


## Normal Condition

| Tunnel Parameter |  |  |
| :--- | :--- | :--- |
| Tunnel length $(\mathrm{m}), \mathrm{L}$ | $=$ | 200 |
| Tunnel height $(\mathrm{m}, \mathrm{H}$ | $=$ | 7 |
| Tunnel width $(\mathrm{m}), \mathrm{W}$ | $=$ | 22 |
| Tunnel size $(\mathrm{m} 2)$, At | $=$ | $\mathrm{H}^{*} \mathrm{~W}$ |
|  | 154 |  |
| Equivalent diameter $(\mathrm{m})$, dt | $=$ | $\left(4^{*} \mathrm{At} / \pi\right)^{\wedge} 0.5$ |
| Effective length of the tunnel $(\mathrm{m})$, Le | $=$ | 14.00282313 |
|  | $\mathrm{~L}+2^{*} 3^{*} \mathrm{dt}$ |  |
|  |  | 284.0169388 |

## Emission Data

Tunnel traffic (Link no.) Traffic flow (veh/hr)
Traffic Breakdown

| Tunnel traffic (Link no.) T | Traffic flow (veh/hr) |  | Motorcycles | Private Cars | Taxi | Bus<=6.4t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 113 | 1078 |  | 4.3\% | 60.0\% | 20.9\% | 0.9\% |
| 114 | 1025 |  | 4.2\% | 59.1\% | 20.6\% | 1.0\% |
| Total | 2104 | no. vehicle | 46 | 647 | 226 | 10 |
|  |  |  | 43 | 606 | 211 | 10 |
| NOX Emission Factor (g/mile) |  | 80km/hr | 0.45 | 0.02 | 0.50 | 1.27 |
|  |  | $50 \mathrm{~km} / \mathrm{hr}$ | 0.75 | 0.05 | 0.60 | 1.62 |

Non-
franchised
Bus.4-15t

Non-Non-
franchised
Bus $>15 \mathrm{t}$

Private Light Private Light
Bus $<=3.5 \mathrm{t}$ Private
Bus $>3$ Light Goods Lt Goods
$\begin{array}{ll}\text { Lt Goods } \\ \text { Vehicles 2.5- Light Goods } \\ 3.5 \mathrm{t} & \text { Vehicles }>3.5 \mathrm{t}\end{array}$
Heavy Goods
Vehicles>3
$2.7 \%$ ehicles<=15 Heavy Goods
Vehicles >15t Single Deck Franchise

Double Deck Franchise
Bus
$0.1 \%$
$0.1 \%$ 1
1 5.03 5.03
5.96
$\begin{array}{ll}\mathrm{NO}_{2} \text { emission factor per unit length }(\mathrm{g} / \mathrm{m} / \mathrm{s}) \text {, } \mathrm{w} & = \\ & = \\ 12.5 \% * \text { Weight } \mathrm{NO}_{\mathrm{x}} \text { E.F. * Traffic flow }\end{array}$
$=\quad 2.34 \mathrm{E}-05$

## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

Motorcycles
Petrol PC \&LG
Taxi
Non-franchised Bus <6.4t
Non-franchised Bus 6.4-15t
Non-franchised Bus >15
Private Light Bus $<3.5 \mathrm{t}$
Private Light Bus >3.5t
PC\&LGV <2.5t
GV $2.5-3.5$
HGV<15t
HGV>15t
Single Deck Franchised Buses
Double Deck Franchised Buses
Public Light Bus

| W | H |
| :--- | :--- |
| 1.7 | 1.5 |
| 1.7 | 1.5 |
| 1.7 | 1.5 |
| 2.5 | 3.5 |
| 2.5 | 3.5 |
| 2.5 | 3.5 |
| 2 | 3 |
| 2 | 3 |
| 2.1 | 1.6 |
| 2.1 | 1.6 |
| 2.1 | 1.6 |
| 2.5 | 4.6 |
| 2.5 | 4.6 |
| 2.5 | 3.5 |
| 2.5 | 4.6 |
| 2 | 3 |

*No dimensions for motor cycles and non-franchised buses are provided.
*For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as private car
and the dimension of non-franchised buses are assumed to be the same as single deck franchised buses.
Nominal cross-sectional area $\left(m^{2}\right) \quad=\quad\left[\left(1.7^{*} 1.5^{*} 89.45\right)+\left(1.7^{*} 1.5^{*} 1252.36\right)+\left(1.7^{*} 1.5^{*} 437.05\right)+\left(2.5^{*} 3.5^{*} 20.41\right)+\left(2.5^{*} 3.5^{*} 14.63\right)+\left(2 \cdot 5^{*} 3.5^{*} 14.88\right)+\left(2^{*} 3^{*} 7.35\right)+\left(2^{*} 3^{*} 6.09\right)+\left(2 \cdot 1^{*} 1.6^{*} 2 \cdot 65\right)+\left(2 \cdot 1^{*} 1.6^{*} 101.19\right)+\left(2.1^{*} 1.6^{*} 60.06\right)\right.$ $+\left(2.5^{*} 4.6^{*} 23.92\right)+\left(2.5^{*} 4.6^{*} 67.82\right)+\left(2.5^{*} 3.5^{*} 0.09\right)+\left(2.5^{*} 4.6^{*} 2.42\right)+\left(2^{*} 3^{*} 3.14\right) / 2104$ $+(2.5$
3.19


## Worse Condition

## (Deckover TKO-P2)

| Tunnel Parameter |  |  |
| :---: | :---: | :---: |
| Tunnel length ( $m$ ), L | = | 200 |
| Tunnel height ( $m$ ), H | $=$ | 7 |
| Tunnel width (m), w | = | 22 |
| Tunnel size (m2), At | $=$ | $\mathrm{H}^{*} \mathrm{~W}$ |
| Equivalent diameter (m) dt | $=$ | 154 <br> $\left(4^{*} \mathrm{At} / \pi\right)^{\wedge} 0.5$ |
|  |  | 14.00282313 |
| Effective length of the tunnel ( $m$ ), Le | = | $\mathrm{L}+2^{+} 3^{+} \mathrm{dt}$ |

## Emission Data



emission factor per unit length ( $\mathrm{g} / \mathrm{m} / \mathrm{s}$ ), w

## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as

## Motorcycles

Petrol PC

| Taxi |
| :--- |
| Non-franchised Bus $<6.4$ |

Non-franchised Bus 6.4-15
Non-franchised Bus >15t
Private Light Bus $<3.5$
C $\&$ LGV $<2.5 t$
LGL $2.5-3.5 \mathrm{t}$
-GV > 3.5 st
$\mathrm{HGV}<15 \mathrm{t}$
$\mathrm{HGV}>15 \mathrm{t}$
Single Deck Franchised Buses
Double Deck Franchised Buse
ublic Light Bus

| W | H | L |
| :--- | :--- | :--- |
| 1.7 | 1.5 | 4.6 |
| 1.7 | 1.5 | 4.6 |
| 1.7 | 1.5 | 4.6 |
| 1.7 | 3.5 | 12 |
| 2.5 | 3.5 | 12 |
| 2.5 | 3.5 | 12 |
| 2.5 | 3.5 | 6.5 |
| 2 | 3 | 6.5 |
| 2 | 3 | 6.5 |
| 2.1 | 1.6 | 5.2 |
| 2.1 | 1.6 | 5.2 |
| 2.1 | 1.6 | 5.2 |
| 2.5 | 4.6 | 1.6 |
| 2.5 | 4.6 | 16 |
| 2.5 | 3.5 | 12 |
| 2.5 | 4.6 | 12 |
| 2 | 3 | 12 |

No dimensions for motor cycles and non-franchised buses are provided.
For the purpose of this study the dimensions of motor cycles and taxi are assumed to be the same as private car
For the purpose of this study, the dimensions of motor cycles and taxi are assumed to be the same as priver
and the dimension of non-ranchised buses are assumed to be the same as single deck franchised buses.
Nominal cross-sectional area $\left(\mathrm{m}^{2}\right) \quad=\quad\left[\left(1.7{ }^{*} 1.5{ }^{*} 89.45\right)+\left(1.77^{*} 1.5^{*} 1252.36\right)+\left(1.7{ }^{*} 1.5{ }^{*} 437.05\right)+\left(2.5{ }^{*} 3.5{ }^{*} 20.41\right)+\left(2.5^{*} 3.5^{*} \times 4.63\right)+\left(2.5^{*} 3.5^{*} 14.88\right)+\left(2^{*} 3^{*} 7.35\right)+\left(2^{*} 3^{*} 6.09\right)+\left(2.1^{*} 1.6^{*} 2.65\right)+\left(2.1^{*} 1.6^{*} 101.19\right)+\left(2.1^{*} 1.6^{*} 60.06\right)\right.$ $+\left(2.5^{4} 4.6^{*} 23.92\right)+\left(2.5^{*} 4.6^{*} 67.82\right)+\left(2.5^{*} 3.5^{*} 0.09\right)+\left(2.5^{*} 4.6^{*} 2.42\right)+\left(2^{*} 3^{*} 3.14\right) / 2104$

```
Appendix 3.9A
Calculation of In-Tunnel Air Quality
```


