNG, N.T.	DATE RECEIVED : 18-MAR-2022
		DATE OF ISSUE : 28-MAR-2022
PROJECT	:	NO. OF SAMPLES : 1
		CLIENT ORDER ÷

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Environmental Services & Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Richard Forg		
Richard Fung	Managing Director	

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com WORK ORDER SUB-BATCH

CLIENT

PROJECT

: HK2210526

¹ ACTION-UNITED ENVIRONMENTAL SERVICES & CONSULTING : ____

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2210526-001	S/N: 3Y6501	AIR	18-Mar-2022	S/N: 3Y6501

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6501
Equipment Ref:	EQ111

Standard Equipment:

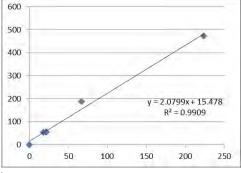
Higher Volume Sampler (TSP)
AUES office (calibration room)
HVS 018 & HVS 019
5 November 2021 & 13 December 2021

Equipment Verification Results:

Verification Date:

20 December 2021 & 7 January 2022

Date	Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
7 Jan 22	2hr	11:55 ~ 13:55	18.6	1021.6	55.1	2574	21.5
7 Jan 22	2hr27mins	14:23 ~ 16:50	18.6	1021.6	54.8	2671	18.2
7 Jan 22	2hr09mins	16:50 ~ 18:59	18.6	1021.6	56.5	2811	21.8
20 Dec 21*	45mins	10:15 ~ 11:00	20.5	1008.7	472.0	10069	223.8
20 Dec 21*	31mins	11:05 ~ 11:36	20.5	1008.7	187.2	2054	67.1


(*) Suspended particle was added into calibration room of HVS019 for high concentration test.

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 657 (CPM)

657

Linear Regression of Y or X

- Slope (K-factor): Correlation Coefficient (R)
- <u>2.0799 (μg/m³)/CPM</u> 0.9954 15 January 2022

(CPM)

Remarks:

Date of Issue

1. Strong Correlation (R>0.8)

2. Factor 2.0799 (µg/m³)/CPM should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator :	Fai So	Signature :	Ja	Date :	15 January 2022
QC Reviewer :	Ben Tam	Signature :	36	Date :	15 January 2022

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, Ky Location ID : Calibration Room	wai Ch	ung	Date of Calibration: 5-Nov-21 Next Calibration Date: 5-Feb-22			
	COND	ITIONS				
Sea Level Pressure (hPa) 1 Temperature (°C)	1012.5 25.6		Corrected Pressure (mm Hg) 759.37 Temperature (K) 29			
CALI	BRATI	ON ORIFICI	E			
	SCH 25A an-21		Qstd Slope ->2.10574Qstd Intercept ->-0.00985Expiry Date->18-Jan-22	5		
	CALIB	RATION				
	I nart)	IC corrected	LINEAR REGRESSION			
13 5 5 10.0 1.504 4 10 3.9 3.9 7.8 1.329 4 8 2.5 2.5 5.0 1.065 3	52 48 42 36 28	51.93 47.93 41.94 35.95 27.96	Slope = 24.2092 Intercept = 10.8881 Corr. coeff. = 0.9959			
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	60. 50. 40. 30. 20. 10. 0.	00	FLOW RATE CHART	00		

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Location I	D :	Gold Ki Calibrat	-	strial Buildi m	ng, Kv	wai Ch	lung	Date of Calibration: 13-Dec-21 Next Calibration Date: 13-Mar-22
						COND	ITIONS	
	Se	a Level I Temp	Pressure perature	. ,	1	014.3 24.0		Corrected Pressure (mm Hg) 760.725 Temperature (K) 297
					CALI	BRATI	ON ORIFIC	CE
			Calibrat	Make-> Model-> ion Date->	502	CH 25A an-21		Qstd Slope -> 2.10574 Qstd Intercept -> -0.00985 Expiry Date-> 18-Jan-22
					C	CALIBI	RATION	
Plate No.		H2O (R)	H20 (in)	Qstd (m3/min)	(ch	[art)	IC corrected	LINEAR REGRESSION
18 13 10 8 5	(in) (in) (m3/min) (c 6.2 6.2 12.4 1.681 4.9 4.9 9.8 1.495		5 4 4 3	2 4 0 0 0	52.11 44.10 40.09 30.06 20.04	Slope = 36.4525 Intercept = -9.0200 Corr. coeff. = 0.9943		
	n[Sqrt(H t(Pa/Pstc ndard flc cted cha chart res ator Qstd tor Qstd l temper ual press quent ca	d)(Tstd/T ow rate rt respon ponse d slope intercep rature dur ure durin	a)] es t ring cali ring calibr g calibr	bration (de ation (mm		60 50 00 00 00 00 00 00 00 00 00	.00	FLOW RATE CHART
b = sampl I = chart re Tav = dail Pav = dail	er interc esponse y averag	e temper				0	0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

