

1

Application No. : VEP-543/20/8 Reference No. : (For official use)

FORM 5 ENVIRONMENTAL IMPACT ASSESSMENT ORDINANCE (CHAPTER 499) SECTION 13(1)

Application for Variation of an Environmental Permit

PART A PREVIOUS APPLICATIONS

No previous application for variation of an environmental permit.

The environmental permit was previously amended.

Application No. :

PART B DETAILS OF APPLICANT

B1. Name : (person or company)	
Castle Peak Power Co Ltd	
[Note : In accordance with section 13(1) of th assumes responsibility for the designate	e Ordinance, the person holding an environmental permit or a person who ed project may apply for variation of the environmental permit.]
B2. Business Registration No. : (if applicable)	
B3. Correspondence Address :	
B4. Name of Contact Person :	B5. Position of Contact Person :
B4. Name of Contact Feison .	
B6. Telephone No. :	B7. Fax No. :
B8. E-mail Address : (if any)	

PART C DETAILS OF CURRENT ENVIRONMENTAL PERMIT

	Surrent Environmental Permit Holder : k Power Co Ltd
	o. of the Current Environmental Permit : EP-441/2012 nvironmental Permit was Issued in : month / year 0 7 2 0 1 2
Important Notes :	Please submit the application together with (a) 3 copies of this completed form; and (b) appropriate fee as stipulated in the Environmental Impact Assessment (Fees) Regulation to the Environmental Protection Department at the following address : The EIA Ordinance Register Office, 27th floor, Southorn Centre, 130 Hennessy Road, Wan Chai, Hong Kong.
☐ Tick (✓) the approp EPD185	briate box

PART D PROPOSED VARIATIONS TO THE CONDITIONS IN CURRENT ENVIRONMENTAL PERMIT

D1.	D2.	D3.	D4.	D5.	D6.	D7.
Condition(s) in the Current Environmental Permit :	Proposed Variation(s) :	Reason for Variation(s) :	Describe the environmental changes arising from the proposed variation(s) :	Describe how the environment and the community might be affected by the proposed variation(s) :	Describe how and to what extent the environmental performance requirements set out in the EIA report previously approved or project profile previously submitted for this project may be affected :	Describe any additional measures proposed to eliminate, reduce or control any adverse environmental impact arising from the proposed variation(s) and to meet the requirements in the Technical Memorandum on Environmental Impact Assessment Process :
Part B Schedule and Scope of Designated Project	Amend description to read "The project includes partial decommissioning of the west coal stockyard, demolition of two existing PFA silos, construction of one PFA silos and enhancement work to water management facilities."	The design has changed taking into account of the anticipated reduction in ash production due to the Government strategy to reduce the coal-fired power generation in the future.	Environmental changes are described in Section 3.2 of the Environmental Review Report enclosed with this application.	No adverse impact on the environment and the community is anticipated as a result of the proposed variation. Please refer to Section 3.4 of the Environmental Review Report enclosed with this application.	The environmental performance requirements set out in the Project Profile previously submitted for this Project will not be exceeded.	No additional mitigation measures required for the designated project elements.
Figure 1	Amend Figure 1 with the new project layout as shown in Figure 1.2 of the Environmental Review Report enclosed with this application.	The design has changed taking into account of the anticipated reduction in ash production due to the Government strategy to reduce the coal-fired power generation in future; and potential reduction of stormwater runoff catchment areas and availability of spare water storage tanks on site.	Environmental changes are described in Section 3.2 of the Environmental Review Report enclosed with this application.	No adverse impact on the environment and the community is anticipated as a result of the proposed variation. Please refer to Section 3.4 of the Environmental Review Report enclosed with this application.	The environmental performance requirements set out in the Project Profile previously submitted for this Project will not be exceeded.	One additional mitigation measure is added for management of sludge during operation phase. The dewatered sludge from the process water polishing unit shall be stored in separated enclosed container on site and shall be disposed of at WENT landfill at regular interval.
Condition 2.2	Amend description to read "The Permit Holder shall submit an updated Contamination Assessment Plan (CAP) and a Contamination Assessment Report (CAR) at least one month before the partial decommissioning works of west coal stockyard."	The decommissioning works of the existing water lagoons are no longer required. Instead, the updated CAP should cover the proposed decommissioning area of the west coal stockyard.	Environmental changes are described in Section 3.2 of the Environmental Review Report enclosed with this application.	No adverse impact on the environment and the community is anticipated as a result of the proposed variation. Please refer to Section 3.4 of the Environmental Review Report enclosed with this application.	The environmental performance requirements set out in the Project Profile previously submitted for this Project will not be exceeded.	No additional mitigation measures required for the designated project elements.

belief. I u	nderstand the environm	given above are correct and true to th nental permit may be suspended, sleading, wrong or incomplete.	
		-	
	ature of Applicant	Full Name in Block Letters	Position
on behalf of	Castle Peak Power	Company Limited	8 June Zoll

NOTES :

۱

- A person who constructs or operates a designated project in Part I of Schedule 2 of the Ordinance or decommissions a designated project listed in Part II of Schedule 2 of the Ordinance without an environmental permit or contrary to the permit conditions commits an offence under the Ordinance and is liable to a maximum fine of \$5,000,000 and to a maximum imprisonment for 2 years.
- A person for whom a designated project is constructed, operated or decommissioned and who permits the carrying out of the designated project in contravention of the Ordinance commits an offence and is liable to a maximum fine of \$5,000,000 and to a maximum imprisonment for 2 years.

EIAO COPY

Castle Peak Power Company Limited

Enhanced Ash Utilisation and Water Management Facilities at Castle Peak Power Station

Environmental Review Report

June 2018

Environmental Resources Management

2507, 25/F One Harbourfont 18 Tak Fung Street Hunghom Kowloon Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

VEP-543/2018 Total:1 d.d. 8.6.2018 Castle Peak Power Company Limited

Enhanced Ash Utilisation and Water Management Facilities at Castle Peak Power Station

Environmental Review Report

June 2018

.

Reference 0348497

For and on b	
EKM-Hong	Kong, Limited
Approved by	y: Mr Frank Wan
Signed:	Warderty.
Position:	Partner
Date:	8 June 2018

This report has been prepared by ERM-Hong Kong, Limited with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

CONTENTS	
----------	--

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PURPOSE AND OBJECTIVES OF THIS REVIEW	2
2	PROPOSED CHANGES TO THE DESIGN SCHEME	4
2.1	DESIGN SCHEME	4
2.2	CONSTRUCTION METHODOLOGY	6
2.3	IMPLEMENTATION PROGRAMME	8
2.4	INTERFACING PROJECTS	8
2.5	ENVIRONMENTAL BENEFITS OF THE PROPOSE CHANGES	8
3	IMPLICATIONS TO THE FINDINGS OF THE 2012 PROJECT PROFILE	9
3.1	OVERVIEW OF ENVIRONMENTAL IMPACT ASSESSED IN THE 2012 PROJECT	
	PROFILE	9
3.2	REVIEW OF POTENTIAL ENVIRONMENTAL IMPACTS	9
3.3	REVIEW OF MITIGATION MEASURES	11
3.4	REVIEW OF MATERIAL CHANGE	16
4	CONCLUSION	18
5	PROPOSED VARIATION TO ENVIRONMENTAL PERMITS	19
	ANNEX A DRAINAGE REARRANGEMENT PLAN	
	ANNEX B CONTAMINATION ASSESSMENT PLAN	

1 INTRODUCTION

1.1 BACKGROUND

The Castle Peak Power Company Ltd (CAPCO) currently uses the West Ash Lagoons at Tsang Tsui for disposal of surplus ashes, which consist mainly of raw Pulverised Fuel Ash (PFA), rejected PFA and Furnace Bottom Ash (FBA) generated from the CPPS; and storage of process water/ stormwater runoff arising from the Castle Peak Power Station (CPPS). Hong Kong SAR Government's plan on the use of West Ash Lagoon in the future for the WENT Landfill development is going to impact on the daily operations of CPPS, especially on ash and stormwater management.

Currently, there are two Water Storage Lagoons (Lagoons Nos. 1 and 2) at CPPS for temporary storage of stormwater runoff collected from the coal stockyards and process water from the operation of CPPS which can be reused for the operation of CPPS. Surplus stormwater is pumped to the West Ash Lagoon which can be pumped back to CPPS for reuse, if required.

Without the West Ash Lagoon, there will be limited temporary storage capacity for stormwater runoff collected from CPPS. During the summer months, surplus stormwater will have to be discharged to the sea. During the winter months, there will be shortage of rainwater and the shortfall will have to be augmented by town water supply. To ensure that CPPS has adequate capability to manage stormwater and to minimise the consumption of town water, CAPCO proposed to increase the stormwater storage capacity at CPPS before handing over of the West Ash Lagoon to the Government. In addition, the ash management system will be enhanced to increase the beneficial uses of the ashes. The construction and operation of the enhanced ash utilisation and water management facilities at the CPPS are referred to "the Project".

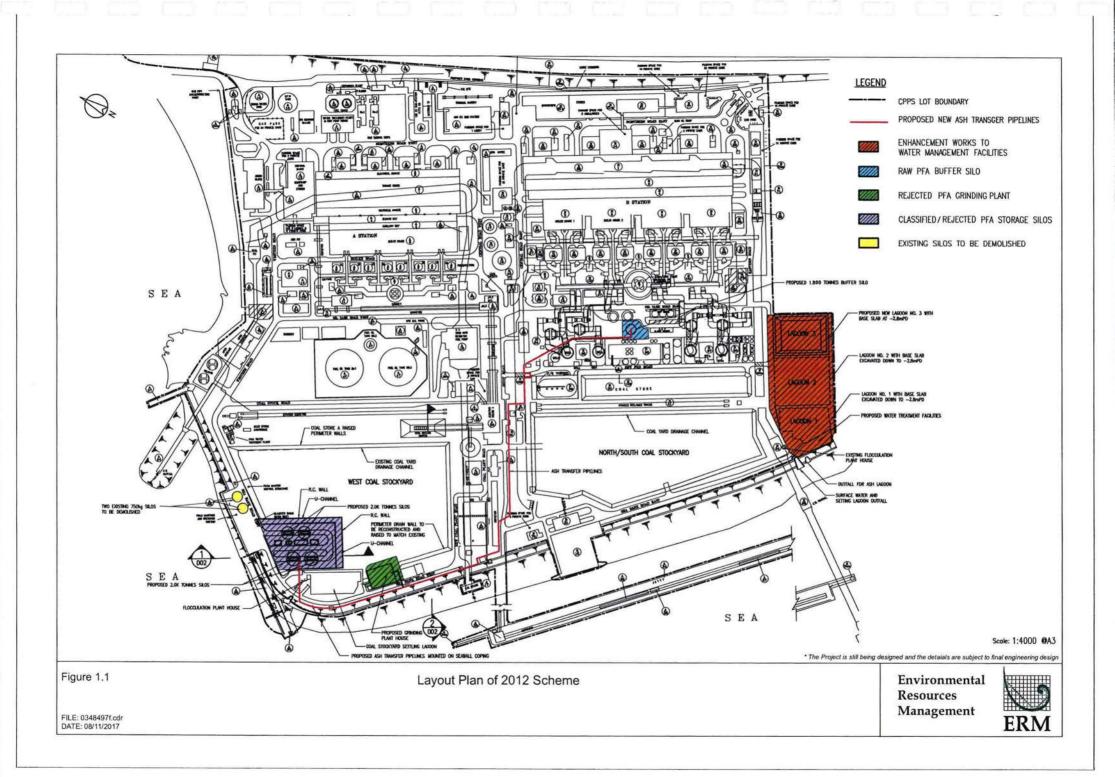
A design scheme was put forward in 2012 to enhance the ash management system and storage capacity of the water storage lagoons at CPPS (hereafter "the 2012 Scheme"). The 2012 Scheme included two Designated Projects (DP): (a) The proposed new ash management facilities are classified as a DP under Item G.6, Part I, Schedule 2 - A waste disposal facility for pulverised fuel ash, furnace bottom ash or gypsum; and (b) the partial decommissioning of the affected portion of the West Coal Stockyard is also classified as a DP under Item 15, Part II, Schedule 2 - A store for coal and ores with a storage capacity exceeding 200 tonnes. Hence, the construction and operation of the 2012 Scheme will require an Environmental Permit (EP) under the Environmental Impact Assessment Ordinance (EIAO). As the potential environmental impacts associated with the construction and operation of the 2012 Scheme is unlikely to be adverse, CAPCO was granted permission to apply directly for the EP on 27 June 2012. The Director of Environmental Protection issued an EP (EP-441/2012) to the CAPCO on 23 July 2012. The layout plan of the 2012 Scheme shown in the current EP is shown in Figure 1.1.

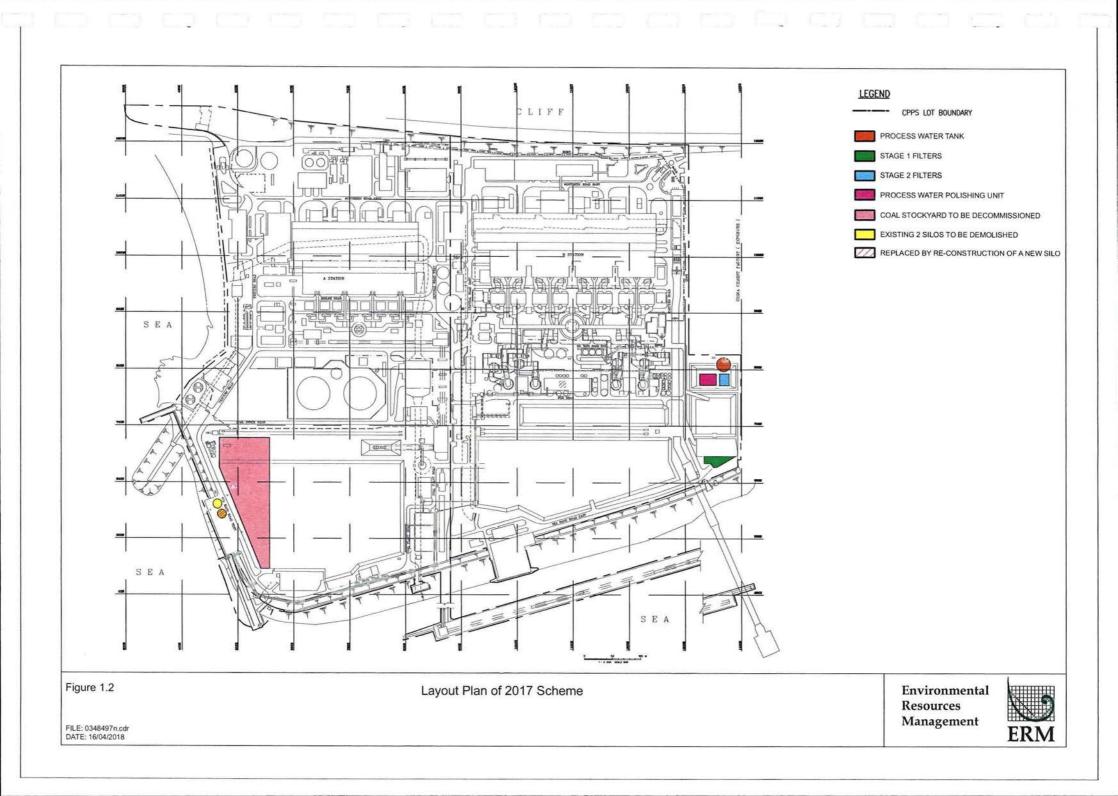
1

ount rategy oare er "the s

1.2 PURPOSE AND OBJECTIVES OF THIS REVIEW

CAPCO is currently reviewing the design of the 2012 Scheme taking account of the anticipated reduction in ash production due to the Government strategy to reduce the coal-fired power generation in the future; and potential reduction of the stormwater runoff catchment areas and availability of spare water storage tanks on site. A new scheme is being developed (hereafter "the 2017 Scheme"). The key changes to the 2012 Scheme are summarised as follows:


- The proposed 5 new PFA silos will not be required.
- Two existing PFA silos will be demolished and replaced by one new silo;
- New grinding plant will not be required;
- Dimension of the west coal stockyard for decommissioning is updated;
- Re-routing of the ash transfer pipeline is not required;
- New water lagoon to be replaced by above ground water tanks;
- Modification works at the existing water lagoons are not required; and
- Addition of a process water polishing unit to enhance the water quality for reuse within the power generation process.


The layout plan of the 2017 Scheme is shown in *Figure 1.2*. All design changes are within the CPPS boundary.

With the proposed changes, a Variation of Environmental Permit (VEP) is required for EP-441/2012. In supporting the application for the VEP, update of information presented in the Project Profile will be required and hence the implications of such changes would need to be reviewed from the perspective of the EIAO in this *Environmental Review (ER) Report*.

The purpose of this *ER Report* is:

- to identify and assess the key environmental implications (including air quality, noise, water quality, waste management, land contamination and landscape and visual) to the findings of the Project Profile with the implementation of the 2017 Scheme;
- to demonstrate that the proposed variations will not constitute material change to the environmental impact of the project with the mitigation measures in place; and the Project complies with the requirements described in the EIAO-TM; and
- to describe the proposed amendment to EP-441/2012.

1.2.1 Structure of this Report

The remainder of this report is set out as follows:

- Section 2 describes the proposed changes;
- Section 3 presents an assessment of the potential impacts on the environment with the proposed changes, compares the findings in the Project Profile and reviews the adequacy of environmental mitigation measures in the Project Profile;
- Section 4 concludes the findings of the environmental review; and
- Section 5 presents the proposed variation to the Environmental Permit No. EP-441/2012.

PROPOSED CHANGES TO THE DESIGN SCHEME

2.1 DESIGN SCHEME

2.1.1 Ash Handling and Utilisation Facilities

The key changes to the design of the ash handling and utilisation facilities from the 2012 Scheme is shown in *Table 2.1* and illustrated in *Figure 2.1*. The locations of the facilities of the 2017 Scheme are shown in *Figure 1.2*.

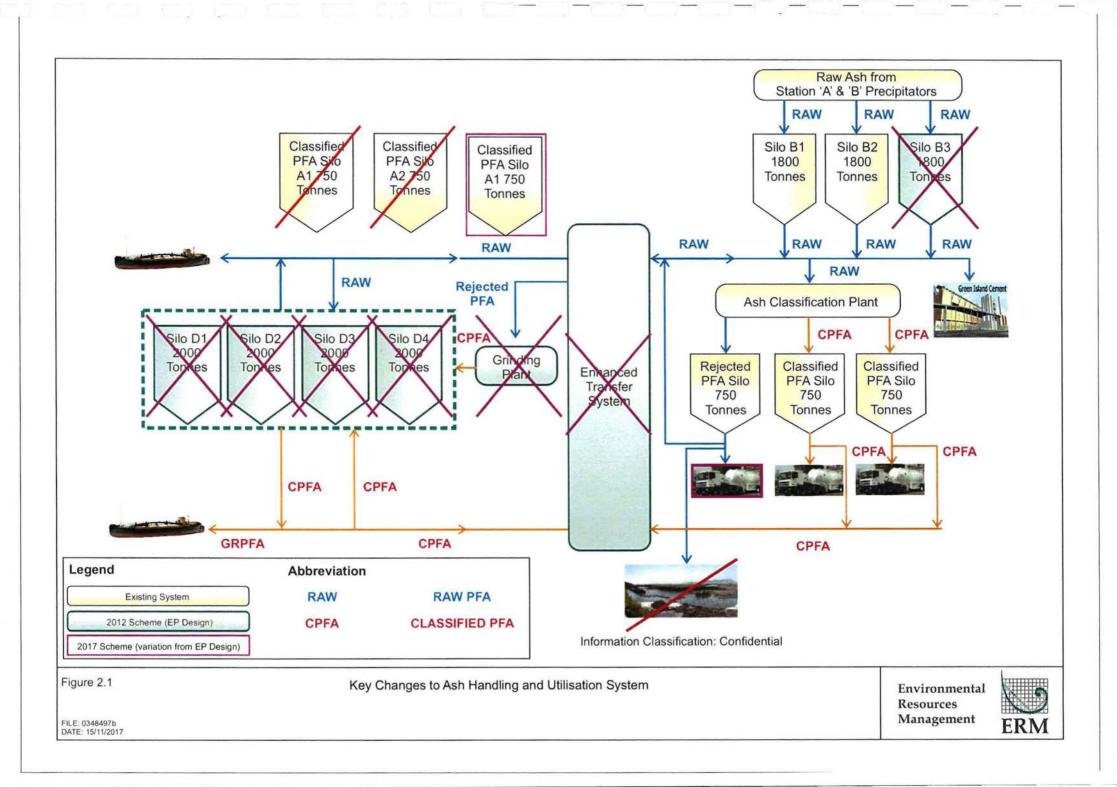
Table 2.1

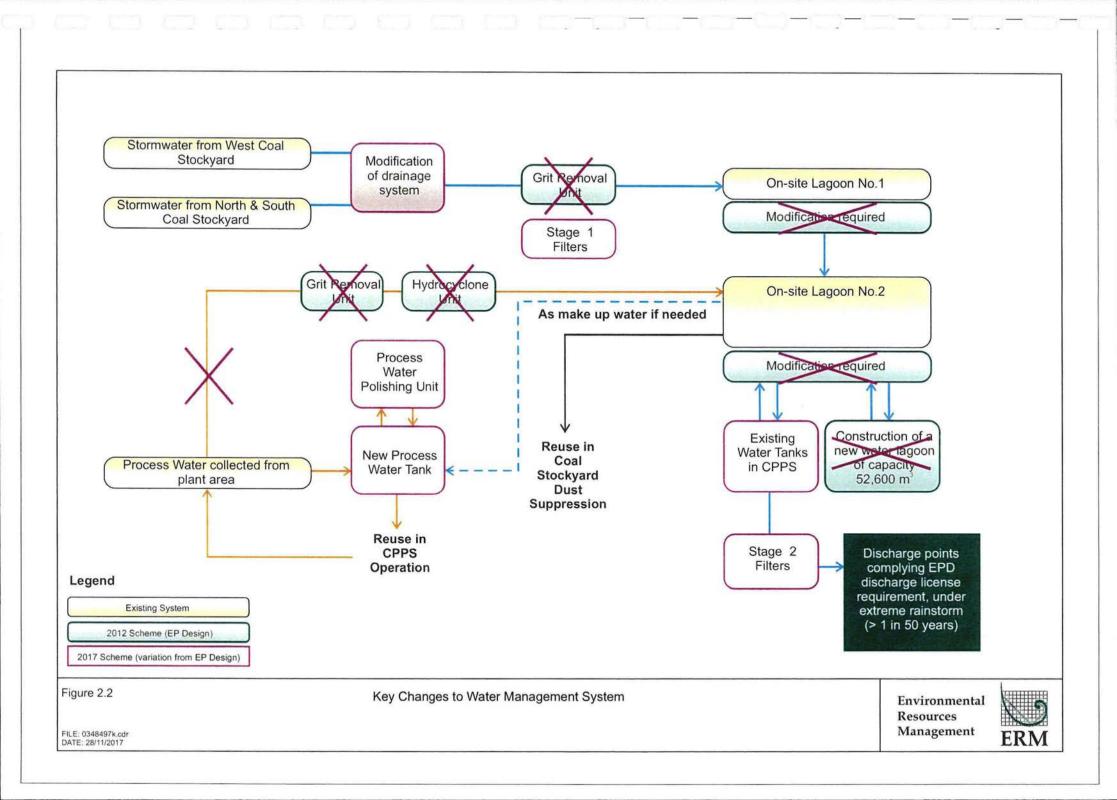
2

Changes to the Ash Handling and Utilisation Facilities

Item	2012 Scheme (Section 1.7.1 of the Project Profile)	Proposed Changes in the 2017 Scheme	Justifications for the Change
1	Construction of 1 new 1,800 tonnes Buffer Silo for storage of raw pulverised fuel ash (PFA)	Not required	Ash generation quantity is reduced and the existing silos have adequate capacity
2	Enhancement of the existing PFA handling and transportation system	Enhanced transfer system is not required and repair works to existing system only	Ash transfer can use the existing system without constructing new pipework so as to minimize excavation works.
3	Demolition of 2 existing 750 tonnes classified PFA silos	Same and replace by the construction and installation of 1 new PFA silo with a capacity of 750 tonnes to replace the 2 demolished classified PFA silos	New silo to be kept at the existing location to avoid construction of new ash transfer system
4	Construction and installation of 4 new PFA silos, each with a capacity of 2,000 tonnes	Not required	Ash generation quantity is reduced and less PFA storage silos are required
5	Partial decommissioning of a part of west coal stockyard	Decommissioning dimension is revised	Optimization of catchment area
6	Installation of a new grinding plant	Not required	Outlets for the off- specification PFA have been identified.

As shown in *Table 2.1* and *Figure 2.1*, the scale of the works in the 2017 Scheme is reduced as a result of a lower projected PFA generation quantity and identification of outlets for off-specification PFA. The evaluation of potential environmental impacts associated with the construction and operation of the 2017 Scheme are provided in *Section 3*.


2.1.2 Water Management Facilities


The key changes to the design of the water management facilities from the 2012 Scheme is shown in *Table 2.2* and illustrated in *Figure 2.2*. Under both 2012 and 2017 Schemes, the design of the water management facilities assume zero discharge from the water storage facilities under normal operating conditions up to 1 in 50 years rainstorm events.

ŀ.

Item	2012 Scheme (Section 1.7.2 of the Project Profile)	Proposed Changes in the 2017 Scheme	Justifications for the Change		
1	Construction of a new water lagoon of capacity 52,600 m ³	Construction of a new above-ground water tank for storage of returned process water, with capacity of approximately 7,000 m ³ .	Use of above-ground tank to minimise soil excavation		
2	Modification to the two existing water lagoons to	Not required	 Avoid disturbance to the existing lagoons 		
	increase their storage capacity through lowering their base slabs by		2) Existing spare water tanks have adequate capacity for the storage of stormwater		
	excavation		 Smaller stormwater storage requirement due to: 		
			 Rearrangement of drainage catchment to collect non-contaminate stormwater from i) the rooftop of buildings and the surrounding access road shown in Annex A and ii) the decommissioned area of the West coal stockyard for discharge into the stormwater drainage system and subsequent discharge into the sea. (refer to Annex A) Reuse of the collected stormwater in the fuel gas desulphurisation (FGD) system 		
3	Installation of 2-stage hydro-cyclone separation facilities to reduce suspended solids (SS) levels in the returned process water	Installation of a 2-stage filter and a process water polishing unit	Further enhance the water quali for reuse within the power generation process		
4	Installation of associated equipment to handle solids from hydro-cyclone or to allow SS to settle in the lagoon	Stage 1 filter to replace hydro-cyclone	Proven technology serving the same purpose		
5	Modification of the existing stormwater runoff distribution system to enhance temporary storage of stormwater runoff in the coal stockyard prior to discharge to lagoons	Same			

ENVIRONMENTAL RESOURCES MANAGEMENT

As shown in *Table 2.2* and *Figure 2.2*, the required storage capacity of the water management facilities is reduced in the 2017 Scheme. The drainage rearrangement works, which is described in *Section 2.2.3*, will ensure only clean stormwater from the decommissioned area of the West Coal stockyard be directly discharged to the sea. The evaluation of potential environmental impacts associated with the construction and operation of the 2017 Scheme are provided in *Section 3*.

2.2 CONSTRUCTION METHODOLOGY

2.2.1 Ash Handling & Utilisation Facilities

The key changes to the construction method of the ash handling and utilisation facilities from the 2012 Scheme are shown in *Table 2.3*.

Table 2.3Construction Method of the Ash Handling and Utilisation Facilities

Item	2012 Scheme (Section 1.8.1 of the Project Profile)	2017 Scheme
1.	Diversion of existing utilities and reprovisioning of the affected utilities – involving localised excavation works, flame cutting and welding	Remain valid
2.	Construction of a 1,800 tonnes Buffer Silo – involving foundation and concreting works, welding of pre-fabricated steel silos or <i>in situ</i> casting of concrete silos	Not required
3.	Upgrading of the ash handling system – involving minor ground breaking, flame cutting and lifting	Remain valid
4.	Construction of a 2x 300mm ash handling and distribution pipelines – involving minor ground breaking, welding, concreting and lifting	Not required
5.	Construction of 3 x 2,000 tonnes classified PFA Storage Silos – involving foundation and concreting works, welding of pre-fabricated steel silos or in situ casting of concrete silos	Not required
6.	Demolition of the existing 2 x 750 tonnes steel silos – involving flame cutting and lifting	Remain valid
7.	Construction of 1x 2,000 tonnes classified/ground PFA Storage Silos -	new PFA silo with a capacity of
	involving foundation and concreting works, welding of pre-fabricated steel	750 tonnes involving foundation and concreting works, welding of
	silo or in situ casting of concrete silo	pre-fabricated steel silo or <i>in situ</i> casting of concrete silo.
8.	Installation of a Grinding Plant with capacity of 45 tonnes/hr	Not required
9.	Construction of ground ash pipework	Not required

2.2.2 Water Management Facilities

The key changes to the construction method of the water management facilities from the 2012 Scheme are shown in *Table 2.4*. Under the 2017

Scheme, the new process water tank and process water polishing unit will be above-ground structures. The construction of these structures involves shallow foundation and concreting works, welding of pre-fabricated steel tank and equipment.

Table 2.4Construction Method of the Water Management Facilities

Item	2012 Scheme (Section 1.8.2 of the Project Profile)	2017 Scheme
1.	Diversion of existing pipework – involving localised excavations, flame cutting and welding;	Remain valid
2.	Construction of a new water lagoon (Lagoon No. 3) – involving excavation, and concreting works	Not required
3.	Reconstruction of existing Lagoon Nos. 1 and 2 – involving excavation and concreting works	Not required
4.	Construction of new pipework for the lagoons - involving localized excavations, flame cutting, welding and concreting	Not required
5.	Construction of perimeter walls for the west coal stockyard – involving excavation, concreting and lifting	Not required

2.2.3 Partial Decommissioning of the West Coal Stockyard

The key changes to the method of decommissioning the west coal stockyard are shown in *Table 2.5*. The decommissioned area will be left as an open space and will be continued as industrial use for the operation of the CPPS. No specific uses have been planned in this area.

Table 2.5Method of the Decommissioning of the West Coal Stockyard

Item	2012 Scheme (Section 1.8.3 of the Project Profile)	2017 Scheme
1.	The HCV Coal Pile will be removed by the Caterpillar Coal Scrapers for loading into the 32-tonne truck	Remain valid
2.	After the level of coal pile is lowered, the concerned portion of the coal yard will be emptied by use of Caterpillar Front End Loaders and/or Dozers	Remain valid
3.	During the clearance of the coal pile, coal dust will be suppressed by water sprays using the spray guns and water browser in a way similar to the existing normal operations of the coal stockyard	Remain valid
4,	The pile slope near the cleared area will be reduced and fenced off to prevent the potential collapse of the coal pile	Not required. Instead, a shallow U channel will be constructed along the edge of the decommissioned area along the new coal stockyard boundary to separate the coal pile area and collect stormwater runoff from the coal pile

1

IMPLEMENTATION PROGRAMME

The duration of construction for the 2017 Scheme (including both the ash handling and water management components) will require approximately 32 months for construction. Construction works will commence in the 1th quarter of 2018 for completion by 4th quarter of 2020.

2.4 INTERFACING PROJECTS

2.3

There are currently no committed interfacing projects in the vicinity of the Project site that may contribute to cumulative impacts with the Project.

2.5 Environmental Benefits of the Propose Changes

2.5.1 Ash Handling and Utilisation System

The changes will have the following environmental benefits:

- Less construction phase environmental impacts (in terms of magnitude) as a result of reduced scale of Project works;
- Avoid potential dust impact and waste disposal associated with construction of ash transfer system; and
- Less dust emission from vent air during operation as a result of reduced number of ash storage silos and deletion of the grinding plant.

2.5.2 Water Management System

The changes will have the following environmental benefits:

- Avoid potential construction phase environmental impacts associated with the construction of new lagoon and enhancement work at the existing lagoons;
- Less potential dust impact as a result of reduced scale of soil excavation; and
- Make the best use of available existing infrastructure.

3

IMPLICATIONS TO THE FINDINGS OF THE 2012 PROJECT PROFILE

3.1 OVERVIEW OF ENVIRONMENTAL IMPACT ASSESSED IN THE 2012 PROJECT PROFILE

The potential environmental impacts evaluated in the Project Profile for the 2012 Scheme include air quality, noise, water quality, waste management, land contamination and landscape and visual. The Project Profile also confirmed there will be no concerns on ecology, fisheries, cultural heritage and hazard to life. The Project Profile concluded that the overall environmental impacts that could arise from the construction operation of the Project are considered minor and anticipated to comply with the assessment criteria stipulated in the EIAO-TM with the implementation of general good construction site practices and the well proven measures recommended in the Project Profile.

The potential implications to the findings of the Project Profile as a result of the design change are discussed in the following section.

3.2 REVIEW OF POTENTIAL ENVIRONMENTAL IMPACTS

Table 3.1 summarises the potential environmental impacts associated with the 2017 Scheme, comparing to the 2012 Scheme.

Table 3.1 Potential Environmental Impacts of 2017 Scheme

Environmental Aspect	Potential Impacts
Air Quality (Section 3.2 o	f the Project Profile)
Construction Phase	According to the Project Profile, excavation works has been identified to be the potential dust generating activities during construction phase. The 2017 Scheme will involve less excavation works and thus the construction dust emissions are expected to be lower. Adverse air quality impact is not anticipated and the conclusion in the Project Profile remains unchanged.
Operation Phase	The 2017 Scheme will not involve the operation of a new grinding plant and the number of new PFA silos in operation will also be fewer. Hence, there will be less dust emission source (filtered vent air from grinding plant and storage silos). Adverse air quality impact is not anticipated and the conclusion in the Project Profile remains unchanged.
Noise (Section 3.3 of the P	roject Profile)
Construction Phase	The scale of construction works for the 2017 Scheme is smaller and hence will use less Powered Mechanical Equipment (PME). In general, noise emission from the construction work of the 2017 Scheme is reduced. Given the large separation distance (about 900m) between the works areas and the nearest sensitive receiver at Lung Tsai and the screening effects of the existing structures at the CPPS, adverse noise impact is not anticipated and the conclusion in the Project Profile remain unchanged.

Environmental Aspect	Potential Impacts
Operation Phase	According to the Project Profile, the operation of the Project will involve the use of mechanical equipment equipped on the grinder, ash distribution pumps, hydro-cyclones and water pumps etc. The 2017 Scheme will not involve operation of a new grinding plant and enhanced transfer system. The quantity of new mechanical equipment to be installed under 2017 Scheme would be fewer. Fixed plant noise generated therefore would not exceed that predicted in the Project Profile and no adverse noise impact is anticipated.
Water Quality (Section 3.4	t of the Project Profile)
Construction Phase	Under 2017 Scheme, the modification works at existing water lagoons will no longer be required. The proposed construction works of the above-ground new process water tank and process water polishing unit are expected to have smaller footprint, compared with the construction of a new water lagoon in the 2012 Scheme. Potential water quality impact is expected to be reduced. Adverse water quality impact is not anticipated and the conclusion in the Project Profile remains unchanged.
Operation Phase	Under both 2012 and 2017 Schemes, the design of the water management facilities assume zero discharge from the water storage facilities under normal operating conditions up to 1 in 50 years rainstorm events. Under extreme rainstorm events, the quality of the stormwater to be discharged will comply with the existing licence conditions issued under the <i>Water Pollution Control Ordinance</i> by the treatment of 2-stage filters under all circumstances. The rearrangement of drainage catchment also ensures only non- contaminated stormwater from the buildings, surrounding access road and the decommissioned area of the West Coal stockyard will be directly discharged to the sea. Therefore, water quality impact due to effluent discharge as predicted in the Project Profile remains unchanged.
Waste Management Impli	cations (Section 3.5 of the Project Profile)
Construction Phase	2017 Scheme will involve less excavation works. The quantities of excavated materials to be generated and disposed of are expected to be less than that predicted in the Project Profile. The quantity of chemical waste and general refuse to be generated in the 2017 Scheme is expected to be comparable to that of the 2012 Scheme. The conclusion in the Project Profile remains unchanged.
Operation Phase	Under both 2012 and 2017 Schemes, the grits and settled solids (coal particles) in the water management system will be collected and returned to the coal stockyard as the current practice. The operation of the proposed process water polishing unit under 2017 Scheme is expected to generate 6 tonnes of dewatered sludge per day and requires off-site disposal at landfills. As the process water has minimal organic matters, there will be no odour issues associated with the handling, transportation and disposal of the sludge at landfills. The sludge will be properly dewatered to comply with the landfill acceptance criterion. The small quantity of sludge to be disposed of at landfills is not expected to cause adverse impacts on the landfills.

Land Contamination (Section 3.6 of the Project Profile)

2017 Scheme will involve less excavation compared to the 2012 Scheme. The Contamination Assessment Plan (CAP) in the Project Profile has been updated with the 2017 Scheme (see *Annex B*). This CAP details the past and present land uses of the Project Site in relation to possible soil and groundwater contamination. The land use changes and site layout under the 2017 scheme have been reviewed against the 2012 Scheme. The CAP also reviewed the

Environmental Aspect Potential Impacts

existing data in previous site investigation (SI) which was conducted in accordance with the RBRG Practice Guide and the CAP concluded that the previous SI findings are applicable to the Project and no signs of soil and groundwater contamination (i.e. below the relevant *Risk-based Remediation Goals* (RBRGs) standards) within the Project Site. Potential land contamination impacts are considered insignificant. The conclusion in the Project Profile remains unchanged.

Similar to the situation described in the Project Profile, SI was not conducted at the area of coal stockyard proposed for decommissioning as the area is currently occupied by a large coal pile and cannot be removed readily without partial decommissioning of the coal yard. The CAP has thus recommended to conduct confirmation SI at the proposed decommissioned area of the west coal stockyard after partial decommissioning of the west coal stockyard and before commencement of the construction works in this area to confirm no land contamination. The SI results will be documented in a Contamination Assessment Report (CAR). If contamination is identified, the necessary remediation method will be proposed and documented in the Remediation Action Plan (RAP) for EPD's approval. If remediation is necessary, the CAPCO will clean up the contaminated land according to the approved RAP, and a Remediation Report (RR) will be prepared to demonstrate that the concerned area(s) have been cleaned up to the relevant RBRG's standards. The RR will be submitted to EPD for agreement prior to the commencement of any development or redevelopment works.

Landscape & Visual (Section 3.8 of the Project Profile)

The proposed process water tank and process water polishing unit under 2017 Scheme will be above-ground structures. They will be designed in a way compatible with the site context. The overall visual quality from the visual sensitive receivers would therefore be expected to be same as that predicted in the Project Profile.

3.3 REVIEW OF MITIGATION MEASURES

Based on the findings of environmental impact assessments for the 2017 Scheme in *Section 3.2*, mitigation measures recommended in the Project Profile for the 2012 Scheme have been reviewed to evaluate their effectiveness and applicability to 2017 Scheme. *Table 3.2* summarises the mitigation measures applicable to 2017 Scheme.

Environmental Aspect	Mitigation Measures
Air Quality (Section 4.1 of Pr	roject Profile)
Ar Quality (Section 4.1 of Pr Construction Phase	 by the property of the prepresent of the property of the property of
Operation Phase	 Measures for Partial Decommissioning of the West Coal Stockyard During the clearance of the coal pile, coal dust will be suppressed by water sprays using the spray guns and water browser as existing normal operations at the coal stockyard. The dust control system of the new PFA silo will comply with the dust emission limit of 50 mg/m³ recommended in the <i>Guidance Note on Best Practicable Means for Mineral Works (PFA Classification Plant) (BPM 11/2 (96)</i>. This is in line with the dust emission limit for existing ash handling systems at CPPS, which are regulated under the overall <i>Air Pollution Control Licence</i> for the whole CPPS. No further mitigation measures are required for the operation of the new PFA silo.
Noise (Section 4.2 of Project 1	Profile)
Construction Phase	 Good site practice will be recommended to minimise noise impact: Unused equipment should be turned off. PME will be kept to a minimum and the parallel use of noisy equipment/ machinery will be avoided; Regular maintenance of all plant and equipment;

Table 3.2Descriptions of Mitigation Measures for 2017 Scheme

Regular maintenance of all plant and equipment;

Material stockpiles and other on-site structures will be effectively used as noise barriers, where practicable;

Environmental Aspect	Mitigation Measures	
	 Use of purpose-built movable noise barrier, silencer and quiet plant as necessary. 	
Operation Phase	Given that the nearest NSR is about 900m away and the plant is screened by other structures within the CPPS, the incremental fixed noise impact at the	
	identified NSRs will likely be negligible. No mitigation measures are therefore required for the proposed mechanical equipment under 2017 Scheme.	
Water Quality (Section 4.3 of	Project Profile)	
Construction Phase	Site runoff and drainage impacts will be controlled in accordance with the guidelines stipulated in the EPD's Professional Persons Environmental Consultative Committee Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94). The implementation of good housekeeping and stormwater	
	management practices will ensure that Water Pollution Control Ordinance (WPCO) standards can be met and that no unacceptable impacts on the identified water sensitive receivers would arise due to the construction and demolition works. The recommended mitigation measures include:	
	Measures for Construction Site Runoff and Discharge	
	Surface runoff from the affected works areas are to be directed towards desilting facilities before discharging into the stormwater drainage;	
	 Channels, earth bunds or sand bag barriers will be provided on-site to properly direct stormwater to the above-mentioned facilities; 	
	 Existing on-site silt removal facilities, channels and manholes, if any, will be maintained and the deposited silt and grit will be removed regularly, at the onset of and after each rainstorm and to ensure that these facilities are functioning properly at all times; 	
	 Other manholes, if any, including any newly constructed ones will be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system; 	
	 Open stockpiles of materials on site will be avoided or where unavoidable covered with tarpaulin or similar fabric during rainstorms. Measures will be taken to prevent the washing away of construction materials, soil, silt or debris; 	
	 Sewage arising from the construction workers on-site will be collected by temporary sanitary facilities where necessary e.g. portable chemical toilets. Portable toilets will be used coupled with tankering away services provided by a reputable collector; 	
	 All site discharges will comply with the terms and conditions of a valid discharge licence issued by EPD; 	
	 Vehicle washing facilities will be drained into desilting facilities before discharge. Water will be recycled on-site wherever possible. It is suggested that the wash water from wheel wash basins are either reused for site watering or pumped to the on-site desilting facilities for treatment; 	
	• Desilting facilities will be checked and the deposited silt and grit will be removed regularly to ensure that they are working properly at all times.	
	Protection against Accidental Spillage	
	 The works may occasionally involve the handling of fuel and generates a small amount of chemical wastes. It must be ensured that all fuel tanks and chemical storage are sited on sealed and bunded areas and provided with locks; 	
	 If necessary, the storage areas will be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank to prevent accidentally spillage; 	
	Oil and grease removal facilities will be provided where appropriate, for example, in area near plant workshop/ maintenance areas, if any;	
	 Chemical waste arising from the site will be properly stored, handled, treated and disposed of in compliance with the requirements stipulated under the Waste Disposal (Chemical Waste) (General) Regulation. 	

Environmental Aspect	Mitigation Measures		
Operation Phase	Water quality impacts due to effluent discharge during operation of the Project are not anticipated and hence mitigation measures are not required.		
	No precautionary measures are required for the water management system during the dry seasons or less severe rainstorm, as the existing lagoons and the modified existing water tanks will be able to contain all the collected stormwater runoff. The proposed process water polishing unit can further improve the quality of water to be reused in the power generation process.		
	The surplus stormwater to be discharged during the extreme rainstorm conditions will comply with the existing WPCO discharge licence requirements and		
	hence no additional mitigation measures will be required.		
Naste Management Implicatio	ons (Section 4.4 of the Project Profile)		
Construction Phase	To further minimise waste arising and to further reduce the environmental impacts associated with handling, storage and disposal of the wastes generated from the construction of the Project, it is recommended to maximise the reuse of the excavated material on site and adopt good site management practice an enhance waste segregation on-site to facilitate of recycling certain components of the waste streams, such as metals, papers and plastics.		
	The main contractor of the Project shall prepare a Waste Management Plan (WMP), which will become part of the Environmental Management Plan (EMP), with reference to the requirements set out in the ETWB TCW No. 19/2005, Waste Management on Construction Sites and the Practice Note for Authorized Persons an Registered Structural Engineers, e.g. Practice Note No. 243 – Construction and Demolition Waste. The WMP shall include monthly Waste Flow Tables (WFT) which indicate the amounts of waste generated, recycled and disposed of (including final disposal site), and it should be updated regularly.		
	General waste management measures during Construction		
	 The reuse/recycling of all materials on-site shall be investigated and exhausted prior to treatment/ disposal off-site; 		
	 All waste materials shall be sorted on-site into inert and non-inert C&D materials, and where the materials can be recycled or reused, they shall be further segregated. Inert material, or public fill shall be disposed of at Fill Bank at Tuen Mun Area 38 whilst non-inert materials or construction waste shall be disposed of at the WENT Landfill. 		
	 The contractor shall be responsible for identifying what materials can be recycled/ reused, whether on-site or off-site. In the event of the latter, the contractor shall arrange for the collection of the recyclable materials. 		
	• In order to monitor the disposal of public fill and construction waste at public filling facilities and landfills, and control fly-tipping, a trip-ticket system shall be implemented by the Contractor, in accordance with the contract and the requirements of WBTC 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Material";		
	 Under the Waste Disposal (Chemical Waste) (General) Regulation, the Contractor shall register as a Chemical Waste Producer if chemical wastes such as spent lubricants and paints are generated on-site. Only licensed chemical waste collectors shall be employed to collect any chemical waste generated at site. The handling, storage, transportation and disposal of chemical wastes shall be conducted in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes and A Guide to the Chemical Waste Control Scheme both published by EPD; 		
	 A sufficient number of covered bins shall be provided on-site for the containment of general refuse to prevent visual impacts and nuisances. These bins shall be emptied daily and the collected waste disposed of to the WENT Landfill. Further to the issue of ETWB TCW No. 6/2002A, Enhanced Specification for Site Cleanliness and Tidiness, the contractor will be required to maintain a clean and hygienic site throughout the project works; 		
	 Toolbox talks should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste 		
	 Toolbox talks should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste 		

CAPCO

Environmental Aspect	Mitigation Measures
	reduction, reuse and recycling.
Operation Phase The dewatered sludge from the process water polishing unit shall be stored in separated enclosed container on site and shall be at regular interval.	
Land Contamination (Section	4.5 of Project Profile)
work at the coal stockyard p necessary remediation meth contaminated land accordir	t, signs of land contamination were not identified and no mitigation measures are considered necessary. However, the situation will be reconfirmed after the SI proposed in the CAP is completed. The SI results will be documented in a Contamination Assessment Report (CAR). If contamination is identified, the nod will be proposed and documented in the Remediation Action Plan (RAP) for EPD's approval. If remediation is necessary, the CAPCO will clean up the g to the approved RAP, and a Remediation Report (RR) will be prepared to demonstrate that the concerned area(s) have been cleaned up to the relevant RBRG's submitted to EPD for agreement prior to the commencement of any development or redevelopment works.
Landscape & Visual (Section 4	1.7 of Project Profile)
No mitigation measures for	landscape and visual impacts are considered necessary, as no adverse landscape and visual impacts are identified during the construction and operation of the
Project.	

