Appendix 5.2a

Contamination Assessment Report (CAR) for Radar Station

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

CONTAMINATION ASSESSMENT REPORT FOR RADAR STATION (REV. 1)

Contents

1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Objectives	1
2	FIND	INGS OF CONTAMINATION ASSESSMENT PLAN	2
3	CON	TAMINATION ASSESSMENT REPORT	3
	3.1	Assessment Methodology	3
	3.2	Assessment Criteria	4
	3.3	Analytical Results and Interpretation	5
	3.4	Estimation of Soil Contamination Extent and Remediation	8
	3.5	Conclusions and Recommendations	8

List of Tables

Table 3.1	Dutch ABC Values for Soil and Groundwater Contamination
Table 3.2	Summary of the Borehole Termination Depths and Groundwater Level
Table 3.3	Summary of Groundwater Samples Exceeding the Dutch B/C Values

List of Drawings

- Drawing 1.1 Site Location Plan
- Drawing 3.1 As-built Sampling Locations
- Drawing 3.2 Contours of Measured Groundwater Levels

Appendices

- Appendix A Sampling and Testing Schedule Proposed in the CAP
- Appendix B Supplementary Sampling Plan for the Remaining Areas in Radar Station
- Appendix C Site Boring Log
- Appendix D On-site Measurement Results
- Appendix E Laboratory Results
- Appendix F Groundwater Risk Assessment Results

1 INTRODUCTION

1.1 Background

- 1.1.1 The former Kai Tak Airport started its operation since 1920s and was replaced by the new airport at Chek Lap Kok in 1998. The total area of the former Kai Tak Airport is about 260 hectares covering the North and South Aprons and the Runway areas extending into Kowloon Bay.
- 1.1.2 The Kai Tak Development (KTD) is a Designated Project (DP) in accordance with item 1 of schedule 3 under the Environmental Impact Assessment Ordinance (EIAO). The objectives of the Project aim to provide information on the nature and extent of environmental impacts arising from the construction and operation of the developments proposed under the Project and related works that take place concurrently.
- 1.1.3 As commissioned by the Civil Engineering and Development Department (CEDD) to undertake land contamination assessment at Radar Station next to the ex-Government Flying Service (ex-GFS) site at the end of the South Apron area of the former Kai Tak Airport (hereinafter called "the Study Area"), under Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Cruise Terminal Advance Works Investigation, Design and Construction, a contamination assessment plan (CAP) was provided covering the Study Area of about 1,600m² with the location as shown in **Drawing 1.1**.
- 1.1.4 The CAP, which outlined the sampling locations as well as the testing schedule for site investigation (SI) in the Study Area, was approved by Environmental Protection Department (EPD). In general, the approved CAP proposed that a total of 4 boreholes within the Study Area are to be drilled for soil and groundwater sampling and testing within the Study Area.
- 1.1.5 The SI works for land contamination assessment in the Study Area were commenced on 14 September 2007 and completed on 9 November 2007. The SI works, including rotary drilling of boreholes, logging of ground materials, installation of groundwater monitoring wells, water level monitoring and reinstatement of excavations, were all conducted by Vibro (H.K.) Limited (Vibro) under CEDD Term Contract No.GE/2007/03 (Works Order No. GE/2007/03.61) while laboratory analyses were carried out by Lam Laboratories Limited (LAM) under CEDD term Contract No.GE/2005/49 (Works Order No. GE/2005/49.28).

1.2 Objectives

- 1.2.1 The objectives of this Contamination Assessment Report (CAR) are to summarize findings of the SI (including fieldworks and laboratory analyses) and to determine the nature and extent of contamination based on the findings. Once contamination is confirmed, remediation proposal suggesting appropriate remediation actions for the contaminated area would be provided as a Remediation Action Plan (RAP), either separately or in the same report under different sections.
- 1.2.2 This CAR is submitted to seek endorsement from the Director of Environmental Protection (DEP) in accordance with *Section 3.4.10.5 of the EIA Study Brief for Kai Tak Development* (*ESB-152/2006*).

2 FINDINGS OF CONTAMINATION ASSESSMENT PLAN

- 2.1.1 According to the approved CAP, underground fuel tank, standby generator room, fuel tank room and transformer room were suspected to have potential contamination. During the site inspection, stains were observed at the fuel tank room around the daily tank, and at the standby generator room around the container storage area. In light of the potential sources of land contamination identified in the Study Area and the potential migration of the contaminants generated by the site activities, a total of 8 locations were identified as the potential contamination hotspots.
- 2.1.2 The criteria for identification of contamination hotspots were based upon the site observation of stain/ground discolourization, machine/ chemical storage locations or areas with contamination activities undertaken. Detailed rationales for selecting sampling locations in the CAP are provided in **Appendix A**.
- 2.1.3 Since the standby generator room, fuel tank room and transformer room were still in operation during the SI, SI works at 4 of the 8 hotspot locations, which are located inside the building of the Radar Station (fuel tank room, standby generator room and transformer room), were not possible to carry out due to site accessibility and safety issues. Therefore only 4 boreholes were deemed possible for SI at the outdoor area as in the approved CAP.
- 2.1.4 For the 4 hotspots which are located inside the building of the Radar Station, it was recommended that a land contamination assessment should be carried out upon the cessation of the operations and prior to the redevelopment. A supplementary sampling plan providing the sampling and laboratory analysis information for the SI in these areas are attached in **Appendix B**.

3 CONTAMINATION ASSESSMENT REPORT

3.1 Assessment Methodology

Soil Boring and Sampling

- 3.1.1 The SI works at Radar Station were carried out from 14 September 2007 to 9 November 2007. During the SI, sampling at RSB-01 was not feasible to complete according to the approved CAP.
- 3.1.2 Soil boring at RSB-01 was only proceeded down to 3.8m below base of existing concrete pavement (BBC) due to the presence of intact concrete material, which was suspected to be the foundation structure of the building. An additional borehole (RSB-01A) adjacent to RSB-01 was therefore constructed to the desired depth to define the nature and extent of potential land contamination in the vicinity of the existing underground fuel tank.
- 3.1.3 A total of 5 boreholes (RSB-01, RSB-01A, RSB-02, RSB-07 and RSB-08) were constructed within the Study Area, locations are illustrated in **Drawing 3.1**.
- 3.1.4 Soil samples were collected at about 1m, 2.5m and 3.5m BBC only at RSB-01 while soil samples were collected at about 1m, 2.5m, 3.5m, 5m and 6m BBC at RSB-01A and RSB-02; and at about 1m, 2.5m and 3.5m BBC at RSB-07 and RSB-08. However, it should be noted that, for the presence of gravel, cobble and/or boulder in the fill materials encountered in RSB-02 and RSB-07, some of the soil samples could not be collected exactly at but close to the desired depths.
- 3.1.5 Before drilling, the sampler and all equipment in contact with the ground were thoroughly decontaminated prior to use at each borehole by laboratory-grade detergent and steam-cleaning/ high-pressure hot water jet.
- 3.1.6 Soil samples were properly labeled and stored in cool boxes at around 4°C until delivered to the analytical laboratory. All the collected soil samples in the SI were analyzed in accordance with the analysis schedules detailed in the approved CAP.

Strata Logging

3.1.7 Strata logging for boreholes was undertaken during the course of drilling and sampling by a qualified geologists. The logs included the general stratigraphic descriptions, depth of soil sampling, sample notation and level of groundwater (if encountered). The presence of rocks/boulders/cobbles and foreign materials such as metals, wood and plastics was also recorded.

Groundwater Sampling

- 3.1.8 After completion of soil sampling, groundwater monitoring wells were installed at all 5 boreholes with groundwater encountered. After installation, well development (approximately 5 well volumes) was carried out to remove silt and drilling fluid, if any, reside from the wells. Groundwater level and thickness of free product layer, if present, were measured at each well before groundwater samples were taken.
- 3.1.9 Prior to groundwater sampling, monitoring wells were purged (at least 3 well volumes) to remove fine-grained materials and to collect freshly refilled representative groundwater samples.
- 3.1.10 Immediate after collection, groundwater samples were transferred to new, clean, laboratoryprepared, "darken" type sample containers. Groundwater samples were placed in the glass jars with zero headspace and promptly sealed with a septum-lined cap. All samples were clearly labeled. Immediately following collection, samples were subsequently stored in cool box at about 4 ℃ and delivery to analytical laboratory on the same day.

3.1.11 All groundwater samples were analyzed in accordance with the analysis schedules detailed in the approved CAP (**Appendix A**).

3.2 Assessment Criteria

Criteria for Soil and Groundwater Contamination

- 3.2.1 The assessment methodology of this Study was developed in accordance with the Practice Note ProPECC PN3/94 "Contaminated Land Assessment and Remediation" and "Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" issued by the EPD, as outlined in the approved CAP.
- 3.2.2 The Practice Note was used in setting the soil contamination criteria. The Practice Note makes reference to criteria developed in the Netherlands (Dutch 'ABC' Levels), which are most comprehensive and widely used for contaminated site assessment. The preliminary screening approach adopted in this study was based on the Dutch criteria which consist of 3 levels of guidelines, namely A, B, and C. The simplified explanation of the ABC levels is as follows:
 - 'A' level implies unpolluted;
 - 'B' level implies potential pollution present that requires further investigation or remediation; and
 - 'C' level implies pollution which requires remediation.
- 3.2.3 The Dutch Criteria are very stringent as they are developed based on a "good for all uses" philosophy. The EPD generally requires remediation for soil contamination above the Dutch B level. In other words, the Dutch B level is the cleanup target for remediation of soil. Relevant soil and groundwater Dutch 'ABC' levels for this Study are presented in **Table 3.1**.

Demension		Soil (mg/kg)		Gro	oundwater(µ	g/L)
Parameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C
Total Petroleum Hydrocarbons (TPH) (as mineral oil)	100	1000	5000	20	200	600
BTEX						
Benzene	0.01	0.5	5	0.2	1	5
Toluene	0.05	3	30	0.5	15	50
Ethylbenzene	0.05	5	50	0.5	20	60
Xylenes	0.05	5	50	0.5	20	60
Polyaromatic Hydroc	arbons (PA	Hs)				
Naphthalene	0.1	5	50	0.2	7	30
Phenanthrene	0.1	10	100	0.1	2	10
Anthracene	0.1	10	100	0.1	2	10
Fluoranthene	0.1	10	100	0.02	1	5
Benzo(a)pyrene	0.05	1	10	0.01	0.2	1
Pyrene	0.1	10	100	0.02	1	5
Phenols	0.02	1	10	0.5	15	50
Chlorinated Hydrocarbons- Aliphatics (for individual)	0.1	5	50	1	10	50

 Table 3.1
 Dutch ABC Values for Soil and Groundwater Contamination

Parameter		Soil (mg/kg)		Gro	oundwater(µ	g/L)
Parameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C
Metals						
Cadmium (Cd)	1	5	20	1	2.5	10
Lead (Pb)	50	150	600	20	50	200
Copper (Cu)	50	100	500	20	50	200
Tin (Sn)	20	50	300	10	30	150
Chromium (Cr)	100	250	800	20	50	200
Nickel (Ni)	50	100	500	20	50	200
Zinc (Zn)	200	500	3000	50	200	800
Cobalt (Co)	20	50	300	20	50	200
Arsenic (As)	20	30	50	10	30	100
Molybdenum (Mo)	10	40	200	5	20	100
Barium (Ba)	200	400	2000	50	100	500
Mercury (Hg)	0.5	2	10	0.2	0.5	2

Risk-based Criteria for Groundwater

- 3.2.4 The Dutch 'ABC' criteria were established based on the assumption that groundwater is used as potable water. However, it is too stringent to be applied directly to Hong Kong where groundwater is not generally for potable use. Hence, the Dutch B levels would be only for screening out the chemicals-of-concern (COCs) for risk assessment and are not for assessing groundwater contamination in Hong Kong. A risk-based assessment would be carried out for contaminants with the concentration exceeding the Dutch B level to evaluate the risks posed to the sensitive receptors.
- 3.2.5 The risk-based assessment that has been adopted in US Environmental Protection Agency (USEPA) takes into account concentrations of individual contaminants in groundwater, the anticipated most sensitive human receptor and the potential exposure pathways. For a worst-case scenario, the largest contaminant concentrations in the groundwater samples would be taken as the source concentration for the risk calculation.
- 3.2.6 Exceedance of the risk-based criteria would be qualified in two tiers. Firstly, the total Pathway Hazard Index that is the sum of contaminant hazard quotients exceeds one (i.e. USEPA recommended hazard index). Secondly the largest contaminant concentration exceeds the corresponding Risk Based Screening Level (RBSL) that is derived from the recognized oral reference dose. For carcinogens, the first is the Total Carcinogenic Risk that is the sum of contaminant carcinogenic risk exceeds 1x10⁻⁶ (i.e. USEPA lifetime cancer risk level). The second is the largest carcinogenic contaminant concentration exceeds the corresponding RBSL that is derived from the recognized carcinogenic oral slop factor. It should be noted that risk assessment could only be undertaken for those chemicals that have a recognized oral slope factor or oral reference dose.

3.3 Analytical Results and Interpretation

Fieldwork and On-site Measurements

- 3.3.1 The SI was undertaken in accordance with the sampling plan detailed in the approved CAP.
- 3.3.2 No distinctive, characteristic smell of soil and groundwater sample exhibiting signs of contamination was noticeable.
- 3.3.3 Soil boring logs are presented in **Appendix C**.

On-site PID Measurement

- 3.3.4 The volatile organic compounds (VOCs) concentrations in the soil samples obtained were measured by a photoionization detector (PID).
- 3.3.5 In general, the VOC levels in the soil samples are low (below 5.2ppm), which is considered minimal to pose any harmful effects to site workers during decontamination.

Thickness of Free Product Measurement

- 3.3.6 Floating oil / free product (of TPH) were not found in all 5 boreholes.
- 3.3.7 As no free product was encountered during the SI, only the results of PID measurement are presented in **Appendix D**.

Laboratory Analytical Results

Results of Soil Analysis

- 3.3.8 A total of 19 soil samples, excluding those for QA/QC purposes, were collected during the SI for laboratory analysis. The laboratory testing results for all soil samples are presented in **Appendix E**.
- 3.3.9 Among these samples collected, no exceedances to the Dutch B levels were recorded and as such, soil remediation is considered not necessary.

Results of Groundwater Analysis

3.3.10 During the SI, groundwater was encountered in all boreholes. A total of 5 groundwater samples were therefore collected from these boreholes. **Table 3.2** shows the termination depth of each borehole and the corresponding groundwater level. The measured groundwater level contour is presented in **Drawing 3.2**.

Sample	Groundwater	Level	Termination Depth of Borehole
I.D.	m Below Ground	mPD	m Below Ground
RSB-01	2.24	2.21	4.50
RSB-01A	2.20	2.25	6.70
RSB-02	2.18	2.25	7.00
RSB-07	2.24	2.22	6.15
RSB-08	2.28	2.2	6.45

 Table 3.2
 Summary of the Borehole Termination Depths and Groundwater Level

3.3.11 The groundwater samples with concentration exceeding the Dutch B/C levels are summarized in **Table 3.3**. The laboratory testing results for all groundwater samples are also provided in **Appendix E**.

 Table 3.3
 Summary of Groundwater Samples Exceeding the Dutch B/C Values

Sample	GW depth (m below	Contaminant	Dutch	Level	Concentration	Dutch Level
I.D.	ground)		В	С	(µg/L)	Exceeded
		Cadmium	2.5	10	3.2	>B
		Copper	50	200	76	>B
RSB-01	2.24	Lead	50	200	1600	>C
		Zinc	200	800	700	>B
		Barium	100	500	390	>B
		TPH	200	600	2871	>C

Sample I.D.	GW depth (m below	Contaminant	Dutch	Level	Concentration	Dutch Level
I.D.	ground)		В	С	(µg/L)	Exceeded
		Cadmium	2.5	10	3.8	>B
		Copper	50	200	92	>B
RSB-01A	2.20	Lead	50	200	1300	>C
HOD-OTA	2.20	Zinc	200	800	670	>B
		Barium	100	500	250	>B
		TPH	200	600	259	>B
		Lead	50	200	410	>C
RSB-02	2.18	Zinc	200	800	310	>B
N3D-02	2.10	Barium	100	500	170	>B
		TPH	200	600	435	>B
RSB-07	2.24	Lead	50	200	210	>C
N3D-07	2.24	Barium	100	500	210	>B
		Lead	50	200	450	>C
		Zinc	200	800	510	>B
RSB-08	2.28	Barium	100	500	640	>C
		TPH	200	600	250	>B
		Phenanthrene	2	10	2.3	>B

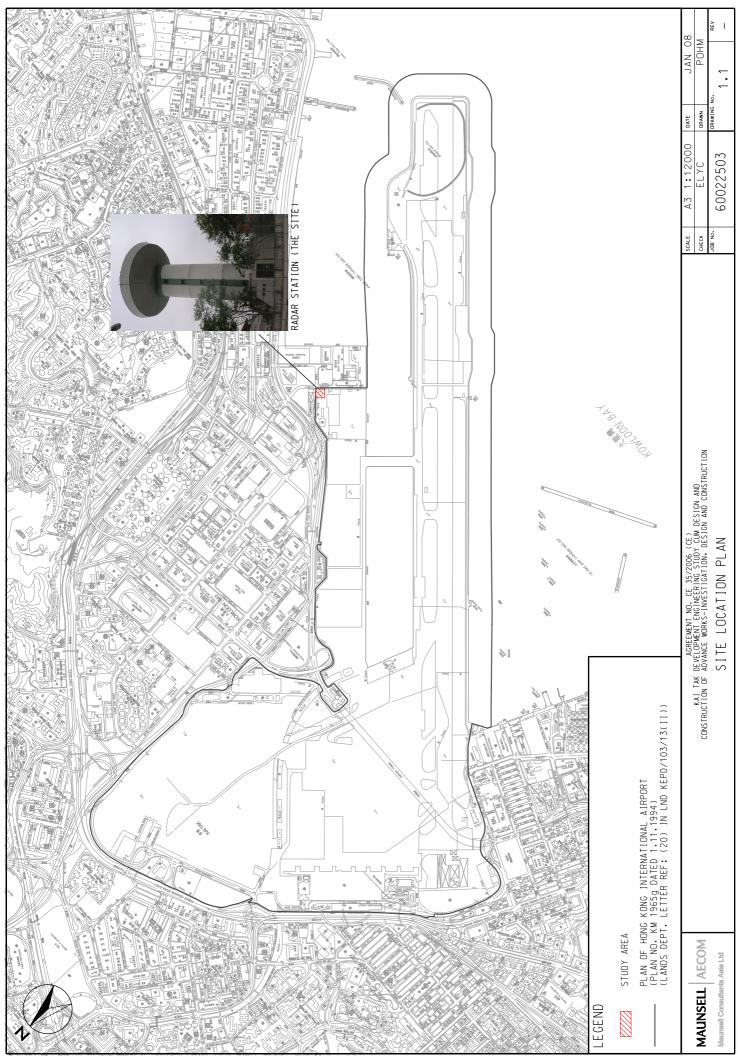
- 3.3.12 As discussed earlier, the Dutch values for groundwater would serve to indicate the chemical-of-concerns (COCs) for risk assessment. A risk-based assessment was thus carried out for parameters which exceeded the Dutch B/C levels to evaluate the risks posed to the sensitive receptors, particularly construction workers, who have direct contact with groundwater.
- 3.3.13 The maximum contaminant concentration recorded in the groundwater samples irrespective of their locations would be taken as the source concentration for the risk calculation. Details of groundwater risk assessment are given in **Appendix F**.
- 3.3.14 The results of the groundwater risk assessment indicate that concentrations of the COCs in the groundwater, including metals (cadmium, copper, lead, zinc, molybdenum and barium), TPH and phenanthrene do not exceed the risk-based criteria for remediation.
- 3.3.15 For the case of TPH, the "allowable" concentration for TPH derived from the risk assessment (2.13E+02 mg/L) is above the solubility limit of TPH in water, the remediation criterion for TPH should therefore be interpreted as "no free product" present in groundwater. In accordance with the on-site measurement records, no apparent floating free products were observed in all groundwater samples. Thus, no remediation is considered necessary with reference to the remediation criterion.
- 3.3.16 In case dewatering is necessary during excavation for decommissioning or further development, the groundwater extracted at the excavated area could be recharged on-site within the 10m-zone around from the boundary of the excavated area. The water should be recharged in continuous mode.

Results of QA/QC Analysis

- 3.3.17 QA/QC is the practice of making sure that collection and analysis techniques provide precise and accurate information. This process is to ensure the levels of contamination measured in the environmental samples reflect the actual environmental levels and are not due to accidental contamination of the sample or sample container. In this Study, 1 duplicate soil sample and 1 set of field blank and equipment blank were collected and analyzed during the course of sampling. The laboratory results for QA/QC samples are presented in **Appendix E**.
- 3.3.18 The laboratory results showed that detectable heavy metals (copper and tin) and TPH (C15-C28, C29-C36) were found in the field and/or equipment blanks. The potential source of

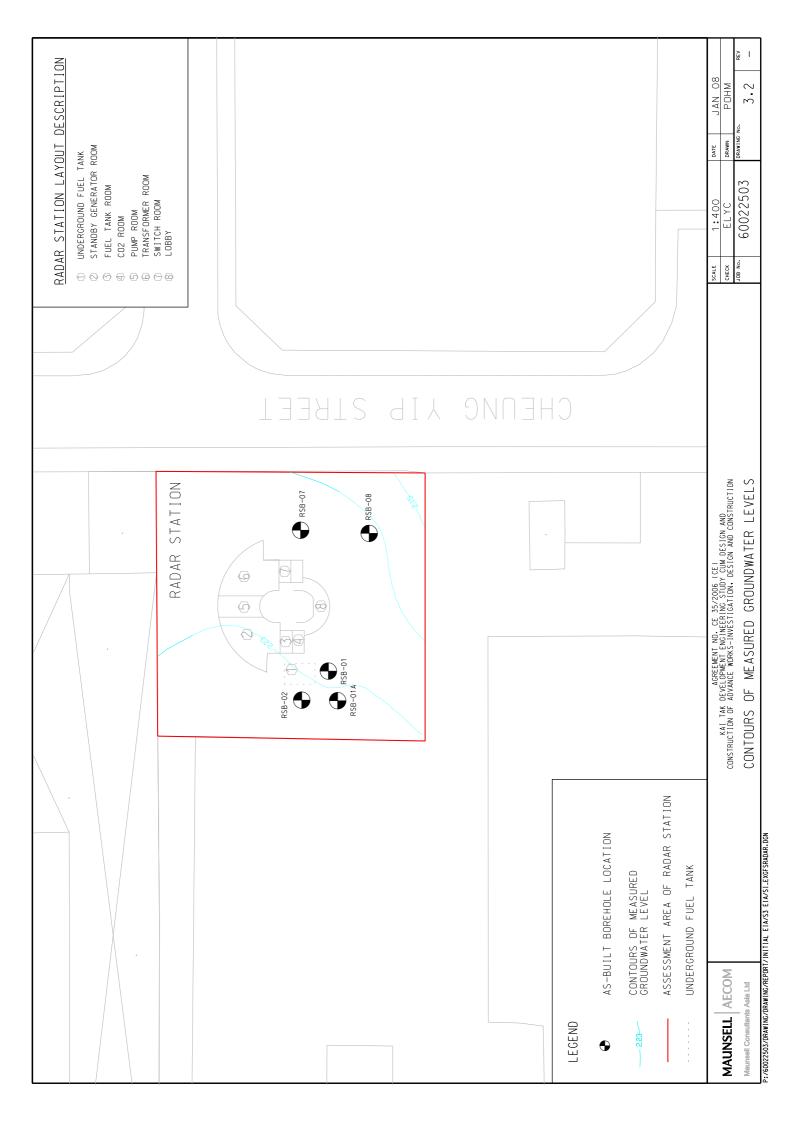
contamination in the blanks could be due to (1) sampling or laboratory testing equipments not being decontaminated completely; (2) cross-contamination from the ambient conditions during sampling and laboratory testing; and 3) contaminated from the blank container itself. As reported by the site supervision personnel and the laboratory, all procedures were implemented in accordance to the requirement set in the approved CAP during sampling at the site and analysis in the laboratory. Though, there is possible cross-contamination which would cause higher reported values than actual, given that the chemical-of-concerns do not exceed the risk-based criteria for remediation, the results would not influence the outcome of this assessment.

3.3.19 In order to assess the sampling and laboratory reproducibility and precision, the relative percent difference (RPD) of the duplicate samples were determined. The USEPA acceptable limit for RPD is less than 50% for soil. The calculation, as presented in **Appendix E**, showed that most of the RPDs for soil samples were below 50% which implies for quality acceptance. Although some of the RPDs were found elevated for more than 50%, no discrepancies were observed during sampling in the site and analysis in the laboratory. In addition, since no Dutch B exceedance was found in the samples and remediation is not necessary, the results of RPD would not influence the outcome of this assessment.


3.4 Estimation of Soil Contamination Extent and Remediation

3.4.1 Based on the analytical results of soil presented above, it is revealed that no testing parameters for the soil samples showed exceedance in the relevant Dutch B levels and soil remediation is considered not necessary.

3.5 Conclusions and Recommendations


- 3.5.1 Sampling at 1 of the borehole locations (RSB-01) was not completed to the desired depth due to the presence of concrete material. A completed set of soil samples was attained after borehole relocation (RSB-01A). A total of 5 boreholes were constructed during the SI.
- 3.5.2 According to the results of site investigation, a total of 19 soil samples were collected at RSB-01, RSB-01A, RSB-02, RSB-07 and RSB-08. No exceedances in Dutch B/C levels were found among all soil samples collected.
- 3.5.3 The results of the groundwater risk assessment indicate that concentration of the chemicalof-concerns (COCs) in the groundwater, including heavy metals (cadmium, copper, lead, zinc, molybdenum and barium), TPH, and phenanthrene do not exceed the risk-based criteria for remediation. As no apparent floating free products were recorded in all groundwater samples, it is considered that no remediation is required.
- 3.5.4 Hence, no remediation action is considered necessary for the outdoor area of Radar Station.
- 3.5.5 Land contamination assessment for the area inside the building of the Radar Station, covering the fuel tank room, the transformer room and the standby generator room, should be carried out upon the cessation of operations and prior to the redevelopment of the Study Area. Based on the results of SI works conducted at the outdoor area of the Radar Station, there has been no exceedances in Dutch B/C levels among all soil samples collected. Hence, the contamination, if any, within the building of Radar Station is considered localized and would not significantly impact the surrounding areas.

Drawings

P:/60022503/Drawings/Drawing/Report/Initial Ela/CAR/RADAR/SITE LOCATION PLAN_RADAR2.DGN

			RADAR STATION LAYOUT DESCRIPTION
			CONTRACTOR TO CONTRACTOR
		RADAR STATION	
		RSB-02 RSB-01 RSB-01 RSB-01 RSB-01 RSB-01 RSB-01	IP STREET
			IC J
			CHENV
LEGEND			
AS-BUILT	AS-BUILT BOREHOLE LOCATION		
ASSESSMEN	ASSESSMENT AREA UF KADAK STATIUN UNDERGROUND FUEL TANK		
MAUNSELL	CONST	AENT ND. CE 35/20 NT ENGINEERING S ORKS-INVESTIGATI	SCALE 1:400 DATE JAN 08 CHECK ELYC DRAWN POHM JOB NO. FAND275/73 DRAWING NO. REV
Meunsell Consultants Asia Lid 0.460025613705ANIME/ADDANIME/SEGNOT/INITIAL ELA/53 ELA/51 EXVESSANAD DAN	TIM FIAZE FIAZEI EVERSANAD. DOM	AS-BUILI SAMPLING LOCATIONS	3.1

Appendices

Appendix A

(Sampling and Testing Schedule Proposed in the CAP) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Contamination Assessment Plan (CAP) For Radar Station (Rev. 3)

Table 4.1

Sampling and Testing Plan for the Study Area (Concerned Site Area:~1,600m²; Proposed 4 Sampling Locations)

MethodTPHBTEXPAHsPhenolsChlorinatedHavySoil0-1m BBCXXXXXXSoil0-1m BBCXXXXXXSoil2-2.5m BBCXXXXXXSoil2-2.5m BBCXXXXXXSoil3-3.5m BBCXXXXXXSoil503-3.5m BBCXXXXXSoil5m BBCXXXXXXSoil6m BBCXXXXXXSoil6m BBCXXXXXXSoil0-1m BBCXXXXXXSoil0-1m BBCXXXXXXSoil0-1m BBCXXXXXXSoil0-1m BBCXXXXXXSoil0-1m BBCXXXXXXSoil2-2.5m BBCXXXXXXSoil2-3.5m BBCXXXXXXSoil5mBCXXXXXXSoil5mBCXXXXXXSoil6mBCXXXXXXSoil6mBCXX	Proposed Sampling	Sampling					Para	neters to	Parameters to be Tested		Rationale of Samuling
Soil0-1m BBCXXXXXXBorehole to $6im$ 2-2.5m BBCXXXXXXSoil2-2.5m BBCXXXXXXXBorehole to $6im$ Soil3-3.5m BBCXXXXXXSoilBreBCXXXXXXXXSoil6m BBCXXXXXXXBorehole to fomSoil0-1m BBCXXXXXSoil0-1m BBCXXXXXXXBorehole to 	Location	Method			ТРН		PAHs	Phenols		Heavy	
			Soil	0-1m BBC	×	×	×	×	×		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Soil	2-2.5m BBC	×	×	×	×	×	×	
	B-01	Borehole to	Soil	3-3.5m BBC	×	×	×	×	×	×	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>6</u> ш	Soil	5m BBC	×	×	×	×	×	: ×	
Groundwater If present X			Soil	6m BBC	×	×	×	×	×	< ×	<u></u>
Soil 0-1m BBC X <th< td=""><td></td><td></td><td>Groundwater</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td><td>To assess any contamination due</td></th<>			Groundwater		×	×	×	×	×		To assess any contamination due
Soil 2-2.5m BBC X <			Soil	0-1m BBC	×	×	×	×	× ×		to underground fuel tank. The sampling point would be in vicinity
Borehole to 6m Soil 3-3.5m BBC X X X X X X Soil 5m BBC X X X X X X Soil 6m BBC X X X X X X X X X X X X X X X X X X			Soil	2-2.5m BBC	×	×	×	×	< ×	< ×	of the underground fuel tanks.
6m Soil 5m BBC X X X X Soil 6m BBC X X X X Groundwater If present X X X X	B-02	Borehole to	Soil	3-3.5m BBC	×	×	×	×		< ×	
6m BBC X X X X X X Undwater If present X X X X X X X]	6m	Soil	5m BBC	×	×	×	×	×	×	
If present X X X X X			Soil	6m BBC	×	×	×	×	×	: ×	
				If present	×	×	×	×	×	×	

MAUNSELL

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Proposed		-				Paraı	meters to	Parameters to be Tested		-
Location	Method	Sample Maurix		ТРН	втех	PAHs	TPH BTEX PAHs Phenols	Chlorinated Hydrocarbons	Heavy Metals	Hationale of Sampling
		Soil	0-1m BBC	×	×	×	×	×	×	
0	Borehole to Soil	Soil	2-2.5m BBC	×	×	×	×	×	×	
20-0 -0	бт	Soil	3-3.5m BBC	×	×	×	×	×	×	
		Groundwater If present	If present	×	×	×	×	×	×	To assess any potential migration
		Soil	0-1m BBC	×	×	×	×	×	×	or contaminants from the activities undertaken in the Radar Station.
o C D	Borehole to Soil	Soil	2-2.5m BBC	×	×	×	×	×	×	
8 2 4	6m	Soil	3-3.5m BBC	×	×	×	×	×	×	
		Groundwater If present	If present	×	×	×	×	×	×	•
Remarks:										

BBC = Below Base of Existing Concrete Pavement; GW=groundwater; X = testing proposed * The proposed sampling locations are located inside the building. If there are any spatial and headroom constraints for the proposed sampling locations, trial pit(s) should be considered as an alternative to collect soil samples. The maximum depth of trial pits should be at least 2m -3m BBC subject to site conditions.

Appendix B

(Supplementary Sampling Plan for the Remaining Areas in Radar Station)

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works - Investigation, Design and Construction

SUPPLEMENTARY SAMPLING PLAN FOR RADAR STATION

Contents

IN	TF	RO	D	U	СТ	10	N

1	INTRO	DUCTION	. 1
	1.1	Background	.1
2	SAMP	LING PLAN FOR SITE INVESTIGATION	2
	2.1	Sampling Locations	.2
	2.2	QA/QC Procedures	.5
	2.3	Laboratory Analysis and Results Interpretation	5

List of Tables

Table 2.1	Identified Contamination Hotspots
Table 2.2	Sampling and Testing Plan
Table 2.3	Parameters, Detection Limits and Reference Methods for Laboratory Analyses
Table 2.4	Dutch ABC Values for Soil and Groundwater Contamination

List of Drawings

Drawing A2.1 Proposed Supplementary SI Locations at Potential Contaminated Hotspots

1 INTRODUCTION

1.1 Background

- 1.1.1 The site investigation (SI) works for land contamination assessment in the Study Area were commenced on 14 September 2007 and completed on 9 November 2007. Most of the proposed boreholes (4 nos) located at the outdoor area were constructed and completed for the purpose of identifying possible land contamination at the hotspot areas. 4 potential contamination hotspots within the buildings (fuel tank room, standby generator room and the transformer room) were still in operation at the time of the SI and could not be completed. Therefore, it is recommended that a land contamination investigation should be carried out upon the cessation of the operations and prior to the redevelopment. This supplementary sampling plan (This Plan) is therefore provided for the additional investigation, if necessary, to supplement the approved CAP.
- 1.1.2 This Plan is to supplement the approved CAP by providing the sampling and laboratory analysis information for the areas within the buildings of the Radar Station. Assessment of land contamination sources shall be conducted in accordance with the environmental standards and non-statutory guidelines recommended in the approved CAP.
- 1.1.3 In general, the sampling methods for soil and groundwater (if any), requirements of strata logging and procedures for free product and groundwater level measurement, decontamination, sample collection and delivery shall be conducted as delineated in the approved CAP. The general health and safety measures suggested in the approved CAP shall also be taken as described.

2 SAMPLING PLAN FOR SITE INVESTIGATION

2.1 Sampling Locations

- 2.1.1 Potential sources of land contamination within the building area of the Radar Station were studied in the approved CAP based on information obtained from the desktop studies, site inspections, interviews and site observations.
- 2.1.2 Contamination hotspots were identified in the approved CAP by investigation of the potential sources of land contamination. Identified hotspots are summarized in the following table.

Uses	Site Observation	Potential Source of Contaminants	Remarks
Standby Generator Room	 <u>Container storage area:</u> Several plastic containers observed No containment or drip trays were placed underneath the containers. Stains of paint have been found on the ground 	 Localized spillage of oils/paints 	 1 borehole /trial pit is proposed in this area
	 <u>Electricity generator</u> Drip trays found under the generator to collect fuel leakage The generator was installed on a concrete block 	 Mishandling / Localized spillages of lubricating oils, hydraulic fluid, engine coolants, diesel fuel from maintenance and dismantling of equipment 	 1 borehole /trial pit is proposed in this area
Fuel Tank Room	 Diesel daily tank found with containment placed underneath. Stains were observed on the concrete paved ground around the tank. 	 Spillage of diesel fuel during refueling/ fueling process 	 1 borehole /trial pit is proposed in this area
Transformer room	 Operated for more than 20 years. Materials such as engine coolants, battery fluid and electrical wiring have been used, stored or generated from the site Regular substation inspection and cleaning were practices in this area Ground well paved with concrete and no apparent stains have been observed at the site. 	 Spillage from improper handling of Polychlorinated Biphenyls (PCBs) / transformer fluids 	 1 borehole /trial pit is proposed in this area

 Table 2.1
 Identified Contamination Hotspots

2.1.3 As summarized in the above table, a total of 4 sampling drillholes are proposed for the identified hotspots inside the building of Radar Station. The indicative location plans of the proposed SI sampling locations are illustrated in **Drawing A2.1**.

2.1.4 It should be noted that if significant contamination was revealed during the SI, additional sampling locations would be required to determine the exact extent of contamination. The rationales for selecting the sampling locations are summarized in **Table 2.2**.

Proposed Sampling Plan for Radar Station

Testing Plan
Sampling and
Table 2.2

Proposed	Sampling					à	arameters	Parameters to be Tested			Rationale of Sampling
Sampling Location	Method	Sa	Sample Matrix	ТРН	втех	PAHs	Phenols	Chlorinated Hydrocarbons	Heavy Metals	РСВ	
		Soil	0-1m BBC	×	×	×	×	×	×		
	Borehole/	Soil	2-2.5m BBC	×	×	×	×	×	×		To assess any contamination
20-000	Trial Pit*	Soil	3-3.5m BBC	×	×	×	×	×	×		uue to spillage/leakage itoliti oli containers
		МŨ	If present	×	×	×	×	×	×		
		Soil	0-1m BBC	×	×	×	×	×	×		-
	Borehole/	Soil	2-2.5m BBC	×	×	×	×	×	×		To assess any contamination due to spillage/leakage during
HOD-04	Trial Pit*	Soil	3-3.5m BBC	×	×	×	×	×	×		the operation of electricity
		МŨ	If present	×	×	×	×	×	×		
		Soil	0-1m BBC	Х	Х	Х	×	×	×		-
	Borehole/	Soil	2-2.5m BBC	×	×	×	×	×	×		I o assess any contamination due to spillage/leakage from the
CD-000	Trial Pit*	Soil	3-3.5m BBC	×	×	×	×	×	×		daily tank, inside the storage
		МŨ	If present	×	×	×	×	×	×		
		Soil	0-1m BBC	×	×	×	×	×	×	×	
	Borehole/	Soil	2-2.5m BBC	×	×	×	×	×	×	×	To access any contamination
00-900	Trial Pit*	Soil	3-3.5m BBC	Х	Х	Х	×	×	×	Х	due to transformer's fluid
		GW	If present	Х	Х	Х	×	×	×	Х	
Remarks:											

temarks:

BBC = Below Base of Existing Concrete Pavement; GW=groundwater; X = testing proposed * The proposed sampling locations are located inside the building. If there are any spatial and headroom constraints for the proposed sampling locations, trial pit(s) should be considered as an alternative to collect soil samples. The maximum depth of trial pits should be at least 2m -3m BBC subject to site conditions. Details of the chemical parameters shall be referred to Table 4.2 of the approved CAP and **Table 2.3** below. This table shall be read in conjunction with **Drawing A2.1**.

MAUNSELL AECOM

2.2 QA/QC Procedures

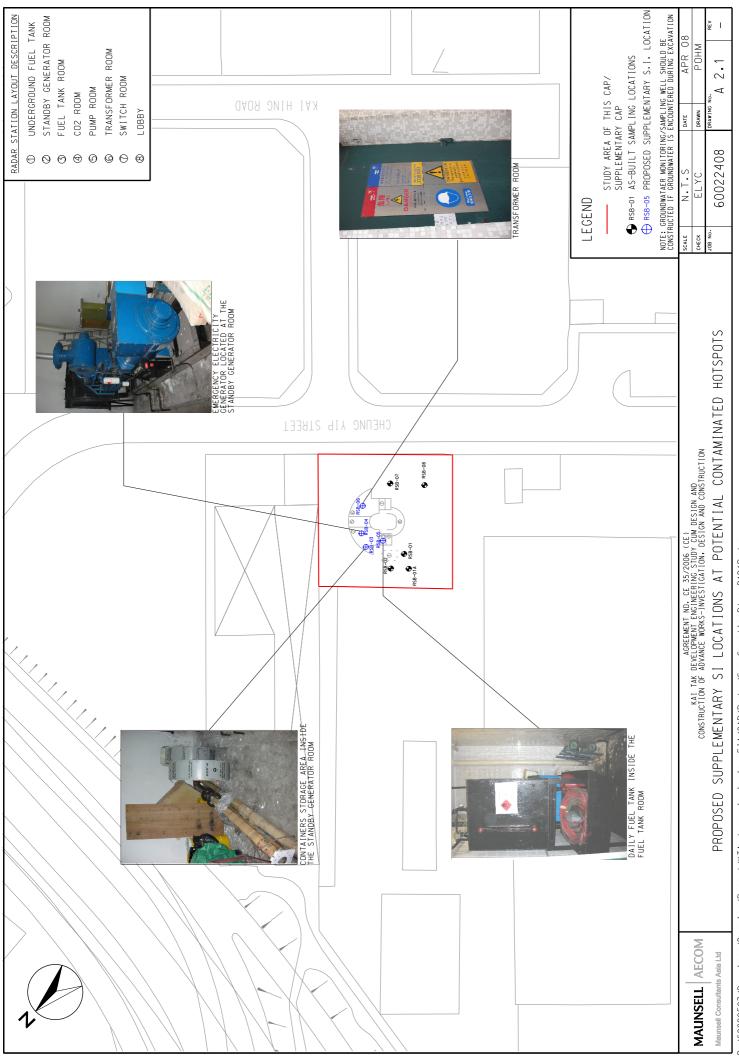
- 2.2.1 QA/QC samples shall be collected in the following frequency during the SI. Chain of Custody protocol shall be adopted.
 - 1 equipment blank per 20 samples for full suite analysis
 - 1 field blank per 20 samples for full suite analysis
 - 1 duplicated (for soil and groundwater) per 20 samples for full suite of analysis.
- 2.2.2 According to the supplementary sampling plan detailed in **Table 2.2**, the total sample number would be less than 20. The minimum number of QA/QC samples which meet the frequency stated in Section2.2.1 will be expected as follow:
 - 1 equipment blank and field blank for the analysis of TPH, BTEX, PAHs, Phenols, Chlorinated hydrocarbons, heavy metal and PCB
 - 1 duplicate for the analysis of TPH, BTEX, PAHs, Phenols, Chlorinated hydrocarbons, heavy metal and PCB

2.3 Laboratory Analysis and Results Interpretation

Laboratory Analysis

- 2.3.1 Laboratory analysis covering total petroleum hydrocarbons, BTEX, PAHs, phenols, chlorinated hydrocarbons, PCBs and heavy metals, is proposed in order to screen the presence of potential contaminants that are of concern within the building area of the Radar Station. The laboratory analysis of the samples shall follow the same requirements set out in the approved CAP.
- 2.3.2 **Table 2.3** lists out the parameter which was not included in the approved CAP together with its detection limit and reference method for the laboratory analyses of soil and groundwater samples.

