Annex A2

Contamination Assessment Report (CAR)

Contamination Assessment Report for Decommissioning of the Co-Combustion Pilot Plant at Tap Shek Kok

Green Island Cement Company Limited

11 April 2008

Submitted by
Environmental Resources Management
21/F Lincoln House
Taikoo Place, 979 King's Road
Island East, Hong Kong
Telephone 2271 3000
Facsimile 2723 5660

www.erm.com

CONTAMINATION ASSESSMENT REPORT

Green Island Cement Company Limited

Decommissioning of the Co-Combustion Pilot Plant at Tap Shek Kok

April 2008

Reference 0071019

This report has been prepared by ERM-Hong Kong, Limited with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

CONTENTS

1	INTRODUCTION	1
1.1	BACKGROUND TO THE STUDY	1
1.2	OBJECTIVES OF THE ASSESSMENT	1
1.3	SCOPE OF THE ASSESSMENT	2
1.4	STRUCTURE OF THE CAR	3
2	THE SITE	4
2.1	SITE DESCRIPTION	4
2.2	PROPOSED DECOMMISSIONING OF CCPP	4
2.3	ENVIRONMENTAL SETTING	4
2.4	SITE HISTORY	5
3	SITE INVESTIGATION PROGRAMME	7
3.1	SITE INVESTIGATION PROGRAMME	7
3.2	Analytical Results	9
3.3	CONCEPTUAL MODEL OF POTENTIAL POLLUTANT LINKAGE	12
3.4	EVALUATION OF IMPACTS	13
4	CONCLUSIONS AND RECOMMENDATIONS	14
4.1	CONCLUSIONS	14
4.2	RECOMMENDATIONS	14
	ANNEXES	
ANNEX A	THE CAP	
ANNEX B	SITE INVESTIGATION REPORT BY THE CIVIL CONTRACTOR	
ANNEX C	LABORATORY ANALYTICAL REPORT	
ANNEX D	RBRG STANDARDS	
ANNEX E	SELECTED PHOTOGRAPHS FROM THE SITE INVESTIGATION	

ABBREVIATIONS

As Arsenic
Ba Barium

BTEX Benzene, toluene, ethyl benzene, and xylene

CAP Contamination Assessment Plan

CAR Contamination Assessment Report

CCPP Co-Combustion Pilot Plant

Cd Cadmium
Co Cobalt

Cr III and Cr VI Chromium III and VI

Csat Soil Saturation Limits

Cu Copper

EIA Environmental Impact Assessment

EIAO Environmental Impact Assessment Ordinance

EPD Environmental Protection Department

GICP Green Island Cement Plant

Hg Mercury

HKUST Hong Kong University of Science and Technology

HOKLAS Hong Kong Laboratory Accreditation Scheme

LOR Limit of Reporting

Mn Manganese

Mo Molybdenum

MRRF Materials Recovery and Recycling Facility

MSW Municipal Solid Waste

Ni Nickel Pb Lead

QA Quality Assurance

QC Quality Control

RBRG Guidance Guidance Manual for Use of Risk-based Remediation

Manual Goals for Contaminated Land Management

RBRGs Risk-based Remediation Goals for Contaminated Land

Sb Antimony

SI Site Investigation

Sn Tin

TPH Total Petroleum Hydrocarbons

USEPA United States Environmental Protection Agency

UST Underground Storage Tank

Zn Zinc

1 INTRODUCTION

1.1 BACKGROUND TO THE STUDY

As part of the research programme, in collaboration with the Hong Kong University of Science and Technology (HKUST), to develop a new thermal treatment process for municipal solid waste (MSW), the Co-Combustion Pilot Plant (CCPP, the Site) was constructed in a designated area inside the Green Island Cement Plant site (GICP). For the purposes of this report, the designated area in which the CCPP was constructed will be referred to as the Site. The GICP is located at Tap Shek Kok, Tuen Mun. The CCPP was constructed in 2004 and has been permanently shutdown since the completion of the pilot plant study in December 2005. Green Island Cement Company Limited (the Client) has now initiated a project to demolish the existing CCPP, to remove the disused equipment and to dispose of any waste materials so generated (the Project).

The Project is a Designated Project under Schedule 3, Item of Part II, Schedule 2 of the *Environmental Impact Assessment Ordinance* (EIAO): "Decommissioning Projects: A municipal, chemical or clinical waste incinerator". An environmental impact assessment (EIA) Study Brief was issued for the Project by the Environmental Protection Department (EPD) in June 2007 (EIA Study Brief *No. ESB-164/2007*).

In compliance with one of the EIA requirements, a contamination impact assessment was required to be conducted to evaluate the land contamination impact due to the past land uses at the Site. In accordance with the EIA Study Brief, a Contamination Assessment Plan (CAP) prepared by ERM, and was submitted to and approved by the EPD in January 2008. A copy of the CAP is presented in *Annex A*.

The land contamination assessment site investigation (SI) was conducted in February 2008 in accordance with the approved CAP and based on the guidelines set out in the EPD's *Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management* (RBRG Guidance Manual) and the associated Guidance Notes, and the EPD's *Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshop*.

1.2 OBJECTIVES OF THE ASSESSMENT

This Contamination Assessment Report (CAR) presents the results obtained during the land contamination investigation at the Site. As mentioned in the CAP, no soil excavation or groundwater extraction will be required for the Project and no potentially contaminated materials requiring disposal will be generated from the Site. Human exposure to potentially contaminated

material will be limited to possible worker contact during the excavation of the foundations and substructures.

The site investigation programme was proposed to provide additional information for the Site area to offer a level of confidence on the presence and (if found) the concentrations of contaminants in the underlying soil materials and to help in the formulation of a site-specific health and safety plan.

The objectives of contamination sampling are to:

- identify whether the soil below the ground surface within the Project site is contaminated; and
- if contaminants are present, to determine their concentrations.

This CAR provides a detailed description of the methodology used, the results of the soil sampling investigation, and field observations and findings noted during the investigation programme.

1.3 SCOPE OF THE ASSESSMENT

The scope of the study, as outlined in the CAP (*Annex A*), was to undertake an investigative assessment of the site and included the following elements:

- Provision of an account of the present use of the land and the relevant past land use history in relation to possible land contamination;
- Excavation of six trial pits down to a maximum of 1.5 m below ground level (m bgl), with two trial pits (S1/S2 and S3/S4) located adjacent to the wastewater underground storage tank (UST) and four trial pits (S5/S6, S7/S8, S9/S10 and S11/S12) located around the CCPP area to determine any soil contamination;
- To determine the presence and extent of contamination from the surface soil and in the fill materials, two (2) soil samples were taken from each sampling location at just below the concrete pavement and at between 1.0 to 1.5 m bgl for laboratory analysis;
- Laboratory analysis of soil and groundwater samples for heavy metals (Antimony (Sb), Arsenic (As), Barium (Ba), Cadmium (Cd), Chromium III and VI (Cr III and Cr VI), Cobalt (Co), Nickel (Ni), Copper (Cu), Lead (Pb), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Nickel (Ni), Tin (Sn), and Zinc (Zn)); total petroleum hydrocarbons (TPH); and benzene, toluene, ethyl benzene, and xylene (BTEX);
- Assess the extent and level of soil contamination by comparing against Hong Kong's Risk-based Remediation Goals for Contaminated Land (RBRGs); and

• Provide recommendations for mitigation measures during the demolition of the CCPP as required and appropriate.

1.4 STRUCTURE OF THE CAR

The remainder of this report is structured as follows:

Section 2 summarises the site background conditions;

Section 3 summarises the site investigation programme and analytical results from soil sampling;

Section 4 outlines the conclusions and recommendations of the CAR.

The report is accompanied by the following set of annexes:

Annex A presents the CAP;

Annex B contains the laboratory analytical report

Annex C contains the RBRG standards;

Annex D contains site investigation report by the civil contractor; and

Annex E presents the selected photographs from the Site Investigation.

2 THE SITE

2.1 SITE DESCRIPTION

The CCPP was built within the GICP site at Tap Shek Kok, Tuen Mun. The Site is surrounded by the remaining areas of the GICP. The immediate uses of the area surrounding the CCPP included:

- *North*: a lawn beyond which was an LPG storage to the northwest and a container office to the northeast;
- South: an internal road, beyond which is the PFA Grinding & Classification System;
- East: the operating cement kiln of GICP; and
- West: an internal road, beyond which was a Pack House and cement silos to the northwest and fuel underground storage tanks and dispensing station to the southwest.

The neighbours of the GICP are the Castle Peak Power Station of CLP Power Limited to the west, the Shiu Wing Steel Company steel manufacturing plant to the east, Lung Mun Road to the north and the sea shore to the south. The site layout plan and an aerial photograph showing the current site conditions are attached in the CAP (see *Annex A*).

The Site occupies an area of about 4,000 m². It consists of a waste sorting facility or materials recovery and recycling facility (MRRF) at the front-end followed by a thermal treatment system for the integrated treatment of MSW utilizing the Co-combustion Process patented by the Client.

2.2 PROPOSED DECOMMISSIONING OF CCPP

The proposed decommissioning of the CCPP will involve the demolition of the existing structures and concrete slab and asphalt hard surface, removal of used equipment, the removal of the concrete foundations supporting the equipment and the disposal of waste materials generated by the demolition. It is understood that the Site will then be left as an area of open space for possible future industrial use associated with the surrounding cement plant operations.

2.3 ENVIRONMENTAL SETTING

The whole of the GICP Site was formed through reclamation in the late 70's. The fill materials used were mainly from the nearby hillsides. Some sand materials were also reportedly imported to the area. Based on the review of the site history and historical pictures of the site, in particular during the site formation (see *CAP*), the shallow geology underlying the site is anticipated to

comprise homogeneous fill materials (consisting of decomposed granites, rocks, boulders from nearby hills mixed with imported sand materials).

2.4 SITE HISTORY

The construction of the GICP commenced in 1978 and the operations of the GICP commenced in 1982. The GICP site was approved for the purpose of manufacture of cement and cement-related products. The Site of the pilot plant is an open area reserved for a second cement kiln. Following start up of the GICP in 1982, the Site was used as an emergency stockpile for cement clinker until 1985. The Site was also used as emergency open stock pile of natural limestone imported from Japan between 1990 and 1994. The stockpile area was not paved initially. A propane store was reportedly built in the late 1980s but was never commissioned, and was removed in March 1992.

The CCPP was constructed in June 2004 after receiving approval from the Lands Department, EPD and the Buildings Department. The continuous pilot operation commenced in October 2005 and finished in December 2005. Of note is that the combined total operating time of the pilot plant from the commissioning to the end of the operation was only 11 weeks.