RECALIBRATION DUE DATE: January 19, 2022

Certificate of Calibration

Cal. Date:	January 19,	2021	Rootsn	neter S/N:	438320	Ta:	294	°K		
Operator:	Jim Tisch					Pa:	755.1	mm Hg		
Calibration	Model #:	TE-5025A	Calib	rator S/N:	1941					
		1						1		
	Vol. Init		Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH			
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	1		
	1	1	2	1	1.4830	3.2	2.00	4		
	3	5	6	1	1.0420 0.9290	6.4 8.0	4.00	4		
	4	7	8	1	0.9290	8.8	5.00 5.50	4		
	5	9	10	1	0.8840	12.9	8.00	4		
						12.9	8.00	1		
			D	ata Tabula	ion					
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)	-	Qa	$\sqrt{\Delta H(Ta/Pa)}$			
	(m3)	(x-axis)	(y-axi		Va	(x-axis)	(y-axis)			
(1.0029	0.6762		0.9958	0.6715	0.8824]			
	0.9986	0.9583	2.007		0.9915	0.9516	1.2479			
	0.9965	1.0726	2.244		0.9894	1.0650	1.3952			
	0.9954	1.1260	2.353		0.9883	1.1180	1.4633			
	0.9899	1.3487	2.838		0.9829	1.3391	1.7648			
	OCTO	m=	2.105		0.0	m=	1.31858			
	QSTD	b= r=	-0.009		QA	b= r=	-0.00612 0.99992			
		1-	0.999			r-	0.99992	1		
			10 . 11/2 . 1/2	Calculation						
			/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)					
	Qsta=	Vstd/∆Time				Va/∆Time				
			For subseque	ent flow rat	e calculation	ns:				
===	Qstd=	1/m ((\\ \ \ \ \ H (-	Pa Pstd (Tstd Ta)-b)	Qa=	1/m ((√∆⊦	l(Та/Ра))-b)			
1	and the second sec	Conditions								
Tstd:				[RECA	LIBRATION			
Pstd:		mm Hg		[mmonde	anual rocalibrati	n no- 100		
H. calibrate		ey	1120)				nnual recalibration			
		er reading (in eter reading (Regulations Part			
		perature (°K)					, Reference Meth			
		essure (mm					ended Particulat			
b: intercept	P.	and a grant			the	e Atmosphe	ere, 9.2.17, page	30		
m: slope				1						

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

				inistration E	Build	-	Date of C		_			
Location I	ID :	SHWAI	3			N	lext Calibra					
Name and	Model:	TISCH H	HVS Mo	del TE-5170				echnic	ian: Fai S	0		
					С	ONDIT	IONS					
	a	.	5	(I.D.) [0160		a		,	\ [
	Se	a Level I			1	016.8		Co	orrected Pr			762.6
		Temp	berature	(°C)		22.8			Temp	erature (K	.)	296
				CA	LIB	RATIO		I				
				Make->	TISC	CH			Qstd Sl	ope ->	1	.99838
				Model->				(Qstd Inter	-		0.00903
				Serial # ->	1612	2			-	-		
					CA	ALIBR	ATION					
Plate	H20 (L)	H2O (R)	H20	Qstd		Ι	IC			LINEAF	ξ	
No.	(in)	(in)	(in)	(m3/min)	(ch	nart)	corrected		R	EGRESSI	ON	
18	5.60	5.60	11.2	1.688	5	56	56.51		S	Slope = 2	9.7666	
13	4.50	4.50	9.0	1.514	51		51.47		Intercept = 6.1338			
10	3.40	3.40	6.8	1.316		14	44.40		Corr. c	oeff. =	0.9984	
7	2.20	2.20	4.4	1.060		38	38.35					
5	1.30	1.30	2.6	0.816	2	30	30.27					
Calculatio	ons:							FI	_OW RATI	E CHART		
Qstd = 1/r	n[Sart(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		60.0	0					
IC = I[Sqi				·/ 1								
						50.0	0				/	
Qstd = sta	ndard flo	w rate										
IC = corrections	ected char	rt respon	es			_						
I = actual	chart res	ponse				<u>ຍ</u> 40.0	0			•		
m = calibr	-	-				onse			/			
b = calibra	-	-				ds 30.0	0					
				oration (deg		nart						
Pstd = act	ual press	ure durin	ig calibra	ation (mm H	lg	Actual chart response (IC) 30.07 20.07 20.08						
For subs	auent c	alculatio	n of san	npler flow:		20.0 Y	0					
1/m((I)[S	•			-								
1/111((1)[.	5411(290/	1 av)(1 av	///00)]-L))		10.0	0					
m = samp	ler slope											
b = samp		ent										
I = chart r		opt				0.0	0.000	0.500	1.0	000	1.500	2.000
Tav = dail	-	e temper	ature						ndard Flow			
Pav = dail												
	_ 0	-										

