

EIA 020.3/93

Castle Peak Power Company Limited

EIA of the Proposed 6000MW Thermal Power Station at Black Point: *Key Issue Assessment*

Air Quality

September 1993

ERM Hong Kong 10 & 11/F Hecny Tower 9 Chatham Road, Tsimshatsui Kowloon, Hong Kong Telephone 722 0292 (11/F) Telephone 367 0378 (10/F) Facsimile 723 5660

Castle Peak Power Company Limited

EIA of the Proposed 6000MW Thermal Power Station at Black Point: *Key Issue Assessment*

Air Quality

September 1993

Project No. C1036

For and on behalf of ERM Hong Kong
Approved by: <u>AM hause</u>
Position: PROJECT MANAGER
Date: 10th September 1993

This report has been prepared by ERM Hong Kong, the trading name of ERL (Asia) Limited, with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the dient and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

SCOPE

The Air Quality Key Issue Assessment (AKIA) focused on the following potential impacts:

human health impacts resulting from stack emissions of SO_2 and NO_x and

ecological impacts from increased levels of regional acidification.

The IAR concluded that there was no risk of the LTPS causing either the 24-hour or the annual average Air Quality Objectives to be exceeded, but that there was sufficient uncertainty surrounding the results of 1-hour average numerical modelling results to warrant further, more detailed analyses as part of a KIA. It also concluded that the potential for acidification through wet deposition required further attention. The key concern was that exceedance of the AQOs might be caused by the LTPS emissions in conjunction with adverse meteorological conditions, even though such occurrences would be infrequent.

CONCLUSIONS

The KIA revolved around a comprehensive programme of wind tunnel tests, using a scale model of the surrounding terrain. Tests were undertaken for the worst-case operating scenarios, for both the gas-fired and coal-fired options, over a range of wind speeds and directions. The complex-terrain wind tunnel results, in conjunction with a statistical frequency analysis (based on likely probabilities of specific operating scenarios coinciding with meteorological scenarios which would cause AQO limit values to be exceeded) indicated that there would be no significant impacts. This was presented in the Phase 2 Part 2 Report and is reproduced in final form as **Part A** of this report. Supporting Annexes are presented in a separate document.

The conclusions are summarised below.

A Coal-Fired LTPS

Given the introduction of new, low-NO_x burners at Castle Peak, a coalfired LTPS with 250m stacks would not cause the NO₂ 1-hour AQO to be exceeded at any affected receptors, even allowing for future increase in background levels due to other planned developments. The low NO_x burners at Castle Peak are assumed to reduce source NO_x concentrations

i

1

from 1100 ppm to 1000 ppm at Station A and to 600 ppm at Station B respectively.

Assuming the employment of FGD to 90% removal efficiency, there would also be no exceedance of the SO_2 1-hour AQO due to emissions from a coal-fired LTPS.

A Gas-Fired LTPS

Assuming a gas-fired LTPS and 100m stacks, only impacts due to NO_x emissions would be relevant. The emissions would be sufficiently lower than from a coal-fired plant to ensure no exceedance of the NO_2 AQO. Reduction in overall NO_2 ground level concentrations could be achieved by reducing NO_x emissions from Castle Peak as decribed for the coal-fired units.

A Combined-Fuel LTPS

With 4 x 600MW gas-fired units together with 4 x 680MW coal-fired units, the NO₂ AQO would not be exceeded at critical receptors. Likewise, the SO₂ AQO would not be exceeded.

The Use of Oil in Main Generating Units

Substitution of fuel oil for coal (with FGD) or distillate oil for gas (without FGD) in the main generating units could be accommodated for any of the scenarios above without causing the AQOs to be exceeded.

Open-Cycle Gas Turbine Units

1000MW of open-cycle gas turbine units with 50m stacks would not cause any AQOs to be exceeded or act as a constraint to planned developments to the south of Black Point. Considering the potential onsite air quality benefits and the reductions in very near-field impacts, 80 m stacks are recommended.

Acid Deposition

Given that Castle Peak power station will be retrofitted with lower– NO_x burners as discussed in the AKIA, there should be no more than a 2% net increase in acid deposition as a result of a coal–fired LTPS (with FGD). For a gas–fired station the net increase would be about 1%. These are insignificant compared with the current year–to–year variation and would not result in any significant impacts.

To overcome residual concerns, however, CLP agreed with EPD that a 'Rigorous Frequency Analysis' should be undertaken to confirm this conclusion. This used the wind tunnel results, together with a seasonal profile of load and actual meteorological observations for a 6-year period, to simulate off-site impacts in detail, for both the LTPS at Black Point and Castle Peak power station. The results, summarised in **Part B** of this report,

confirmed the basic conclusions reached in the Phase 2 Part 2 Report and EPD have since taken a position that:

- The air quality impacts of the proposed Phase 1 development of the Power Station (ie 4 x 600MW CCGT units with light industrial diesel oil as back up fuel together with the recommended measures for its design, construction and operation) are acceptable.
- Mitigation measures are available to reduce the air quality impacts of the power station, if coal-fired with heavy fuel oil as back up, to levels that are acceptable by the present air quality standards, on the basis of the current sensitivity of environment and the assumed operation scenarios in this study.

However, an air quality review as outlined below shall be carried out before the final approval of the Phase II development.

ISSUES FOR FUTURE REVIEW

The comprehensive analyses undertaken have provided a wealth of data with which to assess the likely impacts of all of the development options which have been proposed. The validity of the analytical results is accepted by all parties and the current assessment conclusions which have been reached should remain valid and applicable to future stages of the development, all things being equal. However, at each stage of the development it will be necessary to review the findings of the AKIA, taking into account any subsequent changes relating to:

- operational conditions, fuel characteristics and emissions;
- location of sensitive receptors;
- background air quality at sensitive receptors;
- EPD's requirements for Best Practicable Means of emissions control; and
- air quality objectives.

If the review work indicates that any such changes could possibly invalidate the original EIA conclusions, appropriate further assessment, as agreed between EPD and CLP, will be required in order to achieve a clear and solid basis for planning purposes.

3

Part A - Complex Terrain Wind Tunnel Tests

Receptor Bearings and Locations
Variation of One – Hour Average NO ₂ Ground Level Concentrations (µg m ⁻³) With Wind Speed – Coal Fired Option
Variation of One – Hour Average NO ₂ Ground Level Concentrations (µg m ⁻³) With Wind Speed – Coal Fired CCGT Option
Total Deposition keq km ⁻² yr ⁻¹ Mitigated Black Point
Total Deposition keq km ⁻² yr ⁻¹ Black Point Oil Fired
Total Deposition keq km ⁻² yr ⁻¹ Castle Peak Mitigated
Total Deposition keq km ⁻² yr ⁻¹ Black Point (coal–fired)
Total Deposition keq km ⁻² yr ⁻¹ Black Point (coal–fired without FGD)
Total Deposition keq km ⁻² yr ⁻¹ Black Point CCGT (gas– fired)
Total Deposition keq km ⁻² yr ⁻¹ Castle Peak only
Total Deposition keq km ⁻² yr ⁻¹ Black Point CCGT (oil– fired)

Part B - Rigorous Frequency Analysis

Figure 2.1a	Rigorous Frequency Analysis Locations
Figure 3.3a	Measured Cross Wind Plume Spread

2

PART A

COMPLEX TERRAIN WIND TUNNEL TESTS

PART A

COMPLEX TERRAIN WIND TUNNEL TESTS

CONTENTS

.

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	Purpose and Scope	1
1.3	General Approach	2
2	WIND TUNNEL TEST PROGRAMME	5
2.1	INTRODUCTION	5
2.2	BOUNDARY LAYER AND PREPARATORY TESTS	5
2.3	CONCENTRATION MEASUREMENTS	5
3	ASSESSMENT OF HUMAN HEALTH IMPACTS AND OPTIONS FOR MITIGATION	9
3.1	Methodology	9
3.2	4x2 680MW Coal-fired Units	10
3.3	GAS-FIRED CCGT UNITS	22
3.4	COAL-FIRED AND GAS-FIRED COMBINATIONS	25
3.5	OIL-SUBSTITUTION OPTIONS	25
3.6	FGD Considerations	27
3.7	OPEN-CYCLE GAS TURBINE UNITS	28
4	ASSESSMENT OF ACIDIFICATION IMPACTS ON THE NATURAL	
	ENVIRONMENT	31
4.1	INTRODUCTION	31
4.2	CRITICAL LOADS	32
4.3	EXISTING ACIDIFICATION IN HONG KONG	33
4.4	Assessment Methodology	36
4.5	ACIDIFICATION IMPACTS OF THE LTPS	39
5	CONCLUSIONS	43

.

Background

1

1.1

The Castle Peak Power Company Ltd (CAPCO), a joint venture of Exxon Energy Limited and China Light and Power Company Limited (CLP), plans to develop a power station at Black Point to provide, ultimately, about 6000 MWe. Following a site search in 1990, which recommended Black Point as the best site overall, ERM (formerly ERL (Asia) Ltd) was commissioned by CLP to undertake an environmental impact assessment (EIA) study to provide essential information as inputs to the detailed planning process for the facility. It was decided at the beginning of the study that the EIA would require a Key Issue Assessment (KIA) of the potential impacts associated with emissions of sulphur dioxide (SO₂) and nitrogen oxides (NO_x) from the stacks.

The KIA was structured into three phases:

- Phase 1 provided scoping assessments, using numerical modelling techniques, to direct the subsequent wind tunnel tests towards the most important scenarios of concern resulting from operation of the new power station.
- Phase 2 provides the essential information for the appropriate design of the power station to ensure that offsite impacts will be acceptable. This is based on the results of the complex-terrain wind tunnel tests and predictive analyses of acidification impacts.
- Phase 3 of the study would provide any final, more detailed information required to support the licence application for the new facility, should this be necessary.

This draft report presents the findings and recommendations of Phase 2 of the study.

1.2 PURPOSE AND SCOPE

The purpose of this phase of the KIA is to determine, for each general power station development scenario, what measures would be necessary to make the proposals acceptable with respect to air quality criteria relating to impacts on human health and the natural environment and compatibility with other planned developments. In particular, acceptable specifications for the design and operation of the first units need to be agreed upon as a priority.

The programme of wind tunnel tests was therefore designed to provide the building blocks of information required to predict the human health impacts of the development (resulting from SO_2 and NO_x emissions) under different

development scenarios. From this information the design implications associated with any mitigation requirements could be specified.

At this stage the final design of the development has not been decided upon, in terms of the fuel to be used or the power generation plant to be employed. These decisions will be made over the course of the station's development, on the basis of a range of considerations relating to fuel supply and electricity demand. The development scenarios being considered by CLP are presented in *Section 2.3*.

The Initial Assessment Report of the EIA concluded that 24-hr and annual average concentrations of SO_2 and NO_2 resulting from the new power station would be acceptable. It also concluded that any additional acidification of the environment resulting from dry deposition of emitted gases would not be significant. It was proposed and agreed, therefore, that the KIA should focus on human health impacts resulting from effects on 1-hour average ambient concentrations of the gases and any natural environment impacts resulting from *total acid* deposition (i.e. dry + wet).

1.3 GENERAL APPROACH

In Part 1 of Phase 2 a programme of wind tunnel tests was proposed to provide most of the information required to achieve the Phase 2 objectives. Initially, 16 test 'options' relating to the new power station were modelled, as well as Castle Peak stations A and B. A preliminary assessment was made of the results, followed by a number of further tests to clarify various points arising from the initial set of results. The test programme is summarised in *Section* 2.

The focus of the tests was on 1-hour average ambient concentrations resulting from the power station emissions. This was to provide sufficient information to identify any credible exceedance of the Hong Kong 1-hour average air quality objectives, (AQOs) and appropriate mitigation measures to be recommended if necessary. The AQOs are expressed as limit values of SO_2 and NO_2 (800 μ g m³ and 300 μ g m³ respectively) which should not be exceeded on more than three 1-hourly occasions per year. In reality, this is virtually indistinguishable from a single-violation criterion and for this reason the 'worst-case' impact scenarios were identified and modelled. As detailed below, this includes worst-case meteorological conditions and maximum emissions scenarios associated with the power stations operating at full load.

In Section 3 the results of the tests are summarised, highlighting the main points concerning the relationship between plume dispersion and wind speed and direction and the trends of ambient concentration with downwind distance, etc. An assessment is made of the possible impacts associated with the new power station, taking account of a number of important issues which must be considered:

- background concentrations resulting from Castle Peak power station emissions when plumes from Castle Peak and Black Point coincide;
- · contributions to ambient air quality from other sources;
- effects on future background air quality along north Lantau due to new developments, including the airport at Chek Lap Kok, industrial facilities and the planned North Lantau Expressway;
- new receptors associated with planned PADS developments to the southeast of the power station and along the north Lantau coast;
- the frequency with which particular wind directions and speeds could cause the power station emissions to affect sensitive receptors; and
- the frequency with which specific wind conditions and operational scenarios might cause the AQOs to be exceeded as a result of total emissions from the power station and other developments.

It should be noted that modelling the worst-case combinations of meteorological and emissions scenarios, as described above, inevitably results in predicted air quality impacts which are generally higher than the very worst which might occur. For the vast majority of the time, impacts will be considerably less than the predictions would suggest. This is examined in *Section 3.2.2* to provide an important complimentary consideration in assessing the real impacts of the proposed development.

In *Section* 4 an assessment is made of the potential for acidification impacts on the natural environment for each of the main development options. This is made on the basis of numerical predictions of wet and dry deposition and consideration of the likely significance of any increases in acid deposition due to the new power station's emissions. .

ERM HONG KONG

2

2.1

WIND TUNNEL TEST PROGRAMME

INTRODUCTION

The tests were undertaken by British Maritime Technology in a large (4.8m wide, 2.4m high and 15.0m long), closed return-circuit wind tunnel which has been used extensively for plume and gas cloud dispersion. The programme and methodology for the tests was previously presented in Part 1 of Phase 2 of the KIA. The test programme consisted of two parts which are presented in the following sections.

2.2 BOUNDARY LAYER AND PREPARATORY TESTS

The first part of the test programme was designed to ensure that the wind tunnel could adequately simulate the actual dispersion characteristics of the atmospheric boundary layer into which the stack emissions would be discharged, using a physical model at 1:2000 scale. *Annex A* presents the results of these tests and compares them against appropriate criteria for judging the acceptability of the simulated boundary layer. Most importantly, the following conclusions were made relating to issues discussed with EPD at the beginning of the Phase 2 work:

- reasonable simulation of an equilibrium sea-state boundary layer was achieved;
- · plume rise and concentration were properly simulated at 1:2000 scale;
- near-field interactions between the plumes and buildings were adequately simulated at 1:2000 scale compared with 1:500 scale; and
- the approach flow and the flow around the topographical model were properly simulated, as indicated by Reynolds number independence tests.

Overall it was concluded that a 1:2000 scale model could be used with confidence to obtain measurements of ambient concentrations in the second part of the test programme.

2.3 CONCENTRATION MEASUREMENTS

2.3.1 LTPS Development Options

The main development options being considered by CLP can be summarised as follows:

- Base-load generating plant could be made up of:
 - 8×680 MW coal-fired units;

- · 8 x 600 MW gas-fired combined-cycle gas-turbine (CCGT) units;
- a mixture of coal-fired and gas-fired units.
- The base-load plant will need to be able to run on oil as well as coal or gas, to provide additional operational flexibility and, thereby, security of electricity supply.
- Up to 10 x 100 MW open-cycle gas-turbine (OCGT) units, running on distillate oil, will also be required to meet short-term peak lopping and emergency demand.

Source characteristics and emissions data used for modelling each option are presented in *Annex B*.

2.3.2 Castle Peak Power Station

The new power station will operate in addition to existing generating plant at Castle Peak. The two will in fact rarely (less than 5% of the time) operate at full load together, as discussed in *Section 3.2.2*. However, due to the relative proximity of Castle Peak to Black Point (about 4km), emissions from Castle Peak power station could influence the significance of impacts resulting from the effect of Black Point emissions on ambient concentrations. This will only be the case when the two sets of plumes overlap in northwesterly and southeasterly winds, as follows:

- The simple merging of the plumes from the two power stations will reduce the capacity of the surrounding ambient air to dilute the concentrations of polluting gases within the plumes. This can be thought of as the Castle Peak plumes providing an elevated background concentration of these gases at the affected receptors, to which the emissions from Black Point will be added. These receptors include Chek Lap Kok airport and the north Lantau coast.
- The physical interaction of the plumes will have some effect on their thermal buoyancy since the heat energy within the plumes will also be dissipated less by the surrounding air. The flat terrain tests in Part 1 of Phase 2 had already indicated that this interaction would help maintain the buoyancy, and thus plume rise, of Black Point plumes after crossing Castle Peak.

For these reasons the wind tunnel tests included emissions from Castle Peak. To measure the effect of Black Point emissions alone, for the relevant wind directions, the Castle Peak plumes were still generated but without any tracer gas present, so that the effects on buoyancy would be properly modelled.

Source characteristics and emissions data for Castle Peak are presented in *Annex B*.

Sequence of Tests, Receptors and Meteorological Scenarios

Table 2.3a lists the tests made for concentration measurements, indicating the development option considered and wind directions for which measurements were made. The main test options relating to the new power station were chosen to generate the following information:

- ambient concentrations, across all relevant wind directions, for two 'completed' base-load development options, (4x2 coal-fired units and 8 gas-fired CCGT units) and for 10 x 100 MW OCGT units;
- the impacts of individual components of a complete development;
- sensitivity of the results to stack height and flue gas exit temperature in selected cases;
- the effect of substituting fuel oil for coal and distillate oil for gas; and
- the effect of Flue Gas Desulphurisation.

In addition, the initial tests modelled Castle Peak emissions for particular wind directions.

After the results from these tests had been reviewed, further tests were undertaken to provide more detail on near-field impacts resulting from operation of open-cycle and combined-cycle gas turbine units.

For the completed-development options measurements were made for wind directions covering the range 232° through 360° to 15°, to examine impacts on receptors in the New Territories and on Lantau. *Table 2.3b* lists the main receptors at which concentrations were measured for the completed-development test options. The receptors are illustrated in *Figure 2.3a*.

To test individual components of the development, and sensitivity to stack height, flue gas exit temperature and type of fuel, a more limited range of tests was undertaken for wind directions of 340° and 270°.

In general, the receptors were chosen to represent the main areas of residential and commercial development and areas used for recreational activity. *Figure 2.3a* shows the wind directions for which concentration measurements were made and also indicates the exact location of receptors in each case.

The tests were run at wind speeds ranging from 3 ms⁻¹ to 15 ms⁻¹. However, it should be noted that the higher wind speeds of 12 ms⁻¹ and 15 ms⁻¹ occur very rarely (about 4% of the time across all wind directions and 1% for directions towards land, based on Chek Lap Kok data for 1980– 90). They have been included primarily to obtain information on the relationship between wind speed and downwind concentration. In fact, 12 ms⁻¹ is only applicable for a few wind directions and receptors. 15 ms⁻¹ is unlikely ever to occur for a duration of one hour or more on a single 8

2.3.3

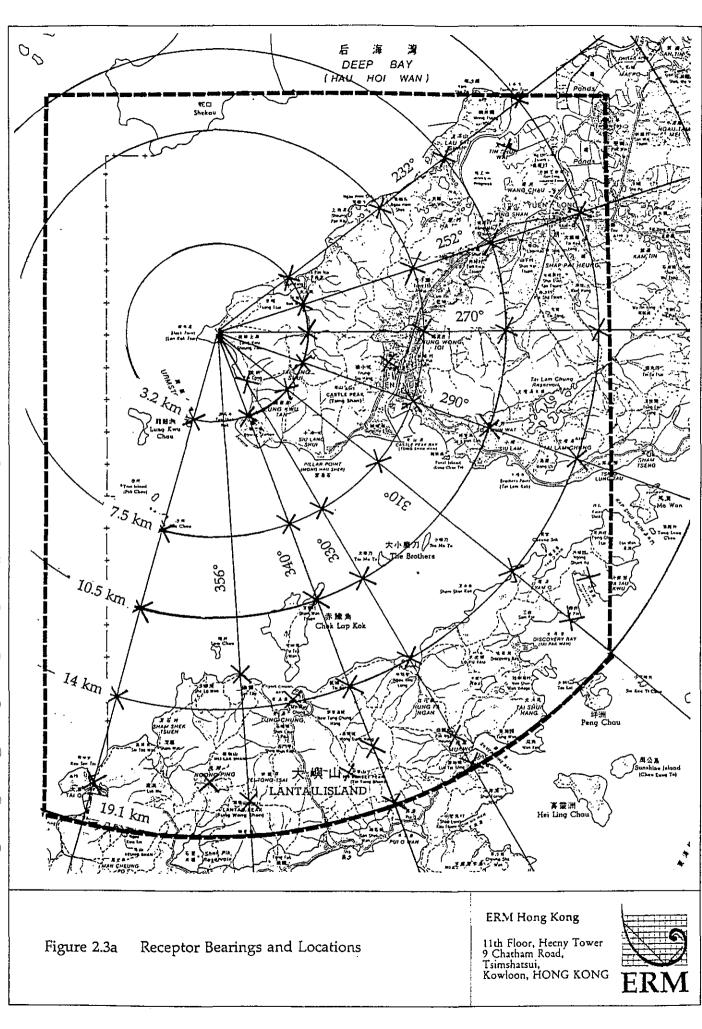

occasion and cannot, therefore, be considered a credible dispersion scenario for the receptors in question. *Annex* C presents information to support these conclusions.

Table 2.3b Wind Tunnel Test Receptors

	NT. (
Sensitive Areas	Nature	Bldgs Ht (m)	Sensor position
Mai Po Marshes	Conservation area		G.L.
Tin Shui Wai New town	Residential	100m max.	G.L. 50m 100m
Sheung Pak Nai	Rural village (existing) Industrial (planned)	Village: 10m I:30m	G.L. 50m
Ha Pak Nai	Rural village (existing) Industrial (planned)	Village:10m I:30m	G.L. 50m
Yuen Long New Town	Residential	70m max.	G.L. 70m
Hung Shui Kiu	rural village	10m	G.L.
Castle Peak Firing Range	Undeveloped area	_	G.L.
Lung Kwu Tan areas	Residential Industrial (planned)	R:10m I:30m	GL 50m
Tuen Mun New Town	Residential area	100m	G.L. 50m 100m
Pearl Island	Residential	10m	G.L. 50m
Area 38	Industrial (planned)	<30m	G.L. 50m
Chep Lap Kok	Airport (planned)	20-30m	G.L. 50m
Northeast Lantau	General Industry (planned), Residential (existing)	100m	G.L. 50m 100m
Tai Ho Wan	Residential (planned)	100m	G.L. 50m 100m
Lantau Peaks	Country Park	-	G.L.
North Lantau coast	General industry	app. 100m	G.L. 50m 100m
Mui Wo	Rural residental town	30m	G.L. 50m
Tung Chung	Residential (planned)	100m	G.L. 50m 100m
Ngong Ping	Rural village, hostel, camping area, monastery	10m	G.L.
Tai O	Residential	20m	G.L. 50m

Note: G.L. denotes ground level

 \bigcirc

3.1 METHODOLOGY

3

The assessment has been structured around each of the main development options being considered and involves the following main steps:

- identify the worst-case impact scenarios which are credible with regard to frequency of occurrence for each receptor;
- consider the main features of the results obtained from concentration measurements, illustrating trends of concentration with distance from source and wind speed, as appropriate;
- consider the likely annual frequency distribution of 1-hour average pollutant concentrations due to the new power station;
- assess the likelihood of short-term impacts being unacceptable (using the Hong Kong 1-hour average AQOs as criteria), taking account of likely coincident background levels;
- examine the sensitivity of measured concentrations to variables such as stack height, flue-gas temperature and stack arrangement; and
- where necessary, assess the scope for mitigation of impacts.

The complete set of results is presented in *Annex D*; in this section only selected examples are used to illustrate trends. In identifying the worst-case impact scenarios we have taken account of the likelihood of different meteorological scenarios occurring, as discussed in *Annex C*.

It can be seen from the results in Annex D that there is a significant difference between the downwind total NO_x and NO_2 concentrations. This is because most NO_x is emitted from the stacks in the form of NO which is only gradually converted to NO_2 during plume dispersion (mainly by the oxidising action of ozone in the ambient atmosphere).

The NO_2 concentration has been calculated from the NO_x results using an empirical formula developed by Janssen et al, as discussed in *Annex E*. The consultants consider use of this formula to be the most reliable means of deriving accurate estimates of the NO_2 content of a plume since it is based on a large number of measurements in power station plumes, over a range of meteorological conditions and for different ambient ozone concentrations.

This chemical conversion factor explains why the trends for NO_2 do not perfectly match those for SO_2 which is emitted directly from the stacks.

3.2.1 Base-Case Wind Tunnel Results

The base-case 4x2 coal-fired units development scenario was tested comprehensively across all relevant wind directions, assuming 250m stacks and flue-gas desulphurisation at 90% removal efficiency. The complete set of results is presented as Option 2 in *Annex D*.

Table 3.2a presents the maximum concentrations of NO₂ and SO₂ which could possibly affect each of the main receptors due to Black Point emissions alone. They are expressed as percentages of the 1-hour average AQOs (300 μ g m⁻³ of NO₂ and 800 μ g m⁻³ of SO₂). The percentage figures have been rounded to the nearest 5% which is consistent with the likely accuracy of the wind tunnel results.

The main observations to be made are summarised below.

- Higher concentrations of NO₂ will be observed, relative to the AQO, than SO₂, as concluded in the site search and earlier, preliminary analyses during this EIA.
- Maximum concentrations in the territory would occur between about 3 km and 8 km downwind, in Castle Peak Range (12 ms⁻¹ wind), in Area 38 (12 ms⁻¹ wind) and along the Deep Bay coastline (8 ms⁻¹ wind), but these are never likely to exceed 60–70% of the NO₂ AQO and 20% of the SO₂ AQO. Given the extremely low probability of a 12 ms⁻¹ wind affecting any of these receptors, maximum concentrations will more than likely not exceed 40% (except 60% at Sheung Pak Nai) and 15% of the NO₂ and SO₂ AQOs respectively in these areas.
- Elsewhere in the Northwest New Territories, maximum concentrations could reach 45% of the NO₂ AQO at Lau Fau Shan and Tin Shui Wai in an 8 ms⁻¹ wind and elsewhere between 20% and 35% of the NO₂ AQO and between 5% and 15% of the SO₂ AQO.
- On Lantau and at Chek Lap Kok the maximum concentration is less sensitive to wind speed, ranging from 20% of the NO₂ AQO in parts of southeast and northeast Lantau to 40% and 45% along the north Lantau coast and at Chek Lap Kok respectively. Along the peaks of Lantau the maximum is likely to be 25–35% of the NO₂ AQO. Nowhere on Lantau is the SO₂ concentration likely to exceed 5% of the AQO.

ERM HONG KONG

Distance	Wind	Example Receptors	Wind	NO_2	SO_2	
from Black Point (km)	Directions	(ground level (gl) unless height given)			Max Conc'n (% of AQO) ²	
2.0	310°, 330°	Lung Kwu Tan areas	12	35	15	
3.2	232°, 252°	Ha Pak Nai (gl, 40m)	8	30	10	
3.2	290°, 310°	Castle Peak Range (gl, 60m)	12 _.	50-70	15–20	
4.8	330°	Area 38 (gl, 60m)	12	50-60	10-15	
7.5	232°	Sheung Pak Nai (gl, 40m)	8	60	10	
7.5	252°, 290°	Tuen Mun Valley (gl, 60m)	8	25–30	5–10	
10.5	252°	Hung Shui Kiu	8	35	5	
10.5	330°, 340°	Chek Lap Kok (gl, 40m)	8, 12	40	5–10	
10.5, 12.0	232°	Lau Fau Shan, Tin Shui Wai (gl, 40m)	8	40-45	5–10	
10.5, 14.0	270°, 290°	Tai Lam, Pearl Island (gl, 60m)	8	20–25	<5	
13.4, 14.0	340°, 356°	North Lantau coast– Tung Chung, Tai Ho Wan	8, 12	30-40	5	
14.0	252°	Yuen Long (gl, 40m, 80m)	8	30	5	
14.0, 16.0	310°	Northeast Lantau– Yam O, Discovery Bay	8, 12	20–30	<5.	
18.0, 19.1	330°, 340°	Southeast Lantau– Mui Wo, Pui O (gl, 60m)	8, 12	20–25	<5	
17.0, 17.6	. 340°, 356°	Lantau/Sunset Peaks, Ngong Ping	8	25–35	5	
16.8	15°	Northwest Lantau– Tai O	8	30	5	

Table 3.2aMaximum Measured Pollutant Concentrations (1-hr average) due to Black
Point Emissions - 4x2 680MW Coal Fired Units

¹ 300 μ g m⁻³

² 800 μ g m⁻³

 (\cdot)

 \bigcirc

 \bigcirc

Ő

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

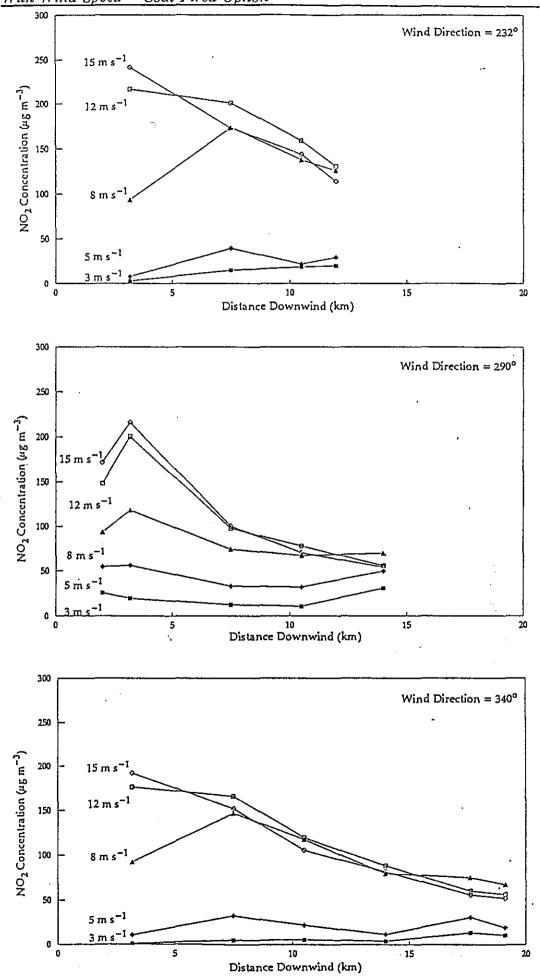
11

Figure 3.2a provides graphical illustrations of how downwind concentration varies with wind speed for selected wind directions. These show quite clearly how wind speed becomes less important with distance from the source. Close to the source, however, there can be sharp differences in concentration between wind speeds. The graph for 290° shows the peak concentrations to occur at about 3km downwind.

The concentrations measured above ground level indicate, in general, that in winds above 5 ms⁻¹ the plume is fairly well mixed vertically so that no significant difference in concentration is found between ground level and elevated receptors. At the lower wind speeds concentrations at elevated receptors are sometimes higher than at ground level but not often by any significant amount. In some cases elevated concentrations are lower. Most of the situations where marked differences are observed between ground–level and elevated receptor concentrations involve the plumes blowing over Castle Peak Range, indicating the effects of terrain.

3.2.2 Assessment of Impacts

Background Air Quality – General


An advantage of the Black Point site is that for the wind directions affecting most receptors the plumes from the power station will be dispersing in relatively clean air from the sea, i.e. the background pollutant levels at the point of discharge will be low. This is confirmed by the results from CLP's monitoring station at Black Point – between April 1st and July 31st 1991 SO₂ and NO₂ concentrations remained below 25 μ g m⁻³ and 35 μ g m⁻³ respectively.

This means that the ambient background affecting such receptors will be mainly due to local sources or those lying between Black Point and the receptor, i.e. not upwind of Black Point. For the most part, this is only likely to result in significant background levels in or downwind of industrial or urban areas, e.g. Tuen Mun, Yuen Long, Pearl Island, and Tai Lam. However, the results indicate that the maximum concentration from the power station likely to affect these receptors would be in the range 20–35% of the NO₂ AQO and 5–15% of the SO₂ AQO. It is not considered likely that the coincident background in such cases would cause the AQO to be exceeded. This is because the relatively high wind speeds which would cause the power station plumes to affect these receptors in this way would actually encourage dispersion of the lower–level local sources more than otherwise and create a balancing effect.

Background Air Quality - Emissions from North Lantau Developments

Receptors at Chek Lap Kok and along north Lantau will also be affected by additional pollutant loadings resulting from the new airport at Chek Lap Kok, the new North Lantau Expressway and developments along the north coast, such as at Tung Chung and Tai Ho Wan. The air quality impacts of these developments have been examined as part of the respective EIA studies. The relevant results can be summarised as follows:

Figure 3.2a Variation of One – Hour Average NO₂ Ground Level Concentrations ($\mu g m^{-3}$) With Wind Speed – Coal Fired Option

14. 2

- Peak concentrations of NO₂ will occur in northeasterly winds blowing along the north coast of Lantau, largely due to the importance of background sources and the new Expressway.
- Airport and local industrial sources will have maximum impacts in very light winds of $1 2 \text{ ms}^{-1}$ from between 290° and 50°, resulting in NO₂ concentrations of about 150–175 μ g m⁻³ (50% 58% of AQO) at the airport terminal and from 70–250 μ g m⁻³ (23% 83% of AQO) at various points along north Lantau.
- Peak concentrations of SO_2 for the relevant wind directions range between 20 μ g m⁻³ and 65 μ g m⁻³ (2.5%-8.1% of the AQO).

Several points are important to note here:

- Firstly, the maximum NO₂ concentrations were predicted using the PAL numerical model which is acknowledged to be conservative, particularly in light winds.
- Secondly, the analyses concentrated on the 'worst-case' scenarios, just as this assessment of power station impacts does. However, whereas for the power station the worst-case dispersion scenarios are characterised by relatively high wind speeds (which cause the stack emissions to disperse more rapidly towards the ground), for the lower-level sources along north Lantau much lighter winds are necessary to result in maximum impacts at the nearby receptors. In light winds (e.g. 3 ms⁻¹) the Black Point emissions result in downwind NO₂ concentrations in the order of 2% of the NO_2 AQO along north Lantau and so the interaction at low wind speeds is irrelevant. The impacts of the north Lantau developments at higher wind speeds, which are more relevant to this KIA, have not been reported in the PADS studies. However, under the more 'probable' conditions of a 5 ms⁻¹ easterly wind the predicted NO₂ concentration at the western airport boundary is nearly 75 μ g m⁻³ (25%) of the AQO). For the purpose of this report, this is taken as a conservative estimate of the upper limit to the concentration along north Lantau and at Chek Lap Kok which could co-exist with impacts from the power station under such conditions. In higher wind speeds much lower concentrations would be observed, perhaps less than 50 μ g m⁻³ (about 15% of the AQO) for 8 ms⁻¹ and less than 25 μ g m⁻³ (8% of the AQO) for 12 ms⁻¹.

Background Air Quality - Emissions from Castle Peak Power Station

There are two dispersion scenarios which present a more complex situation regarding background levels and are critical regarding acceptability of impacts and mitigation requirements. These are the scenarios where the plumes from Black Point overlap with those from Castle Peak, which effectively contribute to the background on Lantau (northwesterly winds) and at Shekou in the PRC (southeasterly winds). This was identified as the key issue during the site search study. To assist with the assessment, therefore, Castle Peak emissions were included in the wind tunnel tests so that their contribution to the background could be evaluated. The results are presented in full in *Annex D* and summarised below.

Tables 3.2b summarises the potential impacts of Castle Peak emissions on receptors on Lantau for the power station operating at full load. It can be seen that there is the potential for Castle Peak emissions alone to result in ground level concentrations, at Chek Lap Kok in very high winds above the NO_2 AQO. Clearly this represents a significant background level but it is important to consider the frequency with which such concentrations could coincide with high concentrations due to Black Point emissions. This is discussed below.

			· · · · · · · · · · · · · · · · · · ·
Receptor	Wind Speed (m/s)	SO ₂ Concentration (% of AQO)	NO ₂ Concentration (% of AQO)
Chek Lap Kok	5	5–10	5–10
Chek Lap Kok	8	20-40	45–55
Chek Lap Kok	12	65-70	95–110
North Lantau Coast	5	5–10	10
North Lantau Coast	8	30–35	5055
North Lantau Coast	12	50	85
Lantau Peaks	5	10	15
Lantau Peaks	8	15–30	3050
Lantau Peaks	12	35	60

Table 3.2bSummary of Key Test Results for Castle Peak Power Station - PotentialImpacts on Lantau

Frequency Considerations – Black Point

By combining the information relating concentration to wind speed and direction with statistics on the frequency of occurrence of the wind speeds for specified wind directions, an indication of the year-round influence of Black Point emissions on 1-hour average concentrations can be obtained. This provides an important qualifier to the maximum concentrations presented in *Table 3.2a*. The approximate frequencies, for NO₂, are presented in *Tables 3.2c-e* for three example receptors – Chek Lap Kok, Tin Shui Wai and Pearl Island.

The frequencies are obtained by taking the best available climatological data (Chek Lap Kok 1980–1990) and assuming that a receptor will only be affected by the plumes when the wind is blowing steadily within a 20° band centred on the receptor in question, e.g. 290–310° for Pearl Island; it is assumed that on such occasions plume–centreline concentrations will affect the receptor. This is a simple and somewhat pessimistic approach since it ignores inherent uncertainties and the fact that to record a 1 hour average direction at least six 10–minute readings would have to be recorded within

the 20° band. Nevertheless, it provides a useful indication of the overall distribution and is considered a suitable worst-case for the purpose of this assessment.

It can be seen from the Tables that between 95% and 98% of the time these receptors will not be affected by the power station's plumes to the extent that any 1-hour average concentration would be noticeably increased. This is due entirely to the infrequency of wind directions affecting the receptors. For this reason also, as concluded in the IAR, the new power station will not have any significant impact on longer-term (24-hour and annual average) ambient concentrations.

Wind speed/direction scenarios which could lead to concentrations of 40% of the AQO or higher (which could be significant, depending on the background), occur for about 0.3% of the time (i.e. about 30 hours per year). In fact, the incidence of the highest concentrations is likely to be even lower given the fact that for much of the year the power station will be operating at less than full load. However, although this is very low, the Hong Kong AQOs require that the 1-hour limit value should not be exceeded on more than *three* occasions per year. Therefore, such rarely occurring events must be considered with regard to their potential contribution to cumulative air pollutant levels, taking account of the background air quality due to other sources.

Frequency Considerations – Black Point plus Castle Peak

The combined impacts due to Black Point and Castle Peak emissions hold the greatest potential for exceedance of the AQO limit values. However, the frequency of such combined impacts must be evaluated for comparison with the AQO criterion of exceedance on more than three occasions per year.

Table 3.2f summarises the frequency distribution of expected total output from Black Point and Castle Peak power stations for the year 2008 when Black Point will be completely developed and operational. It can be seen that for only 5% of the time (438 hours per year) will the two stations be operating at or something close to 100% of total capacity. In order that any impacts can be compared with the 1-hour average AQOs, the combined frequency of operation and meteorological conditions must amount to at least three hours per year, or 0.034% of the time. Thus, impacts arising from 'peak-output' operation of the two power stations, at 91-100% of total capacity, will only be credible, from a frequency point of view, for meteorological scenarios with a frequency of occurrence of 0.7% or more $(0.034 \div 0.05)$. Peak output occasions will occur almost exclusively in the summer months when there will be a demand for such high levels of output and therefore summer meteorological data should be used to reflect the monsoonal changes (see Annex C). From Annex C it can be seen that this limits the meteorological conditions to about 5m/s for 340° towards Lantau.

Table 3.2c	Estimated Frequency of 1-hr Average NO ₂ Concentrations - Chek Lap Kok,
	Coal-Fired Option

Wind Speed (m/s)	Concentration (% of AQO)	% of the time	Cumulative % of time
	0	97.18	97.18
0 - 8	<5	2.62	99.80
>8	40	0.20	100

Table 3.2dEstimated Frequency of 1-hr Average NO2 Concentrations - Tin Shui Wai,
Coal-Fired Option

Wind Speed (m/s)	Concentration (% of AQO)	% of the time	Cumulative % of time
	0	98.65	98.65
0 - 8	<10	1.29	99.94
- >8	45	0.06	100

Table 3.2eEstimated Frequency of 1-hr Average NO2 Concentrations - Pearl Island,
Coal-Fired Option

Wind Speed (m/s)	Concentration (% of AQO)	% of the time	Cumulative % of time
-	0	96.17	96.17
0 - 8	<5	3.75	99.92
>8	20 – 25	0.08	100

Coal-Fired Plant Power Output as % of Total Coal-Fired Capacity	Percentage of Time	Cumulative Percentage of Time	Worst-case average output as % of total capacity (taking upper values of discrete ranges)
91–100	5	5	95.5
81–90	8	13	90
71-80	8	21	86
61–70	12	33	80
51-60	13	46	75
41-50	11	57	70
31-40	14	71	64
21-30	11	82	60
11-20	12	94	54
0-10	6	100	52

Table 3.2fFrequency Distribution of Output from Black Point and Castle Peak PowerStations

Table 3.2g summarises the calculation of total impacts for this scenario, taking account of contributions from Black Point and Castle Peak power stations (each at maximum output) and north Lantau developments. It can be seen that total predicted concentrations lie safely within the AQOs.

Overall, the real impacts of the 'peak-output' scenario are therefore limited due to the extreme infrequency with which it would occur in combination with worst-case meteorological conditions.

As an alternative worst case, which will occur more frequently, we might consider the impacts associated with operation of the two power stations at more than 80% of total capacity. This is expected to occur for 13% of the time so that coincident meteorological conditions would need to occur with a frequency of at least 0.26% (0.034 \div 0.13). Assuming this operational scenario to take place around the summer months, this limits the meteorological conditions to just below 8 ms⁻¹ for 340°.

If an even distribution across the year were assumed for this operational scenario the equivalent wind speeds would be 8 ms^{-1} .

. . .

18.1

Table 3.2g

Maximum Total Concentrations¹ (% AQO) Associated with Maximum Output from Black Point and Castle Peak – Base Case²

						
Source	Chek I	ap Kok	North	Lantau	Lantau	1 Peaks
	NO_2	SO ₂	NO_2	SO ₂	NO ₂	SO ₂
Black Point	7	2	4	1	10	2
Castle Peak	10	10	10	10	15	10
North Lantau and other Developments	25	8	25	8	<<25	<<8
Total	42	20	39	19	<<50	<20

¹ Which could occur for three or more hours per year.

² Individual source contributions above 10% rounded to nearest 5%.

The worst-case average output under this operational scenario would be 90% of the total capacity. Castle Peak has the greater potential for impacts and so as a worst case it can be assumed that Castle Peak would be operated in preference, at 100% of capacity, and Black Point would be operated at an average of 80% of capacity. In this case the total impacts are summarised in *Table 3.2i*, using the summer wind speed scenarios of 8 ms⁻¹ for 340°. For the purpose of this exercise the Black Point concentrations have been estimated as 80% of the values measured for the 100% load scenario.

Table 3.2h

Maximum Total Concentrations¹ (% AQO) Associated with 80% Output from Black Point² and 100% Output from Castle Peak – Base Case³

Source	Chek L	Chek Lap Kok North		Lantau Lantau Peak		1 Peaks
· · ·	NO ₂	SO ₂	NO ₂	SO_2	NO_2	SO_2
Black Point	30	5	20	4	25	4
Castle Peak	55	40	45	30	50	30
North Lantau and other Developments	15	8	15	8	<15	<8
Total	100	53	80	47	<90	<42

¹ Which could occur for three or more hours per year.

² Obtained as 80% of measured value for 100% load scenario.

³ Individual source contributions above 10% rounded to nearest 5%.

⁴ Lower background NO₂ at higher wind speed of 8 ms⁻¹.

It can be seen that the likelihood of high contributions from both Black Point and Castle Peak are greater than for the maximum output scenario summarised in *Table 3.2g*. This is a direct consequence of the increase in frequency of operation at this capacity, resulting in higher wind speeds becoming credible dispersion scenarios. These cause relative increases in downwind concentrations which more than balance the reduction in emission rates associated with the lower operational outputs. In particular ground level NO₂ concentrations equal to or close to AQO levels could occur for three hours per annum at the above locations. SO₂ concentrations are much lower, the maximum being 53% of the AQO at Chek Lap Kok. Nevertheless this is still higher than for the maximum output scenario. It should be noted that if Black Point was assumed to operate at 100% and Castle Peak at 80% the results would not be significantly different, displaying only a slight decrease in total concentrations.

Summary and Conclusions

In deriving the worst-case impacts of the LTPS development a conservative approach with respect to weather data, pollutant outputs and ambient levels has been adopted. With this in mind it is concluded that the base-case coal-fired option alone would not cause the 1-hour average AQOs to be exceeded. Except in the Castle Peak Range, NO₂ concentrations, due to the power station emissions, are unlikely to exceed 60% of the 1-hour average AQO. SO₂ concentrations are not predicted to exceed 15% of the AQO except in Castle Peak Range.

By adding the Castle Peak background values to the maximum concentrations due to Black Point for relevant wind directions, the maximum total concentrations, due to both power stations have been found for receptors at Chek Lap Kok, north Lantau and the Lantau Peaks. From a consideration of the frequency of wind conditions and combined operational scenarios for the two power stations, it is concluded that the impacts associated with combined operation in the 81–100% ranges of total capacity represent the worst–case. These will be used as the basis for assessment of mitigation requirements.

Maximum total concentrations due to the two power stations are estimated to reach up to 85% of the NO₂ AQO at Chek Lap Kok and 65 to 75% of the AQO in North Lantau and Lantau Peaks. SO₂ concentrations are estimated to range up to about 50% of the AQO. Adding the estimated background contribution due to local sources along north Lantau to the maximum concentrations due to the two power stations results in the NO₂ ground level concentrations at north Lantau and Chek Lap Kok rising to 80% and 100% of the AQOs respectively. No exceedances of the AQOs are predicted for the Lantau Peaks or for SO₂ at any receptor. *Table 3.2i* summarises the percentage contributions of the different sources to the predicted ground level NO₂ concentration.

Table 3.2iSummary of Maximum predicted NO2 1-hour AQO Percentages and SourceContributions - Coal-Fired Option

Source	Chek Lap Kok ¹	North Lantau ¹
Total GLC (% AQO)	100	80
% of total concentrations at each receptor		
Black Point	30	25
Castle Peak	55	55
Other	15	20

¹ from Table 3.2h

Despite the conservative assumptions built into these predictions consideration must be given to mitigating the impacts at North Lantau and Chek Lap Kok, as discussed below.

3.2.3 Mitigation Options

A number of the test options were used to investigate the effects of changing the physical characteristics of the Black Point source and are discussed in *Annex F*. These represent one set of options which could be considered for mitigating NO_2 impacts and are summarised below.

- A 2x4 stack arrangement (two stacks, each linked to four generating units – test Option 16) produces no significant benefit for the critical receptors, though significant benefits are observed for 270°.
- Increasing the flue gas exit temperature to 120°C from 80°C (test Options 4, 8 and 9) has no significant effect for the source-receptor scenarios of most concern.
- A lower stack height (test Option 13), not unexpectedly, results in greater impacts (test Option 13), though the difference is not great.

Although a higher stack (300m) was not tested it is considered unlikely to produce any significant benefits since it may result in a loss of buoyancy (observed in the flat terrain tests) through less vertical interaction with the Castle Peak plumes when dispersing southeast towards Lantau. Furthermore, based on the measured benefits of a 250m stack over one 200m high (test Options 2 and 13), there would be little to gain.

Reducing source concentrations of NO_x at Black Point and/or Castle Peak is therefore the only way in which to achieve the desired result. The options are summarised below, taking mitigation of the worst-case impacts at Chek Lap Kok as the critical issue.

Phasing in lower- NO_x burners at Castle Peak, as CLP have planned, could clearly have significant benefits since between about 55 and 60% of the concentrations where ground level NO_2 concentrations are predicted to approach AQO levels are due to Castle Peak. The background contribution from Castle Peak for the worst-case impact scenario is estimated to be 55% of the NO_2 AQO, at Chek Lap Kok.

It is understood from CLP that reductions to about 90% of current levels at Castle Peak A (1000 ppm (v/v) from 1100 ppm source concentration of NO_x) and 55% of current levels at Castle Peak B (600 ppm from 1100 ppm) are possible. These measures would reduce Castle Peak's contribution to the maximum concentration at Chek Lap Kok to about 40% of the AQO, resulting in a total concentration of about 70% of the AQO from the two power stations and perhaps 85% of the AQO if all other sources are also considered, though this figure is somewhat uncertain because of the lack of appropriate background data relating to impacts of the new airport at Chek Lap Kok.

The proposed Castle Peak emission reductions represent the equivalent of the removal of 83% of the total worst case NO_x emissions from the LTPS. Emissions reductions at Black Point would provide a means of further mitigation.

Employing lower– NO_x burners at Black Point, for example down to 220ppm (v/v) from the 330 ppm BPM (Best Practicable Means) limit set by EPD, could further contribute to mitigation of the impacts, reducing the concentration at Chek Lap Kok by 10% of the AQO. Black Point's maximum contribution to NO₂ concentrations would then be about 20% of the AQO at Chek Lap Kok. Taken in conjunction with the emissions reductions at Castle Peak, outlined above, this could result in total NO₂ concentrations of 75% of the AQO at Chek Lap Kok. At Chek Lap Kok power station emissions would account for 65% of the AQO.

The mitigation measures outlined are the only practical measures considered by CLP to be available and there is some doubt regarding the ability to achieve the 220ppm figure as a maximum on the new Black Point boilers. CLP are fairly confident however of their ability to achieve the lower figures at Castle Peak.

Benefits of NO _x Emissions Control Measures at Castle Peak and Black
Point – Coal–Fired Option – Worst Case Scenarios

Emissions reduction scenario	Source of impact	Concentration (% of AQO) at Chek Lap Kok ¹	Concentration (% of AQO) at north Lantau ¹
None	Black Point	30	20
None	Castle Peak	55	45
None	Other	15	15
None	All	100	80
Castle Peak A to 1000 ppm, Castle Peak B to 600 ppm	АЦ	85	70
Castle Peak reductions plus Black Point to 220 ppm	АЦ	75	60

1. from Table 3.2h

3.3 GAS-FIRED CCGT UNITS

3.3.1 Base-Case Wind Tunnel Results

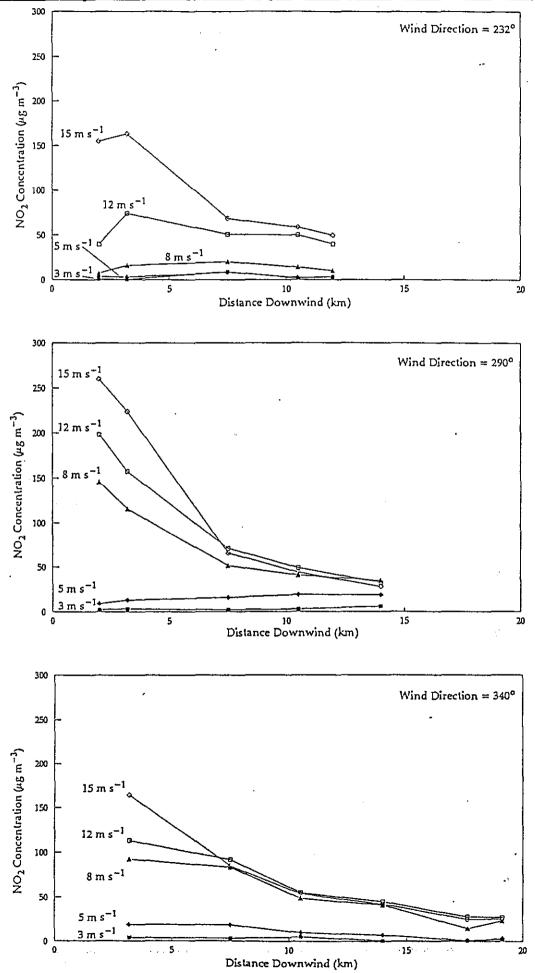

The base-case 8 gas-fired CCGT units development scenario was tested comprehensively across all relevant wind directions, assuming 100m stacks. The complete set of results is presented as Option 3 in *Annex D*.

Table 3.3a presents the maximum concentrations of NO₂ which could possibly affect each of the main receptors due to Black Point emissions alone. They are expressed as percentages of the 1-hour AQO (300 μ g m³). The percentage figures have been rounded to the nearest 5% which is consistent with the likely accuracy of the wind tunnel results.

In general, the CCGT option has a very low potential for impacts by itself. Maximum NO₂ concentrations only rise above 20% of the AQO in Area 38 (20%), Lung Kwu Tan (30%) and Castle Peak Range (40%). SO₂ will only be emitted in small quantities if gas is used as the fuel and so there would be no impacts on air quality by this pollutant.

Figure 3.3a provides graphical illustrations of how downwind concentration varies with wind speed for selected wind directions. As for the coal option, these demonstrate clearly how concentrations become less sensitive to wind speed with distance from the source. Likewise, close to the source there can be sharp differences in concentration between wind speeds.

Figure 3.3a Variation of One – Hour Average NO₂ Ground Level Concentrations (µg m⁻³) With Wind Speed – Gas Fired CCGT Option

。 索

1

Assessment Of Impacts

As with the coal-fired option, the frequencies with which any of the maximum concentrations in *Table 3.3a* would occur are extremely low. The main difference is that the maximum concentrations are much lower because of the lower emission rates. The maximum ground level concentration predicted is 80% of the NO₂ AQO at Chek Lap Kok and specific mitigation measures are therefore not required. Introduction of such measures may however allow CLP flexibility with regard to lower chimneys than the 100m which were modelled in the wind tunnel tests.

Table 3.3a

3.3.2

Maximum Measured NO₂ Concentrations (1–hr average) due to Black Point Emissions – 8 x 600 MW Gas Fired CCGT Units

Distance from Black Point (km)	Wind Directions	Example Receptors (ground level (gl) unless height given)	Wind Speed (m/s)	Max Conc'n (% of AQO)
2.0	310°, 330°	Lung Kwu Tan areas	12	30
3.2	232°, 252°	Ha Pak Nai (gl, 40m)	8	10
3.2	290°, 310°	Castle Peak Range (gl, 60m)	12	40
4.8	330°	Area 38 (gl, 60m)	12	20
7.5	232°	Sheung Pak Nai (gl, 40m)	8	5
7.5	252°, 270°, 290°	Tuen Mun Valley (gl, 60m)	8	10–15
10.5	252°	Hung Shui Kiu	8	10
10.5	330°, 340°	Chek Lap Kok (gl, 40m)	8, 12	10-15
10.5, 12.0	232°	Lau Fau Shan, Tin Shui Wai (gl, 40m)	8	5
10.5, 14.0	270°, 290°	Tai Lam, Pearl Island (gl, 60m)	8	10–15
13.4, 14.0	340°, 356°	North Lantau coast–Tung Chung, Tai Ho Wan	8, 12	5-10
14.0	252°	Yuen Long (gl, 40m, 80m)	8	10
14.0, 16.0	310°	Northeast Lantau–Yam O, Discovery Bay	8, 12	5
17.6, 18.0, 19.1	330°, 340°	Southeast Lantau-Mui Wo, Pui O (gl, 60m)	8, 12	5
17.0, 17.6	340°, 356°	Lantau/Sunset Peaks, Ngong Ping	8	5-10
16.8	15°	Northwest Lantau–Tai O	8	5

Table 3.3bSummary of Maximum Predicted NO2 1-hour AQO Percentages and Source
Contributions - Gas-Fired Option1

Source	Chek Lap Kok	North Lantau
Total GLC (% of AQO)	80	70
% of total concentration at each receptor		
Black Point	13	14
Castle Peak	69	64
Other	18	22

1. Based on 8 ms⁻¹ wind velocity.

3.3.3 Mitigation Options

Reductions in NO₂ ground level concentrations could be achieved by reducing NO_x emissions from Castle Peak as described for the coal-fired option. The benefits of emissions control measures are summarised in *Table 3.3c*.

Table 3.3c	Benefits of NO _x Emissions Control Measures at Castle Peak for the Black
	Point Gas-Fired Option

Emissions reduction scenario	Source of impact	Concentration (% of AQO) at Chek Lap Kok	Concentration (% of AQO) at north Lantau
None	Black Point	10	10
None	Castle Peak	55	45
None	Other	15	15
None	All	80	70
Castle Peak A to 1000 ppm, Castle Peak B to 600 ppm	АШ	65	60

Further reductions are possible by limiting emissions from the LTPS to 42 ppm rather than the 75 ppm assumed here. CLP believe such a limit would be difficult to guarantee and incur excessive penalties with regard to thermal efficiencies and water consumption.

COAL-FIRED AND GAS-FIRED COMBINATIONS

Not surprisingly, the mixed-fuel development option (2x2 coal-fired plus 4 gas-fired CCGT) results in receptor concentrations lying generally between the two single-fuel options, as shown in *Table 3.4a*. These estimates were obtained using results from the partial-development test Options 5 and 8. For the most critical receptors, the results indicate that emissions reductions at Castle Peak would not be required to ensure that the AQOs are not exceeded.

Implementation of the lower NO_x output levels for Castle Peak however would result in a maximum NO_2 concentration at Chek Lap Kok (the worst-case scenario) of 75% of the AQO (compared with 85% for the coalfired option). This illustrates clearly how dominant the background air quality is and how emissions reductions at Castle Peak provide the key to reducing the background, and thereby creating capacity within the airshed for the Black Point emissions.

OIL-SUBSTITUTION OPTIONS

The sulphur contents of distillate oil for CCGT and fuel oil for coal-fired units as backup or substitution fuels are 0.5% and 3.5% (by weight) respectively.

A number of the tests examined the effects of substituting oil for coal and gas in the main units. These tests were targeted to significant receptors, and so a complete set of results for all receptors can not be presented. The tests were intended to provide the base information required to determine the likely air quality implications of fuel substitutions in one of the main development options already discussed. The main conclusions can be summarised as follows:

600MW CCGT Units. Substituting oil for gas in the CCGT units makes no significant difference to the conclusions regarding NO₂ for relevant development options. The main difference relates to SO₂ such that the 8 x CCGT option would result in about twice the downwind SO₂ concentrations measured for the 4x2 coal-fired option. This is the result of discharging from 100m high CCGT stacks compared with 250m high stacks in the coal-fired case and the higher SO₂ emission rate associated with oil firing. Combined with Castle Peak emissions this could result in a total concentration of 50% of the AQO at Chek Lap Kok.

Likewise, in the case of 2x2 coal-fired units combined with 4 oil-fired CCGT units, there would be an increase in downwind SO₂ concentrations but not so much as to cause the AQO to be exceeded, even when combined with the effect of Castle Peak emissions. So, when judged against the AQOs this option is as acceptable as the completely gas-fired option.

3.5

Ċ
\bigcirc
\bigcirc
\bigcirc
(
\bigcirc
C
$\sum_{i=1}^{n}$
Ċ
\subset
$\left(\right)$
<u> </u>
\bigcirc
\bigcirc
C)
Ċ
Ċ
C^{*}
\bigcirc
C^{\dagger}

Table 3.4a	Maximum Pollutant Concentrations (1-hr average NO ₂) due to Black Point
	Emissions – Coal–Fired, Gas–Fired CCGT and Mixed–Fuel Options

Distance from Black Point (km)	Wind Directions	Example Receptors (ground level (gl) unless height given)	Coal–Fired Option	Gas–Fired CCGT Option	Mixed Fuel Option
2.0	310°, 330°	Lung Kwu Tan areas	35	30	30–35*
3.2	232°, 252°	Ha Pak Nai (gl, 40m)	30	10	10
3.2	290°, 310°	Castle Peak Range (gl, 60m)	50–70	4 0	40°
4.8	330°	Area 38 (gl, 60m)	50-60	20	30*
7.5	232°	Sheung Pak Nai (gl, 40m)	60	5	15
7.5	252°, 290°	Tuen Mun Valley (gl, 60m)	25-30	10–15	10-30
10.5	252°	Hung Shui Kiu	35	10	25
10.5	330°, 340°	Chek Lap Kok (gl, 40m)	40-45	10–15	2535
10.5, 12.0	232°	Lau Fau Shan, Tin Shui Wai (gl, 40m)	40-45	5	20
10.5, 14.0	270°, 290°	Tai Lam, Pearl Island (gl, 60m)	20-25	10–15	1525
13.4, 14.0	340°, 356°	North Lantau coast– Tung Chung, Tai Ho Wan	30-40	5–10	20–25
14.0	252°	Yuen Long (gl, 40m, 80m)	30	10	15
14.0, 15.0, 16.0	310°	Northeast Lantau– Yam O, Discovery Bay	20-30	5	15–25
18.0, 19.1	330°, 340°	Southeast Lantau Mui Wo, Pui O (gl, 60m)	20-25	5	15–20
17.0, 17.6	340°, 356°	Lantau/Sunset Peaks, Ngong Ping	25-35	5–10	10 -20
16.8	15°	Northwest Lantau- Tai O	30	5	20

* Estimates obtained by interpolation between wind speeds

• 680MW Conventional Units. Assuming 90% SO_2 reduction by FGD, substituting oil for coal has the effect of increasing SO_2 concentrations and reducing NO_2 concentrations, approximately in proportion to the changes in source concentrations. As for oil substitution in the CCGT units, the increase in SO_2 concentrations would result in levels of 55% of the AQO.

FGD CONSIDERATIONS

3.6

In order to evaluate the situation pertaining to varying degrees of Flue Gas Desulphurisation, wind tunnel modelling was carried out with maximum (90%), medium (50%) and no FGD for the coal fired (1% sulphur as received) case. The results are shown in *Table 3.6a*.

The results indicate that for a 8 x 680 MW coal-fired LTPS under the most credible worst-case wind speeds of 8 ms⁻¹ the SO₂ AQOs could be exceeded at Chek Lap Kok were FGD not available. However, the AQO for SO₂ would not be exceeded at any receptors under the four combined cycle/four coal fired unit scenario without FGD, although FGD would significantly reduce ground level concentrations.

 Table 3.6a
 Summary of Key Test Results of Various FGD

		SO ₂ Concentration % AQO				
Receptor	Wind Speed ms ⁻¹	BP Max FGD	BP Med FGD	BP No FGD	CPPS	
Chek Lap Kok	5	-		_	5 - 10	
Chek Lap Kok	8	5 - 10	35	90	20 - 40	
Chek Lap Kok	12	5 - 10	-	-	65 – 70	
N. Lantau Coast	5	0	-	-	5 - 10	
N. Lantau Coast	8	5	30	60	30 - 35	
N. Lantau Coast	12	5	-	-	50	
Lantau Peaks	5	0	-	-	10	
Lantau Peaks	8	5	15	40	15 - 30	
Lantau Peaks	12	5	-	-	35	
Ha Pak Nai	8	10	-	20	0	
Tin Shui Wai	. 8	5	-	40	0	
Yuen Long	8	5	-	40	0	
C.P. Range	8	0 - 5	10 – 15	10 – 15	0	
Tuen Mun	8	5	-	40	0	
Pearl Island	8	5	-	40	0	
Lung Kwu Tan	8	10	_	35 - 40	0	
Area 38	8	· 10	-	50 - 60	0	
Tai O	8	10	-	40	0	

ERM HONG KONG

Castle Peak Power Company Ltd

. . .

3.7 OPEN-CYCLE GAS TURBINE UNITS

3.7.1 Base-Case Wind Tunnel Results

The OCGT units will discharge flue gases at very high temperatures, ensuring considerable buoyancy and plume rise. For this reason concentrations at receptors are only likely to become significant in relatively high wind speeds when the plumes tend to bend over towards the ground more rapidly after leaving the stacks. The base–case wind tunnel results (test Option 1), using a stack height of 50m, have confirmed this, indicating that in the majority of cases for winds below 12 ms⁻¹ and receptors 2km or more downwind, the SO₂ and NO₂ concentrations will be less than 10% of the AQOs.

Impacts in the PADS reclamation area to the south will be small; the maximum concentrations, measured in a 12 ms⁻¹ wind, only 800m downwind, were about 25% of the SO₂ AQO and 7% of the NO₂ AQO (lower because little of the NO would have converted to NO₂ in such a short distance).

However, much higher concentrations were measured in the near field (less than 3km downwind) for wind directions towards the land (232–310°), as a result of terrain effects. The maximum concentrations reach nearly 105% of the SO₂ AQO and 25% of the NO₂ AQO 800m downwind in 12 ms⁻¹ southwesterly winds. Even 1km away the SO₂ concentration was measured to be up to 60% of the AQO. Vertical profiles of the plume indicate that similarly high concentrations extend up to elevations of 120m. Slightly lower concentrations were measured for westerly and northwesterly winds.

3.7.2 Assessment of Impacts

There is the likelihood of high SO₂ concentrations, which may exceed the AQO value in southwesterly winds, within 1km of the stacks. The frequency of such wind conditions is likely to be very low (less than 0.1% of the time) and the probability of this coinciding with peak emissions from the OCGTs almost negligible. It should also be noted that these high SO₂ concentrations will be adding to a very low background level (the air will generally be coming off the sea and there will not be any interaction with plumes from coal-fired units at this distance). It can therefore be concluded that the AQO will not be exceeded offsite. However, CLP should consider the possibility that onsite impacts may on occasion be high, and while occupational exposure levels are unlikely to be exceeded, it would be worthwhile reviewing the possibility of higher stacks to maintain high air quality standards onsite.

Mitigation Options

3.7.3

Test Options 11 and 12 investigated the potential benefits of increasing the height of the OCGT stacks to 80m and 100m respectively. In summary, it was found that 80m stacks, while having relatively little benefit for receptors beyond about 2.5 km, would substantially reduce the very near-field impacts. Maximum SO₂ concentrations at ground level would be about 50% of the AQO compared with 105% for 50m stacks. Considering also the potential onsite benefits we would recommend this to be an option worth consideration by CLP.

100m stacks would reduce concentrations further still, but the significance of any additional benefits over those gained by choosing 80m stacks would be questionable. This option is not recommended. .

CASTLE PEAK POWER COMPANY LTD

ERM HONG KONG

4.1 INTRODUCTION

4.1.1 Scope

A clear distinction exists between the two main effects of atmospheric pollutants on vegetation:

- direct exposure to pollutants in the atmosphere, where the effect is often instantaneous; and
- indirect exposure, via acid deposition, where the impact is long-term and effects may be cumulative; this applies, for example, to soils, plant roots, catchments, surface and ground waters.

It was concluded in the IAR, that there is no evidence to suggest that direct vegetation damage of any significance would result from the additional load of LTPS emissions from Black Point. However, it was concluded that further consideration should be given to the impact of acid deposition in the KIA.

4.1.2 Acid Deposition

Acid precipitation refers to the process of wet deposition of acidic material. However, it also includes the process of dry deposition of gaseous pollutants, and as a result, the two processes combined are referred to as acid deposition. In the absence of precipitation, atmospheric pollutants are removed from the atmosphere by gravitational settling and by direct contact with the ground, vegetation and buildings.

Evidence for the impact of sulphur and nitrogen compounds from atmospheric sources is well established. Natural and man-made ecosystems which have been shown to sustain damage include:

- lakes;
- rivers;
- reservoirs;
- forests;
- grasslands; and
- a wide variety of crops.

With regard to the LTPS, consideration should be given to the dry deposition of NO_2 and SO_2 and the wet deposition of sulphate (SO_4^{2-}) and nitrate (NO_3^{-}). Sulphate and nitrate are oxidation products of SO_2 and NO_2 , respectively.

4

Generally, dry deposition makes a small contribution to the overall acidity problem. However, this process can be significant close to large point sources, such as the LTPS, where atmospheric concentrations are highest. Wet deposition of acidic species is associated with the long range transport of pollutants due to the time dependence of sulphate and nitrate production and deposition in rainfall.

Until recently, the oxides of nitrogen have ranked second to sulphur compounds in their contribution to acid deposition which may affect terrestrial and aquatic ecosystems. However, whereas the contribution of sulphate to the problem of acid precipitation is levelling off (due to the implementation of emissions control policies for SO_2), that of nitrate is increasing, mainly as a result of vehicle emissions of NO_x .

This section of the report assesses the general impact of the LTPS on acid deposition within the region. A discussion of the following is included:

- criteria which may be used for assessing the impacts of acid deposition on the natural environment;
- existing acidification loads to the region;
- a description of the methodology used to determine the likely additional load due to the LTPS emissions; and
- assessment of the LTPS impacts on the natural environment via acid deposition.

Critical Loads

4.2

The critical load is a term used to describe the sensitivity of the environment to acid deposition and is defined as:

A quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur according to present knowledge.

The standard units used to express critical loads of acid deposition are kilo equivalents per square kilometre per year (keq $km^{-2} yr^{-1}$).

Critical loads applicable to Hong Kong will depend on the following:

Geology and soils; in Hong Kong the bulk of soils are naturally acidic and, as a result, they will have limited buffering capacity and are likely to be susceptible to further acidification in response to the addition of acid via the atmosphere. *Climate*; annual rainfall in Hong Kong (approximately 2250 mm) is above the amount considered to increase sensitivity to acid deposition in Europe (1200 mm). The pattern of precipitation is highly seasonal, with the bulk of the rain falling in the warmer months, when solute dissolution and leaching effects are exacerbated, and pollutant loads affecting the Territory due to power generation are greatest.

Consideration of these and other factors has enabled critical load maps to be calculated for the UK ⁽¹⁾. The estimates are based on mineralogy, which is related to the ability of soils to resist acidification. Allowance is made for the moderating influence of land use, since land is limed and acidity neutralised in arable areas. Currently, critical loads within the UK vary between 20 keq km⁻² yr⁻¹ and 400 keq km⁻² yr⁻¹.

With regard to Hong Kong, the actual threshold level, above which damage is likely to occur, is difficult to determine precisely, and will vary across the territory. However, due to the acidic soils and high precipitation rates, critical loads across the territory are likely to be at the lower end of the range estimated for the UK. Therefore, rather than attempting to predict critical loads for Hong Kong from the limited amount of information available, it is considered more appropriate to compare predicted deposition rates from the proposed LTPS with existing deposition within the Territory.

4.3 EXISTING ACIDIFICATION IN HONG KONG

4.3.1 Introduction

Results of acid rain sampling in Hong Kong for the period 1986 to 1988 were analysed. Sampling was performed at the following EPD air quality monitoring sites:

- Kwun Tong an industrial area;
- · Central/Western a residential area; and
- Junk Bay a rural area;

Monitoring involves the deployment of wet and dry deposition samplers at rooftop level adjacent to the air quality monitoring stations. Samples were collected at weekly intervals.

Sampling was also performed at an industrial site in Kwai Chung, during 1988. However, only seven weekly samples were collected. Therefore, these results are unlikely to be representative of the annual average deposition rate.

⁽¹⁾ Critical Loads Maps for the United Kingdom, Keith Bull and Members of the Critical Loads Advisory Group to the Department of the Environment

15 61

4.3.2 Monitoring Results

The results of acid deposition for the monitoring period are summarised in *Tables 4.3a* to *4.3c*. As can be seen from *Table 4.3a*, wet deposition rates for 1986 and 1987 are comparable. However, there is a significant decrease in the amount of wet deposition during 1988. This is due to a significantly lower precipitation rate during 1988; 31% compared to 1986 and 1987.

There is a significantly higher proportion of SO_4^{2-} wet deposited compared to NO_3^{-} . However, a proportion of the total SO_4^{2-} will consist of SO_4^{2-} derived from sea salt spray, particularly in locations such as Hong Kong and the UK. In the UK, between 20 and 60% of deposited sulphate is of marine origin.

Table 4.3aSummary of Wet Deposition of NO_3^- and SO_4^{2-} (keq km⁻² yr⁻¹) in Hong
Kong

Monitoring Site	Pollutant	1986	1987	1988
Kwun Tong	NO3-	22.5	22.1	11.8
1	SO4 ²⁻	161.4	151.0	80.5
Central Western	NO₃⁻	20.4	21.7	12.0
	SO4 2-	124.3	94.9	76.6
Junk Bay	NO3-	22.9	23.9	14.5
	SO42-	85.3	67.1	62.6

Table 4.3b Summary of Dry Deposition of NO₂ and SO₂ (keq $km^{-2} yr^{-1}$) in Hong Kong

Monitoring Site	Pollutant	1986	1987	1988
Kwun Tong	NO ₂	4.6	4.2	5.5
	SO ₂	35.8	48.4	71.0
Central Western	NO2	6.4	4.4	6.0
	SO2	30.0	25.2	45.8
Junk Bay	NO ₂	5.8	5.1	. 6.3
	SO ₂	17.5	14.9	18.1

Monitoring Site	1986	1987	1988
Kwun Tong	224.3	225.7	168.8
Central Western	181.1	146.1	140.4
Junk Bay	131.5	111.0 .	101.5

Generally, wet deposition is largely the result of the long range transport of pollutants. Therefore, it is likely that much of the wet deposition at these monitoring sites result from emissions outside of the Territory, ie from the People's Republic of China (PRC). However, Kwun Tong (an industrial area) and Junk Bay (a rural area) experience significantly different wet deposition rates for sulphate, although they are located quite close to each other. This suggests that emissions from industrial areas within the Territory do have a significant contribution to the wet deposition of sulphur. The difference between Kwun Tong and Junk Bay suggests that this contribution is at least 80 keq km⁻² yr⁻¹ (1986, 1987 data).

Dry deposition rates (see *Table 4.3b*) are significantly less than the wet deposition rates. In addition, dry deposition rates were significantly higher during 1988; again this is a result of decreased precipitation rates – a higher proportion of pollutants are removed by dry, rather than wet processes.

Generally, dry deposition of pollutants will be from emissions within the Territory itself. This is illustrated by the spatial variation of dry deposition at these three sites. Highest deposition rates of SO_2 were observed at Kwun Tong, an industrial area, the predominant source of SO_2 . Conversely, lowest SO_2 deposition rates were observed at Junk Bay, a rural area.

At Central Western (residential) and Junk Bay (rural) dry deposition of SO_2 was significantly lower than at Kwun Tong, whereas dry deposition of NO_2 was slightly higher. This is probably due to the influence of vehicular emissions of NO_x at these locations.

The total wet and dry deposition of sulphur and nitrogen at the three sites is summarised in *Table 4.3c*. During the measurement period, deposition rates are lowest at the rural site (Junk Bay), and highest at the industrial site (Kwun Tong). The deposition rate at Junk Bay is probably indicative of the background deposition rate for the region, representing deposition from sources within and outside of the region. This would suggest a background deposition rate of approximately 110 keq km⁻² yr⁻¹, the monitoring sites at Kwun Tong and Central Western being influenced by additional local sources.

 \mathcal{M}

. . . .

4.4

ASSESSMENT METHODOLOGY

4.4.1 Introduction

In order to assess the impact of the LTPS on acidification within the region, consideration must be given to the dry deposition of NO_2 and SO_2 , and to the wet deposition of SO_4^{2-} and NO_3^{-} .

4.4.2 Dry Deposition

The contribution of dry deposition to the total deposition of acid species is relatively easy to calculate since the flux of gas to the ground can be expressed by the following equation:

$$F = V_{g}C$$

Where F is the flux (μ g m⁻² s⁻¹), V_g is the deposition velocity (m s⁻¹) and C is the gas concentration (μ g m⁻³, usually measured at a standard height of 1 m above the ground). The deposition velocity is dependent on physical, chemical, biological and meteorological parameters. As a result, deposition velocities for various pollutants show a wide range.

Pollutant concentrations resulting from the operation of the LTPS have been obtained using dispersion models. Detailed modelling of the emissions from the proposed LTPS at Black Point and the existing power station at Castle Peak were performed as part of the IAR. The model utilised was the US Environmental Protection Agency (US EPA) approved Industrial Source Complex dispersion model. The dispersion model was used with meteorological data obtained from Chek Lap Kok. The results of the wind tunnel experiments were not used as these predicted short-term, rather than long-term, pollutant concentrations. Providing information regarding the deposition velocities (V_g) of NO₂ and SO₂ are available, the general impact of the LTPS on the dry deposition load of the region can be determined in this way.

There is a wide variation in published deposition velocities, for example, V_g for SO₂ is quoted to be 0.1 to 4.5 cm s⁻¹ over grass, but 0.1 to 1.0 cm s⁻¹ over a pine forest. For this assessment deposition velocities have been obtained from the Third Report of the United Kingdom Review Group on Acid Rain (RGAR), prepared at the request of the UK Department of the Environment, September, 1990.

For SO_2 , a mid-day maximum in the deposition velocity is often observed reflecting a maxima in stomatal opening and increasing uptake by plants. Seasonal variations with minimum values when vegetation is dry, for example, are also observed. Maximum deposition velocities are observed over water bodies. However, the concern with regard to the proposed development is the deposition of acidic species to land surfaces. Deposition velocities between 0.25 and 0.65 cm s⁻¹ are quoted by RGAR, with the maximum occurring during the day and the minimum at nighttime. Therefore, an average daily deposition velocity of 0.4 cm s⁻¹ was used in this assessment to predict the contribution of SO_2 to dry deposition.

For NO₂, the lowest deposition velocities have been found over water with values of between 0.01 and 0.02 cm s⁻¹. On soil and cement, values of between 0.3 and 0.8 have been quoted. RGAR quote deposition velocities of 0.1 to 0.2 cm s⁻¹ for NO₂. Therefore, for this assessment a deposition velocity of 0.2 cm s⁻¹ was used to predict the contribution of NO₂ to dry deposition.

These deposition velocities differ from those used in the IAR as they were obtained from current research material. In the IAR, deposition velocities for SO_2 ⁽¹⁾ and NO_2 ⁽²⁾ of 0.5 cm s⁻¹ and 0.4 cm s⁻¹ were used, respectively.

4.4.3 Wet Deposition

The wet deposition of nitrate and sulphate can be calculated using the following equations and assumptions:

For nitrate wet deposition:

$$[NO_3]_D = [NO_2]_A \times \frac{Z}{W} \times CR_N \times N_{eq} \times B \times K_m \times C_w$$

Where:

- $[NO_3]_D$ = Wet deposition of nitrate (Keq km⁻²yr⁻¹);
- $[NO_2]_A$ = Ground level concentration ($\mu g m^{-3}$) of nitrogen dioxide at a distance Z (m);
- W = Wind speed, assumed to be 5 m s⁻¹;
- CR_N = Conversion rate for nitrogen dioxide to nitrate equivalent to 1.39 x 10⁻⁵ s⁻¹ (5% hr⁻¹);
- N_{eq} = keq per μ g of nitrogen dioxide, assumed to be 1/46 x 10⁻⁹ keq μ g⁻¹;

= Boundary layer height, assumed to be 500 m;

 K_m = Conversion from m⁻² to km⁻², equivalent to 10⁶ m² km⁻²;

= Washout Coefficient 1,000 yr⁻¹.

⁽¹⁾ C S Davies and R G Wright, Journal of Geophysical Research, 90, 2091 (1985)

²⁾ G J McRae and A G Russell, Acid Deposition Series, Chapter 9, Pages 153-193, Butterworth, Boston (1984)

В

Cw

Therefore:

$$[NO_3]_D = [NO_2]_A \ x \ Z \ x \ 3.02 \ x \ 10^{-5}$$

For Sulphate wet deposition:

$$[SO_4]_D = [SO_2]_A \times \frac{Z}{W} \times CR_s \times S_{eq} \times B \times K_m \times C_w$$

Where:

$[SO_3]_D$	=	Wet deposition of sulphate (Keq km ⁻² yr ⁻¹);
[SO ₂] _A	н	Ground level concentration (μ g m ⁻³) of sulphur dioxide at a distance Z (m);
W	=	Wind speed, assumed to be 5 m s^{-1} ;
CR _s	=	Conversion rate for sulphur dioxide to sulphate equivalent to $1.39 \times 10^{-6} \text{ s}^{-1} (0.5\% \text{ hr}^{-1});$
S _{eq}	=	keq per μ g of sulphur dioxide, assumed to be 2/64 x 10 ⁻⁹ keq μ g ⁻¹ ;
В	=	Boundary layer height, assumed to be 500 m;
K _m	=	Conversion from m^{-2} to km^{-2} , equivalent to $10^6 m^2 km^{-2}$;
C _w	· =	Washout Coefficient 1,000 yr ⁻¹ .

Therefore:

$$[SO_4]_D = [SO_2]_A \times Z \times 4.34 \times 10^{-6}$$

The contribution of the proposed LTPS to wet deposition is much more difficult to assess since it involves estimating the proportion of SO_2 and NO_2 which is converted to SO_4^{2-} and NO_3^{-} , respectively. In addition, the rate of deposition of these species must also be determined.

The formation of the strong acids, sulphuric acid (H_2SO_4) and nitric acid (HNO_3) , depends to a large extent on the oxidation rates of SO₂ and NO₂, respectively. There are many chemical pathways in which these primary pollutants can be oxidised, many of which are driven by photochemical processes. Oxidation can occur in the atmosphere by homogeneous gas

ERM HONG KONG

·* 4

phase reactions, in aqueous droplets and on surfaces of aerosol particles. The rates of these reactions depend upon the environment being considered.

Maximum SO₂ oxidation rates in Central Europe ⁽¹⁾ are of the order of 2% hr⁻¹ in full sunlight. However, during winter the corresponding rates are expected to be slower by a factor of 3 to 5. Daily average rates during summer are in the order of 0.5% hr⁻¹, and this value has been assumed for estimating the rate of oxidation of SO₂ emissions from the LTPS.

The oxidation rate of NO₂ is significantly higher than for SO₂; maximum conversion rates in the order of 20 % hr^{-1} in full sunlight have been quoted for Central Europe⁽³⁾. During winter, these are reduced by a factor of 3 to 5 due to a decrease in photochemical activity. Daily average rates for summer are of the order of 5 % hr^{-1} , and this value has been taken as indicative of the oxidation rate of NO₂ emissions from the LTPS.

The conversion rates used for the assessment are probably quite conservative as they are based on daily summer averages. However, these values were chosen since precipitation and pollutant emissions also peak during the summer months.

Information regarding precipitation in Hong Kong is also required for the assessment. Data from the Royal Observatory covering the period 1951 to 1980 gives an average precipitation rate of 2,225 mm yr⁻¹ with an average duration of 777 hours yr⁻¹. This information has been used to estimate the proportion of SO₄²⁻ and NO₃⁻ removed from the atmosphere.

4.4.4 Emission Characteristics

The emission characteristics which have been used to predict the ground level concentration of SO_2 and NO_2 are summarised in *Annex B*. It is not appropriate to model the power stations at full operational load since the model results will be used to determine annual deposition rates. Data regarding the percentage of time the LTPS and the Castle Peak power station will be operational throughout the year, and emission characteristics at 50, 75 and 100%, as supplied by CLP, have been used to estimate annual average emissions from the various emissions sources.

4.5 ACIDIFICATION IMPACTS OF THE LTPS

4.5.1 Introduction

In order to assess the impact of the LTPS on the acidification of the region a number of scenarios have been examined as follows:

coal-fired option;

ERM HONG KONG

coal-fired option with oil substitution;

S Beilke, Acid Deposition - An updated review on atmospheric physio-chemical aspects of the acid deposition problems in Europe (1985)

الروقي يحافظون بالبلار فالتقلها الوراف فحاج فالحالفات

الراب المحاجبية الم

CASTLE PEAK POWER COMPANY LTD

- CCGT gas-fired option;
- CCGT oil-fired option; and
- contributions from Castle Peak.

4.5.2 Results

The contribution of the LTPS (coal-fired) to wet and dry deposition of sulphur and nitrogen has been calculated individually in order to assess the relative contributions of each to the total deposition rate. The deposition rate of each is summarised in *Table 4.5a* and *Figures 4.5a* – 4.5h present the contours of total deposition under different scenarios.

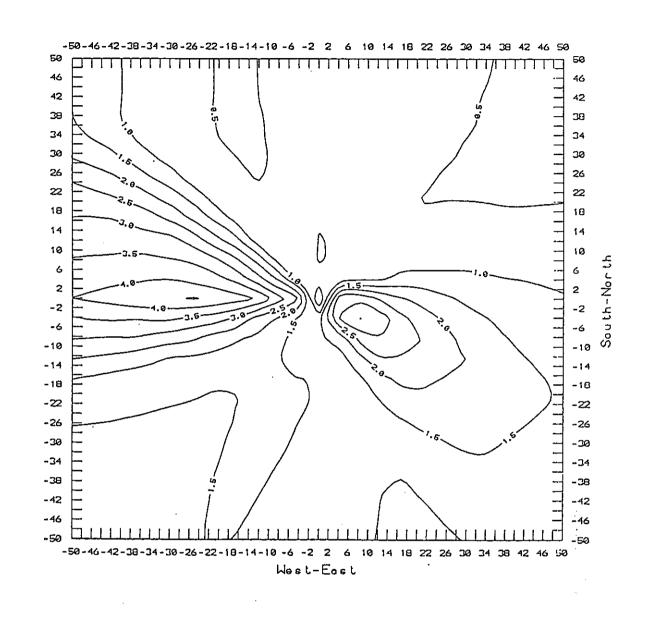
Table 4.5a

Summary of Wet and Dry Deposition (keq km⁻² yr⁻¹) Resulting from the LTPS (Coal–Fired Option with FGD)

	Westerly Maximum keq km ⁻² yr ⁻¹	Location of Maximum ¹ (x km, y km)	Southeasterly Maximum keq km ⁻² yr ⁻¹	Location of Maximum ¹ (x km, y km)
Dry Deposition of NO2	2.9	(-20, 0)	3:1	(5, -2.5)
Dry Deposition of SO_2	1.8	(-20, 0)	2.0	(5, -2.5)
Wet Deposition of NO3 ⁻	1.8	(-50, 0)	0.7	· (50, -20)
Wet Deposition of SO42-	0.1	(-50, 0)	0.05	(50, -20)
Total Deposition	5.9	(-26, 0)	4.7	(9, -4)
¹ Measured relative to the	LTPS at Black P	oint		·

The maximum dry deposition rates occur quite close to the source where ground level pollutant concentrations are higher. However, the maximum wet deposition rates occur much further from the source due to the increased production of these pollutants further downwind. In fact the maximum wet deposition rate occurs beyond the distance modelled.

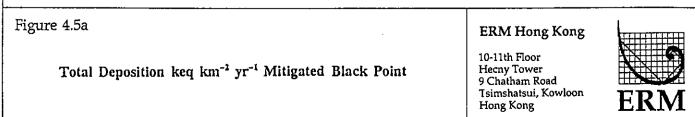
The deposition of the nitrogen species is more significant than that of the sulphur species since with FGD the ground level concentrations of SO_2 are lower. In addition, the oxidation rate is a factor of ten higher for NO_2 .


The total deposition rate illustrates that the contribution from both wet and dry deposition maximises at approximately 26 km to the west of the LTPS.

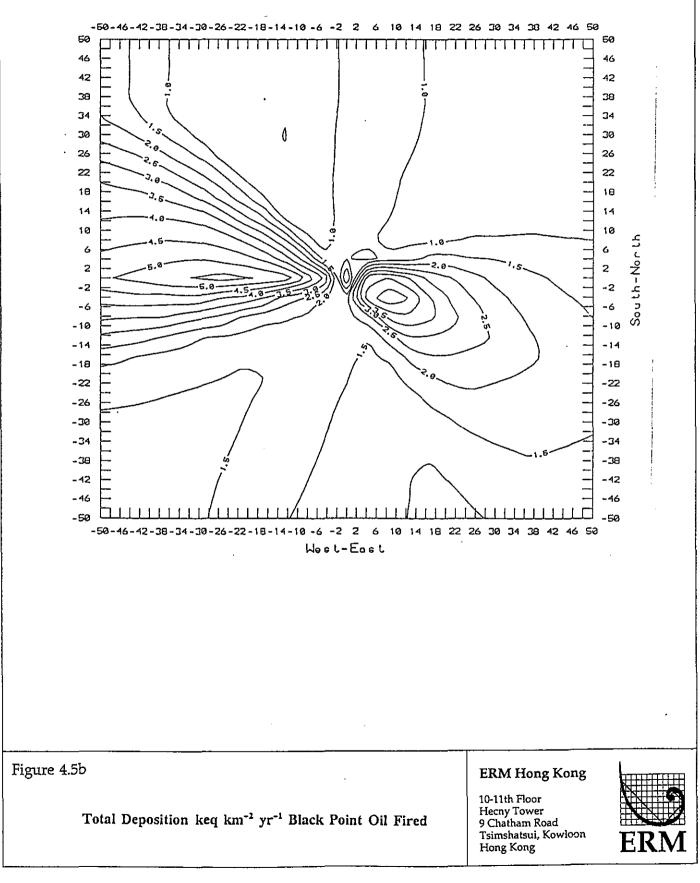
With respect to sensitive receptors the secondary maximum, occurring to the southeast of the LTPS, is of more importance. This rate applies to the southern most part of the Tai Lam Country Park.