Tables 2.4a to 2.4*c* ⁽¹⁾, respectively, present the historical, current and anticipated future land uses of the CCPP Site. *Table 2.4d* shows the historical development of the CCPP and the GICP. Historical photographs showing the site development are presented in the CAP (see *Annex A*).

Table 2.4a Summary of Historical On Site Land Use

Type of Facility	On Site Property Land Use	Date Began	Description	Owner or Occupier	Approx Site Area	Off Site Property Affected
None	Reclaimed land	Late 1970	Site reclamation	GIC	4,000 m ²	No
Industrial	Storage area of cement clinker	1982	Reserved for storage of propane but used for cement clinker stockpiling	GIC	As above	No
Industrial	Reserved storage area	1984-1990	Not used	GIC	As above	No
Industrial	Storage area	1990-1994	Storage of limestone	GIC	As above	No
Industrial	Grassed area	1994-June 2004	Used as kiln lawn	GIC	As above	No
Industrial	Construction site	June 2004	Construction of foundations	GIC	4,000 m ²	No

⁽¹⁾ The tables are prepared in accordance with Standard form 3.1 from the RBRG guidance

Type of Facility	On Site Property Land Use	Date Began	Description	Owner or Occupier	11	Off Site Property Affected
Industrial	CCPP	Oct 2005 – Dec 2005	11 week trial operation	GIC	As above	No

Table 2.4b Summary of Current On Site Land Use

Type of Facility	On Site Property Land Use	Date Began	Description	Owner or Occupier	Approx Site Area	Off Site Property Affected
Industrial	Disused trial co- combustion pilot plant	,	Trial CCPP	GIC	4,000 m ²	No

Table 2.4c Summary of Anticipated Future On Site Land Use

Type of Facility	On Site Property Land Use	Date Began	Description	Owner or Occupier	Approx Site Area	Off Site Property Affected
Industrial	Open space	2008	Site to be left as open grassed area in the immediate term	GIC	4,000 m ²	No

Table 2.4d Site Historical information for the GICP and CCPP Site

Time	GICP	CCPP Site
late 1970s	Site reclamation	-
Before 1982	Construction of the cement plant	-
1982	Operation of the GICP cement kiln began	Reserved for propane storage and used as emergency stock pile of cement clinker until 1985
1984-1990	Operation of the cement kiln suspended	Reserved for propane storage and left vacant
1990-1994	Operation of the cement kiln restarted	Reserved for propane storage and used as emergency storage of limestone imported from Japan
1992	Continuous operation of the GICP	Propane storage was built but never commissioned. It was removed in March 1992.
After 1994	Continuous operation of the GICP	Rehabilitated as a kiln lawn until the construction of CCPP
Dec 2001	Clinker production was suspended	Rehabilitated as a kiln lawn until the construction of CCPP
Jun 2004	Clinker production was suspended	Construction of the CCPP foundation
Apr 2005	Clinker production was suspended	First load commissioning test of the CCPP
Jul 2005	Clinker production was suspended	Second load commissioning test of the CCPP
Oct 2005	Clinker production was suspended	Continuous operation of the CCPP
Dec 2005	Clinker production was suspended	Operation ceased after all operation data has been collected
Jan 2006	Clinker production resumed	

3 SITE INVESTIGATION PROGRAMME

This section presents the summary of the contamination assessment programme and includes the methodology used during the soil sampling work, details of field observations such as visual observations made during the investigation programme, results of field screening and analytical results from soil and ground water sample analyses.

3.1 SITE INVESTIGATION PROGRAMME

A limited intrusive contamination investigation was conducted at the site. The site investigation (SI) program included excavation of six trial-pits, sampling of soil materials at different depths, and laboratory analysis of soil samples for potential contaminants. The SI program was designed in accordance with the EPD's *Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management* (RBRG Guidance Manual) and the associated Guidance Notes, and the EPD's *Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshop*. The details of the SI program are presented in the following sections.

3.1.1 Soil Sampling

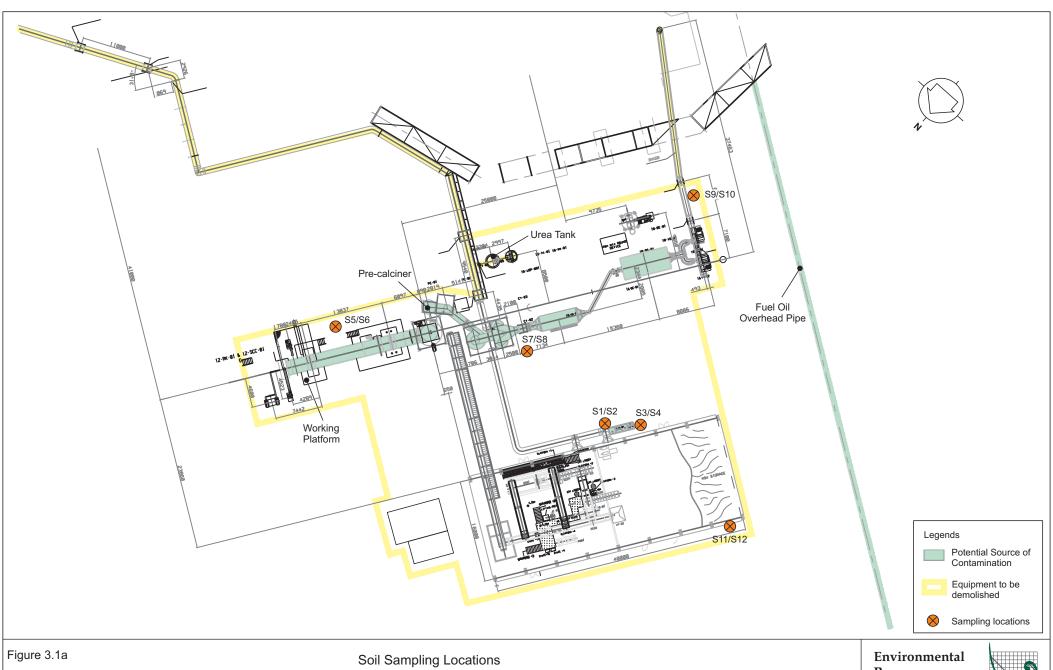
The SI was conducted during 21 to 22 February 2008. Six $1.0 \text{ m} \times 1.0 \text{ m}$ trial pits were excavated down to maximum depth of 1.5 m bgl.

Soil samplings were undertaken at two locations (S1/S2 and S3/S4) adjacent to the UST to identify whether soil surrounding the UST is contaminated. Two (2) soil samples are taken at each sampling location using trial pits at below the concrete slab and asphalt hard surface and at the bottom of the UST (ie at 1.5 m below ground level, m bgl) (1).

Four (4) subsurface soil sampling locations (S5/S6, S7/S8, S9/S10 and S11/S12) were located around the CCPP area to provide information on the level of contaminants in the subsurface soil around the CCPP. The sampling locations were located along the CCPP structure focussing where foundations are located and at similar intervals to provide coverage of the proposed area where underground subsurface disturbance will occur during the demolition. To determine the presence and extent of contamination from the surface soil (2) and in the fill materials (3), two (2) soil samples were taken from each sampling

- (1) The UST dimension is (1 m (wide) x 4 m (Length) x 1.5 m (depth).
- (2) It is anticipated that any contamination from the CCPP operations will have entered the underlying soils from the surface as no subsurface pipelines or channels were located within the CCPP.
- (3) It was reported that the original fill material was excavated from the site for the foundation construction during the construction of the CCPP which was then backfilled on site. The Site was used for storage of materials prior to the CCPP construction.

location at just below the concrete pavement and asphalt hard surface and at 1.5 m bgl.


Soil samples were collected using a stainless steel scoop and were placed immediately into laboratory supplied bottles. The sample bottles were then labelled and placed directly into the cooler with ice packs for shipment to the laboratory for analysis.

The sampling methodologies applied were based on methods developed by the US Environmental Protection Agency (US EPA) and included sample preparation and preservation and chain-of-custody documentation. All of the sampling equipment were cleaned with water and phosphate-free detergent, and then rinsed with tap water. The cleaning procedure was repeated after each sample to avoid potential cross contamination.

The sampling locations are shown in *Figure 3.1a* and a summary of the above soil sampling programs is presented in *Table 3.1a*.

Table 3.1a Sampling Locations and Parameters for Site Investigation

Sample	Sampling Location	Depth of Sampling	Sampling Parameters	No of Samples to be taken
S1/S2	Located to the north of the UST.	Underneath concrete pavement and at 1.5 m	Heavy metals, TPH, BTEX	2
S3/S4	Located to the south of the UST.	Underneath concrete pavement and at 1.5 m	Heavy metals, TPH, BTEX	2
S5/S6	Located to the east of the rotary kiln.	Underneath concrete pavement and at 1.5 m	Heavy metals, TPH, BTEX	2
S7/S8	Located to the west of the cyclones.	Underneath concrete pavement and at 1.5 m	Heavy metals, TPH, BTEX	2
S9/S10	Located to the south of the CCPP and north of the overhead fuel pipelines connecting the fuel oil storage tank (located approximately 100 m to the southwest of the CCPP).	Underneath concrete pavement and at 1.5 m	Heavy metals, TPH, BTEX	2
S11/S12	Located to the northwest of the reception hall and to the southeast of the fuel underground storage tanks and dispensing station.	Underneath concrete pavement and at 1.0 m	Heavy metals, TPH, BTEX	2
QC	Collected from S7/S8	Underneath concrete pavement	Heavy metals, TPH, BTEX	1
			Total no. of samples	13

FILE: 0071019h DATE: 03/01/2008 Environmental Resources Management

3.1.2 Sample Duplication

One field duplicate soil sample was collected during the land contamination investigation. The duplicate sample was collected on a random basis and has been submitted to the HOKLAS accredited laboratory for the purpose of quality control (QC)/quality assurance (QA).

3.1.3 Laboratory Analytical Programme

The analysis of soil samples was carried out by the ALS Technichem (HK) Pty Ltd Laboratory, based in Hong Kong. ALS is a Hong Kong Laboratory Accreditation Scheme (HOKLAS) certified laboratory and performs analyses to US EPA protocols and Quality Assurance (QA) guidelines. Samples were collected by the ALS Laboratory courier in a sealed cooler with chain-of-custody documentation. All soil samples were analysed for the following parameters:

- Total Petroleum Hydrocarbons (TPH) fractions including C6-C8, C9-C16 and C17-C35 by USEPA Method 8015;
- Simple Aromatics (eg benzene, toluene, ethyl benzene, and xylenes) (BTEX) by USEPA Method 8260; and
- Heavy metals including antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), chromium III and VI (Cr III and Cr VI), cobalt (Co), nickel (Ni), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), tin (Sn), and zinc (Zn) by USEPA Method 6020A/7000 ICPMS.