Table 2.3	Parameters,	Detection	Limits	and	Reference	Methods	for	Laboratory
	Analyses							


		Soi		Ground	lwater
ltem	Parameter	Detection Limit (mg/kg) or otherwise stated	Reference Method	Detection Limit (μg/L) or otherwise stated	Reference Method
1	Total Polychlorinated Biphenyls (Total PCBs)	0.1	USEPA 8070	0.2	USEPA 8070

Results Interpretation

- 2.3.3 The results of the laboratory analyses shall be interpreted in accordance with the guidance documents recommended in the approved CAP.
- 2.3.4 Relevant criteria for soil and groundwater contamination assessment for this study have been documented in the approved CAP. For the parameter which was not included in the previous testing, the criteria for contamination assessment are specified in the following table:

				uwaler Con	lamination	
Parameter		Soil (mg/kg)		Gro	oundwater(µg	J/L)
Parameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C
Total Polychlorinated Biphenyls (Total PCBs)	0.05	1	10	0.01	0.2	1

Table 2.4 Dutch ABC Values for Soil and Groundwater Contamination

P:/60022503/Drawings/Drawing/Report/KTA decommissioning EIA/CAP/Radar/SuppSamplingPlan_RADAR.dgn

Appendix C (Site Boring Log)

	DRILLHOLE RECOR	D	HOLE N	0.
IBRO	CONTRACT NO. GE/2007/03		SHEET	1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

METH	OD			Rotar	у		CO-ORDI	NA	TES						W.O.NO. GE/2007/03.61
MACH	IINE	& NO.		VBM3	8		E 839759.	.56	5		N 81	9651.	89		DATE : 21/09/2007 to 25/09/2007
FLUS	HING	MEDIU	M	NA			ORIENTA	TIC	ON		Verti	cal			GROUND LEVEL + 4.45 mPD
Progress 71/09/200	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns % T C R %	SCR	RQD%	π	Tests		Samples No. Type D		Pevel +4.45	0.00 Depth	Legend	Grade	Description
	" HW		1.01						SPECTION PIT	0.15	+4.30	- 0.15 - - - - - - - - - - - - - - - - - - -			Concrete surface. Brown (7.5YR 5/4), slightly silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments. (FILL)
21/09/200 25/09/200 25/09/200	17	Dry at 18:00 Dry at 08:00								1.50		-			Soft to firm, light brown (7.5YR 6/4), dappled greyish brown, clayey sandy SILT with some angular to subangular fine gravel sized highly decomposed and moderately decomposed rock fragments, occasional brick fragments and wood fragments. (FILL)
- - - - - - - - - - - - -			94				12 bis		²	2.50	-	-			
- - - - - - - - -	HW 4.00	2.40m	90				11 bls	1	5 4	3.50 3.95 4.00	+0.95	- 3.50 - - - - 4.00			Light brown (7.5YR 6/4), silty / clayey fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments and occasional subangular Cobbles (MDG). (FILL) Grey (N 5), angular BOULDERS (Concrete). (FILL)
25/09/200	7	at 13:00	94	1				_	T2101	1.50	-0.05	- 4.50			End of Investigation Hole at 4.50m.
Distu Distu Pistor Split s U76 u U100 Mazie	ındistu undist er samp	ile sample rbed sample urbed samp ble		In-situ Perm Impre Press Packe Acous televie	lard pen u vane s eability t ssion pa uremete er Test stic or op ewer sur meter tip	hear te est acker t er test otical vey	est test	DA	GGED TE	2	T. C. Yi 7/09/20 . M/Sh	07	2. Gro 25/0 3. A gi	nspec undwa 9/2007 oundv	ction pit was excavated to a depth of 1.50m. ater monitoring well was installed to 4.00m below ground level on r. water sample was taken from the monitoring well on 27/09/2007. level in the well prior to sampling was 2.24m below ground level.
Wate	iner sa r samp onmen	•	a 1	Stand Grour	pipe	monito	oring well	DA	TE		8/09/20				J200707_03061

RSB-01

1

OF

DRIL	LHOLE	RECORD	
------	-------	--------	--

CONTRACT NO. GE/2007/03

HOLE NO. RSB-01A SHEET 1 OF 1

PROJECT

BR

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

											1
METHOD)	R	otary		CO-ORDI	NATES					W.O.NO. GE/2007/03.61
MACHIN	E & NO.	E	3M45		E 839755	5.39	N 819	653.9	97		DATE : 28/09/2007 to 29/09/2007
FLUSHIN	IG MEDIU	M	NA		ORIENTA	TION	Vertica	al			GROUND LEVEL + 4.45 mF
Drilling Progress Casing	Water Level (m) Shift start / end	Water Returns % T C R %	2	RQD% FI	Tests	Samples No. Type Dept		(m) 0.00	Legend	Grade	Description
28/09/2007 Hy		21.062				A 0.50 B 0.12 B 0.50 1 En 1.00 1 En 1.12 C 1.50	+4.30 - 				Concrete surface. Light brown (7.5YR 6/4), slightly silty fine to coarse SAND wit occasional angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Light brown (7.5YR 6/4), silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)
		84			10 bis 14 bis	11 2.20 2 2.50 3 2.50 3.00 4 3.50	+1.95	<u>2.50</u>			Light brown (7.5YR 6/4), silty fine to coarse SAND with occasional angular to subangular fine gravel sized highly decomposed rock fragments. (FILL)
		90			38 bis	5 3.95 6 - 4.50 7 5.00 8 5.55	-0.05	4.50 5.00			Soft, light brown (7.5YR 6/4), dappled grey, sandy clayey SILT with occasional angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Greyish brown (2.5Y 5/2), silty fine to medium SAND occasion angular to subangular fine gravel sized moderately decomposed rock fragments and occasional wood pieces.
28/09/2007 29/09/2007 29/09/2007 HW	2.35m at 18:00 2.27m at 08:00 V 0	109			48 bis	5.50 5.70 9 10 6.45 6.50	-1.25	5.70 6.00 6.70			(FILL) Grey (N 5), dappled light brown, angular to subangular cobble (MDG, SDG) with some angular coarse gravel sized slightly decomposed rock fragments. (FILL) Greyish brown (2.5Y 5/2), subangular coarse GRAVEL sized moderately decomposed rock fragments and concrete fragments. (FILL)
											End of Investigation Hole at 6.70m.
	mple in sample sturbed sample isturbed samp mple	le I	Standard J In-situ var Permeabil Impression Pressuren Packer Te Acoustic of televiewer Piezomete	he shear to lity test n packer to neter test est or optical survey er tip	est test	LOGGED DATE CHECKED	T. C. Yip 06/10/200 C. M. Shar	7 7	2. Grou 29/09 3. A gr	nspec undwa 9/2007 oundv	ction pit was excavated to a depth of 1.50m. rater monitoring well was installed to 6.70m below ground level 7. Iwater sample was taken from the monitoring well on 02/10/2007 r level in the well prior to sampling was 2.20m below ground lev
Water sar n Environme	mple	≙ ≛ Ŭ	Standpipe Groundwa Extensom	ter monit	oring well	DATE	08/10/200	7			J260707_01

DRILLHOLE RECORD	HOLI
	And the owner of the

CONTRACT NO. GE/2007/03

E NO. RSB-02

OF

1

1

SHEET

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

							_									Г			
METHO	DC			Ro	otary		'	CO-ORDINATES								W.O.NO. GE/2007/03.61			
MACH	INE	& NO.		В	M45			E 839759.19 N 81					9657.	DATE : 21/09/2007			to	24/09/2	007
FLUSHING MEDIUM NA						<u> </u>	ORIENTATION				Verti	Vertical			GROUND LEVEL	+ 4.43		mPD	
Drilling Progress	Casing Depth/Size	Water Level (m) Shift start / end	Wate Returns	TCR%	SCR%	RQD%	E	Tests		Samp No. Type	Depth	peon the second	000 (m)	Legend	Grade	Description	n		
21/09/2007 		Dry at 18:00 Dry at 08:00		<u>.e</u> 6∠						A Id NOILDEASN En	0.00 0.15 0.50 1.00 1.15 1.50	+4.28	<u>0.15</u>			Concrete surface. Greyish brown (2.5Y 5/2), slightly sil some angular to subangular fine to n moderately decomposed rock fragm fragments and asphalt fragments. (F	nedium gr ents, occa ILL)	avel sized sional bric	k
- - 2 - - -										13	2.18	+1.93	- - - - - - 2.50			Greyish brown (2.5Y 5/2), slightly sil some angular to subangular fine to c moderately decomposed rock fragm	oarse grav	/el sized	ID with
				NO NO				11 bis		3 T2101 4	2.50 2.60 3.05 3.10 3.40	+1.03	2.50 2.60 			<u>Grey (N 5), angular COBBLES (MDC</u> Brown (7.5YR 5/4), silty fine to coars angular to subangular fine to coarse fragments. (FILL)	se SAND v		onal
- - -			2	0				20 bls		T2101		+0.73	- 3.70 - - -			Grey (N 5), dappled light brown, ang Greyish brown (2.5Y 5/2), slightly sill much angular to subangular fine to m moderately decomposed rock fragme	ty fine to c nedium gra	oarse SAN avel sized	
- - - - - - -			6					35 bls		⁶ 7	4.30 4.50 4.95 5.00	-0.57	5.00			Grey (N 5), angular BOULDERS (SE	DG). (FILL))	
 22/09/2007 24/09/2007 	HW 6.00	2.60m at 18:00 2.35m at 08:00	8					46 bls 33 bls		T2101	5.50 5.95 6.00	-0.97	<u>5.40</u> 6.00			Light brown (7.5YR 6/4), angular CO	•		,
		2.45m	5	6				18 bis		19	6.45 6.50	-2.07	6.50			Light brown (7.5YR 6/4), slightly silty angular to subangular fine gravel size moderately decomposed rock fragme Light brown (7.5YR 6/4), dappled gre SAND with much angular fine to coar	ed highly c ents. (FILL ey, silty fine	lecompose) e to coarse	d and
0		at 12:00								12	6.95	-2.57	7.00			decomposed rock fragments. (FILL) End of Investigation Hole at 7.00m.			
Disturk Disturk Piston Split sp U76 un U100 u Mazier	Disturbed sample Piston sample Split spoon sample U76 undisturbed sample U100 undisturbed sample Disturbed sample U100 undisturbed sample			ear te est cker to test ical ey	test LOGGED			2. Groundw 24/09/2007 3. A ground The water 4. A duplica			nspec undwa 9/2007 oundv water uplicat	tion pit was excavated to a depth of 1. ter monitoring well was installed to 7. water sample was taken from the moni level in the well prior to sampling was te environmental soil sample was take 209/2007.	.00m belov itoring wel s 2.18m be	l on 27/09/ low groun	2007. d level.				
Water	samp] SPT liner sample						oring well	D/	ΑTE		28/09/20	07					J200	707_03061

	DRILLHOLE REC	HOLE N	RSB-07			
IBRO	CONTRACT NO. GE/2007/03		SHEET	1	OF	1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

METHOD Rotary					6	CO-ORDINATES							W.O.NO. GE/2007/03.61			
MACHINE	& NO.	ν	BM38		E	E 839777.66 N 819640.					.22		DATE : 21/09/2007 to 24/09/2007			
FLUSHING MEDIUM NA					0	ORIENTATION				Vertical			GROUND LEVEL + 4.46 mP			
Drilling Progress MH Casing Depth/Size	Water Level (m) Shift start / end	Water Returns % DC R %	SCR%	RQD%	E	Tests	No. Typ	ples De Depti 0.00 0.15		0.00 0.15	. Legend	Grade	Concrete surface. Greyish brown (2.5Y 5/2), dappled brown, slightly silty fine to coarse SAND with some angular to subrounded fine gravel			
- 21/09/2007 22/09/2007 -	Dry at 18:00 Dry at 08:00					103 bis	A MULDENSIN B 1 Er C 9 2 3	1.15 1.50	+1.01				sized highly decomposed and moderately decomposed rock fragments. (FILL)			
22/09/2007	2.40m at 18:00	0				21 bis 14 bis 17 bis	4 4 5 6 6 6		+0.46	4.00			Grey (N 5), silty / clayey angular to subangular fine to coarse GRAVEL sized moderately decomposed rock fragments and occasional angular to subrounded cobbles (MDG). (FILL) Greyish brown (2.5Y 5/2), slightly silty fine to coarse SAND w some angular to subrounded fine gravel sized moderately decomposed rock fragments. (FILL)			
24/09/2007 HW 24/09/2007 6.15	2.40m at 08:00	70				14 DIS	7 8	5.50 5.95 6.00	-1.69	- - - - - 6.15			Soft to firm, light brown (7.5YR 6/4), dappled grey, sandy clay SILT with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments. (FILL)			
					-								End of Investigation Hole at 6.15m.			
Disturbed sample Distor sample Split spoon sample U76 undisturbed sample U100 undisturbed sample Mazier sample SPT liner sample SPT liner sample			ear te est cker te test tical ey	ar test LOGGED ter test test cal			25/09/20	2. Groundwa 24/09/2007 3. A groundwa			ection pit was excavated to a depth of 1.50m. vater monitoring well was installed to 6.15m below ground level					
Water sam Environmen	ole	≙ ▲ Ŭ	Standp Ground Extense	water n	nonito	ring well	DATE		28/09/20	07			J200707_00			

		DRILLF	IOLE RECORD	HOLE NO	Э.	RSB	8-08
	IBRO	CONTRACT NO.	GE/2007/03	SHEET	1	OF	1
PROJECT	Agreement No. CE35/2006 Investigation, Design and	(CE), Kai Tak Developme Construction	nt Engineering Study cum Design and (Constructio	ו of A	dvance	Work -

METHOD	1000142500	R	otary		6	O-ORDIN	ATES						W.O.NO. GE/2007/03.61				
MACHINE	& NO.	v	BM38		E 839770.18 N 819633.15					9633.	15		DATE : 21/09/2007 to 21/09/2007				
FLUSHING MEDIUM NA						ORIENTATION				Vertical			GROUND LEVEL + 4.48 mF				
Drilling Progress Casing Depth/Size	Water Level (m) Shift start / end	TCR%	SCR%	RQD%	Ē	Tests	Sample No. Type I	Depth	Level 44.48	0.00 Depth	Legend	Grade	Description				
21/09/2007 HW		2186 90 90				27 bis 45 bis	A Lid HOLL3 SH En C B SH En C S S C S S S S C S S S S S	0.00 0.15 0.50 1.98 1.15 1.50 2.28 2.50 2.95 3.00 3.95 4.00 4.50	+4.33	- 0.00 - 0.15 			Concrete surface. Greyish brown (2.5Y 5/2), dappled light brown, silty fine to coarse SAND with occasional angular to subangular fine to medium gravel sized moderately decomposed rock fragment occasional brick and wood pieces. (FILL) Brown (7.5YR 5/4), slightly silty fine to coarse SAND with sor angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Greyish brown (2.5Y 5/2), dappled brown, silty / clayey fine to coarse SAND with sore angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Greyish brown (2.5Y 5/2), dappled brown, silty / clayey fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments and occasional wood pieces. (FILL)				
HW 21/09/2007 6.45	3.15m at 18:00					↑			-1.97	- 6,45			End of Investigation Hole at 6.45m.				
Disturbed sample Piston sample Split spoon sample U76 undisturbed sample U100 undisturbed sample SPT liner sample Water sample Water sample Environmental Sample					ear tes est test test ical ey	st L ^{ist} D	OGGED ATE HECKED ATE	2	T. C. 71 25/09/20 C. M. 8h	07 Am	2. Grou 22/09 3. A gr	nspec undwa 9/2007 oundv	ection pit was excavated to a depth of 1.50m. vater monitoring well was installed to 6.45m below ground level				

Appendix D

(On-site Measurement Results)

Appendix D PID Measurement

		Samplin	ng Depth	
Sample ID	Sampling Date	m Below Base of Exist	ing Concrete Pavement	PID Results (ppm)
		From	То	1
	21/09/2007	1	1	0.7
RSB-01	25/09/2007	2.35	2.8	0
	25/09/2007	3.35	3.8	0.2
	28/09/2007	1	1	0
	28/09/2007	2.35	2.8	0.2
RSB-01A	28/09/2007	3.35	3.8	2
	28/09/2007	4.85	5.3	5.2
	29/09/2007	5.85	6.3	2.2
	21/09/2007	1	1	0.5
	22/09/2007	2.45	2.9	0
RSB-02	22/09/2007	4.35	4.8	0
	24/09/2007	5.85	6.3	0.2
	24/09/2007	6.35	6.8	0.4
	21/09/2007	1	1	0.2
RSB-07	22/09/2007	2.35	2.65	0
	24/09/2007	5.35	5.8	3.2
	21/09/2007	1	1	0
RSB-08	21/09/2007	2.35	2.8	0
	21/09/2007	3.35	3.8	0
Duplicate Sam	ple			
RSB-02	21/09/2007	1	1	0

Appendix E (Laboratory Results)

	hexachlorobutadiene	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	1,2-dibromo-3- Chloropropane		0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	ensqorqoroldcing.2,5	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	1,1,2,2- tetrachloroethane	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	۲,۱,۱,۲-S,۲,۱,۱ tetrachloroethane	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	tetrachloroethene	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	9-dichloropropane	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
- aliphatics	ensriteorolricht-S, I, I	0.5	0.1	2	20			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
carbons -	ansrttamomordib	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
logenated hydrocarbons	trichloroethene	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
Halogena	9nsrt19orolrtaib-S, t	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	tetrachloromethane	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	anaqorqoroldaib- r, r	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	ensriteorothant-1,1,1	0.5	0.1	2	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	enetteroethene	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	ansrtfeoroethane	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	trans-1,2- dichloroethene	0.5	0.1	5	50			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50	
	anarteoroethene	0.5	0.1	2	50			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	Π	< 0.50	
	lonəriqiyritəm-4/8	0.2	0.02	-	10			<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	Π	<0.20	
Phenols	lonəriqiyritəm-S	0.2	0.02	-	<u>10</u>			<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	H	<0.20 <	
۵.	Phenol	0.2	0.02	-	<u>10</u>			<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	Η	<0.20 <	
	səuəli		0.05	5	50			<0.60 *	<0.60 <	<0.60 <	<0.60 <	<0.60 <	<0.60 <	<0.60 <	< 0.60 <	<0.60 <	≤0.60 ≤	<0.60 <	<0.60 <	<0.60 <	<0.60 <	<0.60 <	< 09.0>	< 0.60 <	<0.60 <	< 09.0>	-	<0.60 <	
	өпөіүХ-о	0.2						<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <		<0.20 <	
	ənəiyX-q ,-m	0.4						<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	<0.40 <	6	<0.40 <		<0.40 <	
втех	eneznediydt	0.2	0.05	5	20			<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <		<0.20 <	
	ənəuloT	0.2	0.05	3	30			<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <		<0.20 <	
	əuəzuəg	0.2	0.01	0.5	5			<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <	<0.20 <		<0.20 <	
	Pyrene	0.05	0.1	10	100			<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	_	<0.05 <	
	Fluoranthene		0.1	10	100			05	05	.05	<0.05 <	05	.05	<0.05 <	.05	<0.05 <	.05	<0.05 <	05	<0.05 <	05	<0.05 <	.05	05	<0.05 <	.05		05	
	arso(a)pyrene) benzo(a)pyrene)	75	0.05	-	10			0.05 <0.	0.05 <0.	0.05 <0.	.05	0.05 <0.	0.05 <0.	<0.05 <(<0.05 <0.	.05	0.05 <0.	.05	0.05 <0.	<0.05 <(0.05 <0.	.05	<0.05 <0.	0.05 <0.	<0.05 <(<0.05 <0.		<0.05 <0.	
PAHs	Anthracene	-	0.1	10	100			<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <	<0.05 <	<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <0.	<0.05 <	<0.05 <0.	<0.05 <0.	<0.05 <	<0.05 <0	<0.05 <	<0.05 <		<0.05 <	
	Phenanthrene		0.1	10	100			.05	.05	<0.05 <	<0.05 <	<0.05 <	.05	<0.05 <	<0.05 <	<0.05 <	.05	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	<0.05 <	.05	<0.05 <	<0.05 <		<0.05 <	
	Naphthalene	5	0.1	2	50			0.05 <0	0.05 <0	.05	.05	.05	0.05 <0	.05	<0.05 <	<0.05 <	0.05 <0	.05	05	.05	<0.05 <	05	.05	<0.05 <0	.05	.05		05	
\vdash	H9T IstoT		100	1000	5000			<252 <0	<252 <0	462 <0	<252 <0	<252 <0	<252 <0.	634 <0.	262 <	<252 <	392 <0	<252 <0	<252 <0.	<252 <0.	<252 <	<252 <0.	<252 <0.	<252 <	<252 <0.	<252 <0	-	<252 <0.	
	C29-C36	100						<100 <	<100 <	280 4	<100 <	<100 <	<100 <	<100 6	110 2	<100 <	240 3	<100 <	<100 <	<100 <	<100 <	<100 <	<100 <	<100 <	<100 <	<100 <		<100 <	
трн	C15-C28	100	,					<100 <	00	30 2	<100 <	<100 <	<100 <	480 <	<100 1	<100 <	<100 2	<100 <	<100 <	00	<100 <	<100 <	<100 <	<100 <	<100 <	<100 <		<100 <	
	C10-C14	50						<50 <	<50 <1	<50 1	<50 <	<50 <	<50 <	52 4	<50 <	<50 <	<50 <	<50 <	<50 <	<50 <1	<50 <	<50 <	<50 <	<50 <	<50 <	<50 <		<50 <	
	60-90	2.0	,					<2.0	<2.0	<2.0 +	<2.0 *	<2.0	<2.0	<2.0	<2.0 <	<2.0 •	<2.0 *	<2.0	<2.0	<2.0 +	<2.0 *	<2.0	<2.0 +	<2.0 <	<2.0	<2.0 +		<2.0	
-	(sð) muhsð		200	400	2000			25 <	23 <	31 <	14 <	27 <	11 <	86 <	20 <	11 ~	50 <	62 <	46 <	27 <	49 <	32 <	50 <	36 <	44	18 <	-	30 <	
	(n2) niT		20 2		300 2			م	6	2.3	2	2.1	5	8	10 1	2	8	8	6	2	5	6	e.	10	7	8.		80.	
	(oM) munsbdyloM		-		200 3			1.1 2	1 2.	1.4 2	2.9 1	00.	1.00 2.	1.1 5.	3.7 1	1.00 3.	1.00 9.	3.3 3.	2.2 9.	<1.00 2.	3 2.	1.8 2.	1.1 4.	00.	1.1 2.	1.4 1	Η	1.00	
	Cobalt (Co)	10	20	50 4	300 2			1.5	7.	1.4 1	.62 2	1.2 <1	1.3 <1	2.2 1	7.2 3	74 <1	1.5 <1	3.3 3	2.8 2	1.5 <1	1.8	1.8 1	2.2 1	2.7 <1	1 189	1.2 1	Η	5.7 <1	
	(sA) ainear		20	30	50 3			2.5 1	1.4 1	1.00 1	1	1.00 1	1.00 1	1.3 2	1.6 7	1.6 0.	1.2	1.8 3	1.9 2	1.00 1	4	2.2	2	00.	1.2 0.	1.00 1	Н	00.	
	Mercury (Hg)	-		2	10			0.11 2	0.08 1	0.08 <1	0.05	0.05 <1	0.05 <1	0.06 1	0.12 1	0.05 1	0.05 1	0.15 1	0.38 1	<0.05 <1	.07	06	0.14	0.05 <1	0.16 1	0.1 <1	H	0.05 <1	
Metals	(nZ) oniZ		-	500				57 0.	82 0.	42 0.	38 <0.	38 <0.	22 <0.	120 0.	220 0.	23 <0.	49 <0.	88 0.	160 0.	<20 <0	100 0.	120 0.	100 0.	35 <0.	59 0.		Н	20 <0.	
	Lead (Pb)	1.0 2	-	150 5	600 31			68	8 69	54 2	120 3	41 3	48 2	47 1	64 2	28 2	76 4	57 8	120 1	66 <	68 1	62 1	87 1	46 3			Н	130 2	
	Nickel(Ni)		50		500			2	1.9 6	1.4 5	<1.00 1	<1.00 4	<1.00 4	2.2 4	16 6	1.8 2	1.3 7	5.6 5	5.8 1	<1.00 €	4.5 6	4 6	2.2 8	4.4 4	1.5 2	<1.00 4	Н	13 1	
	Cobber (Cu)			100 1	500			8.1	13 1	8.5 1	1.6 <1	6 <1	2.1 <1	65 2	71 1	4.4 1	16 1	52 5	73 5	1.1 <1	8.7 4	26	9.1 2	32 4	11 1	6.7 <1	Н	9.9	
	Chromium (Cr)			250 1	800			8 3	3.1 1	5.3 8	<1.00 1	1.4	<1.00 2	4.8 6	16 7	4 4	2	12 5	6 7	1.2 1	7.9 8	6.2	3.6 9	1.3	2.7 1	1.8 6	Н	2 9	
	(bC) muimbsD	0.2 1	-	5 2	20 8			<0.20	<0.20 3	<0.20 5	0.36 <1	<0.20 1	<0.20 <1	0.45 4	0.65 1	<0.20	<0.20	<0.20 1	0.64	<0.20 1	<0.20 7	0.21 6	<0.20 3	<0.20 1	<0.20 2	<0.20 1	Η	<0.20	
⊢	,	2	╞			Ţ		8	Ŷ	°C V	0.	0 V	0	0	0.	°C V	°C V	0	0.	°C V	°C V	0.	0	Ŷ	Ŷ	0	Н	у V	
		ĺ					To	1.00	2.8	3.8	1.00	2.8	3.8	5.3	6.3	1.00	2.9	4.8	6.3	6.8	1.00	2.65	5.8	1.00	2.8	3.8		1.00	
		(B,			40	Denth (m) BBC																							
	eria	Reporting Limit (mg/kg)	ЧЧ	Dutch B	Dutch C Soil Semule Mentification	Dent	From	1.00	2.35	3.35	1.00	2.35	3.35	4.85	5.85	1.00	2.45	4.35	5.85	6.35	1.00	2.35	5.35	1.00	2.35	3.35		1.00	
	Criteria	sporting Li.	Dutch A	Dutc	Dutch C		ſ		2	3	-	2	3	4	5	-	2	4	5	9	-	2	5	-	2	е			
		Å			Coi		ion	01	01	01	11A	11A	11A	11A	11A	02	02	02	02	02	07	07	07	08	08	08		uplicate)	
		ĺ					Location	RSB-01	RSB-01	RSB-01	RSB-01A	RSB-01A	RSB-01A	RSB-01A	RSB-01A	RSB-02	RSB-02	RSB-02	RSB-02	RSB-02	RSB-07	RSB-07	RSB-07	RSB-08	RSB-08	RSB-08		RSB-02 (duplicate)	
L		1			Ц	1		1																				RS	

Notes: BBC, Babio Base of Existing Concrete Egatam in boloded inter indicates exceedance of Duch BL evel Shaded square indicates exceedance of Duch C Level Full analytical results should be referred to laboratory report Full analytical

				1		·		-	-	1		
	hexachlorobutadiene	2	-	10	50			₽	\$	₽	\$	₽
	9nsqorqoroldo-S-cmordib-S, f	2	-	10	50			<2	<2	<2	<2	<2
	9.2,3-trichloropane	2	1	10	50			₽	5	₽	2	₽
	ensriteorolriasriet-S,S,t,t	2	Ļ	10	50			\$	\$	∾	<2	5
				_				-	_			
	9.1,1,2-tetrachloroethane	2		10	50			~2	<2	<2	<2	<2
	tetrachloroethene	⊲	-	10	50			~2	<2	<2>	<2	<2
	9nsqorqoroldaib-E, f	~		10	50			ų	\$	₽	5	V
phatics	9nsrtaoroldzit-S,t,t	2	L L	10	50			₽	\$	\$	5	ୠ
Halogenated hydro carbons - aliphatics	ansritemomordib	2	1	10	50			<2	<2	<2	<2	<2
ydrocart	911911901011011	•		0	0			Ş	Ş		~	°2
enated h	enetteroidi trichloroethene	CA.	-	10	50			v	v	₽	v	v
Haloge	2-dichloroethane	≈	-	10	50			₽	\$	ų	\$	₽
	tetrachloromethane	⊲	-	10	50			ų	\$	ų	2	∾
	enegoropropene	2	1	10	50			<2	<2	<2	<2	<2
	ensriteorolitairt-t,t,t	2		10	50			¢	5	\$	<2	₽
	enertieorolricio-2, l-zio			10	50			∾	~	∾	~	⊳
				_					_		_	
	1.1-dichloroethane	2		10	50			<2	<2	<2	<2	<2
	enetherotoholdsib-S, f-anart	2	۰,	10	50			₽	₽	₽	₽	₽
	enetteroettene	2	$\left \cdot \right $	10	50			<2	<2	2	<2	<2
	lonərlqiyrtəm-4/5	0.5	0.5	15	50			<0.5	<0.5	<0.5	<0.5	<0.5
Phenols	lonəriqiyritəm-S	0.5	0.5	15	50			< 0.5	<0.5	<0.5 <	<0.5 <	<0.5 <
Phe								5		5	_	5
	Phenol	0.5	0.5	15	50			Ŷ	0.5 ≤ 0.5	8	0.5 c	Ŷ
	səuəlyX	•	0.5	20	60			< 30	< 30	< 30	< 30	< 30
	ənəlyX-o	15		•				<15	<15	<15	<15	<15
×	ansiyX-q ,m	15						<15	<15	<15	<15	<15
BTEX	eneznediyrtt	15	0.5	20	60			<15	<15	<15	<15	<15
	010701	15	_	15	ī			<15 <	<15 <	<15 <	<15 <	<15 <
	Toluene	11	0.5	7	50			7	v	7	v	7
	Benzene	1	0.2	١	5			7	, ,	v	~ -	~
	Ругеле	0.1	0.02	٢	S			<0.1	<0.1	<0.1	<0.1	0.69
ght)	Fluoranthene	0.1	0.02	1	5			<0.1	<0.1	<0.1	<0.1	0.72
ular Weiç	benzo(a)pyrene(as benzo(a)pyrene)	0.1	0.01	0.2	1			<0.1	<0.1	<0.1	<0.1	<0.1
PAHs (Low Molecular Weight)	Anthracene			2	10			-	1	F.	-	0.25 <
AHs (Lo		1 0.1	.0					.1 <0.	1 <0.	.1 <0	1 <0.	
4	Phenanthrene	0.1	0.1	2	10			<0.1	<0.1	₹0.1	<0.1	2.3
	Aphthalene	0.1	0.2	2	30			<0.1	<0.1	<0.1	<0.1	<0.1
-	HqT IstoT	.	20	200	600			2871	259	435	190	250
	C59-C36	25						2100	<25	47	<25	25
грн	C15-C28	25						660 2	. 08	330	120	70
F					_			_			_	-
	C10-C14	22	Ľ	•	•			91	34	38	<25	35
	60-90	20	Ŀ	•	•			<20	<20	<20	<20	<20
	(88) muins8	1.0	50	100	500			390	250	170	210	640
	(n2) niT	1.0	10	30	150			2.9	4.6	2.7	3.1	3.6
	(oM) munabdyloM	1.0	5.0	20	100			4.4	20	12	5	6.2
	(co) filedo)	1.0	20	50	200			14 2	8.3	5.5	2.5	9
				_					_			6
	Arsenic (As)		10	30	100			<10	< < 10	<10	<10	<10
Metals	Mercury (Hg)	0.5	0.2	0.5	2			<0.5	<0.5	<0.5	<0.5	<0.5
Ψ¢	(nS) oniS	50	50	200	800			700	670	310	73	510
	(dq) bsə/	1.0	20	50	200			1600	1300	410	210	450
	Vickel(Ni)	1.0	20	50	200			16	10	7.2	3.5	11
				_			l		_	-		e
	Copper (Cu)	1.0	20	50	200			76	92	47	18	1.3
	(Cr) Crimond	1.0	20	50	200			12	14	11	10	14
	(bJ) muimbsD	1.0	ŀ	2.5	10			3.2	3.8	<1.0	<1.0	1.2
			Γ	Γ) BGL		3C)	3C)	3C)	3C)	3C)
						Sampling Depth (m) BGI (m BBC)		2.24 (2.09m BBC)	2.20 (2.05m BBC	2.18 (2.03m BBC)	2.24 (2.09m BBC	2.28 (2.13m BBC
		(T/Bn,				mpling L (m	nples	.24 (2.	2.20 (2.1	2.18 (2.4	2.24 (2.)	2.28 (2.
		imit (Dutch A	Dutch B	Dutch C	Sa	Groundwater Samples	i7	2	~	2	~1
	Criteria	٦Ĝ	5	7	~ .		- ×					
	Criteria	Reporting Limit (ug/L)	Dut	ď	Ď	E	Ground	-	A	c,	2	8
	Criteria	Reporting L	Dut	D	Ď	Location	Ground	RSB-01	RSB-01A	RSB-02	RSB-07	RSB-08
	Criteria	Reporting L	Dut	'n	D	Location	Ground	RSB-01	RSB-01A	RSB-02	RSB-07	RSB-08

Notes: BGL= Below Ground Level, BBC = Below Base of Existing Concrete Square in bolden indicates exceedance of Duch B Level Shaded square indicates exceedance of Duch C Level Full analytical results should be referred to laboratory report

	ensqorqorolrioirt.c.,s.,t ensqorqorolrio-c-omordib-s, r f	2	1 1 1	10 10 10	50 50 50			<2 <2 <2	<2 <2 <2
	ensrifecrolriastref.S.(1,1,1,		1 1	10 10	50 50			<2 <2	<2 <2
	enertteoroldsstat	2	1	10	50			<2	<2
tics		2	F I	10	50			2 <2	2 <2
ns - alipha	onprovinging to the second of	2	1	0 10	0 20			2 <2	2 <2
ydrocarboi	dibromomone dibromomone		1	0 10	0 50			2	2
Halogenated hydrocarbons - aliphatics	5.2-dichloroethane		1	10 10	50 50			<2 <2	<2 <2
Halo	tetrachloromethane			10 1	50 50			<2 <	~
	9raqorqorqora, r, f			10 1	50 50			~ ~	~
	ensitreoroficiat- F, F, F			10 1	50 50			<2 <	<2
	enefiteronitorettere			10 1	50 50			<2 <	~
	ensriteoroldzib-t,t	2	1	10 1	50			<2 <	~
	enetheoroldoib-S, r-ansn		-	10 1	50			<2	<2
	enertiendetheret	2		10 1	50 50			<2 <	<2 <
	lonəriqi yritəm-Þ\E	0.5	0.5	15 15	50			<0.5 <	<0.5
Phenols	lon9nqlyrtam-S	0.5 (0.5 (15	50			<0.5 <	0.5 <
Å	Phenol	0.5 (0.5	15	50			< 0.5 <	<0.5 <
	sənəlyX	-	0.5	20	60			<30 <	<30 <
	əuəjáჯ-o	15	-					<15 <	<15 <
	m, p-Xylene	15						<15 <	<15 <
втех	eneznedłytł	15	0.5	20	60			<15 <	<15 <
	anauloT	15	0.5	15	50			<15 <	<15 <
	euezueg	1	0.2	1	9			<1 ·	۰ ۲
	Ругеле	0.1	0.02	1	5			<0.1	<0.1
(ji	Fluoranthene	0.1	0.02	1	2			<0.1	<0.1
PAHs (Low Molecular Weight)	as) anayrene (as benzo(a)pyrene)	0.1	0.01	0.2	1			<0.1	<0.1
Low Molec	eneosintinA	0.1	0.1	2	10			<0.1	<0.1
PAHs (Phenanthrene	0.1	0.1	2	10			<0.1	<0.1
	ənəlsritiqsV	0.1	0.2	7	30			<0.1	<0.1
	H9T IsjoT		20	200	600			855	<95
	C59-C36	25						540	<25
трн	C15-C28	25						270	<25
	C10-C14	25						<25	<25
	60-90	20						<20	<20
	Barium (Ba)	1.0	50	100	500			۰ 1	ŕ
	(n2) niT	1.0	10	30	150			1.80	1.80
	(oM) munəbdyloM	1.0	5.0	20	100			۲,	ŕ
	(oO) fl6doO	1.0	20	50	200			۲,	7
	Arsenic (As)	10	10	30	100			<10	<10
als	աթւշուծ (Hg)	0.5	0.2	0.5	2			<0.5	<0.5
Metals	(nZ) oniZ	50	50	200	800			<50	<50
	Lead (Pb)	1.0	20	50	200			-1	۰ ۲
	Nickel(Ni)	1.0	20	50	200			<1 ۲	ŕ
	Copper (Cu)	1.0	20	50	200			-1	52.00
	Chromium (Cr)	1.0	20	50	200			<1 1	۲.
	(bO) muimbsO	1.0	ŀ	2.5	10		1	1 <1	ŕ
	Criteria	Reporting Limit (µg/L)	Dutch A	Dutch B	Dutch C	Location	Groundwater Samples	ipment Blank (RSB-01	Field Blank (RSB-01)

Laboratory Results of QA/QC Samples

Notes: Square in bolded line indicates exceedance of Dutch B Level Shaded square indicates exceedance of Dutch C Level Full analytical results should be referred to laboratory report Full analytical

	hexachlorobutadiene				<0.5	<0.5		ĺ
	chloropropane				<0.5 <	<0.5 <1		
	1,2,3-trichloropropane				5	5		
	tetrachloroethane				5 <0.	5 <0.		
	-2,2,1,1				5 <0.5	5 <0.5	•	
	1,1,1,2- tetrachloroethane				<0.5	<0.5	•	
	tetrachloroethene				<0.5	<0.5	•	
	1,3-dichloropropane				<0.5	<0.5	•	
liphatics	ensrheorothoint-S, t, t				<0.5	<0.5		
Halogenated hydrocarbons - aliphatics	dibromomethane				<0.5	<0.5		
i hydroca	trichloroethene				<0.5	<0.5	-	
ogenated	ensriteorolricib-S, f				<0.5	<0.5		
Hal	Tetrachloromethane				< 0.5 <	<0.5 <		
	1,1-dichloropropene				<0.5 <	<0.5 <		
	1,1,1-trichloroethane				5 <0.5	5 <0.5	•	
	cis-1,2-dichloroethene				<0.5	<0.5	'	
	ensrtseoroldsib-t,t				<0.5	<0.5	•	
	trans-1,2- dichloroethene				<0.5	<0.5	•	
	enetteoroldsib-1,1				<0.5	<0.5		
	loneitqiyrtem-4/8				<0.2	<0.2		ĺ
Phenols	2-methylphenol				<0.2	<0.2		
e.	Phenol				<0.2 <	<0.2		
	өиөј/Х-о				<0.2 <	<0.2 <		
	m, p-Xylene				4	4		
EX					.2 <0	.2 <0		
втех	eneznediγtt∃				2 <0.2	2 <0.2	'	
	eneuloT				<0.2	<0.2	'	
	əuəzuəg				<0.2	<0.2	•	
	Pyrene				<0.05	<0.05	•	
	Fluoranthene				<0.05	<0.05	•	
Hs	ars) ənəryqərədə (as benzo(a)pyrene)				<0.05	<0.05		
PAHs	Anthracene				<0.05	<0.05		
	Phenanthrene				<0.05	<0.05		
	eneleritriqsN				< 0.05	< 0.05		
	C29-C36				<100 <	<100 <		
	C15-C28				<100 <	<100 <		
трн					<50 <1	<50 <1		
	C10-C14							
	6ጋ-9ጋ				⊳	Q	- %	
	(68) muine8				11	30	-93%	
	(n2) niT				3.2	1.8	26%	
	(oM) munabdyloM				۰ 1	7	•	
	(oO) flødoO				0.74	5.7	-154%	
	Arsenic (As)				1.6	<u>-</u>	46%	
slt	ұғспւλ (_H ð)				<0.05	<0.05		
Metals	(uZ) ouiZ				23	20	14%	
	Lead (Pb)				28	130	-129%	
	Nickel(Ni)				1.8	13 1	-151% -1;	
	Copper (Cu)				4.4 1	9.9	-77% -15	
					1 4			
	Chromium (Cr)				2 4	2 2	67%	
	(bO) muimbsO	L			<0.2	<0.2	- ¹	l
					ng/kg)	ng/kg)	te)/Mean o	
			Description		Primary Sample (mg/kg)	Duplicate Sample (mg/kg)	RPD = (Primary-Duplicate)/Mean of Results*100%	
			å		Primary :	Duplicate	D = (Prima Res	
	ameters				L		RPL	
	Testing Parameters	F	1) BBC	q		-		
	Те	Soil Sample identification	Depth (m) BBC	From	ŀ	-		
		Sample id.	L	ľ	-			
		Soil 5		-ocation		RSB-02		
			i 2			É		

19/06/2008

BBC= Below Base of Concrete Bolded letters indicate RPD results >50%

CEDD Contract No. GE/2005/49 Chemical and Biological Testing (Term Contract)

Works Order No. GE/2005/49.28

Agreement No. CE 35/2006 (CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works - Investigation, Design and Construction Cruise Terminal and Advance Works

> Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station

> > **Chemical Analysis**

Final Report (Radar Station)

CLIENT:

Geotechnical Projects Division

Geotechnical Engineering Office Civil Engineering and Development Department 23/F, 410 Kwun Tong Road Kwun Tong Kowloon Telephone: (852) 2716 8609 Facsimile: (852) 2715 7572 E-mail: <u>raymondsIng@cedd.gov.hk</u> PREPARED BY:

Lam Laboratories Limited

1411-1416 Honour Industrial Centre 6 Sun Yip Street Chai Wan Hong Kong Telephone: (852) 2897-3282 Facsimile: (852) 2897-5509 E-mail: <u>info@lamlab.com</u> Website: <u>http://www.lamlab.com</u>

CERTIFIED BY:

Maureen Chia Chi Chang PAAC

DATE:

11 December 2007

Chemical Analysis

Soil

Metals

Report No.	: 104503N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	: 23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
Sample Description	: 20 samples said to be soil
Sample Receipt Date	: 21 September 2007 - 29 September 2007
Test Period	: 22 September 2007 - 25 October 2007

Test Information

Code	Test Parameter	Reporting Limits	Test Procedure
		Sediment/Soil	-
		mg/kg	
Cd	Cadmium	0.20	S/M/DIG-S & M/ICP-MS
Cr	Chromium	1.0	S/M/DIG-S & M/ICP-MS
Cu	Copper	1.0	S/M/DIG-S & M/ICP-MS
Ni	Nickel	1.0	S/M/DIG-S & M/ICP-MS
Pb	Lead	1.0	S/M/DIG-S & M/ICP-MS
Zn	Zinc	20	S/M/DIG-S & M/ICP-MS
Hg	Mercury	0.05	S/M/DIG-S & M/ICP-MS
As	Arsenic	1.0	S/M/DIG-S & M/ICP-MS
Co	Cobalt	0.50	S/M/DIG-S & M/ICP-MS
Мо	Molybdenum	1.0	S/M/DIG-S & M/ICP-MS
Sn	Tin	0.5	S/M/DIG-S & M/ICP-MS
Ва	Barium	0.5	S/M/DIG-S & M/ICP-MS

Notes : 1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd. 2. Results related to samples as received.

