Appendix 3.8A Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Eastbound)

One-way Enclosure - Normal Condition

Tunnel Parameter

Length L Cross-sectional area	= 2200	m	67 1 M ²
CIUSS-Sectional area	$A_T = 11 \times VV =$		07.1
Perimeter P	=	32.7 m	

Emission Data

Traffic Breakdown (%)	
-----------------------	--

			(70)										Heavy	Heavy		Double	
Tunnel					Non-	Non-	Non-			Light Goods	Lt Goods	Light Goods	Goods	Goods	Single Deck	Deck	
Traffic (Link					franchised	franchised	franchised	Private Light	Private Ligh	t Vehicles<=2	Vehicles 2.5	 Vehicles>3. 	Vehicles<=1	Vehicles	Franchised	Franchised	Public Light
no.)	Traffic flow (veh/hr)	Motorcycles	Private Cars	Taxi	Bus<=6.4t	Bus 6.4-15t	Bus >15t	Bus <=3.5t	Bus >3.5t	.5t	3.5t	5t	5t	>15t	Bus	Bus	Bus
198	2463	4.70%	52.54%	14.00%	1.24%	0.89%	0.90%	0.51%	0.43%	0.29%	11.10%	6.59%	1.71%	4.85%	0.00%	0.08%	0.17%
NOx Emission	Factor (g/mile)	0.449	0.021	0.496	1.263	2.511	3.984	0.102	0.921	1.577	1.083	1.651	2.155	4.043	4.316	4.989	1.429

Total NO₂ emission rate = total NO_x emission factor x traffic flow x tunnel length x NO₂ conversion factor

where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_{χ} and 5% of NO₂/NO_{χ} for tunnel air)

Weighted NOX E.F. (g/km/veh)	=	0.406 g/km/veh	
Total NO ₂ emission factor (g/s)	=	7.63E-02 g/sec	(assuming that no operation of ventilation building)

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W /m	H /m	L/m
Motorcycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Bus <6.4t	2.5	3.5	12
Non-franchised Bus 6.4-15t	2.5	3.5	12
Non-franchised Bus >15t	2.5	3.5	12
Private Light Bus <3.5t	2	3	6.5
Private Light Bus >3.5t	2	3	6.5
PC&LGV <2.5t	2.1	1.6	5.2
LGV 2.5-3.5t	2.1	1.6	5.2
LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Bus	2	3	6.5

* No dimensions for motorcycles and non-franchised bus are provided.

* For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.

Nominal cross-sectional area $A_c = (1.7*1.5*0.047) + (1.7*1.5*0.525) + (1.7*1.5*0.14) + (2.5*3.5*0.012) + (2.5*3.5*0.009) + (2.5*3.5*0.009) + (2*3*0.005) + (2*3*0.004) + (2.1*1.6*0.003) + (2.1*1.6*0.111) + (2.1*1.6*0.111) + (2.1*1.6*0.012) + (2.5*3.5*0.012) + (2.5*3.5*0.009) + (2$

 $+(2.5^{*}4.6^{*}0.017)+(2.5^{*}4.6^{*}0.048)+(2.5^{*}3.5^{*}0)+(2.5^{*}4.6^{*}0.001)+(2^{*}3^{*}0.002)$ m²

= 3.5163

Appendix 3.8A

Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Eastbound)

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

Resisting Force by tunnel:

 $F_{c} = \frac{1}{2} \rho (V_{c} - V_{T})^{2} C_{d} A_{c} N$ $F_{T} = \frac{1}{2} \rho V_{T}^{2} (K_{in} + K_{out} + \frac{fL}{D}) A_{T}$