 RECALIBRATION DUE DATE:

 Environmental
 Discontantion

 Certificate of Calibration

 Calibration Certification Information

 Calibration Certification Information

Cal. Date:	December	27. 2021	Rooten	neter S/N:	438320	Tar	295	°K			
Operator:	Jim Tisch						Pa: 740.4				
						Pa:	Pa: 740.4				
Calibration	Model #:	TE-5025A	Calib	rator S/N:	1612						
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1			
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)				
	1	1	2	1	1.3890	3.2	2.00	7			
	2	3	4	1	0.9760	6.4	4.00	-			
	3	5	6	1	0.8740	7.9	5.00	1			
	4	7	8	1	0.8320	8.8	5.50	1			
	5	9	10	1	0.6870	12.7	8.00	1			
	1		D	ata Tabula	tion			ī			
								1			
	Vstd	Qstd	√∆H(Pa Pstd	$\left(\frac{\text{Tstd}}{\text{Ta}}\right)$		Qa (x-axis)	√∆Н(Та/Ра)				
	(m3)	(x-axis)	(y-axi		Va		(y-axis)				
	0.9799	0.7055		1.9841 0.991	0.9957	0.7168	0.8927 1.2624	F.			
	0.9756	0.9996			0.9914	1.0157					
	0.9736	1.1140	2.2183		0.9893	1.1320	1.4114	-			
	0.9724	1.1688	2.326		0.9881	1.1876	1.4803	-			
	0.9673	1.4079		2.8059 1.99838		1.4306	1.7853	1.7853 25135 .00574 .99999			
	OCTO	m=									
	QSTD	b= r=	-0.009		QA						
			0.335			1-	0.55555	1			
				Calculation							
			/Pstd)(Tstd/Ta)	$Va = \Delta Vol((Pa - \Delta P)/Pa)$						
	Qstd=	Vstd/∆Time				Va/∆Time		-			
			For subseque	ent flow rat	te calculation	ns:					
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa (<u>Tstd</u> Pstd (Ta)-ь)	$Qa = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$						
	Standard	Conditions	1				1				
Tstd:				[RECA	LIBRATION				
Pstd:		mm Hg						100			
		ley					nnual recalibration				
	and the second sec	er reading (in eter reading (Regulations Part				
		perature (°K)	(initi rig)		1.1.1.1		, Reference Met				
		essure (mm	Hg)				ended Particulat				
b: intercept	the second se		-0/		the	e Atmosphe	ere, 9.2.17, page	30			
m: slope											

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9005

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

is accredited by the Hong Kong Accreditation Service (HKAS) to ISO/IEC 17025:2017 for performing specific laboratory activities as listed in the scope of accreditation within the test category of 獲香港認可處根據ISO/IEC 17025:2017認可 進行載於認可範圍內下述測試類別中的指定實驗所活動

Environmental Testing

環境測試

 This accreditation to ISO/IEC 17025:2017 demonstrates technical competence for a defined scope and
the implementation of a management system relevant to laboratory operation
(see joint IAF-ILAC-ISO Communiqué).

 此項 ISO/IEC 17025:2017 的認可資格證明此實驗所具備指定範疇內所須的技術能力並
實施一套與實驗所運作相關的管理體系
(見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of HKAS is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

SHUM Wai-leung, Executive Administrator 執行幹事 沈偉良 Issue Date : 28 February 2020 簽發日期 : 二零二零年二月二十八日

Registration Number : HOKLAS 066 註冊號碼 :