The secondary maximum deposition rate represents about 4% of the existing background deposition rate and suggests the addition to existing acidification due to the LTPS will be minimal for this option. Most importantly, it could not be concluded that this additional load would result

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \frown \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()


 \bigcirc

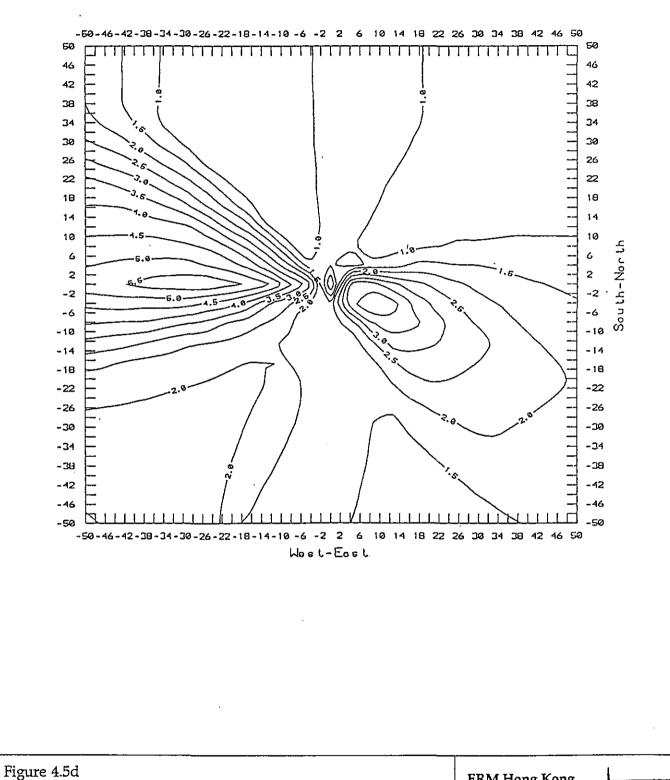
1


1

• • • •

 \bigcirc \bigcirc \bigcap \bigcirc \bigcirc 0 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \mathbb{C}

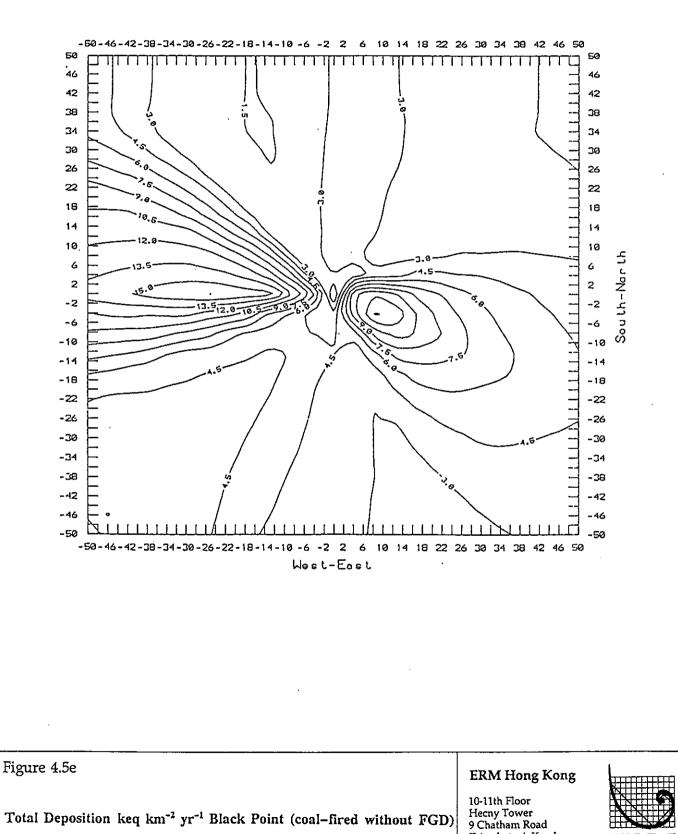
 \bigcirc


 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Ċ $(\dot{})$

Hong Kong

 \bigcirc С $\bigcap_{i=1}^{n}$ \bigcirc $\left(\begin{array}{c} \\ \end{array} \right)$ Ċ \bigcirc \bigcirc \bigcirc (/ ···· .

.

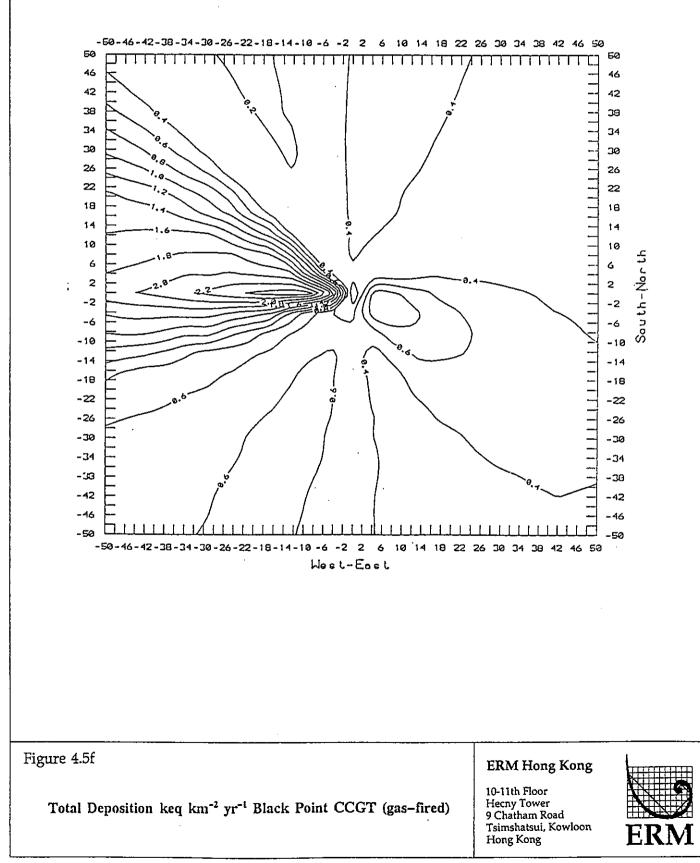

Total Deposition keq km⁻² yr⁻¹ Black Point (coal-fired)

10-11th Floor Hecny Tower 9 Chatham Road Tsimshatsui, Kowloon Hong Kong

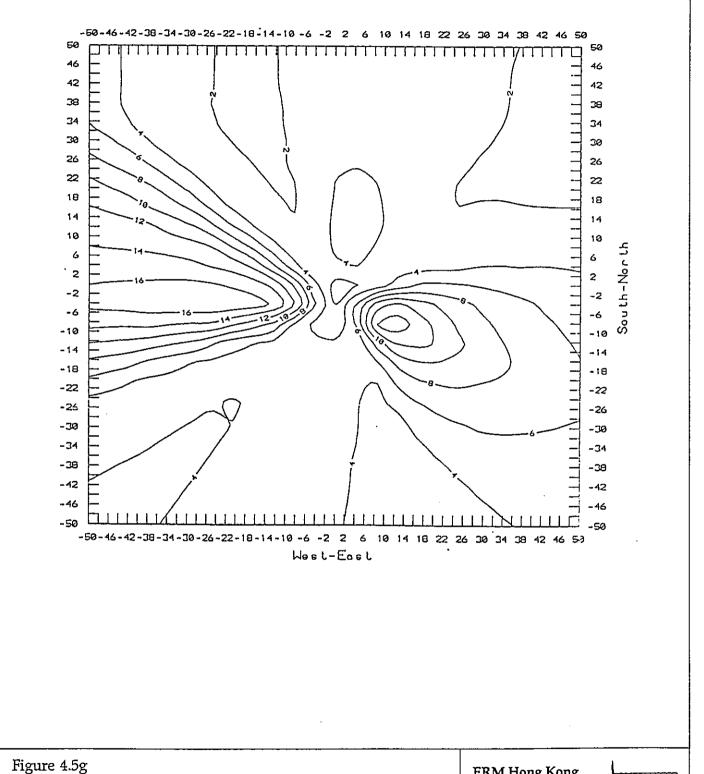
ERM Hong Kong

 \bigcirc \bigcirc \bigcirc \bigcirc 0 0 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (

ERN


Tsimshatsui, Kowloon

Hong Kong


 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0000 \bigcirc \bigcirc \bigcirc \bigcirc

Total Deposition keq km⁻² yr⁻¹ Castle Peak only

10-11th Floor Hecny Tower 9 Chatham Road Tsimshatsui, Kowloon Hong Kong

ERM Hong Kong

 \bigcirc \bigcirc С \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\left(\right)$

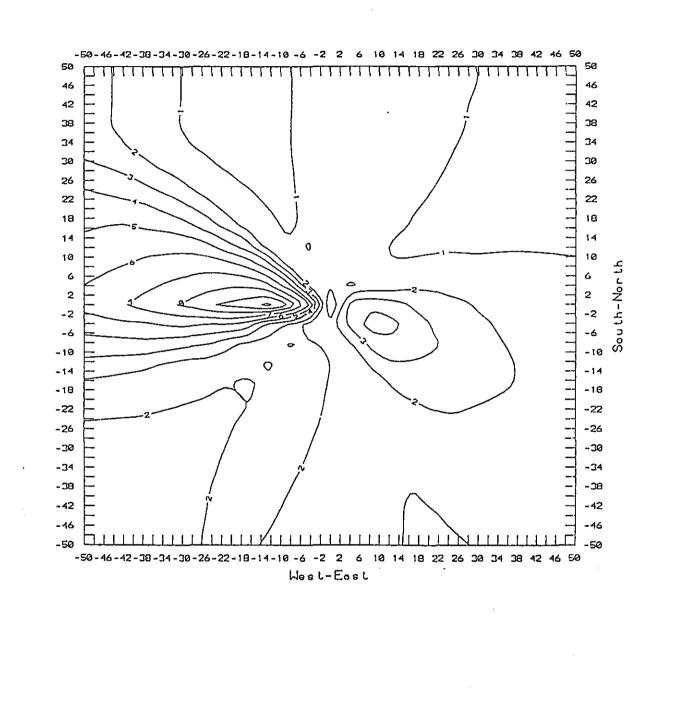


 Figure 4.5h
 ERM Hong Kong

 Total Deposition keq km⁻² yr⁻¹ Black Point CCGT (oil-fired)
 10-11th Floor

 Hecny Tower
 9 Chatham Road

 Tsimshatsui, Kowloon
 Hong Kong

 Hong Kong
 ERM

in total deposition exceeding the local critical load. Therefore, it would not constitute a significant impact.

Total deposition rates for all of the options considered are summarised in *Table 4.5b*.

Table 4.5b	Summary of Total	Deposition Rates for the	he Various Options Considered
------------	------------------	--------------------------	-------------------------------

Option	Westerly Maximum keq km ⁻² yr ⁻¹	Location of Maximum (x km, y km) ¹	Southeasterly Maximum keq km ⁻² yr ⁻¹	Location of Maximum (x km, y km) ¹
Black Point (Coal Fired with FGD)	5.9	(-26, 0)	4.7	(9, -5)
Black Point (Coal-fired without FGD)	16.5	(-26, 0)	13.9	(9, -5)
Black Point CCGT (Gas-Fired)	2.5	(-12, 0)	2.0	(10, -4)
Black Point CCGT (Oil–Fired)	10.2	(-12, 0)	7.2	(10, -5)
²Black Point (Oil– Fired)	5.9	(-26, 0)	4.8	(10, -5)
³ Castle Peak	17.8	(-27.5, -2.5)	16.6	(10, –7.5)
⁴ Mitigated Black Point (Coal–Fired Option with FGD)	4.5	(-26, 0)	3.6	(9, -5)
⁵ Mitigated Castle Peak	15.8	(-27.5, -2.5)	14.7	(10, -7.5)
¹ Measured relative to th	he LTPS at Black	Point	·····	

¹ Measured relative to the LTPS at Black Point

² NO_x: 200 ppm

³ NO_x: 1100 ppm CPA and CPB

⁴ NO_x: 253 ppm BP

⁵ NO_x: 1000 ppm CPA, 600 ppm CPB

Without FGD, the secondary maximum concentration of 13.9 keq km⁻²yr⁻¹, again occurs to the southeast of the LTPS. Although the SO₂ emission rate increases by a factor of ten without FGD, the predicted acid deposition rate only increases by a factor of about three. This is due to the influence of contributions from NO_x and increased pollutant dispersion as a result of the higher emission temperature without FGD. Without FGD the LTPS would add about 15% to the existing acid deposition rate.

For the CCGT gas-fired options the acid deposition rates are lower than for the coal-fired option due to negligible SO_2 emissions. Over land, the gas-fired CCGT option would add about 2% to the existing acidification. This is almost negligible and would not result in any impacts.

For the CCGT oil-fired option the total deposition rate over land, 7.2 keq km⁻² yr⁻¹, is significantly increased, compared to the gas-fired mode,

due to the additional emissions of SO_2 for the distillate oil. Over land, the addition to existing acidification, as a result of oil-fired CCGT emissions would be about 8%.

For the LTPS substituting oil for coal predictions are similar to the coalfired operation. This contribution is approximately 4% of the existing background acid deposition rate over the Territory. Although SO₂ emissions are higher for the oil-fired mode, NO_x emissions are approximately half that of the coal-fired operation, resulting in little net difference.

The contribution of emissions from the power station at Castle Peak to the existing acid deposition rate was also assessed. The secondary maximum occurs in northeast Lantau and represents approximately 15% of the existing background acid deposition rate for the Territory as estimated in *Section 4.4*. Compared to the estimated deposition rate measured at the industrially located monitoring site at Kwun Tong, the contribution from Castle Peak is approximately 8%.

As a result of human health effects the following mitigation options have been assessed:

- NO_x emissions on Castle Peak "A" are reduced from 1100 ppm to 1000 ppm;
- NO_x emissions on Castle Peak "B" are reduced from 1100 ppm to 600 ppm; and

 NO_x emissions from the LTPS (Coal-fired) are reduced from 380 ppm to 253 ppm.

The effect of applying the mitigation option to the LTPS at Black Point is to reduce the secondary maximum to 3.6 keq km⁻²yr⁻¹. This represents a 25% reduction in the LTPS addition to the existing acid deposition rate. With respect to the secondary maximum, the future contribution to acid deposition would be reduced from 5% to 4%.

The effect of applying the mitigation options to the Castle Peak power station is to reduce the existing contribution of Castle Peak to the background deposition by 2%, ie from 15% for the unmitigated situation to 13% for the mitigated situation.

Overall, the predictions suggest that the application of the proposed mitigation measures to Castle Peak would reduce the existing total acid deposition rate by 2%. With mitigation measures applied to the LTPS at Black Point (coal-fired option) the predicted contribution to the total acid deposition rate is approximately 4%. Therefore, assuming the proposed mitigation measures are applied to both Castle Peak and the proposed LTPS at Black Point, the overall increase in the total acid deposition rate for the region is predicted to be insignificant at approximately 2%, and if mitigation is only applied to Castle Peak the overall increase is approx 3%.

ERM HONG KONG

. .

1.1.1.1.6.6.

From a consideration of worst case impacts incorporating conservative assumptions with regard to weather data, pollutant emissions, operating scenarios and ambient concentrations, Phase 2 of the study has arrived at the following main conclusions:

- The proposed power station, even when fully developed and running at full load, will not by itself cause the Hong Kong 1-hour Air Quality Objectives for SO_2 and NO_2 to be exceeded. This conclusion applies to all of the proposed development options and to the options for substituting oil for coal or gas.
- For the main development options ambient NO_2 concentrations are affected more than SO_2 concentrations, relative to their respective AQOs.
- For the large majority of the time (95% or more) individual receptors will be unaffected by the power station plumes. For about 98% of the time or more, most receptors will be affected by NO₂ concentrations no more than 10% of the AQO for the coal-fired option. For other options including gas-fired units the magnitude of impacts due to the power station emissions will be significantly less.
- Regardless of the development option, however, the overall impacts of stack emissions are dependent upon the coincident background levels. It is concluded that for receptors in the New Territories and most of Lantau background levels will not be sufficiently high to cause the AQOs to be exceeded with addition of the pollutant load from the new power station. The situation is marginal for Chek Lap Kok and the north Lantau coastline, all of which will be affected by emissions from Castle Peak power stations at the same time as emissions from the new power station, though at a very low frequency. In addition the north Lantau coastline will be affected by emissions from Chek Lap Kok airport and other planned developments along the coastline (including the North Lantau Expressway).

As indicated during the site search study, CLP are planning to retrofit some of the Castle Peak plant with new burners which will emit less NO_x . This analysis has now provided a firmer estimate of how that retrofit programme can be tailored to reduce Castle Peak emissions to balance the new pollutant load from Black Point. By phasing in low- NO_x burners at Castle Peak B with a source concentration of 600 ppm and achieving 1000 ppm at Castle Peak A, the new power station could be completed with coal-fired units and, not cause AQOs to be exceeded. Total emissions of NO_x from CPPS and Black Point together would then be 6.6% higher than those from the existing CPPS Plant.

5

- If gas-fired units are to be combined with coal-fired units the precise set of mitigation measures will depend on the plant mix, but if it is a 50/50 mix the reduction in the NO_x levels below the base coal case will reduce the likelihood of AQO exceedence. Mitigation measures at Castle Peak are still considered desirable however.
- Without Flue Gas Desulphurisation, and burning 1% sulphur coal (as received basis), the LTPS under 8 x 680 MW coal-fired scenario could result in exceedence of the SO₂ AQO at Chek Lap Kok. However, under the four combined cycle/four coal-fired unit (mixed fuel) scenario without Flue Gas Desulphurisation, such exceedences would not occur.
- Substitution of oil for coal or gas could be accommodated without causing the AQOs to be exceeded.
- The open-cycle gas turbine units should not cause any AQOs to be exceeded or act as a constraint to planned developments to the south of the site. Nevertheless, high concentrations of SO₂ are likely to occur on occasion in the very near-field (less than 1km downwind) over existing upland areas to the northwest, west and southwest, (and principally within the LTPS site). Taking account in particular of onsite air quality, there may be potential benefits of an 80m stack height which would make it worth CLP's consideration.
- An analysis of the regional potential for acidification impacts, through wet and dry deposition of pollutants has concluded that, on the assumption that the mitigation measures outlined above for Castle Peak and the proposed LTPS are implemented, there should be an increase in acid deposition of no more than 2% of current levels for the coal fired option (representing the worst case). This is considered to be an insignificant amount, well within the normal year-to-year range of variability, and no 'acidification' impacts on the natural environment due to this increase would be likely to occur.
- It is recommended that the conclusions of Phase 2 of the study be discussed and CLP's preferred development option be established, if at all possible, before firm proposals are made for any further wind tunnel tests and analyses in Phase 3.

To confirm the above findings regarding the SO_2 and NO_2 impacts, CLP agreed to make a more rigorous assessment of the frequency of probable AQO exceedance for the critical receptors under the short-listed study options, based on 6-year actual hourly meteorological data at Chek Lap Kok, and the seasonal profiles of loads for both LTPS and CPPS. This "Rigorous Frequency Assessment" is reported as *Part B* of this AKIA.

Key To Development Options

Option Descrip	tion	Stack Height (m)
1	10 OCGTs (100MW) stack A	50
2	4 x 2 Coal–Fired (680 MW) max FGD of 90%	250
3	8 Gas–Fired CCGTs (600 MW)	100
4	2 x 2 Coal–Fired (680 MW) no FGD	250
5	4 Gas–Fired CCGTs (600 MW)	100
6	4 Oil–Fired CCGTs (600 MW)	100
7	8 Oil–Fired CCGTs (600 MW)	100
8	2 x 2 Coal–Fired (680 MW) max FGD of 90%	250
9.	2 x 2 Coal–Fired medium FGD of 50%	250
10	10 OCGTs (100 MW) stack A	80
11	10 OCGTs (100 MW) stack A	100
12	8 Gas-Fired CCGTs (100 MW) stack A	150
13	4 x 2 Coal–Fired (680 MW) max FGD of 90%	200
14	$4 \ge 0$ Oil–Fired (680 MW) max FGD of 90%	250
15	2×2 Oil–Fired (680 MW) max FGD of 90%	250
16	2 x 4 Coal-Fired (680 MW) max FGD of 90%	250
(5 + 8)	2 x 2 Coal–Fired with max FGD plus 4 Gas–fired CCGTs	\$ 250

PART B

G

RIGOROUS FREQUENCY ANALYSIS

PART B

RIGOROUS FREQUENCY ANALYSIS

CONTENTS

1	INTRODUCTION	1	
2	GENERAL APPROACH		
2.1	Complex Terrain Wind Tunnel, Tests	3	
2.2	Analysis Locations and Operation Scenarios	3	
3	DETAILED METHODOLOGY	5	
3.1	Meteorological Data	5	
3.2	Profile of Loads		
3.3	DERIVATION OF CONCENTRATION FUNCTIONS		
3.4	BACKGROUND AIR QUALITY		
4	DETAILED RESULTS	13	
4.1	WIND TUNNEL TEST SCENARIOS	13	
4.2	Detailed Results	13	
5	OTHER METEOROLOGICAL CONDITIONS	21	
6	DISCUSSION OF RESULTS	23	
6.1	8x680 MW Conventional Coal-Fired Units	23	
6.2	8x600 MW GAS-FIRED CCGT UNITS	24	
6.3	4 Conventional – 4 CCGT Units	25	
6.4	OIL-SUBSTITUTION OPTIONS	26	
6.5	Considerations of Background Air Quality	28	
6.6	LIKELIHOOD OF HOURLY AQO EXCEEDANCES	28	
7	OVERALL CONCLUSIONS	31	
8	EPD'S POSITION AND THE WAY FORWARD	33	

(

.

This document describes a refined frequency analysis assessment for the air quality at key sensors, arising from the development of the Black Point LTPS. This aspect of study follows the Part A Report "Complex Terrain Wind Tunnel Tests" of the AKIA and was the subject of the scope of further assessment agreed with EPD. The outline intentions were agreed in the response to EPD comments on the Part A Report "Complex Terrain Wind Tunnel Tests".

The purpose of the work is to simulate at sensitive receptors realistic concentration levels over many years of actual wind records and, thereby, produce statistics of concentration which can be compared with the Air Quality Objectives. The impact of different development options at Black Point, combined with the influence of the Castle Peak stations, can be gauged through these parameters.

1

2

2.1

 \bigcirc

2.2

GENERAL APPROACH

COMPLEX TERRAIN WIND TUNNEL TESTS

The complex terrain wind tunnel tests modelled various configuration and emission scenarios for the Black Point LTPS, together with the influence of Castle Peak A and B stations for appropriate cases. The tests were performed for discrete wind directions and speeds and the principle measurements were those of ground level concentration along the various wind directions.

Judgement of the impact of these predictions of air-quality is made relative to the prevailing Air Quality Objectives (AQOs). The AQOs are expressed in terms of the magnitude of concentration of a pollutant not to be exceeded for specified periods of time (1 hour limit: 3 hours per year; 24 hour limit: 1 day per year; magnitude limit on annual average).

The AQOs refer, therefore, to the probability distributions of different concentration averages and ideally, the statistics of concentration at a given location should be determined. This requires the combination of representative wind speed and direction variations with the (deterministic) wind tunnel predictions. In view of the number of scenarios and calculations in this process, the Part A Report adopted a more approximate approach, wherein the wind data was examined for frequency of occurrence of speeds for particular directions, leading to the choice of a single wind speed to compare with the 1 hour AQO. General conclusions were drawn and discussion with EPD led to the agreement by CLP to examine the most important cases by the more rigorous frequency analysis method.

The fundamentals of the frequency analysis approach are familiar to EPD to the extent that they were discussed and then used in a previous study for Hong Kong Electric. The principle extensions required for this particular study relate to the multiple sources which comprise the Black Point and Castle Peak stations. The method of analysis is described further in the following section.

ANALYSIS LOCATIONS AND OPERATION SCENARIOS

2.2.1 Analysis Locations

During the wind tunnel measurements of plume dispersion and ground level concentrations, results were obtained at many receptor locations, both in the near field surrounding and at more distant locations. The data gathered allows reliable predictions to be made at a variety of locations and the nature of the power station plumes to be well described. For the rigorous frequency analysis five specific locations were selected for detailed investigation. The locations were chosen to reflect the centres of population (*Butterfly Estate*), areas of development (*Tung Chung*), regions of special sensitivity (*Mai Po Natural Reserve*) and the villages local to the power station location (*Lung Kwu Tan* and *Ha Pak Nai*).

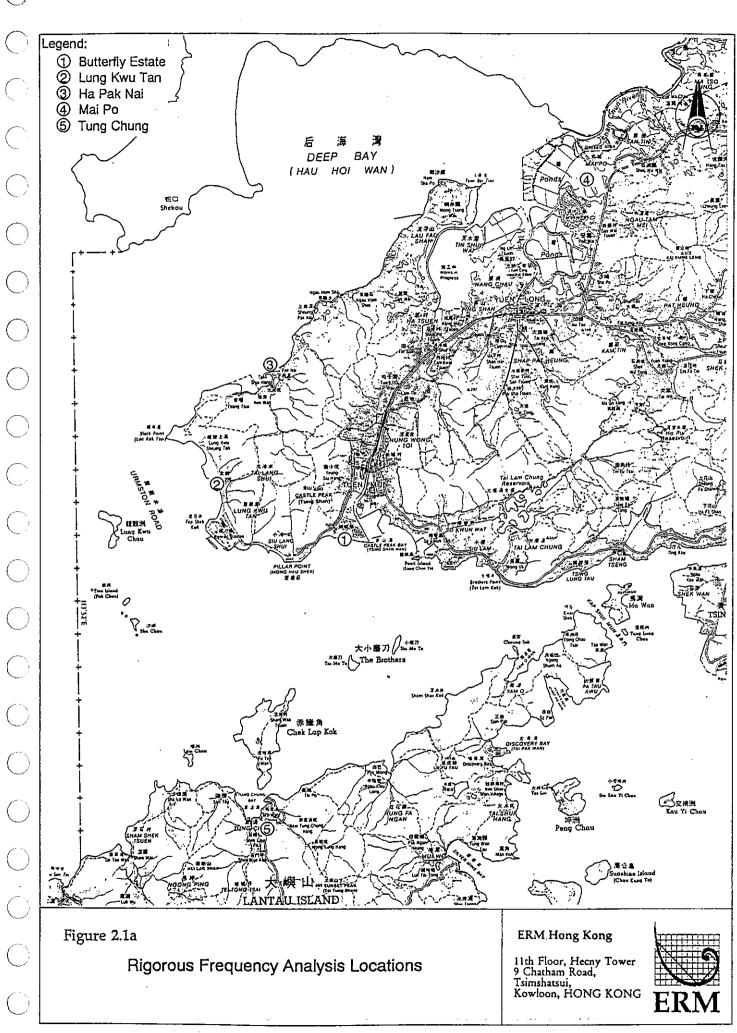
The precise locations for Lung Kwu Tan and Ha Pak Nai are 2km on a heading of 140° (40° east of south) and 3.2km on a heading of 52° (east of north) from Black Point respectively.

Figure 2.1a depicts the various rigorous analysis locations.

Assessment Scenarios

ERM HONG KONG

2.2.2


The Black Point LTPS is assumed to be configured as:

Scenario 1: all coal
Scenario 2: all gas
Scenario 3: half coal – half gas

For the above scenarios, Castle Peak has been considered with and without mitigation by retrofitting low NO_x burner as:

4

•	Case A :	no NO _x mitigation at CPPS
•	Case B :	with NO _x mitigation at CPPS

(\bigcirc Ċ \bigcirc Ċ $\left(\right)$

 \bigcap

DETAILED METHODOLOGY

METEOROLOGICAL DATA

Detailed meteorological records were available for six years between 1985 and 1990 at Chek Lap Kok. Data of wind, rainfall and temperature were available continuously at one minute intervals.

Fluctuations in the wind are caused by local turbulence and by large scale synoptic effects. A common meteorological standard is the use of ten minutes as an averaging period to remove the local turbulence fluctuations but to retain the longer time changes of wind speed and direction.

The wind tunnel measurements contain the effects of local turbulence with mean wind speed and direction constant. Mean wind speed changes on a ten minute basis, therefore, represent a logical choice for the frequency analysis. Longer time averages for the wind record (eg one hour) can be used, but greater realism should exist by averaging the output of the analysis (concentration) over such longer periods rather than the input (the wind).

The analysis uses each successive ten minute wind average as the input.

3.2 **PROFILE OF LOADS**

A seasonal profile of load and a load sharing plan (*Tables 3.2a & 3.2b*) have been used to determine the emission levels. Source NO_x and SO_2 concentrations are shown in *Table 3.2c*. The wind tunnel data of concentration versus speed and direction is used to allow interpolation for the predicted concentration at the particular point in time. An angular spread of the plumes has been taken as $+/-11^\circ$, with a conservative "tophat" profile of concentration (i.e. the maximum centre-line concentration has been assumed over the plume width).

Table 3.2c Source NO_x and SO_2 concentrations⁽¹⁾ for frequency analysis

		Wind Tunnel Option	NO _x as NO ₂ (μg m ⁻³)	SO ₂ (μg m ⁻³)
Black Poin	nt CCGT	[3], [5]	97686	negligible
Black Poi	nt Coal	[2], [8]	595740	190421
CPA		CPA	1577066	1635476
CPB		CPB	1578512	1726498
Mitigated	CPA ⁽²⁾	-	1433696	1635476
Mitigated	CPB ⁽³⁾		861007	1726498
Note:	2. Mitigated NO	Annex B of this AKIA Re of 1000 ppm from 1100 of 600 ppm from 1100 p	ppm at CPA.	

3.1

3

0

CASTLE PEAK POWER COMPANY LTD

DERIVATION OF CONCENTRATION FUNCTIONS

Although the Castle Peak Power Station was only modelled for directions to Lantau in this study, directly modelled results were available from previous work by the UK Central Electricity Research Laboratories (CERL, 1981).

For Tung Chung, Lung Kwu Tan and Butterfly Estate, direct measurements existed. For the Mai Po wind direction from Castle Peak, CERL measurements were available, but extrapolation was required to reach Mai Po itself. The further dilution with distance was estimated on the basis of measured dilution with distance at other angles. For Ha Pak Nai cross plots of concentration with wind angle incorporating BMT and CERL results were used to interpolate an estimate at each wind speed.

Annex H contains further details of this process.

3.3.1 Time History of Concentrations

Data on plume spread is available from the wind tunnel results. Some indication is given in *Figure 3.3a*, where data at a number of locations has been plotted together.

The resulting time history of concentration at a particular location has been analyzed for different time weighted averages – hourly, daily and annual – and the resulting distributions interrogated for concentration values at the non-exceedance frequencies specified in the AQO.

3.3.2 Hourly and Daily Concentrations

From a distribution of hourly concentrations, the value of concentration at a frequency of three hours per year can be determined. Similarly, from a distribution of daily averaged concentrations, the value of concentration at a frequency of once per year can be determined.

3.3.3 Annual Concentrations

Six years of meteorological data from Chek Lap Kok have been used for the frequency analysis. Ideally a longer period would have been preferred but no further information of detail was available. This record of the past has been used to predict typical conditions for the future. But future years will never be exactly like 1985, 86, 87, 88, 89 or 90, but on average future years can be expected to be like average past years.

If it is possible for an AQO to be exceeded then the frequency of occurrence will entirely depend on the frequency of the required meteorological conditions. No one can presume to suggest whether any future year will have a large number or a small number of such conditions. All one can say is that the overall **likelihood** or **probability** will be that a particular number will occur. Besides, the number of exceedances in a year will entirely depend on the arbitrary choice of when one year ends and the next begins. :

Table 3.2aTypical Weekday Hourly Loading for Castle Peak and Black Point StationsAll Eight Units at Black Point Are Coal Fed

14

1

; :

FY03	SŤN	HR01	HRO2	HRO3	HRO4	HR05	HR06	HRO7	HR08	HR09	KR10	HR11	HR12	HR 13	HR14	KR15	HR16	HR 17	KR 18	HR19	HR20	HR21	HR22	HR23	HR24
	CPA CPB	757 1514	645 1290	597 1290	583 1193	581 1166	605 1211	775 1550	994 1987	1104 2209				1104 2209		1104 2209	1093 2187	930 1941							
Winter. Dec-feb	CP 6P	2271 0	1935 0	1790 0	1749 0	1744 0	1816 0	2325 0	2981 92		3313 2359					3313 2729							3313 1104		2911 · 37
																		<u> </u>							
	СРА СРВ	861 1721	348 1496	691 1381	670 1340	666 1332	693 1386	881 1363	1135 2271	1236 2471		1236 2471				1236 2471			1236 2471		1236 2471		1236 2471	1224 2448	
Spring Mar-May	CP	2582	2244	2072	2010	1998	2079	2644	3406	3707	370 7	3707	3707	3707	3707	3707	3707	3707	3707	3707	3707	3707	3707	3672	3240
·	BP	0	0	0	0	0	0	0	134	1489	3109	3727	4002	3565	3094	3582	3583	3540	3294	2995	2373	1661	1193	564	37
	СРА Срв	1167 2334	1035 2070	962 1923	912 1851	929 1824	1117 1858	1342 2233	1369 2738	1 369 2738	1369 2738	1369 2738	1369 2738			1369 2738					1369 2738		1369 2738	1369 2738	
Summer Jun-Aug	CP BP	3501 0	3105 0	2885 0	2776 0	2736 0	2787 0	3350 0	4026					-	-	•							4107 1770		-
	CPA CPB	851 1702	738 1476	678 1356	650 1301	642 1284	675 1351	880 1760	1075 2149	1121 2243	1121 2243	1121 2243				1121 2243				1121 2243	1121 2243	1121 2243	1121 2243	1121 2243	1025 2051
Autumn Sep-Nov	ĊP	2553	2214	2034	1951	1926	2026	2640	3224	3364	3364	3364	3364	3364	3364	3364	3364	3364	3364	3364	3364	3364	3364	3346	3076
•	BP	Û	. 0	0	Ö	0	0	0	343	2027	3661	4246	4478	4087	3666	4105	4115	4075	3976	3676	2886	2081	1532	854	154

Note: Same Distribution for "all gas" at Black Point.

· .

Table 3.2bTypical Weekday Hourly Loading for Castle Peak and Black Point Stations
4 Coal-fired and 4 Combined Cycle Plants at Black Point

| STN | HR01 | HRO2 | HRO3 | HRO4 | HR05 | HR06 | HR07 | HR08

 | HR09 | HR 10 | Hr11 | KR12
 | HR13
 | HR14
 | KR15
 | KR16 | HR17
 | HR18 | HR 19 | HR20 | KR21 | HR22 | HR23 | HR24 |
|-------------------------------|---|---|--|---|--|---|---
--
--|--|--|--
--
--
--
--
--
---|--
--|--|---|---|---|---|---|
| СРА
СРВ | 757
1514 | 645
1290 | 598
1196 | 587
1174 | 586
1171 | 606
1211 | 735
1550 | 994
1987

 | 1104
2209 | 1104
2209 | 1104
2209 | 1104
2209
 | 1104
2209
 | 1104
2209
 | 1104
2209
 | 1104
2209 | 1104
2209
 | 1104
2209 | 1104
2209 | 1104
2209 | 1104
2209 | 1104
2209 | | 930
1941 |
| CP | 2271 | 1935 | 1794 | 1761 | 1757 | 1817 | 2325 | 2981

 | 3313 | 3313 | 3313 | 3313
 | 3313
 | 3313
 | 3313
 | 3313 | 3313
 | 3313 | 3313 | 3313 | 3313 | 3313 | 3280 | 2911 |
| BP(COAL)
BP(GASCC | | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 92
0

 | 1049
0 | 2310
47 | 2548
331 | 2597
480
 | 2531
225
 | 2182
151
 | 2483
231
 | 2477
245 | 2485
256
 | 2546
280 | 2613
306 | 2163
30 | 1527
0 | 1105
0 | 533
0 | 37
0 |
| CPA
CPB | 861
1721 | 748
1496 | 695
1389 | 678
1356 | 676
1353 | 697
1394 | 881
1763 | 1135
2271

 | 1236
2471 | 1236
2471 | |
 | 1236
2471
 | 1236
2471
 | 1236
2471
 | 1236
2471 | 1236
2471
 | 1236
2471 | 1236
2471 | 1236
2471 | 1236
2471 | 1236
2471 | | 1080
2160 |
| СР | 2582 | 2244 | 2084 | 2034 | 2029 | 2091 | 2644 | 3406

 | 3707 | 3707 | 3707 | 3707
 | 3707
 | 3707
 | 3707
 | 3707 | 3707
 | 3707 | 3707 | 3707 | 3707 | 3707 | 3672 | 3240 |
| BP(COAL)
BP(GASCC) | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 134
0

 | 1489
0 | 2297
763 | |
 |
 | 2297
753
 | 2297
1208
 | 2297
1210 | 2297
1169
 | 2297
938 | 2284
668 | 2101
256 | 1661
0 | 1193
0 | 564
0 | 37
0 |
| СРА
СРВ | | | 962
1923 | 923
1845 | 910
1820 | 927
1854 | 1117
2233 | 1342
2684

 | 1364
2738 | 1369
2738 | 1369
2738 | 1369
2738
 | 1369
2738
 | 1369
2738
 | 1369
2738
 | 1369
2738 | 1369
2738
 | 1369
2738 | 1369
2738 | 1369
2738 | 1369
2738 | 1369
2738 | 1369
2738 | |
| CP | 3501 | 3105 | 2885 | 2768 | 2730 | 2781 | 3350 | 4026

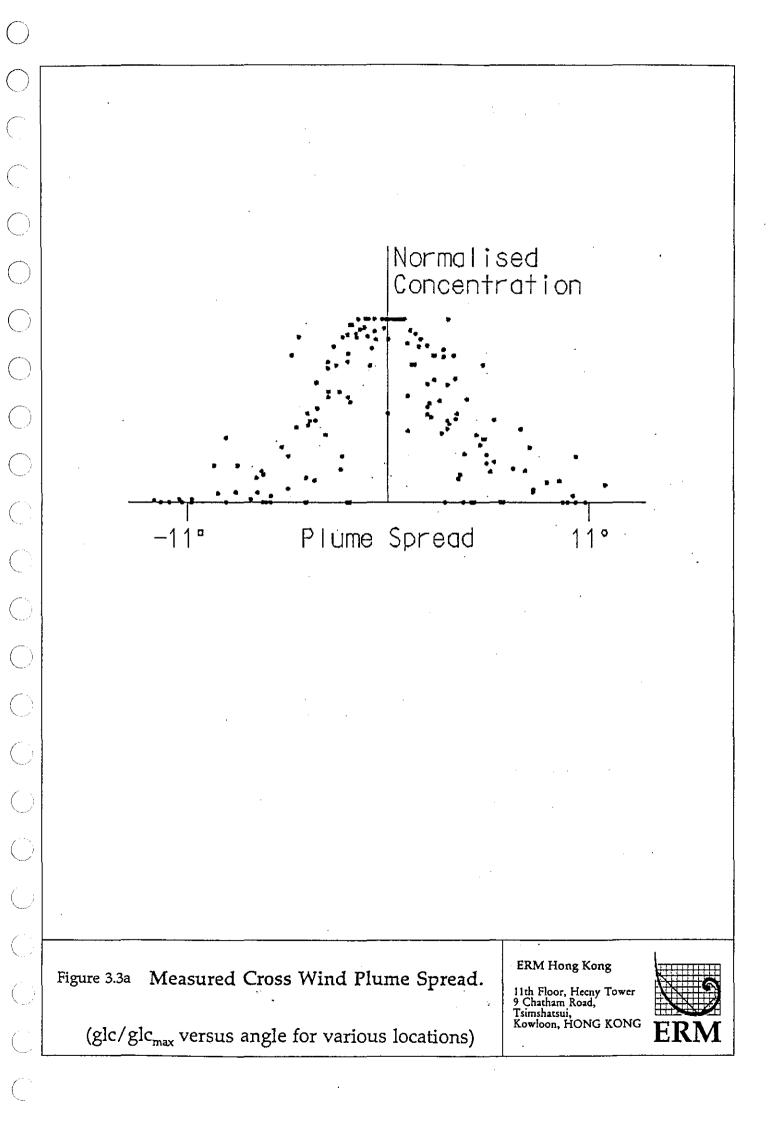
 | 4107 | 4107 | 4107 | 4107
 | 4107
 | 4107
 | 4107
 | 4107 | 4107
 | 4107 | 4107 | 4107 | 4107 | 4107 | 4107 | 4026 |
| <pre>BP(COAL) BP(GASCC)</pre> | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0 | 0 | 297
0

 | 2204
0 | 2720
1019 | 2720
1522 |
 |
 | 2720
1071
 |
 | | 2720
1332
 | 2720
1097 | 2720
643 | 2662
267 | 2308
0 | 1770
0 | 1134
0 | 215
0 |
| СРА
СРВ | 851
1702 | 738
1476 | 680
1360 | 660
1321 | 655
1309 | 678
1356 | 880
1760 | 1075
2149

 | 1121
2243 | 1121
2243 | 1121
2243 | 1121
2243
 |
 |
 | 1121
2243
 | | 1121
2243
 | 1121
2243 | | 1121
2243 | 1121
2243 | 1121
2243 | 1121
2243 | |
| СР | 2553 | 2214 | 2040 | 1981 | 1964 | 2033 | 2640 | 3224

 | 3364 | 3364 | 3364 | 3364
 | 3364
 | 3364
 | 3364
 | 3364 | 3364
 | 3364 | 3364 | 3364 | 3364 | 3364 | 3346 | 3076 |
| BP(COAL)
BP(GASCC) | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 0
0 | 343
0

 | 1963
60 | 2297
1283 | 2297
1833 | 2297
1997
 | 2297
1684
 | 2297
1288
 | 2297
1700
 | 2297
1710 | 2297
1672
 | 2297
1579 | 2297
1298 | 2265
585 | 1985
90 | 1532
0 | 854 ·
0 | 154
0 |
| | CPA
CPB
CP
BP(COAL)
BP(GASCC)
CPA
CPB
CP
BP(COAL)
BP(GASCC)
CPA
CPB
CP
BP(COAL)
BP(GASCC)
CPA
CPB
CP
BP(COAL)
BP(COAL) | CPA 757 CPB 1514 CP 2271 BP(COAL) 0 BP(GASCC) 0 CPA 861 CPB 1721 CP 2582 BP(COAL) 0 BP(GASCC) 0 CPA 1167 CPB 2334 CP 3501 BP(GASCC) 0 CPA 851 CPB 1702 CP 2553 BP(COAL) 0 | CPA 757 645 CPB 1514 1290 CP 2271 1935 BP(COAL) 0 0 BP(GASCC) 0 0 CP 2582 2244 BP(COAL) 0 0 CP 2582 2244 BP(COAL) 0 0 BP(GASCC) 0 0 CP 3501 3105 BP(COAL) 0 0 BP(GASCC) 0 0 CP 3501 3105 BP(GASCC) 0 0 CPA 851 738 CPB 1702 1476 CP 2553 2214 BP(COAL) 0 0 | CPA 757 645 598 CPB 1514 1290 1196 CP 2271 1935 1794 BP(COAL) 0 0 0 0 BP(COAL) 0 0 0 0 CPA 861 748 695 CPB 1721 1496 1389 CP 2582 2244 2084 BP(COAL) 0 0 0 BP(GASCC) 0 0 0 CP 2582 2244 2084 BP(COAL) 0 0 0 CP 3501 3105 2685 BP(COAL) 0 0 0 CP 3501 3105 2885 BP(COAL) 0 0 0 CP 3501 3105 2885 BP(GASCC) 0 0 0 CPA 851 738 680 CPB | CPA 757 645 598 587 CPB 1514 1290 1196 1174 CP 2271 1935 1794 1761 BP(COAL) 0 0 0 0 0 BP(COAL) 0 0 0 0 0 0 CPA 861 748 695 678 678 678 1389 1356 CP 2582 2244 2084 2034 89 1356 CP 2582 2244 2084 2034 89 1356 CP 2582 2244 2084 2034 89 126 BP(COAL) 0 0 0 0 0 0 0 CP 2582 2244 2084 2034 845 645 645 CPB 2334 2070 1923 1845 645 646 CP 3501 3105 2885 2768< | CPA 757 645 598 587 586 CPB 1514 1290 1196 1174 1171 CP 2271 1935 1794 1761 1757 BP(COAL) 0 0 0 0 0 0 BP(COAL) 0 0 0 0 0 0 0 CP 2582 2244 2084 2034 2029 BP(COAL) 0 0 0 0 0 0 CP 2582 2244 2084 2034 2029 BP(COAL) 0 0 0 0 0 0 CP 2582 2244 2084 2034 2029 BP(COAL) 0 0 0 0 0 0 CPA 1167 1035 962 923 910 CPB 2334 2070 1923 1845 1820 CP 3 | CPA 757 645 598 587 586 606 CPB 1514 1290 1196 1174 1171 1211 CP 2271 1935 1794 1761 1757 1817 BP(COAL) 0 0 0 0 0 0 0 CPA 861 748 695 678 676 697 CPB 1721 1496 1389 1356 1353 1394 CP 2582 2244 2084 2034 2029 2091 BP(COAL) 0 0 0 0 0 0 0 CP 2582 2244 2084 2034 2029 2091 BP(COAL) 0 0 0 0 0 0 0 CP 2582 2244 2084 2034 2029 2091 BP(COAL) 0 0 0 0 0 0 | CPA 757 645 598 587 586 606 735 CPB 1514 1290 1196 1174 1171 1211 1550 CP 2271 1935 1794 1761 1757 1817 2325 BP(COAL) 0 0 0 0 0 0 0 0 CPA 861 748 695 678 676 697 881 CPB 1721 1496 1389 1356 1353 1394 1763 CP 2582 2244 2084 2034 2029 2091 2644 BP(COAL) 0 0 0 0 0 0 0 GPA 1167 1035 962 923 910 927 1117 CPB 2334 2070 1923 1845 1820 1854 2233 CP 3501 3105 2885 2768 2730 <td>CPA
CPB 757 645 598 587 586 606 735 994 CPB 1514 1290 1196 1174 1171 1211 1550 1987 CP 2271 1935 1794 1761 1757 1817 2325 2981 BP(COAL) 0 0 0 0 0 0 0 92 BP(COAL) 0 0 0 0 0 0 0 92 BP(COAL) 0 0 0 0 0 0 0 92 CPA 861 748 695 678 676 697 881 1135 CPB 1721 1496 1389 1356 1353 1394 1763 2271 CP 2582 2244 2084 2034 2029 2091 2644 3406 BP(COAL) 0 0 0 0 0 0 0</td> <td>CPA 757 645 598 587 586 606 735 994 1104 CPB 1514 1290 1196 1174 1171 1211 1550 1987 2209 CP 2271 1935 1794 1761 1757 1817 2325 2981 3313 BP(COAL) 0 0 0 0 0 0 0 92 1049 BP(GASCC) 0</td> <td>CPA
CPB 757
1514 645
1290 598
1196 587
1174 586
1171 606
1171 735
1211 994
1550 1104
1987 1104
2209 1104
201 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2471 1104
2471 209 209 2081 1135 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 12471 2471 CP 2582 2244 2084 2034 2039 2097 21117 1342 <</td> <td>CPA 757 645 598 587 586 606 735 994 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104
 1104 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA
CPB 757 645 598 587 586 606 735 994 1104</td><td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104
1104 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td></td></td></td></td></td> | CPA
CPB 757 645 598 587 586 606 735 994 CPB 1514 1290 1196 1174 1171 1211 1550 1987 CP 2271 1935 1794 1761 1757 1817 2325 2981 BP(COAL) 0 0 0 0 0 0 0 92 BP(COAL) 0 0 0 0 0 0 0 92 BP(COAL) 0 0 0 0 0 0 0 92 CPA 861 748 695 678 676 697 881 1135 CPB 1721 1496 1389 1356 1353 1394 1763 2271 CP 2582 2244 2084 2034 2029 2091 2644 3406 BP(COAL) 0 0 0 0 0 0 0 | CPA 757 645 598 587 586 606 735 994 1104 CPB 1514 1290 1196 1174 1171 1211 1550 1987 2209 CP 2271 1935 1794 1761 1757 1817 2325 2981 3313 BP(COAL) 0 0 0 0 0 0 0 92 1049 BP(GASCC) 0 | CPA
CPB 757
1514 645
1290 598
1196 587
1174 586
1171 606
1171 735
1211 994
1550 1104
1987 1104
2209 1104
201 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2310 1104
2471 1104
2471 209 209 2081 1135 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 1236 12471 2471 CP 2582 2244 2084 2034 2039 2097 21117 1342 < | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA
CPB 757 645 598 587 586 606 735 994 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104 1104
1104 1104</td><td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td></td></td></td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA
CPB 757 645 598 587 586 606 735 994 1104
1104 1104</td><td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td></td></td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA
CPB 757 645 598 587 586 606 735 994 1104</td><td>CPA 757 645 598 587 586 606 735 994 1104
1104 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td></td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA
CPB 757 645 598 587 586 606 735 994 1104</td><td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104
 1104 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA
CPB 757 645 598 587 586 606 735 994 1104</td> <td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td></td> | CPA
CPB 757 645 598 587 586 606 735 994 1104 | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104
1104 1104<td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>CPA 757 645 598 587 586 606 735 994 1104<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td> | CPA 757 645 598 587 586 606 735 994 1104 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |


CPA = 0.333 x CP CPB = 0.667 x CP

()

1

()

 \bigcirc

To be conservative, worst case hourly concentrations in any one year of the six candidate years were established. Since the hourly AQOs are based on maximum three exceedance per year, the worst case annual 99.966 percentile values of concentrations were compared to the hourly AQOs for compliance. If these worst case annual 99.966 percentile values are less than the respective AQOs, it can be concluded that there will be no violation of the hourly AQO in the future combined operation of Black Point LTPS and CPPS.

During the simulations, a record was kept of the individual exceedance events (including the date, time, and individual power station contributions). Detailed outputs from the log file are given in *Annex F*.

3.4 BACKGROUND AIR QUALITY

Background concentrations are an essential part of the total air quality concentrations to be considered in determining impacts. Background emission sources are referred to the existing sources and the planned future sources in the vicinity, other than the CPPS and the LTPS.

3.4.1 Existing Background Air Quality Monitoring

Tables 3.4a and 3.4b depict the existing air quality at various CLP monitoring stations pertinent to this rigorous analysis. All these results were measured under the influence of all emission sources in the vicinity and under a full spectrum of meteorological conditions. It is clear that the existing NO₂ and SO₂ levels at the various locations are well within the respective AQOs.

These monitoring results can be used to determine the existing background air quality for the meteorological conditions and averaging times of concern, by excluding values when CPPS is impacting the monitoring locations. For future background air quality, planned future should also be considered.

3.4.2 Background Emission Sources

Table 3.4c indicates the major background emission sources that would compound on the impacts from the CPPS and LTPS, for the wind directions of concern. These include both the existing and planned future emission sources.

3.4.3 Future Background Air Quality

The original "Complex Terrain Wind Tunnel Tests" have predicted that the maximum impacts would occur under relatively high wind speeds, typically in the range of 8–15 m s⁻¹. Under these wind speeds, the general background air quality is anticipated to be fairly good. The following paragraphs discuss the formulation of the future background hourly SO₂ and NO₂ at the various locations. Inclusion of background into the predicted long term impacts would not be of real substance because of the relatively insignificant overall long term impacts.

t . . .

÷

......

2

4

1, I

•

Years	Monitoring Locations											
	San Hui	Tuen Mun	Hung Shui Kiu	Au Tau	Black Point/ Lung Kwu Tan	Lau Fau Shan	Tung Chung					
Annual ave	rage SO ₂ concentratio	ons			•							
1990	N/A	54	28	32	N/A	N/A	N/A					
1991	13	29	33	49	12	14	9					
1992	18	25	16	27	19	15	16					
Annual dail	y maximum SO ₂ con	centrations										
1990	N/A	85 (Dec)	78 (Dec)	79 (Jul)	N/A	N/A	N/A					
1991	63 (Dec)	117 (May)	90 (Jan)	93 (Aug)	59 (May)	51 (Feb)	50 (Feb)					
1992	144 (Mar)	127 (Nov)	95 (Dec)	74 (Jan)	153 (Dec)	79 (Oct)	77 (Dec)					
Annual hou	rly maximum SO ₂ co	ncentrations										
1990	N/A	267 (Jul)	355 (Jul)	231 (Jul)	N/A	N/A	N/A					
1991	160 (Dec)	413 (May)	468 (May)	320 (Aug)	291 (Feb)	280 (Apr)	331 (Oct)					
1992	553 (Mar)	427 (Jan)	219 (Dec)	208 (Dec)	288 (Jan)	420 (Jan)	295 (Mar)					

•

Years	Black Point/Lung Kwu Tan	Lau Fau Shan	Tung Chung
Annual ave	erage NO ₂ concentrations		
1991	18	25	13
1992	15	23	18
Annual dai	ly maximum NO ₂ concentrations		
1991	60 (Jun)	69 (Dec)	31 (Mar)
1992	56 (Jan)	100 (Dec)	108 (Apr)
Annual ho	urly maximum NO ₂ concentration	8	
1991	201 (Jun)	153 (Dec)	131 (Apr)
1992	155 (Sep)	180 (Dec)	236 (Apr)

Table 3.4c Major Background Emission Sources for the Wind Directions of Concern

Receptor	Existing Sources	Future Additional Sources	Wind Dir'n of concern ⁽¹⁾
Mai Po	Yuen Long Industrial Estate Traffic emissions from highways networks	Potential furthur industrial and highways developments	Southwesterly
Lung Kwu Tan	Nil	Tuen Mun Port and Area 38 Developments	Southeasterly
Ha Pak Nai	Nil .	Tuen Mun Port Developments	Southwesterly
Butterfly Estate	Traffic emissions from highways	Area 38 Developments Tuen Mun Port Traffic	Westerly
Tung Chung	Nil	Tung Chung Developments	Northerly
Note (1)	The wind directions of concern produce the maximum overall		l vectors that

 \bigcirc

 \bigcirc

.

Tung Chung

In the Part A AKIA Report, the future background NO₂ levels in Tung Chung have been assumed to be 45 μ g m⁻³ (15% AQO) and 75 μ g m⁻³ (25% AQO) under high and moderate wind speeds respectively. The SO₂ level has been assumed to be 65 μ g m⁻³ (8% AQO) with considerations of the North Lantau Developments. These figures were also used in this Part B AKIA Report.

Mai Po

Delineation of monitoring data to estimate the background air quality without the impacts from the CPPS and under particular combination of meteorological conditions is very difficult. To overcome this, background air quality estimates from monitoring results averaged over a relatively longer periods are used as an alternative. These relatively long-term averages are lower than the short-term maximum and would 'numerically' reflect the anticipated situation of fairly good air quality under the influence of strong winds. This estimation is also supported by the fact that maximum hourly monitoring figures tend to occur in successive periods rather than as isolated events, which indicates highest hourly monitoring figures are likely to be accompanied by relatively higher daily figures. The average daily maximum monitoring results were used to indicate the existing background air quality without the impacts from the CPPS, for the concerned high wind speed meteorological conditions.

Monitoring results at Lau Fau Shan should be representative of that at Mai Po and therefore, the background hourly SO₂ and NO₂ levels were taken to be 65 μ g m⁻³ (8% AQO) and 80 μ g m⁻³ (27% AQO) respectively.

Lung Kwu Tan

Air quality impacts from the Tuen Mun Port Developments and the Area 38 Developments can be derived from previous related studies by further dispersion modelling works. Under southerly wind having a typical speed of 8 m s⁻¹, modelling results indicate that the overall SO₂ and NO₂ impacts would only be about $4 \mu g m^{-3}$ (1% AQO) and $8 \mu g m^{-3}$ (3% AQO) respectively. Whereas under northerly wind, the overall SO₂ and NO₂ impacts would become 46 $\mu g m^{-3}$ (6% AQO) and 53 $\mu g m^{-3}$ (18% AQO) respectively. However, as the impacts from the CPPS are more significant than the LTPS, the lower future background data under southerly wind was adopted.

Ha Pak Nai

Similar to the case at Lung Kwu Tan, future background air quality at Ha Pak Nai can be derived from other studies carried out for the area by the technique of dispersion modelling. Additional modelling results indicate that SO_2 and NO_2 impacts from the Tuen Mun Port Developments would only be about 20 μ g m⁻³ (3% AQO) and 7 μ g m⁻³ (2% AQO) respectively.

Butterfly Estate

The SO₂ and NO₂ impacts from the Area 38 Developments would be very limited. Additional dispersion modelling works, based on the emission characteristics used in previous studies, indicate that the SO₂ and NO₂ impacts would only be about 2 μ g m⁻³ (1% AQO) and 2 μ g m⁻³ (<1% AQO) respectively.

Based on the Tuen Mun Port Developments Study, additional modelling works indicate that the existing and proposed highways networks in the vicinity of the Butterfly Estate would produce a NO₂ impact of about $65 \ \mu g \ m^{-3}$ (21.6% AQO) at ground level under a typical wind speed of 8 m s⁻¹. Therefore, an overall future NO₂ background of 22 % AQO was assumed.

Due to the similar urban settings between Butterfly Estate and Tung Chung, the same background SO_2 was assumed for Butterfly Estate.

In summary, *Table 3.4d* shows the assumed future background SO_2 and NO_2 levels for consideration of the hourly impacts predicted from this rigorous analysis.

Table 3.4d Assumed Future Background SO₂ and NO₂ levels

Receptors	(% hourly AQO)							
	SO ₂	NO_2						
Mai Po	8	27						
Lung Kwu Tan	1	3						
Ha Pak Nai	3	2						
Butterfly Estate	8	22						
Tung Chung	8	25						

ERM HONG KONG CASTLE PEAK POWER COMPANY LTD

ERM HONG KONG

CASTLE PEAK POWER COMPANY LTD

DETAILED RESULTS

The scenarios considered required the runs indicated in *Table 4.1* to be undertaken. These were also repeated for reduced NO_x emissions at CPPS.

WIND TUNNEL TEST SCENARIOS

Receptor Location	Pollutant	BP Gas	BP Coal	CPA	СРВ
					Total 5 output
Lung Kwu Tan	NO ₂ , SO ₂	-	[2]	35 35	65 65
Lung Kwu Tan Lung Kwu Tan	NO ₂ , SO ₂ NO ₂ , SO ₂	[3] [5]	[8]	35 35	65 65
Ha Pak Nai	NO ₂ , SO ₂	-	[2]	35	65
Ha Pak Nai Ha Pak Nai	NO2, SO2 NO2, SO2	[3] [5]	_ [8]	35 35	65 65
Mai Po	NO ₂ , SO ₂	-	[2]	35	65
Mai Po Mai Po	NO2, SO2 NO2, SO2	[3] [5]	- [8]	35 35	65 65
Butterfly Estate	NO₂, SO₂	-	[2]	35	65
Butterfly Estate Butterfly Estate	NO2, SO2 NO2, SO2	[3] [5]	 [8]	35 35	65 65
Tung Chung	NO ₂ , SO ₂	-	[2]	35	65
Tung Chung Tung Chung	NO2, SO2 NO2, SO2	[3] [5]	- [8]	35 35	65 65

Note 1. [] option number in Annex B.

.

a second as

2. All for 10 min wind data at CLK (6 years).

3. All for year 2003 and four seasons load data, CLP 27/3/92, L. Wong.

4. All runs for hourly, daily and annual concentrations.

5. NO₂ conversion from NO_x : reference Annex E and emissions data from Annex B.

DETAILED RESULTS

The result for the five receptors are summarised in *Tables 4.2a – 4.2j*. Each receptor location has two tables, ie with and without NO_x mitigation at CPPS. The following information is pertinent:

All results for all receptors fall within the relevant AQO. The tables show the concentration levels for both pollutants as a % of the relevant AQO. The hourly levels are the worst case annual 99.966 percentile values of the six candidate years.

4.1

100 - 100 - 17

.

4.2

- For the hourly NO_2 data the largest value is 95% (at Ha Pak Nai, *Table 4.2c*) and the lowest is 41.3% (at Mai Po, *Table 4.2f*). With mitigation at Castle Peak the maximum is reduced to 67.9% (*Table 4.2d*).
 - For the hourly SO₂ data the largest value is 72.1% (at Lung Kwu Tan, *Table 4.2a*) and the lowest is 34.2% (at Mai Po, *Table 4.2e*).
- For the daily NO_2 data the largest value is 36.9% (at Tung Chung, *Table 4.2i*) and the lowest is 9.2% (at Butterfly Estate, *Table 4.2h*). With mitigation at Castle Peak this maximum is reduced to 28.1%.
- For the daily SO_2 data the largest value is 21.9% (at Tung Chung, *Table 4.2i*) and the lowest is 7.6% (at Butterfly Estate, *Table 4.2g*).
- For the annual average NO₂ the largest value is 3.0% (at Tung Chung, *Table 4.2i*) and the lowest is 0.3% (at Lung Kwu Tan, *Table 4.2b*). With mitigation the maximum is reduced to 2.3%.
- For the annual average SO_2 the largest value is 4.2% (at Tung Chung, *Table 4.2i*) and the lowest is 0.8% (at Lung Kwu Tan, *Table 4.2b*).
- At Lung Kwu Tan, Ha Pak Nai and Butterfly Estate, the hourly NO₂ and SO₂ data as % of AQO have the same concentration values for all development options of BP (*Tables 4.2a-4.2d*, and 4.2g-4.2h). This is due to the fact that these top hourly events are solely caused by emissions from CPPS.
- The *Tables 4.2a* 4.2*j* and the statements in this section, satisfy the requirements of the Air Quality Objectives in full, subject only to discussion on additional background pollution and the possible exclusion of stable atmospheric conditions.
- At Butterfly Estate the top hourly events have the same concentration value. This is due to the assumption, in the absence of data for winds greater than 15ms⁻¹, that the value at 15ms⁻¹ applies. This is a conservative assumption as there is evidence that the dilution of the plume increases at higher wind speeds and therefore concentration would decay above 15ms⁻¹, rather than remain constant.

Annex F presents a summary of the analysis output, concentrating on hourly data and the largest events are also recorded in some detail. The wind speed and direction was averaged over the same period as the pollution predictions. In both cases the basic data was created at every ten minutes interval.

	1 – all coal	2 – all gas	3 – half coal, half gas
NO ₂			
% of 1 hr AQO ⁽¹⁾	58.9 (1987)	58.9 (1987)	58.9 (1987)
% of 1 day AQO ⁽²⁾	10.7	12.9	12.2
% of annual AQO	0.4	0.7	0.5
SO ₂			
% of 1 hr AQO ⁽¹⁾	72.1 (1987)	72.1 (1987)	72.1 (1987)
% of 1 day AQO ⁽²⁾	8.9	8.6	9.1
% of annual AQO	1.0	0.7	1.1

Note (1) The maximum 99.966 percentile values in the six candidate years. (2) The maximum 99.726 percentile values in the six candidate years.

	1 – all coal	2 – all gas	3 – half coal, half gas
NO2			·
% of 1 hr AQO ⁽¹⁾	45.7 (1987)	45.7 (1987)	45.7 (1987)
% of 1 day AQO ⁽²⁾	10.1	12.1	11.3
% of annual AQO	0.3	0.6	0.5
SO ₂			
%. of 1 hr AQO ⁽¹⁾	72.1 (1987)	72.1 (1987)	72.1 (1987)
% of 1 day AQO ⁽²⁾	8.9	8.6	9.1
% of annual AQO	1.0	0.8	1.1

Note (1) The maximum 99.966 percentile values in the six candidate years. (2) The maximum 99.726 percentile values in the six candidate years.

1.1

l 2 – all gas	3 – half coal, half gas
95.0 (1987)	95.0 (1987)
15.4	20.5
0.7	1.1
65.8 (1987)	65.8 (1987)
13.3	13.5
1.5	1.9
	15.4 0.7 65.8 (1987) 13.3

Note (1) The maximum 99.966 percentile values in the six candidate years. (2) The maximum 99.726 percentile values in the six candidate years.

Table 4.2d	Case B Impacts (with NO	_x mitigation at CPPS) at Ha Pak Nai
------------	-------------------------	--

	1 – all coal	2 – all gas	3 – half coal, half gas
NO2			
% of 1 hr AQO ⁽¹⁾	67.9 (1987)	67.9 (1987)	67.9 (1987)
% of 1 day AQO ⁽²⁾	16.1	11.3	16.0
% of annual AQO	0.7	0.5	0.9
SO ₂			
% of 1 hr AQO ⁽¹⁾	65.8 (1987)	65.8 (1987)	65.8 (1987)
% of 1 day AQO ⁽²⁾	13.5	13.3	13.5
% of annual AQO	1.7	1.5	1.9

Note (1) The maximum 99.966 percentile values in the six candidate years. (2) The maximum 99.726 percentile values in the six candidate years.

ERM HONG KONG

	1 – all coal	2 – all gas	3 – half coal, hali gas	
NO2				
% of 1 hr AQO ⁽¹⁾	63.2 (1988)	1988) 62.5 (1986) 63.1 (1988)		
% of 1 day AQO ⁽²⁾	23.8	20.6	23.9	
% of annual AQO	1.0	0.8	1.2	
SO ₂				
% of 1 hr AQO ⁽¹⁾	34.2 (1986)	34.2 (1986)	34.2 (1986)	
% of 1 day AQO ⁽²⁾	13.2	12.5	13.2	
% of annual AQO	1.3 1.1 1.3		1.3	

Note (1) The maximum 99.966 percentile values in the six candidate years.

(2) The maximum 99.726 percentile values in the six candidate years.

Table 4.2f Case B Impacts (with NO _x mitigation at CPPS) at Mai Po

	1 – all coal	2 – all gas	3 – half coal, half	
· · ·	·		gas	
NO2				
% of 1 hr $AQO^{(1)}$	48.6 (1985)	985) 41.3 (1985) 44.7 (1988)		
% of 1 day AQO ⁽²⁾	18.8	14.6	18.7	
% of annual AQO	0.9	0.6 1.0		
SO ₂				
% of 1 hr AQO ⁽¹⁾	34.2 (1986)	34.2 (1986)	34.2 (1986)	
% of 1 day AQO [@]	13.2	12.5	13.2	
% of annual AQO	1.3	. 1.1	1.3	

Note (1) The maximum 99.966 percentile values in the six candidate years.

(2) The maximum 99.726 percentile values in the six candidate years.

** * * ****

1 es

. . . .

ςŝ

Case A Impacts (no NO_x mitigation at CPPS) at Butterfly Estate

· · ·	1 – all coal	2 – all gas	3 – half coal, half
	··		gas
NO2			
% of 1 hr AQO ⁽¹⁾	77.8 (1990)	77.8 (1990)	77.8 (1990)
% of 1 day AQO ⁽²⁾	18.4	9.66	16.8
% of annual AQO	1.3	0.8	1.3
SO ₂			
% of 1 hr AQO ⁽¹⁾	63.5 (1990)	63.5 (1990)	63.5 (1990)
% of 1 day AQO ⁽²⁾	8.7	7.6	8.7
% of annual AQO	1.5	1.0	1.4

Note (1) The maximum 99.966 percentile values in the six candidate years. (2) The maximum 99.726 percentile values in the six candidate years.

Table	e 4.2h
1 11011	: 4. 4n

Case B Impacts (with NO_x mitigation at CPPS) at Butterfly Estate

	1 – all coal	2 – all gas	3 – half coal, half
			gas
NO2			
% of 1 hr AQO ⁽¹⁾	58.0 (1990)	58.0 (1990)	58.0 (1990)
% of 1 day AQO ⁽²⁾	17.9	9.2	14.9
% of annual AQO	1.2	0.7 1.2	
SO ₂			
% of 1 hr AQO ⁽¹⁾	63.5 (1990)	63.5 (1990)	63.5 (1990)
% of 1 day AQO ⁽²⁾	8.7	7.6	8.7
% of annual AQO	1.6	1.0	1.4

Note (1) The maximum 99.966 percentile values in the six candidate years.

(2) The maximum 99.726 percentile values in the six candidate years.

ERM HONG KONG

	1 – all coal	2 – all gas	3 – half coal, hal: gas	
NO2	·			
% of 1 hr AQO ⁽¹⁾	73.7 (1988)	7 (1988) 64.6 (1985) 66.6 (1986)		
% of 1 day AQO ⁽²⁾	36.0	31.8	36.9	
% of annual AQO	2.9	2.5	3.0	
SO ₂				
% of 1 hr AQO ⁽¹⁾	36.5 (1985)	36.0 (1985)	38.3 (1985)	
% of 1 day AQO ⁽²⁾	21.8	20.8	21.9	
% of annual AQO	4.1	3.9	4.2	

Note (1) The maximum 99.966 percentile values in the six candidate years.

(2) The maximum 99.726 percentile values in the six candidate years.

Table 4.2j

Case B Impacts (with NO_x mitigation at CPPS) at Tung Chung

	1 – all coal	2 – all gas	3 – half coal, half gas
NO2	······		gas
% of 1 hr AQO ⁽¹⁾	59.7 (1988)	8) 45.2 (1985) 45.1 (1986)	
% of 1 day AQO ⁽²⁾	26.8	23.1	28.1
% of annual AQO	2.2	1.8 2.3	
SO ₂			
% of 1 hr AQO ⁽¹⁾	36.5 (1985)	36.0 (1985)	38.3 (1985)
% of 1 day AQO ²⁾	21.8	20.8	21.9
% of annual AQO	4.1	3.9	4.2

Note (1) The maximum 99.966 percentile values in the six candidate years.

(2) The maximum 99.726 percentile values in the six candidate years.

· · · · .

 $\widehat{}$

 \bigcirc

 \bigcirc

Because of the high turbulence intensity, the condition examined in the wind tunnel is judged to be slightly unstable/neutrally stable instead of neutrally stable (the turbulence intensity, measured at 10m height, is 20–25% compared with neutral conditions of say 13–17%). Not represented therefore, are Pasquill stability A/B (highly convective conditions) and stability E/F (moderately stable conditions). Highly convective and moderately stable conditions occur at low wind speeds. By contrast, the exceedance limits calculated in the study are generated by the blowing down of plumes at higher wind speeds.

In the KIA Phase 2, Part 1 Report: "Analysis of Climatological Data", it was reported that stable conditions rarely occur and that their modelling is not justified. Even for a receptor which is located in a sector where stable conditions are most likely to occur, the likely frequency of occurrence of stable conditions is on average only about one night per year. Another important factor is the most stable conditions would normally occur at night time when Black Point Power Station will produce little or no emissions and Castle Peak is relatively lightly loaded. Stable conditions are therefore not expected to have any significant effect on the concentration exceedance limits calculated in this study.

In highly convective conditions, the plume is dispersed mainly by large scale turbulence eddies, and sinuosities (or loops) in the plume shape are large compared with the width of the instantaneous plume. The profile of longer term average concentration measured across the region, swept by the sinuosities will contain a smaller maximum concentration than that measured across the instantaneous plume (see for example, Environmental Aerodynamics by R.S. Scorer, Section 10.7). Consequently, significantly smaller maximum ground and near ground level concentrations will occur in highly convective conditions than at high wind speeds where the plume is blown down.

It is therefore considered that the most significant conditions have been dealt with and that predicted concentration limits are robust.

5

• •

· · · ·

and the second second

ERM HONG KONG

CASTLE PEAK POWER COMPANY LTD

The three base cases examined for the LTPS were (a) 8x680 MW coal fired conventional units; (b) 8x600 MW gas fired combined cycle units; and (c) four of each type. Subsequent adjustment was made to these figures to derive data demonstrating the effect of low NO_x burners at Castle Peak (ie with and without NO_x mitigation) and the use of oil firing in place of the primary fuel.

The following discussions were based on the interpretation of hourly AQO exceedance being not more than three hours per year in all six candidate years.

6.1 8x680 MW CONVENTIONAL COAL-FIRED UNITS

Tables 6.1a and 6.1b summarise the maximum NO_2 and SO_2 ground level concentrations at the various locations with and without NO_x mitigation at CPPS. The results show that the calculated ground level concentrations were well within Government AQOs.

Table 6.1a NO₂ and SO₂ Ground Level Concentrations (no NO_x mitigation at CPPS)

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO ₂	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	63.2	34.2	23.9	13.2	1.1	1.3
Lung Kwu Tan	58.9	72.1	10.7	8.9	0.4	1.0
Ha Pak Nai	95.0	65.8	20.7	13.5	0.9	1.7
Butterfly Estate	77.8	63.5	18.4	8.7	1.3	1.6
Tung Chung	73.7	36.5	36.0	21.8	2.9	4.1

Note: (1) Maximum 99.966 percentile values in the six candidate years. (2) Maximum 99.726 percentile values in the six candidate years.

Table 6.1b NO₂ and SO₂ Ground Level Concentrations (with NO_x mitigation at CPPS)

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO ₂	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	48.6	34.2	18.8	13.2	0.9	1.3
Lung Kwu Tan	45.7	72.1	10.1	8.9	0.3	1.0
Ha Pak Nai	67.9	65.8	16.1	13.5	0.7	1.7
Butterfly Estate	58.0	63.5	17.9	8.7	1.2	1.6
Tung Chung	59.7	36.5	26.8	21.8	2.2	4.1

Note: (1) Maximum 99.966 percentile values in the six candidate years.

(2) Maximum 99.726 percentile values in the six candidate years.

As mentioned before, the hourly figures represent the values pertaining to the worst case annual 99.966 percentiles of the six candidate years. Reference to the tables in *Annex F* shows that technically the NO₂ AQO could have been breached on one occasion at Butterfly Estate on the 11th July 1986 (11–7–86).

This date correspond to periods of very high wind speed resulting from Typhoon Peggy. In this situation, however the generated load would have been substantially lower than that modelled, because reduced demand resulting from the shut down of factories and offices; this is illustrated by the Daily system Demand Curves in *Annex I*. The plot for 10–7–86 shows a broadly "normal" power demand curve, whereas that for the 11–7–86 shows a dramatic drop in power demand during the usual mid–afternoon 2pm–6pm peak period, as a result of the hoisting of the Number 8 Signal.

The situation with SO_2 is similar, with a technical breach of the AQO occurring at the Butterfly Estate due to the Typhoon Peggy.

Of interest overall is the very small contribution made to each of these events by the LTPS. In general the ground level effects are the results of the plumes from CPPS.

6.2 8x600 MW GAS-FIRED CCGT UNITS

Tables 6.2a and 6.2b summarise the maximum NO_2 and SO_2 ground level concentrations at the various locations with and without NO_x mitigation at CPPS. The results show that the calculated ground level concentrations were well within Government AQOs.

NO₂ and SO₂ Ground Level Concentrations (no NO_x Mitigation at CPPS)

Table 6.2a

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO2	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	62.5	34.2	20.6	12.5	0.8	1.1
Lung Kwu Tan	58.9	72.1	13.0	8.6	0.7	0.8
Ha Pak Nai	95.0	65.8	15.4	13.3	0.7	1.5
Butterfly Estate	77.8	63.5	9.6	7.6	0.8	1.0
Tung Chung	64.6	36.0	31.8	20.8	2.5	3.9

Note: (1) Maximum 99.966 percentile values in the six candidate years. (2) Maximum 99.726 percentile values in the six candidate years.

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO ₂	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	41.3	34.2	14.6	12.5	0.6	1.1
Lung Kwu Tan	45.7	72.1	12.1	8.6	0.6	0.8
Ha Pak Nai	67.9	65.8	11.3	13.3	0.5	1.5
Butterfly Estate	58.0	63.5	9.2	7.6	0.7	1.0
Tung Chung	45.2	36.0	23.1	20.8	1.8	3.9

Note: (1) Maximum 99.966 percentile values in the six candidate years.

(2) Maximum 99.726 percentile values in the six candidate years.

The daily and annual figures are correspondingly lower than the 8x680 MW Coal Fired results due to the reduced emissions from the Combined Cycle Units. The hourly figures are virtually the same as in the case of coal-fired units for most of the receptors, due to the dominance of CPPS. The dominance of CPPS however results in technical exceedences occurring on the same days as for the conventional plant units.

4 CONVENTIONAL – 4 CCGT UNITS

Tables 6.3a and 6.3b summarise the maximum NO_2 and SO_2 ground level concentrations at the various locations with and without NO_x mitigation at CPPS. The results show that the calculated ground level concentrations were well within Government AQOs. As expected the results for this case are a hybrid of the two former cases.

Table 6.3a NO₂ and SO₂ Ground Level Concentrations (no NO_x mitigation at CPPS)

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO ₂	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	63.1	34.2	23.9	13.2	1.2	1.3
Lung Kwu Tan	58.9	72.1	12.2	9.1	0.5	1.1
Ha Pak Nai	95.0	65.8	20.5	13.5	1.1	1.9
Butterfly Estate	77.8	63.5	16.8	8.7	1.3	1.4
Tung Chung	66.6	38.3	36.9	21.9	3.0	4.2

Note: (1) Maximum 99.966 percentile values in the six candidate years.

(2) Maximum 99.726 percentile values in the six candidate years.

6.3

Receptor	% hourly NO ₂	AQO ⁽¹⁾ SO ₂	% Daily NO ₂	AQO ⁽²⁾ SO ₂	% Annual NO ₂	AQO SO ₂
Mai Po	44.7	34.2	18.7	13.2	1.0	1.3
Lung Kwu Tan	45.7	72.1	11.3	9.1	0.5	1.1
Ha Pak Nai	67.9	65.8	16	13.5	0.9	1.9
Butterfly Estate	58.0	63.5	15	8.7	1.2	1.4
Tung Chung	45.1	38.3	28.1	21.9	2.3	4.2

Note: (1) Maximum 99.966 percentile values in the six candidate years. (2) Maximum 99.726 percentile values in the six candidate years.

6.4 OIL-SUBSTITUTION OPTIONS

The following *Tables 6.4a and 6.4b* illustrates the effects of substituting oil instead of the primary fuel for the LTPS. The sulphur contents of distillate oil (DistO) for CCGT and fuel oil (HFO) for coal-fired units are 0.5% and 3.5% (by weight) respectively. All figures depict the combined impacts from LTPS and CPPS. The combined impacts from LTPS and CPPS are well within the AQOs, and the use of oil would only have marginal effects.

Table 6.4a Maximum NO_2 and SO_2 Impacts as % hourly $AQO^{(1)}$ (with NO_x mitigation at CPPS)

Receptor	8x680N units	iw hfo	8x600M CCGTs	8x600MW DistO CCGTs		4x680MW HFO units + 4x600MW DistO CCGTs	
	NO ₂	SO ₂	NO ₂	SO ₂	NO ₂	SO ₂	
Mai Po	50.9	34.3	43.7	34.3	43.7	34.2	
Lung Kwu Tan	45.7	72.1	45.7	72.1	45.7	72.1	
Ha Pak Nai	68.0	65.8	68.0	65.8	68.0	65.8	
Butterfly Estate	58.0	63.5	58.0	63.5	58.0	63.5	
Tung Chung	50.7	41.1	44.6	37.7	45.2	37.9	

Note: (1) The maximum 99.966 percentile values in the six candidate years.

 \bigcirc

 \bigcirc

4b Maximum NO₂ and SO₂ Impacts as % hourly AQO⁽¹⁾ (without NO_x mitigation at CPPS)

Receptor	8x680M units	IW HFO	8x600M CCGTs	W DistO	istO 4x680MW HFO 4x600MW DistC		
	NO ₂	SO ₂	NO ₂	SO ₂	NO ₂	SO ₂	
Mai Po	62.5	34.3	62.5	34.3	62.5	34.2	
Lung Kwu Tan	58.9	72.1	58.9	72.1	58.9	72. 1	
Ha Pak Nai	95.0	65.8	95.0	65.8	95.0	65.8	
Butterfly Estate	77.8	63.5	77.8	63.5	77.8	63.5	
Tung Chung	65.0	41.1	63.2	37.7	. 64.0	37.9	

Note: (1) The maximum 99.966 percentile values in the six candidate years.

If DistO of 0.2% sulphur is to be used, the SO₂ impacts from BP CCGTs will be proportionally lower. However, top hourly events during the future combined operation of BP with CPPS will not alter significantly due to the dominance of CPPS. As an illustration, *Table 6.4c* depicts the differences in the combined hourly SO₂ impacts when DistO of 0.2% sulphur is used for the BP CCGTs. The SO₂ figures are the worst case annual 99.966 percentile values of concentrations.

Table 6.4cSensitivity of Maximum SO impacts as % hourly AQO⁽¹⁾ to Sulphur
Contents in DistO

Receptors	8x600 MW Dist	O CCGTs	4x680 MW HFO + 4x600 MW		
	0.2% S DistO	0.5% S DistO	0.2% S DistO	0.5% S DistO	
Mai Po	33.7	34.3	34.2	34.2	
Lung Kwu Tan	72.1	72.1	72.1	72.1	
Ha Pak Nai	65.8	65.8	65.8	65.8	
Butterfly Estate	63.5	63.5	63.5	63.5	
Tung Chung	32.3	37.7	36.2	37.9	

Note: (1) The maximum 99.966 percentile values in the six candidate years.

Details of the concentration statistics are shown in Annex F.

CONSIDERATIONS OF BACKGROUND AIR QUALITY

To check compliance with the hourly AQOs, background SO_2 and NO_2 levels as tabulated in *Table 3.4d* should be included for all cases. As such, breach of maximum allowable three exceedance of hourly AQOs would not be anticipated even under the worst case development regime of no NO_x mitigation at CPPS.

The maximum overall hourly NO_2 impacts will be at Butterfly Estate and will consume about 99% of the hourly AQO, this corresponds to all three options of BP development and with no NO_x mitigation at CPPS. The maximum hourly SO_2 impact will be at Lung Kwu Tan and will consume about 73% of the hourly AQO; this corresponds to all three options of BP development. Regarding the daily and annual impacts, inclusion of background will not be of real substance because of the insignificance of the long-term impacts.

LIKELIHOOD OF HOURLY AQO EXCEEDANCES

All the above discussions were based on the interpretation of hourly AQO exceedance being not more than three hours per year. It is also considered useful to include in the report the statistics of exceedance of the hourly AQO over the six years of meteorological data. The summary statistics of AQO exceedances are shown in detail in *Annex G*.

As an illustration, Table 6.6a shows the maximum number of AQO exceedances over the period 1985-1990 with the inclusion of background SO_2 and NO_2 . The predicted AQO exceedance occurs only twice, and these two exceedances occur in separate years between 1985-1990, ie 1987 or 1990. It is also noted that the SO₂ contribution from Black Point is negligible to these SO_2 exceedances (Annex F). From the existing SO_2 monitoring results for 1991 and 1992, there were no SO₂ exceedance at Tuen Mun, San Hui, Lung Kwu Tan/Black Point, and Lau Fan Shan. These monitoring locations should be representative of the situation at Butterfly Estate, Lung Kwu Tan and Ha Pak Nai. Therefore, there are virtually eight years of predicted and monitoring data which indicate only a maximum of two SO₂ hourly exceedances in any one particular year between 1985-1992. Regarding the extent of exceedance over the hourly SO₂ AQO, the SO₂ exceedances at Butterfly Estate and Lung Kwu Tan are at most about 23% over the hourly AQO. For the case of NO₂, the maximum exceedance over hourly AQO at Butterfly Estate and Ha Pak Nai are about 32% and 3% respectively.

The case of fuel oil substitution will be similar. *Table 6.6b* shows the maximum numbers of AQO exceedance between 1985–1990.

Taking account of the years of available meteorological data and monitoring results, and in light of the predicted maximum and average numbers of exceedance, it is considered unlikely to have three exceedances over a year during the future combined operation of the BP LTPS and CPPS.

Receptor	No of max	AQO exceedance	Year of Max No. of AQO exceedance		
	SO ₂	NO ₂ ⁽¹⁾	SO ₂	NO ₂	
8 x 680 coal-fire	d convention	nal units			
Tung Chung	. 0	0	. —	-	
Butterfly Estate	1	2	1986,90	1990	
Ha Pak Nai	0	2	-	1987	
Lung Kwu Tan	2	0	1987	-	
Mai Po	0	0	_	-	
8 x 600 MW Gas	CCGTs				
Tung Chung	0	0	- ·	_	
Butterfly Estate	1	2	1986,90	1990	
Ha Pak Nai	0	2	-	1987	
Lung Kwu Tan	2	0	1987	-	
Mai Po	0	0	-	-	
4 x 680 MW coal	l–fired + 4 x	600 MW CCGT	. · · ·		
Tung Chung	0	0	-		
Butterfly Estate	1	2	1986,90	1990	
Ha Pak Nai	0	2	-	1987	
Lung Kwu Tan	2	0	1987		
Mai Po	0	0	-	-	

(2) Occasions of typhoon are excluded.

С \bigcirc \bigcirc \bigcirc \bigcirc С \bigcirc 0 \bigcirc \bigcirc 0 0 0 Ċ

(

CASTLE PEAK POWER COMPANY LTD

 \geq

ERM HONG KONG

,

. ..

Receptor	No of max	AQO exceedance	Year of Max exceedance	No of AQO
	SO ₂	NO ₂ ⁽¹⁾	SO ₂	NO ₂
8 x 680 conventi	onal units wi	th HFO		
Tung Chung	0	0	_ ·	-
Butterfly Estate	1	2	1986,90	1990
Ha Pak Nai	0	2		1987
Lung Kwu Tan	2	0	1987	-
Mai Po	0	0	-	-
8 x 600 MW Dis	to CCGTs			
Tung Chung	0	0	-	-
Butterfly Estate	1	2	1986,90	1990
Ha Pak Nai	0	2	-	1987
Lung Kwu Tan	2	0	1987	_
Mai Po	0	0	-	- .
4 x 680 MW HFC	D + 4 x 600 M	IW Disto CCGT		
Tung Chung	0	0	-	·_
Butterfly Estate	1	2	1986,90	1990
Ha Pak Nai	0	2	-	1987
Lung Kwu Tan	2	0	1987	-
Mai Po	0	0	_	-

Note: (1) With NO_x mitigation at CPPS. (CPA: 1000 ppm NO_x, CPB: 600 ppm NO_x) (2) Occasions of typhoon are excluded.

.

A refined frequency analysis assessment has been presented for the air quality impacts at key sensors arising from different development options (ie all-coal, all-gas, half coal-half gas) of the Black Point LTPS combined with Castle Peak stations. Realistic concentration levels over six years of actual wind records have been simulated and from the statistics of concentrations, the magnitude of concentration not exceeded for specified periods of time (1 hour limit; 3 hours per year; 24 hours limit; 1 day per year; magnitude limit on annual average) are calculated and compared with the Air Quality Objectives (AQO).

For all receptors, the maximum values of hourly concentration not exceeded more than three hours per year, of daily concentration not exceeded on the average more than one day per year, and of annual average concentration are shown in *Table 7.1a*. The hourly data are the worst case annual 99.966 percentile values of concentration in the six candidate years. The maximum values have been expressed as percentages of the relevant AQO. It is found that even without mitigation by retrofitting low NO_x burners at Castle Peak, all results for all receptors fall within the relevant AQO.

Table 7.1a	Summary	Results	of.	Rigorous	Frequencu	Analusis
	<i>.</i>					

Criteria	Pollutant	Without NOx mitigation at CPPS	With NOx mitigation at CPPS	Location of maximum
1 hour limit (% AQO)	NO₂	95.0%	68.0%	Ha Pak Nai
	SO ₂	72.1%	72.1%	Lung Kwu Tan
1 day limit	NO_2	36.9%	28.1%	Tung Chung
(% AQO)	SO2	21.9%	21.9%	Tung Chung
1 year limit	NO_2	3.0%	2.3%	Tung Chung
(% AQO)	SO ₂	4.2%	4.2%	Tung Chung

Considerations of the existing background air quality and the effects of oil substitutions have also been made to check compliance. The following findings are pertinent:

Effects of oil substitution would only be marginal.

31

- The overall maximum hourly NO_2 and SO_2 levels (worst case annual 99.966 percentile values) will be at Butterfly Estate and Lung Kwu Tan Respectively, and these levels will fall within the respective hourly AQOs.
- The maximum predicted number of exceedance of hourly SO_2 and NO_2 AQOs with the inclusion of background is only two.
- The baseline monitoring works conducted by CLP indicate that the existing ambient SO_2 and NO_2 are well within the AQOs.

Taking account of the years of available meteorological data and monitoring results, and in light of the predicted maximum and average numbers of exceedance, it is considered unlikely to have three exceedances over a year during the future combined operation of the BP LTPS and CPPS.

The LTPS is situated at the southwestern end of Deep Bay in the western territories away from the urban environment. Emissions from the power station will escape from the Deep Bay airshed and get diluted before reaching sensitive receptors. At higher elevations plume impingement could cause high concentrations on the hillsides of Castle Peak Firing Range. However, this area is not considered to be a sensitive receptor and acts as a suitable buffer between existing and future industrial activities, to the south, and major residential areas to the east. It is therefore concluded that the proposed development at Black Point will not cause any land use implications to the surrounding environment though this may need to be reviewed before the final approval of the Phase II development.

Stable meteorological conditions rarely occur and are associated with very low emissions from the power stations while convective conditions are likely to generate significantly lower maximum hourly concentrations than wind blown-down plumes. Both conditions are considered unlikely to have a significant effect on the concentration exceedance limits predicted in the study. With regard to EPD's position, and the way forward, the following points have been confirmed:

- The air quality impacts of the proposed Phase 1 development of the Power Station (ie 4 X 600MW CCGT units with light industrial diesel oil as back up fuel together with the recommended measures for its design, construction and operation) are acceptable.
- Mitigation measures are available to reduce the air quality impacts of the power station, if coal-fired with heavy fuel oil as back up, to levels that are acceptable by the present air quality standards, on the basis of the current sensitivity of environment and the assumed operation scenarios in this study.
- An air quality impact review shall be carried out before the final approval of the Phase II development to take account of the background air quality, the control technologies and the environmental standards at that time and to verify the required mitigation measures to meet the Air Quality Objectives. Such review shall take into account the data and findings in the Air Quality Key Issue Report under the Phase 2 EIA study for LTPS.

ANNEXES

6

Annex A

Wind Tunnel Tests – Boundary Layer and Preparatory Tests

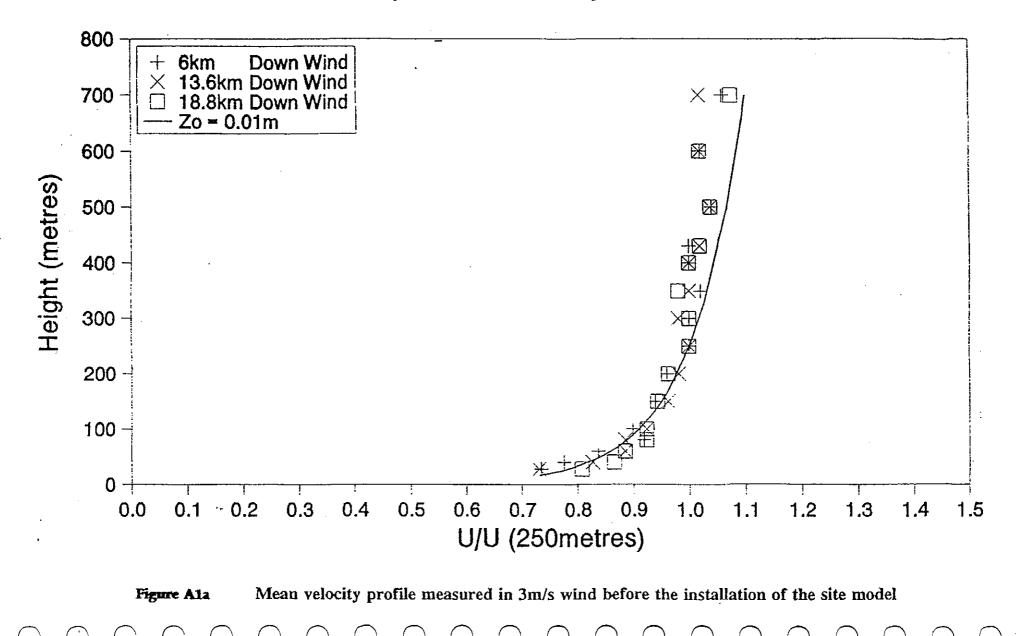
WIND TUNNEL MODELLING OF ATMOSPHERIC BOUNDARY LAYER

The modelling was carried out in BMT's No. 7 environmental wind tunnel. This is a large, closed return-circuit wind tunnel with a working section 15m long, 4.8m wide and 2.4m high. The working section is fitted with a 4.4m diameter turntable. The tunnel can be fitted with a range of devices to simulate a variety of atmospheric boundary layers.

