

JOB NO.: TCS01196/22

WSD CONTRACT NO.: 7/WSD/21 -

CONSTRUCTION OF SIU HO WAN WATER TREATMENT WORKS EXTENSION AND SIU HO WAN RAW WATER BOOSTER PUMPING STATION

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT – JUNE 2023

PREPARED FOR

CHINA ROAD AND BRIDGE CORPORATION

Date	Reference No.	Prepared By Fai So	Certified By Tam Tak Wing
7 July 2023	TCS01196/22/600/R0059v1	Assistant Environmental	Environmental Team
		Consultant	Leader

Our Ref. 1988/23-0018

New Works Branch

Tin, New Territories.

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. SY Kin Lik (SE/CM 3)

Water Supplies Department

Consultants Management Division

Sha Tin Office - 6/F Sha Tin Government

Offices, 1 Sheung Wo Che Road, Sha

7 July 2023

By E-mail

Dear Sir,

RE: CONTRACT NO. 7/WSD/21 INDEPENDENT ENVIRONMENTAL CHECKER FOR ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN WATER TREATMENT WORKS EXTENSION MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT – JUNE 2023

I refer to the Monthly Environmental Monitoring and Audit Report – June 2023 (Report No.: TCS01196/22/600/R0059v1) received on 7 July 2023 by the Environmental Team (ET), Action-United Environmental Services & Consulting (AUES) via email. In accordance with Condition 4.4 of Environmental Permit No.EP-207/2005/A, I hereby verify the captioned report.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Joanne NG Independent Environmental Checker

JN/tw

c.c.	Action-United Environmental Services & Consulting (AUES)	Attn: Mr. Ben Tam	(By E-mail)
	Binnies Hong Kong Limited	Attn: Mr. Alex TUNG	(By E-mail)

EXECUTIVE SUMMARY

- ES.01. Water Supplies Department (WSD) is the Proponent of the Works Contract 7/WSD/21 "Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station" (hereinafter named as the "Works Contract"). Under this Works Contracts, the works mainly comprise of increasing the water treatment capacity of Siu Ho Wan water treatment works (SHW WTW) from 150,000m³ per day to 300,000m³ per day within the existing water treatment works compound, by constructing new water treatment facilities and a new laboratory building and modifying the existing associated facilities; and constructing a new raw water booster pumping station at Siu Ho Wan to increase the raw water transfer capacity from Tai Lam Chung Reservoir to SHW WTW.
- ES.02. According to the Environmental Impact Assessment Ordinance (EIAO), the proposed Siu Ho Wan Water Treatment Works Extension is a Designated Project under Schedule 2, which shall be implemented under the Environmental Permit EP-207/2005/A *(hereinafter called the "EP")*. Besides, the works for Siu Ho Wan Raw Water Booster Pumping Station is a non-designated project which mentioned in Section 1.10 of Environmental Monitoring and Audit (EM&A) Manual.
- ES.03. On 20 March 2022, *China Road and Bridge Corporation* (hereinafter called the "Main *Contractor*") awarded the *Works Contracts* 7/*WSD*/21. According to EM&A Manual, only air quality monitoring is required to be conducted which related to the works area under *Contracts* 7/*WSD*/21 during construction phase of the SHW WTW Extension. Moreover, site inspection and audit is required under the EM&A program to ensure the recommended environmental mitigation measures are implemented properly and effective.
- ES.04. The Main-*Contractor* appointed Action-United Environmental Services & Consulting (AUES) as the Environmental Team of the Project (hereinafter referred as the "ET") to implement air quality monitoring as well as associated duties in accordance with the EM&A Manual stipulation.
- ES.05. As advised by the *Contractor*, the major construction works under Works Contract was commenced on 24 May 2022. This is the *14th* Monthly EM&A Report presenting monitoring results and inspection finding for the Project for the reporting period from *1 to 30 June 2023*.

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.06. Environmental monitoring activities under the EM&A programme for the Contract in the Reporting Month are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Sessions
Air Quality	24-Hour TSP	5
Inspection /	ET Regular Environmental Site Inspection	4
Audit	Joint site audit with <i>Project Manager</i> 's Delegate and IEC	1

ACTION AND LIMIT LEVELS EXCEEDANCE

ES.07. In the Reporting Month, no air quality monitoring exceedance was recorded.

SITE INSPECTION

ES.08. In the Reporting Month, joint site inspections to evaluate the site environmental performance had been carried out by the representatives of the *PMD*, ET and the *Contractor* on *6*, *15*, *20 and 27 June 2023*. Joint site inspection with *PMD*, ET, IEC and the *Contractor* was carried out on *15 June 2023*. No non-compliance was recorded during the site inspections.

ENVIRONMENTAL COMPLAINT

ES.09. In the Reporting Month, no environmental complaint was received.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.010. In the Reporting Month, no prosecution or notification of summons was received.

REPORTING CHANGE

ES.011. There is no reporting change made for this monthly report.

FUTURE KEY ISSUES

- ES.012. Special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to Siu Ho Wan Sewage Treatment Works. The *Contractor* should fully implement the construction dust mitigation measures as appropriately.
- ES.013. Due to wet season has approached, the *Contractor* was reminded that all effluent discharge shall fulfill the requirement of Discharge Licence under the Water Pollution Control Ordinance.
- ES.014. All other mitigation measures recommended in the Implementation Schedule for Environmental Mitigation Measures of the EM&A Manual should be properly implemented and maintained as far as practicable.

Table of Contents

1	INTR	ODUCTION	Ι
	1.1	PROJECT BACKGROUND	Ι
	1.2	REPORT STRUCTURE	II
2	PROJ	ECT ORGANISATION AND CONSTRUCTION PROGRESS	III
	2.1	PROJECT ORGANISATION	III
	2.2	CONSTRUCTION PROGRESS	IV
	2.3	SUMMARY OF ENVIRONMENTAL PERMITS AND LICENCES	IV
3		MARY OF IMPACT MONITORING REQUIREMENTS	VI
	3.1	GENERAL	VI
	3.2	MONITORING PARAMETERS	VI
	3.3	MONITORING LOCATIONS	VI
	3.4 3.5	Monitoring Frequency and Period Monitoring Equipment	VI
	3.5 3.6	MONITORING EQUIPMENT MONITORING PROCEDURES	VI VII
	3.7	DERIVATION OF ACTION/LIMIT (A/L) LEVELS	VIII
	3.8	METEOROLOGICAL INFORMATION	VIII
	3.9	DATA MANAGEMENT AND DATA QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)	VIII
4	AIR (UALITY MONITORING	IX
	4.1	GENERAL	IX
	4.2	AIR MONITORING RESULTS	IX
5	WAST	TE MANAGEMENT	X
	5.1	GENERAL WASTE MANAGEMENT	Х
	5.2	RECORDS OF WASTE QUANTITIES	Х
6		INSPECTIONS	XI
	6.1	REQUIREMENTS	XI
	6.2	FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	XI
7		RONMENTAL COMPLAINTS AND NON-COMPLIANCES	XII
	7.1	ENVIRONMENTAL COMPLAINTS, SUMMONS AND PROSECUTIONS	XII
8		EMENTATION STATUS OF MITIGATION MEASURES	XIII
	8.1	GENERAL REQUIREMENTS	XIII
	8.2	TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	XIII
	8.3	KEY ISSUES FOR THE COMING MONTH	XIII
9		CLUSIONS AND RECOMMENDATIONS	XIII
	9.1	CONCLUSIONS	I
	9.2	RECOMMENDATIONS	Ι
LIS	T OF 1	<u>TABLES</u>	
Тав	le 2-1	STATUS OF ENVIRONMENTAL LICENCES AND PERMITS OF THE CONTRACT	
Тав	le 3-1	SUMMARY OF MONITORING PARAMETERS	
Тав	le 3-2	DESIGNATED AIR QUALITY MONITORING STATIONS	
Тав	le 3-3	AIR QUALITY MONITORING EQUIPMENT	
Тав	le 3-4	ACTION AND LIMIT LEVELS OF AIR QUALITY	

- TABLE 4-1
 SUMMARY OF 24-HOUR TSP MONITORING RESULT SHWAB
- TABLE 5-1
 SUMMARY OF QUANTITIES OF INERT C&D MATERIALS FOR THE CONTRACT
- TABLE 5-2SUMMARY OF QUANTITIES OF C&D WASTES FOR THE CONTRACT
- TABLE 6-1SITE OBSERVATIONS FOR THE CONTRACT
- TABLE 7-1
 STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 7-2
 STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 7-3
 STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION

[®] AUES

LIST OF APPENDICES

- APPENDIX A LAYOUT PLAN OF THE PROJECT
- APPENDIX B PROJECT ORGANISATION
- APPENDIX C 3-MONTH ROLLING CONSTRUCTION PROGRAMME
- APPENDIX D MONITORING LOCATIONS
- APPENDIX E CALIBRATION CERTIFICATES
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G MONITORING SCHEDULE
- APPENDIX H DATABASE OF MONITORING RESULT
- APPENDIX I GRAPHICAL PLOTS FOR MONITORING RESULT
- APPENDIX J METEOROLOGICAL DATA
- APPENDIX K WASTE FLOW TABLE
- APPENDIX L ENVIRONMENTAL COMPLAINTS LOG
- APPENDIX M IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Water Supplies Department (WSD) is the Proponent of the Works Contract 7/WSD/21 Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station (hereinafter named as the "Works Contract"). The Project works predicted by WSD will be undertaken about 34 months. Layout plan of the Project is shown in Appendix A.
- 1.1.2 According to the Environmental Impact Assessment Ordinance (EIAO), the proposed Siu Ho Wan Water Treatment Works Extension is a Designated Project under Schedule 2, which shall be implemented under the Environmental Permit EP-207/2005/A *(hereinafter called the "EP")*. Besides, the works for Siu Ho Wan Raw Water Booster Pumping Station is a non-designated project which mentioned in Section 1.10 of Environmental Monitoring and Audit (EM&A) Manual.
- 1.1.3 The Works Contract construction activities mainly include:
 - a. Extension of the existing Siu Ho Wan WTW within the existing Siu Ho Wan WTW compound from a capacity of 150,000 m³/day to 300,000 m³/day
 - b. Uprating of the treated/fresh water pumping capacity in the existing Siu Ho Wan Raw Water and Fresh Water Pumping Station within the existing Siu Ho Wan WTW compound from a capacity of 150,000 m³/day to 300,000 m³/day
 - c. Construction of the proposed Siu Ho Wan Raw Water Booster Pumping Station and the laying of the associated water mains
- 1.1.4 On 20 March 2022, *China Road and Bridge Corporation* (hereinafter called the "Main *Contractor*") awarded the Works Contracts 7/WSD/21. According to EM&A Manual, only air quality monitoring is required to be conducted which related to the works area under Contracts 7/WSD/21 during construction phase of the SHW WTW Extension. Moreover, site inspection and audit is required under the EM&A program to ensure the recommended environmental mitigation measures are implemented properly and effective.
- 1.1.5 The Main-*Contractor* appointed Action-United Environmental Services & Consulting (AUES) as the Environmental Team of the Project (hereinafter referred as the "ET") to implement air quality (baseline and impact) monitoring as well as associated duties in accordance with the EM&A Manual stipulation.
- 1.1.6 Some design changes of the Project have been identified after the EIA stage for betterment in the design development. Some of these changes requires supplementary environmental review to address their likely environmental impacts and to identify any additional mitigation measures required for compliance with the EIAO. Supplementary environmental review has been performed for the changes and the review results are presented in the "Review Report on Environmental Impact Assessment (Review Report on EIA)" prepared under "Agreement No. CE 82/2017 (WS)". Having reviewed the Review Report on EIA, no changes to the environmental monitoring requirement in the EM&A Manual are proposed for the work of SHW WTW Extension.
- 1.1.7 According to the approved EM&A Manual, only air quality is required to be monitored during the construction phase of the Project. As part of the EM&A program, baseline monitoring is required to determine the ambient environmental conditions. Pursuant to the EM&A Manual, baseline environmental monitoring is required to be conducted prior to commencement of the construction works under the Project. Baseline air quality monitoring was conducted from 8 to 21 April 2022. During the baseline monitoring period, no major construction activities under the Project was observed.
- 1.1.8 As advised by the *Contractor*, the major construction works under Works Contract was commenced on 24 May 2022. This is the *14th* Monthly EM&A Report presenting monitoring results and inspection finding for the Project for the reporting period from *1 to 30 June 2023*.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly EM&A Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Waste Management
 - Section 6 Site Inspections
 - Section 7 Environmental Complaints and Non-Compliances
 - Section 8 Implementation Status of Mitigation Measures
 - Section 9 Conclusions and Recommendations

2 PROJECT ORGANISATION AND CONSTRUCTION PROGRESS

2.1 **PROJECT ORGANISATION**

2.1.1 The project organization is shown in *Appendix B*. The roles and responsibilities of the various parties involved in the EM&A process and the organizational structure of the organizations responsible for implementing the EM&A programme are outlined below.

Water Supplies Department (WSD)

2.1.2 WSD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by WSD to audit the results of the EM&A works carried out by the ET.

Environmental Protection Department (EPD)

2.1.3 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Project Manager's Delegate (PMD)

- 2.1.4 The *PM*D is responsible for overseeing the construction works and for ensuring that the works are undertaken by the *Contractor* in accordance with the specification and contract requirements. The duties and responsibilities of the *PD*M with respect to EM&A are:
 - Supervise the *Contractor*'s activities and ensure that the requirements in the EM&A Manual are fully complied with;
 - Inform the *Contractor* when action is required to reduce impacts in accordance with the Event and Action Plans;
 - Comply with the agreed Event Contingency Plan in the event of any exceedance.

The Contractor

- 2.1.5 The Main *Contractor* is responsible perform construction works and for ensuring that the works are undertaken compliance with the specification and contract requirements. The duties and responsibilities of the Main *Contractor* with respect to EM&A are:
 - Employ an ET to undertake monitoring, laboratory analysis and reporting of environmental monitoring and audit;
 - Provide information / advice to the ET regarding works activities which may contribute, or be continuing to the generation of adverse environmental conditions;
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event and Action Plans;
 - Implement measures to reduce impact whenever Action and Limit levels are exceeded;
 - Implement the corrective actions instructed by *PM*D;
 - Accompany joint site audit undertaken by the ET; and
 - Adhere to the procedures for carrying out complaint investigation.

Environmental Team (ET)

- 2.1.6 The ET is responsible perform implementation EM&A programmes of the Contract Works as stipulated in the Updated EM&A Manual ensure the works are fully compliance with environmental regulations. The duties and responsibilities of the ET with respect to EM&A are:
 - Set up all the required environmental monitoring stations;
 - Monitor various environmental parameters as required in the EM&A Manual;
 - Analyze the EM&A data and review the success of EM&A programme to cost effectively confirm the adequacy of mitigation measures implemented and the validity of the EIA predictions and to identify any adverse environmental impacts arising;
 - Carry out site inspection to investigate and audit the *Contractor*'s site practice, equipment and work methodologies with respect to pollution control and environmental mitigation, and take proactive actions to pre-empt problems;
 - Audit and prepare audit reports on the environmental monitoring data and site environmental conditions;

• Report on the EM&A results to the IEC, *Contractor*, the *PMD* and EPD or its delegated representative;

AUFS

- Recommend suitable mitigation measures to the *Contractor* in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans;
- Undertake regular and ad-hoc on-site audits / inspections and report to the *Contractor* and the ER of any potential non-compliance; and
- Follow up and close out non-compliance actions.