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix D

Baseline Monitoring Schedule

Baseline Air Monitoring Schedule							
AIR QUALITY MONITORING							
	Date	1-HOUR TSP	24-HOUR TS				
Fri	8-Apr-22	\checkmark	\checkmark				
Sat	9-Apr-22	✓	\checkmark				
Sun	10-Apr-22	✓	\checkmark				
Mon	11-Apr-22	✓	\checkmark				
Tue	12-Apr-22	✓	\checkmark				
Wed	13-Apr-22	✓	\checkmark				
Thu	14-Apr-22	\checkmark	\checkmark				
Fri	15-Apr-22	✓	\checkmark				
Sat	16-Apr-22	✓	√				
Sun	17-Apr-22	✓	√				
Mon	18-Apr-22	✓	√				
Tue	19-Apr-22	✓	√				
Wed	20-Apr-22	✓	\checkmark				
Thu	21-Apr-22	✓	\checkmark				

✓	Monitoring Day
	Sunday or Public Holiday

$\label{eq:linear} $$ $$ 1.230\z\below \ 2022\ CS01196\ 600\ Report Submission\ Baseline EM&A Report\ R0014v4.doc Action-United Environmental Services and Consulting $$$

Appendix E

Database for 1-Hour & 24-hour TSP Data of Air Quality

\\192.168.1.230\z\Jobs\2022\TCS01196\600\Report Submission\Baseline EM&A Report\R0014v4.doc Action-United Environmental Services and Consulting

Baseline M	Baseline Monitoring Results for 24-hour TSP at SHWAB						Date of Calibration: 4-Apr-22			Slope = 29.7666					
Dasenne m							Next Calibration Date: 4-Jun-22			Intercept = 6.1338					
		ELAPSED TIME	D TIME		CHART READING		AVG	STANDARD			FILTER WEIGHT (g)		WEIGHT	DUST	
DATE	SAMPLE NUMBER	INITIAL	FINAL	ACTUAL (min)	MIN	MAX	AVG	TEMP (°C)	AVG PRESS (hPa)	FLOW RATE (m ³ /min)	AIR VOLUME (std m ³)	INITIAL	FINAL	DUST COLLECTED (g)	24-hour TSP IN AIR (ug/m ³)
08-Apr-22	28146	17763.31	17787.02	1422.60	32	33	32.5	23.6	1015.7	0.89	1266	2.7625	2.8460	0.0835	66
09-Apr-22	28147	17787.02	17811.01	1439.40	36	37	36.5	23.1	1013.8	1.02	1474	2.7630	2.9100	0.1470	100
10-Apr-22	28148	17811.01	17834.86	1431.00	36	36	36.0	23.8	1012.4	1.01	1438	2.7546	2.8322	0.0776	54
11-Apr-22	28149	17834.86	17858.86	1440.00	36	37	36.5	25.5	1011.0	1.02	1465	2.7511	2.8016	0.0505	34
12-Apr-22	28150	17858.86	17882.57	1422.60	36	36	36.0	25.7	1008.9	1.00	1422	2.7697	2.8199	0.0502	35
13-Apr-22	28151	17882.57	17906.58	1440.60	36	36	36.0	25.3	1006.8	1.00	1439	2.7714	2.8350	0.0636	44
14-Apr-22	28160	17906.58	17930.62	1442.40	36	36	36.0	25.5	1008.4	1.00	1442	2.8170	2.9546	0.1376	95
15-Apr-22	28152	17930.62	17954.56	1436.40	36	36	36.0	24.3	1012.1	1.00	1442	2.8081	2.9390	0.1309	91
16-Apr-22	28153	17954.56	17978.36	1428.00	36	36	36.0	21.8	1013.7	1.01	1442	2.8066	2.9017	0.0951	66
17-Apr-22	28154	17978.36	18002.06	1422.00	36	36	36.0	21.4	1015.6	1.01	1439	2.8169	2.9050	0.0881	61
18-Apr-22	28155	18002.06	18025.69	1417.80	35	37	36.0	21.7	1016.7	1.01	1435	2.7924	2.8578	0.0654	46
19-Apr-22	28156	18025.69	18049.40	1422.60	36	37	36.5	20.1	1017.3	1.03	1469	2.8170	2.8946	0.0776	53
20-Apr-22	28157	18049.40	18073.40	1440.00	38	38	38.0	21.9	1015.4	1.08	1553	2.7880	2.8851	0.0971	63
21-Apr-22	28158	18073.40	18097.35	1437.00	38	38	38.0	23.9	1013.5	1.07	1542	2.8259	2.9002	0.0743	48