The tunnel has been extensively used for plume and gas cloud dispersion and EPD will be familiar with similar Air Quality Studies performed in the tunnel.

The modelled terrain is complex with high hills and ridges, and the flow over the site will therefore be dominated by the local topography. The flow will be simulated correctly (a) if the model has been properly scaled with all features likely to influence the flow represented, and (b) if the approach flow (i.e. the boundary conditions) has been correctly modelled. Once the approach flow has hit the model, subsequent development of the boundary layer will be governed by the model itself. It follows that, the presence of an equilibrium boundary layer in the part of the empty tunnel where the dispersion will take place is unlikely to be crucial for the dispersion.

Nonetheless, the development of the boundary layer in the empty tunnel was measured in order to obtain the characteristics of the ambient flow into which effluents from the stacks will be discharged. The programme of work is given in Tables A1a, A1b and A1c. A low and a high wind speed, namely 3m/s and 15m/s full scale, were tested. Measurements were made at 6, 13.6 and 18.8km downstream of Black Point.


Figures A1a to A1f show results for the wind speed corresponding to 3m/s full-scale. The results presented include vertical profiles of mean velocity (Figure A1a), of the longitudinal component of turbulence intensity (Figure A1b), and of Reynolds stresses (Figure A1c). Figures A1d to A1f show the distribution of mean velocity across the study area at heights of 30m, 167m and 100m.

The above measurements were repeated at a wind speed of 15m/s. The results are presented in Figures A1g to A1k.

For large expanses of water, the roughness height Z_0 , given by ESDU 82026 (Reference 20) ranges from 0.1 to 10^{-3} m for a calm sea to 1×10^{-2} m for a rough sea. The curves in Figures A1a and A1g are mean velocity profiles computed for $Z_0 = 1 \times 10^{-2}$ m. It is clear from the figures that a reasonable simulation of an equilibrium sea-state boundary layer was achieved. Furthermore, when the topography was absent, flow properties were closely uniform across the site - see for example Figures A1d, A1e and A1f.

A1

Boundary Layer Profile at 3 m/s Empty Tunnel Velocity Profile

Boundary Layer Profile at 3 m/s Empty Tunnel Intensity Profile

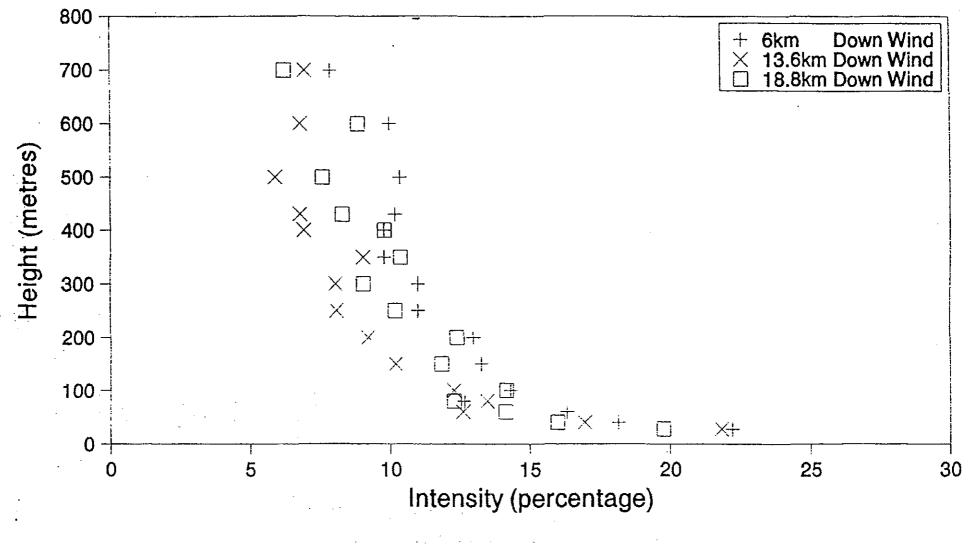
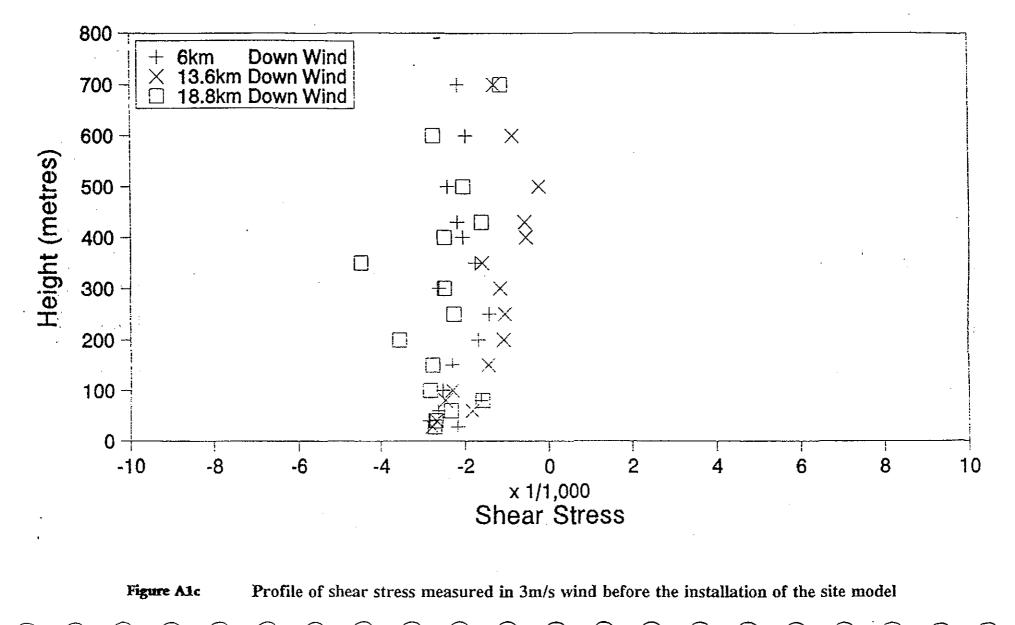
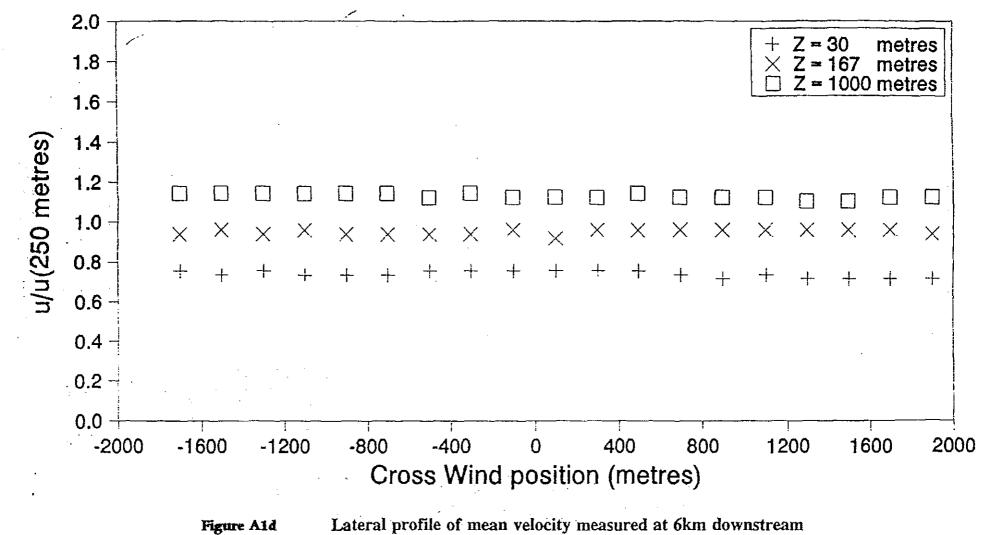
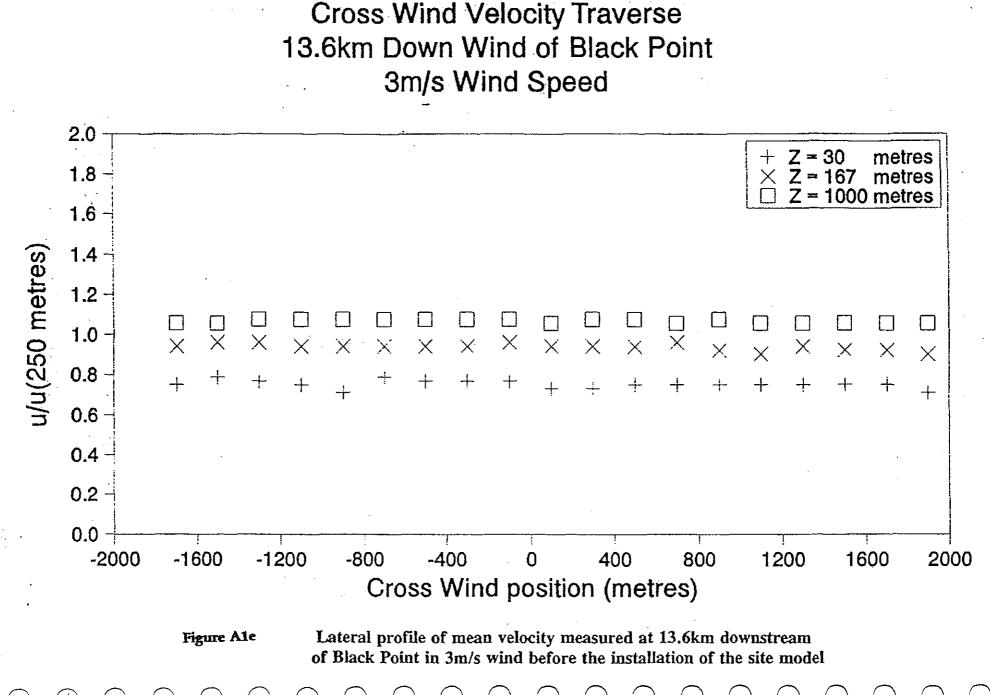
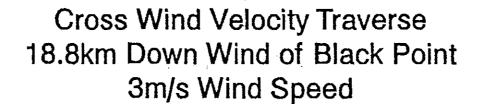
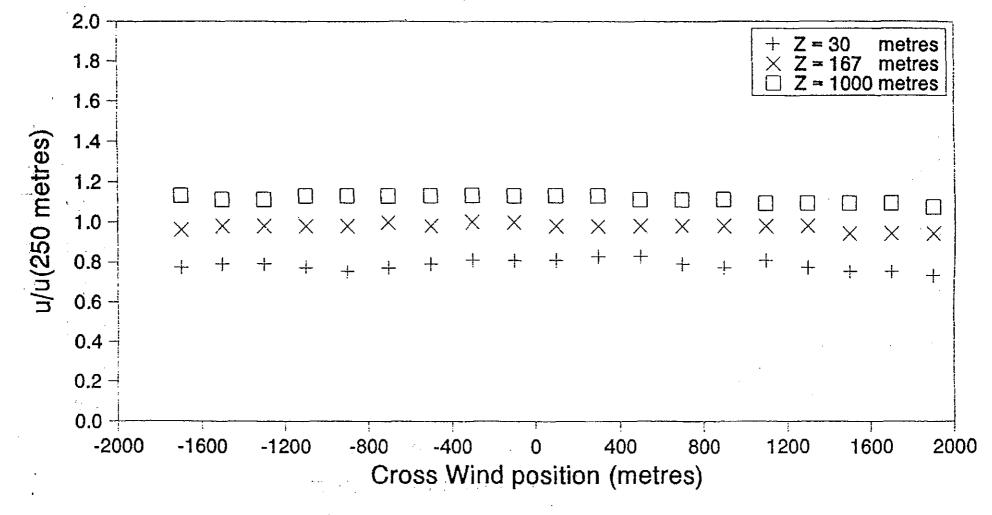




Figure A1b Profile of longitudinal component of turbulence intensity measured in 3m/s wind before the installation of the site model


Boundary Layer Profile at 3 m/s Empty Tunnel Shear Stress Profile




Cross Wind Velocity Traverse 6km Down Wind of Black Point 3m/s Wind Speed

of Black Point in 3m/s wind before the installation of the site model

Figure A1f Lateral profile of mean velocity measured at 18.8km downstream of Black Point in 3m/s wind before the installation of the site model

Boundary Layer Profile at 15m/s Empty Tunnel Velocity Profile

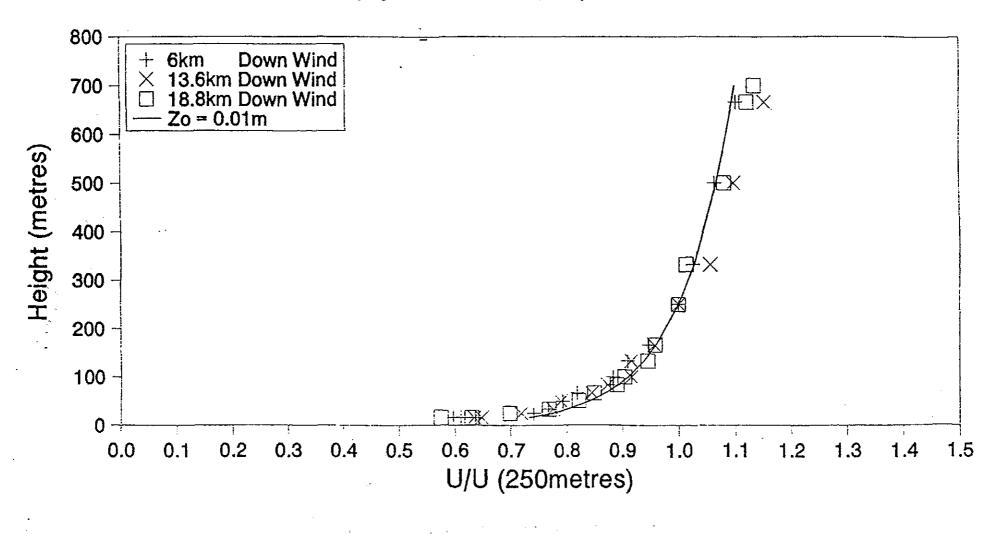


Figure A1g Mean velocity profile measured in 15m/s wind before the installation of the site model

.

Boundary Layer Profile at 15m/s Empty Tunnel Intensity profile

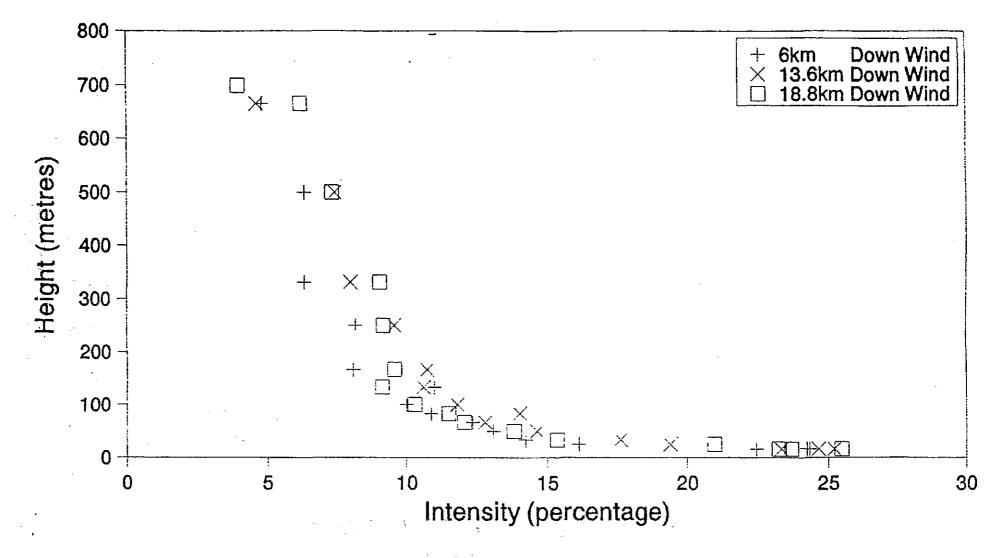
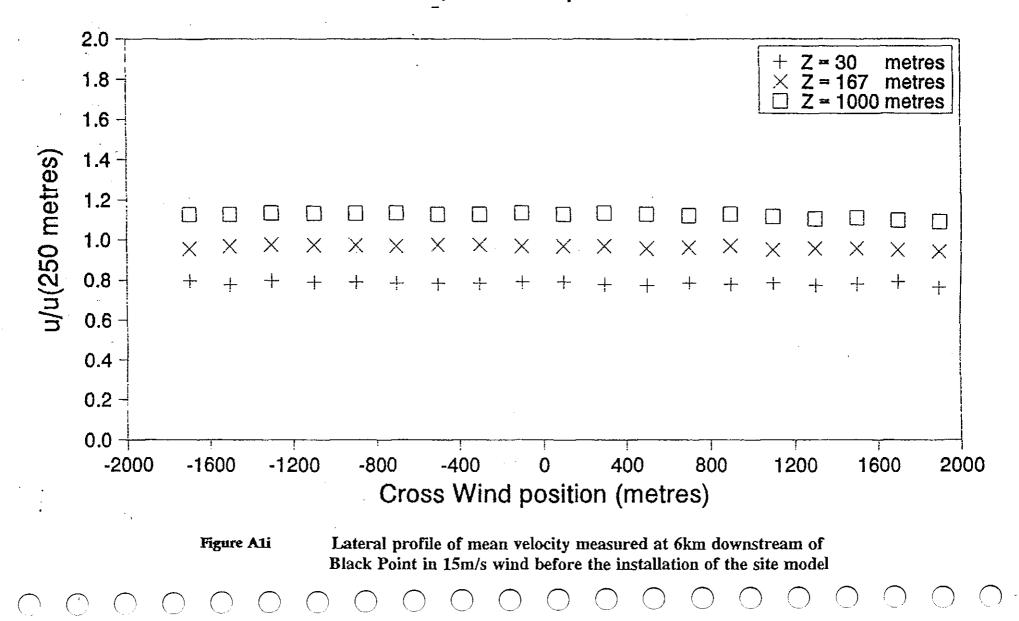
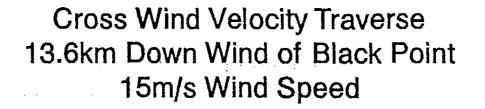
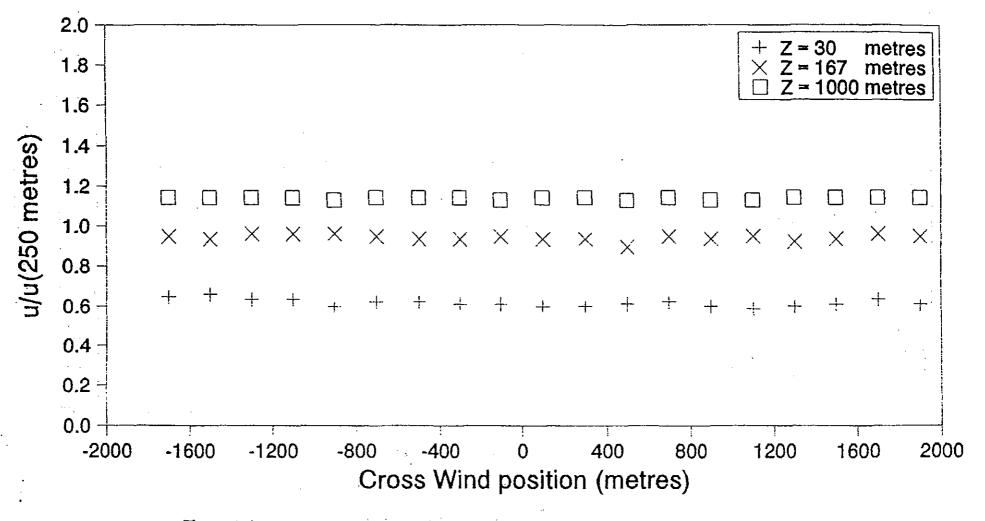





Figure A1h Profile of longitudinal component of turbulence intensity measured in 15m/s wind before the installation of the site model Cross Wind Velocity Traverse 6km Down Wind of Black Point 15m/s Wind Speed

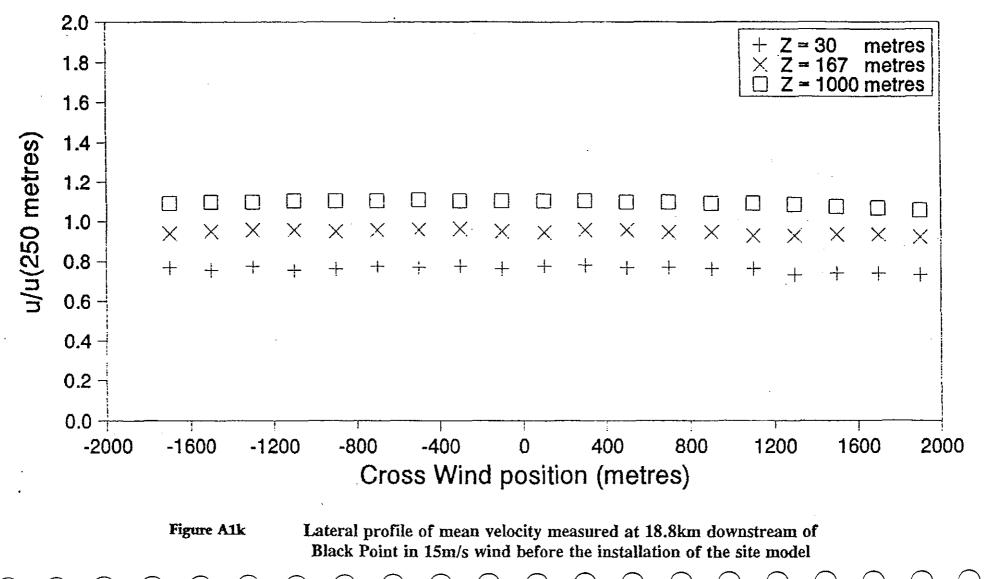


Figure A1j Lateral profile of mean velocity measured at 13.6km downstream of Black Point in 15m/s wind before the installation of the site model

.

Cross Wind Velocity Traverse 18.8km Down Wind of Black Point 15m/s Wind Speed

Table A1aWind Speed Measurements (High Speed)

TEST NO.	TYPE TRAV		UNDISTURBED WIND SPEED AT 10m HEIGHT		OWNWII DISTANCI DNSIDER	ES	1	HEIGHT ONSIDEI		IN '	DDEL THE NEL?
	HORIZ.	VERT.	(m/s)	(1)	(2)	(3)	18m	100m	600m	YES	NO
1	-	1	15	1	-	-	N/A	N/A	N/A	-	1
2	-	1	15	-	1	-	N/A	N/A	N/A	-	~
3	-	1	15	-	-	1	N/A	N/A	N/A	-	~
4	1		15	•	1	-	1	• -	-	-	~
5	1	-	15	-	1	-	-	1	-	-	~
6	1	-	15	•	1	-	-		1	-	1
7*	-	-	15	See	note 2						
8*	-	*	3 - 20 ်	See	note 3						

 Downwind distance (1) is at 6km from Black Point Downwind distance (2) is at 13.6km from Black Point Downwind distance (3) is at 18.8km from Black Point

1

- 2. For Test 7* vertical traverse will be made at Black Point
- 3. For Test 8* velocities measured at 250m height at Black Point by a Dantec X-wire will be compared to the reading of the reference meters, that is the pitot-static tube and the ball probe
- 4. Vertical traverses will cover a range equivalent to about 20m to 1000m
- 5. Horizontal traverses will cover a range equivalent to about ± 2 km
- 5. For all the traverses, the longitudinal and vertical components of the mean wind speed and of the turbulence intensity will be measured

(

TEST NO.	TYPI TRAV		UNDISTURBED WIND SPEED AT 10m HEIGHT	D	OWNWI ISTANC INSIDEI	ES		HEIGHT		IN '	DDEL THE NEL?
	HORIZ.	VERT.	(m/s)	(1)	(2)	(3)	18m	100m	600m	YES	NO
1	-	1	3	1	-	-	N/A	N/A	N/A	-	1
2	-	1	3	-	1	-	N/A	N/A	N/A	-	1
3	-	1	3	-	-	1	N/A	N/A	N/A	-	1
4	1	-	3	-	1	-	1	-	-	-	5
5	1	-	3	-	1		-	1	-	-	1
6	1	-	3	-	1	-	_	-	1	-	1
							J				

Table A1b Wind Speed Measurements (Low Speed)

- Downwind distance (1) is at 6km from Black Point Downwind distance (2) is at 13.6km from Black Point Downwind distance (3) is at 18.8km from Black Point
- 2. Vertical traverses will cover a range equivalent to about 20m to 1000m
- 3. Horizontal traverses will cover a range equivalent to about $\pm 2km$
- 4. For all the traverses, the longitudinal and vertical components of the mean wind speed and of the turbulence intensity will be measured

TEST NO.	TYPE TRAVI		UNDISTURBED WIND SPEED AT 10m HEIGHT	. Di	WNWI STANC NSIDEF	ES .		HEIGHTS		IS MC IN T TUNI	THE
	HORIZ.	VERT.	(m/s)	(1)	(2)	(3)	18m	100m	600m	YES	NO
1	1	· · ·	3	. 7	-		1	-	-	-	,
2	1	-	3	1	-	-	-	1	-	-	1
3	1	-	3	1	-	-	-	-	1	-	1
4	1	-	3	-	-	1	1	-	-	-	1
5	1	-	3	-	-	1	-	1	-	-	1
6		-	3	-	-	1	-	-	1	-	1
7	1	-	15	1	-	-	1	-	-	-	1
8	1	-	15	1	-	-	-	1	-	• •	1
9	1	-	15	1	-	-	-	-	1	-	~
10	7	-	15	-	-	1	1	-	-	-	1
11	∠ 1	-	15	-	-	1	-	~	-	-	1
12	1	•	15	-	•	1	-	-	1	*	1

- Downwind distance (1) is 6km from Black Point Downwind distance (2) is 13.6km from Black Point Downwind distance (3) is 18.8km from Black Point
- 2. Horizontal traverses will cover a range equivalent to about ±2km
- 3. For all the traverses, the longitudinal and vertical components of the mean wind speed and of the turbulence intensity will be measured

. <u>A</u>4

Under the enhanced scaling, when full-scale wind speed ranges from 3 to 15m/s, the friction velocity, U., ranges from 14.0mm/s to 70mm/s at model scale. Now, by constructing the model such that the height of the topography changed in steps of 20mm (i.e. 40m full-scale), the roughness of height K = 20mm has effectively been distributed over the model. Therefore for a full scale ambient wind speed range from 3 to 15m/s, the model scale roughness Reynolds number, $R_K = U.K/v$, ranged from 18.3 to 91.7.

Textbooks (e.g. "A first course in turbulence" by H. Tennekes and J.L. Lumley (1972) and "Fluid mechanics and transfer processes" by J.M. Kay and R.M. Nedderman (1985)) classify surfaces as aerodynamically smooth if $R_K < 5$, transitional if $5 < R_K < 30$. Therefore the site model is judged to be aerodynamically rough when the full-scale wind is higher than 4.9m/s and to be predominantly rough when the wind speed is 3m/s. (Note that the R_K criterion can easily be related to the critical Reynolds number criterion given in Snyder's Guideline for Fluid Modelling of Atmospheric Diffusion (EPA-600/8-81-09)).

A2 SIMULATION OF PLUME RISE AND PLUME CENTRELINE CONCENTRATION

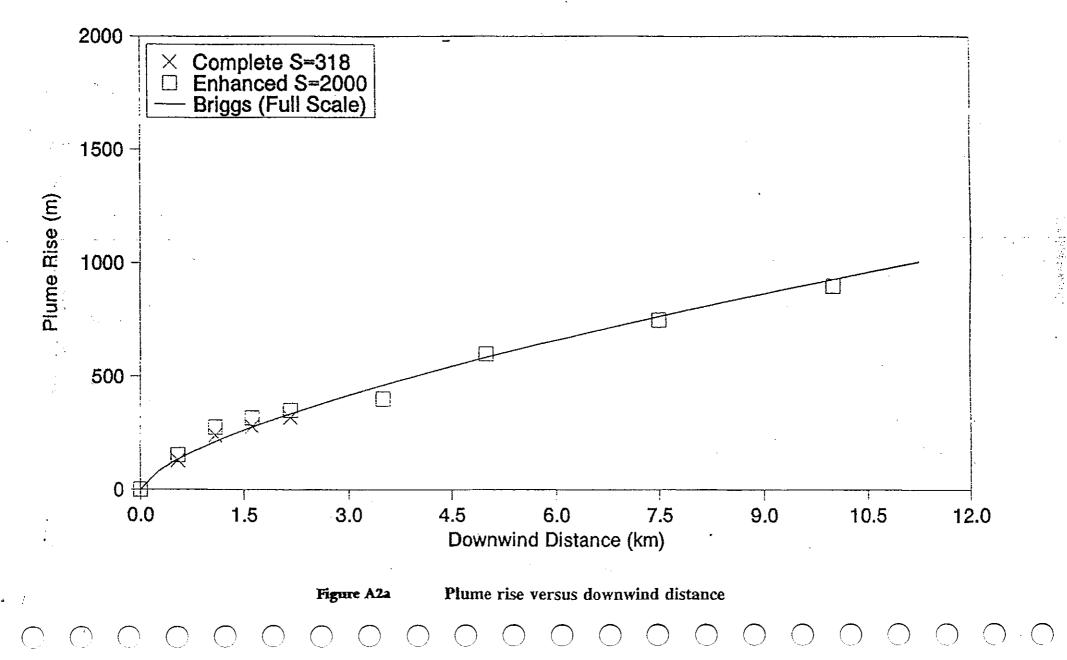
The objective of these measurements is to demonstrate that plume rise and concentration are properly simulated at 1:2000 scale. For the measurements, the site model was absent and only the effluent from one of the chimneys of the LTPS at Black Point was modelled. The chimney had two flues, each of which had diameter 6.6m. The exit velocity and exit temperature are 21.3m/s and 80°C respectively. SO_2 emission rate was 0.14kg/s and the ambient velocity at stack exit was 7.13m/s.

The characteristics of the exhaust are given in Table A2a. Plume rise (i.e. height above the tip of the stack of the point of maximum concentration) and plume centreline concentration were measured at a scale of 1:2000 using the enhanced scaling and at a scale of 1:317.7 using the complete scaling.

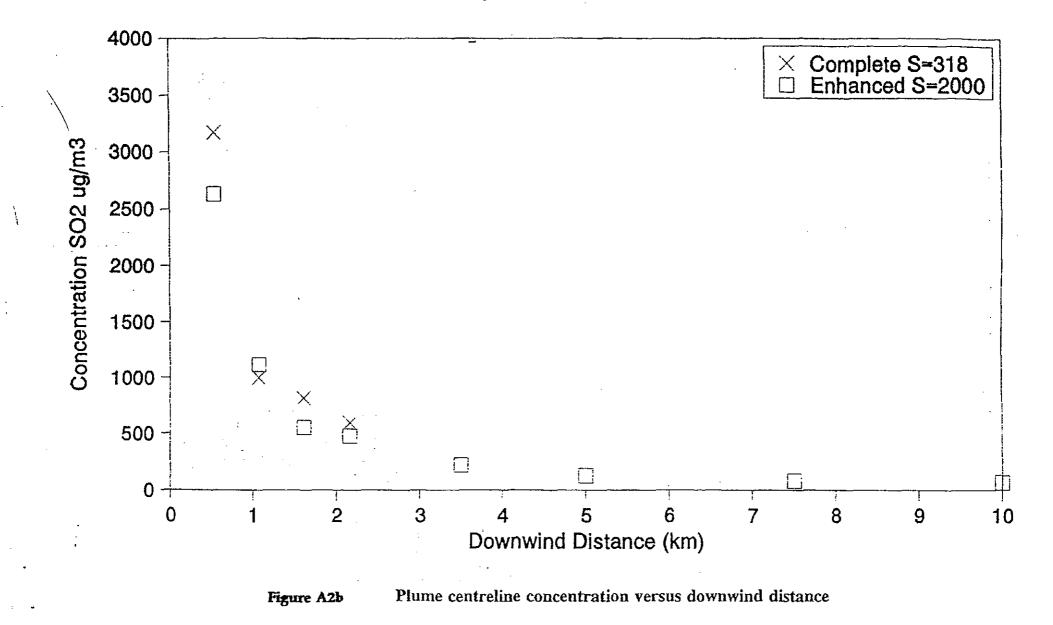
Table A2a Exhaust Characteristics

		MODE	L SCALE
	FULL SCALE	Complete Scaling S = 1:317.7	Enhanced Scaling S = 1:2000
Effective Internal			
Diameter (m)	9.338	0.02938	0.01101
Exit Velocity (m/s)	21.3	1.195	2.621
Density of exhaust divided by density of ambient air	0.8442	0.8442	0.1518
Exit Temperature (°C)	80	20	20
Exhaust Reynolds Number	9.5 x 10 ⁶	1962	290

Plume rise and concentration at plume centreline are plotted against downwind distance in Figures A2a and A2b. The solid line in Figure A2a is the full-scale plume rise calculated from Briggs formula:


$$Dh = 1.6 F^{4} U^{-1} X^{4}$$

where $F = \frac{WD^{s}}{4} (1 - \rho_{e}/\rho)$ is Briggs buoyancy flux parameter, U is the ambient velocity measured at stack tip, and X is the downwind distance. Note that g = 9.805m/sec² is the acceleration due to gravity, W is exit velocity of effluents, and D is stack's internal diameter.


Figure A2a shows that the plume rise measured under the enhanced and the complete scalings agree very closely with the full-scale value derived from Brigg's formula. The plume centreline concentrations (μ g/m³) measured under enhanced scaling agree (see Figure A2b) with the complete scaling results. Therefore it is concluded that the plume was properly represented under the enhanced scaling.

A6 .

Comparision of Plume Paths Wind Speed of 7.13m/s

Comparision of Plume Paths Wind speed of 7.13m/s

It is clear from the above results that the plume was properly modelled under the enhanced scaling.

GROUND LEVEL CONCENTRATION OF A PLUME INTERACTING WITH A BUILDING

The purpose of this set of measurements is to confirm that any interaction between a plume and a building will be properly simulated at 1:2000 scale. In particular, the open cycle gas turbines have short chimney and there was some concern that the near field impact of the turbines may not be properly simulated.

A 50m high stack was placed at about 100m upstream of the power station turbine hall. The upstream face of the turbine hall was flat and was 80m high. The top of the turbine hall was 50m deep and the bottom about 118m deep. At the rear, the top of the building was led to the ground by four steps with heights ranging from about 15 to 37m.

The stack exit velocity and temperature were identical to those of the open cycle gas turbines, namely 66m/s and 543°C. The stack diameter was 8.5m. A full-scale 10m height wind of 15m/s was simulated.

Concentration measurements were made at the top of the building, and in the wake. The results obtained at 1:2000 (enhanced scaling) and 1:500 (complete scaling) are presented in Figure A3a.

At the top of the building and beyond about 2km from the stack, there is excellent agreement between the complete and the enhanced scaling. Immediately downstream of the turbine hall, however, somewhat higher ground level concentrations were measured using the enhanced scaling. Since identical sensors were used for both sets of measurements, higher concentration may have occurred at 1:2000 scale not because of inconsistencies in the scaling techniques but because the concentration is increasing with height above ground level.

REYNOLDS NUMBER INDEPENDENCE TESTS

A neutrally buoyant plume was used for the tests. The stack height was 250m and the wind direction was 340°. The plume exit velocity, W, and the wind speed, U, were varied whilst keeping W/U constant.

Measured percentage volume concentrations are plotted against "full scale" wind speed in Figure A4a. The full scale wind speed

A7

A4

Centreline 15m/s windspeed With building

3

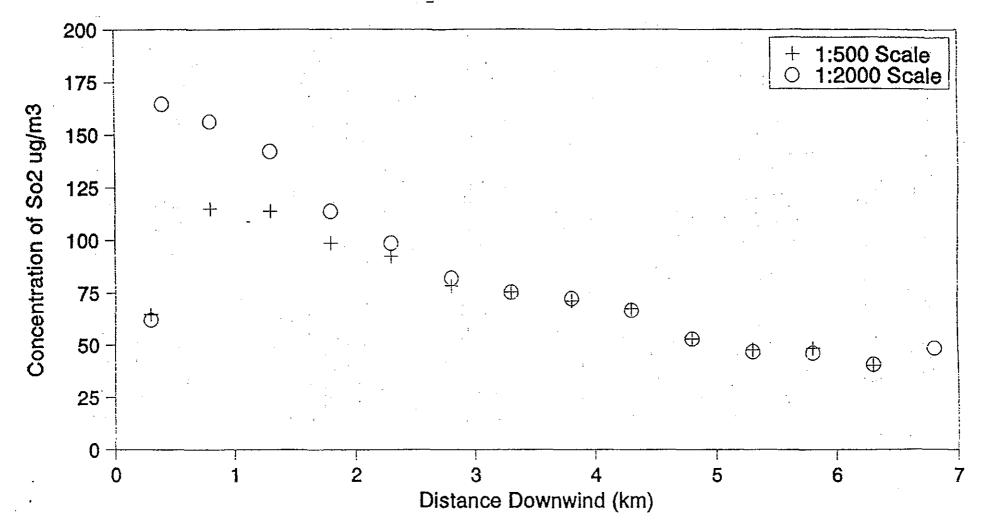
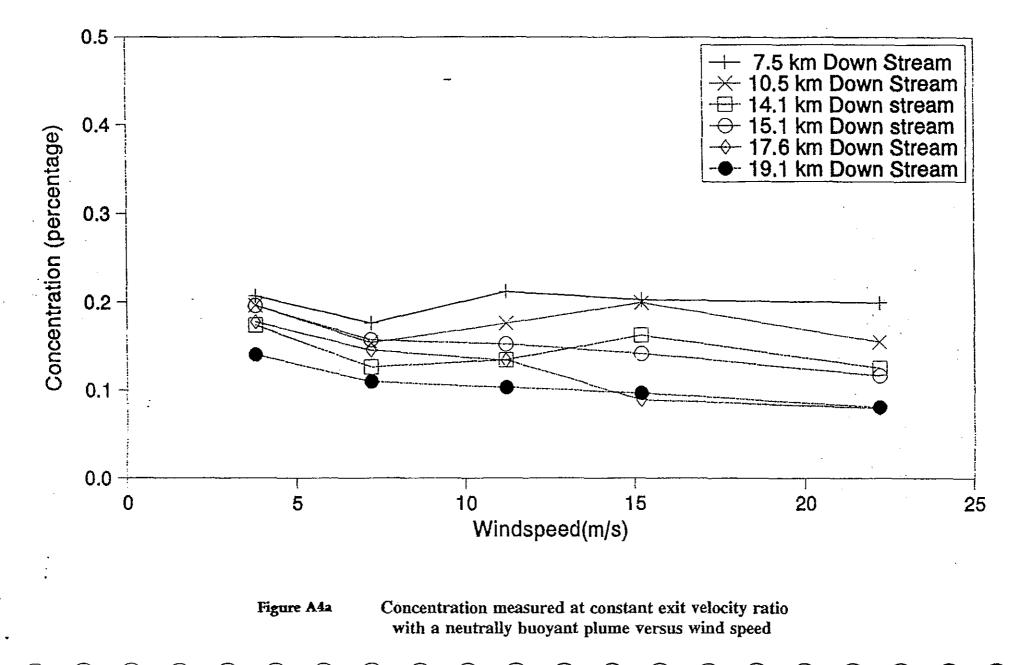



Figure A32 Ground level concentration for a plume interacting with a building

Reynolds Number Independence Test

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

was obtained by applying the velocity scale factor for the enhanced scaling to model scale wind speed.

There is a modest scatter in the data but there is no systematic relationship with wind speed and hence Reynolds number. It is therefore concluded that there was no significant influence of Reynolds number. This result suggests that the approach flow and the flow around the topographical model was properly simulated.

1

A8 •

Annex B

0

Source Emissions and Characteristics

Summary of Source Data Used in the Wind Tunnel Tests (Assuming Full Load)

Option	Description	Stack Height (m)	Exit Temp (°C)	Exit Velocity (m s ⁻¹)	Flow Rate (Actual m ⁻³ s ⁻¹)	Flue diameter (m)	Source NO _x Concentration (µg m ⁻³)	Source SO ₂ Concentration (µg m ⁻³)
1	10 OCGT (100MW)	50	543	66	936.3	4.25	53403	85443
2	4 x 2 Coal-Fired (680MW) max FGD of 90%	250	80	21.3	735.2	6.6	595740	190421
(3)	8 Gas-Fired CCGT (600MW)	100	105	21.6	511.8	5.5	97686	negligible
4	2 x 2 Coal-Fired (680MW) no FGD	250	120	21.3	735.2	6.6	595740	1904210
5	4 Gas-Fired CCGT (600MW)	100	105	21.6	511.8	5.5	97686	negligible
6	4 Oil-Fired CCGT (600MW)	100	140	24.3	581.5	5.5	91719	163948
7	8 Oil-Fired CCGT (600MW)	100	140	24.3	581.5	5.5	91719	163948
8	2 x 2 Coal-Fired max FGD of 90%	250	80	21.3	735.2	6.6	595740	190421
9	2×2 Coal–Fired med FGD of 50%	250	100	21.3	735.2	6.6	595740	960596
10	10 OCGT (100MW)	80	543	66.0	936.3	4.25	53403	85443
11	10 OCGT (100MW)	100	543	66.0	936.3	4.25	53403	85443
12	8 Gas-Fired CCGT (100MW)	150	105	21.7	511.8	5.5	97686	negligible
13	$4 \ge 2$ Coal–Fired (680MW) max FGD of 90%	200	80	21.3	735.2	6.6	595740	190421
14	4 x 2 Oil–Fired (680MW) max FGD of 90%	250	80	18.8	649.7	6.6	323226	430968
15	2×2 Oil–Fired (680MW) max FGD of 90%	250	80	18.8	649.7	6.6	323226	430968
16	2 x 4 Coal–Fired (680MW) max FGD of 90%	250	80	21.3	735.2	6.6	595740	190421
17	2 x 2 Coal–fired max FGD + 4 Gas–fired CCGT's	250	80 & 105	21.3 & 21.7	735.2 & 511.8	6.6 & 5.5	595740 & 97686	190421 & neg
CP A	Castle Peak A Coal fired	215	120	18.6	428.0	5.4	1577066	1635476
CP B	Castle Peak B Coal Fired	250	120	23.7	810.9	6.6	1578512	1726498

Note: The sulphur contents of distillate oil for CCGT fuel oil for coal-fired units as back-up fuels are 0.5% and 3.5% (by weight) respectively.

	LTPS Coal Option	LTPS Oil ⁽⁶⁾ Option	CCGT Gas Option	CCGT Oil ⁽⁷⁾ Option
Average Annual Load (MW)	2393	2393	2393	2393
Number of Flues	8	8	24	24
Number of Stacks	4	4	8	8
Height of Stacks (m)	250	250	100	100
Volumetric Flow Rate $^{(5)}$ per flue (m ³ s ⁻¹)	375	347	256	291
Volumetric Flow Rate ⁽⁵⁾ per flue (Nm ³ s ⁻¹)	290	268	185	192
Exit Velocity (m s ⁻¹)	21	21	22	24
Exit Temperature (K)	353	353	378	413
Effective Stack Diameter (m)	9.4	9.2	9.5	9.6
Total NO _x Emission Rate ⁽⁵⁾ (g s ⁻¹)	1806 ⁽¹⁾ 1204 ⁽²⁾	880 ⁽³⁾	610 ⁽⁴⁾	633 ⁽⁴⁾
Total SO ₂ Emission Rate $^{(5)}$ (g s ⁻¹)	400	1180	-	1160

Summary of the Black Point Emission Characteristics Used to Predict Ground Level Concentrations of NO₂ and SO₂ in the Acidification Assessment

⁽⁶⁾ Fuel oil sulphur content is 3.5%

⁽⁷⁾ Distillate oil sulphur content is 0.5%.

Summary of the Castle Peak Emission Characteristics Used to Predict Ground Level Concentrations of NO₂ and SO₂ in the Acidification Assessment

	Castle Peak A	Castle Peak B				
Average Annual Load (MW)	3138 (A+B combined)					
Number of Flues	4	4				
Number of Stacks	1	1				
Height of Stacks (m)	215	250				
Volumetric Flow Rate ⁽⁴⁾ per flue (m ³ s ⁻¹)	324	628				
Volumetric Flow Rate ⁽⁴⁾ per flue (Nm ³ s ⁻¹)	225	436				
Exit Velocity (m s ⁻¹)	18	24				
Exit Temperature (K)	393	393				
Effective Stack Diameter (m)	10.8	13.1				
Fotal NO _x Emission Rate ⁽⁴⁾ (g s ⁻¹)	2030 ⁽¹⁾ 1845 ⁽²⁾	3933 ⁽¹⁾ 2145 ⁽³⁾				
Total SO₂ Emission Rate ⁽⁴⁾ (g s ⁻¹)	1440	2792				
⁽¹⁾ 1100 ppm NO _x , ⁽²⁾ 1000 ppm NO _x , ⁽³⁾ 600 ppm N	IO_x ⁽⁴⁾ For the annual average	load				

Annex C

Wind Tunnel Tests – Analysis of Wind Conditions An analysis of appropriate wind data is essential for determining the worstcase dispersion scenarios and for evaluating the likely frequency with which different levels of impact will occur. Ultimately this information must be considered together with the likely frequency with which different emissions scenarios will occur in coincidence with specific wind conditions. This is discussed in the main text of the report.

SOURCE DATA

The source data used for this analysis comes from observations made at the Chek Lap Kok meteorological station run by the Royal Observatory (RO). Statistics were obtained from the RO on the frequency of occurrence of 10 minute mean wind speed and prevailing wind direction for the periods 1980–82 and 1985–90. Chek Lap Kok was selected as the most representative station for conditions affecting Black Point and Castle Peak. Although not sheltered to the east, as the two power stations are by the Castle Peak Range, for the relevant wind directions, from the northwest, west and southwest, it is similarly exposed. Coincident frequencies of wind speed and direction should therefore be representative in these cases.

MAXIMUM WIND SPEEDS APPLICABLE TO BLACK POINT ALONE

The human health impact criteria used for the assessment are the Hong Kong 1-hour average Air Quality Objectives which specify a limit value which should not be exceeded on more than three occasions per year. The worst-case wind speed used for the assessment should therefore occur frequency enough to satisfy this criterion for each wind direction considered.

A credible wind speed/direction scenario must therefore occur for at least 0.034% of the time (three hours) over a year, made up, in principle, of three hourly occasions (each representing 0.011% of the time). Table C3a summarises the maximum wind speeds revealed by the Chek Lap Kok statistics on the basis of the 0.034% criterion.

C2

C3

Wind Direction (°)	Max Wind Speed Range (m/s) ¹
10–50	8.3-11.2
60	11.314.2
70–90	14.3–17.2
100	17.3–20.7
110	14.3–17.2
120-130	11.3–14.2
140	8.3-11.2
150	11.3-14.2
160–190	8.3–11.2
200–220	5.3-8.2
230	8.3–11.2
240-290	5.3-8.2
, 300	11.3–14.2
310	8.3–11.2
320	11.3-14.2
330–360	8.3-11.2

¹ Where specified wind speed or greater occurs for >0.03% of the time.

It can be seen that for the wind directions of relevance to this assessment (0-20° and 160-360°) the maximum wind speeds occur mainly within the ranges 5.3-8.2m/s and 8.3-11.2m/s. The exceptions are 300° and 320° where the 11.3-14.2m/s range is just credible. Wind speeds greater than 11.3-14.2m/s only occur for directions between 70° and 110° which will take the power station plumes out to sea.

MAXIMUM WIND SPEEDS - BLACK POINT AND CASTLE PEAK

C4

The scenarios where the plumes from Black Point and Castle Peak power stations overlap require specific consideration of the frequencies with which the critical wind directions and speeds will occur. This is because the two power stations will only be operated together at outputs approaching full load for limited periods of time and so the combined frequency of operation and occurrence of relevant wind conditions must be estimated for each dispersion scenario.

The wind directions of concern in this case are 340°, towards Lantau, and 160°, towards Shekou in the PRC. In fact the lateral spread of the plumes from the two power stations will be quite considerable so that it is appropriate to consider the frequencies with which the wind blows in a 20° arc centred on each of these directions, ie 330–350° and 150–170°. The % figure for a 20% direction range was calculated, eg for 150–170° by summing 50% of the 150° and the 170° figures with 100% of the 160° figure as agreed with the RO to be the most valid method of analysis. Table C4a summarises the annual wind–speed frequency data for these ranges. It can be seen that the northeasterly winds are slightly more frequent than those from the southeast, though in neither case is the frequency very high. The cumulative frequency with which the wind blows at a speed equal to or greater than the minimum specified for each range is also given. This is necessary for identifying the appropriate speed to use when estimating concentrations which will occur for a specified minimum amount of time.

The worst-case combined emissions scenario for the two power stations occurs during the summer months and so it is also necessary to estimate the wind speed frequencies associated with the summer months alone. In the calculation, the summer frequency was applied to the annual hours in order to give a worst case. These are summarised in Table C4b. It can be seen that the summer months display a marked difference from the annual average statistics. Northeasterly winds are far less frequent while southeasterly winds, associated with the summer monsoon, are far more frequent.

Wind Speed		Mean Annual Frequency of Occurrence												
(m/s)		33035	0°	150–170°										
•	% for	Cumulat	tive frequency	% for	Cumulative frequen									
	range	%	hrs	range	%	hrs								
0.1–1.7	0.55	2.83	248	0.64	2.32	203								
1.8–3.2	0.43	2.28	200	0.32	1.68	147								
3.3–5.2	0.7 9	1.85	162	0.65	1.36	119								
5.3-8.2	0.86	1.06	93	0.56	0.71	62								
8.3–11.2	0.17	0.20	18	0.10	0.15	13								
11.3–14.2	0.02	0.03	3	0.04	0.05	4								
>14.2	0.01	0.01	1	0.01	0.01	1								

Table C4a Annual Wind Speed Frequencies for 330–350° and 150–170°

Table C4bSummer¹ Wind Speed Frequencies for 330–350° and 150–170°

Wind Speed	Mean Summer Frequency of Occurrence											
(m/s)	·	330–35	0°	150–170°								
	% for	Cumula	tive frequency	% for	Cumula	tive frequency						
	range	%	hrs	range	%	hrs						
0.1–1.7	0.70	1.35	118	1.07	5.07	444						
1.8-3.2	0.21	0.65	57	0.78	4.00	350						
3.3–5.2	0.2	0.44	39	1.61	3.22	282						
5.3-8.2	0.13	0.24	21	1.25	1.61	141						
8.3–11.2	0.07	0.11	10	0.21	0.36	32						
11.3-14.2	0.03	0.04	4	0.12	0.15	13						
>14.2	0.01	0.01	1	0.03	0.03	3						

¹ June, July, August

 $\overline{}$

C4

CHEK LAP KOK 1980- 1982, 1985- 1990 June- August (1980- 1990)

SPEED						1	DIREC	TION	IN TEI	NS OF	DEGR	EES							
(M/S)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0.1- 1.7	0.23	0.24	0.37	0.45	0.54	0.63	0.80	0.68	1.09	0.74	0.67	0.74	0.56	0.45	0.60	0.55	0.44	0.66	0.51
1.8- 3.2	0.13	0.15	0.24	0.29	0.45	0.61	0.74	0.75	0.82	0.71	0.74	0.48	0.28	0.21	0.27	0.31	0.65	0.91	1.07
3.3- 5.2	0.09	0.15	0.13	0.20	0.20	0.33	0.57	1.05	1.43	1.78	1.63	1.08	0.47	0.20	0.38	0.78	1.29	2.06	2.31
5.3- 8.2	0.05	0.04	0.08	0.13	0.11	0.23	0.47	1.14	2.82	3.19	3.33	1.92	0.84	0.30	0.45	0.52	1.00	1.24	0.95
8.3- 11.2	0.02	0.02	0.03	0.08	0.06	0.06	0.34	0.73	1.82	1.46	0.89	0.76	0.25	0.13	0.11	0.09	0.13	0.15	0.12
11.3- 14.2	0.00	0.01	0.01	0.03	0.02	0.05	0.05	0.21	0.62	0.44	0.22	0.14	0.08	0.05	0.07	0.06	0.04	0.02	0.03
>14.2	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.06	0.09	0.21	0.11	0.07	0.02	0.02	0.01	0.01	0.01	0.01	0.00
Total	0.52	0.61	0.85	1.18	1.41	1.93	3.00	4.62	8.69	8.53	, 7.59	5.18	2.51	1.35	1.89	2.33	3.56	5.04	4.99
SPEED						j	DIREC	TION	IN TEI	VS OF	DEGR	EES						:	
(M/S)	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	- 36	VAR '	FOTAL
	20	7 1	22	20	2-7	20	20	21	20	20.00				55	24	55	~ JU	This.	
	20	21	22	20	24	20	20	21	20					55	54	35	~ JU	VIII.	
0.1- 1.7	0.52	0.32	0.25	0.22	0.20	0.24	0.25	0.30	0.30	0.24	0.38	0.34	0.22	0.18	0.18	0.20	0.16	• •	18.22
																		• •	
0.1- 1.7	0.52	0.32	0.25	0.22	0.20	0.24	0.25	0.30	0.30	0.24	0.38	0.34	0.22	0.18	0.18	0.20	0.16	0.33 0.07	18.22
0.1- 1.7 1.8- 3.2	0.52 0.99	0.32 0.71	0.25 0.56	0.22 0.34	0.20 0.28	0.24 0.36	0.25 0.43	0.30 0.51	0.30 0.59	0.24 0.33	0.38 0.48	0.34 0.32	0.22 0.14	0.18 0.08	0.18 0.08	0.20 0.08	0.16 0.05	0.33 0.07	18.22 18.12
0.1- 1.7 1.8- 3.2 3.3- 5.2	0.52 0.99 0.78	0.32 0.71 0.58	0.25 0.56 0.60	0.22 0.34 0.58	0.20 0.28 0.52	0.24 0.36 0.41	0.25 0.43 0.40	0.30 0.51 0.79	0.30 0.59 0.46	0.24 0.33 0.23	0.38 0.48 0.33	0.34 0.32 0.19	0.22 0.14 0.17	0.18 0.08 0.11	0.18 0.08 0.04	0.20 0.08 0.03	0.16 0.05 0.04	0.33 0.07 0.01	18.22 18.12 27.73
0.1- 1.7 1.8- 3.2 3.3- 5.2 5.3- 8.2	0.52 0.99 0.78 0.30	0.32 0.71 0.58 0.27	0.25 0.56 0.60 0.28	0.22 0.34 0.58 0.32	0.20 0.28 0.52 0.44	0.24 0.36 0.41 0.26	0.25 0.43 0.40 0.29	0.30 0.51 0.79 0.20	0.30 0.59 0.46 0.22	0.24 0.33 0.23 0.13	0.38 0.48 0.33 0.25	0.34 0.32 0.19 0.28	0.22 0.14 0.17 0.19	0.18 0.08 0.11 0.15	0.18 0.08 0.04 0.15	0.20 0.08 0.03 0.12	0.16 0.05 0.04 0.12	0.33 0.07 0.01 0.34	18.22 18.12 27.73 23.41
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.52 0.99 0.78 0.30 0.30	0.32 0.71 0.58 0.27 0.29	0.25 0.56 0.60 0.28 0.14	0.22 0.34 0.58 0.32 0.19	0.20 0.28 0.52 0.44 0.14	0.24 0.36 0.41 0.26 0.18	0.25 0.43 0.40 0.29 0.15	0.30 0.51 0.79 0.20 0.29	0.30 0.59 0.46 0.22 0.29	0.24 0.33 0.23 0.13 0.29	0.38 0.48 0.33 0.25 0.33	0.34 0.32 0.19 0.28 0.19	0.22 0.14 0.17 0.19 0.15	0.18 0.08 0.11 0.15 0.08	0.18 0.08 0.04 0.15 0.05	0.20 0.08 0.03 0.12 0.03	0.16 0.05 0.04 0.12 0.05	0.33 0.07 0.01 0.34 0.03	18.22 18.12 27.73 23.41 8.09

.

Percentage frequency of clam wind occasions = 1.01

Annex D

Wind Tunnel Tests – Concentration Measurement Results -

Option	Description	Stack Height (m)
1	10 OCGTs (100MW) stack A	50
2	4 x 2 Coal-Fired (680 MW) max FGD	250
3	8 Gas-Fired CCGTs (600 MW)	100
4	2 x 2 Coal-Fired (680 MW) no FGD	250
5	4 Gas-Fired CCGTs (600 MW)	100
6	4 Oil-Fired CCGTs (600 MW)	100
7	8 Oil-Fired CCGTs (600 MW)	100
8	2 x 2 Coal-Fired (680 MW) max FGD	250
9	2 x 2 Coal-Fired medium FGD	250
10	10 OCGTs (100 MW) stack A	80
11	10 OCGTs (100 MW) stack A	100
12	8 Gas-Fired CCGTs (100 MW) stack A	150
13	4 x 2 Coal-Fired (680 MW) max FGD	200
14	4 x 2 Oil-Fired (680 MW)	250
15	2 x 2 Oil-Fired (680 MW)	250
16	2 x 4 Coal-Fired (680 MW) max FGD	250
(5 + 8)	2 x 2 Coal-Fired with max FGD plus 4 Gas-fired CCGTs	250

,

Option 1	Wind D				NOx	
Height: 0m		Wind	Spe	ed (m s		
Distance (km)	3	5	8	10	12	15
0.8		2	237.0		517.0	573.5
1.2			92.0		301.0	342.9
2.0	-		<u>51.9</u>		186.9	237.1
2.4			32.9		119.3	174.1
3.2			22.0		90.5	140,9
4.8						
7.5			9.2		36.1	38.1
9.2						
10.0						
10.5	7.8		23.1			28.2
12.0		_	3.3		14.3	17.7
13.4						
14.0	6.0		14.3			18.1
16.0						
16.8						
17.0						
17.6						
17.8						
18.0	 					
19.1						
0.8 (60m)		2	43.0		506.0	560.3
0.8 (120m)		3	98.0		533.8	494.0
7.5 (40m)			9.2		36.1	38.1

Option 1	Wind Dir	ection	: 23 nd Spee 8	2 °	NO ₂	
Height: 0 m		Wi	nd Spee	d (m s	')	
Distance (km)	3	5	8	10	12	15
						<u> </u>
0.8			27.1		79.2	103.6
1.2			15.2		65.5	87.0
2.0	, .		13.2		60.9	88.3
2.4			9.6		44.3	73.2
3.2			8.0		40.5	70.2
4.8						
7.5	-		5.4		23.7	26.2
9.2						
10.0						
10.5	4.0		15.2			20.3
12.0			2.2		10.3	12.9
13.4						
14.0	3.5		10.0			13.3
16.0						
16.8						
17.0						
17.6	<u>-</u>					
17.8						
18.0						
19.1						
					¥•	
0.8 (60m)			27.8		77.5	101.3
0.8 (120 m)			45.5		81.8	89.3
7.5 (40 m)			5.4		23.7	26.2
assumes ozone				<u> </u>		

	Wind D	irectior	1: 23 nd Spee 8	32 °	SO2	
Height: 0m		Wi	d (m s	-1)		
Distance (km)	3	5	8	10	12	15
0.8			379.2		827.2	917.6
1.2			147.2		481.6	548.6
2.0			83.0		299.0	379.4
2.4			52.6		190.9	278.6
3.2			35.2		144.8	225.4
4.8						
7.5			14.7		57.8	61.0
9.2						
10.0						
10.5	12.5		37.0			45.1
12.0			5.3		22.9	28,3
13.4						
14.0	9.6		22.9	. <u>_</u>		29.0
16.0						
16.8						
17.0				<u> </u>		
17.6						
17.8						
18.0						
19.1						
0.8 (60 m)			388.8		809.6	896.5
0.8 (120 m)			636.8		854.1	790.4
7.5 (40m)			14.7		57.8	61.0

(assumes ozone concentration = 35 ppb)

	Wind E				NOx	
Height: 0m		Wi	nd Spe	ed (m s		
Distance (km)	3	5		10	12	15
0.8			141.9		455,3	475.0
- 1.2			53,3		201.6	201.9
2.0			28.8		144.1	149.4
2.4			34.1		135.1	136.0
3.2			33.8		112.8	117.9
4.8		·				<u></u>
. 7.5			10.3		31.5	33.9
9.2			L			
10.0						
10.5			7.6		23.6	24.2
12.0	"					
13.4	2					
14.0			5.6		18.7	18.5
16.0						
16.8	· · ·					
17.0						
17.6						
17.8	<u>t :</u>					
18.0						
19.1						
0.8 (60m)	<u>. </u>		255.3		469.7	462.2
0.8 (120m)			568.1		367.5	327.5
14.0 (40m)			6.5		18.4	17.7
14.0 (80m)		•	6.2		19.0	18.3

4 · · ·

	ind Dir	ection	: 252	0	NO_2	
Height: 0 m			nd Spee			
Distance (km)	3	5	8	10	12	15
0.8			16.2		69.8	85.8
1.2			8.8		43.8	51.2
2.0			7.3		46.9	55.7
2.4			10.0		50.1	57.2
3.2			12.2		50.5	58.8
4.8						
7.5			6.0		20.7	23.3
9.2						
10.0						
10.5			5.0		16.6	17.5
12.0						
13.4						
14.0			3.9		13.6	13.6
16.0						
16.8						
17.0						
17.6						
17.8						
18.0						
19.1						
_						
0.8 (60m)			29.2		72.0	83.5
0.8 (120 m)	· .		65.0		56.3	59.2
14.0 (40m)			4.6		13.4	13.0
14.0 (80m) assumes ozone co	•		4.3		13.8	13.4

<u> </u>					
	Wind Dir		52 ° eed (m s	SO2	
Height: 0m	2	10			
Distance (km)	.3	5	8 10	12	15
0.8		227.	0	728.5	760.0
1.2		85.	3	322.6	323.0
2.0		46.	1	230.6	239.0
2.4		54.	6	216.2	217.6
3.2		54.	1	180.5	188.6
4.8					
7.5		16.	5	50.4	5 <u>4.2</u>
9.2	 				
10.0					
10.5		12.	2	37.8	38.7
12.0					
13.4					
14.0		9.	0	29.9	29.6
16.0					
16.8					
17.0	· ·		<u> </u>		
17.6					
17.8					
18.0			_	ļ	
19.1					:
		·			
0.8 (60m)		408.	5	751.5	739.5
0.8 (120 m)		909.	0	588.0	524.0
14.0 (40m)		10.	4	29.4	28.3
14.0 (80m)		9.	9	30.4	29.3

. .

(assumes ozone concentration = 35 ppb)

Height: 0m	Wind Speed (m s ⁻¹)					
Distance (km)	3	5	. 8	10	12	1
					• •	
0.8			74.8		280.3	433.
			88.2		236.4	292.
2.0		38.4	75.8		199.9	291.
2.4			20.6		100.8	145.
3.2		16.1	47.2	62.9	73.9	115.
4.8						
7.5		8.6	17.1	25.3	37.6	50.
9.2						
			·			
		4.4	10.2	13.2	26.0	31.
12.0						
13.4				•		
14.0		3.7	6.9	13.0	13.4	18.
16.0						
16.8						•
17.0						
17.6]					
17.8						· · · · · · · · · · · · · · · · · · ·
18.0						
19.1						
0.8 (60m)			166.0		357.4	⁻ 416.
0.8 (120m)			242.6		360.6	330.
7.5 (40m) 7.5 (80m)		5.6 5.6	16.3 16.3	25.1 25.8	36.1	·49.

	Vind Di	rection	: 270) •	NO_2			Option 1
Height: 0m			nd Spee		¹)			Height: 0m
Distance (km)	3	5		10	12	15		Distance (km)
							,	
0.8			8.6		42.9	78.3	:	0.
1.2			14.5			74.2		1
2.0		7.4	19.2		65.1	108.7		2
2.4			6.0		37.4	61.1		2
3.2		4.5	17.1	25.6	33.1	57.7		3
4.8								4
7.5	·	4.3	10.0	15.9	24.7	34.6		7
9.2								<u> </u>
10.0								10
10.5		2.6	6.7	9.1	18.3	23.0		10
12.0								12
13.4								13
14.0		2.4	4.8	9.3	9.7	13.4		14
-16.0								16
16.8						•		16
17.0		ſ						17
17.6								17
17.8								17
18,0								18
19.1						:		19
							-	
0.8 (60m)			19.0		54.8	75.2		0.8 (60m
0.8 (120m)		•	27.8	f	55.3	59.8	:	0.8 (120 m
7.5 (40m)		2.8	9.6	15.7	23.7	34.1	,	7.5 (40m
7.5 (80m)		2.9	9.7	16.4	23.0	33.6		7.5 (80 m

· · · · ·		•							
NO_2				Wind D	Direction		0 °	SO2	
)			Height: 0m	_		nd Spe			
12	15		Distance (km)	3	5		10	12	15
42.9	78.3	÷.	0.8			119.7		448.5	693.0
51.4	74.2		1.2			141.1		378.2	467.8
65.1	108.7		2.0		61.4	121.3		319.8	466.9
37.4	61.1		2.4			33.0		161.3	232.3
33.1	57.7		3.2		25.8	75.5	100.6	118.2	185.3
			4.8						
24.7	34.6		7.5		13.8	27.4	40.5	60.2	80.6
			9.2						
			10.0						
18.3	23.0		10.5		7.0	16.3	21.1	41.6	51.0
			12.0					-	
			13.4						
9.7	13.4		14.0		5.9	11.0	20.8	21.4	29.1
			16.0			•			,
			16.8			,	:		-
			17.0						
			17.6						
			17.8					, 	•
			18.0						
	:		19.1	,					•
·	· · · ·	-							
54.8	75.2		0.8 (60m)			265.6		571 <u>.</u> 8	665.6
55.3	59.8	:	0.8 (120m)			388.2		577.0	529.1
23.7	34.1	,	7.5 (40m)		9.0	26.1	40.2	57.8	79.5
23.0	33.6		7.5 (80 m)		9.0	26.1	41.3	55.5	77.8

(assumes ozone concentration = 35 ppb)

				-		
Option 1	Wind D			90 °	NO _x	
Height: 0m		Wi		ed (m s		
Distance (km)	3	5	8	10	12	15
0.8			153.5		324.2	432.8
1.2			30.4		105.0	148.9
. 2.0			47.0		108.4	125.3
2.4			25.7		72.4	85.6
3.2			26.1		78.6	97.7
<u>.</u> 4.8						
. 7. 5			5.9		11.1	14.2
9.2	:					-
10.0	<u>. </u>				-	
10.5			4.8		7.5	9.6
12.0						
13.4	<u>:</u>					
. 14,0			4.6		6,9	6.7
16.0	, 	:				
16.8						
17.0	<u>}</u>					
. 17.6	`					·····
17.8	· 				•	
<u>: 18.0</u>	; ;					
19.1						2
0.8 (60m)			211.9		390.8	482.9
0.8 (120m)	·		310,5		426.7	408.0
7.5 (60m)	·		6.0		11.4	14.2
10.5 (60m)			5.8		9.2	9.8

.

	Wind Dire		90° NO ₂	
Height: 0m	_	Wind Spe		
Distance (km)	3.	5 8	10 12	15
		· ·	s.	
0.8		17.6	49.7	· 78.2
1.2		5.0	22.8	37.8
2.0		11.9	35.3	46.7
. 2.4		7.5	26.9	36.0
3.2		9.5	35.2	48.7
4.8				
7.5		3.5	7.3	9.7
9.2				
10.0				
10.5		3.2	5.3	6.9
12.0	: !			ļ
13.4				
- 14.0		3.2	5.0	4.9
16.0				
16.8		,		
17.0				
17.6				
17.8				
18.0	·			
19.1	· .	·		
0.8 (60m)		24.2	59.9	87.3
0.8 (120m)		35.5	65.4	73.7
7.5 (60m)		3.5	7.5	9.7
10.5 (60m)		3.8	6.5	7.1

	Wind D	irection		90 °	SO2	
Height: 0m		Wi	nd Spe	ed (m s	-1)	
Distance (km)	3	5	8	10	12	15
·0.8			245.6		518.7	692.5
1.2			48.6		168.0	238.2
2.0			75.2		173.4	200.5
2.4			41.1		115.8	137.0
3.2			41.8		125.8	156.3
4.8						
7.5			9.4		17.8	22.7
9.2						
10.5			7.7		12.0	15.4
12.0			_			ļ <u></u>
13.4	-					
14.0			7.4		11.0	10.7
16.0						
16.8						
17.0						
17.6						
17.8						
18.0			_			
19.1						
			_		,	
0.8 (60m)			339.0		625.3	772.6
0.8 (120m)			496.8		682.7	652.8
7.5 (60m)			9.6		18.2	22.7
10.5 (60m)			9.3		14.7	15.7

(assumes ozone concentration = 35 ppb)

. . .

Option 1	Wind Di		310		NO	
Height: 0m				d (m s		
Distance (km)	3	5	8	10	12	
<u> </u>						
0.8	3	8	2.7		276.2	31
1.2	2	4	6.4		179.4	22
2.0	2	3	0.9		129.7	17
2.4		3	0.1		106.9	14
3.2		2	4.3		90.7	6
4.8	3					
7.5	;		7.9		14.7	1
9.2	2					
)					
10.5	i		6.4		12.7	1
12.0	,					
13.4						
14.0			6.3		5.7	
16.0			5.3		6.7	
16.8						;
17.0						
17.6					Ì	
17.8						
18.0						
19.1					.•	
· · · · · · · · · · · · · · · · · · ·			$\neg \uparrow$		-	
0.8 (60m)		14	2.9		384.8	40
0.8 (120m)		15	8.6		302.4	33
3.2 (60m)		3	7.7		117.8	7

Height: 0m		Win	d Speed	(ms ⁻	NO ₂	*****		
Distance (km)								
		ŀ			_			
0.8			9.5		42.3	56.2		
1.2			7.6		39.0	56.9		
2.0			7.8		42.2	65.8		
2.4			8.8		39.7	60.2		
3.2			8.8		40.6	33.5		
4.8								
7.5			4.6		9.6	11.		
9.2								
10.0								
10.5			4.2		9.0	8.		
12.0								
13.4								
14.0			4.4		4.1	3.9		
16.0			3.8		4.9	4.0		
16.8		·						
17.0								
17.6								
17.8								
18.0								
· · ·								
0.8 (60 m)		-+	16-4		59.0	73.		
						59.8		
3.2 (60m)	••••		13.7			35.2		
	Distance (km) 0.8 1.2 2.0 2.4 3.2 4.8 7.5 9.2 10.0 10.5 12.0 13.4 14.0 16.0 16.8 17.0 17.6 17.8 18.0 19.1 0.8 (60m) 0.8 (120m)	Distance (km) 3 0.8	Distance (km) 3 5 0.8	Distance (km) 3 5 8 0.8 9.5 1.2 7.6 2.0 7.8 2.4 8.8 3.2 8.8 3.2 8.8 4.8	Distance (km) 3 5 8 10 0.8 9.5	Distance (km) 3 5 8 10 12 0.8 9.5 42.3 1.2 7.6 39.0 2.0 7.8 42.2 2.4 8.8 39.7 3.2 8.8 40.6 4.8		

	Wind D) •	SO2	
Height: 0m		Wi	nd Spee	ed (m s'		
Distance (km)	3	5		10	12	15
0.8			132.3		441.9	497.3
1.2			74.2		287.0	359.0
2.0			49.4		207.5	282.6
2.4			48.2		171.0	230.9
3.2			38.9		145.1	107.5
4.8						
7.5			12.6		23.5	26.1
9.2						
10.0						
10.5			10.2		20.3	
12.0						
13.4						
14.0			10.1		9.1	8.5
16.0			8.5		10.7	9.9
16.8		<u></u>				
17.0	<u>.</u>					
17.6					 	
17.8						
18.0						
19.1						
0.8 (60)			228.6		615.7	647.4
0.8 (60m)						
0.8 (120m)			253.8		483.8	529.8
3.2 (60 m)			60.3		188.5	114.6

.

(assumes ozone concentration = 35 ppb) ومرجع المحالي والمحال المحال المراجع المراجع المراجع المراجع والمحال والمحال

.

	Wind D	irection		o	NO	
Height: 0m		Win	id Spe	ed (m s	- <u>'</u>)	
Distance (km)	3	5	8	10	12	15
0.8			31.7		118.5	293.1
1.2			9.9		40.6	112.2
2.0			15.3		51.5	124.4
2.4						
3.2			8.7		29.9	86.0
4.8			6.4		30.5	45.4
7.5						
9.2						
10.0	L]		
10.5			3.5		12.3	21.3
12.0	<u> </u>					
13.4		<u> </u>				
14.0						
16.0	┣					
16.8						
17.0						
17.6					•	
17.8						11.0
18.0			3.1		7.2	11.2
19.1				,		
0.8 (60 m)			23.3		87.8	
0.8 (120 m)			12.7		48.2	142.8
4.8 (60 m)			7.1		32.1	46.6
18.0 (60 m)			2.3		7.6	11.5

•

Option 1 Teight: 0m	Wind D		1: 330 nd Spee	ہ مرا (سر م	NO ₂	
Distance (km)	. 3	. 5	114 Spec	2u (m s 10	, 12	15
0.8			3.6		18.2	53.0
· · 1.2		-	1.6		8.8	28.5
2.0			3.9		16.8	46.3
2.4						
3.2			3.2		13.4	42.9
4.8			3.0		17.0	27.3
7.5						
9.2						
10.0						
10.5			2.3		8.7	15.4
12.0						
13.4						
14.0						
16.0						···
16.8						
17.0						
17.6						
17.8						
18.0			2.2		5.3	8.3
19.1						
0.8 (60m)			2.7		13.5	40.5
0.8 (120m)			1.5		7.4	25.8
4.8 (60m)			3.3		17.8	28.1
18.0 (60m)			1.7		5.6	8.5

Distance (km) 3 5 8 10 12 0.8 50.7 189.6 46 1.2 15.8 65.0 17 2.0 24.5 82.4 19 2.4 24.5 82.4 19 3.2 13.9 47.8 13 4.8 10.2 48.8 7 9.2 24.5 19.7 19 10.0 20 48.8 7 9.2 2 2 10.2 10.7 10.0 2 10.7 10 10 110.0 2 10.7 10 10 110.0 2 10.7 10 10 110.0 2 10.1 10 10 110.0 3 10 10 10 10 110.0 5.6 19.7 3 10 10 113.4 4 4 10 10 10 10 16.0 10 10 10 10 10 10 <			so,	o			Wind D	
Distance (km) 3 5 8 10 12 0.8 50.7 189.6 46 1.2 15.8 65.0 17 2.0 24.5 82.4 19 2.4 24.5 82.4 19 3.2 13.9 47.8 13 4.8 10.2 48.8 7 7.5 9.2 10.0 11.0 110.0 110.0 110.0 110.1 110.0 110.0 111.0 114.0			-)	ed (m s	nd Spe	Wi		Height: 0m
1.2 15.8 65.0 17 2.0 24.5 82.4 15 2.4 13.9 47.8 13 3.2 13.9 47.8 13 4.8 10.2 48.8 7 7.5	15						3	Distance (km)
1.2 15.8 65.0 17 2.0 24.5 82.4 15 2.4 13.9 47.8 13 3.2 13.9 47.8 13 4.8 10.2 48.8 7 7.5 9.2 10.0 10.0 10.0 110.5 5.6 19.7 3								
2.0 24.5 82.4 15 3.2 13.9 47.8 13 4.8 10.2 48.8 7 7.5 9.2 10.0 10.5 5.6 19.7 3 10.5 5.6 19.7 3 11.0 11.5 5.6 19.7 3 11.0 11.13.4 113.4 116.0 116.8 17.6 <	59.0	469	189.6		50.7			0.8
2.4	79.5	179	65.0		15.8			1.2
3.2 13.9 47.8 13 4.8 10.2 48.8 7 7.5 9.2 10.0 10.0 10.0 10.0 10.5 5.6 19.7 3 12.0 13.4 14.0 16.8 17.6 18.0 19.1	99.0	199	82.4		24.5			2.0
4.8 10.2 48.8 7 7.5								2.4
7.5	37.6	137	[•] 47.8		13.9			3.2
9.2	2.6	72	48.8		10.2			4.8
10.0								7.5
10.5 5.6 19.7 3 12.0 13.4 14.0 16.0 16.8 17.0 17.6 17.8 18.0 5.0 11.5 19.1								9.2
10.5 5.6 19.7 3 12.0 13.4								10.0
13.4	34.1	34	19.7			<u></u>		10.5
14.0								12.0
16.0								13.4
16.8				×				14.0
17.0								. 16.0
17.6								16.8
17.8 17.8 18.0 5.0 19.1		•						17.0
18.0 5.0 11.5 1 19.1								17.6
19.1								17.8
	17.9	17	11.5		5.0			18.0
0.8 (60m) 37.3 140.5 35								19.1
0.8 (60m) 37.3 140.5 35								
	58.6	358	140.5		37.3			0.8 (60m)
0.8 (120 m) 20.3 77.1 22	28.5	228	77.1		20.3			0.8 (120m)
4.8 (60m) 11.4 51.4 7	4.6	74	51.4		11.4			4.8 (60m)
18.0 (60m) 3.7 12.2 1	8.4	18	12.2		3.7			18.0 (60m)

(assumes ozone concentration = 35 ppb)

()

	ind Dire			0	NOx		Option 1	
Height: 0m Distance (km)	3	Wi 5	nd Spee 8	⊴d (m.s⊺ 10	') 12	15	Height: 0n Distance (1	
	<u> </u>		<u> </u>					
0.8		·	13.3		114.8	252.4		. (
1.2	,		8.6		94.4	203.7		1
2.0			11.0		64.6	145.6		2
2.4			11.2		53.5	114.4		2
3.2		3.4	9,0	31.1	42,3	101.5		3
4.8								4
7.5		2.8	7.7	14.1		:		7
9.2								9
10.0		ĺ						'10
10.5		3.0	27.3	7.8			5	10
12.0	÷							12
13.4			-					13
14.0		0.5	1.8	3.3				14
16.0								10
16.8							· -	10
17.0								17
17.6	2	1.7	3.8	7.1	-		1	12
17.8								12
18.0			-			-	:	18
19.1		6.6	3.0	4.4	.,			19
£								
2.4 (60m)			· 10.1		62.8	129.6	2.4 (6	0n
2.4 (120m)	-		11.7		75.0	134.1	2.4 (12	0 n
10.5 (40m)			18.9	25.2		'	. 10.5 (4	0 n
						L		

	NO				Vind D	irection		o	NO,	
n s 10	-') 12	15		Height: 0m Distance (km)	. 3	Win 5	nd Spea 8	ed (m s ⁻ 10	-1) 12	15
		·								
	114.8	252.4		0.8			1.5		17.6	45,6
	94.4	203.7		1.2			1.4		20.5	51.7
	64.6	145.6		2.0			2.8		21.0	54.2
	53.5	114.4		2.4						
.1	42,3	101.5		. 3.2		1.0	3.3	12.7	18.9	50.6
				4.8						
.1				7.5		1.4	4.5	8.8		
			× -	9.2						•
			•	'10.0						
.8				10.5		1.8	18.0	5.4		
				12.0						
				13.4	·					
.3				14.0	,	0.3	1.3	2.4		
				16.0						
				- 16.8						
				17.0						
'.1	-			17.6		1.2	2.7	5.2		
				17.8						
				18.0						٠
.4	.,			19.1		4.6	2.2	3,2		•
			•							
	62.8	129.6		2.4 (60 m)			3.0		23.3	54.5
	75.0	134.1		2.4 (120 m)			3.4		_ 27.8	56.4
5.2				10.5 (40m)			12.4	17.3	-	* .
		1		、 、						

Option 1	Wind D			0	SO2	_
Height: 0m	-		nd Spea			_
Distance (km)	3	5		10	12	15
· • • • • •						
² 0.8			´ 21.3		183.7	403.8
1.2			13.8		151.0	325.9
2.0			17.6		103.4	233.0
2.4					-	
3.2		5.4	14.4	49.8	67.7	162.4
4.8						
7.5		4.5	12.3	22.6		
9,2						
10.0						
10.5		4.8	43.7	12.5		
12.0						
13.4						
14,0		0.8	2.9	5.3		
16.0						
16.8						
17.0						
17.6		2.7	6.1	11.4		
17.8						
18.0		_				•
19.1		10.6	4.8	7.0		
2.4 (60m)			16.2		100.5	207.4
2.4 (120m)			18.7		120.0	214.6
10.5 (40 m)			30.2	40.3		
			,			

Legitime de la concentration = 35 ppb)

Option 1 Height:0m	Wind E		ind Spe	5°	NO <u>,</u>		
Distance (km)	3	5	8	10 <u>10</u>	<u>, 12</u>	15	
<u> </u>		<u> </u>	 				
0.8						·	
1.2	 		l 				8
2.0	<u> </u>		6.0		42.2	83.2	
2.4							
3.2	·]		15.5		29.2	55.0	
4.8	I						
7.5	—			~			
9.2	1				-		
10.0	· · · · · · · · · · · · · · · · · · ·	· 					
10.5	<u> </u>	I	13.3		7.7	13.4	
12.0			 				
13.4			2.3		12.4	17.2	,
14.0	1	i					
16.0							
16.8		· · · · · · · · · · · · · · · · · · ·					
17.0		- <u></u> ,	0.0		4.9	10.0	
17.6		·					
17.8	· · ·		0.4		6.1	10.1	
18.0	<u> </u>	 				10.0	
19.1			1.6		7.6	10.3	
·		 					
			<u> </u>				
· · ·					· · · ·		-
	[

.

. •

ption 1 eight:0m		rection: 356			
eight: 0m istance (km)	3	Wind Spec 5 8	10 12	15	
		[· []		
0.8					
1.2					
2.0		1.5	13.7	31.0	
2.4]	
3.2		5.6	13.1	27.4	
4.8					
7.5					
9.2]	
10.0					
10.5		8.8	5.4	9.7	
12.0					
13.4		1.6	9.0	12.6	
14.0					
16.0					
16.8		-			
17.0			3.6	7.4	
17.6					
17.8		0.3	4.5	7.5	
18.0]	
19.1		1.2	5.6	7.6	
· · · · · · · · · · · · · · · · · · ·					

	Wind D	irection	1: 35 <i>6</i>	5 °	SO2	
Height: 0m		Wi	nd Spee	ed (m s	1)	
Distance (km)	3	5		10	12	15
0.8						
1.2					<u>.</u>	
2.0			9.6		67.5	133.1
2.4						
3.2			24.8		46.7	88.0
4.8					,	
7.5						
9.2					-	
10.0						
10.5	- 		21.3		12.3	21.4
12.0	<u> </u>					
13.4			3.7		19.8	27.5
14.0						
16.0			<u>.</u>			<u>.</u>
16.8						.
17.0					7.8	16.0
17.6						
17.8			0.6		9.8	16.2
18.0					10.0	1/ -
19.1			2.6		12.2	16.5
					{	
<u></u>						

.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array}$ \cap

Option 1	Wind D	Direction	n: 0	15 °	NO _x	
Height: 0m		Wi	ind Spe	ed (m s	-1)	
Distance (km)	3	5	8	10	12	15
0.8						
1.2		l				
2.0			41.8		92.2	153.0
2.4						
3.2			17.6		53.6	101.7
4.8						
7.5	i		8.4	_ <u></u>	26.6	40.1
9.2		 				
10.0						
10.5			4.9		15.4	24.6
12.0						
13.4			2.5		8.0	15 (
14.0			4,3		<u>8.</u> 0	15.6
16.8			1.2		4.9	7.9
17.0	· · · · · ·	· · · · · · · · ·				
17.6			 			
17.8						
18.0						
19.1						
					·.	
16.8 (60 m)			1.1		4.7	6.7
	· .					
					_	

NOx		Option 1	Wind Dir	ection: 015 °	NO ₂	
')		Height: 0m		Wind Speed (m s ⁻¹)	
12	15	Distance (km)	3	5 8	10 12	15
_						
		0.8				
		1.2				÷.
92.2	153,0	2.0		10.6	30.0	57.0
		2.4				
53.6	101.7	3.2		6.4	24.0	50.7
		4.8				
26.6	40.1	7.5		4.9	17.4	27.5
		9.2				
		10.0				
15.4	24.6	10.5		3.2	10.9	17.7
		12.0				
		13.4				
8.0	15.6	14.0		1.8	5.8	11.5
		16.0				
4.9	7.9	16.8		0.9	3.6	5.8
		17.0				
		17.6				
		17.8				
		18.0				
		19.1				
••						
4.7	6.7	16.8 (60 m)		0.8	3.5	4.9
		· · ·				

	Wind D	irection	ı: O]	15 °	SO2	
Height: 0m		Wi	nd Spea	ed (m s	-1)	
Distance (km)	3	5	' 8	10	12	15
0.8						
1.2						
2.0			66.9		147.5	244.8
2.4						
3.2			28.2		85.8	162.7
4.8]
7.5			13.4		42.6	64.2
9.2						
10.0						
10.5			7.8		24.6	39.4
12.0						
13.4				· ·]
14.0			4.0		12.8	25.0
16.0]
16.8			1.9		7.8	12.6
17.0						
17.6						
17.8					, ,	ļ
				L		
18.0						
18.0 19.1						
			1.8		7.5	10.7

(assumes ozone concentration = 35 ppb)

•

Option 1	Wind E	Direction		0 °	NOx	
Height: 0m				ed (m s		
Distance (km)	3	5	8	10	12	1
	L					
0.8			0.0		31.9	117.
1.2			0.0		19.4	121.
2.0			0.0		13.2	59.4
2.4			0.0		10.2	66.0
3.2		-	0.0		11.1	41.9
4.8						
7.5			3.2		9.4	22.3
9.2			1.3		2.2	7.9
10.0	·		1.7		6.3	12.8
10.5						
12.0	:					
13.4		·				
14.0						
16.0						
16.8	1					
17.0						
17.6						
17.8	I		 			
18.0						<u>_</u>
19.1						
1						
0.8 (60m)			0.0		83.9	267.9
0.8 (120m)			40.1		303.5	446.3
9.2 (60m)			1.7		3.7	9.8
9.2 (120m)			2.4		6.1	11.4

.

Option 1	Wind D	irection:	16	60 ° ed (m s 10	NO2	
Height: 0m		Win	d Spe	ed (m s	-')	
Distance (km)	3	5	8	10	12	15
0.8					4.9	21.2
1.2					4.2	30.9
2.0					4.3	22.1
2.4					3.8	28.0
3.2				 	5.0	20.9
4.8						
7.5			1.9		6.2	15.6
9.2			0.8		1.5	5.6
10.0			1.1		4.4	9.2
10.5		·				
12.0						
13.4	 					
14.0		<u>.</u>			Ì	
16.0		·				
16.8						
17.0						
17.6						
17.8	{					
18.0						
19.1						
0.8 (60m)					12.9	48.4
0.8 (120m)			4.6	 	46.5	80.7
9.2(60m)			1.1		2.5	7.0
9.2 (120m) assumes ozone			1.5		4.2	8,1

	Wind Dire	ction:	160) °	SO2	
Height: 0m		Wind	Spee	d (m s	⁻¹)	
Distance (km)	3	5	8	10	12	15
0.8					51.0	187.7
1.2					31.0	194.9
2.0					21.1	95.0
2.4					16.3	106.6
3.2				~	17.8	67.0
4.8						
7.5			5.1		15.0	36.3
9.2			2.1		3.5	12.6
10.0		.	2.7		10.1	20.5
10.5						
12.0						·
13.4						
14.0						
16.0						· ·
16.8						
17.0						
17.6						
17.8		·	-			
18.0						
19.1						
						<u> </u>
0.8 (60m)			_		134.2	428.6
0.8 (120m)	<u> </u>		4.2		485.6	714.1
9.2 (60m)			2.7		5.9	15.7
9.2 (120m)			3.8		9.8	18.2

4

(assumes ozone concentration = 35 ppb)

(

Option 2	Wind Dir		015 °	NO _x	
Height: 0m			Speed (m		
Distance	3	5	8	12	15
2.0	52.2	82.4	398.8	670.9	630.2
3.2	31.0	141.9	536.5	611.1	516.2
. 4.8					
7.5	33.7	208.8	381.0	330.8	251.3
			· · · ·		
10.0					
10.5	26.6	147.9	287.1	228.2	174.5
12.0					-
13.4					
14.0	11.5	97.4	207.1	157.3	127.9
15.0					
16.0	•				
- 16.8	12.1	52.6	123.6	83.1	76.(
17.0					-
17.8					
18.0			,		
19.1					
16.8 <u>(</u> 60m)	10.9	52.6	123.4	84.4	77.
				·	
			-		

, · · ·				
	a da anti- anti- anti- anti- anti-	•	 -	-
,				
	en e	· ·		
	land and the second		, , , , , , , , , , , , , , , , , , ,	÷.

.

