APPENDIX 4.3

Detail Calculation of Ground-borne Noise

Appendix 4.3 Detail Calculation for Ground-borne Noise (Rock Drill) Ref. No.: GNSR 1 Location: Lai Chi Yuen Tsuen

	Description	Data	Remark	Reference
	Reference Distance, R _o (m)	5.5		
Source S	Strength			
	Peak Particle Velocity, PPV (mm/s) at Ro	0.536	From site vibration measurement for the	[1] - Section 7 and Appendix 7.1
			Kowloon Southern Link Project	
	Vibration Amplitude, L _{v,rms} (mm/s)	0.13	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	103	$L_v = 20 \text{ x} \log (L_{v,rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	29.8		
Attenua	tion			
b)	Distance Attenuation, C _{dist} (dB)	-15	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x } \log \left[\left(L_{\text{v.rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5		[3]
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels Cnoise	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicte	d Ground-borne Noise Level	38 dB(A)	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

References:

[1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report

[2] Federal Transit Administration's manual

[3] Transportation Noise Reference Book

Appendix 4.3 Detail Calculation for Ground-borne Noise (Rock Drill) Ref. No.: GNSR 2 Location: Mui Wo Kau Tsuen

	Description	Data	Remark	Reference
	Reference Distance, $R_o(m)$	5.5		
Source S	trength			
	Peak Particle Velocity, PPV (mm/s) at Ro	0.536	From site vibration measurement for the	[1] - Section 7 and Appendix 7.1
			Kowloon Southern Link Project	
	Vibration Amplitude, L _{v,rms} (mm/s)	0.13	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	103	$L_v = 20 \text{ x} \log (L_{v,rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	539.0		
Attenuat	ion			
b)	Distance Attenuation, C _{dist} (dB)	-40	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x} \log \left[\left(L_{\text{v.rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5		[3]
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels Cnoise	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicte	d Ground-borne Noise Level	$13 \text{ dB}(\overline{\text{A}})$	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

References:

[1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report

[2] Federal Transit Administration's manual

[3] Transportation Noise Reference Book

Appendix 4.3 Detail Calculation for Ground-borne Noise (Rock Drill) Ref. No.: GNSR 3 Location: Lung Mei Hang

	Description	Data	Remark	Reference		
	Reference Distance, R _o (m)	5.5				
Source S	Source Strength					
	Peak Particle Velocity, PPV (mm/s) at R _o	0.536	From site vibration measurement for the	[1] - Section 7 and Appendix 7.1		
			Kowloon Southern Link Project			
	Vibration Amplitude, L _{v,rms} (mm/s)	0.13	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]		
a)	Vibration Velocity Level, L _v (VdB)	103	$L_v = 20 \text{ x} \log (L_{v,rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3		
	Distance of NSR from the Tunnel Boring Machine, R (m)	226.9				
Attenua	tion					
b)	Distance Attenuation, C _{dist} (dB)	-32	$C_{dist} = -20 \text{ x} \log (\text{R} / \text{R}_{o})$	[2]		
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x } \log \left[\left(L_{\text{v.rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3		
			no soil damping was applied as vibration through			
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5		[3]		
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3		
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]		
g)	Conversion Factors from Floor Vibration to Noise Levels Cnoise	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1		
			= 0.5 for typical residential room			
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]		
			Typical frequency (peak 30 to 60 Hz): -35 dB;			
			High frequency (60 to 100 Hz): -20 dB			
Predicte	d Ground-borne Noise Level	21 dB(A)	$= a) + b) + c) + d) + e) + \overline{f} + g) + h)$			

References:

[1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report

[2] Federal Transit Administration's manual

[3] Transportation Noise Reference Book

Appendix 4.3 Detail Calculation for Ground-borne Noise (Rock Drill) Ref. No.: GNSR 4 Location: Lung Mei Tsuen

	Description	Data	Remark	Reference		
	Reference Distance, R _o (m)	5.5				
Source S	Source Strength					
	Peak Particle Velocity, PPV (mm/s) at R _o	0.536	From site vibration measurement for the Kowloon Southern Link Project	[1] - Section 7 and Appendix 7.1		
	Vibration Amplitude, L _{v,rms} (mm/s)	0.13	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]		
a)	Vibration Velocity Level, L _v (VdB)	103	$L_v = 20 \text{ x} \log (L_{v,rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3		
	Distance of NSR from the Tunnel Boring Machine, R (m)	137.2				
Attenua	tion					
b)	Distance Attenuation, C _{dist} (dB)	-28	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]		
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x } \log \left[\left(L_{v,\text{rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3		
			no soil damping was applied as vibration through			
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5		[3]		
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3		
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]		
g)	Conversion Factors from Floor Vibration to Noise Levels C_{noise}	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1		
			= 0.5 for typical residential room			
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]		
			Typical frequency (peak 30 to 60 Hz): -35 dB;			
			High frequency (60 to 100 Hz): -20 dB			
Predicte	d Ground-borne Noise Level	25 dB(A)	= a) + b) + c) + d) + e) + f) + g) + h)			

References:

[1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report

[2] Federal Transit Administration's manual

[3] Transportation Noise Reference Book

Appendix 4.3 Detail Calculation for Ground-borne Noise (TBM) Ref. No.: GNSR 1 Location: Lai Chi Yuen Tsuen

	Description	Data	Remark	Reference
	Reference Distance, $R_o(m)$	5.5		
Source S	trength			
	Peak Particle Velocity, PPV (mm/s) at R _o	2.5	By Exptrapolation, $PPV = 28.188 \text{ R}^{-1.4103}$	[1] - Section 7 and Appendix 7.1
	Vibration Amplitude, L _{v,rms} (mm/s)	0.63	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	116	$L_v = 20 \text{ x} \log (L_{v.rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	29.8		
Attenuat	ion			
b)	Distance Attenuation, C _{dist} (dB)	-15	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x} \log \left[\left(L_{\text{v,rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5	Single Family Residencies	[3] - Figure 16.10
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels C_{noise}	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicted	d Ground-borne Noise Level	52 dB(A)	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