External Wind at the Entrance and Exit Portals:

$$F_{W} = \frac{1}{2} \rho C_{W} (V_{W} \cos \theta)^{2} A_{T}$$

where	ρ	=	Air density	=	= 1.2 kg/m ³	
	V _C	=	Velocity of vehicle, m/s			
	V_{T}	=	Velocity of air flow in tunnel, m/s			
	C_{d}	=	Vehicle drag coefficient	=	= 0.645	
	A_{C}	=	Vehicle frontal area	=	$= 3.51626309 \text{ m}^2$	
	Ν	=	No. of vehicles in tunnel			
	K _{in}	=	Inlet loss coefficient	=	= 0.5	
	K _{out}	=	Outlet loss coefficient	=	= 1.0	
	f	=	Tunnel friction factor	=	= 0.0155	
	L	=	Length of tunnel	=	= 2200 m	
	D	=	Hydraulic diameter of tunnel =	$4A_T/P =$	P = 8.20795107 m, P is the Perimeter of tunnel	
	A_{T}	=	Cross-sectional area of tunnel	=	= 67.1 m ²	
	C_{W}	=	External wind coefficient	=	= 0.3	
,	V _{W(ref)}	=	Velocity of wind at SE Station	=	= 3.19 m/s (Average of 2011 Southeast Kowloon Weather Station data	a)
	0	_	Angle of the wind velocity component parallel to	the readure		

(1)

 θ = Angle of the wind velocity component parallel to the roadway

 $a V_T^2 + b V_T + c = 0$

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance :
$$F_C - F_T - F_W = 0$$

Solving the equation,

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For normal traffic condition

traffic flow Q		0.684166667	veh/s		
Vehicle speed V _C	=	80	km/h		
	=	22.22222222	m/s		
Number of vehicles in tunnel N	=	QL/V _C			
	=	67.7325			
Solving for V_T by equation (1)					
а	=	-225.80			
b	=	-6827.40			
С	=	75655.21			
tunnel air flow velocity \boldsymbol{V}_{T}	=	8.622330065	m/sec	or	-38.858726 m/sec (rejected)
Inside tunnel concentration NO ₂	= =		nel air flow x tu ug/m ³	innel cross	s-sectional area)

Appendix 3.8ACalculation of In-Tunnel Air Quality
for TKO-LT Tunnel (Eastbound)

One-way Enclosure - Worst Condition

Tunnel Parameter

Length L	= 2200	m	
Cross-sectional are	ea A _T = H x W =		67.1 m ²
Perimeter P	=	32.7 m	

Emission Data

Traffic Breakdown (%)

		Traine Breakdown	(70)										Heavy	Heavy	
Tunnel					Non-	Non-	Non-			Light Goods	Lt Goods	Light Goods	Goods	Goods	Single Deck
Traffic (Link			Private		franchised	franchised	franchised	Private Light	Private Light	Vehicles<=2	Vehicles 2.5-	Vehicles>3.	Vehicles<=1	Vehicles	Franchised
no.)	Traffic flow (veh/hr)	Motorcycles	Cars	Taxi	Bus<=6.4t	Bus 6.4-15t	Bus >15t	Bus <=3.5t	Bus >3.5t	.5t	3.5t	5t	5t	>15t	Bus
198	2463	4.7%	52.5%	14.0%	1.2%	0.9%	0.9%	0.5%	0.4%	0.3%	11.1%	6.6%	1.7%	4.8%	0.0%
NOx Emission	Factor (g/mile)	0.69	0.04	0.86	3.39	6.82	10.85	0.16	1.71	2.20	1.55	4.17	5.32	9.77	11.29

Total NO₂ emission rate = total NO_X emission factor x traffic flow x tunnel length x NO₂ conversion factor

where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5%

of NO_X and 5% of NO₂/NO_X for tunnel air)

Weighted NOX E.F. (g/km/veh)	=	0.877 g/km/veh
Total NO ₂ emission factor (g/s)	=	1.65E-01 g/sec

Assuming fully operation of ventilation building removes 60% air pollutant, Total NO₂ emission factor (g/s) = 6.60E-02 g/sec

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

* No dimensions for motorcycles and non-franchised bus are provided.