REVIEW OF MATERIAL CHANGE

3.4

For any changes to a DP, it is necessary to evaluate if the changes will constitute a "material change" under the definition of the EIAO. The *Technical Memorandum of EIA Process* (EIAO-TM) described the definition of "material change" under the EIAO.

Although an EIA Report was not prepared for the Project, it is interpreted that the environmental performance requirements in the Project Profile for the Project should serve as a reference for comparison. *Table 3.3* summarized the results of the evaluation. It is considered that the 2017 Scheme would not lead to any material change to the Designated Project (DP), or to any additional or worse environmental impact in accordance with *Sections 6.1* and *6.2* of the *EIAO-TM*, respectively. As such, the 2017 Scheme is considered as conforming to the requirements and findings set out in the Project Profile.

Table 3.3 Summary of Evaluation Results Against Section 6 of the EIAO-TM

Item	Requirements	Major Findings	Material Change?
6.1 (a)	A change to physical alignment, layout or design of the project causing an environmental impact likely to affect existing or planned community, ecologically important areas or sites of cultural heritage	No impacts beyond those predicted in the Project Profile are anticipated to be affecting existing or planned community, ecologically important areas or sites of cultural heritage.	No
		Please also refer to <i>Sections</i> 3.2 to 3.3 above for detailed discussion of the assessment of the potential environmental impacts associated with the adoption of the proposed changes.	
6.1 (b)	A physical change resulting in an increase in the extent of reclamation or dredging affecting water flow or quality likely to affect ecologically important areas, or disrupting sites if cultural heritage	Under the proposed changes, no reclamation or dredging will be undertaken.	No
6.1 (c)	An increase in pollution emissions or discharges or waste generation likely to violate guidelines or criteria in this technical memorandum without mitigation measures in place	Additional pollution emissions or discharges or waste generation due to the proposed changes are not expected to violate guidelines or criteria in the EIAO-TM without mitigation measures in place as assessed in <i>Sections 3.2</i> to <i>3.3</i> above.	No
6.1 (d)	An increase in throughput or scale of the project leading to physical additions or alterations that are likely to violate the guidelines or criteria in this technical memorandum without mitigation measures in place	The scale of the 2017 Scheme is expected to be smaller than that predicted in the Project Profile as described in <i>Section</i> 2.	No

Item	Requirements	Major Findings	Material Change?
6.1 (e)	A change resulting in physical works that are likely to affect rare, endangered or protected species, or an important ecological habitat, or site of cultural heritage.	The Project Profile confirmed there will be no concerns on ecology, fisheries, cultural heritage and hazard to life. The proposed changes described in 2017 Scheme would not raise concerns on endangered or protected species, or an important ecological habitat, or site of cultural heritage.	No
6.2	The environmental impact of a designated project, for which an environmental permit has been issued, is considered to be materially changed if the environmental performance requirements set out in the EIA report for this project may be exceeded or violated, even with the mitigation measures in place.	As assessed in <i>Sections 3.2</i> to 3.3 above, it is predicted that the potential environmental impacts associated with the proposed changes will not exceed the environmental performance requirements stated in the Project Profile.	No

Ĺ

CONCLUSION

The potential environmental impacts associated with the proposed changes in the 2017 Scheme and the corresponding construction works have been assessed. The associated impacts are expected to comply with the requirements, recommendations and other commitments set out in the Project Profile. The proposed 2017 Scheme for the Project is not considered to constitute a material change under the statutory definition of the EIAO.

18

4

PROPOSED VARIATION TO ENVIRONMENTAL PERMITS

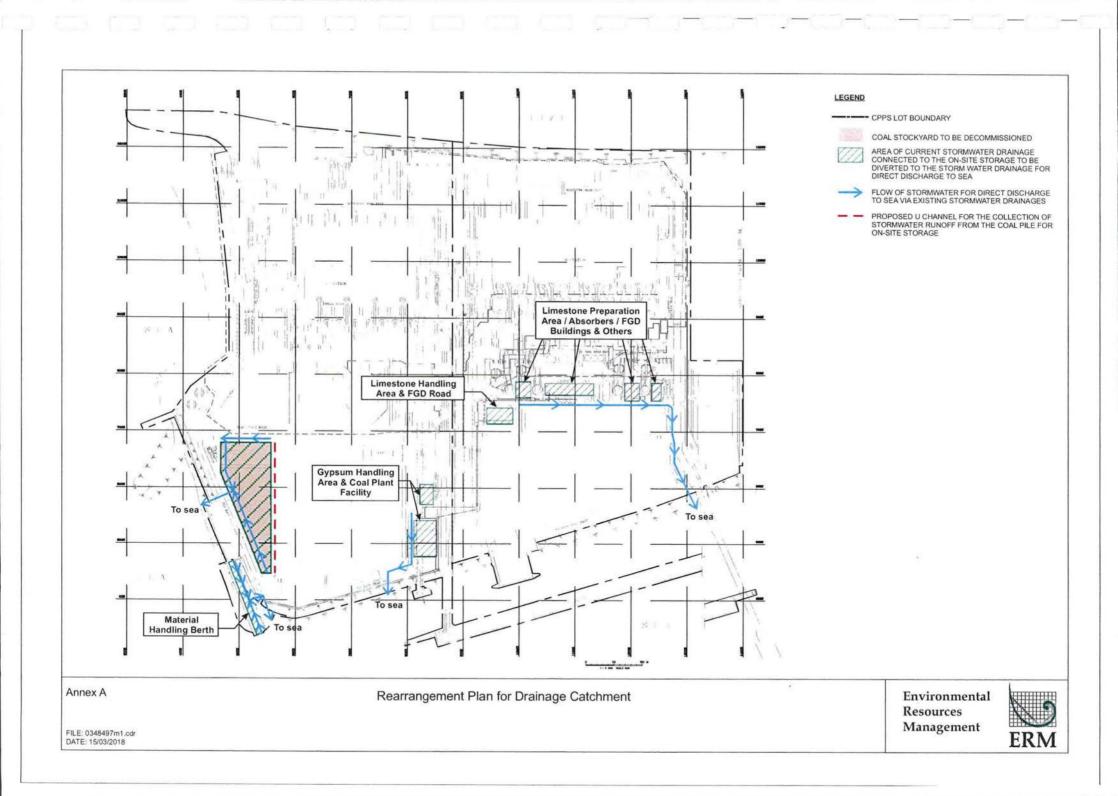

The parts in the current EP that are proposed for amendment are summarised in *Table 5.1*.

Table 5.1Potential Amendment to the EP-441/2012

Item	Parts	Potential Amendment
1	(i) Part B Scale and Scope of Designated Project	Update the description with 2017 Scheme
2	Figure 1	Update with the layout of the 2017 Scheme
3	Condition 2.2 of EP-441/2012	Revise to read " before the commencement of the partial decommissioning works of the west coal stockyard.".

Annex A

Drainage Rearrangement Plan

Annex B

I

1

1

Contamination Assessment Plan Castle Peak Power Company Limited

Enhanced Ash Utilisation and Water Management Facilities at Castle Peak Power Station

Contamination Assessment Plan

April 2018

Environmental Resources Management 16/F Berkshire House 25 Westlands Road Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com Castle Peak Power Company Limited

Enhanced Ash Utilisation and Water Management Facilities at Castle Peak Power Station

Contamination Assessment Plan

April 2018

Reference 0348497

For and on behalf o	
ERM-Hong Kong,	Limited
Approved by:	Mr Frank Wan
	Wardenty.
Signed:	U
Position:	Partner
Date:	16 April 2018

This report has been prepared by ERM-Hong Kong, Limited with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	OBJECTIVE OF THE CAP	2
1.3	STRUCTURE OF THIS CAP	3
2	STATUTORY REQUIREMENTS AND EVALUATION CRITERIA	5
2.1	Statutory Framework	5
2.2	SELECTION OF RBRG LAND USE SCENARIO	5
3	DESCRIPTION OF THE PROPOSED PROJECT	7
3.1	ASSESSMENT AREA	8
4	SITE APPRAISAL FINDINGS	9
4.1	SURROUNDING LAND USE OF THE ASSESSMENT AREA	9
4.2	SITE WALKOVER FINDINGS	9
4.3	REVIEW OF PAST LAND USES	9
4.4	REVIEW OF HISTORICAL SPILLAGE AND LEAKAGE RECORD	13
4.5	(HYDRO) GEOLOGY AND UNDERGROUND SOIL PROFILE	14
4.6	REVIEW OF PREVIOUS SITE INVESTIGATION	14
5	INTRUSIVE SITE INVESTIGATION PLAN	19
5.1	PROPOSED SAMPLING LOCATIONS, DEPTHS AND PARAMETERS	19
5.2	SITE CONSTRAINTS AT PROPOSED SAMPLING LOCATIONS	20
5.3	POTENTIAL DERIVATION FROM THE PROPOSED SAMPLING PLAN	20
5.4	SAMPLING METHODOLOGY	23
6	CONCLUSION AND RECOMMENDATIONS	28
6.1	CONCLUSION	28
6.2	THE WAY FORWARD	28

ANNEXES

ANNEX A	LAYOUT PLAN OF THE 2012 SCHEME AND 2017 SCHEME
ANNEX B	WORKS AREAS OF THE 2017 SCHEME
ANNEX C	SELECTED SITE PHOTOGRAPHS
ANNEX D	REFERENCED AERIAL PHOTOGRAPHS
ANNEX E	CHEMICAL WASTE PRODUCER REGISTRATION AND LETTER FROM FSD ON FIRE INCIDENTS, CHEMICAL SPILLAGE AND DG STORAGE

ANNEX F PREVIOUS GROUND INVESTIGATION BOREHOLE LOGS

- ANNEX G SAMPLING LOCATIONS PLAN
- ANNEX H DETAILS OF PILOT LAND CONTAMINATION ASSESSMENT
- ANNEX I SCHEMATIC DRAWING OF GROUNDWATER MONITORING WELL
- ANNEX J RISK-BASED REMEDIATION GOALS

1 INTRODUCTION

1.1 BACKGROUND

The Castle Peak Power Company Ltd (CAPCO) currently uses the West Ash Lagoons at Tsang Tsui for disposal of surplus ashes, which consist mainly of raw Pulverised Fuel Ash (PFA), rejected PFA and Furnace Bottom Ash (FBA) generated from the CPPS; and storage of process water/ stormwater runoff arising from the Castle Peak Power Station (CPPS). It is anticipated that the use of West Ash Lagoon in the future by the Government for the WENT Landfill development is going to impact on the daily operations of CPPS, especially on ash and stormwater management.

Currently, there are two Water Storage Lagoons (Lagoons Nos. 1 and 2) at CPPS for temporary storage of stormwater runoff collected from the coal stockyards and process water from the operation of CPPS which can be reused for the operation of CPPS. Surplus stormwater is pumped to the West Ash Lagoon which can be pumped back to CPPS for reuse, if required. Without the West Ash Lagoon, there will be limited temporary storage capacity for stormwater runoff collected from CPPS. During the summer months, surplus stormwater will have to be discharged to the sea. During the winter months, there will be shortage of rainwater and the shortfall will have to be augmented by town water supply.

1.1.1 The 2012 Scheme

A design scheme was put forward in 2012 to enhance ash utilization and water management facilities at the CPPS before handing over of the West Ash Lagoon to the Government (hereinafter referred as 'the 2012 Scheme').

The 2012 Scheme proposed construction works to increase the storage capacity of the existing lagoons (Lagoons Nos. 1 and 2) at the CPPS, enhance the re-use of stormwater collected for the operation of the CPPS, and increase ash utilisation by adding new buffer silos, PFA handling and transport system and a PFA grinding plant. The 2012 Scheme is a Designated Project (DP) under the Environmental Impact Assessment Ordinance (EIAO) and a Project Profile was submitted under the EIAO to apply directly for an Environmental Permit. An EP (EP-441/2012) was issued by the Director of Environmental Protection in 2012. The layout plan of the 2012 Scheme shown in the current EP is shown in *Annex A*.

1.1.2 The 2017 Scheme

CAPCO is currently reviewing the design of the 2012 Scheme taking account of the anticipated reduction in ash production due to the Government strategy to reduce the coal-fired power generation in the future; and potential reduction of the stormwater runoff catchment areas and availability of spare water storage tanks on site. A new scheme is being developed (hereafter "the 2017 Scheme"). The key changes to the 2012 Scheme are summarized as follows.

- The proposed 5 new PFA silos are not required.
- Re-construction of a new 750 tonne PFA silo to replace the demolition of 2 exiting PFA silos instead;
- New grinding plant will not be required;
- Dimension of the west coal stockyard for decommissioning is updated;
- Re-routing of the ash transfer pipeline is not required;
- New water lagoon to be replaced by above ground water tanks and excavations are not required;
- Modification works at the existing water lagoons are not required; and
- Addition of a process water polishing unit to enhance the water quality for reuse within the power generation process.

The layout plan of the 2017 Scheme is shown in *Annex B*. All design changes are within the CPPS boundary.

1.1.3 Land Contamination Assessment

CAPCO has commissioned ERM-Hong Kong, Limited (ERM) to apply for a Variation of Environmental Permit (VEP) of the approved EP (EP-441/2012). In supporting the VEP application, an *Environmental Review (ER) Report* was prepared to identify and assess the key environmental implications based on the proposed changes and implementation of the 2017 Scheme.

As part of the *ER Report*, a land contamination assessment of the works areas of the Project (the Site) has been carried out. This Contamination Assessment Plan (CAP) is prepared to identify potential sources of soil and/or groundwater contamination due to past and present operations at the works area. As the design and geological coverage between 2012 Scheme and the 2017 Scheme have been changed, the CAP in the Project Profile will need to be updated. Therefore, this CAP is prepared as part of the ER of 2017 Scheme, is prepared with a new assessment area (see *Annex B*) and will supersede the CAP in the Project Profile.

1.2 OBJECTIVE OF THE CAP

This CAP details the past and present land uses of the Site in relation to possible soil and groundwater contamination at the Site. This CAP reviewed the change of land use and site layout under 2017 Scheme against the 2012 LCA, evaluated the existing data in previous Site Investigation and concluded whether the findings are still valid and representative. This CAP also determined the need and methodology for an intrusive site investigation (SI) of the Project Site to identify the nature and extent of on-site contamination (if any). If required, the findings of the SI will be evaluated and reported in the

Contamination Assessment Report (CAR). If the SI results indicate that the soil and/or groundwater to be excavated or extracted for the construction of the Project exceed the Risk Based Remediation Goals (RBRGs) of corresponding future land uses, a Remediation Action Plan (RAP) will also be prepared. All the CAP, CAR and RAP will be submitted to the Environmental Protection Department (EPD) for approval.

If remediation is deemed necessary, the project proponent shall clean up the contaminated land or site(s) according to the approved RAP, and a Remediation Report (RR) to demonstrate adequate clean-up should be prepared and submitted to EPD for endorsement prior to the commencement of development or redevelopment works.

1.3 STRUCTURE OF THIS CAP

This section introduces the background of the Assignment, while subsequent Sections are structured according to the assessment methodology for contaminated sites.

- Section 2 outline the statutory requirements and the evaluation criteria for this land contamination assessment;
- Section 3 describe the project components and the associated construction works;
- *Section* 4 presents the findings of the site appraisal, including site survey, information on the past and present land uses, etc;
- *Section 5* proposes the land contamination investigation programme to assess the potential contamination in the Site, if applicable; and
- Section 6 presents the conclusion and recommendations.

This CAP is also supplemented by the following annexes:

- Annex A Layout Plan of the 2012 Scheme and 2017 Scheme
- Annex B Works Areas of the 2017 Scheme
- Annex C Selected Site Photographs
- Annex D Referenced Aerial Photographs
- Annex E Chemical Waste Producer Registration and Letter from FSD on Fire Incidents, Chemical Spillage and DG Storage
- Annex F Previous Ground Investigation Borehole Logs
- Annex G Sampling Location Plan
- Annex H Details of Pilot Land Contamination Assessment

ENVIRONMENTAL RESOURCES MANAGEMENT

Annex I Schematic Drawing of Groundwater Monitoring Well

Annex J Risk-Based Remediation Goals

ENVIRONMENTAL RESOURCES MANAGEMENT

STATUTORY REQUIREMENTS AND EVALUATION CRITERIA

2.1 STATUTORY FRAMEWORK

2

Annex 19 of the Technical Memorandum on EIA Process (TM) requires that the Project Proponent of DPs shall give consideration to the historical land uses which have the potential to cause or have caused land contamination. Being one of the listed land uses as power plant, submission of a CAP to EPD for endorsement is required.

The following key guiding documents are to be referenced for land contamination assessment:

- Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management (the RBRGs Guidance Manual);
- Guidance Note for Contaminated Land Assessment and Remediation (the RBRGs Guidance Note); and
- Practice Guide for Investigation and Remediation of Contaminated Land (the RBRGs Practice Guide).

The following legislation, documents and guidelines may cover or have some bearing upon the assessment of contamination and the handling, treatment and disposal of contaminated materials for the Project:.

- Water Pollution Control Ordinance (WPCO) (Cap 358);
- Waste Disposal Ordinance (WDO) (Cap 354);
- Waste Disposal (Chemical Waste) (General) Regulation (Cap 354C); and
- Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.2 SELECTION OF RBRG LAND USE SCENARIO

In accordance with Section 2 of the RBRGs Practice Guide, the site's future land use and the appropriate set of RBRGs corresponding to the land use scenarios should be determined prior to the site appraisal. The Hong Kong RBRGs were developed for four different post-restoration land use scenarios, namely:

- Urban residential,
- Rural residential,
- Industrial, and
- Public parks.

As the proposed Project comprises engineering works for the enhancement of ash utilisation and water management systems, and the future land use of the Site will be continually as industrial use for the operation in the CPPS, the RBRGs conceptual site model under industrial land use scenarios will be adopted.

ENVIRONMENTAL RESOURCES MANAGEMENT

DESCRIPTION OF THE PROPOSED PROJECT

The Project comprises two components, one for enhancement of the existing water management facilities and one for enhancement of the ash handling and utilisation facilities at CPPS.

3.1.1 Enhancement of Water Management Facilities

3

At present, the stormwater runoff collected from the coal yard and boiler backyard catchment areas is treated by sedimentation in the Lagoon Nos. 1 and 2. The current practice encourages on-site utilisation of the stormwater runoff collected at the CPPS with surplus water pumped to the Tsang Tsui PFA Lagoons. It is proposed to enhance the water management facilities by:

- Construction of a new above-ground process water tank for storage of returned process water, with capacity of approximately 7,000 m³;
- Installation of a two-staged filter (i .e. grit removal) to reduce the suspended solids (SS) levels in the process water collected from the power generation system and a process water polishing unit to further enhance the water quality in the reuse water tank for reuse within the power generation process;
- Installation of associated equipment for handling solids generated from the filters or to allow the settlement of solids in the lagoon; and
- Modification of the existing stormwater runoff distribution system to enhance the temporary storage of stormwater runoff in the coal stockyards.

3.1.2 Enhancement of Ash Handling & Utilisation Facilities

Currently, the surplus raw PFA is mixed with water to form slurry and then pumped to Tsang Tsui Ash Lagoon (TTAL) through a dedicated pipeline system and the surplus rejected PFA (oversized PFA) is mixed with small amount of water to form conditioned PFA and then transported to the TTAL by dump trucks. It is proposed to enhance ash handling and utilisation by:

- Diversion of existing utilities and reprovisioning of the affected utilities involving localised excavation works, flame cutting and welding
- Demolition of 2 existing 750 tonnes steel ash silos involving flame cutting and lifting; and
- Construction of a new 750 tonnes PFA Storage Silos -involving foundation and concreting works, welding of pre-fabricated steel silo or in situ casting of concrete silo.

To optimise the stormwater drainage catchment, part of the west coal stockyard will be decommissioned. It is proposed to decommission by:

- HCV Coal Pile removal by the Caterpillar Coal Scrapers for loading into the 32 te truck;
- After the level of coal pile is lowered, the concerned portion of the coal yard will be emptied by use of Caterpillar Front End Loaders and/or Dozers;
- During the clearance of the coal pile, coal dust will be suppressed by water sprays using the spray guns and water browser in a way similar to the existing normal operations of the coal stockyard; and
- Construction of a shallow U channel along the edge of the decommissioned area along the new coal stockyard boundary to collect stormwater runoff from the coal pile.

The decommissioned area will be left as an open space. No specific uses have been planned in this area.

3.1 ASSESSMENT AREA

For the construction of the abovementioned equipment and facilities, it is anticipated that construction works will be undertaken at four (4) works areas within the Site. The assessment areas of this CAP will comprise these four works areas of this Project. *Annex B* presents the locations and boundaries of these four works areas.

Table 3.1 Areas Identified with Construction Works for the Project

Associated Works Areas	Proposed Project Components
Works Area A: Contractor Village	Process Water Polishing Unit, Process Water Tank and Stage 2 Filters
Works Area B: South of Lagoon No.1	Stage 1 Filters
Works Area C: West Coal Stockyard	Partial Decommissioning of West Coal Store
Works Area D: Existing Ash Silos along Sea Bank Road West	Existing Silos A1 & A2 to be demolished and to re- construct Silo A1

SITE APPRAISAL FINDINGS

4

The site appraisal comprises site walkover, review of historical aerial photographs and maps, review of historical spillage and leakage records, and review of previous SI conducted at the Site.

4.1 SURROUNDING LAND USE OF THE ASSESSMENT AREA

The CPPS is situated along the Lung Mun Road of Tuen Mun. Surrounding land uses of the neighbouring environment of the assessment areas are summarised as follow:

- North: Villages along the Lung Mun Road such as the Tung Tsui Village and Sha Po Kong Village. Further north is Lung Kwu Tan.
- East: Mong Fat Mountain. Southeast of the assessment area is the Green Island Cement Plant. Further southeast is the Shui Wing Steel Mill.
- South: The shore of Urmston Road Navigation Channel (also known as Dragon Drum Channel, a broad body of water between Lantau Island and Tuen Mun, which forms an inshore passage between the northwest end of Victoria Harbour and the mouth of the Pearl River).
- West: The shore of Urmston Road Navigation Channel.

A site location map showing the overview of assessment area and surrounding land uses is presented in *Annex A*.

4.2 SITE WALKOVER FINDINGS

Site walkover of these four works areas were conducted on 15 August 2017. Findings of site observations were summarised in *Table 4.1* using the 'Standard Form 3.1 – Current Use' in accordance with the *RBRGs Guidance Manual. Annex C* presents the selected photographs of these works areas.

4.3 REVIEW OF PAST LAND USES

A review of past land uses at these four works areas were conducted by reviewing the aerial photographs in the years of 1976, 1981, 1984, 1996, 2001, 2003, 2006, 2008, 2013 and 2016. The aerial photographs and topographic maps were obtained from the Surveys and Mapping Office of the Lands Department. Key changes of site setting observed within each works areas were summarised in *Table 4.2* by using the 'Standard Form 3.2 – Past Use' in accordance with the *RBRGs Guidance Manual*. The referenced aerial photographs are attached in *Annex D*.

Works Areas	Type of Facility/Business	On-site Property Land Use	Date Began	Description of Site Walkover Findings	Owner or Occupier	Approximate Size of On-site Property (m ³)	Off-site Property Affected?
Works Area A: Contractor Village	Industrial	Open Storage Contractor office	2008	Works Area A was used as on-site container office for the contractors of the Emission Control project in CPPS. The flat concrete paved area is vacant during the time of site visit.	CAPCO / Various contractors	6,500	No
Works Area B: South of Lagoon No. 1	Industrial	Contractor office	2006	Works Area B is occupied by a contractor for material storage. The area is fully concrete paved. Maintenance materials and repairing tools were stored inside temporary fenced storage area.	CAPCO / Contractor	630	No
Works Area C: West Coal Stockyard	Industrial	Open storage	1986	Works Area C was used for open stockpile of coal. Ground conditions of the area could not be inspected as the entire area was homogeneously covered by coal.	CAPCO	16,000	No
Works Area D: Existing Ash Silos along Sea Bank Road West	Industrial	Coal ash storage	1989	Two PFA storage silos were installed in this area to store dry PFA produced as a by-product from the combustion of coal in CPPS. The silos were elevated by metal structure and served by two compressors sets on ground. The ground was concrete paved. No significant sources of soil and groundwater contamination were observed within the area covered under the existing silos.	САРСО	350	No

Table 4.1Standard Form 3.1 Summary of On-Site Land Use - Current Use

. . .

Works Areas	Type of Facility/Business	On-site Property Land Use	Date Began/ Period	Description of Site History	Owner or Occupier	Approximate Size of On-site Property (m ³)	Off-site Property Affected?
Works Area A: Contractor Village	Industrial	Open Storage Contractor office	1981	Reclamation completed and the CPPS was under construction. Temporary low-rising housing structures / container offices were observed within this works area.	CAPCO / Various contractors	6,500	No
			1996	The area of the current Contractor Village was occupied by three consecutive buildings, which resembled warehouses / workshops. The ground appeared to be concrete paved.			
			2001	The buildings observed in 1996 were demolished and replaced by some temporary structures on concrete paved ground.			
			2003 - 2008	The concrete paved grounds were used for material storage and were occupied by container offices. Minor machine/equipment repairing and maintenance activities were observed in some sheltered areas. Open areas were observed being used for storage of metal structures.	**		
			2017	All container offices and materials were removed from the Contractor Village Area.			
Works Area B: South of Lagoon No. 1	Industrial	Open Storage	1996	The works area was mostly vacant as shown in aerial photographs since 1996. Minor construction material storage was observed in year 2013	CAPCO / Contractor	630	No
Works Area C: West Coal Stockyard	Industrial	Open storage	1981	Reclamation completed and the CPPS was under construction. Constructions (Temporary low-rise housing structures / container offices / workshops) were found within the southern part of the works area	САРСО	16,000	No
			1984	Part of the works area was constructed with three consecutive single - storey buildings which resembled warehouses / workshops. The Coal Store A was established.			
			1986	The warehouses were removed. The whole works area was used as Coal Store A.			
Works Area D:	Industrial	Coal ash storage	1984	The area was vacant land.	CAPCO	350	No

Table 4.2Standard Form 3.2 Summary of On-Site Land Use - Past Use

Works Areas	Type of Facility/Business	On-site Property Land Use	Date Began/ Period	Description of Site History	Owner or Occupier	Approximate Size of On-site Property (m ³)	Off-site Property Affected?
Existing Ash			1984 -	The ash silos were erected during this period.			
Silos along Sea			1990				
Bank Road							
West							

Environmental Resources Management

1.14

- · ·

1

(n) (n) (n)

.

REVIEW OF HISTORICAL SPILLAGE AND LEAKAGE RECORD

Enquiries were made to the EPD and CAPCO on chemical waste producer record and historical spillage and leakage records at CPPS. A visit to the Chemical Waste Collection Licensing Section of the EPD Territorial Control Office was arranged and information related to chemical waste producer registered in CPPS was extracted. A total of 19 chemical waste producers were registered in CPPS. *Table 4.3* summarised the list of chemical waste producers and their business nature. Upon further confirmation with CAPCO in 2017, all chemical waste producers were no longer active in CPPS except for the one held by CLP Power Hong Kong Ltd (i.e. no 9, CLP). In addition, none of these chemical waste producing activities, including the one held by CLP, were conducted within Works Areas A to D. A copy of chemical waste registration is provided in *Annex E*.

An information request was sent to CAPCO and FSD regarding the records of any historical chemical spillages, fire incidents and Dangerous Goods (DG) storage within the Works Area A to D. According to the information provided by CAPCO, DG stores were not located within Works Areas A to D. CAPCO also confirmed that no chemical spillage incidents and fire incidents were recorded within the Works Areas A to D. Information provided from FSD is provided in *Annex E*.

	Company Name (English)	Company Name (Chinese)	Business Nature
1.	ABB (HK) Ltd.	N/A	Mechanical/Electrical Engineering
2.	Atlantic Projects Co.(HK) Ltd.	N/A	Engineering construction
3.	Barclay Mowlem (HK) Ltd.	百利茂林(香港)有限公司	Construction
4.	BEC Specialist (HK) Ltd.	N/A	Installation
5.	Chevalier (Envirotech) Ltd.	其士(環境技術)有限公司	Water treatment
6.	Chevalier (Envirotech) Ltd.	其士(環境技術)有限公司	Water treatment (Emission Control Project)
7.	China Harbour Engineering Co. Ltd.	中國海灣工程有限責任公司	Dredging and piling works
8.	Citic Guo Hua Trading (Overseas) Ltd.	中信國華貿易(海外)有限公司	Trading
9.	CLP Power HK Ltd.	中華電力有限公司	Electricity Generation
10.	Gammon Construction Ltd.	金門建築有限公司	Site formation, foundation and road works
11.	Hong Kong Fuji Technology Co. Ltd.	香港富士科技有限公司	Engineering
12.	Kaidai electric power environmental (HK) Co. Ltd.	凱迪電力環保(香港)有限公司	N/A
13.	Kum Shing (KF) Construction Co. Ltd.	金城營造有限公司	Construction Site
14.	Kum Shing E&M Ltd.	金城機電有限公司	Electric power generation
15.	Thermo Engineering and Consultants Ltd.	暉武工程有限公司	Corporate

 Table 4.3
 List of Chemical Waste Producers Registered in CPPS

ENVIRONMENTAL RESOURCES MANAGEMENT

4.4

科藝防火保安工程香港有限公	Security / fire protection
司	system
d. 偉聯電力工程有限公司	Building and Construction Engineering
宏宗建築有限公司	Construction
日昇基建工程有限公司	Demolition Works
日昇基建工程有限公司 DERGROUND SOIL PROFILE	Demolition Works
DERGROUND SOIL PROFILE ords obtained from the CAPC ted within some works areas	
ted within some works areas	s during the Emission
	宏宗建築有限公司 日昇基建工程有限公司 DERGROUND SOIL PROFILE ords obtained from the CAPC

strata encountered were fragments (~0 to 1m below base of concrete (bbc)), coarse sandy fill with cobble and boulder sized rock fragments (~1 to 7m bbc). Soil samples were generally recovered in shallow depths of boreholes.

4.6 **REVIEW OF PREVIOUS SITE INVESTIGATION**

4.5

4.6.1 Land Contamination Assessment for 2012 Scheme in 2011 - 2012

A Land Contamination Assessment (hereinafter referred to as 2012 LCA) was conducted during the periods between June 2011 and March 2012 for the Project Profile of the 2012 Scheme of the Project. Among a total of 46 soil samples and 10 groundwater samples (including 3 soil duplicate and 2 groundwater duplicate samples) taken from 20 sampling locations for the 2012 LCA, 24 soil samples and 8 groundwater samples (including 2 soil duplicate and 1 groundwater duplicate samples) taken from 9 sampling locations (8 boreholes and 1 trial pit) were located within or near the boundary of Works Areas A - D of the 2017 Scheme. No signs of non-aqueous phase liquid (NAPL) including stains and abnormal odour were observed during the groundwater sampling events. Annex G1 and G2 show these 9 sampling locations which are located within the Works Areas of the 2017 Scheme. Table 4.5 summarises the drilling and sampling details and the analysis results of the soil samples. Soil sampling depths were determined based on the anticipated full depth of contamination or as required based on the proposed excavation depths and previous ground investigation records at these works areas.

Sampling	As-built Coo	ordinate of	Drilling	Sampling Depths	No. of Soil	No. of	Testing Paramete	ers excee	ling RBRG	Gs (Y/N)		
Locations			Depth (m bbc)	(m bbc)	Samples Collected	Groundwater Samples Collected ^(d)	Heavy Metals (e)	TPH ^(f)	VOCs ^(g)	SVOCs ^(h)	PCBs	Free Cyanide
Works Area	A: Contractor	Village (Equiv	alent to Wo	rks Area A: Contractor Vil	lage in 2012 LCA)						1. C
CV1	E 810022.07	N 825826.82	4.75	0.5, 1-1.5, 3-3.5, 4-4.5	4	0	Ν	N	Ν	Ν	N/A	N/A
CV2	E 810027.90	N 825853.76	10.10	0.5, 1.5, 2.9-3.35	3	1	N	N	N	N	N/A	N/A
CV3	E 810055.98	N 825803.87	10.00	0.5, 1.5, 4.28-4.35	3	1	Ν	N	N	Ν	N/A	N/A
CV4	E 810018.43	N 825779.68	10.05	0.5, 1.5, 3.00-3.45	3	1	N	N	N	N	N/A	N/A
CV5	E 809994.45	N 825836.88	10.05	0.5, 1.5-1.65	3 (b)	1	Ν	N	N	Ν	N/A	N/A
Works Area	B: South of La	goon No. 1 (Eq	uivalent to	the northern part of the We	orks Area B: No. 1	and 2 in 2012 LCA)						
ETP4	E 809885.14	N 825734.60	3.45	0.5, 1.5, 3.0	3	0	Ν	N	Ν	Ν	N/A	N/A
Works Area	C: West Coal	Stockyard (Equ	ivalent to the	he western part of the Work	s Area F: West Co	al Stockyard in 2012 L	.CA)					
EBH2	E 809375.91	N 826410.24	7.10	0.5	1	1	Ν	N	Ν	Ν	N/A	N
EBH3	E 809353.89	N 826381.00	7.50	0.4	1	1	N	N	N	N	N/A	N
EBH4	E 809335.89	N 826353.30	7.20	0.5, 0.8, 3.70-3.99	4 (c)	2 (c)	Ν	N	N	Ν	N/A	N

Table 4.5 Summary of Land Contamination Assessment Results during 2012 LCA^(a)

Notes:

(a) Under the 2012 scheme, the Works Areas were defined as follows: Works Area A: Contractor Village; Works Area B: Lagoon No. 1 and 2; Works Area C: South of Lagoon No.1; Works Area D: Jetty Road and Sea Bank Road West; Works Area E: West of Ash Classification Plant (ACP) Plant House and ACP Silos; Works Area F: West Coal Stockyard and Works Area G: Existing Ash Silos along Sea Bank Road West.

(b) Soil duplicate sample was collected at 0.5m bbc.

(c) Soil duplicate sample was collected at 0.5m bbc and groundwater duplicated samples was collected from the well.

(d) No signs of non-aqueous liquid phase including stains and abnormal odour were observed during the groundwater sampling events

(e) Heavy Metals: Antimony, Arsenic, Barium, Cadmium, Cobalt, Copper, Lead, Manganese, Molybdenum, Nickel, Tin, Zinc, Mercury, Chromium (III) and Chromium (VI). For groundwater samples collected from Works Area A-E in 2012 LCA, no Heavy Metals were tested. For groundwater samples collected from Works Area F in 2012 LCA, Heavy Metal (Mercury) was tested.

(f) TPH: C6 - C8, C9 - C16 and C17 - C35

- (g) VOCs: For soil: Acetone, Benzene, Bromodichloromethane, 2-Butanone, Chloroform, Ethylbenzene, Methyl tert-Butyl Ether, Methylene Chloride, Styrene, Tetrachloroethene, Toluene, Trichloroethene and Xylenes (Total)
- (h) SVOCs: For soil: Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Bis-(2-ethylhexyl)phthalate, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Hexachlorobenzene, Indeno(1,2,3cd)pyrene, Naphthalene, Phenanthrene, Phenol and Pyrene. For groundwater: Acenaphthylene, Acenaphthene, Anthracene, Benzo(b)fluoranthene, Chrysene, Fluorene, Phenanthrene and Pyrene.
- N/A Such chemical parameter was not tested for the sample.

The laboratory analysis results indicate no exceedances of the RBRGs industrial land use for heavy metals, TPH, VOCs and SVOCs for all the soil and groundwater samples tested.

However, as the 2012 LCA was conducted five years ago, more up-to-date data should be collected to ascertain any potential contamination at these Works Areas during recent years. Also the sampling locations in the 2012 LCA cannot provide adequate coverage of all works areas identified in this Project.

4.6.2

Pilot Land Contamination Assessment for the 2017 Scheme in 2016 - 2017

According to the new project components in 2017 Scheme provided by CAPCO, a Pilot Land Contamination Assessment (PLCA) was conducted during the periods between August 2016 and October 2017 in order to provide more recent data to cover the Works Areas for this Project. The PLCA aimed to verify the ground condition at Works Area A – Contractor Village and Works Area B – South of Lagoon No.1, and to assess the land condition at Works Area D - Existing Silos A1 & A2 along Sea Bank Road West.

A total of 10 soil samples and 2 groundwater samples (including 2 soil duplicates) were taken from 3 sampling locations (2 boreholes and 1 trial pit) located within the boundary of Works Area A, B and D of the 2017 Scheme. *Annex G1* and *G2* show the locations of the boreholes and trial pits excavated in the PLCA. *Annex H1* shows the details of drilling method, sampling method and decontamination of equipment. *Annex H2* shows the borehole logs for these 3 sampling locations. *Table 4.6* summarises the drilling and sampling details and the analysis results of the soil samples. Soil sampling depths were determined based on the anticipated full depth of contamination or as required based on the proposed excavation depths and previous ground investigation records at these works areas.

The laboratory analysis results indicate no exceedances of the RBRGs industrial land use for heavy metals, TPH, VOCs and SVOCs for all the soil All the boreholes excavated (except for TP1) were samples tested. converted to groundwater wells and groundwater samples were taken for laboratory analysis. All the parameters (including petroleum carbon ranges $(C_6 - C_8 \text{ and } C_9 - C_{16})$, VOCs, SVOCs) analysed were below the relevant detection limits. Petroleum carbon ranges (C17-C35) were detected in groundwater samples collected from AEBH1. However, their concentrations were below the RBRGs for industrial land use as well as the solubility limits. Annex H3 shows the Standard Forms 3.2 and 3.3 of the RBRGs Guidance Manual, the summary tables of the laboratory analysis results and the laboratory testing reports issued by ALS. Quality control samples (2 sets of field blanks, 2 sets of equipment blanks and 6 sets of trip blank) were taken and no evidence of cross contamination was found. Annex H4 shows the details of QA/QC practices and corresponding results.

The sampling locations of the PLCA provided adequate coverage of all the Works Areas identified in this Project. The site investigation and soil/

groundwater sampling of the PLCA were conducted during the period between August 2016 and October 2017 in accordance with the EPD's RBRGs Guidance Note and Practice Guide. In addition, there were no changes of land uses and no significant changes of site operations in the works areas since the completion of PLCA. It is therefore considered that the SI data collected from the PLCA is valid and representative for the land contamination assessment of this Project.

Table 4.6 Summary of Land Contamination Assessment Results during updated PLCA

Sampling	As-built Coordinate of	Drilling	Sampling Depths	No. of Soil	No. of	Testing Paramete	Gs (Y/N)	(/N)			
Locations	the Sampling Locations	Depth (m bbc)	(m bbc)	Samples Collected	Groundwater Samples Collected ^(c)	Heavy Metals (d)	TPH ^(e) VOCs		SVOCs ^(g)	PCBs	Free Cyanide
Works Are	a A: Contractor Village										
TP1	E: 810038.76 N: 825805.98	1.8	0.5, 1.5	2	0	Ν	N	Ν	N	N/A	N/A
Works Are	a B: South of Lagoon No. 1										
AEBH1	E: 809886.08 N: 825745.58	9.6	0.5, 1.5, 3.4-3.85, 5.9	5(a)	1	N	Ν	N	Ν	N/A	N/A
Works Are	a D: Existing Silos A1 and A2	along Sea B	ank Road West								
AEBH2	E: 809376.17 N: 826449.67	7.1	0.5, 1.5	3(b)	1	Ν	N	N	N	N/A	N/A

Notes:

(a) Soil duplicate sample was collected at 1.5m bbc.

(b) Soil duplicate sample was collected at 0.5m bbc.

(c) No signs of non-aqueous liquid phase including stains and abnormal odour were observed during the groundwater sampling events.

(d) Heavy Metals: Antimony, Arsenic, Barium, Cadmium, Cobalt, Copper, Lead, Manganese, Molybdenum, Nickel, Tin, Zinc, Mercury, Chromium (III) and Chromium (VI). For groundwater samples collected, Heavy Metal (Mercury) was tested.

(e) TPH: C₆ - C₈, C₉ - C₁₆ and C₁₇ - C₃₅

(f) VOCs: For soil: Acetone, Benzene, Bromodichloromethane, 2-Butanone, Chloroform, Ethylbenzene, Methyl tert-Butyl Ether, Methylene Chloride, Styrene, Tetrachloroethene, Toluene, Trichloroethene and Xylenes (Total)

(g) SVOCs: For soil: Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Bis-(2ethylhexyl)phthalate, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Fluorene, Hexachlorobenzene, Indeno(1,2,3cd)pyrene, Naphthalene, Phenonl and Pyrene. For groundwater: Acenaphthylene, Acenaphthene, Anthracene, Benzo(b)fluoranthene, Chrysene, Fluorene, Fluorene, Phenonl and Pyrene

N/A - Such chemical parameter was not tested for the sample.

INTRUSIVE SITE INVESTIGATION PLAN

5

5.1 **PROPOSED SAMPLING LOCATIONS, DEPTHS AND PARAMETERS**

Table 5.1 summarises the number of sampling locations conducted and proposed within the Assessment Area. According to the proposed design outlined in the ER report, there will be no redevelopment works within the Works Area C - West Coal Stockyard except the construction of a shallow U channel along the edge of the decommissioned area along the new coal stockyard boundary to collect stormwater runoff from the coal pile. Given that the entire area within Area C has been homogeneously covered by coal and no future uses are planned (i.e. left vacant) in this area, a total of 19 investigation boreholes are proposed to further verify the land condition in the Works Area C - West Coal Stockyard.

Annex G3 shows the location of the borehole locations. With reference to the RBRG Guidance Manual, the RBRGs for industrial land use criteria were adopted for the interpretation of results. The RBRGs for soil and solubility limits are extracted and attached as Annex J.

Sampling Locations Conducted in the 2012 LCA and 2016 - 2017 PLCA	Proposed Sampling Locations to be Conducted		
Sampling Locations	Sampling Locations		
6 ^(a)	-		
2 ^(b)	-		
3 (c)	19 (e)		
1 (d)			
	CV4 and CV5		
	Conducted in the 2012 LCA and 2016 - 2017 PLCA Sampling Locations 6(a) 2(b) 3 (c)		

Table 5.1 **Proposed Sampling Locations for Further Site Investigation**

(b). 2012 LCA: soil sampling at ETP4

- 2016-2017 PLCA: soil and groundwater sampling at AEBH1
- (c). 2012 LCA: soil and groundwater sampling at EBH2, EBH3 and EBH4
- (d). 2016-2017 PLCA: soil and groundwater sampling at AEBH2

(e). Soil and Groundwater sampling at AEBH3 to AEBH21 will be conducted after the clearance of coal stockpile within Works Area C and prior to commencement of the construction of the Project.

Table 5.2 presents the number of sampling locations, their sampling methods, the number of samples, and the parameters that will be analysed. Soil sampling depths were determined based on the anticipated full depth of contamination or as required based on the proposed development, with reference to the potential excavation depths of the proposed construction works and previous ground investigation records at those particular works areas.

Table 5.3 presents the laboratory analytical methods and reporting limits proposed for the further SI (same set of methods and limits were also adopted in the PLCA). Sampling parameters for both soil and groundwater are proposed with reference to chemicals which may be encountered due to potential contaminative activities at power plant as stipulated in EPD's SITE CONSTRAINTS AT PROPOSED SAMPLING LOCATIONS During the PLCA, SI sampling locations proposed in this CAP (AEBH3 to AEBH21) are currently located under the coal stockpile. The SI work could not be undertaken in this area until the coal stockpile is removed due to safety concerns (to avoid the SI being carried out at close proximity to the coal stockpile) and the likelihood of cross contamination (soil samples mixed with the crushed coal during sampling cannot be ruled out). It is therefore proposed that the proposed site investigation will be conducted after the clearance of coal stockpile within Works Area C.