Independent Environmental Checker (IEC)

- 2.1.7 The duties and responsibilities of IEC with respect to EM&A are:
 - Review the EM&A works performed by the ET (at not less than monthly intervals);
 - Audit the monitoring activities and results (at not less than monthly intervals);
 - Report the audit results to the *PM*D and EPD in parallel;
 - Review the EM&A reports (monthly summary reports) submitted by the ET;
 - Review the proposal on mitigation measures submitted by the *Contractor* in accordance with the Event and Action Plans;
 - Check the mitigation measures submitted by the *Contractor* in accordance with the Event and Action Plans;
 - Check the mitigation measures that have been recommended in the EIA and this Manual, and ensure they are properly implemented in a timely manner, when necessary;
 - Report the findings of site inspections and other environmental performance reviews to *PM*D and EPD;
 - Coordinate the monitoring and auditing works for all the on-going contracts in the area in order to identify possible sources / causes of exceedances and recommend suitable remedial actions where appropriate; and
 - Coordinate the assessment and response to complaints / enquires from locals, green groups, district councils or the public at large.

2.2 CONSTRUCTION PROGRESS

- 2.2.1 The major construction activities conducted under the Contract in the Reporting Period are listed below. The 3-month rolling construction programme is shown in *Appendix C*.
 - Concreting of slab at +7.20mPD was completed at portion BPS-1.
 - DfMA installation works were in progress at portion BPS-1.
 - First layer of lateral support works was completed at portion WTW-1. Excavation works was in progress at portion WTW-1.
 - Plant trial for submitted concrete mix was in progress.
 - Construction of mass concrete wall works were in progress at portion WTW-2.
 - Capping off existing DN800 washwater pipe was completed at portion WTW-1.
 - Trial pits excavation at portion WTW-7 was in progress.
 - Slap coring works was in progress at existing Chemical Building.
 - Decking of existing nullah to access portion BPS-2 was in progress.
 - Trial for earth rod installation at RWBPS.
 - E&M modification works at existing Chemical Building.

2.3 SUMMARY OF ENVIRONMENTAL PERMITS AND LICENCES

2.3.1 Summary of the relevant permits, licences, and/or notifications on environmental protection for the Project are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licences and Permits of the Contract

Item Description Licence/Permit Status
--

		Reference No./ License No./ Account No.	Approval Date	Expiry Date	Status
1	Air Pollution Control (Construction Dust) Regulation	Ref: 477913	23 Mar 2022	N/A	Valid
2	Waste Disposal Regulation – Billing Account for Disposal of Construction Waste	EPD Ref. No: RS02509 Acc. No.: 7043631	08 Apr 2022	N/A	Valid
3	Chemical Waste Producer Registration	5213-961-C4701-01	31 May 2022 /31 May 2023*	N/A	Valid
4	Water Pollution Control Ordinance – Discharge Licence	WT00041885-2022	8 Sep 2022	30 Sep 2027	Valid
5	Construction Noise Permit	GW-RS0188-23	18 Mar 2023	17 Sep 2023	Valid

* New Chemical Waste Producer Registration was issued by EPD on 31 May 2023 as Contractor's address has updated.

3.1 GENERAL

3

- 3.1.1 Only air quality monitoring is required to carry out related to Works contracts 7/WSD/21 during the construction phase to ensure the dust mitigation measures and performance properly implementation.
- 3.1.2 The other environmental monitoring for Works Area of Pui O was related to other Works Contracts and will be implemented by other appointed ET.
- 3.1.3 According to the Review Report on EIA, no changes to the environmental monitoring requirement in the EM&A Manual are proposed for the work of SHW WTW Extension. Air quality monitoring work will be implemented according to the EM&A Manual.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:Air quality;
- 3.2.2 A summary of impact monitoring parameters is presented in *Table 3-1*:

Table 3-1Summary of Monitoring Parameters

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter(as required in case of complaints); and 24-hour TSP by High Volume Air Sampler.

3.3 MONITORING LOCATIONS

3.3.1 According to the Review Report on EIA, air quality monitoring work should be implemented according to the EM&A Manual. As stated in Section 4 of EM&A Manual, there was only one air quality monitoring station designated under SHW WTW Extension. The air quality monitoring locations is listed in *Table 3-2*.

Table 3-2Designated Air Quality Monitoring Stations

Monitoring Station Identification No	Location	
SHWAB	Siu Ho Wan WTW Administration Building	

3.4 MONITORING FREQUENCY AND PERIOD

3.4.1 The requirements of impact monitoring are stipulated in *Sections 2.1.9* of the approved EM&A Manual and presented as follows.

<u>Air Quality Monitoring</u>

- 3.4.2 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days (as required in case of complaints)
 - 24-hour TSP Once every 6 days during course of works.

3.5 MONITORING EQUIPMENT

<u>Air Quality Monitoring</u>

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

3.5.3 All equipment to be used for air quality monitoring are listed in below table.

Table 3-3Air Quality Monitoring Equipment

Equipment	Model		
24-Hr TSP			
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*		
Calibration Kit	TISCH Model TE-5025A*		
1-Hour TSP			
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter / SidePak [™] Personal Aerosol Monitor AM510		

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix E.

3.6 MONITORING PROCEDURES

<u>1-hour TSP</u>

- 3.6.1 Operation of the 1-hour TSP meter will follow manufacturer's Operation and Service Manual.
- 3.6.2 The 1-hour TSP monitor, brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 900 light scattering. The 1-hour TSP monitor consists of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.3 The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Span check and BG of the instrument will be performed before each monitoring event. A valid calibration certificate is attached in *Appendix E*.

24-hour TSP

- 3.6.4 The equipment used for 24-hour TSP measurement is the High Volume Sampler (hereinafter the "HVS") brand named TISCH, Model TE-5170 TSP High Volume Air Sampler, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50.* The HVS consists of the following:
 - a. An anodized aluminum shelter;
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 Hz
- 3.6.5 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground or the roof of building. The flow rate of the HVS between 0.6m³/min and 1.7m³/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in *EPA Code of Federal Regulation, Appendix B to Part 50*. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-Hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;
 - Installed with elapsed-time meter with ± 2 minutes accuracy for 24 hours operation;

- Equipped with a timing/control device with \pm 5 minutes accuracy for 24 hours operation;
- With flow control accuracy for $\pm 2.5\%$ deviation over 24-hour sampling period;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected and transfer from the filter holder of the HVS to a sealed envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.6.6 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.6.7 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m^3/min . Motor brushes of HVS will be regularly replaced of about five hundred hours per time. Valid certificates of the calibration kit and HVS are attached in *Appendix E*.

3.7 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.7.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-4*.

Table 3-4Action and Limit Levels of Air Quality

Monitoring Station	Action Level (µg /m ³)		Limit Level (µg/m ³)	
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
SHWAB	291	170	500	260

3.8 METEOROLOGICAL INFORMATION

3.8.1 The meteorological information including wind direction, wind speed, humidity, rainfall, air pressure and temperature is extracted from the Chek Lap Kok Station. Meteorological data are attached in *Appendix J*.

3.9 DATA MANAGEMENT AND DATA QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

- 3.9.1 All monitoring data were handled by the ET's in-house data recording and management system.
- 3.9.2 The monitoring data recorded in the equipment were downloaded directly from the equipment at each monitoring day or after completion of baseline measurement. The downloaded monitoring data were input into a computerized database properly maintained by the ET. The laboratory results were input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.3 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4.1 GENERAL

- 4.1.1 The air quality monitoring schedule is presented in *Appendix* G and the monitoring results are summarised in the following sub-sections.
- 4.1.2 In the reporting Period, no air quality complaint was received, thus no 1-hour TSP monitoring required to conduct according to *Section 2.19* of the approved EM&A Manual.

4.2 AIR MONITORING RESULTS

4.2.1 In the Reporting Period, a total of 5 events 24-hour TSP monitoring were carried out and the monitoring results are summarized in *Table 4-1*. The detailed 24-hour monitoring data are presented in *Appendix H* and the relevant graphical plots are shown in *Appendix I*.

Table 4-1Summary of 24-hour TSP Monitoring Result – SHWAB

24-hour TSP (μg/m³)			
Date	Meas. Result		
3-Jun-23	43		
9-Jun-23	30		
15-Jun-23	37		
21-Jun-23	36		
27-Jun-23	34		
Average	36		
(Range)	(30 - 43)		

- 4.2.2 As shown in *Tables 4-1*, all the 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix J*.

5 WASTE MANAGEMENT

5.1 GENERAL WASTE MANAGEMENT

5.1.1 Waste management was carried out in accordance with the Waste Management Section in the Environmental Management Plan for the Contract.

5.2 **RECORDS OF WASTE QUANTITIES**

- 5.2.1 All types of waste arising from the construction works are broadly classified into the following:
 - Insert construction and demolition (C&D) material; and
 - C&D waste.
- 5.2.2 The quantities of waste for disposal in this Reporting Month under the Contract are summarised in *Tables 5-1* and *5-2* and the Waste Flow Table as shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 5-1Summary of Quantities of Inert C&D Materials for the Contract

Туре	Quantity in Reporting Month	Disposal / Dumping Ground
Reused in this Contract (Inert) (in T)	0	NA
Reused in other Contracts/ Projects (Inert) (in T)	0	NA
Disposal as Public Fill (Inert) (in T)	7221.400	TM 38

Table 5-2Summary of Quantities of C&D Wastes for the Contract

Туре	Quantity in Reporting Month	Disposal / Dumping Ground
Recycled Metal ('000kg)	0	NA
Recycled Paper / Cardboard Packing ('000kg)	0	NA
Recycled Plastic ('000kg)	0	NA
Chemical Wastes ('000kg)	0	NA
General Refuses (in T)	27.910	NENT

6 SITE INSPECTIONS

6.1 **REQUIREMENTS**

6.1.1 According to the EM&A Manual, the programme of environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections were carried out to confirm the environmental performance.

6.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

6.2.1 In the Reporting Month, joint site inspections to evaluate the site environmental performance were carried out by the representatives of the *PMD*, ET and the *Contractor* on *6*, *15*, *20 and 27 June 2023*. Joint site inspection with *PMD*, ET, IEC and the *Contractor* was carried out on *15 June 2023*. No non-compliance was recorded.

6.2.2 The findings / deficiencies observed during the weekly site inspections are listed in *Table 6-1*.

Table 0-1 Site	e Obsel various for the Contract	
Date	Findings / Deficiencies	Follow-Up Status
6 June 2023	• The <i>Contractor</i> should provide mitigation measures to prevent muddy water run out of site. (WTB)	• Stagnant muddy water was removed.
	• The <i>Contractor</i> was reminded pay attention to prevent stagnant water run out of site after rainy day.	• Reminder only.
15 June 2023	• No adverse environmental issue was observed during site inspection.	• NA.
20 June 2023	• The <i>Contractor</i> should remove construction waste to improve house-keeping. (WTW7)	Construction waste was removed.
27 June 2023	• The <i>Contractor</i> should remove construction waste to enhance house-keeping. (WTB)	Construction waste was removed.
	• The <i>Contractor</i> was reminded to spray water regularly to reduce dust impact.	• Reminder only.

Table 6-1Site Observations for the Contract

7 ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCES

7.1 Environmental Complaints, Summons and Prosecutions

- 7.1.1 There was no environmental complaint, prosecution or notification of summons received in the Reporting Month.
- 7.1.2 The statistical summary table of the environmental complaints, summons and prosecution are presented in *Tables 7-1*, 7-2 and 7-3. Detailed complaint log for the Contract is presented in *Appendix L*.

Table 7-1Statistical Summary of Environmental Complaints

Donorting Month	Environmental Complaint Statistics						
Reporting Month	Frequency	Cumulative	Project related complaint				
24 May 2022 to 31 May 2023	0	0	0				
1 to 30 June 2023	0	0	0				

Table 7-2 Statistical Summary of Environmental Summons

Donorting Month	Environmental Summons Statistics						
Reporting Month	Frequency	Cumulative	Project related summons				
24 May 2022 to 31 May 2023	0	0	0				
1 to 30 June 2023	0	0	0				

Table 7-3 Statistical Summary of Environmental Prosecution

Donorting Month	Environmental Prosecution Statistics						
Reporting Month	Frequency	Cumulative	Project related prosecution				
24 May 2022 to 31 May 2023	0	0	0				
1 to 30 June 2023	0	0	0				

8.1 GENERAL REQUIREMENTS

- 8.1.1 The environmental mitigation measures recommended in the ISEMM in the EM&A Manual covered the issues of dust, noise, water, waste, land contamination and ecology and they are summarised and presented in *Appendix M*.
- 8.1.2 The Contract works under the Project shall be implementing the required environmental mitigation measures according to the EM&A Manual as subject to the site conditions. Environmental mitigation measures generally implemented by the Contract and the implementation status are shown in *Appendix M*.

8.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

- 8.2.1 According to the information provided by the *Contractor*, the major construction activities under the Contract in the coming month are listed below:
 - Concreting works for the structure of BPS at portion BPS-1
 - Installation of DfMA units for BPS at portion BPS-1
 - Installation of lateral support and excavation works at WTB
 - Construction of base slap for WTB
 - Installation of lateral support and excavation works at OLB
 - Construction of base slap for OLB
 - Construction of tower crane at OLB
 - Excavation and pipelaying works for DN1200 watermain

8.3 KEY ISSUES FOR THE COMING MONTH

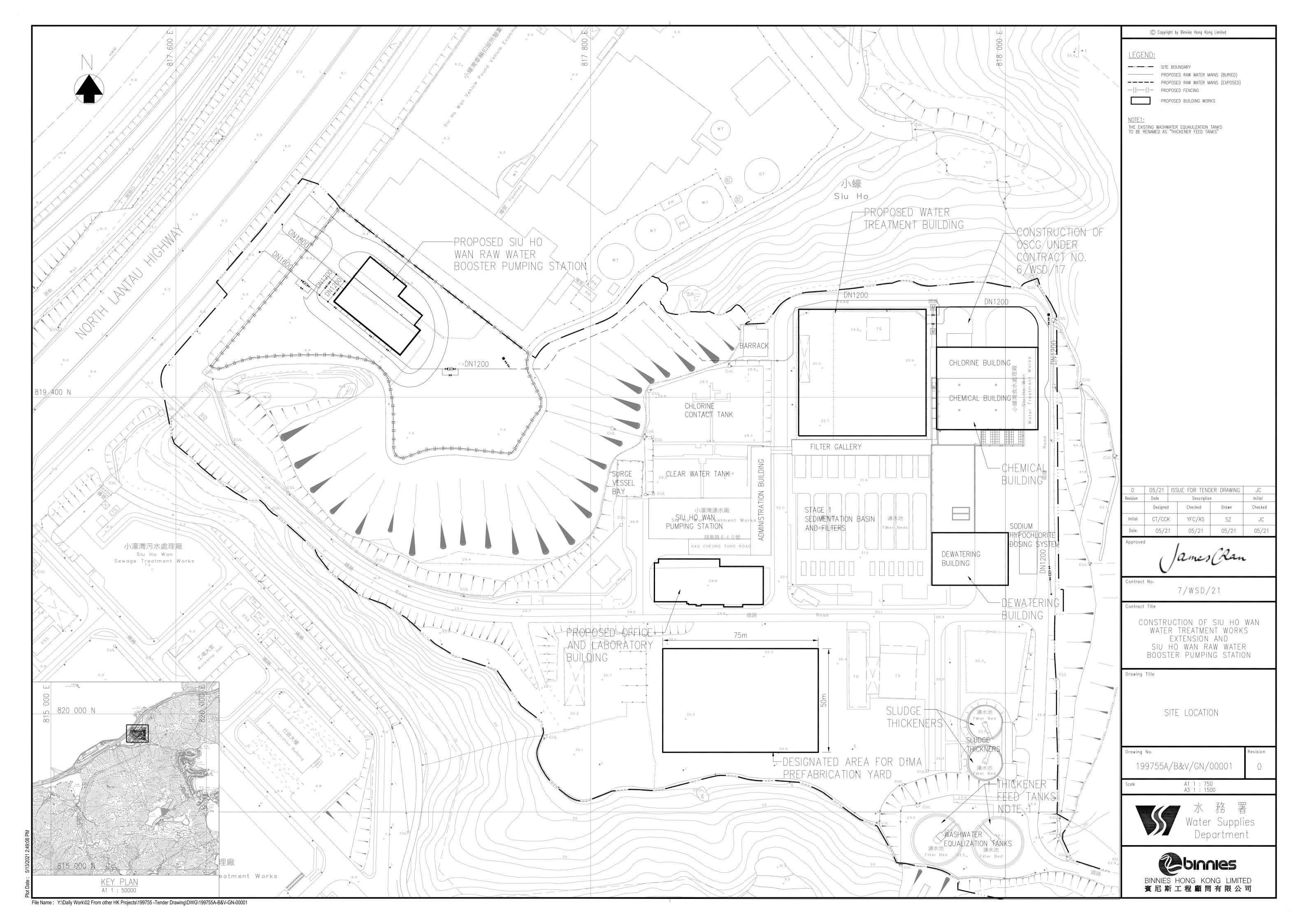
- 8.3.1 Special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to Siu Ho Wan Sewage Treatment Works. The *Contractor* should fully implement the construction dust mitigation measures as appropriately.
- 8.3.2 Due to wet season has approached, the *Contractor* was reminded that all effluent discharge shall fulfill the requirement of Discharge Licence under the Water Pollution Control Ordinance.
- 8.3.3 All other mitigation measures recommended in the Implementation Schedule for Environmental Mitigation Measures of the EM&A Manual should be properly implemented and maintained as far as practicable.