* For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car

and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.

Nominal cross-sectional area $A_{C} = (1.7^{*}1.5^{*}0.042) + (1.7^{*}1.5^{*}0.496) + (1.7^{*}1.5^{*}0.175) + (2.5^{*}3.5^{*}0.002) + (2.5^{*}3.5^{*}0.031) + (2.5^{*}3.5^{*}0.003) + (2^{*}3^{*}0.003) + (2.1^{*}1.6^{*}0) + (2.1^{*}1.6^{*}0.108) + (2.1^{*}1.6^{*}0.035) + (2.5^{*}4.6^{*}0.093) + (2.5^{*}4.6^{*}0.008) + (2.5^{*}3.5^{*}0) + (2.5^{*}3.5^{*}0.031) + (2.5^{*}3.5^{*}0.003) + (2.5^{*}3.5^{*}0.031) + (2.$

 $= 3.5163 \text{ m}^2$

Double Deck Franchised Public Light Bus Bus 0.1% 0.2% 12.69 1.64 Appendix 3.8A

Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Eastbound)

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

Resisting Force by tunnel:

 $F_{c} = \frac{1}{2} \rho (V_{c} - V_{T})^{2} C_{d} A_{c} N$ $F_{T} = \frac{1}{2} \rho V_{T}^{2} (K_{in} + K_{out} + \frac{fL}{D}) A_{T}$

External Wind at the Entrance and Exit Portals:

$$F_{W} = \frac{1}{2} \rho C_{W} (V_{W} \cos \theta)^{2} A_{T}$$

where	ρ	=	Air density	=	1.2	2 kg/m ³
	Vc	=	Velocity of vehicle, m/s			5
	V _T	=	Velocity of air flow in tunnel, m/s			
	C_{d}	=	Vehicle drag coefficient	=	0.645	5
	A_{C}	=	Vehicle frontal area	=	3.51626309	9 m ²
	Ν	=	No. of vehicles in tunnel			
	K _{in}	=	Inlet loss coefficient	=	0.5	5
	K _{out}	=	Outlet loss coefficient	=	1.0	0
	f	=	Tunnel friction factor	=	0.0155	5
	L	=	Length of tunnel	=	2200	0 m
	D	=	Hydraulic diameter of tunnel =	$4A_T/P =$	8.20795107	7 m, P is the Perimeter of tunnel
	A _T	=	Cross-sectional area of tunnel	=	67.1	1 m ²
	C _W	=	External wind coefficient	=	0.3	3
١	/W(ref)	=	Velocity of wind at SE Station	=	3.19	m/s (Average of 2011 Southeast Kowloon Weather Station data)
	θ	=	Angle of the wind velocity component parallel	to the roa	idway	

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance : $F_C - F_T - F_W = 0$ (1)

 $a V_T^2 + b V_T + c = 0$

Solving the equation,

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For congested traffic condition

	10 km/h 2.77777778 m/s (4.6*0.05)+(4.6*0.53)+(4.6*0.14)+(12*0.01)+(12*0.01)+(12*0.01)+(6.5*0.01)+(6.5*0)+(5.2*0)+(5.2*0.11)+(5.2*0.07)+(16*0.02)+(16*0.05)+(12*0)+(12*0)+(6.5*0) 5.707118641 m
distance between vehicle =	
head to head length =	6.707118641 m
Number of vehicles per lane =	
Number of lanes =	1
Number of vehicles in tunnel N =	328.009704
b =	364.51 -4132.90 5535.30
tunnel air flow velocity V_T =	1.551672704 m/sec or 9.7867233 m/sec (rejected)
Inside tunnel concentration = NO ₂ =	emission rate / (tunnel air flow x tunnel cross-sectional area) 634 ug/m ³

Appendix 3.8A **Calculation of In-Tunnel Air Quality** for TKO-LT Tunnel (Eastbound)

Overall Concentrations (TKO-LT Tunnel (Eastbound))

Four assessment points (ASRs InA1-InA4) at the boundary of the enclosure are chosen. (Locations refer to drawings attached in Appendix 3.9) Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the eight assessment points is assumed to be the background concentration inside the proposed enclosure section.