## Worse Condition



## Appendix 3.9A Calculation of In-Tunnel Air Quality for Proposed Deckover on Road P2

Overall Concentrations (Deckover TKO-P2)

Four assessment points (ASRs $\ln A 1-\operatorname{In} A 4)$ at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated.
The highest concentration among the eight assessment points is assumed to be the background
concentration inside the proposed enclosure section.

| Elevation | $\mathbf{N O}_{2}$ Concentrations $\left(\mathbf{u g} / \mathbf{m}^{\mathbf{3}}\right)$ at Various Levels <br> $(\mathbf{m A G})$ |  |
| :---: | :---: | :---: |
| $\mathrm{NO}_{2}$ |  |  |

Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$212 \mathrm{ug} / \mathrm{m}^{3}$
Total Maximum $\mathrm{NO}_{2}$ concentration inside deckover on Road P2 (Normal Speed) = $5+212$

Total Maximum $\mathrm{NO}_{2}$ concentration inside deckover on Road P2 (Worse Case)
$=\quad 5+212$
$=\quad 217$
$u g / m^{3}$
$=\quad 42+212$
$=254$ $u g / m^{3}$

## One-way Enclosure - Normal Condition <br> (Portal C)

Tunnel Parameter

| Length $L$ | $=200$ | m |  |
| :--- | :--- | :--- | :--- |
| Height H | $=8$ | m |  |
| Width W | $=7$ | m |  |
| Cross-sectional area $\mathrm{A}_{T}=$ | $=7 \times \mathrm{W}=$ |  | $56 \mathrm{~m}^{\text {L }}$ |
| Perimeter $P$ | $=$ | 30 m |  |

## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  |  |  |  | Non- | Non- | Non- |  |  | Light Goods | Lt Goods | Light Goods | Heavy Goods | Heavy Goods | Single Deck | Double Deck |  |
| Traffic (Link |  |  |  |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5- | - Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public Light |
| no.) | Traffic flow (veh/hr) | Motorcycles | Private Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | . 5 t | 3.5t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 190 | 355 | 3.6\% | 50.6\% | 17.7\% | 1.1\% | 0.8\% | 0.8\% | 0.4\% | 0.3\% | 0.3\% | 9.8\% | 5.8\% | 2.3\% | 6.6\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.75 | 0.05 | 0.60 | 1.62 | 3.25 | 5.17 | 0.20 | 1.95 | 2.02 | 1.02 | 2.02 | 2.57 | 4.73 | 5.28 | 5.96 | 2.00 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{\mathrm{x}}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$
of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air

```
Weighted NOX E.F. (g/km/veh) = 0
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus > 15 t | 2.5 | 3.5 | 12 |
| Private Light Bus $<3.5$ t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $A_{C}=\left(1.7^{*} 1.5^{*} 0.036\right)+\left(1.7^{*} 1.5^{*} 0.506\right)+\left(1.7^{*} 1.5^{*} 0.177\right)+\left(2.5^{*} 3.5^{*} 0.011\right)+\left(2.5^{*} 3.5^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0.008\right)+\left(2^{*} 3^{*} 0.004\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2.1^{*} 1.6^{*} 0.003\right)+\left(2.1^{*} 1.6^{*} 0.098\right)+\left(2.1^{*} 1.6^{*} 0.058\right)$ $+\left(2.5^{*} 4.6^{*} 0.023\right)+\left(2.5^{*} 4.6^{*} 0.066\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$
$=3.6643$
$\mathrm{m}^{2}$

## Tunnel Airflow

For Uni-directional Traffic
Push Force by vehicles:

$$
\begin{aligned}
& F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N \\
& F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
\end{aligned}
$$

Resisting Force by tunnel:

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$\begin{aligned} & =\text { Air density } \\ V_{c} & =\text { Velocity of vehicle, } \mathrm{m} / \mathrm{s}\end{aligned}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$C_{C_{d}}=$ Vehicle drag coefficient
$\mathrm{A}_{\mathrm{c}}=$ Vehicle frontal area
$\mathrm{N}=\mathrm{No}$. of vehicles in tunnel
$\mathrm{K}_{\text {in }}=$ Inlet loss coefficient
$\mathrm{K}_{\text {out }}=$ Outlet loss coefficient
$\begin{array}{ll} & =\text { Tunnel friction fac } \\ & =\text { Length of tunnel }\end{array}$
D $=$ Hydraulic diameter of tunnel =
$\mathrm{A}_{T}=$ Cross-sectional area of tunnel
$C_{w}=$ External wind coefficient
$\mathrm{V}_{\mathrm{W} \text { (ref) }}=$ Velocity of wind at SE Station
$\theta=$ Angle of the wind velocity component parallel to the roadway $=$
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}{ }^{2}+b V_{T}+c=$
where

\[\)| $a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$ |
| :--- |
| $b=-2 C_{d} A_{c} N V_{c}$ |
| $c=C_{d} A_{c} N V_{c}{ }^{2}-C_{w} V_{w}{ }^{2} A_{T}$ |

\]

For normal traffic condition
$\left.\begin{array}{rlrl}\text { traffic flow } Q & = & 0.098545418 \mathrm{veh} / \mathrm{s} \\ \text { Vehicle speed } \mathrm{V}_{\mathrm{C}} & = & 50 \mathrm{~km} / \mathrm{h} \\ & = & 13.88888889 \mathrm{~m} / \mathrm{s}\end{array}\right)$
$\begin{aligned} \text { Inside tunnel concentration } & = & \text { emission rate } /(\text { tunnel air flow } \times \text { tunnel cross-sectional area) } \\ \mathrm{NO}_{2} & = & 13 \mathrm{ug} / \mathrm{m}^{3}\end{aligned}$
$\mathrm{NO}_{2}$

P:|6009813111.011Deliverables\EIA|EIA Report|Final|Sec 3 Air/Appendices\Appendix 3-9B (LT).xls

| Appendix 3.9B | Calculation of In-Tunnel Air Quality <br> for Portal C (Lam Tin) |
| :--- | :--- |

## One-way Enclosure - Worst Condition <br> unnel Parameter

| Length L | $=200$ |  |  |
| :--- | :--- | ---: | :--- |
| Height H | $=8$ | m |  |
| Width W | $=8$ | m |  |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}$ | $=\mathrm{H} \times \mathrm{W}=$ | m |  |
| Perimeter P | $=$ | 30 m | $56 \mathrm{~m}^{2}$ |
|  |  |  |  |

## Emission Data



Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{\times}$emission factor x traffic flow $\times$ tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$ of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air)