9 CONCLUSIONS AND RECOMMENDATIONS

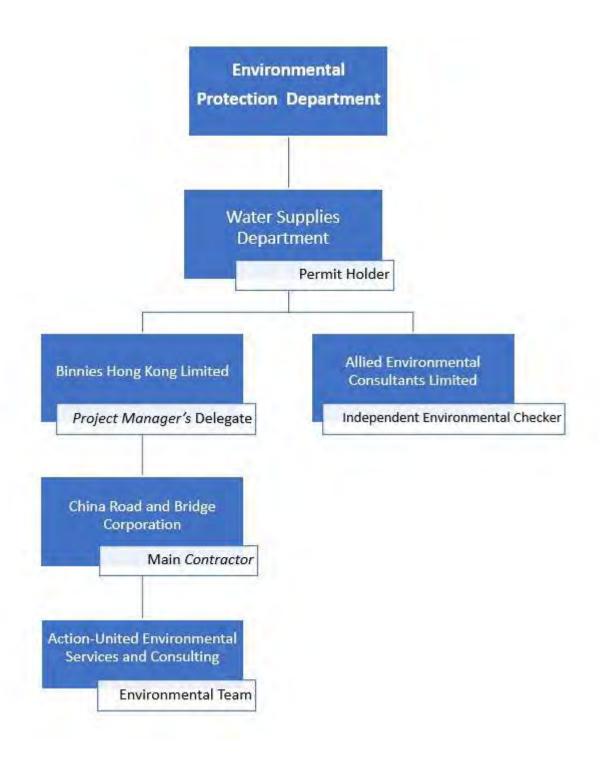
9.1 CONCLUSIONS

- 9.1.1 As advised by the *Contractor*, the major construction works under Works Contract was commenced on 24 May 2022. This is the *14th* Monthly EM&A Report presenting monitoring results and inspection finding for the Project for the reporting period from *1 to 30 June 2023*.
- 9.1.2 In the Reporting Period, no 24-hour TSP monitoring results triggered the Action/Limit level was recorded. No NOE or the associated corrective actions were therefore issued.
- 9.1.3 In the Reporting Month, joint site inspections to evaluate the site environmental performance had been carried out by the representatives of the *PMD*, ET and the *Contractor* on *6*, *15*, *20 and 27 June 2023*. Joint site inspection with *PMD*, ET, IEC and the *Contractor* was carried out on *15 June 2023*. No non-compliance was recorded during the site inspections.
- 9.1.4 In the Reporting Month, no environmental complaint, prosecution or notification of summons was received. In addition, no emergency event related to violation of environmental legislation for illegal dumping and landfilling was received.

9.2 **RECOMMENDATIONS**


- 9.2.1 Special attention should be paid on the potential construction dust impact since most of the construction sites are adjacent to Siu Ho Wan Sewage Treatment Works. The *Contractor* should fully implement the construction dust mitigation measures as appropriately.
- 9.2.2 Due to wet season has approached, the *Contractor* was reminded that all effluent discharge shall fulfill the requirement of Discharge Licence under the Water Pollution Control Ordinance.
- 9.2.3 All other mitigation measures recommended in the Implementation Schedule for Environmental Mitigation Measures of the EM&A Manual should be properly implemented and maintained as far as practicable.

Appendix A


Layout Plan of the Project

 $Z: Jobs \ 2022 \ TCS01196 (7 \ WSD \ 21) \ 600 \ Report \ Submission \ Impact \ EM\&A \ Report \ 2023 \ 14th \ EM\&A \ Report \ June \ 2023 \ R0059 \ v1. doc$

Project Organisation

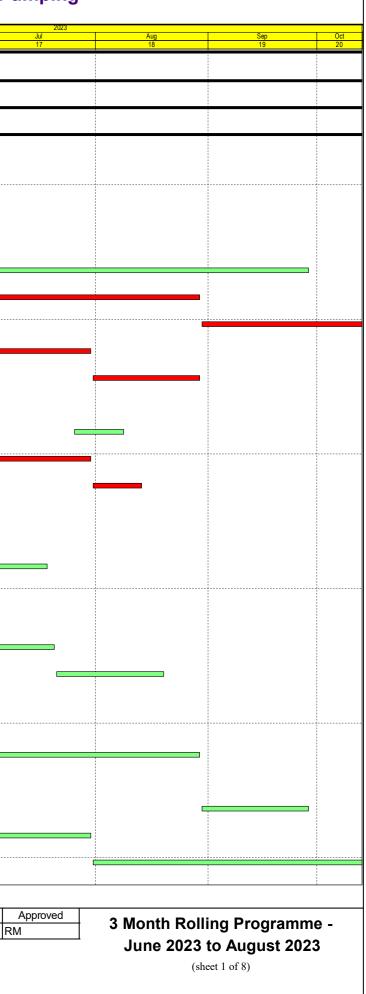
Organisation	Project Role	Position	Name	Tel No.
		Chief Resident Engineer	Mr. Gilbert Ying	6343 1027
Binnies Hong Kong	Project	Senior Resident Engineer	Mr. Alex Tung	9080 0079
Limited	<i>Manager</i> 's Delegate	Resident Engineer	Mr. Patrick Wong	9267 8638
		Assistant Resident Engineer	Ms. Kelly Chan	9039 2863
		Site Agent		9224 0114
China Road and	¹ Contractor	Environmental Manager Mr. Dennis Ho		5645 0563
Bridge Corporation		Environmental Officer	Ms. Wendy Leung	9877 4750
		Environmental Supervisor	Mr. Patrick Wan	9618 0010
Allied Environmental Consultants Limited	Independent Environmental Checker	Principle Consultant	Ms. Joanne Ng	2815 7028
Action-United Environmental		Environmental Team Leader	Mr. Tam Tak Wing	2959 6059
Services and	Environmental Team	Environmental Consultant	Ms. Nicola Hon	2959 6059
Consulting		Environmental Consultant	Mr. Ben Tam	2959 6059

Contact Details of Key Personnel

3-month Rolling Construction Programme

Activity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start Actual Finis	h Total Float	Duration % Complete	May Jun 15 16
Constructi	on of Siu Ho Wan Water Treatment Works Exte	917.0d	550.0d 28-Mar-22 08:00 A	01-Dec-24 18:00	28-Mar-22 08:00	79.0d	40.02%	13 10
Preliminari	es, Contractor's Design,Method Statement Submiss	917.0d	550.0d 28-Mar-22	01-Dec-24	28-Mar-22	79.0d	40.02%	
	s Design Submission and Approval	516.0d	08:00 A 150.0d 28-Mar-22	18:00 28-Oct-23	08:00 28-Mar-22	37.5d	70.93%	
Major Perma	nent Works Design	516.0d	08:00 A 150.0d 28-Mar-22	18:00 28-Oct-23	08:00 28-Mar-22	37.5d	70.93%	
MDD3006	Comment and approval of P&ID	80.0d	08:00 A 20.0d 15-Oct-22	18:00 20-Jun-23	08:00 15-Oct-22	24.5d	75%	
MDD3010	Hazard and Operability studies	214.0d	08:00 A 30.0d 24-May-22	18:00 30-Jun-23	08:00 24-May-22	14.5d	85.98%	
MDD3020	Design for Ozone Equipment	180.0d	08:00 A 20.0d 28-Mar-22	18:00 20-Jun-23	08:00 28-Mar-22	10.5d	88.89%	
MDD3025	Comments and approval of Design for Ozone Equipment	14.0d	08:00 A 14.0d 21-Jun-23 08:00	18:00 04-Jul-23 18:00	08:00	10.5d	0%	
MDD3046.5	CR drawings submission for WTB	120.0d	120.0d 01-Jun-23 08:00	28-Sep-23 18:00		35.5d	0%	
MDD3065	Design for Manufacture and Assembly(DfMA) works for E&M works	210.0d	90.0d 31-Aug-22 08:00 A	29-Aug-23 18:00	31-Aug-22 08:00	1.5d	57.14%	
MDD3070	Comments and approval of MiMEP design	60.0d	60.0d 30-Aug-23 08:00	28-Oct-23 18:00	08.00	1.5d	0%	
MDD3110	Design for stage 2 architectural works	95.0d	60.0d 28-Feb-23 08:00 A	30-Jul-23 18:00	28-Feb-23 08:00	-6.5d	36.84%	
MDD3115	Comments and approval of design for stage 2 architectural works	30.0d	30.0d 31-Jul-23 08:00	29-Aug-23 18:00	08.00	-6.5d	0%	
MDD3120	Design for building services (including FSD submission)	90.0d	25.0d 23-May-22 08:00 A	25-Jun-23 18:00	23-May-22 08:00	123.5d	72.22%	
MDD3125	Comments and approval of design for building services	14.0d	14.0d 26-Jul-23 08:00	08-Aug-23 18:00	00.00	93.5d	0%	
MDD3126	Design for building services at the existing building	120.0d	60.0d 01-Mar-23 08:00 A	30-Jul-23 18:00	01-Mar-23 08:00	-2.5d	50%	
MDD3127	Comments and approval of design for building services	14.0d	14.0d 31-Jul-23 08:00	13-Aug-23 18:00		-2.5d	0%	
MDD3135	Comments and approval of design for SRGF Equipment	15.0d	10.0d 21-Apr-23 08:00 A	10-Jun-23 18:00	21-Apr-23 08:00	35.5d	33.33%	
MDD3150	Design for WTB POCT & IOCT Equipment	90.0d	20.0d 31-Oct-22 08:00 A	20-Jun-23 18:00	31-Oct-22 08:00	12.5d	77.78%	
MDD3155	Comments and approval of Design for WTB POCT & IOCT Equipment	28.0d	28.0d 21-Jun-23 08:00	18-Jul-23 18:00		12.5d	0%	
MDD3160	Design for surge analysis system	90.0d	15.0d 31-Oct-22 08:00 A	15-Jun-23 18:00	31-Oct-22 08:00	20.5d	83.33%	
MDD3165	Comments and approval of design for surge analysis system	15.0d	15.0d 16-Jun-23 08:00	30-Jun-23 18:00		20.5d	0%	
MDD3320	Design for WTB Inlet Valve Chamber Equipment	90.0d	50.0d 18-Oct-22 08:00 A	20-Jul-23 18:00	18-Oct-22 08:00	39.5d	44.44%	
MDD3325	Comments and approval of design for WTB Inlet Valve Chamber Equipment	30.0d	30.0d 21-Jul-23 08:00	19-Aug-23 18:00		39.5d	0%	
MDD3360	Design for Service Water Equipment	90.0d	0.0d 05-Dec-22 08:00 A	01-Jun-23 08:00	05-Dec-22 08:00	127.5d	100%	
MDD3365	Comments and approval of design for Service Water Equipment	30.0d	30.0d 01-Jun-23 08:00	30-Jun-23 18:00		127.5d	0%	
MDD3421	Design for near real-time Operation Simulation System (Stream 2A)	90.0d	90.0d 01-Jun-23 08:00	29-Aug-23 18:00		67.5d	0%	
MDD3425	Comments and approval of design for near real-time Operation Simulation System (part of existing facilities)	30.0d	30.0d 01-Jun-23 08:00	30-Jun-23 18:00		127.5d	0%	
MDD3426	Comments and approval of design for near real-time Operation Simulation System (Stream 2A)	30.0d	30.0d 30-Aug-23 08:00	28-Sep-23 18:00		67.5d	0%	
MDD3430	BEAM Plus PA submission	90.0d	60.0d 19-Dec-22 08:00 A	30-Jul-23 18:00	19-Dec-22 08:00	30.5d	33.33%	
MDD3431	Comment and approval of BEAM Plus PA submission	90.0d	90.0d 31-Jul-23 08:00	28-Oct-23 18:00		30.5d	0%	