5.3 POTENTIAL DERIVATION FROM THE PROPOSED SAMPLING PLAN

Detailed interpretation of the laboratory analysis results after the completion SI will be incorporated in the CAR. By experience, the exact sampling locations were subjected to fine adjustment due to site-specific conditions/ constraints (e.g. presence of underground utilities, foundations, insufficient headroom, spaces occupied by vehicles, etc) during the actual SI. All these changes in the borehole locations will be reported in the CAR.

CAPCO

5.2

Guidance Note.

Table 5.2 Proposed Sampling and Analysis Plan

Sampling	Coordinate (4)	Drilling Depth and	Justification of the Sampling Locations	5	Soil	Grou	ndwater
Locations ID		Method		Sample Depths (b)	Parameters to be Analysed (c). (d). (c). (f)	Sample Depth	Parameters to be Analysed (d). (e). (e). (g)
Works Area F: <u>V</u>	Vest Coal Stockyard						
AEBH3	E: 809483.40 N: 826508.52	Borehole, 7m bbc	Ground condition verification	Manual excavation of inspection			Heavy Metals (Mercury),
AEBH4	E: 809500.72 N: 826478.55	Borehole, 7m bbc	Ground condition verification	Pit (0-1.5m bbc): - To manually collect disturbed	Ranges, VOCs, SVOCs and free Cvanide	sample at static groundwater level (Groundwater was located	Petroleum Carbon Ranges, VOCs, SVOCs and free Cyanide
AEBH5	E: 809518.04 N: 826448.58	Borehole, 7m bbc	Ground condition verification	samples at 0.5m and 1.5m bbc.		at approximately 4.5 to 5m bbc	vocs, svocs and nee cyanide
AEBH6	E: 809457.16 N: 826493.94	Borehole, 7m bbc	Ground condition verification	•		during previous sampling	
AEBH7	E: 809474.66 N: 826463.71	Borehole, 7m bbc	Ground condition verification	Rotary Drilling of boreholes		exercises at CPPS).	
AEBH8	E: 809492.05 N: 826433.57	Borehole, 7m bbc	Ground condition verification	from: - Continuous drilling and			
AEBH9	E: 809437.44 N: 826473.46	Borehole, 7m bbc	Ground condition verification	retrieving of soil materials for			
AEBH10	E: 809453.56 N: 826445.70	Borehole, 7m bbc	Ground condition verification	visual inspection at every 1m			
AEBH11	E: 809468.41 N: 826419.92	Borehole, 7m bbc	Ground condition verification	from the bottom of inspection pit to 2m below soil-			
AEBH12	E: 809419.41 N: 826450.16	Borehole, 7m bbc	Ground condition verification	groundwater interface for PID			
AEBH13	E: 809432.41 N: 826427.64	Borehole, 7m bbc	Ground condition verification	testing.			
AEBH14	E: 809444.77 N: 826406.27	Borehole, 7m bbc	Ground condition verification	- To collect undisturbed			
AEBH15	E: 809401.40 N: 826426.89	Borehole, 7m bbc	Ground condition verification	samples at 3.0m and 6.0m bbc.			
AEBH16	E: 809421.11 N: 826392.68	Borehole, 7m bbc	Ground condition verification				
AEBH17	E: 809382.17 N: 826403.35	Borehole, 7m bbc	Ground condition verification				
AEBH18	E: 809396.82 N: 826378.73	Borehole, 7m bbc	Ground condition verification				
AEBH19	E: 809360.77 N: 826375.39	Borehole, 7m bbc	Ground condition verification				
AEBH20	E: 809368.28 N: 826362.32	Borehole, 7m bbc	Ground condition verification				
AEBH21	E: 809336.66 N: 826349.99	Borehole, 7m bbc	Ground condition verification				

Notes:

(a) Exact coordinates to be confirmed by contractor after sub-surface utility scanning and will be provided in the CAR.

(b) Sampling depths may be changed if there is presence of rock/big boulders during rotary drilling. Exact sampling locations shall be subject to the instructions of land contamination specialist during supervision.

(c) Heavy Metals: Antimony, Arsenic, Barium, Cadmium, Chromium III, Chromium VI, Cobalt, Copper, Lead, Manganese, Mercury, Molybdenum, Nickel, Tin and Zinc.

(d) Petroleum Carbon Ranges: C6-C8, C9-C16, C17-C35;

(e) VOCs: Acetone, Benzene, Bromodichloromethane, 2- Butanone, Chloroform, Ethylbenzene, Methyl tert-Butyl Ether, Methylene Chloride, Styrene, Tetrachloroethene, Toluene, Trichloroethene, and Xylenes (Total);

(f) SVOCs for Soil: Acenaphthene, Acenphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, bis-(2-Ethylhexyl)phthalate, Chrysene, Dibenzo(a,h)anthracene, Fluorene, Hexachlorobenzene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenol, and Pyrene; and

21

(g) SVOCs for Groundwater: Acenaphthene, Acenphthylene, Anthracene, Benzo(b)fluoranthene, Chrysene, Fluoranthene, Fluorene, Hexachlorobenzene, Naphthalene, Phenanthrene, and Pyrene.

CAPCO

Table 5.3	Laboratory Testing	Methods and	Reporting Limits
-----------	--------------------	-------------	-------------------------

Test Parameter	Sc	pil	Groundwater			
	Method	Reporting Limit (mg/kg)	Method	Reporting Limit (µg/L)		
Metals						
Antimony	USEPA 6020	1	-	Not Analysed		
Arsenic	USEPA 6020	1	-	Not Analysed		
Barium	USEPA 6020	1	~	Not Analysed		
Cadmium	USEPA 6020	0.2	-	Not Analysed		
Chromium III	USEPA 6020	1		Not Analysed		
Chromium VI	USEPA 3060	1		Not Analysed		
Cobalt	USEPA 6020	1	-	Not Analysed		
Copper	USEPA 6020	1	1940 1940	Not Analysed		
Lead	USEPA 6020	1	9 4 2	Not Analysed		
Manganese	USEPA 6020	1		Not Analysed		
Mercury	APHA 3112B	0.05	APHA 3112B	0.5		
Molybdenum	USEPA 6020	1		Not Analysed		
Nickel	USEPA 6020	1	-	Not Analysed		
Tin	USEPA 6020	1	-	Not Analysed		
Zinc	USEPA 6020	1		Not Analysed		
Petroleum Carbon Ranges						
C6-C8	USEPA 8015	5	USEPA 8015	20		
C9-C16	USEPA 8015	200	USEPA 8015	500		
C17-C35	USEPA 8015	500	USEPA 8015	500		
VOCs						
Acetone	USEPA 8260	50	USEPA 8260	500		
Benzene	USEPA 8260	0.2	USEPA 8260	5		
Bromodichloromethane	USEPA 8260	0.10	USEPA 8260	5		
2-Butanone	USEPA 8260	5	USEPA 8260	50		
Chloroform	USEPA 8260	0.04	USEPA 8260	5		
Ethylbenzene	USEPA 8260	0.5	USEPA 8260	5		
Methyl tert-Butyl Ether	USEPA 8260	0.5	USEPA 8260	5		
Methylene chloride	USEPA 8260	0.5	USEPA 8260	50		
Stryene	USEPA 8260	0.5	USEPA 8260	5		
Tetrachloroethene	USEPA 8260	0.04	USEPA 8260	5		
Toluene	USEPA 8260	0.50	USEPA 8260	5		
Trichloroethene	USEPA 8260	0.1	USEPA 8260	5		
Xylenes (Total)	USEPA 8260	1.5	USEPA 8260	15		
SVOCs	USEPA 8270		USEPA 8270			
Acenaphthene	USEPA 8270	0.500	USEPA 8270	2		
Acenaphthylene	USEPA 8270	0.500	USEPA 8270	2		
Anthracene	USEPA 8270	0.500	USEPA 8270	2		
Benzo(a)anthracene	USEPA 8270	0.500		Not Analysed		
Benzo(a)pyrene	USEPA 8270	0.500		Not Analysed		
Benzo(b)fluoranthene	USEPA 8270	0.500	USEPA 8270	1		
Benzo(k)fluoranthene	USEPA 8270	0.500	101 A. 1	Not Analysed		

Environmental Resources Management

CAPCO

Test Parameter	Soil		Groundwater	
	Method	Reporting Limit (mg/kg)	Method	Reporting Limit (µg/L)
Benzo(g,h,i)perylene	USEPA 8270	0.500	-	Not Analysed
Bis-(2-Ethylhexyl)phthalate	USEPA 8270	5.00	-	Not Analysed
Chrysene	USEPA 8270	0.500	USEPA 8270	1
Dibenzo(a,h)anthracene	USEPA 8270	0.500		Not Analysed
Fluoranthene	USEPA 8270	0.500	USEPA 8270	2
Fluorene	USEPA 8270	0.500	USEPA 8270	2
Hexachlorobenzene	USEPA 8270	0.200	USEPA 8270	1
Indeno(1,2,3-cd)pyrene	USEPA 8270	0.500		Not Analysed
Napththalene	USEPA 8270	0.500	USEPA 8270	2
Phenanthrene	USEPA 8270	0.500	USEPA 8270	2
Phenol	USEPA 8270	0.50	-	Not Analysed
Pyrene	USEPA 8270	0.500	USEPA 8270	2
Dioxins/PCBs				
PCBs	USEPA 8270	0.1	USEPA 8270	1
Other Inorganic Compound	ls			
Cyanide, free	APHA 500CN:L	1	APHA 500CN:L	10

5.4 SAMPLING METHODOLOGY

5.4.1 Overview

Borehole drilling has been proposed as the means of sampling to investigate for subsequent determination of presence of soil and groundwater contamination. Soil boring and sampling will be supervised by a land contamination specialist. The soil sampling methodologies are based on methods developed by the US EPA, and adapted to Asian standards of operation and practices, as appropriate. These methods include decontamination procedures, sample collection, preparation and preservation, and chain-of-custody documentation as described in the following sections.

5.4.2 Borehole Drilling

The borehole will be advanced by means of dry rotary drilling method, i.e. without the use of a flushing medium, as far as practicable.

For safety reasons and to inspect for underground utilities, utility scanning will be performed at all proposed borehole locations to ensure clearance of underground structures prior to ground disturbance. In addition, an inspection pit will be excavated down to 1.5m below ground level (bgl) to manually perform underground utility clearance at each of the drillhole locations before drilling commences.

Disturbed soil samples will be collected at the depth of 0.5m and 1.5m below base of existing concrete pavement (m bbc) from the excavation pits. Soil boring using rotary drill rigs will then be performed from 1.5m bbc to a maximum depth of 6m bbc.

1 i. 1

Soil samples will be retrieved at approximately 1m intervals for inspection of geological characters and for visual inspection for potential contamination (such as visual evidence of discolouration, staining, presence of non-aqueous liquid phase and abnormal odour). The soil profile with evidence of contamination (if any) will be recorded in the drilling log. The log will also include the general stratigraphic description, depth of sampling, sample notation, and level of groundwater (where encountered).

Undistributed soil samples will be collected at depths of 3.0m and 6.0m bbc by using U76/U100 core. Where there are suspected signs of contamination, extra samples will be taken for laboratory analysis.

5.4.3 Soil Sampling

The sampling programme will be undertaken with strict adherence to appropriate protocols to minimise the potential for cross-contamination between sampling locations. The following will be implemented while sampling:

- A ceramic spoon shall be used to collect disturbed soil sampling, which will be cleaned between sampling;
- Where possible, a new set of sampling equipment shall be used for each sampling event. If this is not possible then the equipment shall be cleaned with a non-phosphate detergent between each sampling event. Larger equipment such as drilling rigs, drill rods, casings, shall be steam cleaned where possible, or at a minimum pressure jet washed with water from the mains.
- The ceramic sampling spoon, sampling cores and other sampling equipments that come into direct contact with the samples shall be decontaminated first with fresh water and Decon 90 detergent; rinsed with distilled water and air dried prior to the sampling and between samples;
- Clean latex gloves shall be worn during sample collection and changed before each sample is collected to prevent cross contamination;
- The presence of volatile organic compounds (VOCs) from the samples shall be screened by using a Photo-ionisation Detection (PID) meter.
 Where PID readings over 20ppm are recorded or where significant visual or olfactory evidence of contamination is present, further laboratory analysis may be necessary; and
- The thickness of any free product and groundwater if present at locations shall be measured with an interface probe.

5.4.4 Groundwater Sampling

Groundwater samples will be collected if groundwater is encountered in the boreholes. For boreholes, groundwater monitoring wells shall be installed in

24

accordance with the instructions given by the land contamination specialist. *Annex I* presents a schematic drawing of groundwater monitoring well for reference.

After the installation of the monitoring wells, the depth of water table at all monitoring wells shall be measured in order to delineate the local groundwater table contours at the subject site. Well developments (approximately five well volumes) shall be carried out to remove silt and drilling fluid residing from the wells. The wells will then be allowed to stand for a day to permit groundwater conditions to stabilise.

Groundwater levels and thickness of any free product layer, if present, shall be measured at each well before groundwater samples are taken. One groundwater sample shall be collected from each well, using a disposable Teflon bailer.

5.4.5 Sample Size

Prior to sampling, the laboratory responsible for chemical analysis shall be consulted on the particular sample size and preservation procedures that are necessary for each chemical analysis. *Table 6.4* lists the recommended sample container types, sizes and preservation method.

Table 6.4 Summary of Sample Container Type, Sizes and Preservation Method

Test Parameters	Container Type, Size and Preservation Method		
Soil			
Heavy Metals	$1 \ge 250$ ml glass jar with teflon-lined cap		
VOCs / Petroleum Carbon Ranges	1 x 250ml glass jar with teflon-lined cap		
SVOCs	1 x 250ml glass jar with teflon-lined cap		
PCBs	1 x 250ml glass jar with teflon-lined cap		
Free Cyanide	1 x 250ml glass jar with teflon-lined cap		
Groundwater			
Metals (Mercury)	1 x 250ml plastic (no preserve)		
TPH / VOCs / Petroleum Carbon Ranges	2 x 40ml amber glass vials (hydrochloric acid)		
TPH / SVOCs / PCBs	1 x 1,000ml amber glass (no preserve)		
Free Cyanide	1 x 250ml plastic (Sodium Hydroxide)		

5.4.6 Sample Handling and Laboratory Analysis

All samples will be directly collected in laboratory supplied pre-cleaned sample bottles. Chain-of-custody documentation will be initiated immediately after samples are collected. Containers will be labelled in the field with the date, well designation, project name, time of collection and analysis to be performed. If the field work is expected to take several days and soil samples will be kept chilled with ice (at approximately 4°C) on-site and during transport. Samples will be delivered to a Hong Kong Laboratory Accreditation Scheme (HOKLAS) accredited laboratory or an equivalent laboratory approved by the Engineer, for chemical analyses. All analysis shall be conducted according to the test methods accredited by HOKLAS or

CAPCO

one of its Mutual Recognition Arrangement partners, along with laboratory internal Quality Assurance/Quality Control (QA/QC) procedures.

5.4.7 Quality Assurance /Quality Control Samples

QA/QC samples will be collected to allow an assessment of the quality of data collected. The QA/QC samples are listed below.

- At least one field soil duplicate sample and one groundwater duplicate sample will be collected for full suite analysis;
- One field blank per Works Area will be analysed for full suite analysis. The field blank will consist of laboratory supplied de-ionized water stored in the cooler boxes during sample shipment;
- One equipment blank per drilling rig mobilised will be collected and analysed for heavy metals to account for any potential crosscontamination due to drilling equipment. De-ionized water is poured onto decontaminated sampling equipment, and collected in appropriate sampling containers; and
- One trip blank per trip will be analysed for VOCs to account for any potential cross-contamination.

5.4.8 Health and Safety

A site health and safety plan shall be prepared before any site work is performed at the Site. The health and safety plan shall include:

- Instruction of works on work procedures, safe practices, emergency duties, and applicable regulations;
- Regularly scheduled meetings of the workers in which the possible hazards, problems of the job, and related safe practices are emphasized and discussed;
- Good housekeeping practices; and
- Availability of and instruction in the location, use and maintenance of personal protective equipment.

The specific safety measures to be implemented during the site work will depends on the nature and content of contamination, the site conditions and the regulations related to site safety requirements. As a pre-requisite, employee compensation insurance and third party insurance must be obtained for the workers and site work respectively. In general, the site work shall be performed with the following safety measures:

Maintain proper safety devices, barriers to minimize hazards during the site investigation;

- Prohibit smoking and open flames;
- Develop and maintain a written emergency plan applicable to the land contamination site investigation;
- Maintain equipment in good operating condition and have emergency and first aid equipment ready for immediate use, where applicable;
- Conduct equipment tests to ensure that equipment is properly placed and in good operating condition, and that workers are able to respond to emergency situations;
- Require all workers employed or retained by the Contractor, or a subcontractor, to at all time wear clothing suitable for the works, weather and environmental conditions; and
- The personnel are required to wear respirator and gloves for vapour exposure protection, if necessary. Safety helmet and protective boots should be worn.

6 CONCLUSION AND RECOMMENDATIONS

6.1 CONCLUSION

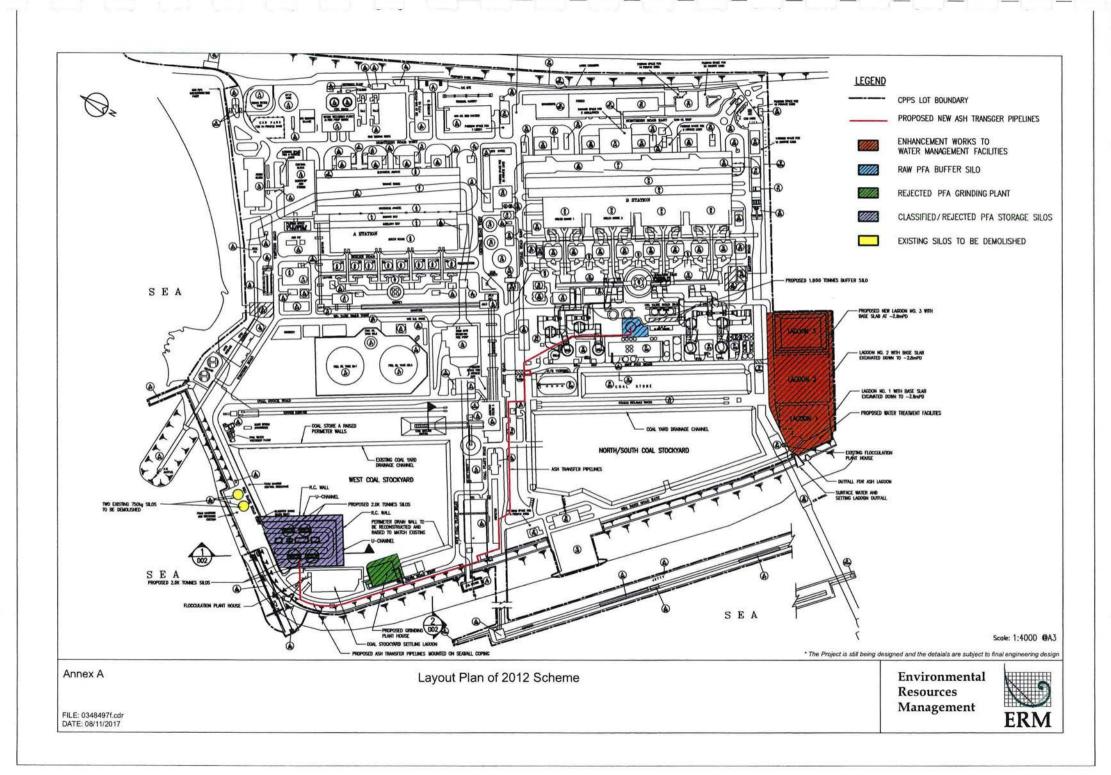
The CAPCO proposes to enhance the ash utilisation and water management facilities at the CPPS. The Project under the 2017 Scheme will involve construction of a new above-ground water tank, a water polishing unit and 2-stage filters to enhance the quality of the water for reuse within the CPPS, and to replace the demolition of 2 existing PFA silos with re-construction of a new silo to maintain sufficient storage capacity of ash.

Four (4) Works Areas (A to D) have been identified for this Project where potential sources of soil and groundwater contamination were identified by site appraisal, including site walkover, review of past land uses by aerial photographs and historical maps, review of historical spillage and leakage records, review of geology and underground soil profile, and review of previous SI records and a pilot land contamination assessment. The need and extent of SI at each works area was also reviewed based on a risk-based approach.

A PLCA was conducted during the period between August 2016 and October 2017 in accordance with EPD's RBRGs Practice Guide and Guidance Note. The site investigation was undertaken at 3 locations (2 boreholes and 1 trial pit) in Works Areas A, B and D. All soil and groundwater samples collected indicate no exceedance in RBRGs for industrial land use.

6.2 THE WAY FORWARD

In order to provide adequate coverage of land contamination assessment within Works Area C, it is proposed to undertake SI with 19 boreholes evenly distributed within the West Coal Stockyard to be decommissioned. As the proposed sampling locations are located at the existing coal stockpile, the SI cannot be conducted at this stage due to safety consideration and the avoidance of cross contamination during sampling. It is therefore recommended that the SI should be carried out once the coal stockpile is removed. The corresponding results will be reported in the CAR.


The CAR will present the findings of the land contamination investigation and establish whether potential exposure pathways exist between the contaminants identified, if any, and potential sensitive receptors during the construction and operation of the Project. The analytical results will be compared against the RBRGs standards.

If the need for site remediation is considered necessary, the CAR will be accompanied by a Remediation Action Plan (RAP), which will be submitted to EPD for agreement. The RAP will examine the proposed remedial options and relevant issues of soil treatment versus disposal, proposed future land uses of potential risks based upon the soil, contamination type and concentrations and any further site investigation required during the execution of the remediation work.

Upon completion of remediation work (if necessary), a Remediation Report (RR) will be prepared and submitted to EPD to demonstrate that the decontamination work is adequate and has been carried out in accordance with the approved CAR and RAP prior to commencement of any proposed construction works. No commencement of development and redevelopment works at the Works Areas of the Project will be carried out before the agreement of RR by EPD.

Annex A1

Layout Plan of the 2012 Scheme

Annex A2

Layout Plan of the 2017 Scheme

ENVIRONMENTAL RESOURCES MANAGEMENT

Annex B

Works Area of the 2017 Scheme

ENVIRONMENTAL RESOURCES MANAGEMENT

B1

Annex C

Selected Site Photographs

ENVIRONMENTAL RESOURCES MANAGEMENT

Photo 1: Contractor Village area is concrete paved.

Photo 3: Temporary construction material storage area for Contractor at South of Lagoon No.1. The area is concrete paved.

Photo 2: Contractor Village area is concrete paved.

Photo 4: Lagoon No. 1

PROJECT: CLP Enhanced Ash Utilisation and W Facilities at Castle Peak Power Station		TITLE: Anr	nex C1							
ERM-Hong Kong, Limited 16/F Berkshire House 25 Westlands Road	0		Selected Site Photographs CLP Castle Peak Power Station B							
Quarry Bay, HK Tel: (852) 2271 3000		DATE:	CHECKED:	PROJECT: 0348497						
Fax: (852) 2723 5660	ERM	DRAWN:	APPROVED:	SCALE:						
ERM This print is confidential and is supplied on the unit as a record to identify or inspect parts, concepts on to other persons or to be used for constructions.	r designs and that it is not disclosed	DRAWING:		size: A4	REV:	0				

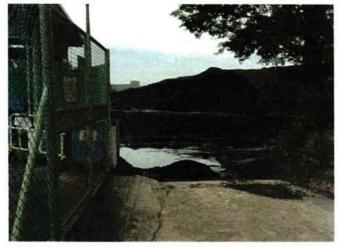


Photo 5: Entrance gate of west coal stockyard. The area is covered with coal pile.

Photo 7: Existing ash silos along sea bank road west and the area is concrete paved.

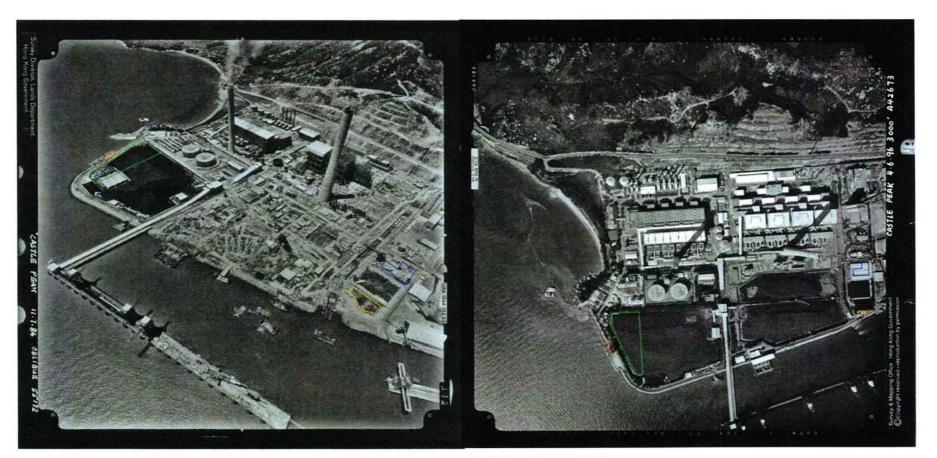
Photo 6: Area next to Lagoon No.1 is concrete paved and stored with construction materials.

Photo 8: Sea bank road west.

PROJECT: CLP Ash Utilization and Wastewater Tr Lagoon	eatment Facility	TITLE: Anr	nex C1			
ERM-Hong Kong, Limited 21/F Lincoln House 979 King's Road Taikoo Place, Quarry Bay, HK	19		d Site Photogi Peak Power Statio			
Tel: (852) 2271 3000		DATE:	CHECKED:	PROJECT: 0129558	3	
Fax: (852) 2723 5660	ERM	DRAWN:	APPROVED:	SCALE:		
© ERM This print is confidential and is supplied on the under as a record to identify or inspect parts, concepts or d to other censons or to be used for construction pumo	esigns and that it is not disclosed	DRAWING:		size: A4	REV:	0

Annex D

Referenced Aerial Photographs


CASTLE PEAK POWER COMPANY LIMITED

Year 1976 (ref: 12380, height: 4,000ft) and prior — The area and its vicinity is still part of the sea prior to reclamation work.

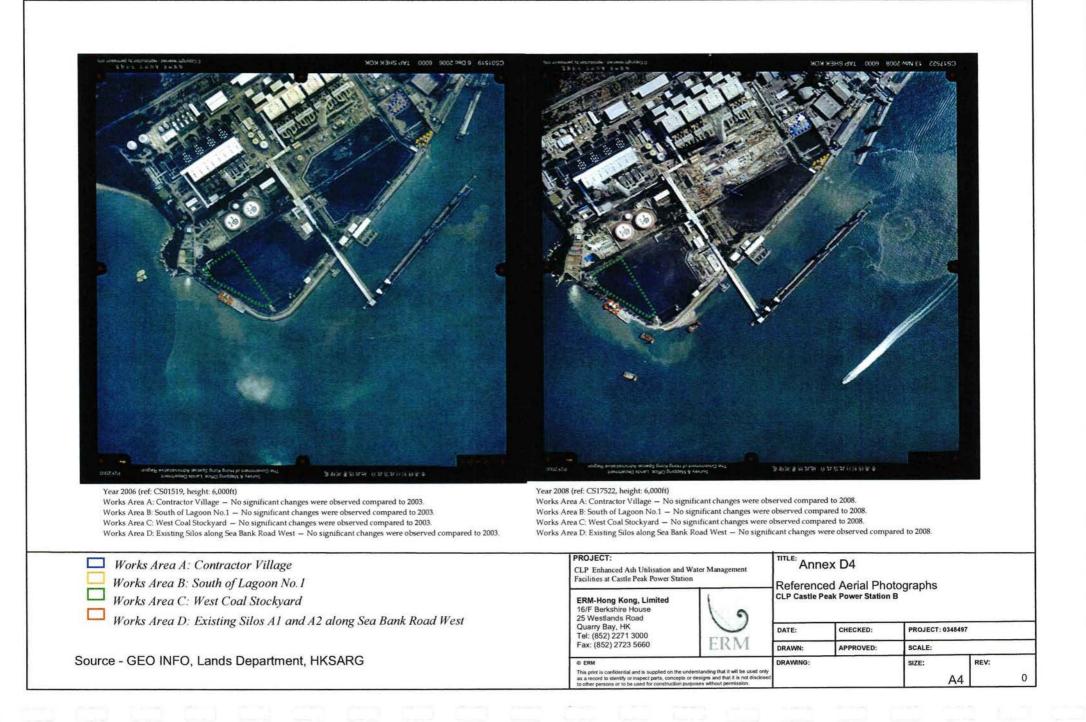
Year 1981 (ref: 38843, height: 4,000ft) — Reclamation is completed and the power plant was under construction. Some temporary structures were observed in the construction site.

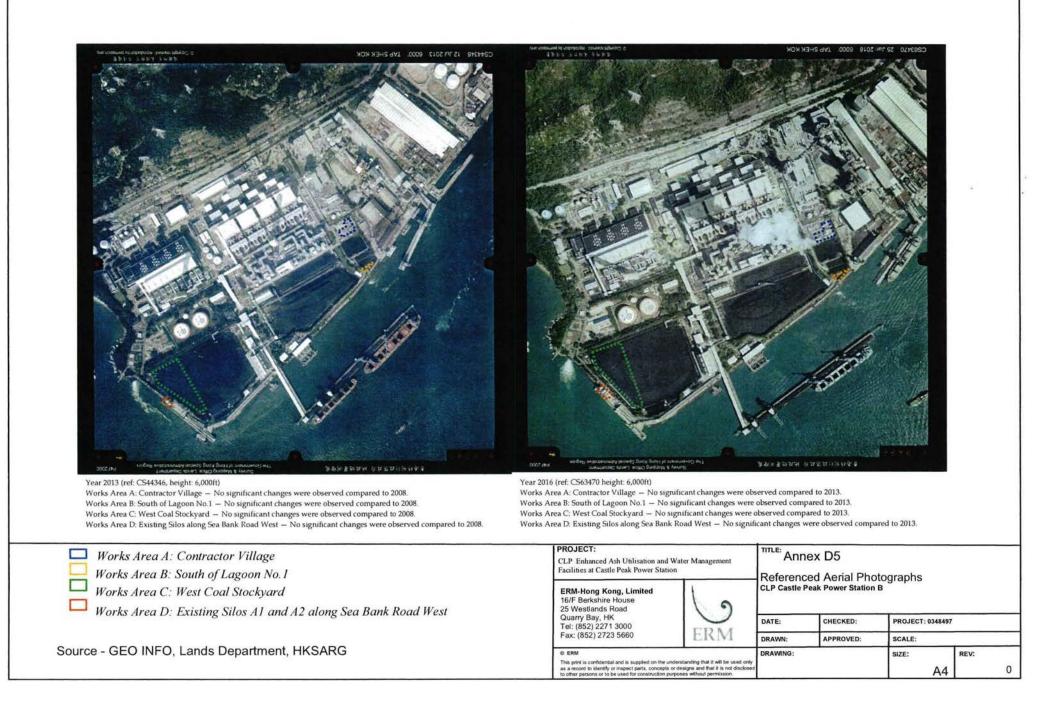
	PROJECT: CLP Enhanced Ash Utilisation and W Facilities at Castle Peak Power Station		Reference	nex D1 ced Aerial Pho	tographs	
Approximate Site Boundary	ERM-Hong Kong, Limited 16/F Berkshire House 25 Westlands Road		CLP Castle			
	Quarry Bay, HK Tel: (852) 2271 3000	\smile	DATE:	CHECKED:	PROJECT: 0348497	
	Fax: (852) 2723 5660	ERM	DRAWN:	APPROVED:	SCALE:	
Source - GEO INFO, Lands Department, HKSARG	© ERM This print is confidential and is supplied on the under as a record to identify or inspect parts, concepts or to other persons or to be used for construction pure to other persons or to be used for construction pure).	lesigns and that it is not disclosed			size: A4	rev: O

Year 1984 (ref: 55172, height: Oblique) Works Area A: Contractor Village — Cars, container office and material storage were observed at this area. Works Area B: South of Lagoon No.1 — This area was under construction. Works Area C: West Coal Stockyard — This area was covered by coal stockpile. Works Area D: Existing Silos along Sea Bank Road West — This area was vacant. Year 1996 (ref: A42673, height: 5,000 ft) Works Area A: Contractor Village — Temporary office buildings were observed. Works Area B: South of Lagoon No.1 — Concrete paved vacant area. Works Area C: West Coal Stockyard — No significant change was observed compared to 1984. Works Area D: Existing Silos along Sea Bank Road West — Two ash silos were established.

Works Area A: Contractor Village

Works Area B: South of Lagoon No.1


Works Area C: West Coal Stockyard


Works Area D: Existing Silos A1 and A2 along Sea Bank Road West

Source - GEO INFO, Lands Department, HKSARG

PROJECT: CLP Enhanced Ash Utilisation and V Facilities at Castle Peak Power Statio		10024013	ex D2 ced Site Photo	oranhs	
ERM-Hong Kong, Limited 16/F Berkshire House 25 Westlands Road Quarry Bay, HK	6		CHECKED:		
Tel: (852) 2271 3000 Fax: (852) 2723 5660	ERM	DRAWN:	APPROVED:	SCALE:	
© ERM This print is confidential and is supplied on the un as a record to identify or inspect parts, concepts o to other persons or to be used for construction put	r designs and that it is not disclosed	DRAWING:		SIZE: A4	REV:

		Kok 16-2003 4000' Cw	
Year 2001 (ref: RW00428, height: 4,000ft) Works Area 8: South of Lagoon No.1 — Small amount of material storage were observed.	RAMMASAA KASSA4A Year 2003 (ref: CS17522, height 4,000ft) Works Area A: Contractor Village – Material storage and container Works Area B: South of Lagoon No.1 – No significant changes were Works Area C: West Coal Stockyard – No significant changes were	observed compared to 2001	P4F2000
Works Area C: West Coal Stockyard – No significant changes were observed compared to 1996. Works Area D: Existing Silos along Sea Bank Road West – No significant changes were observed compared to 1996 Works Area A: Contractor Village Works Area B: South of Lagoon No. 1	Works Area D: Existing Silos along Sea Bank Road West — No signif PROJECT: CLP. Enhanced Ash Utilisation and Water Management Facilities at Castle Peak Power Station	TITLE: Annex D3 Referenced Aerial Pho CLP Castle Peak Power Station	otographs
Works Area C: West Coal Stockyard Works Area D: Existing Silos A1 and A2 along Sea Bank Road West	ERM-Hong Kong, Limited 16/F Berkshine House 25 Westlands Road Quarry Bay, HK Tei: (852) 2271 3000 Fax: (852) 2723 5660 ERM	DATE: CHECKED: DRAWN: APPROVED:	PROJECT: 0348497 SCALE:
Source - GEO INFO, Lands Department, HKSARG	C ERM This print is confidential and is supplied on the understanding that it will be used only as a record to identify or inspect parts, concepts or designs and that it is not disclose to other persons or to be used for construction purposes without permission	dRAWING:	size: Rev: A4 O

Annex E

Chemical Waste Producer Registration, Letter from FSD on Fire Incidents, Chemical Spillage and DG Storage

		· · · · · · · · · · · · · · · · · · ·
10	r ³	Environmental Protection Department 環境保護署 Waste Disposal Ordinance (Chapter 354) 香港法例第354章廢物處置條例 Waste Disposal (Chemical Waste)(General) Regulation 廢物處置(化學廢物)(一般)規例
		Registration of Waste Producer 廢物產生者登記證
To: 致	Chemical Waste Producer 化學廢物產 生者	Full Name (English) 全 名 (英文) CLP Power Hong Kong Limited (Chinese) 中華電力有限公司 I.D. Card No. (If any) (中文) 中華電力有限公司 身份證號碼:(如有者) Business Reg. Cert. No. (if any)
	<i></i>	
	W P N 411 listed below:	年_07_月_11_日根據廢物處置(化學廢物)(一般)規例而來信、申請登記為廢物產生者,茲特配
		Heavy Metal, Urea and Sulphur Hexafluoride Address 地址:
		POON Chun-yu, Benny) for Director of Environmental Protection 環境保護署署長(潘震宇 代行) Date 日期 _3_10_2017
		any registered waste producer who fails to inform the Director of Environmental Protection of any hange in his registration particulars commits an offence and is liable on conviction to a fine of \$10,000.
答 PD		E何已登記的廢物產生者,若其登記資料有任何改變而不知會環境保護署署長,即屬違法,被定罪者最高罰款 基幣10,000元。 (Nov 2012)

消防 處 香港九九尖沙咀束部最莊道1號 消防總部大廈

FIRE SERVICES DEPARTMENT FIRE SERVICES HEADQUARTERS BUILDING, No.1 Hong Chong Road, Tsim Sha Tsui East, Kowloon, Hong Kong.

本處	檔號	OUR REF.	:	(175) in FSD GR 6-5/4 R Pt. 17
來函	檔號	YOUR REF.	:	
電子	郵件	E-mail	:	hkfsdenq@hkfsd.gov.hk
圖文	傳真	FAX NO.	:	2739 5879
電	話	TEL NO.	:	2733 7741

Dear

Land Contamination Assessment at Castle Peak Power Station, 1 Lung Yiu Street, Tuen Mun Request for Information of Dangerous Goods & Incident Records

I refer to your letter of 3.11.2017 regarding the captioned request and reply below in response to your questions:-

According to our record, from the year of 2012 to present moment, dangerous goods licenses have been issued by this department to the subject address, with details as shown in <u>Appendix A</u>. No incident record was found at the aforesaid location with your given conditions.

If you have further questions, please feel free to contact the undersigned.

Yours sincerely,

(KONG Wai²chung) for Director of Fire Services

Appendix

Land Contamination Assessment at Castle Peak Power Station, 1 Lung Yiu Street, Tuen Mun <u>Request for Information of Dangerous Goods & Incident Records</u>

Item	Type of DG	Quantity	Storage Method
1.	Cat. 2	100 Cylinders	G/F
2.	Cat. 5	50,000 L	G/F

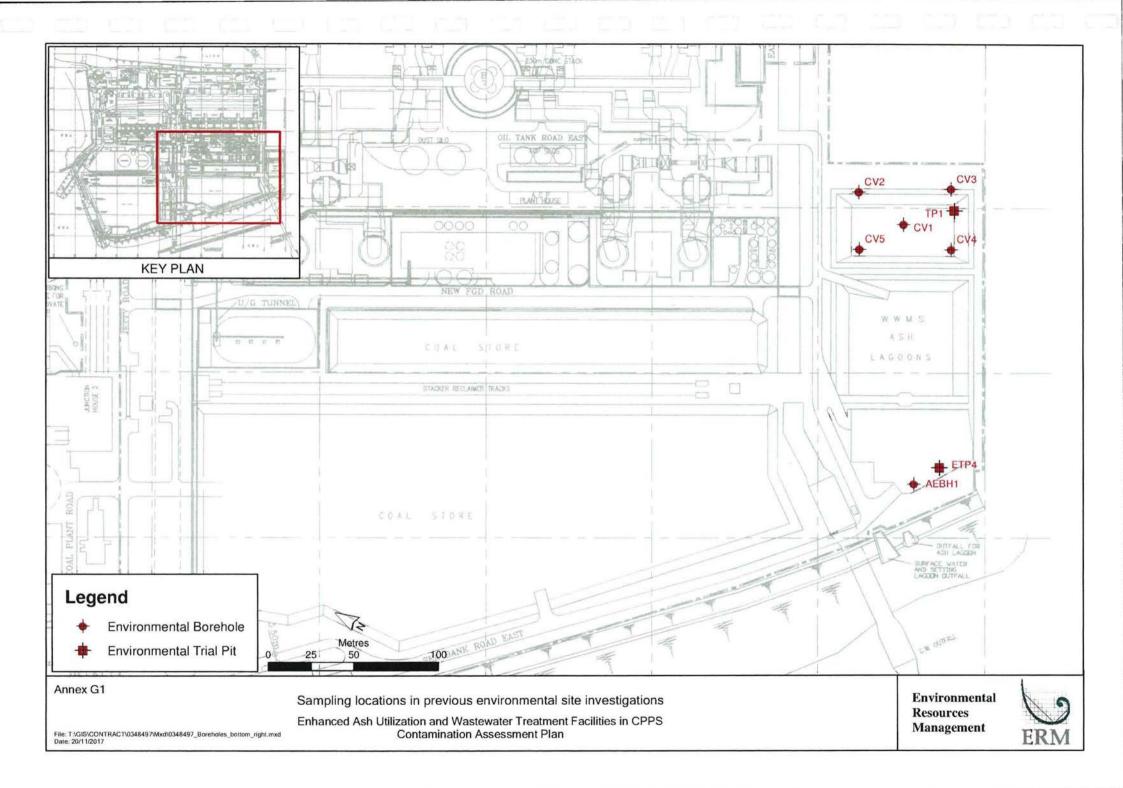
Annex F

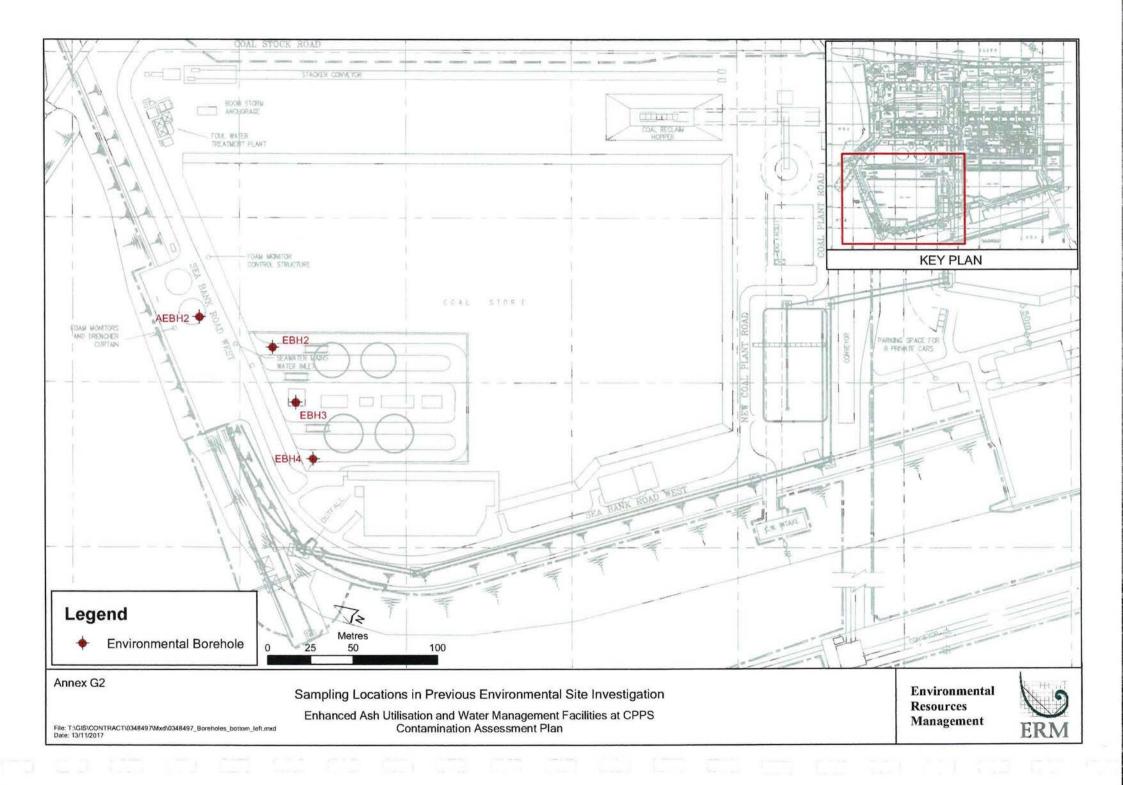
Previous Ground Investigation Borehole Logs