3.1.4 Field Observations

During the trial pit excavation and sampling activities, it was observed that the soil materials encountered during the trial pit excavations (to 1.5 m bgl) comprised mainly of fill materials.

No evidence of contamination, such as staining, discoloration or odour, was observed during excavation. No water was encountered in any of the trial pit.

3.2 ANALYTICAL RESULTS

3.2.1 Criteria for Assessment

The assessment of land contamination sources and the potential impacts associated with development projects are undertaken under the direction of EPD. EPD's Guidance Manual for Use of Risk-based Remediation Goals for Contaminated Land Management (the RBRG Guidance Manual), the associated Guidance Note for Contaminated Land Assessment and Remediation (the RBRG Guidance Note), and the EPD's Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car

Repair/Dismantling Workshop (the *EPD's Guidance Notes*) are the key sets of guidelines to which reference are made.

The existing soil results have been compared against the RBRGs and the associated Soil Saturation Limits (C_{sat}). RBRGs were developed for four different post-restoration land use scenarios (ie Urban Residential, Rural Residential, Industrial and Public Parks). For the purposes of this CAP, the Site has been given a preliminary classification as an Industrial Site, as defined in the RBRs Guidance Manual. The RBRG values are present in the RBRGs Guidance Manual and are also attached in Annex C.

3.2.2 Soil Analytical results

The results of the laboratory analysis of the soil samples are presented in *Tables 3.2a*.

Levels of TPH analysed for all three carbon ranges were below the reported detection limits for all samples. Concentrations of BTEX were also below the reported detection limits at all locations. Levels of all metals analysed in all samples were well below the RBRG values.

The detailed results of the laboratory analysis of the samples with the QA/QC information are presented in *Annex B*.

Table 3.2a Soil Analytical Results (all results in mg/kg dry weight)

Parameters	LOR(a)	S1	<i>S</i> 2	<i>S</i> 3	S4	<i>S</i> 5	<i>S6</i>	<i>S7</i>	<i>S8</i>	<i>S</i> 9	S10	S11	S12	S13(b)	RBRG Industrial	Csat
% Moisture Content	0.1	15.3	8.1	10.6	9.8	10.3	9.8	9.4	10.6	7.4	7.5	9.5	10.6	7.6	-	-
TPH																
 C6-C8 Fraction 	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.00E+04	1.00E+03
 C9-C16 Fraction 	200	< 200	<200	< 200	< 200	< 200	<200	< 200	< 200	< 200	<200	<200	< 200	<200	1.00E+04	3.00E+03
 C17-C35 Fraction 	500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	< 500	1.00E+04	5.00E+03
Benzene	0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	9.12E+00	3.36E+02
Toluene	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.00E+04	2.35E+02
Ethyl-benzene	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	8.24E+03	1.38E+02
m,p-Xylene	0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	1.23E+03(c)	1.50E+02(c)
o-Xylene	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1.23E+03(c)	1.50E+02(c)
Priority Metal																
• Antimony (Sb)	1	7	<1	5	<1	2	<1	1	<1	<1	<1	2	1	<1	2.61E+02	_
Arsenic (As)	1	25	<1	25	<1	2	<1	1	<1	<1	<1	4	1	2	1.96E+02	-
• Barium (Ba)	0.5	110	30.4	109	23.1	53.4	23.1	41.5	29.4	22.8	21.1	60.4	35.8	24.5	1.00E+04	-
 Cadmium (Cd) 	0.2	2.2	0.2	0.7	< 0.2	0.6	< 0.2	0.5	< 0.2	< 0.2	< 0.2	0.6	0.7	< 0.2	6.53E+02	-
• Chromium III (Cr III)	0.5	35.3	8.8	28.2	2.3	14.2	3	12.1	4.2	8.5	3.2	15.7	21.5	24.5	1.00E+04	-
• Chromium VI (Cr VI)	0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	1.96E+03	-
 Cobalt (Co) 	0.5	11.5	3.2	14.6	2.7	3.9	3.4	5.2	2.6	2.3	1.4	4.3	3.7	3.5	1.00E+04	-
 Copper (Cu) 	1	226	22	103	2	35	2	20	3	17	2	57	32	30	1.00E+04	-
• Lead (Pb)	1	85	42	35	61	54	59	46	42	51	42	49	42	47	2.29E+03	-
 Manganese (Mn) 	0.5	152	452	447	296	279	265	339	254	364	316	298	221	344	1.00E+04	-
Mercury (Hg)	0.05	0.24	< 0.05	0.08	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	3.84E+01	-
 Molybdenum (Mo) 	1	77	3	33	5	19	2	7	2	2	2	21	12	4	3.26E+03	-
 Nickel (Ni) 	1	21	3	22	1	<1	<1	3	<1	2	<1	2	<1	13	1.00E+04	-
• Tin (Sn)	0.5	45.7	5.4	8.2	4.2	7.4	4.3	5.5	4	4.2	2.6	7.6	5.8	6.9	1.00E+04	-
 Zinc (Zn) 	1	523	72	387	31	116	31	114	34	92	32	142	162	228	1.00E+04	-

Notes:

- (a) LOR = Limit of reporting
- (b) The duplicate sample taken from S7.
- (c) The RBRG Industrial values for Total Xylenes

3.3 CONCEPTUAL MODEL OF POTENTIAL POLLUTANT LINKAGE

The potential pollutant linkages that could be present at the Site due to the on site activities of the CCPP are summarised in the *Table 3.3a*. It is considered that the only potential receptors at risk might be site workers involved in decommissioning and demolition works, which was discussed in the *CAP* (see *Annex A*).

As the contaminants analysed were either not detected or with concentrations well below the RBRGs, it is not considered that the activities of the CCPP pose risks to any receptor.

Table 3.3a Conceptual Model of Potential Pollutant Linkage at the CCPP site

Source	Pathway	Receptor	Risk
Historical storage of cement and limestone/ foundation construction	Ingestion, inhalation and skin contact	Site workers involved in the decommissioning and demolition work	None – The concentrations in the soil samples were well below the RBRGs. The demolition work will be limited to the top 1.5 m and hence will not touch these materials.
	Soil pore migration	Ground and surface waters	None – The concentrations in the soil samples were well below the RBRGs. The storage occurred over 10 years ago.
Municipal waste feedstock (MSW)	Ingestion, inhalation and skin contact	Humans (eg Site workers during decommissioning and demolition works)	None – The concentrations in the soil samples were well below the RBRGs. No MSW remains on site at the time of the site visit.
Ash residue from the thermal treatment trial	Ingestion, inhalation and skin contact	Humans (eg Site workers during decommissioning and demolition works)	None – The concentrations in the soil samples were well below the RBRGs. No ash residues were left on the ground at the time of the site visit.
Liquid runoff from MSW/ash	Ingestion, inhalation and skin contacts	Humans (eg Site workers during decommissioning and demolition works)	None – The concentrations in the soil samples were well below the RBRGs.
Liquid runoff from MSW/ash	Soil pore water	Groundwater/ surface water	None – The concentrations in the soil samples were well below the RBRGs. Impermeable hardstanding and enclosed drainage system. No leakage of the wastewater collection UST reported.
Off site contamination	Migration on to	Humans - Site	None – The concentrations in the

Source	Pathway	Receptor	Risk
sources	the CCPP site via soil pore water or air borne dust	workers during decommissioning Groundwater	soil samples were well below the RBRGs. There was no evidence to suggest any spillages or leaks have occurred off site to such an
		under the Site	extent as to impact the soils or groundwater underlying the Site.

3.4 EVALUATION OF IMPACTS

As all the detected concentrations of potential contaminants in the soil samples were well below the referenced RBRGs and soil saturation limits (Csat) no potential land contamination impact is anticipated during the CCPP demolition or thereafter.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The assessment activities were performed in accordance with internationally recognized practices. The results of the site investigation works determined that:

- TPH/BTEX were not detected in any of the soil samples collected.
- Concentrations of priority pollutant metals were detected were well below the RBRG standards.

As the result of the above, no potential impact from the contaminated soil is anticipated.

4.2 RECOMMENDATIONS

Based on the above investigation results, no further investigation is warranted and no mitigation measures are required.

Annex A

The CAP

Annex B

Site Investigation Report by the Civil Contractor

Site Investigation Works

for

Green Island Cement Plant, Tap Shek Kwok, Tuen Mun

GROUND INVESTIGATION REPORT

13 March 2008

CONSULTANT ENGINEER

Environmental Resources Management

CONTRACTOR

CITY

城市土力工程有限公司

GEO

City Geotechnical Engineering Ltd

Unit 3016, New Tech Plaza, 34 Tai Yau Street, San Po Kong, Kowloon

Telephone: (852) 2997 7288 Fax: (852) 2997 6766

Certificate of Compliance/Certificate of Supervision (for inclusion in ground investigation report)