Elevation	NO ₂ Conce	ntrations (ug/m³) at Various Levels	5
	(mAG)	NO ₂	
InEA1	0.0	234	
InEA1	4.8	237	
InEA1	9.5	234	
InEA2	0.0	217	
InEA2	4.8	219	
InEA2	9.5	222	
InEA3	0.0	246	
InEA3	4.8	241	
InEA3	9.5	240	
InEA4	0.0	241	
InEA4	4.8	240	
InEA4	9.5	240	

Therefore, the NO_2 background concentration inside the enclo	osure is		
Total Maximum NO ₂ concentration inside deckover on			
Road P2 (Normal Speed)	=	132 + 246	
	=	378	ug/m ³
Total Maximum NO ₂ concentration inside deckover on			
Road P2 (Worse Case)	=	634 + 246	
	=	880	ug/m ³

246 ug/m³

Appendix 3.8B Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Westbound)

One-way Enclosure - Normal Condition

Tunnel Parameter

Length L	= 2200	m	2
Cross-sectional area	$A_T = H \times W =$		67.1 ^{m²}
Perimeter P	=	32.7 m	

Emission Data

Traffic Breakdown	(%)	
-------------------	-----	--

		Traffic Dreakdown	(70)										11			Daubla	
													Heavy	Heavy		Double	
Tunnel					Non-	Non-	Non-			Light Goods	Lt Goods	Light Goods	Goods	Goods	Single Deck	Deck	
Traffic (Link					franchised	franchised	franchised	Private Light	Private Light	Vehicles<=2	Vehicles 2.5	 Vehicles>3. 	Vehicles<=1	Vehicles	Franchised	Franchised	Public Light
no.)	Traffic flow (veh/hr)	Motorcycles	Private Cars	Taxi	Bus<=6.4t	Bus 6.4-15t	Bus >15t	Bus <=3.5t	Bus >3.5t	.5t	3.5t	5t	5t	>15t	Bus	Bus	Bus
198	1200	3.3%	36.9%	9.8%	0.9%	0.6%	0.6%	0.4%	0.3%	0.6%	21.3%	12.7%	3.3%	9.3%	0.0%	0.0%	0.0%
NOx Emission	Factor (g/mile)	0.449	0.021	0.496	1.263	2.511	3.984	0.102	0.921	1.577	1.083	1.651	2.155	4.043	4.316	4.989	1.429

Total NO₂ emission rate = total NO_x emission factor x traffic flow x tunnel length x NO₂ conversion factor

where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5% of NO_{χ} and 5% of NO₂/NO_{χ} for tunnel air)

Weighted NOX E.F. (g/km/veh)	=	0.636 g/km/veh	
Total NO ₂ emission factor (g/s)	=	5.83E-02 g/sec	(assuming that no operation of ventilation building)

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

	W /m	H /m	L/m
Motorcycles	1.7	1.5	4.6
Petrol PC &LGV	1.7	1.5	4.6
Taxi	1.7	1.5	4.6
Non-franchised Bus <6.4t	2.5	3.5	12
Non-franchised Bus 6.4-15t	2.5	3.5	12
Non-franchised Bus >15t	2.5	3.5	12
Private Light Bus <3.5t	2	3	6.5
Private Light Bus >3.5t	2	3	6.5
PC&LGV <2.5t	2.1	1.6	5.2
LGV 2.5-3.5t	2.1	1.6	5.2
LGV >3.5t	2.1	1.6	5.2
HGV<15t	2.5	4.6	16
HGV>15t	2.5	4.6	16
Single Deck Franchised Buses	2.5	3.5	12
Double Deck Franchised Buses	2.5	4.6	12
Public Light Bus	2	3	6.5

* No dimensions for motorcycles and non-franchised bus are provided.