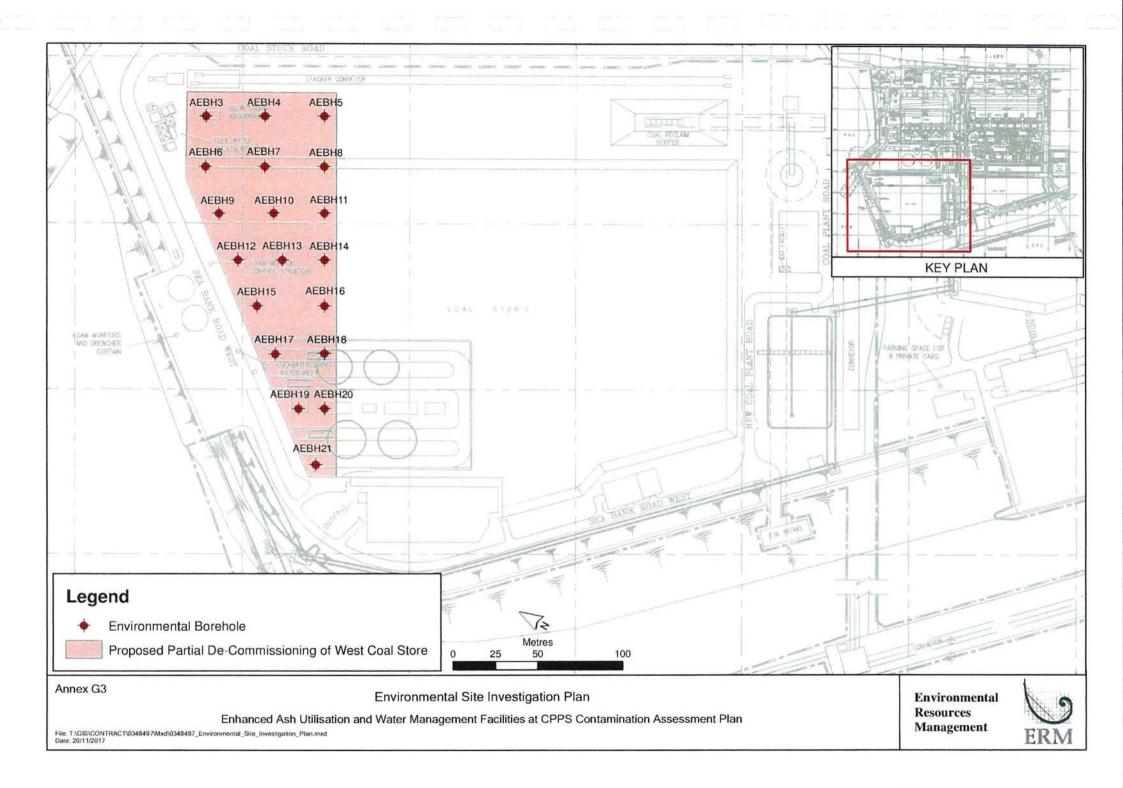
ENVIRONMENTAL RESOURCES MANAGEMENT

Ground Investigation Borehole Log from Emission Control Project

Environmental Resources Management


	a) JECT	m		450	0205	075				LE RI					DRILLHOLE No. DH1 SHEET 1 of 1 ment Survey	
					0295	330	Casu	IE FEAK F				matio				
00.98	HOD	IP+							1 1020	-ORDINAT	ES 24.17			141.002	OJECT No. LG24009/25	
		& No.			vater		D85			N 8261	28.17 N Ve	ertical			TE from 03/12/2005 to 03/12/2005 OUND LEVEL + 5.05 mPD	
Progress	Casing Depth/Size	Water Depth (m)	Water Recovery %	Total Core Recovery %	Solid Core Recovery %	R.Q.D.	Fracture Index	Tests		Samples	e Reduced C Level	o Depth 8 (m)	Legend	Grade	Description	
12/2005	PX						Ħ			ECTON PI		Ē			Brown, very silty fine to coarse SAND with some angular fine to coarse gravel sized strong rock fragments (FILL)	
	0 7000 2001								o ppm			- 0.60			Light grey and brown, angular COBBLE and BOULDER sized up to 0.56m strong rock fragments (FiLL)	
2	267 HX		50	10-10-10-10-10-10-10-10-10-10-10-10-10-1							2 55 10 10	2.50			2.07-2.50m: with steel bar fragments	
120905	53 53 53 53 53 53 53 53 53 53 53 53 53 5										n -1.22	6.27			End of investigation hole at 6.27m	
												10,00				
	nall Disturbed Sample I Packer Test ater Sample Disconster / Standpipe Tip									LOGGED H.		F	EMAI	ection pit excavated to 0.60m depth.		
U7		urbed Sa		1	Pre	ssurer	neter Te				/12/2005	- 3	PID te	st carr	r sampling well installed at 5.00m. fed out at 0.60m depth.	
	00 Undis zier Sam	turbed S	ample	• <u>•</u>			ity Test n Packe	r / Televiewer		CHECKED LS	McGlen	-				


8															PRELIMINARY	
	al	m					D	RILLI	10	LE RE	ECO	RD	l.		DRILLHOLE No. DH2	
	2 - A			150	0005	0.25	Cent	Deak P		Station	ontam	inatio		ASSI	SHEET 1 of 1	
PRO	DJECT	90	No.	450	0295	935	Cast		ower	Station C	ontam	mauv	1733			
MET	THOD	IP+	W+I	RC						-ORDINAT	ES 43.86			14/14/25	DJECT No. LG24009/25	
MAG	CHINE	& No.	Lo	ongy	ear L	.38,	D85		• 1	N 8261	38.36				TE from 01/12/2005 to 02/12/2005	
FLU	SHING	MEDI	UM	N	later				OF	RENTATIO	N Ve	ertical		GR	OUND LEVEL + 5.12 mPD	
Drilling Progress	Casing Depth/Size	Water Depth (m)	Water Recovery %	Total Core Recovery %	Solid Core Recovery %	R.Q.D.	Fracture Index	Tests		Samples	Reduced	e Depth 8 (m)	Legend	Grade	Description	
01/12/2001								PD=20	0 ppm	NSPECTION PIT	50				Greyish brown, very silty fine to coarse SAND (FILL)	
			0	MIL MIL							ж				Light grey and brown, angular COBBLE with some coarse gravel sized moderately strong to strong rock fragments (FILL)	
1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1	4	Dry at 18:00 Dry at 08:00		1 A AN						1 10-10 1 1	1.36	3.32			3.32-3.76m: with some sandy SILT	
			50	ALL AND ALL						TB-10 TB-10 TB-10 TB-10 50 TB-10 50 TB-10	-0.12	5.24			4.52-5.24m: with occasional cobble sized concrete fragments	
	8.77	2.55m at 13.00									-1.65	6.77			End of investigation hole at 6.77m	
								÷				1000				
- Th - 18		nall Disturbed Sample I Packer Test ater Sample Disconter / Standpipe Tip								LOGGED H	.K.Fung	- 12	Inspe	EMARKS Inspection pit excavated to 1.00m depth. Groundwater sampling well installed at 6.00m.		
Ø u	PT Liner	turbed Sa		-	I Pri	essure	meter T				2/12/2005	- 3	 Groundwater sampling well installed at 6.00m. PID test carried out at 0.60m depth. 			
Ø .	1100 Undi Iazier Sar Iiston Sart	nple	Sampl]	[Im	presso		t er / Teloviewo ar Test	r Test	DATE 21	S.McGlen					


PROJEC METHO MACHIN FLUSHI	D IP NE & No	0 No +W+	RC		D70	Cast	RILLI le Peak P	cower CO E	Station ORDIN/	Co ATE 9853	ntami S 3.93 1.57		n Ass	PR	SHEET nent Survey OJECT No.	JECT No. LG24009/25 E from 01/12/2005 to 02/12/2005				
Progress Casing	DepttAge (m)		Total Core Recovery %			Fracture Index	Tests	Samples				8 (m)	Legend	Grade	Wash drilling	Descrip	tion			
/12/2005 H)	BX FX FX<							, pom	╌┋╶╬╌┋╶╬╌┇╶╬╌┇╶╬╌┇╶╬╴┇╶╬╴┇╶╬╸┇╶╋╸┇╶╋╸┇	0.4 5.53 1.10 1.72 2.23 2.23 2.25 2.26 3.24 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23 5.50 2.23		6.80			Light grey and pi BOULDER sized fragments (FILL) End of investigat			•		
Water S SPT Lin U76 Uni U100 Ui	Small Disturbed Sample I Packer Test Water Sample Standard Penetration Test V76 Undisturbed Sample I Pressuremeter / Standpipe Tp U160 Undisturbed Sample I Pressuremeter Test U100 Undisturbed Sample I Pressuremeter Test U100 Undisturbed Sample I Impression Packer / Televiewe Piston Sample I Impression Packer / Televiewe Piston Sample V In-situ Vane Shear Test									12/12 I.S.M	Fung 2/2005	1.	EMAF Groun PID te	dwate	r sampling well instal ried out at 0.90m dep	led at 6.80 th.				

Annex G

Sampling Location Plan

Annex H

Detail of Pilot Land Contamination Assessment

Annex H1

Details of Drilling, Sampling and Decontamination of Equipments

ENVIRONMENTAL RESOURCES MANAGEMENT

BOREHOLE DRILLING AND SOIL SAMPLING

The PLCA was conducted by CAPCO's Geotechnical Contractor, the Gammon Construction Limited (Gammon) in August 2016 and CAPCO's Geotechnical Geotechnical Contractor, the Intrafor Hong Kong Limited (Intrafor) in October 2017.

For safety reasons, inspection pits were excavated manually down to 1.5m bbc, as far as practicable, for underground utility clearance at each of the sampling locations before drilling commenced. Drilling was than advanced continuously from 1.5m bbc by the dry rotary drilling method. Two rotary drilling rigs were mobilised to the Site for the sampling exercise. Water was used as a flushing medium when rock or boulders were encountered during drilling. Soil was retrieved at approximately 1m intervals for inspection for geological characteristics and for visual inspection for potential contamination (such as visual evidence of discolouration, straining, presence of non-aqueous liquid phase or abnormal odour).

For both borehole drilling and trial pit excavation, soil sampling was conducted by ERM site supervision staff on site. Strata logging for boreholes was undertaken by a qualified geologist. The logs include the general stratigraphic description, depth of soil sampling, sample notation and level of groundwater. The presence of rocks/boulders /cobbles and foreign materials such as metals, wood and plastics was also recorded. Gammon also conducted the level survey of each borehole, including as-built coordinate of sampling locations, level of the monitoring well cap (mPD) and ground level of boreholes (mPD). The soil types observed are recorded in the field boring logs (see *Annex H2*).

Two boreholes conducted (namely AEBH1 and AEBH2) were converted into groundwater monitoring wells, using uPVC perforated piping with a machine slotted section (1mm or less slot aperture). The well screens were installed at a minimum of 1m above and 2m below the groundwater level. Well caps were secured to prevent contamination from the surface by filling bentonite and cement to the top of the void.

The monitoring wells were developed by bailing at least 5 times the well volume to remove standing water and allow for replenishment. The static groundwater levels were measured with an electronic groundwater level indicator in each well.

DECONTAMINATION OF EQUIPMENT

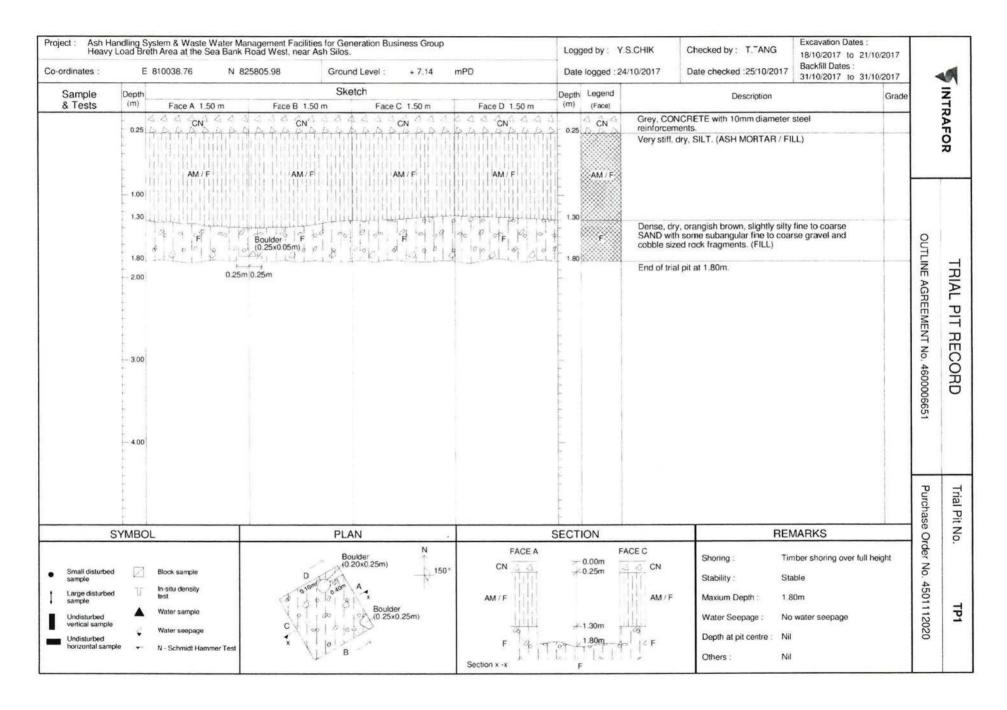
Sampling equipment used during the course of the site investigation was thoroughly decontaminated, to minimise the potential for crosscontamination. All equipment were decontaminated using a non-phosphate soap solution and water, with a distilled water rinse to clean all smaller pieces of equipment, in particular those used to sample materials such as sampling cores, hand excavation and grab samples. This cleaning procedure was repeated after use at each borehole to avoid potential cross contamination between boreholes.

Larger equipment and materials were steam cleaned using mains water, where possible, or at a minimum pressure jet washed with mains water prior to mobilisation to the Site.

During sampling and decontamination activities, disposable latex/nitrile gloves were worn to prevent transfer of contaminants from other sources. Any disposable equipment was disposed as general waste after each use.

Annex H2

Borehole logs from PLCA


ENVIRONMENTAL RESOURCES MANAGEMENT

		Ga		n	m		n	D	RILLH	OLE		RE	EC	ORD		OLE		
_									UTLINE A						SHEET		of	2
PRO	JECT	Out Pow	line /	Agree Prem	ment ises (2	No 4 2014-	60000 2016)5390 2-Year) - Enhanced	Outline Agre	ement f	for Site Vater M	Inves	stigation Works for Existing / Prospective Sites of CL ement Facilities at Castle Peak Power Station					CLP
MET	HOD	Rot	tary					CO-ORDIN	NATES				Pl	JRCHASE ORDER	R No. 450	101975	0	
MAC	HINE	& No.	MS	SK-15					09886.08 25745.58				D	ATE from 17/0	8/2016 to	24/0	08/201	6
FLUS	SHING	MED	IUM	NA	Ą			ORIENTA	TION	Ve	rtical		GROUND LEVEL + 8.30 mPD					
-	-	1		%	%	_				1 1					1			
Progress	Casing depth/size	Water Depth (m)	Water Recovery %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture Index	Tests	Samples	B Reduced	o Depth 8 (m)	Legend	Grade		Description			
/08/2016	PX	08:00								7.90	4	0 D		Reinforced CONC				
5	Dry at								A 0.45 0.50 100 0.95 100 0.95 100 0.95 0.95 0.09 5 0.09 5 0.00 100 0.00 1.00 0.00 0.00 0.00 0.0					Grey, slightly silt some subangular rock and coal fra	y fine to coar fine to medi gments. (FIL	se SANE um grav L)) with el size	d
/08/2016									D 1.85									
08/2016		Dry at 08:00		1					1.90	6.30 6.15	2.00			Grey, light orang subangular coars	ish brown an e GRAVEL ar	d pink, a nd COBB	angula LE size	r to ed
									10157	5.85	2.45			rock, concrete ar 2.15 - 2.45m: In	nd coral fragn sandy silty n	nents. (F natrix.	FILL)	
	PX	Dry																
08/2016 08/2016	3.40 HX	at 18:00 Dry at		190				45 bls	1 3.40	4.90	3.40			Greyish brown, s	lightly silty fi	ne to co	arse S/	AND
		08:00		1/1					2 3.80	4.45	3.85			with some subar sized rock fragm Light grey, orang	ents. (FILL) aish brown an	d pink,	subano	gula
														coarse GRAVEL a fragments. (FILL	ind COBBLE s	ized roc	:k	
									1012									
									5.35									
		Dry		68					T2101									
08/2016 08/2016		at 18:00 Dry at		20					6.00									
		08:00																
									T2IDI									
										0.80	7.50							
				20					7.50	0.60	7.70			7.50 - 7.70m: Bo	ulder.			
									T2101									
				127					9.00									
	HX	6.80m at	F						101 12101									
08/2016 08/2016	9.60	18:00 7.52m at 08:00	ŕ						9.60	-1.30	9.60 🛠			Wash boring, no	sample recov	vered.		
		rbed sam				ater sa	2010 Q.C.C.	ndeine tie	LOGGED W		RE	MAR		it was due to 1 00m	denth			_
] SPI	T liner si			19	↓ Sta	andard	penetra	ndpipe tip ation test	testest you	/08/2016	= 2. P sam	 Inspection pit was dug to 1.90m depth. PVC pipe (dia. 50mm) was installed for collecting groundwater sample. 						
Ul	00 undis	urbed sar sturbed sa	1.	6	-		sorptior lity test	n (Packer) test			and	water	sam	at 0.50m, 2 nos. at ple were sent to the sed as flushing medi	laboratory.			
-	zier sam ton sam				100		Feleviev ne shea	ver Survey Test ar test	DATE 26	/08/2016								

Impression packer test

									_					_				
								р	DI		IOL	C	D	50	ORD	HOLE	No.	
		^ ,						U	nı			C	п	EU		AEB	H1	
		Gā	31	n	m	0	n	C	UT	LINE	AGRE	EME	ENT 46	5000	005390	SHEET 2	of 2	
PRO	DJECT	Out	line ver's	Agree Prem	ment	No 46 2014-	5000 2016	05390 2-Year 6) - Enhanced	Out Ash	tline Ag Utilisa	reemen tion and	t for S Wate	ite Inve er Mana	estiga geme	ation Works for Exist ent Facilities at Castl	ing / Prospective S e Peak Power Stat	Sites of CLP ion	
MET	THOD		tary					CO-ORDIN							URCHASE ORDER			
MAG	CHINE	& No.	MS	SK-15						6.08 5.58				D	ATE from 17/08	/2016 to 24/	/08/2016	
FLU	MACHINE & No. MSK-15 FLUSHING MEDIUM NA							ORIENTATION Vertica				al	GF	ROUND LEVEL	+ 8.30 mF	P		
Drilling Progress	15. 195		Water Recovery %	Total core Recovery %	Solid core Recovery %	R.Q.D.	Fracture Index	Tests	Tests			Samples popper 170 10.00 . Type Depth -1.70 10.00 1.80 10.1				Description		
24/08/2016		7,50m at 12:00									-1.80	E 10.1	10		As sheet 1 of 2. End of hole at 10.	10m depth.		
	mall distur					ater sam		ndpipe tip	1.00	3GED V	V K SIU		REMAR	RKS				
] SF	irge distu ग liner sa	mple			↓ sta	andard p	penetra	ation test	DAT		V K SIU	-						
U U	76 undistu 100 undis				T	ater abs rmeabili		n (Packer) test :		-	TFUNG							
	Mazier sample 🚺 Acoustic Teleview						ver Survey Test				_							

PROJECT Ash Handling System & Waste Wate Heavy Load Breth Area at the Sea B							LHOLE	REC	ORI	C		DRILLHOLE No. AEBH 2			
							GREEMEN	NT No. 40	6000	0665	1	SHEET 1 of 1			
PR	OJECT	Ash H Heavy	andlii Load	ng Sy d Bret	stem & Wa h Area at l	aste Wat the Sea	er Managem Bank Road V	nent Facili Vest, nea	ties fo r Ash	or Gen Silos.	eratio	n Business Group			
METHOD RCG MACHINE & No. ZA017							CO-ORDIN				PUR	CHASE ORDER No. 4501112020			
MA	CHINE	& No. Z	A017				E 809376.17 N 826449.67					E from 13/10/2017 to 17/10/2017			
FLU	JSHING	MEDIU	N V	VATE	R		ORIENTATION Vertical					UND LEVEL + 5.54 mPD			
Drilling Progress						Tests	Samples D To D T		e Depth 8 (m) Legend		Grade	Description			
10/201	17 PX	Dry et 18:00					Tests		1 12 050 1 12 050 2 2 556 100			Light brown, slightly silty fine to coarse SAND with some subangular fine to coarse gravel sized rock fragments. (FILL)			
210/201 510/201	2 <u>28</u> Hx	18:00 Dry at 11:00	53 72				3 7201 124.	220 270	1.50			Light grey, pink and orangish brown, COBBLE with some subangular coarse gravel sized rock and concrete fragments. (FILL)			
5/10/201 7/10/201	7.	Dry at 18:00 Dry at 08:00	63 36 35				198 + 1990 + 1990 + 1990 +	340							
	, <i>1</i> %	5.00m at 15:00	70 50 54 66					4.80 5.50 6.10							
								7.101.56	7.10	~~~***		End of hole at 7.10m.			
l L s	arge distur PT liner sa	Pressuremeter Test				LOGGED Y.S.CHIK 1. Inspe 2. Wate				0 REMARKS 1. Inspection pit excavated to 1.50m. 2. Water sample was taken at 7.10m. 3. Observation well was installed at 7.10m.					
U N	1100 undist Nazier samj	lurbed samp ple		I P	ermeability test acker test npression pack	er test	CHECKED	T.TANG							
	liston samp Vater samp				i-situ vane she: eleviewer test	ar test	DATE	19/10/2017							

Annex H3

Summary of Laboratory Analytical Results

Environmental Resources Management

G3-1 Standard Form 3.2 of the RBRGs Guidance Manual

Parameter	Frequency of Detection (x/y)	Range of Detected Conc.	Range of Method Reporting Limit	Referenced Analytical Method	Relevant Land Use	Lowest RBRGs (mg/kg)	C _{sat} (mg/kg)	Maximum Concentration Exceeds	
		(mg/kg)						RBRGs	Csat
Metals			14 (H						
Antimony	1/10	1 - 2	1	USEPA 6020	Industrial	261	N/A	None	None
Arsenic	7/10	1 - 12	1	USEPA 6020	Industrial	196	N/A	None	None
Barium	10/10	22.3 - 1440	1	USEPA 6020	Industrial	10,000	N/A	None	None
Cadmium	3/10	0.2 - 0.4	0.2	USEPA 6020	Industrial	653	N/A	None	None
Cobalt	10/10	2 - 14	1	USEPA 6020	Industrial	10,000	N/A	None	None
Copper	10/10	5 - 24	1	USEPA 6020	Industrial	10,000	N/A	None	None
Lead	10/10	5 - 370	1	USEPA 6020	Industrial	2,290	N/A	None	None
Manganese	10/10	139 - 940	1	USEPA 6020	Industrial	10,000	N/A	None	None
Molybdenum	8/10	1 – 5	1	USEPA 6020	Industrial	3,260	N/A	None	None
Nickel	10/10	2 - 32	1	USEPA 6020	Industrial	10,000	N/A	None	None
Tin	10/10	1 - 4	1	USEPA 6020	Industrial	10,000	N/A	None	None
Zinc	10/10	20 - 204	1	USEPA 6020	Industrial	10,000	N/A	None	None
Mercury	2/10	0.2 - 0.4	0.2	USEPA 6020	Industrial	38.4	N/A	None	None
Chromium (III)	10/10	5 - 50	1	By calculation(e)	Industrial	10,000	N/A	None	None
Chromium (VI)	1/10	1 - 1.8	1	USEPA 3060	Industrial	1,960	N/A	None	None
Petroleum Carbon R	anges							***********************	
C ₆ - C ₈	0/10	BDL	5	USEPA 8015	Industrial	10,000	1,000	None	None
C9 - C16	0/10	BDL	200	USEPA 8015	Industrial	10,000	3,000	None	None
C ₁₇ - C ₃₅	0/10	BDL	500	USEPA 8015	Industrial	10,000	5,000	None	None
voc									
Various	0/10	BDL	0.04 - 50	USEPA 8260	Industrial	Various	Various	None	None
SVOC			*****						
Various	0/10	BDL	0.200 - 5.00	USEPA 8270	Industrial	Various	Various	None	None

ENVIRONMENTAL RESOURCES MANAGEMENT

CASTLE PEAK POWER COMPANY LIMITED

Parameter	Frequency of	Range of	Range of Method	Referenced Analytical	Relevant Land	Lowest RBRGs C _{sat} (mg/kg)	Maximum Concentration
3 <u></u>	Detection (x/y)	Detected Conc.	Reporting Limit	Method	Use	(mg/kg)	Exceeds

Notes:

(b) RBRGs for Soil for the industrial land use was used for this Project

(c) VOCs: Acetone, Benzene, Bromodichloromethane, 2-Butanone, Chloroform, Ethylbenzene, Methyl tert-Butyl Ether, Methylene Chloride, Styrene, Tetrachloroethene, Toluene, Trichloroethene and Xylenes (Total)

(d) SVOCs: Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Bis-(2- ethylhexyl)phthalate, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, Hexachlorobenzene, Indeno(1,2,3cd)pyrene, Naphthalene, Phenol and Pyrene

(e) Concentration of Chromium (III) = Concentration of Total Chromium - Concentration of Chromium (VI) according to the laboratory.

N/A - Not Applicable (no C_{sat} limits were available for these parameters)

BDL - Below Detection Limit

Various - Various RBRGs for Soil and Csat for individual compound

⁽a) x = number of samples above laboratory reporting limit; y = number of samples analysed

G3-2 THE SUMMARY OF THE LABORATORY ANALYTICAL RESULTS WITH REFERENCE TO THE RBRGS SOIL AND SATURATION LIMITS (SAMPLES COLLECTED IN WORK AREA A)

Parameters	RBRGs Limit	Soil Saturation Limit (C _{sat})	LOR (mg/kg)	AEBH1- 0.5M	AEBH1- 1.5M ^{(d}	AEBH1-3.4- 3.85M	AEBH1- 5.9M	AEBH2- 0.5M ^(d)	AEBH2- 1.5M	TP1-0.5M	TP1-1.5M
	(mg/kg) ^(c)	(mg/kg)	(8/8/	0.5m	1.5m HK1633725	3.4-3.85m HK1634036	5.9m HK1634036	0.5m HK1771166	1.5m	0.5m HK1772073	1.5m HK1772073
% Moisture Content	NA	NA	0.1%	16.8	20.0	9.1	12.0	8.5	9.6	29.5	13.7
Metals											
Antimony	261	NA	1	BDL	BDL	BDL	BDL	BDL	BDL	2	BDL
Arsenic	196	NA	1	2	4	BDL	BDL	1	1	12	6
Barium	10,000	NA	1	427	560	124	22.3	41	35	1440	290
Cadmium	653	NA	0.2	BDL	BDL	0.2	BDL	BDL	BDL	0.4	0.2
Cobalt	10,000	NA	1	14	10	14	3	3	4	5	11
Copper	10,000	NA	1	22	24	17	6	7	5	22	13
Lead	2,290	NA	1	5	12	121	370	92	78	11	36
Manganese	10,000	NA	1	257	241	940	521	548	376	139	275
Molybdenum	3,260	NA	1	1	2	BDL	BDL	1	1	5	4
Nickel	10,000	NA	1	32	23	28	2	3	2	8	21
Tin	10,000	NA	1	1	2	3	4	1	1	3	4
Zinc	10,000	NA	1	20	36	204	21	24	24	32	45
Mercury	38.4	NA	0.2	BDL	BDL	BDL	BDL	BDL	BDL	0.17	0.18
Trivalent Chromium	10,000	NA	1	23	20	50	6	7	6	28.5	34.2
Hexavalent Chromium	1,960	NA	1	BDL	BDL	BDL	BDL	BDL	BDL	1.8	BDL
Petroleum Carbon Ranges			******								
C_6-C_8	10,000	1,000	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C9-C16	10,000	3,000	200	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
C ₁₇ -C ₃₅	10,000	5,000	500	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
VOCs (a)											
Various	Various	Various	Various	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SVOCs (b)											
Naphthalene	453	125	0.5	BDL	BDL	BDL	BDL	BDL	0.588	BDL	BDL
Phenol	10,000	7,260	0.5	BDL	BDL	BDL	BDL	BDL	0.76	BDL	BDL
Various	Various	Various	Various	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Notes:

- (a) VOCs Volatile Organic Chemicals including the following parameters: Benzene, Toluene, Ethylbenzene, Styrene, Xylenes (Total), Acetone, 2-Butanone, Methylene chloride, Trichloroethene, Tetrachloroethene, Chloroform, Bromodichloromethane, and Methyl tert-Butyl Ether.
- (b) SVOCs Semi Volatile Organic Chemicals including the following parameters: Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h,i)perylene, Bis-(2-Ethylhexyl)phthalate, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Hexachlorobenzene, Indeno(1,2,3-cd)pyrene, Napththalene, Phenanthrene, Phenol, Pyrene
- (c) RBRGs Soil and Saturation Limits for Industrial Land Use were used for comparisons of results in this Project.
- (d) A duplicate sample was taken from this location; the higher of the two results is reported in this table.
- NA no respective RBRGs/Solubility Limits available for these chemicals.
- LOR Limit of Reporting indicates the detection limits of the analytical results.
- BDL Below Detection Limit indicates the concentration is lower than the limit of reporting.

Bold results - Samples with contaminant concentrations exceeding RBRG/Soil saturation limit.

G3-3 THE SUMMARY OF THE LABORATORY ANALYTICAL RESULTS WITH REFERENCE TO THE RBRGS GROUNDWATER AND SOLUBILITY LIMITS

Parameters	RBRG Limit (µg/L) ^(c)	Solubility Limit (µg/L) (c)	LOR (µg/L)	AEBH1 HK1634542	AEBH2 HK1772442					
Metals										
Mercury	6,790	N/A	0.5	-	2	-	-	2		
Petroleum Carbo	on Ranges	***************************************						***************************************		
C6-C8	1,150,000	5,230	20	BDL	BDL					
C9-C16	9,980,000	2,800	500	BDL	BDL					
C17-C35	178,000	2,800	500	1,700	BDL					
OCs (a)				*******					 ***************************************	
Various	Various	Various	Various	BDL	BDL					
SVOCs (b)										
Various	Various	Various	Various	BDL	BDL					
A										

Notes:

(a) VOCs - Volatile Organic Chemicals including the following parameters: Benzene, Toluene, Ethylbenzene, Styrene, Xylenes (Total), Acetone, 2-Butanone, Methylene chloride, Trichloroethene, Tetrachloroethene, Chloroform, Bromodichloromethane, and Methyl tert-Butyl Ether.

(b) SVOCs - Semi Volatile Organic Chemicals including the following parameters: Acenaphthene, Acenaphthylene, Anthracene, Benzo(b)fluoranthene, Fluoranthene, Fluorene, Hexachlorobenzene, Napththalene, Phenanthrene, Pyrene

(c) RBRGs Groundwater and Solubility Limits for Industrial Land Use were used for comparisons of results in this project.

LOR - Limit of Reporting indicates the detection limits of the analytical results.

BDL - Below Detection Limit indicates the concentration is lower than the limit of reporting.

Bold results - Samples with contaminant concentrations exceeding RBRG/ Solubility limit.

Various-Various RBRGs and Solubility Limits for individual compound.

Report No: HK1633725

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client	: GAMMON CONSTRUCTION LTD	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 11
Contact	: MR FRANKIE SIU	Contact	: Fung Lim Chee, Richard	Work Order	HK1633725
Idress	: M/F GAMMON TECHNOLOGY PARK,	Address	I1/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	21 CHUN WANG STREET,		Yip Street, Kwai Chung, N.T., Hong Kong		
	TKO INDUSTRIAL ESTATE,				
	TSEUNG KWAN O, N. T. HONG KONG				
-mail	: frankie.siu@gammonconstruction.com	E-mail	: Richard.Fung@alsglobal.com		
elephone	: +852 3191 5237	Telephone	: +852 2610 1044		
acsimile	: +852 2564 6758	Facsimile	: +852 2610 2021		
roject	ENHANCED ASH UTILISATION AND WATER	Quote number	:	Date Samples Received	: 17-AUG-2016
	MANAGEMENT FACILITIES AT CASTLE PEAK				
	POWER STATION				
order number	: 4501019750			Issue Date	: 05-SEP-2016
C-O-C number	: H031821			No. of samples received	: 4
lite	:			No. of samples analysed	: 4

OFOTIFICATE OF ANAL VOID

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Chan Ka Yu, Karen	Manager - Organics	Organics	
Wong Wing, Kenneth	Manager - Metals	Inorganics	

ALS Technichem (HK) Pty Ltd Petoline ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is: 17-AUG-2016 to 05-SEP-2016.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1633725

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on an as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.

Page Number : 3 of 11 Client : GAMMON CONSTRUCTION LTD HK1633725

Work Order

Analytical Results			0.000				
Sub-Matrix: SOIL			Client sample ID npling date / time	AEBH1 - 0.5M [17-AUG-2016]	AEBH1 - 1.5M [17-AUG-2016]	AEBH1 - 1.5M - DUP [17-AUG-2016]	
Compound	CAS Number	LOR	Unit	HK1633725-001	HK1633725-002	HK1633725-003	
EA/ED: Physical and Aggregate Properties							
EA055: Moisture Content (dried @		0.1	%	16.8	20.0	17.8	
103°C)							
EG: Metals and Major Cations							
EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	<1	
EG020: Arsenic	7440-38-2	1	mg/kg	2	4	2	
EG020: Barium	7440-39-3	1	mg/kg	427	560	506	
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	<0.2	
EG020: Cobalt	7440-48-4	1	mg/kg	14	10	10	
EG020: Copper	7440-50-8	1	mg/kg	22	24	18	
EG020: Lead	7439-92-1	1	mg/kg	5	12	10	
EG020: Manganese	7439-96-5	1	mg/kg	257	241	224	
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	<0.05	
EG020: Molybdenum	7439-98-7	1	mg/kg	1	2	1	
EG020: Nickel	7440-02-0	1	mg/kg	32	22	23	
EG020: Tin	7440-31-5	1	mg/kg	1	2	2	
EG020: Zinc	7440-66-6	1	mg/kg	20	30	36	
EG049: Trivalent Chromium	16065-83-1	1	mg/kg	23	20	19	
EG3060: Hexavalent Chromium	18540-29-9	1	mg/kg	<1	<1	<1	
EP-076HK: Polycyclic Aromatic Hydrocarbons (I	PAHs)						
Naphthalene	91-20-3	0.500	mg/kg	<0.500	<0.500	<0.500	
Acenaphthylene	208-96-8	0.500	mg/kg	<0.500	<0.500	<0.500	
Acenaphthene	83-32-9	0.500	mg/kg	<0.500	<0.500	<0.500	
Fluorene	86-73-7	0.500	mg/kg	<0.500	<0.500	<0.500	
Phenanthrene	85-01-8	0.500	mg/kg	<0.500	<0.500	<0.500	
Anthracene	120-12-7	0.500	mg/kg	<0.500	<0.500	<0.500	
Fluoranthene	206-44-0	0.500	mg/kg	<0.500	<0.500	<0.500	
Pyrene	129-00-0	0.500	mg/kg	<0.500	<0.500	<0.500	
Benz(a)anthracene	56-55-3	0.500	mg/kg	<0.500	<0.500	<0.500	
Chrysene	218-01-9	0.500	mg/kg	<0.500	<0.500	<0.500	
Benzo(b)fluoranthene	205-99-2	0.500	mg/kg	<0.500	<0.500	<0.500	
Benzo(k)fluoranthene	207-08-9	0.500	mg/kg	<0.500	<0.500	<0.500	
Benzo(a)pyrene	50-32-8	0.500	mg/kg	<0.500	<0.500	<0.500	
Indeno(1.2.3.cd)pyrene	193-39-5	0.500	mg/kg	<0.500	<0.500	<0.500	
Dibenz(a.h)anthracene	53-70-3	0.500	mg/kg	<0.500	<0.500	<0.500	
Benzo(g.h.i)perylene	191-24-2	0.500	mg/kg	<0.500	<0.500	<0.500	
EP-076HK: Phenol, Hexachlorobenzene and Bis	(2-ethylhexyl) Phi	thalate					
Phenol	108-95-2	0.50	mg/kg	<0.50	<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.200	mg/kg	<0.200	<0.200	<0.200	
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg	<5.00	<5.00	<5.00	

0 0 0 0

Page Number: 4 of 11Client: GAMMON CONSTRUCTION LTDWork OrderHK1633725

Sub-Matrix: SOIL			Client sample ID	AEBH1 - 0.5M	AEBH1 - 1.5M	AEBH1 - 1.5M - DUP	
		Client sa	mpling date / time	[17-AUG-2016]	[17-AUG-2016]	[17-AUG-2016]	
Compound	CAS Number	LOR	Unit	HK1633725-001	HK1633725-002	HK1633725-003	
EP-071HK_SR: Total Petroleum Hydrocarbo	ons (TPH)						
C6 - C8 Fraction		5	mg/kg	<5	<5	<5	
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	
C17 - C35 Fraction		500	mg/kg	<500	<500	<500	
EP-074_SR-A: Monocyclic Aromatic Hydroc	arbons (MAH)						
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	<1.0	
Styrene	106-42-3 100-42-5	0.5	mg/kg	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	
Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	<2.0	
				-2.0	-2.0	-2.0	
EP-074_SR-B: Oxygenated Compounds 2-Propanone (Acetone)	67-64-1	50	mg/kg	<50	<50	<50	
2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5	<5	
				-5	-5		
EP-074_SR-E: Halogenated Aliphatics Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	<0.5	
Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.5	<0.1	
Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	<0.04	
				-0.04	40.04	-0.04	
EP-074_SR-G: Trihalomethanes (THM) Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	<0.04	
Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1	<0.1	
	15-21-4	0.1	ing ng	40.1	×0.1	-0.1	
EP-074_SR-I: Methyl-tert-butyl Ether	1634-04-4	0.5	mg/kg			-0.5	
Methyl tert-Butyl Ether (MTBE)			ngky	<0.5	<0.5	<0.5	
EP-076S: Polycyclic Aromatics Hydrocarbo							
2-Fluorobiphenyl	321-60-8	0.1	%	51.7	58.0	67.7	
4-Terphenyl-d14	1718-51-0	0.1	%	77.6	54.1	61.2	
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			22				
Dibromofluoromethane	1868-53-7	0.1	%	96.6	97.1	95.6	
Toluene-D8	2037-26-5	0.1	%	99.1	99.4	97.6	
4-Bromofluorobenzene	460-00-4	0.1	%	96.9	98.8	98.0	
EP-074_SR-S: VOC Surrogates		2.2	12			- Design of the second se	
Dibromofluoromethane	1868-53-7	0.1	%	96.6	97.1	95.6	
Toluene-D8	2037-26-5	0.1	%	99.1	99.4	97.6	
4-Bromofluorobenzene	460-00-4	0.1	%	96.9	98.8	98.0	

-

Page Number	: 5 of 11
Client	: GAMMON CONSTRUCTION LTD
Work Order	HK1633725

Work Order _

Sub-Matrix: WATER			Client sample ID	TRIP BLANK	
		Client sar	mpling date / time	[17-AUG-2016]	
Compound	CAS Number	LOR	Unit	HK1633725-004	
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons	(MAH)				
Benzene	71-43-2	5.0	µg/L	<5.0	
Toluene	108-88-3	5.0	µg/L	<5.0	
Ethylbenzene	100-41-4	5.0	µg/L	<5.0	
meta- & para-Xylene	108-38-3 106-42-3	10	µ9/L	<10	
Styrene	100-42-5	5.0	µg/L	<5.0	
ortho-Xylene	95-47-6	5.0	µg/L	<5.0	
Xylenes (Total)		20	µg/L	<20	
EP-074_SR-B: Oxygenated Compounds					
2-Propanone (Acetone)	67-64-1	500	µg/L	<500	
2-Butanone (MEK)	78-93-3	50	µg/L	<50	
EP-074_SR-E: Halogenated Aliphatics					
Methylene chloride	75-09-2	50	µg/L	<50	
Trichloroethene	79-01-6	5.0	µg/L	<5.0	
Tetrachloroethene	127-18-4	5.0	µg/L	<5.0	
EP-074_SR-G: Trihalomethanes (THM)					
Chloroform	67-66-3	5.0	µg/L	<5.0	
Bromodichloromethane	75-27-4	5.0	µg/L	<5.0	
EP-074_SR-I: Methyl-tert-butyl Ether					
Methyl tert-Butyl Ether (MTBE)	1634-04-4	5.0	µg/L	<5.0	
EP-074_SR-S: VOC Surrogates					
Dibromofluoromethane	1868-53-7	0.1	%	99.2	
Toluene-D8	2037-26-5	0.1	%	99.5	
4-Bromofluorobenzene	460-00-4	0.1	%	99.2	

1277

Laboratory Duplicate (DUP) Report

tatrix: SOIL						Laboratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical ar	nd Aggregate Properties	(QC Lot: 4285524)						
HK1633725-001	AEBH1 - 0.5M	EA055: Moisture Content (dried @ 103°C)		0.1	%	16.8	17.1	2.0
HK1634114-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	47.0	47.2	0.4
EG: Metals and Ma	jor Cations (QC Lot: 42	84009)						
HK1633725-002	AEBH1 - 1.5M	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.0
		EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	0.0
		EG020: Arsenic	7440-38-2	1	mg/kg	4	3	0.0
		EG020: Barium	7440-39-3	1	mg/kg	560	579	3.2
		EG020: Cobalt	7440-48-4	1	mg/kg	10	10	0.0
		EG020: Copper	7440-50-8	1	mg/kg	24	20	19.6
		EG020: Lead	7439-92-1	1	mg/kg	12	12	0.0

Page Number: 6 of 11Client: GAMMON CONSTRUCTION LTDWork OrderHK1633725

-

-

atrix: SOIL						Laboratory Duplicate (DUP) Re	aport	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
G: Metals and Ma	jor Cations (QC Lot: 4284009)	- Continued						
HK1633725-002	AEBH1 - 1.5M	EG020: Manganese	7439-96-5	1	mg/kg	241	271	11.5
		EG020: Molybdenum	7439-98-7	1	mg/kg	2	2	0.0
		EG020: Nickel	7440-02-0	1	mg/kg	22	24	6.6
		EG020: Tin	7440-31-5	1	mg/kg	2	2	0.0
		EG020: Zinc	7440-66-6	1	mg/kg	30	29	0.0
EG: Metals and Ma	jor Cations (QC Lot: 4284012							
HK1633725-002	AEBH1 - 1.5M	EG3060: Hexavalent Chromium	18540-29-9	1	mg/kg	<1	<1	0.0
P-076HK: Polycy	clic Aromatic Hydrocarbons (F							
HK1633387-014	Anonymous	Fluoranthene	206-44-0	150	µg/kg	492	503	2.2
	in a second s	Pyrene	129-00-0	150	µg/kg	616	636	3.2
		Benz(a)anthracene	56-55-3	150	µg/kg	344	370	7.1
		Chrysene	218-01-9	150	µg/kg	373	400	7.0
		Benzo(b)fluoranthene	205-99-2	150	µg/kg	434	516	17.2
		Benzo(k)fluoranthene	207-08-9	150	µg/kg	181	217	18.2
		Benzo(a)pyrene	50-32-8	150	µg/kg	463	510	9.6
		Indeno(1.2.3.cd)pyrene	193-39-5	150	µg/kg	286	317	10.4
		Dibenz(a.h)anthracene	53-70-3	150	µg/kg	<150	<150	0.0
		Benzo(g.h.i)perylene	191-24-2	150	µg/kg	302	322	6.4
		Naphthalene	91-20-3	50	µg/kg	<50	<50	0.0
		Acenaphthylene	208-96-8	50	µg/kg	80	84	5.5
		Acenaphthene	83-32-9	50	µg/kg	<50	<50	0.0
		Fluorene	86-73-7	50	µg/kg	<50	<50	0.0
		Phenanthrene	85-01-8	50	µg/kg	108	91	17.6
		Anthracene	120-12-7	50	µg/kg	74	80	7.0
P-076HK Phenol	Hexachlorobenzene and Bis	2-ethylhexyl) Phthalate (QC Lot: 4281599)			10.0			
HK1633387-014	Anonymous	Bis(2-ethylhexyl)phthalate	117-81-7	1000	µg/kg	1720	1840	6.6
		Hexachlorobenzene (HCB)	118-74-1	50	µg/kg	<50	<50	0.0
		Phenol	108-95-2	500	µg/kg	<500	<500	0.0
DATILK SD. Tel	al Datroloum Hudroactions (7		100 00 2		P9/19			
HK1632343-001	tal Petroleum Hydrocarbons (1 Anonymous			5	mg/kg	<5	<5	0.0
	1 ANN U. C	C6 - C8 Fraction		5	iliging	-5	-5	0.0
승규는 것이 있는 것이 같은 것이 많이	tal Petroleum Hydrocarbons (1					-000	-200	0.0
HK1633725-001	AEBH1 - 0.5M	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		500	mg/kg	<500	<500	0.0
	nocyclic Aromatic Hydrocarbo							
HK1633725-001	AEBH1 - 0.5M	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
		Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0