3. Results are based on dry sample weight.

- 4. < = less than
- 5. NA = Not applicable

6. Test results satisfy all in-house QA/QC protocols as attached.

7. Test description (for in-house methods) as follows:

S/M/DIG-S: Acid digestion.

1

- M/ICP-MS: ICP-MS Quantification.
- 8. This report supersedes the one dated 17 Nov. 2007 with report no. 104503N.

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date:

11 Dec. 2007

Lam Laboratories Limited

Report No.	: 104503N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

Test Result

Customer Ref.			Sample)		Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
Drillhole No.	E)epth, m	1	Туре	Specimen												
	No.	From	То		Depth, m	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSB - 08	NA	2.35	2.80		NA	<0.20	2.7	11	1.5	27	59	0.16	1.2	0.89	1.1	2.7	44
RSB - 08	NA	3.35	3.80		NA	<0.20	1.8	6.7	<1.0	43	42	0.10	<1.0	1.2	1.4	1.8	18
RSB - 01	NA	NA	NA		1.00	<0.20	3.0	8.1	2.0	68	57	0.11	2.5	1.5	1.1	2.9	25
RSB - 02	NA	NA	NA		1.00	<0.20	4.0	4.4	1.8	28	23	<0.05	1.6	0.74	<1.0	3.2	11
RSB - 07	NA	NA	NA		1.00	<0.20	7.9	8.7	4.5	68	100	0.07	4.0	1.8	3.0	2.5	49
RSB - 08	NA	NA	NA		1.00	<0.20	1.3	32	4.4	46	35	<0.05	<1.0	2.7	<1.0	10	36
RSB - 02 (Duplicate)	NA	NA	NA		1.00	<0.20	2.0	9.9	13	130	20	<0.05	<1.0	5.7	<1.0	1.8	30
RSB - 02	NA	2.45	2.90		NA	<0.20	2.0	16	1.3	76	49	<0.05	1.2	1.5	<1.0	9.8	50
RSB - 02	NA	4.35	4.80		NA	<0.20	12	52	5.6	57	88	0.15	1.8	3.3	3.3	3.8	62
RSB - 07	NA	2.35	2.65		NA	0.21	6.2	26	4.0	62	120	0.06	2.2	1.8	1.8	2.6	32
RSB - 02	NA	5.85	6.30		NA	0.64	6.0	73	5.8	120	160	0.38	1.9	2.8	2.2	9.9	46
RSB - 02	NA	6.35	6.80		NA	<0.20	1.2	1.1	<1.0	66	<20	<0.05	<1.0	1.5	<1.0	2.2	27
RSB - 07	NA	5.35	5.80		NA	<0.20	3.6	9.1	2.2	87	100	0.14	2.0	2.2	1.1	4.3	50
RSB - 01	NA	2.35	2.80		NA	<0.20	3.1	13	1.9	69	82	0.08	1.4	1.7	1.0	2.9	23
RSB - 01	NA	3.35	3.80		NA	<0.20	5.3	8.5	1.4	54	42	0.08	<1.0	1.4	1.4	2.3	31
RSB - 01A	NA	2.35	2.80		NA	<0.20	1.4	6.0	<1.0	41 [.]	38	<0.05	<1.0	1.2	<1.0	2.1	27
RSB - 01A	NA	3.35	3.80		NA	<0.20	<1.0	2.1	<1.0	48	22	<0.05	<1.0	1.3	<1.0	2.2	11
RSB - 01A	NA	4.85	5.30		NA	0.45	4.8	65	2.2	47	120	0.06	1.3	2.2	1.1	5.8	86
RSB - 01A	NA	NA	NA		1.00	0.36	<1.0	1.6	<1.0	120	38	<0.05	1.0	0.62	2.9	1.2	14
RSB - 01A	NA	5.85	6.30		NA	0.65	16	71	16	64	220	0.12	1.6	7.2	3.7	10	120

-----End of Report----

Report No.	: 104503N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
-	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

QC Results

1.1 Sample Duplicate (Relative deviation)

Customer Ref.			Sampl	е			Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
Drillhole No.	0	Depth, m)	Туре	Specimen	Batch												
	No.	From	То]	Depth m		%	%	%	%	%	%	%	%	%	%	%	%
RSB - 01	NA	2.50	2.95		NA	1	*na	2.3	21	20	7.9	20	1.7	8.1	1.1	9.8	21	27
	-	-																
	<u> </u>	<u> </u>											f the r					
	Control Limits						L				+/- 3	<u>su % c</u>	f the r	nean				

1.2 Method Spike (Standard Addition)

Customer Ref.			Sampl	е			Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
Drillhole No.	E	Depth, m	1	Туре	Specimen	Batch												
	No.	From	То		Depth m		%	%	%	%	%	%	%	%	%	%	%	%
RSB - 01	NA	2.50	2.95		NA	1	95	93	93	90	98	77	88	92	91	80	75	106
			<u> </u>		1			L				L						<u> </u>
	C	ontrol Li	mits									/5 - '	125 %					

Note: 1. *na = Relative deviation(RD) for duplicates cannot be evaluated as the value determined is lower than reporting limits.

Authorized Signatory

/Wong Yau Tim/ (Operations Manager)

:

Issue Date:

11 Dec. 2007

Lam Laboratories Limited

Report No.	: 104503N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

QC Results

1.3 Sample Reference Material (ISE 2004.2.1)

Reference		S	Sample	е			Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ва
	De	pth, m		Туре	Specimen	Batch												
	No.	From	То		Depth m		%	%	%	%	%	%	%	%	%	%	%	%
ISE 2004.2.1	NA	NA	NA		NA	1	102	95	98	98	96	96	87	96	93	101	114	108
	f	Contr	ol Lim	its	L	L		I	I		1 75 - 12	5% of	nomin	al valu	le	L	I	L

1.4 Method Blank

Reference		5	Sample	е			Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
	De	epth, m		Туре	Specimen	Batch												
	No.	From	То		Depth m							mg	j/kg					
NA	NA	NA	NA		NA	1	<0.20	<1.0	<1.0	<1.0	<1.0	<20	<0.05	<1.0	<0.50	<1.0	<0.50	<0.50
		l Contr	ol Lim	l nits				I	I		Less	l than re	l eportin	g limit	L		I	L

PAHs

Report No.	: 104505N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	: 23/Fl., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
Sample Description	: 20 samples said to be soil
Sample Receipt Date	:21 September 2007 - 29 September 2007
Test Period	: 22 September 2007 - 25 October 2007

Test Information

CODE	Test Parameter	Reporting Limit ma/ka	Test Procedure
	Naphthalene	0.05	S/O/PAH-S
PHE	Phenanthrene	0.05	S/O/PAH-S
ANT	Anthracene	0.05	S/O/PAH-S
BaP	Benzo(a)pyrene	0.05	S/O/PAH-S
FLT	Fluoranthene	0.05	S/O/PAH-S
PYR	Pyrene	0.05	S/O/PAH-S

Notes :

This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.
 Results relate to samples as received.

3. Results are based on dry sample weight.

4. < = less than

5. NA = Not applicable

6. Test results satisfy all in-house QA/QC protocols as attached.

- 7. Test description (for in-house methods only) as follows:
- S/O/PAH-S:Ultra-Sonic extraction and GC-MS Quantification.

This report supersedes the one dated 17 Nov. 2007 with report no. 104505N.

Wống Yau Tim (Operations Manager)

Issue Date:

11 Dec. 2007

Lam Laboratories Limited

Authorized Signatory

.

.

Report No. Project Name	 104505N(1) Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
Customer	Groundwater Samples from ex-GFS Building and Radar Station : Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
Trat Description	

Test	Res	ults

Customer Ref.			Samp	ole		NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.		Depth, r		Туре	•						
	No.	From	То		Depth m	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
RSB - 08	NA	2.35	2.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 08	NA	3.35	3.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 07	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 08	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02 (Duplicate)	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02	NA	2.45	2.90		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02	NA	4.35	4.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 07	NA	2.35	2.65		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02	NA	5.85	6.30		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 02	NA	6.35	6.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 07	NA	5.35	5.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01	NA	2.35	2.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01	NA	3.35	3.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01A	NA	2.35	2.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01A	NA	3.35	3.80		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01A	NA	4.85	5.30		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01A	NA	NA	NA		1.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
RSB - 01A	NA	5.85	6.30		NA	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

-----End of Report-----

Report No.	: 104505N(1)
Project Name	 Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
QC Results	

1.1 Sample Duplicate

Customer Ref.		Sample					NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	D)epth, m	ר	Туре	Specimen	Batch						
	No.	From	То		Depth m		%	%	%	%	%	%
19996/1	NA	NA	NA		NA	1	na*	na*	na*	na*	na*	na*
	L C	L I Control I	_imits	I				l +/-	L 30 % o	f the m	ean	1

1.2 Sample Spike (Spike Level = 5 ug)

Customer Ref.			Sam	ole			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	C	epth, n	n	Туре	Specimen	Batch						· · · ·
	No.	From	То		Depth m		%	%	%	%	%	%
19996/1	NA	NA	NA		NA	1	95	101	110	101	82	86
	LC	Control I	Limits	L				J	70 - 1	130 %	I	I

Notes :

1. na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit. Authorized Signatory : Wong Yau Tim (Operations Manager)

Issue Date: :

11 Dec. 2007

Lam Laboratories LimitedUnit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong.Tel: (852) 2897 3282Fax: (852) 2897 5509e-mail: info@lamlab.com

.

QUALITY CONTROL REPORT

Report No.	: 104505N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
QC Results	

1.3 QC Sample (SETOC 2002.4.4)

Customer Ref.			Sam	nple			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	[Depth,	m	Туре	Specimen	Batch						
	No.	From	То		Depth m		%	%	%	%	%	%
SETOC 2002.4.4	NA	NA	NA		NA	1	107	112	102	98	97	103
						, <u> </u>						
						1990au						
	L	Control	Limits					70 - 1	30 % of	nomina	l value	I

1.4 Method Blank

Customer Ref.			Sam	ple			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	1	Depth,	m	Туре	Specimen	Batch						
	No.	From	То		Depth m		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NA	NA	NA	NA		NA	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
]					
	<u> </u>					<u> </u>				l		L
	(Control	Limits				Les	<u>s than re</u>	eporting	limit		

TPH

Report No.	: 104506N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Address	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Client Address	: 23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
Sample Description	20 samples said to be soil
Sample Receipt Date	
Test Period	: 22 September 2007 - 25 October 2007

Test Information

CODE	Test Parameter	Reporting Limit	Test Procedure
		mg/kg	
TPH	C6-C9	2.0	S/O/TPH
ТРН	C10-C14	50	S/O/TPH
ТРН	C15-C28	100	S/O/TPH
ТРН	C29-C36	100	S/O/TPH

Notes :

1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

- 2. Results relate to samples as received.
- 3. Results are based on dry sample weight.
- 4. < = less than
- 5. NA = Not applicable

:

- 6. Test results satisfy all in-house QA/QC protocols as attached.
- 7. Test description (for in-house methods only) as follows:
 - S/O/TPH:Solvent extraction and GC-FID Quantification.
- 8. This report supersedes the one dated 17 Nov. 2007 with report no. 104506N.

Authorized Signatory

Wong/Yau Tinh (Operations Manager)

Issue Date: 11 Dec. 2007

Lam Laboratories Limited

Report No. Project Name	 104506N(1) Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

Test Results

Customer Ref.			Sam	ple		C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, n	1	Туре	Specimen				
	No.	From	То		Depth m	mg/kg	mg/kg	mg/kg	mg/kg
RSB - 08	NA	2.35	2.80		NA	<2.0	<50	<100	<100
RSB - 08	NA	3.35	3.80		NA	<2.0	<50	<100	<100
RSB - 01	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 02	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 07	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 08	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 02 (Duplicate)	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 02	NA	2.45	2.90		NA	<2.0	<50	<100	240
RSB - 02	NA	4.35	4.80		NA	<2.0	<50	<100	<100
RSB - 07	NA	2.35	2.65		NA	<2.0	<50	<100	<100
RSB - 02	NA	5.85	6.30		NA	<2.0	<50	<100	<100
RSB - 02	NA	6.35	6.80		NA	<2.0	<50	<100	<100
RSB - 07	NA	5.35	5.80		NA	<2.0	<50	<100	<100
RSB - 01	NA	2.35	2.80		NA	<2.0	<50	<100	<100
RSB - 01	NA	3.35	3.80		NA	<2.0	<50	130	280
RSB - 01A	NA	2.35	2.80		NA	<2.0	<50	<100	<100
RSB - 01A	NA	3.35	3.80		NA	<2.0	<50	<100	<100
RSB - 01A	NA	4.85	5.30		NA	<2.0	52	480	<100
RSB - 01A	NA	NA	NA		1.00	<2.0	<50	<100	<100
RSB - 01A	NA	5.85	6.30		NA	<2.0	<50	<100	110

-----End of Report-----

Report No.	: 104506N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

QC Results

1.1 Sample Duplicate

Customer Ref.			Sam	ole			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.		Depth, n	n	Туре	Specimen	Batch				
	No.	From	То		Depth m		%	%	%	%
19996/1	NA	NA	NA		NA	1	na*	na*	na*	na*
								1		
	(Control	Limit				+/- 30% of the mean			

1.2 Sample Spike

Customer Ref.			Sam	ole			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	Ľ	Depth, r	n	Туре	Specimen	Batch				
	No.	From	То		Depth m		%	%	%	%
19996/1	NA	NA	NA		NA	1	89	88	93	110
				1						
	_									
		Control	Limit					70-1	30 %	

Notes :

 na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit.

:

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date: 11 Dec. 2007

Lam Laboratories Limited

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: info@lamlab.com

Report No.	: 104506N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

QC Results

1.3 QC Sample

Customer Ref.			San	nple			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, m	1	Туре	Specimen	Batch				
	No.	From	То		Depth m		%	%	%	%
NA	NA	NA	NA		NA	1	87	84	90	105
]									
	(Control	Limit					70-1:	30 %	

1.4 Method Blank

Customer Ref.			Sar	nple			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, m	ו	Туре	Specimen	Batch				
	No.	From	То		Depth m		mg/kg	mg/kg	mg/kg	mg/kg
NA	NA	NA	NA		NA	1	<2.0	<50	<100	<100
										:
	(L Control	L Limit			L		Less than re	eporting limit	I

Phenols

Report No.	: 104504N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	:23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
Sample Description	: 20 samples said to be soil
Sample Receipt Date	: 21 September 2007 - 29 September 2007
Test Period	: 22 September 2007 - 25 October 2007

Test Information

CODE	Test Parameter	Reporting Limit mg/kg	Test Procedure	
PL	Phenol	0.20	S/O/CPs-S	
2-MP	2-Methylphenol	0.20	S/O/CPs-S	
3/4-MP	3/4-Methylphenol	0.20	S/O/CPs-S	

Notes :

1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

- 2. Results relate to samples as received.
- 3. Results are based on dry sample weight.
- 4. < = less than
- 5. NA = Not applicable
- 6. Test results satisfy all in-house QA/QC protocols as attached.
- 7. Test description (for in-house methods only) as follows:
- S/O/CPs-S:Ultra-Sonic extraction and GC-MS Quantification.
- 8. This report supersedes the one dated 17 Nov. 2007 with report no. 104504N.

Authorized Signatory

Wohg/Yau Tin (Operations Manager)

Issue Date: 11 Dec. 2007

Report No.	: 104504N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035

Test Results

.

Customer Ref.	Sam			ole		PL	2-MP	3/4-MP
Drillhole No.	D	epth, r	n	Туре	Specimen			
	No.	From	То		Depth m	mg/kg	mg/kg	mg/kg
RSB - 08	NA	2.35	2.80		NA	<0.20	<0.20	<0.20
RSB - 08	NA	3.35	3.80		NA	<0.20	<0.20	<0.20
RSB - 01	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 02	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 07	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 08	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 02 (Duplicate)	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 02	NA	2.45	2.90		NA	<0.20	<0.20	<0.20
RSB - 02	NA	4.35	4.80		NA	<0.20	<0.20	<0.20
RSB - 07	NA	2.35	2.65		NA	<0.20	<0.20	<0.20
RSB - 02	NA	5.85	6.30		NA	<0.20	<0.20	<0.20
RSB - 02	NA	6.35	6.80		NA	<0.20	<0.20	<0.20
RSB - 07	NA	5.35	5.80		NA	<0.20	<0.20	<0.20
RSB - 01	NA	2.35	2.80		NA	<0.20	<0.20	<0.20
RSB - 01	NA	3.35	3.80		NA	<0.20	<0.20	<0.20
RSB - 01A	NA	2.35	2.80		NA	<0.20	<0.20	<0.20
RSB - 01A	NA	3.35	3.80		NA	<0.20	<0.20	<0.20
RSB - 01A	NA	4.85	5.30		NA	<0.20	<0.20	<0.20
RSB - 01A	NA	NA	NA		1.00	<0.20	<0.20	<0.20
RSB - 01A	NA	5.85	6.30		NA	<0.20	<0.20	<0.20

-----End of Report-----

Report No.	: 104504N(1)
Project Name	: Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
QC Results	

1.1 Sample Duplicate

Customer Ref.		Sample					PL	2-MP	3/4-MP
Drillhole No.	D	epth, m		Туре	Specimen	Batch			
	No.	From	То		Depth m		%	%	%
19996/1	NA	NA	NA		NA	1	na*	na*	na*
								00/ -645	
	Cc	ntrol Lir	nit				+/- 3	0% of the	e mean

1.2 Sample Spike (Spike Level = 1 ug)

Customer Ref.	Sample					PL	2-MP	3/4-MP	
Drillhole No.	De	epth, m		Туре	Specimen	Batch			
	No.	From	То		Depth m		%	%	%
19996/1	NA	NA	NA		NA	1	109	110	96
	Co	ntrol Lir	nit					70-130 %	6

Notes :

1. na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit.

:

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date:

:

11 Dec. 2007

 Lam Laboratories Limited
 Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong.

 Tel:
 (852) 2897 3282
 Fax:
 (852) 2897 5509
 e-mail: info@lamlab.com

Report No.	: 104504N(1)
Project Name	: Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
Customer	 Groundwater Samples from ex-GFS Building and Radar Station Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 19996,20001,20005,20008,20027,20035
QC Results	

2.1 QC Sample

Customer Ref.	Sample						PL	2-MP	3/4-MP
Drillhole No.	De	epth, m		Туре	Specimen	Batch			
	No.	From	То		Depth m		%	%	%
NA	NA	NA	NA		NA	1	103	91	98
				<u> </u>					
Control Limit								70-130	%

2.2 Method Blank

Customer Ref.	Sample					PL	2-MP	3/4-MP	
Drillhole No.	De	epth, m		Type	Specimen	Batch			
	No.	From	То		Depth m		mg/kg	mg/kg	mg/kg
NA	NA	NA	NA		NA	1	<0.20	<0.20	<0.20
	Control Limit						Less tl	nan repo	rting limit

BTEX & Chlorinated Hydrocarbons - Aliphatics

Report No.	: 104515N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Address	: 23/F., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546 Lab Sample No. : 19996,20001,20005,20008
Sample Description	: TWENTY (20) Samples said to be Soil 20027,20036
Sample Receipt Date	: 21/09/2007 - 29/09/2007 Test Period : 30/9/2007 - 25/10/2007

Test Information

Code	Parameter	RL (mg/kg)	Test Method
Ben	Benzene	0.20	
Tol	Toluene	0.20	
EtB	Ethylbenzene	0.20	
m,p-Xyl	m,p-xylene	0.40	
o-Xyl	o-xylene	0.20	
1,1-DCEE	1,1-Dichloroethene	0.50	
T-1,2-DCEE	trans-1,2-Dichloroethene	0.50	
1,1-DCE	1,1-Dichloroethane	0.50	
C-1,2-DCEE	cis-1,2-Dichloroethene	0.50	
1,1,1-TCE	1,1,1-Trichloroethane	0.50	
1,1-DCP	1,1-Dichloropropene	0.50	S/O/VOC
ТСМ	Tetrachloromethane	0.50]
1,2-DCE	1,2-Dichloroethane	0.50	
TCE	Trichloroethene	0.50	
DBM	Dibromomethane	0.50]
1,1,2-TCE	1,1,2-Trichloroethane	0.50]
1,3-DCP	1,3-Dichloropropane	0.50	
TCEE	Tetrachloroethene	0.50	
1,1,1,2-TCE	1,1,1,2-Tetrachloroethane	0.50]
1,1,2,2-TCE	1,1,2,2-Tetrachloroethane	0.50	
1,2,3-TCP	1,2,3-Trichloropropane	0.50]
1,2-D-3-CP	1,2-Dibromo-3-chloropropane	0.50]
НСВ	Hexachlorobutadiene	0.50	

Notes : 1. This report shall not be reproduced, except in full, without prior written approval from Lam Laboratories Limited.

- 2. < = less than.
- 3. NA = Not applicable.
- 4. Results related to sample(s) as received.
- 5. Results are based on dry sample weight.
- 6. Test results satisfy all in-house QA /QC protocols as attached.
- 7. Sample information was provided by client.
- 8. RL = Reporting limit.

:

- 9. Test description (for in-house methods only) as follows,
 - S/O/VOC : Extraction follow by quantification with purge-and-trap and GC-MS.
- 10 This report supersedes the one dated 17 Nov. 2007 with report no. 104515N.

Authorized Signatory

WÓNG Yau Tinh (Operations Manager)

Issue Date

11 Dec. 2007

:

Lam Laboratories Limited

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: <u>info@lamlab.com</u>

TEST REPORT	
Report No.	: 104515N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
-	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Lab Job No.	: J546 Lab Sample No. : 19996,20001,20005,20008
	20027,20036

Test Results

Customer Ref.			Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
Duilleala	De	pth						DCEE	DCEE	DCE
Drillhole	From	То	(mg/kg)							
RSB - 08	2.35	2.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 08	3.35	3.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 07	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 08	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02 (Duplicate)	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02	2.45	2.90	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02	4.35	4.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 07	2.35	2.65	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02	5.85	6.30	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 02	6.35	6.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 07	5.35	5.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01	2.35	2.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01	3.35	3.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01A	2.35	2.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01A	3.35	3.80	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01A	4.85	5.30	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01A	1.00	1.00	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50
RSB - 01A	5.85	6.30	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50

TEST REPORT								
Report No.	: 104515N(1)							
Project Name	: Chemical and Biological Testing (Term Contract)							
-	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design							
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and							
	Groundwater Samples from ex-GFS Building and Radar Station							
Customer	: Civil Engineering and Development Department							
Lab Job No.	: J546 Lab Sample No. : 19996,20001,20005,20008							
	20027,20036							

Test Results

Customer Ref.			C-1,2-	1,1,1-	1,1-	тсм	1,2-	TCE	DBM	1,1,2-
Drillhole	De	pth	DCEE	TCE	DCP		DCE			TCE
Driinole	From	То	(mg/kg)							
RSB - 08	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 08	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 02	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 07	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 08	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 02 (Duplicate)	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0,50	< 0.50	< 0.50	< 0.50
RSB - 02	2.45	2.90	< 0.50	< 0.50	< 0.50	< 0.50	< 0,50	< 0.50	< 0.50	< 0.50
RSB - 02	4.35	4.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 07	2.35	2.65	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 02	5.85	6.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 02	6.35	6.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 07	5.35	5.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01A	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01A	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01A	4.85	5.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01A	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
RSB - 01A	5.85	6.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

<u>TEST</u>	<u>REPORT</u>	

Report No. Project Name	0	06(CE) Kai Tak Developm erminal and Advance Wo	nent Engineering Study cum Design orks Laboratory Testing of Soil and adar Station
Customer	: Civil Engineering and Deve	elopment Department	
Lab Job No.	: J546	Lab Sample No.	: 19996,20001,20005,20008 20027,20036

Test Results

Customer Ref.			1,3-	TCEE	1,1,1,2-	1,1,2,2-	1,2,3-	1,2-D-	HCB	
Drillhole	De	pth	DCP		TCE	TCE	TCP	3-CP		
Driinole	From	То	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
RSB - 08	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 08	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 07	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 08	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02 (Duplicate)	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02	2.45	2.90	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02	4.35	4.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 07	2.35	2.65	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02	5,85	6.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 02	6.35	6.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 07	5.35	5.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01A	2.35	2.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01A	3.35	3.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0,50	
RSB - 01A	4.85	5.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01A	1.00	1.00	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
RSB - 01A	5.85	6.30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

- End of report -

Report No.	: 104515N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Lab Job No.	: J546 Lab Sample No. : 19996,20001,20005,20008

QC Results

Sample Duplicate		Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
							DCEE	DCEE	DCE
RSB - 08	2.50-2.95	na*	na*	na*	na*	na*	na*	na*	na*
Acceptance C	riteria		100 ± 25 %						

Sample Dupli	cate	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
RSB - 08	2.50-2.95	na*	na* na*		na*	na*	na*	na*	na*
Acceptance C	riteria		100 ± 25 %						

Sample Duplicate		1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
RSB - 08	2.50-2.95	na*	na*	na*	na*	na*	na*	na*	
Acceptance C	riteria	100 ± 25 %							

Sample Spike		Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
							DCEE	DCEE	DCE
RSB - 08	2.50-2.95	112	105	107	105	95	99	91	83
Acceptance C	riteria		100 ± 25 %						

Sample Spike	3	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
RSB - 08	2.50-2.95	122	116	107	112	106	91	87	85
Acceptance C	riteria				100 ±	£ 25 %			

Sample Spike)	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
RSB - 08	2.50-2.95	105	106	93	91	99	85	87	
Acceptance C				100 ±	: 25 %				

Notes :

1. na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit.

:

Authorized Signatory

WONG Yau Tiph

Issue Date

11 Dec. 2007

:

20027,20036

Lam Laboratories Limited

(Operations Manager) Unit 12,(14/E, Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: <u>info@lamlab.com</u>

Report No.	: 104515N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
-	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Lab. Job No	: .1546 Lab Sample No. : 19996.20001.20005.20008

Lab Job No.	: J546	Lab Sample No. : 19996,20001	,20005,20008
		20027,20036	j -

QC Results

Method Blank	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
						DCEE	DCEE	DCE
	(mg/kg)							
NA	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.50	< 0.50	< 0.50

Method Blank	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Method Blank	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	HCB	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Lab. Control Sample	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
						DCEE	DCEE	DCE
QC	106	112	107	117	96	91	85	88
Acceptance Criteria				100 :	± 25 %			

Lab. Control Sample	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	ТСМ	1,2- DCE	TCE	DBM	1,1,2- TCE
QC	121	114	102	91	78	76	89	82
Acceptance Criteria				100 :	± 25 %			

Lab. Control Sample	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
QC	121	123	117	120	109	97	96	
Acceptance Criteria				100 :	± 25 %			

Groundwater

Metals

Report No.	: 104507N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	: 23/Fl., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
Sample Description	: 7 liquid samples said to be water
Sample Receipt Date	: 25 September 2007 - 2 October 2007
Test Period	: 26 September 2007 - 25 October 2007

Test Information

Code	Test Parameter	Reporting Limits	Test Procedure
		Water & waste water	
		ug/L	
Cd	Cadmium	1.0	W/M/DIG-RAR & M/ICP-MS
Cr	Chromium	1.0	W/M/DIG-RAR & M/ICP-MS
Cu	Copper	1.0	W/M/DIG-RAR & M/ICP-MS
Ni	Nickel	1.0	W/M/DIG-RAR & M/ICP-MS
Pb	Lead	1.0	W/M/DIG-RAR & M/ICP-MS
Zn	Zinc	50	W/M/DIG-RAR & M/ICP-MS
Hg	Mercury	0.50	W/M/DIG-RAR & M/ICP-MS
As	Arsenic	10	W/M/DIG-RAR & M/ICP-MS
Co	Cobalt	1.0	W/M/DIG-RAR & M/ICP-MS
Mo	Molybdenum	1.0	W/M/DIG-RAR & M/ICP-MS
Sn	Tin	1.0	W/M/DIG-RAR & M/ICP-MS
Ba	Barium	1.0	W/M/DIG-RAR & M/ICP-MS

Notes :

1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

2. < = less than 3. NA = Not applicable

4. Test results satisfy all in-house QA/QC protocols as attached.

5. Test description (for in-house methods) as follows:

W/M/DIG-RAR: Acid digestion.

6. M/ICP-MS: ICP-MS Quantification.

7. This report supersedes the one dated 17 Nov. 2007 with report no. 104507N.

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date:

11 Dec. 2007

Lam Laboratories Limited

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: <u>info@lamlab.com</u>

Report No.	: 104507N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037

Test Results

Customer Ref.			Sa	mple		Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ва
Drillhole No.	C	Depth, m T			Specimen												
	No.	From	То		Depth, m	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L						
RSB - 08	NA	NA	NA		2.13	1.2	14	1.3	11	450	510	<0.50	<10	9.6	6.2	3.6	640
Field Blank (RS)	NA	NA	NA		NA	<1.0	<1.0	52	<1.0	<1.0	<50	<0.5	<10	<1.0	<1.0	1.8	<1.0
Equipment Blank (RS)	NA	NA	NA		NA	<1.0	<1.0	<1.0	<1.0	<1.0	<50	<0.5	<10	<1.0	<1.0	1.8	<1.0
RSB - 01	NA	NA	NA		2.09	3.2	12	76	16	1600	700	<0.50	<10	14	4.4	2.9	390
RSB - 02	NA	NA	NA		2.03	<1.0	11	47	7.2	410	310	<0.50	<10	5.5	12	2.7	170
RSB - 07	NA	NA	NA		2.09	<1.0	10	18	3.5	210	73	<0.50	<10	2.5	5.0	3.1	210
RSB - 01A	NA	NA	NA		2.05	3.8	14	92	10	1300	670	<0.50	<10	8.3	20	4.6	250

-----End of Report----

Report No.	: 104507N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037

Test Results

1.1 Sample Duplicate (Relative deviation)

Customer Ref.		Sample					Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
Drillhole No.	De	Depth, m		Туре	Type Specimen													
	No.	From	То		Depth m		%	%	%	%	%	%	%	%	%	%	%	%
19963/14	NA	NA	NA		NA	1	*na	*na	2.0	*na	*na	*na	*na	*na	*na	*na	5.9	*na
Control Limits											+/- 3	0 % 0	f the m	iean				

1.2 Method Spike (Standard Addition)

Customer Ref.		Sample					Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ва
Drillhole No.	D	Depth, m			m Type Specimen													
	No.	From	То]	Depth m		%	%	%	%	%	%	%	%	%	%	%	%
19963/14	NA	NA	NA		NA	1	77	87	83	85	98	88	82	94	87	90	111	108
	Control Limits											75 - 1	25 %					

1.3 Method Blank

Reference		Sample					Cd	Cr	Cu	Ni	Pb	Zn	Hg	As	Co	Мо	Sn	Ba
	D	epth, m	1	Туре	Type Specimen													L
	No.						ug/L											20000
N/A	N/A	N/A	N/A		N/A	1	<1.0	<1.0	<1.0	<1.0	<1.0	<50	<0.5	<10	<1.0	<1.0	<1.0	<1.0
	-																	
	Control Limits								l		Less t	l han re	portin	g limit				t

Note: 1. *na = Relative deviation(RD) for duplicates cannot be evaluated as the value determined is lower than reporting limits. 2. < = less than

Authorized Signatory

:

Wong Yau Tim (Operations Manager)

Issue Date:

11 Dec. 2007

Lam Laboratories Limited

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail info@lamlab.com

PAHs

Report No.	: 104509N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	: 23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
Sample Description	: 7 liquid samples said to be water
Sample Receipt Date	: 25 September 2007 - 2 October 2007
Test Period	: 26 September 2007 - 25 October 2007

Test Information

CODE	Test Parameter	Reporting Limit	Test Procedure
		ug/L	
NAP	Naphthalene	0.10	W/O/PAH
PHE	Phenanthrene	0.10	W/O/PAH
ANT	Anthracene	0.10	W/O/PAH
BaP	Benzo(a)pyrene	0.10	W/O/PAH
FLT	Fluoranthene	0.10	W/O/PAH
PYR	Pyrene	0.10	W/O/PAH

Notes : 1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

2. Results relate to samples as received.

3. < = less than

4. NA = Not applicable

:

5. Test results satisfy all in-house QA/QC protocols as attached.

6. Test description (for in-house methods) as follows:

W/O/PAH: Solvent extraction and GC-MS Quantification.

7. This report supersedes the one dated 17 Nov. 2007 with report no. 104509N.

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date: 11 Dec. 2007

Lam Laboratories Limited

itedUnit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong.Tel: (852) 2897 3282Fax: (852) 2897 5509e-mail: info@lamlab.com

Report No.	:	104509N(1)
Project Name	:	Chemical and Biological Testing (Term Contract)
		Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
		and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
		Groundwater Samples from ex-GFS Building and Radar Station
Customer	:	Geotechnical Projects Division, Geotechnical Engineering office,
		Civil Engineering and Development Department
Lab Job No.	:	J546
Lab Sample No.	:	20008,20020,20037
Test Results		

Customer Ref.				Sample	9	NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	Depth, m Type		Specimen								
	No.	From	То		Depth m	ug/L_	ug/L	ug/L	ug/L	ug/L	ug/L
⁻ RSB - 08	NA	NA	NA		2.13	<0.10	2.3	0.25	<0.10	0.72	0.69
Field Blank (RS)	NA	NA	NA		NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Equipment Blank (RS)	NA	NA	NA		NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
RSB - 01	NA	NA	NA		2.09	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
RSB - 02	NA	NA	NA		2.03	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
RSB - 07	NA	NA	NA		2.09	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
RSB - 01A	NA	NA	NA		2.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

-----End of Report-----

Report No.	: 104509N(1)
Project Name	: Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
QC Results	

1.1 Sample Duplicate

Customer Ref.	1		S	Sample			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	D	epth, m	ו	Type	Specimen	Batch						
	No.	From	То		Depth m		%	%	%	%	%	%
20008/3	NA	NA	NA		NA	1	na*	18	7.7	na*	11	1.4
							-					
	<u> </u>					<u> </u>	<u> </u>					
		Cont	rol Lin	nits			1	+/-	<u>30 % c</u>	of the me	ean	

1.2 Sample Spike (Spike Level = 5 ug)

Customer Ref.	Ι		S	Sample		J	NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	C)epth, m)	Туре	Specimen	Batch						
	No.	From	То		Depth m		%	%	%	%	%	%
20008/4	NA	NA	NA		NA	1	95	90	104	89	96	95

											<u> </u>	
	Control Limits								70 - 1	130 %		

Notes :

1.	na* = Relative deviation (RD) for duplicates cannot be evaluated
	as the value determined is lower than reporting limit.

as the value determined is lower than reporting limit

Authorized Signatory t Wong Yau Tim (Operations Manager)

Issue Date: 11 Dec. 2007

Report No.	: 104509N(1)
Project Name	 Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
QC Results	

1.3 QC Sample (Spike Level = 5 ug)

Customer Ref.			Samp	ble			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	D	epth, m	1	Туре	Specimen	Batch						
	No.	From	То		Depth m		%	%	%	%	%	%
MB Spike	NA	NA	NA		NA	1	92	90	101	88	102	100
		<u> </u>		ļ								
				70 - 1	130 %							

1.4 Method Blank

Customer Ref.			Samp	ole			NAP	PHE	ANT	BaP	FLT	PYR
Drillhole No.	D	epth, m	1	Туре	Specimen	Batch						
	No.	From	То		Depth m		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NA	NA	NA	NA		NA	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
									L	l		
			Less	s than re	eporting	limit						

ТРН

Report No.	: 104510N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	:23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
Sample Description	7 liquid samples said to be water
Sample Receipt Date	: 25 September 2007 - 2 October 2007
Test Period	: 26 September 2007 - 25 October 2007

Test Information

Total Petroleum Hydrocarbons

CODE	Test Parameter	Reporting Limit	Test Procedure
		ug/L	
TPH	C6-C9	20	W/O/TPH
TPH	C10-C14	25	W/O/TPH
TPH	C15-C28	25	W/O/TPH
TPH	C29-C36	25	W/O/TPH

Notes :

1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

2. < = less than

3. NA = Not applicable

4. Test results satisfy all in-house QA/QC protocols as attached.5. Test description (for in-house methods only) as follows:

W/O/TPH:Solvent extraction and GC-FID Quantification.

6. Results relate to samples as received.

7. This report supersedes the one dated 17 Nov. 2007 with report no. 104510N.

Authorized Signatory

Wong Yau Tim (Operations Manager)

Issue Date: 11 Dec. 2007

Lam Laboratories Limited

Report No. Project Name	:	104510N(1) Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	:	Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No. Lab Sample No.	:	J546 20008,20020,20037

Test Results

Total Petroleum Hydrocarbons

Customer Ref.			5	Sample		C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	C)epth, n	n	Туре	Specimen				
	No.	From	То		Depth m	ug/L	ug/L	ug/L	ug/L
RSB - 08	NA	NA	NA		2.13	<20	35	170	25
Field Blank (RS)	NA	NA	NA		NA	<20	<25	<25	<25
Equipment Blank (RS)	NA	NA	NA		NA	<20	<25	270	540
RSB - 01	NA	NA	NA		2.09	<20	91	660	2100
RSB - 02	NA	NA	NA		2.03	<20	38	330	47
RSB - 07	NA	NA	NA		2.09	<20	<25	120	<25
RSB - 01A	NA	NA	NA		2.05	<20	34	180	<25

-----End of Report-----

Report No.	: 104510N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	 Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No. Lab Sample No.	: J546 : 20008,20020,20037

QC Results

Total Petroleum Hydrocarbons

1.1 Sample Duplicate

Customer Ref.			S	Sample			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D)epth, r	n	Туре	Specimen	Batch				
	No.	From	То		Depth m	L	%	%	%	%
20008/3	NA	NA	NA		NA	1	na*	na*	na*	na*
	<u> </u>									
		Con	trol Lir	nit				+/- 30% o	f the mean	

1.2 Sample Spike

Customer Ref.			S	ample			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, n	n	Туре	Specimen	Batch				
	No.	From	То		Depth m		%	%	%	%
20008/4	NA	NA	NA		NA	1	97	102	106	118
		1							<u>.</u>	
	_							<u> </u>		
·····	_	<u> </u>								
	trol Lir	nit				70-1	30 %			

Notes :

1.	na* = Relative deviation (RD) for duplicates cannot be evaluated
	as the value determined is lower than reporting limit.

Authorized Signatory : /Wong Yau Tim (Operations Manager) Lam Laboratories Limited Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: info@lamlab.com

Issue Date: 11 Dec. 2007

Report No.	: 104510N(1)
Project Name	 Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No. Lab Sample No.	: J546 : 20008,20020,20037
Lab Gample NO.	. 2000,2020,2007

QC Results

Total Petroleum Hydrocarbons

1.3 QC Sample

Customer Ref.			Samp	le			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, m	1	Туре	Specimen	Batch				
	No.	From	То		Depth m		%	%	%	%
NA	NA	NA	NA		NA	1	99	96	102	111
	-			<u> </u>						
				<u> </u>						
	(Control	Limit					70-1	30 %	

1.4 Method Blank

Customer Ref.			Samp	le			C6-C9	C10-C14	C15-C28	C29-C36
Drillhole No.	D	epth, m	า	Type Spec	imen	Batch				
	No.	From	То	Dept			ug/L	ug/L	ug/L	ug/L
NA	NA	NA	NA	N.	A	1	<20	<25	<25	<25
	(Control	<u>Limit</u>					Less than re	eporting limit	

Phenols

Report No.	: 104508N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office,
	Civil Engineering and Development Department
Address	: 23/FI., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
Sample Description	:7 liquid samples said to be water
Sample Receipt Date	: 25 September 2007 - 2 October 2007
Test Period	: 26 September 2007 - 25 October 2007

Test Information

CODE	Test Parameter	Reporting Limit	Test Procedure
		ug/L	
PL	Phenol	0.50	W/O/CPs
2-MP	2-Methylphenol	0.50	W/O/CPs
3/4-MP	3/4-Methylphenol	0.50	W/O/CPs

Notes :

1. This report shall not be reproduced, except in full, without prior approval from Lam Laboratories Ltd.

2. Results relate to samples as received.

3. < = less than

4. NA = Not applicable

:

5. Test results satisfy all in-house QA/QC protocols as attached.

6. Test description (for in-house methods only) as follows:

- W/O/CPs:Solvent extraction and GC-MS Quantification.
- 7. This report supersedes the one dated 17 Nov. 2007 with report no. 104508N.