. . . جحاجيا الجام المواصريان 1.

		ection:	015°	NO ₂	
			Speed (m		
	3	5			1.
[~				
2.0	7.6	15.8	101.2	218.5	234.
3.2	6.8	40.0	194.3	273.4	257.
4.8					
7.5	14.0	104.3	223.6	217.0	172.
9.2					
10.0					
10.5	13.5	86.8	189.0	160.8	125.
12.0				```	
13.4					_
14.0	6.7	63.2	145.2	114.4	93.
15.0					
16.0					
16.8	7.5	35.8	88.8	61.0	56.
17.0	:				<u></u>
17.8		· .			
18.0					
19.1			·····		
50m)	6.8	35.8	88.6	62.0	57.
	3.2 4.8 7.5 9.2 10.0 10.5 12.0 13.4 14.0 15.0 16.8 17.0 17.8 18.0	2.0 7.6 3.2 6.8 4.8	2.0 7.6 15.8 3.2 6.8 40.0 4.8	2.0 7.6 15.8 101.2 3.2 6.8 40.0 194.3 4.8	2.0 7.6 15.8 101.2 218.5 3.2 6.8 40.0 194.3 273.4 4.8

(assumes ozone concentration = 35 ppb)

-

. 2 22.

. .

.

	Wind Di	rection:	015 °	SO2	
Height: 0m			Speed (n	n s ⁻¹)	
Distance	3	5	8	12	15
2.0	16.6	26.2	126.9	213.5	200.
3.2	9.9	45.2	170.7	194.5	164.:
4.8					
7.5	10.7	66.4	121.2	105.3	80.
9.2					
10.0					
10.5	8.5	47.1	91.4	72.6	55.(
12.0					
13.4	i				
14.0	3.7	31.0	65.9	50.1	40.2
15.0					
16.0		1/ 7		26.4	
16.8	3.9	16.7	39.3	26.4	24.
17.0					
17.0			···		
16.8 (60m)	3.5	16.7	39.3	26.9	24.

. .

. .

Option 2	Wind Dir			NO	<u>-</u>
Height: 0m			Speed (n	1 s ⁼¹)	
Distance	3	5	8	12	15
2.0	11.8	11.5	90.0	285.0	381.0
3.2	16.1	15.9	123.6	323.4	376.6
4.8					
7.5	25.1	26.6	221.2	300.3	275.6
9.2	26.2	28.3	126.5	184.1	176.6
10.0	16.8	38.8	147.7	192.6	93.6
10.5					
12.0					
13.4					
14.0					
15.0					
16.0					
16.8					
17.0					
17.8			1.	.	
18.0				•	
19.1		•			
	ŀ				
9.2(60m)	17.0	26.4	136.0	200.8	184.1
9.2 (120m)	71.1	49.3	172.9	194.5	177.2

 \bigcirc

	Wind Di		160°	NO_2	
Height: 0m	-		Speed (n		
Distance	3	5	8	12	15
2.0	1.7	2.2	22.8	92.8	141.9
3.2	3.5	4.5	44.8	144.7	187.8
4.8					
7.5	10.4	13.3	129.8	197.0	189.2
9.2	12.3	15.7	80.0	126.8	125.5
10.0	8.3	22.3	95.9	134.7	67.2
. 10.5					
12.0					
13.4	-				
14.0					
15.0		<u></u>			
16.0					
16.8					
17.0					
17.8					
18.0					
19.1	•				
9.2(60m)	8.0	14.6	86.1	138.3	130.8
9.2 (120m)	33.5	27.3	109.4	133.9	125.9

	Wind Dir		160 °	so,	
Height: 0m			Speed (n		
Distance	3	5	8	12	15
2.0	3.8	3.7	28.6	90.7	121.2
3.2	5.1	5.1	39.3	102.9	119.8
4.8					
7.5	8.0	8.5	70.4	95.6	87.7
9.2	8.3	9.0	40.3	58.6	56.2
10.0	5.3	12.3	47.0	61.3	29.8
10.5					
12.0					
13.4					
14.0					·
15.0			;		
16.0					
16.8					•
17.0				<u> </u>	
17.8	-				
18.0			, 	·	
19.1	· · ·				<u>.</u>
9.2 (60m)	5.4	8.4	43.3	63.9	58.6
9.2 (120m)	22.6	15.7	55.0	61.9	56.4

(assumes ozone concentration = 35 ppb)

•

()(

Option 2	Wind Di		232 °	NO,	
Height: 0m		Wind	Speed (n	n s~1)	
Distance	3	5	8	<u>12</u>	15
2.0					
3.2	12.6	27.6	257.9	484.4	483.6
4.8					
7.5	36.2	79.4	295.6	306.8	252.3
9.2					
10.0					
10.5	<u> </u>	37.6	209.1	225.4	199.5
12.0	37.3	48.0	184.8	181.9	156.3
13.4					
14.0					
15.0)				
16.0	·	:	,		
16.8					
17.0	·	, 			<u> </u>
17.8			.		
18.0					
19.1	<u>.</u>				,
, , , , , , , , , , , , , , , , , , ,					
3.2 (40 m)	10.9	35.1	281.3	495.5	489.8
7.5 (40m)	15.5	50.0	317.1	322.9	272.3
12.0 (40 m)	37.6	42.7	186.5	184.5	160.7

Option 2		Wind Di		232 °	NO ₂	
Height: 0m			Wind	Speed (n	n s ⁻¹)	
Distance		3	5	8	12	15
	2.0				- 4	
	3.2	2.8	7.8	93.4	216.7	241.1
	4.8			•		
	7.5	15.0	39.7	173.5	201.2	173.2
	9.2					÷.,
	10.0					
	10.5		22.1	137.7	158.9	143.9
	12.0	20.2	29.6	125.7	130.5	113.9
•	13.4					
	14.0					
	15.0					
	16.0			·		
	16.8					1
·	17.0					
	17.8					
	18.0					
	19.1					
		<u> </u>				<u> </u>
3.2(4		2.4	9.9	101.9	221.7	244.2
7.5 (4	<u>0m)</u>	6.4	25.0	186.1	211.8	186.9
12.0 (4 (assumes oz	10m)	20.4	26.4	126.9	132.3	117.1

	Wind Die		232°	SO2	
Height: 0m		Wind	Speed (n	n s ⁻¹)	
Distance	3	5	8	12	15
2.0					
3.2	4.0	8.8	82.1	154.1	153.9
4.8					
7.5	11.5	25.3	94.1	97.6	80.3
9.2	- 1 ⁻				,
10.0					
10.5		12.0	66.5	71.7	63.5
12.0	11.9	15.3	58.8	57.9	49.7
13.4					<u> </u>
14.0					t
15.0					•
16.0					
16.8	1		L		
17.0					
17.8					
18.0					· ·
19.1			 		· ·
3.2(40m)	3.5	11.2	89.5	157.7	155.9
7.5 (40m)	4.9	15.9	100.9	102.7	86.6
12.0 (40m)	12.0	13.6	59.3	58.7	51.1

(assumes ozone concentration = 35 ppb)

-

- 1 M .

and the second ÷

	Wind Dir		252 °	NO	
Height: 0m			Speed (n		10
Distance	3	5	8	12	15
2.0	9.2	15.0	107.6	291.5	370,5
3.2	21.7	20.2	177.1	405.2	453.3
4.8					
7.5	60.1	25.6	164.5	213.9	177.8
9.2					
10.0					
10.5	30.9	29.2	153.0	175.9	152.5
12.0					
13.4					
14.0	35.4	26.4	124.9	141.0	116.0
15.0					
16.0					
16.8	-				
17.0					
17.8			•		
18.0					
19.1					
· 	-				
14.0 (40m)	56.8	32.9	122.4	135.1	110.5
14.0 (80m)	35.4	32.5	125.9	136.1	111.9

•

.

Option 2	Wind Dir		252 °	NO ₂	
Height: 0m			Speed (m		
Distance	3	5	8	12	15
2.0	1.3	2.9	27.3	94.9	138.0
3.2	4.8	5,7	64.1	181.3	226.0
4.8					
7.5	25.0	12.8	96.5	140.3	122.0
9.2					
10.0					
10.5	15.7	17.1	100.7	124.0	110.0
12.0				i i	
13.4					
14.0	20.6	17.1	87.5	102.5	85.2
15.0					
16.0					
16,8					_
17.0					
17.8					
18.0					
19.1					
	,				
14.0 (40 m)	33.0	21.4	85.8	98.2	81.2
14.0 (80m)	20.6	21.1	88.2	99.0	82.2

Option 2	Wind Di	ection:	252 °	SO2	
Height: 0m			Speed (n		4.5
Distance	3	5	8	12	15
2.0	2.9	4.8	34.2	92.8	117.9
3.2	6.9	6.4	56.4	128.9	144.2
4.8					
7.5	19.1	8.1	52.3	68.1	56.6
9.2					
10.0					
10.5	9.8	9.3	48.7	56.0	48.5
12.0	 				
13.4					
14.0	11.3	8.4	39.7	44.9	36.9
15.0	 				
16.0					:
16.8					
17.0				-	
17.8					
	[
19.1					
14.0 (40m)	18.1	10.5	38.9	43.0	35.2
14.0 (80m)	11.3	10.3	40.1	43.3	35.6

.

(assumes ozone concentration = 35 ppb)

•

-

Option 2	Wind Dire		270 °	NO _x	
Height: 0m			peed (m	s ⁻ ')	15
Distance	3	5		12	15
2.0	14.6	24.0	31.0	196.3	311.1
3.2	14.5	24.0	30.9	196.2	311.1
4.8					
. 7.5	9.4	19.7	71.3	185.7	179.7
9.2					<u></u>
10.0					
10.5	29.6	22.3	8 9 .2	133.3	118.2
12.0					
13.4				·	
14.0	35.1	19,6	87.0	119.9	102.0
15.0					
16.0	 				
16.8	 		·		
17.0	┨───┼				
17.8				<u> </u>	
18.0	┠───┼				:
19.1	┨				
	┨				•
				· · · · · · · · · · · · · · · · · · ·	

	Wind Dir		270°	NO ₂			Option 2	Wind Dire		270°	SO,
Height: 0m			Speed (m				Height: 0m	T		Speed (m	s ⁻¹)
Distance	3	5	8	12	15		Distance	3	5	8	12
2.0	2.1	4.6	7.9	63.9	115.9		2.0	4.6	7.6	9.9	62.5
3.2		6.8	11.2	87.8	155.1	:	3.2	4.6	7.6	9.8	62.4
4.8							4.8				
7.5	3.9	9.8	41.8	121.8	123,3		7.5	3.0	6.3	22.7	59.1
9.2					,		9.2		,		· ·
10.0							10.0				
10.5	15.0	13.1	58.7	93.9	85.3		10.5	9.4	7.1	28.4	42.4
12.0						-	12.0	· · ·			
13.4							13.4				
14.0	20.4	12.7	61.0	87.2	74.9		14.0	11.2	6.2	27.7	38.2
15.0							15.0		· ·		
16.0							16.0				
16.8							16.8	· · · ·			
17.0							17.0				
17.8							17.8				
18.0							18.0				
19.1						ļ	19.1				
								· ·		· · · · · · · · · · · · · · · · · · ·	
	 							╏╍┉──┼╴			
					<u>`</u>	•					
assumes ozone o	<u> </u>	·									

d Dire	ction:	270 °	NO ₂		Option 2	Wind Di	rection:		SO2	
_		Speed (m	s ⁻¹)		Height: 0m			Speed (m	s ⁻¹)	
3	5	8	12	15	Distance	3	5	8	12	1
2.1	4.6	7.9	63.9	115.9	2.	0 4.6	7.6	9.9	62.5	
3.2	6.8	11.2	87.8	155.1	3.	-1	7.6	9.8	62.4	99.
	0.0	11.2	07.0	155.1	4.				02.1	
3.9	9.8	41.8	121.8	123.3	7.		6.3	22.7	59.1	57.
				1	9.		,			
					10.					,
15.0	13.1	58.7	93.9	85.3	10.	5 9.4	7.1	28.4	42.4	37.
		[12.	0				
					13.	4				
20.4	12.7	61.0	87.2	74.9	14.	0 11.2	6.2	27.7	38.2	32.
					15.	0				
					16.	0				
					16.	8				
					17.	0				,
					17.	8				<u></u>
					18.	0				
					19.	1				
			· · ·							
						· .				
• .									f	

(assumes ozone concentration = 35 ppb)

and a second An experimental second secon

•

	Wind Dir		290 °	NO	
Height: 0m Distance	3	Wind 5	Speed (m 8	(s ⁻¹) 12	- 15
Jistance			Ť		15
2.0	173.5	285.2	368.4	454.6	460.6
3.2	88.0	198.6	325.4	447.8	432.5
4.8					
7.5	30.0	65.7	126.7	149.0	146.1
9.2					
10.0					
10.5	21.2	54.2	102.0	111.0	97.7
12.0					_
13.4					
14.0	52.1	76.6	99.5	76.8	73.4
15.0					
16.0					
16.8					
17.0					
. 17.8					
18.0					
19.1					
7.5 (60m)	30.4	72.0	129.1	150.5	143.1
10.5 (60 m)	79.8	74.7	110.8	111.3	96.2

	Wind Dir		290 °	NO ₂	
leight: 0m	_		Speed (m		
listance	3	5		12	15
2.0	25.4	54.7	93.5	148.1	171.6
3.2	19.3	56.0	117.8	200.4	215.6
4.8					
7.5	12.5	32.8	74.3	97.7	100.3
9.2			ł		
10.0					
10.5	10.7	31.8	67.2	78.2	70.5
12.0					
13.4					
14.0	30.3	49.7	69.7	55.9	53.9
15.0					
16.0					
16.8					
17.0			·		n#* -
17.8					
18,0					
19.1					
7.5 (60m)	12.6	36.0	75.8	98.7	98.2
10.5 (60m)	40.4	43.8	73.0	78.4	69.4

	Wind Dir		290 °	SO2	
Height: 0m			Speed (n		
Distance	3	5	8	12	15
2.0	55.2	90.8	117.2	144.7	146.6
3.2	28.0	63.2	103.5	142.5	137.6
4.8		<u>.</u>			•
7.5	9.5	20.9	40.3	47.4	46.5
9.2					
10.0		-			•••
10.5	6.7	17.2	32,5	35.3	31.1
12.0					
13.4					
14.0	16.6	24.4	31.7	24.4	23.4
15.0					
16.0			•		
16.8					
17.0		÷			
17.8		-			
18.0					
19.1					
,			•		·
7.5 (60m)	9.7	22.9	41.1	47.9	45.5
10.5 (60m)	25.4	23.8	35.3	35.4	30.6
			·		-

. -

(assumes ozone concentration = 35 ppb)

• • • • • • •

٠

4 1

۰⁻

 $\bigcap_{i=1}^{n}$

Option 2	Wind Dir		310 °	_NO _x	
Height: 0m		Wind	Speed (n	is ⁻¹)	
Distance	3	5	8	12	15
2.0	2.5	12.8	116.2	313.8	317.6
3.2	4.1	39.6	250.8	336.2	341.7
4.8	 				
7.5	10.0	98.4	202.5	182.8	152.9
9.2					<u>_</u>
10.0					,=
10.5	7.7	61.2	126.0	113.7	103.1
12.0					
13.4					<u> </u>
14.0	7.5	18.7	117.7	91.5	84.8
15.0	20.6	44.0	102.2	75.5	62.7
16.0	18.7	39.9	92.7	74.7	63.3
16.8					
. 17.0					,
17.8					
18.0	[
19.1					
3.2(60m)	10.7	80.6	332.3	421.8	395.0

	Wind Di		310 °	NO,	
Height: 0m		Wind	Speed (n		
Distance	3	5	8	12	15
. 2.0	0.4	2.5	29.5	102.2	118.3
3.2	0.9	11.2	90.8	150.4	170.4
4.8					
7.5	4.2	49.2	118.8	119.9	104.
9.2					
10.0					
10.5	3.9	35.9	83.0	80.1	74.
12.0					
13.4	·				
14.0	4.4	12.1	82.5	66.5	62.
15.0	12.3	29.1	72.4	55.1	46.
16.0	11.5	26.8	66.2	54.7	46.
16.8			: ,		
17.0					
17.8					
18.0					
19.1	···				
3.2 (60m)	2.3	22.7	120.3	188.7	196.

Option 2	Wind Di		310 °	SO2	
Height: 0m			Speed (n		
Distance	3	5	8	12	15
2.0	0.8	4.1	37.0	99.9	101.1
3.2	1.3	12.6	79.8	107.0	108.7
4.8					.
7.5	3.2	31.3	64.4	58.2	48.7
9.2		- <u></u>			· · ·
10.0					
10,5	2.5	19.5	40.1	36.2	32.8
12.0					
13.4					
14.0	2.4	6.0	37.5	29.1	27.0
15.0	6.6	14.0	32.5	24.0	20.0
16.0	6.0	12.7	29.5	23.8	20.1
16.8					
17.0					
17.8					
18.0					
19.1					•
3.2 (60m)	3.4	25.6	105.7	134.2	125.7
	·	····			

· .

- ·

(assumes ozone concentration = 35 ppb)

Option 2	Wind Di		330 °	NO	
Height: 0m Distance	3	Wind 5	Speed (n 8	n s ⁻¹) 12	15
Distance				12	15
2.0	5.5	9.7	108.6	339.3	370.0
3.2	8.9	60.5	139.6	125.4	103.1
4.8	13.4	58.5	237.3	321.7	221.6
7.5				•	
9.2					
10.0					
10.5	11.4	65.3	186.6	179.3	143.4
. 12.0					
13.4					
14.0					
: 15.0	<u>.</u>				
16.0					
16.8					
17.0					
. 17.8			;		
18.0	- 14.6	46.6	72.6	71.5	58.5
4.8 (60m)	23.8	41.4	175.9	259.1	143.4
18.0 (60m)	30.5	40.7	72.3	69.8	60.6
: - 1					

÷

 $\bigcap_{i=1}^{n}$

2

()

()

	Wind Di		330 °	NO ₂	
Height: 0m	2		Speed (m		10
Distance	3	5	8	12	15
2.0	0.8	1.9	27.6	110.5	137.8
-3.2	2.0	17.1	50,5	56.1	51.4
4.8	4.1	22.2	111.5	178.9	133.4
7.5					
9.2					
10.0					· ·
10.5	5.8	38.3	122.9	126.4	103.4
12.0	:				
13.4					
14.0					
15.0					
16.0					<u> </u>
16.8					
17.0					
17.8					<u> </u>
18.0	9.3	32.2	52.5	52.6	43.2
19.1					
4.8 (60m)	7.2	15.7	82.7	144.1	86.3
18.0 (60m)	19.5	28.1	52.3	51.4	44.8

	Wind Di			SO ₂	
Height: 0m Distance	3	Wind 5	Speed (n 8	ns') 12	15
Distance				12	1.
2.0	1.8	3.1	34.6	108.0	117.
3.2	2.8	19.3	44.4	39.9	32.
4.8	4.3	18.6	75.5	102.4	70.
7.5					
9.2					
10.0					
10.5	3.6	20.8	59.4	57.1	45.6
12.0					
13.4					.
14.0					
15.0					
16.0		,			
16.8					
17.0					
17.8					
18.0	4.6	14.8	23.1	22.8	18.
19.1	······				-
4.8 (60m)	7.6	13.2	56.0	82.4	45.
18.0 (60m)	9.7	13.0	23.0	22.2	19.
	<u> </u>				

. .

,

 $+\frac{1}{2}$

 \bigcirc

(assumes ozone concentration = 35 ppb)

;

5

.