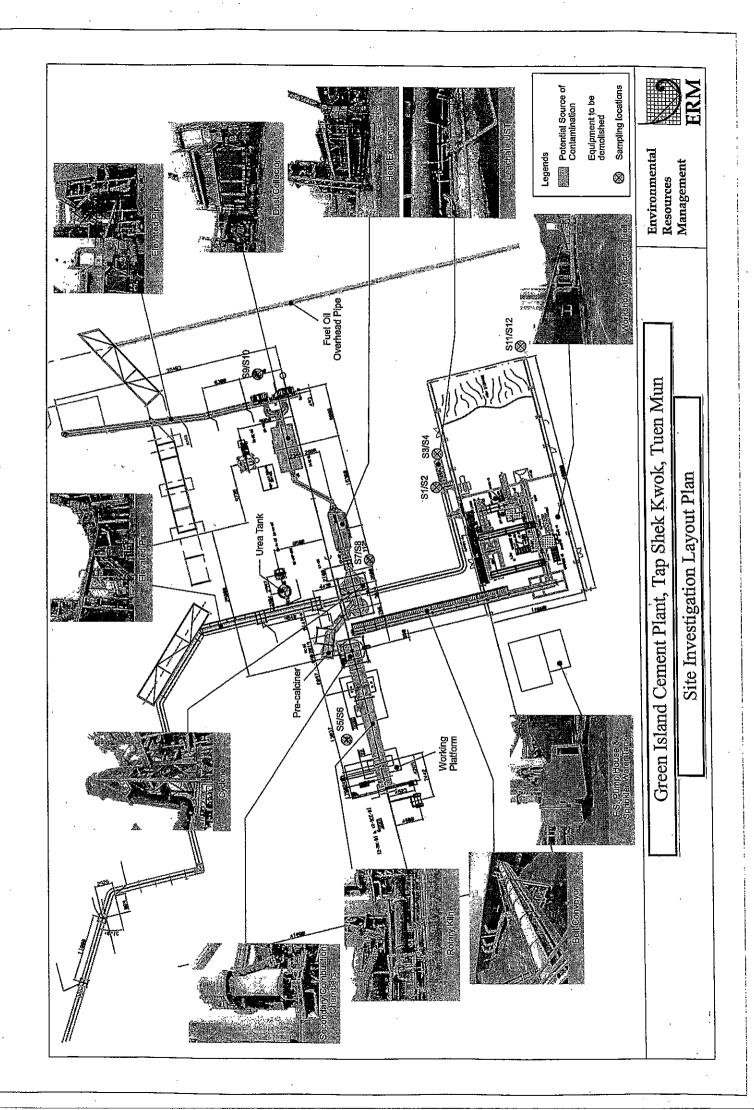
Projec	t name & location	:	Green Island Cement Plant, Tap She	k K	wok, Tuen Mun.				
CGEL	CGEL Contract No. : C577								
Consu	Consultant Engineer : <u>Environmental Resources Management</u>								
Part 1	Part 1 : Certificate of Compliance (to be completed by Authorized Signatory)								
works			for the registered specialist contracto Yeung (胡廣楊) , certify that : -	r (g	round investigation field				
(i)	we are responsible for GEOGUIDE 2 and 3;	r the	works stated in the report and that	the	works have been conducted according to				
(ii)			out under our supervision in accord		e with the requirements stipulated and the tted to the Buildings Department;				
(iii)	the logging of samples		reparation of borehole logs in accorda	ance	e with GEOGUIDE 3 have been carried out				
(iv)	the field density tests a	nd oth	er tests of samples have been conduct	ted l	by a HOKLAS accredited laboratory. (*)				
			Name of the RSC (GIFW)	: .	City Geotechnical Engineering Ltd.				
			Certificate of Registration No.	: ,	SC(GI) 5 /2001				
			Date of expiry of registration	:	1 July 2010				
			Signature of Authorized Signatory	:	apploon				
			Date	:	13 March 2008				
Part 2	: Certificate of Supervis	ion	(to be completed by Registered Geot	ech	nical Engineer)				
I, t	he Registered Geotechni	cal En	gineer (name in full)	· 	(Chinese),				
			ion in accordance with the requirements submitted to the Buildings Departm		stipulated and the Quality Supervision Plan				
			Certificate of Registration No.	: ,					
			Date of expiry of registration	:					
			Signature	:					
			Date	:					

Delete where appropriate

CITY GEOTECHNICAL ENGINEERING LTD

CONTRACT NO. C577

Site Investigation Works


for

Green Island Cement Plant, Tap Shek Kwok, Tuen Mun

CONTENTS

- 1. Site Investigation Works Layout Plan
- 2. Survey Record
- 3. Trial Pit Log
- 4. Photograph

Site Investigation Works Layout Plan

Survey Record

CITY GEOTECHNICAL ENGINEERING LTD

Site Investigation Works

for

Green Island Cement Plant, Tap Shek Kwok, Tuen Mun

Survey Records

Trial Pit No.	Level
	(m.P.D.)
S1/S2	+6.95
S3/S4	+6.92
S5/S6	+7.10
S7/S8	+6.90
S9/S10	+7.05
S11/S12	+6.94

Trial Pit Log

Location:	Green Islan	cal Engineering Ltd ad Cement Plant, Tap Shek Kwok			Trial pit No.: S1,	/S2	Sheet	1 01	. 1
		nvestigation Works necked by: <u>AW</u> Excavation	n method:	HAND			Excavated:		
Date:		/08	method.				ackfilled:		
Samples & Test	Depth (m)	Face A: width: 1.70 m	Face B: width: 2.10	m	Face C: width: 1.70	m	Face D: width:	2.10	m
	0.00	Datum line +6.95 mPD							
	_								****
	_		Ū						
•	0.50								
	-		2					*******	
•	1.00								****
-	1.20 -			******		****	*******	*****	****
	_			_					F
	-	-							F
	- -	_							Ę
				_					
	-			_					-
	_	A		_					-
	_			-					-
	-			_	Section	X X	(not to	scale)	
				_					-
	_			_					-
	_D _	2	В	_	A T		, , , , , , , , , , , , , , , , , , ,	0.0	5
	_							₩ Т	F
	-			_	1.20			0.4	3
ļ				_				∭ 0.7	n -
	_			_	1 220	····		※ "	
	_			_	****	****	******	**	
	_	c		-	-	——Z,10	 1		
j	_	Plan of pit		_					-
Remarks:									
Legend	0	Description		Grade	Pla	an (nol	to scale)	
A A A A A A A A A A	Grey, CO	INCRETE	,						+
			· · · · · · · · · · · · · · · · · · ·			4.8			N
(1)	Grey and black, silty SAND with some fine to medium gravels.				B 51/52 950 53/54				
	(FILL)				Leachate UST			lioH .	
2	gravels.	brown, sitty SAND with som		Reception				/512	
*****	(FILL)			ļ				0	511/512
								imall disturt	
					m Moisture content t	est	≠ v	orge disturt loter sampl ieepage	
3				l	Undisturbed somple	e hor.	5	lock sompl	

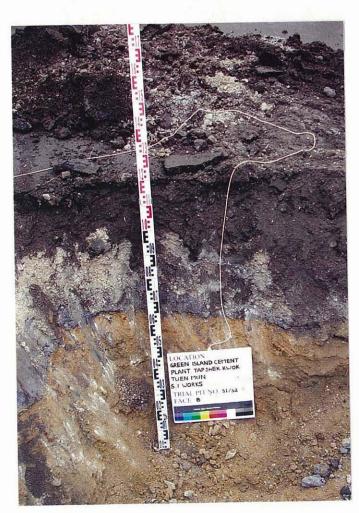
Location:	Green Islan Ground Ir	nd Cement Plant, Tap Shek Kwok nvestigation Works	r, Tuen Mun		Trial pit	No.: 53/	S4	Sheet		1
Logged by Date:	/-	lecked by: <u>AW</u> Excavatio /08	on method:	HAND	DUG			xcavated: ackfilled:		
Samples & Test	Depth (m)	Face A: width: 1.90 m	Face B: width: 1.80	m	Face C: width:	1.90	m	Face D: width:	1.80	m
İ	0.00-	Datum line +6.92 mPD								
	- -					7		, 		\$ \\ \
•	0.50 	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		"	, , , , , , , , , , , , , , , , , , ,	0 0	0 "0 "0 "0 "0 "0	0 ° 0 ° 0	0 0
j :	-									
	1.00—									
	-									
•	1.50			*******	*****	******	***	*******	****	****
	_									
<u> </u> 	_	<u> </u> 								
	-	<u> </u> 		=						
	_	A		_						
ļ										
	-			=		Section	x - x	(not to	scale)	···-
; !				_				•		
	<u>-</u>			_						
	D -		В	_	-	A		(; 1	
	, , , , , , , , , , , , , , , , , , ,		В	-		0 ° 0			0.20	D
	-			_	1 50	0.0		0	0.30	0
				_	1.50				₩1	
i				_	į				1.00	U)
	_	c		_					₩ -	
	-	- Plan of pit		_		-	1.80	 -		
	- -	·		_						
Remarks:	:	4	1		<u> </u>					
Legend		Description		Grade		Pla	n (not	to scale)	
	!	DNCRETE								Ņ ₩
Δ Δ Δ Δ ·		ASPHALT.			 	П	r	157 1 ^x	- /54	
0 0 0 0					Leachate (IST \		51/52 BE 10 S		
		Yellowish brown, silty SAND with some fine to medium gravels. (FILL)				Work	Kshop &	Reception	Hall	^{/1} /2/3
					II Insitu m Moistur III Photog undistr	bearing test density test re content te graph urbed sample urbed sample	hor.	♦ L ₹ %	imoli disturb orge disturb later somple leepoge Black sompli	ed sam

Location:	Green Islan	d Cement Plant, Tap Shek Kwok	*		Trial pit No.: S5/S6	Sheet 1 of 1		
Ground Investigation Works Logged by: LKM Checked by: AW Excavation method: Date: 22/2/08					DUG	Excavated: 22/2/08		
Date:		ŗ	_[Backfilled: 22/2/08		
Samples & Test	Depth (m)	Face A: width: 1.50 m	Face B: width: 2.00	m	Face C: width: 1.50 m	Face D: width: 2.00 m		
	0.00	Datum line +7.10 mPD						
	_							
•]	_			******		-		
•	0.50—					*****		
	_					********		
	_					**********		
	1.00							
	_					-		
_						********** F		
•	1.50—		i i i i i i i i i i i i i i i i i i i		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	<u></u>		
	=			-				
	_							
	_			_				
	-	A		_		-		
				. –				
	_			=		F		
	-			_	Section X -	- X (not to scale)		
				_		-		
	-			_		<u> </u>		
			_	_	_ A	<u> </u>		
	D		В	_		0.10		
	-			_				
ļ	_			_	1.50	1.40		
	_			-				
	-				1			
		С		_	*******	_		
	_	Plan of pit		_	 	2.00		
	=			_		ך ר		
Remarks:								
Legend		Description		Grade	Plan (not to scale)		
	,,	NCRETE				↓		
	Yellowish	n brown, silty SAND with so	me fine to		Working Platform 1x Platform 2x 55/56			
	medium	medium gravels, occasional red bricks and granite fragments.			Platform			
	(FILL)				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
					Rotar	Klin Secondary Combustion		
					☐ Plate bearing test ☐ Insitu density test ☐ Moisture content test ☐ Photograph ☐ Undisturbed sample har. ☐ Undisturbed sample ver.			