```
Weighted NOX E.F. (g/km/veh) 
Total NO2 emission factor (g/s) = 2.42E-03 g/sec
```


## Qenicle

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $\mathrm{A}_{\mathrm{C}}=\left(1.7^{*} 1.5^{*} 0.042\right)+\left(1.7^{*} 1.5^{*} 0.496\right)+\left(1.7^{* 1} .5^{*} 0.175\right)+\left(2.5^{*} 3.5^{*} 0.002\right)+\left(2.5^{*} 3.55^{*} 0.031\right)+\left(2.5^{*} 3.5^{*} 0.001\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0\right)+\left(2.1^{*} 1.6^{*} 0.108\right)+\left(2.1^{*} 1.6^{*} 0.035\right)$ $+\left(2.5^{*} 4.6 * 0.093\right)+\left(25^{*} 4.6^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$
$=3.6643 \mathrm{~m}^{2}$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunne:

$$
F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {ith }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
$$

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$V_{C}=$ Velocity of vehicle, $m / s$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{C}=$ Vehicle frontal area
$\begin{aligned} & =\text { No. of vehicles in tu } \\ \mathrm{K}_{\text {in }} & =\text { Inlet loss coefficient }\end{aligned}$
K Outletloss coefficie
$\begin{aligned} \mathrm{K}_{\text {out }} & =\text { Outlet loss coefficien } \\ \mathrm{f} & =\text { Tunnel friction factor }\end{aligned}$
$=$ Length of tunnel
D $=$ Hydraulic diameter of tunnel $=$
$A_{T}=$ Cross-sectional area of tunne
$C_{w}=$ External wind coefficient

$\theta=$ Angle of the wind velocity component parallel to the roadway
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance :

$$
F_{C}-F_{T}-F_{W}=0
$$

(1)

Solving the equation

$$
a V_{T}^{2}+b V_{T}+c=0
$$

where

$$
\begin{aligned}
& a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T} \\
& b=-2 C_{d} A_{c} N V_{c}
\end{aligned}
$$

$$
c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}
$$

## For congested traffic condition

Vehicle speed $\mathrm{V}_{\mathrm{c}}=2777777778 \quad 10 \mathrm{~km} / \mathrm{h}$
average length of vehicle $=\left(4.6^{*} 0.04\right)+\left(4.6^{*} 0.51\right)+\left(4.6^{*} 0.18\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(6.5^{*} 0\right)+\left(6.5^{*} 0\right)+\left(5.2^{*} 0\right)+\left(5.2^{*} 0.1\right)+\left(5.2^{*} 0.06\right)+\left(16^{*} 0.02\right)+\left(16^{*} 0.07\right)+\left(12^{*} 0\right)+\left(12^{*} 0\right)+\left(6.5^{*} 0\right)$
distance between vehicle $=\quad 5.919486811 \mathrm{~m}$
head to head length $=$
$=$$\quad 6.919486811 \mathrm{~m}$
Number of vehicles per lane $=\quad 6.919486811 \mathrm{~m}$
$\begin{aligned} & \text { Number of lanes } \\ & \text { Number of vehicles in tunnel } \mathrm{N}=\end{aligned} \quad 28.90387762$
Solving for $V_{T}$ by equation (1)

$$
\begin{aligned}
& a=-38.94 \\
& b=-379.52 \\
&
\end{aligned}
$$

$$
c=356.15
$$

tunnel air flow velocity $\mathrm{V}_{\mathrm{T}}=\quad 0.862167436 \mathrm{~m} / \mathrm{sec} \quad$ or $\quad-10.609329 \mathrm{~m} / \mathrm{sec}$

Inside tunnel concentration $=$ emission rate $/$ (tunnel air flow $\times$ tunnel cross-sectional area)
$\mathrm{NO}_{2}$ $50 \mathrm{ug} / \mathrm{m}$

P:|6009813111.01 1Deliverables|EIA|EIA Report|Final|Sec 3 AirlAppendices|Appendix 3-9B (LT).x|s

## Appendix 3.9B Calculation of In-Tunnel Air Quality for Portal C (Lam Tin)

## Overall Concentrations

 (Portal C)Four assessment points (ASRs $\operatorname{InC} 1-\operatorname{lnC} 4)$ at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the four assessment points is assumed to be the background
concentration inside the proposed enclosure section.

| Elevation | $\mathrm{NO}_{2}$ Concentrations $\left(\mathrm{ug} / \mathbf{m}^{3}\right)$ <br> $($ mAG $)$ |  |
| :--- | :---: | :---: |
|  | $\mathrm{NO}_{2}$ |  |
| InC1 | 0.0 | 226 |
| InC1 | 4.0 | 226 |
| InC1 | 8.0 | 225 |
| InC2 | 0.0 | 226 |
| InC2 | 4.0 | 226 |
| InC2 | 8.0 | 225 |
| InC3 | 0.0 | 226 |
| InC3 | 4.0 | 226 |
| InC3 | 8.0 | 225 |
| InC4 | 0.0 | 226 |
| InC4 | 4.0 | 226 |
| InC4 | 8.0 | 225 |
|  |  |  |

Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$226 \mathrm{ug} / \mathrm{m}^{3}$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at
Portal C (Normal Speed)
$=\quad 13+226$
$=239$
$\mathrm{ug} / \mathrm{m}^{3}$
Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at Portal C (Worst Case)
$=\quad 50+226$
$=276 \mathrm{ug} / \mathrm{m}^{3}$

## One-way Enclosure - Normal Condition

Tunnel Parameter

| Length L | $=100$ | m |  |
| :--- | :--- | ---: | :--- |
| Height H | $=8$ | m |  |
| Width W | $=9$ | m |  |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}=$ | $=\mathrm{H} \times \mathrm{W}=$ |  |  |
| Perimeter P | $=$ | 34 m |  |
|  |  |  |  |

## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  |  |  |  | Non- | Non- | Non- |  |  | Light Goods | Lt Goods | Light Goods | Heavy Goods | Heavy Goods | Single Deck | Double Deck |  |
| Traffic (Link |  |  |  |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5 | - Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public Light |
| no.) | Traffic flow (veh/hr) | Motorcycles | Private Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | . 5 t | 3.5 t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 191 | 1725 | 4.4\% | 61.4\% | 21.4\% | 1.3\% | 1.0\% | 1.0\% | 0.5\% | 0.4\% | 0.1\% | 3.4\% | 2.0\% | 0.8\% | 2.3\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.75 | 0.05 | 0.60 | 1.62 | 3.25 | 5.17 | 0.20 | 1.95 | 2.02 | 1.02 | 2.02 | 2.57 | 4.73 | 5.28 | 5.96 | 2.00 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{x}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$
of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air

```
Weighted NOX E.F. (g/km/veh) = 0.317 g/km/veh
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as

|  | $\mathrm{W} / \mathrm{m}$ | $\mathrm{H} / \mathrm{m}$ | $\mathrm{L} / \mathrm{m}$ |
| :--- | :--- | :--- | :--- |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus $<6.4 \mathrm{t}$ | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus >3.5t | 2 | 3 | 6.5 |
| PC \&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV $>15 \mathrm{t}$ |  | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 2.5 | 3.5 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 12 |
|  |  |  |  |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $A_{c}=\left(1.71 .5^{*} 0.044\right)+\left(1.7^{*} 1.5^{*} 0.614\right)+\left(1.7^{*} 1.5^{*} 0.214\right)+\left(2.5^{*} 3.5^{*} 0.013\right)+\left(2.5^{*} 3.5^{*} 0.01\right)+\left(2.5^{*} 3.5^{*} 0.01\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2^{*} 3^{*} 0.004\right)+\left(2.1^{*} 1.6^{*} 0.001\right)+\left(2.1^{*} 1.6^{*} 0.034\right)+\left(2.1^{1} 1.6^{*} 0.02\right)$ $+\left(2.5^{*} 4.6^{0.008)+\left(2.5^{*} 4.6^{*} 0.023\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)(2 .) ~(1) ~}\right.$
$=3.1071 \quad \mathrm{~m}^{2}$

## Tunnel Airflow

For Uni-directional Traffic
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunnel: $\quad F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$
External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$\begin{aligned} & =\text { Air density } \\ V_{c} & =\text { Velocity of vehicle, } \mathrm{m} / \mathrm{s}\end{aligned}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$C_{C_{d}}=$ Vehicle drag coefficient
$A_{c}=$ Vehicle frontal area
$\mathrm{N}=$ No. of vehicles in tunnel
$\mathrm{K}_{\text {in }}=$ Inlet loss coefficient
$\mathrm{K}_{\text {out }}=$ Outlet loss coefficient
$L=$ Tunnel friction fact
D $=$ Hydraulic diameter of tunnel $=$
$A_{T}=$ Cross-sectional area of tunnel
$C_{w}=$ External wind coefficient
$V_{W(r e f)}=$ Velocity of wind at SE Station
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
a Angle of the wind velocity component parallel to the roadwa $=$
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}{ }^{2}+b V_{T}+c=0$
where

\[\)| $a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$ |
| :--- |
| $b=-2 C_{d} A_{c} N V_{c}$ |
| $c=C_{d} A_{c} N V_{c}{ }^{2}-C_{w} V_{w}{ }^{2} A_{T}$ |

\]

$=\quad 0.645$
$=3.10710049 \mathrm{~m}^{2}$
$\begin{array}{ll}= & 0.5\end{array}$
$\begin{array}{lr} & 1.0 \\ = & 0.0155\end{array}$
$=\quad 100 \mathrm{~m}$
$4 \mathrm{~A}_{\mathrm{T}} / \mathrm{P}=8.47058824 \mathrm{~m}, \mathrm{P}$ is the Perimeter of tunnel
$=\quad 72 \mathrm{~m}$
$=0.3$
$19 \mathrm{~m} / \mathrm{s}$ (Average of 2011 Southeast Kowloon Weather Station data)

For normal traffic condition
$\left.\begin{array}{rlrl}\text { traffic flow } Q & = & 0.479249508 \mathrm{veh} / \mathrm{s} \\ \text { Vehicle speed } \mathrm{V}_{\mathrm{C}} & = & 50 \mathrm{~km} / \mathrm{h} \\ & = & 13.88888889 \mathrm{~m} / \mathrm{s} \\ \text { QL/ } \mathrm{V}_{\mathrm{C}}\end{array}\right]$
$\begin{aligned} & \text { Inside tunnel concentration }=\text { emission rate } / \text { (tunnel air flow } \times \text { tunnel cross-sectional area) } \\ & \mathrm{NO}_{2}= \\ & 11 \mathrm{ug} / \mathrm{m}^{3}\end{aligned}$ $\mathrm{NO}_{2}$ $11 \mathrm{ug} / \mathrm{m}^{3}$

P:|6009813111.01\Deliverables\EIA|EIA Report|Final|Sec 3 Air|Appendices\Appendix 3-9C (LT).xls

## Appendix 3.9C Calculation of In-Tunnel Air Quality or Portal D (Lam Tin)

\section*{One-way Enclosure - Worst Condition (Portal D) <br> Tunnel Paramete <br> | Length $L$ | $=100$ | m |
| :--- | :--- | ---: |
| Height H | $=8$ | m |
| Width W | $=9$ | m |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}$ | $=\mathrm{H} \times \mathrm{W}=$ |  |
| Perimeter P | $=$ | 34 m |}