 $(\)$

 \bigcirc ()()() \bigcirc

~

~~~~	NO _x	340 ° Speed (m	ction: Wind !		Option 2 V Height: 0m
15	12	88	5	3	Distance
			1		
		·			2.0
384.9	393.6	254.1	37.1	5.4	3.2
					4.8
221.5	252.5	250.6	65.4	12.4	7.5
					9.2
					10.0
146.1	169.4	178.0	37.7	10.9	10.5
					. 12.0
	,				13.4
111.2	121.2	113.4	18.1	7.2	. 14.0
-					15.0
					. 16.0
					16.8
					× 1 <b>7.</b> 0
75.9	82.1	104.2	44.9	21.0	. 17.6
					18.0
70.9	76.9	92.8	27.8	16.7	19,1
		-			
160.0	181.3	184.8	37.7	8.8	10.5 (40m)
	2				

				1.	
 			. <u> </u>		. ·
<u>`</u> .					
14.002		•			·.
2			S.,		<b>.</b>
•			<u>s</u> .	12	
	e se para		•		

.

7

· · · · · ·

Option 2	Wind Dire		340 °	NO ₂	
Height: 0m			Speed ( n		
Distance	3	5		12	1
2.0				<u> </u>	÷
3.2	1.2	10.5	92.0	176.1	191
4.8					
7.5	5.2	32.7	147.1	165.6	152
9.2					
10.0					
10.5	5.5	22.1	117.2	119.4	105
12.0					
13.4	<b></b>				
14.0	4.2	11.8	79.5	88,1	81
15.0	 	-			
16.0					
16.8					
17.0	<b>_</b>				
17.6	13.3	30.9	75.2	60.4	56
18.0	<b> </b>			· .	
19.1	10.8	19.4	67.4	56.7	52
		·			
10.5 (40m)	4.5	22.1	121.7	127.8	115
	┨				
<u>.</u>					

Option 2 W Height: 0m		ection:	340 ° Speed (m	SO ₂	· · · · · · · · · · · · · · · · · · ·
Distance	3	5	зреец (ш 8	。) 12	. 15
2.0					
3.2	1.7	11.8	80.9	125.2	122.5
4.8					
7.5	3.9	20.8	79.7	80.3	70.5
9.2					-
10.0					••
10.5	3.5	12.0	56.6	53.9	46.5
12.0					
14.0	2.3	5.8	36.1	38.6	35.4
15.0					•
16.0					
16.8					
17.0					
17.6	6.7	14.3	33.2	26.1	24.2
18.0					
19.1	5.3	8.8	29.5	24.5	22.6
10.5 (40 m)	2.8	12.0	58.8	57.7	50.9

· . . ...

	Wind Dir			NO _x	
Height: 0m	_		Speed (m	s ⁻¹ )	
Distance	3	5		12	15
		[			
2.0	5.9	40.7	279.0	323.9	288.2
3.2	5.6	38.6	264.7	340.9	285.4
4.8					-
7.5					
9.2	∟ <u>.</u>			·	
10.0					
10.5	10.1	35.1	165.6	130.8	89.7
12.0					
13.4	10.7	27.0	169.0	126.8	97.6
14.0			· · ·		
15.0					
16.0					
16.8					
17.0	27.1	58.0	134.6	91.5	76.4
17.8	27.8	59.6	138.3	95.7	66.9
18.0				·	<u>.</u>
19.1	22.7	48.5	112.5	76.5	53.3
·					
·					
· · ·					

Option 2	Wind Dire		356 °	NO ₂	
Height: 0m		Wind S	Speed (m	s ⁻ ')	
Distance	3	. 5	8	12	15
	0.9	7.8	70.8	105.5	107.4
3.2	1+	10.9	95.8	152.5	142.3
4.8					
7.5					
9.2					
10.0	·				
10.5	5.1	20.6	109.0	92.2	64.7
12.0	<b>t</b> t-				
13.4	- ···	17.3	117.6	91.9	71.6
14.0					. <u> </u>
15.0					
10.0		39.6	96.8	67.2	56.4
17.8		41.0	99.9	70.4	49.4
18.0					
19.1	14.7	33.8	81.7	56.4	39.4
	<u>                                     </u>				
			<u>+</u>		
·	┨		<u></u>		

	Wind Di		356 °	so,	
Height: 0m			Speed (n		
Distance	3	5	8	12	15
2.0	1.9	13.0	88.8	103.1	91.7
3.2	1.8	12.3	84.2	108.5	90.8
4.8					
7.5		_			
9.2					
10.0					
10.5	3.2	11.2	52.7	41.6	28.5
12.0					
13.4	3.4	8.6	53,8	40.3	31.1
14.0					
15.0					
16.0					
16.8					
17.0	8.6	18.5	42.8	29.1	24.3
17.8	8.8	19.0	44.0	30.5	21.3
18.0					
19.1	7.2	15.4	35.8	24.3	17.0
			·		

(assumes ozone concentration = 35 ppb)

. ,

.

Option 3	Wind Dir	ection:	015°	NO	_
leight: 0m	_		Speed (m	s ⁻¹ )	
Distance (km)	3	5		12	15
,					
0.8					_
1.2					
2.0	22.1	51.7	187.1	256.2	256.2
2.4					
3.2	13.7	38.8	142.9	224.5	189.5
4.8					
7.5	. 9.2	18.6	70.2	88.4	78.6
9.2	: 				
10.0					
10.5	<u>:</u> 20.0	111.2	215.9	171.6	131.2
12.0	·				
13.4	·			`	
14.0	- 2.1	11.4	38.1	52.5	42.0
15.0					
16.0	:			·	
16.8	25.3	8.3	23.5	26.2	22.6
17.0	*			·	
17.8	·				
18.0					 
; 19.1	<u> </u>		[-	·	
	·		<u> </u>	·	
1					
,		!			•
16.8 (60m)	7.0	9.5	25.7	26.5	23.5
<u></u>			<u></u>		·
•	l í	· .		1	

eight: Om			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	NO ₂	
Distance (km)	3	Wind 5	Speed (m 8	s ⁻¹ ) 12	15
			0	14	13
0.8					
1.2			<u> </u>		
2.0	3.2	9.9	47.5	83.4	95.4
2.4			<u></u>		
3.2	3.0	10.9	51.7	100.4	94.5
4.8					
7.5	3.8	9.3	41.2	58.0	53.9
9.2					
10.0					
10.5	10.1	65.3	142.1	120.9	94.6
12.0					
13.4					
	1.2		26.7	38.2	30.9
14.0	1.2	7.4	20.7		30.9
15.0					
16.0					
16.8	15.8	5.7	16.9	19.3	16.7
17.0					
17.8	, ,				
18.0					
19.1					
	;				
16.8 (60m)	4.4	6.4	18.5	19.4	17.3
- <u>.</u>					
· · · · · · · · · · · · · · · · · · ·	╏───┼				
issumes ozone o	oncentratio	on = 35	ppb)	·	

A second seco

<u>19.4</u> <u>17.3</u>

Option 3		Wind Di	rection:	160 °	NO,			OF
Height: 0n	n		Wind	Speed (n	n s  '}			He
Distance (k	.m)	3	5	8	12	15		Di
	0.8	17.7		192.7		332.8		-
	1.2	26.8		300.7		430.6		
	2.0	9.7	86.6	421.2	574.7	534.2		
	2.4	5.6		252.1		391.9		•
	3.2	5.9	16.5	214.2	316.4	348.8		
-	4,8							
	7.5	4.4	15.0	112.5	127.3	121.1		
	9.2	4.4	13.2	83.3	96.0	85.3		
	10:0	10.0	14.2	61.7	79.3	72.0		-
•	10.5						-	
	12.0							
	13.4							
	14.0							
	15.0	1						
:	16.0							
-	16.8							
	17.0							
	17.8							
¢.	18.0							
	<u>19.1</u>							
0.8 (6	0m).	33.9		322.6		444.5		
0.8 (12	0m)	162.9		822.7		649.2		
9.2 (6	0m)	3.7	13.6	88.8	92.6	82.1		
9.2 (12	<u> </u>	13.8	19.7	72.1	91.8	81.0		1

•

	Wind	Speed ( m	ıs ^{−'} }		Height: 0m		Wind Speed (m s ⁻¹ )					
3	5	8	12	15	Distance (km)	3	5	8	12	15		
				•								
7.7		192.7		332.8	0.8	1.1	**	22.1		60.1		
6.8		300.7		430.6	1.2	2.5		49.6		109.3		
9.7	86.6	421.2	574.7	534.2	2.0	1.4	16.6	106.9	187.2	199.0		
5.6		252.1		391.9	. 2.4	1.0		73.9		164.8		
5.9	16.5	214.2	316.4	348.8	3.2	1.3	4.7	77.6	141.6	173.9		
					4.8							
4.4	15.0	112.5	127.3	121.1	7.5	1.8	7.5	66.0	83.5	83.1		
4.4	13.2	83.3	96.0	85.3	9.2	2.1	7.3	52.7	66.1	60.6		
0.0	14.2	61.7	79.3	72.0	10.0	4.9	8.2	40.1	55.4	51.6		
			_		10.5							
					12.0							
					13.4					·		
$\square$					14.0							
					15.0							
					16.0					•		
					16.8							
					17.0	1						
						ı						
					19.1							
					······································	·						
3.9		322.6		444.5	0.8 (60m)	2.1		36.9		80.3		
2.9		822.7		649.2	0.8 (120 m)	10.2		94.2	н	117.3		
3.7	13.6	88,8	92.6	82.1	9.2 (60 m)	1.7	7.5	56.2	63.8	58.3		
3.8	19.7	72.1	91.8	81.0	9.2 (120m)	6.5	10.9	45.6	63.2	57.5		

.

 $\bigcirc$  $\bigcirc$   $\bigcirc$   $\bigcirc$  $\bigcirc$  $\bigcirc$ 

Option 3	Wind Di		232 °	NO,	f		Option 3
Height: 0m Distance (km)	3	Wind	Speed (n 8	n s") 12	15	•	Height: 0 Distance (
0	.8 0.0		6.4		130.6		
1	.2 1.5		5.9		106.4		
2	.0 3.6		39.3		313.3		
2	.4 0.9		35.9		293.1		
. 3	.2 1.1	8.8	33.7	124.7	246.3		
. 4	.8				-		
. 7	.5 16.4	12.3	25.7	58.1	75.0	-	
9	.2						
: 10	0			·····			
- 10	.5 2.6	3.5	15.9	53.4	61.1		
	.0 4.5	4.0	11.0	41.8	51.3		
- 13	.4						
• 14	.j0						
15	:0						
. 16	.0				<u>`</u>		
16	.8						
. 17	/.0				2		1
· 17							
-18							
-19	.1						
· · · · · · · · · · · · · · · · · · ·	_						
0.8 (60 m			76.5		610.8		0.8 (
0.8 (120,m			304.9	· · · · ·	528,9		0.8 (1
3.2 (40 m		10.3	<u>∕38.6</u>	136.2	267.3	-	3.2(
7.5 (40 m	1	5.6	25.0	75.2	84.3		7.5 (
12.0 (60 m	) 3.1	3.5	12.0	43.4	52.3		12.0 ( (assumes o

	Wind Dir		232 <u>°</u>	NO				Wind Dir		232°	NO ₂	
Height: 0m	_		Speed (n			·	Height: 0m	-		Speed (m		
Distance (km)	3	5	8	12	15	ł	Distance (km)	3	5	8	12	15
<u>4</u>					i		· · · · ·					
. • 0.8	0.0		6.4		130.6		0.8			0.7		23.6
1.2	1.5		<u>, 5.</u> 9		106.4		1.2	Q.1		1.0		27.0
2.0	3.6		39.3		313.3		2.0	0.5		10.0		116.7
2.4	0.9		35.9		293.1		2.4	0.2	,	10.5		123.3
3.2	1.1	8.8	33.7	124.7	246.3		. 3.2	0.2	2.5	12.2	55.8	122.8
4.8							4.8					
7.5	16.4	12.3	25.7	58.1	75.0		7.5	6.8	6.2	15.1	38.1	51.5
9.2							9.2					
10,0	1						10.0					
10.5	2.6	3.5	15.9	53.4	61.1		10.5	1.3	2.1	10.4	37.6	44.1
12.0	4.5	4.0	11.0	41.8	51.3	ĺ	12.0	2.4	2.5	7.5	30.0	37.4
13,4						Î	13.4					
- 14,0							14.0		····			
15.0							15.0	·····				
.16.0						ľ	16.0					
16.8					:	ľ	16.8					· · · ·
. 17.0					<i>.</i> •		-17.0					
· 17:8	_						17.8					
. 18.0						•	`18.0					
-19.1							19.1		· .			,
					-							
0.8 (60m)	0.0		76.5		610.8			•.	·	· 8.8		110.4
0.8 (120m)	0.0	[	304.9	·	528.9		0.8 (120m)			34.9		95.6
3.2(40m)	, 7.2	10.3	- 38,6	136.2	-267.3	,		1.6	2.9	14.0	60.9	133.3
7.5 (40m)	3.8	5.6	25.0	75.2	84.3	İ	7.5 (40m)	1.6	2.8	14.7	49.3	57.9
12.0 (60m)	··· 3.1	3.5	12.0	43.4	52.3		12.0 (60m)	1.7	2.1	8.1	31.1	38.1
						(	assumes ozone o			ppb)		· · ·

Height: 0m		Wind	Speed (m	s")	1		Height: 0m
Distance (km)	3	5	8	12	15		Distance (km)
`					1		
0.8	0.1		17.9		52.0		0.
1.2	0.4		115.4		270.0		1
2.0	39.6	139.2	353.6	588.1	588.9		2
2.4	1.3		186.6		391.3		2.
3.2	9.2	15.1	159.7	250.8	342.6	:	. 3.
4.8							4
7.5	16.5	22.6	70.5	93.6	84.4		. 7
9.2							9
10.0							10
10.5	3.7	16.4	61.1	64.9	54.6		10
12.0						-	12
.13.4							13
14.0	2.2	9.3	44.0	46.8	38.7		14
15:0						-	15
16.0							16
16.8							. 16
17.0							17
. 17.8							17
_18.0							18
19.1							19.
				<u> </u>			
0.8 (60m)	1.1		200.6		506.7		0.8 (60 m)
0.8 (120m)	97.6		1520.7		1524.7		0.8 (120 m)
7.5 (40m)	6.2	18.7	71.4	100.3	90.0		7.5 (40m)
7.5 (80m)	5.9	17.8	67.8	96.4	87.2		7.5 (80m) (assumes ozone

ان. المراجع معاجلة في المراجع الم

NO _x				Nind Dire		270°	NO2	
10			Height: 0m	· _	Wind S	Speed (m	s ⁻¹ )	
12	15		Distance (km)	3	5	8	12	15
			· · · · · · · · · · · · · ·		ŀ			
•	52.0		0.8			2.0	:	9.4
	270.0		1.2	0.0		19.0		68.5
8.1	588.9		2.0	5.8	26.7	89.8	191.5	219,4
	391.3		2.4	0.2		54.7		164.6
0.8	342.6		. 3.2	2.0	4.3	57.8	112.2	170.8
_ ]			4.8					
3.6	84.4		7.5	6.8	11.3	41.4	61.4	57.9
			9.2					
			10.0					
4.9	54.6		10.5	1.9	9.6	40.3	45.7	39.4
		-	12.0					
			13.4					
6.8	38.7		13.1	1.3	6.1	30.8	34.0	28.4
		<u>.</u>	14.0	•				
-+		-						
			16.0					
			16.8					
$\rightarrow$			17.0		·	<u></u>		
			17.8					
			18.0				<u> </u>	
			19.1					
-+								
÷								i
	506.7		0.8 (60m)	0.1		23.0		91.6
	1524.7		0.8 (120 m)	6.1		174.0		275.5
0.3	90.0		7.5 (40m)	2.6	9.4	41.9	65.8	61.8
6.4	87.2		- 7.5 (80m)	2.4	8.9	39.8	63.2	59. <b>9</b>
			(assumes ozone co	ncentrati	on = 35 i	nnhì 👘	•	

.

and the second 
-

	Wind Dire		290 °	NO		Option 3
Height: 0m			Speed (m	s ⁻¹ )		Height: Om
Distance (km)		5	8	12	15	Distance (km)
						·
0.8	6.8		29.3		208.2	
1.2	47.1		116.6		340,5	1
2.0	13.8	35.6	431.2	457.6	524.4	2
2.4	17.3		288.2		400.6	
3.2	11.1	34.5	240.3	264.6	337.6	
4.8						4
7.5	4.2	23.8	66.1	81.6	72.0	. 5
9.2	_					
10.0						10
10.5	4.4	24.5	46.6	52.3	45.7	10
12.0						12
13.4						1:
14.0	7.4	21.7	37.1	33.8	28.6	14
15.0						15
16.0						16
16.8						16
17.0						15
17.8						15
18.0		· <u>·</u> ···				18
19.1		·				. 19
					<u> </u>	
· · · · · · · · · · · · · · · · · · ·						,,
0.8 (60m)	138.4		231.3	·	616.2	0.8 (60m
0.8 (120m)	642.3		1186.5		850.3	0.8 (120 m
7.5 (60m)	4.4	23.9	63.2	78.4	71.6	7.5 (60 m
10.5 (60m)	11.0	26.5	46.2	51.1	44.1	10.5 (60 m

ight: Om		Wind	Speed (II	is ^{−1} )	
islance (km)	3	5	8	12	15
		•			,
0.8	0.4	<u>.</u>	3.4		37.6
1.2	4.3		19.2		86.4
2.0	2.0	6.8	109.4	149.0	195.4
2.4	3.0		84.4		168.5
3.2	2.4	9.7	87.0	118.4	168.3
4.8					
7.5	1.8	11.9	38,8	53.5	49.4
9.2					
10.0					
10.5	· 2.2	14.4	30.7	36.8	33.0
12.0	,				
13.4	•				
14.0	. 4.3	14.1	26,0	24.6	21.0
15.0					
16.0					
16.8					
17.0					
17.8					
18.0					
. 19.1					
;					
0.8 (60m)	8.6		26.5		111.4
0.8 (120m)	40.0		135.8		153.7
7.5 (60m)	1.8	12.0	37.1	51.4	49.1
10.5 (60m) ssumes ozone co	5.6	15.5	30.4	36.0	31.8

*

· .

.

.

Height: 0m		Wind	Speed ( n	i s ⁻¹ )		Height: 0m
Distance (km)	3			12	15	Distance (kr
		]				
0.8	78.8		120.3		227.2	· · · · · · · · · · · · · · · · · · ·
1.2	89.3		150.8		238.6	
2.0	89.6	109.6	269.1	271.6	292.8	•
2.4	70.2		259.1		259.0	
3.2	4.5	44.7	153.8	204.2	193.9	
4.8						
7.5	2.3	14.5	29:4	37.4	33.6	
9.2				*		
10.0	:				۰	
10.5	1.0	15.2	33.0	33.8	28.3	
. 12.0	.: 5				ς.	2
13.4					1	
. 14.0	1.9	11.0	22.6	22.0	18.6	
15.0						-
-16.0	1.2	9.9	20.8	20.2	· 16.8	
16.8						
17.0					۰. ۲	
17.8						
18.0		2 -				
19.1				· .		
					-	
				·		:
0.8 (60m)	175.6		245.2		330.6	0.8 (60
0.8 (120m)	253.0		488.2		399.7	0.8 (120
3.2 (60m)	10.8	74.1	219.6	239.9	225.6	3.2 (60
				· ·		(assumes oz

Din	ection:	310 °	NO.			Option 3	Wind D	irection:	310 °	NO,	
		Speed (n			;	Height: 0m					
3	5	8	12	15		Distance (km	) 3	5	Speed (m 8	12	15
.8		120.3		227.2			0.8 4.9	·	13.8	î	41.1
.3		150.8		238,6	•		1.2 8.2		24.9		60,6
.6	109.6	269.1	271.6	292.8	•		2.0 13.1	21.0	68,3	88.5	109.1
.2		259.1		259.0			2.4 12.0	· ·	75,9		108.9
.5	44.7	153.8	204.2	193.9	4	1	3.2 1.0	12.6	55.7	91.3	96.6
$\downarrow$	· · ·					1	4.8	<u> </u>			
.3	14.5	29:4	37.4	33.6			7,5 1.0	7.3	17.3	24.6	23.1
·							9.2				
•				· ·			10.0	·	· · ·		
.0	15.2	33.0	33.8	28.3	-		10.5 0.5	8.9	21.7	23.8	20.4
;			<del></del>		2		12.0		:		
							13.4	· · · · ·			
.9	11.0	22.6	22.0	18.6			14.0 1.1	7.1	15.8	16.0	13,6
_							15.0				
.2	9.9	20.8	20.2	16.8			16.0 0.7	6.7	14.8	14.8	12.4
							16.8				· · ·
-							17.0	· · ·			
$\dashv$					,		17.8 18.0		·		
-		i					19,1			<u> </u>	
		· · · ·		· · ·						-	· · · · ·
·						·····		+			
		· · · · · · · · · · · · · · · · · · ·			· ·					<u> </u>	
5.6		245.2		330.6		0.8 (60)			28.1		59.8
3.0		488.2		399.7		0.8 (120)			55.9		72.2
).8	74.1	219.6	239.9	225.6		3.2 (60)	m) 2.4	20.9	79.5	107.3	112.5

	Wind Dir	00110111 220	' NO	x	Option 3
Height: 0m Distance (km)	3	Wind Speed 5	(m. s ^{- 1} ) 8 12	15	Height: 0m Distance (km)
Distance (Killy			<u> </u>		Distance (Kin)
0.8	51.0	165	3	247.6	0.8
1.2	31.9	165		205.0	1.1
2.0	39.7	209		227.8	2.0
2.4	32.3	251		241.9	. 2.4
3.2	20.5	219	1 248.6	183.7	3.2
4.8	, 8.9	: 97.	1 108.4	87.9	- 4.1
7.5					7.5
9.2					. 9.1
10.0					. 10.0
10,5	7.1	53.	0 55.1	44.2	· 10.5
12.0					. 12.0
13,4			-		13.4
14.0					14.6
15.0	·				15.0
16.0	,				16.0
16.8					16.8
17.0					17.0
17.8					17.8
18.0	2.3	: 22.	7 26.7	21.3	: 18.0
19.1	2.3	. 22.	9 27.1	21.8	19.
·			;		· ·
0.8 (60m)	80.2	196.	5	254.8	0.8 (60m)
0.8 (60m)	132.3	310	9	327.6	0.8 (60m)
4.8 (40m)	8.6	98	2 104.7	85.9	4.8 (40m)

eight: Om		Wind Speed	(m s ⁻¹ )		Height: Om		-	Wind	330 ° Speed ( n	NO.	
Distance (km)	3	5		2 15	Distance (k	m)	3				15
·····											
0.8	51.0	165	.3	247.6		0.8	3:2		18.9	×	44.7
1.2	31.9	165	.7	205.0		1.2	2.9		27.3		52.0
2.0	39.7	209	.7 212	7 227.8		2.0	5.8		53.2	69,3	84.8
2.4	32.3	251	.4	241.9		2.4	5.5		73.6	•	101.7
3.2	20.5	219	.1 248.	6 183.7		3.2	4.5		79.3	111.2	91.6
4.8	, 8.9	: 97	.1 : 108.	4 87.9		4.8	2.7		45.6	60.3	52.9
7.5					:	7.5					
9.2	·					9.2	·		• •		
10.0						10.0		-			
10,5	7.1	53	.0 55.	1 44.2		10.5	3.6		34.9	38.8	31.9
12.0						12.0					
13,4	<i>i</i>					13.4			• •		
14.0	<u>.                                    </u>					14.0					
15.0	<u>`</u>					15.0				-	
16.0						16.0				-	
16.8	/					16.8 ·					•
17.0						17.0					
17.8						17.8					· · · ·
18.0	2.3	: 22	.7 26.	7 21.3	:	18.0	1.5		16.4	19.6	15.7
19.1	2.3	. 22	.9 27.	1 21.8		19.1	1.5	, .	16.6	20.0	16.1
۰ ۰	<u> </u>						<u>.</u>				
0.8 (60m)	80.2	196	.5	254.8	0.8 (60	)m)	5.0		22.5		46.1
0.8 (60m)	132.3	310	.9	327.6	0.8 (60	)m)	8.2		35.6		59.2
4.8 (40m)	8.6	98	.2 104.	7 85.9	4.8 (40	)m)	2.6		46.2	58.2	51.7
,					(assumes ozo	one concer	ntrati	on = 35	ինթ) :		

 $\bigcirc$   $+\bigcirc$ ()

	ving Dire	ection:		NO,				Wind Dire		
Height: Om	_		Speed (n				Height: 0m			Speed (n
Distance (km)	3	5	8	12	15		Distance (km)	3	5	8
0.8	3.2		105.2		284.9		0.8	0.2		12.0
1.2	8.6		118.2		263.7		1.2	0.8		19.5
2.0	12.5		175.2		276.5		2.0	1.8		44.5
2.4	10.0		178.4		277.7		2.4	1.7		52.3
3.2	14.4	49.9	191.7	190.8	248.2		3.2	3.2	14.1	69.4
4.8							4.8			_
7.5	6.0	27.9	107.0	105.3	93.0		7.5	2.5	13.9	62.
9.2							9.2			
10.0							10.0			
10.5	7.4	12.4	55.5	58.5	55.8		10.5	3.7	7.3	36.
12.0							12.0			
13.4							13.4			
.14.0	1.4	8.3	43.9	46.2	42.9		14.0	0.8	5.4	30.
15.0							15.0	· · ·		
16.0							16.0			
16.8							16.8			
17.0							17.0			
17.6	1.6	1.9	15.6	28.3	25.5		17.6	1.0	1.3	11.
18.0	<u> </u>						18.0			
19.1	2.4	4.1	24.6	28.1	25.9		19.1	1.6	2.9	17.
							·····	<b> </b> }	·····	
			<del>```</del>							
0.8 (60m)	12.0		177.9		343.6		0.8 (60m)	0.7	·····	20.
0.8 (120m)	39.4	-	436.2		495.6	÷	0.8 (120m)	2.5	·	49.
10.5 (40m)	2.2	12.7	61.7	64.2	59,2		10.5 (40m)	1.1	7.5	40.

leight: Om	_		Speed (m	\s ⁻ ')		Height: Om			speed (n					
Distance (km)	3	5	8	12	15	Distance (km)	3	5		12	15			
0.8	3.2		105.2		284.9	0.8	0.2		12.0		51.5	•		
1.2	8.6		118.2		263.7	1.2	0.8	· · · · · · · · · · · · · · · · · · ·	19.5		66.9			
2.0	12.5		175.2		276.5	2.0	1.8		44.5		103.0			
2.4	10.0		178.4		277.7	2.4	1.7		52.3		116.8			
,3.2	14.4	49.9	191.7	190.8	248.2	3.2	3.2	14.1	69.4	85.4	123:8			
4.8						4.8								
7.5	6.0	27.9	107.0	105.3	93.0	7.5	2.5	13.9	62.8	69.1	63.8			
9.2						9.2								
10.0						10.0								
10.5	7.4	12.4	55.5	58.5	55.8	10.5	3.7	7.3	36.5	41.2	40.2			
12.0						12.0	[							
13.4						13.4								
14.0	1.4	8.3	43.9	46.2	42.9	14.0	0.8	5.4	30.8	33.6	31.5			
15.0						15.0								
16.0	]					16.0								
16.8						16.8								
17.0						17.0								
17.6	1.6	1.9	15.6	28.3	25.5	17.6	1.0	1.3	11.2	20.9	18.8			
18.0						18.0								
19.1	2.4	4.1	24.6	28.1	25,9	19.1	1.6	2.9	17.9	20.7	19.1			
						·								
					· · · · · · · · · · · · · · · · · · ·									
0.8 (60m)	12.0		177.9		343.6	0.8 (60m)	0.7		20.4		62.1			
0.8 (120m)	39.4		436.2		495,6	0.8 (120m)	2.5	<u> </u>	49.9		89.6			
10.5 (40m)	2.2	12.7	61.7	64.2	59.2	10.5 (40m)	1.1	7.5	40.6	45.3	42.7			

	Wind Dir		356 °	NO,					Wind Dire	e
leight: Om			Speed (n			1		l:leight: 0m	-	
listance (km)	3	5	8	12	15			Distance (km)	3	-
	·							1		
0.8					•			0.8		~
1.2						·		1.2		•
2.0	13.9	24.4	160.0	218.4	201.9			2.0	2.0	
2.4								2.4		
3.2	10.2	16.7	116.9	136.2	127.9			3.2	2.2	
4.8								4.8		
7.5						•		7.5		
9.2								9.2		
. 10.0								10.0		
10.5	5,2	19.9	38.9	39.9	35,6	÷.		10.5	2.6	
12.0								12.0		
13.4	1.0	5.7	34.0	44.1	42.1			13.4	0.6	-
14.0					<u> </u>			14.0		-
15.0								15.0		
16.0								16.0		
16.8	]							16.8	•	
17.0	1.5	4.3	36.5	34.4	31.9	c.		17.0	0,9	
17.8	5.3	7.6	28.0	30.8	26.6			17.8	3.3	-
18.0								18.0		-
19.1	1.7	5.6	17.5	19.0	16.2			19.1	1.1	•
/					10.2			:		-
<u>.</u>					····		•	· · · · · · · · · · · · · · · · · · ·	-	
										_
						•			-	-
		· · · · ·								
•										

ption 3 leight: Om	Wind Dir		Speed (m	NO,		Option 3 Height: 0m		Direction: Win	d Speed (1	NO ₂ n s ⁻¹ }	·	
istance (km)	<u> </u>	5	8	12	15				5 8		15	
	·	·, · · · ·				· · · · · · · · · · · · · · · · · · ·						•
0,8					•	. 0						: :
<u> </u>						1						
2.0	13.9	24.4	160.0	218.4	201.9	2	.0 2	.0 4.	7 40.6	71.1	75.2	•
2.4						2	.4					
3.2	10.2	16.7	116.9	136.2	127.9	3	.2 2	.2 4.	7 42.3	60.9	63.8	
4.8						4	.8					
7.5					<u> </u>	. 7	.5					
9.2	·					9	.2					
10.0						10	.0					
10.5	5.2	19.9	38.9	39.9	35.6	10	.5 2	.6 11.	5 25.6	28.1	25.7	
12.0						12	.0					
13.4	1.0	5.7	34.0	44.1	42.1	13	.4 0	.6 3.	7 23.6	31.9	30.9	· · · ·
14.0						14	.0					
15.0						15	.0					
16.0			,			16	,0					
16.8						16	.8					
17.0	1.5	4.3	36.5	34.4	31.9	17	.0 0	9 2.	26.2	25.2	23.5	
17.8	5.3	7.6	28.0	30.8	26.6	17	.8 3	.3 5.	2 20.2	22.6	19.7	· · · · · · · · · · · ·
18,0						18	,0					· · · ·
19.1	1.7	5.6	17.5	19.0	16.2		_	.1 3.	12.7	14.0	11.9	*
								-				
			1									
									-			·
							-					
	. 1							,	1	[	[	

	Wind Di		015°	NO	
leight: 0m	~		Speed (n		
)istance (km)	3	5	8	12	15
0.8		-			
1.2					-
2.0	12.8		54.6		278.3
2.4			1		
3.0					· · ·
3.2	i 1.5		123.3		293.0
4.8					
7.5	11.4		121.8		145.4
9.4					
10.0	:				
1 A . A	7.7	<u> </u>	82.2		89.0
10.5	- 1.4		04.4		
12.0					
13.4					
14.0 16.0	7.0		74.7		74.6
					]
16.8	5.4		58.0		52.1
17.0					· · ]
17.6					<u>.</u>
17.8		·			
18.0					
19.1					
• • • • • <u>•</u>	4 5		¢.		÷
16.8 (60m)	5.1	•	54,3		49,2
÷.,					
					·.
·····					
,		· _ ·			 
					~

.

;

4

Option 4	Vind Dire	cuon:	015 °	NO ₂	
Height: 0m	2		Speed (m s		
Distance (km)	3	5	8	12	
	<u>:</u>				
0.8				······	
1.2		;		'	
2.0	2.5		15.9		103
2.4					
3.0	•				
3.2	3.2		50.2		146
4.8		:			
7.5	5.7		76.3		99
<u>9.4</u>					
10.0					
10.5	4.5		56.4		64
12.0		-	-		
13.4					
14.0	4:5	.,	53.6		54
16.0					
16.8	3.7		42.3	1	38
17.0					
17.6	.;				
17.8				,	
18,0					
19,1					
				·	
16.8 (60m)	3.5		39.6		36
			· [		
		:			
•			· .		

Option 4	Wind Di	rection:	015 °	so,	
Height: 0m		Wind	Speed (r	n s ⁻¹ )	
Distance (km)	3	5	. 8	12	15
0.8					
1.2	_				
2.0	40.7		173.7		885.6
2.4					
3.0					
3.2	36.6		392.3		932.3
4.8					
7.5	36.3		387.6		462.7
9.4					
10.0					
10.5	24.5		261.6		283.2
12.0					
13.4					
14.0	22.3		237.7		237.4
16.0					
16.8	17.2		184.6		165.8
17.0					
17.6					
17.8					
18.0					
19.1					
16.8 (60m)	16.2		172.8		156.6

.

(assumes ozone concentration = 35 ppb)

Option 4	Wind Dii	rection:	160 ° Speed (n	NO,	
Height: 0m		Wind	Speed ( n	n s ⁻¹ ) -	,
Distance (km)	3	5	. 8	12	<u> </u>
• 2					
0.8					
1.2	:				
2.0	0.6		5.4		272.4
2.4					
3.0					
3.2	5.0		45.2		335.1
4.8					
7.5	3.8		34.4		129.6
9.4	9.8		25.3		82.4
10.0	· 3.2		29		72.1
10.5				<u> </u>	
12.0					
13.4					
14.0					
16.0					
16.8					
17.0				·	<u> </u>
<u> </u>					
17.8			<del></del>	<u> </u>	<u> </u>
18.0					
19.1		·			
9.2 (60m)	6.7		33.8		99.1
9.2 (120m)	34.1		40.9		75.6
		ļ			

Heic	ght: 0m	· ·····	rection: Wind Si	Speed (m	1 s ⁻¹ ) -			Option 4 V Teight: 0m		wind	Sneed (m	(s ⁻¹ )		Height: 0m	1		Wind Spe	ed ( m s	(-1)	
Dist	tance (km)	3	5	8	<u>12</u>	15	D	Distance (km)	. 3	<u>5</u>	Speed (m 8	12	. 15	Distance (k	m)	3	55	8	<u>12</u>	1
						i														
	0.8							0.8							0.8					
	1.2					,		1.2							1.2					
	2.0	0.6	·	5.4		272.4		2.0	0.1		1.6		101.5		2.0	1.9		17.2		866.8
	2.4					L		2.4							2.4					
[	3.0					· · · · · · · · · · · · · · · · · · ·		3.0							3.0					
	3.2	5.0		45.2		335.1		3.2	1.4		18.4		167.1		3.2	15.9		143.8	1	1066.3
	4.8					ı		4.8							4.8					
	7.5	3.8		34.4		129.6		7.5	1.9		21.6		89.0		7.5	12.1	1	109.5		412.4
Ŀ	9.4	9.8		25.3		82.4		9.4	5.5		16.9		58.7		9.4	31.2		80.5		262.2
<b> </b>	10.0	· 3.2		29		72.1		10.0	1.8	<u> </u>	• 19.7		51.7	<u> </u>	10.0	10.2		92.3		229.4
<b></b>	10.5	,		·		· · · · · · · · · · · · · · · · · · ·		10.5							10.5			-+		
	12.0	<u> </u>				,		12.0							12.0					
L	13.4				]	·		13.4							13.4				·	
L	14.0		·		]	·	<u> </u>	14.0							14.0					
	16.0					·		16.0							16.0					
Ĺ	16.8		,			· · · · · · · · · · · · · · · · · · ·	·	16.8	-					· · · · · · · · · · · · · · · · · · ·	16.8					
Ŀ	17.0					<u> </u>	L	17.0							17.0					
<u> </u>	17.6	·				ţ		17.6							17.6					
L	17.8	<u> </u>				·	· · · ·	17.8			<b> </b>				17.8			$\square$	· .	
	18.0	,				t		18.0	·						18.0					
	19.1		,			,	<u> </u>	19.1	·	,   					19.1					
Ŀ						·	· _	·	<u> </u>		<b> </b>									<u> </u>
L	9.2 (60m)	6.7		33.8		99.1		9.2 (60m)	3.7		22.5		70.4	9.2 (	60m)	21.3		107.6		315.3
L	9.2 (120 m)	34.1		40.9		75.6	_	9.2 (120m)	18.9		27.2		53.7	9.2(1	20m)	108.5		130.1		240.6
<u> </u>		·	,			·	· -				···									
└		,	,			·	$\vdash$					<u> </u>								
<u>`</u>		, <b></b>				r					·			·						<u> </u>
L						·	L	ssumes ozone cor				<u>l</u>		<i>x</i>						

	Wind Dir			SO2	
Height: 0m			Speed (n	ιs ^{−1} )	
Distance (km)	3	5	8	12	15
··· ·					
0.8					
1.2			<u> </u>		
2.0	1.9		17.2		866.8
2.4					
3.0					
3.2	15.9	-	143.8		1066.3
4.8					
7.5	12.1		109.5		412.4
9.4	31.2		80.5		262.2
10.0	10.2		92.3		229.4
10.5					
12.0			_		
13.4					
14.0					
16.0					
16.8					
17.0					
17.6					
17.8					
18.0					
19.1					
					i
9.2 (60m)	21.3		107.6		315.3
9.2 (120 m)	108.5		130.1		240.6

Option 4 W	/ind Dire	ection:	232°	NO _x	
leight: 0m	2	Wind 5	Speed (m : 8	s ⁻¹ ) in	15
Distance (km)	3	<u> </u>	<u>8</u>	12	15
		-			
0.8					
1.2					
2.0	4,3		10.6		204.9
2.4					
3.0					·
3.2	15.7		26.9		238.6
4.8					<u>!</u>
7,5	22.4		61.4		126.1
. 9.4					
10.0					:
10,5	17.5		47.6		105.2
12.0	29.2	· ·	49.9	.	64.2
- 13.4					
14.0	21.5		48.7		79.8
• 16.0					
16.8					
17.0					
17.6					
17.8					-
18.0					-
19.1					
7.5 (40m)	21.9		60.1		145.6
•					

Option 4	Wind Di	rection:	232°	NO ₂	
Height: 0m			Speed (m	s ⁻ ')	
Distance (km)	3	5	8		
0.8				<u>}</u>	
1.2					
2.0	0.8		3.1		76
2.4					
3.0					
3.2	4.4		11.0		119
4.8	1				
7.5	11.2		38.5		86
9.4	·				
10.0					
10.5	10.3		32.7		75
12.0	18.0		35.1		46
13.4					
14.0			34.9		58
16.0					
16.8					
17.0					
17.6	r.	÷			
17.8		·			
18.0					
19.1					
7.5 (40m)	10.9		37.7	[	99
· · · ·					
				-	
	. '				

		Option 4	Wind Dir	ection:	232 °	SO2	
		Height: 0m			Speed (m	s ⁻¹ ).	45
15		Distance (km)	3	5	8	12	15
1		0.8					:
		1.2					
76.3		2.0	1		33.7	•	652.0
		2.4					:
		3.0					:
			1		0		
119.0		3.2			85.6		759.2
		4.8					
86.6		7.5	71.3		195.4		401.3
		9.4					
		10.0				*	•
75.9		10.5	55.7		151.5		334.7
46.8	•	12.0	92.9		158.8		204.3
		13.4					
58.6		14.0	1		155.0		253.9
		16.0	· · ·				
		16.8					i i
		17.0					
		17.6					
		17.8	1				
		18.0					· ·
		19.1					·
			╂───┤				
99.9		7.5 (40m)	69.7		191.2		463.3
							•
			-				
				· .	1	Ī	
		· · · ·	[				<u>.</u>
	1	L	L				

	Wind Di		252 °	NO	
Height: 0m		Wind	Speed (m	us ^{−1} ),	
Distance (km)	<u>, 3</u>	5	8	12	15
· · · · · · · · · · · · · · · · · · ·			<u>-</u>		
0.8					
1.2					·
2.0	2.5		6.2		123.5
2.4					
3.0					
3.2	7.9		13.5		188.1
4.8					
7.5	36.5		47.5		112.7
9.4					
10.0	:				
10.5	21.9		44.8		81.2
12.0					
13.4					
. 14.0	26.1		46.7		71.3
16.0					
16.8					
17.0					
17.6					
17.8					
18.0					
. 19.1					. <u> </u>
- <i></i>					
14.0 (40m)	42.5		43.3		64.0
14.0 (80m)	27.4		46.1		67.1
· · · · ·					
	· · · · · · · · · · · · · · · · · · ·				
		L	<u></u>	t	

Option 4			n: 252 °			Option 4			252 °				Wind Dir		
Height: 0m Distance (k	.m)	9 1 1 1 1	nd Speed (1 5 8	ns) 12	, 15	Height: 0m Distance (km)	3	Wind : 5	Speed (m s 8	-) 12 15	:	Height: 0m Distance (km)	3	Wind 5	۶ļ
		1.													
÷ .	0.8					· 0.	8 ′				•	0.8			
	1.2				•	1.	2					1.2			Γ
	2.0 2.	5	6.2		123.5	2.	0 0.5		1.8	46.0		2.0	8.0		
	2.4					2.	4.					2.4		1	Γ
	3.0					3.	0					3.0	· 1		Γ
	3.2 7.	9	13.5		188.1	3.	2 2.2		5.5	93.8		3.2	25.1		
	4.8					4.	1		· ·			4.8			
	7.5 36.	5	47.5		112.7	7.	5 18.2		29.8	77.4		7.5	116.1		Γ
	9.4					9.	4					9.4			Γ
	10.0	1				10.						10.0			Γ
	10.5 21.		44.8		81.2	10.	5 12.9		30.8	58.6		10.5	69.7		Γ
	12.0					12.	0					12.0			
1	13.4					13.	4					13.4			•
	14.0 26.	1	46.7		71.3		0 16.9		33.5	52.4		14.0	83.1		
1	16.0					16.	0				•	16.0			Γ
	16.8					16.	8					16.8		ľ	Γ
	17.0					17.	0					17.0			[
:	17.6					17.	6				-	17.6			
	17.8					17.	8					. 17.8			
	18.0					· 18.	0					18.0			
<u>.</u>	19.1					19.	1					19.1	·		
14.0 (	40m) 42.	5	43.3		64.0	14.0 (40 m	) 27.6		31.1	47.0		14.0 (40m)	135.2		<u> </u>
14.0 (	(80m) 27.	<u>i</u>	46.1		67.1	14.0 (80 m	) 17.8		33.1	49.3		14.0 (80m)	87.2		<u> </u>
															<u> </u>
		.				······································							<u> </u>		
		1						1							

Dption 4 N Height: 0m		ection: Wind	252 ° Speed (m	SO ₂	
Distance (km)	3	5	- 8	12	15
0.8					•
1.2					
2.0	8.0		19.7		393.0
2.4					
3.0					
3.2	25.1		43.0		598.5
4.8					
7.5	116.1		151.1		358.6
9.4					
10.0					
10.5	69.7		142.6		258.4
12.0					
13.4					
14.0	83.1		148.6		226.9
16.0	<u> </u>	•			
16.8	<u>.</u>				
17.0			 		
17.6					
. 17.8					
18.0	<u></u>				-
19.1					
14.0 (40m)	135.2		137.8		203.6
14.0 (80m)	87.2		146.7		213.5

Option 4 V	Vind Direct	ion: 270 °	NO,			ption 4	Wind Di		270
leight: 0m		Wind Speed (			H	leight: 0m	_	Wind	Speed
Distance (km)	3	5 8	12	15		istance (km)	3	5	
			, , , , , , , , , , , , , , , , , , , ,	<u> </u>				· ·	<u> </u>
0.8					_	0.8		 	
1.2						1.2	· · · ·	<u></u>	
2.0	10.8	10.2		203.3		2.0	2.1		3
2.4						2.4			
3.0						3.0			
3.2	8.1	13.9		141.6		3.2	2.3	r	5
4.8				`		4.8			
7.5	3.7	28.0	,	109.8		7.5	1.8	·	17
9.4				1	. [	9.4			
10.0					· -	10.0			
10.5	0.6	52.8		87.8	:	10.5			36
12.0						12.0			
13.4			·		í –	13.4			
14.0	2.0	43.3		62		14.0		·	31
16.0				:	. –	16.0			
16.8					•	16.8			
17.0				<u>,</u>	`	17.0			
17.6		:			·	17.6		· ·	
17.8			i.	•		17.8			
18.0	'	· .		•	. –	18.0	ti	· ·	·,
19.1			· · ·			19.1			
							· ·		
		······			· [—				
, T					, —	. 1	· · · ·		
7.5 (40m)	2.3	25.6		110.7		7.5 (40m)	1.1		16
7.5 (80m)	1.2	23.4		109		7.5 (80m)	. 0.6		14
		,				· · · · (•• · · · ·			
		-		,					

Option 4 Height: 0m	· · ·	rection: Wind	270 ° Speed (m	NO <u>3</u>			Option 4 Height: 0m	Wind Di
Distance (km)	3	5	- Speed (m	12	15		Distance (km)	3
0.8							0.8	
1.2	```						1.2	
2.0	2.1		3.0		75.7		2.0	34.4
2.4							2.4	
3.0							3.0	
3.2	2.3	,	5.7		70.6		3.2	25.8
4.8		;					4.8	
7.5	1.8		17.5		75.4		7.5	11.8
9.4							9.4	
10.0							10.0	
10.5	0.4		36.2		63.3		10.5	1.9
12.0						;	12.0	
13.4					·		13.4	
14.0	1.3		31.1		45.5		14.0	6.4
16.0							16.0	
16.8						:	16.8	
17.0							17.0	
17.6							17.6	
17.8			·					
18.0	·						18.0	
19.1	•						19.1	
			·					
	· · ·							
· •								
7.5 (40m)	1.1		16.0	· ·	76.0	÷	7.5 (40m)	7.3
7.5 (80m)	. 0.6	· · ·	14.7	-	74.8	,	7.5 (80m)	3.8
		,. ·	· · · · ·					

Dption 4 Teight: 0m	Wind Di	rection:	270 ° Speed (n	SO ₂	
Distance (km)	3	991na 5	Speed (n 8	ns') 12	15
				1	
0.8					
1.2					
2.0	34.4		32.5		646.9
2.4					F
3.0					
3.2	25.8		44.2		450.6
4.8					
7.5	11.8		89.1		349.4
9.4					
10.0					
10.5	1.9		168.0		279.4
12.0					1
13.4				•	
14.0	6.4		137.8		197.3
16.0					
16.8			·		<u> </u>
17.0					
17.6			:		
17.8					
18.0				•	
19.1	·······				
		-		r	
······					
7.5 (40m)	7.3	•	81.5		352.2
7.5 (80m)	3.8		74.5		346.8
£	•	• • • •			

.

Option 4	Wind Dire	ection: 290°	NO ₃			Option 4
Height: 0m Distance (km)	3	Wind Speed ( 5 8	ms) 12	15		Height: 01 Distance (
		<u>`</u>				Distance (
0	.8					·
1	.2					
	.0 13.2	12.5		255.4		
2	.4				-	
3	.0					
3	.2 14.7	41.8		255.8		
4	.8					
7	.5 13.1	47.6		86.5		
	.4					
10	.0					
10	.5 9.9	47.1		61.8		
12	.00					
13	.4					
14	.0 14.4	63.7	,	44.2		
16	.0					
	.8		· ·			`
	.0					
17	.6					
. 17			┝			
18			· [].			
19	.1					
7.5 (60 n	ı) 15.3	48.1		87.2		7.5
10.5 (60 n	ı) <u>43.8</u>	43.4		56.2		10.5
. ,			+			
			1			

	NO ₂	290 ° Speed (m s	ction: Wind :		Option 4 V Height: 0m		-1	eed (m s
	12	<u>- 8</u>	5	3	Distance (km)	15	12	8
					0.8			
					1.2			
95		3.6		2.5	2.0	255.4		12.5
					2.4			
					3.0			
127		17.0		4.1	3.2	255.8		
					4.8			
59		29.8		6.5	7.5	86.5		
			_		9.4			
					10.0			
44		32.3		5.8	10.5	61.8		
					12.0			
					13.4			
32		45.7		9.4	14.0	44.2		
,a					16.0		_	
					16.8		<u> </u>	
					17.0			
					17.6			
<u></u>					17.8			
					18.0			
					19.1			
		30.1		7.6	7.5 (60m)	87.2	-+	
40		29.8		25.7	10.5 (60m)	56.2		
				•	· · · · · · · · · · · · · · · · · · ·			
					•			
			on = 35					

eight: 0m istance (km) 0.8 1.2 2.0 2.4 3.0 3.2 4.8 7.5 9.4	3 2.5 4.1 6.5	Wind Speed (m s	s ⁻¹ ) 12 15 95.1 127.5	Height: 0m Distance (km) 0.8 1.2 2.0 2.4 3.0	3	Wind Speed (m 5 8	s ⁻¹ ) 12	812
0.8 1.2 2.0 2.4 3.0 3.2 4.8 7.5 9.4	2.5	3.6	95.1	0.8 1.2 2.0 2.4				
0.8 1.2 2.0 2.4 3.0 3.2 4.8 7.5 9.4	4.1			1.2 2.0 2.4		39.8	· · ·	812
2.0 2.4 3.0 3.2 4.8 7.5 9.4	4.1			1.2 2.0 2.4		39.8		812
2.0 2.4 3.0 3.2 4.8 7.5 9.4	4.1			2.0	42.0	39.8		812
3.0 3.2 4.8 7.5 9.4	4.1	17.0	127.5	· · · · · ·				
3.2 4.8 7.5 9.4	4.1	17.0	127.5	3.0				
4.8 7.5 9.4	4.1	17.0	127.5		1			
7.5	6.5			3.2	46.8	133.0		814
9.4	6.5			4.8				
		29.8	59.4	7.5	41.7	151.5		275
				9,4				
10.0				10.0				
10.5	5.8	32.3	44.6	10.5	31.5	149.9		196
12.0				12.0			· · · · · · · · ·	
13.4				13.4				
14.0	9.4	45.7	32.5	14.0	45.8	202.7		140
16.0	-			16.0				
16.8				16.8				
17.0				17.0				
17.6				17.6				
17.8	-			17.8	<b> </b>			
18.0				18.0	<b> </b>			
				19.1				
7.5 (60m)	7.6	30.1	59.9	7.5 (60m)	48.7	153.1		277
10.5 (60m)	25.7	29.8	40.5	10.5 (60m)	139.4	138.1		178
				· · ·				
							· · ·	

 $\bigcirc$  -  $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

	nd Direc	tion: 3	10 °	NOx		
leight: 0m Distance (km)	3	Wind Sp 5	eed (m s 8	⁻¹ ) <u>12</u>	15	
0.8						
1.2						
2.0			2.0		128.5	
2.4						
3.0					[	
3.2	1.0		44.9		180.7	
4.8						
7.5	2.7		55.4		75.4	
9.4		h				
10.0						
10.5	3.5		56.6		58.9	
12.0						
13.4						
14.0	2.2		35.2		34.8	
16.0	5.1		31.0		31.5	
16.8						
17.0						
17.6						
17.8						
18.0			_			
19.1						1 ⁴
3.2 (60m)	2.6		59.7		202.3	
· · · · · · · · · · · · · · · · · · ·		~~~				
·						
·					]	
4 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	·				•

Option 4	Wind Di	rection:	310 °	NO ₂			Option 4
Height: 0m Distance (km)	3		Speed (m s 8	5 ') 12	15		Height: 0 Distance (
A SMILL (KIII)			<u> </u>	<u> </u>	10		
0.8						- -	
1.2		<u>.                                    </u>					
2.0			0.6		47.9		
2.4							
3.0						,	
3.2	; 0.3		18.3		90.1		
4.8							
7.5	. 1.3		34.7		51.8		
9.4							
10.0							
10.5	2.1		38.8		42.5		
12.0							
13.4		·					
14.0	1.4		25.3		25.6		
. 16.0	3.4		22.5		23.2		
16.8							
17.0							
17.6							
17.8							
18.0							
19.1						•	
							L
3.2 (60m)	0.7		24.3		100.9		3.2
					·		
·			 			5	<u>,</u>
			 				<b></b>
assumes ozone c			a				

	SO ₂	310 ° Speed (m		Vind Dir	Option 4 Height: 0m
15	s <i>j</i> 12	speeu ( iii 8	5	3	Distance (km)
					0.8
					1.2
408.9		6.4			2.0
					2.4
					3.0
575.0		142.9		3.2	3.2
					4.8
239.9		176.3		8.6	7.5
					9.4
					10.0
187.4		180.1		11.1	10.5
					12.0
					13.4
110.7		112.0		7.0	14.0
100.2		98.6		16.2	16.0
	_		· · · · ·		16.8
					17.0
					17.6
					17.8
					18.0
					19.1
643.7		190.0		8.3	3.2 (60m)

-

(assumes ozone concentration = 35 ppb)

	Wind Di	ection:	330 °	NO	x
Height: 0m	•	Wind	Speed (n	n s ⁻¹ )	
Distance (km)	3		. 8	12	15
0.8					
1.2					
2.0	0.5		14.1		187.2
2.4					
3.0					
3.2	1.9		29.3	<b>.</b>	51.5
4.8	5.0		69.4		170.0
7.5				·	
9.4					
10.0					
10.5	3.9		62.8		83.3
12.0					
13.4					
14.0					
16.0					<b></b>
16.8					
17.0					
17.6					
17.8					
18.0	5.9	<u> </u>	35.4		42.6
19.1	7.2		35.4		42.6
				-	· ·
· 4.8 (40m)	17.5		77.7		162.4
					<b> </b> .
					<b> </b>
					<b> </b>

Option 4 Teight: 0m	Wind Di		330 ° Speed (m	NO ₂	
Distance (km)	£. 3	5	speed (m	s) 12	15
· · · · · · · · · · · · · · · · · · ·					
0.8	<u>,</u>				
1.2					
2.0	0.1		4.1		69.7
2.4					
3.0					
3.2	0.5	· ·····	11.9		25.7
4.8	1.9		35.9		102.4
7.5				·····	
9.4					
10.0					
10.5	2.3		43.1		60.1
12.0		;		•	
13.4					
14.0	.*				
16.0					
16.8					
17.0		·			
17.6					
17.8					
18.0	4.1		25.9		31.5
19.1	5.0		26.0		31.5
4.8 (40m)	6.6		40.2		97.8
· · · · · · · · · · · · · · · · · · ·					

	Wind Di		330 °	SO2	
Height: 0m		Wind	Speed (n	n s ⁻¹ )	
Distance (km)	3	5	8	12	15
0.8					
1.2					
2.0	1.6		44.9		595.7
2.4					
3.0			•		
3.2	6.0		93.2		163.9
4.8	15.9		220.8		540.9
7.5					
9.4	·				
10.0					
10.5	12.4		199.8		265.1
12.0					•
13.4					
14.0					
16.0		•			
16.8					
17.0					
17.6					
17.8					
18.0	18.8		112.6		135.6
19.1	22.9		112.6		135.6
4.8 (40m)	55.7		247.2		516.8

(assumes ozone concentration = 35 ppb)

Option 4	Wind Di		340 °	NO	
Height: 0m			Speed (n		
Distance (km)	3	5	8	12	
					· · · ·
·0.	8			·	
1.	2				
2.	0				
2.	4				
3.	0				
¹¹ 3.	2 4.5		214.1		289.7
<u> </u>	8				
7.			179.7	÷	136.7
· 9.	4				
10.	0	:			
10.			118.4		89.1
12.			•••••••		
13.					
14.	-1		73.9		67.1
16.			,		
16.			<u>_</u>		
		••••			
17. 17.			51.8		42.2
		_ <b>.</b>	51.0		44.4
17.	· ]				
18.					
19.	1 10.3		50.3		42.3
;					
10.5 (40 m	) 7.9		128.3		95.4
`					
1	-				
			-:		

.

Option 4	Wind Dir	ection:	340 °	NO ₂	
Height: 0m Distance (km)	3	Wind 5	Speed (m s	12	1
	<u> </u>			<u> </u>	
0.8					
1.2					
2.0					
2.4					
3.0		÷			
3.2	1.3		87.2		144
4.8					
7.5	4.4		112.6		93
9.4					
10.0					
10.5	4.3		81.3		64
12.0					
13.4					
14.0	3.1		53.0		49
16.0					
16.8					
17.0					
17.6	5.9		37.9		31
17.8			· .		
18.0					
19.1	7.2		36.9		31.
10.5 (40m)	4.6		88.1		68.
1					
• •					
		· ·			
		.			

NO2	·		Option 4	Wind Di	rection:	340 °	so,	
)			Height: 0m			Speed (m	i s ^{−1} )	
12			Distance (km)	3	5	8	12	15
				ļ			]	
			0.8					
			1.2					
			2.0	·				
			2.4					
			3.0				•	
	144.4		3.2			681.3	···· [	921.8
			4.8			001.0		
	93.8		7.5	1	· · ·	571.8		435,0
	75.0		9.4			371.0		
+	`~			<u>+</u>				
+			10.0					
$\frac{1}{1}$	<u>64.3</u>	•	10.5			376.7	· · ·	283.5
-			12.0					i
		,	13.4	ļ				
	49.3		14.0	15.0		235.1		213.5
			16.0					
			16.8					
	·		17.0		`			
	31.2		17.6	27.4		164.8		134.3
			17.8					
		:	18.0			[	,	
	31.3		19.1	32.8		160.1		134.6
		į						
	68.8	İ	10.5 (40m)	25.1		408.3		303.6
						:		•
		:						, ,
	;··							-
			· · · · · · ·	<u> </u>				i
L.		ļ		L				

-

Height: 0m		Wind S	peed (m	s ⁻¹ )		ſ	Heigh
Distance (km)	3	5	8	12	15		Distar
0.8						-	
1.2						ľ	
2.0	1.5		71.2		280.9		
2.4						-	
3.0							
3.2	12.2		130.9		227.8	:	
4.8						ŀ	
7.5					-		
9.4		· ·					
10.0 10.5	5.1		83.4		45.2		····
12.0			03.4	i.	1		
13.4	6.0		94.0		64.7	-	
14.0							
16.0				:			
16.8							
17.0	10.5		63.0		43.8		
17.6							
17.8	11.9		71.8		39.6		
18.0	9.4		56.5		29.3		
			.00.0		47.5		
						-	
-							
		:					

Option 4	Wind Di	rection:	356 °	NOz	
Height: 0m Distance (km)	3	Wind 5	Speed (m 8	s ') 12	1
		<u>F</u> -			
0.8					. <u> </u>
1.2					
2.0	0.3	······	20.7		104.
2.4					
3.0					
3.2	3.4		53.3		113.
4.8					
7.5	-				
9.4					
. 10.0					
10.5	3.0		57.2		32.
12.0			· ·		
13.4	3.8		67.1		47.
14.0					
16.0		·			
16.8					
17.0	7.2		46.0		32.
17.6					
17.8	8.2		52.5		29.:
18.0	;	4			· · · · · · · · · · · · · · · · · · ·
19.1	6.6		41.5		21.
N	х				-
			<u> </u>		
					<del></del> .
•			├		

	Vind Di	rection:	356 °	so,	
Height: 0m			Speed (m		
Distance (km)	3	5	8	12	15
	_				
0.8					
1.2					
2.0	4.8		226.6		893.8
2.4					
3.0					
3.2	38.8		416.5		724.9
4.8					
7.5					
9.4					
10.0					
10.5	16.2		265.4		143.8
12.0					
13.4	19.1		299.1		205.9
14.0					
16.0					
16.8					
17.0	33.4		200.5		139.4
17.6					
17.8	37.9		228.5		126.0
18.0					
19.1	29.9		179.8		93.2
	_				

(assumes ozone concentration = 35 ppb)

Option 5	Wind Di		015 °	NO	
Height: Om		Wind	Speed ( m		
Distance (km)	3	5	. 8	12	15
2.0	3.6		60.4		102.3
. 3.2	2.7		52.2	·	69.1
4.8					
7.5	5.3	i	40.4		34.8
· 9.2					
10.0					
10.5			29.9		24.9
12.0					
13.4					
. 14.0	6,4		21.3		18.6
16.0	: 				
16.8	5.3		10.2		9.1
. 17.0					
17.6					
17.8			 		
18.0					
19.1	<u> </u>				
•	<u> </u>				
16.8 (60 m)	5.3		10.2		9.1
·					

ption 5	Wind Direc	tion:	015°	NO ₂	
eight: Om			peed (m	s ⁻ ')	
slance (km)	3		8	12	15
	·				
2.0	0.5		15.3		38.1
3.2	0.6		* 18.9		34.5
4.8					
7.5	2.2		23.7		23.9
9.2	-				
10.0					
10.5	2.7		19.7		18.0
12.0					
13.4					
14.0	3.7		14.9		13.7
16.0					
16.8	3.3	•	7.3		6.7
17.0					
17.6					
17.8			ŀ		
18.0					
19.1			<u>_</u>		<b>.</b>
16.9.(60.)					6.7
16.8 (60m)	3.3		7.3		0,7
······					
sumes ožone	conserver t	00 - 25			<b>-</b>

r I

Option 5	Wind Dir				
Height: 0m Distance (km)	3	Wind 5	Speed (m 8	s ⁻¹ ) 12	15
Distance (KM)	3	>	8		10
2.0	1.4		64.4		105.0
3.2	4.3		77.1		94.1
4.8					
7.5	2.0		50.5		42.6
9.2	. 5.8		32.6		25.3
10.0	9.7		19.2		13.3
10.5	<u>                                     </u>				
. 12.0					
13.4					
14.0	<u>                                     </u>				
16.0	. 				
16.8					
17.0					
17.6					
. 17.8					
18.0					
19.1					
· 					
9.2 (60m)	6.2	<del></del>	37.7		27.1
9.2 (120m)	11.5		30.4		22.7

Option 5	Wind Di	rection:	160 °	NO ₂	
Height: Om		Wind	Speed (m	s ⁻¹ )	
Distance (km)	3	5	8	12	15
2.0	0.2		16.3		39.1
3.2	0.9		27.9		46.9
4.8					
7.5	0.8	`	29.7		29.3
9.2	2.7		20.7		17.9
10.0	4.8		12.5		9.6
10.5					
12.0					
13.4					
14.0					
16.0					
16.8		•			
17.0					
17.6					
17.8					
18.0					
19.1					
•••			 		
9.2(60m)	2.9		23.9	<u>.                                    </u>	19.2
9.2 (120 m)	5.4		19.2		16.1
accumac azana	, concentr		5 00)	·	

(assumes ozone concentration = 35 ppb)

.

. ..

N A

ł.

.

 $\bigcap_{i=1}^{n}$ 

•.

()()

NO,

12

15

20.8

27.9

56.3

· ,

19.2

19.5 .

12.8

,

3,7

	Vind Dire		232 °	NO				Wind Dire		232 °	1
leight: 0m			Speed (m s				Height: 0m			Speed ( m	s ⁻¹ )
Distance (km)	3	5	8	12	15		Distance (km)	3	5		
2.0	2.5		12.3		55.9		2.0	0.4		3,1	
3.2	8.6		20.3		55.9		3.2	1.9		7.4	
4.8							4.8				
7.5	7.7	·	18.2		82.0	•	7.5	3.2		10.7	
9.2							9.2		-	:	
10.0						•	10.0	· · · ·		-	
10,5	4,6	•	12.4		26.6		10.5	2.3		8.2	
· 12.0	4.6	i i	11.4		26.7		12.0	2.5	:	7.7	
13.4	:				<u> </u>	-	13.4				
14.0	4.7		9.7		17.4		14.0	2.7		6.8	
16.0							16.0	:			
16.8	,						16.8				
17.0			;				· 17.0		,		
17.6							17.6		, ,		
17.8	,	;			•		17.8				
18.0				· .			18.0		•		
19.1							19.1				
						:				· ·	
7.5 (40m)	7.5		17.8		5.4	:	7.5 (40m)	3,1		10.5	
			·	<u> </u>			÷	:			
	/			,	]	·	-		;		
-					:		(assumes ozone (	concentral	lion = 3	5 րրն)	

. :* *

ion = 35 ppb) ·* · `

. . 

۰;

Option 5	Wind Di				
Height: 0m	_	Wind	Speed (n	n s⁻¹)	
Distance (km)	3	5	8	12	15
2.0	2.5		20.9		94.3
3.2	1.7		23.5		81.8
4.8		<del></del>			
7.5	3.6		17.7		33.1
9.2					
10.0					
10,5	· 2.3		24.1		29.9
12.0					
13.4		·			·
14.0	2.0		15.0		22.1
16.0	·				
16.8	· · ·				
17.0					
17.6	; 	<u> </u>			·
17.8	-		· · · ·		
18.0	-				
19.1					
	· · ·				
14.0 (40m)	2.3	•	14.2		19.6
14.0 (80 m)	2.0	·	15.6		20.7

· •

· · · · ·

:

. • • •

Option 5 Height: 0m	Wind Dir		252 ° Speed (m	NO,	
Distance (km)	3	**iiiu 5	speed (m 8	s) 12	15
2.0	0.4		5.3		35.1
3.2	0.4		8.5		40.8
. 4.8					
7.5	1.5		10.4		22.7
9.2					
10.0	۱ •				
. 10.5	1.1		15.9		21.5
12.0					
13.4					
14.0	· 1.1		10.5		16.2
16.0					
16.8					
17.0					
17.6					
17.8			•		
18.0					
19.1					
		•			
14.0 (40m)	1.4		10.0		14.4
14.0 (80 m)	1.1		10.9		15.2
assumes ozone					. <u></u>

.

1

:

(assumes ozone concentration = 35 ppb)

 $\bigcirc$ 

••

 $\bigcirc$   $\bigcirc$   $\bigcirc$ 

 $\bigcirc$ 

()

270 °

Wind Speed (m s⁻¹) 5 8 1

NO,

12

15

Wind Direction:

3

Option 5

Height: 0m Distance (km)

Option 5	Wind Dir				
Height: 0m			Speed (m		
Distance (km)	3	5	8	12	15
2.0	24.7	<u> </u>	79.4		94.4
3.2	18.3		84.3		81.9
4.8					
7.5	22.5		33.0		36.1
9.2					
10.0					
. 10.5	5.5		30.7	19.2	24.4
12.0					
13.4	•				
14.0	3.7		24.9		18.2
16.0					]
16:8			·		
17.0					
17.6	· ·				
17.8					
18.0					
19.1					`
. :			-		
7.5 (40m)	6.2		38.9		42.6
7.5 (80m <u>)</u>	6.0		39.4		43.2

				19.1	
	-				
.2	38.9	 42.6		7.5 (40m)	
.0	 39.4	43.2		7.5 (80m)	
				• .	
		 :	· (4	assumes ozone c	ono
		• .	,		
	• •			۰.	

2.0 3.6 20.2 35.2 3.2 4.0 30.5 40.8 4.8 7.5 9.3 19.4 24.8 . 9.2 10.0 10.5 2.8 20.2 13.5 17.6 12.0 13.4 14:0 2.1 17.4 13.4 16.0 16.8 17.0 17.6 17.8 18.0 10 1 2.6 22.8 29.3 2.5 23.1 29.6 ncentration = 35 ppb) .

. .

. .

Option 5	Wind Di		290 °	NO,	<u>،                                     </u>
Height: 0m			Speed (n		
Distance (km)	3	5	8	12	15
			i 		
2.0	24.5		79.0		137.5
3.2	12.6		59.1		91.0
4.8					
7.5	7.7	. ,	36.3	-	35.6
9.2	<u>.</u>			_	
10,0					
10.5	8.6		29.6		23.5
12.0					
13.4					
14.0	14.9		19.6		14.4
16.0					•
16.8				_	
17.0					
17.6	· ·				
17.8					
18.0	:				
; 19.1	;				
7.5 (60 m)	7.4		36.2	_	34.7
10.5 (60m)	17.5		27.8		21.6

•

Option 5	Wind Di		290 °	NO,	
Height: 0m			Speed (m	s ⁻¹ )	
Distance (km)	3	5	8	12	15
	[				
2.0	3.6		20.0		51.2
3.2	2.8		21.4		45.4
4.8					
7.5	3.2		21.3		24.5
9.2					
10.0	(				
10.5	4.4		19.5		17.0
12.0					
13.4	. <u> </u>				
14.0	8.7		13.7		10.6
16.0	:				
16.8		•			
17,0		·			
17.6					
17.8					
18.0					
19.1					
7.5 (60m)	3.1		21.2		23.8
10.5 (60m)	8.9		18.3		15.6
(aśsumes ozone	, conceptr	ation = 2	5 aph)		

(assumes ozone concentration = 35 ppb)

. *

.) !

.

 $\bigcap \quad (\uparrow$ 

.

• •

(_)

•

.

.

 $\cap$ 

	Wind Dire		NO	
Height: 0m		Speed (m	s")	
Distance (km)	3	 8	12	15
2.0	5.9	48.2		50.3
3.2	3.2	9,9		17.7
4.8				
7.5	4.1	13.8		13.1
9.2				
10.0				
10.5	4.4	 12.5		11.0
12.0				
13.4				
. 14.0	1.1	7.1		6.2
16.0	0.8	7.2		6.2
16.8	-			:
17.0				
17.6				
17.8	:			
18.0			1	2
- 19.1				
				•
3.2 (60m)	6.5	17.8	·	21.3
			. T	

. : • × .

Option 5 Wind Direction: 310 ° NO, Wind Speed (m s^{~1}) 5 8 1 Height: 0m Distance (km) 12 3 15 2.0 0.9 12.2 18.7 3.2 0.7 3.6 8.8 4.8 7.5 8.1 1.7 9.0 9.2 10.0 . 10.5 8.2 7.9 2.2 12.0 13.4 14.0 0.6 5.0 4.5 16.0 0.5 5.2 4.5 16.8 17.0 17.6 17.8 18.0 · 19.1 ; . . 1.4 3.2 (60m) 6.5 . 10.6

(assumes ozone concentration = 35 ppb)

	Vind Dire			NO	
leight: 0m		Wind	Speed ( m	s ⁻¹ )	
Distance (km)	3	5	8	12	15
2.0	6.5		52.7		80.9
3.2	3.4		22.8		14.3
4.8	6.6		43.9		34.4
7.5					
9.2					
10.0					
10.5	4.8		29.9		18.9
12.0	•				
13.4					
14.0					
16.0					
16.8					
17.0					
17.6					
17.8					
18.0	1.5		15.2		10.1
19.1	:				
· .					
4.8 (60m)	8.6		44.3		34.4
18.0 (60m)	1.5		14.7		10.2

•

.

.

•

•

	Wind Di		330 °	NO,	
Height: Om		Wind	Speed (n	n s ⁻¹ )	
Distance (km)	3	5	8	12	15
2.0	0.9		13.4		30.1
3.2	0.7		8.3		7.1
4.8	2.0		20.6		20.7
7.5		-			·
9.2					
10.0					
10.5	2.4		19.7		13.6
12.0					
13.4			·		
14.0					
16.0					
16.8					···
17.0					
17.6			· · ·		
17.8		-			, ,
18.0	1.0		11.0	·	7.4
19.1					
4.8 (60m)	2.6		20.8		20.7
18.0 (60 m)	1.0		10.7		7.6
(assumes ozone	,	ution m 7	5 nab)		

-

.

(assumes ozone concentration = 35 ppb)

()()

Height: 0m		Wind	Speed (m	s ⁻¹ )			Height: 0m		Wind	Speed ( п	s ⁻¹ )	
Distance (km)	3	5	8	12	15		Dislance (km)	3		8	12	15
											<u> </u>	
2.0	7.5		61.1	·	75.8		2.0	1.1		15.5		28.2
3.2							3.2					
4.8							4.8					
7.5	7.7		35.6		34.4	•	. 7.5	3.2		20.9		23.6
9.2	,						9.2					
10.0							10.0	1 k				
10.5	5.6	5	17.2		17.4		10.5	· 2.9		11.3		12.5
12.0							12.0					
13.4	,						13.4		:		•	
14.0	2.3		15.9		17.8		14.0	: 1.4	7	11.1	ľ	13.1
16.0			•				16.0					
16.8		· · · ·	i				16.8					,
17.0	:			i	,	•	17.0				· · · · ·	i
17.6	0.4	:	3.8		5.9	:	17.6	0.2	;	2.7		4.3
17.8		!					. 17.8					
18.0			· ·				18.0	r				[
19.1	, 1.2		8.5		8.7		. 19.1	. 0.8	,	6.2		6.4
					0.7	•	. 17.1	. 0.0			÷	
	· · ·			·				-	:		·	<b>]</b> .
							·····		·		·	
<u> </u>									<u>.</u>			
			I			l,	(assumes ozone	concentr	alion = 3	5 nnli)		

Height: 0m Dislance (km) 2.0 3.2	3	5	Speed (m 8	12	
2.0	11			14	15
	11				
3.2	1.1		15.5		28.2
4.8					
7.5	3.2		20.9		23.6
9.2	,				'
10.0					
10.5	2.9		11.3		12.5
12.0					
13.4		:			
14.0	1.4	7	11.1		13.1
16.0	1				
16.8		•			
17.0					
17.6	0.2		2.7		4.3
. 17.8			:		
18.0	r				
. 19.1	. 0.8		6.2		6.4
<u> </u>	-	-		ı	
·.					
	, ;				
issumes ozono			 35 ppb)		
	:	<u>.</u>			
			• •		

	Wind Dir			NO _x	
Height: 0m		Wind	Speed (m	s ⁻¹ )	
Distance (km)	3	5	8	12	15
					ĺ
2.0	10.7		86.4		69.6
3.2	7.7		62.8		43.9
4.8					[
7.5					
9.2	<u>.</u>				
10.0					
10.5	: 3.0		9.0		6.7
12.0	:				
13.4	2.4		18.9		11.1
14.0		:			
; 16.0			 		·
16.8					]
; 17.0	4.7		15.4		8.9
17.6					
17.8	1.4		13.5		7.4
: 18.0					]
19.1	0,6		5.7		3.6
· · · · · · · · · · · · · · · · · · ·	<u>.                                    </u>		-		
			<del>_</del>		
-					
,			· ·		

	ind Dire	ection:	356 °	NO ₂	
Height: 0m	_	Wind	Speed (m s	;-1)	
Dislance (km)	3	5	8	12	15
2.0	1.6		21.9	,	25.9
3.2	1.7		22.7		21.9
4.8			1	ļ	
7.5		· ·			
9.2					
10.0	: •		,		
10.5	1.5		5.9		4.8
12.0			<u> </u>		
13.4	1.4		13.1		8.2
14.0					
16.0					
16.8					
17.0	3.0		11.1		6.5
17.6					
17.8	0.9		9.7		5.5
18.0					
19.1	0.4		4.2		2.7
·		· · · ·			
<u> </u>					
· ·					•
			1		:

(assumes ozone concentration = 35 ppb)

. X. A. . .

.

.

 $) \cap C$ 

•

; `

( . . . . .

Option 6 Height: 0m		Wi	nd Spec	ed (m s'	-1)	
Distance (km)	3	5	8	10	<b>1</b> 2	15
2.0	3.2		94.1			210.4
. 3.2	0.2		82.7			156.0
4.8						
7.5	2.3		30.5			42.0
9.2				•	•	•
10.0						•
10.5	0.6		31.1			30.6
12.0						<u></u>
13.4					1	
14.0	0.4		25.9			22.5
16.0						
16.8						
17.0					· · ·	:
17.6						
17.8						
18.0						<u></u>
<u></u>						
7.5 (40m)	0.3		37.8		 	52.1
7.5 (80m)	0.2		38.4			52.1

	Wind C	irectior	N: 27	0 "	NO ₂	
Height: 0m		Wi	nd Spee	ed (m s'	-')	
Distance (km)	3	5	8	10	12	15
2.0	0.5		23.9			78,4
3.2	0.0		29.9			77.8
4.8						
7.5	0.9		17.9			28.8
9.2			•	· ·	:	
10.0					-	
10.5	0.3	•	20.5			22.0
12.0	: 					
13.4						
14.0	0.2		18.1			16.5
16.0						
16.8		<u> </u>				
17.0						
17.6						
17.8			·			
18.0						
19.1						
· ; 		•				
7.5 (40m)	0.1		22.2			35.8
7.5 (80m)	0.1		22.5			35.8

.

.

.

مر د

.

	Wind D	irection	n: 27	0 °	so,	
Height: Om		Wi	nd Spec	ed (m s'	')	
Distance (km)	3	. 5	8	10	12	15
2.0	5.7		169.4			378.9
3.2	0.4		148.9			280.8
4.8						
7.5	4.1		54.9			75.6
9.2						
10.0						
10.5	1.1		56.0			55.0
12.0						
13.4						
14.0	0.7		46.6			40.5
16.0			. <u> </u>			
16.8						
17.0						
17.6						
17.8						
18.0						
19.1						
7.5 (40m)	0.5		68.1			93.8
7.5 (80m)	0,4		69.1			93.8

(assumes ozone concentration = 35 ppb)

5.4

. . .,

· . _

and the second second second second second second second second second second second second second second second

· · ·

• .

Height: Om		Wine	I Speec	( m s ⁻¹ )	)	
Distance (km)	3	5	8	10	12	15
<u>-</u>						
2.0			·			•
3.2	6.6		123.4			156.9
4.8						
7.5	0.2		73.6			79.8
9.2						
10.0						
10.5	0.3		41.7			50.8
12.0						ı
13.4						
14.0			31.4			38.7
16.0						
16.8						
17.0						
17.6			11.0			20.3
17.8						
18.0						
19.1			17.2			21.7
· .						

.

.

	Wind Di				NO,	
Height: 0m	_		nd Spee	ed (m s	·')	
Distance (km)	3	5	8	10	12	15
2.0						
			·····			
3.2	1.4		44.7			78.2
4.8						
7.5	0.1		43.2			54.8
9.2						
10.0						
10.5	0.2		27.4			36.7
12.0						
13.4		,				
• • • •	r		22.0			28.4
14.0			22.0			20.4
16.0						
16.8						
17.0						
17.6			7.9			15.0
17.8						
18.0						
19.1			12.5			16.0
	<del>-</del>					
· ·						

				· · · ·		_
Option 7	Wind Di	rection	: 340	۰	SO2	
Height: 0m				ed (m s	¹ )	
Distance (km)	3	5_	8	10	12	15
2.0						
3.2	11.8		222.1			282.5
4.8						
7.5	0.4		132.5			143.7
9.2						
10.0						
10.5	0.5		75.0			91.5
12.0						
13.4						
14.0			56.5			69.7
16.0						
16.8						
<u>,</u> 17.0						
17.6			19.7	· .		36.6
17.8			;			
18.0						
19.1			30.9			39.1
						·

(assumes ozone concentration = 35 ppb)

.

,

, , ,

Option 6	Wind D			0	NO	
Height: 0m		Wi	nd Spee	ed (m s	-')	
Distance (km)	3	5	8	10	12	15
2.0						,
3.2	1.1		58.1			69.6
4.8				·•		
7.5	1.0		42.8			42.6
9.2						
10.0						
10.5	0.5		21.3			22.5
12.0						
13.4						
14.0	0.4		17.9			· 21.3
16.0						
16.8						
17.0						
17.6			4.3			7.9
17.8						
18.0						
19.1	0.1		10.2			11.0
·						
<b>.</b>			L			

•

1 1.		_	-	
· •				
ł				
÷				
:				
	:			

Option 6	Wind D			<b>.</b>	NO ₂	
Height: 0m		Wi	ind Spee	ed (m s'	⁻ ')	
Distance (km)	3	5	8	10	12	15
2.0						
3.2	0.2		21.0			34.7
4.8						
7.5	0.4		25.1			29.2
9,2						
10.0						
10.5	0.3		14.0			16.2
12.0						
13.4						
14.0	0.2		12.5			15.7
16.0		<del></del>				
16.8		. <u></u>				
17.0						
17.6			3.1			5.8
17.8						
18.0			7.4			
19.1		<u>،</u>	7.4			8.2
<u>·</u>						
······································						

(assumes ozone concentration = 35 ppb)

·····						
	Wind D	irection	n: 340	0	SO2	
Height: 0m		Wi	nd Spe	ed (m s	-1)	
Distance (km)	3	5	8	Ì TO	<b>1</b> 2	15
Distance (Rin)	- J		Ū			
					-	
2.0						
3.2	2.0		104.6			125.3
4.8			-			
75	10		77.1			76.7
7.5	1.8		77.1			70.7
9.2						
7.4						
10.0						
10.5	1.0		38.3			40.5
						10.5
12.0						
13.4						
14.0	0.7		32.1			38.4
						· · · ·
16.0						ĺ
منه						
. 16.8						
17.0						
17.0						
17.6			7.8			14.2
17.0			7.0			14.2
17.8						
						<u></u>
18.0						
19.1			18.4			19.9
•						
		_				
	6					-

	Wind Dir	ection: 27	°0 °	NO	
Height: 0m		Wind Spe	ed (ms	·')	
Distance (km)	3	5 8	10	12	15
·					
2.0	6.4	309.2			535.9
3.2	1.7	125.9			245.5
4.8					
7.5	0.7	38.0			66.5
. 9.2					
10.0					
10.5	0.8	39.6			52.9
12.0					
13.4					
14.0	0.6	26.9			36.8
16.0	<u>.</u>				
16.8					
17.0					
17.6	<u> </u>				
17.8			·		
18.0					
19.1					
7.5 (40m)	1.1	52.4			87.9
7.5 (80m)	1.1	52.2			87.1

.

.

•

	Wind E	irection	: 27	0 °	NO2	
Height: 0m	_	Wir		ed (m s	·')	
Distance (km)	3	<u>5</u>		10	12	15
2.0	0.9		78.5			199.7
3.2	0.4		45.6			122.4
4.8						
7.5	0.3		22.3			45.6
9.2						
10.0				۰.		
10.5	0.4		26.0			38.1
12.0						
13.4						
14.0	0.4		18.9			27.0
16.0						
16.8		•				
17.0						·
17.6						
17.8						
18.0						
19.1						
	<u>.</u>					
7.5 (40m)	0.4		30.8			60.3
7.5 (80m)	0.5		30.6			59.8
	•.•					

.

	Wind D				SO2	
Height: 0m				ed (m s		
Distance (km)	3	5	. 8	10	12	15
2.0	11.4		556.8			965.0
3.2	3.0		226.6			442.0
4.8						
. 7.5	1.2		68.5			119.7
9.2						
10.0	• •					·
10.5	1.4		71.2	<u> </u>		95.2
12.0						
13.4						
14.0	1.1		48.5			66.2
16.0						
16.8						
17.0						
17.6						
17.8						
18.0		-				
19.1						
7.5 (40m)	1.9		94.4			158.3
7.5 (80m)	2.0		94.0			156.8

.

(assumes ozone concentration = 35 ppb)

...

•

.

.

.

### $( \cap \cap \cap \cap \cap \cap )$

	Wind D			°	NO,	
Height: 0m Distance (km)	3	5	nd Spe 8	ea (m.s. 10	12	15
Distance (Kul)				10	12	
2.0	99.7		127.3			349.8
. 3.2	68.1		185.0			283.0
4.8						
7.5	28.5	<u></u>	196.7			149.7
9.2						
10.0				 		
10.5	37.1		153.6			105.1
12.0	·					
13.4						· ····
14.0	30.8		110.8			61.5
15.0						
16.0						
16.8	19.9		67.5			35.6
17.0						
17.6						
17.8						
18.0						
19.1						
16.8 (40m)	27.6		67.7		· · · ·	38.0
	<b>-</b>					

• •

. . .

- `

	Wind D			o	NO2	
Height: 0 m		Wi	nd Spee	ed (m s	⁻¹ )	
Distance (km)	3	5	.8	10	12	15
······						
2.0	14.6		32.3			130.3
3.2	15.0		67.0			141.1
4.8						
7.5	11.8		115.4			102.8
9.2						
10.0			;	. :		
10.5	18.8		101.1			75.8
12.0				•		
13.4	· ·		<u>`</u>			
14.0	17.9		77.7			45.2
15.0	·					
16.0	· · ·					
16.8	12.4		48.5			26.3
17.0						,
17.6						
17.8					, 	
18.0						
19.1						
-						
16.8 (40m)	17.2		48.6			28.0
				. <u> </u>		

.

## (assumes ozone concentration = 35 ppb)

4 · · •

: · · · · .

Height: 0m	Wind Direction: 015 ° SO ₂ Wind Speed (m s ⁻¹ )							
Distance (km)	3	5	8	<u> </u>	<u>12</u>			
2.0	31.7		40.5			111		
3.2	21.7		58.8			90		
4.8								
7.5	9.1		62.6			47		
9.2								
10.0								
	11.8		48.8			33		
12.0								
13.4								
14.0	9.8		35.2			19		
15.0								
16.0								
16.8	6.3		21.5			11		
17.0						<u> </u>		
17.6						<u> </u>		
17.8	<u> </u>							
18.0								
19.1								
16.8 (40m)	8.8		21.5					

•

.

Option 8	Wind D	irectior	n: 310	0	NO,	
Height: 0m		Wi	nd Spe	ed (m. s	-1)	
Distance (km)	3	5	. 8	<u>` 10</u>	12	15
2.0	29.2		41.8			227.6
3.2	61.0		110.8			264.2
4.8				! 		
7.5	_ 11.4		86.5			78.5
.9.2						
10.0		-				
10.5					~	
12.0	-					·
13.4	_					
14.0			80.2			49.5
15.0	1.8		99.7	 		61.0
16.0	4.4		102.4			57.2
16.8				·····		
17.0						
17.6				 		
17.8						
18.0						
19.1						
3 2 (60-)-			142.0			205 1
3.2 (60 m)⁻	7.2		143.0			305.1
			-			
	L					

	Wind Dir			o	NO ₂	
Height: 0m	-	Wir	nd Spe	ed (m s	-1)	
Distance (km)	3	5	8	10		15
2.0	4.3		10.6			84.8
3.2	13.4		40.1			131.7
4.8						
7.5	4.7	ſ	50.8			53.9
9.2					·	u <b>-</b>
10.0					·	
10.5						
12.0						
13.4	•	Í				
14.0			56.2			36.4
15.0	1.1		70.6			44.9
16.0	2.7		73.1			42.2
16.8						
17.0				<u> </u>		
17.6	·					
17.8						
18.0						
19.1	: .					
	-					
3.2(60m)	1.6		51.8			152.1
	· · · ·					

Option 8	Wind Di	irectior	n: 310	٥	SO2	
Height: 0m		Wi	nd Spee	ed (m s ⁻	⁻¹ )	
Distance (km)	3	5		10	12	15
2.0	9.3		13.3			72.4
3.2	19.4		35.2			84.0
4.8						
7.5	3.6		27.5			25.0
9.2						
10.0						
10.5						
12.0						
13.4						
14.0			25.5			_15.7
15.0		İ				
16.0	1.4		32.6			18.2
16.8					·	
17.0				,		
17.6						
17.8						
18.0						
19.1						
3.2 (60m)	2.3		45.5			97.0
· · · ·						
					ľ	

· ·

:

•

•

### $\bigcirc$ $\bigcirc$ $\left( \right) \left( \left( \right) \right) = \left( \left( \left( \right) \right) \right)$ ()( )()

	Wind E	irection		0	NO,	
Height: 0m			nd Spee	ed (m s'	⁻¹ )	
Distance (km)	3	5	8	10	12	15
2.0	9.6		78.8			349.6
3.2						
4.8	82.0		91.1			175.5
7.5						
9.2						
10.0				· 		
10.5	81.3		127.3			30.1
12.0	<u> </u>					
13.4						<u> </u>
14.0			88.5			74.0
15.0						
16.0						
16.8						
17.0						<u> </u>
17.6						7
17.8	12.1		61.2			64.7
19.1			01.2			04.7
				<b>/</b> ***		
4.8 (60m)	28.8		119.7			195.3
						<u> </u>

	Wind D	- )irection		0	NO,	
Height: 0m		Wi	nd Spee	d (m s	- <u></u>	
Distance (km)	3	5	.8	10	12	15
2.0	1.4		20.0			130.2
3.2						
4.8	24.9		42.8			105.7
7.5						
9.2						
10.0			· • • • • • • • • • • • • • • • • • • •			
10.5	41.2		83.8			21.7
12.0						
13.4						
14.0			62.0			54.4
15.0						
16.0						
16.8						
17.0						
17.6						
17.8	·			•		
18.0	7.7		44.3			47.8
19.1						
4.8 (60 m)	8.7		56.3			117.6
·						

	Wind E			o	SO2	
Height: 0m	-		nd Spee	ed (m s'		
Distance (km)	3	5	8	10	12	15
2.0	3.1		25.1			111.2
3.2						
4.8	26.1		29.0			55.8
7.5						
9.2		<b>-</b>				
10.0						
10.5	25.9		40.5			9.6
12.0		·				
13.4						
14.0			28.1			23.5
15.0						
16.0						
16.8						
17.0						
17.6						
17.8						
18.0	3.8		19.5			20.6
19.1						
4.8 (60 m)	9.2		38.1			62.1
L						

(assumes ozone concentration = 35 ppb)

1.1

Option 8	Wind D	irection: 340	٥	NOx	
Height: 0m		Wind Spe	ed ( m s'	-1)	
Distance (km)	3	5 8	10	12	15
2.0					
3.2	10.4	145.8			276.3
4.8					
7.5	15.0	158.0			130.4
9.2	-				
10.0	· .				
10.5	20.1	99.5			83.9
12.0					
13.4	<b> </b>				
14.0	8.1	78.7			73.7
15.0	·	• •			
16.0					
16.8					
17.0					
17.6	10.0	46.0			37.0
17.8	:				
18.0	:				
19.1	8.3	48.1			39.3
10.5 (40m)	12.5	115.7			<b>97.1</b>
<u>.</u>					-

	Wind Dir	ection: 340	o	NO ₂			
Height: 0m		Wind Speed $(m s^{-1})$					
Distance (km)	3	5 8	10	12	15		
2.0							
3.2	2.3	52.8		132	7.8		
4.8		· · ·					
7.5	6.2	92.7		8	9.5		
. 9.2							
10.0							
10.5	10.2	65.5		60	0.5		
12.0							
13.4							
14.0	4.7	55.2		5	4.1		
15.0							
·							
16.8							
17.0							
17.6	6.3	· 33.2		2	7.3		
17.8							
18.0							
19.1	5.4	34.9		25	9.0		
10.5 (40m)	6.3	76.2		- 70	0.0		
			·····				

	Wind D			0	SO2	
Height: 0m		Wi	nd Spee			
Distance (km)	3	5	8	10	12	15
2.0					_	
3.2	3.3		46.4			87.9
4.8						
7.5	4.8		50.2			41.5
9.2						-
10.0					. 	
10.5	6.4	<del></del>	31.6			26.7
12.0						
13.4						
14.0	2.6	•	25.0			23.4
15.0		<u>.</u>				
16.0						
16.8						
17.0				· · · · · -		
17.6	3.2		14.6			11.8
17.8						
18.0			16.2			10 5
19.1	2.6		15.3			12.5
10.5 (40m)	4.0		36.8			30.9
		I				

()

• • • • •

.

(assumes ozone concentration = 35 ppb)

•

 $(\mathbf{r}, \mathbf{r}, $\bigcirc$ 

Option 8 Height: 0m	Nind Di		: 356 1d Spee	ہ م	NO	
Distance (km)	3	5	iu spee 8	10 a (m.s	, 12	15
			<u> </u>	<u> </u>		
2.0			7.1	·····		179.2
3.2	39.0		41.6			211.6
4.8						
7.5					,	
9.2						
10.0						
10.5	16.2		76.7	·		103.4
12.0	35.8		49.4	;		71.5
13.4						:
14.0	16.0		64.9			71.9
15.0			: 			
. 16.0						
16.8						·
17.0				:		
17.6	·					•
17.8	22.3		60.5			51.6
. 18.0						
. 19.1	·			`		
. : .	· .				:	
14.0 (40 m)	9.1		70.1			73.6
	· ·	.				

Height: 0 m		Wi	nd Spee	ed (m s	⁻ ')	
Distance (km)	3	5	8	10	12	15
2.0			1.8		: 	66.8
3.2	8.6		15.1			105.5
4.8					_	
7.5						
9.2		:				· _ · _ · _ ·
10.0						
10.5	8.2		50.5		,	74.6
12.0	19.4		33.6		· .	52.7
13.4						
14.0	9.3		45.5		_	52.8
15.0	•					
16.0				,		
16.8					· ·	
17.0			<u></u>			
17.6						• • • • •
17.8	14.2		43.7		_	38.
18.0						<u> </u>
19.1	; ;					
14.0 (40m)	5.3		49.1			54.3

	Wind D			0	SO2	
Height: 0m			nd Spee		-')	
Distance (km)	3	5	8	10	12	15
2.0			2.3			57.0
3.2	12.4		13.2			67.3
4.8						
7.5						
9.2						÷
10.0						
10.5	5.2		24.4			32.9
12.0	11.4	· ;	15.7			22.7
13.4		:	į			
14.0	5.1		20.6			22.9
15.0			;			
16.0		<u> </u>				
16.8	:					·
17.0					•	
17.6						
	7.1		19.2			16.4
					·	
19.1						
			· ·			· ·
14.0 (40m)	2.9		22.3			23.4
			· · ·			· · · ·

.,

(assumes ozone concentration = 35 ppb)

•

.

	Wind D				NOx	
Height: 0m		Wi	nd Spee			
Distance (km)	3	5	8	<u>10</u>	12	15
2.0	1.1		10.1			238.1
3.2	3.1		32.8			170.2
4.8						
7.5	3.0		31.1			112.7
9.2						
10.0	:					
. 10.5	_ 1.7		62.0			90.7
12.0	<u> </u>					
13.4	-					
14.0	3.5		64.1			68.2
16.0						]
16.8	-					]
17.0	•					
17.6						
. 17.8	·		,			
18.0						
19.1	· · · 				·	
· · · · ·				•		
7.5 (40m)	2.2	•	36.7			122.8
7.5 (80m)	2.3		38.7			126.4
7 •						

÷

•

	Wind D			0 °	NO ₂	
Height: 0m		Wi	nd Spee	ed (m s'	-1)	
Distance (km)	3	5	8	10	12	15
2.0	0.2		2.6			88.7
3.2	0.7		11.9			84.9
4.8				··		
7.5	1.2		18.2			77.4
9.2	•			•		
10.0	[]	 				
10.5	0.9		40.8			65.4
12.0	•					
, 13.4	۰ ۰					
14.0	2.0	•	44.9			50.1
. 16.0		, 				
16.8			:			
17.0		· ·				
17.6						
17.8						
18.0						
19.1	-,					
· ·		•				
7.5 (40m)	0.9	· ·	21.5			84.3
[•] 7.5 (80 m) [•]	1.0	·	22.7			86.8
:		hation	- 25	L)		

(assumes oz	one conce	ntratio	n = 35 ppb)	
		•		

,

	Wind D			0 °	SO2	
Height: 0m		Wi	nd Spee	ed (m s	-1)	
Distance (km)	3	5	8	10	12	15
2.0	1.8		16.1			378.8
3.2	4.9		52.2			270.8
4.8						
7.5	4.8		49.5			179.3
9.2			· · · · · ·			
10.0						
: 10.5	2.7		98.6			144.3
12.0	,	-		•		
13.4						: 
14.0	5.6		102.0			108.5
16.0		<u></u>				
16.8						
17.0		r			. <u> </u>	
17.6				<u> </u>		•
17.8						
18.0						<b>—</b> ——
. 19.1						
7.5 (40m)	. 3.5		58,4			195.4
7.5 (80m)	3.7		61.6			201.1
*	Ŀ					

.

 $\bigcirc$ 

.

•

; ·

:

Option 9 leight: 0m	Wind Dire	ection: 340 Wind Spe	•	NO _x	
Distance (km)	3	5 8	10	, 12	15
			<u>_</u>		
2.0	7.0	97.5			281.3
3.2					<del></del>
4.8					
7.5	41.7	117.7			136.1
9.2					<u> </u>
10.0			 		•
10.5	17.4	86.3			89.2
12.0					
13.4	·				
14.0	10.6	69.9	· ·		74.8
16.0					
16.8	<u> </u>				
17.0 17.6	8.8	33.4			46.5
17.8	0.0	55.4			10.0
18.0				·	
19.1	10	41.2			47.6
		_			
10.5 (40m)	16.2	98.6			101.0

	Wind Di	rection:		o	NO ₂	
Height: 0m		Wind	Spee	:d (m s	· ⁻ )	
Distance (km)	3	5		10	12	15
2.0	1.0		24.7			104.8
3.2						
4.8						
7.5	17.3		69.1			93.4
9.2					_	
10.0						
10.5	8.8		56.8			64.3
12.0						
13.4						
14.0	6.2		49.0			54.9
16.0						
16.8						
17.0						
17.6	5.6		24.1			34.3
17.8						
18.0						
19.1	6.5		29.9			35.2
10.5 (40m)	8.2		64.9			72.8
	,	ntion -	25			

Option 9	Wind E			o	SO2	_
Height: 0m		Wi	nd Spee		-')	
Distance (km)	3	5	8	10	12	15
2.0	11.1		155.1	· ·		447.5
3.2						
4.8						
7.5	66.3		187.3			216.5
9.2						;
10.0						
10.5	27.7		137.3			141.9
12.0						
13.4						
	16.9		111.2			119.0
16.0					····	i
16.8						
17.0	·				·	
17.6	14.0		53.1			74.0
17.8			··	····· ·		·
18.0	15.9		65.5			75.7
	13.9					15.1
10.5 (40m)	25.8		156.9			160.7
	·					

(assumes ozone concentration = 35 ppb)

× .;

	Wind Di		270 °	NO,	
Height: 0m		Wind	Speed (n		
Distance (km)	5	8	10	12	15
0.8		49.7		184.6	324.2
1.2		61.8		175.0	247.8
2.0	21.9	86.6	176.4		236.5
2.4	-	23.6		86.6	138.2
3.0				<u> </u>	
3.2	7.0	45.3	51.1	68.1	114.4
4.8					
7.5	3.7	21.9	23.4		
8.0					
10.0					
10.5	3.2	14.3	14.3		
14.0	2.1	13.9	13.1		
16.0					<u></u>
16.8					
17.0					
17.6					
· 18.0					
. 19.1				<u> </u>	,
· · · · · · · · · · · · · · · · · · ·					
0.8 (60m)		102.6		267.0	369.7
0.8 (120m)		202.7		317.4	337.8
7.5 (40m)	3.8	20.5	23.2		
7.5 (80m)	3.4	21.1	23.6		

.

	Wind Di		270 °	NO ₂			Vind Dire		270 °
Height: 0m Distance (km)	5	Wind 8	Speed (m 10	1 s ⁻ ') 12	15	Height: 0m Distance (km)	5	Wind 8	Speed ( 10
	·.		÷		,				
0.8		5.7		28.3	58.6	0.8	_	79.5	
1.2		10.2		38.1	62.9	1.2		98.9	
2.0	4.2	22.0	51.4		88.1	2.0	35.0	138.6	282.2
2.4		6.9		32.1	58.1	2.4		37.8	
3.0						3.0			
3.2	. 2.0	16.4	20.8	30.5	57.0	3.2	11.2	72.5	81.8
4.8			-			4.8			
7.5	1.8	12.9	14.7			7.5	5.9	35.0	37.4
8.0		- F 				8.0		<i>.</i>	
10.0						10.0			
10.5	1.9	9.4	9.8			10.5	5.1	22.9	22.9
14.0	1.4	9.7	9.4			14.0	3.4	22.2	21.0
16.0						16.0			
16.8						16.8			
17.0						17.0			
17.6						17.6			
18.0		· .				18.0	_ · _		
19.1						19.1			
·									
0.8 (60m)		11.7		40.9	66.8	0.8 (60m)		164.2	
0.8 (120m)		23.2		48.6	61.0	. 0.8 (120m)		324.3	
7.5 (40m)	1.9	12.0	14.5			7.5 (40m)	6.1	32.8	37.
7.5 (80m)	1.7	12.4	14.8			7.5 (80m)	5.4	33.8	37.8
						· · · · · · · · · · · · · · · · · · ·			
assumes ozone co	oncentral	tion = 35	ppb)	I		••••••••••••••••••••••••••••••••••••••	<u></u>		

Option 10	Wind Di		270 °	SO,	
Height: 0m		Wind	Speed (n		
Distance (km)	5	8	10	12	15
0.8		79.5		295.4	518.7
1.2		98.9		280.0	396.5
2.0	35.0	138.6	282.2		378.4
2.4	· 	37.8		138.6	221.1
3.0					·
3.2	11.2	72.5	81.8	109.0	183.0
4.8					
7.5	5.9	35.0	37.4	,	
8.0					
10.0					
10.5	5.1	22.9	22.9		
14.0	3.4	22.2	21.0		
16.0					
16.8					
17.0					
17.6		,			
18.0					
19.1					
0.8 (60m)		164.2		427.2	591.5
0.8 (120m)		324.3		507.8	540.5
7.5 (40m)	· 6.1	32.8	37.1		
7.5 (80m)	. 5.4	33.8	37.8		
	l 				

•

 $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 

Height: 0m		Wind	Speed (n	n s ⁻¹ )	
Distance (km)	5	8	10	12	15
0.8		79.4		227.5	323.6
1.2		27.5		95.6	132.7
2.0		58.4		105. <del>9</del>	118.8
2.4		32.3		81.2	94.3
3.0					:
3.2		29.0		84.9	103.8
4.8					:
7.5					
8.0					
10.0					
10.5					
14.0					
16.0					
16.8	•				
17.0			<u> </u>		
17.6					
18.0					
19.1					
· · · · ·					
0.8 (6Ōm)		126.8		305.1	394.5
0.8 (120m)		239.4		394.7	378.1
· · ·	•				

•	-		1	e.	
		2			
	•				

	Vind Dire		290 °	NO ₂	
Height: 0m	-		Speed (m		
Distance (km)	5	8	10	12	-
0.8		9.1		34.9	
1.2		4.5		20.8	
2.0		14.8		34.5	
2.4	-	9.5		30.1	
3.0	-				
3.2		10.5		38.0	
4.8					
7.5					
8.0					
10.0					
10.5					
14.0					
16.0					
16.8					
17.0					
17.6					
18.0					
19.1					
0.8 (60m)	· .	14.5		46.7	
0.8 (120m)		27.4		60.5	
				C	

(assumes ozone concentration = 35 ppb)

	nd Direction:	290 °	SO2	
Height: 0m		Speed (m		
Distance (km)	5 8	10	12	1
0.8	127.0		364.0	517.
1.2	44.0		153.0	212.
2.0	93.4		169.4	<u>190.</u>
2.4	51.7		129.9	150.
3.0		,		
3.2	46.4		135.8	166.
4.8				
7.5				
8.0				• •
10.0				
10.5		ł		
14.0				•
16.0				
16.8	· .			
17.0				
17.6				
18.0				
19.1				
0.8 (60m)	202.9		488.2	631.
0.8 (120m)	383.0		631.5	605.
<b>_</b>				
<b>_</b>				

	Option 10	Wind Dir	ection:	310 °	NO _x	
. •	Height: 0m		Wind	Speed (n	n s ⁻¹ )	
	Distance (km)	5	8	10	12	15
				• •		
	0.8		37.0		197.4	288.6
-	1.2		22.1		130.0	206.8
	2.0		17.2		83.9	145.4
:	2.4		20.7		77.2	130.2
	- 3.0					
1	3.2		22.4		76.2	107.2
	4.8					
.:	7.5					
-	. 8.0					
2 2	10.0					
	10.5					
	14.0		,			
	.16.0					
-	16.8	·				
	17.0					
	17.6					
	18,0		· ]			
	19.1					
	•		· .			
	0.8 (60m)		67.2		250.9	339,0
``	0.8 (120m)		70.8		203.5	265.9
	-					
		-			·	

	ind Dire		310 °	NO ₂		Option 1
Height: 0m			Speed (m	s ⁻¹ )		Height: 0
Distance (km)	5	. 8	10	12	15	Distance
0.8		4.2		30.2	52.2	
1.2		3.6		28.3	52.5	
2.0		4.4		27.3	54.2	
· 2.4		6.1		28.6	54.8	
3.0						
3.2		8.1		34.1	53.4	
4.8					_ ]	
7.5						
8.0			· · · · · ·			
10.0						
10.5			· · · · · · · · · · · · · · · · · · ·			, <u> </u>
14.0						
16.0						
16.8						
17.0						
17.6						
18.0					{	
19.1	·					
0.8 (60m)		7.7.		38.4	61.3	0.
0.8 (120m)		8.1		31.2	48.1	0.8
· · ·						

Option 10 Height: 0m	Wind Di	Wind	310 ° Speed (n	50 ₂	
Distance (km)	5	8	10	12	
0.8		59.2		315.8	46
1.2		35.4		208.0	33
2.0		27.5		134.2	23
2.4		33.1		123.5	20
3.0		. •			
3.2		35.8		121.9	17
4.8					
7.5		•			
8.0					
10.0					
10.5					
14.0					
16.0			·		
16.8			<u>.</u>		
17.0					
17.6					
18.0				-	
19.1					
0.8 (60m)		107.5		401.4	54
0.8 (120m)		113.3		325.6	42
· · · · · · · · · · · · · · · · · · ·	L	·			

.

(assumes ozone concentration = 35 ppb)

Distance (km)       5       8       10       12       15         0.8       20.2       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0       90.0	tion 10 Wind Dir ght: 0m	Wind Spe	ed (m s ⁻¹ )	··· · · · ·	O _f He
0.8       20.2       90.0         1.2       8.1       32.3         2.0       13.7       42.1         2.4       14.5       53.2         3.0	tance (km) 5	8	10 12	15	Di
1.2       8.1       32.3         2.0       13.7       42.1         2.4       14.5       53.2         3.0					
1.2       8.1       32.3         2.0       13.7       42.1         2.4       14.5       53.2         3.0	0.8	20.2	90.0	i	
2.0       13.7       42.1         2.4       14.5       53.2         3.0				; ,	
2.4       14.5       53.2         3.0					
3.0       6.3       25.1         4.8					
3.2       6.3       25.1         4.8           7.5           8.0           10.0           10.0           10.0           10.0           10.0           10.0           10.0           10.0           10.0           110.5           114.0           116.0           116.8           117.0           117.6           118.0           119.1				······································	
4.8		6.3	25.1	· ,	
7.5				ž	
8.0				·].	
10.0					<del>,</del> .
10.5		\\.			
14.0					
16.0			_		
16.8       17.0       17.6       18.0       19.1	· · · · · · · · · · · · · · · · · · ·				:
17.0       17.6       18.0       19.1					
	17.0				
19:1	17.6			1	
	18.0			•	
┟─────┟────┼───┼───┤	19.1		:		
0.8/40m) 19.0 67.8	P				
07.0	0.8 (60m)	19.0	67.8	;	
0.8 (120m) : 9.4 37.9	0.8 (120 m) :	9.4	37.9		
					×
			····		

			10 T		
	•		· · ·		. *
•		 the second second	1	Эк	
					P

	Option 10	Wind Dir	rection: 3		$NO_2$			Wind Dire	
15	Height: 0m Distance (km)	. 5	Wind S	peed (m s 10	⁻¹ ) 12	15	Height: 0m Distance (km)	5	Win
					-				
	0.	8	2.3	•	13.8	•	0.8		32.
],	1.	2	1.3		7.0	•	1.2	_	13.
	2.	0.	3.5		13.7		2.0	_	21.
	2.		4.2		19.7		2.4		23.
	3.						3.0		
	3.	-1	2.3		11.2		3.2		10.
	4.	8					4.8	_	
	7.	5					7.5		
	8.						8.0	·	
	10.						10.0		
	10.	-	1			Ţ,	10.5		
······	14.						14.0		
	16.	_					16.0		
							16.8		
	. 17.						17.0		
	17.				-		. 17.6		
	18.						18.0		
	. 19.	-1.					. 19.1		e
									• <u>·</u>
	0.8 (60 m	)	2.2		10.4		0.8 (60m)		30.
	0.8 (120 m	-	1.1		5.8		0.8 (120m)		15
*		-1							
			· · · · · · · · ·			[·			·
	-	-[				<b>-</b>			

,			,	-1		
· · ·	2		1 A A A A A A A A A A A A A A A A A A A	1. A. A. A.	1	
			a gara a			
		1	, ,			

Direction:		NO ₂			Option 10	Wind Dir			SO2	
Wind S	Speed (m s	;-1)			Height: 0m		Wind	Speed (n	ה s¯')	
5 8	10	12	15		Distance (km)	5	8	10	12	1
						<u> </u>				
2.3	·	13.8	2	•	0.8		32.3		144.0	340.
1.3		7.0		•	1.2		13.0		51.7	139.
3.5		13.7			2.0		21.9	-	67.4	139.
4.2		19.7			2.4		23.2		85.1	157.
					3.0				· .	,
2.3		11.2			3.2		10.1		40.2	95.
					4.8					
					7.5					
					8.0	·				
		r			10.0		·			
				,	10.5		<u>.</u>			
					14.0			·····		
					16.0					
			<del></del>		16.8					
					17.0					
					. 17.6					
					17.0					
					; 19.1		e			
					. 17.1		<b></b> .			
2.2		10.4	<u>.</u>		0.8 (60m)		30.4		108.5	
				;		┨───┤	15.0		60.6	•
1.1		5.8			0.8 (120m)				0.U0	
					·					
			<u></u>	,	·	<b> </b>				

 $\bigcirc$ (

•

	10.0						10	0					
	10.5	1.4	1.3	2.6			10	5 0.8	0.9	1.8			
	14.0	1.9	0.3	0.7			14	0 1.2	0.2	0.5			
	16.0						16	o.					
	16.8						16	8					
	17.0						17	0					
	17.6	0.8	12.3	3.4			17.	6 0.5	8.9	2.5			
	18.0						18	0					
	19.1	3.4	1.5	1.8			19	1 2.4	1.1	1.3			
-		,											
2.4 (6	50m)		5.0		45.2	89.1	2.4 (60 m		1.5		16.8	37.5	
2.4 (12	20m)		7.6		65.5	108.6	2.4 (120 m		2.2		24.3	45.7	

۰.

	Wind Di	rection:	340 °	NOx	
Height: 0m			Speed (n		
Distance (km)	5	8	10	12	15
·····		:			
0.8		0.7		65.1	158.1
1.2		5.8		54.3	131.3
2.0		5.6		46.1	101.6
2.4		5.3		34.4	75.3
3.0					
3.2		3.7		34.1	70.1
4.8					
7.5	0.7	3.9	5.6		
8.0					
10.0					
10.5	1.4	1.3	2.6		
14.0	1.9	0.3	0.7		
16.0					
16.8					
17.0					
17.6	0.8	12.3	3.4		
18.0					••
19.1	3.4	1.5	1.8		
	,				
2.4 (60m)		5.0		45.2	89.1
2.4 (120 m)		7.6		65.5	108.6
					<b></b>
· · ·					

.

.

.

Option 10 Height: 0m	Wind Di	Wind	340 ° Speed (m	NO ₃	
Distance (km)	5	991nd 8	5peed ( n 10	12	15
0.8		0.1		10.0	28.6
1.2		1.0		11.8	33.3
2.0		1.4		15.0	37.8
2.4		1.6		12.8	31.7
3.0					
3.2		1.3		15.3	34.9
- 4.8					
7.5	0.3	2.3	3.5		
8.0					
10.0					
10.5	0.8	0.9	1.8		
14.0	1.2	0.2	0.5		
16.0					
16.8					
17.0					
17.6	0.5	8.9	2.5		
18.0	<del></del>				
19.1	2.4	1.1	1.3		
2.4 (60m)		1.5		16.8	37.5
2.4 (120m)		2.2		24.3	45.7
issumes ozone co					

340 ° SO ₂			
10 12	1		
104.2 2	253		
86.9 2	210		
73.8 1	162		
55.0 1	120		
54.6 1	112		
9.0			
4.2			
1.1			
	<u> </u>		
5.4			
2.9			
72.3 1	142		
	173		

.

 $\frown$ 

	Vind Dire		270 °	NO,	
Height: 0 m		Wind 9	Speed (m		
Distance (km)		8	10	12	15
2.0	26.1	62.0	103.7		
3.0					
3.2	11.4	34.1	51.0		
4.8					
7.5	6.8	19.1	24.2		•
8.0					
10.5	4.7	10.2	15.5		
14.0	<b>3.6</b>	10.6	15.0		
16.0					
`16.8					
17.0					
[:] 17.8					
18.0					
19.1		·			
112.0					
7.5 (40m)	4.4	17.5	24.1		
7.5 (80 m)	4.4	18.0	24.3		

Option 11	Wind Di				L
Height: 0m			Speed (r		
Distance (km)	5	8	10	12	15
·					
2.0	5.0	15.7	30.2		
3.0				:	:
3.2	3.2	12.3	20.8		
4.8					
7.5	3.4	11.2	15.2		
8.0					
. 10.5	2.8	6.7	10.6		
14.0	2.3	7.4	10.8		
16.0					
16.8					
17.0					
17.8			:		
18.0	·				
19.1	•				-
					• 
7.5 (40m)	2.2	10.3	15.1		
7.5 (80m)	2.2	10.6	15.2		

	Vind Dire		270 °	SO ₂	
Height: 0m			Speed (n		
Distance (km)			10	12	1!
· · · · ·					
2.0	41.8	99.2	165.9		
3.0					
3.2	18.2	54.6	81.6		
- 4.8				-	
7.5	10.9	30.6	38.7		
8.0					
10.5	7.5	16.3	24.8	•	
14.0	5.8	17.0	24.0		
16.0					
16.8					
17.0					-
17.8					
18.0		:			
19.1					
7.5 (40m)	7.0	28.0	38.6		
7.5 (80m)	7.0	28.8	38.9		1
· · ·	1				

(assumes ozone concentration = 35 ppb)