Wong/Yau Tim/ (Operations Manager)

Issue Date: 11 Dec. 2007

Lam Laboratories Limited

Authorized Signatory

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: <u>info@lamlab.com</u>

Report No. Project Name	 104508N(1) Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037

Test Results

Customer Ref.				Sample		PL	2-MP	3/4-MP
Drillhole No.	D	epth, n	n	Туре	Specimen			
	No.	From	То		Depth m	ug/L	ug/L	ug/L
RSB - 08	NA	NA	NA		2.13	<0.50	<0.50	<0.50
Field Blank (RS)	NA	NA	NA		NA	<0.50	<0.50	<0.50
Equipment Blank (RS)	NA	NA	NA		NA	<0.50	<0.50	<0.50
RSB - 01	NA	NA	NA		2.09	<0.50	<0.50	<0.50
RSB - 02	NA	NA	NA		2.03	<0.50	<0.50	<0.50
RSB - 07	NA	NA	NA		2.09	<0.50	<0.50	<0.50
RSB - 01A	NA	NA	NA		2.05	<0.50	<0.50	<0.50

-----End of Report-----

Report No.	: 104508N(1)
Project Name	 Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
QC Results	

Sample Duplicate 1.1

Customer Ref.	1		S	ample			PL	2-MP	3/4-MP
Drillhole No.	D	epth, m		Type	Specimen	Batch			
	No.	From	То		Depth m		%	%	%
20008/3	NA	NA	NA		NA	1	na*	na*	na*
	1								
		Contro	l Limit				+/- 3	30% of the n	nean

Sample Spike (Spike Level = 1 ug) 1.2

Customer Ref.			S	ample			PL	2-MP	3/4-MP
Drillhole No.	D	epth, m		Туре	Specimen	Batch			
	No.	From	То		Depth m		%	%	%
20008/4	NA	NA	NA		NA	1	110	105	86
	1								
		Contro	l Limit					70-130 %	

Notes :

1. na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit.

:

Wong Yau Tim (Operations Manager)

Issue Date: :

11 Dec. 2007

Lam Laboratories Limited

Authorized Signatory

Unit 12, 14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Fax: (852) 2897 5509 e-mail: Tel: (852) 2897 3282 info@lamlab.com

Report No.	: 104508N(1)
Project Name	 Chemical and Biological Testing (Term Contract) Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Geotechnical Projects Division, Geotechnical Engineering office, Civil Engineering and Development Department
Lab Job No.	: J546
Lab Sample No.	: 20008,20020,20037
QC Results	

2.1 QC Sample

Customer Ref.			Samp	le			PL	2-MP	3/4-MP
Drillhole No.	D	epth, m		Туре	Specimen	Batch		8	
	No.	From	То		Depth m		%	%	%
NA	NA	NA	NA		NA	1	108	104	94
	Coi	ntrol Lir	nit					70-130 %	

2.2 Method Blank

Customer Ref.			Samp	le			PL	2-MP	3/4-MP
Drillhole No.	D	epth, m		Type	Specimen	Batch			
	No.	From	То		Depth m		ug/L	ug/L	ug/L
NA	NA	NA	NA		NA	1	<0.05	<0.05	<0.05
	<u> </u>								
								L	
	Cor	ntrol Lin	nit				Less t	han reportir	ng limit

BTEX & Chlorinated Hydrocarbons - Aliphatics

Report No.	: 104516N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Address	: 23/F., 410 Kwun Tong Road, Kwun Tong, Kowloon
Lab Job No.	: J546 Lab Sample No. : 20008,20020,20037
Sample Description	: SEVEN (7) Samples said to be Water
Sample Receipt Date	: 25/9/2007 - 2/10/2007 Test Period : 26/9/2007 - 25/10/2007

Test Information

Code	Parameter	RL (μg/L)	Test Method
Ben	Benzene	1.0	
Tol	Toluene	15	
EtB	Ethylbenzene	15	
m,p-Xyl	m,p-xylene	15	
o-Xyl	o-xylene	15	
1,1-DCEE	1,1-Dichloroethene	2.0	
T-1,2-DCEE	trans-1,2-Dichloroethene	2.0	
1,1-DCE	1,1-Dichloroethane	2.0	
C-1,2-DCEE	cis-1,2-Dichloroethene	2.0	
1,1,1-TCE	1,1,1-Trichloroethane	2.0	
1,1-DCP	1,1-Dichloropropene	2.0	
ТСМ	Tetrachloromethane	2.0	W/O/VOC
1,2-DCE	1,2-Dichloroethane	2.0	
TCE	Trichloroethene	2.0	
DBM	Dibromomethane	2.0	
1,1,2-TCE	1,1,2-Trichloroethane	2.0	
1,3-DCP	1,3-Dichloropropane	2.0	
TCEE	Tetrachloroethene	2.0	
1,1,1,2-TCE	1,1,1,2-Tetrachloroethane	2.0	
1,1,2,2-TCE	1,1,2,2-Tetrachloroethane	2.0	
1,2,3-TCP	1,2,3-Trichloropropane	2.0	
1,2-D-3-CP	1,2-Dibromo-3-chloropropane	2.0	
НСВ	Hexachlorobutadiene	2.0	[

Notes : 1. This report shall not be reproduced, except in full, without prior written approval from Lam Laboratories Limited.

- 2. < = less than.
- 3. NA = Not applicable.
- 4. Results related to sample(s) as received.
- 5. Results are based on dry sample weight.
- 6. Test results satisfy all in-house QA /QC protocols as attached.
- 7. Sample information was provided by client.
- 8. RL = Reporting limit.
- 9. Test description (for in-house methods only) as follows,
 - W/O/VOC : Extraction follow by quantification with purge-and-trap and GC-MS.
- 10 This report supersedes the one dated 17 Nov. 2007 with report no. 104516N.

Authorized Signatory

WONG/Yau Tim (Operations Manager)

Issue Date

11 Dec. 2007

:

Lam Laboratories Limited

Unit 12/14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: <u>info@lamlab.com</u>

Tost Results			
Lab Job No.	: J546	Lab Sample No.	: 20008,20020,20037
Customer	: Civil Engineering and	Development Department	
	•	s from ex-GFS Building and	Radar Station
			/orks Laboratory Testing of Soil and
			ment Engineering Study cum Design
Project Name		cal Testing (Term Contract)	
•		and Tasting (Tarm Contract)	
Report No.	: 104516N(1)		

Test	Results
------	---------

Customer Ref.		Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
Drillhole	Depth	(μ g/L)	(μ g/L)	(μ g/L)	(μ g/L)	(µ g/L)	DCEE (µg/L)	DCEE (μg/L)	DCE (µg/L)
RSB - 08	2.13	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
Field Blank (RS)	NA	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
Equipment Blank (RS)	NA	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
RSB - 01	2.09	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
RSB - 02	2.03	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
RSB - 07	2.09	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0
RSB - 01A	2.05	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0

Customer Ref.		C-1,2-	1,1,1-	1,1-	тсм	1,2-	TCE	DBM	1,1,2-
Drillhole	Depth	DCEE (µg/L)	TCE (μg/L)	DCP (µg/L)	(μ g/L)	DCE (µg/L)	(μ g/L)	(μ g/L)	TCE (μg/L)
RSB - 08	2.13	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Field Blank (RS)	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Equipment Blank (RS)	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 01	2.09	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 02	2.03	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 07	2.09	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 01A	2.05	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Customer Ref.		1,3-	TCEE	1,1,1,2-	1,1,2,2-	1,2,3-	1,2-D-	HCB
Drillhole	Donth		(u.a/I.)	TCE (μg/L)	TCE (μg/L)	TCP (μg/L)	3-CP (μg/L)	(μ g/L)
RSB - 08	Depth 2.13	(μ g/L) < 2.0	<u>(μg/L)</u> < 2.0	<u>(μg/L)</u> < 2.0	(µ g/∟) < 2.0	< 2.0	<u>(μ<u>g</u>, <u></u>) < 2.0</u>	< 2.0
Field Blank (RS)	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Equipment Blank (RS)	NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 01	2.09	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 02	2.03	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 07	2.09	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
RSB - 01A	2.05	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

-End of report-

Customer Lab Job No.	: Civil Engineering and Development Department : J546 Lab Sample No. : 20008,20020,20037
Customer	
<u> </u>	
	Groundwater Samples from ex-GFS Building and Radar Station
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
Project Name	
Project Name	: Chemical and Biological Testing (Term Contract)
Report No.	: 104516N(1)

QC Results

Sample Duplicate	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
						DCEE	DCEE	DCE
RSB - 08	na*	na*	na*	na*	na*	na*	na*	na*
Acceptance Criteria	RSD ± 25 %							

Sample Duplicate	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
RSB - 08	na*	na*	na*	na*	na*	na*	na*	na*
Acceptance Criteria				RSD	± 25 %			

Sample Duplicate	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
RSB - 08	na*	na*	na*	na*	na*	na*	na*	
Acceptance Criteria				RSD :	±25 %			

Sample Spike	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-	
						DCEE	DCEE	DCE	
RSB - 08	115	83	87	94	91	101	106	100	
Acceptance Criteria		100 ± 25 %							

Sample Spike	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
RSB - 08	108	87	91	94	93	96	112	113
Acceptance Criteria		100 ± 25 %						

Sample Spike	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	HCB	
RSB - 08	109	110	87	88	85	92	97	
Acceptance Criteria				100 ±	: 25 %			

Notes :

1. na* = Relative deviation (RD) for duplicates cannot be evaluated as the value determined is lower than reporting limit.

11 Dec. 2007 Authorized Signatory Issue Date : : WONG Yau Tim (Operation Manager) Unit 12,14/F., Honour Industrial Centre, 6 Sun Yip Street, Chai Wan, Hong Kong. Lam Laboratories Limited Tel: (852) 2897 3282 Fax: (852) 2897 5509 e-mail: info@lamlab.com

Report No.	: 104516N(1)
Project Name	: Chemical and Biological Testing (Term Contract)
	Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design
	and Construction Cruise Terminal and Advance Works Laboratory Testing of Soil and
	Groundwater Samples from ex-GFS Building and Radar Station
Customer	: Civil Engineering and Development Department
Lab Job No.	: J546 Lab Sample No. : 20008,20020,20037

QC Results

Method Blank	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-
						DCEE	DCEE	DCE
	(μ g/L)							
NA	< 1.0	< 15	< 15	< 15	< 15	< 2.0	< 2.0	< 2.0

Method Blank	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	тсм	1,2- DCE	TCE	DBM	1,1,2- TCE
	(μ g/L)	(μ g/L)	(μ g/L)					
NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Method Blank	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
	(μ g/L)							
NA	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	

Lab. Control Sample	Ben	Tol	EtB	m,p-Xyl	o-Xyl	1,1-	T-1,2-	1,1-	
						DCEE	DCEE	DCE	
QC	85	82	112	107	116	108	95	94	
Acceptance Criteria		100 ± 25 %							

Lab. Control Sample	C-1,2- DCEE	1,1,1- TCE	1,1- DCP	ТСМ	1,2- DCE	TCE	DBM	1,1,2- TCE
QC	91	106	115	105	79	88	81	99
Acceptance Criteria	100 ± 25 %							

Lab. Control Sample	1,3- DCP	TCEE	1,1,1,2- TCE	1,1,2,2- TCE	1,2,3- TCP	1,2-D- 3-CP	НСВ	
QC	92	121	117	122	95	85	114	
Acceptance Criteria	100 ± 25 %							

Appendix F

(Groundwater Risk Assessment Results)

Risk-Based Assessment for Groundwater Remediation for South Apron Area of Former Kai Tak Airport (Radar Station)

Parameter	Source Concentration Sample I.D.	Sample I.D.	Noncarcinogenic Oral Reference Dose ^a (RfDo)	Minimum Noncarcinogenic Oral Reference Dose ^a (RfDo)	Carcinogenic Oral Slope Factor ^b (CSFo)
	[mg/L]		[mg/kg-day]	[mg/kg-day]	1/[mg/kg-day]
TPHs	2.87E+00	RSB-01	3.00E-02 to 5.00E+00	3.00E-02	Not applicable
Barium	6.40E-01	RSB-08	7.00E-02	Not applicable	Not applicable
Cadmium	3.80E-03	RSB-01A	5.00E-04	Not applicable	Not applicable
Copper	9.20E-02	RSB-01A	4.00E-02	Not applicable	Not applicable
Lead	1.60E+00	RSB-01	3.60E-03	Not applicable	Not applicable
Zinc	7.00E-01	RSB-01	3.00E-01	Not applicable	Not applicable
Phenanthrene	2.30E-03	RSB-08	4.00E-02	Not applicable	Not applicable
Xylenes	3.00E-02	All**	2.00E-01	Not applicable	Not applicable

Table 1 - Source Concentrations & Oral Slope Factor/Oral Reference Dose for Risk Assessment

^a Source for TPHs : TPH Criteria Working Group, 1999. Total Petroleum Hydrocarbons Criteria Working Group Series Volume 5

- Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Massachusetts, U.S.A., Amherst Scientific Publishers.

by National Institute of Public Health and the Environment, tolerable daily intake (TDI) for PAHs considered to be non-carcinogenic is 30ug/kg/day for aromatic compounds with equivalent carbon numbers of >16-35. In this assessment 30ug/kg/day takes as the non-carcinogenic oral dose for B(a)P. Source for Ba, Cd, Co, Cu, Zn, Phenanthren & Xylenes : USEPA Region IX Risk-based Concentration Table (revised on Oct 04), USEPA Region IX. Source for Pb: The value is referenced to the tolerable daily intake (TDI) from the National Institute of Public Health and the Environment (RIVM), The Netherlands, 2001. # RIDo is not available for benzo(a)pyrene. With reference to the RIVM report - Re-evaluation of human-toxicological maximum permissible risk levels (March 2001) ^b Source for TPHs, Ba, Cd, Co, Cu, Pb, Zn, Phenanthrene, Xylenes: USEPA Region IX Risk-based Concentration Table (revised on Oct 04), USEPA Region IX.

** All sampling locations showed the same concentrations for Xylenes (i.e. 30ug/L as the Ductch B level).

Assumptions:

Exposure Pathway: The applicable and dominant complete pathway is considered to be direct groundwater ingestion.

Receptor:

The most sensitive receptors are considered to be the construction workers.

Input Parameters for Calculations (for Direct Groundwater Ingestion):

IR = water ingestion rate [L/day] =	0.02	(The assumed water ingestion rate of 0.02 L/d is two orders of magnitude lower than the USEPA default drinking water rate of 2 L/day for adults. In addition, the 0.02 L/d water ingestion rate was adopted for many groundwater risk assessment in previous land contamination studies, such as South East Kowloon Development Infrastructure at North Apron Area of Kai Tak Airport; Reclamation Works for DOS&GIC Facilities in North Tsing Yi and Decommissioning of Cheoy Lee Shipyard at Penny's Bay EIA Study. As a result, the assumed water ingestion rate of 0.02L/d is adequate for groundwater risk assessment.)
EF = exposure frequency [day/yr] =	180	(assume construction workers expose for 6 months of site formation works)
ED = exposure duration [yr] =	-	
BW = body weight [kg] =	70	
AT = Averaging time [day] =	365 25550	(for non-carcinogens: ED x 365 days) (for carcinogens: 70 yrs x 365 days)

Risk-Based Assessment for Groundwater Remediation for South Apron Area of Former Kai Tak Airport (Radar Station)

Table 2 - Calculations for Direct Groundwater Ingestion

Calculations	TPHs	Barium	Cadmium	Copper	Lead	Zinc	Phenanthrene	Xylenes
1. Groundwater conc. [mg/L] =	2.87E+00	6.40E-01	3.80E-03	9.20E-02	1.60E+00	7.00E-01	2.30E-03	3.00E-02
2. Natural attenuation factor =	-	-	-	÷	-	÷	-	-
	-							
3. Exposure medium [mg/L] = (1) / (2) =	2.87E+00	6.40E-01	3.80E-03	9.20E-02	1.60E+00	7.00E-01	2.30E-03	3.00E-02
4. Exposure multipler [L/kg/day] = (IR x EF x ED) / (BW x AT) =	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04
5. Average Daily Intake Rate [mg/kg/day] = (3) x (4) =	4.05E-04	9.02E-05	5.35E-07	1.30E-05	2.25E-04	9.86E-05	3.24E-07	4.23E-06
6. Maximum Pathway Intake [mg/kg/day] = (groundwater ingestion as dominant pathway)	4.05E-04	9.02E-05	5.35E-07	1.30E-05	2.25E-04	9.86E-05	3.24E-07	4.23E-06
7. Maximum Toxicant Intake Rate [mg/kg/day] =	4.05E-04	9.02E-05	5.35E-07	1.30E-05	2.25E-04	9.86E-05	3.24E-07	4.23E-06
8. Noncarcinogenic Oral Reference Dose [mg/kg-day] =	3.00E-02	7.00E-02	5.00E-04	4.00E-02	3.60E-03	3.00E-01	4.00E-02	2.00E-01
9. Individual Chemical of Concern Hazard Index = (7) / (8) =	1.35E-02	1.29E-03	1.07E-03	3.24E-04	6.26E-02	3.29E-04	8.10E-06	2.11E-05
10. Maximum Carcinogenic Intake Rate [mg/kg/day] =								
11. Carcinogenic Oral Slope Factor (1/[mg/kg-day]) =								
12. Individual Chemical of Concern (COC) Risk = (10) \times (11) =								
Total pathway hazard index =	7.91E-02	(< 1 (USEPA recom	(<1 (USEPA recommended hazard index))	()x				
(after adding contributions from all chemical of concern)								
Total nathway carcinorganic rick -	IN	1 00E-06 /1 ISED	1/ 1 00E.06 (LISEDA lifetima cancer rick laval)	lovel				
rotar partway tatch or gene nex = (contributed by Bezo(a)Pyrene and Benzene)	Ē		A menure cancer now	(liavai.				
	TPHs	Barium	Cadmium	Copper	Lead	Zinc	Phenanthrene	Xylenes
RBSL [mg/L] = Min. of (Groundwater Conc./ Hazard Quotient) <u>or</u> (Groundwater Conc. x Cancer Risk / Risk of Contaminant)								
= Minimum of	2.13E+02	4.97E+02	3.55E+00	2.84E+02	2.56E+01	2.13E+03	2.84E+02	1.42E+03
	\$	\$	\$	\$	\$	\$	^	\$
Groundwater conc. [mg/L] =	2.87E+00	6.40E-01	3.80E-03	9.20E-02	1.60E+00	7.00E-01	2.30E-03	3.00E-02
	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)
Risk	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable

Appendix 5.2b

Contamination Assessment Report/ Remediation Action Plan (CAR/RAP) for the ex-GFS Building

土木工程拓展署 Civil Engineering and Development Department Kowloon Development Office

Agreement No. CE 35/2006 (CE)

Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Contamination Assessment Report/ Remediation Action Plan (CAR/RAP) For Ex-Government Flying Services Building (Rev.2)

15 August 2008

Reviewed:

Peter Lee

15/08/08

Approved for Issue:

15/08/08

MAUNSELL CONSULTANTS ASIA LTD

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

CONTAMINATION ASSESSMENT REPORT / REMEDIATION ACTION PLAN (CAR/RAP) FOR THE EX-GFS BUILDING (REV.2)

Contents

1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Objectives	1
2	FIND	INGS OF CONTAMINATION ASSESSMENT PLAN	3
3	CON	TAMINATION ASSESSMENT REPORT	5
	3.1	Assessment Methodology	5
	3.2	Assessment Criteria	6
	3.3	Analytical Results and Interpretation	7
	3.4	Estimation of Soil Contamination Extent and Remediation	12
	3.5	Conclusions and Recommendations	13
4	REM	EDIATION ACTION PLAN	15
	4.1	Objectives of Remediation Plan	15
	4.2	Selection of Remediation Methods	15
	4.3	Outline Process and Operation Remediation	15
	4.4	Remediation Report	21
	4.5	Mitigation Measures and Safety Measures	22
5	CON	CLUSIONS AND RECOMMENDATIONS	25

List of Tables

Table 2.1	Potential Sources of Land Contamination Identified in the Study Area
Table 3.1	Dutch ABC Values for Soil and Groundwater Contamination
Table 3.2	Summary of Soil Sample Exceeding the Dutch B/C Levels
Table 3.3	Summary of the Borehole Termination Depths and Groundwater Level
Table 3.4	Summary of Groundwater Samples Exceeding the Dutch B/C Values
Table 3.5	Evaluation of Significance of Risk Due to Groundwater Contamination
Table 3.6	Location, Depth and Estimated Quantity of Contaminated Soil
Table 4.1	Estimated Volume of TPH / Phenanthrene/ Benzo(a)pyrene/ Fluoranthene/ Pyrene Contaminated Soil for Biopiling
Table 4.2	Estimated Volume of Metal Contaminated Soil for Solidification/Stabilization
Table 4.3	Universal Treatment Standards (UTS) for the Concerned Metals

List of Drawings

Drawing 1.1	Site Layout Plan
Drawing 3.1	As-built Sampling Locations
Drawing 3.2	Contours of Measured Groundwater Levels
Drawing 3.3	Locations of Proposed Contaminated Zones for Excavation (A-C)
Drawing 3.4	Locations of Proposed Contaminated Zones for Excavation (D-H)
Drawing 4.1	Proposed Remediation Strategy for Contaminated Soil
Drawing 4.2	Schematic of A Typical Single Biopile

Appendices

Appendix A Sampling and resting Schedule Proposed in the Approved CAP	Appendix A	Sampling and Testing Schedule Proposed in the Approved CAP
---	------------	--

- Appendix B Supplementary Sampling Plan for the Remaining Areas within the ex-GFS Building
- Appendix C Site Boring Log
- Appendix D On-site Measurement Results
- Appendix E Laboratory Results
- Appendix F Groundwater Risk Assessment Results
- Appendix G Hot Works Requirements for Petrol Filling Station

1 INTRODUCTION

1.1 Background

- 1.1.1 The former Kai Tak airport started its operation since 1920s and was replaced by the new airport at Chek Lap Kok in 1998. It is located at south east Kowloon and has covered a total land area of about 260 hectares comprising of the north and south aprons and the runway areas extending into the Kowloon Bay.
- 1.1.2 Kai Tak Development (KTD) is a designated project in accordance with item 1 of schedule 3 under the Environmental Impact Assessment Ordinance (EIAO). The objectives of the Project is to provide information on the nature and extent of environmental impacts arising from the construction and operation of the development under this Project and related works that take place concurrently.
- 1.1.3 The ex-Government Flying Services (GFS) building was found to be located within the planning boundary of Kai Tak Development and has not been assessed for land contamination in the previous EIA studies and land contamination studies. As commissioned by the Civil Engineering and Development Department (CEDD) to assess the extent of residual land contamination associated with the historical operation of the former Kai Tak Airport under Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Cruise Terminal Advance Works Investigation, Design and Construction, a Contamination Assessment Plan (CAP) for the ex-GFS building (hereinafter called the "Study Area") was prepared. The Study Area covered an area of approximately 17,000m², consisting of (a) ex-GFS hangar, (b) an underground fuel storage tank, (c) a dangerous goods (D.G) store, (d) a playground (previously used as an car parking area), and a grassland (previously used as a tennis court), as depicted in Drawing 1.1.
- 1.1.4 The CAP which outlined the sampling locations and the testing schedule for site investigation (SI) in the Study Area was approved by Environmental Protection Department (EPD). A total of a total of 4 trial pits and 14 boreholes have been proposed and constructed within the Study Area for soil and groundwater sampling and testing.
- 1.1.5 The SI for land contamination assessment in the Study Area was commenced on 14 September 2007 and completed on 16 November 2007. The SI works, including rotary drilling of boreholes, logging of ground materials, installation of groundwater monitoring wells, water level monitoring and reinstatement of excavations, were all conducted by Vibro (H.K.) Ltd. (Vibro) under CEDD Term Contract No.GE/2007/03 (Works Order No. GE/2007/03.61&61A) while laboratory analyses were carried out by Lam Laboratories Limited (LAM) under CEDD term Contract No.GE/2005/49 (Works Order No. GE/2005/49.28)).

1.2 Objectives

- 1.2.1 The objectives of this Contamination assessment Report/ Remediation Action Plan (CAR/RAP) are to summarize findings of the SI (including fieldworks and laboratory analyses) and to determine the nature and extent of contamination based on the findings of the SI (**Section 3**). Once contamination is confirmed, remediation proposal suggesting appropriate remediation actions for the contaminated area are provided in the Remediation Action Plan (**Section 4**).
- 1.2.2 This CAR/RAP is submitted to seek endorsement from the Director of Environmental Protection (DEP) in accordance with *Section 3.4.10.5 of the EIA Study Brief for Kai Tak Development (ESB-152/2006)*.

2 FINDINGS OF CONTAMINATION ASSESSMENT PLAN

2.1.1 According to the approved CAP, the activities identified at the Study Area are summarized in **Table 2.1**.

Contamination Site Concern	Potential Source of Land Contamination
Ex-GFS building	The Site consisted of a hanger and more than 40 rooms/ workshops.
	 Hanger, transformer room and other rooms such as Electrical Workshop, Instrument Workshop, Ni-Cad Battery Room, Lead-acid Battery Room, Generator Room, Metal / Machine Workshop, Welding Workshop, Component Overhaul Workshop, Engine / Module Workshop and Ground Equipment Workshop were identified as potential source of land contamination.
Dangerous Goods store	• The Site had been used for storing Category 2 items (oxygen, nitrogen, feron 12, carbon dioxide and acetylene) and Category 5 items (paint and thinner). During site inspection, the D.G store was reported to be emptied except one of the rooms occupied by GFS for chemical waste storage. Waste oil was found to be stored in well lidded glass jars and oil drums during site inspection.
	 In order to assess any potential land contamination induced from mishandling of dangerous goods, SI was proposed in this area.
Underground tank and underground pipelines	• The 18,000L underground tank was used for diesel fuel storage and the pipe trench was found connecting the D.G. Store and the welding workshop within the Site.
	 The underground fuel tanks and the underground pipelines were identified as potential sources of land contamination in this Site.
Grassland, playground and remaining area of the ex-GFS building	• The playground area had been used for car parking and used as kennels for the Immigration Department Dog Team while the grassland area was reported to be used for Immigration Department Dog Team training. Both areas were vacant areas and no activities were observed during site inspection.
	 In order to check for potential land contamination in these two vacant areas and to provide information on general soil and groundwater conditions, site investigation was proposed within the area.

 Table 2.1
 Potential Sources of Land Contamination Identified in the Study Area

- 2.1.2 In light of potential sources of land contamination identified in the Study Area, a total of 34 locations were identified as potential land contamination hotspots. The criteria for identification of contamination hotspots were based upon the site observation of stain/ground discolourization, machine/ chemical storage locations or areas with contamination activities undertaken.
- 2.1.3 Since transformer room and generator room located within the ex-GFS building were still in operation during the SI and un-recorded underground chambers were found underneath the potential contaminative rooms within the ex-GFS building, SI works at 16 of the 34 hotspots within the Study Area, were not possible to be carried out. Therefore only 4 trial pits and 14 boreholes were proposed within the Study Area. Detailed rationales for selecting sampling locations in the approved CAP are provided in **Appendix A**.
- 2.1.4 Since the battery rooms, electrical, instrument, metal / machine, welding, overhaul, engine/module and ground equipment workshops were well paved with concrete and the presence of underground chamber has prevented a direct contact of potential contaminants with the soil underneath. No issue of land contamination in relation to the site activities is therefore expected and thus no sampling was proposed at these rooms.
- 2.1.5 For the hotspots identified at transformer room and generator room, it was recommended that a supplementary land contamination assessment should be carried out upon the cessation of the operations and prior to the redevelopment. A supplementary sampling plan providing the sampling and laboratory analysis information for the SI in these areas are attached in **Appendix B**.

3 CONTAMINATION ASSESSMENT REPORT

3.1 Assessment Methodology

Soil Boring and Sampling

- 3.1.1 The SI works were carried out from 14 September 2007 to 16 November 2007. During the SI, sampling at GFSB-02 and GFSB-03 was not feasible to complete according to the approved CAP.
- 3.1.2 Soil boring at GFSB-02 and GFSB-03 was only proceeded down to 0.5m below base of existing concrete pavement (BBC) due to the presence of hard concrete.
- 3.1.3 A total of 4 trial pits and 14 boreholes were constructed within the Study Area as illustrated in **Drawing 3.1**. Soil samples were collected at about 1m, 2.5m and 3.5m BBC for boreholes located at GFSA-17 to A-22, GFSC-03 to C-04 and GFSD-01 to D-04. For GFSC-01 to C-02, soil samples were collected at about 1m, 2.5m, 3.5m, 5m and 6m BBC while for trial pits located within D.G Store (GFSB-01 to B04), soil samples were generally collected at about 0.5m, 1.5m and 2.5m. It should be noted that, soil sampling in GFSB-01 was not able to be conducted exactly at 2.5m but close to the desired depth due to the presence of concrete slab.
- 3.1.4 Before drilling/excavation, the sampler and all equipment in contact with the ground were thoroughly decontaminated prior to use at each borehole by laboratory-grade detergent and steam-cleaning/ high-pressure hot water jet.
- 3.1.5 Soil samples were properly labeled and stored in cool boxes at around 4°C until delivered to the analytical laboratory. All the collected soil samples in the SI were analyzed in accordance with the analysis schedules detailed in the approved CAP.

Strata Logging

3.1.6 Strata logging for boreholes / trial pits was undertaken during the course of drilling and sampling by a qualified geologists. The logs included the general stratigraphic descriptions, depth of soil sampling, sample notation and level of groundwater (if encountered). The presence of rocks/boulders/cobbles and foreign materials such as metals, wood and plastics was also recorded. Photographic records were also taken for trial pits.

Groundwater Sampling

- 3.1.7 After completion of soil sampling, groundwater monitoring wells were installed at all 14 boreholes with groundwater encountered. After installation, well development (approximately 5 well volumes) was carried out to remove silt and drilling fluid, if any, reside from the wells. Groundwater level and thickness of free product layer, if present, were measured at each well before groundwater samples were taken.
- 3.1.8 Prior to groundwater sampling, monitoring wells were purged (at least 3 well volumes) to remove fine-grained materials and to collect freshly refilled representative groundwater samples.
- 3.1.9 Immediate after collection, groundwater samples were transferred to new, clean, laboratoryprepared "darken type" sample containers. Groundwater samples were placed in the glass jars with zero headspace and promptly sealed with a septum-lined cap. All samples were clearly labeled. Immediately following collection, samples were subsequently stored in cool box at about 4℃ and delivery to analytical laboratory on the same day.
- 3.1.10 All groundwater samples were analyzed in accordance with the analysis schedules detailed in the approved CAP (**Appendix A**).

3.2 Assessment Criteria

Criteria for Soil and Groundwater Contamination

- 3.2.1 The assessment methodology of this Study was developed in accordance with the Practice Note ProPECC PN3/94 "Contaminated Land Assessment and Remediation" and "Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" issued by the EPD.
- 3.2.2 The Practice Note was used in setting the soil contamination criteria. The Practice Note makes reference to criteria developed in the Netherlands (Dutch 'ABC' Levels), which are most comprehensive and widely used for contaminated site assessment. The preliminary screening approach adopted in this study was based on the Dutch criteria which consist of 3 levels of guidelines, namely A, B, and C. The simplified explanation of the ABC levels is as follows:
 - 'A' level implies unpolluted;
 - 'B' level implies potential pollution present that requires further investigation or remediation; and
 - 'C' level implies pollution which requires remediation.
- 3.2.3 The Dutch Criteria are very stringent as they are developed based on a "good for all uses" philosophy. The EPD generally requires remediation for soil contamination above the Dutch B level. In other words, the Dutch B level is the cleanup target for remediation of soil. Relevant soil and groundwater Dutch 'ABC' levels for this Study are presented in **Table 3.1**.

Table 3.1	Dutch ABC Values	s for Soil and	Groundwater	Contamination

Parameter		Soil (mg/kg)	Grou	Groundwater(µg/L)			
Farameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C		
Total Petroleum Hydrocarbons (TPH) (as mineral oil)	100	1000	5000	20	200	600		
BTEX								
Benzene	0.01	0.5	5	0.2	1	5		
Toluene	0.05	3	30	0.5	15	50		
Ethylbenzene	0.05	5	50	0.5	20	60		
Xylenes	0.05	5	50	0.5	20	60		
Polyaromatic Hyd		(PAHs)				-		
Naphthalene	0.1	5	50	0.2	7	30		
Phenanthrene	0.1	10	100	0.1	2	10		
Anthracene	0.1	10	100	0.1	2	10		
Fluoranthene	0.1	10	100	0.02	1	5		
Benzo(a)pyrene	0.05	1	10	0.01	0.2	1		
Pyrene	0.1	10	100	0.02	1	5		
Phenols	0.02	1	10	0.5	15	50		
Chlorinated Hydrocarbons- Aliphatics (for individual)	0.1	5	50	1	10	50		
Metals								
Cadmium (Cd)	1	5	20	1	2.5	10		
Lead (Pb)	50	150	600	20	50	200		
Copper (Cu)	50	100	500	20	50	200		

Parameter	Soil (mg/kg)			Groundwater(µg/L)			
Falameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C	
Tin (Sn)	20	50	300	10	30	150	
Chromium (Cr)	100	250	800	20	50	200	
Nickel (Ni)	50	100	500	20	50	200	
Zinc (Zn)	200	500	3000	50	200	800	
Cobalt (Co)	20	50	300	20	50	200	
Arsenic (As)	20	30	50	10	30	100	
Molybdenum (Mo)	10	40	200	5	20	100	
Barium (Ba)	200	400	2000	50	100	500	
Mercury (Hg)	0.5	2	10	0.2	0.5	2	

Risk-based Criteria for Groundwater

- 3.2.4 The Dutch 'ABC' criteria were established based on the assumption that groundwater is used as potable water. However, it is too stringent to be applied directly to Hong Kong where groundwater is not generally for potable use. Hence, the Dutch B levels would be only for screening out the chemicals-of-concern (COCs) for risk assessment and are not for assessing groundwater contamination in Hong Kong. A risk-based assessment would be carried out for contaminants with the concentration exceeding the Dutch B level to evaluate the risks posed to the sensitive receptors.
- 3.2.5 The risk-based assessment that has been adopted in US Environmental Protection Agency (USEPA) takes into account concentrations of individual contaminants in groundwater, the anticipated most sensitive human receptor and the potential exposure pathways. For a worst-case scenario, the largest contaminant concentrations in the groundwater samples would be taken as the source concentration for the risk calculation.
- 3.2.6 Exceedance of the risk-based criteria would be qualified in two tiers. Firstly, the total Pathway Hazard Index that is the sum of contaminant hazard quotients exceeds one (i.e. USEPA recommended hazard index). Secondly the largest contaminant concentration exceeds the corresponding Risk Based Screening Level (RBSL) that is derived from the recognized oral reference dose. For carcinogens, the first is the Total Carcinogenic Risk that is the sum of contaminant carcinogenic risk exceeds 1x10⁻⁶ (i.e. USEPA lifetime cancer risk level). The second is the largest carcinogenic contaminant concentration exceeds the corresponding RBSL that is derived from the recognized carcinogenic oral slop factor. It should be noted that risk assessment could only be undertaken for those chemicals that have a recognized oral slope factor or oral reference dose.

3.3 Analytical Results and Interpretation

Fieldwork and On-site Measurements

3.3.1 The SI was undertaken in accordance with the sampling plan detailed in the approved CAP. No distinctive, characteristic smell of soil and groundwater sample exhibiting signs of contamination was noticeable during the site investigation. Soil boring logs are included in **Appendix C**.

On-site PID Measurement

- 3.3.2 The volatile organic compounds (VOCs) concentrations were measured by the photoionization detector (PID) for soil samples obtained.
- 3.3.3 The VOC levels of the soil samples are generally low (i.e. below 5.2ppm) and harmful effects posed to site workers during decontamination is not expected.

Thickness of Free Product Measurement

- 3.3.4 Floating oil / free product (of TPH) has not been found in all sampling point.
- 3.3.5 As no free product was encountered during the SI, only the results of PID measurement are presented in **Appendix D**.

Laboratory Analytical Results

Results of Soil Analysis

- 3.3.6 A total of 54 soil samples excluding those for QA/QC purposes were collected in the SI for laboratory analysis and the laboratory testing results for all soil samples are presented in **Appendix E**.
- 3.3.7 Among these samples collected, TPH, PAHs (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) and metals (copper, lead, zinc, cadmium, nickel and cobalt) are found exceeding Dutch B/C levels in the soil samples collected at GFSA-17 to A-18, GFSA-20, GFSA-22, GFSB-01 and GFSD-03 to D-04. The exceedances are summarized in **Table 3.2** below.

Sample	Depth (m BBC)	Contaminant	Dutch Level (mg/kg)		Concentration (mg/kg)	Dutch Level Exceeded	
1.0.	(11 000)		В	С	(ing/kg)	LYCEEnen	
GFSA-17	3.25-3.7	Lead	150	600	200	>B	
		Phenanthrene	10	100	14	>B	
GFSA-18	1	Benzo(a)pyrene	1	10	11	>C	
	I	Fluoranthene	10	100	19	>B	
		Pyrene	10	100	17	>B	
GFSA-20	1	Zinc	500	3000	2000	>B	
GFSA-22	3.25-3.7	Copper	100	500	150	>B	
GFSB-01	1.65	TPH	1000	5000	2875	>B	
	1	Cadmium	5	20	6	>B	
		Lead	150	600	480	>B	
GFSD-03		Zinc	500	3000	2300	>B	
GF3D-03		Cadmium	5	20	510	>C	
	3.3-3.75	Nickel	100	500	410	>B	
		Cobalt	50	300	1200	>C	
	2.2-2.65	Cadmium	5	20	15	>B	
GFSD-04	2.2-2.00	Lead	150	600	430	>B	
	3.2-3.65	Lead	150	600	300	>B	

 Table 3.2
 Summary of Soil Sample Exceeding the Dutch B/C Levels

Remarks:

BBC= Below Base of Existing Concrete Pavement

Results of Groundwater Analysis

3.3.8 During the SI, groundwater was encountered at all the sampling location except GFSB-01 to B-04. A total of 14 groundwater samples were therefore collected from these boreholes. **Table 3.3** shows the termination depth for boreholes and their corresponding groundwater level. The measured groundwater level contour is presented in **Drawing 3.2**.

Sample	Groundwater Level		Termination Depth of Borehole
I.D.	m Below Ground	mPD	m Below Ground
GFSA-17	2.62	2.11	6.25
GFSA-18	2.58	2.29	6.60
GFSA -19	2.54	2.41	6.35
GFSA-20	2.73	2.26	6.65
GFSA-21	2.53	2.42	6.44
GFSA-22	2.68	2.28	6.29
GFSC-01	2.48	2.18	6.50
GFSC-02	2.47	2.17	6.50
GFSC-03	2.66	2.10	6.38
GFSC-04	2.53	2.10	6.28
GFSD-01	2.69	2.23	6.00
GFSD-02	2.83	2.24	6.70
GFSD-03	2.63	2.08	6.20
GFSD-04	2.31	2.21	6.66

 Table 3.3
 Summary of the Borehole Termination Depths and Groundwater Level

3.3.9 Analytical results showed that exceedances of Dutch B/C levels in TPH, metals (mercury, molybdenum, lead, zinc, barium, chromium, cobalt, copper, cadmium) were found in 10 groundwater samples and they have been summarized in **Table 3.4**. In addition, the laboratory testing results for all groundwater samples are provided in **Appendix E**.

Table 3.4	3.4 Summary of Groundwater Samples Exceeding the Dutch B/C Values							
Sample I.D.	GW depth (m below	Contaminant	Dutch (µg	/L)	Concentration (µg/L)	Dutch Level		
	ground)		В	С	(#9/=/	Exceeded		
		Mercury	0.5	2	1.2	>B		
GFSA-17	2.62	Molybdenum	20	100	31	>B		
		TPH	200	600	231	>B		
		Lead	50	200	77	>B		
		Zinc	200	800	250	>B		
GFSA-18	2.58	Molybdenum	20	100	21	>B		
		Barium	100	500	150	>B		
		TPH	200	600	327	>B		
	2.54	Lead	50	200	72	>B		
GFSA-19		Molybdenum	20	100	39	>B		
		Barium	100	500	120	>B		
GFSA-20	2.73	Barium	100	500	110	>B		
	2.53	Chromium	50	200	64	>B		
GFSA-21		Lead	50	200	590	>C		
UI 3A-21		Zinc	200	800	420	>B		
		Barium	100	500	610	>C		
		Chromium	50	200	57	>B		
GFSA-22	0.60	Lead	50	200	130	>B		
UF3A-22	2.68	Zinc	200	800	250	>B		
		Barium	100	500	220	>B		

 Table 3.4
 Summary of Groundwater Samples Exceeding the Dutch B/C Values

Sample	GW depth (m below	Contaminant	Dutch (µg		Concentration (µg/L)	Dutch Level
1.0.	ground)		В	С	(#9/=)	Exceeded
		Copper	50	200	55	>B
		Lead	50	200	550	>C
GFSD-01	2.69	Zinc	200	800	480	>B
		Barium	100	500	340	>B
		TPH	200	600	365	>B
		Cadmium	2.5	10	2.7	>B
		Copper	50	200	59	>B
GFSD-02	2.83	Lead	50	200	2100	>C
		Zinc	200	800	1000	>C
		Barium	100	500	680	>C
	2.63	Cadmium	2.5	10	27	>C
		Lead	50	200	240	>C
GFSD-03		Zinc	200	800	470	>B
	2.00	Cobalt	50	200	200	>B
		Barium	100	500	650	>C
		TPH	200	600	740	>C
		Cadmium	2.5	10	3	>B
		Lead	50	200	320	>C
GFSD-04	2.31	Zinc	200	800	290	>B
		Barium	100	500	160	>B
		TPH	200	600	369	>B

3.3.10 As discussed earlier, the Dutch values for groundwater would serve to indicate the chemical-of-concerns (COCs) for risk assessment. A risk-based assessment was thus carried out for parameters which exceeded the Dutch B/C levels to evaluate the risks posed to the anticipated most sensitive human receptor. It can be seen from **Table 3.5** that the risk due to ingestion of groundwater by construction workers is warranted. It should be noted that the risk due to dermal contact with groundwater by site workers is uncertain. It is because risk assessment regarding to dermal contact cannot be undertaken as the toxicity and / or chemical specific data for the chemicals of concern (COCs) do not exist. As such, it is recommended that personnel protective equipment be used by site workers as a mitigation measure.