## mission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  | , |  |  |  |  |  |  |  | Light Goods | Lt Goods | Light Goods | Heavy Goods | Heavy Goods | Single Deck | Double Deck |  |
| Traffic (Link |  |  | Private |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5- | - Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public |
| no.) | Traffic flow (veh/hr) | Motorcycles | Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus >3.5t | . 5 t | 3.5 t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 191 | 1725 | 4.4\% | 61.4\% | 21.4\% | 1.3\% | 1.0\% | 1.0\% | 0.5\% | 0.4\% | 0.1\% | 3.4\% | 2.0\% | 0.8\% | 2.3\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.94 | 0.06 | 0.87 | 3.41 | 6.87 | 10.93 | 0.25 | 2.65 | 2.87 | 1.58 | 4.20 | 5.36 | 9.84 | 11.37 | 12.78 | 2.29 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{\mathrm{x}}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$ of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air)

```
Weighted NOX E.F. (g/km/veh) =
Total NO}\mp@subsup{O}{2}{}\mathrm{ emission factor (g/s) = 3.38E-03 g/sec
```


## venice Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private ca
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $\mathrm{A}_{\mathrm{C}}=\left(1.7^{*} 1.5^{*} 0.042\right)+\left(1.7^{*} 1.5^{*} 0.496\right)+\left(1.7^{* 1} .5^{*} 0.175\right)+\left(2.5^{*} 3.5^{*} 0.002\right)+\left(2.5^{*} 3.55^{*} 0.031\right)+\left(2.5^{*} 3.5^{*} 0.001\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0\right)+\left(2.1^{*} 1.6^{*} 0.108\right)+\left(2.1^{*} 1.6^{*} 0.035\right)$ $+\left(2.5^{*} 4.6^{*} 0.093\right)+\left(25^{*} 4.6^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$
$=3.1071 \mathrm{~m}^{2}$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunne:

$$
F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {ith }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
$$

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$V_{C}=$ Velocity of vehicle, $m / s$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{C}=$ Vehicle frontal area
$\mathrm{K}_{\mathrm{K}}=\mathrm{N}$.
$K_{\text {u }}=$ Outlet loss coefficie
$\begin{aligned} \mathrm{K}_{\text {out }} & =\text { Outlet loss coefficien } \\ \mathrm{f} & =\text { Tunnel friction factor }\end{aligned}$
$=$ Length of tunnel
$=$ Hydraulic diameter of tunnel $=$
$\mathrm{A}_{\mathrm{T}}=$ Cross-sectional area of tunne
$\mathrm{C}_{\mathrm{w}}=$ External wind coefficient
$=0.645$
0.645
$=3.10710049 \mathrm{~m}^{2}$
ef) $=$ Velocity of wind at SE Station
$=\quad 0.5$
$\mathrm{V}_{\mathrm{W} \text { (ref) }}=$ Velocity of wind at SE Station $\quad=$
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}^{2}+b V_{T}+c=0$
where

$$
\begin{aligned}
& a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T} \\
& b=-2 C_{d} A_{c} N V_{c}
\end{aligned}
$$

$$
c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}
$$

## For congested traffic condition

Vehicle speed $\mathrm{V}_{\mathrm{c}}=2777777778 \quad 10 \mathrm{~km} / \mathrm{h}$
average length of vehicle $=\left(4.6^{*} 0.04\right)+\left(4.6^{*} 0.61\right)+\left(4.6^{*} 0.21\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(6.5^{*} 0\right)+\left(6.5^{*} 0\right)+\left(5.2^{*} 0\right)+\left(5.2^{*} 0.03\right)+\left(5.2^{*} 0.02\right)+\left(16^{*} 0.01\right)+\left(16^{*} 0.02\right)+\left(12^{*} 0\right)+\left(12^{*} 0\right)+\left(6.5^{*} 0\right)$
distance between vehicle $=\quad 5.247437833 \mathrm{~m}$
distance between vehicle
head to head length $\quad \begin{aligned} & 6.247437833 \mathrm{~m}\end{aligned}$
$\begin{array}{ll}\text { head to head length }= & 6.247437833 \\ \text { Number of vehicles per lane }= & 16.00656184\end{array}$
Number of vehicles in tunnel $\mathrm{N}=\quad 16.00656184$
Solving for $V_{T}$ by equation (1)

$$
\begin{aligned}
& a=-89.10 \\
& b=-178.21 \\
& c=27.71
\end{aligned}
$$

tunnel air flow velocity $\mathrm{V}_{\mathrm{T}}=0.145003724 \mathrm{~m} / \mathrm{sec} \quad$ or $\quad-2.145232 \mathrm{~m} / \mathrm{sec}$

Inside tunnel concentration $=$ emission rate $/$ (tunnel air flow x tunnel cross-sectional area)
$\mathrm{NO}_{2}$ $323 \mathrm{ug} / \mathrm{m}^{3}$

P:|6009813111.011Deliverables|EIA|EIA Report|Final|Sec 3 AirlAppendices\Appendix 3-9C (LT).xls

## Appendix 3.9C Calculation of In-Tunnel Air Quality <br> for Portal D (Lam Tin)

## Overall Concentrations

 (Portal D)Four assessment points (ASRs $\operatorname{InD1} 1 \operatorname{lnD} 4$ ) at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the four assessment points is assumed to be the background
concentration inside the proposed enclosure section.

| Elevation | $\mathbf{N O}_{2}$ Concentrations $\left(\mathbf{u g} / \mathbf{m}^{\mathbf{3}}\right)$ <br> $($ mAG $)$ |  |
| :--- | :---: | :---: |
|  | $\mathrm{NO}_{2}$ |  |
| InD1 | 0.0 | 249 |
| InD1 | 4.0 | 252 |
| InD1 | 8.0 | 259 |
| InD2 | 0.0 | 247 |
| InD2 | 4.0 | 246 |
| InD2 | 8.0 | 245 |
| InD3 | 0.0 | 250 |
| InD3 | 4.0 | 249 |
| InD3 | 8.0 | 248 |
| InD4 | 0.0 | 249 |
| InD4 | 4.0 | 249 |
| InD4 | 8.0 | 248 |

Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$259 \mathrm{ug} / \mathrm{m}^{3}$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at
Portal D (Normal Speed)
$=\quad 11+259$
$=270 \mathrm{ug} / \mathrm{m}^{3}$
Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at Portal D (Worst Case)
$=\quad 323+259$
$=582 \mathrm{ug} / \mathrm{m}^{3}$

## One-way Enclosure - Normal Condition

Tunnel Parameter
$m$
$m$

| Length L | $=160$ | m |  |
| :--- | :--- | ---: | :--- |
| Height H | $=8$ | m |  |
| Width W | $=7$ | m |  |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}=$ | $=\mathrm{H} \times \mathrm{W}=$ |  |  |
| Perimeter P | $=$ | 30 m |  |
|  |  |  |  |

## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  |  |  |  | Non- | Non- | Non- |  |  | Light Goods | Lt Goods | Light Goods | Heavy Goods | Heavy Goods | Single Deck | Double Deck |  |
| Traffic (Link |  |  |  |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5 | - Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public Light |
| no.) | Traffic flow (veh/hr) | Motorcycles | Private Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | . 5 t | 3.5t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 192 | 1082 | 4.0\% | 55.5\% | 19.4\% | 1.2\% | 0.9\% | 0.9\% | 0.4\% | 0.4\% | 0.2\% | 6.9\% | 4.1\% | 1.6\% | 4.6\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.75 | 0.05 | 0.60 | 1.62 | 3.25 | 5.17 | 0.20 | 1.95 | 2.02 | 1.02 | 2.02 | 2.57 | 4.73 | 5.28 | 5.96 | 2.00 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{x}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$
of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air

```
Weighted NOX E.F. (g/km/veh) =
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  |  | $\mathrm{W} / \mathrm{m}$ | $\mathrm{H} / \mathrm{m}$ |
| :--- | :--- | :--- | :--- |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus $<6.4 \mathrm{t}$ | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus $>3.5 \mathrm{t}$ | 2 | 3 | 6.5 |
| PC $\&$ LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |
|  |  |  |  |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $A_{C}=\left(1.7^{*} 1.5^{*} 0.04\right)+\left(1 . *^{*} 1.5^{*} 0.555\right)+\left(1.7^{*} 1.5^{*} 0.194\right)+\left(2.5^{*} 3.5^{*} 0.012\right)+\left(2.5^{*} 3.5^{*} 0.009\right)+\left(2.5^{*} 3.5^{*} 0.009\right)+\left(2^{*} 3^{*} 0.004\right)+\left(2^{*} 3^{*} 0.004\right)+\left(2.1^{*} 1.6^{*} 0.002\right)+\left(2.1^{*} 1.6^{*} 0.069\right)+\left(2.1^{*} 1.6^{*} 0.041\right)$ $+\left(2.5^{*} 4.6^{0} 0.016\right)+\left(2.5^{*} 4.6^{*} 0.046\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$

[^0]
## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunnel: $\quad F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$
External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$\mathrm{V}_{\mathrm{c}}=$ Air density $=$ Velocity of vehicle, $\mathrm{m} / \mathrm{s}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$C_{d}=$ Vehicle drag coefficient
$A_{c}=$ Vehicle frontal area
$\mathrm{N}=$ No. of vehicles in tunnel
$\mathrm{K}_{\text {in }}=$ Inlet loss coefficient
$\mathrm{K}_{\text {out }}=$ Outlet loss coefficient
$L=$ Lunnel friction fact
D $=$ Hydraulic diameter of tunnel $=$
$A_{T}=$ Cross-sectional area of tunnel
$\mathrm{C}_{w}=$ External wind coefficient
$V_{W(r e f)}=$ Velocity of wind at SE Station
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$=0.645$
$=3.40825581 \mathrm{~m}^{2}$
$=\quad 0.5$
1.0
$=$
0.0155
$=\quad 160 \mathrm{~m}$
$4 A_{T} / P=7.46666667 \mathrm{~m}, \mathrm{P}$ is the Perimeter of tunne
$=\quad 56 \mathrm{~m}^{2}$
$=\quad 0.3$

- $=3.19 \mathrm{~m} / \mathrm{s}$ (Average of 2011 Southeast Kowloon Weather Station data)

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}^{2}+b V_{T}+c=0$
where

\[\)| $a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$ |
| :--- |
| $b=-2 C_{d} A_{c} N V_{c}$ |
| $c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}$ |

\]

For normal traffic condition

| traffic flow Q <br> Vehicle speed $\mathrm{V}_{\mathrm{C}}$ | $0.300465461 \mathrm{veh} / \mathrm{s}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $50 \mathrm{~km} / \mathrm{h}$ |  |  |
|  | $13.88888889 \mathrm{~m} / \mathrm{s}$ |  |  |
| Number of vehicles in tunnel N | QLIV ${ }_{\text {c }}$ |  |  |
|  | 3.461362116 |  |  |
| Solving for $\mathrm{V}_{T}$ by equation (1) |  |  |  |
| $\mathrm{a}=-94.99$ |  |  |  |
| $\mathrm{b}=-211.37$ |  |  |  |
| $\mathrm{c}=1296.87$ |  |  |  |
| tunnel air flow velocity $\mathrm{V}_{T}$ | $2.746235907 \mathrm{~m} / \mathrm{sec}$ | or | $\begin{aligned} & -4.9713633 \mathrm{~m} / \mathrm{sec} \\ & \text { (rejected) } \end{aligned}$ |

$\begin{aligned} \text { Inside tunnel concentration } & = & \text { emission rate } /(\text { tunnel air flow } \times \text { tunnel cross-sectional area) } \\ \mathrm{NO}_{2} & = & 17 \mathrm{ug} / \mathrm{m}^{3}\end{aligned}$
$\mathrm{NO}_{2}$
P:|6009813111.011Deliverables\EIA|EIA Report|Final|Sec 3 Air|Appendices\Appendix 3-9D (LT).xls


## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  |  |  |  |  |  |  |  |  |  |  |  | Heavy | Heavy |  | Double |  |
|  |  |  |  |  | Non- | Non- | Non- |  |  | Light Goods | Lt Goods | Light Goods | Goods | Goods | Single Deck | Deck |  |
| Traffic (Link |  |  | Private |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5- | Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public L |
| no.) | Traffic flow (veh/hr) | Motorcycles | Cars | Taxi | Bus< $=6.4 \mathrm{t}$ | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | . 5 t | 3.5t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 192 | 1082 | 4.0\% | 55.5\% | 19.4\% | 1.2\% | 0.9\% | 0.9\% | 0.4\% | 0.4\% | 0.2\% | 6.9\% | 4.1\% | 1.6\% | 4.6\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emissio | (g/mile) | 0.94 | 0.06 | 0.87 | 3.41 | 6.87 | 10.93 | 0.25 | 2.65 | 2.87 | 1.58 | 4.20 | 5.36 | 9.84 | 11.37 | 12.78 | 2.29 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{\mathrm{x}}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$ of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air)

```
lll
toal \(\mathrm{NO}_{2}\) emission factor (gh)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private ca
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $\mathrm{A}_{\mathrm{C}}=\left(1.7^{*} 1.5^{*} 0.042\right)+\left(1.7^{*} 1.5^{*} 0.496\right)+\left(1.7^{* 1} .5^{*} 0.175\right)+\left(2.5^{*} 3.5^{*} 0.002\right)+\left(2.5^{*} 3.55^{*} 0.031\right)+\left(2.5^{*} 3.5^{*} 0.001\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0\right)+\left(2.1^{*} 1.6^{*} 0.108\right)+\left(2.1^{*} 1.6^{*} 0.035\right)$ $+\left(2.5^{*} 4.6^{*} 0.093\right)+\left(2.5^{*} 4.6^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$
$=3.4083 \mathrm{~m}^{2}$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunne:

$$
F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {ith }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
$$

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$V_{C}=$ Velocity of vehicle, $m / s$
$\mathrm{V}_{\mathrm{T}}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{C}=$ Vehicle frontal area
$\mathrm{K}_{\mathrm{K}}=\mathrm{N} .{ }^{2}$.
$K_{\text {a }}$
$\begin{aligned} \mathrm{K}_{\text {out }} & =\text { Outlet loss coefficien } \\ \mathrm{f} & =\text { Tunnel friction factor }\end{aligned}$
$=$ Length of tunnel
$=$ Hydraulic diameter of tunnel $=$
$A_{T}=$ Cross-sectional area of tunne
$C_{w}=$ External wind coefficient
$V_{w(r e f)}=$ Velocity of wind at SE Station
$=0.645$
$=3.40825581 \mathrm{~m}^{2}$
$\begin{array}{ll}= & 0.5\end{array}$
$\begin{array}{lr}= & 1.0 \\ = & 0.0155\end{array}$
$\begin{array}{ll}= & 0.0155 \\ = & 160 \mathrm{~m}\end{array}$
$4 A_{T} / P=7.46666667 \mathrm{~m}, \mathrm{P}$ is the Perimeter of tunnel
$56 \mathrm{~m}^{2}$
$3.19 \mathrm{~m} / \mathrm{s}$ (Average of 2011 Southeast Kowloon Weather Station data)
3.19
$\theta=$ Angle of the wind velocity component parallel to the roadway
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance :

$$
F_{C}-F_{T}-F_{W}=0
$$

(1)

Solving the equation,

$$
a V_{T}^{2}+b V_{T}+c=0
$$

where

$$
\begin{aligned}
& a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T} \\
& b=-2 C_{d} A_{c} N V_{c}
\end{aligned}
$$

$$
c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}
$$

## For congested traffic condition

$\begin{aligned} \text { Vehicle speed } \mathrm{Vc} & =2777777778 \\ & =10 \mathrm{~km} / \mathrm{h}\end{aligned}$
average length of vehicle $=\left(4.6^{*} 0.04\right)+\left(4.6^{*} 0.56\right)+\left(4.6^{*} 0.19\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(6.5^{*} 0\right)+\left(6.5^{*} 0\right)+\left(5.2^{*} 0\right)+\left(5.2^{*} 0.07\right)+\left(5.2^{*} 0.04\right)+\left(16^{*} 0.02\right)+\left(16^{*} 0.05\right)+\left(12^{*} 0\right)+\left(12^{*} 0\right)+\left(6.5^{*} 0\right)$ distance between vehicle $=\quad 5.610666627 \mathrm{~m}$
$\begin{array}{ll}\text { distance between vehicle }= \\ \text { head to head length }= & 6.610666627 \mathrm{~m}\end{array}$
$\begin{aligned} & \text { head to head length }= \begin{array}{l}6.610666627 \mathrm{~m} \\ \text { Number of vehicles per lane }=\end{array} \\ & 24.20330793\end{aligned}$
Number of vehicles in tunnel $\mathrm{N}=$
$=$ 24.20330793
Solving for $V_{T}$ by equation (1)

$$
\begin{aligned}
& a=-4.39 \\
& b=-295.59 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =-239.59 \\
& c=239.59 \\
& c
\end{aligned}
$$

funnel air flow velocity $\mathrm{V}_{\mathrm{T}}=\quad 0.723147978 \mathrm{~m} / \mathrm{sec} \quad$ or $\quad-6.7076277 \mathrm{~m} / \mathrm{sec}$

Inside tunnel concentration = emission rate $/$ (tunnel air flow $\times$ tunnel cross-sectional area)
$\mathrm{NO}_{2}$ $117 \mathrm{ug} / \mathrm{m}^{3}$

P:|6009813111.01 1Deliverables|EIA|EIA Report|Final|Sec 3 AirlAppendices|Appendix 3-9D (LT).xls

## Appendix 3.9D Calculation of In-Tunnel Air Quality <br> for Portal E (Lam Tin)

## Overall Concentrations

(Portal E)

Four assessment points (ASRs $\ln E 1-\operatorname{InE} 4$ ) at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated.
The highest concentration among the four assessment points is assumed to be the background
concentration inside the proposed enclosure section.


Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$248 \mathrm{ug} / \mathrm{m}^{3}$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at
Portal E (Normal Speed) = $\quad 17+248$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at Portal E (Worst Case)
$=\quad 17+248$
$=265 \mathrm{ug} / \mathrm{m}^{3}$
$=\quad 117+248$
$=366 \quad \mathrm{ug} / \mathrm{m}^{3}$

# Appendix 3.9E <br> <br> Calculation of In-Tunnel Air Quality 

 <br> <br> Calculation of In-Tunnel Air Quality}

## One-way Enclosure - Normal Condition

(Portal H)
Tunnel Parameter
m
m

| Length L | $=200$ | m |  |
| :--- | :--- | ---: | :--- |
| Height H | $=8$ | m |  |
| Width W | $=9$ | m |  |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}=$ | $=\mathrm{H} \times \mathrm{W}=$ |  |  |
| Perimeter P | $=$ | 34 m |  |
|  |  |  |  |

## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  | Heavy | Heavy |  | Double |  |
| Tunnel <br> Traffic (Link |  |  |  |  | Nonfranchised | Nonfranchised | Nonfranchised | Private Light | Private Light | Light Goods Vehicles<=2 | Lt Goods Vehicles 2.5 | Light Goods | Goods <br> Vehicles<=1 | Goods Vehicles | Single Deck Franchised | Deck Franchised | Public Light |
| no.) | Traffic flow (veh/hr) | Motorcycles | Private Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus >15t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | . 5 t | 3.5 t | 5 t | 5 t | >15t | Bus | Bus | Bus |
| 225 | 1624 | 5.3\% | 59.3\% | 15.8\% | 1.4\% | 1.0\% | 1.0\% | 0.6\% | 0.5\% | 0.2\% | 6.8\% | 4.0\% | 1.1\% | 3.0\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.64 | 0.04 | 0.59 | 1.65 | 3.31 | 5.26 | 0.17 | 1.62 | 1.78 | 1.01 | 2.04 | 2.58 | 4.74 | 5.20 | 5.87 | 1.95 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{x}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$
of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air

```
Weighted NOX E.F. (g/km/veh) =
Total \(\mathrm{NO}_{2}\) emission factor (g/s)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as

|  | $\mathrm{W} / \mathrm{m}$ | $\mathrm{H} / \mathrm{m}$ | $\mathrm{L} / \mathrm{m}$ |
| :--- | :--- | :--- | :--- |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus $<6.4 \mathrm{t}$ | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus >3.5t | 2 | 3 | 6.5 |
| PC \&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV $>15 \mathrm{t}$ |  | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 2.5 | 3.5 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 12 |
|  |  |  |  |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $A_{c}=\left(1.7^{*} 1.5^{*} 0.053\right)+\left(1.7^{*} 1.5^{*} 0.593\right)+\left(1.7^{*} 1.5^{*} 0.158\right)+\left(2.5^{*} 3.5^{*} 0.014\right)+\left(2.5^{*} 3.5^{*} 0.01\right)+\left(2.5^{*} 3.5^{*} 0.01\right)+\left(2^{*} 3^{*} 0.006\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0.002\right)+\left(2.1^{*} 1.6^{*} 0.068\right)+\left(2.1^{*} 1.6^{*} 0.04\right)$ $+\left(2.5^{*} 4.6^{*} 0.011\right)+\left(2.5^{*} 4.6^{*} 0.03\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$
$=3.2490 \mathrm{~m}$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunnel: $\quad F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$
External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$\begin{aligned} & =\text { Air density } \\ V_{c} & =\text { Velocity of vehicle, } \mathrm{m} / \mathrm{s}\end{aligned}$
$V_{C}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$C_{C_{d}}=$ Vehicle drag coefficient
$A_{c}=$ Vehicle frontal area
$\mathrm{N}=$ No. of vehicles in tunnel
$\mathrm{K}_{\text {in }}=$ Inlet loss coefficient
$\mathrm{K}_{\text {out }}=$ Outlet loss coefficient
$L=$ Lunnel friction fact
$\mathrm{D}=$ Hydraulic diameter of tunnel =
$A_{T}=$ Cross-sectional area of tunnel
$C_{w}=$ External wind coefficient
$V_{W(r e f)}=$ Velocity of wind at SE Station
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$=$ Anglo of ind a seatio

$$
=\quad 0.645
$$

$=3.24895583 \mathrm{~m}^{2}$
$=0.5$
1.0
$=\quad 200 \mathrm{~m}$
$4 A_{T} / P=8.47058824 \mathrm{~m}, \mathrm{P}$ is the Perimeter of tunnel
$=72 \mathrm{~m}^{2}$
$\begin{array}{ll}= & 72 \\ = & 0.3\end{array}$
$=\quad 3.19 \mathrm{~m} / \mathrm{s}$ (Average of 2011 Southeast Kowloon Weather Station data)

For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}{ }^{2}+b V_{T}+c=0$
where

\[\)| $a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$ |
| :--- |
| $b=-2 C_{d} A_{c} N V_{c}$ |
| $c=C_{d} A_{c} N V_{c}{ }^{2}-C_{w} V_{w}{ }^{2} A_{T}$ |

\]

For normal traffic condition
$\left.\begin{array}{rlrl}\text { traffic flow } Q & = & 0.451026541 \mathrm{veh} / \mathrm{s} \\ \text { Vehicle speed } \mathrm{V}_{\mathrm{C}} & = & 50 \mathrm{~km} / \mathrm{h} \\ & = & 13.88888889 \mathrm{~m} / \mathrm{s} \\ \text { QL/ } \mathrm{V}_{\mathrm{C}}\end{array}\right)$

Inside tunnel concentration $=$ emission rate $/$ (tunnel air flow $\times$ tunnel cross-sectional area) $\mathrm{NO}_{2}$ $18 \mathrm{ug} / \mathrm{m}^{3}$

P:|6009813111.01\Deliverables\EIA|EIA Report|Final|Sec 3 Air|Appendices\Appendix 3-9E (LT).xls

## Appendix 3.9E Calculation of In-Tunnel Air Quality or Portal H (Lam Tin)



## Emission Data



```
Weighted NOX E.F. (g/km/veh) 
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s) = 7.54E-03 g/sec
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $\mathrm{A}_{\mathrm{C}}=\left(1.7^{*} 1.5^{*} 0.042\right)+\left(1.7^{*} 1.5^{*} 0.496\right)+\left(1.7^{* 1} .5^{*} 0.175\right)+\left(2.5^{*} 3.5^{*} 0.002\right)+\left(2.5^{*} 3.55^{*} 0.031\right)+\left(2.5^{*} 3.5^{*} 0.001\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0\right)+\left(2.1^{*} 1.6^{*} 0.108\right)+\left(2.1^{*} 1.6^{*} 0.035\right)$ $+\left(2.5^{*} 4.6 * 0.093\right)\left(25^{*} 4.6^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$

$$
\begin{aligned}
& +(2.04 .00 .0 \\
& =3.2490 \mathrm{~m}
\end{aligned}
$$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunne:

$$
F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {ith }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
$$

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{V}_{\mathrm{C}}=$ Velocity of vehicle, $\mathrm{m} / \mathrm{s}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{C}=$ Vehicle frontal area
$\begin{aligned} & =\text { No. of vehicles in tu } \\ K_{\text {in }} & =\text { Inlet loss coefficient }\end{aligned}$
$K_{\text {m }}$ Outlet loss coefficie
$\begin{aligned} \mathrm{K}_{\text {out }} & =\text { Outlet loss coefficien } \\ \mathrm{f} & =\text { Tunnel friction factor }\end{aligned}$
$=$ Length of tunnel
$=$ Hydraulic diameter of tunnel $=$
$\mathrm{A}_{\mathrm{T}}=$ Cross-sectional area of tunne
$C_{w}=$ External wind coefficient
$=0.645$
$=\quad 0.645$
$=3.24895583 \mathrm{~m}^{2}$
ef) $=$ Velocity of wind at SE Station
$=\quad 0.5$
$\begin{array}{lr}= & 0.5 \\ = & 1.0 \\ = & 0.0155\end{array}$
200 m
$4 A_{T} / P=8.47058824 \mathrm{~m}, \mathrm{P}$ is the Perimeter of tunnel
$=72 \mathrm{~m}^{2}$
$\begin{aligned} V_{\text {w(ref) }} & =\text { Velocity of wind at SE Station } \\ \theta & =\text { Angle of the wind velocity component parallel to the roadway }\end{aligned}$
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
(1)