•

- -

Page Number: 7 of 11Client: GAMMON CONSTRUCTION LTDWork OrderHK1633725

_

latrix: SOIL						Laboratory Duplicate (DUP) Re	aport	
Laboratory sample ID	Client sample ID	Method; Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EP-074_SR-A: Mon	ocyclic Aromatic Hydro	carbons (MAH) (QC Lot: 4281875) - Continued						
HK1633725-001	AEBH1 - 0.5M	meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
		a na balana ana ana ana ana ana ana ana ana an	106-42-3					
		Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	0.0
EP-074_SR-B: Oxy	genated Compounds (C	QC Lot: 4281875)						
HK1633725-001	AEBH1 - 0.5M	2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5	0.0
		2-Propanone (Acetone)	67-64-1	50	mg/kg	<50	<50	0.0
EP-074_SR-E: Halo	genated Aliphatics (QC	C Lot: 4281875)						
HK1633725-001	AEBH1 - 0.5M	Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	0.0
		Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1	0.0
		Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	0.0
EP-074_SR-G: Trih	alomethanes (THM) (QC	C Lot: 4281875)						
HK1633725-001	AEBH1 - 0.5M	Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	0.0
		Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1	0.0
EP-074_SR-I: Meth	yl-tert-butyl Ether (QC I	Lot: 4281875)						
HK1633725-001	AEBH1 - 0.5M	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	mg/kg	<0.5	<0.5	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike Ree	covery (%)	Recovery	Limits (%)	R	PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EG: Metals and Major Cations (QC Los	t: 4284009)											
EG020: Antimony	7440-36-0	1	mg/kg	<1	5 mg/kg	83.6	10000	75	111	****		
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	87.3		75	111			
EG020: Barium	7440-39-3	1	mg/kg	<1	5 mg/kg	95.3		79	111			
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	101		80	108			
EG020: Cobalt	7440-48-4	1	mg/kg	<1	5 mg/kg	83.7		74	108			
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	91.0		79	109			
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	97.0		81	107			
EG020: Manganese	7439-96-5	1	mg/kg	<1	5 mg/kg	86.0		74	116			
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	85.8		74	114			
EG020: Molybdenum	7439-98-7	1	mg/kg	<1	5 mg/kg	87.1		78	104			
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	81.8		74	106			
EG020: Tin	7440-31-5	1	mg/kg	<1	5 mg/kg	87.2		79	109			
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	103		76	118			
EG: Metals and Major Cations (QC Lo	t: 4284012)											
EG3060: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	2.5 mg/kg	96.0		92	122			
EP-076HK: Polycyclic Aromatic Hydro	carbons (PAHs) (QC Lo	t: 4281599)										
Naphthalene	91-20-3	25	µg/kg	<50	500 µg/kg	77.2	(56	118			
Acenaphthylene	208-96-8	25	µg/kg	<50	500 µg/kg	74.7		42	110			
Acenaphthene	83-32-9	25	µg/kg	<50	500 µg/kg	72.1		54	116			

Page Number : 8 of 11 Client : GAMMON CONSTRUCTION LTD Work Order HK1633725

Matrix: SOIL			Method Blank (MB) F	report		Laboratory Con	trol Spike (LCS) and La	boratory Control S	oike Duplicate (DC	S) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-076HK: Polycyclic Aromatic Hydrocar	bons (PAHs) (QC Lo	t: 4281599) - Continued								
Fluorene	86-73-7	25	µg/kg	<50	500 µg/kg	77.2		58	116		
Phenanthrene	85-01-8	25	µg/kg	<50	500 µg/kg	79.7		60	120		
Anthracene	120-12-7	25	µg/kg	<50	500 µg/kg	79.9		25	128		
Fluoranthene	206-44-0	25	µg/kg	<50	500 µg/kg	83.6		72	115		
Pyrene	129-00-0	25	µg/kg	<50	500 µg/kg	81.6		71	113		
Benz(a)anthracene	56-55-3	25	µg/kg	<50	500 µg/kg	77.6		48	121		
Chrysene	218-01-9	25	µg/kg	<50	500 µg/kg	91.4		70	115		
Benzo(b)fluoranthene	205-99-2	25	µg/kg	<50	500 µg/kg	84.4		62	111		
Benzo(k)fluoranthene	207-08-9	25	µg/kg	<50	500 µg/kg	88.8		70	114		
Benzo(a)pyrene	50-32-8	25	µg/kg	<50	500 µg/kg	83.5		37	123	****	
Indeno(1.2.3.cd)pyrene	193-39-5	25	µg/kg	<50	500 µg/kg	82.0		57	116		
Dibenz(a.h)anthracene	53-70-3	25	µg/kg	<50	500 µg/kg	79.7		57	118		
Benzo(g.h.i)perylene	191-24-2	25	µg/kg	<50	500 µg/kg	81.5		50	132		
EP-076HK: Phenol, Hexachlorobenzene a	nd Bis(2-ethylhexyl)	Phthalate	(QC Lot: 4281599	9)							
Phenol	108-95-2	25	µg/kg	<500	500 µg/kg	59.0		53	129		
Hexachlorobenzene (HCB)	118-74-1	25	µg/kg	<50	500 µg/kg	82.4	92222	66	118		
Bis(2-ethylhexyl)phthalate	117-81-7	25	µg/kg	<1000	500 µg/kg	114		73	134	****	****
EP-071HK_SR: Total Petroleum Hydrocar	bons (TPH) (QC Lot:	4277112)									
C6 - C8 Fraction		5	mg/kg	<5	4.5 mg/kg	99.1		77	119		
EP-071HK_SR: Total Petroleum Hydrocar	thons (TPH) (OC Lot	4281874)	10000000								
C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	100		75	115		
C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	93.5		69	111		
EP-074_SR-A: Monocyclic Aromatic Hydr	71-43-2	0.1		<0.1	0.25 malka	95.9		75	121		
Benzene	108-88-3	0.2	mg/kg	<0.1	0.25 mg/kg	100		75	121		
Toluene	100-41-4	0.2	mg/kg mg/kg	<0.2	0.25 mg/kg 0.25 mg/kg	100		77	128		
Ethylbenzene		0.2	mg/kg	<0.2	0.50 mg/kg	93.3		70	146		
meta- & para-Xylene	108-38-3 106-42-3	0.4	myrky	-0.4	0.50 mg/kg	55.5		10	140		
Styrene	100-42-5	0.2	mg/kg	<0.2	0.25 mg/kg	97.8		80	111		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	100		82	118		
Xylenes (Total)		1.0	mg/kg	<1.0	0.75 mg/kg	95.7		77	134		
		1.0			0.10119119						
EP-074_SR-B: Oxygenated Compounds		0	malles	-0	0 E malka	444		79	131	0.000	
2-Propanone (Acetone)	67-64-1 78-93-3	2	mg/kg	<2	2.5 mg/kg	111		79	117		
2-Butanone (MEK)		2	mg/kg	<2	2.5 mg/kg	92.6		19	117		
EP-074_SR-E: Halogenated Aliphatics (Q		7232	12/1-	12.2	27222				105		
Methylene chloride	75-09-2	0.5	mg/kg	<0.5	0.25 mg/kg	108		75	125		
Trichloroethene	79-01-6	0.1	mg/kg	<0.1	0.25 mg/kg	94.3		79	109		
Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	0.25 mg/kg	91.5		75	107		

Page Number : 9 of 11 Client : GAMMON CONSTRUCTION LTD Work Order HK1633725

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Con	trol Spike (LCS) and La	boratory Control S	pike Duplicate (DC	S) Report	
					Spike	Spike Ree	covery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-074_SR-G: Trihalomethanes (THM)(Q	C Lot: 4281875) - Co	ntinued									
Chloroform	67-66-3	0.04	mg/kg	<0.04	0.25 mg/kg	102		75	123		
Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	0.25 mg/kg	102		79	123		
EP-074_SR-I: Methyl-tert-butyl Ether (QC	Lot: 4281875)										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	87.6		77	114		
Matrix: WATER			Method Blank (MB)	Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Rep				S) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EP-074_SR-A: Monocyclic Aromatic Hydro	ocarbons (MAH) (OC	Lot: 4284	055)								
Benzene	71-43-2	0.5	µg/L	<0.5	2 µg/L	94.8		67	130		
Toluene	108-88-3	0.5	µg/L	<0.5	2 µg/L	91.8		76	127		
Ethylbenzene	100-41-4	0.5	µg/L	<0.5	2 µg/L	97.7		84	120		
meta- & para-Xylene	108-38-3	1	µg/L	<1	4 µg/L	91.1		80	128		
	106-42-3										
Styrene	100-42-5	0.5	µg/L	<0.5	2 µg/L	98,0		76	120		
ortho-Xylene	95-47-6	0.5	µg/L	<0.5	2 µg/L	98.5		84	125		
Xylenes (Total)		2	µg/L	<2	6 µg/L	93.6		86	123		
EP-074_SR-B: Oxygenated Compounds (QC Lot: 4284055)										
2-Propanone (Acetone)	67-64-1	5	µg/L	<5	20 µg/L	94.4		65	140		
2-Butanone (MEK)	78-93-3	5	µg/L	<5	20 µg/L	103		67	118		
EP-074_SR-E: Halogenated Aliphatics (Q	C Lot: 4284055)										
Methylene chloride	75-09-2	5	µg/L	<5	2 µg/L	91.4	(2000	76	128		72022
Trichloroethene	79-01-6	0.5	µg/L	<0.5	2 µg/L	86.5		68	121		
Tetrachloroethene	127-18-4	0.5	µg/L	<0.5	2 µg/L	91.4		75	118		
EP-074_SR-G: Trihalomethanes (THM) (Q	C Lot: 4284055)										
Chloroform	67-66-3	0.5	µg/L	<0.5	2 µg/L	89.6		66	134		
Bromodichloromethane	75-27-4	0.5	µg/L	<0.5	2 µg/L	94.4	17777	71	125		
EP-074_SR-I: Methyl-tert-butyl Ether (QC	Lot: 4284055)										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	µg/L	<0.5	2 µg/L	115		65	121		

Page Number: 10 of 11Client: GAMMON CONSTRUCTION LTDWork OrderHK1633725

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
Laboratory Client sample ID sample ID				Spike	Spike Rec	overy (%)	Recovery Limits (%)		RP	D (%)	
		Method: Compound CA		Concentration	MS	MSD	Low	High	Value	Control Limit	
EG: Metals an	nd Major Cations (QC Lot: 4284009)										
HK1633725-001 AEBH1 - 0.5M	EG020: Antimony	7440-36-0	5 mg/kg	85.3		75	125				
	EG020: Arsenic	7440-38-2	5 mg/kg	78.9		75	125				
	EG020: Barium	7440-39-3	5 mg/kg	# Not		75	125				
				Determined							
	EG020: Cadmium	7440-43-9	5 mg/kg	106		75	125				
	EG020: Cobalt	7440-48-4	5 mg/kg	92.8		75	125				
	EG020: Copper	7440-50-8	5 mg/kg	85.6		75	125				
	EG020: Lead	7439-92-1	5 mg/kg	80.8		75	125				
	EG020: Manganese	7439-96-5	5 mg/kg	# Not		75	125				
					Determined						
		EG020: Mercury	7439-97-6	0.1 mg/kg	84.8		75	125			
		EG020: Molybdenum	7439-98-7	5 mg/kg	82.9		75	125			
		EG020: Nickel	7440-02-0	5 mg/kg	# Not		75	125			
					Determined						
		EG020: Tin	7440-31-5	5 mg/kg	86.4		75	125			
		EG020: Zinc	7440-66-6	5 mg/kg	101		75	125			
EG: Metals an	nd Major Cations (QC Lot: 4284012)										
	AEBH1 - 0.5M	EG3060: Hexavalent Chromium	18540-29-9	2.5 mg/kg	98.0		75	125			
EP-071HK SE	R: Total Petroleum Hydrocarbons (TPH)	(OC of: 4277112)									
HK1632343-002		C6 - C8 Fraction		4.5 mg/kg	97.8		50	130			
EP-071HK SF	R: Total Petroleum Hydrocarbons (TPH)	(QC Lot: 4281874)									
	AEBH1 - 1.5M	C9 - C16 Fraction		31.5 mg/kg	69.7		50	130			
		C17 - C35 Fraction		67.5 mg/kg	73.4		50	130			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP-076S: Polycyclic Aromatics Hydrocar	bons (PAHs) Surrogates				
2-Fluorobiphenyl	321-60-8	50	130		
4-Terphenyl-d14	1718-51-0	50	130		
EP-080_SRS: TPH(Volatile)/BTEX Surrog	ate				
Dibromofluoromethane	1868-53-7	80	120		
Toluene-D8	2037-26-5	81	117		
4-Bromofluorobenzene	460-00-4	74	121		
EP-074_SR-S: VOC Surrogates					
Dibromofluoromethane	1868-53-7	80	120		

Page Number: 11 of 11Client: GAMMON CONSTRUCTION LTDWork OrderHK1633725

Sub-Matrix: SOIL		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP-074_SR-S: VOC Surrogates - Continued					
Toluene-D8	2037-26-5	81	117		
4-Bromofluorobenzene	460-00-4	74	121		
Sub-Matrix: WATER		Recovery	Limits (%)		
Compound	CAS Number	Low	High		
EP-074_SR-S: VOC Surrogates					
Dibromofluoromethane	1868-53-7	86	118		
Toluene-D8	2037-26-5	88	110		
4-Bromofluorobenzene	460-00-4	86	115		

Report No: HK1634036

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Client

E-mail

Project

Site

CERTIFICATE OF ANALYSIS Laboratory Page : GAMMON CONSTRUCTION LTD : ALS Technichem (HK) Pty Ltd : 1 of 14 Contact Contact Work Order : MR FRANKIE SIU : Fung Lim Chee, Richard HK1634036 Address Address : M/F GAMMON TECHNOLOGY PARK, : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing 21 CHUN WANG STREET, Yip Street, Kwai Chung, N.T., Hong Kong TKO INDUSTRIAL ESTATE, **TSEUNG KWAN O, N. T. HONG KONG** E-mail : Richard.Fung@alsglobal.com : frankie.siu@gammonconstruction.com Telephone : +852 3191 5237 Telephone : +852 2610 1044 Facsimile Facsimile : +852 2564 6758 : +852 2610 2021 Quote number **Date Samples Received** ENHANCED ASH UTILISATION AND WATER 22-AUG-2016 MANAGEMENT FACILITIES AT CASTLE PEAK POWER STATION Issue Date Order number : 4501019750 : 07-SEP-2016 C-O-C number No. of samples received : 5 : H031822 No. of samples analysed : 5

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for		
Chan Ka Yu, Karen	Manager - Organics	Organics		
Chan Siu Ming, Vico	Manager - Inorganics	Inorganics		
Wong Wing, Kenneth	Manager - Metals	Inorganics		

ALS Technichem (HK) Pty Ltd Partol the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 22-AUG-2016 to 07-SEP-2016

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1634036

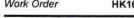
Sample(s) were picked up from client by ALS Technichem (HK) staff in chilled condition.

Water sample(s) analysed and reported on an as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Water sample(s) were filtered prior to dissolved metal analysis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.


Page Number : 3 of 14 Client : GAMMON CONSTRUCTION LTD HK1634036

Work Order

Analytical Results						
Sub-Matrix: SOIL			Client sample ID npling date / time	AEBH1 - 3.4 - 3.85M 22-AUG-2016 14:00	AEBH1 - 5.9M 22-AUG-2016 15:30	
Compound	CAS Number	LOR	Unit	HK1634036-001	HK1634036-005	
EA/ED: Physical and Aggregate Properties						
EA055: Moisture Content (dried @ 103°C)		0.1	%	9.1	12.0	
EG: Metals and Major Cations						
EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	
EG020: Arsenic	7440-38-2	1	mg/kg	<1	<1	
EG020: Barium	7440-39-3	1.0	mg/kg	124	22.3	
EG020: Cadmium	7440-43-9	0.2	mg/kg	0.2	<0.2	
EG020: Cobalt	7440-48-4	1	mg/kg	14	3	
EG020: Copper	7440-50-8	1	mg/kg	17	6	
EG020: Lead	7439-92-1	1	mg/kg	121	370	
EG020: Manganese	7439-96-5	1	mg/kg	940	521	
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	
EG020: Molybdenum	7439-98-7	1	mg/kg	<1	<1	
EG020: Nickel	7440-02-0	1	mg/kg	28	2	
EG020: Tin	7440-31-5	1	mg/kg	3	4	
EG020: Zinc	7440-66-6	1	mg/kg	204	21	
EG049: Trivalent Chromium	16065-83-1	1	mg/kg	50	6	
EG3060: Hexavalent Chromium	18540-29-9	1	mg/kg	<1	<1	
EP-076HK: Polycyclic Aromatic Hydrocarbons	(PAHs)					
Naphthalene	91-20-3	0.500	mg/kg	<0.500	<0.500	
Acenaphthylene	208-96-8	0.500	mg/kg	<0.500	<0.500	
Acenaphthene	83-32-9	0.500	mg/kg	<0.500	<0.500	
Fluorene	86-73-7	0.500	mg/kg	<0.500	<0.500	
Phenanthrene	85-01-8	0.500	mg/kg	<0.500	<0.500	
Anthracene	120-12-7	0.500	mg/kg	<0.500	<0.500	
Fluoranthene	206-44-0	0.500	mg/kg	<0.500	<0.500	
Pyrene	129-00-0	0.500	mg/kg	<0.500	<0.500	
Benz(a)anthracene	56-55-3	0.500	mg/kg	<0.500	<0.500	
Chrysene	218-01-9	0.500	mg/kg	<0.500	<0.500	
Benzo(b)fluoranthene	205-99-2	0.500	mg/kg	<0.500	<0.500	
Benzo(k)fluoranthene	207-08-9	0.500	mg/kg	<0.500	<0.500	
Benzo(a)pyrene	50-32-8	0.500	mg/kg	<0.500	<0.500	
Indeno(1.2.3.cd)pyrene	193-39-5	0.500	mg/kg	<0.500	<0.500	
Dibenz(a.h)anthracene	53-70-3	0.500	mg/kg	<0.500	<0.500	
Benzo(g.h.i)perylene	191-24-2	0.500	mg/kg	<0.500	<0.500	
EP-076HK: Phenol, Hexachlorobenzene and Bi	s(2-ethylhexyl) Phi	thalate				
Phenol	108-95-2	0.50	mg/kg	<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.200	mg/kg	<0.200	<0.200	
Bis(2-ethylhexyl)phthalate	117-81-7	5.00	mg/kg	<5.00	<5.00	

Page Number : 4 of 14 Client : GAMMON CONSTRUCTION LTD Work Order HK1634036

Sub-Matrix: SOIL			Client sample ID npling date / time	AEBH1 - 3.4 - 3.85M 22-AUG-2016 14:00	AEBH1 - 5.9M 22-AUG-2016 15:30		
Compound	CAS Number	LOR	Unit	HK1634036-001	HK1634036-005		
EP-071HK_SR: Total Petroleum Hydrocarbons (TP							
C6 - C8 Fraction		5	mg/kg	<5	<5		
C9 - C16 Fraction	2004	200	mg/kg	<200	<200		
C17 - C35 Fraction		500	mg/kg	<500	<500		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons	s (MAH)						
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	1.0	mg/kg	<1.0	<1.0		
Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		
Xylenes (Total)		2.0	mg/kg	<2.0	<2.0		
EP-074_SR-B: Oxygenated Compounds							
2-Propanone (Acetone)	67-64-1	50	mg/kg	<50	<50		
2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5		
EP-074_SR-E: Halogenated Aliphatics							
Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5		
Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1		
Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04		
EP-074_SR-G: Trihalomethanes (THM)							
Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04		
Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1		
EP-074_SR-I: Methyl-tert-butyl Ether							
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	mg/kg	<0.5	<0.5		
EP-076S: Polycyclic Aromatics Hydrocarbons (PA	Hs) Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	68.3	68.0		
4-Terphenyl-d14	1718-51-0	0.1	%	85.5	85.6		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate							
Dibromofluoromethane	1868-53-7	0.1	%	97.2	95.1		
Toluene-D8	2037-26-5	0.1	%	98.9	99.6		
4-Bromofluorobenzene	460-00-4	0.1	%	97.8	97.0		
EP-074_SR-S: VOC Surrogates				1121			
Dibromofluoromethane	1868-53-7	0.1	%	97.2	95.1		
Toluene-D8	2037-26-5	0.1	%	98.9	99.6		
4-Bromofluorobenzene	460-00-4	0.1	%	97.8	97.0		

 Page Number
 : 5 of 14

 Client
 : GAMMON CONSTRUCTION LTD

Work Order HK1634036

Sub-Matrix: WATER		Charles	Client sample ID	FIELD BLANK	EQUIPMENT BLANK	TRIP BLANK	
			mpling date / time	22-AUG-2016 14:00 HK1634036-002	22-AUG-2016 14:00 HK1634036-003	22-AUG-2016 14:00 HK1634036-004	
Compound	CAS Number	LOR	Unit	HK 1034030-002	HK 1034030-003	HK 1034030-004	
EG: Metals and Major Cations - Filtered	7440-36-0	1	µg/L		· · · · · · · · · · · ·		
EG020: Antimony	7440-38-2	10	μg/L	<1	<1		
EG020: Arsenic		1		<10	<10		
EG020: Barium	7440-39-3	0.2	µg/L	<1	<1		
EG020: Cadmium	7440-43-9	1	µg/L	<0.2	<0.2		
EG020: Cobalt	7440-48-4		µg/L	<1	<1	5777	
EG020: Copper	7440-50-8	1	µg/L	<1	<1		
EG020: Lead	7439-92-1	1	µg/L	<1	<1		
EG020: Manganese	7439-96-5	1	µg/L	<1	2		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	1777	
EG020: Molybdenum	7439-98-7	1	µ9/L	<1	<1		
EG020: Nickel	7440-02-0	1	µg/L	3	<1		
EG020: Tin	7440-31-5	1	µg/L	<1	<1		
EG020: Zinc	7440-66-6	10	µg/L	16	54	2000	
EG049: Trivalent Chromium	16065-83-1	20	µg/L	<20	<20		
EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	<20		
EP-076HK: Polycyclic Aromatic Hydrocarbon	s (PAHs)						
Naphthalene	91-20-3	2.0	µg/L	<2.0			
Acenaphthylene	208-96-8	2.0	µg/L	<2.0			
Acenaphthene	83-32-9	2.0	µg/L	<2.0			
Fluorene	86-73-7	2.0	µg/L	<2.0			
Phenanthrene	85-01-8	2.0	µg/L	<2.0			
Anthracene	120-12-7	2.0	µg/L	<2.0			
Fluoranthene	206-44-0	2.0	µg/L	<2.0			
Pyrene	129-00-0	2.0	µg/L	<2.0	2000-		
Benz(a)anthracene	56-55-3	2.0	µg/L	<2.0			
Chrysene	218-01-9	1.0	µg/L	<1.0			
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0			
	207-08-9	2.0	µg/L	<2.0			
Benzo(k)fluoranthene	50-32-8	2.0	µg/L	<2.0			
Benzo(a)pyrene	193-39-5	2.0	µg/L				
Indeno(1.2.3.cd)pyrene		2.0	pg/L	<2.0			
Dibenz(a.h)anthracene	53-70-3			<2.0		5550-3 1550-75	
Benzo(g.h.i)perylene	191-24-2	2,0	µg/L	<2.0			
EP-076HK: Phenol, Hexachlorobenzene and E							
Phenol	108-95-2	2.0	µg/L	<2.0	1222		
Hexachlorobenzene (HCB)	118-74-1	4.0	µg/L	<4.0		****	
Bis(2-ethylhexyl)phthalate	117-81-7	20.0	µg/L	<20.0			
EP-071HK_SR: Total Petroleum Hydrocarbons	s (TPH)						
C6 - C8 Fraction	5.775	20	µg/L	<20		70373	
C9 - C16 Fraction	<u></u>	500	µg/L	<500			
C17 - C35 Fraction		500	µg/L	<500			

Page Number : 6 of 14 Client : GAMMON CONSTRUCTION LTD Work Order HK1634036

_

Sub-Matrix: WATER		Client sa	Client sample ID	FIELD BLANK 22-AUG-2016 14:00	EQUIPMENT BLANK 22-AUG-2016 14:00	TRIP BLANK 22-AUG-2016 14:00	
the second se						HK1634036-004	
Compound	CAS Number	LOR	Unit	HK1634036-002	HK1634036-003	HK1634036-004	1,
EP-074_SR-A: Monocyclic Aromatic Hydrocarbo	and the second		- 27	1212		1.000	
Benzene	71-43-2	5.0	µg/L	<5.0		<5.0	
Toluene	108-88-3	5.0	µg/L	<5.0		<5.0	
Ethylbenzene	100-41-4	5.0	µ9/L	<5.0		<5.0	
meta- & para-Xylene	108-38-3 106-42-3	10	µg/L	<10		<10	
Styrene	100-42-5	5.0	µg/L	<5.0		<5.0	
ortho-Xylene	95-47-6	5.0	µg/L	<5.0		<5.0	
Xylenes (Total)		20	µg/L	<20		<20	
EP-074_SR-B: Oxygenated Compounds							
2-Propanone (Acetone)	67-64-1	500	µg/L	<500		<500	
2-Butanone (MEK)	78-93-3	50	µg/L	<50		<50	
EP-074_SR-E: Halogenated Aliphatics							
Methylene chloride	75-09-2	50	µg/L	<50		<50	
Trichloroethene	79-01-6	5.0	µg/L	<5.0		<5.0	
Tetrachloroethene	127-18-4	5.0	µg/L	<5.0		<5.0	
EP-074_SR-G: Trihalomethanes (THM)							
Chloroform	67-66-3	5.0	µg/L	<5.0		<5.0	
Bromodichloromethane	75-27-4	5.0	µg/L	<5.0		<5.0	
EP-074_SR-I: Methyl-tert-butyl Ether							
Methyl tert-Butyl Ether (MTBE)	1634-04-4	5.0	µg/L	<5.0	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	<5.0	
EP-076S: Polycyclic Aromatics Hydrocarbons (F	AHe) Surrogator			14200		12/2010/	
2-Fluorobiphenyl	321-60-8	0.1	%	64.4			
4-Terphenyl-d14	1718-51-0	0.1	%	118			
EP-080_SRS: TPH(Volatile)/BTEX Surrogate Dibromofluoromethane	1868-53-7	0.1	%	99.8			
Toluene-D8	2037-26-5	0.1	%	99.8			
4-Bromofluorobenzene	460-00-4	0.1	%	96.5			
				30.5			
EP-074_SR-S: VOC Surrogates	1868-53-7	0.1	%	05.0		400	
Dibromofluoromethane		0.1	%	99.8		100	
Toluene-D8	2037-26-5			101		99.9	
4-Bromofluorobenzene	460-00-4	0.1	%	96.5	(And a local state of the state	98.3	

Matrix: SOIL						Laboratory Duplicate (DUP) Re		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 4287466)						
HK1633980-001	Anonymous	EA055: Moisture Content (dried @ 103°C)		0.1	%	25.9	25.5	1.4
HK1634036-005	AEBH1 - 5.9M	EA055: Moisture Content (dried @ 103°C)		0.1	%	12.0	12.7	5.6
EG: Metals and Ma	jor Cations (QC Lot: 42	87318)						
HK1634036-005	AEBH1 - 5.9M	EG3060: Hexavalent Chromium	18540-29-9	1	mg/kg	<1	<1	0.0

Page Number : 7 of 14 Client GAMMON CONSTRUCTION LTD Work Order HK1634036

RPD (%)

0.0

0.0

0.0

0.0

0.0

0.0

1.7

19.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

9.0

11.8

0.0

0.0

0.0

6.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

603

1

<1

3

46

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

<500

Matrix: SOIL						Laboratory Duplicate (DUP) Re	port
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Resu
EG: Metals and Ma	ajor Cations (QC Lot: 42	87326)					
HK1634036-005	AEBH1 - 5.9M	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2
		EG020: Antimony	7440-36-0	1	mg/kg	<1	<1
		EG020: Arsenic	7440-38-2	1	mg/kg	<1	<1
		EG020: Cobalt	7440-48-4	1	mg/kg	3	3
		EG020: Copper	7440-50-8	1	mg/kg	6	6
		EG020: Lead	7439-92-1	1	mg/kg	370	377
		EG020: Manganese	7439-96-5	1	mg/kg	521	631
		EG020: Molybdenum	7439-98-7	1	mg/kg	<1	<1
		EG020: Nickel	7440-02-0	1	mg/kg	2	2
		EG020: Tin	7440-31-5	1	mg/kg	4	4
		EG020: Zinc	7440-66-6	1	mg/kg	21	22
		EG020: Barium	7440-39-3	1.0	mg/kg	22.3	22.2
HK1634262-002	Anonymous	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05
		EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	<0.2
		EG020: Antimony	7440-36-0	1	mg/kg	<1	<1
		EG020: Arsenic	7440-38-2	1	mg/kg	<1	<1
		EG020: Barium	7440-39-3	1	mg/kg	17	16
		EG020: Cobalt	7440-48-4	1	mg/kg	3	3
		EG020: Copper	7440-50-8	1	mg/kg	2	2
		EG020: Lead	7439-92-1	1	mg/kg	192	210

EP-076HK Polycy	clic Aromatic Hydroca	rbons (PAHs) (QC Lot: 4285194)
HK1634005-001	Anonymous	Naphthalene
		Acenaphthylene
		Acenaphthene
		Fluorene

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1.2.3.cd)pyrene

Benzo(a)pyrene

EG020: Copper	7440-50-8	1	mg/kg	2
EG020: Lead	7439-92-1	1	mg/kg	192
EG020: Manganese	7439-96-5	1	mg/kg	536
EG020: Molybdenum	7439-98-7	1	mg/kg	1
EG020: Nickel	7440-02-0	1	mg/kg	<1
EG020: Tin	7440-31-5	1	mg/kg	3
EG020: Zinc	7440-66-6	1	mg/kg	43
PAHs) (QC Lot: 4285194)				
Naphthalene	91-20-3	500	µg/kg	<500
Acenaphthylene	208-96-8	500	µg/kg	<500
Acenaphthene	83-32-9	500	µg/kg	<500
Fluorene	86-73-7	500	µg/kg	<500
Phenanthrene	85-01-8	500	µg/kg	<500
Anthracene	120-12-7	500	µg/kg	<500
Fluoranthene	206-44-0	500	µg/kg	<500
Pyrene	129-00-0	500	µg/kg	<500
Benz(a)anthracene	56-55-3	500	µg/kg	<500

218-01-9

205-99-2

207-08-9

50-32-8

193-39-5

500

500

500

500

500

µg/kg

µg/kg

µg/kg

µg/kg

µg/kg

Page Number : 8 of 14 Client : GAMMON CONSTRUCTION LTD Work Order HK1634036

atrix: SOIL						Laboratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
P-076HK: Polycyc	clic Aromatic Hydrocarb	ons (PAHs) (QC Lot: 4285194) - Continued						_
HK1634005-001	Anonymous	Dibenz(a.h)anthracene	53-70-3	500	µg/kg	<500	<500	0.0
		Benzo(g.h.i)perylene	191-24-2	500	µg/kg	<500	<500	0.0
EP-076HK: Phenol	, Hexachlorobenzene an	d Bis(2-ethylhexyl) Phthalate (QC Lot: 4285194)						
HK1634005-001	Anonymous	Hexachlorobenzene (HCB)	118-74-1	200	µg/kg	<200	<200	0.0
		Phenol	108-95-2	500	µg/kg	<500	<500	0.0
		Bis(2-ethylhexyl)phthalate	117-81-7	5000	µg/kg	<5000	<5000	0.0
EP-071HK_SR: Tot	al Petroleum Hydrocarb	ons (TPH) (QC Lot: 4281874)						
HK1633725-001	Anonymous	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		500	mg/kg	<500	<500	0.0
EP-071HK_SR: Tot	tal Petroleum Hydrocarb	ons (TPH) (QC Lot: 4283282)						
HK1633879-001	Anonymous	C6 - C8 Fraction		5	mg/kg	<5	<5	0.0
EP-074 SR-A: Mor	ocyclic Aromatic Hydro	carbons (MAH) (QC Lot: 4281875)						
HK1633725-001	Anonymous	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0
	n a sen en solicitza d'alternativa d'alternetiza de Provez	Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0
		Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0
		Styrene	100-42-5	0.5	mg/kg	<0.5	<0.5	0.0
		ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0
		meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0	0.0
			106-42-3					
		Xylenes (Total)		2.0	mg/kg	<2.0	<2.0	0.0
EP-074_SR-B: Oxy	genated Compounds (0	QC Lot: 4281875)						
HK1633725-001	Anonymous	2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5	0.0
		2-Propanone (Acetone)	67-64-1	50	mg/kg	<50	<50	0.0
EP-074_SR-E: Halo	ogenated Aliphatics (QC	C Lot: 4281875)						
HK1633725-001	Anonymous	Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	0.0
		Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1	0.0
		Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	0.0
EP-074_SR-G: Trih	alomethanes (THM) (Q	C Lot: 4281875)						
HK1633725-001	Anonymous	Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	0.0
		Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1	0.0
EP-074_SR-I: Meth	yl-tert-butyl Ether (QC	Lot: 4281875)						
HK1633725-001	Anonymous	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	mg/kg	<0.5	<0.5	0.0
						Laboratory Duplicate (DUP) Re	eport	
Laboratory sample ID	Client sample ID		CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
		Method: Compound						RFD [70]
	ajor Cations - Filtered (C		7440 40 0	0.2		<0.2	<0.2	0.0
HK1634036-003	EQUIPMENT BLANK	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.0
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.0
		EG020: Antimony	7440-36-0	1	µg/L			0.0
		EG020: Barium	7440-39-3	1	µg/L	<1	<1	0.0

Page Number : 9 of 14 Client : GAMMON CONSTRUCTION LTD Work Order HK1634036

Matrix: WATER						Laboratory Duplicate (DUP) Re	eport	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EG: Metals and Ma	jor Cations - Filtered (QC I	Lot: 4287329) - Continued						
HK1634036-003	EQUIPMENT BLANK	EG020: Cobalt	7440-48-4	1	µg/L	<1	<1	0.0
		EG020: Copper	7440-50-8	1	µg/L	<1	<1	0.0
		EG020: Lead	7439-92-1	1	µg/L	<1	<1	0.0
		EG020: Manganese	7439-96-5	1	µg/L	2	2	0.0
		EG020: Molybdenum	7439-98-7	1	µg/L	<1	<1	0.0
		EG020: Nickel	7440-02-0	1	µg/L	<1	<1	0.0
		EG020: Tin	7440-31-5	1	µg/L	<1	<1	0.0
		EG020: Arsenic	7440-38-2	10	µg/L	<10	<10	0.0
		EG020: Zinc	7440-66-6	10	µg/L	54	54	0.0
EG: Metals and Ma	jor Cations - Filtered (QC I	Lot: 4287332)						
HK1634036-003	EQUIPMENT BLANK	EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	<20	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Method Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report Matrix: SOIL RPD (%) Spike Spike Recovery (%) Recovery Limits (%) Concentration **CAS Number** LOR Unit Result LCS DCS Low High Value **Control Limit** Method: Compound EG: Metals and Major Cations (QC Lot: 4287318) 18540-29-9 0.5 <0.5 2.5 mg/kg 101 92 122 mg/kg EG3060: Hexavalent Chromium -EG: Metals and Major Cations (QC Lot: 4287326) 7440-36-0 75 111 1 mg/kg <1 5 mg/kg 85.2 EG020: Antimony 7440-38-2 1 mg/kg <1 5 mg/kg 94.0 75 111 EG020: Arsenic **** **** ----7440-39-3 mg/kg <1.0 5 mg/kg 89.2 79 111 1 --------EG020: Barium ----88.8 80 108 7440-43-9 0.2 mg/kg <0.2 5 mg/kg ----EG020: Cadmium 7440-48-4 1 mg/kg <1 5 mg/kg 89.2 74 108 EG020: Cobalt ------------7440-50-8 1 mg/kg <1 5 mg/kg 86.3 79 109 EG020: Copper --------7439-92-1 mg/kg <1 5 mg/kg 83.8 81 107 1 EG020: Lead ------------1 <1 5 mg/kg 85.9 74 116 EG020: Manganese 7439-96-5 mg/kg -----..... 74 7439-97-6 0.05 mg/kg < 0.05 0.1 mg/kg 97.5 114 EG020: Mercury -----78 <1 93.9 104 EG020: Molybdenum 7439-98-7 1 mg/kg 5 mg/kg --------74 mg/kg <1 5 mg/kg 88.2 106 7440-02-0 1 ----EG020: Nickel ----79 7440-31-5 mg/kg <1 5 mg/kg 96.3 109 1 ----EG020: Tin 7440-66-6 1 mg/kg <1 5 mg/kg 92.9 76 118 ----EG020: Zinc ----..... EP-076HK: Polycyclic Aromatic Hydrocarbons (PAHs) (QC Lot: 4285194) 118 91-20-3 25 µg/kg <50 500 µg/kg 71.6 56 Naphthalene -..... 208-96-8 25 µg/kg <50 500 µg/kg 71.9 42 110 Acenaphthylene ------------25 <50 80.7 54 116 Acenaphthene 83-32-9 µg/kg 500 µg/kg ----<50 78.6 58 116 25 500 µg/kg Fluorene 86-73-7 µg/kg ----..... 60 <50 120 85-01-8 25 µg/kg 500 µg/kg 81.0 --------Phenanthrene <50 77.6 25 128 120-12-7 25 µg/kg 500 µg/kg --------Anthracene 72 Fluoranthene 206-44-0 25 µg/kg <50 500 µg/kg 86.9 115 -----..... 71 129-00-0 25 <50 500 µg/kg 87.9 113 Pyrene µg/kg ------------

Page Number : 10 of 14 Client GAMMON CONSTRUCTION LTD HK1634036

Work Order

Matrix: SOIL			Method Blank (MB)	Report		Laboratory Co	ontrol Spike (LCS) and La	d Laboratory Control Spike Duplicate (DCS) Report			
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-076HK: Polycyclic Aromatic Hydrod	carbons (PAHs) (QC Lo	: 4285194)	- Continued								
Benz(a)anthracene	56-55-3	25	µg/kg	<50	500 µg/kg	80.6		48	121		
Chrysene	218-01-9	25	µg/kg	<50	500 µg/kg	101		70	115		
Benzo(b)fluoranthene	205-99-2	25	µg/kg	<50	500 µg/kg	79.5		62	111		
Benzo(k)fluoranthene	207-08-9	25	µg/kg	<50	500 µg/kg	92.9		70	114		
Benzo(a)pyrene	50-32-8	25	µg/kg	<50	500 µg/kg	75.1		37	123		
Indeno(1.2.3.cd)pyrene	193-39-5	25	µg/kg	<50	500 µg/kg	82.7		57	116		
Dibenz(a.h)anthracene	53-70-3	25	µg/kg	<50	500 µg/kg	82.9		57	118		
Benzo(g.h.i)perylene	191-24-2	25	µg/kg	<50	500 µg/kg	86.2		50	132		20021
EP-076HK: Phenol, Hexachlorobenzen	e and Bis(2-ethylhexyl)	Phthalate	QC Lot: 428519	4)							
Phenol	108-95-2	25	µg/kg	<500	500 µg/kg	81.6	12220	53	129		1122
Hexachlorobenzene (HCB)	118-74-1	25	µg/kg	<50	500 µg/kg	77.0		66	118		****
Bis(2-ethylhexyl)phthalate	117-81-7	25	µg/kg	<1000	500 µg/kg	106		73	134		
EP-071HK_SR: Total Petroleum Hydrod	arbons (TPH) (QC Lot:	4281874)									
C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	100		75	115		
C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	93.5		69	111		
EP-071HK_SR: Total Petroleum Hydrod	carbone (TPH) (OC Lot:	1283282)									
C6 - C8 Fraction		+203202) 5	mg/kg	<5	4.5 mg/kg	106		77	119		
		an a second			4.0 mg/ng	100			1.10		
EP-074_SR-A: Monocyclic Aromatic Hy	/drocarbons (MAH) (QC 71-43-2	0.1	A CONTRACTOR OF A CONTRACTOR O	<0.1	0.25 malka	95.9		75	121		
Benzene	108-88-3	0.1	mg/kg		0.25 mg/kg	100		75	121		
Toluene	100-41-4	0.2	mg/kg	<0.2 <0.2	0.25 mg/kg 0.25 mg/kg	100		77	128		
Ethylbenzene		0.2	mg/kg	<0.2	0.50 mg/kg	93.3		70	146		
meta- & para-Xylene	108-38-3 106-42-3	0.4	mg/kg	-0.4	0.50 mg/kg	93,3		70	140		
Styrene	100-42-5	0.2	mg/kg	<0.2	0.25 mg/kg	97.8		80	111		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	100		82	118		
Xylenes (Total)		1.0	mg/kg	<1.0	0.75 mg/kg	95.7		77	134		
		1.0	119/19		otro highig	00.7					
EP-074_SR-B: Oxygenated Compound	TIME STREET, ST	2	malka	-0	2 E malka	111		79	131		
2-Propanone (Acetone)	67-64-1 78-93-3	2 2	mg/kg mg/kg	<2 <2	2.5 mg/kg 2.5 mg/kg	92.6		79	117		
2-Butanone (MEK)		2	mg/kg	-2	2.5 mg/kg	92.0	/2750	15	112	2000	10074
EP-074_SR-E: Halogenated Aliphatics			37560 <u>0</u> 907						105		
Methylene chloride	75-09-2	0.5	mg/kg	<0.5	0.25 mg/kg	108		75	125		
Trichloroethene	79-01-6	0.1	mg/kg	<0.1	0.25 mg/kg	94.3		79	109		
Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	0.25 mg/kg	91.5		75	107		
EP-074_SR-G: Trihalomethanes (THM)											
Chloroform	67-66-3	0.04	mg/kg	<0.04	0.25 mg/kg	102		75	123		
Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	0.25 mg/kg	102		79	123		
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 4281875)									÷.	
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	87.6		77	114		

 Page Number
 : 11 of 14

 Client
 : GAMMON CONSTRUCTION LTD

Work Order HK1634036

Matrix: WATER			Method Blank (MB)	Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					
					Spike	Spike Red	overy (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EG: Metals and Major Cations - Filtered	(QC Lot: 4287329)										
EG020: Antimony	7440-36-0	1	µg/L	<1	100 µg/L	85.9		75	107		
EG020: Arsenic	7440-38-2	10	µg/L	<10	100 µg/L	99.5		77	109		
EG020: Barium	7440-39-3	1	µg/L	<1	100 µg/L	98.8		79	109		10000
EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	97.6		79	109		
EG020: Cobalt	7440-48-4	1	µg/L	<1	100 µg/L	96.0		78	106		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	94.2		79	107		
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	96.4		81	107		
EG020: Manganese	7439-96-5	1	µg/L	<1	100 µg/L	97.9		79	109		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	98.1		77	117		
EG020: Molybdenum	7439-98-7	1	µg/L	<1	100 µg/L	90.8		76	108		
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	92.7	2222	78	108		
EG020: Tin	7440-31-5	10	µg/L	<10	100 µg/L	94.7		77	107		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	105		77	109		
EG: Metals and Major Cations - Filtered	(QC Lot: 4287332)										
EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	100 µg/L	89.2		80	106		
EP-076HK: Polycyclic Aromatic Hydroc	arbons (PAHs) (QC Lo	t: 4285219)									
Naphthalene	91-20-3	0.2	µg/L	<0.2	0.5 µg/L	51.2		36	124		
Acenaphthylene	208-96-8	0.2	µg/L	<0.2	0.5 µg/L	65.0		39	108	1000	
Acenaphthene	83-32-9	0.2	µg/L	<0.2	0.5 µg/L	74.9		33	120	1000	
Fluorene	86-73-7	0.2	µg/L	<0.2	0.5 µg/L	70.4		37	120		
Phenanthrene	85-01-8	0.2	µg/L	<0.2	0.5 µg/L	86.8		45	117		
Anthracene	120-12-7	0.2	µg/L	<0.2	0.5 µg/L	80.2		46	105		10000
Fluoranthene	206-44-0	0.2	µg/L	<0.2	0.5 µg/L	91.8	1000	64	121		
Pyrene	129-00-0	0.2	µg/L	<0.2	0.5 µg/L	97.5		64	121		
Benz(a)anthracene	56-55-3	0.2	µg/L	<0.2	0.5 µg/L	78.6		65	120		
Chrysene	218-01-9	0.2	µg/L	<0.2	0.5 µg/L	90.2		61	135		
Benzo(b)fluoranthene	205-99-2	0.2	µg/L	<0.2	0.5 µg/L	73.3		56	124		
Benzo(k)fluoranthene	207-08-9	0.2	µg/L	<0.2	0.5 µg/L	86.9		58	129		
Benzo(a)pyrene	50-32-8	0.2	µg/L	<0.2	0.5 µg/L	77.8		42	114		
Indeno(1.2.3.cd)pyrene	193-39-5	0.2	µg/L	<0.2	0.5 µg/L	78.6		43	113		
Dibenz(a.h)anthracene	53-70-3	0.2	µg/L	<0.2	0.5 µg/L	78.9		33	115		
Benzo(g.h.i)perylene	191-24-2	0.2	µg/L	<0.2	0.5 µg/L	86.1		36	124		
EP-076HK: Phenol, Hexachlorobenzen	e and Bis(2-ethvlhexvl)	Phthalate	QC Lot: 42852	19)							
Phenol	108-95-2	5	µg/L	<5.0	0.5 µg/L	34.1		17	118		
Hexachlorobenzene (HCB)	118-74-1	5	µg/L	<5.0	0.5 µg/L	86.3		33	123		
Bis(2-ethylhexyl)phthalate	117-81-7	10	µg/L	<10.0	0.5 µg/L	85.0		76	145		
EP-071HK_SR: Total Petroleum Hydrod		4285220)	1990 - 1 000 - 100		WEAKS, PROFILE						
C9 - C16 Fraction		0.5	mg/L	<0.5	0.21 mg/L	87.3		42	99		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.45 mg/L	83.0	()	53	134		