Receptor	Significance of Risk due to Groundwater Contamination	Rationale
Construction workers for decommissioning / decontamination works (by ingestion)	Significant	Existence of potential risk.
Construction workers for decommissioning / decontamination works (by inhalation)	Insignificant	Decommissioning and decontamination works would be located in the outdoor area. Also, it is recommended that personal protective equipment (PPE) should be used by site workers as a mitigation measures.
Construction workers for decommissioning / decontamination works (by dermal contact)	Uncertain	Toxicity and / or chemical specific data do not exist for the COCs for risk assessment to be undertaken. As such, it is recommended that personal protective equipment (PPE) be used by site workers as a mitigation measure.

Receptor	Significance of Risk due to Groundwater Contamination	Rationale
Future land users	Insignificant	As most of the contamination in the site would be removed after the decontamination works, the soil quality would be within Dutch B level and the groundwater contamination would be much reduced. In addition, the site will be covered by filling materials / concrete. Groundwater at the site will not be used as potable water or used for recreation / irrigation purposes.
Future construction workers (including construction workers for future Kai Tak Development works)	Insignificant	Contaminated soil is considered as the major contributor for elevated COCs in the groundwater. As most of the contamination in the site would be removed after the decontamination works, the soil quality would be less than Dutch B level and the contaminants in groundwater would be much reduced.

- 3.3.11 Compared with the future land users and future construction workers, the construction workers for carrying out decommissioning / decontamination works are regarded as the most sensitive since they would be possible to have direct contact with groundwater by incidental ingestion or dermal exposure. In addition, as discussed in **Table 3.5**, the risk for future land users / future construction workers is considered insignificant as the groundwater at the Site will not be used as potable water or used for recreation / irrigation purposed and the future ground surface of the Site should be of urban nature and to be covered by filling materials / concrete.
- 3.3.12 The maximum contaminant concentration recorded in the groundwater samples irrespective of their locations, the anticipated most sensitive human receptor (i.e. the construction workers for carrying out decommissioning / decontamination works), and the potential exposure pathway (i.e. by ingestion) were taken into account in the risk assessment. Details of groundwater risk assessment are given in **Appendix F**.
- 3.3.13 The results of the groundwater risk assessment indicate that concentration of the COCs in the groundwater, including TPH and metals (mercury, molybdenum, lead, zinc, barium, chromium, cobalt, copper, cadmium), do not exceed the calculated "allowable" concentrations (i.e. the risk-based criteria for remediation).
- 3.3.14 For the case of TPH, as the "allowable" concentration for TPH derived from the risk assessment (2.13E+02 mg/L) is above the solubility limit of TPH in water, the remediation criterion for TPH should be interpreted as "no free product" present in groundwater which is in consistency with the on-site measurement record. Thus, no remediation is considered necessary with reference to the remediation criterion.

Results of QA/QC Analysis

3.3.15 QA/QC is the practice of making sure that collection and analysis techniques provide precise and accurate information. This process is to ensure the levels of contamination measured in the environmental samples reflect the actual environmental levels and are not due to accidental contamination of the sample or sample container. In this Study, 3 sets of field blank, equipment blank and trip blank were collected and analyzed during the course of sampling. The laboratory results for QA/QC samples are presented in **Appendix E**.

3.3.16 The laboratory results showed that detectable metals (copper, lead, nickel, tin, barium) and TPH was found among the QA/QC samples. The potential source of contamination in the blanks could be due to (1) sampling or laboratory testing equipments not being decontaminated completely; (2) cross-contamination from the ambient conditions during sampling and laboratory testing; 3) from the blank container itself; and (4) contamination of volatile organic compounds during transportation. Though, there is possible cross-contamination which would cause a higher reported value than actual, given that the COC do not exceed the risk-based criteria for remediation, the results would not influence the outcome of this assessment. QA/QC procedures for sample collection and preparation are therefore considered acceptable.

3.4 Estimation of Soil Contamination Extent and Remediation

- 3.4.1 Based on the analytical results of soil presented above, soil samples in 7 locations (GFSA-17 to A-18, GFSA-20, GFSA-22, GFSB-01 and GFSD-03 to D-04) were found to have organic (TPH, Phenanthrene, Benzo(a)pyrene, Fluoranthene, Pyrene) or metals (copper, lead, zinc, cadmium, nickel and cobalt) contamination.
- 3.4.2 In an attempt to confine the area of contaminated soil for handling, a 6m X 6m square centered at the sampling location with contamination level lies above the Dutch B/C level would be adopted. This approach was justified by considering the contaminated soil from these sampling location were due to localized / discrete sources. For vertical distribution of contaminants, the depth of contamination is assumed to be 0.5m above and below the particular sampling depth with contamination identified for conservative estimation.
- 3.4.3 Based on the above approach, the extents of soil contamination with organic contaminants or metals have been estimated and summarized in **Table 3.6**. Locations of proposed zones for excavation are depicted in **Drawings 3.3 3.4**.

Zone	Sample	ample Depth		Concentration		Estimated Contamination Extent			
I.D.	I.D.	(m BBC)	Contaminant	(mg/kg)	Vertical (m BBC)	Horizontal (m ²)	Estimated Volume (m ³)		
Excee	edances fo	und in the	soil samples coll	ected below 0	m to 1m BB	C			
			Phenanthrene	14					
А	GFSA-18	1	Benzo(a)pyrene	11	0.5-1.5	36	26		
A	GF5A-10	I	Fluoranthene	19	0.5-1.5	30	36		
			Pyrene	17					
В	GFSA-20	1	Zinc	2000	0.5-1.5	36	36		
		D-03 1	Cadmium	6		36	36		
С	GFSD-03		Lead	480	0.5-1.5				
			Zinc	2300					
Excee	edances fo	und in the	soil samples coll	ected below 1	m to 6m BB	C			
D	GFSB-01	1.65	TPH	2875	1.15-2.15	36*	36		
		2.2-2.65	Cadmium	15					
Е	GFSD-04	2.2-2.05	Lead	430	1.7-4.15	36	88.2		
		3.2-3.65	Lead	300					
F	GFSA-17	3.25-3.7	Lead	200	2.75-4.2	36	52.2		
G	GFSA-22	3.25-3.7	Copper	150	2.75-4.2	36	52.2		

Table 3.6 Location, Depth and Estimated Quantity of Contaminated Soil

Zone	Zone Sample	Depth	Concentration	Estimated Contamination Extent				
I.D.	I.D.	(m BBC)	Contaminant	(mg/kg)	Vertical (m BBC)	Horizontal (m ²)	Estimated Volume (m ³)	
		aFSD-03 3.3-3.75 Nic	Cadmium	510	2.8-4.25	36	52.2	
н	GFSD-03		Nickel	410				
			Cobalt	1200				
	Total Volume of Estimated Contaminated Soil=388.8m ³							

Remarks:

BBC= Below Base of Existing Concrete Pavement

* Due to space constraint within the D.G. Store, 6m X 6m square centered at GFSB-01 may not be feasible. The frame for excavation would have to be adjusted on site based on the actual site condition.

3.5 Conclusions and Recommendations

- 3.5.1 According to the results of site investigation, a total of 7 soil samples collected at GFSA-17 to A18, GFSA20, GFSA-22, GFSB-01, GFSD-03 to D-04 were found to have TPH, PAHs (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) and metals (copper, lead, zinc, cadmium, nickel and cobalt) exceeding the Dutch B/C levels.
- 3.5.2 The results of the groundwater risk assessment indicate that concentration of the COCs in the groundwater, including TPH and metals (mercury, molybdenum, lead, zinc, barium, chromium, cobalt and copper), do not exceed risk-based criteria for remediation. No floating free product was observed in all the groundwater wells during site investigation.
- 3.5.3 A Remediation Action Plan (RAP) should be prepared to identify appropriate remediation actions for the contaminated soil before decommissioning and development of this Study Area. The RAP is presented in **Section 4** of this Report.
- 3.5.4 For the battery rooms, electrical, instrument, metal / machine, welding, overhaul, engine/module and ground equipment workshops located inside ex-GFS building, as the rooms were found to be well paved with concrete and the presence of underground chamber has prevented a direct contact of potential contaminants with the soil underneath. No issue of land contamination in relation to the site activities is therefore expected.
- 3.5.5 Since the generator room and the transformer room will still be in operation at the time of the site investigation, 3 potential contamination hotspots within the transformer room and generator room could not be completed. Therefore it is recommended that a supplementary land contamination investigation should be carried out upon the cessation of the operations and prior to the redevelopment. The supplementary sampling plan for the areas of concern has been attached in **Appendix B.** Based on the results of samples analysis, no significant contamination was found around the areas of concerns. The scale of the contamination as reviewed by the activities and the size of hotspots would therefore be considered small. In addition, as the inaccessible sampling locations are located inside the building. They are much protected by the solid concrete floor. Hence, the uncertainty in decontamination work is considered limited and surmountable.

4 **REMEDIATION ACTION PLAN**

4.1 Objectives of Remediation Plan

- 4.1.1 The objectives of the remediation action are as follows:
 - (i) To propose remediation method(s) for the soil contamination;
 - (ii) To propose a mean to confirm completed excavation of contaminated soil;
 - (iii) To provide guidelines regarding handling and disposal of contaminated soil.

4.2 Selection of Remediation Methods

- 4.2.1 As summarized in **Table 3.7**, about 388.8m³ of contaminated soils identified within the ex-GFS building would need to be excavated and treated. There are 2 types of contaminated soil being identified based on the nature of contaminants:
 - Metals contaminated soil (316.8 m³)
 - TPH / SVOC contaminated soil (72 m³)
- 4.2.2 As the estimated quantity of contaminated soil is small, all contaminated soil identified within the ex-GFS building is recommended to be treated together with other contaminated soil identified in South Apron of the former Kai Tak Airport, ex-GFS apron area and at the narrow strip of the North Apron under the Decommissioning of the Former Kai Tak Airport Other than the North Apron (KTA Decommissioning EIA) for the sake of efficiency. As identified in the KTA Decommissioning EIA, biopiling is regarded as the most practical way to remediate the organic contaminated soil while solidification/stabilization is best suited for metal contaminated soil based on the (1) technical and cost effectiveness, (2) technology development status, (3) commercial availability, (4) experience and (5) expertise requirement.

4.3 Outline Process and Operation Remediation

Excavation

- 4.3.1 Contaminated soil identified within the ex-GFS building shall be excavated from the ground prior to any construction works on site. Detailed design drawings for planned excavations in the indicated areas shall be prepared by the Contractor. Factors such as excavation areas and depths, engineering properties and stability of the soils shall be considered for safe working conditions. The excavations shall be designed in accordance with the geotechnical properties of the soils and appropriate safety factors as determined by the Engineer. All excavated areas shall be set out by an appropriate qualified and licensed land surveyor based upon the excavation plans shown in **Drawings 3.3- 3.4**.
- 4.3.2 The excavation sequence would be as follows:
 - Excavate the contaminated soil and properly packed until no contaminants are found (confirmed by field and laboratory tests);
 - Soils contaminated with different types of contaminants shall not be mixed to avoid the increase the volume of soil that would require treatment by different remediation methods;
 - Transport the excavated soil by roll-off trucks for on-site treatment;
 - Any free product encountered during excavation should be recovered and drummed properly and collected by licensed chemical waste collector for proper disposal;
 - Finally, backfill the excavation with suitable materials.

- 4.3.3 A closure assessment to confirm the closure/completion for the excavation of contaminated areas should be undertaken. The excavation work shall be supervised by Land Contamination Specialist. Subsequent construction activities could only be carried out after the site closure.
- 4.3.4 Following excavation and before backfilling, confirmation sampling and testing shall be carried out at limits of excavation to confirm that all the identified contaminated soil has been excavated. It is proposed that one confirmation sample shall be collected from the pit bottom and one from each sidewall of the excavation pit. The depth of sampling shall be based on the depth of the original SI sample result that triggered excavation in that area. If there are any visible indications of impact, samples shall be collected from the apparent impact zone(s). Soil samples collected at the limits of excavation should be analysed for contaminants with exceedance of Dutch B/C levels at the sampling location and if the analytical results are below the relevant Dutch B/C levels, removal of contaminated soil shall be considered complete. However, if the analytical samples exceed the relevant action levels, more soil shall be excavated (either with 0.5m increment in vertical or 1m in horizontal direction depending on whether the exceeding confirmation sample is collected and analysed until all confirmation samples are below the relevant action levels.
- 4.3.5 Shall any *in-situ* decommissioned underground fuel tanks hinder any necessary excavation works, the following procedures / plants should be followed. Fire Services Department (FSD) and relevant government department / authorities may be consulted as necessary.
 - The soil / fill material from around the tank / pipeline shall be removed adequately, except for the identified contaminated material which shall be separately stockpiled on site for further decontamination treatment to be agreed by the Engineer and the Land Decontamination Specialist;
 - Appropriate heavy equipment shall be used for the underground fuel tank / pipeline removal / lifting. Relevant safety precautions should be formulated in the method statement to be prepared by the Contractor;
 - The excavated tank should be transferred to a secure area on site. The excavated tank / pipeline should be examined for structural integrity and signs of leakage if any. Contamination on the exterior surface of excavated tank, if any, should be properly washed and/or treated; and
 - The excavated tank should then be sent for off-site disposal as general C&D waste.
- 4.3.6 In addition, for proper decommissioning of underground fuel tank / pipelines, the following fire safety advice should be adhered to:
 - The gas freeing, abandoning, removing and disposal of all tanks / pipelines should be in accordance with the guidelines contained in Chapter 15 of the "Guidance for the Design, Construction, Modification, Maintenance and Decommissioning of Filling Stations", jointly published by the APEA and Energy Institute;
 - Precautionary guidelines for hot works (as provided in **Appendix G**) are to be observed at all times through the demolition process; and
 - A competent person should be assigned in writing to supervise all hot works and method statement should be submitted to FSD for scrutinizing before the commencement of the demolition works.
- 4.3.7 Spoils generated during excavation shall be placed on heavy-duty and impermeable sheeting adjacent to the excavation. The temporary stockpiles should be properly covered by impermeable sheeting to avoid leaching out of contaminants during wet season.
- 4.3.8 All construction activities shall be carried out by persons appropriately trained in health and

safety and appropriated personal protective equipment shall be used by the persons engaged in decontamination activities. The following guidelines of Health and Safety shall be strictly followed by all site personnel working on the site at all times:

- Temporary fencing or warning ribbons will be provided to the boundary of excavation, slope crest and temporarily stockpiled areas. Where necessary, the exposed areas will be temporarily covered with impermeable sheeting during heavy rainstorm.
- Workers are required to wear appropriate protective clothing and safety equipment.
- Smoking, eating, drinking and hotworks are strictly prohibited.
- Monitoring for Lower Explosive Limit in the work zone, and total VOCs (with a PID) in the breathing zone shall be undertaken. If the PID reading in the breathing zone is greater than 100ppm, monitoring for benzene in the breathing zone shall also be undertaken.
- Relevant occupational health and safety regulations and guidelines during excavation shall be observed.

Biopiling

4.3.9 Approximately 72m³ of organic (TPH / Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) contaminated soil has been proposed for biopile treatment and summarized in Table 4.1. The soil required for excavation should follow the 'zone of excavation' as shown in Drawing 3.3 – 3.4.

Zone	Sample	Depth		Concentration	Estima	ted Contam Extent	ination	
I.D.	I.D.	(m BBC)	Contaminant	(mg/kg)	Vertical (m BBC)	Horizontal (m ²)	Estimated Volume (m ³)	
			Phenanthrene	14				
^	GFSA-18	4	Benzo(a)pyrene	11	0.5-1.5m	36	36	
A	A GFSA-18		Fluoranthene	19	0.5-1.511	00	30	
			Pyrene	17				
D	GFSB-01	1.65	TPH	2875	1.15-2.15	36*	36	
			Tota	l Volume of Est	imated Co	ntaminated	Soil=72m ³	

 Table 4.1
 Estimated
 Volume
 of
 TPH
 Phenanthrene/
 Benzo(a)pyrene/

 Fluoranthene/
 Pyrene
 Contaminated
 Soil for
 Biopiling

Remarks:

BBC= Below Base of Existing Concrete Pavement

* Due to space constraint within the D.G. Store, 6m X 6m square centered at GFSB-01 may not be feasible. The frame for excavation would have to be adjusted on site based on the actual site condition.

4.3.10 Biopiling is a commonly accepted bioremediation method for the restoration of site contaminated with TPH and other organic contaminants. By using microorganisms to degrade contaminants in soil, biopile(s) transform hazardous / toxic materials into harmless elements such as water, carbon dioxide, and other innocuous products. The schematic layout of a typical biopile is shown in **Drawing 4.2** and the essential steps of biopiling are outlined in the following paragraphs:

Biopile Formation

4.3.11 The formation of a biopile should be started from one end and along the longitudinal

direction. Uniform starting concentrations will facilitate the control of the bioremediation and ensure a short cleanup time (as decontamination will not be controlled by patches of soil with high initial concentrations). Compaction of the biopile by excavation machinery shall be avoided in order have uniform density of the biopile. Bulking agents are not usually added as they are hard to be compacted during backfilling. The biopile should be covered by impermeable sheeting (such that not longer than 5m of a biopile shall be exposed to open air) to avoid fugitive emissions of dust or any pollutants from the biopile affecting the surrounding environment. Adequate turning should be undertaken during biopile formation (and installation of piping) to maximize sufficient air circulation. Turning of soil may also be used during operation to enhance air circulation. Nevertheless, this should be confirmed by the cleanup progress monitoring.

- 4.3.12 Impermeable sheeting shall be placed at the bottom of the biopiles and leachate collection sump shall be constructed along the perimeter of the biopiles to prevent leachate from contaminating the underlying soil / groundwater. All leachate generated from the operation of biopiling shall be collected and recycled to the biopile.
- 4.3.13 The carbon filter system should be designed, constructed, operated and maintained to ensure adequate adsorption efficiency to prevent air pollution impact to the surrounding air sensitive receivers (ASRs). The location of the exhaust of the carbon filter should be sited as far away as possible from the nearby ASRs. The carbon adsorption system should also be monitored regularly to check the performance of the carbon filter.
- 4.3.14 The first soil samples should be taken once the construction of a biopile is completed to serve as the baseline samples. The baseline conditions should be used as the reference conditions for assessing the cleanup progress of the subsequent biopile operation.

Biopile Operation

- 4.3.15 The biopile operation involves the mechanical induction of air into each biopile resulting from the establishment of a negative pressure field within each biopile. The negative pressure encourages the "evaporation" or volatilization of part of the hydrocarbon contamination that is adsorbed to the soil particles. The inducted air collects the vapour and transports it via the extraction pipes out of the biopile. The inducted air also maintains aerobic conditions in the soil pores which encourage biodegradation of the remaining non-volatile petroleum hydrocarbons.
- 4.3.16 As a large part of the hydrocarbon contaminant is not expected to be volatilized, cleanup of the non-volatile contaminant will depend on the biodegradation process, which produces CO₂. Thus, the gas obtained from the biopile shall comprise a mixture of air, water vapour, CO₂, and vapourized hydrocarbons. Exhaust air shall be passed through the activated carbon filters prior to discharge the atmosphere to remove any contaminants.
- 4.3.17 Suitable conditions in the biopile should be maintained for the growth of microbes. Moisture would be periodically added to the soil to maintain the moisture content within 10-20%. The optimal oxygen concentration in soil gas is 15% to 20%. The soil pH should be maintained between 5 and 8 for bacteria to survive. Nutrients may be required for microbial activities in small amounts. Regular progress monitoring of the soil conditions should be conducted to ascertain these conditions have been maintained. In addition, TPH and BTEX levels in the soil should also be tested to assess the decontamination performance of the system. Bacterial numbers in soil (Colony-Forming Unit (CFU) heterotrophs or CFU degraders/gram soil) is a good indicator of the health of biopile. This parameter should be measured too whenever soil samples are collected for TPH analysis during progress monitoring.
- 4.3.18 Upon achieving the relevant cleanup targets, soil from the biopile should reused on-site as fill material as far as practical.

Biopile Cleanup Progress Monitoring

- 4.3.19 The objective of the operation progress monitoring is twofold: i) to maintain the progress of contaminant cleanup, and ii) to ensure suitable conditions of the soil to support microbial growth. Progress monitoring would involve periodic soil gas monitoring, soil sampling, and physical parameter monitoring.
- 4.3.20 Soil gas monitoring points are installed within the biopiles. Sampling of oxygen, carbon dioxide, methane and VOC concentrations in the soil gas should be conducted once every month. Soil gas samples are taken by pulling a gas sample from the monitoring points through a vacuum pump. *In-situ* measurement of soil moisture should be included for monitoring. Soil gas sampling after placing the system in operation can establish the effectiveness of the aeration system.
- 4.3.21 It is proposed to undertake soil sampling monthly for the analysis of pH, nutrients, and bacterial number. Analyses for TPH and PAH (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) for soil samples shall be conducted at least once every 3 months. Monitoring should continue until the cleanup targets are achieved. Once the cleanup targets for a location have been achieved, soil sampling at that particular location may discontinue.

Biopile Closure Assessment

- 4.3.22 Biopile closure assessment should be conducted to ensure that the soil contaminant levels in the biopile are meeting the cleanup target for TPH and PAH (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene).
- 4.3.23 The sampling frequency of one sample per 100 m³ for biopile closure assessment is reference to the CAR & RAP of previous projects in Hong Kong. The biopile shall be divided into lots for sampling and testing for contaminants.
- 4.3.24 Access to the sampling locations should be through opening of heat bonded cover panels. These openings shall be closed after each access. Extracting this soil samples shall be accomplished using a hand auger or other methods approved by the Engineer.
- 4.3.25 All soil samples shall be analyzed for TPH and PAH (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene). The laboratory results are considered satisfactory when the levels of TPH and PAH (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) meet the cleanup target (Dutch B levels for TPH and individual PAH). Individual soil lot which has demonstrated meeting the cleanup target could be removed from the biopile provided the lot would not affect the operation of biopile or would not be affected by adjacent soil lots still under treatment.

Solidification/Stabilization (S/S)

4.3.26 The contaminated soil with heavy metal contamination with volume of approximately 316.8m³ proposed for S/S treatment has been summarized in **Table 4.2**. The soil required for excavation should follow the 'zone of excavation' as shown in **Drawings 3.3 – 3.4**.

Table 4.2	Estimated	Volume	of	Metal	Contaminated	Soil	for
	Solidification	n/Stabilizatio	n				

Zone	Sample	Donth		Concentration	Estima	ited Contan Extent	nination
I.D.	I.D.	(m BBC)	Contaminant	Concentration (mg/kg)	Vertical (m BBC)	Horizontal (m ²)	Estimated Volume (m ³)
В	GFSA-20	1	Zinc	2000	0.5-1.5m	36	36

Zone	Sample	Depth		Concentration	Estima	ited Contan Extent	nination
I.D.	I.D.	(m BBC)	Contaminant	(mg/kg)	Vertical (m BBC)	Horizontal (m ²)	Estimated Volume (m ³)
			Cadmium	6			
С	GFSD-03	1	Lead	480	0.5-1.5m	36	36
			Zinc	2300			
		2.2-2.65	Cadmium	15			
Е	GFSD-04	D-04 Lead 430		430	1.7-4.15	36	88.2
		3.2-3.65	Lead	300			
F	GFSA-17	3.25-3.7	Lead	200	2.75-4.2	36	52.2
G	GFSA-22	3.25-3.7	Copper	150	2.75-4.2	36	52.2
			Cadmium	510			
Н	GFSD-03	3.3-3.75	Nickel	410	2.8-4.25	36	52.2
			Cobalt	1200			
			Total Vol	ume of Estimat	ed Conta	minated So	il=316.8 m ³

Remarks:

BBC = Below Base of Existing Concrete pavement

- 4.3.27 A treatment area should be confined for carrying out the S/S mixing and temporary soil stockpile. Prior to solidification, metal contaminated soils should be screened to segregate soil from debris, rock fragments and other materials and to break soil clumps into sizes allow effective mixing with solidifying agents.
- 4.3.28 During the solidification / stabilization process, portland cement (or other equivalent), water and/or other additive(s) (such as fly ash, lime, soluble silicates and clays) should be added to the contaminated soils to form a solid matrix. Uniform mixing of contaminated soils, cement, water and other additives(s) should be taken by using a skip (or other equivalent) at the designated treatment area to minimise the potential for leaching during the solidification process.
- 4.3.29 The mixture should be placed in moulds made from wooden formwork to set for approximately one week. The blocks formed should be of a suitable size to allow handling and transporting and larger blocks should be broken down into smaller sizes for transportation.
- 4.3.30 The soil mixture in the concrete blocks would be solidified within about 1 week. After setting, the samples of the blocks should be collected for testing to confirm if the contaminated materials meet the (i) Toxicity Characteristic Leaching Procedure (TCLP) and (ii) unconfined compressive strength (UCS) tests i.e. achievement of the stabilization targets.

Toxicity Characteristics Leaching Procedure Test

- 4.3.31 The sampling frequency for the TCLP test should be 1 TCLP sample per 50m³ of broken up hardened mixture after CS/S treatment. Each TCLP sample should be a composite sample collected at 5 locations throughout the 50m³ broken up hardened mixture. Same volume of sample should be collected at each of the 5 locations in order to ensure unbiased composite sample to be collected.
- 4.3.32 Any hardened samples to be submitted to laboratory for TCLP analysis should be broken up to small pieces with maximum diameter of 10cm. The sample preparation method of USEPA Method 1311 will be followed for the TCLP analysis. It is specified in USEPA Method 1311 that the maximum grain size of samples to be analyzed is 1cm. As such, the samples

should be further broken up in the laboratory prior to TCLP analysis.

4.3.33 TCLP tests should be conducted in accordance with USEPA Method 1311 and USEPA Method 6020 for the concerned metals in this Study. "Universal Treatment Standards" (UTS) can be used for interpretation of the TCLP test results (these standards were derived from the performance of the Best Demonstrated Available Technologies (BDAT) for treating most prohibited hazardous wastes and were adopted in previous land contamination studies e.g. decontamination works at the Cheoy Lee Shipyard at Penny's Bay and reclamation works at North Tsing Yi Shipyard site). The UTS for the concerned heavy metals are summarized in **Table 4.3**.

Parameter	Universal Treatment Standard*
Lead	0.75 mg/L as TCLP
Copper	7.8** mg/L as TCLP
Zinc	4.3 mg/L as TCLP
Cadmium	0.11 mg/L as TCLP
Nickel	11 mg/L as TCLP
Cobalt	Not Available**

 Table 4.3
 Universal Treatment Standards (UTS) for the Concerned Metals

Remarks:

^{*} Reference to Universal Treatment Standards (UTS) of U.S. Resource Conservation and Recovery Act (RCRA) in Title 40 of the Code of Federal Regulations (CFR) Parts 268.

**It should be noted that the UTS standard for copper and cobalt are unavailable. To determine the UTS for copper, a comparison has been made between Drinking Water Standards for the USEPA and the USEPA Federal Register. It was found that the 2 sets of standards differ by a factor of ~6

(for Chromium) to ~2950 (for Cyanide). Using a more conservative approach, the factor of 6 is taken. Therefore, the UTS for copper is taken to be the Drinking Water Standard value of 1.3mg/L times a factor of 6, giving a value of 7.8mg/L. For cobalt, it should be noted that there is no UTS or USEPA Drinking Water Standard for Cobalt. Therefore, a cleanup standard is not established for Cobalt. However, it is expected that the solidification process will likely isolate the Cobalt in the same manner as the other COC present.

- 4.3.34 Any pile of broken up solidified mixture that meets the concerned UTS should be stockpiled on site for future reuses on-site due to their stable and inert properties.
- 4.3.35 Any pile of broken up solidified mixture that does not meet the concerned UTS should be crushed and re-treated by solidification / stabilization. The re-treated pile should be tested again for TCLP to confirm if it can be reused on site.

Unconfined Compressive Strength (UCS)

- 4.3.36 The treated material should be allowed to set to achieve the unconfined compressive strength (UCS) of not less than 1mPa with reference to the USEPA guidelines (1986) Handbook of Stabilization/ Solidification of Hazardous Wastes, EPA/540/2-86-00. The test procedure of UCS test should be based on BS 1377.
- 4.3.37 The solidified materials should then be broken into mass with maximum size of 250mm for backfilling or reuse on-site. Whenever the soil is to be reused as fill material, the treated soil should be put at a depth of not less than 1m above the groundwater level and be covered by 1m of clean fill to minimize the long term potential impacts of leaching to the underground water.

4.4 Remediation Report

4.4.1 A Remediation Report shall be prepared by the Land Contamination Specialist and submitted to EPD to report on the remediation process and demonstrate that contaminated

soils and groundwater are all treated to meet the relevant standards or properly handled. All relevant information, including details of closure assessment, sampling results, photographs and certification of independent checker, the quantities of treated soil and recovered free product, final backfill site of treated soil and disposal site of free product shall be included in the remediation report.

4.5 Mitigation Measures and Safety Measures

4.5.1 In order to minimize the potentially adverse environmental impacts arising from the handling of potentially contaminated materials, the following environmental mitigation measures are proposed during the course of the site remediation:

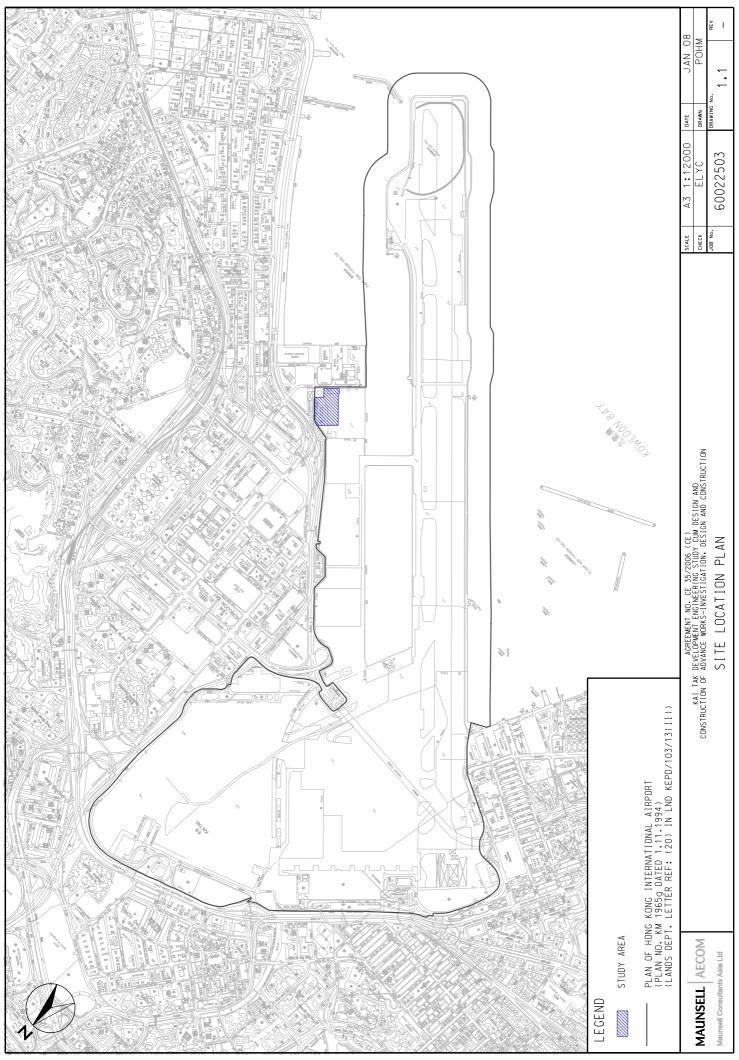
Excavation and Transportation

- Excavation profiles must be properly designed and executed.
- Stockpiling site(s) shall be lined with impermeable sheeting and bunded. Stockpiles shall be properly covered by impermeable sheeting to reduce dust emission. If this is not practicable due to frequent usage, regular misting shall be applied. Watering shall be avoided on stockpiles of contaminated soil to minimise contaminated runoff.
- Stockpiles of contaminated soil shall be properly covered by impermeable sheeting to minimize contaminated runoff from the stockpiles.
- Excavation and stockpiling shall be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils.
- Supply of suitable clean backfill material is needed after excavation.
- Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated wastewater run-off, and truck bodies and tailgates should be sealed to prevent any discharge during transport or during wet conditions.
- Speed control for the trucks carrying contaminated materials should be enforced;
- Vehicle wheel and body washing facilities at the site's exist points shall be established and used.

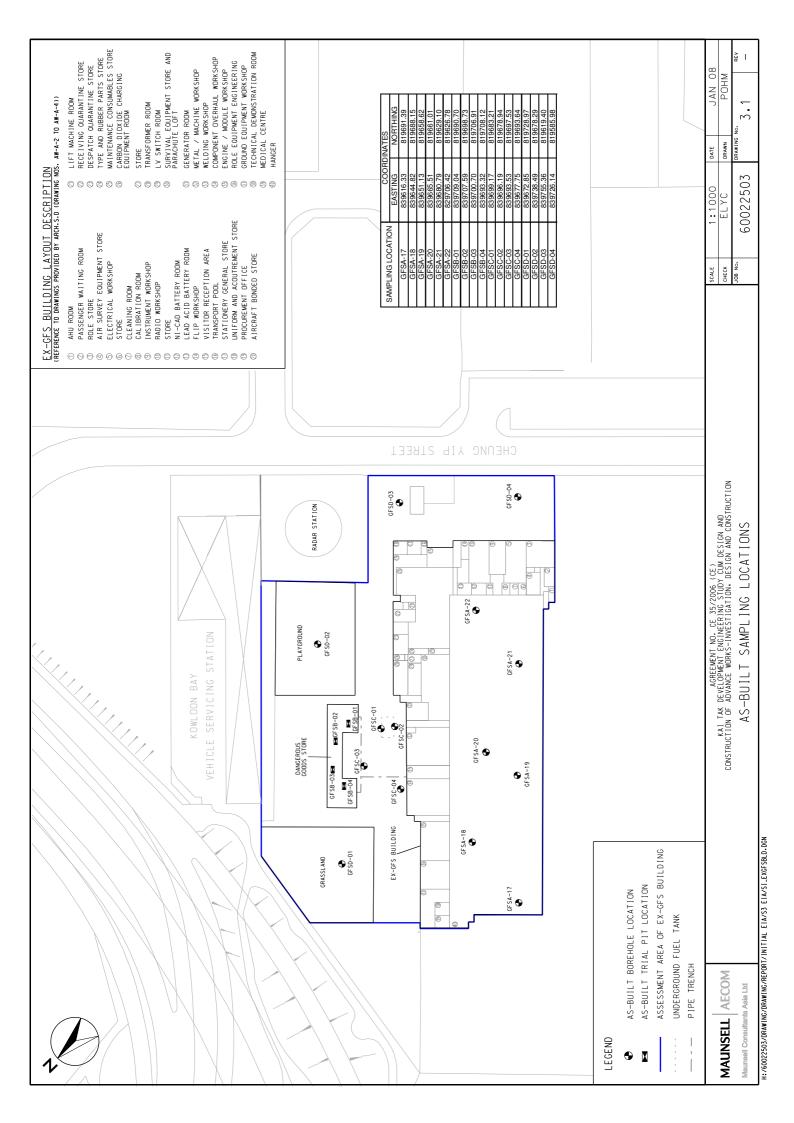
Biopiling

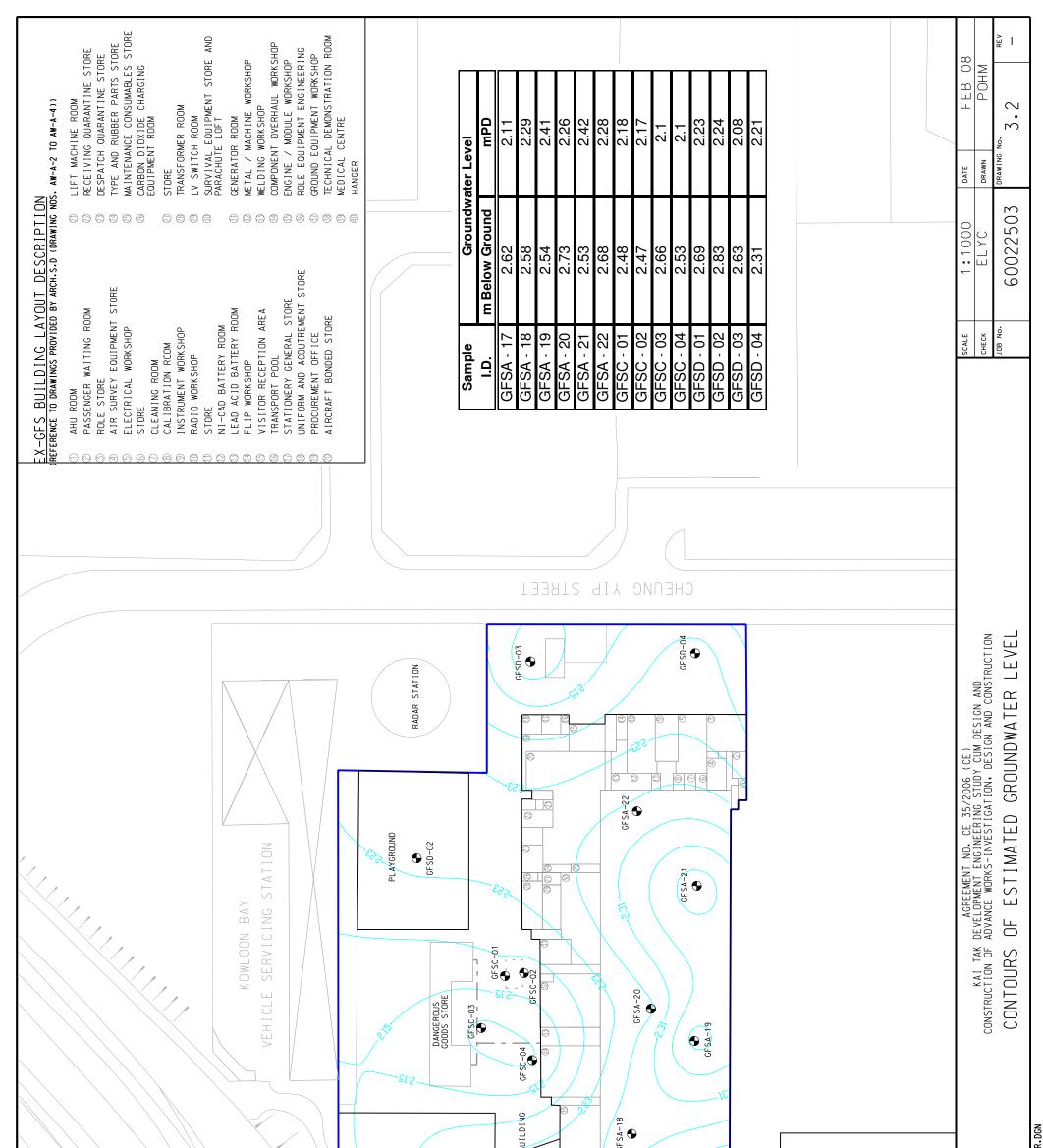
- To avoid fugitive emissions of dust or any air pollutants from the biopile(s) and to minimise runoff from the stockpiled soils, the stockpiled soils at the biopiles shall be covered by impermeable sheeting such that not longer than 5m of the biopile is exposed to open air.
- Impermeable sheeting shall be placed at the bottom of the biopiles and leachate collection sump shall be constructed along the perimeter of the biopiles to prevent leachate from contaminating the underlying soil / groundwater. All leachate generated from the operation of biopiling shall be collected and recycled to the biopile.
- The vented air from the biopile(s) shall be connected to blower and carbon adsorption system for treatment before release to the atmosphere. Exhaust air from the blower and carbon adsorption system shall be monitored for VOCs regularly.
- Spent activated carbon of the carbon adsorption system shall be replaced at appropriate intervals such that the VOC emission rate from the system is acceptable.
- Silencers shall be installed at the biopile blowers to minimise noise impact.
- Contaminated runoff from biopile(s) shall be prevented by constructing a concrete bund along the perimeter of the biopiles.