Location:	Green Islar	id Cement Plant, Tap Shek Kwal Investigation Works	·		Trial pit No.: S7/S8	Sheet 1 of 1			
		ecked by: AW Excavation	on method:	HAND	DUG	Excavated: 22/2/08 Backfilled: 22/2/08			
Samples & Test	Depth (m)	Face A: width: 1.80 m	Face B: width: 1.60	m	Face C: width: 1.80 m	Face D: width: 1.60 m			
	0.00—	Datum line +6.90 mPD							
	-								
•	0.50— - -								
	1.00— - -								
•	1.50—			-		-			
	- -			- - - 		- - -			
	- - -			 		- - -			
	-					- -			
•	- -	A		=	Section X -	X (not to scale)			
	- - -			- - - -	A	c			
	D -		В	1	1.50	1.45			
	-	c		-	·1,	50————————————————————————————————————			
		Plan of pit							
Remarks:									
Legend Δ Δ Δ Δ	Grav CC	Description		Grade	Plan (n	ot to scale)			
					Cyclones Heat Exchanger N Cyclones At 00 51/52 At 00 51/52				
	Yellowisl medium (FILL)	Yellowish brown, silty SAND with some fine to medium grovels. (FILL)							
	·				Leachate UST Workshop & Reception Hall				
	<u> </u>				☐ Plote bearing test ☐ Insitu density test ☐ Moisture content test ☐ Photograph ☐ Undisturbed sample hor. ☐ Undisturbed sample ver.	Small disturbed sample Large disturbed sample Woter sample Seepage Block sample			

City Geotechnical Engineering Ltd. Location: Green Island Cement Plant, Tap Shek Kwok, Tuen Mun Ground Investigation Works Trial pit No.: S9/S10 Sheet 1 of 1 HAND DUG 22/2/08 Logged by: LKM Checked by: AW Excavation method: Excavated: ___ 22/2/08 Backfilled: 22/2/08 Date: . Depth Face B: Face D: Samples Face A: Face C: & Test (m) width: 1.80 width: width: 1.80 width: 1.40 m m m m Datum line +7.05 mPD 0.50 1.00 Section X - X (not to scale) 0.10 D В 1.50 1.40 Ç -1.40-Plan of pit Remarks: Plan (not to scale) Description Grade Legend Grey, CONCRETE Brown, silty SAND with some fine to medium Elevated Pipe gravels. (FILL) Dust Collector Chclousz Exchanger Heat Small disturbed sample Large disturbed sample Water sample л Т Plate bearing test Insitu density test Moisture content test Photograph Seepage Undisturbed sample hor. Block sample

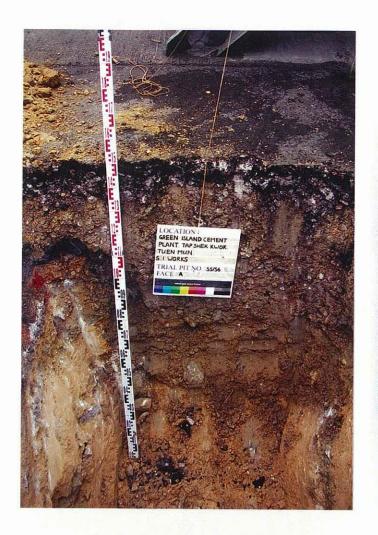
Undisturbed sample ver.

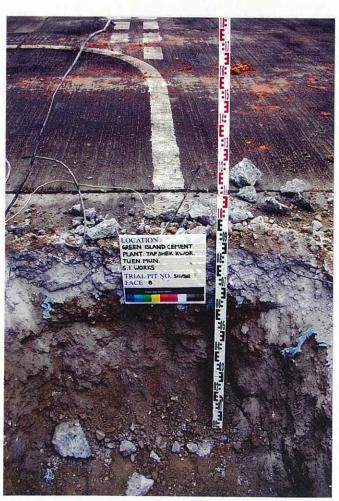

City Geotechnical Engineering Ltd.

Ground Investigation Works Logged by: LKM Checked by: AW Excavation method: HAND DUG Date: 22/2/08 Samples & Test	Excavated: 22/2/08 Backfilled: 22/2/08
Samples & Test Depth width: Face A: width: Face B: width: Face C: width: Face C: width: Face C: width: Face C: width: I.80 m 0.00 Datum line +6.94 mPD Datum line +6.94 mPD	
· · · · · · · · · · · · · · · · · · ·	Face D: n width: 1.50 m
;	
• 0.50—	
• 1.00	
1.50	
	-
A Section X	- X (not to scale)
A	C
	0.15
D	
1.00	0.85
	i

- c - -	-1.60
i i l -	
Plan of pit	
ì -	
Remarks: Legend Description Grade Plan	(not to scale)
Plan of pit Remarks: Legend Description Grade Plan	(not to scale)
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Grey, CONCRETE Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	(not to scale)
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Grey, CONCRETE Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Greyish brown, silty SAND with some fine to medium	н
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	8 20 51/52 8 20 53/54
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	9 20 51/52 9 20 53/54 Peception Hall
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	9 20 51/52 9 20 53/54 Peception Hall
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	н
Plan of pit Remarks: Legend Description Grade Plan Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	9 20 51/52 9 20 53/54 Peception Hall
Plan of pit Remarks: Legend Description Grade Plan A	op & Reception Hall
Remarks: Legend Description Grade Plan A A A A A A Grey, CONCRETE A A A A A A A Greyish brown, silty SAND with some fine to medium gravels. (FILL) Worksh	op & Reception Hall

Photograph







Annex C

Laboratory Analytical Report

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client · GREEN ISLAND CEMENT LIMITED Laboratory : ALS Technichem (HK) Pty Ltd Page : 1 of 8

Work Order Contact · MS LAURENCE GENEE Contact : Alice Wong HK0802860 Address Address

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : laurence.genee@erm.com E-mail : Alice.Wong@alsenviro.com

Telephone Telephone : +852 2610 1044 Facsimile Facsimile +852 2610 2021

Proiect : (ERM 0071019) Quote number Date received 22 Feb 2008

Order number Date of issue : 13 Mar 2008

C-O-C number H002505-H002506 No. of samples Received 13

: GIC 13 Site Analysed

Report Comments

This report for ALS Technichem (HK) Pty Ltd work order reference HK0802860 supersedes any previous reports with this reference. The completion date of analysis is 29 Feb 2008. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0802860: Sample(s) were received in a chilled condition.

Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.

Sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance' of Hong Kong, Chapter 553, Section 6.

Position Authorised results for:-Signatory Anh Ngoc Huynh **Senior Chemist Organics**

Fung Lim Chee, Richard General Manager Inorganics Page Number : 2 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Analytical Results		CI	ient Sample ID :	S 1	\$2	S 3	\$4	S5
Analytical Results		Labora	tory Sample ID :	HK0802860-001	HK0802860-002	HK0802860-003	HK0802860-004	HK0802860-005
Submatrix: SOIL		Sami	ple Date / Time :	22 Feb 2008	22 Feb 2008	22 Feb 2008	22 Feb 2008	22 Feb 2008
Method: Analysis Description	CAS number	LOR	Units	11:00	11:15	11:30	11:45	13:30
EA/ED: Physical and Aggregate Prop		LOK	Onits					1
EA055: Moisture Content (dried @		0.1	%	15.3	8.1	10.6	9.8	10.3
103°C)		0.1	,,	10.0	J	10.0	0.0	10.0
EG: Metals and Major Cations								
EG020: Antimony	7440-36-0	1	mg/kg	7	<1	5	<1	2
EG020: Arsenic	7440-38-2	1	mg/kg	25	<1	25	<1	2
EG020: Barium	7440-39-3	0.5	mg/kg	110	30.4	109	23.1	53.4
EG020: Cadmium	7440-43-9	0.2	mg/kg	2.2	0.2	0.7	<0.2	0.6
EG020: Cobalt	7440-48-4	0.5	mg/kg	11.5	3.2	14.6	2.7	3.9
EG020: Copper	7440-50-8	1	mg/kg	226	22	103	2	35
EG020: Lead	7439-92-1	1	mg/kg	85	42	35	61	54
EG020: Manganese	7439-96-5	0.5	mg/kg	152	452	447	296	279
EG020: Mercury	7439-97-6	0.05	mg/kg	0.24	<0.05	0.08	<0.05	<0.05
EG020: Molybdenum	7439-98-7	1	mg/kg	77	3	33	5	19
EG020: Nickel	7440-02-0	1	mg/kg	21	3	22	1	<1
EG020: Tin	7440-31-5	0.5	mg/kg	45.7	5.4	8.2	4.2	7.4
EG020: Zinc	7440-66-6	1	mg/kg	523	72	387	31	116
EG049: Trivalent Chromium	16065-83-1	0.5	mg/kg	35.3	8.8	28.2	2.3	14.2
EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.8	<0.5	<0.5
EP-071/080: Total Petroleum Hydroca	rbons (TPH Volati	le) / BTEX	(
C6 - C8 Fraction		5	mg/kg	<5	<5	<5	<5	<5
EP-071: Total Petroleum Hydrocarbor	ns (TPH)		<u>.</u>		•			•
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction		500	mg/kg	<500	<500	<500	<500	<500
EP-080: BTEX			<u>.</u>		•	-		
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	108-90-7	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
	106-42-3							
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP-080S: TPH(Volatile)/BTEX Surroga	ate						Surrogate control lii	mits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	89.5	87.4	85.8	88.0	86.6
Toluene-D8	2037-26-5	0.1	%	97.5	96.8	98.2	96.8	97.4
4-Bromofluorobenzene	460-00-4	0.1	%	93.0	92.5	94.9	94.4	94.6

Page Number : 3 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Analytical Results		CI	ient Sample ID :	S6	S 7	S8	S9	S10
Analytical Nesults		Labora	tory Sample ID :	HK0802860-006	HK0802860-007	HK0802860-008	HK0802860-009	HK0802860-010
Submatrix: SOIL		0	olo Doto / Time	00 5 1 0000	00 5 1 0000	00 5 1 0000	00 5 1 0000	00 5 1 0000
			ole Date / Time :	22 Feb 2008				
Method: Analysis Description	CAS number	LOR	Units	13:45	14:15	14:30	10:15	10:30
EA/ED: Physical and Aggregate Prope	erties							
EA055: Moisture Content (dried @		0.1	%	9.8	9.4	10.6	7.4	7.5
103°C)								<u> </u>
EG: Metals and Major Cations	7440.00.0		, ,		· .	1 .4	I	
EG020: Antimony	7440-36-0	1	mg/kg	<1	1	<1	<1	<1
EG020: Arsenic	7440-38-2	1	mg/kg	<1	1	<1	<1	<1
EG020: Barium	7440-39-3	0.5	mg/kg	23.1	41.5	29.4	22.8	21.1
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	0.5	<0.2	<0.2	<0.2
EG020: Cobalt	7440-48-4	0.5	mg/kg	3.4	5.2	2.6	2.3	1.4
EG020: Copper	7440-50-8	1	mg/kg	2	20	3	17	2
EG020: Lead	7439-92-1	1	mg/kg	59	46	42	51	42
EG020: Manganese	7439-96-5	0.5	mg/kg	265	339	254	364	316
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.05	<0.05	<0.05	<0.05
EG020: Molybdenum	7439-98-7	1	mg/kg	2	7	2	2	2
EG020: Nickel	7440-02-0	1	mg/kg	<1	3	<1	2	<1
EG020: Tin	7440-31-5	0.5	mg/kg	4.3	5.5	4.0	4.2	2.6
EG020: Zinc	7440-66-6	1	mg/kg	31	114	34	92	32
EG049: Trivalent Chromium	16065-83-1	0.5	mg/kg	3.0	12.1	4.2	8.5	3.2
EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP-071/080: Total Petroleum Hydrocal	rbons (TPH Volati	le) / BTEX					Į	
C6 - C8 Fraction		5	mg/kg	<5	<5	<5	<5	<5
EP-071: Total Petroleum Hydrocarbon	ns (TPH)				ļ.	1		1
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	<200	<200
C17 - C35 Fraction		500	mg/kg	<500	<500	<500	<500	<500
EP-080: BTEX					<u> </u>			
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	108-90-7	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
meta a para 7tylene	106-42-3		3 3					
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP-080S: TPH(Volatile)/BTEX Surroga						1	1	mits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	86.0	85.8	85.4	84.0	80.4
Toluene-D8	2037-26-5	0.1	%	96.8	97.8	97.1	97.0	96.6
4-Bromofluorobenzene	460-00-4	0.1	%	94.2	95.2	92.5	92.6	94.4