Page Number: 12 of 14Client: GAMMON CONSTRUCTION LTDWork OrderHK1634036

Matrix: WATER			Method Blank (MB)	Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-071HK_SR: Total Petroleum Hydroc	arbons (TPH) (QC Lot:	4286319)									
C6 - C8 Fraction		0.02	mg/L	<0.02	0.03 mg/L	87.9		63	127		
EP-074_SR-A: Monocyclic Aromatic Hy	drocarbons (MAH) (QC	Lot: 42840	055)								
Benzene	71-43-2	0.5	µg/L	<0.5	2 µg/L	94.8		67	130		
Toluene	108-88-3	0.5	µg/L	<0.5	2 µg/L	91.8		76	127		
Ethylbenzene	100-41-4	0.5	µg/L	<0.5	2 µg/L	97.7		84	120		
meta- & para-Xylene	108-38-3	1	µg/L	<1	4 µg/L	91.1		80	128		
	106-42-3										
Styrene	100-42-5	0.5	µg/L	<0.5	2 µg/L	98.0	****	76	120		
ortho-Xylene	95-47-6	0.5	µg/L	<0.5	2 µg/L	98.5		84	125		
Xylenes (Total)		2	µg/L	<2	6 µg/L	93.6		86	123		
EP-074_SR-B: Oxygenated Compounds	(QC Lot: 4284055)										
2-Propanone (Acetone)	67-64-1	5	µg/L	<5	20 µg/L	94.4		65	140		
2-Butanone (MEK)	78-93-3	5	µg/L	<5	20 µg/L	103		67	118		
EP-074_SR-E: Halogenated Aliphatics	(QC Lot: 4284055)										
Methylene chloride	75-09-2	5	µg/L	<5	2 µg/L	91.4		76	128		
Trichloroethene	79-01-6	0.5	µg/L	<0.5	2 µg/L	86.5		68	121		
Tetrachloroethene	127-18-4	0.5	µg/L	<0.5	2 µg/L	91.4		75	118		
EP-074_SR-G: Trihalomethanes (THM)	(QC Lot: 4284055)										
Chloroform	67-66-3	0.5	µg/L	<0.5	2 µg/L	89.6		66	134		
Bromodichloromethane	75-27-4	0.5	µg/L	<0.5	2 µg/L	94.4		71	125	37777	
EP-074_SR-I: Methyl-tert-butyl Ether (C	C Lot: 4284055)										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	µg/L	<0.5	2 µg/L	115		65	121		

Page Number: 13 of 14Client: GAMMON CONSTRUCTION LTDWork OrderHK1634036

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matrix Spik	e (MS) and Matr	ix Spike Duplic	ate (MSD) Re	port	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RP	D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals an	d Major Cations (QC Lot: 428	37318)								
HK1634036-001	AEBH1 - 3.4 - 3.85M	EG3060: Hexavalent Chromium	18540-29-9	2.5 mg/kg	105		75	125		
EG: Metals an	d Major Cations (QC Lot: 428	37326)								
	AEBH1 - 3.4 - 3.85M	EG020: Antimony	7440-36-0	5 mg/kg	89.5		75	125	100000	10000
		EG020: Arsenic	7440-38-2	5 mg/kg	88.2		75	125		
		EG020: Barium	7440-39-3	5 mg/kg	# Not		75	125		
				0.0	Determined					
		EG020: Cadmium	7440-43-9	5 mg/kg	93.1		75	125		
		EG020: Cobalt	7440-48-4	5 mg/kg	95.1		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	78.3		75	125		
		EG020: Lead	7439-92-1	5 mg/kg	# Not		75	125		
					Determined					
		EG020: Manganese	7439-96-5	5 mg/kg	# Not		75	125		
					Determined					
		EG020: Mercury	7439-97-6	0.1 mg/kg	85.5		75	125		
		EG020: Molybdenum	7439-98-7	5 mg/kg	92.1		75	125		
		EG020: Nickel	7440-02-0	5 mg/kg	# Not Determined		75	125		
		EG020: Tin	7440-31-5	5 mg/kg	95.8		75	125	1.000 million (1.000	
		EG020: Zinc	7440-66-6	5 mg/kg	# Not		75	125		
					Determined					
EP-071HK SR	: Total Petroleum Hydrocarb	ons (TPH) (QC Lot: 4281874)								
HK1633725-002	a series and the series of the	C9 - C16 Fraction		31.5 mg/kg	69.7		50	130		
		C17 - C35 Fraction		67.5 mg/kg	73.4		50	130		
EP-071HK SR	· Total Petroleum Hydrocarb	ons (TPH) (QC Lot: 4283282)								
HK1633879-002		C6 - C8 Fraction		4.5 mg/kg	102		50	130		
	and the second	and the second				(110) (11-4)	de Calles Dualle			
Matrix: WATER				e	14050 million	ke (MS) and Mat				0.00
				Spike Concentration		covery (%)	Statistics and St.	Limits (%)		°D (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals an	d Major Cations - Filtered (Q	C Lot: 4287329)								
HK1634036-002	FIELD BLANK	EG020: Antimony	7440-36-0	100 µg/L	85.5		75	125		
		EG020: Arsenic	7440-38-2	100 µg/L	97.2		75	125		
		EG020: Barium	7440-39-3	100 µg/L	100	0.0000	75	125		
		EG020: Cadmium	7440-43-9	100 µg/L	94.2		75	125		
		EG020: Cobalt	7440-48-4	100 µg/L	94.1	(2222)	75	125		
		EG020: Copper	7440-50-8	100 µg/L	94.4		75	125		
		EG020: Lead	7439-92-1	100 µg/L	95.2		75	125		

Page Number: 14 of 14Client: GAMMON CONSTRUCTION LTDWork OrderHK1634036

Matrix: WATER					Matrix Spi	ike (MS) and Mati	rix Spike Duplic	port		
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals a	nd Major Cations - Filtered (C	QC Lot: 4287329) - Continued								
HK1634036-002	2 FIELD BLANK	EG020: Manganese	7439-96-5	100 µg/L	97.3		75	125		
		EG020: Mercury	7439-97-6	2 µg/L	90.0		75	125		
		EG020: Molybdenum	7439-98-7	100 µg/L	89.5		75	125		
		EG020: Nickel	7440-02-0	100 µg/L	91.8		75	125		
		EG020: Tin	7440-31-5	100 µg/L	92.9		75	125		
		EG020: Zinc	7440-66-6	100 µg/L	102		75	125	****	
EG: Metals a	nd Major Cations - Filtered (C	QC Lot: 4287332)								
HK1634036-00	2 FIELD BLANK	EG050: Hexavalent Chromium	18540-29-9	100 µg/L	81.5		75	125	5000	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-076S: Polycyclic Aromatics Hydrocarbor	s (PAHs) Surrogates		
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-076S: Polycyclic Aromatics Hydrocarbor	s (PAHs) Surrogates		
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

Report No: HK1771166

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

			CERTIFICATE OF ANALYSIS		
Client Contact	INTRAFOR HONG KONG LIMITED	Laboratory Contact	ALS Technichem (HK) Pty Ltd Van Leung	Page Work Order	1 of 14 HK1771166
Address	20/F, EIGHT COMMERCIAL TOWER, 8 SUN YIP STREET, CHAI WAN, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Ylp Street, Kwal Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	² Terri.tang@vsHintrafor.com 2 25916139	E-mail Telephone Facsimile	 ivan.leung@alsglobal.com 26101044 +852 2610 2021 		
Project	OUTLINE AGREEMENT NO. 460006651 FOR 2-YEAR OUTLINE AGREEMENT FOR SITE INVESTIGATION WORKS FOR EXISTING/PROSPECTIVE SITES OF CLP POWER'S PREMISES (2017-2019)	Quote number	∺ HKE/1156/2017	Date Samples Received	: 13-Oct-2017
Order number C-O-C number Site	: : H035801 :			Issue Date No. of samples received No. of samples analysed	: 27-Oct-2017 : 4 : 4

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 088) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Anh Ngọc Huynh .	Senior Chemist	Organica	
Chan Ka Yu , Karen	Manager - Organice	Organica	
Chan Siu Ming , Vico	Manager - Inorganice	Inorganica	
Wong Wing , Kenneth	Manager - Metala	Metale	

ALS Technichem (HK) Pty Ltd

Pertol the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

Page Number	:	2 of 14
Client	1	INTRAFOR HONG KONG LIMITED
Work Order		HK1771166

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 13-Oct-2017 to 27-Oct-2017.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1771168

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.

Page Number 3 of 14 Client INTRAFOR HONG KONG LIMITED HK1771166

Work Order

Sub-Matrix: SOIL			Client sample ID	AEBH2-0.5M	AEBH2-0.5M-DUP	AEBH2-1.5M	_	
	Client sampling date		sampling date / time	13-Oct-2017	13-Oct-2017	13-Oct-2017		
Compound	CAS Number	LOR	Unit	HK1771166-001	HK1771166-002	HK1771166-003		
A/ED: Physical and Aggregate Properties	0.10.10.10.000							
EA055: Moisture Content (dried @		0.1	*	8.5	8.5	9.6	_	
103°C)				1757.5				
G: Metals and Major Cations								
EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	<1	_	
EG020: Amenic	7440-38-2	1	mg/kg	1	1	<1	_	_
EG020: Berlum	7440-39-3	1.0	mg/kg	41	35	26	_	
EG020: Cedmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	<0.2	_	-
EG020: Cobalt	7440-48-4	1.0	mg/kg	3	4	2	—	-
EG020: Copper	7440-50-8	1	mg/kg	7	8	5		-
EG020: Lead	7439-92-1	1	mg/kg	92	78	78	—	
EG020: Manganese	7439-96-5	1.0	mg/kg	548	376	358	-	-
EG020: Mercury	7439-97-6	0.05	maika	<0.05	<0.05	<0.05	—	
EG020: Molybdønum	7439-98-7	1	mg/kg	1	1	1	-	
EG020: Nickel	7440-02-0	1	mg/kg	3	3	2	—	1
EG020: Tin	7440-31-5	1.0	mg/kg	1	1	1	-	-
EG020: Zinc	7440-66-6	1	mg/kg	24	24	20	-	-
EG049: Trivalent Chromium	16065-83-1	1.0	mg/kg	7	6	5	—	-
EG3060: Hexavalent Chromium	18540-29-9	1.0	mg/kg	<1	<1	<1	—	<u> </u>
P-076HK: Polycyclic Aromatic Hydrocarbons (PAHs)								
EP076HK: Naphthalene	91-20-3	0.500	mg/kg	<0.500	<0.500	<0.500	-	-
EP076HK: Acenaphthylene	208-96-8	0.500	mg/kg	<0.500	<0.500	<0.500		· · · · · · · · · · · · · · · · · · ·
EP076HK: Aconaphthene	83-32-9	0.500	mg/kg	<0.500	<0.500	<0.500	_	94 <u></u>
EP076HK: Fluorene	86-73-7	0.500	mp/kg	<0.500	<0.500	<0.500		
EP076HK: Phenanthrene	85-01-8	0.500	mg/kg	<0.500	<0.500	<0.500	-	
EP076HK: Anthracene	120-12-7	0.500	mg/kg	<0.500	<0.500	<0.500	—	
EP076HK: Fluoranthene	206-44-0	0.500	mg/kg	<0.500	<0.500	<0.500	—	—
EP076HK: Pyrana	129-00-0	0.500	mg/kg	<0.500	<0.500	<0.500	—	_
EP076HK: Benz(a)enthracene	56-55-3	0.500	mg/kg	<0.500	<0.500	<0.500	-	
EP076HK: Chrysene	218-01-9	0.500	mg/kg	<0.500	<0.500	<0.500	-	
EP076HK: Benzo(b)fluoranthene	205-99-2	0.500	mg/kg	<0.500	<0.500	<0.500	-	i —
EP076HK: Benzo(k)fluoranthene	207-08-9	0.500	mg/kg	<0.500	<0.500	<0.500	-	·
EP076HK: Benzo(a)pyrene	50-32-8	0.500	mg/kg	<0.500	<0.500	<0.500	-	-
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	0.500	mg/kg	<0.500	<0.500	<0.500	_	-
EP076HK: Dibenz(a.h)anthracene	53-70-3	0.500	mg/kg	<0.500	<0.500	<0.500	-	
EP076HK: Benzo(g.h.i)perylene	191-24-2	0.500	mg/kg	<0.500	<0.500	<0.500	—	-

Page Number 4 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771166

Sub-Matrix: SOIL		Client	t sample ID	AEBH2-0.5M	AEBH2-0.5M-DUP	AEBH2-1.5M	—	
		Client sampling date / time		13-Oct-2017	13-Oct-2017	13-Oct-2017		
Compound	CAS Number	LOR	Unit	HK1771166-001	HK1771166-002	HK1771166-003		
EP-076HK: Phenol, Hexachlorobenzene and Bie(2-ethylhexyl) Phinaiate - Contin	ued						
EP076HK: Phenol	108-95-2	0.50 m	ng/kg	<0.50	<0.50	<0.50		—
EP076HK: Hexachlorobenzene	118-74-1	0.200 m	ng/kg	<0.200	<0.200	<0.200		-
(HCB)								
EP076HK:	117-81-7	5.00 m	ng/kg	<5.00	<5.00	<5.00		—
Bia(2-ethylhexyl)phthalate								
EP-071HK_SR: Total Petroleum Hydrocarbona (TPH)								
EP070HK_SR: C6 - C8 Fraction		5 n	ng/kg	<5	<5	<5	-	
EP071HK_SR: C9 - C16 Fraction		200 m	ng/kg	<200	<200	<200		-
EP071HK_SR: C17 - C35 Fraction		500 17	ng/kg	<500	<500	<500	<u> </u>	
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)								
EP074_SR: Benzene	71-43-2	0.2 m	ng/kg	<0.2	<0.2	<0.2		_
EP074_SR: Toluene	108-88-3	0.5 m	ngikg	<0.5	<0.5	<0.5	-	
EP074_SR: Ethylbenzene	100-41-4	0.5 n	mg/kg	<0.5	<0.5	<0.5	<u></u>	
EP074_SR: meta- & pana-Xylene	108-38-3	1.0 л	mg/kg	<1.0	<1.0	<1.0		
	106-42-3 100-42-5	0.5 m	mg/kg					
EP074_SR: Styrene	95-47-6		mg/kg	<0.5	<0.5	<0.5		
EP074_SR: ortho-Xylane			mg/kg	<0.5	<0.5	<0.5		
EP074_SR: Xylence (Total)		2.0	nging	<2.0	<2.0	<2.0	-	
EP-074_8R-B: Oxygenated Compounds		50 n		0410234281	10000			
EP074_SR: 2-Propanone (Acatone)	67-64-1		mg/kg	<50	<50	<50	-	_
EP074_SR: 2-Butanone (MEK)	78-93-3	5 n	mg/kg	<5	<5	<5	—	-
EP-074_SR-E: Helogeneted Allphatice								
EP074_SR: Methylene chloride	75-09-2		mg/kg	<0.5	<0.5	<0.5	-	_
EP074_SR: Trichloroethene	79-01-6		mg/kg	<0,1	<0.1	<0.1		-
EP074_SR: Tetrachloroethene	127-18-4	0.04 n	mg/kg	<0.04	<0.04	<0.04		
EP-074_SR-G: Trihelomethance (THM)								
EP074_SR: Chloroform	67-66-3		mg/kg	<0.04	<0.04	<0.04		_
EP074_SR: Bromodichloromethane	75-27-4	0.1 n	mg/kg	<0.1	<0.1	<0.1	<u> </u>	—
EP-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.5 n	mg/kg	<0.5	<0.5	<0.5	-	(-
(MTBE)								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surroga	itee							
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	*	94.2	90.5	87.4	· · · · · · · · · · · · · · · · · · ·	—
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	%	88.0	86.6	84.2	-	-
EP-080_SRS: TPH(Volatile)/BTEX Surrogate								
EP070HK_BR:	1868-53-7	0.1	*	94.4	94.1	92.6	_	_
Dibromofluoromethane								
EP070HK_SR: Toluene-D8	2037-26-5	0.1	%	97.0	101	98.4	-	_

Page Number 5 of 14 Client INTRAFOR HONG KONG LIMITED

Work Order HK1771166

Sub-Matrix: SOIL			Olient sample ID	AEBH2-0.5M	AEBH2-0.5M-DUP	AEBH2-1.5M		
		Client	sampling date / time	13-Oct-2017	13-Oct-2017	13-Oct-2017		
Conpound	CAS Number	LOR	Unit	HK1771166-001	HK1771166-002	HK1771166-003		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate - Continued								
EP070HK_SR:	460-00-4	0.1	%	99.3	103	104	_	_
4-Bromofluorobenzene								
EP-074_SR-S: VOC Surrogates								
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	%	94.4	94.1	92.6	-	_
EP074_SR: Toluene-D8	2037-26-5	0.1	%	97.0	101	98.4	-	_
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	99.3	103	104	_	-

Page Number 6 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771168

Sub-Matrix: WATER			Client sample ID	Trip Blank		·	3. 	—
		Client	Client sampling date / time	13-Oct-2017				
Compound	CAS Number	LOR	Unit	HK1771166-004				
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)								
EP074_SR: Benzene	71-43-2	5.0	ug/L	<5.0				-
EP074_SR: Toluene	108-88-3	5.0	ug/L	<5.0		-		—
EP074_SR: Ethylbenzene	100-41-4	5.0	NB/L	<5.0		-	-	
EP074_SR: meta- & pana-Xylene	108-38-3 106-42-3	10	µg/L	<10	—	-	—	
EP074_SR: Styrene	100-42-5	5.0	HOL	<5.0	-	<u>4</u> 93		—
EP074_SR: ortho-Xylene	95-47-6	5.0	Have -	<5.0				
EP074_SR: Xylenes (Total)	(4000)	20	μg/L	<20			—	_
EP-074_SR-B: Oxygenated Compounds								
EP074_SR: 2-Propenone (Acetone)	67-64-1	500	µg/L	<500		<u></u>	-	_
EP074_SR: 2-Butanone (MEK)	78-93-3	50	µg/L	<50	_	<u> </u>		-
EP-074_SR-E: Halogenated Aliphatics								
EP074_SR: Methylene chloride	75-09-2	50	hdvr	<50	<u> </u>		_	
EP074_SR: Trichloroethene	79-01-6	5.0	ug/L	<5.0	<u></u>	-	-	
EP074_SR: Tetrachloroethene	127-18-4	5.0	ug/L	<5.0	—	_	-	_
EP-074_SR-G: Trihelomethanes (THM)								
EP074_SR: Chloroform	67-66-3	5.0	µg/L	<5.0	_		-	
EP074_SR: Bromodichloromethane	75-27-4	5.0	µg/L	<5.0	_	-	-	—
EP-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether	1634-04-4	5.0	μg/L	<5.0	-	-	-	
(MTBE)								
EP-074_SR-S: VOC Surrogates								
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	*	95.5	_	-	-	—
EP074_SR: Toluene-D8	2037-26-5	0.1	*	99.1	_	_	-	
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	*	108	-	_	-	

Page Number : 7 of 14 Client : INTRAFOR HONG KONG LIMITED Work Order HK1771168

CO CO CO

Laboratory Duplicate (DUP) Report

atrix: SOIL						Lebonelary Dupilasie (DUP) Repar	1	
Lebaratory semple ID	Glient eemple ID	Method: Compound	GAS Number	LOR	Unit	Original Result	Duplicele Result	RPD (%)
A/ED: Physical and	Aggregate Properties (QC Lot: 1	179928)						
HK1771166-001	AEBH2-0.5M	EA055: Moisture Content (dried @		0.1	%	8.5	8.7	1.46
		103°C)						
HK1771246-001	Anonymous	EA055: Moisture Content (dried @		0.1	%	4.9	4.7	4.06
		103°C)						
EG: Metals and Major	Cations (QC Lot: 1174451)							
HK1771166-002	AEBH2-0.5M-DUP	EG3060: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1	<1	0.00
G: Metals and Major	Cations (QC Lot: 1174453)							
HK1771166-002	AEBH2-0.5M-DUP	EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.00
		EG020: Cedmium	7440-43-9	0.2	mg/kg	<0.2	<0.2	0.00
		EG020: Barium	7440-39-3	0.5	mg/kg	35	31	11.2
		EG020: Cobalt	7440-48-4	0.5	mg/kg	4	4	14.0
		EG020: Manganese	7439-96-5	0.5	mg/kg	376	391	3.99
		EG020: Tin	7440-31-5	0.5	mg/kg	1	2	17.7
		EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	0.00
		EG020: Anenic	7440-38-2	1	mg/kg	1	<1	0.00
		EG020: Copper	7440-50-8	1	mg/kg	8	8	0.00
		EG020: Lead	7439-92-1	1	mg/kg	78	77	0.00
	EG020: Molybdenum	7439-98-7	1	mg/kg	1	2	0.00	
	EG020: Nickel	7440-02-0	1	mg/kg	3	4	0.00	
		EG020: Zine	7440-66-6	1	mg/kg	24	27	11.9
P-076HK: Polycyclic	Aromatic Hydrocarbons (PAHs)	(QC Lot: 1176353)						
HK1771166-001	AEBH2-0.5M	Naphthalene	91-20-3	50	hðlyð	<0.500 mg/kg	<500	0.00
		Acenaphthylene	208-96-8	50	µg/kg	<0.500 mg/kg	<500	0.00
		Aconsphithene	83-32-9	50	hðykð	<0.500 mg/kg	<500	0.00
		Fluorene	86-73-7	50	µg/kg	<0.500 mg/kg	<500	0.00
		Phenanthrene	85-01-8	50	µg/kg	<0.500 mg/kg	<500	0.00
		Anthracene	120-12-7	50	µg/kg	<0.500 mg/kg	<500	0.00
		Fluoranthene	206-44-0	50	µg/kg	<0.500 mg/kg	<500	0.00
		Рутеле	129-00-0	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benz(a)enthracene	56-55-3	50	µg/kg	<0.500 mg/kg	<500	0.00
		Chrysene	218-01-9	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(b)fluoranthene	205-99-2	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(k)lluoranthene	207-08-9	50	hð\kð	<0.500 mg/kg	<500	0.00
		Benzo(a)pyrene	50-32-8	50	µg/kg	<0.500 mg/kg	<500	0.00
		Indeno(1.2.3.cd)pyrene	193-39-5	50	µg/kg	<0.500 mg/kg	<500	0.00
		Dibenz(a.h)anthracene	53-70-3	50	hð\kð	<0.500 mg/kg	<500	0.00

Page Number : 8 of 14 Client : INTRAFOR HO

Client : INTRAFOR HONG KONG LIMITED Work Order HK1771166

atrix: SOIL						Laboratory Duplicate (DUP) Report	1	
Lebonalory earnple ID	Client aemple ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplinate Result	APD (%)
P-076HK: Polycyclic	Aromatic Hydrocarbons (PAI	Hs) (QC Lot: 1176353) - Continued						
HK1771166-001	AEBH2-0.5M	Benzo(g.h.l)perylene	191-24-2	50	hð\kð	<0.500 mg/kg	<500	0.00
P-076HK: Phenol, H	exachlorobenzene and Bis(2-	ethylhexyl) Phthalate (QC Lot: 1176353)						
HK1771166-001	AEBH2-0.5M	Bie(2-offnyfhoxyf)phthalate	117-81-7	1000	hayka	<5.00 mg/kg	<5000	0.00
		Hexachlorobenzene (HCB)	118-74-1	50	hðyða	<0.200 mg/kg	<200	0.00
		Phenol	108-95-2	500	µg/kg	<0.50 mg/kg	<500	0.00
P-071HK_SR: Total	Petroleum Hydrocarbons (TP	H) (QC Lot: 1176352)						
HK1771166-001	AEBH2-0.5M	C9 - C16 Fraction		200	mg/kg	<200	<200	0.00
		C17 - C35 Fraction		500	mg/kg	<500	<500	0.00
P-071HK_SR: Total	Petroleum Hydrocarbons (TP	H) (QC Lot: 1176364)						
HK1771166-001	AEBH2-0.5M	C6 - C8 Fraction		5	mg/kg	<5	<5	0.00
P-074_SR-A: Monor	cyclic Aromatic Hydrocarbons	(MAH) (QC Lot: 1176363)						
HK1771166-001	AEBH2-0.5M	Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00
		Styrene	100-42-5	0.2	mg/kg	<0.5	<0.5	0.00
		ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00
		meta- & para-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00
			106-42-3					
		Xylenes (Total)		1	mg/kg	<2.0	<2.0	0.00
P-074_SR-B: Oxyge	nated Compounds (QC Lot:	1176363)						
HK1771166-001	AEBH2-0.5M	2-Propanone (Acetone)	67-64-1	2	mg/kg	<50	<50	0.00
		2-Butanone (MEK)	78-93-3	2	mg/kg	<5	<5	0.00
P-074_SR-E: Halog	enated Allphatics (QC Lot: 1	176363)						
HK1771166-001	AEBH2-0.5M	Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	0.00
		Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1	0.00
		Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	0.00
P-074_SR-G: Trihal	omethanes (THM) (QC Lot:	1176363)						
HK1771166-001	AEBH2-0.5M	Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	0.00
		Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1	0.00
P-074_SR-I: Methyl	tert-butyl Ether (QC Lot: 11)	76363)						
HK1771166-001	AEBH2-0.5M	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.5	<0.5	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Mathod Ellank (MB) Report					Laboratory Control Spilm (LCS) and Laboratory Control Spilm Duplicate (DCS) Report					
					Splin	Splice Rec	overy (%)	ry (%) Recovery Limits (%)		APD (%)		
Matted: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Viakus	Control Limit	

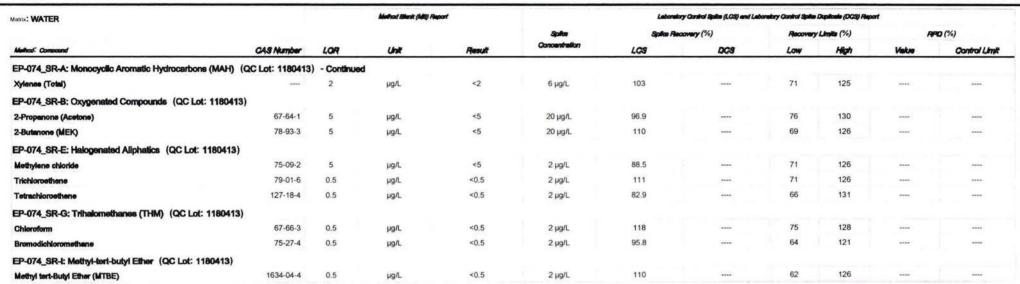
EG: Metals and Major Cations (QC Lot: 1174451)

Page Number : 9 of 14 Client : INTRAFOR HONG KONG LIMITED

Work Order HK1771166

Matrix: SOIL			Mathod Blank (ME) R	laport		Laborato	ny Control Splite (LCS) and Leb	onelary Camiral Splite	Duplicate (DCS) Rep	art	
					Spla	Spiles Alex	covery (%)	Recovery	Limits (%)	A	PD (%)
Mulhod' Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Vielue	Control Lin
EG: Metals and Major Catlons (QC Lot: 1174451) - Co	ntinued										
EG3060: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	2.5 mg/kg	103		85	115		
EG: Metals and Major Cations (QC Lot: 1174453)											
EG020: Antimony	7440-36-0	1	mg/kg	<1	5 mg/kg	98.6		85	115		
EG020: Ansenic	7440-38-2	1	mg/kg	<1	5 mg/kg	98.6		85	115		
EG020: Barium	7440-39-3	0.5	mg/kg	<0.5	5 mg/kg	85.8		85	115		****
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	102	222	85	115		1000
EG020: Cobalt	7440-48-4	0.5	mg/kg	<0.5	5 mg/kg	98.4	1000	85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	96.7		85	115	2022	
EG020: Load	7439-92-1	1	mg/kg	<1	5 mg/kg	96.8		85	115		
EG020: Manganese	7439-96-5	0.5	mg/kg	<0.5	5 mg/kg	110		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	85.8		85	115		
EG020: Molybdenum	7439-98-7	1	mg/kg	<1	5 mg/kg	92.0		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	107		85	115		
EG020: Tin	7440-31-5	0.5	mg/kg	<0.5	5 mg/kg	100		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	113		85	115		
EP-076HK: Polycyclic Aromatic Hydrocarbons (PAHs) (0	QC Lot: 1176353)										
Naphthalono	91-20-3	50	µg/kg	<50	25 µg/kg	87.5		63	101		
Acenaphthylene	208-96-8	50	µg/kg	<50	25 µg/kg	67.8		40	103		
Acensphänene	83-32-9	50	µg/kg	<50	25 µg/kg	81.1		56	101		
Fluorene	86-73-7	50	µg/kg	<50	25 µg/kg	89.6		61	107		
Phenanthrene	85-01-8	50	µg/kg	<50	25 µg/kg	85.0		68	98		
Anthracene	120-12-7	50	µg/kg	<50	25 µg/kg	67.2		42	88		
Fluomenthene	206-44-0	50	µg/kg	<50	25 µg/kg	87.6		59	112		
Рутапа	129-00-0	50	µg/kg	<50	25 µg/kg	81.9		55	111		10000
Bonz(e)enthraceno	56-55-3	50	µg/kg	<50	25 µg/kg	64.9		58	106	****	
Chrysens	218-01-9	50	µg/kg	<50	25 µg/kg	93.8		71	108		
Benzo(b)fluonanthene	205-99-2	50	µg/kg	<50	25 µg/kg	97.9		55	122		
Benzo(k)iluonanihene	207-08-9	50	hð\kð	<50	25 µg/kg	88.3		53	114	****	
Benzo(a)pyrene	50-32-8	50	hð\kð	<50	25 µg/kg	69.6		31	100		
Indeno(1.2.3.cd)pyrene	193-39-5	50	µg/kg	<50	25 µg/kg	103	****	45	126	****	
Diberz(a.h)enthracene	53-70-3	50	µg/kg	<50	25 µg/kg	102		40	129	07770	
Benzo(g.h.i)perylene	191-24-2	50	µg/kg	<50	25 µg/kg	91.9		43	131		
EP-076HK: Phenol, Hexachlorobenzene and Bis(2-ethyli	exyl) Phthalate (QC	Lot: 117635	(3)								
Phenol	108-95-2	500	µg/kg	<500	25 µg/kg	84.4		49	100		
Hexachlorobenzene (HCB)	118-74-1	50	µg/kg	<50	25 µg/kg	88.2	****	68	110		
Bis(2-ethylheoyl)phthalate	117-81-7	1000	µg/kg	<1000	25 µg/kg	118		103	121	(*****)	
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (0	01 at 1170950)		0190-155								

Page Number 10 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771166


Matrix: SOIL			Mathod Blank (MB) R	laport'		Lebonelo	y Control Spiller (LCS) and Lab	onalory Control Spile	Duplicate (DCS) Rep	at	
					Spike	Spile Alec	overy (%)	Recovery	Limita (%)	R	90 (%)
Method: Compound	CAS Number	LOR	Link	Result	Concentration	LCS	DCS	Low	High	Vielue	Control Lim
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1176352) -	Continued									
C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	101		62	128	****	
C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	94.9	0.007	55	115		
EP-071HK_SR: Total Petrolsum Hydrocarbons (TPH) (QC Lot: 1176364)										
C6 - C8 Fraction		5	mg/kg	<5	4.5 mg/kg	91.3		79	112		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MA	H) (QC Lot: 1176363	1)									
Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	93.6	9000 ()	72	115	****	
Toluene	108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	87.2	-	76	125		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	95.0		73	125	****	
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	96.7		79	117		
	106-42-3										
Styrene	100-42-5	0.2	mg/kg	<0.2	0.25 mg/kg	88.3	****	72	126		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	88.7		74	126		
Xylenes (Total)		1	mg/kg	<1.0	0.75 mg/kg	94.0	2222	79	119		4222
EP-074_SR-B: Oxygenated Compounds (QC Lot: 1176	6363)										
2-Propenone (Acetone)	67-64-1	2	mg/kg	<2	2.5 mg/kg	110	****	79	119		
2-Butanone (MEK)	78-93-3	2	mg/kg	<2	2.5 mg/kg	96.4		80	115	****	
EP-074_SR-E: Halogenated Allphatics (QC Lot: 11763	63)										
Methylene chloride	75-09-2	0.5	mg/kg	<0.5	0.25 mg/kg	99.9		75	123	****	
Trichloroethene	79-01-6	0.1	mg/kg	<0.1	0.25 mg/kg	97.1	Sec. 1	78	119		:
Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	0.25 mg/kg	94.5	(a.e.e.)	77	120		
P-074_SR-G: Trihalomethanes (THM) (QC Lot: 1176	363)										
Chloroform	67-66-3	0.04	mg/kg	<0.04	0.25 mg/kg	96.4		75	121		2007
Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	0.25 mg/kg	95.5		73	123		
EP-074_SR-I: Methyl-bert-butyl Ether (QC Lot: 117636	3)										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	92.2		68	119		
latix: WATER			Mathod Blank (MB)			1-1	ry Control Splite (LCS) and La	Constant Constant Contan	Chandrade /CCCS1 Chan		

					Splar	Spiles And	xxwy (%)	Recovery Limits (%)		A	PD (%)
Method: Compound	CAS Number	Number LOR Unit	Result	Gancentralian	LCS	DCS	Low	High	Value	Control Limit	
EP-074_SR-A: Monocyclic Aromatic Hydroca	rbons (MAH) (QC Lot: 1180413)									
Benzene	71-43-2	0.5	µg/L	<0.5	2 µg/L	96.7		67	125		
Toluene	108-88-3	0.5	µg/L	<0.5	2 µg/L	91.4		72	125	1000	
Ethylbenzene	100-41-4	0.5	µg/L	<0.5	2 µg/L	117	****	69	128		****
meta- & para-Xylene	108-38-3	1	µg/L	<1	4 µg/L	95.2	****	75	117		
	106-42-3										
Styrene	100-42-5	0.5	µg/L	<0.5	2 µg/L	108	****	68	131		
ortho-Xylene	95-47-6	0.5	µg/L	<0.5	2 µg/L	118		73	128		

Page Number : 11 of 14 Client : INTRAFOR HONG KONG LIMITED

. . .

Work Order HK1771166

Page Number 12 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771168

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Adetro	(Spike (MS) and Matrix	Spilos Duplicate	(MISID) Report		
				Spile	Spike Re	00 1197 (%)	Recovery	Limita (%)	RPD	(%)
Lebonalory semple ID	Olient sample ID	Malhod: Compound	CAS Number	Ganaentration	MS	MSO	Low	High	Value	Contro Limit
										Lorpe
K1771166-001	Major Cations (QC Lot: 1174451) AEBH2-0.5M		18540-29-9	25	96.0	91.0	75	125	5.35	
		EG3060: Hexavalent Chromium	18540-29-9	2.5 mg/kg	90.0	91.0	15	125	5.35	
	Major Catlons (QC Lot: 1174453)									
IK1771166-001	AEBH2-0.5M	EG020: Antimony	7440-36-0	5 mg/kg	97.0	102	75	125	5.02	
		EG020: Amenic	7440-38-2	5 mg/kg	97.3	99.9	75	125	2.64	
		EG020: Barium	7440-39-3	5 mg/kg	# Not	# Not	75	125	# Not	
			23.224222	2000	Determined	Determined		100	Determined	
		EG020: Cedmium	7440-43-9	5 mg/kg	93.2	100	75	125	7.04	
		EG020: Cobalt	7440-48-4	5 mg/kg	99.1	96.6	75	125	2.55	
		EG020: Copper	7440-50-8	5 mg/kg	89.0	99.8	75 75	125 125	11.4	
		EG020: Lead	7439-92-1	5 mg/kg	# Not	# Not	75	125	# Not Determined	
		FORM Manager	7439-96-5	5 mg/kg	Determined # Not	Determined # Not	75	125	# Not	
		EG020: Manganese	7439-90-5	5 mg/kg	# Not Determined	# Not Determined	75	125	# Not Determined	
		EG020: Mercury	7439-97-6	0.1 mg/kg	96.5	93.5	75	125	3.16	
		EG020: Molybdenum	7439-98-7	5 mg/kg	90.0	97.4	75	125	7.90	
		EG020: Nickel	7440-02-0	5 mg/kg	96.3	106	75	125	9.59	
		EG020: Tin	7440-31-5	5 mg/kg	92.2	96.0	75	125	4.04	
		EG020: Zinc	7440-66-6	5 mg/kg	# Not	# Not	75	125	# Not	
					Determined	Determined			Determined	
EP-076HK: Poly	cyclic Aromatic Hydrocarbons (PAHs)	(QC Lot: 1176353)								
IK1771166-003	AEBH2-1.5M	Naphthalene	91-20-3	250 µg/kg	87.8		50	130		20
		Acenaphthylene	208-96-8	250 µg/kg	86.2		50	130		20
		Aconaphthene	83-32-9	250 µg/kg	85.4		50	130		20
		Fluorene	86-73-7	250 µg/kg	88.2		50	130		20
		Phonanthrane	85-01-8	250 µg/kg	83.2		50	130		20
		Anthracene	120-12-7	250 µg/kg	82.9		50	130		20
		Fluoranthene	206-44-0	250 µg/kg	87.5		50	130		20
		Pyrene	129-00-0	250 µg/kg	86.8		50	130		20
		Benz(a)anthracene	56-55-3	250 µg/kg	92.0	1000	50	130		20
		Chrysene	218-01-9	250 µg/kg	93.4		50	130		20
		Benzo(b)fluonanthene	205-99-2	250 µg/kg	95.5		50	130		20
		Benzo(k)fluoranthene	207-08-9	250 µg/kg	97.4		50	130		20
		Benzo(a)pyrene	50-32-8	250 µg/kg	92.4	(4444)	50	130	1.000	20
		Indeno(1.2.3.cd)pyrene	193-39-5	250 µg/kg	85.7		50	130		20
		Dibenz(a.h)anthracene	53-70-3	250 µg/kg	84.5		50	130		20

Page Number 13 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771166

Matrix: SOIL					Alab	br Spike (MS) and Mat	tx Spike Duplicate	(MSD) Report		
				Spike	Splike R	000 Wary (%)	Recovery	Limita (%)	RPC	0 (%)
Lebanetary	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Contro
sample ID										Limit
EP-076HK: Poly	cyclic Aromatic Hydrocarbons (PAHs)	QC Lot: 1176353) - Continued								
HK1771166-003	AEBH2-1.5M	Benzo(g.h.i)perylene	191-24-2	250 µg/kg	71.5	****	50	130		20
EP-076HK: Pher	ol, Hexachlorobenzene and Bis(2-ethyl	havy)) Phthalate (OC Lot: 1176353)								
HK1771166-003	AEBH2-1.5M	Phenol	108-95-2	250 µg/kg	91.4		50	130		20
		Hexachiorobenzene (HCB)	118-74-1	250 µg/kg	85.8		50	130		20
		Bie(2-ofhythoxyl)phthelate	117-81-7	250 µg/kg	120		50	130		20
FP_071HK SR-1	Total Petroleum Hydrocarbons (TPH) (10.5 E						
HK1771166-002	AEBH2-0.5M-DUP	C9 - C16 Fraction		31.5 mg/kg	95.8		50	130		20
		C17 - C35 Fraction		67.5 mg/kg	84.0		50	130		20
ED 074UK OD	Tatal Datalaum Lindersachana (TDL) (
HK1771166-002	Total Petroleum Hydrocarbons (TPH) (AEBH2-0.5M-DUP	C6 - C8 Fraction		4.5 mg/kg	92.9		50	130		20
				4.5 mg/kg	92.9		50	150		20
In the second second second	Ionocyclic Aromatic Hydrocarbons (MA)		72777-227-23		1000.00		-			
K1771166-003	AEBH2-1.5M	Benzene	71-43-2	0.25 mg/kg	87.7		50	130		20
		Toluene	108-88-3	0.25 mg/kg	90.9	1.555	50	130	1000	20
		Ethylbenzene	100-41-4	0.25 mg/kg	102		50	130		20
		meta- & para-Xylene	108-38-3	0.5 mg/kg	106		50	130		20
			106-42-3 100-42-5	0.25 malka	92.2		50	130		20
		Styrene	95-47-6	0.25 mg/kg 0.25 mg/kg	97.2		50	130		20
		ortho-Xylene	90-47-0	0.75 mg/kg	124		50	130		20
		Xylenes (Total)		0.70 mg/kg	124		00	100		20
	xygenated Compounds (QC Lot: 1176	Service Section of the sector	V22272-0-20	22.21.11.12.11	12.21					
HK1771166-003	AEBH2-1.5M	2-Propenone (Acetone)	67-64-1	2.5 mg/kg	108	1	50 50	130 130		20 20
		2-Butanone (MEK)	78-93-3	2.5 mg/kg	98.8		50	130		20
EP-074_SR-E: H	alogenated Aliphatics (QC Lot: 11763	63)								
HK1771166-003	AEBH2-1.5M	Methylene chloride	75-09-2	0.25 mg/kg	90.8	1.000	50	130		20
		Trichloroethene	79-01-6	0.25 mg/kg	89.0	2	50	130		20
		Tetrachloroethene	127-18-4	0.25 mg/kg	85.2		50	130		20
EP-074_SR-G: 1	rihalomethanes (THM) (QC Lot: 1176	363)								
HK1771166-003	AEBH2-1.5M	Chloroform	67-66-3	0.25 mg/kg	88.2	3 0020	50	130		20
		Bromodichloromethane	75-27-4	0.25 mg/kg	95.3		50	130		20
EP-074_SR-I: M	sthyl-tert-butyl Ether (QC Lot: 1176363	3)								
HK1771166-003	AEBH2-1.5M	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.25 mg/kg	88.8		50	130	****	20

Surrogate Control Limits

Sub-Matrix: SOIL

Recovery Limite (%)

Page Number 14 of 14 Client INTRAFOR HONG KONG LIMITED Work Order HK1771168

ub-Matrix: SOIL		Recovery	Jenita (%)
Compound	GAS Number	Low	High
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates			
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-080_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethene	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
ub-Matrix: WATER		Recovery	Limile (%)
Compound	GAS Number	LOW	High
EP-074_SR-S: VOC Surrogetse			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofiuorobenzene	460-00-4	86	115

-

Report No: HK1772073

.

1.9

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

			CERTIFICATE OF ANALYSIS		
Sent Contact	INTRAFOR HONG KONG LIMITED	Laboratory Contact	: ALS Technichem (HK) Pty Ltd : Ivan Leung	Page Work Order	¹ of 18 HK1772073
dress	⁵ 20/F, EIGHT COMMERCIAL TOWER, 8 SUN YIP STREET, CHAI WAN, HONG KONG	Address	¹ 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwal Chung, N.T., Hong Kong		
mail	[:] Terri.tang@vsl-intrafor.com	E-mail	ivan.leung@alsglobal.com		
lephone	:	Telephone	26101044		
simile	÷ 25916139	Facsimile	+852 2610 2021		
iject	CUTLINE AGREEMENT NO. 460006651 FOR 2-YEAR OUTLINE AGREEMENT FOR SITE INVESTIGATION WORKS FOR EXISTING/PROSPECTIVE SITES OF CLP POWER'S PREMISES (2017-2019)	Quote number	[:] HKE/1156/2017	Date Samples Received	: 19-Oct-2017
ler number	:_			Issue Date	: 02-Nov-2017
-C number	÷ H035802			No. of samples received	: 5
,	·			No. of samples analysed	: 5

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 068) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Anh Ngọc Huynh .	Senior Chemist	Organica	
Chan Ka Yu , Karen	Manager - Organica	Organice	
Chan Siu Ming , Vico	Manager - Inorganica	Inorganica	
Leung Chak Cheong , Mike	Senior Chemiet	Motale	

ALS Technichem (HK) Pty Ltd

Pato the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

Page Number	:	2 of 18
Client	1	INTRAFOR HONG KONG LIMITED
Work Order		HK1772073

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 19-Oct-2017 to 02-Nov-2017.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1772073

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Soil sample(s) analysed on an as received basis. Result(s) reported on dry weight basis.

Water sample(s) were filtered prior to dissolved metal analysis.

Soil sample(s) as received, digested by In-house method E-ASTM D3974-09 prior to determination of metals. The In-house method is developed based on ASTM D3974-09 method.

Particular samples required dilution prior to PAH analysis due to matrix interference. Surrogate recoveries are not reported.

.