Solving the equation, $\quad a V_{T}^{2}+b V_{T}+c=0$
where

$$
\begin{aligned}
& a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T} \\
& b=-2 C_{d} A_{c} N V_{c}
\end{aligned}
$$

$$
c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}
$$

## For congested traffic condition

Vehicle speed $\mathrm{Vc}=2.70 \mathrm{~km} / \mathrm{h}$
average length of vehicle $=\left(4.6^{*} 0.05\right)+\left(4.6^{*} 0.59\right)+\left(4.6^{*} 0.16\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(6.5^{*} 0.01\right)+\left(6.5^{*} 0\right)+\left(5.2^{*} 0\right)+\left(5.2^{*} 0.07\right)+\left(5.2^{*} 0.04\right)+\left(16^{*} 0.01\right)+\left(16^{*} 0.03\right)+\left(12^{*} 0\right)+\left(12^{*} 0\right)+\left(6.5^{*} 0\right)$
distance between vehicle $=\quad 5.399116974 \mathrm{~m}$

| head to head length $=$ |
| :--- |
| $=$ |

$\begin{array}{ll}\text { head to head length }= & 6.399116974 \\ \text { Number of vehicles per lane }= & 31.25431225\end{array}$
$\begin{array}{ll}\text { Number of vehicles in tunnel } \mathrm{N}= & 31.25431225\end{array}$
Solving for $V_{T}$ by equation (1)

$$
\begin{aligned}
& a=-68.85 \\
& b=-363.87 \\
& c=285.57
\end{aligned}
$$

tunnel air flow velocity $\mathrm{V}_{\mathrm{T}}=\quad 0.693738192 \mathrm{~m} / \mathrm{sec} \quad$ or $\quad-5.978319 \mathrm{~m} / \mathrm{sec}$

Inside tunnel concentration $=$ emission rate $/$ (tunnel air flow $\times$ tunnel cross-sectional area)
$\mathrm{NO}_{2}$
$151 \mathrm{ug} / \mathrm{m}^{3}$
P:|6009813111.011Deliverables|EIA|EIA Report|Final|Sec 3 AirlAppendices\Appendix 3-9E (LT).xls

## Appendix 3.9E Calculation of In-Tunnel Air Quality <br> for Portal H (Lam Tin)

## Overall Concentrations

 (Portal H)Four assessment points (ASRs $\operatorname{InH} 1-\operatorname{InH} 4$ ) at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the four assessment points is assumed to be the background
concentration inside the proposed enclosure section.

| Elevation | $\mathrm{NO}_{2}$ Concentrations $\left(\mathbf{u g} / \mathbf{m}^{3}\right)$ at Various Levels <br> $(\mathbf{m A G})$ | $\mathrm{NO}_{2}$ |
| :--- | :---: | :---: |
|  | 0.0 | 225 |
| InH1 | 4.0 | 225 |
| InH1 | 8.0 | 225 |
| InH1 | 0.0 | 225 |
| InH2 | 4.0 | 225 |
| InH2 | 8.0 | 225 |
| InH2 | 0.0 | 225 |
| InH3 | 4.0 | 225 |
| InH3 | 8.0 | 225 |
| InH3 | 0.0 | 226 |
| InH4 | 4.0 | 225 |
| InH4 | 8.0 | 225 |
| InH4 |  |  |

Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$226 \mathrm{ug} / \mathrm{m}^{\mathrm{s}}$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at
Portal H (Normal Speed)
$=\quad 18+226$
$=244 \mathrm{ug} / \mathrm{m}^{3}$
Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at Portal H (Worst Case)
$=\quad 151+226$
$=377 \mathrm{ug} / \mathrm{m}^{3}$

## One-way Enclosure - Normal Condition (Portal I)

Tunnel Parameter

|  |  |  |  |
| :--- | :--- | ---: | :--- |
| Length $L$ | $=200$ | m |  |
| Height H | $=8$ | m |  |
| Width W | $=7$ | m |  |
| Cross-sectional area $\mathrm{A}_{\mathrm{T}}$ | $=\mathrm{H} \times \mathrm{W}=$ |  | $56 \mathrm{~m}^{2}$ |
| Perimeter $P$ | $=$ | 30 m |  |

## Emission Data

| Traffic Breakdown (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tunnel |  |  |  |  | Non- | Non- | Non- |  |  | Light Goods | Lt Goods | Light Goods | Heavy Goods | Heavy Goods | Single Deck | Double Deck |  |
| Traffic (Link |  |  |  |  | franchised | franchised | franchised | Private Light | Private Light | Vehicles<=2 | Vehicles 2.5 - | Vehicles>3. | Vehicles<=1 | Vehicles | Franchised | Franchised | Public Light |
| no.) | Traffic flow (veh/hr) | Motorcycles | Private Cars | Taxi | Bus<=6.4t | Bus 6.4-15t | Bus > 15 t | Bus $<=3.5 \mathrm{t}$ | Bus $>3.5 \mathrm{t}$ | .5t | 3.5t | 5 t | $5 t$ | >15t | Bus | Bus | Bus |
| 226 | 728 | 4.1\% | 58.1\% | 20.3\% | 1.3\% | 0.9\% | 0.9\% | 0.5\% | 0.4\% | 0.1\% | 5.4\% | 3.2\% | 1.3\% | 3.6\% | 0.0\% | 0.0\% | 0.0\% |
| NOx Emission | Factor (g/mile) | 0.75 | 0.05 | 0.60 | 1.62 | 3.25 | 5.17 | 0.20 | 1.95 | 2.02 | 1.02 | 2.02 | 2.57 | 4.73 | 5.28 | 5.96 | 2.00 |

Total $\mathrm{NO}_{2}$ emission rate $=$ total $\mathrm{NO}_{\mathrm{x}}$ emission factor x traffic flow x tunnel length $\times \mathrm{NO}_{2}$ conversion factor
where conversion factor $=12.5 \%$ (including tailpipe $\mathrm{NO}_{2}$ emission taken as $7.5 \%$
of $\mathrm{NO}_{x}$ and $5 \%$ of $\mathrm{NO}_{2} / \mathrm{NO}_{x}$ for tunnel air

```
Weighted NOX E.F. (g/km/veh) = 0
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s)
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus > 15 t | 2.5 | 3.5 | 12 |
| Private Light Bus $<3.5$ t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $A_{C}=\left(1.7^{*} 1.5^{*} 0.041\right)+\left(1.7^{*} 1.5^{*} 0.581\right)+\left(1.7^{*} 1.5^{*} 0.203\right)+\left(2.5^{*} 3.5^{*} 0.013\right)+\left(2.5 * 3.5^{*} 0.009\right)+\left(2.5^{*} 3.5^{*} 0.009\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2^{*} 3^{*} 0.004\right)+\left(2.1^{*} 1.6^{*} 0.001\right)+\left(2.1^{*} 1.6^{*} 0.054\right)+\left(2.1^{*} 1.5^{*} 0.032\right)$ $+\left(2.5^{*} 4.6^{*} 0.013\right)+\left(2.5^{*} 4.6^{*} 0.036\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(2^{*} 3^{*} 0\right)$

[^1]
## Tunnel Airflow

For Uni-directional Traffic
Push Force by vehicles:

$$
\begin{aligned}
& F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N \\
& F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
\end{aligned}
$$

Resisting Force by tunnel:

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$\mathrm{V}_{\mathrm{c}}=$ Air density $=$ Velocity of vehicle, $\mathrm{m} / \mathrm{s}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{c}=$ Vehicle frontal area
$\mathrm{N}=\mathrm{No}$. of vehicles in tunnel
$\mathrm{K}_{\text {in }}=$ Inlet loss coefficient
$\mathrm{K}_{\text {out }}=$ Outlet loss coefficient
L $\quad=$ Lennel friction fac
D $=$ Hydraulic diameter of tunnel =
$\mathrm{A}_{T}=$ Cross-sectional area of tunnel
$C_{w}=$ External wind coefficient
$V_{\text {wren) }}=$ Velocity of wind at SE Station
$V_{w_{\text {(ref) }}}=$ Velocity of wind at SE Station $=$
$\theta=$ Angle of the wind velocity component parallel to the roadway
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}{ }^{2}+b V_{T}+c=$
where

\[\)| $a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}$ |
| :--- |
| $b=-2 C_{d} A_{c} N V_{c}$ |
| $c=C_{d} A_{c} N V_{c}{ }^{2}-C_{w} V_{w}{ }^{2} A_{T}$ |

\]

For normal traffic condition
$\left.\begin{array}{rlrl}\text { traffic flow } Q & = & 0.202154327 \mathrm{veh} / \mathrm{s} \\ \text { Vehicle speed } \mathrm{V}_{\mathrm{C}} & = & 50 \mathrm{~km} / \mathrm{h} \\ & = & 13.88888889 \mathrm{~m} / \mathrm{s} \\ \mathrm{QL} \mathrm{V}_{\mathrm{C}}\end{array}\right)$
$\begin{aligned} \text { Inside tunnel concentration } & = & \text { emission rate } /(\text { tunnel air flow } \times \text { tunnel cross-sectional area) } \\ \mathrm{NO}_{2} & = & 14 \mathrm{ug} / \mathrm{m}^{3}\end{aligned}$
$\mathrm{NO}_{2}$

P:|6009813111.011Deliverables|EIA|EIA Report|Final|Sec 3 AirIAppendices\Appendix 3-9F (LT).xls

## Appendix 3.9F Calculation of In-Tunnel Air Quality for Portal I (Lam Tin)

| One-way Enclosure - Worst Condition Tunnel Parameter | (Portal I) |
| :---: | :---: |
| Length L = 200 | m |
| Height H = 8 | m |
| Width W = 7 | m |
| Cross-sectional area $\mathrm{A}_{T}=\mathrm{H} \times \mathrm{W}=$ | $56 \mathrm{~m}^{2}$ |
| Perimeter $P$ | 30 m |

## Emission Data