• · •, 4 . 1 .

• •

÷ .

۰.

• 5

	Vind Dire		340 °	NOx			Opt
Height: 0m	_		peed (m	s ⁻¹ )			Heig
Distance (km)	5	8	10	12	15		Dist
2.0							
3.0							
3.2	0.5	6.1	15.3		112.2		
4.8						•	
7.5	0.8	5.2	7.9				
8.0							
10.5	1.4	1.3	2.6				
14.0	0.4	1.1	1.2				
16.0							
16.8							
17.0							
17.6	1.7	4.3	5.8				
18.0							
19.1	3.0	2.6	3.4				
<u> </u>							
	· [		ŀ				

•

()

			<u> </u>	
<b></b>		•		
•				
	, 			
				1
	,			
· ·	,			

	1

	Vind Dir	ection:	340°	NO ₂	
Height: 0m	_	Wind	Speed ( m s	s ⁻ ')	
Distance (km)	5	. 8	10	12	15
2.0					
3.0					
3.2	0.1	2.2	6.2		55.9
4.8		• .			
7.5	0.4	3.1	4.9		
8.0					
: 10.5	0.8	0.9	1.8	,	
14.0	0.3	0.8	0.9		
16.0			·		
16.8					
17,0					
17.6	1.2	3.1	4.2		
18.0					
19.1	2.1	1.9	2.5		

Option 11	Wind Dir			SO2	
Height: 0m		Wind	Speed (m	s ⁻¹ )	
Distance (km)	5	8	10	12	15
2.0					
3.0		-			
3.2	0.8	9.8	24.5		179.5
4.8					
7.5	1.3	8.3	12.6		
8.0					
10.5	2.2	2.1	4.2		
14.0	0.6	1.8	1.9		
16.0					
16.8					
17.0					
17.6	2.7	6.9	9.3		
18.0					
19.1	4.8	4.2	5.4		

· . .

 $\bigcirc$   $\cdot$   $\bigcirc$  $\bigcirc$ ()()

 $\bigcirc$  $\left( \right)$  $\bigcirc$  $\left( \right)$ 

	Wind Di			0 °		
Height: 0m 🕔			nd Spec			
Distance (km)	3	5	8	10	12	15
2.0	21.3		143.5			221.5
3.2	15.9		86.9			189.7
4.8						
7.5	11.2		55.4			78,9
9.2						
10.0						
10.5	3.1		53.4			55.6
12.0	· .					
13.4						
14.0	3.5		40.8			38.7
16.0						<u> </u>
16.8						
17.0	·					
17.6						
18.0						
19.1						
			<b>.</b>			
7.5 (40m)	4.8		58.1			84.7
7.5 (80m)	4.9		55.6			· 81.4

		محمح محمد المريكان	*****					
	Wind D	irection	: 27(	0 •	NO3			
Height: 0m		Wind Speed (m s ⁻¹ )						
Distance (km)	3	5	8	10	12	15		
2.0	3.1		36.4			82.5		
3.2	3.5		31.4			94.6		
4.8								
7.5	4.7		32.5			54.1		
9.2								
10.0								
10.5	1.6		35.2			40.1		
12.0								
13.4								
14.0	2.1		28.6			28.4		
16.0			·					
16.8								
17.0								
17.6					·			
17.8								
19.1								
· · ·			<u> </u>					
7.5 (40m)	2.0		34.1			58.2		
7.5 (80m)	2.0		32.6			55.9		
			- 25					

(assumes ozone concentration = 35 ppb)



× ...

ŝ

•

 $\sum_{i=1}^{n} e_i$ 

Option 12	Wind Dire		o 	NO	
Height: 0m			ed (m s		
Distance (km)	3	 8	10	12	15
					<u></u>
2.0					
3.2	4.4	 92.9			130.4
4.8		 			
7.5	6.5	 77.8			70.6
9.2	,			<u></u>	
10.0		 			 
10.5	5.4	 39.3			40.8
. 12.0		 			
13.4	·;	 			
14.0	1.4	 33.1			34.9
16.0		 			
16.8		 			
17.0	· ·	 			
. 17.6		 18.4			26.6
17.8		 			
18.0	; ;				
19,1	2.0	 22.4			23.7
10.5 (40		(2.4			05.0
10.5 (40 m)	7.2	 63.4		·	95.9
·	;	 			<u> </u>
· · · · · · · · · · · · · · · · · · ·	L				

.

.

• • • • • • •

	Wind Dir			0	NO ₂	
Height: 0m				ed (m s		
Distance (km)	3	5	8	10	12	15
2.0			<del>.</del>			
3.2	1.0		33.6			65.0
4.8						
7.5	2.7	,	45.6			48.5
9.2						•
. 10.0	· · ·  ·					
10.5	2.7		25.9			29.4
12.0						
13.4					·	
· 14.0	0.8		23.2			25.6
16.0						
16.8						
17.0						
17.6	0.9		13.3			19.7
17.8		÷				
18.0						
					·	
19.1	1.3 \		16.3			17.5
10.5 (40m)	3.7		41.7			69.1
·						
	.					

(assumes ozone concentration = 35 ppb)

.

.

* i _____ . . ; .

1 <u>1</u> 4, . .

.

•

.

. .

	Wind D			0 •	NO,	
Height: 0m		Wir		d (m s	·')	[
Distance (km)			8	10	12	15
2.0	28.0		83.8			456.6
3.2	74.9		73.7			310.6
4.8						
7.5	21.6		76.5			143.6
9.2					,	
10.0						
10.5	29.1		102.7			132.6
12.0						<u> </u>
13.4					1	'
14.0	48.7		88.7			100.6
16.0	· · ·					
16:8		<u> </u>				
17.0						
17.6						
17:8						
18.0						
19.1						
						:
7.5 (40 m)	24.2		100.1			214.2
7.5 (80 m)	23.1		103.8			211.7
- · · ·						·

÷

	Wind E			0°	NO ₂	
Height: 0m		Wi	nd Spee	ed (m s'	-1)	
Distance (km)	3	5	8	<u>`</u> 10	12	15
2.0	4.1		21.3			170.1
3.2	16.4		26.7			154.9
4.8						
7.5	9.0		44.9			98.6
9.2			 		_	
10.0		· ·				
10.5	14.7		67.6			95.6
12.0				,		
13.4	•					
14.0	28.3	•	62.2			73.9
16.0						
16.8						
17.0						
17.6						
17.8						
18.0	· •	;				
19.1						,
75(40-)	10.1		E0 7			147.0
7.5 (40m)	10.1		58.7			147.0
7.5 (80m)	9.6		60.9			145.3
assumes 07000		ration	- 35 nn	b)	·	

Height: 0m Distance (km)		- Wi				
Distance (km)				ed (m s		
Storan Co (Intil)	. 3	5	8		12	15
2.0	8.9		26.6			145.2
. 3.2	23.8		23.4		-	98.8
4.8						
7.5	6.9		24.3			45.7
9.2						
10.0						
10.5	9.3		32.7			42.2
12.0						
13.4						
14.0	15.5		28.2			32.0
16.0						
16.8						
17.0						
17.6						
17.8	•					
18.0						
19.1			•			
7.5 (40m)	7.7		31.8			68.1
7.5 (80m)	7.3		33.0			67.3

(assumes ozone concentration = 35 ppb)

· · · · · · · ·

Height: 0m						
		Wi	nd Spee			
Distance (km)	3		8	10	12	15
ę						
2.0		1				
2.0	62 (		461.2			A 6 17 A
3.2	53.6		461.3			467.4
4.8						
	50.4		007 (			000 (
7.5	58.4		337.6			222.6
9.2		·	· · ·			
10.0						
10.5	33.5		214.6			150.0
						10010
12.0						
13.4						
	┝╍┉╍╍──┤╴		}			
14.0	17.7		123.5	į		101.8
16.0	_		_			
10.0						
16.8						
	-					
17.0	-					
17.6	31.7		94.8			74.4
· · ·			_		<del></del>	
17.8						
18.0			•			
19.1	31.5		94.3			68.5
10.5 (40m)	22.9		230.4			154.9
		· 1		1		

			•		
	Wind Dir	ection: 340	°	NO ₂	
Height: 0m Distance (km)	3	Wind Spec 5 8	ed (m.s 10	.) 12	15
2.0					
3.2	11.8	167.0		——	233.0
· 4.8				·	
7.5	24.3	198.1			152.8
9.2					
10.0		· ·			
10.5	17.0	141.3			108.2
12.0			····		
13.4					
14.0	10.3	86.6			74.8
16.0					
16.8					
17.0	·				
17.6	20.1	68.4			54.9
17.8					
18.0	· 				
19.1	20.5	68.5			50.6
10.5 (40m)	11.6	151.7			111.7

(assumes ozone concentration = 35 ppb)

0		·	240	•		
Option 13 Height: 0m	wina D	Wind S			SO2	
Distance (km)	3	5	· 8	10	, 12	15
2.0						:
. 3.2	17.0	14	6.7			148.6
4.8						
7.5	18.6	10	7.4			70.8
9.2						
10.0			·			
10.5	10.7	6	8.2			47.7
12.0						
13.4	·	·				
14.0	5.6	3	9.3			32.4
16.0						
· 16.8						
17.0						
17.6	10.1	3	0.1			23.7
17.8						
18.0						
19.1	10.0	3	0.0			21.8
					_	
10.5 (40m)	7.3	7	3.3			49.3

1

()

ight: 0m		Wi	nd Spee	ed (m s	-1)		1	Height: 0m		Wi	nd Spee	ed (m s	-1)			Height: 0m	-	Win	d Spee	ed (m s	⁻¹ )	
listance (km)	3	5	8	10	12	15		Distance (km)	3		8	10	12	15		Distance (km)	3	5	8	10	12	15
							]									·	]'					
2.0								2.0							L.	. 2.0						
3.2	15.3	-	152.3			212.5		3.2	3.4		55.1			105.9		. 3.2	20.4		203.0			283.3
4.8								4.8								4.8						
7.5	15.4		145.6			110.9		7.5	6.4		85.4			76.1		7.5	20.5		194.1			147.8
9.2		1						9.2								9.2				:		
10.0							) ·	10.0				i.				10.0	•					
10.5	, 9.7	;	92.1		1	70.7	,	10.5	4.9		. 60.6			51.0		10.5	12.9		122.8			94.2
12.0			i.		÷	÷						,				12.0					7	
13.4				· ·				13.4		:						. 13.4						
14.0	9.1	,	75.8			62.9	-	14.0	5.3		53.1	·	·	46.2		14.0	12.1		101.0			83.8
16.0			· · · · · ·					16.0								16.0				÷		
16.8			Ì				:	. 16.8		_					:	. 16.8		1		. :	:	
17.0			·		1	· ·		17.0	<u>х</u>				·			17.0				7		·
17.6	2.1		38.5			31.8		17.6	1.3	•	27.8			23.5		17.6	2.8	:	51.3			42.4
17.8	1. j.						•	17.8								17.8		•				
18.0	•						:	. 18.0	2	_	!					18.0						
19.1	5.1		43.5			34.7	]	19.1	3.3		31.6			25.6		19.1	6.8		58.0	·		46.3
	1.00						1 								•							
10.5 (40m)	7.0		107.0			82.8	-	10.5 (40m)	3.5		70.5			59.7		10.5 (40m)	9.3		142.6			110.4
	¥ 						1 1		•													
4	,				-							-						,	•			

n: 340		NOx		{		Wind E	Directio	n: 340	۰	$NO_2$			Option 14	Wind D	irectio	n: 340	٥	so,	
nd Spee	ed (m s-	⁻¹ )		1	Height: 0m		W	ind Spe				:	Height: 0m		W	ind Spee	ed (m s	-')	
8	10	12	15	1	Distance (km)	3	5	8	10	12	15		Distance (km)		5	8	10	12	15
	}		ļ	<u>۱</u>				}			}								
										<u> </u>							· · ·		
					2.0			<u> </u>		ļ		н.	2.0						
152.3			212.5		3.2	3.4		55.1		ļ	105.9		3.2	20.4		203.0			283.3
				ļ	4.8								4.8						
145.6			110.9		7.5	6.4		85.4			76.1		7.5	20.5		194.1			147.8
					9.2								9.2				:		
	· .			<b>]</b> .	10.0	·			1				10.0	•					
92.1	-	1	70.7	1	10.5	4.9		60.6			51.0		10.5	12.9		122.8			94.2
7		;	÷		12.0							•	12.0						
					13.4								13.4						
75.8			62.9		14.0	5.3	i	53.1			46.2		14.0	12.1	•	101.0	:		83.8
10.0			04.7		11.0			00.1			10.2		16.0			101.0	· · · ·		03.0
	· 1			:	16.8		<u> </u>			<u>}</u>		•	. 16.8		1		. :		
				:	17.0					<u> </u> -			17.0	· · ·	-		*		
- 00 F															;				
38.5			31.8		. 17.6	1.3		27.8			23.5		17.6	2.8		51.3		•	42.4
·					17.8			· 		_−			17.8						. <u></u>
					. 18.0	:						•							
43.5			34.7		19.1	3.3		31.6			25.6		19.1	6.8		58.0			46.3
							. '					÷	· · ·						
107.0			82.8	· ·	10.5 (40m)	3.5		70.5			59.7		10.5 (40m)	9.3		142.6	``		110.4
		İ																	
-																•			
				•	(assumes ozone	concen	tration	= 35 pp	b)					•				•	

	Wind D			0	so,	
Height: 0m	_		nd Spee			
Distance (km)	3	5	8	10	12	15
2.0						
	20.4		203.0			283.3
4.8	•					
7.5	20.5		194.1			147.8
9.2				:		
10.0					*	
10.5	12.9		122.8			94.2
12.0						
13.4				<u>.</u>		<u> </u>
14.0	12.1	•	101.0	<u>.</u>		83.8
16.0				;		
. 16.8		1			:	
17.0	- <u>i</u>	· ·				
17.6	2.8		51.3			42.4
17.8						
19.1	6.8		58.0			46.3
10.5 (40m)	9.3		142.6	•		110.4
10.0 (3011)			4.14.0			110.4
					· · · ·	

(assumes ozone concentration = 35 ppb)

Option 14	Wind E				NO _x	
Height: 0m		Wi	ind Spee	ed (m s	-1)	
Distance (km)	3	5	8	10	12	15
2.0	8.6		33.0			199.2
3.2	29.9		30.4			147.1
4.8						
7.5	10.9		55.6			104.0
9.2						
10.0						
10.5	12.9		65.8			72.4
12.0					-	
13.4						
14.0	14.8		55.3			52.4
16.0						
16.8						
17.0						
17.6						· · · · · · · · · · · · · · · · · · ·
17.8						
18,0						
19.1						
7.5 (40m)	13.7		55.4			99.9
7.5 (80m)	13.7		55.2			99.6

•

.

1.4

• .

(

	Wind D				NO ₂	
Height: 0 m		Wi	nd Spee	ed (m s		
Distance (km)	3	5	8	10	12	15
2.0	1.3		8.4			74.2
3.2	6.6		11.0			73.3
4.8					_	
7.5	<u> </u>		32.6			71.4
9.2	····-					
10.0					<b></b>	
10.5	6.5	····	43.3			52.2
12.0						
13.4						
14.0	8.6		38.8			38.5
16.0					<u> </u>	
16.8		*				
17.0						
17.6						
17.8						
18.0						
19.1						
7.5 (40m)	5.7	<u> </u>	32.5			68.6
7.5 (80m)	5.7		32.4			68.4

	Wind E			0 °	SO,	
Height: 0m		Wi	nd Spe	ed (m s	-1)	
Distance (km)	3	5	.8	10	12	15
2.0	11.5		44.0			265.5
3.2	39.9		40.5			196.1
4.8						
7.5	14.5		74.1			138.6
9.2						
10.0						
10.5	17.2		87.7			96.5
12.0						
13.4						
14.0	19.7		73.7			69.8
16.0						
16.8						
17.0						
17.6						
17.8						
18.0						
19.1						
7.5 (40m)	18.3		73.8			133.2
7.5 (80m)	18.3		73.6			132.8

(assumes ozone concentration = 35 ppb)

•

 $\mathbf{O} \ \mathbf{O} \$ 

	Wind D			o	NO	
Height: 0m				ed (m s		
Distance (km)	3	5	8	10	12	15
2.0						
3.2	15.3		152.3			212.5
4.8	 					
7.5	15.4		145.6			110.9
9.2			-			
10.0			•			
10.5	9,7		92.1			70.7
12.0						:
13.4						2
14.0	9.1		75.8			62.9
16.0						
16.8						-
17.0						
17.6	2.1		38.5			31.8
17.8						
18.0						· .
19.1	5.1		43.5			34.7
-						:
10.5 (40m)	7.0		107.0			82.8
÷						-

NO _x				Vind Dir	ection: 340		NO ₂			Option 14	<u>_</u>	Vi
⁻¹ ) 12	15		Height: 0m Distance (km)	3	Wind Spec 5 8	ed (m.s 10	-') <u>12</u>	15		Height: 0m Distance (km		
12	<u></u>		Distance (Km)		5 8	10	12	15		Distance (Kill	+	_
•			2.0			·			:	2	.0	
	212.5		3.2	3.4	55.1			105.9		3	.2	2
			4.8			-	_		l l l l l l l l l l l l l l l l l l l	4	.8	
	110.9		7.5	6.4	85.4			76.1		7	5	
		4	9.2							9.	2	
			10.0		,					10	.0	
	70.7		10.5	4.9	60.6			51.0		10	5	
			12.0							12	.0	
			, 13.4							13	.4	
	62.9		14.0	5.3	53.1			46.2		14	.0	
			16.0							16	0	
			16.8							16	8	
			17.0							17.	.0	
	31.8		17.6	1.3	27.8			23.5		17.	.6	
			17.8	<del></del>						17.	8	
	· .		18.0							18.	0	
	34.7	•	19.1	3.3	31.6			25.6		19.	1	
	2											
	82.8		10.5 (40m)	3.5	70.5			59.7		10.5 (40 m		
	-									·		
									,			

(assumes	ozone	concentration	= 35	ppb)
----------	-------	---------------	------	------

(assumes ozone concentration = 35 ppb)

.

	_									
0	NO ₂		•	Option 14 Wind Direction: 340 ° SO _x						
ed (m s	¬)			Height: 0m		Wi	nd Spee	ed (m s	-1)	
10	12	15		Distance (km)	3	5	8	10	12	15
		;	4	2.0						
		105.9		3.2	20.4		203.0			283.3
				4.8						
		76.1		7.5	20.5		194.1			147.8
				9.2						•
				10.0						
		51.0		10.5	12.9	<u> </u>	122.8			94.2
				12.0						
				13.4						
		46.2		14.0	12.1		101.0			83.8
				16.0						
				16.8				· ·		
				17.0						
		23.5	:	17.6	2.8		51.3			42.4
				17.8						
			÷	18.0						
		25.6	, I	19.1	6.8		58.0			46.3
		50 7	, , ,	10 5 (40			142.6			110.4
		59.7		10.5 (40m)	9.3		142.6		•	110.4
						,				
			,							

• .

Option 14	Wind Dir				
Height: 0 m		Wind Spe	ed ( m s ⁻		
Distance (km)	3	5 8	10	12	15
		•			
2.0	8.6	33.0			199.2
3.2	29.9	30.4			147.1
4.8					
7.5	10.9	55.6			104.0
<u> </u>					
10.0			 		
10.5	12.9	65.8	:		72.4
12.0					
13.4	:				
14.0	14.8	55.3			52.4
16.0					
16.8			·		]
17.0	<u>.</u>				
17.6	:	•			
17.8	· .				
18.0	: :		·		
19.1	<u> </u>		<u> </u>		
•					]
7.5 (40m)	13.7	55.4			99.9
7.5 (80m)	13.7	55.2			99.6
:					

Option 14         Wind Direction:         270 ° $NO_2$ Height: 0m         3         5         8         10         12         15           Distance (km)         3         5         8         10         12         15           2.0         1.3         8.4         74.2         3.2         6.6         11.0         73.3           4.8         11.0         73.3         4.8         10         12         15           7.5         4.5         32.6         71.4         71.4         9.2         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.							
Distance (km)         3         5         8         10         12         15           2.0         1.3         8.4         74.2           3.2         6.6         11.0         73.3           4.8         11.0         73.3           4.8         11.0         73.3           4.8         11.0         73.3           4.8         11.0         73.3           4.8         11.0         73.3           10.0         32.6         71.4           9.2         10.0         10.5           10.5         6.5         43.3         52.2           12.0         11.0         11.0         11.0           13.4         11.0         11.0         11.0           13.4         11.0         11.0         11.0           13.4         11.0         11.0         11.0           14.0         8.6         38.8         38.5           16.0         11.0         11.0         11.0           16.8         11.0         11.0         11.0           17.0         11.0         11.0         11.0           17.6         11.0         11.0         11.0		Wind E					
2.0       1.3       8.4       74.2         3.2       6.6       11.0       73.3         4.8	Height: 0m					⁻¹ )	
3.2       6.6       11.0       73.3         4.8	Distance (km)	3	5	8	10	12	15
3.2       6.6       11.0       73.3         4.8							
4.8	2.0	1.3		8.4			74.2
7.5       4.5       32.6       71.4         9.2	3.2	6.6		11.0		<u>.                                    </u>	73.3
9.2       10.0         10.0       43.3         10.5       6.5         12.0       13.4         13.4       14.0         14.0       8.6         38.8       38.5         16.0       16.8         17.0       17.6         17.6       17.8         18.0       19.1         7.5 (40m)       5.7       32.5       68.6	4.8			-			
10.0       43.3       52.2         10.5       6.5       43.3       52.2         12.0       12.0       12.0       12.0         13.4       14.0       8.6       38.8       38.5         16.0       16.8       14.0       14.0       14.0         16.8       16.8       14.0       14.0       14.0       14.0         16.8       16.8       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.0       14.	7.5	4.5		32.6			71.4
10.5       6.5       43.3       52.2         12.0	9.2		<u></u>				
12.0	10.0	 	ı 				· · · · · · · · · · · · · · · · · · ·
13.4	10.5	6.5		43.3	••		52.2
14.0       8.6       38.8       38.5         16.0	12.0		. <u>.</u>				
16.0     16.8       16.8     16.8       17.0     17.6       17.6     17.8       17.8     18.0       18.0     19.1       7.5 (40 m)     5.7       32.5     68.6	13.4			·			
16.8	. 14.0	8.6		38.8			38.5
17.0	16.0						
17.6	16.8	•					
17.8	17.0	·	·				
18.0     18.0       19.1     19.1       7.5 (40 m)     5.7       32.5     68.6	17.6			<u>.                                    </u>			
19.1       7.5 (40 m)       5.7       32.5       68.6	17.8			<u>،</u>			
19.1         68.6           7.5 (40 m)         5.7         32.5         68.6	18.0						
	19.1		: 				
7.5 (80 m) 5.7 32.4 68.4	7.5 (40 m)	5.7		32.5			68.6
	7.5 (80 m)	5.7		32.4	••••		. 68.4
					_		

	Wind D				SO2	
Height: 0m	_		nd Spee			
Distance (km)	3		8	10	12	15
·						
2.0	11.5		44.0			265.5
3.2	39.9		40.5			196.1
4.8						
7.5	14.5		74.1			138.6
9.2						
10.0						<u>.</u>
	17.2		87.7			96.5
. 12.0			• •		:	۰
13.4						
14.0	19.7		73.7			69.8
16.0		1		•		
16.8	:					
17.0		•			•	·
. 17.6		! 				
17.8				;	· .	
18.0						
		* .				
	:		·			
7.5 (40m)	18.3	'	· 73.8			133.2
7.5 (80 m)	18.3		73.6		,	132.8

(assumes ozone concentration = 35 ppb)

.

:

Option 15	Wind L	Virection	1: 27	0 °	NOx	
Height: 0m	_			ed (m s	-") _	
Distance (km)	3	5	8	10	12	15
<u> </u>						
2.0	6.8		26.2			130.0
3.2	24.2		24.6			89.9
4.8						
7.5	20.1		29.0			32.9
. 9.2						
10.0						
10.5	8.5		43.3			35.4
12.0						
13.4						
14.0	10.7		39.8			28.4
16.0			·			
16.8						
17.0						
17.6						
17.8						
18.0						
19.1				·		
:						·····
7.5 (40m)	11.3		42.9			61.1
7.5 (80 m) [:]	11.9		44.2			61.0
1						

Option 15	Wind E	irection	n: 27	0°	$NO_2$	
Height: 0m		Wi	nd Spee	ed (m s'	-')	
Distance (km)	3	5	8	10	12	15
2.0	1.0		6.6			48.4
3.2	5.3		8.9			44.8
4.8						
7.5	8.4		17.0			22.6
9.2						
10.0						
10.5	4.3		28.5			25.5
12.0						
13.4						
14. <b>0</b>	6.2		27.9			20.9
16.0						
16.8						
17.0					· · · · · ·	
17.6						
17.8						
18.0						
19.1						
7.5 (40m)	4.7		25.2			41.9
7.5 (80m)	4.9		25.9			41.9

	Wind E			0 °	SOx	
Height: 0m		Wi	nd Spe	ed (m s		
Distance (km)	3	5	8	10	12	15
2.0	9.1		34.9			173.3
. 3.2	32.3		32.8			119.8
4.8						
7.5	26.8		38.7			43.9
9.2						•
10.0			,			
10.5	11.3		57.7			47.2
12.0						
-13.4	· · · · · · · · · · · · · · · · · · ·					
14.0	14.3		53.1		:	37.9
16.0						
16.8		,				
17.0						
17.6						
17.8						
18.0						
19.1						
7.5 (40 m)	15.1		57.2			81.4
7.5 (80m)	15.9	· · ·	58. <del>9</del>			81.3

(assumes ozone concentration = 35 ppb)

· · ·

	Wind D			0	NO	
Height: 0m		Wi	nd Spee	ed (m s	-'}	
Distance (km)	3	5	8	10	12	15
2.0						
3.2	3.9		97.8			139.0
4.8	_					
7.5	9.4		88.4			68.7
9.2						
10.0						
10.5	5.8		54.7			41.3
12.0						
13.4						
14.0	3.2		42.5			39.8
16.0						
16.8						
17.0						
17.6	1.5		23.3			21.1
17.8						
18.0	_					
19.1	3		25.6			22.3
· ,						
10.5 (40m)	5.0		65.7			49.0
· · · · · · · · · · · · · · · · · · ·						
		:			•	

	Wind Dia			0	$NO_2$	
Height: 0m		Wii		ed (m s	- <u>-</u>	
Distance (km)	3	5	8	10	12	15
		Ì				
2.0						
3.2	0.9		35.4			69.3
4.8						
7.5	3.9		51.9			47.2
9.2						
10.0						
10.5	2.9		36.0			29.8
12.0						
13.4		[			<u>.</u>	
14.0	1.9		29.8			29.2
16.0	·					
16.8	· · ·					
17.0			·			
17.6	0.9		16.8			15.6
17.8						
18.0	· ·					
19.1	1.9		18.6			16.5
10.5 (40m)	2.5		43.3			35.3
	Li.					

Option 15	Wind C	Wind Direction: 340 ° SO _x				
Height: 0m		Wi	nd Spee		")	
Distance (km)	3	5	8	10	12	15
2.0						
3.2	5.2		130.4			185.3
4.8						
7.5	12.5		117.8			91.6
9.2	·					
10.0						
. 10.5	7.7		72.9			55.1
12.0						
13.4				-		
. 14.0	4.3		56.7			53.1
16.0		-				
16.8				<del></del>		
17.0				-		
17.6	2.0		31.1			28.1
17.8		;				
18.0		·				
19.1	4.0		34.1			29.7
10.5 (40m)	6.7		87.6			65.3

(assumes ozone concentration = 35 ppb)

•

;

۰.,

.

. . • . .

.

.

.

•

:

 $\bigcup^{\cdot}$ 

	Wind D	irection:	27(	) °	NO	
Height: 0m		Win	d Spee	d ( m s ⁻	')	
Distance (km)	3	5		10	12	15
2.0	11.8		17.9			265.4
3.2	9.1		19.4			206.3
4.8						
7.5	85. <del>9</del>		49.0			112.5
9.2		·	· ·			
10,0						
10.5	32.0		74.6			114.5
. 12.0			Ň			;
13.4				1		
14.0	35.1		70.6			90.6
16.0			2			1
16.8			l			;
17.0						• • •
17.6					н. 	
17.8						۰
18.0						
19.1					* .	
			- 1			
7.5 (40m)	27.2		60.9		N.,	173.3
7.5 (80m)	26.6		70.5		r	173.1
				_		

	Wind Dir				NO ₂	
Height: 0m		Win	d Spee	d ( m s ⁻		
Distance (km)	3	5		10	12	15
		. [	[			
2.0	1.7		4.5			98.9
3.2	2.0		7.0			102.9
4.8						
7.5	35.7		28.8			77.2
9.2					_	
10.0	·   					
10.5	16.2		49.1			82.6
12.0						<u> </u>
13.4						:
14.0	20.4		49.5			66.5
16.0						;
16.8						
17.0						
17.6				:		
17.8						
18.0						
19.1				:		
				]		
7.5 (40m)	11.3		35.7			119.0
7.5 (80m)			41.4			118.8
assumes ozone						<u>.</u>

	Wind E	irection		0 °	SO2	<u>.</u>
Height: 0m		Wi	nd Spee	ed (m s	·')	
Distance (km)	3	5	8	10	12	15
						<u>.</u>
2.0	3.8		5.7			84.4
3.2	2.9		6.2			65.6
4.8						
7.5	27.3		15.6			35.8
9.2	-					
10.0						•
10.5	10.2		23.7			36.4
12.0						
13.4				, ,		
14,0	11.2		22.5			28.8
16.0		·	i		-	
16.8						· · ·
17.0	:				:	
17.6					· ·	
17.8				. <u></u>		
18.0						
			·.		,	
7.5 (40m)	8.6		19.4			55.1
7.5 (80m)	8.5		22.4			55.0

(assumes ozone concentration = 35 ppb)

Option 16	Wind Dir			NO _x
Height: 0m		Wind Spee	d (m s ⁻ ')	·
Distance (km)	3	5 8	10	<u>12</u> 15
2.0				
3.2	1.9	88.2		391.7
4.8				
7.5	6.7	134.9		230.7
9.2				
10.0				
10.5	5.9	96.3		157.1
12.0				
13.4	····			
14.0	4.1	64.0		113.4
16.0				
16.8			· · ·	
17.0				
17.6	8.2	53.1		71.4
17.8				
18.0 19.1	9.7	54.1		72.2
				7 2.2
10.5 (40m)	5.1	106.8		165.7
	└──┼-			

.

۰.

÷,

	Wind D	irection		0	NO,	
Height: 0m				:d ( m s	')	
Distance (km)	3	5		10	12	15
			·			
2.0						
3.2	0.4		31.9			195.3
4.8						·
7.5	2.8		79.2			158.4
9.2			]			
10.0						
10.5	3.0		63.4			113.3
12.0						
13.4						
14.0	2.4	,	44.9			83.3
16.0						
16.8						
17.0						
17.6	5.2		38.3			52.7
17.8						
18.0						
19.1	6.3		39.3			53.4
10.5 (40m)	2.6		70.3			119.5

	Wind D			٥	SO2	
Height: 0m		Wi	nd Spee	ed (m s'	-1) ····	
Distance (km)	3	5	8	10	12	15
2.0						
3.2	0.6		28.0			124.6
4.8					_	
. 7.5	2.1		42.9			73.4
9.2						
10.0						
10.5	1.9		· 30.6			50.0
12.0						
13.4	-					
14.0	1.3		20.4			36.1
16.0						
16.8						
17.0				_		
17.6	2.6		16.9			22.7
17.8	·					
18.0						
19.1	3.1		17.2			23.0
· · · · · · · · · · · · · · · · · · ·						
10.5 (40 m)	1.6		34.0			52.7
	L					

•

( )

(assumes ozone concentration = 35 ppb)

•

•

;

1.1.5

4

e

.

Options 5+8	Wind E	irectio	n: 015	0	NO,
Height: 0m		Wind	Speed (	m s ⁻¹ )	
Distance (km)	3	5	8	12	15
2.0	103.3		187.7		452.1
3.2	_ 70.8		237.2		352.1
4.8					
7.5	33.8		237.1		184.5
9.2	¥				
10.0					
10.5	42.4		183.5		130.0
12.0					
· 13.4					·····
14.0	37.2		132.1		80.1
15.0	•				
16.0					
16.8	25.2		77.7		44.7
17.0					
17.6					
17.8					
18.0	·				
. 19.1		•			
	· .				
<u> </u>					
·	~				
· ·	L				

. •

Options 5+8 Wind Direction: 015 ° NO, Height: 0m Distance (km) Wind Speed (m s⁻¹) 5 8 12 3 12 15 2.0 15.1 47.6 168.4 3.2 175.5 15.5 85.9 2 4.8 7.5 139.1 14.0 126.7 9.2 10.0 10.5 120.8 21.5 93.8 12.0 13.4 14.0 21.6 92.6 58.9 15.0 16.0 . 16.8 15.7 55.8 33.0 17.0 17.6 17.8 18.0 19.1 ۰.

Options 5+8	Wind E			<u>ه</u>	so,
l leight: 0m			Speed (		
Distance (km)	3	5	8	12	15
					L
2.0	31.7		40.5		111.2
3.2	. 21.7		58.8		90.0
4.8					
7.5	9.1		62.6		47.6
9.2					
. 10.0		 			
10.5	11.8		48.8		33.4
12.0		 		·	
13.4					
14.0	9.8		35.2		19.6
15.0					
16.0					
16.8	6.3		21.5		11.3
17.0					
17.6				·-···	
17.8					
18.0		ļ			
19.1					
· · · · · · · · · · · · · · · · · · ·					
	·	·			
				l	l

(assumes ozone concentration = 35 ppb)

. ....

Options 5+8	Wind D			٥	NO _x
Height: Om		Wind	Speed (		
Distance (km)	3	5	8	12	15
2.0	37.4		114.7		369.3
3.2	42.7		127.0		253.1
4.8					
7.5	72.4		84.9		115.4
· <u>9.2</u>					
10.0					l
10.5	29.7		109.4		98.1
12.0	<u></u>				
13.4					
14.0	· 33.0		-95.0		75.2
15.0	- -				
16.0					
16.8					;
17.0	1				
. 17.6					
17.8					]
18.0					[
19.1					]
	, 	<u> </u>			
7.5 (40m)	29.1		114.2		169.7
7.5 (80m)	28.6		115.6		170.0
. <u>.</u>					;

· ·

t

•

.

. .

.

.

÷

ł

.

(

Options 5+8	Wind C			o	NO,
Height: Om		Wind !	Speed (I	m s⁻¹)	
Distance (km)	3	5	8	12	15
2.0	5.5		29.1		137.6
3.2	9.4		46.0		126.2
4.8					<u> </u>
· 7.5	30.1		49.8		79.2
9.2			•		
10.0					
10.5	15.0		72.0		70.8
12.0					
. 13.4					
14.0	19.2		66.6		55.2
15.0					
16.0			<u>.</u>		
16.8		·			
17.0	·.				
17.6					
17.8					
18.0					
19.1					
7.5 (40m)	12.1		67.0		116.5
7.5 (80m)	11.9		67.8		116.7
assumes ozone (					

Options 5+8	Wind E				so,
Height: 0m		Wind	Speed (	m s¯')	
Distance (km)	3	5	8	12	15
2.0	4.0		11.2		87.4
3.2	<u> </u>		13.6		54.4
4.8					
7.5	15.9		16.5	·	25,2
9.2					
10.0					
10.5	7.7		25.0		23.4
12.0	· 				
13.4				·	
. 14.0	9.3		22.3		18.1
15.0	·				
16.0					
16.8					·
17.0		I		`	
17.6					
17.8					
18.0					
19.1				•	]
7.5 (40m)	7.3		23.9		40.4
7.5 (80m)	7.2		24.2		40.3

.

× .

۰.

)

(assumes ozone concentration = 35 ppb)

. .

· ·

Height: 0m		Wind S	need (	m s⁻¹)	3_		Options 5+8 1 Height: 0m	
Distance (km)	3	5	8	12	15		Distance (km)	3
2.0	35.1		90.0		277.9	4	2.0	5.
3.2	64.2		120.7		281.9		3.2	14.
4.8							4.8	
7.5	15.5		100.3		91.6		7.5	6.5
. 9.2							9.2	
10.0							10.0	
10.5			•				10.5	
12.0					;	-	12.0	
: 13.4						· -	13.4	
14.0						÷	14.0	
15.0							15.0	
16.0	5.2		109.6		63.4		16.0	3.:
16.8	:						16.8	
17.0							17.0	
17.6				•			17.6	
17.8							17.8	· 
18.0	.   						18.0	•
19.1							19.1	
			:				· · · ·	• • •
3.2 (60 m)	13.7		160.8		326.4		3.2 (60 m)	3.
		. <u></u>					<u> </u>	
•		-				· ·	}	

ptions 5+8	Wind D			NO,		Options 5+8	Wind D				NO ₂		Options 5+8	Wind E				SO2
leight: 0m listance (km)	3	Speed (1 8		15		l leight: 0m Distance (km)	3	Wind: 5	Speed ( 8	m s ⁻¹ ) 12	15		Height: 0m Distance (km)	3		Speed (1 8	m s ⁻¹ ) 12	15
isiarice (kiii)						Distance (kin)				<u>_</u>			Distance (Kill)					
2.0	35.1	 90.0		277.9	a.	2.0	5.1		22.8		103.5		2.0	9.3		13.3		72.4
3.2	64.2	 120.7		281.9		3.2	14.1		43.7		140.5		3.2	19.4		35.2		84.0
4.8						4.8							4.8					
7.5	15.5	 100.3		91.6		7.5	6.5		58.9		62.9		7.5	3.6		27.5		25.0
9.2	'	·		• .		9.2		-				i	9.2			· ·		
10.0					, i	10.0							10.0					
10.5						10.5							10.5	·				i
12.0		 ·		;		12.0							12.0					•
13.4						13.4					·		13.4					
14.0					-	14.0							14.0		•			
15.0						15.0							15.0			-		
16.0		109.6		63.4		16.0	3.2		78.3		46.7		16.0	1.4		32.6		18.2
16.8						16.8						•	16.8					
17.0						17.0							17.0					
17.6		 	•			17.6							17.6					
17.8		 				17.8					, ,		17.8					
18.0		 				18.0							18.0	,	-			
19.1					· ·	19.1					,		19.1			:		•
		 :											i					
3.2 (60 m)	13.7	160.8		326.4		3.2(60m)	3.0		58.2		162.7	Ť.	3.2 (60 m)	2.3		45.5		97.0
		 				<u> </u>	:	· .					· · ·					
·					l .	L												

ptions 5+8					NO,		Options 5+8	Wind D				SO2
eight: 0m stance (km)	3	Wind 3	Speed (1 8	m s ⁻ ') 12	15		Height: 0m Distance (km)	3	Wind S 5	peed (r 8	ns') 12	15
2.0	5.1		22.8		103.5		2.0	9.3		13.3		72.4
3.2	14.1		43.7	·	140.5		3.2	19.4		35.2		84.0
4.8							4.8					
7.5	6.5	•	58.9		62.9		7.5	3.6		27.5		25.0
9.2					 		9.2			· · · ·		
10.0							10.0					
10.5		•					10.5					
12.0							12.0					•
13.4					· ·		13.4				<u> </u>	
14.0			·				14.0		,			
15.0							15.0		:			
16.0	3.2				46.7		16.0	1.4		32.6		18.2
16.8			, 			-	16.8			·		
17.0						•	17.0			:		
17.6					<u>-</u>		17.6	<u> </u>				
17.8	·						17.8					<del></del>
18.0	· ·					ļ	18.0					
19.1		;			•		19.1			:		••••
· ;					<b></b> ,,	•	: 					
3.2(60m)	3.0		58.2		162.7		3.2 (60 m)	2.3		45.5		97.0
*	; 	·	· · · ·									<u> </u>

Height: 0m Distance (km)	3	Wind S	Speed (1	ns")	
Distance (km)	3	5			
·····			8	12	15
2.0	16.1		131.5		430.5
3.2					
4.8	88.6		135.0		209.9
7.5	_				
9.2					
. 10.0					
10.5	86.1		157.2		113.4
12.0					
13.4					
14.0					]
15.0					
16.0					
16.8					
17.0					
17.6					
17.8		 			
18.0	13.6		76.4		74.8
19.1					
4.8 (60m)	37.4		164.0		229.7

:

	Wind D	Direction		0 	NO,
Height: 0m Distance (km)	3	Wind S	Speed (1 8	n s ⁻ ') 12	15
2.0	2,3		33.4	,	160.4
3.2					
4.8	26.9		63.4		126.4
7.5					
9.2					
10.0		:			
10,5	43.6		103.5		81.8
12.0					
13,4					
14.0		·			
15.0					
16.0		:	-		
16.8			:		· ·
17.0					
17.6					
17.8					<u> </u>
18.0	8.7		55.2		55.2
19.1					
4.8 (60m)	11.3		77.1		138.3
assumes ozone o					

Options 5+8	Wind D			•	SO2
Height: 0m			Speed (		
Distance (km)	3	5	8	12	15
2.0	3.1		25.1		111.2
3.2					
4.8	26.1		29.0		55.8
7.5					
9.2					
10.0					
10.5	25.9		40.5		30.3
12.0					
13.4					
14.0					
15.0					
16.0					
16.8				r	
17.0					
17.6					
17.8					
18.0	3.8		19.5		20,6
19.1					
4.8 (60m)	9.2		38.1		62.
			•		

(assumes ozone concentration = 35 ppb)

,

NO,

Options 5+8				• 	NO
leight: 0m			Speed ( n	n s⁻') 10	16
Distance (km)	3	5	8		15
	-				
2.0					
3.2					
4.8					
7.5	22.7		193.6		164.8
9.2					
10.0					
10.5	25.7		116.7		101.3
12.0			•		
13.4					
14.0	10.4		94.6		91.5
15.0					
16.0					
16.8			,		
17.0					·····
17.6	10.4		49.8		42.9
17.8					· ·
18.0			 		
19.1	9.5		56.6		48.0
				:	
-					

Height: 0m Distance (km) Wind Speed (m s⁻¹) <u>5</u>812 8 12 15 3 2.0 3.2 4.8 7.5 9.4 113.6 113.1 9.2 10.0 13.0 73.0 10.5 76.9 12.0 13.4 14.0 6.1 67.2 66.3 15.0 16.0 .16.8 17.0 17.6 6.6 35.9 31.7 17.8 ÷ 18.0 19.1 35.5 6.2 41.1 5. I (assumes ozone concentration = 35 ppb) .

Options 5+8 Wind Direction: 340 *

Options 5+8	Wind D			• .=15	so,
Height: 0m	3		Speed (		15
Distance (km)		5		12	12
2.0	!				
3.2					
4.8					
7.5	4.8		50.2		41.5
9.2			•		
10.0					
10.5	6.4		31.6		26.
12.0					
13.4			:		
14.0	2.6		25.0		23.4
15.0					
16.0	;				
16.8				1	
17.0					
17.6	3.2		14.6		11.
. 17.8					
18.0					
19.1	2.6		15.3		12.
			:		

Options 5+8 Height: 0m	W	nd Speed (m s	NO <u>,</u>
Distance (km)	3	5 8	12 15
2.0		93.5	248.8
3.2	46.7	104.4	255.5
4.8			
7.5			
9.2			
10.0			
10.5	19.2	85.7	110.1
12.0			
13.4			
14.0	·		
15.0			
16.0			
16.8			
17.0			
17.6			
17.8	23.7	74.0	59.0
18.0			
19.1		<u>.</u>	
·····			]

Options 5+8	Wind D				NO,
Height: 0m	_		Speed (		• • • •
Distance (km)	3	5	8	12	15
			1		
2.0			23.7		92.7
3.2	10.3		37.8		127.4
4.8					
7.5				, 	
9.2					
10.0					
10.5	9.7		56.4		79.4
12.0				L	
13.4					
14.0					
15.0					
16.0					
16.8			•		
17.0					
17.6					
17.8	15.0		53.4		43,6
18.0					
19.1					
			<u> </u>		
assumes ozone o					

Options 5+8	Wind E			•	SO,
Height: 0m			Speed (		_
Distance (km)	3	5	8	12	15
2.0		·	2.3		57.0
3.2	12.4		13.2		67.3
4.8					
7.5					
9.2					
10.0					
10.5	5.2		24.4		32.9
12.0					
13.4					
14.0					
15.0					
16.0					
16.8				· ·	
17.0					•
17.6			·····		·
17.8	7.1		19.2		16.4
18.0					
19.1					
				,	
			<u>-</u>		
				L	

a a la sera a la sera a la sera a la sera a la sera a la sera a la sera a la sera a la sera a la sera a la sera

1 N

.

· •

1997 - N. ÷

.

٦

.

· . . :

.

· •

### $\bigcirc$ $\bigcirc$ ()

Castle Peak A Teight: 0m	Wind Di	Wind	015 * Speed (n	NO _x	
Distance ⁽¹⁾	3	5	speed (n 8	12	15
-3.0					
-2.5		·			•
-2.0			·		
1.5					
-1.0				i	
-0.5					
0.0					
0.8					
1.2			·		
2.0					
2.4					
3.2					
4.8					
7.5	0.0	0.0	143.9	184.6	214.7
9.2					
10.0					
- 10.5	3.2	11.2	252.0	177.3	218.9
13.4					
14.0	31.0	55.7	162.0	157.2	145.9
.16.0					,
	0.0	18.9	125.8	100.0	110.4
17.0					
17.8	<i></i>				
18.0					2
19.1	25,8	51.2	117.3	98.8	81.2
					;
16.8 (60m)	0.0	11.7	101.9	98.3	98.8
a di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di second			-		\$
		1.		.	

Castle Peak A	Wind Dir	ection:	015 *	NO ₂	
Height: 0m Distance ⁽¹⁾	3	Wind 5	Speed (m 8	s") 12	
Distance			<u> </u>	<u>12</u>	10
	[			ł	<del></del>
-3.0	·				-
-2.5	:	<u>.                                    </u>			
-2.0					
- 1.5	<b></b>				
-0.5	l				· · · ·
0.0					
0.8					
1.2					
2.0		_			
2.4					
3.2	1			· · · · ·	
4.8	•				
7.5			67.7	102.8	129.3
9,2	1t				
10.0	tt-				· · · · ·
10.5		5.7	148.5	116.7	150.6
13.4					
14.0	1	34.3	110.1	112.7	106.3
15.0					
16.0					
16.8		12.2	87.9	72.6	81.0
17.0				,	
17.8			· · · · · · · · · · · · · · · · · · ·		
17.8	· · · · · · · · · · · · · · · · · · ·				
19.1		34.4	83.8	72.4	59.9
19.1	6.61		03.0	/ 4.4	
16.8 (60m)		7.5	71.2	71.4	72.5
• 					

Castle Peak A	Wind Di	rection:	015 °	SO ₂	
Height: 0m Distance ⁽¹⁾	3	Wind 5	Speed (1 8		15
Distance		<u>`</u>	•••••	12	
-3.0					
-2.5		<u> </u>			
-2.0				 	
-1.5	<u>.</u>				
-1.0					
-0.5	<u></u> .	<u> </u>	ļ		
0.0					
0.8		-			
1.2	[				
2.0					
2.4				· ·	
3.2	·				
4.8		]			
7.5	0.0	0.0	149.1	191.3	222.
9.2					
10.0					
10.5	3.3	11.7	261.1	183.8	226.
13.4					
14.0	32.1	57.7	167.9	162.9	151.
15.0					
16.0					
16.8		19.6	130.3	103.6	114.
17.0					
17.8					
18.0			 		
19.1	. 26.7	53.0	121.5	102.3	84.:
16.8 (60m)		12.1	105.6	101.9	102.3
10:0 (00111)		14.1	10210	101.9	102.

...

.

Wind Di			NO,	
-				- 10
3		8	<u> </u>	15
	•	5 2		32.9
			<u> -</u>	288.0
		·		554.3
				484.4
<u> </u>				551.2
				561.7
				577.6
0.0		80.4		397.2
0.0		. 100.1	. [	387.2
0.0		115.1		401.6
0.0		123.2		378.8
0.0		95.9		319.9
·				
44.7		111.2		167.3
26.1		77.4		122.3
6.0		73.8		106.6
,				
:				_
<u></u>				
·				
,		<b>.</b>		
<u> </u>				
	<u>_</u>	· ·		
<u></u>				
·			<u>_</u>	492.5
0.0		117.1		430.8
	3 0.0 0.0 0.0 0.0 0.0 7.4 7.3 7.3 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Wind 3 5 0.0 0.0 0.0 0.0 0.0 0.1 7.4 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	3       5       8         0.0       5.2         0.0       6.4         0.0       21.4         0.0       36.1         0.1       59.8         7.4       71.3         7.3       102.2         0.0       80.4         0.0       100.1         0.0       100.1         0.0       100.1         0.0       100.1         0.0       100.1         0.0       100.1         0.0       100.1         0.0       115.1         0.0       95.9	Wind Speed (m s ⁻¹ )         3       5       8       12         0.0       5.2       7         0.0       6.4       7         0.0       21.4       7         0.0       21.4       7         0.0       36.1       7         0.0       36.1       7         0.1       59.8       7         7.3       102.2       7         0.0       80.4       7         0.0       100.1       7         0.0       100.1       7         0.0       100.1       7         0.0       100.1       7         0.0       115.1       7         0.0       95.9       7         26.1       77.4       7         26.1       77.4       7         26.1       77.4       7         1       1       1       1         1       1       1       1         1       1       1       1         10.0       73.8       1       1         1       1       1       1       1         1       1       1       1

	Wind Di		160 °	NO,	L
Height: 0m Distance ⁽¹⁾	3	Wind	Speed (m 8	າຣ") 12	15
		- ,	· · · ·		
-3.0			0.7		7.2
-2.5		;	1.3	-	87.1
-2.0			5.4		206.5
-1.5			10.9	,	209.0
-1.0	0.0		20.7		265.2
-0.5	1.8		27.5		293.5
0.0	1.9		43.0		322.0
0.8			37.8		239.2
1.2			49.2		240.1
2.0			61.0		260.8
2.4			67.4		250.5
3.2			55.3		217.6
4.8	•			•	·
7.5	23,7		75.0		121.6
9,2	14.8	·	53.7		89.6
10.0	3.5		51.7		78.3
10.5	:				
13.4					<u>.                                    </u>
14.0			•		
- 15.0					
16.0					
16.8					<u></u>
<u> </u>					
17.8	·				
18.0	· ,				
19.1					
0.8 (60m)		······	55.8		296.5
0.8 (120m)		<u>.                                    </u>	55.0		259.4
9.2 (60m)	2.3		62.9		76.5

Castle Peak A	Wind Di	rection:	160 °	SO2	<u> </u>
Height: 0m		Wind	Speed (m	s ⁻¹ )	[
Distance ⁽¹⁾	3	5	. 8	12	15
-3.0	-		5.4		34.1
-2.5	•		6.7		298.5
-2.0			22.2	·	574.4
-1.5			37.4		502.1
- 1.0	·		62.0		571.3
-0.5	7.7		73.9		582.1
	7.5		105.9		598.6
0.8			83.3		411.7
1.2			103.8		401.3
2.0			119.3		416.2
2.4			127.6		· 392.6
3.2			99.4		331.5
4.8				·	
7.5	46,3		115.3		173.4
9.2	27.0		80.2	·	126.8
10.0	6.3		76.5		110.4
10.5		,			
13.4				·	
14.0			·		, - 
15.0	· · · ·			<u> </u>	
16.0					
16.8			-		
17.0			· ·		
17.8					
18.0			 		
19.1					
0.8 (60m)			123.0		510.4
0.8 (120m)			121.4		446.5
9,2 (60m)	4.3		94.0		108.2

 $\bigcirc$ 

Listation 1		ection:	310 °	NO,	
Height: 0m Distance ⁽¹⁾	3	Wind 5	Speed (m 8	15)	15
				***	
-3.0					
-2.5					•
-2.0					
- 1,5					
-1.0	· ·				
0.5					
0.0					
0.8		· · · · ·			
1.2			:		· · · · ·
2.0		. <u> </u>			
i · 2.4					
3.2		'			
. 4.8					171.3
7.5	6.9		46.8		248.3
9.2		······································			
10.0		·			
10.5	0.0		59.7		173.4
13.4					`
14.0	0.0		4.8		62.4
15.0	0.Ò		9.3		67.8
· 16,0			28.7		49.9
16.8					•
17.0	7.1		17.3		60.1
17.8				:	
18.0	-				
19.1					

Castle Peak A V	Vind Dir	ection:	310 °	NO ₂	
Height: 0m	2	Wind	Speed (n	n s⁻¹) ¯¯	15
Distance ⁽¹⁾	3	5	8	12	15
		·	·		
-3.0					
-2.5				τ	
-2.0					
-1.5					•
-1.0	:				
-0.5					
0;0					
0.8					
1.2					
2.0		• • •			
2.4	†			·	
3.2					
					 70 f
4.8	· · ·				72.2
7.5	2.0	, ·	21.2		145.7
9.2					
10.0	· .				
10.5		· · · ·	34.6		118.4
13.4		·····			
14.0	·		3.2		45.1
15.0			6.3		49.3
· 16.0			19.7		36.5
16.8					. <u></u>
17.0	4.1		12.1		44.
17.8					
18.0					
19.1					
· .	•				
		· · ·			

.

1999 - Barris Barris (B. 1997)

.

Castle Peak A	Wind Di	rection:	310 *	SO,	
Height: 0m Distance ⁽¹⁾	3		Speed (m 8	ιs⁻') 12	
Distance		5		14	<b>1</b> .
· · ·		<u>`</u>			
-3.0	<u> </u>		 		
-2.5	[				
-2.0					
-1.5	;[				
-1.0	]				
-0.5			-		
0.0	-1			··	
0.8					,
1.2	- <u>j</u>				
2.0	<u>'</u>		<u> </u>		<u> </u>
2.4	<u>.</u>				
3.2					· .
4.8					177.5
. 7.5	7.1		48.5	4	257,3
9.2	- į				•
10.0					
10.5			61.8	• •	179.7
13.4					
13.4	-)				645
			5.0		64.2
15.0			9.7		70.2
			29.7		51.7
16.8	-}		· · ·	· ·	<u> </u>
17.0	7.4		17.9		62.3
17.8					
18.0					
19.1			-		
				,	
· · ·			· ·		
·	1			· · ·	<u></u>

Castle Peak A	Wind Dir	rection:	330 °	NO,	
Height: 0m Distance ⁽¹⁾	2	Wind 5	Speed (n		- 15
Distance	3	· ]	8	12	10
-3.0					,
-3.0					4 .
-2.0				·	
-1.5			·		·
-1.0					
-0.5					
0.0				· · · · · · · · ·	
0.8	<u> </u>				
1.2					
2.0					
2.4					
3.2					
4.8	0.0	0.0	0.0	90.3	192.3
7.5	0,0	0.0	90.7	393.4	399.8
9.2					•
, 10.0					
10.5	0.0	0.0	83.9	245.9	224.3
13.4					
14.0	0.0	0.0	52.8	125.8	116.0
15.0					
16.0					
16.8					
17.0					
17.8					
: 18.0	28.7	27.8	55.7	103.1	93.5
19.1					
4.8 (60m)	0.0	0.0	0.0	468.4	635.2
18.0 (60 m)	23.3	28.3	56.4	95.5	95.2

Castle Peak A Height: 0m	Wind Dir	ection:	330 • Speed ( n	NO ₂	
Distance ⁽¹⁾	3	77 ING 5	speed (n	18 )	15
		·			
-3.0					
-2:5		,		,	
-2.0					
- 1.5		-		·	
-1.0					
-0.5					
0,0				·	
0.8					
1.2					
2.0					
2.4					
3.2					
4.8	·			18.4	45.8
7.5			35.8	189.5	212.8
9.2					
10.0					
10.5			46.6	155.1	149.5
13.4	·				
14.0			34.4	88.1	83.3
15.0					
16.0					
16.8					
17.0					•
17.8					
18.0	16.7	18.1	39,1	75.0	68.7
19.1					
4.8 (60 m)				95.4	151.3
18.0 (60m)		18.4	39.5	69.5	69.9

astle Peak A leight: 0m	Wind Dire		330 ° Speed (m	SO ₂	
listance ⁽¹⁾	3	5	8 speed (	3 <i>)</i> 12	15
			ľ		
-3.0					
-2.5					
-2.0					
-1.5					
-1.0		_			
-0.5					
0.0					
0.8					
1.2					:
2.0					
2.4					
3.2					
: 4.8				93.5	199.3
. 7.5	<u> </u>		94.0	407.7	414.4
9.2		· .			
10.0					
10.5			87.0	254.9	232.4
13.4					
14.0			54.7	130.3	120.3
15.0					
16.0					
16.8					·
17.0					
17.8					
18.0	29.7	28.9	57.7	106.9	96.9
19.1					· · · · · · · · · · · · · · · · · · ·
4.8 (60m)				485.4	658.3
18.0 (60m)	24.2	29.3	58.4	98.9	98,6

-

.

Height: 0m		Wind 9	Speed ( m	s ⁻¹ )	
Distance ⁽¹⁾	3	5	8	12	15
-3.0				: ]	
-2.5		·····			•
-2.0					
-1.0					:
-0.5	:			•	
Ó.O				·	
0.8				· !	
1.2					
2.0					
2.4		-			. <u> </u>
3.2					· · ·
4.8		:			
7.5	.1.2	28.8	.245.2	370.1	410.8
.9.2					,
10.0		•			
10.5	10.4	29.2	168.0	235.0	221.0
13.4			100.0		
14.0	25.4	19.6	106.8	133.6	123.2
15.0			100,0	133.0	
16.0	`	;			
16,8		:			
17.0					· ·
17.8	3.8	46.1	100.1	94.9	80.6
18.0					
19.1	13.9	31.4	83.4	431.2	197.2
			, ,		
		······	:	2	1

Height: 0m			Speed (n	<b>≀</b> ຮ⁻')	
Distance (1)	3	5	8	12	. 1!
· · · · · · · · · · · · · · · · · · ·		s			
-3.0					
- 2.5				٩	
-2.0					
-1.5					
- 1.0		i			. ,
0.5					
0,0					
0.8					
· 1.2					
2.0					· .
2.4					
3.2	۰				
4.8	• .				
7.5	0.3	8.7	94.5	174.6	214.
9.2			<u>`</u>		· · · ·
10.0	i				
10.5	3.9	13.5	92.6	147.5	146.
13.4					;
14,0	12.5	11.3	69.4	93.4	88,
15.0					
16.0		·			
16.8		<del>_</del>			
, 17.0					
17.8	2.2	29.8	70.0	69.0	59.
18.0	· ;				
19.1	8.3	20.8	59.1	315,1	145.
	;	<del></del>	· · ·		
	•				
					·

Castle Peak A V Height: 0m		Winds	peed (m	s ⁻¹ )	
Distance ⁽¹⁾	· 3	5	9000 ( iii 8	12	
	· · ·	T			
-3.0					
-2.5					
-2.0				· · · ·	
-1.5					,
-1.0					
-0.5					
0.0					
0.8	;		•		
1.2				· · ·	
2.0		•			
2.4					
4.8					<u>.</u>
7.5	1.3	29.9	254.2	383.5	425
9.2			·		
10.0			· · ·		
10.5	10.8	30.3	174.1	243.5	229
13.4			·····		
14.0	26.3	20.3	110.7	138.5	127
15.0				····	
16.0 16.8					
10.8				· ·	
17.8	4.0	47.8	103.8	98.4	83
18.0		, ,			
19.1	14.4	32.6	86.4	446.9	204
···				·	
:					

•

⁽¹⁾ Distances are specified as downwind of Black Point in kilometers

\$

,

	Wind Di			NO	
Height: 0m	_		Speed (n		
Distance (1)	3	5	8	12	15
<u> </u>	· · · ·				
3.0					
-2.5					• •
-2.0					
-1.5					
-1.0		· · ·			
-0.5					
0,0					
0.8					
.1.2					
. 2.0					
2.4					
3.2					
4.8					
7.5		0.0	94.4	368.0	417.9
9.2					
10.0					
10.5		2.5	113,3	189.4	202.3
13.4		33.1	297.9	144.7	116.9
14.0		18.9	103.1	155.9	147.2
15.0					
16.0					[
16.8	·····				
17.0		36.2	88.7	144.7	124.1
17.8		47.2	54.5	. 99.6	80.2
18.0				·	
19.1		37.0	18,9	47.2	37.4
				•	
· ····································					
· · · · · ·				· .	
				····	

.

.

	Wind Di		356	1107	
Height: 0m Distance ⁽¹⁾	3	Wind 5	Speed (n 8	n s ⁻ ') 12	15
19 ISTUTICE		<u>₽</u>	<u>~</u>	12	
-3.0					
-2.5					
-2.0					
-1.5					
-1.0					
-0.5					
0,0					
0.8					
1.2					
2.0					
2.4					
3.2					
4.8	·				
7.5			38.5	182.4	228.
9.2					
10.0					
10.5	0.1	1.2	63.5	120.4	135.
13.4	2.1	18.7	191.2	100.5	83.
14.0	1.2	11.0	67.4	109.4	105.
15.0					
16.0					
16.8				_	
17.0	15.7	23.1	61.6	104.8	90,
17.8	. 21.1	30.6	38.2	72.4	58.
18.0	•				
19.1	17.1	24.6	13.4	34.5	27.
, <u></u> ,					· 

	Wind Dir		356 °	so,	
Height: 0m		Wind	Speed (n	n s ⁻¹ )	
Distance (1)	3	5	. 8	12	15
-3.0					
-2.5				,	
-2.0					
-1.5					
-1.0				'	
-0.5					
0.0					
0.8					
1.2		İ			
2.0				·	
2.4					
3.2					
4.8	<u>`</u>	<del></del>			
7.5			97.8	381.4	433.1
<u>9.2</u> 10.0	·				
10.5	0.3	2.6	117.4	196.3	209.7
13.4	4.4	34.3	308.7	150.0	121.1
14.0	2.6	19.6	106.9	161.6	152.5
15.0					
16.8					
17.0	28.7	37.5	92.0	150.0	128.6
17.8	37.5	48.9	56.4	103.2	83.2
18.0					
19.1	29.4	38.4	19.6	48.9	38.8

( )

⁽¹⁾ Distances are specified as downwind of Black Point in kilometers

.

Castle Peak B	Wind Dir	ection:	015 °	NO,	
Height: 0m Distance ⁽¹⁾	5		Speed ( a		15
Distance	3	5		12	15
-3.0			:		·
-2.5					·
-2.0				]	
- 1.5					
-1.0					
-0.5					
0.0					
0.8					
. 1.2					
2.0	1				
2.4	[]				
3.2					
4.8					
4.0		114.6	273.5	497.1	544.7
	14.7	114.0	<i>ل</i> , <i>د ہے</i>		
9.2					
10.0					
10.5		75.8	314.7	400.2	362.5
13.4	1				
14.0	<b> </b>	27.0	92.3	116.2	116.5
15.0	· · ·				
16.0	<b> </b>			[.	
16.8	0.0	60.5	199.3	206.6	175.0
17.0					
17.8					
18.0					
19.1	34.5	53.6	122.1	107.3	76.7
16.8 (60m)	67.4	80.7	180,4	179.6	131.8
	-		• .		
		-			

	Wind Di		015 °	NO ₂	
Height: 0m			Speed (n		
Distance ⁽¹⁾	3	5	8	12	. 15
-3.0					
-2.5		<u></u>		*	
-2.0					
- 1.5					
- 1.0					
-0.5					
0.0					
0.8					
1.2					
2.0					
2.4					
3.2					
4.8	•				
7.5	4.5	43.6	128.7	276.7	328.2
9.2					
10.0					
10.5	8.8	38.1	185.4	263,3	249.3
13.4					
14.0	13.8	16.7	62.8	83.3	84,9
15.0					
16.0					
16.8		39.0	139.2	150.0	128.4
. 17.0					·
17.8	- <u>-</u>				
18.0	· 	 			
19.1	21.1	36.0	87.2	78.6	56.6
16.8 (60m)	38.8	52.1	126.0	130.4	96.7
۰ . ــــــــــــــــــــــــــــــــــــ					
					•

		Speed (n		40
				15
				•
·				<u>.                                    </u>
				<u> </u>
			F	
				· 
-				 
]	·			
·	125.3	299.1	543.5	595.5
11				
	82.9	344.0	437.6	396.3
· · · · · · · · · · · · · · · · · · ·	29.5	101.0	127.0	127.4
		······		
	66.1	217.9	225.9	191.3
[				
	58.6	133.5	117 3	83.9
73.7	88.2	197.2	196.4	144.1
	3 	3 5 3 5 3 5 3 5 4 10 5 125.3 5 125.5 5 12	3       5       8	3       5       8       12

where the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

.

			·	<u></u>		i ''
Castle Peak B	Wind Di		160 *	NO,		
Height: 0m			Speed (m			
Distance ⁽¹⁾	3	5	8	12	15	
·						
-3.0	0.0		1.2		110.8	
-2.5	4.7		6.9		374.8	
-2.0	11.3		13.2		516.7	
-1.5	17.9		33.3		606.3	
-1.0	38.7		38.5		669.6	
-0.5	40.5		73.0		684.8	
0.0	69.6		83.1		670.3	
0.8	8.0		51.9		465.8	•
1.2	24.2		69.4		460.3	
2.0	4.1		97.4		503.3	
¹ 2.4	4.4		102.1		484.4	
3.2	6.9		89.5		428.1	
4.8	<u></u>					
. 7.5	0.8		116.2		252.6	
9.2	·0.0		96.4		187.8	
10.0	7.2		89.4		147.0	
10.5				-		
13.4	· ·					
14.0						
15.0						
16.0						
16.8						
17.0						
17.8						ľ
18.0						
. 19.1	,			j		
0.8 (60m)	5.2		96.6		554.9	
0.8 (120m)	16.5		103.6		502.3	
9.2 (60 m)	4.9		108.2		159.9	

Castle Peak B W Teight: Om	vina Di	rection:	160 ° Speed (m	NO2	
Distance ⁽¹⁾	3	5	speeu (m 8	<u>12</u>	]
-3.0			0.2		24.
-2.5	0.5		1.4		113.
-2.0	1.7		3.4		192.
-1.5	3.2		10,1		261.
1.0	8.0		13.3		322.
0.5	9.6		28.1		357.
0.0	18.3		34.9		373.
0.8	2.4		24.4		280.
1.2	7.8		34.1		285.
2.0	1.5		51.6		326.
2.4	1.6		55.8		320.
3.2	2.8		51.6		291.
4.8	· •		· · · · · ·		
7.5	0.4	,	78.3		183.
. 9,2			66.9		137.
10.0	4.2		62.7		108.
10.5					
13.4					
14.0					
15.0					• •
16.0					
16.8					
17.0					
17.8					
18.0		· <u> </u>			
19.1			.		
0.8 (60m)	1.6		45.4		334.
0.8 (120m)	5.0	ļ	48.7		302.
9,2(60m)	2.8		75.0		117.

Castle Peak B	Wind Dir	ection	160 °	so,	
Height: 0m			Speed (n		
Distance ⁽¹⁾	3	5	speeu (n 8	•	15
	F				
-3.0	0.0		. 1.4		121.1
-2.5	5.2		7.5		409.8
-2.0	12.4		14.5		565.0
-1.5	[.] 19.5		36.5		662.9
- 1.0	42.3		42.1		732.1
-0.5	44.2		79.8		748.8
0.0	76.1		90.8		732.9
0.8	8.8		56.7		509.3
1.2	26.4		75.9		503.3
2.0	4.4		106.5		550.3
2.4	4.8		111.6		529.7
3.2	7.5		97.9		468.1
4.8					
7.5	·0.9	,	127.0		276.2
9.2			105.4		205.4
10.0	7.9		97.8		160.8
10.5					
13.4					]
14.0					· .
15.0					
16.0					
16.8					
17.0					
17.8					
18.0					
19.1					
0.8 (60m)	5.7		105.7		606.8
0.8 (120m)	18.0		113.3		549.2
9.2(60m)	5.3		118.3		174.9

Castle Peak B	Vind Dir	ection:	310 ° Speed (m	<u>NO</u> ,	<u>.</u>
Height: 0m Distance ⁽¹⁾		.s ⁻ ') 10	2 · 16		
Distance	3	5	8	12	15
	·				
-3.0					
- 2.5	•	,			•
-2.0					:
S-1.5	,		1		
-1.0					
-0.5					
0.0					
0.8					
1.2				;	
2.0	:			;	
2.4					
3.2		- <u></u>		:""	
4.4	0.0		0.0		35.5
7.5	0.0		7.2		179.6
9.2	0.0				
10.0					
10.5	0.0		31.1		192.5
13.4	0.0	· · · · ·			172,5
14.0			6.1		66.1
14.0	0.0	,	5.2	· · ·	67.0
16.0			7.2		57.3
		<u> </u>	7.4		
16.8	: É a			: .	
17.0	5.2		21.4		64.5
17.8			├───┤		
18.0	<u>.</u> ,	<u>.</u>	-	· ·	
19.1		•			,
					<u> </u>
	• • •		· · · · · · · · · · · · · · · · · · ·	; 	
		ľ · ·	<b>.</b>	· ·	**

	Nind Dir		310 °	NO ₂	
Height: 0m	:	Wind	Speed (n	ເຮ⁻'}	
Distance ⁽¹⁾	3		8	12	· 1
A.C				· ·	
3.0					<u></u>
	· · · · · · · · ·		· · ·		
-2.5		÷			
-2.0		· · ·			
-1.5					
-1.0		· · · ·			
-0.5	{				
0.0				·	
0.8					
1.2	:				
2.0					
2.4	:		:		
3.2	:				
4.8	•	•			15.
7.5	;		3.3		105.
9.2					
10.0	· .				
10.5			18.0		131.
13.4	, , ,	<u>.</u>			
13.4	<u>·</u>		4.0		47.
14.0	;		3.5		48.
·			5.0		
10.0	; <u> </u>		5.0		41.
16.8				· ·	
17.0	3.0		14.9		47.
17.8	<u> </u>	<u> </u>	·		
18.0		<u></u>	·····		
19.1		:	:		
·,			·····		
	i	• • • • • • • •			•
•			· · ·		

.

,

Castle Peak B Height: 0m	Wind Di	Wind	310 ° Speed (n	\$0,	
Distance ⁽¹⁾	. 3	wind 5	speed (n 8	ns ) 12	1
Distance		<u>, ,</u>	<u> </u>	12	
-3,0	- <u> </u>		· · ·	· · · ·	 
-2.5			· ·		
-2.0					
-1,5					
-1.0			•		-
-0.5					
0.0				2	
0.8	<u></u>				<u> </u>
1.2	<u></u>			. <u> </u>	
2.0	)				
2.4	l				
3.2	·	ļ	· ·		
. 4.8		<u> </u>	ļ		38.
7.5			7.9	-	196.
9.2					
10.0	-1		·		
10.5			34.0		210.
13.4	- [		· · · ·		
14.0			<u>6.7</u> 5.7		72. 73.
15.0 			7.9		62.
16.6			1.5	. '	02.
17.0			23.4		70.
17.8					
18.0		····		· ·	
19.1					
				•	
			~		
	<u> </u>				

⁽¹⁾ Distances are specified as downwind of Black Point in kilometers

.

.

Castle Peak B	Wind Di		330 °	NO	
Height: 0m Distance ⁽¹⁾	3	Wind 5	Speed (n 8	n s ⁻ ') <u>12</u>	15
		<u>E</u> .			
-3.0	]	·		,	
-2.5		<u>.</u>			• • •
-2.0				~	
-1.5	1				
-1.0					
-0.5					
0.0		<u>.</u> .			
0.8					
1.2				3.	
2.0	· ·				
2.4	;				
3.2	·	-			
4.8	1		0.0		16.2
. 7.5	1		0.0		612.5
9.2					
10.0					
10.5	[		64.5		401.9
13.4					
14.0	0.8		61.4	<u> </u>	175.5
15.0	1				
16.0	( <u> </u>				
: 16.8	I——				·
; 17.0					·
17.8					
18.0	. 38.3		74.6		135.9
19.1	:				
· · · · · · · · · · · · · · · · · · ·					
4.8 (60m)	0.0		0.0	-	56.9
18.0 (60m)	18.2	·	74.6		141.2
• .			1		· ·

Height: 0m	T	Wind	Speed (n	1 ś ⁻¹ )	
Distance ⁽¹⁾	3	5	8	12	
-3.0	1			•	
-2.5		,			
-2.0					
-1.5					
-1.0		*		1	
-0.5					
0.0	1			-	
0.8					
1.2				,	
2.0					
2.4					
3.2					
4,8	•				3.9
7.5	. :				326.0
9.2					
10.0					
10.5			35.8		267.9
13.4	· ·				
14.0	0.4		39.9		126.1
15.0					
16.0	. :				
16.8					
' 17.0					
¹ 17.8	<u></u>				
18.0	22.3		52.3		99,8
19.1	<u> </u>				
4,8 (60m)					13.5
18.0 (60m)	10.6		52.3		103.7

	Wind Di		330 °	s0,	
Height: 0m			Speed (n		
Distance ⁽¹⁾	3	· 5	8	12	15
· ·		۲		·	
-3.0					
-2.5					r .
-2.0					
-1.5					
-1.0		:-			
-0.5	·•		-	· ·	
0.0					
0.8					
1.2		·	•		
2.0			3		
2.4					
3.2					· •
4.8		,			17.7
. 7.5	•	•		•	669.7
9.2	+	-			
10.0					
10.5			70.6		439.4
13.4	-			•	
14.0	0.9		67.1		191:9
15.0					
16.0	<u>}</u>				,
16.8	,				
17.0			-		
17.8					
18.0	41.9		81.6		148.5
19.1	·				
4.8 (60m)			•	-	62.2
18.0 (60m)	19.9		81.6		154.4

# $\mathbf{A} = \mathbf{A} =$

Castle Peak B Height: 0m	Wind Dir		340 ° Speed (m	NO,	· ·
Distance ⁽¹⁾	3	5	8	12	15
-3.0					
-2.5					•
-2.0					
· - 1:5					
- 1.0					
-0.5					
0:0		· ·		ł	
0.8					
1.2			· ·		
2:0					
. 2.4					
3.2					
4.8		•	-		
7.5	0.0	30.0	41.6	293.3	524.1
9:2			1		
10.0	-	]			
10.5	19.1	33.0	126.1	288.5	328.0
13.4					
14.0	8.3	25.7	112.6	226.5	181.0
15.0					
16:0					
17:0			Í		2
17,6	2.4	22.2	110.3	152.4	108.3
18.0					
19.1	1.6		25.7		103.1
<u></u>				u.	
	· · ·				

Castle Peak B Fleight: 0m	Wind Di		340 ° Speed (n	NO ₂	
Distance ⁽¹⁾	3	5	8	12	_15
-3.0					
-2.5		×		4	÷
-2.0					
-1.5					
-1.0	·				
-0.5					
0.0					
0.8					
1.2					
2.0		-			
2.4					
3.2					,
4.8	• ·	·			<u> </u>
7.5		9,1	16.0	138.4	273.
9.2	<del>_</del> _				
10.0		•			
10.5	7.2	15.2	69.5	181.1	217.
13.4					
14.0	4.1	14.7	<u>73.1</u>	158.4	129.
15.0			·		······································
16.0	·			·	- <u> </u>
16.8 17.0			<u>_</u>		
17.0	, 1.4	14.3	77.1	110.7	79.
<u>17.8</u> 18.0	. 1.4		//.1	110.7	17.
18.0	0.9		18.2		75.9
			10.2		70.7

Height: 0m		Wind S	ipeed (m	s ⁻¹ )	
Distance (1)	3		8	12	
-2.5					
-2.0					
-1.5					
-1.0					
-0.5					
0.0		)		<u>_</u>	
0.8					•
1.2					
2.0					
2.4					
3.2					
4.8				+	
7.5		32.7	45.5	320.7	573
9.2					
10.0					
10.5	20.9	36.1	137.9	315.5	358
13.4					
14.0	9.0	28.1	123.1	247.7	192
15.0					
16.0					
16.8					
17.0	<b> </b> -		.	-	
17.8	2.6	24.2	120.6	166.6	118
18.0					
	1.7		28.1		112

⁽¹⁾ Distances are specified as downwind of Black Point in kilometers

.

lastle Peak B leight: 0m	Wind Dir		356 ° Speed (1	NO,	
Distance ⁽¹⁾	3	5	5peeu (1 8	· 12	15
-3.0			·		<u> </u>
-2.5				;	•
-2.0					
- 1.5					
-1.0					
-0.5					
0.0					
0.8					
1.2				•	'
2.0					
2.4					
3.2					
4.8	1				
7.5	0.0	3.6	81.2	313.8	465.2
9.2	-				
10.0					
10.5	· 4.3	33.1	117.0	250.1	273,5
13.4	· 3.8	29,5	197.3	207.4	137.2
14.0	3.6	27.5	142.4	211.0	196.7
15.0					
. 16.0					
16.8					
17.0	18.5	24.2	112.6	199.3	185.2
17.8	18.5	24.2	68.6	154.2	140.6
. 18.0			1		
19.1	35.8	46.8	38,3	75.5	65.8
:					
ł .			 		

	Wind Di		356 °	NO,									
Height: Om													
Distance (1)	3	. 5	- 8	12	15								
					ı .								
-3.0													
-2.5		*											
-2.0													
-1.5	. <u> </u>				<u> </u>								
- 1.0													
-0.5													
0.0					.=								
0.8													
1.2	·		·										
2.0													
2.4													
3.2													
4.8	•												
7.5		1.2	33.1	155.5	253.8								
9.2													
10.0		· · · · · · · · · · · · · · · · · · ·											
10.5	1.7	15.6	65.6	159.0	183.3								
13.4	1.9	16,7	126.7	144.0	98.0								
14.0	1.8	15.9	93.0	148.1	141.4								
15.0													
16.0													
. 16.8													
<u>` 17.0</u>	10.5	15.4	78.1	144.2	135.7								
17.8	, 10.8	15.7	48.1	112.1	103.3								
18.0	. <u>.</u>												
	21.6	31.1	27.2	55.2	48.4								
·	<u> </u>	• • • • • • •			<del></del>								
				,									
					•								

.

Castle Peak B Height: 0m	Wind Di		356 °. Speed ( n	SO ₂	
Distance ⁽¹⁾	3	5	Sheer ( II	12	· 15
-3.0		· ·			
-2.5					
-1.5					
- 1.0					
-0.5					
0.0					
0,8					
1.2		•			
2.0					
2.4					
3.2					
4.8	· · ·				
7.5	•	4.0	88.7	343.1	508.7
9.2	<u> </u>			· · ·	
10.0					
10.5	4.7	36.2	127.9	273.5	299.1
13.4	4.2	32.3	215.8	226.8	150.0
14.0	4.0	30.0	155.7	230.7	215:0
15.0					
16.0					
16.8					
17.0	20.3	26.4	123.1	217.9	202.5
17.8	20.3	26.4	75.0	168.6	153.7
18.0					
19.1	39.2	51.2	41.9	82.6	71.9
			,		

Castle Peak A&B V Teight: Om			Speed (m	NO ₃	
leight: 0m Distance ⁽¹⁾	3	5	8	12	15
-3.0					•
-2.5		;			:
-2.0					
-1.5					
-1.0					
-0.5					
Ó.0					
0.8					
1.2					
2.0	· · ·				
2.4				· · · ·	
· 3.2					
4.8	,				
7.5	1.2	58,8	286.8	663.3	934.9
9.2					
10.0					
10.5	29.5	62.2	294.2	523.5	549.0
13.4		, i			
14.0	33.6	45.3	219.4	360.1	304.1
15.0					
16.0		÷			
16.8		i			
17.0		<u> </u>			
17.8	6.2	68.2	210.4	247.3	188.9
18.0					
19.1	15.4		109.0		300.3
÷					
	·				

Castle Peak A&B	Wind Di	rection:	340 °	NO ₂	
Height: 0m			Speed (n		
Distance ^(I)	3	5	8	12	15
-					
-3.0					
2.5					,
-2.0					
-1.5					
-1.0					
-0.5					
. 0.0	·				
0.8					
1.2					
2.0					
2.4	•				
3.2	·				
4.8					
7.5	0.3	17.8	110.5	313.0	488.6
9.2					
10.0					
10.5	11.2	28.7	162.1	328.6	364.5
13.4	1 16 6				
14.0	16.6	26.0	142.5	251.8	218.3
15.0 16.0					
16.8					
17.0					
17.8	3.6	44.1	147.1	179.6	138.7
18.0					
19.1	9.3		77.3		221.1
		ليستنسبا	antio Paul		

Castle Peak A&B V Height: 0m			Speed (m	SO ₂ s ⁻¹ )	
Distance ⁽¹⁾	3	5	8	12	15
3.0					
-2.5					
-2.0					
-1.5					
-1.0					
-0.5					
0.0					
0,8					
1.2					
2.0					
2.4					
3.2					
4.8					•
7.5	1.3	62.6	299.6	704.2	998,8
9.2					•
10.0	,				
10.5	31.7	66.4	312.0	559.0	587.6
13.4				:	
14.0	35,3	48,4	233.8	386.1	325.5
. 15.0	·				
16.0					
16.8					
17.0	,				
17.8	6.6	72.0	224.4	264.9	202.0
18.0					
19.1	16.1		114.5		317.1
					-

(1) Distances are specified as downwind of Black Point in kilometers, summation of concentrations resulting from Castle Peak A and B emissions, modelled separately in the wind tunnel.

astle Peak A&B eight: Om		Wind	160 ° Speed (n	NO,	
stance (1)	3	5	8	12	15
-3.0	0.0		6.5		143.7
-2.5	4.7		13.3		662:8
-2.0	11.3		34.6		1071.0
-1.5	17.9		69.4		1090.7
-1.0	38.8		98.3		1220.8
-0.5	47.9		144.3		1246.5
0.0	76.9		185.3		1247.9
0.8	8.0		132.3		863.0
1.2	24.2		169,5		847.5
2.0	4.1		212.5		904.9
2.4	4.4		225.2		863.2
3.2	6.9		185.4		748.0
4.8					
7.5	45.5		227.4	0.0	419.9
9.2	26.1		173.8	0.0	310.2
10.0	13.3		163.2	0.0	253.6
10.5					
13,4					
14.0			·····		
15.0				-	
16.0					
16.8					
17.0					
17.8	_	*******************			
18.0					
19.1					-
•					
0.8 (60m)	5.2		215.3		1047.5
0.8 (120m)	16.5		220.8		933.1
9.2 (60m)	9.0		198.8		264.3

	Wind Di		160 °	NO,	
Height: 0m	~	Wind	Speed (n	n s~')	
Distance ⁽¹⁾	3	5	8	12	15
·					
-3.0	0.0		0.9		31.4
-2.5	0.5	·	2.7		200.3
-2.0	1.7		8.8		399.0
· -1.5	3.2		21.0	_ ·	470.7
-1.0	8.1		34.0		587.3
-0.5	11.3	<b></b>	55.6		651.4
0.0	20.3		77.9		695 <b>.7</b>
0.8	2.4		62.2		519,6
1.2	7.8		83.4		525.6
2.0	1.5		112.6		587.6
2.4	1.6		123.2		570.8
3.2	2.8		106.9		509.0
· 4.8					
7.5	24.2		153.3		305.2
9.2	14.8		120.5		227.3
10.0	7.7		114.4		186.3
10.5					
13.4				· ·	
14.0					
15.0	``				
16.0					
16.8					
17.0					·
. 17.8					
18.0					
19.1					
0.8 (60m)			101,2		630.7
0.8 (120m)	5.0		103.8		561.8
9.2 (60m)	5.1		137.9		193.7
		·			

Castle Peak A&B	Wind Di	rection:	160 °	so,	
Height: 0m		Wind	Speed (n		
Distance ⁽¹⁾	3	5	8	. 12	15
3.0	0.0		6.8		155.2
-2.5	5.2		14.2		708.3
2.0	12.4		36.6		1139.4
-1.5	19.5		73.8		1164.9
-1.0	42,3		104.1		1303.4
0.5	51.9		153.7		1330.9
0.0	83.7		196.7		1331.5
0.8	8.8		140.0		920,9
1.2	26.4		179.6		904.6
2.0	4.4		225.8		966.5
. 2.4	4.8		239.2		922.3
	7.5		197.2		799.6
4.8					
7.5	47.2		242.3		449.6
9.2	27.0		185.6		332,2
10.0	14.2		174.2		271.2
10.5	1		•		-
13.4					L
14.0					
15.0					
16.0					
16.8					•
17.0	,				L
17.8	<u> </u>				ļ
18.0	•				
19.1		ļ			
0.8 (60m)	5.7		228.6		1117.2
0.8 (120m)	18.0		234.7		995.7
9.2 (60m)	9,6		212.2		283.0

(1) Distances are specified as downwind of Black Point in kilometers, summation of concentrations resulting from Castle Peak A and B emissions, modelled separately in the wind tunnel.

.•

() $\langle \cdot \rangle$  $\bigcirc$  $(\cdot)$ ()(_____)  $\bigcirc$ ()()()( ) $\left( \right)$ () $\langle \rangle$ ( )( )

	UECUT								OPTI	оns							
WIND SPEED	HEIGHT (កា)	OPTI	ON 1	OPTI	ON 2	OPTI	ON 3	OPT	ION 4	ортто	אכ 5	OPTI	ON 5	OPTI	ON 7	OPTI	ON 8
m/s		NOx	so _x	NO _x	so _x	NO _x	SO _x	NO _x	so _x	NO _x	sox	NOx	sox	NOx	sox	NOx	sox
	0			20.0	6.4	4.4	_	7.9	25.3	7.9	_					11.4	3.6
3	60			20.3	6.5	4.6		9.3	29.4	7.6	—						
5	0	· · ·		82.1	26.1	25.6		· ·				,					
, <b>3</b> · .	60			90.0	28.6	25.8											
	· 0	6.9	11.0	164.5	52.3	63.5		51.5	163.8	33.4	-				<u>.</u>	86.5	27.5
8	60	7.0	11.1	167.6	53.3	60.7		52.1	165.6	33.3						·	
	0	12.9	20.7	165.9	52.8	79.2											
12	60								:					·		<u> </u>	
	0	15.3	24.5	149.5	47.8	70.3		81.0	257.8	32.4	-					78.4	24.9
15	60 [:]	15.2	24.4	• 146.4	46.8	92.2	—	81.6	259.7	31.5						<u> </u>	

÷

## ESTIMATES OF CONCENTRATION (SO_x and NO_x in $\mu$ g/m³) AT THE BUTTERFLY ESTATE

. .

			OPTIONS														
WIND SPEED	HEIGHT (m)	OPTI	ON 1	OPTI	ON 2	OPTI	2 NC	OPT	ION 4	OPTI	ON 5	TTTO	ON 6	OPTI	ION 7	OPTI	ON 8
m/s		NO2	soz	NO ₂	SO2	NO2	SO2	NO2	SO2	NO ₂	SO2	NO2	\$0 ₂	NO ₂	so ₂	NO2	so ₂
	0			8.3	6.4	1.8		3.3	25.3	3.3	-					4.7	3,6
3	60			8.4	6.5	1.9		3.9	29.4	3.2	_						
	0			41.0	26.1	12.8											
5.	1 60			45.0	28.6	12.9					ł			·			
	0	4.0	11.0	<b>96.5</b>	52.3	37.3	—	30.2	163.8	19.6						50.8	27.5
8	60	4.1	11.1	98.3	53.3	35.6		30.6	165.6	19.5							
	0	8.5	20.7	108.8	52.8	51.9											
12	60							-		•				·. ·			
	0	10.5	24.5	102.6	47.8	48.3	_	55.6	257.8	22.2	-					53.8	24.9
15	60	10.4	24.4	100.5	46.8	63.2	—	56.0	259.7	21.6							

ESTIMATES OF CONCENTRATION (SO₂ and NO₂ in  $\mu$ g/m³) AT THE BUTTERFLY ESTATE

r.,

									OPTI	ONS						<u></u>	
WIND SPEED	HEIGHT (m)	OPTI	ON 1	орті	ON 2	OPTI	2N 3	OPT	ION 4	OPTIC	ON 5	OPTI	ON 6	OPTI	ON 7	OPTI	ON 8
m/s	ļ	NO _x	so _x	NO _x	so _x	NO _x	so _s	NO _x	sox	NO _x	so _x	NO _x	so _x	NOx	SOx	NO _x	so _x
	0			37.3	11.9	6.0	—	21.5	68.3	6.2				:			
3	40			37.6	12.0	4.1	: 1										
_	0			48.0	15.3	5.3	_					1					
<b>5</b>	40			42.7	13.6	4.6			· ·								
	0	3.3	5.3	184.8	58.8	14.6		48.7	155.0	12.9							
	40			186.5	59.3	15.9				· · ·						:	
	0	14.3	22.9	181.9	57.9	55.6	-										
12	40	:		184.5	58.7	57.7										<u> </u>	بہ •
	0	18.1	29.0	156.3	49.7	68.2	`	79.8	254.0	23.1	_					· ·	
15	40			160.2	51.1	69.5								4		<u>}</u>	

# ESTIMATES OF CONCENTRATION (SO $_{\rm x}$ and NO $_{\rm x}$ in $\mu g/m^3)$ AT MAI PO

							OPTIONS										
WIND SPEED	HEIGHT (m)	OPTI	ON 1	OPTI	ON 2	OPTI	ON 3	OPT	ION 4	OPTI	ON 5	OPTI	ON 6	OPTI	ON 7	OPTI	ON 8
m/s		NO2	SO2	NO2	so ₂	NOZ	so ₂	NO ₂	SO2	NO2	SO2	NOZ	so ₂	NO2	so ₂	NO2	50 ₂
	0			15.5	11.9	2.5	-	8.9	68.3	2.6				•			
3	40			15.6	12.0	1.7	-										
	0			24.0	15.3	2.6											
5	40			21.3	13.6	2.3	·			[							
	0	1.9	5.3	108.4	58.8	8.6		28.6	155.0	7.6							
8	40			109.4	59.3	9.3	_							<u> </u>			
	0	9.4	22.9	119.3	57.9	36.5			[	l	<u> </u>				 	<u> </u>	· ·
12	40			121.0	58.7	37.8				l	 			<u> </u>			
	0 '	12.4	29.0	107.3	49.7	46.8	-	54.8	254.0	15.9						<u> </u>	
15	40			110.0	51.1	47.7									l		

4,

ESTIMATES OF CONCENTRATION (SO₂ and NO₂ in  $\mu$ g/m³) AT MAI PO

Height Om		tions (1+5+8) + Castle Peak A&B Wind Direction 160° NO _x Wind Speed (m/s)							
Distance	3	5	S	12	15				
2.0	6.1		226.3		1127.				
3.2	9.0		257.2		993.4				
7.5	49.2		358.3		701.7				
9.2	29.2		272.1		471.4				
10.0	22.0		249.7		466.4				

Height Om		γ	find Speed (	m/s)	-
Distance	3	5	8	12	15
2.0	1.8		116.1	<u> </u>	670.3
3.2	3.3		119.8		631.4
75	25.7		230.1		498.7
9.2	16.3		182.7		341.8
10.0	12.0		170.6		339.0

Op			- Carle Pea n 160* - S(						
Height Om	Wind Speed (m/s)								
Distance	3	5	g	12	15				
2.0	4.9		240.6		1103.5				
3.2	8.0		214.3		919.L				
73	48.2		280.3	·	552.7				
9.2	27.8		212.7		384.3				
10.0	16.4		198.8		343.3				

Combined Impacts of Options 1, 5 and 8 plus Castle Peak A&B for Wind Direction of 160°

10

Annex E

Wind Tunnel Tests – Determination of NO to NO₂ Conversion Rate

### INTRODUCTION

1

From combustion processes such as the LTPS, nitrogen oxides  $(NO_x)$  are emitted as approximately 90 to 95% nitric oxide (NO). The remaining 5 to 10% consists principally of nitrogen dioxide  $NO_2$ . However, NO is rapidly oxidised to  $NO_2$  in the atmosphere by photochemical oxidants, mainly ozone  $(O_3)$ , as follows:

 $NO + O_3 ----> NO_2 + O_2$ 

Principally, the rate of oxidation is dependent on the ambient  $O_3$  concentration and wind speed. An increased  $O_3$  concentration forces the reaction to the right and leads to increased NO₂ formation. At higher wind speeds, mixing of the plume with background air, containing  $O_3$ , is enhanced. Therefore,  $O_3$  which has been depleted during the oxidation reaction is renewed.

With regard to human health effects, the concentration of  $NO_2$  is of much more importance than NO. Therefore, the ratio  $NO_2/NO_x$  is significant in assessing the impact of the LTPS on potential sensitive receptors.

This annex reviews several scientific studies which have attempted to determine the rate of oxidation of NO to  $NO_2$ , by  $O_3$ , within power station plumes, and describes the methodology which has been adopted in order to determine ground level concentrations of  $NO_2$  from the proposed LTPS.

### DETERMINATION OF THE NO TO NO₂ CONVERSION RATE

### Introduction

The determination of the NO to  $NO_2$  conversion rate for this assessment has been based on work carried out by Janssen *et al* ⁽¹⁾. The specific objective of this study was to calculate conversion rates under various meteorological conditions, for each season of the year. Janssen's calculations were based on the observations of sixty measurement flights through the plumes from several power plants. From the large data base produced, Janssen was able to formulate an equation to describe the conversion of NO to  $NO_2$ , where the input parameters are dependent on the  $O_3$  concentration, wind speed and season of the year.

2

2.1

Another study by Joos *et al* ⁽¹⁾ was reviewed in order to evaluate it's application to this assessment. However, this study was considered to be inferior, with respect to Janssen's paper for this particular application, for the following reasons:

- The study was based on only two pollution episodes obtained during October, 1985.
- Measurements were only available for autumn; summer conversion rates are likely to be higher due to an increase in solar irradiation.
- The paper is a general physio-chemical study, whereas Janssens's study was specifically aimed at assessing the conversion rate of NO to  $NO_2$  and, consequently, assessed this in more detail.

• Measurements were made on the plume of one power plant only.

Therefore, the work carried out by Janssen *et al*, which is discussed in more detail in *Section* 2.2, will be used to determine NO to  $NO_2$  conversion rates.

### Methodology

Janssen's study described the ratio of  $NO_2/NO_{x'}$  as a function of distance from the source from measurements obtained within stack plumes from Dutch power stations over a period of ten years, between 1975 and 1985. In this period a large data base was built up, consisting of sixty measuring flights carried out under widely varying atmospheric conditions. Janssen proposed that the total (cross-wind integrated) NO oxidation rate in power plant plumes can be described approximately by the phenomenological relation:

$$NO_2 / NO_x = A(1 - exp(-\alpha x))$$

In this equation, x is the distance from the source and A and  $\alpha$  are constants. This equation was formulated from information regarding the reaction rate of NO and O₃ to form NO₂ and the destruction of NO₂ by photodissociation. Using the data base, the numerical values for A and  $\alpha$ were classified according to atmospheric conditions. Ozone concentrations, wind speed and season of the year are the most important parameters in determining A and  $\alpha$ .

The parameter A determines the equilibrium ratio of  $NO_2/NO_x$ , whereas the parameter  $\alpha$  determines the rate at which this equilibrium is reached. Both A and  $\alpha$  increase with increasing  $O_3$  concentration and solar irradiation. The parameter  $\alpha$  also increases with increasing wind speed.

2.2

### Calculation of the NO₂/NO_x Ratio

Information concerning  $O_3$  concentrations in Hong Kong is available from the High Island Reservoir over a three month period, these are summarised in *Table 2.3a*.

Table 2.3a

Summary of Ozone Concentrations (ppb) Obtained from the High Island Reservoir Site, June to August, 1985

		· · · · · · · · · · · · · · · · · · ·	-
	June	July	August
Daily Minimum	14	- 8	. 10
Daily Maximum	51	20	39
Daily Average	32	15	20
Hourly Maximum	81	45	67

The concentration of ozone can be classified as low, high and episodic. Low concentrations of  $O_3$  are of the order of 10 ppb, high concentrations, 35 ppb and episodic concentrations are represented by concentrations as high as 80 ppb. Since the oxidation rate is greater at higher  $O_3$  concentrations, the episodic  $O_3$  concentration should represent the 'worst-case'. Ozone episodes may occur for several days, however, these events will be fairly infrequent. Therefore, in order to determine the NO₂ concentration within the plume, high  $O_3$  concentrations of 35 ppb were assumed.

Values of A and  $\alpha$  were selected given regard to the O₃ concentration of 35 ppb and wind speeds of 3, 5, 8, 10, 12 and 15 m s⁻¹. Summer values were chosen since the oxidation rate is increased with increasing solar irradiation, therefore, this should represent the worst-case. Janssen quotes values for  $\alpha$  for three wind speed ranges, therefore, in order to obtain values for  $\alpha$  for the above wind speeds, a linear relationship between wind speed and  $\alpha$  was assumed. In addition, since Janssen's study was carried out in Holland, where solar irradiation is likely to be less than Hong Kong, values of  $\alpha$  representative of 50 ppb O₃ were selected.

The value of A used in calculating the NO₂/NO_x ratio was 0.74. The values of  $\alpha$  used are summarised in *Table 2.3b*.

Table 2.3b The Values of  $\alpha$  Used for Determining the NO₂/NO_x Ratio

Wind Speed (m s ⁻¹ )	α	
3	0.11	
5	0.15	
8	0.21	
10	0.25	
12	0.29	
15	0.35	
	······································	

Using Janssen's equation and the values of  $\alpha$  given in *Table 2.3b*, the ratio of NO₂/NO_x at various distances downwind of the LTPS can be determined. These are given in *Table 2.3c* and illustrated in *Figure 2.3a*. The concentration of NO_x downwind of the LTPS has been predicted using dispersion models and wind tunnel experiments. Therefore, these predictions, and the calculated NO₂/NO_x ratio, can be used to determine the concentration of NO₂ downwind of the LTPS.

## Table 2.3c

С

 $\left( \right)$ 

(

 $\bigcap$ 

 $\bigcirc$ 

C

(

 $\left( \right)$ 

Distance	NO ₂ /NO _x (%)							
(km)	3 m s ⁻¹	5 m s ⁻¹	8 m s ⁻¹	10 m s ⁻¹	12 m s ⁻¹	15 m s ⁻¹		
0.1	0.8	1.1	1.5	1.8	2.1	2.5		
0.2	1.6	2.2	3.0	3.6	4.2	5.0		
0.3	2.4	3.3	4.5	5.3	6.2	7.4		
0.4	3.2	4.3	6.0	7.0	8.1	9.7		
0.5	4.0	5.3	7.4	8.7	10.0	11.9		
0.6	4.7	6.4	8.8	10.3	11.8	14.0		
0.7	5.5	7.4	10.1	11.9	13.6	16.1		
0.8	6.2	8.4	11.4	13.4	15.3	18.1		
0.9	7.0	9.3	12.7	14.9	17.0	20.0		
1.0	7.7	10.3	14.0	16.4	18.6	21.9		
1.2	9.2	12.2	16.5	19.2	21.7	25.4		
1.4	10.6	14.0	. 18.8	21.9	24.7	28.7		
1.6	11.9	15.8	21.1	24.4	27.5	31.7		
1.8	13.3	17.5	23.3	26.8	30.1	34.6		
2.0	14.6	19.2	25.4	29.1	32.6	37.3		
2.2	15.9	20.8	27.4	31.3	34.9	39.7		
2.4	17.2	22.4	29.3	33.4	37.1	42.1		
2.6	18.4	23.9	31.1	35.4	39.2	44.2		
2.8	19.6	25.4	32.9	37.3	41.1	46.2		
3.0	20.8	26.8	34.6	39.0	43.0	48.1		
3.5	23.6	30.2	38.5	43.2	47.2	52.3		
4.0	26.3	33.4	42.1	46.8	50.8	55.8		
4.5	28.9	36.3	45.2	50.0	53.9	58.7		
5.0	31.3	39.0	48.1	52.8	56.6	61.1		
5.5	33.6	41.6	50.7	55.3	59.0	63.2		
6.0	35.8	43.9	53.0	57.5	61.0	64.9		
6.5	37.8	46.1	55.1	59.4	62.8	66.4		
7.0	39.7	48.1	57.0	61.1	64.3	67.6		
7.5	41.6	50.0	58.7	62.7	65.6	68.6		
8.0	43.3	51.7	60.2	64.0	66.7	69.5		
8.5	44.9	53.3	61.6	65.2	67.7	70.2		
9.0	46.5	54.8	62.8	66.2	68.6	70.8		
9.5	48.0	56.2	63.9	67.1	69.3	71.3		
10.0	49.4	57.5	64.9	67.9	69.9	71.8		
11.0	51.9	59.8	66.7	69.3	71.0	72.4		
12.0	54.2	61.8	68.0	70.3	71.7	72.9		
13.0	56.3	63.5	69.2	71.1	72.3	73.2		
14.0	58.1	64.9	70.1	71.8	72.7	73.4		
15.0	59.8	66.2	70.8	72.3	73.0	73.6		
16.0	61.3	67.3	71.4	72.6	73.3	73.7		
17.0	62.6	68.2	71.9	72.9	73.5	73.8		
18.0	63.8	69.0	72.3	73.2	73.6	73.9		
19.0	64.8	69.7	72.6	73.4	73.7	73.9		
20.0	65.8	70.3	72.9	73.5	73.8	73.9		
30.0	71.3	73.2	73.9	74.0	74.0	74.0		
40.0	73.1	73.8	74.0	74.0	74.0	74.0		
50.0	73.7	74.0	74.0	74.0	74.0	74.0		

Summer conversion rates, 35 ppb (70  $\mu g~m_{\text{-3}})$  Ozone.

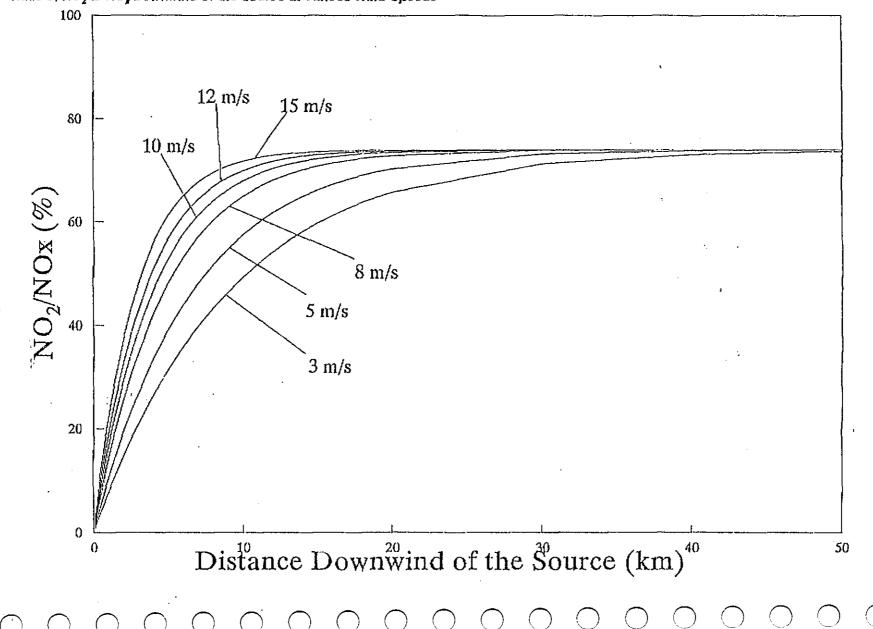



Figure 2.3a Ratio of NO₂ to NO₂ Downwind of the Source at Various Wind Speeds

Annex F

Rigorous Frequency Analysis – Detailed Results (with NO_x mitigation at Castle Peak) 
 Image: Comparison of the second statistics of Sulphur Dioxide at Tung Chung

.

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
				CPPS	LTPS	СРА	СРВ	BP,coal	Total
20/8/86	23:00	9.7	345	4107	1134	143.0	205.1	3.3	351.4
28/11/87	21:00	10.3	15	3364	2081	125.6	178.9	11.1	315.6
14/12/85	22:00	13.3	3	3313	1104	128.9	183.5	2.1	314.5
14/12/85	21:00	11.9	359	3313	2156	118.3	169.7	11.1	299.1
30/11/90	18:00	11.0	355	3364	3976	107.5	155.0	34.2	296.7
14/12/85	23:00	13.9	8	3280	533	120.7	171.4	0.0	292.1
13/11/87	11:00	8.7	360	3364	4246	103.6	149.6	32.9	286.1
29/3/88	20:00	8. <del>9</del>	353	3707	2373	108.8	157.4	19.4	285.6
4/1/86	22:00	11.1	5	3313	1104	115.8	166.2	3.0	285.0
19/10/89	18:00	9.3	358.7	3364	3976	97.4	141.1	36.3	274.8
25/10/88	18:00	8.9	353	3364	3976	97.2	140.8	36.3	274.3
27/2/86	11:00	9.6	354	3313	3128	100.5	145.3	27.4	273.2
30/11/90	17:00	9.5	356.8	3364	4075	104.0	150.1	18.2	272.3
26/10/88	8:00	9.2	355	3224	343	107.9	155.3	9.0	272.2
19/12/86	9:00	9.0	350	3313	1049	105.2	151.6	14.3	271.1
26/10/88	10:00	7.5	344	3364	3661	93.2	135.3	37.5	266.0
29/3/88	21:00	5.9	353	3707	1661	102.7	149.0	13.8	265.5
18/11/89	10:00	6.5	18.8	3364	3661	96.1	139.1	29.5	264.7
18/11/89	12:00	10.4	0.1	3364	4246	92.7	134.1	36.7	263.5
25/10/88	19:00	7.7	359.0	3364	3676	94.3	136.8	31. <del>6</del>	262.7

 $\bigcirc$ 

Sulphur Dioxide (SO₂) measured at Lung Kwu Tan

	Pollution	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	292.1 (85)	36.5%
Limit on Daily Concentration	76	21.8%
Limit on Mean Concentration	3	4.1%

Date	Time	Wind Speed	Wind Dir	MW		Concentra	ation		· · · · · · · · · · · · · · · · · · ·
		•		CPPS	LTPS	CPA	СРВ	BP,coal	Total
30/11/90	18:00	11.0	355	3364	3976	64	52.5	75.5	192.0
13/11/87	11:00	8.7	360	3364	4246	61.2	50.3	72.5	184.0
19/10/89	18:00	9.3	358.7	3364	3976	56.9	46.9	79.6	183.4
25/10/88	18:00	8.9	53	3364	3976	56.8	46.8	79.6	183.2
26/10/88	10:00	7.5	344	3364	3661	54	44.6	81.8	180.4
18/11/89	12:00	10.4	0.1	3364	4478	54.4	44.7	80.6	179.7
25/10/88	17:00	8.8	355	3364	4075	53.4	44.1	81.5	179.0
19/10/89	17:00	8.6	348.2	3364	4075	50.2	41.5	82.9	174.6
30/10/88	17:00	7.4	349	3364	4075	49.5	41	82.8	173.3
25/10/88	19:00	7.7	359	3364	3676	54.9	45.3	69.2	169.4
27/2/86	11:00	9.6	354	3313	2899	59.3	48.7	60.3	168.3
18/11/89	10:00	6.5	18.8	3364	3661	56.3	46.4	64.6	167.3
7/10/89	16:00	7.2	357.7	3364	4115	51.5	42.6	71.8	165.9
28/11/87	21:00	10.3	15	3364	2081	77.6	62.8	25.2	165.6
30/11/90	19:00	7.4	5.8	3364	3676	54.5	44.9	65.2	164.6
20/8/86	23:00	9.7	345	4107	1134	86.4	70.5	7.3	164.2