* For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.

Nominal cross-sectional area $A_{C} = (1.7^{*}1.5^{*}0.033) + (1.7^{*}1.5^{*}0.369) + (1.7^{*}1.5^{*}0.098) + (2.5^{*}3.5^{*}0.009) + (2.5^{*}3.5^{*}0.006) + (2.5^{*}3.5^{*}0.006) + (2.1^{*}1.6^{*}0.003) + (2.1^{*}1.6^{*}0.006) + (2.1^{*}1.6^{*}0.0213) + (2.1^{*}1.6^{*}$

+(2.5*4.6*0.033)+(2.5*4.6*0.093)+(2.5*3.5*0)+(2.5*4.6*0)+(2*3*0) m²

= 4.1128

Appendix 3.8B

Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Westbound)

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

Resisting Force by tunnel:

$$F_{c} = \frac{1}{2} \rho (V_{c} - V_{T})^{2} C_{d} A_{c} N$$
$$F_{T} = \frac{1}{2} \rho V_{T}^{2} (K_{in} + K_{out} + \frac{fL}{D}) A_{T}$$

External Wind at the Entrance and Exit Portals:

$$F_w = \frac{1}{2} \rho C_w (V_w \cos \theta)^2 A_T$$

where	ρ	=	Air density	=	1.2 kg/m ³	
	V _C	=	Velocity of vehicle, m/s			
	V_{T}	=	Velocity of air flow in tunnel, m/s			
	\mathbf{C}_{d}	=	Vehicle drag coefficient	=	0.645	
	A_{C}	=	Vehicle frontal area	=	4.11278653 m ²	
	Ν	=	No. of vehicles in tunnel			
	K _{in}	=	Inlet loss coefficient	=	0.5	
	K _{out}	=	Outlet loss coefficient	=	1.0	
	f	=	Tunnel friction factor	=	0.0155	
	L	=	Length of tunnel	=	2200 m	
	D	=	Hydraulic diameter of tunnel =	$4A_T/P =$	8.20795107 m, P is th	ne Perimeter of tunnel
	A_{T}	=	Cross-sectional area of tunnel	=	67.1 m ²	
	C_{W}	=	External wind coefficient	=	0.3	
,	V _{W(ref)}	=	Velocity of wind at SE Station	=	3.19 m/s (Av	erage of 2011 Southeast Kowloon Weather Station data)
	θ	=	Angle of the wind velocity component parallel to the	ne roadwa	1	

(1)

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance :
$$F_C - F_T - F_W = 0$$

Solving the equation,

$$a V_T^2 + b V_T + c = 0$$

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D}) A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For normal traffic condition

traffic flow Q Vehicle speed V _C Number of vehicles in tunnel N	= =	0.333333333 veh/s 80 km/h 22.22222222 m/s QL/V _c		
Number of vehicles in turner N	=	33		
Solving for V_T by equation (1)	_	00		
b	=	-291.88 -3890.70 43025.11		
tunnel air flow velocity V_{T}	=	7.185314718 m/sec	or	-20.515239 m/sec (rejected)
Inside tunnel concentration NO ₂	= =	emission rate / (tunnel air flow 121 ug/m ³	v x tunnel cross	-sectional area)

Appendix 3.8BCalculation of In-Tunnel Air Quality
for TKO-LT Tunnel (Westbound)

One-way Enclosure - Worst Condition

Tunnel Parameter

Length L	= 2200	m	
Cross-sectional are	ea A _T = H x W =		67.1 m ²
Perimeter P	=	32.7 m	

Emission Data

Traffic Breakdown (%)