Actual Work Non-Critical Activity


-

Date Summary 31-May-23 1... 1

Revision Checked CLX

Critical Activity ♦ Milestone

Data Date:31-May-23

vity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish Total Float	Duration % Complete	May	Jun 16
MDD3440	Design Furniture and Testing Equipment Arrangement at Office and Laboratory Building.	90.0d	60.0d 01-Feb-23 08:00 A	30-Jul-23 18:00	01-Feb-23 08:00	104.5d	33.33%	15	
MDD3441	Comment and approval of Design Furniture and Testing Equipment Arrangement at OLB	60.0d	25.0d 17-Feb-23 08:00 A	30-Jul-23 18:00	17-Feb-23 08:00	104.5d	58.33%		
MDD3450	Design Building and Energy, Management system, Extra Low Voltage system and Treatment Monitoring and Alert system	90.0d	60.0d 01-Feb-23 08:00 A	30-Jul-23 18:00	01-Feb-23 08:00	99.5d	33.33%		
MDD3451	Comment and approval of Building and Energy, Management, Extra Low Voltage and Treatment Monitoring and Alert system	90.0d	60.0d 01-Feb-23 08:00 A	30-Jul-23 18:00	01-Feb-23 08:00	99.5d	33.33%		
Material Su		505.0d	68.0d 05-May-22 08:00 A	07-Aug-23 18:00	05-May-22 08:00	66.5d	86.53%		
MAT1030	Equipment Submission (E&M Equipment other than listed below)	210.0d	40.0d 05-May-22 08:00 A	10-Jul-23 18:00	05-May-22 08:00	-22.5d	80.95%		
MAT1031	Comment and Approval of Equipment Submission other than listed below	8.0d	8.0d 11-Jul-23 08:00	18-Jul-23 18:00	08.00	71.5d	0%		
MAT1040	Equipment Submission (Ozone System)	210.0d	15.0d 05-May-22 08:00 A	15-Jun-23 18:00	05-May-22 08:00	21.5d	92.86%		
MAT1041	Comment and Approval of Equipment Submission (Ozone)	8.0d	8.0d 16-Jun-23 08:00	23-Jun-23 18:00	00.00	21.5d	0%		
MAT1050	Equipment Submission (BACF)	210.0d	20.0d 05-May-22 08:00 A	20-Jun-23 18:00	05-May-22 08:00	17.5d	90.48%		
MAT1051	Comment and Approval of Equipment Submission (BACF)	8.0d	8.0d 21-Jun-23 08:00	28-Jun-23 18:00	00.00	17.5d	0%		
MAT1055	Equipment Submission (SRGF)	210.0d	20.0d 05-May-22 08:00 A	20-Jun-23 18:00	05-May-22 08:00	17.5d	90.48%		
MAT1056	Comment and Approval of Equipment Submission (SRGF)	8.0d	8.0d 21-Jun-23 08:00	28-Jun-23 18:00	00.00	17.5d	0%		
MAT1060	Equipment Submission (Chemical)	210.0d	60.0d 05-May-22 08:00 A	30-Jul-23 18:00	05-May-22 08:00	66.5d	71.43%		
MAT1061	Comment and Approval of Equipment Submission (Chemical)	8.0d	8.0d 31-Jul-23 08:00	07-Aug-23 18:00	00.00	66.5d	0%		
MAT1070	Equipment Submission (Sludge Dewatering Plant)	99.0d	10.0d 24-Oct-22 08:00 A	10-Jun-23 18:00	24-Oct-22 08:00	-14.5d	89.9%		
MAT1071	Comment and Approval of Equipment Submission (Sludge Dewatering Plant)	8.0d	8.0d 11-Jun-23 08:00	18-Jun-23 18:00	00.00	-14.5d	0%		
BIM Delive	rables	816.0d	550.0d 20-May-22 08:00 A	01-Dec-24 18:00	20-May-22 08:00	79.0d	32.6%	2 2 2 2 2 2 2 2 2	
BIMD1010	Fully Coordinated BIM Models	500.0d	280.0d 22-Jun-22 08:00 A	06-Mar-24 18:00	22-Jun-22 08:00	34.5d	53.33%	2	
BIMD1015	Shop drawings	700.0d	425.0d 22-Jun-22 08:00 A	29-Jul-24 18:00	22-Jun-22 08:00	174.0d	39.29%		
BIMD1020	Combined Service Drawing (CSD) and Combined Builder's Works Drawings (CBWD)	365.0d	70.0d 24-May-22 08:00 A	09-Aug-23 18:00	24-May-22 08:00	261.5d	80.82%		
BIMD1025	4D Modelling	700.0d	520.0d 20-May-22 08:00 A	01-Nov-24 18:00	20-May-22 08:00	79.0d	25.71%		
BIMD1030	BIM Progress Reporting	800.0d	480.0d 21-Jun-22 08:00 A	22-Sep-24 18:00	21-Jun-22 08:00	149.0d	40%	1 2 2 2 2 2 2 2 2 2	
BIMD1035	Clash report	447.0d	160.0d 31-Jul-22 08:00 A	07-Nov-23 18:00	31-Jul-22 08:00	244.5d	64.21%	2 	C
BIMD1040	3D VR	500.0d	280.0d 30-Jun-22 08:00 A	06-Mar-24 18:00	30-Jun-22 08:00	94.5d	44%		
BIMD1045	Existing condition modelling	447.0d	180.0d 21-Jun-22 08:00 A	27-Nov-23 18:00	21-Jun-22 08:00	39.0d	59.73%		C
BIMD1050	3D digital survey	447.0d	180.0d 21-Jun-22 08:00 A	27-Nov-23 18:00	21-Jun-22 08:00	119.0d	59.73%		
BIMD1060	BIM Object	700.0d	500.0d 30-Jun-22 08:00 A	12-Oct-24 18:00	30-Jun-22 08:00	129.0d	28.57%		
BIMD1160	Digital fabrication	700.0d	550.0d 24-Oct-22 08:00 A	01-Dec-24 18:00	24-Oct-22 08:00	79.0d	21.43%		
Subcontra	cting and Procurement	538.0d	394.0d 02-Sep-22 08:00 A	28-Jun-24 18:00	02-Sep-22 08:00	121.5d	38.24%		
Subcontrac	ting	52.0d	30.0d 10-May-23	18:00 30-Jun-23	10-May-23	485.5d	42.31%	•	Subc

Actual Work Non-Critical Activity

-

Summary

Date Revision Checked 31-May-23 1... 1 CLX

Critical Activity

♦ Milestone

Pumping	Data Date:31-May-23						
2023 Jul	Aug	Sen	Oct				
17	18	Sep 19	Oct 20				
	Material Submissio	n					
		,11	2 2 2 2				
			2 2 2 2				
			1 1 1				
L							
			1 1 1 1				
			2 2 2 2				
			2 2 2				
			1 1 1				
			1 1 1 1				
			1				
ocontracting							
Approved							
RM	3 Month Rolli	ing Programme	e -				
<u>1</u>		to August 2023					
			-				
	(sne	eet 2 of 8)					

ity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish Tot		ation %	May	Jun	
MTW1585	Subletting for waterproofing works	20.0d	20.0d 01-Jun-23	20-Jun-23		3	1.5d	0%	15	16	
MTW1600	Subletting for ABWF works	30.0d	08:00 20.0d 10-May-23 08:00 A	18:00 20-Jun-23 18:00	10-May-23 08:00	2	3.5d 33.	33%			
MTW1660	Subletting for Drainage works	30.0d	30.0d 01-Jun-23	30-Jun-23 18:00	08.00	5	4.5d	0%			
MTW1680	Subletting for Road works	30.0d	08:00 30.0d 01-Jun-23 08:00	30-Jun-23 18:00		48	5.5d	0%			
E&M Equipr	ment Procurement,FAT and Delivery	538.0d	394.0d 02-Sep-22 08:00 A	28-Jun-24 18:00	02-Sep-22 08:00	2	0.5d 38.	24%			
MTW1685	Submission of Equipment test plan	90.0d	0.0d 02-Sep-22 08:00 A	01-Jun-23 08:00	02-Sep-22 08:00		3.5d 1	00%			
MTW1690	Approval of Equipment test plan	30.0d	30.0d 23-Dec-22 08:00 A	30-Jun-23 18:00	23-Dec-22 08:00	-2	6.5d	0%		-	
MTW1695	Procurement and delivery of Energy dissipation valves	270.0d	270.0d 20-Aug-23 08:00	15-May-24 18:00	08:00	3	9.5d	0%			
MTW1700	Procurement and delivery of Pipeworks, valves, EM flowmeters, instruments	210.0d	210.0d 20-Aug-23	16-Mar-24		9	9.5d	0%			
MTW1710	Procurement and delivery of POCT mixers, penstocks, stoplogs, EM flowmeters,	240.0d	08:00 240.0d 19-Jul-23	18:00 14-Mar-24		1	2.5d	0%			
MTW1720	j ,1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1	240.0d	08:00 240.0d 19-Jul-23	18:00 14-Mar-24		1	2.5d	0%			
MTW1730	instruments Procurement and delivery of Ozone destruction system, pipeworks, instruments,	300.0d	08:00 300.0d 05-Jul-23	18:00 29-Apr-24		7	0.5d	0%			_
MTW1740	valves Procurement and delivery of PSA sets, Ozone Generator sets, air vessels, cooling	360.0d	08:00 360.0d 05-Jul-23	18:00 28-Jun-24		1	0.5d	0%			-
MTW1750	system, PSU Procurement and delivery of POCT ozone gas valve trains, gas ejectors,	300.0d	08:00 300.0d 19-Jul-23	18:00 13-May-24		4	9.5d	0%			
MTW1760	sidestream pumps Procurement and delivery of IOCT ozone gas valve trains, gas ejectors,	150.0d	08:00 150.0d 19-Jul-23	18:00 15-Dec-23		10	2.5d	0%			
MTW1770	sidestream pumps Procurement and delivery of DAF including flocculators, scrapers, mixers,	180.0d	08:00 180.0d 11-Jun-23	18:00 07-Dec-23			7.5d	0%			
MTW1780	recycle pump, air supply system, etc. Procurement and delivery of DAF drain pump, instrumentation, air dryer and	160.0d	08:00 160.0d 11-Jun-23	18:00 17-Nov-23			2.5d	0%			
MTW1790	weir box Procurement and delivery of BACF filter media, trough, underdrain system,	270.0d	08:00 270.0d 01-Jul-23	18:00 26-Mar-24		1	5.5d	0%			
MTW1800	mixers, penstocks Procurement and delivery of SRGF filter media, trough, underdrain system,	250.0d	08:00 250.0d 01-Jul-23	18:00 06-Mar-24		1	5.5d	0%			
MTW1810	mixers, penstocks Procurement and delivery of Sodium Phosphate Plant	280.0d	08:00 280.0d 08-Aug-23	18:00 13-May-24		6	6.5d	0%			
MTW1820	Procurement and delivery of Ammonium Sulphate Plant	280.0d	08:00 280.0d 08-Aug-23	18:00 13-May-24		6	6.5d	0%			
MTW1830	Procurement and delivery of Sodium Sulphite Plant	300.0d	08:00 300.0d 01-Jun-23	18:00 26-Mar-24			4.5d	0%			
MTW1840	Procurement and delivery of Sampling system	160.0d	08:00 160.0d 01-Jun-23	18:00 07-Nov-23			3.5d	0%			
MTW1850	Procurement and delivery of Service Water System	240.0d	08:00 240.0d 01-Jul-23	18:00 25-Feb-24			7.5d	0%			
MTW1850 MTW1860	Procurement and delivery of Lamella & Supernatant Plant		08:00	18:00				0%			
MTW1865		160.0d	160.0d 01-Jun-23 08:00	07-Nov-23 18:00			3.5d	0%			
	Procurement and delivery of Lifting Appliance	210.0d	210.0d 30-Jun-23 08:00	25-Jan-24 18:00			2.5d				
MTW1870	Procurement and delivery of Transformers	270.0d	270.0d 01-Jun-23 08:00	25-Feb-24 18:00			0.5d	0%			
MTW1880	Procurement and delivery of LV Switchboards	180.0d	180.0d 01-Jun-23 08:00	27-Nov-23 18:00			0.5d	0%			
MTW1890	Procurement and delivery of MCCs	180.0d	180.0d 01-Jun-23 08:00	27-Nov-23 18:00			0.5d	0%			
MTW1900	Procurement and delivery of Other electrical equipment	180.0d	180.0d 01-Jun-23 08:00	27-Nov-23 18:00			0.5d	0%			
MTW1910	Procurement and delivery of BS equipment (MVAC, FS, P&D, BS Electrical, CCTV, PA, PV Panels,genset)	180.0d	180.0d 01-Jun-23 08:00	27-Nov-23 18:00		-1	4.5d	0%			

Actual Work Non-Critical Activity Summary

-

Checked Date Revision 31-May-23 1... 1 CLX

Critical Activity

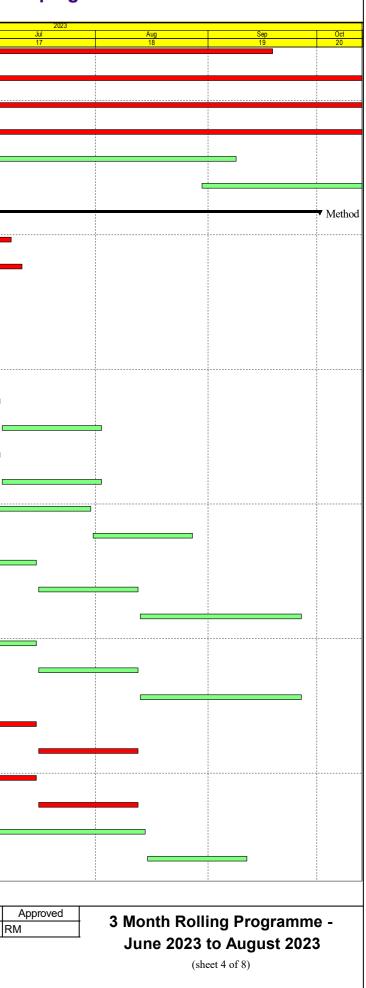
♦ Milestone

Data Date:31-May-23

2023 Jul	Aug	Sep	Oct
Jul 17	Aug 18	Sep 19	Oct 20
	:		
Approved	3 Month Dall	ing Programme	
RM			
	June 2023	to August 2023	5
		eet 3 of 8)	

vity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish Total Float	Duration % Complete	May	Jun	
MTW1920	Procurement and delivery of Fresh Water pump	110.0d	110.0d 01-Jun-23	18-Sep-23		-26.5d	0%	15	16	
MTW1930	Procurement and delivery of Lime system, Polymer System, Chlorine System	210.0d	08:00 210.0d 01-Jun-23 08:00	18:00 27-Dec-23 18:00		-22.5d	0%			
MTW1940	Procurement and delivery of Sludge dewatering plant	160.0d	160.0d 19-Jun-23	25-Nov-23		-14.5d	0%			
MTW1950	Procurement and delivery of Control Panels, HV switchboard	180.0d	08:00 180.0d 01-Jun-23 08:00	18:00 27-Nov-23 18:00		-20.5d	0%			
MTW1960	Procurement and delivery of DCS	100.0d	100.0d 01-Jun-23 08:00	08-Sep-23 18:00		45.5d	0%			
MTW1970	Procurement and delivery of NOSS	180.0d	180.0d 30-Aug-23 08:00	25-Feb-24 18:00		67.5d	0%			
Method Sta	atement Submission and Approval for Major Constructio	336.0d	123.0d 24-Oct-22 08:00 A	01-Oct-23 18:00	24-Oct-22 08:00	192.5d	63.39%			
MSS2030	Method statement submission for structural works for Water Treatment Building	38.0d	38.0d 01-Jun-23 08:00	08-Jul-23 18:00	08.00	-63.5d	0%			
MSS2035	Method statement comments and approval for structural works for Water Treatment Building	21.0d	21.0d 21-Jun-23 08:00	11-Jul-23 18:00		-63.5d	0%			
MSS2040	Method statement submission for structural works for Siu Ho Wan Raw Water Booster Pumping Station(SHWRWBPS)	28.0d	4.0d 10-Nov-22 08:00 A	04-Jun-23 18:00	10-Nov-22 08:00	-73.0d	85.71%			
MSS2045	Method statement comments and approval for structural works for Siu Ho Wan Raw Water Booster Pumping Station(SHWRWBPS)	21.0d	15.0d 17-Feb-23 08:00 A	15-Jun-23 18:00	17-Feb-23 08:00	-77.0d	28.57%			
MSS2060	Method statement submission for structural works for Office and Laboratory Building	28.0d	28.0d 01-Jun-23 08:00	28-Jun-23 18:00		-87.5d	0%			
MSS2065	Method statement comments and approval for structural works for Office and Laboratory Building	14.0d	14.0d 19-Jun-23 08:00	02-Jul-23 18:00		-87.5d	0%			-
MSS2100	Method statement submission for designing and implementing energy efficiency and optimization for BS	35.0d	35.0d 01-Jun-23 08:00	05-Jul-23 18:00		125.5d	0%			
MSS2105	Method statement comments and approval for designing and implementing energy efficiency and optimization for BS	28.0d	28.0d 06-Jul-23 08:00	02-Aug-23 18:00		125.5d	0%			
MSS2110	Method statement submission for modification of Chlorination Building	35.0d	35.0d 01-Jun-23 08:00	05-Jul-23 18:00		113.5d	0%			
MSS2115	Method statement comments and approval for modification of Chlorination Building	28.0d	28.0d 06-Jul-23 08:00	02-Aug-23 18:00		113.5d	0%			
MSS2120	Method statement submission for designing and implementing the proposed Near-Real-Time operation simulation	60.0d	60.0d 01-Jun-23 08:00	30-Jul-23 18:00		74.5d	0%			
MSS2125	Method statement comments and approval for designing and implementing the proposed Near-Real-Time operation simulation	28.0d	28.0d 31-Jul-23 08:00	27-Aug-23 18:00		74.5d	0%			
MSS2130	Method statement submission for pipe modification works	45.0d	45.0d 01-Jun-23 08:00	15-Jul-23 18:00		36.5d	0%			
MSS2135	Method statement comments and approval for pipe modification works	28.0d	28.0d 16-Jul-23 08:00	12-Aug-23 18:00		36.5d	0%			
MSS2210	Method statement submission for E&M works for water treatment building	45.0d	45.0d 13-Aug-23 08:00	26-Sep-23 18:00		154.5d	0%			
MSS2220	Method statement submission for E&M works for SHWRWBPS	45.0d	45.0d 01-Jun-23 08:00	15-Jul-23 18:00		10.5d	0%			
MSS2225	Method statement comments and approval for E&M works for SHWRWBPS	28.0d	28.0d 16-Jul-23 08:00	12-Aug-23 18:00		10.5d	0%			
MSS2230	Method statement submission for E&M works for Office and Laboratory Building	45.0d	45.0d 13-Aug-23 08:00	26-Sep-23 18:00		36.5d	0%			
MSS2240	Method statement submission for ABWF for water treatment building	45.0d	45.0d 01-Jun-23 08:00	15-Jul-23 18:00		-29.5d	0%			
MSS2245	Method statement comments and approval for ABWF for water treatment building	28.0d	28.0d 16-Jul-23 08:00	12-Aug-23 18:00		-29.5d	0%			
MSS2250	Method statement submission for ABWF for SHWRWBPS	45.0d	45.0d 01-Jun-23 08:00	15-Jul-23 18:00		-29.5d	0%			
MSS2255	Method statement comments and approval for ABWF for SHWRWBPS	28.0d	28.0d 16-Jul-23 08:00	12-Aug-23 18:00		-29.5d	0%			8
MSS2260	Method statement submission for ABWF for Office and Laboratory Building	45.0d	45.0d 01-Jul-23 08:00	14-Aug-23 18:00		67.5d	0%			
MSS2265	Method statement comments and approval for ABWF for Office and Laboratory Building	28.0d	28.0d 15-Aug-23 08:00	11-Sep-23 18:00		67.5d	0%			

