

Appendix 5.9 Calculation of Emission Rates of NOx of the Project

Event	Average Time, s	Travel Distance, m	NOx Rate (Motocycle) NOx Rate (Private Vehicle) NO		IOx Rate (Ambulance / Van) NOx Rate (Composite)		Velocity, km/hr	Aging Factor	No. of Motocycles	No. of Private Vehicles	No. of Ambulance / Van	NOx
			EURO 3, g/hr/veh	EURO 3, g/hr/veh	EURO 3, g/hr/veh	EURO 3, g/hr/veh			· · · · · ·		. Γ	g/s
Idling	900				27.5		0	2.5	0	0	3	0.014323
Travelling		140	9	9	69.8	33.3	20	2.5	1	2	2	0.000810

Notes

Notes: (1) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", there is no emission factor for the Motocycle. Therefore, the emission factor of Passenger Cars in Table II.3-31 of the reference has been adopted. (2) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", the emission factor of Passenger Cars in Table II.3-31 of the reference has been adopted. (3) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", there is no emission factor for ambulance / van. Therefore, the emission factor of Heavy Duty Vehicles in Table II.3-49 has been adopted. (4) All the idling vehicles with started engines are assumed as ambulance / van for the worst case scenario because the emission factor of ambulance / van is the highest.

Source ID	X-Coodinate	Y-Coordinate	Elevation	X-distance (m)	Y-distance (m)		NOx	
Source ID	X-Coodinate	Y-Coordinate	Elevation	X-distance (m)	Y-distance (m)	Angle (with +y-axis)	g/s/m ²	
E1_Idling	842831.8	814480.0	4.8	30.24	62.43	39.87	7.58676E-06	
E1_Travelling	842831.8	814480.0	4.8	30.24	62.43	39.87	4.28978E-07	

Calculation of Idling Emission Rate

Idling Emission Factor = NOx Rate (Ambulance / Van) x (900/3600) x Aging Factor / 3600 x No. of Ambulance / Van Idling Emission Factor = 27.5 x (900/3600) x 2.5 / 3600 x 3 Idling Emission Factor = 0.014323 g/s

Calculation of NOx Rate (Composite)

NOx Rate (Composite) = NOx Rate (Motocycle) x (No. of Motocycle / Total No. of Vehicles) + NOx Rate (Private Vehicle) x (No. of Private Vehicle / Total No. of Vehicles) + NOx Rate (Ambulance / Van) x (No. of Ambulance / Van / Total No. of Vehicles) + NOx Rate (Composite) = 9 x (1 / 5) + 9 x (2 / 5) + 69.8 x (2 / 5) NOx Rate (Composite) = 33.3 g/ hr/veh

Calculation of Travelling Emission Rate

Travelling Emission Factor = NOx Rate (Composite) x Aging Factor / Velocity x (Travel Distance / 1000) x (No. of Ambulance / Motocycle + No. of Private Vehicles / Van + No. of Ambulance / Van) / 3600 Travelling Emission Factor = 33.3 x 2.5 / 20 x (140 / 1000) x (1 + 2 + 2) / 3600 Travelling Emission Factor = 0.000810 g/s

Calculation of E1_Idling

E1_Idling = Idling Emission Rate / Area of E1_Idling E1_Idling = 0.014323 / (30.24 x 62.43) E1_Idling = 7.58676E-06 g/s/m²

Calculation of E1_Travelling

E1_Travelling = Travelling Emission Rate / Area of E1_Travelling E1_Travelling = 0.000810 / (30.24 x 62.43)

E1_Travelling = 4.28978E-07 g/s/m²

Event	Average Time, s	Travel Distance, m	Turbidity Rate (Motocycle)		Turbidity Rate (Ambulance / Van)	Van) RSP Rate (Composite)	Velocity, km/hr	Conversion Factor	Aging Factor	No. of Motocycles	No. of Private Vehicles	No. of Ambulance / Van	RSP
			EURO 3, m ² /hr/veh	EURO 3, m ² /hr/veh	EURO 3, m ² /hr/veh			1g = 4.7 m ²					g/s
Idling	900				5.6		0	4.7	2.5	0	0	3	0.000621
Travelling		140	2.57	2.57	8.2	1.0	20	4.7	2.5	1	2	2	0.000025

Notes: (1) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", there is no emission factor for the Motocycle. Therefore, the emission factor of Passenger Cars in Table II.3-36 of the reference has been adopted. (2) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", the emission factor of Passenger Cars in Table II.3-36 of the reference has been adopted. (3) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", there is no emission factor of Passenger Cars in Table II.3-36 of the reference has been adopted. (3) According to the reference - "*Road Tunnels: Vehicle Emissions and Air Demand for Ventilation*", there is no emission factor of ambulance / van. Therefore, the emission factor of Heavy Duty Vehicles in Table II.3-55 has been adopted. (4) All the idling vehicles with started engines are assumed as ambulance / van for the worst case scenario because the emission factor of ambulance / van is the highest.

Source ID X-Coodinate Y-Coordinate Elevation X-distance (m) Y-distance (m) Angle (with +y-axis) g/s/n E1_Idling E1 Travellin 842831.8 842831.8 814480.0 814480.0 4.8 30.24 30.24 62.43 62.43 39.87 39.87 4.8

Calculation of Idling Emission Rate

ldling Emission Factor = Turbidity Rate (Ambulance / Van) / Conversion Factor x (900/3600) x Aging Factor / 3600 x No. of Ambulance / Van ldling Emission Factor = 5.6 / 4.7 x (900/3600) x 2.5 / 3600 x 3 ldling Emission Factor = 0.000621 g/s

Calculation of RSP Rate (Composite)

RSP Rate (Composite) = RSP Rate (Motocycle) x (No. of Motocycle / Total No. of Vehicles / Conversion Factor) + RSP Rate (Private Vehicle) x (No. of Private Vehicle / Total No. of Vehicles / Conversion Factor) + RSP Rate (Ambulance / Van) x (No. of Ambulance / Van / Total No. of Vehicles / Conversion Factor) + RSP Rate (Composite) = 2.57 x (1 / 5 / 4.7) + 2.57 x (2 / 5 / 4.7) + 8.2 x (2 / 5 / 4.7) RSP Rate (Composite) = 1.0 g/ hr/veh

Calculation of Travelling Emission Rate

Travelling Emission Factor = RSP Rate (Composite) x Aging Factor / Velocity x (Travel Distance / 1000) x (No. of Ambulance / Motocycle + No. of Private Vehicles / Van + No. of Ambulance / Van) / 3600 Travelling Emission Factor = 1.0 x 2.5 / 20 x (140 / 1000) x (1 + 2 + 2) / 3600 Travelling Emission Factor = 0.000025 g/s

Calculation of E1_Idling

E1_ldling = ldling Emission Rate / Area of E1_ldling E1_ldling = 0.000621 / (30.24 x 62.43) E1_ldling = 3.28711E-07 g/s/m²

Calculation of E1_Travelling

E1_Travelling = Travelling Emission Rate / Area of E1_Travelling E1_Travelling = 0.000025 / (30.24 x 62.43) $E1_{Travelling} = 1.32087E-08 \text{ g/s/m}^2$