		Tranio Dicaldown	(70)										Heavy	Heavy	
Tunnel					Non-	Non-	Non-			Light Goods	Lt Goods	Light Goods	Goods	Goods	Single Deck
Traffic (Link			Private		franchised	franchised	franchised	Private Light	Private Light	Vehicles<=2	Vehicles 2.5	Vehicles>3.	Vehicles<=1	Vehicles	Franchised
no.)	Traffic flow (veh/hr)	Motorcycles	Cars	Taxi	Bus<=6.4t	Bus 6.4-15t	Bus >15t	Bus <=3.5t	Bus >3.5t	.5t	3.5t	5t	5t	>15t	Bus
198	1200	3.3%	36.9%	9.8%	0.9%	0.6%	0.6%	0.4%	0.3%	0.6%	21.3%	12.7%	3.3%	9.3%	0.0%
NOx Emission	Factor (g/mile)	0.69	0.04	0.86	3.39	6.82	10.85	0.16	1.71	2.20	1.55	4.17	5.32	9.77	11.29

Total NO₂ emission rate = total NO_X emission factor x traffic flow x tunnel length x NO₂ conversion factor

where conversion factor = 12.5% (including tailpipe NO_2 emission taken as 7.5%

of NO_X and 5% of NO₂/NO_X for tunnel air)

Weighted NOX E.F. (g/km/veh)	=	1.381 g/km/veh
Total NO ₂ emission factor (g/s)	=	1.27E-01 g/sec

Assuming fully operation of ventilation building removes 60% air pollutant, Total NO₂ emission factor (g/s) = 5.06E-02 g/sec

Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

Motorcycles Petrol PC &LGV Taxi Non-franchised Bus <6.4t Non-franchised Bus <6.4-15t Non-franchised Bus >15t Private Light Bus <3.5t Private Light Bus >3.5t PC&LGV <2.5t LGV 2.5-3.5t LGV >3.5t HGV<15t HGV>15t Single Deck Franchised Buses	W /m 1.7 1.7 2.5 2.5 2.5 2.5 2.1 2.1 2.1 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	H /m 1.5 1.5 3.5 3.5 3.5 3.5 3.5 3.5 1.6 1.6 1.6 4.6 4.6 3.5 4.6	L /m 4.6 4.6 12 12 12 6.5 6.5 5.2 5.2 5.2 16 16 12 12
Double Deck Franchised Buses			. –
Public Light Bus	2	3	6.5

 * No dimensions for motorcycles and non-franchised bus are provided.

* For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car

and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.

Nominal cross-sectional area $A_{C} = (1.7^{*}1.5^{*}0.042) + (1.7^{*}1.5^{*}0.496) + (1.7^{*}1.5^{*}0.175) + (2.5^{*}3.5^{*}0.002) + (2.5^{*}3.5^{*}0.031) + (2.5^{*}3.5^{*}0.003) + (2^{*}3^{*}0.003) + (2.1^{*}1.6^{*}0) + (2.1^{*}1.6^{*}0.108) + (2.1^{*}1.6^{*}0.035) + (2.5^{*}4.6^{*}0.093) + (2.5^{*}4.6^{*}0.008) + (2.5^{*}3.5^{*}0) + (2.5^{*}3.5^{*}0.031) + (2.5^{*}3.5^{*}0.003) + (2.5^{*}3.5^{*}0.031) + (2.$

 $= 4.1128 m^2$

Double Deck Franchised Public Light Bus Bus 0.0% 0.0% 12.69 1.64 Appendix 3.8B

Calculation of In-Tunnel Air Quality for TKO-LT Tunnel (Westbound)

Tunnel Airflow

For Uni-directional Traffic,

Push Force by vehicles:

Resisting Force by tunnel:

 $F_{c} = \frac{1}{2} \rho (V_{c} - V_{T})^{2} C_{d} A_{c} N$ $F_{T} = \frac{1}{2} \rho V_{T}^{2} (K_{in} + K_{out} + \frac{fL}{D}) A_{T}$