Actual Work Non-Critical Activity Summary


Date Revision Checked 31-May-23 1... 1 CLX

Critical Activity

♦ Milestone

Data Date:31-May-23

vity ID	A cówity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish Total Float	Duration % Complete	May	Jun	
MSS2270	Method statement submission for modification of Washwater System	28.0d	10.0d 24-Oct-22 08:00 A	10-Jun-23 18:00	24-Oct-22 08:00	-63.5d	64.29%	15		
MSS2275	Method statement comments and approval for modification of Washwater System	28.0d	20.0d 20-May-23 08:00 A	20-Jun-23 18:00	20-May-23 08:00	-81.5d	28.57%			
MSS2280	Method statement submission for construction of flowmeter chambers	35.0d	35.0d 01-Jul-23 08:00	04-Aug-23 18:00	08.00	54.5d	0%			_
MSS2285	Method statement comments and approval for construction of flowmeter chambers	28.0d	28.0d 05-Aug-23 08:00	01-Sep-23 18:00		54.5d	0%			
MSS2290	Method statement submission for equipment installation for Dewatering Building	35.0d	35.0d 01-Jul-23 08:00	04-Aug-23 18:00		117.5d	0%			
MSS2295	Method statement comments and approval for equipment installation for Dewatering Building	28.0d	28.0d 05-Aug-23 08:00	01-Sep-23 18:00		117.5d	0%			
MSS2300	Method statement submission for testing and commissioning	60.0d	60.0d 03-Aug-23 08:00	01-Oct-23 18:00		192.5d	0%		-	
MSS2320	Method statement submission for replacement of existing 11KV swtich boards	35.0d	35.0d 01-Jun-23 08:00	05-Jul-23 18:00		167.5d	0%		[-
MSS2330	Method statement comments and approval for replacement existing 11KV swtich boards	28.0d	28.0d 06-Jul-23 08:00	02-Aug-23 18:00		167.5d	0%			=
MSS2335	Method statement submission for changeover of existing DCS installation	35.0d	35.0d 01-Jun-23 08:00	05-Jul-23 18:00		137.5d	0%			-
MSS2345	Method statement comments and approval for changeover of existing DCS installation	28.0d	28.0d 06-Jul-23 08:00	02-Aug-23 18:00		137.5d	0%			-
MSS2365	Method statement pipe laying for DN1200 raw water and DN1200 fresh water	28.0d	28.0d 01-Jun-23 08:00	28-Jun-23 18:00		103.5d	0%		-	1
MSS2375	main Method statement comments and approval for DN1200 raw water and DN1200 firsh water area	28.0d	28.0d 29-Jun-23	26-Jul-23 18:00		103.5d	0%		,	-
MSS2385	fresh water main Method statement submission for E&M for existing building	28.0d	08:00 28.0d 01-Jun-23	28-Jun-23		7.5d	0%			1
MSS2395	Method statement comments and approval for E&M for existing building	28.0d	08:00 28.0d 29-Jun-23	18:00 26-Jul-23		7.5d	0%)	-
Precasting	and Fabrication Works	210.0d	08:00 60.0d 28-Nov-22	18:00 30-Jul-23	28-Nov-22	-4.5d	71.43%			
PRE2120		210.0d	08:00 A 60.0d 28-Nov-22	18:00 30-Jul-23	08:00 28-Nov-22	-4.5d	71.43%			
PRE2200	DfMA delivery for OLB	5.0d	08:00 A 5.0d 16-Jun-23	18:00 20-Jun-23	08:00	-4.5d	0%		—	
Interfacing	Issues	150.0d	08:00 40.0d 05-May-22		05-May-22	220.0d	73.33%			
PRE2170	Establish interface meeting and conformation of interface schedule	150.0d	08:00 A 40.0d 05-May-22		08:00 05-May-22	220.0d	73.33%			
Section 1 o	f the Works	372.0d	08:00 A 275.0d 24-Feb-23	18:00 01-Mar-24	08:00 24-Feb-23	12.5d	26.08%			
	on of Water Treatment Building	161.0d	08:00 A 84.0d 24-Feb-23	18:00 08-Sep-23	08:00 24-Feb-23	-75.5d	47.83%			
Preparaton		40.0d	08:00 A 5.0d 24-Apr-23	18:00 06-Jun-23	08:00 24-Apr-23	0.5d	87.5%		Preparaton Works	s
S110115	Erection of tower crane including testing	40.0d	08:00 A 5.0d 24-Apr-23	18:00 06-Jun-23	08:00 24-Apr-23	0.5d	87.5%			
Excavation	and Installation of Lateral Support	161.0d	08:00 A 84.0d 24-Feb-23	18:00 08-Sep-23	08:00 24-Feb-23	-75.5d	47.83%			
	5,6,7,8(Grib3-9,A-G)	50.0d	08:00 A 11.0d 24-Feb-23	18:00 13-Jun-23	08:00 24-Feb-23	-75.5d	78%		ELS for SR	3GF 5.6.
	· · ·		08:00 A	18:00	08:00					
S110220	Open cut to formation level +18.2m(Grid 3-9,A-G)	50.0d	11.0d 24-Feb-23 08:00 A	13-Jun-23 18:00	24-Feb-23 08:00	-75.5d	78%			
ELS for Washw	vater Holding Tank,Supernatant Holding Tank	53.0d	53.0d 13-May-23 08:00 A	03-Aug-23 18:00	13-May-23 08:00	-71.5d	0%	*		
S110140	Installation of 1st layer of waling and strut at +31.0m	20.0d	9.0d 13-May-23 08:00 A		13-May-23 08:00	-71.5d	55%			
S110160	Excavation to +25.5mPD	18.0d	18.0d 10-Jun-23 08:00	03-Jul-23 18:00	00.00	-71.5d	0%			-
S110180	Installation of 2nd layer of waling and strut at +26.5m	16.0d	16.0d 29-Jun-23	18-Jul-23		-71.5d	0%			-

Actual Work

Non-Critical Activity

Summary

Checked Date Revision 31-May-23 1... 1 CLX

Critical Activity

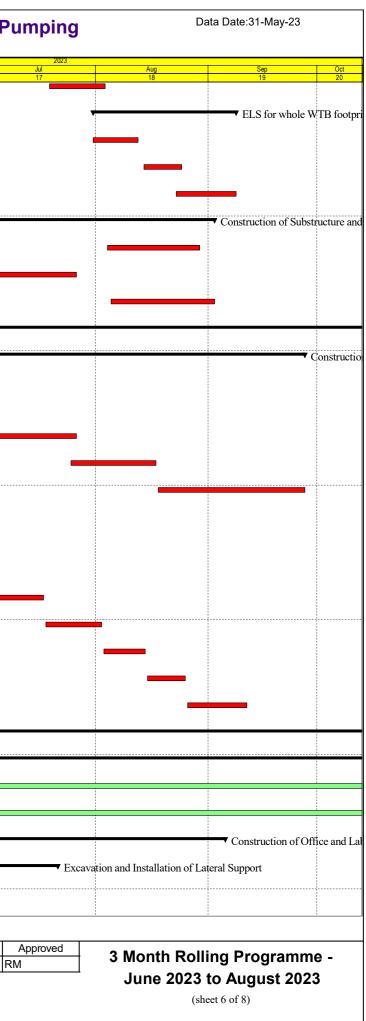
Milestone

Pumping	Data Date:31-May-23									
2023 Jul	Aug	Sep	Oct							
17	18	19	20							
		5 5 6 7 8								
		-								
		- - 								
	Precasting and Fabrication	n Works								
 Interfacing Issue 	ic .									
interfacing issue	5									
		Construction of V	Vater Treat							
	1	Excavation and I	stallation							
		Encavation and fi	Sunanon							
6,7,8(Grib3-9,A-G)										
	ELS for Washwater Ho	olding Tank,Supernatant H	Iolding Ta							
		1 5 6 8 8 8 8 8								
Approved										
RM	3 Month Roll	ing Programme	9 -							
	June 2023	to August 2023	3							
		eet 5 of 8)								
	(,								

ctivity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish	Total Float	Duration % Complete	Мау	Jun	
S110200	Excavation to final formation level	14.0d	14.0d 19-Jul-23	03-Aug-23			-71.5d	0%	15	16	
ELS for whole	e WTB footprint	35.0d	08:00 35.0d 31-Jul-23	18:00 08-Sep-23			-75.5d	0%			
S110202	Installation of 1st layer of waling and strut at +31.0m	12.0d	08:00 12.0d 31-Jul-23	18:00 12-Aug-23			-75.5d	0%			
S110204	Excavation to +25.5mPD	10.0d	08:00 10.0d 14-Aug-23	18:00 24-Aug-23			-75.5d	0%			
S110206	Installation of 2nd layer of waling and strut at +26.5m	15.0d	08:00 15.0d 23-Aug-23	18:00 08-Sep-23			-75.5d	0%			
			08:00	18:00							
	on of Substructure and Superstructre	68.0d	68.0d 14-Jun-23 08:00	02-Sep-23 18:00			-71.5d	0%		·	
S110340	Construction of Washwater Holding Tank, Supernatant Holding Tank	22.0d	22.0d 04-Aug-23 08:00	29-Aug-23 18:00			-71.5d	0%			
S110360	Construction of SRGF Maintenance Hall and lamella settler room,SRGF Backwash Equalization Tanks for SRGF tanks No.5-8	35.0d	35.0d 14-Jun-23 08:00	26-Jul-23 18:00			-75.5d	0%			
S110380	Construction of DAF maintenance floor Slab at level +25.0mPD	25.0d	25.0d 05-Aug-23 08:00	02-Sep-23 18:00			-71.5d	0%			
Constructi	ion of Siu Ho Wan Raw Water Booster Pumping Station a	275.0d	275.0d 26-Apr-23	01-Mar-24	26-Apr-23		12.5d	0%			
	on of Substucture and Superstructure	100.0d	08:00 A 100.0d 12-May-23	18:00 27-Sep-23	08:00 12-May-23		-64.5d	0%			
S111030.1	DfMA Erection of Bearing wall & Slab from +1.25 mPD up to +2.05mPD (Grid	25.0d	08:00 A 9.0d 12-May-23	18:00 10-Jun-23	08:00 12-May-23		-76.5d	64%			
S111030.2	D-C) Construction of floor from +1.25 mPD up to +2.05mPD (Grid D-C)	14.0d	08:00 Å 14.0d 12-Jun-23	18:00 28-Jun-23	08:00		-69.0d	0%			_
S111035	Construction of wall and column up to +15.05 mPD (Grid D-C)	24.0d	08:00 24.0d 28-Jun-23	18:00 26-Jul-23			-69.0d	0%			
	- · · · · · ·		08:00	18:00							
S111036	Construction of roof at +15.05 mPD(Grid D-C)	21.0d	21.0d 25-Jul-23 08:00	17-Aug-23 18:00			-69.0d	0%			
S111038	Construction of plinth for pumbling (Grid D-C)	35.0d	35.0d 18-Aug-23 08:00	27-Sep-23 18:00			-64.5d	0%			
S111041	Construction of base slab to +6.0mPD including earth mat (Grid C-A)	7.0d	0.0d 17-May-23 08:00 A	29-May-23 18:00 A	17-May-23 08:00	29-May-23 18:00		100%		1	
S111045	Construction of wall and column up to +7.2mPD (Grid C-A)	10.0d	10.0d 01-Jun-23 08:00	12-Jun-23 18:00			-77.5d	0%			
S111050	DfMA erection and construction of floor to +7.2mPD (Grid C-A)	14.0d	14.0d 13-Jun-23 08:00	29-Jun-23 18:00			-77.5d	0%			
S111055	Construction of beam and column up to +11.65 mPD (Grid B-A)	14.0d	14.0d 30-Jun-23	17-Jul-23			-77.5d	0%			
S111060	DfMA erection and construction of floor to +11.65 mPD (Grid B-A)	14.0d	08:00 14.0d 18-Jul-23	18:00 02-Aug-23			-77.5d	0%			
S111100	Construction of beam and column +13.05 mPD (Grid C-A)	10.0d	08:00 10.0d 03-Aug-23	18:00 14-Aug-23			-77.5d	0%			
S111105	DfMA erection to +13.05 mPD (Grid C-A)	10.0d	08:00 10.0d 15-Aug-23	18:00 25-Aug-23			-77.5d	0%			
	Construction of roof up to +13.05 mPD (Grid C-A)		08:00 14.0d 26-Aug-23	18:00			-77.5d	0%			
S111110	•	14.0d	08:00	11-Sep-23 18:00							
Raw Water	Main Connections at Chenung Tung Road ((RWM-1) CHC 0 to 4	275.0d	275.0d 26-Apr-23 08:00 A	01-Mar-24 18:00	26-Apr-23 08:00		12.5d	0%			
Raw Water Ma	ain Connections at Chenung Tung Road	275.0d	275.0d 26-Apr-23 08:00 A	01-Mar-24 18:00	26-Apr-23 08:00		12.5d	0%			
S401110	TTA Application & Approval by TD	182.0d	160.0d 26-Apr-23 08:00 A	07-Nov-23 18:00	26-Apr-23 08:00		27.5d	12.09%			
S401140	Shut Down Plan Application & Approval by WSD	275.0d	275.0d 01-Jun-23	01-Mar-24	00.00		12.5d	0%			
Constructi	ion of Office and Laboratory Building	89.0d	08:00 81.0d 22-May-23	18:00 05-Sep-23	22-May-23		-84.5d	8.99%	,		
	and Installation of Lateral Support	50.0d	08:00 A 42.0d 22-May-23	18:00 21-Jul-23	08:00 22-May-23		-84.5d	16%			
S120051	Mass concrete wall	15.0d	08:00 Å 15.0d 22-May-23	18:00 17-Jun-23	08:00 22-May-23		-84.5d	0%		-	
			08:00 A	18:00	08:00						