- [1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report
- [2] Federal Transit Administration's manual
- [3] Transportation Noise Reference Book
- [4] High-speed Ground Transportation Noise and Vibration Impact Assessment, US Department of Transportation, Oct 05

Appendix 4.3 Detail Calculation for Ground-borne Noise (TBM) Ref. No.: GNSR 2 Location: Mui Wo Kau Tsuen

	Description	Data	Remark	Reference
	Reference Distance, $R_o(m)$	5.5		
Source S	trength			
	Peak Particle Velocity, PPV (mm/s) at R _o	2.5	By Exptrapolation, $PPV = 28.188 \text{ R}^{-1.4103}$	[1] - Section 7 and Appendix 7.1
	Vibration Amplitude, L _{v,rms} (mm/s)	0.63	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	116	$L_v = 20 \text{ x} \log (L_{v.ms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	539.0		
Attenuat	ion			
b)	Distance Attenuation, C _{dist} (dB)	-40	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x} \log \left[\left(L_{v,\text{rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5	Single Family Residencies	[3] - Figure 16.10
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels C_{noise}	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicte	d Ground-borne Noise Level	27 dB(A)	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

- [1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report
- [2] Federal Transit Administration's manual
- [3] Transportation Noise Reference Book
- [4] High-speed Ground Transportation Noise and Vibration Impact Assessment, US Department of Transportation, Oct 05

Appendix 4.3 Detail Calculation for Ground-borne Noise (TBM) Ref. No.: GNSR 3 Location: Lung Mei Hang

	Description	Data	Remark	Reference
	Reference Distance, $R_o(m)$	5.5		
Source S	trength			
	Peak Particle Velocity, PPV (mm/s) at R _o	2.5	$PPV = 28.188 \text{ R}^{-1.4103}$	[1] - Section 7 and Appendix 7.1
	Vibration Amplitude, L _{v,rms} (mm/s)	0.63	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	116	$L_v = 20 \text{ x} \log (L_{v.rms} / L_{ref}), L_{ref} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	226.9		
Attenuat	ion			
b)	Distance Attenuation, C _{dist} (dB)	-32	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x} \log \left[\left(L_{v,\text{rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5	Single Family Residencies	[3] - Figure 16.10
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels C_{noise}	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicted	d Ground-borne Noise Level	34 dB(A)	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

- [1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report
- [2] Federal Transit Administration's manual
- [3] Transportation Noise Reference Book
- [4] High-speed Ground Transportation Noise and Vibration Impact Assessment, US Department of Transportation, Oct 05

Appendix 4.3 Detail Calculation for Ground-borne Noise (TBM) Ref. No.: GNSR 4 Location: Lung Mei Tsuen

	Description	Data	Remark	Reference
	Reference Distance, $R_o(m)$	5.5		
Source S	trength			
	Peak Particle Velocity, PPV (mm/s) at R _o	2.5	$PPV = 28.188 R^{-1.4103}$	[1] - Section 7 and Appendix 7.1
	Vibration Amplitude, L _{v,rms} (mm/s)	0.63	$L_{v,rms} = PPV / Crest Factor, Crest Factor = 4$	[2]
a)	Vibration Velocity Level, L _v (VdB)	116	$L_v = 20 \text{ x} \log (L_{v \text{ rms}} / L_{\text{ref}}), L_{\text{ref}} = 10^{-6} \text{ mm/s}$	[1] - Section 7 and Apppendix 7.2.3
	Distance of NSR from the Tunnel Boring Machine, R (m)	137.2		
Attenuat	ion			
b)	Distance Attenuation, C _{dist} (dB)	-28	$C_{dist} = -20 \text{ x } \log (\text{R} / \text{R}_{o})$	[2]
c)	Soil Damping Loss, C _{damping} (dB)	0	$C_{\text{damping}} = -20 \text{ x} \log \left[\left(L_{\text{v,rms}} \left(1 - e^{-2\pi f \eta R/2C} \right) \right) / 10^{-6} \right],$	[1] - Section 7 and Appendix 7.2.3
			no soil damping was applied as vibration through	
d)	Coupling Loss into Building Foundation, C _{building} (dB)	-3.5	Single Family Residencies	[3] - Figure 16.10
e)	Coupling Loss from bed rock to pile	0	Village House without Pile Support	[1] - Ref. F of Appendix 7.2.3
f)	Coupling Loss per Floor, C _{floor} (dB)	0	Residential Units are located at ground floor	[3]
g)	Conversion Factors from Floor Vibration to Noise Levels Cnoise	-26	$L_p - L_v = -10 \log h_1 \log RT - 20, h = 2.2 \& RT$	[1] - Section 7 and Apppendix 7.1
			= 0.5 for typical residential room	
h)	Conversion from Vibration Level (VdB) to A-weighted Noise (dBA	-20	Low frequency (<30 Hz): -50 dB;	[4]
			Typical frequency (peak 30 to 60 Hz): -35 dB;	
			High frequency (60 to 100 Hz): -20 dB	
Predicted	d Ground-borne Noise Level	$38 dB(\overline{A})$	= a) + b) + c) + d) + e) + f) + g) + h)	ANL - 35 dB(A)

- [1] Kowloon Canton Railway Corporation Kowloon Southern Link Environmental Impact Assessment Report
- [2] Federal Transit Administration's manual
- [3] Transportation Noise Reference Book
- [4] High-speed Ground Transportation Noise and Vibration Impact Assessment, US Department of Transportation, Oct 05