```
Weighted NOX E.F. (g/km/veh) =
Total }\mp@subsup{\textrm{NO}}{2}{}\mathrm{ emission factor (g/s) = 3.50E-03 g/sec
```


## Vehicle Data

Nominal dimensions of vehicles are given in Transport Planning and Design Manual, Vol. 2 as:

|  | W/m | H/m | L/m |
| :---: | :---: | :---: | :---: |
| Motorcycles | 1.7 | 1.5 | 4.6 |
| Petrol PC \&LGV | 1.7 | 1.5 | 4.6 |
| Taxi | 1.7 | 1.5 | 4.6 |
| Non-franchised Bus <6.4t | 2.5 | 3.5 | 12 |
| Non-franchised Bus 6.4-15t | 2.5 | 3.5 | 12 |
| Non-franchised Bus >15t | 2.5 | 3.5 | 12 |
| Private Light Bus <3.5t | 2 | 3 | 6.5 |
| Private Light Bus > 3.5 t | 2 | 3 | 6.5 |
| PC\&LGV <2.5t | 2.1 | 1.6 | 5.2 |
| LGV 2.5-3.5t | 2.1 | 1.6 | 5.2 |
| LGV >3.5t | 2.1 | 1.6 | 5.2 |
| HGV<15t | 2.5 | 4.6 | 16 |
| HGV>15t | 2.5 | 4.6 | 16 |
| Single Deck Franchised Buses | 2.5 | 3.5 | 12 |
| Double Deck Franchised Buses | 2.5 | 4.6 | 12 |
| Public Light Bus | 2 | 3 | 6.5 |

No dimensions for motorcycles and non-franchised bus are provided.
For the purpose of this study, the dimensions of motorcycles and taxi are assumed to be the same as private car
and the dimension of non-franchised bus are assumed to be the same as single deck franchised bus.
Nominal cross-sectional area $\mathrm{A}_{\mathrm{C}}=\left(1.7^{*} 1.5^{*} 0.042\right)+\left(1.7^{*} 1.5^{*} 0.496\right)+\left(1.7^{* 1} .5^{*} 0.175\right)+\left(2.5^{*} 3.5^{*} 0.002\right)+\left(2.5^{*} 3.55^{*} 0.031\right)+\left(2.5^{*} 3.5^{*} 0.001\right)+\left(2^{*} 3^{*} 0.003\right)+\left(2^{*} 3^{*} 0.005\right)+\left(2.1^{*} 1.6^{*} 0\right)+\left(2.1^{*} 1.6^{*} 0.108\right)+\left(2.1^{*} 1.6^{*} 0.035\right)$

$$
+\left(2.5^{*} 4.6^{*} 0.093\right)+\left(2.5^{*} 4.6^{*} 0.008\right)+\left(2.5^{*} 3.5^{*} 0\right)+\left(2.5^{*} 4.6^{*} 0\right)+\left(22^{*} 3^{*} 0\right.
$$

$$
=3.2771 \mathrm{~m}^{2}
$$

## Tunnel Airflow

For Uni-directional Traffic,
Push Force by vehicles: $\quad F_{C}=\frac{1}{2} \rho\left(V_{C}-V_{T}\right)^{2} C_{d} A_{C} N$
Resisting Force by tunnel:

$$
F_{T}=\frac{1}{2} \rho V_{T}^{2}\left(K_{\text {ith }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T}
$$

External Wind at the Entrance and Exit Portals:

$$
F_{W}=\frac{1}{2} \rho C_{W}\left(V_{W} \cos \theta\right)^{2} A_{T}
$$

where $\rho=$ Air density
$=\quad 1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{V}_{\mathrm{C}}=$ Velocity of vehicle, $\mathrm{m} / \mathrm{s}$
$V_{T}=$ Velocity of air flow in tunnel, $\mathrm{m} / \mathrm{s}$
$\mathrm{C}_{\mathrm{d}}=$ Vehicle drag coefficient
$A_{C}=$ Vehicle frontal area
$\begin{aligned} & =\text { No. of vehicles in tu } \\ \mathrm{K}_{\text {in }} & =\text { Inlet loss coefficient }\end{aligned}$
$\mathrm{K}_{\text {ou }}$ Outlet loss ceefficie
$\begin{aligned} \mathrm{K}_{\text {out }} & =\text { Outlet loss coefficien } \\ \mathrm{f} & =\text { Tunnel friction factor }\end{aligned}$
$=$ Length of tunnel
$=$ Hydraulic diameter of tunnel $=$
$A_{T}=$ Cross-sectional area of tunne
$C_{w}=$ External wind coefficient
$V_{W \text { (ref) }}=$ Velocity of wind at SE Station
0.645
$=3.27708228 \mathrm{~m}^{2}$
$\theta=$ Angle of the wind velocity component parallel to the roadway
For the worst scenario, only external wind at the exit portal is considered and the wind is parallel to the roadway.
Force balance : $\quad F_{C}-F_{T}-F_{W}=0$
Solving the equation, $\quad a V_{T}^{2}+b V_{T}+c=0$
where

$$
\begin{aligned}
& a=C_{d} A_{c} N-\left(K_{\text {in }}+K_{\text {out }}+\frac{f L}{D}\right) A_{T} \\
& b=-2 C_{d} A_{c} N V_{c}
\end{aligned}
$$

$$
c=C_{d} A_{c} N V_{c}^{2}-C_{w} V_{w}^{2} A_{T}
$$

## For congested traffic condition

$\begin{array}{rlrl}\text { Vehicle speed } \mathrm{Vc} & =2777777778 & 10 \mathrm{~km} / \mathrm{h}\end{array}$
average length of vehicle $=\left(4.6^{*} 0.04\right)+\left(4.6^{*} 0.58\right)+\left(4.6^{*} 0.2\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(12^{*} 0.01\right)+\left(6.5^{*} 0\right)+\left(6.5^{*} 0\right)+\left(5.2^{*} 0\right)+\left(5.2^{*} 0.05\right)+\left(5.2^{*} 0.03\right)+\left(16^{*} 0.01\right)+\left(16^{*} 0.04\right)+\left(12^{*} 0\right)+\left(12^{*} 0\right)+\left(6.5^{*} 0\right)$
distance between vehicle $=\quad 5.4524559 \mathrm{~m}$
$\begin{array}{ll}\text { istance between vehicle }= \\ \text { head to head length }= & 6.4524559 \mathrm{~m}\end{array}$
$\begin{array}{ll}\text { head to head length }= & 6.4524559 \mathrm{~m} \\ \text { Number of vehicles per lane }= & 30.99594993\end{array}$
$\begin{array}{ll}\text { Number of vehicles in tunnel } \mathrm{N} \\ = & 30.99594993\end{array}$
Solving for $V_{T}$ by equation (1)

$$
\begin{aligned}
& a=-41.73 \\
& b=-363.98 \\
& c=334.57
\end{aligned}
$$

tunnel air flow velocity $\mathrm{V}_{\mathrm{T}}=\quad 0.838571527 \mathrm{~m} / \mathrm{sec} \quad$ or $\quad-9.5601838 \mathrm{~m} / \mathrm{sec}$

Inside tunnel concentration $=$ emission rate $/$ (tunnel air fiow $\times$ tunnel cross-sectional area)
$\mathrm{NO}_{2}=\quad 74 \mathrm{ug} / \mathrm{m}$
P:|6009813111.011Deliverables|EIA|EIA Report|Final|Sec 3 Air|Appendices\Appendix 3-9F (LT).xls

## Appendix 3.9F Calculation of In-Tunnel Air Quality for Portal I (Lam Tin)

## Overall Concentrations

(Portal I)

Four assessment points (ASRs $\operatorname{In} 11-\ln 14)$ at the boundary of the enclosure are chosen.
Using CALINE4 and ISCST3 model, the air pollutants concentrations at the 4 assessment points at different levels are calculated. The highest concentration among the four assessment points is assumed to be the background
concentration inside the proposed enclosure section.


Therefore, the $\mathrm{NO}_{2}$ background concentration inside the enclosure is
$241 \mathrm{ug} / \mathrm{m}^{3}$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at
Portal (Normal Speed) = $14+24$

Total Maximum $\mathrm{NO}_{2}$ concentration inside tunnel at Portal I (Worst Case)
$\begin{array}{ll}= & 14+2 \\ = & 255\end{array}$
$=\quad 74+241$
$=315 \mathrm{ug} / \mathrm{m}^{3}$


[^0]:    3.4083

[^1]:    $=3.2771 \mathrm{~m}^{2}$