Actual WorkNon-Critical Activity

Critical Activity


♦ Milestone

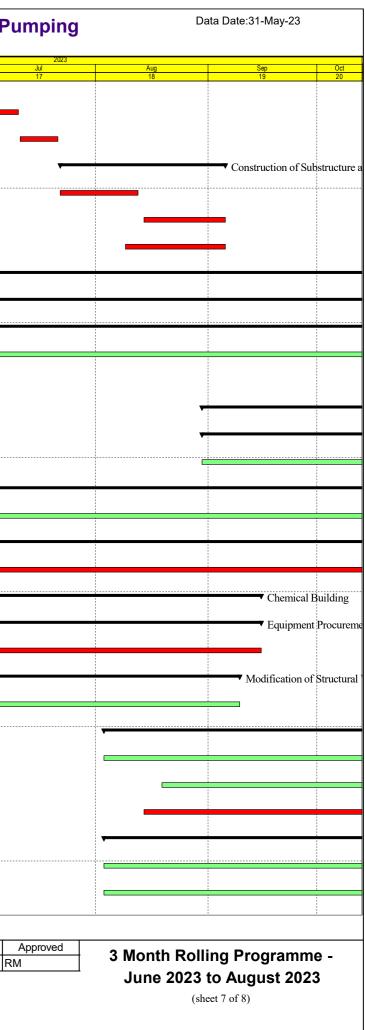
Summary

-

 Date
 Revision
 Checked

 31-May-23 1...
 1
 CLX

vity ID	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish	Total Float	Duration % Complete	May	Jun	
S120060	Excavation to the strut level	10.0d	10.0d 15-Jun-23	27-Jun-23			-84.5d	0%	15	16	
			08:00	18:00							
S120065	Installation of waling and strut	10.0d	10.0d 28-Jun-23 08:00	10-Jul-23 18:00			-84.5d	0%			
S120070	Further excavation down to the formation level	10.0d	10.0d 11-Jul-23	21-Jul-23			-84.5d	0%			
Constructi	ion of Substructure and Superstructre	39.0d	08:00 39.0d 22-Jul-23	18:00 05-Sep-23			-84.5d	0%			
	on of Substructure and Superstructre	59.04	08:00	18:00							
S120100	Construction of basement floor including earth mat and tower crane footprint	19.0d	19.0d 22-Jul-23 08:00	12-Aug-23 18:00			-84.5d	0%			
S120105	Construction of shear wall(56m)	20.0d	20.0d 14-Aug-23	05-Sep-23			-84.5d	0%			
S120120	Construction of wall and column up to ground floor	24.0d	08:00 24.0d 09-Aug-23	18:00 05-Sep-23			-84.5d	0%			
5120120	Construction of wait and column up to ground hoof	24.0u	08:00	18:00			-04.Ju	070			
Section 2	of the Works	724.0d	400.0d 27-Jun-22 08:00 A	04-Jul-24 18:00	27-Jun-22 08:00		143.5d	44.75%			
Wator Tro	atment Building	580.0d	400.0d 27-Jun-22	04-Jul-24	27-Jun-22		59.5d	41.18%			
		600.01	08:00 A	18:00	08:00		50 51				
Statutory S	Submission schedule	580.0d	400.0d 27-Jun-22 08:00 A	04-Jul-24 18:00	27-Jun-22 08:00		59.5d	41.18%			
S210060	DG (Ozone) installation approval - dwg & layout by FSD for WTB	580.0d	400.0d 27-Jun-22	04-Jul-24	27-Jun-22		59.5d	41.18%			
S210220	Genset submission to EPD	3.0d	08:00 A 3.0d 01-Jun-23	18:00 03-Jun-23	08:00		179.5d	0%			
5210220		5.00	08:00	18:00				070			
Office and	l Laboratory Building	214.0d	214.0d 30-Aug-23 08:00	30-Mar-24 18:00			74.5d	0%			
Procureme	ent of Laboratory Funiture and Equiopment	214.0d	214.0d 30-Aug-23	30-Mar-24			74.5d	0%			
		214.0.1	08:00	18:00			74.51	00/			
MTW1905	Procurement of furniture and laboratory equipment	214.0d	214.0d 30-Aug-23 08:00	30-Mar-24 18:00			74.5d	0%			
Dewaterin	ng Building	120.0d	120.0d 01-Jun-23	24-Oct-23 18:00			53.5d	0%			
S223600	Modification of structural works	120.0d	08:00 120.0d 01-Jun-23	24-Oct-23			53.5d	0%			
		100.01	08:00	18:00				001			
Washwate	er System	120.0d	120.0d 01-Jun-23 08:00	24-Oct-23 18:00			-63.5d	0%			
S223620	Modification of washwater equalization tanks No.1 and No.2	120.0d	120.0d 01-Jun-23	24-Oct-23			-63.5d	0%			
Chaminal	Duilding	98.0d	08:00 90.0d 22-Apr-23	18:00 15-Sep-23	22-Apr-23		37.5d	8.16%			
Chemical			08:00 A	18:00	08:00			0.1070			
Equipment	t Procurement, Manufacture, FAT and Delivery	90.0d	90.0d 01-Jun-23 08:00	15-Sep-23 18:00			-37.5d	0%			
S223710	Equipment manufacture, FAT and delivery	90.0d	90.0d 01-Jun-23	15-Sep-23			-37.5d	0%			
Madifiaati	an of Churchurg Hardes	90.0d	08:00 85.0d 22-Apr-23	18:00 09-Sep-23	22-Apr-23		42.5d	5.56%			
wodificatio	on of Structural Works	90.0u	08:00 A	18:00	08:00		42.3u	5.50%			
S223700	Modification of structural works	90.0d	85.0d 22-Apr-23	09-Sep-23	22-Apr-23		42.5d	5.56%			
Chlorinati	ion Building	224.0d	08:00 A 224.0d 03-Aug-23	18:00 06-May-24	08:00		148.5d	0%			
			08:00	18:00							
S224000	Installation of chlorinators, hypochlorite dosing system& modification of existing chlorine water distribution pipework	g 210.0d	210.0d 03-Aug-23 08:00	18-Apr-24 18:00			94.5d	0%			
S224010	Modification of electrical works	210.0d	210.0d 19-Aug-23	06-May-24			148.5d	0%			
S224015	Modification of building services works	210.0d	08:00 210.0d 14-Aug-23	18:00 29-Apr-24			-1.5d	0%			
			08:00	18:00							
Control S	ystem	260.0d	260.0d 03-Aug-23 08:00	19-Jun-24 18:00			131.5d	0%			
S224030	Installation of new DCS, BEMS, Local Control Panels, PLCs, ALCPs, MMIs and	l 260.0d	260.0d 03-Aug-23	19-Jun-24			114.5d	0%			
S224040	TMAS Modification of stream I DCS system and integration with stream IIA DCS	260.0d	08:00 260.0d 03-Aug-23	18:00 19-Jun-24			131.5d	0%			
5224040	system	200.00	260.0d 03-Aug-23 08:00	19-Jun-24 18:00			151.30	070			


Actual Work Non-Critical Activity Summary

-

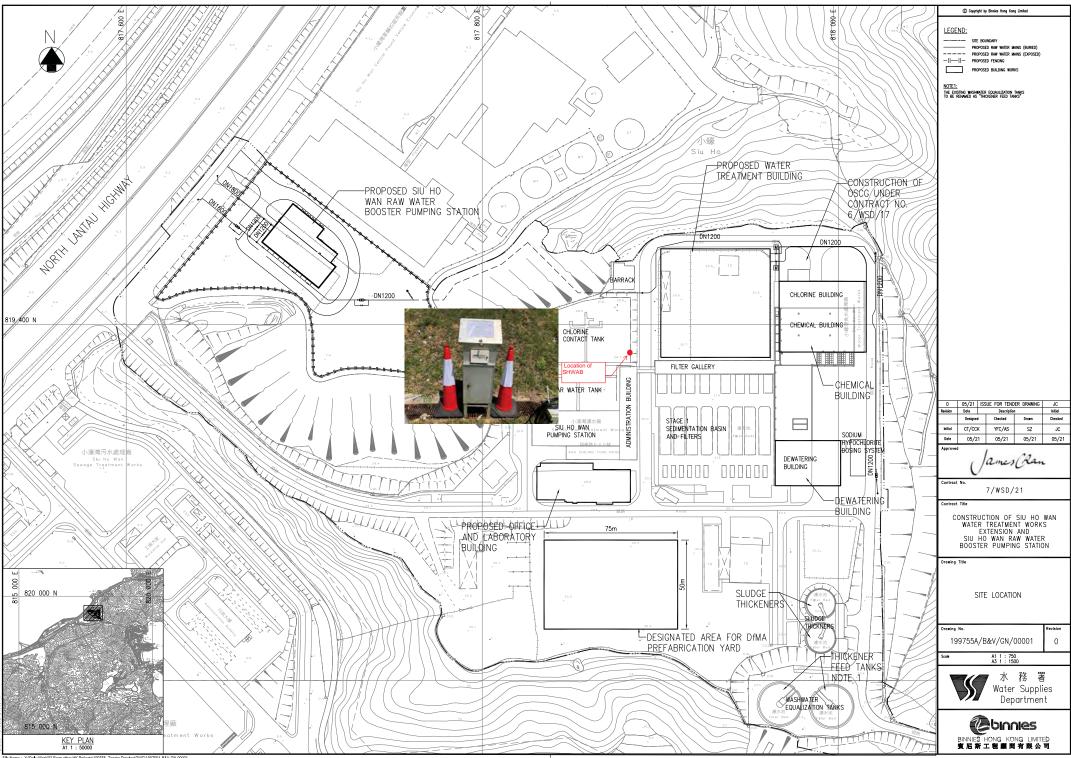
Date Revision Checked 31-May-23 1... 1 CLX

Critical Activity

Milestone

	Activity Name	Duration	Remaining Start Duration	Finish	Actual Start	Actual Finish Total Float	Duration % Complete	May 15	Jun 16	Jul 17	2023	Aug 18	Sep 19	Oct 20
Siu Ho Wa	Pumping Station	180.0d	180.0d 01-Jun-23 08:00	05-Jan-24 18:00		263.5d	0%				1			
S224050	Modification of backwash pump to stream IIA SRGF	180.0d	180.0d 01-Jun-23 08:00	05-Jan-24 18:00		113.5d	0%							
S224070	Replacement of the existing HV switchboard	97.0d	97.0d 05-Aug-23 08:00	29-Nov-23 18:00		292.5d	0%							
Section 3 d	of the Works	331.0d	300.0d 03-Apr-23 08:00 A	26-Mar-24 18:00	03-Apr-23 08:00	23.5d	9.37%							
Siu Ho Wa	n Raw Water Booster Pumping Station	331.0d	300.0d 03-Apr-23 08:00 A	26-Mar-24 18:00	03-Apr-23 08:00	23.5d	9.37%							
Equipment	Procurement, Manufacture, FAT and Delivery	331.0d	300.0d 03-Apr-23 08:00 A	26-Mar-24 18:00	03-Apr-23 08:00	23.5d	9.37%							
S312000	Procurement of process and E&M equipment	60.0d	30.0d 03-Apr-23 08:00 A	30-Jun-23 18:00	03-Apr-23 08:00	23.5d	50%							
S312020	Manufacture,FAT and delivery of process and E&M equipment	270.0d	270.0d 01-Jul-23 08:00	26-Mar-24 18:00		23.5d	0%							
Remaining	Works	74.0d	74.0d 15-Aug-23 08:00	11-Nov-23 18:00		-69.0d	0%					•		
Laying of R	aw Water Main (RWM-2) CHD 100 to 150	74.0d	74.0d 15-Aug-23 08:00	11-Nov-23 18:00		-69.0d	0%					-		
S313080	Laying of Raw water main(RWM-2) CHD 100 to 150	74.0d	74.0d 15-Aug-23 08:00	11-Nov-23 18:00		-69.0d	0%							
S313081	Laying washout pipe	20.0d	20.0d 26-Aug-23 08:00	18-Sep-23 18:00		-55.0d	0%					-		
Section 3A	of the Works - Entrustment Works	128.0d	103.0d 25-Apr-23 08:00 A	03-Oct-23 18:00	25-Apr-23 08:00	-80.5d	19.53%			8 8 8 8 8 8 8 8 8 8 8 8				Sec
Slope Worl	ks	80.0d	80.0d 01-Jun-23 08:00	04-Sep-23 18:00		-78.0d	0%						Slope Works	
S3A1005	Replacement of existing fill by no-fine concrete for slope 10NW-C/C43	50.0d	50.0d 01-Jun-23 08:00	31-Jul-23 18:00		-78.0d	0%							
S3A1070	Installation of dowel bar for slope 10NE-10NW-C/C43	32.0d	32.0d 29-Jul-23 08:00	04-Sep-23 18:00		-78.0d	0%							
Remaining	Works	128.0d	103.0d 25-Apr-23 08:00 A	03-Oct-23 18:00	25-Apr-23 08:00	-80.5d	19.53%							Ren
S3A2020	Laying of DN1200 fresh water main (CHFC0 to 50) including construction of the valve chambers	68.0d	50.0d 25-Apr-23 08:00 A	31-Jul-23 18:00	25-Apr-23 08:00	-80.5d	26.47%							
	Laying of DN1200 fresh water main (CHFC50 to 100) including construction of the valve chambers	68.0d	68.0d 14-Jul-23 08:00	03-Oct-23 18:00		-80.5d	0%							

Data Date:31-May-23


Approved	
RM	

3 Month Rolling Programme -June 2023 to August 2023

(sheet 8 of 8)

Monitoring Locations

File Name : Y:IDaily Work/02 From other HK Projects/199755 - Tender Drawing/DWG/199755A-B&V-GN-00001

Calibration Certificates

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

													_
Location :	Siu Ho	Wan WI	W Adm	inistration			Date of C	Calib	oration: 2-Ju	ın-23			
Location 1	ID :	SHWAI	3			l	Vext Calibra	atior	n Date: 1-A	ug-23			
Name and	l Model: '	TISCH H	IVS Mo	del TE-5170)		Т	Tech	nician: Eric	;			
						CONDI	TIONS						
							,						
	Se	a Level I	Pressure	(hPa)		1004.8			Corrected I	Pressure (mm Hg)	753.	.6
		Temp	berature	(°C)		30.7			Tem	perature (K)	30)4
							•						
				CA	ALII	BRATIC	ON ORIFICE	Ξ					
				Make->	TIS	SCH	[Qstd S	Slope ->		2.10977	
				Model->	502	25A			Qstd Inte	rcept ->		-0.03782	
				Serial # ->	406	54							
					C	CALIBR	ATION						
Dlata			1120	01		т	IC	1			<u>ת</u>		
Plate		H2O (R)		Qstd			IC		т	LINEA			
<u>No.</u>	(in)	(in)	(in)	(m3/min)	((<u>chart)</u>	corrected			REGRESS			
18	6.00	6.00	12.0	1.638		56	54.72		Slope = 28.7174				
13	4.70	4.70	9.4	1.451		51	49.83		Intercept = 8.2660 Corr. coeff. = 0.9958				
10	3.50	3.50	7.0	1.255		46	44.95		Corr.	coeff. =	0.9958		
7 5	2.20	2.20	4.4	0.999		39 20	38.11						
	1.30	1.30	2.6	0.772		30	29.31	ļ					
Calculatio	ons:								FLOW RA	TE CHAR	г		
Qstd = 1/r		$2\Omega(P_2/P_2)$	td)(Tstd	/Ta))-b]		60.0	00				•		
IC = I[Squ				[[u])=0]									
10 – 1[04]		1)(1500/1	(1)]			50.0							
Qstd = sta	ndard flo	w rate				50.0							
IC = correction			es							*			
I = actual		-	00			<u>ට</u> 40.0	00						
m = calibr		-				Actual chart response (IC				X			
b = calibra	-	-	t			spor							
	_			oration (deg	σK	<u>ق</u> 30.0	00		•				
	-		_		-	char							
Pstd = actual pressure during calibration (mm Hg							00 00						
For subse	equent ca	alculatio	n of san	pler flow:		Å Tou							
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)													
1/111((1)[)	5411(2)0/	iu)/iu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·)		10.0	00						
m = samp	ler slope												
b = samp		ept											
I = chart r		- r· •				0.0	0.000	0 !	+ 500 1	.000	1.500	2.000	5
T = chart T Tav = dai	-	e temper	ature						Standard Flow			2.000	
Pav = dai										-	-		
	-,	- 1100001	-										