Solidification / Stabilization

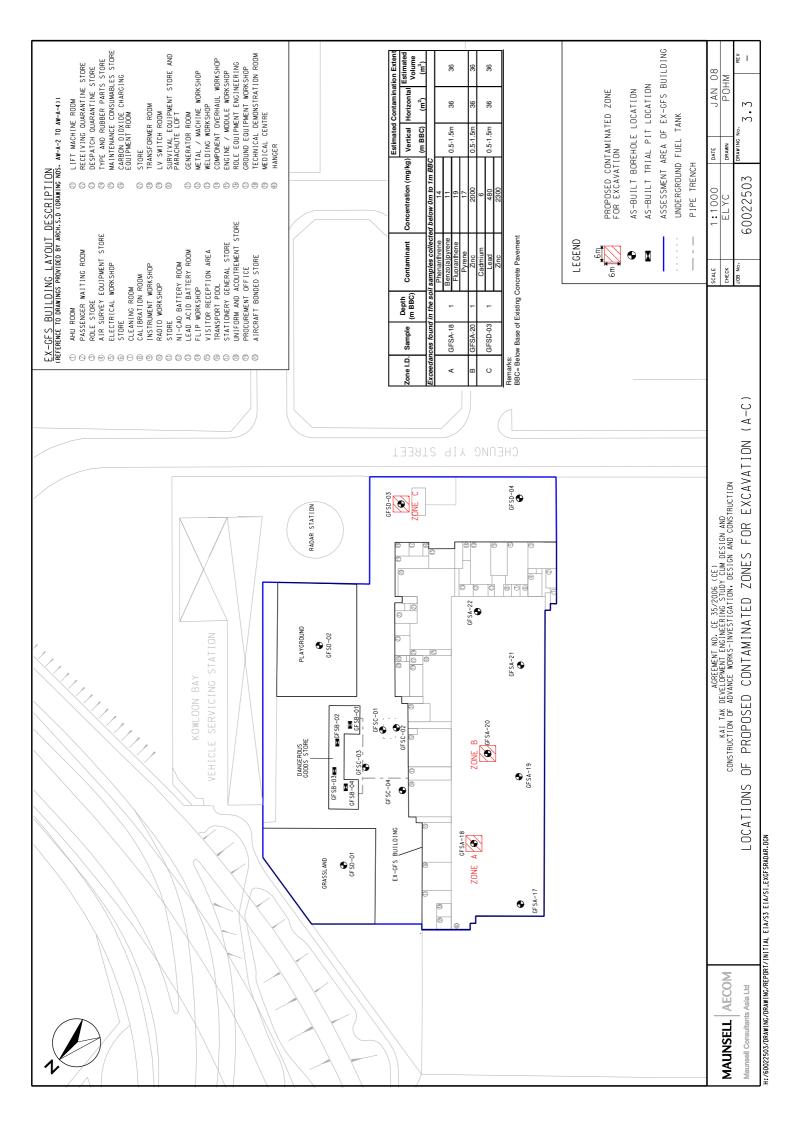

- Mixing process and other associated material handling activities should be properly scheduled to minimise potential noise impact.
- Mixing of contaminated soils and cement / water / other additive(s) should be undertaken at a solidification plant to minimise the potential for leaching.
- Runoff from the solidification / stabilization area should be prevented by constructing a concrete bund along the perimeter of the solidification / stabilization area.
- 4.5.2 In order to minimise the potentially adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Chapter 509) and its subsidiary Regulations shall be followed by all site personnel working on the site at all times. In addition, the following basic health and safety measures should be implemented as far as possible:
 - Set up a list of safety measures for site workers;
 - Provide written information and training on safety for site workers;
 - Keep a log-book and plan showing the contaminated zones and clean zones;
 - Maintain a hygienic working environment;
 - Avoid dust generation;
 - Provide face and respiratory protection gear to site workers;
 - Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers; and
 - Provide first aid training and materials to site workers

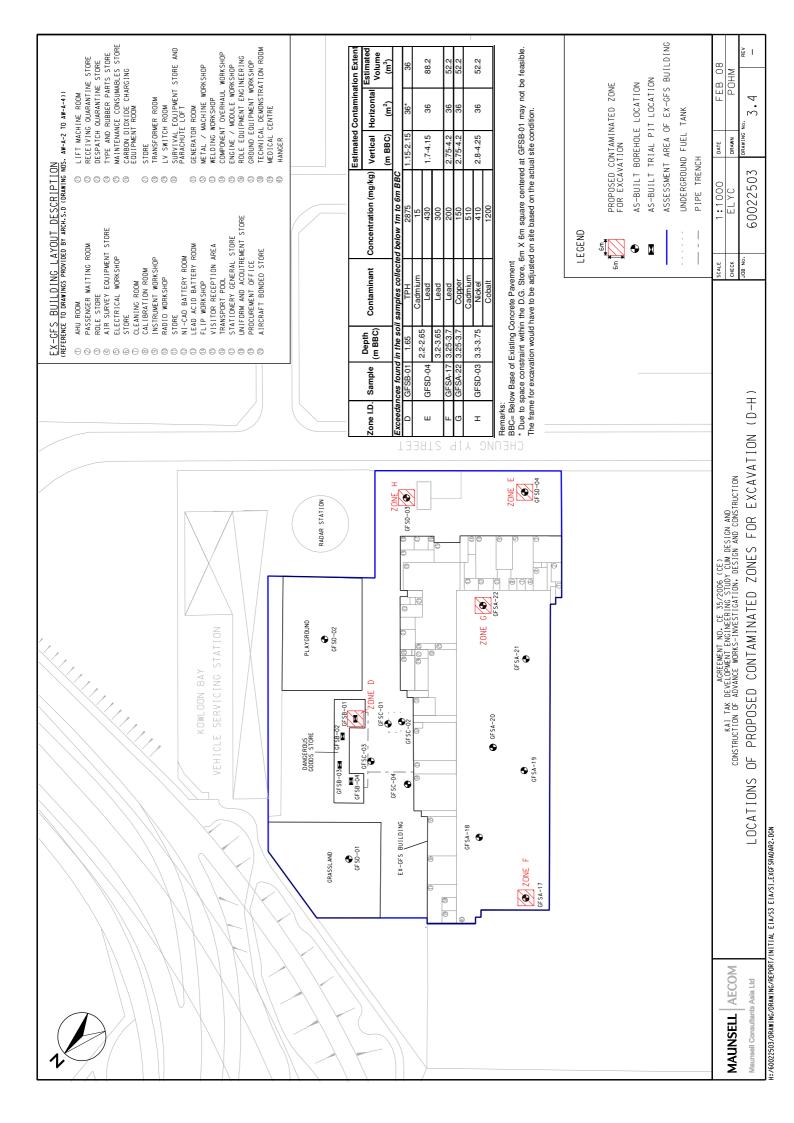
5 CONCLUSIONS AND RECOMMENDATIONS

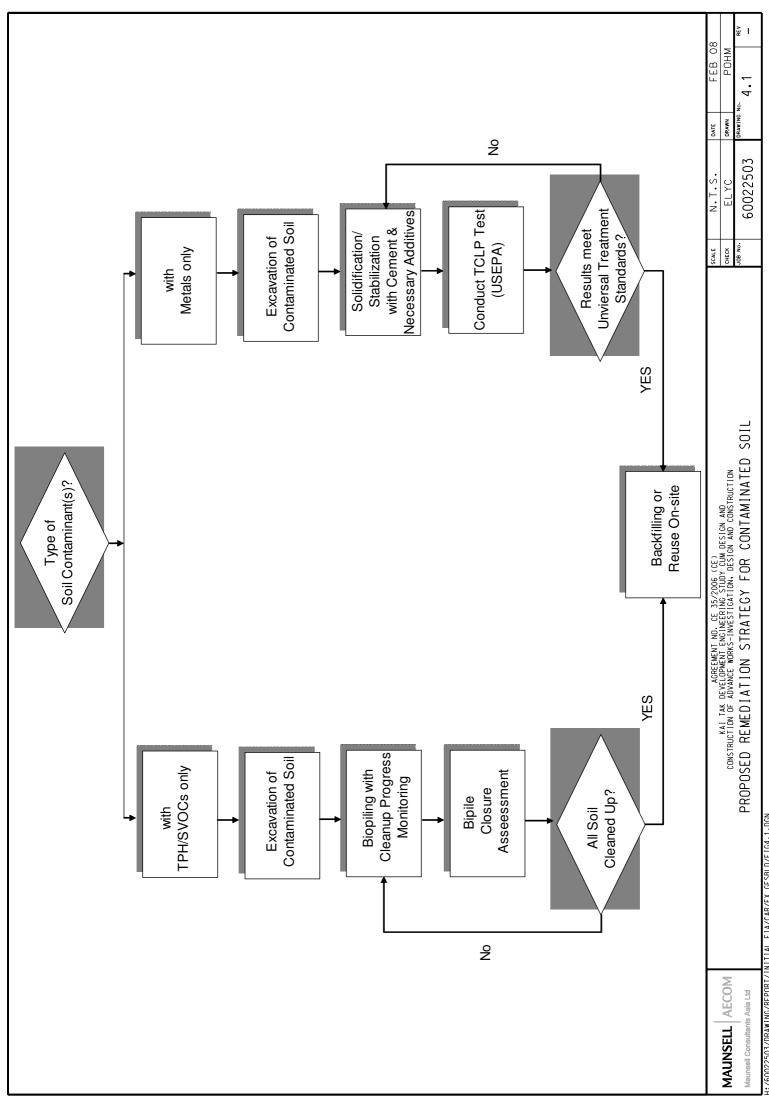

- 5.1.1 A contamination site investigation has been undertaken in accordance with the sampling and testing schedule in CAP approved by EPD. SI was conducted from 14 September 2007 and completed on 16 November 2007 within the Study Area.
- 5.1.2 During the SI, a total of 4 trial pits and 14 boreholes were drilled and a total of 54 soil samples and 14 groundwater samples were collected and analyzed for a range of metals, benzene, toluene, ethylbenzene and xylenes (BTEX), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs) and halogenated and non-halogenated hydrocarbons.
- 5.1.3 Laboratory testing results indicated that altogether 2 types of contaminated soil being identified for remediation, including i) organic contaminated soil (TPH and PAH (Phenanthrene, Benzo(a)pyrene, Fluoranthene and Pyrene) (72m³) and ii) metals contaminated soil (copper, lead, zinc, cadmium, nickel and cobalt) (316.8m³).
- 5.1.4 Since the estimated quantity of contaminated soil is small, all contaminated soil identified within the ex-GFS building is recommended to be treated together with other contaminated soil identified in South Apron of the former Kai Tak Airport, ex-GFS apron area and at the narrow strip of the North Apron under the KTA Decommissioning EIA for the sake of efficiency. As identified in the KTA Decommissioning EIA, biopiling is regarded as the most practical way to remediate the organic contaminated soil while solidification/stabilization is best suited for metal contaminated soil.
- 5.1.5 Biopile cleanup progress monitoring and closure assessment are proposed for biopiling to ensure a satisfactory cleanup progress and all the target contaminants have to be treated to below the cleanup targets. For the soil contaminated with metals, solidification/stabilization treatment is proposed. TCLP test is proposed to be undertaken after solidification/stabilization in order to ensure that the metal contaminants will not leach to the environment. It is recommended that the soil treated by biopiling should be reused on-site as fill material as far as practical while the soil treated by solidification/stabilization should be backfilled on-site at a depth of not less than 1m above the groundwater level and covered by 1m of clean fill.
- 5.1.6 Results of the groundwater risk assessment indicate that concentration of the COCs in the groundwater, including TPH and metals (mercury, molybdenum, lead, zinc, barium, chromium, cobalt, copper and cadmium), do not exceed risk-based criteria for remediation.
- 5.1.7 To ensure complete removal of contaminated soil, a closure assessment in the form of confirmatory test should be conducted after excavation to confirm complete clean-up of the site. A remediation report should be submitted for EPD's approval upon completion of all the remediation works.
- 5.1.8 Appropriate environmental mitigation measures have been proposed to minimize the potential environmental impacts of the remediation activities. Health and safety measures should be followed to minimize safety hazard posed to site workers.
- 5.1.9 For the battery rooms, electrical, instrument, metal / machine, welding, overhaul, engine/module and ground equipment workshops located inside ex-GFS building, as the rooms were found to be well paved with concrete and the presence of underground chamber has prevented a direct contact of potential contaminants with the soil underneath. No issue of land contamination in relation to the site activities is therefore expected.
- 5.1.10 For the transformer room and generator room of the ex-GFS building with potential land contamination concerns, a supplementary land contamination investigation is recommended to be carried out upon the cessation of the operations and prior to the redevelopment. Since no significant contamination issues were identified at the vicinity of the transformer room and the generator room during the site investigation, the scale of the contamination, if any,

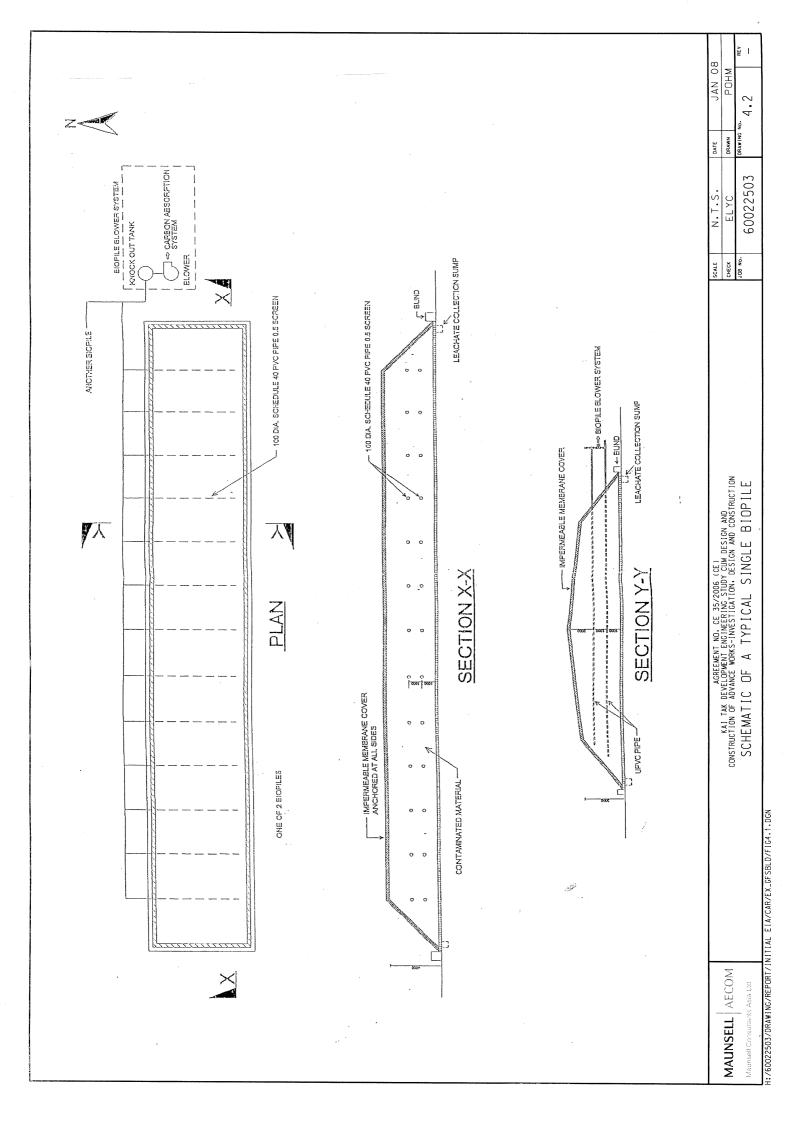

as reviewed by the activities and the size of hotspots would therefore be considered small. In addition, as the inaccessible sampling locations are located inside the building, they are much protected by the solid concrete floor. Hence, the uncertainty in decontamination work is considered limited and surmountable and would not significantly impact the surrounding environment. If contamination is found, the decontamination method shall make reference to this RAP.

Drawings




H:/60022503/DRAWING/REPORT/KTA DECOMMISSIONING EIA/CAP/SITE LOCATION PLAN_BLD.DGN




eFsa-i7		ATION UREME	ake a Fuel	INITIAL ETA/S3 ETA/S1 EVESCOANAD
	LEGEND	AS-BUILT SAMPLING LOC WITH GROUNDWATER MEAS CONTOURS OF ESTIMATED GROUNDWATER LEVEL		MAUNSELL AECOM Maunsell Consultants Asia Ltd

H:/60022503/DRAWING/REPORT/INITIAL EIA/CAR/EX_GFSBLD/FIG4.1.DGN

Appendices

Appendix A

(Sampling and Testing Schedule Proposed in the Approved CAP)

Revised CAP for Ex-GFS Building (Rev.2)

Table 4.1

Sampling and Testing Plan for the Study Area (Concerned Site Area: ~17,000m²; Proposed 18 Sampling Locations)

Proposed	Sampling					Para	Parameters to be Tested	be Tested		
Sampling Location	Method	Sam	Sample Matrix	ТРН	втех	PAHs	Phenols	Chlorinated Hydrocarbons	Heavy Metals	Rationale of Sampling
		Soil	1m BBC	×	Х	×	х	×	Х	
GFSA-17	Borehole	Soil	2.5m BBC	×	Х	×	х	×	Х	
(Hangar)	down to 6m	Soil	3.5m BBC	×	Х	×	х	×	×	
		GW	If present	×	Х	×	х	×	Х	2 boreholes are proposed to assess any
		Soil	1m BBC	×	Х	Х	х	Х	Х	GFS hangar currently occupied by GFS.
GFSA-18	Borehole	Soil	2.5m BBC	×	Х	×	х	×	Х	
(Hangar)	down to 6m	Soil	3.5m BBC	×	Х	Х	Х	×	Х	
		GW	If present	×	Х	×	х	×	Х	
		Soil	1m BBC	×	Х	Х	х	×	Х	
GFSA-19	Borehole	Soil	2.5m BBC	×	Х	Х	Х	×	Х	
(Hangar)	down to 6m	Soil	3.5m BBC	×	Х	Х	×	×	Х	
		GW	If present	×	Х	×	×	×	×	4 borenoies are proposed to assess any potential land contamination within the
		Soil	1m BBC	×	Х	Х	х	×	Х	remaining ex-GFS hangar currently
GFSA-20	Borehole	Soil	2.5m BBC	×	Х	Х	Х	×	Х	
(Hangar)	down to 6m	Soil	3.5m BBC	×	Х	Х	×	×	Х	
		GW	If present	×	×	×	×	X	×	

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Revised CAP for Ex-GFS Building (Rev.2)

Proposed	Sampling					Para	Parameters to be Tested	be Tested		
Sampling Location	Method	Sam	Sample Matrix	ТРН	втех	PAHs	Phenols	Chlorinated Hydrocarbons	Heavy Metals	Rationale of Sampling
		Soil	1m BBC	×	×	Х	Х	×	х	
GFSA-21	Borehole	Soil	2.5m BBC	×	×	Х	Х	×	×	
(Hangar)	down to 6m	Soil	3.5m BBC	×	×	Х	Х	×	×	
		GW	If present	×	×	×	×	×	×	
		Soil	1m BBC	×	×	Х	х	×	×	
GFSA-22	Borehole	Soil	2.5m BBC	×	×	×	×	×	×	
(Hangar)	down to 6m	Soil	3.5m BBC	×	×	×	×	×	×	
		GW	If present	×	×	×	Х	×	×	
		Soil	0.5m BBC	×	×	Х	х	×	×	
GFSB-01 (D.G. Store)	Trial pit down Soil to 1.5m [^]	Soil	1.5m BBC	×	×	×	×	×	×	
		GW	If present	×	×	×	х	×	×	
		Soil	0.5mBBC	×	×	Х	х	×	×	
GFSB-02 (D.G. Store)	Trial pit down to 1.5m [^]	Soil	1.5m BBC	×	×	×	×	×	×	4 trial pits are proposed to assess any
		GW	If present	×	×	Х	х	×	х	intamination induced
		Soil	0.5m BBC	×	×	Х	Х	×	×	
GFSB-03 (D.G. Store)	Trial pit down to 1.5m [^]	Soil	1.5m BBC	×	×	Х	х	×	×	
		GW	If present	×	×	Х	х	×	×	
		Soil	0.5m BBC	×	×	Х	х	×	×	
GFSB-04 (D.G. Store)	Trial pit down Soil to 1.5m^	Soil	1.5m BBc	×	×	×	×	×	×	
		GW	If present	×	×	×	×	×	×	

MAUNSELL AECOM

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Revised CAP for Ex-GFS Building (Rev.2)

Proposed	Sampling					Para	meters to	Parameters to be Tested		
Sampling Location	Method	Sam	Sample Matrix	ТРН	втех	PAHs	Phenols	Chlorinated Hydrocarbons	Heavy Metals	Rationale of Sampling
		Soil	1m BBC	×	×	Х				
		Soil	2.5m BBC	×	×	×				In order to assess potential land
GFSC-01	Borehole	Soil	3.5m BBC	×	×	×				contamination impacts from any leakage
Fuel Tank)	to 6m BBC	Soil	5m BBC	×	×	×				borehole is proposed to be located at the
		Soil	6m BBC	×	×	×				upstream of the tank area.
		G.W.	If present	×	×	×				
		Soil	1m BBC	×	Х	Х				
		Soil	2.5m BBC	×	Х	Х				In order to assess potential land
GFSC-02	Borehole	Soil	3.5m BBC	×	Х	Х				contamination impacts from any leakage
Fuel Tank)	to 6m BBC	Soil	5m BBC	×	×	×				Thorehole is proposed to be located at the
		Soil	6m BBC	×	Х	Х				downstream of the tank area.
		G.W.	If present	×	Х	Х				
		Soil	1m BBC	×	Х	Х				
GFSC-03 /1 Inderaround	Borehole	Soil	2.5m BBC	×	×	Х				
Pipelines)	to 6m BBC	Soil	3.5m BBC	×	×	Х				In order to assess any potential land
		GW	If present	×	Х	Х				contamination impacts from underground pipelines protected by the pipe trench. 21
		Soil	1m BBC	×	×	Х				boreholes are proposed to be drilled along
GFSC-04 /1 Inderaround	Borehole	Soil	2.5m BBC	×	×	×				the pipe trench.
Pipelines)	to 6m BBC	Soil	3.5m BBC	×	Х	×				
		GW	If present	×	×	×				

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

Revised CAP for Ex-GFS Building (Rev.2)

Method Sample Matrix Thy BTEX PAHs Phenois Chlorinated Heavy Soil< 1m BBC X X X X X X X X Borehole Soil 1m BBC X X X X X X Borehole Soil 1.5m BBC X X X X X X Borehole Soil 1.m BBC X X X X X X X Borehole Soil 1m BBC X <th>Proposed</th> <th>Samoling</th> <th></th> <th></th> <th></th> <th></th> <th>Para</th> <th>Parameters to be Tested</th> <th>be Tested</th> <th></th> <th></th>	Proposed	Samoling					Para	Parameters to be Tested	be Tested		
$ \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sampling Location	Method	Sam	ple Matrix	ТРН	втех	PAHs	Phenols	Chlorinated Hydrocarbons	Heavy Metals	Rationale of Sampling
$ \left. \begin{array}{cccccccccccccccccccccccccccccccccccc$			Soil	1m BBC	×	×	×	×	×	×	
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	GESD-01	Borehole	Soil	2.5m BBC	×	×	×	×	×	×	
	000	to 6m BBC	Soil	3.5m BBC	×	×	×	×	×	×	
			GW	If present	×	×	×	×	×	×	assess
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Soil	1m BBC	×	×	×	×	×	×	and the playground.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Borehole	Soil	2.5m BBC	×	×	×	×	×	×	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		to 6m BBC	Soil	3.5m BBC	×	×	×	×	×	×	
Borehole Soil 1m BBC X			GW	If present	×	×	×	×	×	×	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Soil	1m BBC	×	×	×	×	×	×	
to 6m BBC Soil 3.5m BBC X	20 USD	Borehole	Soil	2.5m BBC	×	×	×	×	×	×	
GW If present X <th< td=""><td>20-00-10</td><td>to 6m BBC</td><td>Soil</td><td>3.5m BBC</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td></th<>	20-00-10	to 6m BBC	Soil	3.5m BBC	×	×	×	×	×	×	
Borehole Soil 1m BBC X			GW	If present	×	×	×	×	×	×	potential migration of contaminants from
Borehole Soil 2.5m BBC X			Soil	1m BBC	×	×	×	×	×	×	the activities undertaken in the ex-GFS
to 6m BBC Soil 3.5m BBC X X X X X X X X C X C X C X X X X X	CESD 04	Borehole	Soil	2.5m BBC	×	×	×	×	×	×	
If present X X X X X X	10-00	to 6m BBC	Soil	3.5m BBC	×	×	×	×	×	×	
			GW	If present	×	×	×	×	×	×	

Remarks: BBC = Below Base of Existing Concrete Pavement; GW=groundwater; X = testing proposed ^ For proposed trial pits, a third soil sample may be necessary if contamination is found at the sample collected at 1.5m.

Appendix B

(Supplementary Sampling Plan for the Remaining Areas within the ex-GFS Building)

Agreement No. CE 35/2006(CE) Kai Tak Development Engineering Study cum Design and Construction of Advance Works – Investigation, Design and Construction

SUPPLEMENTARY SAMPLING PLAN FOR EX-GOVERNMENT FLYING SERVICE BUILDING (EX-GFS BUILDING)

Contents

1	INTR	ODUCTION	1
	1.1	Background	1
2	SAM	PLING PLAN FOR SITE INVESTIGATION	3
	2.1	Sampling Locations	3
	2.2	QA/QC Procedures	5
	2.3	Laboratory Analysis	5

List of Tables

Table 2.1	Potential Contaminants Associated with Historical/Current Land Uses
Table 2.2	Sampling and Testing Plan for the Study Area
Table 2.3	Parameters, Detection Limits and Reference Methods for Laboratory Analyses
Table 2.4	Dutch ABC Values for Soil and Groundwater Contamination

List of Drawings

Drawing A2.1 Proposed Supplementary SI Locations at Potential Contaminated Hotspots

1 INTRODUCTION

1.1 Background

- 1.1.1 The site investigation (SI) works for land contamination assessment in the Study Area were commenced on 14 September 2007 and completed on 16 November 2007. A total of 4 trial pits and 14 boreholes were constructed and completed for the purpose of identifying possible land contamination at hotspot areas. Since the generator room and the transformer room will still be in operation at the time of the site investigation within the ex-GFS building, 3 potential contamination hotspots within the transformer room and generator room could not be completed. Therefore it is recommended that a land contamination investigation should be carried out upon the cessation of the operations and prior to the redevelopment. This supplementary sampling plan (This Plan) is therefore provided for the additional investigation, if necessary, to supplement the approved CAP.
- 1.1.2 This Plan is to supplement the approved CAP by providing the sampling and laboratory analysis information for the SI works in the generator room and transformer room within the ex-GFS building area. Assessment of land contamination sources shall be conducted in accordance with the environmental standards and non-statutory guidelines recommended in the approved CAP.
- 1.1.3 In general, the sampling methods for soil and groundwater (if any), requirements of strata logging and procedures for free product and groundwater level measurement, decontamination, sample collection and delivery shall be conducted as delineated in the approved CAP. The general health and safety measures suggested in the approved CAP shall also be taken as described.

2 SAMPLING PLAN FOR SITE INVESTIGATION

2.1 Sampling Locations

- 2.1.1 Potential sources of land contamination within the Study Area were studied in the approved CAP based on information obtained from the desktop studies, site inspections, interviews and site observations.
- 2.1.2 Contamination hotspots were identified in the approved CAP by investigation of the potential sources of land contamination. Identified hotspots are summarized in the following table.

Uses	Site Observation	Potential Source of Contaminants	SI proposed
Transformer room	 Operated for more than 10 years Insulating oil was reported to be used in transformer room and the quality of oil would be checked annually on site. Ground was found to be well paved with concrete and no apparent stains have been observed 	 Spillage from improper handling of Polychlorinated Biphenyls (PCBs) / transformer fluids 	 1 trial pit is proposed in this area
Generator Room	 Cannot be assessed during site inspections, 	Not Applicable	2 trail pits are proposed to assess for potential land contamination within the area.

 Table 2.1
 Potential Contaminants Associated with Historical/Current Land Uses

- 2.1.3 As summarized in the above table, a total of 3 sampling drillholes are proposed for the identified hotspots within the CLP's transformer room and generator room The indicative location plans of the proposed SI sampling locations are illustrated in **Drawing A2.1**.
- 2.1.4 It should be noted that if significant contamination was revealed during the SI, additional sampling locations would be required to determine the exact extent of contamination. The rationales for selecting the sampling locations are summarized in **Table 2.2**.

Sampling Plan For ex-GFS building

Sampling and Testing Plan for the Study Area Table 2.2

MethodTotal Pit downMethodTPHBTEXPAHsPhenolsChlorinatedHeavyIndia Pit downSoil0.5m BBCXXXXXXIndia Pit downSoil1.5m BBCXXXXXXIndia Pit downSoil1.5m BBCXXXXXXIndia Pit downSoil0.5m BBCXXXXXXIndia Pit downSoil0.5m BBCXXXXXXIndia Pit downSoil1.5m BBCXXXXXXIndia Pit downSoil1.5m BBCXXXXXXIndia Pit downSoil1.5m BBCXXXXXXXIndia Pit downSoil1.5m BBCXXXXXXXXIndia Pit downSoil1.5m BBCXXXXXXXXIndia Pit downSoil1.5m BBCXXX <t< th=""><th>Proposed</th><th>Sampling</th><th></th><th></th><th>Par</th><th>ameter</th><th>Parameters to be Tested</th><th>Tested</th><th></th><th></th><th></th><th>Rationale of Sampling</th></t<>	Proposed	Sampling			Par	ameter	Parameters to be Tested	Tested				Rationale of Sampling
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sampling Location	Method	Sample	e Matrix	ТРН	втех	PAHs	Phenols			РСВ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GESA-05		Soil		×	×	×	×	×	×	×	To assess any notential land
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Transformer	Trial Pit down to 1.5m^	Soil		×	×	×	×	×	×	×	contamination within the
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mooh)		Groundwater	If present	×	×	×	×	×	×	×	Transformer room
Trial Pit down to 1.5m ^A Soil 1.5m BBC X X X X Roundwater If present X X X X X Roundwater If present X X X X X Soil 0.5m BBC X X X X X Trial Pit down to 1.5m ^A Soil 1.5m BBC X X X	GESA-D6		Soil		×	×	×	×	×	×		
Groundwater If present X X X X Trial Pit down Soil 0.5m BBC X X X X Trial Pit down Soil 1.5m BBC X X X X Connotwater If necent X X X X	(Generator	Trial Pit down to 1.5m [^]	Soil		×	×	×	×	×	×		-
Trial Pit down Soil 0.5m BBC X X X X Trial Pit down Soil 1.5m BBC X X X X to 1.5m ^A Groundwater If necent X X X X	(mooh		Groundwater	If present	×	×	×	×	×	×		2 sampling locations are proposed to assess any
Trial Pit down Soil 1.5m BBC X X X X to 1.5m ^A Groundwater If necent X X X X	GESA-07		Soil	0.5m BBC	×	×	×	×	×	×		potential land contamination
Groundwater If present X X X X X X	(Generator	Trial Pit down to 1.5m [^]	Soil		×	×	×	×	×	×		
	(mooh		Groundwater	If present	×	Х	×	Х	×	×		

BBC = Below Base of Existing Concrete Pavement; GW=groundwater; X = testing proposed ^ For proposed trial pits, a third soil sample may be necessary if contamination is found at the sample collected at 1.5m. Details of the chemical parameters shall be referred to Table 4.2 of the approved CAP and **Table 2.3** below. This table shall be read in conjunction with **Drawing A2.1**.

2.2 QA/QC Procedures

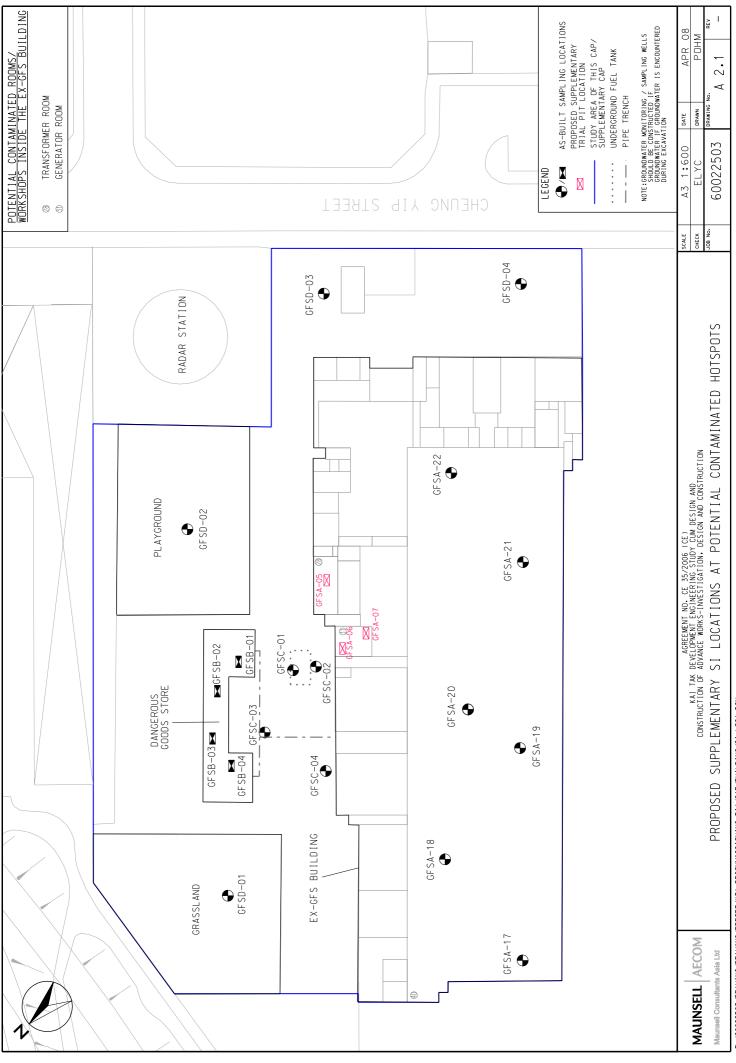
- 2.2.1 QA/QC samples shall be collected in the following frequency during the SI. Chain of Custody protocol shall be adopted.
 - 1 equipment blank per 20 samples for full suite analysis
 - 1 field blank per 20 samples for full suite analysis
 - 1 trip blank per 20 samples for full suite of analysis
- 2.2.2 According to the supplementary sampling plan detailed in **Table 2.2**, the total sample number would be less than 10. The minimum number of QA/QC samples which meet the frequency stated in Section2.2.1 will be expected as follow:
 - 1 equipment blank and field blank for the analysis of TPH, BTEX, PAHs, Phenols, Chlorinated hydrocarbons, heavy metal an PCB
 - 1 trip blank for analysis of BTEX and TPH (C6-C9)

2.3 Laboratory Analysis

Laboratory Analysis

- 2.3.1 Laboratory analysis covering total petroleum hydrocarbons, BTEX, PAHs, phenols, chlorinated hydrocarbons, PCBs and heavy metals, is proposed in order to screen the presence of potential contaminants that are of concern within the generator room and transformer room within the ex-GFS building. The laboratory analysis of the samples shall follow the same requirements set out in the approved CAP
- 2.3.2 **Table 2.3** lists out the parameter which was not included in the approved CAP and the detection limit and reference method of the parameter for the laboratory analyses of soil and groundwater samples.

Table 2.3	Parameters,	Detection	Limits	and	Reference	Methods	for	Laboratory
	Analyses							


		So	oil	Groun	dwater
ltem	Parameter	Detection Limit (mg/kg) or otherwise stated	Reference Method	Detection Limit (μg/L) or otherwise stated	Reference Method
1	Total Polychlorinated Biphenyls (Total PCBs)	0.1	USEPA 8070	0.2	USEPA 8070

Results Interpretation

- 2.3.3 The results of the laboratory analyses shall be interpreted in accordance with the guidance documents recommended in the approved CAP.
- 2.3.4 Relevant criteria for soil and groundwater contamination assessment for this study have been documented in the approved CAP. For the parameter which was not included in the previous testing, the criteria for contamination assessment has been included in the following table

Table 2.4 Dutch ABC	values io	Soli and V	aroundwal	er Contam	ination	
Parameter		Soil (mg/kg)		Gro	undwater(µ	g/L)
Farameter	Dutch A	Dutch B	Dutch C	Dutch A	Dutch B	Dutch C
Total Polychlorinated	0.05	1	10	0.01	0.2	1
Biphenyls (Total PCBs)	0.00	•	10	0.01	0.1	

Table 2.4 Dutch ABC Values for Soil and Groundwater Contamination

P:/60022503/DRAWING/DRAWING/REPORT/KTA DECOMMISSIONING EIA/CAP/BUILDING/SI_LOCA.DGN

Appendix C (Site Boring Log)

							Т		D	RILL	HOL	E F	REC	0	RD	HOLE NO	D.	GFS	A-17
	V		5	K				CONTR				/2007				SHEET	1	OF	1
PRO	JECT	Agr Inve	eeme estiga	ent N ation	o. CE , Desi	35/20 gn ar	06 (0 nd Co	CE), Kai Ta onstructio	ak on	Developm	ent En	gineer	ing Stu	ıdy c	cum Design and (Constructio	n of A	dvance	Work -
MET	HOD			R	otary	'		CO-ORDI	N	ATES					W.O.NO.	GE/	2007/	03.61	
MAC	HINE	& NO.		v	BM29)	۱ [E 839616	3.3	3	N 8	19691	.39		DATE :	21/09/2007	to	21/0	9/2007
FLUS	SHING	MEDIL	JM		NA		1	ORIENTA	T	ON	Vert	ical			GROUND LE	VEL	+ 4.7	3	mPD
Drilling Progress	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns %	TCR%	SCR%	RQD%	Ξ	Tests		Samples No. Type Dep	≴ Reduced Level	Depth (m)	Legend	Grade		Descriptio	n		
21/09/2				80						0.0	U	-			Concrete surface.				
										A 6.2 A 6.5 B 2 1.0 1 En 1.2 C 1.5	0 0 5				Brown (7.5YR 5/4), to subangular fine tr and moderately dec	o medium gravel	sized h	highly dec	
- - - - - - - - - - - - - - -				78				35 bls		² / ₈ 3 ^{2.5} / _{2.6} 3.0	2	2.50			Greyish brown (2.5' some angular to sul decomposed and m (FILL)	bangular fine gra	vel size	d highly	
- - - - - - - - -				94			-	33 bls		4 3.50 5 3.92 4.00	5								
										6 🛥 4.50	ס								
-										7 🛥 5.50	-0.77	- <u>5.50</u>			Brown (7.5YR 5/4),				
- 6	HW	3.70m		1.1.1							-1.27	6.00			coarse SAND with s gravel sized modera \occasional brick frag	ately decompose			
21/09/20	HW 6.25	at 18:00		×69/		ard pend			.	T2{01 6.24		6.25	REMA	RKS	Grey (N 5), angular and slightly decomp <u>cobbles (SDG, Conc</u> End of Investigation	medium to coars osed rock fragm crete) and wood	ents wit	th some a	
Piste	urbed s on samp t spoon	ble			In-situ Perme	vane sl ability t sion pa	near te est	est	L	OGGED _	T. C.)	up C	1. An 2. Gro	inspe	ction pit was excavate rater monitoring well w			elow grou	ind level of
U10	undistu	rbed samp urbed sam ole			Pressu Packe Acoust televie	remete Test ic or op wer sun neter tip	r test tical vey			ATE -	25/09/2 C. M. S	1	3. A g	round	/. water sample was take r level in the well prior				

Groundwater monitoring well

Standpipe

Extensometer

Water sample
 En Environmental Sample

DATE

28/09/2007

DF	RI	LL	Η	0	LE	ΞF	RE	C	0	R	D
-				-				-	-		-

CONTRACT NO. GE/2007/03 HOLE NO. GFSA-18 SHEET 1

OF

1

PROJECT

B

R

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

METHOD F	Rotary CO-ORD	INATES		W.O.NO. GE/2007/03.61							
MACHINE & NO. V	/BM29 E 839644	4.82	N 819688.15	DATE : 21/09/2007 to 24/09/2007							
FLUSHING MEDIUM	NA ORIENTA		Vertical	GROUND LEVEL + 4.87 mPD							
Drilling Progress Casing Depth/Size Depth/Size (m) Progress T C R %	※ ペ ビ ロ 正 Tests の ど	Samples No. Type Depth	Grade Cardination Control Cardination Cardinatio Cardination Cardination Cardination Cardi	Description							
2 21/09/2007 2 1/09/2007 2 1/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 2 21/09/2007 1 8:00 1 8:00 1 8:00 1 8:00 7 1 1 8:00 1 8:00 7 1 1 8:00 1 8:00	Standard penetration test	A 0.00 A 0.25 A 0.50 B 1.00 1 En 1 En 2 2.50 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 2.58 3 3.30 T2/01 3.70 4 4.50 7 5.50 5.90 5.90 T2/01 6.60	+4.62 0.25	Concrete surface. Brown (7.5YR 5/4), silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Firm, light brown (7.5YR 6/4), sandy SILT with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Grey/sh brown (2.5Y 5/2), slightly clayey / silty fine to coarse SAND with some angular fine to medium gravel sized moderately decomposed rock fragments. (FILL) Grey (N 5), dappled light brown, angular COBBLES (SDG) with some angular coarse gravel sized slightly decomposed rock fragments. (FILL) From 3.30m to 3.52m : Angular boulders (SDG). Dark grey (N 3), dappled light brown, sandy SILT with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments. (FILL) Brown (7.5YR 5/4), dappled greyish brown, slightly silty / clayey fine to coarse SAND with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments. (FILL) Grey (N 5), angular to subangular to subangular fine to coarse gravel sized moderately decomposed rock fragments. (FILL) Grey (N 5), angular to subangular to coarse gravel sized moderately decomposed rock fragments and occasional brick fragments. (FILL) End of Investigation Hole at 6.60m.							
Disturbed sample Piston sample Split spoon sample U76 undisturbed sample U100 undisturbed sample Mazier sample SPT liner sample Water sample Water sample Fin Environmental Sample	Standard penetration test In-situ vane shear test Permeability test Impression packer test Pressuremeter test Packer Test Acoustic or optical televiewer sulvey Piezometer tip Standpipe Groundwater monitoring well Extensometer		T. C. ¥łp 1. An insp 2. Ground 25/09/2007 3. A ground 3. A ground	inspection pit was excavated to a depth of 1.50m. bundwater monitoring well was installed to 6.60m below ground leve							

			L		DR	ILL	_H	OL	EF	RECORD HOLE NO. GFSA-19										
			B	ň	U			CONTR	АСТ	NO.	A. Sharekara ya	GE/	2007	/03			SHEET	1	OF	1
PROJI	ЕСТ	Agr Inve	eeme estig	ent N atior	lo. CE 1, Des	35/20 ign ai	06 ((nd C	CE), Kai T onstructi	ak De on	velop	mei	nt Eng	ineeri	ng Stu	ıdy c	um Design and C	Construction	of Ad	vance	Work -
METH	OD			F	Rotar	у		CO-ORD	INATE	ES						W.O.NO.	GE/20	07/03	.61A	
МАСН	INE	& NO.		I	BM28			E 83965 [,]	1.13	3		N 81	9658	.62		DATE: 0	3/11/2007	to	05/11	/2007
FLUSH	lING	MEDIL	JM		NA			ORIENTA	TION	I		Verti	cal			GROUND LEV	VEL +	4.73		mPD
	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns %	TCR%	SCR%	RQD%	E	Tests		Sample: Type D	epth	peonced +4.73	0000 Depth (m)	Legend	Grade		Description	1		
03/11/2007	HW			169	4	<i></i>					0.00	+4.46	- - 0.27		8	Concrete surface. Greyish brown (2.5Y	(5/2) silty fine to	coarse	SANDW	ith some
E									A	WSPECTION PIT	0.50		-			angular to subangula fragments. (FILL)				
ī_ 											1.00	~	-							
Ē								127	1 CL		1.27 1.50	+3.46	<u>- 1.27</u> - -			Greyish brown (2.5Y coarse SAND with s	ome angular to su	bangul	ar fine gr	avel sized
2													-			highly decomposed a fragments. (FILL)	and moderately d	ecompo	sed rock	
											2.50									
<u>7</u>				/35/	1			31 bls	8		2.50 2.54		-							
3				///	1				3	4	2.95 3.00	-	-							
				///	-			51 bls	4		3.50	+1.23	- 3.50			Greyish brown (2.5Y	5/2), dappled red	ldish bri	own slia	atly
<u> </u>		2.50m at <u>18:00</u> 2.60m		88					5		3.95 4.00		-			clayey sandy angular sized concrete and b	r to subangular fir	e to co		
Ē		at 08:00										-	-							
_																				
<u>5</u>									6	1 :	5.00	-	-							
- - 6_									7	I e	3.00								2	
- 05/11/2007	HW 6.35	2.60m at 12:00										-1.62	6.35			End of Investigation L	Jolo at 6 25m			
																End of Investigation F	101e at 6.35m.			
<u>7</u>													-	с.						
<u> </u>													-			÷				
																				14
												Ē	5 5 5							
 Disturb Distorb Piston s Split sp 	sample	B		₹¥ •	In-situ Perme	ard pene vane sh ability te	iear te est	st	LOGG	ED		т. с. Ұл	P		inspec	tion pit was excavated water monitoring well v			low grou	ind level
🚺 U76 und	disturb	bed sample		→ > - - aa	Pressu Packer	sion pa Iremete Test	r test	est	DATE		0	9/11/20	07	on 0 3. A gr	5/11/2 roundv		n from the monito	oring we	ell on 09/	11/2007.
U100 ur Mazier s	sampl		e	I A	Acoust televiev Piezon	tic or op wer sun neter tip	tical /ey		CHEC	KED	C	. M. Sha	6M	1110	, aler		- sampning was z		ciow gro	and level.
▲ Waters En Environ	sample	е					nonito	ring well	DATE		1	3/11/20	07							

Γ									D	RIL	LH	IOL	EF	REC	0	RD HOLE NO. GFSA-20
		V		BR	íU)		CONTR	AC	TNO		GE/	2007	/03		SHEET 1 OF 1
	PROJ	ЕСТ	Agre Inve	eement stigatio	No. Cl n, Des	E35/20 sign ai	06 ((nd C	CE), Kai T onstructio	ak on	Develo	pme	nt Eng	ineeri	ng Stu	dy c	um Design and Construction of Advance Work -
	METH	OD			Rotar	у		CO-ORDI	INA	TES						W.O.NO. GE/2007/03.61A
	MACH	IINE	& NO.		BM2	8		E 839668	5.51	l		N 81	19661	.01		DATE : 06/11/2007 to 06/11/2007
L	FLUSI	HING	MEDIU	M	NA			ORIENTA	ATIC	DN		Verti	cal			GROUND LEVEL + 4.84 mPD
	Drilling Progress	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns % T C R %	C R	D D D	E	Tests		Samp No. Type		tevel	0.00 Depth	Legend	Grade	Description
	06/11/200	7 HW		10						A Lid NOLLOJASK B B 1 En	0.00 0.30 0.50 1.00 1.30 1.50	+4.54	0.30 			Concrete surface. Greyish brown (2.5Y 5/2), silty fine to coarse SAND with some angular to subangular fine gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) Firm, greyish brown (2.5Y 5/2), sandy SILT with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments and trace of wood fragments. (FILL)
				55				30 bis 69 bis		2 8 3 4 5	2.50 2.73 2.95 3.00 3.50 3.95 4.00	+2.34 +1.34	2.50 			Greyish brown (2.5Y 5/2), slightly silty fine to coarse SAND with some angular to subangular fine gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) brown (7.5YR 5/4), dappled reddish brown, silty fine to coarse SAND with some angular to subangular fine to medium gravel sized highly decomposed and moderately decomposed rock fragments and occasional angular cobbles (Brick). (FILL)
										⁶ 1	5.00	-1.16	- - - - - - - - - - - - - - - - - - -			Grey (N 5), dappled reddish brown, silty sandy angular to subangular GRAVEL sized moderately decomposed and
	<u>36/11/2007</u>	HW 6.55	2.60m at 18:00									-1.81	6.65			Silghtly decomposed rock fragments, some concrete fragments and wood pieces. (FILL) End of Investigation Hole at 6.65m.
	U100 u Mazier SPT lir Water	samp poon s ndistur undistu samp ner san samp	le ample bed sample irbed sampl le mple		In-sit Perm Impre Press Packa Acous televia Piezo Stanc Grour		near te est cker t r test tical /ey monito	est	DA CH	GGED TE ECKED TE	C	T. C. X 09/11/20 :. M. Sh 3/11/20	07 Ark am	2. A gr on 0 3. A gr	nspec ound 6/11/2 ound	otion pit was excavated to a depth of 1.50m. water monitoring well was installed to 6.65m below ground level 2007. water sample was taken from the monitoring well on 09/11/2007. level in the well prior to sampling was 2.73m below ground level.

