

Super Sub-Panamax - Wasa Queen/Sub-Panamax - Costa Allegra

E/hr=Power x LF x EF Propulsion Engine:

Propulsion Engine power (19,200kW) =

19200 kW

Load Factor=(4/21.5)^3 or minimum of 2% (1): 2%

	Emission Factor in g/kWh (2)	E.F. Adjustment Factors at Low Loads	Emission Rate in kg/hr
NO _x	14	4.63	24.89
NO _x SO ₂ CO	11.1	1 1	4.26
co	1.1	10	4.224
PM10	1.14	7.29	3.191

Maneuvering **Auxiliary Engine:**

Auxiliary Power = (0.278*19200 kW)

5337.6 kW

Load Factor (3) =

0.8

Heina Roeidusi Oil

Osing Residuar On			
	Emission Factor in g/kWh ⁽⁴⁾	Emission Rate in kg/hr	
NO _x SO ₂ CO	14.7	62.77	
SO ₂	11.1	47.40	
co	1.1	4.697	
PM10	1.14	4.868	

idling

Auxiliary Engine:

Auxiliary Power = (0.278*19200kW)

5337.6

Load Factor (3) =

0.64

	Emission Factor in g/kWh (4)	Emission Rate in kg/hr
NO _x SO ₂ CO	14.7	50.22
SO ₂	11.1	37.92
co	1.1	3.758
PM10	1.14	3.894

Boiler

consumption rate

0.0125 tonne/hr

	Fuel Emission Factor in kg/tonne (5)	Emission Rate in kg/hr
NO _x	12.3	D.15
NO _x SO₂ CO	54	0.68
co	4.6	0.058
PM10	1.3	0.016

Total Emission

	Emission Rate(kg/hr)	
	Maneuvering Hotelling	
NOx	87.8148	50,3699
SO2	52.3353	38.5933
co	8.9786	3.8152
PM10	8.0754	3,9106

Emission Rate	Maneuvering (15mins)	Hotelling	Hotelling
Ellission Rate	Maneuvering (15mms)	(30mins)	(60mins)
NO ₂ (g/s) ⁽⁶⁾	1.2197E+00	1.3992E+00	2.7983E+00
SO ₂ (g/s) ⁽⁷⁾	5.1151E+00	7.5440E+00	1.5088E+01
PM10 (g/s) (7)	7.8926E-01	7.6441E-01	1.5288E+00

- (1) Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.
- (2) Table 2-8 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting (3) Table 2-7 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting
- (4) Table 2-10 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting
- (5) Table 2-11 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting
- (6) NO2/NOx ratio of 20% has been assumed in the calculation.
- (7) Correction factor of 1.41 for average 3.8% fuel sulphur content was applied.

Panamax - Queen Elizabeth II

E/hr=Power x LF x EF Propulsion Engine:

Propulsion Engine power (2x44MW)=

88000 kW

Load Factor=(4/21.5)^3 or minimum of 2% (1):

2%

	Emission Factor in g/kWh ⁽²⁾	Emission Rate in kg/hr
NO _x	14	24.64
NO _x SO₂ CO	11.1	19.54
co	1.1	1,936
PM10	1.14	2.006

Maneuvering Auxiliary Engine:

Auxiliary Power (=9.5MW/0.64) =

14843.75 kW

Load Factor (3) =

0.8

Using Residual Oil

"	Emission Factor in g/kWh ⁽⁴⁾	Emission Rate in kg/hr
NO _x	14.7	174.56
NO _x SO₂ CO	11.1	131.81
CO	1.1	13.063
PM10	1.14	13.538

Idling Auxiliary Engine:

Auxiliary Power (=9.5MW/0.64) =

14843.75 kW

Load Factor (3) =

0.64

	Emission Factor in g/kWh ⁽⁴⁾	Emission Rate in kg/hr
NO _x	14.7	139.65
NO _x SO₂ CO	11,1	105.45
co	1.1	10.450
PM10	1.14	10.830

Boiler

consumption rate :

0.0125 tonne/hr

	Fuel Emission Factor in kg/tonne ⁽⁵⁾	Emission Rate in kg/hr
NO _x	12.3	0.15
NO _x SO₂ CO	54	0.68
co	4.6	0.058
PM10	1.3	0,016

Total Emission

	Emission Rate(kg/hr)		
	Maneuvering Hotelling		
NO _x	199.3563	139,8038	
SO ₂	152.0235	106.1250	
co	15.0560	10.5075	
PM10	15.5602	10.8463	

Emission Rate	Maneuvering (15mins)	Hotelling (30mins)	Hotelling (60mins)
NO ₂ (g/s) (6)	2.7688E+00	3.8834E+00	7.7669E+00
SO ₂ (g/s) (7)	1.4858E+01	2.0745E+01	4.1489E+01
PM10 (g/s) (7)	1.5208E+00	2.1202E+00	4.2403E+00

- (1) Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for (2) Table 2-8 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF
- (3) Table 2-7 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF
- (4) Table 2-10 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF
- (5) Table 2-11 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF
- (6) $\mathrm{NO_2/NO_x}$ ratio of 20% has been assumed in the calculation.
- (7) Correction factor of 1.41 for average 3.8% fuel sulphur content was applied.