RECALIBRATION DUE DATE:

December 15, 2023

Cal. Date:	December	15, 2022	Rootsn	neter S/N: 4	138320	Ta:	295	°K		
Operator:	Jim Tisch					Pa:	748.0	mm Hg		
Calibration		TE-5025A	Calib	rator S/N: 4	4064					
								1		
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ			
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)			
	1	1	2	1	1.4430	3.2	2.00			
	2	3	4	1	1.0210	6.4	4.00	4		
	3	5	6	1	0.9170	7.9	5.00			
	4	7	8	1	0.8730	8.8	5.50	4		
	5	9	10	1	0.7210	12.8	8.00	1		
			D	ata Tabulat	ion		/]		
	4	11	Ind Pa	V Tstd \						
	Vstd	Qstd	√ ^{∆H} (Pstd	(Tstd) Ta		Qa	√∆H(Ta/Pa)			
	(m3)	(x-axis)	(y-axi	s)	Va	(x-axis)	(y-axis)			
	0.9900	0.6861	1.410	1	0.9957	0.6900	0.8881	1		
	0.9858	0.9655	1.994	3	0.9914	0.9711	1.2560			
	0.9838	1.0728	2.229	6	0.9894	1.0790	1.4042			
	0.9826	1.1255	2.338	5	0.9882	1.1320	1.4728			
	0.9772	1.3554	2.8203		0.9829	1.3632	1.7762	1		
		m=	2.109	77	1000	m=	1.32110]		
	QSTD	b=	-0.037		QA	b=	-0.02382			
		r=	0.999	98		r=	0.99998			
			re- 1	Calculation	S	Section 1		1		
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta)	Va=	∆Vol((Pa-∆l	P)/Pa)	1		
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		1		
	1		For subseque	ent flow rat	e calculation	ns:		1		
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa <u>Tstd</u> Pstd Ta)-ь)	$Qa = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					
	Standard	Conditions						·		
Tstd:	298.15	°K		Γ		RECA	LIBRATION			
Pstd:		mm Hg		1						
		(ey	112.01				nnual recalibration	 A second sec second second sec		
		ter reading (in					Regulations Part			
		eter reading perature (°K)					, Reference Met			
		ressure (mm					ended Particulat			
b: intercept		coore frinti	.6/		th	e Atmosphe	ere, 9.2.17, page	30		
m: slope				L						

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

Event and Action Plan

Λ		FC
	U	

F 4	Acti				-	v					
Event	ET		IEC			<i>I</i> D	Co	ntractor			
Action Level exceedance for one sample	1. I ii c e f r 2. I a 3. F r c c a 4. I	dentify source, nvestigate the causes of exceedance and propose remedial measures; nform IEC, <i>PMD</i> and <i>Contractor</i> ; Repeat measurement to confirm finding; and ncrease monitoring requency to daily.	1. 2. 3.	Check monitoring data submitted by ET; Check <i>Contractor</i> 's working method; and Review and advise the ET and <i>PM</i> D on the effectiveness of the proposed remedial measures.		Notify <i>Contractor</i> .	1. 2. 3.	Identify source, investigate the causes of exceedance and propose remedial measures Rectify any unacceptable practice and implement remedial measures; and Amend working methods agreed with <i>PMD</i> if appropriate.			
Action Level exceedance for two or more consecutive samples	i c c e e F r r 2. I a a 3. A a t t c c r r r f 4. H r f 6. I f f 6. I f r f r f r r r r r r r r r f f f f f	dentify source, nvestigate the causes of exceedance and propose remedial neasures; nform IEC, <i>PMD</i> and <i>Contractor</i> ; Advise the <i>PMD</i> and <i>Contractor</i> on he effectiveness of the proposed emedial neasures; Repeat neasures; Repeat neasurements to confirm findings; ncrease nonitoring requency to daily; Discuss with IEC, <i>PMD</i> and <i>Contractor</i> on emedial actions equired; f exceedance continues, arrange neeting with IEC and <i>PMD</i> ; and f exceedance tops, cease additional	1. 2. 3. 4. 5.	Check monitoring data submitted by ET; Check <i>Contractor</i> 's working method; Discuss with ET and <i>Contractor</i> on possible remedial measures; Advise the ET and <i>PMD</i> on the effectiveness of the proposed remedial measures; and Supervise Implementation of remedial measures.	1. 2. 3.	Confirm receipt of notification of failure in writing; Notify <i>Contractor</i> ; and Supervise and ensure remedial measures properly implemented.	1. 2. 3. 4.	appropriate.Identifysource,investigatethecausesofexceedanceandproposeremedialmeasuresSubmitSubmitproposalsforremedialactionstoPMDwith a copy to ETand IEC within 3workingdays ofnotification;Implementtheagreedproposals;andAmendproposal ifappropriate.			
Limit Level exceedance for one sample	1. I i c e f r 2. I	nonitoring. dentify source, nvestigate the causes of exceedance and propose remedial measures; nform <i>PM</i> D, <i>Contractor</i> , IEC and EPD;	1. 2. 3.	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET, PMD and Contractor on possible remedial	1. 2. 3.	Confirm receipt of notification of failure in writing; Notify <i>Contractor</i> ; and Supervise and ensure remedial measures properly implemented.	1.	Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance;			

Event Action Plan for Air Quality

 $Z: Jobs \ 2022 \ TCS01196 (7_WSD_21) \ 600 \ Report \ Submission \ Impact \ EM\&A \ Report \ 2023 \ 14th \ EM\&A \ Report \ June \ 2023 \ Report \ 20$

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station Monthly Environmental Impact Monitoring and Audit Report (June 2023)

A	U	ES

	4. Inc mo free 5. Ass effe <i>Con</i> ren and EP infe res	D and <i>PMD</i> ormed of the ults.	4.	measures; Advise the <i>PM</i> D and ET on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.			3. 4. 5.	Submit proposals for remedial actions to <i>PM</i> D with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate.
Limit Level exceedance for two or more consecutive samples	 Co. EP. 2. Ide 3. Repme corr 4. Inc mo free 5. Car of wo product det mit imp 6. Arn wit Co. PM. the act tak 7. Assert effect Conren and EP. infects 8. If stop add 	ntify source; peat asurement to firm findings; rease onitoring quency to daily; rry out analysis <i>Contractor</i> 's rking ocedures to ermine possible tigation to be plemented; range meeting th IEC, <i>ntractor</i> and <i>ID</i> to discuss remedial ions to be en; sess ectiveness of <i>ntractor</i> 's nedial actions d keep IEC, D and <i>PMD</i> ormed of the ults; exceedance	1. 2. 3. 4. 5.	Check monitoring data submitted by ET; Check <i>Contractor</i> 's working method; Discuss amongst <i>PMD</i> , ET, and <i>Contractor</i> on the potential remedial actions; Review <i>Contractor</i> 's remedial actions whenever necessary to assure their effectiveness and advise the <i>PMD</i> accordingly; and Supervise the implementation of remedial measures.	1. 2. 3. 4. 5.	Confirm receipt of notification of failure in writing; Notify <i>Contractor</i> ; In consultation with the ET and IEC, agree with the <i>Contractor</i> on the remedial measures to be implemented; Supervise and ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the <i>Contractor</i> to stop that portion of work until the exceedance is abated.	1. 2. 3. 4. 5. 6.	Identify source, investigate the causes of exceedance and propose remedial measures; Take immediate action to avoid further exceedance; Submit proposals for remedial actions to <i>PMD</i> with a copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the <i>PMD</i> until the exceedance is abated.

Note: ET – Environmer

ET – Environmental Team IEC – Independent Environmental Checker

PMD – Project Manager's Delegate

Appendix G

Monitoring Schedule

D:	ate	Air Quality Monitoring (24-Hour TSP)
Thu	1-Jun-23	
Fri	2-Jun-23	
Sat	3-Jun-23	✓
Sun	4-Jun-23	
Mon	5-Jun-23	
Tue	6-Jun-23	
Wed	7-Jun-23	
Thu	8-Jun-23	
Fri	9-Jun-23	✓
Sat	10-Jun-23	
Sun	11-Jun-23	
Mon	12-Jun-23	
Tue	13-Jun-23	
Wed	14-Jun-23	
Thu	15-Jun-23	✓
Fri	16-Jun-23	
Sat	17-Jun-23	
Sun	18-Jun-23	
Mon	19-Jun-23	
Tue	20-Jun-23	
Wed	21-Jun-23	\checkmark
Thu	22-Jun-23	
Fri	23-Jun-23	
Sat	24-Jun-23	
Sun	25-Jun-23	
Mon	26-Jun-23	
Tue	27-Jun-23	✓
Wed	28-Jun-23	
Thu	29-Jun-23	
Fri	30-Jun-23	

\checkmark	Monitoring Day
	Sunday or Public Holiday

D	ate	Air Quality Monitoring (24-Hour TSP)
Sat	1-Jul-23	
Sun	2-Jul-23	
Mon	3-Jul-23	\checkmark
Tue	4-Jul-23	
Wed	5-Jul-23	
Thu	6-Jul-23	
Fri	7-Jul-23	
Sat	8-Jul-23	✓
Sun	9-Jul-23	
Mon	10-Jul-23	
Tue	11-Jul-23	
Wed	12-Jul-23	
Thu	13-Jul-23	
Fri	14-Jul-23	\checkmark
Sat	15-Jul-23	
Sun	16-Jul-23	
Mon	17-Jul-23	
Tue	18-Jul-23	
Wed	19-Jul-23	
Thu	20-Jul-23	✓
Fri	21-Jul-23	
Sat	22-Jul-23	
Sun	23-Jul-23	
Mon	24-Jul-23	
Tue	25-Jul-23	
Wed	26-Jul-23	✓
Thu	27-Jul-23	
Fri	28-Jul-23	
Sat	29-Jul-23	
Sun	30-Jul-23	
Mon	31-Jul-23	

Impact Air Quality Monitoring Schedule for next Reporting Period

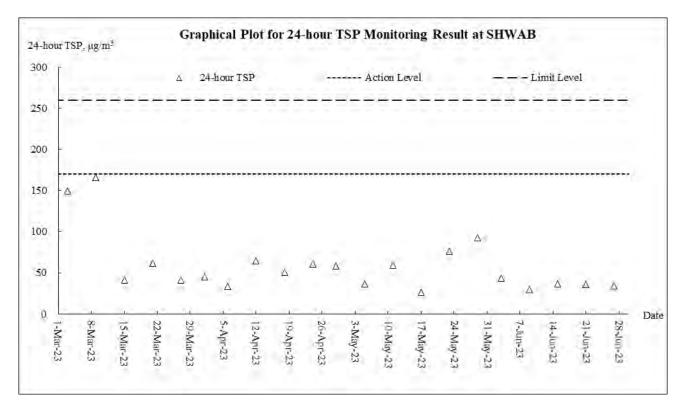
✓	Monitoring Day						
	Sunday or Public Holiday						

Appendix H

Database of Monitoring Result

Wonting Environmental Impact Wontering and Addit Report (Surv

Impact Moni	toring Resu	ults for 24-ho	our TSP at S	HWAB											
DATE	SAMPL E NUMB ER	PL ELAPSED TIME			CHART READING			AVG	STANDARD			FILTER WEIGHT (g)		WEIGHT	DUST
		INITIAL	FINAL	ACTUAL (min)	MIN	MAX	AVG	TEMP (°C)	AVG PRESS (hPa)	FLOW RATE (m ³ /min)	AIR VOLUME (std m ³)	INITIAL	FINAL	DUST COLLECTED (g)	24-hour TSP IN AIR (ug/m ³)
3-Jun-23	24961	19668.10	19692.10	1440.00	38	38	38.0	30.8	1007.6	1.02	1467	2.7250	2.7884	0.0634	43
9-Jun-23	29472	19692.10	19716.10	1440.00	40	40	40.0	29.0	1004.2	1.09	1569	2.7232	2.7695	0.0463	30
15-Jun-23	29473	19716.10	19740.10	1440.00	39	40	39.5	27.4	1005.1	1.08	1550	2.7235	2.7802	0.0567	37
21-Jun-23	29480	19740.10	19764.10	1440.00	42	46	44.0	30.2	1007.4	1.23	1766	2.7188	2.7820	0.0632	36
27-Jun-23	29499	19764.10	19788.10	1440.00	40	40	40.0	30.1	1009.5	1.09	1571	2.7063	2.7603	0.0540	34


Appendix I

Graphical Plots for Monitoring Result

 $Z: Jobs \ 2022 \ TCS01196 (7_WSD_21) \ 600 \ Report \ Submission \ Impact \ EM\&A \ Report \ 2023 \ 14th \ EM\&A \ Report \ June \ 2023 \ Robot \ 2023 \ 2023 \ Robot \ 2023 \ Robot \ 2023 \ Robot \ 2023 \ Robot \ 2023$

24-Hour TSP

Appendix J

Meteorological Data

 $Z: Jobs \ 2022 \ TCS01196 (7_WSD_21) \ 600 \ Report \ Submission \ Impact \ EM\&A \ Report \ 2023 \ 14th \ EM\&A \ Report \ June \ 2023 \ Report \ 20$

				Chek Lap Kok							
Date		Weather	Total Rainfal l (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction	Mean Press. (hPa)			
1-Jun-23	Thu	Cloudy with showers.	6	28.0	12	77.2	W/SW	1002.8			
2-Jun-23	Fri	Mainly cloudy with a few showers	0	32.0	13.2	61.0	W/SW	1004.8			
3-Jun-23	Sat	Hot with sunny intervals	0.6	31.2	15	68.5	SE	1007.6			
4-Jun-23	Sun	A few squally thunderstorms at first.	5.1	31.1	20.2	67.2	Е	1008.4			
5-Jun-23	Mon	Moderate south to southeasterly winds, fresh at first.	4.8	29.7	22.5	75.0	E/SE	1007.9			
6-Jun-23	Tue	A few squally thunderstorms at first.	31.1	28.5	16.2	86.7	E/NE	1007.8			
7-Jun-23	Wed	Mainly cloudy with occasional showers.	27.1	30.1	14.2	77	S/SE	1008.7			
8-Jun-23	Thu	Moderate to fresh south to southwesterly winds.	2.6	29.4	15	79.5	S/SE	1007.1			
9-Jun-23	Fri	Hot with sunny intervals during the day.	16.8	28.9	10	80.7	E/NE	1004.2			
10-Jun-23	Sat	Mainly cloudy with a few showers	0.3	29.4	9.2	77.2	W/SW	1001.9			
11-Jun-23	Sun	Moderate to fresh south to southwesterly winds.	25.4	30.5	13.3	72.7	Е	1001.6			
12-Jun-23	Mon	Moderate to fresh south to southwesterly winds.	0.2	30.6	12.5	72.0	E/NE	1001.9			
13-Jun-23	Tue	A few squally thunderstorms at first.	31.8	29.3	12.5	70.7	W	1002.6			
14-Jun-23	Wed	Showers will be heavy at times with squally thunderstorms.	62.8	28.2	16.5	82.5	E/NE	1004.9			
15-Jun-23	Thu	Moderate south to southwesterly winds,	41.5	27.8	10.0	85.5	E/NE	1005.1			
16-Jun-23	Fri	Cloudy with showers.	41.7	27.1	18.5	86.7	S/SW	1007.1			
17-Jun-23	Sat	Mainly cloudy with a few showers	89.9	26.7	15.7	89.7	Е	1009.3			
18-Jun-23	Sun	Hot with sunny intervals	35.8	29.1	13.7	76.5	S/SW	1008.9			
19-Jun-23	Mon	Mainly cloudy with a few showers and isolated thunderstorms.	10.2	30.6	16.2	74.5	S/SW	1007.5			
20-Jun-23	Tue	Isolated thunderstorms at first.	2.3	30.5	17.5	74.5	S/SW	1007.0			
21-Jun-23	Wed	Moderate east to southeasterly winds.	1.9	31.2	17.5	70.7	SW	1007.4			
22-Jun-23	Thu	Moderate south to southwesterly winds	0.6	31.6	18.5	67.0	S/SW	1007.2			
23-Jun-23	Fri	Hot with sunny intervals during the day.	2.3	30.0	18.2	75.0	S/SW	1006.5			
24-Jun-23	Sat	Mainly cloudy with a few showers	8.2	28.2	26	81.2	S/SE	1007.1			
25-Jun-23	Sun	Isolated thunderstorms at first.	13	29.3	16.2	78.0	S/SE	1008.2			
26-Jun-23	Mon	Hot with sunny periods in the afternoon.	11.4	30.5	13	71.7	E/NE	1008.5			
27-Jun-23	Tue	Hot with sunny periods and a few showers	Trace	30.6	15	70.0	E/SE	1009.5			
28-Jun-23	Wed	Hot with sunny periods and a few showers.	5.4	30.6	15.7	74.7	Е	1009.9			
29-Jun-23	Thu	Isolated thunderstorms later.	0.9	30.8	14	69.2	W	1006.9			
30-Jun-23	Fri	Moderate east to southeasterly winds.	11.2	30.7	12.2	60.7	S/SW	1005.6			