		DRILL	HOLE R	RECO	RD HOLE NO. GFSA-21
	BRO	CONTRACT NO.	GE/2007/	/03	SHEET 1 OF 1
PROJECT Agre	ement No. CE35/200 stigation, Design and	6 (CE), Kai Tak Developr I Construction	nent Engineerii	ng Study c	um Design and Construction of Advance Work -
METHOD	Rotary	CO-ORDINATES	W.O.NO. GE/2007/03.61A		
MACHINE & NO.	BM28	E 839680.79	DATE : 07/11/2007 to 07/11/2007		
FLUSHING MEDIUI	M NA	ORIENTATION	Vertical		GROUND LEVEL + 4.71 mPD
	Water Returns % T C R % S C R % R Q D %	Tests Samples	epth +4.71 0.00	Legend Grade	Description
07/11/2007 HW	2100	36 bis 2 19 bis 4	000 +4.45 0.25 .50 - - .		Concrete surface. Greyish brown (2.5Y 5/2), very silty fine to coarse SAND with some angular to subangular fine gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) Light brown (7.5YR 6/4), dappled greyish brown and brown, silty / clayey fine to coarse SAND with some angular to subangular fine to medium gravel sized moderately decomposed rock fragments. (FILL) Greyish brown (2.5Y 5/2), dappled brown, silty sandy angular fine to coarse GRAVEL sized moderately decomposed and slightly decomposed rock fragments and occasional concrete fragments. (FILL)
Disturbed sample Piston sample Disturbed sample Disturbed sample Disturbed sample Disturbed sample Disturbed sample U100 undisturbed sample U100 undisturbed sample Disturbed sam	Standard penetra V In-situ vane shea Permeability test Impression pack Pressuremeter te Packer Test Acoustic or optic I televiewer sulvey Piezometer tip A Standpipe Groundwater mo	artest LOGGED - ertest DATE - al - 	T. C. Yip 09/11/2007 C. M. Spam	 A groundv on 08/11/20 A groundv 	End of Investigation Hole at 6.44m. Ion pit was excavated to a depth of 1.50m. rater monitoring well was installed to 6.44m below ground level 107. rater sample was taken from the monitoring well on 12/11/2007. evel in the well prior to sampling was 2.53m below ground level.

									D	RIL	.Lŀ	HOL	E F	REC	0	RD	HOLE N	Э.	GFS	۹-22
			B	M	U			CONTR	RA	CT NO).	GE	/2007	//03			SHEET	1	OF	1
PRO	DJEC	T Agr Inve	eeme estiga	nt N ition	o. CE , Des	35/20 ign ai	06 (1d C	CE), Kai ⁻ construct	Tak ion	Devel	opme	ent Eng	gineer	ing Stu	ıdy c	um Design and C	Constructio	n of A	dvance	Work -
MET	HOD)		R	otary	/	Τ	CO-ORDINATES W.O								W.O.NO.	GE/2	007/0	3.61A	
MAG	CHIN	E & NO.		E	3M28			E 83970	6.4	2		N 8	19626	6.78	DATE : 09/11/2007 to 09/11					
FLU	SHIN	G MEDIL	JM		NA			ORIENT	ATI	ON		Vert	ical		6.0	GROUND LE	VEL	+ 4.8	7	mPD
Drilling	Casing	Water Level (m) Shift start / enc	Water Returns %	TCR%	SCR%	RQD%	E	Tests		Samı No. Typi		th +4.87	(m)	Legend	Grade	e Description				
09/11/	2007 HV	v .		100							0.00	1	- 0.25			Concrete surface. Greyish brown (2.5Y	(5/2) silty find	0 00075	o SAND II	ith como
										A LU NOLLOBALS		+3.87	- - - - - - - - - - - - - - - - - - -			angular to subangula moderately decomp (FILL) Light brown (7.5YR i some angular to sub decomposed rock fra	ar fine to coarse osed rock fragm 6/4), very silty fi angular fine gra	e gravel nents an ine to co avel size	sized cond d wood fra arse SAN	crete and agments.
				180				44 bis		28	2.50 2.68 2.95 3.00	+2.37	- - - - - - - - - - - - -			Light brown (7.5YR 6 occasional angular to decomposed rock fra	subangular fin	e grave		
				82	-		-	41 bis		4 5	3.50 3.95 4.00		<u>3.50</u>			Light brown (7.5YR 6 coarse SAND with so gravel sized moderat	ome angular to	subangu	lar fine to	coarse
								÷		⁶ ‡	5.00									
09/11/20	HW 507 6.29	1.95m at 18:00								7 3	6.00	-1.13	6.00 6.29 - - - - -			Greyish brown (2.5Y subangular fine to co: <u>fragments and some</u> End of Investigation H	arse GRAVEL s wood pieces. (I	sized co		
			•								5.									
Pisto Split U76 U100	undistu D undis	ple sample irbed sample turbed samp	•		In-situ Permea Impress Pressu Packer	rd pene vane sh ability te sion pa remeter Test c or op ver surv	ear te est cker t test	est	DA	OGGED		T. C. Y 25/11/20	007	2. A gr on 0 3. A gr	nspect oundv 9/11/20 oundv	tion pit was excavated vater monitoring well v 007. vater sample was taker level in the well prior t	vas installed to n from the mon	6.29m t	vell on 12	11/2007.
SPT Wat	er sam liner sa er sam ronmer	ample			Piezom Standpi Ground	eter tip pe		oring well				27/11/20			a di si sa sa					200707_03061A

				TRIAL PIT RECORD		
TRIAL PIT NO. GFSB-01				oarse SAND with gravel sized apred rock agments. (Sub-base eyish brown, siity ubangular fine to k fragments. (FILL all IFILL 3) all IFILL 3) all IFILL 3) all IFILL 3) tragments. (FILL k fragments. (FILL		m vel. evel. (An obstruction
GROUND LEVEL: + 4.95 mPD EXCAVATION DATES: 20/10/2007 to 25/10/2007 BACKFILL DATES: 09/11/2007		Description	Reinforced concrete surface.	Dense, dry, grey (N 5), slightly silty fine to coarse SAND with much angular for subangular fine to coarse gravel sized moderately decomposed and slightly decomposed rock fragments, concrete fragments and wood fragments. (Sub-base Material) (FILL 1) Dense, moist, brown (7.5YR 5/4), dappled greyish brown, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed rock fragments. (FILL 2) Loose, dry, grey (N 5), slightly sandy angular COBBLES (SDG) with some angular medium to coarse gravel sized slightly decomposed rock fragments and occasional angular bounders (SDG) sized up to 400mm. (Sub-base Material) (FILL 3) Dense SAND with some angular to subangular fine to coarse gravel sized highly decomposed rock fragments. (FILL 2) End of Trial Pit at 1.16m.	REMARKS	Shoring : No shoring Water Seepage : NIL Stability : Stable Stability : Stable Maximum Depth : 1.90 m Average Depth : 1.15 m Maximum Depth : 1.90 m Average Depth : 1.15 m All sample depths are related to mid-point of Face A below ground level. An obstruction An is sample depths are related to mid-point of Face A below ground level. An obstruction An is secontered at depth of 1.30m below ground level. An obstruction Small disturbed samples were taken at 0.50m and 1.00m. Large disturbed samples were taken at 0.75m and 1.90m. Environmental Samples were taken at 0.75m, 1.75m and 1.90m. SDG = Slightly decomposed GRANITE.
CO-ORDINATES : E 839709.04 N 819690.70	2	6	Reinfo	End o		n elated to m excavated fr bth of 1.90n ss were takk ss were take s were take s were take
2	Monthoring	Grade	. •			shoring le h : 1.90 m pths are re pth vare so pit ware so red at dep ed sample ed sample ed sample ed sample ed sample ed sample
T. C. Yip 26/10/2007 C. M. Sham 27/10/2007	-	Legend	A 4 4			Shoring : No shoring Stability : Stable Maximum Depth : 1.5 All sample depths ar An inspection pit wa As encountered at Small disturbed sam Euronmental Samp Environmental Samp SDG = Slightly decoi
	Depth	E E				0.014.3 월급 월 양 양 망 8년 8월
LOGGED BY : DATE : CHECKED BY DATE		1.50	Concreted.			
gineering Study cum Design and id Construction		m Face D	A Areintoicetheoricide A A A Reinforceut soncheted. A B B B B B B B B B B B B B B B B B B B		SYMBOL	 Large Disturbed Sample Undisturbed Sample Hori. Undisturbed Sample Vert. Block Sample En Erwironmental Sample In Situ Density Test Water Seepage Mater Sample Standpipe Tip N - Schmidt Hammer Test
Project : Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study Construction of Advance Work - Investigation, Design and Construction Works Order No. : GE/2007/03.61	Sketch	Face B 1.50 m	A Reinforced concreted A	Concrete stab (50mm thick) Concrete stab (50mm thick)	SECTION	CFSB-04 Face B Reinforced Face D concrete concrete Concrete 0.00m 0.00m 0.70m 0.25m 1912 0.70m 0.70m 0.25m 1912 115m 1.9 1.15m 1.9 1.15m 1.15m 1.9 1.15m 1.9 1.15m
Contract No.: 5 Ger Sonstruction Works Order No.: 5 Ger Sonstruction Struction Struction Struction Struction Struction Struction Struction Structure Structu	Samples Depth	Ê.		$E_{1,2}^{a} = 0.50$	PLAN	Received a second secon

				TRIAL PIT RECORD		
^{mPD} TRIAL PIT NO. 007 GFSB-02		u,		re to coarse SAND with zed moderately and subangular cobbles base Material) [FIL. 1] fine to coarse SAND with ants, trace of plastic and ents, trace of plastic and		NIL 0.73 m und level.
GROUND LEVEL: + 4.99 mPD EXCAVATION DATES: 20/10/2007 to 23/10/2007 BACKFILL DATES:	09/11/2007	Description	Reinforced concrete surface.	Loose, dry, grey (N 5), slightly slify fine to coarse SAND with much angular fine to coarse gravel sized moderately decomposed rock fragments, occasional subangular cobbles (MDE) and concrete fragments, (Sub-base Material) [FILL 1) Dense, moist, brown (7.5YR 5(4), slif) fine to coarse SAND with some angular to subangular fine to coarse gravel size moderately decomposed rock fragments, trace of plastic and tree root. (FILL 2) End of Trial Pit at 0.73m. At Base : CONCRETE.	REMARKS	Shoring: No shoring Water Seepage : NIL Stability : Stable Average Depth : 0.73 m Maximum Depth : 0.73 m Average Depth : 0.73 m 1. All sample depths are related to mid-point of Face A below ground level. A small disturbed sample was taken at 0.50m. 3. MDG = Moderately decomposed GRANITE. 4. An environmental sample was taken at 0.70m. 5. A large disturbed sample was taken at 0.70m.
CO-ORDINATES : E 839707.59 N 819698.73	_	ering de	Reinfo	Loose much decorr decorr act Bas At Bas At Bas At Bas	-	t m r related to mi opposed take opposed take nple was take nple was take
		I Weathering Grade			-	No shoring Stable Depth : 0.73 m a depths are re a depths are re a depths are pro- derately deco inmental sampli sturbed sampli
LOGGED BY: T. C. MP DATE : 25/10/2007 CHECKED BY: C. M. Shaffi	1007/01	Legend				Shoring : No shoi Stability : Stable Maximum Depth : All sample depth: A sample depth: A nenvironmental A large disturbed A large disturbed
BY: T. C : 25/ 1. D : 25/ 1. D : 25/		(m)	·			Sho Stat Max 3. MDo 5. A la 5. A la
LOGGED BY: DATE : CHECKED BY: DATE .		0.90 m	Acamerete surrace			
		Face D	Concrete			
ign and		E	.V.		SYMBOL	Large Disturbed Sample Undisturbed Sample Hori. Undisturbed Sample Vert. Block Sample Environmental Sample In Situ Density Test Water Seepage Water Sample Standpipe Tip N - Schmidt Hammer Test
cum Design and		50			SYI	Large Disturbed Sample Undisturbed Sample Hori. Undisturbed Sample Vert. Block Sample Environmental Sample In Situ Density Test Water Seepage Water Sample Standpipe Tip N - Schmidt Hammer Test
ng Study struction			Remforce hcrete sur	Not excavated		Large Disturbu Undisturbed S Undisturbed S Block Sample Environmenta In Situ Density Water Seepag Water Sample Standpipe Tip N - Schmidt H
Engineeri and Con:		Face C	\ \ \ \ \ \ \ \			↔▋■□□□□□□
lopment n, Design	Sketch	E	1. A. A.			C C C C C C C C C C C C C C C C C C C
lak Deve estigatior		B 0.90 m	einforced			2 Face C surface 0.00m <u>7</u> <u>7</u> <u>7</u>
(GE), Kai Vork - Inv		Face B	Scone Scone		SECTION	
do. CE33/2006 (1 of Advance W GE/2007/03.61		ε	V V			GFSE Face A Face A Concreted A Concreted A Concreted Con
ction of A		1.50	surface A	マ. ム. マ. 4 マ. ム. マ. 4 マ. ム. マ. 4		197Uř °
Vorks Order No. :		A	concrete			Luss of
BRO Intervention of Advance Work - Investigation, Design and Construction o.: GE/2007/03 Works Order No. : GE/2007/03 61		Face A	V V V			
2007/03	Depth	(III)	<u> </u> .	0 -5 -0 -0 0 -5 -0 -0 -0 0 -0 -0 -0 -0 0 -0 -0 -0 -0 0 -0 -0 -0 -0	PLAN	
Contract No.: GE/2007/03	Samples	Tests				z - z
Contract	Sar	ø				

			TRIAL PIT RECORD		
GROUND LEVEL: + 4.95 mPD TRIAL PIT NO. EXCAVATION DATES: 2410/2007 GFSB-03 BACKFILL DATES: 09/11/2007 09/11/2007	Description	Reinforced concrete surface.	Dense, dry, grey (N 5), slightly silty fine to coarse gravel sized much angular to subangular fine to coarse gravel sized moderately decomposed and slightly decomposed rock fragments. (Sub-base Material) (FILL 1) fragments in to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock fragments. (FILL 2) At Base : CONCRETE.	REMARKS	Shoring : No shoring Water Seepage : NIL Stability : Stable Stability : Stable Maximum Depth : 0.75 m Average Depth : 0.75 m 1. All sample depths are related to mid-point of Face A below ground level. 2. A small disturbed sample was taken at 0.50m. 3. An environmental sample was taken at 0.75m. 4. A large disturbed sample was taken at 0.75m.
CO-ORDINATES: E 83 9700.70 N 81 9706.9 1	Weathering		Dense, dry much ang much ang much ang fragmentste some ang etercompos friLL 2] At Base : 0		No shoring Stable Depth : 0.75 m depths are related to mid-p isturbed sample was taken a sturbed sample was taken at
W: T.C. Kip : 25/10/2007 BY: C. M. Shatm : 26/10/2007	Depth Legend (m)		0.33 0.35 0.50 0.50 1.00 0.15 1.100 0.25 1.50 0.25 2.50 0.25 2.50 0.25 2.50 0.25 2.50 0.25 2.50 0.25 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00 2.50 0.00		Shoring: No sho Stability: Stable Maximum Depth : 1. All sample depth: 2. A smal disturbed 3. An environmenta 4. A large disturbed
refine Study cum Design and LodgED BY: nd Construction DATE : DAT	EaraC 150 m EaraC 190	- Areinfronzead) - A.		SYMBOL	 Large Disturbed Sample Undisturbed Sample Hori. Undisturbed Sample Vert. Block Sample Vert. Block Sample En Situ Density Test Water Sepage Water Sample Standpipe Tip N - Schmidt Hammer Test
Project : Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study Construction of Advance Work - Investigation, Design and Construction Works Order No. : GE/2007/03.61	Sketch Sketch 150 m	Reinforcedi A. A.		SECTION	GFSB-03 Face A Face C Wall concrete surface Wall Wall 0.35m 0.30m 0.00m Mail 0.25m 0.35m Mail 0.00m 0.00m Mail 0.25m 101 Concrete surface 0.15m 101
CIBRO Construct Contract No.: 5 GE/2007/03 Works Order No.:	& Tests (m) Face A	- 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:		PLAN	Walt of the solution of the so

				TRIAL PIT RECORD		
TRIAL PIT NO. GFSB-04				arse SAND with ravel sized sized up to 300mm. sylsh brown, silty ubangular fine to moderately agments, FILL 2) agments, FILL 2) dity, grey (N 5), sDC) with some (Sub-base Material)		n el. vel.
GROUND LEVEL: + 4.96 mPD EXCAVATION DATES: 23/10/2007 to 25/10/2007 BACKITI DATES:	DACKTILL DATES: 09/11/2007	Description	Reinforced concrete surface.	Dense, dry, grey (N 5), slightly slity fine to coarse SAND with much angular to subangular fine to coarse gravel sized concrete and moderately decomposed rock fragments and occasional subangular boulders (Concrete) sized up to 300mm. (Sub-base Material) (FLL 1) Dense, moist, brown (7,5YR 5/4), dappled greyish brown, slity fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock fragments and concrete fragments. (FLL 2) From 0.70m to 1.00m (Faces B and C) : Loose, dry, grey (N 8), sandy angular medium to coarse GRAVEL (SDG) with some angular boulders (SDG) sized up to 300mm. (Sub-base Material) (FLL 3) End of Trial Pit at 1.15m.	REMARKS	Shoring : No shoring Water Seepage : NIL Stability : Stable Average Depth : 1.15 m Maximum Depth : 2.75 m Average Depth : 1.15 m All sample depths are related to mid-point of Face A below ground level. An inspection pit was excavated from 1.15 m to 2.75 m below ground level. Small fisturbed samples were taken at 0.56m and 1.00m. Large disturbed samples were taken at 0.75m and 2.75m. SDG = Slightly decomposed GRANITE. SDG = Slightly decomposed GRANITE.
CO-ORDINATES : E 839693.32	819708.12	Weathering Grade	Reinfo	Dense, much a concret (Sub-ba fine to c corres From 0 From 0 From 0 End of (FILL 3)		ing 2.75 m are related to mi was excavated fr maples were take amples were take mples were take mples were taker composed GRAN
1 Lan	f2007 N	Legend Weath Gr				Shoring : No shoring Stability : Stable Maximum Depth : 2.7 All sample depths ar An inspection pit wa Small disturbed sam Large disturbed sam Large disturbed sam SDG = Slightly decor
		Depth (m)		1 1		Shoriri Stabili Maxim Maxim Aall sa 3. Small 5. Envire 6. SDG
LOGGED BY : DATE : CHECKED BY	DATE	1.50 m	A Reinforced concreted A			
Project: Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work - Investigation, Design and Construction		1.50 m Face D	A ARCHIOCEODICACIÓN A A A REINFORCED		SYMBOL	 Large Disturbed Sample Undisturbed Sample Hori. Undisturbed Sample Vert. Block Sample Vert. Block Sample In Situ Density Test Water Seepage Water Sample Standpipe Tip N - Schmidt Hammer Test
Development Engine gation, Design and C		50 m Face C		mm thick)		ee D martine m
lo. CE35/2006 (CE), Kai Tak I of Advance Work - Investi	GE/2007/03.61	m Face B 1.50	be A A Reinforced concreted A	A: <	SECTION	GFSB-04 Face B Reinforced Fa concrete concrete concrete 0.25m 0.25m 0.45m 0.70m 0.70m 0.75m 1.15m 1.15m 1.15m 1.15m 1.15m 1.15m 1.15m
	Works Order No. :	Face A 1.50	A AREANTOACEADCOAACHEAE A A	A: A		
VIBRO	GE	& Tests (m)	_1_1		PLAN	Solution of the second

Definition Definition Product Product Product Product Product Office RO Organization PROJECT Agreement No. CE3820206 (CE), Kall Tak Development Engineering Study cum Design and Construction of Advance Work: Investigation, Design and Construction Mathematication Mathematication METHOD Rotary CO-ORDINATES W.O.NO. GE2007/03.61A MACHINE & NO. BM41 E 338695.17 N 819683.21 DATE : 05/11/2007 to 00/11/2007 FLUSHING MEDIUM NA OREENTATION Vertical GROUND LEVEL 4.6.6 mPI Impose and transmit and transm			DRILLH	OLE REC	ORD	HOLE NO. GFSC-01			
Investigation, Design and Construction METHOD Rotary CO-ORDINATES W.O.NO. GE/2007/03.61A MACHINE & NO. BM41 E 839895.17 N 819683.21 DATE : 05/11/2007 to 06/11/2007 FLUSHING MEDIUM NA ORIENTATION Vertical GROUND LEVEL + 4.66 mPI general gene	NIRK	CONTR	RACT NO.	GE/2007/03		SHEET 1 OF 1			
MACHINE & NO. BM41 E Bassen 17 N 819683.21 DATE : 04/11/2007 to 06/11/2007 FLUSHING MEDIUM NA ORIENTATION Vertical GROUND LEVEL + 4.65 mPI Image: State and teaching a	PROJECT Agreement No. Investigation, D	CE35/2006 (CE), Kai [·] Design and Construct	Tak Developmer ion	nt Engineering Stu	dy cum Design and	Construction of Advance Work -			
FLUSHING MEDIUM NA ORIENTATION Vertical GROUND LEVEL + 4.66 mPI angents group	METHOD Rot	tary CO-ORE	DINATES	an a	W.O.NO.	GE/2007/03.61A			
Bigg of the transmission of the transmissio	MACHINE & NO. BM	141 E 83969	9.17	N 819683.21	DATE :	05/11/2007 to 06/11/2007			
491300 We 100 <td< td=""><td>FLUSHING MEDIUM NA</td><td>A ORIENT</td><td>ATION</td><td>Vertical</td><td>GROUND LE</td><td>EVEL + 4.66 mPD</td></td<>	FLUSHING MEDIUM NA	A ORIENT	ATION	Vertical	GROUND LE	EVEL + 4.66 mPD			
Image: Second and the second provide second provi		ピ ロ 正 Tests	No. Type Depth	+4.66 0.00	Grade	Description			
gravel sized moderately decomposed rock fragments and occasional angular cobbles (MDG). (FILL) 9 8.00 06/11/2007 550 18:00	05/11/2007 HW 109	6 bis	A A A A A A A A A A A A A A A A A A A	+4.66 0.00 +4.43 0.23	Greyish brown (2.5 angular to subangu decomposed and m occasional brick fra Greyish brown (2.5 coarse SAND with highly decomposed fragments and occa sized concrete frag (Concrete). (FILL) Soft, greyish brown angular to subangu moderately decomp	Jar fine to coarse gravel sized highly moderately decomposed rock fragments and agments. (FILL) SY 5/2), dappled light brown, very silty fine to some angular to subangular fine gravel sized d and moderately decomposed rock asional brick fragments. (FILL) angular to subangular fine to coarse GRAVEL ments and occasional angular cobbles			
 Disturbed sample Disturbed sample Split spoon sample U76 undisturbed sample U100 undisturbed sample Mazier sample Mazier sample Mazier sample Standard penetration test In-situ vane shear test DGGED T. C. YIP A n inspection pit was excavated to a depth of 1.50m. A groundwater monitoring well was installed to 6.27m below ground level on 06/11/2007. A groundwater sample was taken from the monitoring well on 09/11/2007. A groundwater sample was taken from the monitoring well on 09/11/2007. A groundwater sample was taken from the well prior to sampling was 2.48m below ground level televiewer survey 	HW 2.11m B0 08/11/2007 5.50 18:00 Disturbed sample Y In-structure Piston sample Y In-structure Split spoon sample T Imp U76 undisturbed sample Y Prese U76 undisturbed sample Y Prese	Indard penetration test situ vane shear test meability test pression packer test pression packer test pressuremeter test pressuremeter test	9 6.00 6.45 6.50 LOGGED T	T. C. YIP REMAR 1. An in 2. A gro 0/11/2007 3. A gro	Gravel sized moders occasional angular End of Investigation End of Investigation Section pit was excavate undwater monitoring well //1/2007. undwater sample was tak	ately decomposed rock fragments and cobbles (MDG). (FILL) Hole at 6.50m. d to a depth of 1.50m. was installed to 6.27m below ground level en from the monitoring well on 09/11/2007.			

Name of the Owner of							
		DRILLF	IOLE RECORD	HOLE NO	р .	GFS	C-02
	IBRO	CONTRACT NO.	GE/2007/03	SHEET	1	OF	1
PROJECT	Agreement No. CE35/2006 Investigation, Design and	(CE), Kai Tak Developme Construction	nt Engineering Study cum Design and	Construction	n of A	dvance	Work -

METHOD)		Rotar	у	CO-ORDINATES								W.O.NO. GE/2007/03.61A			
MACHIN	E & NO.		BM41		I	E 83969	6.1	9		N 81	9678.	.94		DATE : 03/11/2007 to 05/11/2007		
FLUSHIN	IG MEDIL	IM	NA		0	ORIENTATION					Vertical			GROUND LEVEL + 4.64 mPD		
					E	Tests		Samples No. Type Dept		Level	0.00 (m)	Legend	Grade	Description		
- 03/11/2007 Hi	~	70 100 70 29						A Later B Strate B St	2.20 2.30 2.47	+4.39 +2.76 +2.44 +2.34	- 0.25 			Concrete surface. Brown (7.5YR 5/4), dappled greyish brown, silty fine to coarse SAND with some angular to subangular fine gravel sized highly decomposed and moderately decomposed rock fragments. (FILL) Light brown (7.5YR 6/4), dappled grey, angular BOULDERS (MDG) sized up to 320mm. (FILL) WASH BORING. Brown (7.5YR 5/4), dappled greyish brown, angular coarse GRAVEL sized moderately decomposed rock fragments with		
- 03/11/2007 05/11/2007	Dry at 18:00 2.50m at 08:00	186				14 bis 30 bis 40 bis			2.85 3.30 3.35 3.50 4.00 4.50 5.12 5.57 5.62	+1.79	4.50			Greyish brown (2.5Y 5/2), dappled brown, slightly silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized moderately decomposed and slightly decomposed rock fragments. (FILL) Brown (7.5YR 5/4), dappled light brown and greyish brown, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock fragments. (FILL)		
- <u>05/11/2007</u> 6.50	2.45m at 12:00	76				68 bis		9 10	6.00 6.45 6.50	-1.36				Dark brown (7.5YR 3/4), dappled brown, very silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized highly decomposed and moderately decomposed rock (ragments. (FILL) End of Investigation Hole at 6.50m.		
	ple sample urbed sample turbed sample ample ple	m	In-situ Perme Impres Pressu Packer Acoust televiev Piezom Standp Ground	ic or opt wer surv neter tip ipe	iear te: est cker te r test tical rey	st	DA	GGED TE ECKED TE	C	T. C. YH 99/11/200 . M. Sha 3/11/200	2. A groundwater monitoring well was installed to 6.32m below gro on 05/11/2007. 3. A groundwater sample was taken from the monitoring well on 09 The water level in the well prior to sampling was 2.47m below gro					

Vinno	DRILLHOLE RECORD	HOLE NO.	GFSC-03
VIBRO	CONTRACT NO. GE/2007/03	SHEET 1	OF 1
			1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

-			-		_				A)1,000,000,000,000	. States and						
METHO	D		F	Rotary	/	_ '	CO-ORDI	NA	TES				W.O.NO. GE/2007/03.61A			
MACHI	NE &	NO.		BM41			E 839693	.53			N 81	9697.	.53		DATE : 07/11/2007 to 07/11/2007	
FLUSHI		MEDIU	М	NA	2		ORIENTA	TIC	DN		Verti	cal			GROUND LEVEL + 4.76 mPD	
Drilling Progress	Casing Depth/Size	Water Level (m) Shift tart / end	Water Returns % T C R %	SCR%	RQD%	Œ	Tests	,	Samp No. Type		perced	(m)	Legend	Grade	Description	
07/11/2007	HW	1.65m at 18:00	36				34 bls 18 bls		No. Type	0.00 0.25 0.50 1.00 1.25 1.50 2.66 2.95 3.00 3.50 3.50 4.00 4.50	+4.76	0.00 0.25 0.25 0.25 0.25 0.25 0.250000000000			Concrete surface. Greyish brown (2.5Y 5/2), dappled light brown, silty fine to coarse SAND with some angular to subangular fine to medium gravel sized moderately decomposed rock fragments. (FILL) Grey (N 5), dappled greyish brown and dark grey, silty fine to coarse SAND with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments and concrete fragments. (FILL) Light grey (N 6), dappled reddish brown and brown, slightly sandy angular to subangular medium to coarse GRAVEL sized slightly decomposed rock fragments with some brick and wood pieces. (FILL) End of Investigation Hole at 6.38m.	
Disturber Piston sa Split spor U76 undi U100 und Mazier sa SPT liner Water sa En Environm	ample oon san isturbe disturb ample r samp ample	nple d sample ed sampl	- I	Standa In-situ Permei Impress Pressu Packer Packer Piezom Standp Extenss	vane sh ability te sion pao remeter Test c or opt ver surv teter tip ipe water n	lear te est cker te r test tical rey	ist est	DA	ECKED		T. C. Yr 25/11/200 3. M. Sh2		2. A gr on 0 3. A gr	nspec oundv 8/11/20 oundv	ction pit was excavated to a depth of 1.50m. water monitoring well was installed to 6.38m below ground level 2007. water sample was taken from the monitoring well on 12/11/2007. level in the well prior to sampling was 2.66m below ground level.	

	DRILLHOLE RECORD	HOLE NO.
KU	CONTRACT NO. GE/2007/03	SHEET 1

GFSC-04 OF

1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

METHOD Rotary	CO-ORDINATES		W.O.NO. GE/2007/03.61A
MACHINE & NO. BM41	E 839677.75	N 819693.64	DATE : 08/11/2007 to 09/11/2007
FLUSHING MEDIUM NA	ORIENTATION	Vertical	GROUND LEVEL + 4.63 mPD
	Tests Samples	5999 ++ Reduced Level Composition (m) (m) Legend Grade	Description
D start / end IZ 08/11/2007 HW 109 08/11/2007	14 bis 2 0.00 14 bis 2 0.50 17 bis 4 2.95 17 bis 4 3.95 4 3.95 3.95 4 3.95 4.00 6 4.50 3.95 7 5.50 5.50	+4.63 0.00 +4.40 0.23 4.5 4.5 4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Concrete surface. Greyish brown (2.5Y 5/2), dappled light brown and grey, silty fine to coarse SAND with some angular to subangular medium gravel sized moderately decomposed rock fragments and occasional wood pieces. (FILL) Firm, reddish brown (2.5YR 5/4), sandy SILT with some angular to subangular fine to medium gravel sized brick fragments and occasional fine to coarse gravel sized orick fragments. (FILL) Grey (N 5), dappled greyish brown, slightly silty / clayey fine to coarse SAND with much angular to subangular fine to coarse gravel sized concrete fragments. (FILL) End of Investigation Hole at 6.28m.
Disturbed sample Piston sample U176 undisturbed sample U100 undisturbed sample U100 undisturbed sample U100 undisturbed sample Water sample SPT liner sample Water sample Tenvironmental Sample Nazier Sample Water sample Water sample Water sample Disturbed sample Mazier Sample Water sample Disturbed sample Mazier Sample Water sample Water sample Disturbed sample Mazier Sample Water sample Disturbed sample Water sample Disturbed sample Mazier Sample Water sample Disturbed sample Mazier Sample Disturbed sample Mazier	r test LOGGED r test st DATE CHECKED	2. A groundy on 09/11/2 3. A groundy The water	tion pit was excavated to a depth of 1.50m. vater monitoring well was installed to 6.28m below ground level 107. vater sample was taken from the monitoring well on 12/11/2007. level in the well prior to sampling was 2.53m below ground level.