Post-Panamax/Super Post-Panamax - Queen Mary II

E/hr=Power x LF x EF Propulsion Engine:

Propulsion Engine power (4x21.5MW)= Load Factor=(4/21.5)^3 or minimum of 2% (1 86000 kW 2%

	Emission Factor in g/kWh ⁽²⁾	Emission Rate in kg/hr
NO _x	14	24.08
NO _x SO₂ CO	11.1	19.09
co	1.1	1.892
PM10	1.14	1.961

Maneuvering **Auxiliary Engine:**

Auxiliary Power (=9.5MW/0.64) =

14843.75 kW

Load Factor (3) =

0.8

Using Residual Oil

	Emission Factor in g/kWh ⁽⁴⁾	Emission Rate in kg/hr	
NO _x	14.7	174.6	
NO _x SO₂ CO	11.1	131.8	
co	1.1	13.06	
PM10	1.14	13.54	

Idling

Auxiliary Engine:

Auxiliary Power (=9.5MW/0.64) = Load Factor (3) =

14843.75 kW

0.64

	Emission Factor in g/kWh ⁽⁴⁾	Emission Rate in kg/hr
NO _x	14.7	139.7
NO _x SO ₂ CO	11.1	105.5
co	1.1	10.45
PM10	1.14	10.83

Boiler

consumption rate =

0.0125 tonne/hr

	Fuel Emission Factor in kg/tonne (5)	Emission Rate in kg/hr
NO _x SO ₂ CO	12.3	0.1538
SO ₂	54	0.6750
co	4.6	0.0575
PM10	1.3	0.0163

Total Emission

	Emission Rate(kg/hr)		AQO	Ratio (AQO/en	Ratio (AQO/emission rate) (6)	
	Maneuvering	Hotelling		Maneuvering	Hotelling	
NOx	198.7963	139.8038	150	0.27	0.19	
SO2	151.5795	106.1250	350	0.61	0.43	
CO	15.0120	10.5075	10000	0.0015	0.0011	
PM10	15.5146	10.8463	180	0.12	0.08	

Emission Rate	Maneuvering (15mins)	Hotelling (30mins)	Hotelling (60mins)
NO ₂ (g/s) (6)	2.7611E+00	3.8834E+00	7.7669E+00
SO ₂ (g/s) (7)	1.4815E+01	2.0745E+01	4.1489E+01
PM10 (g/s) ⁽⁷⁾	1.5163E+00	2.1202E+00	4.2403E+00

- (1) Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.

- (2) Table 2-8 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.

 (3) Table 2-7 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.

 (4) Table 2-10 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.

 (5) Table 2-11 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting for USEPA.
- (6) NO2/NOx ratio of 20% has been assumed in the calculation.
- (7) Correction factor of 1.41 for average 3.8% fuel sulphur content was applied.

Tugboat

Propulsion Engine:

Propulsion Engine power = Load Factor for Harbor Craft (1) =

1532 kW 31%

	Emission Factor in g/kWh (2)	Emission Rate in kg/hr
NO _x	13.2	6.27
NO _x SO ₂ CO	0.63	0.30
co	1.1	0.522
PM10	0.72	0.342

Auxiliary Engine:

Propulsion Engine power = Load Factor for Harbor Craft (1) =

82 kW 31%

	Emission Factor in g/kWh (2)	Emission Rate in kg/hr
NO _x	13.2	0.34
NO _x SO ₂ CO	0.63	0.02
co	1.1	0.028
PM10	0.72	0.018

Total Emission

	Emission Rate(kg/hr)
NO _x	6.6045
SO ₂	0.3152
co	0.5504
PM10	0.3602

	Emission Rate (g/s),	
	15 mins	
NO ₂ (g/s) ⁽³⁾	9.1729E-02	
SO ₂ (g/s) ⁽⁴⁾	5.5454E-02	
PM10 (g/s) (4)	6.3376E-02	

Notes:

- (1) Table 2-14 Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consulting
- (2) Table 2-16 of Current Methodologies and Best Practices in Preparing Port Emission Inventories, Final Report, January 2006 prepared by ICF Consultir
- (3) NO_2/NO_x ratio of 20% has been assumed in the calculation.
- (4) Correction factor of 2.53 for average 3.8% fuel sulphur content was applied.