26/10/88	11:00	7.7	352	3364	4246	43.7	36.2	80.9	160.8
26/10/88	15:00	7.3	346	3364	4105	42	34.8	['] 83.7	160.5
20/2/86	17:00	6.7	352	3313	2758	56.6	46.6	56.7	159.9
29/3/88	20:00	8.9	353	3707	2373	63.8	52.4	42.7	158.9
Nitrogen 1	Dioxide (N	O ₂ ) measured	at Tung Chu	ng			·		e .
			Pollution	,	% of AQO				•
		C	Concentration	L	Standard		•		
Limit on I	Hourly Con	centration	179 (88)		59.7%				
	Daily Conce		40		26.8%				•
	-		1.8						
runn ou l	Mean Conce	entration	1.0		2.2%				

 $\cap \cap$ 

()

Table F.1c Hourly Statistics of Sulphur Dioxide at Mai Po

 $\cap$   $\cap$ 

.

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
· .		· ·		CPPS	LTPS	CPA	CPB	BP,coal	Total
25/6/86	19:00	12.2	213	4107	3402	127.3	185.0	5.3	317.6
25/6/86	18:00	14.7	224	4107	3886	122.7	177.7	5.8	06.2
19/7/88	21:00	11.9	219	4107	2308	116.9	165.8	10.6	293.3
19/7/88	23:00	14.6	203	4107	1134	113.1	164.3	0.0	277.4
25/6/86	20:00	12.4	209	4107	2946	111.4	161.9	0.0	273.3
28/5/85	11:00	10.6	230	3707	3727	97.4	140.0	34.4	271.8
19/7/88	22:00	16.8	217	4107	3402	108.6	157.9	2.9	269.4
28/5/85	10:00	11.2	228	3707	3109	96.6	133.9	29.9	260.4
22/5/87	9:00	11.0	215	3707	1489	94.4	130.4	0.0	224.8
30/7/87	20:00	6.7	229	4107	2946	93.1	130.3	0.0	223.4
23/6/88	13:00	8.0	212	4107	4211	92.6	124.5	0.0	217.1
22/5/87	10:00	8.7	213	3707	3109	90.2	123.3	0.0	213.5
27/5/85	15:00	9.0	213	3707	3582	78.4	108.2	25.7	212.2
22/5/88	10:00	7.5	230	3707	3109	77.3	101.7	30.7	209.7
28/5/85	9:00	10.3	225	3707	1489	69.6	93.8	23.0	186.4
22/2/87	8:00	9.8	215	3406	134	79.3	106.4	0.0	185.7
27/5/85	8:00	8.2	234.3	3406	134	74.9	103.5	6.9	185.3
20/4/88	15:00	9.3	218	3707	3582	74.9	98.5	· 11.5	184.9
27/2/85	14:00	9.8	229	3707	3094	75.2	98.5	11.3	184.8
20/4/88	16:00	7.0	206	3707	3583	78.8	104.8	0.0	183.6
	•			•					• •
1		<u></u>					· .	· · · · · · · · ·	
Sulphur E	ioxide (SO	) measured at	Mai Po						
· · · ·							-	• •	
		· <b>,</b>	Pollution		% of AQO		•		. •
			Concentration	· .	Standard				
		C	Juculation		Junuaru				. •
limit on I	-Iourly Con	- contration	273.3 (86)	•	34.2%				
	-		• •	)					
	Daily Conce		46	ė	13.2%				
[imit on ]	Mean Conce	entration	1		1.3%				

...

a service and the service of the service service and the service service of the service service of the service service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the

Date	Time	Wind Speed	Wind Dir	MW		Concentra	ition		
				CPPS	LTPS	СРА	СРВ	BP,coal	Total
28/5/85	11;00	10.6	230	3707	3727	62.4	51.1	77.9	191.4
28/5/85	10:00	11.2	228	3707	3109	61.1	48.3	66.9	176.3
25/6/86	19:00	12.2	213	4107	3402	· 81.9	67.8	12.1	161.8
19/7/88	21:00	11.9	219	4107	2308	74.6	60.2	24	158.8
25/6/86	18:00	14.7	224	4107	886	78.8	65	13.3	157.1
11/4/90	12:00	7.1	221.2	3707	4002	37.8	28.1	89.4	155.3
22/5/88	10:00	7.5	230	3707	3109	48	36	67.5	151.5
27/5/85	15:00	9.0	213	3707	3582	49.5	38.9	57.4	145.8
28/5/85	12:00	12.4	292.5	3707	4002	30.1	23.8	91.8	145.7
19/7/88	22:00	16.8	217	4107	1770	69.9	57.8	6.7	134,4
19/7/88	23:00	14.6	203	4107	1134	72.7	60.2	0.0	132.9
25/6/86	20:00	12.4	209	4107	2946	71.7	59.3	0.0	131.0
27/5/85	11:00	8.0	228	3707	3727	22.7	17	89	128.7
28/5/85	9:00	10.3	225	3707	1489	43.6	33.5	50.9	128.0
2/9/88	13:00	7.1	222	3364	4087	31.8	23.1	-70	124.9
24/8/85	14:00	8.1	227	4107	3857	16	11.6	97.8	122.4
24/8/85	15:00	7.0	223	4107	4224	14.6	10.7	<del>9</del> 2.2	117.5
27/5/85	10:00	9.3	236	3707	3109	18.9	14.7	6.6	114.2
22/6/88	11:00	6.0	226	4107	4337	13.8	10.1	90.1	114.0
10/9/90	15:00	7.3	227.3	3364	4105	9.6	7.7	96.2	113.5

Nitrogen Dioxide (NO₂) measured at Mai Po

· · · ·	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	145.8 (85)	48.6%
Limit on Daily Concentration	28	18.8%
Limit on Mean Concentration	0.7	0.9%

Table F.1eHourly Statistics of Sulphur Dioxide at Lung Kwu Tan

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
				CPPS	LTPS	CPA	СРВ	BP,coal	Total
29/7/87	10:00	10.6	195	4107	3802	522.5	410.1	0.0	932.6
29/7/87	9:00	13.3	192	4107	2204	531.6	391.7	0.0	923.3
20/7/88	0:00	8.9	262	4026	215	343.7	273.2	0.0	616.9
29/7/87	11:00	10.2	197	4107	4337	357.9	218.9	0.0	576.8
25/6/86	21:00	11.7	208	4107	2308	343.9	210.2	0.0	554.1
29/7/87	12:00	9.2	191	4107	4453	339.4	207.7	0.0	547.1
31/7/87	7:00	12.0	187	3350	0	307.0	195.7	0.0	502.7
29/7/87	8:00	13.0	187	4026	297	260.2	161.6	0.0	421.8
31/7/87	22:00	9.5	204	4107	1770	246.1	150.5	0.0	396.6
29/7/87	8:00	11.1	187	4026	297	169.0	105.6	0.0	274.6
25/6/86	4:00	15.0	202	2776	0	159.1	114.0	0.0	273.1
31/7/87	8:00	13.3	231.8	3406	134	153.2	117.0	0.0	270.2
20/7/88	23:00	8.9	187	4107	1134	154.1	94.8	0.0	248.9
11/4/90	9:00	11.8	202.6	3707	1489	154.2	94.3	0.0	248.5
21/7/87	17:00	9.4	184	4107	4136	141.0	86.8	· 0.0	227.8
21/5/87	13:00	7.7	202	3707	3565	138.1	85.1	0.0	223.2
20/7/88	8:00	7.0	165.5	4026	2 <del>9</del> 7	127.1	79.7	0.0	206.8
31/7/87	9:00	10.6	174.0	4107	2204	122.0	74.6	0.0	196.6
20/7/88	3:00	10.7	221	2885	0	111.8	68.6	0.0	180.4
20/7/88	7:00	6.9	202	3350	0	103.9	65.4	0.0	169.3

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

()

()

Sulphur Dioxide (SO₂) measured at Lung Kwu Tan

	Pollution	% of AQO
•	Concentration	Standard
		<u>-</u>
Limit on Hourly Concentration	576.8 (87)	72.1%
Limit on Daily Concentration	31	8.9%
Limit on Mean Concentration	0.8	1%

Date	Time	Wind Speed	Wind Dir	MW		Concentration			
				CPPS	LTPS	СРА	СРВ	BP,coal	Total
29/7/87	10:00	10.6	195	4107	3802	159.1	72.2	0	231.3
29/7/87	9:00	13.3	192	4107	2204	159.1	67.7	0	226.8
20/7/88	0:00	8.9	262	3501	0	105.1	48.3	0	153.4
29/7/87	11:00	10.2	197	4107	4337	101.7	35.4	0	137.1
25/6/86	21:00	11.7	208	4107	2308	97.9	34.1	0	132.0
29/7/87	12:00	9.2	191	4107	4453	96.3	33.6	0	129.9
31/7/87	7:00	12.0	187	3350	0	88	32.1	0	120.1
29/7/87	8:00	13.0	187	4026	297	74	26.2	0	100.2
25/6/86	22:00	9.5	204	4107	1770	69.9	24.4	0	94.3
24/10/87	12:00	12.8	335	3364	4478	0	0	88.6	88.6
26/4/85	15:00	13.2	330	3707	3582	0	0	77.6	77.6
24/10/87	15:00	10.3	341	3364	4105	0	0	75.1	75.1
23/10/87	19:00	12. <del>9</del>	320	3364	3676	0	0	69.4	69.4
21/9/88	16:00	10.9	340	3364	4115	0	0	67	67.0
24/10/87	11:00	12.5	322	3364	4246	0	0	, 66.9	66.9
11/4/90	8:00	13.3	231.8	3406	134	46.3	20.4	0	66.7
24/10/87	13:00	12.0	324	3364	4087	0	0	66.7	66.7
20/7/87	4:00	15.0	202	2776	0	47.2	19.5	• 0	66.7
31/7/87	8:00	11.1	187	4026	297	48.5	17.3	0	65.8
26/4/85	14:00	13.9	324	3707	3094	0	0	65.2	65.2

Nitrogen Dioxide (NO₂) measured at Lung Kwu Tan

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	137.1 (87)	45.7%
Limit on Daily Concentration	15.2	10.1%
Limit on Mean Concentration	0.2	0.3%

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 
 Table F.1g
 Hourly Statistics of Sulphur Dioxide at Ha Pak Nai

.

•

.

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
•	·			CPPS	LTPS	CPA	СРВ	BP,coal	Total
29/7/87	10:00	10.6	195	4107	3802	326.7	418.7	0.0	745.4
29/7/87	9:00	13.3	192	4107	2204	321.4	413.8	0.0	735.2
29/7/87	11:00	10.2	197	4107	4337	238.2	288.5	0.0	526.7
29/7/87	12:00	9.2	191	4107	4453	231.9	278.2	0.0	510.1
20/7/88	0:00	8.9	262	4026	215	213.2	274.7	0.2	488.1
25/6/86	21:00	11.7	208	4107	2308	214.1	265.9	0.0	480.0
31/7/87	7:00	12.0	187.	3350	0	210.3	253.2	0.0	463.5
29/7/87	8:00	13.0	187	4026	297	185.3	219.3	0.0	404.6
25/6/86	22:00	9.5	204	4107	1770	161.4	196.5	0.0	357.9
25/6/86	23:00	8.9	187	4107	1134	167.6	173.8	0.0	341.4
31/7/87	17:00	9.4	184	4107	4136	164.1	167.3	0.0	331.4
21/5/87	13:00	7.7	202	3707	3565	150.1	155.9	0.0	306.0
20/7/88	8:00	7.0	165.5	4026	297	137.2	144.7	0.0	281.9
21/5/87	14:00	7.1	192	3707	3094	123.5	120.7	0.0	244.2
20/7/88	7:00	6.9	202	3350	0	119.3	124.0	0.0	243.3
11/4/90	9:00	11.8	202.6	3707	1489	105.0	126.1	7.1	238.2
29/7/87	7:00	10.0	194.0	3350	0	120.3	115.3	0.0	235.6
20/7/88	4:00	15.0	202	2776	0	99.1	125.6	0.0	224.7
11/4/90	8:00	13.3	231.8	3406	134	93.6	120.7	9.6	223.9
31/7/87	8:00	11.1	187.8	4026	297	96.6	124.5	0.0	221.1
						· · · · · · · · · · · · · · · · · · ·	·.	··-	
		· · ·	 				. *		
Sulphur L	10X1de (50 ₂	a) measured at	Fla Pak Nai				· .		•
• •				•					•
1.1.1	· · ·	•	u.	. 1			. *	• '	· .
	. •		Pollution	%	of AQO				·
			oncentration		andard				
•	•	·							
imit on I	Hourly Con	centration	526.7 (87	') 6 ⁴	5.8%	-			
	Daily Conce	•	47		3.5%		·	2	
				•	-				
umit on l	Mean Conce	entration	1 ·	1.	7%				

..

and provide the second second second second second second second second second second second second second seco

.

Date	Time	Wind Speed	Wind Dir	MW		Concentra	Concentration			
				CPPS	LTPS	СРА	СРВ	BP,coal	Total	
29/7/87	10:00	10.6	195	<b>4107</b>	3802	174.7	127.5	0.0	302.2	
29/7/87	9:00	13.3	192	4107	2204	170.7	125	0.0	295.7	
29/7/87	11:00	10.1	197	4107	4337	120.3	83.5	0.0	203.8	
20/7/88	0:00	8.9	262	4026	215	114.5	83.9	0.2	198.6	
29/7/87	12:00	9.2	191	4107	4453	116.7	80.4	0.0	197.1	
25/6/86	21:00	11.7	208	4107	2308	109.2	77.5	0.0	186.7	
31/7/87	7:00	12.0	187	3350	0	106.5	73.6	0.0	180.1	
19/7/88	17:00	13.2	233	4107	4136	0.0	0.0	168.9	168.9	
19/7/88	16:00	13.3	231	4107	4232	0.0	0.0	157.6	157.6	
29/7/87	8:00	13.0	187	4026	297	93	63.3	0.0	156.3	
25/6/86	22:00	9.5	204	4107	1770	81.7	57.0	0.0	138.7	
25/6/86	23:00	8.9	187	4107	1134	80.1	48.1	0.0	128.2	
31/7/87	17:00	9.4	184	4107	4136	78	16.1	0.0	124.1	
28/5/85	11:00	10.6	230	3707	3727	0.0	0.0	117.4	117.4	
21/5/87	13:00	7.7	202	3707	3565	71.8	43.2	. 0.0	115.0	
20/7/88	8:00	7.0	165.5	4026	297	65.5	39.9	0.0	105.4	
19/7/88	18:00	12.9	247	4107	3886	0.0	0.0	104.5	104.5	
28/5/85	12:00	12.4	292.5	3707	4002	0.0	0.0	· 103.9	103.9	
11/4/90	8:00	13.3	231.8	3406	134	50	36.6	13.9	100.5	
11/4/90	9:00	11.8	202.6	3707	1489	52.9	36.4	10.4	99.7	

Nitrogen Dioxide (NO₂) measured at Ha Pak Nai

.,

	Pollution Concentration	% of AQO Standard
		`
Limit on Hourly Concentration	203.8 (87)	67.9%
Limit on Daily Concentration	24	16.1%
Limit on Mean Concentration	0.5	0.7%

 $\frown$ 

 Table F.1i
 Hourly Statistics of Sulphur Dioxide at Butterfly Estate

 $\frown$ 

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
·				CPPS	LTPS	СРА	СРВ	BP,coal	Total
11/7/86	16:00	20.3	280	4107	4232	436.9	598.9	0.0	1035.8
11/7/86	17:00	18.3	278	4107	4136	436.9	598.9	0.0	1035.8
11/7/86	19:00	21.7	273	4107	3402	436.9	598.9	0.0	1035.8
11/7/86	20:00	20.2	271	4107	2946	436.9	598.9	0.0	1035.8
11/7/86	21:00	17.7	281	4107	2308	436.9	598.9	0.0	1035.8
11/7/86	22:00	17.2	280	4107	1770	436.9	598.9	0.0	1035.8
11/7/86	23:00	15.4	275	4107	1134	433.3	594.0	0.0	1027.3
12/7/86	0:00	13.1	270	4026	215	401.5	515.9	0.0	917.4
31/7/90	10:00	9.7	276.1	4107	3802	394.9	404.1	0.0	799.0
31/7/90	9:00	11.4	275.1	4107	2204	343.0	369.5	0.0	712.5
11/7/86	18:00	18.0	270	4107	3886	218.5	299.4	0.0	517.9
31/7/90	11:00	7.8	272.2	4107	4337	276.4	231.3	0.0	507.7
24/6/85	20:00	12.4	284	4107	2946	215.6	267.5	7.6	490.7
11/7/86	15:00	18.2	271	4107	4224	145.6	199.6	12.4	357.6
23/6/88	14:00	10.7	253	4107	3857	145.6	199.6	0.0	345.2
25/6/85	2:00	9.7	265	3105	0.0	148.7	152.8	0.0	301.5
31/7/90	7:00	12.6	284.5	3350	0.0	121.9	157.4	0.0	279.3
12/7/86	1:00	9.1	245	3501	0.0	119.5	135.8	[•] 0.0	255.3
21/8/86	8:00	6.3	254	4026	297	176.4	58.8	0.0	235.2
21/8/86	20:00	2.0	109	4107	2946	106.6	120.1	6.3	233.0

. .

(

()

( )

()

Sulphur Dioxide (SO₂) measured at Butterfly Estate

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	507.7 (90)	63.5%
Limit on Daily Concentration	30	8.7%
Limit on Mean Concentration	1	1.6%

and the second second second second second second second second second second second second second second second

Date	Time	Wind Speed	Wind Dir	MW		Concentration			
				CPPS	LTPS	СРА	СРВ	BP,coal	Total
11/7/86	16:00	20.3	280	4107	4232	213.6	166.5	0	380.1
11/7/86	17:00	18.3	278	4107	4136	213.6	166.5	0	380.1
11/7/86	19:00	21.7	273	4107	3402	213.6	166.5	0	380.1
11/7/86	20:00	20.2	271	<b>4</b> 107	2946	213.6	166.5	0	380.1
11/7/86	21:00	17.7	281	<b>4107</b>	2308	213.6	166.5	0	380.1
11/7/86	22:00	17.2	280	4107	1770	213.6	166.5	0	380.1
11/7/86	23:00	15.4	275	4107	1134	211.8	165.1	0	376.9
12/7/86	0:00	13.1	270	4026	215	191	140.2	0	331.2
31/7/90	10:00	9.7	276.1	4107	3802	173.5	102.1	0	275.6
31/7/90	9:00	11.4	275.1	4107	2204	152.8	94.3	0	247.1
11/7/86	18:00	18.0	270	4107	3886	106.8	83.2	0	190.0
24/6/85	20:00	12.4	284	4007	2946	101.1	71.7	15.9	188.7
31/7/90	11:00	7.8	272.2	4107	4337	116.5	57.5	0	174,0
11/7/86	15:00	18.2	271	4107	4224	71.2	55.5	26.6	153.3
23/6/88	14:00	10.7	253	4107	3857	71.2	55.5	· 0 [`]	126.7
25/6/85	2:00	9.7	265	3105	0	65.4	38.6	0	104.0
31/7/90	7:00	12.6	284.5	3350	0	58.1	42.8	0	100.9
8/9/90.	16:00	7.9	0.9	3364	4115	48.4	24	26.7	99.1
21/8/86	20:00	2.0	109	4107	2946	48.1	30.9	13.4	92.4
12/7/86	1:00	9.1	245	3501	0	54.2	35.2	0	89.4

.

4

Nitrogen Dioxide (NO₂) measured Butterfly Estate

·	Pollution Concentration	% of AQ Standard
Limit on Hourly Concentration	174 (90)	58.0%
Limit on Daily Concentration	26.8	17.9%
Limit on Mean Concentration	1	1.2%

Table F.2a Hourly Statistics of Sulphur Dioxide at Mai Po

.

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
				CPPS	LTPS	СРА	СРВ	BP,gas	Total
25/6/86	19:00	12.2	213	4107	3402	127.3	185.0	0	312.3
25/6/86	18:00	14.7	224	4107	3886	122.7	177.7	0	300.4
19/7/88	21:00	11.9	219	4107	2308	116.9	165.8	0	282.7
19/7/88	23:00	14.6	203	4107	1134	113.1	164.3	0	277.3
25/6/86	20:00	12.4	209	4107	2946	111.4	161.9	0	273.3
28/5/85	22:00	16.8	217	3707	1193	97.4	140.0	0	266.5
19/7/88	11:00	10.6	230	4107	4337	108.6	157.9	0	237.4
28/5/85	10:00	11.2	228	3707	3109	96.6	133.9	0	230.5
22/5/87	9:00	11.0	215	3707	1489	94.4	130.4	0	224.8
30/7/87	20:0	6.7	229	4107	2946	93.1	130.3	0	223.3
26/6/88	13:00	8:0	212	4107	4211	92.6	124.5	0	217.1
22/5/87	10:00	8.7	213	3707	3109	90.2	123.3	0	213.6
27/5/85	15:00	9.0	213	3707	3582	78.4	108.1	0	186.5
22/5/88	8:00	9.8	215	3406	134	79.3	106.4	0	185.7
28/5/85	16:00	7.0	206	3707	3583	78.8	104.8	0	183.7
22/5/87	0:00	7.5	230	3707	3109	77.3	101.7	0	179.0
27/5/85	8:00	8.2	234.3	3406	134	74.9	103.5	0	178.4
20/4/88	14:00	9.8	229	3707	3094	75.2	98.3	' 0	173.5
27/5/85	15:00	9.3	218	3707	3582	74.9	98.5	Q	173.4
20/4/88	1:00	11.9	274	2582	Ó	69.3	100.8	0	170.1
· · · ·	· · ·			· ·	•		, ,		<u>.</u>
							. <del>.</del>		
Sulphur I	Dioxide (SO	2) measured Ma	ai Po						
	• • •		1 -	ŧ.					
	· · · · ·								· · ·
•	· .		Pollution	۰.	% of AQO	. •			
			oncentration	· .	Standard				
	s press	· _		1 A					
Limit on 1	Hourly Con	centration	273.3 (86)	· · ,	34.2%		÷.,		••
	-		• • •	,	•				
1	Daily Conce	-	43.89	tr .	12.54%	÷ -			
Limit on 1	Mean Conce	entration	0.90		1.12%				

 $\bigcirc$ 

and the second second second second second second second second second second second second second second second

Date	Time	Wind Spea	ed Wind Dir	MW		Concentra	ation	Concentration			
	• .	· · · ·		CPPS	LTPS	СРА	СРВ	BP,gas	Total		
28/5/85	<b>19:</b> 00	12.2	213	3707	2995	81.9	67.8	5.8	155.5		
28/5/85	18:00	14.7	224	3707	3294	78.8	65.0	6.1	149.9		
25/6/86	21:00	11.9	219	<b>4107</b>	2308	74.6	60.2	7.7	142.5		
19/7/88	11:00	10.6	230	4107	4337	62.4	51.1	<b>24</b> .1	137.6		
25/6/86	23:00	14.6	203	4107	1134	72.7	60.2	0	132.9		
11/4/90	20:00	12.4	- 209	3707	2373	71.7	59.3	0	131.0		
22/5/88	22:00	16.8	217	3707	1193	69.9	57.8	2.4	130.1		
27/5/85	10:00	11.2	228	3707	3109	61.1	48.3	14.5	123.9		
28/5/85	9:00	11.0	215	3707	1489	59.7	46.9	0	106.6		
19/7/88	20:00	6.7	229	4107	2946	59.1	47.1	0	106.2		
19/7/88	13:00	8.0	212	4107	4211	57.9	44.4	0	102.3		
25/6/86	10:00	8.7	213	4107	3802	56.8	44.2	0	101.0		
27/5/85	15:00	9.0	213	3707	3582	49.5	38.9	12.4	100.8		
28/5/85	10:00	7.5	230	3707	3109	48.0	36.0	7.5	91.5		
2/9/88	8:00	8.2	234.3	3224	343	47.3	37.3	3.1	87.7		
24/8/85	8:00	9.8	215	4026	297	49.6	37.9	0, ;	87.5		
24/8/85	16:00	7.0	206	4107	4232	49.1	37.2	0	86.3		
27/5/85	9:00	10.3	225	3707	1489	43.6	33.5	· 8.2	85.3		
22/6/88	14:00	9.8	229	4107	3857	46.6	34.7	2.6	83.9		
10/9/90	15:00	9.3	218	3364	4105	46.5	34.8	2.4	83.7		
•											
N T'		$\mathbf{O}$									
Nitrogen	Dioxide (IN	O ₂ ) measured	i Mai Po								
			Pollution		% of AQO	,					
		. •	Concentration	,	Standard				-		
Timit on '	Hourly Con	contration	123.9 (85	- \	 41.3%						
	-			)							
LIMITOR	Daily Conce		21.90 0.45		14.60% 0.56%	·					
Limit on ]											

 $\bigcirc$ 

()

()

Table F.2cHourly Statistics of Sulphur Dioxide at Lung Kwu Tan

Date	Time	Wind Speed	Wind Dir	MW	ta di second	Concentrati	ion		
· · · · ·	· · · · · ·	• • •	· · · ·	CPPS	LTPS	СРА	СРВ	BP,gas	Total
29/7/87	10:00	10.6	195	4107	3802	522.5	410.1	0	932.6
29/7/87	9:00	13.3	192	4107	2204	531.6	391.7	0	923.3
20/7/88	0:00	8.9	262	4026	215	343.7	273.2	0	616.9
29/7/87	11:00	10.2	197	4107	4337	357.9	218.9	0	576.8
25/6/86	21:00	11.7	208	4107	308	343.9	210.2	0	554.1
29/7/87	12:00	9.2	191	4107	4453	339.4	207.7	0	547.1
31/7/87	7:00	12.0	187	3350	0	307.0	195.7	0	502.7
29/7/87	8:00	13.0	187	4026	297	260.2	161.6	0	421.8
25/6/86	22:00	9.5	204	4107	1770	246.1	150.5	0	396.6
31/7/87	8:00	11.1	187	4026	297	169.0	105.6	0	274.6
20/7/88	4:00	15.0	202	2776	.0	159.1	114.0	0	273.1
11/4/90	8:00	13.3	231.8	3406	134	153.2	117.0	0	270.2
25/6/86	23:00	8.9	187	4107	1134	154.1	94.8	0	248.9
11/4/90	9:00	11.8	202.6	3707	1489	154.2	94.3	0	248.5
31/7/87	17:00	9.4	184	4107	4136	141.0	86.8	0	227.8
21/5/87	13:00	7.7	202	3707	3565	138.1	85.1	0	-223.2
20/7/88	8:00	7.0	165.5	4026	297	127.1	79.7	0	206.8
31/7/87	9:00	10.6	174	4107	2204	122.0	74.6	<b>'</b> 0	196.6
20/7/88	3:00	10.7	221	2885	0	111.8	68.6	0	180.4
20/7/88	7:00	6.9	202	3350	0	103.9	65.4	. 0	169.3
		6				· · · · ·	<u>`</u>	. <u></u> .	<u>.</u>
		1 7	<b>T</b> / m	•	•	•			·
Sulphur Di	loxide (SO ₂ ) r	neasured Li	ing Kwu Tan						
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			·	_ • ·	<i>«</i>	-	•		
	• 2		Pollution		% of AQO				
		C	Concentration		Standard				÷*
· * • • * 1		-		·. ,		•			
	lourly Concer		576.8 (87)		72.1%				÷ i
Limit on D	aily Concent	ration	30.0	· •	8.6%				
Limit on M	lean Concent	ration	1.0	2.4	0.8%	e te a la companya			

٠

and the second second second second second second second second second second second second second second secon

Date	Time	Wind Speed	Wind Dir	MW .		Concentra	tion		
<b>,</b>	· · · · · · · · · · · · · · · · · · ·	3	×	CPPS	LTPS	СРА	СРВ	BP,gas	Total
29/7/87	10:00	10.6	195	4107	3802	159.1	72.2	0.0	231.3
29/7/87	9:00	13.3	192	4107	2204	159.1	67.7	0.0	226.8
20/7/88	0:00	8.9	262	4026	215	105.1	48.3	0.0	153.4
29/7/87	11:00	10.2	197	4107	4337	101.7	35.4	0.0	137.1
25/6/86	21:00	11.7	208	4107	2308	97.9	34.1	0.0	132.0
29/7/87	12:00	9.2	191	4107	4453	96.3	33.6	0.0	129.9
31/7/87	7:00	12	187	3350	0	88.0	32.1	0.0	120.1
29/7/87	8:00	13	187	4026	297	74.0	26.2	0.0	100.2
25/6/86	22:00	9.5	204	4107	1770	69.9	24.4	0.0	94.3
24/10/87	12:00	12.8	335	3364	4478	0.0	0.0	74.9	74.9
24/10/87	11:00	12.5	322	3364	4246	0.0	0.0	67.2	67.2
24/10/87	15:00	10.3	341	3364	4105	0.0	0.0	66.9	66.9
11/4/90	8:00	13.3	231.8	3406	134	46.3	20.4	0.0	66.7
20/7/88	4:00	15.0	202	2776	0	47.2	19.5	0.0	66.7
26/4/85	15:00	13.2	330	3707	3582	0.0	0.0	· 66.0	66.0
31/7/87	8:00	11.1	187	4026	297	48.5	17.3	0.0	65,8
21/9/88	16:00	10.9	340	3364	4115	0.0	0.0	64.0	64.0
24/10/87	13:00	12.0	324	3364	4087	0.0	0.0	62.8	<b>62.8</b> .
21/9/88	17:00	9.8	334	3364	4075	0,0	0.0	62.1	62.1
24/10/90	17:00	<b>8.1</b>	336.1	3364	4075	0.0	0.0	62.0	62.0

Nitrogen Dioxide (NO₂) measured Lung Kwu Tan

	Pollution	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	137.1 (87)	45.7%
Limit on Daily Concentration	18.0	12.1%
Limit on Mean Concentration	1.0	0.6%

Table F.2e Hourly Statistics of Sulphur Dioxide at Ha Pak Nai

٠

Date	Time	Wind Spee	d Wind Dir	MW		Concentration				
	· · · ·	:		CPPS	LTPS	СРА	СРВ	BP,gas	Total	
29/7/87	10:00	10.6	195	4107	3802	326.7	418.7	0.0	745.4	
29/7/87	9:00	13.3	192	4107	2204	321.4	413.8	0.0	735.2	
29/7/87	11:00	10.2	197	4107	4337	238.2	288.5	0.0	526.7	
29/7/87	12:00	9.2	191	4107	4453	231.9	278.2	0.0	510.1	
20/7/88	0:00	8.9	262	4026	215	213.2	274.7	0.0	487.9	
25/6/86	21:00	1 <b>1.7</b>	208	4107	2308	214.1	265.9	0.0	480.0	
31/7/87	7:00	12.0	187	3350	0	210.3	253.2	0.0	463.5	
29/7/87	8:00	13.0	187	4026	297	185.3	219.3	0.0	404.6	
25/6/86	2:00	9.5	204	4107	1770	161.4	196.5	0,0	357.9	
25/6/,86	23:00	8.9	187	4107	1134	167.6	173.8	0.0	341.4	
31/7/87	17:00	9.4	184	4107	4136	164.1	167.3	0.0	331.4	
21/5/87	13:00	7.7	202	3707	3565	150.1	155.9	0.0	306.0	
20/7/88	8:00	7.0	165.5	4026	297	137.2	144.7	0.0	281.9	
21/5/87	14:00	7.1	192	3707	3094	123.5	120.7	.0.0	244.2	
20/7/88	7:00	6.9	202	3350	0	119.3	124.0	0.0	243.3	
29/7/87	7:00	10.0	194	3350	0	120.3	115.3	0.0	235.6	
11/4/90	9:00	11.8	202.6	3707	1489	105.0	126.1	0.0	231.1	
20/7/88	4:00	15.0	202	2776	0	99.1	125.6	0.0	224.7	
31/7/87	8:00	11.1	187	4026	297	96.6	124.5	0.0	221.1	
20/7/88	3:00	10.7	221	2885	0	105.2	113.6	0.0	218.8	
									· · · · · · · · · · · · · · · · · · ·	
Culmburn T	Novido (60	2) measured H	Jo Dole Mai							
Surpriur i		₂ ) measured r	la l'an Indi						•	
* 2 ¹	•	•	Pollution		% of AQO			۰.	1997 - E. C.	
	÷ '	, <b>1</b>	Concentration		Standard		·	· .	к т. ₁₄₄	
	, ·	<u>;</u> .								
Limit on	Hourly Con	centration	526.7 (87	۰ ۲	65.8%		-		•	
	-		· ·	<b>)</b>			7	-		
	Daily Conce		47.0	1	13.3%					
Limit on	Mean Conce	entration	1.0		1.5%					

 $\bigcirc$ 

Date	Time	Wind Speed	Wind Dir	MW		Concentra	tion		
	· , •			CPPS	LTPS	СРА	СРВ	BP,gas	Total
29/7/87	10:00	10.6	195	4107	3802	174.7	127.5	0.0	302.2
29/7/87	9:00	13.3	192	4107	2204	170.7	125.0	0.0	295.7
29/7/87	11:00	10.2	1 <b>9</b> 7	4107	4337	120.3	83.5	0.0	203.8
20/7/88	0:00	8.9	262	4026	215	114.5	83.9	0.1	198.5
29/7/87	12:00	9.2	191	4107	4453	116.7	80.4	0.0	197.1
25/6/86	21:00	11.7	208	4107	2308	109.2	77.5	0.0	186.7
31/7/87	7:00	12.0	187	3350	0	106.5	73.6	0.0	180.1
29/7/87	8:00	13.0	187	4026	297	93.0	63.3	0.0	156.3
25/6/86	22:00	9.5	204	4107	1770	81.7	57.0	0.0	138.7
25/6/86	23:00	8.9	187	4107	1134	80.1	48.1	0.0	128.2
31/7/87	17:00	9.4	184	4107	4136	78.0	46.1	0.0	124.1
21/5/87	13:00	7.7	202	3707	3565	71.8	43.2	0.0	115.0
20/7/88	8:00	7.0	165.5	4026	297	65.5	39.9	0.0	105.4
11/4/90	9:00	11.8	202.6	3707	1489	52.9	36.4	4.4	93.7
11/4/90	8:00	13.3	231.8	3406	134	50.0	36.6	6.0	92.6
20/7/88	7:00	6.9	202	3350	0	56.7	34.0	0.0	90.7
21/5/87	14:00	7.1	192	3707	3094	57.7	32.6	0.0	90.3
20/7/88	4:00:	15.0	202	2776	0	52.0	37.6	0.0	89.6
31/7/87	8:00	11.1	187	4026	297	50.1	36.7	0.0	86.8
29/7/87	7:00	10.0	194	3350	0	55.9	30.9	0.0	86.8

Nitrogen Dioxide (NO₂) measured Ha Pak Nai

	Pollution Concentration	% of AQO Standard
2 - F		•
Limit on Hourly Concentration	203.8 (87)	67.9%
Limit on Daily Concentration	17.0	11.3%
Limit on Mean Concentration	0.0	0.5%

.

.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

 $\frown$ 

 $\cap$ 

Date	Time	Wind Speed	Wind Dir	MW		Concentra	ition		
			,	CPPS	LTPS	СРА	СРВ	BP,gas	Total
11/7/86	16:00	20.3	280	4107	4232	436.9	598.9	0.0	1035.8
11/7/86	17:00	18.3	278	4107	4136	436.9	598.9	0.0	1035.8
11/7/86	19:00	21.7	273	4107	3402	436.9	598.9	0.0	1035.8
11/7/86	20:00	20.2	271	4107	2946	436.9	598.9	0.0	1035.8
11/7/86	21:00	17.7	281	4107	2308	436.9	598.9	0.0	1035.8
11/7/86	2:00	17.2	20	4107	1770	436.9	598.9	0.0	1035.8
11/7/86	23:00	15.4	275	4107	1134	433.3	594.0	0.0	1027.3
12/7/86	0:00	13.1	270	4026	15	401.5	515.9	0.0	917.4
31/7/90	10:00	9.7	276.1	4107	3802	394.9	404.1	0.0	799.0
31/7/90	9:00	11.4	275.1	4107	2204	343.0	369.5	0.0	712.5
11/7/86	18:00	18.0	270	4107	3886	218.5	299.4	0.0	517.9
31/7/90	11:00	7.8	272.2	4107	4337	276.4	231.3	0.0	507.7
24/6/85	20:00	12.4	284	4107	2946	215.6	267.5	0.0	483.1
11/7/86	15:00	18.2	271	. 4107	4224	145.6	199.6	0.0	345.2
23/6/88	14:00	10.7	253	4107	3857	145.6	199.6	. <b>0.0</b>	345.2
25/6/85	2:00	.9.7	265	3105	0	148.7	152.8	0.0	301.5
31/7/90	7:00	12.6	284.5	3350	0	121.9	157.4	0.0	279.3
12/7/86	1:00	9.1	245	3501	0	119.5	135.8	' 0.0	255.3
21/8/86	8:00	6.3	254	.4026	297	176.4	58.8	0.0	235.2
21/8/86	20:00	2.0	109	4107	2946	106.6	120.1	0.0	226.7

.

(

(

Sulphur Dioxide (SO₂) measured Butterfly Estate

en en en en en en en en en en en en en e	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	507.7 (90)	63.5%
Limit on Daily Concentration	26.0	7.6%
Limit on Mean Concentration	1.0	1.0%

an an an ann an Annaiche. Bhe stair anns an Annaichean an Airtean an Annaichean an Annaichean an Annaichean an

Date	Time	Wind Speed	l Wind Dir	MW		Concentra	tion		
				CPPS	LTPS	СРА	СРВ	BP,gas	Total
11/7/86	16:00	20.3	280	4107	4232	213.6	166.5	0.0	380.1
11/7/86	17:00	18.3	278	4107	4136	213.6	166.5	0.0	380.1
11/7/86	19:00	21.7	273	4107	3402	213.6	166.5	0.0	380.1
11/7/86	20:00	20.2	271	4107	2946	213.6	166.5	0.0	380.1
11/7/86	21:00	17.7	281	4107	2308	213.6	166.5	0.0	380.1
11/7/86	22:00	17.2	280	4107	1770	213.6	166.5	0.0	380.1
11/7/86	23:00	15.4	275	4107	1134	211.8	165.1	0.0	376.9
12/7/86	0:00	13.1	270	4026	215	191.0	140.2	0.0	331.2
31/7/90	10:00	9.7	276.1	4107	3802	173.5	102.1	0.0	275.6
31/7/90	9:00	11.4	275.1	4107	2204	152.8	94.3	0.0	247.1
11/7/86	18:00	18.0	270	4107	3886	106.8	83.2	0.0	190.0
24/6/85	20:00	12.4	284	4107	2946	101.1	71.7	8.6	181.4
31/7/90	11:00	7.8	272.2	4107	4337	116.5	57.5	0.0	174.0
11/7/86	15:00	18.2	271	4107	4224	71.2	55.5	14.2	140.9
23/6/88	14:00	10.7	253	4107	3857	71.2	55.5	. 0.0	126.7
25/6/85	2:00	9.7	265	3105	0	65.4	38.6	0.0	104.0
31/7/90	7:00	12.6	284.5	3350	0.	58.1	42.8	0.0	100.9
12/7/86	1:00	9.1	245	3501	0	54.2	35.2	· 0.0	89.4
8/9/90	16:00	7.9	0.9	3364	4115	48.4	24.0	14.4	86.8
21/8/86	20:00	2.0	109	4107	2946	48.1	30.9	7.2	86.2
Nitrogen	Dioxide (N	$O_2$ ) measured	Butterfly Esta	te					
	. •		Pollution		% of AQO				
		C	Concentration		Standard		:		· · ·
Limit on I	Hourly Con	- centration	174 (90)	•	58.0%				
	Daily Conce		14.0		9.2%				
	-								
Limit on .	Mean Conce	entration	1.0		0.7%				

 $\bigcirc$  $\bigcirc$  $\bigcap$  $\bigcirc$  $\bigcirc$  $\bigcirc$ () $\bigcirc$  $\bigcirc$ () $\left( \right)$ ()()) ()) ) ( )

Table F.2iHourly Statistics of Sulphur Dioxide at Tung Chung

( )

Date	Time	ïme Wind Speed		MW		Concentra	tion		
				CPPS	LTPS	СРА	СРВ	BP,gas	Total
20/8/86	23:00	9.7	345	4107	1134	143.0	205.1	0.0	348.1
14/12/85	22:00	13.3	3	3313	2342	128.9	184.5	0.0	313.4
28/11/87	21:00	10.3	15	3364	2081	125.6	178.9	0.0	304.5
14/12/85	23:00	13.9	8	3280	533	120.7	171.4	0.0	292.1
14/12/85	21:00	11.9	359	3313	2156	169.7	118.3	0.0	288.0
4/1/86	22:00	11.1	5	3313	1104	115.8	166.2	0.0	282.0
29/3/88	20:00	8.9	353	3707	2373	108.8	157.4	0.0	266.2
26/10/88	8:00	9.2	355	3224	343	10739	155.3	0.0	263.2
31/11/90	18:0	11.0	355	3364	3976	107.5	155.0	0.0	262.5
28/11/87	23:00	6.1	353.2	3346	854	106.1	152.8	0.0	258.9
19/12/86	9:00	9.0	350	3313	1046	105.2	151.6	0.0	256.8
30/11/90	17:00	9.5	356.8	3364	4075	104.0	150.1	0.0	254.1
13/11/87	11:00	8.7	360	3364	4246	103.6	149.6	0.0	253.2
29/3/88	21:00	5.9	353	3707	1661	102.7	149.0	0.0	251.7
15/12/85	23:00	11.1	358	3280	533	102.4	147.4	· 0.0	249.8
24/11/85	21:00	8.9	358	3364	2081	102.1	147.5	0.0	249.6
27/2/86	11:00	9.6	354	3313	2899	100.5	145.3	0.0	245.8
24/11/85	22:00	8.5	355	3364	1532	100.4	145.2	́ 0.0	245.6
11/3/85	9:00	10.1	358.3	3707	1489	98.8	142.3	0.0	241.1
20/8/86	22:00	9.5	4.0	4107	1770	97.7	141.6	0.0	239.3

( )

 $\langle \cdot \rangle$ 

1 - E.

Sulphur Dioxide (SO₂) measured Tung Chung

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	288 (85)	36%
Limit on Daily Concentration	73.0	20.8%
Limit on Mean Concentration	3.0	3.9%

والمراجع والمحاجب والمعاجب والمعاجب والمتعار والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج

Date	Time	ne Wind Speed Win		MW		Concentra	tion		
		CPPS	LTPS	СРА	СРВ	BP,gas	Total		
20/8/86	23:00	9.7	345	4107	1134	86.4	70.5	2.7	159.6
28/11/87	21:00	10.3	15	3364	2081	77.6	62.8	10.4	150.8
14/12/85	22:00	13.3	3	3313	1104	79.7	64.6	2.0	146.3
30/11/90	18:00	11.0	355	3364	3976	64.0	52.5	25.7	142.2
14/12/85	21:00	11.9	359	3313	2156	71.7	58.5	9.2	139.4
14/12/85	23:00	13.9	8	3280	533	75.1	60.6	0.0	135.7
13/11/87	11:00	8.7	360	3364	4246	61.2	50.3	24.1	135.6
29/3/88	20:00	8.9	353	3707	2373	63.8	52.4	13.6	129.8
4/1/86	22:00	11.1	5	3313	1104	70.0	57.1	2.4	129.5
19/10/89	18:00	9.3	358.7	3364	3976	56. <b>9</b>	46.9	5.2	129.0
25/10/88	18:00	8.9	353	3364	3976	56.8	46.8	25.2	128.8
27/2/86	11:00	9.6	354	3313	2899	59.3	48.7	19.8	127.8
30/11/90	17:00	9.5	356.8	3364	4075	61.5	50.5	13.4	125.4
18/11/89	12:00	10.4	0.1	3364	4478	54.4	44.7	26.1	125.2
19/12/86	9:00	9.0	350	3313	1049	62.5	51.3	10.6	124.4
26/10/88	8:00	9.2	355	3224	343	64.5	52.8	7.0	124.3
26/10/88	0:00	7.5	344	3364	3661	54.0	44.6	25.2	123.8
18/11/89	10:00	6.5	18.8	3364	3661	56.3	46.4	['] 20.7	123.4
25/10/88	17:00	8.8	355	3364	4075	53.4	44.1	25.4	122.9
25/3/87	13:00	6.6	359	3707	3565	57.3	46.9	17.8	122.0

Nitrogen Dioxide (NO₂) measured Tung Chung

	Pollution	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	135.7 (85)	45.2%
Limit on Daily Concentration	35.0	23.1%
Limit on Mean Concentration	1.0	1.8%

 Image: Comparison of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second sta

 $\bigcirc$ 

1.1

 $\frown$ 

.

Date	Time	Wind	Wind	MW			Concentra	ation			
		Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
25/6/86	19:00	12:2	213	4107	2720	643	. 127.2	185.0	4.0	0.0	316.2
25/6/86	18:00	14.7	224	4107	2720	1097	122.7	177.7	4.1	0.0	304.5
19/7/88	21:00	11.9	219	4107	2308	0	116.9	165.8	10.8	0.0	293.5
19/7/88	23:00	14.6	203	4107	1134	0	113.0	164.3	0.0	0.0	277.3
25/6/86	20:00	12.4	209	4107	2662	267	111.4	161.9	0.0	0.0	273.3
19/7/88	22:00	16.8	217	4107	1770	0	108.6	157.9	2.9	0.0	269.4
28/5/85	1:00	10.6	230	3707	2297	1345	97.4	140.0	20.9	0.0	258.3
28/5/85	10:00	11.2	228	3707	2297	763	96.6	133.9	22.6	0.0	253.1
22/5/87	9:00	11.0	215	3707	1489	0	94.4	130.4	0.0	0.0	224.8
30/7/87	20:00	6.7	229	4107	2662	267	93.1	130.3	0.0	0.0	223.4
23/6/88	13:00	8.0	212	4107	2720	1403	92.6	124.5	0.0	0.0	217.1
22/2/87	10:00	8.7	213	3707	2297	763	90.2	123.3	0.0	0.0	213.5
22/5/85	15:00	9.0	213	3707	2297	1208	78.4	108.1	18.1	0.0	204.6
22/5/88	10:00	7.5	230	3707	2297	763	77.3	101.7	24.5	0.0	203.5
27/5/85	8:00	8.2	234.3	3406	134	0	74.9	103.5	7.6	0.0	186.0
28/5/85	. 9:00	10.3	225	3707	1489	0	69.6	93.8	22.4	0.0	185.8
22/5/87	8:00	9.8	215	3406	134	0	79.3	106.4	0.0	0.0	185.7
20/4/88	16:00	7.0	206	3707	2297	1210	78.8	104.8	، 0.0	0.0	183.6
27/5/85	14:00	9.8	229	3707	2297	753	75.2	98.3	9. <del>9</del>	0.0	183.4
20/4/88	15:00	9.3	218	3707	2297	1208	74.9	98.5	9.3	0.0	182.7

Sulphur Dioxide (SO₂) measured Mai Po

	Pollution Concentration	% of AQO Standard	• •	
Limit on Hourly Concentration	273.3 (86)	34.2%		
Limit on Daily Concentration	46.0	13.2%		
Limit on Mean Concentration	1.0	1.3%		
	•			

Date	Time	Wind	Wind	MW			Concentr	ation			
Speed Dir	Dir	CPPS	BP,coal .	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total		
28/5/85	11:00	10.6	230	3707	2297	1345	62.4	51.1	46.7	7.8	168.0
28/5/85	10:00	11.2	228	3707	2297	763	61.1	48.3	50.1	4.4	163.9
25/6/86	19:00	12.2	213	4107	2720	643	81.9	67.8	9.2	0.8	15 <del>9</del> .7
19/7/88	21:00	11.9	219	4107	2308	0	74.6	60.2	24.1	0.0	158.9
25/6/86	18:00	14.7	224	4107	2720	1097	78.8	65.0	9.5	1.0	154.3
22/5/88	10:00	7.5	230	3707	2297	763	48.0	36.0	53.9	3.5	141.4
11/4/90	12:00	7.1	221.2	3707	2297	1551	37.8	28.1	63.4	5.8	135.1
19/7/88	22:00	16.8	217	4107	1770	0	69.9	57.8	6.5	0.0	134.2
19/7/88	23:00	14.6	203	4107	1134	0	72.7	60.2	0.0	0.0	132.9
27/5/85	15:00	9.0	213	3707	2297	1208	49.5	38.9	40.1	4.3	132.8
25/6/86	20:00	12.4	209	4107	2662	267	71.7	59.3	0.0	0.0	131.0
28/5/85	9:00	10.3	225	3707	1489,	0,	43.6	33.5	49.3	1.6	128.0
28/5/85	12:00	12.4	292.5	3707	2297	1551	30.1	23.8	60.7	7.3	121.9
2/9/88	13;00	7.1	222	3364	2297	1684	31.8	23.1	55.8	5.0	115.7
24/8/85	14:00	8.1	227	4107	2720	1071	16.0	11.6	76.5	4.8	108.9
27/5/85	1:00	8.0	228	3707	2297	1345	22.7	17.0	62.4	6.1	108.2
7/6/87	16:00	7.2	233	4107	2720	1423	36.0	26.2	42.0	2.9	107.1
22/5/87	<b>9:</b> 00	11.0	215	3707	1489	Ö	59.7	46.9	0.0 /	0.0	106.6
30/7/87	20:00	6.7	229	4107	2662	267	59.1	47.1	0.0	0.0	106.2
27/5/85	14:00	9.8	229	3707	2297	753	46.6	34.7	21.6	1.0	103.9

Nitrogen Dioxide (NO₂) measured Mai Po

.

· · · · · · · · · · · · · · · · · · ·	Pollution Concentration	% of AQO Standard
	·	
Limit on Hourly Concentration	134.2	44.7%
Limit on Daily Concentration	28.0	18.7%
Limit on Mean Concentration	0.8	1.0%

 $\bigcirc$ 

•

.

Table F.3cHourly Statistics of Sulphur Dioxide at Lung Kwu Tan

Date	Time	Wind	Wind	MW			Concentra	ation			
· · · · · · · · ·		Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
29/7/87	10:00	10.6	195	4107	2720	1019	522.5	410.1	0.0	0.0	932.6
29/7/87	9:00	13.3	192	4107	2204	0	531.6	391.7	0.0	0.0	923.3
20/7/88	0:00	8.9	262	4026	215	0.	343.7	273.2	0.0	0.0	617.0
29/7/87	11:00	10.2	197	4107	2720	1522	357.9	218.9	0.0	0.0	576.7
25/6/86	21:00	11.7	208	4107	2308	0	343.9	210.2	0.0	0.0	554.1
29/7/87	12:00	9.2	191	4107	2720	1644	339.4	207.7	0.0	0.0	547.1
31/7/87	7:00	12.0	187	3350	0	0	307.0	195.7	0.0	0.0	502.8
29/7/87	8:00	13.0	187	4026	297	0	260.2	161.6	0.0	0.0	421.8
25/6/86	22:00	9.5	204	4107	1770	0	246.1	150.5	0.0	0.0	396.5
31/7/87	8:00	11.1	187	4026	297	0	0.0	0.0	114.0	216.5	330.5
20/7/88	4:00	15.0	202	2768	0	0	0.0	. 0.0	101.5	198.0	299.5
11/4/90	8:00	13.3	231.8	3406	134	0	0.0	0.0	73.8	216.5	290.4
25/6/86	23:00	8.9	187	4107	1134	0	0.0	0.0	61.1	215.3	:276.4
11/4/90	9:00	11.8	202.6	3707	1489	0	0.0	.0.0	98.1	178.0	276.1
31/7/87	17:00	9.4	184	4107	2720	1332	169.0	-105.6	0.0	0.0	274.6
21/5/87	13:00	7.7	02	3707	2297	1193	159.1	114.0	· 0.0	0.0	273.0
20/7/88	8:00	7.0	165.5	4026	297	0	0.0	0.0	108.1	164.4	272.5
31/7/87	9:00	10.6	174	4107	2204	0	153.2	117.0	0.0	.0.0	270.2
20/7/88	3:00	10.7	221	2885	0 ;	0	0.0	0.0	88.7	180.8	269.5
20/7/88	7:00	6.9	202	3350	0.	0	0.0	0.0	57.2	211.3	268.6
· · ·	<u>.</u>		,	. ¹ .				1.5			•
	• 、		:		;	•			•		
Sulphur Die	oxide (SO	2) measu	red Lung	g Kwu Tan							•
				,	`.	1 A.	•			-	
	·• .		Po	llution	•	% of AQO					
e 1. j. e 1			1	centration	• '	Standard	· •	•			
. ·			COL	centration		Jianuaru				1	, •
Limit on He	urly Cor	contratio		 7 (87)		72.1%					
	2			• •			·			-	
Limit on Da					• . •	9.1%		N.		: • •	
Limit on M	ean Conce	entration	0.9			1.1%					

 $\bigcirc$   $\bigcirc$ 

 $\bigcirc$ 

and the second second second second second second second second second second second second second second second

Date	Time	Wind	Wind	MW			Concentr	ation			
		Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
29/7/87	10:00	10.6	195	4107	2720	1019	159.1	72.2	0.0	0.0	231.3
29/7/87	9:00	13.3	192	4107	2204	0 .	159.1	67.7	0.0	0.0	226.8
20/7/88	0:00	8.9	262	. 4026 .	215	0.	105.1	48.3	0.0	0.0	153.3
29/7/87	11:00	10.2	197	4107	2720	1522	101.7	35.4	0.0	0.0	137.1
25/6/86	21:00	11.7	208	4107	2308	0	97.9	34.1	0.0	0.0	132.0
29/7/87	12:00	9.2	191	4107	2720	1644	96.3	33.6	0.0	0.0	129.9
31/7/87	7:00	12.0	187	3350	0	0	88.0	32.1	0.0	0.0	120.2
29/7/87	8:00	13	187	4026	297	0	74.0	26.2	0.0	0.0	100.2
24/10/87	12:00	12.8	335	3364	2297	1997	69.9	24.4	0.0	0.0	94.3
26/4/85	15:00	13.2	330	3707	2297	1208	0.0	0.0	21.5	54.8	76.3
25/6/86	22:00	9.5	204	4107	1770	0	0.0	0.0	14.5	57.0	71.5
23/10/87	19:00	12.9	320	3364	2297	1298	0.0	0.0	18.3	48.7	67.0
24/10/87	15:00	10.3	341	3364	2297	1700	46.3	20.4	0.0	0.0	66.7
26/4/85	14:00	13.9	324	3707	2297	753	47.2	19.5	0.0	0.0	66.7
24/10/87	13:00	12	324	3364	2297	1684	0.0	0.0	11.6	54.8	66.5
21/9/88	16:00	10.9	340	3364	2297	1710	48.5	17.3	0.0	0.0	65.8
24/10/87	11:00	12.5	322	3364	2297	1833	0.0	0.0	10.6	52.8	63.4
21/9/88	17:00	9.8	334	3364	2297	1672	0.0	0.0	15.8 '	44.4	60.3
9/11/90	13:00	10.9	335.4	3364	2297	1684	0.0	0.0	17.2	43.0	60.5
24/10/87	14:00	11.9	320	3364	2297	1288	43.8	15.2	0.0	0.0	59.0

.

Nitrogen Dioxide (NO₂) measured Lung Kwu Tan

* et	Pollution	% of AQO
· · · · · · · · · · · · · · · · · · ·	Concentration	Standard
. ·	****	
Limit on Hourly Concentration	137.1 (87)	45.7%
Limit on Daily Concentration	17.0	11.3%
Limit on Mean Concentration	0.4	0.5%

•

 Table F.3e
 Hourly Statistics of Sulphur Dioxide at Ha Pak Nai

.

Date	Time	Wind	Wind	MW			Concentra	ation			
		Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
29/7/87	10:00	10.6	195	4107	2720	1019	326.7	418.7	0.0	0.0	745.5
29/7/87	9:00	13.3	192	4107	2204	· 0	621.4	413.8	0.0	0.0	735.1
29/7/87	11:00	10.2	197	4107	2720	1522	238.2	288.5	0.0	0.0	526.7
29/7/87	12:00	9.2	191	4107	2720	1644	231.9	278.2	0.0	0.0	510.1
20/7/88	0:00	8.9	262	4026	215	0	213.2	274.7	0.0	0.5	488.4
25/6/86	21:00	11.7	208	4107	2308	0	214.1	265.9	0.0	0.0	480.1
31/7/87	7:00	12	187	3350	0	0	210.3	253.2	0.0	0.0	463.4
29/7/87	8:00	13	187	4026	297	0	185.3	219.3	0.0	0.0	404.6
25/6/86	2:00	9.5	204	4107	1770	0	161.4	196.5	0.0	0.0	357.9
25/6/86	,23:00	8. <del>9</del>	187	4107	1134	0	167.6	173.8	0.0	0.0	341.4
31/7/87	17:00	9.4	184	4107	2720	1332	164.1	167.3	0.0	0.0	331.3
21/5/87	13:00	7.7	202	3707	2297	1193	0.0	0.0	64.2	251.7	315.9
20/7/88	8:00	7.0	165.5	4026	297	· 0	0.0	0.0	. 67.5	242.9	310.4
21/5/87	14:00	7.1	192	3707	2297	753	150.1	155.9	. 0.0	. 0.0	306.0
20/7/88	7:00	6.9	202	350	0	0	137.2	144.7	0.0	0.0	281.9
11/4/90	9:00	11.8	202.6	3707	1489	0	105.0	126.1	0.0	23.0	254.0
29/11/87	7:00	10	194	3350	0	· <b>0</b>	.93.6	120.7	. 0.0	32.4	246.7
11/4/90	8:00	13.3	231.8	3406	134	0	123.5	120.7	0.0	0.0	244.2
20/7/88	4:00	15	202	2768	0	0	119.3	124.0	0.0	0.0	243.2
31/7/87	8:00	11.1	187	4026	297	0	120.3	115.3	0.0	0.0	235.6
			•	۰.	•	· · · ·		· · ·			
Sulphur Dio	xide (SO	2) measu	red Ha P	ak Nai		•	•	-		. •	
- , <b></b> .			?	1.5.6	•					•	
· · · ·			Po	llution	. '	% of AQO					
e presidente de la companya de la companya de la companya de la companya de la companya de la companya de la co										• *	. •
• * · · ·	, · ·		, Con	centration	n .	Standard			, °•	•	
					•,		1.14	,			:
Limit on Ho	urly Con	centratio	on 526.	7 (87)		65.8%					
Limit on Da	ily Conce	entration	47.0		·	13.5%		•	•	÷ -	,
						1.9%				• .1	
Limit on Me	an Conce										

 $\bigcirc$ 

--

Date	Time	Wind	Wind	MW			Concentra	ation			
-	<u>.</u> .	Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
29/7/87	10:00	10.6	195	4107	2720	1019	174.7	127.5	0.0	0.0	302.3
29/7/87	<del>9</del> :00	13.3	192	4107	2204	• 0	170.7	125.0	0.0	0.0	295.7
29/7/87	11:00	10.2	197	.4107	2720	1522	120.3	83.5	0.0	0.0	203.9
20/7/88	0:00	8.9	262	4026	215	. 0	114.5	83.9	0.0	0.2	198.6
29/7/87	12:00	9.2	191	4107	2720	1644	116.7	80.4	0.0	0.0	197.1
25/6/86	21:00	11.7	208	4107	2308	0	109.2	77.5	0.0	0.0	186.7
31/7/87	7:00	12	187	3350	0	0	106.5	73.6	0.0	0.0	180.1
29/7/87	8:00	13	187	4026	297	0	93.0	63.3	0.0	0.0	156.2
19/7/88	17:00	13.2	233	4107	2720	1332	81.7	57.0	0.0	0.0	138.7
25/6/86	22:00	9.5	204	4107	1770	0	80.1	48.1	0.0	0.0	128.3
19/7/88	16:00	13.3	231	4107	2720	1423	78.0	46.1	0.0	0.0	124.1
25/6/86	23:00	8.9	187	4107	1134	0	71.8	43.2	0.0	0.0	114.9
31/7/87	17:00	9.4	184	4107	2720	1332	0.0	0.0	16.9	88.8	105.8
21/5/87	13:00	7.7	202	3707	2297	1193	65.5	39.9	0.0	0.0	105.4
20/7/88	8:00	7.0	165.5	4026	297	0	50.0	36.6	0.0	11.1	97.8
11/4/90	8:00	13.3	231.8	3406	134	0	52.9	36.4	0.0	8.1	97.4 ·
11/4/90	9:00	11.8	202.6	3707	1489	0	0.0	0.0	16.8	80.5	97.3
19/7/88	18:00	12.9	247	4107	2720	1097	56.7	34.0	0.0 [,]	0.0	90.7
28/5/85	11:00	10.6	230	3707	2297	1345	57.7	32.6	0.0	0.0	90.3
20/7/88	7:00	6.9	202	3350	0.	0	52.0	37.6	0.0	0.0	89.7

Nitrogen Dioxide (NO₂) measured Ha Pak Nai

۶.	
Pollution	% of AQO
Concentration	Standard
203.9 (87)	67.9%
24.0	16.0%
0.7	0.9%
	Concentration 203.9 (87) 24.0

.

Table F.3g Hourly Statistics of Sulphur Dioxide at Butterfly Estate

ole F.3g	Hourly Stat	stics of Sulphur	Dioxide at Butterfly Estate
----------	-------------	------------------	-----------------------------

Date	Time	Wind	Wind	MW			Concentr	ation			
<u>.</u>		Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
11/7/86	16:00	20.3	280	4107	2720	1423	436.9	598.9	0.0	0.0	1035.8
11/7/86	17:00	18.3	278	4107	2720	1332	436.9	598.9	0.0	0.0	1035.8
11/7/86	19:00	21.7	273	4107	2720	643	436.9	598.9	0.0	0.0	1035.8
11/7/86	20:00	20.2	271	4107	2662	267	436.9	598.9	0.0	0.0	1035.8
11/7/86	21:00	17.7	281	4107	2308	0	436.9	598.9	0.0	0.0	1035.8
11/7/86	22:00	17.2	280	4107	1770	0	436.9	598.9	0.0	0.0	1035.8
11/7/86	23:00	15.4	275	4107	1134	0	433.3	594.0	0.0	0.0	1027.3
12/7/86	0:00	13.1	270	4026	215	0	401.5	515.9	0.0	0.0	917.5
31/7/90	10:00	9.7	276.1	4107	2720	1019	394.9	404.1	0.0	0.0	799.0
31/7/90	9.00	11.4	275.1	4107	2204	. 0	343.0	369.5	0.0	.0.0	712.5
11/7/86	18:00	18	270	4107	2720	1097	218.5	299.4	.0.0	0.0	517.9
31/7/90	11:00	7.8	272.2	4107	2720	1522	276.4	231.3	0,0	0.0	507.7
24/6/85	20:00	12.4	284	4107	2662	267	215.6	267.5	0.4	11.3	494.8
11/7/86	15:00	18.2	271	4107	2720	1416	145.6	199.6	14.3	23.3	382.8
23/6/88	14:00	10.7	253	4107	2720	1071	145.6	199.6	0.0	0.0	345.3
25/6/85	2:00	9.7	265	3105	0	0	148.7	152.8	0.0	0.0	301.5
31/7/90	7:00	12.6	284.5	3350	0.	0	121.9	157.4	0.0	0.0	279.2
12/7/86	1.00	9.1	245	3501	0	0	119.5	135.8	0.0	0.0	. 255.3
21/8/86	8:00	6.3	254	4026	297	0	106.6	120.1	1.6	16.1	244.5
21/8/86	20:00	2.0	109	4107	2662	- 267	176.4	58.8	0.0	0.0	235.1
· · · · · · · · · · · ·									•		·
Sulphur Dio	xide (SC	$J_2$ ) measured	red Butte	erfly Estate							
	`		, ¹¹	• •							
	• .		Po	llution	•	% of AQO	•				•
· .	• • •	÷.,	Con	centration		Standard			<u>.</u>		
· · · ·	· ·	•						,	•		
Limit on Ho	urly Co	ncentratio	n 507.	7.	:	63.5%	•	•			
Limit on Dai	-					8.7%	-				
Limit on Me						1.4%					
Fund ou Me	an Con	centration	1.0	· · ·	· · · · · ·	1.4170	· ·				:

م دول ۲۵ میں مثلی کے معلق میں استان کی میں الآب ہوئی میں کر ہے۔ اور اس میں کریک اور اس ایے ایک اور ا ا

Date	Time	Wind	Wind	MW			Concentr	ation			
	· •	Speed	Dir	CPPS	BP,coal	BP,gas	CPA	СРВ	BP,coal	BP,gas	Total
11/7/86	16:00	20.3	280	4107	2720	1423	213.6	166.5	0.0	0.0	380.1
11/7/86	17:00	18.3	278	4107	2720	1332	213.6	166.5	0.0	0.0	380.1
11/7/86	19:00	21.7	273	4107	2720	643	213.6	166.5	0.0	0.0	380.1
1/7/86	20:00	20.2	271	4107.	2662	267	213.6	166.5	0.0	0.0	380.1
11/7/86	21:00	17.7	281	4107	2308	0	213.6	166.5	0.0	0.0	380.1
11/7/86	22:00	17.2	280	4107	1770	0	213.6	166.5	0.0	0.0	380.1
11/7/86	23:00	15.4	275	4107	1134	0	211.8	165.1	0.0	0.0	377.0
12/7/86	0:00	13.1	270	4026	215	0	191.0	140.2	0.0	0.0	331.2
31/7/90	10:00	9.7	276.1	4107	2720	1019	173.5	102.1	0.0	0.0	275.7
31/7/90	9:00	11.4	275.1	4107	2204	0	152.8	94.3	0.0	0.0	247.1
1/7/86	18:00	18.0	270	4107	2720	1097	106.8	83.2	0.0	0.0	190.0
24/6/85	20:00	12.4	284	4107	2662	267	101.1	71.7	0.1	5.8	178.8
31/7/90	11:00	7.8	272.2	4107	2720	1522	116.5	57.5	0.0	0.0	174.0
11/7/89	15:00	18.2	271	4107 [`]	2720	1416	71.2	55.5 · .	5.5	12.0	144.1
23/6/88	14:00	10.7	253	4107	2720	1071	<b>71.2</b> ·	55.5	0.0	0.0	126.7
25/6/85	2:00	9.7	265	3105	0	0	65.4	38.6	0.0	0.0	104.0
31/7/90	7:00	12.6	284.5	3350	0	0	58.1	42.8	0.0	0.0	100.9
21/8/86	20:00	2	109	4107	2662	267	54.2	35.2	0.0 ·	0.0	<b>89.3</b>
3/9/90	16:00	7.9	0.9	3364	2297	1710	48.1	30.9	0.6	8.3	88.0
12/7/86	1:00	9.1	245	3501	0	0	48.4	24.0	3.0	4.5	79.8

Nitrogen Dioxide (NO₂) measured Butterfly Estate . . . .

.

÷

.

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	174 (90)	58.0%
Limit on Daily Concentration	22.0	15.0
Limit on Mean Concentration	1.0	1.2%
ι.		

•

 Table F.3i
 Hourly Statistics of Sulphur Dioxide at Tung Chung

Date	Time	Wind	Wind	MW				Conce	ntration			
		Speed	Dir	CPPS	BP,coal	l. E	3P,gas	CPA	СРВ	BP,coal	BP,gas	Total
20/8/86	23:00	9.7	345	4107	1134	· · C	)	143.0	205.1	0.0	2.9	351.1
28/11/87	21:00	10.3	15	3364	1985	9	90	125.6	178.9	0.4	18.0	323.0
14/12/85	22:00	13.3	3	3313	<b>1105</b>	(	)	128.9	183.5	0.0	0.7	313.1
14/12/85	21:00	11.9	359	3313	1527	0	)	107.5	155.0	14.8	33.7	311.0
14/12/85	23:00	13.9	8	3280	533	0	)	108.8	157.4	2.1	37.9	306.2
4/1/86	22:00	11.1	5	3313	1105	0	)	97.4	141.1	20.5	46.9	305.9
29/3/88	20:00	8.9	353	3707	2101	2	256	97.2	140.8	20.6	47.2	305.7
30/11/90	18:00	11	355	3364	2297	1	579	93.2	135.3	23.5	51.5	303.5
26/10/88	8:00	9.2	355	3224	343	C	}	103.6	149.6	18.0	31.7	302.9
19/12/86	. 9:00	9.0	350	3313	1049	. (	)	118.3	169.7	0.0	11.1	· 299.1
13/11/87	11:00	8.7	360	3364	2297	· 1	833	92.0	133.4	23.4	48.1	296.8
27/2/86	. 11:00	9.6	354	3313	2548	3	331	100.5	145.3	4.6	45.5	296.0
29/3/88	21:00	5.9	353	. 3707	1661	C	)	94.3	136.8	14.4	48.9	294.4
30/11/90	17:00	9.5	356.8	3364	2297	、1	672	87.2	126.9	26.0	53.4	293.5
28/11/87	23:00	6.1	353.2	3346	854		).	120.7	171.4	0.0	· 0.0	, 292.1
24/11/85	.21:00	8.9	358	3364	1985		90	86.3	125.6	26.2	53.8	291.8
19/10/89	18:00	9.3	358.7	3364	2297		579	96.6	139.8	3.5	48.5	288.4
20/2/86	17:00	6.7	352	3313	2485		256	89.4	130.0	23.1	45.7	288.2
25/10/88	18:00	8.9	353	3364	2297		579	96.1	139.1	16.6	35.5	287.3
19/12/86	10:00	8.7	355	3313	2310	. 4	۰ ۲	· 92.7	134.1	21.6	38.7	287.1
			1.00					•	,			- -
Sulphur Die	oxide (SC	$D_2$ ) measu	red Tung	g Chung								
	, ·		Do	llution		01	f AQO				:	
	• *				.*	•			,	·		
N N			. Cor	centration	ι.	Stan	dard					
Limit on Ho	ourly Co	: ncentratio	 306	2 (85)		38.3	 %			X.		
Limit on Da	-			• •		21.99					:	
Limit on M						4.2%			· .	н 1 — 1	<del></del>	
								_				
								· .				

· "我们的你们,我们就是我们的?""我们就是我们的你们,我们就是我们的你们。""我们的我们就是我们就是我们的吗?" "

•

Date	Time	Wind	Wind	MW			Concentr	ation			
	· •	Speed	Dir	CPPS	BP,coal	BP,gas	СРА	СРВ	BP,coal	BP,gas	Total
30/11/90	18:00	11	355	3364	2297	1579	86.4	70.5	0.0	1.6	158.5
28/11/87	21:00	10.3	15	3364	1985	90	77.6	62.8	0.2	9.9	150.4
20/8/86	23:00	9.7	35	4026	297	0	79.7	64.6	0.0	0.4	144.7
27/2/86	11:00	9.6	354	3313	2548	331	64.0	52.5	5.8	17.8	140.0
13/11/87	11:00	8.7	360	3364	2297	1833	63.8	52.4	0.8	20.0	137.0
19/10/89	18:00	9.3	358.7	3364	2297	1579	56.9	46.9	8.0	24.8	136.6
25/10/88	18:00	8.9	353	3364	2297	1579	56.8	46.8	8.1	24.9	136.5
14/12/85	21:00	11.9	359	3313	1527	0	71.7	58.5	0.0	5.9	136.0
29/3/88	20:00	8.9	353	3707	2101	256	75.1	60.6	0.0	0.0	135.7
20/2/86	17:00	6.7	352	3313	2485	256	61.2	50.3	7.1	16.7	135.3
26/10/88	10:00	7.5	344	3364	2297	1283	54.0	44.6	9.2	27.2	135.0
18/11/89	12:00	10.4	0.1	3364	2297	1997	59.3	48.7	1.8	24.0	133.8
25/10/88	17:00	8.8	355	3264	2297	1672	53.4	44.1	9.2	25.4	132.0
25/10/88	19:00	7.7	359	3364	2297	1298	54.9	45.3	5.6	25.8	131.5
19/12/86	10:00	8.7	355	3313	2310	47	56.6	46.6	1.4 .	25.6	130.2
14/12/85	22:00	13.3	3	3313	1105	0	50.2	41.5	10.2	28.2	130.0
30/11/90	19:00	7.4	5.8	3364	2297	1298	49.5	41.0	10.3	28.4	129.2
25/10/88	20:00	9.6	358	3364	2265	585	70.0	57.1	0.0 '	2.0	129.1
18/11/89	10:00	6.5	18.8	3364	2297	1283	54.4	44.7	8.5	20.4	128.0
26/10/88	9:00	6.4	356	3364	1963	60	56.3	46.4	6.5	18.8	127.9

 $\bigcirc$ 

ł

	1 Onution	
	Concentration	Standard
Limit on Hourly Concentration	135.3 (86)	45.1%
Limit on Daily Concentration	42.0	28.1%
Limit on Mean Concentration	2.0	2.3%
•		

and the second second second second second second second second second second second second second second second

( )

## Table F.4a Hourly Statistics of Sulphur Dioxide at Mai Po Nature Reserve

 $\frown$ 

Date Time	Time Wind Speed	Wind Dir Total	Total	Compound	ls of Concentration		
	1	· · ·			СРА	СРВ	BP, HFO
28/5/85	11:00	10.6	230.0	333.0	97.4	140.0	95.7
25/6/86	19:00	12.2	213.0	237.1	127.3	185.0	14.7
25/6/86	18:00	14.7	224.0	316.6	122.7	177.7	16.1
28/5/85	10:00	11.2	228.0	313.7	96.6	133.9	83.2
19/7/88	21:00	11.9	219.0	312.3	116.9	165.8	29.5
19/7/88	23:00	14.6	203.0	277.4	113.1	164.3	0.0
19/7/88	22:00	16.8	217.0	274.6	108.6	157.9	8.1
25/6/86	20:00	12.4	209.0	273.3	111.4	161.9	0.0
22/5/88	10:00	7.5	230.0	264.4	77.3	101.7	85.3
27/5/85	15:00	9.0	213.0	258.1	78.4	108.1	71.5
11/4/90	12:00	7.1	221.2	253.6	61.1	79.7	112.8
28/5/85	12:00	12.4	292.5	228.2	47.7	66.0	114.5
28/5/85	9:00	10.3	225.0	227.4	69.6	93.8	63.9
22/5/87	9:00	11.0	215.0	224.8	94.4	130.4	0.0
30/7/87	20:00	6.7	229.0	223.3	93.1	130.3	· 0.0
23/6/88	13:00	8.0	212.0	217.1	92.6	124.5	0.0
22/5/87	10:00	8.7	213.0	213.6	90.2	123.3	0.0
2/9/88	13:00	7.1	222.0	207.7	51.9	66.3	89.5
20/4/88	15:00	9.3	218.0	205.5	74.9	98.5	32.0
27/5/85	14:00	9.8	229.0	205.1	75.2	98.3	31.5

 $\cap \quad \cap$ 

n er

 $\langle \langle \cdot \rangle \rangle$ 

( )

Sulphur Dioxide (SO₂) measured at Mai Po Nature Reserve

• • •	· · · · ·		
· . •		Pollution	% of AQO
•	· •	Concentration	Standard
	× .		
Limit o	n Hourly Concentration	274.6	34.3%
Limit o	n Dailly Concentration	52.23	14.92%
Limit o	n Mean Concentration	. 1.29	1.62%

Date	Time	Wind Speed	ed Wind Dir Total		Compound	is of Concentration	
			· · ·	CPA	СРВ	BP, HFO	
28/5/85	11:00	10.6	230.0	165.4	62.4	51.1	51.9
25/6/86	19:00	12.2	213.0	157.8	81.9	67.8	8.1
28/5/86	10:00	11.2	228.0	154.0	61.1	48.3	44.6
25/6/86	18:00	14.7	224.0	152.7	78.8	65.0	8.9
19/7/88	21:00	11.9	219.0	150.8	74.6	60.3	16.0
19/7/88	23:00	14.6	203.0	132.9	72.7	60.2	0.0
19/7/88	22:00	16.8	217.0	132.1	69.9	57.8	4.4
25/6/86	20:00	12.4	209.0	131.0	71.7	59.3	0.0
22/5/88	10:00	7.5	230.0	129.0 ·	48.0	36.0	45.0
27/5/85	15:00	9.0	213.0	126.7	49.5	38.9	38.3
11/4/90	12:00	7.1	221.2	125.5	37.8	28.1	59.5
28/5/85	12:00	12.4	292.5	115.1	30.1	23.8	61.2
28/5/85	9:00	10.3	225.0	111.0	43.6	33.5	34.0
22/5/87	9:00*	11.0	215.0	106.6	59.7°	46.9	0.0
30/7/87	20:00	6.7	229.0	106.2	59.1	47.1	0.0
23/6/88	13:00	8.0	212.0	102.3	57.9	44.4	0.0
2/9/88	13:00	7.1	222.0	101.5	31.8	23.1	46.7
22/5/87	10:00	8.7	213.0	101.0	56.8	44.2 '	0.0
27/5/85	11:00	8.0	228.0	99.0	22.7	17.0	59.3
20/4/88	15:00	9.3	218.0	98.1	46.5 [.]	34.8	16.8

Nitrogen Dioxide (NO₂) measured at Mai Po Nature Reserve

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	152.7 (86)	50.9%
Limit on Dailly Concentration	24.97	16.65%
Limit on Mean Concentration	0.61	0.76%

Table F.4c Hourly Statistics of Sulphur Dioxide at Lung Kuvu Tan

.

Date	Time	Wind Spee	d Wind Dir	Total	Compounds of Concentration			
•			**. *. 	· · · ·	СРА	СРВ	BP, HFO	
29/7/87	10:00	10.6	195.0	932.6	522.5	410.1	0.0	
29/7/87	9:00	13.3	192.0	923.3	531.6	391.7	0.0	
20/7/88	0:00	8.9	262.0	617.0	343.7	273.2	0.0	
29/7/87	11:00	10.2	197.0	576.7	347.9	218.9	0.0	
25/7/86	21:00	11.7	208.0	554.1	343.9	210.2	0.0	
29/7/87	12:00	9.2	191.0	547.1	339.4	207.7	0.0	
31/7/87	7:00	12.0	187.0	502.8	307.0	195.7	0.0	
29/7/87	8:00	13.0	187.0	421.8	260.2	161.6	0.0	
25/6/86	22:00	9.5	204.0	396.5	246.1	150.5	0.0	
31/7/87	8:00	11.1	187.0	274.6	169.0	105.6	. 0.0	
20/7/88	4:00	15.0	202.0	273.0	159.1	114.0	0.0	
11/4/90	8:00	13.3	231.8	270.2	153.2	117.0	0.0	
25/6/86	23:00	8.9	187.0	248.8	154.1	94.8	0.0	
11/4/90	9:00	11.8	202.6	248.4	154.2	94.3	0.0	
24710/87	12:00	12.8	335.0	233.3	0.0	0.0	233.3	
31/7/87	17:00	9.4	184.0	227.9	141.0	86.8	0.0	
21/5/87	13:00	7.7	202.0	223.2	138.1	85.1	0.0	
20/7/88	8:00	7.0	165.5	206.8	127.1	79.7 '	0.0	
24/10/87	15:00	10.3	341.0	204.6	0.0	0.0	204.6	
31/7/87	9:00	10.6	174.0	196.6	122.0	74.6	0.0	
	, ·			15				
Sulphur D	iovide (SQ.) r	measured at Lu	no Kwu Tan				:	
	10/du <u>c</u> (00 ₂ ) 1	,						
· · · · ·	•	Po	Ilution	% of AQO				
2			centration	Standard	. •	н ¹ ,		
· .								
Limit on H	Iourly Conce	ntration	576.7 (87)	72.1%				
			49.68	14.19%	•			
2			1.17	1.46%				

.

•

and the second second second second second second second second second second second second second second second

Date	Time	Wind Speed	Wind Dir	Total ·	Compound	ls of Concentration	n	
· ·				• .	СРА	СРВ		BP, HFO
29/7/87	10:00	10.6	195.0	231.3	159.1	72.2	(	0.0
29/7/87	9:00	13.3	192.0	226.8	159.1	67.7	1	0.0
20/7/88	0:00	8.9	262.0	153.3	105.1	48.3	1	0.0
29/7/87	11:00	10.2	197.0	137.1	101.7	35.4	1	0.0
25/6/86	21:00	11.7	208.0	132.0	97.9	34.1	(	0.0
29/7/87	12:00	9.2	191.0	129.9	96.3	33.6	(	0.0
31/7/87	7:00	12.0	187.0	120.2	88.0	32.1	ť	0.0
29/7/87	8:00	13.0	187.0	100.2	74.0	26.2	I	0.0
25/6/86	22:00	9.5	204.0	94.3	69.9	24.4	1	0.0
11/4/90	8:00	13.3	231.8	66.7	46.3	20.4		0.0
20/7/88	4:00	15.0	202.0	66.7	47.2	19.5		0.0
31/7/87	8:00	11.1	187.0	65.8	48.5	7.3		0.0
11/4/90	9:00	11.8	202.6	59.0	43.8	15.2		0.0
24/10/87	12:00	12.8	335.0	58.9	0.0	0.0	1	58.9
25/6/86 ·	23:00	8.9	187.0	57.9	42.9	15.0		0.0
31/7/87	17:00	9.4	184.0	52.8	39.1	13.7		0.0 ่
21/5/87	13:00	7.7	202.0	51.9	38.4	13.5		0.0
26/4/85	15:00	13.2	330.0	51.7	0.0	0.0	,	51.7
24/10/87	15:00	10.3	341.0	50.0	0.0	0.0		50.0
20/7/88	8:00	7.0	165.5	47.9	35.3	12.5	(	<b>0.0</b> ^{°°}

## Nitrogen Dioxide (NO₂) measured at Lung Kwu Tan

:

	÷ •	
	Pollution	% of AQO
	Concentration	Standard
		<u> </u>
Limit on Hourly Concentration	137.1 (87)	45.7%
Limit on Dailly Concentration	11.22	7.48%
Limit on Mean Concentration	0.21	0.27%

...

## Table F.4eHourly Statistics of Sulphur Dioxide at Ha Pak Nai

Date	Time	Wind Speed	Speed Wind Dir	Total	Compounds of Concentration			
· · ·	• • •	·	<u>.</u> .		СРА	СРВ	BP, HFO	
29/7/87	10:00	10.6	195.0	745.5	326.7	418.7	0.0	
29/7/87	9:00	13.3	192.0	735.1	321.4	413.8	0.0	
29/7/87	11:00	10.2	197.0	526.7	238.1	288.5	0.0	
29/7/87	12:00	9.2	191.0	51.01	231.9	278.2	0.0	
20/7/88	0:00	8.9	262.0	488.3	213.2	274.7	0.4	
25/6/86	21:00	11.7	208.0	480.1	214.1	265.9	0.0	
31/7/87	7:00	12.0	187.0	163.4	210.3	253.2	0.0	
29/7/87	8:00	13.0	187.0	404.6	185.3	219.3	0.0	
25/6/86	22:00	9.5	204.0	357.9	161.4	196:5	0.0	
2576786	23:00	8.9	187.0	341.4	167.6	173.8	0.0	
31/7/87	17:00	9.4	184.0	331.3	164.1	167.3	0.0	
19/7/88	17:00	13.2	233.0	318.8	0.0	0.0	318.8	
19/7/88	16:00	13.3	231.0	316.2	0.0	0.0	316.2	
21/5/87	13:00	7.7	202.0	306.0	150.1	155.9	0.0	
20/7/88	8:00	7.0	165.5	281.9	137.2	144.7	. 0.0	
11/4/90	9:00	11.8	202.6	250.7	`105.0	126.1	19.6	
21/5/87	14:00	7.1	192.0	244.2	123.5	120.7	0.0	
20/7/88	7:00	6.9	202.0	243.2	119.3	124.0	' 0.0	
1174790	8:00	13:3	231.8	241.1	93.6	120.7	26.8	
28/5/85	11:00	10.6	230.0	237.1	0.0	0.0	237.1	
	• • •			• •				
Sulphur D	ioxide (SO ₂ )	measured at H	Ia Pak Nai	n La Alexandra				
		, 	- ·					
-	•		ollution ncentration	% of AQ Standard				
Limit on H	Jourly Conc	entration	526.7 (87)	65.8%				
	Dailly Conce		60.13	17.18%	ъ.			
		ntration	1.59	÷ 1.99%				

and the second second and the second second second second second second second second second second second second

 $\bigcirc$ 

()

Date	Time	Wind Speed	Wind Dir	Total	Compoun	nds of Concentration	
<b>*.</b> •••				•	CPA	СРВ	BP, HFO
29/7/87	10:00	10.6	195.0	302.3	174.7	127.5	0.0
29/7/87	9:00	13.3	192.0	295.7	170.7	125.0	0.0
29/7/87	11:00	10.2	197.0	203.9	120.3	83.5	0.0
20/7/88	0:00	8.9	262.0	198.6	114.5	83.9	0.1
29/7/87	12:00	9.2	191.0	197.1	116.7	80.4	0.0
25/6/86	21:00	11.7	208.0	186.7	109.2	77.5	0.0
31/7/87	7:00	12.0	187.0	180.1	106.5	73.6	0.0
29/7/87	8:00	13.0	187.0	156.2	93.0	63.3	0.0
25/6/86	22:00	9.5	204.0	138.7	81.7	57.0	• • • • <b>0.0</b> • • • • • • •
25/6/86	23:00	8.9	187.0	128.3	80.1	48.1	0.0
31/7/87	17:00	<b>9.4</b>	184.0	124.1	78.0	46.1	0.0
21/5/87	13:00	7.7	202.0	114.9	71.8	43.2	0.0
19/7/87	17:00	13.2	233.0	112.6	0.0	0.0	112.6
20/7/88	8:00	7.0	165.5	05.4	65.5	39.9	0.0
19/7/88	16:00	13.3	231.0	05.1	0.0	0.0	. 105.1
11/4/90	<b>9:00</b> ′	11.8	202.6	96.2	52.9	36.4	6.9
11/4/90	8:00	13.3	231.8	95.9	50.0	36.6	9.3
20/7/88	7:00	6.9	202.0	90.7	56.7	34.0 '	0.0
21/5/87	14:00	7.1	192.0	90.3	57.7	32.6	0.0
20/7/88	4:00	15.0	202.0	89.7	52.0	37.6	0.Ö
·	-						. `
Nitrogan Di	.oxide (NO ₂ ) n	noneurod at	Ha Pak Nai				1
	$0$ $100_2$ $11$	leasured at	ria rak ivai	·			
. '	:	-					
	· * .		llution	% of A	-		
· .		Cor	icentration	Standar	1	•	•
Limit on Ho	ourly Concentr	ation	203.9 (87)	67.9%			
	illy Concentra		21.61	14.41%			:
LIMIT ON MO	ean Concentra	non	0.48	0.60%			

()

Table F.4gHourly Statistics of Sulphur Dioxide at Butterfly Estate

Date	Time	Wind Speed	Wind Dir	Total	Compound	ls of Concentration	
			• *	:	CPA	СРВ	BP, HFO
11/7/86	16:00	20.3	280.0	1035.8	436.9	598.9	0.0
11/7/86	17:00	18.3	278.0	1035.8	436.9	598.9	0.0
11/7/86	19:00	21.7	273.0	1035.8	436.9	598.9	0.0
11/7/86	20:00	20.2	271.0	1035.8	436.9	598.9	0.0
11/7/86	21:00	17.7	281.0	1035.8	436.9	598.9	0.0
11/7/86	22:00	17.2	280.0	1035.8	436.9	598.9	0.0
11/7/86	23:00	15.4	275.0 [`]	1027.3	433.3	594.0	0.0
12/7/86	0:00	13.1	270.0	917.5	401.5	515.9	0.0
31/7/90	10:00	9.7	276.1	799.0	394.9	404.1	0.0
31/7/90	9:00	11.4	275.1	712.5	343.0	369.5	0.0
11/7/86	18:00	18.0	270.0	517.9	218.5	299.4	0.0
31/7/90	11:00	7.8	272.2	507.7	276.4	231.3	0.0
24/6/85	20:00	12.4	284.0	504.2	215.6	267.5	21.1
11/7/86	15:00	18.2	271.0	379.6	145.6	199.6	34.4
23/6/88	14:00	10.7	253.0	345.3	145.6	199.6	0.0
25/6/85	2:00	9.7	265.0	301.5	148.7	152.8	0.0
31/7/90	7:00	12.6	284.5	279.2	121.9	157.4	0.0
12/7/86	1:00	9.1	245.0	255.3	119.5	135.8	ʻ 0.0
8/9/90	16:00	7.9	0.9	245.8	115.0	95.3	35.5
21/8/86	20:00	2.0	109.0	244.1	106.6	120.1	· 17.4
				et i			
		1.0		· ·			
Sulphur I	Dioxide $(SO_2)$	measured at B	itterfly Estate		. •	· .	1
	.*		:		٠.		
A. 1	1 ¹	Po	ollution	% of AQ	D	1.	
· ·	,	Cor	centration	Standard			5
. • •	•		· · · · · · · · · · · · · · · · · · ·	'			
Limit on	Hourly Conc	entration	507.7 (90)	63.5%			
-			· ·	-			-
	Dailly Conce		45.94	13.13%			•
limit on	Mean Concer	ntration	2.05	2.56%		•	

ang ana aka mang ang kanaka pengangan pendapan kerakan kerakan kerakan kerakan kerakan penangan penangan penang

**、** 

Date	Time	Wind Speed	Wind Dir	Total	Compound	s of Concentration	
		е.,			CPA	СРВ	BP, HFO
11/7/86	16:00	20.3	280.0	380.1	213.6	166.5	0.0
11/7/86	17:00	18.3	278.0	380.1	213.6	166.5	0.0
11/7/86	19:00	21.7	273.0	380.1	213.6	166.5	0.0
11/7/86	20:00	20.2	271.0	380.1	213.6	166.5	0.0
11/7/86	21:00	17.7	281.0	380.1	213.6	166.5	0.0
11/7/86	2:00	17.2	280.0	380.1	213.6	166.5	0.0
11/7/86	23:00	15.4	275.0	377.0	211.8	165.1	0.0
12/7/86	0:00	13.1	270.0	331.2	191.0	140.2	0.0
31/7/90	10:00	9.7	276.1	275.7	173.5	102.1	0.0
31/7/90	9:00	11.4	275.1	247.1	152.8	94.3	0.0
11/7/86	18:00	18.0	270.0	190.0	106.8	83.2	0.0
24/6/85	20:00	12.4	284.0	183.4	101.1	71.7	10.6
31/7/90	11:00	7.8	272.2	174.0	116.5	57.5	0.0
11/7/86	15:00	18.2	271.0	144.4	71.2	55.5 [°]	17.7
23/6/88	14:00 ·	10.7	253.0	126.7	71.2	55.5	. 0.0
25/6/85	2:00	9.7	265.0	104.0	65.4	38.6	0.0
31/7/90	7:00	2.6	284.5	100.9	58.1	42.8	0.0
8/9/90	16:00	7.9	0.9	90.1	48.4	24.0	17.8
12/7/86	1:00	9.1	245.0	89.3	54.2	35.2	0.0
21/8/86	20:00	2.0	109.0	88.0	48.1	30.9	9.0

Nitrogen Dioxide (NO₂) measured at Butterfly Estate

.

	Pollution	% of AQO
•	Concentration	Standard
Limit on Hourly Concentration	174 (90)	58.0%
Limit on Dailly Concentration	18.63	12.42%
Limit on Mean Concentration	0.75	0.93%

# Table F.4i Hourly Statistics of Sulphur Dioxide at Tung Chung

Date	Time	Wind Speed	Wind Dir	Total	Compound	is of Concentration	
	· . · · · ·	<u> </u>	-		CPA	СРВ	BP, HFO
30/11/90	18:00	11.0	355.0	357.6	107.5	155.0	95.0
20/8/86	23:00	9.7	345.0	357.2	143.0	205.1	9.0
13/11/87	11:00	8.7	360.0	344.6	103.6	149.6	91.5
19/10/89	18:00	9.3	358.7	339.6	97.4	141.1	101.0
25/10/88	18:00	8.9	353.0	339.1	97.2	140.8	101.1
28/11/87	21:00	10.3	15.0	335.4	125.6	178.9	30.8
26/10/88	10:00	7.5	344.0	332.8	93.2	135.3	104.3
25/10/88	17:00	8.8	355.0	329.1	92.0	133.4	103.8
18/11/89	12:00	10.4	0.1	329.0	92.7	134.1	102.2
27/2/86	11:00	9.6	354.0	322.1	100.5	145.3	76.3
29/3/88	20:00	8.9	353.0	320.3	108.8	157.4	54.1
19/10/89	17:00	8.6	348.2	320.1	87.2	126.9	106.0
25/10/88	19:00	7.7	359.0	319.1	94.3	136.8	88.0
14/12/85	21:00	11.9	359.0	318.9	118.3	169.7	30.9
14/12/85	22:00	13.3	3.0	318.4	128.9	183.5	5.9
30/10/88	17:00	7.4	349.0	317.6	86.3	125.6	105.8
18/11/89	10:00	6.5	18.8	317.2	96.1	139.1	82.0
7/10/89	16:00	7.2	357.7	311.2	89.4	130.0 '	91.7
30/11/90	19:00	7.4	5.8	311.0	93.2	135.0	82.8
20/2/86	17:00	6.7	352.0	308.3	96.6	139.8	71.9
	• .		1				
Sulphur D	ioxide (SO ₂ ) me	asured at Tun	g Chung	:			•
		:					• ·
, <i>,</i>		Pollu	ution	% of AQO	-		· ·
			ntration	Standard	. •	· .	
		Conce				· .	
1 ¹ 2			2001 (00)	41 10			
	Hourly Concent		329.1 (88)	41.1%			
	Dailly Concentra		85.10	24.31%		· . ·	. ·
Limit on M	Mean Concentra	tion	3.70	4.63%			

Date	Time	Wind Speed	Wind Dir	Total	Compoun	Compounds of Concentration			
· · · ·				: •.	CPA	СРВ	BP, HFO		
30/11/90	18:00	11.0	355.0	167.0	64.0	52.5	50.6		
20/8/86	23:00	9.7	345.0	161.8	86.4	70.5	4.9		
13/11/87	11:00	8.7	360.0	160.1	61.2	50.3	48.5		
28/11/87	21:00	10.3	15.0	157.2	77.6	62.8	16.8		
19/10/89	18:00	9.3	358.7	157.1	56.9	46.9	53.3		
25/10/88	18:00	8.9	353.0	156.9	56.8	46.8	53.4		
26/10/88	10:00	7.5	344.0	153.5	54.0	44.6	54.9		
18/11/89	12:00	10.4	0.1	153.1	54.4	44.7	54.0		
25/10/88	17:00	8.8	355.0	152.2	53.4	44.1	54.6		
27/2/86	11:00	9.6	354.0	148.4	59.3	48.7	40.4		
14/12/85	22:00	13.3	3.0	147.5	79.7	64.6	3.2		
19/10/89	17:00	8.6	348.2	147.3	50.2	41.5	55.6		
14/12/85	21:00	11.9	359.0	146.8	71.7	58.5	16.6		
25/10/88	19:00	7.7	359.0	146.5	54.9	45.3	46.4		
30/10/88	17:00	7.4	349.0	146.1	49.5	41.0	55.5		
18/11/89	.10:00	6.5	18.8	146.0	56.3	46.4	43.3		
29/3/88	20:00	8.9	353.0	144.8	63.8	52.4	28.6		
30/11/90	19:00	7.4	5.8	143.1	54.5	<b>44.9</b>	43.7		
7/10/89	16:00	7.2	357.7	142.2	51.5	42.6	48.2		
20/2/86	17:00	6.7	352.0	141.2	56.6	46.6	38.0		
,					•				
•							·		
Nitrogen Di	oxide (NO ₂ ) n	neasured at Ti	ing Chung	. •					
•		Poll	ution	% of AQC	1				
			entration	Standard					
Limit on Ho	urly Concentr	ation	152.2 (88)	 50.7%					
	illy Concentra		37.53	25.02%			· .		
unin on Da	an Concentra		1.59	25.02 <i>%</i> 1.99%					

Table F.4jHourly Statistics of Nitrogen Dioxide at Tung Chung

()

Table F.5aHourly Statistics of Sulphur Dioxide at Mai Po

•

• •	Time	Wind Speed	Wind Dir	Total	Compound	ls of Concentration	
. ·		·	: 		СРА	СРВ	BP, DistO
25/6/86	19:00	12.2	213.0	327.6	127.3	185.0	15.2
28/5/85	11:00	10.6	230.0	318.2	97.4	140.0	80.8
25/6/86	18:00	4.7	224.0	316.8	122.7	177.7	16.3
19/7/88	21:00	11.9	219.0	308.0	116.9	165.8	25.2
28/5/85	10:00	11.2	228.0	288.4	96.6	133.9	57.9
19/7/88	23:00	14.6	203.0	277.4	113.1	164.3	0.0
19/7/88	22:00	6.8	217.0	274.0	108.6	157.9	7.5
25/6/86	20:00	12.4	209.0	273.3	111.4	161.9	0.0
27/5/85	15:00	9.0	213.0	236.2	78.4	108.1	49.7
22/5/87	9:00	11.0	215.0	224.8	94.4	130.4	0.0
22/5/88	10:00	7.5	230.0	224.3	77.3	101.7	45.3
30/7/87	20:00	6.7	229.0	223.3	93.1	130.3	- 0.0
23/6/88	13:00	8.0	212.0	217.1	92.6	124.5	0.0
22/5/87	10:00	8.7	213.0	213.6	90.2	123.3	. 0.0
11/4/90	12:00	7.1	221.2	202.1	61.1	79.7	61.3
28/5/85	9;00	10.3	225.0	202.1	69.6	93.8	38.7
27/5/85	8:00	8.2	234.3	191.3	74.9	103.5	- 12.9
28/5/85	12:00	12.4	292.5	191.1	47.7	66.0	. 77.4
27/5/85	14:00	9.8	229.0	189.8	75.2	98.3	- 16.3
20/4/88	15:00	9.3	218.0	188.8	74.9	98.5	15.4

.

•

		Pollution Concentration	. % of AQO Standard
Limit on H	Iourly Concentration	274.0 (88)	34.3%
Limit on I	Dailly Concentration	46.64	13.33%
Limit on M	lean Concentration	1.10	1.38%

a second second second second second second second second second second second second second second second sec

Date	Time	Wind Speed	Wind Dir	Total	Compound	ls of Concentration	
· · · · · ·		,		CPA	СРВ	BP, DistO	
25/6/86	19:00	12.2	213.0	155.9	81.9	67.8	6.3
25/6/86	18:00	14.7	224.0	150.6	78.8	65.0	6.7
28/5/85	11:00	10.6	230.0	146.3	62.4	51.1	32.8
19/7/88	21:00	11.9	219.0	145.0	74.6	60.2	10.2
19/7/88	23:00	14.6	203.0	132.9	72.7	60.2	0.0
28/5/85	10:00	11.2	228.0	132.7	61.1	48.3	23.3
25/6/86	20:00	12.4	209.0	131.0	71.7	59.3	0.0
19/7/88	22:00	16.8	217.0	130.7	69.9	57.8	3.0
27/5/85	15:00	9.0	213.0	108.4	49.5	38.9	19.9
22/5/87	<b>9:</b> 00	11.0	215.0	106.6	59.7	46.9	0.0
30/7/87	20:00	6.7	229.0	106.2	59.1	47.1	0.0
23/6/88	13:00	8.0	212.0	102.3	57.9	44.4	0.0
22/5/88	10:00	7.5	230.0	101.9	48.0	36.0	17.9
22/5/87	10:00	8.7	213.0	101.0	56.8	44.2	0.0
28/5/85	9:00	10.3	225.0	92.5	43.6	33.5	15.4
11/4/90	12:00	7.1	221.2	90.2	37.8	28.1	24.2
27/5/85	8:00	8.2	234.3	89.8	47.3	37.3	5.2
27/5/85	14:00	9.8	229.0	87.7	46.6	34.7	· 6.4
22/5/87	8:00	9.8	215.0	87.5	49.6	37.9	0.0
20/4/88	15:00	9.3	218.0	87.4	46.5	34.8	6.0

()

Nitrogen Dioxide (NO₂) measured at Mai Po Nature Reserve

.

. <del>.</del> . . .

	<b>Pollution</b>	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	131 (86)	43.7%
Limit on Dailly Concentration	22.12	14.74%
Limit on Mean Concentration	0.48	0.60%

 Table F.5c
 Hourly Statistics of Sulphur Dioxide at Lung Kwu Tan

)

( )

()

( )

( )

 $\square$ 

.

Date	Time	Wind Speed	Wind Dir	Total	Compounds of Concentration			
· · ·		•			СРА	СРВ	BP, DistO	
29/7/87	10:00	10.6	195.0	932.6	522.5	410.1	0.0	
29/7/87	9:00	13.3	192.0	923.3	531.6	391.7	0.0	
20/7/88	0:00	8.9	262.0	617.0	343.7	273.2	0.0	
29/7/87	11:00	10.2	197.0	576.7	357.9	218.9	0.0	
25/6/86	21:00	11.7	208.0	554.1	343.9	210.2	0.0	
29/7/87	12:00	9.2	191.0	547.1	339.4	207.7	0.0	
31/7/87	7:00	12.0	187.0	502.8	307.0	195.7	0.0	
29/7/87	8:00	13.0	187.0	421.8	260.2	161.6	0.0	
25/6/86	22:00	9.5	204.0	396.5	246.1	150.5	0.0	
24/10/87	12:00	12.8	335.0	330.1	0.0	0.0	330.1	
24/10/87	11:00	12.5	322.0	309.0	0.0	0.0	309.0	
24/10/87	15:00	10.3	341.0	306.5	0.0	0.0	306.5	
21/9/88	16:00	10.9	340.0	297.2	0.0	0.0	297.2	
21/9/88	17:00	9.8	334.0	288.7	0.0	<b>0.0</b>	288.7	
24/10/90	17:00	8.1	336.1	286.7	0.0	0.0	286.7	
24/10/87	13:00	`1 <b>2.</b> 0	324.0	285.3	0.0	.0.0	285.3	
9/11/90	13:00	10.9	335.4	279.7	0.0	0.0	279.7	
25/10/88	15:00	10.9	343.0	275.2	0.0		275.2	
31/7/87	8.00	11.1	187.0	274.6	169.0	105.6	0.0	
26/4/85	15:00	13.2	330.0	274.1	0.0	0.0	274.1	
			•.		s.			
N		. ·	••	•				
Sulphur Dio	dde (SO ₂ ) mea	sured at Lu	ng Kwu Tan			1		
e en en en en en en en en en en en en en		•	- A	••		•••		
		. Pol	lution	% of AQO			÷	
	• ', '		entration	Standard	·			
$t = -\epsilon$		Conc	entration	Stanuaru				
T 1								
	irly Concentra		576.7 (87)	72.1%				
	lly Concentrati		85.41	24.40%		•	. •	
Limit on Mea	an Concentratio	on	2.55	3.19%				

 $\bigcirc$ 

 $\bigcirc \bigcirc \bigcirc \bigcirc$ 

 $\bigcirc$ 

()

المحاجمة المعامينية معارضين فالقرار ويتعجب القيعا جروات المعاري الميالي

29/7/87 29/7/87 20/7/88 29/7/87 25/6/86	10:00 9:00 0:00	10.6	· 		СРА	<u>(100)</u>	BP, DistO
29/7/87 20/7/88 29/7/87 25/6/86	9:00				<u> </u>	CPB	br, DistO
20/7/88 29/7/87 25/6/86			195.0	231.3	159.1	72.2	0.0
29/7/87 25/6/86	0:00	13.3	192.0	226.8	159.1	67.7	0.0
25/6/86		8.9	262.0	153.3	105.1	48.3	0.0
	11:00	10.2	197.0	137.1	101.7	35.4	0.0
	21:00	11.7	208.0	132.0	97.9	34.1	0.0
29/7/87	12:00	9.2	191.0	129.9	96.3	33.6	0.0
31/7/87	7:00	12.0	187.0	120.2	88.0	32.1	0.0
29/7/87	8:00	13.0	187.0	100.2	74.0	26.2	0.0
25/6/86	22:00	9.5	204.0	94.3	69.9	24.4	0.0
11/4/90	8:00	13,3	231.8	66.7	46.3	20.4	0.0
20/7/88	4:00	15.0	202.0	66.7	47.2	19.5	0.0
31/7/87	8:00	11.1	187.0	65.8	48.5	17.3	0.0
24/10/87	12:00	12.8	335.0	62.1	0.0	0.0	62.1
11/4/90	9:00	11.8	202.6	59.0	43.8	15.2	0.0
25/6/86	23:00	8.9	187.0	57.9	42.9	15.0	0.0
24/10/87	15:00	10.3	341.0	55.2	0.0	0.0	. 55.2
26/4/85	15:00	13.2	330.0	53.6	0.0	0.0	53.6
24/10/87	11:00	12.5	322.0	53.5	0.0	0.0	53.5
31/7/87	17:00	9.4	184.0	52.8	39.1	13.7	0.0
21/9/88	16:00	10.9	340.0	51.9	0.0	0.0	51.9
	,		· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·	,
Nitrogen Dio>	kiđe (NO₂) n	neasured at Lu	ing Kwu Tan				
U.			0.				
•		. Poll	ution	% of AQO			
	· * · • •						
. '	: 1	Conce	entration	Standard			
· · ·							÷ .
Limit on Hou	rly Concent	ration	137.1 (87)	45.7%			
Limit on Daill	ly Concentra	ation	14.76	9.84%			
Limit on Mea	•		0.36	0.45%			
			*	,_		entra de la companya de la companya de la companya de la companya de la companya de la companya de la companya	

•

. .

 $\bigcirc$ 

Table F.5eHourly Statistics of Sulphur Dioxide at Ha Pak Nai

Date	Time	Wind Spe	ed Wind Dir	Total	Compounds of Concentration			
•	· · ·	· ·		· · · .	СРА	СРВ	BP, DistO	
29/7/87	10:00	10.6	195.0	745.5	326.7	418.7	0.0	
29/7/87	<del>9</del> :00	13.3	192.0	735.1	321.4	413.8	0.0	
29/7/87	11:00	10.2	197.0	526.7	238.2	288.5	0.0	
29/7/87	12:00	9.2	191.0	510.1	231.9	278.2	0.0	
20/7/88	0:00	8.9	262.0	488.2	213.2	274.7	0.4	
25/6/86	21:00	11.7	208.0	480.1	214.1	265.9	0.0	
31/7/87	7:00	12.0	187.0	463.4	210.3	253.2	0.0	
29/7/87	8:00	13.0	187.0	404.6	185.3	219.3	0.0	
25/6/86	22:00	9.5	204.0	357.9	161.4	196.5	0.0	
25/6/86	23:00	8.9	187.0	341.4	167.6	173.8	0.0	
31/7/87	17:00	9.4	184.0	331.3	164.1	167.3	0.0	
21/5/87	3:00	7.7	202.0	306.0	150.1	155.9	0.0	
20/7/88	8:00	7.0	165.5	281.9	137.2	144.7	0.0	
19/7/88	17:00	13.2	233.0	261.7	0.0	0.0	261.7	
19/7/88	16:00	13.3	231.0	254.7	0.0	0.0	254.7	
11/4/90	9:00	11.8	202.6	247.2	105.0	126.1	, 16.1	
21/5/87	4:00	7.1	192.0	244.2	123.5	120.7	0.0	
20/7/88	7:00	6.9	202.0	243.2	119.5	124.0	0.0	
29/7/88	7:00	10.0	194.0	235.6	120.3	115.3	0.0	
11/4/90	8:00	13.3	231.8	235.3	93.6	120.7	21.0	
					•		······································	
		,		1			•	
Sulphur D	)ioxide (SO ₂ )	measured at	Ha Pak Nai	•		м. М		
		· · · · · · · · · · · · · · · · · · ·					•	
	• •		Pollution	% of AQ			· •	
1. s				-			•	
$t = s_{i}^{T} + \varepsilon_{i}^{T}$			oncentration	Standard				
		·			•	. •		
	Hourly Conc		526.7 (87)	65.8%			, <b>,</b> ,	
Limit on I	Dailly Conce	ntration	52.31	14.95%		• `		
Limit on N	Mean Concer	ntration	1.50	1.88%				

and the second second second second second second second second second second second second second second second

•

Date	Time	Wind Speed	Wind Dir	Total	Compound	s of Concentration	
· ·				· · ·	СРА	СРВ	BP, DistO
29/7/87	10:00	10.6	195.0	302.3	174.7	127.5	0.0
29/7/87	9:00	13.3	192.0	295.7	170.7	125.0	0.0
29/7/87	11:00	10.2	. 197.0	203.9	120.3	83.5	0.0
20/7/88	0:00	8.9	262.0	198.5	114.5	83.9	0.1
29/7/87	12:00	9.2	191.0	197.1	116.7	80.4	0.0
25/6/86	21:00	11.7	208.0	186.7	109.2	77.5	0.0
31/7/87	7:00	12.0	187.0	180.1	106.5	73.6	0.0
29/7/87	8:00	13.0	187.0	156.2	93.0	63.3	0.0
25/6/86	22:00	9.5	204.0	138.7	81.7	57.0	0.0
25/6/86	23:00	8.9	187.0	128.3	80.1	48.1	0.0
31/7/87	17:00	9.4	184.0	124.1	78.0	46.1	0.0
21/5/87	13:00	7.7	202.0	114.9	71.8	43.2	0.0
20/7/88	8:00	7.0	165.5	105.4	65.5	39.9	0.0
11/4/90	9:00	11.8	202.6	93.5	52.9	36.4	4.2
11/4/90	8:00	13.3	231.8	92.1	50.0	36.6	. 5.5
20/7/88	7:00	6.9	202.0	90.7	56.7	34.0	0.0
21/5/87	14:00	7.1	192.0	90.3	57.7	32.6	0.0
20/7/88	4:00	15.0	202.0	89.7	52.0	37.6	0.0
31/7/87	8:00	11.1	187.0	86.8	50.1	36.7	0.0
29/7/87	7:00	10.0	194.0	86.8	55.9	30.9	0.0
	1						
· •							
Nitrogen	Dioxide (NO	) measured at 1	Ha Pak Nai	, ,			·
•		Pc	llution	% of A	QO		
	•••	Cor	centration	Standar			
Limit on	Hourly Conce	entration	203.9 (87)	 68.0%	-		
	-		• •				
	Dailly Concer		16.91	11.27%			•
1	Mean Concen	tration	0.43	0.53%			

.

· · · ·

( )

•

· · ·

Table F.5gHourly Statistics of Sulphur Dioxide at Butterfly Estate

 $\sim$ 

()

Date	Time	Wind Speed	Wind Dir	Total	Compound	ls of Concentration	
•••••••			• ·	16 - A - A	CPA	СРВ	BP, DistO
11/7/86	16:00	20.3	280.0	1035.8	436.9	598.9	0.0
11/7/86	17:00	18.3	278.0	1035.8	436.9	598. <del>9</del>	0.0
11/7/86	19:00	21.7	273.0	1035.8	436.9	598.9	0.0
11/7/86	20:00	20.2	271.0	1035.8	436.9	598.9	0.0
11/7/86	21:00	17.7	281.0	1035.8	436.9	598.9	0.0
11/7/86	22:00	17.2	280.0	1035.8	436.9	598.9	0.0
11/7/86	23:00	15.4	275.0	1027.3	433.3	594.0	0.0
12/7/86	0:00	13.1	270.0	917.5	401.5	515.9	0.0
31/7/90	10:00	9.7	276.1	799.0	394.9	404.1	0.0
31/7/90	9:00	11.4	275.1	712.5	343.0	369.5	0.0
11/7/86	18:00	18.0	270.0	517. <del>9</del>	218.0	299.4	0.0
31/7/90	11:00	7.8	272.2	507.7	276.4	231.3	0.0
24/6/85	20:00	12.4	284.0	500.2	215.6	267.5	17.0
11/7/86	15:00	18.2	271.0	398.2	145.6	199.6	52.9
23/6/88	14:00	10.7	253.0	345.3	145.6	.199.6	0.0
25/6/85	2:00	9.7	265.0	301.5	148.7	152.8	0.0
31/7/90	7:00	12.6	284.5	279.2	121.9	157.4	0.0
12/7/86	1:00	9.1	245.0	255.3	119.5	135.8	• 0.0
21/8/86	20:00	2.0	109.0	252.5	106.6	120.1	25.8
21/8/86	8:00	6.3	254.0	235.1	176.4	58.8	, <b>0.0</b>
·· :							·· .
· · · ·	• • •			•			
Sulphur E	Dioxide (SO ₂ )	measured at Bi	itterfly Estate				•
2. 251	• .	6		•			· · .
с <b>т</b> . р.	• • .	Po	llution	% of AQ	$\mathbf{O}^{(1)}$		
e e tra	. •		centration	Standard	•		
4 C					 	4 . M	
(imit on )	Hourly Conc	entration	507.7 (90)	63.5%		·	:
						· • · ·	
	Dailly Concer		48.61	13.89%		. :	
Limit on l	Mean Concer	itration	2.01	2.51%			

.

 $\bigcirc$ 

 $\bigcirc$ 

 $(g_{i})_{i\in I}(x_{i}) \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in \{x_{i}\} \in$ 

Date	Time	Wind Speed	l Wind Dir	Total	Compound	s of Concentration	
·	· · ·	. = ·			СРА	СРВ	BP, DistO
11/7/86	16:00	20.3	280.0	380.1	213.6	166.5	0.0
11/7/86	17:00	18.3	278.0	380.1	213.6	166.5	0.0
11/7/86	19:00	21.7	273.0	380.1	213.6	166.5	0.0
11/7/86	20:00	20.2	271.0	380.1	213.6	166.5	0.0
11/7/86	21:00	17.7	281.0	380.1	213.6	166.5	0.0
11/7/86	22:00	17.2	280.0	380.1	213.6	166.5	0.0
11/7/86	23:00	15.4	275.0	377.0	211.8	165.1	0.0
12/7/86	0:00	13.1	270.0	331.2	191.0	140.2	0.0
31/7/90	10:00	9.7	276.1	275.7	173.5	102.1	0.0
31/7/90	9:00	11.4	275.1	247.1	152.8	94.3	0.0
11/7/86	18:00	18.0	270.0	190.0	106.8	83.2	0.0
24/6/85	<b>20:</b> 00	12.4	284.0	179.4	101.1	71.7	6.6
31/7/90	11:00	7.8	272.2	174.0	116.5	57.5	0.0
11/7/86	15:00	18.2	271.0	147.1	71.2	55.5	20.4
23/6/88	14.00	10.7	253.0	126.7	71.2	55.5	0.0
25/6/85	2:00	9.7	265.0	104.0	65.4	38.6	0.0
31/7/90	7:00	12.6	284.5	100.9	58.1	42.8	0.0
12/7/86	1:00	9.1	245.0	89.3	54.2	35.2	0.0
21/8/86	20:00	2.0	109.0	89.0	48.1	30.9	9.9
8/9/90	16:00	7.9	0.9	81.2	48.4	24.0	8.9
	<i>4</i> 5	۰.		. 1	•		
			•				
Nitrogen	Dioxide (NO	2) measured at	<b>Butterfly Estat</b>	e			
			•	,			
	•	Р	ollution	% of AQ	0		
1.1.1	··· · ,	,	ncentration	Standard			
•	1999 - A. A.			otandara			
Limit on	Hourly Conc	entration	174.0 (90)	58.0%			