					D	RILLF	IOL	ER	EC	OF	RD	HOLE N	0.	GFSD)-01
	BF	KU		0	CONTRAC	CT NO.	GE/	2007/	03			SHEET	1	OF	1
PROJECT	Agreemen Investigati	t No. CE ion, Des	35/200 ign an	6 (C d Cc	E), Kai Tak	Developme	ent Eng	ineerir	ng Stu	dy cı	um Design and	Constructio	n of Ad	vance	Work -
METHOD		Rotary	/	C	CO-ORDINA	TES					W.O.NO.	GE/	2007/0	3.61	
MACHINE & N	0.	VBM29	Ð	E	E 839672.8	5	N 81	9728.	97		DATE :	29/09/2007	to	29/09/	/2007
FLUSHING ME	DIUM	NA		0	DRIENTATI	ON	Verti	cal			GROUND LE	EVEL	+ 4.92		mPD
		۲% ۲%	% O		_		ced	e th	pua	de					

L	METH	OD			R	otary			CO-ORDI	INA	TES					W.O.NO. GE/2007/03.61		
	MACH	IINE	& NO.		v	BM29)	E 839672.85 N 8197			9728.	.97	DATE : 29/09/2007 to 29/09/2007				
	FLUSI			M		NA	·		ORIENTA	TIC	ON	Verti	Vertical			GROUND LEVEL + 4.92 mPI		
	Drilling Progress	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns %	TCR%	SCR%	RQD%	Œ	Tests	1	Samples No. Type Dept	th +4.92	0.00 (m)	Legend	Grade	Description		
	29/09/200	7 HW	1.80m		72				28 bis		A C 1700 Dep	+2.62	<u>2.30</u>			Greyish brown (2.5Y 5/2), dappled brown, silty fine to coarse SAND with some angular to subangular fine to medium gravel sized moderately decomposed rock fragments. (FILL) Firm, greyish brown (2.5Y 5/2), dappled brown, sandy SILT wit some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments and occasional vegetation fragments. (FILL) Greyish brown (2.5Y 5/2), dappled brown, slightly silty fine to coarse SAND with some angular to subangular fine to medium gravel sized moderately decomposed rock fragments and occasional subangular cobbles (Concrete). (FILL)		
	29/09/2007	HW 7 6.00	at 18:00								7	-1.08	6.00			End of Investigation Hole at 6.00m.		
	Piston Split s U76 u U100 u Mazien SPT lin Water	Disturbed sample Piston sample Split spoon sample U176 undisturbed sample U100 undisturbed sample Mazier sample SPT liner sample Environmental Sample Environmental Sample			est	LOGGED <u>T. C. yip</u> DATE <u>06/10/2007</u> CHECKED <u>C. M. Sham</u> DATE <u>08/10/2007</u>												

	GFSD-02
CONTRACT NO. GE/2007/03 SHEET 1 C	OF 1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

METHOD		R	otary		6	CO-ORDIN	TAV	ES				W.O.NO. GE/2007/03.61		
MACHINE	& NO.	VE	3M29		E	839738.	.49			N 819678.29			DATE : 02/10/2007 to 03/10/2007	
FLUSHING	MEDIUM		NA		c	DRIENTAT	TION	N		Verti	cal			GROUND LEVEL + 5.07 mPD
A Depth/Size	Water Level (m) Shift start / end	TCR%	SCR%	RQD%	Ē	Tests		Sampl		Level	Depth (m)	Legend	Grade	Description
		100					А 1 _В 2С	INSPECTION PIT	0.50 1.00 n 1.50 2.00	+4.57				Concrete surface. Light brown (7.5YR 6/4), silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)
02/10/2007 03/10/2007	2.70m at 18:00 2.30m at 08:00	34				11 bis 19 bis	39 9 4 5 6		2.80 2.83 3.25 3.30 3.80 4.25 4.30	+2.27	- <u>2.80</u> 			some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL) Light brown (7.5YR 6/4), dappled dark grey and greyish brown, slightly silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)
- - HW 03/10/2007 6.70	2.30m at 13:00					1	7	*	5.30	-0.23	- 5.30 - - - - - - - - - - - - - - - - - - -			Soft, light brown (7.5YR 6/4), sandy silty CLAY with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)
														End of Investigation Hole at 6.70m.
 Disturbed san Piston sample Split spoon sa U76 undisturk U100 undisturk Mazier sample SPT liner san Water sample 	Disturbed sample Piston sample Split spoon sample J76 undisturbed sample Mazier sample SPT liner sample Water sample Mater sample Mater sample Mater sample Set line s			st I		E CKED		T. C. Y 06/10/20 C. M. Sh 08/10/20	am	 2. Groundwater monitoring well was installed to 6.70m below ground 03/10/2007. 3. A groundwater sample was taken from the monitoring well on 04/1 The water level in the well prior to sampling was 2.83m below grou am 				

	DRILL	HOLE RECORD	HOLE NO.
IBRO	CONTRACT NO.	GE/2007/03	SHEET 1

PROJECT

Agreement No. CE35/2006 (CE), Kai Tak Development Engineering Study cum Design and Construction of Advance Work -Investigation, Design and Construction

GFSD-03

1

OF

METHO	DD			R	otary	,		CO-ORDI	NA	TES						W.O.NO.	GE/	2007/0	3.61	
MACHI	NE	& NO.		V	BM29		ין	E 839755	5.30	6		N 81	9619	.40		DATE :	03/10/2007	to	04/10/2	007
FLUSH	ING	MEDIU	М		NA		1	ORIENTA	TI	ON		Verti	cal			GROUND	LEVEL	+ 4.71		mPD
	Casing Depth/Size	Water Level (m) Shift start / end	Water Returns %	TCR%	SCR%	RQD%	E	Tests		Samples No. Type D		Fevel tevel	0000 Depth (m)	Legend	Grade		Descriptio	n		
03/10/2007 - - - - - - - - - - - - - - - - - -	HW	Dry at 18:00 Dry at 08:00 2:48m at 18:00		84				24 bis 30 bis				+4.71	0.00 1.50 1			coarse SAND w gravel sized mo asphalt fragmen Firm, brown (7.5 with some angu decomposed roo Firm to stiff, yell angular to subar decomposed roo Soft, grey (N 5), SILT with some sized moderatel wood pieces and	5YR 5/4), dappled g lar to subangular fin ck fragments. (FILL) owish brown (10YR rgular coarse gravel ck fragments. (FILL) dappled brown and angular to subangul y decomposed rock d asphalt fragments.	subangu ad rock fr reyish bri- e gravel 5/4), sar sized m light bro fragmen	lar fine to m agments an own, sandy sized mode oderately wn, sandy c medium gr	edium d SILT rately h
↓ Disturb Pistons Split sp	samp boon s	le	e	Ī	Standa In-situ Perme Pressu	vane sł ability to sion pa	near t est cker t	est test		DGGED		T. C. Y 06/10/20		2. Gro 04/1	inspec undw 0/2007	ction pit was excan ater monitoring we	vated to a depth of 1 ell was installed to 6 taken from the mon	5.20m be	-	
U100 ur Mazier s SPT line	ndist samp er sa	urbed samp ble mple			Packer Acoust televiev Piezon Standp	Test ic or op wer sun neter tip ipe	tical /ey			HECKED		C. M. Sh					rior to sampling wa			
Water sample Groundwater monitoring we Environmental Sample Extensometer			aning wen	DATE 08/10/2007										12/	0707_0305					

		DRILLF	IOLE RECORD	HOLE N	0.	GFS	D-04
	IBRO	CONTRACT NO.	GE/2007/03	SHEET	1	OF	1
PROJECT	Agreement No. CE35/2006 Investigation, Design and	(CE), Kai Tak Developme Construction	ent Engineering Study cum Design and	Constructio	n of A	dvance	• Work -

METHOD	Rotary	y CO-ORDINATES W.O.NO. GE/2007/03					
MACHINE & NO.	VBM38	E 839726.	14	N 819585.98		DATE : 02/10/2007 to 03/10/2007	
FLUSHING MEDIUM	NA	ORIENTAT	ΓΙΟΝ	Vertical		GROUND LEVEL + 4.52 mPD	
Matter Matter	TCR% SCR% RQD%	正 Tests	Samples No. Type Depth	Level (m) (m) Level Level Level Level Level Level Level Level (m) Level Level Level (m) Level Level Level (m) Level		Description	
Dry	700		A = 0.50 A = 0.50 B = 1.00 1 En 1.30 C = 1.50 9 ▲ 2.31	+4.22 0.30		Concrete surface. Light brown (7.5YR 6/4), slightly silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)	
02/10/2007 03/10/2007 PW 3.00 HW	90	18 bis	2 3 2.50 2.95 3.00	+2.02 2.50		Firm, grey (N 5), slightly sandy SILT. (FILL)	
	10	49 bis	4 3.50 5 3.95 4.00 6 - 4.50	+1.02 3.50		Greyish brown (2.5Y 5/2), slightly silty fine to coarse SAND with some angular to subangular fine gravel sized moderately decomposed rock fragments. (FILL)	
			7 🛥 5.50			Firm to stiff, grey (N 5), dappled dark grey and reddish brown, sandy SILT with some angular to subangular fine to coarse gravel sized moderately decomposed rock fragments, occasional wood pieces and brick pieces. (FILL)	
22.67m at 03/10/2007 6.66 18:00			8 - 6.30 -	-1.78 6.30		Dark grey (N 3), slightly silty fine to coarse SAND with some angular to subangular fine gravel sized highly to moderately decomposed rock fragments.(FILL) End of Investigation Hole at 6.66m.	
Disturbed sample Piston sample Split spoon sample U76 undisturbed sample U100 undisturbed sample Mazier sample			DATE 0	T. C. Yip 1. / 2. 0 6/10/2007 3. /	Groundwa 03/10/2007 A ground	ction pit was excavated to a depth of 1.50m. ater monitoring well was installed to 6.66m below ground level o 7. water sample was taken from the monitoring well on 05/10/2007. level in the well prior to sampling was 2.31m below ground leve	
SPT liner sample Water sample Environmental Sample	 Piezometer tip Standpipe Groundwater m Extensometer 	nonitoring well	DATE 0	8/10/2007			

Appendix D

(On-site Measurement Results)

		Samp	ling Depth	PID
Sample ID	Sampling Date		sting Concrete Pavement	Results
		From	To	(ppm)
	21/09/2007	<u> </u>	10	0
GFSA-17	21/09/2007	2.25	2.7	0
	21/09/2007	3.25	3.7	0
	21/09/2007	1	1	0
GFSA-18	24/09/2007	2.25	2.7	0.2
	24/09/2007	3.45	3.9	0.2
	03/11/2007	1	1	0
GFSA-19	03/11/2007	2.23	2.68	0.2
	03/11/2007	3.23	3.68	0.4
	06/11/2007	1	1	1.8
GFSA-20	06/11/2007	2.2	2.65	0
0.1 0.1 20	06/11/2007	3.2	3.65	0
	07/11/2007	1	1	0
GFSA-21	07/11/2007	2.25	2.7	1.8
	07/11/2007	3.25	3.7	0
	09/11/2007	1	1	0.9
GFSA-22	09/11/2007	2.25	2.7	1.1
	09/11/2007	3.25	3.7	0.9
	23/10/2007	0.5	0.5	0
GFSB-01	24/10/2007	1.5	1.5	0
	25/10/2007	1.65	1.65	0
GFSB-02	23/10/2007	0.5	0.5	0
GFSB-03	24/10/2007	0.5	0.5	0
	23/10/2007	0.5	0.5	0
GFSB-04	24/10/2007	1.5	1.5	0
	25/10/2007	2.5	2.5	0
	06/11/2007	1	1	0
	06/11/2007	2.27	2.72	0
GFSC-01	06/11/2007	3.27	3.72	0
	06/11/2007	4.77	5.22	0
	06/11/2007	5.77	6.22	0
	03/11/2007	1	1	0
	03/11/2007	2.6	3.05	0.1
GFSC-02	03/11/2007	3.25	3.7	0
	05/11/2007	4.87	5.32	0
	05/11/2007	5.75	6.2	0.2
0500.00	07/11/2007	1	1	0
GFSC-03	07/11/2007	2.25	2.7	0
	07/11/2007	3.25	3.7	1
	09/11/2007	1	1	0
GFSC-04	09/11/2007	2.27	2.72	0
	09/11/2007	3.27	3.72	0.5
GFSD-01	29/09/2007	<u> </u>	2.75	0.1
GF3D-01	29/09/2007 29/09/2007	3.8	4.25	0.1
	02/10/2007	<u> </u>	4.25	0.1
GFSD-02	02/10/2007	2.3	2.75	5.2
	02/10/2007	3.3	3.75	4.1
	03/10/2007	<u> </u>	1	0.2
GFSD-03	04/10/2007	2.3	2.75	0.2
	04/10/2007	3.3	3.75	0.3
	02/10/2007	1	1	0.0
GFSD-04	03/10/2007	2.2	2.65	3.6
	03/10/2007	3.2	3.65	1.6

Appendix E (Laboratory Results)

	Soil Sample Identification		Metals			•								-							-
							Ha					BIEX	hhe	JOIS			Halogenated H	- i	s		
		rromium (Cr) ppper (Cu)	ad (Pb)	(sA) sines	(oM) munəbdyla		5-C28	HqT I _B f	thracene	ioranthene) pyrene)		ənəlyX-q	lone		enertteoroldaib-S, t-an	9.1-trichloroethane	9-sthanolotioethane	ensritemomore	enertieoroficer	2,3-trichloropropane	
	To	දි රි mg/kg mg/kg	 mg/kg mg/kg	ຊັ ເວິ mg/kg mg/kg	≚ ≓ mg/kg mg/kg	ස mg/kg	ට mg/kg	ro mg/kg	mg/kg	년 mg/kg	ro mg/kg	e [°] mg/kg	≫ É mg/kg mg/kg	mg/kg	풀 다 mg/kg mg/kg	ng/kg	ළ 고 mg/kg mg/kg	등 다	편 mg/kg	mg/kg	_
	lg/kg)	1 1	1 20 50 200	- 00	+ ç	0.5 2	100	- 10	0.05	0.05	+	0.4	-	-	0.5	0.5	0.5 0.5	0.5 0.5	0.5	0.5	_
		250 100	-	┢	-	400		1000 5	10 10	1 10 10	0.5 3	1	5 1 1	1 0.02	2 2 C	2 2	22	5 22 C	2 22 C	2 2 2 2 2 2	- -
	Dutch C	800 500	600 3000	50		2000 -	•		100	100		09	10		50	50	50	50 50	50	50	50
	+	2.7 6.3	110 45	<u>۲</u>			120	272	<0.05	<0.05	<0.2	<0.4	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	-
	2.25 2.7	3.2 9.5	120 61	1.7		-	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
	3.25 3.7	3.1 17	200 90	1.5	1.2 12	_	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
		2.4 6.5	75 50		1.5 3.5	-	100	<252	9 05	Ŀ	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	 < 0.5 < 0.5 < 0.5 < 0.5 	< 0.5< 0.5<td>0.5 0.5</td><td>< 0.5</td><td>v</td>	0.5 0.5	< 0.5	v
	2.25 2.7 3.45 3.0	<1 1.8 3.0 7.6	75 56 120 a2	ب ۲	41 27	-	100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	× 0.5	 < 0.5 < 0.5 	< 0.5< 0.5< 0.5< 0.5	<pre>< 0.5 < 0.5 < 0.5 </pre>	 0.5 0.5 	 0.5 7 0.5 	+
	0.40 0.9	3.2 1.0	89 60	0.1	4.1 <u>2.</u> / 13 29	_	<pre>< 100</pre>	<252	20.02	20.02	2.02	<0.4 4.04	02.02	02.02	0.0 V	0 2 0 V	2 0.0 × 0.0 × 0.0 ×	0.0 × 0.0 × 0.0	0.00.50.5	0.00.50.5	-
	2.23 2.68	2.9 7.8	150 78	- i i	1.5 2.5		<100	<252	<0.05	<0.05	<0.2	+.02 4.05	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	-
	3.23 3.68	3.4 8.9	60 46	7		-	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
	1	2.7 8.2	110 2000	۰ ۲			<100 <	<252	<0.05 <0.05 <c< td=""><td>0.05 <0.05 <0.05</td><td><0.2</td><td></td><td><0.20</td><td><0.20</td><td>< 0.5</td><td>< 0.5</td><td>< 0.5 < 0.5</td><td>< 0.5 < 0.5</td><td>< 0.5</td><td>< 0.5</td><td>5 < 0.5</td></c<>	0.05 <0.05 <0.05	<0.2		<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	5 < 0.5
	2.2 2.65	1.5 4	51 38	Ţ,	_		<100 <	<252	_	_	<0.2	<0.4	<0.20 <0.	<0.20	< 0.5 < 0.	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	v
	3.2 3.65	4.3 27	35 63	1.6	_	+	<100	<252	<0.05	<0.05	<0.2	40×	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
	1 1 205 27	9.7 9.6	81 720	4 6	+	+	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6 <0.20	<0.20	0.5	× 0.5	< 0.5< 0.5< 0.5< 0.5	< 0.5 < 0.5	 0.5 0.5 	 0.5 7 1 1<td>_</td>	_
	3.25 3.7	3 6.4	21 41	i 1	+		<100	<252	<0.05	<0.05	<0.2	<0×	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5	< 0.5	_
	+	4.5 <1	30 <20	1.6			<100 <	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	5 < 0.5
	2.25 2.7	2.2 17	83 47	÷.	-		<100	<252	-	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5 < 0	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.25 3.7	55 150	82 110	8.1		+	<100	<252	<0.05	<0.05	<0.2	<0×	<0.20	<0.20	< 0.5 < 0	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	
1 1	c.0 c.0 7.1 7.1	-> -> -> -> -> -> -> -> -> ->	41 23 52 39	0.38	-		<100	<252>	<0.05	<0.0>	<0.2 <0.2	<0.4 4.0	02.0>	<0.20 <0.20	c.0 >	c.0 >	c.0 > c.0 >	c.0 > c.0 >	c.0 >	c.0 >	_
1 1	1.65 1.65	2.4 7.7	58 42	4			1500	2875	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	-
1 1	0.5 0.5	<1 1.4	37 23	0.4	<1 1.7		<100 <	<252		0.05 <0.05 <0.05	<0.2		<0.20	<0.20	< 0.5	5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5 <	5 < 0.5	< 0.5	5 < 0.5
1 1	0.5 0.5	۰ ۲	39 <20	v	_	_	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	5 < 0.5
1 1	0.5 0.5		32 100 100	÷.	_		<100	<252	<0.05	<0.05	<0.2	4.0×	<0.6 <0.20	<0.20	<0.5 <0.5	< 0.5	 < 0.5 < 0.5 < 0.5 < 0.5 	< 0.5 < 0.5	< 0.5	< 0.5	_
1 1	2.5 2.5	<1.3 3.1	41 39	- 7	-	-	<100	<252	<0.05	<0.05	<0.2 <0.2	<0.4	<0.20	<0.20	<0.5 <0.5 <0.5	< 0.5 < 0.5	< 0.5< 0.5< 0.5	< 0.5< 0.5< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	_
12 12 1	1 1					\$	<100	<252	<0.05	<0.05	<0.2	<0.4	-								
1 1	2.27					2	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6								
	3.27			1		∛ ∿	<100 <100	292>	0.12	C.1	<0.2 <0.2	<0.4 4.0 ×	90°5	╞					Ī		
1 1	5.77					18	<100	<252	<0.05	0.05	<0.2	<0.4	<0.6								
30 31 41<	Ļ					\$	<100	<252	<0.05	0.16	<0.2	<0.4	<0.6								
10 1	2.6					8	160	592	<0.05	0.08	<0.2	<0.4	<0.6								
1 1	3.25					∛ ∿	v 100	<252 <	c0.0>	80.0	<0.2	<0.4 4.0 >	90.5 60.6								
1 1	5.75					2	<100	<252	<0.05	0.27	<0.2	<0.4	<0.6								
25 37<	-					2	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6								
	2.25 3.25					99	<100 100	<252	<0.05	<0.05	<0.2	40.4 4.02	<0.6								
21 21<	0.20 F		+	‡ †		8	v 100	<252	20.02	20.05	2.02	<0.4 4.04	<0.0 20.6	ļ	Ì				Ī		
3.1 3.1 <td>2.27</td> <td></td> <td></td> <td></td> <td></td> <td>7 72</td> <td></td> <td><252</td> <td><0.05 <0.05 <0</td> <td>_</td> <td><0.2</td> <td><0.4</td> <td><0.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.27					7 72		<252	<0.05 <0.05 <0	_	<0.2	<0.4	<0.6								
1 1 0 2 0	3.27					\$	<100	<252	05		<0.2	<0.4	<0.6								
2.3 2.5 6.0 0.00 1.2 1.5 1.1 1.0 0.00 1.2 0.00 0.00 1.2 0.00 <td></td> <td>2.9 39</td> <td>54 51</td> <td>1.2</td> <td>_</td> <td></td> <td><100</td> <td><252</td> <td><0.05</td> <td><0.05</td> <td><0.2</td> <td><0.4</td> <td><0.20</td> <td><0.20</td> <td>< 0.5 < 0.</td> <td>< 0.5</td> <td>< 0.5 < 0.5</td> <td>< 0.5 < 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>-</td>		2.9 39	54 51	1.2	_		<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5 < 0.	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	-
1 1	2.3 2.75 3.8 4.25	3.2 55 3.5 55	86 110 20 44	- 12		-	<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	 0.5 0.5 	 0.5 0.5 	<pre>< 0.5 < 0.5 < 0.5 </pre>	<pre>< 0.5 < 0.5 < 0.5 </pre>	 0.5 0.5 	 0.5 0.5 	_
1 1	0.0	0.0 0.0	20 85 26	- 4 -				10E0	_		202		02.02	02.02							_
3.3 3.75 6.02 6.0 6.05 6	2.3 2.75	4.2 12	81 94				<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	v
1 1 1 6 480 200 0.13 38 52 10 200	3.3 3.75	2.2 22	69 54	1.3			<100	<252	<0.05	<0.05	<0.2	<0.4	<0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	V
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	21 31	480 2300	3.8	_		<100	<252	<0.05	<0.05	<0.2	<0.4	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.3 2.75	2.7 9.8	30 130	₽,	_		<100	<252	<0.05	<0.05	<0.2 <0.2	<0.4	<0.6 <0.20	<0.20	< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	_
32 330 15 16 15 26 416 10 51 270 22 500	5.5 5.7 1 1	29 17	73 250	- 7	+	_	<100	/2Z	_	0.05 <0.05 <0.05	2.0×	<0.4 4.0 ×	<0.20 <0.20	02.02	0.0 20.0 20.0	 0.0 0.5 0.5 	 0.0 × 0.0 × 0.0 × 0.0 × 	c.0 < 0.0 < 0.0 <	< 0.5	0.0 V 0.2	_
3.65 2.3 7.4 2.4 7 300 150 0.18 3.6 3.2 1.1 3.5 5.8 2 4.00 <100 <100 <252 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	2.2 2.65	26 45	430 160	6.6	_	_	<100	<252	_	0.05 < 0.05 < 0.05	<0.2	<0.4	<0.20 <0 <0	<0.20	< 0.5	< 0.5 < 0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	′ V
	3.2 3.65	7.4 24	300 150	3.6	-		-	00 <252 <0.05	<0.05 <0.05 <0	0.05 <0.05 <0.05	2 <0.2	N	3 <0.20 <0	<0.20	0.5 < 0.5 < 0.	5 < 0.5 < 0	< 0.5 < 0.5 <	0.5 < 0.5 < 0.5	5 < 0.5	< 0.5 < 0.	5 < 0.5

g)
Ę
Ē
a S
Ģ
ě)
es
đ
Sar
Soil
of
ults
esu
Ř
Ę
ora
Lab

Notes: BBC-- Below Base of Existing Concrete Square in bolded fire incicates exceedance of Dutch B Level Shadd square indicates exceedance of Dutch C Level Full analytical results should be referred to laboratory report

	hexachlorobutadiene	- ng/L	2.0	1	10	50	5	<2	<2	<2	<2	<2					5	<2	<2	<2
	1,2-dibromo-3- chloropropane	r ng/L	2.0	-	10		\$	\$	₹	5	5	5					ų	\$	5	∾
	9.2,3-trichloropropane	ng/L	2.0	1	10	50	8	\$	52	5	2	2					ş	5	2	\$
	1,1,2,2- tetrachloroethane	ng/L	2.0	1	10	50	\$	5	22	\$	52	52					ş	\$	52	\$
	1,1,1,2- tetrachloroethane	ng/L	2.0	٢	10	50	52	\$	<2	<2	<2	<2					8	42	<2	\$
	tetrachloroethene	ng/L	2.0	1	10	50	5	42	5	5	<2	<2					4	5	<2	52
tics	9.3-dichloropropane	ng/L	2.0	1	10	50	<2	<2	<2	<2	<2	<2					42	<2	<2	<2
- Alipha	ensrheoroldoint-S, I, I	ng/L	2.0	1	10	50	<2	42	<2	<2	<2	<2					42	<2	<2	<2
Halogenated Hydrocarbons - Aliphatics	dibromomethane	ng/L	2.0	1	10	50	52	42	<2	<2	<2	<2					5	<2	<2	52
Hydroc	trichloroethene	ng/L	2.0	1	10	50	52	5	<2	<2	<2	<2					5	<2	<2	5
enated	9nsrheoroldoib-2, f	ng/L	2.0	1	10	50	52	42	<2	<2	<2	<2					5	<2	<2	5
Halog	Tetrachloromethane	ng/L	2.0	1	10	50	52	<2	<2	<2	<2	<2					5	42	<2	52
	f,1-dichloropropylene	ng/L I	2.0	1	10	50	42	<2	<2	<2	<2	<2					42	<2	<2	22
	ensriteorolitoint-1,1,1	ר ר ס/ך ר	2.0	1	10	50	52	<2	<2	<2	<2	<2					ç2 م	<u>ک</u>	<2	<2
	enenteoroldoib-S, I-sio	ر ۲	2.0 2	1	10	50	∾	۲۵	۲	د2	22	دی ۲۵					N	22	22	≤2
		/F ng/	2.0 2		10	50	v ₹2	<2 <	<2	<2	<2 <	<2 <					v ∾	<2 <2	<2 <	<2
	dichloroethene 1,1-dichloroethane	VL ng/l	_	_	_					_							_	_		
	trans-1,2-	,F ng	2.0	-	10	50	∾	20	2 2	S S	20	2 2					∾ N	∾	2 2	2 2
	1,1-dichloroethene	L ug/l	5 2.0	5	10	50	5 <2	5 <2	5 <2	5 <2	5 <2	5 <2					5 22	5 <2	5 <2	5 <2
slc	3/4-methylphenol	T/gu 1	0.5	0.5	15	50	5 <0.5	5 <0.5	-5 <0.5	5 <0.5	5 <0.5	-5 <0.5					5 <0.5	5 <0.5	5 <0.5	5 <0.5
Phenols	2-methylphenol	ng/L	0.5	0.5	15	50	° V	°.	Ŷ	.0×	V	Ŷ					0, V	.0 V	V	Ŷ
	Phenol	ng/L	0.5	0.5	15	50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5	<0.5
	səuəlyX	ng/L	•	0.5	20	60	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30
	ənəlyX-o	ng/L	15	•	•	•	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
втех	m, p-Xylene	ng/L	15	-	•	•	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
BT	eneznediynt3	ng/L	15	0.5	20	60	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
	ənəuloT	ng/L	15	0.5	15	50	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
	əuəzuəg	ng/L	1.0	0.2	۰	2	ŕ	ŕ	۰ <u>1</u>	ŕ,	۰ <u>1</u>	۰ <u>1</u>	1	ŕ	ŕ	ŕ	ŕ	ŕ	۰ <u>1</u>	Ļ
	Ругеле	ng/L	0.1	0.02	-	5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.43	<0.1
eight)	Fluoranthene	ng/L	0.1	0.02	-	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.47	<0.1
PAHs (Low Molecular Weight	as) henzopyrene (as benzo(a)pyrene)	ng/L	0.1	0.01	0.2	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.10	<0.1
w Mole	Anthracene	ng/L	0.1	0.1	2	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.14 <	<0.1
AHs (Lo	Phenanthrene	ומ/ך ו	0.1	0.1	2	10	<0.1 <	<0.1	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	1.1 0	<0.1
P	analaritiqaM	n J/Br	0.1 (0.2 (2	30	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	<0.1 <	1.3	<0.1
	Total TPH	n J/Bn	-	20 C	200	600	231 <	327 <	<95 <	<95 <	<95 <	<95 <	<95 <	<95 <	<95 <	101 <	365 <	168 <	140	369 <
		٦	25	-	2	9	<25 2	82 3	<25 <	<25 <	<25 <	<25 <	<25 <	<25 <	<25 <	<25 1	130 3	<25 1		120 3
Ħ	C59-C36	/F ng/			Ľ		_	_									_		0 210	_
трн	C15-C28	L ug/	55	-		'	160	5 200	5 <25	5 <25	5 <25	5 <25	5 <25	5 <25	5 <25	5 31	170	92	350	160
	C10-C14	r ug/l	25		'	'	0 26) <25) <25) <25) <25) <25) <25) <25) <25) <25	0 45	31	160	69 (
	60-90	l/6n -	20	•	'	'	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
	(88) muhs8	ng/L	1.0	50	100	500	24	150	120	110	610	220					340	680	650	160
	(nS) niT	ng/L	1.0	10	30	150	3.7	3.6	5.4	2	4.8	3.6					3.4	4.1	5.4	6.3
	(oM) munəbdyloM	ng/L	1.0	5.0	20	100	31	21	39	6.9	18	11					e	5.4	3.7	2.5
	(oO) fladoO	ng/L	1.0	20	50	200	ŕ	49	6.4	4.1	14	12					7.3	33	200	4.4
	Arsenic (As)	ng/L	10	10	8	100	<10	<10	<10	<10	11	<10					<10	<10	<10	<10
Metals	Mercury (Hg)	ng/L	0.5	0.2	0.5	2	1.2	<0.5	<0.5	<0.5	<0.5	<0.5			Ű		<0.5	<0.5	<0.5	<0.5
Me	(nZ) oniZ	ng/L	50	50	200	800	<50	250	92	87	420	250			Ø		480	1000	470	290
	(Pb)	ng/L	1.0	20	50	200	7.5	22	72	45	590	130			Ø		550	2100	240	320
	Nickel (Ni)	ng/L	1.0	20	50	200	1.6	18	10	6.7	16	23			Ø		7.4	9.3	50	÷
	Copper (Cu)	ng/L	1.0	20	50	200	1.4	2.4	1.3	1.5	23	2.8					55	59	2.6	÷
	(Cr) muimord	ng/L	1.0	20	50	200	-	2.4	17	14	64	57					6.1	23	12	12
	(bጋ) muimbsጋ	ng/L L	1.0	-	2.5	10	÷	1.4	۰ <u>1</u>	-1	2.4	-1					2.5	2.7	27	с С
		-		μ	Ľ		ŀ		ŀ			ŀ						Ľ		
ation	Depth (m BGL)		Ħ				2.62	2.58	2.54	2.73	2.53	2.68	2.48	2.47	2.66	2.53	2.69	2.83	2.63	2.31
ntifica	Dept		Reorting Limi	Dutch A	Dutch B	Dutch C		_							_					
Jei			Б	ā	٥	٥	2	8	19	0	E	2	5	20	8	4	5	8	GFSD - 03	GFSD - 04
Sample Identification	Location		Be				GFSA - 17	GFSA - 18	GFSA - 19	GFSA - 20	GFSA - 21	GFSA - 22	GFSC - 01	GFSC - 02	GFSC - 03	GFSC - 04	GFSD - 01	GFSD - 02	÷	÷

Page 2 of 3

Laboratory Results of Groundwater Samples (ex-GFS building)

Notes: BGL= Bolow Ground Level Square in blodded free included are exceedance of Durch B Level Stradd square inclustes exceedance of Durch C Level Full analytical results should be referred to taboratory report

Image: construction of the structure of the structu	<15 <15 <15 <20 <16 <16 <16 <16 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17
Pite/Low Molecular Weight) BTX PA46 (Low Molecular Weight) Image: state sta	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Alth: Control	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Alth Control C	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Phenole Phenole <t< th=""><td><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</td></t<>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Atta (Low Molecular Weight) Atta (Low Molecular Weight) Atta (Low Molecular Weight) Atta (Low Molecular Weight) Atta (Low Molecular Weight) Image: Second S	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Atta Image: mark teal in the manufmene Image: mark teal in the mark teal in the manufmene Image: mark teal in the manufmene Image: mark teal in the mark teal in the manufmene Image: mark teal in the mark	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Phys. Low Molecular Weight) ETCX Phys. Low Molecular Weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular Weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular Weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Image: state of the product weight) Phys. Low Molecular weight) Image: state of the product weight) Image: state of the product weight) Im	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Philo Molecular Weight) Philo PAts (Low Molecular Weight) Philo	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Philo Molecular Weight) Philo PAts (Low Molecular Weight) Philo	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Philo Molecular Weight) Philo PAts (Low Molecular Weight) Philo	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Philo Molecular Weight) Philo PAts (Low Molecular Weight) Philo	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Philo Molecular Weight) Philo PAts (Low Molecular Weight) Philo	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Physical lar Weight	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Physical lar Weight BTEX Physical lar Weight Physical lar Weight </th <td><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</td>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Phristore BTX Phristore BTX Phristore BTX Phristore BTX Phristore BTX Phristore Anthracene Phristore Phristore Phristore Phristore Phristore Phristore Phristore Phristore Phristor	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Phras Phra Phras Phras	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Phile Contraction Contraction <th< th=""><td><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</td></th<>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Construction	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Construction	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Low Molecular Veight) BTEX Parts Molecular Veight) ETEX Phenolic Veight Parts Phenolic Veight Phenolic Veight Phenolic Veight Parts Phenolic Veight Phenolic Veight Phenolic Veight Phenolic Veight Ug/L Ug/L <td< th=""><th><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</th></td<>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Low Molecular Weight) BTEX Parts Common Molecular Weight) BTEX BTEX <th><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</th>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Low Molecular Molecular <t< th=""><th><15 <15 <15 <15 <15 <15 <15 <15 <15 <15</th></t<>	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
PAts (Low Molecular Veight) BTEX Pats (Low Molecular Veight) Breach Breach Breach	<15 <15 <15 <15 <15 <15 <15 <15 <15 <15
Parts Low Molecular Molecular Molecular Meight) Brandmithrene Brandmithrene <th< th=""><th>415 415</th></th<>	415 415
PAHs (Low Molecular Weight) mannifitiene 0	_
Parts Low Molecular Viel Molecular Molecular <td>-12 -12</td>	-12 -12
Parts Low Molecular Meight) Parts Parts Parts Parts Parts	
Parts Low Molecular Weight) Parts Molecular Weight) Molecular Weight) Molecular Molecular Molecular	ດ 12 √12
PAHs (Low Molecular Weight) Pahs (Low Molecular Weight) Phone	⊽ ⊽
	0° ℃.1
	0 6.1
	-0.1 -0.1
	0
	_
	_
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	_
	25 25 25 25 25 25 25
	25 25 25
	<25 <25
60-90 H H H H H H H H H H H H H H H H H H H	<pre>&lt;20</pre>
	7
(nC) niT 2 5 5 6 6 6 6 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~
· · · · · · · · · · · · · · · · · · ·	~ ~
7 マ マ マ マ マ <b>3 8 8</b> 8 9	2 2
(As) 응 승 승 승 승 <b>영 영</b> 승 승 수 부 Arsenic (As)	010 10
<u>ອັດເບັນ ເບັນ ເບັນ ເບັນ ເບັນ ເບັນ ເບັນ (H</u> 3)	<0.5 <0.5
ea la	20 20 20
	- - -
	1.5
	4.3 < 9.7 1
│	-
	7
Sample Identification Location Location Beorting Limit Dutch A Dutch A Dutch Blank 1 Field Blank 2 Field Blank 1 Field Blank 1 Trip Blank 1 Trip Blank 1	77
ample Identificatio Location Location Reorting Limit Dutch A Dutch B Dutch B Dutch Blank 1 Field Blank 1 Field Blank 1 Field Blank 1 Trip Blank 1 Trip Blank 1	
	Trip Blank 2 <1 Trip Blank 3 <1

# Laboratory Results of QA/QC (ex-GFS building)

Notes: Square in bolded line indicates exceedance of Dutch B Level Shaded square indicates exceedance of Dutch C Level Full analytical results should be referred to taboratory report

Appendix F

(Groundwater Risk Assessment Results)

# Risk-Based Assessment for Groundwater Remediation for ex-GFS building

Parameter	Source Concentration	Sample I.D.	Noncarcinogenic Oral Reference Dose ^a (RfDo)	Minimum Noncarcinogenic Oral Reference Dose ^å (RfDo)	Carcinogenic Oral Slope Factor ^b (CSFo)
	[J/ɓɯ]		[mg/kg-day]	[mg/kg-day]	1/[mg/kg-day]
TPHs	7.40E-01	GFSD-03	3.00E-02 to 5.00E+00	3.00E-02	Not applicable
Barium	6.80E-01	GFSD-02	7.00E-02	Not applicable	Not applicable
Cadmium	2.70E-02	GFSD-03	5.00E-04	Not applicable	Not applicable
Chromium*	6.40E-02	GFSA-21	3.00E-03	Not applicable	Not applicable
Copper	7.20E-02	Field Blank 2	4.00E-02	Not applicable	Not applicable
Lead	2.10E+00	GFSD-02	3.60E-03	Not applicable	Not applicable
Zinc	1.00E+00	GFSD-02	3.00E-01	Not applicable	Not applicable
Mercury	1.20E-03	GFSA-17	3.00E-04	Not applicable	Not applicable
Cobalt	2.00E-01	GFSD-03	2.00E-02	Not applicable	Not applicable
Molybdenum	3.90E-02	GFSA-19	5.00E-03	Not applicable	Not applicable
Xylenes	3.00E-02	AII	2.00E-01	Not applicable	Not applicable

# Table 1 - Source Concentrations & Oral Slope Factor/Oral Reference Dose for Risk Assessment

^a Source for TPHs : TPH Criteria Working Group, 1999. Total Petroleum Hydrocarbons Criteria Working Group Series Volume 5

- Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach. Massachusetts, U.S.A., Amherst Scientific Publishers. * Chromium is assumed to be Cr(VI) as conservative assessment.

Source for Ba, Cd, Cr, Co, Cu, Mo, Zn, Hg, Xylenes : USEPA Region IX Risk-based Concentration Table (revised on Oct 04), USEPA Region IX.

Source for Pb: The value is referenced to the folerable daily intake (TDI) from the National Institute of Public Health and the Environment (RIVM), The Netherlands, 2001. ^b Source for TPHs, Ba, Cd, Co, Cr, Cu, Mo, Pb, Zn, Hg, Xylenes: USEPA Region IX Risk-based Concentration Table (revised on Oct 04), USEPA Region IX.

# Assumptions:

# Exposure Pathway:

The applicable and dominant complete pathway is considered to be direct groundwater ingestion.

<u>*<u>Heceptor</u>*:</u> The most sensitive receptors are considered to be the construction workers.

# Input Parameters for Calculations (for Direct Groundwater Ingestion)

IR = water ingestion rate [L/day] =	0.02	(The assumed water ingestion rate of 0.02 L/d is two orders of magnitude lower than the USEPA default drinking water rate of 2 L/day for adults. In addition, the 0.02 L/d water ingestion rate was adopted for many groundwater risk assessment in previous land contamination studies, such as South East Kowloon Development Infrastructure at North Apron Area of Kai Tak Airport; Reclamation Works for DOS&GIC Facilities in North Tsing Yi and Decommissioning of Cheoy Lee Shipyard at Penny's Bay EIA Study. As a result, the assumed water ingestion rate of 0.02L/d is adequate for groundwater risk assessment.)
EF = exposure frequency [day/yr] =	180	(assume construction workers expose for 6 months of site formation works)
ED = exposure duration [yr] =	-	
BW = body weight [kg] =	70	
AT = Averaging time [day] =	365 25550	(for non-carcinogens: ED x 365 days) (for carcinogens: 70 yrs x 365 days)

# Risk-Based Assessment for Groundwater Remediation for ex-GFS building

# Table 2 - Calculations for Direct Groundwater Ingestion

	_										
Calculations	TPHs	Barium	Cadmium	Chromium*	Copper	Lead	Zinc	Mercury	Cobalt	Molybdenum	Xylenes
1. Groundwater conc. [mg/L] =	7.40E-01	6.80E-01	2.70E-02	6.40E-02	7.20E-02	2.10E+00	1.00E+00	1.20E-03	2.00E-01	3.90E-02	3.00E-02
	_										
2. Natural attenuation factor =	-	-	-	-	-	-	-	-	-	-	-
3. Exposure medium [mg/L] = (1) / (2) =	7.40E-01	6.80E-01	2.70E-02	6.40E-02	7.20E-02	2.10E+00	1.00E+00	1.20E-03	2.00E-01	3.90E-02	3.00E-02
4. Exposure multiplier [L/kg/day] = (IR x EF x ED) / (BW x AT) =	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04
5 Averand Daily Intels Data fmailealing - 191 v 141 -	1 015 01	O EDE DE	2 805 06	0 005 06	1 01E 05	0 06E 04	1 11 01	1 601 07	0 80E 0E		1 005 06
<ol> <li>Average Daily Intake Hate [mg/kg/day] = (3) X (4) =</li> </ol>	1.04E-04	8.58E-U5	3.8UE-UD	9.UZE-00	1.01E-U5	Z. 96E-04	1.41E-04	1.69E-07	2.82E-U5	9.5UE-Ub	4.23E-Ub
<ol> <li>Maximum Pathway Intake [mg/kg/day] = (groundwater ingestion as dominant pathway)</li> </ol>	1.04E-04	9.58E-05	3.80E-06	9.02E-06	1.01E-05	2.96E-04	1.41E-04	1.69E-07	2.82E-05	5.50E-06	4.23E-06
7. Maximum Toxicant Intake Rate [mg/kg/day] =	1.04E-04	9.58E-05	3.80E-06	9.02E-06	1.01E-05	2.96E-04	1.41E-04	1.69E-07	2.82E-05	5.50E-06	4.23E-06
<ol> <li>Noncarcinogenic Oral Reference Dose [mg/kg-day] =</li> </ol>	3.00E-02	7.00E-02	5.00E-04	3.00E-03	4.00E-02	3.60E-03	3.00E-01	3.00E-04	2.00E-02	5.00E-03	2.00E-01
9. Individual Chemical of Concern Hazard Index = (7) / (8) =	3.48E-03	1.37E-03	7.61E-03	3.01E-03	2.54E-04	8.22E-02	4.70E-04	5.64E-04	1.41E-03	1.10E-03	2.11E-05
40 Maritanua Candinanania Litela Data familizida.i											
то. махітит Carcinogenic іпіаке наке [таука/аау] =											
11. Carcinogenic Oral Slope Factor (1/[mg/kg-day]) =											
			-	-				-			
12. Individual Chemical of Concern (COC) Risk = (10) x (11) =											
Total nathwav hazard index =	1 01E-01	(< 1 (LISEPA recon	(< 1 (IISEPA recommended hazard index))	Xe							
			2	(1)							
(after adding contributions from all chemical of concern)											
1 otal pathway carcinorgenic risk = (contribulied by Bezo(a)Pyrene and Benzene)	Ž	(< 1.00E-06 (USEP	(< 1.00E-06 (USEPA lifetime cancer risk level))	(k level))							
	TPHS	Barium	Cadmium	Chromium*	Copper	Lead	Zinc	Mercury	Cobalt	Molybdenum	Xylenes
RBSL [mg/L] = Min. of (Groundwater Conc./ Hazard Quotient) <u>or</u> (Groundwater Conc. x Cancer Risk / Risk of Contaminant)											
= Minimum of	2.13E+02	4.97E+02	3.55E+00	2.13E+01	2.84E+02	2.56E+01	2.13E+03	2.13E+00	1.42E+02	3.55E+01	1.42E+03
	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
Groundwater conc. [mg/L] =	7.40E-01	6.80E-01	2.70E-02	6.40E-02	7.20E-02	2.10E+00	1.00E+00	1.20E-03	2.00E-01	3.90E-02	3.00E-02
	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)	(in mg/L)
Risk	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable

Appendix G

(Hot Works Requirements for Petrol Filling Station)

007 14:30 FROM PG

3

S

6

7

FROM

EPD

20-AUG-2007 12:05

TO 23694980

P 18/18

P. 03/03

MULYY (

### TO 25918558

# Hot Works Requirements for Petrol Filling Station

- A work permit for hot work should be issued by the supervisor of the PFS himself or a competent staff appointed by him.
- The supervisor of the PFS himself or the competent staff appointed by him should sign on the permit certifying that the following safety measures have been taken before the work commences:
  - (a) Explosive gas tests have been conducted to ensure that the area where hot work would be conducted is free from explosives and flammable conditions.
  - (b) The hot work area has been cordoned off from unauthorized persons.
  - (c) In the course of hot work, all fuel supply to/from the affected oil tank(s) or the affected section(s) of the pipeline system has been temporarily suspended/out off.
  - (d) Appropriate precautionary measures have been taken to prevent any liquid contaminated with petroleum substance(s) from approaching the area where the work is being carried out. This may be achieved by the provision of liquid retaining walls/bunds, firewalls or screens, etc. where necessary according to the situation of work site.
  - (e) Any sewers, drains or ducts in the vicinity of the hot work have been checked to ensure that they are clear of any oil residue. If necessary, the sewers, drains or ducts should be sealed off or protected suitably by fire resisting covers.
- (f) Special precautions for fire protection should be taken where necessary. These include the provision for cooling adjacent tanks and clearing away or wetting down combustibles.

Clear instructions on actions to be taken to prevent the outbreak of fire as well as in the event of fire to be displayed in a prominent position of the affected works area(s) and should be given to all workers engaged on works.

Earthing of all electrical installation and equipment to be properly provided.

- Fire resisting shield with 2 hours F.R.P. should be provided to limit the spreading of heat and globules of molten metal over a wide area during the hot work operation.
- "HOT WORK IN PROGRESS 高溫/明火工程在進行中" notices in block letters and characters of not less than 125mm high with 15mm strokes to be displayed in a prominent position of the affected works area(s).
- A staff with one 4.5 kg dry powder fire extinguisher and two sand buckets to be assigned to standby at each works area where hot work is in progress.
- 8 Upon completion of hot work, the area should be thoroughly inspected to ensure safety from the outbreak of fire before being left unattended.
- 9 All fire precautionary measures as stipulated in Part 19 of the Model Codes of Safe Practice for the Petroleum Industry: Fire Precautions at petroleum refineries and bulk storage installations to be properly observed.

EPD

99%