Page Number 3 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

Sub-Matrix: SOIL			Client sample ID	TP1-0.5M	TP1-1.5M			-
		Client	sanpling date / time	19-Oct-2017	19-Oct-2017			
Compound	CAS Number	LOR	Unit	HK1772073-001	HK1772073-002			
EA/ED: Physical and Aggregate Properties		10						
EA055: Moisture Content (dried @		0.1	*	29.5	13.7	—		-
103°C)								
G: Motals and Major Cations								
EG020: Antimony	7440-36-0	1	mg/kg	2	<1	-	-	_
EG020: Arsenic	7440-38-2	3	mg/kg	12	6	—	-	
EG020: Barium	7440-39-3	1.0	mg/kg	1440	290		-	
EG020: Cadmium	7440-43-9	0.2	mg/kg	0.4	0.2	-		-
EG020: Cobait	7440-48-4	1.0	mg/kg	5	11	-	-	
EG020: Copper	7440-50-8	1	mg/kg	22	13	-	—	-
EG020: Lead	7439-92-1	1	mg/kg	11	36	-		-
EG020: Manganese	7439-96-5	1.0	mg/kg	139	275	_		_
EG020: Morcury	7439-97-6	0.05	mg/kg	0.17	0.18	-	—	-
EG020: Molybdenum	7439-98-7	,	mg/kg	5	4	-	-	-
EG020: Nickel	7440-02-0	1	mg/kg	8	21	_	-	
EG020: Tin	7440-31-5	1.0	mg/kg	3	4	-	-	
EG020: Zinc	7440-66-6	1	mg/kg	32	45	-	-	
EG049: Trivalent Chromium	16065-83-1	1.0	mg/kg	28.5	34.2	-		(
EG3060: Hexavalent Chromium	18540-29-9	1.0	mg/kg	1.8	<1.0	-		
P-076HK: Polycyclic Aromatic Hydrocarbons (PAHs)								
EP076HK: Nephthelene	91-20-3	0.500	mg/kg	<0.500	<0.500	_		
EP078HK: Acenaphthylene	208-96-8	0.500	mg/kg	<0.500	<0.500	-	-	
EP076HK: Acenaphthene	83-32-9	0.500	mg/kg	<0.500	<0.500	_	-	
EP076HK: Fluorene	86-73-7	0.500	mg/kg	<0.500	<0.500	-	-	-
EP076HK: Phonanthrone	85-01-8	0.500	mg/kg	<0.500	<0.500	—	-	
EP076HK: Anthracene	120-12-7	0.500	mg/kg	<0.500	<0.500	-	-	
EP076HK: Fluoranthene	206-44-0	0.500	mg/kg	<0.500	<0.500	_	_	
EP076HK: Pyrana	129-00-0	0.500	mg/kg	<0.500	<0.500	_	·	<u></u>
EP076HK: Benz(a)anthracene	56-55-3	0.500	mg/kg	<0.500	<0.500	-	-	
EP076HK: Chrysene	218-01-9	0.500	mg/kg	<0.500	<0.500		-	
EP076HK: Benzo(b)fluoranthene	205-99-2	0,500	mg/kg	<0.500	<0.500	-	13 <u></u>	-
EP076HK: Benzo(k)suoranshene	207-08-9	0.500	mg/kg	<0.500	<0.500	-		-
EP076HK: Benzo(a)pyrene	50-32-8	0.500	mg/kg	<0.500	<0.500			
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	0.500	mg/kg	<0.500	<0.500		_	-
EP076HK: Dibenz(a.h)anthracene	53-70-3	0 500	mg/kg	<0.500	<0.500	-	_	
EP076HK: Benzo(g.h.)perylene	191-24-2	0.500	mg/kg	<0.500	<0.500			

Page Number 4 of 18 Client INTRAFOR HONG KONG LIMITED

Work Order HK1772073

Sub-Matrix: SOIL			Client sample ID	TP1-0.5M	TP1-1.5M	—		
		Clien	t sampling date / time	19-Oct-2017	19-Oct-2017			
Conpound	CAS Number	LOR	Unit	HK1772073-001	HK1772073-002			
EP-076HK: Phenol, Hexachlorobenzene and Bie(2-ethylhexa	i) Phthelate - Contin	beu						
EP076HK: Phenol	108-95-2	0.50	mg/kg	<0.50	<0.50			
EP076HK: Hexachlorobenzene	118-74-1	0.200	mg/kg	<0.200	<0.200	_	_	_
(HCB)								
ЕР076НК:	117-81-7	5.00	mg/kg	<5.00	<5.00	-		_
Bis(2-ethylhexyl)phthalate								
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH)								
EP070HK_SR: C6 - C8 Fraction		5	mg/kg	<5	<5	-		-
EP071HK_SR: C9 - C16 Fraction	- <u>11-11</u>	200	mg/kg	<200	<200	-	<u>—</u>	
EP071HK_SR: C17 - C35 Fraction	4774-5	500	mg/kg	<500	<500	-	<u> </u>	-
EP-074_SR-A: Monocyclic Aromatic Hydrocerbone (MAH)								
EP074_SR: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	-	-	
EP074_SR: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	_	_	-
EP074_SR: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	-	_	_
EP074_SR: meta- & para-Xylene	108-38-3	1.0	mg/kg	<1.0	<1.0		_	_
	106-42-3		1.111					
EP074_SR: Styrane	100-42-5	0.5	malka	<0.5	<0.5	-		1
EP074_SR: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		-	_
EP074_SR: Xylenes (Total)		2.0	mg/kg	<2.0	<2.0			—
EP-074_SR-B: Oxygeneted Compounds								
EP074_SR: 2-Propanone (Acatone)	67-64-1	50	mg/kg	<50	<50	-	—	
EP074_SR: 2-Butanone (MEK)	78-93-3	5	mg/kg	<5	<5			—
EP-074_SR-E: Halogonated Aliphatics								
EP074_SR: Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	-		
EP074_SR: Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1		a the second	
EP074_SR: Tetrachloroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	-	—	
EP-074_SR-G: Trihelomethenes (THM)								
EP074_SR: Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	, _	—	-
EP074_SR: Bromodichloromethane	75-27-4	0.1	* mg/kg	<0.1	<0.1	÷		
EP-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether	1634-04-4	0.5	mg/kg	<0.5	<0.5		-	—
(MTBE)								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrog	ates							
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	x	85.5	85.0	— — — — — — — — — — — — — — — — — — —	-	_
EP076HK: 4-Terphenyl-d14	1718-51-0	0.1	×	Not Determined	Not Determined		-	-
EP-080_SRS: TPH(Volatile)/BTEX Surrogate								
EP070HK_SR:	1868-53-7	0.1	%	89.9	92.0	-	-	—
Dibromofluoromethane								
EP070HK_SR: Toluene-D8	2037-26-5	0.1	*	100	100	_	—	3

Page Number 5 of 18 Client INTRAFOR HONG KONG LIMITED HK1772073

......

Work Order -

--

Sub-Matrix: SOIL		Client	Client sample ID sampling date / time	TP1-0.5M 19-Oct-2017	TP1-1.5M 19-Oct-2017	_	<u> </u>	_
Conpound.	CAS Number	LOR	Unit	HK1772073-001	HK1772073-002			
EP-080_SRS: TPH(Volatile)/BTEX Surrogate - Continued								
EP070HK_SR:	460-00-4	0.1	*	103	104	—	-	
4-Bromolluorobenzene								
EP-074_SR-S: VOC Surrogates								
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	*	89.9	92.0	-	-	-
EP074_SR: Toluene-D8	2037-26-5	0,1	*	100	100		-	-
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	*	103	104	_	_	

Page Number 6 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

-

Sub-Matrix: WATER			Client sample ID	Equipment Blank	Field Blank	Trip Blank	-	
		Client	sampling date / time	19-Oct-2017	19-Oct-2017	19-Oct-2017		
Compound	CAS Number	LOR	Unit	HK1772073-003	HK1772073-004	HK1772073-005		
EG: Metals and Major Cations - Filtered								
EG020: Antimony	7440-36-0	,	Hg/L	<1	<1		-	
EG020: Amenic	7440-38-2	10	µg/L	<10	<10			-
EG020: Barium	7440-39-3	1	HB/L	<1	<1	-	-	
EG020: Cedmium	7440-43-9	0.2	up/L.	<0.2	<0.2		-	_
EG020: Cobalt	7440-48-4	1	Hall	<1	<1	—	-	_
EG020: Copper	7440-50-8	1	hðyr.	<1	<1			—
EG020: Lead	7439-92-1	1	havr.	<1	<1			
EG020: Manganese	7439-96-5	1	hðyr.	<1	<1	-	-	—
EG020: Mercury	7439-97-6	0.5	Ha/L	<0.5	<0.5	-		
EG020: Molybdenum	7439-98-7	1	µg/L	<1	<1			
EG020: Nickel	7440-02-0	1	µg/L	<1	<1	6 0		
EG020: Tin	7440-31-5	1	µg/L	<1	<1	 .	-	—
EG020: Zinc	7440-66-6	10	μg/L	<10	<10			_
EG049: Trivalent Chromium	16065-83-1	20	иg/L	<20	<20	—	-	
EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	<20	-	—	_
P-076HK: Polycyclic Aromatic Hydrocarbons (PAHs)								
EP076HK: Naphthalene	91-20-3	2.0	Pg/L	—	<2.0	(<u>1-1)</u>		
EP076HK: Aconaphthylene	208-96-8	2.0	hð/L		<2.0		<u></u>	<u> 19 9</u>
EP076HK: Acenaphthene	83-32-9	2.0	ug/L	-	<2.0	-	-	
EP076HK: Fluorene	86-73-7	2.0	µg/L	—	<2.0	<u></u> /	- <u></u> -	_
EP076HK: Phenanthrene	85-01-8	2.0	µg/L	-	<2.0	(<u></u>)		
EP076HK: Anthracene	120-12-7	2.0	µg/L	(<u></u>)	<2.0	<u> </u>	_	—
EP076HK: Fluoranthene	206-44-0	2.0	µg/L	_	<2.0	-	(<u></u>)	—
EP076HK: Pyrana	129-00-0	2.0	HB/L		<2.0	-	-	—
EP076HK: Benz(a)enthracene	56-55-3	2.0	µg/L	_	<2.0		-	
EP076HK: Chrysene	218-01-9	1.0	µg/L	_	<1.0	-	-	—
EP076HK: Benzo(b)fluoranthene	205-99-2	1.0	μg/L	—	<1.0	-	-	-
EP076HK: Benzo(k)fluoranthene	207-08-9	2.0	ug/L	-	<2.0	-	-	1
EP076HK: Benzo(a)pyrene	50-32-8	2.0	µg/L	—	<2.0	-		
EP076HK: Indeno(1.2.3.cd)pyrene	193-39-5	2.0	µg/L	—	<2.0	-	-	_
EP076HK: Dibenz(a.h)anthracene	53-70-3	2.0	ha/L	-	<2.0	-	-	—
EP076HK: Benzo(g.h.i)perylene	191-24-2	2.0	ug/L	—	<2.0	-	-	
EP-076HK: Phenol, Hexachlorobenzene and Bis(2-ethylhexy	() Phihalate							
EP076HK: Phenol	108-95-2	2.0	µg/L	-	<2.0	—	-	_
EP076HK: Hexachlorobenzene	118-74-1	4.0	HO/L	_	<4.0	_	_	_

Page Number 7 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

Sub-Matrix: WATER			Client sample ID	Equipment Blank	Field Blank	Trip Blank	_	_
		Clien	I sampling date / time	19-Oct-2017	19-Oct-2017	19-Oct-2017		
Compound	CAS Number	LOR	Unit	HK1772073-003	HK1772073-004	HK1772073-005		
EP-076HK: Phenol, Hexachlorobenzene and Bis(2-sthylhexyl) Phil	halate - Contin	ued						
EP076HK:	117-81-7	20.0	Ha/L		<20.0			
Bis(2-ethylhoxyl)phthalate								
EP-071HK_SR: Total Petroleum Hydrocarbone (TPH)								
EP070HK_SR: C6 - C8 Fraction	100	20	µg/L	<u></u>	<20	_		
EP071HK_SR: C9 - C16 Fraction	1000	500	µg/L		<500			_
EP071HK_SR: C17 - C35 Fraction		500	µg/L	_	<500	7		
P-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)								
EP074_SR: Benzene	71-43-2	5.0	µg/L	-	<5.0	<5.0		_
EP074_SR: Toluene	108-88-3	5.0	µg/L		<5.0	<5.0		
EP074_SR: Ethylbenzene	100-41-4	5.0	µg/L		<5.0	<5.0		
EP074_SR: meta- & pana-Xylene	108-38-3	10	µg/L		<10	<10	-	_
	106-42-3 100-42-5	5.0						
EP074_SR: Styrene	95-47-6	5.0	ug/L	-	<5.0	<5.0	—	
EP074_SR: ortho-Xylene		20	ից/է	-	<5.0	<5.0	—	
EP074_SR: Xylenes (Total)		20	hhir.	_	<20	<20	_	-
P-074_SR-B: Oxygenated Compounds		500				the second s		
EP074_SR: 2-Propenone (Acetone)	67-64-1 78-93-3	500	µg/L µg/L		<500	<500		_
EP074_SR: 2-Butanone (MEK)	78-93-3	50	pg/L		<50	<50	-	-
EP-074_SR-E: Halogenated Aliphatice	20200							
EP074_SR: Methylene chloride	75-09-2	50	ug/L	1	<50	<50	-	
EP074_SR: Trichloroethene	79-01-6	5.0	µg/L		<5.0	<5.0	-	_
EP074_SR: Tetrachloroethene	127-18-4	5.0	µg/L	—	<5.0	<5.0		-
EP-074_SR-G: Trihalomethanes (THM)								
EP074_SR: Chloroform	67-66-3	5.0	μg/L		<5.0	<5.0	<u>→</u> _2	—
EP074_SR: Bromodichloromethane	75-27-4	5.0	μg/L		<5.0	<5.0		-
P-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether	1634-04-4	5.0	µg/L		<5.0	<5.0		—
(MTBE)								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates								
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	*	-	50.8	s -		
EP076HK: 4-Terphonyl-d14	1718-51-0	0.1	*		70.4	· · · · · · · · · · · · · · · · · · ·		
EP-080_SRS: TPH(Volatile)/BTEX Surrogate								
EP070HK_SR:	1868-53-7	0.1	×		108	-	 92	-
Dibromofluoromethene								
EP070HK_SR: Toluane-D8	2037-26-5	0.1	*		101	-	 .	—
EP070HK_SR:	460-00-4	0.1	*	10 - 10 - 1 0	110	-		-
4-Bromofluorobenzene								
EP-074_SR-S: VOC Surrogates								

Page Number : 8 of 18 Client : INTRAFOR HONG KONG LIMITED Work Order HK1772073

÷

.

Sub-Matrix: WATER			Client sample ID	Equipment Blank	Field Blank	Trip Blank		-
		Client	sampling date / time	19-Oct-2017	19-Oct-2017	19-Oct-2017		
Compound	CAS Number	LOR	Unit	HK1772073-003	HK1772073-004	HK1772073-005		
EP-074_SR-S: VOC Surrogetee - Continued								
EP074_SR: Dibromofluoromethane	1868-53-7	0.1	*	_	108	110	-	-
EP074_SR: Toluene-D8	2037-26-5	0.1	*		101	103	_	_
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	×	_	110	111	-	-

Page Number : 9 of 18 Client : INTRAFOR HONG KONG LIMITED Work Order HK1772073

Laboratory Duplicate (DUP) Report

atrix: SOIL						Laboratory Duplicale (DUP) Report	1	
Leborelory sample ID	Client eenpie ID	Method: Compound	GAS Number	LOR	Unit	Original Result	Duplicale Result	RPD (%)
A/ED: Physical and	Aggregate Properties (QC L	ot: 1198422)						
HK1772073-001	TP1-0.5M	EA055: Moisture Content (dried @		0.1	%	29.5	29.5	0.00
		103°C)						
EG: Metals and Major	Cations (QC Lot: 1189815)							
HK1772073-002	TP1-1.5M	EG3060: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	0.00
G: Metals and Major	Cations (QC Lot: 1189816)	and the set of the transfer and the set of the set of the set of the set of the set						
HK1772073-002	TP1-1.5M	EG020: Mercury	7439-97-6	0.05	mg/kg	0.18	0.20	9.31
		EG020: Cadmium	7440-43-9	0.2	mg/kg	0.2	0.2	0.00
		EG020: Barium	7440-39-3	0.5	mg/kg	290	302	4.11
		EG020: Cobalt	7440-48-4	0.5	mg/kg	11	13	14.9
		EG020: Manganese	7439-96-5	0.5	mg/kg	275	270	1.97
		EG020: Tin	7440-31-5	0.5	mg/kg	4	5	6.13
		EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	0.00
		EG020: Amenic	7440-38-2	1	mg/kg	6	7	15.9
		EG020: Copper	7440-50-8	1	mg/kg	13	14	7.44
		EG020: Lead	7439-92-1	1	mg/kg	36	38	4.72
		EG020: Molybdenum	7439-98-7	1	mg/kg	4	3	0.00
		EG020: Nickel	7440-02-0	1	mg/kg	21	24	13.6
		EG020: Zinc	7440-66-6	1	mg/kg	45	51	11.6
EP-076HK: Polycyclic	Aromatic Hydrocarbons (PA	Hs) (QC Lot: 1188056)						
HK1772073-001	TP1-0.5M	Naphthalene	91-20-3	50	µg/kg	<0.500 mg/kg	<500	0.00
		Acenaphthylene	208-96-8	50	µg/kg	<0.500 mg/kg	<500	0.00
		Aconaphthone	83-32-9	50	hð\kg	<0.500 mg/kg	<500	0.00
		Fluorene	86-73-7	50	µg/kg	<0.500 mg/kg	<500	0.00
		Phenanthrene	85-01-8	50	hð\kð	<0.500 mg/kg	<500	0.00
		Anthracene	120-12-7	50	µg/kg	<0.500 mg/kg	<500	0.00
		Fluoranthene	206-44-0	50	µg/kg	<0.500 mg/kg	<500	0.00
		Рутеле	129-00-0	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benz(a)anthracene	56-55-3	50	µg/kg	<0.500 mg/kg	<500	0.00
		Chrysens	218-01-9	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(b)fluoranthene	205-99-2	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(k)iluonanthene	207-08-9	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(a)pyrene	50-32-8	50	µg/kg	<0.500 mg/kg	<500	0.00
		Indeno(1.2.3.cd)pyrene	193-39-5	50	µg/kg	<0.500 mg/kg	<500	0.00
		Dibenz(a.h)anthracene	53-70-3	50	µg/kg	<0.500 mg/kg	<500	0.00
		Benzo(g.h.l)perylene	191-24-2	50	µg/kg	<0.500 mg/kg	<500	0.00


0

Page Number 10 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

atrix: SOIL						Lebanatory Dupilosle (DUP) Repo	1	
Laboratory aumple ID	Client semple ID	Multod: Compound	GAS Number	LOR	Unit	Original Result	Duplicale Result	APD (%)
EP-076HK: Phenol, H	lexachlorobenzene and Bis(2-	-ethylhexyl) Phthalate (QC Lot: 1188056) - Continued						
HK1772073-001	TP1-0.5M	Bia(2-ofhythexyl)phthalate	117-81-7	1000	have	<5.00 mg/kg	<5000	0.00
		Hexachiorobenzene (HCB)	118-74-1	50	have	<0.200 mg/kg	<200	0.00
		Phenol	108-95-2	500	have	<0.50 mg/kg	<500	0.00
EP-071HK_SR: Total	Petroleum Hydrocarbons (TP	2H) (QC Lot: 1188055)						
HK1772073-001	TP1-0.5M	C9 - C16 Fraction		200	mg/kg	<200	<200	0.00
		C17 - C35 Fraction		500	mg/kg	<500	<500	0.00
EP-071HK_SR: Total	Petroleum Hydrocarbons (TP	2H) (QC Lot: 1188064)						
HK1772073-001	TP1-0.5M	C6 - C8 Fraction		5	mg/kg	<5	<5	0.00
EP-074 SR-A: Monoc	cyclic Aromatic Hydrocarbons	(MAH) (OC Lot: 1188063)						
HK1772073-001	TP1-0.5M	Benzene	71-43-2	0.1	mg/kg	<0.2	<0.2	0.00
		Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	0.00
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.5	<0.5	0.00
		Styrene	100-42-5	0.2	mg/kg	<0.5	<0.5	0.00
		ortho-Xylene	95-47-6	0.2	mg/kg	<0.5	<0.5	0.00
		mete- & pere-Xylene	108-38-3	0.4	mg/kg	<1.0	<1.0	0.00
			106-42-3					
		Xylenee (Total)		1	mg/kg	<2.0	<2.0	0.00
EP-074 SR-B: Oxyoe	nated Compounds (QC Lot:	1188063)						
HK1772073-001	TP1-0.5M	2-Propanone (Acetone)	67-64-1	2	mg/kg	<50	<50	0.00
		2-Butanone (MEK)	78-93-3	2	mg/kg	<5	<5	0.00
EP-074 SR-E: Haloo	enated Aliphatics (QC Lot: 1	166063)						
HK1772073-001	TP1-0.5M	Tetrachioroethene	127-18-4	0.04	mg/kg	<0.04	<0.04	0.00
		Trichloroethene	79-01-6	0.1	mg/kg	<0.1	<0.1	0.00
		Methylene chloride	75-09-2	0.5	mg/kg	<0.5	<0.5	0.00
FP-074 SR-G. Tribal	omethanes (THM) (QC Lot:							
HK1772073-001	TP1-0.5M	Chloroform	67-66-3	0.04	mg/kg	<0.04	<0.04	0.00
		Bromodichloromethane	75-27-4	0.1	mg/kg	<0.1	<0.1	0.00
EP.074 SP.J. Mathad	tert-butyl Ether (QC Lot: 11							
HK1772073-001	TP1-0.5M	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.2	mg/kg	<0.5	<0.5	0.00
		mouti michayi cani (MIDE)	1004-04-4	V.4.		Laboratory Duplicate (DUP) Repo		
atrix: WATER	Client sample ID		CAS Number	LOR	Unit	Original Result	Duplicate Result	
		Method: Compound			UR	Configuration (changes)	Logando Marta	APD (%)
in a state of the	r Cations - Flitered (QC Lot:	and the second	and the second second	12127	0.000000			
HK1772025-001	Anonymous	EG020: Cadmium	7440-43-9	0.2	hav	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	hât	<0.5	<0.5	0.00
		EG020: Antimony	7440-36-0	1	hdv	<1	<1	0.00
		EG020: Berium	7440-39-3	1	hav	70	67	4.83
		EG020: Cobalt	7440-48-4	1	hð\r	18	16	13.5

Page Number 11 of 18 Client HK1772073

Work Order

latrix: WATER						Lebanelary Dupikusle (DUP) Repa	1	
Laboratory anypia ID	Gliant aemple ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicale Result	APD (%)
G: Metals and Majo	r Cations - Filtered (QC Lot:	1188058) - Continued						
HK1772025-001	Anonymous	EG020: Copper	7440-50-8	1	µg/L	<1	<1	0.00
		EG020: Lead	7439-92-1	1	µg/L	<1	<1	0.00
		EG020: Manganese	7439-96-5	1	µg/L	4270	3650	15.6
		EG020: Molybdenum	7439-98-7	1	µg/L	<1	<1	0.00
		EG020: Nickel	7440-02-0	1	µg/L	2	2	0.00
		EG020: Tin	7440-31-5	1	µg/L	<1	<1	0.00
		EG020: Amenic	7440-38-2	10	µg/L	<10	<10	0.00
IK1772041-001	Anonymous	EG020: Cadmium	7440-43-9	0.2	µg/L	<0.2	<0.2	0.00
		EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	<0.5	0.00
		EG020: Antimony	7440-36-0	1	µg/L	2	2	0.00
		EG020: Barium	7440-39-3	1	µg/L	168	162	3.41
		EG020: Cobalt	7440-48-4	1	µg/L	<1	<1	0.00
		EG020: Copper	7440-50-8	1	µg/L	<1	<1	0.00
		EG020: Lond	7439-92-1	1	µg/L	<1	<1	0.00
		EG020: Manganese	7439-96-5	1	µg/L	57	57	0.00
		EG020: Molybdenum	7439-98-7	1	µg/L	61	56	8.47
		EG020: Nickel	7440-02-0	1	µg/L	1	2	0.00
		EG020: Tin	7440-31-5	1	µg/L	<1	<1	0.00
		EG020: Amenic	7440-38-2	10	hð\r	<10	<10	0.00
		EG020: Zinc	7440-66-6	10	µg/L	<10	<10	0.00
G: Metals and Majo	r Cations - Filtered (QC Lot:	1188059)						
HK1772025-001	Anonymous	EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	<20	0.00
HK1772043-001	Anonymous	EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	<20	0.00

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL			Mulhod Blank (MB) R	leport		Laboratory Caninal Spillar (LCS) and Laboratory Control Spilla Duplicate (DCS) Report						
					Spike	Spike Alec	avery (%)	Recovery	Limita (%)	A	40 (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentralion	LCS	DCS	Low	High	Vakre	Control Limit	
EG: Metals and Major Cations (QC Lot: 1189815)												
EG3060: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	2.5 mg/kg	108		85	115	****	1000	
EG: Metais and Major Cations (QC Lot: 1189816)												
EG020: Antimony	7440-36-0	1	mg/kg	<1	5 mg/kg	102	1222	85	115	2222	<u></u>	
EG020: Ansenic	7440-38-2	1	mg/kg	<1	5 mg/kg	98.6		85	115	6000		
EG020: Barium	7440-39-3	0.5	mg/kg	<0.5	5 mg/kg	91.2		85	115		1000	
EG020: Cedmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	105		85	115			
EG020: Cobalt	7440-48-4	0.5	mg/kg	<0.5	5 mg/kg	105		85	115		5000 (
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	102		85	115			
EG020: Load	7439-92-1	1	mg/kg	<1	5 mg/kg	101		85	115			

Page Number 12 of 18

Client INTRAFOR HONG KONG LIMITED

Work Order HK1772073

atrix: SOIL			Mathod Blank (MB) F	lepont		Laborato	ny Quninal Spiller (LCS) and Lab	onalary Control Spiller	Ouplicate (DCS) Rep	at .	
					Spike	Spike Aec	overy (%)	Recovery	Limits (%)	R	40 (%)
Multiod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EG: Metals and Major Cations (QC Lot: 118981	6) - Continued										
EG020: Manganese	7439-96-5	0.5	mg/kg	<0.5	5 mg/kg	105		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	101		85	115		
EG020: Molybdenum	7439-98-7	1	mg/kg	<1	5 mg/kg	98.0	2000	85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	100	0000	85	115		
EG020: Tin	7440-31-5	0.5	mg/kg	<0.5	5 mg/kg	99.2		85	115		
EG020: Zine	7440-66-6	1	mg/kg	<1	5 mg/kg	102		85	115		
P-076HK: Polycyclic Aromatic Hydrocarbons (F	PAHs) (QC Lot: 1188058)										
lephthelene	91-20-3	50	µg/kg	<50	25 µg/kg	75.3		63	101	(anter)	
Aconaphthylone	208-96-8	50	µg/kg	<50	25 µg/kg	66.2		40	103		
Aconsphthene	83-32-9	50	µg/kg	<50	25 µg/kg	73.5	1077	56	101		
Fluorene	86-73-7	50	µg/kg	<50	25 µg/kg	80.0		61	107		
Phenanthrene	85-01-8	50	µg/kg	<50	25 µg/kg	77.3		68	98		
Anthracene	120-12-7	50	µg/kg	<50	25 µg/kg	62.7		42	88		
Fuoranthene	206-44-0	50	µg/kg	<50	25 µg/kg	78.8		59	112		
yrane	129-00-0	50	µg/kg	<50	25 µg/kg	76.2		55	111		
Senz(e)anthracene	56-55-3	50	µg/kg	<50	25 µg/kg	71.3		58	106		
Chrysene	218-01-9	50	µg/kg	<50	25 µg/kg	83.3		71	108		
Senzo(b)fluoranthene	205-99-2	50	µg/kg	<50	25 µg/kg	114		55	122		
Benzo(k)fluoranthene	207-08-9	50	µg/kg	<50	25 µg/kg	82.4		53	114		****
Senzo(a)pyrene	50-32-8	50	µg/kg	<50	25 µg/kg	63.6		31	100		3000
ndeno(1.2.3.cd)pyrene	193-39-5	50	µg/kg	<50	25 µg/kg	72.7		45	126		्रत्वत
Dibenz(a.h)anthracene	53-70-3	50	µg/kg	<50	25 µg/kg	74.6		40	129		10000
Benzo(g.h.i)perylene	191-24-2	50	µg/kg	<50	25 µg/kg	67.6		43	131		
P-076HK: Phenol, Hexachlorobenzene and Bis	(2-ethylhexyl) Phthalate (QC	Lot: 118805	56)								
Phenol	108-95-2	500	µg/kg	<500	25 µg/kg	85.0		49	100		
Hexachiorobenzene (HCB)	118-74-1	50	µg/kg	<50	25 µg/kg	77.5	****	68	110		
Bie(2-efhythexyl)phthelate	117-81-7	1000	µg/kg	<1000	25 µg/kg	113		103	121		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1188055)										
C9 - C16 Fraction		200	mg/kg	<200	31.5 mg/kg	91.0		62	128		
C17 - C35 Fraction		500	mg/kg	<500	67.5 mg/kg	98.1		55	115		
P-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lot: 1188064)										
C6 - C8 Fraction		5	mg/kg	<5	4.5 mg/kg	92.6		75	121		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbo	ns (MAH) (QC Lot: 1189083	3									
Benzene	71-43-2	0.1	mg/kg	<0.1	0.25 mg/kg	86.9		72	115		
Toluene	108-88-3	0.2	mg/kg	<0.2	0.25 mg/kg	89.2		76	125		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.25 mg/kg	108		73	125		

Page Number 13 of 18 Client INTRAFOR HONG KONG LIMITED

-

-

Work Order HK1772073

latrix: SOIL			Mathod Blank (MB) R	port		Laborate	ry Control Splite (LCS) and Lab	tonalory Control Spille	Duplicate (DCS) Rapo	rt	
					Spla	Spila An	covery (%)	Alecovery	Limits (%)	A	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Qonoentration	LCS	DCS	Low	High	Value	Control Limit
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)	QC Lot: 1188063) - Continue	d								
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.5 mg/kg	110		79	117		
	106-42-3										
Styrene	100-42-5	0.2	mg/kg	<0.2	0.25 mg/kg	99.9		72	126		****
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.25 mg/kg	100		74	126		
Xylenes (Total)	2000 - C	1	mg/kg	<1.0	0.75 mg/kg	107	****	79	119	****	
P-074_SR-B: Oxygenated Compounds (QC Lot: 1188063	3)										
2-Propanone (Acetone)	67-64-1	2	mg/kg	<2	2.5 mg/kg	95.4	-	79	119		
-Butanone (MEK)	78-93-3	2	mg/kg	<2	2.5 mg/kg	87.7		80	115		
P-074_SR-E: Halogenated Aliphatics (QC Lot: 1188063)											
Methylene chloride	75-09-2	0.5	mg/kg	<0.5	0.25 mg/kg	106		75	123		
Irichloroethene	79-01-6	0.1	mg/kg	<0.1	0.25 mg/kg	99.7		78	119		
Fernichloroethene	127-18-4	0.04	mg/kg	<0.04	0.25 mg/kg	96.2		77	120		
EP-074_SR-G: Trihalomethanes (THM) (QC Lot: 1188063)											
hioroform	67-66-3	0.04	mg/kg	<0.04	0.25 mg/kg	94.3		75	121		
Bromodichloromathene	75-27-4	0.1	mg/kg	<0.1	0.25 mg/kg	88.2		73	123		
P-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 1188063)	1634-04-4	0.2	mg/kg	<0.2	0.25 mg/kg	86.0		68	119		
Methyl tert-Butyl Ether (MTBE)	1034-04-4	0.2			0.25 mg/kg						
atrix: WATER			Mathod Blank (MD) A	aport .	12.34536		ory Control Spiller (LCS) and La				
					Splice Concentration	100 million (100 m	oovery (%)		Limits (%)		PD (%)
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Lim
G: Metals and Major Cations - Filtered (QC Lot: 1188058)										
EG020: Antimony	7440-36-0	1	µg/L	<1	100 µg/L	101		75	107		
EG020: Amenic	7440-38-2	10	µg/L	<10	100 µg/L	96.0		77	109		
EG020: Barium	7440-39-3	1	µg/L	<1	100 µg/L	99.9		79	109	2222	
EG020: Cedmium	7440-43-9	0.2	µg/L	<0.2	100 µg/L	102		79	109		
EG020: Cobalt	7440-48-4	1	µg/L	<1	100 µg/L	92.2		78	106		
EG020: Copper	7440-50-8	1	µg/L	<1	100 µg/L	104		79	107	****	****
EG020: Lead	7439-92-1	1	µg/L	<1	100 µg/L	96.9		81	107	*****	
EG020: Manganese	7439-96-5	1	hð\r	<1	100 µg/L	91.0		79	109		
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	113		77	117		
EG020: Molybdenum	7439-98-7	1	hâ\r	<1	100 µg/L	103		76	108	****	
EG020: Nickel	7440-02-0	1	µg/L	<1	100 µg/L	93.4		78	108	7777	
EG020: Tin	7440-31-5	1	hð\r	<1	100 µg/L	94.2		77	107		
EG020: Zinc	7440-66-6	10	µg/L	<10	100 µg/L	105		77	109		
EG: Metals and Major Cations - Filtered (QC Lot: 1188059)										
EG050: Hexavalent Chromium	18540-29-9	20	µg/L	<20	100 µg/L	101		80	106		

Page Number : 14 of 18 Client : INTRAFOR HO

Client INTRAFOR HONG KONG LIMITED

Work Order HK1772073

Mattix: WATER			Mathod Blank (MB) P	laport		Laborato	ry Control Spille (LCS) and Lat	onatory Control Spiles	Duplicate (DCS) Rep	art	
					Spike	Spike Rec	20 10 (%)	Recovery	Limits (%)	A	PD (%)
Method: Compound	GAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-076HK: Polycyclic Aromatic Hydrocarbons (PAHs) (QC Lo	t: 1188053)										
Naphthalene	91-20-3	0.2	µg/L	<0.2	0.5 µg/L	51.9		31	102		
Acenaphthylene	208-96-8	0.2	µg/L	<0.2	0.5 µg/L	81.6		31	105		
Acenaphthene	83-32-9	0.2	µg/L	<0.2	0.5 µg/L	66.8		32	93	- <u></u>	
Fluorene	86-73-7	0.2	µg/L	<0.2	0.5 µg/L	68.5	1000	33	100		
Phenanthrene	85-01-8	0.2	µg/L	<0.2	0.5 µg/L	61.8		30	107		
Anthracene	120-12-7	0.2	hð\r	<0.2	0.5 µg/L	63.2	1222	28	108		
Fluoranthene	206-44-0	0.2	µg/L	<0.2	0.5 µg/L	76.5		56	121		
Pyrene	129-00-0	0.2	µg/L	<0.2	0.5 µg/L	75.2		56	125		
Benz(e)anthracene	56-55-3	0.2	µg/L	<0.2	0.5 µg/L	72.1		72	117		
Chrysene	218-01-9	0.2	µg/L	<0.2	0.5 µg/L	72.8		57	117		
Benzo(b)iluonanthene	205-99-2	0.2	µg/L	<0.2	0.5 µg/L	75.9		71	119		
Benzo(k)lluonanthene	207-08-9	0.2	hav	<0.2	0.5 µg/L	75.2	1.000	70	114		
Benzo(a)pyrene	50-32-8	0.2	µg/L	<0.2	0.5 µg/L	64.6		59	121		
indeno(1.2.3.cd)pyrene	193-39-5	0.2	µg/L	<0.2	0.5 µg/L	57.3		56	118		
Dibenz(a.h)enthracene	53-70-3	0.2	µg/L	<0.2	0.5 µg/L	59.2	1000	39	123		
Benzo(g.h.i)perylene	191-24-2	0.2	µg/L	<0.2	0.5 µg/L	54.7	1.111	42	130		
P-076HK: Phenol, Hexachlorobenzene and Bis(2-ethylhexyl)	Phthalate (QC	Lot: 118805	3)								
Phenol	108-95-2	5	µg/L	<5.0	0.5 µg/L	18.3		11	83	****	0.000
Hexachlorobenzene (HCB)	118-74-1	4	µg/L	<4.0	0.5 µg/L	81.3		35	103		
Bis(2-ethytheoxyl)phthalate	117-81-7	10	µg/L	<10.0	0.5 µg/L	95.0		81	122		
P-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lo	(; 1188052)										
C9 - C16 Fraction		0.5	mg/L	<0.5	0.21 mg/L	81.3		55	109		
C17 - C35 Fraction		0.5	mg/L	<0.5	0.45 mg/L	103		58	129		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (QC Lo	+ 1188460)				350						
C6 - C8 Fraction		0.02	mg/L	<0.02	0.03 mg/L	83.6		66	114		
	01-4-4400450		ing c	10.02	o.oo mgre			207	85.0		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH) (Q				-0.5	2	00.0		67	125		
Benzene	71-43-2	0.5	µg/L	<0.5	2 µg/L	88.0		72	125		
Toluene	108-88-3	0.5	µg/L	<0.5 <0.5	2 µg/L	83.4 84.0		69	125		19222
Ethylbenzene	100-41-4	0.5	µg/L	<0.5	2 µg/L	93.7		75	117		
meta- & para-Xylene	108-38-3	1	µg/L		4 µg/L	93.7		15	107		
Styrana	106-42-3 100-42-5	0.5	µg/L	<0.5	2 µg/L	92.6		68	131		
	95-47-6	0.5		<0.5		92.0		73	128		
ortho-Xylene			µg/L		2 µg/L	91.1		73	128		
Xylenes (Total)		2	µg/L	<2	6 µg/L	92.0		- 71	120		1.000
EP-074_SR-B: Oxygenated Compounds (QC Lot: 1188458)								1.00	1000		
2-Propanone (Acetone)	67-64-1	5	µg/L	<5	20 µg/L	86.7		76	130		
2-Butanone (MEK)	78-93-3	5	µg/L	<5	20 µg/L	88.1		69	126		

and have been

Page Number 15 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

Matrix: WATER			Mathod Blank (MB)	Report	Laboratory Confrol Spille (LCS) and Laboratory Confrol Spille Duplicate (DCS) Report					art	
					Spile	Spike Red	(%)	Alecovery	Limita (%)	R	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EP-074_SR-E: Halogenated Allphatics (QC Lot: 1188	458)										
Methylene chloride	75-09-2	5	hð\r	<5	2 µg/L	92.4		71	126		
Trichloroethene	79-01-6	0.5	µg/L	<0.5	2 µg/L	89.8		71	126	****	
Tetrachiorosthene	127-18-4	0.5	µg/L	<0.5	2 µg/L	81.1		66	131	****	
EP-074_SR-G: Trihalomethanes (THM) (QC Lot: 118	8458)										
Chloroform	67-66-3	0.5	µg/L	<0.5	2 µg/L	97.1		75	128		
Bromodichloromethane	75-27-4	0.5	µg/L	<0.5	2 µg/L	90.0	12237	64	121		(2222)
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 118844	58)										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	µg/L	<0.5	2 µg/L	93.9		62	126		

Page Number 16 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL					Matro	Spike (MS) and Matri	Spiles Duplicate	(MSD) Report		
				Spile	Spike Re	00wery (%)	Recovery	Limita (%)	RPD	(%)
Laboratory	Client semple ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Contro
emple ID										Limit
EG: Metals and	Major Cations (QC Lot: 1189815)									
IK1772073-001	TP1-0.5M	EG3060: Hexavalent Chromium	18540-29-9	2.5 mg/kg	110	102	75	125	7.55	
EG: Metals and	Major Cations (QC Lot: 1189816)									
K1772073-001	TP1-0.5M	EG020: Antimony	7440-36-0	5 mg/kg	104	98.4	75	125	5.53	
		EG020: Amenic	7440-38-2	5 mg/kg	110	95.6	75	125	14.0	
		EG020: Berlum	7440-39-3	5 mg/kg	# Not	# Not	75	125	# Not	
					Determined	Determined			Determined	
		EG020: Cedmium	7440-43-9	5 mg/kg	106	99.6	75	125	6.22	1000
		EG020: Cobalt	7440-48-4	5 mg/kg	104	98.2	75	125	5.74	
		EG020: Copper	7440-50-8	5 mg/kg	86.9	95.1	75	125	9.01	
		EG020: Lond	7439-92-1	5 mg/kg	83.0	78.0	75	125	6.21	
		EG020: Manganese	7439-96-5	5 mg/kg	# Not	# Not	75	125	# Not	
					Determined	Determined			Determined	
		EG020: Mercury	7439-97-6	0.1 mg/kg	77.2	85.0	75	125	9.62	
		EG020: Molybdenum	7439-98-7	5 mg/kg	99.9	95.0	75	125	5.03	
		EG020: Nickel	7440-02-0	5 mg/kg	95.9	97.4	75	125	1.55	
		EG020: Tin	7440-31-5	5 mg/kg	96.4	96.1	75	125	0.312	
		EG020: Zinc	7440-66-6	5 mg/kg	# Not	# Not	75	125	# Not	
					Determined	Determined			Determined	
EP-071HK_SR:	Total Petroleum Hydrocarbons (TPH)	(QC Lot: 1188055)								
HK1772073-002	TP1-1.5M	C9 - C16 Fraction		31.5 mg/kg	87.9		50	130		20
		C17 - C35 Fraction		67.5 mg/kg	72.3		50	130		20
EP-071HK SR:	Total Petroleum Hydrocarbons (TPH)	(QC Lot: 1188064)								
HK1772073-002	TP1-1.5M	C6 - C8 Fraction		4.5 mg/kg	95.5	1,112	50	130	1.222	20
ED 074 OD A-1	Monocyclic Aromatic Hydrocarbons (M									
K1772073-002	TP1-1.5M		71-43-2	0.25 mg/kg	99.4		50	130		20
11/1/2013-002	1F1-1,5W	Benzene	108-88-3	0.25 mg/kg	86.0		50	130		20
		Toluene		10 million - 10 mi	92.6		50	130		20
			100-41-4	0.25 mg/kg	92.6		50	130		20
		meta- & pana-Xylene	108-38-3 106-42-3	0.5 mg/kg	37.3	1 10/00	50	130	000	20
		Channel	100-42-3	0.25 mg/kg	88.3		50	130		20
		Styrene ortho-Xylene	95-47-6	0.25 mg/kg	87.9		50	130		20
		and the second	30-47-0	0.25 mg/kg	94.2		50	130		20
	2 2022 1 2021 1 20	Xylenee (Total)		0.10 mgmg	54.2					20
	Oxygenated Compounds (QC Lot: 11				122644		1220	920		22
HK1772073-002	TP1-1.5M	2-Propanone (Acetone)	67-64-1	2.5 mg/kg	99.7		50	130		20

Page Number 17 of 18 Client INTRAFOR HONG KONG LIMITED Work Order HK1772073

1.1.2

Matrix: SOIL					Matri	spike (MS) and Matri	x Spike Duplicete	(MSD) Report		
				Spike	Spike Re	00wary (%)	Recovery	Limita (%)	RPD	(%)
Labonatory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Contro Limit
EP-074_SR-B: 0	Oxygenated Compounds (QC Lot: 1188	063) - Continued								
HK1772073-002	TP1-1.5M	2-Butanone (MEK)	78-93-3	2.5 mg/kg	90.8		50	130		20
EP-074 SR-E-1	Halogenated Aliphatics (QC Lot: 118806	3)								
IK1772073-002	TP1-1.5M	Methylene chloride	75-09-2	0.25 mg/kg	88.7		50	130		20
		Trichloroethene	79-01-6	0.25 mg/kg	91.8		50	130		20
		Tetrachloroethene	127-18-4	0.25 mg/kg	84.9		50	130		20
EP.074 SR.G.	Trihaiomethanes (THM) (QC Lot: 11880	83)								
-K1772073-002	TP1-1.5M	Chloroform	67-66-3	0.25 mg/kg	88.8		50	130		20
		Bromodichloromethane	75-27-4	0.25 mg/kg	88.4		50	130		20
FD 074 0D L M										
and the protocol of the second	lethyl-tent-butyl Ether (QC Lot: 1188063) TP1-1.5M		1634-04-4	0.05 11	89.6		50	130		20
IK1772073-002	1P1-1.5M	Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.25 mg/kg	89.6		50	130		20
tatrix: WATER					Matt	x Spike (MS) and Matt	x Spike Duplicete	(MSD) Report		
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	APO	(%)
Lebonatory sample /D	Client sample ID	Malhod: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Cantra Limit
FG: Metals and	Major Cations - Filtered (QC Lot: 11880	58)								
HK1772024-001	Anonymous	EG020: Antimony	7440-36-0	100 µg/L	122	123	75	125	0.816	25
		EG020: Areenic	7440-38-2	100 µg/L	117	116	75	125	0.858	25
		EG020: Barium	7440-39-3	100 µg/L	111	96.6	75	125	13.9	25
		EG020: Cedmium	7440-43-9	100 µg/L	113	114	75	125	0.881	25
		EG020: Cobalt	7440-48-4	100 µg/L	89.6	92.1	75	125	2.75	25
		EG020: Copper	7440-50-8	100 µg/L	101	101	75	125	0.00	25
		EG020: Lead	7439-92-1	100 µg/L	97.9	99.8	75	125	1.92	25
		EG020: Manganese	7439-96-5	100 µg/L	# Not	# Not	75	125	# Not	25
					Determined	Determined			Determined	
		EG020: Mercury	7439-97-6	2 µg/L	97.6	92.6	75	125	5.26	25
		EG020: Molybdenum	7439-98-7	100 µg/L	113	113	75	125	0.00	25
		EG020: Nickel	7440-02-0	100 µg/L	87.6	90.0	75	125	2.70	25
		EG020: Tin	7440-31-5	100 µg/L	114	113	75	125	0.881	25
		EG020: Zinc	7440-66-6	100 µg/L	109	109	75	125	0.00	25
EG: Metals and	Major Cations - Filtered (QC Lot: 11880	59)								
HK1772024-001	Anonymous	EG050: Hexavalent Chromium	18540-29-9	100 µg/L	101	102	75	125	0.985	

Surrogate Control Limits

Sub-Matrix: SOIL

Recovery Limits (%)

Page Number Client

18 of 18 INTRAFOR HONG KONG LIMITED

Work Order HK1772073

ab-Matrix: SOIL		Recovery	Linglin (%)
Compound	GAS Number	Low	High
EP-076S: Polycyclic Arometics Hydrocarbons (PAHs) Surrogates			
2-Fluorobiphenyl	321-60-8	50	130
I-Terphenyl-d14	1718-51-0	50	130
EP-060_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
1-Bromofiuorobenzene	460-00-4	74	121
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	80	120
Toluene-D8	2037-26-5	81	117
4-Bromofluorobenzene	460-00-4	74	121
ub-Matrix: WATER		Recovery	Umin (%)
Compound	GAS Number	Low	High
EP-0763: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates			
2-Fluorobiphenyl	321-60-8	50	130
4-Terphenyl-d14	1718-51-0	50	130
EP-060_SRS: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethene	1868-53-7	86	118
Toluens-D8	2037-26-5	88	110
4-Bromosuorobenzene	460-00-4	86	115
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

Report No: HK1634542

Ď

U

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: GAMMON CONSTRUCTION LTD	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 5
Contact	: MR FRANKIE SIU	Contact	: Fung Lim Chee, Richard	Work Order	HK1634542
ddress	: M/F GAMMON TECHNOLOGY PARK,	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing		
	21 CHUN WANG STREET,		Yip Street, Kwai Chung, N.T., Hong Kong		
	TKO INDUSTRIAL ESTATE,				
	TSEUNG KWAN O, N. T. HONG KONG				
-mail	: frankie.siu@gammonconstruction.com	E-mail	: Richard.Fung@alsglobal.com		
elephone	: +852 3191 5237	Telephone	: +852 2610 1044		
acsimite	: +852 2564 6758	Facsimile	: +852 2610 2021		
oject	: ENHANCED ASH UTILISATION AND WATER	Quote number	:	Date Samples Received	: 26-AUG-2016
	MANAGEMENT FACILITIES AT CASTLE PEAK				
	POWER STATION				
Order number	: 4501019750			Issue Date	: 09-SEP-2016
C-O-C number	: H031823			No. of samples received	: 2
ite	:			No. of samples analysed	: 2

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is: 26-AUG-2016 to 08-SEP-2016.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1634542

Sample(s) were picked up from client by ALS Technichem (HK) staff in chilled condition.