1-hour TSP (µg/m³)									
Date	Start Time	End Time	1 st Meas.	2 nd Meas.	3 rd Meas.				
08-Apr-22	13:07	16:07	88	83	74				
09-Apr-22	16:00	19:00	96	107	87				
10-Apr-22	12:27	15:27	54	48	46				
11-Apr-22	15:43	18:43	42	48	74				
12-Apr-22	15:50	18:50	57	48	39				
13-Apr-22	15:55	18:55	66	54	49				
14-Apr-22	15:05	18:05	88	79	73				
15-Apr-22	15:59	18:59	94	86	58				
16-Apr-22	15:04	18:04	71	78	71				
17-Apr-22	15:05	18:05	59	48	43				
18-Apr-22	15:55	18:55	54	39	41				
19-Apr-22	15:06	18:06	66	53	50				
20-Apr-22	15:56	18:56	60	54	44				
21-Apr-22	15:32	18:32	84	54	49				

Appendix F

Meteorological Data during Baseline Monitoring Period

Date				Chek Lap Kok						
		Weather	Total Rainfal l (mm)	Mean Air Temp. (°C)	Mean Press. (hPa)	Wind Speed (km/h)	Wind Direction	Mean Relative Humidity (%)		
Fri	8-Apr-22	Cloudy with a few showers.	0	23.6	1015.7	11	Е	50		
Sat	9-Apr-22	Cloudy with one or two rain patches.	0	23.1	1013.8	13.6	E/NE	65		
Sun	10-Apr-22	Moderate to fresh east to northeasterly winds	0	23.8	1012.4	10.5	E/NE	67		
Mon	11-Apr-22	Fine. Hot. Light winds.	0	25.5	1011.0	9	Е	74		
Tue	12-Apr-22	Mainly cloudy with one or two showers.	0	25.7	1008.9	7.5	Е	77		
Wed	13-Apr-22	Mainly cloudy with one or two showers.	Trace	25.3	1006.8	6	W/SW	81		
Thu	14-Apr-22	Becoming cloudy tonight.	0	25.5	1008.4	10.5	Е	69		
Fri	15-Apr-22	Cloudy with a few showers.	Trace	24.3	1012.1	16	Е	69		
Sat	16-Apr-22	Moderate northerly winds.	Trace	21.8	1013.7	12.5	Е	73		
Sun	17-Apr-22	Light winds tomorrow.	0.4	21.4	1015.6	17.5	Е	72		
Mon	18-Apr-22	Moderate to fresh easterly winds	Trace	21.7	1016.7	20.6	Е	76		
Tue	19-Apr-22	Fine. Hot. Light winds.	0.8	20.1	1017.3	19.5	Е	83		
Wed	20-Apr-22	Light winds tomorrow.	0	21.9	1015.4	16.7	Е	75		
Thu	21-Apr-22	Fine. Hot. Light winds.	0	23.9	1013.5	12	Е	78		

Remark: The above information was extracted from the Hong Kong Observatory station of Chek Lap Kok of below link: <u>https://www.hko.gov.hk/en/index.html</u>

Appendix G

Event Action Plan (Air Quality)

Event Action Plan for Air Quality								
Enert	Action							
Event	ET	IEC	ER	Contractor				
Action Level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC, ER and Contractor; Repeat measurement to confirm finding; and Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method; and Review and advise the ET and ER on the effectiveness of the proposed remedial measures. 	1. Notify Contractor.	 Identify source, investigate the causes of exceedance and propose remedial measures Rectify any unacceptable practice and implement remedial measures; and Amend working methods agreed with ER if appropriate. 				
Action Level exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC, ER and Contractor; Advise the ER and Contractor on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC, ER and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET and ER on the effectiveness of the proposed remedial measures; and Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented. 	 Identify source, investigate the causes of exceedance and propose remedial measures Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate. 				
Limit Level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor, IEC and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measures; Advise the ER and ET on the effectiveness of the proposed remedial measures; 	 Confirm receipt of notification of failure in writing; Notify Contractor; and Supervise and ensure remedial measures properly implemented. 	 Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; 				

Event Action Plan for Air Quality

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station Baseline Monitoring Report

A	U	E	S

	Contractor's reme keep IEC, EPD an of the results.		Supervise implementation of remedial measures.			5.	and Amend proposal if appropriate.
Limit Level exceedance for two or more consecutive samples	Contractor's work to determine poss to be implemented 6. Arrange meeting Contractor and EF remedial actions to	2. anent to confirm ang frequency to analysis of analysis of analysis of analysis of analysis of analysis of ting procedures sible mitigation d; g with IEC, R to discuss the o be taken; tiveness of dial actions and d ER informed stops, cease	Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures.	3.4.5.	Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented; Supervise and ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. 2. 3. 4. 5. 6.	Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to ER with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Note:

ET – Environmental Team

IEC -- Independent Environmental Checker

ER – Engineer's Representative