Page Number : 4 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Analytical Results		CI	ient Sample ID :	S11	S12	S13	
Thany trous recourse		Labora	tory Sample ID :	HK0802860-011	HK0802860-012	HK0802860-013	
ubmatrix: SOIL		Sami	ole Date / Time :	22 Feb 2008	22 Feb 2008	[22 Feb 2008]	
Method: Analysis Description	CAS number	LOR	Units	10:30	10:45	[221002000]	
EA/ED: Physical and Aggregate Prop		LUK	Units		101.10		
EA055: Moisture Content (dried @	erties 	0.1	%	9.5	10.6	7.6	
103°C)		0.1	70	3.3	10.0	7.0	
EG: Metals and Major Cations							
EG020: Antimony	7440-36-0	1	mg/kg	2	1	<1	
EG020: Artimony	7440-38-2	1	mg/kg	4	1	2	
EG020: Barium	7440-39-3	0.5	mg/kg	60.4	35.8	24.5	
EG020: Cadmium	7440-43-9	0.2	mg/kg	0.6	0.7	<0.2	
EG020: Cadmium EG020: Cobalt	7440-48-4	0.5	mg/kg	4.3	3.7	3.5	
EG020: Copper	7440-48-4	1	mg/kg	 57	32	3.5	
EG020: Copper EG020: Lead	7439-92-1	1	mg/kg	49	42	47	
EG020: Lead EG020: Manganese	7439-92-1	0.5	mg/kg	298	221	344	
EG020: Mercury	7439-97-6	0.05	mg/kg	0.05	<0.05	<0.05	
EG020: Molybdenum	7439-98-7	1	mg/kg	21	12	4	
EG020: Nickel	7440-02-0	1	mg/kg	2	<1	13	
EG020: Nickei	7440-31-5	0.5	mg/kg	7.6	5.8	6.9	
EG020: Till	7440-66-6	1	mg/kg	142	162	228	
EG049: Trivalent Chromium	16065-83-1	0.5	mg/kg	15.7	21.5	24.5	
EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	1.2	
EP-071/080: Total Petroleum Hydroca				٧٥.٥	10.0	1.2	
C6 - C8 Fraction		5	mg/kg	<5	<5	<5	
EP-071: Total Petroleum Hydrocarbor			mg/kg				
C9 - C16 Fraction		200	mg/kg	<200	<200	<200	
C17 - C35 Fraction		500	mg/kg	<500	<500	<500	
EP-080: BTEX		300	mg/kg	-500	1 1000	1000	
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	
Chlorobenzene	108-90-7	0.2	mg/kg	<0.2	<0.2	<0.2	
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	<0.4	
mote a para Ayiono	106-42-3	~. 1		v. 1]]	
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	
EP-080S: TPH(Volatile)/BTEX Surroga							Surrogate control limits listed at end of this report.
Dibromofluoromethane	1868-53-7	0.1	%	87.5	82.9	93.6	
Toluene-D8	2037-26-5	0.1	%	97.6	96.8	97.4	
4-Bromofluorobenzene	460-00-4	0.1	%	92.8	93.6	92.4	

Page Number : 5 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Quality Control - Laboratory Duplicate (DUP) Results

Matrix Type: SOIL					Duplicate (DUP) Results			
aboratory Sample ID	Client Sample ID	Method: Analysis Description	CAS number	LOR	Units	Original Result	Duplicate Result	RPD (%)
A/ED: Physical and A	Aggregate Properties (QC Lo	t: 604570)						
HK0802860-001	S1	EA055: Moisture Content (dried @ 103°C)		0.1	%	15.3	15.5	1.1
HK0802860-011	S11	EA055: Moisture Content (dried @ 103°C)		0.1	%	9.5	9.9	3.5
G: Metals and Major	Cations (QC Lot: 607686)							
HK0802860-002	S2	EG020: Antimony	7440-36-0	1	mg/kg	<1	<1	0.0
		EG020: Lead	7439-92-1	1	mg/kg	42	50	18.2
		EG020: Manganese	7439-96-5	0.5	mg/kg	452	494	8.8
		EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	<0.05	0.0
		EG020: Molybdenum	7439-98-7	1	mg/kg	3	4	0.0
		EG020: Nickel	7440-02-0	1	mg/kg	3	4	0.0
		EG020: Tin	7440-31-5	0.5	mg/kg	5.4	6.1	12.7
		EG020: Arsenic	7440-38-2	1	mg/kg	<1	1	0.0
		EG020: Zinc	7440-66-6	1	mg/kg	72	80	11.6
		EG020: Barium	7440-39-3	0.5	mg/kg	30.4	29.4	3.6
		EG020: Cadmium	7440-43-9	0.2	mg/kg	0.2	0.2	0.0
		EG020: Cobalt	7440-48-4	0.5	mg/kg	3.2	2.7	20.0
		EG020: Copper	7440-50-8	1	mg/kg	22	19	13.3
HK0803455-007	Anonymous	7440-36-0	1	mg/kg	1	1	0.0	
		EG020: Lead	7439-92-1	0.5	mg/kg	12.0	12.8	5.8
		EG020: Manganese	7439-96-5	0.5	mg/kg	33.3	33.4	0.5
		EG020: Mercury	7439-97-6	0.5	mg/kg	0.7	0.6	0.0
		EG020: Molybdenum	7439-98-7	1	mg/kg	5	6	0.0
		EG020: Nickel	7440-02-0	0.5	mg/kg	11.8	12.5	5.6
		EG020: Tin	7440-31-5	0.5	mg/kg	16.3	15.6	4.6
		EG020: Arsenic	7440-38-2	0.5	mg/kg	2.6	2.8	7.2
		EG020: Zinc	7440-66-6	0.5	mg/kg	640	653	1.9
		EG020: Barium	7440-39-3	0.5	mg/kg	75.6	75.6	0.0
		EG020: Cadmium	7440-43-9	0.5	mg/kg	0.6	0.6	0.0
		EG020: Cobalt	7440-48-4	0.5	mg/kg	1.1	1.1	0.0
		EG020: Copper	7440-50-8	0.5	mg/kg	104	104	1.0
G: Metals and Maior	Cations (QC Lot: 609390)			-	•			
HK0802860-002	S2	EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0
HK0802860-011	S11	EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.0
P-071/080: Total Peti	roleum Hydrocarbons (TPH V	olatile) / BT (QC Lot: 604500)		1		,		
HK0802860-001	S1	C6 - C8 Fraction		5	mg/kg	<5	<5	0.0
P-071: Total Petrole	ım Hydrocarbons (TPH) (QC			-				
HK0802860-001	S1	C9 - C16 Fraction		200	mg/kg	<200	<200	0.0
		C17 - C35 Fraction		500	mg/kg	<500	<500	0.0
								Campbell Brothers Limit

Page Number : 6 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Matrix Type: SOIL			Duplicate (DUP) Results						
Laboratory Sample ID	Client Sample ID	Method: Analysis Description	CAS number	LOR	Units	Original Result	Duplicate Result	RPD (%)	
EP-080: BTEX (QC Lot	: 604500)								
HK0802860-001	S1	Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	
		Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.0	
		Chlorobenzene	108-90-7	0.2	mg/kg	<0.2	<0.2	0.0	
		Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.0	
		meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	<0.4	0.0	
			106-42-3						
		ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.0	

Quality Control - Method Blank (MB), Single Control Spike (SCS) and Duplicate Control Spike (DCS) Results

Matrix Type: SOIL			Method Blank (ME	3) Results		Single Co	ntrol Spike (SCS) and D	uplicate Con	trol Spike (D	CS) Results	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPI	Ds (%)
Method: Analysis Description	CAS number	LOR	Units	Result	Concentration	scs	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QCLot:	607686)										
EG020: Antimony	7440-36-0	1	mg/kg	<1	5 mg/kg	85.3		85	115		
EG020: Lead	7439-92-1	1	mg/kg	<1	5 mg/kg	87.1		85	115		
EG020: Manganese	7439-96-5	1	mg/kg	<0.5	5 mg/kg	99.5		85	115		
EG020: Mercury	7439-97-6	0.05	mg/kg	<0.05	0.1 mg/kg	93.6		85	115		
EG020: Molybdenum	7439-98-7	1	mg/kg	<1	5 mg/kg	99.4		85	115		
EG020: Nickel	7440-02-0	1	mg/kg	<1	5 mg/kg	92.3		85	115		
EG020: Tin	7440-31-5	1.0	mg/kg	<1.0	5 mg/kg	97.5		85	115		
EG020: Arsenic	7440-38-2	1	mg/kg	<1	5 mg/kg	97.2		85	115		
EG020: Zinc	7440-66-6	1	mg/kg	<1	5 mg/kg	100		85	115		
EG020: Barium	7440-39-3	1	mg/kg	<0.5	5 mg/kg	104		85	115		
EG020: Cadmium	7440-43-9	0.2	mg/kg	<0.2	5 mg/kg	94.8		85	115		
EG020: Cobalt	7440-48-4	1	mg/kg	<0.5	5 mg/kg	91.4		85	115		
EG020: Copper	7440-50-8	1	mg/kg	<1	5 mg/kg	94.3		85	115		
EG: Metals and Major Cations (QCLot:	: 609390)										
EG050: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	2.5 mg/kg	99.0		85	115		
EP-071/080: Total Petroleum Hydrocarl	bons (TPH Volatile) / B	T (QCLot:	604500)								
C6 - C8 Fraction		5	mg/kg	<5	3 mg/kg	81.1		45	106		
EP-071: Total Petroleum Hydrocarbons	s (TPH) (QCLot: 60450	2)									
C9 - C16 Fraction		200	mg/kg	<200	32 mg/kg	92.6		48	108		
C17 - C35 Fraction		500	mg/kg	<500	75 mg/kg	102		50	110		
EP-080: BTEX (QCLot: 604500)											
Benzene	71-43-2	0.2	mg/kg	<0.2	0.2 mg/kg	88.1		57	91		
Toluene	108-88-3	0.2	mg/kg	<0.2	0.2 mg/kg	81.2		60	107		
Chlorobenzene	108-90-7	0.2	mg/kg	<0.2	0.2 mg/kg	93.1		81	110		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	0.2 mg/kg	86.2		76	105		
										-	amphell Brothers Limited Comp

