Appendix 5.2Mathematical Expressions for Bridge Pier Friction

5.2.1 The mathematical expressions for representation of pile friction are based on the Delft 3D-FLOW module developed by Delft Hydraulics. A quadratic friction term added to the momentum equations can be expressed in the form:

Friction loss in the u coordinate direction = [$C_{loss, u} U |<U>|$] / $\Delta x (m/s^2)$ Friction loss in the v coordinate direction = [$C_{loss, v} V |<U>|$] / $\Delta y (m/s^2)$ (5.1)

where: $C_{loss, u}$ and $C_{loss, v} = loss$ coefficients in the u and v coordinate directions; $\langle U \rangle = velocity$ vector (U, V); $|\langle U \rangle| = magnitude of the velocity vector = \sqrt{U^2 + V^2}$ (m/s); and Δx and $\Delta y = grid$ distances in u and v coordinate directions respectively (m).

- 5.2.2 According to the water speeds in each model layer, the additional quadratic friction term influences the horizontal flow distribution in each layer and so indirectly affects the vertical turbulent exchange.
- 5.2.3 The force exerted on the vertical section (Δz) of one pile can be expressed as:

Drag force on a pile in the u coordinate direction:

 $F_{u} = C_{d} \frac{1}{2} \rho D U_{e} |\langle U_{e} \rangle| \Delta z$

Drag force on a pile in the v coordinate direction:

 $F_v = C_d \frac{1}{2} \rho D V_e |\langle U_e \rangle| \Delta z_{.....}$ (5.2)

where:

C_d	=	drag coefficient;
ρ	=	density of water (kg/m ³);
$\langle U_e \rangle$	=	effective approach velocity vector (Ue, Ve) (m/s);
$ \langle U_e \rangle $	=	magnitude of the effective approach velocity vector = $\sqrt{U^2 + V^2}$ (m/s);
D	=	diameter of the pile (m); and
Δz	=	length of the vertical section (m).

5.2.4 The effective approach velocity can be calculated using the wet cross section as seen in flow direction and is expressed as:

Effective approach velocity $\langle U_e \rangle = \langle U \rangle \times [A_T / A_e] = \langle U \rangle \times a....(5.3)$

where:

=	total cross-sectional area (m ²);
	effective wet cross sectional area
=	total cross-sectional are (A_T) – area blocked by the pile (m^2) ; and
=	ratio of the total area to the effective area.
	= =

5.2.5 Assuming the piles are not in the shadow of each other, the total force exerted on the vertical section for n numbers of piles can be expressed as:

Total drag force in the u coordinate direction:

$$F_{\text{tot, u}} = n C_d \frac{1}{2} \rho D U_e |\langle U_e \rangle| \Delta z$$

Total drag force in the v coordinate direction:

$$F_{\text{tot, v}} = n C_d \frac{1}{2} \rho D V_e |\langle U_e \rangle| \Delta z$$

where:

n

- = number of piles in the control grid cell.
- 5.2.6 The total friction loss term in the u and v coordinate directions can be determined by dividing the forces by the mass in the control volume (= $\rho \Delta x \Delta y \Delta z$) and can be expressed as:

Total friction loss in the x-direction = n C_d
$$\frac{1}{2}$$
 D U_e $|\langle U_e \rangle| \Delta z \frac{|\langle U_e \rangle|}{(\Delta x \Delta y)}$
Total friction loss in the y-direction = n C_d $\frac{1}{2}$ D V_e $|\langle U_e \rangle| \Delta z \frac{|\langle U_e \rangle|}{(\Delta x \Delta y)}$(5.4)

5.2.7 Combining Equation (5.1) and Equation (5.4), the loss coefficients for n numbers of piles in the u and v coordinate directions area:

Loss coefficient in the u coordinate direction $C_{loss, u} = [n C_d \frac{1}{2} D a^2] / (\Delta y)$ Loss coefficient in the v coordinate direction $C_{loss, v} = [n C_d \frac{1}{2} D a^2] / (\Delta x).....(5.5)$

5.2.8 Based on the equations (5.1) - (5.5), the loss coefficients were calculated for relevant model grid cells in both u and v directions for model input.