	Dailly Concer		16.28	10.86%			
	•						
Limit on	Mean Concer	itration	0.59	0.74%			

•

()

Table F.5iHourly Statistics of Sulphur Dioxide at Tung Chung

Date	Time	Wind Speed	Wind Dir	Total	Compound	s of Concentration	
	····	· · · · · · · · · · · · · · · · · · ·	•	· ·	СРА	СРВ	BP, DistO
20/8/86	23:00	9.7	345.0	350.6	143.0	205.1	2.5
28/11/87	21:00	10.3	15.0	320.6	125.6	178.9	16.0
14/12/85	2:00	13.3	3.0	313.0	128.9	183.5	0.6
30/11/90	18:00	11.0	355.0	311.1	107.5	155.0	48.5
19/10/89	18:00	9.3	358.7	306.0	97.4	141.1	67.5
25/10/88	18:00	8.9	353.0	305.8	97.2	140.8	67.8
13/11/87	11:00	<b>8:7</b>	360.0	304.6	103.6	149.6	51.5
26/10/88	10:00	7.5	344.0	304.0	93.2	135.3	75.4
29/3/88	20:00	8.9	353.0	301.5	108.8	157.4	35.3
25/10/88	17:00	8.8	355.0	297.7	92.0	133.4	72.4
14/12/85	21:00	11.9	359.0	297.5	118.3	169.7	9.5
19/10/89	17:00	8.6	348.2	294.5	87.2	126.9	80.4
30/10/88	17:00	7.4	349.0	292.8	86.3	125.6	81.0
25/10/88	19:00	7.7	359.0	292.2	94.3	136.8	61.0
14/12/85	23:00	13.9	8.0	292.1	120.7	171.4	0.0
27/2/86	11:00	9.6	354.0	291.1	100.5	145.3	45.3
7/10/89	16:00	7.1	357.7	289.4	89.4	130.0	69.9
18/11/89	12:00	10.4	0.1	289.3	92.7	134.1 [,]	62.5
18/11/89	10:00	6.5	18.8	287.8	96.1	139.1	52.6
4/1/86	22:00	11.1	5.0	285.3	115.8	166.2	3.3
• • • •	1. AL		4			· · · ·	
the second second	2 I.						
Sulphur Die	oxide (SO ₂ ) n	neasured at Tur	ng Chung				
	·			<i></i>			
			ution	% of AQO			. *
1 · · ·		Conc	entration	Standard			
Limit on He	ourly Concen	tration	301.5 (88)	 37.7%			,
	uilly Concent		81.69	23.34%		. *	• • •
Limit on M	ean Concentr	ation	3.48	4.35%			

.

 $\bigcirc$ 

الم المراجع في المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع

Date	Time	Wind Speed	Wind Dir	Total	Compound	is of Concentration	
	· · · · · · · · · · · · · · · · · · ·					СРВ	BP, DistO
20/8/86	23:00	9.7	345.0	157.9	86.4	70.5	1.0
28/11/87	21:00	10.3	15.0	146.9	77.6	62.8	6.5
14/12/85	22:00	13.3	· 3.0 · · ·	144.5	79.7	64.6	0.2
14/12/85	23:00	13.9	8.0	135.7	75.1	60.6	0.0
30/11/90	18:00	11.0	355.0	135.5	64.0	52.5	19.1
14/12/85	21:00	11.9	359.0	133.9	71.7	58.5	3.7
13/11/87	11:00	8.7	360.0	131.7	61.2	50.3	20.2
19/10/89	18:00	9.3	358.7	130.3	56.9	46.9	26.5
25/10/88	18:00	8.9	353.0	130.2	56.8	46.8	26.6
29/3/88	20:00	8.9	353.0	130.0	63.8	52.4	13.9
4/1/86	22:00	11.1	5.0	128.4	70.0	57.1	1.3
26/10/88	10:00	7.5	344.0	128.3	54.0	44.6	29.6
25/10/88	17:00	8.8	355.0	125.9	53.4	44.1	28.4
27/2/86	11:00	9,6	354.0	125.8	59.3	48.7	17.8
25/10/88	19:00	7.7	359.0	124.1	54.9	45.3	24.0
18/11/89	12:00	10.4	0.1	123.6	54.4	44.7	24.5
18/11/89	10:00	6.5	18.8	123.3	56.3	46.4	20.6
19/10/89	17:00	8.6	348.2	123.2	50.2	41.5	31.6
30/11/90	17:00	9.5	356.8	123.2	61.5	50.5	11.2
30/10/88	17:00	7.4	349.0	123.2	49.5	41.0	31.8

Nitrogen Dioxide (NO₂) measured at Tung Chung

х 	Pollution	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	133.9 (85)	44.6%
Limit on Dailly Concentration	34.77	23.18%
Limit on Mean Concentration	1.43	1.79%

Table F.6aHourly Statistics of Sulphur Dioxide at Mai Po

Date	Time	Wind Speed	Wind Dir	/ind Dir Total	Compou	nds of Conce	entration	
· · · · -	•	· · · · · · · · · · · · · · · · · · ·			СРА	СРВ	BP, DistO	BP, HFO
25/6/86	<b>19:0</b> 0	12.2	213.0	324.6	127.3	185.0	2.3	9.9
25/6/86	18:00	14.7	. 224.0	312.0	122.7	177.7	3.1	8.4
19/7/88	21:00	11.9	, 219.0	290.7	116.9	165.8	0.0	7. <del>9</del>
28/5/85	10:00	11.2	228.0	279.5	96.6	133.9	13.6	35.4
19/7/88	23:00	14.	203.0	277.4	113.1	164.3	0.0	0.0
25/6/86	20:00	12.4	209.0	273.3	111.4	161.9	0.0	0.0
28/5/85	11:00	·10.6	230.0	271.6	97.4	140.0	24.2	10.1
19/7/88	22:00	16.8	217.0	267.2	108.6	157.9	0.0	0.7
22/5/88	10:00	7.5	230.0	253.6	77.3	101.7	11.0	63.5
11/4/90	12:00	7.1	221.2	229.9	61.1	79.7	18.1	71.0
27/5/85	15:00	<del>9</del> .0	213.0	228.4	78.4	108.1	13.4	28.5
22/5/87	9:00	11.0	215.0	224.8	94.4	130.4	0.0	0.0
30/7/87	20:00	6.7	229.0	223.3	.93.1	130.3	0.0	. 0.0
23/6/88	13:00	8.0	212.0	217.1	.92.6	124.5	0.0	0.0
28/5/85	9:00	10.3	225.0	216.1	.69.6	93.8	4.9	47.8
22/5/87	10:00	8.7	213.0	213.6	90.2	123.3	0.0	0.0
27/5/85	14.00	9,8	229.0	203.1	75.2	98.3	3.3	26.4
20/4/88	15:00	9.3	218.0	200.9	74.9	98.5	4.2 ·	23.3
27/5/85	17:00	7.7	221.0	194.2	72.2	94.3	4.3	- 23.5
27/5/85	8:00	8.2	234.3	191.3	74.9	103.5	0.0	12.9

 $\bigcap_{i \in \mathcal{A}} = \bigcap_{i \in \mathcal{A}}$ 

()

()

.

N N N

r

. . . .

. . . . . .

Sulphur Dioxide (SO₂) measured at Mai Po Nature Reserve

.

		Pollution Concentration	% of AQO Standard		
	rly Concentration	273.3 (86)	34.2%		
Limit on Daill	y Concentration	48.26	13.79%		
Limit on Mean	n Concentration	1.19	1.48%	• • • • •	

والمراجعة والمعربة والمنتج ومنجو والمنتج والمراجع والمتعادي والمتعاوي والمتها والمناجع والمناجع والمناجع

Date	Time	Wind Speed	Wind Dir	Total	Compou	nds of Conce	entration	
· · · · ·		• •			CPA	CPB	BP, DistO	BP, HFO
25/6/86	19:00	12.2	213.0	156.0	81.9	67.8	0.9	5.4
25/6/86	18:00	14.7	224.0	149.8	78.8	65.0	1.3	4.6
19/7/88	21:00	11.9	219.0	139.0	74.6	60.2	0.0	4.2
28/5/85	10:00	11.2	228.0	133.4	61.1	48.3	5.5	18.6
19/7/88	23:00	14.6	203.0	132.9	72.7	60.2	0.0	0.0
25/6/86	20:00	12.4	209.0	131.0	71.7	59.3	0.0	0.0
28/5/85	<b>11:00</b>	10.6	230.0	128.6	62.4	51.1	9.8	5.3
19/7/88	22:00	16.8	217.0	128.1	69.9	57.8	0.0	0.4
22/5/88	10:00	7.5	230.0	121.6	48.0	36.0	4.3	33.3
11/4/90	12:00	7.1	221.2	110.2	37.8	28.1	7.1	37.2
27/5/85	15:00	9.0	213.0	108.7	49.5	38.9	5.4	14.9
22/5/87	9:00	11.0	215.0	106.6	59.7	46.9	0.0	0.0
30/7/87	20:00	6.7	229.0	106.2	59.1	47.1	0.0	0.0
28/5/85	9:00	10.3	225.0	104.1	43.6	33.5.	1.9	25.1
23/6/86	13:00	8.0	212.0	102.3,	57.9	44.4	0.0	0.0
22/5/87	10:00	8.7	213.0	101.0	56.8	44.2	0.0	0.0
27/5/85	14:00	9.8	229.0	96.4	46.6	34.7	1.3	13.8
20/4/88	15:00	9.3	218.0	95.1	46.5	34.8	1.6 ·	12.2
27/5/85	17:00	7.7	221.0	91.9	44.7	33.2	1.7	12.3
27/5/85	8:00	8.2	234.3	91.4	47.3	37.3	0.0	6.8

.

Nitrogen Dioxide (NO₂) measured at Mai Po Nature Reserve

	Pollution Concentration	% of AQO Standard
, · · ·		
Limit on Hourly Concentration	131 (86)	43.7%
Limit on Dailly Concentration	23.07	15.38%
Limit on Mean Concentration	0.55	0.68%

1

1.10

Date	Time	Wind Speed	Wind Dir	Total	Compou	nds of Conce	entration	
• • • • •				· ·	CPA	СРВ	BP, DistO	BP, HFO
29/7/87	10:00	10.6	195.0	932.6	522.5	410.1	0.0	0.0
29/7/87	9:00	13.3	192.0	923.3	531.6	391.7	0.0	0.0
20/7/88	0:00	<b>8.9</b>	262.0	617.0	343.7	273.3	0.0	0.0
29/7/87	11:00	10.2	197.0	576.7	357.9	218.9	0.0	.0
25/6/86	21:00	11.7	208.0	554.1	343.9	210.2	0.0	0.0
29/7/87	12:00	9.2	191.0	547.1	339.4	207.7	0.0	0.0
31/7/87	7:00	12.0	187.0	502.8	307.0	195.7	0.0	0.0
29/7/87	8:00	13.0	187.0	421.8	260.2	161.6	0.0	0.0
25/6/86	22:00	9.5	204.0	396.5	246.1	150.5	0.0	0.0
24/10/87	12:00	12.8	335.0	330.5	0.0	0.0	114.0	216.5
24/10/87	15:00	. 10.3	341.0	299.5	0.0	0.0	101.5	198.0
26/4/85	15:00	13.2	330.0	290.4	0.0	0.0	73.8	216.5
23/10/87	19:00	12.9	320.0	276.4	0.0	0.0	61.1	215.3
21/9/88	16:00	10.9	340.0	276.1	0.0	0.0	98.1	178.0
31/7/87	8:00	İ1.1	187.0	274.6	169.0	105.6	0.0	0.0
20/7/88	4:00	15.0	202.0	273.0	159.1	114.0	0.0	0.0
24/10/87	11:00	12.5	322.0	272.5	0.0	0.0	108.1	164.4
	8:00	13.3	231.8	270.2	153.2	117.0	0.0	0.0
11/4/90		10.0	324.0	269.5	0.0	0.0	88.7	180.8
11/4/90 24/10/87	13:00	12.0		268.6	0.0	0.0	57.2	211.3

andar Angelar Angelar Angelar Angelar Angelar	Pollution Concentration	% of AQO Standard				
χ	`		1 A			
Limit on Hourly Concentration	576.7 (87)	72.1%	•			
Limit on Dailly Concentration	68.06	19.45%	2		-	·
Limit on Mean Concentration	1.79	2.24%		. •		

.

Date	Time	Wind Speed	Wind Dir	Total	Compou	Compounds of Concentration			
		· · ·		· .	СРА	СРВ	BP, DistO	BP, HFO	
29/7/87	10:00	10.6	195:0	231.3	159.1	72.2	0.0	0.0	
29/7/87	9:00	13.3	192.0	226.8	159.1	67.7	0.0	0.0	
20/7/88	0:00	<b>8.9</b>	262.0	153.3	105.1	48.3	0.0	0.0	
29/7/87	11:00	10.2	197.0	137.1	101.7	35.4	0.0	0.0	
25/6/86	21:00	11.7	208.0	132.0	97.9	34.1	0.0	0.0	
29/7/87	12:00	9.2	191.0	129.9	96.3	33.6	0.0	0.0	
31/7/87	7:00	12.0	187.0	120.2	88.0	32.1	0.0	0.0	
29/7/87	8:00	13.0	187.0	100.2	74.0	26.2	0.0	0.0	
25/6/86	22:00	9.5	204.0	94.3	69.9	24.4	0.0	0.0	
24/10/87	12:00	12.8	335.0	76.3	0.0	0.0	21.5	54.8	
26/4/85	15:00	13.2	330.0	71.5	0.0	0.0	14.5	57.0	
24/10/87	15:00	10.3	341.0	67.0	0.0	0.0	18.3	48.7	
11/4/90	8:00	13.3	231.8	66.7	46.3	20.4	0.0	0.0	
20/7/88	4:00	15.0	202.0	66.7	47.2	19.5	0.0	0.0	
23/10/87	<b>19:0</b> 0	12.9	320.0	66.5	0.0	0.0 ·	11.6	54.8	
31/7/87	8:00	11.1	187.0	65.8	48.5	17.3	0.0	0.0	
26/4/85	14:00	13.9	324.0	63.4	0.0	0.0	10.6	52.8	
24/10/87	13:00	12.0	324.0	60.3	0.0	0.0	15.8'	44.4	
21/9/88	16:00	10.9	340.0	60.2	0.0	0.0	17.2	43.0	
11/4/90	9:00	11.8	202.6	59.0	43.8	15.2	0.0	0.0	

.

Nitrogen Dioxide (NO₂) measured at Lung Kwu Tan

· .

	Pollution Concentration	% of AQO Standard
· · · · ·		
Limit on Hourly Concentration	137.1 (87)	45.7%
Limit on Dailly Concentration	14.14	9.43%
Limit on Mean Concentration	0.30	0.37%

.

 Table F.6e
 Hourly Statistics of Sulphur Dioxide at Ha Pak Nai

 $\bigcirc$ 

Date	Time	Wind Speed	Wind Dir	Total	Compounds of Concentration			
	· · · · · · · · · · · · · · · · · · ·	·	•	•	CPA	СРВ	BP, DistO	BP, HFO
29/7/87	10:00	10.6	195.0	745.5	326.7	418.7	0.0	0.0
29/7/87	9:00	13.3	192.0	735.1	321.4	413.8	0.0	0.0
29/7/87	11:00	10.2	197.0	526.7	238.2	288.5	0.0	0.0
29/7/87	12:00	9.2	191.0	510.1	231.9	278.2	0.0	0.0
20/7/88	0:00	8.9	262.0	488.4	213.2	274.7	0.0	0.0
25/6/86	21:00	11.7	208.0	480.1	214.1	265.9	0.0	0.0
31/7/87	7:00	12.0	187.0	463.4	210.3	253.2	0.0	0.0
29/7/87	8:00	13.0	187.0	404.6	185.3	219.3	0.0	0.0
25/6/86	22:00	9.5	204.0	357.9	161.4	196.5	0.0	0.0
25/6/86	23:00	8.9	187.0	341.4	167.6	173.8	0.0	0.0
31/7/87	17:00	9.4	184.0	331.3	164.1	167.3	0.0	0.0
19/7/88	17:00	13.2	233.0	315.9	0.0	0.0	64.2	251.7
19/7/88	16:00	13.3	231.0	310.4	<b>Q.O</b>	0.0	67.5	242.9
21/5/87	13:00	7.7	202.0	306.0	150.1	155.9	.0.0	: 0.0
20/7/88	8:00	7.0	165.5	281.9	137.2	144.7	. 0.0	0.0
11/4/90	9.00	11.8	202.6	254.0	105.0	126.1	0.0	23.0
11/4/90	8:00	13.3	231.8	246.7	. 93.6	120.7	0.0	32.4
21/5/87	14:00	7.1	192.0	244.2	123.5	120.7	0.0	0.0
20/7/88	7:00	6.9	202.0	243.2	119.3	124.0	0.0	0.0
29/7/87	7:00	10.0	194.0	235.6	120.3	115.3	0.0	0.0
.1.	· · ·		•	••	• .	•	* *	
· . ·				•				
Sulphur Di	oxide (SO ₂ ) r	neasured at Ha Pa	ık Nai	•				
			•	·		•		
• •		Pollut	ion	% of AQO		•		
· · · ·		Concen	,	Standard		•	2 -	
		Concen	uauon	Januaru		×		• •
Limit on H	ourly Concer	ntration 52	26.7 (87)	 65.8%	: •		•	
	ailly Concent		.20	17.49%		•		· .
				17.49% 2.20%				
Limit on Mean Concentration 1.76			/h	7.70%				

· · · · · · · · ·

. . . .

. .

.

Date	Time	Wind Speed	Wind Dir	Total	Compounds of Concentration				
		· · · · ·		-	СРА	СРВ	BP, DistO	BP, HFO	
29/7/87	10:00	10.6	195.0	302.3	174.7	127.5	0.0	0.0	
29/7/87	9:00	13.3	192.0	295.7	170.7	125.0	0.0	0.0	
29/7/87	11:00	10.2	197.0	203.9	120.3	83.5	0.0	0.0	
20/7/88	0:00	8.9	262.0	198.6	114.5	83.9	0.0	0.2	
29/7/87	12:00	9.2	191.0	197.1	116.7	80.4	0.0	0.0	
25/6/86	21:00	11.7	208.0	186.7	109.2	77.5	0.0	0.0	
31/7/87	7:00	12.0	187.0	180.1	106.5	73.6	0.0	0.0	
29/7/87	8:00	13.0	187.0	156.2	93.0	63.3	0.0	0.0	
25/6/86	22:00	9.5	204.0	138.7	81.7	57.0	0.0	0.0	
25/6/86	23:00	8.9	187.0	128.3	80.1	48.1	0.0	0.0	
31/7/87	17:00	9.4	184.0	124.1	78.0	46.1	0.0	0.0	
21/5/87	13:00	7.7	202.0	114.9	71.8	43.2	0.0	0.0	
19/7/88	17:00	13.2	233.0	105.8	0.0	0.0	16.9	88.8	
20/7/88	8:00	7.0	165.5	105.4	65.5	39.9	0.0	0.0	
11/4/90	8:00	13,3	231.8	97.8	50.0	36.6	0.0	11.1	
11/4/90	9:00	11.8	202.6	97.4	52.9	36.4	0.0	8.1	
19/7/88	16:00	13,3	231.0	97.3	0.0	0.0	16.8	80.5	
20/7/88	7:00	6.9	202.0	90.7	56.7	34.0	0.0 '	0.0	
21/5/87	14:00	7.1	192.0	90.3	57.7	32.6	0.0	0.0	
20/7/88	4:00	15.0	202.0	89.7	52.0	37.6	0.0.	0.0	
		······································						· · ·	
		,							
Nitrogen D	ioxide (NO ₂ )	measured at Ha l	Pak Nai						
			· · · · · · · · · · · · · · · · · · ·	• *				,	
•	۰.	Pollut	ion	% of AQO		•			
		Concen		Standard		•			
- 1		Concen							
Limit on H	ourly Concen	tration 20	)3.9 (87)	68.0%					
	ailly Concent		L.61	14.41%					
	-			-			Ň		
Limit on M	lean Concentr	ation 0.	50	0.63%					

.

.

( )

- .+1

Date	Time	Wind Speed	Wind Dir	Total	Compou	nds of Conce	entration	
	·		·	·	СРА	CPB	BP, DistO	BP, HFO
11/7/86	16:00	20.3	280.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	17:00	18.3	278.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	19:00	21.7	273.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	20:00	20.2	271.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	21:00	17.7	281.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	2:00	17.2	280.0	1035.8	436.9	598.9	0.0	0.0
11/7/86	23:00	15.4	275.0	1027.3	433.3	594.0	0.0	0.0
12/7/86	0:00	13.1	270.0	917.5	401.5	515.9	0.0	0.0
31/7/90	10:00	9.7	276.1	799.0	394.9	404.1	0.0	0.0
31/7/90	9:00	11.4	275.1	712.5	343.0	369.5	0.0	0.0
11/7/86	18:00	18.0	270.0	517.9	218.5	299.4	0.0	0.0
31/7/90	11:00	7.8	272.2	507.7	276.4	231.3	0.0	0.0
24/6/85	20,00	12.4	284.0	494.8	215.6	267.5	0.4	11.3
11/7/86	15:00	18.2	271.0	382.8	145.6	199.6	14.3	23.3
23/6/88	14:00	10.7	253.0	345.3	145.6	199.6	0.0	0.0
25/6/85	2:00	9.7	265.0	301.5	148.7	152.8	0.0	0.0
31/7/90	7:00	12.6	284.5	279.2	121.9	157.4	0.0	0.0
12/7/86	1:00	9.1	245.0	255.3	119.5	135.8	0.0 '	0.0
21/8/86	20:00	2.0	109.0	244.5	106.6	120.1	1.6	16.1
21/8/86	8:00	6.3	254.0	235.1	176.4	58.8	0.0	0.0

Sulphur Dioxide (SO₂) measured at Butterfly Estate

••

.

	Pollution Concentration	% of AQO Standard					
•	······································					,	
Limit on Hourly Concentration	507.7 (90)	63.5%			•		
Limit on Dailly Concentration	36.61	10.46%	. •				
Limit on Mean Concentration	1.55	1.94%		:			

۰.

. . . . .

Date	Time	Wind Speed	Wind Dir	Total	Compounds of Concentration				
		· .			СРА	СРВ	BP, DistO	BP, HFO	
11/7/86	16:00	20.3	280.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	17:00	18.3	278.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	19:00	21.7	273.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	20:00	20.2	271.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	21:00	17.7	281.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	22:00	17.2	280.0	380.1	213.6	166.5	0.0	0.0	
11/7/86	23:00	15.4	275.0	377.0	211.8	165.1	0.0	0.0	
12/7/86	0:00	13.1	270.0	331.2	191.0	140.2	0.0	0.0	
31/7/90	10:00	9.7	276.1	275.7	173.5	102.1	0.0	0.0	
31/7/90	9:00	11.4	275.1	247.1	152.8	94.3	0.0	0.0	
11/7/86	18:00	18.0	270.0	190.0	106.8	83.2	0.0	0.0	
24/6/85	20:00	12.4	284.0	179.4	101.1	71.7	0.1	5.8	
31/7/90	11:00	7.8	272.2	174.0	116.5	57.5	0.0	0.0.	
11/7/86	15:00	18.2	271.0	147.1	71.2	55.5	5.5	12.0	
23/6/88	14:00	10.7	253.0	126.7	71.2	55.5	0.0	0.0	
25/6/85	2:00	9.7	265.0	104.0	65.4	38.6	0.0	0.0	
31/7/90	7:00	12.6	284.5	100.9	58.1	42.8	0.0	0.0	
12/7/86	1:00	9.1	245.0	89.3	54.2	35.2	0.0	0.0	
21/8/86	20:00	2.0	109.0	88.0	48.1	30.9	0.6	8.3	
8/9/90	16:00	7.9	0.9	79.8	48.4	24.0	3.0	4.5	

Nitrogen Dioxide (NO₂) measured at Butterfly Estate

	Pollution Concentration	% of AQO Standard
Limit on Hourly Concentration	174 (90)	58.0%
Limit on Dailly Concentration	15.36	10.24%
Limit on Mean Concentration	0.52	0.65%

Table F.6i

.

# Hourly Statistics of Sulphur Dioxide at Tung Chung

Date	Time	Wind Speed	Wind Dir	Total	Compou	nds of Conc	entration	
· ·			,		CPA	CPB	BP, DistO	BP, HFO
20/8/86	23:00	9.7	345.0	351.1	143.0	205.1	0.0	2.9
28/11/87	21:00	10.3	. 15.0	323.0	125.6	178.9	0.4	18.0
14/12/85	22:00	13.3	3.0	313.1	128.9	183.5	0.0	0.7
30/11/90	18:00	11.0	355.0	311.0	107.5	155.0	14.8	33.7
29/3/88	20:00	8.9	353.0	306.2	108.8	157.4	2.1	37.9
19/10/89	18:00	9.3	358.7	305.9	97.4	141.4	20.5	46.9
25/10/88	18:00	8.9	353.0	305.7	97.2	140.8	20.6	47.2
26/10/88	10:00	7.5	344.0	303.5	93.2	135.3	23.5	51.5
13/11/87	11:00	8.7	360.0	302.9	103.6	149.6	18.0	31.7
14/12/85	21:00	11.9	359.0	299.1	118.3	169.7	0.0	11.1
25/10/88	17:00	8.8	355.0	296.8	92.0	133.4	23.4	48.1
27/2/86	11:00	9.6	354.0	296.0	100.5	145.3	4.6	45.5
25/10/88	19:00	7.7	359.0	294.4	94.3	136.8	1404	48.9
19/10/89	17:00	8.6	348.2	293.5	87.2	126.9	26.0	53.4
14/12/85	23.00	13.9	8.0	292.1	120.7	171.4	0.0	0.0
30/10/88	17:00	7.4	349.0	291.8	86.3	125.6	26.2	53.8
20/2/86	17:00	6.7	352.0	288.4	96.6	139.8	3.5	48.5
7/10/89	16:00	7.2	357.7	288.2	89.4	130.0	23.1 <i>'</i>	45.7
18/11/89	10:00	6.5	18.8	287.3	96.1	139.1	16.6	35.5
18/11/89	12:00	10.4	0.1	287.1	92.7	134.1	21.6	38.7
· · · · · · · · · · · · · · · · · · ·		F						
Sulphur Die	oxide (SO ₂ ) n	neasured at Tung	Chung					
1	÷.	. ¹						
• . · ·	•.	Pollut	ion	% of AQO				
		Concen	tration	Standard			•	

 $\langle \cdot \rangle$ 

ConcentrationStandardLimit on Hourly Concentration303.5 (88)37.9%Limit on Dailly Concentration81.7623.36%Limit on Mean Concentration3.544.42%

· · · · ·

والمرجع والمتحر والمتحر والمتعار والمتعار والمتحد والمتحد والمتحد والمتحال والمتحال والمتحال والمتحا

. . .

Date	Time	Wind Speed	Wind Dir	Total	Compou	nds of Conce	entration	
					СРА	СРВ	BP, DistO	BP, HFO
20/8/86	23:00	9.7	345.0	158.5	86.4	70.5	0.0	1.6
28/11/87	21:00	10.3	15.0	150.4	77.6	62.8	0.2	9.9
14/12/85	22:00	13.3	3.0	144.7	79.7	64.6	0.0	0.4
30/11/90	18:00	11.0	355.0	140.0	64.0	52.5	5.8	17.8
29/3/88	20:00	8.9	353.0	137.0	63.8	52.4	0.8	20.0
19/10/89	18:00	9.3	358.7	136.6	56.9	46.9	8.0	24.8
25/10/88	18:00	8.9	353.0	136.5	56.8	46.8	8.1	24.9
14/12/85	21:00	11.9	359.0	136.0	71.7	58.5	0.0	5.9
14/12/85	23:00	13.9	8.0	135.7	75.1	60.6	0.0	0.0
13/11/87	11:00	8.7	360.0	135.3	61.2	50.3	7.1	16.7
26/10/88	10:00	7.5	344.0	135.0	54.0	44.6	9.2	27.2
27/2/86	11:00	9.6	354.0	133.8	59.3	48.7	1.8	24.0
25/10/88	17:00	8.8	355.0	132.0	53.4	44.1	9.2	25.4
25/10/88	19:00	7.7	359.0	131.5	54.9	45.3	5.6	25.8
20/2/86	17:00	6.7	352.0	130.2	56.6	46.6	1.4	25.6
19/10/89	17:00	8.6	348.2	130.0	50.2	41.5	10.2	28.2
30/10/88	17:00	7.4	349.0	129.2	49.5	41.0	10.3	28.4
4/1/86	22:00	11.1	5.0	129.1	70.0	57.1	0.0 ·	2.0
18/11/89	12:00	10.4	0.1	128.0	54.4	44.7	8.5	20.4
18/11/89	10:00	6.5	18.8	127.9	56.3	46.4	6.5	18.8

Nitrogen Dioxide (NO₂) measured at Tung Chung

	Pollution	% of AQO
	Concentration	Standard
Limit on Hourly Concentration	135.7 (85)	45.2%
Limit on Dailly Concentration	35.64	23.76%
Limit on Mean Concentration	1.50	1.87%

## Annex G

Rigorous Frequency Analysis – Summary Statistics of Concentration and AQO Exceedance

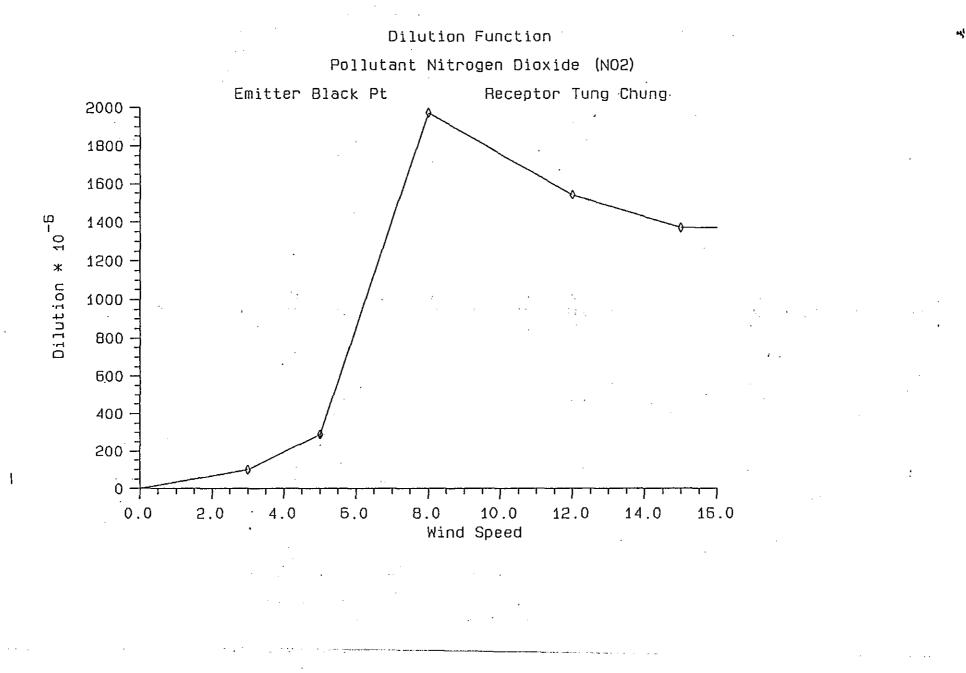
.

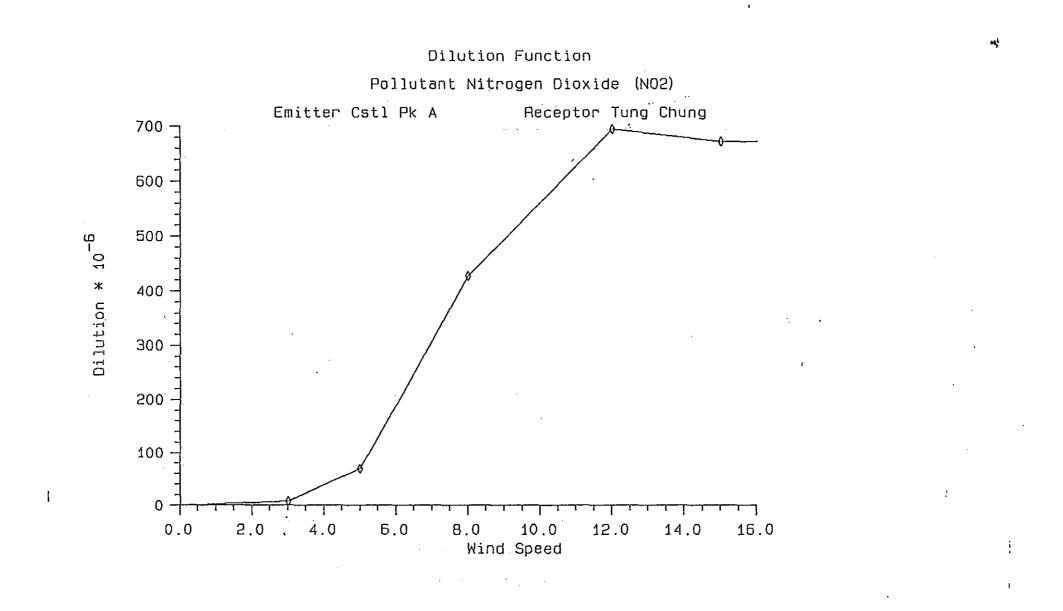
 Table G.1a
 Summary Statistics (Primary Fuels)

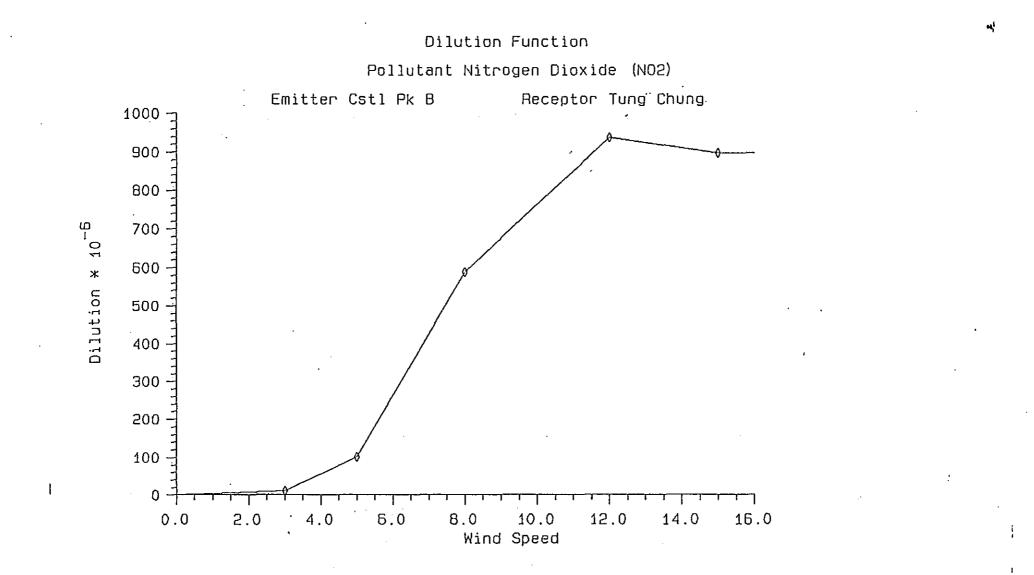
.

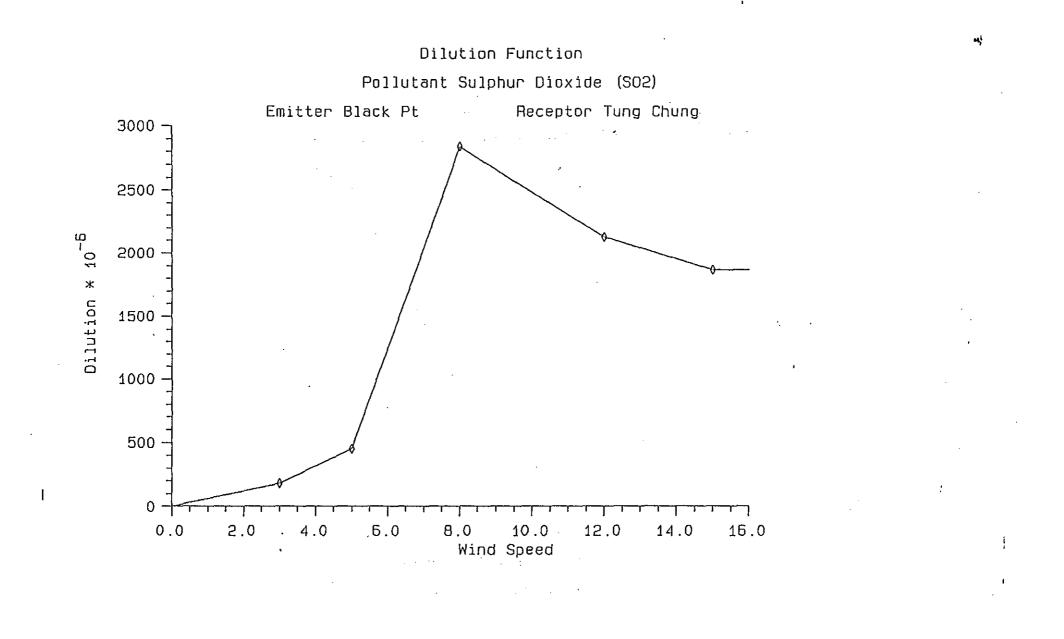
Scenarios	LTPS – 8x680 MW coal						S - 8x600	MW ga	s CCG	Г	LTPS : 50% coal/50% gas				
	LTPS + CPPS			Total		LTPS + CPPS			Total		LTPS + CPPS			Total	
	A	В	С	D	Е	A	В	С	D	Е	A	В	C	D	E
Lung Kwu Tan															
NO₂	1	102	58.9	2	0.3	1	102	58.9	2	0.3	1	102	58.9	2	0.3
NO ₂ mitigated	0	77	45.7	0	0.0	0	77	45.7	0	0.0	0	77	45.7	0	0.0
SO ₂	2	117	72.1	2	0.3	2	117	72.1	2	0.3	2	117	72.1	2	0.3
Ha Pak Nai															
NO₂	2	142	95.0	2	0.3	2	142	95.0	2	0.3	2	142	95.0	2	0.3
NO ₂ mitigated	0	101	67.9	2	0.3	1	101	67.9	2	0.3	1	101	67.9	2	0.3
SO ₂	0	93	65.8	0	0.0	0	93	65.8	0	0.0	0	93	65.8	0	0.0
Mai Po															
NO ₂	0	80	63.2	2	0.5	0	73	62.5	1	0.2	0	75	63.1	1	0.2
NO2 mitigated	0	64	48.6	0	0.0	0	52	41.3	0	0.0	0	56	44.7	0	0.0
SO ₂	0	40	34.2	0	0.0	0	39	34.2	0	0.0	0	40	34.2	0	0.0
Butterfly Estate												,			
NO ₂	2	156	77.8	2	0.8	2	156	77.8	2	0.8	2	156	77.8	2	0.8
$NO_2$ mitigated	1	110	58.0	2	0.5	1	110	58.0	2	0.5	1	110	58.0	2	0.5
SO ₂	1	115	63.5	1	0.3	1	115	63.5	1	0.3	1	115	63.5	1	0.3
Tung Chung															
NO ₂	0	81	73.7	2	1.0	0	76	64.6	1	0.2	0	77	66.6	1	0.3
NO ₂ mitigated	0	64	59.7	0	0.0	0	53	45.2	0	0.0	0	57	45.1	0	0.0
SO ₂	0	44	36.5	0	0.0	0	44	36.0	0	0.0	0	44	38.3	0	0.0
Note (1)	A : maximum number of AQO exceedance (over 6 years data) in any one year; B : maximum glc expressed as % AQO; C : worst glc at AQO frequency (not more than 3 hourly AQO exceedance) expressed as % AQO; D : maximum number of AQO exceedance (over 6 years data) in any one year with inclusion of background;														
(2)	E : average number of AQO exceedance (over 6 years data) in any one year with inclusion of background. Occasions of typhoon are excluded.														

.


	LTPS - 8x600 MW DistO						S - 50%	HFO/509	% Dist(	Э	LTPS : 8x680 MW HFO				
	LTPS + CPPS			Total		LTPS + CPPS			Total		LTPS + CPPS			Total	
	Α	В	С	D	Е	A	В	С	D	Е	Α	В	С	D	E
Lung Kwu Tan															
NO ₂	1	102	58.9	2	0.3	1	102	58.9	2	0.3	1	102	58.9	2	0.3
NO ₂ mitigated	0	77	45.7	0	0.0	0	77	45.7	0	0.0	0	77	45.7	0	0.0
SO ₂	2	117	72.1	2	0.3	2	117	72.1	2	0.3	2	117	72.1	2	0.3
Ha Pak Nai		· -													
NO ₂	2	142	95.0	2	0.3	2	142	95.0	2	0.3	2	142	95.0	2	0.3
NO ₂ mitigated	1	101	68.0	2	0.3	1	101	68.0	2	0.3	1	101	68.0	2	0.3
SO ₂	0	93	65.8	0	0.0	0	93	65.8	0	0.0	0	93	65.8	0	0.0
Mai Po															
NO₂	0	74	62.5	0	0.0	0	74	62.5	1	0.2	0	74	62.5	1	0.2
NO ₂ mitigated	0	52	43.7	0	0.0	0	52	43.7	0	0.0	0	55	50.9	0	0.0
SO2	0	41	34.3	0	0.0	0	41	34.2	0	0.0	0	42	34.3	0	0.0
Butterfly Estate												,			
NO ₂	2	156	77.8	2	0.8	2	156	77.8	2	0.8	2	156	77.8	2	0.8
NO ₂ mitigated	1	110	58.0	2	0.5	1	110	58.0	2	0.5	1	110	58.0	2	0.5
SO ₂	1	115	63.5	1	0.3	1	115	63.5	1	0.3	1	115	63.5	1	0.3
Tung Chung															
NO₂	0	75	63.2	1	0.2	0	~ 75	64.0	1	0.2	0	76	65.0	1	0.2
NO ₂ mitigated	0	53	44.6	0	0.0	0	53	45.2	0	0.0	0	56	50.7	0	0.0
SO ₂	0	44	37.7	0	0.0	0	44	37.9	0	0.0	0	45	41.1	0	0.0
Note (1)	A : maximum number of AQO exceedance (over 6 years data) in any one year;														
	B : maximum glc expressed as % AQO;														
	C : worst glc at AQO frequency (not more than 3 hourly AQO exceedance) expressed as % AQO; D : maximum number of AQO exceedance (over 6 years data) in any one year with inclusion of background;														
		-				over 6 y	ears data)	in any o	one yea	r with in	clusion	of backgro	ound.		
(2)	Occasion	is of typh	loon are	exclude	ed.										


.


.

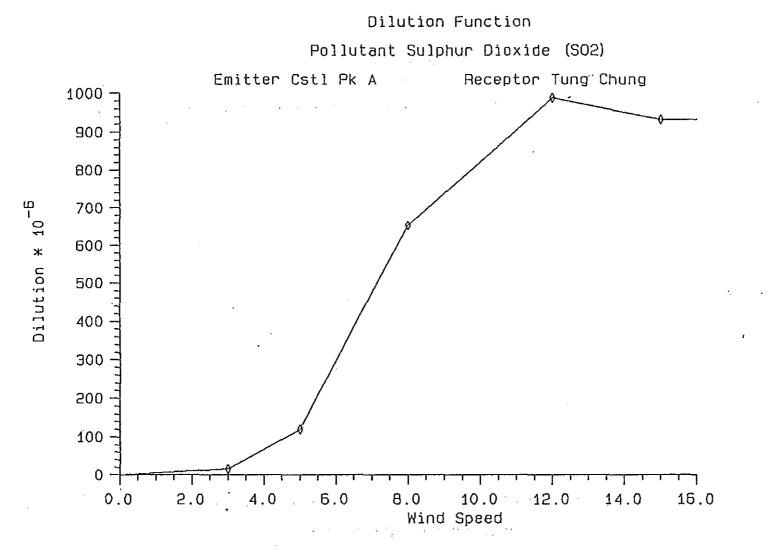

.

### $\bigcirc$ $\bigcirc$ ()( $\bigcirc$ ()() $\bigcirc$ ) ()()( )

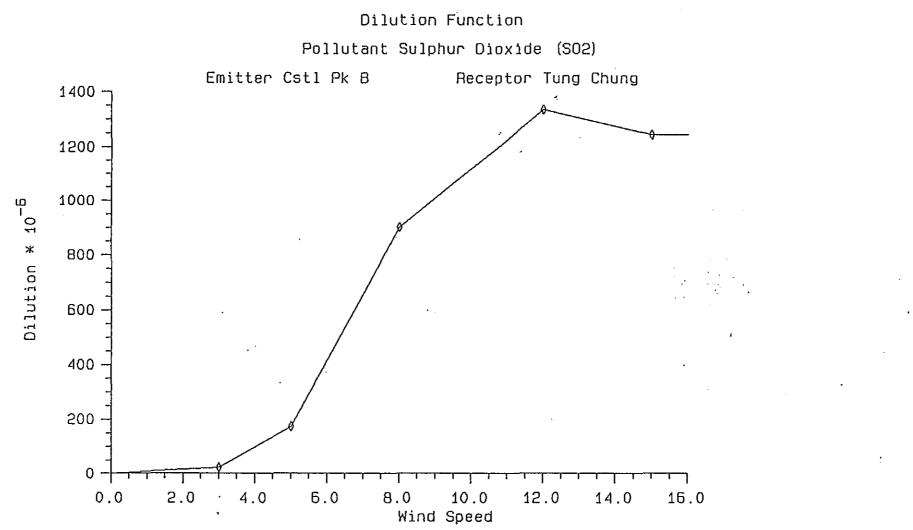









٠


щŝ

ţ

1



. 1



۰.

44,¹

į

Annex H

Rigorous Frequency Analysis – Derivation of Concentration Functions Although the Castle Peak Power Station was only modelled for directions to Lantau in this study, directly modelled results were available from previous work by the UK Central Electricity Research Laboratories (CERL, 1981)⁽¹⁾.

For Tung Chung, Lung Kwu Tan and Butterfly Estate, direct measurements existed. For Mai Po wind direction from Castle Peak, CERL measurements were available, but extrapolation was required to reach Mai Po itself. The further dilution with distance was estimated on the basis of measured dilution with distance at other angles. For Ha Pak Nai cross plots of concentration with wind angle (incorporating BMT and CERL results) were used to interpolate an estimate at each wind speed.

### **Receptors at Lung Kwu Tan**

Lung Kwu Tan was determined to be at 320° from Black Point and 178° from Castle Peak. Measurements were available (Annex D, AKIA report) at 310° and 330° were taken, and for Castle Peak the 160° measurements were used unmodified.

The Black Point data set was essentially complete, but interpolation for Castle Peak at 12 m s⁻¹ was undertaken. From other angular measurements, the near field ratio of concentration at 12 m s⁻¹ and 15 m s⁻¹ was used for the purpose. This produces the physical behaviour of higher wind speeds being necessary to bring down the plume in the near field by comparison with the far field.

### Receptor at Ha Pak Nai

Comprehensive measurements from emissions at Black Point were made, but no measurements over the New Territories were within the scope of work for Castle Peak emissions.

The influence of CPA and CPB at Ha Pak Nai (195° from CP) was judged by interpolating the results measured at 160° (BMT measurements) and those measured at 232°, 252° and 272° by CERL in 1981.

### **Receptor at Mai Po**

Data along 232° from Black Point at 12 km was used. The concentration at these locations was relatively low and no further reduction for the extension to 14 km or so was judged to be relevant.

No BMT or CERL measurements were directly relevant for Castle Peak, so numerical values were taken from available angles at this distance and checked for high speed concentration reduction (due to distance from source).

Further refinement was not possible for this location without further measurements, but in view of the low impact at this location, the results are regarded as satisfactory and robust.

⁽¹⁾ Scriven, R.A., Robins, A.G., Wind Tunnel Tests for Castle Peak 'A' and 'B' Station. Part 1: Determination of 'B' Station Stack Height, Central Electricity Research Laboratories, 1981.

#### **Receptor at Butterfly Estate**

The required receptor location is at 300° from Black Point. Data at the required distance was available at 290° and 310°. Average values were taken, as both angles produced very similar concentrations. From Castle Peak the bearing to Butterfly Estate is 270°, and the full wind speed range of data from the CERL results for 272° were used.

#### **Receptor at Tung Chung**

Tung Chung at 14 km along 350° relative to Black Point. Detailed measurements were available within 6° and 0.6 km of this location and the data was used without modification.

Full wind speed measurements (3 m s⁻¹, 5 m s⁻¹, 8 m s⁻¹, 12 m s⁻¹, 15 m s⁻¹) for Castle Peak emissions were available at the precise location, as recorded in the Annex D of this AKIA report.

The NO_x and NO₂ data used in the Part B AKIA Report are shown in *Tables* H.1a to H.1e. NO_x is converted to NO₂ using the formula shown in *Annex E*. Since the ratios of SO₂/NO_x are known, SO₂ concentrations can easily be calculated from the tables. Examples of interpolation curves for Tung Chung are also provided.

Table H.1a Lung Kwu Tan, N.T.

Receptor Location	BP Option	3 m/s	5 m/s	8 m/s	12 m/s	15 m/s	
320°, 2 km	2	4.0	11.3	112.4	326.6	343.8	NO _x
	2	0.6	2.2	28.4	106.4	128.1	NO ₂
320°, 2 km	3	64.5	97.5	239.4	424.2	260.3	NOx
	3	9.5	18.7	60.8	78.9	97.0	NO2
320°, 2 km	5	6.2	20.6	50.5	65.6	65.6	NO _x
	5	0.9	3.0	12.8	21.4	24.4	NO2
320°, 2 km	8	19.4	39.9	60.3	288.6	288.6	NOx
· · ·	8	2.8	7.7	15.3	94.0	107.5	NO ₂
178°, 2 km	СРА	0 • . •	2.5	21.4	491.7	554.3	NOx
	CPA	0	0.5	5.4	160.1	206.4	NOz
178°, 2 KM	CPB	11.4	9.5	13.3	284.8	516.6	NO _x
	СРВ	1.7	1.7	3.3	92.8	192.3	$NO_2$

# Table H.1b Ha Pak Nai, N.T.

Receptor Location	<b>BP</b> Option	3 m/s	5 m/s	8 m/s	12 m/s	15 m/s	
232°, 3.2 km	2	12.6	27.6	257.9	484.4	483.6	NOx
	2	2.8	7.8	93.4	216.7	241.1	NO ₂
232°, 3.2 km	3	1.1	8.8	33.7	124.7	246.3	NOx
	3	0.2	2.5	12.2	55.8	122.8	$NO_2$
232°, 3.2 km	5	8.6		20.3	55.9	55.9	NO _x
	5	1.9		7.4	25.0	27.9	$NO_2$
232°, 3.2 km	8	68.1		185.0	283.0	283.0	NO _x
	8	15.0		67.0	126.6	141.0	NO2
195°, 5.5 km	CPA	0	5.0	118.3	279.1	373.6	NO _x
• -	CPA	0	2.1	59.9	164.6	236.2	NO2
195°, 5.5 km	CPB	14.2	15.0	91.7	341.0	456.3	NOx
	CPB	4.7	.6.2	46.6	201.1	288.6	NO ₂

.

Table H.1cMai Po Nature Reserve, N.T. . . .

Receptor Location	BP Option	3 m/s	5 m/s	8 m/s	12 m/s	15 m/s	
232°, 14 km	2	37.3	48.0	184.8	181.9	156.3	NOx
	2	21.6	31.2	129.5	132.3	114.8	NO2
232°, 14 km	3	6.0	5.3	14.6	55.6	68.2	NOx
• • • • • •	3	3.5	3.4	10.2	40.4	50.1	NO2
232°, 14 km	5	6.2		12.9	23.1	23.1	NOx
	5	3.6	1	9.0	16.8	. 17.0	NO2
232°, 14 km	8	30.8	a.	110.8	`	74.0	NOx
	8	17.9		77.7		54.4	NO ₂
218°, 15.7 km	СРА	6.0		73.8	133.6	106.6	NOx
	CPA	3.5		51.7	98.1	78.2	NO ₂
218°, 15.7 km	CPB	7.3		89.3	184.2	147.0	NO _x
	CPB	4.3	٣	62.7	135.3	108.0	NO2

· .....

ъ. – с

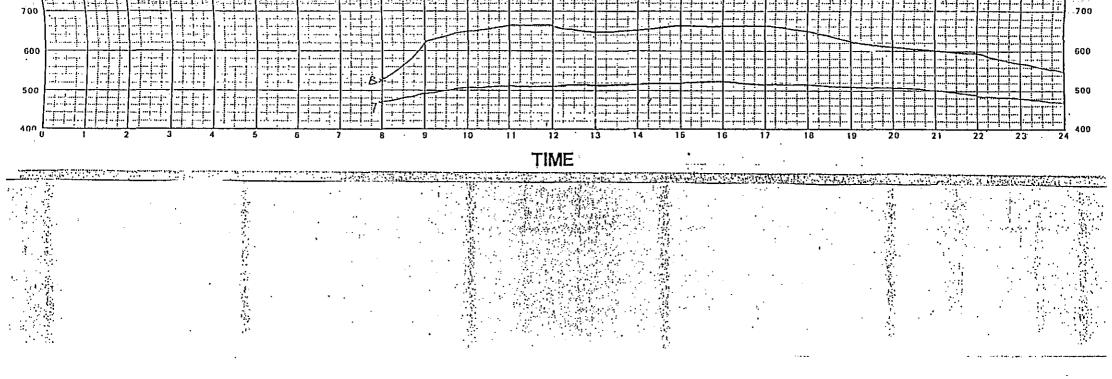
# Table H.1d Butterfly Estate, N.T.

Receptor Location	BP Option	3 m/s	5 m/s	8 m/s	12 m/s	15 m/s	
300°, 7.5 km	2	20.0	82.1	164.5	165.9	149.5	NO _x
	2	8.3	41.0	96.5	108.8	102.6	NO2
300°, 7.5 km	3	4.4	25.6	63.5	79.2	70.3	NOx
	3	1.8	12.8	37.3	51.9	48.3	NO2
300°, 7.5 km	5	7.9		33.4		32.4	NOx
	5	3.3		19.6		22.2	$NO_2$
300°, 7.5 km	8	11.4		86.5		78.4	NOx
	8	4.7		50.8		53.8	NO2
270°, 4 km	CPA	 	9.6	215.1	406.9	418.6	NO _x
	CPA		3.2	90.5	206.8	233.4	NO2
270°, 4 km	СРВ		4.6	59.4	419.7	544.0	NOx
	СРВ		1.5	24.9	213.3	303.0	NO2

# Table H.1e Tung Chung, Lantau

Receptor Location	BP Option	3 m/s	5 m/s	8 m/s	12 m/s	15 m/s	
350°, 14 km	2	10.7	27.0	169.0	126.8	111.2	NOx
	2	6.1	17.3	117.6	91.9	81.7	NO ₂
350°, 14 km	3	1.4	8.3	43.9	46.2	42.9	NOx
	3	0.8	5.4	30.8	33.6	31.5	$NO_2$
350°, 14 km	5	2.4		18.9		17.8	NOx
	5	1.4		13.1		13.1	$NO_2$
350°, 14 km	8	16.0		78.7		73.7	NOx
	8	9.3		55.2		54.1	$NO_2$
354°, 10 km	CPA	2.5	18.9	103.1	156.0	147.1	NO _x
	CPA	1.3	11.0	67.3	109.4	106.0	NO ₂
354°, 10 km	CPB	3.6	27.5	142.4	211.0	196.7	NO _x
	СРВ	1.7	15.9	93.0	148.1	141.4	$NO_2$

Annex I


Rigorous Frequency Analysis – Daily System Demand Curves

(

¥

TYPICAL DEMAND CURVE (10th July 1986)

			$\bigcirc \bigcirc$			$\bigcirc$									
	1.1. 1.1. 1.1.							n an an Archerty Angel - an Archerty Angel - an Archerty							
· ·		/ 		hina Ligh	t & Po		., Ltd.:1	<b>Jaily Sy</b>	stem De	emand	Curve	DAY & DATI	10/7	1.00_0	(7hu
6	<u>  20</u> <u>Po 8 </u>	2 2 P3 P4 2 3	28 28 	6 7	<u>14</u> <u>14</u> 9 9	<u>30</u> <u>76</u> 10	$\begin{array}{c c} \vdots 30 \\ \hline 30 \\ \hline 80 \\ \hline 71 \\ 11 \\ 12 \\ \end{array}$	<u>33</u> <u>67</u> 13	$\frac{13}{63}$ $\frac{13}{66}$	.33 .3 .7 .7 .6 10 1	$\frac{3}{4}$ $\frac{3}{69}$	$\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$ $\frac{3}{71}$	$\frac{27}{97}$ $\frac{23}{14}$ 21 22	23 24	
J200	09:15-20	GO MN	TYPHEON GIG				304	9				m warning	· Ma · Temp °C ف با به	1.1 26.8	3200
3100					///////		MVar lo	17) lal = 1300	3013				<b>R. H. % 9</b>		3100
3000									P.F. 0.	1=1205	A m C M				3000
2900														1449 447 144 144 144 144 144 144 144 144 144	2900
2800													117. 11. 11. 11. 11. 11. 11. 11. 11. 11.		2800
2700															2800 14 1307
2600								073 (13:13						••••••••••••••••••••••••••••••••••••••	2600
2500				S(A-33°				MV6 to lat P T. = 0	= 163 13 4						2500
2400															2400
2300				· · · · · · · · · · · · · · · · · · ·											2300
2200				10											2200
2100							1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1							······································	2100
~2000															
1900															1900
1000															1800
- 1700															1700
1 600															1600
į 500															1500
1400															1400
1300			1330												1300
1200		272	(0/4)() () () () () () () () () () () () ()											W PB	1200
110				-223 8 (Cl. g.)											1100
100	o														1000
900							GPL	D# 600							900
000							Conjud	decs.							- - - -
700			1. 1. Constant de la major d'anna.	e a la anti-ina di anti-ina di anti-											700



.

- · ·

· · ·

# DEMAND CURVE UNDER INFLUENCE OF TYPHOON (11th July 1986)

(

C ,

 $\left( \begin{array}{c} \\ \end{array} \right)$ 

(

(

 $\bigcirc$ 

 $\bigcirc$ 

(

(

(

 $\left( \begin{array}{c} & & \\ & & \\ & & \end{array} \right)$ 

 $\left(\begin{array}{c} \cdot \cdot \cdot \\ \cdot \end{array}\right)$ 

(

(

 $\left( \right)$ 

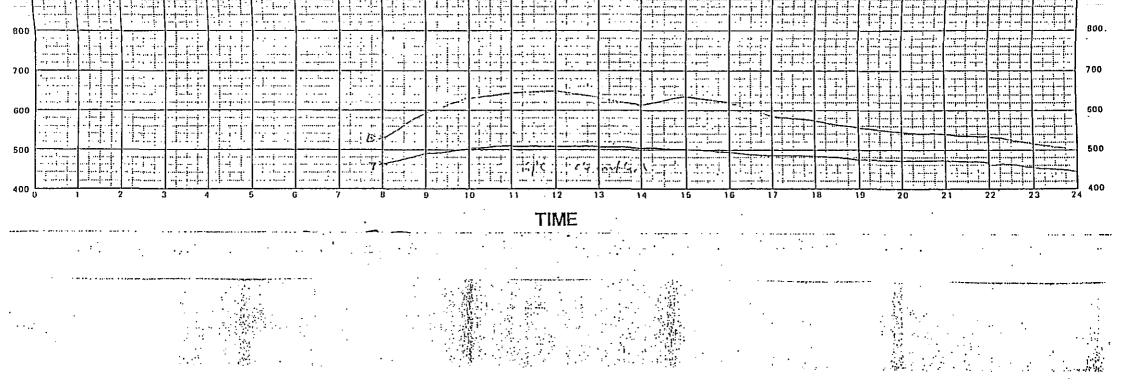
Ć

Ć

Ć

Ć.

(


¥

:

		•	· •	. •				•	· .	• • •	۰ ۱۲			• ,	•			• •• •		•••		:	•. •	•
C			··· ·	•	Ċ	ina l	Light	& P	owei	r Co.,	Ltd.	: Dail	y Sv:	stem	Den	nand	Curv	 /e		& DATE.			 ! H	Frida
27 Ja	27 2 hy 7	P 2 7 9	7 2	7 2	9 2 4 7	9 7	1	3 8	30 . 64 .	,9 ,9 ,9 ,0	<u>p</u>	2 <b>/</b>	28 74	2 <u>9</u>	<u>27</u> 79	27	26	2/ \$7	21 i 90	93 1	26 i 13	90 91	/ 19	5 - <u>2</u> -
		use bir.				5	/ 		9 1 					14 1 Tj- 142	ابنار میر ابنار میرم ا	6	17 			0 2	Temp °C	والمستخد المستعمل	3 2 Min <u>25./</u>	24
00	191-02								······································		29		· · · · · · · · · · · · · · · · · · ·		P[[]]	No.5	- znel:			· · · · · · · · · · · · · · · · · · ·	R. H. %	94	6.3 	3100
00	S== a	160 × 1/1 100				1.784 1.111	1			(	11:4	0;)	5. 29:							,	· · · · · ·			- 3000
00							<u>, 1</u>	-V T		5	p.r.> p	1976	· · · · · · · · · · · · · · · · · · ·	276- 74.1	14. 1)				-1				· · · · ·	- 2900
00				· · · · · · · ·		······································					1. 4		··· · · · · · · · · · · · · · · · · ·	P.1:-0	14	12	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				·····	·····	2800
00				· · · · · · · · · · · · · · · · · · ·												Yu		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	2700
00	. 10)					, <u></u>							V 2567		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·		2500
00						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		(1	3:75 A Total =	385	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1.2.X.X.			· · · · · · · · · · · · · · · · · · ·	2400
00												· · · · · · · · · · · · · · · · · · ·	) <u> </u>	975	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						·····	2300
00		······································										· · · · · · · ·										/		-
00														· · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			a-X		بور بر الم	
****												1	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				·····	1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 / 1997 /	T NO	L'isan
300			Ta					· · · · · · · ·	······································			······································	······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	( 		- 1800
700	P . 0.11	-18010	1.0												· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					Ĥ.u			- 1700 ^{***}
500	124PASS	6A1/253/0	* 4.7  . 																		· · · · · · · · · · · · · · · · · · ·			1500
400										· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					. han kan kan kan kan kan kan kan kan kan k						<	
300		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		· · · · ·	· · · · · ·			· · · · · · · ·	-								- 1300
1200		· · · · · · · ·		132	· <u>()</u> ···································				· · · · · · · · · · · ·	· · · · · ·	· • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		······································	· · · · · · · · · · · · · · · · · · ·								
1100	· · · · · · ·		име7. Р.1	.81: 290 1 : 0.9	P 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										20		1100
900				(lag)	1	·							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
														· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · ·				· · · · · · · · · · · · · ·	··

. 🔿

 $\bigcirc$ 



# **RESPONSE TO GOVERNMENT COMMENTS**

Annex J

Responses to EPD's Consolidated Comments

### RESPONSE TO COMMENTS

# CHINA LIGHT AND POWER CO LTD

EIA of the Proposed 6000MW Thermal Power Station at Black Point

Key Issue Assessment of Stack Emissions Complex Terrain Wind Tunnel Tests Report

**Response To Government Comments** 

May 1992

ERL (Asia) Limited 10–11/F. Hecny Tower 9 Chatham Road Tsimshatsui Kowloon Hong Kong

Tel: 7220292 (11/F) 3670378 (10/F) Fax: 7235660 C1014-D.1/RTC.EIA/WP51/SL/vc

 $\frown$ 

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
OC1		EPD	<ol> <li>Overall Comments</li> <li>The complex terrain wind tunnel tests are overall of good quality. We have noticed, however, the omission of some important receptors and some wind speeds for certain receptors which should also be tested. They are detailed in the specific comments</li> </ol>	Noted. Please see responses to the specific comments concerned.
OC2		EPD	2. Please note that FGD is considered to be a BPM requirement for new conventional coal-fired power plants in order to reduce the emission of sulphur dioxide to a minimum. This is irrespective of whether the power plant will cause an air impact breaching the air quality objectives. Whether the AQOs are breached is essentially a consideration for whether the existing units should be retrofitted.	Noted.
0C3		EPD	3. The assessment of impacts on the natural environment has been confined mainly to the effects of acidification. The effects of gaseous air pollutants and particulates should also be considered in detail.	These aspects are addressed in Vol 3 Section 8.2 of the Draft Initial Assessment Report (April 1991).
OC4		EPD	4. We have assumed that oil-firing will only be a back- up option which is required only for emergency, flame stabilisation and/or other ad-hoc and transient purposes. If oil is to be used as the primary fuel, it is necessary to extend the scope of the study to address other related environment concerns. In particular, the required controls on sulphur dioxide, nitrogen oxides and particulates will have to be evaluated for oil-fired CCGTs. Therefore if CLP wants to seriously consider the use of oil as primary fuel, please approach EPD for the required scope of work and the relevant BPMs.	Noted. It is understood that oil is not intended to be used as the primary fuel at LTPS. However, from time to time it may be used under certain operational and economic circumstances.

# C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
	Chapter 2		Wind Tunnel Tests Programme	
1.	S.2.3.3		a. Please provide the estimates of the air quality impacts at the Butterfly Estate and its vicinity, which have major residential developments.	Estimate of concentration levels at the Butterfly Estate have been made from adjacent sensors. An updated map of sensor locations is provided and the concentration estimates are provided in Annex A.
2.	Annex A		<ul> <li>Boundary Layer and Preparatory Tests</li> <li>a. The following test results were not presented in the Annex:-</li> <li>i. Test No. 7 and 8 in Table ALa;</li> <li>ii. The measurements of Reynolds stresses for wind speed of 15 m/s.</li> </ul>	These tests were calibration runs to establish the relationship between the model 10m wind speed and a more convenient tunnel reference. They are not relevant to the quality of the flow or any aspect of dispersion. Reynolds Stress measaurements were not part of the agreed programme of work. However, as an extra check on modelling at small scale and low speed a set of data was collected. Measurements at higher speeds were not made on this occasion.

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

 $\sum_{i=1}^{n}$ 

 $\bigcirc$ 

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
3.	Annex B		<ul> <li>Source Emissions and Characteristics</li> <li>a. Summary of Source Data used in the Wind Tunnel Tests (assuming Full Load)</li> <li>i. Please clarify the following:-</li> </ul>	
			<ul> <li>if the fuel used in option 13 is coal</li> <li>(rather than oil as stated in the Table);</li> </ul>	Fuel used in Option 13 is coal. (Table corrected)
			<ul> <li>the fuel sulphur content and FGD status of options 14 and 15;</li> </ul>	Orimulsion sulphur content 2.7%, fuel oil sulphur content 3.5%, FGD 90% for Options 14 and 15.
			- the concentration of $NO_x$ emission is 67 ppm or 75 ppm;	$NO_x$ concn confirmed as 67ppm, actual (equivalent to 75ppm at standard conditions).
			<ul> <li>the number of chimneys per unit for the OCGT and CCGT.</li> </ul>	The OCGT units were modelled with one chimney per unit. Each 600 MW CCGT unit has one chimney.
			b. Summary of the Emission Characteristics used to predict GLC of $NO_2$ and $SO_2$ in the Acidification Assessment.	
			i. The average annual load of LTPS quoted is 2393 MW or about 59% of the full capacity. This appears to be lower than an average base load unit. Would the Consultants clarify if adjustment is necessary?	The figure of 2393 MW for LTPS reflects the greater loading preference placed on CPPS, which was adopted in order to give a "worst case" loading scenario between the two stations.
			ii. The average annual loads of Castle Peak A and B are much higher than the respective maximum loads of these 2 plants. Please clarify and check if the $NO_x$ and $SO_2$ emission figures are correct.	The figure provided of 3138 is the <u>combined</u> loading for A+B, not individually; the table will be amended.

.

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

 $\bigcap \bigcap \bigcap$ 

	ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
	4.	Annex C		Analysis of Wind Conditions	
	:		:	a. C2 and Table C3a	
				i. Under wind direction 160°, Chek Lap Kok meteorological station is prone to the sheltering effect of Lantau Island. In comparison, Cheung	It is unlikely that Cheung Chau would provide appropriate data for analysis of dispersion of plumes from Castle Peak and Black Point. In
		:		Chau meteorological station ,may be more representative for the estimation of the credible wind speed along this wind direction.	both cases the Lantau peaks will provide some sheltering which will not be evident in Cheung Chau data; the latter will also show an unlikely higher frequency of high winds.
				b. Table C4a, Table C4b and the summary of wind speed/wind direction statistics following Table C4b.	Wind statistics for Chek Lap Kok and Cheung Chau have been compared for the 160° wind angle. The differences are small and no evidence
0. 10-71-0	:				of shelter is found in the CLK data.
					Wind Speed         Cheung_Chau         Chek         Lap         Kok           <8.3 m/s
					11.3 - 14.2 m/s 0.05 0.06 >14.2 m/s 0.01 0.01
		· · ·	: - -		Percentage frequencies of winds during June to August.
• •		:			

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

.

()

()

 $\bigcirc$ 

 $\bigcirc$ 

÷

.

· ·

( )

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
			i. The following anomalies are observed:-	
			<ul> <li>Most of the percentages figures in Table C4b are different from those tabulated in the subsequent summary following the Table.</li> </ul>	Please note that the % figure for a 20° direction range is calculated, for example, for $150^{\circ} - 170^{\circ}$ by summing 50% of the 150° and the 170° figures with 100% of the 160° figure, as agreed with the RO to be the most valid method of analysis.
			<ul> <li>In the conversion of cumulative frequencies in terms of % to those in hours, the number of hours in a year seems to have been used instead of the number of hours in the summer months (i.e. June, July and August).</li> </ul>	In the calculation, the summer frequency was applied to the annual hours in order to give a worst case, this is perhaps unclear and will be amended.
			The summer month statistics in Table C4b have been used to identify the credible worst case wind speeds for the estimation of the impacts of the study options. The anomalies above may lead to an underestimation of the air quality impacts. Clarification needs to be made together with a review of the estimated air quality impacts of the study options.	Chek Lap Kok summary data given do not match the statistics which were used. The data which were used, however, also reveal some mistakes in Table C4b; for $330^{\circ}$ - $350^{\circ}$ , frequencies for $3.3-5.2$ m/s and $5.3-8.2$ m/s should be $0.2\%$ and $0.13\%$ respectively, not $0.49\%$ and $0.31\%$ as shown. It should also be noted that the $0.01\%$ shown for >14.2 m/s is in fact rounded up from $0.005\%$ . Overall, these errors do not mean that the conclusions need to be changed but that the
			·	selection of credible worst-case wind scenarios was in fact pessimistic.

`.

P.4

۰.

٠,

-

()

.

·• .

.

C1014-D.1/RTC.EIA/WP51/SL/vc May 18, 1992

 $\cap$ 

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
	Chapter 3		Assessment of Human Health Impacts and Options for Mitigation	
5.	S.3.2	-	<u>4 x 2 680 MW Coal-fired Units (Base Case)</u> a. Table 3.2a	
			<ul> <li>a. Table 3.2a</li> <li>i. Mai Po seems to have been left out for from the measurements. The air quality impacts there should also be estimated.</li> </ul>	Please see Annex B.
- :	·		b. Table 3.2c	
-			<ul> <li>No measurement has been made for 12m/s for the potential impacts of Castle Peak Power Station on Shekou. However, based on the measurements in Test 2, the impacts from Black Point on to Shekou peak at 12 m/s. The prediction at 8 m/s and 15m/s</li> </ul>	As discussed at the EPD/CLP/Consultants meeting on 3.3.92, interpolation of the concentration trend with wind speed has been made for the Castle Peak impact on Shekou. On the basis of wind directions other than 160°, the
			may underestimate the impacts at Shekou.	impact of the Castle Peak stations has been assessed as a function of wind speed. Average relationships between concentrations at 12 m/s
:				and 15 m/s at different distances have been used to create interpolated 12 m/s values. This is an update to the original 160° data in Annex D. It is
		х		presented for Shekou alone. These interpolated results for the 12 m/s ⁻¹ scenario will be utilised in the Frequency Analysis currently underway.
				Table 3.2c in the report should now read as shown in Annex C.

•

 $\frown$ 

and the second second second second second second second second second second second second second second second

P.5

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
Ţ			<ul> <li>c. Pg. 17 Frequency Consideration – Black Point plus Castle Peak.</li> <li>i. The frequency considerations in this section are affected by comment b on Annex C and should also be included in the review.</li> <li>ii. We have the following observations on the methodology for the estimation of the credible worst wind speed:-</li> </ul>	See reply to Comment B on Annex C. As discussed at the EPD meeting of 3.3.92, the frequency assessment presented in the report was a method to allow a first screening of all cases. A re-examination of the frequency assessment based on the more rigorous method discussed is to be undertaken and will be reported separately.
			<ul> <li>For each operating regime/scenario, 3 times of exceedence have been assumed in the estimation of the credible worst wind speed. When all the operating scenarios are considered, more than 3 times of exceedence in total have been assumed.</li> </ul>	For individual wind speeds and directions, <u>cumulative</u> frequencies were used to obviate this potential problem. For situations where the 2 power stations can act independently upon a single receptor, further exceedences cannot occur, since LTPS on its own does not cause exceedence of the AQO under any conditions measured. It is therefore not credible for such a scenario to arise.
•		•	<ul> <li>High operating loading is likely to occur during daytime. If high wind speed scenarios also happen during daytime, the probability of occurrence of high wind speed and high operating loadings will be greater than the estimates based on even distribution on high wind speed and operating loading.</li> </ul>	We are not aware of any meterological evidence to suggest that high wind speeds occur preferentially during the day and the approach adopted is considered appropriate.

.

()

•

;

:

•

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
			<ul> <li>In the estimation of the credible wind speed, the percentage of the peak operating loading based on the number of hours in a year have been used together with the summer wind speed statistics. It appears more reasonable to adopt the number of hours in the summer months. Otherwise, the credible wind speed will be underestimated.</li> </ul>	The summer wind speeds have been used, as they represent the worst case; in statistical terms this approach is identical to the one proposed.
			<ul> <li>The credible wind speeds for scenarios with lower operating loadings from both power stations are higher than those with higher operating loadings. It may be possible that an operating loadings less than 80% may justify a higher credible wind speed, which may give the worst air quality impacts.</li> <li>We have reservation on CLP occupying all the allowable AQO exceedences.</li> </ul>	<ul> <li>70% operational loading was assessed – it resulted in less severe impacts than the 80% loading.</li> <li>The assessment has been targetted towards a solution which leads to zero exceedance.</li> </ul>
:			این از این از میکند. این از این از میکند از میکند از میکند از میکند از میکند از میکند. این از این از میکند از میکند	
				:
		· · · ·	and the second second second second second second second second second second second second second second secon	

and the second second second second second second second second second second second second second second second

P.7

.

.

.

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
			To avoid the uncertainties associated with the estimation of frequency of the combinations of credible worst wind speed and operating loading. It is worthwhile to consider the approach of using the almost 10 years of sequential hourly data at Chek Lap Kok and the seasonal/monthly load curves for the peak operating year of the power stations to determine the number of hours of exceedence for the critical receptors and the study options short–listed by the findings of this report.	The proposed method of combining 10 years of sequential data from Chek Lap Kok with load curves from CLP would in theory provide a comprehensive set of more <i>precise</i> frequency based results. However, it should not be expected that this would necessarily provide a more <i>accurate</i> answer to the problem since many of the uncertainties present in the current analysis would still be present and other uncertainties would be introduced, e.g. from the need to interpolate between and extrapolate wind-tunnel results based on the peak load source scenario modelled. Such an analysis will be performed however, as a separate exercise to this KIA.
			iii. If $low-NO_x$ burners cannot reduce the NOx impacts of the plant to acceptable levels, mitigation measures such as SCR should also be explored.	The results of the KIA indicate that adequate mitigation will be provided by the fitting of low $NO_x$ burners to CPB station.
			e. Table 3.21	
			i. If there is any revision to the credible worst wind speed, the Table should also be reviewed.	Noted.
.'				

ŗ

,

.

· -

••

an says the

.

.

;

.

·

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
б.	S.3.3.3		Mitigation Options	
			a. The 42 ppm limit is regarded as the BPM for new gas-fired power stations. Experience in other countries has proved that this limit could be achieved with or without water injection. Unless CLP can show that this limit cannot be achieved technically and economically, relaxation of the limit would not be made.	This study was carried out on the basis of a 75ppm emission factor in order to ensure conservatism. It is anticipated that the plant installed will be able to achieve considerably lower emissions than this.
			b. In the assessment, 2 figures, VIZ., 67ppm and 75ppm, have been quoted for the stack $NO_x$ emissions. Please clarify which one has been used in compiling the tables in Annex B.	67 ppm (based on the actual operating conditions and equivalent to 75 ppm under standard conditions).
		3		
i	ч. •			
-				
			· ·	
		:		

• *

P.9

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
7.	S.3.5		Qil-substitution Options	
			a. We presume that the oil-firing mode would only be used for emergency, flame stabilization or standby purpose. If CLP decides to use oil as the primary fuel, please approach us for the BPM requirements.	Noted. It is understood that oil is not intended to be used as the primary fuel at LTPS. However, from time to time, it may be used under certain operational and economic circumstances.
			b. It appears that the oil sulphur content for 680 MW conventional boiler units is 3.5%. However, according to the APC (Fuel Restriction)Regs., all new units, including those to be used for electricity generation, are required to use liquid fuel with less than 0.5% sulphur and 6 cst (at 40°C).	The Consultants are aware of the APC requirements specifying the burning of distillate oil in new facilities. However, it is recognised that these regulations were drafted to control emissions from the many small industrial plant in Hong Kong, whereas CLP's facilities are specifically designed to efficiently burn residual oils, and will be equipped with FGD and high stacks which are not fitted to small plant. The APC regulations, whilst achieving their aim for the many small scale industrial emitters, would
				therefore appear inappropriate for large scale, purpose designed Specified Processes such as the
				LTPS, since their imposition would increase the cost of electricity generation with no significant environmental benefit.

• •

ŕ

)

.

P.10

 $\bigcirc$  $\bigcirc$  $\left( \begin{array}{c} \\ \end{array} \right)$ ( ) $\bigcirc$ 

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
8.	S.3.6		FGD Considerations	
		· ·	a. The modeling data indicates that the "no FGD" option would pose unacceptable impacts to areas such as Shekou and North Lantau Coast under high wind speed scenarios. In view of the uncertainties in the identification of the credible worst wind speed, it is premature to conclude that the 4 combined cycle/4 coal-fired unit scenario without FGD is a viable option. Moreover, the use of FGD is considered by the Authority as BPM for new coal-fired units.	The previous responses are considered to addres any uncertainities regarding the credible worst wind speed, and the conclusion regarding the 4 CCGT/4 coal option is considered valid.
:		, T	b. The conclusion in Table 3.6a is sensitive to the credible wind speed for the maximum impacts. It should also be reviewed along with the review on the credible worst wind speeds.	Noted. No alteration necessary.
· · · · · · · · · · · · · · · · ·	<u>۲</u>	<u>.</u>		L
•				
•		•		
~				

.

#### C1014-D.1/RTC.BIA/WP51/SL/vc May 18, 1992

.

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
9.	S.3.7		<u> Open-cycle Gas Turbine Units</u>	
			a. In view of the impacts of the OCGT with 50 m stack to nearby receptors, 80 m appears to be the minimum acceptable stack height of the OCGT units.	50m seems acceptable if infrequency of worst- case wind conditions and the fact that unacceptable impacts are limited to within the site boundary are taken into account.
			b. The Consultants should comment on the combined	
			impacts of the OCGT and the main plant.	The table in Annex D attached combines the impact for 10 OCGTs and 4 coal and 4 CCGTs at Black Point, together with Castle Peak A and B. The combined near field impact of all units can be assessed along 160° or 340°; the table shows 160°. The major near field impacts during these conditions occur over the sea but are in any event well within the AQO's; results for the 140° direction can be estimated from Annex D in the main report, and are similarly within the AQO's.
· · · · · · · · · · · · · · · · · · ·	Chapter 4		Assessment of Acidification Impacts on the Natural	
	· · ·	·	Environment	
10.	S.4.3.1		a. It should be stated that the acid rain results were obtained from HKEPD and appropriate reference should be quoted.	Noted.

. . . .

.

P.12

.

.

.

.

44

, · ·

.

.

1. S. A. A.

4

() () () ()() $\cap \cap \cap \cap$  $\bigcirc$  $\bigcirc \bigcirc \bigcirc \bigcirc$  $\bigcirc$  $\bigcirc$ () $\bigcap$  $\left( \right)$  $\langle \cdot \rangle$ 

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

.''

<ul> <li>a. Judging from the previous monitoring results, it is evident that Hong Kong is suffering from acid deposition problem. This is further confirmed by comparing the monitoring results with the Canadian target loading for wet SO₄ deposition of 20 kg/ha/y which is designed to protect moderately sensitive aquatic ecosystem. It would be desirable if the Consultants would explore whether further mitigation measures could be implemented economically to</li> <li>We are not aware of any evidence that Hong Kong is suffering from the acid deposition problem, i.e. soil/natural water acidification, diminished nutrient levels in soils, natural vegetation damage. The monitored pollution levels give an indication that recent acid deposition levels could well be higher than to ideal critical load which may be set to protect natural environment in the long term. The</li> </ul>	ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
b. In view of the enforcement of the APC (Fuel Restriction) Regs. in 1990, the data of 1986–1987 used for derivation of the background deposition may not be appropriate to reflect the present situation. The Consultants may need to used more up-to-date most stringent) of the range of critical loads considered appropriate to the UK. Hong Ko natural environmental is considered to be relatively sensitive and thus would warrant consideration of a relatively low target would need to include control of all emissions across	<b>ITEM</b> 11.		ORIGINATOR	<ul> <li>Monitoring Results</li> <li>a. Judging from the previous monitoring results, it is evident that Hong Kong is suffering from acid deposition problem. This is further confirmed by comparing the monitoring results with the Canadian target loading for wet SO₄ deposition of 20 kg/ha/y which is designed to protect moderately sensitive aquatic ecosystem. It would be desirable if the Consultants would explore whether further mitigation measures could be implemented economically to achieve this target.</li> <li>b. In view of the enforcement of the APC (Fuel Restriction) Regs. in 1990, the data of 1986–1987 used for derivation of the background deposition may not be appropriate to reflect the present situation. The Consultants may need to used more up-to-date</li> </ul>	We are not aware of <i>any</i> evidence that Hong Kong is <i>suffering</i> from the acid deposition problem, i.e. soil/natural water acidification, diminished nutrient levels in soils, natural vegetation damage. The monitored pollution levels give an indication that recent acid deposition levels could well be higher than the ideal critical load which may be set to protect the natural environment in the long term. The Canadian target is similar to the lower end (i.e. most stringent) of the range of critical loads considered appropriate to the UK. Hong Kong's natural environmental is considered to be
					provide a more accurate estimate of the background level. This will be done if EPD could provide the latest available data but it is unlikely to affect the conclusions.

P.13

. . .

÷ .

.

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
			c. Since Junk Bay is not free of major heavy industrial activities, the use of its monitoring data from estimation of the background deposition may lead to positive error. This seems to be supported by the 1990 monitoring results of Hong Kong South in which the total acid deposition was found to be about 55 keq/km ² /y.	Noted. However, the Hong Kong South monitoring station only operated for a 9 month period from November 1989 to July 1990. The Junk Bay station has been operating since March 1985. Junk Bay was therefore considered a more robust data set on which to base background estimates, and its easterly location is considered to minimise exposure to industrial emissions.
			d. The total wet and dry deposition of Junk Bay reported in Table 4.3c are less than the sum of the breakdowns appeared in Table 4.3a and 4.3b. For example, for 1986, the sum should be 131.5 but the reported figure in Table 4.3c is only 108.2. Please clarify.	This calculation error has been corrected and the text amended accordingly, e.g. background deposition rate is approx. 110 keq km ⁻² yr ⁻¹ , not 90 as previously stated.
12.	S.4.4		Assessment Methodolody	
			a. The prediction methodology for estimating the wet deposition from the ambient pollutant predictions should be presented.	P.39 provides a summary of the methodology. If further information is required on specific issues we will be glad to respond.
			b. Please clarify whether max. FGD has been assumed for the coal-fired option scenario for the Black Point Power Station in the assessment of the acidification impacts.	Max FGD has been assumed.
			c. Please provide contours of total deposition in the report.	Please see Annex E attached.
13.	S.4.5		Acidification Impacts of the LTPS	
		,	<ul> <li>a. It is unlikely that the location of maximum in Table</li> <li>4.5a at (-20,-50) can be associated with southeasterly maximum.</li> </ul>	Typing error; table corrected.

### P.14

 $\bigcap$  $\bigcirc$   $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc \bigcirc \bigcirc \bigcirc$ ()() $\bigcirc$  $\bigcirc$ ()()()()

C1014-D.1/RTC.EIA/WP51/SL/vc May 15, 1992

.

ITEM	REFERENCE	ORIGINATOR	COMMENTS	CONSULTANT'S REPLY
14.	Chapter 5	-	<ul> <li><u>Conclusions</u></li> <li>a. The validity of the conclusions on the impacts of the power station hinges on the credibility of the identified worst wind speed. The re-assessment of the worst wind speeds and the re-estimation of the frequency of AQO exceedence may affect some of the conclusions.</li> </ul>	Noted but as indicated above, the revised frequency data do not change the conclusions.
15.	Annex D		<ul> <li>Concentration Measurement Results</li> <li>a. It appears that the emission of NO₂ and SO₂ of the Castle Peak A and B stations may cause a threat to the attainment of the relevant AQOs at Lung Kwu Tan area. Would the Consultants advise if any mitigation measures would be necessary?</li> </ul>	Mitigation of Castle Peak emissions to date have only been considered in the context of mitigating impacts associated with the Black Point development.

.

· · · · ·

.

## EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment Response to EPD's Comments dated 9 August 1993

No.	Department	Reference	Comments	Consultant's Response
1	EPD	Section 5, Part A	Add a suitable paragraph to provide a linkage between Part A and Part B.	Noted and text will be added to Section 5 of Part A.
2		Section 8, Part B	Add a new section to state the EPD's position and the way forward.	Noted and text will be added as Section 8 of Part B. A copy of the text is enclosed as Annex B of this response- to-comments for easy reference.
3			<ul> <li>Overall Comments</li> <li>a. The report does confirm our position on the proposed development that: <ul> <li>i) the air quality impacts of the proposed Phase I development of the Power Station (ie 4x 600 MW CCGT units with light industrial diesel oil as back up fuel together with the recommended measures for its design, construction and operation) are acceptable;</li> <li>ii) mitigation measures are available to reduce the air quality impacts of the power station, if coal-fired with heavy fuel oil as back up, to levels that are acceptable by the present air quality standards, on the basis of the current sensitivity of environment and the assumed operation scenarios in this study.</li> </ul> </li> </ul>	Noted. Noted.

# EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment

.

No.	Department	Reference	Comments	Consultant's Response
4			As we commented in our facsimile message of 12.5.93, we cannot agree to the Consultants' rationale of interpreting the results of the rigorous frequency analysis based on "on average, no more than three exceedence of the hourly AQO limits per year". This approach is not in line with the current legislative provision, which requires the hourly AQO limits not to be breached more than thrice a year. We have noted that the consultants have taken our request for the maximum number of annual exceedance of the hourly AQO limits in the 6 candidate years. It is these numbers that allow conclusion be	See response to comments numbered 7. Noted.
			drawn on the acceptability of the air quality impacts of the proposed development, based on current legislative standards.	
5			Specific Comments	
		Summary	a. Regarding the position of EPD in the penultimate paragraph of the second page of the Summary, "no unacceptable impacts" is more precise than "no significant impacts", which may lead one to interpret as "no impacts at all".	Noted and reworded.
6			Part A: Complex Terrain Wind Tunnel Tests	
		Item 3.a.i	The fuel used in option 13 is "coal" not "oil". The Source Data Summary Table in Annex B has not been amended.	Noted and corrected.
			Please specify the fuel oil sulphur content and assumed SO ₂ removal efficiency of the FGD for options 14 & 15 in the Source Data Summary Table in Annex B, the key to Development Options on Pg 45 and in Annex D.	Fuel oil sulphur content of $3.5\%$ and max FGD of $90\%$ SO ₂ efficiency for Options 14 and 15.
		Item 3.b.ii	"3138 MW" still appears in the Summary Table in Annex B as individual loadings of Castle Peak A + B.	The figure 3138 MW is the combined loading of Castle Peak $A + B$ . The Table will be amended.

(( )) ( )( ()

# EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment

No.	Department	Reference	Comments	Consultant's Response
		Item 4.b.i	Table C4b has not been amended.	Noted and amended. (See Consultant's responses-to- comments dated 18th May 1992.)
		Item 11.d	The total wet and dry deposition of Junk Bay reported in Table 4.3c are still less than the sum of the breakdowns appeared in Tables 4.3a and 4.3b	Noted and amended. (See Consultant's response-to- comments dated 18th May 1993. There are some mistakes in the footnotes of the Summary Table in Annex B for the acidification assessment and will be corrected.
			This comment had been further elaborated in our comments on response to comments (EPD's facsimile message of reference EP $2/G/39 X$ dated 1.7.92). Could the consultants please include in the report the mathematical relation that has been used for the estimation of the wet deposition.	Noted and the mathematical relation used for the estimation of the wet deposition will be provided.
		Item 13.a	The typing error in Table 4.5a has not been corrected.	Noted and figures corrected.
			The estimates of concentration at the Butterfly Estate and Mai Po as well as the combined impacts of Option 1, 5 and 8 plus Castle Peak A & B for wind direction 160° have been provided in the Annexes of the Consultants' response to comments (Annexes A, B and D). Please incorporate them into the report.	Noted and results incorporated.
			Please incorporate the total deposition contours in Annex E of the response to comments into the report.	Note and figures incorporated.
			Please specify the fuel oil sulphur content.	The fuel oil and distillate oil sulphur contents are 3.5% and 0.5% respectively. These will be specified in the relevant sections.
7			Part B: Rigorous Frequency Analysis	
		S.3.4.2	"Table 4.3c" should be "Table 3.4c".	Noted and corrected.

# EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment

No.	Department	Reference	Comments	Consultant's Response
		S.2.2.2	For the sake of clarity, please elaborate on the $NO_x$ mitigation measures at the Castle Park Power Station.	Noted. The assumed NO _x mitigation measures are about 90% of current levels at Castle Peak A (1000 ppm v/v from 1100 ppm source NO _x ) and 55% of current levels at Castle Peak B (600 ppm from 1100 ppm).
		S.3.3.3, S.4.2 and Table 7.1a	<ul> <li>i. We cannot agree to the Consultant's rationale of working on the 99.966 percentile values of the whole six years. This approach is not in accordance with the legislative provision, which requires the hourly AQO limits not to be breached more than three times in a year. As such, the 99.966 percentile concentration values given in Table 4.2a - 4.2j, Table 6.1a,b - Table 6.4a,b tend to be smaller than what they otherwise will be.</li> <li>Table 6.6a and 6.6b are not just "useful", as in the words of the Consultants. They are imperative for providing the basis for assessing the acceptability of the air quality impacts of the proposed development by the current legislative standards.</li> </ul>	The figures in the referenced Tables will be revised to indicate the maximum 99.966 percentile values in any one year of the six candidate years. Nevertheless, the overall picture that there are no more than 3 hourly AQO exceedance in any year for all receptors is clear. The enclosed Annex A contains the revised Tables 4.2a-4.2j and Table 7.1a that help illustrate these. Noted.
			ii. Please clarify whether the "2.7" in Table 4.2c for the % of 1 day AQO for NO ₂ for all coal case should be "20.7".	"2.7" should read "20.7".
		S.6.4	Please provide the emission data for the two oil-substitution options including, at least, the fuel oil sulphur content and $SO_2$ removal efficiency of the FGD (applicable to the heavy fuel oil option).	The fuel oil sulphur contents and FGD efficiency will be included. For full load emission data, Annex B refers.
		S.7 – the last sentence of the 4th Para	Please clarify whether the hourly AQO $NO_2$ limits will be breached for all receptors more than three times at any one of the 6 candidate years should the Castle Peak Power Stations not be retrofitted with low $NO_x$ burners.	It is confirmed that even without $NO_x$ mitigation by retrofitting low $NO_x$ burners at Castle Peak, the hourly $NO_2$ AQO will not be breached at all receptors more than 3 times in any one of the 6 years of meteorological data.

۰.

4

.

4

#### $\bigcirc \mathfrak{g} \bigcirc$ () $\bigcap$ $\bigcirc$ () $\cap$ $\left( \right)$ $\left( \right)$ ()()()()(___) ( )

.

# EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment

No.	Department	Reference	Comments	Consultant's Response
			<ul> <li>Annex B: Wind Tunnel Tests – Source Emissions and Characteristics</li> <li>a. Please include in the Summary Table of Source Data used in the Wind Tunnel Tests the emission limits for NO_x and SO₂ that have been used to derive the source emission concentrations.</li> </ul>	One can easily re-calculate these from the source $NO_x$ (as $NO_2$ ) and $SO_2$ concentrations, exit temperatures and the respective molecular mass. Dispersion of the flue gases depends on the actual source characteristics and it is considered unnecessary to include emission limits based on reference conditions in the Table.
			As to the Summary Table for the emission characteristics for Black Point for acidification assessment, please clarify whether there are "3 flues) in the chimney of each CCGT unit. Furthermore, please specify the fuel oil content and FGD efficiency in the table for the oil options.	It is clarified that there are 3 flues per stack of the CCGT units.
			c. The "CGGT" in Option 6 in Summary of Source Data should be "CCGT"	Noted and amended.
			Annex H: Rigorous Frequency Analysis – Derivation of Concentration Functions	
			a. Please provide in the report all the concentration data which are interpolated from the wind tunnel measurements in this assessment and/or the CERL measurements for the Castle Peak Power Station in this report for the supplementary assessment of the Phase II development.	All wind tunnel data originated from this study have been included in Annex B. The CERL measurements used for Part B of the AKIA will be summarized in Tables in Annex H.

-

.

.

-

· No.	Department	Reference	Comments	Consultant's Response
			<ul> <li>Others</li> <li>a. The report has not included the agreed comparison on the SO₂ impacts for light industrial diesel oil (IDO) with sulphur contents of 0.5% and 0.2% (Ref: EPD's letter of reference EP 2/G/39 dated 29.1.93). Please be reminded once again that the fuel sulphur content of IDO should be 0.2% by weight in order to comply with the emission standards of our BPM requirements.</li> <li>b. Please comment in an appropriate report of this study on the land use implications of this proposal.</li> <li>c. For easy reference, please provide a summary of the proposed mitigation measures in an appropriate report of this summary.</li> </ul>	The sulphur contents of the industrial diesel oil (IDO), named as distillate oil in the report, is 0.5% throughout the original AKIA. We understand that the Government and the oil companies are discussing the opportunity of reducing the sulphur contents of the IDO and the proposed change will depend on the availability of such fuel in Hong Kong. The proposed reduction in sulphur contents of the IDO to 0.2% as required by the latest BPM will effectively reduce the SO ₂ concentration by 60%. The comparison of SO ₂ impacts will be made in Section 6.4 of Part B AKIA Report. Noted. Land use implications have been address in various sections of the Final Site Search Report.

# EIA for Phase 1 Development of the Proposed LTPS at Black Point Air Quality Key Issue Assessment

()