Water sample(s) analysed and reported on an as received basis.

Water sample(s) were filtered prior to dissolved metal analysis.

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories.

This document has been signed by those names that appear on this report and are the authorised signatories.								
Signatories	Position	Authorised results for						
Chan Ka Yu, Karen	Manager - Organics	Organics						
Wong Wing, Kenneth	Manager - Metals	Inorganics						

ALS Technichem (HK) Pty Ltd

Pertoffee ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com

Page Number : 2 of 5 Client : GAMMON CONSTRUCTION LTD Work Order HK1634542

Analytical Results						
Sub-Matrix: WATER			Client sample ID	AEBH1	TRIP BLANK	
		Client sar	npling date / time	26-AUG-2016 14:00	26-AUG-2016 14:00	
Compound	CAS Number	LOR	Unit	HK1634542-001	HK1634542-002	
EG: Metals and Major Cations - Filtered						
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	****	
EP-076HK: Polycyclic Aromatic Hydrocarbons (PA	(Hs)					
Naphthalene	91-20-3	2.0	µg/L	<2.0		
Acenaphthylene	208-96-8	2.0	µg/L	<2.0		
Acenaphthene	83-32-9	2.0	HB/L	<2.0		
Fluorene	86-73-7	2.0	µ9/L	<2.0		
Phenanthrene	85-01-8	2.0	µg/L	<2.0		
Anthracene	120-12-7	2.0	µg/L	<2.0		
Fluoranthene	206-44-0	2.0	µg/L	<2.0		
Pyrene	129-00-0	2.0	µg/L	<2.0		
Chrysene	218-01-9	1.0	µg/L	<1.0		
Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0		
EP-076HK: Phenol, Hexachlorobenzene and Bis(2-	ethylheyyl) Ph	halate				
Hexachlorobenzene (HCB)	118-74-1	4.0	µg/L	<4.0		
EP-071HK_SR: Total Petroleum Hydrocarbons (TP C6 - C8 Fraction	·n)	20	µg/L	<20		
C9 - C16 Fraction		500	µg/L	<500		
C17 - C35 Fraction		500	µg/L	1700		
			pg-	1700		
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons	The second s	5.0	110/1	.5.0	-5.0	
Benzene	71-43-2 108-88-3	5.0	µg/L	<5.0	<5.0	
Toluene		5.0	μg/L	<5.0	<5.0	
Ethylbenzene	100-41-4	10	μg/L	<5.0	<5.0	
meta- & para-Xylene	108-38-3 106-42-3	10	µg/L	<10	<10	
Styrene	100-42-5	5.0	µg/L	<5.0	<5.0	
ortho-Xylene	95-47-6	5.0	µg/L	<5.0	<5.0	
Xylenes (Total)		20	µg/L	<20	<20	
EP-074_SR-B: Oxygenated Compounds						
2-Propanone (Acetone)	67-64-1	500	µg/L	<500	<500	
2-Butanone (MEK)	78-93-3	50	µg/L	<50	<50	
EP-074_SR-E: Halogenated Aliphatics						
Methylene chloride	75-09-2	50	µg/L	<50	<50	
Trichloroethene	79-01-6	5.0	µg/L	<5.0	<5.0	
Tetrachloroethene	127-18-4	5.0	µg/L	<5.0	<5.0	
EP-074_SR-G: Trihalomethanes (THM)						
Chloroform	67-66-3	5.0	µg/L	<5.0	<5.0	
Bromodichloromethane	75-27-4	5.0	µg/L	<5.0	<5.0	
	1000		10.717-	-0.0		
EP-074_SR-I: Methyl-tert-butyl Ether	1604.04.1	5.0	110/1	-50	~ ~ ^	
Methyl tert-Butyl Ether (MTBE)	1634-04-4	5.0	µg/L	<5.0	<5.0	

 Page Number
 : 3 of 5

 Client
 : GAMMON CONSTRUCTION LTD

 Work Order
 HK1634542

Sub-Matrix: WATER			Chi	ent sample ID	AEBH1	TRIP BLANK						
			Client sampli	ng date / time	26-AUG-2016 14:00	26-AUG-2016 14:00						
Compound		CAS Number	LOR	Unit	HK1634542-001	HK1634542-002						
EP-076S: Polycyclic A	Aromatics Hydrocarbons	(PAHs) Surrogates										
2-Fluorobiphenyl		321-60-8	0.1	%	85.2	1 August 1						
4-Terphenyl-d14		1718-51-0	0.1	%	105							
EP-080_SRS: TPH(Vo	platile)/BTEX Surrogate											
Dibromofluorometh	hane	1868-53-7	0.1	%	102							
Toluene-D8		2037-26-5	0.1	%	99.6							
4-Bromofluorobenz	zene	460-00-4	0.1	%	98.2							
EP-074 SR-S: VOC S	urrogates											
Dibromofluorometh	-	1868-53-7	0.1	%	102	98.3						
Toluene-D8	12726020	2037-26-5	0.1	%	99.6	99.2						
4-Bromofluorobenz	zene	460-00-4	0.1	%	98.2	97.9						
Laboratory Dunli	icate (DUP) Report					10000						
Matrix: WATER	icate (DOI) Report							Labora	tory Duplicate (DUP)	Report		
Laboratory sample ID	Client sample ID	Method: Comp	ound			CAS Number LOR	Unit		Original Result	3. 200 100	te Result	RPD (%)
100 tV			Jound									1410 (14)
EG: Metals and Ma	ior Cations - Filtered /	OC 1 of 4290987)										
HK1634715-001 Nethod Blank (M	ijor Cations - Filtered (Anonymous (B), Laboratory Contr	EG020: Mer				7439-97-6 0.5 (DCS) Report	µg/L		<0.5		0.5	0.0
HK1634715-001	Anonymous	EG020: Mer			t trol Spike Duplicate Blank (MB) Report		µg/L Laboratory Control :				CS) Report	
HK1634715-001 Method Blank (MI	Anonymous	EG020: Mer rol Spike (LCS) al	nd Labo	Method E	Blank (MB) Report	(DCS) Report	Laboratory Control Spike Recov	Spike (LCS) and Li ery (%)	aboratory Control Sp Recovery	ike Duplicate (D Limits (%)	CS) Report	RPD (%)
HK1634715-001 Method Blank (Mi ^{Matrix} : WATER	Anonymous	EG020: Mer	nd Labo		Blank (MB) Report	(DCS) Report	Laboratory Control	Spike (LCS) and Li	aboratory Control Sp	ike Duplicate (D	CS) Report	RPD (%)
HK1634715-001 Method Blank (Mi Matrix: WATER Method: Compound	Anonymous	EG020: Mer rol Spike (LCS) an CAS Number	nd Labo	Method E	Blank (MB) Report	(DCS) Report	Laboratory Control Spike Recov	Spike (LCS) and Li ery (%)	aboratory Control Sp Recovery	ike Duplicate (D Limits (%)	CS) Report	
HK1634715-001 Method Blank (Mi latrix: WATER Method: Compound EG: Metals and Maj	Anonymous B), Laboratory Contr	EG020: Mer rol Spike (LCS) an CAS Number	nd Labo LOR	Method E	Blank (MB) Report it Result	(DCS) Report	Laboratory Control Spike Recov	Spike (LCS) and Li ery (%)	aboratory Control Sp Recovery	ike Duplicate (D Limits (%)	CS) Report	RPD (%)
HK1634715-001 Method Blank (Mi natrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury	Anonymous B), Laboratory Contr	EG020: Mer rol Spike (LCS) al CAS Number QC Lot: 4290987) 7439-97-6	nd Labo	Method E Uni	Blank (MB) Report it Result	(DCS) Report Spike Concentration	Laboratory Control : Spike Recov LCS	Spike (LCS) and Li ery (%)	aboratory Control Sp Recovery Low	ike Duplicate (D Limits (%) High	CS) Report	RPD (%)
HK1634715-001 Method Blank (Mi latrix: WATER <u>Method: Compound</u> EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) al CAS Number QC Lot: 4290987) 7439-97-6	nd Labo LOR 0.5 .ot: 42852	Method E Uni	Slank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration	Laboratory Control : Spike Recov LCS	Spike (LCS) and Li ery (%)	aboratory Control Sp Recovery Low	ike Duplicate (D Limits (%) High	CS) Report	RPD (%)
HK1634715-001 Method Blank (Mi latrix: WATER <u>Method: Compound</u> EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) al CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L	0.5 0.2	Method E Uni µg/l 219)	Slank (MB) Report it Result L <0.5 L <0.2	(DCS) Report Spike Concentration 2 µg/L	Laboratory Control : Spike Recov LCS 84.8	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77	ike Duplicate (D Limits (%) High 117	CS) Report Value	RPD (%) Control Lim
HK1634715-001 Method Blank (Mi latrix: WATER <u>Method: Compound</u> EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) au CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3	0.5 0.2 0.2	Method E Uni µg/l 219) µg/l	Blank (MB) Report it <u>Result</u> L <0.5 L <0.2 L <0.2	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control : Spike Recov LCS 84.8 51.2	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36	ike Duplicate (D Limits (%) High 117 124	CS) Report Value	RPD (%) Control Lim
HK1634715-001 Method Blank (Mi latrix: WATER <u>Method: Compound</u> EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8	LOR 0.5 0.2 0.2 0.2 0.2 0.2	Method E Uni µg/l 2 19) µg/l µg/l	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L 0.5 µg/L	Laboratory Control : Spike Recov LCS 84.8 51.2 65.0	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39	ike Duplicate (D Limits (%) High 117 124 108	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi latrix: WATER <u>Method: Compound</u> EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthene Fluorene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 2 19) µg/l µg/l µg/l µg/l µg/l	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 μg/L 0.5 μg/L 0.5 μg/L 0.5 μg/L 0.5 μg/L	Laboratory Control : Spike Recov LCS 84.8 51.2 65.0 74.9	Spike (LCS) and Li ery (%) DCS 	aboratory Control Sp Recovery Low 77 36 39 33	ike Duplicate (D Limits (%) High 117 124 108 120 120 117	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi latrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7	LOR 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 2 19) µg/l µg/l µg/l µg/l µg/l µg/l µg/l	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L	Laboratory Control : Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 45 46	ike Duplicate (D Limits (%) High 117 124 108 120 120 117 105	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi latrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) au CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Blank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L 0.5 µg/L	Laboratory Control : Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi latrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Blank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 64	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi latrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	Anonymous (B), Laboratory Contr jor Cations - Filtered ((EG020: Mer rol Spike (LCS) au CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 218-01-9	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Blank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5 90.2	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 64 64 61	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121 121 135	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi hatrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene	Anonymous (B), Laboratory Contr jor Cations - Filtered (C	EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0	LOR 0.5 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 2 19) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Blank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 64	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi hatrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(b)fluoranthene	Anonymous (B), Laboratory Contr jor Cations - Filtered (C	EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 218-01-9 205-99-2	LOR 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5 90.2	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 64 64 61	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121 121 135	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi Matrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Fluorene Phenanthrene Fluoranthene Pyrene Chrysene Benzo(b)fluoranthene EP-076HK: Phenol,	Anonymous <i>IB), Laboratory Conti</i> jor Cations - Filtered ((clic Aromatic Hydrocarl ne , Hexachlorobenzene a	EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 218-01-9 205-99-2	LOR 0.5 .ot: 42852 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.	Method E Uni 219) 219) 9/1 9/1 9/1 9/1 9/1 9/1 9/1 9/1 9/1 9/1	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5 90.2	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 64 61	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121 121 135	CS) Report Value	RPD (%) Control Lin
HK1634715-001 Method Blank (Mi Matrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(b)fluoranthene EP-076HK: Phenol, Hexachlorobenzene	Anonymous <i>IB), Laboratory Conti</i> jor Cations - Filtered ((clic Aromatic Hydrocarl ne , Hexachlorobenzene a	EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 218-01-9 205-99-2 nd Bis(2-ethylhexyl	LOR 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Stank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5 90.2 73.3	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 61 56	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121 135 124	CS) Report Value	RPD (%) Control Lim
HK1634715-001 Method Blank (Mi Aatrix: WATER Method: Compound EG: Metals and Maj EG020: Mercury EP-076HK: Polycyc Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo(b)fluoranthene EP-076HK: Phenol, Hexachlorobenzene	Anonymous <i>IB), Laboratory Conti</i> jor Cations - Filtered ((clic Aromatic Hydrocarl clic Aromatic Hydrocarl (HCB)	EG020: Mer rol Spike (LCS) an CAS Number QC Lot: 4290987) 7439-97-6 bons (PAHs) (QC L 91-20-3 208-96-8 83-32-9 86-73-7 85-01-8 120-12-7 206-44-0 129-00-0 218-01-9 205-99-2 nd Bis(2-ethylhexyl	LOR 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Method E Uni 219) 219) 49/1 49/1 49/1 49/1 49/1 49/1 49/1 49/1	Blank (MB) Report it Result L <0.5	(DCS) Report Spike Concentration 2 µg/L 0.5 µg/L	Laboratory Control 3 Spike Recov LCS 84.8 51.2 65.0 74.9 70.4 86.8 80.2 91.8 97.5 90.2 73.3	Spike (LCS) and Li ery (%) DCS	aboratory Control Sp Recovery Low 77 36 39 33 37 45 46 64 64 61 56	ike Duplicate (D Limits (%) High 117 124 108 120 120 120 117 105 121 121 135 124	CS) Report Value	RPD (%) Control Lim

Page Number : 4 of 5 Client : GAMMON CONSTRUCTION LTD Work Order HK1634542

Matrix: WATER				Method Blank	(MB) Report		Laboratory Co	ntrol Spike (LCS) and Lat	ooratory Control Sp	oike Duplicate (DCS)	Report	
						Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound		CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limi
EP-071HK_SR: 1	Total Petroleum Hydrocar	bons (TPH) (QC Lot:	4286319)									
C6 - C8 Fraction			0.02	mg/L	<0.02	0.03 mg/L	87.9		63	127		
EP-074 SR-A: M	Ionocyclic Aromatic Hydr	ocarbons (MAH) (QC	Lot: 42902	21)								
Benzene		71-43-2	0.5	µg/L	<0.5	2 µg/L	95.3		67	130	****	
Toluene		108-88-3	0.5	µg/L	<0.5	2 µg/L	96.6		76	127		
Ethylbenzene		100-41-4	0.5	µg/L	<0.5	2 µg/L	95.1	****	84	120		
meta- & para-Xyle	ene	108-38-3 106-42-3	1	µg/L	<1	4 µg/L	88.6		80	128		
Styrene		100-42-5	0.5	µg/L	<0.5	2 µg/L	94.9		76	120		
ortho-Xylene		95-47-6	0.5	µg/L	<0.5	2 µg/L	96.5		84	125		
Xylenes (Total)			2	µg/L	<2	6 µg/L	91.3		86	123		
EP-074_SR-B: 0	xygenated Compounds	(QC Lot: 4290221)										
2-Propanone (Ace		67-64-1	5	µg/L	<5	20 µg/L	107		65	140		
2-Butanone (MEK	3)	78-93-3	5	µg/L	<5	20 µg/L	102		67	118		
EP-074 SR-E: H	alogenated Aliphatics (Q	C Lot: 4290221)										
Methylene chlorid		75-09-2	5	µg/L	<5	2 µg/L	97.0		76	128		
Trichloroethene		79-01-6	0.5	µg/L	<0.5	2 µg/L	92.4		68	121		
Tetrachloroethen	e	127-18-4	0.5	µg/L	<0.5	2 µg/L	88.8		75	118		
EP-074 SR-G: T	rihalomethanes (THM) (C	C Lot: 4290221)										
Chloroform		67-66-3	0.5	µg/L	<0.5	2 µg/L	98.4		66	134		
Bromodichlorom	ethane	75-27-4	0.5	µg/L	<0.5	2 µg/L	95.9		71	125		
EP-074 SR-I: M	ethyl-tert-butyl Ether (QC	Lot: 4290221)										
Methyl tert-Butyl		1634-04-4	0.5	µg/L	<0.5	2 µg/L	107		65	121		
	MS) and Matrix Spike D)uplicate (MSD) Reg	oort	10		000 • 580						
Matrix: WATER	,						Matr	ix Spike (MS) and N	Aatrix Spike D	uplicate (MSD)	Report	
						Spike	Spi	ke Recovery (%)	Reco	very Limits (%)		RPD (%)
aboratory	Client sample ID	Method: Con	npound			CAS Concentration		MSD	Low		Value	and the state of the
State of Long Street and Street St	Major Cations - Filtered	(QC Lot: 4290987)										
HK1634714-001		EG020: M	ercury			7439-97-6 2 µg/L	80.2		75	125		****
Surrogate Con	ntrol Limits											
Sub-Matrix: WATER				Recovery Lim	its (%)							
Compound		CAS Number	Low		High							
	clic Aromatics Hydrocarbons	(PAHs) Surrogates										
2-Fluorobiphenyl		321-60-8	50		130							
4-Terphenyl-d14		1718-51-0	50		130							

EP-080_SRS: TPH(Volatile)/BTEX Surrogate

and proved present

.

Page Number : 5 of 5 Client : GAMMON CONSTRUCTION LTD Work Order HK1634542

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP-080_SRS: TPH(Volatile)/BTEX Surrogate	- Continued		
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115
EP-074_SR-S: VOC Surrogates			
Dibromofluoromethane	1868-53-7	86	118
Toluene-D8	2037-26-5	88	110
4-Bromofluorobenzene	460-00-4	86	115

Report No: HK1772442

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

			CERTIFICATE OF ANALYSIS	_	
Sent Contact	INTRAFOR HONG KONG LIMITED	Laboratory Contact	² ALS Technichem (HK) Pty Ltd ² Ivan Leung	Page Work Order	1 of 6 HK1772442
Iress	20/F, EIGHT COMMERCIAL TOWER, 8 SUN YIP STREET, CHAI WAN, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwal Chung, N.T., Hong Kong		
mail	Terri.tang@vsl-intrafor.com	E-mail	ivan.leung@alsglobal.com		
ephone	·	Telephone	26101044		
csimile	: 25916139	Facsimile	÷ +852 2610 2021		
iect	OUTLINE AGREEMENT NO. 460006651 FOR 2-YEAR OUTLINE AGREEMENT FOR SITE INVESTIGATION WORKS FOR EXISTING/PROSPECTIVE SITES OF CLP POWER'S PREMISES (2017-2019)	Quote number	· HKE/1156/2017	Date Samples Received	: 21-Oct-2017
der number	· ·			Issue Date	: 31-Oct-2017
D-C number	H035803			No. of samples received	: 2
	:			No. of samples analysed	: 2

This report may not be reproduced except with prior written approval from the testing laboratory.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 068) under Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for	
Anh Ngọc Huynh .	Senior Chemist	Organics	
Leung Chak Cheong , Mike	Senior Chemist	Motals	

ALS Technichem (HK) Pty Ltd Patolitie ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong

Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

Page Number	1	2 of 6
Client	1	INTRAFOR HONG KONG LIMITED
Work Order		HK1772442

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 21-Oct-2017 to 30-Oct-2017.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1772442

Sample(s) were received in chilled condition.

Water sample(s) analysed and reported on as received basis.

Water sample(s) were filtered prior to dissolved metal analysis.

Page Number 2 3 of 6 Client 2 INTRAFOR HONG KONG LIMITED Work Order HK1772442

Sub-Matrix: WATER			Client sample ID	AEBH2	Trip Blank		-		
		Client	sampling date / time	21-Oct-2017	21-Oct-2017				
Compound	CAS Number	LOR	Unit	HK1772442-001	HK1772442-002			1	
EG: Metale and Major Cations - Total	040 40000								
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5		22	_	1	
					15	14-40	1 C 2	10.000	
EP-076HK: Polycyclic Aromatic Hydrocarbons (PAHs) EP076HK: Naphthalene	91-20-3	2.0	PD/L	<2.0				1	
EP076HK: Acenaphthylene	208-96-8	2.0	Nov.	<2.0	-		(
	83-32-9	2.0	N64	<2.0				100 A 100	
EP076HK: Aconsphthene	86-73-7	2.0	hð.						
EP076HK: Fluorene		2.0		<2.0	-			2	
EP076HK: Phenanthrene	85-01-8		hdyr.	<2.0	-		이 지나는 꽃을 가지?		
EP076HK: Anthracene	120-12-7	2.0	havr.	<2.0	—	—		-	
EP076HK: Fluoranthene	206-44-0	2.0	µg/L	<2.0	—			1.1.1.1.1.1.1.7	
EP076HK: Pyrene	129-00-0	2.0	hðyr	<2.0	—	-		—	
EP076HK: Chrysene	218-01-9	1.0	µg/L	<1.0			-		
EP076HK: Benzo(b)fluoranthene	205-99-2	1.0	µg/L	<1.0	-	-	—	-	
EP-076HK: Phenol, Hexachlorobenzene and Bie(2-ethylhexy) Phihelate								
EP076HK: Hexachlorobenzene	118-74-1	4.0	µg/L	<4.0	<u> </u>		-		
(HCB)									
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH)									
EP070HK_SR: C6 - C8 Fraction	+++++	20	Jug/L	<20	_		-		
EP071HK_SR: C9 - C16 Fraction		500	ug/L	<500			_		
EP071HK_SR: C17 - C35 Fraction		500	µg/L	<500	_	-	-	· · · · · ·	
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)									
EP074_SR: Benzene	71-43-2	5.0	HO/L	<5.0	<5.0	_	_	_	
EP074_SR: Toluene	108-88-3	5.0	ug/L	<5.0	<5.0	_	-		
EP074_SR: Ethylbenzene	100-41-4	5.0	PO/L	<5.0	<5.0	_	-		
EP074_SR: meta- & para-Xylene	108-38-3	10	µg/L	<10	<10	_	_		
abar yiele	106-42-3								
EP074_SR: Styrene	100-42-5	5.0	μg/L	<5.0	<5.0		T	-	
EP074_SR: ortho-Xylene	95-47-6	5.0	μg/L	<5.0	<5.0	-	· · · · · · · · · · · · · · · · · · ·		
EP074_SR: Xylenes (Total)		20	µg/L	<20	<20	_			
EP-074_SR-B: Oxygenated Compounds									
EP074_SR: 2-Propenone (Acetone)	67-64-1	500	µg/L	<500	<500		-	-	
EP074_SR: 2-Butanone (MEK)	78-93-3	50	HO/L	<50	<50	_	-		
EP-074_SR-E: Halogenated Aliphatics									
EP074_SR: Methylene chloride	75-09-2	50	pgr	<50	<50	_	· · · ·		
EP074_SR: Trichloroethene	79-01-6	5.0	ug/L	<5.0	<5.0		-	-	
EP074_SR: Tetrachloroethene	127-18-4	5.0	Light	<5.0	<5.0	_			

Page Number 4 of 6 Client INTRAFOR HONG KONG LIMITED Work Order

HK1772442

Sub-Matrix: WATER			Client sample ID	AEBH2	Trip Blank	12		_
	Client sampling date		sampling date / time	21-Oct-2017	21-Oct-2017			
Compound	CAS Number	LOR	Unit	HK1772442-001	HK1772442-002			
EP-074_SR-G: Trihelomethanes (THM) - Continued								
EP074_SR: Chloroform	67-66-3	5.0	µg/L	<5.0	<5.0	_	<u></u>	_
EP074_SR: Bromodichloromethane	75-27-4	5.0	havr	<5.0	<5.0	_	-	_
EP-074_SR-I: Methyl-tert-butyl Ether								
EP074_SR: Methyl tert-Butyl Ether	1634-04-4	5.0	µg/L	<5.0	<5.0	_	_	_
(MTBE)								
EP-076S: Polycyclic Aromatics Hydrocarbons (PAHs) Surroga	tee							
EP076HK: 2-Fluorobiphenyl	321-60-8	0.1	*	88.6	-	-	-	-
EP076HK: 4-Terphonyl-d14	1718-51-0	0.1	*	96.8	-	-	-	_
EP-060_SRS: TPH(Volatile)/BTEX Surrogate								
EP070HK_SR:	1868-53-7	0.1	%	111	—	-	-	-
Dibromofluoromethane								
EP070HK_SR: Toluene-D8	2037-26-5	0,1	*	100	-	-	-	-
EP070HK_SR:	460-00-4	0.1	%	110	-		-	3 7 - 5 .
4-Bromofluorobenzene								
EP-074_SR-S: VOC Surrogates								
EP074_SR: Dibromofluoromethene	1868-53-7	0.1	%	111	106	-	-	_
EP074_SR: Toluene-D8	2037-26-5	0.1	%	100	98.4	-	-	-
EP074_SR: 4-Bromofluorobenzene	460-00-4	0.1	%	110	109	_	—	

Page Number 5 of 6 Client INTRAFOR HONG KONG LIMITED Work Order HK1772442

No Laboratory Duplicate (DUP) Results are required to be reported.

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Aatrix: WATER	Mulhad Bluesk (MB) Report				Laboratory Control Spiles (LCS) and Laboratory Control Spiles Duplicate (DCS) Report						
					Spike	Splite Rec	(%)	Recovery	Limita (%)	A	90 (%)
Melhod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Total (QC Lot: 1193600))										
EG020: Mercury	7439-97-6	0.5	µg/L	<0.5	2 µg/L	103		75	121	****	
EP-076HK: Polycyclic Aromatic Hydrocarbons (PAHs) (C	C Lot: 1193506)										
Naphthalene	91-20-3	0.2	µg/L	<0.2	0.5 µg/L	59.8		31	102		
Acenaphthylene	208-96-8	0.2	µg/L	<0.2	0.5 µg/L	59.4		31	105	****	
Acenaphthene	83-32-9	0.2	µg/L	<0.2	0.5 µg/L	53.9		32	93	****	
Fluorene	86-73-7	0.2	µg/L	<0.2	0.5 µg/L	53.8		33	100	••••	
Phenanthrene	85-01-8	0.2	µg/L	<0.2	0.5 µg/L	52.4		30	107		
Anthracene	120-12-7	0.2	µg/L	<0.2	0.5 µg/L	54.9		28	108		
Fluoranthene	206-44-0	0.2	µg/L	<0.2	0.5 µg/L	76.5		56	121		
Pyrane	129-00-0	0.2	µg/L	<0.2	0.5 µg/L	76.4		56	125		
Chrysene	218-01-9	0.2	µg/L	<0.2	0.5 µg/L	89.4		57	117		2.22
Benzo(b)fluoranthene	205-99-2	0.2	hð\r	<0.2	0.5 µg/L	97,6		71	119		
P-076HK: Phenol, Hexachlorobenzene and Bis(2-ethylin	exyl) Phthalate (QC	Lot: 119350	6)								
Hexachlorobenzene (HCB)	118-74-1	4	µg/L	<4.0	0.5 µg/L	55.9		35	103		
EP-071HK_SR: Total Petroleum Hydrocarbons (TPH) (Q	C Lot: 1193507)										
C9 - C16 Fraction		0.5	mg/L	<0.5	0.21 mg/L	70.2		55	109		
C17 - C35 Fraction	****	0.5	mg/L	<0.5	0.45 mg/L	96.2	(*****)	58	129		
P-071HK_SR: Total Petroleum Hydrocarbons (TPH) (Q	C L at: 1194797)										
C6 - C8 Fraction		0.02	mg/L	<0.02	0.03 mg/L	80.2	1444	66	114		
	1001-1 4404700		nig z	- COL	olog ng t						
EP-074_SR-A: Monocyclic Aromatic Hydrocarbons (MAH)			1107	<0.5	2 110/	82.6		67	125		
Benzene	71-43-2	0.5	hâyr		2 µg/L	81.7		72	125		
Toluene	108-88-3	0.5	hâv	<0.5	2 µg/L	85.4		69	123		
Ethylbenzene	100-41-4	0.5	µg/L	<0.5	2 µg/L	87.5	100	75	117		
meta- & para-Xylene	108-38-3 106-42-3	1	μg/L	<1	4 µg/L	67.5		75	117		
94	100-42-5	0.5	µg/L	<0.5	2 µg/L	86.9		68	131		
Styrene	95-47-6			<0.5	2 µg/L	83.5		73	128		
ortho-Xylene	95-47-6	0.5 2	µg/L µg/L	<2	2 µg/L 6 µg/L	86.2		71	125		
Xylence (Total)		6	have	-2	opyr	WV.Z					
EP-074_SR-B: Oxygenated Compounds (QC Lot: 11947					20	· · · · · · · · · · · · · · · · · · ·		70	120		
2-Propanone (Acetone)	67-64-1	5	hð\r	<5	20 µg/L	111		76	130		
2-Butanone (MEK)	78-93-3	5	hð\r	<5	20 µg/L	97.9		69	126	****	

Page Number 5 of 6

Client INTRAFOR HONG KONG LIMITED

Work Order HK1772442

Matrix: WATER		Mailhad Ellenk (MB2) Plepart				Laboratory Cuntral Spillar (LCS) and Laboratory Cuntral Spillar Dupikasia (DCS) Report						
					Spile	Spike Ae	xxxxxy (%)	Alecovery	Limits (%)	RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Qanoantrallan	LCS	DCS	Low	High	Value	Control Limit	
EP-074_SR-E: Halogenated Aliphatics (QC Lot: 1194	1796) - Continued											
Methylene chloride	75-09-2	5	µg/L	<5	2 µg/L	84.3	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	71	126	(2222)		
Trichloroethene	79-01-6	0.5	µg/L	<0.5	2 µg/L	94.3		71	126			
Tetrachloroethene	127-18-4	0.5	µg/L	<0.5	2 µg/L	79.7		66	131			
EP-074_SR-G: Trihaiomethanes (THM) (QC Lot: 119	4796)											
Chloroform	67-66-3	0.5	µg/L	<0.5	2 µg/L	91.2		75	128			
Bromodichloromethane	75-27-4	0.5	µg/L	<0.5	2 µg/L	80.2		64	121			
EP-074_SR-I: Methyl-tert-butyl Ether (QC Lot: 11947	96)											
Methyl tert-Butyl Ether (MTBE)	1634-04-4	0.5	µg/L	<0.5	2 µg/L	112		62	126			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER				Metrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike		Spike Recovery (%)		Recovery Limits (%)		APD (%)	
Laboralory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MgD	Low	High	Value	Cantral Limit	
EG: Metals and	Major Cations - Total (QC Lot: 11	93600)									
HK1772442-001	AEBH2	EG020: Mercury	7439-97-6	2 µg/L	85.7	87.5	75	125	2.08	25	

Surrogate Control Limita

ub-Matrix: WATER		Recovery Limits (%)		
Compound	CAS Number	Low	High	
EP-0768: Polycyclic Aromatics Hydrocarbons (PAHs) Surrogates				
2-Fluorobiphenyl	321-60-8	50	130	
4-Terphenyl-d14	1718-51-0	50	130	
EP-080_SRS: TPH(Volatile)/BTEX Surrogete				
Dibromofluoromethene	1868-53-7	86	118	
Tokuene-D8	2037-26-5	88	110	
4-Bromofluorobenzene	460-00-4	86	115	
EP-074_SR-S: VOC Surrogetes				
Dibromofluoromethane	1868-53-7	86	118	
Toluene-D8	2037-26-5	88	110	
4-Bromofluorobenzene	460-00-4	86	115	

Annex H4

QA/QC Practices and Evaluation

FIELD QA/QC IMPLEMETATION, SAMPLE PRESERVATION AND * DELIVERY

A QA/QC programme was incorporated into the PLCA for the Project. The programme included collection/preparation and analysis of field QA/QC samples and laboratory internal QA/QC samples.

The field QA/QC samples included soil duplicates, field blanks, equipment blanks and trip blank samples. The soil duplicate samples were collected from AEBH1- 1.5m below base of concrete (bbc) and AEBH2 at 0.5m bbc. These duplicates and field blank samples were analysed for the same suite of parameters as for the other samples. The equipment blank sample was collected for the soil sampling equipment and analysed for the target priority pollutant metals.

The laboratory QA/QC samples including method blanks, surrogates, matrix spikes and etc were prepared and analysis by the contracted laboratory, ALS Technichem (HK) Pty Ltd (ALS), in accordance with relevant USEPA's standard methods and procedures.

ERM supervised the soil and groundwater sampling to meet the requirements of the Project QA/QC and the decontamination procedures. All soil and groundwater samples (including QA/QC samples) were kept in a refrigerator at 4^oC for delivery. The samples were delivered on ice with Chain of Custody to a courier and arrived at the laboratory within the sample holding time.

The Chain of Custody for the samples was maintained from the time of sample collection to sample arrival at the testing laboratory. The written record of sample handling is intended to ensure prompt sample analysis and integrity.

1

2 QUALITY ASSURANCE AND CONTROL

2.1 SAMPLE DUPLICATION

The relative percentage difference (RPD) was used to assess the sample collection and laboratory analysis reproducibility and precision. In accordance with the USEPA's guidance, RPDs were only calculated for the duplicate samples results that were higher than two times of the method detection limits. The USEPA acceptable limits for the RPDs are less than 50% for soil samples and 30% for groundwater samples.

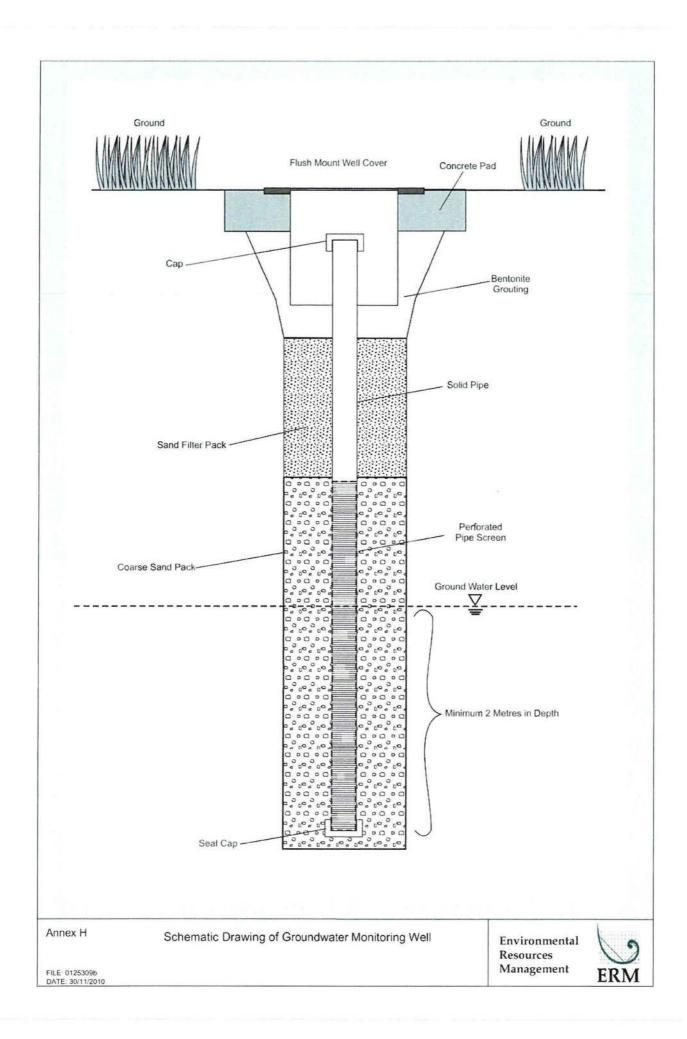
The values of RPD calculated for the soil duplicate samples taken at AEBH1 (17.4%) and AEBH2 (23.2%) were within the acceptable limits.

2.2 EQUIPMENT BLANK, FIELD BLANK AND TRIP BLANK

Throughout the sampling period, 6 sets of trip blanks and two sets of field blanks and two sets of equipment blanks were taken and no evidence of cross contamination was found.

2.3 LABORATORY QA/QC DATA

The laboratory QA/QC sample results (eg surrogate recoveries, matrix spike recoveries, method blanks, sample holding time, and other internal laboratory QA/QC) met their respective requirements.


2.4 SAMPLE RESULTS USABILITY

Based on the review of the QA/QC sample results for this Project, the laboratory results for the soil and groundwater sample collected for the Project are considered useable to evaluate the Site environmental conditions in accordance with the scope of the work.

Annex I

Schematic Drawing of Groundwater Monitoring Well

ENVIRONMENTAL RESOURCES MANAGEMENT

Annex J

Risk-Based Remediation Goals

Environmental Resources Management

Ris
Chemical
VOCs
Acetone
Benzene Bromodichloromethane
2-Butanone
Chloroform
Ethylbenzene
Methyl tert-Butyl Ether
Methylene Chloride Styrene
Tetrachloroethene
Toluene
Trichloroethene
Xylenes (Total) SVOCs
Acenaphthene
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(a)pyrene Benzo(b)fluoranthene
Benzo(g,h,i)perylene
Benzo(k)fluoranthene
bis-(2-Ethylhexyl)phthalate
Chrysene Diboggo(a b)opthrocopo
Dibenzo(a,h)anthracene Fluoranthene
Fluorene
Hexachlorobenzene
Indeno(1,2,3-cd)pyrene
Naphthalene
Phenanthrene Phenol
Pyrene
Metals
Antimony
Arsenic Barlum
Cadmium
Chromium III
Chromium VI
Cobalt
Copper
Lead Manganese
Mercury
Molybdenum
Nickel
Tin Zinc
Dioxins / PCBs
Dioxins (I-TEQ)
PCBs
Petroleum Carbon Ranges
C6 - C8
C9 - C16 C17 - C35
Other Inorganic Compoun
Cyanide, free
Organometallics
ТВТО
Notes: (1) For Dioxins, the cleanup le
OSWER Directive value of Parks [*] , while the low end o
(2) Soil saturation limits for pe
 (3) * indicates a 'ceiling limit' of (4) *** indicates that the C_{sat} value
2-9

	Table 2.1	
Risk-Based Remediation Go	oals (RBRGs) for Soil	& Soil Saturation Limit

Chemical	Urban Residential (mg/kg)				Soil Saturation Limit (C _{sat}) (mg/kg		
VOCs		and the second se		Provide Charles	Search Lange and		
Acetone	9.59E+03	4.26E+03	1.00E+04*	1.00E+04*	•••		
Benzene	7.04E-01	2.79E-01	9.21E+00	4.22E+01	3.36E+02		
Bromodichloromethane	3.17E-01	1.29E-01	2.85E+00	1.34E+01	1.03E+03		
2-Butanone	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	***		
Chloroform	1.32E-01	5.29E-02	1.54E+00	2.53E+02	1.10E+03		
Ethylbenzene	7.09E+02	2.98E+02	8.24E+03	1.00E+04*	1.38E+02		
Methyl tert-Butyl Ether	6.88E+00	2.80E+00	7.01E+01	5.05E+02	2.38E+03		
Methylene Chloride	1.30E+00	5.29E-01	1.39E+01	1.28E+02	9.21E+02		
Styrene	3.22E+03	1.54E+03	1.00E+04*	1.00E+04*	4.97E+02		
Tetrachloroethene	1.01E-01	4.44E-02	7.77E-01	1.84E+00	9.71E+01		
Toluene	1.44E+03	7.05E+02	1.00E+04*	1.00E+04*	2.35E+02		
Trichloroethene	5.23E-01	2.11E-01	5.68E+00	6.94E+01	4.88E+02		
Xylenes (Total)	9.50E+01	3.68E+01	1.23E+03	1.00E+04*	1.50E+02		
VOCs	U.UUL . UT	U.UUL. UT	1.202.00	1.002.000	HOUL OL		
Acenaphthene	3.51E+03	3.28E+03	1.00E+04*	1.00E+04*	6.02E+01		
Acenaphthylene	2.34E+03	1.51E+03	1.00E+04*	1.00E+04*	1.98E+01		
Anthracene	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	2.56E+00		
Benzo(a)anthracene	1.20E+04	1.14E+01	9.18E+01	3.83E+01	2.002+00		
	1.20E+00	1.14E+01	9.18E+01 9.18E+00	3.83E+01			
Benzo(a)pyrene							
Benzo(b)fluoranthene	9.88E+00	1.01E+01	1.78E+01	2.04E+01			
Benzo(g,h,i)perylene	1.80E+03	1.71E+03	1.00E+04*	5.74E+03			
Benzo(k)fluoranthene	1.20E+02	1.14E+02	9.18E+02	3.83E+02			
bis-(2-Ethylhexyl)phthalate	3.00E+01	2.80E+01	9.18E+01	9.42E+01			
Chrysene	8.71E+02	9.19E+02	1.14E+03	1.54E+03			
Dibenzo(a,h)anthracene	1.20E+00	1.14E+00	9.18E+00	3.83E+00			
Fluoranthene	2.40E+03	2.27E+03	1.00E+04*	7.62E+03			
Fluorene	2.38E+03	2.25E+03	1.00E+04*	7.45E+03	5.47E+01		
Hexachlorobenzene	2.43E-01	2.20E-01	5.82E-01	7.13E-01			
Indeno(1,2,3-cd)pyrene	1.20E+01	1.14E+01	9.18E+01	3.83E+01			
Naphthalene	1.82E+02	8.56E+01	4.53E+02	9.14E+02	1.25E+02		
Phenanthrene	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	2.80E+01		
Phenol	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	7.26E+03		
Pyrene	1.80E+03	1.71E+03	1.00E+04*	5.72E+03			
letals							
Antimony	2.95E+01	2.91E+01	2.61E+02	9.79E+01			
Arsenic	2.21E+01	2.18E+01	1.96E+02	7.35E+01			
Barium	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*			
Cadmium	7.38E+01	7.28E+01	6.53E+02	2.45E+02			
Chromium III	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*			
Chromium VI	2.21E+02	2.18E+02	1.96E+03	7.35E+02			
Cobalt	1.48E+03	1.46E+03	1.00E+04*	4.90E+03			
Copper	2.95E+03	2.91E+03	1.00E+04*	9.79E+03			
Lead	2.58E+02	2.55E+02	2.29E+03	8.57E+02			
Manganese	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*			
	1.10E+01	6.52E+00	3.84E+01	4.56E+01			
Mercury	al proceedings and being and being	3.64E+02	provide an and the second and the second second second	4.56E+01 1.22E+03			
Molybdenum	3.69E+02	3.64E+02 1.46E+03	3.26E+03 1.00E+04*				
Nickel	1.48E+03			4.90E+03			
Tin	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*			
Zinc	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	A CONTRACTOR OF A		
ioxins / PCBs			5.005.00		States and states and		
Dioxins (I-TEQ)	1.00E-03	1.00E-03	5.00E-03	1.00E-03			
PCBs	2.36E-01	2.26E-01	7.48E-01	7.56E-01	a second and a second		
etroleum Carbon Ranges			and the second		too in the first start start		
C6 - C8	1.41E+03	5.45E+02	1.00E+04*	1.00E+04*	1.00E+03		
C9 - C16	2.24E+03	1.33E+03	1.00E+04*	1.00E+04*	3.00E+03		
C17 - C35	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	5.00E+03		
Other Inorganic Compounds							
Cyanide, free	1.48E+03	1.46E+03	1.00E+04*	4.90E+03			
Organometallics	Seal of the state of the state	State State States	A STREET, STREET, ST.	A CONTRACTOR	Contact States of the		
and the second sec	2.21E+01	CHARGE CONTRACT ON THE SECOND	STORESPONDER A MORE	and an and the second second	and the second se		

levels in USEPA Office of Solid Waste and Emergency Response (OSWER) Directive of 1998 have been adopted. The of 1 ppb for residential use has been applied to the scenarios of "Urban Residential", "Rural Residential", and "Public of the range of values for industrial, 5 ppb, has been applied to the scenario of "Industrial" etroleum carbon ranges taken from the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, CCME 2000. concentration. value exceeds the 'ceiling limit' therefore the RBRG applies.