Remark: The above information was extracted from the Hong Kong Observatory Station of Chek Lap Kok of below link: <u>https://www.hko.gov.hk/en/index.html</u>

Appendix K

Waste Flow Table

Monthly Summary Waste Flow Table for <u>2023</u> (year)

	Toject: Construction of Stu Ho wan water frequinent works Extension and Stu Ho wan Kaw water Booster Pumping Station Contract No.: //wSD/21											
	Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly						
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (a) (see Note 3)	Reused in the Contract (b)	Reused in other Projects (c)	Disposed as Public Fill (d)	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse	
	(in Tonne)	(in Tonne)	(in Tonne)	(in Tonne)	(in Tonne)	(in Tonne)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in Tonne)	
Jan	2430.760	58.230	0.000	0.000	2372.530	457.960	0.0000	0.0000	0.0000	0.0000	6.180	
Feb	2217.290	0.000	0.000	0.000	2217.290	0.000	0.0021	0.0000	0.0015	0.0000	7.680	
Mar	837.370	290.470	0.000	0.000	546.900	434.980	11.410	0.177	0.0000	0.000	7.160	
Apr	648.090	126.350	0.000	0.000	521.740	0.000	1.744	0.002	0.0035	0.000	5.480	
May	613.250	49.950	0.000	0.000	563.300	3439.940	0.000	0.420	0.000	0.000	11.020	
Jun	7263.910	42.510	0.000	0.000	7221.400	73.900	0.000	0.000	0.000	0.000	27.910	
Sub-total	14010.670	567.510	0.000	0.000	13443.160	4406.780	13.1561	0.5990	0.0050	0.0000	65.430	
Jul												
Aug												
Sep												
Oct												
Nov												
Dec												
Total	14010.670	567.510	0.000	0.000	13443.160	4406.780	13.1561	0.5990	0.0050	0.0000	65.430	

Project : Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station Contract No.: 7/WSD/21

Notes:

(1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

(4) Total Quantity Gernerated = a+b+c+d.

Appendix L

Environmental Complaints Log

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station Monthly Environmental Impact Monitoring and Audit Report (June 2023)

Environmental Complaints Log

Log ref.	Date of complaint	Complaint route	Reference no.	Complaint nature	Investigation fining	Status
1						
2						
3						
4						

Appendix M

Implementation Schedule for Environmental Mitigation Measures

Environmental Mitigation Implementation Schedule for Air Quality Control

EIA	Environmental Protection Measures	Location/Tim	Implementa	Implem	entation S	Stages*	Relevant Legislation
Ref		ing	tion Agent	D	С	0	& Guidelines
Construction	Phase (Air Quality Control)						
S3.8	 Dust mitigation measures stipulated in the Air Pollution Control (Construction Dust) Regulation shall be incorporated to control dust emission. Notice shall be given to authority prior to commencing of work. Relevant control measures include: watering on the work sites at Siu Ho Wan WTW twice a day; skip hoist for material transport shall be totally enclosed by impervious sheeting; vehicle washing facilities shall be provided at every vehicle exit point; the area where vehicle washing takes place and the section of the road between the washing facilities and the exit point shall be paved with concrete, bituminous materials or hardcores; every main haul road shall be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet; every stock of more than 20 bags of cement shall be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides; all dusty materials shall be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials from its body and wheels before leaving the construction sites; the dusty materials stockpiled on site shall be covered; and the load of dusty materials carried by vehicle leaving a construction site shall be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. 	Work site / during construction period.	Contractor				Air Pollution Control (Construction Dust) Regulation
Operation Ph	ase(Air Quality)		-		-		
NA	NA	NA	NA	NA	NA	NA	NA
	Phase (Noise Control)						
S4.8.1	Use of silenced PME	Work site close to all NSRs	Contractor		1		NCO, EIAO-TM
S4.8.6	 Good Site Practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. Silencers or mufflers on construction equipment should be utilised and should be properly maintained during the construction programme. 	Work site close to all NSRs / throughout the construction period.	Contractor		V		NCO, EIAO-TM

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station

Monthly Environmental Impact Monitoring and Audit Report (June 2023)

EIA	Environmental Protection Measures	Location/Tim	Implementa	Implementation Stages*			Relevant Legislation	
Ref		ing	tion Agent	D	С	0	& Guidelines	
Operation P	hase(Noise Control)							
NA	NA	NA	NA	NA	NA	NA	NA	
Construction	n Phase (Water Quality Control)							
S5.7.2	 Construction Site Runoff and Drainage Before commencing any site formation work, all sewer and drainage connections shall be sealed to prevent debris, soil, sand etc. from entering public sewers/drains. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures shall be inspected monthly and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Water pumped out from foundation excavations shall be discharged into silt removal facilities. Exposed soil surfaces shall be protected by paving or fill material as soon as possible to reduce the potential of soil erosion. 	Work site / During the construction period	Contractor		1		ProPECC PN 1/94; WPCO	
05.7.0	• Open stockpiles of construction materials or construction wastes on-site of more than 50m3 shall be covered with tarpaulin or similar fabric during rainstorms.	XX 1			,		D. DECC DV 1/04 WDCO	
\$5.7.3	 General Construction Activities Debris and rubbish generated on-site shall be collected, handled and disposed of properly to avoid entering the nearby watercourses and storm water drains. Stockpiles of cement and other construction materials shall be kept covered when not being used. 	Work site / During the construction period	Contractor		V		ProPECC PN 1/94; WPCO	
\$5.7.4	• Oils and fuels shall only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund shall be drained of rainwater after a rain event.	Work site / During the construction period	Contractor		1			
\$5.7.5	 Sewage from Construction Workforce Temporary sanitary facilities, such as portable chemical toilets, shall be employed on-site. A licensed contractor shall be responsible for appropriate disposal and maintenance of these facilities. 	Work site / During the construction period	Contractor		V		WPCO	
Operation P	hase(Water Quality Control)							
NA	NA	NA	NA	NA	NA	NA	NA	
Construction	n Phase (Ecology)							
S.6.9.3	 Mitigation to minimise impacts on vegetation in woodland All trees shall be preserved as far as possible, especially species of high conservation or amenity value. Recommendations to be provided in the Tree Survey Report to mitigate impacts on trees shall be followed. Where trees are to be preserved in-situ, but are likely to be disturbed from works activities, protective fencing/hoarding shall be carefully set up around the affected trees (refer to 	Worksiteparticularlywoodland/Duringdesignphaseandconstructionperiod	WSD/ Contractor	~	1		EIAO	

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station

Monthly Environmental Impact Monitoring and Audit Report (June 2023)

EIA	Environmental Protection Measures	Location/Tim	Implementa	Implementation Stages*			Relevant Legislation	
Ref		ing	tion Agent	D	С	0	& Guidelines	
	Landscape and Visual).	_						
S.6.9.4/	Disturbance of individuals of the shrub/tree species Pavetta hongkongensis and tree							
S.6.11.2	Aquilaria sinensis of conservation interest should be avoided. A buffer to the							
	dripline of each plant of at least 1m radius should be demarcated to prohibit							
	disturbance. Where loss of this species would be unavoidable, it is recommended that these plants may be transplanted to safe locations within the same habitat.							
	Following transplantation, regular monitoring of the trees and seedlings should be							
	conducted by a suitably qualified botanist/horticulturist over a 12-month period.							
S.6.9.5	Mitigation to minimise impacts on aquatic ecology	Work site /	WSD/	1	\checkmark			
		During	Contractor					
	• Trench excavation works for the raw water mains near the stream courses should be	construction						
5(0(carried out in the dry season as far as practicable.	period	Cantanatan		,		ELAO	
S.6.9.6	Mitigation to minimise general disturbance to wildlife	Work site / During	Contractor		\checkmark		EIAO	
	• Noise mitigation measures through the use of quiet construction plant shall be	construction						
	implemented to minimise disturbance to habitats adjacent to the works areas.	period						
S.6.9.7	General good site practice	Work site /	Contractor		√		EIAO	
		During			•			
	• Placement of equipment or stockpile in designated works areas and access routes	construction						
	selected on existing disturbed land to minimise disturbance to natural habitats.	period						
	• Construction activities shall be restricted to works areas that shall be clearly demarcated. The works areas shall be reinstated after completion of the works.							
	 Waste skips shall be provided to collect general refuse and construction wastes. The wastes shall be disposed of timely and properly off-site. 							
	 General drainage arrangements shall include sediment and oil traps to collect and control construction site run-off. 							
	 Open burning on works sites is illegal, and shall be strictly prohibited. Stove fires on works sites shall also not be allowed. Temporary fire fighting equipment shall be 							
	provided particularly in woodland areas.							
S.6.9.8.	Re-vegetation to reinstate works areas	Work site in	Contractor		√		EIAO	
		woodland /			•			
	• As far as possible compensatory planting shall use native plants of the same species	Immediately						
	that occur in the adjacent woodland habitat and have flowers/fruits attractive to	following works						
	wildlife. On-site compensatory planting should be conducted on at least a one to one basis.							
Operation P	Phase(Ecology)							
NA	NA NA	NA	NA	NA	NA	NA	NA	
Constructio	n Phase (Landscape and Visual Impact)							
S7.9	All existing top-soil shall be conserved and reused	During	Contractor		√		EIAO-TM	
	• Temporary hoarding barriers shall be of a recessive visual appearance in both colour and form.	construction phase						
	• Chromatic colour scheme with appropriate texture should be considered while							
	designing the external surface of the proposed SHW Raw Water Booster Pumping							
	Station in order to visually merge the proposed structures into the surrounding							
<u> </u>	landscape.							
Operation P	Phase(Landscape and Visual Impact)							

WSD Contract No.: 7/WSD/21 - Construction of Siu Ho Wan Water Treatment Works Extension and Siu Ho Wan Raw Water Booster Pumping Station

Monthly Environmental Impact Monitoring and Audit Report (June 2023)

EIA	Environmental Protection Measures	Location/Tim	Implementa tion Agent	Implementation Stages*			Relevant Legislation	
Ref		ing		D	С	0	& Guidelines	
S7.9	 New compensatory planting works shall be carried out as early as possible in the construction period which allow maximum time for establishment and more mature trees when the works completed. Landscape or compensatory planting shall be provided where appropriate for enhancing greening and achieving visual screening. In this aspect, compensatory tree planting shall be considered. Selection of plant species shall match with the surrounding vegetation type and form for consistency of landscape resources and visual comfort, for matching with the local habitat. Tree planting shall be firstly considered when the amenity area or slope is feasible for planting trees so as to provide visual screening. 	During operation phase	Contractor			V	EIAO-TM	
87.9	 Planting area of approximately 2000 to 3000mm wide where fast growing tall trees with dense foliage shall be provided along the site boundary of Siu Ho Wan Raw Water Booster Pumping Station for visual screening. For planting close to or surrounded by natural terrain, compensatory planting should be arranged in a semi natural manner where feasible in order to blend the new planting into natural environment. The newly planted trees, shrubs and grassed areas are maintained throughout the first 12 months of the operation stage. 	During operation phase	Contractor			V	EIAO-TM	
Waste Mana	gement							
\$10.5.1 - \$10.5.3	 Good Site Practices Good site practices during the construction activities include: Nomination of approved personnel, such as a site manager, to be responsible for good site practices and making arrangements for collection of all wastes generated at the site and effective disposal to an appropriate facility. Training of site personnel in proper waste management and chemical waste handling procedures. Provision of sufficient waste disposal points and regular collection for disposal. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. A Waste Management Plan shall be prepared and submitted to the Engineer for approval. One may make reference to ETWB TCW No. 15/2003 for details. A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) shall be proposed. In order to monitor the disposal of C&D material at public filling areas and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements to be implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. One may make reference to WBTC No. 21/2002 for details. 	Work site / During the construction period	Contractor				Waste Disposal Ordinance (Cap.54) WBTC No.21/2002, ETWB TCW No. 15/2003	
S10.5.4	Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction	Work site / During planning & design stage, and construction	WSD/Contracto r	~	1		WBTC No.4/98, ETWB TCW No. 15/2003	

Monthly Environmental Impact Monitoring and Audit Report (June 2023)

EIA	Environmental Protection Measures	Location/Tim	Implementa	Implem	entation S	tages*	Relevant Legislation
Ref		ing	tion Agent	D	С	0	& Guidelines
	 include: Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. Separate labelled bins shall be provided to segregate aluminium cans from other general refuse generated by the work force, and to encourage collection of by individual collectors. Any unused chemicals or those with remaining functional capacity shall be recycled. Maximising the use of reusable steel formwork to reduce the amount of C&D material. Proper storage and site practices to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste 	stage					
\$10.5.9	generated and avoid unnecessary generation of waste. <i>General Refuse</i> General refuse shall be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D material.	Work site / During the construction period	Contractor		1		Public Health and Municipal Services Ordinance (Cap. 132)
S10.5.7	<i>Construction & Demolition (C&D) Material</i> When disposing C&D material at a public filling area, it shall be noted that the material shall only consist of soil, rock, concrete, brick, cement plaster/mortar, inert building debris, aggregates and asphalt. The material shall be free from marine mud, household refuse, plastic, metals, industrial and chemical waste, animal and vegetable matter, and other material considered to be unsuitable by the Filling Supervisor.	Work site / During the construction period	Contractor		1		WBTC No. 4/98, 21/2002, 25/99, 12/2000 ETWB TCW No. 15/2003
S10.5.8	<i>Chemical Wastes</i> If chemical wastes are produced at the construction site, the <i>Contractor</i> would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes shall be used. Appropriate labels shall be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosives, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes generated at the Chemical Waste Treatment Centre at Tsing Yi, or other licenced facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. All chemical wastes shall be removed from the waterworks installations at the first instance.	Work site / During the construction period	Contractor		~		

Note: N/A Not applicable *D – Design; C – Construction; O – Operation