Page Number : 7 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Matrix Type: SOIL			Method Blank (MB) Results	Single Control Spike (SCS) and Duplicate Control Spike (DCS) Results						
					Spike	Spike Spike Recovery (%)		(%) Recovery Limits (%)		RPDs (%)	
Method: Analysis Description	CAS number	LOR	Units	Result	Concentration	scs	DCS	Low	High	Value	Control Limit
EP-080: BTEX (QCLot: 604500) - contin	ued										
meta- & para-Xylene	108-38-3	0.4	mg/kg	<0.4	0.4 mg/kg	86.9		74	113		
	106-42-3										
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	0.2 mg/kg	80.6		75	109		

Quality Control - Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Results

Matrix Type: SOIL					Matrix S	pike (MS) and Matrix	Spike Duplic	ate (MSD) Re	sults	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPDs (%)
Laboratory Sample ID	Client Sample ID	Method: Analysis Description	CAS number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major	Cations (QCLot: 607686)								
HK0802860-001	S1	EG020: Antimony	7440-36-0	5 mg/kg	99.2		75	125		
		EG020: Lead	7439-92-1	5 mg/kg	Not Determined		75	125		
		EG020: Manganese	7439-96-5	5 mg/kg	Not Determined		75	125		
		EG020: Mercury	7439-97-6	0.1 mg/kg	Not Determined		75	125		
		EG020: Molybdenum	7439-98-7	5 mg/kg	Not Determined		75	125		
		EG020: Nickel	7440-02-0	50 mg/kg	87.9		75	125		
		EG020: Tin	7440-31-5	5 mg/kg	Not Determined		75	125		
		EG020: Arsenic	7440-38-2	5 mg/kg	Not Determined		75	125		
		EG020: Zinc	7440-66-6	5 mg/kg	Not Determined		75	125		
		EG020: Barium	7440-39-3	5 mg/kg	Not Determined		75	125		
		EG020: Cadmium	7440-43-9	5 mg/kg	89.6		75	125		
		EG020: Cobalt	7440-48-4	5 mg/kg	76.4		75	125		
		EG020: Copper	7440-50-8	5 mg/kg	Not Determined		75	125		
EG: Metals and Major	Cations (QCLot: 609390)		•						
HK0802860-001	S1	EG050: Hexavalent Chromium	18540-29-9	2.5 mg/kg	101		75	125		
FP-071/080: Total Petr	roleum Hydrocarbons (TF	PH Volatile) / BT (QCLot: 604500)								
HK0802860-002	S2	C6 - C8 Fraction		3 mg/kg	57.3		50	130		
ED-071: Total Potrolou	ım Hydrocarbons (TPH)			1 3 3						<u> </u>
HK0802860-002	S2	C9 - C16 Fraction		32 mg/kg	96.6		50	130		
11110002000 002	- 02	C17 - C35 Fraction		75 mg/kg	82.4		50	130		
ED 000, BTEV (OC) of	+ C04500\	OTT - COOT Faction		1011197119	02.1		1 00	100		
EP-080: BTEX (QCLot HK0802860-002	S2	Benzene	71-43-2	0.2 mg/kg	69.4		50	130		
1110002000-002	32	Toluene	108-88-3	0.2 mg/kg 0.2 mg/kg	70.6		50	130		
			108-90-7	0.2 mg/kg 0.2 mg/kg	85.6		50	130		
		Chlorobenzene	100-90-7	+	76.2		50	130		
		Ethylbenzene		0.2 mg/kg	77.2		50	130		
		meta- & para-Xylene	108-38-3 106-42-3	0.4 mg/kg	11.2		30	130		
		artha Vulana	95-47-6	0.2 mg/kg	74.4		50	130		
		ortho-Xylene	30-41-0	U.Z IIIg/Kg	14.4] 30	130		

Page Number : 8 of 8

Client : GREEN ISLAND CEMENT LIMITED

Work Order HK0802860

Surrogate Control Limits

Submatrix Type: SOIL

Method: Analysis Description	Units	Lower Limit	Upper Limit
EP-080S: TPH(Volatile)/BTEX Surrogate			
Dibromofluoromethane	%	80	120
Toluene-D8	%	81	117
4-Bromofluorobenzene	%	74	121

Annex D

RBRG Standards

Table 2.1
Risk-Based Remediation Goals (RBRGs) for Soil & Soil Saturation Limit

Chemical Company Chemical Chemi				ased Remediation		
Acetone 9.9584-03 4.268-03 1.00E-04* 1.00E-04* 3.868-02 Bornzone 7.748-01 2.798-01 9.218-00 1.348-01 3.368-02 Bornzondichloromethane 3.778-01 1.298-01 2.858-00 1.348-01 1.038-03 2.288-00 1.00E-04* *** Chloroform 1.32E-01 5.298-02 1.548-00 2.538-02 1.10E-04* *** Chloroform 1.32E-01 5.298-02 1.548-00 2.538-02 1.10E-04* 1.00E-04* 1.388-02 2.988-02 2.888-03 1.00E-04* 1.388-02 2.888-03 2.808-00 7.018-01 1.288-02 9.218-02 2.888-03 2.808-00 7.018-01 1.288-02 9.218-02 2.888-03 2.808-00 7.018-01 1.288-02 9.218-02 2.888-03 2.808-03 1.588-03 1.588-02 2.808-00 9.218-02 2.888-03 2.	Chemical	Residential	Rural Residential	Industrial	Public Parks	
Berusene 7,04E 01 2,79E 01 2,79E 01 2,21E+00 4,22E+01 3,36E+02 1,00E+04*	VOCs					
Bromodichloromethane	Acetone	9.59E+03	4.26E+03	1.00E+04*	1.00E+04*	***
2-Butanone	Benzene	7.04E-01	2.79E-01	9.21E+00	4.22E+01	3.36E+02
Chitoroform	Bromodichloromethane	3.17E-01	1.29E-01	2.85E+00	1.34E+01	1.03E+03
Ethybenzene	2-Butanone	1.00E+04*	1.00E+04*	1.00E+04*		***
Methylene Filotride G.88F-400 2.80F-400 5.29F-401 1.28F-402 9.21F-402 9.22F-403 9.22F-	Chloroform	1.32E-01	5.29E-02	1.54E+00	2.53E+02	1.10E+03
Methylene Chloride	Ethylbenzene	7.09E+02	2.98E+02		1.00E+04*	1.38E+02
Syrene	Methyl tert-Butyl Ether	6.88E+00				
Tetrachicoethene						
Toluene	Styrene					
Trichlorosthene	Tetrachloroethene	 				
Xylenes (Total)	Toluene					
SVOCS	Trichloroethene					
Acenaphthene	Xylenes (Total)	9.50E+01	3.68E+01	1.23E+03	1.00E+04*	1.50E+02
Acenaphthylene	SVOCs					
Anthracene	•					
Benzo(a)anthracene	Acenaphthylene					
Benzo(a)pyrene		 				2.56E+00
Benzo(gh)fluoranthene		-				
Benzo(g,h,i)perylene						
Benzo(k)fluoranthene 1.20E+02 1.14E+02 9.18E+02 3.83E+02		 				
Second S						
Chrysene						
Dibenzo(a,h)anthracene						
Fluoranthene						
Fluorene 2.38E+03 2.25E+03 1.00E+04* 7.45E+03 5.47E+01 Hexachlorobenzene 2.43E-01 2.20E-01 5.82E-01 7.13E-01 Indeno(1,2,3-cd)pyrene 1.20E+01 1.14E+01 9.18E+01 3.83E+01 Naphthalene 1.82E+02 8.56E+01 4.53E+02 9.14E+02 1.25E+02 Phenanthrene 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 2.80E+01 Phenol 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 7.26E+03 Pyrene 1.80E+03 1.71E+03 1.00E+04* 1.00E+04* 7.26E+03 Pyrene 1.80E+03 1.71E+03 1.00E+04* 1.00E+04* 7.26E+03 Pyrene 1.80E+01 2.91E+01 2.61E+02 9.79E+01 Arsenic 2.21E+01 2.18E+01 1.96E+02 7.35E+01 Barium 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Cadmium 7.38E+01 7.28E+01 6.53E+02 2.45E+02 Chromium III 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Chromium VI 2.21E+02 2.18E+02 1.96E+03 7.35E+02 Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 1.00E+04* Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.5E+00 3.26E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs 1.41E+03 5.45E+02 1.00E+04* 1.00E+04						
Hexachlorobenzene 2.43E-01 2.20E-01 5.82E-01 7.13E-01 Indeno(1,2,3-cd)pyrene 1.20E+01 1.14E+01 9.18E+01 3.83E+01 Naphthalene 1.82E+02 8.56E+01 4.53E+02 9.14E+02 1.25E+02 Phenanthrene 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 2.80E+01 Phenol 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* 7.26E+03 Pyrene 1.80E+03 1.71E+03 1.00E+04* 5.72E+03 Pyrene 1.80E+03 1.71E+03 1.00E+04* 5.72E+03 Pyrene 2.91E+01 2.91E+01 2.61E+02 9.79E+01 Pyrene 2.21E+01 2.18E+01 1.96E+02 7.35E+01 Pyrene 2.21E+01 2.18E+01 1.96E+02 7.35E+01 Pyrene 2.21E+01 2.18E+01 1.00E+04* 1.00E+04* Pyrene 2.21E+01 2.21E+01 1.96E+02 7.35E+01 Pyrene 2.21E+01 2.21E+01 1.96E+02 7.35E+01 Pyrene 2.21E+01 2.21E+01 1.00E+04* 1.00E+04* Pyrene Pyrene 2.21E+01 2.21E+01 1.96E+02 7.35E+01 Pyrene						5 47F : 01
Indeno(1,2,3-cd)pyrene						5.4/E+01
Naphthalene						
Phenanthrene						1.25E±02
Phenol						
Pyrene						II.
Metals Antimony 2.95E+01 2.91E+01 2.61E+02 9.79E+01 Arsenic 2.21E+01 2.18E+01 1.96E+02 7.35E+01 Barium 1.00E+04* 1.00E+04* 1.00E+04* Cadmium 7.38E+01 7.28E+01 6.53E+02 2.45E+02 Chromium III 1.00E+04* 1.00E+04* 1.00E+04* Chromium VI 2.21E+02 2.18E+02 1.96E+03 7.35E+02 Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 9.79E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins /P						7.20L103
Antimony Arsenic		1.00E103	1.71L103	1.00L104	3.72E103	
Arsenic 2.21E+01 2.18E+01 1.96E+02 7.35E+01 Barium 1.00E+04* 1		2 95E+01	2.91E+01	2.61E±02	9 79E+01	
Barium		-				
Cadmium 7.38E+01 7.28E+01 6.53E+02 2.45E+02 Chromium III 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Chromium VI 2.21E+02 2.18E+02 1.96E+03 7.35E+02 Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 4.90E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.						
Chromium III 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Chromium VI 2.21E+02 2.18E+02 1.96E+03 7.35E+02 Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 9.79E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 5.00E-03 1.00E+04* Dioxins (I-TEQ) 1.00E-03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+04* Petroleum Carbon Ranges C6 - C8 1.41E+03<	Cadmium					
Chromium VI 2.21E+02 2.18E+02 1.96E+03 7.35E+02 Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 4.90E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 1.00E-03 5.00E-03 1.00E+04* Dioxins (I-TEQ) 1.00E-03 1.00E-03 5.00E-03 1.00E+04* 1.00E+04* PCBs 2.36E-01 2.24E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges	Chromium III					
Cobalt 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Copper 2.95E+03 2.91E+03 1.00E+04* 9.79E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins / PCBs 1.00E+04* 1.00E+04* Dioxins (I-TEQ) 1.00E-03 1.00E-03 5.00E-03 1.00E-03 Petroleum Carbon Ranges 2.36E-01 7.48E-01 7.56E-01 C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 3.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 5.00E+03	Chromium VI	 				
Copper 2.95E+03 2.91E+03 1.00E+04* 9.79E+03 Lead 2.58E+02 2.55E+02 2.29E+03 8.57E+02 Manganese 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+04* C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 5.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03	Cobalt	 				
Manganese 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs 1.00E+04* 1.00E+04* 1.00E+04* Dioxins (I-TEQ) 1.00E-03 1.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 5.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04*<	Copper	2.95E+03	2.91E+03	1.00E+04*	9.79E+03	
Mercury 1.10E+01 6.52E+00 3.84E+01 4.56E+01 Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds 0 1.48E+03 1.46E+03 1.00E+04* 4.90E+03	Lead	2.58E+02				
Molybdenum 3.69E+02 3.64E+02 3.26E+03 1.22E+03 Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+04* C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics 1.48E+03 1.46E+03 1.00E+04* 4.90E+03	Manganese	1.00E+04*			1.00E+04*	
Nickel 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds 0 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics 0 1.48E+03 1.46E+03 1.00E+04* 4.90E+03	Mercury	1.10E+01	6.52E+00	3.84E+01	4.56E+01	
Tin 1.00E+04* 1.00E+04* 1.00E+04* 1.00E+04* Zinc 1.00E+04* 1.00E+04* 1.00E+04* Dioxins / PCBs Dioxins (I-TEQ) 1.00E-03 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics	Molybdenum	3.69E+02				
Zinc	Nickel					
Dioxins / PCBs 1.00E-03 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds 0.00E+04* 1.00E+04* 4.90E+03 Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03	Tin					
Dioxins (I-TEQ) 1.00E-03 1.00E-03 5.00E-03 1.00E-03 PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics 0 1.00E+04* 4.90E+03	Zinc	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+04*	
PCBs 2.36E-01 2.26E-01 7.48E-01 7.56E-01 Petroleum Carbon Ranges 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds 0.00E+04* 1.00E+04* 4.90E+03 Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03						
Petroleum Carbon Ranges 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics 0 4.90E+03 4.90E+03	Dioxins (I-TEQ)					
C6 - C8 1.41E+03 5.45E+02 1.00E+04* 1.00E+04* 1.00E+03 C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics		2.36E-01	2.26E-01	7.48E-01	7.56E-01	
C9 - C16 2.24E+03 1.33E+03 1.00E+04* 1.00E+04* 3.00E+03 C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics			_ :==		1.0.=	
C17 - C35 1.00E+04* 1.00E+04* 1.00E+04* 5.00E+03 Other Inorganic Compounds Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics Organometallics 1.46E+03 1.46E+03 1.46E+03		-				
Other Inorganic Compounds 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics Organometallics Organometallics Organometallics						
Cyanide, free 1.48E+03 1.46E+03 1.00E+04* 4.90E+03 Organometallics			1.00E+04*	1.00E+04*	1.00E+04*	5.00E+03
Organometallics		•	1.465.00	1.000 0.45	4.000 00	
		1.48E+03	1.46E+03	1.00E+04*	4.90E+03	
2.21E+01		2.21E+01	2.105.01	1.06E+02	7.250.01	
	סומו	Z.ZIE+UI	2.18E+U1	1.90E+U2	7.33E+U1	<u> </u>