External Wind at the Entrance and Exit Portals:

$$F_w = \frac{1}{2} \rho C_w (V_w \cos \theta)^2 A_T$$

where	ρ	=	Air density	=	1.2	kg/m	1 ³
	Vc	=	Velocity of vehicle, m/s			0	
	V_{T}	=	Velocity of air flow in tunnel, m/s				
	C_{d}	=	Vehicle drag coefficient	=	0.645		
	A_{C}	=	Vehicle frontal area	=	4.11278653	m²	
	Ν	=	No. of vehicles in tunnel				
	K_{in}	=	Inlet loss coefficient	=	0.5		
	K _{out}	=	Outlet loss coefficient	=	1.0		
	f	=	Tunnel friction factor	=	0.0155		
	L	=	Length of tunnel	=	2200	m	
	D	=	Hydraulic diameter of tunnel =	$4A_T/P =$	8.20795107	m, P	is the Perimeter of tunnel
	A_{T}	=	Cross-sectional area of tunnel	=	67.1	m²	
	Cw	=	External wind coefficient	=	0.3		
v	V _{W(ref)}	=	Velocity of wind at SE Station	=	3.19	m/s	(Average of 2011 Southeast Kowloon Weather Station data)
	θ	=	Angle of the wind velocity component paralle	I to the roa	adway		

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.

Force balance : $F_C - F_T - F_W = 0$ (1)

Solving the equation,

 $a V_T^2 + b V_T + c = 0$

where

$$a = C_d A_c N - (K_{in} + K_{out} + \frac{fL}{D})A_T$$

$$b = -2 C_d A_c N V_c$$

$$c = C_d A_c N V_c^2 - C_w V_w^2 A_T$$

For congested traffic condition

Vehicle speed Vc = =	10 km/h 2.777777778 m/s	
average length of vehicle = =	0.44400074	01) + (12*0.01) + (12*0.01) + (6.5*0) + (6.5*0) + (5.2*0.01) + (5.2*0.21) + (5.2*0.13) + (16*0.03) + (16*0.09) + (12*0) + (12*0) + (6.5*0) + (6.
distance between vehicle =	= 1 m	
head to head length =	= 7.414402671 m	
Number of vehicles per lane =	= 296.7197895	
Number of lanes =	= 1	
Number of vehicles in tunnel N =	= 296.7197895	
Solving for V_T by equation (1)		
a =	= 407.71	
b =	-4372.90	
C =	= 5868.63	
tunnel air flow velocity V_T =	= 1.5726284 m/sec or	9.15302407 m/sec
		(rejected)
Inside tunnel concentration =	emission rate / (tunnel air flow x tunnel	cross-sectional area)
NO ₂ =		
Z		

Appendix 3.8B **Calculation of In-Tunnel Air Quality** for TKO-LT Tunnel (Westbound)

Overall Concentrations (TKO-LT Tunnel (Westbound))

Four assessment points (ASRs InA1-InA4) at the boundary of the enclosure are chosen. (Locations refer to drawings attached in Appendix 3.9) Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the eight assessment points is assumed to be the background concentration inside the proposed enclosure section.

Elevation	NO ₂ Concentrations (ug/m ³) at Various Levels			
	(mAG)	NO ₂		
InWE1	0.0	242		
InWE1	4.8	242		
InWE1	9.5	242		
InWE2	0.0	243		
InWE2	4.8	243		
InWE2	9.5	244		
InWE3	0.0	216		
InWE3	4.8	219		
InWE3	9.5	226		
InWE4	0.0	216		
InWE4	4.8	217		
InWE4	9.5	218		

Therefore, the NO ₂ background concentration inside the enclos	ure is		
Total Maximum NO ₂ concentration inside deckover on			
Road P2 (Normal Speed)	=	121 + 244	
	=	365	ug/m ³
Total Maximum NO ₂ concentration inside deckover on			
Road P2 (Worse Case)	=	480 + 244	
	=	724	ug/m ³

244 ug/m³