Notes

- (2) Soil saturation limits for petroleum carbon ranges taken from the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, CCME 2000.
- (3) * indicates a 'ceiling limit' concentration.
- (4) *** indicates that the Csat value exceeds the 'ceiling limit' therefore the RBRG applies.

⁽¹⁾ For Dioxins, the cleanup levels in USEPA Office of Solid Waste and Emergency Response (OSWER) Directive of 1998 have been adopted. The OSWER Directive value of 1 ppb for residential use has been applied to the scenarios of "Urban Residential", "Rural Residential", and "Public Parks", while the low end of the range of values for industrial, 5 ppb, has been applied to the scenario of "Industrial".

Table 2.2
Risk-Based Remediation Goals (RBRGs) for Groundwater and Solubility Limit

Risk Buseu 1		d Remediation Goals for Gro	· · · · · · · · · · · · · · · · · · ·	JIIIIt
Chemical	Urban Residential (mg/L)	Rural Residential (mg/L)	Industrial (mg/L)	Solubility Limit (mg/L)
VOCs				
Acetone	1.00E+04*	1.00E+04*	1.00E+04*	***
Benzene	3.86E+00	1.49E+00	5.40E+01	1.75E+03
Bromodichloromethane	2.22E+00	8.71E-01	2.62E+01	6.74E+03
2-Butanone	1.00E+04*	1.00E+04*	1.00E+04*	***
Chloroform	9.56E-01	3.82E-01	1.13E+01	7.92E+03
Ethylbenzene	1.02E+03	3.91E+02	1.00E+04*	1.69E+02
Methyl tert-Butyl Ether	1.53E+02	6.11E+01	1.81E+03	***
Methylene Chloride	1.90E+01	7.59E+00	2.24E+02	***
Styrene	3.02E+03	1.16E+03	1.00E+04*	3.10E+02
Tetrachloroethene	2.50E-01	9.96E-02	2.95E+00	2.00E+02
		-		
Toluene	5.11E+03	1.97E+03	1.00E+04*	5.26E+02
Trichloroethene	1.21E+00	4.81E-01	1.42E+01	1.10E+03
Xylenes (Total) SVOCs	1.12E+02	4.33E+01	1.57E+03	1.75E+02
	1.005 . 04*	7.005 . 02	1.000.04*	4.24F : 00
Acenaphthene	1.00E+04*	7.09E+03	1.00E+04*	4.24E+00
Acenaphthylene	1.41E+03	5.42E+02	1.00E+04*	3.93E+00
Anthracene	1.00E+04*	1.00E+04*	1.00E+04*	4.34E-02
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene	5.39E-01	2.03E-01	7.53E+00	1.50E-03
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene				
bis-(2-Ethylhexyl)phthalate				
Chrysene	5.81E+01	2.19E+01	8.12E+02	1.60E-03
Dibenzo(a,h)anthracene	3.61L101	2.17E101	0.12L102	1.00L-03
Fluoranthene	1.00E+04*	1.00E+04*	1.00E+04*	2.06E-01
		-		
Fluorene	1.00E+04*	1.00E+04*	1.00E+04*	1.98E+00
Hexachlorobenzene	5.89E-02	2.34E-02	6.95E-01	6.20E+00
Indeno(1,2,3-cd)pyrene				
Naphthalene	6.17E+01	2.37E+01	8.62E+02	3.10E+01
Phenanthrene	1.00E+04*	1.00E+04*	1.00E+04*	1.00E+00
Phenol				
Pyrene	1.00E+04*	1.00E+04*	1.00E+04*	1.35E-01
Metals				
Antimony				
Arsenic				
Barium				
Cadmium				
Chromium III				
Chromium VI		+		
Cobalt				
Copper				
Lead				+
Manganese	4 0CE 01	1.045.01	(70E : 00	
Mercury	4.86E-01	1.84E-01	6.79E+00	
Molybdenum				
Nickel				
Tin				
Zinc				
Dioxins / PCBs				
Dioxins (I-TEQ)				
PCBs	4.33E-01	1.71E-01	5.11E+00	3.10E-02
Petroleum Carbon Ranges				
C6 - C8	8.22E+01	3.17E+01	1.15E+03	5.23E+00
C9 - C16	7.14E+02	2.76E+02	9.98E+03	2.80E+00
C17 - C35	1.28E+01	4.93E+00	1.78E+02	2.80E+00
Other Inorganic Compound		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.7.02.02	2.002100
Cyanide, free		I		
Organometallics				
TBTO		I		
סומו	ļ			

Notes:

- (1) Blank indicates that RBRG could not be calculated because the toxicity or physical / chemical values were unavailable, or the condition of Henry's Law Constant>10⁻⁵ was not met for the inhalation pathway.
- (2) Water solubilities for Petroleum Carbon Range aliphatic C9-C16 and greater than C16 generally are considered to be effectively zero and therefore the aromatic solubility for C9-C16 is used.
- (3) * indicates a 'ceiling limit' concentration.
- (4) *** indicates that the solubility limit exceeds the 'ceiling limit' therefore the RBRG applies.

Annex E

Selected Photographs from the Site Investigation

Photo 1 – CCPP

Photo 3 – Breaking of concrete surface at S1/S2

Photo 5 – Excavation Pit

Photo 7 – Breaking of concrete surface at S11/S12

Photo 2 – Conveyor belt connecting the CCPP unit with the material recovery building

Photo 4 – Excavation at S3/S4

Photo 6 – Identification of soil profile by contractor